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Résumé

La méthode de diffusion inverse est la plus efficace dans la théorie des systèmes intégrables.
Introduite dans les années soixantes, d’importants résultats ont été obtenus pour les prob-
lèmes de dimension 1+1 et notamment sur l’interaction de solitons. Depuis quelques années,
l’intérêt est porté sur des problèmes de dimensions supérieures comme les équations de
Davey-Sterwartson, une généralisation de l’équation intégrable de Schrödinger cubique non
linéaire en dimension 1+1. Des études numériques en limite semi-classique de l’équation de
Davey-Stewartson II (DSII) défocalisant, font apparaître des points communs avec le cas ré-
duit unidimensionnel, par exemple sur l’existence d’ondes de choc dispersives : des conditions
initiales lisses mènent à une région d’oscillations rapides et modulées dans le voisinage des
chocs des solutions des équations non dispersives dotées des mêmes conditions initiales.

Cette thèse donne les premières étapes pour l’étude analytique de ce problème basée sur
la méthode de la transformée de diffusion inverse. Les deux types de méthodes, directe et
inverse, pour l’équation de DSII permettent de réécrire le problème sous la forme des équa-
tions D-bar. On considère la transformée spectrale directe pour l’équation DSII avec des
conditions initiales lisses en limite semi-classique. La transformée spectrale directe mène
à un système de Dirac elliptique singulièrement perturbé en deux dimensions. On intro-
duit une méthode de type BKW pour ce problème et on montre qu’il est bien défini pour
des paramètres spectraux k ∈ C dont les modules sont suffisamment grands en controllant
la solution d’une équation eikonale non linéaire. Aussi cette méthode donne des résultats
numériques précis pour de tels k en limite semi-classique. Ces résultats reposent sur la so-
lution numérique du système de Dirac singulièrement perturbé et la solution numérique du
problème eikonal.

On résout le problème eikonal de manière explicite pout tout k dans le cas d’un poten-
tiel particulier. Ces calculs donnent une explication sur le fait que l’on ne puisse pas ap-
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pliquer la méthode BKW pour des valeurs de |k| plus petites. On présente une nouvelle
méthode numérique pour calculer la solution du problème eikonal avec des valeurs de |k|
suffisamment grandes. Les calculs numériques de la transformée spectrale directe offrent
une manière d’analyser le système de Dirac singulièrement perturbé pour des valeurs de
|k| si petites qu’il n’y a pas de solution globale au problème eikonal. On donne une anal-
yse semi-classique rigoureuse sur la solution pour des potentiels radiaux en k = 0, ce qui
donne une expression asymptotique du coefficient de réflexion pour k = 0 et suggère une
structure annulaire pour la solution, ce qui peut être utilisé quand |k| 6= 0 est petit. L’étude
numérique suggère aussi que pour certains potentiels, le coefficient de réflexion converge
simplement, quand ε ↓ 0, vers une fonction limite définie pour des valeurs de k pour
lesquelles le problème eikonal n’a pas de solution globale. On propose que les singularités
de la fonction eikonale jouent un rôle aussi similaire que les points tournants de la théorie
unidimensionelle.



Abstract

Inverse scattering is the most powerful tool in theory of integrable systems. Starting in the
late sixties resounding great progress was made in (1+ 1) dimensional problems with many
break-through results as on soliton interactions. Naturally the attention in recent years turns
towards higher dimensional problems as the Davey-Stewartson equations, an integrable
generalisation of the (1 + 1)-dimensional cubic nonlinear Schrödinger equation. The defo-
cusing Davey-Stewartson II equation, in its semi-classical limit has been shown in numerical
experiments to exhibit behaviour that qualitatively resembles that of its one-dimensional
reduction, namely the generation of a dispersive shock wave: smooth initial data develop a
zone rapid modulated oscillations in the vicinity of shocks of solutions for the correspond-
ing dispersionless equations for the same initial data. The present thesis provides a first step
to study this problem analytically using the inverse scattering transform method. Both the
direct and inverse scattering transform for DSII can be expressed as D-bar equations. We
consider the direct spectral transform for the defocusing Davey-Stewartson II equation for
smooth initial data in the semi-classical limit. The direct spectral transform involves a singu-
larly perturbed elliptic Dirac system in two dimensions. We introduce a WKB-type method
for this problem and prove that it is well defined for sufficiently large modulus of the spec-
tral parameter k ∈ C by controlling the solution of an associated nonlinear eikonal problem.
Further, we give numerical evidence that the method is accurate for such k in the semiclas-
sical limit. Producing this evidence requires both the numerical solution of the singularly
perturbed Dirac system and the numerical solution of the eikonal problem. We present a
new method for the numerical solution of the eikonal problem valid for sufficiently large |k|.
For a particular potential we are able to solve the eikonal problem in a closed form for all k,
a calculation that yields some insight into the failure of the WKB method for smaller values
of |k|. The numerical calculations of the direct spectral transform indicate how to study the
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singularly perturbed Dirac system for values of |k| so small that there is no global solution
of the eikonal problem. We provide a rigorous semiclassical analysis of the solution for real
radial potentials at k = 0, which yields an asymptotic formula for the reflection coefficient at
k = 0 and suggests an annular structure for the solution that may be exploited when |k| 6= 0
is small. The numerics also suggest that for some potentials the reflection coefficient con-
verges point-wise as ε ↓ 0 to a limiting function that is supported in the domain of k-values
on which the eikonal problem does not have a global solution. We suggest that singularities
of the eikonal function play a role similar to that of turning points in the one-dimensional
theory.
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Chapter 1

Introduction

In this chapter we introduce the motivation for the present work and briefly outline the
results that were obtained.

1.1 Nonlinear Schrödinger equations

This work is concerned with nonlinear Schroödinger equations (NLS) which appear in ap-
plications in hydrodynamics, nonlinear optics, plasma physics, . . . whenever the modulation
of plane waves is considered. They can be cast into the form

iψt + ∆ψ + f (|ψ|)ψ = 0; (1.1)

here and in the following partial derives are denoted by the variable appearing as an index,
ψ : R×Rd 7→ C, where d ∈N gives the spatial dimension and where ∆ is the d-dimensional
Laplace operator; the function f is a smooth, not necessary local function of |ψ|2. In (1 + 1)
dimensions, the important case of a f = |ψ|2, i.e., the cubic NLS equation is of particular
importance. It has been a break-through results by Zakharov and Shabat [43] that the cubic
NLS equation is completely integrable which means in practical terms that powerful solution
generation techniques exist to solve the equation.

Whereas the 1 + 1 dimensional case has been intensely studied, there are only scattered
results in higher dimensions. In (2 + 1) dimensions, the Davey-Stewartson (DS) equation,
here written in a general form

iεqt +
1
2 qxx +

1
2 αqyy = −|q|2q− ϕq,

ϕxx + βϕyy = −2
(
|q|2
)

xx ,
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where α = ±1 and β = ±1 (see below) is also completely integrable. This equation was intro-
duced by Davey and Stewartson [1] as a model describing the evolution of three-dimensional
water wave packet in a weakly non-linear regime. The rigorous derivation of the DS equa-
tion in the modulational scaling regime was presented by Craig, Schanz and Sulem in [2] as
an approximation to the gravity-capillary wave problem in (2+1) dimensions.

In (1 + 1) dimensional integrable PDEs inverse scattering in general involves the solu-
tion of so-called Riemann-Hilbert problems (RHPs), i.e., the construction of functions which
are holomorphic except for a prescribed singular behaviour at a set of contours, for instance
jump discontinuities. In (2 + 1) dimensions D-bar problems appear in the context of inte-
grable PDEs where the anti-holomorphic derivative of a function is prescribed. Such prob-
lems have been much less studied in the context of integrable PDEs than RHPs, and no
asymptotic techniques have been developed as nonlinear steepest descent for RHPs. This the-
sis provides a first step towards asymptotic analysis for D-bar problems. D-bar problems
prominently appear in Calderón’s problem, a method for reconstructing a unknown poten-
tial for a Helmholtz type equation, supported on a compact domain, from the Dirichlet-to
Neumann map on the boundary on said domain. There are extensive results on the applica-
bility of the method for various applications, for example im medical imaging and mineral
prospecting, as well as rich analytic results on smoothness and other conditions of the Dirich-
let to Neumann map, allowing full reconstruction of the unknown potential. See details and
references in [4]

As mentioned above the DS equations can be thought of as a 2+1 dimensional integrable
generalisation of the non-linear Schrödinger equation including a non-locality. We can dis-
tinguish 4 types of the DS equation which exhibit qualitatively different behaviours, de-
pending on the choice of α and β: elliptic-elliptic, hyperbolic-elliptic, elliptic-hyperbolic and
hyperbolic-hyperbolic. DS is integrable, admits a Lax pair allowing an Inverse Scattering
transformation. Thus it can be expected that results that have been obtained for the 1+1 NLS
can be potentially extended on the 2+1 dimensional case. In particular, following the results
of WKB approximation in the semi-classical limit limit ε → 0 for the 1+1 defocussing NLS,
we aim to develop a semi-classical theory for the defocussing DSII, posed as an initial-value
problem,

iεqt + 2ε2
(

∂
2
+ ∂2

)
q + (g + g) q = 0

∂g + ∂
(
|q|2
)
= 0,
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where the initial data are of the form

q(x, y, 0) = A(x, y, 0)eiS(x,y,0)/ε (1.2)

with real A and S. In this work we also provide numerical analysis of this problem.

A central problem of this work is the direct problem associated to the Inverse Scattering
method for the defocusing DSII

ε∂̄µ1 =
1
2

e
k̄z̄−kz

ε qµ̄1

ε∂̄µ2 =
1
2

e
k̄z̄−kz

ε qµ̄2

(1.3)

alled the D-bar problem for defocusing DSII, where we assume a potential q in WKB form:

q(x, y) = A(x, y)eiS(x,y)/ε. (1.4)

The asymptotic condition is µ1 → 1 and µ2 → 0 as |z| → ∞. The reflection coefficient R =

Rε(k; t) is defined in terms of µ2 as follows:

µ2(z; k, t) = 1
2 Rε(k; t)z−1 + O(|z|−2), |z| → ∞. (1.5)

The ultimate goal of our work is to find an asymptotic formula for the reflection coefficient
Rε

0(k) associated with suitably general real-valued amplitude and phase functions A and S.
Such a formula should contain sufficient information about the latter functions to allow their
reconstruction via the inverse problem 1, also considered in the semiclassical limit ε ↓ 0. For
the two-dimensional problem(1.3)–(1.4), there exist no known potentials other than q ≡ 0 for
which the direct spectral problem can be solved and the reflection coefficient Rε

0(k) recovered for all
k ∈ C and a set of ε > 0 with accumulation point ε = 0.

1.2 Main results

In this section we will present the main analytical and numerical results in this context,
all justification and detailed analysis can be found in the later chapters. In the absence of any
exact solutions, a natural approach to the two-dimensional generalization (1.3)–(1.4) of this
problem is to mimic the WKB ansatz that produces such useful and explicit formulae. As will

1. An important observation is that, even though the direct and inverse problems are formally similar, they
may be quite different in character in the semiclassical limit, if it happens that the reflection coefficient depends
on ε in a more subtle way than does the initial data qε(x, y, 0) = A(x, y)eiS(x,y)/ε.
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be shown in Chapter 8.2, this leads one to consider a certain complex-valued eikonal function
f (x, y; k) that is an analogue of the WKB exponent E trivially computed for the Zakharov-
Shabat system [43] as the antiderivative of an eigenvalue of the coefficient matrix in the
system obtained from the Zakharov-Shabat system [43] by a simple gauge transformation to
remove the oscillatory factors e±iS(x)/ε. In the two-dimensional setting, this function satisfies
the eikonal equation: [

2∂ f + i∂S
] [

2∂ f − i∂S
]
= A2, (1.6)

a nonlinear partial differential equation in the (x, y)-plane. If A, S, and E := f − Re(kz) are
independent of y, with k = −iλ and λ ∈ R this equation reduces to the far simpler (solvable
by quadrature) one-dimensional eikonal equation. For formal validity of the WKB ansatz
near |z| = ∞ we insist that f is subject to the asymptotic condition

lim
|z|→∞

(
f +

i
2

S− kz
)
= 0, z = x + iy. (1.7)

We refer to the problem of finding a function f = f (x, y; k) that satisfies (1.6)–(1.7) as the
eikonal problem. An important point is that unlike the direct scattering problem (1.3)–(1.4),
the eikonal problem is independent of the parameter ε > 0, so although it is nonlinear it is
not a singularly perturbed problem at all. This may be viewed as a distinctive advantage 2

of the WKB approach to the direct scattering problem. In Chapter 5 we prove the following
result. Here W(R2) is the Wiener algebra of functions with Lebesgue integrable Fourier
transforms, equipped with the norm ‖ · ‖W defined in (5.7).

Theorem 1.2.1. Suppose that u = A2 ∈ Lp(R2) ∩W(R2) for some p ∈ [1, 2), that S ∈ C1(R2),
and that v = ∂S ∈W(R2). Then for every B > ‖v‖W, if k satisfies the inequality

|k| > B + max
{

1
4
‖u‖W

B− ‖v‖W
,

1
2

√
‖u‖W

}
, (1.8)

there is a unique global classical (C1(R2)) solution f (x, y; k) of the eikonal problem (1.6)–(1.7) that
satisfies the estimate ∥∥∥∥∂ f − k− 1

2
i∂S
∥∥∥∥

W
≤ B. (1.9)

In particular, (1.8) and (1.9) imply that i∂S− 2∂ f is bounded away from zero on R2.

One interpretation of Theorem 1.2.1 is that the eikonal problem (1.6)–(1.7) is of nonlinear

2. Note, however, that unlike the one-dimensional reduction of the eikonal problem which is explicitly solv-
able by quadratures and square roots, to our knowledge there is no analogous elementary integration proce-
dure for the two-dimensional eikonal problem (1.6)–(1.7).
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elliptic type for sufficiently large |k|. The leading term of the WKB approximation explained
in Section 8.2 is proportional to a complex-valued function α0 = α0(x, y; k) that is required to
solve the following linear equation in which the eikonal function f appears as a coefficient:

Lα0 := (2∂ f + i∂S)∂(Aα0) + A∂((2∂ f − i∂S)α0) = 0. (1.10)

Theorem 1.2.2. Under the same conditions on u = A2, S, v = ∂S, and k as in Theorem 1.2.1, there
is a unique solution α0 of (1.10) for which α2

0 − 1 = m ∈W(R2).

These two results provide conditions on k sufficient to guarantee the formal validity of the
WKB expansion in the whole (x, y)-plane. As will be shown in Section 8.2, global validity
of the WKB expansion for a given k ∈ C implies that the reflection coefficient Rε

0(k) tends
to zero with ε. This situation is therefore completely analogous to the fact that in the one-
dimensional analogue of this problem, if |λ| is sufficiently large there are no turning points
and hence a globally defined (purely imaginary) WKB exponent function E(x; λ) exists and
leads to negligible reflection. Theorems 1.2.1 and 1.2.2 would therefore provide a two-dimensional
analogue of the fact that in the one-dimensional setting the reflection coefficient is asymptotically
supported on the finite interval [λ−, λ+].

In Chapter 8 we give convincing numerical evidence that in the situation covered by
Theorems 1.2.1 and 1.2.2 (and more generally, that the eikonal problem (1.6)–(1.7) has a global
classical solution) the leading term of the WKB expansion indeed gives the expected order
of relative accuracy as ε ↓ 0. Unfortunately, a proof of accuracy of the method, even in the
favourable situation of global existence of the eikonal function, eludes us. Nonetheless the
numerical results suggest the following conjecture:

Conjecture 1.2.3. Suppose (for instance) that A and S− S∞ are Schwartz-class functions for some
constant S∞ ∈ R, and that k ∈ C \ {0} is such that there exists a global classical solution f (x, y; k) of
the eikonal problem (1.6)–(1.7). Then the solution ψε(z; k) of the direct scattering problem (1.3)–(1.4)
at t = 0, well defined for all ε > 0, satisfies

e− f (x,y;k)/εe−iS(x,y)σ3/(2ε)ψε(x + iy; k)

=
α0(x, y; k)

2k

[
2∂ f (x, y; k)− i∂S(x, y)

A(x, y)

]
+ o(1), ε ↓ 0 (1.11)

with the convergence measured in a suitable norm and the o(1) symbol on the right-hand side can be
uniquely continued to a full asymptotic power series in positive integer powers of ε.

Some of the issues that would need to be addressed to give a proper proof of Conjec-
ture 1.2.3 are mentioned in Section 4.1.1. The accuracy of the WKB approximation predicted
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by Conjecture 1.2.3 is illustrated in Figure 1.1, in which the solution of the Dirac problem
(1.3)–(1.4) for a Gaussian potential A(x, y)eiS(x,y)/ε = e−(x2+y2) at k = 1 and ε = 1/16 is
plotted in the upper row (for numerical reasons we plot the modulus of the components
multiplied by e−kz/ε in order to have functions bounded at infinity), while plots for the cor-
responding WKB approximation indicated in the conjecture are shown in the lower row.
The qualitative accuracy of the approximation is obvious from these plots, however a more
systematic numerical study of these questions is presented in Chapter 8.

Figure 1.1 – Comparison between the solution to the Dirac system (1.3)–(1.4) with Gaus-
sian potential e−(x2+y2) for k = 1 and ε = 1/16 with the WKB approximation. First row:
the modulus of e−kz/εψ1 (left) and of e−kz/εψ2 (right). Second row: the corresponding WKB
approximations of Conjecture 1.2.3.

A corollary of the existence of the full asymptotic expansion anticipated by Conjecture 1.2.3
is the following stronger control on the reflection coefficient.

Corollary 1.2.4. Under the same conditions on A, S, and k as in Conjecture 1.2.3, the reflection
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coefficient satisfies Rε
0(k) = O(εp) as ε ↓ 0 for all p.

The proof is simply based on the a priori existence of the reflection coefficient and is given
in Section 4.1.

If |k| becomes too small, we can no longer guarantee the existence of a global solution to
the eikonal problem (1.6)–(1.7). As long as k 6= 0 it is, however, possible to find a solution in
a k-dependent neighbourhood of z = ∞:

Theorem 1.2.5. Suppose that u = A2 ∈ Lp(R2) ∩W(R2) for some p ∈ [1, 2), that S ∈ C1(R2),
S − S∞ ∈ W(R2) for some constant S∞ ∈ R, and v = ∂S ∈ W(R2), and let k 6= 0 be a given
complex value. Then there exists ρ > 0 such that there is a classical solution f (x, y; k) of (1.6)–(1.7)
defined for |z| ≥ ρ. There is also a corresponding classical solution α0(x, y; k) of (1.10) in the same
domain |z| ≥ ρ satisfying α0 → 1 as |z| → ∞.

The proof is given in Chapter 5.1.1. This result leads to the question of what goes wrong
with the eikonal problem if, given k 6= 0 with |k| sufficiently small, one tries to continue
the solution inwards from z = ∞. Here we cannot say much yet; however we can present a
potentially illustrative example. Namely, if A(x, y) = (1+ x2 + y2)−1 (a Lorentzian potential)
and S(x, y) ≡ 0, we show in Section 5.1.2 that for |k| > 1

2 , the eikonal problem (1.6)–(1.7) has
the explicit global solution

f (x, y; k) = kz +
1
2

arcsin(W) +
(1−W2)1/2 − 1

2W
, W :=

z
k(1 + zz)

, (1.12)

and the equation (1.10) has the explicit solution

α0(x, y; k) =
√

2
((

1−W2)1/2
(

1 +
(
1−W2)1/2

))−1/2
(1.13)

for which α0(x, y; k) → 1 as |z| → ∞. Note that α0 is well-defined and smooth as long as
|k| > 1/2, i.e., exactly the same condition under which f (x, y; k) is smooth.

With these explicit formulae at hand, we can begin to address the question of what hap-
pens to f (x, y; k) when |k| < 1/2, a necessary condition for the reflection coefficient to be
non-negligible in the limit ε→ 0. It is easy to see that the whole complex z-plane is mapped
onto the closed disk D1/(2|k|) in the W-plane of radius (2|k|)−1 centered at W = 0. Each point
in the interior of D1/(2|k|) has exactly two preimages in the z-plane along the ray satisfying
arg(z) + arg(k) + arg(W) = 0, one with |z| < 1 and one with |z| > 1, while the map is one-
to-one from the unit circle in the z-plane onto the boundary of D1/(2|k|). When |k| < 1/2, the
disk D1/(2|k|) necessarily intersects both branch cuts emanating from W = ±1. Pulling the
parts of the branch cuts in D1/(2|k|) back to the z-plane, one sees that f (x, y; k) is well-defined
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and smooth with the exception of two cuts, each of which connects the two preimages in the
z-plane of the branch points W = ±1, joining them through the point on the unit circle in
the z-plane corresponding to where the branch cut in the W-plane meets the boundary of
D1/(2|k|). Assuming |k| < 1/2, the two preimages of W = ±1 are

z = ± 1
2k

[
1 + σ

√
1− 4|k|2

]
, σ2 = 1. (1.14)

This calculation is interesting because it shows that at branch points of f , which may be
compared with turning points in the one-dimensional problem, the amplitude function α0

given by (1.13) exhibits−1/4 power singularities, exactly as in the one-dimensional problem
(see [29, Section 7.2] and [31, Appendix B.2]). This suggests that the branch points might play the
role in the two-dimensional problem that turning points play in the one-dimensional problem. The
branch points and cuts for f (x, y; k) are shown in the z-plane for two values of k in Figure 1.2.

- 2 - 1 0 1 2
- 2

- 1

0

1

2

- 2 - 1 0 1 2
- 2

- 1

0

1

2

Figure 1.2 – The branch points (red) and cuts (wavy lines) in the z-plane for the continua-
tion below |k| = 1

2 of the solution (1.12) of the eikonal problem (1.6)–(1.7) for the Lorentzian
potential A(x, y) = (1 + x2 + y2)−1 with S(x, y) ≡ 0. Left: k = 1

2 eiπ/8. Right: k = 0.45eiπ/8.
For reference, the unit circle is shown with a dashed line.

In the one-dimensional problem, the reflection coefficient fails to converge to zero with ε

as soon as turning points appear in the problem, and one might therefore be led to believe
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that in the two-dimensional problem something similar occurs when |k| decreases within a
finite radius (e.g., |k| = 1/2 for A(x, y) = (1 + x2 + y2)−1 and S(x, y) ≡ 0) at which point
singularities first appear in the solution of the eikonal problem. Numerical reconstructions of
the reflection coefficient for small ε suggest that this is indeed the case. In Figure 1.3 we plot the
reflection coefficient as a function of |k| for the Gaussian potential A(x, y) = e−(x2+y2) with
S(x, y) ≡ 0. The reflection coefficient was calculated by solving the direct scattering problem

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 1.3 – Numerical calculations of the (radially symmetric and real-valued) reflection
coefficient Rε

0(k) for the Gaussian potential q = A(x, y)eiS(x,y)/ε with S(x, y) ≡ 0 and
A(x, y) = e−(x2+y2), plotted as a function of k > 0 for several values of ε > 0. The dot-
ted vertical line at k = 1/2 is the numerically-predicted threshold below which the eikonal
problem does not have a smooth global solution and the support of the reflection coefficient
appears to concentrate with decreasing ε. Also indicated with arrows on the vertical axis
are the corresponding values of the relatively accurate approximate formula 2

√
ln(ε−1) for

Rε
0(0) as predicted by Theorem 1.2.6.

(1.3)–(1.4) numerically using the scheme of [22] summarized in Section 7.3. These plots show
that as ε ↓ 0 the support of the reflection coefficient Rε

0(k) appears to reduce to a bounded
region as ε ↓ 0, perhaps the domain |k| ≤ 1

2 . Now, as will be explained in Section 5.1.2,
Theorem 1.2.1 predicts the existence of a global solution of the eikonal problem (1.6)–(1.7) if
|k| > 1 for the potential A(x, y) = e−(x2+y2) with S(x, y) ≡ 0, but our numerical calculations
described in Section 8.1 suggest that this is not a sharp bound, and moreover they suggest
that the correct value at which singularities first form in f (x, y; k) is again |k| = 1

2 , exactly as
is known to be true for the Lorentzian potential. Therefore, like in the one-dimensional problem,
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we expect that the existence of singularities in the solution of the eikonal problem (1.6)–(1.7) leads to
a nontrivial reflection coefficient in the semiclassical limit.

Despite this connection with the one-dimensional problem, it is worth dwelling on the
stark qualitative differences between the asymptotic behavior of Rε

0(k) for the two-dimensional
problem as illustrated in Figure 1.3 and that of Rε

0(λ) for the one-dimensional problem as for
λ− < λ < λ+ (and Rε

0(λ) = o(1) as ε ↓ 0 for λ ∈ R \ [λ−, λ+]). Apparently, Rε
0(k) is

real-valued, non-oscillatory, and develops a growing peak near k = 0 as ε ↓ 0, while Rε
0(λ)

is complex, rapidly oscillatory, and essentially of unit modulus within its asymptotic sup-
port. Moreover, it seems obvious to the eye that as ε ↓ 0, Rε

0(k) is converging pointwise to a real,
radially-symmetric function with compact support on the disk |k| ≤ 1

2 and that blows up as |k| ↓ 0.
We do not yet have a good explanation for most of these interesting features of Rε

0(k).
However, motivated by the numerical observation of the growth of Rε

0(k) near k = 0, in
Chapter 6 we show how the solution of the direct spectral problem can be calculated for
small ε at k = 0 for radially symmetric potentials A (and S ≡ 0). This analysis is based on
a radial ordinary differential equation, and it results in an asymptotic formula for Rε

0(0) that
we prove is accurate as ε ↓ 0.

Theorem 1.2.6. Suppose that S(x, y) ≡ 0 and that A = A(r =
√

x2 + y2), where A(r) is a
continuous nonincreasing function with A(r) > 0 for all r > 0 such that the function rA(r) has a
single maximum. Assume further that for some positive constants L ≤ U, b and p, the inequalities
Le−brp ≤ A(r) ≤ Ue−brp

hold for r sufficiently large. Then Rε
0(0) = 2(b−1 ln(ε−1))1/p(1 + o(1))

as ε ↓ 0.

The Gaussian A(r) = e−r2
satisfies the hypotheses of Theorem 1.2.6 with L = U = b = 1

and p = 2, and we conclude that Rε
0(0) = 2

√
ln(ε−1)(1 + o(1)) as ε ↓ 0. The divergence of

this approximation as ε ↓ 0 explains the rising peak at k = 0 seen in Figure 1.3; the exact
values of the approximate formula for Rε

0(0) are indicated with arrows for comparison. The
heuristic analysis in Section 6.1 leading to the proof of Theorem 1.2.6 indicates that a similar
approximation of Rε

0(0) holds true for compactly supported amplitude functions A = A(r),
in which (b−1 ln(ε−1))1/p is replaced with the largest value of r > 0 in the support of A,
which in this case is independent of ε. The proof of Theorem 1.2.6 is given in Section 6.2, and
in Section 6.3 we show how the direct spectral problem (1.3)–(1.4) can be solved explicitly in
terms of special functions when S(x, y) ≡ 0 and A is a positive multiple of the characteristic
function of the disk of radius ρ centered at the origin yielding the rigorous (but specialized
to this particular example) result that Rε

0(0) = 2ρ + o(1) as ε ↓ 0, consistent with the general
principle for compactly supported radial amplitudes indicated above.

The analysis in Chapter 6 shows that the solution of the direct scattering problem (1.3)–
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(1.4) at k = 0 for radial potentials A = A(r) with S ≡ 0 is only consistent with the WKB
expansion method in an annulus in the (x, y)-plane centered at the origin with an inner ra-
dius proportional to ε and an outer radius proportional to rMatch(ε), defined as the largest
solution r of the equation rA(r) = ε. In this case, the eikonal problem (1.6)–(1.7) has an ex-
act radial solution that is smooth except for a conical singularity at the origin (this solution
is described in Section 5.1.2). Our analysis shows that the ε-dependent problem (1.3)–(1.4)
regularizes the effect of this singularity within a small neighborhood of the origin, and be-
haves as if A ≡ 0 for r > rMatch(ε). This observation suggests that if one wants to capture
the behavior of the reflection coefficient for values of k of modulus sufficiently small that
the eikonal problem does not have a global smooth solution, it may be necessary to con-
struct the solution in nested approximately annular domains as is known to yield accurate
approximations for k = 0. This is a subject for future investigation.

In Section 7 we provide new numerical algorithms for computing the eikonal function
f (x, y; k) and WKB amplitude α0(x, y; k), assuming that |k| is sufficiently large. These al-
gorithms are tested on the known exact solutions (1.12) and (1.13) respectively. One of the
algorithms for computing the eikonal function f (x, y; k) (a series-based method applicable
to radial potentials with S(x, y) ≡ 0 that is described in Section 7.2) also gives a method of
estimating the critical radius for |k| below which singularities of some sort certainly appear
in the eikonal function. This method predicts the threshold value of |k| = 1

2 for the Gaus-
sian A(x, y) = e−(x2+y2) that matches with the numerical computations of Rε

0(k) shown in
Figure 1.3. We also briefly review the method proposed in an earlier work [22] of two of the
authors for solving the ε-dependent direct scattering problem (1.3)–(1.4). In Section 8 we use
the developed numerical methods to make quantitative comparisons with the WKB method
and provide quantitative justification of Conjecture 1.2.3.
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Chapter 2

Inverse scattering transformation

2.1 Inverse scattering method

The history of developing methods for solving non-linear integrable partial differential
equations in mathematical physics as well as of constructing soliton solutions lead us to a
famous result of Gardner, Green, Kruskal and Miura 1967, 1974, namely the inverse scatter-
ing method which was inspired by the Fourier transform for linear PDE’s. In this chapter
some classical results in theory of the intergable systems will be presented that can be also
found in different variations (see, for example, [3]). To understand the underlying idea of
the inverse scattering transform which is the main part of the algorithm, let us first have a
look at the linear case. Consider the linearized KdV equation

ut + uxxx = 0, (2.1)

and the following Cauchy problem

u(x, 0) = u0(x), where u0(x) ∈ L2(R).

One can apply a Fourier transformation to (2.1) and get an equation in the phase space

ũt − iλ3ũ = 0 (2.2)

where λ is the Fourier variable.

It is easy to see that the general solution of (2.2) is

ũ(λ, t) = C(λ)e−iλ3t
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where C(λ) will be identified from the initial conditions

C(λ) = ũ(λ, 0) =
+∞∫
−∞

eiλxu(x, 0)dx =: F (u0).

To get the solution of the original problem (2.1) one has to apply the Inverse Fourier Trans-
form, thus

u(x, t) =
1

2π

+∞∫
−∞

eiλx−iλ3tC(λ)dλ

The work of GGKM generalises this algorithm to some non-linear PDEs.

2.1.1 Isospectral deformation of the Schrödinger operator

Let’s consider the following isospectral problem for Schrödinger operator

LΦ =
d2Φ
dx2 + uΦ = λΦ, (2.3)

i.e., one has to find a condition on the potential u(x, t) such that the eigenvalues λ are t
independent and further that Φ admits a time evolution Φt = AΦ where A is a linear dif-
ferential operator in x with its coefficients being functions of x and t (differential polynomi-
als/rational functions in u). By differentiation of (2.3) with respect to t

LΦt + LtΦ = λΦt ⇔ LAΦ + utΦ = λAΦ⇔ ut = [A, L].

Thus by choosing operators A one can construct Lax pairs for many equations. If we take A
as an operator of third order, then compatibility conditions are equivalent to a KdV equation.

ut − 6uux + uxxx = 0, where u = u(x, t). (2.4)

Thereby for the KdV (2.4) equation the analogue of the FT will be the Scattering transform
represented by the Schrödinger equation

d2Φ
dx2 + (λ + u)Φ = 0.

Remark: we will consider that Φ ∈ L(R), λ ∈ R, and u is such that
∫ +∞
−∞ (1+ |x|)|u(x)|dx <

∞. Furthermore we will give a detailed proof of this choice.



2.1 Inverse scattering method 25

2.1.2 Jost solutions

The eigenvalue problem (2.3) for the Schrödinger operator has formal solutions with the
following asymptotic properties:

ψ1(x, k) = e−ikx + o(1), ψ2(x, k) = eikx + o(1), when x → +∞ (2.5)

φ1(x, k) = e−ikx + o(1), φ2(x, k) = eikx + o(1), when x → −∞ (2.6)

provided by a decaying condition on potential u(x, t), where λ = k2 such that =(λ) > 0 and
=(k) > 0.

One has to notice that (2.3) as a second order linear equation has a two dimensional basis
of solutions. Scattering methods help us to determine a potential u(x, t) essentially sup-
ported at some neighbourhood of the origin by sending test waves from positive or negative
infinity and detecting reflected waves. The role of these test waves in this case will be played
by Jost functions (2.5), i.e., the solution of the spectral problem with a zero potential. For
this purpose the aim is to study the relation between Jost solutions at negative and positive
infinity. This information is contained in the transition matrix between two bases {ψ1, ψ2}
and {φ1, φ2}. It can be denoted

T(k) =

(
a(k) b(k)
c(k) d(k)

)
.

For all real k 6= 0 the transformation matrix T(k) is a pseudo-unitary matrix, i.e.

T(k) =

(
a(k) b̄(k)
b(k) ā(k)

)

and det T(k) = |a(k)|2 + |b(k)|2 = 1.
Proof. One can notice that the Wronskian of two independent solutions of the Schrödinger
equation does not depend on x, namely

d
dx

W(φ1, φ2) =
d

dx
W(ψ1, ψ2) = 0, (2.7)

d
dx

W(φ1, φ2) =
d

dx
det

(
φ1 φ2

φ′1 φ′2

)
=

d
dx
(
φ′1φ′2 + φ1φ′′2 − φ′2φ′1 − φ2φ′′1

)
= φ1φ′′2 − φ2φ′′1 = φ1(λ + u)φ2 − φ2(λ− u)φ1 = 0.
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The same computation works for ψ1 and ψ2. Thus

W(φ1, φ2) = lim
x→∞

W(φ1, φ2) = W(e−ikx, e−ikx) = 2ik

W(ψ1, ψ2) = lim
x→∞

W(ψ1, ψ2) = W(e−ikx, e−ikx) = 2ik.

Taking into account that

W(φ1, φ2) = |(a(k)|2 + |b(k)|2)W(φ1, φ2) (2.8)

and the symmetry of the coefficients a = c̄, b = d̄ provided by

φ1 = φ̄2, ψ1 = ψ̄2

and

φ1 = aψ1 + bψ̄1

φ̄1 = cψ1 + dψ̄1

one can finish the proof.

Remark. Only the coefficients r(k) = b(k)
a(k) and t(k) = 1

a(k) have a physical meaning – they
are called the reflection coefficient and the transmission coefficient respectively.
Thus we presented the so called direct map from potential to scattering data. The analytic
properties of the scattering data will enable us to complete the resolution of the problem.

1. The complex valued function a(k) defined for all real k 6= 0 admits its analytic contin-
uation on the upper half plane =(k) > 0, has only simple zeros and asymptotic behaviour

a(k) = 1 +
(

1
k

)
, when |k| → ∞.

2. For =(k) > 0 a(k) = 0 if and only if λ = k2 is an eigenvalue of the Schrödinger operator.

W(φ1, ψ2) = lim
x→+∞

(ik(a(k)e−ikx + b(k)eikx)eikx − (−ika(k)e−ikx + ikb(k)eikx)eikx) =

lim
x→+∞

= (ik(a(k) + b(k)e2ikx + a(k)− b(k)e2ikx)) = 2ika(k).

This means that for all k ∈ R but k 6= 0

a(k) =
W(φ1(x, k), ψ2(x, k))

2ik
. (2.9)
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This equality gives us motivation to study the analytic continuation and analytic properties
of the Jost solutions. Let us recall that the Green function for the Schrödinger equation (2.3)
is

G(x, y, λ) =

−
sin k(x−y)

k , x > y

0, x ≤ y
.

Thus the Jost solutions should satisfy

φ1 = e−ikx +
∫ x

−∞
G(x− y)u(y)φ1dy (2.10)

φ2 = eikx +
∫ x

−∞
G(x− y)u(y)φ2dy

ψ1 = e−ikx +
∫ +∞

x
G(x− y)u(y)ψ1dy

ψ2 = eikx +
∫ +∞

x
G(x− y)u(y)ψ2dy

One can check it by straight forward computations. For simplicity one has to apply a nor-
malization condition assuming that k ∈ R

χ1(x, k) = eikxφ1,

χ2(x, k) = eikxψ1.

Multiplying (2.10) by the factor eikx one gets

χ1(x, k) = 1−
∫ x
−∞ eikx sin k(x−y)

k u(y)φ1(y)dy =

1−
∫ x
−∞ eikx eik(x−y)−e−ik(x−y)

2ik u(y)φ1(y)dy = 1 +
∫ x
−∞

eik(x−y)−1
2ik u(y)χ1(x, k).

(2.11)

The same computations for χ2(x, k) give us

χ2(x, k) = 1−
∫ +∞

x

eik(x−y) − 1
2ik

u(y)χ2(x, k).

One can notice that the kernel in the integral equation (2.11) is bounded provided that
=(k) > 0, indeed

|e2ik(x−y)| = e−2=k(x−y) < 1, (x− y) > 0. (2.12)
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Consider that the potential ψ(x, k) is rapidly decaying as |x| → ∞, thus (2.11) is a Volterra
integral equation and according to the theory (see [44], for example) it can be solved for
any k ∈ C such that =(k) > 0 in the case of χ1 (or =(k) < 0 for χ2). In other words, χ1 is an
analytic function in the upper-half of the complex plane, whereas χ2 is an analytic function in
the lower half of the complex plane. This gives us that φ1 and ψ1 admit analytic continuation
into the lower half and upper half of the complex plane respectively. The same arguments
work in a case of φ2 and ψ2 by looking at the integral equations for e−ikxφ2 and e−ikxψ2 and
it can be shown that ψ2 and φ2 are analytic functions for all k ∈ C such that =(k) > 0 and
=(k) < 0 respectively. Finally, to prove that a(k) is an analytic function in the upper half of
the complex plane, one has to remember that the Wronskian of two analytic functions is an
analytic function and apply this fact to formula (2.9).

3. On the domain =(k) > 0 the coefficient a(k) becomes zero if and only if λ = k2 is
a point of the discrete spectrum of the Schrödinger operator, since at the points where a(k)
becomes zero, which means that the Jost functions become proportional, namely ψ1(x, k0) =

αφ1(x, k0). To show that these functions are solutions of the Schrödinger problem, it is suffi-
cient to prove that the integrals converge for not only real values of k.

|φ1(x, k0)| ∼ |e−ik0x| = |e=(k0)x| → 0 when x → −∞

provided that =(k) > 0. And

|φ1(x, k0)| = |α||ψ1(x, k0)| ∼ |α||eik0x| = |α|e−=(k0)x → 0 when x → +∞

under the same condition on k.
One can notice that the reflection and transmission coefficients uniquely define the transi-
tion matrix T(k) for all k > 0, therefore they completely define the continuous spectrum of
the Schrödinger operator. Indeed, to recover the matrix T(k) at the points of the continuous
spectrum it is sufficient to keep only information about the coefficient r(k) when =(k) > 0,
and the points of the discrete spectrum of the Schrödinger operator, which is a finite collec-
tion of points on the upper-half plane are corresponding to the zeros of a(k). In other words,
it was shown that the eigenvalues of the scattering operator and the Schrödinger operator
are the same. Since a(k) can be expressed via r(k) in the following way, with similar formulas
for b(k):

|a(k)|2 =
1

1− |r(k)|2 ,
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arg[a(k)] =
1
i

N

∑
n=1

ln
k− iκ
k + iκ

− 1
π

∫ +∞

−∞

ln |a(ν)|
ν− k

dν.

We have finished the construction of the spectral data. For each n = 1, 2, ...N one has to fix
an eigenfunction φ(x, iκn) and study its asymptotic:

φ(x, iκn) = bnψ(x, iκn) = bne−κx + o(1) for x → +∞

and the set of spectral data will be defined as follows:

the function r(k), where k > 0 and the set of points {κn, bn}, where n = 1, 2, ..., N.

2.1.3 The time evotution of spectral data.

1. Evolution of the isospectral deformation of the Schrödinger equation corresponding
to the continuous spectrum is described by the Gardner-Green-Kruskal-Miura equations:

ȧ(k, t) = 0, ḃ(k, t) = 8ik3b(k, t).

To prove this one has to use the second equation of the Lax pair for KDV equation. This
corresponds to the operator A having the following form

A = −4∂3
x + 6u∂x − 3ux.

Let us first consider the asymptotic of the Jost solution φ1 and φ2 for each t. It is obvious that
the operators L and ∂t − A commute which implies that the operator ∂t − A acts invariantly
on the space of eigenfunctions of L. Thus with respect to the basis of L at −∞ the following
can be seen as

(∂t − A)φ1 = c1(k, t)φ1(x, t, k) + c2(k, t)φ2(x, t, k).

Taking the limit of A at −∞ one get
A ∼ −4∂3

x

which leads to

4ik3φ1(x, t, k) ∼ c1(k, t)φ1(x, t, k) + c2(k, t)φ2(x, t, k) when x → −∞.
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As for the potential u is rapidly decaying at infinity, and the asymptotic of the Jost functions
remain the same as t→ −∞, the coefficient c2(k, t) = 0, thus

(∂t − A)φ1 = 4ik3φ1(x, t, k). (2.13)

Considering the asymptotic of this expression at +∞ one get(
∂a(t, k)

∂t
+ 4ik3a(t, k)

)
e−ikx +

(
∂b(t, k)

∂t
− 4ik3b(t, k)

)
eikx ∼ 4ik3(a(t, k)e−ikx + b(t, k)eikx).

2. The time evolution of the scattering data corresponding to the discrete spectrum is

κ̇n = 0, ḃn = 8κ3
nbn(t), where n = 1, ..., N.

Since a priori, we are considering the isospectral deformation of the Schrödinger operator,
this means that the κn are constants. Knowing the time evolution(2.13) of the solution pro-
portional to e−ikx at x → −∞ we one can study its asymptotic at x → +∞ at the point
k = iκn

∂b(t, k)
∂t

− 4iκ3
nb(t, k) ∼ 4κ3

ne−κnx (2.14)

which proves the second equation of (2.1.3). Thus the time evolution of all elements of
scattering data can be written in a following way:

r(k, 0)→ r(k, 0)e8ik3t

κn → κn

bn(0)→ bn(0)e8κ3t

where k > 0, n = 1, ..., N.

2.1.4 Solution of the inverse problem

Reduction of the differential equations to integral equations of Volterra type allows to
use the well developed theory of Volterra equations [44]. Thus one can look for the solution
of (2.10) in the form

ψ2(x, k) = eikx +
∫ +∞

x
K(x, y)eikxdy (2.15)

where K(x, y) is a real function as y ≥ x and k ∈ R. This solution also holds true as k ∈ C

provided that φ2 admits analytic continuation in the upper half plane. Remembering that φ1
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can be represented as a linear combination of the basis functions at −∞ one gets

φ1(x, k) = a(k)φ1(x, k) + b(k)ψ2(x, k).

Dividing this expression by a(k), subtracting e−ikx, multiplying by eiky and finally integrating
(fixing y ∈ R) with respect to k one gets,

∫ +∞

−∞

(
φ1(x, k)eiky

a(k)
− eik(x−y)

)
dk =

∫ +∞

−∞
eiky
(

φ1(x, k)− e−ikx + r(k)φ2(x, k)
)

dk (2.16)

Then one can compute the residue at simple zeroes of a(k), namely at points κn where n =

1, ..., N:

∫ +∞

−∞

(
φ1(x, k)eiky

a(k)
− eik(x−y)

)
dk = 2πi

N

∑
n=1

k=iκn
res
(

φ1(x, k)eiky

a(k)

)
=

2πi
N

∑
n=1

φ1(x, iκn)e−κny

a′(iκn)
= 2πi

N

∑
n=1

bnψ2(x, iκn)e−κny

a′(iκn)
.

Then one can compute the integral using the residue theorem taking into account that the
integral in the semi-circle tends to zero as the radius goes to infinity and (2.15):

2πi
N

∑
n=1

φ1(x, iκn)e−κny

a′(iκn)
= 2πi

N

∑
n=1

bne−κn(x+y)

a′(iκn)
+ 2πi

∫ +∞

x

(
K(x, z)

N

∑
n=1

bne−κn(y+z)

a′(iκn)

)
dz.

To compute the right-hand part of (2.16) one can use that for k ∈ R

φ1(x, k) = ψ̄2(x, k) = e−ik +
∫ +∞

x
K(x, y)e−ikydy.

This leads to ∫ ∞

−∞
eiky
(

ψ1(x, k)− e−ikx + r(k)ψ2(x, k)
)

dk =∫ +∞

−∞
eiky
(∫ +∞

x
K(x, z)e−ikzdz

)
dk +

∫ +∞

−∞

(
r(k)eik(x+y) + r(k)

∫ +∞

x
K(x, z)

)
eik(y+z)dk.

Noticing that the function K(x, y) is only defined for y ≥ x, one can see that the first integral
in the last expression is nothing but a composition of Fourier transform and Inverse Fourier
transform, indeed: ∫ +∞

−∞
eiky
(∫ +∞

x
K(x, z)e−ikzdz

)
dk = 2πK(x, y). (2.17)
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Thus for y ≥ x the equation (2.16) has the form

2π

(
−

N

∑
n=1

bne−κn(x+y)

a′(iκn)
− 1

2π

∫ +∞

−∞
r(k)eik(x+y)dk

)
=

2πK(x, y) + 2π
∫ +∞

x
K(x, z)

(
N

∑
n=1

bne−κn(y+z)

a′(iκn)
+

1
2π

r(k)eik(y+z)dk

)
dz

Introducing the notation F(x) = ∑N
n=1

bne−κn(y+z)

a′(iκn)
+ 1

2π r(k)eik(y+z)dk finally one gets

K(x, y) + F(x + y) =
∫ +∞

x
K(x, z)F(y + z)dz = 0, where y ≥ x. (2.18)

This integral equation is called the Gelfand-Levitan-Marchenko equation.

2.1.5 Reconstruction formula

The last step is to find a reconstruction formula for the the potential u(x) using evolved
spectral data.

One can show using the analytic properties of the Jost solutions that the function θ(x, k) =
e−ikxψ2 has the following asymptotic behaviour as |k| → ∞, =(k) > 0

θ(x, k) = 1 +
1

2ik

∫ +∞

x
u(y)dy + o(

1
k
). (2.19)

Thus one can deduce

u(x) =
∂

∂x

(
lim
|k|→∞

2ik (θ(x, k)− 1)
)
=

∂

∂x

(
lim
|k|→∞

2ik
(

e−ikxψ2 − 1
))

. (2.20)

According to 2.15 one gets

2ik
(

e−ikxψ2 − 1
)
= −2ik

∫ +∞

x
K(x, y)eik(y−x)dy = −2

∫ +∞

x
K(x, y)

∂

∂y
eik(y−x) =

−2K(x, y)
∂

∂y
eik(y−x)

∣∣∣∣+∞

x
+ 2

∫ +∞

x
Ky(x, y)eik(y−x)dy = 2K(x, x) + 2

∫ +∞

x
Ky(x, y)eik(y−x)dy.

Taking the limit k → ∞ while =(x) > 0 means that the last integral tends to 0. Finally, we
get the formula for the potential of the Schrödinger operator

u(x) = −2
d

dx
K(x, x),
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where K(x, y) is a solution of the Gelfand-Levitan-Marchenko equation (2.18).

2.1.6 Reflectionless potentials

In this section we will consider the inverse scattering problem in the case of potentials
u(x) which do not produce any reflection, that is r(k) ≡ 0 for k ∈ R. These potentials are
called reflectionless. One can notice that r(k) ≡ 0 if and only if b(k) = 0, thus as a conse-
quence one gets that a(k) ≡ 0 for k ∈ R. The coefficient a(k) is an analytic function in the
upper half plane with zeroes coinciding with the discrete spectrum of the Schrödinger equa-
tion. The uniqueness theorem provides that a(k) could be only proportional to the function

γ
N

∑
n=1

k− iκn

k + iκn
. (2.21)

But knowing that the function a(k)→ 1 when k→ ∞ one gets that the coefficient γ = 1.
Given that b(k) is identically zero the kernel F(x) in the GLM equation simply becomes the
sum of exponents

F(x) =
N

∑
n=1

βne−κnx, where βn =
bn

ia′(iκn)
. (2.22)

We will seek the solution of the GLM equation (2.18) as a sum of exponents:

K(x, y) =
N

∑
n=1

Kn(x)e−κny,

and substituting this expansion in (2.18) the integral

∫ +∞

x
K(x, z)F(y + z)dz =

N

∑
m,n=1

Km(x)βne−κny
∫ +∞

x
e−(κn+κm)zdz =

N

∑
m,n=1

Km(x)
βne−(κn+κm)x

κn + κm

the GLM (2.18) becomes

N

∑
n=1

Kn(x)e−κny +
N

∑
n=1

βn(x)e−κn(x+y) +
N

∑
m,n=1

Km(x)
βne−(κn+κm)x

κn + κm
= 0. (2.23)

As far as the left part of the equation for any fixed x is a linear combination of e−κny with
different exponents, the last equation is equivalent to the system:

Kn(x) +
N

∑
m=1

Km(x)
βne−(κn+κm)x

κn + κm
= −βne−κnx. (2.24)
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One can see that this system is linear. Let us denote by A(x) = (Anm(x)) the following
matrix:

Anm(x) = δnm +
βne−(κn+κm)x

κn + κm
. (2.25)

This system can solved by the Kramer’s method:

Kn(x) =
det A(n)(x)

detA(x)
. (2.26)

Thus one gets

K(x, x) =
1

det A(x)

N

∑
n=1

det A(n)(x)e−κnx. (2.27)

Then remembering the rule of derivation of the determinant we find that

K(x, x) =
d

dx
ln det A(x).

And finally, using the inverse formula we get an explicit expression for the potential

u(x) = −2
d2

dx2 ln det A(x).

2.1.7 Interaction of solitons

Time evolution for the matrix A(x, t) is given by

Anm(x) = δnm +
βne−(κn+κm)x+8κ3

nt

κn + κm

where βn = βn(0) = const. Then the corresponding solution of the KdV equation can be
found by

u(x, t) = −2
d2

dx2 ln det A(x, t).

These solutions are called multi-soliton solutions.

One can easily compute the well-known one soliton solution taking N = 1:

u(x, t) = −2
∂2

∂x2 ln

(
1 +

βe−2x+8κ3t

2κ

)
= −2

4γκ2

(exκ + γe−κx)2 =
2κ2

ch2(κ(x− 4κ2t + δ))
,

where δ = 1
2κ ln β

2κ .
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Remark. The physical meaning of κ2 - the velocity of the soliton (up to a coefficient ) and the
constant β is the phase of the latter. Now let us take N = 2 and κ2 > κ1. In this case the
formula for the potential is

u = − ln
∂2

∂x2

((
1 +

β1e−2κ1x+8κ2
1t

2κ2

)(
1 +

β2e−2κ2x+8κ2
2t

2κ2

)
− β1β− 2

κ2
1 + κ2

2
e−2(κ1+κ2)x+8(κ3

1+κ3
2)t

)
=

= 2
∂

∂x

(
−2κ1eθ1 − 2κ2eθ2−2(κ1+κ2)Beθ1+θ2

1 + etheta1 + eθ+2 + Beθ+1+θ2

)
,

where θn = −2κnx + 8κ3
nt + ln βn

2κn
for n = 1, 2, B =

(
κ2−κ1
κ2+κ1

)2
. Let us assume that θ1 = 0,

which is the case when x ∼ 4κ2
1t + 1

2κ1
ln β1

2κ1
, we get

θ2 = 8κ2(κ
2
2 − κ2

1)t + ln
β2

2κ2
− κ2

κ1
ln

β1

2κ1
.

One can deduce that θ2 → −∞ along the line θ1 = 0 when t→ −∞ which leads to

u(x, t) ∼ − 8κ2
1eθ1

1 + eθ1
+ 2

(
−2κ2

1eθ1

1 + eθ1

)2

= − 8κ2
1eθ1

(1 + eθ1)2 = − 2κ2
1

ch2 θ1
2

= − 2κ2
1

ch2(κ1(x− 4κ2
1t + δ1))

,

where δ = 1
2κ1

ln β1
2κ1

, that means that in the limit t → −∞ along the line θ1 = 0 one can
observe a single soliton with the velocity 4κ2

1 and the amplitude 2κ2
1. Similarly, provided the

same condition θ1 = 0 holds, one can study the limit t→ +∞:

u(x, t) ∼ −2
d

dx

(
−2κ2e−θ1 − 2(κ1 + κ2)B

e−θ1 + B

)
= − 2κ2

1

ch2 θ1+ln B
2

.

Here one can see that in the limit t → +∞ along the line θ1 = 0 there is a single soliton
moving with the velocity 4κ2

1 and the amplitude 2κ2
1 but with a shifted phase δ̃1 = δ1 − ln B

2κ−1 .
Symmetrically one can study the asymptotic behaviour of the solution for t ±∞ provided
that θ = 0: it will be again a single soliton with fixed parameters except for the phase, which
is shifted. Summarising all these observations, one can conclude that with time the soliton
with bigger amplitude is reaching the other one with smaller amplitude, then they interact
and after that they continue moving with the same velocities, but they both get a phase shift.
Remark. One has to mention the properties of the solitons. Since the equation is non-linear
generally speaking the linear combination of several different solitons will not be a solution
of the equation. However the asymptotic for large time of a multi-soliton solution will be the
same as a corresponding linear combination of the solitons. Thus one can say that on the set
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of soliton solutions the KDV (2.4) has the property of asymptotic linearity.

This class of multi-soliton solutions is important not only as exact solutions of the KdV
equation (2.4), but also because they describe the common asymptotic behaviour of its solu-
tions. One can prove the following theorem:
Theorem: Let the initial data u(x, 0) satisfy the condition:

∫ +∞

−∞
|u(x, 0)|(1 + |x|)dx < ∞. (2.28)

Then the solution of the corresponding Cauchy problem for the KdV ((2.4)) for large times

u(x, t) = uN(x, t) + O(
1√

t
), for t→ +∞, (2.29)

where uN is the N-soliton asymptotic solution, i.e., the solitons are ordered with the largest
first determined by the discrete spectrum of the Schrödinger operator with potential u(x, t).

2.2 Inverse scattering for the nonlinear Schrödinger equation

Among other equations that can be solved with IS the most prominent is the non-linear
Schrödinger equation. In this part we briefly present the general construction which is simi-
lar to the case of KdV (2.4). The cubic nonlinear Schrödinger equation

iut(x, t) +
1
2

uxx(x, t) + σ|u(x, t)|2u(x, t) = 0 (2.30)

where ψ(x, t) is a complex-valued function. One can distinguish two cases: σ = 1 is called
focusing and σ = −1 is respectively defocusing. Remarkably, changing the sign of the non-
linearity is affecting drastically the qualitative behaviour of the solution.
This equation possess a Lax pair:

∂Ψ
∂x

= UΨ =

[
−iλ u
−ū iλ

]
Ψ (2.31)

and

∂Ψ
∂t

= WΨ =

[
−iλ2 + i 1

2 |u|2 λu + i 1
2 ux

−λū + i 1
2 ū iλ2 − i 1

2 |u|2

]
Ψ. (2.32)



2.2 Inverse scattering for the nonlinear Schrödinger equation 37

The compatibility condition is

∂U
∂t
− ∂V

∂x
+ [U, V] = 0. (2.33)

As in the case of KdV the goal is to study the properties of the solution of the equation
corresponding to the Scattering operator U. Let suppose that u(x, t) for a fixed t is a rapidly
decreasing function as x → ±∞. Then the Jost solutions are

j−1 (x, λ) =

[
e−iλx

0

]
+ o(1), as x → −∞

j−2 (x, λ) =

[
0

eiλx

]
+ o(1), as x → −∞

j+1 (x, λ) =

[
e−iλx

0

]
+ o(1), as x → +∞

j+2 (x, λ) =

[
0

eiλx

]
+ o(1), as x → +∞.

Denoting matrices J± =
[
j1±, j2±

]
and taking into account that the determinants of these

matrices are constant, we introduce the scattering matrix S(λ) =

(
a(λ) −b̄(λ)
b(λ) ā(λ)

)
in the

following way
J− = J+S. (2.34)

Provided that |a(λ)|+ |b(λ)|2 = 1 one gets that the reflection coefficient

r(λ) =
b(λ)
a(λ)

(2.35)

is uniquely determined by the scattering matrix S(λ). Thus we get that the direct scattering
map is the mapR : u→ r. In order to describe the inverse map I : r → u one can introduce
new normalized matrices M±(x, λ) based on the Jost solutions:

M+ =

[
eiλx

a(λ)
j−1 , e−iλx j+2

]
, for =(λ) > 0
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,

M− =

[
eiλx j+1 ,

e−iλx

ā(λ̄)
j−2

]
, for =(λ) < 0.

The goal is to represent the inverse scattering map as a Riemann-Hilbert problem on matrices
M± which is equivalent to the Gelfand-Levitan-Marchenko equations (as was done for the
KdV example). Firstly, these matrices have the following properties:

1. It can be shown using the asymptotic properties of the Jost solutions and the scattering
data that

lim
|=(λ)→∞|

M± = I. (2.36)

2. Both matrices M± are analytic on the upper half and lower half plane respectively
except for having simple poles at the points λn where n = 1, ..., N such that a(λn) = 0.

3. Matrices M± take continuous boundary values on the real line. The relation between
them is described by the jump matrix V(x, λ) where λ ∈ R:

M+ = M−V,

where V(x, λ) =

(
1 + |r(λ)|2 e−2iλx (̄r)(λ)
e2iλxr(λ) 1

)
.

Remark. The solution of the problem is called Beals-Coifmann solution, which are functions
of the complex argument λ whereas x is a fixed parameter. Thus we have presented all suf-
ficient conditions to formulate a Riemann-Hilbert problem. This R-H problem can be solved
by the steepest descent method and then the sought-for potential u(x) can be computed from
the formula

u(x) = 2i lim
λ→∞

λM±. (2.37)

2.2.1 Time evolution

To derive the time dependence of the scattering data one has to come back to the case
of time-dependent potential u(x, t). Then the Jost functions (2.5) which are solutions of
the system (2.31) generally cannot be solutions of the system corresponding to the second
operator of the Lax pair (2.32) unless we find the proper multipliers:

J±(x, t, λ) =
[
c±1 (t, λ)j1±(x, λ), c±2 (t, λ)j2±(x, λ)

]
.
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This can be done by solving (2.32) in the limit for x → ∞ when the operator W becomes
diagonal:

∂Ψ
∂t

=

[
−iλ2 0

0 iλ2

]
Ψ.

The general solution of this equation is

Ψ0 = c1(x, λ)

[
e−iλ2t

0

]
+ c2(x, λ)

[
0

eiλ2t

]
.

Thus one can find the time-dependent Jost functions:

J±(x, t, λ) =
[
e−iλ2t j1±(x, λ), eiλ2t j2±(x, λ)

]
.

The next goal is to find the differential equation in t on the scattering matrix S(λ, t). The
latter can be derived in the following way: one has to find the respective equation for the
Jost matrix

∂

∂t
(J±e−iλ2tσ3) = W(J±e−iλ2tσ3).

Simplifying this and denoting ∂J±(x,t,λ)
∂t = J±t (x, t, λ) one gets

J±t (x, t, λ) =
(
iλ2σ3 + W

)
J±(x, tλ). (2.38)

Differentiating with respect to t the definition of the scattering matrix (2.34), one gets

J−t (x, t, λ) = J+t (x, t, λ)S(λ, t) + J+(x, t, λ)St(λ, t),

then one can use the equations to eliminate the derivatives of J±

(
iλ2σ3 + W

)
J−(x, tλ) =

(
iλ2σ3 + W

)
J+(x, tλ) + J+(x, t, λ)St(λ, t),

then J− can be also eliminated

(
iλ2σ3 + W

)
J+(x, t, λ)S(λ, t) =

(
iλ2σ3 + W

)
J+(x, t, λ)S(λ, t) + J+(x, t, λ)St(λ, t).
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Finally, multiplying by the inverse of the matrix J+, one gets

St(λ, t) = iλ2 [S, σ3] .

Then one can find the differential equations for the entries of the scattering matrix:[
a(λ) −b̄(λ)
b(λ) ā(λ)

]
t

=

[
0 2iλ2b̄(λ)

2iλ2b(λ) 0

]
t

. (2.39)

Thus, we can define the time evolution of the entries explicitly:

a(λ, t) = a(λ, 0), b(λ, t) = b(λ, 0)e2iλ2t.

Finally, we can derive the time-dependence for the reflection coefficient:

r(λ, t) = e2iλ2tr(λ, t).

To finish this part one has to also define the time evolution of the points of the discrete
spectrum of the matrix a(λ, t). First, as far as the function a(λ, t) for λ ∈ R is constant in
time one can deduce that its analytic continuation a(λ, t) where =(λ) > 0 does not change
as time evolves. This means that the zeros of a(λ, t) = a(λ) in the upper-half plane are also
constants in time. We denote these points of the discrete spectrum λ1, λ2, ...λn. We recall the
main property of these points, that the Jost functions became proportional

j−1 (x, λn, t) = cn(t)j+2 (x, λn, t). (2.40)

To define the time dependence of the coefficients cn(t) we has to differentiate the previous
equality:

∂j−1
∂t

= cn
∂j+2
∂t

+
∂cn

∂t
j+2 , where λ = λn.

Substituting the evolution equations for the Jost functions (2.38)

∂j−1
∂t

= (W + iλ2I)j−1 ,
∂j+2
∂t

= (W − iλ2I)j+2

and denoting ċn = ∂cn
∂t one gets

(W + iλ2I)j−1 = cn(W − iλ2I)j+2 + ċn j+2
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Using (2.40) to exclude j−1 and simplifying the equation one has

ċn j+2 = 2iλ2cn j+2 .

Taking into account that j+2 is non zero we finally get

ċn = 2iλ2cn.

Solving this ODE we see that

cn(t) = e2iλ2
cn(0).

Thus we have finished describing the evolution in time of all the elements of the scattering
data.

2.2.2 Multisoliton solutions

We have presented two examples of the Inverse scattering method. One can see that
the procedure of construction of the scattering data for the KdV and the non-linear cubic
Schrödinger equation looks similar. We also have shown how this classic approach allows
us to find a solution in an explicit form considering reflectionless potentials for the KdV
equation. There is no surprise that r(λ) can also be identically zero for some potentials of
the cubic NLS. It turns out that these potentials also correspond to multisoliton solutions.
Let us look at this in more detail. The first thing we can see when R(λ) ≡ 0 is that the jump
matrix in the Riemann-Hilbert problem is the identity matrix, namely the boundary values
of the M± coincide. We can conclude that these two matrices depend on one meromorphic
function on the complex plane with 2n poles in λ1, λ̄1, λ2, λ̄2, ..., λn, λ̄n. This function should
be of the form

M(x, λ, t) = I +
N

∑
n=1

An

λ− λn
+

N

∑
n=1

Bn

λ− λ̄n
,

where A(x, t) and Bn(x, t) as n = 1, ..., N are matrices which can found from the residue
conditions:

resλ=λn M(x, λ, t) = An(x, t), resλ=λ̄n
M(x, λ, t) = Bn(x, t).
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This implies that

An(x, t) =

(
αn(x, t) 0
βn(x, t) 0

)
Bn(x, t) =

(
0 γn(x, t)
0 δn(x, t)

)

while the non-zero columns of these matrices satisfy the following relations(
αn(x, t)
βn(x, t)

)
=

cn

a′(λ)
e2i(λnx+λnt)

((
0
1

)
+

N

∑
m=1

1
(λn − λ∗m)

(
γn(x, t)
δn(x, t)

))

and (
γn(x, t)
δn(x, t)

)
= − cn

a′(λ)
e−2i(λnx+λnt)

((
1
0

)
+

N

∑
m=1

1
(λ∗n − λm)

(
αn(x, t)
βn(x, t)

))
.

This system is a linear system on functions αn, βn, γn, δn, and it has a unique solution if
and only if the respective determinant does not vanish. Thus we can determine a matrix
M(x, t, λ) which allows us to reconstruct the potential u(x, t) by the formula (2.37), namely

u(x, t) = 2iλM12(λ, x, t) = 2i lim
λ→∞

λ
N

∑
n=1

α(x, t)
λ− λ̄

= 2i
N

∑
n=1

αn(x, t).

On can see that it is sufficient to find only functions αn for n = 1, ..., N and not all entries
of the matrix M(λ, x, t)), which obviously reduces the computational effort. Let us consider,
for example, N=1. Then we can derive from the system (1) the equation for α1

α1(x, t) = − cn

a′(λ)
e−2i(λnx+λnt)

(
1− cne2i(λnx+λnt)

a′(λ)(λ− λ̄)2

)
α1(x, t).

Solving this equation and denoting λ = a + ib one gets

α1(x, t) = be−2i(ax+(a2+b2)t+φ) sech(2b(x− x0 + 2ta)).

One can see that this 1-soliton solution is sort of similar to the solution of the KdV equa-
tion. We have seen the two cases of the equation describing the wave phenomena in 1 + 1
dimensions and the natural question is too study the system with the similar properties 2+1
dimensions.



Chapter 3

Davey-Stewartson equation

Now we are ready to present the main object of this work, the system

iqt + 2
(

∂
2
+ ∂2

)
q + (g + g) q = 0

∂g + ∂
(
|q|2
)
= 0,

(3.1)

which was introduced in 1974 by Davey and Stewartson (DS) as equations describing the
modulation of a 3-dimensional wave-packet. Although this equation was derived in a con-
text of fluid dynamics, later applications in non-linear optics were discovered. This sys-
tem of equations in 2 + 1 dimension is completely integrable: it admits a Lax factorisation,
has a Hamiltonian structure and therefore has its action-angle variables, possesses Darboux-
Bäcklund transformations and a Hirota representation. Also there exists an associated in-
verse scattering problem, which we are going to focus on in this work.

On the other hand the DS system can be viewed as a 2-dimensional generalisation of the
non-linear Schrödinger equation. Indeed, if we introduce the following partial change of the
coordinates by putting M=<(g) and assuming M and q are independent of y then it appears
that q is a solution of the corresponding cubic non-linear Schrödinger equation :

iqt + qxx ± 2q|q|2 = 0. (3.2)

Similarly, one can consider the x-independent reduction of DS which will lead to another
cubic non-linear Schrödinger equation with respect to the y variable.
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3.1 Complete integrability of the Davey-Stewartson system

3.1.1 Hamiltonian structure

The lax pair for DS is derived through a generalised AKNS scheme

L =

(
∂x + i∂y −q
−q∗ ∂x − i∂y

)

B =

(
∂2

x +
i
2

(
∂x − i∂y

)
g + 1

2 qq∗ iq∗∂y +
1
2

(
∂x + i∂y

)
q∗

iq∗∂y +
1
2

(
∂x + i∂y

)
q∗ ∂2

x +
i
2

(
∂x − i∂y

)
g− 1

2 qq∗

)
.

3.1.2 Inverse scattering method

To introduce the spectral operator we will rewrite the first operator from the Lax pair
using the notations ∂ = 1

2

(
∂

∂x − i ∂
∂y

)
and ∂ = 1

2

(
∂

∂x + i ∂
∂y

)
. The inverse scattering transform

associated with the elliptic system is

∂Ψ
∂z̄

= QΨ̄ (3.3)

where

Q =

(
0 q
±q 0

)

and Ψ(z, k) = eik̄z/2µ(z, k); also we require that

lim
|z|→∞

µ(z, k) = I. (3.4)

In order to define the scattering matrix we will rewrite the problem in terms of a regularized
matrix µ = µ(z, k). Thus the eigenfunctions of the scattering operator, namely the entries of
the matrix µ, are bounded. On gets

∂µ = ekz−k̄z̄Qµ̄ (3.5)

together with the boundary condition (3.4) on µ. Let us assume that the potential q ∈ S (C)

then one can invert the operator to rewrite the matrix equation in terms of the integral oper-
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ator

µ = I +
1

2π

∫
C

ekz−k̄z̄Qµ̄

z− w
dCw. (3.6)

Therefore we have the following integral equations:

µ11 = I +
1

2π

∫
C

ekz−k̄z̄Q12µ̄21

z− w
dCw (3.7)

µ12 = I +
1

2π

∫
C

ekz−k̄z̄Q21µ̄11

z− w
dCw (3.8)

µ21 = I +
1

2π

∫
C

ekz−k̄z̄Q12µ̄22

z− w
dCw (3.9)

µ22 = I +
1

2π

∫
C

ekz−k̄z̄Q21µ̄12

z− w
dCw. (3.10)

The scattering matrix

T(k) =

(
0 T12(k)

T21(k) 0

)

can be derived by differentiating these integral equations (3.7) with respect to k

∂kµ =
1

2π

∫
C

Q
∂k(ekw−k̄w̄µ̄)

z− w
dCw,

namely

∂kµ11 = I +
1

2π

∫
C

Q12
∂k(ekw−k̄w̄µ̄21)

z− w
dCw

∂k̄µ12 =
1

2π

∫
C

Q21
∂k̄(e

kw−k̄w̄µ̄11)

z− w
dCw

∂k̄µ21 =
1

2π

∫
C

Q12
∂k̄(e

kw−k̄w̄µ̄22)

z− w
dCw

∂kµ22 = I +
1

2π

∫
C

Q21
∂k(ekw−k̄w̄µ̄12)

z− w
dCw.



46 Davey-Stewartson equation

Let us define the elements of T(k) as follows

T12(k) =
i

2π

∫
C

e−(kw−k̄w̄)Q12µ̄22dCw

T21(k) =
i

2π

∫
C

e−(kw−k̄w̄)Q21µ̄11dCw.

One can notice that

∂k(ekz−k̄z̄µ̄21) = ekz−k̄z̄T21µ22 (3.11)

∂kµ11 = T̄21µ12 (3.12)

∂k(ekz−k̄z̄µ̄12) = ekz−k̄z̄T12µ11 (3.13)

∂kµ22 = T̄12µ21, (3.14)

which can be rewritten as a D-bar problem

∂k̄ν = ekz−k̄z̄Tν̄

by introducing the matrix

ν =

(
µ̄11 µ12ekz−k̄z̄

µ21ekz−k̄z̄ µ̄22

)
.

The boudary condition is given by (3.6)

lim
|k|→∞

ν = I (3.15)

The scattering matrix can be computed by

T12(k) = lim
|z|→∞

iz
2

µ12(z, k)

T21(k) = lim
|z|→∞

iz
2

µ21(z, k).

Again this system of equations can be written in terns of the integral operators

ν = I +
1

2π

∫
C

T
ek′z−k̄′ z̄ν̄

k− k′
dCk′.
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One can show that the scattering data evolve in time

∂tT(k) = −
k2 − k̄2

2
T(k).

One can see the corresponding inverse problem appears to be the same type of D-bar prob-
lem provided that the function r(t, k) = T12 plays the role of the potential. Namely, one can
see that inverse-scattering problem is

∂kν1 = 1
2 R(k, t)ν2

∂kν2 = 1
2 R(k, t)ν1

where R(k, t) = ek̄z−kzr(k, t) and where the solution νj = νj(k, t) is sought that satisfies

lim
|k|→∞

ν1(k, t) = 1 and lim
|k|→∞

ν2(k, t) = 0.

Finally, the reconstruction formula is

q(z, t) = 2 lim
|k|→∞

k ν2(k, t).

Schematically, these steps can be represented by the following diagram:

Q(0) r(k, 0)

Q(t) ∂tr = − k2−k̄2

2 r

S

S−1

.

One can see that the rigorous study of the inverse problem comes down to the theory of
the integral operators in proper functional spaces. Perry showed that the inverse scattering
problem, consequently the Cauchy problem for the defocusing DS, is globally well-posed
in H(1,1)(C), existence and uniqueness of the global solution are shown. Recently in 2017
Nachman proved the same result in L2.

Before we will move to the asymptotic framework of the D-bar problem we will introduce
a learning example of a D-bar problem in case of the compact support potential.
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3.1.3 Potentials of compact support

Let us consider the D-bar equation (3.3) using polar coordinates (r, φ) with the potential
q = 1 for r ≤ 1 and zero otherwise. We first study the case k = 0. There we have for r ≤ 1

mr +
i
r

mφ = (m̄ + 1)e−iφ. (3.16)

Differentiating once with respect to z̄, we get

mrr +
1
r

mr +
1
r2 mφφ = m + 1. (3.17)

We write the solution in the form of a Fourier series m = ∑n∈Z an(r)einφ which implies

a′n −
n
r

an = ā−n−1 + δn,−1 (3.18)

and

a′′n +
1
r

a′n −
n2

r2 an = an + δn0. (3.19)

Note that the an must be even (odd) functions of r for even (odd) n in order to get smooth
solutions (in x and y) near r = 0.

Equations (3.19) are Fuchsian with the only finite pole at r = 0. Thus we can represent
the solutions as a series in r which will converge on the whole unit disk. For n = 0 we get

a0(r) =
∞

∑
m=0

α0
2mr2m (3.20)

with constants α0
m given by

α0
2 =

1
4
(1 + α0

0), α0
2m =

1
4m2 α0

2m−2 =
1

4m2(2m− 2)2 . . . 4
(1 + α0

0). (3.21)

For n > 0 we get

an(r) =
∞

∑
m=0

αn
2mr2m+n (3.22)

with
αn

2m =
1

4m(m + n)
αn

2m−2. (3.23)

For n < 0 we get

an(r) =
∞

∑
m=0

αn
2mr2m−n (3.24)
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with
αn

2m =
1

4m(m− n)
αn

2m−2. (3.25)

3.2 Semicalssical limit

In this section we want to study the D-bar problem with a small real parameter ε. This
rescaling can be understood in too different ways:
1. one can consider the coefficient ε only in the initial data, i.e., by an appropriate changing
of the coordinates it is possible to make the equation and respectively D-bar problem inde-
pendent of ε,
2. or one can focus on ε independent initial data and ε that appears in the equation itself.
Now we can repeat the formalism of the Inverse scattering but taking in account the ε fac-
tor. We start with the defocusing DSII and introducing following change of variables z = z̃

ε .
Therefore the semiclassical defocusing DSII will be

iεqt + 2ε2
(

∂
2
+ ∂2

)
q + (g + g) q = 0

∂g + ∂
(
|q|2
)
= 0,

(3.26)

where the initial data
q(x, y, 0) = A(x, y, 0)eiS(x,y,0)/ε. (3.27)

The D-bar problem for DS will be as follows

ε∂̄µ1 =
1
2

e
k̄z̄−kz

ε qµ̄1 (3.28)

ε∂̄µ2 =
1
2

e
k̄z̄−kz

ε qµ̄2. (3.29)

Nevertheless the asymptotic condition (3.4) remains unchanged, namely µ1 → 1 and µ2 → 0
as |z| → ∞.

The reflection coefficient is

r(k) =
1

πε

∫ ∫
e k

ε
(z)q(z)µ̄1(z)dA(z). (3.30)

One can invert the D-bar operator and formally write a solution for 3.29 taking into ac-
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count the asymptotic conditions for µ1 and µ2

µ1 = 1 +
1
2ε

∂̄−1
(

e k
ε
(·) q (·) µ̄2 (·)

)
= 1 + Tµ2

µ2 =
1
2ε

∂̄−1
(

e k
ε
(·) q (·) µ̄1 (·)

)
= Tµ1

where we denote e k
ε
= e

k̄z̄−kz
ε . Thus we get a system

µ1 = 1 + Tµ2

µ2 = Tµ1.

Let us solve it with respect to µ1 and µ2 respectively

µ1 = 1 + T2µ1 ⇒ µ1 − T2µ1 = 1⇒ (1− T2)µ=1⇒ µ1 = (1− T2)−11 (3.31)

µ2 = Tµ1 = T (1 + Tµ2) = T1 + T2µ2 ⇒ µ2 =
(
1− T2)(−1)

T1 (3.32)

To obtain the inverse system we need to compute derivatives of the functions µ1 and µ2 with
respect to the k variable. First, to calculate the following

∂̄kµ1 = ∂̄k

[
(1− T2)−11

]

we use the differentiation rule for operators

∂̄k

[(
1− T2)−1

]
= (1− T2)−1∂̄kT2(1− T2)−1.

This leads to

∂̄kµ1 = (1− T2)−1∂̄kT2(1− T2)−11,

where the key point is to calculate the derivative of the square of the operator T,

∂̄kT2 f =
1

4π2ε2 ∂̄k

∫ ∫ e k
ε
(w)q(w)

w− z

∫ ∫ e k
ε
(ζ)q(ζ) f (ζ)

ζ̄ − w̄
dA(ζ)dA(w)


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Taking into account that

e k
ε
(w)e− k

ε
(ζ) = e

k̄w̄−kw
ε + kζ−k̄ζ̄

ε = e
k̄
ε (w̄−ζ̄)+ k

ε (ζ−w)

it is easy to see that

∂̄ke k
ε
(w)e− k

ε
(ζ) =

1
ε
(w̄− ζ̄)e

k̄
ε (w̄−ζ̄)+ k

ε (ζ−w) =
1
ε
(w̄− ζ̄)e k

ε
(w)e− k

ε
(ζ),

= − 1
4π2ε3

[∫ ∫ e k
ε
(w)q(w)

w− z

∫ ∫
e k

ε
(ζ)q(ζ) f (ζ)dA(ζ)dA(w)

]
.

We introduce following notation

F [q̄ f ]
(

k
2ε

)
=
∫ ∫

e k
ε
(ζ)q(ζ) f (ζ)dA(ζ)

which leads to

∂̄kT2 f =
1

4πε3 F [q̄ f ]
(

k
2ε

)
∂̄−1

(
e k

ε
q
)

. (3.33)

Now we use this formula (3.33) and the expression (3.31) for µ1

∂̄kµ1 = (1− T2)−1∂̄kT2µ1 =
1

4πε3 (1− T2)−1F [q̄µ1]

(
k

2ε

)
∂̄−1

(
e k

ε
q
)

.

Using the formula for reflection coefficient (3.30), definition of T and formula for µ2 we
get

∂̄kµ1 = (1− T2)−1 1
4πε3 επr̄(k)∂̄−1

(
e k

ε
q
)
=

r̄(k)
2ε

(1− T2)−1T1 =
r̄(k)
2ε

µ2.

Let us write the first equation of the inverse system

∂̄kµ1 =
r̄(k)
2ε

µ2. (3.34)

We can use the following procedure to check the second equation of the inverse system.
For this purpose one has to compute the following expression(

∂k +
z
ε

)
µ2 =

(
∂k +

z
ε

)
Tµ1.
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Remembering the definition of the operator T and expression for µ1 one gets

(
∂k +

z
ε

)
Tµ1 =

(
∂k +

z
ε

) 1
2επ

∫ ∫ e k
ε
(w)q(w)µ̄1(w)

z− w
dA(w) =

1
2επ

∫ ∫ (
−w

ε

) e k
ε
(w)q(w)µ̄1(w)

z− w
dA(w)+

1
2επ

∫ ∫ e k
ε
(w)q(w)∂km̄u1(w)

z− w
dA(w) +

1
2επ

∫ ∫ z
ε

e k
ε
(w)q(w)µ̄1(w)

z− w
dA(w) =

1
2ε2π

F[qµ̄1]

(
k

2ε

)
+ T

[
∂̄kµ1

]
.

Using the definition of the reflection coefficient and the first equation for the inverse system
one gets

1
2ε

r(k) + T
[

1
2ε

r̄(k)µ2

]
=

1
2ε

r(k) +
1
2ε

r(kTµ2) =
1
2ε

r(k) +
1
2ε

r(k)(mu1 − 1) =
r(k)
2ε

µ1

The last step is to implement the following change of coordinates:

ν1 = µ1,

ν2 = e
k̄z̄−kz

ε µ̄2

Then the system has the form

∂̄kν1 =
r̄(k)
2ε

ν̄2

∂̄kν2 =
r̄(k)
2ε

ν̄1

3.2.1 Studying the direct problem with the semiclassical initial data

We can rewrite the D-bar (3.29) problem as the following system of equations

ε∂ψ1 = 1
2 A(x, y)eiS(x,y)/εψ2

ε∂ψ2 = 1
2 A(x, y)e−iS(x,y)/εψ1,

(3.35)

by substituting the initial data in the form (3.27). Where ψj(z, k) = eik̄z/εµj(z, k) for j = 1, 2.
We will consider the amplitude A(x, y) ∈ S as a strictly positive fonction and the phase
S(x, y) as a real-valued function which is asymptotically linear, i.e., S(x, y) → wz + w̄z as
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|z| → ∞ where w ∈ C. Then we can simplify the system by removing the factors eiS(x,y)/ε by[
ψ1

ψ2

]
= eiS(x,y)σ3/(2ε)

[
χ1

χ2

]
, (3.36)

then (3.35) transforms to

ε

[
∂ 0
0 ∂

] [
χ1

χ2

]
=

1
2

[
−i∂S A

A i∂S

] [
χ1

χ2

]
. (3.37)

The solution χ1 and χ2 should be constructed in way having a common phase but amplitudes
could be different, namely

χj = e f (x,y)/εφj, j = 1, 2, (3.38)

ε

[
∂ 0
0 ∂

] [
φ1

φ2

]
=

1
2

[
−i∂S− 2∂ f A

A i∂S− 2∂ f

] [
φ1

φ2

]
. (3.39)

Now, we can apply a standard perturbation scheme in the limit ε→ 0. Obviously the phase
functions φ1 and φ2 should be entire series in ε

φ1 =
∞

∑
n=0

φ
(n)
1 (x, y)εn (3.40)

φ2 =
∞

∑
n=0

φ
(n)
2 (x, y)εn. (3.41)

Substituting the series in (4.6) and comparing the coefficient of each power of ε we get the
following system:

1
2

[
−i∂S− 2∂ f A

A i∂S− 2∂ f

] [
φ0

1

φ0
2

]
=

[
0
0

]
[

∂ 0
0 ∂

] [
φn−1

1

φn−1
2

]
=

1
2

[
−i∂S− 2∂ f A

A i∂S− 2∂ f

] [
φn

1

φn
2

]
, for n ≥ 1

(3.42)

Now it is more convenient to introduce the following notation to write all the equations in
matrix form:

Φn(x, y, k) =

[
φn

1

φn
2

]
. (3.43)
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Firstly, the necessary condition that provides the existence of the solution for the first system
in (3.42) system is the matrix

M(x, y) :=
1
2

[
−i∂S− 2∂ f A

A i∂S− 2∂ f

]
(3.44)

which is supposed to be singular.
This statement is equivalent to

det M(x, y) := det
1
2

[
−i∂S− 2∂ f A

A i∂S− 2∂ f

]
= 0, (3.45)

a scalar equation, which is called the eikonal equation[
2∂ f + i∂S

]
[2∂ f − i∂S] = A2. (3.46)

The boundary condition for the new functions can be simply derived from (3.4)

lim
|z|→∞

φ1e f /εeiS/(2ε)e−kz/ε = 1

lim
|z|→∞

φ2e f /εe−iS/(2ε)e−kz/ε = 0.
(3.47)

This leads to the asymptotic condition for f

lim
|z|→∞

(
f + i

1
2

S− kz
)
= 0. (3.48)

The second observation is we should always verify that the corresponding vector solution
always belongs to the spanM(x, y).
One can notice that

Φ(0)(x, y) = α(x, y)

[
−i∂S + 2∂ f

A

]
. (3.49)

To summarize the procedure: one has to find the function f (x, y) that satisfies the asymp-
totic condition so that the determinant of the matrix M(x, y) vanishes for all x, y ∈ R. And
then the asymptotic expansion for the small ε can be computed using the recurrent formulas
(3.42). Here we should recall that the spectral parameter k does not show up in the eikonal
equation but since the asymptotic condition on f (x, y) does depend on k the solution will be
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k dependent, too. Let us assume that

Φ(0)(x, y, k) =
1
2k

α0(x, y, k)

[
−i∂S + 2∂ f

A

]
. (3.50)

Remembering the resolvability condition for the non-homogeneous linear system one
gets [

∂ 0
0 ∂

]
Φn(x, y, k) ∈ span

[
−i∂S− 2∂ f

A

]
. (3.51)

It can be rewritten as

det

([
∂ 0
0 ∂

]
Φn(x, y, k),

[
−i∂S− 2∂ f

A

])
= 0. (3.52)

If we assume that this condition is true then the general solution for each fixed n will be

Φ(n)(x, y; k) = Φ(n)
p (x, y; k) +

αn(x, y; k)
2k

[
2∂ f (x, y; k)− i∂S(x, y)

A(x, y)

]
, n = 1, 2, 3, . . . , (3.53)

where Φ(n)
p (x, y; k) a particular solution. Here we got a scalar equation which is easily seen

to be a scalar linear equation for the αn(x, y, k). By using the linearity property of the deter-
minant we derive the following identity

det

([
−i∂S− 2∂ f

A

]
,

[
∂ 0
0 ∂

]
Φ(n)

p (x, y; k)

)
= −det

([
−i∂S− 2∂ f

A

]
,

[
∂ 0
0 ∂

]
αn

2k

[
−i∂S− 2∂ f

A

])
(3.54)

and this together with the asymptotic condition on α(x, y, k) which can be derived from

lim
z→∞

Φ0 =

[
1
0

]
(3.55)

and

lim
z→∞

Φn =

[
0
0

]
for n = 1, 2, . . . (3.56)

should determine completely Φn(x, y, k). So that we have the following asymptotic condi-
tions

lim
z→∞

α0(x, y, k) = 1, lim
z→∞

αn(x, y, k) = 0, for n = 1, 2, . . . (3.57)
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By direct computation one can derive

det

([
−i∂S− 2∂ f

A

]
,

[
∂ 0
0 ∂

]
αn

2k

[
−i∂S− 2∂ f

A

])
= − 1

2k
Lαn (3.58)

where the operator L is defined as an operator corresponding to the determinant of the
matrix M(x, y). Finally one can write the formula for the reflection coefficient

r(k) = 2 lim
z→∞

ze−2i=kz/ε. ¯φ2(x, y, k) (3.59)

Now we want to remember that here we can only find the approximation of the solution with
respect to some order N of epsilon. Now we are interested in computing the corresponding
order of decay of the reflection coefficient. Let us suppose that the WKB approximation was
found and can be represented as follows

Φ(x, y, k) =
N

∑
n=1

Φn(x, y, k) + Φ̃(x, y, k) (3.60)

where Φ̃(x, y, k) is a remainder. And let us suppose also that the remainder is o(εN). Com-
paring the formula for the reflection coefficient and its known properties one can conclude
that φn

2 = o( 1
z ) which implies that the reflection coefficient has an asymptotic behaviour of

o(εN) as ε→ 0.



Chapter 4

WKB Method for Calculating the
Reflection Coefficient

4.1 WKB formalism

If the initial data is given in the form (1.4), then (1.3) takes the form of a linear system of
partial differential equations with highly oscillatory coefficients:

εDψ =
1
2

[
0 A(x, y)eiS(x,y)/ε

A(x, y)e−iS(x,y)/ε 0

]
ψ, ψ =

[
ψ1

ψ2

]
, D :=

[
∂ 0
0 ∂

]
. (4.1)

Let us assume for simplicity that A(x, y) is a strictly positive Schwartz-class function, and
that the real-valued phase is asymptotically linear: S(x, y) = wz + wz + O(1) as z → ∞ for
some w ∈ C, in the sense that

∂S(x, y)→ w and ∂S(x, y)→ w, z→ ∞. (4.2)

The parameter w ∈ C has the effect of introducing a shift of the value of the spectral pa-
rameter k ∈ C. Indeed if S = wz + wz + S̃ and ψ̃(z; k) corresponds to (A, S̃) while ψ(z; k)
corresponds to (A, S), then ψ̃1(z; k− iw) = ψ1(z; k)e−iwz/ε and ψ̃2(z; k− iw) = ψ2(z; k)eiwz/ε.
Without loss of generality, we will therefore assume throughout this paper that w = 0. For
classical solutions of (4.1) we require ψ ∈ C1(R2), and similarly for χ and φ to be defined
shortly.

The oscillatory factors e±iS(x,y)/ε can be removed from the coefficients in (4.1) by the sub-
stitution

ψ = eiS(x,y)σ3/(2ε)χ (4.3)
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leading to the equivalent system

εDχ =
1
2

[
−i∂S A

A i∂S

]
χ. (4.4)

This problem is not directly amenable to a perturbation approach, because if ε = 0 there
can only exist nonzero solutions χ if the coefficient matrix on the right-hand side is singular,
which can be assumed to be a non-generic (with respect to (x, y) ∈ R2) phenomenon.

One way around this difficulty is to introduce a complex scalar field f : R2 → C and
make an exponential gauge transformation of the form

χ = e f (x,y)/εφ. (4.5)

This transforms (4.4) into the form

εDφ = M(x, y)φ, (4.6)

where M(x, y) is the ε-independent matrix

M(x, y) :=
1
2

[
−i∂S− 2∂ f A

A i∂S− 2∂ f

]
. (4.7)

Now we have both the vector unknown φ and the scalar unknown f , but we may now take
advantage of the extra degree of freedom by choosing f in such a way that the augmented
coefficient matrix M(x, y) on the right-hand side of (4.6) is singular for all (x, y) ∈ R2. A
direct calculation shows that the condition det(M(x, y)) = 0 is precisely the eikonal equation
(1.6) for f . If f is any solution of this nonlinear partial differential equation, it follows that
there exist nonzero solutions of (4.6) when ε = 0, and such a solution can be used as the
leading term in a formal asymptotic power series expansion in powers of ε.

Next recall the asymptotic normalization conditions for (1.4) on the functions ψj as z →
∞, which in terms of φ imply

lim
|z|→∞

φ1e f /εeiS/(2ε)e−kz/ε = 1

lim
|z|→∞

φ2e f /εe−iS/(2ε)e−kz/ε = 0
(4.8)

Since S is real, and since the second limit is zero, these two conditions can be combined to
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read

lim
|z|→∞

φ exp
(

1
ε

[
f +

i
2

S− kz
])

=

[
1
0

]
. (4.9)

Since we want to be able to accurately represent φ using asymptotic power series in ε, in
particular we want φ to have simple asymptotics as z → ∞, so we now impose on the
eikonal function f the normalization condition (1.7). Under this condition, (4.9) becomes
simply

lim
|z|→∞

φ =

[
1
0

]
. (4.10)

Since the conditions (1.6)–(1.7) on the eikonal function f explicitly involve the spectral pa-
rameter k ∈ C, we denote any solution of the eikonal problem by f = f (x, y; k). Similarly, the
matrix M defined in (4.7) now depends on k via f and will be denoted M(x, y; k), a singular
matrix for all (x, y) ∈ R2.

Given a suitable value of k ∈ C and a corresponding solution f (x, y; k) of the eikonal
problem (1.6)–(1.7), we may now try to determine the terms in an asymptotic power series
expansion of φ = φε(x, y; k):

φε(x, y; k) ∼
∞

∑
n=0

φ(n)(x, y; k)εn, ε→ 0. (4.11)

Substituting into (4.6) and matching the terms with the same powers of ε one finds firstly
that

φ(0)(x, y; k) ∈ ker(M(x, y; k)) = span
C(x,y)

[
2∂ f (x, y; k)− i∂S(x, y)

A(x, y)

]
. (4.12)

This determines φ(0)(x, y; k) up to a scalar multiple, which in general can depend on (x, y) ∈
R2 and k ∈ C. We may therefore write φ(0)(x, y; k) in the form

φ(0)(x, y; k) =
α0(x, y; k)

2k

[
2∂ f (x, y; k)− i∂S(x, y)

A(x, y)

]
(4.13)

for a scalar field α0(x, y; k) to be determined. Then from the higher-order terms one obtains
the recurrence relations:

M(x, y; k)φ(n+1)(x, y; k) = Dφ(n)(x, y; k), n = 0, 1, 2, 3, . . . . (4.14)

As M(x, y; k) is singular, at each order there is a solvability condition to be enforced, namely
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that

Dφ(n)(x, y; k) ∈ ran(M(x, y)) = span
C(x,y)

[
−i∂S(x, y)− 2∂ f (x, y; k)

A(x, y)

]
,

n = 0, 1, 2, 3, . . . , (4.15)

which we write in Wronskian form as

det

([
−i∂S(x, y)− 2∂ f (x, y; k)

A(x, y)

]
,Dφ(n)(x, y; k)

)
= 0, n = 0, 1, 2, 3, . . . . (4.16)

Assuming that (4.16) holds for a given n, the general solution of (4.14) is

φ(n)(x, y; k) = φ(n)
p (x, y; k) +

αn(x, y; k)
2k

[
2∂ f (x, y; k)− i∂S(x, y)

A(x, y)

]
, n = 1, 2, 3, . . . , (4.17)

where

φ(n)
p (x, y; k) :=

2∂φ
(n−1)
2 (x, y; k)

i∂S(x, y)− 2∂ f (x, y; k)

[
0
1

]
(4.18)

is a particular solution and αn(x, y; k) is a scalar field to be determined parametrizing the
homogeneous solution.

The calculation of the terms in the formal series (4.11) therefore has been reduced to
the sequential solution of the scalar equation (4.16) for αn−1(x, y; k), for n = 1, 2, 3, . . . . We
interpret the boundary condition (4.10) in light of the formal series (4.11) as:

lim
|z|→∞

φ(0)(x, y; k) =

[
1
0

]
, lim
|z|→∞

φ(n)(x, y; k) = 0, n = 1, 2, 3, . . . . (4.19)

Taking into account (1.7), (4.2) for w = 0, and (4.19) we require the solution of (4.16) subject
to the boundary condition:

lim
|z|→∞

αn(x, y; k) =

1, n = 0

0, n = 1, 2, 3, . . . .
(4.20)

A direct calculation shows that (suppressing the arguments)

det

([
−i∂S− 2∂ f

A

]
,D αn

2k

[
2∂ f − i∂S

A

])
= − 1

2k
Lαn (4.21)
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where the differential operator L is defined in (1.10). Therefore, assuming k 6= 0, taking
n = 0 in (4.16) and using (4.13) immediately yields (1.10) for α0, which by (4.20) is to be
solved subject to the boundary condition α0 → 1 as |z| → ∞. Similarly, taking n > 0 in (4.16)
and using (4.17) gives a related non-homogeneous equation

Lαn = 2k det

([
−i∂S− 2∂ f

A

]
,Dφ(n)

p

)

= 2k(−i∂S− 2∂ f )∂

[
2∂φ

(n−1)
2

i∂S− 2∂ f

]
, n = 1, 2, 3, . . . ,

(4.22)

which by (4.20) is to be solved subject to the boundary condition αn → 0 as |z| → ∞. We
remark that under the conditions of Theorem 1.2.1 the denominator i∂S − 2∂ f is bounded
away from zero, so we may expect that the forcing term on the right-hand side is a smooth
function of (x, y) ∈ R2 that decays as |z| → ∞ due in part to the fact that i∂S + 2∂ f → 0 as
|z| → ∞. Therefore, invertibility of L on a suitable space of decaying functions is sufficient
to guarantee the existence of all terms of the WKB expansion.

Now we give the proof (based on Conjecture 1.2.3) of Corollary 1.2.4. Observe that using
(1.5), (1.7), (4.3), and (4.5), the reflection coefficient Rε

0(k) can be written in terms of the (well-
defined for all (x, y) ∈ R2, k ∈ C, and ε > 0) solution φε(x, y; k) of (4.6) and (4.10) as

Rε
0(k) = 2 lim

z→∞
ze−2iIm(kz)/εφε

2(x, y; k). (4.23)

Suppose that the WKB expansion can be successfully and uniquely constructed through
terms of order εN , in which case we may write φε(x, y; k) unambiguously in the form

φε(x, y; k) =
N

∑
n=0

φ(n)(x, y; k)εn + φ̃(N),ε(x, y; k). (4.24)

Suppose also that the remainder term φ̃(N),ε(x, y; k) = o(εN) uniformly in (x, y) ∈ R2.
Then, since the rapidly oscillatory factor e−2iIm(kz)/ε is bounded despite having no limit
as |z| → ∞ unless k = 0, the (known) existence of Rε

0(k) for all k ∈ C and ε > 0 im-
plies that φ

(n)
2 (x, y; k) = o(z−1) as |z| → ∞ for all n = 0, 1, 2, . . . , N, and we conclude that

Rε
0(k) = o(εN) as ε ↓ 0. This is rather obvious for the case of N = 0; indeed, replacing φε

2

with its leading-order approximation φ
(0)
2 (x, y; k) = α0(x, y; k)A(x, y)/(2k) yields under the

assumption that φ̃0,ε(x, y; k) is uniformly o(1) the approximate formula

Rε
0(k) =

1
k

lim
z→∞

ze−2iIm(kz)/εα0(x, y; k)A(x, y) + o(1) = o(1) (4.25)
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(the explicit limit is zero because α0 → 1 and A is Schwartz-class).

4.1.1 Some notes on rigorous analysis

Assuming for a given k ∈ C \ {0} that the terms φ(0), . . . , φ(N) have been determined,
the error term φ̃(N),ε(x, y; k) in (4.24) satisfies the equation

[εD −M] φ̃(N),ε = εN+1γ(N)(x, y; k), γ(N)(x, y; k) := −Dφ(N). (4.26)

Note that γ(N)(x, y; k) is independent of ε > 0 and is, for each (x, y) ∈ R2, a vector in
ran(M(x, y; k)) as a consequence of the equation (cf., (4.16)) satisfied by αN(x, y; k).

In general, the singularly-perturbed differential operator εD −M, although certainly in-
vertible on suitable spaces ultimately as a consequence of Fredholm theory and vanishing
lemma described in [34, Lemma 2.3], will have a very large inverse when ε is small. Con-
trolling this inverse is obviously the fundamental analytical challenge in establishing the
validity of the WKB expansion.

Here we offer only the following advice to assist in the necessary estimation: the inverse
(εD−M)−1 need only be controlled on the subspace of vector-valued functions γ(N) that lie
pointwise in the C2(x, y) subspace ran(M(x, y; k)). Such uniform control would automati-
cally imply that the norm of φ̃(N),ε is O(εN+1), as continuing the WKB expansion to higher
order would suggest.



Chapter 5

The Eikonal Problem

In this section, we consider the problem of how to construct solutions of the eikonal prob-
lem consisting of the nonlinear equation (1.6) and the boundary condition (1.7). We also con-
sider the related problem of finding the leading-order WKB amplitude function α0(x, y; k).

5.1 Global existence of f (x, y; k) and α0(x, y; k) for |k| sufficiently
large

We first consider solving the eikonal problem (1.6)–(1.7) for f (x, y; k). To study a function
that tends to zero at infinity, we define

g(x, y; k) := f (x, y; k)− kz + i
1
2

S(x, y), (5.1)

upon which (1.6) can be rearranged to read

∂g =
u

4(k− iv + ∂g)
, where u := A2 and v := ∂S. (5.2)

Differentiation via the operator ∂ and assuming that g is twice continuously differentiable
gives an equation for b = ∂g− iv:

∂b = −i∂v + ∂

[
u

4(k + b)

]
. (5.3)
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Since we expect ∂g → 0, and we may assume v = ∂S → 0 as |z| → ∞, we may invert ∂ with
the solid Cauchy transform ∂

−1
defined by

∂
−1

F(x, y) := − 1
π

∫∫
R2

F(x′, y′)dA(x′, y′)
(x′ − x) + i(y′ − y)

, (5.4)

for a suitable function F : R2 → C, where dA(x, y) denotes the area differential in the plane.
And hence obtain the fixed-point equation

b = F(b), (5.5)

where F is the nonlinear mapping

F(b) := −iv + B
[

u
4(k + b)

]
, (5.6)

in which B denotes the Beurling transform defined by B := ∂
−1

∂ = ∂∂
−1

.

We will seek a solution b ∈ W(R2), where W(R2) denotes the Wiener space [13] defined
as the completion of the Schwartz space S (R2) under the norm

‖b‖W :=
∫∫

R2
|b̂(ξx, ξy)|dξx dξy, b̂(ξx, ξy) :=

1
4π2

∫∫
R2

b(x, y)e−i(ξxx+ξyy) dx dy, (5.7)

i.e., the Wiener norm is just the L1 norm in the Fourier transform domain. Observe that since
the inverse Fourier transform is given by

b(x, y) =
∫∫

R2
b̂(ξx, ξy)ei(ξxx+ξyy) dξx dξy, (5.8)

it follows that whenever b is a function with a nonnegative Fourier transform b̂(ξx, ξy) ≥ 0,
the Wiener norm is given simply by the value of b at the origin: ‖b‖W = b(0, 0). By the
Riemann-Lebesgue lemma, functions in W(R2) are continuous and decay to zero as |z| → ∞,
and ‖b‖∞ ≤ ‖b‖W. A key property of the Wiener space is that it is a Banach algebra as a
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consequence of the convolution theorem:

‖b1b2‖W =
∫∫

R2
|b̂1b2(ξx, ξy)|dξx dξy

=
∫∫

R2
|b̂1 ∗ b̂2(ξx, ξy)|dξx dξy

=
∫∫

R2

∣∣∣∣∫∫
R2

b̂1(ξ
′
x, ξ ′y)b̂2(ξx − ξ ′x, ξy − ξ ′y)dξ ′x dξ ′y

∣∣∣∣ dξx dξy

≤
∫∫

R2

∫∫
R2
|b̂1(ξ

′
x, ξ ′y)||b̂2(ξx − ξ ′x, ξy − ξ ′y)|dξx dξy dξ ′x dξ ′y

= ‖b1‖W‖b2‖W.

(5.9)

Another important property obvious from the definition (5.7) is scale invariance: if b ∈
W(R2) and for ρ > 0, bρ(x, y) := b(x/ρ, y/ρ), then ‖bρ‖W = ‖b‖W for all ρ > 0. The
Wiener space is also well-behaved with respect to the Beurling transform, whose action in
the Fourier domain is given by

B̂b(ξx, ξy) = −
ξx + iξy

ξx − iξy
b̂(ξx, ξy), (5.10)

so as the Fourier multiplier has unit modulus for all (ξx, ξy) ∈ R2, |B̂b(ξx, ξy)| = |b̂(ξx, ξy)|,
and therefore

‖Bb‖W = ‖b‖W, ∀b ∈W(R2). (5.11)

While all of these properties are useful to us, it is really the combination of the Banach algebra
property (5.9) with the unitarity of the Beurling transform expressed in (5.11) that makes
W(R2) a useful space for us to work with when dealing with nonlinear problems involving
the operator B such as (5.5)–(5.6).

To view (5.5)–(5.6) as a fixed-point equation on W(R2), we first assume that u ∈ W(R2)

and v ∈ W(R2). We then need to guarantee that F(b) ∈ W(R2) provided that b ∈ W(R2).
We write F(b) in the slightly-modified form

F(b) = −iv +
1
4k
Bu + B

[
1
4

u
(

1
k + b

− 1
k

)]
. (5.12)

Due to (5.9) and (5.11), it is sufficient that b 7→ (k + b)−1 − k−1 takes W(R2) into itself. This
will be the case provided that |k| is sufficiently large. Indeed, consider the geometric series

1
k + b

− 1
k
=

1
k
· 1

1− (−b/k)
− 1

k
= −

∞

∑
n=1

(
−1

k

)n+1

bn. (5.13)
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Since due to the homogeneity property of the norm and the Banach algebra property (5.9),∥∥∥∥∥
(
−1

k

)n+1

bn

∥∥∥∥∥
W

=
1
|k|n+1 ‖b

n‖W ≤
‖b‖n

W
|k|n+1 , n = 1, 2, 3, . . . , (5.14)

the geometric series on the right-hand side of (5.13) converges in the Wiener space W(R2)

provided that |k| > ‖b‖W. Moreover, given any B > 0, under the condition ‖b‖W ≤ B and
|k| > B we have (k + b)−1 − k−1 ∈W(R2) with

Nk[b] :=
∥∥∥∥ 1

k + b
− 1

k

∥∥∥∥
W
≤

∞

∑
n=1

‖b‖n
W

|k|n+1 ≤
∞

∑
n=1

Bn

|k|n+1 =
1

|k| − B
− 1
|k| =

B
|k|(|k| − B)

. (5.15)

Under the same conditions, an estimate for the action of the nonlinear operator F given by
(5.6) is

‖F(b)‖W ≤ ‖v‖W +
‖u‖W

4(|k| − B)
, ‖b‖W ≤ B, |k| > B. (5.16)

It follows that F is a mapping from the closed B-ball in W(R2) into itself provided that k and
B are chosen so that

‖v‖W +
‖u‖W

4(|k| − B)
≤ B and |k| > B. (5.17)

This proves the following result.

Lemma 5.1.1. Suppose that u and v are functions in the Wiener space W(R2) with ‖u‖W > 0.
Then, for every B > ‖v‖W, the mapping b 7→ F(b) defined by (5.6) takes the closed B-ball in W(R2)

into itself if

|k| ≥ B +
‖u‖W

4
· 1

B− ‖v‖W
> B. (5.18)

We next consider under what additional conditions the mapping F defines a contraction
on the B-ball in W(R2). Suppose that b, b′ ∈W(R2) with ‖b‖W ≤ B and ‖b′‖W ≤ B. Then,

‖F(b′)− F(b)‖W =

∥∥∥∥B [ u
4(k + b′)

− u
4(k + b)

]∥∥∥∥
W

=

∥∥∥∥ u
4(k + b′)

− u
4(k + b)

∥∥∥∥
W

=
1
4

∥∥∥∥ (b′ − b)u
(k + b′)(k + b)

∥∥∥∥
W

.

(5.19)

Adding and subtracting k−1 from (k + b′)−1 and (k + b)−1, the triangle inequality and the
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Banach algebra property (5.9) give

‖F(b′)− F(b)‖W ≤
1
4
‖u‖W

(
1
|k|2 +

Nk[b′]
|k| +

Nk[b]
|k| + Nk[b′]Nk[b]

)
‖b′ − b‖W, (5.20)

where the notation in the parentheses is defined in (5.15). Using the inequality (5.15) and the
given bounds on b and b′, we therefore get

‖F(b′)− F(b)‖W ≤
‖u‖W

4(|k| − B)2 ‖b
′ − b‖W. (5.21)

Combining this estimate with Lemma 5.1.1, we have proved the following.

Lemma 5.1.2. Suppose that u and v are functions in the Wiener space W(R2). Then, for every
B > ‖v‖W, the mapping b 7→ F(b) defined by (5.6) is a contraction mapping on the closed B-ball in
W(R2) if k satisfies the inequality (1.8).

Now we may give the proof of Theorem 1.2.1.

Proof of Theorem 1.2.1. Because u ∈ W(R2) and v ∈ R2, the given condition on k implies,
via the contraction mapping theorem and Lemma 5.1.2, the existence of a unique solution
b of the fixed-point equation b = F(b) with ‖b‖W ≤ B. To obtain f from b, recall that
f = g + kz + 1

2 iS where ∂g = b + iv = F(b) + iv. Applying ∂−1 as defined by the conjugate
solid Cauchy transform and using ∂−1B = ∂

−1
, we obtain

g = ∂
−1
[

u
4(k + b)

]
. (5.22)

Because ‖b‖∞ ≤ ‖b‖W ≤ B, the condition (1.8) on k implies that (k + b)−1 ∈ L∞(R2), so since
u ∈ Lp(R2) and u ∈ W(R2) ⊂ L∞(R2), g is ∂

−1
applied to a function that is in Lp′(R2) for

every p′ ≥ p. It follows from [5, Theorem 4.3.11] that g is continuous and tends to zero as
|z| → ∞, proving the asymptotic boundary condition (1.7). Now, as ∂g = b + iv ∈W(R2), in
particular ∂g is continuous. Furthermore, ∂g = B−1∂g so since B−1 maps W(R2) onto itself,
∂g is also in W(R2) and hence continuous. It follows that g is actually of class C1(R2), and
so is f = g + kz + 1

2 iS. Therefore f is a classical solution of (1.6). Finally, the estimate (1.9)
follows from ‖b‖W ≤ B because b = ∂ f − k− 1

2 iv = ∂ f − k− 1
2 i∂S. As b is the unique Wiener

space solution of the fixed-point equation b = F(b) with ‖b‖W ≤ B, f is the only classical
solution of (1.6) satisfying the condition (1.9). QED

Some comments:
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— The lower bound (1.8) on |k| that implies existence of a global solution depends on B,
and it is attractive to try to choose B in order to guarantee a solution for |k| as small as
possible. The lower bound on |k| is continuous with respect to B and grows both as
B ↓ ‖v‖W and as B ↑ ∞, guaranteeing a strictly positive minimum value depending
only on ‖u‖W and ‖v‖W. There exists a solution of the eikonal problem (1.6)–(1.7) with
the desired asymptotics whenever |k| exceeds this minimum value. When v = 0, the
lower bound for |k| can be made as small as

√
‖u‖W by taking the optimal value of

B = 1
2

√
‖u‖W.

— The contraction mapping theorem guarantees that there is exactly one solution within
the B-ball in W(R2). There could in principle be other solutions as well, with larger
Wiener norms.

Next, we consider the existence of the leading-order WKB amplitude α0(x, y; k). We will
show that under the same conditions that a unique f is determined for sufficiently large |k|,
we also obtain a suitable function α0 solving (1.10) under the boundary condition α0 → 1
as |z| → ∞. That this problem has a solution when |k| is sufficiently large is the content of
Theorem 1.2.2 which we now prove.

Proof of Theorem 1.2.2. Multiplying (1.10) by A and using the eikonal equation (1.6) gives

(2∂ f + i∂S)
[

A∂(Aα0) + (2∂ f − i∂S)∂((2∂ f − i∂S)α0)
]
= 0. (5.23)

We can choose to satisfy this equation by equating the second factor to zero; multiplying
through by 2α0 (assuming α0 6= 0) we obtain the equation

∂((2∂ f − iv)2α2
0) + ∂(uα2

0) = 0, u := A2 and v := ∂S. (5.24)

Now in terms of the quantity b satisfying the fixed point equation b = F(b) (5.5)–(5.6) equiv-
alent to the eikonal problem (1.6)–(1.7), we have 2∂ f − iv = 2(k + b), so the equation for α0

can be written as
4∂((k + b)2α2

0) + ∂(uα2
0) = 0. (5.25)

Noting that since b ∈W(R2) decays to zero as |z| → ∞, we have (k + b)2α2
0 → k2 as |z| → ∞,

and taking this into account we invert the operator ∂ and obtain

4(k + b)2α2
0 = 4k2 −B(uα2

0). (5.26)

Now, to get into the Wiener space, we seek α2
0 in the form α2

0 = 1+ m with m ∈W(R2). Thus
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the problem becomes

m−Km = h, Km := − B(um)

4(k + b)2 , h := −8kb + 4b2 + B(u)
4(k + b)2 . (5.27)

Now observe that under the inequality (1.8), we have h ∈W(R2) with

‖h‖W ≤
8|k|B + 4B2 + ‖u‖W

4(|k| − B)2 . (5.28)

Also, since

‖Km‖W ≤
‖u‖W

4(|k| − B)2 ‖m‖W, (5.29)

the inequality (1.8) implies that the operator norm ofK on W(R2) satisfies ‖K‖W < 1. Hence
1 − K has a bounded inverse on W(R2) given by the Neumann series 1 + K + K2 + · · · .

QED

We remark that this proof shows the bounded invertibility of the linear differential oper-
ator L defined in (1.10) on a space of functions whose squares differ from unity by a function
in W(R2).

5.1.1 Existence of f (x, y; k) for |z| sufficiently large given arbitrary k 6= 0.

Proof of Theorem 1.2.5. Let n ∈ W(R2) be a function with compact support in the unit disk
satisfying n(0, 0) = 1, and suppose that ∂n ∈ W(R2) as well. For ρ > 0, denote by nρ ∈
W(R2) the function defined by nρ(x, y) := n(x/ρ, y/ρ). Then for each h ∈ W(R2), nρh → h
in W(R2) as ρ→ ∞. Indeed, we have

‖nρh− h‖W :=
∫∫

R2
|n̂ρh(ξx, ξy)− ĥ(ξx, ξy)|dξx dξy

=
∫∫

R2
|n̂ρ ∗ ĥ(ξx, ξy)− ĥ(ξx, ξy)|dξx dξy.

(5.30)

Also, note that n̂ρ(ξx, ξy) = ρ2n̂(ρξx, ρξy) behaves as an approximate delta function when ρ

is large, having unit integral on R2 independently of ρ. Since n̂, ĥ ∈ L1(R2), it follows from
(5.30) that ‖nρh− h‖W → 0 as ρ → ∞; see [26, Theorem 2.16]. Therefore (1− nρ)h → 0 in
W(R2) as ρ→ ∞, and (1− nρ)h agrees exactly with h for |z| > ρ.

Given k 6= 0, we use the function 1− nρ for ρ sufficiently large (given k) to modify the
functions u and v appearing in the fixed-point iteration for (1.6)–(1.7) in such a way that the
inequality (1.8) holds and therefore Theorem 1.2.1 applies to the modified u and v. Con-
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cretely, given ρ we set
ũ := (1− nρ)u and S̃ := (1− nρ)S. (5.31)

Recalling v = ∂S, the latter definition implies that

ṽ := ∂S̃ = (1− nρ)v−
1
ρ

S∂n(x/ρ, y/ρ). (5.32)

Note that the second term above has a Wiener norm of order O(ρ−1) because ∂n ∈ W(R2)

and S differs from a function in W(R2) by a constant, so the claim follows from the scale
invariance and Banach algebra properties of the Wiener space. The value of ρ will be chosen
as follows. Choose B ∈ (0, 1

2 |k|). Then take ρ > 0 so large that ‖ũ‖W ≤ |k|B and ‖ṽ‖W ≤ 1
2 B.

It then follows that B > ‖ṽ‖W, and that

B +
1
4
· ‖ũ‖W

B− ‖ṽ‖W
<

1
2
|k|+ 1

2
|k| = |k| (5.33)

and
B +

1
2

√
‖ũ‖W <

1
2
|k|+ 1

2
√

2
|k| < |k| (5.34)

so the inequality (1.8) holds true. Therefore, by Theorem 1.2.1, there is a unique global classi-
cal solution f̃ (x, y; k) of (1.6)–(1.7), in which u = A2 is replaced with ũ and S is replaced with
S̃, that satisfies ‖∂ f̃ − k− 1

2 iṽ‖W ≤ B. Since ũ(x, y) = u(x, y) = A(x, y)2 and S̃(x, y) = S(x, y)
both hold for |z| > ρ due to the compact support in the unit disk of n, the construction of
f (x, y; k) given k 6= 0 is finished upon defining f := f̃ for |z| > ρ. According to Theo-
rem 1.2.2, corresponding to f̃ defined on R2 there is a unique classical solution α̃0 of (1.10)
with the appropriate substitutions for which α̃0 → 1 as |z| → ∞, and defining α0 := α̃0 for
|z| > ρ finishes the proof. QED

5.1.2 Series solutions of the eikonal problem

Here, we develop a method based on infinite series that reproduces some of the above
results by different means, and that can lead to an effective, sometimes explicit, solution of
the eikonal problem.

Series expansions of f (x, y; k) for S(x, y) = 0

Suppose that S(x, y) ≡ 0. If also A(x, y) ≡ 0, then the exact solution of the eikonal
problem (1.6)–(1.7) is f (x, y; k) = kz regardless of the value of k ∈ C. This fact suggests a
perturbative approach to the latter problem in which, for fixed k, a measure of the amplitude
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A(x, y) is taken to be the small parameter. Such an approach is to be contrasted with that of
Section 5.1 in which for fixed A and S, k was taken to be a large parameter.

Let δ > 0 be a parameter, and consider the S ≡ 0 form of the eikonal equation (1.6) in
which A2/4 is replaced with δA2:

∂ f (x, y; k)∂ f (x, y; k) = δA(x, y)2. (5.35)

We try to solve (5.35) by a formal series

f (x, y; k) ∼ kz +
∞

∑
n=1

δn fn(x, y; k), δ→ 0, (5.36)

where the coefficient functions fn(x, y; k) are to be determined. Since the leading term builds
in the leading asymptotics of f (x, y; k) for large |z|, we insist that fn(x, y; k) → 0 as |z| → ∞
for all n for consistency with (1.7). We intend to set δ = 1

4 once these have been determined
and then assess the possible convergence of the series.

Substituting the series (5.36) into (5.35) and collecting together the terms with the same
powers of δ yields the following hierarchy of equations:

∂ f1(x, y; k) =
1
k

A(x, y)2, (5.37)

and

∂ fn(x, y; k) = −1
k

n−1

∑
`=1

∂ f`(x, y; k)∂ fn−`(x, y; k), n = 2, 3, 4, . . . , (5.38)

The boundary condition fn(x, y; k) → 0 as |z| → ∞ requires that we invert ∂ on the right-
hand side by the solid Cauchy transform (5.4), however in certain situations the inversion
can be carried out explicitly. We will make this procedure effective in the special case that A
is a function with radial symmetry below in Section 5.1.2.

Setting un := k−1∂ fn, the hierarchy (5.37)–(5.38) becomes

u1 = k−2A(x, y)2, un = −
n−1

∑
`=1

u`Bun−`, n = 2, 3, 4, . . . . (5.39)

The space W(R2) is a convenient choice to analyze the terms un for the same reasons as
in the preceding study of the fixed point problem (5.5)–(5.6), namely the combination of
nonlinearity with the presence of the Beurling transform B in the recurrence relation (5.39).
Using the triangle inequality in the space W(R2) along with the Banach algebra property
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(5.9) and the identity (5.11), we then get

‖un‖W ≤
n−1

∑
`=1
‖u`‖W‖un−`‖W, n = 2, 3, 4, . . . . (5.40)

Now we renormalize un as follows: un = ‖u1‖n
Wvn, such that (5.40) becomes

‖v1‖W = 1, ‖vn‖W ≤
n−1

∑
`=1
‖v`‖W‖vn−`‖W, n = 2, 3, 4, . . . . (5.41)

Recall the Catalan numbers that satisfy the recurrence relation

Cn =
n−1

∑
`=0

C`Cn−1−`, n = 1, 2, 3, 4, . . . (5.42)

subject to the initial condition C0 = 1. Explicitly, the Catalan numbers are given by the
formula

Cn =
(2n)!

(n + 1)!n!
, n ≥ 0. (5.43)

From these definitions, we see that

‖vn‖W ≤ Cn−1 =
(2n− 2)!
n!(n− 1)!

, n ≥ 1. (5.44)

Now we consider the convergence of the series (using δ = 1/4)

∞

∑
n=1

δn∂ fn = k
∞

∑
n=1

4−nun = k
∞

∑
n=1

( 1
4‖u1‖W)nvn. (5.45)

Since, by Stirling’s formula,

Cn−1 =
4n

4
√

πn3/2
(1 + O(n−1)), n→ ∞, (5.46)

the series (5.45) is convergent in the space W(R2) provided that ‖u1‖W ≤ 1, i.e., that

|k|2 ≥ ‖A2‖W. (5.47)

Under this assumption on |k|, we then set

f (x, y; k) = kz + ∂
−1 ∞

∑
n=1

δn∂ fn(x, y) = kz + k∂
−1 ∞

∑
n=1

1
4n un(x, y), (5.48)
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under the additional assumption that ∂
−1

makes sense when applied to the particular ele-
ment of W(R2) given by the convergent series. Note that the assumption (5.47) on k coincides
with (1.8) in the case that v = 0 and B = 1

2

√
‖u‖W. As has been pointed out, the latter is the

optimal choice of B given v = 0 in (1.8).

Explicit inversion of ∂ for A(x, y) radially symmetric

Specializing further, let us now suppose that A(x, y) is a radially-symmetric function,
that is,

A(x, y) = a(m), m := x2 + y2 = zz (5.49)

for a suitable function a : R+ → R+. We will show how in this case the iterative construction
of series terms fn can be made explicit, avoiding the solution of partial differential equations
or convolution with the Cauchy kernel (cf., (5.4)) at each order.

In Chapter 6 we will be interested in the solution of the eikonal problem (1.6)–(1.7) for
radial phase-free potentials at k = 0, so before implementing the series procedure described
in Section 5.1.2 we briefly discuss this special case. With S ≡ 0 and A given in the form
(5.49), observe that for k = 0 one may seek f as a function of m = x2 + y2 = zz alone by
writing f (x, y; 0) = F(m) by analogy with (5.49). The eikonal equation (1.6) for S ≡ 0 and A
of the form (5.49) then becomes simply

4mF′(m)2 = a(m)2. (5.50)

This equation has two solutions that are smooth for all m > 0 and that decay to zero as
m→ ∞:

F(m) = ±1
2

∫ ∞

m

a(µ)
µ1/2 dµ = ±

∫ ∞

m1/2
a(s2)ds. (5.51)

On the other hand, both of these solutions f (x, y; 0) = F(x2 + y2) exhibit conical singularities
at the origin r = 0 unless a(0) = 0.

Now we return to the series approach described in Section 5.1.2. The equation (5.37) for
f1 in the current setting reads

∂ f1 =
1
k

a(zz)2. (5.52)

This equation is easily integrated under the condition that f1 should be smooth at the origin:

f1 =
1
kz

∫ zz

0
a(m)2 dm. (5.53)



74 The Eikonal Problem

Assuming that a ∈ L2(R+), we see easily that

| f1| ≤
‖a‖2

2
|kz| , (5.54)

an estimate that provides decay as z → ∞. Assuming also that a is continuous down to
m = 0 shows that

f1 =
a(0)2

k
z + o(|z|), z→ 0, (5.55)

indicating that f1 is smooth near z = 0 as well. We next claim that for all n = 1, 2, 3, . . . it is
consistent with (5.37) and (5.38) to write fn in the form

fn =
Gn(m)

(2n− 1)(kz)2n−1 , m = zz, (5.56)

where Gn is a smooth function. (Precisely, the assertion is that (2n− 1)(kz)2n−1 fn is a radial
function of (x, y), i.e., depending only on the product m = zz.) Indeed, this holds for n = 1
with

G1(m) :=
∫ m

0
a(µ)2 dµ. (5.57)

Furthermore, substituting (5.56) into (5.38) gives a recurrence relation on the functions Gn:

G′n(m) =
n−1

∑
`=1

Kn`
[
(2(n− `)− 1)G′`(m)Gn−`(m)−mG′`(m)G′n−`(m)

]
, n ≥ 2, (5.58)

where
Kn` :=

2n− 1
(2`− 1)(2(n− `)− 1)

. (5.59)

In order to ensure that fn is smooth at the origin, we need to insist that Gn vanish at m = 0,
and so once G′n(m) is known from (5.58), we obtain Gn itself by

Gn(m) =
∫ m

0
G′n(µ)dµ. (5.60)

This guarantees only that Gn(0) = 0 but sufficiently high-order vanishing at m = 0 will be
required to cancel the factor of z2n−1 in the denominator of fn as given by (5.56). We will
need Gn(m) = O(m2n−1) as m → 0 to have the necessary smoothness. We will also need to
avoid rapid growth in Gn(m) as m → ∞ in order that fn decay as z → ∞. Although there
is no additional freedom available once the recurrence (5.58) is solved and the integration
constant is determined by (5.60), these additional properties of Gn are indeed present as can
be confirmed in examples, to which we now proceed.
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/ Remark: The form (5.56) shows that, in polar coordinates z = reiφ, fn = f̃n(r)e−i(2n−1)φ,
and thus the infinite series f (x, y; k)− kz = ∑∞

n=1 δn fn(x, y; k) is nothing but a Fourier series
consisting of only negative odd harmonics e−iφ, e−3iφ, e−5iφ, etc. Another important obser-
vation clear from (5.56) and the fact that Gn is independent of k is that f (x, y; k) − kz is a
power series in negative odd powers of k with coefficients depending on (x, y) ∈ R2. These
observations lead to a numerical approach to the eikonal problem for radial potentials with
S(x, y) ≡ 0 that will be explained in Section 7.2. It is also clear that it is the asymptotic be-
haviour of Gn(m) as n → ∞ that determines for a given |z| the minimum value of |k| for
which the series (5.36) converges. .

Example: Gaussian amplitude

Suppose that A(x, y) = e−(x2+y2), which we can write in the form (5.49) with a(m) = e−m.
Since the Fourier transform of A(x, y)2 = e−2(x2+y2) by the definition (5.7) is e−|ξ|

2/8/(8π) >

0 where |ξ|2 := ξ2
x + ξ2

y, it is easy to compute the Wiener norm of A2 and we hence conclude
that the series (5.45) is convergent in W(R2) provided |k| ≥

√
‖A2‖W =

√
A(0, 0)2 = 1.

Later in Section 8.1 we will see convincing numerical evidence that this condition on k is not
sharp, and that the related series (5.48) is convergent in L∞(R2) for |k| ≥ 1

2 .

Let us illustrate the analytical calculation of the terms in the series for this case. From
(5.56)–(5.57) we have

G1(m) =
∫ m

0
e−2µ dµ =

1
2
[
1− e−2m] =⇒ f1 =

1− e−2zz

2kz
. (5.61)

With G1 determined, (5.58) for n = 2 reads

G′2(m) = 3G′1(m)G1(m)− 3mG′1(m)2

= 3e−2m 1
2
[
1− e−2m]− 3me−4m

=
3
2

e−2m −
[

3
2
+ 3m

]
e−4m,

(5.62)

and hence using (5.60) we get

G2(m) =
3
16

[
1− 4e−2m + (3 + 4m)e−4m

]
=⇒ f2 =

1− 4e−2zz + (3 + 4zz)e−4zz

16(kz)3 . (5.63)

It can be checked by Taylor expansion that f2 is smooth at the origin and it decays as z→ ∞.
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This procedure can be continued explicitly to arbitrary order because one needs only to
be able to integrate in closed form expressions of the form mpe−2qm for non-negative integers
p and q: ∫ m

0
µpe−2qµ dµ =

p!
(2q)p+1

(
1− e−2qm

p

∑
`=0

(2qm)`

`!

)
. (5.64)

Unfortunately, it seems difficult to deduce a closed form expression for Gn(m) for general
n ≥ 2 (and prove its correctness by an induction argument). Rather than proceed in this
direction, we turn to another example of a radial amplitude function A(x, y) for which this
procedure yields dramatic results.

Example: Lorentzian amplitude

Suppose now that A(x, y) = (1+ x2 + y2)−1, which can be written in the form (5.49) with
a(m) = (1 + m)−1. Using the definition (5.7), the Fourier transform of A(x, y)2 in this case
turns out to be |ξ|K1(|ξ|)/(4π) where |ξ| :=

√
ξ2

x + ξ2
y and K1 is a modified Bessel function

of order 1 [11, §10.25]. By an integral representation formula [11, Eqn. 10.32.9] it is obvious
that K1(|ξ|) > 0, so again it is easy to calculate the Wiener norm of A2 and hence observe
that the series (5.45) converges in W(R2) whenever |k| ≥

√
‖A2‖W =

√
A(0, 0)2 = 1. Again,

this condition is not sharp, and we will see so below, without the need to resort to numerics,
by explicit calculation of the terms fn given by (5.56).

Indeed, from (5.56)–(5.57) we have

G1(m) =
∫ m

0

dµ

(1 + µ)2 = 1− 1
1 + m

=
m

1 + m
=⇒ f1 =

z
k(1 + zz)

, (5.65)

and we note that f1 is smooth at the origin and decays as z → ∞. We next claim that for
general n ≥ 2, the recurrence (5.58) and the normalization condition (5.60) are satisfied by
taking Gn in the form

Gn(m) = Cn−1

(
m

1 + m

)2n−1

, n ≥ 1, (5.66)

where C0, C1, C2, . . . are suitably chosen constants. Indeed Gn(0) = 0 for all n ≥ 1, so (5.60)
is obviously satisfied regardless of the choice of the constants {Ck}∞

k=0. Also, the form (5.66)
is clearly correct for n = 1 with the choice C0 = 1. Moreover, substituting (5.66) into (5.58)
shows that (5.66) is correct for general n, provided that the constants {Ck}∞

k=0 satisfy the
recurrence (5.42) together with the initial condition C0 = 1; i.e., the constant Cn is the nth

Catalan number, which is explicitly given by (5.43). Therefore, Gn(m) has been determined
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in closed form for all n, and it follows that

fn =
Cn−1

2n− 1

(
1
k
· z

1 + zz

)2n−1

, n ≥ 1. (5.67)

Note that fn is smooth at the origin and decays as z→ ∞ for every n ≥ 1.

With the terms fn all explicitly determined, we directly analyze the convergence of the
formal series (5.36) for f with δ = 1

4 . Noting that by (5.46) we have

Cn−1

2n− 1
=

4n

8
√

πn5/2
(1 + O(n−1)), n→ ∞, (5.68)

we see that the series (5.36) with δ = 1
4 converges exactly when

|k| ≥ |z|
1 + |z|2 (5.69)

and diverges otherwise. Moreover, given any σ > 1, the convergence is absolute and uni-
form for k and z satisfying the condition

|k| ≥ σ
|z|

1 + |z|2 . (5.70)

Since the function on the right-hand side of (5.69) achieves its maximum value of 1/2 at
|z| = 1, we learn that if |k| ≥ 1/2 the series on the right-hand side of (5.36) converges
uniformly on R2 to a continuous function vanishing at infinity.

Proceeding further, the infinite series on the right-hand side of (5.36) can be summed in
closed form [41] for those k and z for which it converges, yielding the explicit formula (1.12),
in which the square root and the arcsin are both given by principal branches. This explicit
expression for g = f − kz, which was originally defined as a function of W by a power series
convergent for |W| < 1, defines an analytic continuation from the unit disk in the W-plane
to the whole complex W-plane with the exception of two slits joining the points W = ±1
to infinity (we may choose the branch cuts to be the real intervals −∞ < W ≤ −1 and
1 ≤ W < +∞). Moreover, one can directly check that regardless of whether W is inside
or outside of the unit disk, the explicit expression for f (x, y; k) is an exact solution of the
equation (1.6) in the case S ≡ 0 when A(x, y) = (1 + x2 + y2)−1.

In this case, we can also solve explicitly for the scalar coefficient α0(x, y; k), which com-
pletes the construction of the leading term φ(0)(x, y; k) in the WKB expansion. By direct
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calculation using the definition of W given in (1.12),

∂W = −kW2 and z2∂W = kW2. (5.71)

Hence
∂ f =

k
2

(
1 + (1−W2)1/2

)
, (5.72)

and from the relevant eikonal equation ∂ f · ∂ f = 1
4 (1 + zz)−2 we get

z2∂ f =
k
2

(
1− (1−W2)1/2

)
. (5.73)

Writing (1.10) in the special case of S ≡ 0 (and hence w = 0) gives

A∂(∂ f · α0) + ∂ f · ∂(Aα0) = 0 (5.74)

as the equation to be solved by α0(x, y; k) under the condition α0(x, y; k) → 1 as |z| → ∞.
Since A = kW/z according to (1.12), and ∂ f and ∂ f are given by (5.72)–(5.73), (5.74) can be
written as

Wz2∂
((

1 + (1−W2)1/2
)

α0

)
+
(

1− (1−W2)1/2
)

∂(Wα0) = 0 (5.75)

where we have used k 6= 0. Now using (5.71) it is clear that there is a solution of the form
α0 = α0(W), i.e., that α0 depends on (x, y) only via W. Indeed, by the chain rule, the ansatz
α0 = α0(W) in (5.75) leads to the ordinary differential equation

W
d

dW

((
1 + (1−W2)1/2

)
α0(W)

)
−
(

1− (1−W2)1/2
) d

dW
(Wα0(W)) = 0 (5.76)

after canceling kW2. This can be rewritten in the equivalent form

d
dW

log
(

W(1−W2)1/2α0(W)2
)
= W−1(1−W2)−1/2

=
d

dW
log
(

W
1 + (1−W2)1/2

)
.

(5.77)

Integrating, exponentiating, and solving for α0 gives

α0(W) = C
(
(1−W2)1/2(1 + (1−W2)1/2)

)−1/2
(5.78)

where C is an integration constant. Since |z| → ∞ means W → 0, we need C =
√

2 to have
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α0 → 1 as |z| → ∞, which gives (1.13).
/ Remark: For this example, we can explain the gap between the general sufficient con-

dition for convergence, namely |k| ≥
√
‖A2‖W which works out to |k| ≥ 1 in this case,

and the actual condition |k| ≥ 1/2 obtained by direct analysis of the explicit terms in the
series. Indeed, it is easy to check that when fn is given by (5.67), the corresponding func-
tions un := k−1∂ fn satisfy the identity Bun = −z2un for n = 1, 2, 3, . . . . If this specialized
information is used in (5.39), the recurrence becomes

u1 = k−2A(x, y)2, un = z2
n−1

∑
`=1

u`un−`. (5.79)

Therefore, introducing wn := z2un, we get a corresponding recurrence for {wn}∞
n=1:

w1 = k−2z2A(x, y)2, wn =
n−1

∑
`=1

w`wn−`. (5.80)

This recurrence relation can be studied in exactly the same way as (5.39); one introduces vn

by the rescaling wn = ‖w1‖nvn (here we can use the L∞(R2) norm in place of the Wiener
norm if desired because we need only the Banach algebra property having dispensed with
the Beurling transform), and obtains the estimate (5.44). Hence the condition for convergence
of the series (5.45) now takes the form ‖w1‖ ≤ 1. Since by comparison with u1, w1 contains
the additional factor of z2, it is easy to check that whereas ‖u1‖W = ‖u1‖∞ ≤ 1 reads |k| ≥ 1,
the condition ‖w1‖∞ ≤ 1 reads |k| ≥ 1

2 . .
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Chapter 6

A Specialized Method for Radial
Potentials with S ≡ 0 and k = 0

Suppose S ≡ 0, and fix the spectral parameter to be k = 0. It is well known that
in this case the corresponding Zakharov-Shabat scattering problem that arises in the one-
dimensional setting with λ = 0 corresponding to k = 0, namely εψ′(x) = A(x)σ1ψ(x),
can be solved explicitly by introducing a new coordinate m satisfying m′(x) = A(x) > 0.
Indeed, this monotone change of independent variable reduces the problem to the constant-
coefficient system εψ′(m) = σ1ψ(m). Unfortunately, similar reasoning fails in the setting of
the two-dimensional Davey-Stewartson scattering problem (1.3).

In this section, we further assume that A(x, y) is a function with radial symmetry, i.e.,
depending only on |z|, and show how the use of polar coordinates can be used to reduce the
scattering problem to the study of a suitable ordinary differential equation. We then study
this equation in the semiclassical limit and obtain a formula for the reflection coefficient in
this special case.

We begin by writing the scattering problem (1.3) in polar coordinates (r, φ), where z =

x + iy = reiφ and z = re−iφ. In polar coordinates, the operators defined in (1.3) take the form

∂ =
e−iφ

2r

(
r

∂

∂r
− i

∂

∂φ

)
and ∂ =

eiφ

2r

(
r

∂

∂r
+ i

∂

∂φ

)
. (6.1)

Therefore, with S ≡ 0 and A = A(r) being a smooth function with A′(0) = 0, (1.3) becomes

ε
eiφ

r
(
rψ1r + iψ1φ

)
= A(r)ψ2

ε
e−iφ

r
(
rψ2r − iψ2φ

)
= A(r)ψ1.

(6.2)



82 A Specialized Method for Radial Potentials with S ≡ 0 and k = 0

It is then convenient to introduce new dependent variables by w1 := ψ1 and w2 = zψ2, so
that the system takes the form

εrw1r + iεw1φ = A(r)w2

εrw2r − iεw2φ = r2A(r)w1.
(6.3)

If k = 0, then from normalization condition to (1.4) and (1.5), we see that the solution we seek
has the property that w1 → 1 and w2 → 1

2 Rε
0(0) as r → ∞, thereby recovering the reflection

coefficient evaluated at the origin. Implicit is the assumption that wj are smooth functions
on the plane. We claim that in this situation, wj = wj(r) are purely radial functions, reducing
the problem to the study of the linear ordinary differential equations

εr
dw1

dr
= A(r)w2

εr
dw2

dr
= r2A(r)w1.

(6.4)

By the method of Frobenius, one can see that this system has a one-dimensional space of
solutions that are bounded with zero derivative at r = 0, which is a regular singular point.
Indeed, assuming that A(r) = A(0) + O(r2) as r ↓ 0, the system (6.4) can be written in the
form

d
dr

[
w1

w2

]
=

(
1
r

[
0 ε−1A(0)
0 0

]
+ O(1)

)[
w1

w2

]
, r ↓ 0 (6.5)

and hence the only indicial exponent for the origin is zero with non-diagonalizable coeffi-
cient matrix; therefore every solution is a linear combination of a solution analytic at r = 0
proportional there to the nullvector [1, 0]> and a second independent solution that diverges
logarithmically at the origin. We can attempt to find Rε

0(0) by normalizing an element of this
subspace of solutions regular at the origin so that w1 → 1 as r → ∞. Alternatively, we can
take any nonzero element of this subspace and obtain Rε

0(0) by the formula

Rε
0(0) = 2 lim

r→∞
w2(r)/w1(r). (6.6)

6.1 Riccati equation. Formal asymptotic analysis

The formula (6.6) in turn motivates us to study the Riccati equation for Q := w2/w1

implied by the coupled linear system (6.4) for wj(r):

ε
dQ
dr

=
A(r)

r
(
r2 −Q2) . (6.7)
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If (6.7) is solved subject to the initial condition Q(r) = O(r2) as r ↓ 0 (corresponding to the
regular subspace at the origin for (6.4)), then the reflection coefficient Rε

0(0) may be found
as Rε

0(0) = 2 limr→∞ Q(r) (using the fact that Q(r) is real-valued). Equivalently, we may
introduce X(r) := Q(r)/r, which satisfies

ε
dX
dr

= −A(r)X2 − ε

r
X + A(r)

= −A(r)[X− X+(r; ε)][X− X−(r; ε)], X(r) = O(r), r ↓ 0,
(6.8)

for

X±(r; ε) :=
1

2A(r)

[
−ε

r
±
√

ε2

r2 + 4A(r)2

]
, (6.9)

and from which one obtains Rε
0(0) by

Rε
0(0) = 2 lim

r→∞
rX(r). (6.10)

Note that, given the solution X(r; ε) of (6.8), the solution of the original system (6.2) with the
boundary conditions ψ1 → 1 and ψ2 = O(1/r) as r → ∞ is given explicitly by[

ψ1

ψ2

]
= α̃0

[
1

eiφX(r; ε)

]
e f /ε, where f = −

∫ +∞

r
A(r′)dr′ (6.11)

and
α̃0 = exp

(
1
ε

∫ +∞

r
(1− X(r′; ε))A(r′)dr′

)
. (6.12)

Suppose that A(r) is nonincreasing. The nullclines for (6.8) are given by X = X±(r; ε)

(cf., (6.9)). We have X+(r; ε) > 0 > X−(r; ε), and dX/dr > 0 for X−(r; ε) < X < X+(r; ε)

while dX/dr < 0 if either X > X+(r; ε) or X < X−(r; ε). The nullclines have the following
asymptotic behavior for small ε:

— If r � ε, then X+(r; ε) = A(0)r/ε + O((r/ε)3) while the lower nullcline satisfies
X−(r; ε) = −ε/(A(0)r) + O(r/ε).

— If ε� r and rA(r)� ε, then X±(r; ε) = ±1 + o(1).
— If ε� r and rA(r)� ε, then X+(r; ε) = [rA(r)/ε](1+ o(1)) while the lower nullcline

satisfies X−(r; ε) = −[ε/(rA(r))](1 + o(1)).

Since X = X(r; ε) tends to zero as r ↓ 0 for fixed ε, only the nullcline X+(r, ε) plays any
role for small r (given ε > 0 small). Moreover, since dX/dr is explicitly proportional to ε−1,
X(r; ε) will very rapidly approach a small neighborhood of the nullcline X = X+(r; ε) as r
increases; therefore for moderate values of r in the regime where r � ε but rA(r) � ε (the
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latter condition avoiding the “tail” of the amplitude function A(r)) we will have X(r; ε) ≈
X+(r; ε) ≈ 1 for small ε. On the other hand, when A(r) becomes small as r increases, then
(6.8) can be approximated by the linear equation

ε
dX
dr

= −ε

r
X with general solution X(r; ε) =

C(ε)
r

. (6.13)

This approximation is exact wherever A(r) ≡ 0. The constant C(ε) can be determined by
matching the approximate solution X(r; ε) ≈ C(ε)/r onto the approximation X(r; ε) ≈ 1
at an appropriate value of r, say r = rMatch. If A(r) has compact support, then we take
the breakpoint rMatch to be the positive support endpoint; otherwise we take the breakpoint
r = rMatch to be the root of the equation rA(r) = ε that is not small as ε ↓ 0. In the latter
case, rMatch → ∞ as ε ↓ 0 because A is nonincreasing and A(r) → 0 as r → ∞. Given
ε� 1 and the corresponding value of rMatch(ε) > 0, we then determine C = C(ε) by setting
C/rMatch = 1. See Figures 6.1–6.2 for further understanding of the solutions of the Riccati
equation (6.8) and their relation to the nullcline X = X+(r; ε) as ε decreases toward zero.
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Figure 6.1 – The direction field of the Riccati equation (6.8) and its relation to the nullcline
X+(r; ε) in the case of a Gaussian amplitude A(r) = e−r2

. For small ε, the solution X(r; ε)
departs from the nullcline X = X+(r; ε) near its “shoulder,” a feature that is increasingly
well-defined as ε→ 0 and is asymptotically located at r = rMatch(ε).

For the Gaussian example A(r) = e−r2
, the implications of the behavior of X(r; ε) can be

seen also in numerical solutions at k = 0 of the direct spectral problem (1.3)–(1.4) carried out
using the method described below in Section 7.3. See Figure 6.3.

Our formal approximation of X(r; ε) in the limit ε ↓ 0 is then as follows:

— For r = O(ε), X(r; ε) exhibits a rapid transition from the initial value X(0; ε) = 0 to
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Figure 6.2 – The same as Figure 6.1 except for the potential A(r) = χr≤1(r). As in Figure 6.1,
the (here, discontinuous) red curve is the nullcline X = X+(r; ε). In this case for r > 1 we
have X+(r; ε) ≡ 0 and X(r; ε) = C/r exactly.

0 1 2 3 4 5
r

0

0.2

0.4

0.6

0.8

1

1

0 1 2 3 4 5
r

0

0.2

0.4

0.6

0.8

1

1

0 1 2 3 4 5
r

0

0.2

0.4

0.6

0.8

1

1

0 1 2 3 4 5
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2

0 1 2 3 4 5
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2

0 1 2 3 4 5
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2

Figure 6.3 – Numerical solutions to the Dirac system (1.3) for the Gaussian potential A(r) =
e−r2

at k = 0 for the values ε = 10−1, 10−2, 10−3 from left to right. Upper row ψ1, lower row
|ψ2|.

X(r; ε) ≈ 1.
— X(r; ε) ≈ 1 for r � ε but r ≤ rMatch(ε).
— X(r; ε) ≈ rMatch(ε)/r for r > rMatch(ε).
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Recalling (6.10) to calculate the reflection coefficient at k = 0 gives

Rε
0(0) ≈ 2rMatch(ε), ε ↓ 0. (6.14)

/ Remark: Given this asymptotic description of X(r; ε), from the formula (6.11)–(6.12) we
can see that the solution of (6.2) for k = 0 is consistent with the approach based on the WKB
method, but only in the intermediate regime ε � r � rMatch(ε) where X(r; ε) ≈ 1. Note that
the exponent f satisfies the eikonal equation (1.6) in the form (5.50) appropriate for radial
potentials with S ≡ 0, and in particular the solution (5.51) with the lower sign is the one
selected. Indeed, it is easily checked that the vector [1, eiφX(r; ε)]> lies nearly in ker(M)

wherever X(r; ε) ≈ 1. It should also be possible to prove that α̃0 given by (6.12) is O(1)
despite the explicit appearance of ε in the denominator of the exponent. Indeed, except
perhaps in small intervals near r = 0 or near the “shoulder” or the nullcline X+(r; ε), we
will have (1 − X(r; ε))A(r) = O(ε) for r � ε away from the “shoulder” because either
X(r; ε) = 1 + O(ε) (for ε � r ≤ rMatch(ε)) or 0 < X(r; ε) < 1 and A(r) < ε/r (for r ≥
rMatch(ε)). Finally, (1− X(r; ε))A(r) = O(1) near r = 0, so one expects that with a bit more
work the integral in the exponent in (6.12) can be shown to be uniformly O(ε) for all r > 0.
This observation may help motivate the correct way to generalize the WKB formalism so that
it applies for |k| below the threshold where the eikonal function develops singularities. .

6.1.1 Examples

Before turning to a rigorous proof, let us apply (6.14) in some examples.

Example 1: characteristic function of a disk. Suppose that A is an arbitrary positive multi-
ple of the characteristic function of the disk of radius ρ. In this case rMatch = ρ, and therefore
Rε

0(0) ≈ 2ρ in the limit ε ↓ 0. Observe that this result is independent of the amplitude
of A(r). We prove that this result is accurate by an explicit calculation involving modified
Bessel functions in Section 6.3.

Example 2: Gaussian amplitude. Suppose that A(r) = A0e−r2
. Then rMatch(ε) satisfies

the equation ln(rMatch) + ln(A0) − r2
Match = − ln(ε−1), and so rMatch ∼

√
ln(ε−1) as ε ↓ 0,

and therefore also Rε
0(0) ≈ 2

√
ln(ε−1) in this limit. Again, the leading order asymptotic is

independent of the amplitude A0. We prove that this formula is accurate in the relative sense
in Section 6.2 below.
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6.2 Riccati equation. Rigorous analysis

Theorem 1.2.6 amounts to a more careful formulation of (6.14) under suitable conditions
on the amplitude function A(r).

Proof of Theorem 1.2.6. Given the graph X = ϕ(r) in the (r, X)-plane of an arbitrary function
ϕ(·), we may compare the slope of the vector field of the Riccati equation (6.8) evaluated at
a point on the graph with the slope of the graph itself. If

∆X′
∣∣

X=ϕ(r) :=
[

A(r)
ε

(1− ϕ(r)2)− 1
r

ϕ(r)
]
− ϕ′(r) (6.15)

is positive (negative) at a point P = (r, ϕ(r)), then the solution of (6.8) passing through P
enters the region above (below) the graph X = ϕ(r) as r increases. By choosing appropriate
functions ϕ(·) and calculating the sign of ∆X′ we will be able to obtain upper and lower
bounds on the unique solution X(r; ε) of (6.8) satisfying X(r; ε) → 0 as r ↓ 0 that are suf-
ficiently strong to establish the asymptotic behavior of the reflection coefficient Rε

0(0) given
by (6.10) up to a relative error term that vanishes with ε.

To get started, we need to first locate the desired solution X(r; ε) for small r > 0. Using
A(r) = A(0) + o(r) and X(r; ε)→ 0 as r ↓ 0 we see that X(r; ε) actually satisfies the stronger
condition X(r; ε) = A(0)r/(2ε) + o(r) as r ↓ 0 (the o(r) error term depends on ε).

Now we look for simple bounds on the solution X(r; ε). Consider firstly the quantity ∆X′

defined by (6.15) for the graph of the constant function X = ϕ1(r) := 1. Obviously,

∆X′
∣∣

X=ϕ1(r)
= −1/r < 0, ∀r > 0, (6.16)

so all solutions of (6.8) cross the horizontal line X = 1 in the downward direction as r in-
creases. (Equivalently, this horizontal line lies above the nullcline X = X+(r; ε) for all r > 0.)
Since for small r, the desired solution X(r; ε) certainly lies below this line, we obtain the
inequality X(r; ε) < 1 for all r > 0.

Next, observe that if ε < 1
2 A(0) we have the inequality X(r; ε) > r for sufficiently small

r > 0. Computing the quantity ∆X′ from (6.15) for the graph X = ϕ2(r) := r gives

∆X′
∣∣

X=ϕ2(r)
=

A(r)
ε

(1− r2)− 2. (6.17)

Clearly, ∆X′|X=ϕ2(r) > 0 holds for small r > 0 as a consequence of the inequality ε < 1
2 A(0),

however it is equally clear that for A(r) with exponential decay, ∆X′|X=ϕ2(r) < 0 if r is
sufficiently large given ε > 0. Let r0(ε) denote the smallest positive value of r for which
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∆X′|X=ϕ2(r) = 0. It is easy to see that r0(ε) = 1− εA(1)−1 + o(ε) as ε → 0. Therefore, since
X(r; ε) > r for small r > 0 and since ∆X′ for X = ϕ2(r) := r is positive for 0 < r < r0(ε), the
lower bound X(r; ε) > r persists for all r ∈ (0, r0(ε)). In particular at r = r0(ε) we learn that
X(r0(ε); ε) ≥ r0(ε) = 1− εA(1)−1 + o(ε). Combining this with the uniform upper bound
X(r; ε) < 1 puts the solution X(r; ε) in an O(ε) neighborhood of the nullcline X = X+(r; ε)

for r = r0(ε) ≈ 1.

Now we try to get a lower bound on a larger interval, the length of which grows as ε ↓ 0.
For any constant δ ∈ (0, 1), we consider the horizontal line X = ϕ3(r) := 1− δ and compute
∆X′ from (6.15) for this graph:

∆X′
∣∣

X=ϕ3(r)
=

A(r)
ε

(2δ− δ2)− 1− δ

r
. (6.18)

Since 2δ− δ2 = δ(1 + (1− δ)) > 0 and A(1) > 0 we have ∆X′|X=ϕ3(r) > 0 for r = r0(ε) and
ε/δ sufficiently small. Because rA(r) has a single maximum, the equation ∆X′|X=ϕ3(r) = 0
has two roots when both δ and ε/δ are small, obtained from

rA(r) =
ε

δ
· 1− δ

2− δ
. (6.19)

(It is easy to see that these two roots coincide with the intersection points between the hor-
izontal line X = ϕ3(r) := 1− δ and the graph of the nullcline X = X+(r; ε).) One of the
roots obviously satisfies r = O(ε/δ) and hence is less than r0(ε) ≈ 1. The other is large
compared to r0(ε) when ε/δ is small. Let us denote it by r1(ε, δ). Now, given the bounds on
the solution X(r; ε) established so far for r = r0(ε), the assumption that ε/δ is small implies
in particular that X(r0(ε); ε) > 1− δ, so since graphs of solutions of (6.8) cross the horizontal
line X = ϕ3(r) := 1− δ in the upward direction for r0(ε) ≤ r < r1(ε, δ), it follows that the
lower bound X(r; ε) ≥ 1− δ holds on the same interval.

To continue the lower bound for r > r1(ε, δ), we consider the graph X = ϕ4(r) :=
(1− δ)r1(ε, δ)/r and compute ∆X′ for this graph from (6.15):

∆X′
∣∣

X=ϕ4(r)
=

A(r)
ε

(
1− (1− δ)2r1(ε, δ)2

r2

)
. (6.20)

Obviously we have ∆X′|X=ϕ4(r) ≥ 0 for r ≥ r1(ε, δ) > (1− δ)r1(ε, δ), so solutions of (6.8)
cross the graph in the upwards direction provided r ≥ r1(ε, δ). Moreover, since X(r; ε) ≥ 1−
δ holds at r = r1(ε, δ) the graph of the solution X(r; ε) lies above the graph of X = ϕ4(r) :=
(1− δ)r1(ε, δ)/r at r = r1(ε, δ), and therefore the lower bound X(r; ε) ≥ (1− δ)r1(ε, δ)/r
holds for all r ≥ r1(ε, δ).
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So far, the only upper bound we have is X(r; ε) < 1; however we can obtain an upper
bound proportional to r−1 for large r by considering the graph of the function

X = ϕ5(r) :=
(

rMatch(ε) +
∫ r

rMatch(ε)

sA(s)
ε

ds
)

1
r

. (6.21)

Note that ϕ5(rmatch(ε)) = 1 and that

ϕ5(r) =
C
r
(1 + o(1)), r → ∞, C := rMatch(ε) +

∫ ∞

rMatch(ε)

sA(s)
ε

ds. (6.22)

The o(1) error term depends on ε but this dependence is irrelevant for the calculation of the
reflection coefficient. Now, we calculate ∆X′ from (6.15) for this graph:

∆X′
∣∣

X=ϕ5(r)
= −A(r)

ε
X(r)2 < 0, (6.23)

so trajectories of the Riccati equation (6.8) cross the graph of X = ϕ5(r) downwards. Since
X(rMatch(ε); ε) < 1 and since ϕ5(rMatch(ε)) = 1, it follows that the inequality X(r; ε) < ϕ5(r)
holds for all r ≥ rMatch(ε).

To sum up, we have shown that the unique solution X(r; ε) of the Riccati equation (6.8)
for which X(r; ε) → 0 as r ↓ 0 satisfies, if ε > 0, δ > 0, and ε/δ are all sufficiently small, the
inequalities:

r < X(r; ε) < 1, 0 < r ≤ r0(ε), (6.24)

1− δ < X(r; ε) < 1, r0(ε) ≤ r ≤ r1(ε, δ), (6.25)

(1− δ)r1(ε, δ)

r
< X(r; ε) < 1, r1(ε, δ) ≤ r ≤ rMatch(ε), (6.26)

and finally,

(1− δ)r1(ε, δ)

r
< X(r; ε) <

(
rMatch(ε) +

∫ r

rMatch(ε)

sA(s)
ε

ds
)

1
r

, r ≥ rMatch(ε). (6.27)

See Figure 6.4. Setting δ = δ(ε) := 1/ ln(ε−1), from (6.10) we then obtain the inequalities

Rε
0 := 2(1− δ(ε))r1(ε, δ(ε)) < Rε

0(0) < 2rMatch(ε) + 2
∫ ∞

rMatch(ε)

sA(s)
ε

ds =: Rε
0. (6.28)

It remains to prove that the upper and lower bounds Rε
0 and Rε

0 may both be written in the
form 2(b−1 ln(ε−1))1/p(1 + o(1)) in the limit ε ↓ 0.

First consider the upper bound Rε
0. The first term 2rMatch(ε) can be found from the loga-
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Figure 6.4 – The upper bounds (blue) and lower bounds (green) on the solution X(r; ε) in
the case A(r) = e−r2

for ε = 10−4 and δ = 1/ ln(ε−1).

rithm of the defining relation for rMatch(ε):

ln(rMatch(ε)) + ln(A(rMatch(ε))) = − ln(ε−1). (6.29)

Since Le−brp ≤ A(r) ≤ Ue−brp
implies that ln(L)− brp ≤ ln(A(r)) ≤ ln(U)− brp, it follows

that for large r, ln(A(r)) = −brp + O(1). Therefore,

ln(rMatch(ε))− brMatch(ε)
p + O(1) = − ln(ε−1), (6.30)

and it is clear that the dominant balance occurs between the terms−brMatch(ε)
p and− ln(ε)−1,

showing that rMatch(ε) = (b−1 ln(ε−1))1/p(1 + o(1)) as ε ↓ 0. We estimate the (positive) sec-
ond term in Rε

0 as follows:

∫ ∞

rMatch(ε)

sA(s)
ε

ds =
∫ ∞

rMatch(ε)

sA(s)
rMatch(ε)A(rMatch(ε))

ds

≤ U
L

∫ ∞

rMatch(ε)

se−bsp

rMatch(ε)e−brMatch(ε)p ds

=
U
L

rMatch(ε)
∫ ∞

1
te−brMatch(ε)

p(tp−1) dt.

(6.31)

It follows by dominated convergence that this upper bound is o(rMatch(ε)) in the limit rMatch(ε) ↑
∞, or equivalently, as ε ↓ 0. This proves that the upper bound satisfies Rε

0 = 2(b−1 ln(ε−1))1/p(1+
o(1)) as ε ↓ 0.

For the lower bound Rε
0, since δ(ε) = (ln(ε−1))−1 → 0 as ε ↓ 0, it suffices to prove that

r1(ε, δ(ε)) = (b−1 ln(ε−1))1/p(1 + o(1)) as ε ↓ 0. For this we return to the defining relation
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(6.19) for r1(ε, δ) and take a logarithm:

ln(r1(ε, δ(ε))) + ln(A(r1(ε, δ(ε))))

= ln(ln(ε−1))− ln(ε−1)− ln(2) + O((ln(ε−1))−1). (6.32)

Again using ln(A(r)) = −brp + O(1) as r ↑ ∞, this becomes

ln(r1(ε, δ(ε)))− br1(ε, δ(ε))p = ln(ln(ε−1))− ln(ε−1) + O(1). (6.33)

As in the asymptotic calculation of rMatch(ε), the dominant balance is between−br1(ε, δ(ε))p

and − ln(ε−1) and therefore r1(ε, δ(ε)) = (b−1 ln(ε−1))1/p(1 + o(1)) as ε ↓ 0 as desired.
QED

The Gaussian A(r) = e−r2
satisfies the hypotheses of Theorem 1.2.6 with L = U = 1,

b = 1, and p = 2, and we are therefore guaranteed the corresponding relatively accurate ap-
proximation Rε

0(0) = 2
√

ln(ε−1)(1 + o(1)) as ε ↓ 0. The upper and lower bounds Rε
0 and Rε

0

are compared with 2
√

ln(ε−1) and the numerical data for Rε
0(0) from Figure 1.3 in Figure 6.5.

It is worth noting that the decay of the relative error as ε ↓ 0 is extremely slow. Indeed, all
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Figure 6.5 – The upper bound Rε
0 and lower bound Rε

0 for the Gaussian potential A(r) =

e−r2
, compared with the approximation 2

√
ln(ε−1) and the numerical data for Rε

0(0) shown
in Figure 1.3 (the points are colored to correspond with the curves in that figure). The left-
hand panel illustrates absolute accuracy, while the right-hand panel illustrates relative ac-
curacy.

of the numerical data that we have been able to reliably compute corresponds only to the
colored points in the lower right-hand corner of the plot in the left-hand panel of Figure 6.5;
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although these points are apparently far from the asymptotic regime of convergence as ε ↓ 0,
it is also clear that to the eye they lie nearly on top of the theoretically-predicted curve.

6.3 Exact direct scattering for k = 0 with S ≡ 0 and A being the
characteristic function of a disk.

As it is formulated, Theorem 1.2.6 does not apply to compactly-supported potentials.
However, the approximate formula (6.14) for Rε

0(0) can be confirmed by an exact calculation
in the case that A(x, y) is proportional to the characteristic function of the disk of radius ρ:
A(r) = A0χr<ρ(r) . Referring to (6.4), we have

εr
dw1

dr
= A0w2 and εr

dw2

dr
= A0r2w1, 0 < r < ρ (6.34)

while wj(r) = wj(ρ) for r ≥ ρ and j = 1, 2. Eliminating w2 from (6.34) gives

(
r

d
dr

)2

w1 =

(
A0r

ε

)2

w1, 0 < r < ρ. (6.35)

With A0r/ε = Z, this equation becomes(
Z

d
dZ

)2

w1 = Z2w1, 0 < Z <
A0ρ

ε
. (6.36)

Thus w1 is a solution of the modified Bessel equation of order ν = 0 [11, Chapter 10]. The
general solution therefore is w1 = c1 I0(Z) + c2K0(Z). In order that w1 be bounded at the
origin r = 0 it is necessary to choose c2 = 0 and then we may (without loss of generality,
since only the ratio w2/w1 is important for the calculation of Rε

0(0)) take c1 = 1. Thus we
have w1(r) = I0(A0r/ε), and then from the first equation in (6.34) we get

w1(r) = I0(A0r/ε) and w2(r) =
εr
A0

dw1

dr
= rI′0(A0r/ε), 0 ≤ r ≤ ρ. (6.37)

Then since wj(r) is independent of r for r > ρ, we obtain from (6.6) the exact formula for the
reflection coefficient at k = 0:

Rε
0(0) = 2

w2(ρ)

w1(ρ)
= 2ρ

I′0(A0ρ/ε)

I0(A0ρ/ε)
. (6.38)
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According to [11, eqns. 10.40.1 and 10.40.3] (noting that in the notation of that reference
a0(0) = b0(0) = 1), we have I′0(Z)/I0(Z)→ 1 as Z → +∞, so it follows that

Rε
0(0) = 2ρ + o(1), ε ↓ 0, (6.39)

which agrees with the formal asymptotic result (6.14) being as rMatch(ε) = ρ by definition in
the compact support case.
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Chapter 7

Numerical approaches

In this chapter we discuss various numerical approaches to the problems appearing in
the semiclassical limit of the defocusing DS-II equation: the solution of the eikonal prob-
lem (1.6)–(1.7), the computation of the leading-order normalization function α0 appearing in
(4.13), and the solution of the full ε-dependent direct scattering problem (1.3)–(1.4). For the
latter we just give a brief review of the approach for Schwartz class potentials in [22].

/ Remark: In this chapter and the next the notation for Fourier transforms differs slightly
from that defined in (5.7). Namely, here the Fourier and inverse Fourier transform operators
denoted below as F and F−1 respectively are scaled by positive constants to be unitary on
L2(R2). .

For the ease of representation we concentrate on the case S ≡ 0. Note, however, that
it is straightforward to include a phase function S bounded at infinity in the approaches
discussed below. With S ≡ 0, the relation g = f − kz (cf., (5.1)) defines a function vanishing
at |z| = ∞, which is numerically convenient. Using polar coordinates, we thus obtain from
(1.6) with S ≡ 0 the following partial differential equation for g:

g2
r +

1
r2 g2

φ + 2keiφ
(

gr +
i
r

gφ

)
= A2. (7.1)

This equation will be solved in the whole complex plane with a Fourier spectral method
in φ and a multidomain spectral method in r. The ensuing system of nonlinear equations
will be solved iteratively both with a fixed point method and a Newton iteration. The case
of a radially symmetric potential A is solved in addition with a series approach similar to
Section 5.1.2.

This chapter is organized as follows: in Section 7.1 we collect some facts about the spec-
tral methods to be used in the following. In Section 7.2 we present two iterative numerical
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approaches for the eikonal equation and an additional numerical approach based on Fourier
series and adapted to radial potentials A = A(r), and test them against the exact solution
obtained in Section 5.1.2 for the case of the Lorentzian profile A(x, y) = (1 + x2 + y2)−1. In
Section 7.2.1, a numerical approach for computing the leading-order normalization function
α0 for a given f is presented and again checked against the corresponding exact solution
for the Lorentzian profile. In Section 7.3 we briefly summarize the approach of [22] for the
problem (1.3)–(1.4) with a Schwartz class potential.

7.1 Spectral methods

To compute the derivatives in (7.1), we use two different spectral techniques since spec-
tral methods are known for their excellent approximation properties for smooth functions.
In the situation that the eikonal equation is uniformly globally elliptic and the solution is
regular, this should lead to a very efficient approach.

Since g(r, φ) is periodic in φ, a Fourier spectral method is natural in this context. We write
g(r, φ) = ∑n∈Z an(r)einφ and approximate the Fourier series via a discrete Fourier transform,
see for instance [39] and references therein, i.e., for even N

g(r, φ) ≈
N/2

∑
n=−N/2+1

an(r)einφ, gφ(r, φ) ≈
N/2

∑
n=−N/2+1

inan(r)einφ; (7.2)

and hence the derivative of g(r, φ) with respect to φ is approximated via the derivative of the
sum approximating g(r, φ). Note that the Nyquist mode aN/2(r) has to be put equal to zero in
the approximation of gφ, see [39]. The discrete Fourier transform is computed efficiently via a
Fast Fourier Transform (FFT). The numerical error in approximating the Fourier series with
a truncated sum is of the order of the first neglected Fourier coefficient. Thus it decreases
exponentially with N for analytic functions, indicating the spectral convergence of the method.

In order to obtain a spectral approach also in r, we consider two domains, I: r ∈ [0, 1]
and II: s = 1/r ∈ [0, 1] similar to [8] and references therein. In the coordinate s equation (7.1)
reads

s4g2
s + s2g2

φ + 2keiφ (−s2gs + isgφ

)
= A2. (7.3)

It is assumed that A vanishes as s → 0 at least as fast as s. Thus we can solve (7.3) after
division by s2. Note that equation (7.3) is singular for s = 0 whereas equation (7.1) is singular
for r = 0.

In both domains I and II we approximate the functions an(r) (respectively an(s); in an
abuse of notation, we use the same symbol in both cases), n = −N/2+ 1, . . . , N/2 via a sum
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of Chebychev polynomials. We only outline the approach for domain I, it is completely anal-
ogous for domain II. The idea of a Chebychev collocation method is to introduce the collocation
points lj = cos(π j/Nc), j = 0, 1, . . . , Nc and to approximate a function F(l), l ∈ [−1, 1] via
the sum

F(l) ≈
Nc

∑
m=0

bmTm(l), (7.4)

where Tm(l) = cos(m arccos(l)) are the Chebychev polynomials [11, §18.3]. The spectral
coefficients bm, m = 0, . . . , Nc are determined by the relations following from imposing (7.4)
as an equality at the collocation points,

F(lj) =
Nc

∑
m=0

bmTm(lj) j = 0, . . . , Nc. (7.5)

They can be determined conveniently via a Fast Cosine Transform (FCT) which can be com-
puted via the FFT, see [39]. The numerical error in approximating a function via a truncated
Chebychev series is as in the case of discrete Fourier series: it decreases exponentially with
Nc for analytic functions making this again a spectral method.

It is well known that the derivative of a Chebychev polynomial can be expressed itself in
terms of Chebychev polynomials. The basis for this is the identity

T′m+1(l)
m + 1

−
T′m−1(l)
m− 1

= 2Tm(l), m = 2, 3, . . . (7.6)

and T′1(l) = T0(l), T′0(l) = 0. The action of a derivative on a Chebychev sum (7.4) can thus
be expressed in terms of the action of a differentiation matrix D on the vector of spectral
coefficients bm, m = 0, . . . , Nc.

In a similar way the multiplication of a function with l can be expressed in terms of the
action of a matrix on the vector of spectral coefficients. The approach, see for instance [8, 19],
is based on the well known recurrence formula for Chebyshev polynomials,

Tm+1(l) + Tm−1(l) = 2lTm(l), n = 1, 2, . . . (7.7)

This identity allows multiplication and division in coefficient space by l ± 1. We define for
given Chebyshev coefficients bm coefficients b̃m via ∑∞

m=0 b̃mTm(l) := ∑∞
m=0(l ± 1)bmTm(l).

We put r = (1 + l)/2 in domain I. The coefficients an(r), n = −N/2 + 1, . . . , N/2 are
thus approximated via the sum an ≈ ∑Nc

m=0 anmTm(l). The action of the derivative with re-
spect to r is therefore approximated by the action of a matrix D following from (7.6) on the
spectral coefficients, and similarly the action of division by r becomes the action of a matrix
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R following from (7.7) on the coefficients. Thus we approximate the derivatives via

gr ±
i
r

gφ ≈
N/2

∑
n=−N/2+1

Nc

∑
m=0

(
Nc

∑
j=0

(Dmj ∓ nRmj)anj

)
. (7.8)

The same technique is used in domain II with s = (1 + l)/2. The solutions obtained
in domain I and II have to be matched for r = s = 1 to be continuous. As in [8], this is
done with Lanczos’ tau method [25]: one of the equations for each n following from using
the discretization (7.8) in (7.1) is replaced by the condition that an(r = 1) = an(s = 1),
n = −N/2 + 1, . . . , N/2. More concretely we replace for n < 0 the equations corresponding
to m = Nc in domain I, and for n > 0 the equations corresponding to m = Nc in domain II.
In addition the Nyquist mode is put equal to zero.

7.2 Numerical approaches for the eikonal problem

We now discuss two different numerical approaches for the eikonal problem (1.6)–(1.7),
each of which produces an approximation to the function g = f − kz that solves (7.1) and
satisfies g→ 0 as |z| → ∞.

Iterative methods for the discretized eikonal equation

The spectral discretization described in Section 7.1 leads to an approximation of (7.1)
in terms of a (2Nc + 2)N-dimensional nonlinear system of equations. This system will be
solved iteratively.

A first approach is based on a fixed-point iteration. We write for |k| > 1/2 the system
corresponding to (7.1) in the form

Nc

∑
j=0

(Dmj ∓ nRmj)anj = G({anm}), (7.9)

where

G({anm}) :=
1
2k

F

(
A2 −

N/2

∑
n=−N/2+1

Nc

∑
m=0

(
Nc

∑
j=0

(Dmj + nRmj)anj

)
×

N/2

∑
n=−N/2+1

Nc

∑
m=0

(
Nc

∑
j=0

(Dmj − nRmj)anj

))
,

(7.10)

where F denotes the combined action of the FFT and the FCT on the angular and radial
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variables respectively. Since both FFT and FCT are fast, it is convenient when possible to
switch between physical space and the space of spectral coefficients in order to compute
products instead of convolutions in coefficient space.

We first solve (7.9) by expressing it in the form of a fixed-point iteration: ∑Nc
j=0(Dmj −

nRmj)aK+1
nj = G({aK

nm}). Here we choose as the initial iterate the solution of the ∂-problem

∑Nc
j=0(Dmj ∓ nRmj)a0

nj = F[e−iφ A2/(2k)]. Numerical resolution in each domain is controlled
via the decrease of the spectral coefficients with N and Nc. As discussed for the examples
below, numerical resolution is ideal if the coefficients decrease to the order of machine pre-
cision both in the Fourier and Chebyshev dependence. If |k| is large enough, the fixed-point
iteration converges linearly, i.e., ‖aK+1

nm − aK
nm‖∞ = O(K−1), as might be expected.

Alternatively we can use a Newton iteration. To this end we write the equation following
from (7.1) after the spectral discretization described in Section 7.1 in the form F({anm}) = 0
and solve it with a standard Newton iteration:

aK+1
nm = aK

nm − Jac(F({aK
nm}))−1F({aK

nm}); (7.11)

here the tau method is applied in the inversion of the Jacobian, the action of which is com-
puted as a convolution in the space of coefficients. Using again the solution of the ∂-problem

∑Nc
j=0(Dmj − nRmj)a0

nj = F[e−iφ A2/(2k)] for |k| > 1/2 as the initial iterate, we observe the ex-
pected quadratic convergence typical for Newton’s method, i.e., ‖aK+1

nm − aK
nm‖∞ = O(K−2).

The disadvantage of the approach is that the Jacobian is a (2Nc + 2)N × (2Nc + 2)N matrix,
but the quadratic convergence implies that the iteration takes roughly the same amount of
time as the fixed-point iteration to reach a residual of 10−10 which is generally where itera-
tions are stopped.

A Fourier series method for the radially symmetric case

In the radially symmetric case A = A(r), we can proceed as in Section 5.1.2 and solve for
a series in eiφ: writing 1

g(r, φ) =
∞

∑
n=0

cn(r)
(2k)2n+1 e−i(2n+1)φ, (7.12)

where cn = cn(r), we find from (7.1) that

c′0 +
1
r

c0 = A(r)2, (7.13)

1. The fact that only negative odd harmonics appear in (7.12) is a consequence of the form of the coefficients
fn in the series approach for radial potentials with S(x, y) ≡ 0 described in Section 5.1.2. Comparing with (5.36)
for δ = 1

4 and (5.56) we see that in the notation of Section 5.1.2, cn(r) = Gn+1(r2)/[2(2n + 1)r2n+1].
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and for n > 0,

c′n +
2n + 1

r
cn =

n−1

∑
j=0

(
1− 2j + 1

r

)(
1 +

2(n− j− 1) + 1
r

)
cjcn−j−1, (7.14)

where the prime denotes differentiation with respect to r, and it is required that cn(r) → 0
as r → ∞ for all n ≥ 0. Equations (7.13) and (7.14) are solved again with the Chebychev
collocation method described above. As noted in Section 5.1.2, the series (7.12) is a power
series in odd negative powers of k and hence for given (x, y) ∈ R2 will converge if |k| is large
enough. For smaller |k|, it can only converge if the cn decrease rapidly enough as n → ∞.
In applications only convergent cases are interesting where the series can be effectively trun-
cated for some n = Nφ. In this case a coupled system of Nφ ordinary differential equations of
the form (7.13) and (7.14) has to be solved with zero initial conditions at r = ∞. On the other
hand, the numerical computation of the L∞(R+)-norms of cn(·) and their analysis for increasing n
allows one to make a good prediction of the critical radius |k| above which one has a global smooth
solution of the eikonal problem and below which the latter solution necessarily develops singularities
analogous to turning points in the one-dimensional problem.

Comparison with the exact solution for the Lorentzian profile

Note that the numerical approaches for the eikonal equation presented above are essen-
tially independent and can be thus used as mutual tests. To illustrate how the codes work
in practice and to establish which accuracies can be expected, we test them for the example
of the exact solution (1.12) for a Lorentzian amplitude A(x, y) = (1 + x2 + y2)−1. To com-
pare with the numerics, we get g(x, y; k) from (1.12) simply by omitting the term kz on the
right-hand side. Since W is invariant under z 7→ 1/z, the exact solution g is symmetric with
respect to reflection through the unit circle in the z-plane. As described in Section 5.1.2, g is
smooth provided |k| > 1/2. We first plot the exact solution for k = 1 in Figure 7.1.

For the iterative solution of this problem, we use Nc = 32 Chebychev polynomials and
N = 50 Fourier modes. It can be seen in the left-hand panel of Figure 7.2 that the coefficients
anm decrease exponentially in (n, m) and that they reach machine precision well before the
boundary of the spectral domain. This indicates that the solution is numerically resolved.
The fixed-point iteration is stopped for this case when the difference between consecutive
iterates is less than a given threshold, ‖aK+1

nm − aK
nm‖∞ < 10−10. This is achieved in this

example in 10 iterations of the fixed-point method. The difference between the numerical
result and the exact solution is shown in the right-hand panel of Figure 7.2. It can be seen
that the numerical error is largest near the origin and that it is of the order of 10−11. Note that
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Figure 7.1 – The exact solution g(x, y; k) = f (x, y; k) − kz for the Lorentzian potential
A(x, y) = (1 + x2 + y2)−1 and S(x, y) ≡ 0 for k = 1. Left: Re(g(x, y; 1)). Right:
Im(g(x, y; 1)). By exact reflection symmetry through the unit circle, we only show it for
r ≤ 1.

this error is not affected if the iteration is stopped at a smaller threshold; it is due to the large
condition numbers of the differentiation matrices which are for Chebychev differentiation of
the order N2

c , see e.g., the discussion in [39]. Thus the maximally achievable accuracy is of the
order 10−11 with this approach for this example. If the problem required a higher numerical
resolution (a larger Nc), the maximally achievable accuracy would be slightly lower. This
problem can be addressed by introducing more than two domains in the r variable, but this
will not be needed for the examples studied here.

Note that the fixed-point code finds the symmetry of the solution with respect to r → 1/r
with the same accuracy, i.e., the same difference between numerical and exact solution will
be found for r > 1. Therefore we do not show the solution for r > 1 in this case though it is
obtained with a precision of the order of 10−11 in the whole complex plane.

The Newton iteration converges in this case after 3 iterations to the same precision. In
practice it takes longer than the fixed-point iteration since the computation of the convo-
lutions and the inversion of the Jacobian are computationally expensive. Krylov subspace
techniques might be helpful in this context, but have not been explored so far.

As the Lorentzian A(x, y) = (1 + x2 + y2)−1 is radially symmetric, the numerical series
approach described in Section 7.2 also applies, and we use the same discretization resolution
parameters as in the iterative approaches, namely Nc = 32 and N = 50 (recall that only odd
powers of e−iφ appear in this approach). The difference between numerical and exact solu-
tion in this case is of the order of 10−14, mainly near the origin as can be seen in the left-hand
panel of Figure 7.3. The reason for a smaller error in this case is that only ordinary differential
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Figure 7.2 – Chebychev and Fourier coefficients of the fixed-point approximation of the so-
lution in Figure 7.1 plotted over the (n, m)-grid on the left, and the difference of the numer-
ical solution and the exact solution on the right.

equations have to be solved as the effect of the Fourier discretization of φ is essentially de-
coupled. Since there is no iteration, this method is also the fastest of the three discussed here.
The L∞ norm of the functions cn decreases as n−5/2 as expected by the formulae (5.67) and
(5.68) (also noting that |z|/(1 + |z|2) ≤ 1

2 ). Note that the finite precision employed delimits
the number of coefficients cn which can be used in practice.
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Figure 7.3 – Left: the difference between the exact solution g(x, y; k) for the case of the
Lorentzian amplitude A(x, y) = (1 + x2 + y2)−1 with S(x, y) ≡ 0 and the numerical so-
lution constructed with the series approach described in Section 7.2 for k = 1. Right: the L∞

norm of the coefficients cn(·) in a log-log plot in blue (for reference the red line has slope
−5/2).

The series approach also makes clear which problems are to be expected for smaller k.
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As k decreases toward the critical value of 1/2, more and more terms in the series (7.12)
will be needed to obtain the same accuracy, and for even smaller values of k the series fails
to converge (the continuation of the exact solution, however, will be bounded with jump
discontinuities along some branch cuts as shown in Figure 1.2). For k = 0.6, we thus need
a considerably higher resolution in φ as can be seen in Figure 7.4 where we use Nc = 40
and N = 140. The decrease of the Fourier modes is visibly much slower than before. The
fixed-point iteration converges after 22 iterations, and the difference to the exact solution is
of the order of 10−10 (this time it is largest near the rim of the disk). The Newton iteration
converges in just 4 iterations, but becomes too slow at these parameters in comparison to the
fixed-point iteration. Using the same parameters for the series approach based on (7.12), we
get as before a difference of the order of 10−14 between the numerical and exact solutions.
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Figure 7.4 – Left: Re(g(x, y; k)) at k = 0.6 for the case of the exact solution corresponding to
the Lorentzian amplitude A(x, y) = (1 + x2 + y2)−1 and S(x, y) ≡ 0. Right: the correspond-
ing numerically-computed Fourier and Chebychev coefficients plotted over the (n, m)-grid.

/ Remark: Since the equations (7.10) and (7.11) are nonlinear, aliasing errors, see e.g., [39],
can play a role in this context due to the use of truncated series in the computation of prod-
ucts. To address this we use a filtering in coefficient space: if the iteration is stopped at a
given level tol (typically 10−10), all spectral coefficients with |anm < tol| are put equal to
zero. .

Summing up, for radially symmetric potentials A, the series approach described in Sec-
tion 7.2 is the most efficient of the ones presented here. If sufficient numerical resolution
is provided, which can be controlled via the decrease of the cn(r) in n and of their Cheby-
chev coefficients, an accuracy of the order of 10−14 can be reached. We note that for poten-
tials without radial symmetry, the series method is inapplicable but the fixed-point iteration
method remains as an efficient option.
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7.2.1 Numerical computation of the leading-order normalization function α0

Once the eikonal problem is solved for f (x, y; k), the corresponding function α0 has to be
determined in order to complete the construction of the leading term in the WKB expansion
of the solution of the direct scattering problem. In the case S ≡ 0, α0 is the solution of the
linear equation (5.74) that satisfies α0 → 1 as |z| → ∞. In polar coordinates, this equation
reads

2
(
(e−iφgr + k)α0r +

1
r

(
e−iφ gφ

r
+ ik

)
α0φ

)
+

[(
grr +

1
r

gr +
1
r2 gφφ

)
+

(
gr +

i
r

gφ

)(
(ln A)r −

i
r
(ln A)φ

)]
e−iφα0 = 0.

(7.15)

This equation is treated numerically in a similar way as was the eikonal problem in Sec-
tion 7.2 which allows the use of the same numerical grid. The derivatives of both the poten-
tial A and the function g are computed as described in Section 7.1 with spectral methods in
the two radial domains that meet at the unit circle.

/ Remark: The derivatives of the solution f in (7.15) contain divisions by r. As can
be checked for the exact solution (1.12) in the case of the Lorentzian potential A the terms
divided by r appearing in the action of the Laplacian on f do not all vanish for r = 0. This
implies that analytically unbounded terms cancel which is numerically challenging even for
a spectral method to resolve. Thus a loss in accuracy near r = 0 is to be expected in the
computation of α0 via (7.15). .

The numerical solution of (7.15) with α0 → 1 as |z| → ∞ in the case A(x, y) = 1/(1 +

x2 + y2) and S ≡ 0 is shown for r < 1 in the left-hand panel of Figure 7.5 (note that the
corresponding exact solution (1.13) is symmetric under the reflection mapping r 7→ 1/r). The
right-hand panel of the same figure shows a plot of the corresponding spectral coefficients.
It can be seen that the solution is well resolved for Nr = Nφ = 64. The divisions by r in the
expressions in (7.15) lead, however, to a saturation level for the coefficients of the order of
10−10. Loosely speaking this is the level of the numerical error.

The expected accuracy is thus of the order of 10−10, and that this is indeed the case can be
seen in Figure 7.6 where the difference between the numerical and the exact solution (1.13)
is shown for r < 1 on the left and for r > 1 on the right. It appears that the largest errors
occur for r = 0. For other values of the radius, the numerical error is of the order 10−11. This
shows that the solution of (7.15) can be obtained with high accuracy on the whole complex
plane.
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7.3 A spectral method for the ε-dependent direct scattering prob-
lem for Schwartz class potentials

A spectral approach to solve the ∂̄-problem for potentials in the Schwartz class was devel-
oped by Klein and McLaughlin in [22]. We briefly summarize the approach here; the reader
is referred to [22] for details.
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The idea is to introduce the functions

m±(z; k) = e−kz/ε
(

ψ1(z; k)± ψ2(z; k)
)
− 1, (7.16)

satisfying the boundary conditions limz→∞ m±(z; k) = 0. In these variables, the system (1.3)
becomes diagonal and takes the form

∂m± = ± q
2ε

e(kz−kz)/ε · (m± + 1). (7.17)

We write both of these equations in the common form

∂m =
Q
2ε

e(kz−kz)/ε · (m + 1) (7.18)

where m = m± and Q = ±q. Since under the Fourier transform F (cf., (5.7), here scaled to
be L2(R2)-unitary) we have F{∂m} = 1

2 i(ξx + iξy)F{m} = 1
2 iξF{m} for ξ = ξx + iξy the

dual Fourier variable to z = x + iy, in the Fourier domain the system (7.18) becomes

S(ξ) = −iF
{

Q
ε

e(kz−kz)/ε · F−1

{
1
ξ

S(ξ)
}}
− iF

{
Q
ε

e(kz−kz)/ε

}
(7.19)

where S := ξF{m} = −2iF{∂m}.

In the numerical approach [22] the Fourier transforms in (7.19) are approximated by dis-
crete Fourier transforms computed by a two-dimensional FFT. The integrand in (7.19) is reg-
ularized in the form

F−1
{

1
ξ

S(ξ)
}

= F−1
{

1
ξ
(S(ξ)− G(ξ))

}
+F−1

{
1
ξ

G(ξ)

}
, (7.20)

where G(ξ) is chosen such that (S(ξ)−G(ξ))/ξ is regular to machine precision (as indicated
by the fact that the Fourier coefficients decrease exponentially to the order of the roundoff
error), and also such that F−1{G(ξ)/ξ} can be computed explicitly. A useful choice for G is

G(ξ) = e−|ξ|
2

M

∑
n=0

∂
n
ξ S(0)

n!
ξ

n
, ∂ξ :=

1
2

(
∂

∂ξx
+ i

∂

∂ξy

)
, (7.21)

since it cancels the most offending terms in S near the origin, while F−1{G(ξ)/ξ} can be
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calculated with the help of the identity

F−1

{
ξ

n

ξ
e−|ξ|

2

}
= i(2i)n n!

zn+1

[
1− e−|z|

2/4
n

∑
k=0

1
k!

(
|z|2
4

)k]
. (7.22)

The factor e(kz−kz)/ε appearing in (7.19) leads to a shift in Fourier space of the Fourier
transform of a function multiplied by it. Indeed, if we introduce the shift operator Sk/ε

whose action on a function f of ξ is given by Sk/ε f (ξ) := f (ξ + 2ik/ε), then (7.19) can be
recast in the form

S(ξ) = Sk/ε ◦ K0S(ξ) + Sk/εF(ξ), (7.23)

where the operator K0 and forcing function F are independent of k:

K0S(ξ) := −iF
{

Q
ε
· F−1

{
1
ξ

S(ξ)
}}

and F(ξ) := −iF
{

Q
ε

}
. (7.24)

As discussed in detail in [22], for larger values of |k|/ε the effect of the shift is that the
benefit of the regularization procedure (7.20) is diminished because it is effectively removing
a singularity that is not present at all since the shifted transform is large near the boundary
of the (spectral) computational domain but vanishes to machine precision near the origin
ξ = 0.

To address this problem, the equation (7.23) may be replaced by a system of equations
for two functions, f and h:

h = K0 f + F

f = Sk/ε ◦ K0 ◦ Sk/εh.
(7.25)

It is a direct matter to check that if ( f , h) solves (7.25), then S = f + Sk/εh solves (7.23). How-
ever, since it turns out that for large |k|/ε both functions f and h are small near the boundary
of the spectral computational domain, the system (7.25) is better suited to regularization via
(7.20) than is (7.23) itself. Moreover, to recover the reflection coefficient, the function f is not
needed, and it can therefore be explicitly eliminated from the first equation of (7.25) using
the second equation, leading to a closed equation for a single function h. See [22, Section 5.2]
for details.

Numerically this integral equation is solved by standard discretization amenable to the
two-dimensional FFT. The resulting system of algebraic equations is not complex linear in
h due to the complex conjugation present in the operator K0, but rather real linear in its
real and imaginary parts. This linear system is solved with GMRES [35], a Krylov subspace
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approach that is especially useful in our setting because it avoids the necessity of storage of
the coefficient matrix. As discussed in [22], the numerical error in the solution is of the order
of the Fourier coefficients of the largest values of ξ carried in the computation.

Recall that S = −2iF{∂m}, so that once S is found, ∂m is available via the (spectrally-
accurate) FFT. As discussed in [22], knowledge of ∂m± is sufficient to compute the reflection
coefficient. In order to obtain m±, as will be needed to compare numerical solutions with
the WKB approximations introduced in Section 8.2, we invert ∂ in the Fourier domain for
S = f + Sk/εh via division by ξ and using again the regularization procedure (7.20) with a
shift in the Fourier domain for the second term in the expression for S for k 6= 0. It is impor-
tant to realize that the quantities m± decrease only as 1/|z| for z→ ∞ and are thus not them-
selves suitable for a Fourier spectral approach (the periodically continued functions would
not be differentiable at the computational boundary), but that the function (S(ξ)− G(ξ))/ξ

is in the Schwartz class. For the latter term, Fourier spectral methods on a sufficiently large
computational domain are very efficient and show spectral convergence, which is controlled
as always by the decay of the modulus of the Fourier coefficients at the boundaries of the
computational domain in Fourier space.

As an example of the result of a computation using this numerical approach, we show
the solutions to the Dirac system (1.3) obtained with a Gaussian potential A(x, y) = e−(x2+y2)

and S(x, y) ≡ 0 for k = 0 and ε = 1 in Figure 7.7. The function ψ1 has minimal modulus
at the origin and tends to 1 at infinity, whereas the function ψ2 vanishes at the origin and
decreases slowly to 0 as z→ ∞.

Figure 7.7 – Numerical solution to the Dirac system (1.3)–(1.4) with a Gaussian potential for
k = 0 and ε = 1. Left: modulus of ψ1. Right: modulus of ψ2.



Chapter 8

Numerical examples

In this chapter we test the conjectures formulated in the previous chapters for several ex-
amples with and without radial symmetry. We first address the case of a Gaussian potential
for various values of ε and compare the solution to the Dirac system (1.3) for sufficiently
large k to the leading order semiclassical solution built from the solution to the eikonal prob-
lem. A similar study is presented for a non-radially symmetric potential in the Schwartz
class.

8.1 Gaussian potential

As a first computational example outside the realm of potentials A(x, y) for which the
eikonal problem (1.6)–(1.7) has a known solution, we consider here the Gaussian

A(x, y) = A(r) = e−r2
(8.1)

as a canonical example of a smooth, rapidly decaying, and radially-symmetric potential.
Since the reflection coefficient is a function of |k| only for radial potentials such as (8.1), we
will here restrict attention to real positive k.

Firstly, we numerically solve the eikonal problem for this potential using the series ap-
proach of Section 7.2 with discretization parameter Nr = 40 and 200 terms in the series
(7.12). The coefficients {cn(r)} as computed via (7.12) have L∞(R+) norms exhibiting alge-
braic decay as n → ∞ as suggested by Figure 8.1, where a log-log plot of ‖cn(·)‖∞ is shown
on the left. The essentially linear behavior of the plot for larger values of n indicates alge-
braic (predominantly power-law) decay as n → ∞. We can fit the norms {‖cn(·)‖∞} with a
least squares method to ln ‖cn(·)‖∞ ∼ −αn− β ln n− γ and find α = 10−4, β = 1.0951 and
γ = 1.1122 for values of n > 20 (the results do not change much if the fitting is done for
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n > 50). The results of the fitting can be seen in the right-hand panel of Figure 8.1 in the
form of the quantity ∆ := ln ‖cn(·)‖∞ − (−αn− β ln n− γ). The fact that α is essentially zero
while β is finite is strong numerical evidence that the series (7.12) converges for |k| > 1

2 and
diverges for |k| < 1

2 . Of course this threshold value of |k| = 1
2 is the known exact value for

the Lorentzian potential, but for the Gaussian A(x, y) = e−(x2+y2) the best analytical estimate
we have is, as explained in Section 5.1.2, that the ∂ derivative of (7.12) converges in W(R2)

if |k| ≥ 1. In general, there is obviously nothing special about the value |k| = 1
2 ; indeed

if {cn(r)}∞
n=0 are the coefficients for the potential A(r), then from (7.13)–(7.14) we see that

{M2n+2cn(r)}∞
n=0 are the coefficients for the rescaled potential MA(r) for any M > 0, and it

follows that if |k| = 1
2 is the threshold value for A(r), then |k| = 1

2 M is the threshold value for
MA(r). The coincidence of threshold values for the Gaussian and Lorentzian potentials is
perhaps related to the fact that for both potentials ‖A2‖ = 1 in W(R2) as well as in L∞(R2),
as explained in Sections 5.1.2 and 5.1.2 respectively. In any case, since it is known from the
explictly-solvable Lorentzian case that upon decreasing |k| through the convergence thresh-
old singularities appear in the solution f (x, y; k) of the eikonal problem (1.6)–(1.7) at certain
points in the (x, y)-plane, we may reasonably conjecture that some kind of singularity for-
mation for a critical value of |k| is a generic feature at least for radial potentials.
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Figure 8.1 – Left: a log-log plot of the L∞(R+) norms of the coefficients {cn(r)} appearing
in the series solution (7.12) of the eikonal problem (1.6)–(1.7) for a Gaussian potential on
the left. Right: the quantity ∆ := ln ‖cn(·)‖∞ − (−αn − β ln n − γ) obtained after a linear
least-squares regression.

To solve the Dirac system (1.3) with given normalization for the Gaussian potential for
various values of ε, we use the approach of Section 7.3 with Nx = Ny = 212 Fourier modes
for (x, y) ∈ 4[−π, π] × 4[−π, π]. The first row of Figure 1.1 shows plots of the modulus
(scaled by e−kz/ε) of the components of the solution obtained for k = 1 and ε = 1/16.
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In order to compare solutions to the eikonal problem (1.6)–(1.7) for a given potential
as well as the corresponding leading-order normalization function α0 to a solution to the
ε-dependent direct scattering problem (1.3)–(1.4), we have to interpolate from the mixed
Chebychev-Fourier (polar coordinate) grid used for g and α0 to the two-dimensional Fourier
(Cartesian) grid used for the computation of ψ1 and ψ2. There are efficient ways to do this.
For simplicity we use here simply the definition of the spectral approximations of g and α0.
A function f is approximated in each of the radial domains under consideration as

f (r, φ) ≈
Nr

∑
n=0

N/2

∑
m=−N/2+1

cnmTn(l)eimφ. (8.2)

Thus for given spectral coefficients cnm, the corresponding function can be computed for ar-
bitrary values of r and φ. For the Gaussian potential, the solution to the eikonal problem
(1.6)–(1.7) can be seen after interpolation to a Cartesian grid in Figure 8.2. The correspond-

Figure 8.2 – Solution to the eikonal problem (1.6)–(1.7) for the Gaussian potential with k =
1. Left: real part of g = f − kz, right: imaginary part of g = f − kz.

ing Cartesian interpolation of the leading order normalization function α0 can be seen in
Figure 8.3.

With the numerical computations of f and α0 complete, we may construct the leading
term of the formal WKB approximation described in Section 8.2 for the solution of the direct
scattering problem (1.3)–(1.4). We now are in a position to compare this approximation with
numerically-computed solutions to the direct scattering problem obtained as described in
Section 7.3. To quantify the comparison, we use (1.11) for S(x, y) ≡ 0 to define the quantities

∆1 :=
∣∣∣ψ1e− f /ε − α0

k
∂ f
∣∣∣ (8.3)



112 Numerical examples

Figure 8.3 – Leading order normalization function α0 for the Gaussian potential with k = 1.
Left: real part, right: imaginary part.

and
∆2 :=

∣∣∣∣ψ2e− f /ε − α0A
2k

∣∣∣∣ . (8.4)

Conjecture 1.2.3 asserts that both of these quantities should be proportional to ε as ε ↓ 0. For
the Gaussian potential at k = 1 we plot ∆1 and ∆2 for four values of ε in Figures 8.4 and 8.5
respectively.

The expected scaling in ε can indeed be seen from these plots, but it is even more obvious
from the results of a linear regression to determine the best fit to the logarithms of the L∞

norms of ∆1 and ∆2 as functions of ln(ε) as is shown in Figure 8.6. The data for the regression
is calculated for the values ε = 20, 2−1, . . . , 2−5, although we should keep in mind that for
the larger values of ε, accuracy of the WKB approximation might not be expected. On the
serial computers we used for our numerical simulations, we cannot go much lower than
ε = 0.04 for lack of resolution. The precise results of the linear regression are as follows. In
the left panel of Figure 8.6, it can be seen that log10 ‖∆1‖∞ ∼ α log10 ε + β with α = 0.99 and
β = −1.24. In the same way we get for ∆2 the values α = 0.99 and β = −0.46 as can be seen
in the right panel of Figure 8.6. Thus in both cases the expected linear dependence in ε predicted by
Conjecture 1.2.3 is numerically confirmed.

To show that the good agreement between numerics and conjecture is not due to a special
choice of the spectral parameter k, we make similar plots as shown in Figure 8.6 for two more
values of k. The upper and lower rows of Figure 8.7 correspond to k = 0.75 and k = 1.25
respectively. (Note that the solution of the eikonal problem is expected to become singular
for sufficiently small k.) Even though for ε as large as ε = 1, ∆1 might not be expected to be
small, still the regression line taking the corresponding data into account has the slope 0.97.
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Figure 8.4 – The quantity ∆1 of (8.3) for the Gaussian potential with k = 1 for ε =
1/2, 1/4, 1/8, 1/16.

For ∆2 the slope of the regression line is 0.99. For k = 1.25 we find that the slope of the line for
∆1 is 0.88, and for ∆2 it is 1.03. Thus in all cases the results are compatible with the expected
O(ε) scaling. The slopes (exponents) obtained from regression would be expected to be even
closer to 1 if numerical simulations for smaller values of ε were performed; however such
experiments are out of reach for the serial computer we used for our simulations.

/ Remark: A comparison between the WKB approximation and the numerical solution
of the direct scattering problem can be made only if the eikonal problem has a global solu-
tion, hence allowing the construction of the WKB approximation globally in the (x, y)-plane.
According to Theorem 1.2.1, this is guaranteed for |k| sufficiently large. The lower bound on
|k| sufficient to guarantee a global solution is given in (1.8). In Section 5.1 it is shown that for
phase-free potentials (S(x, y) ≡ 0) the lower bound (1.8) can be optimized by choice of the
constant B to |k| >

√
‖A2‖W, and in Section 5.1.2 the lower bound is calculated for the Gaus-
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Figure 8.5 – The quantity ∆2 of (8.4) for the Gaussian potential with k = 1 for ε =
1/2, 1/4, 1/8, 1/16.

sian potential to be |k| > 1. However, even the optimized lower bound is only a sufficient
condition for the global solvability of the eikonal problem (1.6)–(1.7). Since the hypotheses
of Conjecture 1.2.3 only refer to the existence of a global solution of (1.6)–(1.7), we chose in
our study to deal with values of k for which the eikonal problem can be solved numerically
(which as pointed out above appears to be possible for |k| larger than 1

2 ), even if those values
lie on or within the optimal radius |k| = 1 for Theorem 1.2.1 to make a theoretical prediction
about the eikonal problem. .

8.2 Potential without radial symmetry

Next we consider the numerical solution of the eikonal problem (1.6)–(1.7) and coincident
construction of the leading-order WKB approximation together with the numerical solution
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Figure 8.6 – Dependence of ‖∆1‖∞ (left panel) and ‖∆2‖∞ (right panel) on ε for k = 1, to-
gether with the result of linear least-squares regression for the logarithms.

of the ε-dependent direct scattering problem (1.3)–(1.4) in the case of a phase-free potential
(S ≡ 0) and an amplitude A(x, y) in the class of rapidly decaying smooth functions, but now
without radial symmetry even asymptotically for large |z|. Concretely, we consider the potential

A(x, y) = e−(x2+5y2+3xy). (8.5)

To solve the Dirac system (1.3)–(1.4) for the potential (8.5) for various values of ε, we
once more use the approach of Section 7.3 with Nx = Ny = 212 Fourier modes for (x, y) ∈
4[−π, π]× 4[−π, π]. The modulus of the solutions obtained for k = 1 and ε = 1/32 can be
seen in Figure 8.8.

Since the potential (8.5) is not radially symmetric, the numerical series-based approach
described in Section 7.2 does not apply, so we must use instead an iterative approach to the
eikonal problem as described in Section 7.2, and it turns out that we will also need higher
resolution in φ than for radially-symmetric potentials to effectively solve for g = f − kz. We
use Nr = 64 Chebychev polynomials and Nφ = 128 Fourier modes for the case k = 1. The
real and imaginary part of the function g(x, y; k) = f (x, y; k)− kz are plotted in the left and
right panels of Figure 8.9 respectively. The corresponding spectral coefficients r ≤ 1 and
r ≥ 1 are shown in Figure 8.10, indicating that the solution is well resolved.

Next, we solve for the leading-order normalization function α0(x, y; k) also for k = 1 as
described in Section 7.2.1. The real and imaginary parts of the the numerically-computed
α0(x, y; 1) can be seen in Figure 8.11.

Given f and α0, we may again compare the numerical solution to the Dirac system (1.3)–
(1.4) to the leading term of the formal WKB approximation described in Section 8.2. For
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Figure 8.7 – Dependence of ‖∆1‖∞ (left column) and ‖∆2‖∞ (right column) on ε together
with the results of linear least-squares regression for the logarithms; upper row for k =
0.75, lower row for k = 1.25.

the potential (8.5) at k = 1 we plot ∆1 and ∆2 defined by (8.3)–(8.4) for four values of ε in
Figures 8.12 and 8.12 respectively.

It is clear that the numerical treatment of potentials lacking radial symmetry is consider-
ably more challenging than for radially symmetric potentials such as the Gaussian consid-
ered in Section 8.1. Thus the numerical errors for small values of ε are larger, and we would
need access to parallel computers in order to get the same accuracy as in the Gaussian case
for a given small ε. Nonetheless we computed the quantities ∆1 and ∆2 of (8.3) and (8.4)
respectively for the same values of ε as in the Gaussian case. In Figure 8.14 we plot the
L∞(R2)-norms of these quantities for the potential (8.5) for various values of ε and compare
the data in a log-log plot with lines of slope 1, which would correspond to the O(ε) relative
error predicted by Conjecture 1.2.3. Obviously the somewhat surprising good agreement for
values of ε ≈ 1 observed in the Gaussian case is not present here, and for small values of
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Figure 8.8 – Numerical solutions to the Dirac system (1.3)–(1.4) with potential (8.5) for k =
1 and ε = 1/32. Left: the modulus of e−kz/εψ1. Right: the modulus of e−kz/εψ2.

Figure 8.9 – Numerical solution g = f − kz to the eikonal problem (1.6)–(1.7) with k = 1 for
the potential (8.5) with S ≡ 0. Left: real part. Right: imaginary part.

ε the above mentioned resolution problems in the solution of the Dirac system (1.3)–(1.4)
are visible. Nonetheless compatibility with the conjectured scaling proportional to ε can be
recognized. Thus, our numerical computations also confirm Conjecture 1.2.3 for certain potentials
outside the class of radially-symmetric functions. We leave the numerical study of potentials
A(x, y)eiS(x,y)/ε for which S(x, y) 6≡ 0 and the investigation of Conjecture 1.2.3 in such cases
for the future.
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Figure 8.10 – Chebychev and Fourier spectral coefficients plotted over the (n, m)-grid for
the solution shown in Figure 8.9. Left: the coefficients for r ≤ 1. Right: the coefficients for
r ≥ 1.

Figure 8.11 – The numerically-computed leading-order normalization function α0 for the
potential (8.5) without radial symmetry at k = 1. Left: real part, right: imaginary part.
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Figure 8.12 – The quantity ∆1 of (8.3) for the potential (8.5) with k = 1 for ε = 1/2 (upper
left), 1/4 (upper right), 1/8 (lower left), 1/16 (lower right).
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Figure 8.13 – The quantity ∆2 of (8.4) for the potential (8.5) with k = 1 for ε = 1/2 (upper
left), 1/4 (upper right), 1/8 (lower left), 1/16 (lower right).

Figure 8.14 – Dependence of ‖∆1‖∞ (left panel) and ‖∆2‖∞ (right panel) on ε, together with
lines with slope 1.
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