
HAL Id: tel-02070937
https://theses.hal.science/tel-02070937

Submitted on 18 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Phenomenology of active particles with finite and
discrete internal states : an individual and collective

study
Luis Alberto Gómez Nava

To cite this version:
Luis Alberto Gómez Nava. Phenomenology of active particles with finite and discrete internal states :
an individual and collective study. Physics [physics]. COMUE Université Côte d’Azur (2015 - 2019),
2018. English. �NNT : 2018AZUR4080�. �tel-02070937�

https://theses.hal.science/tel-02070937
https://hal.archives-ouvertes.fr


Phénoménologie de particules
actives à états internes fnis et

discrets  : une étude individuelle et
collective

Luis Alberto GÓMEZ NAVA
Laboratoire Jean Alexandre Dieudonné

Présentée en vue de l’obtention 
du grade de docteur en physique
d’Université Côte d’Azur.

Dirigée par : Fernando PERUANI.
Soutenue le : 5 novembre 2018.

Devant le jury, composé de : 
 Richard BON, Maître de Conférences,           

Université Toulouse III, Paul Sabatier.
 Richard FOURNIER, Professeur, Université 

Toulouse III, Paul Sabatier.
 Thierry GOUDON, Directeur de recherche, 

Université Côte d’Azur.
 José HALLOY, Professeur, Université Paris 

Diderot.
 Fernando PERUANI, Maître de Conférences, 

Université Côte d’Azur.

THÈSE DE DOCTORAT
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Résumé. Dans cette thèse, nous présentons un cadre théorique pour étudier les systèmes
de particules actives fonctionnant avec une quantité discrète d’états internes qui contrôlent le
comportement externe de ces objets. Les concepts théoriques développés dans cette thèse sont
introduits afin de comprendre un grand nombre de systèmes biologiques multi-agents dont les
individus présentent différents types de comportements se succédant au cours du temps. Par
construction, le modèle théorique suppose que l’observateur extérieur a accès uniquement au
comportement visible des individus, et non pas à leurs états internes. C’est seulement après
une étude détaillée de la dynamique comportementale que l’existence de ces états internes de-
vient évidente. Cette analyse est cruciale pour pouvoir associer les comportements observés
expérimentalement avec un ou plusieurs états internes du modèle. Cette association entre les
états et les comportements doit être faite selon les observations et la phénoménologie du système
biologique faisant l’objet de l’étude. Les scénarios qui peuvent être observés en utilisant notre
modèle théorique sont déterminés par la conception du mécanisme interne des individus (nombre
d’états internes, taux de transition, etc. . . ) et seront de nature markovienne par construction.
Tous les travaux expérimentaux et théoriques contenus dans cette thèse démontrent que notre
modèle est approprié pour décrire des systèmes réels montrant des comportements intermittents
individuels ou collectifs. Ce nouveau cadre théorique pour des particules actives avec états
internes, introduit ici, est encore en développement et nous sommes convaincus qu’il peut po-
tentiellement ouvrir de nouvelles branches de recherche à l’interface entre la physique, la biologie
et les mathématiques.

Mots-clés: matière active, comportements intermittents, états internes, systèmes biologiques,
processus markoviens, phénomènes collectifs, systèmes synchronisés.

Abstract. In this thesis we introduce a theoretical framework to understand collections of active
particles that operate with a finite number of discrete internal states that control the external
behavior of these entities. The theoretical concepts developed in this thesis are conceived to
understand the large number of existing multiagent biological systems where the individuals
display distinct behavioral phases that alternate with each other. By construction, the premise
of our theoretical model is that an external observer has access only to the external behavior
of the individuals, but not to their internal state. It is only after careful examination of the
behavioral dynamics that the existence of these internal states becomes evident. This analysis
is key to be able to associate the experimentally observed behaviors of individuals with one or
many internal states of the model. This association between states and behaviors should be done
accordingly to the observations and the phenomenology displayed by the biological system that
is being the subject of study. The possible scenarios that can be observed using our theoretical
model are determined by the design of the internal mechanism of the individuals (number of
internal states, transition rates, etc. . . ) and will be of markovian nature by construction. All
the experimental and theoretical work contained in this thesis is evidence that our model is
suitable to be used to describe real-life systems showing individual or collective intermittent
behaviors. This here-introduced new framework of active particles with internal states is still in
development and we are convinced that it can potentially open new branches of research at the
interface between physics, biology and mathematics.

Keywords: active matter, intermittent behaviors, internal states, biological systems, markov
processes, collective phenomena, synchronized systems.
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“Los relojes no se inventaron para dar la hora,
para empezar, porque las horas se inventaron

después que los relojes, y porque la gente en la
historia no le interesa saber qué horas son, ya

que no estaban contratados por horas ni teńıan
que producir a contrareloj ni andar apurados.”

La Forma de los Miércoles
Pablo Fernández Christlieb
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Chapter 1

The idea of individual internal states

In the present thesis we present a model inspired in biological systems where the indi-
viduals adopt different behaviors in an intermittent way and is conceived to describe the
dynamics of a system of N of such particles in a simple way. Real-life examples that show
this phenomenology are presented in Figure 1.1. Here, we introduce a model of active
particles with a finite number of internal states. We analyse the spatial and temporal
dynamics of N of such particles and show that this seemingly simple system exhibits
intriguing phenomenology at the individual and collective levels. We present strong ex-
perimental evidence that suggests the existence of real biological and artificial systems at
different scales where the above-described behavioral mechanism is at work. We analyse
experimental data and explain how to reproduce qualitatively and quantitatively the ex-
perimental observations using our model and discuss the implications and validity of the
results. We highlight the advantages of using the idea of internal states when modeling
and describing real-life systems. This first chapter is devoted to present the main concept
in the most general scenario and we use the following chapters to study these ideas in
more concrete contexts.

1.1 The general scenario: introducing the Internal

Control System (ICS)

Our subject of interest is a system of N active particles, each one with a discrete and
finite number of internal states. These self-propelled particles are autonomous agents
that convert energy from their environment into directed or persistent motion in space.
Each particle has the capacity to interact with the surroundings (external signals) or with
other particles according to various social or physical rules. In our model we assume that
each one of the particles has some internal dynamics encoded in a variable called q(t) that
adopts only discrete values. The time dynamics of q(t) is determined by a set of internal
states and transition rates (as shown in the general scheme in Figure 1.1) that we call
Internal Control System (ICS). Technically, these states form a finite Markov chain with
a continuous time dynamics.

Generally speaking, the dynamics of q(t) is a stochastic process that satisfies the
Markov property. Therefore, the predictions of the future values of q(t) are based solely
on its present value. In this sense, we can interpret the internal dynamics of q(t) of
each particle as a random walk through the different available internal states of the ICS.

13



14 CHAPTER 1. THE IDEA OF INDIVIDUAL INTERNAL STATES

Fig 1 Experimental collectiveobservations (A)Thenumberofmoving individuals (nM)as a functionof

Imitation, StimulusDurationandCollectiveDecision-Making

Fig 1 Experimental collectiveobservations (A)Thenumberofmoving individuals (n )as a functionof

Imitation, StimulusDurationandCollectiveDecision-Making

Figure 1.1 – Top: small scheme of the Internal Control System. Since there is a finite
number of states (red dots), all of them can be labeled with numbers or letters. The black
arrows represent the transition rates that link the states. Middle row: three individuals
from real-life systems; a Kilobot1, a merino sheep [1] and a bacterium called Pseudomonas
putida [2]. Bottom row: the multiagent systems correspondent to the individuals in the
middle row. These are examples of biological and artificial systems at macroscopical and
microscopical scales that can be well described using our idea of the ICS.

This kind of processes are often referred as “memoryless processes” and is an important
property that we discuss in Chapters 3, 4, and 5 in more concrete scenarios.

The complete spatial and temporal dynamics of one particle of the system is given by
three quantities: the position xi(t), the direction of motion θi(t) and the internal variable
qi(t). The transition rates of the ICS can, in general, depend on local values of external
signals as well as the time evolution of the other particles of the system. Thus, if we call
Ri
A→B the transition rate from an arbitrary internal state A to another arbitrary internal

state B of particle i, then we have in general that this rate is function of:

Ri
A→B = Ri

A→B

(
x1(t),θ1(t), q1(t); . . . ; xi(t),θi(t), qi(t); . . . ; xN(t),θN(t), qN(t)

)
, (1.1)

with xi(t), θi(t) and qi(t) the variables of particle i evaluated at time t. We want to
highlight that the dynamics of the ICS might seem very complicated, but the transitions
between two arbitrary states are not. In fact – and regardless of the functional form of
the involved rate – the stochastic process between two arbitrary states results to be a
Poisson process.

In this model we also assume that the transitions between internal states of each
particle are capable of directly affecting its spatial motion by activating or triggering
actions like the stop of the particle’s motion or the reversal of its displacement. In other

1Self-Organizing Systems Research Group. https://ssr.seas.harvard.edu/kilobots
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Figure 1.2 – Scheme of an example of the Internal Control System of an active particle. In
this case, there are nine internal states depicted with solid-colored circles. The transition
rates between the states are represented by arrows (solid or dashed). The colors of the
dots indicate the subsets of states that have the same equation of motion, i.e. all the
red-colored states have the same equation of motion, all the blue-colored also and the
black-colored as well.

words, we assume that the particle obeys one different equation of motion depending on
the value of its internal variable qi(t). The equations of motion might depend on the
variables of the particle (xi(t), θi(t), and qi(t)) and also on the variables of its neighbours.
This can be expressed by the set of equations for one arbitrary particle i with M internal
states:

ẋi(t) = f1

(
xi,θi

)
+ g1

(
x1,θ1, q1; . . . ; xN ,θN , qN

)
+ ξ1(t)

θ̇i(t) = h1

(
xi,θi

)
+ w1

(
x1,θ1, q1; . . . ; xN ,θN , qN

)
+ η1(t)

}
if qi = 1 (1.2)

ẋi(t) = f2

(
xi,θi

)
+ g2

(
x1,θ1, q1; . . . ; xN ,θN , qN

)
+ ξ2(t)

θ̇i(t) = h2

(
xi,θi

)
+ w2

(
x1,θ1, q1; . . . ; xN ,θN , qN

)
+ η2(t)

}
if qi = 2 (1.3)

...
...

...
...

...

ẋi(t) = fM
(
xi,θi

)
+ gM

(
x1,θ1, q1; . . . ; xN ,θN , qN

)
+ ξM(t)

θ̇i(t) = hM
(
xi,θi

)
+ wM

(
x1,θ1, q1; . . . ; xN ,θN , qN

)
+ ηM(t)

}
if qi = M (1.4)

where fj(xi,θi) represents the self-propelling drift – for example the local interaction of the
particle i with external signals –, gj(x1,θ1, q1; . . . ; xN ,θN , qN) represents the interaction
of the particle i with its neighbours and ξj(t) is a stochastic variable that can be of
different kinds: white noise, coloured noise, etc . . . Analogously, hj(xi,θi) contains the
local effects on the time evolution of the direction of motion, wj(x1,θ1, q1; . . . ; xN ,θN , qN)
contains the effects that the neighbors have on the evolution of θi(t) and ηj(t) is stochastic
noise. Notice that the dimensions of fj and gj are different from those of hj and wj. If
we have an n-dimensional spatial equation of motion for xi(t), then we will have an
(n− 1)-dimensional equation for θi(t).

We are particularly interested in cases where there are subsets of states where the
corresponding equations of motion are equal. To fix ideas, let us do an example. We can
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imagine that we have a particle with nine internal states. In this example, the equations
of states 1, 2, and 3 are equal, the equations of states 4 and 5 also, and the equations of
states 6, 7, 8, and 9 as well. This is depicted in a scheme with colors in Figure 1.2. The
corresponding set of equations for this particle results to be:

ẋi(t) = fred + gred + ξred

θ̇i(t) = hred + wred + ηred

}
if qi = 1, 2, 3 (1.5)

ẋi(t) = fblue + gblue + ξblue

θ̇i(t) = hblue + wblue + ηblue

}
if qi = 4, 5 (1.6)

ẋi(t) = fblack + gblack + ξblack

θ̇i(t) = hblack + wblack + ηblack

}
if qi = 6, 7, 8, 9 (1.7)

where the dependencies of the functions have been omitted and we used the color asso-
ciated to each subset of states as subindex. In this case, we have nine internal states
but only three equations of motion. In this scenario, our main interest is to study how
and when does the particle change its equation of motion or, differently stated, how and
when does the particle change its behavior.

The numerical implementation of the spatial evolution of the particle should be done
by intercalating the equations of motion as dictated by the time evolution of the internal
variable qi(t). To understand this, let us make another example using the path marked
with green arrows in the ICS of Figure 1.2.

Suppose that at time t = 0, the value of the internal variable is qi(t = 0) = 1.
After some time, the dynamics is such that the transition labeled as α1 (represented with
a green-dashed arrow in Figure 1.2) takes place at time t1 and, thus, the value of the
internal variable is then qi(t1) = 6. Some time after this, at time t2 > t1, the transition
labeled as α2 happens and the value of the internal variable changes again taking the
value qi(t2) = 4. Shortly after, at time t3 > t2, the transition α3 takes place and thus
qi(t3) = 5.

To compute the spatial evolution of the particle, we have to numerically integrate the
“red” equations (1.5) from time t = 0 until time t = t1. The values xi(t1) and θi(t1)
become then the initial conditions for the evolution of xi(t) and θi(t) respectively in the
time interval t1 ≤ t ≤ t2, which must be performed using the “black” equations (1.7).
Analogously, the values xi(t2) and θi(t2) become the initial conditions for the evolution
in the interval t2 ≤ t ≤ t3, performed with the “blue” equations (1.6). This is visually
depicted in Figure 1.3. Notice that the design of the ICS will determine entirely the
spatio-temporal individual and collective dynamics of the system of N active particles.

Figure 1.3 – Small scheme to understand the numerical implementation of the spatial
evolution of particle i.
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Although here we presented the idea of internal states and the ICS as general as
possible, we will deal with simple cases of two or three states in the next chapters. We
will show that these “simple” cases result to be capable of reproducing qualitatively and
quantitatively diverse experimental observations of the dynamics of multiagent real-life
systems, like the ones depicted in the middle and bottom rows in Figure 1.1.

The main goal of this thesis is to develop a powerful and general theoretical frame-
work to study and describe diverse intermittent individual and collective phenomena of
interacting and non-interacting multiagent systems at several scales.

We highlight that our model allows to implement the interactions between the particles
at two different levels. The first one is at the internal level via the transition rates of
equation (1.1). These rates regulate the characteristic times at which the internal variable
qi(t) of a particle makes the transitions between states and may depend, for example, on
the number of neighbors that are in the same state. The second level corresponds to the
spatial interactions or spatial forces of equations like (1.2). At this level we can implement
metric or topological interactions like spatial alignment with a given number of neighbors.

The present thesis is organized as follows. In the second chapter we present real
biological systems at the microscopical and macroscopical scales that can be modeled
using active particles with discrete internal states. We show how experimental data and
measurements suggest that the observed phenomena can be described qualitatively and
quantitatively using the idea of the ICS and we explain how to infer the corresponding
model parameters using these data. By performing statistical analysis on the experiment
measurements we are able to associate the different behaviors of individuals with one or
many of the internal states of the model.

In Chapter 3 we study in detail one of the simplest scenarios of our model: non-
interacting active particles that move in space with constant speed with an ICS consisting
of only two states. In this case, the transition rates between the two states are regulated
by the local value of a given external signal c(x, t). We show how in this seemingly
simple case there is a wide variety of interesting behaviors like pattern formation or the
following of travelling external signals. In this chapter we argue why the case of an ICS
with only one internal state does not show any biased behavior and is just until having
an ICS with two internal states when the particles can perform complex tasks. Since
these navigation strategies are inspired in intermittent microscopical systems of bacteria
like E. coli or P. putida, we discuss the similarities and differences of our model with
previous works like the models for bacterial chemotaxis. In this discussion we highlight
that by construction, the particles in our model do not require memory to still show
non-homogeneous pattern formation. Our statements and algorithms are supported by
experiments that we performed using a real robot.

In Chapter 4 we study a scenario motivated by the observed intermittent collective be-
havior of small groups of gregarious animals. We focus on the internal temporal dynamics
of a group of N active particles that have an ICS that consists of three internal states and
three transition rates that depend on the number of particles in each one of the states.
This results to be the simplest case where the system displays a synchronized collective
dynamics. First, we study the temporal dynamics of this system at the mean field level to
have some intuition on the observed collective dynamics. We introduce two new concepts
that we call the Collective Clock Approximation (CCA) and the Metaparticle Clock
Approximation (MCA) that allow us to give analytical expressions for observables like
the average period. We test the accuracy of the CCA and the MCA with Individual Based
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Model (IBM) simulations and we relate the results with the mean field study. We observe
that the CCA and the MCA result to be accurate approximations in the case where the
system shows a high degree of synchronization of the particles. We argue why the case
of an ICS of two states does not show any intermittent collective behavior independently
on the functional form of the transition rates between the states.

In Chapter 5 we study the spatial dynamics of the model studied in detail in Chapter
4. Particularly, we show how the two previously introduced concepts of the CCA and the
MCA result to be very useful to give analytical expressions for the collective transport
properties of the whole group of N active particles that explore the space. We argue
why the concepts of the Collective Clock and the Metaparticle Clock are general for any
highly synchronized system and will always give accurate results. We test the obtained
analytical expressions with IBM simulations.

This thesis contains solid experimental and theoretical evidence that our model of
active particles with a finite number of internal states describes real-life systems that
show individual or collective spatio-temporal intermittency at different scales. We also
show that the diverse phenomenology contained in the here-presented model is completely
determined by the design of the Internal Control System. In summary, our model has
been developed to understand the large number of existing real systems displaying inter-
mittent behaviors at the individual and collective levels and can potentially link physical,
biological and mathematical aspects of the system.
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This chapter is devoted to analyse experimental data that suggest the existence of
real intermittent biological systems at different scales that can be described using internal
states of individuals. First, we present a system at the microscopical scale: a bacterium
called Pseudomonas putida. This soil bacterium is able to perform a biased motion called
chemotaxis [3] and, like other prokaryotic swimmers, P. putida exhibits a motion pattern
dominated by persistent runs that are interrupted by turning events. The majority of
the turning events is characterized by an angle of 180◦ [4] and thus are called reversals.
This is one example of a biological system where individuals are able to sense external
information locally and perform a biased motion in space by changing their direction of
motion in an intermittent way. Second, we study the intermittent collective behavior of
small groups of merino sheep. These gregarious animals show a periodic behavior when
left unperturbed in a confined area, where the individuals alternate between phases of rest
and phases of activity in an intermittent way. They form compact cohesive groups that
perform collective displacements triggered by any of the individuals of the group. For
both cases, we show how to perform the corresponding data analysis of the experimental
measurements to associate the observed behaviors of individuals with one or many of the
internal states of the model. Details on the experimental methods and data acquisition
for both systems can be found in Appendix A.
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2.1 Pseudomonas Putida

Bacterial systems have been of high interest for scientists (physicists, biologists, chemists)
and medical doctors for long time [5, 6]. The characterization and modeling of bacteria
can help to understand the infection process and might be one path to find new and less
invasive cures for infections [7]. The majority of bacteria are motile thanks to one (or
many) lash-like appendages that pertrude from the cell body called flagella. The single
flagellum is connected via a hook to a rotary motor embedded in the cell wall that drives
the rotation of the filament. The swimming pattern depends on the number of flagella
and their position on the bacterium body [8].

The most studied prototypical example of a bacterial swimmer is the enteric bacterium
Escherichia coli [5]. The swimming pattern performed by E. coli is called run-and-tumble
(RT) and is characterized by straight runs followed by short stops, often involving a change
of direction. The canonical picture of bacteria with RT motility such as Escherichia coli or
Salmonella [5,9] states that bacteria display exponentially distributed run-times (despite
recent findings that suggest the possibility of noise-induced fat-tailed distributions [10,11])
and perform a biased motion called chemotaxis by regulating the associated tumbling fre-
quency. By measuring the chemical concentration through clustered arrays of membrane
receptors [12] and subsequent signal processing via a complex biochemical cascade [13]
that leads to an effective memory [13–16], the bacterium is able to compute an external
concentration gradient. It extends the duration of runs and, thus, decreases the number
of tumbles when heading in the direction of the attractant gradient. This dynamics leads
to biased motion toward the attractant source.

Notably, in Pseudomonas putida the distribution of run-times is non-exponential and
exhibits a refractory period as shown in Figure 2.1a. Its motion is dominated by per-
sistent runs that are interrupted by turning events characterized by an angle of 180◦ [4]
called reversals. Thus, we will refer to the swimming pattern of P. putida as run-and-
reverse (RR). Similar bell-shaped run-time distributions were reported for Myxococcus
xanthus [17] and Paenibacillus dendritiformis [18] which display RR-motility as well. By
adapting the reversal statistics in response to an external chemical signal c(x), P. putida is
able to perform chemotaxis. This becomes clear when we distinguish the run-times in the
direction of the chemical source (that we call up-gradient) and the opposite direction (that
we call down-gradient). We notice an asymmetry in the cumulative distribution functions
of the run-times, as indicated in Fig. 2.1b. The non-exponential run-time distributions
suggest that chemotaxis in P. putida, and potentially other bacterial species, may involve
a novel taxis mechanism that is fundamentally different from the one reported for RT
bacteria. Notice that if we distinguish between runs performed up or down-gradient, we
get also two gamma-shaped run-time distributions (Figure 2.1b), suggesting that none of
the processes can be modelled with a simple Poisson process.

2.1.1 Using a model of two internal states

One simple way to obtain qualitatively and quantitatively the same results as the ex-
periments is to use a model of two internal states. In this scenario, there are also two
possible transition rates between the internal states of the bacterium: α and β, as shown
in the right plot of Figure 2.2. We assume also that the transition from state 2 to state 1
triggers a reversal of the direction of motion. These rates can be in general functions of
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Figure 2.1 – Run-time distribution and chemotactic response of P. putida. Left: prob-
ability distribution function (PDF) φ of the run-times. Right: cumulative distribution
function (CDF) of run-times discriminating between up-gradient (Φu) and down-gradient
(Φd) runs. The pink-dashed curve in the left panel corresponds to a fit with a γ-PDF.
The insets show that the same qualitative behavior is obtained in simulations with a two
state model shown in the right plot in Figure 2.2. For the insets of this figure we used
following parameters: α = 5 s−1, β(x) = c(x)−1s−1, c(x) = 0.75(x/L) + 0.1, L = 750µm
and v0 = 30µm/s. The experimental curves were obtained from data acquired by our
collaborator Carsten Beta and his group at the University of Potsdam. Details on data
collection available in Appendix A.

the external signal c(x) since experimental evidence shows that this external information
influences the running times. The way to fit the parameters of the model is simple. First,
experiments should be performed using a known external concentration c(x) in order to
be able to differenciate the direction of the bacterium with respect to the gradient of c(x).

-1

0

1

0 1 2 3 4 5 6 7

Figure 2.2 – Scheme on how to model the chemotactical behavior of P. putida. Left: the
schematic setup of the experiments using a given external concentration c(x) that helps
to distinguish the motion of the bacteria. Center: the tracking of individual bacteria can
be translated into a dicotomic individual signal, from which information on the running
times τup and τdown can be meassured. Right: scheme of a simple two state model that
can be used to reproduce the experimental results as shown in the insets of Figure 2.1.
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Then, and with the help of a proper tracking of individual bacteria, a dicotomic signal
can be generated in order to meassure the running times τup and τdown correspondingly,
like the middle plot in Figure 2.2. By obtaining the probability distributions P (τup) and
P (τdown) for both times, one can fit the two rates using the first and second moments of
the distributions.

The internal states mimic the fact that a taxis response of a microorganism to an ex-
ternal signal or field, such as a chemical concentration or temperature gradient, requires to
sense this signal, internalize and process it (presumably involving cascades of biochemical
events) and execute a behavioral response (e.g. a reversal), after which the microorganism
continues sensing, processing and responding to the signal. The main assumption is that
this complex cycle can be reduced to a series of stochastic checkpoints or steps inside
the organism, where some or all of them depend on the external signal. The internal
dynamics is, by definition, Markovian: it does not incorporate or presuppose memory in
any manner.

2.2 Small groups of gregarious animals

In nature, many species of animals live in large and small groups [19, 20]. The scientific
community believes that this aggregation in groups is the result of a balance between
benefits, like protection or high probability to find a mate partner, and costs, like reduction
of resources. Although the study of several animal groups suggests this is true, a lack of
quantitative studies aiming to understand the collective phenomena makes it difficult for
scientists to make predictions of the several properties of the groups. Recent exceptions
are [21, 22].

For the detailed study of multiagent biological systems, the data acquisition plays a
fundamental role. In the past decade, there has been an important development in the
quality and methods for acquiring data from the experiments [23, 24]. This serves to
compare the proposed models and the dynamics of real systems, fundamental aspect in
science. Although the obtaining of proper data in big groups of animals can be unrealistic,
this is not the case for small groups.

In this section we aim to understand the spatio-temporal dynamics of small groups
of merino sheep, which are gregarious animals. For that, we performed a series of exper-
iments with groups of N = 2, 3, and 4 individuals. Each group was freed in an arena
of size 80m × 80m and left there for 30 minutes. We noticed that the groups presented
collective displacements followed by intervals of no motion, as depicted in Figure 2.3a for
a group size N = 4. Based on experimental observations, we noticed that the triggering
of the collective motion of the group could be started by any of the individuals. Thus, any
individual can become what we will call “incidental leader”. The collective displacements
of the group are characterized by the formation of files or rows – i.e. individuals place
themselves in a line, one after the other, see Figure 2.3a – with the incidental leader at
the front. Despite the complex dynamics of the group, the observation at the long term
for all group sizes is that individuals tend to stay together forming a cohesive group.

To study the spatial and temporal dynamics of the system, we used a specialized
software to obtain information of the individuals. We obtained the position ri(t), the
orientation θi(t) and the velocity vi(t) for each sheep. Details on data acquisition are
available in Appendix A.
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Figure 2.3 – (a) Snapshot of an experiment with a group of size N = 4 sheep. We can
distinguish the existence of a collective motion between phases where the group does not
move. We use the nomenclature: s1 = sheep 1, s2 = sheep 2, . . . , si = sheep i. (b) Raw
data of the individual speeds vi(t) = |vi(t)| as a function of time for a group of N = 4
sheep, as well as the speed of the center of mass of the group vcm(t).

2.2.1 Analysis of individual signals

When observing the temporal dynamics of the speeds vi(t) = |vi(t)|, we notice a high
degree of synchronization between the individual signals, as shown in Figure 2.3b. When
plotting a collective observable like the speed of the center of mass vcm(t) = |vcm(t)|, with

vcm(t) = ẋcm(t) =
1

N

N∑
i=0

ẋi(t), (2.1)

we notice that the resulting collective signal is strongly correlated with the individual
signals. This makes us think that in such a highly synchronized system, any individuum
is a good representant of the whole group.

To be able to study the temporal dynamics of the system, we need first to find a
threshold value of the individual speeds that allow us to declare when an individual is
“moving” and when it is “at rest”. In order to find this threshold speed vth, we study
the normalized distribution P (v) of the individual speeds of sheep. After plotting this
distribution we notice that it results to be bimodal and it can be seen as the sum of two
sepparate distributions, one associated to slow moving sheep and one associated to fast
moving sheep. Following the same proceedure as [25], we fit a Poissonian function

F1(v) = a0 v exp

(
− v

a1

)
(2.2)

for the slow moving sheep and a skewed gaussian

F2(v) = b0 v exp

(
−(v − b1)2

2 b2
2

)
(2.3)

for the fast moving sheep, with a0, a1, b0, b1 and b2 fitting parameters. The values obtained
for both distributions (2.2) and (2.3) for N = 4 are a0 = 94.37, a1 = 11.84, b0 = 0.72,
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Figure 2.4 – Threshold determination with experimental data. A poissonian F1(v) (red
dot-dashed line) and a skewed gaussian F2(v) (green dashed line) were fitted to the ex-
perimental data. The sum of both functions F1(v) + F2(v) is plotted with a solid blue
line. The intersection of F1(v) and F2(v) defines the threshold speed we need, resulting
vth = 0.44 m/s in the case of group size N = 4. The procedure was analogous to the one
used in [25].

b1 = 0.69 and b2 = 0.28. We can define a speed threshold vth separating high from low
speeds by the condition:

F1(vth) = F2(vth), (2.4)

which gives vth = 0.44 m/s. The analysis of the data and the fitting functions are
presented in Figure 2.4. Performing the same data analysis for the other group sizes
N = 2, 3 gives similar values: vth = 0.464 m/s for N = 2 and vth = 0.445 m/s for N = 3.
Since all of this values are very similar, we use the average of the four values, hence
vth = 0.4496m/s ≈ 0.45m/s.

2.2.2 Individual characteristic times

Using the obtained value for the threshold speed vth, we can now translate the informa-
tion of the individual speeds vi(t) into individual dicotomic signals that tell us when an
individual is moving and when it is not, as shown in Figure 2.5b. Having the processed
signal helps us to define without ambiguity two individual characteristic times: the time
of motion τm and the time of no motion τnm as shown in the zoom of Figure 2.5b. Now,
we can perform a statistical analysis to both characteristic times. We can compute the
corresponding probability distributions P (τm) and P (τnm). By doing so, we notice that
the two probability distributions are qualitatively different, as shown in Figure 2.5c and
Figure 2.5d. On the one hand, P (τm) results to be monotonically decreasing, whereas
P (τnm) results to be rather gamma-shaped. A χ2-test tells us that the functional form of
P (τm) is consistent with an exponential of the form:

P (τm) = c1 e
−c1 τm . (2.5)
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Figure 2.5 – (a) and (b) With the threshold speed vth, we can translate the individual
speed signals vi(t) into individual dicotomic signals to define the characteristic individual
times. We can define the times of motion τm and the times of no motion τnm, as shown
in the highlighted zoom of (b). (c) and (d) The experimental probability distribution
functions P (τm) and P (τnm) are presented, as well as the theoretical fits (2.5) and (2.6).
All plots in this figure are done for group size N = 4 and using the same binning of 4
seconds for (c) and (d).

Analogously, the corresponding χ2-test tells us that the functional form of P (τnm) is rather
a gamma-shaped distribution of the form:

P (τnm) =
κM τM−1

nm

(M − 1)!
e−κ τnm (2.6)

The corresponding p-values, as well as the parameters of equations (2.5) and (2.6) are
given in Table 2.1 and Table 2.2.

N c1 p-value sign. level
2 14.1 0.034 5%
3 24.02 0.016 5%
4 25.8 0.014 5%

Table 2.1 – Parameters and p-values for
the P (τm) distribution.

N κ M p-value sign. level
2 0.021 1.35 0.031 5%
3 0.016 1.45 0.023 5%
4 0.017 1.60 0.036 5%

Table 2.2 – Parameters and p-values for
the P (τnm) distribution.

Notice that the main difference between the two distributions is that

lim
τnm→0

P (τnm) = 0, whereas lim
τm→0

P (τm) 6= 0.
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This is telling us that the probability that one individual (that was previously running)
stops and immediately begins to run again is almost zero. Technically, we can say that
there exists a refractory period associated to the no motion times.

These statistical tests tell us that the motion times τm can be associated to a Poisson
process. On the other hand, the no motion times τnm can not. The simplest situation
to be able to reproduce the experimental observations is to use a three state model at
the individual level. Within the three states, two of them should be associated to the no
motion individual times, and one to the motion times. Hence, for simplicity, we call the
first two no motion states S1 and S2, and we call M to the motion state, as shown in
Figure 2.6. In general, we have six possible transition rates between the states, highlighted
in with red and blue arrows in Figure 2.6.

Figure 2.6 – The states S1 and S2 are associated to the no motion of individuals, while
state M is associated to the motion phase. In general, there are six possible transitions
between the three states, plotted with red and blue arrows.

2.2.3 Interpretation of the three states

In the past section, arguments were given to support that a three state model can poten-
tially describe the dynamics of the small groups of sheep. In this section, we are going
to discuss how to differentiate these states in the experimental data. Using the threshold
speed vth we can differentiate if the individual is moving or not and, thus, know if it is
either in state M or in one of the no motion states S1 or S2. By taking a closer look
at the experimental videos we identified two clearly distinguishable behaviors of the in-
dividuals during the time of no motion. While not moving, sheep spent the time either
having the head close to the grass (mainly eating) or having the head up looking around,
most probably looking for potential threats or observing the behavior of the group. This
results to be a key observation in order to be able to associate the two no motion states
S1 and S2 with two individual behaviors that are complementary to each other. In easy
terms: in the no motion phase, individuals have either the head down or the head up.
This allows us to name the state S1 as the “grazing” state and the state S2 as the “head
up” state. By adding this information to the tracking of individuals we can determine its
state univocally for all times. In this way, we can quantify how often do the transition
rates between the states happen. After analysing the transition rates for all group sizes
we noticed that out of the six possible transition rates, there are only three that are the
most frequent. They are the transition S1 → M , M → S2 and S2 → S1, as shown in
Figure 2.7. This suggests that although the six rates are present in the experiments, the
dynamics can be described by three effective rates, as shown in the left plot of Figure 2.8.
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(a) Group size N = 2. (b) Group size N = 3. (c) Group size N = 4.

Figure 2.7 – Using the interpretation of the three states and the tracking done in experi-
ments we calculated the porcentage of each of the transitions.

2.2.4 Functional form of the transition rates

Having already fixed the number of states and the number of possible transitions, we
have now to define the transition rates. The question now would be: which effects do we
observe in the experiments and how are we going to model or represent them? In the
past, there have been some works dedicated to study this collective effect between sheep.
Toulet et. al [1] performed experiments to understand the influence of a leader inside
the group of merino sheep. Experimental data suggest that individuals face a problem
of a dicotomic decision-making. It seems that all is reduced to two possible scenarios:
either following the incidental leader or staying with the rest of the group. A scheme that
explains this decision-making can be found in the right plot of Figure 2.8.

Regarding the effect of incidental leadership, we observed that it is of stochastic nature
but also dependent on the group size, something not reported up to date to our knowledge.
For instance, the triggering of collective displacements is more frequent in groups of N = 2
sheep than groups of N = 3 or N = 4 sheep. In order to take all these observations and

Figure 2.8 – Left: the three state scheme that is suggested by the analysis of experimental
data with only three effective transition rates. Right: scheme of the decision making of
individual sheep in a group.
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Figure 2.9 – Experimental data are presented for a group of N = 4 sheep. The labels
serve to associate the measurements of these collective signals with the data shown in
Figure 2.10.

effects into account, we use the following form for the individual transition rate from an
arbitrary state i to another state j:

Ri→j(ni, nj) =
µi→j n

βi→j
j

n
γi→j
i︸ ︷︷ ︸

interaction with neighbours

+

incidental leadership︷ ︸︸ ︷
ωi→j

n
δi→j
i

, (2.7)

where µi→j, βi→j, γi→j, ωi→j and δi→j in equation (2.7) are constant parameters for each
transition and they should be fixed using the experimental data. The first term in (2.7)
models the interaction with the neighbours and depends on the number of individuals in
each state, defined as:

nS1(t) =
N∑
i=1

δqi(t),S1 , nM(t) =
N∑
i=1

δqi(t),M , nS2(t) =
N∑
i=1

δqi(t),S2 . (2.8)

The second term in (2.7) models the rate associated to the spontaneous triggering of the
collective change of states. If we plot these functions, we can find a behavior like the one
plotted in Figure 2.9, where data is shown for an experiment of N = 4 sheep. Using this
three functions with all the data we have, we are able to make an average of the times
marked with circled numbers in Figure 2.9. Each one of this values can be linked with the
transition rates of the three state theory in (2.7). Having all this average values makes it
possible to select the set of parameters through a minimization process. This involved the
calculation of all the errors between the experimental data and the expected theoretical
value of the transition. The selection of the parameters was made in such a way that the
total error (the sum of all errors of all group sizes) was minimized. The functional form
of the rates in equation (2.7) as well as the obtained experimental values are plotted in
Figure 2.10.
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Figure 2.10 – In this figure, the functional form of the transition rates (2.7), as well as the
experimental measurements are presented for the three transitions: from S1 → M , from
M → S2 and from S2 → S1.

We noticed, however, that the value of parameters γi→j and δi→j resulted to be very
similar. In the case of transition S1 → M , the values are γS1 = 1.84 and δS1 = 1.82. For
transition M → S2, the values are γM = 1.59 and δM = 1.61. For the third transition
from S2 → M , the values are γS2 = 1.28 and δS2 = 1.27. Thus, we can simplify the
originally proposed transition rates in equation (2.7) by using δi→j ≈ γi→j and propose:

Ri→j(ni, nj) =
µi→j n

βi→j
j + ωi→j

n
γi→j
i

. (2.9)

The complete table of fitted parameters is given in Table 2.3. The fact that the sponta-
neous rate depends on the system size has not been reported to our knowledge. It results
that it decreases with the number of individuals N , which means that in average an ob-
server has to wait longer to see a collective displacement in groups of four individuals
than in groups of two.

2 3 4
N

0,01

0,02

2 3 4
N

0,15

0,25

2 3 4
N

0,08

0,12

Figure 2.11 – Plotting of the spontaneous rates for all three transitions, as well as two
theoretical curves proportional to parameter γi→j and δi→j.
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S1 →M M → S2 S2 → S1

µS1→S2 = 0.89± 0.13 µM→S2 = 0.56± 0.22 µS2→S1 = 0.48± 0.16
βS1→S2 = 0.07± 0.06 βM→S2 = 0.26± 0.11 βS2→S1 = 0.21± 0.08
γS1→S2 = 1.84± 0.17 γM→S2 = 1.59± 0.12 γS2→S1 = 1.28± 0.30
ωS1→S2 = 0.03± 0.09 ωM→S2 = 0.33± 0.14 ωS2→S1 = 0.13± 0.11

Table 2.3 – Parameters of the model fitted with experimental data. This set of parameters
fits the experimental values for all group sizes N = 2, 3, and 4, as shown in Figure 2.10.

2.3 Summary & perspectives

In this chapter we analyzed two different biological systems looking for clues and hints
that suggest that the observed intermittent phenomenology can be explained using models
of active particles with a finite number of discrete internal states. Most importantly, we
show how to extract vital information from the experimental data to be able to associate
the individual behaviors with one or many of the internal states of our theoretical frame-
work. First, we discussed the main features of the spatio-temporal dynamics of bacteria
called Pseudomonas putida. We explain the process that leads to the mining of valuable
information from the experiments and explain how to relate this experimental measures
with the parameters of our model. This analysis will serve as a motivation for the whole
development of what we will call navigation strategies and that will be discussed in detail
in the next chapter.

Second, we studied the temporal collective dynamics observed in small groups of gre-
garious animals. Using the experimental observations, we deduce the minimal model that
we should use to describe the collective phenomena. Therefore, the resulting model is
completely data driven. We used a mixure of previous studies [1] with new discoveries –
like the dependency of the spontaneous rate on the group size – to deduce the appropriate
model. We will study separately the spatial and the temporal dynamics of this model in
Chapter 4 and Chapter 5.

Notice that in this chapter, one of the most important aspects is the fact that perform-
ing statistical analysis on the experimental measurements allows us to relate the behaviors
of individuals with the internal states of our model in both cases.



Chapter 3

Individual Navigation Strategies

Contents
3.1 Introducing the Markovian robots . . . . . . . . . . . . . . . . 32

3.2 Markovian robots with different NCS’s . . . . . . . . . . . . . 35

3.2.1 Spatial dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 A didactic introduction . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 Effective Langevin dynamics . . . . . . . . . . . . . . . . . . . 36

3.2.4 NCS motif 1: up- & downgradient motion . . . . . . . . . . . . 38

3.2.5 NCS motif 2: adaptation . . . . . . . . . . . . . . . . . . . . . 40

3.3 Performing complex tasks . . . . . . . . . . . . . . . . . . . . . 41

3.4 Two & three-dimensional systems . . . . . . . . . . . . . . . . 43

3.5 Tests with a real robot . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Summary & perspectives . . . . . . . . . . . . . . . . . . . . . . 52

In this chapter we study in full detail the spatio-temporal dynamics of non-interacting
active particles with internal states and transition rates that depend on local measure-
ments of a given external signal c(x, t). The particles move with constant speed v0 in
space.

We study the long-time behavior of a system of N of these particles and obtain the
stationary probability distribution function P (x) of finding one at position x. We show
that the simplest case where the system shows a non-trivial distribution is the case where
individual particles have two internal states and the two transition rates between them
are different. In this scenario we demonstrate that these particles can be designed to
perform complex tasks such as adaptive chemotaxis, detection of maxima or minima, or
selection of a desired value in a dynamical, external field c(x, t).

In this chapter we refer to these active active particles as Markovian robots (MR). We
provide experimental evidence that suggests that our model (and algorithms within) is
robust enough to external fluctuations. This minimalistic model results to be a theoretical
toolbox to engineer autonomous agents that require very small computation capacity (and
thus very “cheap”) that are able to perform several complex tasks in fluctuating environ-
ments. We are convinced that these ideas will pave the way toward a novel quantitative
modeling of phenomena like bacterial chemotaxis in a (near) future. Since in this chapter

31
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we introduce novel navigation strategies for active particles, we will refer as Navigation
Control System (NCS) to what we defined in Chapter 1 as the Internal Control System
(ICS). All the navigation strategies introduced in this chapter are motivated by the be-
haviors observed in microscale bacterial systems, like the ones discussed in Chapter 2. All
the results presented in this chapter have been published in Physical Review E [26].

3.1 Introducing the Markovian robots

As early as 1959, Feynman discussed the technology transfer from the macro- to the
microscale, a highly relevant field of research nowadays in terms of medical applications
such as targeted drug-delivery and microsurgery [27]. In recent years, the remarkable ad-
vance of nanoscience has made the fabrication of synthetic and molecular machines such
as sensors and actuators possible [28–30]. Moreover, micrometer-sized devices capable of
moving autonomously in a fluid are already a reality. We refer to these microdevices as
microrobots. Microrobots can transport cargo and invade cells; healthcare applications
for early diagnosis, targeted drug delivery or nano-surgery appear therefore realizable in
the not too distant future [31–34]. There exists a large variety of microrobots, rigid and
soft ones, whose self-propulsion can be achieved via electrical, chemical or optical stimu-
lation [31–34]. The direction of navigation of these devices can be controlled remotely, for
instance via a magnetic field in chemically-driven nanorods [30]. However, the ultimate
goal is to design and fabricate microrobots with a programmable, autonomous navigation
system on board integrating both, sensors, an energy source and actuators. At present,
the miniaturization of autonomous robots has advanced up to the millimeter scale [35,36].
Further progress along these lines requires the development of minimalistic, yet robust
algorithms in the sense that they should work reliably in the presence of noise.

Physical properties of small size objects, e.g. at the micro-scale, impose technical
constraints on the design of microrobots: viscous forces dominate over inertial ones, fluc-
tuations of thermal origin are not negligible and the instantaneous sensing of external
signals can only involve local values, but never gradients [9, 12, 37]. For this reason, here
we consider a class of autonomous, self-propelled particles, which we refer to as Markovian
robots (MR), that move at constant speed, are subject to fluctuations, and can only sense
external local values of an external field (see Figure 3.1). Notice that we adopt the same
constraints small objects are subjected to, but we do not need to assume necessarily that
we work at microscopic scales: the proposed navigation strategies are also of interest for
macroscopic robots exposed to weakly modulated signals with respect to their character-
istic spatial variation. Nevertheless, the long-term motivation of this study is to pave the
way for the engineering, in a near future, of tiny, autonomous robots. With this intention
in mind, we aim at conceiving simple machines that are able to navigate across a complex
field – providing valuable information clues – in an autonomous way with a minimum
of information storage capacity. Specifically, we equip these machines with a navigation
control system (NCS) that triggers random changes in the self-propulsion direction of the
robots. An essential aspect of the NCS is that it exhibits only two internal states, meaning
that the NCS state can be stored in a single internal Boolean variable that adopts two val-
ues. Transitions between these Boolean values are determined by a closed Markov chain,
with transition rates that may depend on the instantaneous local value of the external
field; see Figure 3.1 for sketches of the two relevant NCS discussed in this work. Only one
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Figure 3.1 – Illustration of the general dynamics of Markovian robots. A robot that had
initially moved from left to right in an external field c(x) changed its direction of active
motion after some time ∆t. The navigation control system (NCS) controls the moving
direction of the robot, by triggering reorientation events. It is connected to a sensor which
measures the local field values. The internal state of the NCS is given by a single Boolean
variable adopting the values 1 or 2. The NCS dynamics obeys a closed Markov chain, with
transition rates that may depend on the value of the external field as measured by the
sensor. The red arrow corresponds to the transition that triggers a reorientation event.

of the transition pathways in the closed two-state Markov chain triggers random reori-
entation in the moving direction. It is worth noticing that the closed-loop nature of the
investigated Markov chains ensures the constant resetting of the internal Boolean variable,
preventing the presence of fixed points in the dynamics of this variable. Importantly, the
NCS does not store previous measurements in the form of internal continuous variables,
preventing a priori any mathematical operation to estimate the gradient of the external
field. We show that, despite the strong requested constraints, it is possible to conceive
closed Markov chain motifs that lead to non-trivial motility behaviors. By analytically
reducing the complexity in the NCS dynamics, we obtain an effective description of the
long-time motility behavior of the MR that allows us to identify the minimum require-
ments in the design of NCS motifs and transition rates to perform complex navigation
tasks such as adaptive gradient following, detection of minima or maxima, or selection of
a desired value in a dynamical, external field. We show that MR having a NCS with at
least two states exhibit non-trivial motility behaviors in one, two and three dimensions.

We put these concepts in practice by assembling a macroscopic robot that operates
by the proposed NCS and is subjected to the constraints indicated above. A series of
statistical tests allows us to assess the robustness of the proposed minimalistic navigation
algorithms. The performance of the robot provides solid evidence in favor of the practical
interest of these ideas as well as a proof-of-concept that is possible to navigate through
a complex information landscape with only 1-bit of memory. These ideas may prove of
help in the engineering of miniature robots.

The minimalistic navigation strategies discussed here are fundamentally different from
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Figure 3.2 – Flowcharts of the algorithms for bacterial chemotaxis, according to [13],
and Markovian robots (MR), motif 1 and motif 2. The initial condition is not explicitly
shown. Notice the presence of two continuous variables, A and B, for bacterial chemotaxis,
which are absent for MRs. Further, we point out that the dynamics of A and B evolves
toward a fixed point for constant c(x), implying that the internal state in the bacterial
chemotaxis model reaches a steady state. In MR, on the other hand, the internal state
always oscillates. The symbols Q, α, β, and γ refer to transition rates, ∆t to the time
step, c(x) to the value of the external field at position x, v0 to the speed, and s the moving
direction (+1 or −1) in one dimension; rnd() is a uniformly distributed, random number
between 0 and 1. The definition of α, β, and γ are provided in the main text; notice
that these rates do only depend on c(x). On the other hand, Q(A,B) is a function of
the internal state itself, Q(A,B) = d1A − d2B, where d1 and d2 as well as a and b are
constant; for details on the bacterial chemotaxis algorithm see [13].

bacterial chemotactic strategies [9, 12–16, 38–40] as explained in the following. In [13],
Celani and Vergassola have cleverly shown that bacterial chemotaxis can be described in a
Markovian way by enlarging the space of variables, beyond position and velocity variables,
to include continuous (as opposed to Boolean) internal variables. The temporal dynamics
of these continuous variables obeys a chain of ordinary differential equations, where the
first of them depends on the external field. The frequency of changes in the moving
direction of the bacterium is a function of these variables. According to [13], chemotactic
behavior is already obtained by keeping the first two of these internal continuous variables.
The past measurements are encoded by these continuous variables [13], that, from an
algorithmic point of view, need to be constantly updated, see Figure 3.2. These dynamical
variables are somehow connected to cellular chemical species, see [41] for more details.
It is worth mentioning that similar mathematical procedures to the ones utilized here
have also been used in the context of bacterial chemotaxis, namely a reduction of a
complex internal dynamics in order to obtain the effective long-time motility behavior,
see e.g. [13,14,42]. However, we stress that the analogy between bacterial chemotaxis and
here-discussed navigation strategies is limited to the observation that both strategies are
Markovian and make use of internal states. Notably, there is no direct link between them;
see Figure 3.2 for a comparison at the algorithmic level. Looking in detail, the differences
become evident: here, we discuss navigation strategies that make use of a single internal
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Boolean variable to describe the internal state of the moving entity, while in [13] the
internal state of the bacterium is described by (a minimum of) two continuous variables.
From this, it is evident that MR have only two possible internal states, while in [13] the
internal state of a bacterium is given by vector q = (A,B), with A ≥ 0 and B ≥ 0
two internal continuous variables, implying that there is an infinite (or at least a very
large) number of potential internal states. Furthermore, the temporal evolution of the
continuous variables A and B is given, as indicated above, by a hierarchy of ordinary
differential equation, while in MR the temporal evolution of the Boolean variable is given
by a closed Markov chain. The differences between both strategies are evident even for
a trivial scenario where the external field is constant. The internal variables A and B
would converge in this scenario to a fixed point and, thus, the internal state reaches a
stationary state. In contrast, the internal state of MR never converges to a stationary
value but oscillates ad infinitum. Another indication, how different these strategies are,
is the following: the frequency at which the direction of motion changes in the model [13]
is a function of the value of internal state, i.e. Q(A,B) in Figure 3.2, while that is not the
case for MR. In summary, the mathematical structure of both strategies are, analytically
and algorithmically, fundamentally different.

3.2 Markovian robots with different NCS’s

In this section, several variants of MR are introduced with a particular focus on their
capability of responding to a static, external (scalar) field. At first, the general dynamics
in space – equal for all model variants – is formulated. Subsequently, several examples
of increasing complexity of the internal robot dynamics, which controls the occurrence of
reorientation events, are studied. In particular, an effective Langevin dynamics is derived
analytically for each case, which reveals the large-scale robot dynamics in the diffusive
limit. These concepts are illustrated within a didactic introduction first by means of a
simplified version of the model where the reorientation rate is directly a function of the
external field.

3.2.1 Spatial dynamics

Throughout, individual robots are assumed to move at constant speed v0 by means of an
active self-propulsion mechanism. For simplicity, we focus on one-dimensional systems of
linear size L – generalizations to higher dimensions are commented on in Section 3.4. In
one dimension, the dynamics of the robot is given by

ẋ(t) = v0s(t) +
√

2D0 ξ(t), (3.1)

where x(t) is the position of the robot at time t, v0 denotes its active speed, D0 is the
bare diffusivity in the absence of active motion (v0 = 0), ξ(t) abbreviates white Gaussian
noise and s(t) ∈ {−1, 1} indicates the direction of active motion at time t. The temporal
dynamics of s(t) is controlled by a navigation control system (abbreviated NCS for short in
the following), which we consider to operate with one internal Boolean variable that adopts
two values. The dynamics of this internal Boolean variable is dictated by a closed Markov
chain, see Figure 3.1 that illustrates several NCS motifs and the robot dynamics. Notice
that the dynamics of the NCS is affected by the external field c(x) via the c-dependency
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of the transition rates. In all of these motifs, there is one particular transition leading
to state 1 (depicted by a red, dashed arrow in Figure 3.1), which triggers a reversal of
the driving engine and, thus, induces the inversion of the direction of active motion of
the robot: s(t)→ −s(t). Given a certain NCS motif, we want to understand the motility
response of the robot to an external field c(x). This is addressed in the following.

3.2.2 A didactic introduction

We start by studying the long-time behavior of the simplest possible scenario where the
reorientation rate depends directly on the external field, i.e. there is no internal dynamics.
Let us stress that we use this case as a didactic introduction to illustrate a series of
fundamental concepts that will allow us to obtain a simplified long-time dynamics of
NCS motifs of higher complexity (NCS motifs 1 and 2). Here, reversal events occur at a
rate α[c], which depends on the external signal c(x). The temporal evolution of the system
can be expressed in terms of the probabilities P+(x, t) and P−(x, t) to find a robot at
position x at time t moving to the right and to the left, respectively. The associated
master equation [43] reads:

∂tP
+ =−v0∂xP

+− α[c]P++ α[c]P−+D0∂
2
xP

+, (3.2a)

∂tP
−= v0∂xP

−− α[c]P−+ α[c]P++D0∂
2
xP
−. (3.2b)

By introducing the new variables P (x, t) = P+(x, t) + P−(x, t) and m(x, t) = P+(x, t) −
P−(x, t), we recast equation (3.2) into

∂tP = −v0∂xm+D0∂
2
xP, (3.3a)

∂tm = −v0∂xP +D0∂
2
xm− 2α[c]m. (3.3b)

The variable of interest is P (x, t) representing the probability to find the robot at posi-
tion x at time t. Since the local dynamics of m(x, t) [equation (3.3b)] is faster than P (x, t)
[equation (3.3a)] and we are interested in the long-time behavior of the latter, we approx-
imately set ∂tm ≈ 0, enabling us to express m ≈ − v0

2α
∂xP to lowest order in spatial

gradients. Inserting this expression into equation (3.3a) yields the following effective
equation for the density:

∂tP = ∂x

[(
D0+

v2
0

2α[c]

)
∂xP

]
= −∂x

[
P∂x

(
v2

0

2α[c]

)]
+ ∂2

x

[
P

(
D0+

v2
0

2α[c]

)]
. (3.4)

All details related to the reorientation dynamics were coarse-grained by deriving the
effective scalar equation (3.4) for P (x, t). This approach is valid as long as the mean
distance traversed by a robot in between two transitions is shorter than the characteristic
scales at which the external field varies.

3.2.3 Effective Langevin dynamics

Now we consider the inverse problem: starting with equation (3.4) for the density P (x, t),
we aim at finding a suitable Langevin equation in Ito’s interpretation [43,44] of the form

ẋ = f(x) +
√

2D(x) ξ(t), (3.5)
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whose associated Fokker-Planck equation

∂tP = −∂x
[
Pf(x)

]
+ ∂2

x

[
PD(x)

]
(3.6)

for the evolution of the density P (x, t) is structurally identical to equation (3.4) 1. This
approach is advantageous in several regards. By obtaining an effective drift term f(x)
and an effective diffusion coefficient D(x), we characterize the transport properties of
the MR, encoding the details of the NCS in f(x) and D(x). The physical interpretation
of f(x) and D(x) as drift and dispersion, respectively, results from the short-time solution
of equation (3.6) for the propagator [45]

P (x, t+τ |x′, t)' 1√
4πD(x′)τ

exp

{
− [x−x′−τf(x′)]2

4D(x′)τ

}
which determines the probability to find a robot at position x after a short observation
time τ given that it was observed at position x′ at time t. Notably, the propagator
provides a direct way how to measure the mean local drift or bias f(x) as well as the
position dependent dispersion D(x).

Knowing drift and diffusion coefficient, we can further determine whether a NCS motif
lets the MR display a long-time motility response to the external field as follows. The
steady state solution Ps(x) of equation (3.6) for no-flux boundary conditions takes the
form

Ps(x) =
N
D(x)

exp

[∫ x

0

dx′
f(x′)

D(x′)

]
(3.7)

with a normalization coefficient N . In general, a MR is said not to exhibit a long-term
response to a non-constant external field c(x) if the stationary density is constant, i.e.,
Ps(x) = P0 = const. Otherwise, the motif under consideration induces a response in the
sense that the coupling to the external field increases or decreases the probability to find
a robot in certain areas in space. The sign of the derivative of the stationary density
distribution is determined by the simple criterion

∂xPs(x) ≷ 0 ⇔ f(x) ≷ ∂xD(x), (3.8)

which follows directly from equation (3.7). A constant density Ps(x) requires all x-
dependencies in equation (3.7) to compensate each other. This implies the specific rela-
tion f(x) = ∂xD(x) between drift and diffusion. The nature and form of the response
depends on the topology of the motif and the functional form of the rates; this is addressed
further below.

Notice that it is possible to obtain a motility response to an external field c(x) without
involving biased motion. This is evident from equation (3.7): if f(x) = 0 and D(x) is still
a function of x, a nontrivial, stationary density profile will emerge. This kind of motility
response is known in biology as chemokinesis. In contrast, directed motion requires a non-
vanishing f(x). In biology, a motility response involving a bias is known as chemotaxis.

1The use of Stratonovich’s interpretation leads to a different Fokker-Planck equation [44].
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For the introductory example considered above, the comparison of equation (3.4) and
equation (3.6) reveals

f(x) = ∂x

[
v2

0

2α[c(x)]

]
, D(x) = D0 +

v2
0

2α[c(x)]
, (3.9)

which satisfies the above-mentioned relation, i.e. f(x) = ∂xD(x), implying Ps(x) = P0 =
const . We observe that though the diffusion depends on x and the local drift f(x) is
nonzero and varies over space, there is no long-time motility response. Hence, the long-
time density distribution is flat as noticed when memory kernels were introduced [9,
14]. Using the terminology of chemotaxis, one can summarize that chemotactic and
chemokinetic part compensate each other in this case.

In the following, the powerful approach outlined above is used to express the motility
response of MR in the form of equation (3.5) for each motif illustrated in Figure 3.1,
where the specific form of f(x) and D(x) depends on the motif under consideration.

3.2.4 NCS motif 1: up- & downgradient motion

Now, we focus on a more complex scenario where the state of the navigation control
system is given by an internal Boolean variable that adopts two values: 1 and 2. The
possible transitions are 1 → 2 with rate α = α[c] and 2 → 1 with rate β = β[c]. The
latter transition triggers a reversal of the direction of active motion. This is motif 1 in
Figure 3.1. Due to the presence of two internal states, we introduce four fields P+

i (x, t)
and P−i (x, t) with i = {1, 2}, which denote the probability to find a robot at position x
at time t with internal state i moving to the right (+) and to the left (−), respectively.
The temporal evolution of these fields is determined by the following master equation:

∂tP
+
1 = −v0∂xP

+
1 − α[c]P+

1 + β[c]P−2 +D0∂
2
xP

+
1 , (3.10a)

∂tP
−
1 = v0∂xP

−
1 − α[c]P−1 + β[c]P+

2 +D0∂
2
xP
−
1 , (3.10b)

∂tP
+
2 = −v0∂xP

+
2 − β[c]P+

2 + α[c]P+
1 +D0∂

2
xP

+
2 , (3.10c)

∂tP
−
2 = v0∂xP

−
2 − β[c]P−2 + α[c]P−1 +D0∂

2
xP
−
2 . (3.10d)

By introducing the change of variables Pi = P+
i + P−i and mi = P+

i − P−i , we recast
equation (3.10) into two groups of equations for the densities Pi(x, t),

∂tP1 = −v0∂xm1−α[c]P1+β[c]P2+D0∂
2
xP1,

∂tP2 = −v0∂xm2+α[c]P1−β[c]P2+D0∂
2
xP2,

(3.11a)

and for the differences mi(x, t),

∂tm1 = −v0∂xP1−α[c]m1−β[c]m2+D0∂
2
xm1,

∂tm2 = −v0∂xP2+α[c]m1−β[c]m2+D0∂
2
xm2.

(3.11b)

This seemingly innocent change of variables simplifies the problem substantially. If spatial
derivatives in equations (3.11) were absent, equations (3.11a) would decouple completely
from equations (3.11b). Further, we note that the eigenvalues associated to the local
dynamics of equations (3.11a) are λ1 = 0 and λ2 = −(α + β), while the real parts of
those associated to equations (3.11b) are both negative, i.e. <[λ3], <[λ4] < 0. The lesson
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is: in the long-wavelength limit, there is one eigenvector whose temporal evolution is slow
while the other three are fast. Accordingly, we can define a new set of four fields by linear
combination of those in equations (3.11) in such a way that only one of those fields is
slow. Due to number conservation, the total density P = P1 + P2, which is the primary
quantity of interest, is the slow field (λ1 = 0). In order to reduce equations (3.11) to
the density dynamics, we request local equilibrium and take ∂tm1 = ∂tm2 = 0, allowing
us to express all fields as function of P and spatial derivatives of it (see Appendix B.3
for further details). By keeping all terms up to second order spatial derivatives of the
density P , we obtain an effective Fokker-Planck equation, cf. equation (3.6), where f(x)
and D(x) adopt the form

f(x) =
v2

0

2(α + β)

[
(β − α)∂x

(
1

α

)
+ (β + α)∂x

(
1

β

)]
, (3.12a)

D(x) = D0 +
v2

0

2
· α

2 + β2

αβ(α + β)
. (3.12b)

We highlight that α[c] = β[c] yields the relation f(x) = ∂xD(x) and, thus, the stationary
density Ps(x) would be a constant according to equation (3.7). In other words, we learn
that we need to require α[c] 6= β[c] and at least one of the rates should depend on c(x)
in a nontrivial way in order to design robots that respond to the external field c(x). In
the spatially homogeneous case, the diffusion coefficient [equation (3.12b)] reduces to the
expression, which was derived in Ref. [46].

The potentially simplest example that leads to upgradient motion of MR is α[c] ∝ c(x)
and β[c] = β0, where β0 is a constant, see Figure 3.3. It is interesting to observe that the
robots move downgradient if we make the opposite choice, namely α = const. and β ∝
c(x). Thus, the previous discussion reveals how the field-dependence of the transition
rates controls whether robots tend to move up- or downgradient.

Notably, both types of robots are entirely indistinguishable in spatially homogeneous
environments; it is therefore a priori impossible to infer information on the type of re-
sponse on the basis of measurements, which are performed in spatially homogeneous
external fields, i.e. c(x) = c0 = const. at different levels of c0. To be concrete, consider the
following gedankenexperiment: two types of robots, robots of type A with α[c] = 9c + 1
and β=5 and robots of type B with α=5 and β[c]=9c+ 1 exposed to the same external
field c(x); the scenario is depicted in Figure 3.3. If c(x) corresponds to an homogeneous
environment such that c(x) = c0, with c0 a constant, the diffusion coefficient and the mean
rate of reversals are identical for both robot types; notice that the latter increases with
the field value c0. One could easily be misled to think that robots tend to accumulate in
those regions in space where the reversal rate is high, leading to an effective “trapping” of
the robots in those regions. However, the distinct long-time behaviors of robots of type A
and B provide clear evidence against this simplified picture. While robots of type A tend
to move upgradient and accumulate close to x = L, robots of type B tend to move down-
gradient and accumulate close to x = 0, see Figure 3.3. Despite of this evident qualitative
difference, both types exhibit a higher reversal rate close to x = L. This finding, i.e. the
existence of the difference motility response for robots of type A and B, highlights how
subtle and non-trivial is the impact of the NCS design on the long-time motility response
of robots: by exchanging the functional form of the transitions from 1 → 2 and 2 → 1,
we switch from up- to downgradient motion.



40 CHAPTER 3. INDIVIDUAL NAVIGATION STRATEGIES

0 L0

1

0 L
0,5

1

1,5

2

Figure 3.3 – The motility response of MR – controlled by NCS motif 1 as shown, cf. Fig-
ure 3.1 – to an external field c(x) = x/L (see inset). The main figure illustrates the
stationary probability distributions Ps(x) for two variants of the internal robot dynamics.
In the first case (α[c] = 9c + 1, β[c] = 5), robots tend to accumulate upgradient in the
long-time limit (circles). In contrast, robots accumulate on the opposite side if the two
transitions are interchanged (α[c] = 5, β[c]= 9c+1) as shown by squares. Points denote
Individual Based Model simulations (robot number N = 104). Lines correspond to the
approximative analytical solution [equation (3.7)] where the respective functional forms
of f(x) and D(x) were inserted [equations (3.12)]. Further parameters: L = 1, v0 = 0.01,
D0 = 0; reflecting boundary conditions were implemented.

In addition, the previous analysis reveals that robots navigating by NCS motif 1 exhibit
a motility response that involves both, directed motion and position dependent diffusion,
i.e. it is neither purely chemotactic nor purely chemokinetic, but involves a combination of
both, in the sense that the force f(x) and the diffusion coefficient D(x) are non-vanishing
functions, which depend on the position via c(x).

3.2.5 NCS motif 2: adaptation

We introduce NCS motif 2 (cf. Figure 3.1) to obtain robots whose motility response
is purely chemotactic, with a bias resulting from f(x) only. Adopting the terminology
of bacterial chemotaxis, we call robots whose diffusion coefficient possesses an explicit
dependency on c(x), and thus on x nonadaptive, while those with a constant diffusion
coefficient are referred to as adaptive robots. Following this nomenclature, we seek to
create chemotactic, adaptive robots. Adaptive MR are characterized by the independence
of their motility pattern from the intensity of external stimuli in spatially homogeneous
environments – the diffusion coefficient, for example, is independent of the basis level of
the external field. We insist that only NCS motif 2 can yield adaptive robots; motif 1
leads always to nonadaptive motility responses.

Motif 2 differs from motif 1 by the existence of a backward transition from state 2 to 1,
which does not activate a reversal, and whose associated transition rate is γ[c]. Following
the analytical procedure outline before, we first write the equations for P±i and perform
the change of variables Pi = P+

i + P−i and mi = P+
i − P−i for all i. Again, the dynamics

of the mi’s is fast and, furthermore, the system of equations for the Pi’s contains one fast
and one slow mode allowing, eventually, to reduce the 4-dimensional system to the slow
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dynamics of the density P = P1 + P2. Keeping derivatives up to second order, we obtain
a Fokker-Planck equation of the form given by equation (3.6) where

f(x) =
v2

0

2

[
∂x

(
α + γ

αβ

)
+

(β + γ − α)

(α + β + γ)
∂x

(
1

α

)]
, (3.13a)

D(x) = D0 +
v2

0

2
·α

2 + (β + γ)2 + 2αγ

αβ(α + β + γ)
. (3.13b)

In the limit γ → 0, equations (3.12) are recovered. Again, if all rates are equal, α[c] =
β[c] = γ[c], chemotactic and chemokinetic part are related by f(x) = ∂xD(x) and, thus,
the stationary density Ps(x) is constant.

So far, no restrictions have been imposed on the rates α, β, and γ. Consequently,
the terms f(x) and D(x) given by equations (3.13) are generic for motif 2. In order to
obtain adaptive robots, we want to choose these rates in such a way that D(x) becomes
independent of c(x), while f(x) still depends on it. With this idea in mind, we define

α[c] =
β+β−
β[c]

, (3.14a)

γ[c] = β+ + β− −
(
α[c] + β[c]

)
. (3.14b)

In order to ensure all rates to be positive, we further choose β− < β[c] < β+, where β−
and β+ are positive constants. By inserting these rates into equation (3.13), we find

f(x) = − v2
0

β+ + β−
∂x

(
ln β[c]

)
= µ[c]∂xc(x), (3.15a)

D(x) = D0 +
v2

0

2
·

β2
+ + β2

−

β+β− (β+ + β−)
. (3.15b)

Notably, equation (3.15b) is structurally identical to equation (3.12b) for motif 1, however,
by definition it is independent of c(x). Further, we defined the response function

µ[c] = − v2
0

β+ + β−
· ∂cβ[c]

β[c]
. (3.16)

Notice that any function restricting the values of β[c] between β− and β+ serves our
purpose. This freedom of choice may be used to design µ[c] according to the desired
response.

With the above choice of rates, we obtain purely adaptive, chemotactic robots whose
directed motion is controlled by f(x) only [cf. equation (3.15)]. In the absence of a
external field gradient, ∂xc(x) = 0, robots diffuse with a constant diffusion coefficient
given by equation (3.15b) that is independent of the external field value. We notice that
requesting D = const . is equivalent to fixing the average and variance of the run-time
distribution of the robots; accordingly, their behavior in homogeneous environments of
different (constant) field values is microscopically indistinguishable.

3.3 Performing complex tasks

In the following, we discuss the possibility of designing MR to perform multiple complex
tasks by playing with the response function µ[c], cf. equation (3.16), on the basis of NCS
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motif 2. If we define β[c] such that µ[c] > 0 in the interval of interest of field values, robots
move upgradient. As a consequence, they accumulate around the maxima of c(x) in a
complex landscape as shown in Figures 3.4a and b. This requires β[c] to be a decreasing
function of c. In addition, we have to make sure that β[c] is bounded by β∈(β−, β+). As
an example, we consider β[c] =A + B tanh[(c− c∗)/w] where A and B are chosen such
that β[c → 0] = β+ and β[c→∞] = β−, and where w and c∗ are constants. On the
other hand: if robots are supposed to move downgradient to accumulate in the minima
of c(x), the response function has to be a decreasing function of the signal, µ[c] < 0, and,
thus, β[c] should be an increasing function of c. This can be achieved by using the same
functional form as before, but requesting β[c→ 0] = β− and β[c→∞] = β+, cf. Figures
3.4a and b.

We can further design robots to accumulate at a given value c∗ of the external field
as shown in Figures 3.4c and d. For this task, we need µ[c] to be positive for c < c∗

and negative for c > c∗. Figure 3.4c illustrates this type of robot design: β[c] = A −
BN(c; c∗, w2) where N(c; c∗, w2) is a Gaussian distribution centered at c∗ and of variance w2.
The coefficients A and B are chosen such that β[c→ c∗] = β− and β[c→ 0] = β+.

As a final example, we study how robots chase a signal that moves at speed v as shown
in Figures 3.4e to i. The analyzed scenario is analogous to recent bacterial chemotactic
experiments performed with a moving chemoattractant signal [47]. For this purpose, the
MR design for the detection of maxima is used, cf. the discussion of Figures 3.4a and b.
As a signal, we use a Gaussian distribution that moves at a constant speed v (remember
that robots move at constant speed v0). There is a critical signal speed vc above which the
robots become decreasingly responsive. In the limit of high signal speeds (v�vc), robots
just diffuse around as they would do in an homogeneous field. We quantify the efficiency
of robots by the deviation from the homogeneous distribution ∆ ∝

∫ L
0
dx |Ps(x)− P0|,

see Figure 3.4e, which is large if robots follow the moving signal and decreases to zero for
non-responsive MR. Considering a simplified scenario, we derive a rough estimate of the
crossover speed beyond which robots cannot follow the moving signal. The estimation is
based on the idea of a quasi-stationary situation: the density distribution of robots should
have relaxed into the stationary state before the signal has moved to ensure that robots
can follow a dynamic signal. Imagine first a static field c(x) = c̄ exp[−(x − x0)2/(2h2)],
where x0 and h are constants such that f(x)=−µ[c]c(x)(x−x0)/h2 = −κ ·(x−x0); notice
that h is a length-scale that characterizes the spatial extent of the gradient. Assuming
that we can linearize around x0, we approximate κ ≈ µ[c̄]c̄/h2 yielding a linear restoring
force f(x) as if it was coming from a harmonic potential. The characteristic relaxation
time for an harmonic potential is κ−1. The critical speed is now given by the product
of the relaxation rate and a characteristic size of the signal; therefore, we estimate that
robots can follow any signal that travels at a speed less or equal to

vc = h · κ ' µ[c̄]c̄

h
. (3.17)

For the parameters used in the simulations shown in Figure 3.4, the critical speed yields vc ≈
3·10−4, indicated by a red (dashed) line in Figure 3.4e.
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Figure 3.4 – Illustration of complex tasks performed by suitably tuned robots controlled
by the adaptive NCS motif 2. The detection of maxima and minima in a complex land-
scape c(x) is shown at the bottom of panel (b) [c(x) is displayed at the top of panels (b)
and (d)]. The corresponding functional dependencies of β[c] are shown in (a): for increas-
ing β[c], minima are detected (black, solid curves) whereas robots accumulate around
maxima for decreasing β[c] (red, dashed lines). Moreover, the accumulation of robots
around a preferred external field value [dotted line in (d)] is demonstrated for the func-
tional dependence β[c] shown in (c). As a third example, robots chasing for a moving
signal (white, dashed line) are depicted in panels (e)-(i). Space-time plots (f)-(i) reveal
that robots become less responsive to a moving signal above a critical speed vc, estimated
by equation (3.17), which is shown by a vertical red (dashed) line in (e). Further, the
performance is quantified in (e) where ∆ denotes the deviation of the robot density from
the spatially homogeneous distribution. Parameters: c∗ = 1, w = 0.5, β− = 1, β+ = 10,
v0 = 0.01, L = 1, D0 = 0; see main text for the functional forms of the rate β[c]. Boundary
conditions: reflecting in (b) and (d), periodic in (e)-(i).

3.4 Two & three-dimensional systems

The results obtained so far regarding the motility response of MR, based on a one-
dimensional approach, hold true qualitatively in higher dimensions. Below, we briefly
outline how biased motion of MR can be addressed in higher spatial dimensions within
the same theoretical framework and provide a proof of principle. Technical details as well
as a full account of the general dynamics in two as well as in three dimensions can be
found in Appendix B.4 and Appendix B.5, respectively.

Two-dimensional case The equation of motion of a MR in two dimensions reads

ṙ(t) = v0ŝ[ϕ(t)] +
√

2D0 ξ(t), (3.18)

where r(t) is the position of a robot in two dimensions and ŝ[ϕ] = (cosϕ, sinϕ) is a
unit vector pointing in the direction of motion parametrized by the polar angle ϕ. The
polar angle may undergo a stochastic, rotational dynamics due to small-scale spatial
heterogeneities, thermal fluctuations or temporal variations of the active driving force [48–
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51]:

ϕ̇(t) =
√

2Dr η(t). (3.19)

The noise amplitude Dr parametrizes the persistence of trajectories during run phases,
and η(t) denotes white, Gaussian noise.

The internal robot dynamics, which controls abrupt changes of the direction of motion,
is determined as before by a certain NCS. The reorientation of robots may be implemented
in several ways: the new direction of active motion could be selected from a probability
distribution of reorientation angles, representing, for example, a cone centered around
the previous orientation or it could be chosen uncorrelated with respect to the previous
direction of motion. The qualitative behavior is independent of this choice.

At first, we put forward a heuristic argument valid for low angular noise intensities
to illustrate why the results derived so far based on one dimensional systems should hold
in higher dimensions. Consider a robot equipped with some NCS, which controls the
moments in time when the robot selects a new direction of motion from a certain prob-
ability distribution. The velocity of a robot may always be divided into its components
parallel and perpendicular to the gradient orientation. The upgradient climbing speed v⊥
is a random variable, which changes at each reorientation event. Thus, the speed has to
be rescaled to obtain an average climbing speed. Furthermore, not every reorientation
inevitably leads to a reversal of the direction of active motion with respect to the gradient
orientation. Upon reorientation, the projection of the new direction of active motion onto
the gradient is positive or negative with equal probability (p = 1/2) if the direction of
self-propulsion of a robot at each reorientation event is chosen randomly from the inter-
val [−π, π) in two dimensions; in general, there is a reversal probability pr that the robot
moves upgradient (downgradient) given that it was moving downgradient (upgradient)
before the reorientation. These arguments indicate that it is always possible to come
up with an effective one-dimensional description – in the sense of a projection – for the
motion along the local gradient orientation, which is analogous to the problem considered
in previous sections.

We now turn to a quantitative analysis of the problem in two dimensions. For the sake
of concreteness, we formulate the problem for adaptive robots as discussed in Section 3.2,
which are controlled by NCS motif 2, cf. Figure 3.1. In contrast to one dimension, where
only two directions of motion (denoted by ±) are possible, a continuum of orientations
parametrized by the polar angle ϕ exists in two dimensions. Therefore, the probability
densities P

(±)
i (x, t) are replaced by the probability densities Pi(r, ϕ, t) to find a robot

at position r in state i, moving into direction ϕ at time t. We introduced the new
symbol Pi(r, ϕ, t) in order to avoid confusion with the probability density

Pi(r, t) =

∫ π

−π
dϕPi(r, ϕ, t) (3.20)

to find a robot at a certain position r at time t in state i, independent of its direction of
motion. Altogether, the full set of Master equations for robots controlled by NCS motif 2
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Figure 3.5 – Illustration of adaptive MR in two dimensions. In the left panel, the external
field c(r) = 1+0.5 sin(2πx)cos(3πy) is shown. The middle panel represents the stationary
probability density Ps(r) obtained from Individual Based Model (IBM) simulations. On
the right, several cross sections as indicated in the middle panel by white (dashed) lines are
shown in comparison to predictions of the drift-diffusion approximation [equation (3.28)].
Model specification: upon reorientation, a robot chooses a new direction of motion from
the uniform probability distribution g(ϕ) = 1/(2π), such that G = 0; adaptive NCS
motif 2, cf. equations (3.14); β[c] as shown in Figure 3.4 (red line) and the corresponding
comments in the main text (β− = 1, β+ = 10). Other parameters: L = 1, v0 = 0.01,
D0 = 0, Dr = 0, N = 104 robots in IBM simulations; reflecting boundary conditions were
implemented.

in two dimensions reads

∂tP1(r, ϕ, t) = −v0 ŝ[ϕ] · ∇P1 +Dr∂
2
ϕP1 +D0∆P1 − α[c]P1 + γ[c]P2

+ β[c]

∫ π

−π
dϕ′ g(ϕ− ϕ′)P2(r, ϕ′, t) ,

(3.21a)

∂tP2(r, ϕ, t) = −v0 ŝ[ϕ] · ∇P2 +Dr∂
2
ϕP2 +D0∆P2 −

(
β[c] + γ[c]

)
P2 + α[c]P1.

(3.21b)

The details of the stochastic reorientation event, triggered by the NCS, are determined
by the probability density function g(ϕ). For unbiased reorientations, this function should
be symmetric: g(−ϕ) = g(ϕ).

Just as in one dimension, the total density dynamics is a slow quantity since it is
locally conserved. It is therefore possible to reduce the set of Master equations to the
Fokker-Planck equation

∂tP (r, t) = −∇·
[
f(r)P (r, t)

]
+ ∆

[
D(r)P (r, t)

]
(3.22)

for the density P (r, t) =
∑

i Pi(r, t). Technically, the derivation follows the same logic as
in one dimension. At first, the dynamics of the probability densities Pi(r, t), cf. equation
(3.20), are derived by integration of equations (3.21) over the angular variable ϕ. Those
equations are coupled to the flux, which is determined by the local order parameter

mi(r, t)=

∫
dϕ ŝ[ϕ]Pi(r, ϕ, t)=

∫
dϕ

(
cosϕ
sinϕ

)
Pi(r, ϕ, t) (3.23)
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in two dimensions. The fields mi, which replace mi from the one dimensional discussion,
may again be adiabatically eliminated to obtain a reduced set of equations for the densi-
ties Pi(r, t). Finally, the density dynamics follows by assuming local equilibrium. Details
on this derivation are summarized in Appendix B.4. For the example considered above,
namely adaptive MR with NCS motif 2, one obtains the local drift

f(r) = −Λ2 · ∇
(

ln β[c]
)

(3.24)

with the parameter-dependent prefactor

Λ2 =
v2

0

2
· β+β−(1− G)

(β++β−)·
[
(β++Dr) (β−+Dr)−β+β−G

] . (3.25)

Further, the constant diffusion coefficient reads

D=D0+
v2

0

2
·
β2

+ + β2
−+ β+β−(1 +G) +Dr(β+ + β−)

(β++β−)·
[
(β++Dr) (β−+Dr)−β+β−G

] . (3.26)

In these effective transport quantities, the mean cosine of the reorientation distribu-
tion g(ϕ) was abbreviated by G:

G = 〈cosϕ〉 =

∫ π

−π
dϕ g(ϕ) cosϕ. (3.27)

These results constitute a straightforward generalization of the results for the one-dimensional
case, which can be seen by comparing the equations in question to equations (3.15) in the
limit Dr = 0.

The stationary density distribution, i.e. the stationary solution of the Fokker-Planck
equation (3.22), for adaptive MR in two dimensions reads

Ps(r) =
N(

β[c]
)Λ2/D

. (3.28)

It is illustrated in Figure 3.5 together with a comparison to individual based model sim-
ulations.

Three-dimensional case For the sake of completeness, we finally consider MR in
three spatial dimensions. Their transport characteristics turn out to be marginally dif-
ferent from those in two dimensions, as explained below. This implies in particular that
all qualitative statements made above hold true in three dimensions as well. However,
there are some technical complications as a consequence of the three dimensional motion
regarding the implementation of angular fluctuations as well as the angular reorientation,
which are explained below for this reason. Again, adaptive MR controlled by NCS motif 2
are considered for simplicity as an example. All details concerning the general dynamics
of MR in three dimensions can be found in Appendix B.5. The dynamics in space for MR
in three dimensions,

ṙ(t) = v0ŝ +
√

2D0 ξ(t), (3.29)
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is unchanged with respect to previous cases. However, the orientation of the active driving
force, determined by the unit vector ŝ, has to be parametrized differently in three dimen-
sions. One could, for example, use spherical coordinates ŝ = (sin θ cosϕ, sin θ sinϕ, cos θ),
where θ ∈ [0, π] and ϕ ∈ (−π, π). The angular dynamics for unbiased, orientational
fluctuations reads then as follows:

θ̇ = Drcot θ +
√

2Dr ηθ(t), (3.30a)

ϕ̇ =
√

2Dr csc θ ηϕ(t). (3.30b)

For a derivation of these equations, see [52], and for a detailed discussion on Brownian
motion in 3D we refer the reader to [53–57]. All interpretation of multiplicative noise terms
in the angular dynamics [equation (3.30)] are equivalent in this particular case. From a
technical point of view, it is, however, more convenient to use Cartesian coordinates for
the director ŝ = (sx, sy, sz), at least for analytical calculations.

Besides the continuous fluctuations of the direction of motion due to rotational dif-
fusion [equation (3.30)], robots change the orientation of the active driving force in a
discontinuous fashion each time that the NCS triggers one of this events: ŝ′ → ŝ. Given
that the previous direction of motion was ŝ′, a novel orientation ŝ is chosen from a transi-
tion probability density g(ŝ|ŝ′). Since reorientations are supposed to occur in an unbiased
manner, the transition probability density g(ŝ|ŝ′) can only depend on the scalar prod-
uct ŝ · ŝ′. Further, the normalization of the director, |ŝ| = 1, has to be preserved. One
may, therefore, parametrize

g(ŝ|ŝ′) =
δ(1− |ŝ|)

2π
H(ŝ·ŝ′), (3.31)

where H(ŝ · ŝ′) is the probability distribution function for the scalar product of the orienta-
tions just right before and after a reorientation event. Put differently, it denotes the prob-
ability density for the cosine of the angle ψ between the vectors ŝ and ŝ′, i.e. cosψ = ŝ · ŝ′.

The internal robot dynamics is independent of the spatial dimension. Therefore, the
general structure of the Master equations, which describe the dynamics of MR, remains
unchanged in three dimensions, but transport terms are adapted accordingly. For MR
controlled by NCS motif 2, these Master equations are given by

∂tP1(r, ŝ, t) = −v0 ŝ · ∇P1 +DrL[Pi] +D0∆P1 − α[c]P1 + γ[c]P2

+ β[c]

∫
d3s g(ŝ|ŝ′)P2(r, ŝ′, t) ,

(3.32a)

∂tP2(r, ŝ, t) = −v0 ŝ · ∇P2 +DrL[Pi] +D0∆P2 −
(
β[c] + γ[c]

)
P2 + α[c]P1, (3.32b)

which is the analogue of equation (3.21) for the corresponding two-dimensional case: the
convective term is replaced by its three dimensional equivalent, the reorientation distri-
bution g(ϕ) is replaced by g(ŝ|ŝ′) and the implementation of the director dynamics due
to rotational noise has changed. The latter is determined in Cartesian coordinates by the
operator

L[Pi] = ∂sµ

[
2sµPi

]
+ ∂sµ∂sν

[(
δµν − sµsν

)
Pi
]
, (3.33)
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where a sum over µ and ν is implicit. This parametrization is entirely equivalent to
the angular representation [equations (3.30)], which can be verified by insertion of the
parametrization of ŝ via spherical coordinates [52].

In the diffusive limit, i.e. if the external signal c(r) varies weakly on spatial scales,
which a robot traverses in between two reorientation events, a drift-diffusion approxi-
mation in the same spirit as in one and two spatial dimensions is feasible. The basic
prerequisites of this derivation and its logic are analogous to the arguments put forward
before; technical subtleties are summarized in Appendix B.5. It turns out that solely the
speed and the angular noise intensity are rescaled by numerical factors, which depend on
spatial dimensionality. The drift reads [cf. equation (3.24)]

f(r) = −Λ3 · ∇
(

ln β[c]
)

(3.34)

in three dimensions, where the prefactor Λ3 is structurally very similar to Λ2 determined
by equation (3.25) in two dimensions. Here, the prefactor Λ3 is determined by

Λ3 =
v2

0

3
· β+β−(1− G)

(β++β−)·
[
(β++2Dr) (β−+2Dr)− β+β−G

] . (3.35)

Along similar lines, only a few numerical factors are replaced in the expression for the
effective diffusion coefficient, which reads in three dimensions as follows:

D = D0 (3.36)

+
v2

0

3
·

β2
+ + β2

−+ β+β−(1 +G) + 2Dr(β+ + β−)

(β++β−)·
[
(β++2Dr) (β−+2Dr)− β+β−G

] .
Just as in two dimensions, the parameter G denotes the mean cosine of the angle between
the directors before and after the reorientation event. In three dimensions, it may be
expressed by

G = 〈cosψ〉=
∫
d3s ŝ · ŝ′g(ŝ|ŝ′)=

∫ 1

−1

d(cosψ)h(cosψ). (3.37)

The stationary probability density is thus determined by

Ps(r) =
N(

β[c]
)Λ3/D

. (3.38)

for adaptive MR controlled by NCS motif 2.
Notably, the simple rescaling of speed and rotational diffusion described above is not a

particularity of the example under consideration, but it is generally the only quantitative
difference of the transport properties of MR in two and three dimensions. The proof of
this result is sketched in Appendix B.5. In short, the behaviour of MR is qualitatively
independent of the spatial dimension.

A comparison of Individual Based Model simulations and theoretical predictions in
terms of the stationary probability density Ps(r), as shown in Figure 3.6, serves as sanity
check that the analytically obtained transport coefficients, drift [equation (3.34)] and
diffusion [equation (3.36)], provide a reasonable description of the large-scale transport of
MR in the diffusive limit.
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Figure 3.6 – Comparison of the stationary probability density Ps(r) of MR controlled by
NCS motif 2 as obtained from Individual Based Model (IBM) simulations and the corre-
sponding drift-diffusion approximation, cf. equation (3.38), in three spatial dimensions.

A Gaussian modulation is used as an external signal: c(r) = c0

[
1+ε exp

(
− |r−r0|2

2σ2

)]
. The

data points in the main panel (IBM) were reconstructed from the radial distribution
function g(R) =

∫
d3r Ps(r) δ(R− |r− r0|) shown in the inset via division by the angular

measure factor. The inset on the left represents a three-dimensional histogram of the
position of MR, where the color code indicates the value of Ps(r). The main panel is a
cut of Ps(r) along r = (x, 1/2, 1/2)T . Parameters: c0 = 1/2, ε = 2, σ =

√
3/2/10 ≈ 0.12,

r0 = (1/2, 1/2, 1/2)T . Further parameters as in Figure 3.5; reflecting boundary conditions
have been used.

3.5 Tests with a real robot

We tested the concepts developed before in practice by assembling a macroscopic robot
that operates with NCS motif 2 as defined above. The robot – a Lego Mindstorms EV3
shown in Figure 3.7a – was equipped with a single light sensor capable of reading light
intensities, providing a signal S in arbitrary units between 0 and 100 at the current
position. A gray scale from black to white printed on paper (total length: 81 cm) was
utilized as an external field [cf. the top panel of Figure 3.7c]. The robot possesses two
synchronously steered motors in the front, each of which are connected to one wheel. A
metallic roller in the back of the robot serves as a stabilization. For simplicity, we focused
on the one-dimensional scenario: the robot was attached to a metallic rail to prevent
turns, thereby ensuring straight trajectories.

Being a real-word system, the robot is naturally subjected to a series of fluctuations.
Vibrations of the arm that connects the light sensor to the robot and, moreover, imperfec-
tions in the printed gray scale itself result in noisy measurements of the signal intensity S.
Furthermore, imperfect rotations of the wheels imply varying step lengths and, hence,
lead effectively to noise in the particle position.

The robot was programmed in the LabVIEW based Lego Mindstorms EV3-software.
The basic flowchart of the algorithm is shown in Figure 3.2. The temporal update is
composed of a streaming and a signal processing step that are repeated continuously.
The length of one streaming step was fixed to be 2/3 of the wheel perimeter resulting in a
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step length of approximately 11.7 cm. Afterwards, the signal strength S is read from the
sensor. Based on this measurement, the internal state is updated and, possibly, a reversal
of the direction of rotation of the wheels is triggered. The transition rates α[c], β[c],

and γ[c] are translated into probabilities Pα(S) = b+b−/Pβ(S), Pβ(S) = b+ (b−/b+)S/100

and Pγ(S) = b+ + b− − Pα − Pβ for the corresponding transitions, where b+ = 1 and
b− = 0.8 was used.

In the following, we aim at testing the theoretical predictions at the level of exit prob-
abilities. For this purpose, a single experimental run proceeds as follows: it is monitored
whether a robot which was initially placed in the middle of the experimental setup reaches
the left (black) or right (white) boundary of the system first. Once the robot touched one
of the boundaries, the experiment is stopped and repeated. In total, N = 40 realizations
were recorded. In n = 28 cases, the robot left the system via the right boundary. A
typical trajectory for an exit on the right boundary is displayed in Figure 3.7c. See also
the Supplemental Material of our PRE publication online for a corresponding movie 2.

Based on this experimental result, we first test the null hypothesis that the robot
performed just an unbiased random walk. The exit probability on the right side of the
system for a single experimental run should therefore be Γ = 0.5. The probability to
observe n exits on the right, given N realizations in total, is determined by the Binomial
distribution

BN(n|Γ) =

(
N

n

)
Γn (1− Γ)N−n . (3.39)

This distribution is shown for N = 40 and Γ = 0.5 in Figure 3.7b by black circles. The
total probability to observe n = 28 exits to the right of the system or a more extreme result
than this is determined by the tails of the Binomial distribution. It thereby constitutes
the p-value under the null hypothesis the robot performs an unbiased random walk [58].
In the case under consideration, we obtain a p-value of approximately 0.017. Accordingly,
the null hypothesis may be discarded based on the standard significance level α = 0.05. In
short, there is considerable statistical significance that the motion of the robot is biased
due to the NCS at work.

The NCS was implemented such that the robot tends to move towards brighter areas
in terms of the gray value and, thus, we expect the number of exits to the right to be
larger than to the left. Simulations of the corresponding process provide the prediction
that the probability to touch the right boundary first is Γ = 0.65(1). The Binomial
distribution B40 (n|Γ) for this Γ-value is represented by red squares in Figure 3.7b. The
experimentally observed result (n = 28) is indicated by a blue, vertical line. Apparently,
the likelihood for the observed result given Γ = 0.65 is higher than for the random walk:

B40(n = 28|Γ = 0.65) > B40(n = 28|Γ = 0.5) . (3.40)

Based on the Akaike information criterion [59], we infer that the theoretically predicted
value Γ = 0.65 is considerably more likely than the random walk hypothesis corresponding
to Γ = 0.5.

Finally, we specify the last statements regarding the likelihood of certain Γ-values given
the experimental observation. Using the Bayesian theorem [60], the following expression

2See Supplemental Material at https://journals.aps.org/pre/supplemental/10.1103/PhysRevE.97.042604
for movies.
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Figure 3.7 – (a) A photo of the robot, a Lego Mindstorms EV3. (b) Binomial distribu-
tion B40(n|Γ) determining the probability that the robot leaves the system n times via
the right boundary in 40 realizations of the experiment, whereby the robot was initially
placed at the center of the system, given that the probability for the same event in one
realization is Γ, cf. equation (3.39). The black circles correspond to an unbiased random
walker (Γ = 0.5), the red squares show the Binomial distribution for the theoretically
predicted value (Γ = 0.65). The experimentally observed situation – in n = 28 cases the
robot touched the right boundary first – is indicated by a vertical blue line. A repre-
sentative trajectory is shown in panel (c), on top of which the robot is depicted moving
on the printed gray scale. The probability distribution P40(Γ|n = 28) for Γ given the
experimental result (n = 28), inferred from the Bayesian theorem [equation (3.41)], is
shown as an inset of panel (b); the experimental observation is in line with the theoretical
prediction.

for the probability distribution PN(Γ|n) for Γ given a certain number n of exits to the
right out of N total experimental realizations is deduced:

PN(Γ|n) =
BN(n|Γ)P(Γ)∫ 1

0
dΓ′BN(n|Γ′)P(Γ′)

. (3.41)

In the equation above, P(Γ) determines the prior knowledge (before the experiment)
about the probability distribution of Γ. Here, we assume a uniform prior, i.e. P(Γ) = 1
for Γ ∈ [0, 1] and zero otherwise. The probability distribution P40(Γ|n = 28), which is
relevant for the experimental result, is shown as an inset in Figure 3.7. Apparently, the
distribution is shifted towards the right implying that there is a drift towards the right
boundary as expected. The resulting distribution P40(Γ|n = 28) possesses a mean and
standard deviation of Γ̄ = 0.69(7), which is well is inline with the theoretical expectation.

In summary, the experimental results provide an empirical demonstration that the
proposed navigation algorithm, which is simple to implement in a real robot, yields a
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directed, nontrivial motility response as predicted by theoretical considerations, which is,
notably, robust with respect to fluctuations.

3.6 Summary & perspectives

This study provides a solid proof-of-concept, including analytical derivations and a prac-
tical implementation, that it is possible to design particles that are capable of navigating
through complex dynamical external fields in any spatial dimension – performing local
measurements only – without making use of internal continuous variables to store pre-
vious measurements of the external field. The novel navigation strategies proposed and
analyzed here are fundamentally different from previous bacterial chemotaxis models (see
Sec. 3 for a detailed comparison). It requires that the robots possess a minimum of two
internal states to exhibit non-trivial, persistent motility responses such as migration to-
wards minima or maxima of the external field or even surfing at a desired field value
in a complex, dynamical landscape. Transitions between these two internal states are
dictated by a closed Markov chain, with transition rates that depend only on the local,
instantaneous value of a given external field c(x). This implies that the internal dynamics
of the particles is such that fixed points are excluded. In summary, we have shown here
that robots with such a minimal navigation control system, where the internal state can
be stored in single Boolean variable, i.e. in 1 bit, are able to explore complex information
landscapes.

Furthermore, we have shown that the proposed minimalistic navigation strategies can
be efficiently implemented in real macroscopic robots. However, the main interest of
conceiving navigation algorithms with limited memory storage capacity as the ones pro-
posed here is to pave the way to engineer miniature, micrometer-size robots in a near
future. Miniaturizing robotic systems as the one used in Sec. 3.5 is a major technolog-
ical challenge [35, 36]. Our study does not provide a recipe how to combine the exist-
ing micrometer-size actuators, sensors, and switches to produce the proposed Markovian
robots, which is certainly beyond the scope of this basically theoretical work. Never-
theless, the developed concepts may serve as guiding principles to design autonomous,
tiny robots capable of displaying complex motility behaviors by identifying the minimum
requirements to navigate with limited memory storage capacity.

Finally, extension of this initial study including more complex, biologically motivated
motifs with a larger number of internal states may help to elucidate the navigation strate-
gies of some microorganisms [61–64]. Studying ensembles of interacting robots as those
studied in [65], operating with the here-proposed navigation algorithms is another promis-
ing research direction that may unveil cheap and efficient ways to obtain complex, self-
organized collective behavior of autonomous, self-propelled agents.
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In this chapter we study the three state model motivated by the experimental obser-
vations in the small groups of gregarious animals, presented in Chapter 2, Section 2.2,
equation (2.9) in a slightly simplified way. To simplify the notation, we use generic names
for the states, namely A, B and C. First, we focus on studying the time evolution of three
collective variables. We call them nA(t), nB(t) and nC(t) and represent the number of
particles in each of the three states. We study the dynamics at the mean field level and,
thus, knowing the dynamics of the system means knowing the time evolution of nA(t),
nB(t) and nC(t). Since particles are conserved, i.e.:

nA(t) + nB(t) + nC(t) = N ∀t ≥ 0, (4.1)

there are only two of these variables that are independent. Without loss of generality,
we can assume that the independent variables are nA(t) and nB(t). If we plot nA(t) vs.
nB(t), then the dynamics of the system is confined in a right-angled triangle with catheti
of size N and hypothenuse of size

√
2N , as shown in Figure 4.1b.

This chapter is going to be organized as follows. In the first part we study the mean
field dynamics of a system of N interacting particles by analyzing the temporal evolution

53
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Figure 4.1 – (a) The three possible transition rates between the three states A, B and
C. (b) Scheme to visualize the triangular region (highlighted in orange) that confines
the dynamics of the system in the

(
nA,nB

)
space ∀t ≥ 0. (c) Dynamics of a special case

that is well described by the Collective Clock Approximation and Metaparticle Clock
Approximation.

of nA(t) and nB(t). We show that Saddle Node and Hopf bifurcations appear when we
vary the parameters of the system. We characterize these bifurcations in terms of the
system parameters. This mean field study results to be vital to understand what happens
in the complete stochastic system.

In the second part of this chapter we introduce two general concepts that we call
Collective Clock Approximation (CCA) and Metaparticle Clock Approximation (MCA).
We explain how to use these ideas to get analytical expressions that describe the temporal
dynamics of the complete stochastic system. We study the accuracy of these two approxi-
mations by comparing the analytical expressions obtained using the CCA and MCA with
Individual Based Model (IBM) simulations. By construction, the CCA and the MCA
can be generalized to describe any kind of highly synchronized system of particles.

4.1 The three state model

In this case, the Internal Control System (ICS) of each particle has three states and
three transition rates that define the time evolution of the internal variable qi(t) of each
particle, as shown in Figure 4.1a. The three transition rates between the states are equal
and of the form:

Ri→j
(
ni, nj

)
=
nβj + ω

nγi
, (4.2)

with ni(t) the number of particles in state i ∈ [A,B,C]. In (4.2), β, γ and ω are the
system parameters that play a crucial role on the dynamics of the system. Notice that the
interaction of particles is present only at the level of the transition rates (4.2). We assume
that the particles have access to the values nA(t), nB(t) and nC(t) during the whole time
evolution. In simpler words, “all particles see each other” and can identify the value of
the internal variable of all their neighbours for all times. The master equation for the
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probability P (nA, nB, nC ; t) of finding a given configuration (nA, nB, nC) at time t is:

∂tP (nA, nB, nC ; t) = −
(
nARA→B

(
nA, nB

)
+ nB RB→C

(
nB, nC

)
+ nC RC→A

(
nC , nA

))
P (nA, nB, nC ; t)

+ (nA + 1)RA→B
(
nA + 1, nB − 1

)
P (nA + 1, nB − 1, nC ; t)

+ (nB + 1)RB→C
(
nB + 1, nC − 1

)
P (nA, nB + 1, nC − 1; t)

+ (nC + 1)RC→A
(
nC + 1, nA − 1

)
P (nA − 1, nB, nC + 1; t).

(4.3)

The master equation (4.3) defines uniquely our stochastic system.

4.2 Mean field

First, we study what happens to the system at the mean field level. The analysis of the
dynamics of the system is going to be performed in three steps. First, we analyze the role
of parameter β alone and, thus, we study the limit case γ → 0 that we call the recruiting
term (RT):

lim
γ→0

Ri→j
(
ni, nj

)
=
(
nβj + ω

)
. (4.4)

Second, we analyze the role of γ and to do so we study the limit case β → 0 that we call
inhibition term (IT):

lim
β→0

Ri→j
(
ni, nj

)
=

1 + ω

nγi
=

ω̃

nγi
, (4.5)

where ω̃ = 1 + ω. Last, we study both terms at the same time, i.e.: the whole dynamics
given by rates of the form (4.2).

To obtain the mean field equations we have to use the master equation (4.3) to obtain
the evolution equations for our average independent variables:

〈nA(t)〉 =

∞∫
0

dnC

∞∫
0

dnB

∞∫
0

dnA

(
nA P

(
nA, nB, nC ; t

))
, (4.6)

〈nB(t)〉 =

∞∫
0

dnC

∞∫
0

dnB

∞∫
0

dnA

(
nB P

(
nA, nB, nC ; t

))
(4.7)

In the rest of this section we will abuse of the notation and we will call the average
variables simply 〈nA(t)〉 = nA(t) and 〈nB(t)〉 = nB(t).

4.2.1 Recruiting term

In this case, the transition rates are of the form:

Ri→j
(
ni, nj

)
=
(
nβj + ω

)
. (4.8)
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The mean field equations result to be:

ṅA(t) = −
(
nβB(t) + ω

)
nA(t) +

(
nβA(t) + ω

)(
N − nA(t)− nB(t)

)
= f1(nA, nB)

ṅB(t) = −
((
N − nA(t)− nB(t)

)β
+ ω

)
nB(t) +

(
nβB(t) + ω

)
nA(t)

= f2(nA, nB)

(4.9)

The only fixed point of (4.9) is n̂A = n̂B = n̂ = N/3 for all values of β > 0. To
study the instabilities around this fixed point we make small perturbations of the form
nA(t) = n̂+ εA(t) and nB(t) = n̂+ εB(t). To check the stability of the fixed point we can
stay at first order of perturbations, which gives the following linear system:

ε̇A(t) =

(
n̂β(β − 2)− 2ω

)
εA(t)−

(
n̂β(β + 1) + ω

)
εB(t)

ε̇B(t) =

(
n̂β(β + 1) + ω

)
εA(t) +

(
n̂β(2β − 1)− ω

)
εB(t).

(4.10)

To get (4.10) we used the binomial series:

(
1 + x

)b
=
∞∑
k=0

(
b

k

)
xk = 1 + b x+

b (b− 1)

2!
x2 + . . . (4.11)

The eigenvalues of (4.10) are:

λ1,2 = −3

2

(
ω

n̂β
− β + 1

)
± i
√

3

2

(
ω

n̂β
+ β + 1

)
(4.12)

Knowing that ω > 0 and β > 0, then the sign of the real part of the eigenvalues λ1,2 is
determined only by the condition:

<(λ1,2) S 0 if 0 S
ω

n̂β
− β + 1. (4.13)

Thus, the critical value of β for which the stability changes satisfies the condition:

ω

n̂βc
− βc + 1 = 0. (4.14)

For ω � 1 we get that βc ≈ 1. This result tells us that for values where β < βc, the fixed
point is stable and for β > βc the fixed point changes stability.

To get more information regarding the case β > βc we performed the numerical inte-
gration of (4.9) using a classical 4th order Runge-Kutta method. For values of β > βc,
we noticed that the dynamics of the system reaches a stable periodic solution known as
limit cycle, as shown in the left panel of Figure 4.2 for β = 1.2. Thus, this tells us that
we can pass from having one stable fixed point to one unstable fixed point and one sta-
ble limit cycle. In dynamical systems, this is called a supercritical Hopf bifurcation. To
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Figure 4.2 – The two qualitatively different behaviors of the recruiting term are shown.
A limit cycle appears for values of β > βc. (a) The dynamic evolution of the system is
shown for β = 1.2 using as initial condition: nA(t = 0) = 10 and nB(t = 0) = 10. It
reaches a limit cycle. (b) The drift f(nA, nB) given by the mean field equations in (4.9)
is shown for the same value of β. (c) and (d) contain the same information but for the
case β < βc where there exists only one stable fixed point. The system parameters are
N = 50 and ω = 0.1.

characterize this bifurcation, and particularly to characterize the limit cycle, we have to
study the perturbations at higher orders. The resulting high order system is:

ε̇A(t) =

(
n̂β
(
β − 2

)
− 2ω

)
εA(t)−

(
n̂β
(
β + 1

)
+ ω

)
εB(t) +

(
n̂β−1β(β − 3)

2

)
ε2A(t)

−
(
n̂β−1 (β − 1)β

2

)
ε2B(t)−

(
n̂β−1β

(
β − 3

))
εA(t)εB(t)

−
(
n̂β−2 (β − 1)β

2

)(
ε3A(t) + ε2A(t)εB(t) + εA(t)ε2B(t)

)
ε̇B(t) =

(
n̂β
(
β + 1

)
+ ω

)
εA(t) +

(
n̂β
(
2β − 1

)
− ω

)
εB(t)

−
(
n̂β−1 (β − 1)β

2

)
ε2A(t) +

(
n̂β−1β

)
ε2B(t)−

(
n̂β−1β(β − 3)

)
εA(t)εB(t)

−
(
n̂β−2 (β − 1)β

2

)(
ε2A(t)εB(t) + εA(t)ε2B(t) + ε3B(t)

)
.

(4.15)

To get (4.15) we used again the binomial series (4.11). The non-linear system (4.15) is
complicated to study and one of the main causes is that the limit cycles are not perfect
circles but elipses, as observed in detail in Figure 4.3. To simplify this study, we make a
change of our original variables nA(t) and nB(t) and get new variables ñA(t) and ñB(t)
where the limit cycle is a perfect circle. To find the new variables, it sufices to make a
rotation of −π/4 and multiply nB(t) by a factor of κ1 = 1/

√
3. We can write the change

of variables in matricial form as:

(
ñA(t)
ñB(t)

)
=

(
cos
(
π
4

)
κ1 sin

(
π
4

)
− sin

(
π
4

)
κ1 cos

(
π
4

))(nA(t)
nB(t)

)
(4.16)
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Figure 4.3 – Various limit cycles obtained by numerically integrating the equations in
(4.9). For the integration, we used a classical 4th order Runge-Kutta method. We show
the limit cycles for various values of parameter β. We notice that for small values of β
the limit cycle is an ellipse, which is rotated with respect with the variables nA and nB.
For increasing values of β, the radius also increases until (almost) reaching the borders of
the triangle. The system parameters are in this case is N = 50 and ω = 0.1.

Given that the time dynamics of the system is in the plane, we can suppose that the
two new variables are the real and imaginary parts of a complex variable

z(t) = ñA(t) + i ñB(t) = r(t) eiΦ(t). (4.17)

The time derivative of the radial function r(t) is:

ṙ(t) =
1

r
<
(
ż(t) z̄(t)

)
, (4.18)

with z̄(t) the complex conjugate of z(t) and <(·) the real part of (·). Using the new
variables in (4.16) and substituting them in equation (4.15) to calculate (4.18), we obtain
the normal form of the Hopf bifurcation:

ṙ = r

[
12

9

(
n̂2 − ω

β − 1
n̂2−β

)
− r2

]
. (4.19)

The dependence of the radius R0 of the limit cycle on parameters N , β and ω is then:

R0(β, ω,N) =

√
12

9

[(
N

3

)2

−
(
N

3

)2−β
ω

β − 1

]
for β > βc. (4.20)

The frequency of rotation F of the limit cycle is also known. It is in fact the imaginary
part of the eigenvalues λ1,2 given in (4.12):

=(λ1,2) = F(β, ω,N) =

√
3

2

(
ω

(N/3)β
+ β + 1

)
for β > βc, (4.21)

with =(·) the imaginary part of (·). Plots of R0 and F are shown in Figure 4.4 and are
valid for β > βc.
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Figure 4.4 – Plots of R0(β, ω,N) and F(β, ω,N). The radius saturates until almost
reaching the borders of the triangle. The frequency diverges. In this case βc = 1.0059.

We notice that while the radius reaches a maximum value, the frequency diverges.
This is telling us that limit cycles with small radius R0 have a smaller angular velocity
than the limit cycles with big radius.

This characterizes properly the only two possible scenarios when using the rates of
the form (4.8): either a stable fixed point in the middle of the triangle or one stable limit
cycle with a radius given in equation (4.20) and frequency given in equation (4.21).

4.2.2 Inhibitory term

In this section we want to study the dynamics of the system when the transition rates are
of the form:

Ri→j(ni, nj) =
ω̃

nγi
. (4.22)

Here, we want also to know the dynamics of nA(t) and nB(t). Since we study the time
evolution of the system at the mean field level, we have to introduce an auxiliary positive
constant ∆ > 0 that helps us to have well defined rates (if ni = 0, then equation (4.22) is
indeterminated). Thus, we change slightly and we use the following rates instead:

Ri→j(ni, nj) = lim
∆→0

(
ω̃

nγi + ∆

)
. (4.23)

This small change does not affect the dynamics of the system because we take small values
for ∆, i.e.: ∆� 1. The mean field equations are then:

ṅA(t) = lim
∆→0

(
ω̃
(
N − nA(t)− nB(t)

)(
N − nA(t)− nB(t)

)γ
+ ∆

− ω̃ nA(t)

nγA(t) + ∆

)
= g1

(
nA, nB

)
ṅB(t) = lim

∆→0

(
ω̃ nA(t)

nγA(t) + ∆
− ω̃ nB(t)

nγB(t) + ∆

)
= g2

(
nA, nB

)
.

(4.24)

Finding the fixed points and studying their stability in an analitical way is difficult for
arbitrary values of γ, but a study of the nullclines of (4.24) gives a lot of information. We
call nullcline 1 to the points that satisfy g1(n̂A, n̂B) = 0. Analogously, for the nullcline
2 we look for the points satisfying g2(n̂A, n̂B) = 0. In Figure 4.5, the two nullclines are
plotted for several values of γ. The fixed points are located where the two nullclines cross,
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Figure 4.5 – Plot of the two nullclines, one in blue and one in yellow, for several values
of γ. The fixed points are highlighted using a red geometrical figure, depending on the
stability. Circles are stable ones, squares are unstable and triangles are saddle nodes. For
values of γ < 1, there exists only one fixed point in the middle of the triangle, as shown
in (a) and (b). For γ = 1 the two nullclines cross in three new points, depicted in (c). For
values of γ > 1, the fixed point in the middle becomes unstable and six new fixed points
appear. Three of them result to be stable, three result to be saddle nodes, as shown in (d)
and (e). Notice that although the six new fixed points appear close to the center of the
triangle, they move toward the corners and edges, as shown in (e). The used parameters
are N = 50, ω̃ = 1.1 and ∆ = 0.01.

depicted with red symbols in Figure 4.5. Their stability can be studied by plotting the
drift g = (g1, g2), given in (4.24). This drift is depicted with light-blue arrows in Figure
4.5. For values of γ < 1, there exists only one fixed point at n̂A = n̂B = n̂ = N/3, as
shown in Figure 4.5a for γ = 0.5. For increasing values of γ, two hyperbolic branches
appear and approach the fixed point in the middle of the triangle. The value γ = 1 results
to be special because for this value the two hyperbolic branches of the nullclines collide or
touch at three different points. For higher values (γ > 1), the three collitions give birth
to six new fixed points. Out of these six points, three result to be stable and three result
to be saddle nodes. Hence, here we have three saddle node bifurcations with the critical
value of the parameter γ being γc = 1.

While on the one hand these six new points appear for values of γ > γc, on the
other hand the fixed point in the middle of the triangle (n̂A = n̂B = n̂ = N/3) does not
dissapear, but it changes its stability. It becomes unstable. To confirm the change of
stability of this particular point, we can analyse the original version of system (4.24):

ṅA = ω̃

[(
N − nA − nB

)1−γ − n1−γ
A

]
ṅB = ω̃

[
n1−γ
A − n1−γ

B

] (4.25)

We can leave aside the constant ∆ because in the neighborhood of this fixed point there
are no problems with indeterminations. We make small perturbations around the point
of interest of the form: nA(t) = n̂+ εA(t) and nB(t) = n̂+ εB(t). We get the system:

ε̇A = ω̃

[(
n̂− εA − εB

)1−γ −
(
n̂+ εA

)1−γ
]

ε̇B = ω̃

[(
n̂+ εA

)1−γ −
(
n̂+ εB

)1−γ
]
.

(4.26)
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Using again the binomial series in (4.11) and staying at first order of perturbations, we
get the linear system:

ε̇A =
ω̃
(
γ − 1

)
n̂γ

[
2εA + εB

]
ε̇B =

ω̃
(
γ − 1

)
n̂γ

[
− εA + εB

] (4.27)

The eigenvalues of (4.27) are:

λ1,2 =
ω̃(γ − 1)

2 n̂γ

(
3± i

√
3

)
. (4.28)

This tells us that the condition for the change of stability of the fixed point at the center
of the triangle is:

<(λ1,2) S 0 if γ S 1. (4.29)

Thus, as expected, the critical value results to be γc = 1. To study the stability of the
seven fixed points we can calculate its stability for a particular case that simplifies the
calculations, namely γ = 2. The system we have to solve is:

ṅA(t) = lim
∆→0

(
ω̃
(
N − nA(t)− nB(t)

)(
N − nA(t)− nB(t)

)2
+ ∆

− ω̃ nA(t)

n2
A(t) + ∆

)
= g1

(
nA, nB

)
ṅB(t) = lim

∆→0

(
ω̃ nA(t)

n2
A(t) + ∆

− ω̃ nB(t)

n2
B(t) + ∆

)
= g2

(
nA, nB

)
.

(4.30)

To find the fixed points, we look for the points (n̂A, n̂B) that satisfy g1(n̂A, n̂B) = 0 and
g2(n̂A, n̂B) = 0. From the second equation in (4.30) we get the first condition:

0 =

(
n̂A − n̂B

)(
∆− n̂A n̂B

)
. (4.31)

This condition is satisfied in two cases:

case 1: n̂A = n̂B case 2: n̂A =
∆

n̂B
. (4.32)

When using these two conditions in the first equation in (4.30) we get two equations to
solve:

−6 n̂3
A + 5N n̂2

A − (N2 − 3∆)n̂A +N∆ = 0 case 1 (4.33)

−2 n̂4
A + 3N n̂3

A −
(
N2 + 4∆

)
n̂2
A + 3N ∆ n̂A − 2 ∆2 = 0 case 2 (4.34)

Equations (4.33) and (4.34) give us 7 fixed points for given values of the parameters. For
γ = 2, ω̃ = 1.1, ∆ = 0.01 and N = 50 we get the set of fixed points:(

n̂A, n̂B
)

=
(
16.7, 16.7

)
unstable fixed point(

n̂A, n̂B
)

=
(
0.35, 49.6

)
stable fixed point(

n̂A, n̂B
)

=
(
49.6, 0.35

)
stable fixed point(

n̂A, n̂B
)

=
(
0.35, 0.35

)
stable fixed point(

n̂A, n̂B
)

=
(
24.9, 24.9

)
saddle point(

n̂A, n̂B
)

=
(
0.35, 24.9

)
saddle point(

n̂A, n̂B
)

=
(
24.9, 0.35

)
saddle point



62 CHAPTER 4. INTERMITTENT COLLECTIVE BEHAVIOR

Figure 4.6 – Detailed study of the seven fixed points for the case γ > γc. The three points
in the corners of the triangle result to be stable fixed points. The three points located
in the middle of the edges of the triangle result to be saddle points. The fixed point
located in n̂A = n̂B = N/3 results to be an unstable fixed point. For this plot, the used
parameters are N = 50, ω̃ = 1.1, ∆ = 0.01 and γ = 2.

The plot of these fixed points can be found in Figure 4.6.

4.2.3 Parameter diagram using both terms

Now, we study the system using both, the recruiting and the inhibitory terms at the same
time. The rates are in this case:

Ri→j(ni, nj) = lim
∆→0

(
nβj + ω

nγi + ∆

)
. (4.35)

The mean field equations result to be:

ṅA(t) =

(
nβA(t) + ω(

N − nA(t)− nB(t)
)γ

+ ∆

) (
N − nA(t)− nB(t)

)
−

(
nβB(t) + ω

nγA(t) + ∆

)
nA(t)

ṅB(t) =

(
nβB(t) + ω

nγA(t) + ∆

)
nA(t)−

((
N − nA(t)− nB(t)

)β
+ ω

nγB(t) + ∆

)
nB(t).

(4.36)

We can use (4.36) to get the two equations we have to solve to find the fixed points
(n̂A, n̂B):(

n̂βA + ω

)(
N − n̂A − n̂B

)(
n̂γA + ∆

)
−
(
n̂βB + ω

)
n̂A

[(
N − n̂A − n̂B

)γ
+ ∆

]
= 0

n̂A

(
n̂βB + ω

)(
n̂γB + ∆

)
− n̂B

(
n̂γA + ∆

)[(
N − n̂A − n̂B

)β
+ ω

]
= 0.

(4.37)
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To find the solution of (4.37) is in general very difficult for arbitrary values of β and
γ. Although we can not calculate explicitly the fixed points, we can establish the linear
system we would have to solve to study their stability in order to appreciate the complexity
of this case. As always, we use small perturbations around the fixed points: nA(t) =
n̂A + εA(t) and nB(t) = n̂B + εB(t). The linear system we get is:

ε̇A(t) =

[(
N − n̂B

)
β n̂β−1

A −
(
β + 1

)
n̂βA − ω(

N − n̂A − n̂B
)γ

+ ∆
− n̂βB + ω

n̂γA + ∆

]
εA(t)

−

[
β n̂β−1

B n̂A
n̂γA + ∆

+
n̂βA + ω(

N − n̂A − n̂B
)γ

+ ∆

]
εB(t),

ε̇B(t) =

[
β
(
N − n̂A − n̂B

)β−1
n̂B

n̂γB + ∆
+
n̂βB + ω

n̂γA + ∆

]
εA(t)

+

β n̂B
(
N − n̂A − n̂B

)β−1 −
[(
N − n̂A − n̂B

)β
+ ω

]
n̂γB + ∆

+
β n̂β−1

B n̂A
n̂γA + ∆

 εB(t).

(4.38)

Evidently it is impossible to solve (4.37) and (4.38) analitically, but we can perform
numerical simulations to study the dependence of the dynamics of the system on the
parameters β and γ. We integrate the mean field equations in (4.36) using a classical 4th
order Runge-Kutta method. The results of the numerical simulations are shown in Figure
4.7. In this figure, we can see that there are only three possible scenarios, which are the
ones we already found by studying the recruiting and inhibitory terms separately. We call
them region I, region II and region III. The first possibility is to have one unstable fixed
point and one stable limit circle (region I), the second one is to have only one stable fixed
point (region II) and the third option is to have seven fixed points, one unstable, three
stable and three saddle points (region III).

Figure 4.7 – Parameter diagram in the β vs. γ space that shows the existence of the three
behaviors studied separately in the Recruiting term and the Inhibitory term. The used
parameters: ω = 0.1, N = 50 and ∆ = 0.01.
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Figure 4.8 – Three plots of the mean field solution obtained by the integration of the
system of equations in (4.36) (plotted in black), as well as the IBM simulations (plotted
in red). We used the sets of parameters of (4.39): set 1 for (a), set 2 for (b) and set 3
for (c). The initial condition for all the cases is: nA(t = 0) = N , nB(t = 0) = 0. The
system size is N = 500, ω = 0.1 and we used the auxiliary constant value ∆ = 0.01 for
the integration of the mean field equations.

If we use different values for ω or N , the resulting diagrams are qualitatively equal
to the one presented in Figure 4.7. Two phase diagrams can be found in Appendix C
for different values of ω. The parameter diagram in Figure 4.7 results to be an accurate
guide that tells us what happens in the complete stochastic system. We performed IBM
simulations to get the temporal evolution of a system of N = 500 of these particles using
the transition rates in (4.2). We selected three sets of parameters, one for each region in
Figure 4.7. These sets are:

set 1 β = 1.1 γ = 0.0 (region I)

set 2 β = 0.2 γ = 0.2 (region II) (4.39)

set 3 β = 0.0 γ = 1.1 (region III)

We notice that although fluctuations are present in the IBM simulations, the behavior is
qualitatively equal. This is not particular for the sets of parameters we selected, but it is
general for the whole parameter space β ∈ [0, 2] and γ ∈ [0, 2]. We will use all these results
obtained in the mean field study as a valuable guide to understand the time dynamics in
the complete stochastic system.

4.3 Stochastic system

The complete stochastic system is defined by the master equation given at the begining
of this chapter, in equation (4.3). The dynamics of each of the N particles of the system
is encoded in its internal variable qi(t) that makes transitions between three states. The
dynamics at the collective level is given by the variables nA(t), nB(t) and nC(t). This
is depicted with a small scheme in Figure 4.9. We performed Individual Based Model
(IBM) simulations to observe the effect of the parameters β, γ and ω on the behavior of
the individual particles. To follow the dynamics of the internal variables of the particles
we can plot a dicotomic signal we call ψAi (t) that is defined as follows:

ψAi (t) = δqi(t),A, (4.40)
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where δi,j denotes the Kronecker delta function. This signal is different of zero only when
the internal variable qi(t) = A.

Figure 4.9 – Scheme to visualize the two levels of temporal dynamics: an individual level
with transitions between states A, B, C, and a collective level via the number of particles
in each state nA(t), nB(t), nC(t). In this example, the group size is N = 5.

We can define analogous signals for states B and C for each particle i, namely ψBi (t)
and ψCi (t). These three signals satisfy the conditions:

ψAi (t) + ψBi (t) + ψCi (t) = 1 ∀i ∈ [1, . . . , N ] and ∀t ≥ 0 (4.41)

N∑
i=1

ψAi (t) +
N∑
i=1

ψBi (t) +
N∑
i=1

ψCi (t) = N ∀t ≥ 0 (4.42)

N∑
i=1

ψAi (t) = nA(t),
N∑
i=1

ψBi (t) = nB(t),
N∑
i=1

ψCi (t) = nC(t). (4.43)

Notice that contrary to Section 4.2 of this chapter (where the mean field dynamics was
studied in detail), here the variables nA(t), nB(t) and nC(t) are stochastic variables. We
show the plot of ψAi (t) for all individuals of a group of size N = 4, as well as the collective
variable nA(t) in Figure 4.10 for two sets of parameters. In the case of Figure 4.10a,
we can see that the system has a high synchronization between individual and collective
levels. The used parameters are β = 1.1, γ = 0 and ω = 0.1. On the other hand, in the
case of Figure 4.10b, there is no synchronization between the individuals that leads to a
very noisy collective signal. The used parameters are β = 0, γ = 2 and ω = 0.1. It is
important to notice that in any of the two cases, the collective signals nA(t), nB(t) and
nC(t) are stochastic and periodic.

Although the system is stochastic and in general we can not give an exact expression
for quantities like the average period 〈T 〉 or the distribution probability of periods P (T )
as function of the system parameters, we can introduce a concept we call Collective Clock
Approximation (CCA) to give analytical expressions that are going to be approximations
to these observables. We introduce also a simplified version of the CCA that we refer to as
Metaparticle Clock Approximation (MCA) that reduces substancially the complexity of
the calculations. These two ideas are explained and studied in the following subsections.
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Figure 4.10 – The individual and the collective dynamics of a group of size N = 4 is
shown. The individual dicotomic signals are given by ψAi (t) and the collective variable is
nA(t) =

∑N
i=1 ψ

A
i (t). The system parameters are β = 1.1, γ = 0 and ω = 0.1 for (a) and

β = 0, γ = 2 and ω = 0.1 for (b).

4.3.1 The Collective Clock Approximation

To use the concept of the Collective Clock we have to make only one main hypothesis:
the transitions of the particles between the three states are going to happen
in an ordered way. To clarify what we mean by order we use an example. Let us
assume that the system is in the configuration nA = N , nB = 0 and nC = 0. Then, in
the CCA, the particles will begin to transit to state B one after the other until reaching
the configuration nA = 0, nB = N and nC = 0. We are going to refer to this sequence of
transitions as a collective cascade from state A to state B. Once the state B is populated,
then a second collective cascade is going to make particles populate the state C in an
analogous way until reaching the configuration nA = 0, nB = 0 and nC = N . A third
collective cascade is going to make particles move or transit collectively from state C back
to state A in order to reach the initial configuration nA = N , nB = 0 and nC = 0. The
time it takes to make all the sequence of these three collective cascades described above
is what we define as the period T cc in the CCA. All these cascades are depicted in Figure
4.11 for the Collective Clock associated to a system of size N = 2. In this figure, we use
particular labels for each one of the configurations in the Collective Clock. Without loss
of generality, the configuration nA = 2, nB = 0 and nC = 0 is labeled as 1cc. The ordered
configurations are going to be labeled increasingly. For the rest of this chapter, we will
assume that in a Collective Clock of arbitrary size N , the first state 1cc is going to be
the configuration given by nA(t) = N , nB(t) = 0 and nC(t) = 0. We can write the rates
of the corresponding collective clock using the definition of the individual rates given in
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Figure 4.11 – A scheme of the Collective Clock for a system of size N = 2 is shown, as
well as the three collective cascades (colored arrows) between the states A, B and C.

(4.2) as follows:

Rcc
i =



RA→B
(
N − (i− 1), i− 1

)
×
[
N − (i− 1)

]
for 1 ≤ i ≤ N

RB→C
(
2N − (i− 1), i− 1

)
×
[
2N − (i− 1)

]
for (N + 1) ≤ i ≤ 2N

RC→A
(
3N − (i− 1), i− 1

)
×
[
3N − (i− 1)

]
for (2N + 1) ≤ i ≤ 3N

(4.44)

Notice that the Collective Clock has 3N configurations or ticks. If we want to calculate
the period, we just need to calculate the first passage time to return to the initial state
1cc. To do this, we need to solve the following system:

∂tP
cc
1 (t) = −Rcc

1 P
cc
1 (t),

∂tP
cc
i (t) = −Rcc

i P
cc
i (t) +Rcc

i−1 P
cc
i−1(t) for 2 ≤ i ≤ 3N .

(4.45)

In the system of equations (4.45) we denote by P cc
i (t) the probability of being in the tick

icc at time t having started at tick 1cc at time t = 0. The first passage time is calculated
using the auxiliary function

φcc(t) =
3N∑
i=1

P cc
i (t). (4.46)

We can write the distribution probability P (T cc = t) of the period T cc as

P (T cc = t) = |∂tφ(t)| = Rcc
3N · P cc

3N(t). (4.47)

One of the advantages of introducing the concept of the CCA is precisely the possibility
to give an analytic expression for the solution of the system (4.45), which in the general
case of a collective clock of N particles is:
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Figure 4.12 – A scheme of a Metaparticle Clock is shown. This scheme is valid for all
group sizes.

P (T cc = t) =

(
3N∏
i=1

Rcc
i

)
t∫

0

dt1
t−τ1∫
0

dt2 . . .
t−τ3N−2∫

0

dt3N−1 exp

[
−

3N−1∑
j=1

Rcc
j tj −Rcc

3N

(
t− τ3N−1

)]
.

(4.48)

where we make use of the auxiliary variable

τj =

j∑
k=1

tk. (4.49)

For details on the calculation to obtain the general result given in (4.48), see Appendix
C. Once having the analytical expression for P (T cc) we can calculate the average period
〈T cc〉 as follows:

〈T cc〉 =

∞∫
0

t P (T cc = t) dt. (4.50)

4.3.2 The Metaparticle Clock Approximation

In this section we introduce the idea of Metaparticle Clock. For this approximation we
are going to assume again that the transitions of the particles between states are going
to happen in an ordered way. The second assumption is that the collective cascades are
so fast that we can describe the whole system of N particles as if it was a system of only
one particle (or Metaparticle) that makes transitions between the three states. Notice
that there are only three ticks and three transition rates Rmp

i , with i ∈ {1, 2, 3}, for all
group sizes, as shown in Figure 4.12. Since each transition represents a whole collective
cascade, we are going to say that, in average, the time the Metaparticle Clock takes to
make one transition is the same as the time for the corresponding cascade. Hence, we can
determine the transition rates in the MPA using the transition rates from the Collective
Clock by calculating:

1

Rmp
i

=
N∑
j=1

1

Rcc
(i−1)N+j

for i = 1, 2, 3. (4.51)
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This gives as a result that Rmp
1 = Rmp

2 = Rmp
3 := Rmp for all system sizes and for all

parameters β, γ and ω. In this MCA we can establish a simpler but analogous system to
the one in equation (4.45):

∂tP
mp
1 (t) = −Rmp Pmp

1 (t),

∂tP
mp
2 (t) = −Rmp Pmp

2 (t) +Rmp Pmp
1 (t),

∂tP
mp
3 (t) = −Rmp Pmp

3 (t) +Rmp Pmp
2 (t).

(4.52)

Using also the auxiliary function

φmp(t) =
3∑
i=1

Pmp
i (t) = Pmp

1 (t) + Pmp
2 (t) + Pmp

3 (t), (4.53)

we can write the distribution probability P (Tmp = t) of the period Tmp in the MCA as

P (Tmp = t) = |∂tφmp(t)| = Rmp · Pmp
3 (t). (4.54)

The system in (4.52) has been studied before in [66]. The solution of (4.52) is given by
the following γ-distribution:

P (Tmp = t) =
1

2
(Rmp)3 t2 e−R

mp t (4.55)

Once having the analytical expression for P (Tmp) we can calculate the average period
〈Tmp〉 as follows:

〈Tmp〉 =

∞∫
0

t P (Tmp = t) dt. (4.56)

We can use the general formula:

∞∫
0

ta exp−b t dt =
a!

ba+1
, (4.57)

with a and b two arbitrary constants. Using (4.57) we can give a final expression for the
average period in the MCA, which results to be:

〈Tmp〉 =
3

Rmp
(4.58)

Notice that expression (4.48) for P (T cc = t) is substancially more complicated than
expression (4.55) for P (Tmp = t). Although the analytic expressions of P (T ) are different
in both approximations, we know that the average value of the period 〈T 〉 is exactly the
same for CCA and MCA.
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Figure 4.13 – This plot corresponds to parameter E1 for both approximations, CCA and
MCA. The system parameters are N = 50 and ω = 0.1.

4.4 Numerical comparison of CCA and MCA with

IBM simulations

Once having explained how to obtain the analytical expressions for the distribution prob-
ability of the period P (T ) for the CCA and MCA, we can compare the accuracy of these
two approximations for different parameter values. We can use a parameter we call E1,
defined as:

E1(β, γ) = 1−
min

{
〈T (β, γ)〉 , 〈T (β, γ)〉ibm

}
max

{
〈T (β, γ)〉 , 〈T (β, γ)〉ibm

} , (4.59)

with 〈T (β, γ)〉 the value of the average period for the CCA and the MCA approxima-
tions, which is the same. We denote by 〈T (β, γ)〉ibm the value obtained from the IBM
simulations. We are interested to study the same region in the parameter space that we
studied in the mean field section, namely β ∈ [0, 2] and γ ∈ [0, 2]. Due to the definition
of E1(β, γ) in equation (4.59), the value of this parameter is always positive. A value of
E1(β, γ) ≈ 0 for given values of β and γ is telling us that the two approximations (CCA
and MCA) give accurate values that match the IBM numerical results. On the other
hand, if E1 → 1, the approximations are not good. Results are shown in Figure 4.13. The
region of accuracy of the approximations is roughly β > 1 and γ < 1. When making the
comparison with the mean field parameter diagram in Figure 4.7 we notice that the CCA
and MCA give accurate results in what we called region I, associated with the existence
of a limit cycle in the mean field study.
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4.5 Summary & perspectives

The plot in Figure 4.13 associates the results obtained with the mean field study, the
concepts of the Collective Clock and Metaparticle Clock and the IBM simulations of the
complete stochastis system. We learned the following: to talk about a synchronized system
(like the one shown in Figure 4.10a) is the same as to talk about a limit cycle at the mean
field level. We also learned that this particular situation is well described analytically using
the concepts of Collective Clock and Metaparticle Clock. The seemingly simple concepts
of the CCA and the MCA introduced in this chapter will prove to serve enormously to
describe the transport properties of a group of N active particles that explore the space
having an Internal Control System (ICS) of three states. The concepts of the CCA and
the MCA are general enough to be used to describe synchronized systems of particles in
general scenarios and will give accurate results for the temporal dynamics of a system
of N synchronized particles that make transitions between any arbitrary number M of
states.
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Collective transport of particles with
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We want to study the spatial dynamics of a system consisting of N active particles
whose internal dynamics is given by the three state model discussed in the previous
chapter. The particles have an internal variable qi(t) that evolves in time as explained in
the three state model, making transitions between the states A, B and C. Inspired in the
experimental observations done with the small groups of gregarious animals (Chapter 2,
Section 2.2), in this model the particles follow a different equation of motion depending
on the value of the internal variable qi(t). The particles are going to be diffusive when the
internal variable is in state A (“grazing” state S1 in Chapter 2), they move with constant
speed v0 when qi(t) = B (“moving” state M in Chapter 2) and they feel a drift toward
the center of mass of the group only when qi(t) = C (“head up” state S2 in Chapter 2).
Mathematically speaking, we express this as follows:

ẋi(t) =
√

2D0 ξ(t)

θ̇i(t) = 0

}
if qi(t) = A, (5.1)

ẋi(t) = v0 êi(θi) +
√

2D0 ξ(t)

θ̇i(t) =


New direction (incidental leader)
N∑
j=1

sin(θj − θi) δqj ,B

 if qi(t) = B, (5.2)

ẋi(t) = Γ0

∑
|xj−xi|≤r0

(
xj(t)− xi(t)

)
+
√

2D0 ξ(t)

θ̇i(t) = 0

 if qi(t) = C. (5.3)

73
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The Langevin equations (5.1), (5.2) and (5.3) are valid for n dimensions. The position
of the particles is given by the vector xi(t) and the variable θi contains the information
of the orientation of the particle. Thus, ê(θ) is a unitary n dimensional vector and is,
for example, defined as ê(θ) =

(
cos θ, sin θ

)
in n = 2 dimensions. The variable ξ(t) is a

stochastic n dimensional variable representing white noise. The constants Γ0 and D0 are
parameters of the model. The dynamics of the direction of motion is going to be dictated
by the first particle that reaches the moving state B that was previously empty, as shown
in Figure 5.1 for the one dimensional case.

Figure 5.1 – Scheme to visualize the dynamics of the change of direction of motion êi(θi).
In the one dimensional case, the first particle to reach a previously empty state B (the
blue particle in the figure) will reverse its direction of motion with probability 1/2 and
continue in the same direction with probability 1/2. In 2D, the new angle is going to be
chosen randomly with equal probability 1/2π.

In the n dimensional case, this particle will select a new direction of motion êi(θi)
by taking a random angle in the unitary n dimensional sphere Sn with probability 1/Sn.
The particles that reach the moving state B after the incidental leader will move in the
same direction, as expressed in equation (5.2).

We are interested in three collective physical quantities that give us information of the
transport properties of the group. The first one is the center of mass, defined as:

xcm(t) =
1

N

N∑
i=1

xi(t). (5.4)

The second one is the mean squared displacement (MSD) of the center of mass defined as:

〈
(
xcm(t)− xcm(0)

)2〉. The third quantity is the dispersion of particles around the center
of mass, defined as

σ2
g(t) =

1

N

N∑
i=1

(
xi(t)− xcm(t)

)2

. (5.5)

These three collective observables characterize well enough the spatial motion of the group.
The center of mass represents the displacement of the group, its MSD quantifies how much
does the group explores the space, and σ2

g(t) quantifies the degree of cohesion of the group.
As an example, in Figure 5.2 we present two kymographs obtained using Individual Based
Model (IBM) simulations for a group of N = 10 particles using two sets of parameters (β
and γ). Using the CCA and MCA approximations, we derive analytical expressions for
the average values of these collective transport properties and compare the results with
IBM simulations.
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Figure 5.2 – Kymograph of two different scenarios for a sytem of N = 10 in 1 dimension.
(a) Unsynchronized case using β = 0.0 and γ = 2. (b) Highly synchronized case using
β = 1.1 and γ = 0.0. The parameters are v0 = 1, D0 = 0.5, Γ0 = 0.5 and ω = 0.01.

5.1 Average transport properties

In this section we explain in detail how to use the concepts of CCA and MCA to obtain
analytical expressions for the average mean squared displacement (MSD) of the center of

mass 〈
(
xcm(t)−xcm(0)

)2〉, as well as the average dispersion of particles around the center
of mass 〈σ2

g〉.

5.1.1 Average mean squared displacement 〈x2
cm(t)〉

The Collective Clock Approximation

Our subject of study is a group of N active particles that move in space using the Langevin
equations given in (5.1), (5.2) and (5.3). We want to quantify how the group explore the
space and for that we use the center of mass. The equation of motion of the center of
mass is:

ẋcm(t) = vcm(t) = vcm(t) êcm(θcm), (5.6)

with vcm(t) the magnitude of the velocity vector and the direction of motion of the center
of mass given by the unitary vector êcm(θcm) in n dimensions. Although in general
the equation (5.6) is correct, it is useless since the functions vcm(t) and êcm(θcm) are
complicated. Nonetheless, we can always obtain the general expression of the average
value of the mean squared displacement of the center of mass, as derived in [67]. This
expression is:

〈x2
cm(t)〉 =

∫
Ω

dθ′cm

∫
Ω

dθ′′cm 〈D(θ′′cm, t)D(θ′cm, t)〉, (5.7)
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with 〈D(θcm, t)〉 the average distance covered by the center of mass moving along direction
θcm since the beginning of the trajectory at t = 0. This average is given by

〈D(θcm, t)〉 =

t∫
0

dt′
∞∫

0

dvcm vcm P (θcm, vcm, t), (5.8)

with P (θcm, vcm, t) the probability density to find the center of mass moving in direction
θcm with speed vcm at time t. Using (5.7) and (5.8) we arrive to the expression valid in
any dimension n:

〈x2
cm(t)〉 =

∫
Ω

dθ′′cm

∫
Ω

dθ′cm

t∫
0

dt′′
t∫

0

dt′
∞∫

0

dv′′cm

∞∫
0

dv′cm W(v′cm, v
′′
cm, dθ

′
cm, dθ

′′
cm, t

′, t′′),

(5.9)

with

W(v′cm, v
′′
cm, dθ

′
cm, dθ

′′
cm, t

′, t′′) = v′cm v
′′
cm P (θ′cm, v

′
cm, t

′;θ′′cm, v
′′
cm, t

′′) ê(θ′cm)·ê(θ′′cm), (5.10)

where P (θ′cm, v
′
cm, t

′;θ′′cm, v
′′
cm, t

′′) is the joint probability distribution of finding the center
of mass with velocity v′cm and direction θ′cm at time t′ and velocity v′′cm and direction θ′′cm
at time t′′. The integral over dθcm is done over the whole surface of an unitary sphere
of dimension (n − 1), refered as Ω. Equation (5.9) can be recasted using the Collective
Clock Approximation (CCA) if we realise that the velocity of the center of mass in the
icc-th tick in the collective clock is given by:

vcc
i =



i−1
N

if 1 ≤ i ≤ (N + 1),

N−
[
i−(N+1)

]
N

if (N + 2) ≤ i ≤ 2N,

0 if (2N + 1) ≤ i ≤ 3N,

(5.11)

where we supposed – as explained in the previous chapter – that 1cc corresponds to the
configuration n =

(
N, 0, 0

)
. Using the notation of (5.11) we can express the average mean

squared displacement of the center of mass in the CCA as follows:

〈x2
cm(t)〉 =

∫
Ω

dθcc
i

∫
Ω

dθcc
j

t∫
0

dt′′
t∫

0

dt′
∞∑
i=1

∞∑
j=i

[
vcc
i v

cc
j P (θcc

j , v
cc
j , t

′;θcc
i , v

cc
i , t

′′) ê(θcc
j )·ê(θcc

i )

]
,

(5.12)

where vcc
i and θcc

i are the velocity and direction of motion of the center of mass in the icc-th
tick of the Collective Clock respectively. We can rewrite the joint probability as a condi-
tional probability given by P (θcc

j , v
cc
j , t

′;θcc
i , v

cc
i , t

′′) = P (θcc
j , v

cc
j , t

′|θcc
i , v

cc
i , t

′′)P (θcc
i , v

cc
i , t

′′).
In the long-time behavior, we can approximate the probability of finding the system in
the icc-th tick by:

lim
t′′→∞

P (θcc
i , v

cc
i , t

′′) =
1

Rcc
i 〈T cc〉

, (5.13)
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with 〈T cc〉 the average period of the Collective Clock. Equation (5.12) is going to be
symplified even more due to the fact that there is a change of direction everytime that
the system reaches state 1cc. This means that all terms where i ≤ 3N and j > 3N will
cancel. The final result is:

〈x2
cm(t)〉 =

t∫
0

dt′′
t∫

0

dt′
3N∑
i=1

3N∑
j=i

[
vcc
i v

cc
j

Rcc
i 〈T cc〉

P (vcc
j , t

′|vcc
i , t

′′)

]
. (5.14)

The conditional probabilities P (vcc
j , t

′|vcc
i , t

′′) can be obtained calculating first passage
times in a similar way as the period distribution P (T cc = t) in equation (4.48). The
general expression of these conditional probabilities is:

P (vcc
j , t

′|vcc
i , t

′′) =


Rcc
i exp

[
−Rcc

i T
]

if j = i,

(
j∏
k=i

Rcc
k

) T∫
0

dt1 . . .
T −τ(j−i)−1∫

0

dt(j−i) exp

[
−

j−1∑
k=i

Rcc
k t(k−i+1) −Rcc

j

(
T − τ(j−i)

)]
if j ≥ i+ 1.

(5.15)

where j ≥ i and T = t′− t′′ ≥ 0. We make use again of the auxiliary variable of equation
(4.49) and the convention τ0 = 0. In the case of different transition rates and 1D we
notice that the conditional probabilities P (vcc

j , t
′|vcc

i , t
′′) depend only on the difference of

times T , so we can express equation (5.14) as:

〈x2
cm(t)〉 = 2

3N∑
i=1

3N∑
j=i

vcc
i v

cc
j

Rcc
i 〈T cc〉

( j−1∏
k=i

Rcc
k

) t∫
0

ds

t−s∫
0

dT
j∑
k=i

λjk e
−Rcc

k T , (5.16)

with

λjk =



λj−1 k

Rcc
j −Rcc

k

if j < k,

−
i−1∑
j=1

λi,j if j = k,

0 if j > k.

(5.17)

For the long-time behavior we get the result:

lim
t→∞
〈x2

cm(t)〉 = 2

(
3N∑
i=1

3N∑
j=i

vcc
i v

cc
j

Rcc
i 〈T cc〉

( j−1∏
k=i

Rcc
k

) j∑
k=i

λjk
Rcc
k

)
t = 2Dcc t. (5.18)

The Metaparticle Clock Approximation

Given that in the MCA we approximate the dynamics of the whole system as the dynamics
of only one particle, we need only to calculate 〈x2

mp(t)〉, where xmp(t) is the position of
the Metaparticle. For the calculation, we follow a similar path like the one used in the
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CCA and with the use of the general equations (5.7) and (5.8), we can write the general
expression for the mean squared displacement of the Metaparticle, which is:

〈x2
mp(t)〉 =

t∫
0

dt′′
t∫

0

dt′
3∑
i=1

3∑
j=i

[
vmp
i vmp

j

Rmp〈Tmp〉
P (vmp

j , t′|vmp
i , t′′)

]

=
v2

0

Rmp〈Tmp〉

t∫
0

dt′′
t∫

0

dt′ P (vmp
2 , t′|vmp

2 , t′′),

(5.19)

where we used that the velocity of the Metaparticle is vmp
i = v0 δi,2 and that Rmp

1 =
Rmp

2 = Rmp
3 = Rmp. Performing the time integrals in (5.19) we get the final result:

〈x2
mp(t)〉 = 2

(
v2

0(
Rmp

2

)2〈Tmp〉

)
t = 2Dmp t. (5.20)

5.1.2 Average dispersion around the center of mass 〈σ2
g〉

Using the CCA and the MCA

To calculate the dispersion of particles around the center of mass, we are going to use the
two approximations (CCA and MCA) at the same time. Since we suppose that the three
collective cascades between the states A, B and C are fast, we reduce the problem to a
sequence of simpler problems. The first one is a system of N independent diffusing active
particles that, in average, will diffuse for a time given by

τdiff(β, γ) =
1

Rcc
1

+
1

Rcc
N+1

. (5.21)

The second is a system of N non-iteracting active particles under the effect of an attracting
drift toward the center of mass of the system for an average time given by

τdrift(β, γ) =
1

Rcc
2N+1

. (5.22)

In the following, we solve each one of these two problems in detail for the general case of
n dimensions.

Problem 1: a system of N non-interacting diffusing active particles.

In this case the Langevin equation of each particle in n dimensions is:

ẋi(t) =
√

2D0 ξi(t). (5.23)

This is a system of N non-interacting diffusing active particles. To calculate 〈σ2
g(t)〉 we

need to calculate first 〈x2
cm(t)〉. By definition, the center of mass is:

xcm(t) =
1

N

N∑
i=1

xi(t). (5.24)
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In the one dimensional case (n = 1) case we have:

x2
cm(t) =

1

N2

( N∑
i=1

√
2D0

t∫
0

dωi

)( N∑
j=1

√
2D0

t∫
0

dωj

)
. (5.25)

If we calculate the average of this equation and use the properties of the white noise, we
have:

〈x2
cm(t)〉 =

2D0

N2

N∑
i=1

N∑
j=1

t∫
0

t∫
0

〈dωi dωj〉 =
2D0

N2
Nt =

2D0

N
t. (5.26)

The generalization to two dimensions (n = 2) requires a multiplication by a factor of
2 since 〈x2

cm〉 = 〈x2
cm(t) + y2

cm(t)〉, with both components being independent from each
other. So, the result is

〈x2
cm(t)〉 =

4D0

N
t. (5.27)

The dispersion of particles around the center of mass is defined in n dimensions as:

σ2
g(t) =

1

N

N∑
i=1

(
xi(t)− xcm(t)

)2

. (5.28)

We can rewrite this expression in more simple terms:

σ2
g(t) =

1

N

( N∑
i=1

x2
i (t)− 2 xcm ·

N∑
i=1

xi(t) + x2
cm(t)

N∑
i=0

1

)

=
1

N

( N∑
i=1

x2
i (t)− 2Nxcm · xcm +N x2

cm(t)

) (5.29)

Rearranging the terms and taking the average we obtain the result:

〈σ2
g(t)〉 =

1

N

N∑
i=1

〈x2
i (t)〉 − 〈x2

cm(t)〉. (5.30)

In this expression, the only term we have not calculated yet is 〈x2
i (t)〉. This can be easily

calculated as follows in n = 1 dimension:

xi(t) =
√

2D0

t∫
0

dωi(t) ⇒ x2
i (t) = 2D0

t∫
0

t∫
0

dωi(t
′) dω(t′′) ⇒ 〈x2

i (t)〉 = 2D0 t.

(5.31)



80 CHAPTER 5. COLLECTIVE TRANSPORT PROPERTIES

In n = 2 dimensions, the result is 〈x2
i (t)〉 = 4D0 t. Hence, we can write finally the final

expression:

〈σ2
g(t)〉 =

1

N

N∑
i=1

(2D0 t)−
2D0 t

N
=

(
1− 1

N

)
2D0 t for 1D,

〈σ2
g(t)〉 =

1

N

N∑
i=1

(4D0 t)−
4D0 t

N
=

(
1− 1

N

)
4D0 t for 2D,

〈σ2
g(t)〉 =

(
1− 1

N

)
2nD0 t for nD.

(5.32)

Problem 2: N independent Ornstein-Uhlenbeck processes.

In this case the Langevin equation of each particle in n dimensions is:

ẋi(t) = Γ0

(
xcm(t)− xi(t)

)
+
√

2D0 ξi(t). (5.33)

This is a system of N diffusing active particles subject to an attracting drift toward the
center of mass. Since we are interested in calculating 〈σ2

g(t)〉, we can approximate this
problem to the problem of N non-interacting particles with the equation of motion:

ẋ(t) = Γ0

(
〈xcm(t)〉 − x(t)

)
+
√

2D0 ξ(t), (5.34)

known as the Ornstein-Uhlenbeck process. The corresponding Fokker-Planck equation in
n = 1 dimension is

∂tP (x, t) = ∂x

[
Γ0

(
x− 〈xcm〉

)
P (x, t)

]
+ ∂xx

[
D0 P (x, t)

]
. (5.35)

We use the change of variable u = x− 〈xcm〉 to simplify the equation, which becomes:

∂tP (u, t) = ∂u

[
Γ0 u P (u, t)

]
+ ∂uu

[
D0 P (u, t)

]
. (5.36)

Using the Fourier Transform, defined as

F
{
P (u, t)

}
= P̂ (q, t) =

∞∫
−∞

du P (u, t) e−i q u, (5.37)

then equation (5.36) simplifies to

∂tP̂ (q, t) = −Γ0 q ∂qP̂ (q, t)− q2D0 P̂ (q, t). (5.38)

The solution of this equation is

P̂ (q, t) = exp

(
− i q u0 e

−Γ0 t +
q2D0

2 Γ0

[
1− e−2 Γ0 t

])
, (5.39)
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with u0 the initial condition. Expression (5.39) can be inverted and the result is:

P (x, t|x0, 0) =
1√

2πD0

Γ0

(
1− e−2 Γ0 t

) exp


((
x− 〈xcm〉

)
−
(
x0 − 〈xcm〉

)
e−Γ0 t

)2

(
2πD0

Γ0

)(
1− e−2 Γ0t

)
 . (5.40)

From equation (5.40) we can read the expression for 〈σ2
g(t)〉. For the whole system of N

independent active particles, the result is:

〈σ2
g(t)〉 =

D0

Γ0

(
1− e−2 Γ0 t

)(
1− 1

N

)
for 1D,

〈σ2
g(t)〉 =

2D0

Γ0

(
1− e−2 Γ0 t

)(
1− 1

N

)
for 2D,

〈σ2
g(t)〉 =

nD0

Γ0

(
1− e−2 Γ0 t

)(
1− 1

N

)
for nD.

(5.41)

The result

Weighing the results of equations (5.32) and (5.41) with the corresponding times τdiff and
τdrift we get an expression for the average dispersion of the particles around the center of
mass:

〈σ2
g〉 = 〈σ2

1(τdiff)〉 τdiff

〈T cc〉
+ 〈σ2

2(τdrift)〉
τdrift

〈T cc〉
. (5.42)

5.2 Discussion and results

To make a systematic and quantitative study of how good or bad are the both approxi-
mations, we define two parameters:

Ecc,mp
2 (β, γ) = 1−

min

{
Dcc,mp(β, γ), Dibm(β, γ)

}
max

{
Dcc,mp(β, γ), Dibm(β, γ)

} ,

Ecc
3 (β, γ) = 1−

min

{
〈σ2

g(β, γ)〉cc, 〈σ2
g(β, γ)〉ibm

}
max

{
〈σ2

g(β, γ)〉cc, 〈σ2
g(β, γ)〉ibm

}
(5.43)

with 〈·〉ibm the average observables calculated with IBM simulations of the system. These
parameters are defined analogously to parameter E1 in equation (4.59) of Chapter 4. Due
to the definitions of the parameters in equation (5.43), a value of Ei(β, γ) ≈ 0 for a given
β and γ is telling us that the approximation (either CCA, MPA or both) is good. On the
other hand, the case of Ei(β, γ)→ 1 tells us that the approximation is not accurate. From
parameter E2(β, γ) we can obtain information about the exploration of the space by the
whole group. A difference of parameter E2(β, γ) with respect to E1(β, γ) in equation (4.59)
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Figure 5.3 – Plots of the values of the parameters E2(β, γ) and E3(β, γ) in the region of
interest, namely β ∈ [0, 2] and γ ∈ [0, 2]. Plots (a) and (b) show the numerical results
of parameter E2 for the CCA and the MCA respectively. We observe in plot (c) that the
region for low values of E3 is smaller than the previous parameters, namely for roughly
β > 1 and γ < 0.35. The parameters of the system are the same as Figure 5.2.

is that the results for the CCA and the MPA are not the same anymore. In this case we
can see in Figure 5.3b that the CCA approximates in a good way the IBM simulations in
roughly the same region that the parameter E1(β, γ), namely β > 1 and γ < 1. This is
not the case for the MPA, that globaly is less accurate that the CCA. Nonetheles there
is a region for β > 1.5 and 0.5 ≤ γ ≤ 1.5 where accuracy of the MPA is not that bad.
Regarding the information of the cohesion of the group, we can obtain information of
the accuracy of the CCA with E3(β, γ). In this case, we notice that the CCA is a good
approximation in the region of high synchronization.

Hence, once again, the CCA proves to give accurate results in the region of high
synchronization. To have a better idea on the accuracy of the CCA and the MCA, we
compare these approximations with the IBM simulations. We use the same two sets of
parameters of Figure 5.2 to compare the synchronized and the unsynchronized scenarios.

In Figure 5.4a and b, we plot the average mean square displacement 〈
(
xcm(t)−xcm(0)

)2〉
and the average dispersion 〈σ2

g(t)〉 and compare them with the predictions of the CCA
and the MCA. The CCA and MCA result to be accurate in the synchronized case. In
Figure 5.4c and d we compare the results of the IBM simulations with the CCA and the
MCA as function of parameter γ and fixing the parameter β. This corresponds to cuts in
the parameter diagrams and are depicted with white-dashed lines in Figure 5.3a and c.

Figure 5.4 – Plots in (a) and (b) show the comparison of 〈
(
xcm(t)−xcm(0)

)2〉 and 〈σ2
g(t)〉

with the CCA and MCA for the two sets of parameters used also in Figure 5.2. Plot (c)
and (d) show the diffusion coefficient and the average dispersion of particles around the
center of mass as function of parameter γ for a fixex value of β = 1.1, which correspond
to the white-dashed lines of plots (a) and (c) of Figure 5.3. The system size is N = 10.
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In this discussion, we want also to analyse the effect of introducing a radius of interac-
tion r0. The main effect of using a radius is the possibility of loosing the coherence of the
group. In the extreme case of using a small value for r0 and in the long-time behavior, we
would have a total incoherent group of N independent particles with internal dynamics
given by constant rates. In this case, we can give expressions for the transport properties
of the group. The mean squared displacement of the group results to be

lim
t→∞
〈x2

cm(t)〉 = 2

(
Deff

N

)
t, (5.44)

and the average dispersion of particles around the center of mass is

lim
t→∞
〈σ2

g(t)〉 = 2

(
1− 1

N

)
Deff t, (5.45)

with Deff =
v20
3ω

+D0. More details on the derivation of both quantities can be found in the
Appendix D. We propose two ways to estimate numerically a sort of critical radius that
tells us when a group of particles stays cohesive. A first estimation can be done using the
average dispersion of particles around the center of mass,

(
rdown
c

)2
=

1

Tobs

Tobs∫
0

σ2
g(t) dt, (5.46)

which is a time average over the whole observation time. A better estimation is done
using the average over realizations of the maximum value of σ2

g(t) in the whole observation
window:(

rup
c

)2
= 〈max{σ2

g(t)|0 ≤ t ≤ Tobs}〉r, (5.47)

where 〈·〉r denotes an average over realizations. In Figure 5.5 we show the numerical
results for a group size N = 4 and β = 1.1.

0 0,5 1 1,5 2
1

10

100

Figure 5.5 – We show the two radii rup
c and rdown

c that are explained in the text for given
parameters β = 1.1, ω = 0.1 and varying γ ∈ [0, 2]. We notice that rup

c and rdown
c are

small in the region of high degree of synchronization and increase in the region of low
degree of synchronization. The used parameters are N = 4, β = 1.1, v0 = 1 and Γ0 = 1.
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This results suggest that using a radius r0 < rdown
c will most probably lead to a group

with low degree of cohesion and, in the long-time behavior, to a completely incohesive
group with transport properties given by (5.44) and (5.45). On the other hand, using a
radius r0 > rup

c will mantain the group cohesive also in the long time behavior and thus
all the results explained in this chapter will hold true.

We can also study what happens to the system if we use a given value of r0 and explore
the coherence for different values of the parameters β and γ. The results will evidently
depend on the value of r0. The resulting exploration of the parameter space using IBM
simulations can be found in Figure 5.6.

Figure 5.6 – Parameter exploration for several values of the radius r0. We notice two
different behaviors: either cohesive intermittent collective motion or disordered motion.
The IBM simulations were performed using parameters N = 4, ω = 0.1, v0 = 1 and
Γ0 = 1.

5.3 Summary & perspectives

In this chapter we studied in detail the spatial dynamics of a system of N interacting active
particles with three internal states and we used the knowledge acquired in the past chapter,
where we analyzed the mean field dynamics and introduced two new and general concepts:
the Collective Clock Approximation (CCA) and the Metaparticle Clock Approximation
(MCA). We used them to give analytical expressions for the transport properties of the
group and compared them with Individual Based Model (IBM) simulations. Once again,
like in the previous chapter, the CCA and MCA result to be good approximations in the
region of high synchronization. The results and concepts presented in this chapter can
be easily generalized for other systems of particles that present intermittent collective
behaviors with a high degree of synchronization. These results prove to be useful when
studying biological systems of individuals that move in space while forming cohesive
groups, like gregarious animals.



Chapter 6

Conclusions

In this thesis we introduce a theoretical framework to understand collections of active
particles that operate with a finite number of discrete internal states that control the
external behavior of these entities. The theoretical concepts developed in this thesis are
conceived to understand the large number of existing multiagent biological systems where
the individuals display distinct behavioral phases that alternate with each other. Exam-
ples of this are, among many others, the change of direction of motion in the presence of
an external chemical c(x) in bacteria – called chemotaxis – and the alternating, collective
phases of rest and activity – involving collective displacements – displayed by group-living
animals. Despite the fact that the phenomenology observed in the provided examples is
of different nature, we show in Chapter 2 that the behavior of these biological systems is
controlled by a reduced number of internal states.

By construction, the premise of our theoretical model is that an external observer has
access only to the external behavior of the individuals, but not to their internal state.
It is only after careful examination of the behavioral dynamics – involving experimental
measurements and data analysis – that the existence of these internal states becomes ev-
ident. This analysis is key to be able to associate the experimentally observed behaviors
of individuals with one or many internal states of the model. This association between
states and behaviors should be done accordingly to the observations and the phenomenol-
ogy displayed by the biological system that is being the subject of study. A small scheme
of this is shown in Figure 6.1.

Figure 6.1 – Left: experimental measurements of the different behaviors of the individuals
of the system. Center: data analysis on the experimental measurements. Right: associa-
tion of the behaviors observed in experiments with the internal states of the model, done
accordingly to the data analysis and the observed phenomenology of the system.
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The possible scenarios that can be observed using our theoretical model are determined
by the design of what we have called internal mechanism of the individuals (number of
internal states, allowed transitions among these states, etc . . . ). Note that by construction,
it is assumed that the resulting dynamics is of Markovian nature. Furthermore, we assume
that the transition rates may depend on the internal states of neighboring particles as well
as external signals introducing in this way the possibility of particle-particle behavioral –
e.g. social – interactions in addition to the potential presence of standard physical
interaction, e.g. forces. This undoubtedly opens the door to a large spectrum of potential
complex behaviors at the individual and collective level, such as adaptive chemotactic
behavior or intermittent collective motion by coupling an underlying Markov chain –
which controls the internal dynamics of the individuals – with a set of equations of motion
that dictates the spatial dynamics of the individuals.

In Chapter 2 we provide evidence of the existence of biological systems where the ob-
served intermittent behaviors at the individual and collective levels can be explained using
simple designs of our model. In the case of the microscopic bacterial system we can con-
clude that the experimental measurements and spatio-temporal dynamics are consistent
with a model where the individuals have two internal states and its change of direction is
regulated by local external information. This corresponds to one of the simplest scenarios
of our model since the particles do not interact with each other in any way. With the
intention of having a better understanding of the general phenomenology contained in
this case, we study in Chapter 3 the possible scenarios that can be described with this
model. We demonstrate that complex behaviors like adaptive chemotaxis, detection of
maxima, minima or selected values of a given external signal c(x) are possible scenarios
and are only determined by the design of the internal states of the particles. We expect
that this analysis will shed light on alternative chemotactic strategies in bacteria.

In the case of the macroscopic system of the sheep, we conclude that the observations
are consistent with a model where the individuals have three internal states and the
change of behavior depends on the behaviors of the rest of the members of the group.
This corresponds to the simplest case of our model where we can observe we have called
intermittent collective motion: i.e. collective motion of a group, where motion occurs in
bursts of activity, while otherwise the group remains static. Analogously to the previous
case, we study in full detail the spatio-temporal dynamics of the group of N particles in
Chapter 4 and Chapter 5. We put special attention to highly synchronized cases, where
we develop two new theoretical concepts: the Collective Clock and the Metaparticle
Clock. These two concepts prove to be useful to obtain analytical approximations for the
collective transport properties of any group of active particles showing a high degree of
synchronization.

In summary, all the experimental and theoretical work contained in this thesis is evi-
dence that our model is suitable to be used to describe real-life systems showing individual
or collective intermittency. We also show that the phenomenology contained in our model
is determined by the design of the internal states of the individuals and can describe
real-life scenarios spanning over several scales. This here-introduced new framework of
active particles with internal states is still in development and we are convinced that it
can potentially open new branches of research that will be able to link physics, biology,
experiments and mathematics at the same time.



Appendix A

Methods and data acquisition for
merino sheep and Pseudomonas
Putida

In this appendix we detail the experimental methods and the data collection used for the
small groups of merino sheep, as well as the experiments with P. Putida.

A.1 Pseudomonas Putida

P. putida KT2440 was streaked on 1.5% agar (AppliChem, Germany) containing LB
medium (AppliChem, Germany) and grown at 30 ◦C. A single-colony isolate was used
to inoculate 10 ml of M9 medium [68] supplemented with 5 mM sodium benzoate as
a carbon source [62]. The culture was grown for 36 h on a rotary shaker (300 min−1,
30 ◦C) to stationary phase. It then was diluted 1:100 into 25 ml of fresh M9 medium and
grown 12 h to an OD600 of ≈ 0.3 in exponential phase. Bacteria were washed three times
by centrifugation at 1000g for 10 min and careful resuspended in 10 ml motility buffer
(1× 10−2 M potassium phosphate, 6.7× 10−2 M NaCl, 1× 10−4 M EDTA and 0.5%w/v
glucose; pH 7.0). Cells were diluted further to an OD of 0.05 before filling them into the
chemotaxis device.

A.1.1 Microfluidics and imaging

We used a µ-Slide Chemotaxis 3D (ibid., Martinsried, Germany) to generate stable linear
gradients of benzoate. Filling was performed as detailed in [3] with concentrations in the
source and sink reservoir of 0.5 mM and 5 mM sodium benzoate, respectively. Imaging
was done using an IX71 inverted microscope with a 20Ö UPLFLN-PH objective (both
Olympus, Germany) in phase contrast mode with an attached Orca Flash 4.0 CMOS cam-
era (Hamamatsu Photonics, Japan). Video data was acquired for two minutes at 20 Hz,
approximately one hour after filling the channel. The gradient linearity and stationarity
was checked previously [3]. The viewport and focal plane were set in the center of the
channels observation region, about 35 µm from top and bottom. Image processing and
tracking was performed as previously described in [3].
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A.1.2 Filtering and smoothing

To filter out damaged, non-motile cells and those swimming on very wobbly trajectories,
we discarded tracks based on a number of criteria. Tracks below a mean speed of 5µm s−1,
longer than 20 s, above the 80th percentile of median curvature and with a total displace-
ment below 5µm are discarded. To further smooth these tracks, we applied a 3 point,
second order Savitzky-Golay filter. Because tracks often begin or end with a reversal we
cut of the first and last 0.5 s of each recorded track in order to avoid any bias in the
measured run times.

A.1.3 Run–and–tumble recognition

Characterization of reversal events was performed with the algorithm of [63]. In short,
this algorithm determines reversals by evaluating local extrema in the speed and turn
rate time series and counting a reversal for sufficiently deep peaks and troughs in speed
or height.

A.2 Merino sheep

The experiments were performed at the experimental farm of Domaine du Merle (5.74E
and 48.50N) in the south of France. Data were collected in a period of 18 days. Small
groups of Arles Merino sheep were used: two, three, four and, eight individuals. On each
day of the experiment, the group was allocated in a visually isolated arena and left there
for half an hour. The arena was a fenced square (80m×80m) in a field of native wet
Crau meadow, mainly covered by graminoids, clover Trifolium sp. and plantain Plantago
lanceolata. The animals had a familiarization time with their groups in a waiting area
of the same pasture, after which they were introduced into the arena. Simultaneous
video recording of the arena took place using a digital camcorder (Sony DCR-TRV950
E) anchored at the top of a 7m high tower and connected to a PowerBook laptop. The
laptop was programmed to take a snapshot from the camcorder every second. All group
size-experiments were replicated several times.

A.2.1 Data collection

Once having the images, the next step was to extract the information from them. The use
of automatic tracking of individuals was not an option because of several difficulties. The
fluctuations of the contrast between sheep and background are high and the recording
angle of the camcorder with respect to the arena made possible that sheep frequently
hide each other from the camera viewpoint. That is why we had to use manual tracking
on a Cintiq interactive pen display [Cintiq 21 UX (UXGA 1,600 Ö 1,200 pixels)] using
dedicated software written by J. Gautrais, academic researcher at the Centre de Recherche
sur la Cognition Animale of the University of Toulouse. By manually tracking the images,
we obtained the tail and head positions for each sheep inside the arena. This allowed us to
have the position ri(t) and heading si(t) for each individual. The instantaneous velocity
vi(t) = (ri(t + ∆t)− ri(t))/∆t of each sheep was obtained by marking their positions in
two consecutive images.
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We noticed that from the experimental images, we could also obtain comportamental
information of the individuals. In the software, it was also possible to mark for each
image if the indivudual sheep had the head up or down, two comportamental states that
were easy to distinguish in the images. This resulted to be very valuable information at
the moment of presenting the model.
To summerize, the information we obtained for each sheep was the position ri(t), the
heading si(t), the velocity vi(t) and the comportamental state. All this information was
obtained for each second for groups of size N = 2, 3, 4. For goups of size N = 8, the
tracking was made each second for one selected individual and every 60 seconds for the
whole group.
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Appendix B

Markovian robots

B.1 Individual-based model (IBM) simulations

IBM simulations using N = 104 robots were performed in order to check the validity of
analytical approximations in the context of the reduction of the Master equation onto
the Fokker-Planck dynamics. The state of a robot is characterized by three variables: its
position, its direction of active motion and the internal state depending on the motif under
consideration. For motif 1, for example, the internal state can take the values 1 and 2.
The spatial dynamics [Eq. (3.1)] was solved by a stochastic Euler-Maruyama method [43]
with a time step ∆t = 0.01. The occurrence of reversal events are dictated by the internal
variable as follows. We implemented the evolution of the internal state using random
numbers, which are uniformly distributed between 0 and 1. In each time step and for
each robot, a transition in the motif was triggered if the random number is smaller than
the product of the numerical time step ∆t and the respective transition rate. Only one
particular transition is accompanied by reversal, depicted by a dashed red arrow in each
motif in Fig. 3.1. To get the stationary density distribution Ps(x), a histogram of robot
positions was averaged over time. The total observation time was fixed to tobs = 20 000
to ensure relaxation towards the stationary state.

B.2 Numerical solution of master equations

Individual-based simulations were validated by the direct integration of the Master equa-
tions [Eqs. (3.2) and (3.10)] corresponding to the NCS motif under consideration. Fur-
thermore, the response of MR to a dynamic field gradient was performed numerically
on the basis of the respective system of Master equations, cf. Fig. 3.4. To solve those
Master equations, a central finite difference discretization was employed in space and the
temporal integration was performed using an explicit forward Euler algorithm [69]. In
particular, the spatial discretization ∆x = 10−2 and temporal time step ∆t = 10−3 was
used in the context of Fig. 3.4.
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B.3 Drift-diffusion approximation in 1D

In the main text, the derivation of position-dependent drift and diffusion from the full
set of master equations is briefly sketched. In this paragraph, technical details of this
derivation are presented in more detail for the one-dimensional case. Along with the
general discussion of the principal ideas behind this derivation, NCS motif 1 is considered
as an example. Effective Langevin equations for more complicated cases follow from the
same procedure in a similar way.

Starting from the full Master equation for the probabilities P±i (x, t) [cf. Eqs. (3.10) for
example], the change of variables Pi(x, t) = P+

i (x, t) +P−i (x, t) and mi(x, t) = P+
i (x, t)−

P−i (x, t) is performed as a first step, allowing to recast the Master equation into two
subgroups for the densities Pi(x, t) and the differences mi(x, t) [cf. Eqs. (3.11)]:

∂tPi = −v0∂xmi +D0∂
2
xPi −Qij[c]Pj , (B.1a)

∂tmi = −v0∂xPi +D0∂
2
xmi −Mij[c]mj. (B.1b)

Henceforward, Einsteins sum convention is used for the sake of compact notation. In the
case of NCS motif 1, the local transitions between the internal states are accounted for
by the following matrices:

Q[c] =

(
α[c] −β[c]
−α[c] β[c]

)
, M[c] =

(
α[c] β[c]
−α[c] β[c]

)
. (B.2)

We begin the analysis with the dynamics of the differencesmi(x, t), given by Eq. (B.1b).
The terms appearing are essentially of different types: there is a mi(x, t)-independent
source term proportional to the derivative of the densities Pi(x, t), diffusion of mi(x, t) as
well as local transitions. Now, diffusion is a slow process as compared to the exponential
relaxation, which is described by the local transitions. Particularly, the real part of the
eigenvalues λ

(±)
M of the matrix M, given by

λ
(±)
M =

1

2

[
α + β ±

√
α2 − 6αβ + β2

]
, (B.3)

are strictly larger than zero for all positive rates. Accordingly, Eq. (B.1b) describes
relaxation towards a stationary state. Assuming that this relaxation is a fast process,
one may eliminate the variables mi(x, t) adiabatically via ∂tmi ≈ 0. This yields the
constitutive equation

Mijmj ≈ −v0∂xPi +D0∂
2
xmi. (B.4)

Since non of the eigenvalues of M equals zero, the matrix M is invertible:

mi ≈ −v0

{
M−1

}
ij
∂xPj +D0

{
M−1

}
ij
∂2
xmj. (B.5)

A closed expression for mi(x, t) in terms of Pi(x, t) can be found by recursive reinsertion
on the right hand side. With regard to the objective of this derivation, we turn now,
however, to the Pi(x, t)-dynamics [Eq. (B.1a)]. Notably, we want to obtain a closed
equation up to second order in spatial derivatives. The Pi(x, t)-dynamics is driven by
first order derivatives of mi(x, t), which is, in turn, proportional to derivatives of Pi(x, t)
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to lowest order. Hence, it is sufficient to truncate the recursion [Eq. (B.5)] at the lowest
order in spatial derivatives:

mi ≈ −v0

{
M−1

}
ij
∂xPj. (B.6)

Accordingly, we obtain the following expression for the dynamics of Pi(x, t) as an inter-
mediate result:

∂tPi = ∂x

[(
v2

0

{
M−1

}
ij

+D0δij

)
∂xPj

]
−Qij[c]Pj. (B.7)

The dynamics is a combination of position-dependent diffusion as well as local transitions
between the different internal states.

In contrast to the matrix M, the matrix Q possesses always one eigenvalue which
equals zero. It results from the fact that the robot must be in one of its internal state.
This conservation law implies a zero-eigenmode corresponding the slow dynamics of the
total, conserved density P (x, t)=

∑
i Pi(x, t). Other eigenvalues are positive implying the

existence of additional fast modes (notice the minus sign in front of Qij in Eq. (B.7)).

The two eigenvalues of the matrix Q read λ
(1)
Q = α+β and λ

(2)
Q = 0 for NCS motif 1 for

example, cf. Eq. (B.2). To lowest order in spatial gradients, the adiabatic elimination of
the fast mode reveals that Pi(x, t) must be element of the kernel of Q:

QijPj ≈ 0. (B.8)

Physically, this reflects the assumption of local equilibrium implying that the local tran-
sitions are much faster compared to the motion of robots such that the local distribution
of robots among the different internal states is equalized. This is in line with the general
scope of this work: the external signal is weakly space-dependent, i.e. the field c(x) varies
on scales which are much larger than the mean distance lb=v0τ , which a robot travels in
between two reorientation events that occur at an average rate τ−1; in short, only local
measurements of the external signal are feasible. Consequently, the Pi(x, t)-dynamics can
relax locally faster than the overall density distribution on scales larger than lb.

There is a nontrivial solution Pi(x, t) = P (x, t)Vi[c] to Eq. (B.8) since the matrix Q
is not invertible 1. This solution is, however, unique due to the normalization condi-
tion P (x, t) =

∑
i Pi(x, t) which implies necessarily that the sum of the components of

the vector V[c] equals one. For the example of NCS motif 1 considered above, we obtain

V[c] =
1

α[c] + β[c]

(
β[c]
α[c]

)
. (B.9)

Inserting this closure into the reduced Pi(x, t)-equation [Eq. (B.7)] and subsequent sum-
mation over all components yields eventually the following closed equation for the total
density:

∂tP =
∑
i,j

∂x

{(
v2

0

{
M−1

}
ij

+D0δij

)
∂x
[
P (x, t)Vj[c]

]}
. (B.10)

1The existence of a unique, nontrivial, stationary solution for this type of Master equation, which
reflects the transition dynamics in between the internal states, is ensured in general [44].
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In order to read of the mean drift f(x) as well as the position-dependent diffusion coeffi-
cient D(x), terms have to be rearranged to meet the structure of a Fokker-Planck equation
in Ito form [43]:

∂tP (x, t) = −∂x
[
f(x)P (x, t)

]
+ ∂2

x

[
D(x)P (x, t)

]
.

From this Fokker-Planck equation, which defines f(x) and D(x) unambiguously, we read
off

f(x) = v2
0

∑
i,j

(
∂x
{
M−1

}
ij

)
Vj[c],

D(x) = D0 + v2
0

∑
i,j

{
M−1

}
ij
Vj[c].

Inserting the inverse of M for NCS motif 1,

M−1 =
1

2

(
1/α[c] −1/α[c]
1/β[c] 1/β[c]

)
, (B.11)

yields eventually the expressions which are given in the main text [c.f. Eqs. (3.12)].

B.4 Drift-diffusion approximation in 2D

The extension of the drift-diffusion approximation to two (or higher) spatial dimensions
is straightforward on the basis of the previously described derivation of effective Langevin
equations in one dimension. The conceptual basis is unchanged: at first, a closed expres-
sion for the probability densities Pi(r, t) to find a robot at a certain position r at time t
is derived by adiabatic elimination of fast order parameters and, in a second step, this
set of equations is reduced to the total density assuming local equilibrium. There are
two technical complications which need particular attention. In dimensions larger than
one, there are two vector spaces that need to be distinguished: the physical space which
robots move in as well as the space of internal states. As before, we use Latin indices
to label internal states (Pi) and, from now on, vectorial notation is used to indicate con-
tractions with respect to the vector space of spatial coordinates (r). Further, it turns out
to be crucial to identify the correct generalizations of the central quantities of interest in
one dimension, namely densities Pi(x, t) and differences mi(x, t), for the two-dimensional
situation.

Starting point of the derivation is the Master equation [cf. Eq. (3.21)] for the probabil-
ity densities Pi(r, ϕ, t) to find a robot in state i at position r moving into the direction ϕ
at time t. In general, the dynamics is of the form

∂tPi(r, ϕ, t)=−v0ŝ[ϕ]·∇Pi +Dr∂
2
ϕPi +D0∆Pi (B.12)

−γ̄i[c]Pi +
∑
j

nc∑
k=1

γ
(k)
ij [c]

∫ π

−π
dϕ′ g

(k)
ij (ϕ− ϕ′)Pj(r, ϕ′, t).

The terms in the first line describe the motility of robots: active motion along the di-
rector ŝ[ϕ(t)] = (cosϕ, sinϕ), rotational diffusion due to spatial heterogeneities or fluc-
tuations of the active force [48–51] giving rise to a diffusion term with respect to the
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polar angle ϕ, and isotropic diffusion. Stochastic transitions from one internal state to
another are accounted for by the second line. The total rate at which the state i is left is
determined by the rate

γ̄i[c] =
∑
j

nc∑
k=1

γ
(k)
ji [c]. (B.13)

The transition rates γ
(k)
ij denote the probability per unit time for a transition from j to

state i via the k-ths channel (number of channels: nc). The γ-matrices are the immediate
mathematical representation of the NCS motif under consideration. In the case of NCS
motif 1, that was used as an example before, there is only one channel for each transition
such that the γ-matrix reads

γ(1) =

(
0 β[c]
α[c] 0

)
. (B.14)

For NCS motif 2, in contrast, two γ-matrices have to be introduced since there are two
potential transitions from state 2 to state 1, cf. Fig. 3.1, one of which is accompanied by
a reorientation whereas the other one is not:

γ(1) =

(
0 γ[c]
α[c] 0

)
, γ(2) =

(
0 β[c]
0 0

)
. (B.15)

Reorientations in space upon transitions are accounted for by the probability distribu-
tions g

(k)
ij (ϕ).

Now, drift and diffusion properties of MR in two dimensions are derived along the line
of arguments which was introduces in the previous paragraph for the one-dimensional
case.

By integration of Eq. (B.12) over all angles ϕ, we obtain the dynamics of the probability
densities Pi(r, t) to find a robot at position r at time t, independent of its direction of
motion:

∂tPi(r, t) = −v0∇ ·mi +D0∆Pi −Qij[c] · Pj. (B.16)

This equation is structurally equivalent to Eq. (B.1a) in one dimension. The elements of
the Q-matrix read in general

Qij = −
nc∑
k=1

[
γ

(k)
ij − δij

∑
l

γ
(k)
lj

]
. (B.17)

One may check easily that this definition of Q yields consistently the known expression
for NCS motif 1 [Eq. (B.2)], for example, if the corresponding γ-matrix [Eq. (B.14)]
is inserted. Naturally, those local terms in Eq. (B.16) corresponding to the internal
robot dynamics remain unchanged since they are independent of the spatial dimension.
Consistently, only the terms related to transport in space are altered in two dimensions
as compared to the 1D scenario.

Replacing the density differences mi between left- and right-moving robots in state i,
used to analyze the 1D scenario and determining density transport, in two dimensions we
make use of the local order parameter

mi(r, t)=

∫
dϕ ŝ[ϕ]Pi(r, ϕ, t)=

∫
dϕ

(
cosϕ
sinϕ

)
Pi(r, ϕ, t) , (B.18)
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which appears in Eq. (B.16) and that when multiplied by v0 provides the flux due to
active self-propulsion. It is, further, the first Fourier mode of the probability distribution
function Pi(r, ϕ, t). In general, the dynamics of the fields mi(r, t) is coupled to higher
order Fourier modes of the probability densities Pi(r, ϕ, t) giving rise to an infinite hier-
archy. However, we can make use of the fact that the dynamics of higher order Fourier
modes is fast, i.e., their dynamics is slaved [70] to the density in the long time limit thus
allowing for their adiabatic elimination 2. Similar arguments as in the one-dimensional
case apply: since we aim at a reduction of the dynamics to a drift-diffusion equation,
it is sufficient to calculate the dynamics of the mean local orientations mi(r, t) to first
order in density gradients. Accordingly, we derive the following dynamics of mi(r, t) by
multiplication of the full Master equation with ŝ[ϕ] and subsequent integration over the
polar angle ϕ:

∂tmi(r, t) ' −
v0

2
∇Pi +D0∆mi −Mij[c]mj. (B.19)

This is a straightforward generalization of Eq. (B.1b). In two dimensions, the matrix
elements of the local dynamics read

Mij = Drδij −
nc∑
k=1

[
γ

(k)
ij 〈cosϕ〉(k)

ij − δij
∑
l

γ
(k)
lj

]
. (B.20)

In two dimensions, they depend on the mean cosine of the reorientation distributions 3

〈cosϕ〉(k)
ij =

∫ π

−π
dϕ cosϕ g

(k)
ij (ϕ) . (B.21)

In the case of reversal for NCS motif 1, g
(1)
12 (ϕ) = δ(ϕ− π) is the only nontrivial element.

It implies 〈cosϕ〉(1)
12 = −1. In combination with the corresponding γ-matrix [Eq. (B.14)],

the matrixM[c] reduces again exactly to the familiar one-dimensional result, cf. Eq. (B.2).
The reduction of Eqs. (B.16) and (B.19) onto the density follows the procedure which

was outline in the previous paragraph for one spatial dimension. Adiabatic elimina-
tion (∂tmi ≈ 0) of the fields mi yields

mi ≈ −
v0

2

{
M−1

}
ij
∇Pj (B.22)

to lowest order in density gradients [cf. Eq. (B.6)] and, thus, one obtains the following
reduced density dynamics via insertion into Eq. (B.16):

∂tPi(r, t) ' ∇·
[(
v2

0

2

{
M−1

}
ij

+D0δij

)
∇Pj

]
−Qij[c]Pj. (B.23)

This is the 2D-analogue to Eq. (B.7). In the diffusive limit, the fields Pi have to lie in the
kernel of the matrix Q[c], i.e. Qij[c]Pj = 0. We normalize such that Pi(x, t) = P (x, t)Vi[c]
implying

∑
i Vi[c] = 1 and Qij[c]Vj = 0. Inserting this ansatz into Eq. (B.23) yields the

preliminary Fokker-Planck equation

∂tP (r, t) '
∑
i

∇ ·
{(

v2
0

2

{
M−1

}
ij

+D0δij

)
∇
[
PVj[c]

]}
. (B.24)

2For a detailed account on mode reduction in several active motion models, see [71–73].
3It was silently assumed that the reorientation distributions g

(k)
ij (ϕ) are symmetric: g

(k)
ij (−ϕ) = g

(k)
ij (ϕ).
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We define the force f(r) and the position-dependent diffusion D(r) analogous to the one-
dimensional case [Eq. (B.11)]:

∂tP (r, t) = −∇·
[
f(r)P (r, t)

]
+ ∆

[
D(r)P (r, t)

]
. (B.25)

The comparison to Eq. (B.24) eventually yields the final expressions for the drift and local
diffusion coefficient:

f(r) =
v2

0

2

∑
i,j

(
∇
{
M−1

}
ij

)
Vj[c], (B.26a)

D(r) = D0 +
v2

0

2

∑
i,j

{
M−1

}
ij
Vj[c]. (B.26b)

B.5 Drift-diffusion approximation in 3D

In this section, we briefly summarize some technical particularities of the drift-diffusion
approximation in three dimensions. The general discussion follows closely the procedure
outlined in Appendix B.4. Starting point is the general Master equation

∂tPi(r, ŝ, t)=−v0 ŝ·∇Pi +DrL[Pi] +D0∆Pi (B.27)

−γ̄i[c]Pi +
∑
j

nc∑
k=1

γ
(k)
ij [c]

∫
d3s g

(k)
ij (ŝ|ŝ′)Pj(r, ŝ′, t).

The transition rates γ
(k)
ij [c] denote, as before, the probability per unit time for a transition

from state j to state i via the k-ths channel. Such transitions may be accompanied by a
transition from an orientation ŝ′ to ŝ which is accounted for by the transition probability
density g

(k)
ij (ŝ|ŝ′). The continuous, stochastic rotational dynamics of the director ŝ in three

dimensions is accounted for by the operator

L[Pi] = ∂sµ

[
2sµPi

]
+ ∂sµ∂sν

[(
δµν − sµsν

)
Pi
]
, (B.28)

where a sum over µ and ν is implicit. This Cartesian representation of the director dynam-
ics is simpler to handle in terms of analytical calculations as compared to a parametriza-
tion in terms of spherical coordinates (cf. Eq. (3.30) and Refs. [52, 64]).

We point out that there are two vector spaces which have to be distinguished in the
following: the physical space which robots move in (three dimensional) and the space of
internal states. To avoid confusion, the components of the former are denoted by Greek
indices, whereas the latter are indicated by Latin indices.

The derivation of the drift-diffusion approximation starts from the temporal evolution
of the densities

Pi(r, t) =

∫
d3sPi(r, ŝ, t), (B.29)

which is obtained from the Master equation (B.27) by integration over all orientations of
the director yielding

∂tPi(r, t) = −v0∇ ·mi +D0∆Pi −Qij[c] · Pj. (B.30)
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Just as in two dimensions, the matrix elements of the matrix Q are determined by

Qij = −
nc∑
k=1

[
γ

(k)
ij − δij

∑
l

γ
(k)
lj

]
. (B.31)

We keep in mind that we will assume local equilibrium throughout, i.e. the probability
to find a robot in a certain internal state is determined by Pi(r, t) = Vi[c]P (r, t) such
that QijVj = 0 and

∑
i Vi = 1.

In three dimensions, the flux is determined by the local order parameter

mi(r, t) =

∫
d3s ŝPi(r, ŝ, t). (B.32)

The dynamics of mi is, in turn, obtained by multiplication of the Master equation (B.27)
by ŝ and subsequent integration:

∂tmi(r, t) = −v0∇ · Ti +D0∆mi −Mij[c]mj. (B.33)

The matrix elements

Mij = 2Drδij−
nc∑
k=1

[
γ

(k)
ij 〈cosψ〉(k)

ij − δij
∑
l

γ
(k)
lj

]
(B.34)

differ from their two-dimensional counterpart [cf. Eq. (B.20)] by just a factor of two
in front of the angular noise intensity. The relevant parameter which accounts for the
reorientation is the mean cosine of the angle between the directors just right before and
after a reorientation, defined by

〈cosψ〉(k)
ij =

∫
d3s ŝ · ŝ′g(k)

ij (ŝ|ŝ′). (B.35)

Due to the Cartesian parametrization of the director dynamics, a new term involving the
symmetric tensor

{
Ti
}
µν

=

∫
d3s sµsνPi(r, ŝ, t) (B.36)

appears in Eq. (B.33). In order to derive an effective transport equation for the den-
sity P (r, t) =

∑
i Pi(r, t), a closure relation for the tensors Ti has to be found. Since we

aim at reducing the density dynamics to a Fokker-Planck equation valid in the diffusive
limit, it is possible to neglect spatial derivatives in the dynamics of Ti to lowest order:

∂t
{
Ti
}
µν
≈ δµνΩijPj −

{
ΞijTj

}
µν
. (B.37)

This equation involves the matrices

Ωij = 2Drδij +
nc∑
k=1

γ
(k)
ij [c] ·

1− 〈cos2 ψ〉(k)
ij

2
(B.38)
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and

Ξij =
(

6Dr + γ̄i[c]
)
δij−

nc∑
k=1

[
γ

(k)
ij [c] ·

3〈cos2 ψ〉(k)
ij −1

2

]
. (B.39)

The tensor Ti may be expressed as a function of the densities Pi(r, t) via adiabatic elim-
ination, ∂t

{
Ti
}
µν
≈ 0. In the state of local equilibrium, where Pi = ViP and QijVj = 0,

the rather complicated expressions above take a rather simple form, as can be verified via
direct calculation:{

Ti
}
µν

=
δµν
3
Vi[c]P. (B.40)

Reinsertion of this solution into the dynamics of mi [Eq. (B.33)] yields the familiar equa-
tion

∂tmi(r, t) ' −
v0

3
∇Pi +D0∆mi −Mij[c]mj (B.41)

which is structurally identical to Eqs. (B.1b), (B.19). Only the speed has been rescaled
by the spatial dimensionality.

The remaining part of the calculation follows therefore exactly the same steps as in two
spatial dimensions. Accordingly, the drift and diffusion for MR in three spatial dimensions
are determined by

f(r) =
v2

0

3

∑
i,j

(
∇
{
M−1

}
ij

)
Vj[c], (B.42a)

D(r) = D0 +
v2

0

3

∑
i,j

{
M−1

}
ij
Vj[c]. (B.42b)

Note, however, that the definition of the matrix M is slightly different in two and three
dimensions as the rotational noise amplitude Dr is proportional to the factor d−1, where d
is the actual spatial dimensions.



100 APPENDIX B. MARKOVIAN ROBOTS



Appendix C

Intermittent Collective Behavior

C.1 Parameter diagrams using different parameter

values

Figure C.1 – Parameter diagrams for different values of ω. In (a), we use ω = 2 and in
(b) we use ω = 10. For both cases, the system size is N = 50. We notice that the regions
I, II and III are slightly modified but the diagrams as a whole stay qualitatively equal to
the one presented in Figure 4.7 in Chapter 4 in the main text.

C.2 General solution of the period distribution P (T )

for the CCA.

In this Appendix, we detail the method to obtain the solution of the distribution of the
periods in the CCA. We omit the labels for the CCA variables since all the variables in
this section correspond to variables of the Collective Clock. As said in Chapter 5, the
problem is reduced to solve the following system of equations:

∂tP1(t) = −R1 P1(t),

∂tPi(t) = −Ri Pi(t) +Ri−1 Pi−1(t) for 2 ≤ i ≤ 3N .
(C.1)

In the system of equations (C.1) we denote by Pi(t) the probability of finding the system
in tick i in the collective clock at time t having started at time t = 0 in the tick 1. This
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means that the initial conditions for each Pi(t) are:

P1(t = 0) = 1,

Pi(t = 0) = 0 for 2 ≤ i ≤ 3N .
(C.2)

To solve the system of equations, we use the Laplace transform, defined as

L
{
f(t)

}
= f̂(s) =

∞∫
0

dt f(t) e−st, (C.3)

and two key properties, the first one being the transform of the convolution:

L
{

(f ∗ g)(t)

}
= L

{ t∫
0

f(t1) g(t− t1) dt1

}
= f̂(s) ĝ(s), (C.4)

and the second one being:

L
{
tn e−α t

}
=

n!(
s+ α

)n+1 . (C.5)

We recast the system (C.1) as follows:

s P̂1(s) = −R1 P̂1(s) + 1,

s P̂i(s) = −Ri P̂i(s) +Ri−1 P̂i−1(s) for 2 ≤ i ≤ 3N .
(C.6)

For the calculation of the distribution of periods we need to calculate P (T = t) =
R3N P3N(t) and for this, we use the system of equations (C.6) to express the Laplace
transform of the solution we need in terms of multiplications of the transition rates of the
collective clock as follows:

P̂ (S = s) = R3N P̂3N(s) =
3N∏
j=1

(
Rj

s+Rj

)
. (C.7)

We can obtain the inverse Laplace transform and get the general solution we are looking
for:

P (T = t) =

(∏3N
i=1 Ri

)
t∫

0

dt1
t−τ1∫
0

dt2
t−τ2∫
0

dt3 · · ·
t−τ3N−2∫

0

dt3N−1 exp

[
−
∑3N−1

j=1 Rj tj −R3N

(
t− τ3N−1

)]
, (C.8)

where we make use of the auxiliary variable

τj =

j∑
k=1

tk. (C.9)
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C.2.1 Case with different rates (Ri 6= Rj, ∀i 6= j).

The genereal solution (C.8) can be given explicitly in the case where all rates of the
collective clock do not repeat, i.e: Ri 6= Rj, ∀i 6= j. In this case, the solution is given by:

P (T = t) =

( 3N∏
i=1

Ri

) 3N∑
j=1

λ3N,j e
−Rj t, (C.10)

where λ1,1 = 1 and the coefficients λi,j in general can be obtained recursively as follows:

λi,j =



λi−1, j

Ri −Rj

if i < j,

−
i−1∑
j=1

λi,j if i = j,

0 if i > j.

(C.11)

C.2.2 Case with repeating rates.

In the specific case of the main text, the collective clock is particularly simple because
there are some rates that appear multiple times. More precisely, we have that

Ri = RN+i = R2N+i ∀i : 1 ≤ i ≤ N. (C.12)

Performing a similar analysis as the previous case, we can express the solution in the
Laplace space as:

P̂ (S = s) = R3N P̂3N(s) =
N∏
j=1

(
Rj

s+Rj

)3

. (C.13)

The solution is obtained using (C.4) and (C.5) and is, in this case, ironically more com-
plicated:

P (T = t) =

N∏
i=1

R3
i

2N

t∫
0

dt1
t−τ1∫
0

dt2 · · ·
t−τN−2∫

0

dtN−1

(∏N−1
j=1 t2j

)(
t− τN−1

)2

exp

[
−
∑N−1

j=1 Rj tj −RN

(
t− τN−1

)]
, (C.14)

where we used again the auxiliary variable of equation (C.9).
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Appendix D

Collective transport properties of a
group of N independent particles
with internal clock

In this appendix, we address the situation where we have N independent particles that
have internal dynamics between states. This is a limit situation when we introduce a
radius of interaction between particles to the model studied in Chapter 5. It is in fact
the situation when the radius of interaction is so small that the group loses coherence.
First, we solve the transport properties of one single particle and then we use the obtained
results to calculate the collective transport properties of the group.

D.0.1 Transport properties of a single particle with internal
clock.

Since there is only one particle, the rates of transition between the states are

Ri→j = ω (D.1)

for all three transitions. The equation of motion of the particle in 1D is given by the
internal variable q(t) and is given by:

ẋ(t) = v0 s(t) +
√

2D0 ξ(t) if q(t) = A or C, (D.2)

ẋ(t) =
√

2D0 ξ(t) if q(t) = B, (D.3)

with the dynamics of s(t) as explained in the main text. The average period is in this
case 〈T 〉 = 1

ω
+ 1

ω
+ 1

ω
= 3

ω
, and we can also estimate the average velocity per period,

namely v̄ = v0
3

. We can use an effective langevin equation using these estimates:

ẋ(t) = v̄ s(t) +
√

2D0 ξ(t), (D.4)

where we suppose that s(t) changes direction after 〈T 〉. Knowing that

x(t) =

t∫
0

dt′
[
v̄ s(t′) +

√
2D0 ξ(t

′)

]
, (D.5)
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we can calculate the average mean squared displacement of the particle position as follows:

〈x2(t)〉 =

t∫
0

dt′
t∫

0

dt′′
〈[

v̄ s(t′) +
√

2D0 ξ(t
′)

] [
v̄ s(t′′) +

√
2D0 ξ(t

′′)

]〉
. (D.6)

Knowing that the stochastic variables s(t) and ξ(t) are independent, we arrive to the
result:

〈x2(t)〉 =

v̄2

t∫
0

dt′
t∫

0

dt′′
〈
s(t′) s(t′′)

〉+

2D0

t∫
0

dt′
t∫

0

dt′′
〈
ξ(t′) ξ(t′′)

〉 . (D.7)

For long times, we get:

lim
t→∞
〈x2(t)〉 = 2

(
3 v̄2

ω

)
t+ 2D0 t = 2Dclock t+ 2Dnoise t = 2Deff t, (D.8)

with the effective diffusion coefficient being

Deff =
3v̄2

ω
+D0. (D.9)

D.0.2 Transport properties of N independent particles with in-
ternal clock.

In this case, we have N particles, each one with the equation of motion in 1D:

ẋi(t) = v0 si(t) +
√

2D0 ξi(t) if qi(t) = A or C, (D.10)

ẋi(t) =
√

2D0 ξi(t) if qi(t) = B, (D.11)

with the dynamics of si(t) as explained in the main text. The center of mass is calculated
as follows:

xcm(t) =
1

N

N∑
i=1

xi(t) =
1

N

N∑
i=0

t∫
0

dt′ ẋi(t
′). (D.12)

So, the general expression of the average mean squared displacement of the center of mass
is:

〈
x2
cm(t)

〉
=

1

N2

N∑
i=1

N∑
j=1

t∫
0

dt′
t∫

0

dt′′
〈[

v̄ si(t
′) +

√
2D0 ξ(t

′)

] [
v̄ sj(t

′′) +
√

2D0 ξ(t
′′)

]〉
.

(D.13)



107

Using again the fact that the stochastic variables of the direction of motion and the noise
are independent, we can recast equation (D.13) as:

〈
xcm(t)

〉
=

1

N2

N∑
i=1

N∑
j=1

t∫
0

dt′
t∫

0

dt′′
[
v̄2

〈
si(t

′) sj(t
′′)

〉
+ 2D0

〈
ξi(t

′) ξj(t
′′)

〉]

=
1

N2

N∑
i=1

t∫
0

dt′
t∫

0

dt′′
[
v̄2

〈
si(t

′) si(t
′′)

〉
+ 2D0

〈
ξi(t

′) ξi(t
′′)

〉]

⇒ lim
t→∞

〈
xcm(t)

〉
= 2

(
3 v̄2

N ω

)
t+ 2

(
D0

N

)
t = 2

(
Deff

N

)
t.

(D.14)

The second quantity that we want to study is the average disperssion of particles around
the center of mass, defined as:

σ2
g(t) =

1

N

N∑
i=1

(
xi(t)− xcm(t)

)2

. (D.15)

The average in the long time limits is then:

〈
σ2
g(t)
〉

=
1

N

〈 N∑
i=1

(
x2
i (t)− 2xi(t)xcm(t) + x2

cm(t)

)〉

=
1

N

〈 N∑
i=1

x2
i (t)

〉
−
〈
x2
cm(t)

〉
.

(D.16)

Thus, the final result in the long–time behavior is:

lim
t→∞

〈
σ2
g(t)
〉

=

(
1− 1

N

)
2Deff t, (D.17)

with the same effective diffusion coefficient given in (D.9).
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