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L'optomécanique est la science des interactions entre la lumière et les movements méchaniques. Ce rapport de thèse décrit des expériences réalisées avec des microdisques fabriqué dans différents résonateurs semiconducters III-V : l'Arséniure de Gallium (GaAs), l'Arséniure d'Aluminium Gallium (AlGaAs) et l'Arséniure d'Indium Phosphide (In-GaP). Ces matériaux sont compatibles avec les fonctionnalités de l'optoélectroniques et procurent un couplage optomécanique géant. Pour améliorer les performances des résonateurs en GaAs, nous avons dévoloppé des méthodes de traitement de surface permettant de réduire la dissipation optique par un facteur dix et ainsi d'atteindre un facteur de qualité de six millions. En plus de ces études sur le GaAs, nous avons réalisés une étude comparative des interactions optomecaniques dans des micro disques d'InGaP et d'AlGaAs, et nous avons mis en évidences leurs résonances optomécaniques. Finalement, nous avons réalisé des mesures de force avec des résonateurs en GaAs, démontrant un nouveau principe de détection basé sur notre étude de leur la trajectoire dans l'espace de phase et leur bruit de phase.

Introduction

In the last decade a new class of miniature physical systems has been investigated, which rely on strong interaction between optical and mechanical degrees of freedom [START_REF] Favero | Optomechanics of deformable optical cavities[END_REF][START_REF] Aspelmeyer | Cavity optomechanics[END_REF]. Radiation pressure exerted by electromagnetic radiation on a physical body plays an important role in such optomechanical interaction. The field of optomechanics pays an important tribute to the pioneering work of Braginsky [3], where the dynamical role of radiation pressure on a suspended end-mirror of an interferometric cavity was studied in order to understand the physical limits of the technique for gravitational waves observation. Since the 2000s, experimental optomechanics rapidly developed on tabletop experiments thanks to advances in micro-fabrication and laser technology. Diverse optomechanical systems were developped and optimized, going from cm scale suspended mirrors with mass in the gram range [4,[START_REF] Corbitt | An all-optical trap for a gramscale mirror[END_REF], through sub-millimeter resonators [START_REF] Metzger | Cavity cooling of a microlever[END_REF][START_REF] Rokhsari | Radiation-pressuredriven micro-mechanical oscillator[END_REF][START_REF] Gigan | Self-cooling of a micromirror by radiation pressure[END_REF][START_REF] Arcizet | Radiationpressure cooling and optomechanical instability of a micromirror[END_REF], down to sub-micron systems [START_REF] Favero | Fluctuating nanomechanical system in a high finesse optical microcavity[END_REF][START_REF] Li | Reactive cavity optical force on microdiskcoupled nanomechanical beam waveguides[END_REF][START_REF] Anetsberger | Near-field cavity optomechanics with nanomechanical oscillators[END_REF][START_REF] Eichenfield | A picogramand nanometre-scale photonic-crystal optomechanical cavity[END_REF][START_REF] Ding | High frequency gaas nano-optomechanical disk resonator[END_REF][START_REF] Ramos | Optomechanics with silicon nanowires by harnessing confined electromagnetic modes[END_REF]. If we go further down in dimensions, we find works on ensemble of atoms, used as artificial mechanical system [START_REF] Stamper-Kurn | Cavity optomechanics with cold atoms[END_REF]. Typical examples of these optomechanical systems are presented in Figure 1. One driving force in the research in optomechanics has been to observe and control the quantum behaviour of mechanical systems by laser techniques [START_REF] Aspelmeyer | Cavity optomechanics[END_REF][START_REF] Chan | Laser cooling of a nanomechanical oscillator into its quantum ground state[END_REF][START_REF] Teufel | Sideband cooling of micromechanical motion to the quantum ground state[END_REF]. In this doctoral work we focus on another possible application of optomechanical systems, which is to bring new concepts and methods in the problem of sensing physical forces.

Micro and nano-scale mechanical resonators like microelectromechanical systems (MEMS) are known for being efficient mass sensors with a resolution down to the femtogram [START_REF] Lavrik | Femtogram mass detection using photothermally actuated nanomechanical resonators[END_REF], attogram [START_REF] Ekinci | Ultrasensitive nanoelectromechanical mass detection[END_REF], zeptogram [START_REF] Yang | Zeptogram-scale nanomechanical mass sensing[END_REF] or even yoctogram [START_REF] Chaste | A nanomechanical mass sensor with yoctogram resolution[END_REF] level, the minimum detectable mass being proportional to the effective mass of the resonator. MEMS and NEMS sensors work on the principle of detecting a shift in the mechanical resonance frequency produced by an added mass or by an applied force field. Cantilever-based resonators are for example able to detect attonewton forces using this principle [START_REF] Stowe | Attonewton force detection using ultrathin silicon cantilevers[END_REF]. Optomechanical systems, thanks to their low mass and highly performant all optical operation, appear as excellent candidates in mass/force sensing. High resolution optomechanical accelerometers employing photonic crystal architectures were for example reported [START_REF] Krause | A high-resolution microchip optomechanical accelerometer[END_REF].

Resonant mechanical systems are also at the basis of many electronic oscillators. The invention of electronic oscillators dates back to the early 20 th century. While working with the first generation of triode ('Audion', invented by Lee De Forest in 1906), E. H. Armstrong observed that the produced amplification was highly intensified by employing 1 mass and typically few cm in dimension [START_REF] Corbitt | An all-optical trap for a gramscale mirror[END_REF]. (b) Sub-millimeter silica resonators with toroidal boundary, supported by spokes [START_REF] Anetsberger | Ultralow-dissipation optomechanical resonators on a chip[END_REF]. (c) Silicon nanobeam with the external phononic bandgap shield [START_REF] Chan | Laser cooling of a nanomechanical oscillator into its quantum ground state[END_REF].

a positive feedback (known as "regeneration" back then) to the applied signal. While optimizing the feedback to achieve maximum gain, he noticed oscillations [START_REF] Armstrong | Wireless receiving system[END_REF]. Since then oscillators have been widely used in many electronic applications from radio transmissions to video games, and they are now basic building blocks of digital electronics and RF communication systems. Electronic feedback oscillators employing piezoelectric crystals (quartz) as frequencyselective filter in the feedback loop were developed around 1920s [START_REF] Marrison | The evolution of the quartz crystal clock[END_REF][START_REF]Generating and transmitting electric currents[END_REF]. They adopt the mechanical resonance of a vibrating piezoelectric crystal to create an electrical signal of precise frequency. Following the developments in micro-machining and semiconductor processing, MEMS oscillators appeared as an efficient alternative to quartz crystals, offering high stability at reduced size and low cost. Since the early 2000s, MEMS oscillators have drawn interests in sensing different physical variables like strain or pressure [START_REF] French | Piezoresistance in polysilicon and its applications to strain gauges[END_REF][START_REF] Eaton | Micromachined pressure sensors: review and recent developments[END_REF].

Optomechanical systems also enable to implement feedback oscillators, with the feedback provided by optical forces acting on the mechanical element. Such mechanical oscillators with all-optical operation might combine several advantages in sensing applications, one central being their narrow spectral linewidth for high-resolution frequency tracking. An important aim of this doctoral work was to investigate the potential of optomechanical self-oscillators for force sensing. With the above force sensing perspective, a detailed study of the noise of gallium arsenide (GaAs) disk optomechanical oscillators was carried out.

In our team, we study optomechanical interactions primarily in GaAs disk resonators. These resonators support optical whispering gallery modes (WGMs) with high optical Q at the telecom wavelength. With their small mass (in the ∼ pg range) and small dimensions, they also enable high mechanical frequencies (typically hundreds of MHz to few GHz ). To boost up optomechanical interactions and improve performances, it was desirable to control and possibly lower optical and mechanical dissipation. GaAs semiconductor surfaces are generally far from ideal and can generate both optical losses by absorption and/or mechanical losses. In this thesis an important effort was made to modify the chemical and structural surface properties of GaAs resonators by passivation and surface-control techniques that led us largely to improve the state of the art. One source of optical dissipation in GaAs being two-photon absorption in the telecom wavelength, in this thesis we also explored alternative III-V semiconductor materials for optomechanical applications, by developing disk resonators out of indium gallium phosphide (InGaP) and aluminum gallium arsenide (AlGaAs). Figure 2 shows Scanning Electron Microscope (SEM) images of the three different types of disk resonator employed in this thesis.

Outline of the thesis

This thesis begins with a general introduction to optomechanics. Chapter 1 explains the basic physics of optomechanical interactions. The analytical formulations of optomechanical interactions are presented. Chapter 2 introduces GaAs disk resonators themselves. The optical and mechanical modes supported by these resonators are investigated. Numerical computations of optomechanical coupling parameters are presented. Chapter 3 describes the fabrication methods of GaAs disks and the experimental aspects of their characterization. Chapter 4 is dedicated to the surface passivation of GaAs disk resonators. It begins with a quick review on the origin of optical losses in these resonators. Novel surface control techniques are presented, which allow improving the optical performances of GaAs disks. In chapter 5 we explore alternative III-V semiconductor materials for optomechanical applications. Fabrication methods for InGaP and AlGaAs disks are presented along with the corresponding optomechanical interactions. At the end of the chapter, a comparative study on material properties and optomechanical performances is presented. Chapter 6 describes how to use optomechanical oscillators in force sensing applications. Noise properties of GaAs self-oscillators are studied. Force sensing experiments are presented together with a detailed analytical modelling. Finally the potential limits of the optomechanical self-oscillation approach for force sensing are discussed.

Chapter 1

Basics of optomechanics

In this chapter we will present a general introduction to optomechanics and we will revisit the analytical formulation of optomechanical systems.

First description

Optomechanics deals with the interaction between light and mechanical degree of freedom. To understand the basic principle of optomechanics, let us begin with an optical resonator of optical resonance frequency ω 0 (Figure 1.1(a)) and a mass on a spring acting as a mechanical resonator (Figure 1.1(b)) of mechanical resonance frequency ω m . For the moment, these two resonators are independent from each other but they are connected to the environment thus leading to dissipation. κ is the dissipation rate of the optical energy stored in the optical cavity and Γ m is the dissipation rate of the mechanical energy of the vibrating mass. The ratio of the lost energy per cycle relative to the stored energy for each resonator defines an optical quality factor (Q opt ) and a mechanical quality factor (Q m ) respectively

Q opt = ω 0 κ (1.1)
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ω 0 ω m κ Γ m x Figure 1
.2: A basic optomechanical system cosisting of one fixed mirror and one movable mirror end. x is the mechanical displacement of the movable mirror end.

and

Q m = ω m Γ m (1.2)
The optical (or mechanical) quality factor is a measure of the temporal confinement of the optical (or mechanical) energy inside the resonator.

In optomechanics we bring these two independent optical and mechanical systems to interact. A basic optomechanical system is presented in Figure 1.2. It consists in a Fabry-Pérot cavity with one fixed end mirror and one movable end mirror. The movable mirror mounted on a spring plays the role of a mechanical resonator. When this cavity is illuminated with a laser, photons inside the cavity bounce back and forth between the end mirrors. As a consequence the circulating photons inside the cavity exert a force on the mechanical boundary (the end mirrors), through radiation pressure (see section 1.2.1). As a result, the mirror mounted on the spring undergoes a mechanical displacement x. This change in optical cavity length alters the cavity resonance frequency ω 0 owing to 2L cav = N λ 0 (1.3) where L cav is the optical cavity length, λ 0 = 2πc ω 0 is the cavity resonance wavelength with c being the speed of light and N an integer. Subsequently, because the pump laser frequency is fixed, the intracvity circulating power is modified, which in turn modifies the exerted radiation pressure.

It is natural to quantify this optomechanical coupling by a 'frequency pull parameter' g om , which is the derivative of optical resonance frequency ω 0 with respect to an elementary mechanical displacement ∂x g om = -∂ω 0 ∂x (1.4)

Even though we have only mentioned radiation pressure for this first description of an optomechanical system, in practice there are several optically-induced forces acting on 1.2 Optically induced forces mechanical bodies in different optomechanical systems. In the following section we will discuss these different optical forces.

1.2 Optically induced forces 1.2.1 Force associated to radiation pressure

Radiation pressure comes into play when an electromagnetic radiation interacts with a mechanical body with arbitrary electromagnetic response. In case of the simple optomechanical system presented in Figure 1.2, it is the pressure exerted upon the mirror surfaces upon reflection. If the light wave carries an optical power P , then for an orthogonal incidence on a perfectly reflecting mirror, the force associated to radiation pressure is:

F rp = 2P c (1.5)
This simple formula holds for the perfect Fabry Pérot case. To evaluate the radiation pressure exerted by photons in any arbitrary geometry, we use 3D finite element method (FEM) computation of the Maxwell Stress Tensor (MST). In 3D Cartesian coordinates the ij component of MST represents the force per unit area in the i-th direction acting on an element of surface oriented in the j-th direction and is given by:

T ij = ε 0 ε r E i E j - 1 2 δ ij |E| 2 + µ 0 µ r H i H j - 1 2 δ ij |H| 2 (1.6) 
Here ε 0 and µ 0 are the vacuum permittivity and permeability respectively, ε r and µ r are the relative permittivity and permeability respectively, δ ij is the Kronecker's delta and E i (H i ) is i-th component of electric (magnetic) field. The MST allows to express both the normal stress (i = j) and the shear stress (i = j). It is also important to note that in FEM simulation the time averaged value of the MST is computed over an optical cycle as the typical mechanical device response is slower than the forces rapidly varying at optical frequencies.

Electrostriction

Electrostriction is a property of compliant dielectric bodies that deform under an applied electric field. Boyd [START_REF] Boyd | Nonlinear optics[END_REF] explains the origin of this mechanism using individual molecules placed in the fringing field of a parallel plane capacitor as shown in Figure 1.3. In the presence of the electric field E, an electric dipole P = α E is induced to the molecule (where α is the molecular polarizability) and the molecule is attracted to high field regions by a force F = 1 2 α ∇(E 2 ). In a fluid of polarizable molecules under an applied optical electric field, the particles are equivalently attracted to the high-field zones, increasing their density. This increase of density induces a change of the dielectric constant (and thus refractive index) of the material. Following the law of thermodynamics, the associated change in optical energy equals the work done to deform the material.

F P

.3: A molecule in the fringing field of a parallel plate capacitor [START_REF] Boyd | Nonlinear optics[END_REF] Electrostriction can be recognized as an electric-field-induced stress but must not to be confused with piezo-electric stress. Electrostrictive forces vary with the square of the applied electric field and thus remain unaltered with the reversal of the field sign. But piezo-electric forces being proportional to the electric field reverse the strain with field reversal. In solids, for an incident laser field with sufficient intensity, electrostriction can couple the applied optical field to acoustic waves (alternatively known as compressional waves) thus inducing stimulated Brillouin scattering processes.

The electrostrictive stress can be expressed in terms of the material photoelastic tensor p ijkl [START_REF] Baker | Photoelastic coupling in gallium arsenide optomechanical disk resonators[END_REF][START_REF] Rakich | Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces[END_REF], which links the dielectric function to the strain. If ε kl is the material dielectric tensor, then for a strain field S ij in the material, the modified inverse dielectric tensor is indeed given by ε -1 ij (S kl ) = ε -1 ij + p ijkl S kl (1.7) Using this definition, the electrostrictively induced stress σ es kl is related to the optical field components by [START_REF] Favero | Micro/nano optomechanics: The interaction of light and miniature mechanical systems[END_REF][START_REF] Newnham | Properties of materials: anisotropy, symmetry, structure[END_REF][START_REF] Feldman | Relations between electrostriction and the stress-optical effect[END_REF] σ es ij = -

1 2 ε 0 [ε ij p jkmn ε kl ]E l E i (1.8)
Again note that the stress and the electric field components are time-averaged over an optical cycle. The coefficients of the photoelastic tensor depend on material properties and crystal structure, and the electrostrictive stress hence evolves accordingly. In case of cubic crystal structures like GaAs and silicon [START_REF] Newnham | Properties of materials: anisotropy, symmetry, structure[END_REF], the electrostrictive stress components are expressed as function of the electric field components in a reduced form 

        photoelastic tensor         E 2 x E 2 y E 2 z E y E z E x E z E x E y        
(1.9)

Optically induced forces

Here ε 0 is the vacuum permittivity and n is the refractive index (r.i.) of the material. Thus in highly refractive materials electrostrictive stress plays an important role.

Photothermal forces

Photothermal effects (also termed bolometric effects) rely on the residual absorption in the mechanical body (mirrors in the optomechanical system shown in Figure 1.2) and can sometimes be orders of magnitude larger than radiation pressure [START_REF] Metzger | Optical self cooling of a deformable fabry-perot cavity in the classical limit[END_REF]. The impinging photons on a surface are absorbed in the material, thus producing heat. This heat production leads to develop a strain in the material, resulting in elastic distortion in a mechanical device. This resembles a force acting on the device, hence termed as photothermal force. In case of radiation pressure (subsection 1.2.1), the photon is reflected at the boundary and only a Doppler fraction of it's energy is transferred to the mirror. But when the photon is absorbed, all of its energy is transferred to the mirror to produce heat. Thanks to their large magnitude, photothermal forces have been used to regulate cantilever response [START_REF] Mertz | Regulation of a microcantilever response by force feedback[END_REF], to excite the motion of an optomechanical system [START_REF] Metzger | Self-induced oscillations in an optomechanical system driven by bolometric backaction[END_REF] or to optically cool micro mechanical resonators [START_REF] Metzger | Cavity cooling of a microlever[END_REF][START_REF] Metzger | Optical self cooling of a deformable fabry-perot cavity in the classical limit[END_REF].

The thermally induced stress (σ th ij ) for a local temperature increase ∆T , induced for example by optical absorption, is given by

σ th ij = C ijkl β kl ∆T (1.10)
where C ijkl is the stiffness tensor and β kl thermal expansion tensor. It is interesting to note that the photothermal force is naturally time delayed as the system needs sufficient time to thermalize after a sudden temperature change induced by light.

Optoelectronic forces

Optoelectronic forces settle when a population of carriers are optically created in the material. If a semiconductor material is optically excited at or slightly above its bandgap energy (E g ), a population of carriers is generated. This excited carrier population induces a stress in the material structure, which is named optoelectronic stress σ oe . In an isotropic crystal the optoelectronic stress associated to the excited electron-hole pairs is written as: [START_REF] Li | Reactive cavity optical force on microdiskcoupled nanomechanical beam waveguides[END_REF] where B = Y 3(1-2ν) is the isotropic elastic bulk modulus, δ ij is the Kronecker delta, n e is the free electrons density (here also the density of generated electron-hole pairs) and ∂Eg ∂p is the derivative of the band gap energy with respect to an applied hydrostatic pressure p. Depending on the sign of ∂Eg ∂p optoelectronic stress will lead to contraction ( ∂Eg ∂p negative as for Silicon) or expansion ( ∂Eg ∂p positive as for GaAs) of the crystal. At large circulating optical power in a semiconductor cavity, optoelectronic forces become relevant even at telecom wavelength as multi-photon absorption processes come into play. For example, two photon absorption (TPA). TPA leads to a population of free carriers which can generate an optoelectronic stress. A way to boost optoelectronic forces is to introduce an optically active medium (like quantum well (QW) or quantum dot (QD)) in the optomechanical system. Carrier generation followed by radiative recombination in the active medium will result in the appearance and disappearance of stress in the system.

σ oe ij = B ∂E g ∂p δ ij n e (1.

Optical read-out of mechanical motion

We have studied so far different optically induced forces acting on optomechanical systems. As explained in section 1.1 these forces act on mechanical bodies, leading to mechanical motion. In return the mechanical motion modifies the confined optical field. It is important to note that the mechanical deformation of such a cavity does not only impact the cavity resonance frequency ω 0 (dispersive optomechanical coupling), but can also influence the optical dissipation rate (κ). The later effect is named dissipative optomechanical coupling. Here we will neglect the contribution of dissipative coupling and focus only on the dispersive coupling condition.

Thanks to the dispersive optomechanical coupling g om , one can retrieve the signature of the mechanical motion just by measuring the photons coming out of the cavity. This measurement scheme is presented in Figure 1.4. Light from a 'pump' laser of frequency ω L is coupled to an optomechanical cavity. The cavity optical resonance appears as a Lorentzian in cavity. The mechanical motion, produced by thermal Langevin forces or by optical forces, keeps changing the cavity dimensions continuously. As a result the optical resonance frequency fluctuates around its central position ω 0 (Figure 1.4(a)). If the pump laser frequency ω L is kept fixed on the optical resonance flank, the transmission fluctuates in time as shown in Figure 1.4(b). Now when the radio frequency (RF) noise of the optical output is monitored, the spectrum of mechanical motion is revealed as shown in Figure 1.4(c). Figure 1.4(d) presents the phase space diagram of the Brownian motion of a mechanical resonator, in case that mere Langevin forces are acting. Such situation is typically encountered in optomechanical measurements when the optical intensity is small enough to induce vanishingly small optical forces.

Frequency-pull parameter g om

In section 1.1 we have defined the frequency pull parameter g om . In optical read-out of mechanical motion, a large value of g om implies better optical sensitivity to mechanical motion. To generalize g om to any optomechanical cavity structure, let's consider the initial cavity geometry as defined by a parameter G. A change in the optical cavity geometry dG, associated to a mechanical displacement dx, not only shifts the cavity resonance by affecting its electromagnetic boundary conditions, but generally also comes with a strain field within the cavity. In cases where the cavity material is photo-elastic, this strain field induces a change in the dielectric permittivity of the material (ε), leading to a shift in the optical resonance ω 0 . Taking into account these two contributions from geometric and photoelastic effects, the frequency pull parameter is written as:

g om = - dω 0 (G, ε) dx = -     ∂ω 0 ∂G ∂G ∂x geometric g geo om + ∂ω 0 ∂ε ∂ε ∂x photoelastic g pe om     (1.12)
Here ε is the permittivity of the material. Below we describe these two contributions to frequency pull parameter.
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Geometric contribution g geo om

For an ideal 1D Fabry-Perot cavity of length L cav , the geometric frequency-pull parameter is approximated by g geo om = ω 0 Lcav . In case of a planar circular cavity of radius R, it approximates to ω 0 R , if a radial displacement is considered. For optomechanical systems with more complex geometries, g geo om is calculated by numerical methods. To determine the optical resonance shift to any arbitrary mechanical displacement of the cavity boundary, we follow the results of Johnson et al. [START_REF] Johnson | Perturbation theory for maxwell's equations with shifting material boundaries[END_REF], who provided a perturbation theory for Maxwell's equations with shifting material boundaries. In this context the geometric frequency pull parameter is calculated as a surface integral of the unperturbed optical fields over the perturbed dielectric interface [START_REF] Baker | On-chip nano-optomechanical whispering gallery resonators[END_REF] 

g geo om = ω 0 4 ( q • n) ∆ε 12 | e | 2 -∆(ε -1 12 )| d ⊥ | 2 dA (1.13)
Here q and n are the normalized mechanical displacement vector and surface normal vector respectively. e (or d ⊥ ) is the parallel (or orthogonal) component to the surface of the electric field. ∆(ε

-1 12 ) = ε -1 1 -ε -1
2 is the difference in permittivity between the materials on either side of the interface. q and e are normalized in a way so that max| q|=1 and 1 2 ε|e| 2 dV =1. When the optomechanical cavity consists of a dielectric material of r.i. n, one has ε 1 = n 2 . ε 2 is the permittivity of the surrounding environment and takes a value of 1 when the resonator is in air or vacuum. In the next chapter we will show calculations of g geo om by FEM simulations with the help of equation 1.13 in case of GaAs optomechanical disk resonators.

Photoelastic contribution g pe om

In optomechanical cavities where light is confined inside a dielectric photoelastic (elasto-optic) material, the material photoelastic contribution is added to the frequencypull parameter. The strain accompanying the change in cavity geometry leads to a change in the r.i. of the material, thus in the cavity resonance frequency.

To compute the photoelastic contribution g pe om , we use again the FEM simulations. Using equation 1.8, we compute the modified dielectric tensor with the strain distribution S kl in the material, generated by the cavity deformation. Then the cavity optical resonance frequency is computed with this modified dielectric tensor through another FEM simulation. Illustrations of g pe om computation will be given in next chapter for GaAs disk resonators.

N cav being the number of photons in a cavity of frequency ω 0 , if the cavity is distorted by dx, it adopts a new electromagnetic energy hN cav (ω 0 -g om dx). This energy change is the opposite of the work done by the optical force upon the displacement dx, such that the optical force is simply expressed as

F opt = hg om N cav (1.14)

Dynamics of optomechanical systems

With the previous conceptual and technical tools introduced, we are now well equipped to investigate the dynamics of optomechanical systems. In this section different models are presented that describe mutual optical-mechanical interactions.

Delayed force model

The delayed force model describes dynamical optomechanical effects considering the non-instantaneous nature of optical forces. The photons circulating in the cavity exert a force F on the mechanical system, which is any of the optically induced forces described earlier. Generally these photon-induced forces are non-instantaneous, which means that in reply to a change in mechanical position x, the force exhibits a delayed response with a time constant τ . The origin of this delay differs depending on the involved optical force. But whatever the origin, the delayed force model describes the dynamics of any optomechanical system provided τ is known.

If the effective mass of the mechanical resonator is m ef f and the spring constant is K, then its equation of motion is written as

m ef f ẍ(t) + m ef f Γ m ẋ(t) + Kx(t) = F L (t) + F (t) (1.15)
Here F L is the thermal Langevin force accounting for the thermal fluctuations of the mechanical device. The light induced force F can be written as [START_REF] Metzger | Optical self cooling of a deformable fabry-perot cavity in the classical limit[END_REF] 

F (t) = F (x 0 ) + t 0 dt dF (x(t )) dt h(t -t ) (1.16)
where the function h(t) describes the delay of the force and x 0 is the equilibrium position of the mechanical resonator under the static force F (x 0 ). If the delay function is considered as exponential h(t) = 1 -exp -t/τ , then in the limit of small vibrational amplitude the equation of motion in frequency domain is written as [START_REF] Metzger | Optical self cooling of a deformable fabry-perot cavity in the classical limit[END_REF] -

m ef f ω 2 X(ω) + im ef f ωΓ ef f X(ω) + K ef f X(ω) = F L (ω) (1.17)
with the effective damping (Γ ef f ) and spring constant (K ef f ) being

Γ ef f = Γ m 1 + Q m ω m τ 1 + ω 2 m τ 2 ∇F K (1.18a)
and

K ef f = K 1 - 1 1 + ω 2 m τ 2 ∇F K (1.18b)
with ω m = K/m ef f the mechanical Eigen frequency, ∇F = dF (x) dx | x=x 0 the local gradient force, which represents the change in the steady-state optical force F (x) for Basics of optomechanics a small displacement dx. In the same spirit an effective resonance frequency can be written as

ω 2 ef f = ω 2 m 1 - 1 1 + ω 2 m τ 2 ∇F K (1.19) because ω 2 ef f = K ef f /m.
The optical gradient can be positive or negative, resulting in an increase or a decrease of the effective mechanical frequency. An equipartition theorem can still hold for such effective mechanical resonator dressed by light but its fluctuation temperature T is replaced by an effective temperature T ef f . They are related by

T ef f T = Γ Γ ef f (1.20)
This relation diverges when there is no effective mechanical damping, i.e. Γ ef f = 0. This instability corresponds to the situation of optomechanical self-oscillation, where the mechanical motion becomes sinusoidal in time and optically self-sustained. Equation 1.20 also reveals that it is possible to effectively cool down the mechanical motion, via the damping effect of the time-delayed optical forces (Γ ef f > Γ m ). Thus the delayed force model efficiently explains both the onset of optomechanical self-oscillation and optomechanical cooling. Still the evolution of these phenomena with the optical frequency detuning (∆ω = ω L -ω 0 ) is oversimplified in this model, as result of the assumption of a simple exponential delay. Complementary models are provided in the next subsections, which overcome this shortcoming of the delayed force model.

Coupled optomechanical equations

The approximation of an exponential delay of the optical force works correctly as long as the optomechanical system is in bad cavity limit (or unresolved sideband limit) ω m << κ. But when the optomechanical system is in the good cavity limit (or resolved sideband limit) ω m > κ the approximation is too simple. Thus to describe optomechanical interactions, we adopt a more general approach that consists in writing coupled differential equations simultaneously for the optics and mechanics, and possibly for other involved degrees of freedom.

Let us write first the complex optical cavity field amplitude a(t). Upon external pumping of the cavity, the dynamics of this field is given by [START_REF] Aspelmeyer | Cavity optomechanics[END_REF] 

ȧ(t) = - κ 2 a(t) + i [∆ω + g om x(t)] a(t) + √ κ ex a in (t) (1.21)
where κ = κ in + κ ex is the total decay rate of the optical energy stored in the cavity with κ in the intrinsic cavity decay rate and κ ext the extrinsic decay rate. This equation can be understood easily considering that the cavity field amplitude depends on the laser frequency detuning ∆ω = ω L -ω 0 as a(t) = a 0 e i∆ωt when the cavity is rigid.

√ κ ex a in (t)
is the fraction of the light coupled to the cavity for an incident field a in (t).

On the other hand the dynamics of the mechanical degree of freedom is expressed with the harmonic equation

m ef f ẍ(t) + m ef f Γ m ẋ(t) + m ef f ω 2 m x(t) = F opt = hg om |a(t)| 2 (1.22)
Restricting the description to an optical and a mechanical mode these two coupled equations can be solved to describe the mechanical resonator with an effective mechanical frequency and an effective damping [START_REF] Clerk | Cavity optomechanics[END_REF]. But here the photothermal force (F pth ) is not taken into account and hence these coupled equations are limited to systems driven by radiation pressure and electrostriction. Like the delayed force model this approach has its shortcomings. Hence to incorporate the photothermal interaction, a third coupled equation is written in addition to the coupled equations for optical and mechanical degree of freedom. The three coupled equations finally read

ȧ(t) = - κ 2 a(t) + i(∆ω + g om x(t) + ω L n dn dt ∆T )a(t) + √ κ ex a in (t) (1.23) m ef f ẍ(t) + m ef f Γ m ẋ(t) + m ef f ω 2 m x(t) = F opt + F pth + F L (t) (1.24) d∆T (t) dt = - ∆T (t) τ th + Γ pth |a(t)| 2 τ th (1.25)
where ∆T is a single parameter describing the cavity temperature increase and τ th is is the cavity thermal response time. In steady state, ∆T = Γ pth |a| 2 with Γ pth = R th hω L κ abs . Knowing that κ abs is the cavity energy absorption rate, this implies that R th is a thermal resistance (in K/W ) linking the intra cavity absorbed optical power hω L N cav κ abs to ∆T . In equation 1.23, the term ω L n dn dt ∆T corresponds to the shift in cavity resonance frequency produced by ∆T (thermo-optic effect). In equation 1.24, F pth is the photo-thermal force. We have also added a Langevin force F L (t) in equation 1.24. Our goal is to describe the mechanical resonator as having an effective frequency and an effective damping. To this aim, we consider the three degrees of freedom as sums of an equilibrium value and a small time-dependent fluctuation a(t) =< a > +δa(t)

x(t) = x 0 + δx(t) (1.26) ∆T (t) = ∆T eq + δ∆T (t)
We look for the static equilibrium positions by setting ȧ(t) = 0, ẋ(t) = 0 and d∆T dt = 0 and solve the resulting set of coupled equations. Around these static equilibrium solutions, we linearize the three coupled non-linear equations. The linearized equations for δa(t), δx(t) and δ∆T (t) read

δa(t) = (i∆ω - κ 2 )δa(t) + ig om < a > δx(t) (1.27) m ef f δx(t) + m ef f Γ m δ x(t) + m ef f ω 2 m δx(t) = hg om [< a > * δa(t)+ < a > δa(t) * ] + F pth (t) + F L (t) (1.28) dδ∆T (t) dt = - δ∆T (t) τ th + Γ pth [< a > * δa(t)+ < a > δa(t) * ] τ th (1.29)

Basics of optomechanics

In equation 1.27 we have written ∆ω = ∆ω + g om x 0 + ω L n dn dt ∆T eq . Now we take the Fourier transform of these linearized equations

-iωδa(ω) = (i∆ω - κ 2 )δa(ω) + ig om < a > δx(ω) (1.30) -m ef f ω 2 δx(ω) -iωm ef f Γ m δx(ω) + m ef f ω 2 m δx(ω) = hg om [< a > * δa(ω)+ < a > δa * (ω)] + F pth (ω) + F L (ω) (1.31) -iωδ∆T (ω) = - δ∆T (ω) τ th + Γ pth [< a > * δa(ω)+ < a > δa * (ω)] τ th (1.32)
From equation 1.30 we find

δa(ω) = ig om < a > δx(ω) κ 2 -i(∆ω + ω) (1.33)
From equation 1.32 we have

δ∆T (ω) = Γ pth [< a > * δa(ω)+ < a > δa * (ω)] 1 -iωτ th (1.34)
As δx is real, we have δx(ω) = δx(-ω) * . Then using equations 1.33 and 1.34 it is possible to express equation 1.31 as

δx(ω) = F L (ω) m ef f ω 2 m,ef f -iωm ef f Γ m,ef f -m ef f ω 2 (1.35) with ω m,ef f = ω m 1 - | < a > | 2 hg 2 om 2m ef f ω 2 m ∆ω -ω m (∆ω -ω m ) 2 + κ 2 4 + ∆ω + ω m (∆ω + ω m ) 2 + κ 2 4 - | < a > | 2 g 2 om 2m ef f ω 2 m F pth 1 + ω 2 m τ 2 th ∆ω -ω m -ω m τ th κ 2 (∆ω -ω m ) 2 + κ 2 4 + ∆ω + ω m + ω m τ th κ 2 (∆ω + ω m ) 2 + κ 2 4 (1.36) and Γ m,ef f = Γ m 1 + | < a > | 2 g 2 om ω m m ef f ω m Γ m κ 2 (∆ω + ω m ) 2 + κ 2 4 - κ 2 (∆ω -ω m ) 2 + κ 2 4 + | < a > | 2 g om ω m hm ef f ω m Γ m F pth 1 + ω 2 m τ 2 th (∆ω + ω m )ω m τ th -κ 2 (∆ω + ω m ) 2 + κ 2 4 + (∆ω -ω m )ωτ th + κ 2 (∆ω -ω m ) 2 + κ 2
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(1.37) These expressions will be used to predict optomechanical frequency shifts and selfoscillation thresholds in later chapters.

Optomechanical self oscillation

Optomechanical self oscillation

When optomechanical amplification surpasses mechanical losses in the system, the mechanical motion becomes self-sustained and acquires a coherent harmonic nature. In the linearized approach of optomechanics presented in section 1.5.2, the onset of this regime corresponds to the cancelling of the effective damping Γ m,ef f (equation 1.37). Above this threshold, the amplitude of mechanical motion becomes large and the optomechanical interactions are no more described by the linearized approach.

The optomechanical self-oscillation can be described by a harmonic motion of the kind

x(t) = x 0 + A cos(ω m t) (1.38)
The amplitude of motion is determined by a balance between optomechanical gain and mechanical losses. Optomechanical self-oscillation can be understood by analogy with an electronic oscillator. Figure 1.5(a) shows the basic diagram of an electronic oscillator. Oscillations are generated through positive feedback to the input of the amplifier (A), in absence of AC component in the input signal. The frequency of oscillations is set by the circuit components. In a similar fashion, an optomechanical self-oscillator can be understood as a mechanical resonator set into oscillation by a linear optical force feedback, as shown in Figure 1.5(b). When light from a CW laser is injected into an optomechanical cavity, the mechanical system deforms under optical forces. This mechanical displacement modifies the intra-cavity circulating power, leading to a change in the optical forces acting back on the mechanical system (feedback mechanism). In chapter 5 and 6, we will present the experimental observations and analysis of such optomechanical self-oscillators.

A feedback + + optical laser mechanical system x(t) V s F V o (b) (a) feedback electronic + +

Chapter 2

GaAs optomechanical disk resonators

In this chapter we introduce GaAs optomechanical disk resonators, which are the central interest for this thesis. These resonators are composed of a GaAs disk, micrometersized in diameter and hundreds of nanometer thick, isolated from the sample substrate atop an AlGaAs pedestal. These disks are both optical and mechanical resonators. They store light in optical WGM with high optical quality factor and a small mode volume. On the mechanical side, these resonators show high mechanical frequency thanks to their small dimensions. The fabrication techniques for such disk resonators will be discussed in the next chapter. In this chapter we study the physics of optomechanical interactions in these resonators. We begin with an introduction to the optical WGM supported by the disks. Then we briefly revisit the 'coupled mode theory' to understand the optical coupling GaAs optomechanical disk resonators to these resonators from a waveguide or fiber taper. Next we present the mechanical breathing modes of these resonators. Finally, computation of optomechanical coupling parameters are given for GaAs disks.

Optical whispering gallery modes

Whispering gallery modes are the Eigenmodes of an electromagnetic wave confined inside a circular cavity by total internal reflection ( wave comes in phase after a round trip of the cavity (constructive interference), it gives rise to certain resonant modes. If the disk radius is R and the effective r.i. of the confined mode in the disk is n ef f , then a naive resonance condition is given by

2πn ef f R = mλ (2.1)
where λ is the free space wavelength and m is an integer. The integer m stands for the azimuthal number of the WGM and represents the number of nodes of the field around the disk periphery. The effective index is associated to the modal confinement. In a simplified picture, it is given by the vertical confinement in the disk plane and approximated by the effective index of a slab of GaAs having same thickness as the disk.

In this thesis, where we employed disks that are 200 nm thick and optical wavelength ∈ [1.3 , 1.6] µm, there is only one slab mode vertically confined within such thickness (associated vertical confinement number l = 1, see Figure 2.2(b)) for each polarization of the field (TE: in plane or TM: out of plane). The last number to label the WGM of a disk optical cavity is the radial order p, which accounts for the radial profile of the WGM and gives the number of maxima of the electric field along the radial direction. Note 2.1 Optical whispering gallery modes that equation 2.1 implicitly assumes p = 1 (field localized at the periphery: r ∼ R), but other radial numbers will be used in this thesis as well.

The resonance frequencies of the WGMs, the related spatial mode profiles and the associated radiative quality factor Q rad are computed with the FEM approach [START_REF] Baker | On-chip nano-optomechanical whispering gallery resonators[END_REF]. The WGMs are found by solving Maxwell's equations with the resonator's boundary conditions. Hence the polarization, the disk thickness and the wavelength range a priori suffice to determine a value of n ef f .

Multiple solutions are obtained for the same azimuthal number m, which correspond to the radial orders p of the WGMs. In Figure 2.3 we present an example of two WGMs supported by a GaAs disk resonator of 4.5 µm radius with different p and m order. These WGM profiles are obtained by 2D FEM simulation using the COMSOL Software, assuming a pure TE polarization for the electric field. While Figure 2.3 was generated from 2D FEM calculations in the disk plane for illustrative purposes, it only shows approximate solutions of Maxwell's equations since the vertical dimension along Z-axis is absent and is only taken into account through the effective index of the 2D slab. Exact solutions can be obtained by using the rotation invariance of a disk to transform the complete 3D problem into a simpler 2D problem in the (r,z) plane, without specific assumption on the polarization. For this reason, the resonance frequencies of different WGMs are better obtained by 2D axi-symmetric simulations in the (r,z) plane. Figure 2.4 shows the 2D axi-symmetric FEM modelling of WGMs in a 200 nm thick and 4.5 µm radius GaAs disk resonator, displayed in (r,z) cross sections. The complete disk is obtained by revolving this cross-section around the perpendicular axis (using the rotational invariance of the disk geometry). In Figure 2.5 we show all the electric and magnetic field components of a TE-polarized WGM with p = 1 and m = 43. For a TE-polarized mode the in-plane electric field and 
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Quality factor

In Chapter 1 we defined the optical quality factor of a resonator as the stored energy divided by the energy lost per cycle. In experiments the quality factor is obtained from the resonant spectrum of the WGM by using the relation

Q = ω 0 δω = λ 0 δλ (2.2)

Optical whispering gallery modes

In FEM simulations, the radiative quality factor Q rad accounting for the bending losses of a perfect disk resonator is given by

Q rad = Re(ω 0 ) 2Im(ω 0 ) (2.3)
Free spectral range (FSR)

The Free Spectral Range (FSR) of an optical cavity is defined as the frequency or wavelength spacing between two spectrally adjacent resonant modes that belong to the same family. In case of a disk resonator the FSR corresponds to the spacing between successive azimuthal order WGMs with same radial order p. This free spectral range is an important parameter of the disk cavity and is used to identify the WGM families in the optical spectra measured experimentally (see Chapter 4, section 4.3.2).

Disk resonators with such dimensions do not support many TM-polarized modes. In our FEM simulations we only found TM modes with p = 1 and p = 2, with poor radiative optical quality factor (Q rad , also known as Q bend due to bending losses). For example the TM mode shown in It is interesting to study the optical energy confinement in the disk resonator for different radial order modes. In Figure 2.6 we list six radial order modes sustained GaAs optomechanical disk resonators by a 200 nm thick GaAs disk resonator of radius 4.5 µm, in the wavelength range ∈ [1.5 , 1.6] µm. The azimuthal order decreases for increasing radial order in agreement with an equation of the type 2.1 where the radius would effectively reduce with increasing p number. In Figure 2.6 we have also included the mode profiles with the electric field amplitude |E|. One observes that Q rad reaches its highest value for p = 1 and decreases for higher. We also define a 'modal confinement factor' that quantifies the confinement of optical energy close to the surface for each p mode. It is the integral of the energy density near the surfaces (±10 nm) divided by the energy density integrated across the whole mode.

The choice of the value of 10 nm corresponds to the typical order of surface irregularities of our fabricated disk resonators [START_REF] Parrain | Optomécanique fibrée des disques GaAs : dissipation, amplification et non-linéarités[END_REF]. Figure 2.6 shows that the optical energy of p = 1 mode is the most confined near the surface, compared to higher radial order modes. Hence p = 1 modes are expected to be the most affected by surface imperfections. In Chapter 4 we will study different surface modification techniques to improve the optical quality of our GaAs disk resonators and observe the consequence of these different surface confinements of optical energy.

Evanescent optical coupling of a fiber to a disk

In our experiment the WGMs of a disk resonator are excited via evanescent coupling to an adjacent optical waveguide. The waveguide might be fabricated on-chip along with the disk resonator, or be a silica fiber taper positioned in the near-field of the disk. The evanescent coupling between the WGM and the optical mode of the waveguide is well captured by the electromagnetic Coupled mode theory (CMT) under weak coupling assumptions (the presence of the fiber taper does not strongly perturb the WGMs of the disk resonator). The details of such analysis have already been presented in [START_REF] Baker | On-chip nano-optomechanical whispering gallery resonators[END_REF][START_REF] Parrain | Optomécanique fibrée des disques GaAs : dissipation, amplification et non-linéarités[END_REF][START_REF] Ding | Handbook of optical microcavities, ch. Gallium Arsenide Disk Optomechanical Resonators[END_REF].

Here we shall briefly review this analysis and remind the useful relations to readers. 

S

S out = S in -k * a(t) (2.5)
where κ in and κ ext are the intrinsic and extrinsic decay rate of the energy stored in the WGM, ω 0 is the WGM resonance frequency and k is the coupling term between the resonator and the fiber (k is related to the extrinsic decay rate κ ext via |k| 2 = κ ext ). The signs appearing in equations 2.4 and 2.5 depend on the convention for the field phase (here we consider an e -iωt dependence of the input field).

The fraction of the input power that is stored as the intra-cavity energy is found as

|a(t)| 2 |S in | 2 = κ ext ∆ω 2 + κ in 2 + κext 2 2 (2.6)
where ∆ω = ω L -ω 0 is the frequency detuning from resonance. Then the number of cavity photons in a WGM is given by

N cav = κext hω L ∆ω 2 + κ in 2 + κext 2 2 |S in | 2 (2.7) 
The normalized waveguide transmission is found as

|S out | 2 |S in | 2 = ∆ω 2 + κ in 2 -κext 2 2 ∆ω 2 + κ in 2 + κext 2 2 (2.8)
When the WGM is a doublet, one needs to take into account the coupling of clockwise (cw) and counter-clockwise (ccw) propagating photons. The number of cavity photons in such a WGM is given by

N cav = 1 (∆ω -β) 2 + κ in 2 + κext 2 2 + 1 (∆ω + β) 2 + κ in 2 + κext 2 2 κ ext 2hω L |S in | 2 (2.9)
where β is the coupling co-efficient of cw and ccw propagating waves. The normalized waveguide transmission is also modified to

|S out | 2 |S in | 2 = κ 2 in 4 - κ 2 ext 4 -∆ω 2 + β 2 + iκ in ∆ω κ in 2 + κext 2 2 -∆ω 2 + β 2 + 2i κ in 2 + κext 2 ∆ω 2 (2.10)

GaAs optomechanical disk resonators

Two important parameters of a WGM resonance can be derived from equation 2.8. These parameters are the on-resonance transmission T on (at ∆ω = 0) and the full width at half maximum (FWHM) δω. They are expressed as

T on = 1 -K 1 + K 2 (2.11) δω = κ in (1 + K) (2.12)
where

K = κ ext /κ in = Q in /Q ext .
Q in and Q ext are called intrinsic and extrinsic optical quality factor of the WGM. From the definition of the parameter K we find three different disk-fiber coupling regimes :

-Under-coupled regime (K < 1): The coupling losses κ ext are smaller than the intrinsic losses κ in . The resonance transmission contrast (1 -T on ) is < 1 and the measured loaded optical quality factor Q l lies between Q in and Q in /2. -Critical coupling (K = 1): The intrinsic and extrinsic losses become equal and T on drops to zero. All the incoming photons from the fiber are coupled to the disk resonator and dissipated by it. Q l = Q in /2 -Over-coupled regime (K > 1): Increased coupling losses result in a reduced loaded quality factor. The contrast of the resonance diminishes.

Q l < Q in /2
In chapter 3 we will present the experimental observation of these three coupling regimes. In the next chapters we will use the above relations to study the optical properties of measured WGMs.

Mechanical modes of GaAs disk resonator

We have seen so far that GaAs disks support WGMs of high optical quality factor, located at the periphery of the disk. These disks also support a variety of out-of-plane ('flexural') and in-plane ('radial breathing' and 'contour') mechanical modes. Assuming isotropic mechanical properties of the GaAs crystal and using the rotational invariance of the disk geometry, these mechanical modes can be classified as well with an azimuthal order M and a radial order P . For optomechanical studies, we are interested in the mechanical modes that efficiently couple to the optical modes of the resonator. For efficient optomechancial coupling the mechanical vibration should have a significant impact on the optical path length for the photons in the cavity. Hence we can anticipate that the out-of-plane mechanical modes of the disk are not well coupled to the optical WGMs.

But the in-plane mechanical modes are of particular interest for optomechanical coupling. The in-plane modes are classified again into three main categories named as 'radial breathing modes (RBMs)', 'tangential modes' and 'wine glass modes' [START_REF] Onoe | Contour vibrations of isotropic circular plates[END_REF]. 'Radial breathing modes' correspond to mechanical vibrations of the disk where the physical boundary undergoes a radial displacement (mechanical breathing). Such radial breathing is shown schematically in Figure 2.1(b). The 'tangential modes' involve pure tangential motion of the disk with no significant change in the disk periphery. 'Wine glass modes' do not greatly modify the length of the optical cavity built on a WGM [START_REF] Abdelmoneum | Stemless wine-glassmode disk micromechanical resonators[END_REF].

Mechanical modes of GaAs disk resonator

As a consequence both tangential and wine glass modes do not couple much to optical WGMs. Radial breathing modes have a great impact on the WGM optical cavity length, and naturally attract our attention for optomechanical studies.

Radial breathing modes

We consider again a cylindrical coordinates system for the disk geometry, and assume that the radial displacement of the disk does not depend upon the vertical coordinate, nor on the azimuthal variable θ (M = 0). Then the radial displacement amplitude u(r) of one RBM, at any distance r from the center of the disk is given by [START_REF] Onoe | Contour vibrations of isotropic circular plates[END_REF][START_REF] Love | A treatise on the mathematical theory of elasticity[END_REF] u(r) = Aα P J n (α P r)

(2.13

)
where A is a normalization constant and J n is the Bessel function of the first kind of order n. The parameter α P depends on the elastic properties of the material and the eigenfrequency Ω P of the considered RBM. α P is defined as

α P = Ω P ρ E 1+σ + Eσ 1-σ 2 (2.14)
Here ρ, E and σ are the material density, Young's modulus and Poisson ratio respectively. There are different orders of RBMs, identified with the radial number P . The successive eigen frequencies for the RBMs of increasing P number are found by solving the following equation for Ω P :

ζ ξ J 0 (ζ/ξ) J 1 (ζ/ξ) = 1 -σ with ζ = Ω P R ρ(2+2σ) E ξ = 2 1-σ (2.15)
To get the resonance frequency Ω P of the P -th order RBM, we write the solution to 2.15 in the following generalized form:

Ω P = λ P R E ρ(1 -σ 2 ) (2.16)
Here λ P depends on the Poisson ratio of the disk material and the radial order P . It is interesting to note from equation 2.16 that the RBM frequency at equal P goes inversely with the disk radius. Hence it is possible to achieve very high mechanical frequency (over GHz for 1 st order RBMs) with small disk resonators (∼ 1 µm radius).

Numerical simulation of mechanical modes

The analytical description presented above already gives the approximate eigen frequency of RBMs of varying P order. To be more precise in the analysis, numerical simulations are performed to compute the RBMs of the disk. The computations are carried out by FEM using the COMSOL software. The resonator has rotational invariance around z. Hence 2D axi-symmetric simulations in the (r, z) plane are sufficient for the analysis. In this thesis we have always employed 1 st order RBMs (P = 1, M = 0). Figure 3.17 shows the 1 st order RBM of a GaAs disk resonator of radius 4.5 µm. The frequency of this mechanical mode is 307 MHz. For a disk of radius 3.4 µm the frequency of the 1 st order RBM is 406 MHz. This increase of frequency with reducing disk size is consistent with the analytical model presented in section 2.3.1. The 1 st order RBM resonance frequency (f m ) given by the analytical formula is in very good agreement with the frequency found through FEM simulations (Table 2 

Loss sources for mechanical modes

Loss sources for mechanical modes

Mechanical quality factor

The mechanical quality factor is a measure of the temporal confinement of the mechanical energy in the disk resonator. Like the optical quality factor, the mechanical quality factor (Q m ) of the disk resonator is defined as

Q m = 2π Energy stored Energy dissipated per cycle = ω m δω (2.17)
where ω m and δω are the mechanical resonance frequency and FWHM of the Lorentzian mechanical resonance. Q m is an important parameter for many reasons. For example the efficiency of optomechanical cooling scales with the mechanical quality factor. Hence for cooling experiments it is desirable to have a high Q m . But there are various loss sources that limit the mechanical quality factor of disk resonators. In this thesis, we did not really pay much attention to boost the Q m of the resonators. In two prior PhD thesis on GaAs disks for cooling, Christopher Baker and William Hease carried a detailed analysis of mechanical dissipation mechanisms and invested serious efforts to improve Q m [START_REF] Baker | On-chip nano-optomechanical whispering gallery resonators[END_REF][START_REF] Hease | Gallium arsenide optomechanical disks approaching the quantum regime[END_REF].

Hence in this section we briefly review the mechanical loss sources.

Clamping losses

Clamping losses correspond to the dissipation of mechanical energy from the GaAs disk to the substrate via the AlGaAs pedestal. In the mechanical vibration the disk generates acoustic waves (compression waves). These acoustic waves propagate to the substrate via the pedestal leading to energy dissipation. Clamping losses depend on the acoustic properties of the material and on the structure of the disk pedestal. The radius of the pedestal strongly influence the clamping loss quality factor (Q clamping ). Simulations show that Q clamping is increased by about four orders in magnitude as the pedestal radius is reduced from 500 nm to 100 nm for a disk of radius 4.5 µm (Figure 2.9). Hence to boost up the mechanical quality factor, we simply fabricate the radius of the pedestals as small as possible.

Air damping

In this thesis all experiments are carried out in atmospheric conditions. The air surrounding the disk can dissipate the energy of the mechanical vibration. With very small pedestal and minimized clamping losses, air damping sets an upper bound on the mechanical quality factor. For instance, the measured Q m of a disk with radius 4.5 µm and > 95% undercut ratio is ∼ 1550 in air, while Q clamping of such a disk is calculated to be ∼ 10 5 . When the experiments are carried out under vacuum, the dissipation by air damping becomes negligible and clamping losses becomes relatively considerable. 

Thermoelastic damping

Thermoelastic damping originates from the strain gradient in the material as it mechanically vibrates. When the disk is deformed by a slow vibration, the regions of the material under compressive strain heat up, while regions under tensile strain cool down. This results in a heat flow between the hot and cool regions. In this process mechanical energy is transformed into entropy, leading to dissipation. Thermoelastic dissipation depends on the thermal properties of the material and also on the geometry of the resonator. Thermoelastic damping is also very much dependent on the temperature. Performing the experiments in cryogenic environment at low temperature, the thermoelastic damping can be significantly minimized [START_REF] Baker | On-chip nano-optomechanical whispering gallery resonators[END_REF]. FEM simulations yield thermoelastic damping related quality factor Q T ED of about 10 5 at room temperature (RT), for a disk of radius 4.5 µm (thickness 200 nm) with a pedestal radius 500 nm.

Influence of the surface state

The structural and chemical properties of the resonator surface might impact the mechanical quality factor as well. Effect of surface chemistry on mechanical energy dissipation has been reported by several groups [START_REF] Wang | Surface chemical control of mechanical energy losses in micromachined silicon structures[END_REF][START_REF] Yang | Energy dissipation in submicrometer thick singlecrystal silicon cantilevers[END_REF]. This is a subject of ongoing research work in our team as well. In Chapter 4 we will study different surface modification techniques that efficiently reduce the optical losses in GaAs disk resonators. Now the aim is to investigate the effect of such surface treatments on mechanical dissipation in these disks.

Optomechanical coupling in disk resonators

Optomechanical coupling in disk resonators

From previous discussions, we know that the disk structure is both an optical cavity and a mechanical resonator. The mechanical modes of the resonator are coupled to its optical WGMs, building an optomechanical device. In Chapter 1 we have studied the basic principles of optomechanical interactions for a generic optomechanical system. Here the disk boundary plays the role of the movable mirror in the optomechanical Fabry-Pérot cavity (see Chapter 1, section 1.1 and Figure 1.2). Photons trapped in a WGM, located at the periphery of the disk, exert centrifugal radiation pressure on the disk boundary. This gives rise to a radial expansion of the disk (radial breathing motion). Conversely, such mechanical radial breathing of the disk modulates the effective optical path of the disk cavity. In Chapter 1 we had introduced the frequency pull parameter g om and the vacuum optomechanical coupling rate g 0 to quantify the degree of optomechanical coupling. In this section we give some values of these optomechanical coupling parameters computed by FEM simulations with the means introduced in Chapter 1, section 1.4.

Estimation of the optomechanical coupling

In this thesis, we have mostly employed GaAs disks of radius 3.4 µm and 4.5 µm, with a thickness of 200 nm. Hence we present here the optomechanical coupling parameters for 1 st order RBM and TE-polarized WGMs of disks with these dimensions. Table 2.2 lists the frequency of the 1 st order RBM and both the geometric contribution (g geo om ) and photoelastic contribution (g pe om ) to the frequency pull parameter. Finally the vacuum coupling g 0 is calculated by adding these two contributions and multiplying by the amplitude of zero point fluctuation x ZP F . To compute x ZP F in Table 2.2, we have chosen as reduction point a point of maximal mechanical displacement (at the disk periphery) for the 1 st order RBM (P = 1, M = 0). In Chapter 1 we learned that g geo om is associated to radiation pressure, while g pe om deals with the photoelastic properties of the resonator. When optical energy is stored in the WGM of a GaAs disk the material experiences an outward electrostrictive pressure, leading to its expansion. Thus g pe om adopts the same sign as g geo om . It is interesting to study how the optomechanical coupling varies with the radial order of WGMs. The results are presented in Table 2.3, for a disk of radius 4.5 µm and thickness 200 nm. We have considered the optomechanical coupling of the 1 st order RBM to TE-polarized WGMs of radial order p = 1 to 6. Note that for such disk and for WGMs of radial order p > 1, the photoelastic optomechanical coupling g pe om is larger than the geometric contribution g geo om . In this table we also observe that g geo om decreases with increasing p order. This is expected as higher order p modes are more distant from the periphery and in the calculation of g om we chose the point of maximal displacement (on the disk periphery) as reduction point. On the other hand g pe om increases with p order. Indeed the photoelastic optical frequency-pull parameter increases with the overlap of the optical energy with the strain, which for the 1 st order RBM is maximum close to the center of the disk and diminishes close to the disk periphery [START_REF] Baker | Photoelastic coupling in gallium arsenide optomechanical disk resonators[END_REF]. As a consequence, the vacuum optomechanical coupling g 0 also increases with the p number. Finally in Table 2.4 we list the optomechanical coupling parameters for the 1 st order RBM of the same disk and WGMs of same radial order p = 4 but different azimuthal order m. We observe that the optomechanical coupling barely varies with m order. p m λ 0 (nm) 

Radius (µm)

f m (MHz) g geo om (GHz/nm) g pe om (GHz/nm) x ZP F (fm) g 0 (kHz) 3.
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Conclusion

Conclusion

We have presented optical and mechanical modes of GaAs disks and detailed aspects of of their dissipation. We have studied the optomechanical interactions at play in these resonators. The optomechanical coupling strength was also presented for some disks employed in the experiments of this thesis. These values will guide us while analysing our results in the next chapters.

Chapter 3

Fabrication of GaAs disks and experimental techniques

This chapter focuses on the clean-room fabrication of GaAs optomechanical disk resonators and on experimental aspects of their characterization. It is divided into three parts: in the first part, the fabrication steps of GaAs disk resonators are presented, the second part describes the fiber-taper fabrication technique and the last part details the optical/mechanical characterization methods of these resonators.

Fabrication of GaAs disk resonators

The growth of the wafer is carried out at Centre de Nanosciences et de Nanotechnologies (C2N) in Marcoussis (team of Aristide Lemaitre), by molecular beam epitaxy (MBE). One wafer used in this thesis was grown by Metal-Organic Chemical Vapour Deposition (MOCVD) at Thales III-V lab in Palaiseau (team of Bruno Gérard) (see Chapter 4). All subsequent fabrication steps are performed in the clean room of Matériaux et Phénomènes Quantiques (MPQ) at Université Paris Diderot.

Fabrication at a glance

The main fabrication steps are summarized in Figure 3.1. On a commercial semiinsulating GaAs substrate, a 500 nm GaAs buffer layer is first grown. This buffer layer ensures a very good substrate for further growths. An Al 0.8 Ga 0.2 As layer of thickness 1.8 µm is then grown on this substrate, followed by the growth of a 200 nm thick GaAs top layer (Figure 3.1(a)). Out of this wafer, the disk resonators are fabricated by subsequent lithography and wet chemical etching. The fabrication steps are as follows -First a small piece is cleaved from the wafer.

-This wafer chip is cleaned in acetone and in isopropanol (IPA) subsequently. The surface is this way prepared for resist deposition before electron beam exposure. -Immediately afterwards a negative electron beam resist MaN-2403 is spun on this clean dehydrated surface ( -The final step is to selectively under-etch the AlGaAs layer in a HF solution to define the disk pedestal (Figure 3.1(h)).

In the following section we detail these steps.

Electron beam lithography

Substrate preparation

To have a clean resonator surface, one needs to start with a very clean sample surface from the beginning. Chip surface preparation is an important step prior to electron beam lithography. First a small chip (typically 1 cm × 1 cm) is cleaved from the wafer. The chip is dipped in acetone in ultrasound for 15 min. The chip is then transferred to an IPA solution in ultrasound for 5 min. These steps serve to remove dust or greasy contaminants from the surface. Next the chip is placed on a hot plate at about 180 • C for about 15 min. This evaporates the adsorbed water and promotes better resist adhesion. Now the surface is prepared for resist deposition.

Resist deposit

A negative electron beam resist MaN-2403 is deposited on the surface by spin coating. A good adhesion of the resist on the GaAs surface is necessary. First a thin adhesion promoting layer ('primer') of HexaMethylDiSilazane (HMDS) is spin-coated on the sample surface immediately after surface dehydration. HMDS reacts with GaAs native oxides leading to a hydrophobic surface, thus promoting resist adhesion. The e-beam resist MaN-2403 is then spun on the surface. The rotation speed and acceleration of the spin coater and the spinning time are important parameters to deposit a homogeneous resist layer. To coat the surface with a 300 nm thick resist layer, the used parameters are

Speed

Acceleration Time HMDS 6000 rpm 4000 rpm/s 30 s MaN-2403 3000 rpm 3000 rpm/s 30 s

(a) (b) (c) (d) (f) (e)

GaAs top layer AlGaAs sacrificial layer GaAs substrate

MaN 2403 e-beam resist S1828 photo resist (h) (g) 
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Next the sample is pre-baked on a hot plate at 95 • C for 65 s. Pre-baking reduces the solvent concentration in the resist. This step also promotes resist adhesion. One needs to be cautious with the pre-baking time, as longer pre-baking time leads to longer development time after exposure.

Exposure

The sample is now ready to be exposed. The MaN-2403 resist is also photosensitive, so one should be careful not to expose the surface to ultra violet (UV) light at this step. The mask design consists in circular disk patterns of typically 5 -10 µm in diameter.

The 'E-line' software is used to design the mask and the design then adapted to the 'Raith EBL system'. To obtain a smooth boundary of the disk resonators, the resist is exposed with a small step size (high resolution) and small aperture (low current). For the exposure, the Write Field (WF) mode of EBL is used where the electron beam is deflected to expose 100 µm×100 µm 'Write fields'. An acceleration voltage of 20 kV is used for the electron beam with the following parameters: 100 µm aperture, 100 nm step size and 140 µC/cm 2 dose.

Development

The AZ 726 MIF solution is used to develop the resist after exposure. The exposed regions of the resist get cross-linked, while the unexposed parts remain unaltered. In the developer the unexposed parts of the resist are dissolved, leaving the exposed form patterns on the surface. The development is carried out in steps of 10 s with sub-sequential rinsing in two deionized (DI) water baths for about 1 min. The total development time is about 30 -45 s. The state of the sample at this step corresponds to Figure 3.1(c). Figure 3.2 shows an optical microscope image of the disk patterns after resist development. 

µm
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First non-selective wet chemical etching in BCK

Adachi [START_REF] Adachi | Chemical etching of inp and ingaasp/inp[END_REF] reported in 1982 the use of BCK solution (named after its three components: HBr, CH 3 COOH and K 2 Cr 2 O 7 ) to etch InP and InGaAsP/InP. Later in 1983 [START_REF] Adachi | Chemical etching characteristics of (001) gaas[END_REF] he again reported the use of BCK for chemical etching of GaAs. HBr based solution is also reported [START_REF] Gayral | High-q wet-etched gaas microdisks containing inas quantum boxes[END_REF] to chemically etch GaAs/AlGaAs micro-structures. As an etchant BCK has certain advantages: the etching is non-selective (both GaAs and AlGaAs are etched at the same rate), isotropic and produces a smooth sidewall.

To obtain the BCK solution, first a saturated solution of Potassium dichromate (K 2 Cr 2 O 7 ) is prepared by dissolving 14.7 g of K 2 Cr 2 O 7 in 100 ml of DI water while heating at around 60 • C. The BCK solution is then obtained by mixing HBr, CH 3 COOH and the freshly prepared saturated solution of K 2 Cr 2 O 7 in equal proportion. The resist pattern obtained by e-beam lithography serves as an etch mask for this chemical etch step, which removes the top GaAs layer and AlGaAs sacrificial layer everywhere in an isotropic fashion, except in the regions protected by the resist (Figure 3.1(d)). The etching is performed at 4 • C as at room temperature the etching is very aggressive. The etch time is typically about 1 min 20 s. With such etch time, the etching is about 2 µm in the vertical direction. After etching, the sample is rinsed in DI water for about 1 min 30 s and dried with N 2 blow. Figure 3.3 shows a SEM image of the resonators after first non-selective BCK etch step.

µm

Mesa fabrication

To ensure a better coupling of the disks with the fiber-taper and to prevent any coupling of light from the fiber taper to the surface of the rest of the sample, the disks are elevated over the substrate surface on a 'ridge'. This ridge is called a 'mesa' ('table' in Spanish). The desired mesa structure is about 10 µm high and 40 µm wide, and runs all along the millimeter-sized sample in the last dimension.
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Photolithography

A positive photosensitive resist S1828 is spun on the sample surface by spin coating (Figure 3.1(e)). The resist thickness is 2.8 µm, so it completely covers the structures etched in the first BCK solution. After spin coating the sample is pre-baked on a hot plate at 110 • C for 3 min.

A dedicated optical mask with a design of 50 µm wide line is aligned over the column of the disks and the resist is exposed with UV light in MJB4 aligner (from Microtec). The resist is developed in MF319 solution for about 40 s, and then rinsed in DI water and dried with N 2 blow. The exposed parts of the positive resist S1828 are dissolved in the developer as shown in Figure 3.1(f). Figure 3.4 shows an optical microscope image of the S1828 resist mask after development. 

µm

Second non-selective etching with BCK

The mesa is etched with BCK solution at room temperature. The purpose of this etch step being just to elevate the resonators above the substrate, the roughness of the sidewalls is not important. Hence the etching can be performed at room temperature in order to accelerate the process. The etch time is about 9 -10 min. After etching, the sample is thoroughly rinsed in DI water for about 2 min and dried with a N 2 blow.

Resist removal

The next step is to remove the resist from surface. To that purpose the sample is kept in hot acetone at 40 • C for ∼ 1 h30 min, and transferred in IPA for 5 min. Sometimes it is difficult to remove the MaN-2403 resist completely from the surface using mere acetone. In such case the sample is treated in O 2 plasma for about 15 min. We have however observed that the use of O 2 plasma oxidizes the surface and degrades the Q opt of the resonator. After O 2 plasma, the sample hence dipped in ammonium hydroxide (NH 4 OH) solution to remove the surface oxides. After the resist removal, the sample is preserved in IPA until the next under-etch step, in order to minimize the risk of oxidation in air. The status at this step is presented in Figure 3.1(g). Figure 3.5(a) shows the optical image of mesa after eching and resist removal. In Figure 3.5(b), a SEM image of one lateral side of the mesa is presented.

Selective wet chemical under-etching with HF

The disk pedestals are fabricated by selective under-etch of the Al 0.8 Ga 0.2 As layer. For that purpose HF acid is used as etchant. HF is reported [START_REF] Hjort | Sacrificial etching of iii-v compounds for micromechanical devices[END_REF] to etch Al x Ga 1-x As with 'complete selectivity' over GaAs, in case of high aluminium (Al) fraction x. Gayral et al. also reported [START_REF] Gayral | High-q wet-etched gaas microdisks containing inas quantum boxes[END_REF] the use of HF to selectively under-etch Al 0.8 Ga 0.2 As with GaAs as a stop layer. The etching is very aggressive at room temperature and with concentrated HF solution. For good mechanical performance of the disk resonator, it is desirable to achieve a controlled pedestal radius, with smooth sidewalls. So we dilute the HF solution to 2.5% (V/V) and cool down the solution to 4 
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In the HF solution, the sample is agitated continuously, alternating clockwise and counter-clockwise motion. This helps to define an isotropic pedestal. At the end of this step, the sample is rinsed in DI water and dried with a N 2 blow. The sample is now ready to be used in experiments. Figure 3.1(h) presents the form of the final sample. In Figure 3.6 we show corresponding SEM images. After HF under-etching, the resonators become very fragile and tend to collapse easily with mechanical shocks. This problem is illustrated in Figure 3.7. The samples need to be manipulated with great care. It is important to mention that the reaction products of HF and AlGaAs are not very soluble in water and the etched AlGaAs material might re-deposit on the surface and even on the disk cap (as shown in Figure 3.8(a)). In Figure 3.8(b) we present the energy spectra of these redeposits, measured with Energy dispersive X-ray spectroscopy (EDS). They support our understanding of re-deposition of etched AlGaAs material. To avoid these re-depositions, the sample is rinsed in potassium hydroxide (KOH) solution (10 g KOH in 100 mL DI water) for about 1 min 30 s after HF under-etch. The sample is then rinsed in DI water and dried. The reaction products of HF and AlGaAs get dissolved in the KOH solution and the resonators acquire a very clean surface. Figure 3.2 Fabrication of fiber taper 3.9 shows a final disk resonator elevated over the surface on a mesa. In Figure 3.10 a single disk together with a zoom on its boundary are presented to illustrate the smooth sidewall of the resonator. 

Fabrication of fiber taper

In experiment the disk resonators are addressed by the fiber-taper evanescent coupling technique. The fiber tapers are fabricated by simultaneously heating and pulling commercially available single-mode silica fibers (SMF-28). In our team, we use a thermoelectric micro-heater, instead of conventional burner flames, to fabricate the fiber tapers. The technical details and the advantages of this process are reported in [START_REF] Ding | Ultralow loss single-mode silica tapers manufactured by a microheater[END_REF].

Here we give a rapid description of this technique. The fiber polymer coating is striped over 3 cm in length and the striped part is cleaned with acetone. It is subsequently clamped on two linear translation stages (TS1 and TS2 in Figure 3.11) with the stripped part centered between the clamps. The stripped part of the fiber is inserted into a ceramic thermo-electric micro-heater (manufactured by NTT-AT), operating at 1100 • C. The silica fiber softens during 2 minutes at this temperature. Both translation stages are then pulled very slowly (at a constant velocity of 40 µm/s). The transmission through the fiber is continuously monitored in the course of pulling. In the first stages of pulling, the fiber becomes multi-mode and the beating between guided modes produces an oscillation in real time transmission. Gradually the fiber becomes mono-mode as the taper thins down, and this oscillation disappears.

At that stage we stop the translation stages. The fiber is then allowed to thermalize for about 10 min, and glued afterwards on a metal support meant to be mounted in the experiment. With this technique we reproducibly fabricate single mode fiber tapers with over 95% transmission. To avoid the possible damages from the ambient atmosphere of the lab, the fiber taper is subsequently preserved in a dry atmosphere. To that aim, the full evanescent optical coupling experiment is embedded in a plexiglass enclosure. Typical diameter of fabricated fiber tapers is between 800 nm and 1 µm. Figure 3.12 shows the fiber transmission as function of time during pulling. As discussed earlier, in the beginning the transmission oscillates before gradually reaching mono-mode operation. At the end of the pulling this fiber taper reaches 97% in transmission. 

Optomechanical measurements

Optomechanical measurements

The disk resonators store light in optical WGMs (see Chapter 2). In our experiments these WGMs are excited via evanescent coupling to a fiber taper. In this section the experimental set-up for optomechanical measurements and the associated techniques are presented.

Experimental set-up

The set-up for optomechanical measurements on GaAs disk resonators is shown in Figure 3.13. The metal support holding the fiber taper is installed inside a plexiglass enclosure, that protects the fiber taper and the sample from atmospheric degradation and contaminations. The sample is glued to an 'invar' (a nickel-iron alloy) block placed on a motorized XYZ piezo-driven stage (Attocube ECS 3030). We use Invar because this material has a low thermal expansion coefficient, also its magnetic properties lower possible noise issues.

An external cavity tunable laser (Tunics model, 1500 -1600 nm) is used. The laser power can be varied up to 20 mW. The output laser light polarization is adjusted using a fiber polarization controller (FPC). A linear polarizer (LP) transmits only the vertically polarized light as the light exits to a free-space path. The beam is then re-coupled to the tapered fiber using two mirrors and a focusing lens. The polarization of the light, guided in the tapered fiber, is influenced by the orientation of the fiber. A half-wave plate is used to control the polarization of the guided beam at its input port.

With a 'Labview' programme, we control the translation of the piezo stage and bring a disk resonator in the near field of the fiber-taper. With a microscope objective we continuously monitor the alignment of the fiber-taper and the disk from the top. The fiber-taper output light is focused on a photodiode through free optics electronic spectrum analyzer (ESA) (FSL from Rohde and Schwarz ), which displays the RF spectrum containing the mechanical information.

Optical spectroscopy

When the resonator and the fiber taper are evanescently coupled, WGMs appear as dips in the DC optical transmission. Figure 3.14 shows the optical spectrum of a GaAs disk resonator in the wavelength range 1500 -1600 nm. The spectrum is normalized to a "reference" spectrum, acquired with the disk positioned far from the fiber-taper, in order to maintain constant (unity) transmission over the entire wavelength range. All the modes are TE polarized in this spectrum. As discussed in Chapter 2, different radial (p) and azimuthal order (m) modes appear but with the employed disk thickness (200 nm) only first-order (l=1) vertical confined modes are supported. In Chapter 4 the identification of different WGMs with their radial and azimuthal numbers will be presented.

The contrast of a WGM resonance in the optical spectrum changes with the evanescent coupling strength between the disk and the fiber taper. In experiments the coupling is varied by approaching or moving away the disk from the fiber. As the disk approaches the fiber, the coupling increases and extrinsic optical losses of the disk WGMs also increase. This diminishes the loaded Q opt of the measured mode. A complete evolution of the resonance contrast and loaded quality factor is presented in Figure 3.15. In this Figure we show the resonance linewidth and resonant normalized transmission (T on ) as a function of distance between disk and fiber taper. At large distance only few photons are coupled from the fiber to the disk, the loaded Q opt is close to the intrinsic Q opt and the resonant transmission is close to 1. It decreases as the disk is approached to the fiber until the 'critical' coupling point (indictaed by the vertical dashed line) is reached. At this point the on-resonance transmission T on drops to zero and all photons are coupled to the WGM. Over the critical coupling, the extrinsic losses overcome the intrinsic losses and the resonance contrast starts to diminish again (T on re-increases). This evolution of T on and linewidth (δλ) are well captured by equations 2.11 and 2.12 of Chapter 2, where the coupling parameter κ ext is assumed to vary as κ ext (g) = κ ext (0)e -ηg with g disk-fiber gap distance and η decay constant [START_REF] Ding | Handbook of optical microcavities, ch. Gallium Arsenide Disk Optomechanical Resonators[END_REF][START_REF] Ding | Gaas micronanodisks probed by a looped fiber taper for optomechanics applications[END_REF]. At high optical power the Lorentzian WGM resonances get distorted by thermooptic effects as shown in Figure 3. 16(a). This is a direct consequence of temperature elevation in the resonator induced by residual absorption of light. GaAs has a positive thermo-optic coefficient ( dn dt ) [START_REF] Ding | Wavelength-sized gaas optomechanical resonators with gigahertz frequency[END_REF], which means that its refractive index increases with the temperature increase following

n(∆T ) = n(0) + dn dt ∆T (3.1)
where n(0) is the GaAs index at room temperature, ∆T is the temperature rise in the disk and n(T ) is the GaAs index at increased temperature. Following the approximate relation

2πRn ef f = mλ 0 (3.2)
the WGM resonance shifts to longer wavelength when the index increases. This is shown in Figure 3.16, where a laser sweep at high power gradually shifts the WGM resonant dip towards longer wavelength. As a consequence, the Lorentzian optical resonance in the spectrum transforms into a triangular resonance profile. The thermo-optic shift of WGM resonances can be modelled from the temperature rise ∆T . ∆T evolves in time as
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∆T (t) = (∆T (0) -R th P abs ) e -t/τ th + R th P abs (3.3)
where R th is the thermal resistance at the anchoring point of the disk and the pedestal, τ th is the thermal relaxation time and P abs is the power absorbed in the disk. The thermal relaxation time can be calculated by FEM simulations or can be measured directly. Thermal resistance R th reflects a resistance against the evacuation of the thermal energy from the disk through the pedestal and depends a lot on pedestal dimensions. For a narrow perfect cylindrical pedestal with radius r p and height h p , the thermal resistance can be approximated as

R th = 1 λ pedestal h p πr 2 p (3.4)
where λ pedestal is the thermal conductivity of the pedestal. R th is also related to thermal relaxation time τ th following

R th = τ th Cm d (3.5)
where C is the specific heat capacity of the material and m d is the thermal mass of the disk. P abs as a function of the cavity photon number is given as

P abs = κ abs hω L N cav (3.6)
with κ abs being the linear absorption rate in the disk cavity. Finally the shift in the WGM resonance frequency (ω 0 ) with the temperature increase is calculated with

∆ω 0 = ∂ω 0 ∂T ∆T (3.7) 
where ∂ω 0 ∂T represents the change in the resonance frequency ∂ω 0 for an infinitesimal change in the disk temperature ∂T . In later chapters, we will use all these elements to fit the experimentally measured thermo-optic shifts in our disk resonators. The wavelength drag by thermo-optic effect can also be seen as a measure of the absorption in the resonator. In Chapter 4 we will use this approach to quantify absorption losses.

Optomechanical spectroscopy

As mentioned in section 3.3.1 the mechanical mode of the disk resonator is measured with an ESA using the AC RF part of the optical transmission. The laser is tuned to the blue flank of a WGM, such that the disk mechanical vibration modulates the optical transmission of the fiber (see Chapter 1, section 1.3). With an ESA, the RF noise of this optical transmission is measured. With sufficient detectivity the mechanical motion mode emerges above the noise level in the spectrum, in the form of a resonance. Figure 3.17 shows such a mechanical resonance of a disk of radius 3.5 µm. The mechanical quality factor of the corresponding mode is directly obtained from the measured linewidth (amounts in this case to Q m =150). Chapter 4

Surface passivation of GaAs disk resonators

In Chapter 3, we presented the fabrication steps and optical characterization techniques for GaAs disk WGMs. The mode volume of WGMs in a GaAs disk resonator can be in the sub-micron range and the optical quality factor reaches upto a few 10 5 [START_REF] Ding | High frequency gaas nano-optomechanical disk resonator[END_REF][START_REF] Ding | Handbook of optical microcavities, ch. Gallium Arsenide Disk Optomechanical Resonators[END_REF][START_REF] Srinivasan | Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures[END_REF]. Such high value is however still well below the design limit set by bending losses, calling for an analysis of the different optical losses that limit the optical quality factor in our GaAs disk resonators. Based on this understanding, we present here new techniques that we developed, which have allowed to improve optical performances of GaAs disks.

Origin of optical losses

There are two classes of optical losses for WGMs of a disk: intrinsic losses (Q -1 in ) and extrinsic losses (Q -1 ext ). Intrinsic losses relate to the physical properties of the optical resonator itself, while extrinsic losses relate to the coupling of the resonator mode to the input or output ports (fiber taper or waveguide). One has the (loaded) optical quality factor

Q -1 opt = Q -1 in + Q -1
ext . There are different sources of intrinsic losses: bending losses (Q -1 bend ), scattering losses (Q -1 scat ), linear absorption losses (Q -1 abs ) and non-linear two-photon absorption losses (Q -1 T P A ). If each loss source can be treated independently, then the total intrinsic optical quality factor of the disk resonator is written as

Q -1 in = Q -1 bend + Q -1 scat + Q -1 abs + Q -1 T P A (4.1)
Bending losses are induced by the curved boundary of the disk resonator. Scattering losses account for the scattering of cavity photons coming from the surface irregularities of the resonators. Finally absorption losses include both optical losses by linear absorption in the disk material and losses by two-photon absorption.

Previously we have studied these different sources of optical losses in GaAs disks in great detail [START_REF] Parrain | Optomécanique fibrée des disques GaAs : dissipation, amplification et non-linéarités[END_REF][START_REF] Parrain | Origin of optical losses in gallium arsenide disk whispering gallery resonators[END_REF]. Here we summarize the resulting understanding and present different techniques to improve the optical performance of these resonators.

Bending losses

Bending losses are sometimes called radiative losses, and they result from the curvature of the disk sidewalls. Bending losses increase as the disk size is reduced and the curvature consequently increased. Bending losses can be computed for example using FEM simulations. Previously we reported [START_REF] Parrain | Origin of optical losses in gallium arsenide disk whispering gallery resonators[END_REF] the computed values of Q bend for WGMs in GaAs disks having thickness of 200 nm and radius of 5 µm and 2.5 µm respectively. A disk of 5 µm radius supports different families of TE modes (with radial number p from 1 to 8) and only two families of TM modes (p = 1 and 2). At same p, TE modes have a better bending quality factor (Q bend ) than TM modes. TE modes with radial order p = 1 to p = 4 have design Q bend over 10 10 at the telecom wavelength λ = 1.55 µm [START_REF] Parrain | Origin of optical losses in gallium arsenide disk whispering gallery resonators[END_REF].

Scattering losses

Non-perfect circular geometry of the disk resonator and residual irregularities (roughness and waviness) of the disk sidewalls lead to scattering of photons. The geometrical imperfections of the disk resonators were analyzed by ultra-high resolution TEM observations [START_REF] Parrain | Optomécanique fibrée des disques GaAs : dissipation, amplification et non-linéarités[END_REF][START_REF] Parrain | Origin of optical losses in gallium arsenide disk whispering gallery resonators[END_REF]. At very high magnification ratio, the irregularities of the circular boundary become well resolved and a 2 nm thick amorphous GaAs layer is revealed at the disk surface. In his thesis, David Parrain presented a contour analysis of one disk resonator to extract the waviness and roughness of a disk boundary from high resolution TEM images. His analysis showed that the amplitude of residual roughness lies between 0.5 and 1.5 nm with a correlation length between 20 and 80 nm.

For WGM that are poorly confined by the disk (typically high p order), Q opt is simply set by bending losses. But for decreasing radial order p, the bending losses reduce and the losses induced by irregularities of the disk boundary become relatively important. Finally, for p = 1 and p = 2, bending losses become negligible but scattering losses decrease as well, finally ending in a quality factor set by surface roughness, computed to be of a few millions for disks of about 5 µm radius [START_REF] Parrain | Origin of optical losses in gallium arsenide disk whispering gallery resonators[END_REF]. In experiments, for similar disks, Q opt was measured to reach half a million at best for these low p modes. In conclusion scattering losses are not the dominant loss mechanism for the best disks used in our experiments. There is another loss channel that limits the optical quality factor: optical absorption.

Optical absorption

Absorption of photons stored in the WGMs is another source of optical loss for the cavity optical energy. This optical absorption can be linear (when a photon is absorbed) or nonlinear (when two or more photons are absorbed simultaneously). At the telecom wavelength λ = 1.55 µm, the nonlinear two-photon absorption (TPA) effects dominate the optical dissipation of high-Q GaAs disk resonators at large optical power [START_REF] Parrain | Origin of optical losses in gallium arsenide disk whispering gallery resonators[END_REF]. On the other hand residual linear absorption dominates at low optical power and sets a limit to Q opt .

Linear absorption in GaAs or any semiconductor material naturally appears when
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the photon energy exceeds the material band-gap. At room temperature GaAs has a band-gap energy of 1.42 eV, which corresponds to a wavelength of 873 nm. In our experiment we work at room temperature with a wavelength between 1500 nm and 1600 nm, with a photon energy well below the band-gap energy. There is however linear optical absorption occurring in our disk resonators, as evidenced by the thermooptic distortion of optical WGM resonances (as discussed in Chapter 3, section 1.3.2). The discrepancy between modelled and measured value of Q opt also points towards the existence of residual linear optical absorption. Our past analysis [START_REF] Parrain | Origin of optical losses in gallium arsenide disk whispering gallery resonators[END_REF] indicated that most of this absorption takes place at the resonator's surface. The electronic states associated to the existence of the GaAs surface reconstruction layer can reside within the band-gap of the material, and the surface chemical state also pins the Fermi level in practice to a value that can differ from the exact mid-gap expected in principle for GaAs. This situation is schematically presented in with its reconstructed surface can actually absorb photons of energy below the material bandgap. This is in agreement with our measurements at telecom wavelength. It is possible to produce variable effects on optical absorption by tuning the density of intra-gap states formed at the surface, as well as their occupation, characterized by the Fermi level. This should influence optical properties like the carrier-dynamics and luminescence of resonators. In my thesis I invested important efforts exactly to do so in a beneficial way. Here we present and discuss two different surface modification techniques that led to a marked improvement of different optical properties of the disk resonators.

Wet chemical nitridation in hydrazine solution

Surface passivation by wet chemical nitridation in hydrazine was attempted in our team by David Parrain, in collaboration with Daniel Paget from Laboratoire de Physique de la Matière Condensée at Ecole Polytechnique, adopting a technique proposed in 2002 by V. L. Berkovits and V. P. Ulin at A. F. Ioffe Physico-Technical Institute in Saint Petersburg, Russia [START_REF] Berkovits | Wet chemical nitridation of gaas (100) by hydrazine solution for surface passivation[END_REF]. In this article, they presented the chemical stabilization of a crystalline GaAs surface by formation of a thin film of gallium nitride (GaN) on the semiconductor surface. In surface passivation, GaN thin films are very compelling because of their high thermal and chemical stability. GaAs/GaN lattice mismatch being very large (∼20%), the surface passivation must be accomplished in one monolayer. This is of particular interest for our GaAs resonators, for which many layers on the disk surface might increase mechanical dissipation. In [START_REF] Berkovits | Wet chemical nitridation of gaas (100) by hydrazine solution for surface passivation[END_REF], the coverage of the GaAs surface with a thin GaN layer was confirmed by X-ray photoelectron spectroscopy. An enhancement of the photoluminescence intensity indicated that the nitrided surface was passivated. In later works [START_REF] Berkovits | Soft nitridation of gaas (100) by hydrazine sulfide solutions: Effect on surface recombination and surface barrier[END_REF][START_REF] Berkovits | Chemistry of wet treatment of gaas (111) b and gaas (111) a in hydrazine-sulfide solutions[END_REF], Berkovits and D. Paget measured a notable reduction of the density of surface mid-gap states by nitridation. For these reasons we considered to adopt chemical nitridation in hydrazine solution to passivate our GaAs resonators.

The above experiments [START_REF] Berkovits | Wet chemical nitridation of gaas (100) by hydrazine solution for surface passivation[END_REF][START_REF] Berkovits | Soft nitridation of gaas (100) by hydrazine sulfide solutions: Effect on surface recombination and surface barrier[END_REF][START_REF] Berkovits | Chemistry of wet treatment of gaas (111) b and gaas (111) a in hydrazine-sulfide solutions[END_REF] having been performed on the surface of bulk GaAs, a first aim was to extend the method to our disk resonators. This would find applications in other GaAs devices as well. After first attempts of David, I pursued this effort, discussing with D. Paget, and finally in direct collaboration with V. L. Berkovits and V. P. Ulin, which brought me to spend two weeks (twice a week) at the Ioffe Institute.

In the following I present the concepts, implementations and results.

Nitridation protocol

The goal of the wet nitridation process is to produce a stable GaN layer on our GaAs disk surface, via chemisorption of nitrogen species stemming from a hydrazine solution. This technique consists in treating the GaAs crystals in a highly alkaline (pH=12) hydrazine (N 2 H 4 ) solution with a small amount (0.01M) of sodium sulfide (Na 2 S) added. This added Na 2 S forms a soluble thioarsenic acid (H 3 AsS 3 ) after reacting with surface arsenic (As) atoms, removing those atoms and leaving behind a surface terminated with gallium (Ga) atoms. The adsorption of hydrazine molecules on surface Ga atoms is now possible. The formation of GaN bonds stops after one monolayer is formed, letting an oxidation-free nitrided GaAs surface. Figure 4.2 summarizes this process.

During the process of wet nitridation introduced above, the GaAs surface is also affected by microetching in the hydrazine solution [START_REF] Berkovits | Structural properties of gaas surfaces nitrided in hydrazine-sulfide solutions[END_REF], which is not desirable in case of our devices. This microetching originates from the interaction of hydroxyl anions (OH-) with surface Ga atom and can eventually affect the morphology of our miniature structures. Hence to sidestep this problem, we lowered down the pH of the hydrazinesulfide solution to a value of 8.5. With this low pH hydrazine solution, the concentration of the OH-anions is decreased by 4 orders of magnitude and microetching of structures becomes negligible [START_REF] Alekseev | Nitride surface passivation of gaas nanowires: impact on surface state density[END_REF].

The chemicals needed to prepare the hydrazine-sulfide solution are: hydrazine dihydrochloride (N 2 H 4 , 2HCl), hydrazine hydrate (N 2 H 4 , H 2 O) and Sodium sulfide nonahydrate (Na 2 S, 9H 2 0). Very pure hydrazine dihydrochloride salt is prepared from a commercially available chemical. To that aim, a saturated solution of hydrazine dihyd- rochloride is prepared by dissolving the commercial salt in DI water while heating (at around 100 • C). The contaminants remain in solution while the ultra-pure salt is filtered, dried and brought back to room temperature. The preparation of the hydrazine-sulfide solution itself then consists in two steps: first a hydrazine buffer solution is prepared by adding hydrazine dihydrochloride to hydrazine hydrate until the solution reaches a pH value of ∼ 8.5. Then the Na 2 S solution with a concentration of 0.01M is introduced in the prepared buffer solution. To obtain the desired concentration of sodium sulfide, a saturated solution of Na 2 S is first prepared. DI water is then added to this saturated solution to obtain a concentration of 0.01M.

Wet chemical nitridation in hydrazine solution

It is desirable to have a clean resonator surface prior to nitridation. Hence the samples are first degreased in acetone and rinsed in IPA. Next the samples are cleaned in a concentrated NH 4 OH solution (35% v/v) for a few minutes before rinsing with deionized water. After drying the samples are immersed in the freshly prepared low alkaline hydrazine-sulfide solution for about 10 minutes at 70 • C. Finally the samples are rinsed in DI water and dried.

Optical spectroscopy before and after nitridation

An objective being to reduce optical losses of GaAs disk resonators, we measured with great care the optical spectrum of resonators in the telecom wavelength range (1500 -1600 nm) before and after the nitridation process. Figure 4.3 shows the optical spectrum of one disk resonator before and after nitridation. The disk has a diameter of 10 µm and a thickness of 370 nm and many WGM resonances appear in the spectrum. Hence the spectrum is over a reduced wavelength range (1560 -1600 nm), in order to allow readers to identify the same modes before and after nitridation. The overall blue shift of WGM resonances is mainly due to a step of NH 4 OH cleaning prior to wet nitridation that typically removes about 2 nm of matter corresponding to the SRL. With the low alkaline hydrazine-sulfide solution the parasitic microetching is minimized. In general, we did not observe important modification of the linewidth and contrast of WGM resonances after nitridation. Some rare modes did present a small reduction of linewidth. In Figure 4.4(a) such a mode is presented before and after nitridation, extracted from a close-up of Figure 4.3. The linewidth of this mode is reduced from 290 pm to 240 pm after nitridation, hence a small reduction in optical losses. This example has however little statistical significance. For instance Figure 4.4(b) shows a WGM which remains almost unaffected by nitridation. At first order of description, we had to reach the conclusion that optical losses at the telecom wavelength were unaffected by nitridation. In order to gain more understanding, we measured room temperature photoluminescence of individual disks before and after nitridation. The photoluminescence was also resolved in time with a streak camera, in order to reveal the effect of nitridation on the relaxation of carriers.

Photoluminescence of nitrided disk resonators

Room-temperature photoluminescence experiments were first performed in the CW regime at the Laboratoire de Physique de la Matière Condensée of Ecole Polytechnique with the help of Fabian Cadiz (team of D. Paget) and then at Centre de Nanosciences et de Nanotechnologies (C2N), Marcoussis, France, in collaboration with Alberto Amo and Félix Marsault (time resolved regimes).

Figure 4.5 shows the experimental set-up for the time-resolved photoluminescence measurements. A pulsed Ti:sapphire laser, delivering 3 ps pulses at a repetition rate of 82 MHz, was used as the pump. The excitation wavelength was 775 nm. A microscope objective (magnification 50x, NA=0.65) was used both to focus the laser on the sample and to collect the emission. The focussed beam spot on the sample had a diameter of 2 µm which permitted targeting the center of the disk surface (the diameter of the disks is 9 µm). The collected emission was re-focused on a monochromator slit with a lens of 300 mm focal length. A broadband long-pass filter with a cutoff wavelength of 780 nm was used to prevent the pump laser from reaching the detector. The emitted signal was dispersed in the monochromator and time-resolved using a streak camera with a time resolution of 3.5 ps. Figure 4.6 shows typical luminescence spectra from a disk and from the substrate, acquired with a continuous detection but under the pulsed excitation introduced above. The measurement was taken on a nitrided sample. This shows that the luminescence is centered at ∼ 870 nm and extends over 40 nm, corresponding to the bulk GaAs emission. The signal is enhanced by a factor 5 on the disk with respect to substrate.

Under continuous pumping, it was found that the steady-sate luminescence of a single disk experiences a 20-fold enhancement after nitridation. Time-resolved photoluminescence experiments can help to unravel the effect of nitridation on the relaxation time of excited carriers, and shed light on luminescence processes. temperature time-resolved photoluminescence of a GaAs disk resonator before and after nitridation process. This time-trace is obtained by spectrally integrating the luminescence signal over the emission wavelength span shown in Figure 4.6. The decay of the time-resolved luminescence curve is fitted by a sum of three exponential functions: a rapid, an intermediate and a slow decaying exponential with associated decay times τ 1 , τ 2 and τ 3 respectively [START_REF] Amo | Interplay of exciton and electron-hole plasma recombination on the photoluminescence dynamics in bulk gaas[END_REF][START_REF] Eccleston | Exciton dynamics in a gaas quantum well[END_REF]. These three decay times, once measured and averaged over many disks of same size (taken over several samples), are listed in table 4.1 with their evaluated variance. The rapid decay (τ 1 ) is associated to a thermalization of optically generated carriers [START_REF] Amo | Carrier dynamics in semiconductors and semiconductor microcavities[END_REF]. First, optical phonons allow quasi-instantaneous relaxation of the optically generated carriers down into the bands, close to k=0 in the Brillouin zone. Then these carriers thermalize and distribute over larger-k states, thus reducing the occupation of states close to k=0 that are responsible for the luminescence at the band-edge. This leads to a fast decay of the luminescence. The reader can notice from Table 4.1 that this first rapid decay time τ 1 is barely modified by the nitridation treatment. This is in agreement with the understanding that this thermalization process is a bulk property and is not associated to the surface of the resonator. The third decay (τ 3 ) is very slow. It corresponds to the luminescence dynamics of high-quality samples, where carriers can distribute over a large span of k-numbers, even out of the light emission cone, and then re-feed the population of carriers giving rise to luminescence. This produces a long term dynamics of the luminescence. From Table 4.1 it is seen that this long decay time has a large error bar. Basically in our experiment the luminescence signal was acquired over 170 ps which is insufficient to precisely estimate this long decay time τ 3 . Within our error bar, we do not observe a clear effect of nitridation on τ 3 .

The intermediate decay (second exponential of the three, with decay time τ 2 ) corresponds to the relaxation of the quasi-equilibrium population of excited carriers that give rise to photoluminescence (carriers that are close to k=0 in the band structure), and is attributed to the recombination of unbound electron-hole pairs [START_REF] Amo | Interplay of exciton and electron-hole plasma recombination on the photoluminescence dynamics in bulk gaas[END_REF]. This decay is systematically slowed-down with this process: τ 2 increases from 7.7 ± 1ps to 18 ± 3 ps after nitridation for the investigated disks.

In Table 4.1 we also listed the rise time of the luminescence. The rise time was evaluated by fitting the rising part of the luminescence with a single growing exponential. Irrespective of the excitation power, of the fact that the sample has been nitrided or not, and of the fact that luminescence is collected on the disk or substrate, the rise time remains about the same. This shows that the rise time is a bulk property [START_REF] Amo | Carrier dynamics in semiconductors and semiconductor microcavities[END_REF].

In conclusion, we gathered clear evidences that nitridation resulted in surface passivation of our GaAs resonators. This was evidenced by changes in the carrier dynamics and luminescence. But as described in the previous subsection, this nitridation process did not produce effects on the optical absorption in these disks. Hence we moved to a second surface passivation process, which consisted in depositing a thin layer of alumina on a 'deoxidized' resonator surface. the sample surface is pre-treated in-situ with a H 2 plasma. H 2 plasma has been reported to remove surface native oxides and prepare a contamination-free surface [START_REF] Razek | Gaas surface cleaning by low energy hydrogen ion beam treatment[END_REF]. We also found that the H 2 plasma pre-treatment is sufficient to prepare a clean GaAs surface and that the NH 4 OH pre-cleaning step may be skipped for the applications presented here. After the H 2 plasma cleaning, the chamber is purged with Ar. Finally the plasmaenhanced atomic layer deposition is performed using a TFS 200 reactor (Beneq Oy) with Trimethyl-aluminum (TMA) as a precursor and O 2 as reactant. Depositions are performed at 300 • C temperature. The deposition process is executed in several cycles, each cycle consisting in a sequence of four pulses in rapid succession. During one cycle, the precursor TMA (Al(CH 3 ) 3 ) is first injected into the deposition chamber and results in a surface saturated with methyl-aluminium. The chamber is then purged with a 300 sccm flow of Ar gas. Next, O 2 is injected into the chamber. It breaks the methane bonds and the surface is ideally left with one monolayer of alumina. The reaction by-products are purged from the chamber with an Ar flow. This cycle is repeated many times depending on the desired thickness of alumina. Typically, in order to deposit 10 nm of alumina, 88 cycles are executed. With this technique a uniform, conformal, well-controlled thickness of Al 2 O 3 layer is deposited on the sample surface, with minimum surface roughness. Figure 4.9 depicts the atomic layer deposition process schematically. wavelength is observed. With ALD, all the WGM resonances are narrowed and their contrast gets increased, pointing towards a reduction of the intrinsic optical losses of the resonators.

In the optical spectrum of Figure 4.10, WGM resonances of distinct radial order (p) spectrally bunch in distinct groups, separated by the free spectral range between WGMs of adjacent azimuthal numbers (m) [START_REF] Ding | Handbook of optical microcavities, ch. Gallium Arsenide Disk Optomechanical Resonators[END_REF]. It is interesting to identify these distinct WGMs in order to study the effect of ALD as a function of the spatial profile of optical modes. To that aim we used FEM electromagnetic simulations to identify the p indices of observed 4.12(a) and 4.12(b) show a selected WGM resonance (p = 5) of a GaAs disk resonator, measured before and after ALD, at the same optical power. At low optical power the WGM resonance adopts a Lorentzian shape, and its linewidth reduces from 84 pm to 36 pm with the ALD processing, while the mode contrast remains constant at 40%. This reduction in linewidth corresponds to an improvement of Q opt by a factor 2.33, rising up from 18,000 to 42,500. This comparison of loaded Q opt being made at equal contrast of the resonance, the improvement factor also holds for the intrinsic optical quality factor (Q in ) (see Chapter 2, equations 2.11 and 2.12). This also means a reduction of the intrinsic loss rate κ in of the WGM by the same factor. The measurement of the thermo-optic shift of WGM resonances at high optical power being additional understanding on the reduction of intrinsic optical losses by ALD. Figure 4.12(c) and 4.12(d) show such measurement, performed on a distinct WGM (p = 3) of another disk. In Chapter 3 (section 3.3.2) we discussed that the thermo-optic shift is a direct signature of optical absorption in the resonator. By carefully looking at Figure 4.10 and Figure 4.12, the reader might notice variations in the resonance wavelength shift after ALD treatment. These variations originate from the thickness of the deposited alumina layer, and from the pre-treatments prior to ALD. A simple added layer of alumina at the disk surface would red-shift all WGMs. But the ammonia and the H 2 plasma surface preparation steps additionally etch the disk material, which results in a blue-shift of WGM resonances. The pre-treatments and deposited alumina layer differ for these three cases presented in Figures 4.10 
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WGMs. The identification of the WGMs shown in
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(b) did not experience ammonia cleaning, but experienced H 2 plasma cleaning followed by a deposition of 20 nm of alumina. For the disk employed in Figure 4.12(c) and (d), the deposited alumina thickness was 30 nm, after ammonia and H 2 plasma cleaning. Using a r.i. of 1.7471 for alumina [START_REF] Groner | Low-temperature al2o3 atomic layer deposition[END_REF] and axisymmetric FEM simulations, we simulated the impact of ALD deposition on WGMs' resonance wavelengths. These simulations allowed us evaluating more precisely the impact of pre-treatments and associated etching. Ammonia dips produced an etching between 1 and 5 nm, while the H 2 plasma step removes between 2 and 3 nm [START_REF] Guha | Surface-enhanced gallium arsenide photonic resonator with quality factor of 6× 10 6[END_REF].

Whispering gallery mode with an optical quality factor of 6 million

With ALD passivation we observed that some WGMs can reach ultra-high Q opt over a million. This observation was typically made on modes p = 1 and 2, whose Q opt in absence of passivation was mostly limited by surface absorption according to our prior work [START_REF] Parrain | Origin of optical losses in gallium arsenide disk whispering gallery resonators[END_REF]. The associated WGMs were accessible in fiber-taper experiments only after ALD and not before. Before ALD, the fiber-taper coupling conditions were not favourable enough for these modes. Indeed modes p = 1 and 2 are very confined into the disks. This makes their evanescent field difficult to couple to the fiber-taper, leading to a low coupling rate κ ext . Before ALD the absorption losses κ abs (= κ in ) remains well above κ ext and the critical coupling condition (κ in = κ ext ) cannot be approached. After ALD κ abs is remarkably reduced and the critical coupling condition can be approached. the under-coupled regime and reveals a fine-structure doublet with ultra-high Q opt . The loaded Q opt for each component of the doublet is 2.83 × 10 6 and 3.02 × 10 6 respectively. In Figure 4.13(b) the complete evolution of the linewidth and resonant normalized transmission (T on ) of this WGM is shown as a function of the disk-fiber taper gap distance. At large gap-distance, the linewidth of the WGM resonance converges to an intrinsic value of 0.26 ± 0.03 pm, which corresponds to an intrinsic quality factor Q in of 5.9 ± 0.3 × 10 6 . This value represents a 10-fold improvement with respect to previously reported state-of-the-art Q opt in GaAs photonic cavities. Hence ALD surface treatment seems to bring new potential for low-dissipation GaAs photonics.

Modal dependence of the effect of ALD on Q opt

We systematically investigated the optical quality factor enhancement by ALD for WGMs of different radial order p. The results are presented in Figure 4.14. The analysis includes several GaAs disks of same radius (4.5 µm) and thickness (200 nm). All the WGM are TE-polarized and show a loaded optical quality factor (Q l ) in the range 10 4 -10 5 , measured in the under-coupled regime. The enhancement factor Q after l /Q before l is measured at constant contrast of the WGM resonance, before and after the ALD treatment. This investigation was led on resonators fabricated out of two different wafers. In Figure 4.14 the red points correspond to a wafer provided by Thales III-V lab (team of Bruno Gérard) and the black points correspond to a wafer provided by C2N (team of Aristide Lemaitre). In Figure 4.14 we observe that the Q l enhancement varies between 1 and 6, for p evolving between 2 and 5. As explained earlier, p = 1 modes were not properly measurable in our experiments before ALD, they are hence absent from Figure 4.14. One clear trend is that, irrespective of the employed wafer, the enhancement improves as p reduces and electromagnetic energy localizes closer to the surface. This
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supports our understanding that the main source of optical dissipation in high-Q GaAs WGMs originates from the surface. The analysis also shows that the enhancement factor is different for the two wafers. For the same p order the enhancement is more pronounced for the wafer provided by the T hales team (red points). This points towards less residual bulk absorption on this wafer. Even though both the wafers have the same nominal structure and are expected to posses a similar residual p-doping of a few 10 14 cm -3 , they still correspond to different hetero-epitaxial growths. In the ultra-high Q regime (Q > 10 6 ), it seems that previously insignificant variations in the crystal structure and quality might start to matter. For the disks shown in Figure 4.14, the deposited alumina layer thickness varies between 5 nm and 30 nm. In Figure 4.15 we detail these data and show the Q enhancement factor as a function of radial p order and deposited alumina thickness. From this 3D plot it seems that an alumina layer of 5 nm is already sufficient to obtain the beneficial features of ALD. We did not see a marked change in the quality factor improvement when the deposited alumina thickness was varied from 5 to 10, 20 and 30 nm. This is significant for the optomechanical applications, because a thick deposited layer might add mechanical dissipation in our resonators.

Impact of ALD on absorption and scattering losses

In GaAs disk of the dimensions considered here, we reported previously that WGMs with very high Q opt (mid 10 5 to over million) were limited by absorption at the surface [START_REF] Parrain | Origin of optical losses in gallium arsenide disk whispering gallery resonators[END_REF]. For such modes, typically of radial number p = 1 or 2, the quality factor improvement by ALD is ruled by reduction in surface absorption. But for the WGMs of moderate optical quality factor (∼ 10 4 ), like the ones shown in Figure 4.12, optical dissipation is not solely governed by absorption and scattering losses also play a role. For these modes the intrinsic quality factor before ALD treatment can be written as

Q -1 in = Q -1 abs + Q -1 scat = αQ -1 in + (1 -α)Q -1 in (4.2)
where α is an arbitrary parameter (0 < α < 1) (without need for further specification, one can even include bending losses into scattering losses, if needed). Let us consider that after ALD the absorption rate is reduced, hence multiplied by a factor a (0 < a < 1), and the scattering loss by a factor s (0 < s < 1). After ALD the intrinsic quality factor hence becomes

(Q -1 in ) ALD = a.Q -1 abs + s.Q -1 scat = [aα + s(1 -α)]Q -1 in (4.3)
Then from equation 4.2 and 4.3 we obtain

(Q -1 in ) ALD /Q -1 in = [aα + s(1 -α)] (4.4) 
Now consider the WGM shown in For the same optical power and same contrast of the WGM resonance, the thermo-optic shift is changed from 47 pm to 54 pm. As described in Chapter 3 (section 3.3.2), the thermooptic shift is proportional to the temperature increase in the disk, and hence to the optical power absorbed (P abs ) within the disk. P abs is the product of the absorption coefficient and the circulating power inside the disk hence P abs ∼ Q -1 abs Q in . After ALD the absorbed optical power is modified to

P ALD abs ∼ a.Q -1 abs Q ALD in ∼ [a{aα + s(1 -α)} -1 ]P abs .
We thus obtain a second condition, which can be used to analyse the WGM shown in formula as above, we find a ∼ 0.13 for this other WGM, showing that absorption is strongly reduced with ALD for this mode (factor 7.7). Somehow surprisingly only little improvement in the quality factor is observed for this mode (Figures 4.16 This simply means that prior to ALD the Q opt of this mode was mainly set by scattering losses. The Q is hardly affected by the ALD treatment even though absorption is reduced by a great amount. Hence for modes of moderate quality factor, the improvement in Q opt might not be exclusively attributed to reduction in losses by absorption and ALD might reduce the scattering losses as well [START_REF] Guha | Surface-enhanced gallium arsenide photonic resonator with quality factor of 6× 10 6[END_REF]. In complement of this understanding, we present a statistical distribution of the splitting of WGM doublets in Figure 4.17. This WGM doublet splitting is a parameter that also quantifies the importance of surface scattering [START_REF] Parrain | Optomécanique fibrée des disques GaAs : dissipation, amplification et non-linéarités[END_REF][START_REF] Ding | Handbook of optical microcavities, ch. Gallium Arsenide Disk Optomechanical Resonators[END_REF]. We investigated this doublet splitting for different WGMs of distinct resonators, before and after ALD. From the results of Figure 4.17 we deduce that there is no major change in the overall distribution of splittings before and after ALD. This supports the idea that the Q enhancement produced by ALD is dominantly due to absorption 

Conclusion

In summary we have presented two new surface control techniques that bring interesting results in reducing optical dissipation in GaAs photonic cavities. Absorption loss is a major problem in many GaAs photonic and optoelectronic devices. The presence of native oxide films of other amorphous surface reconstruction layers on GaAs surfaces limits the range of applications. Hence the reported progress should be beneficial in different fields of research employing GaAs photonics. We have applied the ALD treatment on AlGaAs disk resonators [START_REF] Mariani | Algaas microdisk cavities for second-harmonic generation[END_REF] as well along the doctoral work of Natália Morais. ALD resulted in a notable reduction in thermo-optic shifts and thus in optical absorption on those resonators as well. Hence such surface control techniques might open new prospects not only in GaAs photonics, but in III-V semiconductor technology more broadly.

Chapter 5

Optomechanics with InGaP and AlGaAs disk resonators

All the experiments we have discussed so far were performed with GaAs disk resonators. In my thesis we also tried to explore alternative III-V semiconductor materials for optomechanical applications. We notably employed ternary semiconductor materials like InGaP and AlGaAs. AlGaAs disk resonators had already been fabricated in our group but for non-linear optics experiments [START_REF] Mariani | Algaas microdisk cavities for second-harmonic generation[END_REF][START_REF] Mariani | Secondharmonic generation in algaas microdisks in the telecom range[END_REF], and we exported these resonators in optomechanical measurements. On the other hand InGaP photonic crystals were reported to exhibit Q opt of a million [START_REF] Combrié | High quality gainp nonlinear photonic crystals with minimized nonlinear absorption[END_REF], pointing towards possible low dissipation resonators for optomechanics [START_REF] Cole | Tensile-strained inxga1xp membranes for cavity optomechanics[END_REF]. Unlike GaAs, both InGaP and AlGaAs are free of TPA at the telecom wavelength and thus non-linear optical absorption is expected to be minimized in the large optical power regime.

In this chapter we describe the fabrication methods of these new optomechanical disk resonators. Their optical characterization is presented, together with a complete set of optomechanical measurements on both families of resonators. An evaluation of optomechanical coupling parameters is presented for each individual system.

Fabrication methods

InGaP disk resonators

The wafer was provided by Olivier Parillaud from Thales III-V Lab in Palaiseau, France. It was grown by Metal-Organic Chemical Vapour Deposition (MOCVD). On a commercially available semi-insulating GaAs substrate, a 1.6 µm thick GaAs sacrificial layer was first deposited. This GaAs layer eventually forms the pedestal of the disk resonator, after the under etching step. On top of this layer a 200 nm thick In 0.5 Ga 0.5 P layer was deposited. This InGaP layer eventually forms the disk itself, after all etching steps are completed. Finally a 50 nm GaAs cap layer was deposited to protect the InGaP surface. This cap layer is removed after the GaAs selective under-etching step. For the fabrication of InGaP disk resonators, we adopted steps that are similar to those Optomechanics with InGaP and AlGaAs disk resonators employed for GaAs disks, and which can be visualized in Figure 3.1 of Chapter 3. The only major step to be modified was that of selective GaAs under-etching. Hence we elaborate here only on this step.

Selective wet chemical under-etching of GaAs sacrificial layer

The disk pedestals are fabricated by selective under-etching of the GaAs layer in a solution of citric acid (C 6 H 8 O 7 ) and hydrogen peroxide (H 2 O 2 ). Citric acid based etching has been reported as highly selective for GaAs over InGaP [START_REF] Uchiyama | Fabrication of sub-transistor via holes for small and efficient power amplifiers using highly selective gaas/ ingap wet etching[END_REF][START_REF] Clawson | Guide to references on iii-v semiconductor chemical etching[END_REF]. To prepare this etchant solution, we used commercially available citric acid powder. 50 g of citric acid powder was added to 50 mL of DI water. 5 mL of H 2 O 2 was added to this solution. We found that the etch rate of GaAs material was very slow in this solution at RT. Also the etching resulted in the formation of pores on the pedestal surface, as illustrated in Figure 5.1. After 3 minutes in citric acid solution, the etching of the sacrificial GaAs layer was negligible (less than 150 nm) and the cap GaAs layer was not removed. Because the reaction of citric acid with H 2 O 2 is endothermic, the temperature of the solution becomes very low (∼ 10 • C), which was the reason of the slow etch rate. In our next trials we heated up the solution in a 'bain-marie' to maintain it at RT and sustain the etching. Figure 5.2 shows a resulting In 0.5 Ga 0.5 P disk resonator on a narrow GaAs pedestal. This sample was etched in citric acid solution for about 12 min. To get a uniform etching, the solution was stirred with a magnetic stirrer. The cap GaAs layer was removed completely by the etching. The pedestal in Figure 5.2 reveals some faceting. The symmetry of the GaAs crystalline lattice leads to anisotropic etching during the selective wet chemical etch step [START_REF] Williams | Gallium Arsenide Processing Techniques[END_REF], revealing crystal facets. Like GaAs disk rsonators, InGaP disks are also elevated over the substrate on a mesa structure. The mesa was fabricated like already described in section 3.1.3 of Chapter 3. disk, an other non-selective etchant for InGaP/GaAs should be employed. Bromine (Br) solution has been used in the non-selective mesa etching for InGaP/GaAs structures [START_REF] Ginoudi | Low-temperature dc characteristics of s-and si-doped ga0. 51in0. 49p/gaas high electron mobility transistors grown by metalorganic molecular beam epitaxy[END_REF]. Use of Inductively Coupled Plasma (ICP) etching was also reported [START_REF] Combrié | Optimization of an inductively coupled plasma etching process of gainp/ gaas based material for photonic band gap applicationsa)[END_REF]. However in the course of this thesis, fabrications with these techniques were not possible due to time limitations and technical constraints of the ICP equipment.

AlGaAs disk resonators

AlGaAs disk resonators were fabricated by Silvia Mariani, a former PhD student in our group [START_REF] Mariani | Three-wave mixing in semiconductor whispering gallery mode microcavities[END_REF] to obtain the mesa. The fabrication steps were already described in detail in [START_REF] Mariani | Algaas microdisk cavities for second-harmonic generation[END_REF][START_REF] Mariani | Three-wave mixing in semiconductor whispering gallery mode microcavities[END_REF]. 

Estimation of optomechanical coupling

We performed FEM computations of the WGMs, mechanical RBMs and of the optomechanical coupling constants for both the InGaP and AlGaAs disk resonators. In this section we present the results of this computational analysis.

Estimation of optomechanical coupling

InGaP disk resonators

In experiments we employed InGaP disks of radius 3.25 µm and thickness 200 nm. From 2D-axisymmetric FEM simulations, we found that such resonators sustain TEpolarized WGMs of four distinct radial order (p ∈ [START_REF] Favero | Optomechanics of deformable optical cavities[END_REF]4]). The design optical quality factor (Q rad ) of these WGMs are listed in Table 5 The mechanical modes of these resonators were also calculated with 2D-axisymmetric FEM simulations. The frequency of the 1 st order mechanical RBM was found at 460 MHz. The zero point fluctuation x ZP F was calculated to be of 8.95 × 10 -16 m (considering again a point on the disk periphery (r = R) as a reduction point). The optomechanical coupling constants for different WGMs and for the 1 st order RBM are listed in Table 5 Table 5.2: Optomechanical coupling constants for the four identified WGMs and for the 1 st order RBM of an InGaP disk resonator of radius 3.25 µm and thickness 200 nm. The calculated couplings g om are both geometric and photoelastic, with g 0 summing both contributions. Photoelastic parameters of InGaP can be found in Table 5.6 at the end of this chapter.

AlGaAs disk resonators

The AlGaAs disk resonators used in our experiments have a radius of 2 µm and a thickness of 150 nm. With such dimensions, these resonators sustain only two TEpolarized WGMs of radial order p = 1 and 2, close to a wavelength of λ = 1.5 µm. Values of Q rad for these WGMs are listed in Table 5 The frequency of the 1 st order RBM was found at 749 MHz. The computed value of x ZP F was 12.85 × 10 -16 m (again with same reduction point as above). The associated optomechanical coupling constants are listed in Table 5.4. Again they gather both geometric and photoelastic g om parameters, while g 0 is the total coupling rate summing both types of physical contribution. Table 5.4: Optomechanical coupling constants for the two distinct WGMs and for the 1 st order RBM of an AlGaAs disk resonator of radius 2 µm and thickness 150 nm. Both geometric and photoelastic optomechanical couplings are evaluated here, with photoelastic constants for AlGaAs given in Table 5.6 at the end of chapter. g 0 is the total coupling.

Optical spectroscopy of WGMs

The disk resonators introduced above were characterized with the same fiber-taper spectroscopy set-up described in section 3.3.1, Chapter 3. In this section we present the associated experimental results.

InGaP disk resonators

Figure 5.6 shows the optical spectrum of an InGaP disk resonator measured in the wavelength range 1500 -1600 nm. The spectrum is acquired with a low optical power (50 µW, measured at the output of the fiber). The disk radius is 3.25 µm and the thickness 200 nm. The loaded optical quality factor evolves between 2 × 10 3 and 6 × 10 4 . The best intrinsic optical quality factor is about 1 × 10 5 . As explained in section 5.1.1, these resonators have a non-perfect circular disk boundary, which enhances the radiative optical losses and degrades the optical quality factor. In practice, the p = 3 WGM, which has theoretical Q rad = 5 × 10 6 , is measured to have an intrinsic Q in of about 3 × 10 4 . 

AlGaAs disk resonators

The optical spectrum of an AlGaAs disk of radius 2 µm and thickness 150 nm is presented in Figure 5.7. The spectra was obtained at an optical power of 70 µW, measured at fiber output. The measured loaded quality factor of WGMs are between 5 × 10 2 and 1 × 10 4 . The best intrinsic optical quality factor was about 5 × 10 4 . AlGaAs surface gets easily oxidized in air. Hence for these resonators, we believe that surface absorption is a major source of optical losses, as also supported by a reduction of thermo-optic effects when these resonators were passivated by ALD (PhD work of Natália Morais in our team).

Thermo-optic effects

In this section we study the thermo-optic effects in both InGaP and AlGaAs disk resonators. As explained in Chapter 3, the thermo-optic wavelength drag of WGM resonances is directly proportional to the temperature increase within the disk ∆T . In steady-state ∆T = R th P abs , where R th is the thermal resistance of the disk and P abs is the absorbed optical power in the disk. The expression of the thermal resistance

R th = 1 λ pedestal hp πr 2 p
presented in Chapter 3 relies on an assumption of a disk with narrow cylindrical pedestal. But this assumption is questionable for the InGaP and AlGaAs disks used in our experiments. Hence here R th was rather evaluated starting from a numerical estimation of the thermal response time τ th . With this element in hand, the linear absorption rate (κ abs ) was then estimated by fitting the experimentally measured resonance wavelength drag. The procedure led to a self-consistent picture of linear thermo-optic effects in these disks. The thermal relaxation time τ th was calculated using time-dependant simulations of the heat transfer from the disk to the substrate, obtained with the comsol software. Figure 5.8 shows the steady-state temperature profile in an InGaP (a) and an AlGaAs disk (b), for 1 mW of power absorbed (P abs ) at the disk periphery. The InGaP disk has a radius of 3.25 µm and a thickness of 200 nm. The radius of the AlGaAs disk is 2 µm and its thickness 200 nm. In Figure 5.8 the pedestal of each simulated disk matches the real pedestal structure observed in the SEM. The InGaP disk has a pedestal of radius 620 nm at the disk-pedestal anchoring point, while the AlGaAs disk has a much larger pedestal, with a radius of 1.05 µm at the anchoring point. Note that the thin pedestal observed in the AlGaAs resonator of Figure 5.5 is not the standard situation met in our experiments, where the pedestal is usually larger for AlGaAs. In Figure 5.8 we observe that irrespective of the exact structure of the pedestal, the temperature is almost uniform 5.4 Thermo-optic effects at the disk periphery, where the WGMs sit. However the heat transfer from the disk to the substrate depends a lot on the exact pedestal geometry. We also note that the steady-state temperature of the AlGaAs disk is lower than that of the InGaP disk. This points towards a lower thermal resistance of the presented AlGaAs disk compared to the InGaP disk. In Figure 5.9 we show the temperature of the disk (close to the periphery) as a function of time. τ th was evaluated by fitting this plot with exponential functions. The evolution for the InGaP disk (Figure 5.9(a)) was fitted with a single exponential of characteristic time τ = 2.23 µs, while the evolution for the AlGaAs disk (Figure 5.9(b)) was fitted with a sum of two exponentials of characteristic times τ 1 = 0.15 µs and τ 2 = 3.10 µs. For the AlGaAs disk, there is a rapid thermal relaxation at first and the disk attains a quasi-steady state. Hence τ th was taken as 2.23 µs for the InGaP disk and 0.15 µs for the AlGaAs disk. Following the relation τ th = R th Cm d , with C the specific heat capacity and m d the thermal mass of the disk, R th was evaluated to amount to 5.55 × 10 5 K/W for the InGaP disk and to 7 × 10 4 K/W for the AlGaAs disk.

Figure 5.10 shows optical spectra of a WGM experiencing a thermo-optic shift in the InGaP disk resonator introduced above. Figure 5.10(a) is an experimental measurement and Figure 5.10(b) is the result of a model. As one of the ingredients of this model, the shift of the WGM resonance frequency with the disk temperature ( ∂ω 0 ∂T ) was calculated using FEM simulation and was found to amount to 83 × 10 9 rad/K (see employed refractive parameters in Table 5.6 at the end of chapter). Note that this shift depends in principle of the considered WGM (here the considered WGM is TE, p = 3), but that the dependence is faint for the three families of WGMs observed here. With all these elements in hand, the only remaining adjustable parameter of the model is κ abs , which can be tuned to reproduce experimental data correctly. For this WGM, κ abs was estimated to amount to 4 GHz, which corresponds to an absorption limited quality factor Q abs of 3 × 10 5 . Note that the obtained value of κ abs should be taken as an estimation and not as a firm evaluation, given the approximation of the model. It is however consistent with the rest of our observations. Similarly in Figure 5.11(a) we present the experimental measurement of the thermooptic distortion of a WGM resonance in an AlGaAs disk, and in Figure 5.11(b) the results of our thermo-optic model. The spectrum was not acquired at sufficiently low power and the resonance is already distorted by thermo-optic effect ((a), black curve). However this does not impede the modelling. ∂ω 0 ∂T was calculated to amount to 74.8×10 9 rad/K for this disk and this WGM (TE, p = 1). The estimated κ abs was of 16 GHz, which corresponds to an absorption limited quality factor Q abs of about 7.5×10 4 . Again, this is an estimation, however already consistent with the general observation of a larger absorption in AlGaAs compared to InGaP.

Mechanical modes

The resonances of mechanical modes of InGaP and AlGaAs disk resonators are shown in Figure 5.12, measured in the Brownian motion regime. The mechanical resonance frequency (f m ) is measured to be 480.77 MHz for the InGaP disk and 757.10 MHz for the AlGaAs disk, which is close to numerically simulated values (460 MHz for the InGaP disk and 749 MHz for the AlGaAs disk, considering elastic parameters that are given in Table 5.6 at the end of chapter. The mechanical quality factor (Q m ) is 1500 for the measured InGaP disk and 350 for the measured AlGaAs disk. The large pedestal of the AlGaAs disk resonator limits its mechanical Q. 
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Optomechanical self-oscillation

Figures 5.13 and 5.14 report the observation of optomechnical self-oscillation in an InGaP and in an AlGaAs disk resonator, respectively. Figures 5.13(a) and 5.14(a) show the evolution of the optically measured mechanical spectrum of each disk as a function of the employed laser wavelength (λ L ). This evolution is taken for varying cavity detuning, going from a large blue-detuning (small value of λ L ) to a reduced blue-detuning (larger λ L ). In Figures 5.13(b) and 5.14(b) we also show the mechanical energy (in arbitrary unit) as a function of λ L . The mechanical energy was estimated by integrating the area under the curve in the mechanical spectrum, after removing a constant offset corresponding to the flat noise floor in each spectrum. The laser being tuned on the blue flank of an optical resonance of a WGM, the mechanical vibration is optomechanically amplified. For a certain optical power circulating in the disk, and for a certain detuning energy, the mechanical damping of the resonator is counterbalanced by optomechanical amplification and the disk enters the self-oscillatory state. The threshold of this selfoscillation, expressed in the wavelength λ L , is shown by a dashed line in Figures 5. [START_REF] Eichenfield | A picogramand nanometre-scale photonic-crystal optomechanical cavity[END_REF] 

f m ( M H z ) ( a )
M e c h a n i c a l e n e r g y ( a . u . ) W a v e l e n g t h ( n m ) The measurements of Figure 5.13 were obtained for an optical power of 1.1 mW, circulating in the fiber taper, while those of Figure 5.14 were obtained for 4.2 mW. We attempted understanding the observed threshold of self-oscillation from the analytical 5.6 Optomechanical self-oscillation model we introduced in Chapter 1. In Chapter 1 we gave the expressions of effective mechanical frequency ω m,ef f (equation 1.36) and damping Γ m,ef f (equation 1.37), derived from the linearized equations of optomechanics including radiation pressure, electrostriction and photothermal forces. The threshold of optomechanical self-oscillation corresponds to Γ m,ef f = 0. In Figure 5.15 we plotted Γ m,ef f /Γ m as a function of the laser wavelength using equation 1.37 of Chapter 1 and using the evaluation of optical and photothermal forces obtained in sections 5. It is important to note that, strictly speaking, the measurements shown in Figures 5.13 and 5.14 were performed on disks that are distinct from the ones shown in Figures 5.10 and 5.11. For example, the used WGM had a Q opt of 5 × 10 4 for the InGaP disk and 7 × 10 3 for the AlGaAs disk. This said, the dimensions of the disks were the same as in Figures 5.10 and 5.11. Hence we used the thermal time evaluated in section 5.4 to fit the thermo-optic shift of the WGM resonances. κ abs was found to amount to 6.5 GHz for the WGM of the InGaP disk, corresponding to an absorption limited quality factor Q abs of about 1.85 × 10 5 . On the other hand the estimated κ abs for the AlGaAs disk WGM was ∼ 117 GHz, pointing to a Q abs of about 1 × 10 4 .

The threshold of optomechanical self-oscillation obtained from our analytical model approaches but does not exactly match the measured value. There are some approximations in the parameters entering the model. For example the pedestal dimensions are estimated with a limited precision in the SEM, which might introduce an error in the thermal time simulation.

We also note in Figure 5.15 that the dropped power ∆P at the self-oscillation threshold is larger in the AlGaAs disk resonator compared to the InGaP disk. One central reason for this is its larger pedestal, which results in a comparatively lower mechanical quality factor (Q m ). The resonator hence requires larger power to reach the selfoscillatory state.

In Table 5.5 we listed the photothermal force F 1 pth , the radiation pressure force (F 1 rp = hg geo om ) and the electrostriction force (F 1 e1 = hg pe om ) per photon for these two resonators. The photothermal force was calculated from the modelling of thermo-optic effects presented in section 5.4, injecting absorption and thermal parameters in the expressions of Chapter 1. In an isotropic approach, the thermally induced stress σ th ij for a local temperature increase ∆T (equation 1.10 of Chapter 1) can be expressed as

σ th ii = Eα 1 -2ν ∆T (5.1)
with E the material's Young modulus, α its linear thermal expansion coefficient, and ν Poisson's ratio. Then the photothermal force exerted on the disk boundary, for 1 photon circulating in the cavity, is estimated as

F 1 pth = Eα 1 -2ν ∆T 1 2πRh (5.2)
with R and h the radius and the thickness of the disk respectively and ∆T 1 the temperature increase per photon. In Table 5.5, we observe that in both resonators, the photothermal force dominates the two other forces and plays a major role in bringing the disks in self-oscillatory state. Note that even though the optical absorption is larger in the AlGaAs disk, the photothermal force is limited in amplitude because of its large pedestal.

Disk

F 1 pth (N)

F 1 rp (N) F 1 el (N)
InGaP 2.42 × 10 -9 1.92 × 10 -14 2.68 × 10 -14 AlGaAs 3.11 × 10 -9 2.49 × 10 -14 3.42 × 10 -14

Table 5.5: Photothermal, radiation pressure and electrostrictive force per photon for the considered InGaP and AlGaAs disk resonator. The InGaP disk has a radius of 3.25 µm and a thickness of 200 nm. The AlGaAs disk has a radius of 2 µm and a thickness of 150 nm.

Comparative study of GaAs, InGaP and AlGaAs disk resonators

In this section we propose comparative study of the different optomechanical disk resonators employed in this thesis. These are GaAs disks, GaAs disks with ALD, InGaP disks and AlGaAs disks. In Table 5.6 we listed different material properties relevant to these resonators. Note that at 1550 nm wavelength and at room temperature, there is no two-photon absorption in both In 0.5 Ga 0.5 P and Al 0.4 Ga 0.6 As disks. At high optical power, the optical absorption and non-linearities are hence reduced in these resonators compared to GaAs disks. The other noticeable difference is the large thermal conductivity of GaAs compared to the two other materials. In Table 5.7 we listed the best optical and mechanical quality factor measured in this thesis on these different disk resonators. From this table we see that the best optical and mechanical performances were obtained in GaAs disks with ALD. As explained before, our InGaP disks deviate from a true circular shape which might affect the optical quality factor. The crystal faceting of the GaAs pedestals of InGaP resonators might also degrade the mechanical quality factor of these devices. Optimizing the fabrication techniques might lead to InGaP disks with improved performance. On the other hand, AlGaAs surface easily oxidizes in air. In our analysis of thermo-optic effects, we inferred a large optical absorption in AlGaAs disks. The optical absorption appears as a main limiting factor to the optical quality factor of these resonators. Surface passivation might lead to a reduction of surface absorption. During the PhD work of Natàlia Morais in Disk Radius (µm) our team, we already observed a marked reduction of thermo-optic effects after ALD treatment of AlGaAs disk resonators. More investigations will be however required to bring these resonators to the level of performances attained on GaAs disks, with important questions like the role of bulk defects on optical and mechanical dissipation to be clarified.

Thickness (nm) Q in f m (MHz) Q m (in
In conclusion, these two new materials for optomechanics applications bear potential, notably because of the absence of two photon absorption at 1.5 µm that promises large cooperativity to be accessible. This said, a lot of improvements still need to be brought to reveal this potential in full, with a path that seems to be shorter for the InGaP material, where fabrication optimization should already lead to improved performances, and where the material limit is not approached yet in our first realizations.

Chapter 6

Force sensing with an optomechanical self-oscillator

In an optomechanical disk resonator, a high-Q optical WGM is used to precisely monitor the mechanical motion of the resonator, with a displacement sensitivity of 10 -17 -10 -18 m/ √ Hz [START_REF] Ding | High frequency gaas nano-optomechanical disk resonator[END_REF][START_REF] Parrain | Optomécanique fibrée des disques GaAs : dissipation, amplification et non-linéarités[END_REF]. Low mass (∼ pg) and high mechanical frequencies of these resonators make them potential candidates for mechanical sensing. Notably, the optomechanical self-oscillatory regime, where the mechanical system adopts an ultracoherent trajectory sustained by optical forces, bears potential for sensing applications but has received little attention so far. The narrow spectral linewidth of a self-sustained optomechanical oscillator enables indeed its frequency to be monitored with high precision. If this frequency is employed to estimate an external force or a force field acting on the mechanical device, a gain in resolution can be expected in the self-oscillation regime. In this chapter we demonstrate force sensing with a GaAs disk self-oscillator. We study the dynamics and noise behaviour of GaAs optomechanical self-oscillators, as these properties influence the performance in sensing applications. We finally discuss the assets and limits of this approach for force sensing. 

Origin of the self-oscillation of a GaAs disk

The observed threshold of self-oscillation is understood in the similar fashion as presented for InGaP and AlGaAs disks in chapter 5. The evolution of the "mechanical" RF spectrum shown in Figure 6.1(a) is obtained using a WGM of radial order p = 5. The threshold of optomechanical self-oscillation can be retrieved by looking at the conditions to obtain an effective optomechanical damping Γ m,ef f = 0 (equation 1.37, Chapter 1). The modelling of Γ m,ef f involves radiation pressure, electrostriction and photothermal forces. The optomechanical coupling parameters associated to radiation pressure (g geo om ) and electrostiction (g pe om ) for this WGM are determined by FEM simulations as already presented in Chapter 2. The photothermal force is calculated once the thermal and absorption properties of the resonator are clarified (equation 5.2, Chapter 5). As we already saw in chapter 5, this can be done by modelling the thermo-optic drag of the WGM resonance at large optical power, and the thermal relaxation time (τ th ) is a necessary parameter to do so. Here instead of relying on thermal FEM simulations like presented in chapter 5 for InGaP and AlGaAs disks, we implement a direct and independent measurement of τ th from the frequency response of the above GaAs disk to optical modulation.

A network analyzer (ZVL model from Rohde & Schwarz ) was used for this measurement. The laser intensity was modulated (using a high frequency modulation port at the back of our laser controller, with cut-off around 200 MHz) and the coherent amplitude response of the system was monitored. The results are shown in Figure 6.2. To get rid of the non-idealities of our modulation, the response of the system was normalized by a reference spectrum where the laser was largely detuned from the WGM resonance, precluding photons from entering the disk. The normalized response is shown in black in Figure 6.2(a)

At very low frequency (0 to 5 MHz), we observe a decrease in the normalized response of the system, which originates from the thermal cut-off of the resonator. We also observe the resonant mechanical response to modulated optical forces around 314 MHz. In Figure 6.2(b) we show the normalized response at very low frequency, accounting for thermal relaxation. The experimental curve is fitted with the function

A + B 1 1 + iωτ th (6.1)
where ω is the modulation frequency and A and B are real numbers. The fit gives a value of τ th = 0.2 µs. In Figure 6.3 we show the measured thermal relaxation time with varying laser modulation power. We observe that τ th does not vary within our experimental error bar, which seems to indicate that our measurement lies in a linear regime of modulation and thermal response. Following equation 3.5 of Chapter 3, a τ th of 0.2 µs gives a thermal resistance (R th ) value 3.62 × 10 4 K/W. Another ingredient to fit the thermo-optic behaviour of a WGM is the shift of the WGM resonance frequency with the disk temperature ( ∂ω 0 ∂T ). FEM simulations provide an estimation of ∂ω 0 ∂T as 86 × 10 9 rad/K for the considered WGM of the considered disk. With all these elements in hand, the linear absorption coefficient κ abs was adjusted to reproduce the experimental data correctly leading to κ abs = 24 GHz. Table 6.1 lists the radiation pressure, electrostriction and photothemal force for a single photon, along with the absorption rate and thermal relaxation time for the WGM employed in Figure 6.1. With all these parameters, the threshold of self-oscillation can be obtained independently from the equation 1.37 of Chapter 1, and was found to amount to 1561.60 nm which comes close to the measured value of 1560.76 nm. This indicates that our modelling reproduces the essence of the self-oscillation of our disk.

F 1 rp (N) F 1 el (N) F 1 pt (N)
κ abs (Hz) τ th (µs) 1.45 × 10 -14 2.94 × 10 -14 2.8 × 10 -9 2.4 × 10 10 0.20 For this particular GaAs disk, our analysis shows that photothermal dynamical backaction plays a large part in the self-oscillation phenomenon. This conclusion is however disk-dependent, as smaller disks tend to be dominated by radiation pressure and electrostrictive effects, and as ALD surface treatment can additionally greatly limit thermal effects thanks to absorption reduction.

Dynamics of self-oscillation of a GaAs disk

We also attempted to study the time dynamics of self-oscillation. In self-oscillation, the cavity resonance frequency is modulated by the "large" amplitude of mechanical motion according to the relation ω cav = ω 0 -g om x(t). Following equation 2.8 of Chapter 2, a time-modulation of the cavity resonance frequency results in a modulation of the cavity transmission T . Thus the time dynamics of the cavity transmission in selfoscillation resembles the dynamics of mechanical motion x(t). We used a high bandwidth (3 GHz) oscilloscope (RTO 1044 model from Rohde & Schwarz ) to measure the cavity transmission in real time. A phase space trajectory in 2D was obtained by considering the transmission T and its time derivative dT dt as two conjugated degrees of freedom (equivalent to x and p for a harmonic oscillator). a) and (c) show the time-modulation of transmission T , the corresponding phase-space trajectory, when the laser detuning is such that the system resides just above the self-oscillation threshold. The time-dynamics changes when the laser is tuned closer to WGM resonance (still blue detuned), such that the system sits well above self-oscillation threshold (Figures 6.4(b) and(d)). The time evolution of T looks less harmonic and the phase-space trajectory shows the appearance of a knot. To understand these differences, we now model the dynamics of the transmission in the self-oscillatory regime.

In Chapter 1, we described self-oscillation as a sinusoidal motion

x(t) = A cos(ω m t + φ) (6.2)
Here A is the amplitude of motion, ω m is the mechanical frequency and φ is the phase.

Force sensing with an optomechanical self-oscillator 

Phase noise of optomechanical self-oscillators

This harmonic motion and its phase space trajectory are shown in Figures 6.5(a) and 6.5(b). The time modulated normalized transmission is then evaluated using

T (t) = (∆ω + g om × A cos(ω m t + φ)) 2 + κ in 2 -κext 2 2 (∆ω + g om × A cos(ω m t + φ)) 2 + κ in 2 + κext 2 2 (6.3)
Here g om includes the contributions from geometric and photoelastic optomechanical coupling. The amplitude of modulation depends on the frequency detuning ∆ω = ω L -ω 0 . Just above the self-oscillation threshold, the amplitude of modulation is small, such that ∆ω(t) keeps a positive sign along the trajectory (blue detuning). This situation is presented in Figure 6.5(c). The modulated transmission under such conditions and the phase space trajectory are presented in Figures 6.5(e) and (g). The trajectory resembles the experimentally observed one presented in Figure 6.4(c). Well above self-oscillation threshold, the intensity of modulation becomes large, such that the detuning ∆ω(t) changes sign along the trajectory. This situation is depicted in Figure 6.5(d). Figures 6.5(f) and (h) present the modulated transmission and the phase space trajectory under such conditions. The phase space trajectory is similar to the experimentally measured one, presented in Figure 6.4(d). To avoid strong non-linearities in force sensitive measurements, one needs to set the oscillator just above the self-oscillation threshold. This is the strategy we will employ in the remainder of this chapter.

Phase noise of optomechanical self-oscillators

The performance of oscillators, like the ones obtained in our work thanks to optomechanical phenomena, is often characterized by the phase noise characteristics.

Fundamentals of phase noise

The phase noise properties characterize the frequency stability of an oscillator. An ideal oscillator delivers a signal

x(t) = A cos(ω 0 t + φ) (6.4)
where A is the peak amplitude, ω 0 = 2πν 0 is the angular frequency with ν 0 the frequency in Hz and φ a constant phase. In practice, a real oscillator experiences phase fluctuations.

The signal delivered by a real oscillator is written as

x(t) = A cos(ω 0 t + φ(t)) (6.5) 
where φ(t) is a fluctuating phase. In the frequency domain, the spectrum of an ideal oscillator is represented by a Dirac delta function δ(ω -ω 0 ) at the oscillator's frequency. This implies that all the signal power lies at the oscillator's frequency ω 0 . For a real oscillator, the phase fluctuations broaden the spectrum, as illustrated in Figure 6.6, providing a finite linewidth ∆ω osc = 2π∆f osc to the Dirac peak. The phase noise is an important aspect in force sensing experiments as it sets a limit to the linewidth of self-oscillation and hence to the precision of the measurement when the frequency is used as estimator. In absence of optomechanical effects, the mechanical mode linewidth (∆f m ) is determined by the geometrical and structural properties of the disk resonator. Above the threshold, the oscillator linewidth is limited by different noise mechanisms present in the system. In [START_REF] Hossein-Zadeh | Characterization of a radiation-pressure-driven micromechanical oscillator[END_REF] the self-oscillation linewidth of silica optomechanical microtoroids was explained using a general theory of 'line narrowing' in self-sustained oscillators ('Schawlow-Townes linewidth' [START_REF] Schawlow | Infrared and optical masers[END_REF]. In case of a mere thermomechanical noise, the self-oscillation linewidth was predicted to be given by

∆f osc m = πk B T P (∆f m ) 2 (6.6)
where k B is the Boltzmann constant, T is the ambient temperature and P is the oscillator output power. The oscillator output power P can be written in terms of the energy stored in the resonator: P = 2π∆f m E stored , providing the relation

∆f osc m = k B T 2E stored ∆f m (6.7)
This relation teaches us that the oscillation linewidth goes inversely with the energy that can be stored in the oscillation, which stresses the interest of energetic oscillators with large dynamic range and low non-linearities. It is also important to insist that equation 6.6 relies on the assumption of 'white noise' sources. To go beyond this assumption it is interesting to study the full spectrum of the phase noise of our optomechanical system and to understand the different noise sources affecting them. The phase noise spectrum can be given as the one-sided power spectral density S φ (f ) of phase fluctuation φ(t). The unit of S φ (f ) is rad 2 /Hz • However in the RF domain, it 6.2 Phase noise of optomechanical self-oscillators is often not S φ (f ) but another quantity, L (f ), which is employed instead.

L (f ) = 1 2 S φ (f ) (6.8)
L (f ) is usually given in dBc/Hz i.e. the quantity used to represent the phase noise is in practice 10 log 10 [ 1 2 S φ (f )]. The unit dBc/Hz represents "the power (in dB ) contained in a 1 Hz bandwidth, at a certain frequency offset from the carrier". The phase noise is generally expressed over a certain range of frequency offsets from the carrier. The resulting phase noise spectrum contains different noise components, which can be described with a power-law function model [START_REF] Rubiola | Phase noise and frequency stability in osciiiators[END_REF] 

S φ (f ) = 0 i=-4 b i f i (6.9)
The different noise components from the power-law function model are listed in Table 6.2. It is thus possible to identify the nature of noise sources from a phase noise spectrum.

Power law function

Noise process

b 0 f 0 white phase noise b -1 f -1 flicker phase noise b -2 f -2 white frequency noise (or random walk of phase) b -3 f -3 flicker frequency noise b -4 f -4
random walk of frequency 

Measurement methods

There are different phase noise measurement techniques, each having its own set of assets and drawbacks.

One conventional method is the 'delay line (frequency) discriminator method' [START_REF]Phase noise characterization of microwave oscillators -frequency discriminator method[END_REF][START_REF] Decker | Choosing a phase noise measurement technique; concepts and implementation[END_REF]. In this technique the input signal is split in two parts: one part is directly sent to a double-balanced mixer acting as a phase detector; while the other part reaches the mixer after a delay line and a phase shifter. The delay line converts any frequency fluctuation into a phase fluctuation, and hence introduces a phase variation compared to the direct signal reaching the mixer. The phase shifter is used to maintain an average phase quadrature (90 • out of phase) between the two signals reaching the phase detector. The detector then converts the phase fluctuations into voltage fluctuations, which can be measured by a spectrum analyzer.

Force sensing with an optomechanical self-oscillator

Another, and more straightforward method is the direct measurement of phase noise from the RF spectrum acquired by an electronic spectrum analyzer. In the very beginning we adopted this method by using the 'marker function' features of the FSL model of Rohde and Schwarz. FS-K40 application firmware adds automated phase noise measurement capability to FSP model of Rohde and Schwarz employing 'marker function' features. But these measurements had significant limitations due to the phase noise of the analyzer's internal local oscillator (LO), affecting resolution and dynamic range.

A last convincing technique for phase noise measurement is the phase detection method [START_REF]Phase noise characterization of microwave oscillators -frequency discriminator method[END_REF]. Like the 'delay line discriminator method', this technique also uses a double-balanced mixer to convert phase fluctuations into voltage fluctuations, but it requires a second 'reference' source, phase locked to the device under test (DUT). The phase locked loop (PLL) maintains a phase quadrature between the DUT signal and the reference signal. For precise measurements, the reference must have lower phase noise than DUT. The FSUP model of spectrum analyzer by Rohde and Schwarz allows implementing this measurement technique with a high sensitivity and large dynamic range. All the phase noise spectra presented in the followings were acquired using this instrument. O f f s e t f r e q u e n c y ( H z ) Figure 6.7: Phase noise spectrum of a GaAs disk optomechanical self-oscillator with mechanical frequency at 314.5 MHz. The measurement is performed with a fiber taper evanescent coupling approach. The dashed orange line indicates a 1/f 2 dependance of phase noise.

Phase noise spectra of GaAs disk optomechanical oscillators

Figure 6.7 shows a typical phase noise spectrum measured on a self-oscillating GaAs optomechanical disk of radius 4.5 µm and thickness 200 nm. This disk has the frequency of its 1 st order RBM at around 314 MHz. The measurement is obtained with an optical power of 475 µW at the output of the coupling waveguide (here a fiber taper of almost unity transmission). For carrier-offsets between 10 4 and 10 6 Hz , the phase noise varies as 1/f 2 (indicated by the dashed orange line). This is the signature of 'white noise'.

Phase noise of optomechanical self-oscillators

Because of the 'bumps' between 10 2 and 10 4 Hz , it is difficult to fit the spectrum close to the carrier. The origin of these bumps is not perfectly understood, but as we will see they disappear if the fiber taper is replaced with a rigid on-chip coupling waveguide, indicating that optical coupling instabilities may be the source of these spectral features. This measurement of phase noise is qualitatively similar to those reported for self-oscillating optomechanical silica microtoroids [START_REF] Hossein-Zadeh | Characterization of a radiation-pressure-driven micromechanical oscillator[END_REF]. Figure 6.8 shows the phase noise spectra for the same GaAs oscillator but for varying optical input power. The phase noise is improved as the optical power is increased. This trend is in agreement with the reported optomechanical behaviour of silica microtoroids [START_REF] Hossein-Zadeh | Characterization of a radiation-pressure-driven micromechanical oscillator[END_REF] or silicon nitride ring oscillators [START_REF] Tallur | A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator[END_REF]. This trend is also compatible with equation 6.7, since the stored energy E stored increases with the drive optical power.

We also studied the phase noise characteristics of miniature GaAs disks integrated on a chip with their tapered coupling waveguide. Figure 6.9 shows the phase noise spectra measured on such a self-oscillating optomechanical disk of 1.5 µm radius and thickness 320 nm. We observe that close to the carrier the phase noise varies as 1/f 3 , but at higher frequency offsets it recovers a 1/f 2 dependency. The 1/f 3 dependence is a signature of 'flicker noise' (alternatively known as 'pink noise') in the system, while the 1/f 2 regime corresponds to 'white noise'. Unlike the fiber-coupled disks, we notice the absence of the 'bumps' below 2 × 10 4 Hz. Similar to the fiber-coupled oscillators, the phase noise performances improve at higher optical drive power for this miniature on-chip disk oscillator, as reported in Figure 6.10. .9: Phase noise spectrum of a self-oscillating GaAs disk resonator of radius 1.5 µm and thickness 200 nm, integrated on a chip together with a tapered optical coupling waveguide. The mechanical frequency of this resonator's first RBM is at around 910 MHz. Close to the carrier, the phase noise varies as 1/f 3 , while at higher frequency offsets it shows a 1/f 2 dependence, as indicated by the dashed orange lines. From this analysis, it appears that operating our GaAs optomechanical oscillators at large optical power is beneficial in terms of phase noise and potential resolution in sensing experiments. Concomitantly, our analysis of section 6.1.3 showed that a too large optical drive and amplitude of motion resulted in non-linearities in the optical output. Hence a balance needs to be found to place ourselves in optimal conditions for force sensing with our GaAs optomechanical self-oscillators.

6.3 Force sensing with a GaAs disk self-oscillator

Force sensing with a GaAs disk self-oscillator

With the obtained understanding, we are now ready to employ GaAs self-oscillating optomechanical disk resonators in force sensing applications. In the last decades micro and nano-mechanical devices (MEMS and NEMS) have been used as mass sensors in biological or chemical contexts [START_REF] Boisen | Cantilever-like micromechanical sensors[END_REF][START_REF] Lavrik | Cantilever transducers as a platform for chemical and biological sensors[END_REF][START_REF] Tamayo | Biosensors based on nanomechanical systems[END_REF][START_REF] Thundat | Detection of mercury vapor using resonating microcantilevers[END_REF]. Miniature size and high mechanical quality factor reachable in nanomechanics enable ultra-sensitive mass sensing from the femtogram [START_REF] Lavrik | Femtogram mass detection using photothermally actuated nanomechanical resonators[END_REF][START_REF] Cagliani | Ultrasensitive bulk disk microresonator-based sensor for distributed mass sensing[END_REF] down to the atto (10 -18 ) [START_REF] Ekinci | Ultrasensitive nanoelectromechanical mass detection[END_REF] or even zepto (10 -21 ) gram [START_REF] Yang | Zeptogram-scale nanomechanical mass sensing[END_REF], attained at low temperature and under vacuum. Most of these measurements rely on monitoring the shift of the resonance frequency of the mechanical resonator induced by an added deposited mass. In this context optomechanical self-oscillators might appear as promising candidates. The high Q opt of the optical modes of an optomechanical system allows using light as an efficient actuator and a sensitive probe to monitor the mechanical frequency. Moreover the narrow mechanical linewidth of an optomechanical self-oscillator enables high-resolution frequency tracking, and thus higher sensitivity if the frequency is taken as estimator in sensing experiments. Optomechanical self-oscillators based on silica microtoroids were used in sub-pg scale mass sensing applications [START_REF] Liu | Sub-pg mass sensing and measurement with an optomechanical oscillator[END_REF]. Here, we investigate the concept and realization of force sensing with optomechanical disk self-oscillators.

Principles of force sensing in self-oscillation

To understand the principle of force sensing experiment, we consider again the mechanical resonator made of a mass m on a spring k. When the mass is displaced from its equilibrium position by an amount x, it experiences a restoring force F 0 = -k x (Figure 6.11(a)), and the The resonator is placed in a force field, and in the small displacement amplitude limit. Its resonance frequency is modified to ω m by the gradient of the force field.

Force sensing with an optomechanical self-oscillator resonance frequency is expressed as

ω m = 2πf m = k m (6.10)
If the same resonator is now placed in a force field where it moves with small amplitude, a force gradient is added to the restoring force F = F 0 + ∂F ∂x x ûx (Figure 6.11(b)). As a consequence the mechanical resonance frequency is shifted to

ω m = 2πf m = k -∂F ∂x m (6.11)
Hence by tracking the mechanical resonance frequency, one can detect the gradient of the force field acting on the resonator (Figure 6.12).

ω ω m

' ω m Amplitude Figure 6.12: By tracking the resonance frequency of the mechanical oscillator presented in Figure 6.11, one can detect the gradient of the force field.

In contrast to the case of mass sensing, the effective restoring force is the measured quantity, while the motional mass remains unaffected.

In case of an optomechanical self-oscillator, the frequency is a natural output signal, and can be accessed optically without the need of a secondary dedicated actuation method like generally employed in MEMS and NEMS sensor. This is the principle we are investigating here.

We have chosen to carry-out proof of principle demonstrations of this idea for force detection using GaAs disk self-oscillators. To implement the concept experimentally, we use a first laser (laser 1 in Figure 6.13) to inject light in a first WGM of the disk (WGM 1), in order to drive the resonator into optomechanical self-oscillation. A second laser (laser 2 in Figure 6.13) is used to inject light into a second WGM (WGM 2), in order to create a secondary optical force acting on the oscillator. It is that optical force exerted by laser 2, which is to be detected by the self-oscillator. By tuning laser 2 onto the flank of WGM 2 resonance, a force gradient is created, finally providing all necessary ingredients of the scheme.

Force sensing with a GaAs disk self-oscillator

We chose to employ an optical force to be detected because it constitutes in our system a well-understood and calibrated force, which additionally adopts a 1D character thanks to the rotation invariance of the WGM and the RBM around the disk axis. Finally, the injection of laser 2 in WGM 2 does not disrupt the optomechanical selfoscillatory regime created by laser 1, in contrast to a contact force applied to the disk for example. In order to preserve optomechanical self-oscillation while laser 2 is injected, WGM 1 and 2 are chosen to be well seperated spectrally, and the power of laser 2 is taken as small with respect to laser 1 (in practice P 1 P 2 ∼ 40). Figure 6.14 shows the experimental setting employed for our force sensing measurements. The set-up builds on the optomechanical set-up introduced in Chapter 3. It involves two lasers in order to couple light in WGMs 1 and 2 of the disk resonator. In the beginning, we attempted using two WGMs separated by a very large wavelength and employed a first laser 1 with wavelength span 1270 -1360 nm and a second laser 2 with span 1500 -1600 nm. In these first attempts the evanescent coupling conditions between the fiber and the disk were too different between the two wavelengths, precluding a correct simultaneous coupling with WGM 1 and WGM 2. The intermediate wavelength span around 1450 nm must also be avoided because of the absorption of atmospheric water molecules on the tapered fiber. Therefore we finally moved the two lasers within the same wavelength span (1500 -1600 nm) and chose two spectrally separated WGMs in this span: one at around 1531 nm of resonant wavelength (WGM 1) and the other at around 1590 nm (WGM 2). Both WGMs are of radial order p = 5, but correspond to a distinct azimuthal number m. They also share the same polarization (TE).

A first wavelength division multiplexer (WDM 1 in Figure 6. Fiber connector. The yellow line indicates a commercial optical fiber, the grey a bare fiber, the red free space beams, and the black electric cables. when the disk is set in self-oscillation by laser 1, using the optomechanical interaction with WGM 1. We observe an increase in the linewidth of WGM 2 by a factor over 3 (∆λ SO = 110 pm). As already stated, λ 2 lies close to 1590 nm, and the linewidth of the resonance is ∆λ = 35 pm. This resonance broadening is due to the "large" amplitude of the self-oscillatory motion x(t) = A cos(ω m t + φ), which modulates the resonant wavelength of WGM 2 by virtue of the optomechanical coupling. If laser 1 drives a too large amplitude of motion, the resonance of WGM 2 gets completely distorted by the strong modulation imposed by self-oscillation. We hence kept the optomechanical disk just above the self-oscillation threshold. With these experimental conditions being set, the idea depicted in Figure 6.13 is now accessible and the laser wavelength λ 2 can be tuned at will around the resonance of WGM 2.

Results and analysis

Regarding the analysis of self-oscillation frequency, the minimum sweep time (t sweep ) required by the ESA in order to record data over a frequency span (f span ) with a resolution bandwidth (RBW) is given by

t sweep = K f span RBW 2 (6.12)
with K a dimensionless factor that depends on internal properties of the instrument. We employed the minimum RBW featured in our model of ESA (FSL model, 300 Hz) and for a f span of 100 kHz, the required t sweep is 1.1 s. In our measurement we adopted a sweep time of 2 s, and hence measured the self-oscillation frequency every 2 s, as the Force sensing with an optomechanical self-oscillator wavelength of laser 2 was step-tuned by an amount ∆λ = 5 pm, progressively sweeping the resonance of WGM 2. The results of these measurements are shown in Figure 6.16. The black curve represents the optical resonance of WGM 2, obtained in the transmission spectrum of laser 2 (measured with PD 2 as λ 2 is swept). The green open circles correspond to the self-oscillator's mechanical frequency shift ∆f m = f m -f m , as function of λ 2 as laser 2 is swept over the resonance. The grey line is a fit to the measured ∆f m using equation 1.36 of Chapter 1, which describes the optical forces at play (radiation pressure, electrostriction, photothermal force) in the resonator as well as their gradient. To obtain this fit, the model leading to equation 1.36 of Chapter 1 was fed with a certain number of parameters. The parameters associated to radiation pressure and electrostriction are fixed by the geometry of the resonator (see Chapter 2) and the number of photons injected into the WGM. The thermal parameters necessary to model the photothermal force are fixed by our analysis of the thermo-optic effects. Last, starting from all these independently obtained parameters, a genetic algorithm approach was employed with equation 1.36 of Chapter 1, letting the parameters R th , κ abs , τ th and ∂ω 0 ∂T as variables to obtain the best fit to experimental data. Table 6.3 summarizes the estimated values of these parameters and their variable ranges employed to fit the data shown in Figure 6.16. From Table 6.3, it appears that the force exerted onto the oscillator by laser 2 is dominated by a photothermal contribution, with a smaller effect played by radiation pressure and electrostriction. Hence the force gradient sensed by our optomechanical oscillator is mostly a gradient of photothermal force. In Figure 6.16, we see that the oscillator's frequency shift induced by this force gradient are on the order of hundreds of hertz at most in our experimental conditions. With a mechanical Q m of 3000 for the employed RBM and the employed GaAs disk, corresponding to a natural mechanical linewidth of 105 kHz, it is clear that the induced frequency shifts would have been impossible to resolve if the resonator had simply be operated in the Brownian motion regime and the force field estimated from the central frequency. Hence our experiments indeed demonstrate an advantage in using the optomechanical self-oscillation regime for force sensing, providing an enhanced resolution without the need of implementing a dedicated actuation method based on forced resonator excitation. In the experiments reported in Figure 6. and with the values f m = 314.5 MHz and k = mω 2 m = 2.64 × 10 5 N/m (with m = 6.76 × 10 -14 kg), this implies that a minimum force gradient of 0.1 N/m can be detected in the experimental setting reported here. If this may read a modest achievement, let us remind that this value is reached with a very stiff resonator (k = 2.64 × 10 5 N/m), operating at very high frequency. As always, a balance between sensitivity and operation frequency will need to be found for each specific application. In the last section, we discuss how for the sensitivity could be pushed in principles, based on thermodynamical reasoning.

Sensitivity of optomechanical self-oscillation force sensing

Here we discuss the fundamental limit to minimum detectable force gradient using the above optomechanical self-oscillation approach. To that aim we start with the wellestablished expression of L (f ), when the phase noise in the oscillator stems from 'white noise' sources

L (f ) = 1 π f ∆ f 2 ∆ + f 2 (6.14)
with f ∆ linewidth of oscillation and f a frequency offset from the carrier. In the limit f f ∆ , equation 6.14 is approximated as

L (f ) 1 π f ∆ f 2 (6.15)
From Table 6.2, we know that the white frequency noise component is described as

S φ (f ) = b -2 f -2 (6.16)
From equations 6.15 and 6.16, and incorporating the self-oscillation linewidth from equation 6.7, we find the coefficient b -2 = 1 π k B T E stored ∆f m (6.17)

In our analysis, we will consider E stored = E max i.e. the energy stored in the mechanical mode of our disk self-oscillator is the maximal energy that can be injected before the system gets mechanically non-linear. The frequency stability of oscillators is often described by means of the Allan variance (alternatively known as two-sample variance) σ 2 y (τ ). The frequency jitter of an oscillator affected by 'white noise' sources is given by the following Allan variance [START_REF] Rubiola | Phase noise and frequency stability in osciiiators[END_REF] σ 2 ∆f (τ ) = b -2 2τ (6.18)

Injecting the coefficient b -2 from equation 6.17 in equation 6.18, we obtain the limit to the minimum resolvable frequency of our disk self-oscillator

σ 2 ∆ω (τ ) ω m = k B T E stored B 2πQf m (6.19) 
with B = 1 τ the resolution bandwidth of measurement. The ultimate limit to the minimum force gradient detectable by an optomechanical disk self-oscillator is obtained using equation 6.13

∂F ∂x min = 2k k B T E stored B 2πQf m (6.20)
Here, we finally obtained the same thermomechanical limit given in [START_REF] Ekinci | Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems[END_REF] for the case where the mechanical resonator is resonantly driven by a sinusoidal force and the phase of the mechanical motion detected to monitor the frequency shift ∆f m (the so called "slope detection technique"). This implies that even though the principle of detection and operation mode of self-oscillation force sensing as investigated in this thesis completely differs from such resonant detection, it faces the same thermal noise limit. This is probably a supplementary manifestation of a broader result, which is that a linear feedback can not improve resolution in a force sensing application [START_REF] Vinante | Dissipative feedback does not improve the optimal resolution of incoherent force detection[END_REF][START_REF] Harris | Minimum requirements for feedback enhanced force sensing[END_REF]. Indeed an optomechanical self-oscillator can be understood as a mechanical resonator set into oscillation by a linear optical force feedback. If true, this implies that the assets of optomechanical self-oscillation force sensing would not consist in a by-principle enhanced sensitivity but in the possibility of simple and compact experimental implementation at very high frequency and with a single CW laser as input. This would constitute an advantage for large bandwidth and/or portable sensing applications, where resonant driving can become an issue at high speed, and where complex and cumbersome driving methods must be avoided.

Conclusion and perspectives

In this doctoral thesis, we reported on the design, fabrication and characterization of miniature optomechanical disk resonators, as well as on force sensing experiments with optomechanical self-oscillators. Optical and mechanical dissipation degrade the benefits of optomechanical interactions, limiting final performances. Prior to this thesis work, the optical quality factor of the best GaAs disks reached up to 5 × 10 5 , the state of the art for GaAs photonic cavities. One objective of this doctoral work was to boost the optical quality factor of GaAs disk resonators by modifying their chemical and structural surface properties. In this manuscript we presented two surface control techniques that impact optical dissipation in GaAs disks. Passivating the resonator surface by ALD led us to improve the Q opt of GaAs photonic cavities by a factor ∼ 10. We also observed a notable reduction in optical absorption in AlGaAs resonators with similar technique. In a broader perspective, the here-reported surface control techniques might be beneficial in III-V semiconductor photonics. The non-idealities of GaAs semiconductor surfaces can induce mechanical losses as well. Surface passivation might lead to lower mechanical dissipation as well, a subject that the team is currently investigating.

In this thesis we reported on InGaP and AlGaAs disk resonators for optomechanical applications. These two materials are new in the context of optomechanics, and bear potential of strong interactions thanks to their absence of two-photon absorption at the telecom wavelength. To date, we obtained the best optical and mechanical performances in GaAs disks treated by ALD, while InGaP and AlGaAs resonators perform less. This said, the fabrication of InGaP disk resonators was not yet optimized in the first reports presented here and there are possibilities of improved performances in the future. The same being true for AlGaAs disks as well, more investigations are required to reveal the full potential of these alternative III-V semiconductor materials for optomechanical applications.

Finally, we demonstrated force sensing with an optomechanical disk self-oscillator. The dynamics and noise behaviour of GaAs optomechanical self-oscillators were studied in detail. Our experiments demonstrated a comparative advantage in using the optomechanical self-oscillation regime, which yielded de facto enhanced resolution over the Brownian motion regime. However, our analysis also showed that the self-oscillation method faced the same thermomechanical limit as "slope detection technique" employing driven resonators. Even though optomechanical self-oscillation force sensing does not bring in principle a better thermodynamical limit in terms of sensitivity, in practice it Force sensing with an optomechanical self-oscillator bears potential for high frequency operation (typically hundreds of MHz to few GHz ) where the electronic feedbacks required in the slope detection technique turn into a technical challenge. While we adopted an optical force as a signal to be detected, the principle of optomechanical self-oscillation force sensing is independent of the nature of the force. This opens possibilities in the detection of alternative forces of acoustic, mechanical or biological nature. The team is seeking to employ this principle in biomedical applications in a new project.

Last, the GaAs/AlGaAs platform allows to include an optically active medium (quantum dots or quantum wells) in the resonators, which can boost the optomechanical interaction. In the end of this thesis work last year, we fabricated GaAs disk resonators with embedded In 0.13 Ga 0.87 As quantum wells. Early characterizations of such hybrid optomechanical disks were performed but rigorous and complete understanding of the underlying physics is still lacking. This remains as a future work for the team. 

Figure 1 :

 1 Figure 1: Optomechanical systems of different dimensions. (a) Suspended mirror of gram-scale mass and typically few cm in dimension [5]. (b) Sub-millimeter silica resonators with toroidal boundary, supported by spokes [30]. (c) Silicon nanobeam with the external phononic bandgap shield [17].
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 2 Figure 2: Typical optomechanical disk resonators employed for the work of this thesis. (a) GaAs disk. (b) InGaP disk. (c) AlGaAs disk.
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 11 Figure 1.1: (a) An optical cavity with optical resonance frequency ω 0 and dissipation rate κ. (b) A mechanical resonator with mechanical resonance frequency ω m and dissipation rate Γ m .
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 414 Figure 1.4: Optical read-out of mechanical motion. (a) Lorentzian optical resonance of a cavity mode is shown in solid black curve. Dotted green curves present the spectral fluctuations of the optical resonance, induced by the fluctuating mechanical degree of freedom. (b) The resulting optical transmission fluctuating in time when the laser is fixed in frequency ω L and tuned on a flank of the optical resonance. (c) Mechanical spectrum measured through the power spectral density (PSD) of the optical transmission noise, ω m is the mechanical resonance frequency and Γ m is the mechanical damping rate of the measured mode. (d) Phase-space diagram of a mechanical Brownian motion.
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 15 Figure 1.5: (a) Basic block diagram of an electronic oscillator. Vs, and Vo are the DC input signal and oscillator output respectively. (b) Analogy with an optomechanical self-oscillator.An optical input power exerts an optical force F onto the mechanical system, which is set into oscillations by an optical feedback force exerted by light stored in the optomechanical cavity.

  Figure 2.1(a) shows a typical GaAs disk resonator and Figure 2.1(b) is a schematic of the mechanical breathing of such resonator.
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 21 Figure 2.1: (a) A typical GaAs disk resonator. (b) Schematic of a GaAs disk on an AlGaAs pedestal. The dashed blue and red lines represent the radial deformation of the disk by breathing mechanical motion.
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 222 Figure 2.2: Schematic presentations of (a) the total internal reflection process inside a disk cavity and (b) the vertical confinement.
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 23 Figure 2.3: WGMs supported by a 2D GaAs disk resonator of radius 4.5 µm. (a) A WGM with m = 40 and p = 1. (b) Another WGM with m = 31 and p = 3. Both modes are TE-polarized (in the disk plane). The black line represents the disk boundary.

  Figures 2.4

  (a) and (b) correspond to a TE-polarized WGM with p = 1 and m = 43 while in Figures 2.
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 24 Figure 2.4: 2D axi-symmetric FEM modelling of WGMs in a GaAs disk resonator with a thickness of 200 nm and radius of 4.5 µm. The solid grey line indicates the disk boundary and the surrounding is air. (a) The amplitude of electric field (|E|) for a TE-polarized WGM with p = 1 and m = 43. (b) The amplitude of magnetic field (|H|) for the same WGM of (a). (c) The amplitude of electric field (|E|) for a TM-polarized WGM with p = 1 and m = 21. (d) The amplitude of magnetic field (|H|) for the same WGM of (c).
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 25 Figure 2.5: All the components of electric and magnetic field for the WGM shown in figures 2.4(a) and (b). The solid black line shows the disk boundary. (a) E r . (b) E θ . (c) E z . (d) H r . (e) H θ . (f) H z .

  Figure 2.4(c) and (d) has Q rad ∼ 8 × 10 2 . In contrast the same disk supports TE-polarized modes with very high radiative quality factor. The TE mode shown in Figure 2.4(a) and (b) has Q rad ∼ 6 × 10 11 . Six radial orders of TE-polarized WGMs are found by FEM in these resonators.
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 26 Figure 2.6: Comparative study of different radial order modes sustained by a GaAs disk of thickness 200 nm and radius 4.5 µm.
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 28 Figure 2.8: FEM simulation of the 1 st order RBM of a GaAs disk resonator of radius 4.5 µm and thickness 200 nm. (a) Complete disk view obtained by revolving (r, z) cross section. (b) Side view of the disk in the (r, z) plane. The black line shows the disk boundary.
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 29 Figure 2.9: FEM simulated Q clamping as a function of AlGaAs pedestal radius for a disk of radius 4.5 µm and thickness 200 nm.

For the 3 . 4

 34 µm disk we have chosen a TE-polarized WGM with p = 3, m = 24 and λ 0 = 1480.82 nm. While for the 4.5 µm disk we have chosen a WGM with p = 4, m = 30 and λ 0 = 1516.91 nm.
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 3 1(b)). Next the resist is exposed with an Fabrication of GaAs disks and experimental techniques electron beam lithography (EBL) system. -After exposure the resist is developed in AZ 726 MIF developer. The exposed part of the resist remain after development (Figure 3.1(c)). -A first non-selective wet chemical etching is carried in BCK solution (a solution of hydrobromic acid (HBr), acetic acid (CH 3 COOH) and Potassium dichromate (K 2 Cr 2 O 7 ) in 1:1:1 proportion) at 4 • C (Figure 3.1(d)). -A second lithography, this time optical, is employed to define a 'mesa' (Figure 3.1(e) and Figure 3.1(f)). A non-selective etching is carried in a BCK solution at RT to elevate the disks on the mesa, over the substrate (Figure 3.1(g)). -The resists are removed by hot acetone, IPA solution and O 2 plasma if necessary (Figure 3.1(g)).

Figure 3 . 1 :

 31 Figure 3.1: Fabrication steps. a) The epitaxial structure consisting 200 nm GaAs top layer on 1.8 µm Al 0.8 Ga 0.2 As layer grown over GaAs substrate by MBE. b) Electron beam sensitive resist spun on the surface and exposed. c) After development. d) First non-selective wet chemical etching. e) Photo sensitive resist spun on surface and exposed. f) After development. g) Second non-selective wet chemical etching and resist removal. h) Selective hydrofluoric acid (HF) acid under-etching.
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 32 Figure 3.2: After development of MaN-2403 resist in AZ 726 solution. The sharp edges of the letters and the wheel, used here as markers of quality indicate a good sharpness of the development. Rectangles are designed at certain intervals, in order to help to identify the resonators in experiments.
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 33 Figure 3.3: After first non-selective chemical etching in BCK at 4 • C. The resist is removed intentionally to get a better image of the disk boundary.
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 34 Figure 3.4: Resist mask for Mesa etching after UV exposure and development.
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 35 Figure 3.5: Mesa after etching and resist removal. (a) Under optical microscope. (b) Under SEM, observed at one end of the mesa.
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 36 Figure 3.6: (a) Two disks on a mesa, showing very clean disk surface. (b) Three disks on a mesa with the pedestals visible.
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 37 Figure 3.7: The disks are so fragile that they can collapse under mechanical shocks. (a) An optical microscope image showing collapsed disks laying on the substrate. (b) SEM image of a collapsed disk.
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 38 Figure 3.8: (a) Re-deposition on surface after HF etching, close to the disk. (b) EDS spectra of the re-deposited material (at the position of the red dot in (a)).

Figure 3

 3 Figure 3.9: (a) A single disk with very clean surface. (b) A single disk on a mesa.

Figure 3 .

 3 Figure 3.10: (a) A single disk with narrow pedestal and clean surface. (b) Zoom on the disk boundary, showing smooth sidewalls.
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 3311 Figure 3.11: Schematic of the experimental set-up for fiber-taper fabrication. Inset is a zoom on the micro-heter with the stripped part of the fiber placed inside its hot cavity. C: collimator, L 1 : lens, TS1 and TS2: translation stages (UTS 100CC) manufactured by Newport, µH: ceramic thermo-electric micro-heater, PD: photodiode.
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 312 Figure 3.12: Fiber transmission as function of time in the course of pulling.

Figure 3 . 13 :

 313 Figure 3.13: Experimental set-up for optomechanical measurements. FPC: Fiber polarization controller, C: Collimator, LP: Linear polarizer, λ/2: Half-wave plate, M 1 and M 2 : Mirrors, L 1 ,L 2 ,L 3 : Lenses, M: Microscope objective, XYZ: Motorized piezo-stages, PD: Photodiode, DAQ: Data acquisition card, ESA: electronic spectrum analyzer. The yellow line indicates a commercial optical fiber, while the red represents free space beams.
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 314 Figure 3.14: Optical spectrum of a GaAs disk resonator at low power (18 µW). The disk has a radius of 4.5 µm and thickness 200 nm.

Figure 3 . 15 :

 315 Figure 3.15: Measured linewidth and resonant normalized transmission T on of a WGM resonance as a function of the fiber to disk resonator gap-distance. The disk has the same dimensions as that of Figure 3.14.

Figure 3 .

 3 Figure 3.16: (a) Thermo-optic distortion of a WGM at high optical power. The indicated power levels are measured at the fiber output. (b) Explanation of the thermo-optic distortion. When the laser is swept over a WGM at high power, the temperature increase in the disk gradually red-shifts the WGM resonance. As a consequence the WGM appears as a triangular profile.
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 317 Figure 3.17: Mechanical mode spectrum obtained by optomechanical measurement.
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 41 The figure shows that the resonator

Figure 4 . 1 :

 41 Figure 4.1: Representation of the density of mid-gap states associated to the surface reconstruction layer at the disk resonator surface. An arbitrary pinning of the Fermi level E F is also represented for illustrative purposes.
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 42 Figure 4.2: Schematic of the nitridation process. The surface reconstruction layer (SRL) is replaced with a stable GaN layer by wet nitridation in hydrazine solution.
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 43 Figure 4.3: Effect of nitridation on the optical spectrum of a GaAs disk resonator in the wavelength range 1560 -1600 nm. The disk has a diameter of 10 µm and a thickness of 370 nm.
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 44 Figure 4.4: Zoom on two specific modes from Figure 4.3. (a) This mode experiences a small improvement in Q opt , whose origin is not clear. The quality factor of WGMs is in general unaffected by nitridation. (b) is an example.
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 45 Figure 4.5: Time-resolved photoluminescence experiments. PBS: Polarization Beam-Splitter, BS: Beam-splitter. The cryostat is operated at room temperture and thus plays only the role of a support to hold the sample.
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 44 Figure 4.6 shows typical luminescence spectra from a disk and from the substrate, acquired with a continuous detection but under the pulsed excitation introduced above. The measurement was taken on a nitrided sample. This shows that the luminescence is centered at ∼ 870 nm and extends over 40 nm, corresponding to the bulk GaAs emission. The signal is enhanced by a factor 5 on the disk with respect to substrate.Under continuous pumping, it was found that the steady-sate luminescence of a single disk experiences a 20-fold enhancement after nitridation. Time-resolved photoluminescence experiments can help to unravel the effect of nitridation on the relaxation time of excited carriers, and shed light on luminescence processes. Figure4.7 presents the room
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 46 Figure 4.6: Luminescence spectra on a nitrided disk and substrate, under pulsed pumping at λ = 775 nm.
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 47 Figure 4.7: Room temperature time-resolved photoluminescence of a single GaAs disk before and after nitridation. The decay is fitted by the sum of three exponentials. The intermediate decay τ 2 consistently slows down with the nitridation process.
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 48 Figure 4.8: ALD set-up at IEMN, Lille. The main building blocks ((a): glove-box for chemical cleaning, (b): load-lock and (c): deposition chamber) are inter-connected. Inset shows the frontal view of the chemical glove box.
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 49 Figure 4.9: Schematics of the ALD processing of a GaAs surface. The surface reconstruction layer (SRL) of a GaAs surface is removed with the H 2 plasma pre-treatment, and a uniform layer of alumina (Al 2 O 3 ) is deposited instead.

Figure 4 .

 4 Figure 4.10 shows the optical spectrum acquired by fiber-taper optical spectroscopy on one GaAs disk resonator before and after alumina deposition by ALD (deposited thickness is 20 nm). The disk has a radius of 4.5 µm and thickness 200 nm. The optical spectrum reveals a series of fine dips corresponding to WGM resonances of the resonator, spreading over 1500 -1600 nm wavelength span. All of these WGMs are TE polarized. After ALD the overall structure of the spectrum is preserved but a global red shift in
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 410 Figure 4.10: Effect of ALD surface treatment on the optical spectrum of a GaAs disk resonator. The disk thickness is 200 nm and the radius is 4.5 µm. The deposited alumina thickness is 20 nm.
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 4 10 is presented in Figure 4.11. The radial p order of observed WGMs goes from 1 to 6. The spectrum in Figure 4.11 has been acquired at larger optical power compared to Figure 4.10. At large optical power, the signal to noise ratio is improved and the modes p = 1 and p = 2 are clearly resolved in the spectrum, in contrast to Figure 4.10. This WGM identification will be used in section 4.3.4 to reveal the modal dependence of the ALD passivation. Variations in the result obtained by ALD passivation are already present in the first examples discussed now.
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 411 Figure 4.11: Identification of the radial number (p) of the WGMs shown in figure 4.10.

Figure

  Figure 4.12(a) and 4.12(b) show a selected WGM resonance (p = 5) of a GaAs disk resonator, measured before and after ALD, at the same optical power. At low optical power the WGM resonance adopts a Lorentzian shape, and its linewidth reduces from 84 pm to 36 pm with the ALD processing, while the mode contrast remains constant at 40%. This reduction in linewidth corresponds to an improvement of Q opt by a factor 2.33, rising up from 18,000 to 42,500. This comparison of loaded Q opt being made at equal contrast of the resonance, the improvement factor also holds for the intrinsic optical quality factor (Q in ) (see Chapter 2, equations 2.11 and 2.12). This also means a reduction of the intrinsic loss rate κ in of the WGM by the same factor. The measurement of the thermo-optic shift of WGM resonances at high optical power being additional understanding on the reduction of intrinsic optical losses by ALD. Figure4.12(c) and 4.12(d) show such measurement, performed on a distinct WGM (p = 3) of another disk. In Chapter 3 (section 3.3.2) we discussed that the thermo-optic shift is a direct signature of optical absorption in the resonator. Figure4.12(c) and 4.12(d) clearly show an important reduction in the thermo-optic shift after ALD treatment. For the same optical power this reduction is of a factor ∼ 7. The mode contrast remaining almost constant, and because the absorbed optical power scales like κ abs /κ in at constant contrast, we conclude that ALD passivation reduces the optical absorption by a factor of at least 7 in the present case. A more complete analysis of the type introduced in

Figure 4 .

 4 Figure 4.12(a) and 4.12(b) show a selected WGM resonance (p = 5) of a GaAs disk resonator, measured before and after ALD, at the same optical power. At low optical power the WGM resonance adopts a Lorentzian shape, and its linewidth reduces from 84 pm to 36 pm with the ALD processing, while the mode contrast remains constant at 40%. This reduction in linewidth corresponds to an improvement of Q opt by a factor 2.33, rising up from 18,000 to 42,500. This comparison of loaded Q opt being made at equal contrast of the resonance, the improvement factor also holds for the intrinsic optical quality factor (Q in ) (see Chapter 2, equations 2.11 and 2.12). This also means a reduction of the intrinsic loss rate κ in of the WGM by the same factor. The measurement of the thermo-optic shift of WGM resonances at high optical power being additional understanding on the reduction of intrinsic optical losses by ALD. Figure4.12(c) and 4.12(d) show such measurement, performed on a distinct WGM (p = 3) of another disk. In Chapter 3 (section 3.3.2) we discussed that the thermo-optic shift is a direct signature of optical absorption in the resonator. Figure4.12(c) and 4.12(d) clearly show an important reduction in the thermo-optic shift after ALD treatment. For the same optical power this reduction is of a factor ∼ 7. The mode contrast remaining almost constant, and because the absorbed optical power scales like κ abs /κ in at constant contrast, we conclude that ALD passivation reduces the optical absorption by a factor of at least 7 in the present case. A more complete analysis of the type introduced in

Figure 4 . 12 :

 412 Figure 4.12: Reduction of optical absorption by ALD passivation. (a) A selected WGM resonance measured at low optical power before ALD with FWHM of 84 pm. (b) Same resonance after ALD, with FWHM of 36 pm. This WGM is TE polarized and of high radial number (p = 5). It was measured on a GaAs disk of radius 4.5 µm. (c and d) Thermo-optical shift on another WGM on another GaAs disk (radius 3.4 µm) before (c) and after (d) ALD. This mode is also TE polarized but with radial number p = 3. The spectral identification of these WGMs before and after treatment is made possible by the analysis of a full spectrum of the type shown in figure 4.11. The indicated power levels are measured at the fiber output.

  , 4.12(a) and (b), and 4.12(c) and (d). The disk of Figure 4.10 experienced ammonia cleaning and H 2 plasma before depositing 20 nm alumina layer. The disk of Figure 4.12(a) and

Figure 4 .

 4 [START_REF] Eichenfield | A picogramand nanometre-scale photonic-crystal optomechanical cavity[END_REF] presents measurements on a p = 1 mode (TE-polarized), selected in a disk of radius 4.5 µm and thickness 200 nm.

Figure 4 .

 4 13(a) is a spectrum acquired in

Figure 4 . 13 :

 413 Figure 4.13: GaAs disk WGM with an intrinsic quality factor of six million. (a) Fiber-taper optical spectrum of an ultra-high Q TE WGM (p = 1) measured on a 4.5 µm radius (200 nm thick) GaAs disk passivated by ALD (in the under-coupled regime). (b) Linewidth and resonant normalized transmission of the WGM resonance as a function of the fiber to resonator gapdistance. The linewidth at large gap distance extrapolates to 0.26 pm, corresponding to a quality factor of six million.
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 414 Figure 4.14: Modal dependence of the optical quality factor enhancement obtained by ALD on GaAs disks. The enhancement factor increases when the radial number p decreases.
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Figure 4 . 15 :

 415 Figure 4.15: Optical quality factor enhancement obtained by ALD as a function of radial p order and deposited alumina thickness. Red and black data points have same meaning as in figure 4.14.
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  (a) and (b). The intrinsic quality factor of this WGM is improved by a factor 2.33 with ALD process [aα + s(1 -α)] = 1/2.33 (4.5) The thermo-optic shift for this WGM is shown in Figures 4.16

  (a) and (b).
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  (a) and (b) or 4.16(a) and (b)a{aα + s(1 -α))} -1 = 54/47 (4.6)Solving equations 4.5 and 4.6 we obtain a ∼ 0.49, which means that ALD reduces absorption by a factor of about 2 for this particular WGM (TE, p = 5).
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  (c) and (d) correspond in a complementary way to the WGM shown in Figures 4.12

  (c) and (d) (TE, p = 3) but at low optical power, where the change of Lorentzian linewidth produced by ALD is made directly visible. With the same n s m i s s i o n Wavelength (nm) Wavelength (nm)

Figure 4 .

 4 Figure 4.16: (a,b) Thermo-optic shift of the WGM shown in Figures 4.12(a,b) before and after ALD. (c,d) The same WGM shown in figure 4.12(c,d) but at low optical power. The indicated power levels are measured at the fiber output.

  (c) and (d)).

Figure 4 . 17 :

 417 Figure 4.17: Statistical distribution of WGM doublet splitting for different WGMs measured on several GaAs disk resonators, before and after ALD treatment.
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 51 Figure 5.1: (a) After BCK etching at RT. (b) After GaAs selective etching in solution of citric acid and H 2 O 2 at room temperature for 3 minutes. The etch rate is very slow.

Figure 5 . 3 shows

 53 InGaP disk resonators on their mesa.One limitation of our fabrication technique for InGaP disks was the non-circularity of the obtained disks.

  Figure 5.4(a) is a top view of an InGaP disk. The figure reveals a 'lemon' shaped geometry. This shape originates from the first non-selective etching in BCK solution at 4 • C because unlike with GaAs or AlGaAs, the etching of InGaP in BCK solution is slightly anisotropic.

  Figure 5.4(b) is a side-view of the disk after the first BCK etching. The disparity in the InGaP, cap, and sacrificial GaAs layers indicates a different etch rate for InGaP and GaAs in BCK. In order to fabricate a truly circular 5.1 Fabrication methods 1 µm

Figure 5 . 2 :

 52 Figure 5.2: An In 0.5 Ga 0.5 P disk on GaAs pedestal.

Figure 5 . 3 :

 53 Figure 5.3: (a) A single InGaP disk on mesa. (b) Three InGaP disks on mesa.

Figure 5 . 4 :

 54 Figure 5.4: SEM images after the first non-selective etching with BCK at 4 • C. (a) Top view. (b) Side view.

Figure 5 .Figure 5 . 5 :

 555 Figure 5.5: Al 0.4 Ga 0.6 As disk positioned on a GaAs pedestal.

Figure 5 . 6 :

 56 Figure 5.6: Optical spectrum of an InGaP disk of radius 3.25 µm and thickness 200 nm, acquired at 50 µW optical power (measured at the output of the fiber). The probe light is TE-polarized. The identification of radial number (p) of the WGMs are indicated.

Figure 5 . 7 :

 57 Figure 5.7: Optical spectrum of an AlGaAs disk of radius 2 µm and thickness 150 nm, acquired at an optical power of 70 µW (measured at fiber output). The probe light is TE-polarized. The identification of radial number (p) of the WGMs are indicated.

Figure 5 . 8 :

 58 Figure 5.8: Temperature profile (steady-state) for an absorbed power (P abs ) of 1 mW at the disk periphery. (a) InGaP disk. (b) AlGaAs disk. The colour code indicates the temperature in K •

Figure 5 . 9 :

 59 Figure 5.9: Temperature at the disk periphery as a function of time. (a) InGaP disk. (b) AlGaAs disk. The green line corresponds to an exponential fit.
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 5 Figure 5.10: Thermo-optic shift of a WGM resonance in an InGaP disk of radius 3.25 µm and thickness 200 nm. (a) Experimental measurements. (b) Results of our thermo-optic model. The indicated power levels are measured at the fiber output.
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 511 Figure 5.11: Thermo-optic shift of a WGM resonance in an AlGaAs disk of radius 2 µm and thickness 150 nm. (a) Experimental measurements. (b) Results of our thermo-optical model. The indicated power levels are measured at the fiber output.
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 512 Figure 5.12: Mechanical modes. (a) InGaP disk of radius 3.25 µm and thickness 200 nm. (b) AlGaAs disk of radius 2 µm and thickness 150 nm.

Figure 5 . 13 :

 513 Figure 5.13: Optomechanical self-oscillation of an InGaP disk resonator. (a) Evolution of mechanical spectrum as a function of laser wavelength λ L . (b) Mechanical energy as a function of λ L . The dashed line shows the threshold of self-oscillation.
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 514 Figure 5.14: Optomechanical self-oscillation of an AlGaAs disk resonator. (a) Evolution of mechanical spectrum as a function of laser wavelength λ L . (b) Mechanical energy as a function of λ L . The dashed line shows the threshold of self-oscillation.

Figure 5 . 15 :

 515 Figure 5.15: Modelling the threshold of self-oscillation. The blue curve shows the optical WGM resonance and the maroon curve Γ m,ef f /Γ m as a function of the laser wavelength. The selfoscillation threshold is shown by a dashed line. ∆P is the dropped power in the WGM, at the self-oscillation threshold. (a) InGaP disk resonator. (b) AlGaAs disk resonator.

6. 1

 1 Optomechanical self-oscillation of a GaAs disk resonator 6.1.1 Observation of self-oscillation of a GaAs disk

Figure 6 .Figure 6 . 1 :

 661 Figure 6.1(a) shows the evolution of the optically measured mechanical spectrum of a GaAs disk (radius 4.5 µm and thickness 200 nm), as the laser wavelength (λ L ) is tuned on the blue flank of an optical WGM resonance, with 1.8 mW optical power measured at the output of the fiber taper. As λ L increases and the detuning of the laser to the WGM resonance decreases, the disk vibration is progressively optomechanically amplified before transiting to the self-oscillation regime, where the mechanical RF linewidth narrows abruptly. The mechanical energy can be estimated by calibrating the area under the resonance curve in the RF "mechanical" spectrum. It is shown as a function of λ L in

Figure 6 .

 6 Figure 6.1(b), with a dashed line that indicates the threshold of self-oscillation.

6. 1 Figure 6 . 2 :

 162 Figure 6.2: Thermal relaxation time measurement for a GaAs disk. (a) Frequency response of the disk under optical modulation. The green curve corresponds to the response of the system when the laser wavelength is vastly detuned from the WGM resonance (inset figure) and the maroon curve corresponds to the response of the system with the laser wavelength set on the blue flank of the WGM resonance. The black curve is the normalized response. (b) Normalized response at very low frequency (the part within the pink circle in (a)), showing a decrease stemming from the thermal relaxation. Fitting the data gives a value τ th = 0.2 µs.
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 63 Figure 6.3: τ th as a function of laser modulation power.

6. 1 Figure 6 . 4 :

 164 Figure 6.4: Measurement of the time-dynamics of optomechanical self-oscillation of a GaAs disk. (a) Normalized transmission T as a function of time just above the self-oscillation threshold. (b) Normalized transmission T well above the self-oscillation threshold. (c) and (d) Phase space representation of the dynamics presented in (a) and (b) respectively.

Figures 6. 4

 4 Figures 6.4(a) and (c) show the time-modulation of transmission T , the corresponding phase-space trajectory, when the laser detuning is such that the system resides just above the self-oscillation threshold. The time-dynamics changes when the laser is tuned closer to WGM resonance (still blue detuned), such that the system sits well above self-oscillation threshold (Figures6.4(b) and (d)). The time evolution of T looks less harmonic and the phase-space trajectory shows the appearance of a knot. To understand these differences, we now model the dynamics of the transmission in the self-oscillatory regime.In Chapter 1, we described self-oscillation as a sinusoidal motion

  Figures 6.4(a) and (c) show the time-modulation of transmission T , the corresponding phase-space trajectory, when the laser detuning is such that the system resides just above the self-oscillation threshold. The time-dynamics changes when the laser is tuned closer to WGM resonance (still blue detuned), such that the system sits well above self-oscillation threshold (Figures6.4(b) and (d)). The time evolution of T looks less harmonic and the phase-space trajectory shows the appearance of a knot. To understand these differences, we now model the dynamics of the transmission in the self-oscillatory regime.In Chapter 1, we described self-oscillation as a sinusoidal motion

Figure 6 . 5 :

 65 Figure 6.5: (a) Optomechanical self-oscillation described by a sinusoidal motion with frequency 314.5 MHz. (b) Phase space trajectory of such sinusoidal motion. (c) and (d) Time-modulation of the cavity resonance frequency (indicated by the blue part of mode resonances) just above (c) and well above (d) self-oscillation. (e) and (f) Time-modulated normalized transmission corresponding to situations (c) and (d). (g) and (h) Phase space trajectory corresponding to situations (c) and (d).

Force sensing with an optomechanicalFigure 6 . 6 :

 66 Figure 6.6: Schematic representation of spectral broadening in real oscillators. (a) Time domain representation of an oscillator signal. (b) Power Spectral Density (PSD) of the signal.
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 68 Figure 6.8: Phase noise spectra of a GaAs disk self-oscillator for varying optical drive power. The power is measured at the output of the employed fiber taper.
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 236 Figure 6.9: Phase noise spectrum of a self-oscillating GaAs disk resonator of radius 1.5 µm and thickness 200 nm, integrated on a chip together with a tapered optical coupling waveguide. The mechanical frequency of this resonator's first RBM is at around 910 MHz. Close to the carrier, the phase noise varies as 1/f 3 , while at higher frequency offsets it shows a 1/f 2 dependence, as indicated by the dashed orange lines.

LFigure 6 . 10 :

 610 Figure 6.10: Phase noise characteristics of the same GaAs disk integrated on a chip with its tapered optical coupling waveguide, for varying optical drive power. The optical power is measured at the output of the waveguide.

'Figure 6 . 11 :

 611 Figure 6.11: (a) A mechanical resonator with its natural resonance frequency ω m . (b)The resonator is placed in a force field, and in the small displacement amplitude limit. Its resonance frequency is modified to ω m by the gradient of the force field.

Figure 6 . 13 :

 613 Figure 6.13: Implementation of force sensing in an optomechanical disk oscillator. (a) Laser 1 is used to inject light in WGM 1 of the disk and drive it into self-oscillation. (b) Laser 2 is tuned close to the resonance of WGM 2 to create an optical force field acting on the mechanical resonator.

Figure 6 . 14 :

 614 Figure 6.14: Experimental set-up for optomechanical force sensing experiment. FPC: Fiber polarization controller, WDM 1 and WDM 2 : wavelength division multiplexers, C: Collimator, LP: Linear polarizer, λ/2: Half-wave plate, M 1 and M 2 : Mirrors, L 1 ,L 2 ,L 3 : Lenses, MO: Microscope objective, XYZ: Motorized piezo-stages, FBF: Fibered Bragg filter, PD 1 and PD 2 : Photodiodes, DAQ: Data acquisition card, ESA: Electronic spectrum analyzer, PE: Plexyglass enclosure, FC: Fiber connector. The yellow line indicates a commercial optical fiber, the grey a bare fiber, the red free space beams, and the black electric cables.

Figure 6 .

 6 Figure 6.15(a) shows the resonant optical spectrum of WGM 2, acquired with laser 2 when the disk is set at rest. The same optical mode is now shown in Figure6.15(b) 

Figure 6 . 15 :

 615 Figure 6.15: Line broadening of the optical resonance of WGM 2, induced by the self-oscillation driven by laser 1 with WGM 1. (a) WGM 2 when the disk is at rest with laser 1 switched off. (b) The same optical resonance when the disk is driven just above self-oscillation threshold by laser 1.

Figure 6 . 16 :

 616 Figure 6.16: Force sensing measurements. The black curve represents WGM II and the green circles corresponds to the mechanical frequency shift ∆f m of the self-oscillator for different frequency detuning.

  16, the minimum detectable relative frequency shift of the oscillator corresponds to the error bar of a green open-circle and amounts to ∆f m = 65 Hz. According to the relation ∆f m

1 94 6. 7 96 6. 8 97 6. 9

 947968979 Optomechanical systems of different dimensions. (a) Suspended mirror of gram-scale mass and typically few cm in dimension[START_REF] Corbitt | An all-optical trap for a gramscale mirror[END_REF]. (b) Sub-millimeter silica resonators with toroidal boundary, supported by spokes[START_REF] Anetsberger | Ultralow-dissipation optomechanical resonators on a chip[END_REF]. (c) Silicon nanobeam with the external phononic bandgap shield[START_REF] Chan | Laser cooling of a nanomechanical oscillator into its quantum ground state[END_REF]. . . . . 2 Typical optomechanical disk resonators employed for the work of this thesis. (a) GaAs disk. (b) InGaP disk. (c) AlGaAs disk. . . . . . . . . . . 1.1 (a) An optical cavity with optical resonance frequency ω 0 and dissipation rate κ. (b) A mechanical resonator with mechanical resonance frequency ω m and dissipation rate Γ m . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 A basic optomechanical system cosisting of one fixed mirror and one movable mirror end. x is the mechanical displacement of the movable mirror end. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 A molecule in the fringing field of a parallel plate capacitor [31] . . . . . . 1.4 Optical read-out of mechanical motion. (a) Lorentzian optical resonance of a cavity mode is shown in solid black curve. Dotted green curves present the spectral fluctuations of the optical resonance, induced by the fluctuating mechanical degree of freedom. (b) The resulting optical transmission fluctuating in time when the laser is fixed in frequency ω L and tuned on a flank of the optical resonance. (c) Mechanical spectrum measured through the power spectral density (PSD) of the optical transmission noise, ω m is the mechanical resonance frequency and Γ m is the mechanical damping rate of the measured mode. (d) Phase-space diagram of a mechanical Brownian motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 (a) Basic block diagram of an electronic oscillator. Vs, and Vo are the DC input signal and oscillator output respectively. (b) Analogy with an optomechanical self-oscillator. An optical input power exerts an optical force F onto the mechanical system, which is set into oscillations by an optical feedback force exerted by light stored in the optomechanical cavity. 2.1 (a) A typical GaAs disk resonator. (b) Schematic of a GaAs disk on an AlGaAs pedestal. The dashed blue and red lines represent the radial deformation of the disk by breathing mechanical motion. . . . . . . . . . . 6.6 Schematic representation of spectral broadening in real oscillators. (a) Time domain representation of an oscillator signal. (b) Power Spectral Density (PSD) of the signal. . . . . . . . . . . . . . . . . . . . . . . . . . . Phase noise spectrum of a GaAs disk optomechanical self-oscillator with mechanical frequency at 314.5 MHz. The measurement is performed with a fiber taper evanescent coupling approach. The dashed orange line indicates a 1/f 2 dependance of phase noise. . . . . . . . . . . . . . . . . . . . Phase noise spectra of a GaAs disk self-oscillator for varying optical drive power. The power is measured at the output of the employed fiber taper. Phase noise spectrum of a self-oscillating GaAs disk resonator of radius 1.5 µm and thickness 200 nm, integrated on a chip together with a tapered optical coupling waveguide. The mechanical frequency of this resonator's first RBM is at around 910 MHz. Close to the carrier, the phase noise varies as 1/f 3 , while at higher frequency offsets it shows a 1/f 2 dependence, as indicated by the dashed orange lines. . . . . . . . . . . . . . . . . . . . 98 6.10 Phase noise characteristics of the same GaAs disk integrated on a chip with its tapered optical coupling waveguide, for varying optical drive power. The optical power is measured at the output of the waveguide. . . . 98 6.11 (a) A mechanical resonator with its natural resonance frequency ω m . (b) The resonator is placed in a force field, and in the small displacement amplitude limit. Its resonance frequency is modified to ω m by the gradient of the force field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.12 By tracking the resonance frequency of the mechanical oscillator presented in Figure 6.11, one can detect the gradient of the force field. . . . . . . . . 100 6.13 Implementation of force sensing in an optomechanical disk oscillator. (a) Laser 1 is used to inject light in WGM 1 of the disk and drive it into self-oscillation. (b) Laser 2 is tuned close to the resonance of WGM 2 to create an optical force field acting on the mechanical resonator. . . . . . . 101 6.14 Experimental set-up for optomechanical force sensing experiment. FPC: Fiber polarization controller, WDM 1 and WDM 2 : wavelength division multiplexers, C: Collimator, LP: Linear polarizer, λ/2: Half-wave plate, M 1 and M 2 : Mirrors, L 1 ,L 2 ,L 3 : Lenses, MO: Microscope objective, XYZ: Motorized piezo-stages, FBF: Fibered Bragg filter, PD 1 and PD 2 : Photodiodes, DAQ: Data acquisition card, ESA: Electronic spectrum analyzer, PE: Plexyglass enclosure, FC: Fiber connector. The yellow line indicates a commercial optical fiber, the grey a bare fiber, the red free space beams, and the black electric cables. . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.15 Line broadening of the optical resonance of WGM 2, induced by the selfoscillation driven by laser 1 with WGM 1. (a) WGM 2 when the disk is at rest with laser 1 switched off. (b) The same optical resonance when the disk is driven just above self-oscillation threshold by laser 1. . . . . . . 103 List of Tables 2.1 Comparison between the results of the analytical formulation of section 2.3.1 and FEM numerical simulations, for 1 st order RBM resonance frequency with varying disk radius. The disk thickness is 200 nm. . . . . . . 2.2 1 st order RBM eigenfrequencies and optomechanical coupling parameters determined by 2D axisymmetric FEM simulation for two different disk radii, thickness being kept at 200 nm. For the 3.4 µm disk we have chosen a TE-polarized WGM with p = 3, m = 24 and λ 0 = 1480.82 nm. While for the 4.5 µm disk we have chosen a WGM with p = 4, m = 30 and λ 0 = 1516.91 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Optomechanical coupling parameters for the 1 st order RBM of a disk of radius 4.5 µm and thickness 200 nm, for TE WGMs of increasing p. The mechanical frequency is 310 MHz and x ZP F = 7.3 × 10 -16 m. . . . . . . . 2.4 Optomechanical coupling parameters for the 1 st order RBM of a disk of radius 4.5 µm and thickness 200 nm, for WGM of same p but different m order. The mechanical frequency is 310 MHz and x ZP F = 7.3 × 10 -16 m. . 4.1 Mean values of the rise time and the three exponential decay times evaluated from the luminescence dynamics at room temperature, averaged over several resonators, and measured for two different excitation optical powers (60 µW and 100 µW). The measurements were carried out both on the disks and substrate, and both before and after nitridation. All disks had the same dimensions (4.5 µm radius and 200 nm thickness). . . 5.1 WGMs sustained by an InGaP disk resonator of radius 3.25 µm and thickness 200 nm, close to λ = 1.5 µm. All the modes are TE-polarized. . 5.2 Optomechanical coupling constants for the four identified WGMs and for the 1 st order RBM of an InGaP disk resonator of radius 3.25 µm and thickness 200 nm. The calculated couplings g om are both geometric and photoelastic, with g 0 summing both contributions. Photoelastic parameters of InGaP can be found in Table 5.6 at the end of this chapter. . . . . 5.3 WGMs sustained by an AlGaAs disk resonator of radius 2 µm and thickness 150 nm. All the modes are TE-polarized. . . . . . . . . . . . . . . . . . .

  Evanescent optical coupling of a fiber to a disk coupling region of the disk. S in and S out are the amplitudes of the input and output fields of the fiber. Both of these fields are normalized such that their squared modulus gives the input and output power. The cavity field amplitude a(t) is normalized such that |a(t)| 2 represents the optical energy stored in the WGM cavity.

		2.2 The time evolution
	of the cavity and fiber fields is written as					
	da(t) dt	= -iω 0 a(t) -	κ in 2	+	κ ext 2	a(t) + kS in	(2.4)
						γ in	
						a(t)	
					γ ext		
		in				S out	
	Figure 2.7: Schematic of a disk resonator and coupling fiber (or waveguide) with the parameters
	used in the coupled mode theory analysis.				
	Figure 2.7 shows the schematic of a disk resonator and a fiber positioned within the

Table 2 .

 2 .1). 1: Comparison between the results of the analytical formulation of section 2.3.1 and FEM numerical simulations, for 1 st order RBM resonance frequency with varying disk radius. The disk thickness is 200 nm.

	R (µm)	f m (MHz) Analyical	f m (MHz) FEM
	1.5	921.81	919.68
	2.5	553.09	552.13
	3.5	395.06	394.44
	4.5	307.27	306.8

Table 2 .

 2 

	4	406	195	334	0.84	444
	4.5	310	141	260	0.73	291

2: 1 st order RBM eigenfrequencies and optomechanical coupling parameters determined by 2D axisymmetric FEM simulation for two different disk radii, thickness being kept at 200 nm.
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 2 

	1 41 1560.00	188	145	243
	2 38 1508.06	171	192	264
	3 35 1480.38	158	226	280
	4 32 1464.77	148	255	294
	5 29 1457.23	138	279	304
	6 26 1455.96	129	300	313

3: Optomechanical coupling parameters for the 1 st order RBM of a disk of radius 4.5 µm and thickness 200 nm, for TE WGMs of increasing p. The mechanical frequency is 310 MHz and x ZP F = 7.3 × 10 -16 m.

Table 2 .

 2 4: Optomechanical coupling parameters for the 1 st order RBM of a disk of radius 4.5 µm and thickness 200 nm, for WGM of same p but different m order. The mechanical frequency is 310 MHz and x ZP F = 7.3 × 10 -16 m.

		g 0
	nm)	(kHz)
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 5 .1, together with the azimuthal number. 1: WGMs sustained by an InGaP disk resonator of radius 3.25 µm and thickness 200 nm, close to λ = 1.5 µm. All the modes are TE-polarized.

	p m	λ 0 (nm)	Q rad
	1 25 1607.89 4×10 11
	2 24 1478.12 2×10 9
	3 21 1456.88 5×10 6
	4 18 1452.57 2×10 4

  .2. Following Chapter 2, both the geometric and photoelastic couplings were calculated.

	p m	g geo om (GHz/nm)	g pe om (GHz/nm)	g 0 (kHz)
	1 25	229	126	318
	2 24	207	198	362
	3 21	182	254	390
	4 18	160	296	408

Table 5 .

 5 .3. 3: WGMs sustained by an AlGaAs disk resonator of radius 2 µm and thickness 150 nm. All the modes are TE-polarized.

	Optomechanics with InGaP and AlGaAs disk resonators
	p m	λ 0 (nm)	Q rad
	1 15 1536.65 3×10 7
	2 12 1496.26 2×10 4

Table 5 .

 5 5.7Comparative study of GaAs, InGaP and AlGaAs disk resonators Ga 0.5 P Al 0.4 Ga 0.6 As 6: Material properties of GaAs, In 0.5 Ga 0.5 P and Al 0.4 Ga 0.6 As disks.

	Property In 0.5 Poisson's unit GaAs ratio (ν) -0.31 0.3345	0.35
	Young's modulus (E)	GPa	85.9	82.5	84.6
	Density (ρ)	kg/m 3	5317	4470	4696
	Specific heat (C)	Jkg -1 K -1	327	371.2	378
	Thermal conductivity (λ)	WK -1 m -1	55	5.26	9.88
	Linear thermal				
	expansion	K -1	5.7×10 -6	5.3×10 -6	5.52×10 -6
	co-efficient (α)				
	Refractive index (n)				
	at 1550 nm	-	3.374	3.19	3.17
	and room T				
	Thermo-optic				
	co-efficient ( ∂n ∂T )	K -1	2.34×10 -4	2×10 -4	2.3×10 -4
	at room T				
	TPA co-efficient (β) at 1550 nm and room T	cm/GW	∼ 15	0	0
	photoelastic parameters				
	p 11 p 12	-	-0.165 -0.140	-0.151 -0.082	-0.165 -0.090
	p 44		-0.172	-0..074	-0..088

Table 5 .

 5 7: Best Q in and Q m along with the frequency of 1 st order RBM measured on different disk resonators, in the optical wavelength range 1500 -1600 nm and at room temperature, during this thesis.

	air and
	room T)

Table 6 .

 6 1: Radiation pressure, electrostriction and photothemal force exerted by a single photon in the resonator. Absorption rate κ abs and thermal relaxation time τ th for the considered GaAs disk of radius 4.5 µm and thickness 200 nm.
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 6 

	2: Noise components of phase noise spectrum described with power-law function model
	[87, page 31]
	.

  [START_REF] Ding | High frequency gaas nano-optomechanical disk resonator[END_REF] was used to mix the Force sensing with an optomechanical self-oscillator two wavelengths at the input of the experiment. Laser 1 is operated at high power (1.5 mW at the fiber taper output) and is coupled into WGM 1 with resonance wavelength 1531 nm, with a blue detuning that sets the disk into self-oscillation. A second laser 2 operated at small power (35 µW) injects light in WGM 2 with resonance wavelength at 1590 nm, with a variable detuning. At the output of the fiber taper laser 1 and 2 are split with WDM 2 and focused separately on photodetectors PD 1 and PD 2 . A fibered Bragg filter (FBF in Figure6.14) filters-out residual light from the high power laser 1 and avoids it to reach detector PD 2 . PD 1 allows to read-out both the DC and AC component of the photo-current independently. The AC component is sent onto an electronic spectrum analyzer (ESA) (FSL model from Rohde and Schwarz ) to monitor the RF spectrum of the fiber taper optical transmission. With a data acquisition card (DAQ) we computer monitor the DC component of the fiber transmission as a function of the wavelength of laser 2 λ 2 . With a labview program we interfaced laser 2, the DAQ and the ESA. This allowed recording the mechanical frequency of the optomechanical self-oscillator observed on the ESA, while the wavelength λ 2 of laser 2 was progressively swept over the resonance of WGM 2, producing a variable optical force field.

Table 6 .

 6 6.3 Force sensing with a GaAs disk self-oscillator Parameter Unit Estimated value Variable range R th K/W 1.26 × 10 5 0.1 -10 × 10 5 κ abs Hz 2.4 × 10 10 0.2 -20 × 10 10 3: Variable parameters employed in genetic algorithm to fit the data shown in Figure 6.16.

	τ th	µs	0.20	0.10 -0.50
	∂ω 0 ∂T	rad/K	86 × 10 9	60 -110 × 10 9

Surface passivation of GaAs disk resonators

Mean

Atomic layer deposition (ALD) on GaAs disk resonators

Prior work at Thales Research and Technology, Palaiseau, France had led to the observation of a 10-fold increase in the carrier lifetime in GaAs photonic crystals when passivating the surface with alumina (Al 2 O 3 ) deposited by atomic layer deposition (ALD) [START_REF] Moille | Integrated all-optical switch with 10 ps time resolution enabled by ald[END_REF]. The reults were interpreted as a reduction in the surface recombination velocity. Alumina deposition on GaAs surfaces by ALD was also reported to reduce and remove the surface Ga-O and As-O bonds [START_REF] Hinkle | Gaas interfacial self-cleaning by atomic layer deposition[END_REF]. In the field of electronics, ALD treatment of GaAs interfaces is known to reduce the density of interfacial states [START_REF] Caymax | Interfaces of high-k dielectrics on gaas: Their common features and the relationship with fermi level pinning[END_REF][START_REF] Chiu | Achieving a low interfacial density of states in atomic layer deposited al 2 o 3 on in 0.53 ga 0.47 as[END_REF]. All these elements motivated us to passivate our GaAs disk resonator surface with alumina by ALD. The atomic layer depositions on our GaAs disk resonators were performed at Institut d'Electronique de Microélectronique et de Nanotechnologie (IEMN), Lille, in collaboration with Laurence Morgenroth.

ALD set-up and protocol

The atomic layer deposition set-up is shown in Figure 4.8. The set-up has three main building blocks: glove-box for chemical cleaning, load lock and deposition chamber. These three blocks are inter-connected with sample-transfer channels and can be filled with N 2 . It is in consequence possible to deoxidize the sample surface in chemical solutions and to transfer the sample to the deposition chamber without bringing it back in contact to air.

First the samples is cleaned in the glove-box with acetone and IPA, and then rinsed in NH 4 OH solution (6% v/v, for 30 seconds) to remove surface oxides. The sample is then transferred to the deposition chamber via the load-lock. Mots clés : Optomécanique, GaAs, passivation, pertes optiques, ALD, InGaP, AlGaAs, espace de phase, bruit de phase, détecteur, nanofabrication.
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