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Abstract

Um and Uh, and the Expression of Stance in Conversational Speech

Esther Le Grézause

Chair of the Supervisory Committee:
Professor Richard Wright
Department of Linguistics

Um and uh are some of the most frequent items in spoken American and British English

(Biber et al., 1999). They have been traditionally treated as disfluencies but recent research

has focused on their discursive functions and acoustic properties, and suggest that um and

uh are not just filled pauses or random speech errors. At this stage, there is little agreement

on whether they should be considered as by-products of the planning process (speech errors)

or as pragmatic markers. In addition, most work on um and uh considers them to be the

same variable, collapsing both into the same category.

The present work investigates the discursive and the acoustic properties of um and uh in

spontaneous speech with the aim of finding out if they occur in systematic ways and if they

correlate with specific variables. The analysis of um and uh is conducted on two corpora,

ATAROS and Switchboard, to determine how the markers are used in different spontaneous

speech activities. The Switchboard corpus consists of phone conversations between strangers,

which allow us to study how speakers use um and uh in this context. It has different transcript

versions (original and corrected), which allows us to test how transcribers perceive the two

markers by aligning the original transcript with the corrected one. The ATAROS corpus

consists of collaborative tasks between strangers and it is annotated for stance strength and

polarity, which allows us to investigate how um and uh relate to stance. The term stance

refers to subjective spoken attitudes toward something (Haddington, 2004). Stance strength



is the degree to which stance is expressed. Stance strength has four possible values : no

stance, weak, moderate, and strong stance. Stance polarity is the direction of the expression

of stance, and it can be positive, neutral, or negative.

The results of this study show that um and uh have different discursive cues, which cor-

relate with variables such as speaker, speaker gender, speaker involvement, and naturalness

of the conversation. Um and uh have different acoustic cues, which show some correlation

with different degrees of stance and with stance polarity for different acoustic properties

depending on the marker. The presence and the position of um and uh in utterances affect

the likelihood of an utterance to be marked with a certain degree or polarity of stance.

These findings are incorporated in a classification experiment, to test whether information

pertaining to um and uh can be used to train a classifier to automatically label stance. The

results of this experiment reveal that um and uh are valuable word unigram features and

indicate that the position features and certain acoustic features increase the performance

of the system in predicting stance. The results also indicate that um is a slightly more im-

portant word unigram feature than uh, that features pertaining to um are more informative

in the prediction of binary stance, and that features relating to uh are more informative to

predict three-way stance strength.

The findings confirm that um and uh are distinct entities. The discourse and acoustic

features of um and uh are different. The marker um tends to vary to a greater extent than

the marker uh. Transcribers perceive um more reliably than uh. Um and uh are relevant word

unigram features. Features associated to um increase accuracy over those related to uh to

predict binary stress, and features associated to uh increase accuracy over those associated

to um to predict three-way stance strength. The work presented in this dissertation provides

support to show um and uh are not just fillers or disfluencies, but rather that they have a

wide range of uses, from fillers to pragmatic and stance markers.



Résumé de la thèse

Um et uh font partie des mots les plus communs en anglais parlé américain et britan-

nique (Biber et al., 1999). Ces entités linguistiques ont souvent été traitées en tant que

disfluence mais plusieurs études récentes se sont concentrées sur leur fonctions discursives et

acoustiques, suggérant que um et uh ne sont pas juste des pauses pleines ou des erreurs de

parole aléatoires. À ce stade, leur statut ne fait pas consensus. Um et uh sont généralement

considérés comme des erreurs de production ou comme des marqueurs de discours. Ainsi,

dans cette thèse, um et uh sont désignés par le terme "marqueur" (« marker ») afin d’in-

clure et de prendre en compte la majorité des rôles traditionnels qui leurs ont été attribués :

pause pleine, disfluence, marqueur de discours, conjonction ou marqueurs de tour de parole.

De plus, la majorité des études concernant um et uh les regroupe dans la même catégorie,

malgré plusieurs analyses suggérant que l’un et l’autre ont des rôles différents.

Les objectifs de cette analyse sont d’explorer le rôle discursif et les propriétés acoustiques

des deux marqueurs, de trouver s’ils sont utilisés de manière systématique, s’ils sont corrélés

avec certaines variables spécifiques relevant du discours, s’ils sont liés à l’expression de la

prise de position, et de confirmer que um et uh sont des entités distinctes en utilisant de

nouvelles données et de nouvelles variables. Pour cela, um et uh sont analysés séparément et

deux corpus, ATAROS et Switchboard, permettent de déterminer comment ils sont utilisés

dans différentes tâches de communication.

Le corpus Switchboard est composé d’enregistrements d’entretiens téléphoniques entre

deux inconnus conversant autour d’un sujet qui leur est imposé. Ce corpus comprend dif-

férentes versions de transcription qui permettent d’analyser la façon dont les transcripteurs

perçoivent um et uh grâce à l’alignement des transcriptions originales avec les transcriptions



corrigées. Ce corpus permet donc d’étudier la façon dont les locuteurs utilisent um et uh

dans ce contexte, ainsi que la manière dont les transcripteurs perçoivent ces deux entités. Le

corpus ATAROS se compose d’enregistrements de tâches collaboratives entre deux inconnus

et comprend des annotations sur le degré et la polarité de la prise de position, permettant

ainsi l’analyse de um et uh en lien avec la prise de position. Le terme "stance" utilisé dans

cette thèse pour désigner la prise de position est emprunté à Haddington (2004), et désigne

l’attitude des locuteurs par rapport à ce qu’ils disent. Le degré de la prise de position se

réfère à l’intensité avec laquelle le locuteur exprime ses propos. L’intensité correspond au

degré de prise de position et peut prendre quatre valeurs : pas de prise de position, prise

de position faible, modérée ou forte. La polarité de la prise de position correspond à son

appréciation, qui peut être positive, neutre ou négative.

Cette thèse est composée de trois parties principales. La première partie aborde la mise

en place des concepts et des données (chapitres 1 à 5). La deuxième partie porte sur les

analyses discursives, acoustiques, et perceptives (chapitres 6 à 9). La dernière partie de la

thèse propose une analyse de type apprentissage automatique qui rassemble les différents

ordres de problématiques analysées (chapitres 10 et 11). Dans le détail, le chapitre 1 sert

d’introduction à la thèse, pose les problématiques et les méthodes, remet en perspective les

enjeux et annonce le plan suivi. Le chapitre 2 définit les principaux types de disfluences (cli-

niques et naturelles), résume les études principales conduites sur les disfluences, et présente

les différents points de vue sur leur rôle dans le discours. Le chapitre 3 dresse l’état de la

question sur le statut des deux pauses pleines (fillers) um et uh et montre comment plusieurs

études récentes accréditent l’idée d’une différence pragmatique, voire fonctionnelle, entre ces

deux "fillers", qu’il convient donc d’envisager comme des marqueurs. Le chapitre 4 revient

sommairement sur le concept de "stance" (prise de position, évaluation), établit son acception

dans cette thèse et dans l’annotation du corpus ATAROS, puis présente l’état de la question

quant à la détection automatique de "stance" dans les corpus oraux. Le chapitre 5 caractérise



les deux corpus étudiés, ATAROS et Switchboard (SWB), et établit leurs contributions à

l’analyse. Ce chapitre présente les méthodologies d’annotation des corpus, les deux versions

de SWB, ainsi que la méthode suivie pour construire une interopérabilité entre ces deux

corpus pour l’analyse de um et uh. Le chapitre 6 analyse la distribution et la durée des deux

marqueurs dans SWB et ATAROS en fonction du genre des interlocuteurs, de l’authenticité

de la conversation, et du nombre de conversations auxquelles les sujets participent. Ce cha-

pitre montre que um et uh ont des durées et des distributions différentes et indique que les

marqueurs ne sont pas utilisés au hasard. Le chapitre 7 se penche sur la production de um

et uh dans SWB, et sur la perception des deux marqueurs en comparant les deux versions

des transcriptions du corpus. Trois types d’erreurs sont dégagées des comparaisons entre les

deux versions de transcription : les substitutions, les oublis et les mots inventés par les trans-

cripteurs alors que les locuteurs ne les ont pas produits ("hallucinations"). Les principaux

résultats montrent que um et uh sont plus souvent oubliés que d’autres mots fréquents tels

que les mots outils, et que les transcripteurs de SWB font plus d’erreurs sur uh que sur um,

suggérant que um joue un rôle discursif plus important que uh. Le chapitre 8 interroge la re-

lation entre la prise de position ("stance") d’une unité de parole ("spurt") et la présence et la

position des marqueurs dans cette unité, et révèle que ces deux dimensions sont dépendantes,

et que les résultats sont différents pour les deux marqueurs. Le chapitre 9 évalue la relation

entre la prise de position d’une unité de parole et la réalisation acoustique de la voyelle des

marqueurs, comparée à la même voyelle dans d’autres mots monosyllabiques. Les résultats

indiquent que les valeurs de "stance" affectent avec différents degrés la réalisation acoustique

des marqueurs. Le chapitre 10 se fonde sur les résultats des expériences précédentes (chapitre

6, 8 et 9) pour plusieurs tâches de classification qui testent les traits ("features") les plus im-

portants pour prédire automatiquement les valeurs de "stance" en fonction des paramètres

correspondants à um et uh (traits lexicaux, positionnels et acoustiques). Ces expériences

montrent que les traits pertinents de ces marqueurs affectent la performance du système



et que les meilleurs résultats de la classification sont obtenus lorsque les traits lexicaux um

et uh sont présents, et lorsque leur position est prise en compte. Les résultats indiquent

également que les algorithmes qui prennent en compte les différentes propriétés acoustiques

améliorent les scores de prédiction. Le chapitre 11 conclut la thèse en résumant les résultats

des chapitres 6 à 10, en soulignant les impacts de cette recherche, et en indiquant les pistes

de recherche futures.

Pour résumer, cette étude montre que um et uh sont utilisés de manière différente dans les

discours oraux. Chaque marqueur est corrélé à des variables telles que le locuteur, le genre du

locuteur, l’investissement du locuteur (selon la tâche du corpus ATAROS) et l’authenticité

("naturalness") de la conversation annotée par les transcripteurs de SWB. La présence et la

position des deux marqueurs affectent la probabilité qu’une proposition soit affectée d’un

certain degré de polarité ou d’un certain degré de prise de position, et um et uh ont alors des

réalisations acoustiques différentes selon les valeurs de prise de position. Ces résultats sont

intégrés et exploités dans plusieurs expériences de classification automatique afin de tester

si l’information concernant um et uh peut être utilisée afin d’optimiser et d’améliorer la

reconnaissance automatique de prise de position dans les conversations. Les conclusions de ces

expériences révèlent que um et uh sont des traits lexicaux importants et indiquent que leurs

propriétés acoustiques et, plus encore, leur présence et leur position dans une proposition

sont des traits pertinents pour la classification automatique de la prise de position. Pour

conclure, le travail conduit dans cette thèse étaye les résultats des travaux précédents qui

montrent que le rôle de um et uh ne se limite pas au statut de pause pleine ou de disfluence,

et confirme une utilisation qui va de l’erreur de parole au marqueur de discours, en passant

par le marquage du degré et de la polarité de la prise de position.

Cette étude adopte une approche de type multidimensionnel afin de mieux comprendre

les usages et les fonctions de um et uh dans les conversations spontanées en anglais américain.

Cependant, étant donné le nombre de dimensions considérées, il reste encore plusieurs angles



à explorer. Les prochaines étapes de cette analyse se concentreront sur le contexte acoustique

des marqueurs (fluctuations de l’intonation par rapport à l’environnement immédiat autour

des marqueurs, le troisième formant et le type de phonation), le contexte et la complexité

syntaxique autour des marqueurs, et une étude plus approfondie sur la perception de um et

uh en fonction de divers environnements dans lesquels les deux marqueurs sont produits.
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GLOSSARY

ATAROS: “Automatic Tagging and Recognition of Stance”, funded by NSF IIS #1351034
Audio corpus of collaborative tasks between groups of two speakers with high quality
recordings, designed to elicit different degrees of involvement and stance, to look at the
acoustic signal of stance-taking (Chapter 5). More information on the corpus can be
found on the Linguistic Phonetic Lab website :
http://depts.washington.edu/phonlab/projects.htm

CLASSIFIER: a machine learning tool that takes data items and places them into one of
k classes (Chapter 10).

DISFLUENCY: common phenomenon in spontaneous speech that interrupts the normal
flow, commonly divided into two main categories : clinical and normally-occurring
(Chapter 2)

DISFLUENCY - CLINICAL: occurs in the speech of people who have a disorder that might
be directly linked to speech, or that causes speech impediments. Common distinctions
differentiate between stutter-like and non stutter-like disfluencies (section 2.3)

DISFLUENCY - NORMALLY OCCURRING: naturally occurring phenomenon in spontaneous
speech that interrupts the normal flow. Disfluency types range from filled pauses, repe-
titions, false starts, substitutions, insertions, and speech errors (Shriberg, 2001) (section
2.4)

DYAD: a group of two speakers

K-MEANS CLUSTERING: used for cluster analysis and separates samples in n groups of
equal variance, minimizing a criterion known as the inertia or within-cluster sum-of-
squares (Chapter 10).

MARKER: term used in this document to reference um and uh without referring to their
function such as filled pause, disfluency, or discourse marker (section 1.1)

SLASH UNIT: sentence-like chunks of speech used to segment the Switchboard corpus
transcriptions (section 5.4.3)

SPURT: corresponds to a sequence of speech between pauses greater than 500ms by one
speaker (Shriberg et al., 2001a), comparable to discourse structure based unit, related
to intonation, and used as the unit for stance annotation (section 5.3.5)

STANCE: overt communicative act that uses language, expressed by a stancetaker (Du
Bois, 2007). Refers to "the speakers’ subjective attitudes toward something" (Hadding-
ton, 2004, p. 101) (Chapter 4).

xii
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STANCE POLARITY: stance annotation (Freeman, 2015) with 3 levels that correspond to
the polarity of the speaker’s attitude : positive, neutral, and negative (sections 4.2 and
5.3.4)

STANCE STRENGTH: stance annotation (Freeman, 2015) with 4 levels that correspond to
the degree of the speaker’s attitude : no stance, weak, moderate, and strong stance
(sections 4.2 and 5.3.4). Other stance strength distinctions include binary stance : no
stance vs. any degree of stance ; and three-way stance : no stance, weak stance, and
moderate-to-strong stance

STANCE-TAKING: the act of expressing a stance act (Chapter 4)

SVM - SUPPORT VECTOR MACHINE: supervised learning method used for classification,
regression and outliers detection (Chapter 10).

SWITCHBOARD: corpus of spontaneous conversational speech. Multi-speaker database of
telephone bandwidth speech, with time aligned word transcriptions and a variety of
annotations depending on the version or the subset of the corpus (Godfrey et al., 1992)
(Chapter 5)

TOKEN FREQUENCY: relative frequency of occurrence of a word within a specific dataset
or a corpus
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Chapter 1

INTRODUCTION

Spontaneous and conversational speech are characterized by the common presence of

naturally-occurring disfluencies, such as repetitions, false starts, or filled pauses. Studies on

conversational American English report that about 6% of words are disfluent (Fox Tree,

1995; Shriberg, 1994). Due to increasing interests in spontaneous speech, disfluencies have

received attention in fields such as psycholinguistics, discourse analysis, and natural language

processing. They are often characterized as natural by-product of speech planning, cognitive

load, and turn-taking. Since the term disfluency encompasses a wide range of topics and

dimensions, this dissertation focuses on two disfluencies : um and uh.

The goals of this dissertation are to explore how the two markers um and uh pattern

depending on various discourse variables, whether they are the same entity, and how they

correlate with the speaker’s attitude (i.e., stance), in order to better understand how they

function in spontaneous and conversational speech.

1.1 Um and uh

Um and uh are some of the most frequently occurring items in American and British

spoken English (Biber et al., 1999; Tottie, 2015a). In this dissertation I am going to refer

to um and uh as markers because this term encompasses several of their most traditional

roles such as filled pauses or disfluencies, as well as other roles such as discourse markers

and speech act markers. In this study, I use the terms role and function interchangeably to

refer to the semantico-discursive properties of the two markers, and not just their syntactic

properties often denoted by the term function, or their purely semantic characteristics often



2

conveyed by the term role.

Um and uh have been traditionally treated as disfluencies along the lines of repetitions,

false starts, hesitations and pauses. Recent research (Clark and Fox Tree, 2002; Norrick,

2015; Tottie, 2014) however has focused on their status, properties, discourse functions, and

environments. Various studies report different functions for the two markers, ranging from

filled pauses, backchannels, interjections, to discourse markers. For instance, studies show

that listeners use um and uh as cues for processing difficulty and online accessibility of

referents (Arnold and Tanenhaus, 2011; Kidd et al., 2011; Watanabe et al., 2008). Studies

also show that children start paying attention to the two markers around the age of two

(Kidd et al., 2011). However, in subsequent processes of speech processing, several speech

understanding systems filter disfluencies with the goal of improving system performance,

despite the fact that several studies show that removing disfluencies increases the perplexity

of the surrounding words. Moreover, we know that filled pauses like um and uh contain

discourse and prosodic information such as marking linguistic units and restart boundaries

or indicating hesitation when a speaker holds the floor (Siu and Ostendorf, 1996; Siu et al.,

2000; Stolcke and Shriberg, 1996). Studies also show that um and uh have different acoustic

properties in terms of pitch and vowel duration (Shriberg, 2001), and that they tend to occur

sentence-initially (Clark and Fox Tree, 2002; Shriberg, 2001). In addition, several studies,

including this study, show that the two markers occur in different environments depending

on various linguistic and external factors, and argue that um and uh have different functions

in speech (Clark and Fox Tree, 2002; Gorman et al., 2016; Irvine et al., 2015).

Such findings indicate that um and uh are not random errors, but rather that they have a

function in discourse, and that they are part of the linguistic signal. The goals of this study

are to explore the distribution, the characteristics, and the salience of the two markers ;

whether they relate to attitude marking (i.e., stance), and to confirm using new data and

variables that um and uh are different entities.
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1.2 Stance

Stance is an overt communicative act that takes place in language. It is expressed by a

stancetaker, about the object of the stance act (Du Bois, 2007). Generally speaking, stance

refers to "the speakers’ subjective attitudes toward something" (Haddington, 2004, p. 101)

and involves sociocultural, dialogical, linguistic, and intersubjective dimensions (Du Bois,

2007).

Stance is often referred to as sentiment, emotion, subjectivity, or private state (Quirk,

1985; Wilson and Wiebe, 2005). Recent studies show that stance in spontaneous spoken

speech is marked by several elements not present in text, and that inter-annotator agreement

on opinion categories is higher when transcribers have access to audio data (Freeman, 2014;

Freeman et al., 2015b; Somasundaran et al., 2006). Other findings show um is an informative

word unigram feature, and adding prosodic and speaking style features to the lexical features

increases the system’s accuracy when punctuation features are excluded (Levow et al., 2014).

These studies indicate the importance of taking acoustic cues and lexical features, such

as um, into account. One of the main goals of this dissertation is therefore to investigate how

different properties of um and uh relate to stance marking, and whether taking them into

account improves the accuracy of automatic stance categorization.

1.3 Cross corpora study

I use two corpora in this dissertation, ATAROS and two versions of Switchboard. Both

corpora allow an examination of how um and uh behave in conversational interactions consis-

ting of different tasks, but also answer slightly different questions. The ATAROS (Automatic

Tagging and Recognition of Stance) corpus is an audio corpus of collaborative tasks between

groups of two speakers, designed to look at the acoustic signal of stance-taking (Freeman

et al., 2014b). The Switchboard corpus is a multi-speaker database of telephone bandwidth

speech (Godfrey et al., 1992), with a variety of annotations depending on the version or the

subset of the corpus (Calhoun et al., 2010; Hamaker et al., 1998).
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While having corpora with different speech tasks allows different questions to be answered,

it also raises issues on cross-corpora studies, such as how to conduct a study on several

datasets with different annotation guidelines, and how to compare findings. This raises several

challenges moving forward. For example, having overarching guidelines for disfluency, partial

word transcription, speech segmentation, pause annotation, or even recording techniques

would provide benefits to research and to the interpretation of findings. Furthermore, cross-

corpora validation of findings increases the robustness and the generalization of the findings.

1.4 Study goals and contributions

Relatively little work has been done on the acoustic and prosodic characteristics of stance

in spontaneous speech, especially compared to text. Furthermore, very little to no attention

has been given to the role of um and uh in signaling stance-taking in spontaneous speech.

Moreover, many studies group the two markers under the same label, and very few focus on

the differences between um and uh. Finally, there are no studies on the salience of the two

markers compared to other words and to each other. This dissertation addresses these issues

and gaps in the literature, by providing a systematic, holistic, quantitative, and multidimen-

sional analysis of um and uh in conversational speech. The linguistic strata of this study

encompass multiple dimensions ranging from token frequency, perception of the markers,

to the acoustic properties and the discourse functions of um and uh. Note that this study

exclusively relies on statistical analyses of the two markers ; it is strictly quantitative and

does not incorporate a qualitative analysis of um and uh.

Preliminary studies show that the two markers have different distributions, which would

indicate that they are not functionally the same. I also hypothesize that um is more salient

than uh, which would suggest that um has more important discourse functions than uh. Based

on the assumption that um and uh have functions in discourse, and based on the fact that

stance is characterized by lexical and acoustic features, I predict that several characteristics

of um and uh are robustly correlated with stance. This would suggest that um and uh can

be used as stance markers, and therefore carry information about stance, which could then
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be used for automatic stance recognition.

1.5 Study structure

Chapter 2, 3, 4 and 5 make up the background sections of this dissertation. Chapter 2

defines disfluencies, whether naturally-occurring or clinical, and reviews the different types

of disfluencies, the factors that affect their production, and general findings on the topic.

Chapter 3 is an exhaustive overview of the two markers um and uh. This chapter reviews a

wide range of analyses, from online comprehension, production, to speech technology, and

points out issues with existing studies. Stance is defined and reviewed in Chapter 4, and

Chapter 5 describes in details the two corpora used in this study. The rest of the dissertation

is organized into five experiments. The first experiment (Chapter 6) analyzes the distribution

of the two markers in ATAROS and in the Mississippi State version of Switchboard, to

determine if they are used interchangeably and in systematic ways across different speech

tasks. In the next experiment (Chapter 7) I explore the factors that influence the production

and the transcription errors made on um and uh in the Switchboard corpus, to find out

they differ from other words and from each other. The next three experiments focus on the

relationship between the two markers and several dimensions of stance marking (i.e., degree

and polarity) in the ATAROS corpus. Chapter 8 investigates whether the presence and the

position of um and uh in a speech unit affect the probability of the stance marking. In

Chapter 9 I focus on the acoustic properties of the vowel /2/ (AH1) in um and uh, to find

out if stance marking affects the acoustic realization of the markers, and whether the vowel in

the two markers behave differently from other monosyllabic words. In the last experiment of

this dissertation (Chapter 10) I explore the relative contribution of um and uh to predicting

stance strength and polarity by implementing classifiers that build on findings from this

dissertation. Finally, the last chapter of this dissertation (Chapter 11) concludes this study

by summarizing each experiment and their main findings, and states the contributions of

this work as well as its future directions.
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Chapter 2

DEFINING DISFLUENCIES

2.1 Introduction

The goals of this chapter are to define disfluencies and to explain why I am interested in

studying them in spontaneous speech. I first provide a general introduction of the topic before

going into different categories of disfluencies such as clinical and non-clinical disfluencies. I

then summarize relevant work in the literature that focuses on any type of disfluencies,

clinical and non-clinical, and their properties in speech. Finally, I talk about the challenges

that disfluencies present for speech technology, especially for spontaneous speech.

2.2 General introduction on disfluencies

Spontaneous speech contains high rates of disfluencies (e.g. filled pauses, repetitions, false

starts, etc.). About 6% of words are disfluent in conversational American English (Fox Tree,

1995; Shriberg, 1994, 1999). Disfluencies have received attention in the fields of psycholin-

guistics, discourse analysis, and natural language processing due to an increasing interest

in spontaneous speech. A wide range of studies have looked at disfluencies. Some studies

have worked to define what disfluencies are (Shriberg, 1994). Other studies have looked at

their acoustic properties (Shriberg and Lickley, 1993; Shriberg, 1994, 1995, 1999, 2001), or

automatic detection and modeling of speech disfluencies (Adda-Decker et al., 2004; Liu et al.,

2006b,a; Marin and Ostendorf, 2014; Snover et al., 2004; Stouten et al., 2006; Wang et al.,

2013; Zayats et al., 2014). Finally, the function of disfluencies in speech communication (Clark

and Fox Tree, 2002; Fox Tree, 1995, 1997, 2001; O’Connell and Kowal, 2005; Watanabe et al.,

2008). In human speech communication, certain disfluencies tend to systematically occur with

discourse features and speakers’ intentions, which means that the presence of a disfluency, as
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well as its type and location, should be used to derive information (Arnold and Tanenhaus,

2011; Shriberg, 1994, 2001).

In all of these studies, disfluencies are treated as part of normal speech, but this is not the

only type of disfluency. There are two main ways to look at disfluencies, normally occurring

speech disfluencies and disfluencies resulting from communication disorder. In this study,

I am only interested in normally occurring disfluencies and I am not investigating clinical

disfluencies. Nonetheless, it is important to define clinical disfluencies so as to establish the

type of disfluencies that I am not looking at.

2.3 Clinical disfluencies

2.3.1 Communication disorders

A communication disorder can result in a primary disability or can accompany other

disabilities. It consists of the impairment in the ability to receive, transmit, and comprehend

a message. Communication disorders can be related to speech, language, hearing, or audi-

tory processing. Since the present work focuses on disfluencies, I am only going to go over

speech disorders. Speech disorders can be a damage to speech sound articulation, phonology,

fluency, and/or voice, and can result in interference of intelligibility. Speech disorders are

directly related to clinical disfluencies due to articulation and phonological disorders that

can create atypical production of speech sounds due to omissions, substitutions, additions,

or distortions. Similarly, voice disorders create disturbances or the absence of vocal quality

in terms of pitch, loudness, resonance, and/or duration. Finally, fluency disorders can create

interruptions in the flow of speaking by altering rhythm, and creating repetitions of various

segments such as sounds, syllables, words, and phrases (American Speech-Language-Hearing

Association Ad Hoc Committee on Service Delivery in the Schools, 1993; Anderson and

Shames, 2011).
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2.3.2 Defining fluent speech

Speech fluency is important to define when looking at clinical disfluencies because it

allows us to determine better what disfluent speech is. Normal speech fluency is defined

by a number of factors : speech rate, utterance length, rhythm, timing, consistency in the

duration of elements, continuity, the quantity of filled and unfilled pauses, and finally, the

effort that goes into speech production (Starkweather, 1987). Therefore, disfluent speech

contains higher rates of pauses and disruptions to the speech rate and duration consistency ;

it also requires more effort to produce speech. The disruptions can consist of various types

of clinical disfluencies, further defined in the following subsection 2.3.3.

2.3.3 Various types of clinical disfluencies

Clinical disfluencies, unlike non-clinical disfluencies, occur in the speech of people who

have disorders that might be directly linked to speech. For example, individuals who stutter

(IWS) have a disorder primarily related to speech, but people who have Down Syndrome

or Autistic Disorder Syndrome have a disorder non-primarily related to speech, but which

causes them to have speech impediments (Kumin, 1994; Preus, 1972; Sisskin, 2006) .

Clinical disfluencies constitute a broad category of disfluencies. A common distinction

among clinical disfluencies is between stutter-like disfluencies (SLD) and non stutter-like

disfluencies (NSLD).

Stutter-like disfluencies (SLDs)

Typical SLDs consist of part-word repetitions (sounds or syllables), entire word repeti-

tions, broken words, and finally, audible or inaudible prolongations (Anderson and Shames,

2011).

Stuttering is one of the most common fluency disorders. Developmental stuttering is

the most common type of stuttering. It begins in early childhood, affects 5-15% of the

population, and persists into adulthood in about 1% of the population (Goberman et al.,
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2010). Neurogenic stuttering is a rarer form of stuttering and is generally acquired after

trauma to the brain. Psychogenic stuttering is another rare condition where stuttering occurs

as a result of an emotionally or psychologically traumatic experience.

There are several diverging definitions of stuttering, and no set universal definition (Go-

berman et al., 2010). One of the most cited and recognized definition of stuttering is from

Wingate’s (1964) A Standard Definition of Stuttering : "Stuttering is broadly defined as (a)

disruption in the fluency of verbal expression, which is (b) characterized by involuntary, au-

dible or silent, repetitions or prolongations in the utterance of short speech elements - namely,

sounds, syllables, and words of one syllable. These disruptions (c) usually occur frequently or

are marked in character and (d) are not readily controllable. Sometimes the disruptions are

(e) accompanied by accessory activities involving the speech apparatus, related or unrelated

body structures, or stereotyped speech utterances. These activities give the appearance of

being speech-related struggle. Also, there are not infrequently (f) indications or report of

the presence of an emotional state ranging from a general condition of “excitement” or “ten-

sion” to more specific emotions of a negative nature such as fear, embarrassment, irritation,

or the like. (g) The immediate source of stuttering is some incoordination expressed in the

peripheral speech mechanism ; the ultimate cause is presently unknown and may be complex

or compound" (Wingate, 1964, p. 488).

The cause for stuttering is still unknown, but several studies have found physiological dif-

ferences between individuals who stutter (IWS) and individuals who do not stutter (IWNS).

A few examples of physiological differences are differences in cortical activation (Blomgren

et al., 2003), the activity of the basal ganglia (Giraud et al., 2008), or the role of the dopamine

system (Giraud et al., 2008; Fetterolf and Marceau, 2013).

In addition to physiological factors, there are also linguistic factors that play a role

affecting stuttering. Those linguistic factors consist of several dimensions : prosodic, phonetic,

lexical, and syntactic properties. One of the most prominent studies that looked at the

linguistic factors of stuttering focused on the specific loci of stuttering moments. The study

revealed that stuttering tends to occur more on consonants than on vowels, on sounds in
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childhood. Cluttering consists of "rapid, dysrhythmic, sporadic, unorganized, and frequently

unintelligible speech" (Daly and Burnett, 1996, p.239).

Individuals with Parkinson disease also have SLDs, characterized as Neurogenic, as op-

posed to developmental disfluencies, because they are caused by a brain disorder (Goberman

et al., 2010). Goberman’s (2010) study reports stutter like behaviors such as repeated mo-

vements and fixed articulatory postures, with within-word and between-word disfluencies.

Individuals with Tourette Syndrome (ITS) also have SLDs such as word repetitions,

hesitations, interjections, and prolongations. In addition to speech disfluencies, both ITS

and IWS share biological and environmental components such as the genetic factor, a higher

prevalence in men, and an increase in symptoms triggered by higher emotional stress (De

Nil et al., 2005).

Non stutter-like disfluencies (NSLDs) and disfluencies not directly related to stuttering

Typical NSLDs are multisyllable word repetitions, word-final repetitions, phrase repeti-

tions, abnormal voice modulations and sound swaps (Scaler Scott et al., 2006; Shriberg et al.,

2001b).

A study on the clinical disfluencies of three subjects with Asperger Syndrome and Atten-

tion Deficit Disorder showed that in addition to SLDs, subjects also had disfluency patterns

different from regular IWS. The NSLDs were final-word stuttering, long sporadic stuttering

events concomitant with long blocks, phrase repetitions, and revisions (Scaler Scott et al.,

2006).

Similarly, individuals with Tourette Syndrome (ITS) have other disfluencies in addition to

SLDs. Those disluencies are either non-clinical, filled and unfilled pauses, and interjections ;

or clinical NSLDs, such as abnormal voice fluctuations and sound swaps (De Nil et al., 2005).

2.4 Normally occurring disfluencies

Normally occurring disfluencies are present in the speech of individuals who do not have a

speech disorder. Normally occurring disfluencies, also referred to as non-clinical disfluencies,



12

are the type of disfluencies that I am interested in. Therefore, from here on I refer to them

as disfluencies.

Disfluencies have been widely studied in the discursive, cognitive and computational

literature, and several classifications have been provided. For instance, Lutz and Mallard

(1986) use nine categories to generally classify disfluencies : prolongations, part-word repeti-

tions, word and/or phrase repetition, interjections, revisions, incomplete phrases, dysrhyth-

mic phonations (abnormal laryngeal behaviors including interjected moments of glottal fry

and breaks in the production of voicing), incoherent sounds, and fillers. Shriberg (2001) uses

a different classification with six types of disfluencies : filled pauses, repetitions, deletions

(also called false starts), substitutions, insertions, and articulation errors (also referred to as

speech errors).

2.4.1 Why studying disfluencies ?

While they are often treated as noise or irregularities, disfluencies tend to follow specific

patterns (Shriberg, 1994). There is evidence that shows that disfluencies can have functions,

especially for listeners (Arnold and Tanenhaus, 2011; Fox Tree, 2001; Clark and Fox Tree,

2002; Siu and Ostendorf, 1996).

The purpose of studying disfluencies and how they pattern ranges from improving speech

technology performance and naturalness, to understanding human language production, per-

ception, and cognition (Shriberg, 1994). The goals of this dissertation are to understand the

role(s) of disfluencies in spontaneous speech, and what discourse and acoustic patterns are

associated with them. One of the applications of studying disfluency functions and patterns

is to bring information to the development of natural speech systems to improve spontaneous

conversation speech understanding (see subsection 2.4.5). Therefore, in this dissertation, I

mostly focus on details that relate to these applications and I do not talk exhaustively about

models of language production, perception or cognition.
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of American English from Shriberg (2001). Shriberg claims that disfluencies have conse-

quences for the acoustic and phonetic properties of speech. As explained in subsection 2.4.2,

disfluencies can be divided into three regions. Each region differs in terms of acoustic pro-

perties. Data for her study come from three corpora : Switchboard - a collection of free

conversation between humans, AMEX - a collection of human-human air travel dialogs and,

ATIS - a collection of human to computer air travel dialog. Most of the phonetic effects in the

reparandum are prevalent around the IP. Phonetic effects in this region consist of duration

patterns, laryngealization, voice quality and vowel quality. One of the most observed pat-

terns is lengthening of the rhyme or syllable preceding the IP. Shriberg differs lengthening in

disfluencies from pre-boundary lengthening. Pre-boundary lengthening is observed in fluent

speech as the only cue to disfluency. The motivations to differentiate both phenomena are

mostly justified by acoustic differences. Lengthening in disfluencies is much greater than in

the lexically fluent sequence and pitch tends to be flat or slowly falling, similarly to filled

pauses, mostly when the disfluency is associated with hesitation. The lengthening of the re-

parandum is usually accompanied by creaky voicing which triggers the ‘trailing off’ percept

with a decrease in amplitude and a drop in pitch. Other phenomena in the reparandum lead

to specific acoustic marking. Word cutoffs usually show some laryngealization. The reparan-

dum is also often characterized by alterations in voice quality in words such as the, a or to. A

and to are more likely to be pronounced with their tense vowel forms and the is more likely

to be pronounced as /ði/ in the reparandum of a disfluency than elsewhere. Unfortunately,

Shriberg does not provide numbers to justify her claim in this section. Effects in the editing

phase are mainly related to duration. According to Shriberg, unfilled pauses tend to be long

and are good cues for disfluency detection. However, the author does not mention a duration

number to support this claim. In addition, she mentions that certain unfilled pauses can be

shorter than regular pauses. Vowels in filled pauses, however, are much longer than elsew-

here. In addition to duration cues, F0 in filled pauses has been shown to be low, gradually

falling and related to the surrounding environment. Finally, effects in the repair are usually

not prevalent since the repair is the resumption of fluency and therefore most consequences
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of the disfluency are observed in the reparandum and editing phase. It has been observed

however that when there is a form of contrastive emphasis in the repair, there is usually one

or more of the following : an increase in F0, duration or amplitude. This type of acoustic

information can be incorporated into automatic speech understanding systems in order to be

used as cues for disfluency (see subsection 2.4.5). More background on the acoustic properties

of um and uh is provided in section 3.1 of the current chapter.

2.4.4 Variables that affect disfluency rate

As previously mentionned, about 6% of words are disfluent in conversational American

English (Fox Tree, 1995; Shriberg, 1994). Similarly, a study on French broadcast interview

archives showed that four types of disfluencies (discourse markers, filled pauses, repetitions

and revisions) constitute about 8% of the corpus (Mareüil et al., 2005). Numerous factors

affect the rate of disfluencies : cognitive load, utterance length and complexity, task, social

context, time constraints, etc. (Moniz et al., 2014; Shriberg, 1994, 2001; Tottie, 2014).

Studies have looked at how gender and task affect disfluency rate. For instance, Lutz and

Mallard (1986) conducted a study on 25 female and 25 male undergraduate and graduate

students at Southwest Texas State University and found that the rate of disfluencies between

males and females differs more in conversation than during reading. In conversation, the

disfluency rate of males was 3.2% of words and 2.4% of syllables against 3.0% and 2.7%

for females. During reading, the disfluency rate of males and females was the same : 1% of

words and 0.8% of syllables. Results of median percentage of total disfluency by category

during conversation showed that interjections and revisions were the most common types of

disfluencies, and that during conversation the rate of filler-to-word ratio was on average 4

fillers per 100 words. Males and Females used similar amounts of prolongations, part-word

repetitions, interjections, revisions and fillers. However, results show that males use more

word and/or phrase repetitions (15.2%) and incomplete phrases (3%) than females (10.5%

and 0.1%) ; and females use more incoherent sounds (9.5%) than males (0.2%).

A study on the use of disfluencies in European Portuguese in university lectures and
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map-task dialogues shows that speaking style affects the production of disfluencies in terms

of distributional patterns and prosodic properties (Moniz et al., 2014). Results show that

speakers produced more repetitions and fragments in dialogues than in lectures, which the

authors attribute to speech planning acts and time constraints corresponding to the two

speaking styles. Results also show that disfluencies are shorter in dialogues and that in

lectures, speakers use more pitch and energy increases to differentiate disfluency regions and

adjacent contexts than in the dialogues.

More background on the variables that affect the rate and the production of um and uh

is provided in section 3.1.

2.4.5 Issues for Speech Technologies

Even though speech technology has significantly improved in recent years, speech proces-

sing and understanding still heavily depend on punctuated and fluent input. Spontaneous

spoken speech is not fluent, it structurally differs from written speech and, it contains pro-

sodic information (e.g.,the way we say things). Therefore, current systems based on fluent,

written or controlled speech usually face challenges when dealing with spontaneous and

conversational spoken speech and fail to use part of the information present in the signal.

Spontaneous speech

Spontaneous spoken speech differs from written, read or, planned speech in several ways.

Some of the major distinctions that cause issues for speech technology trained or modeled

after non-spontaneous speech are differences in sentence structure, the presence of prosodic

information, and disfluencies.

Spontaneous spoken speech has sentence-like units instead of typical written sentences.

These sentence-like units consist in grammatical, semantically complete, shorter sentences

(Liu et al., 2006a). Four subtypes of sentence-like units (statements, questions, backchannels

or incomplete sentences) are offered in Strassel (2004). Sentence-like units can consist of only

one word or one noun phrase, especially in the case of answers.
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Spontaneous spoken speech also contains prosodic information encoded in the speech si-

gnal which carries structural, semantic or, pragmatic information. For instance, prosodic cues

can disambiguate syntactic structures, indicate questions or statements, speakers’ attitudes

and, focal information, help detect disfluencies and sentence boundaries (Levow et al., 2014;

Liu et al., 2006a; Stouten et al., 2006; Wang et al., 2013).

Another main distinction is that spontaneous spoken speech is not fluent and contains

high rates of disfluencies. Disfluencies present a major challenge for spontaneous speech pro-

cessing and understanding (Shriberg, 2001; Liu et al., 2006a; Stouten et al., 2006; Wang

et al., 2013). They disrupt the grammatical flow of sentences and can create word-like ele-

ments not necessary in the lexicon of the recognizer or structures that do not map to the

Language Model. For instance, the content of edit disfluencies can be edited, repeated or,

dropped. For an example of edit disfluency and its different regions, see Figure 2.2. Liu et al.

(2006a) propose four subtypes of edit disfluencies : repetitions, revisions, restarts and com-

plex disfluencies, the later consisting of nested or successive disfluencies. Filler words are

another group of disfluencies that also disrupt the regular flow of sentences and that are not

present in transcripts of written texts or read speech. Filler words consist of filled pauses

(FPs), discourse markers (DMs) and, explicit editing terms (Liu et al., 2006a). FPs can be

hesitation markers or floor holders, most common FPs in English are ah, eh, um and uh.

Discourse markers are words that carry discourse and structural information such as you

know, I mean, so, well, like, etc. Explicit editing terms are disfluencies that mark repairs

(see Figure 2.2) and are not an FP or a DM (e.g., I like <cats->, <sorry>, <dogs> where

sorrry is the explicit editing term).

Detecting speech disfluencies

To solve issues caused by disfluencies present in spontaneous spoken speech, several speech

understanding systems aim at filtering disfluencies. Removing disfluencies can be necessary or

useful to clean up transcripts. The resulting transcripts can be used for downstream natural

language processing tasks or to improve transcript readability (Ferguson et al., 2015; Hassan
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et al., 2014; Snover et al., 2004). However, recent research shows that certain disfluencies

contain discourse or prosodic information that can be used to improve performance of speech

processing and understanding systems (Siu and Ostendorf, 1996; Siu et al., 2000; Stolcke and

Shriberg, 1996). Therefore, removing disfluencies might not always be the preferred approach.

In either case, whether disfluencies are filtered or, preserved and used to extract information,

the first step is to detect them.

Different techniques are used for disfluency detection. Some of the most popular tech-

niques are reviewed in this paragraph. Several systems use a mixture of prosodic cues and

lexical features. Prosodic cues are used to find the general location of a disfluent event, and

focus on identifying the interruption point (IP) (Liu et al., 2006a; Shriberg, 1999). Other sys-

tems use models primarily based on lexical features (Snover et al., 2004), which identify the

words themselves and the Part-of-Speech tags, without relying on comprehensive prosodic

cues. Results show the lexically based algorithm performs comparatively to other algorithms

that make heavier uses of prosodic cues. Probabilistic syntactic models are another detection

system based on parse structures and a noisy channel model to identify disfluencies (Lease

et al., 2006; Zwarts et al., 2010). Other methods include internally and externally informed

strategies to handle disfluencies in spontaneous speech (Stouten et al., 2006). The internally

informed search strategy consists in letting the Language Model, the lexicon and the acoustic

model work jointly to hypothesize the disfluency and to create a context manipulation that

decides the path of action for the recognition system ; while the externally informed search

strategy mainly consists in an external detector responsible for identifying disfluencies, and

associates posterior probabilities to the disfluency segments. Predictive models such as n-

gram models are another way to detect disfluencies. N-gram models associate probabilities

to sequences of words or entire sentences, where a n-gram is a sequence of N words (Honal

and Schultz, 2005; Stolcke and Shriberg, 1996; Siu et al., 2000; Zwarts and Johnson, 2011).

Discriminative models such as Conditional Random Fields (CRF) are also used to detect

disfluencies (Georgila, 2009; Ostendorf and Hahn, 2013; Zayats et al., 2015). CRF models

directly model the conditional probability of p(y|x). They efficiently model multivariate out-
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puts y while including a large set of input features x for prediction (Sutton and McCallum,

2012). CRF models are a log-linear model for sequential labels, similar to and more powerful

than Hidden Markov Models (HMM). Compared to other methods, CRF models yield to bet-

ter results (Ostendorf and Hahn, 2013). However, state of the art studies show that Neural

Network models that incorporate acoustic-prosodic and lexical features show improvements

over other methods (Wang et al., 2015; Zhang et al., 2014).

2.5 Synthesis

This chapter provided an extensive review of what disfluencies are, their different types,

whether clinical or naturally-occurring, and their acoustic and discourse properties. Clinical

disfluencies occur in the speech of people with speech disorders, or other disorders that

cause speech impediments, and are commonly divided into two broad categories, stutter-

like and non stutter-like disfluencies. Normally occurring disfluencies occur in the speech of

individuals who do not have speech disorders, and are the type of disfluencies I am interested

in.

Disfluencies are often treated as random speech errors that disrupt the normal flow of

speech. Several studies however have showed there are different types of disfluencies, and

disfluencies tend to follow specific patterns and can have functions in discourse. The study

of disfluencies leads to improvements in speech technology performance and naturalness, as

well as our understanding of human language.

Disfluencies span a wide range of topics and can take different forms. In this dissertation I

focus on two disfluencies : the markers um and uh. Even though um and uh are often grouped

under the same label, one of the main goals of this dissertation is to show that they are not

the same disfluency, and are therefore studied separately. The following chapter provides an

extensive review of the two markers, ranging from their various functions in speech, to their

acoustic properties and the challenges they present in speech processing.
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Chapter 3

UM AND UH

3.1 Introduction

In this dissertation, I focus on two specific disfluencies : um and uh. The goal of the

current chapter is to provide background on the existing research on um and uh, to point

out issues related to these two disfluencies, and to propose ways to address them.

There are three main issues to address. First, whether um and uh behave in the same

way. Second, whether they have systematic functions in spontaneous speech that correspond

to specific linguistic environments. The last issue is to determine whether all instances of um

and uh mark discourse information ; or if they are simply the result of speech planning.

3.1.1 Background on um and uh

Um and uh are some of the most frequent items in spoken American and British English.

A mixed speech corpus analysis shows the combined frequency of um and uh is greater than

13,000 per million words (pmw) (Biber et al., 1999). Another study on American English,

that looks at the first part of the Santa Barbara Corpus, reports 7,500 occurrences of um

and uh pmw (Tottie, 2015a).

Terminology

Multiple terms in the literature are used to designate um and uh : hesitations (Corley and

Stewart, 2008), fillers (Clark and Fox Tree, 2002; Corley and Stewart, 2008; O’Connell and

Kowal, 2005), filler words (Arnold and Tanenhaus, 2011), filled pauses (Shriberg and Lickley,
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1993; Shriberg, 1994, 1999, 2001; Swerts et al., 1998; Watanabe et al., 2008), and UHM 1

(Tottie, 2014). According to Clark and Fox Tree (2002), calling um and uh filled pauses

assumes that they are simply pauses filled with sounds. However, in order to consider the

hypothesis that um and uh have a discourse function, the authors argue that it is better to

call them fillers. Fillers however are usually used as a more flexible term that refers to filled

pauses and discourse markers such as I mean, you know, like, and well (Laserna et al., 2014;

Tottie, 2014, 2015a). Tottie (2015a) collapses um and uh under the same label UHM because

he considers them to be the same variable. In the present work I follow the terminology from

Clark and Fox Tree (2002) and reserve the term pause for silent pauses only, and I refer to

um and uh as markers. I do not adopt the term UHM because I hypothesize that the two

markers have different functions in speech.

Um and uh have been traditionally treated as disfluencies along the lines of repetitions,

false starts, hesitations and pauses. Recent research however has focused on their status,

discourse functions and prosodic, acoustic and, syntactic environment.

The rate of um and uh is affected by several extra-linguistic factors such as cognitive

load, task effect (human-human versus human-computer interaction), speaker, listener and

planning time allowed to the speaker (Tottie, 2014). Similarly, intra-linguistic factors such

as sentence or utterance length and complexity also affect the markers’ rate (Shriberg, 1994,

2001; Watanabe et al., 2008).

There is little agreement on the function of um and uh in spontaneous speech, that is,

whether um and uh are by-products of the planning process or whether speakers use them

intentionally. Some of the literature considers um and uh to be errors or random symptoms

in language performance and argues that they should not be considered part of the linguistic

signal (Chomsky, 1965). Tottie (2015b) analyzes certain tokens of um and uh as non-linguistic

signal when they function as floor-holder. However, several recent studies support the idea

of um and uh as part of language, and therefore as signal instead of symptom (Arnold and

1. The term UHM refers to um and uh at the same time
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Tanenhaus, 2011; Clark and Fox Tree, 2002; Norrick, 2015; Tottie, 2014, 2015a,b).

Furthermore, authors disagree on the status of um and uh, that is, whether they should

be considered disfluencies like hesitations or filled pauses, or if they should be considered

English words belonging to the category of interjections (Clark and Fox Tree, 2002; Norrick,

2015), or pragmatic markers (Tottie, 2014). At this stage, it is still unclear what all the

functions of um and uh are, and whether the two markers are interchangeable. This study

does not address the status of um and uh (i.e., word vs. disfluency vs. pragmatic marker).

Instead, it investigates the environment in which um and uh occur and looks for patterns to

see whether they are systematically associated with certain phenomena and if they behave

acoustically differently.

3.1.2 Study goals

The purpose of this study is to shed light on the functions of um and uh in order to

know which markers bring information to the discourse, and whether um and uh behave

differently from each other. This information can then be used to establish which markers

should be filtered or used by natural language processing systems (see subsection 2.4.5). In

this study, I investigate the effects of speaker and listener gender, position of the marker,

speakers’ attitudes towards what they are saying and, the acoustic, prosodic and, syntactic

environments of the markers on the distribution and properties of um and uh in spoken

spontaneous speech.

3.1.3 Functions of um and uh

Several studies show that filled pauses are used in various ways and can be attributed

specific functions in discourse. Items such as um and uh are documented to have functions

that range from filled pauses to floor holders, discourse markers or even interjections. Se-

veral patterns such as features of discourse, speakers’ intentions and prosodic environment

regarding the use of um and uh indicate that they are not random and that they are very

likely to take part in the linguistic signal. These systematic occurrences are one of the main
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arguments in favor of um and uh being part of the linguistic signal. The following subsections

review studies on their various functions.

How listeners use um and uh

Several studies show that listeners can derive information from the use of um and uh.

For instance, some studies investigate how speaker disfluency affects on-line accessibility of

referents during reference comprehension and show that listeners’ expectations regarding

the speakers’ reference can be influenced by disfluencies : listeners prefer to interpret old

information when the speaker’s instructions are fluent whereas they prefer interpreting new

information when the instruction are disfluent (Arnold et al., 2004, 2007; Arnold and Tanen-

haus, 2011).

Watanabe et al. (2008) look at whether filled pauses affect listener’s predictions about the

complexity of upcoming phrases in Japanese. The study focuses on native Japanese speakers

and native Chinese listeners to see whether they get similar cues from filled pauses. Findings

show that filled pauses are cues to complex phrases and that effects of filled pauses on non-

native listeners depend on their fluency. Results are coherent with findings from Clark and

Fox Tree (2002) (see subsection 3.1.3).

Based on the assumption that um and uh tend to occur in predictable environments,

such as before unfamiliar words, before words with low token frequency, or before newly

mentionned words, Kidd et al. (2011) show that children pay attention to um and uh and

that they use the information carried by the markers during online spoken word recognition.

These markers are used to anticipate upcoming referents. Their results also suggest that this

ability to use disfluencies seems to arise around the age of two.

In sum, studies show that both children and adults use um and uh as cues for processing

difficulty and online accessibility of referents, and therefore indicate that the markers have

a function in discourse and that they are part of the linguistic signal.
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How speakers use um and uh

Two studies that show speakers seem to have control over their use of um and uh in

different registers suggest that the makers should be considered as signal rather than just

speech errors. The studies report that on average, speakers use um and uh less in formal

registers than in informal register (Duez, 1982; Schachter et al., 1991). In Schachter et al.

(1991) speakers use um and uh less in formal registers despite the fact that they produce

more pauses, speak more slowly, and in theory have more planning time than in the informal

setting. A more recent study, however, presents different results : speakers use um and uh

more in non-private environments (e.g. offices and classrooms) than in private settings like

homes. The study also reveals that planning time and cognitive load seem to be important

factors in the frequency of um and uh since even in private settings, complicated discussion

topics lead to higher rates of markers (Tottie, 2014).

Further evidence for um and uh as signal is their use as floor holders to indicate that

speakers are still engaged in their speech act and that their turn is not over (Kjellmer, 2003;

Shriberg, 2001; Tottie, 2015a). Findings from a study of turn-taking in the Santa Barbara

Corpus of Spoken American English (SBCSAE) reveal that um and uh can have both a

turn-holding and turn-yielding function (Tottie, 2015a).

Clark and Fox Tree (2002) argue that speakers have control over the use of um and

uh, that speakers can plan them and, that the markers have the status of English words.

The authors define word as “linguistic units that have conventional phonological shapes and

meanings and are governed by the rules of syntax and prosody” (Clark and Fox Tree, 2002,

75). The markers are also categorized and analyzed as English interjections (Clark and Fox

Tree, 2002; Norrick, 2015). Interjections are “not integrated into the grammatical structure

of the utterances/clauses ; they can stand alone as independent units in their own right ; they

tend to have functions rather than meaning ; they differ by national, regional and personal

variety” (Norrick, 2015, 249). Norrick (2015) categorizes um and uh as phatic interjections

due to their phatic function illustrated in example (1). “”
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(1) Madonna : oh, well you can move it in there, put it on the floor. I brought some

candy.

Earl : um.

Doug : for after dinner.

Madonna : no need for me to start on things, I’ll get in a hurry and everything will

be read [before]

Earl : [before the] turkey

(LSWE-AC 144801) from (Norrick, 2015)

Clark and Fox Tree (2002) support that similarly to interjections, um and uh have a basic

meaning and implicatures. The authors define the core meaning of the markers as interjec-

tions : uh indicates a minor upcoming delay and um a major one. Other uses derive from this

basic meaning and therefore are implicatures of announcing minor or major delays. Findings

from their study on the London–Lund corpus of British English (LL) (Svartvik, 1990) show

that lengthened um and uh are more likely to co-occur with pauses. However, findings from

Tottie (2015b) also contradict part of Clark and Fox Tree (2002)’s study and show that in

American English 330/957 occurrences of um and uh did not occur with pauses and about

half of the tokens did not introduce delays but instead ended them. Similarly, findings from

O’Connell and Kowal (2005) in a corpus study of TV and radio interviews between Senator

Hillary Clinton and six interviewers show that most occurrences of um and uh are not follo-

wed by silent pauses. O’Connell and Kowal conclude that um and uh fail to reliably indicate

minor or major delays. In addition, they reject the proposal that um and uh are interjections

because they cannot constitute a turn by themselves and because they occur in different

positions relative to pauses. Their findings indicate that the markers tend to be preceded

by a pause in initial position, whereas interjections tend to occur between pauses. Norrick

(2015) argues that um and uh can constitute turns and stand by themselves (as illustrated

in (1)) and that interjections, like um and uh, also occur in initial position. Tottie (2015b)

does not support the claim that um and uh are interjections in oral speech but he recognizes
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their interjection-like status in restricted and rare written cases to convey ironic euphemism

as in (2) or polite disagreement as in (3).

(2) Obama is more, um, seasoned

Barack Obama’s. . . closely shorn hair appears to be increasingly gray.

Washington Post, August 28, 2008, from (Tottie, 2015b).

(3) ... Senator Richard Shelby of Alabama... “The market will view these firms as...

implicitly backed by government.” Um, senator, the market already views those firms

as having implicit government backing, because they do... (Paul Krugman, Op-Ed

column, New York Times) from (Tottie, 2015b).

In fact, Tottie argues that a vast proportion of bare um and uh (without preceding or

following pauses) should be considered symptom instead of signal. Even though uses of the

markers might have originated as hesitation markers, the author argues that certain uses

of um and uh have evolved as real words functioning as pragmatic markers such as well, I

mean, you know, and like (Tottie, 2014). Tottie proposes the following analysis of the two

markers :

UHM operates on a gradient, originating in spoken language as a symptom of pro-

cessing difficulty or need for planning time, and proceeds via uses as a pragmatic

marker to occasional specialized and deliberate use as a signal with quasi-word

status (Tottie, 2015b, 51).

3.1.4 Acoustics of um and uh

Results from Shriberg (2001) show that um and uh have distinct acoustic properties. The

vowel of the markers is much longer than the same vowel elsewhere and the pitch of um and

uh tends to fall systematically between the previous peak and the bottom of the speaker’s

pitch range.

Intonation units (IU) are one of the most basic units of spoken speech. They are charac-



27

terized by a single intonational contour (Nespor and Vogel, 1986) and range from clauses to

single words. Clark and Fox Tree (2002) identify three key positions in IUs : (I) the boundary,

(II) after the first word excluding um and uh and, (III) later. Findings from their research

show that there are more markers in location I than II, and in location II than III, consistent

with the idea that planning should have the most effect in position I.

These specific acoustic features could be a sign of salience for the markers and could be

used in language models to differentiate uh from the article a for instance. Other implications

for speech technology include improving disfluency detection and separating disfluencies from

regular words in duration modeling to avoid skewing word duration.

3.1.5 Um and uh in language processing

As mentioned in subsection 2.4.5, many speech understanding systems filter disfluencies

with the goal of improving system performance. However, Stolcke and Shriberg (1996) show

that removing disfluencies increases the perplexity of surrounding words. In addition, several

studies show that filled pauses like um and uh contain discourse and prosodic information

such as marking linguistic units and restart boundaries or indicating hesitation when a

speaker holds the floor (Siu and Ostendorf, 1996; Siu et al., 2000). Um and uh can also

predict neighboring words and tend to precede words with a lower token frequency (Stolcke

and Shriberg, 1996). The context of the filled pause can also be used to predict whether the

filled pause is worth skipping, depending on its position (e.g., sentence initial vs. medial)

(Siu et al., 2000). Siu and Ostendorf (1996) show that the position of the marker affects

the perplexity and that depending on the marker and the position, different treatments lead

to different results. For instance, skipping sentence-medial uh reduces perplexity but not

necessarily for other markers or other positions.

Such studies suggest that we need to look at the environment, and the acoustic, prosodic,

and discourse properties of the markers to determine whether a disfluency carries relevant

information.
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3.1.6 Um vs. uh

In most of the literature, um and uh are collapsed under the same category, or label. For

instance, Tottie refers to the two markers as one and the same, that she calls UHM, and

describes them as two variants of the same variable (Tottie, 2015b).

However, several studies find differences between the two markers. One of the main dif-

ferences is the position of the marker. Clark and Fox Tree (2002) found that um is more

likely to occur at utterance boundary and uh is more likely to occur utterance medially.

They also found that um indicates major upcoming delays, whereas uh indicates minor ones.

Even though the latter results have been contested by other others, it is still interesting to

note differences between the two markers to further investigate whether they have the same

functions.

Based on the principle that um and uh are different from other disfluencies because they

have pragmatic and listerner-oriented functions, two recent studies investigate the use of the

two markers by individuals with Autism Spectrum Disorders (ASD) and show differences

in use of the markers for children with ASD. Individuals with ASD typically display prag-

matic language impairments. Irvine et al. (2015) compare the production of um and uh in

spontaneous speech between three youth groups : individuals with ASD who have pragmatic

language impairments, individuals with ASD whose language disorders are resolved, and in-

dividuals with typical development (TD). Results show the rates of uh did not differ between

groups, but participants with ASD who have pragmatic language impairments produced si-

gnificantly fewer ums than the other two groups. The authors suggest that the production

of um correlates with autism symptom severity and that the marker has as a pragmatic,

listener-oriented function. These results are consistent with another study on the production

of um and uh by children age 4-8 with ASD during the autism diagnostic observation sche-

dule. Gorman et al. (2016) compare the production of um and uh by three groups of children,

children with ASD, with TD and with specific language impairment (SLI). Individuals with

SLI typically have structural issues with language whereas individuals with ASD have both
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structural and pragmatic impairments. Similarly to Irvine et al. (2015), results show that

children with ASD use significantly fewer ums than children with TD.

These studies suggest that um and uh do not have the same function and therefore are

not the same marker. In this study I separate the two markers. One of the goals of this

dissertation is to identify how different they are and if all ums are different from uhs or if

there is some overlap.

3.2 Synthesis

To summarize, there are different views regarding the status and functions of um and uh

in the literature, ranging from symptoms of language performance to markers of hesitation,

floor holders, interjections and pragmatic markers. I posit that these uses are not mutually

exclusive and that the classification and function of the markers highly depends on the

immediate prosodic and discourse context, the level of involvement of the speaker and the

acoustic features of the marker. The aim of this study is therefore to explore the discourse

environments and the properties of um and uh, in order to see if we can find information

from systematic or abnormal occurrences.

O’Connell and Kowal (2005) argue that there are empirical issues with Clark and Fox Tree

(2002) because the LL corpus was annotated by coders instead of automatic transcriptions,

which means that pause duration reflects the annotators’ perception of the pause length

rather than its actual duration. Similarly, Tottie (2015b) uses the Santa Barbara Corpus

of Spoken American English (SBC) with perception-based marking for pause transcription.

O’Connell and Kowal (2005) address this issue by acoustically measuring the duration of

pauses in Praat (Boersma and Weenink, 2015) for their study. We know that uses and

rates of um and uh are highly idiosyncratic, extra-linguistic and intra-linguistic dependent

(Shriberg, 2001; Tottie, 2014). Therefore, I anticipate some major issues with the corpus used

in O’Connell and Kowal (2005). It contains a limited number of speakers, six interviewers

and one politician, and 70% of um and uh (600 out of 861) come from the same speaker,

Hillary Clinton. In addition, journalists and politicians are trained speakers and therefore
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are not representative of everyday speech.

3.3 Issues to address

There are three main questions to address regarding the markers um and uh. The first is to

test whether um and uh are the same variable. That is, whether they function in the same way

and whether they occur in the same environments. To address this question, I study the two

markers separately. The second question is to find out whether they have systematic functions

in spontaneous speech that correspond to specific linguistic environments. To address this,

in various experiments I investigate the linguistic environments of the markers, as well as

their acoustic properties depending on a wide range of variables, in two corpora. The last

issue is to determine whether all instances of um and uh are meaningful to the discourse

(i.e., planning errors or filled pauses vs. floor holders or pragmatic markers).

To answer these questions, I conduct a wide range of analyses and experiments. I first

look at how um and uh vary depending on several discourse and linguistic variables (Chapter

6). I also look at variables that affect transcription errors of um and uh, to find out if listeners

perceive more um than uh, and how differently from other words (Chapter 7). Then I look at

how various properties of um and uh correlate with speaker attitude (stance, see Chapter 4),

to find out whether their presence, position, and acoustic properties can predict the stance

of the speakers, if there are internal structures of um and uh, and if acoustic and discourse

features relevant to the two markers improve automatic stance classification (respectively

Chapters 8, 9, and 10).

The attitude or the sentiment of the speakers is referred to as stance in this study. Stance

is commonly referred to as sentiment, evaluation, or emotion, and is different from the study

of sentiment analysis. Chapter 4 provides an exhaustive review on the topic of stance, defines

the concept used in the frame of this study, and reviews relevant literature to this work.
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Chapter 4

STANCE

4.1 Introduction

Stance is an overt communicative act that uses language. It is expressed by a stancetaker,

concerning the object of the stance act (Du Bois, 2007). Broadly speaking, stance refers to

"the speakers’ subjective attitudes toward something" (Haddington, 2004, p. 101) and involves

sociocultural, dialogical, linguistic, and intersubjective dimensions (Du Bois, 2007).

In section 4.2 I first review the various definitions of stance, and explain which definition

I apply to this study. In section 4.3 I explain why I am interested in stance and I review the

state of the art on automatic stance recognition on spoken data.

4.2 Definitions

Stance is a broad concept that can be defined in several ways depending on the resear-

chers’ interests. It is studied in several fields such as Anthropology, Education or Sociology,

as well as in various subfields of Linguistics such as Corpus Linguistics, Cognitive Linguistics

or Sociolinguistics. The core idea of stance is that it focuses on the function of language, and

on the context in which it is used, to represent the social and pragmatic functions of lan-

guage (Englebretson, 2007). The term stance is therefore used in various ways, and different

researchers using this term do not necessarily refer to the same thing. Conversely, several

other terms are also used to refer to stance, such as subjectivity, evaluation, or sentiment.

(Englebretson, 2007, p. 16) summarizes subjectivity as "broad self-expression" and evaluation

as "subjectivity with a focus". Biber’s definition is one of the many definitions of stance, and

summarizes it concisely as "personal feelings, attitudes, value judgments, or assessments"

(Biber et al., 1999, p. 966). According to Du Bois, "the act of taking a stance necessarily
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invokes an evaluation at one level or another, whether by assertion or inference" (Du Bois,

2007, p. 141). Key components of stance are evaluation, positioning and alignment, including

"sociocognitive relations of objective, subjective and intersubjective intentionality" (Du Bois,

2007, p. 162).

The expression of stance can be qualified as subjective when looking at the function of

language for individuals, or as intersubjective when looking at its function between indivi-

duals (Scheibman, 2007). Englebretson argues that stance is a conceptual entity which can be

researched, that people actively engage in stance, and stance-taking takes place in discourse.

Stance can be expressed by grammatical and lexical patterns such as certain combination of

verb types and tenses, or by use of adverbials, evaluative adjectives, modals, and expressions

(Hunston and Thompson, 2000; Scheibman, 2002). Stance can also be expressed by gestures

or acoustically. Studies show that different levels of stance reliably affect pronunciation as-

pects linked to prosody such as vowel duration, speech rate or intensity (Freeman et al.,

2014a; Freeman, 2014). Another study on the prosody of yeah shows that pitch and intensity

increase as stance strength increases. The study also shows that stance polarity affects the

acoustic signal, as the pitch and the intensity of negative yeahs is slightly higher than for

positive or neutral yeahs (Freeman et al., 2015b).

In this dissertation, what I consider by stance is best defined by "the speakers’ subjective

attitudes toward something" (Haddington, 2004, p. 101). I consider two dimensions of stance :

its strength (no stance, weak stance, moderate stance, or strong stance), as well as its polarity

(neutral, positive, or negative), as annotated in the ATAROS corpus (see section 5.3.4 in

Chapter 5) (Freeman, 2015).

4.3 Why stance ?

In automatic recognition, stance is often referred to as sentiment, emotion, opinion, sub-

jectivity, or private state, a term that denotes beliefs, judgments, and evaluations, with func-

tions such as experiencers, attitudes, and targets (Quirk, 1985; Wilson and Wiebe, 2005).

The notion of stance is slightly different from sentiment analysis. Sentiment analysis, also



33

referred to as opinion mining or subjectivity analysis (Pang and Lee, 2008), is used to refer

to the automatic analysis of the evaluation of a topic. Traditionally, the concept of sentiment

analysis has been used to refer to polarity (negative or positive), but is now used in broader

terms to refer to more general concepts such as opinion and subjectivity. The concept of

stance, as defined in this study, differs slightly from sentiment analysis. It is measured in two

dimensions, strength and polarity, and from an enunciative point of view takes the position

of the enunciator and the co-enunciator into account.

Most of the research on automatic stance recognition, also called automatic subjectivity

recognition, is conducted on text-based speech, using primarily lexical and syntactic features

(Pang et al., 2002; Somasundaran and Wiebe, 2009). A few studies have focused on automa-

tic recognition of stance in spoken speech, mainly based on n-grams, lexical, and structural

features (Godfrey et al., 1992; Murray and Carenini, 2009). Murray and Carenini (2009) fo-

cused on detecting subjective sentences in spontaneous speech in multiparty speech, in order

to label them for polarity. Their results indicate that the use of n-grams with shifting levels

of lexical instantiation improved the performance over prior methods. As previously mentio-

ned, recent studies (Freeman, 2014; Freeman et al., 2015b) show that stance in spontaneous

spoken speech is marked by several elements not present in text, and (Somasundaran et al.,

2006) found that inter-annotator agreement on opinion annotation is higher when transcri-

bers have access to both spoken and written data than when they have access to transcripts

only. A study from (Levow et al., 2014) on automatic recognition of stance in spontaneous

speech takes into account lexical, speaking styles and prosodic features, to train a classifier

to label stance behavior in a boosting framework. Their results show that lexical information

alone (i.e., word unigram features) lead to the best accuracies (71-80%), while speaking style

and prosodic features lead to lower performance of the system. Prosodic and speaking style

features combined lead to 55.2% accuracy for stance strength, and the features alone lead to

71% accuracy, above most common class assignment. These results also show that prosodic

and speaking style features improve the accuracy of stance polarity classification more than

stance strength classification. A followup experiment, however, shows that the manually an-
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notated punctuation masks the effect of prosody. That is, when punctuation features are

omitted for stance strength classification, adding prosodic and speaking style features to the

lexical features increases the system’s accuracy from 61.5 to 63%. The study also reports on

the first 25 word unigrams selected by the classifier across all folds for the recognition of the

degree of stance. One of the most interesting findings from (Levow et al., 2014) in the light

of this dissertation is that um figures among the 25 word unigrams. This suggest that um is

an important feature of stance strength marking, and therefore further corroborates the fact

that um has functions in discourse, including stance strength marking.

Based on the findings reported in the current chapter and on Chapter 2, I will investigate

the role and the acoustic properties of the markers um and uh in stance marking in the

ATAROS corpus (see section 5.3.4 for more information on the stance annotation in the

corpus). But, first, Chapter 5 introduces the corpora used for our data.
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Chapter 5

CORPORA

5.1 Introduction

The two corpora used in this study are the ATAROS corpus and the Switchboard corpus.

Unlike the ATAROS corpus, which is rather small, the Switchboard corpus contains a lot

more data, necessary for statistical analysis or training data for machine learning. In addition,

Switchboard represents a larger sample of the population, with speakers from 8 dialect areas

although unbalanced (see section 5.4.2). The ATAROS corpus focuses on speakers from the

Pacific Northwest exclusively, who work on the same collaborative tasks, and was designed

to elicit various degrees of involvement, with high quality recordings.

5.2 Corpus choice rationale

My goals are to investigate the discourse environment and the prosodic properties of the

markers um and uh in spontaneous speech, as well as their relationship to syntactic structure,

and whether they are involved in stance marking. For more information on stance marking

see section 4.1 in Chapter 4, and for more information on the ATAROS corpus annotations

on stance see section 5.3.4 in the current Chapter.

I therefore need corpora that have spontaneous speech, the presence of um and uh, high-

quality recordings, the markings of stance, part of speech tagging, parses and, prosodic

annotations. No single corpus contains all of these elements together, therefore I use a combi-

nation of corpora. The use of several corpora raises questions on the topic of interoperability,

especially on how to compare findings across datasets.

The ATAROS corpus has overt markings of stance, tasks that elicit various degrees of

speaker involvement and, disfluencies (including um and uh). I therefore use it to look at the
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functions of um and uh relative to stance, as well as their distribution depending on various

discourse variables such as degree of involvement. Similarly, since part of the Switchboard

corpus has syntactic, prosodic, and disfluency annotations, I use it when looking at the

relationship of disfluencies to prosodic and syntactic environments in which um and uh

happen. In addition, Switchboard has different transcript versions, with different levels of

transcription precision, which allow comparing how speakers noticed um and uh, and how

the transcription errors vary depending on various factors.

The two corpora used for this study consist of recorded spontaneous speech with high

quality recordings of different speech tasks. A combination of the two corpora is used to

answer different questions depending on the type of speech and the type of annotation

available for the corpus.

5.3 The ATAROS corpus

The ATAROS (Automatic Tagging and Recognition of Stance) corpus is an audio corpus

of collaborative tasks between dyads (groups of two speakers) with high quality recordings

(see section 5.3.2 for more information on the recording conditions). The corpus was designed

to elicit different degrees of involvement and various degrees of stance (see section 4.1 in

Chapter 4), and to look at the acoustic signal of stance-taking.

5.3.1 Corpus design

The collaborative tasks between dyads consist of unscripted conversations. Each dyad

executes five tasks designed to trigger different levels of involvement and changes in stance.

Tasks are divided into two groups. Each group contains a set of about fifty tokens that

aim at representing the main vowels of Western American English. The first group contains

the Map, Inventory and Survival Tasks and the second group consists of the Category and

Budget Tasks. In each group, the first task is designed to elicit a baseline with stance-

neutral conversation (Map and Category Tasks) ; speakers discuss how the fifty items are

arranged in a different order. The Inventory, Survival and Budget Tasks are collaborative
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decision-making tasks and were respectively designed to elicit increasing levels of involvement

and stance-taking. The Inventory Task consists of arranging items from a superstore into a

new inventory and is designed to elicit the lowest level of involvement and weak stances.

This task usually triggers polite proposals and suggestions between the two speakers. In the

Survival Task, speakers have to discuss which items to leave or keep in a survival scenario.

It is designed to elicit a higher degree of involvement and higher levels of stances than the

Inventory Task. In the Budget Task, subjects have to imagine they are on a county budget

committee and have to decide which items should be cut. This task is designed to elicit

the highest degree of involvement and stronger stances. In this task, speakers demonstrate

more sophisticated discussions and negotiations and are likely to refer to personal experience

to corroborate stances (Freeman et al., 2014b). This study only looks at tokens from the

Inventory and Budget Tasks because they respectively elicit the lowest and highest degrees

of involvement and stance (Freeman et al., 2014b).

5.3.2 Recording conditions

Recordings were made in a sound-attenuated booth at the University of Washington in

Seattle with head-mounted AKG C520 condenser microphones. An XLR cable connected

them to a separate channel in an M-Audio Profire 610 mixer outside the booth. Recordings

were saved as 16-bit stereo WAV-file at a 44.1 kHz sampling rate. The major advantages of

this corpus are the high-quality recordings and the use of head-mounted microphones which

allows controlling for acoustic intensity and improves signal-to-noise ratio.

5.3.3 Speakers

The corpus currently contains 34 recordings of same and mixed gender dyads 1. At the

time of the study, 17 analyzable recordings were annotated at the coarse level for the Budget

and Inventory Tasks. Dyads consist of strangers matched approximately by age. Speakers

1. At the time of publication (Freeman et al., 2014b) there were only 26 annotated dyads.
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are Native English speakers from the Pacific Northwest and range from age 18 to 75. The

total duration of recordings per dyad for the five tasks ranges from 40 to 80 minutes, with

an average of 60 minutes. In this study, I am looking at a subset of the corpus : 17 dyads,

9 mixed gender dyads, 5 female-female and 3 male-male dyads (19 females and 15 males).

Speakers’ age ranges from 20 to 70 with a mean of 35 for women and 39 for men.

5.3.4 Transcriptions and stance-related annotations

All annotations are made in Praat (Boersma and Weenink, 2015) by trained annotators.

Annotations for each speaker in the Inventory and Budget Tasks consist of five levels, each

respectively annotated in separate tiers : phones, words, utterances, coarse stance annotation

and, fine stance annotation. The utterance tier is manually transcribed and words are trans-

cribed orthographically according to conventional American spelling. The word and phone

tiers are created from the utterance tier with forced alignment using the Penn Phonetics Lab

Forced Aligner (P2FA) (Yuan and Liberman, 2008). Two types of pauses are annotated in

the corpus : pauses under 500ms are marked within an utterance by 2 periods ‘..’ and pauses

over 500ms are marked as silence ‘sp’. Um and uh are transcribed as ‘UM’ and ‘UH’ in the

word tier, the former showing nasality. In the utterance tier the two tokens are transcribed

as ‘um’ and ‘uh’. When they are appended to other words, they are transcribed attached to

the word separated by a short dash without space (e.g., uh-oh).

The coarse annotation tier indicates four levels of stance strength : no stance (marked

0, (see example (1)), weak (marked 1, see examples (2) and (3)), moderate (marked 2, see

examples (4) and (5)) and strong stance (marked 3, see examples (6) and (7)). The tier is

also annotated for three levels of stance polarity : positive (marked ‘+’, see (5)), negative

(marked ‘-’, see (3) and (6)) and neutral (not marked see (1),(2),(4) and (7)). Tokens for

which annotators could not tell are marked with ‘x’. Zero stance corresponds to factual

statements or questions, backchannels, reading or conversation managers such as ‘Okay’

or ‘next’. Weak stance corresponds to superficial agreements, opinion solicitations, solution

offers, mild encouragements or opinions. Moderate stance is essentially a stronger version
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of weak stance with questioning of other’s opinion, strong personal credibility and excited

exclamations. Strong stance consists of emphatic and stronger manifestations of weak and

moderate stance and can be loaded and/or emotional. Positive polarity is marked on items

expressing agreement, confirmation, encouragement or intonation that conveys positivity.

Negative polarity is marked on items expressing disagreement, questioning of other’s opinion

and intonation that conveys negativity. Neutral polarity is associated to items marked with 0

stance. To summarize, there are two stance dimensions, strength and polarity. For instance,

example (3) illustrates negative weak stance, and example (5) illustrates positive moderate

stance.

(1) Stance 0 : And then socks. QUAL breathy VOC laugh Um.

(NWF089-NWM053-3I, 77.946sec)

(2) Stance 1 : As a, um, personal hygiene item.

(NWF106-NWF107-3I, 50.330sec)

(3) Stance 1- : Uh, yeah. QUAL reluctant VOC breath

(NWM061-NWM060-6B, 460.596sec)

(4) Stance 2 : Um. Oh, but this is sweets, too. QUAL muttering Oh, that’s *baking

though. Important distinction.

(NWF089-NWM053-3I, 42.257sec)

(5) Stance 2+ : I - uh, well.. I’d say tools, yeah.

(NWM055-NWF093-3I, 794.019sec)

(6) Stance 3- : Oh but *eggs ! Well, uh, heck yes. Gosh. That was an obvious one that I

missed. VOC laugh

(NWF090-NWF091-3I, 622.403sec)

(7) Stance 3 : Um, for *this arrangement we have.. identified no area for clothing.

(NWF106-NWF107-3I, 118.891sec)
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There is a finer-grained annotation of stance available in ATAROS but for statistical power

reason I do not use it. For more information on this annotation refer to (Freeman et al.,

2015a).

For stance strength and polarity, each task is annotated by an annotator and then revie-

wed or corrected by another. Uncertainties noted by the first annotator are reviewed and if

the second annotator remains uncertain, a thrid annotator intervenes as a tie breaker. Results

of the weighted Cohen’s kappas with equidistant penalties on this annotation method show

high inter-rater agreement : 0.87% for stance strength labels and 0.93% for stance polarity

labels (p=0) (Freeman, 2015).

5.3.5 Spurts

Since this study focuses on both the discursive context and the prosodic characteristics

of um and uh, I investigate token frequency of the markers in relation to discourse structure

based units. Utterances are closely related to the discourse structure from an intonation

point of view. However, since intonation units are not transcribed in the ATAROS corpus,

the position of um and uh is analyzed relative to the spurts. In this study, spurts follow the

same definition as in ATAROS. They correspond to utterances between pauses greater than

500ms, and are used as a unit for stance annotations, although stance acts can sometimes

span several spurts, or spurts can contain several stance annotations (Freeman, 2015).

5.3.6 Measurements

Polarity and strength of stance are collected from the coarse tier of each TextGrid. Acous-

tic data are automatically collected by a Praat script that runs through the 17 sound files

and TextGrids. The script collects acoustic measurements at the midpoint of the vowel :

pitch, intensity and, F1 and F2 ; as well as word and vowel duration, based on boundaries

and transcriptions from the phone and word tiers. Settings for the script are 0.01sec time

step, 5 formants, 5500Hz maximum formant, 0.025sec window length and a minimum pitch
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of 60Hz. I used threshold of 30ms minimum for vowel duration since it is difficult to get

accurate measurements for any token with a vowel shorter than that.

5.3.7 Advantages of the ATAROS corpus

This corpus has several advantages. First, since it was designed to analyze the acoustics

of stance-taking, the corpus contains recordings of tasks eliciting different levels of speaker

involvement and, stance strength and polarity are transcribed by trained annotators (see

subsection 5.3.4). Another advantage of the subset of this corpus used in the present study

is that it contains an adequate number of non-professionally trained speakers (17 speakers),

which is more representative of how people speak in conversational English, unlike recordings

of journalists or politicians. In addition, the recordings have high acoustic quality. Pauses are

acoustically measured instead of being transcribed based on duration perception. Speakers

are recorded with a head-mounted microphones, which means that intensity level is consistent

within speaker.

5.4 The Switchboard corpus

Switchboard is a corpus of spontaneous conversational speech. It is a multi-speaker da-

tabase of telephone bandwidth speech, designed to train and test speech algorithms with

time aligned word transcriptions, and a variety of annotations depending on the version or

the subset of the corpus (Godfrey et al., 1992). Some of the most commonly used anno-

tations include Treebank3, Mississippi State, the disfluency annotations, and Switchboard

NXT. Switchboard is a broadly used corpus, especially in a wide range of studies that look

at speech disfluencies such as Ostendorf and Hahn (2013); Shriberg (1996, 2001); Stouten

et al. (2006); Zayats et al. (2014), etc.

5.4.1 Corpus design

The Switchboard corpus consists of telephone conversations between paid volunteers of

both sexes from a variety of backgrounds and representing the main American English dia-
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lects. The goal of the corpus is to elicit natural, spontaneous speech. Annotators rated the

naturalness of the corpus at 1.48 on average, on a scale 1-5 ; 1 representing "very natural"

and 5 "forced or artificial sounding" (Godfrey et al., 1992). The average naturalness score

suggests that the protocol aim was met.

The Switchboard-1 Release 2 version contains 2,400 conversations, collected automa-

tically, without human intervention. Participants first engage individually with a compu-

ter before being in communication. Once in communication, participants are introduced a

conversation topic and given a chance to introduce each other before starting the recording.

Each subject is recorded synchronously during the conversation in a separate channel. The

speech signal is collected directly from the telephone network with a system that allows high

quality recordings (Godfrey et al., 1992).

Conversation durations range between 1.5 to 10 minutes, with an average of 6.5 minutes

(Calhoun et al., 2010). Godfrey et al. (1992) round the amount of material to around 250

hours of conversation, and about 3 million words. All conversations of the corpus have time-

aligned detailed transcriptions.

5.4.2 Participants

A total of 543 speakers, 302 males (56%) and 241 females (44%), participated to at

least one conversation. Demographic data was collected for all participants and stored in an

Oracle database. Participant information consists of caller ID, sex, birth year, dialect area

and education level. Participant age varies from 20 to 60, with 26% of speakers between 20

and 29, 34% between 30 and 39, 21% between 40 and 49, 16% between 50 and 59, and finally

2% between 60 and 69. Participant’s dialect is based on where the speaker grew up for the

first 10 years of their life, and categorized into 8 dialect areas : south midland (29%), western

(16%), north midland (15%), northern (14%), southern (11%), NYC (6%), mixed (5%), and

New England (4%). The reason why there are more speakers from the south midland dialect is

due to the fact that many participants are TI employees, people connected to the employees,

or local people. Education level is categorized in 5 levels : less than high school (2.6%), less
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than college (7.2%), college (57%), more than college (32.5%), and unknown (0.7%).

In addition to participant data, information about the call is also automatically entered

into the Oracle database : date and time of the call, length of the conversation, area code

and telephone number and, any other relevant information (Godfrey et al., 1992).

5.4.3 Transcripts

There are several transcripts of the corpus. The original transcript, the slightly modi-

fied Treebank3 transcript (Marcus et al., 1993) and the later corrected MS-State transcript

(Deshmukh et al., 1998). Several annotations of the Switchboard corpus were made by dif-

ferent research groups and in different formats, linked to different word transcripts of the

conversations.

Treebank3

The Treebank3 transcripts consits of 1126 annotated conversations from the original

Switchboard release. The transcripts contain segmentations of each turn into utterances, part

of speech tags on each word and, annotated disfluencies. Disfluency annotations identify the

reparandum, the interruption point and the repair of the disfluency, according to Shriberg’s

(1994) annotations.

Um and uh are marked as filler {F ...}, under the category of non-sentence elements, as

illustrated in (8).

(8) B : {Actually, } [ I, + {F uh, } I ] gues I am <laughter>. / {F um, } it just seems

kind of funny that this is a topic of disccussion. / {F uh, } I do, {F uh, } some, {F

uh, } woodworking myself <noise>. {F uh, } in fact, I’m in the middle of a project

right now making a bed for my son. /

A : {F uh, } {F uh } I see stuff in craft galleries for five hundred dollars /

From Meteer and Taylor (1995)



44

The utterance units are sentence-like chunks, called slash units. Even though most speaking

turns do not necessarily consist of complete sentences, the slash units are considered to

be complete utterances and are parsed at S (i.e., highest level : sentence). In other words,

they might not be sentential, but they are still interpreted as complete spoken utterances

(illustrated in example (9)). For incomplete turns, where the speaker stopped midstream,

slash units are marked as incomplete (see example (10)). Fillers can also make up a turn of

its own, even when interrupting another turn (see example (11)). For further details on slah

units and disfluency annotations, refer to Meteer and Taylor (1995).

The Penn Treebank3 syntactic release is a subset of 650 conversations which contain full

syntactic parses. For further details on the syntactic annotations see Marcus et al. (1993).

(9) A : Yeah, / right. /

B : Yeah. / Kind of jack of all trades, master of none. /

A : I went there, / we have Home Depot out here. /

From Meteer and Taylor (1995)

(10) A : ... I don’t thing they’re always necessary. / If you put enough patience into, -/

B : – with it / {C and, } {F um, } -/

From Meteer and Taylor (1995)

(11) A : he’s pretty good. / He stays out of the street. / {C and, } {F uh, } if I catch

him I call him / {C and } he comes back. / {D so, } [ he, + he’s ] pretty good about

taking to commands [ and + –

B : {F um } /

A : – abd ] things. /

From Meteer and Taylor (1995)
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Mississippi State

The Mississippi State transcripts, called MS-state transcripts, are a clean up project that

hand checked and corrected the transcripts from the 1126 Treebank3 conversations. The MS-

state transcripts are more accurate than the Treebank3 transcripts, and they contain word

alignments with the audio file for each word beginning and end. The word alignments were

made automatically with partial manual correction.

5.5 Summary

To summarize, the two corpora present different advantages. As previously mentioned, I

use a combination of ATAROS and Switchboard to answer different questions in this disser-

tation, depending on what advantages they present. When looking at stance, I exclusively

look at ATAROS since it is annotated for stance, while for investigating transcription errors

I exclusively use Switchboard because it has different transcription versions. I mention in

each chapter which corpus is used, and whether a combination of both is used. I also use va-

rious subsets of the two corpora depending on the research question of the chapter, and each

subset contains different counts of um and uh. The subset of the corpus, the total number

of markers, and the motivations for using the corpus or the subset are all specified in each

chapter.

In addition to presenting different advantages, cross-corpora studies shed light on the need

for more universal transcriptions and annotations that would allow more reliable compari-

sons, and that would increase the robustness of findings. Furthermore, cross-corpora studies

are important because they inform us on the metastructure of discourse across a variety of

activities that help us better understand the mechanisms of spontaneous speech.
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Chapter 6

DISTRIBUTION OF UM AND UH IN ATAROS AND
SWITCHBOARD

6.1 Introduction

One of the main goals of this dissertation is to find out whether um and uh are sepa-

rate entities. To answer this question, I first explore in this chapter how the two markers

vary depending on various discourse variables to determine if they are used interchangeably

and in systematic ways. I explore their distribution in two corpora : the ATAROS corpus

and the Switchboard corpus. The goal of using two corpora is to see if the distribution of

um and uh extends across different speech activities. In ATAROS, pairs of strangers from

the Pacific Northwest collaborate on tasks that were designed to elicit different degrees of

speaker involvement, while Switchboard consists of telephone conversations on a given topic

between strangers where dialect is not constrained. Spontaneous speech consists of a num-

ber of categories and aspects that vary depending on the speaker’s activity, such as daily

conversations, arguments, collaborations, expression of opinions and feelings, story telling,

etc. The two corpora used in this study are not intended to be representative of all types of

spontaneous speech, but rather to represent two variants of spontaneous speech.

The two corpora differ in terms of activity, format, and transcription conventions. I am

therefore not able to compare all variables across the two corpora. The variables present in

ATAROS and Switchboard are speaker and dyad gender. Speaker gender corresponds to the

gender of a given speaker while dyad gender corresponds to the gender of two speakers in a

conversation, i.e. speaker and listener. In addition I also look at three corpus specific variables.

The variable specific to ATAROS is speaker involvement, determined by the speech task, and

the variables specific to Switchboard are the naturalness of the conversation and speaker
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participation (i.e., the number of conversations speakers participated in). The dependent

variables are the rates and the duration of um and uh.

Based on findings from the literature and on qualitative observations of the two data

sets, I predict the following hypotheses : H1) um and uh are separate entities and their

distribution differs depending on discourse variables ; and H2) the distribution trends of the

two markers are similar across the two corpora.

The second section of this chapter summarizes a few key features of the two corpora used

in this analysis. The analysis is divided into two sections, one for each corpus. Section 6.3

looks at how the rates and the duration of um and uh vary depending on speaker gender,

task, and dyad gender in the ATAROS corpus. Section 6.4 investigates the effects of speaker

and dyad gender, naturalness, and speaker participation in the Switchboard corpus, and

section 6.5 summarizes the results and discusses the trends across the two data sets.

6.2 Methodology

6.2.1 ATAROS

ATAROS is a corpus designed to look at the acoustic signal of stance-taking with high-

quality audio recordings and unscripted conversations between dyads (groups of two spea-

kers). The subset used here contains 64,352 words. Certain conversations were discarded due

to transcription or recording issues.

One of the interesting features of ATAROS is that it allows for investigation of speaker

involvement. Speaker involvement is determined by the task the speakers are performing

during the recording. Each task in the corpus is designed to elicit a certain degree of invol-

vement from the speakers. In this study I use the Inventory Task (IT) and the Budget Task

(BT) because they respectively elicit the lowest and highest degrees of involvement (Freeman

et al., 2014b). For more information on the corpus design, the speakers, the transcribers and

the measurements, see section 5.3 in Chapter 5.
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6.2.2 Switchboard

The version of the Switchboard corpus used in this experiment is the Mississippi State

transcripts, a hand checked and corrected version of the Treebank3 transcripts. This data set

consists of 1,443,003 words across 1126 conversations between 384 speakers who participated

in 1 to 25 conversations.

One of the advantages of the Switchboard corpus is that transcribers assigned a natural-

ness score on a scale 1-5 to indicate whether the transcriber finds the conversation natural

between the two speakers (Godfrey and Holliman, 1993). A low naturalness score indicates

that a conversation sounds natural and a high score means that it sounds artificial. The ave-

rage naturalness score over the 1126 transcriptions used in this experiment is 1.44 (against

1.48 reported in (Godfrey et al., 1992)), which means that overall the conversations are rated

as very natural. For more information on the corpus design, the speakers, the transcribers

and the measurements, see section 5.4 in Chapter 5.

6.3 The distribution of um and uh in ATAROS

The data for this experiment consists of 64,352 words, 29,920 in the Inventory Task (IT)

and 34,432 in the Budget Task (BT). The total speaking time for the Inventory Task is

8,292 s., with 4,550 s. for women and 3,742.9 s. for men. The total speaking time for the

Budget Task is 9,580 s. with 5,482.5 s. for women and 4,097.8 s. for men (see Table 6.1).

The speaking time duration is computed by excluding intervals marked as silence (sp) which

represent pauses greater than 500ms. Speaking time duration is greater in the Budget Task

than in the Inventory Task, which is not surprising since the Budget Task has more words

than the Inventory Task. The average Inventory Task duration is 243 s. with a range of

67-448 s. and the average Budget Task duration is 281 s. with a range of 55-578 s. Both

the average duration and the duration range are greater in the Budget Task than in the

Inventory Task. The average speaking time per speaker across task and gender is 262 s. but

varies from 92-513 s.. The average speaking time for men is 249 s. in the IT and 273 s. in
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the BT, and the average speaking time for women is 239 s. in the IT and 288 s. in the BT.

In the Inventory Task women spoke 15,718 words and men 14,202 words, and in the

Budget Task women spoke 19,194 words and men 15,238 words. Table 6.1 summarizes the

total speaking time and the total amount of words for each gender in each task. However, 19

women vs. 15 men participated in the recordings. Therefore, I look at the average number of

word across speakers for each gender as opposed to the total number of words to determine

if a gender speaks more than the other. Figure 6.1 plots the effect of task and gender on

the average number of words (left) and on the average speaking time (right) across speakers.

The right-side figures shows that on average, women speak longer than men in both tasks,

and to a greater extent in the BT, although gender does not have a significant effect (p >

0.05). The left-side figure, however, shows that even though women speak longer than men

in both tasks, men speak more words than women (p > 0.05), and to a greater extent in the

BT. However, the significance test shows that word duration is significantly longer for for

women (287 ms.) than for men (266 ms.) (p < 0.001), which could explain why on average

women speak longer than men but with less words. These results show the importance of

looking at the effect of gender and task on speaking time and number of words spoken, and

also show the importance to look at the two measures because they take different aspects

into account.
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Table 6.1: Total speaking time and total number of words for each task (IT and BT) and

each gender (women and men) in the ATAROS corpus

task gender total time (s.) total words

IT W 4,550 15,718

IT M 3,742.9 14,202

BT W 5,482.5 19,194

BT M 4,097.8 15,238

Figure 6.1: Average number of words spoken (left) and average speaking time in s. (right)

across speakers for each gender and each task

Correspondingly, Freeman (2015) reports that the task length is less variable for the

Inventory Task. Freeman’s results show that speaking rates, computed in vowels per second
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(vps), are significantly faster in the Budget task than in the Inventory Task, and that men

have a slightly higher rate than women in both tasks. Additional results show that speaking

time varies more when speakers are more involved (i.e., in the BT) and varies more for women

than for men.

Speaking time and total number of words show that men and women speak more in

the Budget Task than in the Inventory Task. Therefore, since the Budget Task elicits a

higher degree of speaker involvement, these measures suggest that speaking time increases

as speaker involvement increases.

6.3.1 Task and Gender effect on the rate of um and uh in ATAROS

The corpus used in this study contains 1,065 tokens of the markers um and uh, which

represents 1.65% of words in the corpus (64,352 words in total), with 595 ums (0.92% of

words in the corpus) and 470 uhs (0.73% of words in the corpus). The total number of words

is calculated from the word tier of each speaker for each task (17 TextGrids and 34 word

tiers, one per speaker) by adding the total number of intervals not marked as silence (pauses

greater than 500ms). The proportions of um and uh are calculated within gender and task

in order to look at the effect of task and gender on the distribution of the two markers. The

proportions are computed by adding the total number of occurrences of a given token (um

or uh) divided by the total number of words spoken in each task by each gender to normalize

the counts. Table 6.2 summarizes the number of tokens in each task for each gender. Results

show that in both tasks women use more ums (0.88%) than uhs (0.54%) whereas men have

similar proportions of ums and uhs (0.97% vs. 0.96%). Results also show that men generally

use more ums and uhs (1.93%) than women (1.42%) across task. According to the frequency

of um and uh in the two different tasks, proportions show that as speaker involvement

increases (from the Inventory to the Budget Task), women use .08% more ums and 0.21%

less uhs whereas men use 0.39% more ums and 0.37% more uhs. When the two categories of

markers are collapsed, results show that men tend to use more markers (1.54 to 2.30%) as

involvement increases whereas women tend to use fewer markers (1.49 to 1.36%).
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Table 6.2: Frequency of um and uh for each gender and each task in the ATAROS corpus

gender task um uh total words

W IT 132 (0.84%) 102 (0.65%) 15,718

W BT 176 (0.92%) 85 (0.44%) 19,194

W Total 308 (0.88%) 187 ((0.54%) 34,912

M IT 110 (0.77%) 109 (0.77%) 14,202

M BT 177 (1.16%) 174 (1.14%) 15,238

M Total 287 (0.97%) 283 (0.96%) 29,440

These results indicate substantial differences in the frequency distribution of um and uh

for women, but not men. In addition, the results suggest that we should look at the markers

individually, since degree of involvement (task) shows a different effect between um and uh

for women with an inverse tendency, but not for men. These results corroborate findings

from Freeman (2015) where men use 1/3 more disfluencies in the Budget Task than in the

Inventory Task, based on measurements of um and uh, truncated words and repetitions

between speakers per speech span.

6.3.2 Marker duration in ATAROS

Word duration is significantly longer for women than for men (p < 0.001). The average

word across the corpus is 287 ms. for women against 266 ms. for men. The average duration of

any word is 277 ms. in the Inventory Task and 278 ms. in the Budget Task, with no significant

difference reported by the t-test (p > 0.05). The duration of any word is measured across

all words that are not um or uh. Duration analyses of um and uh show that both markers

are shorter in the Budget Task, with an average of 484ms for um and 335ms for uh, against

539ms for um and 347ms for uh in the Inventory Task, illustrated in Table 6.3. The average

duration of um varies more across task than for uh and the significance test for task effect



53

over token duration reports a significant effect for um (p < 0.01) but not for uh (p > 0.05).

Duration results also show that ums are longer than uhs, which is expected since um has

two phones against one for uh. Figure 6.2 plots the duration of um and uh for each task and

gender. The effect of task is greater for men than for women, and is greater for um than for

uh. The significance test for the effect of task on word duration within gender shows that for

men, involvement significantly affects token duration for um (p < 0.01) but not for uh (p >

0.05). Hence, for men ums are significantly shorter in the Budget Task than in the Inventory

Task. The test reports no significant difference in token duration between tasks for women

(p > 0.05). Furthermore, um is longer for men (520 ms.) than for women (494 ms.), while uh

is longer for women (343 ms.) than for men (339 ms.), but the difference is not significant

for either marker.

Duration results are consistent with results from Freeman (2015), that show speaking

rates are significantly faster in the Budget task than in the Inventory Task. Um and uh are

both shorter in the Budget task than in the Inventory task, and task and gender have a

greater effect on um than uh.

Table 6.3: Average word duration in ms for each task in the ATAROS corpus

task um uh any word

IT 539 347 277

BT 484 335 278

6.3.3 Dyad Effect in ATAROS

This subsection investigates the effect of dyad gender (i.e. the gender of a pair of speakers)

on the rate and the duration of um and uh. Because raw counts of um and uh across speakers

show a wide range of variability (see columns "um range" and "uh range" in Tables 6.4 and

6.5), the raw counts are normalized by computing the average of the sum of um and uh
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Figure 6.2: Task effect on duration of um and uh for each gender in the ATAROS corpus

for speakers, divided by the number of words they speak. The rates allow comparing the

production of um and uh compared to how much a speaker actually speaks. Both tables

summarize the number of dyads for each gender combination as well as the mean, range, and

average rate for each marker. Note that the mixed-gender dyad is represented twice, once

for each direction ; men talking to women (M-W) and women talking to men (W-M). Table

6.4 shows the rate of um is 2 times bigger and more variable in mixed-gender dyads than

in same-gender dyads (see column um rate). Table 6.5 shows that speakers use more uhs in

men-men dyads (M-M), as indicated by the rate column, and that there is more variability

in the use of uh than in the other dyads (see uh range column). However, it is important

to note that there are only three M-M days, and that more data is needed to confirm this

trend, especially due to high inter-speaker variability in the use of markers.
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Table 6.4: Average number, range, and rate of um for each dyad gender in the ATAROS

corpus

dyad gender dyad quantity um mean um range um rate

M-W 9 24 1-87 0.01

W-M 9 23 5-72 0.012

M-M 3 11 1-22 0.006

W-W 5 10 4-35 0.006

Table 6.5: Average number, range, and rate of uh for each dyad gender in the ATAROS

corpus

dyad gender dyad quantity uh mean uh range uh rate

M-W 9 13 1-31 0.006

W-M 9 10 3-24 0.007

M-M 3 27 14-56 0.014

W-W 5 9.5 2-23 0.005

Figure 6.3 plots the effect of dyad gender on the rates (left) and on the duration (right) of

um and uh. The plots show the average across speakers within each dyad, and the error bars

plot the average plus and minus the standard deviation. The left-side plot echoes Tables 6.4

and 6.5, and shows the high rate of variability across speakers. The right-side plot summarizes

the average duration of the two markers across speakers grouped by dyad, and shows that

there is more variation in the duration of um than in the duration of uh. The longest ums

(0.663 s.) are in men-men dayds while the shortest ones (0.475 s.) are used in men-women

dyads, and the longest uhs (0.375 s.) are used in women-men dyads while the shortest ones

(0.312 s.) are used in women-women dyads. Similarly to the left-side plot, the error bars show
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Figure 6.3: Effect of dyad gender on the rates (left) and on the duration (right) in s. of um

and uh in the ATAROS corpus

the variability in the duration of the two markers across speakers for each dyad. There is a

lot of overlap across the dyad categories for both marker rates and duration. This means that

dyad effect is highly variable, most likely resulting from the high variability in the speakers’

production of um and uh, and the speaking rate at which they speak depending on the task

or the gender.

One of the main conclusions from this analysis is that there is a high variability across

speakers in terms of use of um and uh. Even though there is a lot of variability in the data,

the results suggest that speakers use more ums in mixed-gender dyads than in same-gender

dyads. In the case of uh, the results indicate that the highest and lowest rates of markers are

found in same-gender dyads. These findings require further investigation due to the small

number of same-gender dyads, especially men-men days. Furthermore, there is no systematic

gender dyad effect on the duration of the two markers. Consistent with other results from
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this study, findings from this experiment on the ATAROS corpus show that um and uh are

affected in different ways. Note that these results differ from results on the rate of disfluencies

in Shriberg (2001) that show men use more disfluencies than women, and speakers use more

disfluencies with men listeners than with women listeners. These discrepencies may result

from the fact that the rate of um and uh in dyads differ depending on the speech activity.

Furthermore, these results could indicate that filled pauses do not behave like all disfluencies,

and that looking at them separately can lead to different results.

6.4 The distribution of um and uh in Switchboard

I first look at the general distribution and duration of words in the corpus in order to get

a baseline to compare how um and uh behave relative to other words in the corpus, before

looking at the effect of gender, naturalness and speaker participation on the rates and the

duration of um and uh.

Conversation length is measured in two ways. One way is by looking at the number of

words spoken either in a conversation, within gender, or within speaker. The other way is to

measure the duration by adding the speaking time of speakers (i.e., ignoring pauses) within

conversation, gender, or speaker.

6.4.1 Conversation length and duration of all words in Switchboard

The data for this part of the experiment consist of a total of 1,454,919 words across 1,125

conversations with 26,821 unique words. The whole data set contains 1,456,006 words and

1126 conversations but 1 conversation is excluded (1087 words) due to lacking information

about a speaker. The average number of words per conversation is 1,293.3 with a minimum

of 220 and a maximum of 2,655 words. The average number of words per speaker is 646.6,

with a minimum of 34 and a maximum of 1,845 words. Men spoke a total of 644,300 words,

with an average of 626.8 words per conversation, a minimum of 87 and a maximum of 1,701.

Women spoke 810,619 words in total, 663.4 on average, 34 minimum and 1,845 maximum.

These numbers, summarized in Table 6.6, show that there is a large range of variation in
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the number of words spoken per conversation. The range of words spoken per conversation

is 2,435 words, with a range greater for women (1,811) than for men (1,614) by about 10%.

These numbers indicate that there is more variability in terms of spoken words by women

than by men, and that women spoke more than men, respectively 810,619 vs. 644,300 words.

Table 6.6: Number of words across the Switchboard corpus, per conversation, speaker, and

gender

conversation speaker men women

average 1,293.3 646.6 626.8 663.4

min 220 34 87 34

max 2,655 1,845 1,701 1,845

Table 6.7 summarizes the speaking time per conversation, speaker and gender. Speaking

time is computed by adding the duration of words spoken in a conversation, by speaker,

or by gender, therefore excluding pauses and silences. The total duration of speaking time

across the corpus is 371,098 s. (103.1 hours or 6,185 min). The average speaking duration is

329.9 s. (5.5 min) per conversation and 164.9 s. (2.7 min) per speaker. The total speaking

time for men is 160,475.1 s. (44.6 hours or 2,674.6 min), with 156.1 s. (2.6 min) on average,

22.8 s. minimum and 406.7 s. (6.8 min) for maximum speaking time. The total speaking time

for women is 210,622.9 s. (58.5 hours or 3,510.4 min), with 172.4 s. (2.9 min) on average,

12.4 s. minimum and 425.8 s. (7.1 min) for maximum speaking time. The average speaking

time and the speaking time range show that women and men speak similar amounts of time

per conversation, 2.9 min vs. 2.6 min respectively, and with a similar amount of variability.

The average duration of words in the corpus is 255 ms on average across all conversations.

Words are significantly shorter for men than for women (249 ms vs 259 ms) as shown by
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Table 6.7: Speaking time in s. across the Switchboard corpus, per conversation, speaker,

and gender

conversation speaker men women

total 371,098 371,098 160,475.1 210,622.9

average 329.9 164.9 156.1 172.4

min 66 12.4 22.8 12.4

max 630.6 425.8 406.7 425.8

the t-test results (p < 0.001). The longest words across the corpus are 4.221 s. and 4.073 s.

because of laughter accompanying the words yeah and government. I purposefully exclude

minimums and maximums for duration since the shortest words are truncated words, and

the longest ones have laughter or other para-linguistic features.

Table 6.8: Average duration in ms of words per conversation and gender

conversation men women

average 255 249 259

6.4.2 Um and uh across conversations, speakers and gender in Switchboard

In total, there are 10,784 ums in the corpus, and 30,187 uhs. Um therefore represents

0.74% of all words and uh 2.07%. There are therefore 2.8 times more uhs than ums in this

data set, which means that speakers use uh almost three times more than um in this corpus.
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The marker um is present in 1,076 conversations and uh is found is 1,123 conversations.

There are on average 10 ums per conversation with a maximum of 53, while there are on

average 26.8 uhs per conversation with a maximum of 103 uhs, which is expected since there

are 2.9 more uhs than ums. Similarly, speakers use on average 3 times more uhs than ums.

What is more interesting, however, is that women use more ums than men (0.84% vs. 0.62%

respectively) while men use more uhs than women (2.76% vs. 1.53% respectively), see Table

6.9. The percentages represent the proportions of ums and uhs spoken compared to the total

number of words (810,619 words in total for women, and 644,300 words in total for men).

Table 6.10 shows the average duration of the two markers within conversation, speaker

and gender. Results show that on average, the two markers are significantly shorter for

women than men (p < 0.001). These results are interesting since on average word duration

is longer for women than for men, which means that um and uh behave differently than the

average word.

Table 6.9: Number of ums and uhs across the Switchboard corpus, per conversation, speaker,

and gender

conversation speaker men women

total um 10,784 10,784 4,010 (0.62%) 6,774 (0.84%)

average um 10 5.8 5.2 6.3

max um 53 53 53 41

total uh 30,187 30,187 17,761 (2.76%) 12,426 (1.53%)

average uh 26.8 13.9 17.6 10.7

max uh 103 92 79 92
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Table 6.10: Duration in s. of um and uh across the Switchboard corpus, per conversation,

speaker, and gender

conversation speaker men women

average duration of um 0.428 0.428 0.435 0.423

average duration of uh 0.304 0.300 0.302 0.299

6.4.3 Dyad gender in Switchboard

Figure 6.4 plots the average rates (left) and the average duration (right) for each dyad

of the two markers um and uh depending on dyad gender. The average rate results show

that um and uh are affected differently by dyad gender, and unlike for other variables, the

rates of uh vary more than for um with regards to dyad gender. The lowest and highest

rates of uh are for same-gender dyads, and there is very little difference for mixed-gender

dyads. The lowest rates are between women speakers and listeners (W-W) and the highest

rates are between men speakers and listeners (M-M). The rates of um are inverse from uh.

The largest difference is between same-gender dyads, the lowest rates are between men-men

dyads (M-M) and the highest rates are between women-women dyads (W-W). The right side

plot shows the average duration of each marker depending on dyad gender and shows little

to no variation for either marker. The error bars show the mean plus and minus the standard

variation for each dyad, and show a homogeneous variability for each marker and each dyad.

These results indicate that dyad gender does not affect the duration of um and uh but that

it affects the production of uh more than um, with an inverse effect for the two markers.



62

Figure 6.4: Effect of dyad gender on the rates (left) and on the duration (right) in s. of um

and uh in the Switchboard corpus

6.4.4 Naturalness of the conversation in Switchboard

Since naturalness is a rating of the conversation, I only look at the effect of naturalness at

the conversation level. Note that only 1 conversation has the rating 5, which means that the

conversation sounds artificial. Table 6.11 summarizes the number of conversations for each

naturalness rating, and shows that more than half of the conversations are rated as natural.

Table 6.11: Number of conversations for each naturalness rating (1 - natural ; 5 - artificial)

in the Switchboard corpus

naturalness 1 2 3 4 5

number of conversations 754 260 96 14 1
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Figure 6.5 illustrates the effects of naturalness ratings on the average number of words

spoken per conversation (left) and on the average speaking time per conversation (right).

In both cases, conversations rated with level 2 of naturalness (i.e., rather natural) correlate

with the highest averages of words spoken and speaking time. The overall trend shows that

longer conversations, both in terms of words spoken and speaking duration, are rated more

natural than shorter ones, with a peak for the second level of naturalness. It is important

to remember however that there are only 14 conversations with a naturalness rating of 4,

and 1 with a rating of 5 (see 6.11). It is not surprising naturalness has a similar effect on

the average number of words and the average speaking time per conversation since the two

measures are two ways of measuring conversation length.

Figure 6.5: Effect of naturalness ratings on the average number of words and the average

speaking time in s. per conversation in the Switchboard corpus

Figure 6.6 plots the effects of naturalness ratings on the average duration (left) and the

average rates (right) of um and uh per conversation. Even though ratings 4 and 5 are plotted,

since only 1 conversation has a rating of 5 and only 14 have a rating of 4, I only consider

ratings 1, 2, and 3 for this section. Results for ratings between 1 and 3 show the average
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marker’s duration and rate have similar trends. Naturalness rating between 1 and 3 do not

affect the marker’s duration. Similarly to other words, conversations with naturalness rating

2 have the highest rates of markers. The rate of uh is slightly more affected than um. Even

though there is an inverse tendency for the effect of naturalness rating 5 on the rate of the two

markers, I cannot derive any conclusion since this is only representative of 1 conversation.

Figure 6.6: Effect of naturalness ratings on the average number and on the duration of

tokens in s. per conversation in the Switchboard corpus

6.4.5 Speaker participation in Switchboard

A total of 383 speakers participated in the 1125 conversations, with a range of 1 to 25

conversations per speaker, an average of 5.9 conversations per speaker and a maximum of

25 conversations. Since this variable is speaker related, the effect of speaker participation

is only investigated at the speaker level. About 1/3 of the speakers participated in 1 or 2

conversations, about 1/2 participated in 5 or less, and only 2.3% of participants participated

in more than 20 conversations.

Figure 6.7 shows how speaker participation affects conversation length for both number
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of words (left) and speaking time (right). The modeling function used for the regression

line is loess, with a span of 0.5, and the grey area shows the 0.95 confidence interval. The

largest increase in conversation length is between 2 and 7 conversations per speaker. These

results show that conversation length does not vary much depending on speaker participation,

especially compared the other variables used in this experiment (viz., speaker, gender and,

naturalness).

Figure 6.8 plots the effect of speaker participation on the average rate (left) and duration

(right) of the two markers with the same settings as Figure 6.7. Results show a slight increase

in the number of tokens used by speakers when they participate in 3 to 13 conversations for

uh and 5 to 15 for um, against 2 to 7 conversations for other words. Results also show no

systematic trend in terms of markers’ duration when speaker participation increases. Results

for the production of um and uh are rather similar to results for other words, which means

that they behave similarly to other words in this corpus with regards to speaker participation.

Finally, it is important to note that speaker participation does not seem to affect um and uh

in different ways, contrarily to other variables analyzed in this chapter.

Figure 6.7: Effect of speaker participation in the Switchboard corpus on the average number

of words and the average speaking time (in s.) per speaker
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Figure 6.8: Effect of speaker participation in the Switchboard corpus on the average rate

and duration (in s.) of um and uh

6.5 Summary and discussion

In this chapter I looked at which factors impact the rate and the duration of um and uh

to find out whether they vary in systematic and similar ways. The findings from this analysis

will serve as a baseline for further analyses on the two corpora. In this section, I summarize

the results and compare them to see if the results carry across task (i.e., corpora).

Even though the two corpora used in this analysis consist of spontaneous spoken speech of

American English, they also differ in several dimensions (dialect, time of recording, activity,

topics...). These two corpora therefore only represent some aspects of spontaneous spoken

speech, corresponding to different activities. The ATAROS corpus represents spontaneous

speech in collaborative tasks for speakers from the Pacific Northwest who do not know

each other, while Switchboard is representative of spontaneous phone conversations between

strangers from various dialects.

There are 595 ums and 470 uhs in the ATAROS corpus, which respectively represent

0.92% and 0.73% of words in the corpus (see section 6.3.1). In comparison, speakers use

a total of 10,784 ums and 30,187 uhs in Switchboard, which respectively represent 0.74%
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and 2.07% of words (see section 6.4.2). The relative proportions of um vs. uh are inverse in

the two corpora, and the difference in terms of proportions between the two markers is 7

times bigger in Switchboard than in ATAROS. The differences in the production of the two

markers indicate that as far as the two corpora are concerned, there is no systematic trend

in the production of the two markers.

Results on gender in ATAROS show that on average women speak for longer than men,

but men use more words than women. Both genders speak for longer and with more words

in the Budget Task (BT) (task that elicits more speaker involvement), and the difference

between men and women is greater in the BT than in the Inventory task (see section 6.3). In

Switchboard, women speak more and for longer than men, with more variability (see section

6.4.1). It is interesting to see that in both datasets women speak for longer than men because

it goes against common assumptions that men speak more than women.

Duration results in both ATAROS and Switchboard show that words are significantly

shorter for men than for women. However, in Switchboard, um and uh are significantly

shorter for women than men, and to a larger extent for um than for uh (see section 6.4.2).

Similarly, in ATAROS, um is also shorter for women (see section 6.3.2). This indicates that

um and uh in Switchboard and um in ATAROS do not behave like other words with regards

to duration and gender since they follow different patterns than other words. Furthermore,

in ATAROS, um and uh are shorter in the Budget Task, and task has a significant effect on

the duration of um for men. This suggests that degree of involvement affects the duration of

um more than uh, and that it is greater for men than women.

Results on the rates of the two markers depending on the speaker gender in ATAROS

indicate that women and men differ in the production of um and uh (see section 6.3.1). Task

has a stronger effect on the rate of the two markers in men than women, which indicates that

when speaker involvement changes, men are more susceptible to change their production of

um and uh than women. In addition, task has a different effect on the production of markers

for the two genders since men use more ums and uhs when involvement increases, whereas

women use more ums, but use less uhs. Overall, across tasks, the production of um for women
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represents 0.88% of words vs. 0.54% for uh, while um represents 0.97% of words for men,

and uh 0.96%. In comparison, in Switchboard, women use more ums than men (0.84% vs.

0.62% respectively) while men use more uhs than women (2.76% vs. 1.53% respectively) (see

section 6.4.2). Both genders use more uhs than ums, which is not surprising since speakers

use on average three times more uhs than ums across Switchboard. These results suggest

that there is no systematic trend in the use of the two markers across the two datasets based

on speaker gender.

The results for dyad gender in ATAROS indicate that speakers use more ums in mixed-

gender dyads than in same-gender dyads, and that speakers use more uhs in men-men dyads

(see section 6.3.3). However, since there are fewer same-gender dyads, especially for men-men

dyads, these findings need to be further investigated. Dyad gender does not have a systematic

effect on the duration of the two markers. The longest ums on average are used between men-

men dyads and the shortest ones are used between men-women dyads, while the longest uhs

are used between women-men dyads and the shortest ones between women-women dyads.

In Switchboard, dyad gender does not affect the duration of the markers, but it affects the

production of um and uh in different trends (see section 6.4.3). Unlike other factors, dyad

gender affects the rate of uh to a greater extent than the rate of um.

Furthermore, in Switchboard, there is no correlation between the duration of um and uh

and naturalness ratings between 1 and 3 (4 and 5 are dismissed due to too few conversations).

Similarly to other words, the highest rates of markers are found in conversations with a

naturalness rating of 2, and as naturalness decreases (rating increases), the markers’ rates

decrease as well. Correspondingly to other factors, um is affected more than uh since there is

a greater correlation between naturalness ratings (1-3) and the production of um compared

to uh. Finally, speaker participation does not seem to have an effect on the rate or the

duration of the two markers.

To conclude, most factors affect the rate and the duration of um and uh, but in different

trends depending on the corpus, and therefore depending on the speech activity. However, the

main conclusion is that um and uh have different distributions and duration cues, whether
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in ATAROS or in Switchboard, and that most factors have a greater effect on um than on

uh.

These findings, along with other studies (see section 3.1.6 in Chapter 2), indicate that

the two markers be treated as two distinct entities. Furthermore, research should control for

talker and listener gender, as well as the degree of involvement of the speaker, especially

when looking at the duration and the rate of um and uh. In the next experiment (Chapter 7)

I investigate whether they are perceived in similar ways by transcribers of the Switchboard

corpus, and whether they behave like other words in terms of transcription errors.
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Chapter 7

TRANSCRIPTION ERRORS OF UM AND UH IN
SWITCHBOARD

7.1 Introduction

In this chapter I explore the factors that influence the production of um and uh, as well

as the transcription errors made on the two markers in the Switchboard corpus. The main

goals of this experiment are to analyze whether um and uh behave like other words in terms

of saliency, and to find out the factors and the environments that effect transcription errors

of the two markers. In order to look at transcription errors, I compare two transcript versions

of the Switchboard Corpus. The original transcript (Treebank3) contains transcription errors

whereas the more recent transcript (Mississippi State) is a revised and corrected version of

the old one. I am interested in transcription differences concerning um and uh between the

two transcript versions to find out if there are systematic transcription errors, and if there

are correspondences between their perception and specific linguistic structures.

In section 7.2 I review the methodology used for this experiment regarding the data, the

data processing and the analysis. In section 7.3 I present the overall distribution of the data in

order to get a baseline for the rest of the analysis. Sections 7.4 and 7.5 focus on transcription

errors. In section 7.4 I look at substitutions in the corpus and in section 7.5 I look at missed

and hallucinated words. Finally, in section 7.6 I look at the effect of paralinguistic factors on

the production of um and uh, and on the type and the number of transcription errors.

7.1.1 Goals

The goals of this experiment are to find out whether transcribers made transcription

errors at the same rate for um and uh, and if um and uh were systematically substituted,
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missed or hallucinated (inserted) in the original transcript depending on various variables

such as transcriber, transcription difficulty, conversation duration, conversation naturalness

or variables that relate to the speaker.

7.1.2 Hypotheses

Based on findings from the literature and previous experiments in the frame of this study,

as well as observations of the Switchboard transcript versions, I predict the following general

hypotheses to be true : H1) transcribers make less errors in transcribing lexical words than

function words or discourse markers and um and uh ; H2) transcribers make more errors

when transcribing uh than um ; H3) um and uh are more often missed than hallucinated in

the original transcript ; H4) numerous factors have an effect on the production of um and uh

and on the type and number of transcription errors made on the markers ; and finally, H5)

um and uh do not behave like other words or like each other with regards to production and

transcription errors. These hypotheses suggest that not only um and uh behave differently

from other words in the corpus, they also suggest the two markers behave differently from

each other since they co-vary with different discourse variables. If there are more errors made

on the transcription of uh than um, this would also suggests that um is more salient than

uh, and that um is more likely to play more discourse functions.

7.2 Methodology

7.2.1 Data

In this experiment I compare two transcript versions of the Switchboard corpus : the

Treebank3 transcripts and the Mississippi State transcripts abbreviated MS-State or MS

transcripts. Treebank3 is the original transcription that contain errors, whereas the MS-

State transcripts are the more recent version with revised transcriptions of the Treebank3

transcripts. The MS-State transcripts are therefore the gold standard for this experiment,

and serve as reference when comparing transcript versions. The two transcripts used in this
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analysis only consist of text transcriptions of the conversations. Therefore, I use the term

Treebank3 to refer to the transcription of the conversations as opposed to the syntactic

annotations. For more information about the Treebank3 and the MS-State transcripts, see

section 5.4 in Chapter 5.

7.2.2 Transcription errors

Material for this experiment consists of 932 hand annotated alignments between Tree-

bank3 and MS-State transcription versions, annotated by the MS-State team. For each file

speaker and other meta data is extracted and stored in a database, which can then be linked

to the alignment. The alignments contain speaker turns, speech units called slash units, and

transcription error types. The transcription differences between the two transcript versions

are referred to as transcription errors, classified in three categories : missed, hallucinated

and substituted words.

Words not present in the original version (Treebank3) but transcribed in the corrected

version (MS-State) are marked as missed or M. Example (1) illustrates the notation for missed

words {{DD uh}} that signals the marker uh was missing from the Treebank3 transcript.

Words not present in the revised version (MS-State) but present in the original version

(Treebank3) are marked as hallucinated or H. Example (2) illustrates the incorrect insertion

of the marker uh in the original transcript {{II uh }}, which means that it is not present

in the corrected transcript. Words replaced by other words between the two versions are

marked as substituted or S {{CC ...}}. Since the gold standard for this experiment is the

MS-State version of the transcripts, I only look at substitutions where the word from MS-

State is substituted but not the other way around. That is, I consider the token in the revised

transcripts as the true token, and the token from the original transcripts as the incorrect

one. The notation {{CC um | uh }} in example (3) means um is substituted by uh. That is,

um is incorrectly marked as uh in the Treebank3 transcripts as indicated by the corrected

transcripts (MsState).
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(1) A.7 you {{DD uh }} you are experienced i would say

From conversation sw2837

(2) B.106 when we ’ve taken things to the dump just the dump {{II uh }} that is uh you

know closest to us

From conversation sw3694

(3) A.61 but {{CC uh | um }} you know just like software is only given out to customers

From conversation sw2012

7.2.3 Counting conversation length

Conversation length is used as a measure of how much people spoke in a conversation.

This measure does not take speaking duration or conversation duration into account, but

rather the number of words spoken by each speaker in each file. This measurement is used

to establish the size of the conversation and how much a speaker spoke. For instance, it is

used to compute the rate of um and uh, or the rate of missed, hallucinated and substituted

words, compared to how much a speaker spoke.

Conversation length is computed for speaker utterance, called slash unit (see section

5.4.3 and Meteer and Taylor (1995) for more information), overall speaking quantity for

a speaker within a conversation, and for an entire conversation (how much two speakers

spoke). Conversation length is computed by counting the number of words in cleaned up

versions of the alignments. The cleaning up process includes removing speaker code and

transcription error annotations such as those illustrated in examples (1)-(3). Transcription

errors are taken into account in order to account for missed, hallucinated and substituted

words. Missed items (i.e., items omitted from Treebank3) and substitutions each count as

one token. Hallucinated items (i.e., items incorrectly added to Treebank3 and not present

in MS-State) count as 0. Overlapping speech is counted separately for each speaker because

even if it was spoken at the same time, it still counts towards the question of how much

speakers spoke. For tokenization purposes, contractions such as that ’s or aren ’t count as
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two words.

7.2.4 Word category

One of the goals of this experiment is to understand how um and uh behave not only

compared to other words, but also compared to words of the same category. I use four

word categories in this experiment : lexical words, function words, other words, and word

fragments. I use the NLTK (Bird et al., 2009) stopword list for English to determine which

words are function words. Note that word category is labeled from cleaned up conversation

transcripts that do not contain parses or POS tags to provide contextual information in case

of ambiguous cases. Since the primary focus of this experiment is not word category, any

lexical versus function ambiguity is handled by the stopword list. That is, if a word can

be either lexical or function depending on the context, the context is ignored and the word

category is determined by whether the word is listed in the stopword list. In addition to the

words listed in the NLTK stopwords, I added na from words such as wanna or gonna, the

negation nt, and contractions containing apostrophes, to match the word tokenization used

to process the data. Example (4) lists the elements added to the NLTK stopword list. The

category other handles words that function as backchannels, filled pauses, interjections, or

words that have a high token frequency and that are not typically recognized as function

words. These words are not listed in the NLTK stopword list and I do not consider them

as lexical words. This category contains words such as um, uh, or um-hum (see (5) for the

full list). I also created a category called fragments to deal with fragmented words (e.g., th-,

becau- or ne-). These words mainly behave like lexical words but some of them behave wildly

differently, such as I-, the most frequent fragmented word with a token frequency of 2292

in the 932 transcripts. Fragmented words mostly result from a difference in transcription

convention for the transcribers who did the MS-State transcript revisions. Finally, words

belonging to neither category are labeled lexical words. Several samples of the data were

used to verify this classification and to build the other category. Note that contractions count

as two separate words in the NLTK stopword list. Example (6) shows how the contraction
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he’s is categorized : the personal pronoun he and the auxiliary to be are separately labeled

function words.

(4) nt, na, ’s, n’t, ’re, ’m, ’ve, ’ll, ’d, ’, ’cause, ’em, don’t, that’s, they’re, it’s, isn’t, aren’t,

didn’t, you’ll, doesn’t, i’m, what’s, hadn’t, can’t, haven’t, you’re

(5) um, uh, um-hum, huh, huh-uh, hum, hum-um, uh-hum, uh-huh, yeah, yep, nope, nah,

oh, ah, hm, eh, ooh

(6) He’s planning = he (function) + s (function)

7.3 Overall description of the data

This section focuses on the general distribution of a few variables in the corpus, and

why we need to take them into account when looking at transcription errors in the corpus,

especially for um and uh.

Conversation length, as described in subsection 7.2.3 above, is a measure of how much a

caller speaks. This measure essentially consists in computing the total number of words as an

estimate of how much a speaker talks. The total amount of words across the 932 transcripts

is 1,337,322, with an average of 1,435 words per conversation, 717 words per speaker, and 7

words per utterance (slash unit).

Table 7.1 summarizes the average, standard deviation, minimum and maximum number of

words per conversation, speaker, and utterance (slash unit). All counts have high variability.

Conversation length varies from 231 to 2,787 words per conversation, and from 35 to 1,901

words per speaker within a conversation. This high rate of variability indicates the importance

of investigating the effect of conversation length on the rate of missed, hallucinated and

substituted ums and uhs in this corpus.
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Table 7.1: Count of words within conversation, speaker and utterance across the corpus

Conversation Speaker Utterance

mean 1,434.9 717.4 7

std dev 507.2 323.5 7

min 231 35 1

max 2,787 1,901 79

The ten most common words in the data are listed in Figure 7.1. Nine words out of 10 are

function word, and 1 word, uh, is from the other category. This illustrates the fact that the

most common words are function words, and that uh is among the 10 most frequently used

words. Similarly, Table 7.2 shows that function words are the most frequent words (56.5%).

The counts are computed by adding the token frequency of all words within the same word

category (lexical, function, other or fragment) and the percentages are computed by dividing

the total number of words in each word category (Count) by the total number of words

(1,337,322). Results show that fragmented words represent the smallest category in terms of

token frequency, other words represent 6.1% of all words, and lexical words represent over a

third of all words. These results also indicate that despite the fact that the category other

is very small (15 items), it still represents 6.1% of all words, which means that words from

this category have a high token frequency compared to lexical words for instance.
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Figure 7.1: Top ten words with the highest token frequency

Table 7.2: Counts and percentages of word frequency by word category

Word Category Count Percentage

lexical 488,966 36.6%

function 755,666 56.5%

other 81,775 6.1%

fragment 10,915 0.8%

It is also important to take into account the transcriber variable since transcription errors

are made by transcribers. In total, 31 transcribers transcribed the 932 Treebank3 conversa-

tions. Transcriber information is not available for the MS-State transcripts, which is the gold

standard for the comparison. I therefore consider one transcriber for the MS-State version

and I only take into account transcriber variability from the Treebank3 conversations. On
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average, transcribers transcribed 30 conversations, with a wide range of variation, since they

transcribed anywhere from 1 to 265 conversations. The mode is 1 transcription per transcri-

ber, with 5 transcribers out of 31 who transcribed only 1 file. This wide range of variability

indicates that the transcriber variable should be taken into account when investigating trans-

cription errors.

Another important variable is the variability of the two markers across the corpus. Dif-

ferent speakers use widely different rates of um and uh. The total number of ums is 9,113

and the total number of uhs is 25,495. These totals represent the number of markers in the

MS State transcripts. In other words, it excludes the number of hallucinated markers in

Treebank3. The total number of ums is 9,166 if we include the 53 hallucinated ums, and

the total number of uhs is 25,950 if we include the 455 hallucinated uhs. For the purpose

of this analysis, I only look at the totals excluding hallucinated words. There are 2.8 more

uhs than ums. Tables 7.3 and 7.4 summarize the rates of um and uh within conversation,

speaker, and utterance (slash unit), to illustrate the variability of the frequency of use of the

two markers. I decided to look at rates since we saw that there is a lot of variability in terms

of conversation length (see Table 7.1). The rates are computed by dividing the number of

ums and uhs by the number of words in the category, excluding all hallucinated words. For

instance, to get the average rate of um used in conversations, I computed the average across

all conversations of the number of ums used in a conversation divided by the number of words

in that same conversation. Tables 7.3 and 7.4 show that the average rate of the two markers

does not vary between conversation, speaker and utterance, but that the standard deviation

increases as the unit decreases in size. That is, there is more variability in the production

of um and uh in utterances than in speakers, and there is more variability in speakers than

in conversations. The mean rates show that the rates of uh are about twice the rates of

um, which is not surprising since there are 2.8 more uhs than ums. The standard deviations

shows that there is slightly more variability for uh than um, which is also expected since the

rates of uh are higher. The minimum and maximum rates show the use of um and uh varies

within all three categories, and the two markers vary within a similar extent. These results
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indicate that conversation, speaker, and utterance are important variables to consider in this

experiment since they contain different degree in variability in terms of marker production.

These results also indicate that despite the fact that the rates of uh are higher than for um,

the variability of the production of the two markers is similar.

Table 7.3: Rates of ums within conversation, speaker, and utterance

UM Conversation Speaker Utterance

mean 0.009 0.009 0.009

std dev 0.008 0.011 0.066

min 0 0 0

max 0.068 0.089 1

Table 7.4: Rates of uhs within conversation, speaker, and utterance

UH Conversation Speaker Utterance

mean 0.018 0.018 0.017

std dev 0.011 0.015 0.073

min 0 0 0

max 0.06 0.092 1

The speaker variable is also relevant. A total of 273 speakers participated in the 932

conversations, with a frequency ranging from 1 to 23 conversations per participant, a mean

of 6.8 conversations per participant, and a mode of 1 conversation per participant. About

16% of the speakers participated in only 1 conversation, about 40% participated in 5 or less

conversations, about 25% participated in 10 or more conversations, and only 2.2% participa-

ted in 20 or more conversations. The heterogeneity of the number of conversations completed
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by participants indicates that this factor should be taken into account in further analysis for

two main reasons. We saw that speakers produce different number of ums and uhs and spea-

kers who participate in more conversations might change speaker style over time and produce

a different amount of markers than participants who only completed 1 or few conversations.

The ratio of um and uh was computed by dividing the number of ums and uhs for

each speaker by how much the speaker spoke over the total number of conversations they

participated in. Figure 7.2 displays the distribution of the ratios of um and uh with the

smooth kernel density estimate and shows the ratio of um within speakers is less variable

than the ratio of uh.

Figure 7.2: Speaker variability in terms of the rates of um and uh

These results show the importance of taking into account variables such as conversation

length, word category, transcriber and speaker, since they affect the number of markers

and transcription errors present in a conversation. Furthermore, these first results show

the importance of using rates over raw counts to compensate for the variability coming

from transcribers when looking at transcription errors, and for the variability coming from

speakers when looking at the number of ums and uhs used in conversations.
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7.4 Substitutions of um and uh

This section of the experiment focuses on the substitutions of um and uh in the MS-

State transcripts by other words in the Treebank3 transcripts. That is, when a word was

mistakenly transcribed as another word in the original version. As for the entire experiment,

the MS-State transcripts are the reference when comparing the two transcript versions. The

goal of this section is therefore to investigate any systematic patterns of substitution of the

two markers between the two transcript versions to see if they tend to be substituted in any

systematic way.

I first look at the substitution trends of all substituted words across the 932 transcripts

to get a sense of how the two markers behave compared to other words. I also look at the

most common items that substitute other words. That is, words that replaced the true words.

Then I look at how um and uh behave compared to other words.

For the purpose of this experiment, I categorized three types of substitutions : 1) word

fragments (e.g., ha-, som-) ; 2) monosyllabic function words and ; 3) multisyllabic function

words as well as lexical words.

7.4.1 Results

There are 27,161 substitutions in the corpus of 6,933 kinds, across 2,401 different words

that get substituted (types). Note that 4 substitutions were removed from the initial set of

27,165 substitutions, due to 4 empty words. These words result from tokenization issues when

apostrophes are not followed by anything. On average, a type is replaced by 2.9 words, with

a maximum of 161 words (for ’s), and is replaced on average 11.3 times, with a maximum of

6,242 times (for um-hum). Across the 2,401 substituted words, 1,580 (66%) are only replaced

once and 2,229 (93%) are replaced ten times or less.

There are 136 (7%) types substituted more than 10 times that are not truncated words.

Of those, 95 are function words (including all forms of be and have, as well as words such as

um, uh or oh), and 41 are lexical words. Only 37 types (2%) are substituted more than 100
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times. Out of those, 35 are not fragment words, and 34 are function words. Only one word

is lexical, well, although well is commonly used as a function word when used as a discourse

marker.

Figure 7.3 plots the seven most substituted words and their word category, including

the fragmented word I-. The top 7 most substituted words in decreasing order are um-hum

(6242), um (2494), I- (1410), na, tokenized from gonna or wanna, (669), I (652), uh (641)

and ’s (580) times. The dash in I- indicates a partial word, which signals its transcription

as an incomplete word. These occurrences most likely come from the first person personal

pronoun I where the speaker is having some hesitation or disfluency. The next frequent

partial word is th-, replaced 117 times by 36 words. Figure 7.3 shows that none of the seven

most substituted words are lexical and that 3 of the most substituted words (I, uh and ’s)

are also among the 10 most frequent words (see figure 7.1). It is also important to note that

3 out of the 7 most substituted words are from the category other. These results show that

more frequent words and words from the category other are more likely to be substituted

than lexical words or less frequent words.

Figure 7.3: Seven most substituted words
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There are 62 types with a substitution count greater than 50. Out of these 62 words, 39

types are function words, 12 are from the category other, 6 are fragmented words and 5 are

lexical words (gon, wan, well, know and right). Three of the 5 lexical words, well, right and

know (in the context of you know) are also commonly used as discourse markers, similarly

to words from the category other. These results show that lexical words are less likely to be

substituted than function words, which is expected since function words are more common

(seesection 7.3). This also serves as a baseline when analyzing um and uh. For the rest of

this section, I only look at function, other, and fragment words, which leads to a subset of

the data that consists of 19,930 substitutions of 138 types.

Before looking at how the two markers are substituted by other words, I briefly look

at what types of words, and how often um and uh replace other words. On average, words

replace 2.9 types, with a minimum of 1 and a maximum of 100. Um replaces 36 types over

a total of 488 substitutions, and uh replaces 100 types for a total of 2,941 substitutions.

Um and uh therefore replace a lot more words than the average word. Figure 7.4 shows

types replaced by um more than 10 times. All types are from the categories function and

other, 3 of the types replaced by um have a nasal component, and 5 out of 6 words are

monosyllabic, except for um-hum, which is acoustically very similar. Figure 7.5 shows the

types replaced by uh more than 20 times. Similarly to um, all types are monosyllabic words,

either from the categories function or other. Uh primarily replaces um (2,315 times). The

next 3 most common words replaced by uh are ah, a and oh, which are acoustically similar

to uh, especially oh. These results show that um and uh primarily replace words of similar

category, or that are acoustically similar.



84

Figure 7.4: Words replaced by um more than 10 times

Figure 7.5: Words replaced by uh more than 20 times

In total, the marker um is substituted 2,494 times (12.5% of all substitutions of function

words) by 44 words across the 932 transcripts. Um is the 14th most replaced word in terms of
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how many different words replaced it, and is replaced more than twice the average function

word. Um also has the second highest replacement count (2,494 vs. 144 on average for other

function words) after um-hum, replaced 6,242 times.

Out of the 44 words that replaced um in Treebank3, um is substituted 7 times by 5 word

fragments (ha-, som-, n-, uh-, m-). Um is also substituted by 11 words of type 3 substitution

(see section 7.4, such as working, around, or graphic. Um is substituted 2,424 times by 28

words from type 2 substitution such as that or oh.

Figure 7.6 lists the count of substitution by each monosyllabic word from the categories

function and other on a log 10 scale to represent the marker uh that replaces um 2,315 times

in Treebank3. To summarize, the marker um is predominantly replaced by uh. Other frequent

substitutions include huh (count = 24), a (count = 18), I (count = 14), or oh (count = 9).

These substitution counts are not surprising since huh, oh and a are acoustically similar

to uh, especially the latter. Um is also mistakenly replaced by and 7 times across the 932

transcripts, which could be due to the fact that similarly to um, and has a nasal component

and is often used with um.
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Figure 7.6: Monosyllabic words from the categories function and other that substitute um

three times or more, represented on a log 10 scale
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Figure 7.7: Monosyllabic words from the categories function and other that substitute uh

five times or more

The marker uh is replaced 641 times (3.2%) by 105 words in Treebank3 across the 932

transcripts. Uh is the second word replaced by the highest number of words (105 vs. an

average of 20 for function words) and has the fifth highest count of replacement (641 vs. 144

on average for function words) after um-hum, um, na and -I.

Out of the 105 words that replace uh, it is replaced 50 times by 26 word fragments and

1 punctuation mark, which is most likely an alignment issue. Similarly to um, it is replaced

mostly once by word fragments, except for a-, 9 times. Uh is replaced 32 times by 22 words

from type 3 substitution such as husseins or listening. Finally, uh is replaced 529 times by

55 words from the second type. Figure 7.7 plots the words that replace uh five times of

more. Unlike um, replaced by uh 2,315 times, the marker uh is replaced by um only 118

times. These two markers therefore do not behave symmetrically in terms of substitutions.

The second most common substitution of uh is by the indefinite article a, 86 times, which is

expected since they are acoustically very similar.
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To summarize, um and uh replace and are replaced by a lot more words that the average

word. Um replaces 36 types and uh 100, against 2.9 for the average word. Um and uh are

respectively replaced by 44 and 105 types, against 20 for the average word. The two markers

have a substitution count higher than the average word, 2,494 and 641 respectively vs. 144

on average. Um is replaced a lot more than uh, respectively 2,494 vs. 641 times, mostly due

to the fact that uh replaces um 2,315 times (93% of all substitutions for um), and uh is

replaced by more different words than um (105 vs. 44).

7.4.2 Discussion

Substitutions of the two markers occurring only once likely result from transcript align-

ment issues, especially in cases where um and uh are replaced by lexical multisyllabic words

such as graphic which replaced um once or, absolutely and coronary which replaced uh once

as well. Other substitutions might be due to transcription errors due to similarity, especially

in the case of monosyllabic function words that are acoustically similar or that have similar

discourse functions or environments, such as huh, oh or a. It is not surprising that uh is

replaced by a 86 times since they are acoustically very close. It is also not surprising that um

is replaced by a 18 times, since it is replaced by uh 2,315 times and uh and a are acoustically

very similar.

The high substitution rate between um and uh is very interesting, especially the vast

disparity in terms of substitution proportion between the two markers. The substitution rate

of um by uh represents 93% of all substitutions for um, whereas the substitution of uh by um

represents only 18% of all substitutions for the marker uh. This proportion gap signals that

is is more likely for transcribers to put uh in place of um than the opposite. What is also

important to note is that when we subtract the substitutions of um by uh there are only 179

substitutions of um remaining, which means that apart from the substitution of um by uh,

um is less often substituted than uh (179 vs. 641). This might be due to various factors. For

instance, the duration of um might have an effect on the likelihood to perceive the nasality

of the marker. The shorter the marker is, the more likely it might be replaced with uh.
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7.5 Missed and hallucinated ums and uhs

This section investigates the rates of missed and hallucinated ums and uhs in the Tree-

bank3 transcript version, compared to the MS-State version, which is the revised version of

the transcripts and therefore the reference for comparison. The goals of this section are to

investigate whether um and uh are more often missed or hallucinated than other words in

the corpus, and whether there are systematic patterns factoring in these transcription errors

for the two markers. In this chapter, I focus on the question of whether the rates of missed

and hallucinated words depend on specific variables such as transcriber, speaker, naturalness

and difficulty ratings.

7.5.1 Results on overall distribution and variation of the data

I first looked at any kind of missed and hallucinated words across the 31 transcribers and

the 932 conversations in order to get a baseline of the overall transcription error rates across

the corpus. These baseline rates are then used to compute the rates of transcription errors

for um and uh compared to the overall rate of errors, and compared to other words or words

from the same word category (see section 7.2.4).

The total number of missed words across the corpus is 27,159, and 6,657 for hallucinated

words. These raw numbers show that there are 4 times more missed words than hallucinated

words, which means that transcribers tend to miss words 4 times more often than inserting

non-existent words in Treebank3. Tables 7.5 and 7.6 list the total number of missed (M) and

hallucinated (H) words for the two markers, as well as the rates of missed and hallucinated

markers compared to the total number of missed or hallucinated words (Error rate), and

compared to the total number of ums or uhs.

The rates show that uh is missed more than um. Missed uhs represent 10% of all missed

words, versus 2.2% for um, and 6.5% of ums are missed versus 10.3% of uhs. Similarly,

uh is more often hallucinated than um. The rate of hallucinated uhs represents 10% of all

hallucinated words whereas um only represents 0.8% of all hallucinated words, and 10.3% of
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uhs are hallucinated against 0.7% for ums. These rates are important because they provide

information on the overall trends of transcription errors for um and uh but they do not

inform us on how they perform compared to other words, and compared to words of the

same category. This issue is addressed in the following subsection.

Table 7.5: Total and rates of missed (M) and hallucinated (H) ums computed over the

number of transcription errors of the same type (Error rate), and over the total number of

ums (Um rate)

Marker Transcription error Total count Error rate Um rate

um M 598 0.022 0.065

um H 53 0.008 0.006

Table 7.6: Total and rates of missed (M) and hallucinated (H) uhs computed over the

number of transcription errors of the same type (Error rate), and over the total number of

uhs (Uh rate)

Marker Transcription error Total count Error rate Uh rate

uh M 2,676 0.1 0.1

uh H 455 0.068 0.018

7.5.2 Errors of um and uh compared to individual words and word category

In this section, I compare the proportions of missed and hallucinated markers to the error

rates of other words, and their word category (see lemma 7.2.4). The goal of this section is

to better understand how um and uh are missed or hallucinated compared to other words,

and compared to words of the same category.



91

In total, there are 1,337 missed individual words (types) for a total of 27,159 missed

tokens (all occurrences). The number of times words are missed ranges from 1 to 2,676.

There is a total of 552 hallucinated types out of 6,657 hallucinated tokens, with the number

of substitutions per type ranging from 1 to 774. These numbers show that there is a lot more

variation among the missed words than among the hallucinated ones, which is not surprising

since there are four times more missed words than hallucinated words.

There are 488,966 lexical token in total in the corpus, 755,666 function tokens, 81,775 to-

kens from the other category, and 10,915 fragment tokens. Function words are unsurprisingly

the most frequent, and fragment words are the least frequent. Table 7.7 lists the proportions

of words within error type (missed vs. hallucinated) for each word category (lexical, function,

other, and fragment). The proportions show that function words represent the largest part

of missed and hallucinated words. Function words represent about half of missed words, and

almost two thirds of hallucinated words. These proportions show that function words tend

to be hallucinated more than missed, compared to other words. Lexical words represent si-

milar proportions of missed and hallucinated words (13.4% vs. 13.6%). Words from the other

category represent a larger proportion of missed words than hallucinated words (21.7% vs.

16.2%) and fragment words also represent a wider part of missed words than of hallucinated

words (14.5% vs. 6.9%). These results suggest that other and fragment words tend to be

missed more than hallucinated.

Table 7.7: Proportions of word category by error type

Word Category Missed Hallucinated

lexical 13.4% 13.6%

function 50.4% 63.3%

other 21.7% 16.2%

fragment 14.5% 6.9%
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Figure 7.8: 20 most missed types in decreasing order and grouped by word category

Figure 7.9: 20 most hallucinated types in decreasing order and grouped by word category
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Figures 7.8 and 7.9 respectively list the 20 most missed and hallucinated types and their

word category. These figures show that uh is more often missed (2,676 times) than um (598

times) and that uh is the most missed type, 1,236 times more often than the second most

missed type and. Uh is also more often hallucinated than um, respectively 455 vs. 53 times,

and is the second most hallucinated type, after to (hallucinated 774 times), and before and

(hallucinated 381 times). In contrast, um is the 26th most hallucinated type and the 14th

most missed type.

The number of lexical words is far inferior to the number of function and other words

when the error count is equal to or greater than 100. Figures 7.8 and 7.9 show that among

the 20 most missed and hallucinated types, only two word types are lexical : know and well.

These two types are categorized by the NLTK stopword list as lexical words. However, in

several contexts know and well are used as discourse markers, especially when know is used

in the context of you know. Well and know are therefore not purely lexical items since they

can also be used as function words. It is therefore not surprising that know and well are

present in the top 20 most missed and hallucinated words, since they are often used like

words that behave similarly.

Figure 7.10 plots the percentages of missed (left) and hallucinated (right) words by their

percent total, for each word category (fragment, function, lexical, and other). Note that there

is only one data point for fragment words. This is because all fragment words are collapsed

under the same category here, because they mostly are lexical words, actual fragment words,

or words issued from changes in transcription conventions. The plots for both missed words

and hallucinated words shows that function words and other words have more transcription

errors that lexical words, and other words have more transcription errors than function words,

especially in the case of missed words. Figure 7.11 only plots function and other words and

shows that proportionally to their percent total, other words are more missed than function

words, and uh is proportionally more missed and hallucinated than um. It is also interesting

to note that compared to its percent total, the word yes is less hallucinated than words from

the same category, and is among the lowest ratios of percent total and percent missed. This
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may be due to the fact that the word yes is a difficult word to assign to a word category, and

that it behaves more like lexical words than like other words, unlike words such as yep, nope,

or yeah. These results indicate that other words behave differently from words of different

word categories, and that they are more likely to be missed than other frequent words, such

as function words.

Figure 7.10: Log of percent total by log percent error (missed on the left, hallucinated on

the right) for the four word categories (fragment, function, lexical, and other)
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Figure 7.11: Log of percent total by log percent error (missed on the left, hallucinated on

the right) for function and other words, with um indicated by the green dot and uh indicated

by the red dot

7.5.3 Summary

The results from this section show that transcribers are more likely to miss words than

to hallucinate them. The marker uh represents a greater proportion of error types (misses

and hallucinations), and greater missed and hallucinated rates than um. Results on word

category indicate that proportionally to their percent total, function words are more likely

to be hallucinated and missed by transcribers than lexical words, and words from the other

category are as likely to be hallucinated and more likely to be missed than function words.

Words that have a high error rate are more likely to be function or other words, than

lexical words. And finally, uh is more likely to be missed or hallucinated proportionally to

its token frequency than um, especially compared to words from the same category. Based

on results from Chapter 6 that indicate um and uh have different distributions depending
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on paralinguistic factors, the next section investigates the effects on the rate of transcription

errors that pertain to the transcriptions and to the speakers.

7.6 Paralinguistic variables

7.6.1 Results on transcriber effects

In this section I investigate effects pertaining to the transcriber on the overall number

of missed and hallucinated words, as well as for the two markers um and uh. Variables

related to the transcriber include the transcriber’s identity, the number of files transcribed

by the transcriber, the date on which the files were transcribed and, ratings annotated by

the transcriber on the naturalness of the conversation and the difficulty to transcribe it.

Effect of number of transcriptions per transcriber on transcription error rate

As previously mentioned in subsection 7.3, 31 transcribers transcribed between 1 and 265

Treebank3 conversations. Figure 7.12 shows the variation in the rate of missed, hallucinated,

and substituted words for each transcriber. The error rates are computed by dividing the

number of errors in a conversation by the conversation length. Figure 7.12 shows the violin

plots which combine box plots and kernel density plots to show the distribution shape of

the data. The wider areas represent higher probabilities for members of the population to

take the given values and narrower areas represent smaller probabilities. The empty circles

at the bottom and the top of the violins represent outliers, and dots represent small amounts

of data. These results show that the number of transcription errors vary across and within

transcribers, which is likely caused by the fact that the number of files transcribed by trans-

cribers is not homogeneous. Several transcribers transcribed only one or a few files while

others transcribed up to 265 files. Even though the transcription error rate is normalized by

the conversation length, it does not account for the number of transcriptions the transcriber

completed. The plots also show that the same transcribers do not systematically make equi-

valent amounts of errors across transcription error types. For instance, transcriber HJR made
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a lot of substitution errors compared to other transcribers, but missed less words than other

transcribers. These results indicate the importance of taking the number of conversations

transcribed by each transcriber into account since it can affect the analysis on transcription

errors.

Figure 7.12: Violin plots (combined box plots and kernel density plots) of the rates of missed,

hallucinated, and substituted words within transcriber and across conversations. Violin plots

show the distribution shape of the data, wider areas represent higher probabilities for the

values while narrower areas represent smaller probabilities, empty circles at the top and at

the bottom of the violins represent outliers, and dots represent small amounts of data



98

Figure 7.13 plots the effect of the number of conversations transcribed by each transcriber

on the rates of missed, hallucinated, and substituted words by each transcriber. Each dot

represents a transcriber, and the transcription error rates are computed by dividing the

number of each transcription error type in the conversation(s) completed by the transcriber

by the total number of words spoken in the conversation(s). Figure 7.14 illustrates the same

principle for missed, hallucinated, and substituted ums and uhs.

Results presented in Figures 7.13 and 7.14 show a lot of variability in the number of

transcription errors made by transcribers who only completed a few conversations. We cannot

get the same information for transcribers who did a high number of transcriptions because

there are not enough of them. The two figures also show that transcribers who did more

transcriptions tend to make less transcription errors on um and uh than on other words,

as indicated by the rates. That is, transcribers who transcribed more conversations seem

less likely to miss, hallucinate, or substitute um and uh. It is also interesting to note that

there is an outlier transcriber who transcribed 170 conversations and who has a very high

rate of substitutions, especially for the marker um. This transcriber has the highest rate

of substitutions, 0.0057 for um vs. 0.001 for the average transcriber. This means that if

we exclude this outlier transcriber for substitutions, the effect of transcription number per

transcriber is similar for um and uh for the three types of transcription errors.
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Figure 7.13: Rates of missed, hallucinated, and substituted words depending on the number

of conversations completed by each transcriber, indicated by a filled dot
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Figure 7.14: Rates of missed, hallucinated, and substituted ums and uhs depending on the

number of conversations completed by each transcriber, indicated by a filled dot

Effect of transcription date on transcription error rate

Transcription date is another relevant factor to take into account when looking at trans-

cription error rate. In other words, I am interested in finding out whether there is a fatigue

or a learning effect as transcribers do more transcriptions.

Figure 7.15 illustrates the effect of transcription date on the number of transcription

errors for two transcribers, CSW and JKP, who respectively completed 83 and 37 transcrip-

tions on 38 and 11 different dates. Results show the error rates for missed, hallucinated,

and substituted ums and uhs. Each point on the plot represents an error rate. This figure

illustrates how transcription date has different effects for each transcriber, marker, and error

type (missed, hallucinated and substituted markers). In addition to having various effects,
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all transcribers who completed several transcriptions have different number of transcriptions

completed on different dates, which leads to not enough data points to perform a statistical

analysis of the effect of transcription date on the rates of transcription errors of um and uh.

Figure 7.15: Example of error rate for um and uh by date of transcription (YYMMDD) for

transcribers CSW who transcribed 83 conversations and JKP who transcribed 37 conversa-

tions

Effect of difficulty and naturalness ratings on transcription error rate

In this section, I am especially interested in testing two ratings assigned by transcribers :

naturalness and difficulty. Difficulty is rated on a scale 1-5 to estimate the difficulty of trans-

cribing a conversation. A low rating (1) means the conversation is easy to transcribe and a

high rating (5) means the task is difficult (Godfrey and Holliman, 1993). I hypothesize that

when transcribers rate a conversation as difficult, they are more likely to make transcription
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errors. That is, transcribers are more likely to miss, hallucinate, or substitute um and uh

than when a conversation is rated ’easy’ to transcribe. Naturalness is also on a scale 1-5 and

indicates whether the transcriber finds the conversation natural between the two speakers

(Godfrey and Holliman, 1993). A low naturalness score indicates that a conversation sounds

natural and a high score means that it sounds artificial (see section 5.4.1 in Chapter 5). I

hypothesize that in more natural sounding conversations transcribers tend to miss more ums

and uhs and that when they are less natural they tend to hallucinate and substitute more

markers. The reasoning behind this hypothesis is that in natural conversations speakers/lis-

teners tend to pay less attention to disfluencies and are therefore more likely to miss them.

On the contrary, um and uh are more likely to be more salient in less natural conversations

than in a natural context, and therefore less likely to be missed.

To test these two hypotheses I use linear mixed effect models with random intercept. The

random effects are the conversation and the speaker, and the fixed effects are the naturalness

and difficulty ratings. The dependent variable is the number of transcription errors, missed,

hallucinated, or substituted markers, analyzed separately. Model significance is computed

using the Likelihood Ratio Test to compare the full model to reduced models. The analysis

is conducted on 9 data sets : missed, hallucinated, and substituted words, ums and uhs.

Table 7.8 summarizes the results for all words and table 7.9 summarizes the results for ums

and uhs.
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Table 7.8: Result summary on the effect of the difficulty and naturalness ratings on missed,

hallucinated, and substituted words

Data Missed words Hallucinated words Substituted words

Naturalness p < 0.001 p < 0.01 p > 0.05

Effect decreasing decreasing N/A

Difficulty p < 0.01 p < 0.05 p > 0.05

Effect increasing increasing N/A

Table 7.9: Result summary on the effect of the difficulty and naturalness ratings on missed,

hallucinated, and substituted ums and uhs

Data M ums H ums S ums M uhs H uhs S uhs

Naturalness p > 0.05 p > 0.05 p < 0.001 p < 0.05 p > 0.05 p > 0.05

Effect N/A N/A increasing decreasing N/A N/A

Difficulty p > 0.05 p > 0.05 p < 0.01 p > 0.05 p > 0.05 p > 0.05

Effect N/A N/A increasing N/A N/A N/A

Results in table 7.8 show that difficulty has a significant effect on the rates of missed

(χ2(1) = 8.8, p < 0.01) and hallucinated words (χ2(1) = 6.4, p < 0.05), increasing missed
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words by 2.120e-03 and hallucinated words by 4.256e-04. Naturalness also has a significant

effect on the rates of missed words (χ2(1) = 14, p < 0.001), as well as on hallucinated words

(χ2(1) = 7.8, p < 0.01), and has a decreasing effect of -3.504e-03 for missed words and -

6.160e-04 for hallucinated words. Results show that difficulty and naturalness do not have a

significant effect on the rates of substituted words.

Table 7.9 summarizes the results on the effect of difficulty and naturalness ratings on

the rates of um and uh. Results indicate that difficulty and naturalness ratings do not

have a significant effect on the rates of missed or hallucinated ums. However, difficulty and

naturalness have a significant effect on the rates of substitutions of um, (χ2(1) = 10.8, p

< 0.01) for difficulty, increasing the rates of 4.278e-04, and (χ2(1) = 71.6, p < 0.001) for

naturalness, increasing the rates by 1.454e-03. Finally, only naturalness has a significant

effect on the number of missed uhs (χ2(1) = 5.2, p < 0.05), decreasing the number of missed

uhs by -2.856e-04.

7.6.2 Summary and discussion

It is important to note that the differences between the levels of naturalness and difficulty

are small (e.g., 2.120e-03). These numbers indicate variation among the rates, which are small

values to begin with. It is therefore important to keep in mind that some of the results show

a significant effect, and that the effect is small.

Um and uh behave similarly to other words and to each other with regards to the effect

of the number of transcriptions done by the transcribers on the rates of missed, hallucinated,

and substituted words. However, um and uh behave somewhat differently from other words

with regards to the effect of difficulty and naturalness ratings on the transcription error rates.

Difficulty and naturalness have a significant effect on the rates of missed and hallucinated

words, but not on substituted words. On the contrary, naturalness and difficulty have a si-

gnificant effect on substituted ums, but not on missed or hallucinated ums. Difficulty and

naturalness do not have a significant effect on substituted uhs, but naturalness has a signi-

ficant effect on the rates of missed uhs. These results show that difficulty and naturalness



105

affect the two markers differently in terms of transcription error rate. In addition, naturalness

has a decreasing effect on the rates of missed and hallucinated words, and on the rates of

missed uhs, but it has an increasing effect on the rates of substituted ums. Since the effect

is different for um because it only affects substitution rate, I cannot compare um to other

words and uh in this regard. However, the results show that naturalness has a similar effect

on missed uhs than on other words. Finally, difficulty has an increasing effect on missed and

hallucinated words, and on substituted ums.

These results show that with regards to difficulty and naturalness, um and uh somewhat

behave differently from other words, and from each other. To go back to the initial predictions,

substituted ums behave as predicted by the hypothesis with regards to difficulty. That is,

as difficulty increases, transcribers are more likely to make transcription errors. Predictions

for naturalness are that transcribers are more likely to miss um and uh in more natural

conversations, while they are more likely to hallucinate or substitute the markers in less

natural conversations. It is important to remember that naturalness ratings are inverse, which

means that a score of 1 indicates the highest degree of naturalness. The results indicate that

naturalness has an increasing effect on substituted ums. That is, in less natural sounding

conversations, transcribers are more likely to substitute um for another word. Finally, results

indicate that naturalness has a decreasing effect on missed ums. Again, since the ratings are

inverse, this means that in less natural conversations, transcribers are less likely to miss uhs,

which goes with the predictions that people are more likely to miss um and uh in more

natural sounding conversations.

7.6.3 Results on speaker effects

The first goal of this section is to investigate the effect of speaker (referred to as speaker

ID or caller), gender, age, dialect, and education level on the production of um and uh. The

second goal is to find out whether participants who participated in the study more than

other participants produce more or less markers. The data for this section consists of 932

conversations and 273 speakers who participated in 1-23 conversations with an average of 6.8
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conversations per caller and a mode of 1. Note that there are five levels of education level, less

than high school (0), less than college (1), college (2), more than college (3), and unknown

(9). Since the latter category only contains 4 observations it is excluded from the analysis.

See section 5.4.2 for more information on the participants of the Switchboard corpus.

Results (summarized in Table 7.10) were submitted to linear mixed effect models with

random intercept to investigate the effect of speaker ID, gender, age, dialect and education

level, on the rates of um and uh produced by speakers. The random effect is the conversation,

and the fixed effects are a combination of speaker ID and one of the four remaining factors

e.g. speaker ID + age, speaker ID + gender, or speaker ID by itself. The dependent variable

is the rate of um or uh.

The analysis shows the speaker variable has a significant effect on the production of

um (χ2(1) = 19.7, p < 0.001) and uh (χ2(1) = 4.9, p < 0.05), which means that different

speakers produce significantly different numbers of markers. Results show that gender also

has a significant effect on the production of um (χ2(1) = 58.7, p < 0.001) and uh (χ2(1)

= 343, p < 0.001). Men use less ums and more uhs than women (see Figure 7.17). The

South Midland dialect is the only dialect that has a significant effect on the production of

um (χ2(1) = 40.6, p < 0.001). The dialects that have a significant effect on the production

of uh (χ2(1) = 23, p < 0.01) are the Northern, Southern, North Midland, and NYC dialects.

The fact that not all dialects have a significant effect on the production of the two markers

is not surprising since Godfrey and Holliman (1993) mentions a priori classification of the

participants’ dialect having limited effect on predicting speech patterns. Participant’s age

also has a significant effect on the production of um (χ2(1) = 111.6, p < 0.001) and uh

(χ2(1) = 83.7, p < 0.001). Older speakers use less ums and more uhs than younger speakers

as illustrated in Figure 7.16. Finally, results on education show that education level only has

a significant effect on the production of uh (χ2(1) = 4.7, p < 0.05), mainly driven by the

group of speakers who stopped their education prior to high school (0). Results illustrated

in Figure 7.18 show that the production of uh decreases between the groups 0 through 2,

which means that people who went to college use less uhs than people who did not go to
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high school or college.

Table 7.10: Result summary on how speaker variables affect the production of um and uh

- grey cells represent signicant effect of the variable on the production of the marker

Fixed effects ID ID + gender ID + age ID + dialect ID + education

Rate of um p < 0.001 p < 0.001 p < 0.001 p < 0.001 p > 0.05

Effect on um random W > M increasing random random

Rates of uh p < 0.05 p < 0.001 p < 0.001 p < 0.01 p < 0.05

Effect on uh random W < M decreasing random decreasing
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Figure 7.16: Effect of speaker age (plotted in birth year on the x axis) on the production

rates of um and uh - smoothing method used GAM (generalized additive model) with grey

shaded area representing the 95% confidence interval of the smoothing method

Figure 7.17: Effect of speaker gender on the production rate of um and uh - empty circles

represent outliers
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Figure 7.18: Effect of speaker education on the production rate of um and uh - empty

circles represent outliers

7.6.4 Summary and discussion

Results from this section indicate that all variables related to the speaker (i.e., speaker,

gender, age, dialect, and education level) have a significant effect on the rate of uh, and that

all variables but education level have a significant effect on the rate of um.

The production of um vs. uh varies with regards to gender, age, dialect, and education

level. Different dialects have various effects on the rate of um vs. uh, education does not

reliably affect the rate of um but it has a decreasing effect on the rate of uh for education

levels 0 through 2, and gender and age have an opposite effect on the rates of the two markers.

Older speakers use less ums but more uhs than younger speakers, and women use more ums

while men use more uhs.

These results show that the speaker variable and variables related to the speaker are

important to take into account when looking at the rates of um and uh because they affect

the production of the two markers, and they affect them in different ways. This further shows

that um and uh are different variables.
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7.7 Position

The goal of this last section is to find out whether the position of um and uh affects

whether transcribers are more likely to miss or hallucinate the marker. The position of the

two markers is determined by their position in the slash unit, used to segment speech in the

Switchboard transcriptions. The four positions are : alone, initial, medial, or final. Figure

7.19 shows the distribution of um and uh for each position in the slash unit, for markers

that do not have transcription errors. The proportions are computed over the total number

of ums (6,021) and uhs (22,178) that do not have any transcription error, determined by the

transcription alignments. Note that the proportions are computed out of raw counts in each

position. The proportions show that most markers are in medial position, 53.1% of ums and

73% of uhs, and very few markers are in isolated position (i.e., alone), 6.1% for um vs. 1.2%

for uh 1. Proportionally speaking, more ums are in initial, final, and alone positions than uh,

but the trends are similar. These results are not compared to other studies on the position of

um and uh due to the use of different datasets and different methods (i.e., counts vs. rates).

1. Note that these results are different from the position results in the ATAROS corpus discussed in the

next chapter. The results from next chapter are computed over a different corpus and are in line with other

studies that show most disfluencies happen in initial position or alone, due to higher cognitive and planning

loads, floor holding, and turn-taking. Furthermore, given the fact that the Treebank3 transcriptions were

made without audio input, it is likely that the slash units are not representative of spoken speech units, and

therefore raise questions on whether they should be used to determine position. Further work will explore

the use of prosodic units as a more universal way to determine position.
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Figure 7.19: Proportions of um and uh with no transcription errors, by position in the slash

unit

Figure 7.20 plots the proportions of transcription errors for each marker, relative to

the number of markers in each position. The proportions are based on the total number

of markers across all transcription errors in the aligned data (9,166 ums and 25,950 uhs).

Results show that markers in all positions are substituted and hallucinated, but only markers

in initial and medial position are missed. Initial markers are proportionally the most likely

to be missed, approximately twice as much as markers in medial position. Isolated ums and

uhs are proportionally more substituted and hallucinated than markers in other positions,

especially for uh. The chi square tests for both markers also suggest that position and error

type are not independent (p < 0.001). These results show that the marker’s position and

transcription error types are related variables and that transcribers are more likely to make

certain types of transcription errors depending on the position of the marker. Finally, it is

also interesting to note that position has a similar effect on the error types of both markers,

although to slightly different extents.
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Figure 7.20: Proportions of transcription errors for um and uh for each position in the slash

unit, relative to the total number of markers in each position

7.8 Conclusion

This chapter focuses on two main aspects of um and uh, their production and their

transcription errors, both measured in rates to compensate for variability. All sections from

this analysis show that um and uh are affected by various factors, that they generally behave

differently from each other, and from other words.

Missed and hallucinated uhs represent a larger proportion of all missed and hallucinated



113

words, and a larger proportion of uhs, while missed and hallucinated ums make for a smaller

percentage of all missed and hallucinated words, and a smaller percentage of ums.

The markers um and uh have different distributions. First of all, there are 2.8 more uhs in

the corpus than ums (25,495 vs. 9,113) and there is more speaker variability for the marker uh

than um. Um is substituted more than uh, (2,494 vs. 641), but 2,315 substitutions of um are

by the marker uh. After subtracting this substitution type, there are only 179 substitutions

of um remaining in the 932 conversations, against 641 substitutions for uh, substituted 3.6

more times than um. In terms of raw counts, uh is the most likely word to be missed, and

the second most often hallucinated word, against um which is the 14th most likely word to

the missed, and the 26th most likely word to be hallucinated. Furthermore, proportionally to

their token frequency, uh is more likely to be missed or hallucinated than um. The difficulty

and naturalness ratings also affect um and uh differently. Both difficulty and naturalness

have a significant effect on the rate of substituted ums, and only naturalness has a significant

effect on the rate of missed uhs. Transcribers substitute um by other words more often in

conversations rated more difficult to transcribe, and they substitute more ums and miss less

uhs in conversations that sound less natural. Finally, all variables related to the speaker,

gender, age, dialect, and education level have a different effect on the production of the two

markers. Education does not have an effect on the rate of um but it has a decreasing effect

on the rate of uh i.e., more educated speakers use less uhs. Women use more ums than men,

and conversely men use more uhs. Exclusively different dialects have a significant effect on

the rates of um and uh, and age has an inverse effect on the production of the two markers ;

as speaker age increases, speaker use less ums and more uhs.

The only variable which has the same effect on all words, um, and uh, is the number of

transcriptions made by the transcribers ; as the number of conversation transcribed by the

same transcriber increases, the rate of transcription errors decreases.

Results from this analysis also show that there are 4 times more missed words than

hallucinated words (27,159 vs. 6,657). Function words tend to be hallucinated more than

missed (63.3 vs. 50.5%), lexical words are about as likely to be missed as hallucinated (13.5%
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vs. 13.7%), fragments tend to be missed more than hallucinated (14.5% vs. 6.9%), and words

from the category other also tend to be missed more than hallucinated (21.5 vs. 16.1%).

Results taking the percent total of each type into account show that function words are

more missed and hallucinated than lexical words, and other words are as hallucinated and

more missed than function words.

Finally, results on the relation between the marker’s position and the transcription error

types show that the two variables are related and that depending on its position, a marker

is more or less likely to be missed, hallucinated, or substituted. Markers in alone and final

positions are never missed, initial markers are twice as likely to be missed than medial

markers, and markers in alone position are more likely to be hallucinated or substituted

than markers in other positions. These results suggest that depending on the position of the

marker, um and uh have a different salience (i.e., missed markers), or are more likely to be

expected by listeners (i.e., hallucinations).

The fact that um and uh have different distributions and are affected differently, both in

terms of production and transcription errors, indicates that the two markers are different.

The fact that um has less transcription errors than uh further suggests that um is different

from uh. Particularly, the fact that um is missed less than uh suggests that um has a higher

information load and that it might play a more important role in discourse than its counter

part.

The following experiments look at how the discourse and acoustic characteristics of the

marker correlate with the attitude of the speaker, to find out whether they vary with speaker

attitude and if they behave in similar ways.
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Chapter 8

PRESENCE AND POSITION OF UM AND UH AND STANCE
MARKING

8.1 Introduction

The goal of this chapter is to investigate whether the presence and the position of um

and uh in a speech unit affects the probability of the stance marking of the speech unit.

The speech unit is called spurt, and corresponds to utterances between pauses greater than

500ms (see section 5.3.5 in Chapter 5), and the term stance in this dissertation refers to "the

speakers’ subjective attitudes toward something" (Haddington, 2004, p. 101) (see section 4.1

in Chapter 4 for more background on stance). In this experiment I only use the ATAROS

corpus because, unlike Switchboard, it is annotated for stance.

As mentioned in section 4.3, um figures among the 25 word unigrams selected by the

classifier for stance strength recognition (Levow et al., 2014), which suggests that um is a

key lexical feature in assigning stance strength labels to spurts. This means that the presence

of um in a spurt is therefore relevant to its stance marking. In addition, the position of the

marker is relevant to several dimensions (e.g., salience, likelihood of disfluency, function,

etc.). Based on this and prior studies that suggest that the markers um and uh have key

functions in discourse, I hypothesize there is a correlation between the presence and the

position of the two markers in a spurt and the stance marking of the spurt. Furthermore,

based on results from Chapter 6 and studies described in section 3.1.6, I argue that um and

uh are separate factors and affect differently the probabilities of the stance marking of the

spurt.
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8.2 Methodology

8.2.1 Data

The data for this experiment come from the ATAROS corpus, detailed in section 5.3 of

Chapter 5. The ATAROS corpus is chosen for this experiment because it was designed to

elicit various degrees of stance-taking acts in collaborative tasks, with high quality recordings.

The data initially consists of 10,405 spurts that contain a total of 1,032 markers : 593 ums

and 439 uhs. Note that for this experiment all markers in spurts labeled with uncertainty

or pronunciation issues are excluded from the data (see examples (1) (2), and (3)), which is

why there are 33 fewer tokens than in the prior experiment.

(1) ’Up {PRN uh} to you !

(2) Okay. Yeah.. NVC .. (Uh)

(3) Probably next to toilet paper, (um) -

The majority of spurts (90.78%) do not contain any marker um or uh (9,445). There are 1032

markers in total, and 960 spurts (9.23%) contain at least one marker. Out of the 960 spurts

that contain at least one marker, 59 spurts (0.57%) contain more than one marker, and

901 spurts (8.6%) contain exactly one marker. Out of 59 spurts that contain more than one

marker, 48 spurts (0.46%) contain two markers, nine spurts (0.09%) contain three markers,

and two spurts (0.02%) contain four markers, which is the maximum number of markers

per spurt. The percentages are computed over the total number of spurts (10,405). These

numbers show that very few spurts contain more than one marker (0.57%), and even fewer

contain more than two markers (0.11%). Since the proportions of spurts with more than one

marker is very small I do not take into account the number of markers in the spurt in this

experiment. Instead, I focus on the presence or the absence of markers and therefore only

look at spurts that have only one marker, either um or uh.

The data for this experiment therefore consist of 10,346 spurts, 9,445 spurts with no
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markers (91.29%), 901 spurts that contain exactly one marker (8.71%), of which 374 spurts

have one uh (3.62%), and 527 spurts have one um (5.09%) (see Table 8.1). The percentages

are calculated over the total number of spurts in this data set, which now consists of 10,346

spurts.

Table 8.1: Percentages and number of spurts that contain no marker, exactly one uh and

no um, or exactly one um and no uh

marker number of spurts percentages

no marker 9,445 91.29%

um 527 5.09%

uh 374 3.62%

It is also interesting to note that the proportions of um and uh are equal in spurts that

contain more than one marker (36 ums and 36 uhs), and that there is no marker um in the

two spurts that have four markers, as illustrated in examples (4) and (5). It not possible to

draw any conclusions on spurts that contain multiple markers due to the small sample of

observations.

(4) Uh k uh kim uh what is it credit union Uh you know thats all federal regulation so if

theyre at all regulated by the Feds in any way shape or form

(5) Well right now weve got uh let me see theres a uh theres a uh uh a bug that is going

around removing all deciduous trees in the United States

8.2.2 Stance strength and polarity

Stance is measured in two dimensions, stance strength and stance polarity, and is an-

notated at the spurt level by trained annotators (see section 5.3.4 in Chapter 5 for more



118

information on stance annotations and inter-annotator agreement). Stance strength corres-

ponds to the level of stance in the spurt and can be measured in two ways ; binary stance

(stance (1) vs. no stance (0)) or in four folds (no stance (0), weak (1), moderate (2), and

strong (3) stance). Stance polarity is measured in three ways, neutral (0), negative (-) or

positive (+). The notation "x" denotes that annotators were not able to determine the stance

values of the spurt. Figure 8.1 summarizes the proportions of spurts with stance strength

and polarity markings. The proportions are computed for each stance strength and polarity

notation over the total number of spurts (10,346). Note that the proportions differ from

Levow et al. (2014) because undetermined stance markings are included here to see the pro-

portions, and spurts with multiple markers are excluded. The proportions show that almost

half of the spurts are marked with weak stance, about a fourth of the spurts are marked

with moderate or no stance, and less than 1% of the spurts are marked with strong stance.

The majority of spurts are marked with neutral stance, more than a fourth of the spurts are

marked with positive stance, and 4.77% of spurts are marked with negative stance. Finally,

5.79% of spurts are marked as undetermined. The results show that weak and neutral stance

are the most common stance notations over the corpus, while strong and negative stance

are the least common, even compared to undetermined stance markings. These results also

indicate that spurts with negative and strong stance might need to be omitted in certain

analyses due to the insufficient number of samples. In the case of stance strength, strong

stance is included in the binary categorization of stance (absence vs. presence of stance).
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Figure 8.1: Counts and proportions of spurts for stance strength (left) and stance polarity

(right) - proportions are marked on top of the bars while counts are on the y-axis

8.3 Presence of um and uh

The goal of this section is to find out whether spurt types (i.e., spurts with no markers

called none, spurts with one uh, and spurts with one um) are more likely to be marked with

a certain stance strength or stance polarity. We know from Figure 8.1 that the majority

of spurts are marked with weak neutral stance. In order to compensate for the different

proportions of stance markings, Figure 8.2 plots the proportions of each spurt type, computed

for its own total (see Table 8.1).

8.3.1 Stance strength

The left side of Figure 8.2 plots the proportions of spurts for each spurt type and for

each level of stance strength. The proportions show that spurts with no markers (none) are

the most likely to be marked with weak stance (47.9%) while spurts with one um are the

least likely to be marked with weak stance (27.7%). Spurts with one um are the most likely

to be marked with no stance (48.2%) while spurts with no markers are the least likely to be
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marked with no stance (23%). Spurts with one uh are more likely to be marked with moderate

stance (29.1%) than spurts with one um (19.5%), or spurts with no markers (22.6%). The

proportions of spurts marked with undetermined stance and strong stance are similar, and

vary of less than 2% for undetermined stance and of 1% for strong stance. Results were

submitted to a chi square test and show that spurt type and stance strength are dependent

or have some association (p < 0.01) and provide evidence to suggest that the spurt types

behave differently in terms of stance strength.

8.3.2 Stance polarity

The right side figure (Figure 8.2) plots the proportions of spurt types for each polarity

level. Proportionally, spurts with one um are the most likely to be marked with neutral

stance, and spurts of the type none are the least likely to be marked with neutral stance.

Spurts with one uh have the highest proportions of negative labels while spurts with one um

have the lowest proportions of negative labels. Spurts of the type none are the most likely

to be marked with positive stance than spurts with one um or uh, with uh being the less

likely. Finally, the proportions of spurts marked with undetermined stance are similar and

vary by about 1% for each group. The chi square test shows spurt type and stance polarity

are not independent (p < 0.01), which suggests spurt types behave differently with regards

to stance polarity.
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Figure 8.2: Proportions of spurts for stance strength (left) and stance polarity (right) for

each spurt type (no marker, one uh and one um)

8.4 Position

The goal of this section is to figure out whether the position of the marker correlates with

the stance marking of the spurt in which the marker is. The position variable is relative to

the spurt and has four values : alone, initial, medial, and final. The position alone means

the spurts consists of the marker, and is surrounded by pauses greater than 500ms. Figure

8.3 plots the proportions of um and uh for each position relative to the spurt, and shows

that the two markers have different distributions. The majority of uhs (35%) are in medial

position and the minority of ums (20%) are in the same position. The majority of ums are

their own spurt (alone) (30%), against 18% for uhs. These results show that um and uh have

different distributions in terms of position in the spurt. We saw in the previous section that

the presence of um and uh in a spurt is not independent of the stance marking of the spurt.

The next two sections investigate whether their position is dependent on the spurt marking,

and to what extent.
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Figure 8.3: Percentages of each marker (um vs. uh) in each position relative to the spurt

(alone, initial, medial, and final)

Since there are very few spurts labeled with undetermined stance, and since the presence

of um or uh does not seem to affect this label, I exclude spurts labeled as undetermined in

this section. The number of spurts after excluding undertimed stance is now 506 for um and

355 uh.

8.4.1 Stance strength

Since there are four stance strength values (no stance, weak, moderate, and strong stance),

but very few spurts labeled with strong stance, and since there are four positions (alone,

initial, medial, and final) for a relatively small number of markers, I only look at a binary

distinction of stance (no stance vs. any degree of stance) in this section. Figure 8.4 plots

the percentages of ums (left) and uhs (right) by position in the spurt and by binary stance

(no stance (0) vs. any degree of stance (1)). The percentages are computed over the total of

spurts for each marker (506 for um and 355 for uh). The results show that isolated (alone)

ums and uhs are primarily marked with no stance (29% for no stance vs. 1% for any stance
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for um, and 15% vs. 3% for uh). However, spurts that have one um or one uh in other

positions are more likely to be marked with any degree of stance than no stance, with the

biggest difference for spurts with markers in medial position (16% with any stance vs. 4% for

no stance for um, and 31% vs. 4% for uh). The positions with the least difference in terms of

proportions are initial ums (15% for any stance vs. 11% for no stance), and final uhs (10%

for any stance vs. 3% for no stance). The chi square tests for the two markers corroborate

the positions of the two markers and the stance strength labels are not independent variables

(p < 0.01).

Figure 8.4: Percentages of spurts that contain the marker um or uh for each position (alone,

final, initial, and medial) and a binary distinction of stance strength (no stance (0) vs. any

stance (1))

8.4.2 Stance polarity

Results plotted in Figure 8.5 show that no matter the position of the marker, most spurts

that contain a marker are labeled as neutral. These results are not surprising since the vast
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majority of spurts that contain an um or an uh are labeled with neutral stance polarity (see

section 8.3.2). Results on the proportions of stance polarity labels based on the markers’

position show that isolated ums (alone) are all marked as neutral, and that spurts with final

and medial ums have the highest percentages of positive stance labels (6.5%). Results also

show that spurts with initial uhs have the highest proportions of neutral stance (32%), and

spurts with final uhs have the highest proportions of negative (5%) and positive stance (5%).

Results were submitted to a chi square test which indicate that the markers’ position in the

spurt and the stance polarity labels of the spurts are dependent variables (p < 0.01).

Figure 8.5: Percentages of spurts that contain the marker um or uh for each position (alone,

final, initial, and medial) and each stance polarity value (negative, neutral, positive)

8.4.3 Spurts with more than one marker

The goal of this section is to explore how the presence of multiple markers and their

position in the spurt is related to the stance marking of the spurt. There are 59 spurts that

contain more than one marker (see section 8.2.1), but three are excluded because they are
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marked with undetermined stance, which leads to a total of 56 spurts for this section of

the experiment. Figures 8.6 and 8.7 summarize the distribution of the stance strength and

polarity labels of the spurts that contain more than one marker. Since the sample size for this

experiment is small, results are based on the counts of spurts rather than on the proportions.

Compared to spurts that contain only one marker, spurts with more than one um or uh are

more likely to be marked with some degree of stance but are proportionally similar in terms

of polarity. That is, the majority of spurts that contain more than one marker are more likely

to be marked with neutral stance, while spurts with medial ums and uhs are more likely to

be marked with positive polarity, and spurts with medial uhs are more likely to be marked

with negative polarity.

Figure 8.6: Percentages of spurts that contain more than one marker for each position

(alone, final, initial, and medial) and a binary distinction of stance strength (no stance (0)

vs. any stance (1))
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Figure 8.7: Percentages of spurts that contain more than one marker for each position

(alone, final, initial, and medial) and each stance polarity value (negative, neutral, positive)

8.5 Position in ATAROS vs. Switchboard

In this section I discuss the position of um and uh in Switchboard and in ATAROS, and

the questions it raises about segmenting transcriptions in utterances (i.e., slash units vs.

spurts). Results from section 7.7 in Chapter 7 show that the vast majority of um and uh are

in medial position (53.1% and 73% respectively), and very few markers are alone (1.2% and

6.1% respectively). Similarly, results from section 8.4 show that the majority of uhs are in

medial position in ATAROS, however, with very different proportions, 35% in ATAROS vs.

73% in Switchboard. Other similarities between the position of the two markers in the two

datasets are that about 13% of uhs are in final position, and about 25% of ums are in initial

position. Differences between the two datasets are that alone and initial uhs in ATAROS

are three times more frequent than in Switchboard, alone ums are five times more frequent

in ATAROS than in Switchboard, and there are more than two times fewer ums in medial

position in ATAROS than in Switchboard. Another important difference between the two



127

corpora is that um and uh have rather similar distributions in Switchboard, unlike ATAROS.

For instance, in Switchboard, the majority of ums and uhs is in medial position, and the

minority is alone. On the contrary, in ATAROS, the majority of ums are alone while alone is

the second to least frequent position for uh, and the minority of ums are in medial position

while the majority of uhs are in medial position.

As mentioned in section section 7.7, the Switchboard transcriptions used in this study

were segmented into slash units (sentence-like chunks, see section 5.4.3 for more information)

from transcriptions only, with no audio input. On the other hand, the ATAROS corpus was

segmented based on audio inputs, and spurts are defined as time-units for stance annotation

(Freeman, 2015). Since position is measured relative to spurts and slash units which are

different types of speech units, it is therefore not possible to compare the position of the

markers across corpora. This raises issues on transcription segmentation for speech. Unlike

written language that has full sentences, speech does not always have finite, systematic

sentences. Many speech sentences can be complete and yet not sentential. Speech is also

characterized by interruptions and disfluencies, which lead to partial or incomplete sentences.

It would therefore be interesting to determine a universal speech unit, most likely based on

the prosodic phrase, to segment speech corpora. This would allow comparing results across

datasets, and to increase the robustness of results such as those presented in this study.

8.6 Summary and discussion

To summarize findings from this chapter, spurts with one um or uh are more likely to be

marked with no stance (strength and polarity), and less likely to be marked with weak and

positive stance than spurts that do not contain any marker. Spurts with uh are the most

likely to be labeled with moderate and negative stance. Finally, all spurt types have similar

proportions of strong stance and undetermined stance. The results indicate that spurt type

and stance strength and polarity are dependent (p < 0.01), and spurt types behave differently

with regards to stance marking. It is also important to underline that spurts with one marker

behave differently from each other, and from spurts with no markers.
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Results on the relation between the stance strength label of the spurt and the position of

um and uh indicate that isolated ums and uhs are more likely to be marked with no stance

and neutral polarity, while spurts that contain markers in other positions are more likely to

be marked with some degree of stance strength, and negative or positive polarity. The results

indicate the marker’s position and stance (strength and polarity) are dependent variables

(p < 0.01). That is, spurts behave differently with regards to stance marking depending on

the marker’s position. Results on spurts that contain more than one marker suggest that the

spurts behave differently in terms of stance strength, but not in terms of stance polarity.

This analysis suggests the presence and the position of the marker in a spurt have an

association with the stance label of the spurt. A possible interpretation of these results

would suggest that isolated ums and uhs are less likely to indicate the speaker’s attitude

than markers in different positions in the spurt, which means that markers in initial, medial,

and final position are more likely to play a discourse function than isolated markers. I argue

that a more reliable interpretation of the results, however, suggests that the presence and

the position of um and uh can be used as a predictor of the stance label of the spurt.

In the next chapter, I investigate the effect of stance on the acoustic properties of um

and uh, to see if similarly to the presence and the position, there is any correlation between

the acoustic realization of the two markers and the stance label of the spurt in which they

are. Results from this chapter and from the next chapter are incorporated into a stance

classification experiment (see Chapter 10), to test whether the lexical, discourse, and the

acoustic features of the two markers improve stance prediction accuracy.
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Chapter 9

STANCE VALUES AND ACOUSTIC PROPERTIES OF UM

AND UH IN THE ATAROS CORPUS

9.1 Introduction

The two goals of this experiment are to find out whether um and uh have different acoustic

realizations depending on the stance marking of the utterance in which they are, and whether

the two markers behave differently from each other and from other monosyllabic words with

the same vowel.

The previous experiment in Chapter 8 shows that the presence and the position of the

markers um and uh in a spurt correlate to some degree with the stance strength and polarity

label of the spurt. In addition, results from Levow et al. (2014) show that um is a key

lexical feature in automatic stance strength recognition. These two experiments suggest that

the lexical features um and uh, and stance labels are dependent variables. Other studies

on the acoustic properties of stance marking also suggest that stance is also characterized

by acoustic information. Results from Somasundaran et al. (2006) show annotators perform

better in annotating opinion categories when they have access to recordings than when they

have access to transcriptions only. Experiments from Freeman (2014); Freeman et al. (2015b)

show that different functions of yeah differ in terms of combination of pitch and intensity

contours, as well as vowel duration. Finally, results from Freeman (2015) on stressed vowels in

content words show that pitch and intensity increase with stance strength, positive polarity is

mainly characterized by longer vowels, while formants do not seem to indicate any particular

stance category.

Based on these findings, I investigate whether the stance label of the spurt has an effect

on the acoustic realization of the markers um and uh, and on the same vowel (/2/) in
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other monosyllabic words. I hypothesize that um and uh have different acoustic properties

depending on stance markings, and that um and uh have different acoustic realizations from

other monosyllabic words with the same vowel. Based on results from Chapters 6, 7, and 8,

I also anticipate that um and uh vary in different ways depending on stance labels, and that

um varies to a greater extent than uh. Each section of this experiment focuses on one acoustic

feature of the vowel /2/ in monosyllabic words. The acoustic parameters are duration (s.),

pitch (Hz), intensity (dB), F1 (Hz), and F2 (Hz). For each acoustic feature, I investigate

the effect of stance and word group (um, uh, or other). I use three stance measures : binary

stance strength, three-way stance strength, and stance polarity (see section 9.2.1 for more

information).

9.2 Methodology

9.2.1 Stance data

The stance polarity and stance strength labels are collected from the coarse tier of each

TextGrid (see section 5.3.4 in Chapter 5). The stance labels are annotated by trained trans-

cribers, with high inter-rater agreement, 0.87 for stance strength and 0.93 for stance polarity

for the weighted Cohen’s kappas with equidistant penalties (Freeman, 2015). Stance strength

is annotated with four levels : no stance, weak, moderate, and strong stance. In this expe-

riment, I look at two stance strength distinctions, binary stance and three-way stance. The

three-way stance distinction includes 3 labels : no stance (0), weak (1), and moderate/s-

trong (2), in order to compensate for the small number of spurts labeled with strong stance.

The binary distinction collapses weak, moderate, and strong stance to a category called any

stance, yielding 2 labels : no stance (0) vs. any degree of stance (1). Stance polarity has 3

levels : neutral, negative, and positive stance. Undetermined stance (x), whether for degree

or polarity, is excluded from this experiment due to its small sample size, and in order to

reduce the number of stance categories.
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9.2.2 Acoustic data

This experiment is conducted on 34 conversations between 17 dyads (groups of 2 spea-

kers). The acoustic data is collected using Praat (Boersma and Weenink, 2015), from intervals

in the phone tiers labeled AH1 (/2/ in Arpabet). The phone tiers are created from the utte-

rance tiers with forced alignment using the Penn Phonetics Lab Forced Aligner (P2FA) (Yuan

and Liberman, 2008). The vowel boundaries are therefore defined by the forced aligner. The

main drawback of this method is that vowel boundaries may have an error margin, which is

compensated by using a large number of samples. Acoustic data are automatically collected

by a Praat script that runs through the 34 sound files and TextGrids. The script collects

acoustic measurements at the midpoint of the vowel for pitch (F0), intensity, F1 and F2,

and throughout the interval for vowel duration, based on boundaries from the phone tiers.

The script settings are 0.01sec time step, 5 formants, 5,500Hz maximum formant, 0.025sec

window length and a minimum pitch of 75Hz. In order to get better measurements, I only

used vowels longer than 30ms. Note that throughout this experiment vowels are identified

by using the label AH1 from the forced aligner. However, this does not mean that all vowels

have the formantic values of AH1. Therefore, the labels AH1 and /2/ should be considered

as broad phonological annotations rather than phonetic markings of the vowels, which allow

identifying the vowel boundaries for phonetic measurements, rather than claiming the actual

phonetic value of the vowel.

There are 3,902 vowels labeled AH1 from monosyllabic words in spurts not marked with

undetermined stance. Note that vowels in words like check-up or uh-huh are not included be-

cause I do not count these words as monosyllabic. Furthermore, 1,615 vowels have undefined

pitch (41.5% of all vowels) due to the inability from the pitch extractor to extract the pitch

values. The data for pitch therefore consist of 2,273 vowels with 333 ums and 198 uhs, while

the data for intensity, duration, F1 and F2, consist of 3,888 vowels, with 568 ums and 416

uhs. Table 9.1 summarizes the number of vowels labeled /2/ for each word type, um, uh, and

other monosyllabic words (other) for each stance distinction used in this experiment. These
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numbers show that there are less vowels in negative and positive spurts, which is expected

since there are fewer spurts of these two types in the corpus (see section 8.2.2 in the previous

chapter).

Table 9.1: Number of vowels labeled /2/ for each stance distinction, three-way and binary

stance strength, and stance polarity, and for each word group, um, uh, and other monosyllabic

words (other)

stance value other uh um

3-way strength

no stance 452 128 263

weak 1078 136 165

moderate/strong 1374 152 140

binary strength
no stance 452 128 263

stance 2452 288 305

polarity

negative 328 48 15

neutral 2140 324 464

positive 436 44 89

9.2.3 Statistical analysis

The statistical method used in this chapter is Linear Mixed Effect (LME) Model, using

the lme4 package (Bates et al., 2015) from R (R Core Team, 2013). Two statistical models

are used depending on the research question. I use a random intercept model to look at how

the vowel /2/ changes depending on word group (um, uh or other), with one of the following



133

acoustic features for dependent variable : duration, intensity, F0, F1, or F2. In this model,

the fixed effects are gender and word group, and the random effect is speaker. I use a random

slope model to look at how stance affects the vowel /2/ within each word group. Stance is

used as the random slope factor, which allows speakers to have different intercepts and slopes

for the effect of stance. In other words, this entails that baseline levels of stance could have

different effects depending on speakers. The dependent variable is one of the acoustic features

(duration, intensity, F0, F1, or F2), and the fixed effects are gender and stance. Stance has

three possible distinctions : three-way and binary stance strength, and stance polarity. The

random effect is speaker for the word groups um and uh, and the random effects are speaker

and word when looking at other. Finally, I use the Likelihood Ratio Test to attain p-values

and to test the statistical significance between various models.

9.3 Duration and Stance

This section focuses on testing the effect of stance on the duration of the vowels in three

types of words, to see if a) stance strength and polarity affect the duration of the vowel, and

b) to find out whether um and uh behave differently from each other and from other words.



134

Figure 9.1: Effect of stance strength (binary on the left, and three-way on the right) on the

duration (in log) for the vowel /2/ in uh, um, and other monosyllabic words (other)

9.3.1 Binary stance strength

Figure 9.1 plots the duration of the vowel /2/ in three word groups (um, uh and other)

depending on binary stance strength (left) and depending on three-way stance strength

(right). The left-side figure shows that tokens in spurts marked with some degree of stance

have a shorter vowel than tokens in spurts with no stance, and that the difference in duration

is stronger for other words than for um and uh.

The statistical analysis of the effect of binary stance strength on vowel duration and the

likelihood ratio test between the full model and the reduced ones show that binary stance

does not have a significant effect on the vowel of um, uh, or other. However, gender has a

significant effect on the vowel of um (χ2(1) = 8.2, p < 0.01), increasing duration by 0.321

for men ± 0.096 (standard errors), and on the vowel of other (χ2(1) = 10.8, p < 0.01),

decreasing duration by -0.140 for men ± 0.035 (standard errors). Gender does not have a

significant effect on the vowel of uh but it has an increasing effect for men.

These results indicate that even though binary stance does not have a significant effect
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on the vowel of the three word groups, vowels are shorter in spurts marked with stance. It

is also interesting to note that the duration of the vowel /2/ in uh varies more with binary

stance than um. Finally, it is interesting to see that gender has an increasing effect on um

and uh for men, while it has a decreasing effect for men on other monosyllabic words (other).

9.3.2 Three-way stance strength

The right-side figure of Figure 9.1 shows that stance strength has a decreasing effect on

the duration of /2/ in the three word groups, especially between categories 1 (weak stance)

and 2 (moderate-to-strong stance), and especially for the word groups other and uh.

The likelihood ratio tests show that three-way stance strength has a significant effect on

/2/ in other (χ2(1) = 4.5, p < 0.05), decreasing vowel duration by -0.040 ± 0.017. However,

three-way stance strength does not have a significant effect on the duration of /2/ in um or

uh. Results also show that gender has a significant effect for other (χ2(1) = 8.4, p < 0.01),

decreasing duration for men by about -0.122 ± 0.037, and for um (χ2(1) = 8.8, p < 0.01),

increasing duration by about 0.346 ± 0.095 for men. Gender does not have a significant effect

on the duration of /2/ in uh, but similarly to um, men produce longer vowels.

These results indicate that as stance strength increases, vowel duration decreases, and

that the effect of stance is stronger on the vowel in other monosyllabic words than in um

or uh. Similarly to binary stance, men use longer ums and uhs than women, while they use

shorter vowels in other monosyllabic words.

9.3.3 Stance polarity

Figure 9.2 plots the duration of /2/ in the three word groups (um, uh, and other) depen-

ding of the polarity of the spurt in which the vowels are. The plot shows that polarity has a

different effect on the vowel depending on the polarity value (positive, neutral, or negative)

and depending on the word group. However, negative polarity seems to be associated with

shorter duration for all word groups, and positive polarity correlates with higher duration

for um and uh.
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The statistical analysis shows that polarity does not have a significant effect on the vowel

in any of the three word groups. Gender has a significant effect on the vowel in the um group

(χ2(1) = 7.7, p < 0.01), increasing vowel duration for men by 0.294 ± 0.096, and on the

vowel of other monosyllabic words (χ2(1) = 5.7, p < 0.05), decreasing it by -0.1 ± 0.039.

Gender does not have a significant effect for uh, but men use longer vowels. Finally, word

group has a significant effect on the vowel duration (χ2(1) = 2037.7, p < 0.001), with longer

vowels in um

Figure 9.2: Effect of stance polarity on the duration (in log) of uh, um, and other monosyl-

labic words (other)

9.3.4 Word group effect

As illustrated by Figures 9.1 and 9.2, vowel duration varies depending on word group

(other vs. um vs. uh). The vowel /2/ is shortest in other, and the vowel is shorter in um

than in uh, which is not surprising since um has a nasal component. Results also show that

the duration of /2/ varies more in uh than in um, which is surprising since prior results show

that um varies more than uh. The statistical analysis on the effect of word group reports

that word group has a significant effect on the duration of the vowel (χ2(1) = 2176, p <
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0.001), increasing duration for um by about 1.321 ± 0.031, and increasing duration for uh

by about 1.404 ± 0.035.

9.3.5 Summary and discussion

Table 9.2 summarizes the results on duration. The duration of the vowel is significantly

different depending on word group. The vowel is shortest in other, and shorter in um than uh.

Gender also has a significant effect on vowel duration. Men use longer vowels for um and uh

than women, while they use shorter vowels than women for other monosyllabic words. Stance

has a decreasing effect on vowel duration in the three word groups, and only the three-way

stance strength has a significant effect on the vowel of other. Based on the statistical analysis

and on the medians plotted in Figure 9.1, the three-way distinction is a better measure than

the binary distinction, because it captures the differences in duration between weak stance (1)

and moderate/strong stance (2), unlike binary stance, which collapses these two distinctions

into one category. Unlike for other, positive polarity in um and uh correlates with longer

vowels, similarly to findings from (Freeman, 2015). The duration of the vowel in um and uh

varies more than in other words when expressing negative, and especially positive polarity.

These results suggest that um and uh are more susceptible to carry polarity marking than

other words.
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Table 9.2: Summary of the statistical analysis on duration for each word group (other, uh

and um)

factor other uh um

bin – – –

effect √ √ √

3-way p < 0.05 – –

effect √ √ √

polarity – – –

effect negative = shortest

gender p < 0.01 – p < 0.01

effect (men) √ ¬ ¬

word group p < 0.001

effect other < um < uh

9.4 Pitch and Stance

This section looks at the effect of stance and word group on the pitch (F0) of the vowel

/2/ in three word groups (other, uh, and um), for the three stance measures. Figure 9.3 plots

the pitch of the vowel depending on stance (binary on the left, three-way on the right) for

each word group. The two plots show that the pitch of the vowel varies more in um and uh

than in other depending on stance strength.

As expected, gender reliably affects the pitch of the vowel for all three stance distinctions

(p < 0.001), and men have a shorter pitch than women. Since gender is a well established

factor of pitch values, and since it is not the focus of the study, I only report it here.
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Figure 9.3: Effect of stance strength (binary on the left, and three-way on the right) on

pitch, also called F0 (in log), for the vowel /2/ in uh, um, and other monosyllabic words

(other)

9.4.1 Binary stance strength

Results from the statistical analysis on the effect of pitch on the vowel /2/ show that

binary stance does not have a significant effect on the vowel in any word group. The presence

of stance (1) has a decreasing effect for vowels in other and uh, while it has an increasing

effect for vowels in um.

9.4.2 Three-way stance strength

Similarly to binary stance, the statistical analysis indicates that three-way stance strength

does not have a significant effect on the pitch of the vowel in the three word groups. However,

the medians plotted in Figure 9.3 show that even though the difference is not significant, the

pitch of the vowel varies depending on three-way stance strength. It is interesting to note

that for other and uh, vowels in spurts marked with no stance (0) behave similarly to vowels

marked with moderate-to-strong stance (2), whereas vowels marked with weak stance (1)
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have a lower pitch. On the contrary, pitch increases for vowels marked with stance in um ;

pitch is similar for weak (1) and moderate-to-strong stance (2), while it is lower for no stance

(0).

9.4.3 Stance polarity

Figure 9.4 plots the effect of stance polarity on the pitch of the vowel /2/ in the three

word groups. The medians show that the pitch of the vowel in um and uh varies more than

in other, especially in um. The statistical analysis shows that similarly to stance strength,

polarity does not reliably affect pitch. However, the medians for all three groups show that

vowels in negative spurts have the highest pitch, and that they tend to have the lowest pitch

in neutral spurts. These results suggest that the presence of polarity is marked by a higher

pitch than neutral polarity, especially negative polarity.

Figure 9.4: Effect of stance polarity on the pitch, also called F0 (in log), of uh, um, and

other monosyllabic words (other)
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9.4.4 Word group effect

The statistical analysis of the effect of word group on pitch shows that pitch is reliably

different depending on the word group (χ2(1) = 8.7, p < 0.05). The pitch of vowels in um

and uh is lower than in other by about -0.039 ± 0.019, and that the pitch of uh is on average

lower than the pitch of um.

9.4.5 Summary and discussion

The results from this section confirm that men have a lower pitch than women, and that

the pitch of the vowel is significantly different depending on the word group.

Results for pitch and stance strength indicate that a binary stance distinction is appro-

priate for um, but not for other and uh. The three-way distinction is better for other and

uh because it captures the differences in pitch between weak and moderate-to-strong stance.

The results on the effect of stance strength on pitch corroborate results from Freeman (2015),

which show that pitch increases with stance strength, as shown by the medians in Figure

9.3 for moderate-to-strong stance (2). Results on polarity also corroborate findings from

Freeman (2015) that find higher pitch on negative yeah, and higher pitch as a correlate of

positive polarity.

The effect of stance strength and polarity on pitch is different for um and uh, and uh

behaves more like other. The pitch of vowels in um varies to a greater extent, and in different

trends across polarity and strength than for vowels in uh or other. These results suggest that

um is more likely to signal polarity than uh or other words.
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Table 9.3: Summary of the statistical analysis on pitch for each word group (other, uh and

um)

factor other uh um

bin – – –

effect √ √ ¬

3-way – – –

effect 0 > 1 < 2 0 > 1 < 2 0 < 1 ¥ 2

polarity – – –

effect - > 0 ¥ + - > 0 ¥ + - > 0 < +

gender p < 0.001

effect (men) men < women

word group p < 0.05

effect other > um > uh

9.5 Intensity and Stance

In this section I look at the effect of stance and word group on the intensity of the vowel

in the three word groups. Figure 9.5 plots the intensity of the vowels in the three word groups

depending on binary (left) and three-way (right) stance strength.

Although gender does not reliably affect the intensity of the marker in any of the stance

models, results show that men use a slightly higher intensity than female, which varies from

1.6 dB for um, to 0.4 dB for uh, and to 0.1 dB for other. The effect of gender is therefore

stronger for um than for uh and other.
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Figure 9.5: Effect of stance strength (binary on the left, and three-way on the right) on

intensity (in dB), for the vowel /2/ in uh, um, and other monosyllabic words (other)

9.5.1 Binary stance strength

The statistical analysis reveals that binary stance does not have an effect on intensity,

and that um does not behave like uh and other. The presence of stance increases intensity

for other and uh, while it decreases intensity for um.

9.5.2 Three-way stance strength

Results on the effect of three-way stance strength on the intensity of the vowel report

that three-way stance only has a reliable effect on other (χ2(1) = 9.3, p < 0.01), with a

difference of about 0.9 dB ± 0.2 between stance values. The medians from the right-side plot

in Figure 9.5 show that similarly to pitch, the intensity of the vowel varies with three-way

stance in similar trends for uh and other, while the vowels in um behave differently. Similarly

to duration, there is very little difference in the intensity of um compared to uh and other.

The vowels in uh and other behave similarly to results reported in Freeman (2015), unlike

vowels in um, where intensity is rather stable across stance values.
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9.5.3 Stance polarity

Results on the effect of polarity on vowel intensity show that polarity does not have

a significant effect on intensity in any of the word groups. The plot in Figure 9.6 shows

that similarly to stance strength, um does not behave like uh and other with regards to

polarity and intensity. For other and uh, vowels in spurts marked with negative polarity

have the highest intensity, while for um negative polarity is associated with lower intensity.

The results form this analysis suggest that vowels in other and uh behave more similarly to

yeah and to other lexical words (Freeman, 2015) than vowels in um.

Figure 9.6: Effect of stance polarity on intensity (in dB), of uh, um, and other monosyllabic

words (other)

9.5.4 Word group effect

The statistical analysis reveals that only vowels in uh are significantly different from the

other word groups in terms of intensity (χ2(1) = 6.8, p < 0.05), with a difference of about

-0.8 dB ± 0.3.
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9.5.5 Summary and discussion

In sum, gender affects the intensity of um the most, and word group affects the intensity

of uh to the greatest extent. Similarly to duration and pitch, um does not behave like uh and

other with regards to stance strength, and similarly to duration, the intensity of um does

not vary much depending on stance strength compared to uh and other. In addition, polarity

affects intensity for um in different ways than the two other groups. Results from this section

indicate that uh and other are more similar than um when looking at the effect of polarity on

vowel intensity. Furthermore, findings also indicate that uh and other behave more similarly

to yeah and lexical words (Freeman, 2015) than um. This suggests that um does not behave

like other words, especially lexical words, and that um carries different information than uh,

while uh behave more like other lexical words.

Table 9.4: Summary of the statistical analysis on intensity for each word group (other, uh

and um)

factor other uh um

bin – – –

effect ¬ ¬ ¥

3-way p < 0.01 – –

effect 0 > 1 < 2 0 > 1 < 2 0 > 1 > 2

polarity – – –

effect - highest - highest - lowest

gender – – –

effect (men) men < women

word group p < 0.05 – –

effect ¥ √ ¥
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9.6 Vowel quality (F1 and F2) and Stance

In this section I look at the effect of stance on the vowel quality in three word groups,

and across word group. I measure vowel quality by looking at the first formant (F1) and the

second formant (F2) of the vowels. Figures 9.7 and 9.8 respectively plot the first (F1) and

second formants (F2) for the three word groups depending on binary (left) and three-way

(right) stance strength.

As expected, gender reliably affects F1 and F2 of the vowel in each word group (p <

0.001), with a lower value for men than women.

Figure 9.7: Effect of stance strength (binary on the left, and three-way on the right) on F1

(in log), for the vowel /2/ in uh, um, and other monosyllabic words (other)
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Figure 9.8: Effect of stance strength (binary on the left, and three-way on the right) on F2

(in log), for the vowel /2/ in uh, um, and other monosyllabic words (other)

9.6.1 Binary and three-way stance strength

The statistical analysis shows that only three-way stance reliably affects F2 (χ2(1) = 4,

p < 0.05) in other, and that binary and three-way do not reliably affect F2 in um and uh,

or F1 in any word group. The medians in Figure 9.7 show that compared to other acoustic

parameters, F1 does not vary much depending on stance strength, except for uh, where F1

increases as stance strength increases. However, F2 increases in the three word groups, and

weak stance (1) and moderate-to-strong stance (2) behave similarly. Stance affects F2 in um

and uh in similar ways.

9.6.2 Stance polarity

Results on the effect of polarity on F1 and F2 show that polarity does not reliably affect

vowel quality. However, Figure 9.9 indicates that even though the effect is not significant,

vowel quality varies depending on polarity, and to a greater extent for F2 than for F1,

similarly to stance strength. F1 is higher in spurt marked with negative polarity, especially
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for other and uh, and F2 is higher for negative polarity i other and um, while it is lower for

uh. F2 does not behave similarly with regards to polarity for um and uh, and F2 varies more

in um than in uh.

Figure 9.9: Effect of stance polarity on F1 (in log) on the left and F2 (in log) on the right,

of uh, um, and other monosyllabic words (other)

9.6.3 Word group effect

The statistical analysis shows that F1 is reliably different across word group (χ2(1) =

12.3, p < 0.01). F1 is higher in uh by about 0.037 ± 0.017, and it is higher in um by about

0.046 ± 0.015. F2 is significantly different depending on word group (χ2(1) = 28.1, p <

0.001), it is lower in uh by about -0.02 ± 0.009, and it is lower in um by about -0.04 ± 0.008.

These results show that vowel quality is different in um and uh since the vowel is lower and

more back in these two word groups.
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9.6.4 Summary and discussion

Table 9.5: Summary of the statistical analysis on F1 and F2 for each word group (other,

uh and um)

factor other uh um

bin F1 – – –

effect ¥ ¬ ¥

bin F2 – – –

effect ¬ ¬ ¬

3-way F1 – – –

effect ¥ ¬ ¥

3-way F2 p < 0.05 – –

effect ¬ ¬ ¬

polarity F1 – – –

effect - highest

polarity F2 – – –

effect - highest - lowest - highest

gender F1 F2 p < 0.001

effect (men) men < women

word group F1 p < 0.01

effect other < um and uh

word group F2 p < 0.001

effect other > um and uh

Table 9.5 summarizes the results on stance strength, polarity, gender and word group for

vowel quality in the three word groups. Stance strength has an increasing effect for vowels
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in uh, which means that F1 values increase as stance strength increases, and that the vowel

is lower with higher stance strength. Results also indicate that binary stance strength is a

good measure for um and uh, but three-way stance strength captures the difference in F2

between weak and moderate-to-strong stance in the group other. Therefore, three-way stance

strength is a better measure for vowel quality.

9.7 Chapter summary and discussion

In this experiment I predicted that um and uh are realized differently depending on the

stance of the spurt in which they are. I also predicted that the two markers behave differently

from other words, and from each other.

The results presented in this experiment show that stance strength (binary and three-

way) and polarity do not reliably affect the acoustic properties of the vowels in um and

uh. However, three-way stance strength reliably affects the duration, the intensity, and the

second formant (F2) of other monosyllabic words (other). Findings also show that polarity

does not have a significant effect on the acoustic parameters of the vowel in any of the three

word groups. This is not surprising since other studies have found more correlation between

stance strength and lexical or acoustic features, than with stance polarity (Freeman, 2015;

Levow et al., 2014).

Even though the results are not significant, interesting findings from this chapter include

differences in medians depending on stance strength and polarity for um and uh, as well as

differences in how the two markers are affected by stance for each acoustic parameter. Binary

stance has a decreasing effect on the duration of the vowel in all word groups, and three-way

stance affects uh and other to a greater extent than um. Binary stance strength affects pitch

and intensity differently in the three word groups, it affects F1 to a greater extent for uh,

and it affects F2 in similar trends, although to a greater extent for um than for uh and other.

Three-way stance affects uh and other in similar ways for pitch, intensity, and F2, and it

affects F1 differently in all word groups. Polarity affects duration in different ways, especially

for other. Polarity affects the pitch and the intensity of uh and other in similar trends, while
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um behaves differently. Polarity does not affect F1 much, and affects F2 in uh differently

from um and other. These results show that um and uh are affected in different ways by the

stance marking of the spurt in which they are, and that pitch and intensity follow similar

patterns. These results also indicate that uh tends to behave more like other monosyllabic

words, unlike um, which suggests that um plays a more important role in stance marking

than uh, consistent with other findings from this study.

These results suggest that um and uh are not the same, and that they have different

acoustic realizations, although not significant, depending on stance strength and polarity.

Findings from this chapter and from Chapter 8 are incorporated in the next chapter to test

whether the presence, the position, and the acoustic properties of um and uh can improve

automatic stance classification.
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Chapter 10

AUTOMATIC CLASSIFICATION OF STANCE

10.1 Introduction

The goal of this experiment to to test whether incorporating features relating to um and

uh can improve the accuracy of a classifier in predicting stance strength and polarity labels.

This chapter takes into account findings from Chapters 6, 8 and 9, and incorporates them

together into a concrete applications to see if they can be used in automatic classification of

stance.

Results from Chapter 6 show that the speaker gender and the task variables affect the

distribution and the duration cues of the two markers, and results from Chapter 9 show

that the acoustic characteristics of the vowel in um and uh have different trends depending

on stance strength and polarity labels. Furthermore, results from Chapter 8 show that the

presence and the position of the two markers are not independent from the stance label of

the spurt in which the marker is, and that the spurts have different probabilities to be label

with a certain degree or polarity of stance depending on the presence and the position of

the marker. Finally, findings mentioned in Chapter 9 from Freeman (2014, 2015); Levow

et al. (2014); Somasundaran et al. (2006) indicate that stance strength and polarity are

characterized by different acoustic and lexical characteristics.

Based on these findings, I predict that um is a more valuable lexical feature than uh, and

that incorporating lexical, discourse, metalinguistic, and acoustic features pertaining to um

and uh can increase the accuracy of automatic stance classification over baseline. In the first

experiment I test whether um and uh are relevant word unigram features, and in the second

experiment I look at whether metalinguistic, discourse, and acoustic characteristics of um

and uh participate in predicting stance.
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10.2 Methodology

The estimator (i.e., the classification algorithm) chosen for this experiment is the SVM

package (Support Vector Machine) from Scikit Learn (Pedregosa et al., 2011). This SVM

package is a supervised learning method for classification, regression, and outliers detection.

It belongs to the discriminant family, and maximizes the margin between two classes. More

information on this package is available on the Scikit Learn website : http://scikit-learn.

org/stable/modules/svm.html. The SVM implementation used for this experiment is SVC

(Support Vector Classification), used for the classification of categorical data. The parameters

for the implementation of the classifier are the linear kernel, gamma = 0.001, and C = 1.0.

The results are validated by using cross validation, by splitting the data into five folds

X_folds = np.array_split(X, 5), where the training data constitutes four folds, the

testing data constitutes 1 fold, and the whole process is repeated five times on different

training and testing folds (see section D.2 in Appendix D for the code). The accuracy scores

are collected in a list for each fold. The estimator (clf) is fitted with the data (X_train) and

the target (y_train), to predict the scores based on k folds (5) using the testing set (X_test

and y_test), as illustrated in example (1). This methods allows computing the overall mean

validity score as well as checking if the training samples are random and if different folds

lead to similar predictions. In addition to accuracy scores, prediction, recall, and F1-scores

are also used and reported to estimate the best model and the contribution of the features.

(1) scores.append(clf.fit(X_train, y_train).score(X_test, y_test))

The data is extracted via scripts in Praat (Boersma and Weenink, 2015) to collect text in-

formation from the spurts, the stance labels, the vowel labels, and the acoustic features. The

data for each of the two experiments is organized into dataframes and preprocessed via py-

thon scripts. The text preprocessing for the spurts includes stripping punctuation, removing

truncated words, removing metalinguistic comments that indicate laughing or other noises,

and tokenizing the data. The feature preprocessing steps include exporting all features in the

http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
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type floats64, scaling numerical features to standardize the data, and exporting categorical

features in a vector format, similar to the OneHotEncoder, to transform categorical features

into binary vectors. An example of vectorization of categorical data is for position. The po-

sition of the marker can be either alone, initial, medial, or final, respectively coded as 0, 1,

2 and 3. The vectorization transforms the value of 0-3 into a vector of length 4 with binary

values. For instance, 0 is replaced by [1, 0, 0, 0] and 3 is replaced by [0, 0, 0, 1].

Different datasets are used in this chapter, explained in details in sections 10.3.1 and

10.4.1. All data for this chapter excludes spurts labeled with undetermined stance (x). In

sum, the data for the first experiment mainly consists of lexical data from the spurts to test

whether um and uh are relevant word unigrams for the classification of stance. The data for

the second experiment consists of information on the position and the acoustic characteristics

of the two markers, to test whether discourse and acoustic information improve accuracy over

lexical information.

10.3 Experiment 1 : Classification of stance using lexical features

The goal of this section if to find out whether filtering um and uh from the spurts decreases

the performance of the classification task, which is to predict stance labels using three stance

distinctions, the presence of stance (binary stance strength), three-way stance strength, and

stance polarity.

10.3.1 Data

Four datasets are used in this experiment : the first dataset contains lexical features with

no um and uh, for a total of 8,984 spurts. This means that the two markers are filtered

from the spurts and that any other word is left as is. The second dataset has no um and

has 9,047 spurts, the third dataset has no uh and has 9,140 spurts, and finally, the fourth

dataset contains both um and uh and has 9,203 spurts. The reason why the four datasets

have different numbers of samples is because some spurts only consist of one um or one uh,

which means that the spurt is entirely removed when the marker is filtered.
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10.3.2 Methodology

Five features are exploited in this experiment, bag of words (b.o.w.), the top 200 most

frequent words (top 200 ), the gender of the speaker (gender), the task (Budget Task vs.

Inventory Task, see section 5.3.1 for more information) (task), and the duration of the spurt

in seconds (duration). The bag of words and the top 200 features consist of word unigram

features from the spurts (i.e., the utterance). I use the top 200 most common words to reduce

the number of word unigrams, and to optimize runtime. The 200 cutoff was chosen to cover

lexical words in addition to function words that have a high token frequency (see Appendix

C). Furthermore, the feature b.o.w. does not improve the system’s performance over the

feature top 200, and it has a slower run time than top 200. Hence, top 200 is used instead

b.o.w. for the rest of the experiment.

Four feature combinations are used. The feature no lex means that no lexical features are

taken into account (i.e., no b.o.w. or no top 200 ), only gender, task, and duration are used.

The feature all stands for top 200, gender, task, and duration.

To deal with unbalanced classes in the four datasets mentioned in section 10.3.1, weights

are added by using the function class_weight which takes either a dictionary of key classes

and value weights, or the "balanced" value, which adjusts weights inversely proportional to

the class frequency. The weights are chosen based on the initial distribution of the data and

on the best precision, recall, F1-score, and accuracy scores (see section D.2 in Appendix D

for the code).

Various measures are used to analyze the system’s performance : accuracy scores, pre-

cision, recall, and F1-scores. The accuracy scores reported in the experiment are averaged

over five folds, and the precision, recall, and F1-scores are taken from the fifth fold of each

classification task for conciseness and consistency sake. Precision, recall, and F1-scores are

used in addition to accuracy for several reasons. These performance measures are especially

relevant when dealing with uneven classes. Furthermore, precision shows the positive pre-

dictive value (i.e., the classifier’s exactness) and recall shows the true positive rate (i.e., the
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classifier’s completeness), while F1-scores inform us on the balance between precision and

recall. These performance measures also inform us on how the algorithm performs on each

class as opposed to its overall performance. For instance, the precision, recall, and F1-scores

show that the feature combination no lex fails to assign one class in the prediction of binary

stance and stance polarity, despite using class weights, and show that using lexical features

(all or top 200 ) increases the performance of the classifier.

10.3.3 Results

Table 10.1 summarizes the baselines of the classifiers for the four datasets and for the

three stance measures, based on the distribution of the data. These baselines are used for

two reasons. First, to determine the weights assigned to the minority classes to avoid the

algorithm to be biased towards the most common class. Second, to compare the accuracy of

the classifiers in order to see which combination of features shows more improvement over

the baseline levels.
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Table 10.1: Baselines for the four datasets and the three stance measures, binary stance

strength (0=no stance, 1=any stance), three-way stance strength (0=no stance, 1=weak

stance, 2=moderate/strong stance), and stance polarity (-=negative, 0=neutral, +=positive)

Dataset 1 without um and uh

Binary stance 0 : 22% 1 : 78%

Three-way stance 0 : 22% 1 : 51% 2 : 27%

Stance polarity - : 5% 0 : 65% + : 30%

Dataset 2 without um

Binary stance 0 : 22% 1 : 78%

Three-way stance 0 : 22% 1 : 51% 2 : 27%

Stance polarity - : 5% 0 : 65% + : 30%

Dataset 3 without uh

Binary stance 0 : 23% 1 : 77%

Three-way stance 0 : 23% 1 : 51% 2 : 26%

Stance polarity - : 5% 0 : 65% + : 30%

Dataset 4 with um and uh

Binary stance 0 : 24% 1 : 76%

Three-way stance 0 : 24% 1 : 50% 2 : 26%

Stance polarity - : 5% 0 : 65% + : 30%

Table 10.2 summarizes the average accuracy scores over the five folds, the precision, re-

call, and F1-scores, in predicting binary stance, for the four datasets and for three feature

combinations. Because the distribution of the four datasets is very similar in terms of binary

stance, the same weights were used for this classification task : .6 for class 0 (no stance) and

.4 for class 1 (the presence of stance). The weights were assigned using the following func-
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tion : wclf_2 = SVC(kernel=’linear’, class_weight=0 :.60, 1 :.40, gamma=0.001,

C=1.0), to balance the uneven classes listed in Table 10.1.

All performance measures, especially precision, recall, and F1 scores show that the feature

combination no lex (gender, duration, and task) does not add information to the model, and

that it leads to accuracy scores below baseline for datasets 1 and 2, and barely above baseline

for datasets 3 and 4. Furthermore, the results for top 200 and all show similar performances,

which means that the lexical features account for most of the information in predicting binary

stance in this corpus.

Based on the baselines listed in Table 10.1, the biggest improvement over baseline is for

dataset 4 (i.e., including um and uh) with an accuracy increase of 6.27% from 76% to 80.77%

by using the lexical feature top 200. The least improvement in accuracy is for dataset 1 (i.e.,

um and uh filtered) with an increase of 3.12% from 78% to 80.44%. These results suggest

that the best predictions are achieved by not filtering um and uh, indicating that the two

markers are valuable word unigrams in the prediction of binary stance in this corpus. It

is important to keep in mind however that the difference in performance between the two

datasets is rather small, and that further investigation should shed light on the significance

of the difference between using and filtering the features um and uh when predicting stance.

The comparison of the system’s performance (accuracy, precision, recall, and F1-scores)

between datasets 2 and 3 informs us on whether filtering um vs. uh decreases the performance

of the system, and allows comparing the importance of each marker as a word unigram

feature. In dataset 3 where uh is filtered, the accuracy scores show an increase of 4.77% over

baseline, from 77% to 80.68% and 80.67% respectively for the features top 200 and all. In

dataset 2 where um is filtered, the performance increases by 3.15% over baseline, from 78%

to 80.46%, using the top 200 feature. These results indicate that the system performs worse

when um is filtered than when uh is filtered, which means that um is likely to play a slightly

more important role than uh in predicting binary stance in this corpus.
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Table 10.2: Summary of mean accuracy sores for the five folds (M. acc.), Precision (P.),

Recall (R.), and F1-scores (F1) for classes 0 and 1, for the four datasets, for three feature

combinations (no lex, top 200, and all), in predicting binary stance (i.e., no stance : 0 or the

presence of stance : 1)

Features M. acc. P. 0 P. 1 R. 0 R. 1 F1 0 F1 1

Dataset 1 without um and uh

no lex 77.99 0 0.771 0 1 0 0.871

top 200 80.43 0.540 0.875 0.589 0.851 0.563 0.863

all 80.44 0.541 0.875 0.591 0.851 0.565 0.863

Dataset 2 without um

no lex 77.56 0 0.763 0 1 0 0.865

top 200 80.46 0.558 0.878 0.620 0.847 0.587 0.862

all 80.39 0.553 0.875 0.613 0.846 0.581 0.860

Dataset 3 without uh

no lex 77.73 0 0.760 0 1 0 0.864

top 200 80.68 0.568 0.875 0.615 0.852 0.591 0.864

all 80.67 0.568 0.875 0.615 0.853 0.591 0.864

Dataset 4 with um and uh

no lex 76.32 0 0.752 0 1 0 0.858

top 200 80.77 0.582 0.880 0.650 0.846 0.614 0.863

all 80.74 0.580 0.879 0.648 0.845 0.612 0.862

Table 10.3 summarizes the mean accuracy scores over five folds, the precision, recall, and

F1-scores, for classes 0 (no stance), 1 (weak stance), and 2 (moderate/strong stance), for the

automatic prediction of three-way stance strength. The weights used in this task are based

on the baselines listed in Table 10.1 : .4 for class 0, .2 for class 1, and .4 for class 2 ; using
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the following function : wclf_3 = SVC(kernel=’linear’, class_weight=0 :.4, 1 :.2,

2 :.4, gamma=0.001, C=1.0)). Since the four datasets have a similar distribution across

the three classes the same weights are used across all datasets.

Similarly to binary stance, the accuracy scores indicate that the best predictions are

obtained by using dataset 4 where um and uh are not filtered. The best results show an

improvement of 19.92% over baseline, from 50% to 59.96%, by using the feature top 200.

Dataset 1 shows the least improvement with an increase of 15.92%, from 51% to 59.12%, by

using the feature all. However, it is interesting to note that the F1-scores indicate that the

system performs better for classes 1 and 2 in dataset 1 than in dataset 4, but not for class

0. These performance metrics further indicate that the difference in performance between

the two datasets is very small, and that it is important to consider different metrics when

looking at a system’s performance, especially when dealing with unbalanced classes.

The results from datasets 2 and 3 show that filtering um leads to slightly lower improve-

ment (15.92% increase over baseline, from 51% to 59.12%) than filtering uh (17.08% increase

over baseline, from 51% to 59.71%). These results indicate that um is likely to play a slightly

more important role in predicting three-way stance than uh, although the differences are

small.

Unlike for binary stance, these results also indicate that the feature combination all leads

to slightly better results than the feature top 200 in the first three datasets. However, in

dataset 4 both all and top 200 show improvement depending on the performance metric.

The feature top 200 leads to a slightly higher accuracy score while the feature combination

all leads to slightly higher F1-scores for 2 out of 3 classes. Finally, the performance scores,

especially accuracy and precision, show that the absence of lexical features (no lex) fails to

predict three-way stance strength, showing accuracy scores below baseline.
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Table 10.3: Summary of mean accuracy sores for the five folds (M. acc.), Precision (P.),

Recall (R.), and F1-scores (F1) for classes 0, 1, and 2, for the four datasets, for three feature

combinations (no lex, top 200, and all), in predicting three-way stance strength (i.e., no

stance : 0, weak stance : 1, and moderate/strong stance : 2)

Features M. acc. P. 0 P. 1 P. 2 R. 0 R. 1 R. 2 F1 0 F1 1 F1 2

Dataset 1 without um and uh

no lex 47.46 0.275 0.599 0.502 0.421 0.473 0.484 0.333 0.529 0.493

top 200 58.79 0.468 0.757 0.515 0.742 0.554 0.535 0.574 0.640 0.525

all 59.12 0.466 0.751 0.548 0.752 0.576 0.512 0.575 0.652 0.529

Dataset 2 without um

no lex 47.55 0.288 0.594 0.502 0.427 0.476 0.482 0.344 0.529 0.492

top 200 58.87 0.485 0.751 0.514 0.751 0.558 0.527 0.589 0.640 0.520

all 59.12 0.480 0.749 0.540 0.762 0.573 0.506 0.589 0.649 0.523

Dataset 3 without uh

no lex 47.60 0.297 0.594 0.504 0.442 0.473 0.482 0.355 0.527 0.493

top 200 59.42 0.483 0.753 0.510 0.759 0.548 0.525 0.590 0.634 0.517

all 59.71 0.481 0.751 0.549 0.778 0.571 0.511 0.592 0.649 0.529

Dataset 4 with um and uh

no lex 47.63 0.310 0.588 0.505 0.446 0.475 0.483 0.366 0.526 0.494

top 200 59.96 0.501 0.756 0.513 0.770 0.553 0.528 0.607 0.639 0.520

all 59.85 0.495 0.749 0.544 0.775 0.568 0.509 0.604 0.646 0.526

Table 10.4 summarizes the performance of the classifier in predicting stance polarity.

Since the four datasets have the same distribution, the same weights are used : .55 for nega-

tive stance, .15 for neutral stance, and .3 for positive stance ; using the following function :

(wclf_4 = SVC(kernel=’linear’, class_weight=-1 :.55, 0 :.15, 1 :.3, gamma=0.001,
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C=1.0)).

Similarly to the prediction of binary stance, the precision, recall, and F1-scores indicate

that the feature combination no lex fails to assign the minority class (class -1). The lexical

feature (top 200 ) or the combination of all features (all) show improvement in terms of

performance over baseline. The accuracy scores indicate that the combination all leads to

the highest performance in datasets 1, 2, and 4, but the precision, recall and F1-scores

show that the feature top 200 leads to overall better results, especially for the minority

class, therefore indicating that top 200 leads to better overall performance of the system in

predicting stance polarity in this corpus.

The accuracy scores show that the biggest improvement is obtained by using dataset 4

with the feature combination all, showing an increase of 16.87% over baseline, from 65% to

75.97%. The lowest performance increase is obtained in dataset 1, with an increase of 16.07%

over baseline, from 65% to 75.45%. Similarly to binary and three-way stance strength, these

results indicate that using the features um and uh leads to a slight increase in performance.

The comparison of the system’s performance in datasets 2 and 3 also indicates that

filtering um (16.26% increase over baseline, from 65% to 75.57% with the feature top 200 )

leads to slightly less improvement than filtering uh (16.69% increase, from 65% to 75.85%

with the same feature), although the difference is very slight.



163

Table 10.4: Summary of mean accuracy sores for the five folds (M. acc.), Precision (P.),

Recall (R.), and F1-scores (F1) for classes -1, 0, and +1, for the four datasets, for three

feature combinations (no lex, top 200, and all), in predicting stance polarity (i.e., negative :

-1, neutral : 0, and positive : +1)

Features M. acc. P. -1 P. 0 P. +1 R. -1 R. 0 R. +1 F1 -1 F1 0 F1 +1

Dataset 1 without um and uh

no lex 47.48 0 0.736 0.335 0 0.275 0.865 0 0.400 0.483

top 200 75.42 0.325 0.877 0.624 0.283 0.740 0.857 0.302 0.803 0.722

all 75.45 0.314 0.875 0.619 0.239 0.741 0.857 0.272 0.803 0.719

Dataset 2 without um

no lex 47.98 0 0.672 0.401 0 0.490 0.661 0 0.567 0.499

top 200 75.57 0.325 0.881 0.625 0.283 0.746 0.858 0.302 0.808 0.723

all 75.58 0.314 0.879 0.620 0.239 0.748 0.858 0.272 0.808 0.720

Dataset 3 without uh

no lex 49.49 0 0.666 0.306 0 0.321 0.724 0 0.434 0.431

top 200 75.85 0.329 0.881 0.625 0.283 0.748 0.857 0.304 0.809 0.723

all 75.83 0.314 0.879 0.620 0.239 0.749 0.857 0.272 0.809 0.720

Dataset 4 with um and uh

no lex 48.76 0 0.656 0.293 0 0.288 0.730 0 0.400 0.419

top 200 75.94 0.321 0.885 0.627 0.283 0.753 0.859 0.301 0.814 0.725

all 75.97 0.310 0.883 0.623 0.239 0.755 0.859 0.270 0.814 0.722

10.3.4 Summary

The performance metrics presented in this experiment, whether looking at accuracy,

precision, recall, or F1-scores, show that the combination of all features (all) and the top
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200 most common word unigram features (top 200 ) lead to the highest performance for

each of the three stance predictions. These results indicate that the lexical features therefore

account for all of the information in the model, and that task, gender, and duration do

not add information to the model. This is further corroborated by the fact that the feature

combination no lex fails to predict the three stance dimensions, indicated by accuracy scores

below or barely above baseline, and by the precision, recall, and F1-scores revealing low

performance on the minority class despite the use of weights.

The performance metrics also show that the lexical features used in this experiment show

the most improvement over baseline when predicting three-way stance strength (19.92%

improvement over baseline), followed by stance polarity (16.87%), and finally show the least

improvement when predicting binary stance strength (4.77%). These results indicate that

lexical features are most informative when predicting three-way stance strength and stance

polarity.

For each of the stance predictions, the best results are obtained by using dataset 4

which contains both um and uh, indicating that um and uh are relevant word unigram

features. However, it is important to keep in mind that those differences are rather small,

especially when predicting stance polarity. These results suggest that um and uh might play

a less important role as word unigram features compared to other words in predicting stance

polarity than in predicting binary and three-way stance strength in this corpus. Further

research on the topic will investigate the significance of the difference between using and

filtering the two markers.

Finally, the comparison of the performance of the algorithms in datasets 2 and 3 shows

that filtering um leads to slightly lower performances than filtering uh for each of the three

stance predictions, therefore suggesting that um plays a slightly more important role than

uh in predicting stance in this corpus. However, given the small differences in performance

between the two markers, this finding requires further investigation to confirm the relative

role of um and uh in stance prediction.
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10.4 Experiment 2 : Classification of stance using acoustic and discourse fea-
tures

The goal of this experiment is to test whether acoustic cues and the position of the two

markers can predict stance labels, and whether these cues improve accuracy over lexical cues

tested in the previous experiment.

10.4.1 Data

Three datasets are used in this experiment : dataset 1 contains information on um and

uh, dataset 2 contains information on um only, and dataset 3 contains information on uh

only. Similarly to the previous experiment, datasets 2 and 3 are used to compare the relative

contribution of um and uh in predicting stance. Dataset 1 has 984 samples, dataset 2 has

568 samples, and dataset 3 contains 416 samples. Each sample of the data consists of a list

of features providing information on the markers such as their position and their acoustic

properties.

10.4.2 Methodology

A total of 11 features is exploited in this analysis, including acoustic characteristics

(duration, f1, f2, and intensity), position (alone, initial, medial, or final), as well as word (um

vs. uh), gender (man vs. woman), and task (Inventory vs. Budget). The word feature is only

used in dataset 1 containing um and uh. Pitch is excluded from this analysis because there

are 453 missing values out of 984 samples (46%) due pitch extraction errors. Solutions to deal

with missing values include removing missing values, or replacing them with the median. I

did not remove the samples with the missing values because they represent nearly half of the

data, and I did not want to replace the values with the median because the missing values

are likely on either end of the pitch range. I therefore excluded the entire pitch feature in

order to keep the 984 samples.

Several feature combinations are used in this experiment, ranging from excluding one
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feature to a combination of features, and only the most relevant ones are discussed in the

results section. The feature all stands for all 11 features. No position stands for all features

but the position features (i.e., alone, initial, medial, and final are excluded), no alone/init

means that the position features alone and initial are excluded, no med/final means that

the medial and final position features are excluded, and no alone/init/med means that only

the final position feature is included. No acoustics stands for all features but the acoustic

features (i.e., duration, f1, f2, and intensity are excluded). Finally, the feature no word means

that all features are taken into account, except for the marker (i.e., um vs. uh).

10.4.3 Results

Table 10.5 summarizes the baselines for the three datasets used in this experiment and

for the three stance measures, based on the distribution of the classes. The baselines listed

here are used to compare the performance of the classifiers in this experiment to show

improvement over baseline as opposed to raw accuracy scores. The baselines indicate that

each dataset has its own distribution and minority classes, and that the weights need to be

adjusted for each dataset and each stance dimension.
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Table 10.5: Baselines for the three datasets and the three stance measures, binary stance

strength (0=no stance, 1=any stance), three-way stance strength (0=no stance, 1=weak

stance, 2=moderate/strong stance), and stance polarity (-=negative, 0=neutral, +=positive)

Dataset 1 um and uh

Binary stance 0 : 40% 1 : 60%

Three-way stance 0 : 40% 1 : 30% 2 : 30%

Stance polarity - : 6% 0 : 80% + : 14%

Dataset 2 um

Binary stance 0 : 46% 1 : 54%

Three-way stance 0 : 46% 1 : 29% 2 : 25%

Stance polarity - : 3% 0 : 82% + : 15%

Dataset 3 uh

Binary stance 0 : 31% 1 : 69%

Three-way stance 0 : 31% 1 : 33% 2 : 37%

Stance polarity - : 12% 0 : 78% + : 10%

The main results of the performance of the classifiers for the three datasets are summari-

zed in Table 10.6. Because all datasets have similar trends, various feature combinations are

illustrated in different datasets for clarity purposes. The weights used in this classification

task for classes 0 and 1 respectively are : .6 and .4 for dataset 1, .55 and .45 for dataset 2,

and .7 and .3 for dataset 3.

The results show that across the three datasets, the position features account for all

predictions in the model, as illustrated by the results for the combination of all features (all)

and the combination of position features alone (position). Results not listed in this table show

that removing the word feature (um vs. uh) and removing one position feature at a time does

not affect the performance of the system for any of the datasets. However, results illustrated
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in dataset 1 show that removing all position features decreases the accuracy of the algorithm

below baseline, and that removing the combination of all position features but the final

feature (no alone/init/med) or removing the features alone and initial (no alone/init) also

decreases the system’s performance compared to including all position features. However,

removing the feature combination medial and final (no med/final) does not decrease the

system’s performance. These findings indicate that the position features are not informative

by themselves, and that the more position features are included, the more the performance

increases.

Removing all acoustic features (no acoustics) or one acoustic feature at a time does not

show any decrease in the system’s performance. The relative contribution of each acoustic

feature is analyzed by including one feature at a time. The performance metrics show per-

formance below baseline and precision and recall scores equal to 0 for most models. The

performance metrics show slight improvement when using f2 for um, and a slight bump in

accuracy score when using duration for uh. These results indicate that the acoustic features

do not bring any information over the position features, and that they account for close to

no information.

The precision and recall scores also show that in datasets 1 and 3 the recall of the minority

class (0 : no stance) is very low, especially in dataset 3, which means that the algorithm has

a low positive rate for this class. These results also show that the position features show

an improvement in accuracy over baseline of 31.76% in dataset 1, 45.74% in dataset 2, and

15.31% in dataset 3. These results indicate that the position features are relevant features

when looking at um and uh to predict binary stance, and that the position of um is more

informative than the position of uh in this corpus.
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Table 10.6: Summary of mean accuracy sores for the five folds (M. acc.), Precision (P.),

Recall (R.), and F1-scores (F1) for classes 0 and 1, for the three datasets, for various feature

combinations, in predicting binary stance (i.e., no stance : 0 or the presence of stance : 1)

Features M. acc. P. 0 P. 1 R. 0 R. 1 F1 0 F1 1

Dataset 1 um and uh

no position 56 0.493 0.705 0.465 0.728 0.478 0.717

no alone/init/med 63.11 0.534 0.710 0.437 0.784 0.481 0.745

no alone/init 72.36 0.626 0.867 0.803 0.728 0.704 0.791

no med/final 79.06 1 0.776 0.493 1 0.660 0.874

no acoustics 79.06 1 0.776 0.493 1 0.660 0.874

position 79.06 1 0.776 0.493 1 0.660 0.874

all 79.06 1 0.776 0.493 1 0.660 0.874

Dataset 2 um

f1 44.9 0.469 0 1 0 0.639 0

intensity 45.07 0.469 0 1 0 0.639 0

duration 45.78 0.469 0 1 0 0.639 0

f2 46.65 0.4694 0.333 0.962 0.017 0.626 0.032

position 78.70 0.947 0.773 0.679 0.967 0.791 0.859

all 78.70 0.947 0.773 0.679 0.967 0.791 0.859

Dataset 3 uh

f2 40.33 0.265 0 1 0 0.419 0

f1 40.33 0.278 1 1 0.066 0.436 0.123

intensity 42.02 0.265 0 1 0 0.419 0

duration 45.87 0.265 0 1 0 0.419 0

position 79.06 1 0.776 0.493 1 0.660 0.874

all 79.06 1 0.776 0.493 1 0.660 0.874



170

Table 10.7 summarizes the most relevant results of the classifiers in predicting three-way

stance strength for the three datasets with various features combinations : all features but

the position features (no position), the position features only (postion), all 11 features (all),

removing the word feature only (no word), all features except the acoustic ones (no acous.),

the acoustic features only (acoustics), duration only (duration), intensity only (intensity),

and duration and intensity only (dur + intensity). The weights used for each dataset for

classes 0 (no stance), 1 (weak stance), and 2 (moderate/strong stance) are : 0 :.26, 1 :.37,

2 :.37 for dataset 1, 0 :.23, 1 :.36, 2 :.41 for dataset 2, and 0 :.34, 1 :.33, 2 :.33 for dataset 3.

The performance measures (accuracy, precision, recall, and F1-scores) show that similarly

to binary stance, the position features account for most of the predictions. In addition, the

performance measures also show that removing the word feature (no word) and the acoustic

features (no acous.) increases the performance of the system, which means that these features

add noise to the model when using dataset 1. Further results not illustrated in Table 10.7

show that the accuracy scores drop when removing the task feature for three-way stance

strength (e.g., from 56.4 to 49.88 for dataset 1), which is not surprising since the Budget

Task elicits more speaker involvement (see section 5.3.1 for more information) than the

Inventory task.

For datasets 2 and 3 the combination of all features leads to the highest performance with

an improvement over baseline of 24.02%, from 46% to 57.05% for um, and of 51.32%, from

37% to 55.99% for uh whereas removing acoustic features does not affect the performance

for dataset 2 and decreases the performance for dataset 3, especially for classes 1 and 2. It is

also interesting to note that using acoustic features only leads to performance below baseline

when using um, but not for uh. In fact, using the intensity or duration features only, or as

a combination increases the accuracy of the system above baseline (37%), by 11.05% for

intensity, 11.18% for duration, and 24.08% for duration and intensity. These results indicate

that the acoustic information of the marker uh (especially duration and intensity) is more

valuable than the acoustic information of the marker um when predicting three-way stance

strength in this corpus. In sum, the performance of the different models summarized in this
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section suggest that that features related to uh are more informative than those pertaining

to um in the prediction of three-way stance strength in this corpus.
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Table 10.7: Summary of mean accuracy sores for the five folds (M. acc.), Precision (P.),

Recall (R.), and F1-scores (F1) for classes 0, 1, and 2, for the three datasets, for various

feature combinations, to predict three-way stance strength (i.e., no stance : 0, weak stance :

1, and moderate/strong stance : 2)

Features M. acc. P. 0 P. 1 P. 2 R. 0 R. 1 R. 2 F1 0 F1 1 F1 2

Dataset 1 um and uh

no position 43.5 0.481 0.350 0.529 0.352 0.292 0.714 0.407 0.318 0.308

position 54.57 1 0.384 0.648 0.493 0.583 0.740 0.660 0.463 0.691

all 56.4 0.9 0.4 0.721 0.507 0.792 0.571 0.649 0.531 0.638

no word 56.91 0.878 0.379 0.652 0.507 0.521 0.753 0.643 0.439 0.699

no acous. 57.82 1 0.391 0.641 0.493 0.562 0.766 0.620 0.462 0.698

Dataset 2 um

acoustics 37.5 0.495 0.444 0 0.868 0.108 0 0.630 0.174 0

position 53.88 0.947 0.394 0.381 0.679 0.351 0.696 0.791 0.371 0.492

no acous. 57.05 0.818 0.533 0.393 0.849 0.432 0.478 0.833 0.478 0.431

all 57.05 0.818 0.533 0.393 0.849 0.432 0.478 0.833 0.478 0.431

Dataset 3 uh

acoustics 40.62 0.286 0.296 0.592 0.091 0.400 0.707 0.138 0.340 644

intensity 41.09 0.250 0.325 0.355 0.103 0.464 0.423 0.146 0.382 0.386

duration 41.14 0.500 0.429 0.547 0.273 0.150 0.854 0.353 0.222 0.667

dur + intensity 45.91 0.625 0.368 0.589 0.227 0.350 0.805 0.333 0.359 0.680

no acous. 49.73 0.5 0.200 0.750 0.773 0.450 0.073 0.607 0.277 0.133

position 51.91 1 0.440 0.714 0.409 0.550 0.854 0.581 0.489 0.778

all 55.99 0.533 0.545 0.786 0.727 0.300 0.805 0.615 0.387 0.795

Spurts that contain um and uh are especially unevenly distributed across the three po-
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larity categories. Figure 8.2 from Chapter 8 is repeated here for clarity purposes (Figure

10.1) 1. Table 10.5 and the right-side plot of Figure 10.1 illustrate the distribution of the

spurts that contain um and uh across polarity values, and shows that most markers are used

in neutral spurts, and that very few ums are used in negative spurts. Weights are used in

order to counterbalance predictions for the majority class (i.e., neutral spurts) and lead to

performance scores well below baseline. Further research will aim at investigating the role of

features pertaining to um and uh to predict stance polarity.

Figure 10.1: Proportions of spurts for stance strength (left) and stance polarity (right) for

each spurt type

10.5 Summary

The findings from this experiment show that acoustic features do not increase accuracy

when predicting binary stance using um and/or uh and when predicting three-way stance

strength using um. However, when looking at uh to predict three-way stance strength, the

model with just acoustic features shows an improvement of 9.78% over baseline, and a 24.08%

1. Note that all spurts marked with undetermined stance (x) are excluded in this experiment.
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improvement when using duration and intensity only. These results indicate that the acous-

tic characteristics of uh, especially duration and intensity, help predicting three-way stance

strength in this corpus. Further more, these results are consistent with results from Chapter

9 which suggest that three-way stance is a better strength categorization because it captures

the differences between weak and moderate-to-strong stance.

Omitting position features for both binary and three-way stance strength leads to the

biggest drop in accuracy in all datasets, and results show that the marker’s position is the

most informative feature in the prediction of binary and three-way stance strength. It is also

interesting to note that the word feature (um vs. uh) does not seem to impact the system’s

performance, which means that whether the marker is um or uh does not add information to

the model. Finally, the comparison of the performances for datasets 2 and 3 show that features

pertaining to um are more informative than those pertaining to uh to predict binary stance,

while features pertaining to uh are more informative to predict three-way stance strength.

10.6 Chapter summary and discussion

The findings from section 10.3 indicate that incorporating um and uh as word unigram

features into a stance classification model increases the performance of the algorithm, es-

pecially when predicting three-way stance strength and stance polarity. The findings also

suggest that um plays a slightly more important role than uh for each of the three stance

predictions. These results are corroborated by findings from Levow et al. (2014) that report

um is a key lexical feature in automatic stance strength recognition. However, it is impor-

tant to keep in mind that the differences reported in this experiment in performance between

using and filtering um and uh are small, and that the relative contribution of um and uh as

word unigram features needs to be further investigated to find out whether the difference is

significant.

The findings from section 10.4.1 show that the position features of um and uh are the most

important features in predicting binary stance strength, especially for um, and in predicting

three-way stance strength. The results from this experiment also show that the acoustic
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features of um do not add information to the model, while the acoustic features of uh do,

especially duration and intensity.

The findings from the two experiments conducted in this chapter show that features

pertaining to the two markers play an role in predicting stance in this corpus : um and

uh are relevant word unigram features and their position and the acoustic properties of uh

lead to increases in the system’s performance. To summarize, um seems to play a slightly

more important role than uh as a word unigram feature when predicting all three stance

dimensions. Features pertaining to um play a more important role than those pertaining to

uh to predict binary stance, and finally, features pertaining to uh play a more important role

than those pertaining to um when predicting three-way stance strength.

Furthermore, the fact that the models predicting three-way stance strength lead to greater

improvements over baseline in each experiment is corroborated by results from Chapters 8

and 9 which point out that three-way stance is a more accurate distinction because there

is a lot of variation between weak and moderate-to-strong stance in terms of discourse and

acoustic properties of the markers.
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Chapter 11

CONCLUSION

This chapter summarizes the findings of each chapter, discusses the contributions and

the impact of this study, and examines future directions for this research on the two markers

um and uh.

11.1 Result summary

The sum of the results confirms that um and uh are distinct entities and that they

are not random (i.e., they play an informational role). These findings corroborate findings

from previous studies and show that they extend to the ATAROS corpus. One of the main

contributions on this topic is that um and uh are subject to more misperceptions than

function words and other frequent words, and that uh undergoes more transcription errors

than um, suggesting that um is more salient and that it might play a more important role in

discourse than uh. Anther important contribution of this study is that it provides evidence

in favor of the association between the two markers and stance marking in ATAROS, and it

sheds light on the relative contribution of the two markers as discourse and stance markers.

The results from Chapter 6 on um and uh serve as a baseline for further analyses on

the two corpora and on the two markers. The analysis shows that um and uh have different

distributions and different duration cues, which separates them. The two markers should

therefore be treated as separate entities, and further research should consider the effect of

gender, naturalness, and speaker involvement when looking at um and uh. The results also

show that factors such as gender, speaker involvement, and naturalness affect um more than

uh, and show that the two markers behave differently in the two speech activities investigated

in this chapter. Future research will aim at further investigating the relative role of um and
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uh as discourse markers, and their role across various speech activities.

In Chapter 7, the analyses of the production of um and uh and of the transcription errors

show again that um and uh are affected by most discourse and metalinguistic variables, and

that they generally behave differently from other words and from each other. Transcribers

miss and hallucinate uh more than um, and variables such as naturalness of the conversation

or difficulty to transcribe reliably affect the transcription errors of um and uh, and in different

trends. Variables related to the speaker such as gender, age, dialect, or education, have a

different effect on the production of the two markers. Additional results on word type show

that um and uh, as well as words from the same category (i.e., other), are proportionally more

missed and hallucinated than other frequent words such as function words. These findings

corroborate the fact that um and uh are different since they have different distributions and

different transcription error rates. Finally, the fact that um has less transcription errors than

uh indicates that um is more likely to carry a higher informational load in discourse than

uh, providing evidence that um might play a more important role in discourse than uh.

The findings in Chapter 8 show there is a relationship between um and uh and the stance

of the spurt in which they are found. The results show that the presence and position of

the markers, as well as the stance labels, are dependent variables. Spurts that contain one

um, one uh, or no markers behave differently from each other, and spurts are more likely

to be marked with a certain degree or polarity of stance depending on the position of the

marker. For instance, isolated ums and uhs are more likely to be marked with no stance and

neutral polarity, while spurts that contain markers in other positions are more likely to be

marked with some degree of stance, as well as negative or positive polarity. These findings

lend support for the fact that um and uh are associated with stance marking, and that their

presence and position can be used as a predictor for the stance label of the spurt.

The statistical analyses from Chapter 9 do not find reliable effects for stance on the

acoustic realization of the vowel in um and uh. However, the differences in the medians

indicate that he presence of stance (i.e., for binary stance) correlates with shorter vowels,

and it affects vowel pitch, intensity, and quality in different ways for um and uh. Three-way
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stance affects uh and other in similar ways, and differently from um, for pitch, intensity,

and F2. Three-way stance affects F1 differently in all word groups. Similarly, polarity affects

the pitch and the intensity of the vowels in uh and other in similar ways, while um behaves

differently. These results show that the acoustic realization of um and uh varies depending

on stance, and that pitch and intensity follow similar patterns.

In Chapter 10, I incorporate findings from the previous experiments in a concrete appli-

cation, which consists in using information pertaining to um and uh to train classifiers to

automatically label stance. The results from the first classification experiment reveal that

um and uh are important word unigram features in the prediction of stance, that um seems

to be a more important feature than uh, and that lexical features best predict three-way

stance strength, followed by stance polarity and binary stance. In the second experiment,

the performances in classifying stance using discourse and acoustic features pertaining to um

and uh show that different acoustic features carry different levels of information depending

on the marker and on the stance classification. Position is the most important feature for all

models and acoustic features (duration and intensity) only increase the performance when

using uh to predict three-way stance strength. The results also show that using um leads

to better results when predicting binary stance, while using uh leads to better results when

predicting three-way stance strength. These results are consistent with results from other

chapters as well as other studies.

In sum, the findings of this dissertation show that um and uh are different entities and

indicate that um and uh play different roles, especially with regards to stance predictions.

The discourse and acoustic features of um and uh are different. The marker um varies to a

greater extent than the marker uh. Transcribers perceive um better than uh. The acoustic

properties of um and uh vary depending on stance strength and polarity. The word unigram

feature um seems to play a more important role than uh to predict stance. Features associated

to um increase accuracy of automatic stance classification over features associated to uh to

predict binary stress, and features associated to uh increase accuracy over those associated

to um to predict three-way stance strength. The work presented in this dissertation provides
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support to show um and uh are not just fillers or disfluencies, but rather that they have a

wide range of uses, from fillers to pragmatic and stance markers.

11.2 Contributions and impact

The experiments from this dissertation provide a global analysis of um and uh in spon-

taneous speech using two corpora, consisting of different speech activities. One of the main

contributions of this study is that it looks at how um and uh pattern depending on seve-

ral variables, encompassing metalinguistic, semantico-discursive, and acoustic approaches, to

provide a holistic understanding of how the two markers are used in spontaneous speech.

This study also raises issues about cross-corpora studies, such as how to compare results

across different speech activities and across different annotation systems. Some of the main

issues include segmenting speech into meaningful units for discourse and syntactic analysis,

disfluency annotations, and fine grained stance annotations. A more universal annotation

framework of speech corpora would therefore provide more access to cross-corpora studies,

to increase the robustness of results, and to increase our understanding of the language

mechanisms of different speech activities.

Another important contribution to the understanding of markers such as um and uh is the

analysis of the production and the misperception of um and uh in the Switchboard corpus,

compared to any other word, and compared to similar words with comparable frequency.

Among other things, this analysis shows that the two markers behave differently from each

other in terms of production, and that their rate of transcription error is not random.

Furthermore, as mentioned in Chapters 2 and 3, several state of the art language models

still consider um and uh as mere filled pauses or speech disfluencies, and filter them from

the signal. Possible applications of the findings from this study therefore include implemen-

tations of the roles of um and uh in language models, to improve general spontaneous speech

processing and understanding, as well as automatic stance recognition. Furthermore, as we

learn more about how discourse markers are used in different settings, and as we get a dee-

per understanding of how um and uh are used in various spontaneous speech activities (e.g.,
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negotiation, collaboration, conversation, story telling, etc.), we could use that knowledge to

build speech task or speech activity detectors, depending on how speakers use markers such

as um and uh.

11.3 Future directions

This dissertation adopts a systematic and multidimensional analysis of um and uh in

spontaneous speech. However, given the scope of the possible analyses on the two markers,

there are still several dimensions to explore in order to gain a better understanding of how

speakers use um and uh. Future work will expend on the prosodic environments in which the

markers are used, in order to better understand their properties relative to prosodic units.

Questions of interest include the association of the markers with pitch fluctuations compared

to neighboring environments and to the speaker’s pitch range. Other acoustic features of the

markers should also be explored, such as the third formant, phonation types, and better pitch

measures. Finally, in addition to vowel duration, future work will also investigate marker

duration.

Further analyses of um and uh will also take into account how their production relates to

syntactic structures and complexity, to find out whether they correlate with certain consti-

tuent types, structures, and properties. These studies will include variables such as consti-

tuent length, type, place, the constituents above and under, and the number of constituents

in the sentence.

Future work will also explore the perception and the misperception of the two markers by

investigating whether listeners always perceive the markers in the same way depending on

their position in the prosodic unit, the syntactic constitutent in which they are, neighboring

words, the acoustic realization of the marker, and depending on the stance value and the

speech task.

Future work will also include more in depth understanding of the sublexical properties of

the markers in order to find out the different meanings of um and uh from a semantic and

pragmatic point of you. Ultimately, the goal is to better understand how the markers are
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used, and whether we can find out automatic ways to identify the functions of the marker in

spontaneous speech. In other words, can we automatically identify which markers are filled

pauses, disfluencies, discourse markers, interjections, stance markers, and other possible uses

of um and uh in various speech activities.
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Appendix A

WORD CATEGORY : LIST OF FUNCTION AND OTHER

WORDS

Tables A.1 and A.2 list the other and function words used in Chapter 7, detailed in

section 7.2.4. The category other listed in Table A.1 was created to deal with words like

backchannels, filled pauses, discourse markers, or interjections. These words have a high

token frequency, similar to function words. Since they do not behave quite like function

words, or like lexical words, I created the category other to account for these words in a

separate category. The list of function words (see Table A.2) is a combination of the NLTK

stopword list (Bird et al., 2009) and words manually added to match the tokenization used

in the data processing, such as na from wanna or gonna, the negation nt, and contractions

containing apostrophes like ’s, n’t, or ’re.

Table A.1: List of other words

um

uh

um-hum

huh

huh-uh

hum

hum-um

uh-hum

uh-huh

yeah

yes

nope

nah

yep

oh

ah

hm

eh

ooh
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Table A.2: List of function words

i

me

my

myself

we

our

ours

ourselves

you

your

yours

yourself

yourselves

he

him

his

himself

she

her

hers

herself

it

its

itself

they

them

their

theirs

themselves

what

which

who

whom

this

that

these

those

am

is

are

was

were

be

been

being

have

has

had

having

do

does

did

doing

a

an

the

and

but

if

or

because

as

until

while

of

at

by

for

with

about

against

between

into

through

during

before

after

above

below

to

from

up

down

in

out

on

off

over

under

again

further

then

once

here

there

when

where

why

how

all

any

both

each

few

more

most

other

some

such

no

nor

not

only

own

same

so

than

too

very

s

t

can

will

just

don

should

now

nt

na

’s

n’t

’re

’m

’ve

’ll

’d

’

’cause

’em

don’t

that’s

they’re,

it’s

isn’t

aren’t

didn’t

you’ll

doesn’t

i’m

what’s

hadn’t

can’t

haven’t

you’re



195

Appendix B

TOKEN FREQUENCY OF MONOSYLLABIC WORDS WITH
THE VOWEL /2/ IN ATAROS

This appendix presents in Table B.1 the list of monosyllabic words with the vowel /2/

(AH1), and their token frequency in the ATAROS corpus. This list is used in Chapter 9 to

compare the vowels in um and uh to other monosyllabic words, labeled with the same vowel.

This list was compiled by using a Praat script (Boersma and Weenink, 2015) to identify

the label AH1 in the vowel tier, and by extracting the corresponding word in the word tier

(see section 5.3.4 for more information). The frequency was computed by adding the number

of times a word is seen using R (R Core Team, 2013). Finally, I manually annotated the list

for monosyllabic words, and only kept the monosyllabic ones.

This list shows that um and uh have the highest token frequency in the corpus, and that

the token frequency of other monosyllabic words has a lot of variability.
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Table B.1: Token frequency of monosyllabic words with the vowel /2/ in ATAROS

Token Freq Token Freq Token Freq Token Freq

UM 569 WHAT’S 18 JUMP 3 BUNS 1

UH 418 RUN 16 RUNS 3 CLU 1

BUT 360 US 16 SON 3 CUP 1

WHAT 300 JUST 12 SUCH 3 DUB 1

ONE 287 W 11 TRUCK 3 DUCKS 1

THE 264 FUND 10 BU 2 DUH 1

CUT 196 ONCE 10 BULBS 2 DUMP 1

UP 181 ONE’S 10 FRONT 2 DUN 1

STUFF 176 COMES 9 NONE 2 FLOOD 1

OF 149 FUN 9 PUB 2 FRONT’S 1

CUZ 145 TOUGH 9 SHUT 2 GLOVES 1

SOME 105 MUST 8 STA 2 HUNT 1

BUS 66 LUNCH 6 STUFF’S 2 LOVE 1

DONE 61 STUCK 6 STUFFS 2 NUTS 1

MUCH 59 CUTS 5 SUCKS 2 PLUG 1

CUPS 51 LUMP 5 U 2 PLUS 1

DUCT 40 WHA 5 UGH 2 PULP 1

HUH 37 BUNCH 4 YUM 2 PUNCH 1

JUGS 37 JUG 4 BLUNT 1 PUP 1

CLUB 35 JUNK 4 BUCK 1 SHOVE 1

ONES 22 UN 4 BUCKS 1 TON 1

WAS 21 WHAT’D 4 BUG 1 TOUCH 1

COME 20 CLUBS 3 BUGS 1 UNL 1

DOES 19 DRUG 3 BULK 1 UPS 1

FROM 18 FUNDS 3 BUN 1
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Appendix C

TOP 200 MOST FREQUENT WORDS IN ATAROS

This appendix presents in Table C.1 the list of 200 most frequent words in the ATAROS

corpus and their frequency, in decreasing order. This list of words in used in Chapter 10

to optimize runtime, and to reduce the number of lexical features used in the classification

experiment.

This list was compiled by using a Praat script (Boersma and Weenink, 2015) to extract

the spurts in the transcription tiers (see section 5.3.4 for more information). The frequency

was computed by creating a frequency dictionary in python, and by extracting the 200 words

with the highest frequency.

Table C.1: Top 200 most frequent words in ATAROS in decreasing frequency order

Token Freq Token Freq Token Freq Token Freq

yeah 2354 were 263 paper 106 bus 66

i 2005 on 252 down 106 cant 66

the 1822 good 251 at 103 power 65

that 1222 then 215 mm 102 definitely 65

we 1133 no 209 people 102 my 65

and 1105 important 202 out 101 large 64

of 917 probably 202 id 100 much 64

like 909 im 201 rid 99 sex 64

it 904 next 199 other 98 either 63

okay 882 cut 199 education 98 done 63

to 792 sure 190 stops 98 seems 63



198

a 786 mmhm 188 sounds 97 make 61

so 777 get 188 thing 96 else 61

you 675 see 187 boating 96 station 61

think 611 should 184 juice 95 near 60

thats 607 up 184 something 94 youre 60

um 593 keep 184 kinda 92 sense 60

is 547 gonna 183 football 90 access 60

dont 527 stuff 182 two 90 water 59

have 512 how 178 kind 86 want 59

well 483 really 177 dunno 86 pretty 59

here 481 public 177 because 85 had 59

oh 467 alright 176 me 84 did 59

in 460 those 171 your 83 cords 57

maybe 449 mean 159 true 83 aisle 57

with 442 yes 156 yep 83 same 57

uh 434 more 154 kay 82 ed 57

be 425 all 153 as 82 already 57

its 424 cuz 148 control 81 bout 57

know 416 was 147 from 80 area 56

would 403 hm 145 now 78 also 56

do 395 things 143 take 77 three 56

go 392 need 141 heavy 77 clothing 55

for 384 them 140 sticks 75 cups 55

or 382 food 137 any 75 weed 55

but 374 got 136 wanna 74 little 55

this 366 say 134 hospital 73 community 55

right 345 where 132 services 73 somewhere 54
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put 345 by 128 feel 72 acting 54

there 343 too 127 taxi 72 might 53

could 329 about 126 small 71 cake 53

what 325 books 126 cream 70 knives 53

are 325 theyre 126 sugar 70 bars 53

if 314 guess 126 fishing 70 section 53

they 306 over 122 an 69 classes 53

just 295 theres 117 why 68 thinking 52

one 291 supplies 112 licenses 68 makes 52

can 290 these 109 box 67 soccer 52

not 270 some 108 news 67 money 52

lets 267 our 107 which 67 towing 52
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Appendix D

MAIN PYTHON SCRIPTS USED IN CHAPTER 10

This appendix contains the four main scripts used in Chapter 10. I wrote Listings D.1

and D.3 to collect and format the features used in the two classification experiments. I wrote

Listings D.2 and D.4 to preprocess the features, train and test the data, and to collect the

scores.

Listing D.1 is used in section 10.3 to create and format the data with lexical and spurt

information.

Listing D.1: Python script to extract the data for section 10.3

1 import csv

2 import os

3 import spurt_clean # s c r i p t I made to c l ean text data

4 import operator

5 from c o l l e c t i o n s import OrderedDict

6

7 # output the l i s t i n to a csv format

8 de f to_write ( wr i te r , l i s t ) :

9 f o r row in l i s t :

10 wr i t e r . writerow ( row )

11

12 # retu rns a binary s tance d i s t i n c t i o n

13 de f get_bin ( s t r ength4 ) :

14 i f s t r ength4 == 2.0 or s t r ength4 == 3 . 0 :

15 re turn 1 .0

16 e l s e :

17 re turn s t r ength4

18
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19 # retu rns a three≠way stance d i s t i n c t i o n

20 de f get_strength3 ( s t r ength4 ) :

21 i f s t r ength4 == 3 . 0 :

22 re turn 2 .0

23 e l s e :

24 re turn s t r ength4

25

26 # retu rns the value o f s tance s t r ength : None , 0 , 1 , 2 or 3

27 # and stance p o l a r i t y

28 # 0 f o r negat ive , 1 f o r neu t ra l and 2 f o r p o s i t i v e

29 de f get_stance ( s tance ) :

30 i f ’ 0 ’ in s tance :

31 s t r ength = 0 .0

32 e l i f ’ 1 ’ in s tance :

33 s t r ength = 1 .0

34 e l i f ’ 2 ’ in s tance :

35 s t r ength = 2 .0

36 e l i f ’ 3 ’ in s tance :

37 s t r ength = 3 .0

38 e l s e :

39 s t r ength = 4 .0

40 i f ’≠ ’ in s tance :

41 p o l a r i t y = ≠1.0

42 e l i f ’+ ’ in s tance :

43 p o l a r i t y = 1 .0

44 e l s e :

45 p o l a r i t y = 0 .0

46 re turn strength , p o l a r i t y

47

48 # retu rns a c l ean spurt with no UM or UH

49 de f remove_uhm( spurt ) :

50 token i zed = spurt . lower ( ) . s t r i p ( ) . s p l i t ( )

51 scrappy = l i s t ( )
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52 f o r item in token i zed :

53 i f item != ’um ’ and item != ’uh ’ :

54 scrappy . append ( item )

55 re turn ’ ’ . j o i n ( scrappy )

56

57 # return 0 f o r Inventory task ’3 I ’

58 # and 1 f o r Budget task ’6B ’

59 de f get_task ( task ) :

60 i f task == ’ 6B ’ :

61 re turn 1 .0

62 e l s e :

63 re turn 0 .0

64

65 # retu rns 0 f o r male , 1 f o r female

66 de f get_gender ( speaker ) :

67 i f speaker . s t a r t s w i t h ( ’NWF’ ) :

68 re turn 1 .0

69 e l s e :

70 re turn 0 .0

71

72 # retu rns the spur t s with only words

73 # that are among the 200 most f r equent

74 de f transform_spurt ( c lean , top200 ) :

75 new_clean = l i s t ( )

76 s p l i t t e d = c l ean . lower ( ) . s t r i p ( ) . s p l i t ( )

77 f o r item in s p l i t t e d :

78 i f item in top200 :

79 new_clean . append ( item )

80 transformed = ’ ’ . j o i n ( new_clean )

81 re turn transformed

82

83 # retu rns a c l ean spurt

84 de f to_clean ( raw ) :
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85 c l ean = spurt_clean . remove_parens ( raw )

86 c l ean = spurt_clean . remove_truncated ( c l ean )

87 c l ean = spurt_clean . str ip_punct ( c l ean )

88 c l ean = spurt_clean . makes_one_space ( c l ean )

89 re turn c l ean

90

91 # retu rns a so r t ed d i c t i o n a r y

92 # with top 200 most f r equent words

93 de f get_top200 ( myDict ) :

94 top200_dict = d i c t ( )

95 sorted_d = sor t ed ( myDict . i tems ( ) , key=lambda kv : kv [ 1 ] , r e v e r s e=True )

96 f o r k , v in sorted_d [ : 2 0 0 ] :

97 top200_dict [ k ] = v

98 re turn top200_dict

99

100 # retu rns a f requency d i c t i o n a r y f o r a l l spur t s

101 de f get_freq ( data ) :

102 f r eq_d i c t = d i c t ( )

103 f o r l i n e in data :

104 l i n e = l i n e . s p l i t ( ’ \ t ’ )

105 spurt = l i n e [ 2 ]

106 c l ean = to_clean ( spurt )

107 token i zed = c l ean . s t r i p ( ) . lower ( ) . s p l i t ( )

108 i f l en ( c l ean ) > 0 :

109 f o r item in token i zed :

110 i f item in f r eq_d ic t :

111 f r eq_d i c t [ item ] += 1

112 e l s e :

113 f r eq_d i c t [ item ] = 1

114 re turn f r eq_d ic t

115

116 de f p roce s s ( data , w r i t e r ) :

117 f r eq_d i c t = get_freq ( data ) # get the f requency d i c t i o n a r y
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118 # get the most f r equent 200 words

119 # from the f requency d i c t i o n a r y

120 top200 = get_top200 ( f r eq_d ic t )

121 n e w l i s t = l i s t ( )

122 f o r i , l i n e in enumerate ( data ) :

123 temp = l i s t ( )

124 i f i > 0 : # to sk ip data header

125 s p l i t t e d = l i n e . s t r i p ( ) . s p l i t ( ’ \ t ’ )

126 # ignore l i n e s with miss ing data

127 i f l en ( s p l i t t e d ) > 5 :

128 speaker = s p l i t t e d [ 0 ]

129 task = s p l i t t e d [ 1 ]

130 raw = s p l i t t e d [ 2 ]

131 dur = s p l i t t e d [ 3 ]

132 token = s p l i t t e d [ 4 ]

133 coar s e = s p l i t t e d [ 5 ]

134 gender = get_gender ( speaker )

135 strength4 , p o l a r i t y = get_stance ( coa r s e )

136 new_task = get_task ( task )

137 s t r ength3 = get_strength3 ( s t r ength4 )

138 bin = get_bin ( s t r ength4 )

139 c l ean = to_clean ( raw ) # c l ean text from spur t s

140 # c r e a t e a copy o f spur t s with only

141 # the most f r equent words

142 transformed = transform_spurt ( c lean , top200 )

143 # avoid undetermined stance and

144 # empty spur t s ( some spur t s only have comments )

145 i f s t r ength4 != 4 .0 and l en ( c l ean ) > 0 :

146 scrapped = remove_uhm( c l ean ) # f i l t e r UM and UH

147 i f l en ( scrapped ) > 0 and l en ( transformed ) > 0 :

148 temp . extend ( [ scrapped , transformed , gender , new_task ,

149 dur , s trength4 , po l a r i t y , bin , s t r ength3 ] )

150 n e w l i s t . append ( temp ) # c r e a t e new data
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151 to_write ( wr i te r , n e w l i s t )

152

153 # retu rns a l i s t o f l i n e s from the data

154 de f get_data ( data ) :

155 re turn [ l i n e . s t r i p ( ) f o r l i n e in open ( data , ’ r ’ ) ]

156

157 # retu rns a w r i t e r ob j e c t to output to the csv

158 # with a header

159 de f make_csv ( d i r ) :

160 to_write = open ( d i r + os . sep + ’ lexical_no_uhm . csv ’ , ’w ’ , newl ine=’ ’ )

161 w r i t e r = csv . wr i t e r ( to_write , d e l i m i t e r=’ , ’ )

162 w r i t e r . writerow ( [ ’ c l ean ’ , ’ top200 ’ , ’ gender ’ , ’ task ’ , ’ durat ion ’ ,

163 ’ s t r ength4 ’ , ’ p o l a r i t y ’ , ’ bin ’ , ’ s t r ength3 ’ ] )

164 re turn wr i t e r

165

166 de f main ( ) :

167 spur t s = ’<inputData>’

168 out_path = ’<outPutDirectory>’

169 w r i t e r = make_csv ( out_path )

170 dat = get_data ( spur t s )

171 proce s s ( dat , w r i t e r )

172 main ( )

Listing D.2 is a sample code used in section 10.3 to preprocess the features, fit the

classifier, and get the accuracy, precision, recall, and F1-scores over five folds of the data.

Listing D.2: Python script to train the classifier for section 10.3

1

2 import pandas as pd

3 import numpy as np

4 from sk l ea rn . svm import SVC

5 from sk l ea rn import p r e p ro c e s s i ng

6 from sk l ea rn . f e a tu r e_ext rac t i on . t ex t import CountVector izer

7 from sk l ea rn import met r i c s
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8

9 # reads in the data as pandas

10 dat = pd . read_csv ( ’<data>’ )

11

12 # get the t a r g e t data

13 y_pol = dat . p o l a r i t y . va lue s

14 y_bin = dat . bin . va lue s

15 y_str3 = dat . s t r ength3 . va lue s

16

17 # s c a l e and reshape numerica l f e a t u r e s

18 gen_scaled = prep ro c e s s i n g . s c a l e ( dat [ ’ gender ’ ] . va lue s )

19 gen_scaled = gen_scaled . reshape ( ≠1 ,1)

20 task_sca led = pre p ro c e s s i ng . s c a l e ( dat [ ’ task ’ ] . va lue s )

21 task_sca led = task_sca led . reshape (( ≠1 ,1) )

22 dur_scaled = prep ro c e s s i ng . s c a l e ( dat [ ’ durat ion ’ ] . va lue s )

23 dur_scaled = dur_scaled . reshape (≠1 , 1)

24

25 # v e c t o r i z e t ex t f e a t u r e s

26 count_vect = CountVector izer ( )

27 bow = count_vect . f i t_trans fo rm ( dat [ ’ top200 ’ ] . va lue s )

28

29 # Set t ing the data

30 # use a l l f e a t u r e s

31 X_all = np . hstack ( [ bow . toar ray ( ) , gen_scaled , task_scaled , dur_scaled ] )

32 # use no l e x i c a l f e a t u r e s

33 X_no_lex = np . hstack ( [ gen_scaled , task_scaled , dur_scaled ] )

34

35 # i n i t i a l i z e c l a s s i f i e r with no weight :

36 c l f = SVC( ke rne l=’ l i n e a r ’ , gamma=0.001 , C=1.0)

37

38 # i n i t i a l i z e c l a s s i f i e r with weights

39 wclf_1 = SVC( ke rne l=’ l i n e a r ’ , c lass_weight=" balanced " )

40 wclf_2 = SVC( ke rne l=’ l i n e a r ’ , c lass_weight ={0: .60 , 1 : . 4 0 } , gamma=0.001 , C=1.0)
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41

42 # BINARY STANCE

43

44 # TESTING BINARY STANCE ( y_bin ) WITH ALL FEATURES ( X_all )

45 # div ide data in to 5 f o l d s to f i t and p r e d i c t

46 X_folds = np . a r r ay_sp l i t ( X_all , 5)

47 y_folds = np . a r r ay_sp l i t ( y_bin , 5)

48 s c o r e s = l i s t ( )

49 f o r k in range (5 ) :

50 X_train = l i s t ( X_folds )

51 X_test = X_train . pop ( k )

52 X_train = np . concatenate ( X_train )

53 y_train = l i s t ( y_folds )

54 y_test = y_train . pop ( k )

55 y_train = np . concatenate ( y_train )

56 s c o r e s . append ( wclf_2 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

57 p r e d i c t i o n s = wclf_2 . p r e d i c t ( X_test )

58 # pr in t accuracy

59 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

60 # pr in t p r e c i s i o n , r e c a l l , F1

61 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

62 # pr in t con fus i on matrix

63 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

64 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

65 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

66 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

67

68 # TESTING BINARY STANCE ( y_bin ) WITH ONLY LEXICAL FEATURES (bow)

69 # div ide data in to 5 f o l d s to f i t and p r e d i c t

70 X_folds = np . a r r ay_sp l i t (bow . toar ray ( ) , 5)

71 y_folds = np . a r r ay_sp l i t ( y_bin , 5)

72 s c o r e s = l i s t ( )
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73 f o r k in range (5 ) :

74 X_train = l i s t ( X_folds )

75 X_test = X_train . pop ( k )

76 X_train = np . concatenate ( X_train )

77 y_train = l i s t ( y_folds )

78 y_test = y_train . pop ( k )

79 y_train = np . concatenate ( y_train )

80 s c o r e s . append ( wclf_2 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

81 p r e d i c t i o n s = wclf_2 . p r e d i c t ( X_test )

82 # pr in t accuracy

83 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

84 # pr in t p r e c i s i o n , r e c a l l , F1

85 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

86 # pr in t con fus i on matrix

87 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

88 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

89 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

90 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

91

92 # TESTING BINARY STANCE ( y_bin ) WITH ONLY LEXICAL FEATURES (X_no_lex)

93 # div ide data in to 5 f o l d s to f i t and p r e d i c t

94 X_folds = np . a r r ay_sp l i t (X_no_lex , 5)

95 y_folds = np . a r r ay_sp l i t ( y_bin , 5)

96 s c o r e s = l i s t ( )

97 f o r k in range (5 ) :

98 X_train = l i s t ( X_folds )

99 X_test = X_train . pop ( k )

100 X_train = np . concatenate ( X_train )

101 y_train = l i s t ( y_folds )

102 y_test = y_train . pop ( k )

103 y_train = np . concatenate ( y_train )

104 s c o r e s . append ( wclf_2 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )
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105 p r e d i c t i o n s = wclf_2 . p r e d i c t ( X_test )

106 # pr in t accuracy

107 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

108 # pr in t p r e c i s i o n , r e c a l l , F1

109 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

110 # pr in t con fus i on matrix

111 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

112 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

113 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

114 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

115

116

117 # 3 WAY STANCE STRENGTH

118

119 wclf_3 = SVC( ke rne l=’ l i n e a r ’ , c lass_weight ={0: .4 , 1 : . 2 , 2 : . 4 } , gamma=0.001 , C

=1.0)

120

121 # TESTING 3 WAY STANCE ( y_str3 ) WITH ALL FEATURES ( X_all )

122 # div ide data in to 5 f o l d s to f i t and p r e d i c t

123 X_folds = np . a r r ay_sp l i t ( X_all , 5)

124 y_folds = np . a r r ay_sp l i t ( y_str3 , 5)

125 s c o r e s = l i s t ( )

126 f o r k in range (5 ) :

127 X_train = l i s t ( X_folds )

128 X_test = X_train . pop ( k )

129 X_train = np . concatenate ( X_train )

130 y_train = l i s t ( y_folds )

131 y_test = y_train . pop ( k )

132 y_train = np . concatenate ( y_train )

133 s c o r e s . append ( wclf_3 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

134 p r e d i c t i o n s = wclf_3 . p r e d i c t ( X_test )

135 # pr in t accuracy
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136 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

137 # pr in t p r e c i s i o n , r e c a l l , F1

138 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

139 # pr in t con fus i on matrix

140 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

141 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

142 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

143 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

144

145 # TESTING 3 WAY STANCE ( y_str3 ) WITH ONLY LEXICAL FEATURES (bow)

146 # div ide data in to 5 f o l d s to f i t and p r e d i c t

147 X_folds = np . a r r ay_sp l i t (bow . toar ray ( ) , 5)

148 y_folds = np . a r r ay_sp l i t ( y_str3 , 5)

149 s c o r e s = l i s t ( )

150 f o r k in range (5 ) :

151 X_train = l i s t ( X_folds )

152 X_test = X_train . pop ( k )

153 X_train = np . concatenate ( X_train )

154 y_train = l i s t ( y_folds )

155 y_test = y_train . pop ( k )

156 y_train = np . concatenate ( y_train )

157 s c o r e s . append ( wclf_3 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

158 p r e d i c t i o n s = wclf_3 . p r e d i c t ( X_test )

159 # pr in t accuracy

160 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

161 # pr in t p r e c i s i o n , r e c a l l , F1

162 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

163 # pr in t con fus i on matrix

164 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

165 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

166 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )
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167 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

168

169 # TESTING 3 WAY STANCE ( y_str3 ) WITH ONLY LEXICAL FEATURES (X_no_lex)

170 # div ide data in to 5 f o l d s to f i t and p r e d i c t

171 X_folds = np . a r r ay_sp l i t (X_no_lex , 5)

172 y_folds = np . a r r ay_sp l i t ( y_str3 , 5)

173 s c o r e s = l i s t ( )

174 f o r k in range (5 ) :

175 X_train = l i s t ( X_folds )

176 X_test = X_train . pop ( k )

177 X_train = np . concatenate ( X_train )

178 y_train = l i s t ( y_folds )

179 y_test = y_train . pop ( k )

180 y_train = np . concatenate ( y_train )

181 s c o r e s . append ( wclf_3 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

182 p r e d i c t i o n s = wclf_3 . p r e d i c t ( X_test )

183 # pr in t accuracy

184 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

185 # pr in t p r e c i s i o n , r e c a l l , F1

186 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

187 # pr in t con fus i on matrix

188 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

189 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

190 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

191 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

192

193 # STANCE POLARITY

194

195 wclf_4 = SVC( ke rne l=’ l i n e a r ’ , c lass_weight ={ ≠1:.55 , 0 : . 1 5 , 1 : . 3 } , gamma=0.001 ,

C=1.0)

196

197 # TESTING STANCE POLARITY ( y_pol ) WITH ALL FEATURES ( X_all )
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198 # div ide data in to 5 f o l d s to f i t and p r e d i c t

199 X_folds = np . a r r ay_sp l i t ( X_all , 5)

200 y_folds = np . a r r ay_sp l i t ( y_pol , 5)

201 s c o r e s = l i s t ( )

202 f o r k in range (5 ) :

203 X_train = l i s t ( X_folds )

204 X_test = X_train . pop ( k )

205 X_train = np . concatenate ( X_train )

206 y_train = l i s t ( y_folds )

207 y_test = y_train . pop ( k )

208 y_train = np . concatenate ( y_train )

209 s c o r e s . append ( wclf_4 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

210 p r e d i c t i o n s = wclf_4 . p r e d i c t ( X_test )

211 # pr in t accuracy

212 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

213 # pr in t p r e c i s i o n , r e c a l l , F1

214 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

215 # pr in t con fus i on matrix

216 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

217 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

218 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

219 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

220

221 # TESTING STANCE POLARITY ( y_pol ) WITH ONLY LEXICAL FEATURES (bow)

222 # div ide data in to 5 f o l d s to f i t and p r e d i c t

223 X_folds = np . a r r ay_sp l i t (bow . toar ray ( ) , 5)

224 y_folds = np . a r r ay_sp l i t ( y_pol , 5)

225 s c o r e s = l i s t ( )

226 f o r k in range (5 ) :

227 X_train = l i s t ( X_folds )

228 X_test = X_train . pop ( k )

229 X_train = np . concatenate ( X_train )
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230 y_train = l i s t ( y_folds )

231 y_test = y_train . pop ( k )

232 y_train = np . concatenate ( y_train )

233 s c o r e s . append ( wclf_4 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

234 p r e d i c t i o n s = wclf_4 . p r e d i c t ( X_test )

235 # pr in t accuracy

236 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

237 # pr in t p r e c i s i o n , r e c a l l , F1

238 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

239 # pr in t con fus i on matrix

240 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

241 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

242 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

243 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

244

245 # TESTING STANCE POLARITY ( y_pol ) WITH ONLY LEXICAL FEATURES (X_no_lex)

246 # div ide data in to 5 f o l d s to f i t and p r e d i c t

247 X_folds = np . a r r ay_sp l i t (X_no_lex , 5)

248 y_folds = np . a r r ay_sp l i t ( y_pol , 5)

249 s c o r e s = l i s t ( )

250 f o r k in range (5 ) :

251 X_train = l i s t ( X_folds )

252 X_test = X_train . pop ( k )

253 X_train = np . concatenate ( X_train )

254 y_train = l i s t ( y_folds )

255 y_test = y_train . pop ( k )

256 y_train = np . concatenate ( y_train )

257 s c o r e s . append ( wclf_4 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

258 p r e d i c t i o n s = wclf_4 . p r e d i c t ( X_test )

259 # pr in t accuracy

260 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

261 # pr in t p r e c i s i o n , r e c a l l , F1
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262 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

263 # pr in t con fus i on matrix

264 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

265 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

266 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

267 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

Listing D.3 is used to create the data for the classification experiment on acoustic and

position information, used in section 10.4.

Listing D.3: Python script to extract the data for section 10.4

1 import csv

2 import re

3 import spurt_clean # s c r i p t I made to c l ean text data

4

5 # output data to csv f i l e

6 de f write_out ( dat , out ) :

7 f o r row in dat :

8 out . writerow ( row )

9

10 # c o l l e c t and organ i z e the data to output

11 de f to_format ( dat ) :

12 new_dat = l i s t ( )

13 f o r row in dat :

14 temp = l i s t ( )

15 id = row [ 0 ]

16 raw = row [ 1 ]

17 c l ean = row [ 2 2 ]

18 speaker = row [ 2 ]

19 gender = row [ 3 ]

20 task = row [ 4 ]

21 word = row [ 6 ]

22 i n t e r v a l = row [ 7 ]
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23 dur = row [ 9 ]

24 f 0 = row [ 1 0 ]

25 f 1 = row [ 1 1 ]

26 f 2 = row [ 1 2 ]

27 i n t e n s i t y = row [ 1 3 ]

28 s t r ength4 = row [ 1 5 ]

29 s t r ength3 = row [ 1 6 ]

30 bin = row [ 1 7 ]

31 pol = row [ 1 8 ]

32 index = row [ 1 9 ]

33 totUHM = row [ 2 0 ]

34 p o s i t i o n = row [ 2 1 ]

35 f r e q = row [ 2 3 ]

36 mono = row [ 2 4 ]

37 temp . extend ( [ id , raw , c lean , speaker , gender , task , word , i n t e r v a l ,

38 dur , f0 , f1 , f2 , i n t e n s i t y ,

39 strength4 , strength3 , bin , pol ,

40 index , totUHM, f req , mono ,

41 p o s i t i o n [ 0 ] , p o s i t i o n [ 1 ] , p o s i t i o n [ 2 ] , p o s i t i o n [ 3 ] ] )

42 new_dat . append ( temp )

43 re turn new_dat

44

45 # retu rns a vec to r o f b inary va lue s f o r p o s i t i o n

46 de f ge t_pos i t i on ( s p l i t t e d , index ) :

47 l ength = len ( s p l i t t e d )

48 i f l ength == 1 :

49 p o s i t i o n = [ 1 , 0 , 0 , 0 ]

50 e l i f index == length ≠ 1 :

51 p o s i t i o n = [ 0 , 0 , 0 , 1 ]

52 e l i f index == 0 :

53 p o s i t i o n = [ 0 , 1 , 0 , 0 ]

54 e l s e :

55 p o s i t i o n = [ 0 , 0 , 1 , 0 ]
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56 re turn p o s i t i o n

57

58 # get the token frequency

59 de f get_mono_freq ( data , sy l l_dat ) :

60 new_dat = l i s t ( )

61 f o r row in data :

62 word = row [ 6 ]

63 f o r l i n e in sy l l_dat :

64 token = l i n e [ 0 ]

65 i f token == word :

66 row . extend ( [ l i n e [ 1 ] , l i n e [ 2 ] ] )

67 new_dat . append ( row )

68 re turn new_dat

69

70 # to know which words have been proce s sed when

71 # they are in the same spurt

72 de f get_index ( sp l i t Spur t , word , cur r entSe t ) :

73 f o r i , token in enumerate ( s p l i t S p u r t ) :

74 i f token . s t r i p ( ) == word and i not in cur r entSe t :

75 cur r entSe t . add ( i )

76 re turn i

77 re turn None

78

79 # retu rns the t o t a l number o f UM or UH in a spurt

80 de f get_tot_uhm ( s p l i t t e d ) :

81 to t = 0

82 f o r item in s p l i t t e d :

83 i f item == ’um ’ or item == ’uh ’ :

84 to t += 1

85 re turn to t

86

87 # retu rns a c l ean spurt

88 de f to_clean ( spurt ) :
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89 c l ean = spurt_clean . remove_parens ( spurt )

90 c l ean = spurt_clean . str ip_punct ( c l ean )

91 c l ean = spurt_clean . makes_one_space ( c l ean )

92 re turn c l ean

93

94 # retu rns a l i s t o f indexed data f o r the vowels in the spurt

95 de f index_data ( data ) :

96 newList = [ ]

97 p r i o r I n t e r v a l = ’≠1 ’

98 cur r entSe t = s e t ( )

99 check = 0

100 f o r dataL i s t in data :

101 f l a g = False

102 i f p r i o r I n t e r v a l != dataL i s t [ 7 ] :

103 p r i o r I n t e r v a l = dataL i s t [ 7 ]

104 cur r entSe t = s e t ( )

105 c l ean = to_clean ( dataL i s t [ 1 ] )

106 s p l i t S p u r t = c l ean . lower ( ) . s p l i t ( )

107 totalUhm = get_tot_uhm ( s p l i t S p u r t )

108 word = dataL i s t [ 6 ] . lower ( ) . s t r i p ( )

109 word = re . sub ( ’ \ ’ ’ , ’ ’ , word )

110 index = get_index ( sp l i t Spur t , word , cur r entSe t )

111

112 # 112 rows have a none index , which means I am

113 # not i n t e r e s t e d in the word , so I don ’ t append i t

114

115 i f index != None :

116 p o s i t i o n = get_pos i t i on ( sp l i t Spur t , index )

117 dataL i s t . extend ( [ index , totalUhm , pos i t i on , c l ean ] )

118 newList . append ( dataL i s t )

119 re turn newList

120

121 de f get_data ( dat , s y l l , out ) :
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122 indexed_data = index_data ( dat )

123 mono_freq_dat = get_mono_freq ( indexed_data , s y l l )

124 formated_dat = to_format ( mono_freq_dat )

125 write_out ( formated_dat , out )

126

127 # i n i t i a t e s the output f i l e with header

128 # retu rns a csv wr i t e r ob j e c t

129 de f make_out ( f i leName ) :

130 to_write = open ( fi leName , ’w ’ , newl ine=’ ’ )

131 w r i t e r = csv . wr i t e r ( to_write , d e l i m i t e r=’ , ’ )

132 w r i t e r . writerow ( [ ’ id ’ , ’ raw ’ , ’ c l ean ’ , ’ speaker ’ , ’ gender ’ , ’ task ’ ,

133 ’ word ’ , ’ i n t e r v a l ’ ,

134 ’ durat ion ’ , ’ f 0 ’ , ’ f 1 ’ , ’ f 2 ’ , ’ i n t e n s i t y ’ ,

135 ’ s t r ength4 ’ , ’ s t r ength3 ’ , ’ bin ’ , ’ po l ’ ,

136 ’ index ’ , ’ totalUHM ’ , ’ f r e q ’ , ’ monosyl l ’ ,

137 ’ a lone ’ , ’ i n i t i a l ’ , ’ medial ’ , ’ f i n a l ’ ] )

138 re turn wr i t e r

139

140 # retu rns a l i s t o f data from the csv f i l e

141 de f to_read ( f i l e ) :

142 reader = csv . reader ( f i l e )

143 re turn [ l i n e f o r l i n e in reader ]

144

145 de f master ( data , s y l l , ou tF i l e ) :

146 dat = to_read ( data )

147 mono_syll = to_read ( s y l l )

148 w r i t e r = make_out ( ou tF i l e )

149 get_data ( dat , mono_syll , w r i t e r )

150

151 de f main ( ) :

152 data = open(<inputData >)

153 s y l l a b l e s = open(<sy l lab le_data >)

154 output = ’<outPutName>’
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155 master ( data , s y l l a b l e s , output )

156 main ( )

Listing D.4 is a sample code used in section 10.4 to preprocess the features, fit the

classifier, and get the accuracy, precision, recall, and F1-scores over five folds of the data.

Listing D.4: Python script to train the classifier for section 10.4

1

2 import pandas as pd

3 import numpy as np

4 from sk l ea rn . svm import SVC

5 from sk l ea rn import p r e p ro c e s s i ng

6 from sk l ea rn import met r i c s

7

8 # reads in the data as pandas

9 dat = pd . read_csv ( ’<data>’ )

10

11 # get the t a r g e t data

12 y_pol = dat . po l . va lue s

13 y_bin = dat . bin . va lue s

14 y_str3 = dat . s t r ength3 . va lue s

15

16 # s c a l e and reshape numerica l f e a t u r e s

17 dur_scaled = prep ro c e s s i ng . s c a l e ( dat [ ’ durat ion ’ ] . va lue s )

18 dur_scaled = dur_scaled . reshape (≠1 , 1)

19 f 1_sca led = p rep ro c e s s i ng . s c a l e ( dat [ ’ f 1 ’ ] . va lue s )

20 f 1_sca led = f1_sca led . reshape (≠1 , 1)

21 f 2_sca led = p rep ro c e s s i ng . s c a l e ( dat [ ’ f 2 ’ ] . va lue s )

22 f 2_sca led = f2_sca led . reshape (≠1 , 1)

23 i n t e n s i t y _ s c a l e d = pre p ro c e s s i ng . s c a l e ( dat [ ’ i n t e n s i t y ’ ] . va lue s )

24 i n t e n s i t y _ s c a l e d = i n t e n s i t y _ s c a l e d . reshape (≠1 , 1)

25 a lone_sca led = pr ep ro c e s s i ng . s c a l e ( dat [ ’ a lone ’ ] . va lue s )

26 a lone_sca led = alone_sca led . reshape (≠1 , 1)

27 i n i t i a l _ s c a l e d = pre p ro c e s s i ng . s c a l e ( dat [ ’ i n i t i a l ’ ] . va lue s )
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28 i n i t i a l _ s c a l e d = i n i t i a l _ s c a l e d . reshape (≠1 , 1)

29 medial_scaled = prep ro c e s s i ng . s c a l e ( dat [ ’ medial ’ ] . va lue s )

30 medial_scaled = medial_scaled . reshape (≠1 , 1)

31 f i n a l _ s c a l e d = p rep ro c e s s i n g . s c a l e ( dat [ ’ f i n a l ’ ] . va lue s )

32 f i n a l _ s c a l e d = f i n a l _ s c a l e d . reshape (≠1 , 1)

33 word_scaled = prep ro c e s s i ng . s c a l e ( dat [ ’uhm_bin ’ ] . va lue s )

34 word_scaled = word_scaled . reshape (≠1 , 1)

35 gen_scaled = prep ro c e s s i n g . s c a l e ( dat [ ’ gen_bin ’ ] . va lue s )

36 gen_scaled = gen_scaled . reshape ( ≠1 ,1)

37 task_sca led = pre p ro c e s s i ng . s c a l e ( dat [ ’ task_bin ’ ] . va lue s )

38 task_sca led = task_sca led . reshape (( ≠1 ,1) )

39

40 # use a l l f e a t u r e s

41 X_all = np . hstack ( [ dur_scaled ,

42 f1_scaled , f2_scaled ,

43 i n t en s i ty_sca l ed , a lone_scaled ,

44 i n i t i a l _ s c a l e d , medial_scaled ,

45 f i na l_sca l ed , word_scaled ,

46 gen_scaled , task_sca led ] )

47

48 # use only a c o u s t i c f e a t u r e s

49 X_acous = np . hstack ( [ dur_scaled ,

50 f1_scaled , f2_scaled ,

51 i n t e n s i t y _ s c a l e d ] )

52

53 # use only p o s i t i o n f e a t u r e s

54 X_posi = np . hstack ( [ a lone_scaled ,

55 i n i t i a l _ s c a l e d , medial_scaled ,

56 f i n a l _ s c a l e d ] )

57

58 # use no p o s i t i o n f e a t u r e s

59 X_no_posi = np . hstack ( [ dur_scaled ,

60 f1_scaled , f2_scaled ,
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61 i n t en s i ty_sca l ed , word_scaled ,

62 gen_scaled , task_sca led ] )

63

64 # use no a lone f e a t u r e s

65 X_no_alone = np . hstack ( [ dur_scaled ,

66 f1_scaled , f2_scaled ,

67 i n t en s i ty_sca l ed ,

68 i n i t i a l _ s c a l e d , medial_scaled ,

69 f i na l_sca l ed , word_scaled ,

70 gen_scaled , task_sca led ] )

71

72 # use no i n i t i a l f e a t u r e s

73 X_no_init ial = np . hstack ( [ dur_scaled ,

74 f1_scaled , f2_scaled ,

75 i n t en s i ty_sca l ed , a lone_scaled ,

76 medial_scaled ,

77 f i na l_sca l ed , word_scaled ,

78 gen_scaled , task_sca led ] )

79

80 # use no medial f e a t u r e s

81 X_no_medial = np . hstack ( [ dur_scaled ,

82 f1_scaled , f2_scaled ,

83 i n t en s i ty_sca l ed , a lone_scaled ,

84 i n i t i a l _ s c a l e d ,

85 f i na l_sca l ed , word_scaled ,

86 gen_scaled , task_sca led ] )

87

88 # use no f i n a l f e a t u r e s

89 X_no_final = np . hstack ( [ dur_scaled ,

90 f1_scaled , f2_scaled ,

91 i n t en s i ty_sca l ed , a lone_scaled ,

92 i n i t i a l _ s c a l e d , medial_scaled ,

93 word_scaled ,
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94 gen_scaled , task_sca led ] )

95

96 # use no a lone+i n i t i a l f e a t u r e s

97 X_no_al_ini = np . hstack ( [ dur_scaled ,

98 f1_scaled , f2_scaled ,

99 i n t en s i ty_sca l ed , medial_scaled ,

100 f i na l_sca l ed , word_scaled ,

101 gen_scaled , task_sca led ] )

102

103 # use no medial+f i n a l f e a t u r e s

104 X_no_med_fin = np . hstack ( [ dur_scaled ,

105 f1_scaled , f2_scaled ,

106 i n t en s i ty_sca l ed , a lone_scaled ,

107 i n i t i a l _ s c a l e d , word_scaled ,

108 gen_scaled , task_sca led ] )

109

110 # use no i n i t i a l+medial f e a t u r e s

111 X_no_ini_med = np . hstack ( [ dur_scaled ,

112 f1_scaled , f2_scaled ,

113 i n t en s i ty_sca l ed , a lone_scaled ,

114 f i na l_sca l ed ,

115 word_scaled ,

116 gen_scaled , task_sca led ] )

117

118 # use no a lone+i n i t i a l+medial f e a t u r e s

119 X_no_al_ini_med = np . hstack ( [ dur_scaled ,

120 f1_scaled , f2_scaled ,

121 i n t en s i ty_sca l ed ,

122 f i na l_sca l ed , word_scaled ,

123 gen_scaled , task_sca led ] )

124

125 # use no word l a b e l ( i . e . , um vs . uh)

126 X_no_word = np . hstack ( [ dur_scaled ,
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127 f1_scaled , f2_scaled ,

128 i n t en s i ty_sca l ed , a lone_scaled ,

129 i n i t i a l _ s c a l e d , medial_scaled ,

130 f i na l_sca l ed ,

131 gen_scaled , task_sca led ] )

132

133 # use no a c o u s t i c f e a t u r e s

134 X_no_acoustics = np . hstack ( [ a lone_scaled ,

135 i n i t i a l _ s c a l e d , medial_scaled ,

136 f i na l_sca l ed , word_scaled ,

137 gen_scaled , task_sca led ] )

138

139 # use no durat ion f e a t u r e s

140 X_no_dur = np . hstack ( [ f1_scaled , f2_scaled ,

141 i n t en s i ty_sca l ed , a lone_scaled ,

142 i n i t i a l _ s c a l e d , medial_scaled ,

143 f i na l_sca l ed , word_scaled ,

144 gen_scaled , task_sca led ] )

145

146 # use fo f1 f e a t u r e s

147 X_no_f1 = np . hstack ( [ dur_scaled ,

148 f2_scaled ,

149 i n t en s i ty_sca l ed , a lone_scaled ,

150 i n i t i a l _ s c a l e d , medial_scaled ,

151 f i na l_sca l ed , word_scaled ,

152 gen_scaled , task_sca led ] )

153

154 # use no f2 f e a t u r e s

155 X_no_f2 = np . hstack ( [ dur_scaled ,

156 f1_scaled ,

157 i n t en s i ty_sca l ed , a lone_scaled ,

158 i n i t i a l _ s c a l e d , medial_scaled ,

159 f i na l_sca l ed , word_scaled ,
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160 gen_scaled , task_sca led ] )

161

162 # use no i n t e n s i t y f e a t u r e s

163 X_no_itensity = np . hstack ( [ dur_scaled ,

164 f1_scaled , f2_scaled ,

165 alone_scaled ,

166 i n i t i a l _ s c a l e d , medial_scaled ,

167 f i na l_sca l ed , word_scaled ,

168 gen_scaled , task_sca led ] )

169

170 # use no gender f e a t u r e s

171 X_no_gen = np . hstack ( [ dur_scaled ,

172 f1_scaled , f2_scaled ,

173 i n t en s i ty_sca l ed , a lone_scaled ,

174 i n i t i a l _ s c a l e d , medial_scaled ,

175 f i na l_sca l ed , word_scaled ,

176 task_sca led ] )

177

178 # use no task

179 X_no_task = np . hstack ( [ dur_scaled ,

180 f1_scaled , f2_scaled ,

181 i n t en s i ty_sca l ed , a lone_scaled ,

182 i n i t i a l _ s c a l e d , medial_scaled ,

183 f i na l_sca l ed , word_scaled ,

184 gen_scaled ] )

185

186 # i n i t i a l i z e c l a s s i f i e r

187 c l f = SVC( ke rne l=’ l i n e a r ’ , gamma=0.001 , C=1.0)

188

189 # i n i t i a l i z e c l a s s i f i e r with weights

190 wclf_1 = SVC( ke rne l=’ l i n e a r ’ , c lass_weight=" balanced " )

191 wclf_2 = SVC( ke rne l=’ l i n e a r ’ , c lass_weight ={0: .6 , 1 : . 4 } , gamma=0.001 , C=1.0)

192
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193 # BINARY STANCE

194

195 # TESTING BINARY STANCE ( y_bin ) WITH ALL FEATURES ( X_all )

196 # div ide data in to 5 f o l d s to f i t and p r e d i c t

197 X_folds = np . a r r ay_sp l i t ( X_all , 5)

198 y_folds = np . a r r ay_sp l i t ( y_bin , 5)

199 s c o r e s = l i s t ( )

200 f o r k in range (5 ) :

201 X_train = l i s t ( X_folds )

202 X_test = X_train . pop ( k )

203 X_train = np . concatenate ( X_train )

204 y_train = l i s t ( y_folds )

205 y_test = y_train . pop ( k )

206 y_train = np . concatenate ( y_train )

207 s c o r e s . append ( wclf_2 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

208 p r e d i c t i o n s = wclf_2 . p r e d i c t ( X_test )

209 # pr in t accuracy

210 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

211 # pr in t p r e c i s i o n , r e c a l l , F1

212 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

213 # pr in t con fus i on matrix

214 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

215 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

216 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

217 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

218

219 # TESTING BINARY STANCE ( y_bin ) WITH NO POSITION ( X_posi )

220 # div ide data in to 5 f o l d s to f i t and p r e d i c t

221 X_folds = np . a r r ay_sp l i t ( X_posi , 5)

222 y_folds = np . a r r ay_sp l i t ( y_bin , 5)

223 s c o r e s = l i s t ( )

224 f o r k in range (5 ) :
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225 X_train = l i s t ( X_folds )

226 X_test = X_train . pop ( k )

227 X_train = np . concatenate ( X_train )

228 y_train = l i s t ( y_folds )

229 y_test = y_train . pop ( k )

230 y_train = np . concatenate ( y_train )

231 s c o r e s . append ( wclf_2 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

232 p r e d i c t i o n s = wclf_2 . p r e d i c t ( X_test )

233 # pr in t accuracy

234 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

235 # pr in t p r e c i s i o n , r e c a l l , F1

236 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

237 # pr in t con fus i on matrix

238 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

239 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

240 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

241 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

242

243 # TESTING BINARY STANCE ( y_bin ) WITH NO POSITION ( X_acous )

244 # div ide data in to 5 f o l d s to f i t and p r e d i c t

245 X_folds = np . a r r ay_sp l i t ( X_acous , 5)

246 y_folds = np . a r r ay_sp l i t ( y_bin , 5)

247 s c o r e s = l i s t ( )

248 f o r k in range (5 ) :

249 X_train = l i s t ( X_folds )

250 X_test = X_train . pop ( k )

251 X_train = np . concatenate ( X_train )

252 y_train = l i s t ( y_folds )

253 y_test = y_train . pop ( k )

254 y_train = np . concatenate ( y_train )

255 s c o r e s . append ( wclf_2 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

256 p r e d i c t i o n s = wclf_2 . p r e d i c t ( X_test )
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257 # pr in t accuracy

258 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

259 # pr in t p r e c i s i o n , r e c a l l , F1

260 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

261 # pr in t con fus i on matrix

262 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

263 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

264 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

265 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

266

267 # TESTING BINARY STANCE ( y_bin ) WITH NO POSITION ( X_no_acoustics )

268 # div ide data in to 5 f o l d s to f i t and p r e d i c t

269 X_folds = np . a r r ay_sp l i t ( X_no_acoustics , 5)

270 y_folds = np . a r r ay_sp l i t ( y_bin , 5)

271 s c o r e s = l i s t ( )

272 f o r k in range (5 ) :

273 X_train = l i s t ( X_folds )

274 X_test = X_train . pop ( k )

275 X_train = np . concatenate ( X_train )

276 y_train = l i s t ( y_folds )

277 y_test = y_train . pop ( k )

278 y_train = np . concatenate ( y_train )

279 s c o r e s . append ( wclf_2 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

280 p r e d i c t i o n s = wclf_2 . p r e d i c t ( X_test )

281 # pr in t accuracy

282 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

283 # pr in t p r e c i s i o n , r e c a l l , F1

284 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

285 # pr in t con fus i on matrix

286 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

287 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s
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288 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

289 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

290

291 # TESTING BINARY STANCE ( y_bin ) WITH NO POSITION ( X_no_posi )

292 # div ide data in to 5 f o l d s to f i t and p r e d i c t

293 X_folds = np . a r r ay_sp l i t (X_no_posi , 5)

294 y_folds = np . a r r ay_sp l i t ( y_bin , 5)

295 s c o r e s = l i s t ( )

296 f o r k in range (5 ) :

297 X_train = l i s t ( X_folds )

298 X_test = X_train . pop ( k )

299 X_train = np . concatenate ( X_train )

300 y_train = l i s t ( y_folds )

301 y_test = y_train . pop ( k )

302 y_train = np . concatenate ( y_train )

303 s c o r e s . append ( wclf_2 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

304 p r e d i c t i o n s = wclf_2 . p r e d i c t ( X_test )

305 # pr in t accuracy

306 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

307 # pr in t p r e c i s i o n , r e c a l l , F1

308 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

309 # pr in t con fus i on matrix

310 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

311 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

312 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

313 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

314

315 # 3 WAY STANCE STRENGTH

316

317 wclf_3 = SVC( ke rne l=’ l i n e a r ’ , c lass_weight ={0: .26 , 1 : . 3 7 , 2 : . 3 7 } , gamma=0.001 ,

C=1.0)

318
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319 # TESTING 3 WAY STANCE ( y_str3 ) WITH ALL FEATURES ( X_all )

320 # div ide data in to 5 f o l d s to f i t and p r e d i c t

321 X_folds = np . a r r ay_sp l i t ( X_all , 5)

322 y_folds = np . a r r ay_sp l i t ( y_str3 , 5)

323 s c o r e s = l i s t ( )

324 f o r k in range (5 ) :

325 X_train = l i s t ( X_folds )

326 X_test = X_train . pop ( k )

327 X_train = np . concatenate ( X_train )

328 y_train = l i s t ( y_folds )

329 y_test = y_train . pop ( k )

330 y_train = np . concatenate ( y_train )

331 s c o r e s . append ( wclf_3 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

332 p r e d i c t i o n s = wclf_3 . p r e d i c t ( X_test )

333 # pr in t accuracy

334 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

335 # pr in t p r e c i s i o n , r e c a l l , F1

336 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

337 # pr in t con fus i on matrix

338 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

339 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

340 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

341 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

342

343 # TESTING 3 WAY STANCE ( y_str3 ) WITH ALL FEATURES ( X_posi )

344 # div ide data in to 5 f o l d s to f i t and p r e d i c t

345 X_folds = np . a r r ay_sp l i t ( X_posi , 5)

346 y_folds = np . a r r ay_sp l i t ( y_str3 , 5)

347 s c o r e s = l i s t ( )

348 f o r k in range (5 ) :

349 X_train = l i s t ( X_folds )

350 X_test = X_train . pop ( k )
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351 X_train = np . concatenate ( X_train )

352 y_train = l i s t ( y_folds )

353 y_test = y_train . pop ( k )

354 y_train = np . concatenate ( y_train )

355 s c o r e s . append ( wclf_3 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

356 p r e d i c t i o n s = wclf_3 . p r e d i c t ( X_test )

357 # pr in t accuracy

358 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

359 # pr in t p r e c i s i o n , r e c a l l , F1

360 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

361 # pr in t con fus i on matrix

362 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

363 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

364 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

365 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

366

367 # TESTING 3 WAY STANCE ( y_str3 ) WITH ALL FEATURES ( X_no_posi )

368 # div ide data in to 5 f o l d s to f i t and p r e d i c t

369 X_folds = np . a r r ay_sp l i t (X_no_posi , 5)

370 y_folds = np . a r r ay_sp l i t ( y_str3 , 5)

371 s c o r e s = l i s t ( )

372 f o r k in range (5 ) :

373 X_train = l i s t ( X_folds )

374 X_test = X_train . pop ( k )

375 X_train = np . concatenate ( X_train )

376 y_train = l i s t ( y_folds )

377 y_test = y_train . pop ( k )

378 y_train = np . concatenate ( y_train )

379 s c o r e s . append ( wclf_3 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

380 p r e d i c t i o n s = wclf_3 . p r e d i c t ( X_test )

381 # pr in t accuracy

382 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )
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383 # pr in t p r e c i s i o n , r e c a l l , F1

384 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

385 # pr in t con fus i on matrix

386 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

387 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

388 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

389 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

390 #

391 # TESTING 3 WAY STANCE ( y_str3 ) WITH ALL FEATURES ( X_no_acoustics )

392 # div ide data in to 5 f o l d s to f i t and p r e d i c t

393 X_folds = np . a r r ay_sp l i t ( X_no_acoustics , 5)

394 y_folds = np . a r r ay_sp l i t ( y_str3 , 5)

395 s c o r e s = l i s t ( )

396 f o r k in range (5 ) :

397 X_train = l i s t ( X_folds )

398 X_test = X_train . pop ( k )

399 X_train = np . concatenate ( X_train )

400 y_train = l i s t ( y_folds )

401 y_test = y_train . pop ( k )

402 y_train = np . concatenate ( y_train )

403 s c o r e s . append ( wclf_3 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

404 p r e d i c t i o n s = wclf_3 . p r e d i c t ( X_test )

405 # pr in t accuracy

406 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

407 # pr in t p r e c i s i o n , r e c a l l , F1

408 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

409 # pr in t con fus i on matrix

410 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

411 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

412 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

413 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )
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414

415 # TESTING 3 WAY STANCE ( y_str3 ) WITH ALL FEATURES (X_no_med_fin)

416 # div ide data in to 5 f o l d s to f i t and p r e d i c t

417 X_folds = np . a r r ay_sp l i t (X_no_med_fin , 5)

418 y_folds = np . a r r ay_sp l i t ( y_str3 , 5)

419 s c o r e s = l i s t ( )

420 f o r k in range (5 ) :

421 X_train = l i s t ( X_folds )

422 X_test = X_train . pop ( k )

423 X_train = np . concatenate ( X_train )

424 y_train = l i s t ( y_folds )

425 y_test = y_train . pop ( k )

426 y_train = np . concatenate ( y_train )

427 s c o r e s . append ( wclf_3 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

428 p r e d i c t i o n s = wclf_3 . p r e d i c t ( X_test )

429 # pr in t accuracy

430 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

431 # pr in t p r e c i s i o n , r e c a l l , F1

432 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

433 # pr in t con fus i on matrix

434 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

435 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

436 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

437 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

438

439 # TESTING 3 WAY STANCE ( y_str3 ) WITH ALL FEATURES ( X_acous )

440 # div ide data in to 5 f o l d s to f i t and p r e d i c t

441 X_folds = np . a r r ay_sp l i t ( X_acous , 5)

442 y_folds = np . a r r ay_sp l i t ( y_str3 , 5)

443 s c o r e s = l i s t ( )

444 f o r k in range (5 ) :

445 X_train = l i s t ( X_folds )
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446 X_test = X_train . pop ( k )

447 X_train = np . concatenate ( X_train )

448 y_train = l i s t ( y_folds )

449 y_test = y_train . pop ( k )

450 y_train = np . concatenate ( y_train )

451 s c o r e s . append ( wclf_3 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

452 p r e d i c t i o n s = wclf_3 . p r e d i c t ( X_test )

453 # pr in t accuracy

454 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

455 # pr in t p r e c i s i o n , r e c a l l , F1

456 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

457 # pr in t con fus i on matrix

458 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

459 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

460 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

461 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

462

463 # TESTING 3 WAY STANCE ( y_str3 ) WITH ALL FEATURES (X_no_word)

464 # div ide data in to 5 f o l d s to f i t and p r e d i c t

465 X_folds = np . a r r ay_sp l i t (X_no_word , 5)

466 y_folds = np . a r r ay_sp l i t ( y_str3 , 5)

467 s c o r e s = l i s t ( )

468 f o r k in range (5 ) :

469 X_train = l i s t ( X_folds )

470 X_test = X_train . pop ( k )

471 X_train = np . concatenate ( X_train )

472 y_train = l i s t ( y_folds )

473 y_test = y_train . pop ( k )

474 y_train = np . concatenate ( y_train )

475 s c o r e s . append ( wclf_3 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

476 p r e d i c t i o n s = wclf_3 . p r e d i c t ( X_test )

477 # pr in t accuracy
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478 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

479 # pr in t p r e c i s i o n , r e c a l l , F1

480 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

481 # pr in t con fus i on matrix

482 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

483 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

484 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )

485 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )

486

487 # TESTING 3 WAY STANCE ( y_str3 ) WITH ALL FEATURES (X_no_task )

488 # div ide data in to 5 f o l d s to f i t and p r e d i c t

489 X_folds = np . a r r ay_sp l i t (X_no_task , 5)

490 y_folds = np . a r r ay_sp l i t ( y_str3 , 5)

491 s c o r e s = l i s t ( )

492 f o r k in range (5 ) :

493 X_train = l i s t ( X_folds )

494 X_test = X_train . pop ( k )

495 X_train = np . concatenate ( X_train )

496 y_train = l i s t ( y_folds )

497 y_test = y_train . pop ( k )

498 y_train = np . concatenate ( y_train )

499 s c o r e s . append ( wclf_3 . f i t ( X_train , y_train ) . s c o r e ( X_test , y_test ) )

500 p r e d i c t i o n s = wclf_3 . p r e d i c t ( X_test )

501 # pr in t accuracy

502 pr in t ( round (np . mean( p r e d i c t i o n s == y_test ) ∗ 100 , 2) )

503 # pr in t p r e c i s i o n , r e c a l l , F1

504 pr in t ( met r i c s . c l a s s i f i c a t i o n _ r e p o r t ( y_test , p r ed i c t i on s , d i g i t s =3) )

505 # pr in t con fus i on matrix

506 pr in t (pd . c r o s s t ab ( y_test , p r ed i c t i on s , rownames=[ ’ True ’ ] , colnames =[ ’

Pred ic ted ’ ] , margins=True ) )

507 # pr in t l i s t o f k accuracy s c o r e s and mean o f s c o r e s

508 scores_mean = sum( s c o r e s ) / f l o a t ( l en ( s c o r e s ) )
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509 pr in t ( ’ A l l s c o r e s : ’ , s co re s , ’ \n ’ , ’Mean : ’ , scores_mean , ’ \n ’ )
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Appendix E

LIST OF COMMUNICATIONS

E.1 Refereed conferences

2016 "Weight-sensitive stress and acoustic correlates of disyllabic words in Marathi" 171st

Meeting of the Acoustical Society of America, Salt Lake City, Utah

2016 "Effects of stance strength and word group on the acoustic properties of the vowel

in um and uh in spontaneous speech in Pacific Northwest American English" 42nd

Annual Meeting of the Berkeley Linguistics Society, Berkeley, CA

2016 "Discursive patterns of um and uh in spontaneous speech in Pacific Northwest Ame-

rican English" 90th Annual Meeting of the Linguistic Society of America, Washington

D.C.

2015 "Weight-sensitive stress in disyllabic words in Marathi and the case of the high

vowels" 31st Northwest Linguistics Conference, Victoria, BC

2014 "Categorization issues and POS tagging of the marker ‘so’ in oral English" 12th ESSE

conference, Kosice, Slovakia

2012 "Form and Function of Connectives in Oral Narratives" 16ème colloque d’anglais oral

de Villetaneuse « L’anglais oral mondialisé ? », Villetaneuse, France
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E.2 Presentations

2016 "Tools for teaching French pronunciation : teaching strategies and awareness of non-

standard language. Capstone Project for the University of Washington Graduate

Certificate in Second and Foreign Language Teaching." French and Italian Studies

Graduate Student Colloquium, University of Washington, Seattle, WA

2016 "Discourse and acoustic patterns in um and uh in spontaneous speech and the ef-

fect of Stance" Linguistic Graduate Student Colloquium, University of Washington,

Seattle, WA

2015 "Investigating and Testing Weight-sensitive Stress in Marathi" Guest lecture, Lin-

guistics Phonology II, University of Washington, Seattle, WA

2014 "Linear Mixed Effect Models" University of Washington Phonetics Lab Meeting,

Seattle, WA

2013 "Pitch Resynthesis" University of Washington Phonetics Lab Meeting, Seattle, WA

2013 "Corpus interoperability and spoken diachronic databases : the NECTE-DECTE

corpora" Université Paris Diderot, Paris, France

2013 "Dialects of French and English, emphasis on Breton and Indian English" Guest

lecture, Introduction to Phonetics, University of Washington, Seattle, WA
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2012 "What is Phon ?" University of Washington Phonetics Lab Meeting, Seattle, WA

2012 "Interface between POS tagging, semantic categorization and the prosodic features

of the marker ‘so’ : a multilevel study" CLILLAC-ARP laboratory Poster Session,

Paris, France

E.3 Article

Le Grézause, E. (2015). Investigating Weight-Sensitive Stress in Disyllabic Words in Ma-

rathi and its Acoustic Correlates. University of Washington Working Papers in Linguistics,

33, 33–52.

E.4 Scholarships and Certificates

2016 Excellence in Linguistics Research Graduate Fellowship

University of Washington, Seattle

2016 Graduate Certificate in Second/Foreign Language Teaching - French

University of Washington, Seattle

2015 University of Washington Travel Grant

2014 Software Carpentry Instructor for Python, R, The Unix Shell
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