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Abstract

The microstructure of materials is becoming an increasingly essential tool for the optimization of the me-
chanical properties of structures, however, the transition to a continuous description often leads to a too
drastic simplification of reality and a significant loss of information rendering the optimization efforts useless.
Nowadays, the developments of continuum mechanics, of the computational tools and of the experimental
techniques make it possible to account for scale-effects observed in mechanics of materials and structures.
The primary goal of this thesis is to integrate the effects of a complex microstructure, as well as the asso-
ciated characteristic lengths, in a continuous framework. Therefore, enriched continuous models have been
used to describe in detail the mechanical behavior of woven composite reinforcements and metamaterials.
Within the framework of this thesis, numerical simulations have been developed using the software COMSOL
Multiphysics and Mathematica to show the importance of the terms added for the correct description of the
mechanical behavior of these materials.

There are several approaches that take into account the effects of micro-structure on the macroscopic
behavior of materials, that can be divided in the two following categories:

• description of the behavior at the macroscopic scale starting from considerations at the microscopic
scale;

• direct description of the macroscopic behavior indirectly taking into account the presence of a micro-
structure.

There is an abundant literature based on the first point of view: obtaining the homogenized properties of
the mechanical behavior of complex materials on a macroscopic scale from a detailed description of their
microscopic properties. However, we must also mention the limits of this type of micro-macro approaches,
most of which are related to the simplifying hypotheses necessary for the description of the microstructure.
The second type of approach starts directly from the description at the macroscopic scale, by developing
models capable of describing the average behavior of the material with a relatively limited set of parameters.
The fundamental advantage of this type of approach lies in the possibility of describing the behavior of the
microstructured material via the introduction, on a macroscopic scale, of this restricted number of parameters.
Theories of enriched continuous media belong to the second class of the models cited. In this work, we tried
to analyze the situations in which their use brings obvious advantages.

Within the framework of enriched continuous theories, the systematic use of a so-called Cauchy theory
sometimes leads to an oversimplification of reality. Indeed, certain characteristics of the microstructure
are implicitly neglected in these approaches. However, even if all the materials are heterogeneous on a
sufficiently small scale and therefore possess a microstructure, this does not necessarily induce a specific
behavior on a macroscopic scale. In this case, the Cauchy theory would be perfectly adapted to their
description. On the other hand, other materials possess microstructures on a large-enough scale (micron,
millimeter, centimeter), whose effects have repercussions on macroscopic behavior. The Cauchy model is
then insufficient to describe their specific global behavior related to what occurs at smaller scales, e.g.
concentration of forces or deformations, or strong local gradients.

One of the most promising fields of application of enriched continuous theories concerns the study of the
mechanical behavior of woven composite reinforcements. This class of materials, made up by weaving yarns
(made up themselves of many thinner fibers), possess very different rigidities in tension and in shear: the
yarns are very stiff in tension but the angle between two yarns can vary very easily. This very marked con-
trast of material mechanical properties makes it necessary to describe its homogenized properties within the
framework of a second gradient theory (or a constrained micromorphic one). The macroscopic manifestation
of the meso-structure can indeed play a major role for composite reinforcements, since these reinforcements
are forced to take very complex geometries during the forming process. It is mainly for this reason that a
theory of enriched continuous media becomes an important tool for their macroscopic modeling.
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Abstract

In the case of woven composite reinforcements of textile composites, enriched models are suitable to
integrate the effect of the bending of the yarns at the mesoscopic level in the continuous modeling. This
has been demonstrated in the case of the bias extension test and the deep drawing of a composite 2.5D
interlock. For the bias extension test, the second gradient terms allow for the description of certain boundary
layers, i.e. transition zone between two regions with constant shear angle, and also asymmetric effects in the
case of unbalanced reinforcements. Concerning the deep drawing of composite interlocks, it has been shown
that second gradient terms are necessary to correctly describe the onset of wrinkling. In the two examples
discussed, the effect of mesoscopic bending of the yarns is the main mechanism giving rise to effects that are
not included in conventional models. The same line of reasoning could be followed for composites consisting
of fibrous reinforcements in a soft matrix. In this case, the theories of enriched continuous media would be
applied to the whole material: fibrous reinforcement + soft matrix.

Cauchy models are also not well-suited for the description of the dynamic response of certain microstruc-
tured materials showing dispersive behaviors or band-gaps. Enriched continuous theories (and in particular
the relaxed micromorphic model) can be good candidates for modeling these materials in a more precise and
realistic way, since they can include the macroscopic manifestation of their microstructure. In the current
state of knowledge and technology, it is interesting to focus efforts on the design of microstructured materials
that may have original properties, to improve and optimize the responses of the structures that use them.
Indeed, these structures are designed using such microstructured materials - also known as metamaterials -
to exhibit improved strengths, shaping facilities, minimized weights, and much more. They can also possess
innovative properties in the field of vibration control or in the field of stealth technology. In particular, some
microstructures possess very specific properties with respect to wave propagation, which give the resulting
structures possible applications as a screen or a wave absorber. The new concept of metamaterials is attract-
ing more and more physicists and mechanics. These materials are obtained by the optimal assembly of several
individual elements arranged in periodic or quasi-periodic substructures, which makes it possible to obtain
very original properties. Indeed, the shape, geometry, dimensions, contrast of the mechanical properties,
orientation and arrangement of these elements can influence, for example, the propagation of waves in a way
impossible in classical materials. The properties thus created can certainly lead to innovative applications in
engineering.

Recent papers provided the evidence that the relaxed micromorphic model, even when restricted to the
isotropic case, is usable to characterize the mechanical behavior of band-gap metamaterials, i.e. microstruc-
tured materials which are able to “stop” the propagation of elastic waves due to local resonances at the level
of the microstructure. The enormous advantage of using the relaxed micromorphic model for the description
of such metamaterials is undoubtedly that of mastering the behavior of complex media via the introduction
of few elastic coefficients (Young modulus, Poisson ratio and few extra microstructure-related homogenized
coefficients). This simplified modeling of metamaterials allows for the conception of “metastructures”, i.e.
structures which are made up of metamaterials as basic building blocks and which preserve their unconven-
tional behavior at the scale of the structure (i.e. wave absorption).

Keywords: enriched continua, relaxed micromorphic model, second gradient theories, woven fibrous com-
posite reinforcements, metamaterials, phononic band-gaps, bias extension test, deep drawing of composite
interlocks.
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Résumé

La microstructure des matériaux est un levier essentiel pour l’optimisation des propriétés mécaniques des
structures. Le passage à la description continue de la matière conduit souvent à une simplification trop
drastique de la réalité et à une perte significative d’informations. Les développements dge la mécanique des
milieux continus, des moyens de calcul numérique et des techniques expérimentales permettent aujourd’hui
de rendre compte des effets d’échelle observés en mécanique des matériaux et des structures. Le but primaire
de cette thèse a été celui de développer des modèles continus pour intégrer dans la modélisation continue les
effets d’une morphologie complexe des microstructures ainsi que les longueurs caractéristiques associées. Ces
modèles continus enrichis ont ensuite été utilisé pour décrire en détail le comportement mécanique des renforts
de composites textiles et des metamateriaux. Des simulations numériques qui montrent l’importance des
termes ajoutés pour la correcte description du comportement mécanique de ces matériaux ont été développées
dans le cadre de cette thèse à l’aide des softwares COMSOL Multiphysics et Mathematica.

Il existe plusieurs approches qui prennent en compte les effets de la micro-structure sur le comportement
macroscopique des matériaux, elles appartiennent à l’une des catégories suivantes :

• description du comportement à l’échelle macroscopique à partir d’une description de celui-ci à l’échelle
microscopique,

• description directe du comportement macroscopique tenant indirectement compte de la présence d’une
micro-structure.

Il existe une littérature abondante qui se fonde sur le premier point de vue : obtenir les propriétés ho-
mogénéisées du comportement mécanique des matériaux complexes à l’échelle macroscopique en partant
d’une description détaillée de leurs propriétés microscopiques. Cependant, on doit aussi mentionner les
limites de ce type d’approches micro-macro, limites pour la plupart liées aux hypothèses simplificatrices
nécessaires pour la description de la microstructure. Le deuxième type d’approche possible consiste à partir
directement de la description à l’échelle macroscopique en développant des modèles capables de décrire le
comportement moyen du matériau par un ensemble relativement limité de paramètres. L’avantage fondamen-
tal de ce type d’approche réside dans la possibilité de décrire le comportement du matériau microstructuré
à partir de l’introduction, à l’échelle macroscopique, de ce nombre restreint de paramètres, ce qui est d’un
grand intérêt pour les sciences de l’ingénieur. Les théories des milieux continus enrichis appartiennent à la
deuxième classe des modèles cités. On essaiera d’analyser dans ce travail les situations dans lesquelles leur
utilisation permet d’apporter des avantages évidents.

Dans le cadre des théories des milieux continus enrichis, l’utilisation systématique d’une théorie dite de
Cauchy conduit souvent à des simplifications trop fortes de la réalité. En effet, certaines caractéristiques de
la microstructure sont implicitement négligées dans ces approches. Cependant, même si tous les matériaux
sont hétérogènes à une échelle suffisamment petite et possèdent donc une microstructure, celle-ci n’induit pas
forcément un comportement spécifique à une échelle macroscopique. Dans ce cas, la théorie de Cauchy sera
parfaitement adaptée à leur description. En revanche, d’autres matériaux possèdent des microstructures à une
échelle beaucoup plus grande (micron, millimètre, centimètre), dont l’effet se répercute sur le comportement
macroscopique. Le modèle de Cauchy est alors insuffisant pour décrire leur comportement global spécifique,
lié par exemple à la concentration d’efforts ou de déformations, ou encore à des modes de déformations
particuliers caractérisés par de forts gradients locaux induisant des comportements eux-mêmes liés à ce qui
se passe à des échelles plus petites.

Un des domaines d’application les plus prometteurs des théories de milieux continus enrichis concerne
l’étude du comportement mécanique des renforts tissés de composites. Cette classe de metamatériaux est
en effet constituée par le tissage de mèches (constituées de nombreuses fibres plus fines), dont les rigidités
sont très différentes en traction et en cisaillement : les mèches sont rès raides en traction mais l’angle

ivCette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
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Résumé

entre deux mèches peut varier très facilement. Ce contraste très marqué des propriétés mécaniques de la
meso-structure du matériau permet de décrire ses propriétés homogénéisées dans le cadre d’une théorie de
deuxième gradient. La manifestation macroscopique de la meso-structure peut en effet jouer un rôle majeur
lors de la mise en forme des renforts de composites puisque ces renforts sont contraints de prendre des formes
très particulières pour permettre la réalisation d’éléments structuraux de géométrie complexe. C’est pour
cette raison, principalement, qu’une théorie de milieux continus enrichis devient un outil important pour la
modélisation.

Dans le cas des renforts de composites textiles, il a été montré que des models enrichis sont nécessaires
pour intégrer dans la modélisation continue l’effet de la flexion des mèches au niveau mesoscopique. Ceci
a été mis en évidence pour le cas du “bias extension test” et de l’emboutissage emispheric d’un interlock
2.5D de composite. Pour le cas du “bias extension test” les termes de deuxième gradient permettent la
description de certaines couches limites qui déterminent une zone de transition entre deux régions à angle
de cisaillement constant et aussi des effects asymétriques dans le cas des renforts déséquilibrés. Pour ce qui
concerne l’emboutissage des interlocks de composite, il a été montré que les termes de deuxième gradient
sont nécessaires pour décrire correctement la formation des plis. Dans les deux exemples traités, l’effet de
la flexion des mèches à l’échelle mesoscopique est le mécanisme principal donnant lieu aux effets qui ne sont
pas descriptibles avec des modéles classiques. Des raisonnements du même type que ceux exposés jusqu’ici
peuvent être formulés pour les composites constitués par des renforts fibreux englobés dans une matrice
molle. Dans ce cas, les théories de milieux continus enrichis s’appliquent lorsque l’on considère l’ensemble du
matériau fini : renfort fibreux + matrice molle.

Les modèles de Cauchy ne sont pas non plus adaptés à la description de la réponse dynamique de cer-
tains matériaux microstructurés montrant des comportements dispersifs ou des band-gaps. Les théories de
milieux continus enrichis peuvent être des bonnes candidates pour modéliser ces matériaux d’une façon plus
précise et plus réaliste, aussi bien en statique qu’en dynamique, puisqu’elles peuvent décrire, même d’une
façon simplifiée, la manifestation macroscopique de la présence d’une microstructure. Dans l’état actuel des
connaissances et de la technologie, il est intéressant de faire porter les efforts sur la conception de matériaux
microstructurés pouvant présenter des propriétés originales afin d’améliorer et d’optimiser les réponses des
structures qui les utilisent. En effet, ces structures conçues en utilisant de tels matériaux microstructurés –
aussi connus sous le nom de matériaux architecturés ou metamatériaux – peuvent présenter des résistances
améliorées, des facilités de mise en forme, des poids minimisés, etc. Elles peuvent également posséder des
propriétés innovantes dans le domaine du contrôle des vibrations ou dans le domaine de la furtivité. Certaines
microstructures génèrent en effet des propriétés très particulières vis à vis de la propagation d’ondes, ce qui
confère aux structures résultantes des solutions de choix comme écran ou absorbeur d’ondes.

Des articles récents ont fourni la preuve que le modèle micromorphique relaxé, même s’il est restreint
au cas isotrope, est utilisable pour caractériser le comportement mécanique des métamatériaux à bande,
c’est-à-dire des matériaux microstructurés capables de “stopper” la propagation des ondes élastiques due aux
résonances locales au niveau de la microstructure. L’avantage énorme de l’utilisation du modèle micromorphe
relaxé pour la description de ces métamatériaux est sans aucun doute celui de maîtriser le comportement des
milieux complexes grâce à l’introduction de peu de coefficients élastiques (module de Young, coefficient de
Poisson et quelques coefficients supplémentaires liés à la microstructure homogénéisé). Cette modélisation
simplifiée des métamatériaux permet d’ouvrir la porte vers la conception des “métastructures”, c’est-à-dire des
structures qui sont constituées de métamatériaux en tant que blocs de construction basiques et qui préservent
leur comportement non conventionnel à l’échelle de la structure (c’est-à-dire l’absorption des ondes).

Le nouveau concept de metamatériaux est en train d’intéresser de plus en plus les physiciens et les mé-
caniciens. Ces matériaux sont obtenus par l’assemblage optimal de plusieurs éléments individuels disposés en
sous-structures périodiques ou quasi-périodiques et permettent ainsi l’obtention de propriétés très originales.
En effet, la forme, la géométrie, les dimensions, le contraste des propriétés mécaniques, l’orientation et la
disposition de ces éléments peuvent influencer par exemple la propagation d’ondes, d’une façon telle qu’aucun
matériau naturel n’est capable de concurrencer. Les propriétés ainsi créées peuvent certainement donner lieu
à des applications innovantes en ingénierie.

Mots-Clés : milieux continus enrichis, modèle micromorphe relaxé, théories de second gradient, renforts
fibreux de composite, metamatériaux, band gaps, bias extension test, mise en forme, emboutissage.
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General introduction

Modeling in continuum mechanics is an art encompassing mathematics, mechanics, physics and experiments.
Many researchers have been attracted to the field of enriched continuummechanics, following the master works
of Mindlin and Eringen, and have dealt with the description of particular aspects of enriched continuum
theories, usually introducing “ad hoc” terms to provide sensational additional effects. Nonetheless, some
fundamental questions concerning the range of applicability or the descriptive power of enriched continuum
mechanics had not been settled, leading to an understandable skepticism of the majority of researchers in
continuum mechanics. On the contrary, we believe in the usefulness of enriched continuum mechanical models,
even if we are aware of their current shortcomings.

We are deeply convinced that scientific advancements do not consist in producing a zoo of possibilities
and to combine more effects (which are themselves not yet properly understood), but in reducing complexity
and in explaining in simpler terms previously non-connected ideas, without losing the accuracy of the mathe-
matical description of the physical problem we are interested in. A major guidance for enlightened modeling
certainly comes from the experimental side. Basing ourselves on the considered phenomena, we should not
use superfluous information (superfluous because in practice, it cannot be determined) and, among valid
competing hypotheses, the one with the simplest assumptions should be selected. In this work, we deal with
enriched continuum models in this spirit: directed towards simplification. Whether we have achieved a step
into this direction must be judged by the reader.

Recent years have seen a colossal increase of interest in so-called generalized or enriched continuum
models. This exponential growth is mainly due to the need to incorporate additional phenomenological
features like the discreteness of matter, characteristic length scales, dispersion of waves, etc. As a matter of
fact, complex (meta-)materials may exhibit superior mechanical properties with respect to more commonly
used engineering materials, also providing some advantages as easy formability processes, light weight and
exotic behavior with respect to wave propagation. All these features are not fully captured by standard
elasticity approaches. The idea of using enriched continuum models to account for the homogenized behavior
of microstructured materials has extensively been exploited in the last years (e.g [71–75]).

The first main focus of this manuscript is a class of complex engineering materials which are known as
woven fibrous composite reinforcements. These materials possess a hierarchical microstructure, since they
are constituted by woven yarns which are themselves made up of thousand of fibers. We will show that the
meso- and micro-structures of fibrous composites have a strong impact on the overall mechanical behavior
of the macroscopic engineering piece. A classical Cauchy model is not able, alone, to take into account all
the possible effects that the microstructure of considered materials have on their macroscopic deformation.
More precisely, some particular loading conditions, associated to particular types of boundary conditions
may cause some microstructure-related deformation modes which are not fully taken into account in Cauchy
continuum theories. This is the case, for example, when observing some regions inside the materials in which
high gradients of deformation occur, concentrated in relatively narrow regions. One way to deal with the
description of such boundary layers, while remaining in the framework of a macroscopic theory, is to consider
so-called “enriched continuum theories”. Such enriched theories allow for the introduction of a class of internal
actions wider than in the case of classical Cauchy continuum theory. These more general contact actions
excite additional deformation modes, which can be seen to be directly related with the properties of the
microstructure of considered materials.

The second main focus of this manuscript is the relaxed micromorphic model. Recent papers [131, 132]
provided the evidence that the relaxed micromorphic model, even when restricted to the isotropic case, is
fit to characterize the mechanical behavior of metamaterials with unorthodox dynamical properties. More
precisely, it has been shown that the isotropic relaxed micromorphic model can be effectively used to model
band-gap metamaterials, i.e. microstructured materials which are able to “stop” the propagation of elastic
waves due to local resonances at the level of the microstructure. The enormous advantage of using the relaxed
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General introduction

micromorphic model for the description of such metamaterials is undoubtedly the introduction of few elastic
coefficients (Young modulus, Poisson ratio and few extra microstructure-related homogenized coefficients).
This simplified modeling of metamaterials will allow for the conception of “metastructures”, i.e. structures
which are made up of metamaterials as basic building blocks and which preserve their unconventional behavior
at the scale of the structure (e.g. wave absorption).

The present manuscript is organized as follows:

• In Part I, some fundamental details concerning classical continuum mechanical models are recalled.
Moreover, enriched continuum models are introduced and discussed presenting their characteristics and
their differences with classical continuum mechanics. A brief presentation of the Principle of virtual
work for enriched continuum models is presented.

• In Part II, a general description of fibrous composite reinforcements is given, with particular attention
to the micro- and macro-structural mechanical properties. Furthermore, some discrete and continuum
models are presented for the description of the mechanical behavior of 2.5D woven composites. In
particular, it will be shown how to describe some deformation modes related to the effect of the local
bending of fibers and the overall macroscopic deformation of fibrous composite reinforcements.

• In Part III, we present the relaxed micromophic continuummodel that will be used in Part IV to describe
phononic band-gap metamaterials. This model allows for a very general set of micromorphic effects,
while keeping the number of material coefficients reasonable. A homogenization formula is derived to
relate the parameters of the relaxed micromorphic model to an equivalent macroscopic classical model.

• In Part IV, we study the dispersive behavior of the relaxed micromorphic model and of some other main
micromorphic models. In particular, we focus on the description of phononic band-gap metamaterials
and the relaxed micromorphic model is applied to some real engineering band-gap metamaterials.

Notational agreement

We denote by R3×3 the set of real 3×3 second order tensors and by R3×3×3 the set of real 3×3×3 third order
tensors. The standard Euclidean scalar product on R3×3 is given by

〈
X,Y

〉
R3×3 = tr(X · Y T ) and, thus,

the Frobenius tensor norm is ‖X‖2 =
〈
X,X

〉
R3×3 . Moreover, the identity tensor on R3×3 will be denoted

by 1, so that tr(X) =
〈
X,1

〉
. We adopt the usual abbreviations of Lie-algebra theory, i.e.:

• Sym(3) := {X ∈ R3×3 |XT = X} denotes the vector-space of all symmetric 3× 3 matrices

• so(3) := {X ∈ R3×3 |XT = −X} is the Lie-algebra of skew symmetric tensors

• sl(3) := {X ∈ R3×3 | tr(X) = 0} is the Lie-algebra of traceless tensors

• R3×3 ' gl(3) = {sl(3)∩Sym(3)}⊕so(3)⊕R·1 is the orthogonal Cartan-decomposition of the Lie-algebra

For all X ∈ R3×3, we consider the decomposition

X = dev symX + skewX +
1

3
tr(X)1, (INT.1)

where:

• symX = 1
2 (XT +X) ∈ Sym(3) is the symmetric part,

• skewX = 1
2 (X −XT ) ∈ so(3) is the skew-symmetric part,

• devX = X − 1
3 tr(X)1 ∈ sl(3) is the deviatoric part .

Throughout all the paper, we denote:
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General introduction

• the sixth order tensors L̂ : R3×3×3 → R3×3×3 by a hat

• the fourth order tensors C : R3×3 → R3×3 by overline

• without superscripts, i.e.C, the classical fourth order tensors acting only on symmetric matrices
C : Sym(3)→ Sym(3) or skew-symmetric ones Cc : so(3)→ so(3)

• the second order tensors C̃ : R6 → R6 or C̃ : R3 → R3 appearing as elastic stiffness by a tilde.

Throughout this paper Latin subscripts take the values 1,2,3 while Greek subscripts take the values
1,2,3,4,5,6 and we adopt the Einstein convention of sum over repeated indices if not differently specified.
We denote by CX the linear application of a 4th order tensor to a 2nd order tensor and also for the linear
application of a 6th order tensor L̂ to a 3rd order tensor. In symbols:(

CX
)
ij

= CijhkXhk ,
(
L̂A
)
ijh

= L̂ijhpqrApqr . (INT.2)

The operation of simple contraction between tensors of suitable order is denoted by a central dot, for example:(
C̃ · v

)
i

= C̃ijvj ,
(
C̃ ·X

)
ij

= C̃ihXhj . (INT.3)

Typical conventions for differential operations are implied, such as a comma followed by a subscript to
denote the partial derivative with respect to the corresponding Cartesian coordinate, i. e. (·),j = ∂(·)

∂xj
.

Given a skew-symmetric matrix A ∈ so(3) we consider:

A =

 0 A12 A13

−A12 0 A23

−A13 −A23 0

 , axl
(
A
)

= (−A23, A13,−A12)T . (INT.4)

ore equivalently in index notation: [
axl
(
A
)]
k

= −1

2
εijk Aij =

1

2
εkij Aji , (INT.5)

where ε is the Levi-Civita third order permutation tensor.
Inversely, we Introduce the canonical identification of R3 with so(3), A can be expressed as a function of

a ∈ R3 as:

A = anti(a) =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (INT.6)

Copyright statement

Some passages have been quoted verbatim from the published papers of the author [11–13, 49, 50, 129–131,
136–138,179].
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CHAPTER I.1
Classical vs enriched continuum mechanics

This part of the thesis is meant as an introduction to enriched continuum mechanics. Most of the concepts
presented are taken from [176] and from the work of the late professor Maugin [149,150].

The study of enriched continuum mechanics can not be developed without considering its fundamentals,
namely what is usually referred to as “classical continuum mechanics”. The huge possibilities of the continuous
modeling of materials have been shown since Gabrio Piola (1789–1857) and Augustin L. Cauchy (1789–1857)
in the 19th century. In his pioneering work [196], Piola theorized the need of complex constitutive equations
including derivatives of the displacement of higher order than the usual first gradient. Nowadays, this feature
would not be considered proper of “classical continuum mechanics” due to the great impact of Cauchy’s
approach to modeling [32]; the French mathematician presented a rather simplified model that was still
rich enough to describe a wealth of mechanical behaviors. This impressive feature was the outcome of his
novel concepts and the work of other major researchers: Leonard Euler (1707–1783), Joseph L. Lagrange
(1736–1813) and George Green (1793–1841) (see [150]).

In his work, Cauchy generalized Euler’s notion of pressure, valid in the case of fluids, stating that the
interactions between parts of a solid can be described via the symmetric Cauchy force-stress tensor σ : Ω ⊂
R3 → R3×3. The proof of this concept was obtained via its celebrated tetrahedron argument, which is still
part of almost every continuum mechanics class worldwide. Afterwards, Cauchy determined the equations
of motion that balance inertiae, external forces and stresses (see [32, Eq. (35)]) considering the equilibrium
of an elementary parallelepiped (as Euler did for fluids). In the equations of motion, one can recognize the
divergence operator, even if the term “divergence” was not used by Cauchy since the operation was formally
defined by Green in the same year [87].

The simplicity of the entire theory is based on two fundamental assumptions that, even if reasonable in
most applications, can be restrictive in some specific cases, namely:

1. the displacement u : Ω ⊂ R3 → R3 from a reference configuration is the only kinematic field, which is
equivalent to assume that the only possible motion of each point of the body is a translation;

2. the stress σ in each material point X is a symmetric tensor (Boltzmann’s axiom of symmetry) and
depends only on the gradient ∇u of the displacement evaluated in the same material point X.

Following Green and considering the entirety of the described properties, the resulting model can be defined
in the case of infinitesimal deformations via a strain energy density and a kinetic energy density as:

W =
1

2

〈
CM sym (∇u ) , sym (∇u )

〉
R3×3 , J =

1

2
ρ ‖u,t‖2, (I.1)

where CM : Sym(3)→ Sym(3) is a fourth order tensor with 21 independent coefficients and ρ is a scalar mass
density. This format (with its non-linear/plastic variations) is still the standard for engineering and it is still
general enough to comprehend a huge variety of engineering applications. However, the new fields of research
on metamaterials and their unconventional behaviors demand more complex models. As a matter of fact, the
Cauchy model falls short for most of the materials in which a micro-structure, with a high contrast of material
properties, determines the overall behavior of the resulting piece. For example, as it will be shown in the rest
of this work, both phononic crystals (see [129, 131, 132] and Part IV) and fibrous composite reinforcements
(see [11,13,70,130,134] and Part II) need more refined models to fully describe their experimental behaviors.

In order to set up an enriched continuum model, it is sufficient to discard one of the two basic assumptions
made by Cauchy. Indeed, most of the newly proposed models can be described in this manner, assuming
either:

1. the displacement u is NOT the ONLY kinematica field;
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Part I Chapter 1. Classical vs enriched continuum mechanics

Figure 1: Enriched kinematics for a micromorphic continuum.

2. the stress σ in each material point X is NOT necessarily a symmetric tensor AND does NOT depend
ONLY on the gradient ∇u of the displacement evaluated in the same material point X.

The most prominent examples of case 1 are the micromorphic continuum models: the kinematics is enriched
by introducing an additional field of micro-distortions P , beyond the classical macroscopic displacement u
(see Fig. 1, chapter I.2, and Parts III and IV). This new set of degrees of freedom can be used to describe
a substructure attached to each macroscopic material point x ∈ Ω, so describing micro-structure related
phenomena.

To understand the possible models generated in the case 2, we must analyze the reasoning behind the
corresponding Cauchy’s assumption. The functional dependence derive from the notion of contiguity intro-
duced by Euler: the mechanical action on each material point is caused only by its “direct environment” [150],
which excludes the influence of different points in the body. However, it is possible to find cases in which
other parts of the continuum have an influence, even if secondary, on the local response (e.g. molecular
dynamics). Such models are usually referred to as peridynamics (from the Greek prefix περι- (peri-, “around,
surrounding”)). Applications of such models can be also found in the study of crack propagation, in which
the possibility to introduce an energy depending on the derivatives of the displacement is rendered impossible
by the discontinuity on the displacement fields. The peridynamic models are strongly non-local, but we can
also assume a weaker kind of non-locality, whose response depends only on the local displacement field but
includes its higher derivatives. The non-locality is given by the influence that a broader neighborhood of the
material point exerts on the local response. Such models are the so-called higher gradient models and will be
the object of chapter I.3 and Part II.

In what follows, a presentation of the main micromorphic models and of the higher gradient models will be
made. For a more detailed treatise, we refer the reader to [149,150,176]. In the final chapter, the Principle of
Virtual Work is presented and some aspects of its application to enriched continua are analyzed. We remark
here that the following presentation will be made under the hypothesis of a linearized strain measure on ∇u
(and P for the micromorphic continua) while some applications in Part II will employ non-linearized strain
measures on the Cauchy-Green deformation tensor C.
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CHAPTER I.2
Micromorphic models

The French Cosserat brothers, the mathematician-astronomer Eugène (1866–1931) and the civil engineer
François (1852–1914), were among the first researchers to propose the introduction of additional kinematical
fields to the standard displacement for the description of micro-structured materials. In their model, the
added micromorphic displacements were meant to describe rigid rotations at the microscopic level (see [44]
and section I.2.2), therefore the additional degrees of freedom take the structure of a skew-symmetric tensor
A ∈ so(3), complementing the classical macroscopic displacement u : Ω ⊂ R3 → R3.

The worth of the Cosserats’ contribution wasn’t really appreciated and built upon until the second half of
the 20th century, when Mindlin [155, 156], Green and Rivlin [86], Toupin [225, 226], Eringen [65, 67–69] and
Germain [78] developed their work lending it credibility. In Mindlin and Eringen’s work, the kinematics was
enriched introducing an additional non-symmetric field of micro-distortions P ∈ R3×3: in each macroscopic
material point x ∈ Ω there is a substructure attached. This micro-deformation was generalized to include
micro-stretches, micro-strains, micro-shear, micro-distortions and micro-rotations, and it was described by
an affine mapping 1+ P (see Fig. 1 and section I.2.1).

In time, many variations of the micromorphic model have been proposed to take into account microstruc-
tures with specific deformation modes. Not considering the full non-symmetric field of micro-distortions, the
resulting models are simpler and easier to apply, but lose the generality of the standard Mindlin-Eringen
model. However, the gained simplicity is of paramount importance for some applications, giving value to the
proposed models. This variety of models, that differ for the deformation modes of the microsctructure and
for the resulting format assumed for P , (see Figure 2 for a graphic representation) includes:

• the Mindlin-Eringen micromorphic model in which P describes micro-shearing, micro-rotation and
micro-stretch (isotropic expansion and contraction), i.e. P ∈ R3×3 (see [67,156] and I.2.1)

• the Cosserat micropolar model in which P describes only micro-rotations, i.e. P ∈ so(3) (see [44] and
I.2.2)

Figure 2: Classification of the micromorphic models based on the microdistortion tensor P .
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Part I Chapter 2. Micromorphic models

• the micro-stretch model in which P describes micro-rotations and micro-stretch (isotropic expansion
and contraction), i.e. P ∈ R·1⊕ so(3) (see [66] and I.2.3)

• the micro-voids (or micro-dilatation) model in which P describes only micro-stretch (isotropic expansion
and contraction), i.e. P ∈ R·1 (see [46,186] and I.2.4)

• the micro-strain model in which P describes microshearing and micro-stretch (isotropic expansion and
contraction), i.e. P is a symmetric tensor P ∈ Sym(3) (see [74] and I.2.5)

• the incompressible micro-strain model in which P describes only microshearing, i.e. P is a traceless
symmetric tensor P ∈ {sl(3) ∩ Sym(3)} (see [74] and I.2.5)

• the incompressible micromorphic model in which P describes micro-rotations and microshearing, i.e.
P ∈ sl(3) (see [74] and I.2.6)

A different approach to the simplification of the the standard Mindlin-Eringen’s is the relaxed micromorphic
model, which was first proposed in [176] (see section I.2.7 and Part III). Instead of reducing the generality
of the micro-distortions described by P , the authors propose to consider a more structured energy leading
to an important decrease in the number of constitutive parameters and to an easier interpretation of the
associated micro-macro deformation modes.

In the following sections, we present briefly the already mentioned enriched micromorphic models, referring
the reader to [74,150,176] for more details.

2.1 The standard Mindlin-Eringen model

One of the most known enriched continuum models is the micromorphic continuum model introduced by
Mindlin and Eringen [43, 65, 67–69, 155, 156] in the early sixties of the last century. It includes many special
cases among which the much older Cosserat-type models [44]. Considering P ∈ R3×3 (9 additional degrees
of freedom), the elastic energy of the general anisotropic centro-symmetric micromorphic model in the sense
of Mindlin-Eringen (see [156] and [67, p. 270, eq. 7.1.4]) can be represented as:

W =
1

2

〈
Ce (∇u − P ) , (∇u − P )

〉
R3×3︸ ︷︷ ︸

full anisotropic elastic− energy

+
1

2

〈
Cm symP, symP

〉
R3×3︸ ︷︷ ︸

micro− self − energy

(I.2)

+
1

2

〈
Ecross (∇u − P ) , symP

〉
R3×3︸ ︷︷ ︸

anisotropic cross− coupling

+
µL2

c

2

〈
L̂∇P,∇P

〉
R3×3×3︸ ︷︷ ︸

full anisotropic curvature

,

where Ce : R3×3 → R3×3 is a 4th order micromorphic elasticity tensor which has at most 45 independent
coefficients and which acts on the non-symmetric elastic distortion e = ∇u−P and Ecross : R3×3 → Sym(3) is
a 4th order cross-coupling tensor with the symmetry

(
Ecross

)
ijkl

=
(
Ecross

)
jikl

having at most 54 independent
coefficients. The fourth order tensor Cm : Sym(3) → Sym(3) has the classical 21 independent coefficients
of classical elasticity, while L̂ : R3×3×3 → R3×3×3 is a 6th order tensor that shows an astonishing 378
parameters. The parameter µ > 0 is a typical shear modulus and Lc > 0 is one characteristic length, while
L̂aniso is, accordingly, dimensionless. Here, for simplicity, we have assumed just a decoupled format of the
energy: mixed terms of strain and curvature have been discarded by assuming centro-symmetry. Counting
the number of coefficients we have 45 + 21 + 54 + 378 = 498 independent coefficients.

Even assuming an isotropic behavior of the curvature, we obtain that the 6th order tensor L̂ has still
11 independent non-dimensional constants [67]1. On the other hand, the local energy has 7 independent
coefficients in the isotropic case: Ce has 3, Cm ∼ 2, Ecross ∼ 2 adding up to the usual 18 constitutive
coefficients to be determined in the isotropic case. One of the major obstacles in using the micromorphic
approach for specific materials is the impossibility to determine such multitude of new material coefficients.

1This is due to the fact that the general isotropic 6th order tensor has 15 coefficients which, considering that in a quadratic
form representation we can assume a major symmetry of the type L̂ijklmn = L̂lmnijk, reduce to 11 (see [160, 214]). The 11
coefficients of the curvature in the isotropic case reduce to 5 in the particular case of second gradient elasticity (see [57]) which
is obtained from a micromorphic model by setting P = ∇u .
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Chapter 2. Micromorphic models Part I

Not only is the huge number a technical problem, but also the interpretation of coefficients is problematic
[37–39]. Some of these coefficients are size-dependent while others are not. A purely formal approach, as is
often done, cannot be the final answer.

2.2 Cosserat’s micropolar model

In Cosserat’s micropolar model [44], the underlying microstructure is assumed to have two orthogonal rigid
directions and, therefore, the microdeformation field can only describe micro-rotations. With this hypothesis,
it is sufficient to consider a skew-symmetric micromorphic distortion field A ∈ so(3) (3 additional degrees of
freedom) instead of P ∈ R3×3. It would be possible to obtain this particular case from a general micromorphic
model, but we refrain here from showing the proof. The strain energy density of the resulting model is2:

W =
1

2

〈
CM sym∇u , sym∇u

〉
R3×3︸ ︷︷ ︸

anisotropic elastic− energy

+
1

2

〈
Cc ( skew∇u −A) , skew∇u −A

〉
R3×3︸ ︷︷ ︸

invariant local anisotropic
rotational elastic coupling

(I.3)

+
µL2

c

2

〈
L ∇ axlA,∇ axlA

〉
R3×3︸ ︷︷ ︸

curvature

.

where CM : Sym(3)→ Sym(3) is the classical 4th order constitutive tensors acting on the symmetric strains
sym∇u , Cc : so(3) → so(3) is a 4th order tensor acting on the 2nd order tensor skew-symmetric strain
skew (∇u −A) and L : R3×3 → R3×3 is a 4th order constitutive tensor acting on the 2nd order tensor
∇ axlA.

Even if a wide set of materials seems to fit the hypothesis of a microstructure that can only rotate, it
is still difficult to fit the additional parameters in a reliable manner [150]. Some success has been obtained
by Lakes to describe natural porous bone, metallic foams and cellular materials [116,117], where the author
has been able to determine and verify for consistency the Cosserat elasticity constants and to show how a
Cosserat model obtains better results than the classical elasticity ones. Among the resulting properties of
this application of the Cosserat model, some notable ones were the size effects, the negative Poisson ratio
and the dispersive behavior.

2.3 The micro-stretch model

The micro-stretch model presents an intermediate possibility between the Cosserat micropolar model and the
full Mindlin-Eringen micromorphic model. In particular, Eringen (see [66]) proposed a micro-structure that
can have rotations (as in the Cosserat model) but also stretch (expand and contract, as in the micro-voids
model) leading to a micro-distortion tensor P ∈ R · 1⊕ so(3) (4 additional degrees of freedom). The micro-
distortion tensor can be decomposed as P = ζ1+A, where the skew-symmetric part A ∈ so(3) represent the
rotations and ζ is a scalar function that represents the stretch. The energy associated with this model can
be written as:

W =
1

2

〈
Ce sym (∇u− ζ1) , sym (∇u− ζ1)

〉
R3×3︸ ︷︷ ︸

anisotropic elastic− energy

+
1

2

〈
Cc ( skew∇u −A) , skew∇u −A

〉
R3×3︸ ︷︷ ︸

invariant local anisotropic
rotational elastic coupling

(I.4)

+
1

2
κm ζ2︸ ︷︷ ︸

micro− self

+
µL2

c

2

( 〈
L̃ ∇ ζ,∇ ζ

〉
R3 +

〈
L ∇ axlA,∇ axlA

〉
R3×3

)
︸ ︷︷ ︸

curvature

.

where Ce : Sym(3) → Sym(3) is a classical 4th order constitutive tensor acting on symmetric tensors,
Cc : so(3)→ so(3) is a 4th order tensor acting on the 2nd order tensor skew-symmetric strain skew (∇u −A),

2The operator axl gives a vector with the three independent components of a skew symmetric tensor, as defined in the
Equation (INT.4).
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Part I Chapter 2. Micromorphic models

κm > 0 is a constitutive parameter, L̃ : R3 → R3 is a 2nd order tensor acting on vectors and L : R3×3 → R3×3

is a 4th order constitutive tensor acting on the 2nd order tensor ∇ axlA.

2.4 The micro-voids (or micro-dilatation) model

The micro-voids (or micro-dilatation) model was proposed by Cowin and Nunziato [46,186] (see also [99]) for
thermomechanical applications. The fundamental idea of this model is that the micro-structure attached to
the material can only expand or compress isotropically. Therefore, the micro-distortion tensor P ∈ R · 1 (1
additional degree of freedom) can be described with a scalar function as P = ζ1. This case can be considered
as a limiting case of microstretch elasticity (see section I.2.3) in which no internal-rotation is considered. The
energy associated to this model can be written as:

W =
1

2

〈
Ce sym (∇u− ζ1) , sym (∇u− ζ1)

〉
R3×3︸ ︷︷ ︸

anisotropic elastic− energy

+
1

2
κm ζ2︸ ︷︷ ︸

micro− self

+
µL2

c

2

〈
L̃ ∇ ζ,∇ ζ

〉
R3︸ ︷︷ ︸

curvature

. (I.5)

where Ce : Sym(3)→ Sym(3) is a classical 4th order constitutive tensor acting on symmetric strains, κm > 0

is a constitutive parameter and L̃ : R3 → R3 is a 2nd order tensor acting on vectors.

2.5 The microstrain model

In the microstrain model proposed in [74], the micro-distortion tensor assumes the form of a symmetric strain
P ∈ Sym(3) (6 additional degrees of freedom). Therefore, this model does not account for possible rotations
in the microstructure. This model respects Boltzmann’s axiom of symmetry because the symmetry of the
micro-distortion tensor allows for symmetric stresses. The resulting energy is:

W =
1

2

〈
Ce sym (∇u − P ) , sym (∇u − P )

〉
R3×3︸ ︷︷ ︸

anisotropic elastic− energy

+
1

2

〈
Cm symP, symP

〉
R3×3︸ ︷︷ ︸

micro− self − energy

(I.6)

+
µL2

c

2

〈
L̂∇P,∇P

〉
R3×3×3︸ ︷︷ ︸

full anisotropic curvature

,

where Ce,Cm : Sym(3) → Sym(3) are classical 4th order constitutive tensors acting on symmetric tensors
and L̂ : R3×3×3 → R3×3×3 is a 6th order tensor acting on 3rd order tensors.

In [74], the incompressible micro-strain model was proposed as a possible variation of the micro-strain
model. In this case P would be a traceless symmetric tensor P ∈ {sl(3) ∩ Sym(3)} (5 additional degrees of
freedom). The energy assumes the same form and will not, therefore, be written again.

2.6 The incompressible micromorphic model

The micro-incompressible micromorphic model was proposed in [74] to complete the set of possible micro-
morphic models. In this case the micro-distortion tensor is assumed to be traceless (i.e. P ∈ sl(3) with 8
additional degrees of freedom)). The energy would assume the same form of the Mindlin-Eringen format (for
simplicity the cross coupling tensor Ecross is discarded):

W =
1

2

〈
Ce (∇u − P ) , (∇u − P )

〉
R3×3︸ ︷︷ ︸

full anisotropic elastic− energy

+
1

2

〈
Cm symP, symP

〉
R3×3︸ ︷︷ ︸

micro− self − energy

+
µL2

c

2

〈
L̂∇P,∇P

〉
R3×3×3︸ ︷︷ ︸

full anisotropic curvature

, (I.7)

where Ce : R3×3 → R3×3 is a 4th order micromorphic elasticity tensor, Cm : Sym(3)→ Sym(3) is a classical
fourth order elastic tensor, and L̂ : R3×3×3 → R3×3×3 is a 6th order tensor.
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Chapter 2. Micromorphic models Part I

2.7 The relaxed micromorphic model

The relaxed micromorphic model [139,140,175,176] is one of the main objects of this work. It will be briefly
presented in this section, see Part III for the theoretical framework and Part IV for dynamic applications.
The model has been introduced in 2013 in [176] and endows the standard Mindlin-Eringen’s representation
with more geometric structure. In particular, the full P ∈ R3×3 is considered with its 9 additional degrees of
freedom, but the energy assumed for the model is:

W =
1

2

〈
Ce sym (∇u − P ) , sym (∇u − P )

〉
R3×3︸ ︷︷ ︸

anisotropic elastic− energy

+
1

2

〈
Cm symP, symP

〉
R3×3︸ ︷︷ ︸

micro− self − energy

(I.8)

+
1

2

〈
Cc skew (∇u − P ) , skew (∇u − P )

〉
R3×3︸ ︷︷ ︸

invariant local anisotropic
rotational elastic coupling

+
µL2

c

2

〈
L CurlP, CurlP

〉
R3×3︸ ︷︷ ︸

curvature

.

For the energy, the underlying assumptions are the decoupled format and the replacement of the full gradient
∇P with the dislocation density tensor α = −CurlP 3. Therefore, the energy has separate parts for the
symmetric part of ∇u − P , the skew-symmetric part of ∇u − P , the symmetric part of P and the curvature
α = −CurlP . This simplification leads to:

• the 4th order constitutive tensors Ce : Sym(3)→ Sym(3) and Cm : Sym(3)→ Sym(3), which have the
same structure as in classical elasticity with at most 21 independent constants, acting on the 2nd order
symmetric strains sym (∇u − P ) and symP , respectively;

• the 4th order tensor Cc : so(3)→ so(3), which has at most 6 independent constants, acting on the 2nd

order skew-symmetric strain skew (∇u − P );

• the 4th order constitutive tensor L : R3×3 → R3×3, which has at most 45 independent constants, acting
on the 2nd order tensor α = −CurlP (for comparison the 6th order L̂ : R3×3×3 → R3×3×3 acting on
∇P has at most 378 parameters);

• the absence of Mindlin-Eringen’s cross coupling constitutive tensor Ecross, which is of difficult interpre-
tation.

Counting coefficients we now have 21+21+6+45=93, instead of Mindlin-Eringen’s 498 coefficients. The main
advantage at this stage is that Ce and Cm, unlike Ce, possess all the symmetries that are peculiar to the
classical elasticity tensors acting on sym∇u . Nevertheless, the structure of the model continues to be very
rich.

The large number of constants in the standard Mindlin-Eringen model (even in the isotropic case) has
always been of concern. Previous attempts to endow the Mindlin-Eringen model with more structure include
Koh’s [112, 190] so-called micro-isotropy postulate which requires, among others, that symσ is an isotropic
function of sym∇u only. This reduces the number of isotropic coefficients to 5 (similarly to our relaxed
model) but the fact of connecting symσ to sym∇u only cannot be considered a well-grounded hypothesis.

Another interesting property of the relaxed micromorphic model is that certain limiting cases of the
anisotropic relaxed micromorphic model give as a result other micromorphic models (e.g. the Cosserat
model, the micro-voids theory, the micro-incompressible micromorphic model, the micro-stretch theory and
the microstrain model), as shown in Appendix A.1.

Some variation of the relaxed micromorphic model have also been proposed in [138]. For example, a
curvature term depending on the second order tensor DivP could be considered in the strain energy density

3The dislocation tensor is defined as αij = − (CurlP )ij = −Pih,kεjhk, where ε is the Levi-Civita tensor.
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Part I Chapter 2. Micromorphic models

leading to:

W =
1

2

〈
Ce sym (∇u − P ) , sym (∇u − P )

〉
R3×3︸ ︷︷ ︸

anisotropic elastic− energy

+
1

2

〈
Cm symP, symP

〉
R3×3︸ ︷︷ ︸

micro− self − energy

(I.9)

+
1

2

〈
Cc skew (∇u − P ) , skew (∇u − P )

〉
R3×3︸ ︷︷ ︸

invariant local anisotropic
rotational elastic coupling

+
µL2

c

2

〈
L DivP,DivP

〉
R3×3︸ ︷︷ ︸

curvature

.

Imposing that the curvature term vanishes, we obtain as a limit case the so-called internal variable model:

W =
1

2

〈
Ce sym (∇u − P ) , sym (∇u − P )

〉
R3×3︸ ︷︷ ︸

anisotropic elastic− energy

+
1

2

〈
Cm symP, symP

〉
R3×3︸ ︷︷ ︸

micro− self − energy

(I.10)

+
1

2

〈
Cc skew (∇u − P ) , skew (∇u − P )

〉
R3×3︸ ︷︷ ︸

invariant local anisotropic
rotational elastic coupling

.
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CHAPTER I.3
Higher gradient models

Higher gradient models derive from the hypothesis that the stress σ in each material point X does not depend
only on the displacement u of the material points and its first gradient, but also on higher gradients of u.
The idea of a higher gradient theory seems to be a natural generalization of the classical Cauchy model in a
more inclusive setting. However, due to the inherent complexity of the model, the definition of a well-posed
higher gradient model directly by the stress σ is very complex, if not downright impossible. On the other
hand, it is possible to define a gradient theory of the n-th order via strain and kinetic energy densities that
do not depend only on ∇u but also on its successive gradients up to order n, i.e.,

W = W (∇u ,∇2u,∇3u, ...), J = J(u,t, ∇u ,t,∇2u,t,∇3u,t, ...). (I.11)

The classical Cauchy model is included as a gradient theory of the first order1, see chapter I.1. Moreover, we
will call second gradient continua (sometimes referred to a first strain-gradient continua) those media whose
strain energy density depends both on the first and second gradients of the displacement field, i.e.:

W = W (∇u ,∇2u). (I.12)

In a second gradient model, the concept of contact actions needs more general treatment than the one due
to Cauchy, for example new types of actions can be applied: surface double-forces and edge forces. As
mentioned before, higher gradient models are weakly non-local, i.e. the response depends only on the local
displacement field but it is influenced by a neighboring region via the higher derivatives of the displacement.
This is a weaker non-locality with respect to the peridynamic models, whose strain energy density depends
on the displacement of the entire body.

Since the first formulation of higher gradient models, their spreading has been limited by the complexity
of the underlying mathematical structure and by a still unclear physical interpretation of the boundary
conditions. Furthermore, different approaches to the determination of the boundary conditions lead to
different results rising doubts on the validity of the resulting conditions [135]. For this reason, it makes sense
to come up with two possible strategies to deal with second gradient continua:

• directly use kinematics uniquely based on the macroscopic displacement field and consider higher gra-
dients of the displacement in the strain and kinetic energy densities;

• start from a richer kinematics (as done for micromorphic media) and then impose suitable constraints
on the extra kinematical descriptors in order to obtain the desired second gradient model as a limiting
case.

Let us first consider the first approach and the simple case of a second gradient model. The characteristic
which makes a second gradient theory different from a first gradient one is the fact that the strain energy
density does not depend only on first gradient of the displacements. A simple, infinitesimal strain theory
would give, therefore, an energy of the type2:

W =
1

2

〈
CM sym∇u , sym∇u

〉
R3×3 +

µL2
c

2

〈
L̂∇ ( sym∇u ) ,∇ ( sym∇u )

〉
R3×3×3 (I.13)

On the other hand, the second approach would lead to an energy of the type:

W =
1

2

〈
CM sym∇u , sym∇u

〉
R3×3 +

µL2
c

2

〈
L̂∇ symP,∇ symP

〉
R3×3×3 +

1

2
Λ‖∇u − P‖2R3×3 , (I.14)

1From now on, we will refer to the Cauchy model also as first gradient model.
2For the sake of simplicity, the cross terms between the first and the second gradient of the displacement are omitted.
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Part I Chapter 3. Higher gradient models

where Λ is a Lagrangian multiplier that weakly enforces the condition ∇u = P . We note here that it is
not possible to suitably restrict the parameters of the relaxed micromorphic model, which is one of the main
subjects of this manuscript, to obtain a full higher gradient elasticity model, in sharp contrast to the standard
Mindlin-Eringen model where Ce → ∞ implies ∇u = P and ‖∇P‖2 → ‖∇∇u‖2, see Appendix A.2 for the
one dimensional case.

Which of the two strategies has to be used to deal with the application of a second gradient theory is a
matter of convenience. In this manuscript, we mention all the available possibilities for the sake of a complete
description of enriched continuum theories. The direct implementation of a second gradient model has the
following advantages with respect to the micromorphic theories:

• the number of degrees of freedom is lower;

• the differential system of associated Euler-Lagrange equations counts less equations.

On the other hand, the strategy with micromorphic theories gives three main advantages:

• easier physical interpretation of internal and external internal actions related to microstructure (see
section I.4.4);

• the differential system of associated Euler-Lagrange equations is of lower order;

• FEM implementation with traditional shape functions: no need to impose the continuity of the deriva-
tives on the mesh boundaries.

Notwithstanding the previous considerations, we want to stress the fact that the correct continuum framework
which we found to be well-adapted for describing the mechanical behavior of fibrous composite reinforcements
is the one of second gradient theories, even if the numerical implementation could be eased by passing through
a constrained micromorphic model.
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CHAPTER I.4
The Principle of Virtual Work and the equilibrium of enriched

continuous models

The Principle of Virtual Work (PVW) is one of the first quantitative laws in the history of mechanics.
Historically, the principle of virtual work and the associated calculus of variations were formulated to analyze
systems of rigid bodies, but it has been extended for the study of the mechanics of deformable bodies. Let
us consider the following statement of the Principle of Virtual Works:

Considering a Galilean frame with an absolute Newtonian chronology, the virtual work of
internal actions Pint, spent by the inertial forces minus the internal ones, balances the virtual
work of external actions Pext, spent by the external forces impressed on the system, for any
virtual displacement field.

In formulas, the Principle of virtual work says that a configuration is in dynamical equilibrium if and only
if1:

Pint + Pext = 0. (I.15)

Suitable generalizations of the Principle of Virtual Work can be introduced to account for dissipative effects,
but we refrain here from presenting such more complex framework. Therefore, the most fundamental questions
which have to be confronted to properly set up a mechanical theory by means of the Principle of Virtual
Work is to establish:

• the constitutive form of the work of internal actions Pint in terms of the displacement and, eventually,
of the micro-descriptor (such constitutive choice is related to the intrinsic nature of the medium that
one wants to study),

• the expression of the work of external actions Pext, which allows to establish how the external world
acts on the considered medium and to define the concept of force, double force, or other more complex
interactions.

Furthermore, we can consider different kinds of external actions applied to the boundary (or to the bulk)
of the continuum body that either restrict the set of admissible configurations or that spend some energy on
its displacement2. As a matter of fact, we can imagine acting on the boundary of the considered body by
imposing either

• kinematic (or essential or geometric) boundary conditions: the displacement and/or eventually the
micro-descriptor are assigned on some portion of the boundary ∂B,

• traction (or natural) boundary conditions: forces and/or, eventually, other more complex external
interactions are assigned on some portion of the boundary ∂B and/or of the bulk B.

Imposing a kinematic boundary condition is tantamount to reduce the admissible deformed configurations
that the body can assume, so reducing the number of admissible fields. This will be analyzed with more care
in section I.4.1. On the other hand, imposing traction boundary conditions means that an external action
is acting on the body and therefore a corresponding term must be considered in the work of external forces.
However, the set of actions that can be applied to the body depends on the kind of model considered, see
sections I.4.2, I.4.3 and I.4.4.

1We remark that, depending on the conventions which are used for the signs in the definition of the work of internal and
external actions, slightly different versions of the Principle of Virtual Work can be found in the literature.

2In what follows, we will call continuum body a set of material particles occupying the volume B in its reference configuration
and its boundary will be denoted with ∂B.
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Part I Chapter 4. The Principle of Virtual Work and the equilibrium of enriched continuous models

4.1 Space of configurations and spaces of admissible variations

Depending on the intrinsic nature of the considered body (first gradient or micromorphic or second gradient),
the expressions for the work of internal and external actions take specific forms which will be better specified
later on. However, independently of the specific form taken by the internal and external work and the type of
continuum, finding the equilibrium configuration under specific kinematic boundary conditions is equivalent
to searching, in some suitable set, for the kinematic fields which satisfy the Principle of Virtual Work for
any admissible virtual variation. Therefore, the definition of a suitable set Q, that contains all the possible
solutions of the equilbrium problem, is of paramount importance. The set Q is called space of configurations
of the considered medium and contains information about the kinematical constraints applied on the body,
which must be verified by the kinematic fields.

In the case of a Cauchy continuum, the form assumed by the space of configurations is:3

Q = {u | u = ū on ΣK1 ⊆ ∂B} , (I.16)

where ū is a suitably assigned function and ΣK1
is the subset of ∂B on which the kinematic boundary

conditions are applied. Roughly speaking, the set Q represents the set in which we look for the solution of
our minimization problem and contains only those displacement fields which satisfy the imposed kinematical
boundary conditions. Furthermore, we define the set of admissible variations (i.e. the admissible virtual
displacement field) as:

Tu = {δu | u+ δu ∈ Q} . (I.17)

We explicitly remark that, since u = ū on ΣK1 , in order to have δu belonging to the set of admissible
variations, one must have that ū+ δu = ū on ΣK1

. This clearly implies that δu = 0 on ΣK1
, and hence the

set of admissible variations takes the form Tu = {δu | δu = 0 on ΣK1
}.

Setting up suitable minimization problems can be extended in a natural way to higher gradient continua
by suitably restricting the space of configurations Q with a richer set of possible kinematic constraints.
Considering for instance a second gradient continuum, Q assumes a form analogous to the first gradient
case but some boundary condition can be applied to components of the gradient ∇u on ∂B and/or to the
displacement u on boundary of the boundary ∂∂B (e.g. constrained edges in the 3D case). The components
of ∇u that can be constrained depend on the form of the second gradient energy, therefore we show only
one of the possible space of configurations:

Q = {u | u = ū on ΣK1 ⊆ ∂B, ∇u · n = un on ΣK2 ⊆ ∂B} , (I.18)

where ū and un are suitably assigned functions and ΣK1
and ΣK2

are the subsets of ∂B on which the
kinematic boundary conditions are applied. The set of admissible variations Tu is formally analogous to the
first gradient case. It could be be noted that all the considerations made on the first gradient type boundary
conditions apply now to the richer set allowed in the higher order gradient case.

The equilibrium problem for a micromorphic continuum can be set up by suitably generalizing what was
done for Cauchy continua. In particular, a supplementary set D must be defined to specify the space of
configurations for such a continuum:

D =
{
P | P = P on ΣK2

⊆ ∂B
}
, (I.19)

where P is a suitably assigned function and ΣK2 is the subsets of ∂B on which the kinematic boundary
conditions are imposed. Roughly speaking, the set D represents the set in which we look for the solution
for the micro-motion of our minimization problem and contains only those micro-motions which satisfy the
imposed kinematical boundary conditions. We remark that, in the spirit of Mindlin [156] and Eringen [67],
such a supplementary kinematical field represents the motion of a microstructure which is embedded in the
considered body. In principle, such micro-motion is completely independent of the macroscopic motion of
the matrix. Nevertheless, in some cases of physical interest, it is worth relating such micro-descriptors to
the derivatives of the macroscopic displacement field. Moreover, we define a supplementary set of admissible
variations as

TP = {δ P | P + δ P ∈ D} . (I.20)
3The space of configurations should also contain informations concerning the desired regularity on the corresponding kinematic

fields, but we limit ourselves here by talking about “suitably regular” functions.
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Chapter 4. The Principle of Virtual Work and the equilibrium of enriched continuous models Part I

4.2 The equilibrium of a first gradient continuum

The equilibrium of a Cauchy continuum body subjected to given boundary conditions can be studied by means
of the Principle of Virtual Work. This fundamental principle of Mechanics states that a body, subjected to
specific external actions, is in equilibrium if the work of internal actions is balanced by the work of external
actions. In formulas, we say that a displacement field u∗ is in dynamic equilibrium if and only if:

Pint (u∗, δu) + Pext (u∗, δu) = 0, (I.21)

for any admissible δu. With the introduced notations, we can formulate the equilibrium problem for a Cauchy
continuum as:

Find u∗ ∈ Q such that Pint(u∗, δu) + Pext(u∗, δu) = 0, ∀δu ∈ Tu∗ .

In most cases, the external and internal works can be seen as the first variation of suitable functionals
Aint (u) : Q → R and Aext (u) : Q → R, so that the Principle of Virtual Work (I.21) actually implies the
minimization of a functional A := Aint +Aext. More specifically, we can write

Pint (u, δu) + Pext (u, δu) = δA(u, δu) := lim
t→0+

A (u+ t δu)−A(u)

t
, u ∈ Q, δu ∈ Tu, (I.22)

where the sets Q and Tu were defined in the previous section and δA is the first variation of the functional
A.

As it has been previously pointed out, to establish the equilibrium problem for a given continuum body
subjected to specific external interactions, the expressions of both the work of internal and external actions
must be specified. For a first gradient continuum, the work of internal actions can be defined by the action
functional Aint:

Aint = −
∫ T

0

∫
B

(W (∇u)− J (u̇)) dB dt, (I.23)

where W is the strain energy density which, in a Cauchy continuum, constitutively depends only on the first
gradient of displacement, and J is the kinetic energy density.

In the case of first gradient theories, the work of internal actions can be written as 4

Pint(u, δu) = −
∫ T

0

∫
B

(δW − δJ) dB dt = −
∫ T

0

∫
B

(〈
∂W

∂∇u
, ∇δu

〉
−
〈
∂J

∂u̇
, δu̇

〉)
dB dt

(I.24)

=

∫ T

0

∫
B

(〈
Div

(
∂W

∂∇u

)
− d

dt

∂J

∂u̇
, δu

〉)
dB dt−

∫ T

0

∫
∂B

〈
∂W

∂∇u
· n , δu

〉
ds dt

+

[∫
B

〈
∂J

∂u̇
, δu

〉
dB

]T
0

,

where, to obtain the last identity, the divergence theorem and the integration by parts have been used.
Equation (I.24) provides the irreducible expression of the work of internal actions for a first gradient contin-
uum. Following Lagrange, it is generally assumed that the set of admissible motions is included in the set of
isochronous motions between two instants, i.e. motions which start from a given configuration at instant 0
and arrive to another given configuration at the instant T. Therefore the term

[∫
B

〈
J
∂u̇ , δu

〉
dB
]T
0
vanishes.

No more integrations by parts can be performed to ulteriorly manipulate this expression of Pint. We remark
here that, from this irreducible form of the internal work, only quantities expending work on the virtual dis-
placement δu (i.e. forces) appear. It is for this reason that, based on the validity of the Principle of Virtual

4The operator Div stands for the classical divergence operator. For a tensor field A of any order n > 0, we define its divergence
as the n− 1 tensor (DivA)i1,...in−1

= Ai1,...in,in . Finally 〈a, b〉 = ai1,...inbi1,...in is the scalar product between two tensors of
any order n ≥ 1 and the Einstein convention of sum over repeated indices is used.
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Part I Chapter 4. The Principle of Virtual Work and the equilibrium of enriched continuous models

Work, we can affirm that the only external actions which can be sustained by a first gradient continuum are
forces per unit area or volume, i.e. external actions expending work on δu. These observations are at the
heart of introducing the work of external actions for first gradient continua in the form

Pext(u, δu) =

∫
B

〈b, δu〉 dv +

∫
∂B

〈f, δu〉 ds, (I.25)

where b : B → R3 and f : ∂B → R3 are external actions in the bulk and on the boundary of B, respectively.
Having assigned the specific form for the work of internal and external actions, the equilibrium problem

for a first gradient continuum can be reformulated as follows (Pint, Pext, Q and Tu∗ being as in Eqs. (I.24),
(I.25), (I.16) and (I.17)):∫ T

0

∫
B

(〈
Div

(
∂W

∂∇u

)
− d

dt

J

∂u̇
+ b , δu

〉)
dB dt−

∫ T

0

∫
∂B

〈
∂W

∂∇u
· n− f , δu

〉
ds dt = 0,

which is identically verified for every variation δu if and only if:

d

dt

J

∂u̇
= Div

(
∂W

∂∇u

)
+ b, ∀X ∈ B, (I.26)

∂W

∂∇u
· n = f, ∀X ∈ ∂B.

Defining the stress σ = ∂W
∂∇u and considering a simple kinetic energy of the type J = ρ‖u̇‖2, the equilibrium

equations take the usual form:

ρ ü = Div σ + b, ∀X ∈ B, σ · n = f, ∀X ∈ ∂B. (I.27)

4.3 The equilibrium of a micromorphic continuum

Suitably generalizing the definitions given above for first gradient continua, the Principle of Virtual Work
can be reformulated for a micromorphic continuum by saying that a couple (u∗, P ∗) is in equilibrium if

Pint (u∗, P ∗, δu, δ P ) + Pext (u∗, P ∗, δu, δ P ) = 0, (I.28)

for any compatible (δu, δ P ). With the introduced notations, we can formulate the equilibrium problem for
a micromorphic continuum as:

Find (u∗, P ∗) ∈ Q×D such that
Pint(u∗, P ∗, δu, δ P ) + Pext(u∗, P ∗, δu, δ P ) = 0, ∀ (δu, δ P ) ∈ Tu∗ × TP∗ .

Once again, the external and internal works can be seen as the first variation of suitable functionals
Aint (u, P ) : Q×D → R and Aext (u, P ) : Q×D → R, so that the Principle of Virtual Work (I.28) actually
implies the minimization of a functional A := Aint +Aext. More specifically, we can write

Pint (u, P, δu, δ P ) + Pext (u, P, δu, δ P ) = δA(u, P, δu, δ P ) := lim
t→0+

A (u+ t δu, P + t δ P )−A(u, P )

t
,

(I.29)
where we denoted again by δA the first variation of the functional A, where (u, P ) ∈ Q × D, (δu, δ P ) ∈
Tu × TP and the sets Q, D, Tu and TP will be defined in more detail later on.

For a micromorphic continuum, the work of internal actions can be defined through the definition of the
action functional Aint as:

Aint = −
∫ T

0

∫
B

(
W (∇u, P,∇P )− J

(
u̇, Ṗ

))
dB dt, (I.30)

where, once again, W is the strain energy density which and J is the kinetic energy density .
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Chapter 4. The Principle of Virtual Work and the equilibrium of enriched continuous models Part I

The internal work can be rewritten as in the case of a first gradient theory but the variation must be
done also in δ P . The power of internal actions Pint contains a set of terms which depends on δu that are
formally analogous to the first gradient case with the addition of the following terms in δ P :

−
∫ T

0

∫
B

(〈
∂W

∂ P
, δ P

〉
+

〈
∂W

∂∇P
, ∇δ P

〉
−
〈

J

∂ Ṗ
, δ Ṗ

〉)
dB dt

(I.31)

=

∫ T

0

∫
B

(〈
−∂W
∂ P

+ Div

(
∂W

∂∇P

)
− d

dt

J

∂ Ṗ
, δ P

〉)
dB dt−

∫ T

0

∫
∂B

〈
∂W

∂∇P
· n , δ P

〉
ds dt

+

[∫
B

〈
J

∂ Ṗ
, δ P

〉
dB

]T
0

,

where, to obtain the last identity, the divergence theorem and integration by parts have been used. Equa-
tion (I.31) furnishes the irreducible expression of the additional tems in the work of internal actions for a

micromorphic continuum. As in the first gradient case, the term
[∫
B

〈
J
∂ Ṗ

, δ P
〉
dB
]T

0
vanishes. We remark

here that, from this irreducible form of the internal work, only quantities expending work on the virtual
displacement δ P can be recognized. Therefore, we include additional external actions expending work on
δ P , since they can be sustained by a micromorphic continuum. These considerations are at the origin of a
work of external actions of the form

Pext(u, δu) =

∫
B

(〈bu, δu〉+ 〈bP , δ P 〉) dB +

∫
∂B

(〈fu, δu〉+ 〈fP , δ P 〉) ds, (I.32)

where bu, bP : B → R3 and fu, fP : ∂B → R3 are external actions in the bulk and on the boundary of B,
respectively.

Once the specific form for the work of internal and external actions is assigned, the equilibrium problem
can be reformulated as follows:∫ T

0

∫
B

(〈
Div

(
∂W

∂∇u

)
− d

dt

J

∂u̇
+ bu , δu

〉)
dB dt−

∫ T

0

∫
∂B

〈
∂W

∂∇u
· n− fu , δu

〉
ds dt (I.33)

+

∫ T

0

∫
B

(〈
−∂W
∂ P

+ Div

(
∂W

∂∇P

)
− d

dt

J

∂ Ṗ
+ bP , δ P

〉)
dB dt

−
∫ T

0

∫
∂B

〈
∂W

∂∇P
· n− fP , δ P

〉
ds dt = 0,

which holds for every variation δu and δ P if and only if:

d

dt

J

∂u̇
= Div

(
∂W

∂∇u

)
+ bu,

d

dt

J

∂ Ṗ
= −∂W

∂ P
+ Div

(
∂W

∂∇P

)
+ bP , ∀X ∈ B, (I.34)

∂W

∂∇u
· n = fu,

∂W

∂∇P
· n = fP , ∀X ∈ ∂B.

This expression can be simplified by assigning a strain and a kinetic energy. The equations obtained for the
relaxed micromorphic model will be shown in Part III.

4.4 The equilibrium of a second gradient continuum

The second gradient continuum is analogous to the first gradient case, apart from the functional dependency
of the strain energy density. The equilibrium problem for a second gradient continuum is therefore:

Find u∗ ∈ Q such that Pint(u∗, δu) + Pext(u∗, δu) = 0, ∀δu ∈ Tu∗ .
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Part I Chapter 4. The Principle of Virtual Work and the equilibrium of enriched continuous models

However, the work of internal actions is defined through the action functional Aint that depends on the
first and the second gradient of displacement:

Aint = −
∫ T

0

∫
B

(W (∇u,∇∇u)− J (u̇)) dB dt, (I.35)

where W is the strain energy density and J is the kinetic energy density. As we did in the other cases
we can write the power of internal actions Pint that has an additional term compared to the first gradient
continuum, namely:

Pint(u, δu) = −
∫ T

0

∫
B

(〈
∂W

∂∇∇u
, ∇∇δu

〉
+

〈
∂W

∂∇u
, ∇δu

〉
−
〈
J

∂u̇
, δu̇

〉)
dB dt. (I.36)

Once again, we can work on this expression obtaining terms in the bulk B, on the boundary ∂B and on also
the boundary of the boundary ∂∂B (e.g. constrained edges in the 3D case), meaning that a second gradient
model is able to react to bulk, surface and also edge forces. However, the interpretation of boundary contact
actions, namely forces and double-forces, depends on the type of manipulation which is done on the work of
internal actions by means of integration by parts (see e.g. [135,156,157]). More particularly, if one decides to
stop after integrating by parts a specific amount or times, or to continue the procedure, the definition of force
and double force is not the same5. On the other hand, when considering micromorphic continua in which
only first gradient of the introduced kinematical fields appear in the strain energy density, integration by
parts is possible only once: the boundary contact actions are uniquely defined and take immediate physical
meaning when framed in the considered physical problem. Therefore, it is possible to keep a more general
micromorphic model and to subsequently constrain its strain energy density in order to let it tend to a
second gradient one. This choice is preferable to directly interpret in a unique way the external actions of
the considered continuum.

5We need to mention the fact that no common agreement is currently available concerning the choice of different but equally
legitimate sets of boundary conditions deriving to different levels of integration by parts.
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Introduction

In material science, a composite material is defined as a heterogeneous material with two or more distinct
components whose resulting material properties exceed the ones of the single components. Such a wide
definition can be interpreted to include a wide set of materials both natural (e.g. wood and bones) and
man-made (as the well-known reinforced concrete). As in most engineering cases, the development of our
ability to design and build composite materials has been driven mainly by the wish to optimize both the
resulting mechanical pieces and the economical investments; nonetheless, applications which were unthinkable
centuries ago are now feasible through this endeavor. Among the sectors influenced by composites, it is worth
mentioning the domains of aeronautical and aerospace engineering, where the need for light materials, which
still possess outstanding mechanic properties, lead to big investments in the field.

The most widespread kind of composite are built from two components which have a very different
function: a reinforcement, that gives the material the desired physical properties, and a matrix, that gives
cohesion to the assembly. Certainly, it is possible to find composites made by more than two components
(e.g. if more than one physical property is targeted) but the two-phase composite is already adaptive enough
for most applications. The matrices of composite materials currently developed are generally classified into
two categories:

• organic matrices (thermoplastic polymers, thermosetting polymers and elastomers): they represent the
vast majority of matrices used industrially due to their low cost and ease of implementation of the
manufacturing process;

• Mineral matrices: ceramic (oxides and carbides) and metallic matrices (aluminum, magnesium, iron,
cobalt, copper) are intended for advanced applications where hostile environmental conditions do not
allow the use of an organic matrix (high temperatures, unfavorable hygrometry).

The other component of this kind of composite materials is the reinforcement. We can define a classifi-
cation considering their geometry: particle reinforcements, staple fiber reinforcements and continuous fiber
reinforcements. In particle reinforcements, the matrix is reinforced by a dispersed phase of particles (granular
inclusions, lamellar or short fibers) with or without a preferred orientation. On the other hand, considering
staple fiber reinforcements, the matrix is reinforced by a dispersed phase of short fibers (lengths less than 100
times their diameters) with or without a preferred orientation. Finally, in fiber reinforcements the matrix
is reinforced by a dispersed phase of continuous fibers whose length is close to that of the final part, whose
privileged directions give the final part its main mechanical properties. Our focus will be put on fibrous
composite reinforcements, in which two distinct sets of continuous fibers are interlaced to form a fabric or a
cloth.

This part is structured as follows:

• in chapter II.1, the multi-scale structure and behavior of fibrous composite reinforcements is analyzed
in detail;

• in chapter II.2, an overview of the possible models for the description of fibrous composite reinforcements
is presented, with particular attention to the enriched continuous model put forth in this manuscript;

• in chapter II.3, a first application of enriched continuous modeling in the case of the bias extension test
on an unbalanced fabric is presented;

• in chapter II.4, the enriched continuous model is applied to the case of the dry preforming of woven
fabrics with particular attention to the phenomenon of wrinkling.
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CHAPTER II.1
The multi-scale structure and behavior of fibrous composite

reinforcements

In the last decades, one kind of material has sparked an ever increasing amount of interest among engi-
neers: textile composites made of woven fabrics. The range of applicability includes fields such as aircraft
engineering, aerospace engineering, automotive and various other industrial applications. Moreover, even
greater potentialities are related to the use of such kind of materials, but a comprehensive model capable
of describing their mechanical behavior is needed to exploit their excellent mechanical properties (e.g. a
very high specific-strength and excellent formability characteristic). Therefore, our effort is directed to the
development of new theories and softwares for the modeling of the response of such materials during the
forming processes of industrial products and components.

The internal micro-structure of the woven fabrics strongly characterizes their mechanical properties and
complicate the modeling of these kind of materials. During the process of weaving, small yarns or tows are
woven in order to form a very complex texture. These yarns are made by materials which possess high specific
mechanical properties such as the almost traditional carbon and glass fibers or even polymeric and ceramic
fibers. Furthermore, in the case of carbon fiber reinforcements each yarn is itself a composition of thousands
of small carbon fibers. This very complex microstructure characterizes the global features of the material
response, mainly due to the interaction between the yarns and their behavior at a mesoscopic level.

The two main directions of woven yarns (warp and weft), each composed by a high number of fibers, define
the structure of the fabric. These direction, which are usually orthogonal, possess a very high extensional
rigidity. Moreover, the friction between the fibers both prevents slipping and generates the shear rigidity
of the fabric that, being usually different orders of magnitude lower than the elongation stiffness of the
yarns, fundamentally determines the overall behavior of the fabric. The characteristics of the fabric are also
influenced by the weaving scheme and, consequently, to each kind of weaving correspond different mechanical
properties of the relative woven composite. One more characteristic that can profoundly determine the
response of the material is the ratio between the weight (or size) of the yarns in the warp and weft directions.
If the ratio is different from one, the woven fabric is called “unbalanced”, otherwise it is called “balanced”.
In an unbalanced fabric, the properties in the two weaving directions differ generating a stiffer and stronger
direction that can be of use for particular engineering applications. For instance, if there is one main direction
of loading, the use of an unbalanced fabric allows for the optimization of the material bringing real designing
advantages.

Woven fabrics are materials that possess very important features in terms of specific stiffness and strength,
deformability, dimensional stability, thermal expansion, corrosion resistance, and many more due to the
efficient exploitation of the fiber material. Of all these positive features, the deformability allows for these
materials to be formed in various shapes without complex forming processes. However, without tools to
forecast of phenomena such as the onset of wrinkling and slipping that limit the admissible deformation
during the forming process, it is not possible to fully exploit the huge potential of these materials. Hence, it
is of paramount importance to develop a comprehensive model for the description of the forming of this kind
of materials.

As already pointed out, woven reinforcements consist of a succession of subassemblies resulting to a
multiscale material. The overall mechanical behavior of the woven fabric is inherited from the behavior of
its constituents and their interactions at lower scales (see Figure 3). Three scales of observation can be
distinguished:

• microscopic scale for the fibers;

• mesoscopic scale for the yarns;

• macroscopic scale for the reinforcement.
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Chapter 1. The multi-scale structure and behavior of fibrous composite reinforcements Part II

Figure 3: Multi-scale behavior of fibrous composite reinforcements [146].

To comprehensively describe the macroscopic behavior of woven fabric, it is not enough to describe the
macroscopic shear stiffness of the fabric and the elongation stiffness given by the yarns since each scale
includes specific problems of mechanical behavior, interactions and defects. When the yarns that compose
the fabric are thick they possess a relevant bending stiffness at the meso-level, leading to some particular
experimental response and, in the case of unbalanced fabrics, some interesting asymmetric phenomena (see
section II.3.2). The aim of this work is to model the macroscopic behavior of dry composite reinforcements
including some mesoscopic phenomena that are overlooked by the classical models. The purpose of the
following sections is to describe the known mechanisms governing the behavior at each scale to understand
both the material as a whole and the assumptions necessary for modeling.

1.1 Microscopic scale: the fiber

The behavior of a fiber, the smallest components of woven reinforcements, is studied at the microscopic
scale. The fibers’ behavior is given by the properties of the constituting material, even if treatments or
transformations of the fibers can influence the resulting properties. Moreover, the constituting material can
be of various nature and with very different properties. For example, we can find applications for:

• organic fibers (carbon, thermoplastic, aramid, high-modulus polyethylene);

• glass fibers;

• ceramic fibers (oxide, silica, alumina, silica/alumina, silicon);

• metal fibers (aluminum, aluminized plastic and nylon, and historically also gold and silver);

• vegetable fibers (seed, leaf, bast, core, stalk);

• animal fibers (animal hair, silk, avian fibers) constituted by proteins.

Carbon fibers will constitute the main focus of this manuscript. In the case of carbon fibers, a non-linear
behavior is observed: the tangent stiffness of the fiber increases slightly as the applied force is increased until
rupture [48,98]. This non-linearity is quite low, often leading to the use of linear models in simulations. For
ceramic fibers also, the mechanical behavior is generally accepted as linear (the studies on these materials are
rather focused on problems of creep, influence of temperature and the chemical treatments they undergo).

The mechanical characterization of the fibers used for the fibrous composites can be complicated due to
their small size, in the order of a micrometer. A single fiber is generally tested to determine the mechanical
properties (see [98]); however, at such a scale both the precise measurement of the deformation and the initial
diameter and constraining a single fiber with an experimental device are real challenges.

1.2 Mesoscopic scale: the yarn

The fibers are assembled to form yarns, with possible additional treatments such as:

• milling or twisting to improve their mechanical characteristics and to reduce their separation;
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• texturing to give swelling and elasticity, thus modifying the appearance and comfort of the fabrics;

• wrapping that consists of covering a core wire by a helical winding of one or more single wires called
cover wires, to protect certain fragile yarns such as carbon or ceramic fibers during the transformation
operations of yarns into textile surfaces.

Once assembled, each yarn generally contains between 3000 and 50000 fibers in the case of carbon and less
than 500 fibers for ceramics. The characteristic quantities generally used to describe a yarn are the following:
material, type of assembly, number of fibers, diameter of fibers, linear mass (in tex, 1 tex = 1 g.km), rigidity
and strength in traction.

The mechanical behavior of the fibers and their interactions defines the overall behavior of the yarn.
Therefore, the only effective mean to study the yarn’s behavior is by observing these microscopic phenomena
via a X-microtomography. This technique is promising for the precise evaluation of the yarns’ movements,
that constitutes nowadays a widespread problem of research [59, 119, 165]. This method has the additional
advantages of being non-intrusive, non-destructive and usable in conjunction with mechanical experiments.
The phenomena associated with the stress of the yarns are identifiable by physical considerations and simple
experiments.

Longitudinal behavior of the yarn As said before, the yarns are made up of a large number of fibers.
However, not all the fibers tighten simultaneously when a yarn is pulled, but one after the other. The
progressive traction of the fibers causes a non-linearity of the yarns’ behavior at the beginning of the stress.
This phenomenon is strongly dependent on the characteristics of the yarn and its method of manufacture.
For example, a twisted yarn will behave in an only slightly non-linear manner.

The notion of stress is not easily adaptable to the yarns to evaluate the stiffness. For instance, let
us consider the case of two different yarns with the same number of fibers, but distributed in sections of
different area (i.e. the space between the fibers is different). In this case, the force needed to obtain a specific
deformation is identical for the two yarns but, considering the sections’ area, the stress obtained is not, see
Figure 4. Since the behavior is based on the fibers’ number and stiffness, considering a force per unit area is
not coherent. It is more logical to characterize the tension behavior by a rigidity in N (ratio of the force on
the deformation), rather than by a modulus.

For compression behavior, it is difficult to evaluate a longitudinal stiffness, which is of the order of the
one in tension, because the relatively low rigidity to bending causes an almost immediate buckling of the
yarn.

Transversal compression of the yarn The behavior in transverse compression of the yarns is associated
with a change of area in the transverse plane: when the yarn is compressed, the fibers come closer to each
other and fill the vacuum. This mechanism can be divided into two main steps, namely the rearrangement

Figure 4: Traction of the yarn and problems in the evaluation of the effective stress [34].
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and compression of the fibers. Initially, the fibers rearrange filling the empty spaces and, when no free space
can be filled by fibers, the compression rigidity of the yarn will progressively tend towards the stiffness of
compression of the material constituting the fibers. Directly related to the compression of the yarns, the
density of fibers within the yarn has a considerable influence on the local permeability, and therefore on the
quality of the resin injection carried out after the shaping of the woven reinforcement. The quality of the
modeling of this behavior directly impacts the studies of permeability which could follow.

Shear of the yarn Two shear deformation modes can be identified for a yarn: a distortion mode (shear
in the transverse plane of the yarn) and a transverse shear in the main direction of the fibers. The direct
identification of these modes, as well as for transverse compression, appears difficult.

The distortion refers to the change in the shape of the yarn’s section without the intervention of transverse
compression. During this process, the fibers slide against each other and rearrange themselves in a new shape.
It is clear that distortion is facilitated if no compression is present, because, the fibers will have less space
and more friction during their rearrangement if the yarn is compressed. This coupling mechanism is difficult
to identify directly. Furthermore, a slight bending of the fibers can also occur during the stress.

The transverse shear refers to the longitudinal sliding of the fibers against each other. This sliding is
constrained, ideally, only by the friction existing between the fibers but the twisting of the yarns stiffens
this mode of deformation. Even in this case, it can be assumed that the transverse shear is stiffened by the
presence of transverse compression.

Bending behavior of the yarn Although the bending behavior of the yarns is relatively unknown, it
influences the weaving process and even the flexural response of the entire reinforcement during forming.
There are many phenomena related to the bending of the yarns. For instance, three deformation mechanisms
are likely to occur in the simple case of the three-point bending (see Figure 5):

• transverse shear of the yarn, linked to the almost inextensibility of the fibers (strong longitudinal
rigidity) compared to its low shear strength;

• bending of the fibers composing the yarn, directly related to the variation of their curvatures;

• lateral buckling of the fibers at the central support, strongly reduced by cohesion treatments such as
sizing, twisting or wrapping.

The bending behavior of the yarns is thus controlled by both the transverse shear and the flexural behavior
of the fibers, i.e. their resistance to a local change in curvature. This behavior is, moreover, very interesting
from the point of view of continuous media, because it is directly related to the local curvature of the material
(a variable, linked to the second derivative of the displacement, that is not influential in classical theories).
This influence of the local curvature of the fibers on the overall behavior of the yarns makes it possible to
affirm that, even at the mesoscale, woven fabrics do not respond to the hypotheses of classical continuous
medium: the dependence on local rotations makes it a higher gradient or micromorphic medium, see Part I.
Bending stiffness characterization devices exist, but were developed initially for the characterization of the
flexural behavior of the woven fabrics and need, therefore, some adaptation.

Figure 5: Bending of the yarn before the lateral expansion (a) and after (b) [34].
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1.3 Macroscopic scale: the reinforcement

1.3.1 Types of reinforcement

The focus of this manuscript is put on composite reinforcements obtained by weaving. Depending on the
type of weaving and on their thickness they can be divided into three categories:

• 2D (surface);

• 2.5D (interlock);

• 3D (three-dimensional).

The 2D reinforcements, usually referred to as reinforcement armor, are an intersection of yarns in two preferred
perpendicular directions, warp and weft. For the 2D case, the traditional weaves of the textile industry are
used. On the other hand, a third yarn direction is added in the thickness of the reinforcement to obtain a
3D weaving. The weaves called 2.5D are located at the border between 2D and 3D woven fabrics: some of
the yarns connect the upper and lower layers to bond them together. These fabrics are often derived from
conventional 2D armor, making it possible to obtain woven fabrics that are resistant to delamination and
very thick (of the order of about ten centimeters). Only 2.5D armor will be studied in this manuscript, but
it is interesting to detail the 2D armor that is the basis of these more complex armors and can also be used
to obtain thick pieces of composite materials.

Weave 2D In the case of 2D fabrics, there are three main kinds of weaves (Figure 6):

• plain weave (or taffeta weave) is the simplest weave: each warp yarn alternately passes above and below
each weft yarn;

• twill NxM: the weft yarn passes over N and then below M warp yarns by shifting one yarn at each pass;

• satin: the binding points of the warp and weft are disseminated so as to attenuate the diagonal effect
present on the twill. The weft yarn passes over N warp yarns and then below 1.

The combination of these three families of armor, with the multiplicity of geometries and materials available
for the yarn, allows for a wide variety of woven reinforcements. In general, a fabric can be characterized by
its weave, the relative arrangement of the warps and wefts, and its the relative difference between the length
of the fabric in one direction and the length of a yarn in that same direction.

Thick pieces can be made with these 2D armors by superimposing them. The structure thus obtained
makes it possible to optimize the stiffness of the finished material by playing on the orientation of the layers,
but the different armors do not possess links other than the resin. These materials are then very sensitive to
delamination, which can propagate leading to a complete failure of the piece. In addition, the stacking of the
various layers (a few millimeters thick each), results in long manufacturing times for parts of considerable
thickness.

Figure 6: Schemes of weaving for 2D fibrous composite reinforcements.
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Figure 7: X-ray tomography of a 2.5D woven interlock.

Weave 2.5D To overcome the delamination problems inherent in superimposed 2D armors, thick woven
reinforcements have been designed [19]. These reinforcements can be seen as the superimposition of different
layers that are structurally assembled together during weaving. Instead of continuously intersecting in the
same plane, the weft yarns intersect several layers in the thickness of the material (see Figure 7). The fabric
obtained can then reach thicknesses of the order of ten centimeters, making it possible to manufacture parts
with comparable mechanical qualities to superimposed 2D armors that avoid the phenomenon of delamination.

The geometry can become quite complex by varying the weaving pattern within the same preform. How-
ever, this possibility allows for an optimization of the resulting characteristics as a function of the stresses
undergone. The use of 2.5D woven fabrics also makes it possible to minimize the variations in mechanical
properties between two finished composite parts which are supposed to be identical, a common problem for
2D laminates where the operator’s working method is preponderant.

1.3.2 Mechanical behavior of the reinforcement

When considering the macroscopic scale, the reinforcement is considered as a whole. However, woven rein-
forcements are influenced by the properties associated with the yarns, of which they are assemblages, thus
leading to a complex resulting behavior. Some characteristics can be directly linked to the yarns’ structure,
and in particular to their weaving (e.g. the non-slipping between warp and weft yarns, the variations of
stitching, the locking for in-plane shear and the transverse shear stiffening). Specific tests aimed to the
interpretation of the deformation modes are necessary. In what follows, we will briefly describe the main
deformation modes and the related characterization challenges.

Non-slipping between warp and weft At the macroscopic scale, it is usually assumed that there is
no relative slipping between the warp and weft yarns. Considering the complexity of the slipping problem,
it should not come as a surprise that this hypothesis is conventionally used for the macroscopic simulation
of woven fibrous media. However, there is one main implication of this fundamental hypothesis: strong
interactions must exist between the constituent networks of the woven fabric, so that relative sliding can
be considered negligible and the displacement of the two sets of yarns can be considered continuous. When
dealing with materials, geometries and loading cases for which this consideration can be thought as sensible,
the material can be modeled as a continuous medium. However, the results obtained with the theory of
continuous media cannot be considered reliable when relative movements appear.

To validate this hypothesis, a study based on stamping with a hemispherical punch can be carried out
(see Figure 8). This test consists in stamping a woven reinforcement plate at low speed, shaping it in a
hemispherical shape. Before stamping, traces are drawn in the warp and weft directions at regular intervals.
After the experiment, a crossing of the lines at the same points as in the initial state indicates that there was
no relative sliding between the locks. The relative non-slipping hypothesis, which will be considered in the
remainder of this manuscript, can also be tested for complex loads.

Traction behavior Let us consider the solicitation of a woven fabric in uniaxial traction in the warp (or
weft) direction. This loading case is influenced by two successive phenomena induced by the reinforcement’s
weaving studied:

31Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



Part II Chapter 1. The multi-scale structure and behavior of fibrous composite reinforcements

Figure 8: Validation of the hyphotesis of non-slipping via a hemispherical punch [34].

• the gradual straightening of the yarns in the direction of stress, due to the strong increase in the traction
of the yarn and a bending of the yarns in the orthogonal direction;

• the elongation of the yarns once they are totally straightened.

From these two mechanisms results a strong non-linearity of the traction behavior for the first percentages
of deformation: the initial rigidity is low because the yarns can easily straighten without important stress.
Afterwards, the yarns themselves must elongate to allow for bigger deformations increasing sharply the
rigidity of the reinforcement. The actual length of the woven fabric decreases in this orthogonal direction
with a corresponding bending of the yarns.

The simultaneous traction of two orthogonal directions is interesting to study. As in the case of uniaxial
tension, the traction in one direction has an effect in the orthogonal direction leading to complex results. The
biaxial traction test consists in subjecting both of the directions to a tensile stress which is not necessarily
identical. However, the implementation of this type of test is difficult for 2D woven fabrics, and even more
so for thick woven fabrics, since the user must ensure that all the warp and weft yarns are stressed at the
same time.

Compression behavior The compression behavior in the direction of the yarns of the woven reinforce-
ments is difficult to characterize. Taken individually, a yarn will tend to buckle in compression, but when
woven they are bonded together in the reinforcements. Their movements are constrained by the positioning
of the neighboring yarns. Therefore, the weaving directly influences the behavior of the yarns in compression
and, thus, the macroscopic behavior of the material. No test is commonly accepted or even used for the
characterization of woven fabrics compressed in the direction of the yarns. Furthermore, buckling appears
fairly rapidly, allowing for a characterization only for small deformations. However, considering the usual
loading during the shaping of the woven reinforcements, knowledge of the compression behavior for small
deformations could be sufficient.

The transverse compression of a thick woven fabric can be easily characterized experimentally. This
deformation mechanism directly influences the parameters and the quality of the injection during the RTM
process. The volume density of fibers, mainly associated to the compression behavior, must be controlled
to optimize the mechanical performance, the permeability and the flow of the resin inside the reinforcement
[18,89].

Shear behavior in the plane of the yarns During the forming tests, the shear flexibility of the fabric
allows for a shape with a double curvature. Also, the low stiffness associated with this mode of deformation
makes it possible to give the reinforcement a non-developable geometry1. Hence, the characterization of shear
behavior is essential for the study of the characteristics of the reinforcement (see Figure 9), namely:

• the deformability, i.e. the capacity to take complex forms without defects appearing;
1A developable surface can be flattened onto a plane without distortion (i.e. "stretching" or "compressing").
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Figure 9: Shear behavior in the plane of the yarns of fibrous composite reinforcements.

• the permeability that determines the resin injection process.

The shear behavior of the reinforcement is highly non-linear because various mechanisms of deformation
are involved. From the kinematic point of view, these can be divided into three stages:

• for low shear deformation, the yarns pivot almost as rigid bodies and the stiffness is generated principally
by the friction of the yarns on each other;

• progressively, the interstices fill up and a transverse compression of the yarns is added to this friction;

• the transverse compression increases and it becomes the only mode of deformation.

All the interstices do not fill simultaneously, which results in a progressive stiffening. Once the interstices are
filled, the phenomenon of locking in shear appears, for which the weaving of the material plays a fundamental
role. The average distance between the yarns conditions the freedom of movement: the higher the volume of
fiber induced by the armor, the lower the clearance will be and the sooner the locking will occur. Furthermore,
when the shear locking angle is reached, the local permeability of the reinforcement is considerably reduced,
rendering the resin injection more difficult. Apart from the kinematic constraints, the shear also presents
several sources of dissipation such as the inelastic dissipation caused by the rearrangement of fibers within
the yarns and the friction. Therefore, the sample does not return to its initial position at the end of the test
but a residual deformation persists. Two conventional tests can be used to study the shear behavior: the
frame test and the bias extension test, see section II.3.

Transverse shear behavior Contrary to the majority of the woven materials studied in the literature,
the 2.5D interlocks do not have a negligible thickness. The transverse shear becomes a predominant mode
of deformation in the shaping of these woven fabrics. This mode of deformation has been studied little
so far because of the current low use of thick woven fabrics, but it is possible to find a test protocol in
Charmetant [36]. In the work of [235], a new test device is proposed, taking into account the specificities of
transverse shear behavior of thick woven fabrics. At present, no device or experimental protocol is commonly
accepted due to the small number of studies performed.

Bending In analogy to the mesoscopic scale, a local flexural rigidity is present for each yarn constituting
the woven reinforcement. This local rigidity is accentuated on a macroscopic scale by the existence of an
armor. This presence of local resistance to curvature was notably demonstrated by the development of
wrinkling during shaping tests [28, 90]. Several experimental devices enable the characterization of this
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rigidity of curvature. However, there is no common agreement on how to measure it and its influence on
the global behavior. This characteristic is commonly overlooked when the modeling of the fibrous composite
reinforcement is made in a continuous framework. The object of this manuscript is to find a continuous
model to include the effects of this mode of deformation in an enriched continuous model.

1.3.3 Consolidation processes
Liquid Composite Molding (LCM) processes are used to form woven reinforced composites with organic
matrix. The principle of these processes is to mold the dry reinforcement and then to inject the resin to
solidify the part. Molding the dry reinforcement makes it possible to obtain a final composite part very close
to the desired part and, thus, to minimize the production steps and costs. These processes, known as closed
mold processes, allow strict control of the volatile organic compounds emitted during manufacture, the resin
then not being in direct contact with the atmosphere. Among the LCM methods, the most widely used are:

• the vacuum infusion: the dry woven reinforcement is placed between a mold and a sealed membrane,
afterwards the pump presses the reinforcement against the mold and initiates the flow of the resin by
vacuuming the area;

• the Resin Transfer Moulding (RTM): the dry woven reinforcement is shaped (or stamped) in a mold
by means of a punch. Afterwards the resin is injected and the assembly is then heated to polymerize
the resin (in the case of a thermosetting matrix).

The advantage of the RTM is to have two rigid parts which allow to better control the compression of the
reinforcement during shaping and therefore its final thickness. The ability of the reinforcement to deform,
adapting to the mold, has a major influence on both the injection step (quality of impregnation, mold filling
time) and the mechanical characteristics of the part. During the forming processes, some problems can be
encountered such as fiber fracture, the appearance of wrinkles and/or the creation of either dry zones or parts
without yarns. These defects are usually due to uneven mechanical solicitations during the dry forming that
locally result in large tension in the yarns, excessive shearing or compression and/or uneven fiber density.
Therefore, to check the feasibility of a mechanical piece by RTM, the dry forming must be studied in detail
and its results must be used for a permeability study. The final mechanical qualities are intimately linked to
this stage that will be analized in detail in chapter II.4.

On the other hand, woven reinforced composites with ceramic matrix are commonly manufactured by
infiltration methods. This means that the ceramic matrix is formed by the infiltration of a matrix into the
fibrous structure, in this case a woven reinforcement. Depending on the nature of the injected matrix it is
possible to differentiate between:

• the Chemical Vapor Infiltration (CVI) in which the matrix is introduced as a gaseous constituent;

• the Liquid Phase Infiltration (LPI) (e.g. Polymer Infiltration and Pyrolysis (PIP)) in which the matrix
is introduced as a liquid constituent.

Many other molding processes exist, but their recollection goes beyond the scope of this work. We will
limit ourselves to point out that such processes vary according to the nature of the materials constituting the
reinforcement and the matrix, the importance of the series to be carried out, the rate and cost of production
sought.
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CHAPTER II.2
Modeling of fibrous composite reinforcements

The reliable simulation of the forming processes of fibrous composites is a strong need for every industrial
manufacturer, since a thorough understanding and predictability of the reinforcements’ behavior would im-
prove the efficiency and affordability of the production processes. Furthermore, the characteristics of the
finished piece could also be enhanced considerably. In the common practice, the production processes are
characterized by a series of iterations that lead to the final result. Therefore, the aim of modeling is to avoid
(or at least shorten) this iterative process via an effective numerical modeling. Such a model should be able
to predict both the mechanical and geometrical resulting characteristics, including:

• the mechanical characteristics of the piece, before and after curing;

• the eventual onset of wrinkling, unweaving and fracture of the fibers;

• the fiber orientation after forming;

• the permeability in every point of the deformed interlock.

The problems in describing precisely all of these characteristics lie in the multi-scale behavior of fibrous
composite reinforcements: each problem must be studied at a different scale. This issue led to the creation of
a variety of models that, considering their scale, can be divided in microscopic, mesoscopic and macroscopic
models (see section II.2.1). The object of this thesis is the definition of a macroscopic enriched continuous
model for the description of the mechanical behavior of fibrous composite reinforcements, whose fundamentals
will be described in section II.2.2. Finally, in section II.2.3 a discrete mesoscopic model, used as a compari-
son/validation for the enriched continuous model in the case of the bias extension test (chapter II.3), will be
put forward.

2.1 Modeling approaches for fibrous composite reinforcements

In this section, a brief description of the possible approaches for the numerical simulation of thick composite
reinforcements is made (see [146] for more details):

• microscopic models;

• mesoscopic models;

• macroscopic models.

2.1.1 Microscopic modeling
The underlying idea in the microscopic modeling is to simulate the behavior of the most fundamental part
of the fibrous composite reinforcements: the fiber. This concept implies the determination of the fibers’
material behavior and the mechanisms governing the interaction between different fibers. The evaluation
of the mechanical properties of the materials constituting the fibers is straightforward, but managing the
description of the contact between different fibers can be very complex. On this subject, a wealth of different
studies have been conducted, considering simplified models with a limited number of fibers which geometry
is somewhat descriptive of the woven yarn (see for example [106,166]). However, the application to the yarns
used for composite reinforcements is less common, due to the elevated number of fibers per yarn. For the case
with a limited number of fiber, we can refer to [236] as a possible example. Moreover, it has been proposed to
model groups of fibers as continuous to reduce the computational cost while accounting for their repositioning
(see [61] and Figure 10). This approach is very effective for computational purposes, but big groups of fibers
lead to lack of accuracy in the results: big groups tend to behave as yarns more than as single fibers.
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Figure 10: Microscopic modeling of fibrous composite reinforcements [61].

2.1.2 Mesoscopic modeling

The mesoscopic approached is based on the simulation of the yarn as a continuous elementary component,
instead of describing the behavior of the single fiber. Therefore, it is necessary to define and describe the
mechanical behavior of the yarns and their interactions within an armor, from which it is possible to deduce
the overall behavior of the reinforcement. The macroscopic mechanical behavior of the reinforcement can be
derived from the mesoscopic modeling with two possible approaches: modeling the entire mechanical piece
from the mesoscopic scale up, or by characterizing a small macroscopic part with a mesoscopic model and
then injecting the results in macroscopic calculations. An example of a mesoscopic analysis that is commonly
made is the determination of the local permeability that directly feeds injection flow calculations.

The simulation at the mesoscopic scale allows to directly observe the influence of the interlock’s properties
on the overall behavior of a woven fabric and to determine the weaving adapted to the needs. Therefore, the
access to the actual geometry of an elementary mesh is of paramount importance. X-ray microtomography
is the most promising method for the experimental observation of the positioning of the yarns, see for
example [14, 59, 95]. This technique consists of scanning a representative sample of a reinforcement in order
to obtain a 3D mapping. The images obtained are, then, processed by isolating the constituent elements (the
yarns) and meshing them.

The models at the mesoscopic level can be divided into two different sets:

• analytical approaches;

• finite element modeling.

Analytical approaches have been developed to access the mechanical and geometric quantities of the
interlocks. These approaches are generally based on a simplification of the geometry of the yarns and on
assumptions of mechanical behavior. A model based on the discretization of the mean line by segments, with
a rigidity associated to each segment and at each point of intersection between warp and weft, was proposed
by Kawabata [107,108] (see Figure 11). The behavior of the model is satisfactory for traction stresses of the
reinforcement but remains too poor for transverse compression and shear. In another analytical approach, the
geometry of the reinforcement is obtained by minimizing the deformation energy of each yarn until a static
equilibrium configuration is found, taking into account various mechanical contributions (traction, bending,
torsion, compression of the yarns and interactions) (see [124,125]).

Analytical approaches provide consistent results in the determination of the mechanical behavior of tension
yarns but are more limited in more complex applications involving, for example, shear. Therefore, the
use of finite elements seems a good alternative, but it requires two prerequisites: the geometry and the
boundary conditions of the reinforcement. These two inputs must be obtained either theoretically, from the
characteristics of the yarn and the armor, or experimentally. With FEMs, it is also possible to consider yarns
with variable non-symmetrical sections along their mean line and with complex geometries. However, the
mesoscopic modeling of an entire composite woven reinforcement during shaping remains difficult because of
the major issue of modeling interpenetration. Therefore, the modeling of a Representative Unit Cell (RUC),
that is the smallest elementary pattern that can be repeated to obtain the entire armor, is commonly used.
The aim is then to study the behavior of the weaving on a smaller scale before extending it to the whole of
the piece.
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2.1.3 Macroscopic modeling
The simulation at the macroscopic scale aims to describe the shaping of woven reinforcements at the scale of
the whole piece. This is the ultimate goal of the research on modeling preforming composite reinforcements:
predicting (and possibly avoiding) the appearance of the various observable defects in the woven fabrics.
The possibility of detecting few or many observable defects arises both from the type of modeling approach
chosen and from the richness of the mechanical characteristics conferred upon them. The input quantities
of such models may be derived from woven-scale tests or from observations/simulations at microscopic and
mesoscopic scales.

In the past years, researchers have proposed different approaches to the problem. One of the first attempts
was based on an kinematic algorithm called “fishnet” that, thanks to its simplicity and fast computability,
was suitable for the implementation in commercial software [128]. This approach is usually referred to as
geometric or kinematic, since it is based on strong purely non-mechanical assumptions:

• the inextensibility of the yarns;

• non-slipping between warp and weft;

• free rotation at intersection points between warp and weft;

• the absence of complex contact considerations (friction) with the shaping tools.

In other words, the reinforcement is described as if composed by articulated bars connected at the crossing
points between networks. The algorithm then calculates the position of the related points on geodesics traced
on the surface to be draped from the current point.

Nevertheless, this approach presented some limitations because it does not take the mechanical behavior of
the fabric into account. For instance, one of the main problems of the fishnet algorithm was the impossibility
to impose static boundary conditions. Furthermore, removing all mechanical and weaving considerations,
the results are identical regardless of the stiffness of the locks and the chosen weave. Shear kinematic locking
and thickness variation in compression are also absent in the basic modeling. The use of this method for
thick woven fabrics is, of course, not recommended other than for preliminary analysis.

A different path can be followed considering macroscopic mechanical approaches, whose models can be
divided into:

• discrete models;

• continuous models;

• semi-discrete models.

Discrete approaches consist in considering the textile as a discontinuous assembly of deformable elements
[40, 110, 210]. These are generally extensions of the theory of the net, that is to say the introduction of
mechanical characteristics in the resolution of the problem of shaping. The reinforcement is modeled by
nodes connected to each other by bars and springs designed to model the elongation, shear, torsion and
bending response.

Figure 11: Mesoscopic modeling of fibrous composite reinforcements [107,108].
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Figure 12: Macroscopic modeling of fibrous composite reinforcements.

On the other hand, continuous approaches assume a continuous material on a macroscopic scale. This
hypothesis stems directly from the consideration of non-slipping between yarns during the shaping phase
leading to a textile that is a homogenized anisotropic continuous medium, see Figure 12. The most crucial
part of continuous modeling is the definition of proper constitutive relations that realistically reflect the
mechanical properties of the analyzed material, whether hypo-elastic [9,109,193] or hyperelastic [35,215,224],
that yield convincing results. The same material is considered in all the points of the fibrous reinforcement and
does not take into account the variations of the mechanical characteristics inherent to the weave studied. In
the literature, reliable constitutive models for the description of the mechanical behavior of fibrous composite
reinforcements at finite strains can be found in [2, 35, 36]. Moreover, the mechanical behavior of composite
preforms with rigid organic matrix (see e.g. [153, 154, 189]) is quite different from the behavior of the sole
fibrous reinforcements (see e.g. [35]) rendering the mechanical characterization of such materials a major
scientific and technological issue. Traditionally, the energy used in the simulation of continuous media
comprises only deformations defined as the first derivative of the displacement, thus giving rise to so-called
first gradient theories. However, in various papers dealing with woven composites, it is shown how the
addition of energies related to the local stiffness of the yarns is useful, if not necessary, to describe the
macroscopic deformation behavior of the interlocks (e.g. [11, 35,70,130,134]).

Semi-discrete approaches are a combination of the two approaches discussed above. Part of the behavior
is modeled by a continuous solid, while the rest by discrete elements. The interaction between discrete and
continuous parts can be associated in the same Lagrangian element [52, 91] or considered totally indepen-
dent [47]. In the first case, the discrete and continuous portions are fixed relative to one another in the
isoparametric configuration but the forces generated by any deformation are subdivided between a traction
contribution associated with the discrete parts and the other contributions (shear, compression) associated
with the continuous part. The advantage of such an element is that it is possible to more accurately and
simply represent the local directions of the yarns in the preform and to account for the complex anisotropy
of these materials. In the second case, the reinforcements are represented by layers of solid elements while
bar elements are added to represent the yarns. Here, the continuous parts are totally decoupled from the
discrete parts, implying the complication of managing their contact.

2.2 Macroscopic enriched continuous modeling

To model the macroscopic behavior of composite reinforcements, the traditional approach is a continuous
model in which a first gradient energy describes all the deformation effects in the material. However, in [35]
it is also underlined that Cauchy continuum theory may not be sufficient to model a class of complex
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contact interactions which are related to local stiffness of the yarns and which macroscopically affect the
overall deformation of interlocks. It has been known since the pioneering works by Piola [196], Cosserat [44],
Mindlin [156], Toupin [225], Eringen [67], Green and Rivlin [86], and Germain [78] that many microstructure-
related effects in mechanical systems can be still modeled by means of continuum theories. More recently,
these enriched continuum theories have been widely developed to describe the mechanical behavior of many
complex systems, such as e.g. porous media [54, 133, 208], capillary fluids [51, 56], exotic media obtained by
homogenization of heterogeneous media [3,195,209]. Therefore, our approach has been the implementation of
a second gradient material that describes the energy related to micro-structural properties such as the bending
of the fibers. However, any enriched continuous model must be compared to the classical continuous one
and will therefore be presented in subsection II.2.2.1. Afterwards, the proposed second gradient hyperelastic
model will be presented in subsection II.2.2.2.

2.2.1 Hyperelastic first gradient model
In this subsection, the constitutive equations for the first gradient strain energy densityWI (C), which will be
used to simulate the mechanical behavior of this fibrous composite reinforcement in the finite strain regime,
is presented. With this scope, we introduce a Lagrangian configuration BL ⊂ R3 and a suitably regular
kinematical field χ(X, t) which associates to any material point X ∈ BL its current position x at time t in
order to describe the deformation of the considered continuum. The image of the function χ gives, at any
instant t the current shape of the body BE(t): this time-varying domain is usually referred to as the Eulerian
configuration of the medium and, indeed, it represents the system during its deformation. Since they will be
used in the following,we define the displacement field u(X, t) := χ(X, t) − X, the tensor F := ∇χ and the
Right Cauchy-Green deformation tensor.

Even at finite strains, well-known expressions for isotropic strain energies descriptive of the behavior of
isotropic materials are available in the literature (see e.g. [187,219]). Quite the opposite happens in the case
of orthotropic materials, for which suitable specific strain energies, well descriptive of real material behaviors
are more difficult to be found. Some results are provided in [102], where some polyconvex energies are
proposed to describe the deformation of rubbers in uniaxial tests. Explicit anisotropic hyperelastic potentials
for soft biological tissues are also proposed in [97] and reconsidered in [10, 206], in which their polyconvex
approximations are derived. Other examples of polyconvex energies for anisotropic solids are given in [220].

Notwithstanding the research efforts devoted to the study of polyconvexity, which certainly introduce
rigorous theoretical frameworks for the study of the mechanical behaviors of hyperelastic materials, the use
of such polyconvex models is often limited due to the difficult attribution of a sensible physical meaning to
the wealth of constitutive parameters which are introduced. The approach adopted in this manuscript is
the Ockham’s razor approach, introducing the minimum possible number of physically sensible constitutive
parameters which are needed to describe the targeted phenomena.

In this work, the directions D1 and D2 denote the unit vectors in the directions of the warp and weft
yarns in the reference configuration and the direction D3 = D1 ×D2 denotes the unit normal to the plane
containing the two sets of fibers. It is possible to fully describe a first gradient orthotropic energy with an
expression of the type (see e.g. [200] and the Appendix B.1 where a theorem for the complete representation
of a first gradient energy is presented):

WI(C) = WI(i11, i22, i33, i12, i13, i23), (II.1)

where iii = Di ·C ·Di, i = {1, 2, 3} represents the elongation strain in the direction Di and iij = Di ·C ·Dj

represents the shear strain (angle variation) between the directions Di and Dj with i, j ∈ {1, 2, 3} and i 6= j.
It is possible to develop complex non-linear energies that capture all the details of the mechanical non-

linearities observable in the experimental testing, as done in [2, 35,36], but this is not one of the aims of the
present manuscript. Instead, using only a simple quadratic first gradient energy, it is possible to thoroughly
analyze the influence of both meshing and additional second gradient terms on the performed numerical
simulations. Thus, the chosen constitutive expression for the first gradient energy is:

WI(C) =
1

2
K11(

√
i11 − 1)2 +

1

2
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√
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1

2
K12i

2
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1

2
K13i

2
13 +

1

2
K23i

2
23, (II.2)

where Kii are the extensional stiffnesses in the direction of the yarns as well as in the orthogonal direction,
while Kij with i 6= j are the in-plane and out-of plane shear stiffnesses. The numerical values of the material
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Part II Chapter 2. Modeling of fibrous composite reinforcements

parameters define a material in which the extensional stiffness is much higher than the shear stiffness and the
shear behavior in the plane of the fibers is stiffer than the out of plane. Moreover, the extensional stiffness
in the orthogonal plane is much lower than the in-plane ones, due to the fact that no yarns are effectively
present in the thickness of the interlock. Even if more refined hyperelastic laws can be certainly be introduced
in the spirit of [2,35,36], the proposed expression for the first gradient energy density is representative of the
main macroscopic deformation modes of fibrous interlocks.

2.2.2 Hyperelastic orthotropic second gradient strain energy density

A hyperelastic, orthotropic, second gradient model can be applied to the case of fibrous composite reinforce-
ments at finite strains. The first gradient kinematics of the continuum must be enriched by considering the
second order tensor field ∇C which accounts for terms that can be associated with the macro-inhomogeneity
of micro-deformation in the microstructure of the continuum. For the strain energy density W (C, ∇C)
which shall be used to simulate the mechanical behavior of the fibrous composite reinforcements in the finite
strain regime we will assume a decomposition of the form:

W (C, ∇C) = WI(C) +WII(∇C) (II.3)

Considering linear elastic isotropic second gradient media, it is possible to find constitutive laws that are
able to describe a very wide set of behaviors (see for example [57]). In the case of the woven fabrics, the
bending stiffness of the yarns is the main micro-structure-related deformation mechanism which takes place at
the mesoscopic level and is, therefore, the only one that will be considered here. The modeling of the bending
stiffness of the yarns is decisive for the description of some specific phenomena, such as shear transition layers
in 2D experimental tests and wrinkling during the deep-drawing of dry woven fabrics. A second gradient
theory is potentially able to account for other effects related to the derivatives of the elongations but, in
this work, they will be disregarded. The second gradient energy considered is, thus, a function only of the
derivatives of the invariants iij (i 6= j), that can be used to define rough descriptors of the curvatures of the
two sets of yarns of the fabric.

As a matter of fact, it can be inferred (see also [11,58,70,130,134]) that, given the family of yarns initially
oriented in the direction D1, the quantity i12,1 is a measure of their in-plane bending1. Analogously i12,2 is a
measure of the in-plane bending of the family of yarns initially oriented in the direction D2. The quantities
i13,1 and i23,2 are descriptors of the out-of-plane bending of the yarns initially oriented in the D1 and D2

directions, respectively. Since no material fibers are present in the thickness of the considered interlocks,
quantities related to their bending (i13,3 and i23,3) are not likely to play a role in the deformation of such
materials. In light of these remarks, the following constitutive form is introduced for the second gradient
strain energy density:

WII(∇C) =
1

2
α1 i

2
12,1 +

1

2
α2 i

2
12,2 +

1

2
β1 i

2
13,1 +

1

2
β2 i

2
23,2, (II.4)

where with α1, α2 and β1, β2 are the in-plane and out-of-plane bending stiffnesses of the two families of
yarns, respectively. For unbalanced fabrics, i.e. fabrics whose warp and weft yarns do not have the same
characteristics, it is likely that α1 6= α2 and β1 6= β2 (see also [11,130]). Moreover, it is possible that the two
families of yarns have different in-plane and out of plane bending stiffnesses.

Further investigations are needed to establish a strict theoretical relationship between the microscopic
structure of considered reinforcements and the macroscopic parameters here introduced: it is indeed well
known that the second gradient parameters are intrinsically related to a characteristic length Lc which is,
in turn, associated to the micro-structural properties of considered materials. Many identification methods
have been introduced to relate the macroscopic second gradient parameter to the microscopic properties of
the considered medium, e.g. see [3, 209]. Suitable multi-scale methods as the one introduced in [163] may
be generalized to be applied to the present case. Moreover, the description of the considered system at the
microscopic scale may exploit some of the results proposed in [6, 94,218].

1Here and in the sequel the term (·),i denotes the partial derivative of the quantity (·) with respect to the space coordinates
ξi of a reference frame oriented within the directions Di.
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Figure 13: Lagrangian Shape Functions and their First Derivative

2.2.3 Considerations on the numerical implementation of an enriched continu-
ous model

As explained in the introductory part on higher gradient models (Chapter I.3), the two following approaches
are possible for the numerical implementation of a second gradient model:

• directly use kinematics uniquely based on the macroscopic displacement field and consider higher gra-
dients of the displacement in the strain and kinetic energy densities;

• start from richer kinematics (as done for micromorphic media) and then impose suitable constraints
on the extra kinematical descriptors in order to obtain the desired second gradient model as a limiting
case.

Some consideration on the numerical implementations of the tow models are proposed in this subsection.

Direct implementation of a second gradient model: augmented continuity shape functions In
the finite element method the solution of the problem is searched among a subset of functions approximating
the space of configurations. As well explained in [237], it is implicitly assumed in the derivation of the
equations in the finite element model that no contribution to the virtual work arises at element interfaces.
Therefore, it is necessary to choose displacement functions such that the strains at the interface between
elements are finite (even though they may be discontinuous). In the first gradient models, the strain is
defined by first derivatives and, therefore, the displacements only have to be continuous. If, however, the
strains depend on the second derivatives, as in the second gradient model, the continuity of the first derivatives
must also be granted.

The most used kind of shape functions are the Lagrangian shape functions, that can be found already
implemented in almost every finite element software. These functions are polynomials that, given a set of
nodes, are zero at all the points but one. Considering the one dimensional case, this gives rise to an expression
of the kind:

Li =

j=1,..,n∏
j 6=i

x− xj
xi − xj

(II.5)

Let us work with the case of a polynomial of degree 2 and on 2 adjacent elements. Figure 13 shows that,
despite having imposed continuity, the first derivatives are still discontinuous. This is due to the continuity
class C0 of the Lagrangian functions.

Having said that, it is now important to choose one class of shape functions fit for the analysis of a
second gradient model. In the one dimensional case, there would be various possible choices to be made. For
instance, the Hermitian polynomials were born to evaluate problems such as the beam in which the second
derivatives of the displacement (the curvature of the beam in particular) play an important role. A different
possibility are the Spline functions which guarantee a higher level of continuity (class Cn−1 for polynomials
of degree n) between elements and would therefore be fit for this application.
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In the case of 2D and 3D solids the problem becomes even more complicated: instead of having to consider
one derivative we have to face the full gradient of the displacements ∇u. As a matter of fact, the 2D and
3D Hermite functions have continuous derivatives between mesh elements, but only at the mesh vertices. In
the 2D case, the Argyris functions (5th order polynomials) or B-splines would assure the continuity in the
entire edge of the element (for the use of B-Splines in high continuity 2D problems see for example [84,85]).
Going to the complete 3D case the only existing compatible elements (C1 continuity) are of at least 9th
order [234] based on the Ženišek element [233]. Unfortunately those kind of elements imply such a high order
of polynomials that are not currently implemented in the most widespread finite element softwares.

However, it has to be reminded again that the need for continuity is due to the absence of contribution
to the virtual work at element interfaces. We chose to implement third order Lagrangian polynomials with
augmented continuity adding an a posteriori penalty energy related to the discontinuity of the deformations
i12, i13 and i23 at the element interfaces of the type2:

WInterface = KPenalty ([[i12]]2 + [[i13]]2 + [[i23]]2). (II.6)

This energy depends only on the discontinuity of the in-plane and out-of-plane shear deformations i12, i13

and i23 and it is, therefore, not sufficient to render the entire ∇u continuous. Nonetheless, the derivatives of
the deformations i12, i13 and i23 are the only ones appearing in the presented second gradient energy and,
therefore, are the only ones on which the continuity has to be imposed.

With this workaround, it is possible to obtain almost continuous deformations and, thus, to implement
directly a second gradient 3D model. In order to use this method on a constant basis, other studies on the
numerical stability and convergence should be made, but the problem remains open for now. The possibility of
adding an energy on the interface between mesh elements is not always granted, but COMSOL Multiphysicsr,
the software used for the simulations, has it already built-in.

Implementation of a micromorphic model as limiting case of the second gradient model At
this point, the reader may believe that the fact of considering a micromorphic medium is redundant for
treating the considered problem of fibrous composite reinforcements, since a second gradient model could
have been directly introduced, instead of constraining a micromorphic model to become a second gradient
one. Nevertheless, the intermediary step of passing through a micromorphic model could be helpful, at least
for two reasons:

• the imposed boundary conditions take a simple and more precise meaning;

• the numerical implementation of the considered problem involves lower order differential equations.

The first point, i.e. the unique meaning of the imposed boundary conditions, is crucial to have an easily-
recognizable physically-grounded interpretation. In fact, as far as second gradient theories are concerned,
the boundary conditions that can be imposed may take different, but equally legitimate, forms for the same
physical problem (see e.g. [135]): for example, in a second gradient theory, a given angle can be imposed
either by directly assigning the angle or by suitably choosing the components of the normal derivative of
displacement on the boundary. Depending on whether one choice of the kinematic conditions or the other
one is made, the dual traction counterparts (dual of the angle variation or of the normal derivative) have
different expressions and the definition of the force can be also shown to be non-equivalent in the two cases.
Such non-uniqueness of the way of imposing second gradient boundary conditions is directly related to the
number of integration by parts which one decides to make in the expression of the internal work: in second
gradient theories, the second gradient of the virtual displacement can be integrated by parts twice, by making
use of the standard divergence theorem and of the surface divergence theorem.

On the other hand, micromorphic models only involve first gradients of the introduced kinematical fields,
so that we can integrate by parts only once (only the standard divergence theorem is used in a micromorphic
model). This fact, avoids any sort of indeterminacy for the imposable boundary conditions when micromor-
phic models are considered (see e.g. also [21]). Moreover, the absence of higher order derivatives allows for the
use of traditional shape functions for both the displacement and the additional degrees of freedom. However,
it is not clear how the coupling between the micromorphic degrees of freedom, discretized by the continuous
traditional shape functions, and the macroscopic strains, discretized by the discontinuous derivatives of the
same shape function, could impact the numerical stability and robustness of the model and, therefore, more
detailed numerical studies should be made to choose the best approach.

2The term [[·]] denotes the jump at the interface of the quantity · .
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Figure 14: Schematics of the elastic interconnections between warp and weft yarns. (a) rotational spring, (b)
translational spring, (c) interaction between thin yarns and (d) interaction between thick yarns.

2.3 Discrete mesoscopic 2D modeling

In this section, we set up a suitable discrete model in which the motions of the single yarns are singularly
taken into account. The aim of this model is to have a clear comparison/validation for the proposed enriched
continuous model. This discrete 2D model employs long Euler-Bernouilli beams, disposed at 90 degrees
with respect to each other, to describe the two sets of yarns. Their connection is made via rotational and
translational springs that mimic their physical interaction, see Figure 14, and both beams and springs are
considered to behave linearly. The main features of this discrete model are that it allows to:

• explicitly account for the slipping of the yarns;

• better understand the potentialities and limitations of the enriched continuous model introduced.

More particularly, the two families of beams have axial stiffness K1 = EA1 and K2 = EA2 and bending
stiffness K3 = EI1 and K4 = EI2, respectively, where E is the Young modulus of the material constituting
the yarns, A1 and A2 are the equivalent cross sections and I1, I2 the equivalent moments of inertia. To model
the yarns’ interactions, the set of points in which the two families of beams intersect have been defined in
COMSOL Multiphysicsr. In this set of points, the interactions between the two yarns are supposed to be
(see Fig 14):

• the shear stiffness, i.e. the resistance to the variation of angle between the yarns, which is accounted
for via a set of rotational springs of stiffness Kϕ;

• the friction between two yarns, i.e. the resistance to the slippings, which is described by a set of
translational springs with stiffness Kslip;

• the transverse compression stiffness, i.e. the mutual interactions between parallel yarns due to the
contact and the weaving of the orthogonal yarns, which is modeled with a set of springs with stiffness
Kinter applied to every couple of adjacent points belonging to two different yarns of the same family.

A possible downside of such a discrete model is that a very large number of degrees of freedom is needed
for a proper description of big specimens. In this optic, continuum models are preferable to discrete ones in
view of the design of engineering structures. Another main limitation of the discrete model presented is that
the interactions between adjacent yarns are all considered elastic. Even if this simplification is reasonable
up to a certain extent, there are some irreversible mechanisms, such as friction, that are not accounted for.
Indeed, when unloading the experimental specimen, it is not sufficient to let the specimen return in its initial
configuration, therefore a certain part of the deformation is not elastic, but related to irreversible mechanisms
such as friction. Nevertheless a big amount of the imposed deformation is recovered and, hence, this discrete
mode can be a reasonable compromise between the complexity of the real microstructural motions and the
simplicity of the model that one wants to introduce. To make a comprehensive model, the methods presented
in [76] should be followed.
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CHAPTER II.3
The Bias Extension Test

3.1 Characterization of the shear response of woven composite re-
inforcements

The behavior of woven composite reinforcements must be analyzed under different types of loads and, in
particular, the most important feature to be determined is the in-plane shear response of the woven composite.
In fact, due to the quasi-inextensibility of the fibers, the main deformation mode of the woven composites
reinforcements during a forming process is the in-plane shear deformation (angle variation between the warp
and weft).

Two main tests are of current use for the determination of the in-plane shear stiffness of the fabrics. The
first test developed was the Picture Frame Test (PFT), in which a square specimen of the woven composite
is ideally subjected to a state of pure shear deformation. Nevertheless, the state of pure shear is only
theoretical: any misalignment of the specimen leads to an increase of the measured load [120, 125, 184]. In
addition, the yarns are tightly clamped fixing their direction inside the four clamps and generating bending of
the yarns during the motion. This effect usually implies an overestimation of the shear parameter due to these
boundary effects. The second test used for the measure of the in-plane shear stiffness is the bias-extension
test (BET). In this test one of the edges of a rectangular sample of woven composite reinforcement, whose
yarns are initially oriented at ±45◦ with respect to the loading direction, is displaced in the direction of the
axis [31, 93, 122, 194, 199, 231]. The length/width ratio of the specimen must be larger than 2, while in the
present manuscript the ratio is fixed at 3. When one of the ends of the specimen is displaced by a given
amount, three types of regions appear to have an almost homogeneous behavior in their interior (A, B and
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Figure 15: Simplified description of the shear angle pattern in the bias extension test
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C in Figure 15). In each of these areas, the angle between the warp and weft direction is almost constant.
These specific kinematics are due to the quasi-inextensibilty of the yarns and the absence of slipping between
warp and weft yarns at the crossover points. The advantage of the BET, with respect to the PFT, is that
each yarn has at least one edge which is free, and this free edge is thought to be sufficient to avoid spurious
tensions in the yarns as observed in [92,120].

Nevertheless, there are some phenomena that are not described in the schematics of Figure 15 that are
important for the complete understanding of the BET. As a matter of fact, the transition between two
different areas at constant shear angle is not concentrated in a line, instead it is distributed in a transition
layer with a gradual variation of the angle, as shown in Figure 16. In such transition layers, the angle variation
between the two constant values is achieved by a smooth pattern directly associated to the local bending of
the yarns. One more feature that can be highlighted is that the free boundary does not remain straight during
the test, as is assumed in the scheme of Figure 15, but it shows a small curvature (Figure 9). Both of these
phenomena can be understood by considering that the yarns possess a non-vanishing bending stiffness that
depends on the micro-structure of the fabric: a variation of orientation cannot be concentrated in a point,
creating a boundary layer of non-vanishing size. With the usual first-gradient models, it is not possible to
include such micro-structural related phenomena while, with the aid of second-gradient theories, promising
results have been obtained in [70]. In those models, a specific constitutive coefficient can be introduced,
which can be directly related to the bending energy of the fibers. The second-gradient continuum model
introduced in the present manuscript is able to describe the main macroscopic and mesoscopic deformation
mecanisms taking place during a bias extension test on woven composite reinforcement.

3.2 The BET on unbalanced fabrics

One of the main aims of the present part is to show and discuss some specific results obtained during an
uniaxial BET on an unbalanced specimen of fibrous composite reinforcement. The task of fully exploring
what theoretical tools are needed to optimize the modeling of such unbalanced materials is left as a sub-
sequent work, the scope of the present manuscript being that of explaining the principal micro and macro
deformation mechanisms of such unbalanced fabrics. In fact, based on a phenomenological observation of
some experimental results, it will be shown that the deformation modes which take place in a BET on an
unbalanced fabric are completely different from those specific of the BET on standard fabrics described
above. Moreover, the proposed second-gradient continuum model will be employed for the description of
such unbalanced materials, pointing out the strong and weak points regarding its application to the design of
complex engineering parts. It has to be explicitly remarked that mechanical conditioning was not accounted
for in the present study with the aim of being closer to the conditions of a real forming process.

3.2.1 Experimental setup
In an unbalanced fibrous composite reinforcement, the warp and weft yarns are comprised of a very different
number of fibers and, therefore, the mechanical properties in the two directions can differ considerably. The
material studied in this manuscript is an unbalanced 2.5 D composite interlock with a characteristic weaving

Figure 16: Boundary layers between two regions at constant shear
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Figure 17: (a) Sample I on top, (b) sample II at the bottom

pattern in the direction of the thickness. The BET is performed on two samples of 3x3 twill unbalanced carbon
interlocks with different unbalance ratios (Figure 17). For specimen I, a Tomographic image was obtained
(Figure 18 (left)) showing the high unbalance of the specimen and the characteristic weaving pattern of the
2.5 D interlock.

To conduct the BET, the samples are positioned between the upper and lower jaws of a 100 kN Zwick
Meca tensile machine (Figure 18 (right)). The force needed to deform the specimen is of the order of 100 N
and, therefore, an auxiliary load cell of 500 N is used to allow for good resolution of the data from the test.
During the test, the lower clamp is static while the upper clamp is set, with a displacement-control, to move
up from 0 to 60 mm. The displacement speed of the movable clamp is set to 4 mm/min.

To analyze the experimental results and to reveal the characteristic deformation modes of the mesostruc-
ture, high-quality pictures of the samples during the deformation process are valuable. Therefore, a 16MP
camera in combination with a 200x optical zoom and two LED adjustable color lights were used during the
test, nonetheless, the detailed analysis of pictures of a black carbon specimen are still difficult to perform.
For this reason, a white grid of lines aligned with the warp and weft yarns was added on the shear area A of
the specimen I (Figure 17 (a)). However, during the analysis of the first specimen some difficulties following
the deformation of the specimen were still present, therefore, for specimen II, it was decided to locate only
a couple of white points on top of area A that, with a post-processing step, can lead to an easier access

Figure 18: X-ray tomography of the interlock I (left) and experimental setting during testing (right).

46Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



Chapter 3. The Bias Extension Test Part II

Figure 19: Force/displacement plot

to important data like the local shear angle or the sliding between yarns. The initial configuration of the
interlock specimens and the added reference lines and points are illustrated in Figure 17.

3.2.2 Experimental results and physical interpretation
The results of the tests in terms of the load-displacement curve are shown in Figure 19. The force response
of both of the specimens is almost linear except for a slight increase of stiffness at the end of the test. It is
also easy to notice that the two materials present very different macroscopic stiffnesses due to their different
internal architecture. To precisely identify the maximum strain that the material can withstand before failure
due to excessive slipping, more experimental campaigns should be carried out. We limit ourselves here to
remark that:

• after a first threshold the material behavior presents a softening which can be directly related to slipping;

• if the experiment is prolonged, the slipping becomes so important that some yarns are pulled out of
the specimen compromising the integrity of the material rendering a continuous model unreliable.

Figure 20 shows the deformed shapes for both specimens during the development of the test. The quality
of the test on the second specimen is much lower than that performed on the first one due to a non-perfect
cutting. For this reason, the considerations will be illustrated by using the images relative to the specimen
I, but analogous ones can be drawn for the specimen II.

Figure 20: Deformed shape for both specimens (sample I on top, sample II at the bottom)
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The main remark which may be inferred from the observation of the macroscopic deformed shape of the
two specimens (Figure 20) is the asymmetric S-shape, which is due to the fact that the properties of the
two families of yarns are very different in the two directions. What needs to be highlighted is that such
an asymmetric shape is related to precise deformation mechanisms of the meso-structure which determine
the behavior of such unbalanced materials. To represent with sufficient detail the mechanical behavior of
unbalanced fabrics, a model must describe accurately:

• the macroscopic S-shaped deformation of the material;

• the mesoscopic deformations of the yarns inside the material.

To this goal, it is essential to observe the characteristic deformation patterns of the yarns inside the unbalanced
fabric subjected to a BET. As will be better demonstrated in the remainder of this chapter, the main
mesoscopic deformation mechanisms which take place during a BET performed on an unbalanced fabric are

• the in-plane shear deformation (angle variation between the yarns with respect to their initial configu-
ration),

• the local differential bending of the warp and weft yarns due to the unbalance of the fabrics,

• the relative slipping of the contact points between warp and weft yarns.

Ideally, if perfect pivots were placed to connect the warp and weft without interrupting the continuity of
the yarns and if the two families of fibers could be modeled as wires with infinite rigidity with respect to
elongation and vanishing bending stiffness, the observed motion would be the ideal one presented in Figure
15. Thus, the only deformation mode would be the variation of the direction of the fibers which could
be directly related to the angle variation between warp and weft. Nevertheless, in the considered material
the yarns present a non-vanishing bending stiffness and a relative slipping of the warp with respect to weft
changing the macroscopic mechanical behavior.

More particularly, the thin yarns possess a very low bending stiffness and, as it is possible to see in Figure
21 (c), there is a very sharp variation of direction that is concentrated in a very narrow layer. Instead, in the
case of the thick yarns (Figure 21 (b)), there is almost no measurable change in direction along the whole
fiber, a feature that can be uniquely related to an extremely high bending stiffness. As a consequence of this

Figure 21: Deformed shape for a displacement of 56 mm (a) and angle variation in the transition layers for
the thick (b) and thin (c) yarns
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Figure 22: Points identifying some sliding phenomena

observation, it must be inferred that it is not possible to describe this specific behavior without accounting
for the bending of the yarns at the mesoscopic level.

It is finally noted that the presence of measurable slipping of the fibers (up to a maximum that is around
10% of the total length of the yarns) strongly characterize this test. This phenomenon should be included
in a complete model for this test and in general for woven composites. Such slippings can be qualitatively
recognized when comparing the undeformed and deformed shape: three points which were initially located
on the white cross marks which were drawn on the specimen have moved, thereby breaking the continuity of
the cross marks themselves (see also points P1 − P6 in Figure 22).

A macroscopic indicator of the sliding may be found in the global in-plane thickness of the specimen.
If relative sliding of the fibers is permitted, the height of the specimen measured in the middle of the
specimen itself can be much higher than the height that the specimen would have if no relative motions were
permitted. In some sense, such effect of the sliding can be modeled as a “fictive elongation” of the fibers in the
two directions. More precisely, since the yarns can slide in the real situation, the resulting apparent in-plane
thickness of the specimen is much higher than the theoretical one obtained if the yarns were considered hinged
together. It is clear that the presence of such internal sliding weakens the basis on which a continuum theory
is founded.

Nonetheless, we can continue using a continuum model with the limit of modeling such internal sliding
as a “fictive” elongation of the yarns in the two directions. The price to pay for this modeling assumption is
that the result of the simulations is a microstructure which is not perfectly superposable to the real one (the
“real” sliding is replaced by “fictive” elongations of the yarns). In spite of this, the overall macroscopic pattern
of the deformation can be recovered, together with the main features of the deformation of the underlying
microstructure. Finally, we remark that the presence of the described relative sliding does not allow a direct
interpretation of the in-plane shear deformation as the angle variation between the warp and weft directions.
In fact, the in-plane shear is simply defined as the angle variation between the current direction of the
considered yarn and its initial direction.

Summarizing, it is possible to say that the main mesoscopic deformation mechanisms which take place
during the BET on an unbalanced fabric have been isolated. These significant contributions include the
in-plane shear of the yarns, the differential local bending of the yarns and the sliding of the yarns. In the
next section, three models will be used to capture such mesoscopic deformation mechanisms together with
their macroscopic counterpart:

• a discrete mesoscopic 2D model;

• a first gradient continuous model;

• an enriched continuous model.

These models show how to obtain a sensible description of the macroscopic S-shaped deformation of the
considered unbalanced fabric, as well as a reasonable prediction of the mesoscopic deformation of the yarns.

3.3 Modeling 2D woven fabrics

3.3.1 First gradient model
The first-gradient models are not able to capture the entire set of microstructural-related complex behaviors.
However, it could be possible that the asymmetric S-shape of the macroscopic specimen, which can be
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A1 B1 K2

0.55 MPa 110 MPa 0.11 MPa

Table 3.1: Parameters of the first-gradient continuous model for the simulation of the BET.

Kel Ksh α1 α2

0.7 MPa 21 kPa 2 kN 0.02 kN

Table 3.2: Parameters of the second gradient continuous model for the simulation of the BET.

observed during the BET on unbalanced fabrics, could actually be reproduced by using a simple first-gradient
theory with very different material properties in the two directions. This approach would mean that an energy
of the type in Eq. II.2 could reproduce the observed phenomena. Considering that the invariants i13 and
i23 represent out-of-plain angle variations of the yarns and i33 the out-of-plane extensional stiffness, we will
consider a simplified energy for the 2D case of the type:

ΨI (C,∇C) =
1

2
A1(
√
i11 − 1)2 +

1

2
B1(
√
i22 − 1)2 +

1

2
K2i

2
12. (II.7)

The chosen first-gradient coefficients are given in Tab. 3.1. Indeed, when suitably tuning the coefficients
appearing in Eq. (II.7) by choosing significantly different values for A1 and B1, it is true that an asymmetry
can be produced in the macroscopic shape of the specimen which qualitatively agrees with the macroscopic
experimental S-shape. Nevertheless, such macroscopic shape is not associated to any reasonable motions of
the yarns at the mesoscopic level. With the considered constitutive choice, the main first gradient deformation
modes allowed for the considered material are:

• the angle variation i12 between the warp and weft direction;

• the equivalent elongations i11 and i22 in the directions of the warp and weft which account for decrimping
and, eventually for slipping.

It must be remarked that this simple quadratic choice for the first gradient strain energy density, even
if providing geometric non-linearities, could be not sufficiently general to describe larger deformations, for
which more complex hyperelastic constitutive laws should be introduced. More than that, since for very
large strains the integrity of the material starts to be compromised by an excessive slipping, there is no
interest in modeling the targeted unbalanced materials after a given strain threshold. We also remind how
the macroscopic effects of the sliding are here modeled as a “fictive elongation” of the fibers in the two
directions.

3.3.2 Second gradient model
For the second gradient model, we consider a decomposition between the first and the second gradient energy.
The first gradient energy is the same used in the first gradient model (Eq. II.7):

WI(C) =
1

2
Kel

[
(
√
i11 − 1)2 + (

√
i22 − 1)2

]
+

1

2
Kshi

2
12, (II.8)

where the parameters Kel and Ksh are different from the first gradient case. The two elongation modes
have the same stiffness to underline the difference in bending that drives the asymmetry of the macroscopic
deformation. We also remind how the macroscopic effects of the sliding are here modeled as a “fictive
elongation” of the fibers in the two directions (see section II.2.2.1). On the other hand, the second gradient
energy (II.4) reduces in the 2D case to an energy of the type:

WII(∇i12) =
1

2
(α1 i12,1 + α2 i12,2) , (II.9)

where α1 and α2 are the micromorphic elastic parameters that have to be different to account for the
imbalance of the microscopic characteristics of the material. The parameters used in the simulations are
shown in the table 3.2. We notice that even with the insertion of the equivalent elongation the shear stiffness
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Figure 23: Geometry of the discrete model: undeformed configuration.

K1 K2 K3 K4 Kϕ Kslip Kinter

50000 N 50000 N 0.4 N·m2 10−3 N·m2 2.510−4N·m 11 N/m 11 N

Table 3.3: Parameters of the discrete model for the simulation of the BET.

is much lower and, therefore, the main deformation mode is still the shear one as the common knowledge on
the behavior of these materials suggests.

The model was implemented in COMSOL Multiphysicsr using a micro-descriptor ϕ numerically con-
strained to be equal to the angle variation i12. The resulting second gradient energy is:

WII(∇ϕ) =
1

2
(α1ϕ,1 + α2ϕ,2) , (II.10)

If, for example, we let ϕ tend to i12, then expression (II.10) for the strain energy density tends to (II.9) and,

therefore, accounts for space derivatives of the angle variation and the bending of the yarns. Based on the
physics of the problem discussed in the previous sections, we do not introduce second gradient effects related
to the gradients of the other invariants. We are then excluding that sharp spacial changes of elongation occur
in the considered material. The results obtained with this energy in the simulations are presented in the
section II.3.4.

3.3.3 Discrete model
To have a comparison for the continuous models, the discrete model presented in section II.2.3 was imple-
mented in COMSOL Multiphysicsr for the Bias Extension Test. The elastic parameters used have been
chosen to be reasonably compatible with yarns of small cross section area and Young moduli of carbon (see
table 3.3). The two elongation stiffnesses K1 and K2 have the same value to underline how the difference
in the bending stiffness drives the asymmetry of the macroscopic deformation. Furthermore, it must be
pointed out that, as long as the elongation stiffness is high enough, it does not strongly influence the results
in terms of both displacement and reactions. The parameters relative to the bending stiffness, the slipping
and the interaction between two fibers of the same set were chosen via a fit of the experimental shape of the
specimen. In particular, the following characteristics were used to fit the different parameters: the width of
the specimen in the central part, the macroscopic S-deformation, the slipping of the fibers and the distance
between the fibers of the same set. The shear stiffness Kϕ, was chosen in order to fit the experimental force
with the reaction evaluated with the simulations.

3.4 Numerical results

In this section, the results obtained with the different models presented are shown. To better evaluate the
models, we show the experimental shape for a displacement of 37 and 56 mm (Figure 24(a)) as reference for
all the following considerations. The numerical results shown in this section are obtained with three very
different models, namely:
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• a first gradient continuum model,

• a second gradient continuum model,

• a discrete model.

For each model all the results in terms of displacement, deformations and forces are shown.

Deformed Shape The most interesting feature shown in the experimental results is the S-shape. Even
with a first gradient model, with an appropriate choice of the constitutive parameters it is possible to describe
roughly the outline of the test as shown in Figure 24(b). Even if this results seems promising, the deformation
presented in this picture is completely different from the experimental one. Indeed, the black lines describe
the position of the yarns in the deformed specimen and we see that the lines corresponding to the thick yarns
do change sensibly direction while the thin yarns remain almost unbent. This is opposite to the experimental
evidence and it is a sign of a profound mismatch of the bulk deformation between the first gradient model
and the actual response of the fabric.

(a)

(b)

(c)

(d)

Figure 24: Deformed shape for a displacement of 37 mm (left) and 56 mm (right). From top to bottom: (a)
experimental shape, (b) first gradient simulation (cyan with black fibers), (c) second gradient simulation (red
with black fibers) and (d) discrete simulation (green). The blue outline is the experimental shape.
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Considering instead a second gradient energy, we notice in Figure 24(c) that the simulation matches
the experimental response very well even for different values of displacement both in the outline and in the
internal deformation. Indeed, the fiber lines are coherent with the experimental evidence and even the width
of the specimen matches the experimental results. This width is obtained with the insertion of “equivalent”
elongation that describe the presence of the slipping and its consequent increase of width.

As for the continuum models, Figure 24(d) shows that the discrete model well describes the s-response
even at different values of displacement. Furthermore, the slippings forecast by the model fit qualitatively
the experimental observation, even if the constitutive law is a simple linear one. The response of this model
shows strong similarities with the second gradient models. Indeed, the different bending stiffness of the two
family of fibers lead to a set of straight thick fibers and a set of strongly bent thin fibers like the continuous
case.

Angle Variation In a material for which the shear is the main deformation mode, one of the most important
features to check is the angle between the fibers. To confirm the errors on the description of the deformation
behavior of the fabrics with a first gradient model, Figure 25 (a) shows that the direction of constancy of the
angle between the fibers is along the thin fibers while the experimental results and the other models show a
constancy along the thick fibers.

On the other hand, we can see in Figure 25 (b) that, in the second gradient model, the angle between the
set of fibers is almost constant along the strong fibers direction well describing the experimental evidence.
This feature is due to the high bending stiffness of the thick fibers that keeps the angle with the orthogonal
fibers almost constant along their fiber direction.

Also in the case of the discrete model, the angle between the fibers has been plotted. As we can see in
Figure 25 (c), even in this model the angle between the set of fibers is almost a constant along the strong fibers
direction, but drastically changes along the think yarns. The results of both the discrete and second gradient
models, even with their very different natures, present the same qualitative description of the experimental
behavior reconfirming the good analogy between the bending stiffness of the yarns and the second gradient
effects in the continuum. This is another hint toward the importance of the insertion of a second gradient
energy in a continuous model in order to fully describe the phenomenological mechanical response of the
woven fabrics.

Figure 25: Angle between the fibers in the first gradient (a), second gradient (b) and discrete (c) simulations
for a displacement of 56 mm.
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Figure 26: Load-Displacement curve for the first gradient (left), the second gradient (center) and the discrete
(right) model

Load-Displacement Curve To evaluate the overall behavior of the model, an important feature to check
is the response in terms of forces. Considering a first gradient model, we can describe the magnitude of the
response at different values of displacement but there are no sensible increases of the stiffness of the specimen
during the test. The results for this model are shown in Figure 26 (left).

Also in the case of the second gradient model, Figure 26 (center) shows a very good fit between the
simulations and the experimental results in terms of force-displacement curve, despite the simplicity of the
model. The slight non-linearity in the simulated response, that partially reflects the experimental increase of
stiffness, is due only to the geometric non linearity of the problem while the constitutive laws of the problem
are linear. Furthermore, the approximation of the slipping as an elongation seems to not affect the ability to
describe the global response of the specimen.

Finally, the results in terms of a force-displacement curve are shown in Figure 26 (right) for the discrete
model. Once again the force shows a good fit with both the experimental results and the second gradient
model confirming once again the analogy between such different models.

Double Force-Displacement Curve The second gradient model possesses a feature that the first gradient
model does not: the reaction in the clamps is not limited to a force and a moment. Since i12 is fixed, there is
a reaction in terms of double-force; the results obtained are shown in Figure 27in terms of the double-force.
As far as the discrete model is concerned, it is possible to consider a discrete equivalent of the double-force.
Indeed, for each beam there is a moment reaction to the local bending of the beams: an analog to the
double-force. We must point out that the sum of these moments is not the resulting moment acting on the
clamp but a description of an average local bending. While the models are very different in nature, this

Figure 27: Double-force-Displacement curve T (dual of i12) versus sum of the discrete bending moments.
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possibly far-fetched analog of the double-force, as shown in Figure 27, has a magnitude comparable with the
double-force evaluated in the continuous model and is also linear. This analogy can be useful to hint to the
physical meaning of the insertion of a second gradient energy and of second gradient boundary conditions.

Influence of the constitutive parameters on the results Now, we analyze the influence of the con-
stitutive parameters on the response of the second gradient model. As was said before, the peculiar S-shape
assumed during the test was modeled in this work with an asymmetric second gradient energy. Figure 28
(top) shows that when α1 = α2 the axis remains straight and that the S-shape is more pronounced with the
increase of the parameter’s value. The other parameter that strongly determines the deformed shape is Kel,
that accounts for the slipping of the fibers by means of an equivalent elongation. It is possible to see in figure
28 (bottom) that the thickness of the specimen in the central part varies with the elongation stiffness. Once
again we remark that this is only an equivalent continuous analysis of the slipping aimed to qualitatively
describe the overall experimental behavior. Finally, we mention that the second gradient model could be
implemented as a classical micromorphic model by weakening the constraint i12 = ϕ. The results obtained
in this case are shown in Appendix B.2.

Figure 28: Vertical displacement of the axis for an imposed displacement of 56 mm and different values of
α1 (top) and d Deformed shape for a displacement of 37 mm and different values of Kel(bottom).
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CHAPTER II.4
Deep Drawing

Woven composite materials are the most widespread choice in the case of mechanical reinforcement, due to
their great formability and the subsequent possibility of designing rather complex mechanical pieces. The
forming processes, such as the Resin Transfer Moulding, (RTM), have received a great deal of attention in the
literature (see subsection II.1.3.3 and [191, 198, 202]). The most current forming processes consists basically
of two stages:

• the dry woven fabric is preformed to obtain the desired geometry for the final part;

• a thermoset resin is injected into the woven fabrics filling the pores of the fibrous reinforcement.

The process used in the forming stage is thus followed by the injection and curing of a resin in the woven
fabrics, after which the finished material, union of the reinforcement and the matrix, is obtained. The quality
of the obtained piece is greatly influenced by several factors, such as the characteristics of the preformed
woven fabric and, in particular, its permeability, the characteristic of the resin and the temperature at
which the injection process takes place. In the literature, it is possible to find a great number of articles
studying in detail the injection processes and the characteristic of the resins (see [191,198,202]) and also the
preforming processes of thin woven reinforcements (see [25–28, 30, 52, 53, 76, 90, 232, 238]). Nonetheless, few
research endeavors concern 2.5D or 3D composite reinforcement forming simulation [35,147,192]. The focus
of this chapter will be on the first stage of the forming process, namely the preforming of 2.5D or 3D dry
reinforcements. The understanding of this step is very important to determine if the preforming process is
even possible. Indeed, the woven fabrics can withstand only a certain amount of shear deformation between
the fibers without dissociating and, thus, an accurate modeling becomes crucial for optimal design.

The process of preforming can become fairly intricate when the geometries are complex (e.g. double
curved geometries) and the prediction of the entirety of the properties of the deformed fabrics is, therefore,
challenging. Several experimental devices have been set up to investigate the deformation modes and the pos-
sible occurrence of defects during forming of textile reinforcements [31,122]. Among them, the hemispherical
punch and die systems (Figure 29) were especially studied because of their simple shape, double curvature
and large shear angle variations between the yarns in the final state.

Reliable models for the preforming process should include information about the fiber directions and
densities in the deformed state, so aiding the simulation of the resin injection and of the structural behavior
of the final composite part. Indeed, the permeability of the 3D interlock fabric is strongly influenced by some
deformation states that can alter or even close the interstices in the micro-structure affecting profoundly the
resulting material properties. Furthermore, the direction and positioning of the yarns, that are determined
solely by the preforming process, have a predominant role in the resulting mechanical properties of the
composite structure (stiffness, damage and fracture, etc.).

Different approaches have been proposed to model the raw fibrous composite materials that can be found in
the literature (see chapter II.2 and [25,27,30,52,53,76,90]). The most widespread approach to the simulation
of fibrous composite materials is, nowadays, the finite element model that needs the determination of specific
constitutive laws to describe the complex experimental evidences shown by woven composites. In the present
manuscript, additional evidence is provided regarding the fact that neglecting the bending rigidities of the
yarns in the modeling phase can produce inaccurate results of the simulation of 3D woven fabrics (thickness
∼1 cm) during the modeling phase. In order to support this statement, a 3D FEM is implemented and a
rather simple constitutive form of the strain energy density is introduced, accounting for:

1. initial orthotropy,

2. geometric non-linearities,
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Figure 29: Experimental setup and deformation for a deep-drawing preforming with a hemispherical punch
[35].

3. in-plane and out-of-plane bending of the yarns (through the introduction of suitable second gradient
terms).

This second gradient model is implemented in COMSOL Multiphysicsr looking for solutions that are con-
tinuous, as it is usual in FEM, but that also grant continuity of the first derivatives of the displacement
field.

In this way, the following desirable results are obtained:

• the solution is in agreement with the observed experimental shapes (Figure 29);

• the second gradient energy has a beneficial effect on the mesh-dependency of the solution;

• the presence of suitable second gradient terms which are descriptive of the yarns’ bending allows to
control the onset and evolution of wrinkles during the deep-drawing process. More particularly, if the
second gradient parameter (viz the bending stiffness of the yarns) is sufficiently high, no wrinkling is ob-
served during the simulation. This result is in agreement with the common observations of experimental
results.

The results presented here should be used as a guide towards the throughout implementation of FEM codes
including second gradient constitutive laws for the complete modeling of the mechanical behavior of fibrous
composite reinforcements during their forming process.

4.1 Second gradient energy

The description of woven composites’ mechanical behavior demands important efforts. Through the analysis
of the deformation patterns during experimental testing, it is easy to notice that the condition of material
continuity is not always strictly fulfilled, due for example to some relative slipping of warp and weft. However,
if the amount of slipping between the fibers is low, a continuous model can still be used [35, 36]. This is the
approach adopted here, but it must be noted that the possibility of modeling each fiber as a single detached
element still exists, even if it is of difficult applicability for big mechanical pieces [60]. Continuum models
with “fictive” elongations can be also introduced to account for a certain amount of slipping while remaining
in a continuum framework (see for example II.3 and [130]).

Considering the specific case of deep-drawing preforming, one of the phenomena which is most difficult
to control, with a first gradient energy, is the onset of wrinkling in the deformed fabric. In first gradient
simulations, the presence of wrinkles is observed when a certain amount of in-plane shear stiffness is present
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K11 K22 K33 K12 K13 K23

5 MPa 5 MPa 0.5 MPa 50 kPa 0.5 kPa 0.5 kPa

Table 4.1: Parameters of the first gradient energy for the simulation of the deep drawing.

(see for example [29]). Nevertheless, the number and amplitude of such wrinkles is a mesh-dependent phe-
nomenon and such wrinkling is not descriptive of the experimental results. In what follows, this result will
be obtained again for a traditional first gradient finite element model with linear shape functions.

Once again, we choose a very simple constitutive energy, so that it is possible to thoroughly analyze the
influence of both meshing and additional second gradient terms on the performed numerical simulations. The
chosen constitutive expression for the first gradient energy is (see Eq. II.2):

WI(C) =
1

2
K11(

√
i11 − 1)2 +

1

2
K22(

√
i22 − 1)2 +

1

2
K33(

√
i33 − 1)2 +

1

2
K12i

2
12 +

1

2
K13i

2
13 +

1

2
K23i

2
23,

(II.11)

where Kii are the extensional stiffnesses in the direction of the yarns as well as in the orthogonal direction,
while Kij with i 6= j are the in-plane and out-of plane shear stiffnesses. The parameters chosen are the ones
shown in Tab. 4.1.

The following constitutive form is introduced for the second gradient strain energy density (see Eq. II.4):

WII(∇C) =
1

2
α1 i

2
12,1 +

1

2
α2 i

2
12,2 +

1

2
β1 i

2
13,1 +

1

2
β2 i

2
23,2, (II.12)

where with α1, α2 and β1, β2 are the in-plane and out-of-plane bending stiffnesses of the two family of
yarns, respectively. For unbalanced fabrics, i.e. fabrics whose warp and weft yarns do not have the same
characteristics, it is likely that α1 6= α2 and β1 6= β2 (see also [11, 130]). However, the object of this chapter
are interlocks which are balanced and, hence, it is assumed that α1 = α2 = α and β1 = β2 = β. Moreover,
it is possible that the two families of yarns have different bending stiffnesses in-plane and out of plane, but
we will neglect this difference setting α = β. The chosen second gradient energy thus takes the form:

WII(∇C) =
1

2
α
(
i212,1 + i212,2 + i213,1 + i223,2

)
, (II.13)

4.2 Modeling geometry and contact interaction between the mold
and the reinforcement

The object of this chapter is the simulation of the deep-drawing process performed on 2.5D composite
interlocks. In particular, the focus will be on a hemispherical punch and die system, as the one shown in
Figure 30. In such test, a square dry woven composite interlock is formed by a hemispheric punch that, along
with the presence of a horizontal plane, makes the deformed shape assume a double-curvature shape.

To implement the contact between the woven composite and the testing machine, a penalty function was
introduced such that, to each interpenetration, it associates a stress t normal to the surface which is applied

Figure 30: Geometry of the model for a deep-drawing preforming with a hemispherical punch.
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on the fabric, in symbols:

t = Kcontact ∆n, (II.14)

where Kcontact is an opportune stiffness that is set to increase in each non-linear iteration to obtain the
minimum interpenetration possible, ∆ is the interpenetration between the woven fabrics and the machine,
and n is the normal to the surface of the punch or the die. The perpendicularity of the stress is equivalent
to assuming that no friction is present between the experimental setup and the specimen. This could be
considered a strong hypothesis, but the results seem to be qualitatively correct and this suffices for the
purposes of this manuscript.

In the presented model, we chose to model the punch and the die as rigid bodies since they are supposed
to have a stiffness of various orders of magnitude higher than the specimen. Thus, the position of the die and
the punch is known a priori in each step of the test, leading to a much easier determination of the contact
stresses in Eq. (II.14). Indeed, considering as origin of the reference system the center of the basis of the
hemispherical punch, the Z axis as the vertical loading direction and the current position (x, y, z) of a point
of the fabric, the interpenetrations between the woven fabric and the hemisphere, the lower plane and the
die, respectively, can be expressed as:

∆1 = max
(
R−

√
x2 + y2 + z2, 0

)
, ∆2 = max

(
− z, 0

)
, ∆3 = max

(
z −H + w0, 0

)
, (II.15)

where R is the radius of the hemispherical punch, H0 and w0 are the initial position and the applied dis-
placement of the die in the considered step, respectively. The direction of the resulting stress is radial for the
hemispherical punch and vertical for the plane and the die. Therefore, considering once again the center of
the hemispherical punch as the origin of the reference system, we can write:

n1 =
(x, y, z)√
x2 + y2 + z2

, n2 = (0, 0, 1), n3 = (0, 0,−1), (II.16)

The resulting stresses t1 and t2 were applied to the lower surface of the specimen, while t3 was applied to
the upper surface. Finally, the resulting contact stresses can be written as:

t1 = Kcontact max

(
R√

z2 + y2 + z2
− 1, 0

)
· (x, y, z),

t2 = Kcontact max
(
− z, 0

)
· (0, 0, 1), (II.17)

t3 = Kcontact max
(
z −H + w0, 0

)
· (0, 0,−1).

4.3 Numerical results

In this section, the results obtained by the FEM simulation of deep-drawing are presented as follows:

• in the first subsection, the influence of the second gradient parameter α on the onset of wrinkles during
the simulation of the deep-drawing is studied;

• the second subsection presents some observed mesh-dependency results for the first gradient model,
when using linear shape functions or the augmented continuity shape functions, and for the second
gradient solutions in the case of the augmented continuity shape functions. It is concluded that second
gradient simulations are not significantly affected by the choice of the mesh, provided that the size of
the elements is sufficiently small;

• the third subsection shows the influence of cutting the corners of the specimen on the onset of wrinkling.

4.3.1 Influence of the second gradient on the wrinkling
The model here presented implements the augmented continuity shape functions (see II.2.2.3) in a COMSOL
Multiphysicsr finite element model. The energy considered was the sum of the first gradient energy presented
in Eq. (II.11) and of the second gradient one given in Eq. (II.13), for which the directions of the fibers D1
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1st gradient model (α = 0 N) α = 0.1 N

α = 1 N α = 10 N

Figure 31: Dependence of the solution on the second gradient parameter α.

and D2 were chosen to be parallel to the edges of the specimen. The first gradient parameters are the ones
shown in the Tab. 4.1, while various values of the second gradient parameter α were considered. It must be
noted that, in the case α = 0, the model reduces to a first gradient model with the energy in Eq. (II.11).

The results, obtained for α = 0, 0.1, 1, 10N , are shown in Figure 31 for an imposed displacement of 90% of
the punch’s radius (9 cm). In the first gradient case, it is possible to notice the presence of a significant number
of wrinkles in the fibers direction causing a considerable out-of-plane curvature of the fibers. Instead, the
insertion of a second gradient energy depending on the curvature reduces the wrinkling effect. If the value of
α increases to the value 10N , all the secondary wrinkling disappears and the only principal wrinkle remaining
is due to the natural evolution of the double curvature of the macroscopic configuration. During experimental
testing, it is a spread routine to cut the corners of the specimen as in the simulations shown in Figure 65,
see [35]. The influence that this change in the geometry can have on the onset of wrinkling during the deep
drawing of the fabric is studied in Appendix B.3.

As will be shown in subsection II.4.3.2, the first gradient model appears to be mesh-dependent even after
the introduction of the augmented continuity shape functions (see Figure 34) and it is, therefore, impossible
to show a representative solution for this case. Thus, it was chosen to show the deformed shape evaluated
with the thinner used mesh, even if it is reasonable to assume that more wrinkles could appear for thinner
meshes. On the other hand, even for small values of the second gradient parameter α, a stabilization of the
deformed configuration is obtained (see Figure 34) and the deformed shape presented can be considered a
representative solution.

The possibility of controlling the onset and evolution of wrinkling during the deep-drawing simulation via
the introduction of a constitutive parameter could be of great use in the forecast of the material behavior in
view of structure design. It must be reminded that the presented simulations are relative to an experimental
test meant for the characterization of the material constitutive properties. It is, therefore not enough to
correctly describe the experimental results but the final goal is to predict the behavior of the woven fabric in
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generic engineering applications.
An issue that has to be covered is the determination of the second gradient parameter via experimental

testing. Considering the proposed simple energy, it could be possible to heuristically choose α in order
to have a qualitative description of the wrinkling phenomenon during a test such as the one proposed here.
Furthermore, there are several experimental phenomena whose description would be useful for the calibration
of a second gradient energy. During a Bias Extension Test, it is possible to observe the formation of some
shear boundary layers the description of which can be used to calibrate the second energy parameters, as
shown in [70]. In the case of a Bias Extension Test on strongly unbalanced fabrics, the bending stiffness of
the fibers can lead to some macroscopic effects like the asymmetric deformed shape analyzed in [11, 130].
Finally, the calibration of the second gradient parameter could be attempted via a three point bending of
an interlock, as in [134]. Which combination of these tests is best suited for the determination of the second
gradient parameters is still to be decided, but it is important to have multiple observable effects so that it is
possible to validate the chosen parameters.

The results obtained here are a confirmation of the great potential of a second gradient model for the
description of the wrinkling phenomenon and, more generally, of the behavior of composite materials. In the
author’s opinion, the results presented here and in [11,70,130,134] are starting to clearly show how a second
gradient model can be a potential solution for most of the issues relative to the description of the behavior
of dry woven fibrous composite.

4.3.2 Some considerations concerning mesh-dependency of the performed sim-
ulations

First gradient model with linear shape functions As stated above, the results obtained via a first
gradient model appear to be mesh-dependent, due to the non-stability of the wrinkling description. The aim
of this subsection is to present this issue in the case of a classical first gradient implementation and, hence,
to show the stabilization effect obtained with the insertion of a second gradient energy.

The augmented continuity shape functions introduced for the second gradient model are temporarily
discarded, enabling us to frame the mesh-dependency problem in a more traditional setting. In the simulations
of this subsection, we implement a model with the Lagrange linear shape functions. The study of the mesh-
density’s influence on the first gradient solution is made with two types of mesh, namely:

• hexahedral meshes obtained by sweeping quadrilateral meshes on the boundary over the thickness of
the specimen (Figure 32);

• tetrahedral elements (Figure 33).

The same results cannot be obtained for the second gradient model because with such low continuity shape
functions the insertion of a second gradient energy cannot be detected and, hence, it plays no actual role in
the results.

Figure 32 shows the hexahedral meshes and the resulting deformed shapes of the specimen. It is important
to remark that in this set of meshes the directions of the yarns D1 and D2, which are parallel to the edges
of the specimen, coincide with the normals to the mesh interfaces. This property makes it possible to have
a discontinuity on the derivatives in one of the fiber directions without losing the smoothness in the other
direction. In other words, a wrinkle can form at the element interfaces for one set of fibers keeping the other
set of fibers unaffected. This uncoupling can cause the formation of several wrinkles without interfering in
other deformation mechanisms. This effect is strongly related to the positioning and number of interfaces
between meshes, therefore it is not surprising that the result appears to be mesh-dependent. As a matter
of fact, Figure 32 shows how the increase in mesh-density is connected to an increment in the number of
wrinkles.

Changing the type of mesh to tetrahedral elements as shown in Figure 33, the improvement obtained in
the stability is very clear. Despite the solution being once again mesh-dependent, the differences obtained
in the output are much less significant compared to the hexahedral mesh. The explanation for this result is
that, in this case, the normals to the interfaces between the meshes do not always coincide with the direction
of the fibers making the appearance of a wrinkling phenomenon at the interfaces more difficult.

The conclusion on the results presented in this subsection is that a first gradient model with linear shape
function may present unphysical wrinkling phenomena. It is still possible to obtain realistic results from such
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Figure 32: Solution of a first gradient model with linear shape functions and hexahedral meshes of different
sizes.
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Figure 33: Solutions for a first gradient model with linear shape functions and tetrahedral elements of different
sizes.

a model, but the dimension and the orientation of the elements should be carefully chosen to avoid unphysical
wrinkling.

First and second gradient models with augmented continuity shape functions Here, a study of
first and second gradient solutions obtained considering augmented continuity shape functions is presented
in Figure 34. At first glance, it could seem that the mesh considered is poorer with respect to the previous
case but, with the third degree polynomials used as shape functions, the number of nodes is comparable to
the linear case.

We see that the first gradient solution still seems to depend on the size of the mesh. The wrinkles are
not spikes corresponding to an interface between two mesh-elements, as they were in Figure 32, because the
augmented continuity shape functions impose the smoothness of the strain during the deformation process.

Figure 34 explicitly shows that the stability of the model seems to increase by adding a second gradient
energy. Indeed, the wrinkling phenomenon is controlled by the second gradient terms and the corresponding
result appears to be mesh-independent even with a small constitutive parameter (α = 0.1N). The fact that
second gradient terms stabilize the numerical onset of wrinkling, thus producing more realistic results, is not
surprising. Indeed, the presence of an out-of-plane bending stiffness of the yarns (which is of course evident
from a phenomenological point of view) makes the formation of wrinkles energetically expensive. On the
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Figure 34: Mesh-dependency for the first and the second gradient model with augmented continuity shape
functions.

other hand, since no energetic cost is associated to out-of-plane bending within first gradient theories, the
onset of a myriad of wrinkles is allowed, even if this solution deviates from experimental evidence. If the
value of α is increased, the results obtained with the different meshes considered are the same as in Figure
II.11 and are, therefore, not included here.

The presented results are very promising, but it must be noted that the augmented continuity shape
functions are just a workaround for the real problem which is that of implementing robust finite elements
for the simulation of woven composite reinforcements in view of structure design. The continuity of the
derivatives is weakly imposed and it is, therefore, not strictly granted. A study on the validity of a model
implementing the augmented continuity shape functions should be made, even if the presented model seems to
be reliable in the description of the analyzed phenomenon. Alternative methods to stabilize the solution can
also be found in the literature [148] consisting in the insertion of small structural elements (such as beams)
in the interior of the FE in the direction of the yarns, so indirectly accounting for the bending stiffness of the
yarns.
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Conclusion

The features of the woven fabrics are very peculiar and possess huge potentialities. Therefore, the engineering
interest towards this kind of materials led to the conduction of various benchmark tests and to the definition
of numerous models. However, there is still no commonly agreed upon approach to describe such materials
during the forming. The opinion of the author is that a comprehensive model is not achievable without the
insertion of higher order terms (or micromorphic terms) in the energy to describe the deformation energy of
the microstructure. The classical models used for the woven composite preforming fail to describe a wealth
of observed experimental evidences. In particular, the description of the wrinkling phenomenon is one of the
weakest points of such models.

This thesis aims to support the validity of an enriched continuous model for the description of the behavior
of woven materials. Therefore an orthotropic second gradient model for an unbalanced composite fabric was
implemented and the onset of these particular phenomena was analyzed. The simple quadratic energy here
used is not likely to be fit for the general description of their non-linear behavior but it does catch qualitatively
all the peculiar phenomena observed during the experimental campaigns.

In this part, an enriched continuous model is introduced to reproduce the Bias Extension Test and the
deep drawing for woven composite interlocks. We have shown that the model is able to account for the main
microstructure related deformation mechanisms up to moderate strains, namely

• the angle variation between warp and weft yarns;

• the onset of boundary layers for the shear deformation;

• the curvature of the boundary;

• the different bending stiffness of the two families of yarns;

• the asymmetry in the case of the BET on unbalanced fabrics;

• the wrinkling during the deep drawing preforming;

The results obtained with the model are satisfactory up to moderate deformations so that it is conceivable
to fit the proposed models on more extended experimental campaigns. This would allow for a more precise
identification of the introduced constitutive parameters, above all for what concerns the different bending
stiffnesses which are the main microstructural related characteristics of fibrous composite interlocks.

However, extra experimental campaigns are needed for a complete validation of the proposed enriched
continuous model. More particularly, such more comprehensive campaigns would need the setting up of the
following experiments:

• Bias Extension Test on a set of specimens with the same dimensions and characteristics. These tests
would be needed to identify experimental errors that can be introduced during the experimental cam-
paign and to precisely account for such variability in the performed study;

• realization of the Bias Extension Test and the deep drawing on specimens with various dimensions to
unveil possible size effects which can occur in higher gradient or micromorphic materials;

• conception of independent tests (other than the Bias Extension Test and the deep drawing) which
are suitably engineered to give rise to the same microscopic deformation modes (fibers’ bending and
slipping), but with different loading conditions. This test would allow the confirmation of the values of
the parameters evaluated for the considered materials;
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Conclusion Part II

• realization of specific measurements which are devoted to measure local deformation mechanisms with
due precision. Digital Image Correlation Techniques could represent a good choice to effectively proceed
in this direction.

Notwithstanding the undiscussed interest of the aforementioned tests and their necessity for a complete
validation of the presented model, they are not the primary objective of this work. The primary aim is to
identify the main microstructure-related deformation modes in woven fabrics and to show, via a reasonable
enriched continuous model, that they cannot be neglected. The phase of conception of such extra experimental
campaigns for a precise identification of second-gradient parameters on a given class of fibrous woven materials
is postponed.

Further studies should be also focused on the improvement of the proposed model to precisely describe
non-linearities and irreversible phenomena such as friction, which can have a non-negligible role during the
deformation of woven reinforcements. Moreover, the experimental campaigns should also determine which
is the strain threshold until which the integrity of the material is preserved and a continuum model can be
considered predictive. In fact, after a given macroscopic deformation, some yarns start to be pulled out from
the specimen, so that further modeling efforts intrinsically loose their interest. The fundamental importance
of the results shown in this part stands in the potential impact on the modeling of the forming processes
in important engineering applications. It is very important to stress the potentialities of a simple enriched
continuous model for the description of the apparently complex response of the woven fabrics and the hope
of the author is that effort will be put into further studies on this subject.
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Introduction

In principle, the modeling framework for the micromorphic approach had been completed by Eringen, Mindlin,
and Germain. Mindlin and Eringen also provided extensions of the micromorphic model to anisotropy, even
if such anisotropic models are almost impossible to be applied to real cases, due to the impressive number of
coefficients provided (498 coefficients in the general anisotropic case).

The existence and uniqueness questions for the linear micromorphic model have been completely settled
both for the static and dynamic case, based on the assumption of uniform positive definiteness of the appear-
ing constitutive elasticity tensors. However, the over-reliance on uniform positive definiteness, we believe,
has blinded the eyes for the real possibilities inherent in the micromorphic model. These possibilities have
been consistently overlooked until very recently, when, in a series of articles [80,139,140,175,176], the novel
concept of relaxed micromorphic continuum has been introduced. This model provides a drastic reduction of
the number of constitutive coefficients with respect to Mindlin-Eringens’s one while remaining well-posed.

A fundamental contribution of the relaxed micromorphic model is given by the proof of well-posedness [176]
also for the case where the strain energy density violates strict positive-definiteness1. In other words, even if
the relaxed micromorphic model can be apparently seen as a particular case of the Mindlin-Eringen model
by suitably setting some constitutive parameters of their model to zero (see [140, p. 555]), such choice is not
acceptable in the Mindlin-Eringen setting due to the loss of positive-definiteness of the energy. Nevertheless,
it is exactly this feature which makes the relaxed micromorphic model unique for the description of a wealth
of unorthodox material behaviors. The existence results proposed in [176], as well as the drastic reduction of
the number of the introduced elastic coefficients, allowed us to open the way to the application of the relaxed
micromorphic model to cases of real interest.

Indeed, the relaxed micromorphic model has already been a source of inspiration for researchers working on
granular materials [158]. Moreover, the clear and transparent application of the relaxed micromorphic model
in the isotropic case has recently been successfully achieved for the description of band-gap metamaterials
(see [131,132]). The isotropic relaxed micromorphic model has proven its ability to fit the dispersion curves of
phononic crystals for large windows of frequencies and wavelengths, arriving down to wavelengths which are
comparable to the size of the unit cell. The most interesting aspect of the description of such metamaterials
via the relaxed micromorphic model is undoubtedly that of predicting their macroscopic dynamical response
through the introduction of few macroscopic elastic coefficients which are independent of the frequency. This
means that the coefficients of the relaxed micromorphic model can be seen as true material parameters,
exactly as is the case for the Young modulus and the Poisson ratio when dealing with classical materials.
Of course, in order to extend the range of applicability of the relaxed model to a wider class of actual
metamaterials, the model must be generalized to the anisotropic setting. This generalization is one of the
principal aims of the present part.

We restrict our attention to the linearized framework noting that the first existence result for the geo-
metrically nonlinear static case has been obtained in [104], which includes a previous result for the nonlinear
Cosserat model [168]. For more details about existence results for micromorphic models at finite deforma-
tions, we refer the reader to [118, 169, 172, 173]. Further existence results are supplied in [62, 63, 144, 145].
There are many applications treated within the nonlinear micromorphic framework, among which we limit
ourselves to mention [83,88,96,100,103,111,121,151,201,203,204,227,228].

In this part, we want to present an approach to anisotropy for the relaxed micromorphic model. Our
modeling perspective is to simplify as much as possible and indeed to reduce to an essential minimum

1It has to be noted that the new approach is only formally included in the standard Mindlin-Eringen micromorphic model
since we consistently give up uniform positive-definiteness in the elastic distortion e and the curvature tensor ∇P which are
instead strictly requested in the standard model in order to have well-posedness. For example, controlling only the elastic strain
εe = sym (∇u − P ) in the energy does not locally control the elastic distortion e = ∇u − P and working with CurlP does
not control the curvature ∇P .
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Part III Introduction

the bewildering possibilities of the standard micromorphic model. Indeed, there is no point in exclaiming
happily that the standard micromorphic model has more than 1000 constitutive coefficients which need to
be determined. The true aim of modeling should consist of the opposite: to discard all unclear complications
without compromising the essence of the model. We believe that the relaxed micromorphic model is just going
in this direction, thereby opening the way for clear-cut experimental campaigns to determine the remaining
fewer extra parameters.

The plan of this part is as follows:

• In chapter III.1, we first recall our new relaxed model showing that it supports a clear group-invariant
framework, opening the way to speak about anisotropy classes. This hinges mainly on transformation
properties of the dislocation density tensor α = −CurlP . The general anisotropic setting for the kinetic
energy to be used in the relaxed micromorphic model is provided. This step is strongly complementary
to the constitutive choice for the static case featured in equation (III.1). Indeed, if some deformation
mechanisms are introduced in the definition of the strain energy densities, analogous inertiae must be
introduced in the kinetic energy to have a well-posed problem in the dynamical case. This step is
essential to securely proceed towards controllable applications on actual metamaterials subjected to
dynamical loading. Afterwards, a further reduction of coefficients is proposed for those cases in which
one wants to feature a symmetric stress. The dynamic problem is set and the resulting equations of
motion and boundary conditions are derived.

• In chapter III.2, we study the format of possible anisotropic constitutive tensors, including the local
rotational coupling term acting on skew (∇u − P ) and the curvature term acting on CurlP . This is
done using classical Voigt-notation in order to facilitate future applications.

• In chapter III.3, we consider the long-wavelength limit (characteristic length Lc → 0) which must
coincide with a linear elastic model that has lost any characteristic length (improperly called internal
variable model). From this hypothesis, we are able to relate coefficients of the micromorphic scale to
the macroscopic ones. The result is a convincing homogenization formula for all considered anisotropy
classes.

70Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



CHAPTER III.1
Energy formulation of the relaxed micromorphic model

1.1 Strain energy density

The novel relaxed micromorphic model endows Mindlin-Eringen’s representation with more geometric struc-
ture. Unlike Mindlin-Eringen’s model, the relaxed model mainly works with symmetric elastic (relative)
strains εe := sym (∇u − P ), so that standard 4th order symmetric elasticity tensors can be used in order
to define elastic stresses. Moreover, regarding the curvature, the relaxed model considers the second order
dislocation-density tensor α = −CurlP instead of the third order curvature tensor ∇P with the effect (among
others) that the description of the anisotropy of curvature only needs 4th order tensors, instead of 6th order
ones. Since Mindlin-Eringen’s cross coupling Ecross (see equation (I.2)) is difficult to interpret, it is discarded
right-away. Nevertheless, the structure of the model continues to be very rich. We write:

W =
1

2

〈
Ce sym (∇u − P ) , sym (∇u − P )

〉
R3×3︸ ︷︷ ︸

anisotropic elastic− energy

+
1

2

〈
Cm symP, symP

〉
R3×3︸ ︷︷ ︸

micro− self − energy

(III.1)

+
1

2

〈
Cc skew (∇u − P ) , skew (∇u − P )

〉
R3×3︸ ︷︷ ︸

local anisotropic rotational elastic coupling

+
µL2

c

2

〈
L CurlP, CurlP

〉
R3×3︸ ︷︷ ︸

curvature

.

Here Ce, Cm : Sym(3) → Sym(3) are both classical 4th order elasticity tensors acting on symmetric
second order tensors only: Ce acts on the symmetric elastic strain εe := sym (∇u − P ) and Cm acts on
the symmetric micro-strain symP and both map to symmetric tensors. The tensor Cc : so(3) → so(3) is
a 4th order tensor that acts only on skew-symmetric matrices and yields only skew-symmetric tensors and
L : R3×3 → R3×3 is a dimensionless 4th order tensor with at most 45 constants acting on the second order
tensor α := −CurlP , that it is usually called the dislocation density tensor.1 Counting coefficients we now
have 21+21+6+45=93, instead of Mindlin-Eringen’s 498 coefficients. The main advantage at this stage is
that our Ce, unlike Ce, possesses all the symmetries that are peculiar of the classical elasticity tensors acting
on sym∇u .

Let us remark here that the relaxed micromorphic curvature expression can also be written as:

CurlP = −Curl (∇u − P ) , (III.2)

because CurlP is invariant under P → P+∇ϑ, see [175]. We need to highlight also the fact that CurlP is not
just an arbitrary combination of first derivatives of P (and as such included in the standard Mindlin-Eringen
most general anisotropic micromorphic format), but that the formulation in CurlP supports a completely
invariant setting, as seen in [161, 170]. Since CurlP is a second order tensor, it allows us to discard the 6th

order tensors of classical Mindlin-Eringen micromorphic elasticity and to work instead with 4th order tensors
whose anisotropy classification is much easier and well-known [33], see chapter III.2.

The large number of isotropic constants in the standard Mindlin-Eringen model has always been of
concern. Previous attempts to endow the Mindlin-Eringen model with more structure include Koh’s [112,190]
so-called micro-isotropy postulate which requires, among other things, that sym σ̃ is an isotropic function of
sym∇u only. This reduces the number of isotropic coefficient also to 5 (similarly to our relaxed model) but
the fact of connecting sym σ̃ to sym∇u only cannot be considered a well-grounded hypothesis.

1The dislocation tensor is defined as αij = − (CurlP )ij = −Pih,kεjhk, where ε is the Levi-Civita tensor.
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Reduction for a centro-symmetric case In the same spirit as done with the local energy terms, a
possible simplification of the curvature expression is given by:〈

L CurlP, CurlP
〉
R3×3 =

〈
Le sym CurlP, sym CurlP

〉
R3×3 +

〈
Lc skew CurlP, skew CurlP

〉
R3×3 .

(III.3)

Here, Le : Sym(3) → Sym(3) is a classical, positive definite elasticity tensor with at most 21 independent
(non-dimensional) coefficients and Lc : so(3)→ so(3) is a positive definite tensor with at most 6 independent
(non-dimensional) coefficients.

Therefore, we propose the following representation of the energy for the relaxed anisotropic centro-
symmetric model, which has maximally 21+21+6+21+6= 75 independent coefficients:

W =
1

2

〈
Ce sym (∇u − P ) , sym (∇u − P )

〉
R3×3︸ ︷︷ ︸

anisotropic elastic− energy

+
1

2

〈
Cm symP, symP

〉
R3×3︸ ︷︷ ︸

micro− self − energy

(III.4)

+
1

2

〈
Cc skew (∇u − P ) , skew (∇u − P )

〉
R3×3︸ ︷︷ ︸

local anisotropic rotational elastic coupling

+
µL2

c

2

[ 〈
Le sym CurlP, sym CurlP

〉
R3×3 +

〈
Lc skew CurlP, skew CurlP

〉
R3×3

]
︸ ︷︷ ︸

curvature

.

This constitutive expression of the strain energy density for the relaxed micromorphic model is the most
general one that can be provided in the anisotropic and centrosymmetric framework and it already it provides
a drastic reduction of the constitutive coefficients with respect to the standard Mindlin-Eringen model (75
coefficients against the 498 of Mindlin-Eringen). In a first instance and with a look towards immediate
applications, we can consider non-local effects to be isotropic, so that the curvature coefficients reduce from
21+6=27, to at most 2. We end up with a fully anisotropic model which features at most 51 parameters for
describing:

• the full anisotropy at the microstructural level.

• the full anisotropy at the macroscopic level.

• non-localities through the introduction of suitable characteristic lengths.

Of course, considering metamaterials with particular symmetries, this number of parameters can be further
reduced.

Definite positiveness of the strain energy density It must also be observed that the relaxed micro-
morphic model can be used with Cc positive semi-definite or indeed zero (in the isotropic case µc = 0), while
we always assume that the constitutive tensors Ce, Cm (and later CM) are strictly positive definite tensors.
Furthermore, we assume the curvature constitutive tensor L is positive definite (or the tensors Le and Lc),
and the length scale Lc and the constitutive parameter µ are positive. Assuming that Ce, Cm and L are
positive definite tensors means that:

∃ c+e > 0 : ∀S ∈ Sym(3) :
〈
Ce S, S

〉
R3×3 ≥ c+e ‖S‖2R3×3 , (III.5)

∃ c+m > 0 : ∀S ∈ Sym(3) :
〈
Cm S, S

〉
R3×3 ≥ c+m‖S‖2R3×3 ,

∃ c+l > 0 : ∀X ∈ R3×3 :
〈
LX,X

〉
R3×3 ≥ c+l ‖X‖

2
R3×3 .

In sharp contrast to the standard Mindlin-Eringen format, we assume for the rotational coupling tensor Cc
only positive semi-definiteness, i.e:

∀A ∈ so(3) :
〈
CcA,A

〉
R3×3 ≥ 0. (III.6)

As already noted, this allows the rotational coupling tensor Cc to vanish, in which case the relaxed micro-
morphic model is non-redundant [201].

72Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



Chapter 1. Energy formulation of the relaxed micromorphic model Part III

The reader might ask himself: how is it possible that the rotational coupling tensor Cc can be absent but
the resulting model is still well-posed? This is possible because in that case, the skew-symmetric part of P is
not controlled locally but as a result of the boundary value problem and boundary conditions. In this sense,
allowing for Cc ≡ 0 is one of the decisive new possibilities offered by the relaxed micromorphic model.

However, in [140] it has been shown that in the isotropic case (Cc = µc 1) the presence of Cc allows to
control the onset of band-gaps. In subsection III.2.2 we discuss the possible forms that Cc may have for
certain given anisotropy classes.

The case of isotropy The fully isotropic case requires to determine (Ce ∼ 2, Cm ∼ 2,Cc ∼ 1, Le ∼
2, Lc ∼ 1) altogether 8 constitutive coefficients of which the rotational coupling coefficient µc can be set to
zero to enforce symmetric elastic stresses σ̃. As seen before, Eringen’s formulation has 18 coefficients and
Koh’s [112] micro-isotropic model still has 10.2 This simplified framework, which allows to describe the full
micro-macro anisotropy and the presence of non-localities via the introduction of “only” 51 parameters, is of
fundamental importance to proceed towards an enlightened characterization of the actual metamaterial.

In general, if we consider an isotropic curvature term, we obtain the following representation:

µL2
c

2

〈
Liso CurlP, CurlP

〉
R3×3 =

µL2
c

2

(
α1‖dev sym CurlP‖2 + α2‖ skew CurlP‖2 +

α3

3
[tr ( CurlP )]

2
)
,

(III.7)

with scalar weighting parameters α1, α2, α3 ≥ 0. Since the curvature energy does not usually play a major
role, we mostly just use ‖CurlP‖2, corresponding to α1, α2, α3 = 1.

If we consider the isotropic case and the simplest curvature form, we can reduce the relaxed representation
to (see [131,138–140,176,179]):

W =µe‖ sym (∇u − P )‖2 +
λe
2

tr ( sym (∇u − P ))
2︸ ︷︷ ︸

isotropic elastic− energy

+µm‖ symP‖2 +
λm

2
(tr ( symP ))

2︸ ︷︷ ︸
micro− self − energy

(III.8)

+ µc‖ skew (∇u − P )‖2︸ ︷︷ ︸
invariant local isotropic

rotational elastic coupling

+
µL2

c

2
‖CurlP‖2︸ ︷︷ ︸

isotropic curvature

.

In the case of isotropy, strict positive definiteness of the potential energy reduces to the following simple
relations for the introduced parameters [176]:

µe > 0, 2µe + 3λe > 0, µm > 0, 2µm + 3λm > 0, µc ≥ 0, Lc > 0. (III.9)

For very large sample sizes, a scaling argument easily shows that the relative characteristic length scale
Lc of the micromorphic model must vanish.

For future use we define the elastic bulk modulus κe and the microscopic bulk modulus κm , respectively:

κe =
2µe + 3λe

3
, κm =

2µm + 3λm

3
. (III.10)

In terms of these moduli, strict positive-definiteness of the energy is equivalent to:

µe > 0, κe > 0, µm > 0, κm > 0, µc ≥ 0, Lc > 0. (III.11)

Linear elasticity as upper energetic limit The relaxed micromorphic model admits linear elasticity
as an upper energetic limit for any characteristic length scale Lc > 0. This can be seen by noticing that
an admissible field for the micro-distortion P is always P = ∇u . Thus, we see that the relaxed model
is always energetically weaker than a linear elastic comparison material with elastic stiffness Cm, for any
given stiffness Ce. This, again, is in contrast to the standard Mindlin-Eringen format which will, in general,

2Note that establishing positive-definiteness of the energy is now an easy matter as compared to [212]: we only need to
require positive definiteness of the occurring standard 4th order tensors Ce,Cm,Cc,Le,Lc.
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Part III Chapter 1. Energy formulation of the relaxed micromorphic model

generate arbitrary stiffer response as Lc →∞ and Ce →∞ simultaneously. This can be proven via a standard
minimization argument: 3:

min
(u, P )

{∫
Ω

1

2

〈
Ce sym (∇u − P ) , sym (∇u − P )

〉
R3×3 +

1

2

〈
Cm symP, symP

〉
R3×3 (III.12)

+
1

2

〈
Cc skew (∇u − P ) , skew (∇u − P )

〉
R3×3 +

µL2
c

2

〈
Laniso CurlP, CurlP

〉
R3×3 dx

}
≤
∫

Ω

1

2

〈
Cm sym∇u , sym∇u

〉
R3×3 dx .

1.2 Kinetic energy density

The dynamical formulation of the proposed relaxed micromorphic model is obtained in the following way.
We define a joint Hamiltonian and obtain the equations from the postulate of stationary action. In order
to generalize the kinetic energy density to the anisotropic micromorphic framework, we need to introduce a
micro-inertia density contribution of the type:

J =
1

2
ρ ‖u,t‖2︸ ︷︷ ︸

Cauchy inertia

+
1

2

〈
Jm P,t, P,t

〉
︸ ︷︷ ︸
free micro-inertia

+
1

2

〈
Jg ∇u ,t, ∇u ,t

〉
︸ ︷︷ ︸
gradient micro-inertia

, (III.13)

Here Jm : R3×3 → R3×3 is the 4th order free micro-inertia density tensor and Jg : R3×3 → R3×3 is the 4th

order gradient micro-inertia density tensor with, in general, 45 independent coefficients each. Eringen has
added a conservation law for the free micro-inertia density tensor Jm, but in this work we assume constant
micro-inertia density tensors Jm and Jg as well as a constant mass density ρ > 0 ([ρ] = kg/m3). If the first
two terms appearing in Eq. (III.13) can be directly related to those introduced by Mindlin [156], the terms
of gradient micro-inertia are currently used only when dealing with second gradient continua [16, 126], but
usually not when considering micromorphic models. Indeed, Mindlin [156] recognized inertia terms which
are similar to our gradient micro-inertia terms when considering the particular case of the long-wavelength
limit of his micromorphic model. The expression (III.13) of the energy that we propose here is more general
(i.e. not restricted to large wavelengths) and indeed the gradient micro-inertia will show its higher effect for
relatively small wavelengths (high wavenumbers). Nevertheless, basing ourselves on our first comparisons
with experimental results [131, 132], we are persuaded that gradient micro-inertia is essential also when
considering enriched models of the micromorphic type if the ultimate goal is that of describing the behavior
of actual physical systems.

Considering dimensional consistency, we can always write the micro-inertia density tensor J as:

Jm = ρ L̂2
c Jm0, Jg = ρ L̂2

c Jg0, (III.14)

where Jm0, Jg0 : R3×3 → R3×3 are dimensionless. Here, L̂c ≥ 0 is another characteristic length [L̂c] = m. We
also propose a split of the micro-inertia densities, similar to that adopted for the other elastic tensors like:

1

2

〈
Jm P,t, P,t

〉
=

1

2

〈
Jm symP,t, symP,t

〉
+

1

2

〈
Jc skewP,t, skewP,t

〉
, (III.15)

1

2

〈
Jg ∇u ,t, ∇u ,t

〉
=

1

2

〈
Jg sym∇u ,t, sym∇u ,t

〉
+

1

2

〈
Jd skew∇u ,t, skew∇u ,t

〉
.

Here, Jm, Jg : Sym(3)→ Sym(3) map symmetric tensors into symmetric tensors while Jc, Jd : so(3)→ so(3)
map skew-symmetric tensors to skew-symmetric tensors. We assume then that both Jm, Jg, Jc and Jd are
positive definite.

3The strict equality in (III.12) is trivial considering that replacing P = ∇u on the left hand side and recalling that
Curl∇ϑ = 0. On the other hand, the inequality can be justified by thinking that a solution (u∗, P ∗) of the relaxed micromorphic
problem is a minimizer, in the sense that W (u∗, P ∗) ≤ W (u, P ) for any admissible field (u, P ). Hence, taking a generic field
P = ∇u (which is of course admissible) justifies equation (III.12).
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Chapter 1. Energy formulation of the relaxed micromorphic model Part III

In the isotropic case, the micro-inertia density tensor Jm0, Jg0 can be represented by six micro-inertia
parameters η1, η2, η3, η1, η2, η3 ≥ 0 such that:

J =
1

2
ρ ‖u,t‖2 +

1

2
η1 ‖dev symP,t‖2 +

1

2
η2 ‖ skewP,t‖2 +

1

6
η3 (trP,t)

2
+

1

2
η1 ‖dev sym∇u ,t‖2 (III.16)

+
1

2
η2 ‖ skew∇u ,t‖2 +

1

6
η3 tr (∇u ,t)2

.

Definite positiveness of the kinetic energy As for the kinetic energy, we assume that the mean mass
density ρ is positive and Jm and Jg are positive definite, i.e.:

∃ c+1 > 0 : ∀X ∈: R3×3 :
〈
JmX,X

〉
R3×3 ≥ c+1 ‖X‖2R3×3 , (III.17)

∃ c+2 > 0 : ∀X ∈: R3×3 :
〈
JgX,X

〉
R3×3 ≥ c+2 ‖X‖2R3×3 .

In the isotropic case, positive-definiteness is equivalent to having the mean mass density and the six
micro-inertia parameters positive, i.e.:

ρ > 0, η1 > 0, η2 > 0, η3 > 0, η1 > 0, η2 > 0, η3 > 0. (III.18)

1.3 The relaxed micromorphic stress and its possible symmetry

Considering the energy in equation (III.1), the resulting elastic stress is:

σ̃ (∇u , P ) = Ce sym (∇u − P ) + Cc skew (∇u − P ), (III.19)

which is solely related to elastic distortions e = ∇u − P . One of the main results of the present part is to
provide a simple but effective homogenization formula which relates the elastic tensors Ce and Cm to the
macroscopic elastic properties of the considered medium that will be encoded in the effective elastic tensor
CM.

In this subsection, we recall some arguments which allow the possibility of featuring a symmetric stress
tensor for the relaxed micromorphic model by setting the 6 components of the tensor Cc to be vanishing.
Considering the scalar product

〈
X,Y

〉
= tr(X · Y T ), we start by noticing that, given the definition of the

fourth order tensors Ce and Cc, they respect a generalized version of the orthogonal decomposition of second
order tensors (X = symX ⊕ skewX), in the sense that:

sym [Ce symX + Cc skewX] = Ce symX, (III.20)
skew [Ce symX + Cc skewX] = Cc skewX .

We recall that the elastic stress of the relaxed micromorphic model is:

σ̃ (∇u , P ) = Ce sym (∇u − P ) + Cc skew (∇u − P ), (III.21)

so that skew-symmetry of the elastic stress σ̃ is entirely controlled by the rotational coupling tensor Cc since,
relying on formulas (III.20), we have

skew σ̃ = skew [Ce sym (∇u − P ) + Cc skew (∇u − P )] = Cc skew (∇u − P ). (III.22)

For a positive definite coupling tensor Cc, we note that skew-symmetric stresses skew σ̃ 6= 0 occur if and only
if skew (∇u − P ) 6= 0.

If Cc ≡ 0, the elastic Cauchy stress σ̃ satisfies Boltzmann’s axiom of symmetry of force stresses. In
addition, for Cc ≡ 0, the elastic distortion e = ∇u − P can be non-symmetric, while the elastic stress
σ̃ remains symmetric.4
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Part III Chapter 1. Energy formulation of the relaxed micromorphic model

In [201] the authors have introduced the original and important notion of non-redundant strain measures in
the micromorphic continuum. As it turns out, the relaxed micromorphic model with zero rotational coupling
tensor Cc ≡ 0 is a non-redundant micromorphic formulation. Conversely, the standard Mindlin-Eringen
model remains redundant, as does the linear Cosserat model.

With Boltzmann’s axiom, which is in sharp contrast to standard micromorphic models, the model would
feature symmetric force-stress tensors. Such an assumption has been made, for example, by Teisseyre [222,223]
in his model for the description of seismic wave propagation phenomena (for the use of micromorphic models
for earthquake modeling see also the discussion in [164]).

1.4 Dynamic equilibrium equations

Considering the anisotropic strain energy (III.1) and the anisotropic kinetic energy (III.13), the dynamical
equilibrium equations for the relaxed micromorphic model take the compact format:

ρ u,tt − ρ L̂2
c Div

[
Jg0 ∇u ,tt

]
= Div [ σ̃ ] , ρ L̂2

c Jm0 P,tt = σ̃ − s− Curlm, (III.23)

with the associated natural and kinematical boundary conditions:

t :=
(
σ̃ + I

)
· n = text or u = u0, ∀x ∈ ∂Ω, (III.24)

τ · νi := −m · ε · n = τ ext or P · νi = pi, i = 2, 3, ∀x ∈ ∂Ω,

where ε is the Levi-Civita third order tensor, n is the normal to the boundary, ν1 and ν2 are 2 orthogonal
vectors tangent to the boundary, u0, p2, p3, t

ext, τ ext are assigned quantities and we have defined:

σ̃ = Ce sym (∇u − P ) + Cc skew (∇u − P ) , s = Cm symP, (III.25)

I = ρ L̂2
c Jg0 ∇u ,tt, m = µL2

c Laniso CurlP.

Hence, the dynamical equilibrium equations for the isotropic relaxed micromorphic model, obtained con-
sidering the isotropic strain energy (III.4) and the isotropic kinetic energy (III.16), take the form:

ρ u,tt −Div[ I ] = Div [ σ̃ ] , Ĩ = σ̃ − s− Curlm, ∀x ∈ Ω, (III.26)

where

I = η1 dev sym∇u ,tt + η2 skew∇u ,tt +
η3

3
tr (∇u ,tt) ,

Ĩ = η1 dev symP,tt + η2 skewP,tt +
η3

3
tr (P,tt) , (III.27)

σ̃ = 2µe sym (∇u − P ) + λe tr (∇u − P )1+ 2µc skew (∇u − P ) ,

s = 2µm symP + λm tr (P )1,

m = µL2
c CurlP.

Of course, the associated natural and kinematical boundary conditions are also modified considering the new
definition of the parameters.

4Using Cc = 0 is similar to the Reuss-bound approach in homogenization theory (stress fields are taken constant but
fluctuations in strain are allowed). Here, analogously, we would assume symmetric stresses σ̃ but non-symmetric distortion-
fluctuations in e = ∇u − P . Voigt (see [230, p.596]) already discussed non-symmetric states of distortion. However, we can
supply some further support for using Cc ≡ 0. Indeed as Kröner notes [114], “asymmetric stress tensors only come under
consideration when a distribution of rotational moments acts upon the body externally, which is excluded here. The question of
whether the (...) rotations produces stresses can also be answered. We must first exclude asymmetric stress tensors, since they
contradict the laws of equilibrium in the theory of elasticity”. Furthermore, Kunin [115, p. 21] states the following theorem:
in the nonlocal theory of a linear elastic medium of simple structure with finite action-at-a-distance, it is always possible to
introduce a symmetric stress tensor and an energy density, which can be expressed in terms of stress and strain in the usual
way.
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The system of equations in P can be split into their dev sym, skew and tr parts obtaining (see [50]):

ρ u,tt −Div[ I ] = Div [ 2µe sym (∇u − P ) + λe tr (∇u − P )1+ 2µc skew (∇u − P ) ] ,

η1 dev sym P,tt = 2µe dev sym (∇u− P )− 2µm dev symP − µL2
c dev sym ( Curl CurlP ) , (III.28)

η2 skew P,tt = 2µc skew (∇u− P )− µL2
c skew ( Curl CurlP ) ,

1

3
η3 tr (P,tt) =

(
2

3
µe + λe

)
tr (∇u− P )−

(
2

3
µm + λm

)
tr (P )− 1

3
µL2

c tr ( Curl CurlP ) .

We note here that the presence of the Curl P in the energy generates a non-local term Curl Curl P in the
equation of motion, while the possibility of band-gaps is still present, see [139]. The presence of the Curl P
term is essential to simultaneously allow for the description of non localities and band gap in an enriched
continuum mechanics framework.
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CHAPTER III.2
Analysis of the material symmetry classes

Now, we need to shortly discuss that such a reduced formulation is fully able to be treated in an invariant
setting. Considering the displacement u and the micro-distortion field P , we apply the following coordinate
transformation (generating the so-called Rayleigh-action on it [7]):

x = QT · ξ, P#(ξ) := Q ·
[
P (QT · ξ)

]
·QT , (III.29)

u#(ξ) := Q · u (QT · ξ) , ∇ξu#(ξ) = Q · ∇xu(QT · ξ) ·QT .

Thus, we require that P transforms as ∇u under simultaneous rotations of the reference and spatial config-
urations. With this definition, it can be shown [161] that:

Curlξ P
#(ξ) = Q · [ Curlx P (QT · ξ)] ·QT . (III.30)

As explained in detail in [161], possessing a material symmetry is tantamount to requiring, under the trans-
formation (III.29) with any Q ∈ G-symmetry group of the material, that both the strain energy density and
the kinetic energy density are form-invariant, i.e.:

W
(
∇ξu#(ξ), P#(ξ), Curlξ P

#(ξ)
)

= W (∇xu(x), P (x), Curlx P (x)) , (III.31)

J
(
u#(ξ),∇ξu#(ξ), P#(ξ)

)
= J (u(x),∇xu(x), P (x)) ,

that is equivalent to saying that, ∀Q ∈ G-symmetry group of the material, we have:

W (∇u , P, CurlP ) = W
(
Q · ∇u ·QT , Q · P ·QT , Q · ( CurlP ) ·QT

)
(III.32)

J (u, ∇u , P ) = J
(
Q · u,Q · ∇u ·QT , Q · P ·QT

)
.

The invariance condition depends on the set G in which the transformation matrix Q lives. Depending on
the symmetry properties of the group G, we will be able to define different material classes. For instance in
the case of full anisotropy the group G corresponds to {−1,1}, while in the case of full isotropy we obtain
G is the entire rotation group SO(3). Those are the two extreme cases, the classification of the linearly
elastic materials according to their symmetry includes the classical eight classes of elastic symmetry [33,45].
Symmetry groups for some classes of symmetry are contained within the symmetry group of other class as
schematically shown in Fig. 35.

2.1 The strain energy density in the Mandel-Voigt vector notation

In this section, we consider an equivalent formulation of the relaxed micromorphic model obtained by using
the Mandel-Voigt vector notation for the macro strain sym∇u as well as for the micro strain symP . This
means that the second order tensors sym∇u and symP are replaced by the vectors ε and β, in which the
components of the original tensors are sorted column-wise by respecting a given order which is chosen “a
priori”. This representation is more suitable if one wants to specify the anisotropy classes of the constitutive
tensors in a format that is easily found in the literature.

We consider a linear mapping Mαij : Sym(3)→ R6 (as done in [143,229,230]) such that the independent
components of ( sym∇u )ij and ( symP )ijare isomorphically mapped in the corresponding vectors εα and
βα. The same analysis can be made for the symmetric parts of the curvature term and the kinetic energy
obtaining analogous results. We obtain:

εα =Mαij ( sym∇u )ij . (III.33)

βα =Mαij ( symP )ij . (III.34)
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Figure 35: Material symmetry classes and their inclusions [113].

Considering the components of the mapping shown in the Appendix C.1, we have:

β =


( symP )11

( symP )22

( symP )33

c ( symP )23

c ( symP )13

c ( symP )12

 , ε =


( sym∇u )11

( sym∇u )22

( sym∇u )33

c ( sym∇u )23

c ( sym∇u )13

c ( sym∇u )12

 . (III.35)

The coefficient c depends on the notation used (2 for Voigt notation [229,230],
√

2 for Mandel notation [143]).
Let us consider an anisotropic energy term in ∇u − P , namely:

1

2
(Ce)ijkl ( sym (∇u − P ))ij ( sym (∇u − P ))kl (III.36)

Now, if we consider a quadratic energy in ε - β we can always express it as:

1

2

(
C̃e
)
αβ

(εα − βα) (εβ − ββ) =
1

2

(
C̃e
)
αβ

MαijMβkl ( sym (∇u − P ))ij ( sym (∇u − P ))kl . (III.37)

Here, C̃e : R6 → R6 is a general second order symmetric tensor on R6×6(matrix), with 21 independent
coefficients.

Comparing eq. (III.37) with (III.36), i.e.:

1

2
(Ce)ijkl ( sym (∇u − P ))ij ( sym (∇u − P ))kl = (III.38)

1

2

(
C̃e
)
αβ

MαijMβkl ( sym (∇u − P ))ij ( sym (∇u − P ))kl ,

we must have:

(Ce)ijkl = Mαij

(
C̃e
)
αβ

Mβkl , (Ce)−1
ijkl = M−1

ijα

(
C̃e
)−1

αβ
M−1
klβ . (III.39)

The second relation can be verified considering:

(Ce)−1
ijkl (Ce)klmn =M−1

αij

(
C̃e
)−1

αβ
M−1
βkl Mklγ

(
C̃e
)
γδ

Mmnδ = M−1
αij

(
C̃e
)−1

αβ
δ̃βγ

(
C̃e
)
γδ

Mmnδ (III.40)

=M−1
αij

(
C̃e
)−1

αβ

(
C̃e
)
βδ

Mmnδ = M−1
αij δ̃αδMmnδ = M−1

αij Mmnα = 1ijmn.

On the other hand, the converse relations read:(
C̃e
)
αβ

= M−1
ijα (Ce)ijklM

−1
klβ ,

(
C̃e
)−1

αβ
= Mαij (Ce)−1

ijklMβkl . (III.41)
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In the same fashion, we can obtain analogous equations for Cm, Le, Jg, Jh and later CM.
With reference to (III.41) and recalling expression (C.5) (see Appendix C.1) for the components of M−1,

we see that the second order tensor C̃e can be written as a function of the components of the fourth order
tensor Ce as:

C̃e =



(Ce)1111 (Ce)1122 (Ce)1133
2
c (Ce)1123

2
c (Ce)1113

2
c (Ce)1112

(Ce)2211 (Ce)2222 (Ce)2233
2
c (Ce)2223

2
c (Ce)2213

2
c (Ce)2212

(Ce)3311 (Ce)3322 (Ce)3333
2
c (Ce)3323

2
c (Ce)3313

2
c (Ce)3312

2
c (Ce)2311

2
c (Ce)2322

2
c (Ce)2333

4
c2 (Ce)2323

4
c2 (Ce)2313

4
c2 (Ce)2312

2
c (Ce)1311

2
c (Ce)1322

2
c (Ce)1333

4
c2 (Ce)1323

4
c2 (Ce)1313

4
c2 (Ce)1312

2
c (Ce)1211

2
c (Ce)1222

2
c (Ce)1233

4
c2 (Ce)1223

4
c2 (Ce)1213

4
c2 (Ce)1212


, (III.42)

which is a symmetric 6× 6 matrix due to the symmetries of Ce according to which:

(Ce)ijkl = (Ce)klij . (III.43)

Now, we extend the reasoning for the elastic tensors acting on symmetric strain measure to the elastic tensors
Cc and Lc which instead act on skew-symmetric strain measures and so provide the “rotational coupling” in
the relaxed micromorphic model and the skew-symmetric part of the curvature, respectively.

To that end, we may always represent the 4th order tensor Cc : so(3)→ so(3) acting on skew-symmetric
matrices by its version acting on axial vectors only, i.e. we write:〈

Cc skew (X) , skew (X)
〉
R3×3 =

〈
C̃c axl ( skew (X)) , axl ( skew (X))

〉
R3 , (III.44)

where C̃c : R3 → R3 is a symmetric second order tensor (since it appears in a quadratic form) and the
operator axl defined in equation (INT.5). Therefore, C̃c has only 6 independent coefficients and so does Cc.
Given a second order tensor X, it can be verified that:

‖ skew (X)‖2R3×3 = 2 ‖ axl ( skew (X))‖2R3 . (III.45)

2.2 Constitutive tensors for various anisotropy classes

In this section, we discuss the different anisotropy classes for Ce, Cm, Cc, L, Jg and Jm. In the case of Cc
it can be expressed more easily as C̃c. To respect the invariance relations given in (III.32), the constitutive
tensors must be chosen such that, for every Q ∈ G-symmetry group of the material, we obtain:

(Ce)ijkl = (Ce)mnpq QimQjnQkpQlq, (Cm)ijkl = (Cm)mnpq QimQjnQkpQlq,

(C̃c)ij = (C̃c)mnQimQjn,
(
L
)
ijkl

=
(
L
)
mnpq

QimQjnQkpQlq, (III.46)(
Jg
)
ijkl

=
(
Jg
)
mnpq

QimQjnQkpQlq,
(
Jm
)
ijkl

=
(
Jm
)
mnpq

QimQjnQkpQlq.

In what follows, we will consider the split of the curvature term and the inertiae proposed in (III.4) and
(III.15). Therefore, instead of the last three condition, we work with:

(Le)ijkl = (Le)mnpq QimQjnQkpQlq, (L̃c)ij = (L̃c)mnQimQjn,

(Jg)ijkl = (Jg)mnpq QimQjnQkpQlq, (J̃c)ij = (J̃c)mnQimQjn, (III.47)

(Jm)ijkl = (Jm)mnpq QimQjnQkpQlq, (J̃d)ij = (J̃d)mnQimQjn.

From these definitions, we can derive the structure of the constitutive tensors for every possible symmetry.
In what follows, we will present some of the main material symmetries and the associated crystal lattices,

giving the form of the resulting constitutive tensors Ẽ and K̃. Indeed, the constitutive tensors C̃e, C̃m, L̃e,
J̃g and J̃m acting on vectors in R6 (equivalent to symmetric matrices) must have the form Ẽ, while C̃c, L̃c,
J̃c and J̃d that act on vectors in R3 (equivalent to skew-symmetric matrices), must have the form K̃. In
particular, we consider here the following material symmetries:
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• anisotropic;

• monoclinic;

• orthotropic;

• tetragonal;

• transversely isotropic;

• cubic;

• isotropic.

Anisotropic (Triclinic): As far as elastic material symmetry is concerned, the symmetry of the triclinic
crystal system is the same as the absence of symmetry. Triclinic crystal systems do have some symmetry,
but they do not have enough symmetry to restrict the form of the constitutive tensors.

Ẽtric =



Ẽ11 Ẽ12 Ẽ13 Ẽ14 Ẽ15 Ẽ16

Ẽ22 Ẽ23 Ẽ24 Ẽ25 Ẽ26

Ẽ33 Ẽ34 Ẽ35 Ẽ36

Ẽ44 Ẽ45 Ẽ46

sym Ẽ55 Ẽ56

Ẽ66


,

K̃tric =

 K̃11 K̃21 K̃31

K̃22 K̃23

sym K̃33

 . (III.48)

21+6 independent coefficients, no symmetry transformations.

Monoclinic: The monoclinic crystal system has exactly one plane of reflective symmetry. The normal to
the plane of mirror symmetry is taken here to be in the e3 direction.

Ẽmon =



Ẽ11 Ẽ12 Ẽ13 0 0 Ẽ16

Ẽ22 Ẽ23 0 0 Ẽ26

Ẽ33 0 0 Ẽ36

Ẽ44 Ẽ45 0

sym Ẽ55 0

Ẽ66


,

K̃mon =

 K̃11 0 K̃31

K̃22 0

sym K̃33

 . (III.49)

13+4 independent coefficients, one symmetry xy-plane.

Orthotropic (orthorombic): This crystal system is known by two names, rhombic and orthorhombic.
When the same symmetry is applied to textured materials it is generally called orthotropy. The crystal has
three mutually orthogonal planes of reflection symmetry.
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Ẽorth =



Ẽ11 Ẽ12 Ẽ13 0 0 0

Ẽ22 Ẽ23 0 0 0

Ẽ33 0 0 0

Ẽ44 0 0

sym Ẽ55 0

Ẽ66


,

K̃orth =

 K̃11 0 0

K̃22 0

sym K̃33

 , (III.50)

9+3 independent coefficients, three symmetry planes (xy, xz, yz).

Tetragonal: The tetragonal crystal has a unit cell with the shape of a rectangular prism with a square
basis. Therefore, the material symmetry includes three mutually orthogonal planes of reflection symmetry
plus 90◦ rotation symmetry with respect to one of those planes.

Ẽtetr =


2µe + λe λe λ∗e 0 0 0

2µe + λe λ∗e 0 0 0
υe 0 0 0

µ∗e 0 0
sym µ∗e 0

µ∗∗e

 ,

K̃tetr =
1

2

 µ∗c 0 0
µ∗c 0

sym µc

 , (III.51)

6+2 independent coefficients, three symmetry planes (xy, xz, yz)
and 90◦ rotations in the xy-plane.

Transversely isotropic (Hexagonal): Considering elastic materials, the symmetry of the hexagonal
crystal system is the same as the transverse isotropy. The properties are symmetric with respect to a plane
of isotropy (xy-plane). In the crystal, there are three orthogonal planes of reflection symmetry and one axial
symmetry.

Ẽtrans =


2µe + λe λe λ∗e 0 0 0

2µe + λe λ∗e 0 0 0
υe 0 0 0

µ∗e 0 0
sym µ∗e 0

µe

 ,

K̃trans =
1

2

 µ∗c 0 0
µ∗c 0

sym µc

 , (III.52)

5+2 independent coefficients, three symmetry planes (xy, xz, yz)
and every possible rotation in the xy-plane.

Cubic: The cubic (or isometric) crystal has a unit cell with the the shape of a cube. Therefore, the material
symmetry includes three mutually orthogonal planes of reflection symmetry plus 90◦ rotation symmetry with
respect to those planes.
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Ẽcubic =


2µe + λe λe λe 0 0 0

2µe + λe λe 0 0 0
2µe + λe 0 0 0

µ∗e 0 0
sym µ∗e 0

µ∗e

 ,

(III.53)

K̃cubic =
µc
2
1.

3+1 independent coefficients, 90◦ rotations in the three
symmetry planes (xy, xz, yz).

Isotropic: Isotropy means that the material properties do not depend on the direction. The representative
shape would have to be a sphere. Therefore, the properties are invariant with respect to every possible
rotation.

Ẽiso =


2µe + λe λe λe 0 0 0

λe 2µe + λe λe 0 0 0
λe λe 2µe + λe 0 0 0
0 0 0 µe 0 0
0 0 0 0 µe 0
0 0 0 0 0 µe

 , K̃iso =
µc
2
1. (III.54)

2+1 independent coefficients, every possible rotation and symmetry.

After considering the representation (III.53) and (III.54), we appreciate the fact that there is no difference
between the cubic and isotropic rotational coupling. Both reduce C̃c to be a spherical tensor C̃c = µc

2 1, with
µc ≥ 0. We believe that it is very difficult to make statements about the anisotropic rotational coupling (see
footnote 4), therefore we study the reduction of any given anisotropic rotational coupling to the isotropic
case in Appendix C.3.

Indeed, the first applications of the relaxed micromorphic model to real band-gap metamaterials show
that an isotropic version of the tensor C̃c is sufficient to trigger band-gap behaviors. We provide here the
general framework to treat any possible degree of anisotropy for the rotational coupling. Nevertheless, if
there is no evidence of the need of anisotropic rotational coupling based on experimental observations, an
isotropic coupling given by the Cosserat couple modulus µc alone should always be preferred. Therefore, it
is possible to consider a reduction of a given anisotropic rotational coupling to the isotropic case as analyzed
in Appendix C.3.
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CHAPTER III.3
The macroscopic limit of the relaxed model – macroscopic

consistency conditions

The question of parameter identification has already been treated in the general anisotropic micromorphic
model initially proposed by Mindlin-Eringen [69]. However, the resulting interpretation of the material
constants, as well as their connection to the classical anisotropy formulation of linear elasticity, is still not
settled satisfactorily and is presumably impossible. As already seen, in our relaxed model the complexity of
the general micromorphic model has been decisively reduced, featuring basically only symmetric strain-like
variables and the Curl of the micro-distortion P . However, the relaxed model is still general enough to
include the full micro-stretch as well as the full Cosserat micro-polar model, see [176]. Furthermore, well-
posedness results for the static and dynamic cases have been provided in [176] making decisive use of recently
established coercive inequalities, generalizing Korn’s inequality to incompatible tensor fields [15,167,181–183].

In this section, we propose the derivation of the macroscopic consistency condition that is of primary
importance for an effective application of the relaxed micromorphic model to cases of real interest. The
basic idea is that of considering a sample of a specific microstructured material which is large enough to
consider the effect of the underlying microstructure negligible. On this large sample, standard mechanical
tests can be performed allowing for the unique determination of the elastic coefficients CM. The existence of
our formula relating CM (which is well known) to Ce and Cm (which are still unknown), allows to further
reduce the number of coefficients that need to be determined to unequivocally characterize the mechanical
behavior of microstructured materials. This unique feature of our relaxed model gives again more credibility
to the relaxed approach by opening the way to a clear experimental campaign to determine some of the new
micromorphic elastic constants.

Thanks to our previous considerations, we are able to establish equivalent relationships between the second
order tensors C̃M, C̃e and C̃m. The results that we show in this section have the following advantages which
allow us to expectedly proceed towards well-conceived applications on real metamaterials:

• the consistency condition that we derive here relates the macro moduli in CM to the micro moduli in
Ce and Cm. We claim that, given a specific metamaterial, the moduli in CM can be determined on
the basis of very simple mechanical tests. The idea is to consider a specimen which is big enough that
the effect of the microstructure can be considered negligible. Once the tensor CM is known, then Ce
and Cm can be directly related via the consistency condition that we present here. This drastically
reduces the number of unknown coefficients that have to be determined, thus providing an effective
tool towards manageable applications.

• the way towards application is made even easier by the introduction of the second order tensors C̃M,
C̃e and C̃m whose form can be easily found in the literature once the class of anisotropy of the medium
is fixed, see chapter III.2.

3.1 Some considerations on the isotropic macroscopic consistency
condition

In this section, we want to recall some results concerning the macroscopic consistency condition for the
relaxed micromorphic model in the isotropic case [168, 174]. It is of fundamental importance to catch the
power that the introduced homogenization formulas may have for an effective application of the relaxed
micromorphic model. In section III.3.3, we will present a generalization of such homogenization formulas to
the fully anisotropic framework so opening the way for the effective mechanical characterization of a huge
class of mechanical metamaterials.
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The main idea behind the determination of our homogenized formulas is to consider a very large sample
of a given microstructured material. This sample must be large enough that the effect of the microstructure
on the macroscopic behavior of the sample can be considered to be negligible. Under this hypothesis, we can
introduce a macroscopic elasticity tensor CM : Sym(3) → Sym(3) which best fits the macroscopic behavior
of the sample and we can suppose that the material behavior can be described by classical linear elasticity
with energy:

W =
1

2

〈
CM sym∇u , sym∇u

〉
. (III.55)

The corresponding classical symmetric Cauchy stress is clearly defined as:

σM( sym∇u ) =CM sym∇u . (III.56)

For very large sample sizes, however, a scaling argument easily shows that the relative characteristic length
scale Lc of the micromorphic model must vanish. Therefore, we have a way of comparing the classical
formulation (III.55) to the relaxed micromorphic formulation (III.1) and to offer an a priori relation between
Ce, Cm on the one hand and CM on the other.

In [168,174], the authors obtained the macroscopic consistency conditions for the isotropic case:

(2µM + 3λM) =
(2µe + 3λe) (2µm + 3λm)

(2µe + 3λe) + (2µm + 3λm)
, (III.57)

µM =
µe µm

µe + µm
= µe (µe + µm)

−1
µm.

Or, analogously:

(2µe + 3λe) =
(2µM + 3λM) (2µm + 3λm)

(2µm + 3λm)− (2µM + 3λM)
, (III.58)

µe =
µM µm

µm − µM
= µM (µm − µM)

−1
µm.

Note that these formulas determine µM and κM (i.e. the elastic bulk modulus κM = 2µM+3λM

3 ) to be one half
of the harmonic mean of µe, µm, and κe, κm respectively.

As a matter of fact, the harmonic mean H (µe, µm) defined for real numbers is:

H (µe, µm) =

[
1

2

(
1

µe
+

1

µm

)]−1

=
2µe µm

µe + µm
. (III.59)

In the isotropic case, upon inspection of equation (III.58), we see that the “macroscopic” elastic response,
embodied by µM and λM, cannot be equal or stiffer than the microscopic response, embodied by µm and λm.
This is certainly physically sound and expresses in short that “smaller is stiffer”. Moreover, µm = µM is
tantamount to “micro = macro” and formally equivalent to µe →∞.

The fundamental importance of the equation (III.58) has already been proven in [132], where it is shown
that the macroscopic stiffnesses provides the slopes of the acoustic curves for band-gap metamaterials. This
will be even clearer in further applications where static test will be conceived to evaluate “a priori” λM and
µM.

Therefore, we have a way of comparing a classical first gradient formulation with the relaxed micromorphic
model and to offer an a priori relation between the microscopic parameters λe, λm, µe, µm on the one side
and the resulting macroscopic parameters λM, µM on the other side [12,168,174]:

κM =
κe κm

κe + κm
, µM =

µe µm

µe + µm
, (III.60)
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Furthermore, if strict positive-definiteness (III.11) holds, we have:

κe + κm > 0, µe + µm > 0, κe > κM, κm > κM, µe >µM, (III.61)
µm > µM,

and, therefore, the following inverse relations stand:

κe =
κm κM

κm − κM
, κm =

κe κM

κe − κM
, µe =

µm µM

µm − µM
, µm =

µe µM

µe − µM
. (III.62)

3.2 The static macroscopic limit and the dynamic long wavelength
limit

The governing equations for the anisotropic relaxed micromorphic model in the dynamic case take the form
given in (III.23), namely:

ρ u,tt − ρ L̂2
c Div

[
Jg0 ∇u ,tt

]
= Div [ σ̃ ] , ρ L̂2

c Jm0 P,tt = σ̃ − s− µL2
c Curl

(
Laniso CurlP

)
, (III.63)

The classical continuum theory is the long wavelength limit, corresponding to large length and time scales, and
it predicts properties independent of specimen size. The long wave length limit is given by letting L̂c, Lc → 0
simultaneously. In this case, the system (III.63) formally reduces to:

ρ u,tt = Div [Ce sym (∇u − P ) + Cc skew (∇u − P )] , (III.64)
0 =Ce sym (∇u − P ) + Cc skew (∇u − P )− Cm symP .

Furthermore, considering a static problem for very large sample sizes a scaling argument easily shows that
the relative characteristic length scale Lc of the micromorphic model must vanish and no inertia must be
considered. Therefore, equation (III.63) reduces further to:

Div [Ce sym (∇u − P ) + Cc skew (∇u − P )] = 0, (III.65)
Ce sym (∇u − P ) + Cc skew (∇u − P )− Cm symP = 0 .

All the calculations made in the following are made in the macroscopic static case for simplicity. It must be
noted that the presence of the macroscopic inertia term ρ u,tt does not influence the calculations and all the
results obtained are still valid as a long wavelength limit in the dynamical case.

3.3 The general relaxed anisotropic case in the limit Lc → 0

We will show that our relaxed micromorphic model defined by the energy (III.1), or equivalently by the
equations of motion (III.63), can be reduced to a sort of equivalent “macroscopic model” when letting Lc → 0.
Indeed, when Lc = 0 equation (III.63) reduces to (III.65). In particular, (III.65)2 gives a direct relation
between P and ∇u which, when inserted in (III.65)1, allows us to rewrite the energy in terms of ∇u . Hence,
we can introduce an equivalent macroscopic stress tensor σM( sym∇u ) which is the limit of σ̃(∇u , P ) for
Lc → 0. In symbols:

σM( sym∇u ) = lim
Lc→0

σ̃(∇u , P ) . (III.66)

In the linear-elastic case the tensor σM( sym∇u ) can be written as:

σM( sym∇u ) = CM sym∇u , (III.67)

assuming that it is the Cauchy stress tensor of a classical first gradient continuum.
In view of applications, considering very large samples of the anisotropic medium is equivalent to letting

Lc, the characteristic length, tend to zero. As a consequence of Lc = 0, the second equilibrium equation
in (III.63) loses the Curl CurlP -term and turns into an algebraic side condition connecting P and ∇u
(equation (III.65)2). This equation can be decoupled (by the assumed special mapping symmetry properties
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of the elasticity tensors, see equations (III.20)) into two equations for the symmetric and skew-symmetric
part, respectively, yielding:

Ce sym (∇u − P ) = Cm symP, Cc skew (∇u − P ) = 0. (III.68)

This uncoupling is true since Ce and Cm map symmetric matrices to symmetric matrices and Cc skew (∇u − P )
is skew-symmetric by assumption (see subsection III.1.3 for more details). From the second equation in
(III.68), we can easily derive that:

Cc skew∇u = Cc skew P. (III.69)

On the other hand, solving (III.68)1 for symP gives1:

(Cm + Ce) symP =Ce sym∇u , (III.70)

⇐⇒ symP = (Cm + Ce)−1
(Ce sym∇u ) .

This is an identity between the micro-distortion P and the gradient of the displacement ∇u which proves
how, in the macroscopic limiting case, the model is transparent with respect to the micro-distortion, i.e.
only macroscopic deformations involving sym∇u are allowed. We insert (III.68)1, (III.69) and (III.70)
into (III.65)1 and considering the uncoupling between symmetric and skew symmetric parts of the involved
tensors, we get:

Div [Cm symP ] = 0 ⇐⇒ Div
[
Cm (Cm + Ce)−1 Ce sym∇u

]
= 0. (III.71)

On the other hand, the classical balance equation for the linear elastic macroscopic response is:

Div [CM sym∇u ] = 0. (III.72)

Comparing the macroscopic balance equation (III.72) with the one derived from our relaxed model when
letting Lc = 0 ((III.71)1), we obtain the following a priori relation between the macroscopic elasticity tensor
CM and the microscopic tensor Cm as well as the mesoscopic (relative) elasticity tensor Ce:

CM := Cm (Cm + Ce)−1 Ce , (III.73)

which is a generalization of (III.57) when considering our anisotropic setting. Given the positive definiteness
of Cm and Ce, the resulting macroscopic constitutive tensor CM is symmetric and positive definite, as it is
proven in Appendix C.4. From equation (III.73), we get by simple inversion2:

C−1
M = C−1

m (Cm + Ce) C−1
e = C−1

e + C−1
m . (III.74)

Therefore, we note, surprisingly at first glance, that CM is the “parallel sum” of Ce and Cm
3, that is equal

to one half of the harmonic mean operator on positive definite symmetric matrices (see [17, p. 103]), defined
as:

H (Ce,Cm) :=

[
1

2

(
C−1
e + C−1

m

)]−1

= 2Cm (Ce + Cm)
−1 Ce = 2CM . (III.75)

We can obtain the inverse relation with algebraic operations. First, from equation (III.74) it is immediate
that:

C−1
e = C−1

M − C−1
m , (III.76)

1We note here that the inverse of an elastic stiffness tensor, like (Cm + Ce) has the same symmetry group structure as Cm+Ce
itself. This can be shown easily by directly looking at its definition of groups.

2It can be checked that, given fourth order invertible tensors A, B and C, the following identity holds: (A ·B · C)−1 =
C−1 ·B−1 ·A−1

3The parallel sum of two tensors A and B is defined as
(
A−1 +B−1

)−1.
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and, considering that A−1B−1 C−1 = (C BA)
−1, we obtain:

Ce =
(
C−1

M − C−1
m

)−1
= 1

(
C−1

M − C−1
m

)−1
1 = Cm

[
C−1

m

(
C−1

M − C−1
m

)−1 C−1
M

]
︸ ︷︷ ︸

A−1 B−1 C−1

CM

= Cm

[
CM

(
C−1

M − C−1
m

)
Cm

]−1︸ ︷︷ ︸
(C BA)−1

CM = Cm

[(
1− CM C−1

m

)
Cm

]−1 CM (III.77)

= Cm [Cm − CM]
−1 CM .

So finally, we have the further compact relation:

Ce = Cm (Cm − CM)
−1 CM . (III.78)

Note that these results are true without assuming that the tensors Cm, Ce and CM commute (and, in fact,
they do not).

3.4 Particularization for specific anisotropy classes

To show how equation (III.73) particularizes for some of the anisotropy classes presented in III.2.2, we use
the vectorial notation defined in subsection III.2.1. Considering (III.39), we can rewrite equation (III.73) as:(

C̃M

)
αβ

Mαij Mβkl =
(
C̃m

)
αγ

MαijMγmn

(
C̃m + C̃e

)−1

δε
M−1
mnδM

−1
pqε

(
C̃e
)
ζβ

Mζpq Mβkl

=
(
C̃m

)
αγ
δ̃γδ δ̃εζ

(
C̃m + C̃e

)−1

δε

(
C̃e
)
ζβ

MαijMβkl (III.79)

=
(
C̃m

)
αγ

(
C̃m + C̃e

)−1

γζ

(
C̃e
)
ζβ

MαijMβkl .

From this last equation we easily notice that:

C̃M = C̃m ·
(
C̃m + C̃e

)−1

· C̃e . (III.80)

This formula for second-order elasticity tensors is completely analogous to (III.73), which was obtained for
4th order tensors and allows to pass from micro to macro coefficients just by specifying the special forms of
the 6× 6 matrices C̃M, C̃m, C̃e. Using algebraic arguments analogous to those for the 4th order tensors case,
we obtain the inverse relation:

C̃e = C̃m ·
(
C̃m − C̃M

)−1

· C̃M . (III.81)

These expressions may be of use when the elastic properties C̃m of a unit elementary cell of the considered
metamaterial and the macroscopic properties C̃M of the metamaterial considered as a macroscopic block are
known. Therefore, the elastic coupling tensor C̃e is easily computable and is, in fact uniquely determined.
In the following subsections, we will particularize equations (III.80) and (III.81) to specific symmetries,
thus dealing with isotropic, cubic, orthotropic an generally anisotropic materials, as intended in our relaxed
micromorphic framework. For deriving such particular cases, we make the implicit assumption that Ce, Cm

and CM have the same symmetries, which is indeed a sensible ansatz.

3.4.1 The isotropic case

In this subsection, we show how the fundamental formula (III.80) can be particularized to the isotropic case
so retrieving the homogenization formulas for the Lamé parameters proposed in [168,174].

In subsection III.2.2, the structure of the isotropic constitutive elastic tensors C̃iso
e and C̃iso

m was shown,
see (III.54). Defining the bulk moduli κe = 1

3 (2µe + 3λe), κm = 1
3 (2µm + 3λm) , κM = 1

3 (2µM + 3λM), and
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using the consistency condition in equation (III.80) and simplifying, we find:

C̃iso
M =


κM + 4/3µM κM − 2/3µM κM − 2/3µM 0 0 0
κM − 2/3µM κM + 4/3µM κM − 2/3µM 0 0 0
κM − 2/3µM κM − 2/3µM κM + 4/3µM 0 0 0

0 0 0 µM 0 0
0 0 0 0 µM 0
0 0 0 0 0 µM

 , (III.82)

where we set:

κM =
κe κm

κe + κm
, µM =

µe µm

µe + µm
. (III.83)

The relation for κM can also be expressed as a function of µM and λM:

(2µM + 3λM) =
(2µm + 3λm) (2µe + 3λe)

(2 (µe + µm) + 3 (λe + λm))
. (III.84)

Equations (III.83) can also be inverted:

κe =
κM κm

κm − κM
= κM (κm − κM)

−1
κm ,

µe =
µM µm

µm − µM
= µM (µm − µM)

−1
µm .

(III.85)

The first equation in (III.85) can be analogously rewritten in terms of λe and µe as:

(2µe + 3λe) =
(2µM + 3λM) (2µm + 3λm)

(2µm + 3λm)− (2µM + 3λM)
. (III.86)

3.4.2 The cubic symmetry case

In this subsection, we start investigating the interest that the homogenization formula (III.80) may have in
the case of simple anisotropies, as in the cubic case. In a forthcoming work [49], this formula for the cubic
case will be applied to show how it is fundamental for the mechanical characterization of real metamaterials.

In subsection III.2.2, the structure of the cubic constitutive elastic tensors C̃cub
e and C̃cub

m was shown, see
(III.53).

Via the bulk moduli and the consistency condition in equation (III.80), we obtain:

C̃cub
M =


κM + 4/3µM κM − 2/3µM κM − 2/3µM 0 0 0
κM − 2/3µM κM + 4/3µM κM − 2/3µM 0 0 0
κM − 2/3µM κM − 2/3µM κM + 4/3µM 0 0 0

0 0 0 µ∗M 0 0
0 0 0 0 µ∗M 0
0 0 0 0 0 µ∗M

 . (III.87)

where:

κM =
κe κm

κe + κm
, µM =

µe µm

µe + µm
, µ∗M =

µ∗e µ
∗
m

µ∗e + µ∗m
. (III.88)

The relation for κM can also be expressed as a function of µM and λM:

(2µM + 3λM) =
(2µm + 3λm) (2µe + 3λe)

(2 (µe + µm) + 3 (λe + λm))
. (III.89)

Equations (III.88) can also be inverted:
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Part III Conclusion

κe =
κM κm

κm − κM
= κM (κm − κM)

−1
κm ,

µe =
µM µm

µm − µM
= µM (µm − µM)

−1
µm,

µ∗e =
µ∗M µ∗m
µ∗m − µ∗M

= µ∗M (µ∗m − µ∗M)
−1

µ∗m .

(III.90)

The first equation in (III.90) can be analogously rewritten in terms of λe and µe as:

(2µe + 3λe) =
(2µM + 3λM) (2µm + 3λm)

(2µm + 3λm)− (2µM + 3λM)
. (III.91)

3.4.3 The orthotropic case

In subsection III.2.2, the structure of the cubic constitutive elastic tensors C̃orth
e and C̃orth

m was shown, see
(III.50).

We define the sub-blocks C̃a
e, C̃a

m and C̃a
M as:

C̃a
e =


(
C̃e
)

11

(
C̃e
)

12

(
C̃e
)

13(
C̃e
)

12

(
C̃e
)

22

(
C̃e
)

23(
C̃e
)

13

(
C̃e
)

23

(
C̃e
)

33

 , C̃a
m =


(
C̃m

)
11

(
C̃m

)
12

(
C̃m

)
13(

C̃m

)
12

(
C̃m

)
22

(
C̃m

)
23(

C̃m

)
13

(
C̃m

)
23

(
C̃m

)
33

 , (III.92)

C̃a
M =


(
C̃M

)
11

(
C̃M

)
12

(
C̃M

)
13(

C̃M

)
12

(
C̃M

)
22

(
C̃M

)
23(

C̃M

)
13

(
C̃M

)
23

(
C̃M

)
33

 .

The macroscopic constitutive tensor C̃orth
M keeps the orthotropic structure of the two C̃orth

e and C̃orth
m . Con-

sidering p = 4, 5, 6 without the sum over repeated indices and using the consistency condition in equation
(III.80), we obtain:

C̃a
M = C̃a

e ·
(
C̃a
e + C̃a

m

)−1

· C̃a
m ,

(
C̃M

)
pp

=

(
C̃e
)
pp

(
C̃m

)
pp(

C̃e + C̃m

)
pp

. (III.93)

The formulas in equation (III.93) can also be inverted as:

C̃a
e = C̃a

M ·
(
C̃a

m − C̃a
M

)−1

· C̃a
m ,

(
C̃e
)
pp

=

(
C̃M

)
pp

(
C̃m

)
pp(

C̃m − C̃M

)
pp

. (III.94)
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Conclusion

In this part, we have obtained that for zero characteristic length scale Lc = 0 (which corresponds to a long
wavelength limit or to a specimen of arbitrarily large size), we can identify both the symmetric and the
skew-symmetric part of the micro-distortion P as a function of to the gradient of the displacement ∇u :

(Cm + Ce) symP =Ce sym∇u , (III.95)
Cc skewP =Cc skew∇u .

From this result, we obtain that the experimentally observable macroscopic stiffness for an energy-equivalent
linear elastic medium has the stiffness tensor:

CM =
1

2
H (Ce,Cm) =

(
C−1

m + C−1
e

)−1
= Ce (Cm + Ce)−1 Cm. (III.96)

Here, H is the harmonic mean of the elastic (relative) stiffness tensor Ce and the microscopic stiffness tensor
Cm of the relaxed micromorphic model. Inversion of expression (III.96) yields:

Ce = Cm (Cm − CM)
−1 CM =

(
C−1

M − C−1
m

)−1
. (III.97)

In (III.97), the tensor Ce is uniquely determined and positive definite, provided that Cm − CM is positive
definite. No similar simple expression exists for the standard anisotropic Mindlin-Eringen model.

We remark that the rotational coupling tensor Cc is in no way related to either the macroscopic or the
microscopic measurable quantities, in sharp contrast to Cm, CM,Ce.

Moreover, our presented model allows full use of the well-known Voigt-representation for classical elasticity
tensors. Thus, we do not need to investigate the anisotropy classes based on 6th-order tensors [7], neither for
the local energy contribution nor for the curvature expression. This makes the presented framework by far
more attractive, due to the transparent comparison to classical linear, anisotropic elasticity.

Our a priori novel macroscopic consistency condition (III.96) drastically reduces the burden of determin-
ing constitutive coefficients. Indeed, the fundamental importance of formula (III.96) will be soon provided
in a forthcoming paper in which a “cubic” band-gap metamaterial will be investigated. The macroscopic
coefficients CM will be determined on the basis of classical static tests on samples of the considered metama-
terial. This will allow to drastically reduce the constitutive parameters to be determined. Such remaining
parameters together with the micro-inertiae and, eventually, the characteristic length Lc, will be determined
on the basis of dynamical tests, following what was done in [132] for the isotropic case.
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Introduction

Mechanical band-gap metamaterials are suitably engineered microstructured materials which are able to in-
hibit elastic wave propagation in specific frequency ranges due to the presence of their underlying microstruc-
ture. These frequency intervals in which wave inhibition takes place are known as frequency band-gaps and
their intrinsic characteristics (characteristic values of the gap frequency, extension of the band-gap, etc.)
strongly depend on the metamaterial microstructure. Such unorthodox dynamical behavior can be related
to two main physical phenomena occurring at the micro-level:

• local resonance phenomena (Mie resonance): the micro-structural components, excited at particular
frequencies, start oscillating independently of the matrix thus capturing the energy of the propagating
wave which remains confined at the level of the microstructure;

• micro-diffusion phenomena (Bragg scattering): when the propagating wave has wavelengths which are
small enough to start interacting with the microstructure of the material, reflection and transmission
phenomena occur at the micro-level.

Such resonance and micro-diffusion mechanisms (usually a mix of the two) are at the basis of both electromag-
netic and elastic band-gaps (see e.g. [5,127]) and they are manifestly related to the particular microstructural
topologies of the considered metamaterials. In fact, it is well known (see e.g. [5, 123, 142, 213, 221]) that the
characteristics of the microstructures strongly influence the macroscopic band-gap behavior.

In recent works [139, 140], the relaxed micromorphic model was suggested to account for the onset of
microstructure-related frequency band-gaps [139,140] while remaining in the macroscopic framework of con-
tinuum mechanics. In [141], a comprehensive study of jump conditions for surfaces of discontinuity of the
material properties in relaxed micromorphic media was presented, thus establishing a strong basis for the
systematic study of reflection and transmission phenomena in real band-gap metamaterials. In this part,
we will show that the particular constraint introduced in [141] that we called “macro internal clamp with
free microstructure” is indeed able to reproduce real situations in which a Cauchy material (e.g. steel) is
connected to a phononic crystal (e.g. a steel plate with fluid-filled holes).

The relaxed micromorphic model is, by its own nature, a “macroscopic” model, in the sense that all the
constitutive parameters introduced take into account the presence of the micro-structure in an “averaged”
sense. Nevertheless, it is interesting to validate the estimate of the parameters of the relaxed micromorphic
model performed here against more “homogenization-oriented” methods of the type presented in [8,217]. The
present part is organized according to the following structure:

• In chapter IV.1, we derive the bulk governing equations and the associated boundary conditions for
the relaxed micromorphic model [80, 139, 140, 176]. The hypothesis of plane wave is introduced and
a discussion concerning the behavior of the dispersion relations obtained by means of our relaxed
micromorphic model is performed. A derivation of the necessary and sufficient conditions for real wave
propagation is also presented.

• In chapter IV.2, we make a review of some of the available isotropic, linear-elastic, enriched continuum
models for the description of the dynamical behavior of metamaterials. We show that the relaxed
micromorphic model is the only non-local enriched model which is able to describe band-gaps when
considering a kinetic energy independently accounting for micro and macro motions.

• In chapter IV.3, we present some results rigorously derived in [141] concerning the conservation of total
energy in relaxed micromorphic media. The explicit form of the energy fluxes is presented both in the
general case and when using the plane wave ansatz. For completeness, the conservation of total energy
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Part IV Introduction

is recalled also for classical Cauchy continua. Furthermore, a particular connection between a Cauchy
medium and a relaxed micromorphic medium, called “macro internal clamp with free microstructure”,
is introduced. This connection allows continuity of macroscopic displacement at the considered in-
terface together with free motions of the microstructure on the side of the interface occupied by the
relaxed micromorphic medium. The procedure for the determination of the reflection and transmission
coefficients at a Cauchy/relaxed-micromorphic interface is also presented.

• In chapter IV.4, the cases of two real phononic crystals are presented. For the first phononic crystal,
the parameters of the relaxed micromorphic model are determined via the fitting of the dispersion
curves and the the profile of the reflection coefficient is obtained and compared with a FE model. In
the second case, the maximum possible number of constitutive elastic parameters are instead fitted, by
inverse approach, directly on the reflection spectrum based on real experiments on a specific phononic
crystals (see [127]). Furthermore, a first evidence of non-local effects in band-gap metamaterials is
given, by quantifying them through the determination of the characteristic length Lc for the phononic
crystal experimentally studied in [127].
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CHAPTER IV.1
Bulk wave propagation in the relaxed micromorphic model

We recall here the strain and kinetic energy densities for the relaxed micromorphic model that will be used
to study the dynamic problem and to model the band gap behavior for specific phononic crystals. The elastic
energy density reads

W = µe ‖ sym (∇u − P )‖2 +
λe
2

(tr (∇u − P ))
2

+ µc ‖ skew (∇u − P )‖2 (IV.1)

+ µm ‖ symP‖2 +
λm

2
(trP )

2
+
µL2

c

2
‖CurlP‖2,

where the parameters and the elastic stress are analogous to the standard Mindlin-Eringen micromorphic
model.

For the kinetic energy, we consider:

J =
1

2
ρ u2

,t +
1

2
η1 ‖dev symP,t‖2 +

1

2
η2 ‖ skewP,t‖2 +

1

6
η3tr (P,t)

2
+

1

2
η1 ‖dev sym∇u ,t‖2 (IV.2)

+
1

2
η2 ‖ skew∇u ,t‖2 +

1

6
η3 tr (∇u ,t)2

.

1.1 Solution of the dynamic problem

Isotropic equation of motion and plane wave ansatz The dynamical formulation is the one given in
Equation (III.26):

ρ u,tt −Div[ I ] = Div [ σ̃ ] , Ĩ = σ̃ − s− Curlm, ∀x ∈ Ω, (IV.3)

where

I = η1 dev sym∇u ,tt + η2 skew∇u ,tt +
η3

3
tr (∇u ,tt) ,

Ĩ = η1 dev symP,tt + η2 skewP,tt +
η3

3
tr (P,tt) , (IV.4)

σ̃ = 2µe sym (∇u − P ) + λe tr (∇u − P )1+ 2µc skew (∇u − P ) ,

s = 2µm symP + λm tr (P )1,

m = µL2
c CurlP.

Sufficiently far from a source, dynamic wave solutions may be treated as plane waves. Therefore, we
suppose that the space dependence of all introduced kinematic fields are limited to a direction defined by a
unit vector ξ̃ ∈ R3, which is the direction of propagation of the wave and which is assumed given. Hence, we
look for solutions of (IV.3) in the form:

u = u (X, t) , P = P (X, t) , (IV.5)

where X = 〈ξ̃, x〉R3 is the direction of propagation of the wave. Since our formulation is isotropic, we can,
without loss of generality, specify the propagation direction ξ̃ = e1. Then X = 〈e1, x〉R3 = x1, and we obtain
that the space dependence of all introduced kinematic fields are limited to the component x1

1.
1In an isotropic model, it is clear that there is no direction dependence. More specifically, let ξ̃ ∈ R3 be an arbitrary direction

and Q ∈ SO(3) an orthogonal spatial coordinate change such that Q · e1 = ξ̃. In the rotated variables, the ensuing system of
PDE’s (IV.3) is form-invariant, see [161].
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Part IV Chapter 1. Bulk wave propagation in the relaxed micromorphic model

The uncoupled plane wave propagation systems To express the system (IV.3) in a decomposed form,
we define the following variables:

PS :=
1

3
tr (P ) , PD := P11 − PS , PV := P22 − P33,

P[ij] := ( skewP )ij =
1

2
(Pij − Pji) , P(ij) := ( symP )ij =

1

2
(Pij + Pji) . (IV.6)

Since the dependency is only on the space variables x1 and the time t, the system (IV.3) can be rewritten
with the help of the newly introduced variable, as:

• a set of three equations involving only longitudinal quantities:

ρ ü1 −
2 η1 + η3

3
ü1,11 = (2µe + λe)u1,11 − 2µe P

D
,1 − (2µe + 3λe)P

S
,1 ,

η1 P̈
D =

4

3
µe u1,1 +

1

3
µL2

c P
D
,11 −

2

3
µL2

cP
S
,11 − 2 (µe + µm) PD , (IV.7)

η3 P̈
S =

2µe + 3λe
3

u1,1 −
1

3
µL2

cP
D
,11 +

2

3
µL2

cP
S
,11

− (2µe + 3λe + 2µm + 3λm) PS ,

• two sets of three equations involving only transverse quantities in the ξ-th direction, with ξ = 2, 3:

ρ üξ −
η1 + η2

2
üξ,11 = (µe + µc)uξ,11 − 2µe P(1ξ),1 + 2µc P[1ξ],1,

η1 P̈(1ξ) = µe uξ,1 +
1

2
µL2

c P(1ξ),11 +
1

2
µL2

c P[1ξ],11 (IV.8)

− 2 (µe + µm) P(1ξ),

η2 P̈[1ξ] = −µc uξ,1 +
1

2
µL2

c P(1ξ),11 +
1

2
µL2

cP[1ξ],11 − 2µc P[1ξ],

• one equation involving only the variable P(23):

η1 P̈(23) = −2 (µe + µm)P(23) + µL2
cP(23),11, (IV.9)

• one equation involving only the variable P[23] :

η2 P̈[23] = −2µc P[23] + µL2
cP[23],11, (IV.10)

• one equation involving only the variable PV :

η1 P̈
V = −2 (µe + µm)PV + µL2

cP
V
,11, (IV.11)

Harmonic solutions for the plane wave problem We now want to study harmonic solutions traveling
in an infinite domain of the differential systems (IV.7) involving only longitudinal quantities, the two systems
in (IV.8) involving only transverse quantities and the one composed by the uncoupled equations (IV.9),
(IV.10) and (IV.11). Therefore, we define four unknown vectors that reflect the coupling of the variables in
the equations of motion (see [50,131,132,136–141]):

v1 =
(
u1, P

D, PS
)
,︸ ︷︷ ︸

longitudinal

vτ =
(
uτ , P(1τ), P[1τ ]

)
,︸ ︷︷ ︸

transversal

τ = 2, 3, v4 =
(
P(23), P[23], P

V
)
.︸ ︷︷ ︸

uncoupled

(IV.12)

Since we want to find harmonic waves, we look for solutions of the form:

v1 = β1 ei(kX−ωt), vτ = β τei(kX−ωt), τ = 2, 3, v4 = β 4ei(kX−ωt), (IV.13)
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Chapter 1. Bulk wave propagation in the relaxed micromorphic model Part IV

where β1 = (β1
1 , β

1
2 , β

1
3)T ∈ C3, βτ = (βτ1 , β

τ
2 , β

τ
3 )T ∈ C3 and β4 = (β4

1 , β
4
2 , β

4
3)T ∈ C3 are the unknown

amplitudes of the considered waves2, k is the wavenumber and ω is the angular frequency.
Replacing these expressions in equations (IV.3), we can express the system (see [139,140,179]) as:

A1 · β1 = 0, Aτ · βτ = 0, τ = 2, 3, A4 · β4 = 0, (IV.14)

with

A1(ω, k) =


−ω2

(
1 + k2 2 η1+η3

3 ρ

)
+ c2p k

2 i k 2µe/ρ i k (2µe + 3λe) /ρ

−i k 4
3 µe/η1 −ω2 + 1

3c
2
m1 k

2 + ω2
s − 2

3 c
2
m1 k

2

− 1
3 i k (2µe + 3λe) /η3 − 1

3 c
2
m3 k

2 −ω2 + 2
3 c

2
m3 k

2 + ω2
p

 ,

A2(ω, k) = A3(ω, k) =


−ω2

(
1 + k2 η1+η2

2 ρ

)
+ c2s k

2 i k 2µe/ρ −i k 2µc/ρ

− i k µe/η1 −ω2 + 1
2 c

2
m1 k

2 + ω2
s

1
2 c

2
m1 k

2

i k µc/η2
1
2 c

2
m2 k

2 −ω2 + 1
2 c

2
m2 k

2 + ω2
r

 ,

(IV.15)

A4(ω, k) =


−ω2 + c2m1 k

2 + ω2
s 0 0

−ω2 + c2m2 k
2 + ω2

r 0

sym −ω2 + c2m1 k
2 + ω2

s

 ,

where the following characteristic quantities have also been introduced:

cm1 =

√
µe L2

c

η1
, cm2 =

√
µe L2

c

η2
, cm3 =

√
µe L2

c

η3
, cp =

√
λe + 2µe

ρ
, cs =

√
µe + µc

ρ
,

ωp =

√
(3λe + 2µe) + (3λm + 2µm)

η3
, ωr =

√
2µc
η2

, ωs =

√
2 (µe + µm)

η1
.

We remark here that, considering the form of the resulting tensors, we can always take the gradient micro-
inertia η1 = 0 and redefine η∗2 = η1 + η2 and η∗3 = 2 η1 + η3 to obtain an equivalent form.

Now, we want to express the system (IV.14) equivalently featuring only symmetric matrices with real
entries. To do so, we define the diagonal matrix:

diag1 =

 √ρ 0 0

0 i
√

6η1
2 0

0 0 i
√

3η3

 . (IV.16)

Setting γ = diag1 ·β and the matrix A1(ω, k) = diag1 ·A1(ω, k)·diag−1
1 , the problem (IV.14) can be formulated

equivalently as3:

2Here, C3 is the space of complex constant three-dimensional vectors and we understand that having found the (in general,
complex) solutions of (IV.13) only the real or imaginary parts separately constitute actual wave solutions which can be observed
in reality.

3We can face the problem in two more equivalent ways. The first one is to assume from the start that the amplitudes of
the micro-distortion field are multiplied by the imaginary unit i, i.e. β = (β1, i β2, i β3)T ∈ C3, as done in [155, p. 24, eq. 8.6].
Doing so, we obtain a real matrix that can be symmetrized with a real diagonal matrix diag1 = (√ρ,

√
6η
2

and
√
3η on the

diagonal). On the other hand, it is also possible to consider from the beginning β = (
√
ρ β1, i

√
6η
2

β2, i
√
3η β3)T ∈ C3 obtaining

directly a real symmetric matrix.
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Part IV Chapter 1. Bulk wave propagation in the relaxed micromorphic model

A1 · γ =


−ω2

(
1 + k2 2 η1+η3

3 ρ

)
+ c2p k

2 2
√

6
3 k µe/

√
ρη1

√
3

3 k (2µe + 3λe) /
√
ρη3

−ω2 + 1
3c

2
m1 k

2 + ω2
s −

√
2

3 cm1 cm3 k
2

sym −ω2 + 2
3 c

2
m3 k

2 + ω2
p


 γ1

γ2

γ3

 = 0.

(IV.17)

Analogously considering

diag2 =

 √ρ 0 0
0 i

√
2η1 0

0 0 i
√

2η2

 , (IV.18)

we obtain A2(ω, k) = A3(ω, k) = diag2 ·A2(ω, k) · diag−1
2

A2(ω, k) = A3(ω, k) =


−ω2

(
1 + k2 η1+η2

2 ρ

)
+ c2s k

2 k
√

2µe/
√
ρη1 −k

√
2µc/

√
ρη2,

−ω2 + 1
2 c

2
m1 k

2 + ω2
s

1
2cm1 cm2 k

2

sym −ω2 + 1
2c

2
m2 k

2 + ω2
r

 .

(IV.19)

In order to have non-trivial solutions of the algebraic systems (IV.14), one must impose that

detA1(ω, k) = 0, detA2(ω, k) = detA3(ω, k) = 0, detA4(ω, k) = 0, (IV.20)

the solution of which allows to determine the so-called dispersion relations ω = ω (k) for longitudinal and
transverse waves in the relaxed micromorphic continuum, see Section IV.1.3. The solutions of the eigenvalue
problem obtained via the proposed decomposition are the same as the ones obtained via the standard formu-
lation shown in the Appendix D.4 with the full 12×12 matrix, for more details see [50]. For estimates on the
isotropic moduli, we refer to [131,132] and, for a comparison with other micromorphic models, to [137,138].

For solutions ω = ω(k) of (IV.20) we define the

phase velocity: v =
ω

k
, group velocity: c =

dω(k)

dk
. (IV.21)

Real wave numbers k ∈ R correspond to propagating waves, while complex values of k are associated with
waves whose amplitude either grows or decays along the coordinate X. In linear elasticity, phase velocity
and group velocity coincide since there is no dispersion and both are real, see Appendix D.1.

Generalization for the full anisotropic case In the case of anisotropy, the equation of motion is (III.23)
(instead of Equation (III.26)):

ρ u,tt − ρ L̂2
c Div

[
Jg0 ∇u ,tt

]
= Div [ σ̃ ] , ρ L̂2

c Jm0 P,tt = σ̃ − s− Curlm, (IV.22)

where

σ̃ = Ce sym (∇u − P ) + Cc skew (∇u − P ) , s = Cm symP, (IV.23)

m = µL2
c Laniso CurlP.

Assuming again plane harmonic waves, we have:

u(x, t) = û ei(k〈ξ, x〉R3−ω t), û ∈ C3 , ‖ξ‖2 = 1 , (IV.24)

P (x, t) = P̂ ei(k〈ξ, x〉R3−ω t), P̂ ∈ C3×3 ,
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where û is the polarization vector and P̂ is the polarization matrix. In the anisotropic case, the vector
ξ cannot be specified without losing generality and the dispersion curves will, therefore, depend on the
direction defined via the vector ξ . With this hypothesis, the system (IV.22) can be written as a linear
system in β̂ := (û, P̂ ) ∈ C12 as:

Â(ξ, ω, k) · β̂ = 0., (IV.25)

where Â is a 12× 12 tensor. To have non-trivial solutions of the algebraic systems (IV.25), one must impose
that

det Â(ξ, ω, k) = 0. (IV.26)

This is the generalization of conditions (IV.20) for the anisotropic case. The various solutions of this equation
give the branches of the dispersion curves. It must be noted that a decomposition of Â in sub-matrices is
obtainable only for particular energies and/or directions ξ.

1.2 Necessary and sufficient conditions for real wave propagation

Investigations of real wave propagation and ellipticity are not new in principle. Indeed, it is textbook knowl-
edge for linear elasticity that positive definiteness of the elastic energy implies real wave velocities (phase
velocities) v = ω/k where ω [rad/s] is the angular frequency and k [rad/m] ∈ R is the wavenumber of planar
propagating waves. In classical elasticity, having real wave velocities is equivalent to rank-one convexity
(strong ellipticity or Legendre-Hadamard ellipticity). Moreover, ellipticity is equivalent to the positive defi-
niteness of the acoustic tensor. For anisotropic linear elasticity we mention [41], while for anisotropic nonlinear
elasticity we refer the reader to [10,152,205,207].

The same question of ellipticity and real wave velocities in enriched continuum mechanics has been
discussed for micropolar models, e.g. in [211] and for elastic materials with voids in [42]. For the isotropic
micromorphic model results can be found with respect to positive definite energy and/or real wave velocity
[185, 212], Mindlin [155, 156] and Eringen’s book [67, pp. 277-280]. These latter results present conditions
which are neither easily verifiable nor are truly transparent. This is due to the very high number of material
coefficients of the Eringen-Mindlin theory that are strongly reduced in the relaxed micromorphic model [150].
Indeed, the implication that positive definiteness of the energy always implies real wave velocities is not
directly established and demonstrated. In this chapter, we investigate the relaxed micromorphic model in
terms of conditions for real wave velocities for plane waves and establish a necessary and sufficient condition
for this to happen.

We present a set of necessary and sufficient conditions for real wave-velocities in the relaxed micromorphic
model which is weaker than positivity of the energy, as the strong ellipticity condition is with respect to
positive definiteness of the energy in the case of linear elasticity.
Since we are only interested in real k (outside the band gap region), the wave velocity (phase velocity) is
real if and only if ω is real.

In what follows, we will consider the isotropic case with vanishing gradient micro-inertia. The case with
non-vanishing micro-inertia could be readily obtained considering that the “effective” macroscopic inertiae
ρl = ρ

(
1 + k2 2 η1+η3

3 ρ

)
and ρt = ρ

(
1 + k2 η1+η2

2 ρ

)
replace the macroscopic inertia ρ in the matrices and

the parameters’ definition for longitudinal and transverse waves, respectively. These “effective” inertiae are
positive for every k and are always bigger than ρ; therefore, all the obtained results are to be considered
general. However, considering the vanishing gradient micro-inertia, the matrices become:

A1(ω, k) =


−ω2 + c2p k

2 2
√

6
3 k µe/

√
ρη1

√
3

3 k (2µe + 3λe) /
√
ρη3

−ω2 + 1
3c

2
m1 k

2 + ω2
s −

√
2

3 k2cm1cm3

sym −ω2 + 2
3 k

2 c2m3 + ω2
p

 , (IV.27)
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A2(ω, k) = A3(ω, k) =


−ω2 + c2s k

2 k
√

2µe/
√
ρη1 −k

√
2µc/

√
ρη2,

−ω2 + 1
2c

2
m1 k

2 + ω2
s

1
2k

2cm1cm2

sym −ω2 + 1
2c

2
m2 k

2 + ω2
r

 . (IV.28)

Since ω2 appears on the diagonal only, the problem (IV.20) can be analogously expressed as an eigenvalue-
problem:

det
(
B1(k)− ω2

1
)

= 0, det
(
B2(k)− ω2

1
)

= 0, (IV.29)

det
(
B3(k)− ω2

1
)

= 0, det
(
B4(k)− ω2

1
)

= 0,

where

B1(k) =


c2p k

2 2
√

6
3 k µe/

√
ρη1

√
3

3 k (2µe + 3λe) /
√
ρη3

1
3c

2
m1 k

2 + ω2
s −

√
2

3 k2cm1cm3

sym 2
3 k

2 c2m3 + ω2
p

 , (IV.30)

B2(k) = B3(k) =


c2s k

2 k
√

2µe/
√
ρη1 −k

√
2µc/

√
ρη2,

1
2c

2
m1 k

2 + ω2
s

1
2k

2cm1cm2

sym 1
2c

2
m2 k

2 + ω2
r

 , (IV.31)

B4(k) =


c2m1 k

2 + ω2
s 0 0

c2m2 k
2 + ω2

r 0

sym c2m1 k
2 + ω2

s

 . (IV.32)

Note that B1(k), B2(k), B3(k) and B4(k) are real symmetric matrices and, therefore, the resulting eigenvalues
ω2 are real. Obtaining real wave velocities is tantamount to having ω2 ≥ 0 for all solutions of (IV.29).

Since it is useful in what follows we explicitly remark that:

2µe + λe =
4

3
µe +

2µe + 3λe
3

=
4

3
µe + κe =

4µe + 3κe
3

, 2µm + λm =
4µm + 3κm

3
. (IV.33)

With these relations, it is easy to show how µe > 0 and κe > 0 imply 2µe + λe > 0. Moreover, as shown in
the appendix (equations (D.48) and (D.49)), we note here that if only µe + µm > 0 and κe + κm > 0, then
the macroscopic parameters are less or equal than respective microscopic parameters, namely:

κe ≥ κM, κm ≥ κM, µe ≥ µM, µm ≥ µM, (IV.34)

and, moreover, the following inequalities are satisfied:

2µe + λe ≥ 2µM + λM, 2µm + λm ≥ 2µM + λM,
4µM + 3κe

3
≥ 2µM + λM. (IV.35)

Note that the Cosserat couple modulus µc [170] does not appear in the introduced scale between micro and
macro.

We will show next that all the eigenvalues ω2 of B1(k), B2(k) and B3(k) are real and positive for every
k 6= 0 and non-negative for k = 0 provided certain conditions on the material coefficients are satisfied.
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Sufficient conditions for real longitudinal wave propagation (k 6= 0): Sylvester’s criterion states
that a Hermitian matrix M is positive-definite if and only if the leading principal minors are positive [81].
For the matrix B1 the three principal minors are:

(B1)11 =
2µe + λe

ρ
, (IV.36)

(Cof (B1))33 =
k2

3η1 ρ

[
6(2µe + λe)µm + 6µe κe + (2µe + λe)µL

2
ck

2
]

(IV.37)

=
k2

3η1 ρ

[
2 (4µM + 3κe) (µe + µm) + (2µe + λe)µL

2
ck

2
]
,

det (B1) =
k2

η1η3 ρ

[
6κe κm (µe + µm) + 8µeµm(κe + κm) + (2µe + λe)(2µm + λm)µL2

c k
2

]
(IV.38)

=
k2

η1η3 ρ

[
6 (κe + κm)

(
µe + µm

)(
2µM + λM

)
+
(
2µe + λe

)(
2µm + λm

)
µL2

c k
2
]
.

The three principal minors of B1 are clearly positive for k 6= 0 if4:

µe > 0, µm > 0, κe + κm > 0, 2µM + λM > 0, (IV.39)
4µM + 3κe > 0, 2µe + λe > 0, 2µm + λm > 0.

Sufficient conditions for transverse wave propagation (k 6= 0): Similarly, for the matrix B2(k) =
B3(k) the three principal minors are:

(B2)11 =
µe + µc

ρ
, (IV.40)

(Cof (B2))33 =
k2

2η1 ρ

[
4 (µe µc + µm(µe + µc) + (µe + µc)µL

2
ck

2
]
. (IV.41)

det (B2) =
k2

η1η2 ρ

[
4µm µc µe + (µe + µc)µm µL2

ck
2
]
. (IV.42)

Considering positive η, ρ and separating terms in the brackets by looking at large and small values of k, we
can state necessary and sufficient conditions for strict positive-definiteness of B2(k) at arbitrary k 6= 0:

µe > 0, µm > 0, µc ≥ 0. (IV.43)

Sufficient conditions for real uncoupled wave propagation (k 6= 0): Since B4(k) is diagonal, it is
easy to show that positive definiteness is tantamount to the set of necessary and sufficient conditions for
k 6= 0:

µe > 0, µe + µm > 0, µc ≥ 0. (IV.44)

Sufficient conditions for real wave propagation (k = 0): Considering the case k = 0, we see that the
matrices reduce to:

B1(0) =

 0 0 0
0 ω2

s 0
0 0 ω2

p

 , B2(0) = B3(0) =

 0 0 0
0 ω2

s 0
0 0 ω2

r

 , B4(0) =

 ω2
s 0 0

0 ω2
r 0

0 0 ω2
s

 . (IV.45)

Since the matrices are diagonal for k = 0, we can show that positive semi-definiteness is tantamount to the
set of necessary and sufficient conditions :

µe ≥ 0, µe + µm ≥ 0, µc ≥ 0, κe + κm ≥ 0. (IV.46)
4We note here that 4µM +3κe > 0 ⇐⇒ 2µe+λe >

4
3
(µe−µM) ⇐⇒ 2µM +λM > κM−κe. Furthermore, if µe+µm > 0

and κe + κm > 0, we have 3 (2µe + λe) ≥ 4µM + 3κe ≥ 3 (2µM + λM), see Appendix.
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Part IV Chapter 1. Bulk wave propagation in the relaxed micromorphic model

Sufficient conditions for real wave propagation: Considering all the conditions found until now, we
can state a simple sufficient condition for real wave velocities for all real k:

µe > 0, µm > 0, κe + κm > 0, 2µM + λM > 0, (IV.47)
4µM + 3κe > 0, 2µe + λe > 0, 2µm + λm > 0.

Necessary conditions for real wave propagation: In order to see a set of global necessary conditions
for positivity at arbitrary k 6= 0 we consider first large and small values of k 6= 0 separately. For k → +∞
we must have:

2µe + λe > 0, (2µe + λe)µL
2
c > 0, (2µe + λe)(2µm + λm)µL2

c > 0, (IV.48)

or analogously:

2µe + λe > 0, µL2
c > 0, 2µm + λm > 0, (IV.49)

while for k → 0 we must have:

2µe + λe > 0, (4µM + 3κe)(µe + µm) > 0, (κe + κm)(µe + µm)(2µM + λM) > 0. (IV.50)

Since from (IV.43) we have necessarily µe > 0, µm > 0, and from (IV.46) we get κe+κm ≥ 0 and considering
together the two limits for k we obtain the necessary condition:

2µe + λe > 0, 2µm + λm > 0, 4µM + 3κe > 0, κe + κm > 0, (IV.51)
µe > 0, µm > 0, µc ≥ 0, 2µM + λM > 0.

Inspection shows that (IV.51) is our proposed sufficient condition (IV.39). From µe > 0 and µm > 0, it
follows that µM > 0. Therefore condition (IV.51) is necessary and sufficient. We have shown our main
proposition:

Proposition (real wave velocities). The dynamic relaxed micromorphic model (eq. (IV.3)) admits real
plane waves if and only if

µc ≥ 0, µe > 0, 2µe + λe > 0, (IV.52)
µm > 0, 2µm + λm > 0,

(µM > 0), 2µM + λM > 0,

κe + κm > 0, 4µM + 3κe > 0. �

In (IV.52) the requirement µM > 0 is redundant, since it is already assumed that µe, µm > 0. It is clear that
positive definiteness of the elastic energy (III.9) implies (IV.52). We remark that, as shown in the Appendix
D.3, the set of inequalities (IV.52) is already implied by:

µe > 0, µm > 0, µc ≥ 0, κe + κm > 0, 2µM + λM > 0. (IV.53)

Finally, letting µm → +∞ and κm → +∞ (or µm → +∞ and λm > const.) generates the limit condition for
real wave velocities (µe → µM)

µM > 0, µc ≥ 0, 2µM + λM > 0. (IV.54)

which coincides, up to µc, with the strong ellipticity condition in isotropic linear elasticity, see Appendix
D.1, and it coincides fully with the condition for real wave velocities in micropolar elasticity, see Appendix
D.2. A condition similar to (IV.54) can be found in [155, eq. 8.14 p. 26] where Mindlin requires that µM >
0, 2µM + λM > 05 (in our notation) which are obtained from the requirement of positive group velocity at
k = 0

dωacoustic, long(0)

dk
> 0,

dωacoustic, trans(0)

dk
> 0. (IV.55)

Let us emphasize that our method is not easily generalized to the anisotropic setting [12]. In this case, the
block-structure of the problem will be lost and one has to deal with the full 12× 12 case, see equation (D.69)
in the Appendix D.4. Nonetheless, we expect positive-definiteness to always imply real wave propagation.

5Mindlin explains that such parameters “are less than those that would be calculated from the strain-stiffnesses [of the unit
cell]. This phenomenon is due to the compliance of the unit cell and has been found in a theory of crystal lattices by Gazis and
Wallis [77]”.
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Chapter 1. Bulk wave propagation in the relaxed micromorphic model Part IV

1.3 Dispersion curves for the relaxed micromorphic model

It is clear that the study of dispersion relations for the relaxed micromorphic continuum is intrinsically more
complicated than in the case of classical Cauchy continuum due to its enriched kinematics. For the relaxed
micromorphic model, the formal limit η → +∞ shows no dispersion at all giving two pseudo-acoustic linear
curves, longitudinal and transverse with slopes cp =

√
(2µe + λe)/ρ and cs =

√
(µe + µc)/ρ, respectively.

As far as longitudinal and transverse waves are concerned, the expressions for the wave-numbers k which
allow for non-trivial solutions are by far more complicated. We refer to [141] for the complete set-up of the
eigenvalue problems which must be solved to find the explicit expressions for the wave-numbers, limiting
ourselves here to denote them by ±k1

1, ±k2
1 for longitudinal waves and ±k1

α, ±k2
α, α = 2, 3 for transverse

waves. Of course, the computed expressions for k1
1, k

2
1, k

1
α, k

2
α depend on the elastic constitutive parameters

of the relaxed micromorphic model appearing in (IV.1) and on the frequency ω.

1.3.1 Longitudinal waves

We present the longitudinal dispersion relations obtained with both vanishing and non-vanishing gradient
micro-inertia (Figure 36). The dispersion curves for longitudinal waves consist in one acoustic branch LA
and two optic branches LO1-LO2. This is made clear after considering the corresponding cut-off frequencies6:

ωLA(0) = 0, ωLO1
(0) = ωp =

√
(3λe + 2µe) + (3λm + 2µm)

η3
, ωLO2

(0) = ωs =

√
2 (µe + µm)

η1
. (IV.56)

The case k = 0 corresponds to the long wave-length limit. As proven in general in chapter III.3, in the long
wave-length limit the relaxed micromorphic model tends to a Cauchy material with constitutive tensor CM.
This is confirmed by the group velocity cLA = ∂ωLA/∂k in k = 0 of the acoustic branch of the longitudinal
dispersion curves that, as in the Cauchy model, is7:

cLA(0) =

√
2µM + λM

ρ
. (IV.57)

To study the asymptotic behavior of the dispersion curves, it is better to consider first the case with vanishing
gradient micro-inertia (η1 = η2 = η3 = 0). In this case the longitudinal acoustic branch has a horizontal

6The cut-off frequencies for longitudinal waves can easily be obtained by solving the problem for k = 0, i.e. detA1(ω, 0) = 0.
Analogously, the problem detA2(ω, 0) = 0 must be considered for transverse waves.

7The group velocity cLA of the acoustic longitudinal curve for k = 0 can be derived via the equation
∂2

∂2k

(
detA1(ω(k), k)

)
|k=0 = 0, as made in [50]. Analogously, the equation ∂2

∂2k

(
detA2(ω(k), k)

)
|k=0 = 0 must be solved

in the transverse case.
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Figure 36: Dispersion relations for longitudinal waves in the relaxed micromorphic model with vanishing
micro-inertia (left) and non-vanishing micro-inertia (right).
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Figure 37: Dispersion relations for longitudinal waves in the internal variable model with vanishing micro-
inertia (left) and non-vanishing micro-inertia (right).

asymptote, while both the optic branches have an oblique asymptote for k → +∞:

ωLA ∼ ωl =

√
3 (2µm + λm)

2 η1 + η3
, ωLO1 ∼ cml k =

√
c2m1 + 2 c2m3

3
k, ωLO2 ∼ cp k. (IV.58)

On the other hand, if the gradient micro-inertia is present, the second optic branch keeps its oblique asymp-
tote, while the acoustic and the first optic branch have coupled horizontal asymptotes for k → +∞:

ωLA ∼ ωl1 =

√√√√ω2
l

+ ω2
v −

√
(ω2
l

+ ω2
v)2 − 4ω2

l
ω2
l

2
, ωLO1

∼ ωl2 =

√√√√ω2
l

+ ω2
v +

√
(ω2
l

+ ω2
v)2 − 4ω2

l
ω2
l

2
,

(IV.59)

ωLO2
∼ cml k.

where we have:

ωl =

√
3 (2µm + λm)

2 η1 + η3
, ωl =

√
3 (2µe + λe)

2 η1 + η3

, ωv =

√
3 (2µe + λe) + 3 (2µm + λm)

2η1 + η3
. (IV.60)

The limiting case of the internal variable model Considering the limiting case in which the length scale
Lc vanishes, the relaxed micromorphic model reduces to an internal variable model. Considering a vanishing
gradient micro-inertia we obtain one more horizontal asymptote with respect to the relaxed micromorphic
model leading to the asymptotic behavior:

ωLA ∼ ω∗l1 =

√
al −

√
a2
l − b2l , ωLO1

∼ ω∗l2 =

√
al +

√
a2
l − b2l , ωLO2

∼ cp k, (IV.61)

in which:

al =
2µe
η1

3κe
η3

2 η1 + η3

3(λe + 2µe)
+
µm

η1
+

3κm

2 η3
, b2l =

2µe
η1

3κe
η3

λm + 2µm

λe + 2µe
+ 4

µm

η1

3κm

2 η3
. (IV.62)

The internal variable model with non-vanishing gradient micro-inertia has three horizontal asymptotes whose
analytic expressions are too complex to be written.

1.3.2 Transverse waves
The dispersion curves for transverse waves consist of one acoustic branch TA and two optic branches TO1-TO2

(see Figure 38). The corresponding cut-off frequencies are:

ωTA(0) = 0, ωTO1
(0) = ωr =

√
2µc
η2

, ωTO2
(0) = ωs =

√
2 (µe + µm)

η1
. (IV.63)
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Figure 38: Dispersion relations for transverse waves in the relaxed micromorphic model with vanishing micro-
inertia (left) and non-vanishing micro-inertia (right).

Once again the case k = 0 corresponds to the long wave-length limit. The group velocity cTA = ∂ωTA/∂k
in k = 0 of the acoustic branch of the transverse dispersion curves is equivalent to the Cauchy model (see
footnote 7):

cTA(0) =

√
µM

ρ
. (IV.64)

To study the asymptotic behavior of the dispersion curves, it is better to consider first the case with vanishing
gradient micro-inertia (η1 = η2 = η3 = 0). In this case the transverse acoustic branch has a horizontal
asymptote, while both optic branches have an oblique asymptote for k → +∞:

ωTA ∼ ωt =

√
2µm

η1 + η2
, ωTO1

∼ cmt k =

√
c2m1 + c2m2

2
k, ωTO2

∼ cs k. (IV.65)

On the other hand, if the gradient micro-inertia is present, the second optic branch keeps its oblique asymp-
tote, while the acoustic and the first optic branch have coupled horizontal asymptotes for k → +∞:

ωTA ∼ ωt1 =

√√√√ω2
t

+ ω2
q −

√
(ω2
t

+ ω2
q )2 − 4ω2

t
ω2
t

2
, ωTO1

∼ ωt2 =

√√√√ω2
t

+ ω2
q +

√
(ω2
t

+ ω2
q )2 − 4ω2

t
ω2
t

2
,

(IV.66)

ωTO2
∼ cmt k,

where:

ωt =

√
2µm

η1 + η2
, ωt =

√
2 (µc + µe)

η1 + η2

, ωq =

√
2 (µe + µm + µc)

η1 + η2
. (IV.67)

The limiting case of the internal variable model Considering the limiting case in which the length scale
Lc vanishes, the relaxed micromorphic model reduces to an internal variable model. Assuming a vanishing
gradient micro-inertia, we obtain one more horizontal asymptote with respect to the relaxed micromorphic
model leading to the asymptotic behavior:

ωLA ∼ ω∗t1 =

√
at −

√
a2
t − b2t , ωTO1 ∼ ω∗t2 =

√
at +

√
a2
t − b2t , ωTO2 ∼ cs k, (IV.68)

in which:

at =
µc µe + µc µm + µe µm

η1 (µc + µe)
+

µc µe
η2 (µc + µe)

, b2t =
4µc µe µm

η1 η2 (µc + µe)
. (IV.69)

The internal variable model with non-vanishing gradient micro-inertia shows three horizontal asymptotes
whose analytical expressions are too complex to be written.
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Figure 39: Dispersion relations for transverse waves in the internal variable model with vanishing micro-
inertia (left) and non-vanishing micro-inertia (right).

1.3.3 Uncoupled waves
Considering the solutions of the uncoupled equations, we obtain three dispersion curves: the transverse
rotational optic TRO, the transverse shear optic TSO and the transverse constant-volume optic TCVO. In
the papers [139–141], it was explicitly pointed out that the frequency ω for uncoupled waves in relaxed
micromorphic continua can be calculated as a function of the wave-numbers k. These relations can be easily
inverted to find ω as a function of k, finding that they do not depend on the presence or lack of a gradient
micro-inertia. Indeed, we obtain:

ωTSO =
√
ω2
s + c2m1 k

2, ωTRO =
√
ω2
r + c2m2 k

2, ωTCVO =
√
ω2
s + c2m1 k

2, (IV.70)

k =
1

cm1

√
ω2 − ω2

s , k =
1

cm2

√
ω2 − ω2

r , k =
1

cm1

√
ω2 − ω2

s .

In the limiting case of the internal variable model, the velocities cm1 and cm2 are zero leading to constant
frequencies for every k:

ωTSO = ωs, ωTRO = ωr, ωTCVO = ωs. (IV.71)
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Figure 40: Dispersion relations for the uncoupled waves in the relaxed micromorphic model (left) and in the
internal variable model (right).
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CHAPTER IV.2
Dispersion curves and band–gaps in other enriched continuum

models

Classical Cauchy continuum theories are not always well adapted to cover the wealth of experimental evidences
on the dynamical behavior of real materials. As a first point, in fact, real materials commonly show dispersive
behaviors, which means that the speed of propagation of the traveling wave changes with the wavelength.
Such a phenomenon is not astonishing if one thinks that the structure of matter changes when observing it
at smaller scales: at the scale of crystals or molecules there is always some heterogeneity of matter. For this
reason, considering wavelengths small enough to interact with the microstruture, the waves will propagate
at a different speed than other waves with higher wavelengths. Cauchy continuum theories are not able to
account for dispersive phenomena and are a good approximation of reality only for those materials which do
not exhibit their heterogeneity at the scale of interest. Therefore, Cauchy continuum theories are not adapted
to model dispersive behaviors and more refined models need to be introduced. One possibility is second or
higher order theories that allow for the description of dispersion for the acoustic modes (see e.g. [55, 197]).
On the one hand, second gradient theories describe some dispersive behaviors but, on the other hand, they
are often insufficient for microstructures that have vibrational modes independent of the motion of the unit
cell. To describe the complex dynamical behavior of such metamaterials in a continuum framework, the
introduction of enriched kinematics (as in the relaxed micromorphic models in Figure 41) is a mandatory
requirement [67,138–140,155]. Continuum models of the micromorphic type, in fact, allow for the description
of microstructure-related vibrational modes via degrees of freedom additional to the displacement field.

The curvature contribution in the micromorphic model conceptually determines how the substructure
interacts with itself and the associated characteristic length is a measure of the range of action of such micro-
structure related deformation modes. In this sense, we call the full-gradient contribution ‖∇P‖2 (or any
other curvature term essentially controlling ∇P ) of strong interaction type: neighboring substructures feel
the presence of each other or, equivalently, the generated moment stresses depend on ∇P . On the contrary,
the corresponding moment stresses depend only on CurlP in the relaxed micromorphic model, connecting
neighboring cells only via tangent micro-interactions. Certain substructure deformations are energetically
free (in fact all compatible parts ∇ϑ in P are not taken into account) while the model remains reversibly
elastic and energy-conservative. We call this a weak interaction. As a matter of fact, the wording relaxed is
motivated by this observation.
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Figure 41: Dispersion relations for the relaxed micromorphic model with non-vanishing gradient micro-inertia,
longitudinal (left), transverse (center) and uncoupled (right) waves.
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The insufficiency of Cauchy continuum theories becomes even more evident when considering more com-
plex metamaterials which are able to inhibit wave propagation, i.e. so called band-gap metamaterials. In
what follows, we will show that the relaxed micromorphic model, which dispersion curves are shown in Figure
41, is the only non-local continuum model of the micromorphic type which is able to account for band-gaps
with a simple uncoupled kinetic energy [138–141]. Moreover, we show here, following what done in [136], that
the addition of kinetic energy terms which couple the motions of the microstructure to the macro-motions of
the unit cells may have a deep impact on the ability of describing band-gaps behaviors.

2.1 The classical Cauchy medium

The first model to analyze is the classical Cauchy medium. As already mentioned before, this model predicts
neither dispersive behavior nor optic modes. However, we will show how to describe some dispersive behavior
adding an inertia term on the gradient of the displacement ∇u . In Figure 42, the dispersion curves for the
longitudinal acoustic wave LA and the transverse acoustic TA are shown and compared to the corresponding
acoustic branches of the relaxed micromorphic model (LAREL and TAREL). In [50], it was shown that the
tangents cl and ct of the acoustic branches in k = 0 in the classical linear elastic dispersion curves, considering
Lamé constants µM and λM, coincide with the ones obtained for the relaxed micromorphic model, see Figure
42. The energies considered are:

W = µM ‖ sym (∇u )‖2 +
λM

2
(tr∇u )

2
, (IV.72)

J =
1

2
ρ ‖u,t‖2 +

1

2
η1 ‖dev sym∇u ,t‖2 +

1

2
η2 ‖ skew∇u ,t‖2 +

1

6
η3 ( tr∇u ,t)2

.

From this energy, we can derive the dynamical equilibrium equations:

ρ u,tt + Div[ I ] = Div [σ ] , (IV.73)

where

I = η1 dev sym∇u ,tt + η2 skew∇u ,tt +
1

3
η3 tr (∇u ,tt) , σ = 2µM sym (∇u ) + λM tr (∇u )1.

The dispersion curves obtained in the plane wave case are:

ωLA =
cl k√

1 + k2 2 η1+η3
3 ρ

, ωTA =
ct k√

1 + k2 η1+η2
2 ρ

.

where

cl =
dωacoustic, long(0)

dk
=

√
2µM + λM

ρ
, ct =

dωacoustic, trans(0)

dk
=

√
µM

ρ
. (IV.74)
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Figure 42: Dispersion relations for the classical Cauchy medium compared to the acoustic branches of the
relaxed micromorphic model with vanishing (left) and non-vanishing gradient micro-inertia (right).

110Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



Chapter 2. Dispersion curves and band–gaps in other enriched continuum models Part IV

The non-linearity of the dispersion curves is due to the gradient micro-inertia. These relations are a gener-
alization of the classical relations (that can be obtained for vanishing gradient micro-inertia):

ωLA = cl k, ωTA = ct k.

2.2 The Cosserat micromorphic model

We present the dispersion relations obtained with a Cosserat micromorphic model with both vanishing and
non-vanishing gradient micro-inertia in figure 43. The number of branches in the dispersion relations is
reduced in comparison to the relaxed micromorphic model. This fact is due to the presence of a skew
symmetric micromorphic tensor A ∈ so(3) with only three independents variables. The case with vanishing
gradient micro-inertia does not allow for band-gaps while, on the other hand, a complete band-gap can be
obtained adding a gradient micro-inertia term.

In the isotropic case, the elastic energy density and the kinetic energy density of the Cosserat model read:

W = µM ‖ sym∇u ‖2 +
λM

2
(tr (∇u ))

2
+ µc ‖ skew (∇u −A)‖2 +

µL2
c

2
‖CurlA‖2, (IV.75)

J =
ρ

2
‖u,t‖2 +

η2

2
‖A,t‖2 +

1

2
η1 ‖dev sym∇u ,t‖2 +

1

2
η2 ‖ skew∇u ,t‖2 +

1

6
η3 ( tr∇u ,t)2

.

whereA ∈ so(3). The dynamical formulation is obtained defining a joint Hamiltonian and assuming stationary
action finding:

ρ u,tt = Div [2µM sym (∇u −A) + 2µc skew (∇u −A) + λM tr (∇u −A)1] , (IV.76)

η A,tt = − µL2
c skew ( Curl CurlA) + 2µc skew (∇u −A) ,
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Figure 43: Longitudinal (left), transverse (center) and uncoupled (right) dispersion relations for the Cosserat
model with vanishing (top) and non-vanishing (bottom) micro-inertia.
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Part IV Chapter 2. Dispersion curves and band–gaps in other enriched continuum models

2.3 The internal variable model

We present the dispersion relations obtained for the internal variable model for a vanishing and a non-
vanishing gradient inertia (Figure 44). We notice in Figure 44 that the internal variable model with vanishing
gradient micro-inertia allows for the description of two separate band-gaps for both longitudinal and trans-
verse waves (for higher values of µc and therefore ωr, it would allow for two complete band-gaps). Moreover,
by direct observation of Figure 44, we notice that, when switching the gradient micro-inertia on and suitably
choosing the relative position of ωr and ωp, the internal variable model allows to account for 3 band gaps.
We thus have an extra band-gap with respect to the case with vanishing gradient inertia and to the analo-
gous case for the relaxed micromorphic model, but we are not able to capture non-local effects. The fact of
excluding the possibility of describing non-local effects in metamaterials can sometimes be too restrictive.

The case of the internal variable model is obtained from a micromorphic model by neglecting the curvature
term. We recall (see [176]) that the energy for the internal variable model does not include higher space
derivatives of the micro-distortion tensor P and, in the isotropic case, takes the form:

W =µe ‖ sym (∇u − P )‖2 +
λe
2

(tr (∇u − P ))
2

+ µc ‖ skew (∇u − P )‖2 (IV.77)

+ µm ‖ symP‖2 +
λm

2
(trP )

2
,

The dynamical equilibrium equations are:

ρ u,tt + Div[ I ] = Div [ σ̃ ] , η P,tt = σ̃ − s, (IV.78)

where

I = η1 dev sym∇u ,tt + η2 skew∇u ,tt +
1

3
η3 tr (∇u ,tt) , (IV.79)
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Figure 44: Dispersion relations for the internal variable model with vanishing (top) and non-vanishing (bot-
tom) gradient micro-inertia, longitudinal (left), transverse (center) and uncoupled (right) waves.
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σ̃ = 2µe sym (∇u − P ) + λe tr (∇u − P )1+ 2µc skew (∇u − P ) , (IV.80)
s = 2µm symP + λm tr (P )1.

2.4 The standard Mindlin-Eringen model

We present the dispersion relations obtained with both vanishing and non-vanishing gradient micro-inertia
with the standard Mindlin-Eringen model in Figure 45. We conclude that when considering the model with
standard Mindlin-Eringen micromorphic model with vanishing gradient micro-inertia, there always exist
waves which propagate inside the considered medium. The only possible effect is to obtain a partial band
gap for the uncoupled waves. On the other hand, the gradient micro-inertia allows for the description of one
complete band-gap. The elastic energy of the isotropic micromorphic model in the sense of Mindlin-Eringen
(see [156] and [67, p. 270, eq. 7.1.4]) is:

W =µe ‖ sym (∇u − P )‖2 +
λe
2

(tr (∇u − P ))
2

+ µc ‖ skew (∇u − P )‖2 (IV.81)

+ µm ‖ symP‖2 +
λm

2
(trP )

2
+
µL2

c

2
‖∇P‖2 .

The dynamical equilibrium equations are:

ρ u,tt = Div σ = Div [2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1] ,

η P,tt = 2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1 (IV.82)

− [2µm symP + λm tr(P )1] + µL2
c Div∇P.
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Figure 45: Longitudinal (left), transverse (center) and uncoupled (right) dispersion relations for the standard
micromorphic model with ‖∇P‖2 with vanishing (top) and non-vanishing (bottom) gradient micro-inertia.
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Part IV Chapter 2. Dispersion curves and band–gaps in other enriched continuum models

2.5 The relaxed micromorphic model with curvature ‖DivP‖2

The Div-model is obtained from the relaxed micromorphic model by replacing ‖CurlP‖2 with ‖DivP‖2. In
the Div-model, a weak interaction similar to the relaxed micromorphic model appears since the corresponding
moment stresses depend only on DivP and, therefore, substructure deformations of the type P = Curl ζ+∇ϑ,
where ζ : R3×3 → R3×3 is arbitrary and ϑ : R3 → R3 satisfies ∆ϑ ≡ 0, are energetically free. We present
the dispersion relations obtained with both vanishing and non-vanishing gradient micro-inertia in Figure 46.
No band gap on the longitudinal and transverse waves can be modeled and the uncoupled waves have fixed
frequencies (Figure 46). We can conclude that, when considering the micromorphic model with only ‖DivP‖2
for every value of µc, there always exist waves which propagate inside the considered medium independently
of the value of the frequency. The uncoupled waves assume a peculiar behavior in which the frequency is
independent of the wavenumber k. The energy of this model is:

W =µe ‖ sym (∇u − P )‖2 +
λe
2

(tr (∇u − P ))
2

+ µc ‖ skew (∇u − P )‖2 (IV.83)

+ µm ‖ symP‖2 +
λm

2
(trP )

2
+
µL2

d

2
‖DivP‖2 .

The dynamical equilibrium equations are:

ρ u,tt = Div σ = Div [2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1] ,

η P,tt = 2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1 (IV.84)

− [2µm symP + λm tr(P )1] + µL2
d∇ (DivP ) .
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Figure 46: Longitudinal (left), transverse (center) and uncoupled (right) dispersion relations for the micro-
morphic model with ‖DivP‖2 with vanishing (top) and non-vanishing (bottom) gradient micro-inertia.
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CHAPTER IV.3
Reflection and transmission of waves at a Cauchy/relaxed

micromorphic interface

3.1 Conservation of the total energy

Considering conservative mechanical systems, like in the present manuscript, the conservation of total energy
must be verified in the form

dE

dt
+ div H = 0, (IV.85)

where E = T + W is the total energy of the considered system and H is the energy flux vector. It is clear
that the explicit expressions for the total energy and for the energy flux are different depending on whether
one considers a classical Cauchy model or a relaxed micromorphic one. If the expression of the total energy
E is straightforward for the two mentioned cases (it suffices to look at the given expressions of T and W ),
the explicit expression of the energy flux H is more complicated to be obtained. The explicit expression of
the energy fluxes for the Cauchy and relaxed micromorphic media have been deduced in [141], to which we
refer for additional details on this subject.

3.1.1 The classical Cauchy medium

In classical Cauchy continua the energy flux vector H can be written as

H = −σM · u,t, (IV.86)

where the symmetric Cauchy stress tensor σM has been defined in the Appendix D.1 (equation (D.3)) in
terms of the displacement field. The first component of the energy flux vector given in equation (IV.86),
simplifies in the 1D case into

H1 = −u̇1 [(λ+ 2µ) u1,1]− u̇2 [µu2,1]− u̇3 [µu3,1] . (IV.87)

3.1.2 The relaxed micromorphic continuum

In relaxed micromorphic media, the energy flux vector H̃ is defined as (see [141])

H̃ = − [σ̃ + I]
T · u,t − (mT · P,t) ε, (IV.88)

where the stress tensor σ̃ and the hyper-stress tensor m have been defined in equation (IV.4) in terms of the
basic kinematical fields and ε is the Levi-Civita tensor.

When considering conservation of total energy, it can be checked that the first component of the energy
flux (IV.88) can be rewritten in terms of the new variables as

H̃1 = H1
1 +H2

1 +H3
1 +H4

1 +H5
1 +H6

1 (IV.89)

with

115Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



Part IV Chapter 3. Reflection and transmission of waves at a Cauchy/relaxed micromorphic interface

H1
1 = v1,t ·


−2µe − λe 0 0

0 −µL
2
c

2 µL2
c

0 µL2
c −2µL2

c

 · v′1 +

−
2 η1+η3

3 0 0

0 0 0

0 0 0

 · v′1,tt +

0 2µe 2µe + 3λe

0 0 0

0 0 0

 ·v1

 ,

H2
1 = v2,t ·


− (µe + µc) 0 0

0 −µL2
c −µL2

c

0 −µL2
c −µL2

c

 · v′2 +

−
η1+η2

2 0 0

0 0 0

0 0 0

 · v′2,tt +

0 2µe −2µc

0 0 0

0 0 0

 ·v2

 ,
(IV.90)

H3
1 = v3,t ·


− (µe + µc) 0 0

0 −µL2
c −µL2

c

0 −µL2
c −µL2

c

 · v′3 +

−
η1+η2

2 0 0

0 0 0

0 0 0

 · v′3,tt +

0 2µe −2µc

0 0 0

0 0 0

 ·v3

 ,
H4

1 =− 2µL2
c (v4),1 v4,t, H5

1 = −2µL2
c (v5),1 v5,t, H6

1 = −µL
2
c

2
(v6),1 v6,t.

3.2 Interface jump conditions at a Cauchy/relaxed-micromorphic
interface

In this section we present a possible choice of boundary conditions to impose between a Cauchy medium
and a relaxed micromorphic medium. Such set of boundary conditions has been derived in [141] and allows
to describe free vibrations of the microstructure at the considered interface. We will show in the remainder
of this part how this particular choice of boundary conditions is capable to describe phenomena of wave
transmission in real mechanical metamaterials. For the full presentation of the complete sets of possible
connections that can be established at Cauchy/relaxed, relaxed/relaxed, Cauchy/Mindlin, Mindlin/Mindlin
interfaces we refer to [141].

When considering connections between a Cauchy and a relaxed micromorphic medium one can impose
more kinematical boundary conditions than in the case of connections between Cauchy continua. More
precisely, one can act on the displacement field u (on both sides of the interface) and also on the tangential
micro-distortion P (on the side of the interface occupied by the relaxed micromorphic continuum). In what
follows, we consider the “-” region occupied by the Cauchy continuum and the “+” region occupied by the
micromorphic continuum, so that, accordingly, we use the following notations:

f = σ− · n−, t =
(
σ̃+ + I+

)
· n+, τ = µL2

c ( Curl P+) · ε · n+. (IV.91)

It is easy to see that when the normal is n = (1, 0, 0), the normal components τ11, τ21 and τ31 of the double
force are identically zero. Therefore, the number of independent conditions that one can impose on the
micro-distortions is 6 when considering a relaxed micromorphic model.

Here, we focus our attention on one particular type of connection between a classical Cauchy continuum
and a relaxed micromorphic one, which is sensible to reproduce the real situation in which the microstructure
of the band-gap metamaterial is free to vibrate independently of the macroscopic matrix. Such particular
connection guarantees continuity of the macroscopic displacement and free motion of the microstructure
(which means vanishing double force) at the interface:

[[u]] = 0, t− f = 0, τ · ν1 = τ · ν2 = 0. (IV.92)

We explicitly remark that continuity of displacement implies continuity of internal forces and that the con-
ditions on the arbitrariness of micro-motions are assured by imposing that the tangent part of the double
force is vanishing.

Introducing the tangent vectors ν1 = (0, 1, 0) and ν2 = (0, 0, 1) and considering the new variables presented
in (IV.6) and (IV.12), the boundary conditions on the jump of displacement read:

v+
1 · n− u

−
1 = 0, v+

2 · n− u
−
2 = 0, v+

3 · n− u
−
3 = 0, (IV.93)
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Figure 47: Schematics of a macro internal clamp with free microstructure at a Cauchy/relaxed-micromorphic
interface.

while the conditions on the internal forces become (see also [141]): λe + 2µe
0
0

 · (v+
1

)′
+

 2 η1+η3
3
0
0

 · (v+
1,tt

)′
+

 0
−2µe

−(3λe + 2µe)

 · v+
1 = (λ+ 2µ)

(
u−1
)′
,

 µe + µc
0
0

 · (v+
2

)′
+

 η1+η2
2
0
0

 · (v+
2,tt

)′
+

 0
−2µe
2µc

 · v+
2 = µ

(
u−2
)′
, (IV.94)

 µe + µc
0
0

 · (v+
3

)′
+

 η1+η2
2
0
0

 · (v+
3,tt

)′
+

 0
−2µe
2µc

 · v+
3 = µ

(
u−3
)′
.

The conditions on the tangent part of the double force τ can be written as

τ22 =

 0
−µL2

c/2
µL2

c

 · (v+
1

)′
+
µL2

c

2

(
v+

6

)′
= 0, τ33 =

 0
−µL2

c/2
µL2

c

 · (v+
1

)′ − µL2
c

2

(
v+

6

)′
= 0,

τ12 =

 0
µL2

c

µL2
c

 · (v+
2

)′
= 0, τ13 =

 0
µL2

c

µL2
c

 · (v+
3

)′
= 0, (IV.95)

τ23 = µL2
c

((
v+

4

)′
+
(
v+

5

)′)
= 0, τ32 = µL2

c

((
v+

4

)′ − (v+
5

)′)
= 0,

while we recall once again that the normal part of the double force is vanishing, i.e.:

τ11 = 0, τ21 = 0, τ31 = 0. (IV.96)

3.2.1 Decomposition of the incident, transmitted and reflected waves
When studying the reflection and transmission of a plane wave at a Cauchy/relaxed-micromorphic interface,
we assume that an incident wave traveling in the Cauchy medium impacts the interface. Two waves are than
generated, namely one wave reflected in the Cauchy medium and one transmitted in the relaxed micromorphic
medium. We explicitly remark that the reflected wave contains the longitudinal and transverse parts of the
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incident longitudinal wave-
ui1 = α1 e

i(ω/cl x1−ω t)

incident transverse waves-
uiα = αα e

i(ω/ct x1−ω t)

reflected longitudinal wave�
ur1 = α1 e

i(−ω/cl x1−ω t)

reflected transverse waves�

urα = αα e
i(−ω/ct x1−ω t)

transmitted longitudinal waves -
v1 = β1

1h
1
1e
i(k11(ω)x1−ω t) + β2

1h
2
1e
i(k21(ω)x1−ω t)

transmitted transverse waves -
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αh
1
αe
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αh
2
αe
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transmitted uncoupled wave -

v+
4 = β4 e

i(1/cm
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ω2−ω2

s x1−ω t)

transmitted uncoupled wave -
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i(1/cm
√
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Figure 48: Incident, reflected and transmitted waves at a Cauchy/relaxed-micromorphic interface.

displacement field, while the transmitted wave contains a longitudinal part on the field v1, two transverse
parts on vα (α = 2, 3) and the three uncoupled fields v4, v5 and v6

1 (see also Figure 48.).
Considering the plane wave ansatz and both the incident and reflected wave, the displacement field in the

Cauchy medium can be written as:

u−1 = α1 e
i(ω/cl x1−ω t) + α1 e

i(−ω/cl x1−ω t),

u−2 = α2 e
i(ω/ct x1−ω t) + α2 e

i(−ω/ct x1−ω t), (IV.97)

u−3 = α3 e
i(ω/ct x1−ω t) + α3 e

i(−ω/ct x1−ω t)

and we assume the wave forms (IV.13) for the unknown fields v+
1 , v

+
α , v

+
4 , v

+
5 and v+

6 in the relaxed micro-
morphic medium, i.e.:

v+
1 = β1

1h
1
1e
i(k11(ω)x1−ω t) + β2

1h
2
1e
i(k21(ω)x1−ω t), v+

α = β1
αh

1
αe
i(k1α(ω)x1−ω t) + β2

αh
2
αe
i(k2α(ω)x1−ω t), α = 2, 3,

(IV.98)

v+
4 = β4 e

i(1/cm
√
ω2−ω2

s x1−ω t), v+
5 = β5 e

i(1/cm
√
ω2−ω2

r x1−ω t), v+
6 = β6 e

i(1/cm
√
ω2−ω2

s x1−ω t).

Here α1, α2, α3 ∈ R are the amplitudes of the incident (longitudinal and transverse) waves traveling in
the Cauchy continuum that are assumed to be known, while α1, α2, α3 ∈ R are the amplitudes of the
longitudinal and transverse reflected waves. Analogously, β1

1 , β
2
1 ∈ R are the amplitudes associated to the

longitudinal wave transmitted in the relaxed medium, while h1
1, h

2
1 ∈ R3 and k1

1, k
2
1 ∈ R are the eigenvectors

and eigenvalues associated to the eigenvalue problem for longitudinal waves (see [141]). Similarly, β1
α, β

2
α ∈

R, h1
α, h

2
α ∈ R3, k1

α, k
2
α ∈ R (α = 2, 3) are defined for transverse waves transmitted in the relaxed medium

(see [141] for details). Finally β4, β5, β6 ∈ R are the amplitudes of the uncoupled waves transmitted in the
relaxed medium.

Assuming that the amplitudes of the incident waves are known, we can count the 12 unknown amplitudes
α1, α2, α3, β1

1 , β2
1 , β1

α, β2
α (α = 2, 3), β4, β5, β6 which can be calculated by imposing the 12 scalar jump

condition (IV.93), (IV.94) and (IV.95).

3.2.2 The case of purely longitudinal incident waves

In the remainder of this manuscript, we are interested in a first calibration of the constitutive parameters of
our relaxed micromorphic model on a real experiment of wave transmission in a band gap metamaterial.

To do so, we focus on the experiment proposed in [127] in which only longitudinal waves are considered.
We hence consider here the solution of our relaxed problem only for what concerns the longitudinal part.

1v4, v5 and v6 correspond to the components of v4 defined in Equation (IV.12)
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Figure 49: Incident, reflected and transmitted longitudinal waves at a Cauchy/relaxed-micromorphic inter-
face.

In other words, we are only considering the longitudinal fields v1 and u1 together with the field v6 which is
coupled to v1 through the boundary conditions (IV.95).

In summary, the boundary value problem for longitudinal waves can be written as (see equations (IV.3),
(IV.93), (IV.94), (IV.95) and (D.4))

u−1,tt = c2l (u
−
1 )′′,

v+
1,tt = AR

1 · (v+
1 )′ +B R

1 · (v+
1 )′ + C R

1 · v+
1 , (IV.99)

v+
6,tt = AR6 (v+

6 )′′ + CR6 v
+
6 ,

together with the boundary conditions:

v+
1 · n− u

−
1 = 0,

 λe + 2µe
0
0

 · (v+
1

)′
+

 0
−2µe

−(3λe + 2µe)

 · v+
1 = (λ+ 2µ)

(
u−1
)′ (IV.100)

 0
−µL2

c/2
µL2

c

 · (v+
1

)′
= 0,

(
v+

6

)′
= 0.

The wave form solution for purely longitudinal fields is given by (see also equations (IV.97), (IV.98) and
Figure 49):

u−1 = α1 e
i(ω/cl x1−ω t) + α1 e

i(−ω/cl x1−ω t),

v+
1 = β1

1h
1
1e
i(k11(ω)x1−ω t) + β2

1h
2
1e
i(k21(ω)x1−ω t), (IV.101)

v+
6 = β6 e

i(1/cm
√
ω2−ω2

s x1−ω t).

Replacing the wave solution (IV.101) in the 4 scalar jump conditions (IV.100) and setting x1 = 0 (position
of the interface) we can calculate the 4 unknown amplitudes α1, β

1
1 , β

2
1 and β6.

From the condition
(
v+

6

)′
= 0, it is straightforward to prove that β6 = 0, so that finally v+

6 = 0 ∀x1 and
∀t. As for the other amplitudes, they have more complicated expressions which we do not explicitly show
here since it does not add any fundamental information to the reasoning.
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3.3 Reflection and transmission coefficients at a Cauchy/relaxed-
micromorphic interface

We now want to define the reflection and transmission coefficients for the considered Cauchy/relaxed-
micromorphic interface. To that end, we introduce the quantities

Ji =

∫ Π

0

Hi (0, t) dt, Jr =

∫ Π

0

Hr (0, t) dt, Jt =

∫ Π

0

Ht (0, t) dt,

where Π is the period of the traveling plane wave and Hi , Hr and Ht are the energy fluxes of the incident,
reflected and transmitted energies, respectively. The reflection and transmission coefficients can hence be
defined as

R =
Jr
Ji
, T =

Jt
Ji
. (IV.102)

Since the considered system is conservative, one must have R+ T = 1.
In the particular case of reflection and transmission of longitudinal plane waves at a Cauchy/relaxed

micromorphic interface, recalling equations (IV.87) and (IV.89) together with the solutions (IV.101) for the
unknown fields we have:

Hi = u̇i1(λ+ 2µ)ui1,1, Hr = u̇r1(λ+ 2µ)ur1,1, Ht = H1
1 +H6

1 , (IV.103)

where we set ui1 = α1 e
i(ω/cl x1−ω t) and ur1 = α1 e

i(−ω/cl x1−ω t). We explicitly remark that the fluxes H1
1 and

H6
1 defined in equation (IV.90) must be calculated with the solutions v+

1 and v+
6 obtained for the considered

constraint and given in equation (IV.101).
Since in this particular case we have shown that v+

6 is zero, then H6
1 does not contribute to the evaluation

of the transmitted energy. Once the expressions for the energy fluxes have been calculated for the considered
constraint (macro internal clamp with free microstructure), the reflection and transmission coefficients can be
computed by using equations (IV.102). We remark that R and T depend on the frequency ω of the traveling
waves.

3.3.1 The degenerate limit case Lc = 0 (internal variable model)
We show here that at the interface between a Cauchy continuum and a relaxed micromorphic one it is
possible to model, as a degenerate limit case, the onset of two band gaps whose bounds are [ω1

l , ωs] and
[ω2
l , ωp] (see [141] and equations IV.61 and IV.62), where:

ω1
l =

√
al −

√
a2
l − b2l , ωs =

√
2(µe + µm)

η
,

(IV.104)

ω2
l =

√
al +

√
a2
l − b2l , ωp =

√
2(µe + µm) + 3(λe + λm)

η
,

where we have defined:

al =
2µe
η1

3κe
η3

2 η1 + η3

3(λe + 2µe)
+
µm

η1
+

3κm

2 η3
, b2l =

2µe
η1

3κe
η3

λm + 2µm

λe + 2µe
+ 4

µm

η1

3κm

2 η3
. (IV.105)

In Figure 50, we show a characteristic pattern of the transmission coefficient at a Cauchy/relaxed-micromorphic
interface for a particular choice of the constitutive parameters and setting Lc = 0. The main characteristic
feature of the relaxed micromorphic model with Lc = 0 (internal variable model) is that two separate band
gaps can be determined and their bounds can be explicitly defined as functions of the constitutive parameters
of the model according to equations (IV.104).

Switching on and slowly increasing the parameter Lc produces small changes on the reflection profile of
Figure 50, which corresponds to the smoothening of the sharp corners that can be seen corresponding to the
band-gap frequencies.
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Figure 50: Transmission coefficient of the relaxed micromorphic model with Lc = 0 for λe = µe = λm =
µm = 100 GPa and η = 1 kg/m.
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CHAPTER IV.4
Modeling real two dimensional phononic crystals

In this chapter, we consider the application of the relaxed micromorphic model to two real phononic meta-
materials, namely:

• a steel plate with cross-shaped holes;

• a steel plate with liquid-filled round holes.

The relaxed micromorphic model will be fitted using two different procedures and a validation of the model
is presented, thus showing definitive proof of the applicability of our model to real engineering cases.

4.1 The steel plate with cross-shaped holes

In this section, we apply the results presented to describe the reflective behavior of the interface between an
aluminum plate (modeled as a classical Cauchy continuum) and a metamaterial with specific microstructure
(modeled via a relaxed micromorphic model). To show the validity of the enriched continuum modeling
framework previously introduced we will compare it with direct FEM simulations performed with the software
COMSOL Multiphysics R©.

4.1.1 Microstructure and FEM analysis of a phononic metamaterial

In a previous work [132], it was shown that the analysis of bulk wave propagation in a metamaterial with
periodic cross-like holes (see Figure 51) can be achieved using the relaxed micromorphic model. More par-
ticularly, the parameters of the relaxed model are fit by superimposing the dispersion curves obtained via
the relaxed model to those obtained via a Bloch wave analysis (Figure 52). The details of the Bloch wave
analysis can be found in [132]; here we limit ourself saying that this study is based on the application of
periodic conditions to the microstructure and a subsequent modal analysis.

The transmission spectra for a Cauchy-material/metamaterial interface are determined via FEM according
to the model represented in Figure 53. An external excitation is applied on the left side by imposing a unitary
harmonic displacement and an analysis for different frequencies is performed by using the structural package
of COMSOL Multiphysics R©. The incident wave propagates in the first part of the geometry which consists in

a bc

a b c ρsteel E ν
[mm] [mm] [mm] [kg/m3] [GPa] [−]

1 0.9 0.3 2700 70 0.33

Figure 51: Microstructure of the considered metamaterial (left), values of the elastic parameters of the base
material (aluminum) and geometric parameters relative to the unit cell (right).
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Figure 52: Dispersion curves for waves propagating at 0◦ (left) and 45◦ (right) obtained with a Bloch wave
analysis of the cell shown in Figure 51.

--

excitation boundary

X=0 X=X

periodic boundary conditions
?

??

Cauchy microstructured material PML
Figure 53: Schematic representation of the FEM model for the determination of the transmission spectrum,
as implemented in COMSOL Multiphysics R©.

a homogeneous strip of the Cauchy material. After a length of 0.6 m an array of 40 unit cells with cross-like
holes of the type described in Figure 51 is added. When the wave arrives at the interface, it is partially
reflected and partially transmitted. Finally, a Perfectly Matched Layer (PML) is added at the end of the
strip to dissipate the transmitted wave and avoid spurious reflections in the metamaterial. On the upper
and lower boundary, a periodic condition is applied to impose the propagation along the strip direction, thus
reproducing the condition of plane wave propagation. The thickness of the strip is set to be equal to the
height of the unit cell.

We are considering an interface between a classical Cauchy continuum on the − side and a microstructured
material on the + side. The object is to see how much energy is transmitted through the interface. A priori, we
have no information about the wave propagation in the microstructured material but the propagation in the
homogeneous Cauchy continuum can be expected to be planar if the source is far enough from the interface.
Therefore, we expect to find longitudinal waves propagating with wavelengths kl = ± ω

cl
and transverse waves

with kt = ± ω
ct
, where cl =

√
λ+2µ
ρ and ct =

√
µ
ρ . The plus or minus sign in the wavenumber is due to the

possibility that the waves can travel in both directions. Thus, we have that the waveform solution in the
Cauchy material can be written as:

u−1 (X, t) = ui1(X, t) + ur1(X, t), u−2 (X, t) = ui2(X, t) + ur2(X, t), u−3 (X, t) = ui3(X, t) + ur3(X, t),

where, as before, we set:

ui1(X, t) = ᾱ1 e
i( ωcl

X−ω t)
, ur1(X, t) = α1 e

i(− ω
cl
X−ω t)

,

ui2(X, t) = ᾱ2 e
i( ωct

X−ω t), ur2(X, t) = α2 e
i(− ω

ct
X−ω t), (IV.106)

ui3(X, t) = ᾱ3 e
i( ωct

X−ω t), ur3(X, t) = α3 e
i(− ω

ct
X−ω t).

Given the frequency ω of the traveling wave, the solution is hence known except for the 6 amplitudes ᾱi and
αi (i = 1, 2, 3).
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Figure 54: Transmission coefficient as function of frequency for an incident longitudinal (top) and transverse
(bottom) wave for the FEM model.

To evaluate the unknown amplitudes in Equations (IV.106), we can use the direct solution obtained via
the FEM simulation. In particular, the solution for the displacement field obtained via the FEM code can
be interpreted as the solution at a given instant (e.g. t = 0) for every point of the domain. Considering the
points X = 0 and X = X (see Figure 53) and the instant t = 0, we can set a system of equations to compute
the unknown amplitudes; we write:

u−1 (0, 0) = ᾱ1 + α1, u−2 (0, 0) = ᾱ2 + α2, u−3 (0, 0) = ᾱ3 + α3, (IV.107)

u−1 (X, 0) = ᾱ1 e
i ωcl

X
+ α1 e

−i ωcl X , u−2 (X, 0) = ᾱ2 e
i ωct

X + α2 e
−i ωct X , u−3 (X, 0) = ᾱ3 e

i ωct
X + α3 e

−i ωct X .

where u−i (0, 0) and u−i (X, 0) are known from the results of the FEM simulation.
From this system, we can evaluate the unknown amplitudes and, therefore, the incident and reflected flux

by using equation (IV.87). Finally, the reflection and transmission coefficients can be computed as:

R =
Jr
Ji
, T = 1−R. (IV.108)

We note that this semi-analytical procedure is valid only if the propagation of waves in the Cauchy material
is planar in the FEM solution. It can happen, usually at high frequencies, that the resulting vibrational mode
does not respect this assumption and, therefore, the transmission spectra obtained applying this method may
not be completely correct. However, in the range of frequencies considered here, the solution is constant along
the section and the waveform evaluated with the resulting amplitudes is perfectly described by the solution
obtained using Equations (IV.106) and (IV.107), thus confirming the validity of the procedure.

Actually, the accuracy of the peaks’ height in Figure 54 depends on the frequency step of the calculation
and can be more effectively described by choosing smaller frequency-steps close to the point of interest.

4.1.2 Identification of the material parameters
Macroscopic parameters The first step towards the identification of the relaxed micromorphic model’s
parameter is to find the equivalent macroscopic first gradient material. The first relation that must be
imposed is that the macroscopic material has a density which is the average of the considered metamaterial,
namely: ∫

Ω

ρ dΩ =

∫
�
ρsteel dA =⇒ ρ =

1

|Ω|

∫
�
ρsteel dA. (IV.109)

Afterwards, it is possible to determine the macroscopic elastic moduli µM and λM via the tangents in 0 to
the acoustic branches that, in the relaxed micromorphic model, are known (see IV.1.3 and IV.2.1):

∂ωTA

∂k
(0) =

√
µM

ρ
=⇒ µM = ρ

(
∂ωTA

∂k
(0)

)2

, (IV.110)

∂ωLA

∂k
(0) =

√
2µM + λM

ρ
=⇒ λM = ρ

(
∂ωLA

∂k
(0)

)2

− 2µM, (IV.111)
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These parameters are enough to describe the metamaterial as a first gradient model. However, the approx-
imation would be sensible only for a body which is large enough to assure that the effect of the underlying
microstructure is negligible. Furthermore, neither dispersive behavior nor optic branches of the dispersion
curves could be described.

Relations between the elastic moduli and the free micro-inertiae We can now use the known
values of the macroscopic parameters, as well as those of the cut-offs, to compute the values of some elastic
parameters of the relaxed micromorphic model, i.e.:


ωs =

√
2 (µe + µm)

η1

µM =
µe µm

µe + µm

=⇒



µe =
η1 ω

2
s

4

(
1±

√
1− 8µM

η1 ω2
s

)

µm =
η1 ω

2
s

4

(
1∓

√
1− 8µM

η1 ω2
s

)

η1 >
8µM

ω2
s

(IV.112)

ωr =

√
2µc
η2

=⇒

 µc =
η2 ω

2
r

2
η2 > 0

(IV.113)


ωp =

√
3 (κe + κM)

η3

κM =
κe κm

κe + κm

=⇒



κe =
η3 ω

2
p

6

(
1±

√
1− 12κM

η3 ω2
p

)

κm =
η3 ω

2
p

6

(
1±

√
1− 12κM

η3 ω2
p

)

η3 >
12κM

ω2
p

(IV.114)

With these derived relations, we have obtained the entire set of elastic moduli depending on the free micro-
inertiae. Furthermore, assuming that the elastic moduli are real and positive we also obtain limiting values
for η1, η2 and η3 to be used as a first step in the iterative process for their determination.

Determination of the micro-inertiae We have defined all the elastic parameters apart from the charac-
teristic length Lc, the gradient and free micro-inertiae, leaving us with 7 free parameters left. The determi-
nation of the micro-inertiae should be made imposing the asymptotic behavior of the dispersion curves. In
particular, considering the internal variable model with non-vanishing gradient micro-inertiae we find that
the three limiting values of the longitudinal curves depend on η1, η3, η1, η3 while the transverse curves de-
pend on η1, η2, η1, η2. As remarked while considering the form of the equations, we can always consider the
gradient micro-inertia η1 = 01. Therefore, we obtain that the longitudinal curves depend on η1, η3, η3 while
the transverse curves depend on η1, η2, η2.

The remaining parameters should be chosen imposing the asymptotic behavior of the dispersion curves.
However, the analytical expression of the asymptotes is very complex, being the solution of a third order
equation in ω2, therefore the procedure used for the fitting of the micro-inertiae is iterative. The first set of
values considered for the free micro-inertiae is composed by the lower bounds η1 = 8µM

ω2
s

and η3 = 12κM

ω2
p

, and
by η2 = η1. For the gradient micro-inertia, we assume at first η2 = η2 and η3 = η3. Furthermore, we start by
setting Lc = 0, so assuming a negligible presence of non-local effects. As a matter of fact, the micro-structure
studied in this section can be effectively described considering a vanishing characteristic length Lc = 0.

In [132], the material parameters of the relaxed micromorphic model were determined for the considered
micro-structure following the proposed procedure. The values are shown in Table 4.1. The results of the
fitting procedure proposed are shown in Figure 55 in which the dispersion curves obtained via the relaxed
micromorphic model are compared to those issued via a Bloch wave analysis. In the same Figure, we

1Given any set of micro-inertiae η1, η2 and η3, the set η∗1 = 0, η∗2 = η1 + η2 and η∗3 = 2 η1 + η3 does not change the form
of the equilibrium equations nor of the dispersion curves. Therefore, setting η1 = 0 does not preclude any possibility for the
relaxed micromorphic model.

125Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



Part IV Chapter 4. Modeling real two dimensional phononic crystals

ρ µc λmicro µmicro λe µe Lc[
kg/m3

]
[GPa] [GPa] [GPa] [GPa] [GPa] [m]

1323 0.272 19.8 0.737 17.7 3.857 0

η1 η2 η3 η̄1 η̄2 η̄3 η̄2 from [132] η̄3 from [132]
[kg/m] [kg/m] [kg/m] [kg/m] [kg/m] [kg/m] [kg/m] [kg/m]

3.25× 10−5 3.25× 10−5 4× 10−4 0 2× 10−4 6× 10−4 0.3× 10−4 1.8× 10−4

Table 4.1: Values of the material parameters (top) and of the micro-inertia parameters (bottom) of the
weighted relaxed micromorphic model. All parameters are the same as the ones measured in [132] except for
η̄2 and η̄3.

Figure 55: Comparison between the dispersion curves obtained with a Bloch wave analysis of the cell shown
in Figure 51 (left) and dispersion curves for the relaxed micromorphic model with the parameters measured
in [132] (center) and with the slightly modified set of the relaxed parameters value proposed in Table 4.1
(right). Longitudinal branches are in blue while the transverse ones are in green.

also propose a slight variation of the parameters fitted in [132] which may provide a more precise result
when considering the transmission spectra. Indeed, the fitting given in [132] is the best one possible when
considering a finite interval of wavenumbers. In order to fit at best the reflection and transmission spectrum,
the fitting of the dispersion curves alone may not be sufficient, since the horizontal asymptotes are approached
for bigger wavenumbers (smaller wavelengths). The third graph in Figure 55 provides the most precise results
for the band gap interval as well as for the reflection/transmission spectra. All the material parameters
considered are given in Table 4.1. The objective here is to show that the parameters derived in [132] using
the bulk dispersion curves alone are true material constants that allow to describe the mechanical behavior
of the considered metamaterial even when considering a complex (meta-) structure of the type presented in
Figure 51. In particular, we will show that such parameters properly describe the mechanical behavior of the
chosen metamaterial so well that the behavior of that metamaterial can be successfully described in more
complex situations as the reflection and transmission at discontinuity interfaces of the material properties.
The interest of using the relaxed micromorphic model resides in the unique possibility it offers to exploit only
few material parameters for the description of the mechanical behavior of an otherwise rather complicated
system.

For a comprehensive description of Figure 55, we refer the reader to [132]. Here, we limit ourselves
to point out the very good description of the band-gap and of the general behavior. The only difference
between the two approaches is given by the absence of a decreasing behavior in the first transverse optic
mode. However, the average behavior of that vibrational mode is still well described. As a matter of fact,
a decreasing behavior of the dispersion curves can be also obtained when considering the non-local behavior
of the relaxed micromorphic model (Lc different from zero). The numerical investigation of the fully non-
local case deserves extra attention and will be considered in a forthcoming paper. Indeed, in order to unveil
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Figure 56: Transmission coefficient as function of frequency for an incident longitudinal wave for the FEM
model (left) and for the relaxed micromorphic model (right).

the full effect of non-locality of the relaxed micromorphic model the characteristic length Lc plays a crucial
role, together with the conjoint introduction of an extra micro-inertia term associated to the time derivative
of CurlP . We will treat such a delicate extended case in a subsequent work which will finally show the
full potentiality of the relaxed micromorphic model that is representative of the behavior of the considered
microstructures medium for wavelengths spanning in a very large range up to arriving to small wavelengths
comparable to the size of the unit cell.

4.1.3 Validation of the relaxed micromorphic model via the transmission spectra

In this subsection, we compare the resulting transmission spectra for both the FEM model, as computed
with the semi-analytical method proposed in section IV.4.1.1, and the relaxed micromorphic one. In Figure
56, we show the spectra obtained considering a longitudinal traveling wave arriving at the interface for the
FEM model and for the relaxed micromorphic continuum.

The average description of the transmission spectrum at the interface between a homogeneous material
and a microstructured one is very accurate. The transmission coefficient starts around 0.6 and becomes zero
at around 0.7× 107 rad/s in both the models and the first peak, even if higher in the relaxed micromorphic
model, is comparable. For higher frequencies, the relaxed micromorphic model shows a second peak, while
the FEM does not seem to allow any transmission. It is also useful to point out that, in the FEM model, the
propagation of the wave through the interface is somehow present but the amplitude of the wave decreases
inside the microstructured metamaterial becoming zero after approximately 7 unit cells, see Figure 57 (left).
On the other hand, for the range of frequencies of the central band gap the amplitude of the displacements
becomes zero near the interface and the reflection can be entirely attributed to the presence of the interface
(see Figure 57 (right)). This difference seems to indicate that there is transmission at the interface for the
second optic mode, but the wave continues to reflect inside the microstructured material.

As a matter of fact, for the frequencies considered in Figure 57(left), the corresponding wavelengths of
the incident wave start to become very small with respect to the size of the cell, so that Bragg scattering is
sensible to take place. This fact is somehow captured by the FEM model, but cannot be captured by the
relaxed model which is intrinsically a continuum model. In this case the frequency is too high in order to
ensure the hypothesis of continuum model is still completely representative of reality.

The same analysis can be done for transverse waves, as shown in Figure 58. In this case, the approximation
given by the continuous model is even better because no extra peak can be found for higher frequencies. The
two transmission peaks are fully described even if the value of the transmission coefficient is not exactly
analogous. As before, the height of the peaks is better caught by the FEM model when adding more
frequency points. Also, the width of the peaks is comparable, only with the exception of the second one.

4.2 The steel plate with liquid-filled round holes

In this section we are interested in the modeling of the mechanical behavior of a particular metamaterial
(phononic crystal) which has been known to inhibit elastic wave propagation on an experimental basis (see
[127]).
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Figure 57: Dimensionless displacement on the bottom edge for the vibrating modes in the range of angular
frequencies 1.75× 107–1.9× 107 rad/s (left) and 0.80× 107–1.5× 107 (right) (FEM simulations).

Figure 58: Transmission coefficient as function of frequency for an incident transverse wave for the FEM
model (left) and for the relaxed micromorphic model (right).
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Figure 59: Schematics of the sample structure (a) and the experimental setup (b) ( [127, Figure 1(b)]).

The structure presented, which is schematically shown in Figure 59(a) consists of a steel plate with liquid-
filled holes in square array. The lattice constant, denoted by a, is 3.0 mm, the thickness t of the plate is 15
mm, the diameter d of the hole is 1.8 mm and the width of the cavity, w, is 1.5 mm.

4.2.1 Experiments of wave transmission at a Cauchy/phononic-crystal interface
We show in Figure 60 the obtained experimental transmission spectrum of the considered phononic crystal,
i.e. with 8 rows of liquid-filled holes (see Figure 59(a)) as a function of the frequency of the traveling wave.
Given the geometry of the specimen shown in Figure 59, a longitudinal wave is sent in the Cauchy medium
on the left side and the transmission coefficient is evaluated when the wave leaves the metamaterial on the
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Figure 60: Transmission spectrum of the phononic crystal presented in Figure 59a, with liquid-filled holes [127,
Figure 2b].

opposite side. The transmission spectrum is shown in Figure 60. With liquid filled holes the band gap edge
crosses the −3 dB-level at ω1 = 586kHz. Transmission of acoustic waves is suppressed until the upper edge
at ω3 = 918 kHz but a single peak arises at ω2 = 793 kHz, which can be attributed to the resonance of the
liquid-filled holes. The periodic variation of transmission at lower frequencies is caused by Bragg resonances.
The second transmission band extends to about ω4 ' 1 MHz.

4.2.2 Identification of the parameters

In this subsection we present the procedure that we used in order to fit in the best possible way the maximum
possible number of parameters of our relaxed micromorphic model on the available data based on a real
phononic crystal. To start with, we assume the macroscopic mass density to be known as the averaged
density of steel with fluid-filled holes. In particular we choose ρ = 5000 kg/m3. Nevertheless, we verify
a posteriori that the value of ρ indeed does not sensibly affect the profile of the reflection coefficient for
frequencies between 0 and 1 MHz. This fact is sensible if, in accordance to [140, 141] and to Figure 41,
we notice that the parameter ρ only intervenes in the definition of the oblique asymptote cp =

√
λe+2µe

ρ

for longitudinal waves. Such asymptote governs the slope of the optic wave LO1 which starts playing a
significant role for frequencies higher than ωp. In the considered example, ωp will be set to be equal to ω3

which is experimentally found to be close to 1 MHz. For frequencies higher than 1 MHz variations of ρ
could eventually produce more tangible changes in the profile of the reflection coefficient.

To perform the fitting of the remaining parameters, we started by imposing the following identities:

ω1
l (µe, µm, λe, λm, η) = ω1, ωp(µe, µm, λe, λm, η) = ω3, (IV.115)

ω2
l (µe, µm, λe, λm, η) = ω2, ωs(µe, µm, η) = ω2 − 8 kHz.

where we recall that the explicit expressions of ω1
l , ωs, ω

2
l , ωp as functionss of the elastic parameters of the

relaxed micromorphic model are given in equations (IV.104). We hence have 4 conditions to determine the
5 elastic parameters µe, µm, λe, λm, η setting in a first instance Lc = 0. If analogous experiments as the one
proposed in [127] for longitudinal waves would be reproduced on the same metamaterial but for transverse
waves, extra conditions on the parameters of the relaxed micromorphic model would be available that would
permit a more accurate fitting.
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Figure 61: Profiles of the transmission coefficients ob-
tained for different arbitrary values of the parameter
µe (left).

Parameter Unit
µe 10 25 41 GPa
λe 47 117 186 GPa
µm 73 183 293 GPa
λm −26 −65 −105 GPa
η 0.27 0.68 1.09 kg/m

Table 4.2: Values of the constitutive parameters
obtained via the solution (IV.116) for arbitrary
values of the parameter µe (right).

(a) Condition Value Unit

ω1
l = ω1 586 kHz

ωs = ω2 − 8 kHz 785 kHz
ω2
l = ω2 793 kHz
ωp = ω3 918 kHz

(b) Parameter Value Unit
µe 25 GPa
λe 117 GPa
µm 183 GPa
λm −65 GPa
η 0.68 kg/m

Table 4.3: Conditions used for the parameters identification (a) and corresponding values of the obtained
elastic parameters of the relaxed micromorphic model (b).

We start by numerically solving the system of four equations (IV.115) with respect to the parameters
λe, µm, λm and η leaving free the parameter µe. The obtained solution is2

λe = 4.58µe, µm = 7.21µe, λm = −2.57µe, η = 2.66 10−11 µe. (IV.116)

The free parameter µe is then varied in order to evaluate its influence on the reflection coefficient. A para-
metric study on the free coefficient µe is performed giving rise to the profiles of the transmission coefficients
shown in Figure 61 with the parameters shown in Table 4.2.

At this point, we are able to choose the value of the parameter µe which respects conditions (IV.116) and
which fits at best the profile of Figure 60. We conclude that, based on the described fitting procedure, the
values of the parameters that best fits the profile associated to the real phononic crystal are those presented
in Table 4.3b. Figure 62 shows the comparison between the profile of the transmission coefficient obtained
in [127] for a real phononic crystal and the one obtained with our relaxed micromorphic model when setting
Lc = 0.

We see a very good fitting can be obtained up to frequencies of the order of 1 MHz. In particular, the
oscillatory behavior observed for lower frequencies and which, according to the authors of [127], is due to
Bragg scattering phenomena is caught by our model in an “averaged” sense.

The fitting for higher frequencies is almost perfect up to reaching 1 MHz, while for frequencies higher

2We explicitly mention that, additionally to the solution (IV.116) we obtain a second solution which, nevertheless must be
excluded since it violates the positive definiteness of the strain energy density W . Solution (IV.116) is then the only possible
solution which can be used to fit the profile of the transmission coefficient. We checked that it is possible to leave free any other
parameter rather than µe to perform the desired fitting of the transmission coefficient and that it yields comparable results for
the obtained values of the constitutive parameters.

130Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



Chapter 4. Modeling real two dimensional phononic crystals Part IV

Figure 62: Comparison of the profile obtained in [127] based on a real metamaterial and the one obtained
with the relaxed micromorphic model with the values given in Table 4.3 and Lc = 0.

than 1 MHz the relaxed micromorphic model looses it predictivity due to the fact that the corresponding
wavelengths are so small that the continuum hypothesis is sensible to become inaccurate.

We need to explicitly remark that the peak of reflection, which is obtained around the frequency ω2 and
that is experimentally related to a resonant behavior of the fluid inside the walls is slightly overestimated
by the simulation via the relaxed micromorphic model with respect to the one observed in [127]. This peak
magnification can be related to the fact that no dissipation is accounted for in our model, while the fluid
viscosity may perhaps play here a non-negligible role.

In what follows, we will show that we can estimate the characteristic length Lc of the metamaterial
experimentally tested in [127] to be comparable to the order of magnitude of the diameter of the embedded
microstructure. We will also show that, even if the estimated value of Lc is non- negligible with respect to the
characteristic size of the embedded microstructure, its effect on the amount of energy which is transmitted
in the considered metamaterial is very small. This means that the error which is introduced if one uses an
internal variable model instead of a relaxed micromorphic one is energetically small. On the other hand,
non-locality is a fundamental feature of metamaterials with heterogeneous microstructure and as such it
should always be included in their modeling. As a matter of fact, non-local effects are sensible to become
more and more important when the contrast in the mechanical properties between adjacent unitary cells at
the microscopic level becomes more pronounced.

As a general rule, we claim that the degenerate limit case Lc = 0 can be used for a first rough fitting of
the elastic parameters of the relaxed micromorphic model. After that, the characteristic length Lc must be
switched on in order to achieve a more accurate fitting of the experimental results. This last operation will
allow for the estimate of non local effects in real metamaterials.

The relaxed micromorphic model allows for the possibility of including non-local effects in band-gap
metamaterials. In the next section we will have the twofold task of:

• fitting at best our constitutive parameters on a real metamaterial,

• estimate the order of magnitude of non-localities in such metamaterial.

We now come back to the point where we set Lc = 0 in order to start fitting our constitutive parameters
(see subsection IV.3.3.1). This fact allowed us to obtain here the values of the elastic parameters of our
model by a first fitting with the profile of the transmission coefficient (see Table 4.3).
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-

Figure 63: Fitting of the parameter Lc on the experimental profile of the transmission coefficients.

On the other hand, as expected, switching on the characteristic length Lc allows an even better fitting as
shown in Figure 63.

Indeed, we notice from Figure 63 that the degenerate limit case Lc = 0 lets the calculated transmission
coefficient slightly deviate from the experimental one (sharp corners). Small variations of the numerical
profile can be perceived as far as Lc ∈ [0, 0.5mm). On the other hand, as far as Lc = 0.5mm an almost
perfect fitting is achieved (dashed line in Figure 63 on the right)). This means that we have been able to
estimate the non-locality of the considered metamaterial to be of the order of 0.5mm, i.e. ∼ 1/3 of the
diameter of the holes.

We need to explicitly say that the value of the macroscopic density ρ might slightly affect the variation
of the transmission coefficient as a function of Lc. Nevertheless, we need to consider a density of 1 order of
magnitude higher (50 000 kg/m3) in order to appreciate a sensible deviation of the profiles shown in Figure
63. We leave to a subsequent work the aim of determining also the macroscopic mass density ρ by using
extra conditions provided by the fact of considering also measurements on transverse waves.

The determination of the parameter Lc completes the fitting of the elastic parameters of our relaxed
micromorphic model on the band-gap metamaterial experimentally tested in [127] (see also Table 4.3). The
Cosserat couple modulus parameter µc cannot be measured as far as only longitudinal waves are considered
and, thus, it remains to be determined. We have to explicitly remark that if an analogous fitting procedure
would have been possible for transverse waves, having access to the related transmission spectrum.

The main scope of the present part, that we think to have successfully achieved, is threefold:

• we give the very first estimation of the maximum possible number of constitutive parameters of the
relaxed micromorphic model based on a simple measurement of transmission of longitudinal waves at
a Cauchy/band-gap-metamaterial interface

• we give the very first evidence of the non-locality in band-gap metamaterials based upon real experi-
ments

• we elucidate the physical meaning of the constraint which has been introduced in [141] and that we
called “internal clamp with free microstructure”: such constraint allows for the description of continuity
of displacement in the solid phase at the Cauchy/metamaterial interface, while the fluid in the embedded
microstructure is free to vibrate. It is exactly the freedom which is left to the micro-motions that allows
for the description of the local resonant peak around the frequency ω2 which is indeed not possible for
other types of constraints (see [141]).
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Conclusion

Metamaterials are artifacts composed by microstructural elements assembled in periodic or quasi-periodic
patterns, giving rise to materials with unorthodox properties. For some of these metamaterials, the presence
of a microstructure allows for macroscopic wave-inhibition. More particularly, this means that, given the
topology of the microstructure, when the material is solicited at frequencies that fall in the band-gap region,
any of the possible micro-motions is activated at such frequencies. Hence, this results in the impossibility
of waves to travel in the considered metamaterial. The structure of the relaxed micromorphic model allows
to describe complete frequency band-gaps with the simplest possible micro-inertia and without losing the
non-locality of the model. It is decisive to use CurlP instead of the full micro-distortion gradient ∇P and to
take a positive Cosserat couple modulus µc > 0. Considering that non-locality is an intrinsic characteristic
feature of micro-structured materials, especially when high contrasts of the mechanical properties occur at
the micro-level, models that allow for its description are a necessary requirement.

In this part, we analyzed the behavior of the relaxed micromorphic model in the case of plane wave
propagation. Furthermore, we derived the set of necessary and sufficient conditions that have to be imposed
on the constitutive parameters of the relaxed micromorphic model in order to guarantee

• positive definiteness;

• real wave velocity;

• Legendre–Hadamard strong ellipticity condition.

We showed that, on the one hand, definite positiveness implies real wave propagation, while on the other
hand, real wave propagation is not guaranteed by the strong ellipticity condition. We conclude that in strong
contrast to the case of classical isotropic linear elasticity, where the three concepts are known to be equivalent,
in the case of the relaxed micromorphic continua only definite positiveness of the strain energy density can
be considered to be a good criterion to guarantee real wave speeds in the considered media. The proposed
considerations can be extended to all enriched continua where the equivalence between the three notions is
far from being straightforward.

Furthermore, we made a review of some of the available isotropic, linear-elastic, enriched continuum
models for the description of the dynamical behavior of metamaterials. We show that the relaxed micro-
morphic model is the only non-local enriched model which is able to describe band-gaps when considering
a kinetic energy independently accounting for micro and macro motions. Considering an inertia term which
couples the micro-motions to the macroscopic motions, also other non-local models exhibit the possibility of
describing band-gap behaviors. Nevertheless, the relaxed micromorphic model is still the more effective one
to describe (multiple) band-gaps and non-local effects in a realistic way. In fact, even with the addition of
the new micro-inertia term, the relaxed model is able to account for the description of two band-gaps, in
contrast to the single band-gap allowed by the Mindlin-Eringen model. Finally, the internal variable model
with the new kinetic energy terms allows for the description of up to three band gaps. Nevertheless, the
overall trends shown by the dispersion curves turn to be quite unrealistic due to the fact that all the branches
of the dispersion curves show very low or no dispersion at all.

Afterwards, we consider the application of the relaxed micromorphic model to two real phononic meta-
materials, namely:

• a steel plate with cross-shaped holes;

• a steel plate with liquid-filled round holes.
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For the first metamaterial, we provide a validation of the material parameters of the relaxed micromorphic
model derived in [132] by means of the study of the transmission properties of a rather simplified meta-
structure made up of 40 unit cells of a metamaterial made of periodic cross-like holes [132]. In particular,
the interface between a homogeneous solid and this meta-structure is considered and the reflection and
transmission coefficients are derived as a function of the frequency. The transmission spectra are computed
both via a direct FEM simulation and via a direct implementation of the relaxed model with the material
constants derived in [132]. The obtained results show an excellent agreement and the relaxed model revealed
to be more than 10 times faster in terms of computational time with respect to the FEM implementation of
the same problem.

Considering the steel plate with liquid-filled round holes, we give the very first estimate of the resulting
elastic coefficients of the relaxed micromorphic model based upon the experimentally-based transmission
spectra presented in [127] which concern the measurement of the transmitted energy as a function of the
frequency of the traveling wave for this particular band-gap metamaterial. Restricting our attention to the
problem of studying reflection and transmission of longitudinal waves at a Cauchy/relaxed-micromorphic
interface, we are able to reproduce the main characteristic features which are observed in [127] for a phononic
crystal obtained by means of an aluminum plate with small fluid-filled holes (diameter ∼ 1.8mm). Suitably
choosing the values of the parameters of our relaxed micromorphic model, we are able to fit the profile of
the transmission coefficient proposed in [127] as a function of the frequency of the traveling waves. Two
band-gaps which almost collapse to form a unique band-gap can be observed both in [127] and as a result of
the simulations based upon our relaxed micromorphic model.

We conclude recalling the finding that we believe to be the most important to be pointed out. Indeed,
we showed by direct comparison of our relaxed micromorphic model with available evidences that non-local
effects are an intrinsic feature of band-gap metamaterials. A characteristic length Lc = 0.5mm has been
estimated for the real phononic crystal studied in [127] which is almost 1/3 of the diameter of the holes in
the embedded microstructure. Even if the energetic contribution associated to the underlying non-locality is
very small (only small changes in the transmission coefficient can be appreciated when increasing Lc from 0
to 0.5mm), such non-locality is intrinsically present in any microstructured material and as such it should
be always accounted for when modeling their mechanical behavior. The macroscopic effects of non-localities
are sensible to become more and more energetically significant when considering stronger contrasts in the
mechanical properties at the microscopic level (e.g. unitary cells with very different stiffnesses). The relaxed
micromorphic model should be always used when one wants to model band-gap metamaterials that show
non-localities.

On the basis of the results presented here, we can claim that the relaxed micromorphic model is the only
macroscopic continuum model known to date which is simultaneously able to account for

• prediction of complete band-gaps in mechanical metamaterials;

• non-local effects (via the introduction of higher order derivatives of the micro distortion tensor in the
strain energy density).

The present part represents the first step towards the use of the relaxed micromorphic model for the
characterization of the mechanical behavior of metamaterials and for their use in view of meta-structural
design in the simplified framework of enriched continuum mechanics. Furthermore, the results presented in
this part allow to give the first physical interpretation of the boundary conditions which can be imposed
at a Cauchy/relaxed-micromorphic interface based upon a real experiment. Work in progress is focused
on the generalization of the results presented here to the anisotropic framework [49] in order to be able to
characterize a wider class of metamaterials, thus increasing the interest of using enriched continuum models
for realistic meta-structural design.
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General conclusion and perspectives

For centuries, continuum theories have been used successfully for the description of the mechanical behavior
of materials at the macroscopic scale. The idea, which is at the basis of such theories, is that the discrete
nature of matter can somehow be neglected when considering sufficiently large pieces of a given material,
which can thereby be regarded as a continuum. This fundamental assumption has been used continuously
since the 19th century, when Cauchy showed how such “averaged” theories are a powerful tool for determining
the mechanical behavior of large-scale engineering structures. Indeed, the advantage of considering a body
as a large-scale object, as opposed to viewing each of its atoms separately, is considered nowadays evident.

However, the systematic use of Cauchy theories may sometimes represent a too drastic simplification of
reality, since some essential characteristics related to the heterogeneity of their microstructure are implicitly
neglected. When considering a scale which is small enough, every material is actually heterogeneous, but
this does not affect the mechanical behavior at the engineering scale, in most cases. Therefore, a Cauchy
continuum theory is a suitable choice for modeling the macroscopic mechanical behavior of the considered
materials in the simplest and most effective way. On the other hand, some materials are heterogeneous
even at relatively large scales and, as a consequence, one cannot neglect the effect of their microstructure on
the overall mechanical behavior. In such cases, a Cauchy continuum theory may not be sufficient to fully
describe the considered material, especially for particular loading and/or boundary conditions. The resulting
structure may possess some microstructure-related behaviors; for example in this manuscript we studied the
case of:

• fibrous composite reinforcement and the macroscopic effects due to the bending of the yarns at the
mesoscopic scale;

• metamaterials and band-gaps due to local resonances.

For those cases we proved that a more complex framework than classical Cauchy continuum theory is needed:
Enriched Continuum Theories.

The fibrous composite reinforcements have been thoroughly studied in light of the broad set of engineering
applications. This lightweight material possesses very high specific stiffness and it deforms to adapt to complex
shapes. The forming process is particularly difficult to describe because, especially before the addition of
the resin, the material is strongly inhomogeneous and local effects characterize its macroscopic behavior.
The modeling of the forming process, however, could lead to a higher quality product and also to a better
cost-efficiency. We showed in this manuscript how a second gradient energy can be used to describe such
phenomena. However, the model presented is still not ready for a complex implementation in real engineering
applications. Even if we proved how the second gradient model can capture the effects due to the mesoscopic
bending of the yarns, a thorough experimental testing is due to define both a non-linear first gradient
energy and the parameters in the second gradient energy. The main perspective of the work is to set up an
experimental procedure to fully characterize the complex behavior of these materials.

The second example of a macroscopic property due to a microscopic heterogeneity is found in some meta-
materials that show an unorthodox behavior with respect to wave propagation. In particular, some of these
metamaterials can inhibit wave propagation for certain frequency ranges, usually referred to as “frequency
band–gaps”. Conceived by assembling small components and arranging them into periodic or quasi-periodic
patterns, these materials are attracting an ever–growing attention both for what concerns its modeling and
the relative experiments. Numerous efforts are currently being made to reliably account for the observed
band-gaps in the simulation of such metamaterials. The most common models are intrinsically microscopic
and based on the use of Bloch’s theorem for periodic microstructures or on numerical homogenization tech-
niques. Nevertheless, a systematic treatment of band-gap modeling based on the spirit of Enriched Continuum
Mechanics is still lacking and deserves attention. In this work, we showed how a relaxed micromorphic model
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can account for some microscopic-related modes of vibration while remaining in a continuous framework.
Furthermore, the needed mathematical tools for the relaxed micromorphic model were derived both in the
isotropic and the anisotropic cases for which the needed existence and uniqueness result can be found in the
literature.

Only in the framework of enriched continuum theories, we can obtain a simplified modeling and a more
effective conception of real large-scale civil engineering “metastructures”, made up of metamaterials as building
blocks, that resist vibrations and shocks in a large range of frequencies. Furthermore, based on the abundant
literature concerning this subject, we believe possible to identify and describe a wide class of periodic and
quasi-periodic band-gap microstructures via the relaxed micromorphic model that can be used as basis for
the design of such metastructures. Considering these remarks and the results presented in this manuscript,
we believe that the relaxed micromorphic model is a suitable choice for the description of the behavior of
band–gap metamaterials in view of the conception of large-scale civil engineering metastructures.

Work in progress is focused on the generalization of the results presented here to the anisotropic frame-
work [49] in order to be able to characterize a wider class of metamaterials, so increasing the interest of
using enriched continuum models for realistic meta-structural design. The main perspective for the relaxed
micromorphic model is its numerical implementation in a Finite Element code for the conception of complex
bad-gap metastructures. The fact of using a continuum relaxed micromorphic model could be an incredibly
powerful tool for the design of complex metastructures which are constituted by metamaterials with already
known mechanical properties. Indeed, the fact of dealing with few macroscopic elastic coefficients should make
the finite element implementation of the model rather easy, thus allowing for numerically efficient models for
the design of complex structures. Once the material parameters of the considered metamaterials have been
estimated by inverse approach, standard finite element codes could be used in order to design structures with
extended sizes and complex geometries. This will allow us to eventually design some prototype structures
which are able to absorb elastic waves in precise frequency ranges (for example by means of 3D printing).

A possible further extension of the relaxed micromorphic model is the insertion of additional micromor-
phic degrees of freedom to account for even more microstructure-related effects. We dubbed this possible
extension the “relaxed multimorphic model”. When the full setting-up of the anisotropic relaxed multimor-
phic model will be concluded (for which advanced techniques of functional analysis and calculus of variations
are required), we will be able to use the a continuous model to perform numerical simulations for specific
metamaterials in even greater detail.

137Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



End matter

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



Bibliography

1. Jan D. Achenbach. Wave propagation in elastic solids. North-Holland Publishing Company, Amsterdam, The Netherlands,
1973.

2. Yamina Aimène, Emmanuelle Vidal-Sallé, Benjamin Hagège, François Sidoroff, and Philippe Boisse. A hyperelastic ap-
proach for composite reinforcement large deformation analysis. Journal of Composite Materials, 44(1):5–26, 2010.

3. Jean-Jacques Alibert, Pierre Seppecher, and Francesco dell’Isola. Truss modular beams with deformation energy depending
on higher displacement gradients. Mathematics and Mechanics of Solids, 8(1):51–73, 2003.

4. Holm Altenbach, Victor A. Eremeyev, Leonid P. Lebedev, and Leonardo A. Rendón. Acceleration waves and ellipticity in
thermoelastic micropolar media. Archive of Applied Mechanics, 80(3):217–227, 2010.

5. Mario N. Armenise, Carlo E. Campanella, Caterina Ciminelli, Francesco Dell’Olio, and Vittorio M. N. Passaro. Phononic
and photonic band gap structures: Modelling and applications. Physics Procedia, 3(1):357–364, 2010.

6. Ali Asghar Atai and David J. Steigmann. On the nonlinear mechanics of discrete networks. Archive of Applied mechanics,
67(5):303–319, 1997.

7. Nicolas Auffray. On the algebraic structure of isotropic generalized elasticity theories. Mathematics and Mechanics of
Solids, 20(5):565–581, 2015.

8. Andrés I. Ávila, Georges Griso, Bernadette Miara, and Eduard Rohan. Multiscale Modeling of Elastic Waves: Theoretical
Justification and Numerical Simulation of Band Gaps. Multiscale Modeling and Simulation, 7(1):1–21, 2008.

9. Pierre Badel, Emmanuelle Vidal-Sallé, and Philippe Boisse. Large deformation analysis of fibrous materials using rate
constitutive equations. Comput. Struct., 86(11-12):1164–1175, 2008.

10. Daniel Balzani, Patrizio Neff, Jörg Schröder, and Gerhard A. Holzapfel. A polyconvex framework for soft biological tissues.
Adjustment to experimental data. International Journal of Solids and Structures, 43(20):6052–6070, 2006.

11. Gabriele Barbagallo, Angela Madeo, Ismael Azehaf, Ivan Giorgio, Fabrice Morestin, and Philippe Boisse. Bias extension test
on an unbalanced woven composite reinforcement: Experiments and modeling via a second-gradient continuum approach.
Journal of Composite Materials, 51(2):153–170, 2017.

12. Gabriele Barbagallo, Angela Madeo, Marco Valerio d’Agostino, Rafael Abreu, Ionel-Dumitrel Ghiba, and Patrizio Neff.
Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length
asymptotics. International Journal of Solids and Structures, 120:7–30, 2017.

13. Gabriele Barbagallo, Angela Madeo, Fabrice Morestin, and Philippe Boisse. Modelling the deep drawing of a 3D woven
fabric with a second gradient model. Mathematics and Mechanics of Solids, Preprint, 2016.

14. Jose Baruchel, Jean-Yves Buffiere, Eric Maire, Paul Merle, and Gilles Peix. X-Ray Tomography in Material Science.
Hermés Science Publications, Paris, 2000.

15. Sebastian Bauer, Patrizio Neff, Dirk Pauly, and Gerhard Starke. New Poincaré-type inequalities. Comptes Rendus Math-
ematique, 352(2):163–166, 2014.

16. Arkadi Berezovski, Jüri Engelbrecht, and Mihhail Berezovski. Waves in microstructured solids: a unified viewpoint of
modeling. Acta Mechanica, 220(1-4):349–363, 2011.

17. Rajendra Bhatia. Positive definite matrices. Princeton University Press, 2009.

18. Simon Bickerton, Pavel Šimáček, Sarah E. Guglielmi, and Suresh G. Advani. Investigation of draping and its effects on
the mold filling process during manufacturing of a compound curved composite part. Composites Part A: Applied Science
and Manufacturing, 28(9-10):801–816, 1997.

19. David Bigaud, Loïc Dréano, and Patrice Hamelin. Models of interactions between process, microstructure and mechanical
properties of composite materials – a study of the interlock layer-to-layer braiding technique. Composite Structures,
67(1):99–114, 2005.

20. Davide Bigoni and Panos A. Gourgiotis. Folding and faulting of an elastic continuum. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 472(2187):20160018, 2016.

21. Jeffrey L. Bleustein. A note on the boundary conditions of Toupin’s strain-gradient theory. International Journal of Solids
and Structures, 3(6):1053–1057, 1967.

22. Jean-Paul Boehler. Lois de comportement anisotrope des milieux continus. Journal de Mécanique, 17(153):70, 1978.

23. Jean-Paul Boehler. Introduction to the invariant formulation of anisotropic constitutive equations. In Applications of
Tensor Functions in Solid Mechanics, pages 13–30. Springer Vienna, Vienna, 1987.

140Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



General conclusions and perspectives Bibliography

24. Thomas Böhlke and Albrecht Bertram. A minimum problem defining effective isotropic elastic properties. Zeitschrift für
Angewandte Mathematik und Mechanik, 80(S2):419–420, 2000.

25. Philippe Boisse, Karine Buet, Alain Gasser, and Jean Launay. Meso/macro-mechanical behaviour of textile reinforcements
for thin composites. Composites Science and Technology, 61(3):395–401, 2001.

26. Philippe Boisse, A. Hakim Cherouat, Jean Claude Gelin, and Hamid Sabhi. Experimental study and finite element
simulation of a glass fiber fabric shaping process. Polymer composites, 16(1):83–95, 1995.

27. Philippe Boisse, Nahiène Hamila, F. Helenon, Benjamin Hagège, and Jian Cao. Different approaches for woven composite
reinforcement forming simulation. International Journal of Material Forming, 1(1):21–29, 2008.

28. Philippe Boisse, Nahiène Hamila, Emmanuelle Vidal-Sallé, and François Dumont. Simulation of wrinkling during textile
composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses. Composites Science and
Technology, 71(5):683–692, 2011.

29. Philippe Boisse, Bassem Zouari, and Jean-Luc Daniel. Importance of in-plane shear rigidity in finite element analyses of
woven fabric composite preforming. Composites Part A: Applied Science and Manufacturing, 37(12):2201–2212, 2006.

30. Philippe Boisse, Bassem Zouari, and Alain Gasser. A mesoscopic approach for the simulation of woven fibre composite
forming. Composites Science and Technology, 65(3-4):429–436, 2005.

31. Jian Cao, Remko Akkerman, Philippe Boisse, Julie Chen, H.S. Cheng, E.F. de Graaf, J.L. Gorczyca, Philip Harrison,
Gilles Hivet, Jérôme Launay, Wonoh Lee, L. Liu, Stepan V. Lomov, Andrew C. Long, Emmanuel de Luycker, Fabrice
Morestin, J. Padvoiskis, Xiongqi Peng, James Sherwood, T. Stoilova, Xiaoming M. Tao, Ignaas Verpoest, A. Willems,
Joram Wiggers, T. X. Yu, and Bo Zhu. Characterization of mechanical behavior of woven fabrics: Experimental methods
and benchmark results. Composites Part A: Applied Science and Manufacturing, 39(6):1037–1053, 2008.

32. Augustin-Louis Cauchy. Sur les équations qui expriment les conditions d’équilibre, ou les lois du mouvement intérieur
d’un corps solide, élastique ou non élastique (1828). In Œuvres complétes, volume 2(8) of Cambridge Library Collection -
Mathematics, pages 195–226. Cambridge University Press, Cambridge, 2009.

33. Peter Chadwick, Maurizio Vianello, and Stephen C. Cowin. A new proof that the number of linear elastic symmetries is
eight. Journal of the Mechanics and Physics of Solids, 49(11):2471–2492, 2001.

34. Adrien Charmetant. Approches hyperélastiques pour la modélisation du comportement mécanique de préformes tissées de
composites. PhD thesis, INSA Lyon, 2011.

35. Adrien Charmetant, Jean Guillaume Orliac, Emmanuelle Vidal-Sallé, and Philippe Boisse. Hyperelastic model for large
deformation analyses of 3D interlock composite preforms. Composites Science and Technology, 72(12):1352–1360, 2012.

36. Adrien Charmetant, Emmanuelle Vidal-Sallé, and Philippe Boisse. Hyperelastic modelling for mesoscopic analyses of
composite reinforcements. Composites Science and Technology, 71(14):1623–1631, 2011.

37. Youping Chen and James D. Lee. Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged
mechanical variables. Physica A: Statistical Mechanics and its Applications, 322:359–376, 2003.

38. Youping Chen and James D. Lee. Determining material constants in micromorphic theory through phonon dispersion
relations. International Journal of Engineering Science, 41(8):871–886, 2003.

39. Youping Chen, James D. Lee, and Azim Eskandarian. Atomistic viewpoint of the applicability of microcontinuum theories.
International Journal of Solids and Structures, 41(8):2085–2097, 2004.

40. Abdelhakim Cherouat and Jean Louis Billoët. Mechanical and numerical modelling of composite manufacturing processes
deep-drawing and laying-up of thin pre-impregnated woven fabrics. Journal of Materials Processing Technology, 118(1-
3):460–471, 2001.

41. Stan Chiriţă, Alexandru Danescu, and Michele Ciarletta. On the strong ellipticity of the anisotropic linearly elastic
materials. Journal of Elasticity, 87(1):1–27, 2007.

42. Stan Chiriţă and Ionel-Dumitrel Ghiba. Strong ellipticity and progressive waves in elastic materials with voids. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2114):439–458, 2009.

43. William D. Claus Jr. and Ahmed Cemal Eringen. Dislocation dispersion of elastic waves. International Journal of
Engineering Science, 9(7):605–610, 1971.

44. Eugène Cosserat and François Cosserat. Théorie des corps déformables (engl. translation by D. Delphenich 2007, pdf
available at http://www.uni-due.de/%7ehm0014/Cosserat_files/Cosserat09_eng.pdf). A. Hermann et Fils, Paris, 1909.

45. Stephen C. Cowin and Morteza M. Mehrabadi. Anisotropic Symmetries of Linear Elasticity. Applied Mechanics Reviews,
48(5):247, 1995.

46. Stephen C. Cowin and Jace W. Nunziato. Linear elastic materials with voids. Journal of Elasticity, 13(2):125–147, 1983.

47. Gavin Creech and Anthony K. Pickett. Meso-modelling of Non-crimp Fabric composites for coupled drape and failure
analysis. Journal of Materials Science, 41(20):6725–6736, 2006.

48. G. J. Curtis, J. M. Milne, and W. N. Reynolds. Non-Hookean Behaviour of Strong Carbon Fibres. Nature, 220(5171):1024–
1025, 1968.

49. Marco Valerio d’Agostino, Gabriele Barbagallo, Ionel-Dumitrel Ghiba, Bernhard Eidel, Patrizio Neff, and Angela Madeo.
Efficient description of anisotropic wave dispersion in mechanical metamaterials via the relaxed micromorphic model.
Submitted, 2017.

50. Marco Valerio d’Agostino, Gabriele Barbagallo, Ionel-Dumitrel Ghiba, Angela Madeo, and Patrizio Neff. A panorama
of dispersion curves for the weighted isotropic relaxed micromorphic model. Zeitschrift für Angewandte Mathematik und
Mechanik, 2017.

141Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



Bibliography General conclusions and perspectives

51. Pierre-Gilles de Gennes. Some effects of long range forces on interfacial phenomena. Journal de Physique Lettres,
42(16):377–379, 1981.

52. Emmanuel de Luycker, Fabrice Morestin, Philippe Boisse, and David Marsal. Simulation of 3D interlock composite
preforming. Composite Structures, 88:615–623, 2009.

53. Emmanuel de Luycker, Jean Guillaume Orliac, Fabrice Morestin, Philippe Boisse, David Marsal, and Stephane Otin.
Experimental and numerical analyses of 3D interlock composite preforming. International Journal of Material Forming,
3(1):719–722, 2010.

54. Francesco dell’Isola, Massimo Guarascio, and Kolumban Hutter. A variational approach for the deformation of a saturated
porous solid. A second-gradient theory extending Terzaghi’s effective stress principle. Archive Of Applied Mechanics,
70(5):323–337, 2000.

55. Francesco dell’Isola, Angela Madeo, and Luca Placidi. Linear plane wave propagation and normal transmission and
reflection at discontinuity surfaces in second gradient 3D continua. Zeitschrift für Angewandte Mathematik und Mechanik,
92(1):52–71, 2012.

56. Francesco dell’Isola and Giacomo Rotoli. Validity of Laplace formula and dependence of surface tension on curvature in
second gradient fluids. Mechanics Research Communications, 22(5):485–490, 1995.

57. Francesco dell’Isola, Giulio Sciarra, and Stefano Vidoli. Generalized Hooke’s law for isotropic second gradient materials.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 465(2107):2177–2196, 2009.

58. Francesco dell’Isola and David J. Steigmann. A two-dimensional gradient-elasticity theory for woven fabrics. Journal of
Elasticity, 118(1):113–125, 2015.

59. Frederik Desplentere, Stepan V. Lomov, D. L. Woerdeman, Ignaas Verpoest, M. Wevers, and A. Bogdanovich. Micro-CT
characterization of variability in 3D textile architecture. Composites Science and Technology, 65(13):1920–1930, 2005.

60. Damien Durville. Numerical simulation of entangled materials mechanical properties. Journal of Materials Science,
40(22):5941–5948, 2005.

61. Damien Durville. Simulation of the mechanical behaviour of woven fabrics at the scale of fibers. International Journal of
Material Forming, 3(S2):1241–1251, 2010.

62. François Ebobisse and Patrizio Neff. Existence and uniqueness for rate-independent infinitesimal gradient plasticity with
isotropic hardening and plastic spin. Mathematics and Mechanics of Solids, 15(6):691–703, 2010.

63. François Ebobisse, Patrizio Neff, and Daya Reddy. Existence results in dislocation based rate-independent isotropic
gradient plasticity with kinematical hardening and plastic spin: The case with symmetric local backstress. Preprint ArXiv,
1504.01973, 2015.

64. Victor A. Eremeyev. Acceleration waves in micropolar elastic media. Doklady Physics, 50(4):204–206, 2005.

65. Ahmed Cemal Eringen. Mechanics of micromorphic materials. In Applied Mechanics, pages 131–138. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1966.

66. Ahmed Cemal Eringen. Theory of thermo-microstretch elastic solids. International Journal of Engineering Science,
28(12):1291–1301, 1990.

67. Ahmed Cemal Eringen. Microcontinuum field theories. Springer-Verlag, New York, 1999.

68. Ahmed Cemal Eringen and William D. Claus Jr. A micromorphic approach to dislocation theory and its relation to several
existing theories. In Fundamental aspects of dislocation theory, Volume II. National Bureau of Standards Special. 317(2),
pages 1023–1040. 1969.

69. Ahmed Cemal Eringen and Erdogan S. Suhubi. Nonlinear theory of simple micro-elastic solids – I. International Journal
of Engineering Science, 2(2):189–203, 1964.

70. Manuel Ferretti, Angela Madeo, Francesco dell’Isola, and Philippe Boisse. Modeling the onset of shear boundary layers in
fibrous composite reinforcements by second-gradient theory. Zeitschrift für Angewandte Mathematik und Physik, 65(3):587–
612, 2014.

71. Samuel Forest. Mechanics of generalized continua: construction by homogenizaton. Le Journal de Physique IV, 08(4):39–
48, 1998.

72. Samuel Forest. Homogenization methods and mechanics of generalized continua - part 2. Theoretical and Applied Me-
chanics, 28-29(28-29):113–144, 2002.

73. Samuel Forest. Micromorphic approach for gradient elasticity, viscoplasticity, and damage. Journal of Engineering Me-
chanics, 135(3):117–131, 2009.

74. Samuel Forest and Rainer Sievert. Nonlinear microstrain theories. International Journal of Solids and Structures,
43(24):7224–7245, 2006.

75. Samuel Forest and Duy Khanh Trinh. Generalized continua and non-homogeneous boundary conditions in homogenisation
methods. Zeitschrift für Angewandte Mathematik und Mechanik, 91(2):90–109, 2011.

76. Sébastien Gatouillat, Andrea Bareggi, Emmanuelle Vidal-Sallé, and Philippe Boisse. Meso modelling for composite pre-
form shaping - Simulation of the loss of cohesion of the woven fibre network. Composites Part A: Applied Science and
Manufacturing, 54:135–144, 2013.

77. Denos C. Gazis and Richard F. Wallis. Extensional waves in cubic crystals plates. In Proceedings of the 4th U.S. National
Congress in Applied Mechanics, pages 161–168, 1962.

142Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



General conclusions and perspectives Bibliography

78. Paul Germain. The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM Journal on Applied
Mathematics, 25(3):556–575, 1973.

79. Ionel-Dumitrel Ghiba, Patrizio Neff, Angela Madeo, and Ingo Münch. A variant of the linear isotropic indeterminate couple-
stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal
boundary conditions. Mathematics and Mechanics of Solids, 22(6):1221–1266, 2017.

80. Ionel-Dumitrel Ghiba, Patrizio Neff, Angela Madeo, Luca Placidi, and Giuseppe Rosi. The relaxed linear micromor-
phic continuum: Existence, uniqueness and continuous dependence in dynamics. Mathematics and Mechanics of Solids,
20(10):1171–1197, 2015.

81. George T. Gilbert. Positive definite matrices and Sylvester’s criterion. The American Mathematical Monthly, 98(1):44–46,
1991.

82. Panos A. Gourgiotis and Davide Bigoni. Stress channelling in extreme couple-stress materials Part I: Strong ellipticity,
wave propagation, ellipticity, and discontinuity relations. Journal of the Mechanics and Physics of Solids, 88:150–168,
2016.

83. Paschalis Grammenoudis and Charalampos Tsakmakis. Micromorphic continuum Part I: Strain and stress tensors and
their associated rates. International Journal of Non-Linear Mechanics, 44(9):943–956, 2009.

84. Leopoldo Greco and Massimo Cuomo. B-Spline interpolation of Kirchhoff-Love space rods. Computer Methods in Applied
Mechanics and Engineering, 256:251–269, 2013.

85. Leopoldo Greco and Massimo Cuomo. An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love space rod.
Computer Methods in Applied Mechanics and Engineering, 269:173–197, 2014.

86. A.E. Green and Ronald S. Rivlin. Multipolar continuum mechanics. Archive for Rational Mechanics and Analysis,
17(2):113–147, 1964.

87. George Green. An essay on the application of mathematical analysis to the theories of electricity and magnetism (orig-
inally published as book in Nottingham, 1828). Journal für die reine und angewandte Mathematik (Crelles Journal),
1852(44):356–374, jan 1852.

88. Elena F. Grekova and Gérard A. Maugin. Modelling of complex elastic crystals by means of multi-spin micromorphic
media. International Journal of Engineering Science, 43(5):494–519, 2005.

89. Mica Grujicic, K. M. Chittajallu, and Shawn Walsh. Effect of shear, compaction and nesting on permeability of the
orthogonal plain-weave fabric preforms. Materials Chemistry and Physics, 86(2-3):358–369, 2004.

90. Nahiène Hamila and Philippe Boisse. A meso-macro three node finite element for draping of textile composite preforms.
Applied Composite Materials, 14(4):235–250, 2007.

91. Nahiène Hamila and Philippe Boisse. Simulations of textile composite reinforcement draping using a new semi-discrete
three node finite element. Composites Part B: Engineering, 39(6):999–1010, 2008.

92. Philip Harrison, Michael J. Clifford, and Andrew C. Long. Shear characterisation of viscous woven textile composites: A
comparison between picture frame and bias extension experiments. Composites Science and Technology, 64(10-11):1453–
1465, 2004.

93. Philip Harrison, Joram Wiggers, and Andrew C. Long. Normalization of Shear Test Data for Rate-independent Compress-
ible Fabrics. Journal of Composite Materials, 42(1):1–30, 2008.

94. Eliza M. Haseganu and David J. Steigmann. Equilibrium analysis of finitely deformed elastic networks. Computational
Mechanics, 17(6):359–373, 1996.

95. Gabor T. Herman. Fundamentals of Computerized Tomography. Advances in Pattern Recognition. Academic Press, New
York, 1980.

96. Claudia Britta Hirschberger, Ellen Kuhl, and Paul Steinmann. On deformational and configurational mechanics of
micromorphic hyperelasticity–theory and computation. Computer Methods in Applied Mechanics and Engineering,
196(41):4027–4044, 2007.

97. Gerhard A. Holzapfel, Thomas C. Gasser, and Ray W. Ogden. A new constitutive framework for arterial wall mechanics
and a comparative study of material models. Journal of Elasticity, 61(1-3):1–48, 2000.

98. J.D.H. Hughes. Strength and modulus of current carbon fibres. Carbon, 24(5):551–556, 1986.

99. Dorin Ieşan. A theory of thermoelastic materials with voids. Acta Mechanica, 60:67–89, 1986.

100. Dorin Ieşan and Ludovico Nappa. Extremum principles and existence results in micromorphic elasticity. International
Journal of Engineering Science, 39(18):2051–2070, 2001.

101. Mikhail Itskov. On the theory of fourth-order tensors and their applications in computational mechanics. Computer
Methods in Applied Mechanics and Engineering, 189(2):419–438, 2000.

102. Mikhail Itskov and Nuri Aksel. A class of orthotropic and transversely isotropic hyperelastic constitutive models based on
a polyconvex strain energy function. International Journal of Solids and Structures, 41(14):3833–3848, 2004.

103. Ralf Jänicke, Stefan Diebels, Hans-Georg Sehlhorst, and Alexander Düster. Two-scale modelling of micromorphic continua.
Continuum Mechanics and Thermodynamics, 21(4):297–315, 2009.

104. Jena Jeong and Patrizio Neff. Existence, uniqueness and stability in linear Cosserat elasticity for weakest curvature
conditions. Mathematics and Mechanics of Solids, 15(1):78–95, 2010.

105. Jena Jeong, Hamidréza Ramézani, Ingo Münch, and Patrizio Neff. A numerical study for linear isotropic Cosserat elasticity
with conformally invariant curvature. Zeitschrift für Angewandte Mathematik und Mechanik, 89(7):552–569, 2009.

143Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



Bibliography General conclusions and perspectives

106. Wen-Guang Jiang, M.S. Yao, and John M. Walton. A concise finite element model for simple straight wire rope strand.
International Journal of Mechanical Sciences, 41(2):143–161, 1999.

107. S. Kawabata, Masako Niwa, and H. Kawai. The finite-deformation theory of plain-weave fabrics. Part I: the biaxial-
deformation theory. The Journal of The Textile Institute, 64(1):21–46, jan 1973.

108. S. Kawabata, Masako Niwa, and H. Kawai. The finite-deformation theory of plain-weave fabrics. Part II: the uniaxial-
deformation theory. The Journal of The Textile Institute, 64(2):47–61, 1973.

109. M. Aurangzeb Khan, Tarek Mabrouki, Emmanuelle Vidal-Sallé, and Philippe Boisse. Numerical and experimental analyses
of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark.
Journal of Materials Processing Technology, 210(2):378–388, 2010.

110. Kin-Wai Sze, Kin-Man Lam, and Guoping Qiu. A new key frame representation for video segment retrieval. IEEE
Transactions on Circuits and Systems for Video Technology, 15(9):1148–1155, sep 2005.

111. Nina Kirchner and Paul Steinmann. A unifying treatise on variational principles for gradient and micromorphic continua.
Philosophical Magazine, 85(33-35):3875–3895, 2005.

112. Severino L. Koh. A special theory of microelasticity. International Journal of Engineering Science, 8(7):583–593, 1970.

113. Katarzyna Kowalczyk-Gajewska and Janina Ostrowska-Maciejewska. Review on spectral decomposition of Hooke’s tensor
for all symmetry groups of linear elastic material. Engineering transactions, 57(3-4):145–183, 2009.

114. Ekkehart Kröner. Der fundamentale Zusammenhang zwischen Versetzungsdichte und Spannungsfunktionen. Zeitschrift
für Physik, 142(4):463–475, 1955.

115. Isaak Abramovich Kunin. Elastic media with microstructure II: three-dimensional models. Springer Series in Solid-State
Sciences. Springer Berlin, Heidelberg, 2012.

116. Roderic S. Lakes. Size effects and micromechanics of a porous solid. Journal of Materials Science, 18(9):2572–2580, 1983.

117. Roderic S. Lakes. Experimental micro mechanics methods for conventional and negative Poisson’s ratio cellular solids as
Cosserat continua. Journal of Engineering Materials and Technology, 113(1):148–155, 1991.

118. Johannes Lankeit, Patrizio Neff, and Frank Osterbrink. Integrability conditions between the first and second Cosserat
deformation tensor in geometrically nonlinear micropolar models and existence of minimizers. Zeitschrift für Angewandte
Mathematik und Physik, 68(1):11, 2017.

119. Pierre Latil, Laurent Orgéas, Christian Geindreau, Pierre J. J. Dumont, and Sabine Rolland du Roscoat. Towards the 3D
in situ characterisation of deformation micro-mechanisms within a compressed bundle of fibres. Composites Science and
Technology, 71(4):480–488, 2011.

120. Jean Launay, Gilles Hivet, Ahn V. Duong, and Philippe Boisse. Experimental analysis of the influence of tensions on in
plane shear behaviour of woven composite reinforcements. Composites Science and Technology, 68(2):506–515, 2008.

121. Markus Lazar. On conservation and balance laws in micromorphic elastodynamics. Journal of Elasticity, 88(1):63–78,
2007.

122. Wonoh Lee, J. Padvoiskis, Jian Cao, Emmanuel de Luycker, Philippe Boisse, Fabrice Morestin, Jinhui Chen, and James
Sherwood. Bias-extension of woven composite fabrics. International Journal of Material Forming, 1(SUPPL. 1):895–898,
2008.

123. Zhengyou Liu, Xixiang Zhang, Yiwei Mao, Yirong Zhu, Zhiyu Yang, Che Ting Chan, and Ping Sheng. Locally resonant
sonic materials. Science, 289(5485):1734–1736, 2000.

124. Stepan V. Lomov, A. V. Gusakov, Gert Huysmans, Andreas G. Prodromou, and I. Verpoest. Textile geometry preprocessor
for meso-mechanical models of woven composites. Composites Science and Technology, 60(11):2083–2095, 2000.

125. Stepan V. Lomov and Ignaas Verpoest. Model of shear of woven fabric and parametric description of shear resistance of
glass woven reinforcements. Composites Science and Technology, 66(7-8):919–933, 2006.

126. Augustus Edward Hough Love. A treatise on the mathematical theory of elasticity. Dover Publications, Inc, New York,
1944.

127. Ralf Lucklum, Manzhu Ke, and Mikhail Zubtsov. Two-dimensional phononic crystal sensor based on a cavity mode.
Sensors and Actuators, B: Chemical, 171-172:271–277, 2012.

128. C. Mack and H. M. Taylor. The Fitting of Woven Cloth to Surfaces. Journal of the Textile Institute Transactions,
47(9):T477–T488, 1956.

129. Angela Madeo, Gabriele Barbagallo, Manuel Collet, Marco Valerio d’Agostino, Marco Miniaci, and Patrizio Neff. Relaxed
micromorphic modeling of the interface between a homogeneous solid and a band-gap metamaterial: New perspectives
towards metastructural design. Mathematics and Mechanics of Solids, Preprint, 2017.

130. Angela Madeo, Gabriele Barbagallo, Marco Valerio d’Agostino, and Philippe Boisse. Continuum and discrete models for
unbalanced woven fabrics. International Journal of Solids and Structures, 94-95:263–284, 2016.

131. Angela Madeo, Gabriele Barbagallo, Marco Valerio d’Agostino, Luca Placidi, and Patrizio Neff. First evidence of non-
locality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2190):20160169, 2016.

132. Angela Madeo, Manuel Collet, Marco Miniaci, Kévin Billon, Morvan Ouisse, and Patrizio Neff. Modeling phononic crystals
via the weighted relaxed micromorphic model with free and gradient micro-inertia. Journal of Elasticity, 2017.

144Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



General conclusions and perspectives Bibliography

133. Angela Madeo, Francesco dell’Isola, Nicoletta Ianiro, and Giulio Sciarra. A variational deduction of second gradient
poroelasticity II: An application to the consolidation problem. Journal of Mechanics of Materials and Structures, 3(4):607–
625, 2008.

134. Angela Madeo, Manuel Ferretti, Francesco dell’Isola, and Philippe Boisse. Thick fibrous composite reinforcements behave
as special second-gradient materials: three-point bending of 3D interlocks. Zeitschrift für Angewandte Mathematik und
Mechanik, 66(4):2041–2060, 2015.

135. Angela Madeo, Ionel-Dumitrel Ghiba, Patrizio Neff, and Ingo Münch. A new view on boundary conditions in the Grioli–
Koiter–Mindlin–Toupin indeterminate couple stress model. European Journal of Mechanics - A/Solids, 59:294–322, 2016.

136. Angela Madeo, Patrizio Neff, Elias C. Aifantis, Gabriele Barbagallo, and Marco Valerio d’Agostino. On the role of micro-
inertia in enriched continuum mechanics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Science, 473(2198):20160722, 2017.

137. Angela Madeo, Patrizio Neff, Gabriele Barbagallo, Marco Valerio d’Agostino, and Ionel-Dumitrel Ghiba. A review on
wave propagation modeling in band-gap metamaterials via enriched continuum models. In Francesco dell’Isola, Mircea
Sofonea, and David J. Steigmann, editors, Mathematical Modelling in Solid Mechanics, Advanced Structured Materials,
pages 89–105. Springer, Singapore, 2017.

138. Angela Madeo, Patrizio Neff, Marco Valerio d’Agostino, and Gabriele Barbagallo. Complete band gaps including non-local
effects occur only in the relaxed micromorphic model. Comptes Rendus Mécanique, 344(11-12):784–796, 2016.

139. Angela Madeo, Patrizio Neff, Ionel-Dumitrel Ghiba, Luca Placidi, and Giuseppe Rosi. Band gaps in the relaxed linear
micromorphic continuum. Zeitschrift für Angewandte Mathematik und Mechanik, 95(9):880–887, 2014.

140. Angela Madeo, Patrizio Neff, Ionel-Dumitrel Ghiba, Luca Placidi, and Giuseppe Rosi. Wave propagation in relaxed
micromorphic continua: modeling metamaterials with frequency band-gaps. Continuum Mechanics and Thermodynamics,
27(4-5):551–570, 2015.

141. Angela Madeo, Patrizio Neff, Ionel-Dumitrel Ghiba, and Giuseppe Rosi. Reflection and transmission of elastic waves in
non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model. Journal of the Mechanics
and Physics of Solids, 95:441–479, 2016.

142. Weining Man, Marian Florescu, Kazue Matsuyama, Polin Yadak, Geev Nahal, Seyed Hashemizad, Eric Williamson, Paul J.
Steinhardt, Salvatore Torquato, and Paul Chaikin. Photonic band gap in isotropic hyperuniform disordered solids with
low dielectric contrast. Optics Express, 21(17):19972–81, 2013.

143. Jean Mandel. Plastic waves in an infinite three dimensional medium. Journal de Mécanique, 1:3–30, 1962.

144. Paolo Maria Mariano and Giuseppe Modica. Ground states in complex bodies. ESAIM: Control, Optimisation and
Calculus of Variations, 15(02):377–402, 2009.

145. Paolo Maria Mariano and Furio Lorenzo Stazi. Computational aspects of the mechanics of complex materials. Archives of
Computational Methods in Engineering, 12(4):391–478, 2005.

146. Sylvain Mathieu. Modélisation du comportement mécanique lors du procédé de mise en forme et pyrolyse des interlocks
CMC. PhD thesis, INSA Lyon, 2014.

147. Sylvain Mathieu, Philippe Boisse, Nahiène Hamila, and Florent Bouillon. Locking and stability of 3D woven composite
reinforcements. Key Engineering Materials, 611-612:292–299, may 2014.

148. Sylvain Mathieu, Nahiène Hamila, F. Dupé, C. Descamps, and Philippe Boisse. Stability of 3D Textile Composite Rein-
forcement Simulations: Solutions to Spurious Transverse Modes. Applied Composite Materials, 23(4):739–760, 2016.

149. Gérard A. Maugin. Continuum mechanics through the eighteenth and nineteenth centuries, volume 214 of Solid Mechanics
and Its Applications. Springer International Publishing, 2014.

150. Gérard A. Maugin. Non-Classical Continuum Mechanics, volume 51. Springer, 2016.

151. Johannes Meenen, Holm Altenbach, Victor A. Eremeyev, and Konstantin Naumenko. A variationally consistent derivation
of microcontinuum theories. In Shell-like Structures, pages 571–584. Springer, 2011.

152. Jose Merodio and Patrizio Neff. A note on tensile instabilities and loss of ellipticity for a fiber-reinforced nonlinearly elastic
solid. Archives of Mechanics, 58(3):293–303, 2006.

153. Amin Mikdam, Ahmed Makradi, Said Ahzi, Hamid Garmestani, Dongsheng S. Li, and Yves Remond. Effective conductivity
in isotropic heterogeneous media using a strong-contrast statistical continuum theory. Journal of the Mechanics and Physics
of Solids, 57(1):76–86, 2009.

154. Amin Mikdam, Ahmed Makradi, Said Ahzi, Hamid Garmestani, Dongsheng S. Li, and Yves Remond. Statistical continuum
theory for the effective conductivity of fiber filled polymer composites: Effect of orientation distribution and aspect ratio.
Composites Science and Technology, 70(3):510–517, 2010.

155. Raymond David Mindlin. Microstructure in linear elasticity. Technical report, Office of Naval Research, 1963.

156. Raymond David Mindlin. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 16(1):51–78,
1964.

157. Raymond David Mindlin and N. N. Eshel. On first strain-gradient theories in linear elasticity. International Journal of
Solids and Structures, 4(1):109–124, 1968.

158. Anil Misra and Payam Poorsolhjouy. Granular micromechanics based micromorphic model predicts frequency band gaps.
Continuum Mechanics and Thermodynamics, 28(1):1–20, 2015.

145Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



Bibliography General conclusions and perspectives

159. Maher Moakher and Andrew N. Norris. The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower
symmetry. Journal of Elasticity, 85(3):215–263, 2006.

160. Vincent Monchiet and Guy Bonnet. On the inversion of non symmetric sixth-order isotropic tensors and conditions of
positiveness of third-order tensor valued quadratic functions. Mechanics Research Communications, 38(4):326–329, 2011.

161. Ingo Münch and Patrizio Neff. Rotational invariance conditions in elasticity, gradient elasticity and its connection to
isotropy. Mathematics and Mechanics of Solids, Preprint, 2016.

162. Ingo Münch, Patrizio Neff, Angela Madeo, and Ionel-Dumitrel Ghiba. The modified indeterminate couple stress model:
Why Yang et al.’s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor
may be chosen symmetric nevertheless. to appear in Zeitschrift für Angewandte Mathematik und Mechanik, 2016.

163. Ben Nadler, Panayiotis Papadopoulos, and David J. Steigmann. Multiscale constitutive modeling and numerical simulation
of fabric material. International Journal of Solids and Structures, 43(2):206–221, 2006.

164. Hiroyuki Nagahama and Roman Teisseyre. Micromorphic continuum and fractal fracturing in the lithosphere. In Fractals
and Dynamic Systems in Geoscience, pages 559–574. Springer, 2000.

165. N. Naouar, Emmanuelle Vidal-Sallé, J. Schneider, E. Maire, and Philippe Boisse. Meso-scale FE analyses of textile
composite reinforcement deformation based on X-ray computed tomography. Composite Structures, 116(1):165–176, 2014.

166. Anne Nawrocki and Michel Labrosse. A finite element model for simple straight wire rope strands. Computers & Structures,
77(4):345–359, 2000.

167. Patrizio Neff. On Korn’s first inequality with non-constant coefficients. Proceedings of the Royal Society of Edinburgh:
Section A Mathematics, 132(1):221–243, 2002.

168. Patrizio Neff. On material constants for micromorphic continua. In Trends in Applications of Mathematics to Mechanics,
STAMM Proceedings, Seeheim, pages 337–348. Shaker–Verlag, 2004.

169. Patrizio Neff. Existence of minimizers for a finite-strain micromorphic elastic solid. Proceedings of the Royal Society of
Edinburgh: Section A Mathematics, 136(05):997–1012, 2006.

170. Patrizio Neff. The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric.
Zeitschrift für Angewandte Mathematik und Mechanik, 86(11):892–912, 2006.

171. Patrizio Neff. Relations of constants for isotropic linear Cosserat elasticity. Technical report, Fachbereich Mathematik,
Technische Universituat Darmstadt (http://www.uni-due.de/%7ehm0014/Cosserat_files/web_coss_relations.pdf, typos
in equations 2.8,2.9,2.10), Darmstadt, Germany, 2008.

172. Patrizio Neff. Existence of minimizers in nonlinear elastostatics of micromorphic solids. In Encyclopedia of Thermal
Stresses, pages 1475–1485. Springer, 2014.

173. Patrizio Neff, Mircea Bîrsan, and Frank Osterbrink. Existence theorem for geometrically nonlinear Cosserat micropolar
model under uniform convexity requirements. Journal of Elasticity, 121(1):1–23, 2015.

174. Patrizio Neff and Samuel Forest. A geometrically exact micromorphic model for elastic metallic foams accounting for
affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results. Journal of
Elasticity, 87(2-3):239–276, 2007.

175. Patrizio Neff, Ionel-Dumitrel Ghiba, Markus Lazar, and Angela Madeo. The relaxed linear micromorphic continuum:
well-posedness of the static problem and relations to the gauge theory of dislocations. The Quarterly Journal of Mechanics
and Applied Mathematics, 68(1):53–84, 2015.

176. Patrizio Neff, Ionel-Dumitrel Ghiba, Angela Madeo, Luca Placidi, and Giuseppe Rosi. A unifying perspective: the relaxed
linear micromorphic continuum. Continuum Mechanics and Thermodynamics, 26(5):639–681, 2014.

177. Patrizio Neff and Jena Jeong. A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature
energy. Zeitschrift für Angewandte Mathematik und Mechanik, 89(2):107–122, 2009.

178. Patrizio Neff, Jena Jeong, and Andreas Fischle. Stable identification of linear isotropic Cosserat parameters: bounded
stiffness in bending and torsion implies conformal invariance of curvature. Acta Mechanica, 211(3-4):237–249, 2010.

179. Patrizio Neff, Angela Madeo, Gabriele Barbagallo, Marco Valerio d’Agostino, Rafael Abreu, and Ionel-Dumitrel Ghiba.
Real wave propagation in the isotropic-relaxed micromorphic model. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 473(2197):20160790, 2017.

180. Patrizio Neff and Ingo Münch. Curl bounds Grad on SO(3). ESAIM: Control, Optimisation and Calculus of Variations,
14(1):148–159, 2008.

181. Patrizio Neff, Dirk Pauly, and Karl-Josef Witsch. A canonical extension of Korn’s first inequality to H(Curl) motivated by
gradient plasticity with plastic spin. Comptes Rendus Mathematique, 349(23):1251–1254, 2011.

182. Patrizio Neff, Dirk Pauly, and Karl-Josef Witsch. Maxwell meets Korn: A new coercive inequality for tensor fields in Rn×n
with square-integrable exterior derivative. Mathematical Methods in the Applied Sciences, 35(1):65–71, 2012.

183. Patrizio Neff, Dirk Pauly, and Karl-Josef Witsch. Poincaré meets Korn via Maxwell: extending Korn’s first inequality to
incompatible tensor fields. Journal of Differential Equations, 258(4):1267–1302, 2015.

184. Farbod Nosrat-Nezami, Thomas Gereke, Christian Eberdt, and Chokri Cherif. Characterisation of the shear-tension cou-
pling of carbon-fibre fabric under controlled membrane tensions for precise simulative predictions of industrial preforming
processes. Composites Part A: Applied Science and Manufacturing, 67:131–139, 2014.

185. Witold Nowacki. Theory of Asymmetric Elasticity. Pergamon Press, 1985.

146Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



General conclusions and perspectives Bibliography

186. Jace W. Nunziato and Stephen C. Cowin. A nonlinear theory of elastic materials with voids. Archive for Rational
Mechanics and Analysis, 72(2):175–201, 1979.

187. Ray W. Ogden. Non-linear elastic deformations, volume 1. Dover Publications, Inc, Mineola, NY, 1984.

188. Ray W. Ogden. Nonlinear Elasticity, Anisotropy, Material Stability and Residual Stresses in Soft Tissue. In Biomechanics
of Soft Tissue in Cardiovascular Systems, volume 108, pages 65–108. Springer-Verlag, Vienna, 2003.

189. Victor G. Oshmyan, Stanislav A. Patlazhan, and Yves Remond. Principles of structural-mechanical modeling of polymers
and composites. Polymer Science Series A, 48(9):1004–1013, 2006.

190. S. Parameshwaran and Severino L. Koh. Wave propagation in a micro-isotropic, micro-elastic solid. International Journal
of Engineering Science, 11(1):95–107, 1973.

191. Richard S. Parnas. Liquid Composite Molding. Carl Hanser Verlag GmbH & Co. KG, München, 2000.

192. Juan Pazmino, Sylvain Mathieu, Valter Carvelli, Philippe Boisse, and Stepan V. Lomov. Numerical modelling of forming
of a non-crimp 3D orthogonal weave E-glass composite reinforcement. Composites Part A: Applied Science and Manufac-
turing, 72:207–218, 2015.

193. Xiongqi Peng and Jian Cao. A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics.
Composites Part A: Applied Science and Manufacturing, 36(6):859–874, 2005.

194. Xiongqi Peng, Jian Cao, Jinhui Chen, P. Xue, D. S. Lussier, and L. Liu. Experimental and numerical analysis on
normalization of picture frame tests for composite materials. Composites Science and Technology, 64(1):11–21, 2004.

195. Catherine Pideri and Pierre Seppecher. A second gradient material resulting from the homogenization of an heterogeneous
linear elastic medium. Continuum Mechanics and Thermodynamics, 9(5):241–257, 1997.

196. Gabrio Piola. Intorno alle equazioni fondamentali del movimento di corpi qualsivogliono, considerati secondo la naturale
loro forma e costituzione (1846). In Francesco Dell’Isola, Ugo Andreaus, Luca Placidi, and Daria Scerrato, editors, The
complete works of Gabrio Piola, volume I of Advanced Structured Materials, pages 1–370. Springer International Publishing,
2014.

197. Luca Placidi, Giuseppe Rosi, Ivan Giorgio, and Angela Madeo. Reflection and transmission of plane waves at surfaces
carrying material properties and embedded in second-gradient materials. Mathematics and Mechanics of Solids, 19(5):555–
578, 2014.

198. Kevin D. Potter. The early history of the resin transfer moulding process for aerospace applications. Composites Part A:
Applied Science and Manufacturing, 30(5):619–621, may 1999.

199. Kevin D. Potter. Bias extension measurements on cross-plied unidirectional prepreg. Composites - Part A: Applied Science
and Manufacturing, 33(1):63–73, 2002.

200. Annie Raoult. Symmetry groups in nonlinear elasticity: an exercise in vintage mathematics. Communications on Pure
and Applied Analysis, 8(1):435–456, 2008.

201. Giovanni Romano, Raffaele Barretta, and Marina Diaco. Micromorphic continua: non-redundant formulations. Continuum
Mechanics and Thermodynamics, 28(6):1659–1670, 2016.

202. Chris D. Rudd, Andrew C. Long, K. N. Kendall, and C. Mangin. Liquid moulding technologies: Resin transfer moulding,
structural reaction injection moulding and related processing techniques. Woodhead Publishing Limited, Cambridge,
England, 1997.

203. Carlo Sansour. A unified concept of elastic-viscoplastic Cosserat and micromorphic continua. Le Journal de Physique IV,
8(8):341–348, 1998.

204. Carlo Sansour, Sebastian Skatulla, and Hussein M. Zbib. A formulation for the micromorphic continuum at finite inelastic
strains. International Journal of Solids and Structures, 47(11):1546–1554, 2010.

205. Jörg Schröder and Patrizio Neff. Application of polyconvex anisotropic free energies to soft tissues. 5th World Congress
on Computational Mechanics, 2002.

206. Jörg Schröder, Patrizio Neff, and Daniel Balzani. A variational approach for materially stable anisotropic hyperelasticity.
International Journal of Solids and Structures, 42(15):4352–4371, 2005.

207. Jörg Schröder, Patrizio Neff, and Vera Ebbing. Anisotropic polyconvex energies on the basis of crystallographic motivated
structural tensors. Journal of the Mechanics and Physics of Solids, 56(12):3486–3506, 2008.

208. Giulio Sciarra, Francesco dell’Isola, Nicoletta Ianiro, and Angela Madeo. A variational deduction of second gradient
poroelasticity I: general theory. Journal of Mechanics of Materials and Structures, 3(3):507–526, may 2008.

209. Pierre Seppecher, Jean-Jacques Alibert, and Francesco dell’Isola. Linear elastic trusses leading to continua with exotic
mechanical interactions. Journal of Physics: Conference Series, 319(1):012018, 2011.

210. S. B. Sharma and M. P F Sutcliffe. A simplified finite element model for draping of woven material. Composites Part A:
Applied Science and Manufacturing, 35(6):637–643, 2004.

211. A.C. Smith. Waves in micropolar elastic solids. International Journal of Engineering Science, 5(10):741–746, 1967.

212. A.C. Smith. Inequalities between the constants of a linear micro-elastic solid. International Journal of Engineering Science,
6(2):65–74, 1968.

213. Alessandro Spadoni, Massimo Ruzzene, Stefano Gonella, and Fabrizio Scarpa. Phononic properties of hexagonal chiral
lattices. Wave Motion, 46(7):435–450, 2009.

214. Anthony James Merrill Spencer. Theory of Invariants. In Mathematics, volume 1, pages 239–353. Elsevier, 1971.

147Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



Appendices End matter

215. Anthony James Merrill Spencer. Deformations of fibre-reinforced materials. U.C.D. Library, Oxford, 1972.

216. Anthony James Merrill Spencer. Constitutive theory for strongly anisotropic solids. In Anthony James Merrill Spencer,
editor, Continuum Theory of the Mechanics of Fibre-Reinforced Composites, pages 1–32. Springer-Verlag, Vienna, 1984.

217. Ashwin Sridhar, Varvara G. Kouznetsova, and Marc G. D. Geers. Homogenization of locally resonant acoustic metamaterials
towards an emergent enriched continuum. Computational Mechanics, 57(3):423–435, 2016.

218. David J. Steigmann. Equilibrium of prestressed networks. IMA Journal of Applied Mathematics, 48(2):195–215, 1992.

219. David J. Steigmann. Invariants of the stretch tensors and their application to finite elasticity theory. Mathematics and
Mechanics of Solids, 7(4):393–404, 2002.

220. David J. Steigmann. Frame-invariant polyconvex strain-energy functions for some anisotropic solids. Mathematics and
Mechanics of Solids, 8(5):497–506, 2003.

221. Walter Steurer and Daniel Sutter-Widmer. Photonic and phononic quasicrystals. Journal of Physics D: Applied Physics,
40(13):229–247, 2007.

222. Roman Teisseyre. Earthquake processes in a micromorphic continuum. Pure and Applied Geophysics PAGEOPH,
102(1):15–28, 1973.

223. Roman Teisseyre. Symmetric micromorphic continuum: wave propagation, point source solutions and some applications
to earthquake processes. In Continuum Mechanics Aspects of Geodynamics and Rock Fracture Mechanics, pages 201–244.
Springer Netherlands, Dordrecht, 1974.

224. R. H W ten Thije, R. Akkerman, and J. Huétink. Large deformation simulation of anisotropic material using an updated
Lagrangian finite element method. Computer Methods in Applied Mechanics and Engineering, 196(33-34):3141–3150, 2007.

225. Richard A. Toupin. Theories of elasticity with couple-stress. Archive for Rational Mechanics and Analysis, 17(2):85–112,
1964.

226. Clifford Truesdell and Richard A. Toupin. The classical field theories. In Siegfried Flügge, editor, Principles of Classical
Mechanics and Field Theory / Prinzipien der Klassischen Mechanik und Feldtheorie, pages 226–858. Springer, Berlin,
Heidelberg, 1960.

227. Franck J. Vernerey, Wing Kam Liu, and Brian Moran. Multi-scale micromorphic theory for hierarchical materials. Journal
of the Mechanics and Physics of Solids, 55(12):2603–2651, 2007.

228. Franck J. Vernerey, Wing Kam Liub, Brian Moran, and Gregory Olsonc. A micromorphic model for the multiple scale
failure of heterogeneous materials. Journal of the Mechanics and Physics of Solids, 56(4):1320–1347, 2008.

229. Woldemar Voigt. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der Physik,
274(12):573–587, 1889.

230. Woldemar Voigt. Lehrbuch der Kristallphysik. Vieweg+Teubner Verlag, Wiesbaden, 1966 edition, 1909.

231. Jinling Wang, John R. Page, and Rowan Paton. Experimental investigation of the draping properties of reinforcement
fabrics. Composites Science and Technology, 58(2):229–237, 1998.

232. Peng Wang, Xavier Legrand, Philippe Boisse, Nahiène Hamila, and Damien Soulat. Experimental and numerical analyses
of manufacturing process of a composite square box part: Comparison between textile reinforcement forming and surface
3D weaving. Composites Part B: Engineering, 78:26–34, 2015.

233. Alexander Ženišek. Polynomial approximation on tetrahedrons in the finite element method. Journal of Approximation
Theory, 7(4):334–351, 1973.

234. Shangyou Zhang. A family of 3D continuously differentiable finite elements on tetrahedral grids. Applied Numerical
Mathematics, 59(1):219–233, 2009.

235. Yifan Zhang, Fei Sun, Yanjie Wang, Li Chen, and Ning Pan. Study on intra/inter-ply shear deformation of three dimensional
woven preforms for composite materials. Materials and Design, 49(August 2013):151–159, 2013.

236. Guangming Zhou, Xuekun Sun, and Youqi Wang. Multi-chain digital element analysis in textile mechanics. Composites
Science and Technology, 64(2):239–244, 2004.

237. Olgierd C. Zienkiewicz and Robert L. Taylor. The finite element method Volume 1: The basis. Butterworth-Heinmann,
5th edition, 2000.

238. Bassem Zouari, Jean-Luc Daniel, and Philippe Boisse. A woven reinforcement forming simulation method. Influence of the
shear stiffness. Computers & Structures, 84(5-6):351–363, 2006.

148Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI098/these.pdf 
© [G. Barbagallo], [2017], INSA Lyon, tous droits réservés



APPENDIX A
Appendix to part I

A.1 Micromorphic models as limiting cases of the relaxed micro-
morphic continuum

In this section, we show certain limiting cases of the anisotropic relaxed micromorphic continuummodel. Since
we assume Cm,Ce to be positive definite and Cc positive semi-definite, there exist three positive constants
c+dev, c

+
tr, c

+
e > 0 and c+c ≥ 0 such that:〈

Ce sym (∇u − P ) , sym (∇u − P )
〉
R3×3 ≥ c+e ‖ sym (∇u − P )‖2R3×3 ,〈

Cm symP, symP
〉
R3×3 ≥ c+dev‖dev symP‖2R3×3 + c+tr ( tr (P ))

2
, (A.1)〈

Cc skew (∇u − P ) , skew (∇u − P )
〉
R3×3 ≥ c+c ‖ skew (∇u − P )‖2R3×3 .

Cosserat model or micropolar model: Let us first consider:

Cm →∞ , Ce > 0 , Cc ≥ 0 , P ∈ R3×3 , (A.2)

which is the case if we assume c+dev, c
+
tr → ∞. In this case, the fact that the energy is bounded implies

‖ symP‖2 = 0 formally and, therefore, that P ∈ so(3). This resulting model is equivalent to the Cosserat
model or micropolar model (section I.2.2). The appearance of only CurlP in the curvature is consistent
with the classical Cosserat or micropolar model, since for skew-symmetric P (x) = A(x) ∈ so(3) it holds that
CurlA is isomorphic to ∇A, see [180].

Micro-voids theory: On the other hand, we may consider:

dev symCm →∞ , Ce > 0 , Cc = 0 , P ∈ Sym(3) , (A.3)

where we assume that c+dev → ∞ and skewP = 0. In this case, we obtain that ‖dev symP‖2 = 0 and,
therefore, we can infer that P = R · 1. This model is called micro-voids theory (see [176] and section I.2.4)
and again, the presence of CurlP is fully consistent with the general micro-voids theory.

Micro-incompressible micromorphic model: One more case is:

trCm →∞ , Ce > 0 , Cc ≥ 0 , P ∈ R3×3 , (A.4)

where we assume that c+tr →∞ and, therefore, trP = 0. In this case we obtain that P ∈ sl(3). This model
is the micro-incompressible micromorphic model (section I.2.6).

Micro-stretch theory: Analogously, we may consider:

dev symCm →∞ , Ce > 0 , Cc ≥ 0 , P ∈ R3×3 , (A.5)

where we assume that c+dev → ∞. In this case we obtain only that ‖dev symP‖2 = 0 and therefore that
P = R · 1+ so(3). This set of models is called micro-stretch theory (see [176] and section I.2.3).
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Micro-strain model: Instead, if we just consider:

Cm > 0 , Ce > 0 , Cc = 0 , P ∈ Sym(3) , (A.6)

which means constraining P in such a way that skewP = 0, then this resulting model is equivalent to
Forest’s micro-strain model, (see [74] and section I.2.5).

A.2 One-dimensional standard Mindlin-Eringen model versus new
relaxed micromorphic model

We let u : [0, 1] → R denote the displacement and p̂ : [0, 1] → R the micro-distortion (we note that u
corresponds to the first component of the displacement and p̂ corresponds to P11).

Considering a one-dimensional model, we can reduce the energy of the Mindlin-Eringen model to:

µe|u′(t)− p̂(t)|2 + µc| skew(·)︸ ︷︷ ︸
0

|2 + µm |p̂(t)|2 +
µL2

c

2
|p̂ ′(t)|2 . (A.7)

Therefore, in a purely one-dimensional setting, the µc-term does not appear. Furthermore, if µe → ∞
formally, the energy reads:

µm |u′(t)|2 +
µL2

c

2
|u′′(t)|2 , (A.8)

which is a second gradient elastic energy. The equilibrium equations read:

2µe (u′(t)− p̂(t)) δu′(t) = 0 , ∀ δu ∈ C∞0 ([0, 1],R) ,

(A.9)

[−2µe (u′(t)− p̂(t)) + 2µm p̂] δp̂(t) + µL2
c p̂
′δp̂ ′ = 0 . ∀ δp̂ ∈ C∞0 ([0, 1],R) ,

from which we obtain:

d

d x
[2µe (u′(t)− p̂(t))] = 0 , −2µe (u′(t)− p̂(t)) + 2µm p̂+ µL2

c p̂
′′ = 0 . (A.10)

If we consider Lc → 0 we obtain:

d

dx
[2µe (u′(t)− p̂(t))] = 0 , −2µe (u′(t)− p̂(t)) + 2µm p̂ = 0 . (A.11)

This can be reduced to:

d

dx

[
2
µe µm

µe + µm
u′(t)

]
= 0 , p̂ =

µe
µe + µm

u′(t) . (A.12)

Therefore, this is equivalent to a classical elasticity model with energy:

µM |u′(t)|2 , where µM =
µe µm

µe + µm
. (A.13)

Thus, in the one-dimensional setting, the Mindlin-Eringen format obeys our homogenization format as well.
For the relaxed micromorphic model we have instead:

µe|u′(t)− p̂(t)|2 + µc| skew(·)︸ ︷︷ ︸
=0

|2 + µm |p̂(t)|2 +
µL2

c

2
‖ Curl

 p̂ 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

=0

‖2 . (A.14)

Therefore, there are no terms with Lc and the equilibrium equations read:

d

dx
[2µe (u′(t)− p̂(t))] = 0 , −2µe (u′(t)− p̂(t)) + 2µm p̂ = 0 . (A.15)
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This is the the same format as the Mindlin-Eringen model with Lc → 0.
Here, it must be noted that when µe →∞, we obtain formally only a first gradient elasticity model with

energy:

µm |u′(t)|2 . (A.16)

This is equivalent to a classical linear elasticity model with µM = µm, contrary to (A.8).
Here, one of the differences of the standard Mindlin-Eringen format, in comparison to the new relaxed

formulation, clearly appears: the relaxed format does not reduce to a higher gradient elasticity model when
specifying certain parameters.

APPENDIX B
Appendix to part II

B.1 Representation Theorems for Hyperelastic Materials

Various hyperelastic constitutive equations for an isotropic strain energy density which are suitable to describe
the mechanical behavior of isotropic materials even at finite strains (see e.g. [187,219]) have been proposed in
the literature. Generalized constitutive laws are also available for linear elastic isotropic second gradient media
(see [57]). The main issue when defining a constitutive law is the choice of the deformation descriptors. In
the literature, we find different theorems that ensure the minimum number of parameters needed to correctly
represent the functional dependence of W on C. All of these results define a minimum number of invariants
for any specific symmetry in the considered medium. For what follows the unitary vector along the preferred
directions, namely the fiber directions in the case of the fabrics, will be denoted bym1 andm2 and the unitary
vector m3 is defined as m3 := m1 ∧m2. The invariants considered in the following and a brief description of
their meaning are listed in the table B.1.

We must note that the invariants listed in table B.1 are not all independent. Indeed, it can be shown
(see [200]) that these invariants can be written as functions of only six invariants as:

i2 = i4 i6 + (i4 + i6) (i1 − (i4 + i6))− i28 − i29 − i210

i3 =
(
i4i6 − i28

)
(i1 − (i4 + i6)) + 2 i8 i9 i10 − i6 i29 − i4 i210

i5 = i24 + i28 + i29
i7 = i26 + i28 + i210

i1 = i4 + i6 + i∗11

(B.1)

Invariant Expression Meaning in Terms of Deformation
i1 tr(C) Changes of length
i2 tr

(
det(C) C−T

)
Changes of area

i3 det(C) Changes of volume
i4 = i11 m1 · C ·m1 Local stretch in the direction m1

i5 m1 · C2 ·m1 Shear and stretch strain in m1

i6 = i22 m2 · C ·m2 Local stretch in the direction m2

i7 m2 · C2 ·m2 Shear and stretch strain in m2

i8 = i12 m1 · C ·m2 Shear strain between the directions (m1,m2)
i9 = i13 m1 · C ·m3 Shear strain between the directions (m1,m3)
i10 = i23 m2 · C ·m3 Shear strain between the directions (m2,m3)
i∗11 = i33 m3 · C ·m3 Local stretch in the direction m3

Table B.1: Invariants of Deformation
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Representation Theorem for Isotropic Materials: Considering a hyperelastic isotropic material only
three independent scalar invariants of the Cauchy-Green tensor C are sufficient to correctly represent the
functional dependence of W iso on C. In other words, for an isotropic material, it is sufficient to consider an
energy of the type:

W iso(C) = W (i1, i2, i3) (B.2)

Proofs of this theorem can be easily find in the literature (see [97,188]).

Representation Theorem for Transversely Isotropic Materials: Considering a hyperelastic trans-
versely isotropic material only five independent scalar invariants of the Cauchy-Green tensor C are sufficient
to correctly represent the functional dependence of W tran on C. In other words, for a transversely isotropic
material (i.e. a material with a unique preferential direction), it is sufficient to consider an energy such as:

W tran(C) = W (i1, i2, i3, i4, i5) (B.3)

Constitutive equations for transversely isotropic materials are also well assessed in the literature (see e.g.
[22, 23,36,101,102,188]).

Representation Theorem for Orthotropic Materials: As far as orthotropic materials are considered,
clear and exploitable constitutive hyperelastic equations are harder to be found in the literature. Plenty of
authors try to generalize the representation theorems valid for isotropic and transversely isotropic media, but
often there is no apparent agreement between the different versions proposed for such a theorem.

The most diffused version of the representation theorem (see e.g. [97, 188, 216]) for the hyperelastic or-
thotropic materials states that only seven independent scalar invariants of the Cauchy-Green tensor C are
sufficient to correctly represent the functional dependence of W orth on C. In other words, for an orthotropic
material, it is sufficient to consider an energy such as:

W orth(C) = W (i1, i2, i3, i4, i5, i6, i7) (B.4)

Nevertheless, it can be proved that only six independent scalar invariants are sufficient to completely describe
the behavior of an orthotropic material (see the elegant proof given in [200]), so that, even if it is effectively
possible to write the strain energy as function of seven scalar invariants, it must be kept in mind that not all
of them are truly independent functions of C. In particular, following [200], we can introduce the set of six
invariants iO := {i1, i4, i6, i8, i9, i10} to represent the functional dependence of W on C:

W orth(C) = W (i1, i4, i6, i8, i9, i10) (B.5)

Indeed, all the other invariants can be expressed in terms of such six as recalled in equation B.1.

B.2 Alternative numerical implementation of the constrained mi-
cromorphic model: penalty method

In this subsection, we briefly mention a method that can be used in order to numerically implement a
constrained micromorphic model as an alternative to the method of Lagrange multipliers. It is known as
“penalty method” and consists in implementing a strain energy density which takes the form

W (i4, i6, i8, ϕ,∇ϕ) = WI(i4, i6, i8) +WII(∇ϕ) +Wcoupling(i8, ϕ), (B.6)

where WI and WII are given in Eqs. II.8 and II.9 respectively, while the coupling energy takes the form

Wcoupling(i8, ϕ) =
K

2
(ϕ− i8)2,

where K is a constant that may ideally tend to infinity. Indeed, in order to guarantee the boundedness of
the strain energy density, it follows that ϕ must necessarily tend to i8. We numerically implemented such a
penalty method in order to test the correct convergence of our equilibrium problem formulated with Lagrange
multipliers. Since K is constant, the considered virtual variations are only δu and δϕ and, moreover, the
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Figure 64: Vertical displacement of the mean axis for a displacement of 56 mm and different values of K

constant K must be chosen sufficiently large in order to guarantee numerical convergence of the solution.
This last feature can be easily tested by controlling that the solution does not change when increasing the
value of K (see Fig. 64). The constitutive parameters remain the same as the ones used in the numerical
simulation with the Lagrange multiplier (see tables 3.1 and 3.2). We note that by suitably increasing the
value of K, the model converges to the solution obtained with constrained micromorphic simulation with
Lagrange multiplier. Therefore, this penalty method could be a useful tool for the easy implementation of
constrained micromorphic models due to their high numerical stability.

B.3 Influence of cutting the corners on the onset of wrinkling for
first and second gradient solutions

During experimental testing, it is a spread routine to cut the corners of the specimen as in the simulations
shown in Figure 65, see [35]. This change in the geometry can have an influence on the onset of wrinkling
during the deep drawing of the fabric. We notice that cutting the corner leads to a slightly reduced amount
of wrinkling in the first gradient model, while for the second gradient model the wrinkling is already not
relevant and therefore almost no influence is seen by the cutting of the corners. The considerations concerning
the dependence of the solution from the size of the mesh remain the same as in the other cases both for the
first and second gradient case.

APPENDIX C
Appendix to part III

C.1 Linear mapping for the Mandel-Voigt vector notation

The components of the defined mapping Mαij can be represented as 3× 3 matrices once fixing the index α:

M1ij =

 1 0 0
0 0 0
0 0 0

 , M2ij =

 0 0 0
0 1 0
0 0 0

 , M3ij =

 0 0 0
0 0 0
0 0 1

 ,
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Figure 65: Influence of cutting the corners on the onset of wrinkling for the first and the second gradient
model with shape functions with augmented continuity.

M4ij =

 0 0 0
0 0 c

2
0 c

2 0

 , M5ij =

 0 0 c
2

0 0 0
c
2 0 0

 , M6ij =

 0 c
2 0

c
2 0 0
0 0 0

 .

We define the inverse operator M−1
ijα : R6 → Sym(3) as:

( sym∇u )ij =M−1
ijα εα, ( symP )ij = M−1

ijα βα, (C.1)

with the following property:

MαijM
−1
ijβ = δ̃αβ , (C.2)

where δ̃ is the Kronecker δ in R6 × R6. We can to show that the components of the inverse operator are:

M−1
ij1 =

 1 0 0
0 0 0
0 0 0

 , M−1
ij2 =

 0 0 0
0 1 0
0 0 0

 , M−1
ij3 =

 0 0 0
0 0 0
0 0 1

 ,

(C.3)

M−1
ij4 =

 0 0 0
0 0 1

c
0 1

c 0

 , Mij5 =

 0 0 1
c

0 0 0
1
c 0 0

 , M−1
ij6 =

 0 1
c 0

1
c 0 0
0 0 0

 .

The mapping M has zeros everywhere except in the components {111, 222, 333, 423, 513, 612}. Therefore, we
express it compactly as:

Mαij = δ̃α1δi1δj1 + δ̃α2δi2δj2 + δ̃α3δi3δj3 +
c

2

(
δ̃α4 (δi2δj3 + δi3δj2) + δ̃α5 (δi1δj3 + δi3δj1)

)
(C.4)

+
c

2
δ̃α6 (δi1δj2 + δi2δj1) .
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Analogously for the inverse M−1:

M−1
ijα = δ̃α1δi1δj1 + δ̃α2δi2δj2 + δ̃α3δi3δj3 +

1

c

(
δ̃α4 (δi2δj3 + δi3δj2) + δ̃α5 (δi1δj3 + δi3δj1)

)
(C.5)

+
1

c
δ̃α6 (δi1δj2 + δi2δj1) .

We can check that the application of the linear mapping M to a symmetric second order tensor sij results in
a vector in R6 whose first three components are the elements s11, s22 and s33, while its last three components
are c s23, c s13 and c s12 respectively. This is in accordance to classically used notation as in equation (III.35).

C.2 Non reduction for the standard Mindlin-Eringen model

In this section, we show that the considerations, which allowed the derivation of the macroscopic consistency
conditions for the relaxed micromorphic model, cannot be repeated for the classical Mindlin Eringen model,
which does not provide a transparent connection of the micro and meso elastic tensors to the macroscopic
properties of the medium.

The elastic energy of the general anisotropic micromorphic model in the sense of Mindlin-Eringen is:

W =
1

2

〈
Ce (∇u − P ) , (∇u − P )

〉
︸ ︷︷ ︸

anisotropic elastic− energy

+
1

2

〈
Cm symP, symP

〉
︸ ︷︷ ︸
micro− self − energy

+
µL2

c

2
‖∇P‖2︸ ︷︷ ︸

curvature

. (C.6)

The same expression in index notation is:

W =
1

2

(
Ce
)
ijkl

(∇u − P )ij (∇u − P )kl +
1

2
(Cm)ijkl ( symP )ij ( symP )kl +

µL2
c

2
Pij,k Pij,k. (C.7)

Here, we have discarded Ecross for simplicity. Note that the coupling of skew-symmetric terms is now also
contained in Ce in some hidden way, instead of being explicitly present as in Cc and our relaxed model. The
static equilibrium equations are:

Div
[
Ce (∇u − P )

]
= 0, (C.8)

−Ce (∇u − P ) + Cm symP + µL2
c Div [∇P ] = 0.

These can be equivalently written as: ((
Ce
)
ijkl

(∇u − P )kl

)
,j

= 0, (C.9)

−
(
Ce
)
ijkl

(∇u − P )kl + (Cm)ijkl ( symP )kl + µL2
c Pij,kk = 0.

Here we can define the elastic (relative) stress in such a way that it depends bijectively on the non-symmetric
elastic distortion e = ∇u − P since Ce is assumed to be uniformly positive definite:

σ̃ (∇u , P ) = Ce (∇u − P ) , σ̃ij (∇u , P ) =
(
Ce
)
ijkl

(∇u − P )kl . (C.10)

We can write in this model:

∇u − P = C−1

e σ̃ , (C.11)

where C−1

e is the Mindlin-Eringen elastic micromorphic compliance tensor.
In order to find the corresponding macroscopic tensor, we have to write the micromorphic elastic (relative)

stress as a function of only ∇u .
Considering very large samples of the anisotropic structure amounts to letting Lc, the characteristic length,

tend to zero. As a consequence of Lc = 0, the second equilibrium equation in (C.8) looses the Div∇P -term
and turns into an algebraic side-condition connecting P and ∇u via:

Ce (∇u − P ) = Cm symP . (C.12)
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Or, again in index notation: (
Ce
)
ijkl

(∇u − P )kl = (Cm)ijkl ( symP )kl . (C.13)

From this equation we obtain:

Cm symP =Ce sym (∇u − P ) + Ce skew (∇u − P )

=Ce sym∇u − Ce symP + Ce skew (∇u − P ) ,

(
Ce + Cm

)
symP =Ce sym∇u + Ce skew (∇u − P )

symP =
(
Ce + Cm

)−1 Ce sym∇u +
(
Ce + Cm

)−1 Ce skew (∇u − P ) . (C.14)

In index notation this becomes:

( symP )ij =
(
Ce + Cm

)−1

ijkl

(
Ce
)
klmn

( sym∇u )mn +
(
Ce + Cm

)−1

ijkl

(
Ce
)
klmn

( skew (∇u − P ))mn . (C.15)

On the other hand, replacing (C.12) in (C.8)1 yields:

Div [Cm symP ] = 0 . (C.16)

And again, by replacing this result in (C.14) we obtain:

Div
[
Cm

(
Ce + Cm

)−1 Ce sym∇u + Cm

(
Ce + Cm

)−1 Ce skew (∇u − P )
]

= 0. (C.17)

It is not possible to decouple this last equation due to the presence of the rotational coupling term
skew (∇u − P ). Therefore, the only condition we can obtain is:

Cm

(
Ce + Cm

)−1 Ce sym∇u + Cm

(
Ce + Cm

)−1 Ce skew (∇u − P ) = CM sym∇u , (C.18)

or, in index notation:

(Cm)klmn
(
Ce + Cm

)−1

mnpq

(
Ce
)
pqij

( sym∇u )ij + (C.19)

+ (Cm)klmn
(
Ce + Cm

)−1

mnpq

(
Ce
)
pqij

( skew (∇u − P ))ij = (CM)klij ( sym∇u )ij .

This has to hold for any sym∇u . Noting that CM sym∇u ∈ Sym(3) and considering the symmetric part
and the skew-symmetric part individually, we have

sym
{
Cm

(
Ce + Cm

)−1 Ce sym∇u + Cm

(
Ce + Cm

)−1 Ce skew (∇u − P )
}
= CM sym∇u ,

skew
{
Cm

(
Ce + Cm

)−1 Ce sym∇u + Cm

(
Ce + Cm

)−1 Ce skew (∇u − P )
}

= 0.

(C.20)

Similarly, in index notation we obtain:
sym

{
(Cm)klmn

(
Ce + Cm

)−1

mnpq

(
Ce
)
pqij

(
( sym∇u )ij + ( skew (∇u − P ))ij

)}
= (CM)klij ( sym∇u )ij ,

skew
{

(Cm)klmn
(
Ce + Cm

)−1

mnpq

(
Ce
)
pqij

(
( sym∇u )ij + ( skew (∇u − P ))ij

)}
= 0.

(C.21)

A sufficient condition in order to obtain a decoupling of these equations (sym and skew) is exactly the reduced
anisotropic format put forward in our relaxed model.
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C.3 Some considerations about the anisotropic rotational coupling
in the “relaxed micromorphic model”

Before understanding the general anisotropic character of the coupling tensor Cc, we recall the transformation
behavior of the energy expression in the isotropic case. An energy defined on second order tensors is isotropic
if the transformation:

X → QT ·X ·Q for Q ∈ SO(3), (C.22)

does not affect the value of the energy. More precisely, we say that a local energy contribution acting on
second order tensors is isotropic if

W (X) = W (QT ·X ·Q). (C.23)

Given a second order tensor which is subjected to the transformation (C.22), it is clear that its skew-symmetric
part transforms as follows:

skew (X)→ skew
(
QT ·X ·Q

)
= QT · skew (X) ·Q for Q ∈ SO(3) , (C.24)

and the corresponding axial vector of skew (X) satisfies the transformation law:

axl ( skew (X))→ axl
(

skew
(
QT ·X ·Q

))
= axl

(
QT · skew (X) ·Q

)
= Q · axl ( skew (X)) , (C.25)

see [161, 162]. Based on these transformation laws, we may investigate the anisotropy of the rotational
coupling with the representation in terms of the second order tensor C̃c. Indeed, for the isotropy of an energy
of the type W ( skewX) we require the invariance:

∀Q ∈ SO(3) :
〈
Cc skew (X) , skew (X)

〉
R3×3 =

〈
Cc skew

(
QT ·X ·Q

)
, skew

(
QT ·X ·Q

) 〉
R3×3 ,

(C.26)

which, using (III.44) and (C.25), is also equivalent to:

∀Q ∈ SO(3) :
〈
C̃c · axl ( skew (X)) , axl ( skew (X))

〉
R3

=
〈
C̃c · axl

(
skew

(
QT ·X ·Q

))
, axl

(
skew

(
QT ·X ·Q

)) 〉
R3 (C.27)

=
〈
C̃c ·Q · axl ( skew (X)) , Q · axl ( skew (X))

〉
R3 .

If we now set η = axl ( skew (X)), the latter is equivalent to:

∀Q ∈ SO(3) :
〈
C̃c · η, η

〉
R3 =

〈
C̃c ·Q · η,Q · η

〉
R3 =

〈
QT · C̃c ·Q · η, η

〉
R3 , (C.28)

where the transformation laws for the axl-operator given in (C.25) has been used. Since (C.28) must hold
for all vectors η ∈ R3 we obtain:

C̃c = QT · C̃c ·Q ∀Q ∈ SO(3) . (C.29)

Recalling that Q ∈ SO(3) implies QT = Q−1, it can be inferred that this last equation is satisfied if and only
if:

C̃c =
µc
2
1, µc ≥ 0, (C.30)

which is the expression of C̃c for the isotropic case in which µc is called the Cosserat couple modulus [44].
Let us first state again that the relaxed micromorphic model is fully functional even without using Cc at all.
However, our experience in the isotropic case, in which Cc reduces to the Cosserat couple modulus µc, has
shown that in order to describe complete frequency band gaps, one should take µc > 0. In the anisotropic
case this would translate to requiring that Cc is positive definite.
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A method to reduce any given anisotropic rotational coupling to the isotropic case is, therefore, to simply
project C̃aniso

c to its isotropic part, given by the arithmetic mean of the eigenvalues of C̃aniso
c (the Voigt

bound):

isoarithm

(
C̃aniso
c

)
:=

1

3
tr
(
C̃aniso
c

)
1. (C.31)

This defines a mapping isoarithm : Sym+(3) → R+
1. We note, however, that applying (C.31) has certain

deficiencies, e.g. it is not stable under inversion:

isoarithm

((
C̃aniso
c

)−1
)
6=
[
isoarithm

((
C̃aniso
c

))]−1

. (C.32)

Following the approach by Norris and Moakher [159], we can obtain the closest isotropic tensor to C̃aniso
c with

respect to a geodesic structure on Sym+(3). This will define a nonlinear operator isogeod : Sym+(3)→ R+
1

such that:

isogeod

((
C̃aniso
c

)−1
)

=
[
isogeod

((
C̃aniso
c

))]−1

. (C.33)

This will be exemplified in a different contribution. In the meantime, we may alternatively propose a mapping
isolog : Sym+(3)→ R+

1 defined by:

isolog

(
C̃aniso
c

)
:= e

1
3 tr(log(C̃aniso

c ))1 = e
1
3 log(det(C̃aniso

c ))1 = e
1
3 log(det(C̃aniso

c ))
1 = det

(
C̃aniso
c

) 1
3

1. (C.34)

This is the geometric mean of the eigenvalues of C̃aniso
c . This mapping satisfies

isolog

((
C̃aniso
c

)−1
)

=
[
isolog

(
C̃aniso
c

)]−1

. (C.35)

There is also another possibility. We define the harmonic isotropy projector by:

isoharm

(
C̃aniso
c

)
:=

[
isoarithm

((
C̃aniso
c

)−1
)]−1

. (C.36)

This is the harmonic mean of the eigenvalues of C̃aniso
c (the Reuss-bound [24]). All introduced mappings

satisfy the projection property:

isoarithm
(
γ+

1
)

= isogeod
(
γ+

1
)

= isolog
(
γ+

1
)

= isoharm
(
γ+

1
)

= γ+
1. (C.37)

Let us discuss the differences between isoarithm and isolog. Consider a sequence of C̃aniso,k
c → C̃aniso,∞

c for
k →∞, where C̃aniso,∞

c is not positive definite, i.e. some eigenvalue is zero (and det
(
C̃aniso,∞
c

)
= 0). Then:

isoarithm

(
C̃aniso,k
c

)
=

1

3
tr
(
C̃aniso,k
c

)
1→ 1

3
tr
(
C̃aniso,∞
c

)
1, (C.38)

is positive definite. The mapping property is such that isoarithm : Sym+(3)→ R+
1. In contrast, we observe

that:

isolog

(
C̃aniso,k
c

)
=
(

det
(
C̃aniso,k
c

)) 1
3

1→ 0R3×3 . (C.39)

Therefore, isolog determines a zero isotropic coupling when eigenvalues of C̃aniso
c vanish. For example,

C̃aniso
c =

a1 0 0
0 0 0
0 0 0

 , isoarithm

(
C̃aniso
c

)
=
a1

3
, isolog

(
C̃aniso
c

)
= 0R3×3 . (C.40)

At the present stage of understanding, however, we do not have extra arguments for using an anisotropic
rotational coupling instead of an isotropic one. When possible, an isotropic rotational coupling given by the
Cosserat couple modulus µc should be preferred.
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C.4 Properties of the macroscopic constitutive tensors

C.4.1 Symmetry
Let us first consider the direct relation:

CM = Cm (Cm + Ce)−1 Ce . (C.41)

The constitutive tensor CM is the result of a product of the type:

CM =A (A+B)
−1
B, (C.42)

where A, B and, as a consequence (A+B) are symmetric. In order to show the symmetry of CM let us
suppose that (A+B) is invertible and write accordingly:

(A+B) (A+B)
−1
B = B. (C.43)

We can decompose the product by using the distributive property of the matrix product with respect to the
sum:

A (A+B)
−1
B +B (A+B)

−1
B = B. (C.44)

Therefore:

A (A+B)
−1
B = B −B (A+B)

−1
B. (C.45)

So we have that CM = A (A+B)
−1
B is the difference of two symmetric matrices, since B (A+B)

−1
B is

also symmetric.1 For the inverse relation, we consider:

Ce = Cm (Cm − CM)
−1 CM . (C.46)

Similarly, we can derive its symmetry (as long as (Cm − CM)
−1
kl exists):

A (A−B)
−1
B = B +B (A−B)

−1
B. (C.47)

C.4.2 Positive definiteness
Let us now investigate the positive-definiteness of

CM = Cm (Cm + Ce)−1 Ce . (C.48)

If we assume Cm and Ce to be positive definite, it follows from the properties of positive definiteness, that
their sum as well as the inverse of the sum will be positive definite. Note first that a product AB of positive
definite matrices A and B has real, positive eigenvalues. This can be seen by considering the characteristic
equation:

det(AB − λ1) = 0 ⇐⇒ det(A−1/2[AB − λ1]A1/2) = 0 ⇐⇒ det(A1/2BA1/2 − λ1) = 0 . (C.49)

Now, A1/2BA1/2 is positive definite since, setting η := A1/2ξ, we have:〈
A1/2BA1/2ξ, ξ

〉
=
〈
BA1/2ξ, A1/2ξ

〉
=
〈
Bη, η

〉
≥ λmin(B)‖η‖2 = λmin(B)‖A1/2ξ‖2 (C.50)

=λmin(B)
〈
A1/2ξ, A1/2ξ

〉
= λmin(B)

〈
Aξ, ξ

〉
≥ λmin(B)λmin(A)‖ξ‖2 .

Therefore, the eigenvalues of AB are real and positive. In general, however, the symmetry of the product
AB will be lost. In our case, nonetheless, we proved in subsection C.4.1 that CM is symmetric and, therefore,
positive definite.

1We note again that the inverse of a positive definite tensor, like A+B = Cm + Ce has the same symmetry group structure
as Cm + Ce itself. This can be easily shown by directly looking at the definition of groups.
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For the inverse relationship, we consider:

Ce = Cm (Cm − CM)
−1 CM . (C.51)

In this case, in order to obtain the positive definiteness of Ce it is not enough to assume that Cm and CM

are positive definite. However, one sufficient condition to impose is that Cm − CM is also positive definite.
This property can be thought of as a generalization of the condition found in the isotropic case in which:

smaller is stiffer
the macroscopic elastic response cannot be equal or stiffer than the microscopic response

µm > µM, (2µm + 3λm) > (2µM + 3λM).

APPENDIX D
Appendix to part IV

D.1 Bulk wave propagation for the classical Cauchy medium

In this subsection we recall that the strain energy density W and the kinetic energy T for a classical Cauchy
medium in the isotropic setting take the form

W = µ ‖ sym ∇u ‖2 +
λ

2
(tr (sym ∇u ))

2
, T =

1

2
ρ ‖u,t‖2 , (D.1)

where λ and µ are the classical Lamé parameters and u denotes the classical macroscopic displacement field.
The associated bulk equations of motion in strong form, obtained by a classical least action principle,

take the usual form:

ρ u,tt = Div σM, ∀x ∈ Ω, (D.2)
f := σM · n = 0 or u = u0, ∀x ∈ ∂Ω,

where n is the normal to the boundary ∂Ω, and σM is the symmetric elastic stress tensor defined as:

σM (∇u ) = 2µ sym∇u + λ tr(∇u )1 . (D.3)

Considering the case of plane waves, we suppose that the space dependence of all introduced kinematic fields
are limited to the component x1 of x which is the direction of propagation of the wave. With this hypothesis,
see [141], the equations of motion (D.2)1 become

u1,tt =
λ+ 2µ

ρ
u1,11︸ ︷︷ ︸

longitudinal

, u2,tt =
µ

ρ
u2,11︸ ︷︷ ︸

transverse 2

, u3,tt =
µ

ρ
u3,11︸ ︷︷ ︸

transverse 3

. (D.4)

We now look for solutions of the dynamic problem (D.4) of the form

u(x, t) = α ei(k x1−ω t), α ∈ R3. (D.5)

Considering a wave traveling in an infinite domain no conditions on the boundary are to be imposed and,
replacing the wave form expression (D.5) in the bulk equation (D.2), we can find the standard dispersion
relations for Cauchy media (see also [141]) obtaining

ω2 = c2l k
2︸ ︷︷ ︸

longitudinal

, ω2 = c2tk
2︸ ︷︷ ︸

transverse 2

, ω2 = c2tk
2︸ ︷︷ ︸

transverse 3

, (D.6)
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where

cl =

√
λ+ 2µ

ρ
, ct =

√
µ

ρ
, (D.7)

are the characteristic speeds in classical Cauchy media of longitudinal and transverse waves, respectively.
The dispersion relations can be traced in the plane (ω, k), giving rise to the standard non-dispersive behavior
for a classical Cauchy continuum (see [1, 37–39, 141]). Indeed it is easily seen that for Cauchy continua the
relations (D.6) can be inverted:

k = ± 1

cl
ω︸ ︷︷ ︸

longitudinal

, k = ± 1

ct
ω︸ ︷︷ ︸

transverse 2

, k = ± 1

ct
ω︸ ︷︷ ︸

transverse 3

. (D.8)

For classical linear elasticity with isotropic energy density and kinetic energy density:

W (∇u ) = µM ‖ sym∇u ‖2 +
λM

2
(tr (∇u ))

2
, J =

ρ

2
‖u,t‖2 . (D.9)

The positive definiteness of the energy is equivalent to:

µM > 0, 2µM + 3λM > 0. (D.10)

It is easy to see that our homogenization formula (III.57) implies (D.10) under the condition of positive
definiteness of the relaxed micromorphic model.

The dynamical formulation is obtained by defining a joint Hamiltonian and assuming stationary action.
The dynamical equilibrium equations are:

ρ u,tt = Div [2µM sym (∇u ) + λM tr (∇u )1] . (D.11)

As before, in our study of wave propagation in micromorphic media we limit ourselves to the case of plane
waves traveling in an infinite domain. We suppose that the space dependence of all introduced kinematic
fields are limited to a direction defined by a unit vector ξ̃ ∈ R3 which is the direction of propagation of the
wave. Therefore, we look for solutions of (D.11) in the form:

u(x, t) = û ei(k〈ξ̃, x〉R3−ω t) , û ∈ C3 , ‖ξ̃‖2 = 1 . (D.12)

Since our formulation is isotropic, we can, without loss of generality, specify the direction ξ̃ = e1. Then
X = 〈e1, x〉R3 = x1, and we obtain:

u(x, t) = û ei(kX−ω t) , û ∈ C3 . (D.13)

With this ansatz, we can write (D.11) as:

A5(e1, ω, k) · û = 0 ⇐⇒ (B(e1, k)− ω2
1) · û = 0 , (D.14)

where:

A5(e1, ω, k) =

( 2µM+λM

ρ k2 − ω2 0 0

0 µM

ρ k
2 − ω2 0

0 0 µM

ρ k2 − ω2

)
, (D.15)

B(e1, k) =
k2

ρ

( 2µM + λM 0 0
0 µM 0
0 0 µM

)
. (D.16)

Here, we observe that A5(e1, ω, k) is already diagonal and real. Requesting real wave velocities means
ω2 ≥ 0. For k 6= 0, this leads to the classical so-called strong ellipticity condition:

µM > 0, 2µM + λM > 0, (D.17)
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which is implied by the positive definiteness of the energy (D.10).
In classical (linear or nonlinear) elasticity, the condition of real wave propagation (D.17) is equivalent to

strong ellipticity and rank-one convexity. Indeed, rank-one convexity amounts to set (ξ = k ξ̃ with ‖ξ‖2 = 1):

d2

dt2

∣∣∣∣
t=0

W (∇u + t û ⊗ ξ) ≥ 0 ⇐⇒ 〈C (û ⊗ ξ) , û ⊗ ξ〉R3×3 ≥ 0, (D.18)

where C is the fourth-order elasticity tensor. Condition (D.18) reads then:

0 ≤ 2µM ‖ sym (û ⊗ ξ)‖2 + λM (tr (û ⊗ ξ))2
= µM ‖û‖2‖ξ‖2 + (µM + λM)〈û, ξ〉2R3 .

We may express (D.19) given ξ ∈ R3 as a quadratic form in û ∈ R3, which results in:

µM ‖û‖2‖ξ‖2 + (µM + λM)〈û, ξ〉2R3 = 〈D(ξ)û, û〉R3 , (D.19)

where the components of the symmetric and real 3× 3 matrix D(ξ) read

D(ξ) =

( (2µM + λM)ξ2
1 + µM(ξ2

2 + ξ2
3) (λM + µM)ξ1 ξ2

(λM + µM)ξ1 ξ2 (2µM + λM)ξ2
2 + µM(ξ2

1 + ξ2
3)

(λM + µM)ξ1 ξ3 (λM + µM)ξ1ξ2(λM + µM)ξ1 ξ3
(λM + µM)ξ2 ξ3

2µM + λM)ξ2
3 + µM(ξ2

1 + ξ2
2)

)
. (D.20)

The three principal invariants are independent of the direction ξ due to isotropy and are given by:

tr(D(ξ)) = ‖ξ‖2(4µM + λM) = k2(4µM + λM),

tr(Cof D(ξ)) = ‖ξ‖4µM(5µM + 2λM) = k4µM(5µM + 2λM), (D.21)

det(D(ξ)) = ‖ξ‖6µ2
M(2, µM + λM) = k6µ2

M(2µM + λM).

SinceD(ξ) is real and symmetric, its eigenvalues are real. The eigenvalues of the matrixD(ξ) are k2(2µM+λM)
and k2µM (of multiplicity 2) such that positivity at k 6= 0 is satisfied if and only if1:

µM > 0, 2µM + λM > 0, (D.22)

which are the usual strong ellipticity conditions. We note here that the latter calculations also show that
B(e1) = 1

ρ k
2D(e1). Alternatively, one may directly write the so-called acoustic tensor B(ξ) ∈ R3×3 by

B(ξ) · û := [C(û⊗ ξ)] · ξ, ∀û ∈ R3, (D.23)

in indices we have (B(ξ))ij = Cikjlûkûl 6= C(ξ ⊗ ξ). With (D.23) we obtain2:

〈û, B(ξ) · û〉R3 = 〈[C(û⊗ ξ)]︸ ︷︷ ︸
=:B̂∈R3×3

ξ, ·û〉R3 = 〈B̂ · ξ, û〉R3 = 〈B̂ · (ξ ⊗ û),1〉R3×3 = 〈B̂, (ξ ⊗ û)T 〉R3×3 (D.24)

= 〈B̂, û⊗ ξ〉R3×3 = 〈C (û⊗ ξ), û⊗ ξ〉R3×3 ,

and we see that strong ellipticity 〈C (û ⊗ ξ), û ⊗ ξ〉R3×3 > 0 is equivalent to the positive definiteness of the
acoustic tensor B(ξ).

D.2 Bulk wave propagation for the linear Cosserat model

In the isotropic hyperelastic case the elastic energy density and the kinetic energy density of the Cosserat
model read:

W = µM ‖ sym∇u ‖2 + µc ‖ skew (∇u −A)‖2 +
λM

2
(tr (∇u ))

2
+
µML

2
c

2
‖CurlA‖2, (D.25)

J =
ρ

2
‖u,t‖2 +

η

2
‖A,t‖2 .

1The eigenvalues of D(ξ) are independent of the propagation direction ξ ∈ R3 which makes sense for the isotropic formulation
at hand.

2The term [C(û⊗ξ)]·(û⊗ξ) that in index notation reads Cijklûkξlûjξm, is different from C[(û⊗ξ)·(û⊗ξ)], i.e. Cijklûkξmûmξl.
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Introducing the canonical identification of R3 with so(3), A can be expressed as a function of a ∈ R3 as:

A = anti(a) =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (D.26)

Here, we assume for clarity a uni-constant curvature expression in terms of only ‖CurlA‖2. Strict positive
definiteness of the potential energy is equivalent to the following simple relations for the introduced parameters

2µM + 3λM > 0, µM > 0, µc > 0, Lc > 0. (D.27)

The dynamical formulation is obtained defining a joint Hamiltonian and assuming stationary action. The
dynamical equilibrium equations are:

ρ u,tt = Div [2µM sym (∇u −A) + 2µc skew (∇u −A) + λM tr (∇u −A)1] , (D.28)

η A,tt = − µML
2
c skew ( Curl CurlA) + 2µc skew (∇u −A) ,

see also [104, 105, 177, 178] for formulations in terms of axial vectors. Note that for zero Cosserat couple
modulus µc = 0 the coupling of the two fields (u,A) is absent, in opposition to the relaxed micromorphic
model (Equation (IV.3)). Considering plane and stationary waves of amplitudes û and â, we can express this
system as:

A6(ω, k) ·
(
û1 â1

)T
= 0, A7(ω, k) ·

(
û2 −â3

)T
= 0, A7(ω, k) ·

(
û3 â2

)T
= 0, (D.29)

where

A6(ω, k) =

(
k2(2µM + λM))/ρ− ω2 0

0 (2µML
2
ck

2 + 2µc)/η − ω2

)
, (D.30)

A7(ω, k) =

(
k2(µM + µc)/ρ− ω2 −2ikµc/ρ

ikµc/η (k2µML
2
c + 4µc)/(2η)− ω2

)
. (D.31)

As done in the case of the relaxed micromorphic model, we can equivalently express the problem with A6(ω, k)
and the following symmetric matrix:

A7(k) = diag7 ·A7(ω, k) · diag−1
7 =

(
k2(µM + µc)/ρ− ω2

√
2kµc/

√
ρη√

2kµc/
√
ρη (k2µML

2
c + 4µc)/(2η)− ω2

)
, (D.32)

where

diag7 =

( √
ρ 0

0 i
√

2η

)
. (D.33)

Since ω2 appears only on the diagonal, the problem can be analogously expressed as the following eigenvalue-
problems:

det
(
B6(k)− ω2

1
)

= 0, det
(
B7(k)− ω2

1
)

= 0, (D.34)

where

B6(k) =

(
k2(2µM + λM))/ρ 0

0 (2µML
2
ck

2 + 2µc)/η
2

)
, (D.35)

B7(k) =

(
k2(µM + µc)/ρ

√
2kµc/

√
ρη√

2kµc/
√
ρη (k2µML

2
c + 4µc)/(2η)

)
, (D.36)

are the blocks of the acoustic tensor B

B(k) =

 B6 0 0
0 B7 0
0 0 B7

 . (D.37)
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The eigenvalues of the matrix B6(k) are simply the elements of the diagonal, therefore we have:

ωacoustic, long(k) = k

√
2µM + λM

ρ
, ωoptic, long(k) =

√
2µML2

ck
2 + 2µc
η

, (D.38)

while for B7(k), we find:

ωacoustic, trans(k) =

√
a(k)−

√
a(k)2 − b2k2, ωoptic, trans(k) =

√
a(k) +

√
a(k)2 − b2k2, (D.39)

where we have set:

a(k) =
4µc + µML

2
ck

2

η
+ 2

µM + µc
ρ

k2, b2 = 8
µM(4µc + k2L2

c(µM + µc))

ρ η
. (D.40)

The acoustic branches are those curves ω = ω(k) as solutions of (D.33) that satisfy ω(0) = 0. We note here
that the acoustic branches of the longitudinal and transverse dispersion curves have as tangent in k = 03

cl =
dωacoustic, long(0)

dk
=

√
2µM + λM

ρ
, ct =

dωacoustic, trans(0)

dk
=

√
µM

ρ
, (D.41)

respectively. Moreover, the longitudinal acoustic branch is non-dispersive, i.e. a straight line with slope
(D.41)1. The matrix B6(k) is positive-definite for arbitrary k 6= 0 if:

2µM + λM > 0, µM > 0, µc ≥ 0, (D.42)

Using the Sylvester criterion, B7(k) is positive-definite if and only if the principal minors are positive, namely:

(B7)11 = k2 (µM + µc)

ρ
> 0, (D.43)

det(B7) =
k2

2ηρ
(4µM µc + k2µML

2
c(µM + µc)) > 0,

from which we obtain the condition:

µM + µc > 0, µM > 0, µc ≥ 0. (D.44)

Considering these two sets of conditions, we can state a necessary and sufficient condition for the positive
definiteness of B6(k) and B7(k) and therefore of the acoustic tensor B(k):

2µM + λM > 0, µM > 0, µc ≥ 0. (D.45)

which are implied by the positive-definiteness of the energy (D.27). Eringen [67, p.150] also obtains correctly
(D.42) and (D.44) (in his notation µc = κ/2, µM = µEringen + κ/2).

In [4, 64] strong ellipticity for the Cosserat-micropolar model is defined and investigated. In this respect
we note that ellipticity is connected to acceleration waves while our investigation concerns real wave velocities
for planar waves. Similarly to [171] it is established in [4,64] that strong ellipticity for the micropolar model
holds if and only if (the uni-constant curvature case in our notation):

2µM + λM > 0, µM + µc > 0. (D.46)

We conclude that for micropolar material models, (and therefore also for micromorphic materials) strong
ellipticity (D.46) is too weak to ensure real plane waves since it is implied by but does not imply (D.45).
This fact seems to have been appreciated also in the study of the Cosserat model [20,79,82,135,162].

3To obtain the slopes in 0, we search for a solution of the type ω = a k and then evaluate the limit for a→ 0, see [50] for a
thorough explanation in the relaxed micromorphic case.
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D.3 Inequality relations between material parameters

The macroscopic consistency conditions are based on the harmonic mean of two numbers κe and κm (or µe
and µm). If the two numbers are positive, it is easy to see that:

κM ≤ min(κe, κm). (D.47)

Here, we show that the same conclusion still holds if we merely assume that κe + κm > 0. This allows for
either κe < 0 or κm < 0. Therefore, considering that κe + κm > 0, even if the energy is not strictly positive,
we find:

κM =
κm κe
κe + κm

=
κm κe + κ2

e − κ2
e

κe + κm
= κe

κm + κe
κe + κm

− κ2
e

κe + κm
= κe−

κ2
e

κe + κm︸ ︷︷ ︸
≤0

≤ κe, (D.48)

κM =
κm κe
κe + κm

=
κm κe + κ2

m − κ2
m

κe + κm
= κm

κm + κe
κe + κm

− κ2
m

κe + κm
= κm−

κ2
m

κe + κm︸ ︷︷ ︸
≤0

≤ κm.

Considering similarly µe + µm > 0, we obtain:

µM =
µm µe
µe + µm

=
µm µe + µ2

e − µ2
e

µe + µm
= µe

µm + µe
µe + µm

− µ2
e

µe + µm
= µe−

µ2
e

µe + µm︸ ︷︷ ︸
≤0

≤ µe, (D.49)

µM =
µm µe
µe + µm

=
µm µe + µ2

m − µ2
m

µe + µm
= µm

µm + µe
µe + µm

− µ2
m

µe + µm
= µm−

µ2
m

µe + µm︸ ︷︷ ︸
≤0

≤ µm.

Therefore, if µe + µm > 0 and κe + κm > 0, the macroscopic parameters are less or equal than the respective
microscopic parameters, namely:

κe ≥ κM, κm ≥ κM µe ≥ µM, µm ≥ µM, (D.50)

and we can show that:

2µe + λe =
1

3
(4µe + 3κe) ≥

1

3
(4µM + 3κM) = 2µM + λM > 0,

2µm + λm =
1

3
(4µm + 3κm) ≥ 1

3
(4µM + 3κM) = 2µM + λM > 0, (D.51)

(2µe + λe) + (2µm + λm) ≥ 2 (2µM + λM) > 0,

4µM + 3κe ≥ 4µM + 3κM = 3 (2µM + λM) > 0.

Therefore, the set of inequalities (IV.52) is implied from the smaller set:

µe > 0, µm > 0, µc ≥ 0, κe + κm > 0, 2µM + λM > 0. (D.52)

We note here that 3 (2µe + λe) ≥ 4µM + 3κe ≥ 3 (2µM + λM) because:

3 (2µe + λe) = 4µe + 3κe ≥ 4µM + 3κe ≥ 4µM + 3κM = 3 (2µM + λM). (D.53)

D.4 The 12× 12 acoustic tensor for arbitrary direction

We suppose that the space dependence of all introduced kinematic fields is limited to a direction defined by
a unit vector ξ which is the direction of propagation of the wave. Therefore, we look for solutions of:

ρ u,tt = Div [2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1] ,

η P,tt = − µL2
c Curl CurlP + 2µe sym (∇u − P ) + 2µc skew (∇u − P ) (D.54)

+ λe tr (∇u − P )1 − [2µm symP + λm tr(P )1] ,
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in the form:

u(x, t) = û ei(k〈ξ, x〉R3−ω t)︸ ︷︷ ︸
s(x,t)∈R/C scalar

, û ∈ C3 , ‖ξ‖2 = 1 , (D.55)

P (x, t) = P̂ ei(k〈ξ, x〉R3−ω t)︸ ︷︷ ︸
s(x,t)∈R/C scalar

, P̂ ∈ C3×3 ,

where û is the polarization vector and P̂ is the polarization matrix. We start by remarking that for A,B ∈
R3×3 we have that:

Curl(A ·B) = LB(∇A) +A · Curl(B), (D.56)

where LB : R27 → R3×3 is a linear operator with constant coefficients defined by the appropriate product
rule of differentiation. Therefore we obtain:

Curl( P̂ s(x, t)) = Curl( P̂ · 1 s(x, t)) = P̂ · Curl(1 s(x, t)), (D.57)

where:

Curl(1 s(x, t)) =

 0 ∂3s(x, t) ∂2s(x, t)
−∂3s(x, t) 0 ∂1s(x, t)
∂2s(x, t) −∂1s(x, t) 0

 ∈ so(3). (D.58)

The derivatives of s(x, t) are:

∇xs(x, t) =

 ∂1s(x, t)
∂2s(x, t)
∂3s(x, t)

 = ei(k〈ξ, x〉R3−ω t)

 i k ξ1
i k ξ2
i k ξ3

 = ei(k〈ξ, x〉R3−ω t) i k ξ = i k ξ s(x, t). (D.59)

We note that:

Curl(s(x, t)1) = anti(∇s(x, t)) = ei(k〈ξ, x〉R3−ω t) i k anti(ξ) = s(x, t) i k anti(ξ). (D.60)

Therefore, the Curl CurlP is:

Curl Curl( P̂ s(x, t)) = Curl( P̂ · anti(ξ)︸ ︷︷ ︸
∈so(3)

i k s(x, t)) = i k Curl([ P̂ · anti(ξ)] · 1s(x, t)) (D.61)

= i k P̂ · anti(ξ) Curl(1s(x, t)) = i k i k P̂ · anti(ξ) · anti(ξ) s(x, t)

= −k2 P̂ · anti(ξ) · anti(ξ) ei(k〈ξ, x〉R3−ω t).

On the other hand, the second derivative of P with respect to time is:

P,tt = ∂2
t ( P̂ ei(k〈ξ, x〉R3−ω t)) = −ω2 P̂ ei(k〈ξ, x〉R3−ω t)) = −ω2 P̂ s(x, t). (D.62)

Analogously for u, the gradient and the derivatives with respect to time is:

∇xu = i k s(x, t)û⊗ ξ, u,tt = −ω2 û s(x, t). (D.63)

The sym, skew and tr of ∇u − P can then be expressed as:

sym(∇u − P ) = sym(i k û⊗ ξ − P̂ ) s(x, t) = (i k sym(û⊗ ξ)− sym P̂ ) s(x, t),

skew(∇u − P ) = skew(i k û⊗ ξ − P̂ ) s(x, t) = (i k skew(û⊗ ξ)− skew P̂ ) s(x, t), (D.64)

tr(∇u − P ) = tr(i k û⊗ ξ − P̂ ) s(x, t) = (i k 〈û, ξ〉R3 − tr P̂ ) s(x, t).
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Therefore, we have:

Div sym(∇u − P ) = Div
[
(i k sym(û⊗ ξ)− sym P̂ ) s(x, t)

]
= (i k sym(û⊗ ξ)− sym P̂ ) · ∇x s(x, t)

= (i k sym(û⊗ ξ)− sym P̂ ) · (i k ξ s(x, t)) = −(k2 sym(û⊗ ξ) · ξ + i k sym P̂ · ξ) s(x, t),

Div skew(∇u − P ) = Div
[
(i k skew(û⊗ ξ)− skew P̂ ) s(x, t)

]
= (i k skew(û⊗ ξ)− skew P̂ ) · ∇x s(x, t)

(D.65)

= (i k skew(û⊗ ξ)− skew P̂ ) · (i k ξ s(x, t)) = −(k2 skew(û⊗ ξ) · ξ + i k skew P̂ · ξ) s(x, t),

Div( tr(∇u − P )1) = Div
[(

(i k 〈û, ξ〉R3 − tr P̂ )1
)
s(x, t)

]
= (i k 〈û, ξ〉R3 − tr P̂ )1 · ∇x s(x, t)

= (i k 〈û, ξ〉R3 − tr P̂ )1 · (i k ξ s(x, t)) = −(k2 〈û, ξ〉R3 + i k tr P̂ )ξ s(x, t).

Here, we have considered that, given a generic B ∈ R3×3 and a scalar s(x, t), we have:

Div[B s(x, t)] = Div[B]︸ ︷︷ ︸
=0

s(x, t) +B · ∇xs(x, t), (D.66)

Combining all the formulas above and simplifying s(x, t) everywhere, we can write (D.54) as:

−ρω2 û =−
[
2µe (k2 sym(û⊗ ξ) · ξ + i k sym P̂ · ξ)) + 2µc (k2 skew(û⊗ ξ) · ξ + i k skew P̂ · ξ)

+ λe(k
2 〈û, ξ〉R3 + i k tr P̂ ) ξ

]
,

−η ω2 P̂ =µL2
ck

2 P̂ anti(ξ) · anti(ξ) + 2µe (i k sym(û⊗ ξ)− sym P̂ ) + 2µc (i k skew(û⊗ ξ)− skew P̂ )
(D.67)

+ λe(i k 〈û, ξ〉R3 − tr P̂ )1−
[
2µm sym P̂ + λm tr( P̂ )1

]
,

or analogously:

−ρω2 û+ k2(2µe sym(û⊗ ξ) · ξ + 2µc skew(û⊗ ξ) · ξ + λe 〈û, ξ〉R3 ξ)

+i k (2µe sym P̂ · ξ + 2µc skew P̂ · ξ + λe tr P̂ ξ) = 0,

−η ω2 P̂ − µL2
ck

2 P̂ anti(ξ) · anti(ξ) + 2(µe + µm) sym P̂ + 2µc skew P̂ + (λe + λm) tr( P̂ )1 (D.68)
− 2µe i k sym(û⊗ ξ)− 2µc i k skew(û⊗ ξ)− λei k 〈û, ξ〉R31 = 0.

For a given ξ ∈ R3, this is a linear system in (û, P̂ ) ∈ C12 which can be written in 12× 12 matrix format as:

Ã(ξ, ω, k)





û1

û2

û3

P̂ 11

P̂ 12

P̂ 13

P̂ 21

P̂ 22

P̂ 23

P̂ 31

P̂ 32

P̂ 33



= 0,



B̃(ξ, k)− ω2
1





û1

û2

û3

P̂ 11

P̂ 12

P̂ 13

P̂ 21

P̂ 22

P̂ 23

P̂ 31

P̂ 32

P̂ 33



=



0
0
0
0
0
0
0
0
0
0
0
0



. (D.69)

Here, B̃(ξ, k) is the 12×12 acoustic tensor. It is clear that even with the aid of up-to-date computer software,
it is practically impossible to determine positive-definiteness of the 12× 12 acoustic tensor B̃ in dependence
of the given material parameters. In the main body of our manuscript, we succeed by choosing immediately
the propagation direction ξ = e1 and by considering a set of new variables (IV.6). This allows us to obtain a
certain pre-factorization of B̃(e1, k) in 3× 3 blocks. Since the formulation is isotropic, choosing ξ = e1 is no
restriction, as argued before.
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