
HAL Id: tel-02069011
https://theses.hal.science/tel-02069011

Submitted on 15 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time warp invariant sparse coding and dictionary
learning for time series classification and clustering

Saeed Varasteh Yazdi

To cite this version:
Saeed Varasteh Yazdi. Time warp invariant sparse coding and dictionary learning for time series
classification and clustering. Machine Learning [cs.LG]. Université Grenoble Alpes, 2018. English.
�NNT : 2018GREAM062�. �tel-02069011�

https://theses.hal.science/tel-02069011
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Mathématiques et Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Saeed VARASTEH YAZDI

Thèse dirigée par Ahlame DOUZAL

préparée au sein du Laboratoire Laboratoire d'Informatique de
Grenoble
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Représentations parcimonieuses et
apprentissage de dictionnaires pour la
classification et le clustering de séries
temporelles

Time warp invariant sparse coding and
dictionary learning for time series
classification and clustering

Thèse soutenue publiquement le 15 novembre 2018,
devant le jury composé de :

Monsieur PHILIPPE PREUX
PROFESSEUR, UNIVERSITE DE LILLE, Rapporteur
Monsieur MOHAMED NADIF
PROFESSEUR, UNIVERSITE PARIS 5, Rapporteur
Monsieur STEPHANE CANU
PROFESSEUR, NORMANDIE UNIVERSITE, Examinateur
Monsieur PATRICK GALLINARI
PROFESSEUR, SORBONNE UNIVERSITES - PARIS, Président
Monsieur JULIEN MAIRAL
CHARGE DE RECHERCHE, INRIA CENTRE DE GRENOBLE RHÔNE-
ALPES, Examinateur
Madame AHLAME DOUZAL
PROFESSEUR ASSOCIE, UNIVERSITE GRENOBLE ALPES, Directeur
de thèse

ii

Final version Printed on January 25, 2019

Acknowledgements

First, I would like to thank my thesis advisor Prof. Ahlame Douzal for putting her
trust in me and inviting me to do my PhD in France. I thank her for her insightful
guidance and support. She has been always extremely generous with her time at
every stage of my study. I feel grateful to work with her.

I am also thankful to my jury members. I thank Prof. Preux and Prof. Nadif for
reviewing my thesis and providing me with useful comments and suggestions. I also
thank Prof. Gallinari, Prof. Canu and Dr. Mairal for participating to the committee
of my PhD defense. I thank them all for their valuable time and suggestions.

I would also like to thank all the members of the AMA team from LIG laboratory
for their help and support in these three years.
Finally, I would like to thank my family for their unconditional support. My

mother (Narges), my father (Mohammad Ali) and my sister (Samaneh). They
have been my source of inspiration and they have always courage me for better
education. I also thank my wife (Golbarg) for her constant support, encouragement,
help and understanding during my PhD study.

Abstract

Learning dictionary for sparse representing time series is an important issue to
extract latent temporal features, reveal salient primitives and sparsely represent
complex temporal data. This thesis addresses the sparse coding and dictionary
learning problem for time series classification and clustering under time warp. For
that, we propose a time warp invariant sparse coding and dictionary learning
framework where both input samples and atoms define time series of different
lengths that involve varying delays.
In the first part, we formalize an l0 sparse coding problem and propose a time

warp invariant orthogonal matching pursuit based on a new cosine maximization
time warp operator. For the dictionary learning stage, a non linear time warp
invariant kSVD (twi-kSVD) is proposed. Thanks to a rotation transformation
between each atom and its sibling atoms, a singular value decomposition is used
to jointly approximate the coefficients and update the dictionary, similar to the
standard kSVD. In the second part, a time warp invariant dictionary learning for
time series clustering is formalized and a gradient descent solution is proposed.
The proposed methods are confronted to major shift invariant, convolved and

kernel dictionary learning methods on several public and real temporal data. The
conducted experiments show the potential of the proposed frameworks to efficiently
sparse represent, classify and cluster time series under time warp.

Résumé

L’apprentissage de dictionnaires à partir de données temporelles est un problème
fondamental pour l’extraction de caractéristiques temporelles latentes, la révélation
de primitives saillantes et la représentation de données temporelles complexes. Cette
thèse porte sur l’apprentissage de dictionnaires pour la représentation parcimonieuse
de séries temporelles. On s’intéresse à l’apprentissage de représentations pour
la reconstruction, la classification et le clustering de séries temporelles sous des
transformations de distortions temporelles. Nous proposons de nouveaux modèles
invariants aux distortions temporelles.
La première partie du travail porte sur l’apprentissage de dictionnaire pour des

tâches de reconstruction et de classification de séries temporelles. Nous avons
proposé un modèle twi-omp (Time-Warp Invariant Orthogonal Matching Pursuit)
invariant aux distorsions temporelles, basé sur un opérateur de maximisation du
cosinus entre des séries temporelles. Nous avons ensuite introduit le concept
d’atomes jumelés (sibling atomes) et avons proposé une approche d’apprentissage
de dictionnaires twi-kSVD étendant la méthode kSVD à des séries temporelles.

Dans la seconde partie du travail, nous nous sommes intéressés à l’apprentissage
de dictionnaires pour le clustering de séries temporelles. Nous avons proposé une
formalisation du problème et une solution twi-dlclust par descente de gradient.

Les modèles proposés sont évalués au travers plusieurs jeux de données publiques
et réelles puis comparés aux approches majeures de l’état de l’art. Les expériences
conduites et les résultats obtenus montrent l’intérêt des modèles d’apprentissage de
représentations proposés pour la classification et le clustering de séries temporelles.

List of Publications

The following publications are included in parts or in an extended version in this
thesis [Yazdi 18a, Yazdi 18b]:

• Saeed Varasteh Yazdi and Ahlame Douzal-Chouakria. Time warp invariant
ksvd: Sparse coding and dictionary learning for time series under time warp.
Pattern Recognition Letters 112, 1–8 (2018). https://doi.org/10.1016/j.
patrec.2018.05.017

• Saeed Varasteh Yazdi, Ahlame Douzal-Chouakria, Patrick Gallinari and
Manuel Moussallam. Time Warp Invariant Dictionary Learning for Time
Series Clustering: Application to Music Data Stream Analysis. Joint European
Conference on Machine Learning and Knowledge Discovery in Databases
(ECML/PKDD 2018). https://doi.org/10.1007/978-3-030-10925-7_22

In addition to the topics studied in this manuscript which are mentioned above,
during my thesis I worked on several other problems of time series analysis leading
to the following publications [Do 17, Yuan 18]:

• Jidong Yuan, Ahlame Douzal-Chouakria, Saeed Varasteh Yazdi and Zhihai
Wang. A large margin time series nearest neighbour classification under
locally weighted time warps. Knowledge and Information Systems, (2018).
https://doi.org/10.1007/s10115-018-1184-z

• Cao-Tri Do, Ahlame Douzal-Chouakria, Sylvain Marié, Michèle Rombaut and
Saeed Varasteh Yazdi. Multi-modal and multi-scale temporal metric learning
for a robust time series nearest neighbors classification. Information Sciences
418, 272-285 (2017). https://doi.org/10.1016/j.ins.2017.08.020

https://doi.org/10.1016/j.patrec.2018.05.017
https://doi.org/10.1016/j.patrec.2018.05.017
https://doi.org/10.1007/978-3-030-10925-7_22
https://doi.org/10.1007/s10115-018-1184-z
https://doi.org/10.1016/j.ins.2017.08.020

Contents

List of Figures xiii

List of Tables xv

List of Acronyms xvii

1 Introduction 1

Notations 7

2 Sparse Representation and Dictionary Learning 9
2.1 Introduction . 10
2.2 Sparse representation . 11

2.2.1 From sparse coding to vector quantization 13
2.2.2 Matching Pursuit (mp) . 14
2.2.3 Orthogonal Matching Pursuit (omp) 15
2.2.4 Sparse representation for classification 15
2.2.5 Sparse representation for clustering 18

2.3 Dictionary learning . 20
2.3.1 Dictionary learning by mod (Method of Optimal Direction) 21
2.3.2 Dictionary learning by descend gradient 22
2.3.3 Dictionary learning by kSVD 22
2.3.4 Dictionary learning for classification 24

2.4 Temporal data and dictionary learning 30
2.4.1 Shift invariant sparse representation 31
2.4.2 Kernel sparse representation 33

2.5 Summary . 36

3 Sparse Coding and Dictionary Learning under Time Warp 39
3.1 Problem formalization . 40
3.2 Time warp invariant sparse coding 41

3.2.1 Time series alignment . 43
3.2.2 Standard use of time series alignments 44

xi

xii Contents

3.2.3 The cosine estimation between time series (costw) 44
3.2.4 The dot product estimation between time series (dptw) . . 47
3.2.5 Time warp invariant omp (twi-omp) 48

3.3 Time warp invariant dictionary learning 48
3.3.1 Time warp invariant kSVD (twi-ksvd) 49
3.3.2 twi-ksvd for time series classification 52
3.3.3 Time warp invariant dictionary learning by gradient descend

(twi-gddl) . 54
3.3.4 Dictionary learning for time series clustering 55

3.4 Summary . 57

4 Experimental Results 59
4.1 Data description . 59
4.2 twi-ksvd for time series classification 61
4.3 twi-dlclust for time series clustering 69
4.4 Summary . 77

5 Conclusions and Future Works 79
5.1 Conclusion . 79
5.2 Future works . 80

Appendices

A Rotation for n-dimensional vectors 85

B Proof of Solution 3.19 87

Bibliography 89

Final version Printed on January 25, 2019

List of Figures

1.1 Static data vs. time series data. 2

2.1 Sparse representation framework . 12
2.2 Vector quantization versus the sparse coding. The K-means algorithm

can be seen as a particular case of the sparse coding, when only one
atom of the dictionary is allowed in representing the input x and the
corresponding coefficient must be one. 13

2.3 The sparse representation based classification (src) framework . . . 17
2.4 Kernel sparse representation of time series (Kernel src). 36

3.1 A possible alignment (path) between time series x and y. 43
3.2 An example of the intermediate aligned time series: x34 and y34

are two aligned time series that maximize the cosine between the
sub-time series x3 = (x1, x2, x3) and y4 = (y1, y2, y3, y4). 45

3.3 The progression of the standard cosine and costw between x (blue
curve) and the time series y1 to y10 that involve different delays and
amplitude variations, with in particular y1 = x and y6 = −x. . . . 46

3.4 Reconstruction of the input x based on sibling dictionary atoms dsj . 49
3.5 ϕ: representation of the residuals ei, ei′ w.r.t the common referential

dk. 51
3.6 γi: representation of u1 singular vector w.r.t the sibling referential

d
si
k and d

s
i
′

k . 52
3.7 The transformation process for the update of dk and its sibling atoms. 53

4.1 6dmg time series behaviour. digit (top), lower (middle), upper
(bottom) classes. 60

4.2 bme time series behaviour: "Begin", "Middle" and "End" classes. . . 61
4.3 Time series characteristics within and between classes 61
4.4 deezer dataset (a) Albums versus total number of streams (top),

box plot of the values (bottom). (b) An album streaming time series,
in red the prefix time series covering a cumulative number of 103

streams. 62
4.5 Error rates comparison. twi-ksvd versus kernel-ksvd (Left) and

twi-ksvd versus kSVD (Right). 65

xiii

xiv List of Figures

4.6 twi-ksvd: The first column gives the input time series (in black)
and their reconstruction (in red). The second and third columns
show the two first atoms used for the reconstruction. 66

4.7 The reconstruction of the letter "K" at (τ = 2) and (τ = 10). 67
4.8 the convergence curves of the proposed twi-ksvd learning algorithm. 68
4.9 Left: The average reconstruction error versus the sparsity level (τ),

Right: An example time series from cc dataset and its reconstruction
(τ = 10). 69

4.10 The reconstruction of the letter "a" at different learning iterations of
the twi-ksvd. 70

4.11 Comparison of the clustering methods against each other with the
Nemenyi test. 72

4.12 Number of clusters K vs. Within-class ratio Wr. 74
4.13 Four clusters partitioning of deezer30: Medoid profile (left column),

Nearest album to the medoid (middle column), the most contributing
atom to the cluster (right column). 75

4.14 Sparse representations based on: DG1 learned by dlsi (left) and DG2
learned by twi-dlclust (right). From top top bottom: deezer30,
digit and cc datasets. 76

A.1 A valid rotation to preserve the angle for three dimensional vectors. 86

Final version Printed on January 25, 2019

List of Tables

4.1 Data description . 63
4.2 Table of parameters - classification methods 63
4.3 Classification error rates . 64
4.4 Parameter Line/Grid values . 70
4.5 Adjusted Rand index . 71
4.6 Within-class ratio Wr per number of clusters K. 73

xv

xvi

Final version Printed on January 25, 2019

List of Acronyms

ARIMA Auto Regressive Integrated Moving Average
DWT Discrete Wavelet Transform
DFT Discrete Fourier Transform
ECG Electrocardiography
PAA Piece-wise Aggregate Approximation
SAX Symbolic Aggregate Approximation
SR Sparse Representation
SC Sparse Coding
GSC Group Sparse Coding
DL Dictionary Learning
i.i.d. Independent and Identically Distributed
MP Matching Pursuit
OMP Orthogonal Matching Pursuit
GOMP Group Orthogonal Matching Pursuit
KOMP Kernel Orthogonal Matching Pursuit
BPDN Basis Pursuit De-Noising
LASSO Least Angle Shrinkage and Selection Operator
SVD Singular Value Decomposition
SVM Support Vector Machine
DTW Dynamic Time Warping
LLC Locally constraint Liner Coding
SRC Sparse Representation Based Classification
SSC Sparse Subspace Clustering
SSC-BP l1 Sparse Subspace Clustering
SSC-OMP . . . l0 Sparse Subspace Clustering
MOD Method of Optimal Direction
FDDL Fisher Discrimination Dictionary Learning
DLSI Dictionary learning with Structured Incoherence
MOCOD Method of Optimal Coherence constrained Directions
SISC Shift Invariant Sparse Coding
KGA General Alignment Kernel
κ-kSVD Kernel kSVD
D-kSVD Discriminative kSVD

xvii

xviii List of Acronyms

LC-kSVD Label Consistent kSVD
COSTW COSine maximization Time Warp
TWI-OMP . . . Time Warp Invariant Orthogonal Matching Pursuit
TWI-kSVD . . . Time Warp Invariant kSVD
TWI-GDDL . . Time Warp Invariant Gradient Descent Dictionary Learning
TWI- DLCLUST Time Warp Invariant Dictionary Learning Clustering
UCI University of California Invine
ANN Artificial Neural Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory

Final version Printed on January 25, 2019

1
Introduction

Temporal data are part of many real-world data, especially in emerging applications
such as sensor networks or internet of things. The fact that temporal data
are growing in many areas as in medical, industry, entertainment or financial
domains induce a large amount of interest in querying and analyzing these data
in the last decade.

Time series are a type of temporal data. A time series is a collection of
observations, each one being recorded at different points in time. While static data
are commonly given in an N by p matrix where each row is a sample presented by
a vector of p variables, one time series instance can be presented in a T by p matrix
where T is the number of time stamps and p is the number of variables (Figure
1.1). The data points taken over time have internal dependencies (correlations)
which is contrary to the the assumption of static data where the observations are
independent and identically distributed. The time delay that presents naturally in
the series also creates a huge challenge for many time series analysis. In addition,
since these data are mostly produced from the output of the sensors, they often
come in high dimension and usually are noisy.

The special characteristics of time series are commonly addressed in time
series analysis. The natural temporal ordering and time delay give time series
some unique properties that prevent researchers to apply conventional machine
learning techniques for them. Temporal data representation are widely studied in

1

2 1. Introduction

tim
e

N samples

p variables

…

…

!" !# !$

!" !# !$…
!" !# !$…

!" !# !$…

time series instances

%×'

1×'

data samples matrix

…

("
(#

()

Figure 1.1: Static data vs. time series data.

literature. The objective is to reduce the data dimensionality and highlight the
relevant information of the input time series to facilitate the further computations.
Several approaches motivated by various domains have been investigated. The first
group of approaches are from statistics or signal processing where the objective
is to project time series into a new space defined by static descriptors. The
new description is generally based on estimating some model parameters such as
auto regressive models [Lütkepohl 05, Hamilton 94, Box 15], Hidden Markov Model
[Rabiner 86, Juang 91], Fourier model [Agrawal 93], Wavelet model [Chan 99] or
polynomial models [Keogh 01]. The discrete Fourier transform (dft) that used
in [Agrawal 93], for example, projects time series on sine and cosine function
basis in the real domain where the resulting representation is a set of sinusoidal
coefficients. To have a multiresolution decomposition, in [Chan 99] a set of scaled
and shifted wavelet functions were used. Although such models are effective for
data dimensionality reduction, valuable temporal information might be lost by
applying such transformations. The second group is the segmentation methods,
which unlike the previous approaches, preserve the temporal dimension of the data.
A segmentation process consist in dividing a time series into a set of segments by
moving a sliding-window over it. Inside a segment, the data can be represented
by one specific value or a continuous function. The segmentation techniques have
multiple objectives as reducing the temporal dimension of data, extracting the
sub-sequences or salient patterns and filtering the noisy data. Several methods
proposed based on the various segmentation methods and the ways to represent
data within a segment [Guralnik 99, Fu 06, Fancourt 98, Chu 95]. For example, in
[Stiefmeier 07] a set of polynomial coefficients is used to represent each segment
or in [Lin 03] a symbolic representation has been used.

Final version Printed on January 25, 2019

1. Introduction 3

The described time series can be then analyzed by conventional approaches
dedicated to static data. However, noisy and complex real-world temporal data
can not be easily described by a set of model parameters. Despite the popularity
and usage of these representation methods, such feature extraction techniques
suffer from several drawbacks. Firstly, the temporal semantic of data are ignored
after applying such transformation. Secondly, finding a suitable set of features
to represent the data and capture the relevant information is not straightforward
and depending on the task and the data. Expert knowledge may also be needed
to define relevant domain specific features for a given task. In the other hand, to
better model complex real-world data, instead of heavy crafting on data processing
and feature engineering, the data representation learning methods such as neural
networks, dictionary learning or deep learning can be applied to automatically
discover the representation that is particularly interesting for a given task.

In recent years, sparse representation (sr) or sparse coding (sc) and dictionary
learning (dl) has been widely used in many successful applications of machine
learning and signal processing as denoising, compression or segmentation [Elad 06,
Bryt 08], feature extraction [Guha 12, Ramirez 10], reconstruction [Aharon 06],
classification [Wei 13a, Wright 09] or in computer vision for face recognition, activ-
ity recognition and action recognition [Wright 09, Mairal 08, Jiang 11, Guha 12].
Sparse coding is basically representing an input sample using a predefined set of
basis on the assumption that these basis have sufficiently enough information to
reconstruct the input. The basis are like directions in the input space and can
be selected from the input samples itself or learned through dictionary learning
methods. Dictionary learning algorithms are focused on developing dictionaries of
atoms that provides efficient representations for signals. The learned atoms are like
pseudo data points in the input space where the samples can then be represented
as a linear combination of the neighboring atoms.

Despite the immense research efforts on dictionary learning in many domains,
their performance on temporal data are less investigated. The major challenges
are probably related to the nature of the time series that we discussed earlier.
Challenging time series often involve varying delays through time and the salient
events may be related to a part of observations that may appear at different time
stamps. For example, the Electrocardiography (ecg) of a patient that records the
electrical activity of the heart over a period of time, often comes with different

Final version Printed on January 25, 2019

4 1. Introduction

delays and lengths from one sample to another, or in classifying the ecg data, time
series of the two different classes describe nearly the same global behaviour, whereas
a small part of the observations has enough information to predict their class.

For temporal data analysis, sparse coding and dictionary learning are especially
effective to extract class specific latent temporal features, reveal salient primitives
and sparsely represent complex temporal features. The objective of this thesis is to
explore the potential of these methods in reconstruction and representation of time
series. We are looking for a space that reveals the latent temporal structure of data
where the learned directions are defined atoms for temporal data and learned to
reconstruct and represent the input time series. In addition, we intend to investigate
the ability of the new representation for time series classification and clustering.

For that, we propose a non linear time warp invariant dictionary learning
framework where both input samples and atoms define time series that may have
different lengths and involve varying delays. That is, for the sparse coding, we
propose a time warp invariant orthogonal matching pursuit (twi-omp) based on
a new cosine maximization time warp operator (costw) and the induced sibling
atoms. For the dictionary learning, we proposed two efficient solutions. First,
thanks to a rotation transformation between each atom and its sibling atoms, a
singular value decomposition is used to jointly approximate the coefficients and
update the dictionary similar to the popular kSVD [Aharon 06] method. We also
developed a gradient descent solution for the dictionary learning under time warp
problem. The potential of the proposed methods is confronted to major alternative
approaches on several character and digit handwritten trajectories, that define
naturally time series of different lengths that include varying delays.

The major contributions of this thesis are summarized as follows:
1. We investigate the problem of sparse coding and dictionary learning for time

series data and expose the weakness of the conventional methods to deal with
the temporal data.

2. We propose a tractable solution for the sparse coding of temporal data and
suggest a time warp invariant orthogonal matching pursuit based on a new
cosine maximization time warp operator to sparse codes time series under
time warp invariances.

Final version Printed on January 25, 2019

1. Introduction 5

3. We generalize the popular kSVD dictionary learning method to learn the
temporal dictionary atoms for time series. We also develop a gradient descend
solution for updating the temporal dictionary atoms.

4. We develop a time series classification schema based on the proposed sparse
representation method.

5. We propose a time series clustering approach under sparse coding and
dictionary learning setting and we provide a sparse representation of the
clustered time series and learn, for each cluster, a sub-dictionary composed of
the most discriminative primitives.

6. We conduct several experiments on several public and real datasets to
compare the proposed approaches to the major alternative approaches in
both classification and clustering settings.

7. We further inspect an application of music listening data streams on the data
captured from the well known deezer platform.

Thesis outline

The remainder of this thesis is organized as follows. In Chapter 2, the state of the
art sparse coding and dictionary learning formalization and the major solutions
on both static and temporal data are reviewed. In Chapter 3, the proposed time
warp invariant sparse coding and dictionary learning problem and the solutions
for time series sparse representation under time warp are presented. The related
classification and clustering applications are also expressed. Chapter 4 provides
the conducted experiments and discussed the results obtained. Finally, Chapter
5 concludes this thesis and points out the future perspectives.

Final version Printed on January 25, 2019

6

Final version Printed on January 25, 2019

Notations

X a set of samples / time series
xi a vector sample, a time series
xij jth element (time stamp) of xi
D a dictionary
dj a dictionary atom
α sparse coefficient vector
A sparse coefficients matrix
αj. jth row of the matrix A
τ sparsity level
λ regularization parameter
∆ alignment matrix
Xc a set of samples belonging to class c
N number of data in a set
C number of classes
K number of dictionary atoms or number of clusters
‖x‖q . . . q norm of the vector x
π an alignment between two time series
Cl representative of a cluster
Dl sub dictionary
DG . . . global dictionary consists of all the sub dictionaries
Ψ a set of basis functions
ψ a basis function (atom)
K gram matrix (kernel matrix)
φ embedding function to the the Hilbert space
ϕ(.), γi(.) transformation functions

7

8

Final version Printed on January 25, 2019

Life is essentially an endless series of problems. The
solution to one problem is merely the creation of
another.

— Mark Manson

2
Sparse Representation and Dictionary

Learning

Contents

2.1 Introduction . 10
2.2 Sparse representation . 11

2.2.1 From sparse coding to vector quantization 13
2.2.2 Matching Pursuit (mp) 14
2.2.3 Orthogonal Matching Pursuit (omp) 15
2.2.4 Sparse representation for classification 15
2.2.5 Sparse representation for clustering 18

2.3 Dictionary learning . 20
2.3.1 Dictionary learning by mod (Method of Optimal Direc-

tion) . 21
2.3.2 Dictionary learning by descend gradient 22
2.3.3 Dictionary learning by kSVD 22
2.3.4 Dictionary learning for classification 24

2.4 Temporal data and dictionary learning 30
2.4.1 Shift invariant sparse representation 31
2.4.2 Kernel sparse representation 33

2.5 Summary . 36

9

10 2.1. Introduction

2.1 Introduction

Given a set of input samples, the aim of sparse coding methods is to represent
each input sample as a linear combination of few elements taken from a set of
representative patterns. These representative patterns are called atoms or basis,
the set of patterns is called dictionary and the coefficient vector of this linear
combination is referred as sparse code. Sparse coding problem is formalized basically
as an optimization problem that minimizes the error of the reconstruction under l0
or l1 sparsity constraint. The l0 constraint, that controls the maximum number of
involved atoms, leads to a non convex and NP-hard problem. This problem can
however be solved efficiently by a pursuit algorithm such as matching pursuit (mp)
[Mallat 93] or orthogonal matching pursuit (omp) [Tropp 04, Pati 93]. Relaxing
the sparsity constraint from l0 to l1 norm yields a convex optimization problem,
also known as lasso [Tibshirani 96] problem.

The dictionary for the sparse representation can be selected among pre-specified
family of basis functions (e.g., Gabors, Wavelets, Curvelets, etc.). Although these
dictionaries allow fast transforms, their reconstruction potential is tightly related
to the nature of the data. For instance, Wavelets show efficient reconstruction for
natural images and textures [Ophir 11], Curvelets for edges [Candes 00] and Gabor
for sounds [Chu 09]. The alternative to taking a family of basis functions is to
use a dictionary learning approach that aims to learn an optimal dictionary from
the input data to minimize the reconstruction error and the sparsity [Engan 99,
Aharon 06, Mailhé 12]. A two-step optimization strategy is commonly used to learn
such dictionaries: 1) keep the dictionary fixed and find the sparse representation
using a sparse approximation algorithm, e.g., omp, 2) keep the representation fixed
and update the dictionary, either all the atoms at once as in mod [Engan 99] or
one atom at a time as in kSVD [Aharon 06].

The organization of this chapter is as follows. I begin by introducing some of
the most well-known unsupervised and supervised sparse coding and dictionary
learning methods; we focus on those that are more related to this work. Then,
in the last section, I reviewed the temporal data dictionary learning approaches
including shift invariant and kernel dictionary learning.

Final version Printed on January 25, 2019

2. Sparse Representation and Dictionary Learning 11

2.2 Sparse representation

Let D = [d1,d2, ...,dK] ∈ Rq×K be a real matrix whose columns have unit Euclidean
norm: ‖dj‖2 = 1 for j = 1, 2, ..., K. We refer to this matrix as a dictionary and
the columns (dj) as atoms. Given a data sample x ∈ Rq, the objective is to
best represent it as a linear combination of a few atoms of D. Ideally, we want
to solve the following linear system

min
α
‖α‖0 s.t. Dα = x. (2.1)

where α ∈ RK is the sparse representation coefficient vector of the input x with
respect to the dictionary D. The function ‖.‖0 : RK → R simply returns the
number of non-zero entries in its argument. In practice, with the presence of
noise, the sparse solution of the problem 2.1 is alternatively formulated by allowing
some reconstruction error ε ≥ 0, as

min
α
‖α‖0 s.t. ‖Dα− x‖2 ≤ ε. (2.2)

This will be equivalent to the following optimization problem, where we seek the
minimal error possible at a given level of sparsity τ ≥ 1

min
α
‖Dα− x‖2 s.t. ‖α‖0 ≤ τ. (2.3)

Problem 2.3 is called τ -sparse optimization problem. Unfortunately, solving the l0
norm is not convex and makes the above problem NP-hard (Computing the optimal
solution involves searching over all the possible

(
K
τ

)
combinations). Two approaches

may be used to approximate 2.3: greedy pursuit algorithms [Tropp 04] and relaxation
algorithms [Tibshirani 96]. In the latter, the l0 norm is replaced by its nearest convex
surrogate the l1 norm, yielding convex optimization problems that admit tractable
algorithms. Researchers in signal processing and machine leaning use two different
versions of the l1 norm minimization problem. In signal processing, the following
form commonly used and is known as Basis Pursuit de-noising (bpdn) [Chen 01]

min
α
‖α‖1 s.t. ‖Dα− x‖2 ≤ ε. (2.4)

Whereas in machine learning, the Least Angle Shrinkage and Selection Operator
(lasso) [Tibshirani 96] formulation is more common.

min
α
‖Dα− x‖2 s.t. ‖α‖1 ≤ ε. (2.5)

Final version Printed on January 25, 2019

12 2.2. Sparse representation

!"#$"%&'() *+

= ∗

.

/ ×1

1×2

q× 2

Figure 2.1: Sparse representation framework

The lasso minimizes the reconstruction error and puts a restriction on the l1 norm
rather than minimizing the l1 norm like bpdn. Furthermore, according to the
Lagrange multiplier theorem, a constant λ exists such that problems 2.4 and 2.5
are equivalent to the following unconstrained minimization problem:

min
α
‖Dα− x‖2

2 + λ‖α‖1 (2.6)

where the regularization parameter λ balances the trade-off between reconstruction
error and the sparsity of α.

Another alternative to solve the problem 2.3 is greedy pursuit methods. Pursuit
methods iteratively refine the current estimation of the sparse code vector α by
modifying one or several coefficients chosen to yield an improvement in the input
approximation. Solving the l1 norm minimization problem is computationally
expensive, whereas greedy approximation algorithms are computationally fast and
they have been found to be quite accurate.

It is also worth pointing out another sparse representation formalization called
group sparse coding (gsc) [Bengio 09] which assumes that the inputs can be
approximated by a union of a few subspaces where now an input is encouraged to be
sparsely represented by a similar set of the dictionary atoms. Given the dictionary
D, Dl denotes the sub-dictionary belongs to the group l with columns from D

where the atoms in Dl span a subspace. The sparse representation optimization
with the group sparsity constraint can be written as

min
α
‖α‖2,0 s.t. ‖Dα− x‖2 ≤ ε. (2.7)

Final version Printed on January 25, 2019

2. Sparse Representation and Dictionary Learning 13

1

K-means

Centroid 1

Centroid 2

Centroid 3

Represented with: ! = [0, 0, 1]T

Sparse coding

Basis d1

Basis d2

Basis d3

≈ 0.3 &' + 0.1 &* + 0.6 &,

Represented with: ! = [0.3, 0.1, 0.6]T

Figure 2.2: Vector quantization versus the sparse coding. The K-means algorithm can
be seen as a particular case of the sparse coding, when only one atom of the dictionary is
allowed in representing the input x and the corresponding coefficient must be one.

where the mixed norm defined as ‖α‖2,0 = ∑
l I(‖αl‖2) and I(.) is an indicator

function and defined as:

I(‖αl‖2) =
{ 1, if ‖αl‖2 > 0

0, otherwise.

with αl be the entries of α associated to the group l.
Group Orthogonal Matching Pursuit (gomp) [Majumdar 09] is proposed to solve

the above sparse representation problem. A convex relaxation of Eq. 2.7 is also
proposed where the l2,0 norm replaced with ‖α‖2,1 = ∑

l‖αl‖2. The corresponding
problem can be transferred as an unconstrained optimization problem and solved
by the group lasso [Yuan 06].

2.2.1 From sparse coding to vector quantization

There is a strong relation between sparse representation and Vector Quantization
(clustering). In clustering, a set of descriptive vectors (centroids) is learned, and
each sample is represented by one of those vectors, usually the one closest to
it. For example, the K-means algorithm finds a set of cluster centroids {dj}Kj=1

and cluster assignments {αi}Ni=1 ∈ RK that minimize the distance between data
points {xi}Ni=1 ∈ Rq and the closest center (usually under l2 norm distance). In
the sparse coding setting, the K-means algorithm can be formulated to solve the
following optimization problem:

min
A,D

N∑
i=1
‖xi −Dαi‖2

2 s.t. ‖αi‖0 = 1, ‖αi‖1 = 1, ∀i = 1, 2, ..., N. (2.8)

Final version Printed on January 25, 2019

14 2.2. Sparse representation

where D = [d1,d2, ..,dK] with dj ∈ Rq are the K cluster centroids to be found
and A = [α1,α2, ...,αN] with αi ∈ RK are cluster membership indicators. The
notation ‖αi‖0 counts the number of non-zero entries in αi and ‖αi‖1 is the l1
norm of αi which is the summation of the absolute values of each elements in
αi. The constraints ‖αi‖0 = 1, ‖αi‖1 = 1 ensure that there is only one element
of αi taking value 1 and all others being 0. After the optimization, the index
of this non-zero element indicates which cluster the vector xi belongs to. This
problem can be seen as a restrictive case of sparse coding in the sense that only
one dictionary atom is allowed to participate in the construction of the input and
the related coefficient must be one.

In the following sub sections, we briefly present some of the major sparse
representation solver and the algorithms.

2.2.2 Matching Pursuit (mp)

Matching Pursuit (mp) [Mallat 93] is one of the earliest methods for sparse approx-
imation. It is an iterative greedy algorithm that looks for the sparse approximation
of the input by sequentially selecting dictionary atoms. Given the input sample
x and dictionary D, the main idea is to select at each iteration the atom dj that
is highly correlated to the the input or to its residual part. The correlation is
measured as the inner product of the input sample and the dictionary column dj:

dj = arg max
dj∈D

< x,dj > (2.9)

The corresponding coefficient (αj) is then updated by this inner product and the
residual approximation error is given by:

r = x− < x,dj > dj (2.10)

The process is repeated until τ columns are selected. Note that mp only updates
the corresponding coefficient to the last selected atom and other coefficients are
not modified. In this projection approach, as the dictionary atoms are not all
orthogonal to each other, a dictionary atom could be selected more than once in
different iterations, which reduces the performance of the algorithm.

Final version Printed on January 25, 2019

2. Sparse Representation and Dictionary Learning 15

Algorithm 1 Orthogonal Matching Pursuit (OMP)
Input: x, D, τ .
Output: α.

1: r = x,Ω = {∅}.
2: while |Ω| ≤ τ do
3: Select the atom dj (j /∈ Ω) that maximizes | r

T
dj

‖r‖2‖dj‖2
|

4: Update the set of selected atoms: Ω = Ω ∪ {j}
5: Update the coefficients: αΩ = (DT

ΩDΩ)−1(DT
Ωx), (DΩ is the sub-dictionary

of the selected atoms and αΩ is the related coefficients)
6: Estimate the residual: r = x−DΩαΩ
7: end while

2.2.3 Orthogonal Matching Pursuit (omp)

Orthogonal Matching Pursuit (omp) [Tropp 04, Pati 93] has been proposed as an
improvement of matching pursuit. The algorithm is akin to mp in the sense of
selecting one atom at each iteration. The process described in Algorithm 1 starts
with setting the residual vector r to be equal to the input sample x (step 1). Then,
at each iteration, the column of D that is strongly correlated with the residual
vector is selected (step 3). Next, the coefficients αj are obtained by an orthogonal
projection on the subspace defined by the yet selected atoms (step 5). Note that,
the αj value represents the contribution of dj to reconstruct x. This estimation
requires the solution of a least square problem. The process is reiterated until
the maximum number τ of atoms is reached.

Unlike other sparse coding methods, the number of non zero entries in omp
can easily be fixed a priori, which makes it an appealing algorithm. Note that,
the coefficients are updated by computing orthogonal projection of the input or
the residual onto the subspace spanned by the atoms selected from all previous
iterations. This result in improvement of the convergence rate compare to the mp
method. Algorithm 1 gives the main steps of the omp method.

2.2.4 Sparse representation for classification

The main objective of the sparse representation is to obtain a suitable reconstruction
of the input sample using as few dictionary atoms as possible. To benefit the sparse
representation framework for classification, several methods have been proposed.

Final version Printed on January 25, 2019

16 2.2. Sparse representation

A group of methods try to generate discriminative sparse codes by replacing the
sparse coding objective function. The obtained sparse codes are then used to learn a
classifier. Huang and Aviyente [Huang 06] proposed a representation which includes
a discriminative term based on the Fisher’s criterion (inner and between class
variances), into the objective function. This results in discriminative sparse vectors
of different input classes. A Support Vector Machine (svm) classifier is then trained
on the learned sparse code vectors and used for classification of the new samples.

Wang et al. [Wang 10] proposed a similar sparse coding schema, called Locally
constraint Liner Coding (llc), to generate discriminative sparse codes. They
replaced the sparse coding regularization in Eq. 2.6 by a locality adapter and
introduce the following optimization problem:

min
α
‖Dα− x‖2

2 + λ‖p�α‖2
2 s.t. 1Tα = 1. (2.11)

where the symbol � denotes element-wise multiplication, and p is a vector with the
same size of α which the jth entry indicates the distance between x and the jth

atom of D. The llc goal is to generate similar sparse codes for the closer samples.
The learned sparse codes can then be used in training a classifier. Note that the
llc sparse codes are sparse in a sense that they have only a few significant values.
In practice, they simply threshold the small coefficients to be zero.

Sparse representation based classification (src)

Another supervised sparse coding approach was proposed byWright et al. [Wright 09].
The method called src (Sparse Representation based Classification). It achieved
a great success in face recognition in terms of high classification accuracy and
handling the problem of face occlusion. Let C be the number of the input classes.
The dictionary in src is represented as D = {X1, ..Xc, .., XC}, where Xc ∈ Rq×Nc is
the subset of all Nc training samples of the class c. Note that, in src the dictionary
is composed from the original training data. All atoms of D are normalized to have
a unit l2 norm. Denote by y ∈ Rq a test sample, first the method finds its sparse
representation based on D via l1 norm minimization similar to Eq. 2.4:

min
α
‖α‖1 s.t. ‖Dα− y‖2 ≤ ε. (2.12)

Final version Printed on January 25, 2019

2. Sparse Representation and Dictionary Learning 17

∀" = 1,2,3, "∗ = arg min
/

0 − 2/3/(5) 7

282729

:;"<;=>?@A B

= ∗

C ×E
0
q× F

5
E× F

= 2939(G)

29

∗

C ×HF

IF(5)

27

∗

C × HJ
IJ(5)

= 2737(G)

28

∗

C ×HK

IK(5)

= 2838(G)

Figure 2.3: The sparse representation based classification (src) framework

Once sparse coding performed, classification will be based on the minimum class-wise
reconstruction error. i.e., assign y to the cth class such that:

c∗ = arg min
c
‖y −Xcδc(α)‖2

2 (2.13)

where δc(.) is a function that extracts the elements corresponding to the cth class.
i.e., δc(α) ∈ RNc×1 is the entries of α associated with the atoms of the class c. src
is rely on the philosophy that with "sufficient" training samples, a test sample y
belongs to the class c, should be presented in the column space of Xc. Beside the
success of src in face recognition, it can be applied to any pattern recognition
task. Note that, with a small training set size, src seems computationally efficient,
however, the large number of training data may decrease its performance in terms
of time and accuracy, all the more for the noisy training samples.

The sparse coding stage of src may utilizes any l0 or l1 norm spare representation
algorithms that we mentioned in the previous section. A variant of src is proposed
by Majumdar and Ward [Majumdar 09]. It uses the Group omp (gomp) for
the sparse coding stage. The idea is approximating a test sample by a linear
combination of "all" the training samples of one class to improve the classification
performance of the src. As the dictionary provides the corresponding classes
of the atoms (atom’s group), in the sparse coding stage, a sample is encouraged
to be represented by a group of the dictionary atoms. The gomp algorithm is
similar to the omp algorithm (Algorithm 1) except for step 4. In this step, instead
of updating the set of selected atoms by only adding the index with the highest
correlation (Ω = Ω ∪ {j}) the indices of the entire group containing the highest
correlation are chosen (Ω = Ω ∪ {group(j)}).

Final version Printed on January 25, 2019

18 2.2. Sparse representation

2.2.5 Sparse representation for clustering

In the previous section we discussed how classification can be done under the
sparse representation framework. In the context of classification, the discriminative
sparse codes are generally learned from the labeled dictionary (composed from
the training data) and then used for the classification. In clustering setting, we
distinguish a category of approaches that assumes the data structured into a union
of subspaces [Elhamifar 13, You 16, Bradley 00, Tseng 00] where each sample may
be represented as a linear combination of the other input samples, ideally belonging
to the same subspace. Several of these approaches are related to the sparse subspace
clustering (ssc) approach [Elhamifar 13, You 16, Li 17] which is first introduced
by Elhamifar and Vidal [Elhamifar 13] to solve the motion segmentation problem.

ssc is based on the so-called self-expressiveness property of the data points.
The idea of ssc is to first sparse code the input samples based on the other samples
as dictionary using l1 [Elhamifar 13] or l0 [You 16] minimization problem. Once
the sparse representation for each sample obtained, the segmentation of the data
is found by applying a clustering method (e.g., spectral clustering [Ng 02]) to the
affinity matrix formed based on the sparse coefficient vectors. The number of
subspaces as well as their dimension may be fixed beforehand or induced from the
affinity graph. ssc requires solving N optimization problems over N data points,
which is computationally expensive with the large number of data and not suitable
for fast online clustering. Chong et al. [You 16] proposed a variant of the ssc
method based on the l0 (omp) solver that brings up the scalability of the ssc.

Let X = [x1,x2, ...,xN] ∈ Rq×N be the matrix describing the N input samples
xi ∈ Rq. To cluster these N data points into K clusters. First, each sample xi is
sparse represented by a linear combination of all the other columns of X as:

∀i min
αi
‖αi‖1 s.t. ‖Xαi − xi‖2 ≤ ε, αii = 0. (2.14)

where αi is the sparse code of xi with respect to X and the constraint αii = 0
makes sure that the ith entry of αi being zero, which avoids the trivial solution of
representing a point by itself. The main assumption here is that, there exists
a solution αi, where the nonzero entries correspond to data points from the
same subspace as xi.

Once the sparse representation for each data point xi is found (Eq. 2.14), spectral
clustering method can be applied on the graph affinity matrix W = |A|+ |A|T to

Final version Printed on January 25, 2019

2. Sparse Representation and Dictionary Learning 19

Algorithm 2 Sparse subspace clustering (SSC)
Input: X = {xi}Ni=1, the number of clusters K.
Output: Clustering partitions {C1, ..., CK}.

1: Find αi, i = 1, ..., N based on Eq. 2.14 and set A = [α1,α2, ...,αN].
2: Compute the affinity matrix W = |A|+ |A|T
3: Compute the normalized Laplacian matrix L of W .
4: Find the k largest eigenvectors of L to form the columns of the new matrix
U = [u1, ...,uk] ∈ RN×k.

5: For i = 1, ..., N , let yi ∈ Rk be the vector corresponding to the the ith row of U .
6: Cluster {yi}Ni=1 ∈ Rk with the K-means algorithm into clusters {C1, ..., CK}.
7: Return {C1, ..., CK}, segmentation of data in X.

obtain the clustering segmentation of the data in X, where A = [α1,α2, ...,αN] is
the sparse coefficient matrix. This choice of W seems suitable, hence most of the
nonzero entries of the coefficient vector is found to be related to the points from
the same subspace. The symmetrization also helps to connect the data points i
to j when either data point xi or xj is used for sparse representation of another.
The ssc method is summarized in Algorithm 2. In the following we briefly explain
the spectral clustering procedure.

Spectral clustering is a popular clustering method, that aims to find the
partitioning of data points by solving an eigenvalue problem of the affinity matrix.
Let S be the similarity matrix whose ij entry shows the similarity between points
i and j. Generally, Gaussian kernel with Euclidean distance is used to build the
similarity matrix. Given the matrix S, the next step is to form an affinity matrix
L. Typical choices for L are the similarity matrix itself L = S, the unnormalized
graph Laplacian L = D − A, with D = diag(S1) and 1 be the vector of all 1’s,
or its normalized version LN = D−1/2LD−1/2. Once the affinity matrix computed,
the clustering is become a graph partitioning problem, where connected graph
components are interpreted as clusters. The segmentation is then found by applying
the K-means algorithm to the K top or bottom eigenvectors of the matrix L or
LN . Note that, defining a good affinity matrix is a challenge for spectral clustering
algorithm. In an ideal similarity matrix, hence similarity graph, nodes within the
same cluster (subspace) must have high connection values and there should be no
edges connecting different nodes correspond to different subspaces.

Final version Printed on January 25, 2019

20 2.3. Dictionary learning

2.3 Dictionary learning

In the previous section, we studied the problem of sparse coding. The sparse
problem is that we are given a set of basis (dictionary D), an input x and we
want to find the representation of x based on a few elements of D. Depending
on the application (e.g., denoising, compression, reconstruction) and the nature
of the data, the dictionary for the sparse representation could be different. A set
of pre-defined basis such as Fourier, Gabor or Wavelets are commonly used. The
ability of such fixed basis atoms is different from one application to another. For
example, Wavelets show efficient reconstruction for natural images and textures
[Ophir 11], Curvelets for edges [Candes 00] and Gabor for sounds [Chu 09]. Thus,
dictionary selection is crucial to attain a good representation model. To achieve an
improved reconstruction or representation, one solution is to learn the dictionary.
In this process, the dictionary may be initialized with the common basis functions
or from the data itself. Such learned dictionaries from the data have more potential
than the former ones. In the following we present the dictionary learning problem
formalization and some of the most used solutions.

Let X = [x1,x2, ...,xN] ∈ Rq×N be the training set, with xi ∈ Rq be a data
sample. One can learn a dictionary D = [d1,d2, ...,dK] ∈ Rq×K by solving the
following optimization problem which is a generalization of the sparse coding
problem given in Eq. 2.3 when both sparse codes A and dictionary D are learned
to minimize the error of reconstruction of the input samples in X.

min
A,D

N∑
i=1
‖Dαi − xi‖2 (2.15)

s.t. ∀i ‖αi‖0 ≤ τ, ∀j ‖dj‖2= 1

where A = [α1,α2, ...,αN] with αi ∈ RK the sparse code of xi and the last
constraint ensure for each column of the dictionary dj ∈ Rq to have unit l2 norm.

The optimization problem in Eq. 2.15 is not convex w.r.t both A and D.
Typically, a block-coordinate-descent method can be used for solving it by alternating
two phases: 1) keep the dictionary fixed and find the sparse representation using
a sparse approximation algorithm, for example, omp, l1 minimization or iterative

Final version Printed on January 25, 2019

2. Sparse Representation and Dictionary Learning 21

thresholding, 2) keep the sparse codes fixed and update the dictionary which leads
to the following optimization problem:

min
D

N∑
i=1
‖Dαi − xi‖2 s.t. ∀j ‖dj‖2= 1. (2.16)

which is equivalent to:

min
D
J (D) = ‖X −DA‖2

F s.t. ∀j ‖dj‖2= 1. (2.17)

where the notation ‖.‖F stands for the Frobenius norm of a matrix. The sparse coding
and dictionary update processes are iterated until convergence. The differences
between the existing dictionary learning algorithms that have been proposed are in
the method used for the sparse approximation and the procedure used for updating
the dictionary (i.e., solve 2.17). We focus in the following on several commonly
used dictionary learning methods reported in the literature.

2.3.1 Dictionary learning by mod (Method of Optimal Di-
rection)

Method of Optimal Direction (mod) [Engan 99] is a least square based method
that directly computes the dictionary that minimizes the overall representation
mean square error ‖X − DA‖2

F when the coefficients are fixed. By setting the
derivative of error formulation with respect to D as zero, −2(X − DA)AT = 0,
the result is given by a pseudo-inverse:

D ← XAT .(AAT)−1 (2.18)

∀j dj ←
dj
‖dj‖2

The mod is an effective method and usually converged in a few iterations. However,
the solution requires a matrix inversion at each step which increases the complexity
with a large number of training data. Several works that lead to more efficient
results [Rubinstein 10] have been proposed as well as an online and recursive
implementation of the mod, with the focus on reducing its complexity.

Final version Printed on January 25, 2019

22 2.3. Dictionary learning

2.3.2 Dictionary learning by descend gradient

Another idea to solve the dictionary learning problem in Eq. 2.17 by using a gradient
descend approach to update each atom of the dictionary sequentially is as follows:

∀j d(m+1)
j ← d

(m)
j − ηm

2
∂J
∂d

(m)
j

(2.19)

∀j dm+1
j ←

dm+1
j

‖dm+1
j ‖2

where the gradient of the cost function in Eq. 2.17 with respect to the atom dj is:

∂J
∂dj

= −2(X −DA).αTj.

with αj. be the jth row of A and ηm be the learning rate at iteration m which
can either be fixed as in [Olshausen 96] or adaptive as in [Mailhé 12]. Mailhe and
Plumbley [Mailhé 12] proposed a method to set an optimal step size for the gradient
descent method to avoid the local minima. It is shown that the optimal step of the
descent is proportional to the inverse of the coefficient vector energy (η∗ ∝ 1

‖αj.‖
2
2
).

2.3.3 Dictionary learning by kSVD

Among dictionary learning methods, kSVD algorithm proposed by Aharon et al.
[Aharon 06], which generalizes the K-means clustering, has become more popular
and widely used. It is also an iterative approach. After the sparse approximation
step with omp, in the second step, the atoms are updated sequentially by using
a singular value decomposition (svd). At this step, based on the learned A,
the objective is to update one atom and its related coefficients at a time; This
results in faster convergence compare to the previous approaches that only the
dictionary is getting updated.

Let us denote αj. = (αj1, ..., αjN) the jth row of A; it provides the contributions
of the atom dj to reconstruct the N input samples. To update a given atom dk,
the objective function given in Eq. (2.17) can be formulated as:

‖X −DA‖2
F = ‖X −

K∑
j=1
dj αj.‖2

F (2.20)

‖(X −
∑
j 6=k
djαj.)− dkαk.‖2

F = ‖Ek − dkαk.‖2
F

Final version Printed on January 25, 2019

2. Sparse Representation and Dictionary Learning 23

Algorithm 3 kSVD dictionary learning
Input: X, D, τ .
Output: D, A.

1: repeat
{Sparse coding step:}

2: for i = 1, ..., N do
3: αi =omp(xi, D, τ)
4: end for

{Dictionary update step:}
5: for k = 1, ..., K do
6: Compute Ek = X −

∑
j 6=k
djαj.

7: Ωk = {i / αki 6= 0, i = 1, ..., N}
8: Define EΩk

k as the restriction of Ek to Ωk

9: Apply an SVD on EΩk
k = UΣV T

10: Update dk = u1 and αΩk
k. = σ1v

T
1

11: end for
12: until Convergence (stopping rule)

where in Eq. (2.20) DA is expressed as the sum of K rank-1 matrices, each one
giving the sparse representation of X involving one atom. The matrix Ek ∈ Rq×N

stands for the error of reconstruction for the N samples excluding the kth atom.
An svd rank-1 approximation on Ek can be used to find dk and αk., however,

the new αk. may not be sparse anymore. To preserve the sparsity of αk., the
residual matrix Ek is limited to only samples that involve atom dk. Let us note
E

Ωk
k ∈ Rq×|Ωk| such restricted residual matrix and αΩk

k. its related coefficients with
Ωk the set of the input sample indices that involve the atom dk. Subsequently,
svd is used to estimate the closest rank-1 matrix that approximates EΩk

k and the
first left singular vector (u1), singular value (σ1) and right singular vector (v1)
are then used to update the atom dk and its related coefficients αk.. Algorithm
3 summarizes the main steps of the kSVD approach.

What kSVD do and that is the key innovation of this algorithm is to remove an
atom from the dictionary and then replacing it with the error vector that represents
the major direction within which it is not getting good representation. In other
words, it collects all the error vectors into a matrix and take the svd of that
matrix. The svd is giving in the columns of matrix U the vectors oriented along
the major axis of the variance of the original data. These vectors will be sorted

Final version Printed on January 25, 2019

24 2.3. Dictionary learning

thus the very first column of U will defiantly be oriented in the main direction
of the variance and it is probably the best choice for replacing the atom which
is removed from the dictionary.

The kSVD algorithm guaranteed to reduce or keep unchanged the reconstruction
error. The stopping rule in Algorithm 3 could be the stabilization of the reconstruc-
tion error. The number of iterations until convergence depends on the application
and on the initial dictionary [Aharon 06]. The computational complexity of kSVD
is computed considering the two stages. When using the omp, the whole sparse
coding stage required O(qNτK) operations. The dictionary learning stage results a
total of O(qNτ) operations. Combining the two stages, the entire kSVD algorithm
requiems O(qNτK) operations for each iteration.

2.3.4 Dictionary learning for classification

In the standard dictionary learning framework, the learned dictionary is only
used for data reconstruction and is not optimal for classification. In order to use
dictionary learning in classification, several approaches have been developed to learn
a discriminative classification oriented dictionary by using the label information.
These approaches can be divided into two groups. The first group are in the same
spirit of src with a simple modification which is, instead of using the original
training samples as dictionary, they learn separate and/or joint dictionary from
each class of the data, then all these dictionaries are put together to form a global
dictionary and src is applied [Yang 10, Yang 11, Wang 14, Wei 13b, Ramirez 10,
Mairal 08]. The second group in the other hand, attempt to add a classification
term into the dictionary learning formalization and learn a joint optimization
problem [Zhang 10, Jiang 11, Pham 08, Mairal 09]. The first group causes the
dictionary to be discriminative and uses the representation error for the classification,
while, the second group forces the sparse coefficient vectors discriminative to
use them as new feature vectors for classification. In the following we briefly
introduce few of these methods.

Final version Printed on January 25, 2019

2. Sparse Representation and Dictionary Learning 25

Meta-face learning

Yang et al. proposed a method called Meta-face learning [Yang 10] to learn a
compact and robust dictionary on the training data of each class. Although it was
originally proposed for classification of face images, it can be used in any application.
Denote by C the number of classes and Xc ∈ Rq×Nc the subset of all the Nc training
samples from class c, a class-specific dictionary Dc is learned from the samples in
Xc. The dictionary learning formalization can be presented as:

∀c min
Ac,Dc

‖Xc −DcAc‖2
F + λ

N∑
i=1
‖αci‖1 s.t. ∀j ‖dcj‖2

2= 1. (2.21)

where Ac is the sparse coefficients matrix for class c, αci the sparse code of the ith

sample of the class c and dcj the jth column of the cth class-specific sub-dictionary.
Like other dictionary learning problem, they solve Eq. 2.21 by optimizing Ac and
Dc alternatively. After finding the sparse representations Ac with fixed Dc, each
dictionary column is updated at a time in a similar fashion as kSVD, while using a
Lagrangian solver instead of svd. With a simplified notation (D = Dc and A = Ac),
the following procedure is used to update atom dk:

J (dk) = arg min
dk

‖X −DA‖2
F s.t dTk dk = 1.

= arg min
dk

‖X −
∑
j

djαj.‖2
F s.t dTk dk = 1.

= arg min
dk

‖(X −
∑
j 6=k
djαj.)− dkαk.‖2

F s.t dTk dk = 1.

= arg min
dk

‖Ek − dkαk.‖2
F s.t dTk dk = 1. (2.22)

Using a Lagrange multiplier, Eq. 2.22 is equivalent to:

J (dk, γ) = arg min
dk

tr(−EkαTk.dTk − dk(αk.ET
k) + dk(αk.αTk. − γ)dTk + γ) (2.23)

where γ is a scalar variable. Taking the derivative of J (dk, γ) with respect to dk
and set it to zero, we obtain the following relation to update dk:

d̃k = Ekα
T
k.

(αk.αTk. − γ)−1 (2.24)

while the solution for Eq. 2.24 under the constraint dTk dk = 1. is

d̃k = Ekα
T
k.

‖EkαTk.‖2
(2.25)

Final version Printed on January 25, 2019

26 2.3. Dictionary learning

The above procedure is used to update each dictionary atom.
The individual learned dictionaries Dc are then put together to form a global

dictionary as DG = [D1, ..., DC] and the classification of a test sample is done
as described for src utilizing DG.

Supervised dictionary learning

Mairal et al.[Mairal 08] proposed a supervised dictionary learning method where
a new discriminative term added into the sparse representations formulation on
the sparse coefficients. The idea is to encourage the class-specific dictionaries to be
good at reconstructing samples of its own class and bad for the others. Consider
R∗(x, D) = ‖x − Dα‖2

2 as the representation error of x on D that should be
minimized for x in the class c and maximized for other D’s. For that, a softmax
discriminative cost function is used as follow:

ζλc (z1, z2, ..., zC) = log

(
C∑

m=1
e−λ(zm−zc)

)
∀ c = 1, ..., C (2.26)

where the value of ζλc is close to zero when zc is the smallest value among zm’s
and provides a linear penalty cost λ(zc − minmzm) otherwise. λ > 0 controls
the relative penalty cost. Using Eq. 2.26 the optimization problem to learn C

discriminative sub-dictionaries is defined as:

min
{Dm}

C
m=1

C∑
c=1

xl∈Xc

ζλc ({R∗(xl, Dm)}Cm=1) + λγR∗(xl, Dc), (2.27)

where Xc as before denotes the subset of the training samples from class c and the
parameter γ ≥ 0 control the trade-off between reconstruction and discrimination.
With a high value for γ, the model is close to the classical reconstructive one.
They proposed a kSVD like optimization procedure to solve Eq. 2.27. See
[Mairal 08] for more details.

Once the dictionaries have been learned the class of the test sample y is
found by solving:

c∗ = argmin
(c)

R∗(y, Dc)

where R∗(y, D) = ‖y − Dα‖2
2 represents the best representation error of y on

D. This last step is similar to the src where, test samples are assigned to the
class with the minimum reconstruction error.

Final version Printed on January 25, 2019

2. Sparse Representation and Dictionary Learning 27

Fisher Discrimination Dictionary Learning (fddl)

Yang et al. [Yang 11] proposed a method called fddl (Fisher Discrimination
Dictionary Learning) that attempts to engage the Fisher discrimination criterion
into the dictionary learning problem. The formalization results in learning discrim-
inative class-specific sub-dictionaries as well as discriminative sparse coefficients
similar to [Huang 06].

Denote by C the number of classes and D = [D1, ..., DC] where Dc is the class-
specific sub-dictionary associated with the class c, the fddl model is defined as:

arg min
D,A

C∑
c=1

r(Xc, D,Ac) + λ1‖A‖1 + λ2f(A) (2.28)

where A = [A1, ...AC], Ac is the sub-matrix containing the coding coefficients of Xc

based on D, ‖A‖1 is the sparsity constraint and the functions r and f are defined as:

r(Xc, D,Ac) = ‖Xc −DAc‖2
F + ‖Xc −DcA

c
c‖2
F +

C∑
m 6=c
‖DmA

m
c ‖2

F (2.29)

f(A) = tr(SW (A)− SB(A)) + η‖A‖2
F (2.30)

where Amc is the sparse codes of Xc over the sub-dictionary Dm. SW (A) and SB(A)
are the within-class and between-class scatter of A respectively.

fddl model in Eq. 2.28 presents three terms, the sub-dictionary discriminative
term (r), the sparsity term and the discriminative coefficient term (f). The function
r ensures that the sub-dictionary corresponding to each class, well represents
the samples from the same class, while having a poor representation power for
the samples of the other classes. The function f , on the other hand, forces the
coding coefficients of the different classes to be discriminative by using Fisher
criterion, which minimizes the within-class scatter and maximizes the between-class
scatter of the sparse coefficients.

The fddl optimization problem in Eq. 2.28 can be solved literately by fixing D
and updating A and updating D by fixing A. Similar to src, the classification of a
test sample y can be done based on a minimum class-wise reconstruction error plus,
the distance between its coefficient vector and the mean coefficient vector of a class.

Final version Printed on January 25, 2019

28 2.3. Dictionary learning

Discriminative kSVD (d-kSVD) and lc-kSVD

Zhang and Li [Zhang 10] proposed a method called Discriminative kSVD (d-kSVD)
to jointly learn a linear classifier on the sparse coefficients while looking for a desirable
dictionary for reconstruction. To achieve this, a classifier term is added into the
standard dictionary learning formalization and kSVD is applied to find the solution
for all the parameters. The objective function of the d-kSVD is formulated as:

min
A,D,W

‖X −DA‖2
F + γ‖H −WA‖2

F + β‖W‖2
F (2.31)

s.t. ∀i ‖αi‖0 ≤ τ.

where H is the matrix composed of the label information of the training samples
and W is the parameter of the classifier. γ and β are scalars controlling the relative
contribution of the corresponding terms.

To employ the kSVD framework, the first two terms in Eq. 2.31 are combined
and the problem is reformulated. For the classification phase, the sparse coefficient
vector of a test sample is computed based on the learned dictionary D and the
learned classifier W is used to predict its class. The main disadvantage of this
method is utilizing a linear classifier which may leads to poor performance in
difficult classification tasks.

Jiang et al. [Jiang 11] add a label consistent term to the d-kSVD method that
forces the sparse vectors to be more discriminative. The Label Consistent kSVD
(lc-kSVD) objective function is formulated as:

min
A,D,W,T

‖X −DA‖2
F + γ‖H −WA‖2

F + β‖Q− TA‖2
F (2.32)

s.t. ∀i ‖αi‖0 ≤ τ.

where the first two terms, the reconstruction error term and the classification
error term, are as the same as d-kSVD. Q = [q1, ..., qN] ∈ RK×N is the optimal
discriminative sparse coefficients matrix for X and D. Each column of Q (qi =
[0, ..., 1, 1, ..., 0]T ∈ RK) is the discriminative sparse code of the sample xi. For
example, with X = [x1,x2,x3,x4] and D = [d1,d2,d3,d4] where x1,x2 and d1,d2

are from class one and x3,x4 and d3,d4 are from class two, the matrix Q is defined as:

Q =


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1



Final version Printed on January 25, 2019

2. Sparse Representation and Dictionary Learning 29

Finally, T is a linear transformation matrix that transforms the original sparse
codes to be most discriminative sparse coefficients (Q). Note that, the lc-kSVD
sparse vectors are almost identical within a class.

Similar to d-kSVD, the three terms in Eq. 2.32 are fused together and the
problem is reformulated to be solved using the conventional kSVD algorithm.

Dictionary Learning with Structured Incoherence (dlsi)

Ramirez et al. [Ramirez 10] proposed a structural incoherent dictionary learning
method (dlsi). Followed by Meta-face learning approach, they proposed to add
an incoherence term to the dictionary learning formalization to encourage the
class-specific sub-dictionaries to be as independent as possible. The proposed
formalization for data classification is:

min
∀c (Ac,Dc)

∑
c

{
‖Xc −DcAc‖2

F + λ
N∑
i=1
‖αci‖1

}
+ η

∑
n6=m
‖DT

nDm‖2
F (2.33)

where the last term is the dictionaries incoherence term and defined as the inner
product between the two sub-dictionaries Dn and Dm. To minimize Eq. 2.33 an
alternative minimization approach with two phases has been used, sparse coding
and dictionary learning. The solution for learning the dictionary is a variation of
the mod method which is called mocod [Ramírez 09].

It is found empirically that even after learning dictionaries with incoherence
term, sub-dictionaries shared some common atoms that would make the recon-
struction error with different dictionaries similar. Thus, as an improvement, the
common atoms with the inner product larger than a predefined threshold (0.95
in [Ramirez 10]) are also ignored.

Extension to clustering: Ramirez et al. [Ramirez 10] have also extended
their method for unsupervised data clustering. Basically what they proposed
is simultaneously learning a set of dictionaries that represent each cluster, parallel
to the K-means type approaches that look for a set of centroids for the clusters.

Given a set of unlabelled samples X = {xi}Ni=1 and the number of clusters K,the
problem of finding a set of dictionaries {Dl}Kl=1 and C = {Cl}Kl=1 the partitioning
of X into K clusters, is formulated as:

min
∀l (Cl,Dl)

K∑
l=1

∑
xi∈Cl

min
α
l
i

‖xi −Dlα
l
i‖2

2 + λ‖αli‖1 + η
∑
n6=m
‖DT

nDm‖2
F (2.34)

Final version Printed on January 25, 2019

30 2.4. Temporal data and dictionary learning

Similar to K-means, the solution for the optimization problem in Eq. 2.34 is an
iterative refinement technique. In one iteration, each input is assigned to the
cluster Cl for which the best representation (i.e., minimum reconstruction error)
is obtained. Then the dictionaries Dl are updated based on the assignments
found in the previous step. The dictionary update process is the same as for
the classification. The refinement steps are repeated until the convergence (i.e.,
no changes in cluster assignments).

The authors proposed two initialization for the algorithm. One concerning the
data (Cl) and one for sub-dictionaries (Dl). On both cases the main idea is to
construct an affinity matrix for the spectral clustering algorithm. To do so, they
first train an initial dictionary D0 = [d1, . . . ,dK0] over the whole training set X
and build two similarity matrices based on the corresponding sparse representations
A = [α1, . . . ,αN]; One measures the similarity of two inputs S1 = |ATA| ∈ RN×N

and the other one stores the similarity of two atoms S2 = |AAT | ∈ RK0×K0. To
obtain the initial partition of the inputs (Cl) or the sub-dictionaries (Dl), spectral
clustering is applied on S1 or S2 respectively.

2.4 Temporal data and dictionary learning

There are numerous applications of supervised and unsupervised sparse coding and
dictionary learning on static data such as images, however, small effort has been
done for temporal data (e.g., time series, sequences, traces). The reason might
be the special characteristics of these data that I mentioned in Chapter 1 such as
internal dependencies or time delay. Time series data usually arise with varying
delays where the standard Euclidean distance, which is commonly used in dictionary
learning frameworks, can not be applied for them, due to the time warping.

In this section, we would like to address several methods that study the dictionary
learning for temporal data. These approaches can be divided into two groups.
The first group investigate the shift invariant sparse representations algorithms
while the second groups benefit kernel methods to overcome the problem of time
warp or varying length inputs.

Final version Printed on January 25, 2019

2. Sparse Representation and Dictionary Learning 31

2.4.1 Shift invariant sparse representation

The shift invariant sparse representation is originally proposed by Lewicki and
Sejnowski [Lewicki 99] where an input sample is represented by a few set of kernel
basis functions of small lengths that can be placed at any arbitrary position within
the input. The model can be expressed in convolutional form [Smith 05] based on
a circulant matrix to convolve the kernel functions at all the translation positions.
The Gammatone functions are used as bases and the optimal coefficients found
by maximizing a posterior distribution. The idea of convolutional sparse coding is
further expanded by Grosse et al. [Grosse 07] to learn the sparse representation of
a long audio signal. The proposed shift invariant sparse coding (sisc) algorithm is
designed to learn both coefficients and the bases. Their algorithm reconstructs an
input using a weighted combination of a few of the learned basis functions.

Denote by X = {xi}Ni=1, xi ∈ Rq a set of input samples (time series) and
Ψ = {ψm}

M
m=1, ψm ∈ Rp a set of basis functions that are allowed to be of a lower

dimension than the input (p ≤ q), the sisc optimization problem is formulated as
an extension to the sparse coding optimization problem as follows:

min
(Ψ,S)

N∑
i=1
‖xi −

M∑
m=1

ψm ∗ s(i,m)‖2
2 + β

∑
(i,m)
‖s(i,m)‖1 (2.35)

s.t. ∀m ‖ψm‖
2
2 ≤ c.

where s(i,m) ∈ Rq−p+1 is the coefficient vector corresponding to the input xi and
basis ψm, that is representing the magnitude for each possible temporal offset
of the basis ψm within xi.

The above optimization problem are then solved by alternatively solving two
large convex optimization problem: solving for the coefficients s(i,m) given a fixed
basis set as an l1-regularized least squares problem and keeping the coefficients
fixed, solving for bases as an l2-constraint least squares problem over a vector of
complex variables in the Fourier domain, knowing the fact that convolution in time
domain is equivalent to the dot product in Fourier domain. A similar formalization
and solutions are also proposed by [Bristow 13] where the inputs can be either 1D
signals like audio or 2D signals like images and the dictionary also can be 1D vectors
or 2D matrix accordingly. Grosse et al. [Grosse 07] proposed a computationally
efficient implementations for both optimization steps. In the context of classification,

Final version Printed on January 25, 2019

32 2.4. Temporal data and dictionary learning

the learned coefficients on the training set are used as features to train an svm
classifier. The input feature vector is constructed as the average of the coefficient
vectors over the entire input. Another solution for convolutional dictionary learning
was proposed in [Kavukcuoglu 10] where a feed-forward, non-linear encoder is used
to predict the sparse codes from the inputs.

The idea of shift invariant sparse coding is further studied in [Barthélemy 12]
where the authors proposed a shift invariant sparse coding for multivariate time
series. They proposed a multivariate version of the omp followed by a multivariate
dictionary learning algorithm to sparsely reconstruct the 2D handwritten temporal
data. Mailhe et al. [Mailhé 08] proposed an extension of kSVD algorithm to
learn a family of M shift invariant patterns form a long signal. The optimization
problem uses a nested sum instead of convolution operator. A translation operator
that allows to generate, for each pattern, all its translated copies is also proposed.
As in the standard kSVD, the dictionary patterns are updated sequentially and
the coefficients are updated accordingly before updating the next pattern. The
proposed method has been tested to learn patterns on a long music track. Similar
procedure is used in the algorithm proposed by Aharon and Elad [Aharon 08]
to learn a dictionary to present varying size image patches. The method called
image signature dictionary (isd) where the dictionary is composed of varying size
image patches extracted from varying locations of the images. A modified omp
and kSVD algorithms are used in learning the isd. In the same spirit, [Jost 06]
formalizes the translation invariant dictionary learning as a convex optimization
problem to estimate atoms and their time-translation to maximize their correlation
to the training data under uncorrelated atom constraint. Huang et al. [Huang 12]
proposed a temporal pyramid pooling method to extract discriminative and shift
invariant representation of audio signals. The coefficients are computed based on
the model proposed by [Smith 05] and different pooling strategies are used to create
the input feature vectors of an svm classifier.

Shift invariant sparse coding models are mostly proposed for reconstruction
and representation of a long signal where similar patterns may appear in different
locations within it e.g., audio or music track. However, the generated sparse
coefficients of such models are not discriminative nor suitable for a classification task.
For example in [Grosse 07], the time series are partitioned into small segments of the
same length, then a dictionary is learned to sparse represent these small segments.

Final version Printed on January 25, 2019

2. Sparse Representation and Dictionary Learning 33

Although the learned dictionary has been shown good ability to reconstruct the
input time series, the classification accuracy based on the learned sparse codes is
not satisfying. The main reason is probably due to the learned dictionary, that
is composed of basis atoms that are not discriminative nor specific for a class of
data and instead are commonly shared by the different classes.

In the next section, we introduce the basic idea of kernel sparse representation and
dictionary learning. We then explain how these methods are used for classification
of time series data.

2.4.2 Kernel sparse representation

To capture the non-linearity present in the data, kernel sparse representation method
has been proposed [Gao 10] which presents a sparse coding schema in the feature
space. Similarly, Nguyen et al. [Van Nguyen 12] present non-linear versions of the
well-known dictionary learning approaches such as mod and kSVD followed by a
kernelized version of the orthogonal matching pursuit algorithm (komp) to sparse
code inputs in the feature space. In the following we explain the formalization and
the proposed solutions for the kernelized sparse representation problem.

Suppose there exists a non-linear mapping function φ : Rq → F from Rq into a
higher dimensional feature space F . Denote by Φ(X) = [φ(x1), φ(x2), ..., φ(xN)]
the matrix whose columns are obtained by embedding the inputs X using the
mapping φ and Φ(D) the non-linear dictionary in the feature space F , the kernel
sparse representation and dictionary learning can be formulated as a kernelized
form of the problem in Eq. 2.15:

min
A,Φ(D)

N∑
i=1
‖Φ(D)αi − φ(xi)‖2

2 (2.36)

s.t. ∀i ‖αi‖0 ≤ τ.

where A as before is the matrix whose ith column αi is the sparse vector of φ(xi)
with maximum of τ non-zero entries. It has been shown in [Van Nguyen 13] that
there exists an optimal solution Φ(D)∗ with the form Φ(D)∗ = Φ(X)M , for some
M ∈ RN×K . The assumption here is that the atoms are lying within the sub-
space spanned by the input data. The problem in Eq.2.36 can be then re-written
with the matrix notation as:

min
A,M
‖Φ(X)MA− Φ(X)‖2

F s.t. ∀i ‖αi‖0 ≤ τ. (2.37)

Final version Printed on January 25, 2019

34 2.4. Temporal data and dictionary learning

Algorithm 4 Kernel Orthogonal Matching Pursuit (KOMP)
Input: x, M , K, kx τ .
Output: α such that Φ(X)Mα approximates φ(x).

1: Ω = {φ}, s = 0, r = 0.
2: while |Ω| ≤ τ do
3: ωi = (kx − rTK)mi, ∀i /∈ Ω.
4: Select imax = arg maxi|ωi| and update Ω = Ω ∪ {imax}.
5: Update the coefficients: α = (MT

Ω KMΩ)−1(kxMΩ)T .
6: Estimate the residual: r = MΩα.
7: end while

The above optimization can be carried out by iteratively solving two steps: 1)
keep the dictionary Φ(X)M fixed and look for the sparse codes αi’s in the feature
space, 2) update the atom representation dictionary M while keeping the sparse
representations A fixed.

For the first step, the matrix M is assumed to be fixed and the problem reduced
to solve the N distinct sparse coding problem of the form:

∀i, min
αi
‖Φ(X)Mαi − φ(xi)‖2

2 s.t. ‖αi‖0 ≤ τ. (2.38)

where by introducing the kernel matrix K = Φ(X)TΦ(X) and kernel vector
kx = Φ(X)Tφ(x), the kernel orthogonal matching pursuit (komp) algorithm,
as a generalization of the standard omp, is used to find αis. The procedure follows
the same steps of the omp algorithm and the pseudo code is given in Algorithm 4.

In the second step and once the sparse codes of the training data are found, the
dictionary representation matrixM is updated such that the following reconstruction
error is minimized:

‖Φ(X)− Φ(X)MA‖2
F (2.39)

Based on the idea of mod method the following update rule can be applied to findM ,

M = AT (AAT)−1. (2.40)

while in the kernel kSVD Eq. 2.39 is re-written as:

‖Φ(X)− Φ(X)MA‖2
F = ‖Φ(X)− Φ(X)

K∑
j=1
mj αj.‖2

F (2.41)

= ‖Φ(X)(I −
∑
j 6=k
mjαj.)− Φ(X)(mkαk.)‖2

F

Final version Printed on January 25, 2019

2. Sparse Representation and Dictionary Learning 35

Algorithm 5 Kernel kSVD dictionary learning
Input: X, K, τ .
Output: The dictionary atom representation M and the sparse coefficients A.

1: Set τ random elements of each column in M to be 1.
2: repeat

{Sparse coding step:}
3: for i = 1, ..., N do
4: αi =komp(xi,M,K,kxi , τ).
5: end for

{Dictionary update step:}
6: for k = 1, ..., K do
7: Compute Ek = (I −

∑
j 6=k
mjαj.).

8: Define Ωk = {i / αki 6= 0, i = 1, ..., N}.
9: Compute EΩk

k = EkΩk as the restriction of Ek to Ωk.
10: Apply SVD decomposition: (EΩk

k)TK(EΩk
k) = V ΣV T .

11: Update mk = σ−1
1 E

Ωk
k v1 and αΩk

k. = σ1v
T
1 .

12: end for
13: until Convergence (stopping rule)

A singular value decomposition (svd) is then applied on the matrix Φ(X)(I −∑
j 6=kmjαj.) to update mk and αk.. Note that since the row dimension of this

matrix may be very large, the svd decomposition is applied on its Gram matrix,
which is independent of the row dimension. The entire kernel kSVD procedure
is summarize in Algorithm 5.

To use the sparse representation coefficient for data classification in the high
dimensional feature space, the kernel sparse representation based classification
(kernel src) has been proposed [Yin 12, Zhang 12]. The classification strategy
of kernel src is as we discussed as in the previous section for src, but this
time is kernelized.

Since the mentioned non-linear dictionary learning algorithms (e.g., kernel kSVD)
exploit the sparsity of the data in the high dimensional feature space, with an
appropriate choice of the kernel, they circumvent the problem of delay and length
for time series sparse representations. Recently, the authors of [Chen 15] introduced
kernel sparse representation for time series classification. By using a Gaussian rbf
kernel and substituting the Euclidean distance with the elastic distance measures
such as dtw, time series were embedded into an implicit kernel space, which

Final version Printed on January 25, 2019

36 2.5. Summary

Φ = Φ ×

0.23
0
0
0
0
0

+ Φ ×
0.03
0
0

0.12
+ Φ ×

0
0.35
0.01
0
0

+,-.. 1 +,-.. 2 +,-.. 3

Figure 2.4: Kernel sparse representation of time series (Kernel src).

allowed the use of kernel src and kernel kSVD (Figure 2.4). Experimental results
showed that the proposed method could be a competitive to the state of the art
time series classification approaches.

Another effort to use kernels and a similar framework to src for time series
classification is [Jeni 14]. In [Jeni 14] authors handle the temporal alignment
problem by using General Alignment Kernel (kga) [Cuturi 11] and proposed a
structured sparse reconstruction to solve kernel sparse coding problem. The proposed
method has been evaluated in the applications of gesture recognition and facial
expression classification. Zhou et al [Zhou 13] have also proposed a kernel based
sparse representation to generalize the capability of src to classify multivariate
time series data. To design a dictionary from training data for src they proposed a
feature extraction technique called Covariance Matrix Singular Value Decomposition
for Kernelization (CovSVDK). They applied svd on covariance matrix of each
multivariate time series and used the related eigenvectors and eigenvalues as the
features for sparse representation. This feature extraction strategy can overcome
the problem of varying length inputs. A kernelized src is then applied in a human
gesture classification application. Similarly, in a recent work, Poularakis and
Katsavounidis [Poularakis 13] proposed a gesture recognition framework based on
the src. Linear interpolation technique is used to represent gesture data and to
create input features for the sparse representation framework.

2.5 Summary

The sparse representation framework consists of two main components. The sparse
coding is defined as finding the coefficients for the representation of an input sample

Final version Printed on January 25, 2019

2. Sparse Representation and Dictionary Learning 37

by a linear combination of a few samples from a set of atoms called dictionary.
Several approaches are proposed to solve the sparse approximation problem based
on a l0 or l1 sparsity constraint. Dictionary learning, on the other hand, is a
procedure of learning the set of samples or patterns to be used for the sparse
representation framework. Among numerous dictionary learning approaches kSVD,
mod and the gradient descent approaches are the most popular. Although the
standard dictionary learning problems learn the sparse codes and the dictionary
in unsupervised manner, researches focus on designing methods for supervised
dictionary learning either by manipulating its optimization problem or by producing
discriminative sparse coefficient vectors.

Temporal dictionary learning has been also studied. The shift invariant sparse
coding aims at learning a group of patterns to represent a long time series; usually
the length of these pattern are much shorter than the original time series input.
For that, convolutional sparse coding is formalized. Kernel sparse representation is
also investigated for time series. Kernel omp and kernel kSVD are proposed for
time series reconstruction. src was also kernelized and used for temporal data
classification where the Gaussian dtw kernel is used to bypass the delay problem.

Final version Printed on January 25, 2019

38

Final version Printed on January 25, 2019

We become what we think about.

— Earl Nightingale

3
Sparse Coding and Dictionary Learning

under Time Warp

Contents
3.1 Problem formalization 40
3.2 Time warp invariant sparse coding 41

3.2.1 Time series alignment 43
3.2.2 Standard use of time series alignments 44
3.2.3 The cosine estimation between time series (costw) . . 44
3.2.4 The dot product estimation between time series (dptw) 47
3.2.5 Time warp invariant omp (twi-omp) 48

3.3 Time warp invariant dictionary learning 48
3.3.1 Time warp invariant kSVD (twi-ksvd) 49
3.3.2 twi-ksvd for time series classification 52
3.3.3 Time warp invariant dictionary learning by gradient de-

scend (twi-gddl) . 54
3.3.4 Dictionary learning for time series clustering 55

3.4 Summary . 57

The existing challenges and issues for time series sparse representations and
dictionary learning are discussed in Chapter 1. In standard dictionary learning
methods the input samples and atoms are supposed of the same dimension. For
temporal data, both input samples and atoms are time series that may involve

39

40 3.1. Problem formalization

varying delays and be of different lengths, which renders the standard dictionary
learning methods unusable. Several strategies have been proposed to address that
problem, as discussed in the previous chapter. This chapter details the main
contribution of the thesis which is a time warp invariant sparse representation
and dictionary learning for temporal data. It starts with the problem statement,
then details the proposed solutions.

3.1 Problem formalization

In this section, the proposed formalization of sparse coding and dictionary learning
for time series under time warp is introduced. The problem is defined as a non convex
optimization problem, which in general, can be resolved by using a block coordinate-
descent method, that consists of updating just one or a few blocks of variables
at a time while keeping the rest fixed. Efficient solutions for each phase of the
optimization are detailed in the following sections. Note that, the coordinate descent
technique is based on the idea that the minimization of a complex multivariate
function can be achieved by minimizing it along one direction at a time. Such
updating is computationally much cheaper than the batch update. On the other
hand, convergence requires more tight conditions and typically takes more iterations.

Let X = {xi}Ni=1 be a set of N input time series xi = (xi1, ..., xiqi)
T ∈ Rqi of

length qi and D = {dj}Kj=1 the dictionary defined as a set of K time series atoms
dj ∈ Rpj . Note that both inputs xi and atoms dj are time series of different
lengths that may involve varying delays. The time warp invariant sparse coding
and dictionary learning problem can be formalized as:

min
A,D,∆

J (A,D,∆) =
N∑
i=1
‖xi −

K∑
j=1

∆ij dj αji‖2
2 (3.1)

s.t. ∀i ‖αi‖0 ≤ τ, ∀j ‖dj‖2= 1
∆ij ∈ {0, 1}qi×pj , ∆ij 1pj = 1qi

where ∆ = {∆ij}, i = 1, ..., N ; j = 1, ..., K, with ∆ij a binary matrix that encodes
the alignment between xi and dj, that we detail in the following. A = [α1, ...,αN]
is the sparse coefficients matrix with αi = (α1i, ..., αKi)T and τ is the sparsity
constraint factor. The last constraint is a row normalization of the estimated ∆ij

that ensures for xi equally weighted time stamps.

Final version Printed on January 25, 2019

3. Sparse Coding and Dictionary Learning under Time Warp 41

In the same spirit as the standard dictionary learning approaches, the above
optimization problem can be solved by iterating two steps. The first step is to
fix dictionary D and estimate A and ∆ by decomposing the problem defined in
Eq. 3.1 into N distinct time warp invariant sparse coding problems, that can be
solved each by using twi-omp which is detailed in the following section. In the
second step, based on the learned A and ∆, the objective is to update D to find
a dictionary that leads to the lowest reconstruction error.

To solve the optimization problem in Eq. 3.1, as in conventional dictionary
learning approaches, we divide the problem into two distinct problems. First, for the
sparse coding step, a time warp invariant orthogonal matching pursuit (twi-omp),
based on a new cosine maximization time warp operator (costw) and the induced
sibling atoms, is proposed. In the second step, we address the dictionary update
problem by developing two solutions: A non linear time warp invariant kSVD
(twi-ksvd) and a gradient descent based solution (twi-gddl).

3.2 Time warp invariant sparse coding

We start with the formalization of the time series sparse coding under time warp
invariances. Let us note that the standard approaches such as omp is not applicable
on the time series inputs since the dictionary can not be structured as a matrix and
the cosine similarity can not be computed due the varying length of the inputs. A
naive solution would be the zero padding of the data which leads to a weak result
and also simply ignore the potentially existing delay. To resolve this problem, we
present a new operator costw that ensures cosine maximization between time
series under time warp and give the recurrence relation that ensures its computation
in quadratic complexity. Finally, thanks to costw and to the induced sibling atoms,
we present a time warp invariant omp (twi-omp), as a solution for the time series
sparse coding problem under time warp.

Thus, for one input time series sample x = (x1, ..., xq)T and the dictionary
D = {dj}Kj=1 of K atoms dj ∈ Rpj . The sparse coding problem under time warp

Final version Printed on January 25, 2019

42 3.2. Time warp invariant sparse coding

invariances can be formalized as:

min
α,∆
‖x−

K∑
j=1

∆j dj αj‖2
2 (3.2)

s.t. ‖α‖0 ≤ τ,

∆j ∈ {0, 1}q×pj , ∆j 1pj = 1q

where ∆ = {∆j}Kj=1. The binary matrix ∆j ∈ {0, 1}q×pj encodes the alignment
between x and dj obtained by dynamic programming as detailed after. The problem
defined in Eq. (3.2) remains to estimate the coefficients α to sparse code x as a
linear combination of the warped atoms ∆j dj . To resolve this problem, we propose
an extended variant of omp that can be mainly summarized in the following steps:

1. For each dj, estimate ∆j by dynamic programming to maximize the cosine
between x and dj.

2. Use the projector ∆j to align dj to x. Let dsj = ∆j dj ∈ Rq be the obtained
aligned atom of the same length as x, denoted in the following as dj’s sibling
atom.

3. Estimate the sparse code α based on the sibling atoms.

For that and to estimate the projectors ∆j, j = 1, ..., K, first we propose a new
operator costw to estimate the cosine between two time series under time warp.
To the best of our knowledge, this is the first time that the cosine operator is
generalized to time series under time warp. Then, we present a time warp invariant
omp (twi-omp), that extends the standard omp approach, to sparse code time
series under non linear time warping transformations.

The problem of estimating the cosine between two time series that involve
varying delays amounts to learn a time series alignment that maximizes their cosine.
In the following, we recall the standard definition of a valid alignment between time
series, give some standard applications of the temporal alignment, then formalize
the cosine maximization under time warp problem. Finally, we propose a recurrence
relation that allows to perform the computation of the alignment with quadratic
complexity.

Final version Printed on January 25, 2019

3. Sparse Coding and Dictionary Learning under Time Warp 43

3.2.1 Time series alignment

Let x = (x1, ..., xqx), y = (y1, ..., yqy) be two time series of length qx and qy. An
alignment π of length |π| = m between x and y is defined as the set of m increasing
couples of aligned elements of x to elements of y:

π = ((π1(1), π2(1)), (π1(2), π2(2)), ..., (π1(m), π2(m)))

where the applications π1 and π2 defined from {1, ...,m} to, respectively, {1, .., qx}
and {1, .., qy} and that obey to the following boundary and monotonicity conditions:

1 = π1(1) ≤ π1(2) ≤ ... ≤ π1(m) = qx

1 = π2(1) ≤ π2(2) ≤ ... ≤ π2(m) = qy

and ∀ l ∈ {1, ...,m},

π1(l + 1) ≤ π1(l) + 1 and π2(l + 1) ≤ π2(l) + 1,
(π1(l + 1)− π1(l)) + (π2(l + 1)− π2(l)) ≥ 1

Intuitively, an alignment π between x and y describes a way to associate each
element of x to one or more elements of y and vice versa. Such an alignment can be
conveniently represented by a path in the qx × qy grid (Figure 3.1 left), where the
above monotonicity conditions ensure that the path is neither going back nor jumping.
In the following, we denote A the set of all valid alignments between two time series.

x1 x3 x5 x7 x9 x11 x13 x15 x17 x19
y1

y3

y5

y7

y9

y11

y13

y15

y17

y19

y

x

Time

x
y
alignment

Figure 3.1: A possible alignment (path) between time series x and y.

Final version Printed on January 25, 2019

44 3.2. Time warp invariant sparse coding

3.2.2 Standard use of time series alignments

Temporal alignment is generally required to estimate the proximity between time
series. For instance, Dynamic Time Warping (dtw) is undeniably the most
frequently used measure for time series comparison under time warp. Its standard
form is defined as:

dtw(x,y) = s(π∗) (3.3)
π∗ = arg min

π∈A
s(π)

s(π) = 1
|π|

∑
(t,t′)∈π

(xt − yt′)
2 = 1
|π|

|π|∑
i=1

(xπ1(i) − yπ2(i))2

3.2.3 The cosine estimation between time series (costw)

To estimate the cosine between time series under time warp, the problem remains to
seek for the alignment that maximize their cosine; that can be then formalized as:

costw(x,y) = s(π∗) (3.4)
π∗ = arg max

π∈A
s(π)

s(π) = cos(xπ1 ,yπ2
) =

< xπ1 ,yπ2
>

‖xπ1‖2 ‖yπ2
‖2

=
∑|π|
i=1 xπ1(i) yπ2(i)√∑|π|

i=1 x
2
π1(i)

√∑|π|
i=1 y

2
π2(i)

where s is the cost function of an alignment π and cos(xπ1 ,yπ2
) is the standard cosine

between the aligned time series xπ1 = (xπ1(1), ..., xπ1(m)) and yπ2
= (yπ2(1), ..., yπ2(m)).

The solution of the Eq. 3.4 is obtained by dynamic programming, where the
main trick is to define a useful recurrence relation for the cosine estimation, as
detailed hereafter.

Let xq+1 = (x1, ..., xq+1), yq+1 = (y1, ..., yq+1) be two time series of length
q + 1, assumed without delays for the sake of clarity. Let xq, yq be the sub-time
series composed of the q first elements of xq+1, yq+1, respectively. The following
incremental relation can be established between cos(xq+1,yq+1) and cos(xq,yq):

cos(xq,yq) =
< xq,yq >√
‖xq‖2

2

√
‖yq‖

2
2

cos(xq+1,yq+1) =
< xq,yq > +xq+1yq+1√
‖xq‖2

2 + x2
q+1

√
‖yq‖

2
2 + y2

q+1

(3.5)

Final version Printed on January 25, 2019

3. Sparse Coding and Dictionary Learning under Time Warp 45

For time series including delays and based on the incremental property given in Eq.
3.5, we introduce the computation and recurrence relation that allows to estimate
the alignment π∗ that maximize costw(x,y) in Eq. 3.4.

Computation and recurrence relation: Let C ∈ Rqx×qy×3 be the cost matrix
with general term Ci,j = (xiyj, x2

i , y
2
j). Let’s denote by xij and yij the aligned

time series that maximize the cosine between the sub-time series xi = (x1, ..., xi)
and yj = (y1, ..., yj). Let M ∈ Rqx×qy×3 be the alignment matrix between x and
y with Mi,j = (< xij,yij >, ‖xij‖

2
2, ‖yij‖

2
2).

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝒙$

𝑦" 𝑦# 𝑦$ 𝑦% 𝑦&

𝒚%

𝒙$% = (𝑥", 𝑥", 𝑥", 𝑥#, 𝑥$, 𝑥$)
𝒚$% = (𝑦", 𝑦#, 𝑦$, 𝑦$, 𝑦$, 𝑦%)

Figure 3.2: An example of the intermediate aligned time series: x34 and y34 are two
aligned time series that maximize the cosine between the sub-time series x3 = (x1, x2, x3)
and y4 = (y1, y2, y3, y4).

Based on the incremental property established in Eq. 3.5, computing recursively
for (i, j) ∈ {1, ..., qx} × {1, ..., qy} the terms Mi,j as:

M1,1 = C1,1

∀i ≥ 2, j = 1,Mi,1 = Mi−1,1 ⊕ Ci,1
∀j ≥ 2, i = 1,M1,j = M1,j−1 ⊕ C1,j

∀i ≥ 2, j ≥ 2,Mi,j = arg max(f(Mi−1,j ⊕ Ci,j), f(Mi,j−1 ⊕ Ci,j), f(Mi−1,j−1 ⊕ Ci,j))

with ⊕ the sum operator for triplets 1 and f(Mi,j) the cosine reached at
Mi,j defined as:

f(Mi,j) = Mi,j[1]√
Mi,j[2]

√
Mi,j[3]

1(a, b, c)⊕ (e, f, g) = (a+ e, b+ f, c+ g)

Final version Printed on January 25, 2019

46 3.2. Time warp invariant sparse coding

0 20 40 60 80 100 120
Time

-8

-6

-4

-2

0

2

4

6

8

0 20 40 60 80 100 120
Time

-8

-6

-4

-2

0

2

4

6

8

0 20 40 60 80 100 120
Time

-8

-6

-4

-2

0

2

4

6

8

0 20 40 60 80 100 120
Time

-8

-6

-4

-2

0

2

4

6

8

Figure 3.3: The progression of the standard cosine and costw between x (blue curve)
and the time series y1 to y10 that involve different delays and amplitude variations, with
in particular y1 = x and y6 = −x.

we obtain an estimation of costw(x,y) ≈ f(Mqx,qy
). Note that due to the non-

monotonicity of the cost function, the Bellman’s principle of optimality is not
satisfied. Even the solution is sub-optimal, it leads to a good approximation for
cosine maximization for time series with a quadratic complexity of O(qxqy). The
three first equations give the first row and column update rules, the fourth equation
gives the recurrence formula that retains among the triplets Mi−1,j,Mi,j−1 and
Mi−1,j−1 the one that maximizes the cosine at Mi,j. The optimal path π∗ can be
found by backtracking the optimal direction at each step, starting from Mqx,qy

to
M1,1. The binary alignment matrices ∆xy ∈ {0, 1}qx×qy defined in Eq. 3.1 and
3.2 are then obtained from π∗ as ∆xy(i, j) = 1 if (i, j) ∈ π∗ and 0 otherwise. It
is worth to say that by restraining the search space using constraint techniques
(e.g Sakoe-Chiba band [Sakoe 78]) we can reduce the complexity of costw and
speed up the alignment finding process.

Figure 3.3 shows the progression of the standard cosine (left) and costw (right)
between the time series x (in blue) and 10 time series yj , j = {1, ..., 10} that involve
different delays and amplitude variations. We can note that the standard cosine
cos(x,yj), that ignores the temporal dependency, reaches 1 or almost 1 for y1 to
y3, that have no delays but amplitude variations, while it decreases for y4 and y6

that involve progressive delays. On the other hand, cos(x,yj) reaches -1 or almost
-1 for y6 to y8, that have no delays with amplitude variations, while it increases

Final version Printed on January 25, 2019

3. Sparse Coding and Dictionary Learning under Time Warp 47

for y9 and y10 that involve increasing delays. For costw(x,yj), that seeks for
an alignment that maximizes the cosine, the value is 1 or almost -1 for y1 to y5

regardless of the varying delays, and leads to higher values than the standard cosine
for y6 to y10, showing its invariance in the face of delays.

3.2.4 The dot product estimation between time series (dptw)

As noted in Section 3.2.3, the previous estimation of costw is sub-optimal due to
the non-monotonicity of the cost function. In this section, we propose a costw
approximation based on an optimal solution of the dot product under time warp
by dynamic programming that satisfies the Bellman’s principle of optimality. The
dot product maximization time warp (dptw) is formalized as:

dptw(x,y) = s(π∗) (3.6)
π∗ = arg max

π∈A
s(π)

s(π) = < xπ1 ,yπ2
>=

|π|∑
i=1

xπ1(i) yπ2(i)

where this time the cost function s of the alignment π is defined by the standard
dot product between the aligned time series xπ1 and yπ2

. Let xq+1 = (x1, ..., xq+1),
yq+1 = (y1, ..., yq+1) be two time series of length q + 1, assumed without delays
for the sake of clarity. Let xq, yq be the sub-time series composed of the q first
elements of xq+1, yq+1, respectively. Taking the following recurrence formulas
of the dot product into account,

< xq+1,yq+1 > = < xq,yq > +xq+1yq+1, (3.7)

the solution of the Eq. 3.6 to find dptw(x,y) can be obtained by dynamic
programming. The detailed computations are given hereafter.

Computation and recurrence relation: Let C ∈ Rqx×qy be the cost matrix
with general term Ci,j = xiyj. Let’s denote by xij and yij the aligned time series
that maximize the inner product between xi = (x1, ..., xi) and yj = (y1, ..., yj). Let
M ∈ Rqx×qy be the alignment matrix between x and y with Mi,j =< xij,yij >.

Final version Printed on January 25, 2019

48 3.3. Time warp invariant dictionary learning

Based on the incremental property established in Eq. 3.7, computing recursively
for (i, j) ∈ {1, ..., qx} × {1, ..., qy} the terms Mi,j as:

M1,1 = C1,1

∀i ≥ 2, j = 1, Mi,1 = Mi−1,1 + Ci,1

∀j ≥ 2, i = 1, M1,j = M1,j−1 + C1,j

∀i ≥ 2, j ≥ 2, Mi,j = max(Mi,j−1,Mi−1,j,Mi−1,j−1) + Ci,j

we obtain dptw(x,y) = Mqx,qy
with a quadratic complexity of O(qxqy) and

costw(x,y) ≈ DPTW (x,y)
‖x
π
∗
1
‖‖y

π
∗
2
‖ , where xπ∗1 and yπ∗2 are the time series x and y once

aligned through the optimal path π∗ reached by the dptw.

3.2.5 Time warp invariant omp (twi-omp)

Based on the estimated costw given either in Section 3.2.3 or Section 3.2.4, let us
present the time warp invariant omp (twi-omp) to solve the problem in Eq. 3.2
that extends the standard omp algorithm to deal with time series input samples
and atoms under varying delays.

The proposed twi-omp follows the three steps given in Section 3.2. First,
perform a costw between x and each dj. Let {∆j}Kj=1 be the induced alignment
matrices. Then, select the atom dj that maximizes costw(x,dj) (line 3-4 in
Algorithm 6). Let dsj = ∆j dj be the dj’s sibling atom, update the dictionary
SΩ = [dsj]j∈Ω of the yet selected atoms dj (line 5). The updated SΩ is then used to
estimate the coefficients as in the standard omp (line 6-7). The process is reiterated
on the residuals of x until the sparsity factor τ is reached.

3.3 Time warp invariant dictionary learning

For the dictionary learning step, the problem in Eq. 3.1 becomes to learn the
dictionary D under time warp where, the sparse coefficients A = [α1, ...,αN] and
alignment matrices ∆ = {∆ij}, i = 1, ..., N ; j = 1, ..., K are assumed to be learned
by twi-omp described in the previous section. Having A and ∆, we can formalize
dictionary learning problem under time warp as:

min
D

N∑
i=1
‖xi −

K∑
j=1

∆ij dj αji‖2
2 (3.8)

s.t. ∀j ‖dj‖2= 1

Final version Printed on January 25, 2019

3. Sparse Coding and Dictionary Learning under Time Warp 49

Algorithm 6 Time Warp Invariant Orthogonal Matching Pursuit (TWI-OMP)
Input: x, D, τ .
Output: α, ∆.

1: r = x,Ω = {∅}.
2: while |Ω| ≤ τ do
3: For all j /∈ Ω, perform costw(r,dj) and set ∆j.
4: Select the atom dj (j /∈ Ω) that maximizes |costw(r,dj)|
5: Update the set of selected atoms Ω = Ω ∪ {j} and SΩ = [dsj]j∈Ω
6: Update the coefficients: αΩ = (STΩSΩ)−1(STΩx)
7: Estimate the residual: r = x− SΩαΩ
8: end while

𝒅" 𝒅# 𝒅$

𝒅"% 𝒅#% 𝒅$%

𝒙

…

𝒙' = 𝛼"𝒅"% + 𝛼#𝒅#% + ⋯+ 𝛼$𝒅$%

𝝅"∗ 𝝅#∗

𝝅$∗

Figure 3.4: Reconstruction of the input x based on sibling dictionary atoms dsj .

3.3.1 Time warp invariant kSVD (twi-ksvd)

In the same spirit as in a standard kSVD, our objective is to update one atom and
its related coefficients at a time. Recall from the kSVD, at each step, we remove one
atom from the dictionary and replace it with the the major direction of the residuals.
Similarly, once we remove atom dk, it induces the removal of all its sibling atoms dsik .
Thus, the residuals ei ∈ Rqi of xi are this time estimated w.r.t the sibling atoms
d
si
k whereas in standard kSVD all the residuals are determined based on the same

removed atom dk. As the residuals are not associated to a single referential vector,
building the residual matrix Ek (Eq. 2.20) is unfeasible and svd inapplicable.

To address this issue, we propose a solution that consists of two main steps:
1. use a projection and rotation transformation ϕ(ei) to represent all the residuals

w.r.t a common referential vector, the residual matrix Ek can then be estimated

Final version Printed on January 25, 2019

50 3.3. Time warp invariant dictionary learning

Algorithm 7 Rotation
Input: a, b and c.
Output: ar.

1: Set θ = θb,c, u = b

‖b‖
, v = c− (utc)u

‖c− (utc)u‖
2: Compute the rotation matrix R as follows:

R = I − uut − vvt + [u;v]Rθ[u;v]t

where Rθ ∈ R2×2 = [(cos(θ), sin(θ))t; (−sin(θ), cos(θ))t]
3: Compute ar = Ra.

and svd applied to estimate the first left-singular vector u1 and update dk
accordingly,

2. use back transformations γi(u1) of u1 to update each sibling atom d
si
k as well

as its related coefficients.
In the following we detail these steps and define the related projection and rotation
transformations.

Let dk and {dsik }
N
i=1 be the kth atom and its sibling atoms to be removed. The

residual ei (i.e., the reconstruction error) of xi once dsik removed is computed as:

ei = xi −
∑
j 6=k
d
si
j αji (3.9)

Let us define ϕ(ei) : Rqi → Rpk as the transformation that represents the residuals
ei w.r.t. the common referential vector dk. First, it consists to align ei and dsik
to dk thanks to the projector ∆ik. As the alignment matrix ∆ik is used to project
dk to xi, similarly ∆T

ik can do the opposite, i.e., align the residual to the atom
dk. Let ∆T

ik ei and ∆T
ik d

si
k be the obtained aligned vectors of the same lengths

as dk. Subsequently, ∆T
ik ei is rotated such that the angle between ϕ(ei) and dk

is the same as the one between ei and dsik . The effect of the transformation ϕ

is described in Figure 3.5 and formalized as:

ϕ(ei) = Rotation(∆T
ik ei,∆T

ik d
si
k ,dk) (3.10)

where ar = Rotation(a, b, c) operates a rotation of the vector a to ar such that
θa,b = θar,c

2 [Arfken 99], the procedure is given in Algorithm 7 (More details
are given in Appendix A).

2θa,b denotes the angle between the vectors a and b

Final version Printed on January 25, 2019

3. Sparse Coding and Dictionary Learning under Time Warp 51

!"
#$

%&
'&

i. ii.

!"
#$(

%&(
'&(

!"
'&(

'&
)(%&()
)(%&)

,

iii. iv.

-.

!"
#$

!"
#$(

,

/&((-.)

/&(-.)%&

%&(,

!"

)(%&()
)(%&)

Figure 3.5: ϕ: representation of the residuals ei, ei′ w.r.t the common referential dk.

Let us denote Ek[ϕ(ei)]i∈ωk ∈ Rpk×|ωk| the matrix of the residuals ϕ(ei) with
ωk = {i |αki 6= 0, i = 1, ...N} is the set of xi indices that involve dsik . An svd 3 is
then applied on Ek = UΣV T to determine the first left-singular vector u1. The kth

atom is updated as dk = u1. The sibling dsik for i ∈ ωk as well as their coefficients
are obtained based on the back transformation γi of u1 as:

γi(u1) = ∆ik Rotation(u1,dk,∆T
ikd

si
k) (3.11)

d
si
k = γi(u1) (3.12)

αki = < ei, γi(u1) >
‖γi(u1)‖ (3.13)

where γi(u1) : Rpk → Rqi is a function that allows to represent u1 w.r.t. the sibling
referential dsik . It consists first to rotate u1 such that to have the angle between
γi(u1) and dsik the same as between u1 and dk, then aligns the rotated u1 to dsik
based on the projector ∆ik. Figure 3.6 illustrates the effect of γi. Finally, Figure 3.7
shows the whole transformation process for the update of dk and its sibling atoms.

The Algorithm 8 summarizes the main steps described above of the time
warp invariant kSVD (twi-ksvd). Similar to kSVD, once the K atoms and
the corresponding siblings are updated, the sparse coding and dictionary learning
steps are iterated until convergence (i.e., desirable reconstruction error or maximal
number of iteration reached). It is worth to say that the time complexity of each
iteration for twi-ksvd is O(q2NτK) with K being the dictionary size, q maximum
time series length and N number of training time series.

3It is important to notice that there exists an inherent ambiguity in the sign of singular vectors
resulting from svd decomposition, i.e., their sign is not defined and the individual singular vectors
have an arbitrary sign. This becomes an issue as the proposed costw algorithm is sensitive to the
sign of the vectors. Bro et al. [Bro 08] addressed this problem and proposed a sign disambiguation
technique. They provide an analytic solution for this problem which is, for each singular vector
the corresponding sign is flipped if it is not similar to the sign of the majority of vectors it is
representing. The same technique is used for the sign correction throughout the experiments.

Final version Printed on January 25, 2019

52 3.3. Time warp invariant dictionary learning

!"
#$

%&
'&

i. ii.

!"
#$(

%&(
'&(

!"
'&(

'&
)(%&()
)(%&)

,

iii. iv.

-.

!"
#$

!"
#$(

,

/&((-.)

/&(-.)%&

%&(,

!"

)(%&()
)(%&)

Figure 3.6: γi: representation of u1 singular vector w.r.t the sibling referential dsik and
d
s
i
′

k .

Algorithm 8 Time Warp Invariant kSVD (TWI-kSVD)
Input: X = {xi}Ni=1 (xi ∈ Rqi), D = {dj}Kj=1 (dj ∈ Rpj), τ .
Output: A, ∆, D.

1: repeat
{Sparse coding step:}

2: for i = 1, ..., N do
3: (αi, {∆ij}Kj=1}) =twi-omp(xi, D, τ)
4: end for

{Dictionary update step:}
5: for k = 1, ..., K do
6: Set ωk = {i |αki 6= 0, i = 1, ..., N} (the set of samples involving dk)
7: Estimate ϕ(ei) for i ∈ ωk by using Eqs. 3.9 and 3.10
8: Apply an SVD on Ek[ϕ(ei)]i∈ωk to estimate u1
9: Update dj = u1 and αki, dsik for i ∈ ωk by using Eq. 3.12 and Eq. 3.13
10: end for
11: until Convergence (stopping rule)

3.3.2 twi-ksvd for time series classification

Given a set of labeled time series and a query time series y, the aim of time series
classification is to assign it a class label that has the most similarity to it. The
challenge is to discover the discriminative features between classes to help the
assignment process. We discussed several supervised dictionary learning methods
in Chapter 2, in this section we provide a procedure for classifying time series
based on the proposed dictionary learning approach.

The dictionary learned by twi-ksvd is optimized to have the best reconstruction
of the input time series. The training is done in an unsupervised manner and since
the discriminative information of the inputs are not considered during the learning,

Final version Printed on January 25, 2019

3. Sparse Coding and Dictionary Learning under Time Warp 53

!"

!"
#$

%&

%&'

((%&)

((%&')+&
+&' !"

((%&)

((%&')

,-

.

/&'(,-)

.

/&(,-)

.

0& 123 14567

Alignment + Rotation φ
Transformation

Rotation + Alignment γF
Inverse Transformation

!" 123 14567 !" 123 14567

GHI JK L" = [(%& , ((%&')]

0&' 123 14567

!"
#
$'

(1)

(2)

(3)

Figure 3.7: The transformation process for the update of dk and its sibling atoms.

the learnt time series atoms are not optimal for the classification task. Based on the
idea of the src, we proposed a time series classification procedure. Although unlike
src, instead of directly using the input time series as dictionary, we learn a class-
specific dictionary for each class of the data separately. All these sub-dictionaries
are then concatenated to form the global dictionary for src.

Denote by C the number of classes and Xc the subset of all the training time
series from the class c, a class-specific dictionary Dc is learned from the samples
in Xc using twi-ksvd Algorithm 8. The individual learned dictionaries Dc are
then put together to form a global dictionary as DG = [D1, ..., DC]. All columns
of DG are normalized to have a unit l2 norm and attached with a class label. The
classification of a new arrival time series y is done similar to src as first we solve
the following sparse coding problem to find α and ∆ = {∆j}

KG
j=1:

min
α,∆
‖y −

KG∑
j=1

∆j d
G
j αj‖2

2 (3.14)

s.t. ‖α‖0 ≤ τ,

∆j ∈ {0, 1}q×pj , ∆j 1pj = 1q

where dGj is the jth column of DG and KG is the number of atom time series in DG.
The solution of Eq. 3.14 can be found by twi-omp (Algorithm 6).

Final version Printed on January 25, 2019

54 3.3. Time warp invariant dictionary learning

After the sparse coding step, the classification will be based on the minimum
class-wise reconstruction error. i.e., assign y to the cth class such that:

c∗ = arg min
c
‖y −

∑
j∈νc

∆j d
G
j αj‖2

2 (3.15)

where νc is a set of indices corresponding to the atoms of the cth class.
It is worth noting to mention, since the sub-dictionaries are learned independently

from each other, these class-specific dictionaries usually share some common atoms
that may degrade the classification accuracy. An optional step to improve the
algorithm, as suggested by [Ramirez 10], is pruning the sub-dictionaries before
putting them together. The pruning can be done easily, as if the similarity between
a pair of atoms from two different sub-dictionaries exceeds a predefined threshold,
the both atoms are discarded from the global dictionary.

3.3.3 Time warp invariant dictionary learning by gradient
descend (twi-gddl)

We provide an alternative solution to the dictionary learning problem in Eq. 3.8
which is based on a gradient descent optimization. Let us recall the dictionary
learning formalization under time warp as:

min
D
J (D) =

N∑
i=1
‖xi −

K∑
j=1

∆ij dj αji‖2
2 (3.16)

s.t. ∀j ‖dj‖2= 1

where, the sparse coefficients A = [α1, ...,αN] and alignment matrices ∆ =
{∆ij}, i = 1, ..., N ; j = 1, ..., K are assumed to be learned by twi-omp (Algorithm
6). The above problem is equivalent to:

min
D
J (D) =

N∑
i=1

qi∑
t=1

(xit −
K∑
j=1

αji
∑

(t,t′)∈π∗ij

djt′)
2 (3.17)

s.t. ∀j ‖dj‖2= 1

where xit is the tth time instant of xi and π∗ij denotes the optimal alignment path
between xi and dj . To resolve the Eq. 3.17, We propose a gradient descend method

Final version Printed on January 25, 2019

3. Sparse Coding and Dictionary Learning under Time Warp 55

Algorithm 9 Time Warp Invariant Gradient Descend Dictionary Learning (TWI-
GDDL)

Input: X = {xi}Ni=1 (xi ∈ Rqi), D = {dj}Kj=1 (dj ∈ Rpj), τ .
Output: A, ∆, D.

1: repeat
{Sparse coding step:}

2: for i = 1, ..., N do
3: (αi, {∆ij}Kj=1}) =twi-omp(xi, D, τ)
4: end for

{Dictionary update step:}
5: for k = 1, ..., K do
6: Set ωk = {i |αki 6= 0, i = 1, ..., N} (the set of samples involving dk)
7: Update dk using Eqs. 3.18 and 3.19.
8: end for
9: until Convergence (stopping rule)

based on the following update rule at iteration m, for the atom dk:

∀t′, 1 ≤ t′ ≤ pk : dm+1
kt
′ ← dmkt′ − η

m ∂J
∂dmkt′

(3.18)

dm+1
k ← dm+1

k

‖dm+1
k ‖2

where ηm is the learning rate at iteration m. With the partial derivative equation
∀t′, 1 ≤ t′ ≤ pk :

∂J
∂dkt′

=
∑
xi
i∈ωk

qi∑
t=1
−2αki(xit − αkidkt′ − αki

∑
(t,t′′)∈π∗ik

(t′′ 6=t′)

dkt′′ (3.19)

−
∑
j 6=k

αji
∑

(t,t′′)∈π∗ij

djt′′)

where ωk = {i |αki 6= 0, i = 1, ..., N} is the set of samples involving dk. The proof
of the above proposition is given in Appendix B. Algorithm 9 summarize the entire
sparse coding and twi-gddl dictionary learning procedure.

3.3.4 Dictionary learning for time series clustering

In this section we address the problem of time series clustering under sparse coding
and dictionary learning framework, where both input samples and atoms define

Final version Printed on January 25, 2019

56 3.3. Time warp invariant dictionary learning

time series that may involve varying delays and be of different lengths. Time series
clustering aims to find homogeneous groups of input data where the within group
similarity is minimized and the between group similarity maximized. Clustering of
unlabeled time series provides useful information on the underlying structure of the
groups.

Denote by X = {xi}Ni=1 as before, a set of N input time series, we formalize the
problem of time series clustering under the sparse coding and dictionary learning
setting as the estimation of: a) the partition C = {Cl}Kl=1 of X into K clusters
and b) the K sub-dictionaries {Dl}Kl=1, to minimize the inertia goodness criterion
and the error of reconstruction as:

min
C,D

,
K∑
l=1

∑
xi∈Cl

E(xi, Dl) (3.20)

where Dl = {dlj}Klj=1 the sub-dictionary of Cl is composed of Kl time series atoms
dlj ∈ Rpj . E(xi, Dl) the error of the reconstruction, under time warp, of xi based
on the sub dictionary Dl = {dlj}Klj=1 is formalized as:

E(xi, Dl) = min
αi
‖xi −Fi(Dl)αli‖2

2 (3.21)

s.t. ‖αli‖0 ≤ τ.

where Fi(Dl) = [fi(dl1), ..., fi(dlKl)] ∈ Rqi×Kl is the transformation of Dl to a new
dictionary composed of warped atoms fi(dlj) ∈ Rqi aligned to xi to deal with the
involved delays w.r.t xi. αli = (αl1i, ..., αlKli)

t is the sparse codes of xi under Dl and
τ the sparsity factor under the l0 norm.

To resolve the clustering problem defined in Eq. 3.20, we use a two steps iterative
refinement process, as in standard K-means clustering 1) cluster assignment 2)
dictionary update. In the cluster assignment step, Dl’s are assumed fixed and the
problem remains to resolve the sparse coding based on the warped dictionaries
Fi(Dl) defined in Eq. 3.21 which can be done based on twi-omp Algorithm 6. The
cluster assignments are then obtained by assigning each xi to the cluster Cl whose
sub dictionary Dl minimizes the reconstruction error.

Final version Printed on January 25, 2019

3. Sparse Coding and Dictionary Learning under Time Warp 57

In the dictionary update step, the cluster assignments Cl, the learned sparse
codes αli and the alignments ∆l

i are fixed and the problem in Eq. 3.20 defines
a dictionary learning problem to minimize the clustering inertia criterion and
represent sparsely samples within clusters:

min
D

K∑
l=1

∑
xi∈Cl

‖xi −
Kl∑
j=1

∆l
ij d

l
j α

l
ji‖2

2 (3.22)

s.t. ‖dlj‖2= 1.

This problem is then resolved as K single dictionary learning problems of the form:

min
Dl
Jl =

∑
xi∈Cl

‖xi −
Kl∑
j=1

∆l
ij d

l
j α

l
ji‖2

2 (3.23)

to learn each sub-dictionary Dl that minimizes the inertia of the cluster Cl using
twi-gddl update rules in Eqs. 3.18 and 3.19. Algorithm 10 summarized the entire
clustering routine.

In the initialization step, a clustering (e.g., spectral clustering, affinity prop-
agation) algorithm is performed on the costw Gram matrix S to determine an
initial partition {Cl}Kl=1 of X (line 1-3 of Algorithm 10). A sparse coding and a
dictionary learning are then performed on the samples of each cluster to initialize
the sub-dictionaries {Dl}Kl=1 (line 4-10). Based on the initial partition {Cl}Kl=1 and
sub-dictionaries {Dl}Kl=1, the cluster assignment step consists to perform a sparse
coding of each input sample based on each dictionary Dl, then to assign it the cluster
whose dictionary minimizes its reconstruction error (line 12-15). Subsequently, in
the dictionary update step, the atoms dlj of each dictionary Dl are updated.

3.4 Summary

In this chapter, the time warp invariant sparse coding and dictionary learning
problems are formalized and respective solutions are presented. First, we investigate
the problem of time warp invariant kSVD (twi-ksvd) where both input samples
and dictionary atoms may have different lengths while involving varying delays. For
the sparse coding problem, we propose a time warp invariant orthogonal matching
pursuit based on a new cosine maximization time warp operator. For the dictionary

Final version Printed on January 25, 2019

58 3.4. Summary

Algorithm 10 Time Warp Invariant Dictionary Learning Clustering (twi-
dlclust)

Input: X = {xi}Ni=1, the number of clusters K, τ .
Output: {C1, ..., CK}, {D1, ..., DK}
{Clustering Initialization:}

1: Define the affinity matrix S ∈ RN×N of general term:
2: sii′ = costw(xi,xi′)
3: Apply the affinity propagation (or spectral clustering) algorithm to cluster S

into K clusters: C1, ..., CK .
{Sub-dictionary initialization:}

4: for l = 1, ..., K do
5: Initialize Dl randomly from Cl.
6: repeat
7: Sparse code each xi ∈ Cl: [αli,∆l

i] = twi-omp(xi, Dl, τ).
8: Update Dl using twi-gddl update rules in Eqs. 3.18 and 3.19.
9: until Convergence (stopping rule)
10: end for
11: repeat

{Cluster assignment:}
12: Sparse code each xi ∈ X based on each Dl (l = 1, ..., K):
13: [αli,∆l

i] =twi-omp(xi, Dl, τ)
14: Assign xi to the cluster Cl whose Dl minimizes E(xi, Dl):
15: Cl = {xi / l = min

l
′
‖xi −

∑K
l
′

l
′=1 ∆l

′

ij d
l
′

j α
l
′

ji‖2
2}

{Dictionaries update:}
16: for l = 1, ..., K do
17: Update Dl using twi-gddl update rules in Eqs. 3.18 and 3.19.
18: end for
19: until Convergence (no changes in cluster assignments)

learning, thanks to a rotation transformation between each atom and its sibling
atoms, a singular value decomposition is used to jointly approximate the coefficients
and update the dictionary. In the second part, a solution for the dictionary learning
problem by time warp invariant gradient descent (twi-gddl) is studied. Finally,
under the framework of sparse coding and dictionary learning, two algorithms are
proposed for time series classification and clustering (twi-dlclust).

Final version Printed on January 25, 2019

Nothing ever becomes real ’til it is experienced.

— John Keats

4
Experimental Results

Contents
4.1 Data description . 59
4.2 twi-ksvd for time series classification 61
4.3 twi-dlclust for time series clustering 69
4.4 Summary . 77

This chapter provides the experimental studies on sparse coding and dictionary
learning for time series reconstruction, classification and clustering. The proposed
approaches are evaluated and compared to major alternative methods on several
public datasets, with a real application to deezer music data stream clustering.
The dataset description is provided in Section 4.1. The evaluation of the proposed
twi-ksvd for time series classification and reconstruction is presented in Section 4.2.
The proposed gddl and twi-dlclust for time series clustering are evaluated
in Section 4.3.

4.1 Data description

We have considered in Table 4.1 two groups of datasets. The first group is composed
of the top 14 datasets for which the classes, as well as the training and test sets are
given. The four first datasets are composed of public multivariate time series that

59

60 4.1. Data description

Figure 4.1: 6dmg time series behaviour. digit (top), lower (middle), upper (bottom)
classes.

have different lengths and involve varying delays. In particular, digits, lower,
and upper datasets give the description of 2-D air-handwritten motion gesture
of digits, upper and lower case letters performed on a Nintendo (R) Wii device
by several writers [Chen 12]. The char-traj dataset gives the 2-dimensional
handwritten character trajectory performed on a Wacom tablet by the same user
[A. Frank 10]. The ecg-mit dataset was obtained from the mit-bih Arrhythmia
[Goldberger 00] database where the heartbeats represented by qrs complexes. The
7 remaining datasets are composed of univariate time series of the same lengths that
involve significant delays [Keogh 06]. Furthermore, we consider two challenging
synthetic datasets bme and umd [Soheily-Khah 16]1, where time series share local
temporal features within the classes while being of distinctive global behaviour.
Figure 4.1, 4.2 and 4.3 illustrate the time series behaviour of some considered time
series. For instance, Figure 4.3 shows that time series may have variable lengths
and delays within a same class ("e"), they may have different global behaviours as
in the "up" class of UMD dataset, while sharing only local events ("small bell")
that may arise at different time stamps, or even have time series of different classes
"0" and "6" that may share similar global behaviours.

The last two datasets are provided by deezer2, the online music streaming
service that offers access to the music content of nearly 40 million licensed tracks.
deezer data, for which we have no ground truth, give the description of streaming
data of music albums, randomly selected among 105 French user streams and

1http://ama.liglab.fr/~douzal/tools.html
2https://www.deezer.com/fr/

Final version Printed on January 25, 2019

http://ama.liglab.fr/~douzal/tools.html
https://www.deezer.com/fr/

4. Experimental Results 61

0 50 100
Time

-1.5

-1

-0.5

0

0.5

1

1.5
Begin

0 50 100
Time

-1.5

-1

-0.5

0

0.5

1

1.5
Middle

0 50 100
Time

-1.5

-1

-0.5

0

0.5

1

1.5
End

Figure 4.2: bme time series behaviour: "Begin", "Middle" and "End" classes.

唀䴀䐀㨀 ᰠ甀瀀ᴠ 挀氀愀猀猀

Figure 4.3: Time series characteristics within and between classes

recorded from October 2016 to September 2017. They are composed of univariate
time series that give the daily total number of streams per album from its release
date to September 2017; this study consider only the streams of a duration ≥ 30
seconds. In particular, deezer15 and deezer30 are provided for the streams
analysis over the crucial early period after the album release date. They give
the description of the prefix time series on the early period covering a cumulative
number of 103 streams (in red in Figure 4.4b), where 103 is the median of the
total streams for the top 25% of the albums (Figure 4.4a). In addition, for the
pertinence of the analysis, the prefix time series of length < 7 days are extended
to 15 days in deezer15 and to 30 days in deezer30.

4.2 twi-ksvd for time series classification

In this section, we evaluate the relevance of the proposed twi-ksvd approach in
a classification context. For that, the sparse representation based classification
(src) schedule (Sections 2.2.4 and 3.3.2) is used. For a given dictionary learning

Final version Printed on January 25, 2019

62 4.2. twi-ksvd for time series classification

0 100 200 300 400 500 600
albums

0

0.5

1

1.5

2

to
ta

l n
u

m
b

er
 o

f
st

re
am

s

#105

total streams box plot

0

5000

10000

15000
Median
7
25%-75%
9%-91%

 stop at 25%

median: 1000

(a)

0 10 20 30 40 50 60 70 80
Day

0

10

20

30

40

50

60

70

80

N
b.

 s
tr

ea
m

s

(b)

Figure 4.4: deezer dataset (a) Albums versus total number of streams (top), box plot
of the values (bottom). (b) An album streaming time series, in red the prefix time series
covering a cumulative number of 103 streams.

method, src process consists first to learn one dictionary per class, then to form
one global dictionary by concatenating the dictionaries learned for all the classes.
The global dictionary is then used to sparse code test samples. Finally, based
on both the estimated sparse coefficients and the dictionaries learned for the
classes, the test samples are assigned to the class whose dictionary yields to the
minimum reconstruction error.

The proposed approach twi-ksvd is compared to five major dictionary learning
methods. The considered alternative dictionary learning methods deploy different
strategies to address varying lengths and delays issues in time series data. First, we
consider the Shift Invariant Sparse Coding (sisc) [Grosse 07], a convolved dictionary
learning method, that learns basis functions as well as the time offsets and shifts to
sparse code input time series. Then we consider kSVD [Aharon 06], mod as lasso-
dl1 [Engan 99] and Metaface Learning as lasso-dl2 [Yang 10] where time series
are zero padded to render them of the same length, while the delay aspect is simply
ignored. For lasso-dl1 and lasso-dl2, the sparse coding stage uses l1 instead of
l0 norm, whereas in the dictionary learning step, all the atoms are learned at once
by solving a pseudo-inverse problem in lasso-dl1 and updated one atom at a time
by using Lagrangian solver in lasso-dl2. Finally, we consider the kernel kSVD
(κ-kSVD) [Chen 15], where both varying length and delays are circumvent by using
a Gaussian dtw kernel. The description of all these methods are given in Chapter 2.

Final version Printed on January 25, 2019

4. Experimental Results 63

Table 4.1: Data description

Dataset Nb. class Train size Test size Length range Domain
digits 10 100 300 29-218 Sensor
lower 26 260 430 27-163 Sensor
upper 26 260 520 27-412 Sensor
char-traj 20 200 200 109-205 Sensor
ecg-mit 4 40 160 541 Medical
cbf 3 30 900 128 Synthetic
facefour 4 24 88 350 Image
lightning2 2 60 61 637 Sensor
lightning7 7 70 73 319 Sensor
cc 6 300 300 60 Synthetic
trace 4 100 100 275 Sensor
ecg200 2 100 100 96 Medical
umd 3 36 144 150 Synthetic
bme 3 30 150 128 Synthetic
deezer15 - - 281 15-301 Music
deezer30 - - 278 30-301 Music

Table 4.2: Table of parameters - classification methods

Para. Range Val. Description
lasso-dl1 λ [0.1, 1] lag of 0.1 Regularization
lasso-dl2 λ [0.1, 1] lag of 0.1 Regularization

sisc β [0.05, 5] lag of 0.05 Regularization
p {50, 70, 90} patch size
q {20, 40, 60} atom size

twi-ksvd sc [0, 100] lag of 10 Sakoe-Chiba band

Validation protocol

For each method, the related parameters Table 4.2 are learned by a grid search
on a validation set for handwritten characters of 6dmg and char-traj datasets.
For the small datasets bme and umd, a 1-fold cross-validation is deployed. Our
method does not require the setting of many parameters and the only thing that
we need to fix is the warping band (sc). The best configuration of parameters
is then used to estimate the accuracy on the test set. This process is reiterated
10-times and the obtained average error-rates are provided in Table 4.3. Note
that, we have developed the algorithms of kSVD and lasso-dl1 and use the codes

Final version Printed on January 25, 2019

64 4.2. twi-ksvd for time series classification

Table 4.3: Classification error rates

lasso-dl1 lasso-dl2 ksvd sisc κ-ksvd twi-ksvd
digit 0.63 0.31 0.12 0.75 0.02 0.01
lower 0.64 0.43 0.29 0.79 0.02 0.07
upper 0.69 0.26 0.26 0.86 0.06 0.09
char-traj 0.34 0.05 0.02 0.78 0.09 0.03
cbf 0.29 0.13 0.20 0.75 0.00 0.01
facefour 0.39 0.14 0.35 0.75 0.11 0.11
lightning2 0.43 0.26 0.38 0.45 0.23 0.16
lightning7 0.50 0.39 0.47 0.71 0.21 0.21
cc 0.67 0.50 0.52 0.54 0.01 0.04
trace 0.33 0.23 0.27 0.30 0.01 0.00
ecg200 0.62 0.10 0.15 0.34 0.18 0.18
umd 0.77 0.42 0.57 0.45 0.04 0.01
bme 0.80 0.24 0.59 0.42 0.03 0.00

Nb. Best 0 1 1 0 6 7
Avg. Rank 5.38 3.04 3.58 5.46 1.88 1.65

provided for lasso-dl2
3, sisc4 and κ-kSVD5. For all the methods, a dictionary

of size K = 10 × the number of classes is initialized randomly from the training
set expect for sisc that is initialized in the provided code as Haar basis functions.
Table 4.3 gives, for (τ = 2) sparsity level, the error-rates obtained by using each
dictionary learning method to classify the time series datasets. The best result
is indicated in bold and the italic values reference the performances that are not
significantly different from the best value (t-test at 5% risk). In addition, for
each dataset, the performances obtained by the methods are first ranked, then
the average ranking of each method is reported at the end of the Table (Avg.
Rank). The best ranking (i.e., the lowest one) is indicated in bold, and the italic
values show the average ranking non significantly different from the best (Wilcoxon
matched-pairs ranks test at 5% risk).

3 https://goo.gl/B5sKMc
4https://goo.gl/HirU4P
5https://goo.gl/j6nrzz

Final version Printed on January 25, 2019

https://goo.gl/B5sKMc
https://goo.gl/HirU4P
https://goo.gl/j6nrzz

4. Experimental Results 65

ERROR RATES

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 TWI-kSVD

 Kernel kSVD

ERROR RATES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 TWI-kSVD

 kSVD

Figure 4.5: Error rates comparison. twi-ksvd versus kernel-ksvd (Left) and twi-ksvd
versus kSVD (Right).

Results and discussion

From Table 4.3, we can see that the good performances are obtained by twi-ksvd
followed closely by κ-kSVD. In particular, the best results are reached by twi-
ksvd with a total number of best values (Nb. Best) of 7 and an average ranking
(Avg.Rank) of 1.65. Reasonable results are obtained for lasso-dl2 and kSVD, with
good performances for char-traj and ecg200 datasets and slightly better results
for lasso-dl2 than kSVD for most of the datasets. The weak results are obtained
for lasso-dl1 and sisc. The error rates comparison plots also provided in Figure
4.5 that compares two-by-two the error rates of the alternative methods κ-kSVD and
kSVD to the proposed twi-ksvd. From the right sub-figure, we can see that the twi-
ksvd suppresses the kSVD in almost all datasets except two. The left sub-figure, on
the other hand, shows that κ-kSVD leads to very close results to our method except
for six datasets where the proposed method brings better results than κ-kSVD.

We first must note that the methods lasso-dl1, lasso-dl2 and kSVD that use
zero-padding, to circumvent the problem of variable lengths and delays for the first
group of datasets (digit, lower, upper, char-traj), lead to lower performances
than twi-ksvd and κ-kSVD that use appropriate approaches to deal with time series
under time warp. For sisc, the problem of time warp is addressed by segmenting
each input time series into small parts of the same length, then a dictionary is
learned to sparse represent the small parts. Although the learned dictionary shows a
good ability to reconstruct time series of each class, it fails under src classification.
The main reason is due to the learned dictionary, that is composed of basis atoms

Final version Printed on January 25, 2019

66 4.2. twi-ksvd for time series classification

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

d
1
 (0.882)

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

d
2
 (0.361)

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

d
1
 (3.702)

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

d
2
 (0.453)

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

d
1
 (3.163)

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

d
2
 (0.576)

Figure 4.6: twi-ksvd: The first column gives the input time series (in black) and their
reconstruction (in red). The second and third columns show the two first atoms used for
the reconstruction.

that are not discriminative nor specific to each class and instead are commonly
shared by the dictionaries of all the classes. Thus, sisc method seems appropriate
to reconstruct time series under time warp not for their classification.

For κ-kSVD, the variable lengths and delays are addressed by using a time
warp kernel. It leads, similarly to twi-ksvd, to good classification results. As a
kernel-based machine, input samples are mapped into a higher dimensional space
(Hilbert feature space), where the dictionary is learned and samples sparse coded
as a non linear combination of the basis atoms. Sparse coding based on non linear
combination functions allows a more precise representation than when relying on
linear combination functions, as used by the other studied methods. However, as
the sparse codes and the learned dictionary are processed into the feature space,
there is no explicit description of the sparse representations nor of the learned
atoms into the input space, which constitutes a major limitation for κ-kSVD. κ-
kSVD seems to be a powerful and efficient method for time series classification
under time warp, but not as a dictionary learning method with a main purpose
to extract the basic primitives that discriminate the classes, to be used for any
further learning tasks into the input space.

Final version Printed on January 25, 2019

4. Experimental Results 67

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

0.4
 = 2

LASSO-DL
1

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

0.4
 = 2

LASSO-DL
2

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

0.4
 = 2 kSVD

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

0.4
 = 2 SISC

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

0.4
 = 10

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

0.4
 = 10

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

0.4
 = 10

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

0.4
 = 10

Figure 4.7: The reconstruction of the letter "K" at (τ = 2) and (τ = 10).

Reconstruction, convergence and τ effect

Let us underline that twi-ksvd relies on a linear combination of the basis atoms
for data reconstruction and beside having the best classification performances on
almost all datasets, it is also a powerful reconstruction method. For instance, Figure
4.6 shows for several time series, their reconstruction (in red) based on the two first
learned atoms. In particular, we can see that the first learned atom reveals the
latent character that characterizes the class, whereas the second atom contributes
to reconstruct the residual to best fit the input sample. In addition, we can see
that when twi-ksvd requires only two atoms (τ = 2) to reconstruct precisely the
letter "K" (Figure 4.6), the alternative methods need 10 atoms (τ = 10) to reach
a reasonable reconstruction (Figure 4.7). Note that, there is no visualization for
κ-kSVD as there is no explicit descriptions into the input space.

We are also evaluating the convergence behaviour of the proposed algorithm
on a few datasets. The goal of this experiment is to show how the objective
function value is decreasing at each iteration and if it is become steady. As the
objective function is based on the reconstruction of the samples, we compute the

average reconstruction error
Nc∑
i=1
‖xi − x̂i‖2

2 where Nc is the number of samples in

each class and x̂ is the reconstructed instance of x, at each epoch. We show in
Figure 4.8 the convergence curves of the proposed twi-ksvd algorithm on four
data sets (cbf, facefour, cc, trace) as examples. From this figure, it can be

Final version Printed on January 25, 2019

68 4.2. twi-ksvd for time series classification

0 2 4 6 8 10

Epoch

0

50

100

150

200

250

A
ve

ra
ge

 r
ec

on
st

ru
ct

io
n

er
ro

r

Face Four

class 1
class 2
class 3
class 4

0 2 4 6 8 10

Epoch

0

2

4

6

8

10

A
ve

ra
ge

 r
ec

on
st

ru
ct

io
n

er
ro

r

CBF

class 1
class 2
class 3

0 2 4 6 8 10

Epoch

0

1

2

3

4

5

6

7

8

A
ve

ra
ge

 r
ec

on
st

ru
ct

io
n

er
ro

r

Synthetic Control (CC)

class 1
class 2
class 3
class 4
class 5
class 6

0 2 4 6 8 10

Epoch

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
ve

ra
ge

 r
ec

on
st

ru
ct

io
n

er
ro

r
Trace

class 1
class 2
class 3
class 4

Figure 4.8: the convergence curves of the proposed twi-ksvd learning algorithm.

concluded that the twi-ksvd learning algorithm, for all the four dataset and each
class of the data, can converge within less than ten epochs. A similar behaviour
is observed for the rest of the datasets.

In the final experiment, the effect of the sparsity value (τ) on the input
reconstruction is shown. Since the proposed method is an extension of the standard
kSVD, this method is used for a comparison in the experiment. We evaluate, in this
experiment, how higher sparsity level yields to better reconstruction or probably
better classification accuracy. We use the synthetic control dataset (cc) as an
example. Note that, this time the average reconstruction error is calculated on
the Test dataset. Figure 4.9 (Left) shows for several sparsity levels the average
reconstruction error for both kSVD and twi-ksvd. It can be seen that the proposed
method has very good reconstruction ability even with high sparsity level. An
example time series and the related reconstructed outputs based on the both
algorithms are provided in Figure 4.9 (Right). It is clear that, at the sparsity level

Final version Printed on January 25, 2019

4. Experimental Results 69

1 2 5 8 10

Sparsity level ()

0

5

10

15

20

25

30

A
ve

ra
ge

 r
ec

on
st

ru
ct

io
n

er
ro

r

Synthetic Control (CC)

kSVD
TWI-kSVD

0 10 20 30 40 50 60

Time

Input time series
Reconstructed by kSVD
Reconstructed by TWI-kSVD

Figure 4.9: Left: The average reconstruction error versus the sparsity level (τ), Right:
An example time series from cc dataset and its reconstruction (τ = 10).

(τ = 10), our method reach to nearly perfect reconstruction while kSVD still cannot
produce a reasonable output. The very poor reconstruction performance of kSVD
with (τ = 2) clarifies also its weak classification performances in Table 4.3.

We also show the reconstruction evolution of a sample letter (letter "a") from
lower dataset in Figure 4.10. It shows for different learning iterations the
reconstructed time series. It can be seen that after 9 iterations a reasonable
reconstruction is achieved in this case.

4.3 twi-dlclust for time series clustering

In the following section, we study the proposed twi-dlclust clustering method
ability to identify the underlying structure in different classes of time series even
with varying lengths. We conduct several experiments to evaluate the efficiency of
the proposed clustering framework in a comparison to the major alternative methods
namely, the subspace sparse clustering (ssc) (Section 2.2.5) and the dictionary
learning with structured incoherence (dlsi) (Section 2.3.4). For ssc, two variants
ssc-bp [Elhamifar 13] and ssc-omp [You 16] are studied for a sparse coding under
l0 and l1 norms, where an orthogonal matching pursuit and a basis pursuit methods
are used respectively. For dlsi, both sample-based (dlsi-s) and atom-based (dlsi-
a) affinity matrix initialization proposed in [Ramirez 10] are studied. The Matlab
codes of these methods are available online 6.

6ssc-omp: https://goo.gl/8QrfBm, ssc-bp: https://goo.gl/bck6tS and dlsi: https:
//goo.gl/APbSwA.

Final version Printed on January 25, 2019

https://goo.gl/8QrfBm
https://goo.gl/bck6tS
https://goo.gl/APbSwA
https://goo.gl/APbSwA

70 4.3. twi-dlclust for time series clustering

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4
itt = 1

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4
itt = 2

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4
itt = 3

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4
itt = 4

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4
itt = 5

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4
itt = 6

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4
itt = 7

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4
itt = 8

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4
itt = 9

Figure 4.10: The reconstruction of the letter "a" at different learning iterations of the
twi-ksvd.

Table 4.4: Parameter Line/Grid values

Method Line / Grid values Desc.
ssc-omp τ ∈ {1, 2, 3, 4, 5} l0 sparsity threshold
ssc-bp λ ∈ {0.001, 0.01}, lag of 0.01 l1 sparsity regularization
dlsi λ ∈ {0.001, 0.01}, lag of 0.01 l1 sparsity regularization

η ∈ {0, 0.1, 0.01} dictionary incoherence regularization
Kl = 5, ∀ l ∈ {1, ..., K} Sub-dictionary Dl size

twi-dlclust sc ∈ [0, 100], lag of 10 Sakoe-Chiba band width
τ ∈ {1, 2, 3, 4, 5} l0 sparsity threshold
Kl = 5, ∀ l ∈ {1, ..., K} Sub-dictionary Dl size

Validation protocol

For the top 14 datasets in Table 4.1, for which the ground truth partition is known,
the proposed method twi-dlclust as well as the alternative clustering approaches
are applied to cluster the data. For alternative methods, time series of different
lengths are a priori zero padded. The adjusted Rand index [Rand 71] is then used to
evaluate the goodness of the obtained clusters. The Rand index lies between 0 and 1,
it measures the agreement between the obtained clusters and the ground truth ones.

Final version Printed on January 25, 2019

4. Experimental Results 71

Table 4.5: Adjusted Rand index

Dataset ssc-omp (τ) ssc-bp dlsi-s dlsi-a twi-dlclust (τ)
digits 0.839 (2) 0.856 0.854 0.841 0.940 (1)
lower 0.935 (3) 0.943 0.937 0.934 0.970 (1)
upper 0.940 (2) 0.942 0.940 0.938 0.942 (1)

char-traj 0.947 (5) 0.977 0.978 0.971 0.965 (3)
ecg-mit 0.327 (2) 0.789 0.772 0.773 0.792 (2)

cbf 0.558 (2) 0.668 0.599 0.601 0.770 (2)
facefour 0.810 (5) 0.722 0.767 0.769 0.776 (3)

lightning2 0.559 (2) 0.559 0.559 0.519 0.559 (2)
lightning7 0.793 (2) 0.808 0.724 0.747 0.814 (3)

cc 0.736 (5) 0.630 0.813 0.791 0.910 (1)
trace 0.680 (5) 0.752 0.755 0.753 0.805 (1)
ecg200 0.547 (4) 0.631 0.689 0.664 0.653 (3)
Nb. Best 2 2 3 0 9
Avg. Rank 4.00 2.83 2.92 3.58 1.67

The higher the index, the better the agreement is. In particular, the maximum
value of Rand index, 1, is reached when the obtained partitions and the ground
truth ones are identical. For deezer datasets, the ground truth being unknown, a
dtw-based within-class Wr ratio 7 is used. The lower the within-class ratio Wr, the
better the clustering is. Wr is as well used to select the optimal number of clusters.
Finally, the set of parameters related to each studied method, indicated in Table
4.4, are learned by line/grid search on the validation set, the best parameters are
then used to perform the clustering on the evaluation set. The process is iterated
over 10 runs and the averaged performances are reported in Tables 4.5 and 4.6.

Results and discussion

Table 4.5 gives for the datasets the obtained adjusted Rand index values. The
best values are indicated in bold, the non significantly different ones from the
best (t-test at 5% risk) are in italic and the remaining results are significantly
different from the bold values. For the two l0 sparse coding methods ssc-omp and
twi-dlclust, the learned sparsity coefficient τ is given between brackets. The

7Wr =
∑K

l=1

∑
x,y∈Cl

dtw(x,y)∑
x,y∈X

dtw(x,y)

Final version Printed on January 25, 2019

72 4.3. twi-dlclust for time series clustering

two last rows give, over all the datasets, the number of times a method reaches
the best value as well as its average ranking.

CD

5 4 3 2 1

1.6667 TWI-DLCLUST

2.8333 SSC-BP

2.9167 DLSI-S

3.5833DLSI-A

4SSC-OMP

Figure 4.11: Comparison of the clustering methods against each other with the Nemenyi
test.

From Table 4.5, we can see that the proposed twi-dlclust reaches the best
clustering results with 9 times (9 out of 12) as the best values, 2 times as significantly
non different from the best and obtained the lowest average ranking. The second best
results are obtained by ssc-bp and dlsi-s, followed by ssc-omp. Figure 4.11 shows
the statistically significant differences in the average rankings of the methods from
Table 4.5 in the critical difference diagram for Nemenyi test [Nemenyi 62]. Methods
that are not significantly different are connected. We can see that twi-dlclust
has the best performances with an average rank of 1.67 among the alternatives.

Although the l1 sparse coding models (here ssc-bp and dlsi-s) are known to
be more efficient than the l0 models, twi-dlclust even involving an l0 sparse
coding leads to the best results. While twi-dlclust and dlsi-s involve smaller
size sub-dictionaries (Kl = 5), ssc-omp and ssc-bp are based on larger dictionary
of the size of the evaluation set. Finally, by comparing the two l0 sparse coding
methods ssc-omp and twi-dlclust, we can see that twi-dlclust leads for
all datasets to sparser solutions with a lower or equal sparsity coefficient τ than
ssc-omp. Finally, note that ssc-omp and ssc-bp lead to the lowest performances
with a slightly better results for ssc-bp as using an l1 norm sparse coding. These
results may be partly explained by the fact that both ssc-omp and ssc-bp are
purely sparse coding methods based on one global dictionary fixed beforehand,
unlike dlsi and twi-dlclust that learn one sub-dictionary per cluster.

For deezer data we have performed each clustering method for several number
of clusters and the within-class ratio of the obtained partitions reported in Table

Final version Printed on January 25, 2019

4. Experimental Results 73

Table 4.6: Within-class ratio Wr per number of clusters K.

Dataset K ssc-omp (τ = 5) ssc-bp dlsi-s twi-dlclust (τ = 2)
deezer15 2 0.266 0.310 0.245 0.262

3 0.201 0.253 0.177 0.145
4 0.212 0.146 0.114 0.112
5 0.188 0.118 0.112 0.096
6 0.133 0.106 0.074 0.069

deezer30 2 0.339 0.348 0.322 0.303
3 0.226 0.292 0.273 0.173
4 0.175 0.241 0.133 0.127
5 0.154 0.119 0.110 0.096
6 0.100 0.080 0.085 0.085

Nb. Best 0 1 1 8
Avg. Rank 3.40 3.30 2.05 1.25

4.6. For simplicity, the dlsi approach is conducted only with dlsi-s variant,
dlsi-a being highly equivalent in Table 4.5. We can see easily that, for both
datasets and almost all the number of clusters, the best values are reached by
twi-dlclust, followed by the l1 sparse code approaches ssc-bp and dlsi-s, then
by ssc-omp. In the second study, we analyze more closely the obtained clusters.
For instance, based on Figure 4.12 that displays the progression of the within-class
ratio w.r.t the number of clusters, a partitioning into four clusters is performed on
deezer30. Accordingly, Figure 4.13, shows for each of the four clusters (each row),
the profile of the medoids (in the first column), the closest albums to the medoid
in the second column and at the third column, the atom that most contributes
to sparse represent the cluster’s samples.

The analysis of some characteristics of the albums within the clusters, allows us
to bring additional explanations about the revealed clusters (Figure 4.13). These
characteristics are whether the album is a "Full" (composed of several tracks) or
a "Single" (just one track), a "Deluxe" edition (an old track which is updated
with additional content) or not and the artist popularity before and after the
album release date.

The first cluster is composed of 71% of "Full" albums and 15% of "Deluxe"
editions. It corresponds to album releases with flat stream profiles. Such behaviour
usually occurs when the content has already been published ("Deluxe" versions) or

Final version Printed on January 25, 2019

74 4.3. twi-dlclust for time series clustering

1 2 3 4 5 6
Nb. of clusters

0.05

0.1

0.15

0.2

0.25

0.3

0.35

W
ith

in
-c

la
ss

 r
at

io

DEEZER15 | DSLI-S
DEEZER15 | TWI-DLCLUST
DEEZER30 | DSLI-S
DEEZER30 | TWI-DLCLUST

Figure 4.12: Number of clusters K vs. Within-class ratio Wr.

for not well-known artists, as assessed by the cluster medoid "Empereur du Sale"
album of the rapper "Lorenzo" that released several singles a few weeks before the
album release date and although not highly popular has still a steady fan base.

In the second cluster, 75% of the albums are "Single". The fast decrease stream
profile just after the release date is not surprising for short albums (composed of
1-4 tracks). Indeed, a "Full" album is generally released shortly after the "Single"
release, inducing a decrease of streams for the "Single" few weeks after its release.
The cluster medoid "Ethologie" is produced by the rapper "Dehmo" that has not
released albums since a long period, that may explain the burst of streams for
the new content just after its release.

The third cluster is composed of 69% of "Full" albums mainly produced by artists
that became popular after their album release. This is reflected by the stream
profiles that initially evolve at low level then increase significantly several days/weeks
after the album release. This is confirmed by the medoid album "Be Mine" a single
produced by "Ofenbach" that was in fact revealed to the public with that album.

Finally, the cluster 4 comprises a majority of "Single" albums (84%) produced
by popular artists with a huge fan base and immediate success. The medoid album
"Divide" produced by "Ed Sheeran" was one of the biggest hits of 2017. Although
the stream profiles of the clusters 4 and 2 seem similar, albums of the cluster 4
concern more established artists in their second/third albums while the cluster 2
is more related to emerging works and first successes.

Final version Printed on January 25, 2019

4. Experimental Results 75

0 50 100 150
Day

0

50

100

N
b.

 s
tr

ea
m

s

Empereur du sale | Lorenzo

0 100 200 300
Day

0

50

100

N
b.

 s
tr

ea
m

s

Freestyle du sale | Lorenzo

0 50 100
0

0.2

0.4

0.6

0 50 100
Day

0

50

100

N
b.

 s
tr

ea
m

s

Ethologie | Dehmo

0 100 200 300
Day

0

50

100

N
b.

 s
tr

ea
m

s

Shikantaza | Chinese Man

0 10 20 30
0

0.2

0.4

0.6

0 100 200 300 400
Day

0

50

100

150

200

N
b.

 s
tr

ea
m

s

Be Mine | Ofenbach

0 100 200 300
Day

0

100

200

300

N
b.

 s
tr

ea
m

s

You Don't Know Me | Jax Jones

0 20 40
0

0.2

0.4

0.6

0 100 200 300
Day

0

200

400

600

800

N
b.

 s
tr

ea
m

s

÷ (Deluxe) | Ed Sheeran

0 100 200 300
Day

0

50

100

150

N
b.

 s
tr

ea
m

s

Le monde à l'envers | Zaho

0 10 20 30
0

0.2

0.4

0.6

C
4

C
3

C
2

C
1

Figure 4.13: Four clusters partitioning of deezer30: Medoid profile (left column),
Nearest album to the medoid (middle column), the most contributing atom to the cluster
(right column).

The aim of the last study is to analyze the pertinence of the learned sub-
dictionaries {D1, ..., DK} for both dlsi and twi-dlclust; the dictionary for the
other methods ssc-omp and ssc-bp is not learned but fixed beforehand. For
that, for each method dlsi and twi-dlclust, the atoms of the learned sub-
dictionaries are first gathered together to built one global dictionary ∪Kl=1Dl. Let
us denote DG1 and DG2 the global dictionary obtained respectively for dlsi and
twi-dlclust. Subsequently, the samples in X are sparse coded, by using first an
l1 norm regularization based on DG1, then a twi-omp based on DG2.

For instance, for deezer30, digit and cc, Figure 4.14 shows the learned sparse
codes based on DG1 (on left) and on DG2 (on right), organized for interpretation
purpose per clusters and per sub-dictionaries. It emerges from Figure 4.14, that
sparse codes based on DG2 highlight clearly a block structure that reflects the

Final version Printed on January 25, 2019

76 4.3. twi-dlclust for time series clustering

D
1

D
2

D
3

D
4

C
1

C
2

C
3

C
4

50 100 150 200 250

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
1

D
2

D
3

D
4

C
1

C
2

C
3

C
4

50 100 150 200 250

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

C
1

C
2

C
3

C
4
C
5
C
6
C
7
C
8

C
9

C
10

20 40 60 80 100

1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

49
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

C
1

C
2

C
3

C
4

C
5

C
6

C
7
C
8

C
9

C
10

20 40 60 80 100

1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

49
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
1

D
2

D
3

D
4

D
5

D
6

C
1

C
2

C
3
C
4
C
5

C
6

50 100 150 200 250 300

1

4

7

10

13

16

19

22

25

28

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
1

D
2

D
3

D
4

D
5

D
6

C
1

C
2

C
3

C
4

C
5

C
6

50 100 150 200 250 300

1

4

7

10

13

16

19

22

25

28

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.14: Sparse representations based on: DG1 learned by dlsi (left) and DG2
learned by twi-dlclust (right). From top top bottom: deezer30, digit and cc
datasets.

discriminative performance of the sub-dictionaries composing DG2; namely learned
by twi-dlclust. Indeed, sparse codes show that sub-dictionary Dl are mainly

Final version Printed on January 25, 2019

4. Experimental Results 77

involved to reconstruct samples of Cl. On the other hand, the structure of the
sparse codes based on DG1 (learned by dlsi) seems much less sparser and less
discriminative. In particular, for deezer30 we can note that atoms d1

3, d
3
15, d

4
17

and d4
18 reveal common primitives that are involved to reconstruct samples of

all the clusters. Same structure can be seen in the learned sparse codes on DG1

(learned by dlsi) for the other datasets.

4.4 Summary

The performance of the proposed methods on several real and synthetic datasets were
investigated. The first experiment was an application of twi-ksvd for time series
classification where the results are compared to the popular supervised dictionary
learning methods. The conducted experiments and obtained results show that
the proposed method lead to promising results compared to the state of the art
dictionary learning methods. One can note that kernel-kSVD is a competitive
method, in terms of classification accuracy. The proposed method has a major
advantage over this method which is the ability to visualize the learned atoms. The
dictionary for the kernel-kSVD is learned in the kernel space where there is no
explicit information of the learned atom into the input space.

In the second experiment, we studied the performance of the suggested twi-
dlclust clustering approach. We discovered that the proposed dictionary learning
for clustering method is capable of learning the discriminative information of the
clusters and outperformed the state of the art methods. We also evaluated the
performance of the proposed clustering method on deezer music streams data where
the ground truth partitions are unknown. We validated the clustering results by a
depth looking of the cluster members properties. The qualitative analysis is also done
and interesting results obtained that assesses the pertinence of the proposed method.

Final version Printed on January 25, 2019

78

Final version Printed on January 25, 2019

If you want to make God laugh, tell him about your
plans.

— Woody Allen

5
Conclusions and Future Works

5.1 Conclusion

The first part of the thesis presents a sparse representation framework for time
series where the inputs and the dictionary atoms may have different lengths and
including varying delays. The initial study was to investigate the performance of
the existing sparse coding and dictionary learning methods on time series data. The
experiments showed that the popular existing methods are unable to produce the
same good reconstruction or classification results on temporal data, as for the static
data, in the presence of delay. The main reason is that the objective function of
such methods defined in the Euclidean space which is sensitive to the time warped.

Based on the above observation, a time warped invariant sparse coding and a
dictionary learning problem is formalized. For the sparse coding of time series, a
variant of the orthogonal matching pursuit (twi-omp), based on a new costw
similarity measure, is proposed. For two time series, costw finds the alignment
between the two that maximize their cosine. A dynamic programming strategy
is developed to find the costw similarity and the related alignment. In the
next step, for updating the dictionary atoms. we proposed two solutions. One
is inspired by the kSVD algorithm where each atom is updated sequentially by
applying an svd on the projected residuals vectors and the other one is a gradient
descend minimization strategy.

79

80 5.2. Future works

A time series classification framework is investigated based on the purposed
dictionary learning strategy. The classification problem is formulated similar to
the ones of src [Wright 09] and Meta-face learning [Yang 10] where class-specific
sub dictionaries are learned and then used to encode the arriving test samples.
The experiments showed that the method is outperformed the standard methods
where the inputs are zero-padded and the delay aspect is ignored. It is also
shown that with a very small dictionary size and at a low-level of sparsity, it
can provide reasonable reconstruction.

In the second part of the thesis, an extension of the proposed dictionary learning
algorithm for time series clustering is formalized. The related objective function
minimizes the intra-cluster and maximizes the inter-cluster variations by learning
the sub cluster dictionaries. The clustering results are compared to the other
state-of-the-art methods that we discussed in Chapter 2 and the proposed method
offers the best performance under a more rigid condition. While subspace spectral
clustering methods require the whole training set for dictionary, the proposed
method only uses a small size dictionary per cluster.

Let us back to the big picture, we were looking for an unsupervised feature
learning method for time series representation. In this thesis, various dictionary
learning methods are investigated and an efficient learning strategies for time
series data are suggested. In the following section we express the possible research
directions that we will focus on in the future works.

5.2 Future works

Unsupervised feature learning is an active research domain in machine learning
community in the past years. Artificial Neural Network (ann), dictionary learning
and recently deep learning have been widely studied and become popular due
to their impressive results in image classification, speech recognition and natural
language processing among other emerging applications.

In this thesis, we focus on the dictionary learning methods as an unsupervised
feature learning technique for time series representation under time warp. We also
discussed the limitations of the standard algorithms for time series data. Although,
prior investigations have been done for learning dictionaries for time series such
as shift invariant dictionary learning, the proposed methods shown promising and

Final version Printed on January 25, 2019

5. Conclusions and Future Works 81

competitive results. In the future studies, first we intend to generalize the proposed
method for handling multivariate time series. The multivariate data are vectorized
in the experiments which is not the ideal case. Similar to [Soheily-Khah 16], a
weighting vector may be learned for each atom to involve the most pertinent
regions for a given task (e.g. reconstruction). Secondly, we target to model the
sub-dictionaries relationships as coherence and discrimination. Above all, we are
looking for more challenging datasets and we are searching for different speed
up techniques and better implementations of the proposed methods. The next
objective is to explore another unsupervised learning model, particularly deep
learning for time series analysis.

Final version Printed on January 25, 2019

82

Final version Printed on January 25, 2019

Appendices

83

A
Rotation for n-dimensional vectors

In Euclidean space to perform a rotation, a rotation matrix is needed. For example
Rθ is a 2D counter-clockwise rotation matrix around point (0, 0) with angle θ.

Rθ =
[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]

To perform the rotation using the rotation matrix Rθ on a column vector x ∈ R2,
we need a matrix multiplication as Rθ x. In three dimensional space, rotations are
more complex since there are many possible rotations. Rotations can perform about
one of the axis of a coordinate system using right-hand or left-hand rule whereas
for high dimensional vector we need to rotate about an n− 2 dimensional subspace.

Denote by x and y two vectors in Rn, we want to find the rotation matrix
that aligns vector x to vector y. One way to do this is to find two orthonormal
vectors in the plane generated by the two vectors using Gramm-Schmidt procedure,
and then extend this 2-dimensional basis to an orthonormal basis of Rn. Then
with respect to this basis, consider the rotation by angle θ in the plan generated
by the first two vectors, and the identity on the space generated by the rest of
the orthonormal basis. Let

u = x/||x||
v = y − (u′y)u, v = v/||v||

85

86 A. Rotation for n-dimensional vectors

!

"

$%,'

('→*

!

"

('→*

#+

i. ii.

$%,'

Figure A.1: A valid rotation to preserve the angle for three dimensional vectors.

where u is unit vector into the direction of x and v is unit vector into the direction
of y. Then uuT + vvT is a projection onto the space generated by x and y
and I − uuT − vvT is the projection onto the n − 2 dimensional complemented
subspace. Thus, the whole rotation becomes

Rx→y = I − uuT − vvT + [u v]Rθ[u v]T

where Rθ is the same as before and cos(θ) = xTy/(||x||.||y||).
Now, assume we have three vectors x, y and z and the angle between x and y

(θx,y) is known. To rotate x such that the angle between xr (the rotated vector)
and z becomes θx,y, we need to first find the rotation matrix from y to z (denote
as Ry→z in Figure A.1) and then apply the same rotation matrix on x to obtain xr.
Figure A.1 illustrates these steps for a three dimensional vectorial space.

Zhelezov [Zhelezov 17] has also proposed a method to generate an n-dimensional
rotation matrix, which rotates a given n-dimensional vector x to the direction
of another vector y with the same dimension. Their algorithm generates two
rotation matrices Mx and My, which rotates two given vectors x and y to the
direction of an arbitrarily axis x1. The whole rotation matrix M is then obtained
as the multiplication of matrix Mx and the inverse of matrix My. Throughout our
experiments, we find the first method more robust and accurate.

Final version Printed on January 25, 2019

B
Proof of Solution 3.19

We present here the proof for the proposed solution 3.19. Let us recall the dictionary
learning optimization problem as:

J (D) = min
D

N∑
i=1

qi∑
t=1

(xit −
K∑
j=1

αji
∑

(t,t′)∈π∗ij

djt′)
2 (B.1)

subject to ∀j ‖dj‖2= 1

where xi, i = 1, .., N, is an input time series xi = (xi1, ..., xit, ..., xiqi)
T ∈ Rqi and

dj, j = 1, ..., K, is the dictionary time series atom dj = (dj1, ..., djt′ , ..., djpj)
T ∈ Rpj .

We assume the sparse coefficients A = [α1, ...,αN] with αi = (α1i, ..., αKi)T and the
optimal alignments π∗ij, i = 1, ..., N ; j = 1, ..., K are known (learned by twi-omp).

To find the updating rule for the atom dk, we take the partial derivative of the
above function with respect to the time stamp t′ of dk. For that, the reconstruction
sum is decomposed and the associated terms to dk and dkt′ are extracted:

J (D) =

= min
D

N∑
i=1

qi∑
t=1

(xit − αki
∑

(t,t′′)∈π∗ik

dkt′′ −
K∑
j 6=k

αji
∑

(t,t′′)∈π∗ij

djt′′)
2 (B.2)

= min
D

N∑
i=1

qi∑
t=1

(xit − αkidkt′ − αki
∑

(t,t′′)∈π∗ik
(t′′ 6=t′)

dkt′′ −
K∑
j 6=k

αji
∑

(t,t′′)∈π∗ij

djt′′)
2 (B.3)

87

88 B. Proof of Solution 3.19

By taking the partial derivative of Eq. B.3 with respect to dkt′ , we get:

∂J
∂dkt′

=
N∑
i=1

qi∑
t=1
−2αki(xit − αkidkt′ − αki

∑
(t,t′′)∈π∗ik

(t′′ 6=t′)

dkt′′ (B.4)

−
∑
j 6=k

αji
∑

(t,t′′)∈π∗ij

djt′′)

Note that since αki = 0, ∀i /∈ ωk with ωk be the set of sample indices involving
atom dk, we can utilize ∑|ωk|i=1 instead of ∑N

i=1.�

Final version Printed on January 25, 2019

The mind is everything. What you think you become.

— Buddha

Bibliography

[A. Frank 10] A. Asuncion A. Frank. UCI machine learning repository.
http://archive.ics.uci.edu/ml/, 2010. [Online access].

[Agrawal 93] Rakesh Agrawal, Christos Faloutsos & Arun Swami. Efficient
similarity search in sequence databases. In International Con-
ference on Foundations of Data Organization and Algorithms,
pages 69–84. Springer, 1993.

[Aharon 06] Michal Aharon, Michael Elad & Alfred Bruckstein. k-SVD: An
Algorithm for Designing Overcomplete Dictionaries for Sparse
Representation. Signal Processing, IEEE Transactions on, vol. 54,
no. 11, pages 4311–4322, 2006.

[Aharon 08] Michal Aharon & Michael Elad. Sparse and redundant modeling
of image content using an image-signature-dictionary. SIAM
Journal on Imaging Sciences, vol. 1, no. 3, pages 228–247, 2008.

[Arfken 99] George B Arfken & Hans J Weber. Mathematical methods for
physicists. AAPT, 1999.

[Barthélemy 12] Quentin Barthélemy, Anthony Larue, Aurélien Mayoue, David
Mercier & Jérôme I Mars. Shift & 2D rotation invariant
sparse coding for multivariate signals. Signal Processing, IEEE
Transactions on, vol. 60, no. 4, pages 1597–1611, 2012.

[Bengio 09] Samy Bengio, Fernando Pereira, Yoram Singer & Dennis Strelow.
Group sparse coding. In Advances in neural information process-
ing systems, pages 82–89, 2009.

[Box 15] George EP Box, Gwilym M Jenkins, Gregory C Reinsel &
Greta M Ljung. Time series analysis: forecasting and control.
John Wiley & Sons, 2015.

[Bradley 00] Paul S Bradley & Olvi L Mangasarian. K-plane clustering.
Journal of Global Optimization, vol. 16, no. 1, pages 23–32,
2000.

[Bristow 13] Hilton Bristow, Anders Eriksson & Simon Lucey. Fast convolu-
tional sparse coding. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 391–398, 2013.

89

90 Bibliography

[Bro 08] Rasmus Bro & Tamara G Kolda. Resolving the sign ambiguity
in the singular value decomposition. Journal of Chemometrics,
vol. 22, no. 2, pages 135–140, 2008.

[Bryt 08] Ori Bryt & Michael Elad. Compression of facial images using
the K-SVD algorithm. Journal of Visual Communication and
Image Representation, vol. 19, no. 4, pages 270–282, 2008.

[Candes 00] Emmanuel J Candes & David L Donoho. Curvelets: A surpris-
ingly effective nonadaptive representation for objects with edges.
Rapport technique, Stanford Univ Ca Dept of Statistics, 2000.

[Chan 99] Kin-Pong Chan & Ada Wai-Chee Fu. Efficient time series
matching by wavelets. In Data Engineering, 1999. Proceedings.,
15th International Conference on, pages 126–133. IEEE, 1999.

[Chen 01] Scott Shaobing Chen, David L Donoho & Michael A Saunders.
Atomic decomposition by basis pursuit. SIAM review, vol. 43,
no. 1, pages 129–159, 2001.

[Chen 12] Mingyu Chen, Ghassan AlRegib & Biing-Hwang Juang. 6dmg:
A new 6d motion gesture database. In Proceedings of the 3rd
Multimedia Systems Conference, pages 83–88. ACM, 2012.

[Chen 15] Zhihua Chen, Wangmeng Zuo, Qinghua Hu & Liang Lin. Kernel
sparse representation for time series classification. Information
Sciences, vol. 292, pages 15–26, 2015.

[Chu 95] Chia-Shang James Chu. Time series segmentation: A sliding
window approach. Information Sciences, vol. 85, no. 1-3, pages
147–173, 1995.

[Chu 09] Selina Chu, Shrikanth Narayanan & C-C Jay Kuo. Environmen-
tal sound recognition with time–frequency audio features. IEEE
Transactions on Audio, Speech, and Language Processing, vol. 17,
no. 6, pages 1142–1158, 2009.

[Cuturi 11] Marco Cuturi. Fast global alignment kernels. In Proceedings of
the 28th international conference on machine learning (ICML-11),
pages 929–936, 2011.

[Do 17] Cao-Tri Do, Ahlame Douzal-Chouakria, Sylvain Marié, Michèle
Rombaut & Saeed Varasteh. Multi-modal and multi-scale
temporal metric learning for a robust time series nearest neighbors
classification. Information Sciences, vol. 418, pages 272–285,
2017.

[Elad 06] Michael Elad & Michal Aharon. Image denoising via sparse
and redundant representations over learned dictionaries. IEEE
Transactions on Image processing, vol. 15, no. 12, pages 3736–
3745, 2006.

Final version Printed on January 25, 2019

Bibliography 91

[Elhamifar 13] Ehsan Elhamifar & Rene Vidal. Sparse subspace clustering:
Algorithm, theory, and applications. IEEE transactions on
pattern analysis and machine intelligence, vol. 35, no. 11, pages
2765–2781, 2013.

[Engan 99] Kjersti Engan, Sven Ole Aase & J Hakon Husoy. Method of
optimal directions for frame design. In Acoustics, Speech, and
Signal Processing, 1999. Proceedings., 1999 IEEE International
Conference on, volume 5, pages 2443–2446. IEEE, 1999.

[Fancourt 98] Craig L Fancourt & José Carlos Principe. Competitive principal
component analysis for locally stationary time series. IEEE
Transactions on Signal Processing, vol. 46, no. 11, pages 3068–
3081, 1998.

[Fu 06] Tak-chung Fu, Fu-lai Chung & Chak-man Ng. Financial
Time Series Segmentation based on Specialized Binary Tree
Representation. DMIN, vol. 2006, pages 26–29, 2006.

[Gao 10] Shenghua Gao, Ivor Wai-Hung Tsang & Liang-Tien Chia. Kernel
sparse representation for image classification and face recognition.
In European Conference on Computer Vision, pages 1–14.
Springer, 2010.

[Goldberger 00] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M
Hausdorff, Plamen Ch Ivanov, Roger G Mark, Joseph E Mietus,
George B Moody, Chung-Kang Peng & H Eugene Stanley.
Physiobank, physiotoolkit, and physionet. Circulation, vol. 101,
no. 23, pages e215–e220, 2000.

[Grosse 07] Roger Grosse, Rajat Raina, Helen Kwong & Andrew Y Ng. Shift-
invariant sparse coding for audio classification. In Proceedings
of the Twenty-Third Conference on Uncertainty in Artificial
Intelligence, pages 149–158. AUAI Press, 2007.

[Guha 12] Tanaya Guha & Rabab K Ward. Learning sparse representations
for human action recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 34, no. 8, pages 1576–
1588, 2012.

[Guralnik 99] Valery Guralnik & Jaideep Srivastava. Event detection from
time series data. In Proceedings of the fifth ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 33–42. ACM, 1999.

[Hamilton 94] James Douglas Hamilton. Time series analysis, volume 2.
Princeton university press Princeton, 1994.

[Huang 06] Ke Huang & Selin Aviyente. Sparse representation for signal
classification. In Advances in neural information processing
systems, pages 609–616, 2006.

Final version Printed on January 25, 2019

92 Bibliography

[Huang 12] Po-Sen Huang, Jianchao Yang, Mark Hasegawa-Johnson, Feng
Liang & Thomas S Huang. Pooling Robust Shift-Invariant Sparse
Representations of Acoustic Signals. In INTERSPEECH, pages
2518–2521, 2012.

[Jeni 14] László A Jeni, András Lőrincz, Zoltán Szabó, Jeffrey F Cohn
& Takeo Kanade. Spatio-temporal event classification using
time-series kernel based structured sparsity. In Computer Vision–
ECCV 2014, pages 135–150. Springer, 2014.

[Jiang 11] Zhuolin Jiang, Zhe Lin & Larry S Davis. Learning a discrimina-
tive dictionary for sparse coding via label consistent K-SVD. In
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pages 1697–1704. IEEE, 2011.

[Jost 06] Philippe Jost, Pierre Vandergheynst, Sylvain Lesage & Rémi
Gribonval. MoTIF: An efficient algorithm for learning translation
invariant dictionaries. In Acoustics, Speech and Signal Process-
ing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International
Conference on, volume 5, pages V–V. IEEE, 2006.

[Juang 91] Biing Hwang Juang & Laurence R Rabiner. Hidden Markov
models for speech recognition. Technometrics, vol. 33, no. 3, pages
251–272, 1991.

[Kavukcuoglu 10] Koray Kavukcuoglu, Pierre Sermanet, Y-Lan Boureau, Karol
Gregor, Michaël Mathieu & Yann L Cun. Learning convolutional
feature hierarchies for visual recognition. In Advances in neural
information processing systems, pages 1090–1098, 2010.

[Keogh 01] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani & Sharad
Mehrotra. Dimensionality reduction for fast similarity search in
large time series databases. Knowledge and information Systems,
vol. 3, no. 3, pages 263–286, 2001.

[Keogh 06] Eammon Keogh. The UCR time series data mining archive.
http://www. cs. ucr. edu/˜eamonn/, 2006. [Online access].

[Lewicki 99] Michael S Lewicki & Terrence J Sejnowski. Coding time-varying
signals using sparse, shift-invariant representations. Advances
in neural information processing systems, pages 730–736, 1999.

[Li 17] Jun Li, Yu Kong & Yun Fu. Sparse subspace clustering by
learning approximation l0 codes. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 2189–2195, 2017.

[Lin 03] Jessica Lin, Eamonn Keogh, Stefano Lonardi & Bill Chiu. A
symbolic representation of time series, with implications for
streaming algorithms. In Proceedings of the 8th ACM SIGMOD
workshop on Research issues in data mining and knowledge
discovery, pages 2–11. ACM, 2003.

Final version Printed on January 25, 2019

Bibliography 93

[Lütkepohl 05] Helmut Lütkepohl. New introduction to multiple time series
analysis. Springer Science & Business Media, 2005.

[Mailhé 08] Boris Mailhé, Sylvain Lesage, Rémi Gribonval, Frédéric Bimbot
& Pierre Vandergheynst. Shift-invariant dictionary learning for
sparse representations: extending K-SVD. In Signal Processing
Conference, 2008 16th European, pages 1–5. IEEE, 2008.

[Mailhé 12] Boris Mailhé & Mark Plumbley. Dictionary learning with large
step gradient descent for sparse representations. Latent Variable
Analysis and Signal Separation, pages 231–238, 2012.

[Mairal 08] Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro &
Andrew Zisserman. Discriminative learned dictionaries for local
image analysis. In Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[Mairal 09] Julien Mairal, Jean Ponce, Guillermo Sapiro, Andrew Zisserman
& Francis R Bach. Supervised dictionary learning. In Advances
in neural information processing systems, pages 1033–1040, 2009.

[Majumdar 09] Angshul Majumdar & Rabab K Ward. Fast group sparse
classification. Canadian Journal of Electrical and Computer
Engineering, vol. 34, no. 4, pages 136–144, 2009.

[Mallat 93] Stéphane G Mallat & Zhifeng Zhang. Matching pursuits with
time-frequency dictionaries. Signal Processing, IEEE Transac-
tions on, vol. 41, no. 12, pages 3397–3415, 1993.

[Nemenyi 62] Peter Nemenyi. Distribution-free multiple comparisons. Biomet-
rics, vol. 18, no. 2, page 263, 1962.

[Ng 02] Andrew Y Ng, Michael I Jordan & Yair Weiss. On spectral
clustering: Analysis and an algorithm. In Advances in neural
information processing systems, pages 849–856, 2002.

[Olshausen 96] Bruno A Olshausen & David J Field. Emergence of simple-cell
receptive field properties by learning a sparse code for natural
images. Nature, vol. 381, no. 6583, page 607, 1996.

[Ophir 11] Boaz Ophir, Michael Lustig & Michael Elad. Multi-scale
dictionary learning using wavelets. IEEE Journal of Selected
Topics in Signal Processing, vol. 5, no. 5, pages 1014–1024, 2011.

[Pati 93] Yagyensh Chandra Pati, Ramin Rezaiifar & P. Sambamurthy
Krishnaprasad. Orthogonal matching pursuit: Recursive func-
tion approximation with applications to wavelet decomposition.
Signals, Systems and Computers, 1993. 1993 Conference Record
of The Twenty-Seventh Asilomar Conference on, pages 40–44,
1993.

Final version Printed on January 25, 2019

94 Bibliography

[Pham 08] Duc-Son Pham & Svetha Venkatesh. Joint learning and dictio-
nary construction for pattern recognition. In Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on, pages 1–8. IEEE, 2008.

[Poularakis 13] Stergios Poularakis, Grigorios Tsagkatakis, Panagiotis Tsakalides
& Ioannis Katsavounidis. Sparse representations for hand gesture
recognition. In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 3746–3750. IEEE, 2013.

[Rabiner 86] Lawrence R Rabiner & Biing-Hwang Juang. An introduction to
hidden Markov models. ieee assp magazine, vol. 3, no. 1, pages
4–16, 1986.

[Ramírez 09] Ignacio Ramírez, Federico Lecumberry & Guillermo Sapiro.
Sparse modeling with universal priors and learned incoherent
dictionaries. In University of Minnesota. Institute for Mathe-
matics and Its Applications, 2009.

[Ramirez 10] Ignacio Ramirez, Pablo Sprechmann & Guillermo Sapiro. Clas-
sification and clustering via dictionary learning with structured
incoherence and shared features. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pages 3501–
3508. IEEE, 2010.

[Rand 71] William M Rand. Objective criteria for the evaluation of clus-
tering methods. Journal of the American Statistical association,
vol. 66, no. 336, pages 846–850, 1971.

[Rubinstein 10] Ron Rubinstein, Alfred M Bruckstein & Michael Elad. Dictio-
naries for sparse representation modeling. Proceedings of the
IEEE, vol. 98, no. 6, pages 1045–1057, 2010.

[Sakoe 78] Hiroaki Sakoe & Seibi Chiba. Dynamic programming algorithm
optimization for spoken word recognition. IEEE transactions on
acoustics, speech, and signal processing, vol. 26, no. 1, pages
43–49, 1978.

[Smith 05] Evan Smith & Michael S Lewicki. Efficient coding of time-relative
structure using spikes. Neural Computation, vol. 17, no. 1, pages
19–45, 2005.

[Soheily-Khah 16] Saeid Soheily-Khah, Ahlame Douzal-Chouakria & Eric Gaussier.
Generalized k-means-based clustering for temporal data under
weighted and kernel time warp. Pattern Recognition Letters,
vol. 75, pages 63–69, 2016.

[Stiefmeier 07] Thomas Stiefmeier, Daniel Roggen & Gerhard Tröster. Gestures
are strings: efficient online gesture spotting and classification us-
ing string matching. In Proceedings of the ICST 2nd international
conference on Body area networks, page 16. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2007.

Final version Printed on January 25, 2019

Bibliography 95

[Tibshirani 96] Robert Tibshirani. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society. Series B
(Methodological), pages 267–288, 1996.

[Tropp 04] Joel A Tropp. Greed is good: Algorithmic results for sparse
approximation. Information Theory, IEEE Transactions on,
vol. 50, no. 10, pages 2231–2242, 2004.

[Tseng 00] Paul Tseng. Nearest q-flat to m points. Journal of Optimization
Theory and Applications, vol. 105, no. 1, pages 249–252, 2000.

[Van Nguyen 12] Hien Van Nguyen, Vishal M Patel, Nasser M Nasrabadi & Rama
Chellappa. Kernel dictionary learning. In 2012 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2021–2024. IEEE, 2012.

[Van Nguyen 13] Hien Van Nguyen, Vishal M Patel, Nasser M Nasrabadi & Rama
Chellappa. Design of non-linear kernel dictionaries for object
recognition. IEEE Transactions on Image Processing, vol. 22,
no. 12, pages 5123–5135, 2013.

[Wang 10] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas
Huang & Yihong Gong. Locality-constrained linear coding for
image classification. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 3360–3367. IEEE,
2010.

[Wang 14] Donghui Wang & Shu Kong. A classification-oriented dictionary
learning model: Explicitly learning the particularity and com-
monality across categories. Pattern Recognition, vol. 47, no. 2,
pages 885–898, 2014.

[Wei 13a] Chia-Po Wei, Yu-Wei Chao, Yi-Ren Yeh & Yu-Chiang Frank
Wang. Locality-sensitive dictionary learning for sparse represen-
tation based classification. Pattern Recognition, vol. 46, no. 5,
pages 1277–1287, 2013.

[Wei 13b] Chia-Po Wei, Yu-Wei Chao, Yi-Ren Yeh & Yu-Chiang Frank
Wang. Locality-sensitive dictionary learning for sparse represen-
tation based classification. Pattern Recognition, vol. 46, no. 5,
pages 1277–1287, 2013.

[Wright 09] John Wright, Allen Y Yang, Arvind Ganesh, Shankar S Sastry
& Yi Ma. Robust face recognition via sparse representation.
Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 31, no. 2, pages 210–227, 2009.

[Yang 10] Meng Yang, Lei Zhang, Jian Yang & Dejing Zhang. Metaface
learning for sparse representation based face recognition. In Image
Processing (ICIP), 2010 17th IEEE International Conference on,
pages 1601–1604. IEEE, 2010.

Final version Printed on January 25, 2019

96 Bibliography

[Yang 11] Meng Yang, Lei Zhang, Xiangchu Feng & David Zhang. Fisher
discrimination dictionary learning for sparse representation. In
Computer Vision (ICCV), 2011 IEEE International Conference
on, pages 543–550. IEEE, 2011.

[Yazdi 18a] Saeed Varasteh Yazdi & Ahlame Douzal-Chouakria. Time warp
invariant kSVD: Sparse coding and dictionary learning for time
series under time warp. Pattern Recognition Letters, vol. 112,
pages 1–8, 2018.

[Yazdi 18b] Saeed Varasteh Yazdi, Ahlame Douzal-Chouakria, Patrick Gal-
linari & Manuel Moussallam. Time warp invariant dictionary
learning for time series clustering: application to music data
stream analysis. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 356–372.
Springer, 2018.

[Yin 12] Jun Yin, Zhonghua Liu, Zhong Jin & Wankou Yang. Kernel
sparse representation based classification. Neurocomputing,
vol. 77, no. 1, pages 120–128, 2012.

[You 16] Chong You, Daniel Robinson & René Vidal. Scalable sparse
subspace clustering by orthogonal matching pursuit. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3918–3927, 2016.

[Yuan 06] Ming Yuan & Yi Lin. Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), vol. 68, no. 1, pages 49–67,
2006.

[Yuan 18] Jidong Yuan, Ahlame Douzal-Chouakria, Saeed Varasteh Yazdi
& Zhihai Wang. A large margin time series nearest neighbour
classification under locally weighted time warps. Knowledge and
Information Systems, pages 1–19, 2018.

[Zhang 10] Qiang Zhang & Baoxin Li. Discriminative K-SVD for dictionary
learning in face recognition. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pages 2691–
2698. IEEE, 2010.

[Zhang 12] Li Zhang, Wei-Da Zhou, Pei-Chann Chang, Jing Liu, Zhe Yan,
Ting Wang & Fan-Zhang Li. Kernel sparse representation-based
classifier. IEEE Transactions on Signal Processing, vol. 60, no. 4,
pages 1684–1695, 2012.

[Zhelezov 17] Ognyan Ivanov Zhelezov. N-dimensional Rotation Matrix Gen-
eration Algorithm. American Journal of Computational and
Applied Mathematics, vol. 7, no. 2, pages 51–57, 2017.

[Zhou 13] Yin Zhou, Kai Liu, Rafael E Carrillo, Kenneth E Barner &
Fouad Kiamilev. Kernel-based sparse representation for gesture

Final version Printed on January 25, 2019

Bibliography 97

recognition. Pattern Recognition, vol. 46, no. 12, pages 3208–3222,
2013.

Final version Printed on January 25, 2019

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Notations
	 Sparse Representation and Dictionary Learning
	Introduction
	Sparse representation
	From sparse coding to vector quantization
	Matching Pursuit (mp)
	Orthogonal Matching Pursuit (omp)
	Sparse representation for classification
	Sparse representation for clustering

	Dictionary learning
	Dictionary learning by mod (Method of Optimal Direction)
	Dictionary learning by descend gradient
	Dictionary learning by kSVD
	Dictionary learning for classification

	Temporal data and dictionary learning
	Shift invariant sparse representation
	Kernel sparse representation

	Summary

	 Sparse Coding and Dictionary Learning under Time Warp
	Problem formalization
	Time warp invariant sparse coding
	Time series alignment
	Standard use of time series alignments
	The cosine estimation between time series (costw)
	The dot product estimation between time series (dptw)
	Time warp invariant omp (twi-omp)

	Time warp invariant dictionary learning
	Time warp invariant kSVD (twi-kSVD)
	twi-kSVD for time series classification
	Time warp invariant dictionary learning by gradient descend (twi-gddl)
	Dictionary learning for time series clustering

	Summary

	 Experimental Results
	Data description
	twi-kSVD for time series classification
	twi-dlclust for time series clustering
	Summary

	 Conclusions and Future Works
	Conclusion
	Future works

	Rotation for n-dimensional vectors
	Proof of Solution 3.19
	Bibliography

