
HAL Id: tel-02071347
https://theses.hal.science/tel-02071347

Submitted on 18 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical Models for Human Motion Synthesis
Qi Wang

To cite this version:
Qi Wang. Statistical Models for Human Motion Synthesis. Modeling and Simulation. Ecole Centrale
Marseille, 2018. English. �NNT : 2018ECDM0005�. �tel-02071347�

https://theses.hal.science/tel-02071347
https://hal.archives-ouvertes.fr

École Doctorale : Mathématiques et Informatique de Marseille (ED184)

Laboratoire d’Informatique et Systèmes (UMR 7020)

THÈSE DE DOCTORAT

pour obtenir le grade de

DOCTEUR de l’ÉCOLE CENTRALE de MARSEILLE

Discipline : Informatique

Statistical Models for Human Motion Synthesis

par

WANG Qi

Directeur de thèse : ARTIÈRES Thierry

Soutenue le 09 Juillet 2018

devant le jury composé de :

PAQUET Thierry Professeur, LITIS, Université de Rouen Rapporteur
BEVILACQUA Frédéric Directeur de Recherche de IRCAM, Sorbonne Université Rapporteur
PÉLACHAUD Catherine Directrice de Recherche,CNRS,UMPC Sorbonne Université Examinateur
DENOYER Ludovic Professeur, LIP6, UMPC Sorbonne Université Examinateur
FAVRE Benoit Maître de conférence, LIS,Aix-Marseille Université Examinateur
BOURDIN Christophe Professeur, ISM, Aix-Marseille Université Examinateur
ARTIÈRES Thierry Professeur, LIS, Ecole Centrale de Marseille Directeur de thése

Abstract

This thesis focuses on the synthesis of motion capture data with statistical models. Mo-
tion synthesis is a task of interest for important application fields such as entertainment,
human-computer interaction, robotics, etc. It may be used to drive a virtual character
that can be involved in the applications of the virtual reality, animation films or com-
puter games. This thesis focuses on the use of statistical models for motion synthesis
with a strong focus on neural networks. From the machine learning point of view de-
signing synthesis models consists in learning generative models. Our starting point lies
in two main problems one encounters when dealing with motion capture data synthe-
sis, ensuring realism of postures and motion, and handling the large variability in the
synythesized motion. The variability in the data comes first from core individual fea-
tures, we do not all move the same way but accordingly to our personality, our gender,
age, and morphology etc. Moreover there are other short term factors of variation like
our emotion, the fact that we are interacting with somebody else, that we are tired etc.

Data driven models have been studied for generating human motion for many years.
Models are learned from labelled datasets where motion capture data are recorded while
actors are performed various activities like walking, dancing, running, etc. Traditional
statistical models such as Hidden Markov Models, Gaussian Processes have been inves-
tigated for motion synthesis, demonstrating strengths but also weaknesses. Our work
focuses in this line of research and concerns the design of generative models for sequences
able to take into account some contextual information, which will represent the factors
of variation.

A first part of the thesis present preliminary works that we realized by extending previous
approaches relying on Hidden Markov Models and Gaussian Processes to tackle the two
main problems related to realism and variability. We first describe an attempt to extend
contextual Hidden Markov Models for handling variability in the data by conditioning
the parameters of the models to an additional contextual information such as the emotion
which which a motion was performed. We then propose a variant of a traditional method

i

for performing a specific motion synthesis task called Inverse Kinematics, where we
exploit Gaussian Processes to enforce realism of each of the postures of a generated
motion. These preliminary results show some potential of statistical models for designing
human motion synthesis systems. Yet none of these technologies offers the flexibility
brought by neural networks and the recent deep learning revolution.

The second part of the thesis describes the works we realized with neural networks and
deep architectures. It builds on recurrent neural networks for dealing with sequences
and on adversarial learning which was introduced very recently in the deep learning
community for designing accurate generative models for complex data. We propose a
simple system as a basis synthesis architecture, which combines adversarial learning with
sequence autoencoders, and that allows randomly generating realistic motion capture
sequences. Starting from this architecture we design few conditional neural models that
allow to design synthesis systems that one can control up to some extent by either
providing a high level information that the generated sequence should match (e.g. the
emotion) or by providing a sequence in the style of which a sequence should be generated.

Keywords: Motion Synthesis; Neural Networks; Adversarial Learning; Generative
Models; Motion Capture.

Résumé

Cette thèse port sur la synthèse de séquences de motion capture avec des modèles statis-
tiques. La synthèse ce type de séquences est une tâche pertinente pour des domaines
d’application divers tels que le divertissement, l’interaction homme-machine, la robo-
tique, etc. Du point de vue de l’apprentissage machine, la conception de modèles de
synthèse consiste à apprendre des modèles génératifs, ici pour des données séquentielles.
Notre point de départ réside dans deux problèmes principaux rencontrés lors de la syn-
thèse de données de motion capture, assurer le réalisme des positions et des mouvements,
et la gestion de la grande variabilité dans ces données. La variabilité vient d’abord des
caractéristiques individuelles, nous ne bougeons pas tous de la même manière mais d’une
façon qui dépend de notre personnalité, de notre sexe, de notre âge de notre morpholo-
gie, et de facteurs de variation plus court terme tels que notre état émotionnel, que nous
soyons fatigués, etc.

Divers modèles statistiques ont été étudiés pour la synthèse de ce type de données. Les
modèles sont appris sur des jeux de données étiquetés où les séquences de motion cap-
ture sont réalisées par des acteurs exécutant diverses activités comme marcher, danser,
courir, etc. Notre travail porte sur ce domaine de recherche et concerne en particulier
la conception de modèles générateurs de séquences capables de prendre en compte cer-
taines informations contextuelles pour permettre une génération contrôlée de séquences,
et capables de générer des séquences réalistes avec une certaine diversité.

Une première partie présente des travaux préliminaires que nous avons réalisés en éten-
dant des approches de l’état de l’art basées sur des modèles de Markov cachés et des
processus gaussiens pour aborder les deux problèmes principaux liés au réalisme et à
la variabilité. Nous décrivons d’abord une variante de modèles de Markov cachés con-
textuels pour gérer la variabilité dans les données en conditionnant les paramètres des
modèles à une information contextuelle supplémentaire telle que l’émotion avec laquelle
un mouvement a été effectué. Nous proposons ensuite une variante d’une méthode de
l’état de l’art utilisée pour réaliser une tâche de synthèse de mouvement spécifique ap-

iii

pelée Inverse Kinematics, où nous exploitons les processus gaussiens pour encourager le
réalisme de chacune des postures d’un mouvement généré. Nos résultats montrent un
certain potentiel de ces modèles statistiques pour la conception de systèmes de synthèse
de mouvement humain. Pourtant, aucune de ces technologies n’offre la flexibilité ap-
portée par les réseaux de neurones et la récente révolution de l’apprentissage profond et
de l’apprentissage Adversarial que nous abordons dans la deuxième partie.

La deuxième partie de la thèse décrit les travaux que nous avons réalisés avec des réseaux
de neurones et des architectures profondes. Nos travaux s’appuient sur la capacité des
réseaux neuronaux récurrents à traiter des séquences complexes et sur l’apprentissage
Adversarial qui a été introduit très récemment dans la communauté du Deep Learn-
ing pour la conception de modèles génératifs performants pour des données complexes,
notamment images. Nous proposons une première architecture simple qui combine
l’apprentissage Adversarial et des autoencodeurs de séquences, qui permet de mettre
au point des systèmes performants de génération aléatoire de séquences réalistes de mo-
tion capture. A partir de cette architecture de base, nous proposons plusieurs variantes
d’architectures neuronales conditionnelles qui permettent de concevoir des systèmes de
synthèse que l’on peut contrôler dans une certaine mesure en fournissant une information
de haut niveau à laquelle la séquence générée doit correspondre, par exemple l’émotion
avec laquelle une activité est réalisée. Pour terminer nous décrivons une dernière vari-
ante qui permet de réaliser de l’édition de séquences de motion capture, où le système
construit permet de générer une séquence dans le style d’une autre séquence, réelle.

Mots Clés: Synthèse de mouvement; Réseaux de Neurones; Apprentissage Contra-
dictoire; Modèles Génératifs; Capture de mouvement.

Acknowledgement

Firstly, I would like to express my sincere appreciation to my supervisor Thierry Ar-
tières. He has been supporting me on my research and encouraging me to overcome
new difficulties and challenges in my research. He taught me how to conduct scien-
tific research and used his profound knowledge and experience to help me become a
qualified researcher. It would have been impossible for me to complete my research
works and finish this thesis smoothly without his generous assistance. This experience
of collaborating with him will keep benefiting me in my future research career.

Thank Catherine Pelachaud who has a lot of discussion with me about my PhD project.
She is a very kind professor and she is always supportive throughout my PhD studying.

Also I thank my friend and collaborators Yu Ding, Jing Huang for their cooperation in
our collaborative works. It is an honor to be friend and work with them.

I appreciate to be friend with some excellent people and I would like to thank them for
their encouragement and company. They are Hao Dong, Yulong Gong, Yao Lu, Huihuai
Qiu, Changshun Wu, Rui Liu, Jian YANG, Ms Qi WANG, Ziyu GUO etc. I also would
like to express thanks to all my lovely colleagues in QARMA team. They are very kind
and lovely and I am very happy to have them during my PhD studying.

I also would like to thank my best friend Haizi Yu for his help in my research. We had
many fruitful discussions which were full with joys and laughter and helped me a lot for
my research. He is always optimistic and open-minded which impressed me very much
and I am happy to be friend with him.

Finally from my heart, I would like to express my gratitude and love to my family, my
dear father, mother, my girlfriend, my two sisters who always supported me whenever
and wherever. Especially, I want to express my thanks to my girlfriend and also my best
friend Wei HE for her company. Her company makes my life colorful and happy.

v

vi

Table of Contents

Abstract i

Résumé iii

Acknowledgement v

1 Introduction 1

I Background 7

2 Statistical Models for Sequences 11
2.1 Hidden Markov Models . 11

2.1.1 The Three Problems . 13
2.1.2 Optimize HMM . 14

2.2 Gaussian Process Regression Models . 16
2.2.1 Gaussian Process . 16
2.2.2 Kernel Functions . 16
2.2.3 Gaussian Process Regression . 17

2.3 Artificial Neural Networks . 21
2.3.1 Fully Connected Neural Networks 21
2.3.2 Recurrent Neural Networks . 23
2.3.3 Sequence to Sequence Models . 24

2.4 Adversarial Learning . 25
2.4.1 Generative Adversarial Networks 26
2.4.2 Adeversarial autoencoders . 28

2.5 Conclusion . 28

3 Motion Capture 31
3.1 Motion Capture Data . 31

vii

3.1.1 Motion Capture . 31
3.1.2 Datasets . 34

3.2 Motion synthesis tasks and related works 34
3.2.1 Motion synthesis and forecasting 35
3.2.2 Inverse Kinematics . 39
3.2.3 Dealing with Styles . 40

3.3 Conclusion . 40

II Preliminary studies with Hidden Markov Models and Gaussian
Processes 41

4 Contextual HMMs for zero shot learning 45
4.1 Introduction . 46
4.2 Sharing parameters for activity classification with CHMMs 47

4.2.1 Contextual Hidden Markov Models 47
4.2.2 Using one-hot encoding of discrete contextual variables 50

4.3 Zero shot learning via distributed context representation learning 51
4.3.1 Joint Learning of CHMMs parameters and of context representation 52
4.3.2 Derivation of reestimation formulae for θs 53

4.4 Experimental Results . 54
4.4.1 DataSet . 54
4.4.2 Experimental Setting . 55
4.4.3 Activity Classification Results . 56
4.4.4 Learning Curve and Convergence of θ 57
4.4.5 Emotion Classification . 58

4.5 Conclusion . 59

5 Inverse Kinematics using Gaussian Process 61
5.1 Introduction . 62
5.2 Background of Jacobian Method . 62
5.3 Inverse Kinematics using Gaussian Process 64

5.3.1 Offline Preprocessing . 65
5.3.2 Predicting Gaussian Parameters using Gaussian Processes 66
5.3.3 Online Synthesis . 68

5.4 Experiments . 69
5.5 Conclusion . 70

viii

III Motion synthesis with Neural Networks and Adversarial Learn-
ing 75

6 Generative model 81
6.1 Introduction . 81
6.2 AutoEncoder for Sequences . 82
6.3 Adversarial Autoencoder for Sequences 83
6.4 Motion synthesis with a ASAE . 85
6.5 Implementation and variants . 86
6.6 Conclusion . 87

7 Conditional Models 89
7.1 Conditional synthesis models . 89

7.1.1 Conditional RNNs . 90
7.1.2 Conditional Adversarial Sequence Auto-Encoders (CASAE) 91
7.1.3 Conditional synthesis from style-free encodings of motion sequences:

Adversarial Style Free Sequence Auto-Encoders (ASFSAE) 93
7.2 Motion edition through disentangling factors of variation: Disentangling

Adversarial Sequence Auto-Encoder (DASAE) 94
7.3 Conclusion . 96

8 Experiments 99
8.1 Experimental setting . 99

8.1.1 Dataset . 99
8.1.2 Baselines . 100
8.1.3 Implementation details . 100

8.2 Objective evaluation . 100
8.2.1 Likelihood estimation . 100
8.2.2 Diversity and completeness . 101
8.2.3 Pose Forecasting . 102
8.2.4 Style classification on generated sequences. 104

8.3 Qualitative Evaluation . 104
8.3.1 Unconditional models . 104
8.3.2 Conditional models. 106

8.4 Latent representation space . 107
8.5 Conclusion . 108

9 Conclusion 117

ix

Bibliography 127

x

Chapter 1

Introduction

This thesis focuses on the synthesis of motion capture data with statistical models. Mo-
tion synthesis is a task of interest for important application fields such as entertainment,
human-computer interaction, robotics, etc. For instance, motion synthesis may be used
to drive a virtual character that can be involved in the applications of the virtual reality,
animation films or computer games [45, 54, 60]. Actually motion synthesis covers various
settings as we will discuss in this chapter. In particular the synthesis may be performed
so that the generated motion matches some predefined constraints. These constraints
may be very precise, one may want a motion that match given positions of few specific
parts of the body (e.g. hands, feet) at some time stamps. Or the constraints may be
softer, such as the motion should represent a specific motion activity (walking, dancing)
or it should be the motion of a young people, or of a sad people etc. We specifically work
on a complete description of the body as captured by motion capture devices where a
human motion is represented by a sequence of postures, each one being represented as
a real-valued vector of the angles of the body joints. More difficult settings deal with
incomplete data at training time, such as videos, but are out of the scope of this thesis.

Designing automatic tools for generating high precision and controllable motion is a
hard task and remains a challenge. Data driven models have been studied for gener-
ating human motion for many years. These models are learned from labeled datasets
where motion capture data are recorded while actors are performed various activities
like walking, dancing, running, etc. Some traditional statistical models such as Hidden
Markov Models (HMMs), Gaussian Processes (GPs) have been investigated for motion
synthesis [12, 54, 39, 27]. HMM based models yielded interesting results but seem hard
to be used for synthesizing sophisticated motions. Gaussian Process based models are
not easily scalable to large datasets, which limits their generation ability. Recently, the

1

Chapter 1. Introduction 2

revival of neural networks and in particular of recurrent neural networks raised again the
interest of researchers for these models to design motion synthesis systems [46, 45, 44].

This thesis focuses on the use of statistical models for motion synthesis with a strong
focus on neural networks. Our starting point lies in one particular problem that arises
when dealing with motion capture data, their variability. This variability in the data
comes first from the inter-individual variability. We do not all move the same way.
Consider that we may recognize a friend from behind just looking at the way he walks.
It is part of our identity. By the way, this yields a necessity of very accurate motions to
be well recognized and accepted by human people. A second related factor of variability
lies in our physiology, young people don’t move the same way as older ones, fat ones
don’t move as slim ones etc. Besides such individual factors of variations there are other
short term factors like our emotion, our gender, the fact that we are interacting with
somebody else, that we are tired etc.

If one wanted to deal with such a number of combinations of these factors of variations,
either individual and short term, one should need to collect a huge dataset covering as
much combinations as possible and design either one model for each combination or one
smart model able to cope with all these combinations. Moreover in practice, either some
combinations will be very rare in the training set or some combinations will not occur at
all in the training set which raises another problem close to a one shot learning problem.

How to deal with motion data variability is then a key issue for designing motion syn-
thesis systems able to generate realistic motions in a controllable fashion. Few works
have been proposed in that direction [92, 48, 94, 39]. Our work follows this line of
research and concerns the design of generative models for sequences able to take into
account some contextual information, which will represent the factors of variation we
just discussed.

Quite naturally we started from the results obtained in previous works that were done in
the team on this topic. The first systems I investigated during my thesis were based on
Hidden Markov Moels (HMMs). In particular these works relied on parametric HMMs
[88], that were extended in [69, 30, 29] to design HMMs whose parameters are conditioned
on external factors and that were used for several conditional motion synthesis tasks such
as speech conditioned motion synthesis [30]. Our preliminary studies to go further with
these models confirmed the potential of these models for some motion capture tasks but
at the same time it showed that designing more elaborate models with this technology
could become a hard task.

I moved then to explore the use of Gaussian Processes while focusing on a different

Chapter 1. Introduction 3

motion synthesis task known as Inverse Kinematics (IK). IK is a traditional problem
in animation field. It aims at finding a posture or sequence of postures which satisfies
some constraints on the position or the sequence of positions for some joints. Yet the
sequence of postures obtained using traditional methods is not always realistic and I
explored the use of Gaussian Processes to enforce such a realism.

In the last two years I focused my work on artificial neural networks. Actually the im-
pressive revival of neural networks, the deep learning phenomena, came with a revolution
for sequence data as well with, for the first time, recurrent neural networks (RNNs) that
actually worked well, in particular thanks to the use of specific cells like LSTM units [43]
in particular. Even more importantly for my present work the revolution arose in 2014
with the invention of Adveraial Learning and the proposal of Generative adversarial nets
(GANs) [36]. Adversarial Learning is a strategy for learning generative models. Many
variety of GANs have been proposed since and successfully applied, in particular to im-
ages generation [18, 71, 57, 70]. However, most of these models are designed for images
and few of them are for sequence data such as motion capture data. The combination
of practical RNNs and of Adversarial Learning opened the way to the works I realized
in the last two years of my work.

The thesis is organized in three parts. The first part covers background about statistical
models for sequences and motion synthesis. It includes two chapters.

Chapter2 presents the statistical models that we will rely on for modeling human
motions. We briefly introduce Hidden Markov Models and we present Gaussian Process
and Gaussian Process Regression. Then we introduce neural networks including fully
connected neural networks and recurrent neural networks. At last, we detail the recent
advances in generative models with adversarial learning. Along the chapter we discuss
in particular of Sequence to Sequence models and of adversarial autoencoders, two ideas
that we will use to design our own models.

Chapter 3 introduces the backgrounds about motion synthesis. We first present what
are motion capture data and how these are represented, and present two famous motion
capture datasets, the CMU dataset and the Emilya Dataset. Finally we provide a brief
review of state of the art in motion synthesis.

The second part reports our preliminary works on using Hidden Markov Models (HMMs)
and Gaussian Processes (GPs) for dealing with few aspects of motion data, handling
variability with HMMs and generating realistic postures with GPs. This part includes

Chapter 1. Introduction 4

two chapters.

Chapter 4 investigates the exploitation of contextual HMMs [69, 30] for dealing with
motion variability. We first introduce Contextual HMMs and detail how one can use such
models for learning from limited datasets by sharing parameters. Then we propose a
learning strategy that jointly learns the CHMM parameters and the latent representation
of the contextual information (discrete variables in our case) that allow performing some
kind of zero shot learning, i.e. generalizing to situations that have not been seen during
training. This work has been performed on the task of activity classification, not on a
synthesis task, since it was a first and easier step to explore the potential of the method
for motion synthesis.

Chapter5 presents our work on inverse kinematics with Gaussian Processes. We first
summarize related work about inverse kinematics and illustrate the traditional solution
for inverse kinematics, the Jacobian method. Then we detail our method based on
Gaussian processes that we used to design a variant of the Jacobian method. It consists
in defining a new objective function in the Jacobian method that enforces the method
to iteratively generate realistic postures.

The third part of the thesis is dedicated to the use of neural networks. It includes three
chapters.

Chapter6 first presents the framework we explored in this third part to build few
motion synthesis systems. It is based on the combination of Sequence Autoencoders and
Adversarial Autoencoder. We introduce the models and variants and discuss of their
relevance with respect to state of the art.

Chapter 7 details few models that we proposed for dealing with the variability of the
data in order to build systems synthesizing motion sequences that are both realistic and
controllable in some way. First we propose two conditional models which are extensions
of the generative model presented in the previous chapter. Then we introduce a strategy
for learning editing models that allow to modify a given sequence to change part of its
style, i.e some information related to the factors of variation.

Chapter 8 reports experimental results gained with all neural models and compare
our results with those of baselines in the field. We provide both objective measures that

Chapter 1. Introduction 5

compare the models with respect to well defined statistics and predictive tasks. Then
we provide few illustrations of generated sequences, more results, including videos of
motion sequences, may be found at https://bit.ly/2Ianl0X.

The final and ninth chapter summarizes our work and concludes the thesis.

https://bit.ly/2Ianl0X

Chapter 1. Introduction 6

Part I

Background

7

Introduction

The two following chapters describe background that is useful for reading the remaining
of the thesis. Chapter 2 recalls basics about Statistical models for sequence data, namely
Hidden Markov Models, Gaussian Processes, and Recurrent Neural Networks. Chapter
3 introduces the motion capture synthesis field, describes the usual tasks, the nature of
the data and the datasets we used in our work, and finally provides a short review of
previous works on motion synthesis. This state of the art section will be completed in
the next chapters for more focused topics.

9

10

Chapter 2

Statistical Models for Sequences

This chapter provides a brief review of the main statistical models which are the basis
of the methods proposed in this thesis.

We first present Hidden Markov Models which have been the reference model for dealing
with sequences (e.g. for designing speech recognition applications) for decades. As such
they have been much used in the animation field to deal with motion capture data. We
then briefly review Gaussian Processes that are powerful statistical models that have
been used for motion capture data as well. Next we introduce neural networks and insist
on specific models that we will build on and in particular, that are Recurrent Neural
Networks and Sequence to Sequence models. Finally we will introduce the adversarial
learning strategy that was invented a few years ago and that has been widely used for
designing models able to synthesize accurate and realistic data, for images in particular.

2.1 Hidden Markov Models

Hidden Markov Models (HMMs) are one of the most famous statistical models for dealing
with sequences in pattern recognition and machine learning applications. A HMM is a
sequence model, or sequence classifier, whose job is to assign a label or class to each unit
in a sequence, thus mapping a sequence of observations to a sequence of labels. HMMs
are probabilistic sequence model that have been used for developing the first strong
models for speech recognition, handwriting recognition, and many natural language
processing tasks.

HMMs are particular state space models where the space is discrete. A HMM is the
aggregation of a Markov chain (a probabilistic automata over a finite set of states) and

11

Chapter 2. Statistical Models for Sequences 12

of probability density functions attached to the states. It implements a probability
distribution over time-series.

We now introduce the usual notations for HMMs. First an HMM is composed of a
Markov chain. We note:

• M is the number of states in the model

• S = {s1, s2,, sM} is the set of states of the model

• π = {πi}, is the initial state distribution, the probability of starting in state si is:
πi = P (si).

• A = {ai,j} is the transition probability matrix, where ai,j = P (sj |si) gives the
transitions probability from state i to state j. Of course

∑
j ai,j = 1

Next there are probability density functions attached to states. We note:

• B = {bj(x)} = p(x|sj) denotes the observation probability density function (pdf)
in state sj . Typically when x is continuous, it is modeled as a Gaussian mixture.
In the simpler case where it is a Gaussian distribution with mean µj and covariance
Σj , we get: bj(x) = N (x;µj ,Σj) = 1√

(2π)d|Σj |
e−(x−µj)>Σ−1(x−µj)/2.

Usually one notes φ =
{
π,A,B

}
the set of of all the parameters of a HMM.

Finally we use the following notations for the data the HMM operates on.

• T is the length of an observation sequence

• x = {x1, x2, ..., xT } is an observation sequence of length T

HMMs are named Hidden Markov models since the state is usually hidden so that the
information one gets on a sequence, either in training or in testing stage, is partial. One
usually introduce the following notations:

• q = {q1, q2, ..., qT } denotes the state sequence

The sequence of states in a HMM is assumed to follow an order one Markov property,
meaning that the state at time t depends on the state at time t−1 only. In other words,
state at time t is a conditionally independent to states before t− 1, given state at time
t. Then the transition probability is actually ai,j = P (qt = sj |qt−1 = si) and a initial
state probability stands for πi = P (q1 = si).

According to the assumption of a HMM, an observation sequence x = (x1, x2, ..., xT) is
generated as follows:

Chapter 2. Statistical Models for Sequences 13

1. Draw an initial state q1 = si according to the initial state distribution π

2. Set t = 1;

3. Sample xt from the pdf in current state qt, bqt(x);

4. Draw the new state according to the transition probability distribution in the
current state, qt, a = {aqt,j}j=1,··· ,M ;

5. Set t = t+ 1; if t < T go back to step 3; otherwise stop the procedure.

Figure 2.1 illustrates the process. Each state generates an observation and thus the
generated sequence is refer to as Observation Sequence. The randomly generated
state series is referred to as State Sequence.

Figure 2.1: Illustration of generation process by a HMM. Each state qt is responsible for
emitting an observation xt while the model switches from state to state according to a
transition probability distribution.

2.1.1 The Three Problems

There are three key problems of interest if one wants to use HMMs [68]:

• Problem 1—Given an observation sequence x = {x1, x2, ..., xT } and the model
φ = {π,A,B}, how to compute p(x|φ), the likelihood of the observation sequence?

• Problem 2—Given an observation sequence x = {x1, x2, ..., xT }, how to deter-
mine the most likely state sequence q = {q1, q2, ..., qT }?

• Problem 3— Given a training set of N sequences
{
x1, ...,xN

}
how to find the

model’s parameters φ = {π,A,B} which maximize the likelihood of the training
data p

({
x1, ...,xN

}
|φ
)
?

The last problem is the training problem and is the most important. Besides the first
and second problem also get involved in the process of solving the problem 3. So we
recap now how to optimize a HMM by solving problem 3.

Chapter 2. Statistical Models for Sequences 14

2.1.2 Optimize HMM

Given a training set of N i.i.d. observation sequences X = {x1,x2, ...,xN}, the HMMs
are usually set through Maximum Likelihood (Eq 2.1).

φ∗ = arg max
φ

log p(x1, ...,xN ;φ) =
N∑
k=1

log p(xk;φ) (2.1)

There is no known way to solve the maximum likelihood model analytically. Instead
Expectation Maximization (EM) algorithm [68] can be used for solving this problem and
iteratively optimise the HMM’s parameters.

The EM algorithms consists in iterating two steps:

• The E-Step builds a lower bound of the likelihood of the training set.

• The M-Step updates the model parameters by optimizing the lower bound of the
likelihood.

The ’E’ and ’M’ steps are performed iteratively and after several loops the likelihood
probability converges to a maximum. Every iteration new values of the parameters are
computed. The reestimation formulae involve the following intermediate variables:

γkt (j) = p(qt = sj |xk;φ) (2.2)

ξkt (i, j) = p(qt = si, qt+1 = sj |xk;φ) (2.3)

where k indexes the number of the training sequence, and where γkt (j) denotes the
probability of being in state j at time t given the observation sequence xk, and ξkt (i, j)
denotes the probability of transiting from state i at time t to state j at time t+ 1, given
the observation sequence xk.

These quantities may be computed using the following variables which may efficiently
be computed via dynamic programming routines (known as forward and backward al-
gorithms):

αkt (j) = P (x1, x2, ...xt, qt = sj ;φ) (2.4)

βkt (j) = P (xt+1, xt+2, ...xT |qt = sj ;φ) (2.5)

Chapter 2. Statistical Models for Sequences 15

αkt (j) is the joint probability of the partial observation sequence (until t) and state qt = sj

at time t, given the model φ. αkt (j) is called forward variable and can be obtained by an
algorithm called forward procedure [9, 68]. βkt (j) denotes the probability of the partial
sequence (from t+ 1 to T), given the state qt = si and the model φ. It is referred to as
backward variable and can be computed by backward procedure [9, 68].

Going back to γ and ξ variables, these may be computed efficiently as well since they
may be expressed with the above quantities:

γkt (j) = αkt (j)βkt (j)
p(xk;φ) = αkt (j)βkt (j)

M∑
j=1

αkt (j)βkt (j)
(2.6)

and
ξkt (i, j) = αkt (i)ai,jbj(xt+1)βkt (j)

p(xk;φ) = αkt (j)ai,jbj(xt+1)βkt (j)
M∑
j=1

αkt (j)βkt (j)
(2.7)

In the M-step, one uses an auxiliary function (Eq 2.8) derived from the likelihood prob-
ability to update the model parameters.

Q(φ′|φ) = Eq|x,φ[logP (x,q;φ′)]

=
∑

q
P (q|x;φ) logP (x,q;φ′) (2.8)

where φ′ denotes the estimated model parameters, and φ is the current model parame-
ters. The estimates of model parameters φ′ can be obtained by maximising the auxiliary
function.

This leads to rather intuitive reestimation formulae such as:

π(si) = 1
K

∑
k

γk1 (i) (2.9)

µ(si) =

∑
k,t
γkt (i)xkt∑

k,t
γkt (i)

(2.10)

Chapter 2. Statistical Models for Sequences 16

2.2 Gaussian Process Regression Models

2.2.1 Gaussian Process

A Gaussian process defines a distribution over functions, p(f), where f is a function
mapping some input space X to Y. If f(·) is a function sampled from a gaussian
process, we can denote it as follows:

f(·)∼GP(m(·), k(·, ·)) (2.11)

Definition p(f) is a gaussian process if for any finite subcollection {x1, ...xn} ⊂ X ,
the distribution p(f(x1), ..., f(xn)) has a multivariate gaussian distribution as Eq 2.12.


f(x1)

...
f(xn)

 ∼ N
(

m(x1)
...

m(xn)

 ,

k(x1, x1) . . . k(x1, xm)

...
k(xm, x1) . . . k(xm, xm)


)

(2.12)

where the covariance matrix is denoted by K.

2.2.2 Kernel Functions

In Eq 2.12, the function m(·) can be any real-valued function. In order to make the
resulting matrixK positive semidefinite for any set of points x1, ..., xm ∈ X , the function
k(·, ·) must be a valid kernel [31].

Given the mean function and a kernel function, one is able to sample functions from the
gaussian process defined by the mean and kernel function. Different kernel functions
yield different GPs and result in different sampled funtions as shown in Fig 2.2. Next
we introduce four common kernel functions and their properties.
a) Radial Basis Function Kernel (RBF)

k(x,x′) = σ2 exp(−||x− x′||2

2`2) (2.13)

RBF kernel is also called Gaussian kernel. It is the most common kernel in GPs. It has
only hyperparmeters: output variance σ and lengthscale `. σ determines the average
distance of a function away from its mean. ` determines the length of the fluctuation in
a function.

Chapter 2. Statistical Models for Sequences 17

b) Rational Quadratic Kernel (RQK)

k(x,x′) = σ2(1 + ||x− x′||2

2α`2
)−α (2.14)

RQK is similar to adding together many RBF kernels with different lengthscales. A
GP with RQK results in functions which vary smoothly across many lengthscales (see
Fig 2.2b).

c) Exponentially Sine Squared Kernel

k(x,x′) = exp(−2 sin2(π/p ∗ ||x− x′||2)
`2

) (2.15)

This is a periodic kernel and it can be used for modelling periodic functions (see Fig 2.2c).
The hyperparameters p controls the period of functions in a GP. ` determins the length-
scale in the same way as RBF kernel.

d) Linear Kernel
k(x,x′) = σ + x>xj (2.16)

A GP with a linear kernel yields linear functions (see Fig 2.2d). The linear kernel is
dependent on the absolute location of two input points instead of their relative distance
as in previous three mentioned kernels.

2.2.3 Gaussian Process Regression

Suppose that we have a training set {xn, yn}Nn=1, with xn ∈ X , yn ∈ Y. We wish to learn
the function f(·) ∈ F : X × Y and make prediction of y∗ given a new x∗. Unlike the
parametric models, we do not directly formalise the function f(·). We assume the prior
distribution over the functions f(·) is a zero-mean Gaussian process prior (Eq 2.17).

f(·)∼GP(0, k(·, ·)) (2.17)

where k(·, ·) is a kernel function. Then the joint distribution over the function values
f = {fn}Nn=1, gives the corresponding inputs X = {xn}Nn=1 is a Gaussian distribution
with zero mean and covariance K as follows:

p(f) = p(f1, f2, ..., fN) = N (0,K) (2.18)

Chapter 2. Statistical Models for Sequences 18

(a) GP with a RBF kernel (b) GP with a rational quadratic kernel

(c) GP with a ExpSineSquare kernel (d) GP with a linear kernel

Figure 2.2: Functions sampled from four GP with different kernel functions.

where the function value fn = f(xn), and covariance matrix K has elements:

K(m,n) = k(xm,xn) (2.19)

The Gaussian process regression model can be defined as follows:

yn = fn + εn, n = 1, . . . , N (2.20)

where the ε measures the uncertainty of the fn. We assumes it has a gaussian distribu-
tion:

εn ∼ p(ε) = N (0, σ2) (2.21)

Chapter 2. Statistical Models for Sequences 19

The conditional probability distribution of yn given fn is as follows:

p(yn|fn) = N (fn, σ2) (2.22)

Because the noise ε is independent for each data example, the joint distribution of
y = {y1, ..., yN}> conditioned on f has an isotropic gaussian as follows:

p(y|f) = N (f , σ2I) (2.23)

From Eq 2.18 and Eq 2.23, we can get the marginal distribution over y given X as
follows

p(y|X) =
∫
p(y|f)p(f)df

= N (0,K + σ2I)
(2.24)

We choose a widely used RBF kernel (see Eq 2.13 to compute the covariance matrix,
then the marginal likelihood becomes a function of the hyperparameters θ of the kernel
function.

p(y|X, θ) = N (0,Kθ + σ2I) (2.25)

Its logorithm likelihood is :

ln p(y|X, θ) = −1
2 det (Kθ + σ2I)− 1

2y>(Kθ + σ2I)−1y− N

2 ln(2π) (2.26)

By maximizing the loglikelihood, one can optimize the parameters θ and σ. Alterna-
tively, in order to make the model immune to overfitting, one can use use Bayesian
method to maximising the posterior distribution over the parameters θ.

Making Predictions Given a new input vector x∗, we want to use the above gaussian
regression model to predict the target output y∗. From Eq 2.24, we can obtain the joint
distribution over y∗,y|x∗,X as follows:

p(y∗,y|x∗,X) = N (0,KN+1 + σ2I) (2.27)

Chapter 2. Statistical Models for Sequences 20

where KN+1 is a N + 1×N + 1 matrix defined as follows

KN+1 =

K k
k> k(x∗,x∗)

 (2.28)

where k = (k(x1,x∗), k(x2,x∗), ..., k(xN ,x∗))>.

We can evaluate the predictive distribution p(y∗|x∗,X).

p(y∗|x∗,X,y) = N (µ∗(x∗), σ2
∗(x∗)) (2.29)

where µ∗(x∗) and σ2
∗(x∗) are defined as follows:

µ∗(x∗) = k>(K + σ2I)−1y

σ2
∗(x∗) = k(x∗,x∗)− k>(K + σ2I)−1k + σ2

(2.30)

By sampling from 2.29, we can predict the value of y∗. The Fig 2.3 shows the sampled
functions from a gaussian process regression model fitted on 10 datapoints (red points
in the figure).

Figure 2.3: Illustration of gaussian process regression. The blue curve is the true function
from which the red data points are sampled. The red points are the training examples
for fitting the guassian process regression model with a RBF kernel. The black curve is
the mean function µ(x∗) in Eq 2.30, and the other curves are functions sampled from
the gaussian process. The shaded region corresponds to +/- two standard deviations.

Chapter 2. Statistical Models for Sequences 21

2.3 Artificial Neural Networks

Arificial Neural Networks (ANNs) have become a very popular framework in machine
learning. ANNs are inspired from the biological neural networks that exist in the human
brain [1]. An ANN is composed of nodes called neurons that are linked with weighted
connections. In modern ANNs (such as Multi-Layer Perceptrons) the neurons are organ-
ised into several layers. These layers are stacked hierarchically to form a multi-layered
neural network. The connections between artificial neurons can transmit signal from
one to another, and the neuron that receives the signal can process it and then outputs
a value for next connected neuron.

Compared with other machine learning models, the main advantage of ANNs is a large
modeling capacity and a high flexibility in designing architectures. Using the backprop-
agation learning algorithm, it can learn relevant representation of data in order to solve
the problem of interest such as classification or regression. ANNs have been successfully
applied in almost all the tasks in machine learning from image classification, speech
recognition to image generation, speech synthesis. In this section we first introduce
fully connected neural networks which are the most basic neural network. Then we
present recurrent neural networks (RNNs) which have wildly been applied to sequential
data, such as speech and video. Finally, we introduce Long Short-Term Memory units
(LSTM) which are now very popular to build recurrent models and that allow solving
the gradient vanishing problem when dealing with long sequences.

2.3.1 Fully Connected Neural Networks

Fully Connected Neural Networks (FCNNs) are the simplest version of neural networks.
In a FCNN, each neuron in one layer is connected to all the neurons in the next layer
as shown in Figure 2.4. A FCNN consists of an input layer, one or multiple hidden
layers and an output layer. We take a one-layer FCNN (see Fig 2.4) as an example to
introduce the feed forward process.

Consider an input vector x = (x1, x2, x3)> ∈ R3 for which we want to compute the
output predicted by the model, y = (y1, y2)> ∈ R2. We feed x into the FCNN. The
outputs of the hidden layer are denoted by h = (h1, h2, h3, h4)>. Each element in h is
the output of one hidden neuron and can be obtained as follows:

hi = φ(
3∑
j=1

wijxj + bi) (2.31)

Chapter 2. Statistical Models for Sequences 22

Figure 2.4: Illustration of the structure of fully connected neural networks

where wij is the weight of the connection from input neuron xj to the hidden neuron hi
and bi is the bias of hidden neuron hi. φ(·) is an activation function which is usually a
non-linear function.

Then it can be written as a matrix form as follows:

h = φ(W · x+ b) (2.32)

where W ∈ R4×3 is the weight matrix and b ∈ R4×1 is the bias matrix. Note that
the activation function φ(·) is elementwise. There are different activation functions in
practice, and here we show some of them in Figure 2.5. Similarly the outputs y can be
computed as follows:

y = ψ(U · h+ c)

= ψ(U · (φ(W · x+ b)) + c)
(2.33)

where y denotes the output vector of the output layer, U and c are respectively the
weight matrix and bias vector for the output layer

Fig 2.5 shows how the values of the weights w determine the curvature of the activation
function. In the learning process, the learning algorithm (usually gradient based learn-
ing methods) can adjust the values of parameters w and b and makes each neuron have
a different activation function with different curvature and bias. These non-linear acti-
vation functions endow the neural network the ability of learning rich features. Because
a neural network implements a very non-convex function with respect to its parameters,
there is not any analytical solution for optimizing the neural network and gradient based
methods such as SGD are used.

Chapter 2. Statistical Models for Sequences 23

(a) Sigmoid Function with respect to different
value of w

(b) Tanh Function with respect to different value
of w

Figure 2.5: Different activation functions:Sigmoid Function, Tanh Function

2.3.2 Recurrent Neural Networks

Fully connected neural networks are suitable for processing fixed-size data. However,
for time series or sequential data, one needs models which are able to learn and to take
into account dependencies between successive observations in the sequences. Recurrent
neural networks (RNNs) [59] are designed for such data. RNNs have been successfully
applied in speech recognition [38], handwriting synthesis [37] and video analysis [64].
Unlike in FCNNs, RNNs include cycles in the connections. Including such recurrent
connection allows gathering information as observations in a sequence are processed.
The basic structure of an RNN is shown in Fig 2.6.

Figure 2.6: Illustration of recurrent connection of RNNs.

Consider a time series denoted by x = (x1,x2, ...,xT)> with length T . The sequence
x is fed into the RNN frame by frame. At each time step, one neuron will output
one hidden state, and after the whole sequence is fed into the RNN, we will obtain
a sequence of hidden states denoted by h = (h1,h2, ...,hT)>. Similarly, we will get
a sequence of outputs denoted by o = (o1,o2, ...,oT)>. Note that in the Figure 2.6,

Chapter 2. Statistical Models for Sequences 24

each node represents an entire vector. Differing from FCNNs, besides the feed-forward
connections, each hidden neuron has a recurrent connection from previous time step to
current time step. The state ht can be computed as folows:

ht = φ(U · xt +W · ht−1 + b), if 1 < t ≤ T

h1 = φ(U · x1 + b), if t = 1
(2.34)

where φ(·) is the activation function of hidden layer. The values output neurons are
computed as follows:

ot = ψ(V · ht + c) (2.35)

where ψ is the activation function of the output neurons.

RNNs are learned with a variant of back-propagation which consist in unfolding the
network a number of times equal to the length of the input sequence, then to perform
forward and backward propagation in this unfolded network, while paying attention that
all the network copies share the same parameters (hence the gradient is cumulated over
all copies).

Long-term Dependencies and LSTM units One of the most challenging problem
in RNNs is the difficulty of learning long-term dependencies. Because of the recurrent
connections, the gradient of the recurrent connection tend to explode or vanish with
long-term interaction, which makes learning long-term dependencies impossible.

For solving the long-dependencies problem, Gated RNNs which include long short-term
memory (LSTM) [73] and gated recurrent unit (GRU) [23] were proposed. Both of
these two units exhibit a particular architecture that enables skipping the cells (i.e.
authorizing the cell to copy previous state) which has appeared to be a key issue to ease
gradient flow in deep architectures such as Residual Networks for instance [42].

2.3.3 Sequence to Sequence Models

Sequence to Sequence (S2S) models are a particular architecture that we will intensively
use in the design of our systems in the last part of this thesis. We present them in more
details now. S2S have been proposed by Ilya Sutskever et al. [74] to build machine
translation model. Sequence to Sequence models as end-to-ends model have been widely
used in processing sequential data like language, speech. The structure of a S2S model
2.7 is similar to a standard autoencoder where both the encoder and decoder are RNNs.

Chapter 2. Statistical Models for Sequences 25

Figure 2.7: Architecture of a sequence to sequence model

Given an input sequence x = (x1, x2, xT)>, the encoder of the S2S model maps the
whole sequence to a fixed-length latent vector hT . This vector may be seen as a new
representation of the full input sequence, we will often call it a latent representation
of the input sequence. This latent vector is then expected to contain all the necessary
information about the input sequence x so that the decoder may build the output
sequence from it. There are usually two ways to connect the latent vector to the decoder
network. One way is to add hT as input to each time step of the unfolded RNN-based
decoder. The other way is to provide hT as initial state of the RNN decoder. In addition
predictions of the output observation at time t, yt, may be taken as input to the RNN
decoder at time t+ 1 to predict yt+1.

2.4 Adversarial Learning

Generative models aim to learn the data distribution p(x) from a training dataset. Once
learned they may be used to generate new data by sampling from the data distribution
p(x). Yet learning the underlying probability density function of complex and real data
such as natural images has remained too difficult for usual methods. The seminal work
on Generative Adversarial Networks (GANs) [36], and the parallel work on Variational
AutoEncoders (VAEs) [50], have been a significant breakthrough in the field. It has led
to many variants and studies and allowed researchers to build more and more accurate
generative models for complex data with a main focus on natural images.

Chapter 2. Statistical Models for Sequences 26

2.4.1 Generative Adversarial Networks

Unlike many previous models that rely on learning a generative model through likelihood
maximization which may be intractable most of time (e.g. for example, VAEs use
a variational lower bound to approximate the true likelihood), Generative Adversarial
Networks (GANs) are not learned to directly estimate the likelihood of a training dataset.
Instead GANs are learned so that after learning the model may be used to sample data
in such a way that the distribution with which it samples data is close (optimally equal
to) the underlying distribution of the data in the training set. Hence one may get a
machine that can sample data according to the targeted distribution but one cannot
actually access to this distribution.

Figure 2.8: structure of Generative Adverarial Nets

Min-Max Game A GAN consist of two models as shown in Fig 2.8. The first model
is called Generator and denoted by G. It takes as input a latent vector z sampled from
a prior distribution p(z) = N (0,σI) and generates an artificial data. The second model
is called Discriminator and noted D. It aims at distinguishing if an input is an artificial
data generated by the Generator from the Generator or a real data sample from the
training set. These two models are implemented with neural networks whose parameters
are learn through a min-max game with the following objective:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.36)

Chapter 2. Statistical Models for Sequences 27

where pdata represents the distribution of data in the training set which we want to learn
through a GAN. By maximizing the objective function, the Discriminator will assign
a high value to a real input data and a low value to an input from the Generator. In
the contrary the Generator tries to fool the Generator by generating better samples,
i.e. ones that the Discriminator assign high values. This optimization is like a min-max
game where the Discriminator and Generator compete with each other and improve
themselves simultaneously. Hopefully after convergence samples generated by the Gen-
erator cannot be discriminated by the discriminator while the Discriminator is not able
to be optimized further because generated data are actually indistinguishable for real
ones. The learning algorithm of GANs is shown in Algorithm 1.

Algorithm 1 Min-Max Learning algorithm for GANs [36]
for number of training iterations do

for k steps do
•Sample a minibatch ofm noise samples {z1, ...,zm} from the prior distribution

pnoise(z)
•Sample a minibatch of m real data samples {x1, ...,xm} from training set
•Update the discriminator by ascending its stochastic gradient:

∇θd

1
m

m∑
i=1

[
logD(xi) + log(1−D(G(zi)))

]
(2.37)

end for
•Sample minibatch of m noise samples {z1, ...,zm} from the prior distribution
•Update the generator by descending its stochastic gradient:

∇θg

1
m

m∑
i=1

log
(
1−D(G(zi))

)
(2.38)

end for

The Generator implicitly defines a probability distribution pg. One may show that when
the min-max game reaches Nash Equilibrium, the Discriminator is unable to recognize
the fake from real data and the Generator implements a distribution on the data that
equals pdata. Unfortunately this Equilibrium is difficult to reach in practice, mainly
because of the non-convex property of the objective. In practice then, the learning of
GANs is unstable and many works have been proposed to improve learning, e.g. [6].

In this work we mainly used GANs rather than VAES since GANs are known to generate
more realistic data than VAEs, this is the reason why we did not detail these models
here.

Chapter 2. Statistical Models for Sequences 28

2.4.2 Adeversarial autoencoders

A particularly interesting variant, called adversarial autoencoders, has been proposed in
[57]. An autoencoder is a well known neural network architecture that learns to recon-
struct a data while passing through an information bottleneck. A simple autoencoder is
a NN consisting of first layer, the encoder Enc, that projects the input data in a lower
dimension, followed by a second layer, the decoder Dec, that tries to reconstruct the
input data from the state of the hidden layer. The state of the hidden layer, named
e(x) is called the encoding of the input x. An autoencoder is learned to minimize the
mean reconstruction error Ex∼pdata

[‖x−d(e(x))‖2] from a training set. In an adversarial
autoencoder, an autoencoder is primarily learned as usual to reconstruct true data. The
discriminator is learned to distinguish between noise samples z (sampled from a prior
distribution pnoise) and encodings of true data commputed by the Encoder. Moreover
an additional term in the objective requires the encoder Enc to fool the discriminator.
This adversarial learning makes the encoder map the input data into a latent space with
a given prior distribution. Hence after learning one may use the decoder alone as a
generative model by sampling z from the prior distribution pnoise(z) then by computing
Dec(z). The objective criterion becomes:

min
e,d

max
D

Ex∼pdata
[‖x− d(e(x))‖2]

+ Ez∼pnoise [log(1−D(z)]

+ Ex∼pdata
[logD(e(x))]

(2.39)

2.5 Conclusion

There exist a variety of statistical models for dealing with sequence data. Hidden Markov
models have long been the reference technology, e.g. with many systems built for speech
recognition and natural language processing. We naturally started with the idea to use
such models for the motion synthesis tasks we wanted to address in this thesis. As a
side work we investigated the benefits one could get from using Gaussian Process that
have already been used for sequence syntesis. Yet the growing popularity of recurrent
neural networks (RNNs) made us change our plans. RNNs have become for some years
now the new reference models for recognition and prediction tasks. Besides, Sequence
to sequence models and their variants have demonstrated the possibility to compute
low dimensional vector representation of structured data and opened the way to many
models relying on this capacity. We decided at some point to focus on how to explore the

Chapter 2. Statistical Models for Sequences 29

potential of these models for motion synthesis, in particular when combined adversarial
learning strategy.

Chapter 2. Statistical Models for Sequences 30

Chapter 3

Motion Capture

This chapter introduces necessary concepts about motion capture and motion synthesis
that we will use in the manuscript. Motion Capture Data (Mocap) are wildly used today
in animation, games, etc [62, 54, 32, 46]. Creating new animations usually requires
capturing motion capture data, which is a time-consuming and labor-expensive process
which explains why automatically learning how to synthesize motion sequences is an
issue. We first introduce the motion capture data that are used in the field and the way
they are represented. Then we present the various tasks that are covered by motion
synthesis such as the synthesis of motion sequences, the control of motion and motion
editing etc, and we briefly review statistical models that have been proposed for these
tasks.

3.1 Motion Capture Data

3.1.1 Motion Capture

Motion Capture (Mocap) is the process of recording the movement of objects or people.
In filmmaking or video game development, it refers to recording the actions of human
actors. Then the captured Mocap dataset can be used to animate digital character
models in 2D or 3D computer animation.

Euler Angles There are different ways to parameterize the orientation of a rigid body.
Euler Angles [3] is one common way used in motion capture data. It comprises three
degree-of-freedom rotation along three axes x, y, z (see Figure 3.1).

31

Chapter 3. Motion Capture 32

Figure 3.1: rotations along x, y, z axes

Figure 3.2: Euler Angles (α, β, γ) in order of "Z-X-Z". The blue axes are the initial
frame, and the red axes represents the frame fixed in the rigid body [3].

We denote the 3 degree of freedoms (DOFs) of Euler angles as α, β, γ. According to the
order of axes to rotate, there are 12 different sets of Euler angles definitions. Different
authors may use different settings. Euler angles can be defined by intrinsic rotations.
The rotated frame XYZ may be imagined to be initially aligned with coordinate axis xyz,
before undergoing the three elemental rotations represented by Euler angles. Alterna-
tively one may use extrinsic rotations that are elemental rotations that occur about the
axes of the fixed coordinate system xyz. The XYZ system rotates, while the reference
coordinate system does not.

Here we introduce one set of Euler angles in order of "Z-X-Z" (see Figure 3.2). In
Figure 3.2, the blue axes x,y,z denotes the original frame and the red axes of X, Y,
Z denotes the rotated frame fixed in the rigid body. The blue frame represents the
original state of the rigid body, and the red frame is the final state of the rigid body.

Chapter 3. Motion Capture 33

The orientation of the rigid body from blue frame to the red frame is denoted by Euler
Angles (α, β, γ) in order of "Z-X-Z". This process can be achieved as follows:

1 At the begining, the blue and red frames overlap completely.

2. Rotate the rigid body α along Z axis of the rotated frame (red in Figure 3.2)

3. Rotate the rigid body β along X axis of the rotated frame.

4. Rotate the rigid body γ along Z axis of the rotated frame.

There are different formats to represent motion capture data. BVH format and "ASF/AMC"
formats are two common formats for motion capture data.

BVH file comprises two parts: a header part and a data part. The header section
describes the hierarchy and initial pose of the skeleton. For example, it defines the name
of each joints, the relationship of parent-child nodes and their relative position in the
initial pose. In the data section, the actual motion data are contained. Each line is one
frame of the motion sequence. Each frame includes the global position of the root joint
which also represents the position of the body. Then it contains the global orientation of
the root joint. The remaining data are the euler angles of the orientation of each joint.

ASF/AMC format uses two individual files: a ASF file and a AMC file. The ASF
file defines the skeleton of the character. It is similar to the header part of BVH file.
The AMC file defines the motion data the same with the data section in a BVH file.
There is no essential difference between ASF/AMC format and BVH format. They both
use Euler angles to represent poses. The only difference for different formats are the
parsing process and display software.

In my work, I used two famous motion capture datasets: the Emilya Dataset [32] and
the CMU mocap dataset [2]. The Emilya dataset was gathered by LTCI group of Tele-
com Paristech and is dedicated to studying emotional body expression in daily actions
[32]. All motions of Emilya dataset are precisely labeled with activity and emotion by
volunteers. These activity and emotion labels are very important for learning super-
vised models. The CMU mocap dataset includes a large number of activities captured
under many different scenarios, such as locomotion , and interaction with environments
etc. Because the dataset is not precisely labeled and only imprecise descriptions are
provided for each action, it is more suitable for unsupervised learning. In next sections,
I introduce these two motion datasets respectively.

Chapter 3. Motion Capture 34

3.1.2 Datasets

Emilya Dataset

The Emilya Dataset [32] is a motion capture dataset which is captured for studying
emotional body expression in daily actions. It consists of motion capture data captured
from 12 actors. Each actor is asked to perform 8 different activities under eight different
emotions. The 8 activities are ’Being Seated’, ’Sitting Down’, ’Lift’, ’Throw’, ’Knocking
on the Door’, ’Move Books’, ’Simple Walk’, ’Walk with something in the Hands’. The
eight Emotions are ’Anger’, ’Anxiety’, ’Joy’, ’Neutral’, ’Panic Fear’, ’Pride’, ’Sadness’
and ’Shame’. Each of the 12 actors performed 12 times each activity-emotion combina-
tion. There are then a total of 9216 sequences in the dataset. Its framerate is 120 frames
per second. Motion sequences are represented as sequences of frames (of length between
200−500 depending on the activity) where each frame is a 72-dimensional vector whose
components correspond to 69 joint angles of 23 joints in skeleton and 3 global translation
coordinates of root joint. All motion sequences are saved in ’.bvh’ format. All the joint
rotations are represented as Euler angles in order of Y-X-Z.

CMU Mocap Dataset

The CMUmocap dataset is collected and maintained by Graphics Laboratory of Carnegie
Mellon University [2]. It contains data from a large variety of actors and activities, such
as locomotion actions, sport activities, and interaction with environment etc. There are
a total of 144 activities and each activities has multiple trials. A part of the data is
listed in Figure 3.4. The CMU motion data are saved in ’ASF/AMC’ format files where
its joint orientations are represented as Euler angles in order of X-Y-Z. In my work, the
CMU dataset is used for training gaussian process model (see chapter 5)

3.2 Motion synthesis tasks and related works

How to learn patterns from motion capture data and how to learn models that automat-
ically generate realistic motion capture data has then become a very relevant research
topic, which is related to learning generative models in the machine learning field. Mo-
tion synthesis actually covers a few different tasks, including pure motion synthesis,
motion forecasting and inverse kinematics.

Chapter 3. Motion Capture 35

Figure 3.3: Illustration of Motion Capture[32]

3.2.1 Motion synthesis and forecasting

The most popular task is that of generating randomly motion sequences (e.g. [15]), a
closely related task is motion forecasting where one wants a system to complete a motion
sequence from its beginning, e.g. giving the first frames [33]. These are traditional tasks
on sequence data related to the design of generative models for such data.

Hidden Markov Models. Hidden markov models (HMMs), as a reference technol-
ogy for dealing with sequences, have been deeply investigated for synthesizing human
motion [12, 30, 89, 28], especially with the invention of methods for generating smooth
trajectories from a learned HMM [77]. Some researchers focus on synthesizing simple
head motion rather than the motion of the body. Busso et al. proposed a HMM based
model for synthesizing the head motion according to the speech features [15]. Ding et al.
uses a fully parameterized HMM to synthesis the motions of human eyebrows [30]. The
motions such as eyebrow motion, head motion etc, usually have low degree of freedoms

Chapter 3. Motion Capture 36

Figure 3.4: A part of subjects of CMU dataset: Subject #1 and Subject #2

(DOFs). For the whole-body motion which has more DOFs, HMMs are not necessarily a
good model because they do not encode high-order temporal dependencies easily. Hence,
few works based on HMMs were done for whole-body motion synthesis [12].

For generating sequences, autoregressive recurrent neural networks have been success-
fully applied in tasks of handwriting synthesis, language translation etc [37, 33]. These
models learn the distribution of current frame conditioned on the previous frames. How-
ever, they are not able to learn global information. Seq2Seq model [74] is a RNN-wise
autoencoder which is applied in semi-supervised tasks and language translation. Al-
though it can learn global information, it cannot generate new sequences. Sequential
variational autoencoder is proposed by [11] to generate texts. It learns a probabilistic
graphical model by variational inference. However, it still needs to manipulate the com-
putation of complex probability. For example, in order to make the KL-divergence term
tractable, one must choose a simple prior distribution which limits its flexibility.

Chapter 3. Motion Capture 37

Neural Networks. In the recent years, (deep) neural networks got an overwhelming
success in machine learning. Neural Networks are popular for their high capacity of
representation and scalability to large dataset.

Some researchers have studied using convolutional neural networks to model human
motion [46, 45]. Holden et al. use convolutional neural networks (CNNs) to learn a
manifold of human motion [46]. In [45], a neural network is proposed for motion con-
trolling. Although these works achieves good results on motion synthesis, CNNs are
not good choices for modelling sequential data or time series because it is not able to
applied on variable-length data. In contrast, because of using recurrent connections
between two successive timesteps, Recurrent Neural Networks (RNNs) are suited for
dealing with variable length sequences [37, 73, 23]. Unlike in Hidden Markov Models
(HMMs) where states are discrete and finite, RNNs use hidden units to represent a con-
tinuous state space with real values, hence it is endowed with an increasing modeling
power. RNNs have been successfully used as sequence synthesis models for handwriting
[37] and speech [80] synthesis. Few works have applied RNN to motion capture data, in
particular for forecasting future motion based on an past sequence. One main work of
this kind, with which we will compare our aproach to is proposed in [33], where an RNN-
based network called Encoder-Recurrent-Decoder (ERD) combines an encoder decoder
structure with recurrent connections on the intermediate state space. Motion synthesis
mainly corresponds to generative models in machine learning field. Some breakthroughs
about generative models have been made, such as Variational Autoencoder (VAEs) [50]
and Generative Adversarial Nets (GANs) [36] etc. VAEs is derived from variational
inference and get an evidence lower bound (ELBO) of the log likelihood of real data. By
optimising the ELBO, it is theoretically able to get a good estimation of real likelihood
of real data. However,the generated samples from VAEs are usually blurry due to its
training objective based on pixel-wise Gaussian likelihood [55]. GANs bypasses the com-
plicated manipulation of probability, and it leverages two models which are competing
with each other during the training process to improve the quality of generated sam-
ples. This model has been demonstrated very efficient and good at generating realistic
images [65, 67, 96]. We will continue discuss about adversarial learning in chapter 6.

Specific Architectures. We detail recent two specific architectures to which we will
compare our neural networks based systems.

The Encoder-Recurrent-Decoder (ERD) was proposed in [33] for motion forecasting,
i.e. frame prediction. An ERD model consists of an encoder, a RNN, and a decoder as
shown in Figure 3.5. Both the encoder and the decoder are built with standard fully

Chapter 3. Motion Capture 38

connected layers. At each time step t, the raw frame xt of the input sequence x =
(x1, ..., xT)> passes through the encoder to get a representation of xt. Then the output
of the encoder passes through the RNN. At last, the decoder outputs the prediction of
the next raw frame x̂t+1. The encoder and decoder enhance the representation ability
of standard RNN and hence can achieve better performance on frame prediction than
standard RNN.

The LSTM3LR is a standard recurrent neural networks composed of three LSTM
layers. This model was used as a (strong) baseline for a frame prediction task in [33].
At each time step t, the LSTM3LR takes as input xt and outputs the prediction of the
frame at next time step x̂t+1, based on this input frame and on its previous state that
summarizes the history of the input sequence (see Fig 3.6).

Figure 3.5: Structure of ERD

Figure 3.6: Structure of LSTM3LR

Chapter 3. Motion Capture 39

3.2.2 Inverse Kinematics

Inverse Kinematics (IK) is the problem of generating postures for human motion simu-
lations from a set of constraints. It is widely used in robotics and computer animation.
IK has been studied since 1980s [90, 81, 63, 20, 7, 95]. The original definition of IK
is that for a robotic arm as shown in the left of Figure 3.7, given the the position of
the end-effector (the red joint in Figure 3.7), one wants to compute the joint angles of
the remaining joints. In animation field, IK can be used to synthesize a human posture
from some given positional constraints on one or multiple joints as shown in the right
of Figure 3.7. Furthermore, if a trajectory of the positions of one or multiple joints are
given, one can synthesize a sequence of postures.

Figure 3.7: Left: Standard inverse kinematics problem. Right: Inverse kinematics for
animation. Note that the red balls represents the constrained joints or end-effector.

However, given constraints, the animation solution is not unique due to the kinematic
redundancy. For example, in a simple hand reaching task, an animation solution is
designed for a virtual character to reach a target object. There are multiple ways for the
character to reach the target object. The conventional geometric method for IK problem
such as Jacobian method [13] looks for the naive solution which may satisfy all given
constraints but ignore the interdependence of joints. The generated postures are often
unnatural or even false in the final solution. For solving this problem, some methods
have been proposed using different strategies, e.g. the body optimization by center mass
position [10], dynamical system optimization [56] and the minimization of kinematic
energy algorithm [47]. Besides, many different methods have been proposed to improve
the IK performance for quality and speed, such as the analytic methods [87, 78, 19], the
procedural numerical methods [8, 83, 14, 5], the example based approaches [93, 51, 72].

In recent years, machine learning models have been employed to simulate human motions
in applications such as motion synthesis, style representation etc [79, 53, 12, 88]. All
these works use statistical methods to describe the postures of human body. Compared

Chapter 3. Motion Capture 40

to the geometric methods, statistical methods usually generate more natural postures
by learning the real human motion.

3.2.3 Dealing with Styles

Human motions can be altered by many factors, such as emotions, age, gender of the
actor who performs the motion. These factors are expressed as some kind of style in the
human motion. Dealing with these styles embedded in human motion is very challenging.
Only few works have dealt with this. Wilson et al. proposed a parametric HMM for
recognizing gestures under variation. Then [69] extended parametric HMM to contextual
hidden markov model. These parametric models showed promising results for dealing
with motion styles. In addition, Brand et al. proposed a HMM based motion synthesis
model which is able to deal with styles of human motion [12]. Hsu et al. proposed a time
warping method to align two motions and a linear model to learn the stylistic difference
between two motions [48]. This model is able to transfer the style between two similar
motions. However, if the context of two motions is different so that the alignment fails,
this model cannot transfer style between these two motions. Xia et al. construct a series
of local mixtures of autoregressive models to capture the complex relationships between
styles of motion [92]. For each input frame, it will construct a new mixtured model
using the closest examples in the data set. This method can transfer styles between two
heterogeneous motions. Yumer proposed a spectral method for style transferring [94].
This method use Discrete Fourier Transform to compute the difference of two motions
in the frequency domain and treat this difference as style spectral information so that
one can applied this style spectral information to another motion sequence.

3.3 Conclusion

The design of accurate motion capture sequences is a difficult task that has been handled
with HMMs, GPs and NNs. Many models have been proposed but still we are still
missing models that may be learned on available datasets of limited size and that allow
generating a variety of motion sequences that match some predefined high level feature.

Part II

Preliminary studies with Hidden
Markov Models and Gaussian

Processes

41

Introduction

The two following chapters describe preliminary works that were performed while ex-
ploring the potential of statistical models for motion synthesis tasks. We report in the
next chapter a study that we realized to extend contextual Hidden Markov Models to
the zero shot learning situation where some combination of contextual variables have
not been seen at training stage. Then in the chapter after we describe a study in the
use of Gaussian Processes for Inverse Kinematics, a specific motion synthesis task.

43

44

Chapter 4

Contextual HMMs for zero shot
learning

There has been a number of works that aim at learning statistical models on corpus of
motion capture data, either for activity classification or for synthesis. When working
with motion capture data one key difficulty comes from the variability since the way one
moves depends on many factors which are related to the individual, like her morphology,
age, habits, country and also on contextual features such as emotion, role etc. We are
concerned with the design of models able to handle this variability when the context of
training data is known, e.g. one knows if a motion capture was performed by a man or
a woman, under which emotion it was performed etc.

We consider here a classification task, activity recognition, which is simpler to evaluate
than synthesis. And we focus on handling categorical contextual variables only since the
case of continuous contextual variables is straightforward to handle to reach our goals.
Then the training data are labeled with a class label and with labels corresponding to,
eventually multiple, contextual variables.

To design models able to deal with context diversity there are usually two main possi-
bilities. The first solution is to collect a large dataset including all the variability one
wants to take into account, e.g. including samples corresponding to all the possible
combination of individual and contextual features, and to exploit models with a high
modeling capacity. An alternative is to design models within which the computation is
factorized in some way that allows learning them from a limited training dataset where
not all possible combinations of individual and contextual are observed.

The work in this chapter is a first attempt in this direction, designing models that take

45

Chapter 4. Contextual HMMs for zero shot learning 46

into account contextual information and that are able to disentangle the influence on
these factors allowing kind of zero shot learning. More specifically we investigate how
to learn HMM models for activity recognition with data from the Emilya dataset when
the training set does not include all possible combination of (activity, emotion) pairs.

4.1 Introduction

We are interested in designing a generic system for motion capture data (for classification
and/or synthesis tasks) able to deal with data gathered in various contexts related to
the gender, the age, the morphology, the emotion, the role...

Unfortunately the standard way of learning statistical models requires collecting a large
corpus of data corresponding to all the cases one want to cover. This turns out to be a
difficulty when one wants to learn such a generic system which should work for a large
combinatorial number of different context variables, i.e. factors of variation of the data.

Actually it is quite likely that not all combinations of these contextual variables will
occur in the training set or that some combinations will be rare. To overcome these
problems one has to design methods that are first able to take into account contextual
information and second are able to disentangle the influence on these many contextual
factors. This latter property would make possible generalizing to any data whatever the
combination of the contextual variables would occur or not in the training set.

Some data-driven models have been studied for dealing with motion style [76, 4, 75].
Although researchers have achieved some great results, learning style representation is
still a challenging task, we will focus in this chapter on variants of Hidden Markov
Models that allow taking into account external variables to modify the density a HMM
implements. The original work by [89] on parametric HMMs was further explored in
[69] where a contextual HMM (CHMM) is proposed for conditioning the probability
distribution of a HMM. A CHMM exploits an additional information provided for each
training sequence (in its simplest form it may be a discrete label) and that informs
about the context of the sequence. It might represent the age or the gender of an
actor performing a motion or anything that is assumed to slightly modify the density of
sequences. Such an information is used to parameterize the HMM’s parameters and in
particular the mean and covariance matrix of all Gaussian probability density functions
in all states. Ding et al [30] proposed a fully parameterized HMM variant where state
transition probabilities are parameterized as well. These works have shown the ability
of CHMMs to perform high quality avatar animation from speech [28] and for laughter

Chapter 4. Contextual HMMs for zero shot learning 47

animation [29].

The work in this chapter is a preliminary step in this direction that we explore with Con-
textual Hidden Markov Models. To simplify the study we focus on activity classification
task only that we want to perform with the Emilya dataset whose motion have been
performed under specific emotion. While a naive approach would consist in learning
one HMM model for every activity performed under each emotion, we explore ways to
share parameters between these models and propose to learn distributed representation
of emotion enabling to deal with (activity, emotion) that have not been encountered in
the training set.

In the following sections, we first present CHMMs in section 4.2.1 and we explain in
section 4.2.2 how these models could be used for sharing parameters between activity
models in order to cope with rare (activity, emotion) settings. Then we propose in
section 4.3 to learn a distributed representation of the context information jointly to
the CHMM parameters to cope with the setting where not all combinations of (class,
context) have been observed in the training set. We provide experimental results in
section 4.4.

4.2 Sharing parameters for activity classification with CHMMs

We first describe how one may use CHMMs to efficiently learn models of activity while
samples of these activities have been performed in a few contexts, e.g. various emotions.
We first remind what CHMMs are then we describe how to design a system that would
share parameters between activity models using a classical one-hot encoding of contex-
tual variables as it has been done in previous works. We finally discuss the limitation of
this strategy for our goals.

4.2.1 Contextual Hidden Markov Models

We introduce the contextual hidden markov models on which our proposed approach
is based. Contextual Hidden Markov Models (CHMMs) [69] are a variant of HMMs
that have originally been proposed as an extension of parametric HMMs [89] for dealing
with variability in the data. The main idea is to make some or all of HMMs parameters
(Gaussian means, Covariance matrices and transition probabilities) dependent on what
we hereafter call external variables. These variables might represent additional contex-
tual variables like the gender of a gesturer in a gesture recognition task, the estimated

Chapter 4. Contextual HMMs for zero shot learning 48

signal to noise ratio in a speech recognition task... The contextual variables then rep-
resent some available additional information that bears some information on the data
which is not easy to integrate in a HMM based recognition system. Such a modeling
framework has been used both to design accurate recognition systems and to design
synthesis systems that are conditioned on some input, e.g. to animate an avatar based
on its speech signal [28].

We now explain how the contextual variable is taken into account in a CHMM. Consider
an observation sequence x and the associated contextual information θ, that we consider
from now on a vector of variables.

Let consider a CHMM and let focus on the simpler case where only Gaussian means
are parameterized in order to make a much clearer explanation of CHMMs (note that
both Gaussian means and covariance matrices may be parameterized by the contextual
input θ [69]). Assume that the CHMM model contains M states S = (s1, s2, ...sM)
and that the emission distribution p(xt|sj) is a Gaussian distribution N (µj ,Σj) with a
parameterized mean µj and a non parameterized covariance matrix Σj .

When dealing with the input sequence x with associated contextual variables θ the
parameterized mean of the Gaussian distribution in state sj , µj is defined according to:

µj = µ̄j + Wjθ (4.1)

where µ̄j ∈ Rd is a context independent mean (i.e. an offset vector) and Wj ∈ Rd×c

are parameters that determine how θ modifies the offset mean µ̄j (d is the dimension
of the observation space and c is the dimension of θ, c = |θ|, i.e. number of contextual
variables). If θ variables were useless and did not include information to model the data,
then Wj could be set to 0 and one would recover a standard HMM whose Gaussian
distribution in state j is µ̄j and is independent on θ. In the above definition of µj , θ is
given and µ̄j and Wj are the parameters to be estimated during the learning process.
Actually when θ is known, means of Gaussan distribution may be computed according
to Eq. 4.1 and a CHMM model is instanciated as a standard HMM.

The conditional dependencies between variables in a CHMM are illustrated in Fig.4.1.
Moreover in [69], not only mean µ but also the covariance matrix Σ are parameterized
by contextual input θ. By doing this, the shape of the gaussian distribution may be
controlled by the contextual information, as shown in Figure 4.2 .

Training a Contextual HMM is similar to the training of a HMM and relies on the
Baum-Welch Expectation Maximization(EM) algorithm [68, 69]. Assume we have a set

Chapter 4. Contextual HMMs for zero shot learning 49

Figure 4.1: Conditional dependencies in a CHMM

Figure 4.2: How a covariance matrix may be changed according to contextual variables.
The two Gaussian distribution are two instances of a Gaussian distribution in a CHMM
state computed with two different θ (from [69])

of N sequences {xk}Nk=1, where xk ∈ X is the kth sequence of observation vectors xk =
(xk1, ..., xkT). Assume that a (or a vector of) contextual variable θk is available for each
sequence in the training set xk. We then note the complete dataset as D = {(xk, θk)}N
where each sample consists of an observation sequence and the value of the contextual
variable.

The details of EM algorithm for training HMM and notations of HMMs can be found in
section 2.1. In the case of CHMMs, in the Maximisation-step, one updates the param-
eters of the CHMM by optimizing the auxiliary function (see Eq 2.8) of the objective
function which yields the following update for the transformation matrix Wj [69]:

Wj =
[∑
k,t

γkt (j)(xkt − µ̄j)(θk)>
][∑

k,t

γkt (j)θk(θk)>
]−1

(4.2)

where we use standard notations for HMMs as in chapter 2.1: γkt (j) denotes the prob-

Chapter 4. Contextual HMMs for zero shot learning 50

ability of being in state Sj at time t given the observed sequence k (see Eq 2.2), θk

stands for the contextual variables associated to the kth sequence, and xkt denotes the
observation vector (the frame) at time t in the kth sequence.

4.2.2 Using one-hot encoding of discrete contextual variables

We describe a first strategy for learning CHMMs when samples of activities have been
performed in a few contexts, e.g. various emotions. It is inspired from works in [69, 29].

Assume that there are M activities A = {a1, ..., aM} performed under N different con-
texts C = {c1, ..., cN} (e.g. emotions) in the training set. Any training sequence then
comes with a pair of labels (a, c), namely its corresponding activity a and emotion c.

There are two main ways for doing activity classification using HMMs in such a setting.
The first one is to learn one model per activity aj from all training sequences correspond-
ing to this activity, i.e. training sequence x with label (aj , c). This model, being learned
for all the contexts, should be designed to be robust to variability brought by the various
contexts, which is not easy to achieve. The other one is to learn M × N models, i.e.
a model for every possibility of activity and context (ai, cj). The second method takes
into account the contextual information during training stage, so it is expected that one
can get better performance of activity classification through this method. However, for
leveraging the contextual information, one must train one HMM for each (activity, con-
text) pair, which results in M ×N HMMs to be trained. This might make this strategy
unscalable to the number of contexts. Besides, a training set for a specific pair (ai, cj)
might be too small to correctly learn all of these models and it may even happen that
there are no samples for some label pair (ai, cj) in the training set.

In this situation CHMMs offer an alternative way to design an activity classification
system. One can learn one CHMM per activity ai, noted φai , from all training sequence
x with activity label ai and contextual label cj . The context label cj may be encoded as a
contextual vector denoted by θ(cj). Doing so one can smartly handle variability brought
by the contexts. Some parameters are shared (e.g. transition probabilities, covariance
matrices and mean offsets µ̄) by subsets of sequences having different contextual labels
which might make the model able to learn on a training set with fewer training samples
for each (ai, cj) pair.

One key issue is to define the encoding of the contexts denoted by θ(cj) (for cj ∈ C)
since these will strongly affect the behavior of the method. A simple and natural choice
is to use what is known as one-hot codes: In that case the vector θ(cj) corresponding

Chapter 4. Contextual HMMs for zero shot learning 51

to the jth possible context cj is a M dimensional vector whose components are all set to
zero except the jth one which is set to one.

θ(cj) ∈ RN

θ(cj)(k) = 1 iff k = j
(4.3)

At test time, given a test sequence x either its associated contextual label c is known,
and predicting the activity is done with:

a∗ = arg max
a

p(x|φaθ(c)) (4.4)

Or, if the context of a test sequence x is unknown, predicting the activity is done
through:

a∗ = arg max
a

[
arg max

c
p(x|φaθ(c))

]
(4.5)

Actually this strategy allows actually sharing part of the parameters of the CHMM mod-
els. Indeed the mean of a Gaussian distribution in state si for a sequence corresponding
to the contextual variable equal to c is defined as:

µi = µ̄i + Wi [:, c] (4.6)

where Wi [:, c] stands for the cth column of matrix Wi.

Although this strategy has been successfully in previous studies, it cannot be used in
the context where some combinations of contextual variables have not been seen in the
training stage. We build on this strategy to propose a novel algorithm in the next
section.

4.3 Zero shot learning via distributed context representa-
tion learning

The strategy that we just described has been explored for dealing with sequences per-
formed under various contexts and styles [69, 29] and actually allowed a finer modeling by
taking into account the contextual variable effect while keeping the learnability feasible

Chapter 4. Contextual HMMs for zero shot learning 52

by sharing part of the parameters between different contexts (in the case we described
µ̄ parameters).

One could go a little further and use a distributed representation of the contextual
information instead of the one hot encoding described previously. Actually one hot
encoding does allow to share part of the parameters for dealing with sequences performed
in different contexts but a better sharing strategy could be achieved if one was able to
project discrete contextual variables in a continuous representation space where each
dimension would represent a particular feature of the observation sequences. For instance
one may imagine that the emotion will alter the motion sequence corresponding to a
given activity according to few factors of variation like the speed of the motion, the
straightness of the body etc. Rather than modeling these effects separately for each
emotion one could first project emotion in a representation space whose dimensions are
related to the speed, the straightness etc, then use the modeling strategy described
above to learn models of activity under emotion. One key advantage of this approach
is to actually share the full set of parameters, with the extra avantage that the learned
models could be used for (activity, emotion) settings which have not been seen in the
training stage.

Unfortunately the representation of discrete contextual variables (e.g. emotions) in such
a distributed representation space is unknown and hard to guess. What we propose
here is an algorithm for jointly learning all the parameters of the system, the CHMM
parameters as well as the distributed representations of emotions.

We firstly describe the procedure that we propose and the corresponding reestimation
formulae for contextual variables, and explain how we derive theses results.

4.3.1 Joint Learning of CHMMs parameters and of context represen-
tation

We focus now on the case where instead of being given the θ’s for all contexts at training
time (e.g. one ht encoding), these θ’s are treated as unknown parameters that should
be learned with Wj ’s and with all other parameters of the CHMMs. Since θ’s and W ’s
interplay there is no closed form solution to embed in a standard EM algorithm. Instead
we propose a coordinate ascent like algorithm that alternates between optimizing the
CHMM parameters (W ’s and HMM parameters) while θ’s are kept fixed, then optimizing
θ’s while CHMM parameters remain fixed (See Algorithm 2). In that case both steps
may be efficiently performed with standard EM. Reestimation formulas for θ’s may be

Chapter 4. Contextual HMMs for zero shot learning 53

obtained analogously to equation 4.2, given that all other parameters are kept fixed.
Naturally, updating θl is based on all training sequences x whose context label c is cl.
The sums above range over all sequences k whose contextual/emotion label is l, i.e.
c(xk) = l.

θl =
[∑
k,t,j

γkt (j)W>j Σ−1
j Wj

]−1[∑
k,t,j

γkt (j)W>j Σ−1
j (xkt − µ̄j)

]
(4.7)

Algorithm 2 Joint training of CHMMs and of contextual vectors
1: procedure Training
2: Train one HMM per activity, yielding M HMMs.
3: Initialize CHMMs from HMMs
4: Randomly initialize θ vectors
5: repeat
6: Fix θ’s and optimize W ’s using EM (Cf. Eq. 4.2)
7: Fix W ’s and optimize θs using EM (Cf. Eq. 4.7)
8: until Convergence
9: end procedure

4.3.2 Derivation of reestimation formulae for θs

Particular EM algorithms are derived by considering the auxiliary function Q(φ′|φ),
where φ denotes the current value of the parameters of the model, and φ′ represents the
updated value of the model parameters. Q is the expectation of the log probability of the
observable and hidden data together given the observables and parameters φ, and it has
been denoted in Eq 2.8. where x is the observable data and q is a hidden sequence. This
corresponds to the "Expectation" step in EM algorithm. It is proved that if φ′ is chosen
to increase the value of the auxiliary function Q ,then the likelihood of the observed
data P (x|φ) increases as well. This updating of values of φ′ is the "Maximization" step.
The auxiliary function Q can be further written as follows by substituting transition
probablities aij :

Q(φ′|φ) = Eq|x;φ
[

log
∏
t

aqt−1qtP (xt|qt;φ′)
]

(4.8)

Using the Markov property, Eq 4.8 can be written as follows:

Q(φ′|φ) = Eq|x;φ
[∑

t

log aqt−1qt +
∑
t

logP (xt|qt;φ′)
]

=
∑
t

Eq|x;φ
[

log aqt−1qt + logP (xt|qt;φ′)
]

=
∑
t,j

P (qt = j|x;φ)
[∑

i

P (qt−1 = i|x;φ) log aij + logP (xt|qt = j;φ′)
] (4.9)

Chapter 4. Contextual HMMs for zero shot learning 54

As it is denoted above, we write P (qt = j|x;φ) as γt(j). γt(j) can be computed by
"forward/backward" algorithm as Eq 2.6. Then in the "Maximization" step, we compute
φ′ to increase the Q. By taking the derivative of Eq 4.8 and substituting γtj , we arrive
at:

∂Q

∂φ′
=
∑
t

∑
j

γt(j)
∂
∂φ′P (xt|qt = j;φ′)
P (xt|qt = j;φ′) (4.10)

By setting Eq 4.10 to zero, we can solve for φ′. The emission probability P (xt|qt = j;φ′)
is assumed as a multivariate gaussian distribution with mean µj and covariance Σ. µj is
defined in Eq 4.1 where it includes two parameters Wj and θ. We derive the analytical
solution of Wj and θ respectively according to Eq 4.10.

∂Q

∂Wj
=
∑
t

∑
j

γt(j)
∂

∂Wj
P (xt|qt = j;φ′)

P (xt|qt = j;φ′)

=
∑
t

∑
j

γt(j)(xt − µ̂j)TΣ−1
j

∂µj
∂Wj

(4.11)

By setting Eq 4.11 to zero, we can get the solution of Wj (see Eq 4.2). Similarly for θ,
we can get the derivative as follows:

∂Q

∂θ
=
∑
t

∑
j

γt(j)
∂
∂θP (xt|qt = j;φ′)
P (xt|qt = j;φ′)

=
∑
t

∑
j

γt(j)(xt − µ̂j)TΣ−1
j

∂µj
∂θ

(4.12)

By setting Eq 4.12 to zero, we get the solution of θ (see Eq 4.7).

4.4 Experimental Results

4.4.1 DataSet

We used Emiliya dataset (see section 3.1.2) to evaluate our proposed alogrithm. In the
preprocessing stage, we ignore the translation coordinates and only keep the 69 joint
angles. In order to speed up the learning process, we use PCA to reduce the dimensions
of each frame to 20 dimensions. Our model are trained on only two activities: "Simple
Walk" and "Walk with something in the Hands" which are much similar and confusable
(e.g. sequences of ’SW’ in ’Anxiety’ may be very similar to "WH’, see Figure 4.3).
So CHMM could hopefully improve the accuracy of activity classification of these two
activities.

Chapter 4. Contextual HMMs for zero shot learning 55

-220

-240

-260

-280

x

Sadness

-300

-320180

160

140

z

120

0

20

40

60

160

140

120

100

80

y

-120
-140

-160
-180

-200
-220

x

-240

Anxiety

-260
-280

-300
250

200

z

150

0

20

40

60

80

100

120

140

160

y

Figure 4.3: ’Simple Walk’ in Sadness and Anxiety looks like a motion "Walk with some-
thing in the Hands"

4.4.2 Experimental Setting

We report averaged experimental results gained with cross validation on few splits of
the training, validation and test data. Stratified cross validation is used so that data
from all actors occur in the three datasets. Also in all these experiments we select a
few (activity, emotion) pairs that we make only appear in the test set (we call these
missing pairs) to investigate if the models that we compare may generalize well to
cases that have not been observed in the training stage. Test set performances are then
reported as Test performance based on the results on the test set except on missing pairs
and as Missing pairs performance computed on missing pairs only. We compare our
approach with a HMM baseline system where we use one HMM per (activity, emotion)
combination, yield 64 HMMs. In any case we use one CHMM per activity. Whatever
the models (HMMs, CHMMs) each model is a ergodic model (i.e. all transitions are
allowed) with 12 states and we use single Gaussian emission probability densities for
emission probabilities. All models are trained through Maximum Likelihood Estimation.
We trained standard HMM first to initialize most of CHMM parameters, initial state
probabilities {πi}, transition probabilities {aij}, means of Gaussian emission probability
densities {µ̄j}, and co-variance matrices of Gaussian emission probability densities {Σj}.
Once HMMs are trained, CHMMs are built by copying the HMM parameters and by
initializing W ’s parameters to small random values, then the CHMM parameters are
refined using formulas as in Eq. 4.2 and/or Eq. 4.7.

Chapter 4. Contextual HMMs for zero shot learning 56

4.4.3 Activity Classification Results

We first report activity classification results (Figure 4.4). We investigated two settings.
In any case recognition of a test sample is performed without any information on it (i.e.
the corresponding emotion is unknown). We report results in two settings, by learning
with all training data available (models are named CHMM+ and HMM+) and learning
with small training sets by randomly choosing one fourth of available training material
(models are named CHMM- and HMM-).

The most advantageous experimental setting here is when one has at his disposal a
complete training set, i.e. training samples are available for any label pair (activity,
emotion). This setting corresponds to the curves HMM Train, HMM Valid and HMM
Test (resp. CHMM Train/Validation/Test) which show the performance of the HMM
baseline and of our CHMM approach on the three datasets as a function of the dimension
of θ (HMM performances are independent θ and plotted as constant). One may see that
the while CHMM is outperformed by the HMM baseline on all datasets when enough
training data is available (+ curves), CHMM outperforms HMMs when the training data
set is smaller (− curves). This comes from the fact that there is a parameter sharing
schema between activity-emotion models in CHMMs. Also it is worth noticing that the
dimension of θ does not seem to impact much the performance here, meaning one may
significantly compress the size of the activity models with respect to the baseline HMM
system without decreasing accuracy.

Figure 4.4: Accuracy of Activity Classification wrt. |θ|s.

The figure also shows four additional curves with are called HMM+/− Missing Pairs

Chapter 4. Contextual HMMs for zero shot learning 57

and CHMM+/− Missing Pairs. These curves correspond to the performance on Missing
Pairs data only, a more difficult setting. Both our approach and the HMM baseline
naturally perform lower on these data but CHMM performance drop is significantly
smaller than the one of HMMs, especially when less training data is available.

4.4.4 Learning Curve and Convergence of θ

We provide some addition experimental results that provide some light what is happen-
ing. To start with, we focus on how the emotion information is used during training.
The curves in figure 4.5 shows how the likelihood of the data increases during training
of two activity models with 2-dimensional θ’s. One clearly sees the first part of the
training, up to iteration 25, that correspond to initialization through standard HMM
learning, and the second part of the curves from iteration 15 where CHMM parameters
and θ’s are learned together. We can see there is a great increasing on the likelihood
when parameters of CHMM W and θ start being learned, which means that CHMMs
significantly is leveraging contextual information and the contextual information does
improve the model. Figure 4.6 shows the trajectories described by the θ vectors of the
eight emotions along the training process. One sees for instance that the representations
of anxiety and shame move away from one another while anger and joy become closer.
As these results show emotion is clearly taken into account by the markovian models
and actually help improve modeling accuracy.

number of iterations
0 10 20 30 40 50 60

L
ik

e
lih

o
o
d
 c

u
rv

e
 o

f
tr

a
in

in
g
 p

ro
c
e
s
s

×10
7

-1.7

-1.65

-1.6

-1.55
dim of theta =2

Simple Walk
Walk with smth in the Hands

Figure 4.5: Evolution of data Likelihood during training of CHMMs (dimension of θ =
2). Two steps learning: Standard HMM learning up to iteration 25 then initialization
of CHMM refinement from iteration 25.

Chapter 4. Contextual HMMs for zero shot learning 58

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Anxiety

Anger
Joy

Neutral

Panic Fear

Pride

Sadness

Shame

direction of converging

Figure 4.6: Trajectories of the 2D representations (θ) of the 8 emotions along the training
process (random initialization).

4.4.5 Emotion Classification

Besides doing activity classification, we also can do emotion classification once that our
models are learned. For HMMs, given a test sequence x we can compute the likelihood
of x on each HMM. We select the HMM on which we obtain the highest likelihood of x,
and the emotion corresponding to this HMM is the predicted emotion of x. In Fig 4.7,
one sees that the accuracy is reasonably good for the training, validation and test sets
when the dimension of θ increases and also that as before CHMMs outperform HMMs
in small training set experiments while HMMs are more accurate with large training
sets. Looking at missing pairs performance (HMMs cannot perform on these data) it
seems quite puzzling that the performance drops to almost random when computed on
missing pairs only. This seems a little contradictory with previous promising results and
we don’t have clear explanations for this phenomenon.

Chapter 4. Contextual HMMs for zero shot learning 59

Figure 4.7: Accuracy of Emotion Classification wrt. |θ|.

Anger

Anxiety

Joy

Neutral

Panic Fear

Pride

Sadness

Shame

Anger Anxiety Joy Neutral PanicFear Pride Sadness Shame

Figure 4.8: Confusion Matrix of CHMM- on Test Set. (|θ| = 6)

4.5 Conclusion

This chapter reports preliminary results that we obtained when trying to exploit con-
textual HMMs to take into account contextual information in the particular case when
some combinations of factors of variation, here the activity and the emotion under which
it was performed, were not see at training time. We proposed an algorithm for jointly
learning the contextual information representation and the CHMM’s parameters. Pre-

Chapter 4. Contextual HMMs for zero shot learning 60

liminary experiments show that our proposal enables, up to some extent, recognizing an
activity performed under an emotion for which there was no training samples. Yet the
results were not as impressive as we expected and the extension of such a kind of models
for dealing with more sophisticated synthesis tasks appeared to us a difficult task. We
rather decided to explore other statistical frameworks that we describe in the remaining
of the thesis.

Chapter 5

Inverse Kinematics using
Gaussian Process

We discussed in Chapter 4 how to leverage contextual information to improve the learn-
ing of CHMMs and proposed an algorithm for learning continuous representation of
contextual information. Although the experimental results are promising, handling vari-
ability with CHMMs appeared still challenging and troublesome.

We explore here another family of statistical models for dealing with complex human
motion, Gaussian processes, that have also been used for synthesizing human motion
for years [54, 82, 39]. These works have shown that Gaussian Processes have a potential
to synthesizing realistic human motions. In this chapter we investigate the potential
of Gaussian Processes by focusing on a specific task in animation field for which these
models appear particularly relevant: Inverse Kinematics (IK) [13].

Inverse kinematics allows one to synthesize human motions from a given trajectory
of some joints. Inverse kinematics can be solved through geometric method Jacobian
Method [13]. Jacobian method is a geometric method for IK problem. However, its main
problem is that the posture generated from the objective function of Jacobian method
often looks unrealistic or even wrong although it can satisfy the positional constraints. A
straightforward way for solving this problem is to add a penalised term into its objective
function in order to penalise wrong postures. We focus on this direction and propose a
specific method for solving the ambiguity problem of conventional Jacobian method.

61

Chapter 5. Inverse Kinematics using Gaussian Process 62

5.1 Introduction

Inverse kinematics have been studied for many decades, see section 3.2.2 for an introduc-
tion. The Jacobian method is a geometric method which approximately and iteratively
generates a posture which may satisfy given constraints on few joints. This method is
very efficient for finding a posture in the solution space. Unfortunately in the solution
space, most postures are unrealistic or even wrong so that the Jacobian method often
generates an unrealistic or wrong posture. Compared with pure geometric methods,
statistical models for IK usually generate more natural and realistic posture since they
can learn the pattern from real human posture or motions. For example, Grochow et al.
proposed a Gaussian Process Latent Variable Model (GPLVM) which is able to generate
realistic postures from given positional trajectory of constrained joints [39]. However,
this model is not as fast as traditional Jacobian method.

Here, in order to obtain both a good performance on speed of generation and a good
quality of generated postures, we proposed an IK method which combines the Jacobian
method and Gaussian Process. To do so we introduce an new objective function for the
conventional Jacobian method. In this objective function, a prior probability density
function over the generated posture is added as a penalization term into the standard
objective function of the Jacobian method. This penalty term can penalize the posture
which is not realistic or bad-quality. This prior distribution is assumed to be a Gaussian
distribution and can be estimated by a Gaussian Process regression model which has
been created off-line on a dataset of real postures. We demonstrate that our solver can
generate high-quality postures with high real-time speed. In particular our method is
much faster than the pure statistical models such as GPLVM [39]. Compared with the
traditional geometric method, our method can synthesize more natural postures.

In the following sections, we first introduce the conventional Jacobian method and its
objective function in section 5.2. Then in section 5.3, we details the pipeline of our
proposed method for inverse kinematics. In section 5.4, the experiment and results are
presented.

5.2 Background of Jacobian Method

The Jacobian method [13] is a geometric optimization method for solving the IK problem.
As shown in Fig 5.1, assume we have a robotic arm composed with three joints and the
joint rotations of the three joints can be represented by their joint angels θ = (θ1, θ2, θ3).

Chapter 5. Inverse Kinematics using Gaussian Process 63

Given a target position e (blue point in Fig 5.1), we want to compute the joint angles
of these three joints so that the end-effector/joint (red point in the Fig 5.1) reach the
target point. Before we explain the Jacobian method for IK, we introduce the some
notations.

• e denotes the coordinates of the target position.

• e(i) is the position of the end-effector/joint at the ith iteration and e(1) represents
the initial position of the end-effector/joint.

• θ(i) represents the joint angles at the ith iteration.

• ∆e(i) is the vector from e(i) to e, ∆e(i) = e− e(i)

• ∆θ(i) the joint angles the joints shall rotate at each iteration i.

Figure 5.1: Jacobian Method for Inverse Kinematics

The Jacobian method is an iterative method. Instead of computing directly the final
joint angles of the the joints, the Jacobian method computes a small step of the joint
angles ∆θ(i) at every iteration i. After several iterations, we can obtain the final joint
angles by summing all these small steps ∆θ(i) as follows.

θ(t) = θ(t− 1) + ∆θ(t− 1)

= θ(1) +
t−1∑
i=1

∆θ(i)
(5.1)

At each iteration i, the ∆θ(i) is computed as follows:

∆θ(i) = arg min
∆θ(i)

(||J∆θ(i)−∆e(i)||) (5.2)

where J is the Jacobian matrix. Jacobian matrix is a matrix in which each element is
the gradient of the position of the end-effector/joint e with respect to the joint angles θ

Chapter 5. Inverse Kinematics using Gaussian Process 64

Figure 5.2: Illustration of computing the Jacobian matrix

(see Eq 5.3).

J =



∂ex
∂θ1

∂ex
∂θ2

· · · ∂ex
∂θn

∂ey
∂θ1

∂ey
∂θ2

· · · ∂ey
∂θn

∂ez
∂θ1

∂ez
∂θ2

· · · ∂ez
∂θn


(5.3)

where ex,ey,ez respectively represent the coordinates on x,y,z axis. The Jacobian matrix
can be computed by the following vector operation:

J = ak × (e(i)− dk) (5.4)

where ak is the unit vector which is perpendicular to the rotation plane of the joint k.
dk is the positional coordinates of the joint k. By optimizing Eq 5.2, we can get the
values of ∆θ(i) as follows:

∆θ(i) = J>(JJ> + λI)−1∆e(i) (5.5)

5.3 Inverse Kinematics using Gaussian Process

Given a target position denoted by e and a humanoid character with an initial posture
denoted by θ∗, we want to get a realistic and natural posture θ so that the constrained
joint is as close as possible to the target position. As we can see in the Fig 5.3, the left
posture is the initial posture of the humanoid character, and the joint marked by the
red point is the constrained joint which we expect to reach the target position (the blue
point). The left posture is a posture generated by our method, and the constrained joint
reached or got very close to the target position while the posture still looks natural and

Chapter 5. Inverse Kinematics using Gaussian Process 65

realistic. Note that the number of the constrained joints can be more than one, but we
here use only one constrained joint to illustrate the Inverse Kinematics.

Figure 5.3: Illustration of Inverse Kinematics Problem. Left: the initial posture of the
humanoid character. Right: the final posture of the humanoid character. Blue point:
the target position. Red point: the constrained joint

As we mentioned above most geometric methods such as the Jacobian method suffer from
a problem that the generated postures may be unrealistic or unnatural. We propose a
method called Multivariate Gaussian based Inverse Kinematics (MGIK) for addressing
this problem. Our method is based on the traditional Jacobian method, while the
difference is that we add a penalization term in the original objective function of the
standard Jacobian method in Eq 5.2 in order to enforce the generated posture to be
realistic. We use a Gaussian Process regression model to learn a mapping from the
target position to the parameters (µ and Σ) of a Gaussian distribution. Therefore,
in the synthesis process, given the target position, one can use the Gaussian Process
regression model to get a prior distribution. Then one can use the predicted prior to
constrain the generated postures by our method. The whole pipeline of the learning and
the synthesis process is illustrated in Fig 5.4. Next we will detail the whole learning and
synthesis process.

5.3.1 Offline Preprocessing

Data Preprocessing First of all, we use postures extracted from motion capture
sequences to construct a dataset D = {θi}Ni=1. Each posture θi = [t1, t2, t3, r1, r2, ..., rm].
is composed of the 3 degree of freedoms (DOFs) related to global position of joint angles

Chapter 5. Inverse Kinematics using Gaussian Process 66

Offline Preprocessing Online IK solving

k-medoids

...

n clusters MGDMs

 target constraints

objective
 function

Gaussian
Process

evaluated MGDM

Figure 5.4: Pipeline of the learning and the inference process for the proposed method.

and 3 DOFs related to the global orientation of the root joint and the remaining DOFs
related to the rotation of the remaining joints. We remove the global information related
to the position and orientation of the root joint, and only keep the rotation angles of
the other joints θi = [r4, ..., rm]. Note that the postures θi has the same representation
format with the posture of the humanoid character θ.

Clustering In our method we need to build a prior distribution over postures. How-
ever, in the posture dataset D, postures from different activities may vary greatly.
Hence it will be very inaccurate if we use a unique Gaussian distribution to model all
these postures. In order to deal with the variations in the posture dataset, we cluster
the large posture dataset into M clusters and we assume postures in one same cluster
j ∈ (1, 2, · · · ,M) satisfy a Gaussian distribution pj(θ) ∼ N (µj ,Σj). The parameters
µj and Σj can be estimated from the postures of cluster j. The cluster number M is a
hyper-parameter that has to be set manually.

5.3.2 Predicting Gaussian Parameters using Gaussian Processes

Here we introduce how to use Gaussian Process to obtain a good Gaussian prior in order
to constrain the generated posture. We have M candidates of Gaussian distributions
{pj(θ) ∼ N (µj ,Σj)}Mj=1. One straight forward way is to select one of the M Gaussian
distributions while we generate each posture. For example, one can select a Gaussian
distribution whose centroid is the closest to the initial posture. However, different
Gaussian distribution pj(θ) corresponds to different clusters and then yields different
final postures. Especially, when one is generating a motion sequence from a sequence of
target positions, we always expect the generated motion sequence smooth and coherent.
Allowing too much freedom in the choice of the distribution for each generated posture
will result in the incoherency of the generated motion sequence. In order to avoid this
problem, we trained a Gaussian Process Regression Model (see section 2.2.3) to learn a

Chapter 5. Inverse Kinematics using Gaussian Process 67

mapping from the target position e to a Gaussian distribution whose parameters are µ
and Σ.

We firstly built a dataset for training Gaussian process regression model. For each cluster
j ∈ (1, 2, ...,M), we denote its centroid posture by θc(j). For each centroid posture θc(j),
we compute the position of the constrained joint and denote it by ej . We then built a
dataset {ej ,µj ,Σj}Mj=1. We build a regression model from the target position e(j) as
follows:

µj = f(ej) + εj1, j ∈ (1, ...,M)

Σj = g(ej) + εj2, j ∈ (1, ...,M)
(5.6)

We assume both f(·) and g(·) satisfy a Gaussian Process as follows:

f(·)∼GP(0, k(·, ·))

g(·)∼GP(0, k(·, ·))
(5.7)

The prediction error ε1 and ε2 have a normal distribution as follows:

εj1 ∼ p(ε1) = N (0, σ2
1)

εj2 ∼ p(ε2) = N (0, σ2
2)

(5.8)

Then according to the Gaussian Process Regression Model as introduced in section 2.2.3,
we can predict the values of each element of µ∗ at row a and Σ∗ at row a and column
b given a new target position e∗ as follows:

µ∗a = k>(K + σ2I)−1Ma

Σ∗ab = k>(K + σ2I)−1Sab
(5.9)

whereMa = (µ1
a, ...,µ

M
a)> and Sab = (Σ1

ab, ...,ΣM
ab)>. K and k are defined respectively

in Eq 5.10 and Eq 5.11:

K =


k(e1, e1) k(e1, e2) · · · k(e1, eM)
k(e2, e1) k(e2, e2) · · · k(e2, eM)

...
... · · ·

...
k(eM , e1) k(eM , e2) · · · k(eM , eM)

 (5.10)

Chapter 5. Inverse Kinematics using Gaussian Process 68

k =


k(e1, e∗)
k(e2, e∗)

...
k(eM , e∗)

 (5.11)

We choose a RBF kernel (see Eq 2.13) as the kernel function of our Gaussian process.

At last we can obtain the predicted Gaussian prior as follows:

p(θ) = N (µ∗,Σ∗) (5.12)

5.3.3 Online Synthesis

We have described the standard Jacobian method in section 5.2. Now based on Jacobian
method and the predicted gaussian prior distribution in Eq 5.12, we devised our objective
function for each iteration of Jacobian method.

For each iteration i, the objective function is defined as:

L = ‖J∆θ(i)−∆e(i)‖2 + λ1 ‖∆θ(i)‖2 − λ2 logN (θ(i+ 1) | µ∗,Σ∗) (5.13)

where θ(i+1) = θ(i)+∆θ(i) and µ∗ and Σ∗ are defined in Eq 5.9. The other notations
have been defined in section 5.2. The second term in the Eq 5.13 is a regulariser for
∆θ(i) and it makes the values of ∆θ(i) not too large for each iteration.

By minimizing the objective function L, one can get the solution of ∆θ(i) for each
iteration i.

∆θ(i) = arg min
∆θ(i)

‖J∆θ(i)−∆e(i)‖2+λ1 ‖∆θ(i)‖2+λ2[12(θ(i+1)−µ∗)>(Σ∗)−1(θ(i+1)−µ∗)]

(5.14)

We set ∂L
∂∆θ = 0 to minimize the objective function. The function can be solved as:

∆θ(i) = (2J>J + 2λ1 + λ2(Σ∗)−1(2J>∆e(i) + λ2(Σ∗)−1µ∗ − λ2(Σ∗)−1θ(i)) (5.15)

The final posture at the last iteration can be computed by Eq 5.1.

Chapter 5. Inverse Kinematics using Gaussian Process 69

Dynamically Tune the Hyperparameter λ2 Because our method is based on Ja-
cobian method which is an iterative optimization method. The first two terms in the
objective function (Eq 5.13) will decrease dramatically as the iteration goes on. Hence
the hyperparamter λ2 cannot be fixed for all the iterations, otherwise the last term will
dominate the whole loss function as the iteration goes on and the first term may never
be close enough to zero. In order to avoid this problem, we dynamically tune the values
of the hyperparamter λ2 and make it proportional to the ∆e(i).

5.4 Experiments

We compared our proposed method with two baselines: the Jacobian Damped Least
Squares (JDLS) [14] which is a variant of Jacobian method and the Gaussian Process
(GP) regression model which takes the target position as input and predicts the posture.
For our method, we set the number of the clusters to 10 and 100 and we refer to these
two setting as MGIK10 and MGIK100. For the dataset, we use CMU dataset 3.1.2 and
select 10 sequences of sports including tennis, golf,shooting, boxing. We treat the hand
joints, feet joints, and neck joint as the constrained joints (red points shown in Fig 5.5).
We use the trajectories of the 5 constrained joints of different motion sequences as input
to reconstruct the whole motion sequence using our methods MGIK and the baseline
mothods. We report the target error which is the distance between the constrained
joints and the target positions at the final iteration in Table 5.2. Meanwhile we evaluate
the joint error using the mean square error between the reconstructed postures and
the groundtruth. The results show that our method MGIK10 and MGIK100 achieve
smallest error on both target error and joint error.

The reconstructed motions are shown in Fig 5.5. In Fig 5.5, we show a reconstructed
motion "golf" from our method and the baselines. As we can see, JDLS generated
some unnatural postures. GP generates natural postures from large data set; however,
it distance between its constrained joints and position is large. In contrast, with our
method, the constrained joints can reach the target position well and the reconstructed
postures are similar to the true postures.

Then we evaluate the generation speed of different methods. The test is performed by an
Intel Xeon CPU 2.93GHz with one process unit. A performance comparison for solving
one posture using various methods is shown in Tab. 5.1, and the speed performance
is counted by millisecond (msc) per frame. In general, our solution performs worse in
computation speed due to the run-time MGDM construction using GP. However, it is

Chapter 5. Inverse Kinematics using Gaussian Process 70

methods average msc reaching targets posture
MGIK10 1.1 yes natural
MGIK100 3.1 yes natural
JDLS 0.55 yes unnatural
GP 2.31 no natural

Table 5.1: Performance comparison of our solution using 10 clusters, 100 clusters and
with other methods: Damped Least Squares IK (JDLS) [14], Gaussian Process IK (GP).

stable and able to generate natural postures with multiple constraints. It is also much
faster than other machine learning techniques such as [40, 53, 91]. Considering that
both the Jacobian solutions and matrix operations are parallelizable [41], the speed of
our MGIK algorithm can be further improved by using multiple threads programming.
More examples are shown in Tab. 5.2 by generating motion sequences given 5 target-
constraint trajectories for head, left wrist, right wrist, left foot, right foot. We evaluate
the speed performance in millisecond (msc) for each whole sequence. The mean squared
error (MSE) (averaged by all 66 DOFs) in joint space (joint MSE in radian) and the
MSE of the distance (in meter) between end-effectors and targets (averaged by 5 end-
effectors) are also computed. Different from the distance metric, a small difference in
joint space error metric may show a large variation for a specific joint. Our MGIK
solution offers high quality results both in joint space and targeting space compared
to other methods. For the speed performance, the most expensive step is the run-
time estimation of the gaussian distribution. By reducing the size of GP kernel, the
performance can be improved significantly.

Applications The MGIK solution can be used for various applications with high qual-
ity virtual character simulation, such as posturing, motion sequence editing (Fig 5.6),
motion reconstruction, etc. More examples can be found in https://bit.ly/2K54ZuV.

5.5 Conclusion

We designed a new objective function for the conventional Jacobian method to solve
the inverse kinematics problem. We leverage the Gaussian process regression model to
fit on M Gaussian distributions to predict a prior distribution according to the given
target position. Then the predicted Gaussian distribution is merged into the objective
function of the traditional Jacobian method. The experimental results demonstrate that
our method is fast and accurate and is able to generate natural and realistic postures,
compared to the baselines. As an extension of the conventional Jacobian solution, this

https://bit.ly/2K54ZuV

Chapter 5. Inverse Kinematics using Gaussian Process 71

ex. methods msc targets mse joints mse
tennis MGIK10 3426.7 0.00329 0.151
3050 MGIK100 9737.5 0.00385 0.109
frames JDLS 1582.42 0.00863 0.288

GP100 6813.11 0.250 0.106
golf MGIK10 3330.11 0.00197 0.150
2900 MGIK100 9201.82 0.00202 0.0810
frames JDLS 1399.58 0.00864 0.239

GP100 6473.05 0.151 0.0653
shooting MGIK10 4321.12 0.00178 0.127
3850 MGIK100 12001.2 0.00237 0.0902
frames JDLS 1870.23 0.00879 0.212

GP100 8593.11 0.213 0.0838
boxing MGIK10 3529.44 0.00275 0.228758
3069 MGIK100 9914.28 0.00360 0.111023
frames JDLS 1687.35 0.00826 0.37863

GP100 6845.56 0.396 0.118878

Table 5.2: Comparison using 5 target constraints between our solution (MGIK) using
10 clusters, 100 clusters and other methods: Damped Least Squares IK (JDLS) [14],
Gaussian Process IK (GP).

method could be integrated into traditional animation pipelines. Although by solving
IK, we were able to generate realistic postures and to edit motion sequence, using such
models to design a fully generative framework still appeared a hard task. And the deep
learning wave, especially the success of LSTM recurrent models for sequences, combined
with the invention of adversarial learning for learning powerful generative models for
complex data, incited us to move to explore neural networks, which we describe in the
next part.

Chapter 5. Inverse Kinematics using Gaussian Process 72

or
ig

in
al

 r
ef

.
M

G
IK

10
0

G
P

10
0

JD
LS

3.
19

 m
sc

/fr
am

e
2.

23
 m

sc
/fr

am
e

0.
52

 m
sc

/fr
am

e

Figure 5.5: The figure illustrates the generated postures using 4 different solutions
according to the given targets (red ball) in the tennis example, from top to bottom:
original mocap data, our MGIK (100 cluster samplers), Gaussian process (GP) (100
samplers), JDLS (without constraints) [14].

Chapter 5. Inverse Kinematics using Gaussian Process 73

Figure 5.6: The trajectory is used for generating or modifying sequences.

Chapter 5. Inverse Kinematics using Gaussian Process 74

or
ig

in
al

5d
at

a
M

G
IK

10
0

M
G

IK
10

G
P

10
0

JD
LS

3.
23

5m
sc

/fr
am

e
1.

14
5m

sc
/fr

am
e

2.
23

5m
sc

/fr
am

e
0.

55
5m

sc
/fr

am
e

Figure 5.7: This figure illustrates the generated postures by different solutions according
to the given targets in a boxing example. From top to bottom: original data, MGIK
with 100 clusters, MGIK with 10 clusters, Gaussian process (GP) (100 samplers) [40],
JDLS (without manually setup constraints) [14].

Part III

Motion synthesis with Neural
Networks and Adversarial

Learning

75

Introduction

The three next chapters present our work on adversarial learning for designing motion
synthesis systems. These works have been realized in the second part of the thesis.
Actually our preliminary studies had shown we were able to gain interesting results with
non neural architectures but HMMs as well as GP dit not appear to us as easy to design
models for solving complex motion synthesis tasks that we wanted to handle. Besides,
recurrent neural networks were becoming more and more powerful and together with
the discovery of adversarial learning for generative models in 2014 this appeared as a
unique combination for building more elaborated synthesis systems.

We investigate how adversarial learning may be used for various animation tasks re-
lated to human motion synthesis. We propose a learning framework that we decline
for building various models corresponding to various needs: A random synthesis gener-
ator that randomly produces realistic motion capture trajectories; conditional variants
that allow controlling the synthesis by providing high level features that the animation
should match; A style transfer model that allows transforming an existing animation in
the style of another one. Our work is built on the adversarial learning strategy that has
been proposed in the machine learning field very recently (2014) for learning accurate
generative models on complex data, and that has been shown to provide impressive
results, mainly on image data.

How to learn patterns from motion capture data and learn models that automatically
generate realistic motion capture data has then become a very relevant research topic,
which is related to learning generative models in the machine learning field.

Despite learning an accurate and realistic generator of motion capture trajectories is still
a difficult and open problem, getting such a pure random generator of human motion
trajectories is useless in practice. A more relevant question is how to design a model
which generates animation while being controllable by the designer. The control might
stand for some additional inputs to the generator, with a high level interpretation so

77

78

Figure 5.8: Illustration of models and tasks investigated in the paper. A pure generative
model outputs data randomly according to a particular probability distribution but is
out of designer’s control (top). A conditional model may randomly produce animations
that match particular settings that are manually set by the designer, e.g. emotion
(middle). A style transfer model allows to change the style of an existing animation into
the style of another animation (bottom).

that these may be set by the designer (e.g. enabling a designer to ask for an animation
of a man walking with pride). One very particular way to control the synthesis is to
provide example of what we want, where the generator should be able to generate a
sequence in the style of another one. Models for transfering styles have been studied
by a number of researchers in various fields (e.g. images etc), but style transferring is
still a difficult and open problem which requires ad-hoc solutions and that has not been
much studied for animation data.

We focus on adversarial learning architectures for animation data and explore their
potential for dealing with the three animation tasks we discussed previously includ-
ing motion synthesis, conditional motion synthesis and style transferring. Adversarial
learning been popularized in very recent years in the machine learning community with
the proposition of Generative Adversarial Networks [36]. It was originally proposed for
learning accurate generative models for complex data such as images of natural scenes,
and has been extended since for dealing with high resolution images, for learning con-
ditional generative and style transferring models etc [61, 58, 17]. Despite the success of
Generative Adversarial Nets (GANs) for images and videos only few researchers started
to play with these models for animation and motion capture data [84].

We argue here that the three tasks discussed above (see Figure 5.8), learning a purely
random generator, a conditional generator, and a style transferring model, may be tack-

79

led efficiently with flexible statistical models like neural networks learned within the
framework of adversarial learning.

The three next chapters describe the works we did in this line of research. The first
chapter, chapter 6 introduces the basic architecture that we relied on which is the com-
bination of auto-encoder for sequences and of adversarial learning. The second chapter,
chapter 7, details a number of systems that we built from this basis architecture to de-
sign few synthesis systems corresponding to different needs. The third chapter provides
experimental results.

The main contributions of this part are as follows:

• We propose a generic modeling framework for various tasks related to the synthesis
of motion capture trajectories.

• In particular we propose a generative model for synthesizing realistic motion cap-
ture sequences, which builds on sequence autoencoders and on adversarial learning.

• We build on our generative model to propose conditional variants enabling control
on the synthesized animation by learning to generate motion sequences which fit
some given monitoring parameters.

• We propose a model for transferring style that builds on disentangling ideas in
order to learn to transfer the style of a motion sequence to another one.

Part of the work presented here has been published in [84] and [86].

80

Chapter 6

Generative model

We first present a basis model that we will build upon for designing synthesis models for
various needs. The basis model is a pure generative model that allows to generate motion
sequences that are similar to the ones in the training set. This model aims at generating
realistic motion capture trajectories but does not offer any control to the designer on
what motion is synthesized. To achieve realistic synthesized motion capture trajectories
we rely on sequence autoencoders and apply the adversarial learning strategy to these
models.

6.1 Introduction

We describe in the following a generative architecture for sequences, called Adversarial
Sequence Auto-Encoder (ASAE), which actually is a sequence to sequence auto-encoder
learned with an adversarial learning strategy. A sequence autoencoder is a recurrent
neural architecture which is composed of an encoder and of a decoder, both are re-
current neural networks. The encoder iteratively builds a hidden representation of an
input sequence from which the decoder reconstructs the input sequence. Sequence au-
toencoders leverage the well known ability of a recurrent model to capture in its hidden
layer’s activations (a low dimensional vector of real values) a relevant representation of
a full sequence.

The sequence auto-encoder architecture makes the model learn to decode the full se-
quence from its encoding while the adversarial learning makes the model learn to encode
motion sequences into a low dimensional representation space with a chosen prior, e.g.
a Gaussian distribution. After learning, starting from a noise vector sampled from the

81

Chapter 6. Generative model 82

prior distribution, one can process it with the decoder yielding a a new generated motion
sequence.

In the following, we consider a training dataset ofN unlabeled sequencesX =
{
xi, i = 1...N

}
where every sequence xi is a sequence of frames xi = (xi1, ..., xiT) of any length T , and
frames are p-dimensional real feature vectors, ∀t, xit ∈ Rp.

6.2 AutoEncoder for Sequences

To start with we consider models able to map sequences to sequences, i.e. Sequence
AutoEncoders (SAE), which have already been investigated e.g. in the Natural Language
Processing field as a particular instance of Sequence to Sequence models (S2S). S2S have
been proposed for machine translation tasks [74] and are well adapted when there are
complex and eventually long term dependencies or forward references in the sequence
data. A sequence Auto Encoder (SAE) is a S2S where the desired output sequence is the
input sequence itself (see Fig 6.1 and Fig 6.2). A SAE aims at encoding the full sequence
as a representation vector in the hidden space then to reconstruct the full sequence from
this representation. It is then a model that computes low dimensional representation of
full sequences.

The processing of an input sequence x is described in the algorithm 3 where fe and
fd are implemented with (eventually stacked layers of) recurrent or Long Short Term
Memory (LSTM) cells, and g is implemented with (eventually stacked) fully connected
layers. he0 stands for an initial state of recurrent units in the encoder (we use he0 = 0)
and het stands for the representation of the input sequence up to time t as computed by
the encoder. The encoder’s hidden state is iteratively updated as the encoder process
successive elements of the input sequence. The last hidden state heT is then input to the
decoder, which is again a recurrent neural network, that iteratively computes a hidden
state hdt form which frames x̂t are reconstructed.

The idea of SAE is that the last hidden state computed by the encoder heT should be an
encoding of the full input sequence x to enable fully reconstructing it from heT . Hence
heT is called the encoding of the input sequence and noted e(x). Ideally this encoding,
shortened as e below, includes all the information about the input sequence (e.g. walking
activity with a particular speed) and the time varying hidden state hdt includes a more
short term information about where one is in this motion (e.g. which leg to put forward)
so that hdt+1 may be computed from hdt and e. Finally xt may be reconstructed from hdt .

Chapter 6. Generative model 83

Algorithm 3 Processing a sequence x with a sequence autoencoder model
/* Encoding step */
he0 = 0
for t = 1, ..., T do

het = fe(xt, het−1)
end for
/* Decoding step */
e = heT
/* e is the encoding of x */
hd0 = 0
for t = 1, ..., T do

hdt = fd(hdt−1, e)
x̂t = g(hdt)

end for
Output : x̂ = (x̂1, ..., x̂T)

The encoder model in this SAE is the part of the model that computes the encoding,
e, of a sequence x, and the decoder model is the part of the model that computes the
predicted sequence x̂ = (x̂1, ..., x̂T) from the encoding e of a sequence. Learning of
a sequence autoencoder is done by minimizing the average reconstruction cost on the
training set Ex∼pdata

[δ(x,d(e(x)))] where δ is a distance between a sequence x and its
reconstruction by the autoencoder x̂ = d(e(x)) (e.g. the sum of euclidean distance
between frames and their corresponding reconstruction).

6.3 Adversarial Autoencoder for Sequences

A RNNs’ key feature that we exploit here lies in their capacity to transform a variable
length sequence into a fixed sized vector [21]. As an input sequence is processed in
a SAE a representation of the sequence, ht, is iteratively built in the hidden layer of
the encoder, yielding a final latent representation of the whole input sequence, h, from
which the decoder RNN reconstructs the input sequence. We leverage this feature to
build Adversarial Sequence AutoEncoders (ASAE).

We define an Adversarial Sequence AutoEncoder (ASAE) as the association of a SAE
and of a discriminator D enforcing the encodings h of training sequences to follow a
prior distribution (e.g. a Gaussian distribution pn). The model is illustrated in Figure
6.1 and Figure 6.2.

The learning of a ASAE resumes to optimizing the following criterion with respect to
the autoencoder parameters (summarized here as e and d) and to the parameters of the

Chapter 6. Generative model 84

discriminator D, where all these models are implemented as neural networks:

min
e,d

max
D

Ex∼pdata
[δ(x,d(e(x)))]

+ Ex∼pdata
[log (D(e(x)))]

+ Ez∼pn [log(1−D(z))]

(6.1)

where the discriminator D takes as input a sample z ∈ Rp in the encoding latent space
and outputs a decision whether z comes from the prior distribution pnoise or if it is the
encoding hT of a true sequence data from X. The discriminator D is learned to distin-
guish between random vectors z following a prior distribution (a Gaussian distribution
in our case) and the encodings hT of full sequences from the training set X while the
encoder is learned to project training sequences in the encoding space so as to fool the
discriminator.

(SAE)

(ASAE)

Figure 6.1: Sequence Autoencoder (SAE) (top) and Adversarial Sequence AutoEncoder
(ASAE) (bottom). The encoder and the decoder are implemented with RNNs. In a
ASAE an additional discriminator is used to constrain the distribution of encodings of
training data to fit a given noise distribution. After training the decoder may be used
as a random generator where randomization is provided by the noise distribution.

Chapter 6. Generative model 85

(SAE)

(ASAE)

Figure 6.2: Sequence Autoencoder (top) and a Adversarial Sequence AutoEncoder (bot-
tom) where models are unfolded in time. See Algorithm 3 for explanations on the
processing of a sequence in these models, and Algorithm 4 for explanations on how to
generate a sequence with a learned ASAE.

6.4 Motion synthesis with a ASAE

Once an ASAE has been learned, one may remove the encoder part and use the decoder
part as a synthesis model by sampling a latent vector z ∼ pnoise then by decoding this
latent vector using the decoder as explained above, yielding d(z), see Algorithm 4.

Algorithm 4 Randomly generating a sequence x̂ with the Decoder of a trained ASAE
Input: Length of the generated sequence = T

Sample z from pnoise
hd0 = 0
for t = 1, ..., T do

hdt = fd(hdt−1, z)
x̂t = g(hdt)

end for
Output : x̂ = (x̂1, ..., x̂T)

To go a little further in motion synthesis one may use the above models for generating
a variety of motion sequences by inputing a time varying trajectory for h rather than a
fixed vector drawn from noise distribution pnoise, as in Algorithm 5.

Chapter 6. Generative model 86

Many approaches may be used for generating meaningful trajectories (h1, h2, ..., hT).
For instance, assume that two motion encodings h1 and h2 correspond to encodings of
a slow and of a fast walk motion activity. Then one may compute a linear interpolation
interpolating from h1 = h1 to hT = h2 enabling synthesizing a walk motion activity of
increasing speed, while there were eventually no such motion in the training set.

Algorithm 5 Generating a sequence x̂ from an encoding series e with the decoder of a
trained ASAE
INPUT e = (e1, e2, ..., eT)

hd0 = 0
for t = 1, ..., T do

hdt = fd(hdt−1, et)
x̂t = g(hdt)

end for
Output : x̂ = (x̂1, ..., x̂T)

6.5 Implementation and variants

We implemented variants of the above modeling by learning autoencoders to not only
optimize a reconstruction loss of a sequence as in traditional SAE but also to optimize a
reconstruction of the first order derivatives of frames (alike well known ∆ features use in
speech recognition tools). This enforces the model to output a sequence whose dynamics
is closer to the one in the input sequence, yielding more realistic animation. We add the
suffix "-∆" (for ∆ loss) to models’ names to indicate this additional loss, e.g. ASAE-∆
is an Adverarial SAE model which is learned with the additional ∆ loss. Also, rather
than training our model on full sequences we rather use a windowing process to work
on shorter sequences (1 or 2 seconds lengthed). This allow overcoming the difficulty of
dealing with very long sequences while at the same time it focuses the learning of the
models on shorter term dynamics that we want to capture. Note that this strategy does
not prevent from generating long sequences. Actually the length of a generated sequence
is an input to the generation process (Cf. Algorithm 4). Moreover learning such short
sequences allows capturing the dynamics of most motion and our trained generators do
generate long sequences as realistic as short ones.

Chapter 6. Generative model 87

6.6 Conclusion

The models that we presented in this chapter are pure generative models able to produce
realistic motion animation randomly. Although this is an important brick and a difficult
problem, such a pure random generator is often useless in practice. On the contrary in
the animation field, one may hope not only to generate realistic motion sequences but
also to be able to control some key features on the animation.

From this point of view the work in this chapter is more a framework within which we
will design more elaborate models in the next chapter, by introducing constraints, with
adversarial learning, on what is modeled and taken into account by both the encoder
and the decoder.

Chapter 6. Generative model 88

Chapter 7

Conditional Models

In the animation area, one needs to capture multiple variant styles of motions for con-
trolling each animation character, and a key feature is the high level control a designer
may have on synthesized animation. We present here few extensions of the generative
model in previous chapter towards this direction.

We first present two conditional variants of the generative model that we design to
exploit an additional input information (e.g. the emotion with which an activity is
performed) that is used to accordingly change the generation process. These models
provide the designer more control on generated sequences.

Moreover, we investigate the design of style transferring models by building on a recent
topic known as disentangling factors of variations [58, 17] that has mainly been studied
for images data, alike most of the adversarial learning literature. This style transferring
architecture allows in particular to synthesize a new sequence which is a transformation
of an input sequence in the style of another input sequence.

7.1 Conditional synthesis models

In the animation field, one hopes not only to generate realistic motion sequences but
also to be able to control some key features on the animation. Here, we consider a
supervised case where we assume that in addition to the usual supervision information
(e.g. activity label), some contextual information is available, such as the emotion with
which a motion is performed, the gender of the actor, her age, her weight. All these
factors do influence the motion. Taking these into account would allow capturing finer
the motion dynamics, enabling generating nicer and more realistic motion.

89

Chapter 7. Conditional Models 90

Conditional generative models provide another way to control the generating process.
These usually use discrete labels or other contextual information as auxiliary inputs to
condition the synthesis process of a generative models. Following the success of GANs in
images, some conditional models have been proposed [61, 18]. Mirza et al [61] proposed
a simple conditional GAN which takes the discrete label as input to both generator
and discriminator. Chen et al [18] add mutual information constraint on the objective
function of GAN and can learn conditioned generative models for images. These models
are all applied in image and based on convolutional neural networks which are not
designed for sequential data like motion capture data.

The idea is to build contextual generative models that allow to synthesize motion that
fit some specific high level settings, e.g. enabling a designer to ask for the synthesis
of a walking motion from a happy old man, where the activity walking, the emotion
happy, and the actor’s physiology old man would be given by the designer. We do not
consider the use of multiple side information here and only consider a single one, but
the extension to multiple side information is straightforward provided an appropriately
labeled dataset is available at training time.

In this section we consider that some additional information is available for sequences in
X. The training set is then a collection of pairs (xi, si) with xi ∈ X, and si ∈ S where
si denotes the additional information relative to training sequence xi. It may stand for
any additional information, such as the emotion with which motion in x is performed,
the gender of the actor, her age, her weight... We propose two conditional extensions of
ASAE for exploiting side information.

A Conditional Adversarial Sequence Autoencoder (CASAE), is an extension of pure
generative model ASAE, it is built as the concatenation of a conditional encoder and of a
conditional decoder that both take as additional input a style information. Alternatively
a ASFSAE first computes a style-free sequence representation of a sequence from which
a sequence is reconstructed using a conditional decoder. We first discuss how one can
use conditional information to alter the prediction of a RNN model to build contextual
encoders and decoders. Then we present our two models.

7.1.1 Conditional RNNs

Designing a RNN which takes into account a side information such as a contextual
information is actually straightforward. Assuming the contextual information remains
fixed all along the sequence a contextual RNN is designed by just using the contextual

Chapter 7. Conditional Models 91

information as an extra input every time step. Actually this may simply be implemented
by concatenating the contextual observation to each observation in the input sequence
and to process the sequence of such augmented observations as usual in standard RNNs.
Note that when the contextual information is discrete (as it is in our experiments), one
may use a one-hot encoding of it or an embedding. Figure 7.1 illustrates a contextual
RNN that exploits a contextual information s, and where the final part of the model
is not shown. It might be a decoder as in the models we will present in the remaining
of this chapter, or it might be a classification layer of one is interested in sequence
classification. The figure shows the folded and unfolded views of a contextual RNN.

(a)

(b)

Figure 7.1: Contextual versions of a RNN model (a) and its unfolded representation (b).
See text for explanations.

7.1.2 Conditional Adversarial Sequence Auto-Encoders (CASAE)

A number of works have focused on designing markovian models able to deal with con-
textual information for motion synthesis [69, 27, 85] and more generally on images in
the context of adversarial learning of neural networks [61, 24]. A simple yet effective
idea to deal with such a setting consists in putting this contextual information as an
additional input [69, 27], which is the strategy we explored in our particular context. We
first investigated a conditional variant of the pure generative model where the side in-

Chapter 7. Conditional Models 92

formation (activity, emotion, or whatever additional information) is fed as an additional
input at every step in the encoder and in the decoder. Such a model is learned from
an accordingly labeled dataset. It is illustrated in Figure 7.2 (top). When considering a
discrete side information (as we do in our experiments) with K possible values, we use
a one-hot-code encoding of this contextual variable, i.e. a binary vector of size K which
is zero everywhere but at the position of the variable value (note that embedding layers
could also be used here but this do not bring any improvements). Processing an input
sequence with a CASAE is detailed in Algorithm 6.

Algorithm 6 Processing a sequence x with a conditional sequence autoencoder model
Inputs: Sequence x and its side information s

/* Encoding step */
he0 = 0
for t = 1, ..., T do

het = fe(xt, het−1, s)
end for

/* Decoding step */
e = heT
hd0 = 0
for t = 1, ..., T do

hdt = fd(hdt−1, e, s)
x̂t = g(hdt)

end for

Output : x̂ = (x̂1, ..., x̂T)

This conditional model is learned by optimizing the following loss:

min
e,d

max
D

Ex∼pd
[δ(x,d(e(x, s), s))]

+Ex∼px [log (1−D(e(x, s)))]

+Ez∼pn [logD(z)]

where s denotes the side information for input x, it is used as additional input to e
and d, δ is a distance on sequences. Once such a model is trained it may be used for
generating sequences with a given side information using the Algorithm 7.

Chapter 7. Conditional Models 93

Algorithm 7 Generating a sequence x with side information s
Input: Side information s

Sample z with pnoise
hd0 = 0
for t = 1, ..., T do

hdt = fd(hdt−1, z, s)
x̂t = g(hdt)

end for
Output : x̂ = (x̂1, ..., x̂T)

7.1.3 Conditional synthesis from style-free encodings of motion se-
quences: Adversarial Style Free Sequence Auto-Encoders (ASF-
SAE)

We study now an alternative view of the problem and by first computing a style-free
encoding of the input sequence, from which a stylized version of it may be synthesized
using a conditional decoder as the one used in previous model. In other words, if the
side information that we consider is the emotion, we aim at learning an encoding of a
motion capture sequence which includes the core information about the motion but not
the emotion under which it was performed. From this encoding, using a conditional
decoder RNNs, a new sequence may be generated corresponding to the input motion
but performed under another emotion.

The architecture of the model is shown in Figure 7.2 (bottom). It includes two main
components. It is an Adversarial Sequence Autoencoder (ASAE) as described above
where the encoder is similar to what we used in section 6.3 while the decoder is taken
from the model described in section 7.1. The latter takes as additional input, every time
step, a one hot encoding of the input sequence’s style/emotion label. The second main
component of the model is a style (e.g. emotion) discriminator, Ds, which is learned
to recover the style information of the input sequence from its encoding representation.
Following the idea in [34], the generator is learned so as to fool this discriminator by
back-propagating the reverse of the style discriminator gradient in the encoder.

The rationale behind this architecture is to ensure that after learning, the emotion
information is removed in the input sequence’s encoding as much as possible so that one
may generate a new version of the input sequence with a new, manually chosen, style
(emotion). The model is learned by optimizing the following loss:

Chapter 7. Conditional Models 94

min
e,d

max
Da,Ds

Ex,s∼pd
[δ (x,d (e(x), s))]

+Ex,s∼pd
[log (1−Da(e(x)))]

+Ez∼pn [logDa(z)]

−Ex,s∼pd
[Hs (Ds(e(x)))]

where δ is a distance between sequences, pd stands for the empirical distribution of data
(pairs of a sequence and of its style label, (x, s)), and Hs stands for the cross entropy
criterion for the style discriminator Ds (it is a classical classification loss).

7.2 Motion edition through disentangling factors of varia-
tion: Disentangling Adversarial Sequence Auto-Encoder
(DASAE)

Previous section has focused on learning pure and conditional generative models. We
focus now on motion editing, which aims at modifying an input motion capture sequence.
Motion edition has been studied in the last decade by researchers in animation and
graphics fields with dedicated models [92, 39, 94]. Besides, building on the adversarial
learning idea, a number of models have recently been proposed for image edition [18, 67]
and more generally for the disentanglement of content and style in images [58, 16, 17]
and videos [25].

We specifically focus here on style transferring where one wants to generate a new
sequence from an existing one by transforming it in the style of another sequence. This
calls for a mechanism for computing the style of a sequence. Following the same line
of research in previous sections works we build on ASAE for designing a system able
to transfer style from a sequence to another one. We consider the same setting as in
previous section. The training set consists of a number of sequences that are performed
under a particular style (e.g. emotion), where the number of styles is finite and the style
information is available at training time as a categorical label information (but dealing
with continuous variables would be straightforward).

Some motion editing techniques have been proposed in the animation field, such as
inverse kinematics [39], style transferring [54, 92, 48, 94]. Inverse kinematics aims at
finding the postures which satisfy given constraints, such as the trajectory of few joint

Chapter 7. Conditional Models 95

position. Style transferring aims at extracting a style from one motion or at transferring
this style to another motion.

Style transferring has a growing interest in the machine learning field especially for
images with the spread of adversarial learning strategy [35, 52]. For instance the pa-
per [35] leverages convolutional neural networks to learn the image features and uses a
gram matrix to separate style and content features of input image.

Following previous work in section 7.1.3 we propose to design an editing model by con-
sidering continuous style information that are inferred from an input sequence and by
learning to synthesize with such an input. The architecture of the model is illustrated
in Figure 7.3. It is again composed of a sequence auto-encoder and of multiple discrim-
inators.

Importantly, when given an input sequence x, the encoder produces two encodings (i.e.
low dimensional vectors), one for the core information of the input sequence, ec(x),
called content, (e.g. the activity which is performed) while the other one encodes the
style information, es(x) (e.g. the emotion). Both encodings are input to the decoder.
As in ASAE a discriminator Da enforces the content encoding to obey a given prior
distribution. Moreover two style discriminators are added to the model to enforce the
content encoding not to include information about the side information while the style
encoding should. The first discriminator Ds takes as input the content encoding and
it is used in the same way as above. Its parameters are learned to recover the style
information from the content encoding but the reverse of its gradient is back-propagated
in the encoder to make content encoding free from this style information. The second
style discriminator Dc takes as input the style encoding. It is learned to recover the
style label and its gradient is back-propagated in the encoder as is, so that the encoder
should learn to actually include the style information in the style encoding. All together
the learning is cast as the following optimization problem:

min
e,d,Dc

max
Da,Ds

Ex,s∼pd
[δ (x,d (e(x)))]

+Ex,s∼pd
[log (1−Da(ec(x)))]

+Ez∼pn [logDa(z)]

−Ex,s∼pd
[Hs (Ds(es(x)))]

+Ex,s∼pd
[Hs (Dc(ec(x)))]

where e(x) = [ec(x), es(x)] stands for the encoding of an input sequence into a pair of

Chapter 7. Conditional Models 96

a content encoding (the vector ec(x)) and of a style encoding (the vector es(x)). The
models Da and Ds are two adversarial discriminators. Da tries to distinguish the output
of encoder from the prior noise. Ds aims to predict the style label from the content
encoding ec(x). The generator is learned to flue both adversarial discriminators. Da

is learned by minimising the cross entropy metric and Ds is learned by minimising the
categorical cross-entropy. Finally Dc is learned to recognize the style label from the
style encoding es(x) and the encoder is learned with the same goal (i.e. the gradient is
not reversed when back propagating in the encoder).

Once such a model has been learned one may transfer the style of a sequence x2 to an-
other sequence x1 as follows (Figure 7.4). Both sequences are processed by the encoder,
yielding a pair of latent codes for each of the two sequences xi, (ci, si). Then the decoder
is used to process the pair of latent codes (c1, s2) composed of the content latent code
of sequence x1 and the style latent code of sequence x2.

Note that, while in previous section the side information used at inference time was
discrete, which we assume limits the variability of the synthesized sequences with respect
to this additional input, we are able to deal here with continuous style information that
are inferred from input sequences. We believe this brings a much better behavior with
respect to the variability of the generated sequences.

7.3 Conclusion

Within the framework that we introduced in previous chapter we were able to design
various models that fit different animation tasks, giving control on the animation syn-
thesis.

Indeed, beyond the pure generative models of previous chapter the conditional models
we presented here allow synthesizing motion under a specific context where the context
may be chosen by hand at synthesis time.

Finally we were able to design a motion sequence editing model that allows transforming
an input motion sequence to match the style of a second sequence.

As has been shown many extension may be easily proposed to the pure generative
one to match particular settings, we explored few others that we do not discuss here, we
preferred focusing on architectures that actually yield improvements in the experiments.

Chapter 7. Conditional Models 97

(CASAE)

(ASFSAE)

Figure 7.2: Conditional generative models. CASAE are an extension of pure generative
model ASAE, they are the concatenation of a conditional encoder and of a conditional
decoder that take as additional input a style information (left). ASFSAE are learned
with adversarial learning to compute a style-free sequence representation from which a
sequence is reconstructed with a conditional decoder (right).

Chapter 7. Conditional Models 98

Figure 7.3: Structure of a Style Transferring Model (DASAE)

Figure 7.4: Illustration of style transferring using a DASAE style transferring model.
An first input animation sequence is transformed into two latent vectors, a content code
x1 and a style code s1. A second animation sequence is transformed analogously into a
content code and a style code, x2 and s2. A new animation sequence is output based on
the content latent code x1 and the style latent code s2.

Chapter 8

Experiments

We provide in this chapter a number of experimental results comparing the various
models we proposed in chapter 6 and chapter 7 with state of the art models. We
first detail the experimental setting, then we detail our results. Evaluating animation
synthesis is not straightforward. We first provide objective results including both a
number of statistics and the results of simple to evaluate tasks like forecasting or emotion
classification on generated data. Then we include a number of subjective results in
the shape of synthesized animations. More results may be found at https://bit.ly/

2rwoGok.

8.1 Experimental setting

8.1.1 Dataset

We performed experiments with the Emilya Dataset [32]. We selected 60% of data as
training set, 20% of data as validation set and 20 % as test set. We split the dataset
across (activity, emotion, actor) pairs to make sure the they are distributed evenly in
training, validation and test set. For global translation information, we removed the
horizontal position coordinates and normalized the vertical position with respect to 12
actors. We kept the all three global orientation and other joint angles and normalized
them using Max-Min method to the range (0, 1). For training our models, we cut the
sequences in windows of size 200 (1.7 seconds approximately). At the end, we get a
training set with 78 982 sequences of two hundreds 70-dimensional frames (one sequence
is about 1.7s length), the validation set includes 21 614 sequences and the test set 38
637.

99

https://bit.ly/2rwoGok
https://bit.ly/2rwoGok

Chapter 8. Experiments 100

8.1.2 Baselines

We compare our models including ∆ variants to few non adversarially learned base-
lines including sequence autoencoder(SAE) models [74], variational autoencoders for
sequences (SVAE) [11] and ERD [33]. Additionally for forecasting experiments only we
also provide comparative results to LSTM3LR [33]. Since LSTM3LR is an autoregres-
sive model, it is not actually suitable for generating human motions. Hence we just use
it as a baseline for the frame prediction task. Note that to generate sequences with non
adversarially learned models (e.g. SAE), we first estimate, after training, a Gaussian
distribution of the latent codes computed from training sequences. Then we use this dis-
tribution and the decoder part to define a generator as we did for adversarially learned
models.

8.1.3 Implementation details

All models have been implemented with Keras [22]. We used sckit-learn [66] to gridsearch
the hyperparameters of these the models, such as the learning rate, the optimization
strategy, the network structure etc.

The detailed structures of ASAE, CASAE, ASFSAE and DASAE models are listed in
Table 8.5 and the final hyperparameters are in Table 8.7. The structure of SAE is the
same as the one of ASAE, see Table 8.5. Optimal learning rate and optimization method
are listed in table 8.7.

The detailed structure and hyperparameters for VAEs are listed in Table 8.10. Baseline
models LSTM-3LR and ERD are implemented as in [49], their hyperparameters and
detailed structures are provided in Table 8.8

8.2 Objective evaluation

8.2.1 Likelihood estimation

We start with experiments that compare the models as generative models through the
computation of the likelihood of test data. The higher this quantity the better the
generative model. Of course one cannot exactly compute such a likelihood and we rely
on the method proposed by [36, 26], using Gaussian Parzen Estimator, to estimate it
as follows. To compute the likelihood of test data by a generative model the method
consists in first using the generative model to generate a large number of data, then using

Chapter 8. Experiments 101

these data to fit a Gaussian Parzen estimator in order to get an estimated probability
density function (pdf) on data that correspond to the generative model. Finally this pdf
is used to compute the likelihood of a separate test dataset.

To exploit this idea on sequences we consider fixed length generated sequences that we
reshape as vectors. We randomly select 10 000 synthesized sequences with a generative
model, and use these data to learn a Parzen estimator. Then we compute the log-
likelihood of a random subset of 10 000 test sequences under this estimator. Note that
to get a generative model from the standard learning of a sequence autoencoder (i.e
not adversarially trained) we first estimate the distribution of encodings, assuming a
Gaussian distribution and generate sequences by first sampling a noise vector using this
estimated noise distribution then feeding this to the decoder part of the autoencoder.

The results of these computation are reported in Table 8.1. Preliminary results on ASAE
and CASAE have shown a systematic improvement with ∆ variants so that we imple-
mented only this variant of DASAE models. It may be seen strong differences between
all the models. The ERD model produces the significantly lowest likelihood while SAE,
SVAE and ASAE are close from each others. Conditional models CASAE, ASFSAE are
significantly better than other models and are more or less equivalent. Moreover the
style code dimension has a strong impact in DASAE models and 3 dimensional codes
seem to give best results here. Yet the likelihood computation is not the ultimate metric
we are interested in and we will report results for a style dimension equal to 3, 5 and 8
in the remaining of the paper.

8.2.2 Diversity and completeness

Next we report in Table 8.2 statistics that provide insights on the diversity of the se-
quences generated by a particular model, their quality, and their completeness (i.e. do
generated data cover the whole variety of true sequences?). Statistics are computed as
follows for one particular generative model. We generated a set of 60 000 sequences. For
each generated sequence we computed its minimum distance to a true sequence from the
validation and test set (≈ 60 000 sequences). We report this average minimum distance
as G2T criterion (Generated to True). We compute similarly T2G (True to Generated)
and compute similar criterion on sequences of ∆ features computed from generated and
true sequences.

One more or less observes the same hierarchy betwwen models than in Table 8.1. Ad-
versarial models almost systematically outperform non adversarially learned ones on all

Chapter 8. Experiments 102

Models Likelihood
SAE 1730 ± 10.5
ERD 1369 ± 123
SVAE 1719 ± 19
ASAE 1781±11.2

ASAE-∆ 1797 ±4.6
CASAE 1802 ± 7.61

CASAE-∆ 1804 ± 7.2
ASFSAE-∆ 1805 ± 6.4
DASAE-d2-∆ 1809±11
DASAE-d3-∆ 1815±11
DASAE-d5-∆ 1808± 10
DASAE-d6-∆ 1781± 8.9
DASAE-d8-∆ 1762± 10.4
DASAE-d10-∆ 1744± 11

Table 8.1: Likelihood evaluation of test data with Gaussian Parzen estimator (following
[36], see text) for various models. DASAE-dx stand for Disentangling models with a style
encoding size of dimension equal to x. Standard deviation of estimations are provided
after ±.

criterion, meaning that generated sequences are somehow more realistic (lower G2T)
and that all modes of the true distribution are better covered (low T2G). Amongst ad-
versarially learned models SVAE, ASAE, CASAE and ASFSAE perform more or less
similarly, with ASFSAE outperforming other models on GE2T and T2G criterion, while
CASAE, ASAE and ASFSAE are on par on "-∆" criterion. Finally DASAE with 3 or 5
dimensional style encoding outperform significantly all other models whatever the crite-
rion. Moreover the "-∆" models show impressive gains on modeling the dynamics of the
motion capture data, which should likely yield to more realistic generated animations.

8.2.3 Pose Forecasting

We evaluated few of our models through the task of pose forecasting, i.e. frame prediction
at a given horizon ahead (e.g. 1s) based on a prefix sequence of frames. We compared
our approach with state of the art baselines, the Encoder Recurrent Decoder (ERD)
[33] and a regular LSTM neural network with 3 layers (LSTM_3LR), that have been
proposed for such a task. ERD and LSTM_3LR are reported in [33] as state of the art
in such a frame prediction. We randomly selected 10 sequences with 200 frames for each
pair of activity and emotion (i.e. 64 pairs). We used a prefix of 60 frames (0.5 second)
as a sequence prefix and we evaluated the abilty of models to predict the frames 120
next frames (i.e. up to horizon of 1 second). While ERD and LSTM are designed for

Chapter 8. Experiments 103

Models G2T T2G G2T-∆ T2G-∆
SAE 0.6925 0.607 0.0597 0.0424
ERD 0.4152 0.6947 0.0201 0.0429
SVAE 0.5724 0.59 0.1688 0.0567
ASAE 0.5261 0.5279 0.0642 0.0441

ASAE-∆ 0.5196 0.5205 0.0175 0.0322
CASAE 0.5438 0.5227 0.0668 0.0454

CASAE-∆ 0.515 0.5058 0.0226 0.0305
ASFSAE-∆ 0.4834 0.499 0.0176 0.0322
DASAE-d3-∆ 0.4528 0.5145 0.0144 0.034
DASAE-d5-∆ 0.4715 0.5225 0.0149 0.0337
DASAE-d8-∆ 0.5 0.5619 0.0148 0.0336

Table 8.2: Statistics on distance between generated and true sequences (smaller is bet-
ter). Report results are distances that have been normalized by the number of frames
in a sequence. G2T (T2G) stands for the minimum distance of a generated (resp. true)
sequence to the set of True (resp; Generated) sequences. "-∆" criterion are computed
on sequences of ∆ coefficients.

such a task, ASAE is not.

To perform such a forecasting with ASAE, we used the prefix sequences with its cor-
responding speeds as inputs in the encoder to get a latent vector. Then we fed the
latent vector with its speeds to the decoder to generate a 180 frames lengthed sequence.
The first 60 frames are a reconstruction of the input sequence and we treat the last
120 frames as the forecasted sequence by the ASAE. The results are reported in Table
8.3. One sees that LSTM_3LR are more accurate for short term forecasting, which is
natural since this task is directly related to their learning criterion while it is not the
case for our models. Yet for longer term forecasting, ASAE happens to perform better,
which we interpret as the ability of ASAE to accurately capture in the encoding of a
sequence its fundamental dynamics.

75ms 225ms 300ms 500ms 750ms 1000ms
LSTM_3LR 0.269 0.401 0.454 0.568 0.678 0.766
ERD 0.455 0.534 0.568 0.647 0.719 0.764
ASAE 0.429 0.474 0.50 0.567 0.612 0.654

Table 8.3: Forecasting performance (Mean Squared Error per frame) of LSTM_3LR,
ERD and ASAE for frame forecasting at an horizon of 75ms to 1 second.

Chapter 8. Experiments 104

Models Accuracy
True Sequences 82%

CASAE 41.78%
ASFSAE 45.33%
DASAE-d3 48.02%
DASAE-d5 55.52%
DASAE-d8 67%

Table 8.4: Emotion classification accuracy on test sequences and on sequences generated
by conditional models, with style encoding sizes of 2 to 5 for DASAE.

8.2.4 Style classification on generated sequences.

Finally Table 8.4 reports accuracy of an emotion classifier operating on sequences (with
a similar architecture as the encoder in our models) that has been learned on training
data and that is evaluated on transformed sequences by the various models that we
presented and that may be used to change the style of an input sequence, CASAE,
ASFSAE and DASAE. The performance of the emotion classifier on true test sequences
is about 82% and serves a a reference performance that our models could ideally reach.
Although the achieved accuracy on data generate by our models is significantly lower
than this ideal performance, it may be seen that sequences generated with our models
are far from random (which is about 12.5%) with the emotion being recognized at 41%
at least. ASFSAE seem to work better than CASAE which is not surprising and DASAE
may allow generating data that are recognized at up to 67% accuracy (depending on the
style encoding size) demonstrating the ability of our framework to indeed transfer style
between sequences.

8.3 Qualitative Evaluation

We illustrate now in a few figures some examples of animations produced by our models.
More examples and videos of animations may be found at https://bit.ly/2rwoGok.

8.3.1 Unconditional models

First we explore the behaviour of unconditional models and provide examples of synthe-
sized motion samples.

We start with Figure 8.1 that shows a number of animations produced by the simplest
model ASAE. These animations have been created randomly by the model using Algo-

https://bit.ly/2rwoGok

Chapter 8. Experiments 105

rithm 4. Depending on the case the synthesized animation may correspond to various
activities that were observed in the training set (e.g. walking, sitting down etc). Note
that the labeling of the synthesized sequences is performed manually.

(a) "Walk with smth in the Hands"

(b) "Simple Walk"

(c) "Sitting Down"

Figure 8.1: Motion examples which are randomly generated from ASAE

Note that one may synthesize a variety of motions with the interpolation method detailed
in Algorithm 5. Figure 8.2 shows two generated motion using such an interpolation
method in the latent space, using SAE and ASAE models. This example is typical of
what we get on such examples where one sees a slightly smoother trajectory generated
by ASAE with respect to SAE.

(a) SAE

(b) ASAE

Figure 8.2: Interpolation between two activities, "Simple Walk" and "Sitting Down" with
the generative model gained with SAE and with ASAE.

Chapter 8. Experiments 106

Actually one may mine a little deeper what is learned by such models by exploring what is
learned in the latent codes of motion data. Figure 8.3 shows animations produced when
letting two components of the latent code vary from −2 to +2, the remaining components
being fixed. More precisely we first sampled (using the prior normal distribution) a 50-
dimensional latent code of a ASAE generator. Starting from it, we built 25 latent codes
by making two components of the latent code vary (we arbitrarily chose the 8-th and
25-th components) from -2.0 to 2.0 with step of 1.0. We used the 25 latent code to
generate new sequences, which we show to see how each of the two components impacts
on the generated motions. We can see here that the 8-th dimension more or less controls
the positions of the hands while the 25-th dimension controls the bending of the spine.

Figure 8.3: Exploring the latent space of an ASAE. The figure shows the 25 animations
synthesized with a randomly sampled 50-dimensional latent code whose components
8 and 25 vary between −2 to +2 while other components remain fixed. One can see
that the 8-th component controls the position of the hands, while the 25-th component
controls the bending of the spine.

8.3.2 Conditional models.

We consider now the conditional variants that we described in the section 7.1 and al-
gorithm 7. We first provide examples of animations gained with CASAE in Figure 8.4

Chapter 8. Experiments 107

where the emotion is used as side information (i.e. the model is then an emotion condi-
tioned model). Next we show similar animations gained with ASFSAE models in Figure
8.5. In both cases the additional information is a one-hot-code encoding of the label,
i.e. a binary vector of size 8 which is null everywhere but at the position of the label.

The 5 animations in the two figures are built so as to be comparable. To get this we
built these animations using the following process. We first choose a test sequence x(i)

and feed it and its true emotion label into the encoder of one model to get a latent
vector. Then we feed this latent vector as well as one of the 8 emotion encodings into
the model’s decoder to generate a new sequence. We reproduce this for the two models.
The two figures then show five generated sequences which are variants of a test sequence
computed with CASAE and ASFSAE models with 5 different emotion label inputs.

These qualitative results show that conditional ASAE (CASAE and ASFSAE) can learn
the variations corresponding to the contextual label and generate plausible motions
matching the specified activity or emotion.

Again, one may mine the learned latent space of a conditional modem by exploring how
modifying one component of it modifies the generation process. Figure 8.6 illustrates
this idea and reports motions that have been generated by a CASAE model with various
emotion labels (one per row) when using a constant (randomly generated) latent code
when a single component (11-th) only varies from −2.0 to 2.0 (The latent code is then
the same for all motions in a column of the figure). Figure 8.7 shows similar results for
a ASFSAE model.

Style transfer. Finally we show an illustrative example of style transferring in Figure
8.8 where a DASAE is used to transform three test sequences so that their style match
the one of a target sequence. One sees that the style of the target sequence looks
somehow energic and probably the emotion was joy or pride and that the transformed
sequences seem to match better this style than the original ones.

8.4 Latent representation space

We investigated the latent space learned by the DASAE model. Figure 8.9 shows the
style latent vectors of 10 000 training samples with a model exploiting a two dimensional
style latent code. One can see that the style latent vectors corresponding to various
emotion appear well separated into different areas of the latent space, which means our
model indeed captured well the style information .

Chapter 8. Experiments 108

Autoencoder Adversarial Discriminator
Layer Name type,activation,output size Layer Name type,activation,output size

Input (200, 69) Input (1,dim of latent codes)
Layer1 LSTM, ’tanh’,(200, 100) Layer1 Dense,’relu’,(1,100)
Layer2 LSTM, ’tanh’,(200,100) Layer2 Dense,’relu’,(1,40)
Layer3 LSTM, ’tanh’,(1,50) Output Dense, ’sigmoid’,(1,1)
Layer4 Dense, ’linear’,(1,dim of latent codes) × ×
Layer5 Repeat, (200,50) × ×
Layer6 LSTM,’tanh’, (200,100) × ×
Layer7 LSTM, ’tanh’,(200,100) × ×
Output RNN, ’sigmoid’,(200,69) × ×

Table 8.5: Detailed Structure of Sequence Autoencoder and Discriminator(only for
ASAE-based models)

Style Discriminator Style Classifier
Layer Name type,activation,output size Layer Name type,activation,output size

Input (1, 50) Input (1, dim of s)
Layer1 Dense,’relu’,(1,100) Layer1 Dense,’relu’,(1,100)
Layer2 Dense,’relu’,(1,40) Layer2 Dense,’relu’,(1,40)
Output Dense, ’softmax’,(1,8) Output Dense, ’softmax’,(1,8)

Table 8.6: Detailed Structure of Style Discriminator and Style Classifier

8.5 Conclusion

The results in chis chapter show that the adversarial learning do lead to more accurate
generative models than more standard models.

Our models, the pure generative one and conditional ones actually allow synthesizing
motion under a specific context where the context may be chosen by hand at synthesis
time.

Finally we were able to design a motion sequence editing model that allows transforming
an input motion sequence to match the style of a second sequence.

Both conditional models and editing model have been showed to produce realistic motion
sequence that actually encode the desired information, here the emotion.

This work both demonstrates the potential of neural architectures trained within the
adversarial framework for the synthesis of realistic motion capture sequences, and may
be seen as a first step towards highly flexible synthesis systems allowing a designer to
synthesize sequences with a high level of monitoring.

Chapter 8. Experiments 109

hyperparameter SAE ASAE CASAE ASFSAE DASAE-d*
batch size 200 200 200 200 200
optimiser ’Rmsprop’ ’Rmsprop’ ’Rmsprop’ ’Rmsprop’ ’Rmsprop’
for autoencoder lr=0.001 lr=0.001 lr=0.001 lr=0.001 lr=0.001
optimiser for × ’Adam’ ’Adam’ ’Adam’ ’Adam’
adversarial × lr=0.001 lr=0.001 lr=0.001 lr=0.001
discriminator
optimiser for × ’Adam’ × ’Adam’ ’Adam’
style discriminator × lr=0.001 × lr=0.001 lr=0.001
optimiser for × ’Adam’ × × ’Adam’
style classifier × lr=0.001 × × lr=0.001
loss weights × [1.0,1e-3] [1.0,1e-3] [1.0,1e-3,1e-3] [1.0,1e-3,5e-4,1e-2]

Table 8.7: Other hyperparameters

hyperparameter LSTM_3LR / ERD
batch size 200
truncate_gradient 100
clip norm 25
momentum 0.99
inital learning rate 0.001
decay_schedule [1.5e3, 4.5e3]
decay_rate_schedule [0.1, 0.1]
noise_schedule [250, 0.5e3, 1e3, 1.3e3, 2e3, 2.5e3, 3.3e3]
noise_rate_schedule [5e-4,1e-3, 5e-3, 1e-2,1.5e-2, 2.5e-2, 3.5e-2]

Table 8.8: Hyperparameters of LSTM-3LR and ERD

Model LSTM_3LR ERD
Input LSTM,’tanh’,(200,1000) FullyConnect,’Relu’,(200,500)
Layer1 LSTM ,’tanh’,(200,1000) FullyConnect,’Linear’,(200,500)
Layer2 LSTM ,’tanh’,(200,1000) LSTM ,’tanh’,(200, 1000)
Layer3 Dense, ’sigmoid’, (200,69) LSTM ,’tanh’,(200,1000)
Layer4 × FullyConnect,’Relu’,(200,500)
Layer5 × FullyConnect,’Relu’,(200,100)
Layer6 × FullyConnect,’Sigmoid’,(200,69)

Table 8.9: Detailed structure of LSTM-3LR and ERD

Chapter 8. Experiments 110

(a) "Anger"

(b) "Panic Fear"

(c) "Pride"

(d) "Shame"

(e) "Joy"

Figure 8.4: Examples of generated motion with CASAE with various emotion condition
(see text for explanations). The 5 motions are comparable, i.e. obtained in similar
situation, than the 5 motions in Figure 8.5.

Chapter 8. Experiments 111

(a) "Anger"

(b) "Panic Fear"

(c) "Pride"

(d) "Shame"

(e) "Joy"

Figure 8.5: Examples of generated motion with ASFSAE with various emotion condition
(see text for explanations). The 5 motions are comparable, i.e. obtained in similar
situation, than the 5 motions in Figure 8.4.

Chapter 8. Experiments 112

Figure 8.6: Exploring the latent space of CASAE. Motions are generated by synthesiz-
ing animations with a CASAE model with various emotion labels. All sequences are
generated from a randomly generated latent code whose 11-th dimension only varies,
from −2.0 to 2.0. The latent code used is constant in a column.

Chapter 8. Experiments 113

Figure 8.7: Exploring the latent space of ASFSAE. Motions are generated by synthe-
sizing animations with a CASAE model with various emotion labels. All sequences are
generated from a randomly generated latent code whose 3-rd dimension only varies, from
−2.0 to 2.0. The latent code used is constant in a column.

Chapter 8. Experiments 114

Figure 8.8: Style transferring with DASAE. The three sequences on the left are trans-
formed in the three sequence on the right by applying a DASAE that transform input
sequences so that their style match the style of the target sequence.

Layer Name type,activation,output size hyperparameters Values
Layer1 LSTM, ’tanh’,(200,100) batch size 200
Layer2 LSTM, ’tanh’, (200,100) optimiser ’Rmsprop’
Layer3 LSTM, ’tanh’, (1, 50) learning rate 0.001
Layer4 Dense, ’linear’, (1, 50) × ×
Layer5 Dense, ’linear’, (1, 50) × ×
Layer6 Sampling, ,(1,50) × ×
Layer7 Repeat, (200,50) × ×
Layer8 LSTM, ’tanh’,(200,100) × ×
Layer9 LSTM, ’tanh’, (200,100) × ×
Layer10 RNN, ’sigmoid’, (200,69) × ×

Table 8.10: Detailed structure and hyperparameters of SVAE

Chapter 8. Experiments 115

Figure 8.9: Illustration of the style latent vectors of 10 000 training samples using a
DASAE model. Each color stands for one kind of emotion.

Chapter 8. Experiments 116

Chapter 9

Conclusion

Synthesizing realistic motion capture data with a high variability and with a mechanism
enabling some control on the synthesis process is a difficult technical challenge. We
explored a number of tracks in this thesis to this end.

In a first step we performed preliminary works on statistical models that have tradition-
naly been used for such tasks, namely HMMs and Gaussian Process. We explored the
use of these models for the modeling and the classification of motion sequences (HMMs)
and for inverse kinematics (GPs), two subtasks of the more general motion synthesis
topic.

We first focused on Contextual HMMs for exploiting contextual information. We de-
signed a new EM learning algorithm for learning both the CHMM’s parameters and
the contextual representation. We evaluated our learning algorithm on activity recog-
nition task, which show that the learned contextual representation can indeed improve
the accuracy on the activity recognition task. Next we presented our work on Gaus-
sian Processes for Inverse Kinematics. While he traditional Jacobian method is a pure
optimization method which does not guarantee realistic posture, we proposed a new
objective function. We leverage Gaussian Process to predict a prior distribution on the
future postures. While we were able to propose improvements in both cases, where our
work shows interesting results, we also encountered limitations which made us change
the focus to designing neural networks based systems, taking inspiration from recent
works in the machine learning and the deep leaning literature.

In a second step, following a current trend in machine learning, we focused our work on
neural networks. We designed a number of models sharing a common basis architecture
which combines sequence autoencoders and adversarial learning. Starting with this

117

Chapter 9. Conclusion 118

architecture we first designed a pure generative model that allows randomly generating
motion sequences that correspond to the underlying density probability in the training
set.

Going further, we explored variants of the basis architecture that enable designing sys-
tems that take into account a contextual information, the emotion with which an activity
was performed in our case. These models differ by the way adversarial learning is used
to control the generation process. They may provide a designer with some control on
the generated sequences.

Finally, we proposed a model for the style transferring task, where one wants to alter an
input sequence with some feature (e.g. the emotion) that is present in a second input
sequence. We built on the conditional models and added a new decomposition of the
hidden representation of a sequence which allows putting suitable adversarial constraints
with respect to style. The model embed style and content information into two latent
vectors: a context latent vector and a style latent vector. The results show that our
proposed model successfully separate the style and content and hence is able to transfer
the style of one motion sequence to another.

Although there could be some follow up of the works in the preliminary part the most
promising perspectives probably concern the neural networks models. As the last chapter
showed it is possible to structure the latent space using various adversarial constraints.
It is then expected that one could disentangle multiple factors of variations, instead of
one (the emotion) in this work, using extensions of our ideas. Of course this would
require datasets that are labeled accordingly which we do not have yet.

This yield to another extension of this work that would concern the labeling informa-
tion needed to learn models. As few studies have shown recently such disentanglement
models, separating content from style, may be learned with few, or no, supervision on
the style labels. This open a new line of research that would allow learning controllable
models for motion synthesis with today datasets where the many factors of variation of
a motion sequence are not actually known for every training sequence.

Finally it may happen that our models generate motion sequences where some postures
are unrealistic. We tried to include additional constraints on generated frames (or more
generally on pairs or n-grams of generated frames) using a discriminator classifying
True/Fake as in traditional GANs to ensure these all frames are realistic, this did not
bring any benefit yet so that we did not include these results. Yet it seems that it should
be a good idea that the realism of each of the generated frames would be enforced by
some term in the objective loss used for training.

Bibliography

[1] Aritificial neural network. https://en.wikipedia.org/wiki/Artificial_

neural_network.

[2] Cmu graphics lab motion capture database. http://mocap.cs.cmu.edu/.

[3] Euler angles. https://en.wikipedia.org/wiki/Euler_angles#cite_

note-Euler-1.

[4] Omid Alemi, William Li, and Philippe Pasquier. Affect-expressive movement gen-
eration with factored conditional restricted boltzmann machines. In Affective Com-
puting and Intelligent Interaction, International Conference on, pages 442–448.
IEEE, 2015.

[5] Andreas Aristidou and Joan Lasenby. Fabrik: A fast, iterative solver for the inverse
kinematics problem. Graph. Models, 73(5):243–260, September 2011.

[6] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv
preprint arXiv:1701.07875, 2017.

[7] P. Baerlocher and R. Boulic. Task-priority formulations for the kinematic control of
highly redundant articulated structures. In Intelligent Robots and Systems, 1998.
Proceedings., 1998 IEEE/RSJ International Conference on, volume 1, pages 323–
329 vol.1, Oct 1998.

[8] J. Baillieul. Kinematic programming alternatives for redundant manipulators. In
Robotics and Automation. Proceedings. 1985 IEEE International Conference on,
volume 2, pages 722–728, Mar 1985.

[9] Leonard E Baum and John Alonzo Eagon. An inequality with applications to
statistical estimation for probabilistic functions of markov processes and to a model
for ecology. Bulletin of the American Mathematical Society, 73(3):360–363, 1967.

119

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
http://mocap.cs.cmu.edu/
https://en.wikipedia.org/wiki/Euler_angles#cite_note-Euler-1
https://en.wikipedia.org/wiki/Euler_angles#cite_note-Euler-1

Bibliography 120

[10] Ronan Boulic, Ramon Mas, and Daniel Thalmann. A robust approach for the con-
trol of the center of mass with inverse kinetics. Computers & Graphics, 20(5):693–
701, 1996.

[11] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz,
and Samy Bengio. Generating Sentences from a Continuous Space. Iclr, pages 1–13,
2016.

[12] Matthew Brand and Aaron Hertzmann. Style machines. In Proceedings of the 27th
annual conference on Computer graphics and interactive techniques, pages 183–192.
ACM Press/Addison-Wesley Publishing Co., 2000.

[13] Samuel R Buss. Introduction to inverse kinematics with jacobian transpose, pseu-
doinverse and damped least squares methods. 2004.

[14] Samuel R. Buss and Jin-Su Kim. Selectively damped least squares for inverse
kinematics. volume 10, pages 37–49, 2004.

[15] Carlos Busso, Zhigang Deng, Ulrich Neumann, and Shrikanth Narayanan. Natural
head motion synthesis driven by acoustic prosodic features. Computer Animation
and Virtual Worlds, 16(3-4):283–290, 2005.

[16] M. Chen and L. Denoyer. Multi-view generative adversarial networks. CoRR,
abs/1611.02019, 2016.

[17] Mickael Chen, Ludovic Denoyer, and Thierry Artières. Multi-view data generation
without view supervision. In International Conference on Learning Representations,
2018.

[18] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. InfoGAN: Interpretable Representation Learning by Information Maximiz-
ing Generative Adversarial Nets. arXiv:1606.03657 [cs.LG], pages 1–14, 2016.

[19] Diane Chi, Monica Costa, Liwei Zhao, and Norman Badler. The emote model for
effort and shape. In Proceedings of the 27th annual conference on Computer graphics
and interactive techniques, pages 173–182. ACM Press/Addison-Wesley Publishing
Co., 2000.

[20] Stefano Chiaverini. Singularity-robust task-priority redundancy resolution for real-
time kinematic control of robot manipulators. Robotics and Automation, IEEE
Transactions on, 13(3):398–410, 1997.

Bibliography 121

[21] Kyunghyun Cho, Bart van Merriënboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations
using rnn encoder–decoder for statistical machine translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1724–1734, Doha, Qatar, October 2014. Association for Computational Lin-
guistics.

[22] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[23] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empir-
ical evaluation of gated recurrent neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555, 2014.

[24] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C. Courville,
and Yoshua Bengio. A recurrent latent variable model for sequential data. CoRR,
2015.

[25] Emily Denton and Vighnesh Birodkar. Unsupervised learning of disentangled rep-
resentations from video. CoRR, abs/1705.10915, 2017.

[26] Emily Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. Deep Generative
Image Models using a Laplacian Pyramid of Adversarial Networks. Arxiv, pages
1–10, 2015.

[27] Y. Ding, K. Prepin, J. Huang, C. Pelachaud, and T. Artières. Laughter animation
synthesis. In AAMAS, 2014.

[28] Yu Ding, Catherine Pelachaud, and Thierry Artieres. Modeling multimodal behav-
iors from speech prosody. In International Workshop on Intelligent Virtual Agents,
pages 217–228. Springer, 2013.

[29] Yu Ding, Ken Prepin, Jing Huang, Catherine Pelachaud, and Thierry Artières.
Laughter animation synthesis. In Proceedings of the 2014 international confer-
ence on Autonomous agents and multi-agent systems, pages 773–780. International
Foundation for Autonomous Agents and Multiagent Systems, 2014.

[30] Yu Ding, Mathieu Radenen, Thierry Artieres, and Catherine Pelachaud. Speech-
driven eyebrow motion synthesis with contextual markovian models. In Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on,
pages 3756–3760. IEEE, 2013.

[31] Chuong B Do. Gaussian processes. Stanford University, Stanford, CA, accessed
Dec, 5:2017, 2007.

https://github.com/fchollet/keras

Bibliography 122

[32] Nesrine Fourati and Catherine Pelachaud. Emilya: Emotional body expression in
daily actions database. In LREC, pages 3486–3493, 2014.

[33] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. Recurrent
Network Models for Human Dynamics. 2015 IEEE International Conference on
Computer Vision (ICCV), pages 4346–4354, 2015.

[34] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation.
In ICML. JMLR Workshop and Conference Proceedings, 2015.

[35] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of
artistic style. arXiv preprint arXiv:1508.06576, 2015.

[36] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets.
Advances in Neural Information Processing Systems 27, pages 2672–2680, 2014.

[37] Alex Graves. Generating Sequences with Recurrent Neural Networks. Technical
Reports, pages 1–43, 2013.

[38] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. In Acoustics, speech and signal processing
(icassp), 2013 ieee international conference on, pages 6645–6649. IEEE, 2013.

[39] K Grochow, S L Martin, A Hertzmann, and Z Popovic. Style-based inverse kine-
matics. Acm Transactions on Graphics, 23(3):522–531, 2004.

[40] Keith Grochow, Steven L. Martin, Aaron Hertzmann, and Zoran Popović. Style-
based inverse kinematics. In ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04, pages
522–531, New York, NY, USA, 2004. ACM.

[41] Pawan Harish, Mentar Mahmudi, Benoît Le Callennec, and Ronan Boulic. Parallel
inverse kinematics for multithreaded architectures. ACM Trans. Graph., 35(2):19:1–
19:13, February 2016.

[42] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[43] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

Bibliography 123

[44] Daniel Holden, Ikhsanul Habibie, Ikuo Kusajima, and Taku Komura. Fast neu-
ral style transfer for motion data. IEEE Computer Graphics and Applications,
37(4):42–49, 2017.

[45] Daniel Holden, Taku Komura, and Jun Saito. Phase-functioned neural networks
for character control. ACM Transactions on Graphics (TOG), 36(4):42, 2017.

[46] Daniel Holden, Jun Saito, and Taku Komura. A deep learning framework for char-
acter motion synthesis and editing. ACM Transactions on Graphics, 35(4):1–11,
2016.

[47] John M Hollerbach and Ki C Suh. Redundancy resolution of manipulators through
torque optimization. Robotics and Automation, IEEE Journal of, 3(4):308–316,
1987.

[48] Eugene Hsu, Kari Pulli, and Jovan Popović. Style translation for human motion. In
ACM Transactions on Graphics (TOG), volume 24, pages 1082–1089. ACM, 2005.

[49] Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh Saxena. Structural-rnn:
Deep learning on spatio-temporal graphs. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5308–5317, 2016.

[50] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[51] Lucas Kovar and Michael Gleicher. Automated extraction and parameterization of
motions in large data sets. ACM Trans. Graph., 23(3):559–568, August 2004.

[52] Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes, Ludovic De-
noyer, and Marc’Aurelio Ranzato. Fader networks: Manipulating images by sliding
attributes. arXiv preprint arXiv:1706.00409, 2017.

[53] Neil D Lawrence. Gaussian process latent variable models for visualisation of high
dimensional data. Advances in neural information processing systems, 16(3):329–
336, 2004.

[54] S. Levine, J.M. Wang, A. Harauxand Z. Popović, and V. Koltun. Continuous char-
acter control with low-dimensional embeddings. ACM Transactions on Graphics,
31(4):1–10, 2012.

[55] Yijun Li, Sifei Liu, Jimei Yang, and Ming-Hsuan Yang. Generative face completion.

Bibliography 124

[56] C. Karen Liu, Aaron Hertzmann, and Zoran Popović. Learning physics-based mo-
tion style with nonlinear inverse optimization. ACM Trans. Graph., 24(3):1071–
1081, July 2005.

[57] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian Goodfellow. Adver-
sarial Autoencoders. arXiv, pages 1–10, 2015.

[58] M. Mathieu, J. Jake Zhao, P. Sprechmann, A. Ramesh, and Y. LeCun. Disentan-
gling factors of variation in deep representations using adversarial training. CoRR,
abs/1611.03383, 2016.

[59] Larry Medsker and Lakhmi C Jain. Recurrent neural networks: design and appli-
cations. CRC press, 1999.

[60] Josh Merel, Yuval Tassa, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg Wayne,
and Nicolas Heess. Learning human behaviors from motion capture by adversarial
imitation. arXiv preprint arXiv:1707.02201, 2017.

[61] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets. CoRR,
pages 1–7, 2014.

[62] M. Müller, T. Röder, M. Clausen, B. Eberhardt, B. Krüger, and A. Weber. Docu-
mentation mocap database hdm05. Technical Report CG-2007-2, Universität Bonn,
June 2007.

[63] Yoshihiko Nakamura and Hideo Hanafusa. Inverse kinematic solutions with sin-
gularity robustness for robot manipulator control. Journal of dynamic systems,
measurement, and control, 108(3):163–171, 1986.

[64] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol
Vinyals, Rajat Monga, and George Toderici. Beyond short snippets: Deep networks
for video classification. In Computer Vision and Pattern Recognition (CVPR), 2015
IEEE Conference on, pages 4694–4702. IEEE, 2015.

[65] Anh Nguyen, Jason Yosinski, Yoshua Bengio, Alexey Dosovitskiy, and Jeff Clune.
Plug & Play Generative Networks: Conditional Iterative Generation of Images in
Latent Space. Iccv, (3), 2017.

[66] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Bibliography 125

[67] Guim Perarnau, Joost van de Weijer, Bogdan Raducanu, and Jose M. Álvarez.
Invertible conditional gans for image editing. CoRR, abs/1611.06355, 2016.

[68] Lawrence R Rabiner and Biing-Hwang Juang. An introduction to hidden markov
models. ASSP Magazine, IEEE, 3(1):4–16, 1986.

[69] Mathieu Radenen and Thierry Artieres. Contextual hidden markov models. In
ICASSP, 2012.

[70] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks. arXiv, pages
1–15, 2015.

[71] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele,
and Honglak Lee. Generative Adversarial Text to Image Synthesis. Icml, pages
1060–1069, 2016.

[72] Charles F. Rose, Iii Peter-pike, J. Sloan, and Michael F. Cohen. Artist-directed
inverse-kinematics using radial basis function interpolation. Computer Graphics
Forum, 20:239–250, 2001.

[73] Jürgen Schmidhuber and Sepp Hochreiter. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

[74] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning with
Neural Networks. Nips, pages 3104–3112, 2014.

[75] Nick Taubert, Andrea Christensen, Dominik Endres, and Martin A Giese. Online
simulation of emotional interactive behaviors with hierarchical gaussian process
dynamical models. In Proc. the ACM Symposium on Applied Perception, pages
25–32. ACM, 2012.

[76] Graham W Taylor and Geoffrey E Hinton. Factored conditional restricted boltz-
mann machines for modeling motion style. In Proc.the 26th ICML, pages 1025–1032.
ACM, 2009.

[77] Keiichi Tokuda, Takayoshi Yoshimura, Takashi Masuko, Takao Kobayashi, and
Tadashi Kitamura. Speech parameter generation algorithms for hmm-based speech
synthesis. In IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing. ICASSP 2000, 5-9 June, 2000, Hilton Hotel and Convention Center, Is-
tanbul, Turkey, pages 1315–1318, 2000.

Bibliography 126

[78] Deepak Tolani, Ambarish Goswami, and Norman I Badler. Real-time inverse kine-
matics techniques for anthropomorphic limbs. Graphical models, 62(5):353–388,
2000.

[79] Raquel Urtasun, Pascal Glardon, Ronan Boulic, Daniel Thalmann, and Pascal Fua.
Style-based motion synthesis. In Computer Graphics Forum, volume 23, pages
799–812. Wiley Online Library, 2004.

[80] A van den Oord, S Dieleman, H Zen, K Simonyan, O Vinyals, A Graves, N Kalch-
brenner, A Senior, and K Kavukcuoglu. wavenet: A generative model for raw audio.
arXiv, pages 846–849, 2015.

[81] C W Wampler, II. Manipulator inverse kinematic solutions based on vector for-
mulations and damped least-squares methods. IEEE Trans. Syst. Man Cybern.,
16(1):93–101, January 1986.

[82] Jack M Wang, David J Fleet, and Aaron Hertzmann. Gaussian process dynamical
models for human motion. IEEE transactions on pattern analysis and machine
intelligence, 30(2):283–298, 2008.

[83] Li-Chun Tommy Wang and Chih Cheng Chen. A combined optimization method
for solving the inverse kinematics problems of mechanical manipulators. Robotics
and Automation, IEEE Transactions on, 7(4):489–499, 1991.

[84] Qi Wang and Thierry Artieres. Motion capture synthesis with adversarial learning.
In International Conference on Intelligent Virtual Agents, pages 467–470. Springer,
2017.

[85] Qi Wang, Thierry Artières, and Yu Ding. Learning activity patterns performed
with emotion. In Proceedings of the 3rd International Symposium on Movement
and Computing, MOCO, 2016.

[86] Qi WANG, CHEN Mickael, Artières Thierry, and Denoyer Ludovic. Transferring
style in motion capture sequences with adversarial learning. In Artificial Neural
Networks, Computational Intelligence and Machine Learning(ESANN), 2019 Eu-
ropean Symposium on, 2018.

[87] L. Weber, S. W. Smoliar, and N. I. Badler. An architecture for the simulation of
human movement. In Proceedings of the 1978 Annual Conference - Volume 2, ACM
’78, pages 737–745, New York, NY, USA, 1978. ACM.

Bibliography 127

[88] Andrew D Wilson and Aaron F Bobick. Parametric hidden markov models for
gesture recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 21(9):884–900, 1999.

[89] Andrew D Wilson and Aaron F Bobick. Hidden markov models for modeling and
recognizing gesture under variation. International Journal of Pattern Recognition
and Artificial Intelligence, 15(01):123–160, 2001.

[90] W Wolovich and H Elliott. A computational technique for inverse kinematics. In
The 23rd IEEE Conference on Decision and Control, number 23, pages 1359–1363,
1984.

[91] Xiaomao Wu, Maxime Tournier, and Lionel Reveret. Natural character posing from
a large motion database. Computer Graphics and Applications, IEEE, 31(3):69–77,
2011.

[92] S. Xia, C. Wang, J. Chai, and J. Hodgins. Realtime style transfer for unlabeled
heterogeneous human motion. ACM Transactions on Graphics (TOG), 34(4):119,
2015.

[93] Katsu Yamane, James J. Kuffner, and Jessica K. Hodgins. Synthesizing animations
of human manipulation tasks. In ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04,
pages 532–539, New York, NY, USA, 2004. ACM.

[94] M Ersin Yumer and Niloy J Mitra. Spectral style transfer for human motion between
independent actions. ACM Transactions on Graphics (TOG), 35(4):137, 2016.

[95] Jianmin Zhao and Norman I. Badler. Inverse kinematics positioning using nonlin-
ear programming for highly articulated figures. ACM Trans. Graph., 13:313–336,
October 1994.

[96] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-
image translation using cycle-consistent adversarial networks.

	Abstract
	Résumé
	Acknowledgement
	Introduction
	I Background
	Statistical Models for Sequences
	Hidden Markov Models
	The Three Problems
	Optimize HMM

	Gaussian Process Regression Models
	Gaussian Process
	Kernel Functions
	Gaussian Process Regression

	Artificial Neural Networks
	Fully Connected Neural Networks
	Recurrent Neural Networks
	Sequence to Sequence Models

	Adversarial Learning
	Generative Adversarial Networks
	Adeversarial autoencoders

	Conclusion

	Motion Capture
	Motion Capture Data
	Motion Capture
	Datasets

	Motion synthesis tasks and related works
	Motion synthesis and forecasting
	Inverse Kinematics
	Dealing with Styles

	Conclusion

	II Preliminary studies with Hidden Markov Models and Gaussian Processes
	Contextual HMMs for zero shot learning
	Introduction
	Sharing parameters for activity classification with CHMMs
	Contextual Hidden Markov Models
	Using one-hot encoding of discrete contextual variables

	Zero shot learning via distributed context representation learning
	Joint Learning of CHMMs parameters and of context representation
	Derivation of reestimation formulae for s

	Experimental Results
	DataSet
	Experimental Setting
	Activity Classification Results
	Learning Curve and Convergence of
	Emotion Classification

	Conclusion

	Inverse Kinematics using Gaussian Process
	Introduction
	Background of Jacobian Method
	Inverse Kinematics using Gaussian Process
	Offline Preprocessing
	Predicting Gaussian Parameters using Gaussian Processes
	Online Synthesis

	Experiments
	Conclusion

	III Motion synthesis with Neural Networks and Adversarial Learning
	Generative model
	Introduction
	AutoEncoder for Sequences
	 Adversarial Autoencoder for Sequences
	Motion synthesis with a ASAE
	Implementation and variants
	Conclusion

	Conditional Models
	Conditional synthesis models
	Conditional RNNs
	Conditional Adversarial Sequence Auto-Encoders (CASAE)
	Conditional synthesis from style-free encodings of motion sequences: Adversarial Style Free Sequence Auto-Encoders (ASFSAE)

	Motion edition through disentangling factors of variation: Disentangling Adversarial Sequence Auto-Encoder (DASAE)
	Conclusion

	Experiments
	Experimental setting
	Dataset
	Baselines
	Implementation details

	Objective evaluation
	Likelihood estimation
	Diversity and completeness
	Pose Forecasting
	Style classification on generated sequences.

	Qualitative Evaluation
	Unconditional models
	Conditional models.

	Latent representation space
	Conclusion

	Conclusion
	Bibliography

