
HAL Id: tel-02069346
https://theses.hal.science/tel-02069346v1

Submitted on 15 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Génération de code pour un many-core avec des
contraintes temps réel fortes

Amaury Graillat

To cite this version:
Amaury Graillat. Génération de code pour un many-core avec des contraintes temps réel fortes. Lan-
gage de programmation [cs.PL]. Université Grenoble Alpes, 2018. Français. �NNT : 2018GREAM063�.
�tel-02069346�

https://theses.hal.science/tel-02069346v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Amaury GRAILLAT

Thèse dirigée par Pascal RAYMOND
et codirigée par Matthieu MOY, Université Claude Bernard Lyon 1

préparée au sein du Laboratoire VERIMAG
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Génération de code pour un many-core avec
des contraintes temps réel fortes

Code Generation for Multi-Core Processor
with Hard Real-Time Constraints

Thèse soutenue publiquement le 16 novembre 2018,
devant le jury composé de :

Monsieur PASCAL RAYMOND
CHARGE DE RECHERCHE, CNRS DELEGATION ALPES, Directeur de
thèse
Monsieur MATTHIEU MOY
MAITRE DE CONFERENCES, UNIVERSITE LYON 1, Co-directeur de
thèse
Monsieur JAN REINEKE
PROFESSEUR, UNIVERSITE DE LA SARRE - ALLEMAGNE,
Rapporteur
Monsieur ROBERT DE SIMONE
DIRECTEUR DE RECHERCHE, INRIA CENTRE S. ANTIPOLIS -
MEDITERRANEE, Rapporteur
Madame ANNE BOUILLARD
MAITRE DE CONFERENCES, ECOLE NORMALE SUPERIEURE DE
PARIS, Examinateur
Monsieur BENOÎT DUPONT DE DINECHIN
INGENIEUR DE RECHERCHE, KALRAY S.A. - MONTBONNOT SAINT-
MARTIN, Examinateur
Monsieur ALAIN GIRAULT
DIRECTEUR DE RECHERCHE, INRIA CENTRE DE GRENOBLE
RHÔNE-ALPES, Président
Madame CHRISTINE ROCHANGE
PROFESSEUR, UNIVERSITE TOULOUSE-IIIIII PAUL-SABATIER,
Examinateur

2

Contents

1 Résumé 9
1.1 Introduction . 9

1.1.1 Applications temps-réel dur . 9
1.1.2 L’impact des évolutions matérielles sur les logiciels temps-réel 9
1.1.3 L’usage des multi- et pluri-cœurs pour des applications critiques 10
1.1.4 La programmation par modèle et les langages synchrones 11
1.1.5 Résumé des contributions : les programmes synchrones temps-réel dur sur

pluri-cœur . 11
1.2 Méthode générale . 11

1.2.1 Définition de la Représentation Intermédiaire Parallèle 12
1.2.2 Extraction des tâches parallèles . 12
1.2.3 Choix d’implémentations pour tirer parti des bancs mémoire 12
1.2.4 Implémentation du PIR sur un pluri-cœur . 13

1.3 Conclusion . 14

2 Introduction 15
2.1 Hard-Real-Time Applications . 15
2.2 Impact of Hardware Evolution on Time-Critical Software 15

2.2.1 Single-Core . 15
2.2.2 Single-Core vs. Multi-/Many-Core . 15
2.2.3 Multi-/Many-Core for Time-Critical Applications 16

2.3 Model-Based Development and Synchronous Languages 17
2.4 Contributions Overview: Time-Critical Synchronous Program on a Many-core 17
2.5 Organization of This Document . 17

3 Background: Synchronous Programs & Parallelization 19
3.1 Reactive Systems and Synchronous Languages . 19

3.1.1 The Core Language: Lustre . 21
3.1.2 Conditional Computation in Synchronous Data-Flow Languages 22

3.1.2.1 Clocks in Lustre . 22
3.1.2.2 Scade Automata . 24

3.1.3 Multi-Periodic Programs . 25
3.1.3.1 Task Activation . 25
3.1.3.2 Determinism of Communication . 27

3.1.4 Conclusion . 29
3.2 High-Level Parallel Design . 29

3.2.1 Existing Approaches for Parallelism . 29
3.2.1.1 Prelude . 29
3.2.1.2 AUTOSAR . 30
3.2.1.3 Giotto / Timing Definition Language (TDL) 30

3

4 CONTENTS

3.2.1.4 ARINC 653 . 33
3.2.1.5 Architecture Analysis and Design Language (AADL) 34
3.2.1.6 Conclusion . 34

3.2.2 Parallelization from Synchronous Languages . 34
3.2.2.1 Parallel Scade . 34
3.2.2.2 Distributed Lustre . 35
3.2.2.3 Other Languages . 35
3.2.2.4 Parallelization of Dataflow . 35
3.2.2.5 Conclusion . 35

4 Background: Many-Core 37
4.1 Multi- and Many-Cores System-on-Chip Architectures 37

4.1.1 Worst-Case Execution Time Analysis on Multi-Core 37
4.1.1.1 WCET in Isolation . 37
4.1.1.2 Interference-Aware WCET Analysis 38

4.1.2 System-on-Chip For Time-Critical Software . 39
4.1.3 Synchronous Dynamic Random Access Memory (DDR SDRAM) 41

4.1.3.1 DRAM Overview . 41
4.1.3.2 Memory Organization: Rank / Bank / Row / Column 42
4.1.3.3 Temporal Behavior . 43
4.1.3.4 Timing Predictability with SDRAM 44

4.2 Network-on-Chip . 44
4.2.1 Definitions . 44
4.2.2 Routing and Deadlock . 45
4.2.3 Adaptive Routing . 47
4.2.4 2D Grid Deadlock-Free Routing Algorithms . 47
4.2.5 Bandwidth Limiter . 51
4.2.6 Max-Min Fairness and Lexicographic Vector . 52
4.2.7 Network Calculus . 53
4.2.8 Classical Artificial Instances of Flows . 57

4.3 The Kalray MPPA2 . 59
4.3.1 Cores . 59

4.3.1.1 VLIW vs. Out of Order Pipeline . 59
4.3.1.2 Caches . 59

4.3.2 Cluster . 60
4.3.2.1 Shared-Memory . 61
4.3.2.2 Input/Output Clusters . 61
4.3.2.3 Clocks and Synchronizations Mechanisms 61

4.3.3 Network-on-Chip . 62
4.3.4 Summary of the Kalray MPPA2 Features . 63

5 Method Overview 65
5.1 Parallel Intermediate Representation Definition . 65

5.1.1 Task Graph and Communication Graph . 65
5.2 From Program to PIR: Task Extraction . 67
5.3 Implementation Choices to Take Advantage of the Banked Shared-Memory 67

5.3.1 Inter-Task Communications: Remote Read vs. Remote Write 67
5.3.2 Time-Triggered Execution Model . 67

5.4 Implementation of a PIR on a Many-Core . 68
5.4.1 Static Mapping-Scheduling . 68
5.4.2 Release Dates and Final Executable . 69
5.4.3 NoC: Routes and WCTT . 70

CONTENTS 5

5.5 The CAPACITES Project . 70
5.6 Conclusion . 70

6 Parallelization of Synchronous Programs 71
6.1 Main Criteria to Select a Parallelization Method . 71

6.1.1 Centralized Execution . 71
6.1.2 Hierarchical Parallelism Extraction . 71
6.1.3 Code Traceability . 71
6.1.4 Special Case for Clocks and Delayed Communications 72

6.2 Parallelization of Lustre and Scade . 72
6.2.1 Fork-Join for Dataflow Synchronous Languages 72
6.2.2 Decoupling of the Nodes Using Future in Lustre 74
6.2.3 Parallel Subset in Scade . 75
6.2.4 Top-Level Node as an Architecture Description Language 76
6.2.5 Data-Flow Flattening . 77
6.2.6 Methods Comparison . 78

6.3 Contribution: Extraction of PIR from a Dataflow Synchronous Program 78
6.3.1 Parallelization Method 1: Lustre Top-Level . 78
6.3.2 Parallelization Method 2: Parallel Subsets from KCG Multi-Core 79

6.3.2.1 Simple Data-Flow Program . 79
6.3.2.2 Special Case for Automata . 80

6.4 Conclusion . 81

7 Time-Critial Implementation on the Kalray MPPA2 83
7.1 Related Work on Multi-Core Execution Models . 83
7.2 Static Schedule Implementation . 84

7.2.1 Static Schedule . 84
7.2.2 Quasi-Static Schedule: Special Case of Automata 85

7.3 System Configuration and Backend Library . 87
7.3.1 Boot Sequence . 87
7.3.2 Time and Event Synchronization . 87

7.3.2.1 Inter-core Synchronization Mechanism on the MPPA2 88
7.3.2.2 Time Synchronization Protocol . 88

7.3.3 NoC Configuration and Usage . 89
7.3.4 Cache Maintenance Functions . 90

7.4 Communication for a Distributed and Multi-Banked Memory 90
7.4.1 Implementation of the Communications . 90
7.4.2 Delayed Communications . 92

7.5 Contribution to Route Allocation . 93
7.5.1 Route Selection and Flow Optimization . 93

7.5.1.1 Exploration for Unique Route Selection (EURS) 94
7.5.1.2 LP-Based Heuristics for Unique Route Selection (LPURS) 95

7.5.2 Contribution to Multicast Path-Based Routing 96
7.5.3 Deadlock-Free Routing Algorithm for the Kalray MPPA2 96

7.6 Deterministic Network Calculus (DNC) Tool . 98
7.6.1 Effects of Link Shaping . 98
7.6.2 Routers and Network Properties . 99
7.6.3 Arbiter Service Curve . 99
7.6.4 Queue Service Curve . 100
7.6.5 WCTT Bound . 101
7.6.6 NoC Configuration Toolchain for the Kalray MPPA2 102

7.7 Conclusion . 102

6 CONTENTS

8 Experiments 103
8.1 Route Selection and Routing Algorithm Comparison 103

8.1.1 Comparison of Deadlock-Free Unicast Routing Algorithms 105
8.1.2 Evaluation of the HOE-DP Unicast-Based Multicast Routing Algorithm 106

8.2 Comparison of the DNC Formulations . 108
8.3 Case Studies . 110

8.3.1 ROSACE: Flight-Control Use-case . 110
8.3.2 Sensors Processing Case Study . 112
8.3.3 Synthetic Benchmark . 114

8.4 Conclusion . 117

9 Conclusion and Future Work 119
9.1 Summary and Contributions . 119

9.1.1 Task Extraction and Parallel Intermediate Representation (PIR) 119
9.1.2 Latency-Bounded Communication Under Interference 119
9.1.3 Results . 120

9.2 Future Work . 120
9.3 Future of the Multi-Core for Critical Applications . 121

Remerciements

Je voudrais remercier les personnes qui ont été à mes côtés durant ces 3 ans.
En premier lieu, je remercie mes directeurs de thèse, Matthieu et Pascal du laboratoire Verimag

qui m’ont beaucoup appris et guidé ainsi que Claire pour ses conseils et son enthousiasme. Je remercie
aussi vivement Benoît qui m’a proposé cette thèse chez Kalray et m’a transmis ses connaissances à la
fois théoriques et industrielles. Je remercie le jury et les rapporteurs pour avoir relu ce manuscrit.

En second lieu, je remercie les collègues de Kalray, notamment Vincent et l’équipe hardware pour
leur connaissance du processeur au cycle près. Merci à la BU Automotive, et aux thésards de Kalray
anciens et nouveaux, Julien, grand druide du débug et de l’optimisation, et Cyril.

Je voudrais remercier les autres thésards/docteurs de l’écosystème CAPACITES avec qui il a été
agréable de travailler: Hamza et Moustapha (que je n’oublie pas de citer cette fois). Merci aux amis
du labo, de la coinche et du Kubb: Denis, Anaïs, Maxime et Thomas.

Enfin, je remercie tous ceux avec qui j’ai passé les soirs et les weekends. Merci à ma famille qui
m’a soutenu: notamment mes parents, mon frère, mes grands-parents et Manon. Merci aux amis:
Stéphane pour nos discussions jusqu’à tard le soir, Lou pour risquer fréquemment sa vie pour nous
offrir du gâteau au caramel, et les pharmaciens.

Merci à l’association Théâtre à Grenoble INP pour le concentré de bonne humeur qu’elle a su
générer et Florian de DAF. Merci à ceux que j’oublie.

Je n’oublie pas Skippy, Charade, Larzac, Béa, Billy, les mouchillons et les oiseaux de l’ORTF.

7

8 CONTENTS

1 Résumé

1.1 Introduction

1.1.1 Applications temps-réel dur
Des millions de lignes de code [32] font tourner les objets que nous utilisons dans la vie de tous les
jours. Ces logiciels améliorent le confort et la sûreté des avions, facilitent la conduite des voitures,
réduisent la consommation énergétique ou augmentent la productivité des centrales énergétiques.
Ces logiciels influencent directement notre sécurité, à la fois parce qu’ils améliorent la sécurité des
systèmes et parce qu’une erreur dans leur code peut être dramatique.

Les systèmes réactifs [67] réagissent à leurs entrées à une vitesse définie par l’environnement.
Par exemple, le système anti-collision d’un voiture freine lorsque la distance à l’obstacle est trop
courte. En aéronautique, le système de commande de vol réagit en permanence à son environnement
et en fonction des commandes du pilote. Ainsi, une réponse trop tardive à une commande ou à un
changement de l’environnement est une erreur critique. On appelle temps-réel critique ou temps-réel
dur un logiciel qui doit garantir des bornes sur son temps de réaction. Ces contraintes de temps sont
spécifiées sous forme de latences, de délais ou de bandes passantes.

1.1.2 L’impact des évolutions matérielles sur les logiciels temps-réel
Mono-cœur. De nombreuses recherches on été menées dans le but de calculer une borne supérieure
des temps de calcul sur des processeurs mono-cœurs. L’analyse de pire temps d’exécution (worst-case
execution time, WCET) [8, 126] en est un exemple. La durée d’exécution d’un programme dépend du
matériel et donc l’analyse requiert un modèle fidèle de celui-ci.

En général, l’analyse de WCET n’est pas exacte : pour être fiable, elle doit sur-estimer la durée
réelle d’exécution. La précision du calcul du WCET dépend du matériel. Par exemple des processeurs
très simples qui exécutent les instructions dans l’ordre et qui n’ont pas de prédiction de branchement
autorisent un analyse très fine. Les comportements dynamiques sont moins prédictibles. Un cache
mémoire est aussi un source de non déterminisme si sa politique d’éviction est non prédictible. En
conclusion, l’analyse temporelle est plus facile sur du matériel qui autorise la composition des temps
d’exécution (time-compositional [127] hardware).

La précision de l’analyse du matériel peut parfois être contrôlée par le logiciel : certains processeurs
proposent des instructions pour limiter l’indéterminisme ; par exemple en désactivant les caches
mémoires. Les modèles d’exécution spécifient la manière dont les programmes doivent être exécutés.
Certains modèles d’exécution restreignent l’utilisation du processeur en désactivant tous les mécanismes
qui ne sont pas prédictibles.

Des mono-cœurs aux multi-cœurs. Aujourd’hui, nous observons deux tendances : la production
des mono-cœurs diminue et les logiciels embarqués sont de plus en plus complexes et requièrent de
plus en plus de puissance de calcul [114].

9

10 CHAPTER 1. RÉSUMÉ

Par conséquent, le multi-cœur est à la fois un besoin et une solution. Le multi-cœur sur puce
(MPSoC) est une solution pour intégrer plus de fonctionnalités dans le même circuit réduisant ainsi
le poids et la consommation des systèmes. Les pluri-cœurs (many-core) sur puce ont été inventés
pour permettre l’intégration de plus de systèmes sur la même puce. Ils sont composés de dizaines,
voire de centaines de cœurs. Il disposent d’un réseau sur puce (NoC) pour minimiser les coûts de
communication.

L’isolation temporelle permet d’intégrer plusieurs applications dans le même processeur mono-cœur.
Les applications sont isolées car elles ne s’exécutent pas en même temps. De plus, si l’état des registres
est parfaitement sauvegardé et restauré lors du changement de contexte, alors l’isolation est parfaite
et le WCET de chaque partie peut être calculé séparément.

Pour les multi- et les pluri-cœurs, l’isolation peut être basée sur le temps, l’espace ou les deux.
L’isolation spatiale consiste à exécuter des processus sur des cœurs différents, utilisant des espaces
mémoires différents. Néanmoins, un compromis doit être trouvé entre l’isolation et la communication.
En d’autres termes, l’isolation n’est pas parfaite et les différents cœurs ont besoin de communiquer en
utilisant des ressources partagées. Ainsi, le comportement d’un processus a un impact sur les autres.

Par exemple, l’accès mémoire d’un cœur peut être retardé par l’accès concurrent d’un autre cœur
à la même ressource. Ces accès concurrents sont des interférences et ne sont pas limités à la mémoire :
les bus, les réseaux sur puce (NoC), les ports d’entrées/sorties, les caches partagés soufrent aussi des
interférences.

La cohérence de cache est un mécanisme assurant que, pour une adresse mémoire donnée, la donnée
est la même dans le cache de tous les cœurs. Par exemple, un accès mémoire peut être provoqué
même s’il n’y a pas de défaut de cache si la valeur présente dans le cache n’est pas à jour. Le principal
inconvénient est que du point de vue d’un cœur, le temps d’accès n’est pas prévisible puisqu’il dépend
des accès des autres cœurs à la même ligne de cache. Lorsque la cohérence de cache est implémentée
par logiciel, la mise à jour du contenu du cache est explicite ce qui rend l’analyse temporelle plus
facile.

Les multi-cœurs dans l’industrie critique. Dans l’industrie aéronautique, le CAST-32A est un
document qui explique le point de vue des autorités de certification sur l’usage des multi-cœurs [48].

L’utilisation de multi-cœurs pour les systèmes aéronautiques requiert l’énumération exhaustive
et la compréhension complète des sources d’interférences. Le CAST-32A décrit le partitionnement
robuste comme une propriété du système où chaque cœur utilise uniquement les ressources qui lui ont
été assignées. L’utilisation des ressources par un cœur doit se faire dans le respect des contraintes
temporelles des autres cœurs. Les erreurs à l’exécution qui sont spécifiques aux fonctionnalités du
multi-cœur doivent être détectées et prises en compte.

1.1.3 L’usage des multi- et pluri-cœurs pour des applications critiques
La recherche sur l’analyse du WCET sur multi-cœur est très active. Des travaux traitent de
l’analyse d’interférences [43, 113, 120, 81], de la programmation de ces multi-cœurs pour minimiser les
interférences [105, 82, 104, 10, 47] ou l’ordonnancement des tâches prenant en compte ces interférences.
Des travaux proposent des modèles d’exécution isolant totalement les processus en supprimant les
interférences [103, 96, 47]. D’autres, comme notre travail, minimisent les interférences et rendent leur
analyse possible [113, 119]. Dans notre travail, nous cherchons un compromis entre les performances
et l’isolation lors de l’analyse et de la configuration du matériel.

Développer des applications temps-réel dur sur les multi-cœurs pour tirer parti du parallélisme
d’exécution tout en minimisant les interférences est un problème d’optimisation multi-critère. Cela
nécessite de créer des tâches parallèles et de les déployer sur les cœurs et dans la mémoire. La
configuration fine du processeur est aussi nécessaire pour minimiser l’impact des comportements
dynamiques du matériel. Par exemple, certains processeurs disposent de cohérence de cache logicielle
ce qui rend le processeur plus prédictible mais sa programmation plus complexe.

1.2. MÉTHODE GÉNÉRALE 11

En conclusion, l’utilisation des multi-cœurs pour les applications temps-réel nécessite des logiciels
complexes. Cette complexité rend les erreurs de programmation courantes. Une solution est la
génération de code depuis un langage haut niveau afin de faciliter l’analyse temporelle [27, 26, 82, 74].
Notre travail en fait parti.

1.1.4 La programmation par modèle et les langages synchrones

Les langages synchrones ont été conçus pour faciliter le développement des systèmes réactifs critiques.
Ils fournissent une notion de temps abstrait qui facilite la vérification des contraintes de temps.
Lustre [68] est un langage synchrone flot de données et Scade [15] est sa version industrielle utilisée
par l’industrie avionique.

Les langages synchrones sont des langages haut niveau qui abstraient l’implémentation système.
Certains langages synchrones disposent d’une syntaxe graphique facilitant le développement des
applications complexes. Il existes des langages similaires non-synchrones tels que Simulink qui
permettent de décrire la fonctionnalité de l’application tout en cachant au développeur les problèmes
liés à l’implémentation système.

Le développement par modèle sur multi- et pluri-cœurs est basé sur la génération automatique
de code depuis la spécification de haut niveau. Les tâches parallèles doivent aussi être extraites
automatiquement tout en assurant les critères de performance et de conservation de la sémantique.

1.1.5 Résumé des contributions : les programmes synchrones temps-réel
dur sur pluri-cœur

Dans cette thèse, nous proposons une méthode complète de génération automatique de code temps-réel
critique depuis les langages synchrones Scade ou Lustre vers une cible multi-/pluri-cœur.

Nous appliquons cette méthode au pluri-cœur MPPA2 de Kalray. Néanmoins, notre but est de
tirer un enseignement plus large de ce travail pour permettre d’appliquer la méthode à toute une
classe de multi-cœurs.

Premièrement, nous définissons une méthode pour extraire des tâches parallèles depuis un pro-
gramme synchrone. Deuxièmement, nous générons une configuration automatique de la machine pour
la rendre prédictible temporellement. La mémoire et le réseau sur puce (NoC) sont configurés afin de
maîtriser les interférences. En particulier, nous implémentons un outil de configuration du NoC qui
permet des communications sans interbloquage et le calcul de la latence de bout en bout.

Enfin, notre outil génère le code système nécessaire à l’implémentation des tâches de communication,
la synchronisation et l’isolation spatiale. Un binaire est généré par assemblage du code fonctionnel,
du code système et de la configuration du processeur.

La méthode de génération de code et les expériences on été publiées dans [63] et la méthode
générale a été soumise pour publication dans [64]. La méthode de routage sur le NoC, sa configuration
et les méthodes de calcul de latence on été publiées dans [21, 46, 45].

Nous présentons maintenant la méthode générale.

1.2 Méthode générale

Nous expliquons la méthode globale pour l’implémentation parallèle d’un programme synchrone flot
de données sur processeurs pluri-cœurs.

La Représentation Intermédiaire Parallèle (PIR) décrit le programme comme un ensemble d’entités
communiquant entre elles. Le PIR sépare le problème en deux : l’extraction du parallélisme depuis le
programme d’entrée et l’implémentation du PIR sur un pluri-cœur.

12 CHAPTER 1. RÉSUMÉ

1.2.1 Définition de la Représentation Intermédiaire Parallèle
Le PIR doit être assez précis pour rendre l’implémentation du programme possible mais suffisamment
abstrait pour permettre le raisonnement.

Le PIR naturel d’un programme flot de données est basé sur la division en nœuds. Il ne décrit pas
la fonctionnalité du programme mais contient un ensemble de nœuds communiquant ensemble.

Le PIR est composé d’un graphe acyclique décrivant les dépendances entre les tâches. Les langages
synchrones permettent les communications directes ou les communications avec délais (opérateur pre).
Seules les dépendances directes sont décrites par ce graphe. Le graphe est acyclique et décrit un ordre
partiel entre les nœuds sous la forme de contraintes de précédence.

Le graphe de dépendances décrit les canaux de communications entre les nœuds. Il peut être
cyclique si l’une des communications formant le cycle a un délai. Chaque canal décrit la taille de la
communication ainsi que le nombre de délais.

Le graphe de dépendances est utilisé pour ordonnancer les tâches et générer les synchronisations
tandis que le graphe des communications est nécessaire pour implémenter les canaux de communica-
tions.

1.2.2 Extraction des tâches parallèles
Le but de l’étape [Extraction du parallélisme] est d’extraire les tâches depuis le programme afin
de générer le PIR. Notre méthode extrait les tâches depuis le nœud de plus haut niveau dans la
hiérarchie du programme. Un tâche est créée pour chaque sous-nœud. Ces tâches sont candidates
pour être exécutées en parallèle. Les tâches, les dépendances et les communications sont obtenues par
analyse syntaxique du programme.

Cette méthode est similaire à celle employée par les langages de description d’architecture (ADL)
tels que Prélude ou Giotto.

Le code fonctionnel de l’application est obtenu en compilant chaque nœud avec un compilateur
Lustre ou Scade standard.

1.2.3 Choix d’implémentations pour tirer parti des bancs mémoire
Kalray MPPA2. Le MPPA2 de Kalray est un pluri-cœur composé de 16 clusters. Chaque clusters
s’apparente à un multi-cœur de 16 cœurs et d’une mémoire partagée. Cette mémoire partagée est
composée de 16 mémoires indépendantes appelées bancs. Les clusters sont reliés entre eux par un
réseau sur puce (NoC) composé de liens et de routeurs. Chaque cluster est un nœud de ce réseau et
peut écrire dans la mémoire d’un autre cluster. Chaque communication NoC peut se faire à travers
un limiteur de bande passante matériel.

Dans cette section, nous présentons les problèmes et les choix techniques liés à la mémoire partagée.

Communication : lecture distante ou écriture distante. Nous considérons des plateformes
avec une mémoire distribuée ou une mémoire composée de plusieurs bancs.

Un banc est associé à chaque cœur. Nous parlons d’écriture distante lorsqu’une donnée est copiée
par un cœur vers la mémoire d’un autre cœur. À l’inverse, nous parlons de lecture distante lorsqu’une
donnée est lue par un cœur dans une mémoire distante.

Dans notre travail, nous choisissons l’écriture distance puisqu’elle permet d’être cohérent avec le
fonctionnement du NoC du MPPA2 qui donne un accès direct en écriture aux mémoires distantes.

Modèle d’exécution dirigé par le temps. Les nœuds des programmes flot de données sont
exécutés lorsque leurs entrées sont disponibles. Pour reproduire le fonctionnement flot de données
sur un multi-cœur, on peut utiliser des synchronisations. Dans ce cas, les tâches sont exécutées sur
l’occurrence d’un évènement. Une autre manière est de programmer le démarrage de chaque tâche sur
des dates fixées pour lesquelles on est certain que les entrées sont disponibles. Dans ce cas on parle
d’exécution dirigée par le temps.

1.2. MÉTHODE GÉNÉRALE 13

Nous analysons les interférences pour chaque tâche. Deux tâches peuvent interférer lorsqu’elles
utilisent simultanément le même banc mémoire. Le pire temps d’exécution d’une tâche (WCET) est
calculé sans prendre en compte les interférences. Ainsi, la durée d’exécution réelle peut être supérieure
au WCET s’il y a des interférences. Pour cela on calcule le pire temps de réaction (WCRT) qui prend
en compte les interférences.

Si les tâches d’un programme démarrent dès que possible, il est difficile de calculer un WCRT
précis puisqu’un changement dans la durée d’exécution d’une tâche peut rendre concurrentes des
tâches qui ne l’étaient pas. Pire, un temps d’exécution plus court pour une tâche peut mener à un
temps d’exécution globalement plus long.

Ainsi, nous choisissons une exécution dirigée par le temps pour laquelle chaque tâche dispose d’une
date de démarrage définie statiquement. Les tâches ne peuvent pas démarrer plus tôt que leur date
de démarrage. Cela permet d’éviter les problèmes dus à la durée d’exécution des tâches.

Rihani et al. [113] introduisent un modèle d’exécution dirigé par le temps et un outil capable
de calculer les dates de démarrage de chaque tâche en prenant en compte les interférences et les
dépendances. Nous utilisons cet outil pour permettre l’exécution dirigée par le temps.

1.2.4 Implémentation du PIR sur un pluri-cœur
Une fois le PIR extrait, il peut être implémenté sur la plateforme. Son implémentation doit conserver
la sémantique du programme d’entrée et satisfaire les contraintes de temps. La génération de code est
découpée en différentes étapes que nous décrivons maintenant.

Déploiement et ordonnancement statique. L’étape [Mapping+Scheduling] (placement et
ordonnancement) est basée sur un outil externe pour trouver un placement optimisé des tâches sur
les cœurs et les clusters du processeur. Puis, l’outil calcule un ordonnancement compatible avec le
graphe de dépendances.

Il peut choisir d’optimiser la durée du chemin critique du programme. Cela nécessite de connaitre
la durée d’exécution de chaque tâche. Néanmoins, ces temps d’exécutions dépendent des interférences
qui dépendent à leur tour du placement.

Cette interdépendance entre le placement et la durée d’exécution peut être vu comme un problème
avec un point fixe. Nous choisissons de casser la boucle en utilisant le WCET comme durée d’exécution
de chaque tâche. Par conséquent, l’outil de placement et d’ordonnancement requiert le graphe de
dépendances et le WCET en isolation de chaque tâche.

L’ordonnancement est statique et non préemptif. Cela évite les problèmes dus à la préemption et
simplifie le calcul du WCRT.

Un banc mémoire est associé à chaque cœur. Le code, les données et les tampons de communication
sont placés sur le banc correspondant au cœur. Par conséquent, chaque cœur accède exclusivement à
son propre banc, sauf quand il communique. Ce principe est réalisé par l’étape [Code and Buffer
Allocation].

Date de démarrage des tâches et exécutable final. L’étape [WCET Analysis] a pour but
de calculer le WCET de chaque tâche en isolation. Les outils d’analyse de WCET OTAWA [8] et
AiT [50] sont compatibles avec le MPPA2.

L’étape [MIA: Release date computation] correspond à l’outil MIA [113] qui calcule les dates
de démarrage des tâches en prenant en compte la précédence et les interférences.

L’étape [Generation of system + communication code] (génération du code système et
du code de communication) génère le code pour démarrer les cœurs, le code pour implémenter
l’ordonnancement statique et les communications. Pour l’implémentation dirigée par le temps, cette
étape nécessite les dates de démarrage des tâches. Cependant, puisque la compilation du binaire a un
impact sur la durée d’exécution du programme, le WCET des tâches est calculé sur le binaire final.
Mais ce binaire final nécessite les dates de démarrage des tâches.

Ainsi, nous avons choisi d’intégrer les dates de démarrage en modifiant le binaire final.

14 CHAPTER 1. RÉSUMÉ

Routage et pire temps de traversée NoC. Lorsque des tâches de différents clusters commu-
niquent, le canal de communication passe par le NoC. Cette communication à travers le NoC est
appelée flux.

Nous choisissons de configurer le NoC avec des routes statiques et un limiteur de bande passante
pour chaque flux. Par conséquent, la configuration du NoC nécessite deux paramètres pour chaque
flux : la route et la bande passante. Cette configuration facilite le calcul du pire temps de traversée
du NoC appelé WCTT.

Le WCTT est nécessaire pour l’étape [MIA: Release date computation].
L’étape [NoC Routing] calcule l’ensemble des routes possibles pour chaque flux. Pour cela,

il est nécessaire d’utiliser des algorithmes de routage garantissant l’absence d’interbloquage. Nous
comparons différents algorithmes de routage point à point sur le MPPA2 et nous présentons un
algorithme de routage 1-N (multicast) qui minimise le nombre de ressources NoC nécessaires à son
implémentation.

L’étape [Route selection & fair rate attribution] sélectionne une seule route par flux. Pour
que la bande passante de chaque lien du réseau soit distribuée équitablement entre les flux, nous
utilisons le critère de max-min fairness [33]. Lorsque les bandes passantes des flux respectent ce
critère, l’augmentation de la bande passante d’un flux ne peut pas se faire sans réduire la bande
passante d’un flux déjà inférieur. Nous présentons un algorithme fournissant une solution optimale et
une heuristique basée sur de la programmation linéaire pour implémenter ce critère.

L’étape [NoC Configuration generator] génère l’entête des paquets contenant la route sélection-
née. Il génère aussi la configuration du limiteur de bande passante.

L’étape [WCTT Network Calculus] utilise la théorie du Network Calculs pour calculer le
WCTT de chaque flux.

1.3 Conclusion
Nous proposons un ensemble d’outils permettant la génération de code depuis un programme synchrone
flot de données vers un processeur multi- ou pluri-cœur. Ces travaux ciblent des applications critiques
et temps-réel dur qui nécessitent la correction du fonctionnement. En particulier, le code généré
doit permettre la validation du logiciel et la traçabilité du code. L’objectif final est de garantir
des contraintes de temps exprimées sous forme de bandes passantes minimales ou de latences.
L’implémentation est réalisée sur le Kalray MPPA2. Les résultats des expériences sont prometteurs
puisqu’ils montrent une accélération importante due à la parallélisation tout en offrant des garanties
sur le temps d’exécution.

2 Introduction

2.1 Hard-Real-Time Applications
Millions of lines of code [32] are involved in our everyday life to improve comfort in planes, ease the
driving of cars, lessen energy consumption and raise the energy production of plants. Most of these
lines of code are critical and directly related to user safety: either because their purpose is to improve
safety, or because an unexpected software behavior can endanger people.

Reactive systems [67] react to external events or values at a speed defined by the environment. For
instance, the collision avoidance system in cars triggers an emergency brake if the obstacle distance
is too short. In avionics, control systems are constantly reacting to changes in the environment
to maintain the pilot command. A too late response to events or environment changes leads to
unexpected behavior. Furthermore, we name time-critical or hard real-time, softwares that must
guarantee bounds for the computation time. Timing constraints such as latency, delays or bandwidth
of the systems are part of the specification of the system.

2.2 Impact of Hardware Evolution on Time-Critical Software

2.2.1 Single-Core
Extensive research has been carried out to formally assess bounds on the computation time of a
program on single-core processors. The worst-case execution time (WCET) analysis [8, 126] is a
general solution to compute an upper bound on the execution time of a program under the worst
conditions. Indeed this duration depends on the hardware. Therefore an accurate model of the
hardware behavior is required.

In general, the WCET analysis cannot be exact, therefore to be sound it must be overestimated.
Some cores provide a tighter overestimation than others. This is the case of processors with simple
pipeline compared to processors with an out-of-order pipeline or branch prediction. Dynamic behavior
makes predictability harder. A cache is also a source of indeterminism if its eviction policy is not
predictable. Finally, time-compositional [127] hardware makes the timing analysis easier.

The software has an impact also on the accuracy of the analysis. An execution model specifies
the way programs are executed. Some execution models define a restricted usage of the processor
ensuring time-predictability by disabling some unpredictable processor behaviors.

2.2.2 Single-Core vs. Multi-/Many-Core
Today, we observe a twofold trend. Single-core processors are less and less produced and the software
is more and more complex in embedded systems leading to an increasing demand for computing
power [114].

Consequently, multi-core is seen both as a solution and a necessity. Multi-core system-on-chip
(SoC) can be used either as a way to increase computing power, or a way to integrate more functionality

15

16 CHAPTER 2. INTRODUCTION

in the same piece of hardware; thus reducing weight, space and power consumption of systems. The
many-core system-on-chips (SoC) has been invented in anticipation of this integration of several
systems and functions in the same processors. Many-cores embed tens to hundreds of cores in the
same SoC and provide optimized bus or network-on-chip (NoC) to minimize communication cost.

Integrating several functions in the same single-core processor is done using time isolation, meaning
that the different isolated processes are not executed at the same time. Furthermore, if the state of
the hardware is exactly saved and restored at each process switch, this isolation is perfect and the
computation of the WCET of each piece of software can be done separately.

For multi- and many-core processors their isolation can be based on time, on space or both. The
spatial isolation consists in executing different processes on different cores or making them use different
memory spaces. Nevertheless, multi- and many-core processors offer a trade-off between the ability
of the process to communicate and their isolation. In other words, since the spatial isolation is not
perfect and since the inter-process communication is required, processes have an impact on each other.

Resource sharing has an impact on the processes execution time. For instance, memory access of
one core can be delayed due to a concurrent access of another core. Such concurrent access is called
interference. The interference is not limited to memory: bus, network-on-chip, input/output ports,
shared caches, and other shared resources suffer from interference.

Coherent caches ensure that for the same address, the value is the same in the memory and in the
caches of the other cores. For instance, a cache hit can lead to a memory access if the value is not up
to date. The main drawback is that from the point of view of one core, the access time is unpredictable
since it depends on the access of the other cores to the same cache line. For software-based coherent
caches, an update of cache contents is explicitly triggered by software thus making the access time
more predictable.

In the avionics industry, the CAST-32A document explains the position of certification authorities
about multi-cores [48]. Using multi-cores for avionic systems requires understanding completely the
sources of interference. The document gives a definition of robust partitioning where a core use only
the resources assigned to him and the resource usage of the other cores has no impact on the deadline
of this core. The runtime errors specific to the multi-cores features must be detected and handled.

2.2.3 Multi-/Many-Core for Time-Critical Applications

There is an active research on the analysis of WCET for multi-core including the interferences [43,
113, 120, 81], on programming multi-core in a way that minimizes interferences [105, 82, 104, 10, 47]
or on tasks scheduling taking into account the interferences. Some work design execution models
whose purpose is to isolate processes. Some execution models totally isolate processes by preventing
interferences [103, 96, 47]. Others minimize interferences and make the impact of concurrency of
execution time analyzable [113, 119]. Our work belongs to this category where a fine analysis and
configurations of the hardware are performed to trade between performance and isolation.

Developing time-critical applications on multi-/many-cores that take advantage of the execution
parallelism while minimizing interferences requires to solve a multi-criteria optimization problem. This
requires creating parallel tasks and mapping them on the core and the memory. This also requires
a fine configuration of the processor to minimize the impact of non-predictable mechanisms. For
instance, some processors offer software-based cache coherency that is more predictable at the cost of
more complex and error-prone software.

We can conclude that using a multi-core for time-critical applications leads to complex software
and can be error-prone. One potential solution is the code generation from a high-level program.
There is an active research in time-predictable software code generation for multi-core [27, 26, 82, 74]
which enables timing analysis methods. Our work belongs to this category.

2.3. MODEL-BASED DEVELOPMENT AND SYNCHRONOUS LANGUAGES 17

2.3 Model-Based Development and Synchronous Languages
Synchronous languages have been invented to ease the development of critical reactive systems.
They provide an abstract notion of time designed to ease the verification of the timing constraints.
Lustre [68] is a data-flow Synchronous language and Scade [15] the industrial version of Lustre used
by the avionics industry.

Synchronous languages are high level languages that abstract the implementation from the developer
view. Some Synchronous languages are provided with a graphical syntax easing the development of
complex applications. There are similar languages such as Simulink which enable to describe the
functionality of the application while abstracting the processor and system problems.

The requirements of model-based development is twofold. First, it requires code generation for
complex processor from the functional code. Second, it needs an automatic parallelism extraction
which ensures both performances and semantics preservation.

2.4 Contributions Overview: Time-Critical Synchronous Pro-
gram on a Many-core

In this thesis, we propose a complete method to automatically generate time-critical parallel code
from Lustre and Scade to a multi-/many-core processor. We apply our method on the Kalray MPPA2
many-core architecture, nevertheless, the purpose of our work is to learn a wider lesson that could be
applied other multi-core processors.

First, we define a method to extract parallel tasks from the Synchronous program. Second, our
work performs an automatic configuration of the machine in a mode enabling time-predictability. The
memory and the network-on-chip are configured to minimize interferences. In particular, we implement
a network-on-chip configuration tool to enable end-to-end latency computation and deadlock-free
communication.

Then, our tool generates the system code used to implement task communications, synchronizations
and spatial isolation. Finally, a binary is generated by assembling the functional code, the system
code and the processor configuration.

2.5 Organization of This Document
The first chapters of the thesis provide the basis required to understand our approach. Chapter 3
describes the principles and motivations for the model-based design from data-flow Synchronous
languages and we compare them to other parallel languages for reactive systems. Chapter 4 presents
the main timing problems of multi-core and presents existing methods to cope with them. We present
some existing architectures and in particular the Kalray MPPA2.

The general method of our work is exposed in Chapter 5. This chapter can be used as a table of
contents pointing to the bricks composing this work. The method and some experiments have been
published in [63] and the overall flow has been submitted for publication [64].

The next chapters present the implementation of the general method in more details. Chapter 6
explains with a high-level view different methods to extract parallel tasks from a data-flow Synchronous
program and defines an intermediate representation format used along the toolchain. In Chapter 7,
we discuss the complete implementation of our toolchain and the execution model for the MPPA2.
This chapter also exposes the NoC routing and configuration and delay computation which have been
published in [21, 46, 45].

Finally, in Chapter 8, we apply our method to some avionics use cases. In Chapter 9, we discuss
the results and suggest future improvement to our work.

18 CHAPTER 2. INTRODUCTION

3 Background: Synchronous Programs & Parallelization

3.1 Reactive Systems and Synchronous Languages

In this section, we present the context and usage of the Synchronous languages. Automatic controllers
are used in industry to control some values of a system by adjusting the value of some actuators.
These systems are widespread in plants and transportation. Examples can be found in avionics with
the altitude or speed control, in automotive to control the idle speed of the motor by controlling
accelerator, in energy (see Example 1 for a wind turbine), etc. These systems have reaction latency
constraints.

Example 1. Recent wind turbines are controlling the speed of the rotor to maximize the energy
production. Rotor speed is controlled by acting on the blades angle. A too fast rotation of the
rotor can damage the system; hence the control system has to ensure that the speed remains
below the limit. The angle of the blades must be controlled fast enough to keep the rotor speed
to the limit, maximize energy production and avoid damage [97].

Systems designed to implement control engineering problems have been formalized as Reactive
Systems by David Herel and Amir Pnueli [70].

Reactive systems are systems constantly reacting to the environment at a speed defined by this
environment [67]. The principle of a such system is shown in Figure 3.1. These systems have to be
reliable because they are often safety critical and can possibly execute for years without been stopped.
Figure 3.2 shows a reactive program executing in an infinite loop (while(true)). The read function
generally consists in sampling on the inputs. The delay between the call to read and the call to write
is named reaction time.

In this chapter, we only focus on the compute function. The reason is that reading the inputs and
writing the outputs are orthogonal problems which rely on low-level platform-specific programming.

Controller

Environment

outputsinputs

Figure 3.1: Reactive Program Principle

19

20 CHAPTER 3. BACKGROUND: SYNCHRONOUS PROGRAMS & PARALLELIZATION

while(true) {
inputs = read();
output = compute (&memory , inputs);
write(outputs);

}

Figure 3.2: Simple Reactive Program

Each call to the compute function is one reaction. The result of this reaction depends on the current
inputs and previous computations stored in memory.

Synchronous languages have been invented to program reactive systems. We now define the main
reasons why synchronous languages are well adapted for this purpose.

Determinism. A program is deterministic if for the same sequence of inputs, the same sequence of
outputs is produced. An equivalent assertion is that for the same internal memory state and the same
inputs, the program computes the same output. This is essential to guarantee the testability of the
program. When high assurance is required mathematical proof is able to ensure functional correctness
of the program. A requirement is that the language, and thus the program, has well-defined semantics.
Synchronous languages have well defined semantics and a Synchronous program can be compared to
an automaton.

To ease the development of complex systems, synchronous programs are modular and parallel.
Synchronous languages are based on the notion of synchronous product of automata where at each
transition of the resulting automaton, one transition of each automata is taken. A property is
that a synchronous product of deterministic automata is deterministic [88]. On the other hand,
the asynchronous product of deterministic automata does not necessarily lead to a deterministic
automaton.

Synchrony Assumption. Implementing control software with classical languages such as C can be
complex since there is no built-in notion of time. The Synchronous languages have been historically
designed for this purpose. They provide a formal notion of time abstracting the host machine physical
execution time.

Synchronous languages are based on the synchrony assumption where all inputs/outputs events
occur on a logical clock. This clock is discrete and global. Each instant is defined on the logical
time. As a result, the semantics of the program is independent from physicist time and execution
time [67, 13]. The program reacts on this clock and thus does not depend on the system speed.
The determinism is then enforced. This logical clock can represent physical time, kilometers or any
measurement.

A good property is that the values of a variable are defined on this logical clock. In other words,
the value of a variable at a previous instant stays accessible. For instance in automatic control, this
allows a clear expression of the differential equations.

Bounded Memory and Execution Time. Engineers of a system must check that the reaction
of the program (compute in Figure 3.2) between the moment the inputs are read and the moment the
outputs are written is fast enough to comply with the physical requirements. In order to guarantee that
reaction time is bounded, synchronous languages are voluntary limited to static memory allocation,
non recursive function and bounded loop. This can be statically verified on the compiled code with
the Worst-Case Execution Time (WCET) upper bound. In other words, the Synchronous Assumption
guarantees the qualitative real-time. The quantitative real-time must be checked afterward by
construction.

In this step, the synchrony assumption is checked, meaning that we verify that the logical instants
can be executed on the required clock.

3.1. REACTIVE SYSTEMS AND SYNCHRONOUS LANGUAGES 21

pre

add

0

x
y

z

acc

node acc(x: int) returns (y:int)
var

z: int;
let

y = add(x, z);
z = 0->pre(y);

tel

node add(a,b:int) returns (c:int)
let

c = a+b;
tel

Figure 3.3: Example of accumulator in counter in both textual and graphical Lustre computing the
sum of the successive values of x.

Formal Semantics. Synchronous languages have formal semantics. The synchronous hypothesis
makes the program behavior independent from the machine specificities. If the compiler preserves
the semantics of the program, tests and verifications can be done at the program level instead of the
generated code. This is the basis of the model-based design.

Model checking is a method that verifies properties on a model. With Synchronous languages, it
is done in two steps: the properties that have to be checked and the constraints from the environment
are encoded into an observer. An example of properties is The two doors cannot be open at the same
time. Usually this observer produces a single Boolean indicating if the property is valid. A model
checker verifies these properties by considering all the states of the program. Examples of model
checker are Lesar [110], Kind2 [31], NP-TOOLS [92] or SCADE Design Verifier1. If the properties do
not hold, the model checker exhibits trace leading to this problem.

Programming Style. Synchronous languages are either data-flow or control-flow (imperative).
Lustre and Signal are data-flow whereas Esterel [16] and Statecharts are control flow. Some synchronous
languages provide a graphical representation such as Argos [95] or Scade [15]. The data-flow describes
relations between the data whereas the control-flow controls the execution of the program. In the
graphical representation, data-flow programs are composed of component linked with arrows where
one arrow is a data. Control-flow programs are represented with states and transitions between these
states. This allows to modularly describe complex automata. For this reason Esterel has been used
for circuit design in industry.

Details on Lustre are given in Section 3.1.1. Scade is an industrial language combining both Lustre
and Esterel. The Scade automata are explained in Section 3.1.2.2.

3.1.1 The Core Language: Lustre
Lustre is a data-flow synchronous language. It is based on the synchronous hypothesis, as explained
in Section 3.1.

A data-flow language. A data-flow program describes well-separated entities that communicate
together allowing a clear extraction of the communication information. Entities of Lustre are called
nodes and a program is a node which contains a network of sub-nodes. The communication between
the nodes are expressed with a set of equations which are composed of node calls, data operations
(arithmetic, logic) or timing operations (e.g., atomic delay, called pre). Node is the compilation unit

1http://www.esterel-technologies.com/products/scade-suite/verification-validation/
scade-suite-design-verifier/

http://www.esterel-technologies.com/products/scade-suite/verification-validation/scade-suite-design-verifier/
http://www.esterel-technologies.com/products/scade-suite/verification-validation/scade-suite-design-verifier/

22 CHAPTER 3. BACKGROUND: SYNCHRONOUS PROGRAMS & PARALLELIZATION

B
C

A

Root

(a)

C
pre

A

B Rootinit
(b)

Figure 3.4: Lustre is a dataflow language. Nodes are executed in an order compliant with data-
dependencies. In (b), the pre operator breaks the dependency.

and the modular abstraction. For instance, in Figures 3.3, acc is the top-level node containing a node
add and the pre operator.

A synchronous language. Lustre has synchronous semantics: execution is an infinite sequence of
atomic reactions. A variable in Lustre is also called flow as its value is function of time. The pre
operator allows referencing the value of a flow at the previous logical instant. As the previous value is
undefined at the first reaction, we need the arrow operator (->) to specify the initial value as shown
in Figure 3.3. A node can depend on its own output and this construction is called feedback loop. In
Lustre, a program that depends instantaneously on its outputs (x = f(x)) is illegal. This program
would require a fixed-point computation to compile and this fixed-point often does not exist. To avoid
this issue, feedback loops are accepted only if a pre operator breaks the loop.

Example 2. This table shows timing operations on a flow. At the first instant, pre x is not
defined. Hence, the arrow operator is required to initialize the expression. Scade and some
variants of Lustre adopt an alternative operator followed-by (fby) that takes both the initial
value and the flow as parameter, i.e., 1->pre x ⇔ 1 fby x.

Instant 1st 2nd 3rd 4th 5th
x 0 2 4 6 8
pre x ? 0 2 4 6
1->pre x 1 0 2 4 6

Classical Lustre Compilation for Single-Core. In Lustre, a node is expressed as a list of
equations defining all outputs and local variables. Each equation is of the form x=e; where e is an
expression made of constant, operations, node and external function calls. The compiler sorts the
equations according to their dependencies (partial order) to obtain a sequential program. There can
be several possible execution order for a program. In Figure 3.4a, the possible sequences are A;B;C or
B;A;C. In Figure 3.4b, the dependency between B and C is broken, hence any permutation where A
completed before C is possible, i.e., A;C;B, B;A;C or A;B;C.

3.1.2 Conditional Computation in Synchronous Data-Flow Languages
Despite their data-flow aspect, the Lustre and Scade offer features to express conditional execution.
In this section, we present the Lustre clock and the Scade automata.

3.1.2.1 Clocks in Lustre

Lustre provides a way to specify that parts of a data-flow compute “less often” than other. This is
achieved via the notion of clocks.

Clocks in Lustre can be seen as a tree following the same hierarchy as the program. The top-level
node is activated at each execution of the program (at each logical instant). Sub-nodes are activated

3.1. REACTIVE SYSTEMS AND SYNCHRONOUS LANGUAGES 23

according to the clock of their inputs. A sub-node of a node is activated at most as often as the node,
e.g., it can only be made slower.

In Lustre, a clock is a flow of Booleans. When the Boolean is true the clock is active; when it
is false the clock is not. The expression clk = true; defines the always-true clock relatively to the
parent node. This clock has the same speed as the parent node: it is active at the same time as the
parent node. There are two operators to manipulate the clocks: when and current.

The when operator as in expr when clk creates a flow slower than expr. The result has a value
only when clock clk is true. The when keyword acts as a sampling operator. In the expression
o = A(i when clk), node A is activated when clk is true, hence o is on the clock clk. Suppose that
Node A multiplies its input by 10. The following table shows the behavior of the when operator.

Instant 1st 2nd 3rd 4th 5th 6th
i 1 2 3 4 5 6
clk true false true true false true
i when clk 1 3 4 6
o=A(i when clk) 10 30 40 60

The current operator as in current(expr) gives the clock of the parent node to the flow expr.
In the expression o = current(i when clk), the variable o has the clock of the parent node. The
following table shows the behavior of the current operator on a small example.

Instant 1st 2nd 3rd 4th 5th 6th
clk true false true true false true
a 10 30 40 60
current(a) 10 10 30 40 40 60

Example 3 is complete program with two clocks.

Example 3. Root is a node with two sub-nodes. A computes x ∗ 10 and B computes x+ 1. Node
A computes at every instant whereas node B computes only on a slow clock (once over two).
node root(i: int) returns (oA , oB:int)
var

clk_slow: bool;
let

clk_slow = true -> not pre(clk_slow);

oA = A(i);
oB = current(B(oA when clk_slow));

tel

The following table gives the value of intermediate flows and outputs:

Instant 1st 2nd 3rd 4th 5th 6th 7th
i 0 1 2 3 4 5 6
oA=A(i) 0 10 20 30 40 50 60
clk_slow true false true false true false true
oA when clk_slow 0 20 40 60
B(oA when clk_slow) 1 21 41 61
current(B(oA when clk_slow) 1 1 21 21 41 41 61

Flow oA is the output of node A which computes i+1. The clock of oA is the same as the one of
root. Expression oA when clk_slow has a value only when clk_slow is true. Node B is activated
only when its inputs have values, hence B is activated when clk_slow is true. The result of B is
also on this clock.

24 CHAPTER 3. BACKGROUND: SYNCHRONOUS PROGRAMS & PARALLELIZATION

S3 S2

S1

wt

st2 st1

Figure 3.5: Example of Scade automaton with weak and strong transitions.

node root(i: int16) returns(o:int16)
let

automaton FSM
initial state S1

unless if (st1) resume S2;
let

o = 1->pre(o) + i; -- body S1
tel

state S2
let

o = 4->(last ’o) + i; --body S2
tel
until if (wt) resume S3;

state S3
unless if(s2) reset S1;
let

o = 8->pre(o) + i; --body S3
tel

tel

Figure 3.6: Example textual Scade for the automaton of Figure 3.5.

The current operator makes the output of B faster: oB is defined on the root clock. Some
values are duplicated to fill the “missing” values.

In the next section, we present automata which is a formalism to express conditional executions.
This is another syntax to express execution clocks for the nodes.

3.1.2.2 Scade Automata

The Scade language inherits all the features of Lustre, including clock. However, it also offers an
alternative feature to express conditional execution: automata.

An automaton is composed of states. For instance, the states can be initialization/nominal,
degraded/performance or take off/flight/ landing. Each state has a body with some transitions to
other states. In Figure 3.5, the initial state is represented with a double-circle, state with a circle and
transitions with an arrow. Figure 3.6 is the same automaton in textual Scade. In Scade, only one
state can be executed in the same instant. There are two kinds of transitions:

Strong transitions (st1 and st2 in the example) are represented with a circle at the start of the
arrow. Conditions are evaluated before the execution of the state body. The first valid condition
triggers the state change. In the textual format, the keyword unless introduces a strong transition.

Weak transitions (wt in the example) are represented with the circle on the arrow, at the same
side as the point. They are evaluated after the execution of the state body. They select the next
active state. The keyword until introduces a weak transition.

3.1. REACTIVE SYSTEMS AND SYNCHRONOUS LANGUAGES 25

Example 4. In Figure 3.5, considering that the program starts in state S2 at the beginning of
the cycle. The body of S2 is executed and weak transition wt is evaluated. If wt is triggered
State S3 will be active at the next cycle. In the new cycle, if the condition of st2 is false, the
body of S3 is executed. If st2 is triggered the state changes and the body of S1 is executed.

Only one transition can be triggered in the same instant, hence, if a strong transition has been
triggered at the beginning of the cycle, the weak transitions are not evaluated.

Example 5. In Figure 3.5, if we are in S1 at the beginning of the cycle and strong transition
st1 is triggered, body of S2 is executed but weak transition wt is not evaluated.

Keywords resume and reset on transitions affect the memory behavior of the state nodes. When a
state is accessed with reset, the sub-nodes start in initialization, i.e., the initial value is used for all
the variables. For instance, in the example, if S1 is reset the value of o is 1. When a state is accessed
with resume, the initial values of the variables are used only for the first execution.

All the variables defined outside the automaton are shared by default. For instance, i and o in
Figure 3.6. There is only one state executed on the same cycle, hence there is no coherency problem.
Nevertheless, it can be useful to choose between keeping them shared and using them as a local
variable. To do this, there are two possibilities to access the previous value of a variable: pre(v) or
last’v. With pre, the memory is local to the state, i.e., the value is the one computed at the last
instant when this state has been executed. With last, the memory is shared and the value is the one
computed during the last instant, possibly in a different state.

Example 6. We compare the behavior of pre and last from the program in Figure 3.6. Variable
i is 1. Executed state is given for each cycle.

Instant 1st 2nd 3rd 4th 5th 6th 7th 8th
Executed state S1 S2 S2 S3 S1 S2 S2 S3
Value of o 1 4 5 8 1 2 3 9
init->last’o 1 4 5 8 1 2 3
init->pre(o) 1 4 4 8 1 5 2 8

For the first execution of each state (1st for S1, 2nd for S2, 4th for S3) the initialization value
of o is used (1, 4 and 8). In the 1st instant, last’o is not defined. The second execution of S1
(5th instant) is triggered with a reset hence, the initialization value 1 is used for o. At the 8th
instant, last’o is 3 but pre(o) is 8 (from the previous execution of S3).

We have presented some methods for representing the conditional execution of nodes: clocks in
Lustre and automata in Scade . For both of them, the activation is defined by a Boolean and is not
necessary regular. In the next section, we show the case of program where each node is activated
regularly.

3.1.3 Multi-Periodic Programs
Multi-periodic programs are a particular case where the activation of the tasks is defined on a regular
period. This is the common usage of clocks for embedded applications. Beside this activation problem,
the communication has to be implemented in a way that semantics of the program are preserved.

3.1.3.1 Task Activation

There are several ways to handle multi-periodic programs. The first solution is to implement the
entire program on the fastest period. We obtain a program with one fast task. The slow sub-nodes

26 CHAPTER 3. BACKGROUND: SYNCHRONOUS PROGRAMS & PARALLELIZATION

are executed conditionally according to the clock. Nevertheless, this compilation is not adapted to
real-time systems since most of the time, slow (i.e. less frequent) nodes have a larger execution time
than fast nodes. Another solution is to authorize the fast task to preempt the slow one. This solution
is detailed in Example 7.

Example 7. Considering node A executed every period (or logical instant) and node B executed
only one logical period over two (as in Example 3). As represented in Figure (a), the physical
duration of A is 10 ms and the physical duration of B is 20 ms:

a b a
30 ms

Execution on the fastest period

a0 a2b0 b0 b1

(b) (c)

a1
20 ms

Schedule with preemption

ba

B

A

20 ms10 mswith

1 instant

(a)

The real-time constraints of the program requires an execution period of 20 ms for A and
40 ms for B. The deadline of each task corresponds to its period. This example shows a schedule
with preemption and an attempt of schedule on the fastest period.

Figure (c) shows that the execution on the fastest period 20 ms is not possible for this
program since the execution time of one logical instant varies between 10 ms and 30 ms. Node A
is executed every 30 ms instead of the 20 ms required in the worst case.

Intuitively, we can see that in (c), the execution time is not well balanced among the periods.
As depicted in Figure (b), a solution is to split the slow node B and to execute in each period A
plus half of B. Now, the duration of each period is 20 ms and B completes one period over two.
As required, A completes every 20 ms and B completes every 40 ms.

This task-split can be done manually or rely on the dynamic scheduler of a real-time operating
system (RTOS). The later requires the Lustre program to be compiled in a multi-task way.

Example 7 has shown a program which requires multi-tasking and preemption to meet real-time
requirements. A drawback is that preemptions make the WCET estimation harder and possibly
more pessimistic than the one of a plain sequential execution since it introduces context-switches and
Cache-Related Preemption Delays (CRPD) [87].

Another solution that does not rely on a preemptive scheduler is to transform the multi-periodic
program into a single-period program which behaves the same. The period of this program is called
hyper-period and corresponds to the smallest period for which the pattern formed by execution of the
periodic tasks is repeated. It corresponds to the least common multiple of all the periods.

Figure 3.7 shows an example of hyper-period expansion. Task X has a period of 2 and X a period
of 3. As a consequence, the hype-period is 6. On a single-core processor, the schedule of one period is
x0;y0;x1;y1;x2.

Our solution relies on hyper-period expansion. Even though this method is not always optimal
since it can lead to a huge hyper-period, it allows easily avoiding usage of a scheduler. It also allows
avoiding splitting the tasks. When the execution is physically parallel, the preemption can be avoided
since tasks of different periods can execute on different cores.

Preserving the high-level semantics of the program and determinism in a multi-task compilation is
possible but non-trivial [30, 38]. In some sense the compiler is not the only responsible for implementing

3.1. REACTIVE SYSTEMS AND SYNCHRONOUS LANGUAGES 27

Y XX Yschedule

hyper-period

Y

X

y0 y1 y2

X
x0 x1 x2 x3

Figure 3.7: Hyper-period Expansion

the semantics: the scheduler is also responsible for this implementation. This will be discussed in the
next section.

3.1.3.2 Determinism of Communication

Implementation of multi-periodic programs with several tasks usually involves communications between
tasks running at different rates. The solution that consists in writing as soon a possible and reading
when needed in a buffer is called “freshest value”. Although simple, this solution is not deterministic
since values that are read depend on the actual execution time of the producer and the actual
release date of the reader [30]. To ensure testability and verification, communication has to be both
deterministic and expressible in Lustre, hence “freshest value” is not expressible in Lustre.

Alras et al. [3] introduced an extension of Lustre called Lustre++ bringing a builtin notation for
periodic clocks with phase to the Lustre language, e.g. ck_20 = clock « 20,0 » (_).

Prelude [38] is a formal language especially designed to express the communication in a task-based
multi-periodic program. It has been designed for system integration where tasks activation is regular
and as a consequence, clocks are periodic. This is different from Lustre where clocks can be computed
with any expression. In Prelude, each flow has a clock. Either their definition is absolute with
initialization phase and a period, or relative to another flow. The “expr /ˆ N” operator divides the
frequency by a constant and “expr *ˆ N” multiplies the frequency by a constant. The fby operator
and the “expr ˜ > N” are equivalent to pre in Lustre since the change the phase of the flow. More
details on Prelude are given in Section 3.2.1.1.

Distinction is often made between two kinds of communications: fast task to slow task and slow
task to fast task. In the former, some computed values are not needed and the communication is
not always required. In the latter, the reader consumes more values that produced. Therefore, some
values need to be repeated.

Example 8. We discuss the expression of the instantaneous communication between the two
periodic tasks of Figure 3.7.

We represent the execution of both tasks on the common clock. X is activated on instants
1, 3, 5 and 7. Y is activated on instants 1, 4 and 7. For both tasks, the output at each active
instant is given with the lower-case x or y.

28 CHAPTER 3. BACKGROUND: SYNCHRONOUS PROGRAMS & PARALLELIZATION

Instant 1st 2nd 3rd 4th 5th 6th 7th
clk_X true false true false true false true
clk_Y true false false true false false true
Output of X x0 x1 x2 x3
Output of Y y0 y1 y2
X→Y x0 x1 x3
Y→X y0 y0 y1 y2

An example of fast to slow communication from task X to task Y is given in the table at the
line X→Y. This communication is instantaneous since in the 1st and 7th instants, values x0 and
x3 are both produced by X and read by Y.

In Lustre, X→Y can be expressed with o = Y(current(X(i when clk_X)) when clk_Y).
In Prelude, the equivalent is oX = X(i/ˆ 2); o = Y((oX*ˆ 2)/ˆ 3)

Communication Pattern. If the period of the tasks are known and there exist a least one common
multiple between them, a static pattern of communication can be computed [30].

For each activation, the pattern indicates whether the task has to write (or read). The periodic
patterns corresponding to the X→Y communication of Example 8 are the following:

For X:

(x0 writes, x1 writes, x2 does not write, x3 writes)

For Y:
(y0 reads, y1 reads, y2 reads)

N-Synchronous Kahn Network. N-Synchronous Kahn networks [35, 107] are an extension of
the Kahn networks with periodic clocks allowing bounded buffers between the tasks. Authors propose
a relaxed clock calculus to compute the buffers size. The clocks are ultimately periodic and expressed
with an initialization part and a periodic part, e.g., 001(100) = 001100100100.... Two clocks clk1 and
clk2 are adaptable, denoted by clk1 <: clk2, if they never read an empty buffer and an upper-bound
on this buffer’s size can be computed.

buffer size
Maximum

Reader
Writer

Instants

#Produced data

Figure 3.8: N-Synchrounous Kahn Network

Figure 3.8 is an example of two n-synchronous tasks: writer and reader with respective patterns
1001(001001) and 0000(101000) indicating the instants when they read or write. The maximum buffer
size is given by the maximum difference between the number of written and the number of read values.
In this case, a buffer of 2 is sufficient.

3.2. HIGH-LEVEL PARALLEL DESIGN 29

3.1.4 Conclusion
In this section, we described the Lustre language and the problems of compiling multi-periodic
programs. Similar problems and solutions exist for Architecture Description Language whose aim is
to describe the integration of several programs into the same systems. Compiling high-level program
by taking advantage of parallel architectures leads to new problems.

3.2 High-Level Parallel Design
In the previous sections, we have presented some high-level formalism and their compilation for
single-core processors. In this section, we present some solutions for exploiting multi-core parallelism.
High-level formalisms allow writing the program as close as possible to the specifications. This reduces
the potential of error. If the compilation processes and tools used are certified or proven to ensure
semantics preservation, the need for test on the final binary is not longer required. We present some
languages offering deterministic semantics and some that are not deterministic when executed on a
multi-core. For the languages that are not deterministic when executed on a multi-core, some methods
can make the parallel execution deterministic. For synchronous languages, we give some examples of
methods preserving the deterministic behavior of the program when executed in a parallel way or
when distributed on a network of computers.

3.2.1 Existing Approaches for Parallelism
This section presents some approaches targeting a parallel execution. These approaches are of different
natures. We intentionally mix operating systems norm (such as ARINC 653), lower level languages
(such as AUTOSAR), Architecture Description Languages (ADL) or coordination languages since
they have the same role of assembling bricks to create a system.

3.2.1.1 Prelude

Prelude is a simple ADL software modeling that adopts the Synchronous semantics. We have briefly
presented the functioning of the Prelude clocks in Section 3.1.3.2. Here, we focus on the general
framework.

A Prelude program is a single node, with sub-nodes that are imported from other languages
(Lustre, C). Input and outputs of the program are expressed with physical period and offset. This is a
synchronous dataflow language, hence all the nodes are considered to be executed at the same time,
and thus the physical execution time is abstracted away.

As in Lustre, the data-flow is expressed with “wires” (dependencies) between the nodes and the
execution rate of each node is inferred from the rate of the input. As described in Section 3.1.3.2, the
sampling rate of the output of the node can be multiplied or divided by a constant, this operation is
carried on the wires (intermediate variables).

Prelude is strongly typed, and all the flows are clocked. The compiler does classical static
verification: the program is type-checked and the clock calculus is performed. The clock for inputs
and outputs of the program must be coherent. As Scade and Lustre, it rejects program with feedback
loop that are not broken with a delay (pre in Lustre and fby in Prelude).

From this multi-periodic program, a set of periodic tasks is extracted together with their precedence
constraints. SchedMCore [38] computes a schedule where preemption and migration of tasks are allowed.
The real-time properties of this schedule are verified. Finally, the tool performs a schedulability
analysis of the program using the WCET of each task.

Prelude has well-defined Synchronous semantics. A parallel execution which preserves the semantics
of the program is deterministic. This is not the case of all the ADL. For instance, AUTOSAR has no
well-defined semantics as shown in the next section.

30 CHAPTER 3. BACKGROUND: SYNCHRONOUS PROGRAMS & PARALLELIZATION

3.2.1.2 AUTOSAR

AUTOSAR is a software architecture standard. It has been designed to abstract hardware. For this
purpose, AUTOSAR is based on a Virtual Function Bus (VFB) which is implemented with a Runtime
Environment (RTE) [99].

An AUTOSAR application is composed of several independent components connected together
with the VFB. Each component is composed of runnables which implement the behavior of the
program. Communication between the components is described with ports.

The component, runnables and the VFB is the abstract vision of the program. For the concrete
implementation, an hardware is chosen and components are mapped on this hardware. The specific
RTE or AUTOSAR OS implements the VFB and the runnables are mapped on the OS tasks. Ports
are then implemented using the physical medium.

The AUTOSAR OS implements a scheduler. Runnables are triggered by events such as timer,
data reception, mode switch, etc.

Communication ports are implemented with shared data. Sending and receiving from a port is
equivalent to writing and reading to the shared data. Two interesting kinds of communication port of
the AUTOSAR specification are the explicit communication and the implicit communication.

For the explicit communication, the runnable gets the last value when it reads it: this corresponds
to a read in a shared variable. The problem is that the data can change during the execution and if
the read of different inputs are not done at the same time it can lead to incoherent reads [69]. For the
implicit communication, the runnable gets its own copy of the data at the beginning of the execution
and writes its outputs at the end. As a consequence, data cannot change during the execution. Also,
the cost of accessing remote data is paid only once. It ensures functional correctness of the application.

An activation period (or an event mechanism) is defined for each task. For instance, the runnables
with the same period can be mapped on the same task or one task can be created for each runnable.
When the tasks are created, at compile time, runnables are scheduled inside the tasks according to
their dependencies. At runtime, the tasks are scheduled by the RTE.

In both explicit and implicit communication ports, determinism of the execution is not guaranteed
since the moment when the data is read is not well-defined and depends on the execution time of the
tasks [69]. See Section 3.1.3.2 about the “freshest” values.

Kehr et al. [80] introduce the Timed Implicit Communication (TIC) which adds predictability to
implicit communication. This is a new port added to the AUTOSAR RTE. The order of execution
between the producer and the consumer is enforced by embedding a timestamp with each data
transfer. This timestamp corresponds to the end of the period; as a consequence the end-to-end
latency is increased since communication is not possible within the same period. The advantage of
this method is that the execution keeps a determined execution order on any platform and especially
from single-core to multi-core processors.

TIC is specific for AUTOSAR, nevertheless, a more general solution to this lack of determinism is
the LET paradigm. It allows defining the moments when the data are read and written and thus
guaranteeing this determinism at the cost of increasing the end-to-end latency [69].

3.2.1.3 Giotto / Timing Definition Language (TDL)

The Logical Execution Time (LET) is an execution paradigm close to the one of the synchronous
languages sometime called Zero Execution Time (ZET).

Synchronous languages are based on logical discrete time (see Section 3.1.1 for more details). Data
and communications are dated on a discrete and logical time scale regardless of the execution time.
After compilation, the timing of the program are compared to the specifications to make sure that
the program can finish before the next release.

LET pushes the concept of timing constraints inside the program. It defines two release dates per
task: a release date for the reading of the data by the task and a release date for the production of
the output data by the task. This release dates are part of the behavior of the program. The compiler
checks the schedulability of the program. The implementation of a LET program is not necessarily

3.2. HIGH-LEVEL PARALLEL DESIGN 31

A1

B1 B2

0ms 1ms 2ms

A2...

B3...

Figure 3.9: Example of Logical Execution Time program.

time-triggered. The tasks are started during the period. The release date when the input is read does
not correspond to the beginning of the computation. The constraint is that a task has to finish before
the release date of the output.

Figure 3.9 shows a periodic program with two tasks A and B respectively executed once and twice
in the period, hence A produces a value every 2 ms and B every ms. Value of the 1st execution of A
(A1) is available at 2 ms and can be read by B3. Value of the 1st execution of B (B1) is available at
1 ms. The main constraint on implementation is that tasks must be executed within their period.

Giotto [72] is the academic implementation of LET. Timinig Definition Language (TDL) [108] is a
commercial language based on Giotto.

Mode, Task, Port and Driver. A mode is a set of periodic tasks. A Giotto program is composed
of at least one mode with a fixed physical period. A task is introduced with the keyword taskfreq. It
is characterized by a release date and a termination date. These release dates are computed with the
period of the mode and the number of activation ω of the task in this period. Drivers are responsible
for reading inputs and writing outputs at the beginning of the period and at the end. Drivers are
considered to be executed in zero time at a precise release. Execution of a task is conditioned to the
value of its inputs driver.

Example 9. This example is an extract of flight controller for helicopter written in Giotto [73].
The task pilot computes the path, the task lieu estimates the position and control computes
the control of the helicopter.
mode hover () period 120ms {

taskfreq 1 do pilot ();
taskfreq 2 do control ();
taskfreq 3 do lieu();

}

Task pilot executes 1 time (ω = 1) in the period, control executes 2 times (ω = 2) (every
60ms) and lieu executes every 40ms (ω = 3).

There is no release date for the functional code of the tasks but there are for the drivers of the
tasks. The input driver of pilot is executed at 0 ms; its output driver at 120 ms. Input drivers
of control are executed at 0 ms and 60 ms; output drivers at 60 ms and 120 ms. Input drivers of
lieu are executed at 0 ms, 40 ms and 80 ms; output drivers at 40 ms, 80 ms and 120 ms.

Modes Switches. Giotto offers modal execution. Depending on the mode, a different set of tasks
is scheduled. Switch between modes is guarded by conditions evaluated periodically. The condition
is introduced with the exitfreq keyword and is a driver producing a Boolean. Communication is
allowed between the modes with the same principle as communication between tasks. Figure 3.10 is
an example program with two modes.

Mode switch is straightforward when the switch period and the task are harmonic. On the contrary,
there are constraints on the program [72] since preemption is forbidden in Giotto. The constraint is
that if the period of a task t is not harmonic with the period of the mode-switch driver s (ωt

ωd
/∈ N),

32 CHAPTER 3. BACKGROUND: SYNCHRONOUS PROGRAMS & PARALLELIZATION

start hover {
mode hover () period 120ms {

exitfreq 3 do cruise(switch);
taskfreq 1 do pilot ();
taskfreq 2 do control ();
taskfreq 3 do lieu();

}
mode cruise () period 120ms {

exitfreq 2 do hover (switch);
taskfreq 1 do pilot ();
taskfreq 2 do control ();
taskfreq 4 do move();

}
}

Figure 3.10: Example of Giotto program with two nodes from [73].

the task has to be in both modes and must keep the same period. This corner case is explained in
Example 10.

Example 10. We explain how mode switches in Giotto work and what are the constraints.
Considering the example in Figure 3.10 with a mode hover and a mode cruise. In hover mode,
the helicopter keeps its position. In cruise mode, the helicopter follows a path. The move task
computes the speed and the position of the rotorcraft whereas the lieu task compute only the
current position.

Pilot

Control Control

Move Move Move Move

Pilot

Control Control

LieuLieuLieu

cruise mode Control

Pilot

60 120 ms0

t (ms)
Move

9030

exit?exit? exit?

hover mode

exit? exit? exit? exit?

Control

Lieu

Pilot

60 80 120 ms0 40

t (ms)

exit!

As shown in the figure above, both modes execute pilot and control at the same frequency.
Plus, mode hover executes lieu on a period of 40ms and cruise executes move every 30ms.

Mode switch is evaluated every 40ms in hover and every 60ms in cruise. Now, let us analyze
the case where the mode is changed from hover to cruise at 40 ms, as denoted with the red
arrow.

3.2. HIGH-LEVEL PARALLEL DESIGN 33

Pilot

Control

Lieu

Control

MoveMove

exit?

Control

Pilot

60 120 ms0 40

t (ms)
Move

exit?

hover mode

90

cruise mode

exit?

mode switch

exit?

The diagram above shows a mode switch from hover to cruise at 40ms. At this point, pilot
and control keep executing since they are in both modes. Note that, Giotto forbids preempting
or halting of tasks. If these tasks were not present in both modes, the program would be incorrect
and rejected by the compiler.

On mode switch, execution of lieu is finished but it happens during an execution period of
move, hence move cannot be scheduled instantaneously: it is scheduled on the new mode at its
next release.

Kluge et al. [82], implemented the LET paradigm for a many-core processor. The implementation
relies on NoC communications and a hardware global clock. Breaban et al. [25] provide a solution if the
multi-core processor is not featured with a global clock. The solution consists of global time-triggered
barriers to synchronize the tasks. The time-aware processor is responsible for unlocking the barrier
according to its own clock.

The industrial language TDL [108] is an improvement of Giotto regarding several aspects. It adds
an outer level: the modes are contained in components. These components are isolated and do not
interfere together. Timing verification is performed on all the component together.

The drivers are made implicit and are automatically generated from the function parameters. It
provides an extension to combine time-triggered and event-triggered activities. These asynchronous
tasks are scheduled in the spare time.

As a conclusion, the LET paradigm and its implementations Giotto and TDL are ways to specify
multi-period schedules. The inter-task communication is made deterministic since data transfers
occur on fixed periods. This schedule is independent from the platform and the mapping of the tasks.
Describing this schedule requires the specification of a period for each task. In Giotto, the duration of
a task is considered to be the same as its period. For this reason, the communication between tasks
of same period is always delayed which is neither necessary nor efficient.

3.2.1.4 ARINC 653

ARINC 653 is a standard of operating systems for avionics. This system is called Integrated Modular
Avionic (IMA) and allows integrating and isolating software of different safety level in the same
processor. This results in a gain of space and power consumption.

An ARINC 653 system is composed of partitions that execute software and are isolated from the
other. This isolation is temporal or spatial.

The Application Executive (APEX) is an interface (API) to manage isolation, shared resources
and communication between the partitions. This communication is done using ports. The applications
are implemented using only APEX primitives making the software independent from the platform.

The purpose of isolation is to ensure that the execution of a partition does not affect the behavior
of another. The different partitions are isolated by the mean of time or space. The time partitioning
is ensured by allocating one time slice per partition. The spatial isolation is ensured by the Memory
Protection Unit (MPU) and the semaphores for devices. There are two kinds of APEX communication

34 CHAPTER 3. BACKGROUND: SYNCHRONOUS PROGRAMS & PARALLELIZATION

ports: the sampling and the queuing [129]. Sampling makes only the last value available whereas
queueing avoid losing values. There exist several implementations of ARINC 653 as PikeOS, TiCOS
or VxWorks653.

The purpose of ARINC 653 is to isolate partitions, nevertheless, ensuring this total isolation
between processes in a multi-core system is a challenge [114].

3.2.1.5 Architecture Analysis and Design Language (AADL)

AADL [49] is a formal language to describe both hardware and software in a system. It is different
from Prelude (Section 3.2.1.1) which describes only the software. The model of the hardware is
composed of processor, memory, external devices and bus. The software is described with processes
(isolated) and threads. A thread executes a subprogram that is an external piece of software (that
can be designed in C, Scade, Simulink, etc).

Communications between the processes is done through ports. Ports convey either a typed data
or an event.

Hugues et. al[76] present an AADL specification for ARINC 653 systems. Both specification
checking and automated code generation are presented.

3.2.1.6 Conclusion

In this section, we briefly described some methods that allow multi-core execution of time-critical
systems. We saw that they offer a description of the program architecture allowing extracting tasks.
They are also used to check timing properties. Nevertheless, the functional code (nodes in Prelude,
runnables in AUTOSAR, etc) are imported and described in another language. Prelude and Giotto
offer well defined-semantics for communications that abstract the communication and the execution
time. Nevertheless, in AUTOSAR, communications are not deterministic since they depend on the
execution time and the schedule of the tasks. Determinism has to be enforced using additional
mechanisms [80].

3.2.2 Parallelization from Synchronous Languages
This section presents some work about parallelization of the synchronous languages. We focus on
how to extract parallelism from data-flow programs. We also talk about task extraction but the word
“task” has to be understood as runnable, i.e., an atomic piece of code which has to be scheduled and
mapped on a core to be executed.

3.2.2.1 Parallel Scade

An extension of the KCG Scade compiler allows compiling a legacy Scade program into parallel tasks
was introduced in [101].

This extension allows describing parallel subsets which are composed of nodes that are candidate
for parallel execution. Dependencies between the tasks of this set are forbidden.

At compile time, when the equations of the Scade program are ordered, the parallel subset is
considered as a virtual node and is scheduled as any other node. Then, it is replaced by remote
procedure call for each sub-node (SEND and RECV statements to send the inputs to the node and
receive the outputs after the computation is done) making possible a parallel or a distributed execution
of the node of the set. Implementation of the remote procedure call is not provided by KCG.

This compiler extracts parallel parts from the program and generates a file representing the
communications and dependencies between these parallel parts of the program. Only the functional
code (runnable) of these parts is generated. We will describe in Chapter 6 how these parts can be
assembled and can communicate to form a parallel program for a many-core architecture.

3.2. HIGH-LEVEL PARALLEL DESIGN 35

3.2.2.2 Distributed Lustre

An extensive research has been done on the distribution of Lustre over a network of processors.
Girault [57] presents a survey of these works.

Most of them are based on the Globally Asynchronous, Locally Synchronous (GALS) principle,
where a Lustre program is partitioned into several programs communicating asynchronously through
FIFOs. In other words, some synchronous programs are connected asynchronously. Read on FIFOs is
blocking if the FIFO is empty while write is asynchronous and non-blocking. The motivation is that
the clock synchronization can be expensive and inaccurate in a network.

The Ocrep [29] tool automatically distributes synchronous programs (Esterel or Lustre). The user
must specify the location of each variable. Thanks to this information and the data dependencies, the
partitioning algorithm distributes all computations while introducing all the necessary FIFOs.

Girault et al. [58] propose to use clocks for partitioning programs into locations. The main
motivation is that in multi-periodic programs (see Section 3.1.3), low rate tasks are often compute-
heavy. Their execution can be desynchronized [58], i.e., they execute in parallel on another processor
across several logical instants.

These methods are not specific to dataflow-synchronous languages and the dataflow structure
(nodes) is not used to partitioning the program and extract parallel programs.

3.2.2.3 Other Languages

ForeC [128] extends C with synchronous semantics (global tick) and parallelism support (threads).
A tick is finished when all threads execute the specific instruction pause. Operator par allows
forking/joining a thread. Hence, the tasks are explicitly created by the programmer. Shared variables
are duplicated at the beginning of the period and merged at the end with a deterministic operator
(e.g. sum). The resulting program is statically scheduled. A method [128] is given to analyze the
Worst-Case Response Time on a shared-memory multi-core architecture.

3.2.2.4 Parallelization of Dataflow

For most of the dataflow languages, the tasks are extracted from the structure of the program. In
other words, tasks are created from the nodes as atomic entities. The advantage is that the traceability
between the model and the parallel code is kept.

Distribution of Simulink programs by the mean of Lustre as an intermediate language presented
by Caspi et. al [28]. In Giotto [74] and Prelude [38], periodic tasks are extracted from the nodes of
the program.

Extracting parallelism from synchronous languages can be done either by following the structure
of the data-flow if this language is data-flow or by splitting this program into sub-parts by data
dependencies. Once the set of tasks is obtained, they have to be scheduled and mapped on core. The
inter-task communications are inferred from the original program and implemented faithfully.

3.2.2.5 Conclusion

In this chapter, we presented the necessary background on language and compilation to understand
our work. We can summarize this chapter as follow:

– The importance of computation time for time-critical software
– The advantages of Synchronous languages
– Presentation of Lustre and Scade
– Preservation of deterministic communication without OS
– The need of splitting the program into tasks and the expression of periodic tasks in ADLs
We present the hardware platform we target and the sources of non-determinism for the execution

time analysis of an application.

36 CHAPTER 3. BACKGROUND: SYNCHRONOUS PROGRAMS & PARALLELIZATION

4 Background: Many-Core

4.1 Multi- and Many-Cores System-on-Chip Architectures

A Many-Core System-on-Chip (called simply many-core in the sequel of this thesis) is an architecture
composed of a large number of cores designed for highly parallel execution. The consequence of this
high number of cores is that the architecture and especially the on-chip communications must be
scalable. In particular, the cores have to be simple and power efficient. A Network-on-Chip (NoC)
offers both scalability and power efficiency of communications [12].

Multi-core and many-core processors are considered to be a best-fit solution to increase computing
speed, optimize energy consumption and improve area efficiency in embedded systems.

4.1.1 Worst-Case Execution Time Analysis on Multi-Core

4.1.1.1 WCET in Isolation

The WCET analysis consists in finding the sequence of instructions in a program that leads to the
longest execution time.

Executable
Binary

Control-Flow Graph
reconstruction

CFG

Micro-architecturale analysis
Pipeline, Caches, Prefetch Buffer

CFG +
Time of Basic Blocks

WCET

Figure 4.1: WCET analysis for a single-core.

37

38 CHAPTER 4. BACKGROUND: MANY-CORE

for(i=0; i <255; i++) {
if(T[i] < 0) {

a = f(b);
} else {

b = g(a);
}

}

i<255

i=0

ENTRY

EXIT

i++

b=g(a)a=f(b)

T[i]<0

20 cc

5 cc

3 cc

2 cc

53 cc

2 cc

bound: 255

Figure 4.2: A C program with its CFG. Basic blocks are labeled with local WCET in cpu cycles.
Back edge is bounded.

Figure 4.1 shows the main steps of a typical WCET analysis. The first step is the extraction
of the control flow graph (CFG) from the binary. The vertex are sequences of instructions called
basic block (BB) and the edges represent the control passing between two BB. A back-edge represents
a control loop. Figure 4.2 shows a program and the corresponding CFG. The second step is the
attribution of a duration to each BB and/or edge. These durations are computed thanks to a model
of the micro-architecture of the processor including the pipeline timing, the cache policy, the prefetch
buffer behavior, the memory latency, etc. For instance, program in Figure 4.2 is a simple model
where the durations where only BB have durations. The pessimism of the durations is due to the
hardware abstraction of the processor. The WCET corresponds to the most weighted execution path.
Consequently, if the back edges are not bounded, the execution time is infinite. The program must be
analysed to to find the back edge bounds which is the maximum number of iterations. The example
of Figure 4.1 is simple since the bounds of the for loop are explicit. Finally, the longest path of this
graph is computed. This example is timing compositional since the global WCET is the sum of the
local WCETs of the BB.

Timing anomalies [112] are close to the concept of scheduling anomaly: a faster local execution
can lead to a slower global execution. With timing anomalies, locally selecting the edges of the
CFG leading to the highest execution time is made impossible: a global evaluation of the graph is
required. This leads to complex and pessimistic WCET evaluation. Architecture is said fully timing
compositional [127] if there is not timing anomaly in it. Others anomalies can be due to out-of-order
pipeline since creating the CFG of the program is dynamic.

4.1.1.2 Interference-Aware WCET Analysis

The WCET analysis on multi-core processors is different from single-core since it has to take shared
memory and more generally shared resources into account. For instance, a concurrent access of two
cores to the same resource can lead to an extra delay for the access. Pellizzoni et al. [104] show a
growth of nearly 3x between the execution time of a task in isolation and the execution time taking
with concurrent access to the memory system. This interference can be caused by the shared cache,
the external memory or the scratchpad memory.

Distinction is made between two notions: the WCET in isolation and the Worst-Case Response
Time (WCRT). The WCET in isolation corresponds to the traditional WCET analysis that can be

4.1. MULTI- AND MANY-CORES SYSTEM-ON-CHIP ARCHITECTURES 39

performed on a single-core processor. The WCRT is the execution time of a task taking into account
the external phenomenon such as the interferences and the preemption delays. Nevertheless, this
section considers non-preemptive schedule, hence WCRT means WCET with interference. Lv et
al. [94] presented a framework for analyzing the interference due to shared cache.

There are several ways to compute the WCET with interference. One solution is to prevent
all interferences by the mean of an execution model (congestion free). The opposite is to include
the possible interference for each access in the WCET computation, i.e., taking into account all
the possible interfering accesses. An intermediate solution is to minimize the interference with an
execution model and estimate a tight bound on the interference delay. With this solution, the set of
interfering tasks is known and minimal.

Davis et al. [43] presented a WCRT analysis decoupling the computation of the WCET in isolation
and the delays relative to the interference. The advantage is that a tool for WCET analysis designed
for single-core is sufficient. Only the analysis of the cache and memory arbiter has to be tailored for
multi-core.

Memory interferences have a consequence on the WCET of a task. Contrary to the analysis of
the micro architecture, the interferences cannot be analyzed locally: the whole application has to be
analyzed at the same time. The interference has consequences on the schedule since some tasks can
be made slower. The schedule has also consequences on the interference analysis since it changes the
set of tasks concurrently accessing the memory. Consequently, information about the release date and
the completion date of each task is required to analyze the interferences. A time-triggered execution
ensures these dates. Rihani et al. [113] adapted the approach of Davis et al. [43] where the WCRT
analysis is decoupled from the isolated WCET analysis and adapted this method for the Kalray
MPPA2. They introduced an algorithm computing the release dates of the tasks. A release date takes
into account the data precedence and the interference. The execution of the tasks is time-triggered in
such a way that a task cannot start earlier even if the previous task is faster than its WCET. The
algorithm starts from the WCET in isolation of the tasks and iteratively adds the delays due to the
interferences. This algorithm has been implementation in the MIA tool1. Our work relies on the tool
from Rihani et al. [113] for the time-triggered execution. We generate code and meta-data that are
used by MIA to compute tight WCRT bounds, and conversely we use the static information computed
by MIA to staticlly schedule the tasks.

Skalistis et al. [120] presented a similar method with a time-triggered execution model. Contrary
to the previous method, this one starts with an initial duration for each task considering the maximal
interference. Then, the WCET of the tasks is refined by removing some interference taking advantage
of the banked memory. Release dates of the tasks are computed in a way that refinement of the
WCET cannot add new interference. This leads to a loss of precision compared to the method of [113]
that we are using in our work.

4.1.2 System-on-Chip For Time-Critical Software

In the previous section, we presented some methods for WCET analysis on a multi-core processor. In
this section, we describe some multi- and many-core that have been designed for embedded predictable
systems. We focus on the architecture properties giving good timing predictability to a processor.

Definitions. The Worst-Case Execution Time (WCET) is an upper bound on the execution time
of a code in isolation. The Worst-Case Response Time (WCRT) is an upper bound on the execution
time of a code in taking into account the shared component and the interferences due to the other
concurrent code. The Worst-Case Traversal Time (WCTT) is an upper bound on the time required
by a packet through a network to reach its destination.

1http://www-verimag.imag.fr/Multi-core-interference-Analysis.html?lang=en

http://www-verimag.imag.fr/Multi-core-interference-Analysis.html?lang=en

40 CHAPTER 4. BACKGROUND: MANY-CORE

Core. Most of the modern processors are optimized for average performance, neglecting the worst-
case performance and leading to pessimistic WCET bounds. For time-critical applications, the cores
ideally should be fully timing compositional in order to provide the least pessimistic WCET.

Caches. Cache replacement policy has also impact on the WCET analysis. Some cache replacement
policy requires knowing all the execution history in order to compute the contents of the cache. If
this complete history cannot be known, pessimistic hypothesis have to be done on the contents of the
cache. Some caches replacement policies such as pseudo least recently used (PLRU) or first in first
out (FIFO) has been shown to lead to very pessimistic WCET analysis [14]. The least recently used
(LRU) policy offers both performance and predictability. If the data or instruction cache is shared by
several cores, it leads to arbitration between the cores and makes the analysis pessimistic.

Memory. The access time of the memory has to be predictable. SDRAM memory is hardly time-
predictable, nevertheless, active research in this field provides numerous software or hardware solution
to bound the access time. Methods to make the SDRAM predictable will be given in Section 4.1.3.
Static memories are expensive since they require more silicon area. Nevertheless, they are fast and they
handle most of the request in constant time. It should be noticed that even for memory responding in
nearly constant time it is a shared resource and requires an arbitration of the requests. Arbitration
between the requesting cores leads to extra access delays and processor stall.

The memory can be distributed on the chip in such way that some small memories are close to
the cores. A scratchpad [9] is a small and fast memory, private to a core whose purpose is to replace
cache. If the memory is shared among several cores, it can be composed of several banks to decouple
the accesses to different parts of the memory. An appropriate memory mapping allows minimizing
the congestion by allocating the data relative to different cores in different banks.

NoC. The Network-on-Chip (NoC) has to provide bounded transmission time called Worst-Case
Traversal Time (WCTT). A route defines the list of network elements to cross before reaching the
destination. This route can be static, i.e., computed before the transmission or dynamic if it can
change during the transmission. Dynamic routing can be responsible for unpredictable WCTT (see
Section 4.2). As the NoC is shared among several users, the link arbitration leads to delays. These
delays can be avoided by preventing concurrent usage of the NoC with Time Division Multiple Access
(TDMA). The WCTT can be computed using Network Calculus [39] or Real-time Calculus [124]
theories.

Name Cores On-chip RAM NoC Characteristics
Kalray MPPA2 16+1 per cluster, Banked SMEM Wormhole, hardware

private I/DCache, private arbiter bandwidth limiter,
software cache coherency remote memory write

T-CREST 1 per cluster, Private scratchpad TDMA,
method, data memory (SPM) remote SPM write
and stack cache,
software cache coherency

PULP Configurable (1-16), Banked shared System bus,
private ICache, memory, tree share-memory
no data cache, arbitration communications

CompSOC 1 per cluster Private Instruction TDMA
no cache + Data + DMA + remote DMA read/write

communication memory

Table 4.1: Comparison of the Kalray MPPA, T-CREST and PULP architectures.

4.1. MULTI- AND MANY-CORES SYSTEM-ON-CHIP ARCHITECTURES 41

Existing Architectures. The T-CREST project [116] proposes a predictable many-core processor
designed for real-time critical systems. There is only one core per cluster and the communication
between the cores is made through the NoC. Data are transferred from local memory to remote
memory using a message passing interface. This NoC has a Time Division Multiple Access (TDMA)
arbitration. Each core has a special instruction cache which is called method cache. A method cache
stores entirely the procedure which is currently executed. A miss can only happen on procedure call
or return and thus not during the execution of the procedure. The T-CREST has a cache for the data
and a cache for the stack. The data cache is either a direct-mapped cache or two-way associative LRU
cache. The stack cache [1] provides the ensure(n) instruction making the cache loading the n last
elements of the stack and the reserve(n) instruction ensuring there are n free elements in the cache.
For both of them, if there is not space enough in the cache, data is written back in the memory.

The PULP platform [37] is a many-core processor optimized for low energy consumption. There
are several memory levels. In each cluster, there is one L1 shared-memory composed of several
independent banks. A bus connects each cluster to a L2 memory common to all the clusters. For
each core, there is a private instruction cache. There is no private data cache, as a consequence the
memory system is coherent without the need of hardware coherency mechanisms. The shared-memory
is accessible through a word-level [37] tree-based arbitration [109].

The CompSoC [61] processor has been especially designed for mixed-criticality. Consequently,
it authorizes full isolation between different applications. It is composed of clusters (called tiles)
connected with the synchronous dAElite [123] NoC.

dAElite is a time-division multiplexing (TDM) NoC. Packets do no have header. Slots are assigned
to each connection and at each router the next direction to take is associated to each slot. In each
router, a periodic table associates a direction to each time slot. A configuration network conveys the
configuration packets required to set up the routes.

Each CompSoC cluster has one core with several dedicated memories. They are static-memory
with a small and constant access time. Furthermore, there is no cache in order to make the WCRT
computation simpler. There is one instruction memory and one data memory and there are two
memories dedicated to NoC communications: one for DMA and one for communication. A NoC
transaction is either a copy from a remote communication memory to the local DMA memory or from
the local communication memory to the remote DMA memory.

The Kalray MPPA2 is a commercial off-the-shelf (COTS) many-core processor. It is a predictable
architecture that particularly targets critical and embedded real-time applications. More details about
this architecture are given in Section 4.3.

Table 4.1 summarizes some characteristics of the processors.

4.1.3 Synchronous Dynamic Random Access Memory (DDR SDRAM)
The SDRAM is widely developed due the high density of information stored in small silicon area
compared to the static memory. Nevertheless, this density is obtained at the cost of a complex access
protocol and an important latency.

In this section, we present the problem of making the memory access time-predictable and some
existing research in this way. We consider a JEDEC 2 standard DDR3 SDRAM.

4.1.3.1 DRAM Overview

The purpose of the SDRAM is to provide a high density at low cost. It is composed of a physical part
storing the data and a controller part managing the physical part. To save silicon area this controller
is not duplicated even with a large amount of memory.

The purpose of the controller (Figure 4.3) is to convert the requests from the masters to lower-level
commands that are linked to the physical implementation of the memory. This controller is configured
to fit the memory physical constraints.

2https://www.jedec.org/

https://www.jedec.org/

42 CHAPTER 4. BACKGROUND: MANY-CORE

Reorder
Core

Bank 1Bank 0master 0
(p0)

master 1
(p1)

master N
(pN)

Controller
Front End

Multi-Port

Physical
...

data bursts

Figure 4.3: SDRAM controller overview.

Columns

Row buffer

Row 0
Row 1
...

Row N

Bank 0 Bank 1

...

...

Figure 4.4: SDRAM physical view.

The aim of the reorder core (Figure 4.3) is to optimize the average throughput of the memory
controller. For instance, physical SDRAM imposes some delays between series of reads and series
of writes. Delays occur when accesses are non linear. In these cases, the reorder core changes the
order of the requests to perform them globally faster. Nevertheless, this reorder makes the access
time difficult to bound since the requests are not processed in First-Come First-Served (FCFS) order.
The reorder core preserves the coherency of the data by enforcing the order of commands targeting
the same address.

In multi-core systems, the SDRAM is shared among several masters, hence an arbiter is required.
The Multi-Port Front End (MPFE) acts as an arbiter of requests with priority where a priority is
assigned to each master. In the T-CREST processor, this MPFE is replaced with a memory tree
which is considered more scalable [116].

4.1.3.2 Memory Organization: Rank / Bank / Row / Column

A SDRAM memory is composed of banks and each bank is composed of rows. Then, a row is divided
into columns. Figure 4.4 shows an overview of this SDRAM organization. Several SDRAM memories
can be assembled. In this case, each of them is one rank.

Banks are independent modules working in parallel. Due to the physical implementation, data in
a bank cannot be modified directly. We call activate the action of copying a row from the memory to
the row buffer. There is one row buffer per bank in which read and modification are performed. We
detail the main commands of the SDRAM used to access the memory:

4.1. MULTI- AND MANY-CORES SYSTEM-ON-CHIP ARCHITECTURES 43

ACT Activate: Open row and transfers it to the row buffer.
PRE Precharge: Close the row and write back the contents of the row buffer to the memory.
RD Read data from the row buffer.
WR Write data to the row buffer.

A transaction always refers to a row in a bank, which may be opened or closed. When opened,
only a single RD or WR command is issued. When closed, the command sequence PRE, ACT, RD
or WR is issued. The Controller Core tracks the state of the banks in order to issue the correct
commands. Refreshing a row inside a bank has the effect of closing any opened row in that bank.

Periodically, the columns of the SDRAM have to be refreshed to avoid data loss. This is performed
periodically with the REF command. The consequence of this command is that the opened banks are
closed; nevertheless it does not interrupt the current accesses.

RBC and BRC Modes. Most of the SDRAM controllers can be configured in two addressing
modes: row/bank/column (RBC) and bank/row/column (BRC). These modes change the mapping
between the address and the physical memory. In RBC the most significant bits of the address select
the row, the middle bits select the bank and the least significant bits select the column. In BRC,
the most significant bits select the bank while the middle bits select the row. In the RBC mode,
consecutive addresses are related to different banks. This provides better average performances since
linear accesses are distributed on the banks. The BRC mode eases the mapping of the data in specific
banks since consecutive addresses are assigned to the same bank. This helps reducing interferences on
memory accesses and makes timing analysis easier since the destination bank of each access is known.

4.1.3.3 Temporal Behavior

The DDR physical implementation imposes specific delays between the commands: PRE, ACT, RD
and WR. For example, it is possible to issue several WR commands in a row but there is a minimum
delay between an RW and a WR command. Some delays have effect on one bank and some are applied
globally to the commands on all the banks. These physical constraints are known by the SDRAM
controller which ensures the correct functioning of the memory. These constraints have to be taken
into account in the computation of the worst case access time which makes it complex.

According to [81], the effect of SDRAM refresh is negligible and can be approximated to a global
reduction of the bandwidth.

We describe the delays relative to the SDRAM commands for a standard JEDEC DDR3 SDRAM
memory. The consequence of these timing are described in [81] and [105]. Some are global to the
SDRAM, other are relative to one memory bank.

Timing constraints global to the SDRAM.
tFAW Four-activate windows. No more than 4 activations can be performed during this period.
tRRD Row to Row Delay. Minimum time between two row activations.
tWTR Minimum delay between a write and a read command. This is global to the rank, i.e., to

one SDRAM memory.

Timing constraints relative to one bank.
tRAS Minimum time between the activation and the precharge (close) of the page.
tRCD Minimum delay between activation and read or write command.
tWR Write Recovery time. Minimum of time between a write and the precharge of the row.
tRP Minimum time between precharge and activate. The Page Close Mode (also called auto-

precharge) makes the controller close the page right after the access. Due to the tRP delay, it can be
advantageous to configure the SDRAM controller in this mode to minimize the delay between the last
access and the new activation.

44 CHAPTER 4. BACKGROUND: MANY-CORE

4.1.3.4 Timing Predictability with SDRAM

We saw that a SDRAM can be configured in RBC mode to ease the mapping of the data on the banks
and to facilitate the computation of access time. Nevertheless, as shown in Section 4.1.3.3, some
SDRAM delays are global to the rank or the controller. As a consequence, access to one bank can
interfere with access to another bank.

To be used in real time systems, the SDRAM accesses has to be made time-predictable in the
sense that a tight bound of the access time can be computed. The solution is either hardware, relying
on a time-predictable controller, or software by enforcing constraints on the requests.

The predictable controller schedule the SDRAM commands in the way that the accesses time
is tightly bounded and bandwidth is guaranteed. Predator [2] is a controller with credit and static
priority ensuring predictable latency and minimal bandwidth. Predator is based on access groups
which are sequences of read or write performed on all the banks. These sequences are designed to
have a constant time. For instance, the maximum size of an access is constant. A special group is
reserved to the SDRAM refresh and scheduled when needed.

Reineke et al. [111] presented the PRET DRAM Controller which is time-predictable. The isolation
between the masters is guaranteed by private bank allocation. Contrary to Predator it uses the
property that banks and ranks can be considered as independent resources and performs the accesses
to these resources in a pipelined manner. Usually, the memory controller rely on the refresh command
which refreshes all the memory raws at once. The PRET DRAM Controller, instead, performs
individual refreshes for each row. This minimize latency since refresh are scheduled alternatively with
the requests.

We saw solutions relying on hardware modification. These solutions are not applicable to COTS
hardware. Some works are able to provide an upper bound on access time for these COTS hardware
under special configuration or constraints on access patterns.

Kim at al. [81] describe an analysis method to compute delays due to SDRAM memory interferences.
The consequence of the reorder core is taken into account in the analysis. Only the maximum number
of requests for a task is required. This paper does not provide a method to minimize these interferences.

Perret at al. [105] consider the computation of the delay of the maximum access time which
corresponds to a read which follows a write that do not target the same bank. This delay makes no
hypothesis on the concurrent access and is used as reference for the computation of the application
delay. The authors state that this delay can be reduced by static scheduling of the requests.

In this section, we saw that even if the SDRAM is complex, there exist methods able to compute
tight worst-case access latencies for COTS multi-core.

4.2 Network-on-Chip
Network-on-Chip is seen as the solution for the scalability of multi- and many-core communications [12].
It is power efficient and ensures a low latency. Nevertheless, like off-chip networks (Local Area Network
or industrial networks), it suffers from the deadlock problem.

In this section, we concentrate on the wormhole switching networks recognized for their small
latency and silicon area usage.

The classical topology is the 2D grid and most of the routing algorithms are designed for this
topology. In this work, we mostly consider this topology since it is possible to form a 2D grid with a
subset of the Kalray MPPA-256 Bostan topology (see Section 4.3.3).

4.2.1 Definitions
In this section, we define the vocabulary required to understand the network-on-chips.

– Packet/flits Header/payload: A packet is the routing unit. It is composed of flits which
corresponds to the width of the links. The first flits are the header carrying the route information
and the destination, the others are the payload (see Figure 4.5a).

4.2. NETWORK-ON-CHIP 45

9 8 7 6 5 4 3 2 1 0Packet:

payload

flits

header
(a) Packets of wormhole networks are composed
of flits. The first flits are the header, the next
are the payload.

Router

N

W

S

E

Turn S-E

(b) Example of Turn.

Figure 4.5: Packet, Flits, Routers and Turn

– Router: The router reads the header of a packet and forwards the packet to the next router.
The network is packet-switched meaning that the packets are forwarded entirely and cannot be
split.

– Link: A link connects two routers. In our work, its bandwidth is 1 flit/cycle.
– Grid: A 2D-grid is a regular network where routers are organized in grids. A router is connected
with 4 other routers at maximum: North, South, East, West. It is connected to the cluster with
the Local link.

– Turn: A turn is defined with a router, a source and a destination direction. Figure 4.5b shows
the South-Est turn for a router. There are 8 different turns: the 180-degree turn is forbidden
and the straight directions (North-South, East-West) are not turns. In addition, there are 8
extra turns between between the Local link and the North, South, East and West directions.

– Unicast/Multicast Flow: A unicast flow is a tuple with one source and one destination. A
multicast flow has several destinations. A flow has one bandwidth and one route even though
several routes may be possible for a given flow.

– Route: A route is a list of direction taken by a packet to reach the destination.

4.2.2 Routing and Deadlock
A route is static if it is known when the packet is sent. This static route is often embedded in the
packet header. If it is not embedded in the packet, it can be preset in each router. In this case, we
talk about table-based routing (as in AFDX [85]), since, at each router, a static table is read to define
the next link to take.

A route is dynamic if it is not known when the packet is sent. In this case, a piece of software
computes the destination in each router. The main advantage of this solution is that route can be
adapted in case of network congestion. It is widely used in best-effort networks.

In this thesis, our aim is to be able to bound network latency. This requires to know the route at
compile time. Hence, we are only interested in static routing method.

We compare store-and-forward NoC method and wormhole switching NoC. The functioning of
store-and-forward is simple: packets are sent to the next router after they are fully received. The
advantage is that analysis can be done on the entire packet. For instance, the packet can be dropped if
the error correction code (ECC) failed or the cycle redundancy check (CRC) is invalid. The drawback
is double: the latency is high since packet has to be fully received before being sent and the routers’
buffers have to be able to store the full packet.

Wormhole switching is usually chosen in NoC where the silicon area and the latency are important
criteria. Once the first flits of the packet corresponding to the header are received, the package can

46 CHAPTER 4. BACKGROUND: MANY-CORE

be forwarded to the destination. The granularity of arbitration in the router is the packet since we
cannot mix flits of several packets in the same link.

The router buffers can be smaller than the packet size. This implies that a packet can be spread
out across the network and be at the same time in several routers (as a worm in an apple).

Wormhole Switching Deadlock Problem. Wormhole is best for latency and silicon area but
suffers from deadlock. As mentioned previously, as flits of packets are forwarded as soon as the header
is received, packets can be split along several routers and links. If a cycle is formed, this can lead to a
deadlock.

R1 R2

R3R4

A

B

Figure 4.6: Example of wormhole switching network deadlock.

Figure 4.6 shows an example of deadlock in wormhole switching network. We recall that flows are
arbitrated at packet level, hence the flits of the packets cannot be mixed. Flow A cannot use the link
R3 → R2 because flow B is using it. Also, flow B needs R1 → R4, used by flow A.

Deadlock results from circuit of agents and resources connected by a wait-for relation [40]. In
wormhole switching, agents are the packets, and resources are the router buffers and the links between
the routers.

Figure 4.7 shows the dependency graph corresponding to the example of Figure 4.6. In this
dependency graph, resources beginning with L are links and resources beginning with T are turn
passing through a node, e.g. T1ES is “a Turn through router R1 from East to South” and T1LS is
“the Turn through router R1 from Local to South”. It is clear that there is a cycle due to the sharing
of L14 and L32 resources.

Due to this problem, absence of cycle must be ensured in the dependency graph. For set of flows
and routes it is possible to compute whether the application can deadlock, nevertheless, a better
approach is to guarantee with specific routing algorithm that no deadlock will occur.

T4NL T4NE L43 T3WN T3LN

T1LS T1ES L21 T2SW T2SL

L32L14

Figure 4.7: Resource dependency graph of example Figure 4.6. Arrows are wait-for relations.

4.2. NETWORK-ON-CHIP 47

Feed-forward Network. A network in which it is not possible for the flows to create cycles is called
feed-forward. The deterministic network calculus (DNC) usually requires feed-forward networks3.
The networks are in general non feed-forward. Algorithms such as spanning tree or turn-prohibition
transform a network into a feed-forward network by preventing usage of some links or turns. Then,
the DNC can be applied.

Most of the deadlock-free algorithms guarantee that the flows routed on a network do not form
any cycle even though the network is non feed-forward. If for a non feed-forward network, the flows
are routed with an algorithm preventing the flows to form cycles, the subset of the network used is
feed-forward and the DNC can be applied on it.

Formally, a definition of a feed-forward network is that it is possible to find a labeling of its queues
such that for any flows through the network, the queues are traversed in an increasing order [71]. A
similar definition gives an order on the links instead of the queues [115]. A definition of deadlock-free
algorithm is a routing algorithm preventing the directed cycles in the resource dependency graph.
This is accomplished by imposing a partial order on the used resources (turns and links) and then,
ensuring that flows traverse resources in increasing order [41]. Then, if we consider only the subset
(links and turns, or queues) of a network used by a deadlock-free traffic. If this traffic has no cycle in
the resource dependency graph, hence the subset of the network used by this traffic is feed-forward.

4.2.3 Adaptive Routing
Considering two different routing algorithms for a grid: XY which computes a route composed of a
segment on the x-axis followed by a segment on the y-axis; and shortest path which computes the
routes taking the smallest possible number of links. The XY has only one possible route to reach a
destination while there can be several shortest path between a source and a destination.

A routing algorithm offering several possible routes to reach a destination has path diversity. An
algorithm that exploits this path diversity is said to be is adaptive.

The term adaptive comes originally from dynamic routing where the route is evaluated at each
router to deal with network congestion or faulty links. Nevertheless, we consider that this notion
of dynamic routing is orthogonal to the adaptivity and a static routing also takes advantage of the
adaptivity of an algorithm by offline selection of the best route.

Another orthogonal notion is the path-splitting. A routing algorithm is said to be path-splitting if
when several routes are possibles, they can all be used at the same time. The advantage is double:
balancing the charge among several paths and ensuring resilience in the case of network failure.
Nevertheless, this method does not ensure ordering of the packets. In our work, we consider that a
flow takes only one route. Criteria for selecting the routes can be bandwidth, link sharing or route
length for instance. More details are given in Section 7.5.1.

4.2.4 2D Grid Deadlock-Free Routing Algorithms
In this section, we present the main deadlock-free algorithms for wormhole switching for both unicast
and multicast. Most are designed for 2D grid such as XY, HOE, OddEven and some are designed
for arbitrary topologies such as Simple Cycle Breaking or TurnProhibition. These algorithms are
explained later. We restrict this classification to static routing algorithm since they better correspond
to the predictability requirements.

Dimension-Ordered. The simplest deadlock-free routing algorithms are the dimension-ordered.
They are called dimension ordered since packets are routed along a first dimension, followed by a
second dimension, etc. In a 2D topology there are only two of them: XY which routes the packet
along the x-axis first and then along the y-axis; and the YX which routes the packet along the y-axis
then along the y-axis.

3Methods such as stopped-time allow applying DNC on non feed-forward networks.

48 CHAPTER 4. BACKGROUND: MANY-CORE

Intel Knight Lending architecture has a 2D-mesh with YX routing [121]. Tilera TILE64 is routed
in a dimension-ordered way [11].

This kind of routing if often chosen for its simplicity, nevertheless, they are non-adaptive hence
they do not allow route selection optimization. We now focus on adaptive routing that provides path
diversity.

t7

t2 t4

t5t6t8

t1 t3

t9

t10
6

2

5

3

4

1

(a) Network with prohibed turns

5-2

2-5

3-4 4-35-66-5

6-11-6 2-3 3-2

1-2
2-1

4-5
5-4

t7

t1

t4

t5
t6

t9

t10

t8

(b) Turnnet equivalent

Figure 4.8: Turnnet transformation

Cycle Breaking Algorithms. We now present another kind of algorithm able to transform an
arbitrary network topology of bi-directional links and turns into a feed-forward network, i.e., in which
no cycle are present. The source of these algorithms is the spanning tree [117] which disables some
links in the network to obtain a tree and hence remove cycles.

The Turn Prohibition algorithm [122] finds a set of prohibited turns ensuring the feed-forward
property of a network. It works for an arbitrary network topology of bi-directional links and bi-
directional turns. This algorithm guarantees the prohibition of at most a third of the turns. This
feed-forward property is required by most of the methods to compute bounds on the network FIFOs.

Simple Cycle Breaking [90] is an improvement of Turn Prohibition that has been shown to prohibit
less turns.

Once the turns have been prohibited, any routing algorithm can be implemented, in particular the
shortest path. But, implementation of the shortest path for these topologies is not straightforward.
In order to ease implementation of routing under Turn Prohibition, Fidler et al. [51] introduce the
Turnnet, which is a graph whose vertices correspond to the external links, and edges to the internal
turns of the network. Application of any cycle-breaking technique to ensure feed-forward network
amounts to removing edges from the Turnnet so it becomes acyclic. It is then used to compute routes,
for instance by applying Dijkstra’s shortest path algorithm [51].

Example 11. In the 2D grid network of Figure 4.8a, turns t7 and t5 marked with a circular arc
has been removed to prevent cycle. The turns have been removed in both ways e.g. from l4 to l3
and from l3 to l4.

Figure 4.8 is the Turnnet equivalent of the network in which turns become edges and links
become vertices. Forbidden turns are removed from the graph. Computation of the shortest path
on this graph can be done by applying Bellmand and Ford or Dijkstra.

4.2. NETWORK-ON-CHIP 49

Turn Model. The first attempt of providing diversity is by adding physical and virtual channels to
the network. Nevertheless, it requires specific hardware. Glass and Ni [59] invented the turn model
to bring adaptive routing algorithm while ensuring deadlock-freeness. This model allows expressing
all the possible turns in the network (South to East, South to West, etc) and to restrict usage of
some turns. Note that the 180-degree turn is useless hence always forbidden while straight lines
(North-South, East-West) are always authorized.

(a) XY (b) West-First

Figure 4.9: Turn Model for the XY and West-First routing algorithms. The square represents the
four possible turns. The dashed turns are forbidden.

The authors show that only a quarter of the turns are needed to be forbidden to ensure deadlock-
freeness. Note that all the combinations of forbidden turns do not lead to deadlock-freeness. They
present several adaptive algorithms such as West-First, Negative First and North-Last. XY is not
optimal since it forbids half of the turns where West-First forbids only a quarter. Figure 4.9 shows in
dashed the prohibited turns and in plain the authorized turns. The squares show for a turn, all the
possible turns that can be taken next.

With West-First, a packet has the right to go to the West direction at the beginning and then
it can follow any other directions except West. Figure 4.9b shows the turn model of this algorithm
where the South to West and North to West are forbidden. We explain how to understand the turn
model of West-First. If the first turn is West to South from the left square, the packet can only go to
the East, then to the North. Then, from the second square, the turn North to East can be taken and
the packet can go to the East, then to the South.

Figure 4.9a shows the turn model of the XY routing algorithm and the dashed turns are forbidden
whereas the plain turns are authorized. The figure has to read as follows: for a XY routing, the left
or the right square can be selected. If the left is selected, the packet can go to the East then to the
South or to the East then to the North.

We now explain the Negative-First algorithm. The x and y coordinates of the routers are numbered
as follows: for a node of coordinate (x,y), the node on the right has the coordinate (x+1, y) and the
node on the left has the coordinates (x-1, y). The Negative-First algorithm is done in two steps: first
the packet can go to any node carrying smaller coordinates (x-1, y) or (x,y-1), then the packet can go
to router with higher coordinates (x+1, y) or (x, y+1).

Odd-Even Turn Model. Chiu [34] shown that the adaptivity of the turn model is variable, i.e.,
some flows has a high path diversity while some other has a small or no path diversity. As a consequence
the author present the odd-even turn model which provides an homogeneous path diversity. The
principle is that there are two sets of prohibited turns depending if the current column number is odd
or even.

Multicasting. Multicast consists in sending the same packet from one source to several destinations.
There are three kinds of multicast algorithms: The unicast-based multicast where the packet is sent
independently to every destination. The main advantage of this solution is that it preserves the
deadlock-freedom of the unicast algorithm. The main drawback of this solution is that the packet is
duplicated for every destination. In the tree-based multicast, when a router forwards a packet, it can
decide to duplicate this packet to several destinations. The third solution is the path-based multicast
where the destination is split into several partitions. For each partition, a route passing through all

50 CHAPTER 4. BACKGROUND: MANY-CORE

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 4.10: Example from [42] leading to deadlock by concatenating XY routes.

0 1 2 3

7 6 5 4

8 9 10 11

15 14 1213

0 1 2 3

7 6 5 4

8 9 10 11

15 14 13 12
Hamiltonian labeling

0 1 2 3

7 6 5 4

8 9 10 11

15 14 13 12
low-channel networkhigh-channel network

Figure 4.11: Hamiltonian Labeling and Subnetworks

the destinations of this partition is computed. A special field in the header indicates if the packet has
to be forwarded by the router to the node.

Path-based multicast offers better performance than unicast- and tree-based multicast [7]. It is
also widely used. For these reasons, we only detail this method in the rest of the section.

Path-based Multicast and Partitions. In each partition, a route passing through every destina-
tion has to be computed. The easiest solution would be to concatenate several routes. Nevertheless,
concatenating several routes computed with a deadlock-free algorithm does not lead to a deadlock-free
route, therefore specific algorithms have to be used. An example of deadlock due to the concatenation
of routes from [42] is given in Figure 4.10. Both flows require links 6-5 and 9-10. If dashed flow blocks
Link 6-5, plain flow blocks Link 9-10 and consequently dashed flow is blocked, etc. There is a cyclic
dependency in the resource graph.

The first deadlock-free multicast algorithm has been proposed by Lin, McKinley and Ni [91]. It is
a path-based multicast based on a Hamiltonian labeling of the network.

Hamiltonian Routing. As depicted in Figure 4.11, the Hamiltonian labeling passes through every
node in the network exactly once. Several Hamiltonian paths exist for the same network.

In Hamiltonian routing there are two separated networks represented in Figure 4.11: the network
following the label in increasing order called high-channel network and the network following the
labels in decreasing order called low-channel network. For a source s and a destination d, the next
router n is computed as follow:

If label(s) < label(d):

max
label(n)

{label(n) < label(d) and n is a neighbor of s}

If label(s) > label(d):

min
label(n)

{label(n) > label(d) and n is a neighbor of s}

4.2. NETWORK-ON-CHIP 51

The Hamiltonian routing algorithm gives the shortest path and is not adaptive.
Common Hamiltonian-based multicast are: dual-path and multi-path. They are presented in

Figure 4.12 where node 9 sends a multicast packet to 2, 3, 5, 7 and 15.

7 6 5 4

8 9 10 11

15 14 13 12

0 1 2 3DP:

7 6 5 4

8 9 10 11

15 14 13 12

0 1 2 3

7 6 5 4

8 9 10 11

15 14 13 12

0 1 2 3MP: CP:

Figure 4.12: Column-Path, Dual-Path and Multi-Path routing algorithms.

Dual-path is composed of two partitions: one for the nodes higher in the Hamiltonian path and
one for the nodes lower. In this example, the high partition contains 15 and the low partition contains
2, 3, 5, 7 and 8.

Multi-path is composed of two partitions: one for the nodes whose label is higher and one for the
nodes whose label is lower. Then, these partitions are split in two to maximize usage of the output
links of the routers: one for the nodes on the left of the source and on for the nodes on the right. The
reason for this split in four partitions is that a 2D-grid router has 4 output ports. In this example,
there are 4 partitions: (2, 3 and 5), (7 and 8) and (15).

Column-path routing algorithm has been present by Boppana et al [19] to authorize dimension
ordered routing algorithms in multicast. Two partitions are computed for each column. Each column
is accessed with two XY route: one for the nodes above the source and one for the node below. In the
example of Figure 4.12, there are 4 partitions: (2,5), (3), (7, 8), (15).

Adaptive Path-based Multicast. Daneshtalab et al. [42] propose HAMUM, an improvement of
the Hamiltonian routing algorithm to make it adaptive by selecting among the Hamiltonian shortest
paths. They present Adaptive Multi-Path (AMP), later called HAMUM MP and Adaptive Column-
Path (ACP) later called HAMUM CP. The partitioning is the same as in MP and CP but this routing
algorithm brings path diversity.

Bahrebar et al. [7] shown that HAMUM can be improved for the first step in the high partitions
and for the last step in the low partitions. They introduced the Hamiltonian Odd-Even (HOE) to
increase the adaptiveness of HAMUM while authorizing both unicast and multicast routing. HOE
CP and HOE MP are presented.

As mixing deadlock-free algorithms can lead to deadlock, a single algorithm must be chosen and
has to handle both unicast and multicast if necessary. CP+XY, HAMUM or HOE are possibilities.

4.2.5 Bandwidth Limiter
It is necessary to know the bandwidth of the flows to bound their latency. This is also required to
ensure that the router FIFOs do not overflow. Network architectures for safety-critical systems such
as the AFDX network [85] and the Kalray MPPA2 provide a bandwidth limiter.

One model to limit bandwidth of a flow is the leaky bucket. The principle is that at each cycle,
the budget of each node (or flow) increases. A node sends a packet only if it has enough budgets and
the budget is reduced accordingly. An advantage is that a node benefits from more budgets if it has
not sent packet for a long time. Obviously, there is a limit for the accumulated budgets which is
called burstiness. This policy can be easily implemented in hardware.

Example 12. Figure 4.13 shows an example of two nodes with a limited bandwidth. The x-axis

52 CHAPTER 4. BACKGROUND: MANY-CORE

Figure 4.13: Leaky bucket bandwidth limiter.

is the number of cycles; the y-axis is the cumulative number of 32-bits flits sent. Both nodes
have a budget b = 10 cycles in a sliding window w = 20 flits. Hence, they cannot send more
than 10 flits in this sliding window. For Node 1, A represents the window from t=10 to t=30. At
t=30, Node 1 emission is blocked since it has already sent 10 flits in the last 20 cycles. Node 2 is
blocked before the end of the window C. The window B, shows that Node 2 does not use the
entire budget: it could send 5 flits more during window B.

If we combine the bandwidth limiter with static routes, maximum bandwidth of each flow can be
known. Then, bandwidth usage of each link can be computed as the sum of the bandwidth of the
flows using this link. This bandwidth usage is compared to the capacity of the link. We talk about
bandwidth reservation when the maximal bandwidth of the flows is known and the link capacity is
statically shared among these flows.

A link is saturated if the sum of the rates of the flows taking this link equals the capacity of the
link. If the link is unsaturated, the bandwidth of at least one flow could be increased.

We call saturated flow, a flow taking at least one saturated link. An unsaturated flow takes only
unsaturated links, thus its bandwidth could be increased without reducing the others.

4.2.6 Max-Min Fairness and Lexicographic Vector
In the previous sections, we described some routing algorithms with path diversity and we presented
the hardware bandwidth limiter. In this section, we discuss the fair flow rate attribution.

The maximum capacity of a link depends on the nature of the network. In wormhole switching
networks, this capacity is given in flits. In this section, we consider that a link transmits one flit per
cycle.

The fairness in a network is often reached at the cost of reducing the total bandwidth. A bandwidth
allocation is said to be max-min fair iff an increase of any bandwidth must be at the cost of a decrease
of some already smaller bandwidth [33].

A well know algorithm to solve max-min fair allocation for unsplittable path is the “Water Filling”
algorithm [17, 4] also known as “Progressive Filling” algorithm. An instance of this algorithm and a
comparison with rate-sum maximization has been proposed in Jafari et al [78]. The Rate-sum policy
maximizes the sum of the rates without any guarantee of minimal rate for the flows. This policy can
lead in the worst case to some flow with a bandwidth of 0 while in the worst case, max-min fairness
ensures the same rate for all the flows.

Resolution of max-min fairness problem with splittable flow (MMFSP) can be done in polynomial
time using series of linear programming [98].

4.2. NETWORK-ON-CHIP 53

time

R(t)

#flits

Figure 4.14: Cumulative input function R(t) representing the data produced by a source in the
network.

This linear program maximizes a min variable that is less than each sub-flow rate. As the flows
are split into several sub-flows, the sum of these sub-flows is 1. After execution of the linear program,
the saturated flows have the value min. The bandwidth of saturated flows are set to min and removed
from the maximization function. These steps are repeated until all the flows are saturated.

We computed several set of routes. We need a mean to compare them. Comparing the average
rate of the flows for a given set of routes does not guarantee to select a fair solution. For instance, the
solution with the worst minimal rate can be selected. If the minimal rate is chosen as the criterion of
comparison, it is possible that there are several solutions with the same minimal rate. In this case,
the second one has to be compared, etc. In [98], the lexicographical vector is used to compare the
solutions. This vector is composed of the sorted rates allowing a fair comparison.

Lexicographic vectors are sorted according to the rate (∀i < j, vi < vj). Comparison of vector v
and w is done in increasing order until one rate is greater than the other. Formally:

v > w ⇔ ∃n,∀i < n, vi = wi and vn > wn

Routing and bandwidth allocation are required to bound delays on the NoC. In the next section,
we present one theory for real-time networks.

4.2.7 Network Calculus

In this section, we provide a brief introduction to the Deterministic Network Calculus (DNC). We do
not claim to be complete but sufficiently to make this manuscript understandable. We advice the
lecture of the reference book from Le Boudec and Thiran [86] for more detailed explanations.

Deterministic Network Calculus is a theory invented to compute end-to-end delays and buffer size
in Asynchronous Transfer Mode (ATM) networks. More recently it has been used for Avionics Full
Duplex Switched Ethernet (AFDX) networks certification [56, 65].

The principle of DNC is that, from a model of the network elements and from a model of the traffic
or the exact traffic curve, properties can be deduced from this network. If maximum information is
known, the bounds can be accurate.

A flow is represented by a cumulative input function R(t) which represents the number of byte/flit
produced by a source as represented in Figure 4.14. Normally, this function is discrete; nevertheless,
this can be over-bounded with a continuous function. Input function in Figure 4.14 is a staircase
function due to the functioning of a network. The output function of a network element is called
R∗(t) and corresponds to the transformation of R(t) by this network element.

Notations.
– [x]+ := max(0, x)
– 1{y} is 1 when y is true, 0 otherwise.
– The infimum of a set S is the largest value x such that @v ∈ S, v < x. If the minimum of this
set exists, then minS = inf S.

54 CHAPTER 4. BACKGROUND: MANY-CORE

Min-Plus Algebra. DNC is based on the min-plus algebra. Classic algebra is based on addition
and multiplication. In min-plus algebra they have been replaced with infimum which is the greatest
lower bound (or minimum if exists). This algebra is noted (R∪ {+∞},∧,+) where ∧ is the minimum
computation and + is it addition.

Example 13. (3 ∧ 7) + 2 = 3 + 2 = 5

Now, we present the most useful operation of this algebra: the min-plus convolution. It describes
operation on curves. This operator is associative, hence, we can reason on two curves without loss of
generality.

Min-Plus Convolution
(f ⊗ g)(t) = inf

0≤s≤t
{f(t− s) + g(s)}

and 0 for t < 0.
Figuratively, the min-plus convolution of two curves a and b corresponds to sliding b on a over the

time (the point (0,0) of b is a point on a) and keeping the minimum between them. This sliding of the
curve b corresponds to the operation performed in Section 4.2.5 to check that the traffic complies with
the leaky bucket. Better, the min-plus convolution describes exactly this process of traffic limitation.
That is why the min-plus algebra has been chosen.

Min-Plus Deconvolution
(f � g)(t) = sup

u≥0
{f(t+ u)− g(u)}

Arrival Curve. To be able to guarantee end-to-end latency, traffic has to be bounded in the
network. An arrival curve is a function α defined for t ≥ 0. Input function R is bounded by a service
curve if R(t)−R(s) ≤ α(t− s) [86].

Using this algebra, R is constrained with an arrival curve α iff:

R ≤ (R⊗ α)

The arrival curve of a leaky bucket (see Section 4.2.5) is an affine curve expressed with:

γr,b =
{
rt+ b if t > 0
0 otherwise

The network element ensuring that the input curve is compliant with the arrival curve is called
greedy shaper. A variant is the packetized greedy shaper, ensuring the transmission of packets of size
≤ lmax and these packets are delayed to ensure the arrival curve.

This maximal packet size constrains the arrival curve: if α(0) < lmax, the packets can stay in the
buffer forever. Hence, as stated by Proposition 1.7.1, p59 of [86], ∀t > 0, α(t) ≥ lmax . Hence, for a
leaky bucket γr,b, b ≥ lmax.

Service Curve. We saw that an arrival curve provides an upper bound of the input curve. The
minimum service curve is a lower bound of the traffic handled by a network element. The minimum
service curve is often simply called service curve. Considering a system with an input R and an output
R∗, if the guarantee offered by this system is the service curve β, then the output can be expressed as
follows:

R∗ ≥ (R⊗ β)

An example of service curve is the peak rate function λR which ensures a fixed rate as output.
This function cannot be implemented in reality since it does not introduce delay and is thus only
theoretical.

4.2. NETWORK-ON-CHIP 55

R r

R

r

t

b

t

b

t
λR(t) γr,b(t) (λR ⊗ γr,b)(t)

Figure 4.15: Min-plus convolution (λR ⊗ γr,b)(t).

λR =
{
Rt if t > 0
0 otherwise

Example 14. Let us consider a flow characterized by an arrival curve γr,b entering a system
with a service curve λR with the constraint r ≤ R. Let us compute (γr,b ⊗ λR)(t).

For t < 0:
(γr,b ⊗ λR)(t) = 0

For t > 0:
(γr,b ⊗ λR)(t) = inf

0≤s≤t
{γr,b(t− s) + λR(s)}

= inf
0≤s<t

{γr,b(t− s) + λR(s)} ∧ inf
s=t
{γr,b(t− s) + λR(s)}

= (γr,b(t) + λR(0)) ∧ (γr,b(0) + λR(t))

= (rt+ b+ 0) ∧ (0 +Rt) = (rt+ b) ∧Rt

A graphical representation is given in Figure 4.15.

The rate-latency function βR,T is a service curve with a limited rate R and a delay T . Note that,
βR,0 = λR.

βR,T =
{

0 if t < T

Rt otherwise

Convolution is shown graphically on Figure 4.15.
If several flows aggregate into one, the arrival curve is the sum of their service curves.

Delay and Backlog. Most of the DNC theorems work only if the buffers of the network elements
are large enough. Nevertheless, physical network have constraints on buffer size. Hence, an interesting
value is the backlog which is the amount of data in the system, considering an input function R and
an output function R∗:

backlog(t) = R(t)−R∗(t) ≤ sup
s≥0
{α(t)− β(s)}

This corresponds to the maximal vertical deviation between the input and the output functions.
To compute the delay, a constraint is that packets are delivered in FIFO order by the system.

This delay is the maximal horizontal deviation between the input and the output functions.

d(t) = inf
t≥0
{R(t) ≤ R∗(t+ s)}

56 CHAPTER 4. BACKGROUND: MANY-CORE

r
b

R

rR

t tt

βR,T (t) (βR,T ⊗ γr,b)(t)γr,b(t)

backlog

T

delayb

T

Figure 4.16: Min-plus convolution (βR ⊗ γr,b)(t). Maximum horizontal and vertical deviations show
respectively the delay and backlog bound.

Figure 4.16 shows the graphical computation of the delay and the backlog of this system.

Delay and Backlog Bounds Under Multiplexing. A multiplexing network element merges
several flows. This process of multiplexing different flows is called arbitration or scheduling. Some
multiplexing network elements guarantee the temporal ordering between the packets of different flows,
i.e., the order of the packets at output is the same as the order of the packets at input. Furthermore,
an assumption for the DNC analysis is that the packets of the same flow are handled in FIFO order.

The multiplexing policy of a greedy network element can be abstracted only if this abstraction is
conservative. There are several ways for abstracting the multiplexing policy of the network element:
priority-based, blind, FIFO, etc. The blind multiplexing is used when there is no information about
the packet arbitration. This is equivalent to the priority-based multiplexing where the flow of interest
has the lowest priority. If the aggregate input flow rate is smaller than the rate of the service curve,
the time requires by a packet pass through the arbiter is finite.

Theorem 6.2.1 from [86] Consider a node serving two flows, 1 and 2, with some unknown
arbitration between the two flows. Assume that the node guarantees a strict service curve β to
the aggregate of the two flows. Assume that flow 2 has α2 as an arrival curve. Define β1(t) :=
[β(t)− α2(t)]+. If β1 is wide-sense increasing, then it is a service curve for flow 1.

The FIFO multiplexing can be used if the network element ensures ordering between the packets
of the two flows. In other words, FIFO applies if a packet coming at t is transmitted after all the
packets arrived strictly before t.

Proposition 6.4.1 from [86] (FIFO Minimum Service Curves) Consider a lossless node
serving two flows, 1 and 2, in FIFO order. Assume that packet arrivals are instantaneous. Assume
that the node guarantees a minimum service curve β to the aggregate of the two flows. Assume that
flow 2 has α2 as an arrival curve. Define the family of functions β1

θ by

β1
θ (t) = [β(t)− α2(t− θ)]+1{t>θ}

Call R1(t), R′1(t) the input and output for flow 1. Then for any θ ≥ 0

R′1 ≥ R1 ⊗ β1
θ

As recalled in [86], the minimal β1
θ when θ ≥ 0 has to be considered for computation.

4.2. NETWORK-ON-CHIP 57

Tandem of Network Elements. In this chapter, we saw how to compute the service curve of one
network element and its consequence on flows. In real networks, the flows pass through several network
elements. The DNC gives a direct computation of the service curve resulting of the concatenation of
these network elements.

The service curve of a tandem of two of servers with respective service curves β1(t) and β2(t) is
(β1 ⊗ β2)(t) This formula can be applied to series of network elements.

DNC is a complete framework to compute backlog and delay bounds of flows within a network. To
be tightly analyzable, a network has to fulfil some requirement such that the ordering of the packets
in the links.

DNC is a very general framework. For a particular network, a subset can be sufficient. We use a
very simple subset of the DNC for bounding the delays on the Kalray MPPA2 NoC, nevertheless this
provide good results.

4.2.8 Classical Artificial Instances of Flows
The efficiency of a routing algorithm depends on the application. As a consequence, the only way to
compare algorithms for NoC is to compare them on the same instance of flows. There exist plenty of
classical instances of flow for 2D grid networks. In this section, we present some well-known traffics
that we use in our work to compare routing algorithms.

Unicast. There are four classical instances of flows [6] often used for unicast routing algorithm
comparison.

Figure 4.17a shows Bit-Complement which consists in creating flows between each source of id S
and their ones’ complement D (bit-wise not).

D = not S

Figure 4.17b shows Bit-Reverse which consists in creating flows between each source S and the
destination D corresponding to the reversed bits of S.

∀i ∈ [0, B], D(i) = S(B − i)

with B, the number of bits to encode the id (this implies power of two numbers for a grid of
dimension N).

Figure 4.17c shows Shuffle which consists in creating flows between each source S and the destination
D with the following relation:

D = ((S << 1)&(N − 1))|((S >> (log2(N)− 1))&1);

with N, the number of nodes. As in C, << and >> are bit shifts, & and | are respectively and
and or operations.

Figure 4.17d shows Tornado. Previous instances of flows were defining a relation between
identification numbers S and D of the nodes whereas Tornado defines a relation using the position
of the nodes on a grid. A relation between the coordinates (Sx, Sy) and (Dx, Dy) is defined. The
dimension N of the grid must be power of two.

Dx =
(
Sx +

√
N

2 − 1
)
mod
√
N

Dy =
(
Sy +

√
N

2 − 1
)
mod
√
N

58 CHAPTER 4. BACKGROUND: MANY-CORE

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

(a) Bit-Complement

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

(b) Bit-Reverse

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

(c) Shuffle

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

(d) Tornado

Figure 4.17: Classical Instances of Flows

4.3. THE KALRAY MPPA2 59

Multicast. For multi-cast, the unicast instance of flows do not correspond since some are symmetrical
(as bit-complement or bit-reverses), hence they are not adapted to connect more than two nodes.

One classic method to generate flows is the uniform traffic where each node has the same probability
to reach any node. An alternative is hotspot where some nodes have a higher probability to be reached.

Rent is a law where nodes close to each other have a higher probability to communicate [18]. The
following formula from [18] gives the probability of two nodes to communicate in function of their
distance d.

P (d) = 1
4d [(1 + d(d− 1))p − (d(d− 1))p + (d(d+ 1))p − (1 + d(d+ 1))p]

with p the Rent coefficient. Measures on actual application have shown that coefficient between
0.55 and 0.75 are representative of real applications [7].

4.3 The Kalray MPPA2
In this section, we present the Kalray MPPA2 with emphasis on the time-predictable configuration.
This is the platform used for the experiments. As a consequence, the features useful for high-
performance computing (HPC) usage of the processor are eluded but the feature required to make
this document self-contained are presented.

The Kalray MPPA-256 Bostan4 also called MPPA2 is a commercial many-core processor. It has
been designed to offers high performance [77], low power consumption and predictability.

4.3.1 Cores

4.3.1.1 VLIW vs. Out of Order Pipeline

The cores of the Kalray (called k1) are Very Long Instruction Word (VLIW). This technology ensures
good performance thanks to instruction-level parallelism while relying on in-order pipeline. For
out-of-order pipeline, a dynamic engine schedules the ready instructions on the free execution unit.
This leads to unprecise WCET analysis [127].

A VLIW processor has numerous instruction level parallelisms and the processor is not responsible
for the schedule [53]. A VLIW core executes bundles that correspond to an aggregate of simple
instructions. The content of a bundle is limited by execution units presents in the core and by the
data-dependencies. On the Kalray cores, the execution units can be arithmetic logic unit (ALU),
load/store unit (LSU), floating-point unit (FPU) or branch unit (BCU). We can highly benefit from
instruction level parallelism if there are several of them. A reservation table gives the required
execution unit for each instruction.

The construction of the bundles is done at compile time and this construction is similar to a
two-dimension bin-packing problem where one dimension is time, and the other dimension is the
execution units. The execution order of the bundles on the processor is the same as the order of the
bundles in the binary.

An optimized schedule for the instructions in the bundles can be complex to compute, but this
computation is done at compile-time and not by hardware. This ensures simple hardware.

Each core has private caches, two timers and can access the network-on-chip.

4.3.1.2 Caches

Cache behavior. Each core has one private instruction cache and one private data cache. Both of
them follow the least recently used (LRU) policy which ensures good cache predictability (as explained
in Section 4.1).

4http://kalray.eu

http://kalray.eu

60 CHAPTER 4. BACKGROUND: MANY-CORE

C12

C8

C4

C0

C13

C9

C5

C1

C14

C10

C6

C2

C15

C11

C7

C3

W3

W2

W1

W0

E3

E2

E1

E0

N0 N1 N2 N3

S0 S1 S2 S3

(a) Kalray MPPA2

P0 P1

P2 P3

P4 P5

P6 P7

RM

Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

Tx

8
sh
ar
ed

m
em

or
y
ba

nk
s 8

shared
m
em

ory
banks

(b) One compute cluster
(Courtesy of Hamza Rihani)

Figure 4.18: (a) Overview of the Kalray MPPA2 with the 16 Compute Clusters in blue and the I/O
Clusters in green. (b) On compute cluster with the 16 cores and the shared-memory.

The data cache (DC) is associated with a write buffer (WB) whose purpose is to reduce the
number of writes issued to the memory due to in-place modifications thanks to a merging mechanism.

When data are read, if there is a cache miss, data are fetched from the memory and stored in
the DC. If needed the LRU policy evicts the oldest line. When a value is written, it goes to the WB
either by modifying the already present value or by going to a free space. The WB tries to always
keep one free space to fasten the allocation of a new element.

The cache is not write-allocate, i.e., if the write hits in both the DC and the WB, the modification
is applied to both of them. If only the WB hits, the data is not allocated in the DC.

Software-based cache coherency. In multi-core processors, the coherency of the cache is an
important parameter. A cache is said non coherent if for the same address, the value can be different
at different places of the system. For instance, the address 0x10020 can have a different value in the
DC of core 1, in the WB of core 2 and in the memory.

There are two ways to restore the coherency: either with a hardware cache coherency mechanism
or by software. In the MPPA2, the caches are non-coherent but the coherency can be enforced with
maintenance instruction to force the DC to refresh the data from the memory or to force the WB to
commit the data in the memory.

For a hardware cache coherency, the analysis is difficult since a memory access of one core can
lead to a cache miss of another core. The software-based coherency optimizes the real-time analysis
since each core is responsible for updating its own cache.

4.3.2 Cluster
The Kalray MPPA2 is organized in clusters. Each cluster is comparable a multi-core with its own
memory and a set of cores. In a cluster, communication is done in shared memory. Figure 4.18b
shows one compute cluster.

There are 16 cores in each compute clusters. They are called PE (Processing Element) named
P0...P15. Additionally, a resource manager (RM) core can be configured to have more rights than PEs.

A debug support unit (DSU) provides a global clock for the chip and a trace support. The
reception unit (RX) and the transmission unit (TX) are responsible of the NoC transmissions.

4.3. THE KALRAY MPPA2 61

R
R

R
R

P
r
i
o

NoC RX

RM

Core 0
Core 1

Core 15

high

low

...

shared-memory bank

Figure 4.19: Arbiter for one memory bank of a MPPA2 Compute Cluster.

4.3.2.1 Shared-Memory

The shared memory of the MPPA2 is a static random access memory (SRAM). This memory does
not need refresh and has a constant access time.

This memory is organized into independent banks such that an access to one bank has no impact
of the access time to another bank. The addressing mode can either be configured in blocked mode or
in interleaved mode. In blocked mode, the addresses relative to one memory bank are contiguous.
This mode eases the mapping of the data in memory. In interleaved mode, the sequential addresses
are moving from one bank to another every 64 Bytes. This mode offers a better average performance
since load due to sequential access is balanced among the different memory banks.

Each bank has a private memory arbiter. Figure 4.19 shows the three arbitration levels. In the
first stage, the priority is given to the data received from the NoC, then a round-robin is made
between the resource manager core (RM) and the cores, then a last level arbitrates between the
cores in a round-robin way. This RM executes operating system for some specific operations (such as
asynchronous NoC transfer), nevertheless if such operations are not used, RM does not interfere with
the other cores.

4.3.2.2 Input/Output Clusters

Figure 4.18a shows the I/O Clusters of the MPPA2 in green. They are named North, South, East
and West. A topological difference with Compute Cluster is that I/O Clusters have 4 routers, e.g.,
the routers of the I/O Clusters West are: W0, W1, W2, W3. I/O Clusters have a direct access to
the external SDRAM memory, the PCIe (Peripheral Component Interconnect Express), the Ethernet
ports and some serial ports. These I/O clusters have only 4 cores and the cache is coherent.

These I/O clusters are the entry point to configure and run the compute clusters. The MPPA2
can be used either as an accelerator for an x86 computer of as a stand-alone card. In this case, an
I/O Cluster is the master and can be configured to fetch the code from an external flash memory.

4.3.2.3 Clocks and Synchronizations Mechanisms

In this section, we explain the synchronization mechanisms of the MPPA2. They are necessary to
implement time-triggered and event-triggered execution.

Clocks are said isochronous if they are equals. Clocks are said mesochronous if they have the same
frequency but the phase can be different. All the clocks of the MPPA2 have the same frequency.

In each cluster, there is a special timer called debug support unit timer (DSU timer). It is reset
when the processor is powered on. As a consequence it is isochronous since it has the same value in all
the clusters. Clocks of the cores are mesochronous since they are reset when the core is powered on.

In each cluster, some special registers called message_ram are accessible from any core and are
able to generate synchronous event to all the cores. The set of subscribers to this event can be
configured. A signal is emitted when message_ram reaches a special value which is the maximum

62 CHAPTER 4. BACKGROUND: MANY-CORE

0

4

12

8 10

2 E0 W0

W2

1

9

3

11

75

13 15

6

14

E2

S1S0 S2

N0 N1 N3

W3E3

E1 W1

N2

S3

Figure 4.20: A 2D-grid view of the Kalray MPPA2 topology (also known as Pierre’s topology).

value (0xFFF...F). Any core of the cluster can transmit a value to this register and a bit-wise or
operation is computed between the current value and the transmitted value.

4.3.3 Network-on-Chip
The MPPA2 has a network-on-chip which is the only means of communicating between the clusters
and between the I/O clusters and the other clusters. For instance, if the PE of a compute cluster
wants to read data from the external memory, the data will be transmitted through the NoC and an
I/O cluster is responsible for this transmission.

The functioning of the NoC is remote direct memory access (RDMA) since data can be directly
written in distant memory. This remote memory write feature is handled by the hardware directly.
The remote memory read has to be implemented with software protocol and special NoC configuration.

Topology and 2D-Grid. The Kalray has a double-mesh topology ensuring that the maximum
distance between two nodes is 4 hops. As depicted in Figure 4.18a, there are two kinds of links: the
short links and the long links. Short links connect odd and even clusters together if the processor.
long links connect I/O cluster of the opposite side. There is one router per compute cluster and four
routers per I/O cluster.

By rearrangement of the nodes of this network, a regular 2D-grid topology can be deduced.
Figure 4.20, shows the North, South, East and West I/O clusters with a letter and a number. The
compute clusters are named with numbers. We will show in Section 7.5.3 how the hole in the middle
of the grid is handled when computing the routes.

Overview. Figure 4.21 shows the functioning of the NoC. A TX engine is composed of a packet
shaper and a bandwidth limiter. The packet shaper forges packets with an header and a payload.
The header is composed of the route and an identifier of the destination buffer. The route indicates
the direction to take at each router. The bandwidth limiter blocks the packet until there are enough
credits to send it.

A RX engine is a DMA writing the payload in the shared-memory. It is configured with the
address of the destination buffer and an unique identifier.

Route. Unicast routes are encoded as a list of directions (North, South, East or West) in the
packet’s header. This list is consumed at each router to select the next link. The termination is
encoded with a direction leading to the previous node. As a consequence, a route which goes back to
the previous node cannot be programmed. One direction is encoded on two bits.

4.3. THE KALRAY MPPA2 63

TX

TX

TX

PE 0

PE 15

Router Router

...

Shared-
Memory

ArbiterRouter...
...

East
West RX 1

RX 0

RX 15

...Buffer 15

Buffer 1

Buffer 0

Cluster 0 Cluster 8

...

Figure 4.21: Schematic of the functioning of the MPPA2 NoC.

Similarly to unicast-routes, a multi-cast route is a path through routers. A each router, the packet
can be delivered to the cluster. Consequently, three bits are required to encode each hop: two bits for
the direction and one bit to enable the delivery.

Packet Shaper and Hardware Bandwidth Limiter. There are 8 packet-shapers in each cluster.
To be able to send a packet, a core needs to configure a packet shaper with the header and the
configuration of the bandwidth limiter. The header contains the route and an identification of the
destination buffer.

A packet shaper is responsible for adding the header to the packet before sending the packet. The
minimal size and maximal size of the packet can be configured. A buffer in the packet shaper stores
the data before they are sent. If this buffer contains more data than authorized, the data is trunked
in several packets. The packet-shaper does not send data if there is not enough data except if a flush
is performed. In this case, padding is added to the packet to guarantee a minimal size.

The Hardware bandwidth limiter is based on the leaky bucket principle and has the same functioning
as the one presented in Section 4.2.5.

Configuration of the reception. There are 128 RX engine in each cluster. They are configured
with the address and size of the destination buffer in the shared-memory. The identifier of the RX
engine is included in the packet header to select the right destination buffer. This RX engine can
generate an event to the cores when a packet is received.

4.3.4 Summary of the Kalray MPPA2 Features
In this section, hardware feature of the MPPA2 relative to the timing predictability have been
presented. They can be summarized as follows:

– Time-predictable cores with LRU policy caches
– Banked shared-memory with independent access from the cores
– Software-based cache coherency
– Efficient synchronization of the cores in the clusters
– Wormhole NoC with static routes, packet shaper
– Configurable packet size
All these form a basis for the implementation of time-critical software, nevertheless, they require

special configurations that will be discussed in Chapter 7.

64 CHAPTER 4. BACKGROUND: MANY-CORE

5 Method Overview: Dataflow Synchronous Languages to
a Many-Core Processor

Previous chapters where dedicated to the prerequisite to understand the method. In this chapter, we
explain the global method for the parallel implementation of a Dataflow Synchronous Program on a
many-core processor.

The Parallel Intermediate Representation (PIR) describes the program as a set of computing
entities communicating together. This PIR divides the work into two sub-problems: extraction of the
parallelism from the input program discussed in Chapter 6 and the implementation of this PIR on
the many-core discussed in Chapter 7.

5.1 Parallel Intermediate Representation Definition
The PIR has to be precise enough to make the implementation of the program possible but abstract
enough to reason about it.

The straightforward PIR of a data-flow program takes advantage of node division. The behavior
of the program is abstracted from the PIR. Hence, due to the data-flow property of Scade and Lustre,
we consider the PIR as a set of nodes communicating together.

For data-flow Synchronous programs, the communication graph and the dependency graph are
not equal due to the delayed communications (pre operator).

Nodes, functional code and tasks. A node is a sub-program in the main data-flow program.
It is a candidate for parallelism, nevertheless, it does not necessarily lead to a parallel task. The
functional code is the sequential compilation of the behavior of one node. The parallelism extraction,
extracts the parallel tasks from the program. This step judges whether a node has to become a task.
Finally, the tasks are mapped on the cores of the processor and scheduled. A task consists of the
functional code of the node plus the communication code.

5.1.1 Task Graph and Communication Graph
The PIR of a data-flow Synchronous program is composed of a task graph and a communication
graph. Figure 5.1, shows the PIR of a program on the top of the figure where all the top-level nodes
are implemented into tasks. The dependency graph represents the partial order of the nodes and the
communication graph represents both the instantaneous and the delayed communications.

The dependency graph is a directed acyclic graph (DAG). Its vertices are tasks and its edges are
precedence constraints.

The communication graph can be cyclic if there is at least one delay for each feedback loop. The
vertices are tasks and the edges are communication channels. A channel is a relation between two
tasks. It carries the size of the transmission and the number of delays. If there is no delay, the channel
is also a precedence relation.

65

66 CHAPTER 5. METHOD OVERVIEW

initpre

Node 6

Node 1

Node 2

Node 3

Node 4

Node 5

N1 N2 N3

N4 N5
N6

Inputs

Outputs

Communication graph

NoC Routing

generator
NoC ConfigurationWCTT

Network Calculus

WCET Analysis

MIA: Release date
computation

+ communication code
Generation of system

Core and Buffer
Allocation

Contribution

External tool

Time-critical
constraints

Sequential compiler

N1.c N2.c N3.c
N4.c N5.c N6.c

Core 0: N1; N4; N6

Core 2: N3
Core 1: N2; N5

PIR + Mapping
+ Schedule

N6

N2 N3N1

N4 N5

Mapping +
Non-preemptive
scheduling

Parallelism Extraction

PIR

Executable for
Kalray

release dates

NoC

Schedulable?

& fair rate attribution

+WCET

Route selection

functional code
Dependency DAG

Figure 5.1: General framework for parallel implementation of Lustre/Scade with time-critical
constraints on the Kalray MPPA2. White boxes are external tools while colored boxes are our
contributions.

5.2. FROM PROGRAM TO PIR: TASK EXTRACTION 67

The dependency graph is used for scheduling the program and generating the synchronizations,
while the communication graph is required to implement the communications. Consequently both
graphs are required.

5.2 From Program to PIR: Task Extraction
The role of the [Parallelism Extraction] step from Figure 5.1 is to extract the parallel tasks from
the program and thus to generate the PIR. This step is detailed in Chapter 6.

In our method, the tasks are extracted from the top-level node of the program. In this node, each
sub-node is considered as candidate for parallelism and thus one task is created from each of them. A
syntax analysis of the program extracts the tasks and the channels of communication between them.

This top-level method is similar to methods based on an architecture description languages such
as Prelude or Giotto. In fact, we consider the top-level node as an ADL of the program.

For each extracted task, the functional code is compiled from the corresponding node using a
standard Lustre/Scade compiler.

5.3 Implementation Choices to Take Advantage of the Banked
Shared-Memory

In this section, we present the problems due to the shared-memory and the technical choices adopted
in our method.

5.3.1 Inter-Task Communications: Remote Read vs. Remote Write
We consider platforms with a distributed memory or a banked memory with assignation of private
banks to the core (similar to a scratchpad memory). We talk about remote write communications
when data are copied by a core to the memory of another core. Conversely, we talk about remote
read if a core reads the data in a remote memory.

The main difference between these two approaches is the location of the communication buffer.
For the remote write, a task directly writes in the input buffer of other tasks, while for remote read a
task reads in the output buffer of other tasks.

In our work, we choose the remote write communication for the shared-memory communications
to be coherent with the NoC communications since the NoC of the Kalray MPPA2 offers direct remote
memory access in write only.

5.3.2 Time-Triggered Execution Model
In a data-flow program, nodes are triggered by the availability of the input data. When this data-flow
program is implemented by a set of tasks executed on a parallel architecture, this way of triggering tasks
has to be reproduced. This can be done with an even-triggered mechanism where a synchronization
is set between the source of the data and the destination node. This execution is also called “best
effort”. The execution is said time-triggered if the input data are read at a specific date. To preserve
the semantics of the program, we need to ensure that the inputs are arrived at this date.

The granularity of the interference analysis is at the task level. Two tasks can interfere as soon
as they execute concurrently and they perform access in the same memory bank. Figure 5.2 shows
Task A running on Core 0 and Task B running on core 1. A request from a task can be delayed by
an access from the other task. In this case the actual duration of the task can exceed the WCET in
isolation. Nevertheless, a Worst-Case Reaction Time (WCRT) taking into account the interference
can be computed.

Figure 5.3 shows two executions of the same program. The tasks start as soon as possible. In
the first execution, Task B does not interfere with Task C. In the second execution, Task A executes

68 CHAPTER 5. METHOD OVERVIEW

����
����
����

����
����
����

��
��
��
��

����
����
����

����
����
����

Core 0

Core 1

Task A

WCET

Task B

WCRT

AccessRequest

Figure 5.2: Impact of concurrent memory access on the WCET. The dashed parts represent the delays
due to concurrent memory accesses.

��
��
��

��
��
��

���
���
���

���
���
���

Task A Task B

Task DTask C

Task DTask C

Task BTask ACore 0

Core 1

WCET C

WCET B

WCET A

Core 0

Core 1

WCET A WCET B

WCET C

Figure 5.3: Two executions of the same program. In the second execution, a faster execution of Task
A leads to a slower overall execution. The dashed parts are the delays due to concurrent memory
accesses.

faster making Task B and Task C interfering. This leads to a slower execution of Task C and this
leads to a slower overall execution.

A solution from Skalistis et al [119] is to force precedence between tasks using synchronization.
For instance, in Figure 5.3, a precedence constraint would be added between Task B and Task C.

In our work, we rely on a time-triggered execution where a release date is fixed for each task, such
that the tasks cannot start earlier if they are ready.

Rihani et al. [113] present a time-triggered execution model and a tool to compute the release dates
of the tasks ensuring the availability of the inputs. As explained in Section 4.1.1.2, this time-triggered
execution make WCRT bound less pessimistic. Consequently, we choose a time-triggered execution
for the tasks.

5.4 Implementation of a PIR on a Many-Core
Once the PIR has been extracted, it can be implemented on the platform. The implementation must
preserve the semantics of the input program and match the time-critical requirements.

5.4.1 Static Mapping-Scheduling
The [Mapping+Scheduling] step from Figure 5.1 in an external tool that finds a good placement
of the tasks on the clusters and cores. Then it computes a schedule compatible with the data-flow.

5.4. IMPLEMENTATION OF A PIR ON A MANY-CORE 69

One classical optimization criterion for the mapping-scheduling algorithm is the duration of the
critical path of the program. Optimizing this duration requires the knowledge of the execution time
of each task. Nevertheless, these execution times depend on the shared memory congestion which
depends on the mapping. They also depend on the implementation of the communications.

This interdependency between the mapping-scheduling and the execution can be seen as a fixed-
point problem. We choose to break the loop by using the WCET in isolation of each task as an
approximation of the execution time. Consequently, the mapping-scheduling tool takes two inputs:
the dependency graph and the WCET in isolation of the tasks.

The computed schedule is static and non-preemptive. This avoids cache-related preemption delays
and unpredictable behaviors in order to ease the WCRT computation. Any mapping and scheduling
technique can be used as long as it takes into account the task dependencies. The schedule can be
checked using the PIR dependency graph. Gorcitz et al. [62] shown that mapping and scheduling of
multi-periodic applications using integer linear programming does not scale when the number of tasks
and the number of constraint are high. Thus this step requires heuristics. Our work relies on the tool
from Nguyen et al. [100] which considers the effect of private caches in the execution time.

Figure 5.1 shows an example of mapping of one input program on three cores of the same cluster.
Each core executes a sequence of tasks: core 0 executes N1; N4; N6, core 1 executes N2 and N5 and
core 2 executes N3.

One memory bank is associated to each core. The code, data and communication buffers belonging
to this core are mapped on this bank. The [Code and Buffer Allocation] step from Figure 5.1
statically allocates the code, data and buffer of each task to the corresponding core. Consequently,
each core accesses exclusively its own bank, except when it communicates.

5.4.2 Release Dates and Final Executable
The [WCET Analysis] step from Figure 5.1 computes the execution time of the tasks in isolation.
The WCET analysis tools OTAWA [8] and AiT [50] support the Kalray MPPA2 processor.

The [MIA: Release date computation] step computes a release date for each task taking into
account both precedence constraint and memory interference. We used the MIA tool [113] but there
is a similar method from Skalistic et al. [120]. The principle of the MIA tool is to compute iteratively
the durations of the tasks and the release dates of the tasks. The durations are initialized with the
WCET in isolation of the tasks. At each iteration, the durations are increased with the memory
interferences. We describe one iteration of the algorithm:

1. The release date of each task is computed such that it is the smallest date where all the
dependencies are satisfied. The end date is the release date + the current duration of the task.

2. For each task, the set of interfering tasks is computed. Two tasks interfere if their executions
overlap, i.e., there exists a date t which is between the release date and the end date of both
tasks. Furthermore, interference is only considered if two tasks access the same shared device.

3. The duration of each task is updated with its WCET in isolation plus the delay due to the
interfering accesses to shared-devices The algorithm is executed until convergence.

When the algorithm has converged, the WCRT of a task equals its duration if the program is
time-triggered using the release dates computed by this algorithm. A deadline can be set for each
task to check the time-critical constraints. If a deadline cannot be satisfied, the program is rejected
since it is not schedulable.

The [Generation of system + communication code] step generates the system code powering
up the cores, the implementation code of the static schedule and the communication code. In time-
triggered implementation, this step requires the release date of the tasks. Nevertheless, these release
dates depend on the WCET of the tasks which can be known only by analyzing the final binary since
the compilation can change the layout of the binary.

70 CHAPTER 5. METHOD OVERVIEW

There is interdependency between steps [Generation of system + communication code] and
[MIA: Release date computation] since MIA computes the release dates with the WCET analysed
on the final binary. Consequently, as represented in Figure 5.1, the release dates are integrated by
modification of the final binary.

5.4.3 NoC: Routes and WCTT
When tasks from different clusters communicate, the communication channel is implemented using
the NoC. We call flow, one communication through the NoC.

We choose to configure the NoC with a static route and a constant bandwidth limitation for each
flow. Consequently, the NoC configuration requires two parameters for each flow: a route and a
bandwidth to configure the bandwidth limiter. This configuration eases the Worst-Case Traversal
Time (WCTT) computation which is an upper bound of the transmission latency through the NoC.
The WCTT is required by the [MIA: Release date computation] step.

The [NoC Routing] step computes the set all the possible routes for a flow. For instance, if the
chosen algorithm is XY, there is only one possible route for the flow, conversely, if the algorithm is
HOE, there can be several routes.

The [Route selection & fair rate attribution] step selects one route per flow while optimizing
a global criterion. The criterion is the max-min fairness which maximizes the rate of flows of minimum
rate. This step is explained in Section 7.5.

Then, the [NoC Configuration generator] step generates the the packets’ header with the
selected route and the configuration of the hardware bandwidth limiter.

For each flows, their bandwidth and their route, the [WCTT Network Calculus] computes the
WCTT. This step is explained in Section 7.6.

5.5 The CAPACITES Project
CAPACITES is a French project with academic and industrial partners. The topic of this project is
the design of critical embedded software for a many-core architecture.

The framework represented in Figure 5.1 has been designed as part of the CAPACITES project.
The WCET analysis, the MIA tool, and the scheduling tool from Nguyen et al. [100] are from this
project.

5.6 Conclusion
In this section, we have briefly presented each step of a framework to compile data-flow Synchronous
programs on a many-core processor under time-critical constraints. The framework preserves the
semantics of the input program.

The hardware is configured to ease the WCET computation: the shared-memory is configured in
banked mode and the buffer, code and data are allocated in cores’ private bank in order to minimize
interferences. The NoC is used in a predictable way with bandwidth limiter and static routes. The
worst-case traversal time of communications through the NoC is bounded thanks to the deterministic
network calculus framework. The execution is time-triggered to ease the WCET computation.

6 Parallelization of Synchronous Programs

This chapter details the [Parallelism Extraction] step which creates the parallel intermediate
representation (PIR) from a hierarchical dataflow Synchronous program. An execution period can be
specified for each node in the dataflow. We present several solutions where the nodes are considered
as the minimal unit for parallelism.

6.1 Main Criteria to Select a Parallelization Method
In this section, we present the main characteristics of the parallelization methods. These characteristics
are properties of the code generated using these methods.

6.1.1 Centralized Execution
The parallel methods either provide a centralized execution or a decentralized execution. The
centralized execution is symmetric since the initiator of a task is also waiting for its completion. In
decentralized execution, the task responsible for task creation and the task waiting for the completion
can be different. Most of the time, the purpose of waiting for the completion of a task is to make sure
the output data are available.

For instance, considering an initiator task I triggering a task A. In centralized execution, the
initiator I is also responsible for waiting for completion of A and the information of termination.
In decentralized execution, an initiator task I can create a task A while a task B can wait for the
completion of A.

6.1.2 Hierarchical Parallelism Extraction
A hierarchical data-flow is composed of nodes which can be either leaf nodes or nodes containing
other nodes. Leaf nodes can be basic operators such as +, -, *, / or external function call.

The parallelism extraction is the selection of some nodes of the data-flow as candidate for a parallel
execution. The parallelism extraction is hierarchical if the candidate nodes are selected at any level of
the hierarchy.

For instance, in Figure 6.1, the level of nodes D and E is different from the level of I and J since D
and E are direct children of B, whereas I and J are direct children of F. Colored nodes are selected for
parallelism. Each selected nodes will be considered as one sequential task. This is visible for node H
which is selected entirely which means that it will be compiled into a single sequential task including
its sub-nodes K and L.

6.1.3 Code Traceability
Traceability between the code and the implementation is important for debugging and certification.
It ensures that any line of the final compiled code can be linked to the original Scade or Lustre code.

71

72 CHAPTER 6. PARALLELIZATION OF SYNCHRONOUS PROGRAMS

D

K

G

L

B C A

H

E

I
F

J

Figure 6.1: Hierarchical data-flow.

One solution to achieve this goal is to select the node as the compilation unit. Consequently, the code
corresponding to each node is visible in the final binary.

6.1.4 Special Case for Clocks and Delayed Communications
Clocks in Lustre are the expression of the conditional execution of nodes. They are usually compiled
into if statements by the Lustre compiler. In the case of periodic clocks, the execution of the nodes
can be statically scheduled, replacing these dynamic conditions by a regular pattern of execution
(hyper-period expansion).

The delayed communications (pre operator) can be handled in a centralized way or in decentralized
way. In centralized, the delayed communication can be implemented with a double buffer managed by
the initiator of the computations. In decentralized, it can be replaced with a special node which, at
each execution, provides the previous input as output and stores the new input value.

6.2 Parallelization of Lustre and Scade
In this section, we detail some approaches for the parallelization of Lustre or Scade.

6.2.1 Fork-Join for Dataflow Synchronous Languages
Fork-Join is a centralized construct for parallel execution. The fork operation (denoted with ↑) is the
creation of a new parallel task. It takes a function as parameter. The join operation (denoted with ↓)
waits for a parallel task to finish.

The inputs are transmitted when the task is forked and the outputs are read when the task is
joined. Scheduling fork, join and the local computations of the nodes is a multi-criteria optimization
problem that depends on the execution time of the nodes.

We apply the fork-join parallelization method on the example of Figure 6.2. We recall that the
execution is statically scheduled. We extract as much parallelism as possible.

6.2. PARALLELIZATION OF LUSTRE AND SCADE 73

pre init

A
100

B
50

C
100

D
50

E
50

F
200

H
G

Figure 6.2: Example of hierarchical data-flow Synchronous program.

CA E

B D F

CA E

F

↑A;↑B

(b) B D

↓A;↓B;↑C;↑D
↓D;↑F

↓C;↑E ↓F↓E

100 200 400

(a)

100 200

↓F↓C;↓D;↑E;↑F ↓E

350

↑A;↑B ↓A;↓B;↑C;↑D

Figure 6.3: Examples of fork-join

The schedule is static, meaning that the order of the fork is predefined. Many schedules are
possible. Two of them are presented:

Implementation (a):

H{ G{ ↑A; ↑B; ↓A; ↓B }; ↑C; ↑D; ↓C; ↓D; ↑E; ↑F; ↓E; ↓F}

Implementation (b):

H{ G{ ↑A; ↑B; ↓A; ↓B }; ↑C; ↑D; ↓D; ↑F; ↓C; ↑E; ↓E; ↓F}

Figure 6.3 shows two fork-join implementations of the same parallel program. Implementation
(b) takes advantage of the duration of the tasks to minimize the execution duration. The sequence
↑A; ↑B; ↓A; ↓B is used in both implementations since it corresponds to the execution of the same
node G. Preserving the G frontier enables modular compilation of the program and the traceability of
the code.

Both implementations (a) and (b) use one core dedicated to the execution of the fork and join
operations. Nevertheless, this is not necessary and an equivalent of Implementation (a) exists where a
core executes both fork/join operations and computations, e.g., A(), B(), C().

H{ G{ ↑B; A(); ↓B }; ↑D; C(); ↓D; ↑F; E(); ↓F}

74 CHAPTER 6. PARALLELIZATION OF SYNCHRONOUS PROGRAMS

We recall that the fork operation can only be performed on a task if the input data are present.
In other word, since the execution is centralized, the join operation must be performed on all the
dependent tasks before forking a new task. An equivalent of Implementation (b) on two cores giving
a duration of 350 is not possible under these conditions.

6.2.2 Decoupling of the Nodes Using Future in Lustre
Future [54] is a standard language construct to express parallelism. It exists in C++ and Java. The
beginning of the computation is decoupled from the usage of the result. In other words, it allows
launching asynchronous computations and only the access to the result of these computations is
blocking. In the following code, the function f is computed in parallel with g:

Future x = async f(i1);
int o1 = g(i2);
int o2 = h(!x);

The statement !x blocks until the computation of f has finished, then h can be computed.

Future in Lustre. Cohen et al [36] present an implementation of Future for Lustre. Combined
with clocks, this implementation allows launching a computation and getting the result at different
logical instants. Here is the introductory example from the paper [36]:

node a_slow_fast () = (y : float)
var big : bool ; yf , v : float ; ys : future float;

let
big = period <<3>>();
ys = (async 0.0) fby (async slow (y when big));
yf = fast (v whenot big);
y = merge big (!ys) (yf);
v = 0.0 fby y ;

tel

The built-in node period«n»() produces a Boolean flow true every n ticks. The expression async exp
launches the asynchronous execution of exp . The expression merge clk exp1 exp2 has the value exp1
when clk is true and the value exp2 otherwise.

If the async and the ! keywords, are removed, the program keeps the same semantics. The behavior
of the program is the following:

At the first instant, big is true and then slow is activated with the initial value 0. The output y
takes the value 0.0. The expression async 0.0 is a Future with the value 0.0, it is required since ys if
a variable of type future. At the second and third instants, big is false, fast is activated and output
y is the output of fast. Then at the fourth instant, slow is activated and the output of the program
is the output of slow.

Core 1:

Core 0: fast fast

slow

(big) (big)
2nd 3rd 4th

...

...

!

1st

async

Figure 6.4: Futures in Lustre for Parallel Computation.

To decouple the execution of slow in parallel with the two fast execution, the async and ! keywords
are added.

6.2. PARALLELIZATION OF LUSTRE AND SCADE 75

6.2.3 Parallel Subset in Scade
Pagano et al. [101] introduce a modification of the Scade KCG compiler to support expression of
parallelism in the Scade model. A parallel subset is a group of nodes selected for a parallel execution.
The specification of the parallel subsets is done with special pragma in the code or with an external
file.

Parallel subsets are a particular case of fork-join where the fork is done on a group of independent
nodes. The implementation of the communications and the scheduling is not generated since it
depends on the target platform. Consequently, the program must be completed with the system code
to schedule and execute tasks on the target platform, and the communication code to transfer the
buffers.

A B

DC

Subset 2

A

C

B

D

A B

DC

Subset 3

B

D

A
C C

B

Subset 1

D

A
Forbidden

Figure 6.5: The Scade Parallel Subsets.

The compiler checks if the program is parallelizable and rejects the programs with invalid parallel
subset. The compiler checks that there are no dependencies between the nodes of the subset. Figure 6.5
shows some examples of valid and invalid subsets.

When the parent node is compiled, the ↑ and ↓ statements have to be scheduled with the local
computation of the node. To do this, the Scade compiler considers the subset as one virtual node as
depicted in Figure 6.5. This node is scheduled with the other nodes of the parent node. Then, the
virtual node is replaced with a sequence of ↑, one for each node of the subset, followed by a sequence
of ↓, one for each node of the subset.

This method does not allow executing in parallel nodes from different parents. Figure 6.8 a
program which is not parallelizable with this method since nodes cannot be divided. Nodes A and B
are in the same node D and C has a different parent. This limitation exists to preserve traceability
and enable modular compilation.

For the program of Figure 6.2, the only possible implementation maximizing the parallelism is the
following:

H{ G{ ↑A; ↑B; ↓A; ↓B; }; ↑C; ↑D; ↓C; ↓D; ↑E; ↑F; ↓E; ↓F}

This schedule is represented in Figure 6.3(a).
Similarly to classical fork-join, the core responsible for forking can execute the following code:

H{ G{ ↑A; B(); ↓A; }; ↑C; D(); ↓C; ↑E; F(); ↓E}

We presented the Parallel subsets as a restricted fork-join. Fork-join is centralized since all
communications between the tasks are managed by the forking core. This drawback is presented in

76 CHAPTER 6. PARALLELIZATION OF SYNCHRONOUS PROGRAMS

CA E

B D F

↓F↑A;↑B ↓E↓A;↓B;↑C;↑D ↓C;↓D;↑E;↑F

F

(a)

(b)

100 200 400

100 200

↑A;↑B ↓A;↓B;↑C;↑D

B D

350

↓C;↓D

↑E;↑F ↓D

↑E

↓E

A EC

↓F

Figure 6.6: Comparison of the fork-join execution (a) and parallel subsets execution (b) with
decentralization enabled.

Figure 6.6(a) where the forking core centralizes communications that could be done directly, e.g., the
communication between node C and node E.

The parallel subsets method offers a special optimization enabling data-flow communications
between the different sections. The principle is that the tasks of two parallel subsets can communicate
directly if they are in the same parent node. This schedule is shown in Figure 6.6(b) where nodes
C, D, E, F communicate directly. Communication between nodes A, B, C and D is not direct to enable
modular compilation. This optimization does not enable direct communication for the inputs of node
D since the pre operator is a local computation of the forking node (see Figure 6.2).

In this example, the ↑ and ↓ operators have a slightly different meaning. Instead of representing
fork and join operation carrying both control and communications, they only correspond to a
communication. Then, the implementation of the ↑ operator has to ensure that the tasks do not start
until all the inputs are present. The implementation of ↑ and ↓ is not generated by the KCG compiler
and will be explained in Chapter 7.

6.2.4 Top-Level Node as an Architecture Description Language

In the Top-Level method, only one level of the program is considered. All the sub-nodes of the
top-level node are the candidates for parallelism. This is the common method used by ADLs such as
Prelude and Giotto.

The nodes are mapped on the cores of the processor and they are launched when their input
data are present. If there are more than one node per core, a schedule has to be computed. The pre
operator is handled in a data-flow way.

Figure 6.7 represents one schedule of the program of Figure 6.2 on two cores. Node G is candidate
for parallelism and consequently compiled as a sequential node.

The main problem of this method is that the node hierarchy may forbid some parallelism since it
creates useless synchronizations. For instance, in Figure 6.8, node A and B are the only computations
of node D and both A and B are required before the end of node D. Due to the dependency, node
A must be computed before B. Furthermore, node C depends on node D. Finally, A, B and C are in

6.2. PARALLELIZATION OF LUSTRE AND SCADE 77

G C

D

E

F

150 250 400

Figure 6.7: Schedule for the program of Figure 6.2 using the Top-Level Node method.

B

A C

D

Figure 6.8: Example of Non-Parallelizable Data-Flow Node.

sequence thus this program is not parallelizable with this method. Furthermore, node G of Figure 6.2
is compiled as a sequential node even though it contains independent nodes.

6.2.5 Data-Flow Flattening
Data-flow flattening [125] (or graph flattening) is a method to convert a hierarchical data-flow into a
flat data-flow by replacing each node with its internal data-flow. Figure 6.9 shows an application of
graph flattening method to the example of Figure 6.2.

pre init

A
100

B
50

C
100

D
50

E
50

F
200

H

Figure 6.9: Example of graph flattening for the program of Figure 6.2.

Tripakis et al. applied this method to Static Data-Flows (SDF) where the rates of the nodes
are written on the arrow making the destination node executed several times. This method causes
graph explosion for SDF graphs if a node with a high rate is replaced with its contents since the
contents are duplicated according to the rate. In Data-flow Synchronous programs, this rate is always
1 consequently the do not suffer from graph explosion.

This method makes more parallelism appear by removing the synchronization due to the structure
of the program. The drawback is the reduction of the traceability since some nodes are lost. This
flattening process yields some nodes with a low execution time. Each new task introduces new
communications. For small tasks, the cost of communication can be higher than the time saved by
parallelism.

To deal with this problem of minimal node execution time, the data-flow flattening can be made
partial. If the execution time (or an approximation) of each node is known, some nodes can be kept

78 CHAPTER 6. PARALLELIZATION OF SYNCHRONOUS PROGRAMS

unchanged if their flattening would produce too small nodes. Then, the resulting data-flow can be
parallelized with the top-level node method.

6.2.6 Methods Comparison
We need to choose a parallelization method which authorizes enough parallelism while matching some
constraints. The solution has to ensure the traceability of the generated code and it must authorize
an efficient static scheduling.

Characteristics Future Fork-Join Parallel Subset Top-Level Flattening
Hierachical yes yes yes no yes
Centralized yes yes yes/hybrid no no
Traceability yes yes yes yes partial
Clocks yes no no no no
pre support yes no no yes yes

Table 6.1: Comparison of the Parallelization Methods for Data-flow Synchronous Programs.

Table 6.1 summarizes the main characteristics of the methods. Future and Fork-Join are centralized,
hence they are not adapted for many-core architectures. In the case of Future, the compiler needs to
know the task durations to generate efficient code. Furthermore, these methods require a modification
of the source program to handle parallel execution. Future is the only method managing the Lustre
clocks to authorize decoupling. All other methods can handle multi-period programs by hyper-period
expansion. A static schedule of Fork-Join sometimes requires an extra core managing the fork and
join operations.

Parallel Subset is a centralized method. Nevertheless it authorizes decentralized communications
between some tasks. Some tasks start as soon as they are ready; some others are triggered with a
programmed fork operation. This method is hierarchical and the source program does not require any
modification. Traceability is ensured. Nevertheless, the pre operator is handled in a centralized way
as there is no special case for data-flow delayed communication.

The top-level node method is fully data-flow. The data-flow flattening can be considered as a
pre-transformation of the data-flow that may lost some traceability. Nevertheless, the top-level node
method offers traceability and a special case for the pre operator.

We selected the top-level node and the parallel subset methods since they offer traceability and
the modification of the source program is not required.

6.3 Contribution: Extraction of PIR from a Dataflow Syn-
chronous Program

In the previous section, several parallelization methods have been compared and we argued for the
selection of the Top-Level Node method and the Parallel Subsets. In this section, we present the
extraction of the PIR from a program using these two methods. In practice, we applied the top-level
method to the Lustre language, using the academic Lustre compiler to compile sequential parts of the
program, and the Parallel Subsets method to Scade, using the KCG Multi-Core compiler.

6.3.1 Parallelization Method 1: Lustre Top-Level
The PIR corresponding to a single synchronous data-flow node is quite straightforward to generate. If
this node contains local computations, each of them has to be considered as a node.

The dependency DAG is obtained thanks to a syntax analysis of the data-flow. The dependencies
due to delayed communication are ignored.

6.3. CONTRIBUTION: EXTRACTION OF PIR FROM A DATAFLOW SYNCHRONOUS PROGRAM79

The communication graph contains more information. Both the direct and delayed communications
are extracted and represented with channels. The channel contains the source, destination, transmitted
variables and the data type. If the communication is delayed, the number of delays and the constant
initialization value are recorded. Each sub-node is compiled separately.

DC

FE

G

Inputs

Outputs

Communication GraphDependency DAG

E

Outputs

G

Inputs

C D

F

Figure 6.10: PIR corresponding to the example of Figure 6.2 for the top-level node method.

Figure 6.10 represents the PIR corresponding to the example of Figure 6.2. The dependency
graph can be used to generate or validate a schedule. Channels are represented with arrows on the
communication graph. The channel from F to D has one delay and an initialization value init.

The PIR is represented as a structured Yaml file. This file is used to convey the information
about the tasks at each step of the toolchain. It describes the tasks and the channels. The mapping,
schedule and the timing information about the tasks will be appended later.

ExtractDependencies is a tool part of our toolchain which extracts the communications from a
Lustre node. A syntax analysis of the program is performed. It creates the channels and interprets
the pre operator as a channel with a delay. Then, each node is compiled separately as a fully-fledged
program. The resulting step function is the functional code of one task.

Our contributions are the extraction of the PIR from the program and the implementation of the
schedule and the communications channels. The implementation of the schedule and the channel for
the Kalray MPPA2 are detailed in Chapter 7.

6.3.2 Parallelization Method 2: Parallel Subsets from KCG Multi-Core
This section presents our second implementation of parallelization, based on the KCG Multi-Core
compiler. The KCG Multi-Core compiler provides sufficient information to build the PIR from the
program. It lists channels and dependencies but does not provide the schedule and the communication
implementation. A contribution of our work is this implementation. It will be detailed in Chapter 7.

6.3.2.1 Simple Data-Flow Program

The Parallel Subset method is centralized since it is based on fork-join, i.e., a task is responsible for
forking and joining the parallel nodes. This task alternates between sequential code with fork and
join statements and idle parts. Consequently, this task can be split into several sequential tasks.

The execution is partially centralized, hence this creates loop in the dependency graph. Conse-
quently, in the PIR corresponding to the example of Figure 6.2 we split H into three sequential parts
that correspond to fork and join instructions. Figure 6.11 shows the resulting PIR. The dependency
graph is alternating between sequential parts (H1, H2 and H3) and parallel execution. The schedule
of the parallel nodes is straightforward since the DAG gives the partial order. A single function for
node H is generated. It performs fork, joins and some computations. Consequently, it is mapped on a
dedicated core.

80 CHAPTER 6. PARALLELIZATION OF SYNCHRONOUS PROGRAMS

Dependency DAG Communication Graph

Inputs

Outputs

B

A

H
FD

EC

FE

BA

H2

C D

H3

H1

Figure 6.11: PIR corresponding to the example of Figure 6.2 for the parallel subsets method.

A

B
C

D

E

F

S1

S2

Automaton G

Figure 6.12: Example of Scade program with conditional execution.

The communication graph describes the communications between the main node and the parallel
nodes and between the parallel nodes. This graph has no delayed communications since the pre
operator is considered by KCG as a local computation of H and is replaced with an instantaneous
communication.

6.3.2.2 Special Case for Automata

Scade automata have been presented in Section 3.1.2.2.They offer a way to conditionally execute
nodes. Fully static schedule of automata is not possible in the general case since the set of executed
nodes depends on some dynamic computations. Nevertheless, fully dynamic scheduling is not suitable
for time-critical systems. Quasi-static scheduling is a class of scheduling methods which computes
schedules that are mostly static except when it is absolutely necessary [66]. Our approach for the
quasi-static compilation of automata is to compute the static schedule corresponding to each state of
the automata. Then, the WCET analysis can be done by taking into account the longest state.

For a task belonging to an automaton state, the PIR provides the name of the automata and the
name of the state.

Figure 6.12 shows a Scade program composed of an automaton with two states. State S1 contains
nodes A, B and C and state S2 contains nodes D and E. The current state of the automaton is computed

6.4. CONCLUSION 81

by the main node. Node F is outside the automaton thus always executed. A static schedule for this
program on two cores could be:

For the state S1:
Core 1: A; C
Core 2: B; F

And for the state S2:

Core 1: D
Core 2: E; F

In order to express alternative schedules, we introduce the notation Branch(S1, S2) to specify that
exactly one of the schedules S1 and S2 is executed. This notation can only refer to exclusive nodes,
hence, only nodes of the same automaton can be specified. The corresponding schedule is:

Core 1: Branch({A; C}, D)
Core 2: Branch(B, E); F

To be able to express every schedule, we need an extra operation called ε. We consider the
following schedules:

Schedule for state S1:

Core 1: A;B;C
Core 2: F

And for state S2:

Core 1: D
Core 2: E; F

The schedule of Core 1 relies on the Branch statement only. The schedule of Core 2 is the conditional
execution of E followed by the unconditional execution of F. The node F can only start if E has been
executed or if the current state is S1. This is expressed with the Branch and the ε operator:

Core 1: Branch({A;B;C},D)
Core 2: Branch(ε,E);F

The ε is used whenever expressing the absence of task is required. Implementation of the schedules
will be detailed in Chapter 7.

6.4 Conclusion
In this chapter, we compared several parallelization methods for Lustre and Scade. We discussed the
choice of two of them offering a decentralized execution and the traceability of the generated code.
The first is a pure data-flow solution; the second is based on fork-join. We detailed the generation of
the PIR for both of them and handled the case of conditional execution. Implementation of the PIR
is detailed in Chapter 7.

82 CHAPTER 6. PARALLELIZATION OF SYNCHRONOUS PROGRAMS

7 Time-Critial Implementation on the Kalray MPPA2

In this chapter, we present the implementation of the PIR on a many-core in order to preserve the
semantics of the source program and to guarantee the real-time properties. The experiments have
been done on the Kalray MPPA2, consequently, for each part, we state whether the implementation
applies to a generic platform or whether it is specific to this platform.

This chapter is the result of a significant analysis of the hardware architecture in order to find the
sources of interferences. We provide a configuration and a usage mode of the hardware minimizing
the interferences.

In Sections 7.2, 7.3 and 7.4 we detail the [Generation of system + communication code] step.
In Section 7.5, we describe the [NoC Routing] and [Route selection & fair rate attribution]
steps. Finally, in Section 7.6, details the [WCTT Network Calculus] step and the final NoC
configuration step [NoC Configuration generator].

7.1 Related Work on Multi-Core Execution Models

The software can be tailored to take advantage of hardware features of predictable multi-core and
many-core platforms. There are two ways to limit interferences: spatial and temporal isolation. This
isolation may be implemented through hardware or software mechanisms. Thus, interference can be
completely eliminated, for instance, by decoupling the memory accesses and computation [103] and
scheduling the tasks in a way that forbids concurrent memory accesses [96, 47]. Work from Becker
et. al [10] eliminates any interference by reserving a memory bank for communications and shared
variables. A static time-triggered schedule eliminates concurrent access to this bank. In our work, we
do not aim at fully eliminating the interference. Instead, we use the hardware and software properties
to minimize and bound interference.

Another feature in execution model concerns the way the tasks are triggered. Time-triggering
is a way to improve predictability. Kopetz [83] has defined the Time-Triggered Architecture (TTA)
that allows execution of real-time applications on a heterogeneous distributed system. Clocks of the
system are synchronized and a Time Division Multiple Access (TDMA) bus ensures time-triggered
communications without any interference. Caspi et al. [28] automated the compilation of Lustre
programs for this architecture. Another approach of time-triggered implementation of synchronous
data-flow for TTA taking execution modes into account is given in [27]. TTA and TTEthernet are
used in the industry for connecting devices. Carle et al. [26] introduce a scheduling algorithm for
data-flow synchronous program. It avoids interference and it is based on a time reservation table
of the computation and communication resources of the many-core: cluster, link and DMA. This
algorithm provides a safe WCET bound of the parallel application. NoCs such as Argo [79] offer
TDMA communications. In our work, we use time-triggering to address unpredictable shared-memory.

83

84 CHAPTER 7. TIME-CRITIAL IMPLEMENTATION ON THE KALRAY MPPA2

7.2 Static Schedule Implementation

In this section, we describe the implementation of the static schedule and the quasi-static schedule if
the execution is conditioned by automata. This implementation is not specific to the MPPA2 and can
be applied to any multi- or many-core architecture.

7.2.1 Static Schedule
The mapping of the nodes on this core and the execution order are given by the [Mapping-
Scheduling] step. Core 1 executes nodes 1, 4, 6 in sequence, core 2 executes nodes 2 and 5
in sequence and core 3 executes node 3. For each core, we generate the code implementing the
schedule.

Inputs

Outputs

N7
N1 N2 N3

N5N4
N6

Communication graph

initpre

Node 6

Node 1

Node 2

Node 3

Node 4

Node 5

Core 1: N1; N4; N6

Core 3: N3
Core 2: N2; N5

Mapping-Schedule

N2 N3N1

N4 N5

N6

Outputs

Inputs

N1 N2 N3

N4 N5
N6

Inputs

Outputs

Method 1: Top-Level Node Method 2: Parallel Subsets

Node 7

PIR PIR

Dependency DAG

N6

N2 N3N1

N4 N5

N7.2

N7.1

Dependency DAG Communication graph

Figure 7.1: Mapping-scheduling and PIR for both parallelization methods.

We show the schedule corresponding to the example of Figure 7.1.

// Core 1
while(true) {

task_N1 ();
task_N4 ();
task_N6 ();

}

// Core 2
while(true) {

task_N2 ();
task_N5 ();

}

// Core 3
while(true) {

task_N3 ();
}

This code varies slightly depending whether the program is implemented with the parallelization
methods 1 or 2. For the parallel subsets method from KCG multi-core, Core 0 executes Node 7. For
the Top-Level node parallelization method, the pre operator is managed by an extra task which is
added to the schedule. Details on delayed communications are given in Section 7.4.2.

7.2. STATIC SCHEDULE IMPLEMENTATION 85

The tasks are functions responsible for reading the input of the node, executing the functional
code of the node and writing the outputs. We show an example for N2:
void task_N2 () {

wait_data_N1 ();
N1_step (& ctx_N1);
send_data_N1 ();

}

For Top-Level node method, we generate the task_* functions, for parallel subsets method, the
KCG Scade compiler generates them. In both cases, we create the wait_data_* and send_data_*
functions from the communication graph of the PIR since they depend on the mapping and the target
architecture.

We choose a remote write implementation, as discussed in Section 5.3.1. Consequently, when a
task finishes, it sends outputs to all the requiring tasks. For instance, in the program of Figure 7.1,
when N2 completes, it sends its outputs to N4 and N5.

7.2.2 Quasi-Static Schedule: Special Case of Automata
In Chapter 6, we introduced the Branch construct allowing expressing quasi-static schedules to handle
automata. In this section, the implementation of this construct is presented.

A straightforward implementation of schedule of automata requires to broadcast the current state
of the automata to all cores. The nodes corresponding to the current automata are then executed.
Nevertheless, the KCG multi-core does not provide a direct way to know the current state at runtime.

The Scade language ensures that at each logical instant, the automaton is in exactly one state.
Furthermore, instances of the same node located in different states are distinguishable and are
considered as different tasks. For these reasons, if in a logical instant, we can identify at least one
task activated by the automaton, we know the current state of this automaton. Since the different
cases of a Branch statement must refer different states of the same automaton, we can deduce the
nodes to execute from the available inputs.

In Chapter 6, we introduced the ε statement which allows expressing the absence of task. For
instance, Branch(B,ε) means that task B may be executed if the current state of the automaton
contains this task B, else the statement has no effect.

Implementing ε requires expressing the condition: the current state is not X. This Boolean
condition can be expressed using extra communications from the other automaton states. For instance,
if the automaton has three states X, Y and Z, the Boolean is set to true by a core executing a task
of state Y and a core executing a task of state Z. Hence, if a core executes a task t in state X and
nothing if the state is not X, it has to wait for the task t inputs or the Boolean epsilon. Then, when
the Boolean has been consumed it is set to false.

Example 15 shows the implementation of a quasi-static schedule of an automaton.

Example 15. We consider an automaton with three states and each state contains two tasks:
– State X: A and B
– State Y: C, D and E
– State Z: F and G

Furthermore, nodes H, I and J are outside the automaton.
We define the following schedule on four cores:
– Core 1: H; Branch(A, D)
– Core 2: Branch(B, ε); I
– Core 3: Branch(C, ε); J
– Core 4: Branch(E, {F;G})
To implement this schedule, we define some Boolean variables: epsilon1, epsilon2 initialized

to false when the program starts. Variable epsilon1 is true when the current state is not X and

86 CHAPTER 7. TIME-CRITIAL IMPLEMENTATION ON THE KALRAY MPPA2

variable epsilon2 is true when the current state is not Y.
Variable epsilon1 is set to true once in every states different from X and epsilon2 is set to

true once in every states different from X. In the listing of Figure 7.2, epsilon1 is set when core
4 executes state Y or state Z. The variable epsilon2 is set when core 4 executes state Z and in
core 1 when state X is executed.

To implement Branch(B, ε), the core waits until the inputs of B are ready or if the state is
not X. Then, B is executed if it is ready, and otherwise nothing is executed.

// Core 1
task_H ();
while(A not ready and D not ready)
{} // wait

if(A ready) { // Branch(A,D)
epsilon2 = true;
task_A (); // State X

} else {
task_D (); // State Y

}

// Core 2
while(B not ready and not epsilon1)
{} // wait

epsilon1 = false;
if(B ready) { // Branch(B,epsilon)

task_B (); // State X
}
task_I ();

// Core 3
while(C not ready and not epsilon2)
{} // wait

epsilon2 = false;
if(C ready) { // Branch(C,epsilon)

task_C (); // State Y
}
task_J ();

// Core 4
while(E not ready and F not ready)
{} // wait

if(E ready) { // Branch(E,{F;G})
epsilon1 = true;
task_E (); // State Y

} else {
epsilon1 = epsilon2 = true;
task_F (); // State Z
task_G ();

}

Figure 7.2: Implementation of a quasi-static schedule.

A correct implementation of the Branch statement guarantees that there is no circular dependency
between the tasks of the different states. With the presented method, each implementation of the
Branch statement waits until some tasks corresponding to specific states or any other states represented
with epsilon. Consequently, whatever the current state is, one branch is selected: either the branch
corresponding to a task or the epsilon branch. Then the epsilon variable is set to false.

The implementation of an epsilon condition is correct if for an automaton this condition is made
true in any state except one. Furthermore, this epsilon condition cannot depend on another epsilon
condition. Finally, if a Boolean condition “the current state is not X” is set exactly one time in each
other state, i.e., when a task of a different state from X is activated, then the implementation of epsilon
does not depend on tasks of X. Consequently, there is no cycle dependency in the implementation of
epsilon.

In the Example 15, the location of the epsilon variable assignment has been arbitrary set, e.g.,
epsilon2 can be set when state X is executed in core 1 or core 2. Nevertheless, its location has an
impact on the execution time.

Now, in Figure 7.2 we consider that the automaton condition does not depend on the result of
task_H. In this case, the execution of task_J cannot start before the completion of task_H even though
it does not depend on task_H.

In conclusion, our implementation of quasi-static schedule of automata can cause extra communi-
cation which leads to extra synchronization and extra delays. Nevertheless, all these communications
are statically known which eases the WCRT computation.

7.3. SYSTEM CONFIGURATION AND BACKEND LIBRARY 87

7.3 System Configuration and Backend Library

In this section we first describe the boot sequence of the MPPA2. We explain how executables are
created and how the platform is started.

Application
(Lustre/Scade)

Code generation

Generated code (C)

Our backend library

Vendor low-level library

Hardware

Embedded
executable

Figure 7.3: Code generation and low-level API

Figure 7.3 shows an overview of the code generation. The generated code relies on a backend
library whose purpose is to abstract the processor. We generate platform agnostic code and the
backend library implements the platform specific system code. This library is implemented using the
Kalray MPPA2 low-level libraries or direct hardware configuration. Consequently, a new hardware
platform can be handled by changing the backend library without changing the code generation. The
functions provided by the backend library are prefixed with backend_.

The configuration of the MPPA2 is performed by executing the configuration code to initialize the
synchronization mechanism (Section 7.3.2), initialize the communication buffers and configure the
NoC. Finally, the cores execute the time synchronization code and begin the Synchronous program
execution.

7.3.1 Boot Sequence

In this section we explain the boot sequence of the MPPA2. One executable is required for each
cluster used: one executable per Compute Cluster plus one executable for the I/O Cluster. When
the processor is powered on, it reads the I/O Cluster executable from the SDRAM memory. This
executable is responsible for starting the Compute Clusters using a spawn function from the Kalray
library parametrized with the cluster number and the name of the executable. The compute cluster
binary is executed on core PE0 which is responsible for booting up the other cores. A core is started
with the pthread_create function parametrized with the core number and the name of the thread
function. Since there is no preemptive scheduler, this function is blocking until a core is free. A
special parameter allows defining the target core sometimes called thread affinity.

7.3.2 Time and Event Synchronization

Efficient and predictable synchronization of the cores are required for the parallelization of time-critical
software. The code generated by the [Generation of system + communication code] step can
be time-triggered, event-triggered or both. The first requires time synchronization, the others requires
efficient core synchronization mechanisms.

88 CHAPTER 7. TIME-CRITIAL IMPLEMENTATION ON THE KALRAY MPPA2

7.3.2.1 Inter-core Synchronization Mechanism on the MPPA2

In this section, we describe the implementation of the backend_notify_all(), backend_notify_core(i)
and backend_wait_event() to synchronize cores of the same cluster. This implementation is specific
to the MPPA2.

A BCore 1

Core 2

Event 0 0

event x event y

DC E

1

Figure 7.4: Events from message_ram can be overwritten.

The MPPA2 has 128 special registers called message_ram able to generate events for the cores.
A core can be set in idle mode until an event occurs (see Section 4.3.2.3). Consequently, a power
efficient synchronization is possible. The main drawback is that all the message_ram registers of the
cluster generate the same event and the flag is overwritten if several events occur successively.

Example 16. In Figure 7.4, Task D depends on Task A and Task E depends on Task B. At the
end of its execution Task A emits event x for Core 2. This event is not consumed instantaneously
since Core 2 is executing C. Core 1 produces event y when it finishes B. Since, the core is able to
store only one event for all the message_ram registers, it is overwritten and E cannot start even
though B has been executed.

Example 16 shows that events can be squashed on the MPPA2, hence they cannot be discriminated.
Our solution is to use a Boolean in the memory to discriminate the events beside the event notification.
One variable is required for each pair of communicating tasks if they execute at the same frequency
(see Section 3.1.3 for multi-periodic programs).

1-1 and 1-N Synchronization. The 1-1 synchronization allows one core to wake up another. The
1-N allows one core to wake up several others cores.

The message_ram register is configured with the set of destinations cores. The write of the maximal
value on 64 bits to this register makes it generates an event to all the destination cores. Then a 1-1
synchronization is done by setting only one destination core and the 1-N is done by setting several
cores of the cluster.

We then implement the backend_notify_all() function waking up all the cores of the clus-
ters and the backend_notify_core(i) function waking up the core number i of the cluster. The
backend_wait_event function turns the core in low power mode until an event is received.

Implementing these functions requires one message_ram register per cluster for the 1-N and one
message_ram register per core for the 1-1 synchronizations.

7.3.2.2 Time Synchronization Protocol

In this section, we describe the clock synchronization protocol required to have a common clock
accessible from any core of any cluster. The backend_timer function gives the current value of the
clock.

Each core of the MPPA2 has a local timer. A core timer is private to its core and its value can be
read and set without interfering with this other cores. The core timers are mesochronous, i.e., they
have the same frequency and only their phase is different.

7.3. SYSTEM CONFIGURATION AND BACKEND LIBRARY 89

Core 0

Core 2

Core 0

Core 1

Core 1
t = 0t = 0

Thread
Initialization Global barrier

Cluster 1

Cluster 0

T

t = 0t = 0
t = 0t = 0

t = 0t = 0
t = 0t = 0

T

period 0Power on

Figure 7.5: Clock Synchronization Protocol

There is one special timer in each cluster called DSU Timer. They are reset when the processor
is reset. They are isochronous and thus can be used as a global time base. Nevertheless, it is only
accessible through a single hardware bus. As a consequence, all accesses to this timer are serialized.

The protocol synchronizes all the cores using the DSU Timer without suffering of this serialization.
In each cluster, when the cores are powered on, they go in idle mode, except one core which is
responsible for synchronizing the others. This core waits for a time T on the DSU timer. When this
time is elapsed, it wakes up the other cores of the cluster and all the cores of the cluster reset their
timer or save the current time as the initial timestamp.

The synchronization of the cores in the cluster is done using the 1-N synchronization protocol
presented in Section 7.3.2.1. The time T corresponds to the first time when all the cores are booted.
A tight upper bound of this value is not necessary since this happens only at startup time. Instead,
an arbitrary long value can be set and the initialization of the program can be stopped if the protocol
did not work (forbidding the vehicle to start for instance).

7.3.3 NoC Configuration and Usage
In this section, we describe the library we implemented to configure and use the NoC. It provides a
configuration procedures for the TX and RX engines. The TX engines is responsible for emitting
packets on the NoC at a limited speed. It fills the packet header with the route and the destination
buffer identifier. The RX engines are configured with an identifier, the address and the size of a buffer
in memory. A RX engine stores the received payload in the buffer. The library is composed of the
following procedures:

– backend_noc_config_tx(id, dest_buffer_id, route, bandwidth): This function configures the
TX engine identified by id to append a specific header at the beginning of each packet. This
header contains the route route and the identifier of buffer dest_buffer_id. A maximal band-
width can be specified.

– backend_noc_config_rx(buffer_id, address, size): This function configures the RX engine to
write all the packets whose destination buffer is buffer_id at address.

– backend_send(id, address, size): This function uses the TX engine id to send a packet whose
payload is size bytes at address.

– backend_wait_event_NoC(): This function makes the processor idle until a packet is received.
In practice, the configuration phase of the NoC is a sequence of backend_noc_config_rx and

backend_noc_config_tx functions. The computation of the bandwidth and the route of each flow is
explained in Section 7.5. The identifier of buffer and the TX engine are allocated statically when the
channels are implemented.

The implementation of this library is done by directly accessing the registers of the NoC devices.
This bare metal code eases the WCET analysis of the functions.

90 CHAPTER 7. TIME-CRITIAL IMPLEMENTATION ON THE KALRAY MPPA2

7.3.4 Cache Maintenance Functions

Non cache-coherent architectures require explicit modification of the cache state and explicit access to
freshest data from memory:

– the backend_write_barrier makes sure that contents of the write buffer is committed to the
memory

– the backend_read_barrier function invalidates the Data Cache to make sure that all next loads
will be done directly in the memory

– the backend_bypass_dcache is used to directly read some data from the memory without changing
the state of the cache. This function is to be preferred to backend_read_barrier to implement
polling on one variable since it is faster.

– the backend_bypass_wb This function directly writes data to the memory without changing the
state of the cache.

These functions are wrappers for the MPPA2 cache control instructions.

7.4 Communication for a Distributed andMulti-Banked Mem-
ory

As discussed in Chapter 5, our solution takes advantage of the banked shared-memory to minimize
memory interferences. The [Core and Buffer Allocation] step associates one memory bank to
each core of the processor and statically allocates the communication buffers, input data and code to
the banks. This is done using a standard linker script and the configuration of the shared-memory to
the blocked addressing mode where the addresses relative to the same memory bank are consecutive.
The communications between the clusters are implemented with remote write through the NoC on
the memory of another cluster.

Implementation is given for both the Top-Level Node method (toolchain 1) and the Parallel
Subsets from the KCG compiler (toolchain 2) presented in Section 6.

7.4.1 Implementation of the Communications

We recall that a task task_T is composed of a communication function wait_data_T in sequence with
the functional code T_step and the communication function send_data_T. In this section, we provide
the implementation of the communication functions.

Basic Version. The basic implementation of input and output functions for Node 2 in shared
memory is the following when the synchronization is event-triggered:

void wait_data_N2 () {
while(! token_N7_N2) {

backend_wait_event ();
}
token_N7_N2 = false;

}

void send_data_N2 () {
ctx_N4.i1 = ctx_N2.o1;
ctx_N5.i2 = ctx_N2.o2;
token_N2_N4 = true;
backend_notify_core (5);

}

The wait_data function prevents executing the functional code until the input data is available.
The basic implementation relies on a busy wait. A token mechanism ensures the data coherency. The
send_data function copies the output data in the destination buffers and setup the token. It should
be noted that, this synchronization is not required between N2 and N5 as they are executed on the
same core in sequence.

7.4. COMMUNICATION FOR A DISTRIBUTED AND MULTI-BANKED MEMORY 91

Software-Based Cache Coherency. If the processor has a non-coherent cache architecture, this
implementation would not work. As a consequence, we now present the modifications required to
handle non-coherent caches.

void wait_data_N2 () {
while (! backend_bypass_dcache(

token_N7_N2)){
backend_wait_event ();

}
backend_read_barrier ();
token_N7_N2 = false;
backend_write_barrier ();

}

void send_data_N2 () {
ctx_N4.i1 = ctx_N2.o1;
ctx_N5.i2 = ctx_N2.o2;
backend_write_barrier ();
token_N2_N5 = true;
backend_write_barrier ();
backend_notify_core (5);

}

For backend_wait_data, the call to backend_read_barrier is required to fetch the new inputs data
from the memory. The call to backend_write_barrier makes sure that the token modification is
committed to the memory.

For backend_send_data, two calls to backend_write_barrier are required: one after the data have
been written and one after the tokens have been written. The reason is that the memory system only
guarantees the order of accesses for a single memory bank. If the data and the token are stored on
several memory banks, the two write buffer flushes guarantee the ordering between them.

We now present the time-triggered implementation of the same program. The advantage of this
implementation is that tight WCTT bounds can be guaranteed.

Time-Triggered Implementation. This version relies on the timer and the release date compu-
tation. It ensures safe bounds on the WCRT.

void wait_data_N2 () {
while(backend_timer () < i*period +

release_N2){
// Busy waiting

}
backend_read_barrier ();
token_N7_N2 = false;
backend_write_barrier ();

}

void send_data_N2 () {
ctx_N4.i1 = ctx_N2.o1;
ctx_N5.i2 = ctx_N2.o2;

}

Time-Triggered plus Event-Triggered. In rare case, a release date could be missed for instance
if a cosmic ray leads to a bit flip on the processor memory. For instance, a bit flip in a cache line leads
to a cache refill which takes significantly longer than a cache hit. There are some hardware correction
mechanisms on the platform; nevertheless, they cause memory access delays. Hence, taking them
into account in all the release dates would make the WCRT over-pessimistic. Instead, the timing
consequences of such rare events can be considered as a small reduction of the global performance
while ensuring they can be handled when they happen.

We combine the time-triggered execution with an event-triggered check to ensure the functional
correctness even if a release date has been missed. Obviously, the wait on release date must be
performed before waiting on event.

NoC Communications. We statically associate one TX engine and one RX engine to each
communication channel involving several clusters. This attribution is described in Section 7.6.6. The
TX engines are configured with the route and a destination identifier using backend_noc_config_tx. The
RX engines are configured with the destination buffer and an identifier using backend_noc_config_rx.

92 CHAPTER 7. TIME-CRITIAL IMPLEMENTATION ON THE KALRAY MPPA2

A structure carries the communication. There is one copy of this structure at each side of the
channel. It contains the size to hold data and a token and finishes with a special field called valid.
This field is used to know if a new value has been received. It is set to true before the transmission
and the receiver set its local copy to false when it consumes the data. Furthermore, this field is
located at the end of the structure to ensure it is written to the destination after the data.

Example of communication between from Node Nsrc to Node Ndst:

void wait_data_Ndst () {
while(! backend_bypass_dcache(

struct_Nsrc_Ndst.valid)){
backend_wait_event_NoC ();

}
backend_read_barrier ();
struct_Nsrc_Ndst.valid = false;

}

void send_data_Nsrc () {
struct_Nsrc_Ndst.i1 = ctx_Nsrc.o2;
struct_Nsrc_Ndst.valid = true;
backend_send(NOC_Ndst_ID , &

struct_Nsrc_Ndst , sizeof(
struct_Nsrc_Ndst));

}

In wait_data_Ndst, backend_bypass_dcache and backend_wait_event_NoC is a blocking function
returning when a new packet is received. The backend_read_barrier is required after the reception
since RX engine does not changes the cache state.

In send_data_Ndst, the structure is filed with the data. No memory coherency function is required
since the processor performs directly the copy of the data to the TX engine.

7.4.2 Delayed Communications

A

pre

B

i1

i1

init

o1

o2

(a)

�� ��
�� ��

�� ��
��
��

AX
X BSB S

n n

(a) (b)

n-1
n

n+1 n+1

A

(b)

Figure 7.6: Buffer states are shown for two schedules of tasks A, B, X with a delayed communication
from B to A. A light gray buffer has been consumed while a black buffer contains a non-consumed
value. Swap task S ensures coherency between subsequent periods.

In the parallel subsets method, delayed communications are managed centrally by the top-level
node. In the top-level node method, it is implemented it in a dataflow way. Delayed communications
are replaced by direct communications with a swap task S. S is a regular task with an input buffer
which writes its output to the dependent node buffer. This forms a double buffer. Some scheduling
constraints are required for S to preserve the semantics.

Figure 7.6a represents a program with two nodes where A takes an output of B from the previous
period and the output init for the first period. The task graph implementing this program has two
tasks A and B and a delayed communication from B to A.

At the beginning of period n, the double-buffer contains only the output of B of period n− 1. At
the end, output n− 1 has been consumed and output n has been produced. The swap task S moves
the data in the double buffer from n to n− 1 to prepare the next period.

Figure 7.6b shows the state of this buffer in two configurations. The purpose of the task X is
pedagogical. It desynchronizes the A and B executions to show these two configurations. On the left
side, producer B is executed before A completes, hence both n− 1 and n outputs are presents when B

7.5. CONTRIBUTION TO ROUTE ALLOCATION 93

finishes. On the right side, producer B is executed after A completes, hence the buffer is empty when A
finishes.

The swap task S has two scheduling constraints due to the buffer state. S starts when output at n
is present and the output at n− 1 is absent, i.e., it starts after both A and B have been executed.

If we apply this method to the example of Figure 7.1, one S task must be added. The schedule of
Core 1 is changed to the following:

Core 1: N1; N4; N6; S.
Task task_N6 performs a write to Task S input buffer and Task S waits for the completion of

task_N3 before sending the value to task_N3.

7.5 Contribution to Route Allocation
Network-on-Chip (NoC) and routing algorithms have been presented in Section 4.2. We considered
the deadlock-free routing algorithms offering path diversity. We choose static routing for which the
route is known before the transmission. We choose to keep only one route per flow to ensure the order
of the transmitted packets. This route diversity lets a room for optimization.

Flows Routing

Configuration
Generator

TX Engine
configuration

One route
per flow
+ rate

fair rate attribution
Route selection +

Route with diversity
Flow +

Figure 7.7: Method overview for routing and fair rate attribution.

Figure 7.7 shows the general method for routing and attributing the routes. The input is a set
of unicast or multi-cast flows. The routing algorithm computes all the possible routes for this flow.
The best route is selected for each flow optimizing a fair attribution of the flow rates. Finally, the
configuration of the NoC TX engine is generated from the traffic limiter parameters and the route.

Contribution. In this section, we introduce an enumerative method and a heuristic based on linear
programming to select the best max-min fair solution among all the routes combinations. We also
present a variant of the HOE multi-cast algorithm for 2D-grid called HOE Dual-Path. This algorithm
is both deadlock free and reaches all the recipient of a broadcast in two paths. These rate attribution
and routing algorithms has been implemented in a network toolchain. This network toolchain is able,
from a set of flows and the description of the network topology to configure the NoC and computing
the end-to-end delay. The implementation of the complete toolchain is described in Section 7.6.6.

7.5.1 Route Selection and Flow Optimization
A routing algorithm with path diversity computes several routes for a couple of source and destination.
Figure 7.8 shows two flows: f1 from 1 to 9 in plain blue and f2 from 3 to 7 in dashed red. There are
three possible routes for each. Path diversity allows selecting a combination of routes which minimizes
the concurrent usage of the link and then maximize the rate of the flows.

The criterion to maximize the rates could be the sum of the rates or the minimal rate. In both
cases, this does not guarantee a max-min fair solution (see Section 4.2.6). As a consequence, we
compare the different attributions using the lexicographical vector of flow rates.

94 CHAPTER 7. TIME-CRITIAL IMPLEMENTATION ON THE KALRAY MPPA2

1 2 3

4 5 6

7 8 9

f1.1

f1.3f1.2

f2.1 f2.3f2.2

Figure 7.8: Example of path diversity for two flows.

To compare two vectors v1 and v2 of rates, we sort them in increasing order of rate. Then, we
look for the first index i such that v1(i) 6= v2(i). If v1(i) > v2(i), then v1 is greater than v2 otherwise
v2 is greater than v1. This method guaranteed the choice of the solution whose minimal rates are the
highest.

We introduce two algorithms to select a combination of routes which maximizes the fair attribution
of the flow rates. These algorithms also compute a rate for each flow. This corresponds to the route
selection and fair rate attribution step from Figure 7.7: the Exploration for Unique Route Selection
(EURS) algorithm and the LP-Based Heuristics for Unique Route Selection (LPURS) algorithm.

7.5.1.1 Exploration for Unique Route Selection (EURS)

Basic Exploration. At the output of a routing algorithm with path diversity several routes are
possible for each flow. A basic solution to select the best max-min fair rate attribution is to compute
this attribution for each combination of routes. The attribution is performed using the Water
Filling [78] algorithm. For instance, in Figure 7.8, since both flows have tree alternative routes, there
are K = 9 combinations hence, Water Filling is executed 9 times.

F is the set of flows. For each flow fi, the set of possible routes is denoted ri. One combination k
is a set containing exactly one route ri for each flow. K is the set of all route combinations k for the
flows F . We look for the best fair combination of routes k ∈ K.

The comparison of the solutions is performed on the lexicographical vector of rates. Hence, for
each k ∈ K, a max-min fair bandwidth allocation is computed with Water Filling [78] and vk, the
lexicographical vector of rates, is computed. At the end, the greatest vector vk is selected.

Pruning. The basic algorithm can be significantly improved since the computation of Water Filling
is sometime not necessary. In fact, an upper bound of the worst bandwidth can be computed. Our
contribution to is to apply the pruning method to the space of exploration.

Instead of computing the Water Filling algorithm on all the combinations k, we first compute the
worst bandwidth of every combination. To do this, for k we look for the link which is the most shared
by flows. The worst bandwidth of k can be deduced from this information since it cannot be better
than 1/n with n the number of flows sharing this link. A justification is that, if a link is shared by
1/n flows, the flow of minimal bandwidth taking this link has a bandwidth of a most 1/n.

In Figure 7.8, if the combination is k = {f1.1, f2.1}, the most shared link is L36 with two flows.
This leads to a worst bandwidth of 1

2 . For k = {f1.3, f2.1}, the links are not shared thus the worst
bandwidth is 1.

7.5. CONTRIBUTION TO ROUTE ALLOCATION 95

The maximum of all the worst bandwidth is computed; then the combinations k ∈ K whose worst
bandwidths are under this maximum are removed from K. In the example, the k ∈ K whose worst
bandwidth is under 1 are removed.

For multicast traffic, the Water Filling algorithm has to be modified to set the same bandwidth to
all the flows of each partition.

Despite this improvement, exhaustive enumeration of minimal path combinations becomes infeasible
when the number of flows is high. To handle large problems, we designed a LP-based heuristic which
avoids enumeration.

7.5.1.2 LP-Based Heuristics for Unique Route Selection (LPURS)

The presented EURS algorithm is based on an enumeration of non-splittable paths, meaning that a
flow follows only one route. The drawback is that we need to consider all the combination of routes
which leads to a combinatorial explosion.

In this section, we introduce an algorithm based on splittable paths, meaning that for a flow,
several possible routes are followed concurrently. This avoids the combinatorial enumeration. Each
alternative route of a flow is called sub-flow. For instance, in Figure 7.8, f1 has three sub-flows: f1.1,
f1.2 and f1.3.

Our algorithm relies on the MMFSP [98] linear programming algorithm. MMFSP computes a
max-min fairness rate attribution for splittable flows. It attributes max-min fair rates for all the
sub-flows in such way that the sum of the sub-flows rates ≤ 1 flit/cycle. Each link has a variable in
[0, 1] which is set to the sum of the rates of all the sub-flows taking this link. A flow is considered as
saturated either if all its sub-flows follow a saturated link or if the flow has a total rate of 1.

One iteration MMFSP maximizes the minimal sub-flows rates until they are saturated. Then, the
saturated sub-flows are fixed and removed from the objective function. This algorithm iterates until
all the flows are saturated and works in polynomial time.

The purpose of our LPURS algorithm it to take advantage of the fast rate attribution for splittable
path performed by MMFSP while computing unsplit paths. This is performed by keeping only the
sub-flows to whom MMFSP has attributed the highest bandwidth. The other sub-flows are set to 0.

If MMFSP attributes the same rate to all the sub-flows, hence our heuristics cannot be applied,
then we enumerate the different solutions by setting successively each sub-flow to 0. Since there are
several solutions, we compare the different combinations by computing the lexical vector of rates.
Then, the solution with the greater vector of rates is selected.

The algorithm can be summarized as follows:

1. If there is only one sub-flow per flow, compute the lexicographical vector and exit.

2. Else, execute MMFSP until it converges

3. If for each flow, the rates of the sub-flow are the same, create as many instance of problem as
there are sub-flows and restart the algorithm for each of them.

4. Else, for each flow, keep only the sub-flows of maximum rate then restart the algorithm.

For multicast traffic, the flows of all the partitions are encoded as the same flow in the linear
program. This ensures that all the partition flows have the same bandwidth at the end.

Example 17 shows an application of the LPURS algorithm. It shows how the heuristic combined
with MMFSP reduces the number of iterations compared to the EURS method.

Example 17. We apply the algorithm to the instance of flows of Figure 7.8. First, the MMFSP
algorithm is executed. We obtain:(

f1.1 = 1
4 , f1.2 = 1

2 , f1.3 = 1
4 , f2.1 = f2.2 = f2.3 = 1

4

)

96 CHAPTER 7. TIME-CRITIAL IMPLEMENTATION ON THE KALRAY MPPA2

f1 is saturated since it has a total rate of 1 and f2 is saturated since all the sub-flow follows
the L36 link which is saturated. Then, for each flow, we only keep the sub-flows with the best
rate: f1.1 and f1.3 are removed. With MMFSP, we obtain:(

f1.2 = 2
3 , f2.1 = 1

3 , f2.1 = 1
3 , f2.1 = 1

3

)
All the sub-flows are equal, consequently, the algorithm enumerates the three combinations.

First, f2.2 and f2.3 are set to 0. After execution of MMFSP, we obtain the vector of rates:

v1 =
(
f1.2 = 1

2 , f2.1 = 1
2

)
Second, f2.1 and f2.3 are set to 0 and we obtain the vector of rates:

v2 = (f1.2 = 1, f2.2 = 1)

Third, f2.1 and f2.2 are set to 0 and we obtain the vector of rates:

v3 = (f1.2 = 1, f2.2 = 1)

Finally, we compare v1, v2 and v3 and select the greatest vectors v2 or v3. In this example,
we enumerated 3 cases where the EURS enumerated 9 cases.

7.5.2 Contribution to Multicast Path-Based Routing
As presented in Section 4.2.4 a common way of implementing the multicast is using several routes
where each route reaches a subset of the destinations. Each subset is called partition. A path-based
multicast algorithm has the following steps: the partitioning of the destinations into sets and the
routing of each partition individually.

The main multi-cast partitioning algorithms are the Dual-Path (DP), Multi-Path [91] (MP) and
Column-Path [19] (CP). In a 2D-grid dual-path leads to 2 partitions, multi-path to 4 partitions and
column-path to at most 2n partitions where n is the number of columns of the grid.

On one hand, there is a limited number of TX engines. They are able to store only one route
and their configuration takes time. On the other hand, dual-path provides an optimal number of
partitions for a 2D grid since with a deadlock-free Hamiltonian routing it is possible to reach all the
destinations with one ascending path and one descending path.

Routing the partitions using the Hamiltonian routing algorithm leads to long routes. As a
consequence, HAMUM [42] has been presented and has been improved with the HOE [7] routing
algorithm.

To the best of our knowledge, HAMUM and HOE have been applied to a multi-path and column-
path partitioning but not on the dual-path partitioning. As a consequence, we implemented HOE
Dual-Path (HOE DP) which combines both the advantages of a minimal number of partitions and
the HOE adaptive and deadlock-free routing algorithm. By way of comparison, we also implemented
the HAMUM Dual-Path (HAMUM DP) algorithm.

Evaluation of HOE DP and HAMUM DP compared to other multi-cast algorithms is given for a
uniform traffic in Section 8.1.2.

7.5.3 Deadlock-Free Routing Algorithm for the Kalray MPPA2
In this section, we present the implementation of the routing step from Figure 7.7 for the MPPA2.

Most of the presented routing algorithms are designed for regular 2D-grid topologies. The MPPA2
NoC has a quite complex topology but can be seen as a 2D-Grid of Compute Clusters. This grid is
presented in Figure 4.20 page 62.

7.5. CONTRIBUTION TO ROUTE ALLOCATION 97

In this topology, some routes reaching I/O Clusters are not possible. For instance there is no X-Y
route from Node 12 to Node S2. The reason is that some routers are missing in the middle of the
grid. Kumar et al. formalized this problem by introducing the network regions [84] and Hosmark et
al. presented a deadlock-free algorithm for networks with region in the general case [75].

4

12

6

14

75

13 15

S2S0

N0

0

8 10

2 1

9

3

11

W3E3

E1 W1

E2 W2

W0E0

S1 S3

N3N1N2

Figure 7.9: The Kalray MPPA2 NoC can be seen as a 2D-Grid of clusters. The I/O clusters are
outside the grid.

We choose a quite simple solution which consists in replacing the hole in the middle of the grid by
virtual links. For instance, Node 10 and Node 6 are linked with a virtual link composed of the 10-S2,
S2-N2 and N2-6 links. Hence, the network region is ignored. This grid is represented in Figure 7.9.
The dashed links are not part of the grid. This topology authorizes routing communications between
any Compute Cluster with a standard 2D-Grid routing algorithm. At the end, the virtual links are
replaced with hops through the I/O Cluster routers.

We now describe a procedure to compute a route from an I/O Cluster to any other cluster, or
from a compute cluster to an I/O Cluster. Since I/O Clusters are outside the grid, an extra step to
enter or exit the grid is required. The main part of the route is inside the grid.

The steps to enter and exit the grid rely if needed to the dashed links. Then, the route between
the two compute clusters of the grid is computed. Finally, the different parts are concatenated. We
provide some examples:

Example 18. The first example is a flow from node E2 to node 5. The routing is straightforward
since the XY route from E2 to node 5 exists. Nevertheless, all the routes from an I/O Cluster to
a Compute Cluster are not possible. We then present a second example:

Considering a flow from node 11 to node W1. The XY route does not exist. Consequently,
we compute the XY route from node 11 to node 4. The grid is exited using the 4-W1 link.

As presented in this section, the routing on the MPPA2 requires the concatenation of a deadlock-
free route and some steps to enter or exit the grid. We stated previously that concatenating several
deadlock-free routes can lead to deadlock routes. We now explain why this specific concatenation
cannot lead to deadlock-prone routes.

There are tree distinct sets of network elements. The first set Egrid contains the links and the
turns inside the grid including the virtual links. For instance, the virtual links L2-1, L1-2 (through
E0 and W0), the turns T2-WS and T2-SW are part of this set. Dashed links are not part of the set,
e.g., LW2-8 and L8-W2.

The second set Eentry contains the elements required to enter the grid: the dashed links from I/O
cluster to cluster (LW0-0, LW2-8, LS0-12, T3-EW, etc) and the local input links of the I/O clusters
(E3egress, N1egress, N2egress, etc).

98 CHAPTER 7. TIME-CRITIAL IMPLEMENTATION ON THE KALRAY MPPA2

The last set Eexit contains the elements required to exit the grid: the dashed links from Cluster
to I/O Cluster (L4-W1, L7-E1, L3-N3, etc), and the local output links of the I/O Clusters (N1ingress,
E3ingress, etc).

We consider a deadlock-free route between two nodes of the grid. This route is only composed of
network elements of Egrid and does not contain any elements of Eentry and Eexit. The entry and exit
steps are deadlock-free.

This deadlock-free route between two nodes of the grid can be prefixed with a route to enter the
grid (elements of Eentry) and suffixed with a route to exit the grid (elements of Eexit). Consequently,
there exists a partial order between the elements of Eentry and the elements of Eexit and the flows
traverse these resources only in this order. Then, the complete route is deadlock free, as required.

7.6 Deterministic Network Calculus (DNC) Tool

In this section, we present a tool for the computation of end-to-end latency (WCTT) over the network.
This tool also computes the hardware FIFOs level and check for overflow. A rate and a packet size
are attributed to each flow as presented in Section 7.5.1. Our DNC formulation is called Linear
Formulation and has been done in collaboration with Benoît Dupont de Dinechin and published
in [46].

7.6.1 Effects of Link Shaping
A bandwidth limiter guarantees an affine curve γr,b for a flow. It injects the packets atomically if the
flow has enough credits. Consequently, for a flow i, the value of b must be at least equal to the flow
packet size lmaxi . The parameter r is configured to the flow rate.

σ0
i

lmaxi

γρi,σi(t)
rt

θ

Figure 7.10: Effects of link shaping on burstiness.

We now discuss the effects of link shaping on the burstiness as presented in Figure 7.10. Before
the shaping, the packet is considered to be transfered instantaneously, hence its burstiness is lmaxi .
Nevertheless, the link has a capacity of 1 flit/cycle. Since this capacity is higher than the long-term
flow rate, the link shaping can reduce the burstiness of the flow.

We look for the affine arrival curve γρi,σ0
i
for the flow fi after link shaping. A link has a rate r,

then, the date of end of transition of a packet of size lmaxi is θ = lmax
i

r . Furthermore, lmax
i ≤ σ0

i + ρiθ.
The long-term rate ρi keeps unchanged:

∀fi ∈ F : σi ≥ σ0
i , lmax

i

r − ρi
r

(7.1)

For each flow, one arrival curve is computed at each network element of the route. Therefore,
we compute a series of arrival curves. For each network element j traversed, one arrival curve γji is
computed.

7.6. DETERMINISTIC NETWORK CALCULUS (DNC) TOOL 99

Effects of Link Shaping on Queues. Considering a queue qj which receives the aggregates of
flows F j passing through it. The arrival curve is a leaky-bucket γρj ,σj with ρj =

∑
fi∈F j ρi and

σj =
∑
fi∈F j σ

j
i , shaped by the turn peak rate r. This yields the arrival curve min(rt, σj + ρjt)1t>0,

which is a special case of the standard T-SPEC arrival curve α(t) = min(M + pt, rt+ b)1t>0 used in
IntServ [52]. We use this arrival curve for burstiness augmentation due to FIFO and end-to-end delay
computation.

7.6.2 Routers and Network Properties
In the routers of the MPPA2, there is one queue per turn. The output links are arbitrated at the
packet size granularity with a round-robin policy.

queue

qu
eu

e
qu

eu
e

qu
eu

e
Local
fromfrom

South

from West
to North

to Local
to South

from West

from North

to East link
f1

f2

Figure 7.11: Router elements of the turns to the East link.

Figure 7.11 shows the complete path from the west input of a router to the east output. When a
packet enters the router, it is directed to one output queue according to the route. Then, the queues
destined to an output link are arbitrated. The dashed red flow takes the West to East turn, while the
plain blue flow takes the North to East turn.

An arbiter is active if more than one queue is used for its output. It is not active either because
there is no flow passing through it or only one queue is used. The number of queues used at input of
the arbiter is denoted nj .

In Section 4.2.7 we presented some common abstractions for network elements: the FIFO multi-
plexing and the blind multiplexing. The order of the packets entering an arbiter of the MPPA2 router
is guaranteed for each queue, i.e., for one turn. Nevertheless, the order is not guaranteed between
packets of different queues of the arbiter, i.e., for the same output link but different turns. Blind
is the conservative policy that can be used when no other policy can be applied, consequently it is
pessimistic. Some previous works only applied FIFO [89] or blind [20].

7.6.3 Arbiter Service Curve
We consider a network element arbitrating among several queues (from North, from South, from West,
etc). Each queue receives an aggregated arrival curve. We compute the service curve offered to each
queue.

Definitions.
– F j is the set of flows for the active queue qj
– nk is the number of queues used at ingress of the arbiter
– Ak is the set of active queues in the link arbiter
– Bj , Ak − {qj} is the set of active queues in the link arbiter except qj

100 CHAPTER 7. TIME-CRITIAL IMPLEMENTATION ON THE KALRAY MPPA2

Round-Robin. The round-robin arbiter tests each queue in a fixed order and accepts one packet if
the queues is not empty. The round-robin policy is fair if the packets have the same size 1. Consequently,
the service curve of a round-robin is a stair function, nevertheless, it can be approximated as a long-
term rate-latency function βR,T [20]. If the packets have the same size lmax, the queue qj from the
arbiter k benefits from a service curve with the following parameters:

Rj = r

nk
and T j = (nk − 1) l

max

r
(7.2)

R corresponds to the fraction of bandwidth reserved to one queue and T corresponds to the time
for each other queue to transmit one packet. With packets of different size, this rate is proportional
to the packets size. The weighted round-robin service curve βRj ,T j for qj is:

Rj =
rlmin
F j

lmin
F j +

∑
k∈Bj lmaxFk

and T j =
∑
k∈Bj lmaxFk

r
(7.3)

lminF j is the minimal packet size of the flows F j and lmaxF j the maximal packet size. Since the packets
in a queue qj can have different sizes, a conservative hypothesis is to consider the minimum packet
size for the queue qj and the maximum packet size for the other queues of Aj .

Blind or Round-Robin. There are some restrictions on the usage of the round-robin policy.
Figure 7.11 shows two flows f1 and f2 multiplexing into a round-robin. Assume respective rates
ρ1 = 1

3 and ρ2 = 2
3 . Assume the duration T1 to transmit one packet. If packets have the same size,

the round-robin gives a long-term rate-latency βRj ,T j with R = 1
2 and T = T1. Nevertheless, if the

flows are sending continuously, the round-robin transmits one packet of f1 and two packets of f2 in a
sliding window of 3 ∗ T1. Consequently, this service curve is not applicable since the actual service
curve guaranteed for f2 has a rate of 2

3 . Finally, if the rate of the aggregated input flows of one queue
is greater than Rj from Equation 7.3, the round robin policy cannot be applied for this queue and
the conservative blind multiplexing must be applied. In all other cases, one of blind and round-robin
offering the least delay T is chosen.

Blind. Applying blind multiplexing to the round-robin arbiter consists in considering that this
round-robin serves packet at peak rate r. The service curve offered to queue qj is the leftover
service curve if the flows of the other queues (Section 4.2.7). Application of Theorem 6.2.1 (Blind
Multiplexing) [86] yields the blind multiplexing service curve βj = βRj ,T j for qj :

Rj = r −
∑
k∈Bj

ρk and T j =
∑
k∈Bj σk

r −
∑
k∈Bj ρk

(7.4)

7.6.4 Queue Service Curve
Considering a queue qk entering a rate-latency arbiter of service curve βRk,Tk with a rate R and
a latency T . Considering a flow of interest fi with an arrival curve γρk

i
,σk

i
. We want to compute

the arrival curve γρk+1
i

,σk+1
i

at the output of the arbiter. If the arbiter is active, the flow is delayed
resulting in a burstiness increase leading to a new arrival curve γρk+1

i
,σk+1

i
.

If a flow is alone in the queue qk, the rate-latency service curve βRk,Tk of the arbiter is directly
applied to the arrival curve γρk

i
,σk

i
of the flow. The rate keeps unchanged.

σk+1
i = σki + ρki T

k (7.5)
If several flows are multiplexed in the queue, this service curve βRk,Tk is shared among all the

flows of the queue, therefore we have to compute the residual service curve βRk
i
,Tk

i
guaranteed to the

flow fi.
1 Deficit Round-Robin is a fair alternative with packets of different sizes [118, 24].

7.6. DETERMINISTIC NETWORK CALCULUS (DNC) TOOL 101

Fk is the set of flows of the queue qk. The aggregate arrival curve corresponding to the competitors
of fi in the queue is an affine function γρ2,σ2 with

ρ2 =
∑

l∈Fk,l 6=i

ρl and σ2 =
∑

l∈Fk,l 6=i

σkl (7.6)

We compute the residual service curve guaranteed to the flow fi by applying Corollary 6.2.3
(Burstiness Increase due to FIFO) [86]. This yields the residual service curve βki = βRk

i
,Tk

i
for

an active queue qk traversed by fi:

Rki = Rk − ρ2 = ρi and T ki = T k + σ2

Rk
(7.7)

We apply Theorem 6.2.2 (Burstiness Increase Due to FIFO Multiplexing, General
Case) [86] where the flow of interest fi is an affine curve and the aggregate arrival curve α2 of f2
is sub-additive. Due to link shaping α2(t) = min(rt, ρ2t + σ2)1t>0. The arbiter guarantees to the
aggregate of the flows a rate latency service curve βRk,Tk .

If ρi + ρ2 < r, fi the arrival curve of fi is γρk+1
i

,σk+1
i

. The rate remains unchanged:

σk+1
i = σki + ρi

(
T k + σ2(r + ρi −Rk)

Rk(r − ρ2)

)
(7.8)

Since the network is feed-forward, the successive arrival curves for each flow can be computed.
Then, the utilization level of a queue qk can be checked with the following formula:

Qkusage =
∑
l∈Fk,l

σkl

The queue size Qmax depends on the hardware. If Qkusage > Qmax the queue overflows and the
quality of service cannot be guaranteed. In this case, the rate of the flows or the packet size can be
changed make the flows comply with the hardware.

7.6.5 WCTT Bound
The WCTT is computed using a method similar to the Separated Flow Analysis (SFA) [20]. The
difference is that our method relies on FIFO multiplexing for flow aggregation while SFA relies on
blind multiplexing.

First, the service curve of each queue is computed and the residual service curve βRj
i
,T j

i
of each

active queue qj traversed by fi is computed. The residual service curve is computed using Equation 7.3
if the round-robin policy is applied and Equation 7.4 if the blind policy is applied. If the queue is
shared among several flows, the residual service curve is computed using Equation 7.7.

Second, equivalent service curve βR∗
i
,T∗

i
guaranteed by the NoC to flow fi is computed. This

is obtained by the convolution of the residual service curves βRj
i
,T j

i
. βR∗

i
,T∗

i
is the convolution of

rate-latency curves, hence, rate R∗i is the minimum of the rates and latency T ∗i is the sum of the
latencies:

R∗i = min
j∈Qi

Rji and T ∗i =
∑
j∈Qi

T ji (7.9)

Last, the end-to-end latency bound is computed as the maximum horizontal deviation between
the arrival curve αi of flow fi and the service curve βR∗

i
,T∗

i
. This flow is injected at rate ρi and

burstiness σi, however it is subjected to link shaping at rate r as it enters the network. As a result,
αi = min(rt, σi + ρit)1t>0:

d∗i = T ∗i + σi(r −R∗i)
R∗i (r − ρi)

(7.10)

Evaluation of the end-to-end latency will be given in Chapter 8.

102 CHAPTER 7. TIME-CRITIAL IMPLEMENTATION ON THE KALRAY MPPA2

7.6.6 NoC Configuration Toolchain for the Kalray MPPA2
In this section, we present the network toolchain able to generate the NoC configuration and to
compute the end-to-end latency from a set of flows and the topology of the NoC.

Topology File Format. We define a Yaml file representing the network topology. This representa-
tion is precise enough to assign the physical delays.

This file consists of a list of nodes with the ingress and egress link and a list of links for which we
attributed a traversal delay. This traversal delay depends on the physical length of the links. Then,
the file contains the list of turns. The arbiters are described with several turns as input and one link
as output. Finally, the switches demultiplexing the flows of one link into several turns are described.

The routes are computed with an abstract link and node representation, then they are converted
into a concrete representation as described in the topology file.

Flow File Format. A Yaml file representing the flows is generated from the Parallel Intermediate
Representation (PIR) of the program and the mapping. This file contains the set of NoC communica-
tions with the source node, destinations and packet size. This file is then processed and a new file is
produced at each step of the network toolchain.

The routing tool takes the flow file and the topology file as input and produces a new flow file
with the routes. Then, the rate attribution tool computes flow rates and produces a new file which is
used at ingress of the DNC tool for the computation of the end-to-end latency and the queue overflow
check which produce a new file. This file is used at ingress of the task release date computation tool.
A NoC configuration tool also attributes one TX engine and one RX engine for each flow. Then it
produces the packet shaper configuration and the bandwidth limiter parameters. This configuration
is included in the final binary.

DNC Computation Tool. The DNC Computation Tool computes the end-to-end latency. Previous
version of the DNC computation tool was relying on a LP solver to attribute the flow rate and compute
the end-to-end latency bounds at the same time [44]. One contribution is an end-to-end computation
taking advantage of the feed-forward property of the flows to perform a one pass computation. Our
implementation computes a flow arrival curve at each queue. Then, it computes the service curve at
each turn. The choice between blind and FIFO is done with the constraint formulated in Section 7.6.2.
Furthermore, the blind policy can locally be chosen if it provides better delays than the round-robin
policy. The delay of each flow is expressed with the convolution of the service curve crossed by the
flow. Finally, the equations are sorted topologically before computation.

7.7 Conclusion
In this chapter we presented our implementation toolchain for parallel program on the Kalray MPPA2.
The input of the toolchain is the PIR of the program, a mapping and a scheduling. The contributions
of this chapter are the following:

– The configuration of the platform and a time-triggered execution model ensuring real-time
constraints with a clock synchronization protocol

– The implementation of the schedule of data-flow program with automata and delayed communi-
cations.

– Generation of shared-memory communication code including software-based cache coherency.
– An enumerative fair rate attribution algorithm for the flows and a fast LP-based heuristics.
– A deadlock-free multi-cast routing algorithm and a deadlock-free routing algorithm for the
MPPA2 topology.

– A complete toolchain of routing, static rate allocation and end-to-end delays bounding on the
NoC generating the network configurations.

Evaluation of the implementation is performed in Chapter 8.

8 Experiments

In this chapter, we apply our toolchain to both synthetic, artificial benchmarks and to representative
avionics case-studies. First, we compare our Network-on-Chip routing and flow optimization techniques
with classical methods for Mesh-2D. Second, we compare our Deterministic Network Calculus (DNC)
tool with alternative methods. Then we discuss the performance obtained on the case studies.

8.1 Route Selection and Routing Algorithm Comparison

We apply the EURS and LPURS algorithms to some artificial instances of flows (Bit-Complement,
Bit-Reverse, Shuffle and Tornado presented in Section 4.2.8) and the two use cases E1 and E2 from
Section 8.2. The flows are routed with Hamiltonian Odd-Even (HOE), Turn Prohibition (TP) and
Simple Cycle Breaking (SCB). For the final rates attribution, we consider the minimal rate as a good
indicator of fairness. Examples are named with the initial letters of the instance of flows followed by
the initial letters of the routing algorithm.

Figure 8.1: The top of each bar is the total number of combinations for a test case. In blue, the
number of combinations computed after pruning Exploration for Unique Route Selection (EURS)
algorithm. In white dashed of red, the number of pruned combinations. The y-axis has a logarithmic
scale.

The Exploration for Unique Route Selection (EURS) algorithm is an improvement over the basic
route selection algorithm which enables pruning of some combinations. EURS computes an upper
bound of the smallest rate for each combination and avoids applying the Water Filling algorithm if
this rate is not maximal. Figure 8.1 shows benefit of the pruning for all the test cases by comparing

103

104 CHAPTER 8. EXPERIMENTS

the number of combinations and the number of pruned combinations. The y-axis has a logarithmic
scale. Pruning enables high reduction of the route combinations. Nevertheless, this reduction is highly
variable depending on test case. For instance, for BC-HOE, T-SCB, T-HOE and BC-SCB, less than
1% of reduction is observed. A drawback of this pruning method is that it applies only on the link of
the network which is shared by the highest number of flows. If all the combinations lead to the same
maximum share, there is not gain. However, it should be noticed that EURS behaves very well for 8
out of 18 test cases and well for 4 others.

Figure 8.2: Evaluation of the number of final combinations computed by LPURS on the test case.
Final combination are drastically reduced compared the EURS method (Figure 8.1).

The LP-Based Heuristics for Unique Route Selection (LPURS) algorithm reduces the number of
evaluated combinations by considering at the same time all the paths of each flow. This leads to a
high reduction of the number of final combinations. As depicted in Figure 8.2 there is a maximum of
22 solutions evaluated for E2-SCB.

Figure 8.3: Comparison of the number of LP programs required by LPURS on the examples.

This very high reduction has to be put in perspective with the number of linear programs (LP)
required to perform the algorithm and MMFSP. Figure 8.3 shows a maximum of 104 LPs for BC-SCB
compared to the 1014 combinations evaluated with the EURS algorithm. Finally, if we compare the
number of combinations of EURS to the numbers of LP programs of LPURS, we observe an average
reduction of more than 1010 times.

Figure 8.4 compares the result of the route selection for the two algorithms LPURS and EURS.
We compare the solutions with the minimum, maximum and average rate attributed to the flows. For
13 out of 24 examples, LPURS and EURS perform the same. If the criterion is the minimal rate both

8.1. ROUTE SELECTION AND ROUTING ALGORITHM COMPARISON 105

Figure 8.4: Rate reduction of the LPURS heuristics compared to the optimal EURS algorithm.
Comparison is performed on the minimal, maximal and average rate. Longer lines mean worst LPURS
performances.

algorithm perform similarly except for Bit-Reverse routed with HOE whose minimal rate is reduced
of 33.3%. Globally, LPURS reduces the average rate by 5.8% and the maximal rate by 5.4%.

An enumerative solution is not applicable for big problems since it leads to a high number of
combinations to evaluate. The EURS algorithm provides an optimization to reduce the number of
combination. This reduction is still not sufficient. To conclude, we presented an LP-based heuristic
LPURS whose result is comparable to the EURS but reduces the number of evaluated combinations.

8.1.1 Comparison of Deadlock-Free Unicast Routing Algorithms

In this section, we compare some deadlock-free routing algorithms for the MPPA2 NoC: XY, Hamilto-
nian Odd-Even (HOE) Simple Cycle Breaking (SCB) and Turn Prohibition (TP). The path diversity
is the number of possible routes between two network nodes. We compare path diversity of each use
case on the minimal and maximal number of possible routes observed for all the flows, and the average
of the path diversity of all the flows. Then we compare the minimal rate resulting of a max-min fair
rate attribution. The routing algorithms are applied to the four artificial instances of flows presented
in Section 4.2.8 and the two use cases E1 and E2 presented in Figure 8.10 of Section 8.2.

For TP and SCB routing algorithms, the set of possible routes is obtained by enumeration of all
the shortest paths. We used a modified Bellman-Ford algorithm for this purpose.

Figure 8.5 shows path diversity of the routing algorithm for different test cases. A high path
diversity gives more alternatives to select the best combination. SCB provides the best path diversity.
For the Bit-Complement instance of flows, it provides up to 21 alternative paths per flow. HOE
provides better path diversity than TP.

We compare the minimal rate attribution for each flow using the optimal EURS method limited to
the 50000 first combinations. A higher minimal rate is better since it is the result of a fair attribution.
Glass and Ni [60] stated than a better path diversity results in better performances of the network.
Figure 8.6 shows the minimal rate for each routing algorithm. It shows that the relation between path
diversity and rate is not clear. For instance, SCB provides high path diversity for Bit-Complement,
whereas it provides one of the worst rates for this instance of flow. Furthermore, XY provides the
best minimal rate. The best minimal rate is always provided by HOE or XY.

106 CHAPTER 8. EXPERIMENTS

1

3

5

7

9

11

13

15

17

19

21
Example 1 Bit-Complement Bit-ReverseExample 2 Shuffle Tornado#paths

Figure 8.5: Minimal (resp. maximal) number of alternative paths among all the flows of the test case
are represented with the bottom (resp. top) of line. Average number of alternative paths for the flows
of each test case are represented with the horizontal line.

X
Y

H
O

E

S
C
B

T
P

X
Y

H
O

E

S
C
B

T
P

X
Y

H
O

E

S
C
B

T
P

X
Y

H
O

E

S
C
B

T
P

X
Y

H
O

E

S
C
B

T
P

X
Y

H
O

E

S
C
B

T
P

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
Example 1 Bit-Complement Bit-ReverseExample 2 Shuffle TornadoRate

Figure 8.6: Rate for each test case after application of the EURS route selection on the flow. The
rate of the slowest (resp. fastest) flow of the test case is represented with the bottom (resp. top) of
the line. The average rate of all the flows of each test case is represented with the horizontal line.

Comparison of HOE and XY. Even though XY has no path diversity, it performs better than
HOE on Bit-Complement and Tornado in term of minimal rate. The explanation is that HOE does
not allow some XY path, as illustrated in Figure 8.7. Nevertheless, HOE offers efficient multi-cast
routing algorithms as presented in the next section.

8.1.2 Evaluation of the HOE-DP Unicast-Based Multicast Routing Algo-
rithm

In this section, we compare multicast routing algorithm based on the Dual Path (DP) and the Column
Path (CP) partitioning algorithms. The classical DP [91] which is based on the Hamiltonian routing
and the CP [19] which is based on XY routing are compared to the HOE DP and HAMUM DP
introduced in Section 7.5.2.

The evaluation method is described in Section 7.5. The input flows are generated with a uniform
traffic where each pair of nodes has a probability p to communicate. The max-min fair routes are
selected using the EURS algorithm. The experiments is performed on p ∈ [0.01, 0.5] with steps of 0.025.
For each value of p, the result is the average of the minimal rates obtained for N=100 experiments.

8.1. ROUTE SELECTION AND ROUTING ALGORITHM COMPARISON 107

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3
f0

f0

f0

f0

f0f0f0

f1

f1

f1

f1

f1

f1f1

f2

f2

f2f2

f2

f2

f2

f3

f3

f3
f3

f3

f3

f3

Figure 8.7: Enumeration of the possible HOE paths between 3 and 12 on a 4x4 2D-mesh.

The aim is to guarantee the best minimal rate for each flow. Figure 8.8 shows the minimal rate
for several parameters p of the uniform law computed with the following formula:

E(p) = 1
N

∑
i∈[1,N]

min
f∈flowsi

rate(f)

Figure 8.8: Comparison of the HOE DP, HAMUM DP with the CP and DP algorithms for a uniform
traffic on a 4x4 grid. X-axis is the parameter of the uniform traffic and y-axis is the minimum rate
for the flows.

The CP routing algorithm globally outperforms the other routing methods in term of minimal
rate when the network usage is high (p > 0.20). The main reason is the reduction of the route length
due to the increase of the number of partitions.

For small network usages (p < 0.20), HOE DP performs better since it takes advantage of the path
diversity. Nevertheless, the benefit of path diversity is limited as soon as the network usage increases.

As expected both HAMUM DP and HOE DP always provide equal or better results than DP
since they take advantage of path diversity.

108 CHAPTER 8. EXPERIMENTS

Figure 8.9: Comparison of the number of partitions for DP and CP partitioning methods. X-axis is
the average number of partitions required for each multicast.

The other criterion of choice between CP and HOE DP is the number of partitions. Figure 8.9
shows the average number of unicast routes required by DP and CP partitioning computed as follows:

P (p) = 1
N

∑
i∈[1,N]

 1
|flowsi|

∑
f∈flowsi

|partitions(f)|


CP does not reach its maximum of 8 partitions for a 4x4 grid. Nevertheless, even for small network

usage, it exceeds 2 partitions. As expected, DP stays under 2 partitions. Furthermore, CP provides a
better minimal rate than HOE DP for p < 0.20. At p = 0.20, CP relies on more than 2.5 routes per
flow in average which is more than DP which relies on 1.5 routes.

The multicast and unicast algorithms come in pairs since they must be compatible. For instance,
the multicast CP algorithm is based on XY, hence it can be mixed with XY unicast traffic only.
The HOE DP can be mixed with HOE unicast traffic only. As a matter of fact, in these cases the
multicast algorithms give the same routing as the unicast algorithms if the “multicast” traffic with
one destination is given.

The MPPA2 has a limited number of TX engines and the configuration of a TX engine takes time.
Consequently, we recommend the HOE DP for multicast routing since it requires at most two TX
engines per multicast. As a consequence, the HOE has to be chosen for the unicast routing also.

8.2 Comparison of the DNC Formulations
In this section, we perform a blackbox comparison of three methods to bound end-to-end latency
of the wormhole NoC of the Kalray MPPA2. The first is the Linear Formulation method presented
in Chapter 7 and implemented in our tool, the second is a DNC method originally designed for the
Avionics Full-Duplex Switched Ethernet (AFDX) networks [21, 55, 22, 23] called Local formulation.
The third from Ayed et al. [5] relies on the recursive calculus (RC) theory and has been designed to
handle both the MPPA2 and the Tilera TILE64 many-core processor. They are compared to a naive
formulation from [44] which was designed for the MPPA1 and is over-pessimistic when applied on the
MPPA2.

The recursive calculus is an adaptation of the DNC. In introduces the Wormhole Sections which
are network elements implementing the wormhole routers. The delays are expressed recursively as the
sum of the delays of the interfering flows.

The main difference between the Linear and the Local formulation is the flows’ contract. In the
Linear formulation, the flows are defined with a leaky bucket arrival curve. In AFDX, flows are defined

8.2. COMPARISON OF THE DNC FORMULATIONS 109

with a maximal frame size and a minimal inter-frame time defining sporadic flows. Consequently,
in Local formulation, the flows are inspired by AFDX and modeled as a staircase function while in
Linear formulation, the staircase function is approximated with an affine function.

Another fundamental difference is that the Local formulation computes the latency of the flow in
each queue while the Linear formulation is based on the Separated Flow Analysis (SFA) in which the
burstiness is only accounted once. This principle is called pay burst only once (PBOO) [21].

The comparison of the methods is performed on the two use cases presented in Figure 8.10. We
consider that packets are 17-flit long for use case 1. This corresponds to a packet with 1 flit of header
and 16 flits (64B) of payload which often happens. The rates attributed to the flows with a max-min
fair policy are shown in Table 8.1. For use case 2, the packets are 50-flit long and have a period of 1000
cycles [5]. This period is only taken into account for the Local method. For the Linear formulation,
the period is approximated with a rate of 0.05 flits/cycle.

f3

f1 f2

f4
N3

N1

N4

N2

(a) Use case 1

f4 f6

f5f1
f3 f2

N5

N8

N1 N2 N3

N9

N6

(b) Use case 2: from [5]

Figure 8.10: Use cases of NoC traffic.

f1 f2 f3 f4
Rate (flit/cycle) 2

3
1
3

1
3

1
3

Linear formulation (cycle) 25 110 100 34
Local formulation [21] (cycle) 25 170 136 34

Table 8.1: Bounds on NoC delay per flow in cycles for use case 1.

f1 f2 f3 f4 f5 f6
Rate (flit/cycle) 5% 5% 5% 5% 5% 5%
NC, Naive form [44] (cycle) 4104 4104 5155 3153 5255 3153
Recursive Calculus [5] (cycle) 158 158 107 103 156 103
NC, Local formulation [21] (cycle) 57 57 54 62 153 58
NC, Linear formulation (cycle) 105 105 52 52 150 100

Table 8.2: Bounds on NoC delay per flow, in cycles for use case 2.

110 CHAPTER 8. EXPERIMENTS

alt_hold

Vz_filter
q_filter
Va_filter

h_filter
az_filter

Vz_control

Va_control

Environment

F

2F

read_in

2F write_out

4F2F

F

F

Figure 8.11: ROSACE Controller: Lustre implementation

Table 8.1 shows the delays for the flow of use case 1. The Linear formulation gives better results
than the Local formulation. The reason is that Local formulation relies on a more pessimistic
equation to compute the burstiness increase of a flow due to a FIFO. The Linear formulation relies on
Equation 7.7 (page 101) which cannot be used by the Local formulation since it requires linearization
of the arrival curve [21].

Table 8.2 shows the delays for the flows of use case 2. The Local formulation provides better
delays.

Queue level. We check for both examples the queue maximum usage using our Linear formulation
method. The limit is fixed to Qmax = 517 flits for the MPPA2.

We name Qkusage, usage of the hardware queue of the Turn k. For use case 1, the usage of the
queue of the turn are: 12 flits for the Turn through node 3 from Local to Local (T3LL); 18 flits for
T1LE, T4LW, T3NL and T2WS; and 24 flits for T4NW and T2LS. The maximum usage is 41 flits for
queue T3EL. This set of flows can be implemented on the MPPA2 since the queues do not overflow.

For use case 2, the Qkusage are 51 flits for queues T5LS, T5NS, T6LS and T2WS; 53 flits for queues
T2LE, T3WS and T6NS; 101 for 2WE, 3WL and T8NL. The highest queue usages are for T9NL with
103 flits and T1LE with 151 flits. In conclusion, this set of flows can be safely implemented on the
MPPA2 since the queues do not overflow.

Conclusion. We compared the results of our DNC tool based on the Linear formulation with some
other methods. We provide better bounds than earlier RC and Naive Form methods. Nevertheless,
the Local formulation method is more mature and gives smaller delay bounds.

The main interest of our method is that it relies on a simple modeling offering low computation
time. As a consequence, it allows on-line reconfiguration of the NoC.

8.3 Case Studies
This section presents applications of our framework on three use cases: the ROSACE case study, a
sensor processing application and an application running on 64 cores. For them, the code is generated
for the Kalray MPPA2. We compare the event-triggered method where each task starts as soon as
possible, to the time-triggered method for which each task has a periodic release date. The event-
triggered method is best effort and does not provide any timing guarantee while the time-triggered
method offers guaranties on the WCRT. As the WCET analysis tools are not mature enough on this
platform, the maximum duration of tasks is obtained by measurement.

8.3.1 ROSACE: Flight-Control Use-case
ROSACE [102] is a case-study whose structure is inspired by true avionic control applications. Only
altitude is controlled, hence it does not require heavy computation. In order to experiment the influence

8.3. CASE STUDIES 111

read_in alt_hold Vz_control write_out
PE0

h_filter
R=900PE1
as_filter
R=900 R=1568PE2
Vz_filter

PE3 R=900
q_filter

R=900PE4
Va_filter

Va_control

R=0 R=900 R=2206 R=2783R=1553

Figure 8.12: Static schedule the pure ROSACE controller tasks on 5 cores. First period is represented.
For each task, the release is provided.

0 100 300 500

1
0
0
0
0

1
0
4
0
0

1
0
8
0
0

A
lt
it
u
d
e
 (

m
)

0 100 300 500

2
2
9
.6

2
3
0
.0

2
3
0
.4

S
p
e
e
d
 (

m
/s

)

Figure 8.13: 600 periods of ROSACE running on the Kalray MPPA2. Step climb of 1000 m. Constant
airspeed of 230 m/s.

Figure 8.14: ROSACE: Communication only, pure ROSACE, ROSACE+100 cycles and ROSACE+200
cycles in each node are compared for Sequential, Event-Triggered and Time-Triggered methods.

112 CHAPTER 8. EXPERIMENTS

Exp. Seq/ET Seq/TT TT/ET TT-ET
No Compute 1.36 0.43 3.18 4.11 µs
ROSACE 1.66 0.64 2.58 4.27 µs
ROSACE + 100 2.49 1.76 1.42 4.43 µs
ROSACE + 200 2.57 2.07 1.24 4.05 µs

Table 8.3: ROSACE: Comparison of event-triggered (ET), time-triggered (TT) and sequential version
for each level of computation.

of computation load on the execution time, we created 4 versions of the application with different
computation loads in each node of the controller. The “pure-ROSACE” version, the “ROSACE+100”
where 100 cycles are added in each node, the “ROSACE+200” where 200 cycles are added in each
node. In addition, to benchmark the communication time, we created the “No Compute” version
where all the computations are removed from the controller’s nodes.

Figure 8.11 shows the structure of the ROSACE application as presented in [102]. It is composed
of a simulator of the environment and a controller. The purpose of the environment is to test the
controller part, but only the controller part has real-time properties. We choose to execute the
environment on an I/O Cluster and the controller on a Compute Cluster.

We look for the shortest period T such that the controller is schedulable:
– In Event-Triggered (ET), we experimentally measure the longest period while running the
application on the Kalray MPPA2 chip.

– In Time-Triggered (TT) mode, we run the application on the MPPA2 and check that we do not
get any timing violation. By construction, the period is known at compile-time.

The Time-Triggered plus Event Triggered mode has the same period as the TT mode, plus a few
cycles: it only adds a polling loop that iterates only once if there is no timing violation. The difference
with TT is too small to be relevant in measurements. In these experiments, we use the TT mode
which has the advantage of letting us check that no timing violation occurs. Measurements are done
on a Kalray MPPA2 running at 400 MHz.

In all cases, we compute the frequency as F = 1/T . Figure 8.11 shows the relative execution
frequencies of the nodes. Figure 8.12 gives a schedule on 5 cores. The frequency F for pure ROSACE
is 64 kHz. The release date (R) of each task is given. The first period (and odd periods) is the critical
path since it contains all the tasks on F and 2F . Figure 8.14 gives the first period duration for each
experiment.

Table 8.3 shows that the speedup of the Event-Triggered (ET) is always better than sequential
and Time-Triggered (TT) but ET does not provide any guarantee of WCET. The difference between
TT and ET is due to the over-approximation of the WCET of each task compared to the actual
execution and due to the WCET of the communication code. As expected, benchmarks with very
lightweight tasks (“no compute” and “ROSACE”) have an important synchronization overhead (TT
is slower than Seq in these cases), but as soon as the tasks perform non-negligible computations, the
synchronization overhead is compensated by the speedup due to parallelism.

8.3.2 Sensors Processing Case Study
We now consider the Lustre implementation of an avionic sensor processing program presented in [93].
This application reads a matrix of 8 ∗ 512 floats from the input/output cluster of the Kalray MPPA2,
transposes it and dispatches the flows to 8 FFTs blocks. Results are gathered in a single matrix. In
the pipelined version (see Figure 8.15), all the nodes are concurrently executed on 10 cores. In the
non-pipelined version the FFT are executed in parallel on 8 cores. Figure 8.15b shows the schedule of
the pipelined version.

Figure 8.16 compares TT and ET for the non-pipelined version. In the TT version, the WCET
approximation and the MIA analysis leads to a nearly constant overhead of 21%. Nevertheless, the

8.3. CASE STUDIES 113

In

Trans.

Dispatch

FFT0 FFT7FFT1 ...

preinit

Gather

Out

preinit

(a) Lustre Program

DDTIDTI
FFT0

FFT1

FFT7

FFT0

FFT1

FFT7

FFT1

FFT2 FFT2 FFT2

FFT0
I T

G GO OO G

...
...

...

FFT7

... ...

PE0
PE1

PE2

PE3

PE8
PE9

... ...

...

...

...

(b) Schedule

Figure 8.15: Processing on 8 sensors pipelined on 3 stages.

Figure 8.16: Non-pipelined sensor processing: Latency on 1 to 8 cores for TT and ET versions.

114 CHAPTER 8. EXPERIMENTS

1 core 8 cores 10 cores pipelined

ET
Throughput 389K 1348K 3242K
Speedup 1x 3.46x 8.33x
Latency 10.5ms 3ms 3.8ms

TT
Throughput 306K 1045K 2712K
Speedup 1x 3.40x 8.86x
Latency 13.3ms 3.9ms 4.53ms

Table 8.4: Sensors processing: pipelined vs. parallel version. Throughputs are in Kilo-float per
second. Latency pipelined version is for three stages of pipeline.

duration of the TT version is an upper bound whereas ET is an average duration and does not offer
any guarantee.

Between 4 to 7 cores, one core necessarily computes 2 FFTs in sequence, hence this explains the
small difference. The small speedup increase between 4 and 7 is due to the instruction cache effect
because each core has less code to execute.

Table 8.4 compares the pipelined and the parallel version. The pipelined version provides a better
throughput than the non-pipelined version on 8 cores, but its latency is higher although better than
the sequential version.

8.3.3 Synthetic Benchmark
The previously presented application are too small to be executed on several clusters. Consequently,
we developed a use-case adapted to the highly parallel MPPA2. This application runs on 16 clusters
and in each clusters, the program executes 4 tasks in parallel on 4 cores.

This synthetic benchmark allows demonstrating the automated code generation method on several
clusters. It allows experimenting the NoC routing, configuration and worst-case traversal time (WCTT)
computation.

0 2

8 10

4 6

12 14

1 3

9 11

5 7

13 15

(a) Dispatch from Cluster 0

0 2

8 10

4 6

12 14

1 3

9 11

5 7

13 15

(b) Gather to Cluster 0

Figure 8.17: Overview of the synthetic benchmark involving 16 clusters.

8.3. CASE STUDIES 115

NoC_RX

prog_n87

prog_n27 prog_n43 prog_n59 prog_n11

prog_n88

TX_prog_n88

NoC_TX

Figure 8.18: In each cluster, 4 cores execute tasks in parallel.

Figure 8.17 shows NoC communications involved in the application. Since the MPPA2 has a
limited number of RX and TX engines in each cluster and since we statically allocate each of them to
a specific communication, cluster 0 cannot dispatch the inputs to all the other clusters. Consequently,
we chose to carry the inputs to each cluster using a tree structure as represented in Figure 8.17a.
Cluster 0 dispatches the inputs to clusters 1, 2, 4, 8 and 10. Then, each of these clusters, in turn,
dispatches to two other clusters. The outputs computed by each clusters are directly sent to cluster 0
as represented in Figure 8.17b.

As shown in Figure 8.18, in each cluster a dispatch task (prog_n87) receives the inputs from
the NoC. The results are centralized by a gather task and sent through the NoC by a specific task
(TX_prog_n88). For instance, Tasks prog_27, prog_43, prog_59 and prog_11 are computation tasks.

NoC Configuration. The flows are routed with HOE as recommended in Section 8.1.2. The
obtained minimal rates are 1

5 flit/cycle for the flows of Figure 8.17a and 1
15 flit/cycle for the flows of

Figure 8.17b flits/cycle. The bandwidth limiters are configured accordingly.
The packets are 17-flit long. In average the WCTT are 98 cycles for the flows of Figure 8.17a and

1227 cycles for the flows of Figure 8.17b. Since the packet size is the same, the difference is explained
by the high usage of the ingress local link of cluster 0.

Release Date and Interference Analysis. The multi-core interference analysis (MIA) tool allows
computing the release date of each task considering the memory interference. We explain how to
model the NoC transfer and the WCTT in MIA. In the model, we create tasks to mimic the NoC
latency. To avoid problems, we allow only one task per cluster to send data through the NoC.

As presented in Section 4.3, in the MPPA2, the NoC RX engines have priority on the bank arbiter.
Consequently, their accesses do not have the same consequence on the concurrent access delay as
the accesses from cores. To model this, MIA allows representing RX tasks which are special tasks
accessing banks using this high priority.

Figure 8.19 shows an example of NoC communications modeled using MIA for release date
computation. The example is composed of two tasks T1 and T2 running respectively on clusters 0
and 1. They are isolated and they do not suffer from interference. Clusters 2 executes tasks T3, T4

116 CHAPTER 8. EXPERIMENTS

T1

T2

T5

RX1

RX2

T3 T4

Cluster 1: PE 0

Cluster 0: PE 0

RX

PE0

Cluster 2

TX2

TX1

Figure 8.19: Representation of NoC communications in the MIA release date computation tool. The
dashed arrows are the dependencies. White tasks are the tasks from the application while blue ones
are tasks created to represent the NoC transmission in MIA.

and T5. T5 is waiting for packets coming from T1 and T2. All these tasks are represented in white
and implement the application functionality.

Tasks in blue are created to encode the NoC behavior. For instance, in the communication from
T1 to T5, tasks TX1 and RX1 are added. TX1 corresponds to the transmission initiation. RX1
performs writes to the bank of Cluster 2, PE0. Consequently, since tasks T4 and RX1 are concurrent,
they interfere together. Similarly, TX2 and RX2 are added to represent the NoC transfer from T2 to
T4. Note that the interference between RX1 and RX2 is accounted in the WCTT analysis.

To understand the need for the TX1 and TX2 tasks, we recall that the WCTT and the WCET
do not provide any information about the best case. Consequently, if the NoC transfer is initiated
immediately after the end of T1, the packet can possibly be send right after the beginning of T1 in
case T1 terminates early, then interfering with T3.

The solution is to represent the tasks in two phases [113] to separate the computation and the
shared-memory communications T1 of the NoC transfer initiation TX1. MIA then computes a release
date for the second phase which corresponds to the end of T1. Hence, the NoC transfer starts
somewhere between the beginning and the end of TX1. Consequently, the duration of RX1 is the
WCET of the NoC transfer initiation plus the duration of RX1: WCTT + WCET(TX1). The same
applies for RX2 = WCTT + WCET(TX2).

Figure 8.20: Time distribution of the critical path (WCRT) in percentage of the time-triggered (TT)
execution.

Time Distribution. In order to understand the main bottleneck of our parallel implementation,
we computed the fraction of the critical path spent in communication and computation. Figure 8.20
shows the fraction of the WCRT attributed to each work. The functional code represents 54.1% of the
WCRT which means that less than half of the execution time is attributed to the communications.

8.4. CONCLUSION 117

More than 37.6% of the WCRT is attributed to the send and wait procedures. These procedures
are called before and after the functional code in the task to ensure the presence of the inputs and write
the outputs to the requiring tasks. The large fraction of the WCRT attributed to these procedures is
due to the copy of the data and the access to the NoC TX engine. In the program, the transferred
data are 20B each. More precisely, 19.6% of the WCRT is attributed to the send and wait procedures
relative to the SMEM communications and 18% are attributed to the NoC TX tasks responsible for
accessing the NoC TX engine.

The impact of NoC transfers is 7.1% of the WCRT. This number corresponds to the latency
between the NoC TX engine of the emitter and NoC RX engine of the receiver. The WCETs of the
transfer initiation through the TX engine are accounted in the TX tasks.

Finally, memory interferences are responsible for 1% of the WCRT. This low fraction has to be
put into perspective with the low number of cores used in each cluster (4). It also shows the benefits
of our execution model.

To evaluate the speedup of the implementation we define a theoretical speedup. It is obtained by
the Amdahl law taking into account that some tasks are sequential, some are parallelizable on 16
cores, some others on 64 cores. This ideal speedup is 26.8.

Execution time Speedup
Sequential 212780 cycles x1
TT 22264 cycles x9.5
ET 11741 cycles x18.12
Ideal 7939 cycles x26.8

Table 8.5: Execution time and resulting speedup obtained for each method.

Table 8.5 shows the execution time of the application using the three methods compared to the
ideal speedup. The ET methods provides a good speedup of 18. We recall that the time-triggered
method (TT) is the only one with a guaranteed WCRT. The TT execution is 9.5 faster than the
sequential execution. The TT is 47.3% slower than ET due the worst-case estimations.

8.4 Conclusion
In this chapter, we evaluated the two route attribution algorithms and showed that our LP-based
heuristics performs similarly to the enumeration method while reducing drastically the complexity
of the algorithm compared to the exploration method. We evaluated our network calculus tool
computation.

We showed that our multicast routing algorithm leads to an efficient max-min fair attribution while
minimizing the number of partitions and thus the number of TX engines required for the transmission.

Finally, we applied our complete code generation toolchain on three realistic use-cases: two from
avionics and one designed for its heavy computing demand. We showed a great latency reduction of
the parallel version compared to the sequential version and a minimal overhead due to the WCRT
guaranties.

118 CHAPTER 8. EXPERIMENTS

9 Conclusion and Future Work

9.1 Summary and Contributions

In this thesis, we presented a complete toolchain allowing parallel code generation from a data-flow
synchronous program on a multi- or many-core processor. This work targets the code generation for
critical, hard real-time systems. These systems require functional correctness. In particular, the code
generation should enable software validation. Thus, the solution must be based on simple methods,
simple hardware mechanisms and it must enable traceability of the generated code. These systems
should be time-predictable to fit real-time constraints such as minimal bandwidth or maximal latency.

The purpose of our work is to give a complete implementation method of real-time software on a
multi- and many-core. We apply this method to the Kalray MPPA2.

9.1.1 Task Extraction and Parallel Intermediate Representation (PIR)
The first step is to identify and extract parallelism from the data-flow Synchronous program. Extracting
as much parallelism as possible from a data-flow application is not efficient since the cost of the
communication becomes higher than the execution time of the tasks. Consequently, we develop the
Top-Level Node method which automatically selects all the sub-nodes of the top-level node of the
program as candidate for parallel execution. We compare our method with the KCG multi-core
Scade compiler offering a fork-join-like parallel annotation. Each selected node and its sub-nodes are
compiled into a single functional code. These methods ensure code traceability.

We introduce a Parallel Intermediate Representation (PIR) to describe the direct and delayed
communications, and the dependencies between the tasks. Since the problem of mapping the tasks on
the core is already subject to an active research, we rely on an external tool for this purpose. We
focus our work on the generation of the code required to deploy the tasks on the hardware and make
them communicate. Consequently, the second step of our toolchain is the automatic implementation
of the PIR on the hardware. Each task is composed of the functional code, the communication and
the synchronization codes.

9.1.2 Latency-Bounded Communication Under Interference
The main difficulty with the multi- and many-core architectures compared to the single-cores is the
existence of shared-resources leading to timing interferences. Furthermore, these shared-resources
interferences have to be taken into account when generating the code.

Shared-Memory. We have chosen an approach where the memory interferences are not avoided.
Our method minimizes them using data placement in banked memory. We explain that a time-
triggered execution of the tasks is a solution to minimize memory interferences and to guarantee a
bound on the Worst-Case Response Time (WCRT).

119

120 CHAPTER 9. CONCLUSION AND FUTURE WORK

Hamza Rihani developed the MIA [113] tool which computes a release date for each task taking
into account the dependencies and the memory interferences. Together with him, we developed a
method to adapt MIA to our code generation tool and a time-triggered execution model.

Network-on-Chip. The Network-on-Chip (NoC) offers low latency communications on the chip.
A NoC is composed of shared links and routers. Nevertheless, some NoCs offer some guarantees of
service thanks to hardware bandwidth limiters. Our contribution is a complete tool which computes
a NoC configuration ensuring tight end-to-end latency bounds of the communications.

Routers of the MPPA2 NoC follow the wormhole policy. This offers low latencies but is deadlock-
prone. Consequently, we compare several deadlock-free routing algorithms and show how to adapt
them to the MPPA2. We also introduce the deadlock-free HOE Dual-Path algorithm offering efficient
multi-cast communications while minimizing the number of packets required to implement one
transmission.

Some routing algorithms offer path-diversity meaning that for each pair of communicating nodes,
several paths are possible. We develop a method to exploit these different paths by selecting a
combination of static routes offering a fair rate attribution. In particular, we design an enumerative
method called Exploration for Unique Route Selection (EURS) and a LP-based heuristic called
LP-Based Heuristics for Unique Route Selection (LPURS) to efficiently compute the combination
offering the best fair attribution. We then presented a tool relying on the Deterministic Network
Calculus theory to compute the end-to-end latency of the communications.

9.1.3 Results
We compare the multi-cast routing algorithm to classical routing algorithm and show good results
while managing with the hardware constraints. We also evaluate the EURS and the LP-based heuristic
LPURS and shown that LPURS performs considerably faster while keeping accurate results.

We apply our toolchain to the ROSACE [102] avionic case study which implements an academic
flight control program regulating speed and altitude. We generate parallel and time-triggered code
which guarantees the WCRT. We then compare the guaranteed execution time to a best effort
execution time on the platform showing a small overhead of 21% for our method.

We apply our toolchain on a sensor processing application inspired from a true avionic industry [93].
The result is a 22% overhead between our method and a best effort execution time. We have shown a
version parallelized on 1 to 8 cores and a pipelined version on 10 cores.

Finally, we present an application running on 16 clusters and 64 cores. The WCRT of this
application is guaranteed thanks to NoC end-to-end latency analysis and memory interference
computation. Furthermore, we provide a method to compute safe release dates for the tasks including
both NoC and shared-memory communications. This application shows a good speedup with overhead
of 47% compared to the best effort.

9.2 Future Work
Code generation of real-time applications on a multi-core is a wide topic and offers many opportunities
for improvement.

One lesson learned from the implementation of applications using our method is that the main
bottleneck is the memory. We shown with ROSACE for instance, that our computation time was
beyond the requirements, nevertheless, the size of the MPPA2 shared-memory was a bottleneck for
the implementation of the signal processing application.

This memory limitation is first due to the hardware characteristics, for instance the size of the
shared-memory memory, but also to the data-flow paradigm which requires a lot of copies. Since
the implementation is static and time-triggered, the usage of each buffer can be know, then a better
buffer allocation can be invented to minimize memory usage.

9.3. FUTURE OF THE MULTI-CORE FOR CRITICAL APPLICATIONS 121

Another reason for this memory shortage is the use of the processor in banked mode which requires
strict memory alignments. We think that these alignments could be made less strict while preserving
low WCRT. This requires modifications in both the release dates computation and the code generation.

Another line of inquiry is overlaying. It consists in storing only a partial code and data in the
memory. Then, data and code are transferred when needed. The phase of transmission and the phase
of execution have to be pipelined to minimize the execution time. Furthermore, the order of the
phases and the amount of transmitted data has to be know at compile time to ensure predictability.

Finally, we fully implement our toolchain for the Kalray MPPA2 but we are convinced that the
general concepts of this method apply on a large range of hardware. As a future work, we consider
the implementation for the T-CREST platform, PULP or Infineon AURIX.

9.3 Future of the Multi-Core for Critical Applications
Multi-core for real-time and critical systems will become increasingly important within the next few
years. But there is still a long way to go before we reach the same level of safety as single-core
architectures.

High-performance hardware is too complex to be analyzed and prone to timing anomalies. Nev-
ertheless, some multi-cores are specifically designed to be time-predictable. Their main common
characteristic is the presence of a scratchpad memory private to each core. Apart from that, the
characteristics such as the presence of cache, their policy, the organization in clusters, the availability
of a global address space, the presence of bus or NoC do not reach a consensus. As a matter of fact,
the certification problems caused by the multi-cores are well listed in the CAST-32A [48] document
but there is no norm and standard to define real-time multi-cores. Consequently, a complete analysis
is required for each of them to identify sources of interference and the timing behavior of the cores.
In particular a specific execution model has to be defined for each multi-core architecture taking into
account for instance the different memory levels.

From two cores to some hundreds, multi- and many-cores offer a lot of computation power.
Obviously, one benefit of using many-core architecture is the extra computing power they provide,
but another important benefit is to allow integrating more applications in the same processor. The
integration of several applications is similar to the integrated modular avionics (IMA).

Nevertheless, if we integrate several applications in the same processor, these applications are
isolated spatially rather than temporally as in IMA. Then, the input/output ports and the external
memory can be simultaneously accessed and shared among all the applications. This creates a
new bottleneck and a new source of interferences. In particular, the hardware has to handle the
multiplexing between the applications in a generic way to support the diversity of external devices that
can be connected to the processor. Finally, bounded communication latencies have to be guaranteed
by the software and hardware architecture. Perret et al. [106] defines an execution model to implement
IMA on the MPPA2.

Finally, there is still a lot of work and a lot of research to do before usage of multi-/many-core
for critical applications becomes reality. Despite that, we provided a toolchain to solve some of the
main problems due to the execution of critical programs on a multi-core. Our toolchain provides an
important base of work for future research on real-time code generation for a multi-core. This thesis
was also a great opportunity to join the academic world with the industrial world since as part of the
CAPACITES project, we provided expertise on the Kalray MPPA2 architecture to the laboratories.

122 CHAPTER 9. CONCLUSION AND FUTURE WORK

Bibliography

[1] Abbaspour, S., Brandner, F., and Schoeberl, M. (2013). A time-predictable stack cache. In
Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC), 2013 IEEE 16th
International Symposium on, pages 1–8. IEEE.

[2] Akesson, B., Goossens, K., and Ringhofer, M. (2007). Predator: a predictable SDRAM memory
controller. In Hardware/Software Codesign and System Synthesis (CODES+ ISSS), 2007 5th
IEEE/ACM/IFIP International Conference on, pages 251–256. IEEE.

[3] Alras, M., Caspi, P., Girault, A., and Raymond, P. (2009). Model-based design of embedded
control systems by means of a synchronous intermediate model. In Embedded Software and Systems,
2009. ICESS’09. International Conference on, pages 3–10. IEEE.

[4] Amaldi, E., Coniglio, S., Gianoli, L. G., and Ileri, C. U. (2013). On single-path network routing
subject to max-min fair flow allocation. Electronic Notes in Discrete Mathematics, 41:543–550.

[5] Ayed, H., Ermont, J., Scharbarg, J.-l., and Fraboul, C. (2016). Towards a unified approach for
worst-case analysis of tilera-like and kalray-like noc architectures. In Factory Communication
Systems (WFCS), 2016 IEEE World Conference on, pages 1–4. IEEE.

[6] Bahn, J. and Bagherzadeh, N. (2009). A generic traffic model for on-chip interconnection networks,
Netw. Chip Arch, 22.

[7] Bahrebar, P. and Stroobandt, D. (2015). The Hamiltonian-based odd–even turn model for
maximally adaptive routing in 2D mesh networks-on-chip. Computers & Electrical Engineering,
45:386–401.

[8] Ballabriga, C., Cassé, H., Rochange, C., and Sainrat, P. (2010). OTAWA: An open toolbox for
adaptive WCET analysis. In SEUS 2010, pages 35–46.

[9] Banakar, R., Steinke, S., Lee, B.-S., Balakrishnan, M., and Marwedel, P. (2002). Scratchpad
memory: a design alternative for cache on-chip memory in embedded systems. In Proceedings of
the Tenth International Symposium on Hardware/Software Codesign. CODES 2002 (IEEE Cat.
No.02TH8627), pages 73–78.

[10] Becker, M., Dasari, D., Nicolic, B., Åkesson, B., Nélis, V., and Nolte, T. (2016). Contention-free
execution of automotive applications on a clustered many-core platform. In 2016 28th Euromicro
Conference on Real-Time Systems (ECRTS), pages 14–24.

[11] Bell, S., Edwards, B., Amann, J., Conlin, R., Joyce, K., Leung, V., MacKay, J., Reif, M., Bao,
L., Brown, J., et al. (2008). Tile64-processor: A 64-core soc with mesh interconnect. In Solid-State
Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, pages
88–598. IEEE.

[12] Benini, L. and De Micheli, G. (2002). Networks on chip: a new paradigm for systems on chip
design. In Design, Automation and Test in Europe Conference and Exhibition, 2002. Proceedings,
pages 418–419. IEEE.

123

124 BIBLIOGRAPHY

[13] Benveniste, A. and Berry, G. (1991). The synchronous approach to reactive and real-time systems.
Proceedings of the IEEE, 79(9):1270–1282.

[14] Berg, C. (2006). Plru cache domino effects. In OASIcs-OpenAccess Series in Informatics, volume 4.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[15] Berry, G. (2007). SCADE: Synchronous design and validation of embedded control software. In
Next Generation Design and Verification Methodologies for Distributed Embedded Control Systems,
pages 19–33. Springer.

[16] Berry, G. and Cosserat, L. (1984). The ESTEREL synchronous programming language and its
mathematical semantics. In International Conference on Concurrency, pages 389–448. Springer.

[17] Bertsekas, D. P., Gallager, R. G., and Humblet, P. (1992). Data networks, vol. 2. Prentice Hall
International, Englewood Cliffs, New Jersey, 7632:493–536.

[18] Bezerra, G. B., Forrest, S., Moses, M., Davis, A., and Zarkesh-Ha, P. (2010). Modeling NoC
traffic locality and energy consumption with rent’s communication probability distribution. In
Proceedings of the 12th ACM/IEEE international workshop on System level interconnect prediction,
pages 3–8. ACM.

[19] Boppana, R. V., Chalasani, S., and Raghavendra, C. (1998). Resource deadlocks and performance
of wormhole multicast routing algorithms. IEEE Transactions on Parallel and Distributed Systems,
9(6):535–549.

[20] Bouillard, A. and Stea, G. (2015). Worst-Case Analysis of Tandem Queueing Systems Using
Network Calculus. Quantitative Assessments of Distributed Systems: Methodologies and Techniques,
pages 129–173.

[21] Boyer, M., Dupont de Dinechin, B., Graillat, A., and Havet, L. (2018). Computing routes and
delay bounds for the network-on-chip of the kalray mppa2 processor. In ERTS 2018-9th European
Congress on Embedded Real Time Software and Systems.

[22] Boyer, M., Migge, J., and Navet, N. (2011). An efficient and simple class of functions to model
arrival curve of packetised flows. In Proceedings of the 1st International Workshop on Worst-Case
Traversal Time, pages 43–50. ACM.

[23] Boyer, M., Navet, N., and Fumey, M. (2012a). Experimental assessment of timing verification
techniques for afdx. In 6th European Congress on Embedded Real Time Software and Systems.

[24] Boyer, M., Stea, G., and Sofack, W. M. (2012b). Deficit round robin with network calculus.
In Performance Evaluation Methodologies and Tools (VALUETOOLS), 2012 6th International
Conference on, pages 138–147. IEEE.

[25] Breaban, G., Stuijk, S., and Goossens, K. (2017). Efficient synchronization methods for let-based
applications on a multi-processor system on chip. In 2017 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1721–1726. IEEE.

[26] Carle, T., Djemal, M., Potop-Butucaru, D., De Simone, R., and Zhang, Z. (2014). Static mapping
of real-time applications onto massively parallel processor arrays. In Application of Concurrency to
System Design (ACSD), 2014 14th International Conference on, pages 112–121. IEEE.

[27] Carle, T., Potop-Butucaru, D., Sorel, Y., and Lesens, D. (2015). From Dataflow Specification
to Multiprocessor Partitioned Time-triggered Real-time Implementation. Leibniz Transactions on
Embedded Systems(LITES), 2(2):01–1.

BIBLIOGRAPHY 125

[28] Caspi, P., Curic, A., Maignan, A., Sofronis, C., Tripakis, S., and Niebert, P. (2003). From
Simulink to SCADE/Lustre to TTA: a layered approach for distributed embedded applications. In
ACM Sigplan Notices, pages 153–162. ACM.

[29] Caspi, P., Girault, A., and Pilaud, D. (1999). Automatic distribution of reactive systems for
asynchronous networks of processors. IEEE T Software Engineering, 25(3):416–427.

[30] Caspi, P., Scaife, N., Sofronis, C., and Tripakis, S. (2008). Semantics-preserving multitask
implementation of synchronous programs. ACM Transactions on Embedded Computing Systems
(TECS), 7(2):15.

[31] Champion, A., Mebsout, A., Sticksel, C., and Tinelli, C. (2016). The Kind 2 model checker. In
International Conference on Computer Aided Verification, pages 510–517. Springer.

[32] Charette, R. N. (2009). This car runs on code. IEEE spectrum, 46(3):3.

[33] Chen, S. and Nahrstedt, K. (1998). Maxmin fair routing in connection-oriented networks. In
Proc. Euro-Parallel and Distributed Systems Conf, pages 163–168.

[34] Chiu, G.-M. (2000). The odd-even turn model for adaptive routing. IEEE Transactions on
parallel and distributed systems, 11(7):729–738.

[35] Cohen, A., Duranton, M., Eisenbeis, C., Pagetti, C., Plateau, F., and Pouzet, M. (2006). N-
synchronous Kahn networks: a relaxed model of synchrony for real-time systems. ACM SIGPLAN
Notices, 41(1):180–193.

[36] Cohen, A., Gérard, L., and Pouzet, M. (2012). Programming Parallelism with Futures in Lustre.
In Proceedings of the Tenth ACM International Conference on Embedded Software, EMSOFT, pages
197–206, New York, NY, USA. ACM. Un restriction est mise: les future doivent rester local au
noeud et ne peuvent pas être passés en paramètre. Cela évite d’avoir recours à un GC.

[37] Conti, F., Rossi, D., Pullini, A., Loi, I., and Benini, L. (2014). Energy-efficient vision on the
PULP platform for ultra-low power parallel computing. In Signal Processing Systems (SiPS), 2014
IEEE Workshop on, pages 1–6. IEEE.

[38] Cordovilla, M., Boniol, F., Forget, J., Noulard, E., and Pagetti, C. (2011). Developing critical
embedded systems on multicore architectures: the Prelude-SchedMCore toolset. In RTNS’11.

[39] Cruz, R. L. (1991). A calculus for network delay. I. Network elements in isolation. IEEE
Transactions on information theory, 37(1):114–131.

[40] Dally, W. J. and Seitz, C. L. (1987). Deadlock-Free Message Routing in Multiprocessor Intercon-
nection Networks. IEEE Trans. Comput., 36(5):547–553.

[41] Dally, W. J. and Towles, B. P. (2004). Principles and practices of interconnection networks (the
morgan kaufmann series in computer architecture and design).

[42] Daneshtalab, M., Ebrahimi, M., Xu, T. C., Liljeberg, P., and Tenhunen, H. (2011). A generic
adaptive path-based routing method for MPSoCs. Journal of Systems Architecture, 57(1):109–120.

[43] Davis, R. I., Altmeyer, S., Indrusiak, L. S., Maiza, C., Nelis, V., and Reineke, J. (2017). An
extensible framework for multicore response time analysis. Real-Time Systems.

[44] Dupont de Dinechin, B., Durand, Y., Van Amstel, D., and Ghiti, A. (2014). Guaranteed services
of the noc of a manycore processor. In Proceedings of the 2014 International Workshop on Network
on Chip Architectures, pages 11–16. ACM.

126 BIBLIOGRAPHY

[45] Dupont de Dinechin, B. and Graillat, A. (2017a). Feed-forward routing for the wormhole switching
network-on-chip of the kalray mppa2 processor. In Proceedings of the 10th International Workshop
on Network on Chip Architectures, NoCArc’17, pages 10:1–10:6, New York, NY, USA. ACM.

[46] Dupont de Dinechin, B. and Graillat, A. (2017b). Network-on-chip service guarantees on the
kalray mppa-256 bostan processor. In Proceedings of the 2nd International Workshop on Advanced
Interconnect Solutions and Technologies for Emerging Computing Systems, pages 35–40. ACM.

[47] Durrieu, G., Faugere, M., Girbal, S., Pérez, D. G., Pagetti, C., and Puffitsch, W. (2014).
Predictable flight management system implementation on a multicore processor. In Embedded Real
Time Software (ERTS’14).

[48] FAA, Certification Authorities Software Team (November 2016). Multi-core Processors, CAST-
32A. Position Paper.

[49] Feiler, P. H., Gluch, D. P., and Hudak, J. J. (2006). The architecture analysis & design language
(AADL): An introduction. Technical report, Carnegie-Mellon Univ Pittsburgh PA Software
Engineering Inst.

[50] Ferdinand, C. (2004). Worst case execution time prediction by static program analysis. In
Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th International, page 125.
IEEE.

[51] Fidler, M. and Einhoff, G. (2004). Routing in Turn-Prohibition Based Feed-Forward Networks.
In NETWORKING 2004, Networking Technologies, Services, and Protocols; Performance of
Computer and Communication Networks; Mobile and Wireless Communication, Third Int. IFIP-
TC6 Networking Conference, Athens, Greece, May 9-14.

[52] Firoiu, V., Boudec, J. Y. L., Towsley, D., and Zhang, Z.-L. (2002). Theories and models for
internet quality of service. Proc.of the IEEE, 90(9):1565–1591.

[53] Fisher, J. A. (1983). Very long instruction word architectures and the ELI-512. ACM.

[54] Flanagan, C. and Felleisen, M. (1995). The semantics of future and its use in program optimization.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 209–220. ACM.

[55] Frances, F., Fraboul, C., and Grieu, J. (2006). Using network calculus to optimize the afdx
network.

[56] Geyer, F. and Carle, G. (2016). Network engineering for real-time networks: comparison of
automotive and aeronautic industries approaches. IEEE Communications Magazine, 54(2):106–112.

[57] Girault, A. (2005). A survey of automatic distribution method for synchronous programs. In
International workshop on synchronous languages, applications and programs, SLAP, volume 5.

[58] Girault, A., Nicollin, X., and Pouzet, M. (2006). Automatic Rate Desynchronization of Embedded
Reactive Programs. TECS, 5(3):687–717.

[59] Glass, C. J. and Ni, L. M. (1992). The turn model for adaptive routing. ACM SIGARCH
Computer Architecture News, 20(2):278–287.

[60] Glass, C. J. and Ni, L. M. (1994). The turn model for adaptive routing. Journal of the ACM
(JACM), 41(5):874–902.

[61] Goossens, K., Koedam, M., Nelson, A., Sinha, S., Goossens, S., Li, Y., Breaban, G., van
Kampenhout, R., Tavakoli, R., Valencia, J., et al. (2017). Noc-based multiprocessor architecture
for mixed-time-criticality applications. Handbook of Hardware/Software Codesign, pages 491–530.

BIBLIOGRAPHY 127

[62] Gorcitz, R., Kofman, E., Carle, T., Potop-Butucaru, D., and De Simone, R. (2015). On the
scalability of constraint solving for static/off-line real-time scheduling. In International Conference
on Formal Modeling and Analysis of Timed Systems, pages 108–123. Springer.

[63] Graillat, A., Moy, M., Raymond, P., and Dupont De Dinechin, B. (2018). Parallel Code Generation
of Synchronous Programs for a Many-core Architecture. In DATE 2018 - Design, Automation and
Test in Europe, Dresden, Germany.

[64] Graillat, A., Rihani, H., Maiza, C., Moy, M., Raymond, P., and Dupont de Dinechin, B.
Implementation Framework for Real-Time Data-Flow Synchronous Programs on Many-Cores.
Real-Time Systems. Submitted for review.

[65] Grieu, J. (2004). Analyse et évaluation de techniques de commutation Ethernet pour
l’interconnexion des systèmes avioniques. PhD thesis.

[66] Ha, S. and Lee, E. A. (1991). Quasi-static scheduling for multiprocessor dsp. In 1991., IEEE
International Sympoisum on Circuits and Systems, pages 352–355 vol.1.

[67] Halbwachs, N. (1993). Synchronous programming of reactive systems. Kluwer Academic Pub.

[68] Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. (1991). The synchronous data flow
programming language lustre. Proceedings of the IEEE, 79(9):1305–1320.

[69] Hamann, A., Dasari, D., Kramer, S., Pressler, M., and Wurst, F. (2017). Communication Centric
Design in Complex Automotive Embedded Systems. In LIPIcs, volume 76. Schloss Dagstuhl-LZI.

[70] Harel, D. and Pnueli, A. (1985). On the development of reactive systems. In Logics and models
of concurrent systems, pages 477–498. Springer.

[71] Haverkort, B. R. et al. (1998). Performance of computer communication systems: a model-based
approach. Wiley Online Library.

[72] Henzinger, T., Horowitz, B., and Kirsch, C. (2001). Giotto: A time-triggered language for
embedded programming. In Embedded software, pages 166–184. Springer.

[73] Henzinger, T. A., Kirsch, C. M., and Matic, S. (2003). Schedule-carrying code. In International
Workshop on Embedded Software, pages 241–256. Springer.

[74] Henzinger, T. A., Kirsch, C. M., and Matic, S. (2005). Composable code generation for distributed
Giotto. In ACM SIGPLAN Notices, pages 21–30. ACM.

[75] Holsmark, R., Palesi, M., and Kumar, S. (2006). Deadlock free routing algorithms for mesh
topology NoC systems with regions. In Digital System Design: Architectures, Methods and Tools,
2006. DSD 2006. 9th EUROMICRO Conference on, page 696–703. IEEE.

[76] Hugues, J. and Delange, J. (2015). Model-based design and automated validation of ARINC653
architectures. In 2015 International Symposium on Rapid System Prototyping (RSP), pages 3–9.

[77] Ishii, M., Detrey, J., Gaudry, P., Inomata, A., and Fujikawa, K. (2017). Fast modular arithmetic
on the kalray mppa-256 processor for an energy-efficient implementation of ecm. IEEE Transactions
on Computers.

[78] Jafari, F., Yaghmaee, M. H., Talebi, M. S., and Khonsari, A. (2008). Max-min-fair best effort flow
control in network-on-chip architectures. In International Conference on Computational Science,
pages 436–445. Springer.

[79] Kasapaki, E., Schoeberl, M., Sørensen, R. B., Müller, C., Goossens, K., and Sparsø, J. (2016).
Argo: A real-time network-on-chip architecture with an efficient gals implementation. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 24(2):479–492.

128 BIBLIOGRAPHY

[80] Kehr, S., Quiñones, E., Böddeker, B., and Schäfer, G. (2015). Parallel execution of AUTOSAR
legacy applications on multicore ECUs with timed implicit communication. In DAC’15, page 42.
ACM.

[81] Kim, H., de Niz, D., Andersson, B., Klein, M., Mutlu, O., and Rajkumar, R. (2014). Bounding
memory interference delay in COTS-based multi-core systems. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2014 IEEE 20th, pages 145–154.

[82] Kluge, F., Schoeberl, M., and Ungerer, T. (2016). Support for the logical execution time model
on a time-predictable multicore processor. ACM SIGBED Review, 13(4):61–66.

[83] Kopetz, H. and Bauer, G. (2003). The time-triggered architecture. Proceedings of the IEEE,
91(1):112–126.

[84] Kumar, S., Jantsch, A., Soininen, J.-P., Forsell, M., Millberg, M., Oberg, J., Tiensyrja, K.,
and Hemani, A. (2002). A network on chip architecture and design methodology. In VLSI, 2002.
Proceedings. IEEE Computer Society Annual Symposium on, pages 117–124. IEEE.

[85] Land, I. and Elliott, J. (2009). Architecting arinc 664, part 7 (afdx) solutions. Xilinx, May.

[86] Le Boudec, J.-Y. and Thiran, P. (2001). Network calculus: a theory of deterministic queuing
systems for the internet, volume 2050. Springer Science & Business Media.

[87] Lee, C.-G., Hahn, H., Seo, Y.-M., Min, S. L., Ha, R., Hong, S., Park, C. Y., Lee, M., and Kim,
C. S. (1998). Analysis of cache-related preemption delay in fixed-priority preemptive scheduling.
IEEE transactions on computers, 47(6):700–713.

[88] Lee, E. A. and Seshia, S. A. (2017). Introduction to Embedded Systems - A Cyber-Physical
Systems Approach. MIT Press, second edition edition.

[89] Lenzini, L., Martorini, L., Mingozzi, E., and Stea, G. (2006). Tight end-to-end per-flow delay
bounds in fifo multiplexing sink-tree networks. Performance Evaluation, 63(9-10):956–987.

[90] Levitin, L., Karpovsky, M., and Mustafa, M. (2009). Deadlock prevention by turn prohibition
in interconnection networks. In Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on, pages 1–7. IEEE.

[91] Lin, X., McKinley, P. K., and Ni, L. M. (1994). Deadlock-free multicast wormhole routing in 2-D
mesh multicomputers. IEEE Transactions on Parallel and Distributed Systems, 5(8):793–804.

[92] Ljung, M. (1999). Formal modelling and automatic verification of Lustre programs using np-tools.
Master’s thesis, Prover Technology AB and Department of Teleinformatics, KTH, Stockholm.

[93] Lo, M., Valot, N., Maraninchi, F., and Raymond, P. (2016). Implementing a real-time avionic
application on a many-core processor. In 42nd European Rotorcraft Forum (ERF), Lille, France.

[94] Lv, M., Yi, W., Guan, N., and Yu, G. (2010). Combining abstract interpretation with model
checking for timing analysis of multicore software. In Proceedings of the 2010 31st IEEE Real-Time
Systems Symposium, RTSS ’10, pages 339–349. IEEE Computer Society.

[95] Maraninchi, F. (1991). The Argos language: Graphical representation of automata and description
of reactive systems. In IEEE Workshop on Visual Languages, volume 3.

[96] Melani, A., Bertogna, M., Bonifaci, V., Marchetti-Spaccamela, A., and Buttazzo, G. (2015).
Memory-processor co-scheduling in fixed priority systems. In Proceedings of the 23rd International
Conference on Real Time and Networks Systems (RTNS), pages 87–96.

[97] Muljadi, E. and Butterfield, C. P. (2001). Pitch-controlled variable-speed wind turbine generation.
IEEE transactions on Industry Applications, 37(1):240–246.

BIBLIOGRAPHY 129

[98] Nace, D. (2002). A Linear Programming Based Approach for Computing Optimal Fair Splittable
Routing. In Proc.of ISCC’02, ISCC ’02.

[99] Naumann, N. (2009). Autosar runtime environment and virtual function bus. Hasso-Plattner-
Institut, Tech. Rep, page 38.

[100] Nguyen, V. A., Hardy, D., and Puaut, I. (2017). Cache-Conscious Offline Real-Time Task
Scheduling for Multi-Core Processors. In 29th Euromicro Conference on Real-Time Systems (ECRTS
2017), volume 76 of Leibniz International Proceedings in Informatics (LIPIcs), pages 14:1–14:22.

[101] Pagano, B., Pasteur, C., Siegel, G., and Knížek, R. (2018). A Model Based Safety Critical Flow
for the AURIX Multi-core Platform. In 9th European Congress on Embedded Real Time Software
and Systems (ERTS 2018).

[102] Pagetti, C., Saussié, D., Gratia, R., Noulard, E., and Siron, P. (2014). The ROSACE case study:
From Simulink specification to multi/many-core execution. In IEEE RTAS’14, pages 309–318.

[103] Pellizzoni, R., Betti, E., Bak, S., Yao, G., Criswell, J., Caccamo, M., and Kegley, R. (2011). A
predictable execution model for cots-based embedded systems. In 2011 17th IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 269–279.

[104] Pellizzoni, R., Schranzhofer, A., Chen, J.-J., Caccamo, M., and Thiele, L. (2010). Worst case
delay analysis for memory interference in multicore systems. In Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 741–746.

[105] Perret, Q., Maurere, P., Noulard, E., Pagetti, C., Sainrat, P., and Triquet, B. (2016a). Predictable
composition of memory accesses on many-core processors. In 8th European Congress on Embedded
Real Time Software and Systems (ERTS 2016).

[106] Perret, Q., Maurere, P., Noulard, E., Pagetti, C., Sainrat, P., and Triquet, B. (2016b). Temporal
isolation of hard real-time applications on many-core processors. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2016 IEEE, pages 1–11. IEEE.

[107] Plateau, F. (2010). Modèle n-synchrone pour la programmation de réseaux de Kahn à mémoire
bornée. PhD thesis, Paris 11.

[108] Pree, W., Templ, J., Hintenaus, P., Naderlinger, A., and Pletzer, J. (2011). TDL-Steps
Beyond Giotto: A Case for Automated Software Construction. Int. J. Software and Informatics,
5(1-2):335–354.

[109] Rahimi, A., Loi, I., Kakoee, M. R., and Benini, L. (2011). A fully-synthesizable single-cycle
interconnection network for shared-l1 processor clusters. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2011, pages 1–6. IEEE.

[110] Raymond, P. (2006). Vérification de programmes synchrones avec Lustre/Lesar . In Systèmes
temps réel 1 – techniques de description et de vérification, chapter 6. Hermes science – Lavoisier.

[111] Reineke, J., Liu, I., Patel, H. D., Kim, S., and Lee, E. A. (2011). PRET DRAM controller:
Bank privatization for predictability and temporal isolation. In Hardware/Software Codesign and
System Synthesis (CODES+ ISSS), 2011 Proceedings of the 9th International Conference on, pages
99–108. IEEE.

[112] Reineke, J., Wachter, B., Thesing, S., Wilhelm, R., Polian, I., Eisinger, J., and Becker, B. (2006).
A definition and classification of timing anomalies. In OASIcs-OpenAccess Series in Informatics,
volume 4. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[113] Rihani, H., Moy, M., Maiza, C., Davis, R. I., and Altmeyer, S. (2016). Response Time Analysis
of Synchronous Data Flow Programs on a Many-Core Processor. In RTNS’16, pages 67–76. ACM.

130 BIBLIOGRAPHY

[114] Saidi, S., Ernst, R., Uhrig, S., Theiling, H., and Dupont de Dinechin, B. (2015). The shift
to multicores in real-time and safety-critical systems. In Proceedings of the 10th International
Conference on Hardware/Software Codesign and System Synthesis, pages 220–229. IEEE Press.

[115] Schmitt, J. B. and Zdarsky, F. A. (2006). The disco network calculator: a toolbox for worst case
analysis. In Proceedings of the 1st international conference on Performance evaluation methodolgies
and tools, page 8. ACM.

[116] Schoeberl, M., Abbaspour, S., Akesson, B., Audsley, N., Capasso, R., Garside, J., Goossens,
K., Goossens, S., Hansen, S., Heckmann, R., et al. (2015). T-CREST: Time-predictable multi-core
architecture for embedded systems. Journal of Systems Architecture, 61(9):449–471.

[117] Schroeder, M. D., Birrell, A. D., Burrows, M., Murray, H., Needham, R. M., Rodeheffer, T. L.,
Satterthwaite, E. H., and Thacker, C. P. (1990). Autonet: a high-speed, self-configuring local area
network using point-to-point links. Digital Equipment Corporation Systems Research Center.

[118] Shreedhar, M. and Varghese, G. (1995). Efficient fair queueing using deficit round robin. In
ACM SIGCOMM Computer Communication Review, volume 25, pages 231–242. ACM.

[119] Skalistis, S., Angiolini, F., Simalatsar, A., and De Micheli, G. (2017). Safe and Efficient
Deployment of Data-Parallelisable Applications on Many-Core Platforms: Theory and Practice.
IEEE Design & Test.

[120] Skalistis, S. and Simalatsar, A. (2016). Worst-Case Execution Time Analysis for Many-Core
Architectures with NoC. pages 211–227.

[121] Sodani, A., Gramunt, R., Corbal, J., Kim, H.-S., Vinod, K., Chinthamani, S., Hutsell, S.,
Agarwal, R., and Liu, Y.-C. (2016). Knights landing: Second-generation intel xeon phi product.
Ieee micro, 36(2):34–46.

[122] Starobinski, D., Karpovsky, M., and Zakrevski, L. (2002). Application of Network Calculus to
General Topologies using Turn-Prohibition. In IEEE INFOCOM.

[123] Stefan, R. A., Molnos, A., and Goossens, K. (2014). daelite: A tdm noc supporting qos,
multicast, and fast connection set-up. IEEE Transactions on Computers, 63(3):583–594.

[124] Thiele, L., Chakraborty, S., and Naedele, M. (2000). Real-time calculus for scheduling hard
real-time systems. In Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000
IEEE International Symposium on, volume 4, pages 101–104. IEEE.

[125] Tripakis, S., Bui, D., Geilen, M., Rodiers, B., and Lee, E. A. (2013). Compositionality in
synchronous data flow: Modular code generation from hierarchical sdf graphs. ACM Transactions
on Embedded Computing Systems (TECS), 12(3):83.

[126] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G., Ferdi-
nand, C., Heckmann, R., Mitra, T., et al. (2008). The worst-case execution-time problem—overview
of methods and survey of tools. ACM Transactions on Embedded Computing Systems (TECS),
7(3):36.

[127] Wilhelm, R., Grund, D., Reineke, J., Schlickling, M., Pister, M., and Ferdinand, C. (2009).
Memory hierarchies, pipelines, and buses for future architectures in time-critical embedded systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(7):966–978.

[128] Yip, E., Girault, A., Roop, P., and Biglari-Abhari, M. (2016). The ForeC Synchronous
Deterministic Parallel Programming Language for Multicores. In MCSoC’16, Lyon, France. IEEE.

[129] Ziccardi, M., Schoeberl, M., and Vardanega, T. (2015). A time-composable operating system for
the Patmos processor. In Proceedings of the 30th Annual ACM Symposium on Applied Computing,
pages 1892–1897. ACM.

BIBLIOGRAPHY 131

132 BIBLIOGRAPHY

Most critical systems are subject to hard real-time requirements. These systems are more and more
complex and the computational power of the predictable single-core processors is no longer sufficient.
Multi- or many-core architectures are good alternatives but interferences on shared resources must be
taken into account to avoid unpredictable timing effects. For many-core, the Network-on-Chip (NoC)
must be configured such that deadlocks are avoided and a tight Worst-Case Traversal Time (WCTT)
of the communications can be computed. The Kalray MPPA2 is a many-core architecture with good
timing properties.

Dataflow Synchronous languages such as Lustre or Scade are widely used for avionics critical
software. In these languages, programs are described by networks of computational nodes. We
introduce a method to extract parallel tasks from synchronous programs. Then, we generate parallel
code to deploy tasks on the chip and implement NoC and shared-memory communications. The
generated code enables traceability. It is based on a time-triggered execution model which relies
on a static schedule and minimizes the memory interferences thanks to usage of memory banks.
The code enables the computation of a worst-case execution time bound accounting for the memory
interferences and the WCTT of NoC transmissions. We generate a configuration of the platform to
enable a fair bandwidth attribution on the NoC, bounded transmissions through the NoC and clock
synchronization. Finally, we apply this toolchain on avionic case studies and synthetic benchmarks
running on 64 cores.

La plupart des systèmes critiques sont dits «temps-réel dur» puisqu’ils requièrent des garanties
temporelle fortes. Ces systèmes sont de plus en plus complexes et les processeurs mono-cœurs
traditionnels ne sont plus assez puissants. Les multi-cœurs et les pluri-cœurs sont des alternatives plus
puissantes, cependant ils contiennent des ressources partagées. Les accès concurrents à ces ressources
provoquent des interférences qui doivent être prises en compte puisqu’elles rendent les délais d’accès
non prédictibles. Pour les pluri-cœur, le réseau sur puce (NoC) doit être configuré pour éviter les
interblocages et garantir des pires temps de traversée précis. Le MPPA2 de Kalray est un pluri-cœur
avec de bonnes propriétés temporelles.

Les langages Synchrones flot de données tels que Lustre ou Scade sont largement utilisés dans
l’industrie aéronautique. Les programmes sont des réseaux de nœuds de calcul communicants. Nous
présentons une méthode pour extraire le parallélisme des programmes Synchrones. Nous générons
du code pour déployer les tâches parallèles sur la puce et pour implémenter les communications en
mémoire partagée ou à travers le NoC. Notre solution permet la traçabilité du code. Elle est basée sur
un modèle d’exécution dirigé par le temps où chaque tâche a une date de début. L’ordonnancement
est statique et minimise les interférences grâce à l’utilisation de bancs mémoire. Une borne de pire
temps d’exécution (WCET) est calculée. Elle inclut les interférences mémoire et les pires temps de
traversée NoC. Nous générons la configuration du processeur qui permet une allocation équitable
des bandes passantes sur le NoC, la garantie de temps de traversées bornés et la synchronisation des
horloges. Enfin, nous appliquons notre outils sur des exemples de programmes aéronautiques et un
exemple synthétique utilisant 64 cœurs.

	Résumé
	Introduction
	Applications temps-réel dur
	L'impact des évolutions matérielles sur les logiciels temps-réel
	L'usage des multi- et pluri-cœurs pour des applications critiques
	La programmation par modèle et les langages synchrones
	Résumé des contributions : les programmes synchrones temps-réel dur sur pluri-cœur

	Méthode générale
	Définition de la Représentation Intermédiaire Parallèle
	Extraction des tâches parallèles
	Choix d'implémentations pour tirer parti des bancs mémoire
	Implémentation du PIR sur un pluri-cœur

	Conclusion

	Introduction
	Hard-Real-Time Applications
	Impact of Hardware Evolution on Time-Critical Software
	Single-Core
	Single-Core vs. Multi-/Many-Core
	Multi-/Many-Core for Time-Critical Applications

	Model-Based Development and Synchronous Languages
	Contributions Overview: Time-Critical Synchronous Program on a Many-core
	Organization of This Document

	Background: Synchronous Programs & Parallelization
	Reactive Systems and Synchronous Languages
	The Core Language: Lustre
	Conditional Computation in Synchronous Data-Flow Languages
	Clocks in Lustre
	Scade Automata

	Multi-Periodic Programs
	Task Activation
	Determinism of Communication

	Conclusion

	High-Level Parallel Design
	Existing Approaches for Parallelism
	Prelude
	AUTOSAR
	Giotto / Timing Definition Language (TDL)
	ARINC 653
	Architecture Analysis and Design Language (AADL)
	Conclusion

	Parallelization from Synchronous Languages
	Parallel Scade
	Distributed Lustre
	Other Languages
	Parallelization of Dataflow
	Conclusion

	Background: Many-Core
	Multi- and Many-Cores System-on-Chip Architectures
	Worst-Case Execution Time Analysis on Multi-Core
	WCET in Isolation
	Interference-Aware WCET Analysis

	System-on-Chip For Time-Critical Software
	Synchronous Dynamic Random Access Memory (DDR SDRAM)
	DRAM Overview
	Memory Organization: Rank / Bank / Row / Column
	Temporal Behavior
	Timing Predictability with SDRAM

	Network-on-Chip
	Definitions
	Routing and Deadlock
	Adaptive Routing
	2D Grid Deadlock-Free Routing Algorithms
	Bandwidth Limiter
	Max-Min Fairness and Lexicographic Vector
	Network Calculus
	Classical Artificial Instances of Flows

	The Kalray MPPA2
	Cores
	VLIW vs. Out of Order Pipeline
	Caches

	Cluster
	Shared-Memory
	Input/Output Clusters
	Clocks and Synchronizations Mechanisms

	Network-on-Chip
	Summary of the Kalray MPPA2 Features

	Method Overview
	Parallel Intermediate Representation Definition
	Task Graph and Communication Graph

	From Program to PIR: Task Extraction
	Implementation Choices to Take Advantage of the Banked Shared-Memory
	Inter-Task Communications: Remote Read vs. Remote Write
	Time-Triggered Execution Model

	Implementation of a PIR on a Many-Core
	Static Mapping-Scheduling
	Release Dates and Final Executable
	NoC: Routes and WCTT

	The CAPACITES Project
	Conclusion

	Parallelization of Synchronous Programs
	Main Criteria to Select a Parallelization Method
	Centralized Execution
	Hierarchical Parallelism Extraction
	Code Traceability
	Special Case for Clocks and Delayed Communications

	Parallelization of Lustre and Scade
	Fork-Join for Dataflow Synchronous Languages
	Decoupling of the Nodes Using Future in Lustre
	Parallel Subset in Scade
	Top-Level Node as an Architecture Description Language
	Data-Flow Flattening
	Methods Comparison

	Contribution: Extraction of PIR from a Dataflow Synchronous Program
	Parallelization Method 1: Lustre Top-Level
	Parallelization Method 2: Parallel Subsets from KCG Multi-Core
	Simple Data-Flow Program
	Special Case for Automata

	Conclusion

	Time-Critial Implementation on the Kalray MPPA2
	Related Work on Multi-Core Execution Models
	Static Schedule Implementation
	Static Schedule
	Quasi-Static Schedule: Special Case of Automata

	System Configuration and Backend Library
	Boot Sequence
	Time and Event Synchronization
	Inter-core Synchronization Mechanism on the MPPA2
	Time Synchronization Protocol

	NoC Configuration and Usage
	Cache Maintenance Functions

	Communication for a Distributed and Multi-Banked Memory
	Implementation of the Communications
	Delayed Communications

	Contribution to Route Allocation
	Route Selection and Flow Optimization
	Exploration for Unique Route Selection (EURS)
	LP-Based Heuristics for Unique Route Selection (LPURS)

	Contribution to Multicast Path-Based Routing
	Deadlock-Free Routing Algorithm for the Kalray MPPA2

	Deterministic Network Calculus (DNC) Tool
	Effects of Link Shaping
	Routers and Network Properties
	Arbiter Service Curve
	Queue Service Curve
	WCTT Bound
	NoC Configuration Toolchain for the Kalray MPPA2

	Conclusion

	Experiments
	Route Selection and Routing Algorithm Comparison
	Comparison of Deadlock-Free Unicast Routing Algorithms
	Evaluation of the HOE-DP Unicast-Based Multicast Routing Algorithm

	Comparison of the DNC Formulations
	Case Studies
	ROSACE: Flight-Control Use-case
	Sensors Processing Case Study
	Synthetic Benchmark

	Conclusion

	Conclusion and Future Work
	Summary and Contributions
	Task Extraction and Parallel Intermediate Representation (PIR)
	Latency-Bounded Communication Under Interference
	Results

	Future Work
	Future of the Multi-Core for Critical Applications

