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O âmbito de pesquisa desta tese é otimização linear robusta em dois estágios. Es-

tamos interessados em investigar algoritmos que exploram a sua estrutura e também

em alternativas que se somem para mitigar o conservadorismo inerente da otimização

robusta.

Nós desenvolvemos algoritmos que incorporam estas alternativas e que são ori-

entados para instâncias de problemas de média e larga escala.

Fazendo isto experimentamos uma abordagem hoĺıstica para analisar o conser-

vadorismo em otimização linear robusta e integramos os mais recentes avanços em

áreas como a otimização robusta baseada em dados históricos ( data-driven robust

optimization), otimização robusta distribucional (distributionally robust optimiza-

tion) e otimização robusta ajustável (adaptive robust optimization).

Nós exercitamos estes algoritmos em aplicações definidas de problemas de projeto

de redes (network design/loading), escalonamento (scheduling), min-max-min com-

binatoriais particulares e atribuição de frotas na aviação (airline fleet assignment);

e mostramos como os algoritmos desenvolvidos melhoram performance quando com-

parados com implementações anteriores.
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The research scope of this thesis is two-stage robust linear optimization. We

are interested in investigating algorithms that can explore its structure and also on

adding alternatives to mitigate conservatism inherent to a robust solution.

We develop algorithms that incorporate these alternatives and are customized

to work with rather medium or large scale instances of problems.

By doing this we experiment a holistic approach to conservatism in robust linear

optimization and bring together the most recent advances in areas such as data-

driven robust optimization, distributionally robust optimization and adaptive robust

optimization.

We apply these algorithms in defined applications of the network design/loading

problem, the scheduling problem, a min-max-min combinatorial problem and the

airline fleet assignment problem. We show how the algorithms developed improve

performance when compared to previous implementations.
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Chapter 1

Introduction

The overall theme of this thesis is optimization under data uncertainty with a robust

optimization approach. Robust optimization, as introduced by [17] and [65], assumes

a non stochastic nature of uncertainty or that the probability distribution of the

uncertainty data is unknown. It models the uncertainty data as belonging to a

so called uncertainty set. Within robust optimization a feasible solution is defined

as a solution that will remain feasible for all possible realizations of data and the

objective is defined by the worst-case performance.

Robust optimization has emerged as a successful discipline because of the general

tractability of its formulations, specially when compared to stochastic optimization,

another approach to deal with data uncertainty that assumes a stochastic nature of

uncertainty and known or partially known probability distributions.

On the other hand, the pessimist worst-case approach of robust optimization

yields to solutions that can be too conservative in practice, meaning that it will

perform best if worst-case scenario happens, but perform bad otherwise. This con-

servatism has been characterized under the expression “price of robustness” in the

seminal work in [31], in the sense that there is a trade off between feasibility and

optimality.

A well known framework to mitigate this conservatism is two-stage robust op-

timization. In this thesis we focus on formulations that are two-stage robust and

represent a robust mixed-integer linear optimization problem (MILP). Two-stage ro-

bust optimization will be detailed as part of a larger context of different alternatives

to mitigate the conservatism in Chapter 2.

We investigate how these different alternatives work within a framework of two-

stage robust optimization, while verifying the implications of these alternatives in

terms of formulations and algorithmic approaches. In fact, although robust opti-

mization emerged as a worst-case deterministic alternative to stochastic optimiza-

tion, since the beginning a lot of the research has focused on connecting these

paradigms, so that the models can best leverage the available information.
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A detailed list of our objectives for this thesis is:

• Verify what assumptions of the robust paradigm can be changed to add flexi-

bility to its approach while maintaining its tractability attractiveness.

• Develop algorithms for two-stage robust MILP formulations that additionally

incorporate these changed assumptions and are customized to work with rather

medium or large scale instances of problems.

• Apply these algorithms in defined applications.

Our contributions are in the sense that we improve existing algorithms to solve close

to realistic models and they are further detailed in the following outline of our work.

In Chapter 2 we present a theory overview and introduce the main concepts that

will be used throughout the thesis. We investigate three streams of work in this

area and their implication to conservatism mitigation and complexity of associated

resolution algorithms. Namely, (1) we review the definition of different geometries

of the uncertainty set and study data-driven uncertainty sets, (2) we verify, under

the framework of adjustable or adaptative robust optimization, the use of recourse

variables that are defined only after uncertainty is revealed and (3) we review the

introduction of different formulations for the objective function, with a extended

focus to distributionally robust optimization where it is assumed that uncertainty

probability distribution is partially known.

Chapter 3 exercises a robust network design/loading application using a recourse

model defined as finite adaptability. We see that finite adaptability is equivalent to

the partition of the uncertainty set where a recourse variable is associated with each

element of the partition. We use a method that improves this partitioning itera-

tively, but that on the other hand augments the number of variables substantially at

each iteration. We then develop decomposition schemes and valid inequalities to im-

prove performance of the associated resolution algorithms. Historically, partitioning

schemes for the uncertainty set had already been proposed for the network design

problem, but we show that our finite adaptability algorithm outperforms previous

approaches.

Chapter 4 is about a robust scheduling problem where we develop a branch-and-

bound algorithm based on dominance rules and a lower bound solved with the aid

of dynamic programming or defined heuristics. We leverage the properties of the

budget uncertainty set as defined in [31]. We also develop mixed integer formulations

with dominance rules for the problem and show in what conditions our branch-and-

bound algorithm outperforms the more traditional mixed integer problem.

Chapter 5 treats a robust combinatorial optimization problem where all variables

are recourse variables and the uncertainty set is a polyhedral uncertainty set. We

2



develop a branch-and-price algorithm based on new formulations and on previous

intelligent enumeration of feasible solutions.

In Chapter 6 we introduce demand uncertainty to the airline fleet assignment

problem. We explore the generation of data-driven uncertainty sets to leverage

the existence of historical data and introduce a distributionally robust optimization

formulation to reformulate the objective function due to the nature of the prob-

lem. Here we benchmark against current deterministic and robust fleet assignment

formulations and verify solution performance results through simulation.

Each of the chapters above is self-contained and can be read in any order, al-

though a previous reading of Chapter 2 is recommended for an introductory systemic

view of the subject under study. The chapters replicate the necessary theory con-

cepts, when needed.

Chapters 3 and 4 present complete works which have led to publications (Chapter

4 is currently under review). In contrast, Chapters 5 and 6 present preliminary

results. Nevertheless, we are confident that these two chapters will soon be extended

and submitted to appropriate journals.

Finally Chapter 7 consolidates the main results achieved with this work and

delineates future directions.
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Chapter 2

Theory review

2.1 Robust optimization

An uncertain linear optimization problem is a collection of linear optimization prob-

lem instances, min
x

{cTx : Ax ≤ b}, of common structure given by m constraints and

n variables, x ∈ Rn, and with varying uncertain data (c, A, b). This collection of

optimizations problems is not associated by itself with the concepts of feasibility and

optimality. The definition of these concepts will depend on the approach defined to

treat uncertainty.

The classical robust approach here defined has the following characteristics:

• Data (c, A, b) varies within a known uncertainty set U . It is assumed that the

uncertainty set is parameterized, in a affine fashion, by a perturbation vector

ξ that in its turn varies within a known uncertainty set. We can normalize

sets with simple geometry (parallelotopes, ellipsoids and others) to standard

sets (unit box, unit ball and others).

• All decision variables represent “here and now” decisions, meaning that they

are defined before any realization of uncertainty is known.

• The constraints are “hard”, meaning that violations of constraints are not

tolerated when the data is within the underspecified uncertainty set U .

This way, a vector x ∈ Rn is a feasible solution, called robust feasible solution,

if it satisfies all realizations of the constraints within the uncertainty set, that is,

Ax ≤ b ∀ (c, A, b) ∈ U .

Additionally, following these worst-case oriented assumptions, and given a can-

didate solution x ∈ Rn, the robust value of the objective function at x is the worst

(largest) value of the objective function over all realizations of the data in the un-

certainty set.
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We can then define a deterministic optimization problem, called the robust coun-

terpart, to formulate our robust problem:

min
x

�

max
c∈Uc

cTx : Ax ≤ b, ∀ (A, b) ∈ U(A,b)

�

, (2.1)

where Uc = {c | ∃(c, A, b) ∈ U} and U(A,b) = {(A, b) | ∃(c, A, b) ∈ U} denote the

projections of U on the coordinates corresponding to c and (A, b), respectively.

Moreover, problem (2.1) can be reformulated equivalently to problem (2.3) if

we consider uncertainty restricted to the coefficients of matrix A. This is done by

defining a new matrix A
�

as

A
�

=













A 0 −b

cT −1 0

0T 0 1

0T 0 −1













(2.2)

and defining a new set of variables x
�

= (x, y, z), a new vector c
�

= (0, 1, 0) and a

new vector b
�

= (0, 0, 1,−1) such that

min
x
�

�

c
�Tx

�

: A
�

x
� ≤ b

�

, ∀A� ∈ U
�

, (2.3)

where 0 are zero vectors of appropriate dimension.

Note also that the robust counterpart is a constraint-wise construction, meaning

that each constraint can be given as

aTi x ≤ bi, ∀ (ai, bi) ∈ Ui (2.4)

where aTi is the i-th row in A and Ui is the projection of U on the space of data of

the i-th constraint: Ui = {(ai, bi) | (A, b) ∈ U}.

These definitions have an important consequence: if we model the robust coun-

terpart as a linear problem with a certain objective function, it remains intact if we

extend the uncertain set U as the direct product of the convex hull of the projections

of U on the space of data of each constraint, namely, conv(U1)× . . .× conv(Um) (see

[20, pp. 11–13] for details and a formal proof).

This potentially adds conservatism to the problem, so that special care should

be taken on how the uncertainty set is modeled and on relations between uncertain

data that are not expressed within the space of data of each constraint.

In fact, a pioneer work in [114] considered a special case where each column

vector of the constraint matrix A is only known to belong to a convex set, a case

of column-wise uncertainty. The relations between uncertain data are only defined

5



between different constraints. This way, the projection of the uncertainty set over

each constraint will give rise to interval sets, where each uncertain data of the

constraint will vary between each its lower and upper bounds.

Called a box uncertainty set and deemed too conservative for practical implemen-

tation, especially when extremes values of uncertainty occurs rarely (associating a

stochastic nature to uncertainty). On the other hand, a reformulation of this model

leads to also a linear problem that is easy to solve.

2.2 Uncertainty sets

The modeling of the uncertainty sets as a way to reduce conservatism while main-

taining tractability was object of the research that followed. In this subsection we

consider uncertainty restricted to the coefficients of matrix A.

In [18] and [17] the authors introduced row-wise ellipsoidal uncertainty sets that

turned linear programming problems into second-order cone problems and reduced

the conservatism of the approach in [114]. Besides the tractability of its robust

counterpart, they introduce ellipsoidal uncertainty sets for the following reasons.

• Ellipsoidal uncertainty sets form a relatively wide family including polytopes

which can be modeled as the intersection of degenerated ellipsoids.

• An ellipsoid is given parametrically by data of moderate size, hence it is con-

venient to represent “ellipsoidal uncertainty” as input.

• Although no underlying stochastic model of the data is assumed to be known

or even to exist, in many cases of stochastic uncertain data there are proba-

bilistic arguments allowing to replace stochastic uncertainty by an ellipsoidal

deterministic uncertainty. Consider an uncertain linear programming prob-

lem with random entries in the constraint matrix. For a given x, the left-

hand-side li(x) = aTi x − bi of the i-th constraint in the system Ax − b ≤ 0

is a random variable with expectation Ei[x] = (a∗i )
Tx + bi, and standard

deviation Si[x] = (xT
Σix)

1
2 , a∗i being the expectation and Σi being the

covariance matrix of the random vector ai. For a “light tail” distribu-

tion of the random data a “likely” upper bound on this random variable is

l̂i(x) = Ei[x] + θSi[x] with “safety parameter” θ of order of one. This bound

leads to the “likely reliable” version Ei[x] + θSi[x] ≤ 0 of the constraint in

question. It can be shown that the latter constraint is exactly the robust

counterpart aTi x ≤ bi, ∀ ai ∈ Ui of the original uncertain constraint if Ui is

specified as the ellipsoid Ui = {a : (a−a∗i )
T
Σ

−1
i (a−a∗i ) ≤ θ2}. This is because
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the robust counterpart can be equivalently defined as sup
ai∈Ui

(aTi x) ≤ bi and this

will lead equivalently to Ei[x] + θSi[x] ≤ 0 (see [20, pp. 18–19]).

The authors in [20] introduced uncertainty of stochastic nature to robust opti-

mization. By doing this they developed methods to produce less conservative solu-

tions with certain probabilistic guarantees of feasibility. Here, an uncertainty set can

be constructed for random parameters ai whose distribution P, is not known except

for some structural features. Furthermore, instead of insisting the given constraint

hold almost surely with respect to P, they instead authorize a small probability of

violation. Specifically, given � > 0, these approaches seek sets U� that implies a

probabilistic guarantee for P at level �. Since P is not known exactly we have the

implication:

If aTi x− bi ≤ 0, ∀ ai ∈ U�, then sup
P∈D

P(aTi x− bi ≤ 0) ≥ 1− � (2.5)

where D is a family of probability measures known to contain P. The expression

aTi x−bi ≤ 0, ∀ ai ∈ U� is called a safe convex approximation of the worst-case chance

constraint sup
P∈D

P(aTi x− bi ≤ 0) ≥ 1− �.

In fact, since worst-case chance constraints as described in (2.5) can be non-

convex, many authors develop safe convex approximations S as conservative ap-

proximations of these constraints. A safe convex approximation S is a system of

convex constraints on x and additional variables v such that the x component of

every feasible solution (x, v) of S is feasible for the chance constraint. By replac-

ing the chance constraints in a given chance constrained optimization problem with

their safe convex approximations, we end up with a convex approximation problem

in x and other variables. The idea is to arrive to safe convex approximations that

are computationally tractable.

To that end, the authors in [31] investigated the special case where the uncer-

tainty set is a polyhedron. Here each uncertain element of the constraint matrix A

is modeled as an independent bounded random variable. They assumed that the

probability distributions of the uncertain elements are unknown except that they

are symmetric. They used a set of parameters that “restrict” the variability of the

uncertain elements. This approach was a breakthrough because it preserves the

degree of complexity of the problem (the robust counterpart of a linear problem

is linear). The difference between the objective values of the nominal formulation

and their robust formulation was termed the price of robustness. For a probabilis-

tic guarantee of feasibility of an optimal solution of their robust formulation, they

established upper bounds on the constraint violation probability of the solution.

Further studies on polyhedral uncertainty sets have identified other opportunities
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to reduce conservatism. In [39] they verify that the single deviation band for each

coefficient proposed in [31] may be too limitative in practice, so that getting a higher

resolution by partitioning the band into multiple sub-bands seems advisable. They

define for each uncertainty coefficient a partitioning into sub bands and, for each

sub band, maximum and minimum values of the parameter under uncertainty.

In [97], the author introduces the concept of decision dependent uncertainty as

an extension of the work presented in [31]. He identifies that the uncertainty set

proposed in [31] suffers from a practical drawback since they are independent from

the value of decision variables, so that some decision vectors, for instance in combi-

natorial problems with few non-zero components, are more protected than others.

He proposes a new model where the uncertain parameters belong to the image of

multi-functions of the problem decision variables. It can provide the same proba-

bilistic guarantee as the uncertainty set defined in [31] while being less conservative.

The feasibility set of the resulting optimization problem is in general non-convex

so that a mixed-integer programming reformulation for the problem is proposed for

uncertainty sets with affine dependency on decision variables.

Other authors explored safe convex approximations to develop new methods

to create less conservative uncertainty sets, leveraging the existence of historical

random data.

A prominent and practical issue of uncertainty set-induced robust optimization

is how to determine the set coefficients appropriately, which are in general assumed

as known according to domain-specific knowledge. In the absence of first-principle

knowledge, leveraging available historical data provides a practical way to charac-

terize the distributional information. In fact the true information available to the

decision maker is historical data, which must be incorporated into an uncertainty

set before the robust optimization approach can be implemented.

In [25] the authors utilize coherent risk measures µ (see [7] for definition), as safe

convex approximations to chance constraints. The measure µ captures the attitude

toward risk of the decision maker. Their approach is data-driven, in the sense that

they utilize historical data of the random vector ai. The only information available

is a sample set of size N . They assume that ai is a discrete random variable with

support given by S = {a1i , . . . , a
N
i }. The authors emphasize that, although this

assumption admittedly has its shortcomings, it can be useful in applications where

there are no other information on the distribution of ai. They use the fact that any

coherent risk measure can be represented as the worst-case expected value over a

family of measures Q, where:

µ(aTi x) = sup
Q∈Q

EQ[−aTi x]
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where for all Q ∈ Q, Q(aTi x) = 0 s.t. P(aTi x) = 0.

With these assumptions over ai and if µ is coherent they prove that:

{x ∈ Rn : µ(aTi x) ≥ bi} = {x ∈ Rn : aTi x ≥ bi, ∀ ai ∈ U},

where

U = conv













N
�

j=1

qja
j
i : q ∈ Q












,

This provides a methodology for constructing uncertainty sets U . The uncer-

tainty set is convex and its structure depends on the generating family Q for µ and

the data set S. They explore a subclass of coherent risk measures and show they

are equivalent to polyhedral uncertainty sets of a special structure. Note that the

convex uncertainty set U is included in the convex hull of the data points a1i , . . . , a
N
i .

This work is further generalized in [67], where the author offers a study of con-

nection between hypothesis testing and uncertainty set design. The author suggests

the following general schema to construct an uncertainty set:

• Calculate P (S,α), a confidence region of the probability measures based on a

hypothesis testing at test level α.

• Construct a safe approximation function φ(x,S,α, �), such that φ(x,S,α, �) ≥
sup

P∈P (S)

V ARP
� (a

T
i x), ∀ x ∈ Rn and V ARP

� (a
T
i x) is the Value at Risk at level �

with respect to aTi x, that is, V ARP
� (a

T
i x) = inf{t | P(aTi x ≤ t) ≥ 1− �}.

• Identify the uncertainty set U(S,α, �) whose support function coincides with

φ(x,S,α, �).

Their schema depends on a-priori assumptions of P, historical data and a hypothesis

test. By pairing different a-priori assumptions and hypothesis test they obtain

distinct data-driven uncertainty sets, implying probabilities guarantees.

In [21] the authors introduce data-driven uncertainty sets where the probability

measure parameters are uncertain and consider φ-divergence distances as a way

to construct robust solutions that are feasible for all allowable distributions of the

uncertain parameters with bounded support.

In [131] the authors use φ-divergence goodness-of-fit statistics for general param-

eters uncertainty.

Exploring mainly the existence of massive historical data, another approach to

create uncertainty sets has been by the use of machine learning techniques. Learning

models can be used to provide representations of data distributions. In [108] the
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authors view the construction of the uncertainty set as an unsupervised learning

problem. They propose the support vector clustering method as a way to estimate

the support of an unknown probability distribution from random data samples.

Additionally, they develop a novel piecewise linear kernel that leads to a convex

polyhedral uncertainty set, thereby rendering the robust counterpart problem of the

same type as the deterministic problem.

In [89] the authors argue that support vector clustering techniques suffer from

the curse of dimensionality and propose another schema where the support of data

distributions are calculated based on a mix of principal component analysis tech-

niques, that are use to identify the latent uncorrelated uncertainties behind observed

uncertainty data, and kernel density estimation methods, that are used to capture

the probability distribution of the uncertain data projected onto each principal com-

ponent. They also develop polyhedral uncertainty sets.

2.3 Adaptive robust optimization

As already seen, classical robust optimization problems are modeled under the as-

sumption that all variables are “here-and-now” decision variables. This means that

they are defined before any realization of the uncertainty set, and therefore lead to

conservative solutions. In many cases, however, decision variables can be defined

only after realization of uncertainty. This is the case, for instance, when decisions

are made subsequently. Defining a set of variables as “wait-and-see” variables, where

they are defined only after all or part of the uncertainty is revealed, can lead to less

conservative solutions. The reduction in conservatism is because it yields more flex-

ible decisions that can be adjusted according to the realized portion of the uncertain

data.

A decision variable that can incorporate information already revealed by uncer-

tainty is also called adaptive or adjustable decision variable and the actual function

that maps the revealed information to the action that is implemented is referred to

as a decision rule. The resulting problem is named adaptive or adjustable robust

optimization (ARO) problem and the concept was first introduced to robust opti-

mization in [19]. Adaptive robust optimization has many real-life applications. For

surveys of the theme one should read [126] and [52].

In [26] it is shown that, for continuous linear optimization problems, the gap

between the adjustable and classical robust solutions are due to the fact that the

classical robust formulation is inherently unable to model non-constraint-wise un-

certainty and replaces any given uncertainty set U , with a potentially much larger

uncertainty set. The adjustable robust optimization solution is, in fact, at least as

good as the equivalent classical robust optimization solution. Different works have

10



shown that, for some classes of problems, the optimal solution of classical robust

optimization equals the solution of the adaptive variant.

In [19] the authors show that for a linear optimization problem with constraint-

wise uncertainty and a compact uncertainty set, the optimal solution of classical

robust optimization and of the adaptive variant are equal. Their result is further

extended in [33] where it is shown that for a specific class of problems with non-

constraint-wise uncertainty, an optimal solution for the classical robust problem is

also optimal for the adjustable variant. They show that the optimality of classical

robust solutions depends on the geometrical properties of a transformation of the

uncertainty set. They show that the classical robust solution is optimal if the trans-

formation of U is convex. If U is a constraint-wise set, the transformation of U is

convex.

In [81] the authors prove that if the uncertainty is constraint-wise and the un-

certainty set is compact, then under two sets of conditions classical robust solutions

are optimal for the corresponding adaptive robust problem: (i) if the problem is

fixed-recourse (the definition is provided later in this section) and (ii) if the prob-

lem is convex with respect to the adjustable variables and concave with respect to

the parameters defining constraint-wise uncertainty, the adjustable variables lie in

a convex and compact set and the uncertainty set is convex.

In [81] they also remark that, for such above cases, there is no need to solve

the adaptive robust optimization problem and this has two important merits. First,

solving a classical robust optimization problem is computationally easier than solv-

ing an adaptive robust one: there is no need to add extra variables to determine

optimal coefficients in decision rules, and even in a non fixed-recourse situation the

final problem is linear in the uncertain parameters. Second, since adaptive robust

optimization is an on-line approach, parts of the solution can only be implemented

after knowing the values of the uncertain parameters. However, the classical robust

optimization approach is an off-line one, and all preparations for implementing the

solution can start promptly after having it solved.

Approximation bounds for the performance of classical robust solutions in two-

stage and multi-stage linear optimization problems have also been studied in the

literature. In [30] the authors show that if the uncertainty set is perfectly sym-

metric (such as a hypercube or an ellipsoid), a classical robust solution gives a

2-approximation for the adjustable robust linear covering problems under right-

hand-side uncertainty. In [32] the authors generalize the result for general convex

compact uncertainty sets and show that the performance of the classical robust

solution depends on a measure of symmetry of the uncertainty set.

In [33] the authors also show that, for the classes of problems that they define,

when a classical robust solution is not optimal for the adjustable robust problem,
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there exists a tight approximation bound on the performance of the classical robust

solution that is related to a measure of non-convexity of a transformation of the

uncertainty set.

Due to its inherent capacity to reduce conservatism and simpler formulation,

many applications have been modeled as two-stage robust optimization problems,

where there is only two stages of decisions possible (see, for examples, [23, 57, 88]).

For the sake of brevity, we consider an extra vector ξ, that represents the “primary”

uncertainty, and define d(ξ), A(ξ), B(ξ) as affine functions of ξ. For our linear

robust problem this leads to a formulation as

min
x,y()

�

max
ξ∈Ξ

cTx+ d(ξ)Ty(ξ) : A(ξ)x+ B(ξ)y(ξ) ≤ b, ∀ ξ ∈ Ξ

�

, (2.6)

where ξ ∈ Rn2 varies within a known uncertainty set Ξ. Also, x ∈ Rn are first-stage

decision variables, y ∈ Rn1 are second-stage decision variables and are dependent

on the realization of uncertainty. We can assume without loss of generality that

coefficient c of first-stage variables x are certain and B(ξ) is called the recourse

matrix. The objective function has two parts, reflecting the two-stage nature of

the decision. From this formulation, we can see that the first-stage variables x

takes into account all possible future variations represented in the uncertainty set.

Such a solution remains feasible, thus robust, for any realization of the uncertainty

set. Furthermore, in our formulation the optimal second-stage decision is a function

of the uncertainty, therefore, fully adaptive to any realization of the uncertainty.

Notice that is also a function of the first-stage decision. However, we write it as y(ξ)

to emphasize the adaptability of the second-stage decision to the uncertainty. The

above formulation can be recast in the following equivalent form, which is suitable

for developing numerical algorithms:

min
x

�

cTx+max
ξ∈Ξ

min
y∈Ω(x,ξ)

d(ξ)Ty(ξ)

�

, (2.7)

where Ω(x, ξ) = {y | By ≤ b− Ax}.

Problem (2.6) is a complex one, that involves infinitely many decision variables

and constraints. It has been shown to be NP -hard in general form unless we restrict

y(ξ) to specific decision rules classes that provides approximation solutions [68].

2.3.1 Exact solutions

To derive exact solutions for problem (2.7) two main strategies have been developed

in the literature of robust optimization. The first strategy, developed initially in

[121] for robust optimization problems, gradually constructs the value function of
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the first-stage decisions using dual solutions of the second-stage decision problem.

They are actually very similar to Benders decomposition method in that constraints

that approximate the value function are iteratively generated from a subproblem

and then supplied to a master problem. In [121] they verify that the method used

will vary depending on the recourse matrix W and the recourse function defined as

the inner problem and given by

Q(x, ξ) = min
y∈Ω(x,ξ)

dTy, (2.8)

where they suppose that Q(x, ξ) possesses relatively complete recourse, meaning it

is feasible for all values of (x, ξ). They develop an initial method for fixed-recourse,

when the recourse matrix W is deterministic, and only the right-hand-side vector b

is uncertain. They also develop methods for the cases of simple recourse, in the case

the recourse matrix W has the structure W = [I − I] and I is the identity matrix,

and analyze cases of general recourse.

The second strategy, defined in [128], present a constraint-and-column genera-

tion algorithm to solve two-stage robust optimization problems. It does not create

constraints using dual solutions of the second-stage decision problem. Instead, it

dynamically generates constraints with recourse decision variables for an identified

scenario in the uncertainty set in each iteration, which is very different from the

philosophy behind Benders-dual procedures.

Additionally, an alternative solution algorithm that exploits duality is derived

for general two-stage adaptive linear optimization models with polyhedral uncer-

tainty sets in [27]. Although they model the uncertainty as right-hand-sided, the

same derivation can be done in case of fixed-recourse. The new model is obtained

by consecutively dualizing over the wait-and-see decision variables and then over

the uncertain parameters. The resulting problem is again an adaptive robust opti-

mization problem, in which some of the dual variables are adjustable. Therefore, all

existing solution approaches for two-stage adaptive models can be used to solve or

approximate the dual formulation. The new dualized model differs from the primal

formulation in its dimension and uses a different description of the uncertainty set.

One advantage of the new dual adjustable model is that it is solved an order of

magnitude faster than the primal adjustable formulation. If affine decision rules

(see below) are adopted for the dual variables the resulting problem is tractable.

If we restrict y(ξ) to specific decision rules classes, approximation algorithms can

be developed. With this restriction, two-stage robust optimization formulations can

be generally reduced to classical robust optimization problems.
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2.3.2 Affine decision rules

For affine decision rules, second-stage variables y are defined as affine functions of

the form:

y(ξ) = y0 + Y 1ξ (2.9)

where y0 ∈ Rn and Y 1 ∈ Rn1×n2 . The work [19] was the first to propose using

affine decision rules to approximate the adaptive robust problem. It was shown that

affine decision rules result into tractable problems in the case of linear optimization

with fixed-recourse. The resulting problem is linear in the optimization variables

and in the uncertain parameters, and is therefore theoretically as tractable as the

original robust optimization problem for any uncertainty set, although it may have

many more variables. The optimal solution (x, y0, Y 1) contains the here-and-now

decision x that can immediately be implemented, and the coefficients for computing

y(ξ) as soon as ξ is observed. So, the solution dictates the second-stage decision

without requiring a new optimization model to be solved.

In [81] the authors prove that for a specific class of problem and if it has both

constraint-wise and not constraint-wise uncertain parameters, using affine decision

rules that depend on both types of uncertain parameters yields the same optimal

objective value as ones depending solely on the non-constraint-wise uncertain pa-

rameter. That reduces the number of variables in the problem used to model affine

decision rules, because it is known beforehand that the coefficients of the constraint-

wise uncertain parameters are zero.

The power of the approximation of affine decision rules has been object of many

studies. In [24] they consider two-stage adjustable robust linear optimization prob-

lems with uncertain right-hand-side b belonging to a convex and compact uncertainty

set U . They provide an a-priori approximation bound on the ratio of the optimal

affine solution to the optimal adjustable solution that depends on two fundamental

geometric properties of U : (a) the “symmetry” and (b) the “simplex dilation factor”

of the uncertainty set U and provides deeper insight on the power of affine policies

for this class of problems. In [29] they also consider a two-stage adaptive linear

optimization problem under right-hand-side uncertainty and give a sharp character-

ization of the power and limitations of affine policies. In particular, they show that

the worst-case cost of an optimal affine policy can be Ω(m
1
2
−δ) times the worst-case

cost of an optimal fully-adaptable solution for any δ > 0, where m is the number

of linear constraints. They also show that the worst-case cost of the best affine

policy is O(m− 1
2 ) times the optimal cost when the first-stage constraint matrix has

non-negative coefficients.

Many extensions of affine decision rules to more complex (non-linear) decision

rules have been proposed in the literature, see the recent survey [126]. Among
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them, affine decision rules defined over extended uncertainty sets offer good trade-

offs between tractability and expressiveness [15, 45].

2.3.3 Finite adaptability

The framework introduced above does not work if the second-stage variables are

subject to integer constraints, since the second-stage variables y are necessarily

continuous functions of the uncertainty. Finite adaptability, introduced in [26], is

designed to deal exactly with this setup. There, the second-stage variables, y, are

piecewise constant functions of the uncertainty, with K pieces. Due to the inherent

finiteness of the framework, the resulting formulation can accommodate discrete

variables. In addition, the level of adaptability can be adjusted by changing the

number of pieces K in the piecewise constant second-stage variables.

In the finite adaptability framework, with K-piecewise constant second-stage

variables, our adaptive robust optimization problem becomes

min
x,yk∈{1,...,K}

�

max
ξ∈Ξ

cTx+ min
k∈{1,...,K}

d(ξ)Tyk : A(ξ)x+ B(ξ)yk ≤ b

�

, (2.10)

Problem (2.10) determines K non-adjustable decision rules y1, . . . , yK here-and-

now and subsequently selects the best of these decisions in response to the observed

value of uncertainty. If all decisions are infeasible for some realization of uncertainty,

then the solution (x, yk∈{1,...,K}) attains the objective value +∞. By construction, the

K-adaptability problem (2.10) bounds the two-stage robust optimization problem

from above.

In this single-stage formulation, the K-adaptability formulation can also have

the interpretation of the decision-maker obtaining side-information about the uncer-

tainty, before it is fully revealed. That is, we can equivalently consider the problem

where the decision-maker selects the partition of Ξ into K regions, and then receives

advance information that the uncertainty realization will fall in region i, 1 < i < K.

If the partition of the uncertainty set, Ξ = Ξ1∪, · · · ,∪ΞK is fixed, then the resulting

problem retains the structure of the original nominal problem, and the number of

second-stage variables grows by a factor of K. Problem (2.10) can then be reformu-

lated as

min
x

cTx+ t

s.t. A(ξ)x+ B(ξ)yk ≤ b ∀ ξ ∈ Ξk, k ∈ {1, . . . , K}

d(ξ)Tyk ≤ t ∀ ξ ∈ Ξk, k ∈ {1, . . . , K}

The complexity of finite adaptability is in finding a good partition of the uncer-
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tainty. In [26] they verify that, in general, computing the optimal partition even

into two regions is NP -hard. There they reformulate the two-adaptability problem

as a finite-dimensional bilinear program and solve it heuristically.

The relationship between the K-adaptability problem (2.10) and classical robust

optimization is further explored in [32] for the special case where matrices A and

B are deterministic. The authors show that the gaps between both problems are

intimately related to geometric properties of the uncertainty set Ξ.

Finite-dimensional MILP reformulations for problem (2.10) are developed in [69]

under the additional assumption that both the here-and-now decisions x and the

wait-and-see decisions y are binary. The authors show that both the size of the

reformulations as well as their gaps to the two-stage robust optimization problem

(1) depend on whether the uncertainty only affects the objective coefficients d, or

whether the constraint coefficients A, B and b are uncertain as well.

In [116] two-stage robust optimization problems with mixed discrete-continuous

decisions in both stages are studied. The authors compare the two-stage robust

optimization problem with the K-adaptability problem in terms of their continuity,

convexity and tractability. They investigate when the approximation offered by the

K-adaptability problem is tight, and under which conditions the two-stage robust

optimization and K-adaptability problems reduce to single-stage problems. They

develop a branch-and-bound algorithm for the K-adaptability problem that com-

bines ideas from semi-infinite and disjunctive programming and present a heuristic

variant that can address large-scale instances.

2.3.4 Nonlinear decision rules

Many other different classes of decision rules have been studied in the literature. In

[126] the authors present a summary of different classes of nonlinear decision rules

and the resulting complexity of the equivalent adaptive robust optimization problem

incorporating the decision rules.

2.4 Objective function

Another potential source of over conservatism in classical robust optimization is

the objective function that is guaranteed to yield to best performance only when

worst possible realization of uncertainty has occurred. The fact that this solution is

suboptimal when the worst-case realization does not occur can make it unpractical

for many applications.

Different modeling techniques have been developed to deal with this issue. They

trade some of the robustness in exchange for potential better objective performance.
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In [63] the authors develop a model they call Light Robustness. In this model

they introduce a constraint to fix the worst objective function deterioration they are

willing to accept. This deterioration is calculated in relation to the solution consid-

ering only nominal values of uncertain parameters. To handle possible infeasibility

they create slack variables, as second-stage variables, that allow local violations of

the robustness requirements and define an auxiliary objective function aimed at

minimizing the slacks.

Other authors have explored concepts of multi-objective optimization and Pareto

efficiency to develop less conservative models. A solution is called Pareto optimal if

there exists no other solution with performance in every objective function at least

as good as its performance and is strictly better in at least one objective function.

In [42] the authors propose to include the average-case performance as an objec-

tive function, thus resulting in a bicriteria problem. They remark that a frequently

used assumption is that the objective function of the optimization problem is cer-

tain, as every objective function can be represented as a constraint by using the

epigraph transformation. While this is a valid method, it has the drawback that

feasibility and performance guarantees are mixed into one criterion, which is ques-

tionable for most practical problems. Therefore, they focus explicitly on problems

that are affected by uncertainty only in the objective function and assume that the

set of feasible solutions is restricted to solutions that are feasible for all possible

parameter values. They define the bicriteria optimization problem with the two

objective functions average and worst-case performance, and the set of optimal so-

lutions of this problem as the average-case to worst-case curve (AC–WC curve). To

compute the AC–WC curve, they make algorithmic use of the observation that a

robust solution can be interpreted as a special point on the Pareto curve with re-

spect to a multi-criteria problem where every possible scenario outcome leads to its

own objective. They build upon a theoretical observation on the structure of Pareto

solutions for problems with polyhedral feasible sets and present a column generation

approach that does not require direct solution of the worst-case problem.

In [71] the authors define a solution to be Pareto robustly optimal when its

performance in one scenario cannot be improved without worsening its performance

in another scenario. The authors focus on the robust optimization linear problem

where only the objective function coefficients, c, are uncertain. The authors propose

to solve an additional linear program of compact size to determine if the solution

of the original robust problem is Pareto optimal. If not, the solution of this linear

program provides a complement to transform the original solution into a Pareto

optimal solution. The associated approach can be extended to a more general class

of optimization problems where matrix A and b of our robust problem are uncertain.

In [51] the authors show that adaptive robust optimization yields multiple ro-
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bust optimal solutions for a production- inventory example and show that different

adaptive robust solutions that have the same worst-case objective function value

differ up to 21.9% in the mean objective value. They deduce three important impli-

cations of the existence of multiple optimal adaptive robust solutions. First, if one

neglects this existence of multiple solutions, then one can wrongly conclude that the

adjustable robust solution does not outperform the nonadjustable robust solution.

Second, even when it is a-priori known that the adjustable and nonadjustable ro-

bust solutions are equivalent on worst-case objective value, they might still differ on

the mean objective value. Third, even if it is known that affine decision rules yield

(near) optimal performance in the adjustable robust optimization setting, then still

nonlinear decision rules can yield much better mean objective values. The aim is to

convince users of adjustable robust optimization to check for existence of multiple

solutions. They apply a two-step approach to find a Pareto robust optimal solution

among the alternative adjustable robust optimal solutions.

These alternatives do not consider the stochastic nature of uncertainty and do not

exploit additional distributional information. Distributionally Robust Optimization,

which dates back to the work of [105] is a less conservative alternative that considers

that the probability distributions of uncertain parameters are assumed to belong to

an ambiguity set, family of distributions that share common properties. It is a

robust formulation for stochastic programming problems. The concept was used as

extension to min-max stochastic optimization models (see, for example, [109]), and

recently to distributionally robust optimization models (see, for instance, [46, 53,

66]).

In this model, after defining a set D of probability distributions that is assumed

to include the true distribution P, the objective function is reformulated with respect

to the worst-case expected cost over the choice of a distribution in this set. Hence,

this leads to solving the Distributionally Robust Stochastic Program

min
x∈X

max
P∈D

EP[Q(x, ξ)], (2.11)

where Q(x, ξ) is a convex cost function in x that depends on some vector of random

parameters ξ and EP is the expectation taken with respect to the random vector ξ

given that it follows the probability distribution P.

Since the introduction of distributionally robust optimization, several ambiguity

sets have been proposed and analyzed. Among these, three types have received

significant attention: moment-based ambiguity sets, structural ambiguity sets, and

metric-based ambiguity sets.

In moment-based ambiguity sets, it is assumed that all distributions in the dis-

tribution family share the same moment information. Leveraging conic duality for
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moment problems (see [110]) and developments in interior point algorithms for solv-

ing semidefinite programming problems, many distributionally robust optimization

problems with moment-based ambiguity sets can be reformulated equivalently (or

approximately) as semidefinite programming problems. In [53], for example, the

authors study tractable reformulations for distributionally robust expectation con-

straints under the assumption that the ambiguity set specifies the support as well

as conic uncertainty sets for the mean and the covariance matrix of the uncertain

parameters. The authors also provide a recipe for constructing ambiguity sets from

historical data using McDiarmid’s inequality.

In structural ambiguity sets, distributions share the same structural properties,

such as symmetry, unimodality, and monotonicity. In [122], for example, the au-

thors study worst-case probability and conditional value-at-risk problems, where

the distributional information is limited to second-order moment information in

conjunction with structural information such as unimodality and monotonicity of

the distributions involved. They indicate how exact and tractable convex reformu-

lations can be obtained using tools from convex analysis, more specifically Choquet

and duality theory.

Metric-based ambiguity sets are created by requiring that all distributions are

close to a reference (or nominal) distribution within a prespecified probability dis-

tance. The reference distribution is usually estimated using sampled data. By

adjusting the radius of the ambiguity set, the modeler can thus control the degree

of conservatism of the underlying optimization problem. If the radius drops to zero,

then the ambiguity set shrinks to a singleton that contains only the nominal distribu-

tion, in which case the distributionally robust problem reduces to an ambiguity-free

stochastic program. In addition, ambiguity sets can also be defined as confidence

regions of goodness-of-fit tests. In [86], for example, using the Wasserstein metric

(see [115] for a definition), the authors construct a ball in the space of (multivariate

and non-discrete) probability distributions centered at the uniform distribution on

the data training samples, and they seek decisions that perform best in view of the

worst-case distribution within this Wasserstein ball. They show that, under mild as-

sumptions, the distributionally robust optimization problems over Wasserstein balls

can in fact be reformulated as finite convex programs.
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Chapter 3

Solving the bifurcated and

non-bifurcated robust network

loading problem with k-adaptive

routing

3.1 Introduction

This study is about a robust linear optimization approach for the network loading

problem under demand uncertainty (RNL). Given a graph G(V,E) and a set of

node-to-node uncertain demands as commodity origin-destination flows, we want

to define minimum cost integer capacity installations for the edges (investment de-

cisions), such that all commodities can be routed simultaneously on the network

(routing decisions defining a routing scheme).

Robust network design problems, in general, have been widely studied motivated

by the fact that demands in modern applications vary and are hard to forecast. The

standard robust approach encompasses solutions that are feasible for any realization

of uncertainty, so that a decision taken hedges against the worst contingency that

may arise. This leads to a conservative solution approach.

A robust approach to the network design problem with demand uncertainty can

be tracked back to the work of [80]. They introduce a polyhedral uncertainty set for

demands and a min-max-min approach to the problem using dualizations to derive

an equivalent linear problem formulation. In [77] the authors analyse for the first

time many network design problems from a robustness perspective and introduce

the term robust network design. They assert that multicommodity network design

problems exhibit the important property of having multiple, and significantly differ-

ent, solutions within a few percentage points from the optimal. This feature makes
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them amenable to algorithmic developments that can find common near optimal

(robust) solutions for a variety of future operating scenarios. The uncertainty in the

problems they consider are in the costs of the networks and are modeled as discrete

scenarios.

Modeling uncertainty as discrete scenarios is limiting (see [44]) and since then

many studies have been made on how to model uncertainty and the effect this has

on the formulation, solution, and complexity of algorithms developed. Modeling un-

certainty has a objective of reflecting real data behavior, but can affect conservatism

of the solution.

Conservatism is also related to how the demands are routed through the network,

meaning how commodity flows are carried from source to destination using network

resources. The problem can be seen as a two stage robust optimization problem

where the recourse function consists in choosing the routing for each demand vector.

In fact, robust network design problems have an intrinsic separation between first

stage decisions and second stage decisions: investment decisions must be made before

we observe the results of the demand uncertainty, while routing decisions have to

route whatever demand occurred. One can decide which route to take based on

actual demands, leading to less conservative solutions.

Routes can also have restrictions inherent to the application being modeled.

Possible restrictions are if demands can be split between different paths (bifurcated)

or not (non-bifurcated) or if there is a maximum number of edges to be used for

each path, among others.

In this study we experiment and compare different modeling strategies to treat

conservatism of robust solutions for RNL.

The purpose of this study, which is an extension of the work presented in the

short paper [113], is four-fold:

• We present a review of the literature on robust network design, focusing on

the polyhedral uncertainty sets and different routings used.

• We show the application of the iterative k-adaptive partitioning algorithm

defined in [28] to RNL. We develop and apply decomposition techniques

to this application and we verify its time performance comparing against an

implementation using the recent Benders Decomposition functions of CPLEX

12.7.

• For non-bifurcated flows, we show the cost reductions provided by k-adaptive

routing scheme over static. This is the first attempt to improve over static

solutions for non-bifurcated flows. So far, solutions developed assume con-

tinuous second stage decision variables. These previous approaches include
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enumerating the extreme points of the uncertainty set (see [98]), using clas-

sical decomposition algorithms (see [8, 83]) or using affine decision rules (see

[93, 94, 98]). Integrality of the second stage variables prevents us from using

these approaches.

• For bifurcated flows, we compare the solution times and costs of the k-adaptive

routing scheme with those of static, volume and two-partitioning routings.

Outline We first review in Section 3.2 the literature dealing with polyhedral uncer-

tainty sets and routing schemes, applied to robust network design problems. Next,

in Section 3.3, we formally present the problem that we will focus on our experiment.

Section 3.4 details key concepts used in our routing scheme, that dynamically parti-

tions the uncertainty set. In Section 3.5 we explain the solution strategy, with em-

phasis on techniques to reduce branching and decomposition techniques developed

to cope with large instances. In Section 3.6 we present algorithm implementation

details and results.

3.2 Literature review

3.2.1 Polyhedral uncertainty set

The authors of [13] model demand uncertainty with a polyhedral uncertainty set

and argue that the polytope so defined, D, has to be sufficiently large to allow

routes to be flexible, but not excessively large to avoid wasting network resources.

Each demand vector is defined in its components by its node origin and destination

(dij, i, j ∈ V ). They define a model in which A is a real-valued matrix and b is a

real-valued vector and

D =
�

d ∈ R
|V | x |V−1|
+ | Ad ≤ b

�

Prior to that, another approach in the same direction can be found in the work

of [62] for ATM’s communications network and [59] for VPN’s communications net-

works. They introduced a particular polyhedral model for uncertainty, based on the

definition of demand upper bounds, named the Hose model. In the Hose model two

upper bound demand parameters are defined for each node i ∈ V : douti , as outgoing

demand from node i and dini , as ingoing demand to node i:

D =







d ∈ R
|V | x |V−1|
+ |

�

j∈V \{i}

dij ≤ douti ,
�

j∈V \{i}

dji ≤ dini , ∀i ∈ V







A breakthrough for the design of polyhedral uncertainty sets that influenced fu-
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ture work on network design was in [31]. Therein the authors protect against the

violation of constraint i of an optimization problem deterministically, when only

a pre-specified number Γi of the coefficients change and where each coefficient is

defined within a band of variation. In our demand uncertainty context this band

defines a variation around a given nominal demand d̄ij with a maximum possible

deviation value d̂ij ≥ 0. It is named the gamma-model or budgeted uncertainty

model. Considering for our purposes only positive deviations, the equivalent poly-

hedral uncertainty polytope that results is defined by:

D =







d ∈ R
|V | x |V−1|
+ | d̄ij ≤ dij ≤ d̄ij + d̂ij;

�

j∈V,j �=i

dij − d̄ij

d̂ij
≤ Γi; i, j ∈ V







Further studies on polyhedral uncertainty sets have identified other opportunities

to reduce conservatism. In [39] the authors verify that the single deviation band for

each coefficient proposed in [31] may be too limited in practice, so that getting a

higher resolution by partitioning the band into multiple sub-bands seems advisable

(see also [49]). In [97], the author introduces the concept of decision dependent

uncertainty as an extension of the work presented in [31]. The author proposes a

new model where the uncertain parameters belong to the image of multi-functions

of the problem decision variables. It can provide the same probabilistic guarantee

as the uncertainty set defined in [31] while being less conservative. The model has

been revived more recently in [90].

3.2.2 Routing

We define each routing scheme from a robust optimization perspective as in [96].

Therein, a formal definition of routing is made. A routing is a function f : D ⊂
R|Q| → R|E| x |Q| that associates each demand vector, expressed by its components

(dq) as commodities (q ∈ Q) with nodes origin (s(q)) and destination (t(q)), with a

multicommodity flow, defined for each edge and commodity. This function satisfies

the flow conservation constraint at each node of the network, where δ(v) = {ij ∈
E | i = v or j = v} and

�

j∈δ(i)

(f q
ij(d)− f q

ji(d)) =















dq if i = s(q)

−dq if i = t(q), for each i ∈ V

0 else

∀q ∈ Q (3.1)

f q
ij(d) ≥ 0 ∀ij ∈ E, ∀q ∈ Q (3.2)

One routing scheme, called dynamic routing, is the set of all functions that satisfy
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(3.1) and (3.2) :

F ≡ {f : D → R|E| x |Q| | f satisfies (3.1) and (3.2)}

Named dynamic routing, permits full flexibility in re-routing according to de-

mand changes and, in consequence, is potentially less costly. It has been shown in

[43] that the robust network design problem with dynamic routing is NP-hard, and

in [85] that it is also NP-hard for polyhedral uncertainty sets.

An opposite approach to dynamic routing has been introduced by [13] for the

robust network design problem. Designated static routing, meaning that for every

commodity the same paths are used with the same splitting independently of the

realization of demand. It amounts to restricting the second stage recourse. Each

function component f q : D to R
|E|
+ is a linear function of dq :

f q
ij(d) := yqijd

q, ij ∈ E, q ∈ Q, d ∈ D (3.3)

The flow y is called a routing template since it decides, for every commodity,

which paths are used to route the demand and what is the percentage splitting

among these paths. Combining equations (3.1) and (3.3), the routing template y

satisfies

�

j∈δ(i)

(yqij − yqji) =















1 if i = s(q)

−1 if i = t(q), for each i ∈ V

0 else

∀q ∈ Q (3.4)

We define formally the set of all routing templates:

Y ≡ {y ∈ R
|E| x |Q|
+ | y satisfies (3.4)} (3.5)

With that, we can define the set of all static routings:

Fstat ≡ {f : D → R|E| x |Q| | ∃y ∈ Y : f satisfies (3.3)}

The resulting optimization problem is polynomially solvable.

Recently significant progress has been made in defining routing schemes in be-

tween static and dynamic, imposing a restriction on how the flow can be tuned to

demand.

Defined in [20] as the simplest restriction of this type (two stage), affine routing

requires the recourse variables to be affine functions of the data. The affine approx-

imation assumes continuous second stage variables and therefore does not support

second stage integer variables, or unsplittable flows for RNL. Affine routing was
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first addressed for the robust network design problem by [93]. They did that by

restricting f q to be an affine function of all components of d giving

Faff ≡ {f : D → R|E| x |Q| | ∃f0 ∈ R|E| x |Q|, y ∈ R|E| x |Q| x |Q| :

f q
ij(d) = f 0q

ij +
�

h∈Q

yqhij d
h, ij ∈ E, q ∈ Q, d ∈ D, and f satisfies (3.1) and (3.2)}

In [84] the authors perform a numerical study of the affine routing robust net-

work design problem. They show that formulations tend to be so large that they

become hard to solve for large instances. In this context the authors suggest that it

might be wise to restrict the number of commodities in the affine recourse or apply

decomposition methods.

Another concept for routing is derived from the idea of sharing two routes for

each commodity in a way that depends on the actual volumes of demands. This

type of routing, called volume routing, was originally introduced in [130]. Formally,

the authors use the following set of routings, according to thresholds hq for each

q ∈ Q:

FV ≡ {f : D → R|E| x |Q| | ∃y1, y2 ∈ Y, h ∈ R
|Q|
+ :

f q
ij(d) = y1qij min(dq, hq) + y2qij max(dq − hq, 0) ij ∈ E, q ∈ Q, d ∈ D}

They prove that the robust network design problem associated with FV is an NP-

hard optimization problem. Hence, they introduce simpler frameworks described

below. Defining dqmin = min
d∈D

dq and dqmax = max
d∈D

dq, the set of routings becomes one

of the following:

FV S ≡ {f : D → R|E| x |Q| | ∃y1, y2 ∈ Y :

f q
ij(d) = y1qij d

q
min + y2qij (d

q − dqmin), ij ∈ E, q ∈ Q, d ∈ D}

FV G ≡ {f : D → R|E| x |Q| | ∃y1, y2 ∈ Y :

f q
ij(d) = y1qij d

q
min

dqmax − dq

dqmax − dqmin

+ y2qij d
q
max

dq − dqmin

dqmax − dqmin

,

ij ∈ E, q ∈ Q, d ∈ D}

which are both well defined whenever dqmin < dqmax for each q ∈ Q. When dqmin =

dqmax for some q ∈ Q, the q-th component of f ∈ FV G is defined by f q(d) = y1qdq .

By definition FV S and FV G are special cases of affine routing.

A generic volume routing is defined in [84], where each commodity flow is based

on two components: a flow that varies with demand and is a set of arc-paths from

origin to destination plus a circulation that is independent of the demand value (see

[98] for details). It also restricts the number of commodities in the affine recourse
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and leads to smaller formulations.

FV A ≡ {f : D → R|E| x |Q| | ∃f0 ∈ R|E| x |Q|, y ∈ Y :

f q
ij(d) = f 0q

ij + yqijd
q, ij ∈ E, q ∈ Q, d ∈ D, f satisfies (3.1) and (3.2)}

In [96] the author compares optimal solutions for different routing strategies

F, defined as opt(F ). They show that opt(Faff ) ≤ opt(FV G) ≤ opt(FV S), and

opt(FV ) ≤ opt(FV S). They also show that it is not possible, in general, to order

opt(FV ) and opt(Faff ). Also one can check that opt(Faff ) ≤ opt(FV A) ≤ opt(FV G)

using the same arguments of [96].

More recently, in [14], an alternative routing scheme is proposed with the ob-

jective of maintaining tractability of the reformulated optimization problem to be

solved. It assumes a polyhedral uncertainty set and fixed recourse. Called multipo-

lar routing, the authors approximate the uncertainty set by a polytope defined by

its extreme routings, named poles. Each pole k ∈ K is a special demand vector, not

necessarily belonging to D. The poles are given beforehand and are defined so that

∃λ |
�

k∈K

λk
dk

q = dq;
�

k∈K

λk
d ≤ 1; λk

d ≥ 0; ∀d ∈ D, ∀q ∈ Q (3.6)

Each pole k is defined as having a route associated with it, so that we have

f q
ij(k) = yqkij k

q, ij ∈ E, q ∈ Q, k ∈ K (3.7)

Moreover, the route for each realization of the demand vector will be a convex

combination of the routes defined for each pole. Expression (3.6) states also how

each demand should be routed and we define

f q
ij(d) =

�

k∈K

λk
dy

qk
ij k

q, ij ∈ E, q ∈ Q, k ∈ K (3.8)

We define formally the set of all multipolar routings as

FMP ≡ {f : D → R|E| x |Q|| ∃λ ∈ R|K| x |D|, y ∈ R|K| x |E| x |Q|,

f satisfies (3.1), (3.2), (3.8)}
(3.9)

One recurring idea for another approximate routing is the partitioning of the un-

certainty set into subsets and considering a static routing for each subset. It has

been studied under the general framework of multi-stage robust optimization in

[26]. Therein, it is called finite adaptability, where the decision-maker chooses k

second-stage static solutions, and then commits to one of them only after seeing the

realization of the uncertainty. The decision-maker defines a cover of the uncertainty
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set with k subsets (possibly non-disjoint). It has the advantage of being able to

naturally accommodate discrete second stage decision variables. We will call this

routing scheme k-adaptive (Fk).

The inequalities opt(F) ≤ opt(Fk) ≤ opt(Fstat) hold in general. The authors pro-

vide an important geometric interpretation of the gap between static and dynamic

routing solutions. They show that the gap is related to the fact that the static solu-

tion is not able to correlate uncertainty components between different constraints.

For polyhedral uncertainty sets they show that this gap can be expressed in terms

of matrices that belong to the uncertainty set. The authors also affirm that their

k-adaptability proposal is not comparable to affine adaptability: in some cases affine

adaptability fails where k-adaptability succeeds, and vice versa, so that we cannot

order conservatism between the two approaches. The quality of solutions obtained

with a k-adaptive approach depends on how the partition is built. Therefore there is

a natural trade-off between the number of sets of a partition (and the solution time)

and how “close” the solution is to the dynamic solution. Hence, a goal when using

k-adaptability is to identify a partitioning scheme that is near the efficient frontier of

this trade-off. In [26], the authors show that even finding an optimal 2 partitioning

is NP-hard and reformulate it as a bilinear optimization problem. Being NP-hard,

many heuristics have been proposed on how to split the uncertainty set.

In [12], the author introduces the idea of partitioning the uncertainty set with two

(or more) subsets using hyperplanes and proposes to use a static routing template

for each subset. This yields the following set of routings:

F2| ≡ {f : D → R|E| x |Q| | ∃y1, y2 ∈ Y and α ∈ Rq, β ∈ R :

f q
ij =

�

y1qij d
q d ∈ D ∩ {d,αd ≤ β}

y2qij d
q d ∈ D ∩ {d,αd ≥ β}

, ij ∈ E, q ∈ Q, d ∈ D}

The definition above implies that both routing templates y1 and y2 must be

able to route demand vectors that lie in the hyperplane αd = β without exceeding

the capacity. They prove that the problem is NP-hard in general and describe

simplification schemes, where the direction α is given and solutions for each partition

can be different or have to be identical.

The authors of [129] develop an algorithm based on a sequence of binary searches

to solve a 2-partition robust linear problem with given hyperplane direction α and

identical solutions. They define a routine that can answer the question: Is there

a feasible solution with smaller or equal cost than a given value? They perform

a binary search using this routine and given upper and lower bounds on the cost

function. The routine is also based on binary searches using given βmax and βmin as

bounds to constantly shrink the interval of possible positions of the hyperplane.
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Also using the strategy of partitioning of the uncertainty set, [106] introduces

the idea of using conjointly two routing templates. Formally, the author proposes

to use two routing templates y1 and y2 such that each d ∈ D can be served either

by y1 or by y2 (or both). This yields the following set of routings:

F2 ≡ {f : D → R|E| x |Q| | ∃y1, y2 ∈ Y and D1, D2 ⊆ D,D = D1 ∪D2 :

f q
ij(d) =

�

y1qij d
q d ∈ D1

y1qij d
q d ∈ D2

ij ∈ E, q ∈ Q}

3.3 Problem definition

RNL are robust network design problems with integer capacity decision variables,

reflecting practical cases where a number of different facility type can be installed

at each edge. We focus on a simplification of RNL where each commodity q can

be routed along a predetermined set of paths P (q). In many practical applications

there are limits on the number of different configurations of paths that can be

implemented, so that we exercise the flexibility of routing schemes to mitigate the

static solution conservatism even with this restriction. It has been used in several

papers, see for instance [94] and [93]. These paths are represented by δijqp that is

equal to 1 if edge ij is contained in path p ∈ P (q), for some q ∈ Q, and is equal to 0

otherwise. They were predetermined as shortest paths weighted by edges costs for

each commodity.

We work with two cases: one in which flows are unsplittable, or non-bifurcated,

and must use a single path, and another one in which flows are splittable, or bifur-

cated, and can be fractionally split among several paths. The cost for routing flows

is zero.

Each commodity q ∈ Q is associated with the uncertain demand dq, within a

given polyhedral uncertainty set D.

The formulation contains integer investment decision variables x, where xij

equals the planned installed capacity for edge ij, considering only one type of facility

at a unit cost of cij. It also contains continuous (for bifurcated flows) or binary (for

non-bifurcated flows) routing decision variables yqp, where yqp equals the fraction of

commodity q ∈ Q assigned to path p ∈ P (q).

Given a partition D1∪ · · ·∪DK of the uncertainty set D, the k-adaptive routing

scheme restricts the routing functions to piece-wise constant functions defined as

fqp(d) = ykqp for d ∈ Dk where k ∈ {1, ..., K}. The formulation follows, where

Y ≡ {0, 1} for non-bifurcated flows and Y ≡ [0, 1] ⊂ R for bifurcated flows and the
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partition can be optimized along with the other optimization variables:

(kRNL) min
�

ij∈E

cijxij

s.t.
�

q∈Q

�

p∈P (q)

dqδijqpy
k
qp ≤ xij ij ∈ E, ∀d ∈ Dk,

k ∈ {1, ..., K} (3.10)
�

p∈P (q)

ykqp = 1 q ∈ Q, k ∈ {1, ..., K}

ykqp ∈ Y, xij ≥ 0, xij ∈ Z q ∈ Q, p ∈ P (q),

ij ∈ E,

k ∈ {1, ..., K}

As mentioned before, choosing the optimal partition makes the problem extremely

difficult so that we focus on the heuristic solution algorithm proposed by [28].

3.4 Iterative nested partitioning

In [28] and [99] the authors independently identify that there is a set of active

uncertain parameters d̂. The active uncertain parameters are the values of the

uncertain parameters that correspond to the constraints with minimum slack and

that are the constraints that restricts the objective function. Applied to kRNL, the

only constraints that involve uncertainty are constraints (3.10). We can define the

set D̂, the active uncertain parameters of D (or equivalently for any subset Dk), as

follows. Given a solution (x̃ij, ỹqp) we define

D̂ =







d̂ | ∃ij ∈ E s.t. d̂ = arg min
d∈D

(x̃ij −
�

q∈Q

�

p∈P (q)

dqδijqpỹqp)







(3.11)

where only one nominal element will be selected for each constraint involved in

(3.11).

The authors in [28] identify that less conservatism can be obtained if a partition

of the uncertainty set is created in such a way to guarantee that the active uncertain

parameters do not all lie in one set of the partition and they construct a particular

partition using Voronoi diagrams. Given a set of active uncertain parameters, the

Voronoi diagram associated with these parameters defines a partition of D with one

subset defined for each d̂k ∈ D̂, such that the Euclidean distance between d̂k and

any d in this subset is less than or equal to the distance of d to any other given

parameter d̂j, j �= k:

29



Dk = D(d̂k) = {d | ||d̂k − d||2 ≤ ||d̂j − d||2, ∀d̂j, j �= k} ∩D (3.12)

They further create the concept of nested partitions, where partitions can be

created after previous partitions, so as to create a partition tree of active uncertain

parameters. Voronoi diagrams are used to partition subsets of the previous level

of the tree. The nodes of the tree, T , correspond to the set of all active uncertain

parameters. Each level of the tree defines a sequence of subsets that define a partition

of D at that level. To define these subsets under the concept of nested partitioning

we need first to define some sets:

• Leaves(T ) is the set of leaves of the tree T . This is the set of all active

uncertain parameters (d̂k) at the last level of the tree. As mentioned above,

each one is uniquely associated with a subset of a partition being considered

for the kRNL problem. We index each set as k ∈ {1, ..., K} as pointed out in

our formulation of kRNL.

• Children(d̂k) is the set of children of d̂k in the tree T . This is the set of the

active uncertain parameters associated with the partition of one subset.

• Parent(d̂k) is the parent of d̂k in the tree T . This is a one-element set defined

by the active uncertain parameter that originated one subset at previous level

of the tree.

• Siblings(d̂k) = Children(Parent(d̂k))

Hence a subset of the k-adaptive partition of the uncertainty set is obtained

through a sequence of partitioning of many levels. Each subset is defined by the

following inequalities:

Dk = D(d̂k) = {d | ||d̂k − d||2 ≤ ||d̂j − d||2, ∀d̂j ∈ Siblings(d̂k)}

∩ {d | ||Parent(d̂k)− d||2 ≤ ||d̂j − d||2, ∀d̂j ∈ Siblings(Parent(d̂k))}

· · ·

∩ D (3.13)

Figure 3.1 helps to explain the partitioning of equation (3.13). Note that each

subset at the right hand side of equation (3.13) represents a subset of a partition at

a specific level of the tree, and the union of subsets in the equation guarantees the

nesting of partitioning. To facilitate the formulations derived in further sections,
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we will represent the M
�

inequalities of polyhedral uncertainty set Dk by matrix

notation A
M

�
x |Q|

k d ≤ bM
�

k .

An iterative method is built around the partitioning scheme. It starts by solving

a first version of a kRNL problem, where only the original uncertainty set is defined.

The solution can be used to determine a set of active uncertain parameters. These

are used, through Voronoi Diagrams and further partition of the uncertainty set, to

construct another finitely-adaptive kRNL version of the problem. It is solved. This

in turn produces a new set of active uncertain parameters which we can then use

to partition further, ideally improving on the previous solution at each iteration.

These iterations can proceed until a termination criteria limit is encountered.

With this approach optimal solutions for a partition can be used as initial feasible

solutions for the nested partitions originated from it. Each iteration will have a

solution that is as good as or better than the previous iteration.

The pseudo code in Algorithm 1 reflects these main steps and defines the algo-

rithm implemented in our experiment for the k-adaptive routing. As termination

criteria we utilize a time limit procedure and a bounding procedure that will be

explained in the next section (see below).

Figure 3.1: Nested partitioning
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Algorithm 1 Iterative k-adaptive routing

Initialize � No partition at first round
repeat

Solve kRNL Problem
Calculate Bound : Termination Criteria
if Bound gap limit not reached then

Calculate Active Uncertain Parameters
Formulate Nested Partitioning

end if

until Time limit or Bound gap limit reached : Termination Criteria

3.5 Algorithm improvements

We describe below improvements of Algorithm 1. The first two were already sug-

gested in [28], while the decomposition algorithm and valid inequalities are specific

to kRNL studied herein.

Nested partial partitioning In our problem, there are |E| capacity constraints

leading to a total of as many as |E| active uncertain parameters and, so, |E| subsets

associated to the repartition of each subset Dk of the previous partition. Using this

approach without modifications, at each iteration n of our method, there will be as

many as |E|(n−1) subsets of a partition. This will possibly impact time performance

due to the increase in the number of variables and constraints.

In order to mitigate the effect above, the authors in [28] suggest two practical

approaches as trade-offs between computation time and quality of solution. One is

to only take a subset of active samples from generated constraints, the ones with

lowest slack, since constraints with greater slack are less likely to constrain the

solution even with additional iterations. The other is based on the fact that the

value of the objective is given by the worst result if we consider each element (Dk)

of a partition. Only the elements (Dk) of the partition with this worst objective

value restrict the overall objective and are called active subsets of a partition. If

a subset is not active, further partitioning it is less likely to improve the objective.

Applying these approaches will reduce the number of subsets of the partition at the

next iteration, improving computational efficiency. The overall number of subsets

defined at each iteration will then be algorithmic dependent.

Bounds Given a lower bound on the dynamic solution, we can use it to estimate

the gap between our k-adaptive solution and the dynamic solution. Specifically,

the bound is obtained by solving the problem with dynamic routing for the finite

uncertainty set T , which contains all active uncertain parameters generated through

different iterations presented in Section 3.4.

Benders decomposition For bifurcated routings, we use a Benders branch-and-

cut approach and break the problem into one that designs edge capacities (master
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problem defining variables xij, ij ∈ E) and a sequence of other problems that checks

feasibility of the designed edge capacities with respect to the uncertain demand

requirements. This decomposition of the problem is not applicable to non-bifurcated

routings since routing templates variables are integer.

Specifically, given an integer solution x̃ij for the master problem, typically ob-

tained as a feasible solution of a node in the branch-and-bound tree algorithm, we

solve a feasibility subproblem for each subset of the partition. Notice that each

subproblem is the following robust linear program

min
�

ij∈E

sij

s.t.
�

q∈Q

�

p∈P (q)

dqykqpδ
p
ij − sij ≤ x̃ij ij ∈ E, ∀d ∈ Dk

�

p∈P (q)

ykqp = 1 q ∈ Q

sij ≥ 0, ykqp ≥ 0 q ∈ Q, p ∈ P (q), ij ∈ E,

where variables sij are additional slack variables. Each subproblem is defined by a

subset Dk of D, given by its matrix definition A
M

�
x |Q|

k d ≤ bM
�

k . Each subset Dk is

a a polyhedral uncertainty set defined by an active uncertain parameter. The first

constraint can be rewritten as

max
d∈Dk

�

q∈Q

�

p∈P (q)

dqykqpδ
p
ij − sij ≤ x̃ij, ij ∈ E (3.14)

Using a classical technique based on LP duality (e.g., [20]), we can replace the

maximization in (3.14) by its dual, obtaining the following LP:

min
�

ij∈E

sij

s.t.
�

m∈{1,...,M �}

bk(m)um
ij ≤ x̃ij + sij ij ∈ E (3.15)

�

p∈P (q)

ykqp = 1 q ∈ Q (3.16)

�

m∈{1,...,M
�
}

AT
k (q,m)um

ij ≥
�

p∈P (q)

δijqpy
k
qp ij ∈ E, q ∈ Q

um
ij ≥ 0, ykqp ≥ 0, sij ≥ 0 q ∈ Q, p ∈ P (q),

ij ∈ E,m ∈ {1, ...,M
�

}

AT
k (q,m) and bk(m) indicate elements of their respective matrices. Let πij ≤
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0, ∀ij ∈ E and λq, ∀q ∈ Q be the dual variables of constraints (3.15) and (3.16),

respectively, and let π̃ij and λ̃q denote the optimal dual solution. By linear pro-

gramming strong duality the solution for the subproblem above can be given by
�

ij∈E x̃ijπ̃ij +
�

q∈Q λ̃q. Moreover, the value of its solution is equal to 0 if and

only the feasible set is nonempty. Hence, if
�

ij∈E x̃ijπ̃ij +
�

q∈Q λ̃q > 0 we add a

strengthened mixed integer rounding [48] Benders cut to the master problem, where

f0 = −�

q∈Q λ̃q − �−�

q∈Q λ̃q� and fij = π̃ij − �π̃ij� and

�

ij∈E

(�π̃ij�+
max(fij − f0, 0)

1− f0
)xij ≤ �−

�

q∈Q

λ̃q�

If the master solution x̃ is not violated by the strengthened Benders cut we add

the non-rounded cut instead.

We take advantage of nonzero values solutions of the slack variables (sij) and im-

plement a heuristic solution for the master problem. For each subproblem, nonzero

value solutions of the slack variables correspond to the capacity value missing to

transform the master problem solution into a feasible one. For each solution x̃ij

we select the maximum nonzero slack value provided by the different subproblems.

These nonzero values of slack variables complement master problem solutions and,

rounded up, are used as upper bounds for the master problem.

Cut-set inequalities Consider a partition of the node set V given by sets S1 and S̄1,

and let E(S1, S̄1) and Q(S1, S̄1) be the set of edges and commodities with extremities

in different sets of the partition. The cut-set inequality associated with the partition

states that the amount of capacity installed on edges in E(S1, S̄1) should be not less

than the rounded up sum of the demands of commodities in Q(S1, S̄1). We have our

cut-set inequality given by

�

ij∈E(S1,S̄1)

xij ≥ �max
d∈D

�

q∈Q(S1,S̄1)

dq�

Since x is a first stage decision variable cut-set inequalities have to hold for the

original uncertainty set.

We separate robust cut-set inequalities using two steps: 1) the master problem

starts with cuts generated for each node of the network and at each integer solution,

and 2) during branching, we separate cuts heuristically by generating a two-subset

random partition of the nodes and then performing a local search picking up one

node and moving it to the other subset until there is no more improvement in

the violation. If no violated inequality is found we repeat the procedure up to a

maximum of 20 iterations.
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3.6 Implementation and results

We first present a summary indicating the purpose and main achievements of our

experiment, followed by details of our implementation and the results themselves.

3.6.1 Summary of results

Purpose The purpose of the computational experiments is two-fold:

• We assess the numerical complexity of the k-partitioning scheme, including

the effect of the valid inequalities and Benders decomposition algorithm.

• We assess the cost reduction provided by that scheme over static routing.

Main achievements We were able to show that the k-adaptive partitioning scheme

provides, in general, less conservative solutions than previous algorithms presented

in the literature. We also show that the decomposition algorithms developed here

were able to improve time performance for the more complex instances.

3.6.2 Instances and implementation

Instances Six networks available from SNDlib [91] and eight networks randomly

generated were utilized with the characteristics given in Table 3.1. The first six

networks presented are as referenced in [84]. The other networks are randomly

generated and inspired by the instances used in [98] so that each node has at least

two incoming edges to avoid trivial problems. Edge costs are randomly generated

integer numbers in {1, . . . , 5}.

Each commodity q ∈ Q is associated with the uncertain demand dq, within a

given uncertainty set based in [31]. The demand for commodity q ∈ Q varies around

a given nominal demand d̄q ≥ 0 with a maximal possible deviation of d̂q ≥ 0, that

is, dq(ξ) = d̄q + ξqd̂q for ξ ∈ Ξ where Ξ = {ξ |
�

q∈Q ξq ≤ Γ, 0 ≤ ξq ≤ 1}. Demands

d̄q are randomly generated integer numbers in {1, . . . , 100} and maximal deviations

d̂q are randomly generated numbers in {0.1d̄q, . . . , 0.7d̄q}. We choose the value of Γ

according to the probabilistic bound introduced by [31]. Namely, we set two levels

of guaranteed probabilistic bound (denoted � : 0.25, 0.01). Then, for each value of

�, the bound from [31] prescribes a value Γ
� such that all feasible solutions for the

problem satisfy the following property: if demands for each commodity q ∈ Q are

symmetric and independent random variables distributed in [d̄q − d̂q, d̄q + d̂q], then,

for each ij ∈ E, the probability that the flow exceeds the capacity installed on edge

ij is less than �.

We test these networks, with the two different Γs, giving a total of 28 instances

tested.
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For the abilene network a test case with all possible Γs was also utilized. We

have predetermined a maximum of 5 paths for each commodity (if they exist). These

paths are calculated as the 5 shortest edge cost paths.

Routing schemes We experiment with many of the different routing schemes pre-

sented in this study, according to the configurations in Table 3.2. We note the

following:

• We further split the routing schemes into routing schemes with bifurcated (BF)

and non-bifurcated (NBF) flows, when applicable.

• Fstat refers to static routing, where for each commodity the same paths and

splitting between paths are used independent of the realization of demand.

• FV S refers to volume routing as defined in Section 3.2.2.

• F2| refers to 2 partitioning routing also as defined in Section 3.2.2.

• FkSt is k-adaptive partition where the solution for each subset of the partition

scheme is static, as was presented in this study.

• FkV l is a variant of k-adaptive partition where we adopt volume routing so-

lutions for each subset of the partition.

• We also split the k-adaptive partition routing schemes, FkSt and FkV l, into

Full Partitioning (FP), meaning that active uncertain parameters related par-

titions are created for all capacity constraints (3.10), and Partial Partitioning

(PP), that reflects the nested partial partition described in Section 3.5.

• For the reasons already mentioned and experimented in [84], due to large

formulations that become hard to solve, we have suppressed affine routings

from our tested routing schemes.

Algorithms Specification Algorithms were coded in Julia [79] using JuMP,

JuMPeR and BlockDecomposition packages and Cplex 12.7. All algorithms were

run in an Intel CORE i7 CPU 3770 machine. A limit of 7200 seconds of computing

time was given for each instance and iteration.

Algorithms are listed in Table 3.3 for bifurcated flow routings and Table 3.4 for

non-bifurcated flow routings:

• Each algorithm listed was adapted to run with different routing schemes, as

indicated in columns 3 to 5 of Table 3.3 and Table 3.4. Additionally, except

for the 2-partition algorithm (TP), they can run with or without addition of

cut-set inequalities.
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• The Compact formulation algorithm was implemented using a classical robust

dual reformulation to solve the original formulation of the problem, according

to each routing scheme.

• The CPLEX BENDERS algorithm was implemented applying the new auto-

matic Benders decomposition functionality of Cplex 12.7.

• Root node only cut-set inequalities (RC) were introduced to the CPLEX BEN-

DERS Algorithm because Cplex 12.7 does not support running lazy callback

functions together with its Benders Decomposition feature.

• The Adapted Benders Decomposition algorithm implements the Benders

method presented in this study.

• The 2-partition algorithms were implemented replicating the algorithm pre-

sented in [129], extended to integer capacities.

We have applied decomposition algorithms only for Static Partial Partitioning

routing as an experiment to verify their time performance compared to Compact

reformulations.

3.6.3 Results

Solution costs Tables 3.5 and 3.6 present solution improvement over static rout-

ing provided by different bifurcated and non-bifurcated routing schemes with two

different Γs. For Table 3.5 there are a number of cases that do not achieve an

optimal solution under the time limit and they appear marked as M . For Table

3.6 instances missing correspond to cases where there was no improvement in so-

lution or to cases that did not achieve an optimal solution under the time limit

among all routings. Solution improvement is given as percentage by the formula

100% ∗ (Static Solution−Solution)
Static Solution

. For partitioning routing schemes, different algorithms

can give different solutions because of multiple possible partitioning alternatives be-

tween iterations. We present here the best result among algorithms for these cases.

The columns referenced as Bound correspond to the solution of the Bound proce-

dure at the last iteration of our nested iterative k-adaptive algorithm and provides

a reference of how much space for reducing conservatism is still available.

Figure 3.2 presents solution improvement in percentage over static routing

provided by different bifurcated routing schemes, for the abilene network and

0 ≤ Γ ≤ |Q|. Routings FkV lPP and FkV lFP are not presented since they did

not improve over FV S in this case.
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Table 3.9 summarizes the analysis we make of Tables 3.5 and 3.6 regarding the

performance of each routing scheme in improving the static result. This analysis

indicates:

• There is a short gap between static and dynamic solutions. Nevertheless, the

routing schemes implemented were able to reduce this gap in many cases.

• Cost reduction is higher for lower Γs. From theory we know already that in-

creasing Γ leads to more conservatism, but we see also that all routing schemes

have more difficulty in providing better solutions for higher Γs.

• The analysis of routings based on partitioning shows that F2| provided the least

solution improvement. In part this was due to the time limit and because the

partition hyperplane direction was arbitrarily chosen. In that sense, FkPP

and FkFP had more success, for Static and especially for Volume solutions.

In particular, FkPP for Static and Volume solutions was able to give results

comparable to FkFP and in some instances even better.

• Volume solutions, both for FV S and Fk, were able to give the best improve-

ments, but it cannot handle non-bifurcated flows. FkV l was able to further

improve FV S.

• For non-bifurcated flows many instances were not solved within the time limit.

Moreover, solution improvement was not as large as in the bifurcated case.

This suggests we need to consider more path flow options for the non-bifurcated

case, and also develop more efficient decomposition algorithms.

Computation Times Table 3.7 presents the total time for different algorithms run-

ning for bifurcated routing schemes. We have limited our algorithms to 2 iterations

for full partitioning and 3 iterations for partial partitioning. There are a number

of instances that do not achieve an optimal solution under the time limit, marked

as M . Table 3.8 presents a comparison between the two different decomposition al-

gorithms we have used, CPLEX BENDERS and Adapted Benders Decomposition.

They were run for static bifurcated partial partition routings. Here we present total

time (TT) and also number of Benders cuts (BC) and cut-set cuts (CSC) intro-

duced by each algorithm. We reproduce total time (TT) columns for the compact

formulation with cut-set and without cut-set inequalities added to facilitate compar-

ison between decomposition and non-decomposition algorithms. Figures 3.3 and 3.4

compare algorithms for static bifurcated partial partition routing through a perfor-

mance profile [58]. In these figures the vertical axis points out in percentage, for each

algorithm, in how many instances the result was not more than x times - horizontal

axis - worse than the best algorithm. These figures present a separate analysis for
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real life, more complex, SNDlib instances and randomly generated instances. Using

the first plot, x = 1, we can see that the DBD+C algorithm was best in 50% of the

cases for SNDlib instances and the C algorithm was best in approximately 58% of

the cases for random instances. Table 3.10 summarizes the analysis we make of Ta-

bles 3.7 and 3.8 regarding time performance of each algorithm and routing scheme.

We remark that cut-set inequalities are randomly generated and can influence the

results of comparison. We are interested in verifying the effectiveness of introduc-

ing cut-set inequalities to our formulations, the use of decomposition algorithms,

the new Benders functionality of CPLEX 12.7, the use of partial partitioning and

volume versus static partitioning.

Table 3.10 and further analysis of Tables 3.7, 3.8 and Figures 3.3 and 3.4 indicate:

• Robust cut-sets inequalities, in general, were key to reduce branching and

providing better time performance.

• Figure 3.3 shows that, for more complex SNDlib networks, Benders based

decomposition algorithms presented better time performance when compared

to compact formulations algorithms. It shows also that our Adapted Ben-

ders Decomposition implementation was in general better in performance than

CPLEX 12.7 Benders Decomposition. This is due mainly to the use of robust

cut-set inequalities. On the contrary, by Figure 3.4 and for randomly gener-

ated networks, the compact formulation algorithms presented overall better

time performance.

• For Adapted Benders Decomposition the introduction of robust cut-sets in-

equalities resulted in a significant reduction in the number of Benders cuts.

• Although FkPP takes more iterations than FkFP , it requires less time. In

that sense, and the fact that it delivers comparable solutions, FkPP presented

itself as a good option to FkFP .

• The analyses of routes based on partitioning shows that F2| provided the worst

time performance, due to the associated non-polynomial binary search algo-

rithm. Based on that and on solution improvement, FkPP and FkFP turned

out to be preferred partitioning based routing schemes.

• As identified above, many non-bifurcated flow instances were not resolved

within the time limit, suggesting the need to develop more efficient decompo-

sition algorithms.

• In general, for our instances, FkV l has worse time performance than FkSt, but

provides better bifurcated solutions as we have seen.
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Network | V | | E| | Q | Γ
0.25

Γ
0.01

abilene 12 15 65 6 19
polska 12 18 66 6 19
pdh 11 34 24 4 12

di-yuan 11 42 22 4 11
nobel-us 14 21 91 7 23
atlanta 15 22 105 7 24

n10e14c14-1 10 14 14 3 10
n10e14c14-2 10 14 14 3 10
n10e14c19-1 10 14 19 4 11
n10e14c19-2 10 14 19 4 11
n10e19c14-1 10 19 14 3 10
n10e19c14-2 10 19 14 3 10
n10e19c19-1 10 19 19 4 11
n10e19c19-2 10 19 19 4 11

Table 3.1: Network profiles

Code Routing Scheme
FstatBF Static BF
FstatNBF Static NBF
FV SBF Volume BF
F2|BF Two Partitioning BF
FkStPPBF Static Partial Partitioning BF
FkStPPNBF Static Partial Partitioning NBF
FkV lPPBF Volume Partial Partitioning BF
FkStFPBF Static Full Partitioning BF
FkStFPNBF Static Full Partitioning NBF
FkV lFPBF Volume Full Partitioning BF

Table 3.2: Routing schemes

Code Algorithm FstatBF
FkStPPBF

FV SBF
FkV lPPBF
FkV lFPBF
FkStFPBF

F2|BF

C Compact reformulation
√ √

-
C+C Compact reformulation + cut-set

√ √
-

DCP CPLEX BENDERS
√

- -
DCP+RC CPLEX BENDERS + root cut-set

√
- -

DBD Adapted Benders Decomposition
√

- -
DBD+C Adapted Benders Decomposition + cut-set

√
- -

TP 2-partition - -
√

Table 3.3: BF algorithms implemented

Code Algorithm FstatNBF FkPPNBF FkStFPNBF
C Compact reformulation

√ √ √
C+C Compact reformulation + cut-set

√ √ √

Table 3.4: NBF algorithms implemented
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Routing Scheme (all BF) Solution

Network Γ FV S F2| FkStPP FkStFP FkV lPP FkV lFP Bound

abilene
6 1.92 0.69 0.96 0.32 1.92 1.92 2.24
19 0.27 0.27 0.27 0.27 0.27 0.27 3.26

pdh
4 9.20 M 2.68 3.83 10.34 M 16.09
12 2.71 M 0.68 M M M 16.61

polska
6 0.12 0.12 0.23 0.12 1.06 1.53 14.20
19 0.08 M 0.12 0.08 0.08 0.08 14.77

di-yuan
4 1.90 1.14 1.52 1.33 2.86 2.86 11.62
11 0.10 0.10 0.10 0.10 0.10 0.10 8.19

nobel-us
7 8.14 M 2.37 4.75 9.49 M 16.61
23 1.55 M 0.31 0.93 2.48 M 19.81

atlanta
7 4.00 M 1.00 2.00 4.50 4.50 11.00
24 1.40 M 0.93 M M M 12.09

n10e14c14-1
3 1.89 0.21 1.08 0.97 2.55 2.32 6.03
10 0.05 0 0.05 0.05 0.05 0.05 5.84

n10e14c14-2
3 1.86 1.18 0.24 0.65 2.15 1.91 3.01
10 0 0 0 0 0 0 1.78

n10e14c19-1
4 4.67 0 0.21 2.20 4.92 4.67 9.19
11 0 0 0 0 0 0 9.30

n10e14c19-2
4 2.61 2.45 0.87 2.39 3.58 3.60 9.62
11 0 0 0 0 0 0 5.23

n10e19c14-1
3 2.85 0 0.91 1.66 4.03 3.58 7.16
10 0 0 0 0 0 0 9.37

n10e19c14-2
3 1.02 0.38 0.18 0.51 1.74 1.36 7.39
10 0 0 0 0 0 0 15.88

n10e19c19-1
4 1.87 0 1.21 1.74 2.94 2.63 5.25
11 0 M 0 0 0 0 5.25

n10e19c19-2
4 2.97 M 1.06 1.54 4.63 4.28 14.74
11 0 0 0 0 0 0 22.64

Table 3.5: Percentage of solution improvement over static BF routing

Routing Scheme (all NBF) Solution
Network Γ FkStPP FkStFP Bound

abilene
6 0.31 0.31 10.13
19 0.08 0.08 5.59

di-yuan
4 0.19 0.19 13.17
11 0.07 0.07 17.06

atlanta
7 0.07 0.07 10.03
24 0.50 0.50 26.37

n10e14c19-1 4 0.11 0.11 12.33
n10e14c19-2 4 0.54 0.54 10.11

Table 3.6: Percentage of solution improvement over static NBF routing
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Routing Scheme (all BF) and Algorithm Code

Fstat FV S FkV lPP FkV lFP F2| FkStPP FkStFP
Network Γ C+C C C C+C C+C C C C+C C+C

abilene
6 2.20 2.52 3.15 2.14 1.62 71.44 11.03 2.84 4.29
19 0.55 1.55 543.30 241.79 473.81 3676.84 352.42 53.25 162.87

polska
6 2.52 8.72 4448.67 2761.89 M M 919.74 409.78 1341.70
19 5.82 7.77 M M M M M M M

pdh
4 5.24 11.89 4728.78 3815.63 292.49 6534.29 M 5572.47 17.88
12 11.55 11.15 M 1742.02 1379.20 M M 3310.10 4336.65

di-yuan
4 0.87 2.42 1648.51 280.80 572.36 6943.07 807.35 152.53 157.43
11 0.09 0.24 69.53 5.82 1.70 7123.09 101.17 9.86 3.81

nobel-us
7 2.72 1.22 7406.52 2252.20 M M 1006.32 455.20 425.03
23 23.09 6.72 M 8838.02 M M M 4916.07 5213.05

atlanta
7 1.85 3.88 1688.62 1531.52 M M 1625.36 1196.10 2034.70
24 8.11 14.95 M M M M M 2979.89 M

n10e14c14-1
3 0.01 0.01 0.82 0.93 0.15 66.74 0.88 1.20 2.04
10 0.01 0.01 0.61 0.58 0.62 5.83 0.06 0.07 0.15

n10e14c14-2
3 0.02 0.01 0.83 0.75 0.15 16.19 0.63 0.58 0.42
10 0.01 0.01 0.36 0.41 0.53 4.13 0.05 0.06 0.10

n10e14c19-1
4 0.02 0.02 1.26 1.15 1.12 25.69 20.62 0.31 44.62
11 0.01 0.01 1.08 1.18 0.08 776.07 0.22 0.25 0.27

n10e14c19-2
4 0.01 0.01 4.20 2.45 0.74 69.82 1.45 0.91 0.65
11 0.01 0.01 0.67 0.67 0.74 8.18 0.12 0.14 0.10

n10e19c14-1
3 0.02 0.01 1.78 0.32 0.22 2320.30 11.71 6.40 8.20
10 0.01 0.01 0.51 0.66 0.86 42.22 0.17 0.17 0.16

n10e19c14-2
3 0.03 0.01 2.15 1.76 1.61 222.64 0.89 0.30 1.77
10 0.01 0.01 0.42 0.49 0.06 11.23 0.16 0.15 0.12

n10e19c19-1
4 0.02 0.02 66.10 21.67 0.44 4131.30 87.89 10.44 66.40
11 0.01 0.01 1.01 0.89 1.10 M 0.28 0.25 0.28

n10e19c19-2
4 0.01 0.01 6.51 2.78 0.51 M 2.64 31.60 12.15
11 0.01 0.01 1.31 0.73 0.88 13.42 0.33 0.32 0.36

TT : Total time in seconds

BC: Number of Benders cuts

CSC: Number of Cut-set cuts

Table 3.7: Bifurcated flows total time performance (s)

43



Algorithms for FkStPPBF
C C+C DCP DCP+RC DBD DBD+C

Network Γ TT TT TT BC CSC TT BC CSC TT BC CSC TT BC CSC

abilene
6 11.03 2.84 49.38 69 0 199.46 673 24 10.69 549 0 5.23 255 54
19 352.42 53.25 410.09 140 0 M M M 27.03 758 0 10.32 327 47

polska
6 919.74 409.78 461.35 1124 0 261.54 2791 24 625.33 4435 0 1174.26 5536 53
19 M M 1597.32 501 0 976.20 918 24 590.18 2476 0 509.96 1551 63

pdh
4 M 5572.47 2184.11 3294 0 339.46 1571 22 9496.00 9168 0 3941.11 6337 57
12 M 3310.10 265.93 1122 0 101.34 686 22 210.46 5582 0 92.45 2243 57

di-yuan
4 807.35 152.53 125.65 78 0 52.86 169 22 169.33 3740 0 199.10 2487 74
11 101.17 9.86 66.36 18 0 20.83 14 22 68.00 2934 0 23.77 1936 66

nobel-us
7 1006.32 455.20 1496.64 4982 0 389.74 2210 28 3291.28 8534 0 2001.89 6997 58
23 M 4916.07 5911.77 3710 0 1795.92 2805 28 2813.23 6384 0 565.42 3442 56

atlanta
7 1625.36 1196.10 665.17 439 0 309.20 584 30 302.12 3307 0 195.95 2260 30
24 M 2979.89 3654.80 296 0 2052.01 168 30 387.00 3359 0 328.13 2957 28

n10e14c14-1
3 0.88 1.20 1.10 109 0 1.9 184 20 1.73 608 0 1.50 463 45
10 0.06 0.10 0.34 122 0 0.34 98 20 1.20 355 0 1.20 170 44

n10e14c14-2
3 0.68 0.80 1.0 10 0 0.77 60 20 5.52 500 0 6.17 236 45
10 0.05 0.06 0.32 81 0 0.30 74 20 1.4 414 0 0.86 172 47

n10e14c19-1
4 0.62 0.31 7.2 148 0 84.4 40 20 5.41 716 0 7.80 700 50
11 0.22 0.25 0.86 179 0 0.9 138 20 1.30 295 0 1.23 252 52

n10e14c19-2
4 1.45 0.91 2.70 144 0 2.3 209 20 2.51 728 0 2.30 583 71
11 0.12 0.14 0.46 77 0 0.39 97 20 0.72 308 0 0.53 99 105

n10e19c14-1
3 17.71 6.40 7.30 364 0 3.30 183 18 6.30 1461 0 2.71 1013 47
10 0.17 0.17 0.64 145 0 0.56 142 18 0.85 587 0 0.43 303 47

n10e19c14-2
3 0.89 0.30 3.70 51 0 2.95 46 20 3.72 491 0 2.53 386 41
10 0.16 0.15 0.47 143 0 0.54 108 20 0.73 444 0 0.73 169 78

n10e19c19-1
4 87.89 10.44 6.70 90 0 29.3 77 20 4.40 1353 0 3.52 612 79
11 0.28 0.29 1.00 156 0 1.10 85 20 2.30 1835 0 1.31 304 49

n10e19c19-2
3 2.64 31.60 42.00 110 0 13.7 129 20 10.74 1000 0 8.40 581 47
10 0.33 0.32 1.53 206 0 1.10 110 20 1.85 1235 0 0.93 587 62

TT : Total time in seconds

BC: Number of Benders cuts

CSC: Number of Cut-set cuts

Table 3.8: Algorithms time performance and number of cuts for partial partitioning
and bifurcated static routings
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Routing Number of Cases of Solution Improvement
comparing to Static

Split Scheme Γ
0.25

Γ
0.01 Total

BF

FV S 14 of 14 7 of 14 21 of 28
F2| 7 of 14 2 of 14 9 of 28

FkStPP 14 of 14 7 of 14 21 of 28
FkStFP 14 of 14 5 of 14 19 of 28
FkV lPP 14 of 14 5 of 14 19 of 28
FkV lFP 12 of 14 4 of 6 16 of 28

NBF
FkStPP 5 of 14 3 of 14 8 of 28
FkStFP 5 of 14 3 of 14 8 of 28

Table 3.9: Summary for solution improvement comparison

Comparison Cases compared* Number of better Time Performance
SNDlib instances random instances

Cut-set versus
Non cut-set

FkStPP C+C ≤ FkStPP C 12 of 12 7 of 16
FkStPP DBD+C ≤ FkStPP DBD 10 of 12 13 of 16
FkStPP DCP+RC ≤ FkStPP DCP 10 of 12 10 of 16

FkV lPP C+C ≤ FkV lPP C 12 of 12 12 of 16

Decomposition versus
Non Decomposition

FkStPP DBD+C ≤ FkStPP C+C 7 of 12 3 of 16
FkStPP DBD ≤ FkStPP C 10 of 12 3 of 16

FkStPP DCP+RC ≤ FkStPP C+C 9 of 12 2 of 16
FkStPP DCP ≤ FkStPP C 9 of 12 2 of 16

Adapted Benders Decomposition versus
CPLEX BENDERS

FkStPP DBD+C ≤ FkStPP DCP 8 of 12 7 of 16
FkStPP DBD+C ≤ FkStPP DCP+RC 6 of 12 9 of 16

FkStPP DBD ≤ FkStPP DCP 7 of 12 5 of 16

Partial versus
Full Partitioning

FkStPP C+C≤ FkStFP C +C 9 of 12 10 of 16
FkV lPP C+C≤ FkV lFP C +C 8 of 12 7 of 16

Static Partitioning versus
Volume Partitioning

FkStFP C+C≤ FkV lFP C+C 9 of 12 7 of 16
FkStPP C+C≤ FkV lPP C +C 8 of 12 13 of 16

* ≤ indicates better than or equal

Table 3.10: Summary for bifurcated flows time performance comparison
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Chapter 4

Exact Solution Algorithms for

Minimizing the Total Tardiness

with Processing Time Uncertainty

4.1 Introduction

Scheduling is an important and diverse topic in combinatorial optimization. It has

applications in many different industries, ranging from production and manufac-

turing systems to transportation and logistics systems. The scheduling problem

considered in this study considers a unique machine. Hence, we are given a set of n

jobs, denoted N = {1, 2, . . . , n}, and any feasible solution for the problem consists

of a permutation of N , represented by σ where σ(k) denotes the job that occupies

position k for each k ∈ N . The objective function considered herein supposes that

each job i ∈ N has a given due date di and a processing time pi. Assuming that the

processing times are known with precision, we can define the completion time of job

i for σ as

Ci(σ) =

σ−1(i)
�

k=1

pσ(k),

and the tardiness of job i can be defined as Ti(σ) = max(Ci(σ)−di, 0). Denoting by

X the set of all permutations of N , the problem that minimizes the tardiness can

be formally stated as

min
σ∈X

n
�

i=1

Ti(σ). (4.1)

Notice that problem (4.1) is often denoted as 1||
�

j Tj in the literature, where 1

means that a single machine is used and
�

j Tj represents the objective function

involved.

In real applications, the processing times are hardly known with precision (see
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the examples below). Hence, it is more realistic to assume that p can take any

value within a given set U that contains plausible values for p. Then, the robust

counterpart of (4.1) is

min
σ∈X

max
p∈U

n
�

i=1

Ti(p, σ), (4.2)

where we introduced p in the definition of Ti to emphasize that its value depends

on p ∈ U . In this study, we let U be the budgeted uncertainty set proposed by

[31]. Hence, we consider a parameter Γ and, for each job i, a mean value p̄i and a

deviation p̂i. Then, the uncertainty set is defined as

U ≡







p : pi = p̄i + p̂iξi, i = 1, . . . , n; 0 ≤ ξi ≤ 1,
n

�

i=1

ξi ≤ Γ







, (4.3)

where downwards deviations are disregarded because they are not used by worst-

case scenarios. The motivation behind definition U is two-fold. First, the set is easy

to characterize and build from historical data, as only lower and upper bounds on

p are required, while the value of Γ let us model the risk-averseness of the decision

maker. Specifically, higher values of Γ lead to larger uncertainty sets and thus,

more conservative solutions. For instance Γ = 0 means that U = {p̄} while Γ =

n means that U is the box [p̄, p̄ + p̂]. Second, the set has a nice combinatorial

structure that can be exploited by combinatorial algorithms to provide more efficient

solution algorithms than using arbitrary uncertainty sets. In fact, these reasons

have made (4.3) extremely popular in the robust combinatorial optimization and

integer programming literature. In particular, recent papers on robust scheduling

have provided polynomial algorithms for robust problems that would have been

NP -hard using arbitrary uncertainty sets [37, 118].

The effect of uncertainty on scheduling has been studied under many different

perspectives. For a more recent survey on different perspectives to scheduling under

uncertainty one can see, for example, [40]. Applications of robust approaches to

the total tardiness problem have been implemented in different industries. Typi-

cally, these applications solve problems where there are penalties associated with

not fulfilling due dates and the decision maker has a conservative attitude in trying

to minimize these penalties no matter the realization of uncertainty.

In [47] the authors study project scheduling at a large IT services delivery center

in which there are unpredictable delays, but known to belong to a bounded set.

They apply robust optimization to minimize tardiness while informing the customer

of a reasonable worst-case completion time. In [87] the authors consider a scheduling

problem in which manufacturing companies with large energy demand must comply

with total energy consumption limits in specified time intervals and have to deal
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with the fact that in reality the production schedules are not executed exactly as

planned due to unexpected disturbances such as machine breakdowns or material

unavailability. The goal is to find a robust schedule which minimizes total tardiness

and guarantees that the energy consumption limits are not violated if the start times

of operations are arbitrary delayed within a given limit. A robust total weighted

tardiness approach is implemented in [4] for operation room planning in a hospital

with uncertain surgery duration. The problem aims at minimizing a measure of

waiting time of the patients and a tardiness function is created weighted by a patient

urgency parameter.

In this work, we shall develop two types of exact solution algorithms to solve

(4.2). The first type of algorithms combines the integer programming formulations

available for 1||
�

j Tj with the decomposition algorithm in the line of [128] and

[8]. The second type of algorithms takes the (combinatorial) branch-and-bound

algorithms developed for 1||
�

j Tj and extend them to the robust counterpart (4.2).

Most exact solution algorithms for 1||
�

j Tj are strongly based on dominance

conditions and decomposition principles applied to the sequencing of jobs. These

conditions and principles define ordering and positioning restrictions for the jobs

in an optimal sequence and are used as a base to develop branch-and-bound and

dynamic programming algorithms. For branch-and-bound algorithms different lower

bound propositions were developed, including even the absence of lower bounds and

relying only on the power of decomposition (for examples see [54, 73, 76, 101, 117]).

Decomposition principles were initially developed in [78] and establish conditions

by which a single machine scheduling problem can be decomposed into subproblems

that can be solved independently. For the robust scheduling case, due to the added

complexity of having to deal with correlations of uncertainty between subproblems,

we do not consider the decomposition principles introduced there.

Many integer formulation approaches can also be found in the literature for de-

terministic single machine problems in general (see [74] for review and comparisons).

The formulations are based on the type of variables used to define the sequencing

of jobs. Some effort has been made in order to improve performance of this ap-

proach by defining strong valid inequalities through polyhedral studies (see [103] for

example).

Six different integer programming formulations of the single machine total tar-

diness problem are compared in [9]. They verify that a generic integer program-

ming approach does not compete with state-of-the-art branch-and-bound tardiness

algorithms. They conclude that the sequence-position formulation provides most

computationally effective solutions and note that, although the attention paid to

time-index formulations may be justified as they provide insight into theoretical re-

sults, they leave something to be desired when it comes to computational experience.
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We review next some recent works on robust scheduling, which originated in the

seminal paper from [50]. That seminal work has been followed by a sequence of works

on the theoretical aspects of robust scheduling [e.g. 6, 82, 125] where the authors

have shown that very simple scheduling problems become NP-hard as soon as the

uncertainty set contains more than one scenario. Some authors have also studied

the complexity of simple robust scheduling problems under budgeted uncertainty,

see [37, 118]. We also refer to [119] for a recent survey on robust scheduling.

From a numerical viewpoint, the closest work from the current manuscript has

been carried out in [55] where the authors study the optimal allocation of surgery

blocks to operating rooms. Therein the authors introduce different models, including

a robust model that is similar to the one studied here. However, a fundamental

difference is that we let Ti be different for each p ∈ U , which is underlined by the

notation Ti(p, σ) used in (4.2), while [55] consider a static-model where Ti must

be fixed independently from p ∈ U . While the static model is easier to handle

computationally, it is also more conservative, as we shall illustrate briefly in our

numerical experiments.

Our main contributions with respect to the literature are summarized below.

• We extend dominance rules developed for deterministic single machine total

tardiness problem to our robust version.

• We develop a branch-and-bound algorithm based on the dominance rules above

and a defined lower bound.

• We introduce different MILP formulations for our problem, and define dynamic

programming routines to solve separation problems within a given decompo-

sition algorithm.

• We compare the solution performance of our different MILP formulations and

branch-and-bound algorithms.

Outline We formally present the problem with MILP formulations in Section 4.2.

There, we also present the algorithm utilized to solve it. Next, in Section 4.3, we

present the branch-and-bound algorithm developed to solve our problem. Sections

4.4 and 4.5 detail key concepts used in the algorithms presented. In Section 4.6 we

present computational results.

4.2 MILP formulations

In [9] the authors summarize different MILP formulations for the deterministic single

machine total tardiness problem. Based on the variables defined and their determin-
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istic formulations, we present here the equivalent robust counterpart formulations

utilized in our experiment.

The formulations are based on the type of variables defined to represent the

sequencing of jobs (see [9]). We have utilized sequence-positions variables and linear

ordering variables.

Sequence position variables are variables x such that xik = 1 if job i is in position

k and 0 otherwise. Linear ordering variables are variables y such that yij = 1 if job

i precedes job j and 0 otherwise. These two sets of variables do not depend on the

uncertain parameters as they describe the jobs ordering, which is fixed independently

from the values taken by the processing times. In contrast, our robust formulations

consider that tardiness, t, and job starting time, s, are only defined after realization

of uncertainty, so that in a generic form there are infinite number of variables and

constraints, each one representing a realization of uncertainty. We represent this in

our formulation by introducing an index set W for our uncertainty set U , possibly

uncountable, and utilizing a superscript (w) in the variables and data, meaning there

is one for each w ∈ W . We show later in Subsection 4.2.4 that only a finite subset

of W is needed to solve the problem.

Finally, notice that we disregard here the time-indexed formulation (e.g. [102])

in which binary variables indicate when jobs are completed. While advanced decom-

position algorithms (called SSDP in [120]) have solved efficiently the deterministic

counterpart of 1||
�

j Tj, the robust counterpart cannot benefit from these techniques

because the binary variables would depend on each vector p ∈ U . Specifically, the

resulting formulation would have a pseudo-polynomial number of variables for each

p ∈ U , making SSDP completely unrealistic [56].

4.2.1 Disjunctive constraints formulation

The robust counterpart of the disjunctive constraints formulation is given by the

following:
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min z

s.t.
n

�

j=1

twj ≤ z ∀w ∈ W (4.4)

swj + pwj − dj ≤ twj ∀ j ∈ N, ∀w ∈ W (4.5)

swj + pwj ≤ swi +Myij ∀ i, j ∈ N, i < j, ∀w ∈ W (4.6)

swi + pwi ≤ swj +M(1− yij) ∀ i, j ∈ N, i < j, ∀w ∈ W (4.7)

swj ≥ 0, twj ≥ 0, z ≥ 0 ∀ j ∈ N, ∀w ∈ W

yij ∈ {0, 1} ∀ i, j ∈ N, i < j,

where variable z is the overall objective, tj is tardiness of job j and sj is start time of

job j. Big M is defined as maximum makespan over all p ∈ U of all jobs. Constraint

(4.5) calculates tardiness for job j while constraints (4.6) and (4.7) guarantee right

ordering of jobs by the use of disjunctive inequalities. Constraint (4.4) guarantees

a worst-case objective value.

In case dominance rules (see Section 4.5) are considered the precedence of jobs

information can be used and a new set of constraints is added. Let Ai be the set

of jobs known to follow job i. We complement the above formulation with the

constraints:

yij = 1 ∀ i ∈ N, j ∈ Ai.

The information of precedence can be used to eliminate variables in the ordering

constraints and mitigate the effect of Big M relaxations present in the formulation.
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4.2.2 Sequence-position formulation

The robust counterpart of the sequence-position formulation is given by the follow-

ing:

min z

s.t.
n

�

k=1

twk ≤ z ∀w ∈ W

n
�

i=1

pwi

k
�

u=1

xiu −
n

�

i=1

dixik ≤ twk ∀ k ∈ N , ∀w ∈ W (4.8)

n
�

i=1

xik = 1 ∀ k ∈ N (4.9)

n
�

k=1

xik = 1 ∀ i ∈ N (4.10)

xik ∈ {0, 1}, twk ≥ 0, z ≥ 0 ∀ k, i ∈ N , ∀w ∈ W,

where variable z is the overall objective and tk is tardiness of job in position k.

Constraint (4.8) calculates tardiness for job in position k while constraints (4.9)

and (4.10) guarantee that each position is occupied by only one job and each job

occupies only one position.

In case dominance rules are considered the precedence of jobs information can

be used to reduce the number of sequence-position variables. We define Bi as the

set of jobs known to precede job i and then xik, i ∈ N and |Bi|+ 1 ≤ k ≤ n− |Ai|.

In that case constraints (4.8), (4.9) and (4.10) are substituted for:

n
�

i=1

pwi

k
�

u=1
if |Bi|<u≤n−|Ai|

xiu −
n

�

i=1
if |Bi|<k≤n−|Ai|

dixik ≤ twk ∀ k ∈ N , ∀w ∈ W

n−|Ai|
�

k=|Bi|+1

xik = 1 ∀ i ∈ N

�

i∈K
K={i| |Bi|<k≤n−|Ai|}

xik = 1 ∀ k ∈ N

We add a new set of constraints to guarantee precedence between jobs:

n−|Aj |
�

k=|Bj |+1

kxjk ≥
n−|Ai|
�

k=|Bi|+1

kxik + 1 ∀ i ∈ N, j ∈ Ai
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4.2.3 Linear ordering formulation

The robust counterpart of the linear ordering formulation is given by the following:

min z

s.t.
n

�

j=1

twj ≤ z ∀w ∈ W

pwj +
n

�

i=1
i�=j

pwi yij − dj ≤ twj ∀ j ∈ N, ∀w ∈ W (4.11)

yij + yji = 1 ∀ i, j ∈ N, 1 ≤ i < j ≤ n (4.12)

yij + yjk + yki ≤ 2 ∀ i, j, k ∈ N i �= j, j �= k, i �= k (4.13)

yij ∈ {0, 1}, twj ≥ 0, z ≥ 0 ∀ i, j ∈ N, i �= j, ∀w ∈ W,

where variable z is the overall objective and tj is tardiness of job j. Constraint

(4.11) calculates tardiness for job j while constraints (4.12) and (4.13) guarantee

the right ordering of jobs.

In case dominance rules are considered the precedence of jobs information can

be used and a new set of constraints is added:

yij = 1 ∀ i ∈ N , j ∈ Ai (4.14)

4.2.4 Row-and-column generation algorithm

To solve our robust integer formulation we use the decomposition algorithm proposed

by [128]. We relax the problem into a master problem where each robust constraint

is written only for a finite subset U0 ⊆ U . Given a feasible solution to the master

problem, we check whether the solution is feasible for each robust constraint by

solving adversarial separation problems. In case one or more robust constraints are

infeasible, we expand U0 by one or more vectors and solve the augmented master

problem under a row-and-column generation approach.

It turns out that our adversarial separation problem is in fact the problem of,

given a sequence of jobs, finding the value of the worst-case realization of uncertainty

and verifying if that value is greater than the one provided by the master problem.

We can solve that by the methods described in Section 4.4. Since our uncertainty

set U is polyhedral, there will be a finite number of extreme solutions to search and

the algorithm finitely converges [128].
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4.3 Branch-and-bound

The total tardiness problem has been studied through many methods of implicit

enumeration, notably of branch-and-bound type. We develop below a branch-and-

bound algorithm to solve our robust problem to optimality. The key elements of our

branch-and-bound algorithm are: branching, node selection and bound and pruning.

We describe each one of them in what follows.

4.3.1 Branching

We create a search tree with no jobs scheduled at the root node. From the root

node, n branches lead to n nodes on the first level, each of which corresponds to a

particular job being scheduled in the n-th position. Generally, each node at level l in

a tree corresponds to a set Jl ⊆ {1, . . . , n} filling the last l positions in a given order.

By successively placing each job j (j ∈ N\Jl) in the |N\Jl|-th position, |N\Jl| new

nodes are created. This is reasonable because all sequences of jobs are feasible in

our problem.

4.3.2 Node selection

We make use of a best bound or a depth first approach as search strategy for node

selection. For best bound the node selected is the one, among unprocessed nodes,

with minimum lower bound. This way we never branch any node whose lower bound

is larger than the optimal value. For depth first the node selected is the one, among

unprocessed nodes with maximum depth in the search tree. This way we navigate

the tree prioritizing the search of new incumbent values.

4.3.3 Bound and pruning

After each branching we prune nodes based on dominance rules described in Section

4.5, on lower bounds when it is greater than the best upper bound calculated at

that stage and on optimality conditions when lower bound matches upper bound of

a given node.

Upper bound

An initial upper bound, as incumbent solution, is calculated at the root node based

on a constructive heuristic algorithm (see Algorithm 2 for its pseudocode). The

general idea behind this algorithm is that we shall assign jobs from last position

to first. At each position we assign the job that provides the smallest ratio of the

least tardiness and the greatest maximum processing time. By doing so, we leave
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jobs with greater tardiness or less maximum processing times to be assigned later

in the sequencing, where their value of tardiness will decrease or their contribution

to partial makespan of that position will be less than other jobs already assigned.

We leverage the calculated dominance rules to create sets of allowable jobs for

each position k, ALJ [k]. Let SJ be the sequence of jobs already selected, from

position n to position k+1. Then, we define ALJ [k] = {i ∈ N\SJ |Ai ⊆ SJ}. This

set is never empty, since if all Ai, i ∈ N\SJ , have elements outside SJ , every element

in N\SJ is followed by another element in N\SJ which creates a subcycle and that

is prevented by construction when calculating the dominance rules (for example see

[73] where these cycles are avoided by constructing the transitive closure of the set

of known precedence relations immediately after a new relation has been found and

by only examining pairs of jobs that are not yet related).

We assign the job i with the least ratio Ti/max
p∈U

pi to each position. This ratio for

job i is given by the formula
max(0,max

p∈U

�

j∈N\SJ

pj−di)

p̄i+p̂i
. We solve the worst-case evaluation

problem (Section 4.4), using the sequence assigned by our heuristic, to calculate the

initial upper bound.

An upper bound is also calculated at the last level of the search tree using the

sequence of jobs defined for that level, and solving the worst-case evaluation problem.

Lower bound

We detail below the lower bound that can be used to cut part of the branch-and-

bound tree. We first recall the deterministic lower bound used by [117], among

others, before adapting it to the robust counterpart. The first element used to

provide lower bound is based on the idea that the solution for a modified relaxed

due date, drelaxi , problem is a lower bound for our original problem.

Observation 1. Given any i ∈ N and σ ∈ X, drelaxi ≥ di ⇒ T relax
i (σ) =

max(Ci(σ)− drelaxi , 0) ≤ Ti(σ).

Using the above property, [117] modifies the due dates in such a way that the

optimal schedule becomes easy to provide. Specifically, they apply the following

properties:

1. The EDD schedule (ordering jobs by non decreasing due dates) is optimal if

Cσ(k) ≤ dσ(k) + pσ(k) for all positions k [61].

2. The statement above can be relaxed to be true only for positions k where

pσ(k) < max(pσ(1), . . . , pσ(k−1)), because on the other hand if pσ(k) ≥
max(pσ(1), . . . , pσ(k−1)) other conditions in [61] assure that jobs {σ(1), . . . ,

σ(k − 1)} precede job σ(k) [117].
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We can extend the two statements above to our robust problem, where we verify

that if it is valid in a worst-case realization of uncertainty, it will be valid in all

cases.

Observation 2. Given an EDD schedule, if max
p∈U

Cσ(k−1) ≤ dσ(k) for each position

k > 1 when min
p∈U

pσ(k) < max(max
p∈U

(pσ(1)), . . . ,max
p∈U

(pσ(k−1))) then it is optimal.

We modify the due dates of our original problem so that it satisfies con-

ditions of Observation 2. For the EDD schedule, when min
p∈U

pσ(k) < max(

max
p∈U

(pσ(1)), . . . ,max
p∈U

(pσ(k−1))), for k > 1, we make

dσ(k) ← max(max
p∈U

Cσ(k−1), dσ(k))

We utilize these due dates to provide a lower bound to our original problem. On

the other hand, this relaxed version of our problem has an immediate solution, the

EDD sequence.

As already seen, each node level l of our search tree is composed of a set Jl filling

the last l positions in a given order. Since the order of the last l positions is defined,

we concentrate on an EDD sequencing for the first n− l positions. We order by due

date the first n− l positions. We relax minimally their due dates. We concatenate

the solution above, using modified relaxed due dates, with the other sequenced jobs

of the node, using original due dates and use the worst-case evaluation methods

presented in Section 4.4 to find the associated lower bound.

The pseudocode used for our branch-and-bound algorithm is presented in Algo-

rithm 3.

Algorithm 2 Upper bound heuristic

Input � Γ and vectors p̄, p̂, d
SJ ← void � Sequence of selected jobs
for k = n to 1 do

ALJ [k] = {i ∈ N\SJ |Ai ⊆ SJ} � Allowable jobs for position k

JRi =
max(0,max

p∈U

�

j∈N\SJ

pj−di)

p̄i+p̂i
for i ∈ ALJ [k] � Store ratio job i

if min
i

JRi = 0 then SJ ← SJ ∪ arg max
i∈ALJ [k],JRi=0

p̄i + p̂i

else SJ ← SJ ∪ arg min
i∈ALJ [k]

JRi � job selected for position k

end for

Calculate maximum total tardiness for sequence SJ � Worst-case solution
Return solution - sequence of jobs SJ and maximum total tardiness value
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Algorithm 3 Branch-and-bound algorithm

Input � Γ and vectors p̄, p̂, d
Initialize � Nodes list ← root node, Incumbent solution ← void, Lower bound ←
−∞
while There are still nodes to be branched in the Nodes list do

Node Select � Select node based on search criteria
Prune � by lower bound
Update Incumbent solution � use best upper bound so far
Branch node
Prune � by dominance rules
Calculate lower and upper bound � of new nodes
Update Nodes List

end while

Return optimal solution - sequence of jobs and total tardiness value

4.4 Worst-case evaluation

In this section we discuss how to perform an evaluation of the worst-case realiza-

tion of the uncertainty set given a sequence of jobs. Recall that this evaluation is

used to solve the adversarial separation problem in the row-and-column generation

algorithm and also used in our branch-and-bound algorithm. This problem, for a

given sequence of jobs σ = {σ(k), k = 1, . . . , n}, where k represents a position and

σ(k) represents the job that occupies that position, is defined by the worst-case total

tardiness, T ∗
σ , associated with this sequence and given by:

T ∗
σ = max

p∈U







n
�

k=1

max



0,
k

�

k
�=1

pσ(k� ) − dσ(k)










(4.15)

For this study we adopt, and our algorithm requires, a polyhedral uncertainty set

as defined in [31] and introduced in Section 4.1. We assume that maximal deviations

of processing times are integers. Also, for the sake of simplicity, we consider in what

follows that Γ is a non negative integer. As we will see, this polyhedral uncertainty

set allows us to explore some properties that simplify complexity of our algorithms.

Using these assumptions, statement (4.15) reflects a problem with a convex func-

tion being maximized over a polytope defined by uncertainty set U . Hence, to define

the worst-case robust realization of uncertainty we only have to take into account

specific realizations of the uncertainty set given by:

• Extreme points of the polytope. For each job i, we only consider values p̄i and

p̄i + p̂i

• It is clear that any worst-case realization will use as much budget of uncertainty

as possible. Hence we can assume
�

i ξi = Γ
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We work two alternative methods to evaluate a worst-case solution value: one

based on dynamic programming and another based on a simple heuristic.

4.4.1 Dynamic programming

We adopt a dynamic programming algorithm developed by [5] for a general class

of robust optimization problems. The complexity of this algorithm is O(nΓΦ̄),

where Φ̄ is the maximum cumulative processing time deviation allowed, that is

Φ̄ = max
p∈U

�n

i=1 p̂i. It is favored when processing time deviations are small. We

verify that the optimal solution for the adversarial problem only depends on the

cumulative deviations of the job processing times. Let us define a value-function

α(k, γ,Φ), where 1 ≤ k ≤ n, 0 ≤ γ ≤ Γ, 0 ≤ Φ ≤ Φ̄, as the optimal value of the

restricted problem for a set of jobs positions {1, . . . , k} with at most γ deviations and

a cumulative deviation Φ. The optimal value of the adversarial problem is defined

by T ∗
σ = max

Φ∈{0,...,Φ̄}
α(n,Γ,Φ). Furthermore, we see that the value-function satisfies

the recursion:

α(k, γ,Φ) =















max(0, Φ+
�k

k
�=1

p̄σ(k� ) − dσ(k)) + α(k − 1, γ,Φ), if Φ− p̂σ(k) < 0

max(0, Φ+
�k

k
�
=1

p̄σ(k� ) − dσ(k))+

max(α(k − 1, γ,Φ), α(k − 1, γ − 1,Φ− p̂σ(k))), if Φ− p̂σ(k) ≥ 0

Also, the following statements are used to initialize the dynamic programming

table:

α(1, 0, 0) = max(0, p̄σ(1) − dσ(1))

α(1, γ, p̂σ(1)) = max(0, p̂σ(1) + p̄σ(1) − dσ(1)), 1 ≤ γ ≤ Γ

α(1, γ,Φ) = −∞, for remaining cases

α(k, 0, 0) = max(0,
k

�

k
�
=1

p̄σ(k� ) − dσ(k)) + α(k − 1, 0, 0), 2 ≤ k ≤ n

α(k, 0,Φ) = −∞, 2 ≤ k ≤ n, 1 ≤ Φ ≤ Φ̄

4.4.2 Heuristic

We implement a simple greedy algorithm of complexity O(Γn2) to obtain a lower

bound on T ∗
σ . The pseudocode for this heuristic is presented in Algorithm 4. Given

a sequence of jobs, we execute an algorithm with Γ iterations. At each iteration we

define a job to have its processing time deviated to its maximum. Following are the

steps executed:

• At each one of the Γ iterations, we verify total tardiness originated by set-

ting each one of the n jobs processing time to its maximum (if not already
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considered in previous iteration as deviated) and pick the one that provided

maximum total tardiness.

• If total tardiness is not augmented in relation to the previous iteration we set

the processing time of the first job in the sequence not already deviated to its

maximum.

Algorithm 4 Worst-case evaluation heuristic

Input � Sequence of jobs: σ = {σ(k), k = 1, . . . , n}, Γ and vectors p̄, p̂, d
D ← void � Set of jobs with deviated processing times
MAXTT = −∞ � Worst-case total tardiness
for g = 1 to Γ do

TTi(D) =
�N

j=1 max(0, (
�

k≤σ−1(j) p̄σ(k)+
�

k≤σ
−1(j)

σ(k)∈D∪{i}

p̂σ(k)−dj)), for i ∈ N\D

if max
i

{TTi(D)} > MAXTT then D ← arg max {TTi(D)};MAXTT =

max
i

{TTi(D)}

else D ← arg min
i∈N\D

{σ−1(i)}

end for

Total tardiness = MAXTT
Return Total tardiness

The heuristic can be used as a lower bound when the performance of an exact

solution in the algorithm is an issue.

4.5 Dominance rules

Dominance rules have been extensively used in the past in combinatorial optimiza-

tion problems and specially in scheduling problems [72]. A dominance rule is es-

tablished in order to reduce the solution space either by adding new constraints to

the problem, or by writing a procedure that attempts to reduce the domain of the

variables, or by building interesting solutions directly.

One of the main theoretical developments for the total tardiness problem were

the dominance rules derived by [61]. The author proved three fundamental theorems

that helped establish precedence relations among job pairs that must be satisfied

in at least one optimal schedule. These dominance rules are a major component of

existing state-of-art algorithms. All the three theorems assume the ordering of jobs

by their processing times. Although we can naturally apply these rules to our robust

problem for jobs that do not overlap, that is, given two jobs i, j,max
p∈U

pi < min
p∈U

pj,

there is a tendency to have the applicability of these rules reduced since processing

times are uncertain.
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Later, [73], working with single machine weighted total tardiness problem, ex-

tended these dominance conditions to more general forms where the ordering of pro-

cessing times are not always necessary, and so, are more adequate to be extended

to our robust problem where processing times are uncertain.

Extending the dominance rules defined by [73] to our robust problem is based on

the idea that if a rule is valid for a sequence of jobs in a worst-case event realization

of uncertainty it will be valid in all realizations of uncertainty. In other words, if a

job i precedes job j in a worst-case realization of uncertainty, it will precede in all

cases. Hence, this additional restriction can be added to the overall problem.

To extend dominance conditions of [73] to our robust problem we have to consider

definitions that follow, where Bi and Ai are sets of jobs known to precede job i and

follow i, respectively. Also for notation purposes, for any set Q, Q ⊆ N , the notation

P (Q) represents
�

i∈Q pi.

• We order two jobs i, j that do not overlap. That is i < j if max
p∈U

pi < min
p∈U

pj.

• We define the earliest completion date of a job i, Ei = min
p∈U

(P (Bi) + pi)

• We define the latest completion date of a job i, Li = max
p∈U

P (N − Ai)

Using the definitions above, conditions of [73] can be restated as follows.

Observation 3. Job i precedes job j in at least one optimal schedule if at least one

of the conditions below are satisfied:

• i < j and di ≤ max(Ej, dj)

• dj ≥ max(Li −min
p∈U

pj, di)

• dj ≥ Li

By applying these rules successively we can populate, for each job i, the set of

jobs known to precede i, Bi and follow i, Ai in some optimal sequence. The idea

is that as we run rules above, and pair of jobs are ordered, the sets Ai and Bi will

grow, favoring new runs.

These dominance conditions can be incorporated in our MILP formulations as

precedence constraints or can be used to prune non optimal node sequences in

our branch-and-bound algorithm. They can also be applied dynamically, during

branching decisions at each node. If, applied for the subproblem of sequencing jobs

j ∈ N\Jl, they identify that there is job i ∈ N\Jl that precedes a job j, then job i

can be eliminated and job j considered for the |N\Jl|-th position.

Calculating latest and earliest completion times for each subproblem can, though,

add non desired computational complexity. Many proposed algorithms avoid this
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additional complexity by applying at each node only a relaxed version of the third

condition of Observation 3, called Elmaghraby’s lemma [60], where the latest com-

pletion time of each job i ∈ N\Jl, Li, is relaxed to makespan of the subproblem.

In other words, if there is a job j that has zero tardiness for the last position

(dj ≥ makespan), it can be considered for branching and all other jobs i ∈ N\Jl

eliminated (for examples, see [73] and [100]).

We experiment a compromise between these two previous approaches. We re-

lax the latest and earliest completion dates of all jobs j ∈ N\Jl by consider-

ing maximal (max
p∈U

P (N\Jl)) and minimal (min
p∈U

P (N\Jl)) makespan, and setting

Ladj
j = min(Lj,max

p∈U
P (N\Jl)) and Eadj

j = min(Ej,min
p∈U

P (N \ Jl)), where Ladj
j and

Eadj
j are the adjusted latest and earliest completion dates for job j, and Lj and Ej

are the latest and earliest completion dates for job j calculated for the original set

of jobs N . Observation 3, adjusted, can be used to identify a job j ∈ N\Jl that

succeeds other jobs of set N\Jl. If that job j is found, the number of new nodes

during branching can be reduced.

Observation 4. If a job i ∈ N\Jl satisfies one of the conditions below, for some

job j ∈ N\Jl, i �= j, then job i can be eliminated during branching at level l of the

search tree.

• i < j and di ≤ max(Eadj
j , dj)

• dj ≥ max(Ladj
i −min

p∈U
pj, di)

• dj ≥ Ladj
i

As a remark, any assignment of positions should be in alignment with precedence

constraints already generated.

4.6 Implementation and results

4.6.1 Implementation details

Instances We create instances based on the same directives as in [100] to vary

hardness of problem solving using parameters R, relative range of due dates and T ,

average tardiness factor. These parameters are used to define the average and range

of variation of due dates. Due date range significantly affects the time performance

of algorithms. Due dates widely distributed are easier to solve. The values of

R are chosen as R = {0.2, 0.4, 0.6, 0.8, 1.0}, and the values of T are chosen as

T = {0.2, 0.4, 0.6, 0.8}. With P =
�n

i=1 p̄i and chosen R and T , we generate a non
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negative integer due date di from the uniform distribution [P (1− T − R/2), P (1−
T +R/2)] for each job i.

We define a new parameter G, to control the relative range of variation of uncer-

tainty. This range affects the distance between solution values of one realization of

uncertainty to others. A small Γ and large process deviation time potentially pro-

duce larger solution distances. The values of G are as G = {10, 100}. For each job i,

an integer processing time p̄i is generated from the uniform distribution [1, 100] and

an integer processing deviation time p̂i is generated from the uniform distribution

[p̄i
2
G
, p̄i

7
G
]. The value of Γ is an integer generated from the uniform distribution

[5× 10−3Gn, 9× 10−3Gn].

Using each combination of R and T and G, we generate 40 instances for problems

with 20, 40, 60, 80 and 100 jobs, giving a total of 200 instances tested.

Algorithms Specification Algorithms are coded in Julia [79] using JuMP package

and Cplex 12.7. All algorithms run in an Intel CORE i7 CPU 3770 machine. A

limit of 9600 seconds of computing time is given for each instance.

All algorithms are tested on the same set of instances. We test MILP formu-

lations (sequence-position, linear ordering and disjunctive constraints) and branch-

and-bound algorithms here developed. MILP formulations run under a row-and-

column generation method where the separations problems are solved using the dy-

namic programming algorithm here presented. Each MILP formulation algorithm

runs also with the option of using dominance rules to insert precedence constraints.

The branch-and-bound algorithm runs with the options of best bound or depth

first search strategy. Upper bounds are calculated at root level and level n − 1 of

our search tree, as described in Section 4.3. Lower bounds are calculated using the

dynamic programming method only at level 1. At level n − 1 the lower bound is

equal to the upper bound so that we do not have to recalculate. At other levels

of the search tree the lower bound is approximated using the heuristic method of

Section 4.4 to improve performance. Dominance rules are used to create precedence

between jobs and prune nodes during branching. We also apply dynamically, at

each node, the two last conditions of Observation 4.

The name and configuration of each algorithm is presented in Table 4.1.

4.6.2 Comparative performance of the algorithms

Initial tests of our algorithms revealed that the disjunctive MILP formulation al-

gorithm performed much worse, among all instances, when compared to others al-

gorithms, so that we eliminated it from our analyses. We first present in Table

4.2 general results comparing performance of the algorithms for all instances. The

%Best Performance measurement indicates that the algorithm BB1 presented the
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greatest number of instances with best performance, followed by algorithm LIN1.

Measurement %NS 100 jobs indicates that all algorithms were not able to solve the

majority of the 100 jobs instances within the time limit. This measurement, to-

gether with the presented average solution times, indicate that although SEQ1 and

SEQ2 algorithms had lower %Best Performance measurements, they were able to

solve more %NS 100 jobs under the time limit and to achieve better Taverage.

We also present Figure 4.1 comparing all different algorithms and using a perfor-

mance profile [58]. In this figure, the vertical axis points out in percentage, for each

algorithm, in how many instances the result was not more than x times - horizontal

axis - worse than the best algorithm. For x = 1, the indicators replicates the best

performance indicators presented in Table 4.2.

Figure 4.1 evidences that each algorithm has different time variation charac-

teristics. In particular, algorithm LIN1 and SEQ1 present the highest ascend-

ing slopes, indicating that, although they are not best performers as measured by

%Best Performance, they present the characteristic of less solution time variance

among all algorithms.

We then present Table 4.3 where the same indicators are listed, but now grouped

by special instances. We follow concepts defined in [100] and group instances based

on their R, relative range of due dates and T , average tardiness factor. Instances

with ratio T/R greater than 1 are classified as “High hardness” and classified as “Low

hardness” otherwise. In general “Low hardness” instances will be more completely

classified by dominance rules as stated in [100]. We also group instances by their

G value. Instances with G = 10 are classified as “Large uncertainty range” and as

“Small uncertainty range” otherwise. “Large uncertainty range” instances are the

ones that, in general, have large solution value distance between one realization of

uncertainty to others.

In our analysis below we analyze best performance by privileging the algorithms

that are able to solve a greater percentage of instances in less time when compared

to other algorithms.

Analysis of Table 4.3 indicates that algorithm SEQ2 has best performance for

“High hardness” instances while algorithm BB1 has best performance for “Low

hardness” instances and “Large uncertainty range” instances.

These results so far are expected since, on one side, the branch-and-bound algo-

rithm relies heavily on dominance conditions to prune nodes and this is favored in

“Low hardness” instances. On the other hand, our MILP RCG algorithms are not

favored by “Large uncertainty range” instances, since in general it will require more

calls to separation problems.

This effect can be better verified in Figure 4.2 where we present performance

profiles for each group of instances. In general, now grouped by special instances,
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the best performers algorithms show consistency of performance along the x-axis.

It evidences, for “High hardness” instances, that when characteristics as dominance

conditions are not favored, the sequence-position formulation is best performer.

Algorithm LIN1 show best performance for “Small uncertainty range” instances.

These results suggest that, in general, if an instance is not well defined by dom-

inance rules, a “High hardness” instance, SEQ1 is favored. If not, if an instance

is well defined by dominance rules, a “Low hardness” instance, the characteristic of

uncertainty range will define the algorithm to be favored: “Large uncertainty range”

instances are favored by BB1 and, “Small uncertainty range” instances are favored

by LIN1.

In Figure 4.3 we present different performance profiles, now comparing each

MILP RCG method among their different configurations. We can observe that both

sequence-position and linear ordering formulations had better performance when

precedence constraints, based on dominance rules, were added. The effect of prece-

dence constraints was most pronounced in LIN1 algorithm. This can be partially

explained because the precedence constraints added for the LIN2 algorithm (see

equation 4.14) are effective to restrict the search of the CPLEX linear programming

algorithm to a reduced set of extreme points.

Table 4.4 presents average time performance of each MILP RCG method and

configuration. Time performance is split between master and adversarial problems.

We also present average number of iterations. These results evidence that the critical

step for these algorithms is the master problem resolution, even with the addition

of precedence constraints.

Figure 4.4 presents performance profile for our 2 branch-and-bound algorithms.

Algorithm BB1, based on a depth first search strategy, clearly outperforms algo-

rithm BB2, based on a best bound search strategy. To analyze this effect we present

in Table 4.5 detailed results for our branch-and-bound algorithms. It shows that

the dominance rules were effective to prune nodes in both strategies. It also shows

that the best bound strategy was not successful as the depth first strategy to prune

nodes by its lower bound. In fact, by the way our branch-and-bound algorithms

were implemented, lower bound values improves as the algorithm reaches the leaves

of the tree and that favors the depth first strategy. It is also a consequence of our

choice of a lower bound algorithm that is easy to calculate but not tight. On the

other hand, depth first search strategy is also able to find an upper bound more

quickly, which helps to improve performance.
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Algorithm Name Method Dominance Rules Best Bound Strategy Depth First Strategy
Seq1 Sequence MILP RCG Yes - -
Seq2 Sequence MILP RCG No - -
Lin1 Linear MILP RCG Yes - -
Lin2 Linear MILP RCG No - -
BB1 Branch-and-bound Yes No Yes
BB2 Branch-and-bound Yes Yes No

RCG meaning row-and-column generation

Table 4.1: Algorithms

4.6.3 Assessing the robustness

We assess below the costs provided by different models under different uncertainty

sets on two instances with 20 jobs. The six models considered are related to the

robust model used and to the value of Γ ∈ {0, 5, 10, 20}. The model with Γ = 0 is

the deterministic model that ignores uncertainty, while the one with Γ = 20 is the

deterministic model that is completely risk-averse and overestimates all parameters.

The other values of Γ model intermediate risk aversions by using either the robust

model studied here, or the simpler static model obtained by adding the constraints

Ti(p, σ) = Ti(p
�, σ) for each i ∈ N and p, p� ∈ U . Let σΓ and σΓ

stat be the solutions

obtained by the robust models for the value Γ ∈ {10, 15}, and denote similarly the

deterministic solutions by σ0
det and σ20

det. We report on Figure 4.5 the costs

T Γ(σ) = max
p∈U

�

i∈N

Ti(p, σ)

on two instances that illustrate the general patterns that can be observed.

A “Large uncertainty range” instance, where there are large solution value dis-

tances between one realization of uncertainty to others is presented. For this in-

stance, varying the level of conservativeness, that is, varying Γ and the number

of jobs processing times that can vary, have significant impact on total tardiness.

From Figure 4.5 we see that the nominal solution, as well as static solutions, are

suboptimal for Γ ∈ {1, . . . , 7}. Specifically, for these values of Γ, σ5 is roughly 20%

cheaper than σ5
stat, and the ratio increased when considering the other models. For

larger values of Γ, the cheapest solution is σ20
det, with the robust solutions σ10 and

σ10
stat being roughly 5% more expensive. We also see that the deterministic solution

σ0
det behaves extremely badly as soon as Γ > 1. To summarize, analyzing these two

figures show that the robust solution σ5 should be preferred because it is never far

from being the cheapest one.

A “Small uncertainty range” instance example is also presented. For this in-

stance, varying level of conservativeness does not have a great impact on total tar-

diness.
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Indicator Seq1 Seq2 Lin1 Lin2 BB1 BB2
% Best Performance 37 40 41 29 60 26

%NS 100 jobs 55 61 72 72 77 77
Taverage 3351.92 3833.10 4208.73 5648.02 5189.01 6404.46

% Best Performance is percentage of total instances where algorithm was best in time performance
%NS 100 jobs is percentage of total 100 jobs instances not solved within time limit
Taverage is average solution time (s)

Table 4.2: Performance of algorithms for all instances

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 5 10 15 20 25 30

P
ro
p
or
ti
on

s
of

in
st
an

ce
s
so
lv
ed

Not more than x times worse than best algorithm

SEQ1
SEQ2
LIN1
LIN2
BB1
BB2

Figure 4.1: Performance profile among all instances

Instances group Indicator Seq1 Seq2 Lin1 Lin2 BB1 BB2

High Hardness

% Best Performance 50 58 48 33 38 30
Tmedian 537.25 575.62 9600 9600 9600 9600

%NS 100 jobs 62 62 100 100 100 100

Low Hardness

% Best Performance 26 26 36 26 78 22
Tmedian 50.27 64.72 7.55 39.48 2.29 22.79

%NS 100 jobs 50 60 50 50 50 60

Large Uncertainty Range

% Best Performance 58 40 47 40 78 40
Tmedian 237.34 1808.08 9600 9600 569.78 9600

%NS 100 jobs 67 67 78 78 78 78

Small Uncertainty Range

% Best Performance 16 40 36 18 44 11
Tmedian 244.76 160.72 77.65 426.41 192.00 585.52

%NS 100 jobs 44 55 66 66 66 77
% Best Performance is percentage of total instances of a group where algorithm was best in time performance
Tmedian is median solution time (s) considering all instances of a group
%NS 100 jobs is percentage of total 100 jobs instances of a group not solved within time limit

Table 4.3: Performance of algorithms, grouping by special instances
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Figure 4.2: Performance profile of algorithms, grouping by special instances
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Figure 4.3: Performance profile MILP methods and configurations

68



Formulation Dominance(Yes/No) Master Problem Time* Adversarial Problem Time* Number of Iterations*
Linear ordering No 5637.55 10.47 3
Linear ordering Yes 4195.68 13.05 3

Sequence-position No 3802.48 30.62 4
Sequence-position Yes 3287.21 64.71 4

* All measures presented are average values among all instances

Table 4.4: MILP algorithms - all instances by method and configuration

Search strategy Nodes visited* % Nodes pruned by dominance* % Nodes pruned by lower bound* Solution time* % Solution gap* **
Depth first 278019 72 57 5189.01 15
Best bound 452322 97 0 6404.46 46

* All measures presented are median values among all instances
** Calculated for non optimal solutions as percentage difference to best solution among all algorithms

Table 4.5: Branch-and-bound algorithms - all instances by search strategy
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Figure 4.4: Algorithms BB performance profile among all instances
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Figure 4.5: Worst-case evaluation for robust and nominal solutions
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Chapter 5

Min-max-min robustness for

combinatorial problems with

polyhedral uncertainty

5.1 Introduction

In this study we consider two-stage robust combinatorial problems, where the de-

cision maker can react to a scenario by choosing from a finite set of first-stage

decisions. Besides being an alternative to reduce conservatism when compared to

decisions made before the scenario is known, it is a viable alternative to otherwise

intractable two-stage problems.

Alternatives to reduce conservatism of the robust optimization approach have

been focus of research since the introduction of its concept in [17] and [18]. The

challenge resides in maintaining the potential tractability of problems formulated

with this classical robust formulation approach.

One alternative to reduce conservatism, named adjustable robust optimization,

was introduced in [19] where some of the variables, named wait-and-see variables,

are defined only after part of the uncertainty is revealed. Unfortunately, having

wait-and-see variables depending dynamically on uncertainty can turn the problem

intractable. A natural solution is to restrict the wait-and-see variables to special

functions of uncertainty, defined as decision rules. This approximation can turn the

problem tractable and different decision rules have been developed.

In [26] the authors develop the finite adaptability decision rules. Here the wait-

and-see variables are piecewise constant functions of uncertainty. Thinking in terms

of two-stage decision problems, the idea of finite adaptability is to calculate a fixed

number k of second-stage solutions, and then committing to one of them only after

seeing the realization of the uncertainty. At least one of the k solutions must be
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feasible regardless of the realization of the uncertainty.

In [69] the authors extend finite adaptability for two-stage robust binary prob-

lems. They experiment the case for uncertainty only in objective parameters and

show that their min-max-min equivalent formulation can be solved exactly if one

considers k = n + 1, where n is the dimension of the second-stage vector variable

involved. They propose a reformulation as a mixed-integer linear program for non

empty bounded polyhedron uncertainty sets. More recently, in [116], a branch-and-

bound algorithm is proposed that solves a sequence of scenario-based k-adaptability

problems over monotonically increasing k scenario subsets. At each iteration, a

separation problem identifies a new scenario to be added to these sets.

In [38] they consider finite adaptability for the case where no first-stage variables

exist. They apply it for solving combinatorial optimizations problems with uncertain

objective functions. A fixed number k of feasible solutions is computed such that the

respective best of them is optimal in the worst-case. A set of candidate solutions are

calculated in a potentially expensive preprocessing phase and then the best solution

out of this set is selected in real-time, once the actual scenario is known. The idea

behind this approach is that this set of candidate solutions can be calculated only

once and the choice of best solution can be done in a posterior dynamic phase that

will depend on the scenarios considered. Their k-adaptability approach leads to a

min-max-min of the form

min
x(1),...,x(k)∈X⊂{0,1}n

max
c∈U

min
i∈{1,...,k}

cTx(i)
(M3)

They assume that X is given implicitly by a linear optimization oracle. The

authors prove that (M3) can be solved in polynomial time for k ≥ n + 1 and for a

convex uncertainty set U if the equivalent deterministic problem can be solved in

polynomial time.

In [41] the authors further extend the work in [38] and consider a min-max-

min robust combinatorial problem for the case that the set of possible scenarios

is described through a budgeted uncertainty set, distinguishing between discrete

and convex variants. For the former case, hardness results and a pseudopolynomial

algorithm are presented. For the latter case, they identify cases that can be solved

in polynomial time and derive heuristic and exact solution methods.

In this study we propose a new formulation and different algorithmic implemen-

tations to solve problem (M3) for a polyhedral uncertainty set U .

In particular, the contributions of this study are:

• We introduce a new extended formulation for problem (M3) with tight linear

programming relaxation.

• We develop different row-and-column generation algorithmic implementations
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to solve the introduced extended formulation. In particular, we experiment

variations where new variables and constraints are generated on the fly during

a branch-and-bound node resolution. We also experiment an initial heuristic

and relaxations bounds.

• We perform computational experiments using the 0-1 knapsack problem where

the algorithmic implementations are compared using instances randomly gen-

erated.

5.2 Formulations

In the next two subsections we present different formulations to solve problem (M3).

From now on we consider that the cost vector c varies within a polyhedral uncertainty

set given by U = {c ∈ Rn | Ac ≤ b}, where A ∈ Rw×n and b ∈ Rn. We also consider

that X, the set of feasible solutions, is given implicitly by a linear optimization

oracle. For the formulations presented next, consider first an arbitrary finite subset

U
� ⊂ U : U

�

=
�

c1, . . . , cm
�

.

5.2.1 Compact formulation

We first present an assignment-based formulation. Let binary variables pij define

an assignment between the scenarios and the solutions where pij = 1 if and only if

x(i) has the minimal objective value over all x(1), . . . , x(k) in scenario cj.

We can reformulate problem (M3) as

max ω

s.t. ω ≤
k

�

i=1

pij(c
j)�x(i) ∀ j ∈ {1, . . . ,m}

k
�

i=1

pij = 1 ∀ j ∈ {1, . . . ,m}

pij ∈ {0, 1} ∀ i ∈ {1, . . . , k}, ∀ j ∈ {1, . . . ,m}

x(i) ∈ X ∀ i ∈ {1, . . . , k},

(Master)

where the product pijx
(i) can be linearized introducing the additional variables
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pxij = pijx
(i) and adding the classical constraints:

max ω

s.t. ω ≤
k

�

i=1

n
�

�=1

pxij�c
j
� ∀ j ∈ {1, . . . ,m}

k
�

i=1

ϕij = 1 ∀ j ∈ {1, . . . ,m}

pxij� ≤ x
(i)
� ∀ i ∈ {1, . . . , k}, ∀ j ∈ {1, . . . ,m}, ∀ � ∈ {1, . . . , n}

pxij� ≤ pij ∀ i ∈ {1, . . . , k}, ∀ j ∈ {1, . . . ,m}, ∀ � ∈ {1, . . . , n}

pxij� ≥ x
(i)
� + pij − 1 ∀ i ∈ {1, . . . , k}, ∀ j ∈ {1, . . . ,m}, ∀ � ∈ {1, . . . , n}

pij ∈ {0, 1} ∀ i ∈ {1, . . . , k}, ∀ j ∈ {1, . . . ,m}

x(i) ∈ X ∀ i ∈ {1, . . . , k}.

(LinearMaster)

The main bottleneck of formulation (LinearMaster) lies in its weak linear pro-

gramming formulation relaxation. Another weakness of (LinearMaster) lies in the

symmetry among optimization vectors x(i). Symmetry arises when variables can be

permuted without affecting the structure of the problem. For integer programming

using branch-and-bound techniques as resolution method, the set of feasible solu-

tions is partitioned as part of the technique, forming more easily-solved subproblems.

The presence of symmetry means that many of these subproblems are equivalent.

Only one member of each collection of equivalent subproblems needs to be solved.

Failure to recognize that many subproblems are symmetric results in a waste of

computational effort that can render an instance unsolvable by branch-and-bound

(see [92] for details). One way to tackle with the symmetry issue is to exploit its

knowledge and introduce symmetry breaking linear constraints. These constraints

can, for instance, restrict the feasible region in order to avoid possible permutations.

Another way is by reformulating (M3) as will be detailed in next section.

5.2.2 Extended formulation

To improve the weak linear programming relaxation of (LinearMaster), we present

below an extended formulation having possibly exponential numbers of variables

and constraints. Then, we show how to handle these implicitly using a variant of

Dantzig-Wolfe reformulation for extended formulations, see for instance [104].

Let us rewrite X as an enumerated set X = {xs, ∀ s ∈ {1, . . . , r}} and let

κj
s = (cj)�xs. Let binary variable zsj be equal to 1 iff we affect solution s to scenario

j, and ys be equal to 1 iff solution s is used at all. The extended formulation is
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provided below.

max ω

s.t. ω ≤
r

�

s=1

κj
szsj ∀ j ∈ {1, . . . ,m}

r
�

s=1

zsj = 1 ∀ j ∈ {1, . . . ,m}

r
�

s=1

ys = k

zsj ≤ ys ∀ j ∈ {1, . . . ,m}, ∀ s ∈ {1, . . . , r}

y, z binary.

(StrongMaster)

We explain below how to handle the large number of constraints and variables

of (StrongMaster) using a Dantzig-Wolfe reformulation. Let us rewrite the inte-

gral polytope Υs = {(ys, zs) ∈ [0, 1]m+1 : zsj ≤ ys, ∀ j ∈ {1, . . . ,m}} as the enu-

merated set {(yqs , z
q
s), ∀ q ∈ {1, . . . , t})} for each s ∈ {1, . . . , r}. We reformulate

(StrongMaster) by replacing the last group of constraints of (StrongMaster) with

convex combinations of the elements of Υs, obtaining

max ω

s.t. ω ≤
r

�

s=1

t
�

q=1

κj
sz

q
sjλ

q
s ∀ j ∈ {1, . . . ,m} (α)

r
�

s=1

t
�

q=1

zqsjλ
q
s = 1 ∀ j ∈ {1, . . . ,m} (β)

r
�

s=1

t
�

q=1

yqsλ
q
s = k (δ)

λ binary,

(RMP)

where the dual variables are indicated into parentheses and the multiplicity con-

straints
�t

q=1 λ
q
s = 1, ∀ s ∈ {1, . . . , r} have been omitted, see the next result.

Lemma 1. Let λ be a feasible solution to (RMP). For each s ∈ {1, . . . , r}, either
�t

q=1 λ
q

s = 1 or we can define λ̃ such that
�t

q=1 λ̃
q
s = 1,

�t

q=1 y
q
sλ

q

s =
�t

q=1 y
q
s λ̃

q
s and

�t

q=1 z
q
sjλ

q

s =
�t

q=1 z
q
sjλ̃

q
s for each j ∈ {1, . . . ,m}.

Proof. Consider s ∈ {1, . . . , r} and let us define the vectors (0, . . . , 0) and

(1, 0, . . . , 0) as (y1s , z
1
s) and (y2s , z

2
s), respectively. The constraints of (RMP) related

to α imply that
t

�

q=3

λq
s ≤ 1.

75



Suppose λq
s = 1 and λq�

s = 1. If yqs = 0 (resp. yq
�

s = 0) then we can set λq
s = 0 (resp.

λq�

s = 0) without affecting the solution. Hence, we consider next that yqs = yq
�

s = 1.

We take q∗ such that yq
∗

s = 1 and zq
∗

sj = max(zqsj, z
q�

sj). Hence, we can construct a

new solution λ such that λq
s = λq�

s = 0 and λq
s = 1. If

�t

q=3 λ
q
s < 1, then we can

define λ̃q
s = λq

s for each q ≥ 3, λ̃0
s = 0 and λ̃0

s = 1, proving the result.

Let α, β, and δ be the optimal dual variables of the linear programming relaxation

of (RMP). Following the classical approach (e.g. [124]), we obtain the pricing

problem

min
q∈{1,...,t},s∈{1,...,r}

m
�

j=1

(βj+αjκ
j
s)z

q
sj+δyqs = min

q∈{1,...,t},s∈{1,...,r}

m
�

j=1

(βj+αj(c
j)�xs)z

q
sj+δyqs .

(5.1)

The minimum over s (resp. q) can be rewritten by turning x (resp. yj and z) to

binary optimization variables, obtaining the following quadratic integer program

min
m
�

j=1

(βj + αj(c
j)�x)zj + δy

s.t. zj ≤ y ∀ j ∈ {1, . . . ,m}

x ∈ X

y, z binary.

The main advantage of reformulation (RMP) is that solution s only appears in

the formulation whenever an index q > 1 is generated. Therefore, the approach

can generate on the fly the large number of variables indexed by s. Finally, it

is well-known that an alternative to generating variables λ in (RMP) amounts to

generate variables (y, z) directly in formulation (StrongMaster), together with the

subproblem constraints zsj ≤ ys, ∀ j ∈ {1, . . . ,m}, see [104] for a formal description

of that alternative. Both approaches would provide the same lower bound because

the Dantzig-Wolfe decomposition is applied to the integral polytopes Υs.

5.3 Row-and-column generation algorithm

The formulations developed in the previous Section 5.2 present exponentially many

variables and constraints when considering all scenarios and solutions. Typically,

only a fraction of these variables and constraints are needed to prove optimality.

Hence, we use a row-and-column generation algorithm to solve them. Row-and-

column generation is an indispensable tool in integer optimization to solve a math-

ematical program by iteratively adding the variables and constraints of the model.

Even though the method is simple in theory there are many algorithmic choices that
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can be done. Here we discuss the approach given to the formulations developed and

in Section 5.5 we elaborate on the different algorithmic implementations that were

tested.

The first ingredient of our approach, described in Algorithm 5 is to solve (M3)

for the starting set U � ⊂ U and to iteratively add a new scenario, if it exists,

that invalidates the solution. This can be done by calculating the scenario that

provides the worst case objective value for the optimal solution calculated with U
�

and verifying if it belongs to U �.

Algorithm 5 First approach to row-and-column generation algorithm

1: Choose any c∗ ∈ U and set U � = ∅
2: repeat

3: add c∗ to U �

4: calculate optimal solution of (M3) with U �

5: calculate worst case c∗ for optimal solution
6: until c∗ ∈ U �

It is easy to see that Algorithm 5 calculates an optimal solution of problem (M3).

Since the the uncertainty set that comprises the feasible region of the subproblem

solved in step 5 is polyhedral, we only have a finite number of basic feasible solutions.

We can then only generate a finite number of scenarios and therefore the algorithm

terminates in a finite number of steps.

This generic approach can be further customized depending on the formulation

used to solve it, as we describe in the next subsections.

5.3.1 Compact Formulation

Using formulation (LinearMaster), we can iteratively add a new scenario which is

the optimal solution of subproblem

min
�

z : z ≥ c�x(i) ∀ i ∈ {1, . . . ,m}, c ∈ U
�

, (Slave)

where the value of x(1), . . . , x(k) is the optimal solution calculated in step 4.

In theory, Algorithm 5 could typically be improved by embedding the generation

of the inequalities and variables inside a single branch-cut-and-price algorithm solv-

ing (LinearMaster). This is a classical speed-up technique in Benders decomposition

where one only generates constraints along the iterations (e.g. [64]). While this ap-

proach works well for Benders’ decomposition, its efficiency is far more limited when

variables also need to be generated, because the most efficient commercial solvers

cannot handle the dynamic generation of variables.
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5.3.2 Extended Formulation

Using formulation (StrongMaster), we can iteratively add new scenarios as we have

done using the compact formulation in the previous subsection. Unlike the compact

formulation, the extended formulation will benefit from using branch-and-cut-and-

price algorithms. Hence, we will also need to generate new scenarios whenever

y∗s , the optimal solution calculated in step 4, is fractional. In this case the scenario

separation subproblem, since variables y∗s are relaxed and where x∗
s are the associated

enumerated solutions, is given by:

min
c∈U

max
z

r
�

�

s=1

N
�

l=1

clx
∗
slzs

s.t.
r
�

�

s=1

zs = 1

zs ≤ y∗s ∀ s ∈ S
�

(5.2)

where S
�

represents the subset of enumerated solutions being considered.

The inner maximization problem can be dualized and the equivalent scenario

relaxed separation subproblem is given by:

min
c∈U,u,v

u+
r
�

�

s=1

y∗svs

s.t. u+ vs ≥
N
�

l=1

clx
∗
sl ∀ s ∈ S

�

vs ≥ 0 ∀ s ∈ S
�

(5.3)

5.4 Local search heuristic

We develop a local search heuristic that can be used to calculate an initial incumbent

solution. This local heuristic is based on the work developed in [41], which we extend

to a general polyhedral uncertainty set. They introduce a variable z to express the

inner minimization problem of (M3). This leads to a min-max problem defined as

min
x(1),...,x(k)∈X⊂{0,1}n

max
c∈U

max
z

�

z | z ≤ cTx(i) ∀ i ∈ {1, . . . , k}
�

=

min
x(1),...,x(k)∈X⊂{0,1}n

max
c,z

�

z | c ∈ U, z ≤ cTx(i) ∀ i ∈ {1, . . . , k}
�

.
(5.4)

The inner maximization problem of (5.4) can be dualized and we arrive to a

nonlinear formulation, where Ait and bi as elements of the matrix A and the vector

b, respectively, that defines the uncertainty set U . It is given by
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min
�

i∈{1,...,w}

biγi

s.t.
�

i∈{1,...,w}

Aitγi ≥
�

j∈{1,...,k}

x
(j)
t αj ∀ t ∈ {1, . . . , n}

�

j∈{1,...,k}

αj = 1

x(j) ∈ X ∀ j ∈ {1, . . . , k}

γ, α ≥ 0.

(NL)

The nonlinear part of the model is due to the product between x(j) and α.

To avoid the nonlinearity the authors in [41] suggest a search for local instead of

global minima by considering only restricted search directions. Instead of minimizing

x(1), ..., x(k), α, and γ simultaneously, they minimize either only x(1), . . . , x(k), γ

and keep α fix, or they minimize α and γ, and keep x(1), . . . , x(k)
fix. The first

optimization problem is called x-step, the second α-step.

To solve x-step, we solve the following MILP

min
�

i∈{1,...,w}

biγi

s.t.
�

i∈{1,...,w}

Aitγi ≥
�

j∈{1,...,k}

x
(j)
t αj ∀ t ∈ {1, . . . , n}

x(j) ∈ X ∀ j ∈ {1, . . . , k}

γ ≥ 0.

(x-step)

To solve an α-step, we solve the following LP

min
�

i∈{1,...,w}

biγi

s.t.
�

i∈{1,...,w}

Aitγi ≥
�

j∈{1,...,k}

x
(j)
t αj ∀ t ∈ {1, . . . , n}

�

j∈{1,...,k}

αj = 1

γ, α ≥ 0.

(α-step)

We start the local search with an x-step. As initial values for α we choose

α̃j = 2j
k(k+1)

, ∀ j ∈ {1, . . . , k}. Different values for α̃ help to break the symmetry

of the model formulation. The optimal solution of the x-step is then used to solve

the first α-step. We iterate between x, and α-steps until no further improvement is

found. Since the objective value decreases in each step, except of the last step, we

will end up in a local minimum after a finite number of steps.
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5.5 Algorithmic implementations

We solve the compact linearized formulation (LinearMaster) and the extended for-

mulation (StrongMaster) presented earlier in this study. As described in the previous

section, both formulations involved decomposition algorithms to cope with a large

number of scenarios. In addition, (StrongMaster) also needs to handle a large num-

ber of solutions. We detail below the different algorithms we have implemented to

handle this situation. These algorithms are based on the MILP solvers CPLEX [2]

and BaPCod [1]. While CPLEX cannot handle the dynamic generation of variables,

BaPCod is a toolbox specialized in branch-and-cut-and-price algorithms.

5.5.1 Compact formulation

As stated in Section 5.3, Algorithm 5 could be improved by embedding the genera-

tion of the inequalities and variables inside a single branch-cut-and-price algorithm.

The solver CPLEX cannot handle the dynamic generation of variables, although,

and unreported numerical results with BaPCod have shown that the compact formu-

lation is orders of magnitude slower to solve when using a branch-and-cut-and-price

algorithm instead of the row-and-column generation algorithm from Algorithm 5.

We have then only implemented, for the Compact formulation, the standard row-

and-column generation algorithm where scenarios added at end of MIP solution

of formulation (LinearMaster). Also note that, as enumeration of solutions is not

applicable, they are calculated as variables inside the formulation.

5.5.2 Extended formulation

There are two fundamentally different ways to address the formulation

(StrongMaster): either we take all solutions from X from the start of the algorithm

(solutions are static and denoted as PrN hereafter), or we generate these solutions

on the fly in the course of a branch-and-cut-and-price algorithm (solutions are dy-

namic and denoted as PrY hereafter). Notice here that, unlike the new scenarios

which can be added either at the end of the branch-and-bound tree or at any of its

nodes, PrY needs the additional variables and constraints to be generated at each

node of the branch-and-bound-tree. This is because these variables and constraints

can improve the bound of any node, and omit to generate them at some nodes may

lead to fathoming the nodes yielding the optimal solution.

Summarizing, we implement formulation (StrongMaster) where we take all solu-

tions from X from the start of the algorithm (PrN), or we generate these solutions

on the fly in the course of a branch-and-cut-and-price algorithm (PrY). Further

specifications of these algorithms are:
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Method Formulation Master Solver Master Solution Generation Separation Problem Bounds
Com-CPX-PrN-LzN Compact CPLEX Variables Scenarios added at end of MIP solution FALSE
Ext-CPX-PrN-LzN Extended CPLEX Static Scenarios added at end of MIP solution FALSE

Ext-CPX-PrN-LzN-Bound Extended CPLEX Static Scenarios added at end of MIP solution TRUE
Ext-BPC-PrN-LzN Extended BaPCod Static Scenarios added at end of MIP solution FALSE
Ext-BPC-PrY-LzY Extended BaPCod Dynamic Scenarios added with lazy constraints FALSE

Ext-BPC-PrY-LzY-Bound Extended BaPCod Dynamic Scenarios added with lazy constraints TRUE
Han-CPX-PrN-LzN Inner Dual CPLEX Not Applicable Not Applicable Not Applicable

Table 5.1: Variants for the decomposition algorithm and inner dualization algorithm

Lazy constraints Scenarios are generated dynamically within the subproblems,

generating new variables and constraints. These variables and constraints can

be added at the end of each iteration, after complete resolution of the mixed

integer master problem (denoted as LzN hereafter), or can be added at each

integer node of the branch-and-bound algorithm to solve the master problem,

using the optimization feature of lazy constraints (denoted as LzY hereafter).

Treatment of the root node We generate bounds and scenarios at the root node

(denoted as Bound hereafter). We solve a relaxed problem to generate as

much solutions and scenarios as possible to feed our extended formulation

algorithm. As described in Section 5.4, we use a heuristic solution of as an

initial incumbent solution (upper bound).

Table 5.1 presents different possible combinations of algorithmic variants we have

implemented and tested.

5.6 Computational experiments

We compare the performances between the different algorithmic implementations

presented in Section 5.5 using random generated knapsack problem instances. For

performance comparison we also solve problem (M3) based on inner dualization

mixed-integer linear reformulation for uncertain objective functions for non empty

bounded polyhedron uncertainty sets presented in [69]. We name this method as

Han-CPX-PrN-LzN in Table 5.1.

Since time performance of the method Com-CPX-PrN-LzN was much worse when

compared to others and the majority of the problems solved with it overrun time

limit, we have omitted to present their individual results.

We have created problem instances based on 3 cases of 25 jobs. For polyhedral

uncertainty set we build convex budgeted uncertainty sets as defined by see [22]. We

have run them for different values of Γ ∈ {3, 6}, k ∈ {2, 4, 5}, with the 6 algorithms

presented in Table 5.1, giving a total of 108 problem instances that were run. The

weights wi were chosen randomly from set {100, . . . , 1500} and the knapsack capacity

b was set to 100n. We assume to have negative costs for the items to stay in the

framework of minimization problems. Each knapsack instance has been equipped
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with convex budgeted uncertainty sets where the mean vector ĉ was chosen randomly

with ĉi ∈ {10000, . . . , 15000} and di was set to 0.1ĉi for all i ∈ {1, . . . , n}. Time

limit was set to 9600s.

5.6.1 Results

We first compare time performance in Figure 5.1 using a performance profile (see

[58]). In this figure, the vertical axis points out in percentage, for each algorithm, in

how many instances the result was not more than x times - horizontal axis - worse

than the best algorithm.

As already pointed out, the extended formulation, with its tighter relaxation

bound, outperforms the equivalent problem implemented with compact formulation

in any of its different algorithmic implementations. By analyzing Figure 5.1 it

also becomes clear that the Extended formulation also outperforms the formulation

reflected in method Han-CPX-PrN-LzN, in all variants.

The variants of lazy constraints, pricing subproblems and bound have satisfac-

torily improved performance of algorithms. In particular, we can see that although

BaPCod cannot outperform CPLEX on basic variants (Ext-BPC-PrN-LzN versus

Ext-CPX-PrN-LzN), by using its unique column generation features greatly im-

proves its performance. In fact, Ext-BPC-PrY-LzY-Bound outperforms all other

methods.

The introduction of the bound variant, with initial solutions and scenarios

and lower and upper bounds, was beneficial both for CPLEX and BaPCod. The

CPLEX variant Ext-CPX-PrN-LzN-Bound outperformed all other variants, except

Ext-BPC-PrY-LzY-Bound.

We present in Table 5.2 detailed results for one of the cases (# 3) of 25 jobs.

The total time, already used in the performance profile of Figure 5.1, includes time

spent, when applicable, to generate solutions, to solve the relaxed and the heuristic

problem and to solve the MIP extended or inner dual formulation. The results

reinforces the beneficial effect of the introduction of lazy constraints and pricing

subproblems, and afterwards the bound procedure.

Mip node count expresses the total number of nodes visited, among all iterations

of the branch-and-bound algorithm used to solve the Mip problem. It can be verified

the reduction of total time is linked with the reduction of the number of nodes visited.

Mip # lazy constraints and Mip # pricing columns expresses the total num-

ber of lazy constraints and pricing columns inserted, among all iterations of the

branch-and-bound algorithm used to solve the Mip problem. It can be verified that

the introduction of the bound variant, as expected, reduces the quantity of lazy

constraints and pricing columns sub problems necessary to solve the MIP problem.
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Figure 5.1: Performance among different algorithmic implementations

We register the solution of the static robust problem, the relaxed problem, the

heuristic solution, the MIP solution and their corresponding gap to the optimal

MIP solution as price of robustness, relaxed gap, heuristic gap and optimal gap,

respectively.

The price of robustness result evidences that there is a positive gain, an average

gain of 3.21% for the instances presented, in reducing conservatism of the robust

solution while using the min-max-min approach.

The relaxed gap result shows that the extended formulation indeed provides a

tight relaxation gap that benefits the branch-and-bound procedure used to solve the

MIP problem. This property is not shared by the formulation solved in the method

Han-CPX-PrN-LzN method.

The heuristic gap result shows that the algorithm used to calculate a heuristic

provides a very good solution. For the instances presented in Table 5.2 the aver-

age heuristic gap is 0.41%. That positively contributes for the effectiveness of the

algorithmic methods with the bound variant.

The optimal gap result shows that, for the instances not resolved within time

limit, a maximum of 1.99% of optimality gap was achieved. In particular, the Han-

CPX-PrN-LzN method, although not able to solve the majority of the instances

presented within the time limit, was able to achieve a 0% of optimality gap in all

these instances.

We also register the quantity of solutions generated by an intelligent enumeration

of feasible solutions in a first phase of our algorithm. It can be verified that this

enumeration is successful in drastically reducing the number of possible solutions.
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Problem
Instance
(#,Γ,k)

Method
Static Robust

Solution

Quantity
Generated
Solutions

Relaxed
Solution

Heuristic
Solution

MIP
#Lazy Constraints

MIP
#Pricing columns

MIP
Node count

MIP
Solution

Total Time
Price of

Robustness
Relaxed

Solution gap
Heuristic

Solution gap
Optimal

gap

3/3/2 Ext-BPC-PrN-LzN 5323 124 0.00 0.00 34 0 12070 5486.83 262.41 2.99% -% -% 0.00%
3/3/2 Ext-BPC-PrY-LzY 5323 124 0.00 33 70 951 5486.83 73.11 2.99% -% -% 0.00%
3/3/2 Ext-BPC-PrY-LzY-Bound 5323 124 5628.34 5429.42 21 66 823 5486.83 99.02 2.99% 2.58% 1.05% 0.00%
3/3/2 Ext-CPX-PrN-LzN 5323 124 0.00 0.00 30 0 7050 5486.83 42.24 2.99% -% -% 0.00%
3/3/2 Ext-CPX-PrN-LzN-Bound 5323 124 5628.34 5429.42 20 0 1289 5486.83 465.05 2.99% 2.58% 1.05% 0.00%
3/3/2 Han-CPX-PrN-LzN 5323 0 9984.10 0.00 0 0 111956 5486.83 17.42 2.99% 81.96% -% 0.00%
3/3/4 Ext-BPC-PrN-LzN 5323 124 0.00 0.00 99 0 190235 5654.55 9600.00 5.86% -% -% 0.72%
3/3/4 Ext-BPC-PrY-LzY 5323 124 0.00 206 91 10000 5614.28 9600.00 5.19% -% -% 0.00%
3/3/4 Ext-BPC-PrY-LzY-Bound 5323 124 5628.34 5614.28 43 62 2005 5614.28 297.07 5.19% 0.25% 0.00% 0.00%
3/3/4 Ext-CPX-PrN-LzN 5323 124 0.00 0.00 148 0 326718 5633.00 9600.00 5.50% -% -% 0.33%
3/3/4 Ext-CPX-PrN-LzN-Bound 5323 124 5628.34 5614.28 28 0 16952 5614.28 420.61 5.19% 0.25% 0.00% 0.00%
3/3/4 Han-CPX-PrN-LzN 5323 0 16358.87 0.00 0 0 33973517 5614.28 9600.00 5.19% 191.38% -% 0.00%
3/3/5 Ext-BPC-PrN-LzN 5323 124 0.00 0.00 91 0 189141 5677.37 9600.00 6.24% -% -% 0.94%
3/3/5 Ext-BPC-PrY-LzY 5323 124 0.00 262 91 10000 5624.66 9600.00 5.36% -% -% 0.00%
3/3/5 Ext-BPC-PrY-LzY-Bound 5323 124 5628.34 5615.42 98 67 6969 5624.66 1362.20 5.36% 0.07% 0.16% 0.00%
3/3/5 Ext-CPX-PrN-LzN 5323 124 0.00 0.00 155 0 276945 5649.51 9600.00 5.78% -% -% 0.44%
3/3/5 Ext-CPX-PrN-LzN-Bound 5323 124 5628.34 5615.42 51 0 32190 5624.66 930.98 5.36% 0.07% 0.16% 0.00%
3/3/5 Han-CPX-PrN-LzN 5323 0 19262.28 0.00 0 0 28099062 5624.66 9600.00 5.36% 242.46% -% 0.00%
3/6/2 Ext-BPC-PrN-LzN 5084 252 0.00 0.00 50 0 52100 5090.96 3121.08 0.14% -% -% 0.00%
3/6/2 Ext-BPC-PrY-LzY 5084 252 0.00 45 89 1365 5090.96 190.21 0.14% -% -% 0.00%
3/6/2 Ext-BPC-PrY-LzY-Bound 5084 252 5218.70 5088.00 30 59 651 5090.96 129.52 0.14% 2.51% 0.06% 0.00%
3/6/2 Ext-CPX-PrN-LzN 5084 252 0.00 0.00 46 0 22091 5090.96 420.04 0.14% -% -% 0.00%
3/6/2 Ext-CPX-PrN-LzN-Bound 5084 252 5218.70 5088.00 30 0 4393 5090.96 2704.14 0.14% 2.51% 0.06% 0.00%
3/6/2 Han-CPX-PrN-LzN 5084 0 9300.47 0.00 0 0 65932 5090.96 12.55 0.14% 82.69% -% 0.00%
3/6/4 Ext-BPC-PrN-LzN 5084 252 0.00 0.00 63 0 131319 5291.00 9600.00 3.91% -% -% 1.99%
3/6/4 Ext-BPC-PrY-LzY 5084 252 0.00 196 112 10000 5187.52 6022.84 2.00% -% -% 0.00%
3/6/4 Ext-BPC-PrY-LzY-Bound 5084 252 5218.70 5145.66 81 81 10000 5187.52 2642.51 2.00% 0.60% 0.81% 0.00%
3/6/4 Ext-CPX-PrN-LzN 5084 252 0.00 0.00 101 0 239288 5228.88 9600.00 2.77% -% -% 0.80%
3/6/4 Ext-CPX-PrN-LzN-Bound 5084 252 5218.70 5145.66 71 0 191113 5191.50 9600.00 2.07% 0.52% 0.88% 0.08%
3/6/4 Han-CPX-PrN-LzN 5084 0 15074.22 0.00 0 0 33736781 5187.52 9600.00 2.00% 190.59% -% 0.00%
3/6/5 Ext-BPC-PrN-LzN 5084 252 0.00 0.00 54 0 97416 5293.63 9600.00 3.96% -% -% 1.71%
3/6/5 Ext-BPC-PrY-LzY 5084 252 0.00 185 94 10000 5204.89 9600.00 2.32% -% -% 0.00%
3/6/5 Ext-BPC-PrY-LzY-Bound 5084 252 5218.70 5187.52 63 74 10000 5204.89 9600.00 2.32% 0.27% 0.33% 0.00%
3/6/5 Ext-CPX-PrN-LzN 5084 252 0.00 0.00 112 0 279285 5247.04 9600.00 3.11% -% -% 0.81%
3/6/5 Ext-CPX-PrN-LzN-Bound 5084 252 5218.70 5187.52 53 0 98669 5204.89 4070.34 2.32% 0.27% 0.33% 0.00%
3/6/5 Han-CPX-PrN-LzN 5084 0 17548.43 0.00 0 0 24784382 5204.89 9600.00 2.32% 237.15% -% 0.00%

RCG meaning row-and-column generation

Table 5.2: Detailed results for all methods and instance # 3
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Chapter 6

Distributionally robust fleet

assignment problem

6.1 Introduction

To provide a high-quality, low-cost product, airlines rely on optimization-based de-

cision support systems to generate profitable and cost-effective fare classes, flight

schedules, fleet plans, aircraft routes, crew pairings, gate assignments, maintenance

schedules, food service plans, training schedules, and baggage handling procedures

[127].

Once an airline decides when and where to fly (flight legs) by developing its flight

schedule, the next decision is determining the type of aircraft, or fleet, that should

be used on each of the flight legs defined within the flight schedule. This process is

called fleet assignment and its purpose is to assign fleet types to flight legs, subject to

an available number of aircrafts and conservation of aircraft flow requirements, such

as to maximize profits with respect to captured passenger demand. This means

the fleet assigment has a direct effect on the airline revenue and operating costs

and thus is considered to have significant impact on airline profits. This decision

needs to be made well in advance of departures when passenger demand is still highly

uncertain. The factors that influence schedulers when assigning fleet types to various

flights are: passenger demand, seating capacity, operational costs, and availability

of maintenance at arrival and departure stations. One important requirement of the

fleet assignment is that the aircraft must circulate in the network of flights. These

so-called balance constraints are enforced by using time lines to model the activities

of each fleet type. The period for which the assignment is done is normally one day

for domestic flights.

Profit maximization is normally defined in terms of unconstrained revenue minus

assignment cost. Unconstrained revenue of a flight leg is the maximum attainable
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revenue for that particular flight regardless of assigned capacity. Assignment cost,

a function of the assigned fleet type, includes the flight operating cost, passenger

carrying related cost and spill cost. Spill cost on a flight is the revenue lost when the

assigned aircraft for that flight cannot accommodate every passenger. The result

is that either the airline spills some passengers to other flights in its own network

(in which case these passengers are recaptured by the airline), or they are spilled to

other airlines.

In [11], the authors point out that, in the airline industry, despite the best efforts

to optimize and execute a plan, unforeseen disruptions to this plan occur inevitably

on every single day. These result in what the authors call irregular operations. One

way to mitigate the effects of irregular operations is to focus on optimization-based

recovery techniques – replanning aircraft, crew and passenger routings. An alterna-

tive approach that aims at preparing robust airline operations is robust planning,

that is explicitly aimed at reducing the complexity and/or need for recovery by gen-

erating, during the planning process, plans that are resilient to disruptions. This

allows planned operations to be more consistent, or require less extensive adjust-

ments to maintain operability.

In particular, as passenger demand is uncertain, in some works the authors have

assumed the random nature of demand uncertainty by using stochastic programming

modeling techniques.

In [95] the authors present a two-stage stochastic programming model for fleet

assignment. At the first stage, the model assigns aircraft families to flight legs. In a

second stage, the model assigns aircraft types to flight legs. Passenger demand and

aircraft capacity are implicitly taken into account in the model through the revenue

and the operating cost associated with each scenario. The estimate of the expected

revenue is determined as the average over the scenarios. The main contribution of

this paper is a method to obtain an approximation for the expected profit function

using a regression splines fit.

In [111] the authors also formulate the airline fleet assignment as a two-stage

stochastic programming model. They consider passenger demand uncertainty by

the use of demand scenarios and develop a Benders decomposition-based approach

to facilitate handling of large scale problems.

In [75] the authors develop a two-stage stochastic programming model for inte-

grated flight scheduling and fleet assignment where the fleet family assigned to each

scheduled flight leg is decided at the first-stage. Then, the fleet type to assign to

each flight leg is decided at the second-stage based on demand and fare realization.

Sample average approximation (SAA) algorithm is then used to solve the problem

and provide information on the quality of the solution.

In [36] the authors propose a new model based on itinerary grouping to mitigate

86



the effect of demand uncertainty. Their itinerary group fleet assignment model deals

with the difficulties caused by itinerary forecast by replacing them with aggregated

demand forecasts. The authors affirm that an itinerary-based representation of

demand (see Section 6.2 for details) has led to a high granularity of demand, making

it hard to predict.

In this work, as an alternative to previous works presented, we propose a two-

stage data-driven distributionally robust optimization model to address the question

of airline robust planning for the fleet assignment problem. This novell modeling

approach comprises our main contribution with respect to the airline fleet assignment

problem literature.

Our model considers the stochastic nature of uncertainty of passenger demand

and follows the guidelines that one should generate, during the planning process,

plans that are resilient to disruptions.

We adopt the concept of robust optimization as defined in [17] and [18] in that the

demand uncertainty belongs to a known deterministic uncertainty set. In fact, we

consider this uncertainty set as the support for the family of probability distributions

associated with our random passenger demand parameter. We consider a data-

driven approach by which this uncertainty set is constructed from available historical

data. We assume that historical unconstrained (not subject to capacity issues)

itinerary demand data is available and that we can use this historical data to predict

future demand. By constructing the uncertainty set from historical data we are able

to capture correlations between demands of different itineraries and thus mitigate

the granularity demand effect as pointed out in [36].

On the other hand, we consider different modeling alternatives to mitigate con-

servatism of a robust approach. Since fleet assignment is a repetitive process, where

fleet assignment decisions are made on daily basis, we mitigate the conservatism of

the worst-case objective of classical robust optimization and consider a distribution-

ally robust optimization approach on which we optimize the worst case expected

performance on a set constituted by an infinite number of probability distributions,

named ambiguity set (see [53] for main concepts). We also propose a two-stage

model, as introduced in [19] where, although all the fleet assignments decisions are

first stage, the calculation of lost revenue (spill) is only done after realization of

uncertainty.

To facilitate handling large-scale fleet assignment problems, we propose the use

of principal component analysis techniques to reduce dimension of the uncertainty

set and the use of affine decision rules for our two-stage problem as approximations

to improve time performance of our algorithms.

The remainder of this chapter is organized as follows. In Section 6.2 we review

existing formulations for the fleet assignment problem and propose our two-stage dis-
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tributionally robust formulation. Next, in Section 6.3 we reformulate our problem

based on assumptions we make on the ambiguity set and the use of affine deci-

sion rules to approximate our problem. Section 6.4 details our ambiguity set and

the algorithm developed to construct it using machine learning techniques. There

we present also how principal component analysis techniques can be used to re-

duce dimension of the uncertainty set and approximate the problem. In Section

6.5 we present computational results using a hub-and-spoke airline instance exam-

ple created for our testing purposes. There we compare solutions provided by our

formulation to other robust formulations and a deterministic fleet assignment for-

mulation where a scenario-based passenger demand vector is considered as input.

We compare solutions by simulating an airline operation for a predetermined period

of time.

6.2 Fleet assignment formulations

The fleet assignment model is typically formulated as a mixed-integer program.

One can see the work in [112] for a survey of different modeling approaches for the

problem.

In [3] the author first introduced for the fleet assignment problem a time-space

network model to represent the availability of the fleet at each airport in the course

of time. The proposed model resulted in a linear program that could either maximize

profit or minimize operations cost.

In [70] the authors use the time-space network model and develop a large-scale

integer program for fleet assignment. They propose several preprocessing techniques,

namely node aggregation and isolated islands at stations, in order to reduce problem

complexity.

In these two works demand is expressed for a specific flight leg and, therefore,

these works do not capture demand dependencies between legs. This is because

demand is defined for airline itineraries that can be comprised by multiple flight

legs. Variations of demand in one itinerary flight leg will affect the others legs. This

is called network effect and it was taken into consideration in the model defined

in [10]. There, the authors use the time-space network model and consider the

effect of recapturing, where passengers spills from one itinerary can be redirected to

alternative itineraries. In their model demand is deterministic.

This model is reference for our work, but we do not consider recapturing. We

replicate here the itinerary based formulation as presented in [36] where the authors

also explicitly deal with itinerary fare classes to better capture the revenue dimension

by favoring higher classes instead of considering all the fare classes at the same level.

We present notations and formulation used.
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Sets

P : the set of itinerary fare classes, indexed by p

A: the set of airports, indexed by o

L: the set of flight legs, indexed by i

K: the set of fleet types, indexed by k

T : the sorted set of all relevant event times (leg departures or aircraft availability)

at all airports, indexed by t

CL(k): the set of flight legs that pass the count time when flown by fleet type k

I(k, o, t): the set of inbound flight legs to node (k, o, t)

O(k, o, t): the set of outbound flight legs from node (k, o, t)

Decision variables

tp: the number of passengers requesting itinerary fare class p and spilled by the

model because of the capacity limit.

fki: binary variable equal to 1 if fleet type k is assigned to flight leg i, 0 otherwise.

ykot+ : the number of fleet type k that are on the ground at airport o immediately

after time t.

ykot− : the number of fleet type k that are on the ground at airport o immediately

before time t. If t
�

is the time of the first event occurring after t, then ykot = ykot�−

Data

SEATSk: the number of seats available on aircraft of fleet type k.

cki: the cost of operating leg i with fleet type k.

Nk: the number of aircraft in fleet type k.

Dp: the unconstrained demand for itinerary fare class p.

farep: the fare class for itinerary p.

δ
p
i : a binary flag equal to 1 if itinerary fare class includes flight leg i, 0

otherwise.

count time: the time at which a snapshot of fleet utilization is taken to ensure

consistency with the available fleet.
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tm: the last event before the count time, tm = count time−.

(IFAM) min
�

i∈L,k∈K

cki fki +
�

p∈P

farep tp (6.1)

s.t.
�

k∈K

fki = 1 ∀i ∈ L (6.2)

�

i∈I(k,o,t)

fki + ykot− =
�

i∈O(k,o,t)

fki + ykot+ ∀k, o, t (6.3)

�

o∈A

ykotm +
�

i∈CL(k)

fki ≤ Nk ∀k ∈ K (6.4)

�

p∈P

δ
p
iDp −

�

p∈P

δ
p
i t

p ≤
�

k∈K

fki SEATSk ∀i ∈ L (6.5)

tp ≤ Dp ∀p ∈ P (6.6)

The objective function (6.1) minimizes the total cost of operations plus the cost

related to spilled itinerary fare class demand. This minimization is equivalent to

profit maximization. Constraints (6.2) are the leg coverage constraints. Each flight

leg has to be operated by exactly one aircraft type. The flow conservation constraint

related to each single event is ensured through constraints (6.3). The limited size of

each fleet is respected through constraints (6.4). The count time can be seen as a

fixed time where a cut is applied on the network to ensure that the total aircraft of

each fleet type k on the ground at all airports plus the one flying at the time must

not exceed the total aircraft Nk available for type k. The capacity constraints (6.5)

ensure that satisfied demand fits with the number of seats available on any given

leg. Last, constraints (6.6) ensure that spill does not exceed unconstrained demand

for any given itinerary fare class.

We now propose a two-stage distributionally robust optimization formulation

derived from IFAM formulation to incorporate the random nature of passenger

demand vector D. Distributionally robust optimization is an emerging and effective

method to address the inexactness of probability distributions of uncertain param-

eters.

As an extension to robust optimization that only considers the worst-case pa-

rameter realization in the uncertainty set, without necessarily considering random

nature of uncertainty, distributionally robust optimization hedges against the worst-

case probability distribution in the ambiguity set, as described in Section 6.1. The

worst-case realization that robust optimization hedges against might be unrealistic

in practice. The ambiguity set is typically constructed based on partial distribu-

tional information, such as support set and moment statistics, which can be obtained

from available historical data.
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We formulate our problem assuming that passenger demand spill decision vari-

able is a second stage variable. This way passenger demand spill is only defined after

realization of uncertainty and we represent this dependency defining it as a function

map tp(D). We also assume the uncertainty of vector D is represented through a

probability distribution P that belongs to an ambiguity set D.

We present the formulation developed.

(DIFAM) min
�

i∈L,k∈K

cki fki + sup
P∈D

EP[Q(f,D)] (6.7)

s.t.
�

k∈K

fki = 1 ∀i ∈ L (6.8)

�

i∈I(k,o,t)

fki + ykot− =
�

i∈O(k,o,t)

fki + ykot+ ∀k, o, t (6.9)

�

o∈A

ykotm +
�

i∈CL(k)

fki ≤ Nk ∀k ∈ K (6.10)

(6.11)

where

Q(f,D) = min
�

p∈P

farep tp(D) (6.12)

�

p∈P

δ
p
iDp −

�

p∈P

δ
p
i t

p(D) ≤
�

k∈K

fki SEATSk ∀i ∈ L (6.13)

tp(D) ≤ Dp ∀p ∈ P (6.14)

The cost
�

i∈L,k∈K

cki fki incurred during the first stage is deterministic. In pro-

gressing to the second stage, the random passenger demand vector D is realized.

We can then determine the cost incurred at the second stage. For a given first stage

fleet type assignment decision, f , and a realization of the random passenger demand

vector, D, we evaluate the second stage cost via the linear optimization problem,

Q(f,D). Since the fleet type assignment is a repetitive daily process and the true

probability distribution of D is unknown and belong to a family of distributions set

D we are interested in the worst case expectation sup
P∈D

EP[Q(f,D)]. Note that it is

a relatively complete recourse problem because any first-stage solution leads to a

feasible second-stage solution.

In order to be able to deal with large scale problems, our two-stage distribu-

tionally robust optimization formulation must admit a tractable reformulation. The

reformulation is closely related to the choices of ambiguity set that we make. On the
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other hand these choices must correctly reflect properties of historical data available.

In the next section we show that defining ambiguity sets by linear relationships of

uncertainty parameters and approximating second stage variables as affine functions

of uncertainty parameters derives a tractable problem. We will also use techniques

of uncertainty dimensionality reduction as a further compromise between optimality

and tractability.

6.3 Two-stage distributional reformulation

6.3.1 Dimensionality reduction

In real case examples, the dimension of the random passenger demand vector D

can be in the range of thousands of itineraries. This can impact performance of the

formulation DIFAM . Employing dimensionality reduction techniques to reduce

the number of random variables under consideration can improve performance of

our formulations.

A linear technique for dimensionality reduction, principal component analysis,

performs a mapping of the data to a lower-dimensional space in such a way that

the variance of the data in the low-dimensional representation is maximized. In

practice, the covariance matrix of the data is constructed and the eigenvectors of this

matrix are computed. The eigenvectors that correspond to the largest eigenvalues,

that are called the principal components vectors, can now be used to reconstruct a

large fraction of the variance of the original data. The original space of itineraries

is reduced afterwards with data loss, but hopefully retaining the most important

variance. See [123] for more details on principal component analysis (PCA).

We assume there is a set W
�

of N demand data samples available, W
�

=

{D(i)}Ni=1, based on historical data, and use this set to calculate the mean vec-

tor D̄ and variance vector D̂. We execute a procedure to decompose the passenger

demand vectors as components, Xc, of the principal components vectors, Y c, where

c ∈ {1, . . . , C} are the indexes of the selected principal components vectors and the

principal component vector has dimension |P |.

Before decomposing we normalize each instance of the demand vector, D(i), using

D̄ and D̂. We then compute the coordinates, Xc, in the system of coordinates of

the principal components vectors, Y c. This is given by the expression

D(i)
p = D̄p + D̂p

C
�

c=1

X(i)
c Y c

p ∀p ∈ P. (6.15)

In the following we need the random vector to be non negative. Hence, we

introduce a new random vector ξ where each component will vary in the nonnegative
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interval [0, 1]. We do this by defining the components of each demand vector D(i)

as

D(i)
p = D1p +

C
�

c=1

D2pcξ
(i)
c , (6.16)

where

D1p = D̄p + D̂p

C
�

c=1

min
i

(X(i)
c )Y c

p , (6.17)

D2pc = D̂p(max
i

(X(i)
c )−min

i
(X(i)

c ))Y c
p , (6.18)

and max
i

(X
(i)
c ), min

i
(X

(i)
c ) are, respectively, the maximum and minimum decompo-

sition values along each vector Y c considering all instances, i ∈ {1, . . . , N}.

This is important step in order to guarantee positive definite matrices in the

algorithm developed in Section 6.4 for our distributionally robust ambiguity set.

6.3.2 Ambiguity set and first-order deviation moment func-

tions

The tractability of a distributionally robust linear optimization problem is dependent

on the choice of the ambiguity set. Several ambiguity sets have been proposed

in the literature. In particular, moment-based uncertainty sets assume that all

distributions in the distribution family share the same moment information. By

leveraging conic duality many distributionally robust optimization problems with

moment-based ambiguity sets can, in general, be reformulated equivalently as convex

problems. Although these problems can be solved theoretically in polynomial time,

they are not efficient for large-scale instances.

In [35] the authors propose an alternative with moment-based second-order conic

(SOC) representable ambiguity sets. They show that the adaptive distributionally

robust linear optimization problem can be formulated as a classical robust optimiza-

tion problem.

In [35], a moment-based second-order conic representable ambiguity set, D, is

defined as

D =



































P ∈ P0(R
|P |)

�

�

�

�

�

�

�

�

�

�

�

�

D ∈ R|P |

EP[GD] = µ

EP[gi(D)] ≤ γi ∀i ∈ I

P(D ∈ U) = 1































.

We assume random passenger demand vector D, but the same results can be
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derived substituting for dimensional reduced random vector ξ. P0(R
|P |) represents

the set of all probability distributions in R|P | and new parameters are defined as

G ∈ Rn1×|P |, µ ∈ Rn1 , γ ∈ R|I|, SOC representable support set U ∈ R|P | and SOC

representable functions gi ∈ R|P |×1.

D only contains valid distributions supported over the support set U and mo-

ment information of uncertainties are characterized via functions gi. The equality

expectation expression allow the modeler to specify the mean values of D.

The authors of [35] further reformulate the ambiguity set D as a projection of an

extended ambiguity set D̄ by introducing an I-dimensional auxiliary random vector

u in

D̄ =



































Q ∈ P0(R
|P | × R|I|)

�

�

�

�

�

�

�

�

�

�

�

�

(D, u) ∈ Rp × R|I|

EQ[GD] = µ

EQ[u] ≤ γi ∀i ∈ I

P((D, u) ∈ Ū) = 1































where Ū is the lifted support set defined as

Ū =











(D, u) ∈ R|P | × R|I|

�

�

�

�

�

�

D ∈ U

gi(D) ≤ ui ∀i ∈ I







They observe that the lifted ambiguity set has only linear expectation constraints

and show that the adaptive distributionally robust optimization problem can be

reformulated as a classical robust optimization problem with uncertainty set Ū .

To be able to reformulate adequately our fleet assignment problem DIFAM we

must then define an ambiguity set D that will lead to a polyhedral lifted support

set Ū .

In [107] the authors define first-order deviation moment-based functions gi(.)

that are second-order conic representable as piecewise linear functions

gi(D) = max{hT
i D − qi, 0} ∀i ∈ I.

They can be understood as the first-order deviation of uncertain parameters

along a certain projection hi truncated at qi. We apply these moment-based func-

tions to our problem and also assume that the support set U is a polyhedral. We
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then define our ambiguity set D as

D =























P ∈ P0(R
|P |)

�

�

�

�

�

�

�

�

�

D ∈ R|P |

EP[max{hT
i D − qi, 0}] ≤ γi ∀i ∈ I

P(D ∈ U) = 1



















and the lifted support set Ū will be a polyhedral given as

Ū =























(D, u) ∈ R|P | × R|I|

�

�

�

�

�

�

�

�

�

D ∈ U

0 ≤ ui ∀i ∈ I

hT
i D − qi ≤ ui ∀i ∈ I



















6.3.3 Affine decision rules

With the above definition of lifted support set we can apply, to our DIFAM formu-

lation, the reformulation proposed by [35] for the adaptive distributionally robust

optimization problem, approximating second stage variables tp as affine functions of

the lifted support set parameters (D, u), tp(D, u) = t0p +
�

i∈P t1piDi +
�

i∈I t
2
piui.

This reformulation is based on the dualization of the inner problem of DIFAM ,

supP∈D EP[Q(f,D)], and by introducing Lagrangian multipliers r and β to it (alter-

natively see [107] for a summarized proof of this reformulation). This leads to the

following classical robust optimization problem:
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(RRIFAM) min
�

i∈L,k∈K

cki fki + r +
�

i∈I

γiβi

s.t. βi ≥ 0 ∀i ∈ I

r +
�

uiβi ≥
�

p∈P

fareptp(D, u) ∀(D, u) ∈ Ū

�

p∈P

δ
p
iDp −

�

p∈P

δ
p
i t

p(D, u) ≤
�

k∈K

fki SEATSk ∀i ∈ L, ∀(D, u) ∈ Ū

tp(D, u) ≤ Dp ∀p ∈ P, ∀(D, u) ∈ Ū
�

k∈K

fki = 1 ∀i ∈ L

�

i∈I(k,o,t)

fki + ykot− =
�

i∈O(k,o,t)

fki + ykot+ ∀k, o, t
�

o∈A

ykotm +
�

i∈CL(k)

fki ≤ Nk ∀k ∈ K

tp(D, u) = t0p +
�

i∈P

t1piDi +
�

i∈I

t2piui ∀p ∈ P

6.4 Data-driven ambiguity set

A desirable ambiguity set should flexibly adapt to the intrinsic structure behind real

data, thereby well characterizing P and attempting to reduce natural conservatism

of robust solutions. In face of complicated distributional geometry, making prior

assumptions on the form of probability distribution or using classical uncertainty

sets to describe their support have limited modeling power. With this in mind we

adopt a data-driven methodology to construct and define parameters of the support

set and moment-based functions associated with our ambiguity set.

6.4.1 Support Set

In what follows, we use the technical approach of [108] to construct a support set

U from data samples of the random variable ξ. We assume there is a set W of N

data samples available, W = {ξ(i)}Ni=1, and this set is constructed from the sample

of demand vectors as explained in Subsection 6.3.1.

In [108] the authors propose piecewise linear kernel-based support vector clus-

tering (SVC) as a machine learning technique tailored to data-driven robust opti-

mization. The distributional geometry of uncertain data can be effectively captured

as a polyhedral uncertainty set, which considerably reduces conservatism of robust

optimization problems. In addition, by exploiting statistical properties of SVC, the

fraction of data coverage of the data-driven uncertainty set can be easily selected by
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adjusting only one parameter, which furnishes an interpretable and pragmatic way

to control conservatism and exclude outliers.

Support vector clustering [16] maps data points by means of a kernel to a high

dimensional feature space, searching for the minimal enclosing sphere. This can be

formulated as an optimization problem in

min
a,R

R2 +
1

Nv

N
�

i=1

ζi

s.t.
�

�

�
φ(ξ(i))− a

�

�

�

2

≤ R2 + ζi ∀i ∈ {1, . . . , N}

ζi ≥ 0 ∀i ∈ {1, . . . , N},

where the sphere is centered at vector a and of radius R and φ(ξ) : R|P | �→ RF is a

nonlinear mapping to a high-dimensional feature space F . A soft margin is adopted

by adding slack variables ζi with an adjusting regularization parameter v ≥ 0.

Introducing Lagrangian multipliers α and β and applying Karush-Kuhn-Tucker

conditions (see [16]) results in a quadratic program problem as

min
α

N
�

i=1

N
�

j=1

αiαjK(ξ(i), ξ(j))−
N
�

i=1

αiK(ξ(i), ξ(j))

s.t. 0 ≤ αi ≤
1

Nv
∀i ∈ N

N
�

i=1

αi = 1

where the kernel trick K(ξ(i), ξ(j)) = φ(ξ(i))Tφ(ξ(j)) allows for a simple computation

of inner-products in feature space F and the center a is given by a =
�N

i=1 αiφ(ξ
(i)).

The problem permits a geometric interpretation where

�

�

�
φ(ξ(i))− a

�

�

�

2

< R2 → αi = 0, βi =
1

Nv
�

�

�
φ(ξ(i))− a

�

�

�

2

= R2 → 0 < αi <
1

Nv
, 0 < βi <

1

Nv
�

�

�
φ(ξ(i))− a

�

�

�

2

> R2 → αi =
1

Nv
, βi = 0

Only data samples ξ(i) with positive αi, referred to as support vectors, con-

tributes to the center a. A portion of them reside exactly on the boundary of

the sphere with
�

�

�φ(ξ(i))− a
�

�

�

2

= R2, named boundary support vectors, whereas

the rest with
�

�

�
φ(ξ(i))− a

�

�

�

2

> R2 are regarded as outliers. We hence define

SV = {i ∈ {1, . . . , N} | αi > 0} and BSV = {i ∈ {1, . . . , N} | 0 < αi < 1
Nv

}

as the index sets of all support vectors and boundary support vectors, respectively.
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The radius R can be determined as the distance from the center a to any boundary

support vector:

R2 = K(ξ(j), ξ(j))− 2
N
�

i=1

αiK(ξ(j), ξ(i)) +
N
�

i=1

N
�

k=1

αiαkK(ξ(i), ξ(k)), j ∈ BSV

The authors in [108] then define what in our case is a data-driven support set

U , as the region inside or in the borders of the sphere and is given as

U = {ξ | K(ξ, ξ)− 2
N
�

i=1

αiK(ξ, ξ(i)) +
N
�

i=1

N
�

k=1

αiαkK(ξ(i), ξ(k)) ≤ R2}

Furthermore, the authors propose a weighted generalized intersection kernel that

ensures positive-definiteness of the kernel matrix K, preserving the convexity of the

quadratic program problem and derives a support set U that is a polyhedral, is

enclosed around the origin and where each dimension of uncertain data exert similar

influence on the kernel expression. Since the components of our random vector ξ are

decorrelated and expressed in the same scale we suppress the weighting procedure

and the kernel, that assumes non-negativity of data samples, is given by

K(ξ(i), ξ(j)) =
N
�

k=1

lk −
�

�

�ξ(i) − ξ(j)
�

�

�

1

where lk = max1≤i≤N ξ
(i)
k −min1≤i≤N ξ

(i)
k .

6.4.2 Moment-based functions

For moment-based functions we adopt the work of [107] where the authors define

a two-step procedure for determining parameters hi and qi of our piecewise linear

functions in order to capture meaningful information from available data.

The directions hi are based on principal component analysis (PCA) such that the

data space becomes decorrelated along each direction and the information overlap

between different directions is slight. Since our random vector ξ already comprises

decorrelated components we adopt vector hi as standard unit vectors ei.

After that, several truncation points qi are set along each direction hi. For

each direction hi we choose 2J + 1 well-distributed truncation points. The first

truncation point is set as the mean value ξ̄i and the remaining 2J ones around the

mean ξ̄i symmetrically based on a fixed step-size given as the variance ξ̂i along the

i-th direction.

In this way, we will have C(2J + 1) piecewise functions gi(.) in total in the

ambiguity set.
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Intuitively, the parameter J can be deemed as the “size” of the ambiguity set,

which can be manipulated to adjust the conservatism of the model. The more

truncation points we have, the more statistical information will be incorporated,

which leads to a smaller ambiguity set as well as a less conservative solution.

After determining the value of hi and qi, the next step is to estimate the param-

eters γi empirically based on N available data samples:

γi =
1

N

N
�

j=1

max(hT
i ξ

(j) − qi, 0)

Intuitively, with the values of size parameters γi increasing, the DRO model

becomes more conservative.

6.5 Implementation and Results

6.5.1 Implementation details

We experiment the formulations proposed for the airline fleet assignment problem.

Our objective is to verify the performance of each solution in a long run operation

since fleet assignment is a daily repetitive process.

For our purposes, we create a small-sized hub-and-spoke airline instance, in which

a unique major airport serves as a central point for coordinating flights to and from

other airports. This way all our itineraries are composed of a maximum of two flight

legs. We consider a structure of 9 airports, 3 fleet types and 24 daily itineraries based

on three fare classes. A flight schedule with 21 flight legs is created and they are

used to compose the daily itineraries.

We test this operation under four different problem formulations: IFAM ,

RRIFAM , as already presented in this study and two other formulations RIFAM

and RIFAM2. Formulation RIFAM is a standard two-stage robust formulation

where the objective is given as the worst case performance and dimensionality re-

duction is performed the same way as for RRIFAM . Formulation RIFAM2 is the

same as RIFAM where no dimensionality reduction is performed.

We randomly generate a set of 400 demand vectors using seminal uniform dis-

tributed vectors, but designing many itinerary demands as highly correlated.

We use 100 demand vectors as historical training data to create the ambiguity

set of formulation RRIFAM and the 300 others to simulate the airline operating

period.

We use naive approaches to determine demand vectors for formulations IFAM ,

RIFAM and RIFAM2. For formulation IFAM we consider three demand scenar-

ios of low, medium and high total demand and consider the average of these three
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scenarios as input to our IFAM formulated problem. For formulation RIFAM

and RIFAM2 we consider maximum and minimum demand values for each leg and

consider a box uncertainty set where each demand component varies within this

interval.

With the solution of formulations IFAM ,RIFAM and RRIFAM we simulate

an airline operating period of 300 days and calculate an objective of total operating

costs plus total loss revenue. We compare simulation results of the three formulations

where our focus is on analyzing objective value and time performance.

Conservatism regulation parameters of our ambiguity set are fixed as v = 0.6

and J = 0. With v = 0.6, 100% of demand vectors were considered inside or in the

border of the support set (no outliers). We calculate parameter C so that the sum

of variances in the direction of each principal component considered sums up to a

minimum of 90% of the sum of variances considering all principal components. For

the instance we created, C = 8 of 24.

To solve formulations RIFAM , RIFAM2 and RRIFAM we use a master and

adversarial problem approach where, at each iteration, we use the adversarial prob-

lems to search for a demand scenario instance that invalidates the master problem

solution. See [34] for more details on this solution approach.

Algorithms were coded in Julia [79] using JuMP and Cplex 12.7. All algorithms

were run in an Intel CORE i7 CPU 3770 machine. A limit of 9600s was given to

run the algorithms.

6.5.2 Comparative performance of the formulations

Table 6.1 presents the results of the implementation and solution for the four differ-

ent formulations. The objective value of IFAM is 335747, of RIFAM is 638817, of

RIFAM2 is 651081 and of RRIFAM is 488135. The relation between these values

are as expected since formulation IFAM is optimizing against a specific demand

scenario, formulations RIFAM and RIFAM2 are optimizing against a worst case

scenario and formulation RRIFAM is optimizing an expected performance (worst-

case). RIFAM is designed to be a lower bound of RIFAM2 since it considers less

constraints (restricted uncertainty set), but the results show that RIFAM is a rea-

sonable approximation of RIFAM2. Since we use affine decision rules, formulations

RIFAM , RIFAM2 and RRIFAM are themselves upper bound approximations of

the true optimal worst-case or worst-case expected performance. Since we use aux-

iliary variables to compose affine decision rules for formulation RRIFAM , it leads

to more flexible results than affine decision rules use original demand uncertainty.

The total time performance result is in direct link with the number of variables

of each formulation, although the number of iterations for each of the robust for-
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IFAM RIFAM RIFAM2 RRIFAM
Objective value 335747 638817 651081 488135
Total Time (s) 4.5 239.77 10950.47 9041.14

Number of variables 789 982 1366 1181
Number of constraints 450 - - -
Number of iterations - 32 49 81
Simulation Total cost* 1.38e8 1.35e8 (2.2%) - 1.32e8 (4.3%)

*In parenthesis percentage gain when compared to worst result

Table 6.1: Implementation and performance comparison of fleet assignment formu-
lations

mulations varies. In terms of time performance, dimensionality reduction has been

effective to reduce total time. On the other hand, since the size of our airline in-

stance is small, additional measures should be put in place to be able to deal with

real large airline instances.

The simulation results are also as expected since the formulation RRIFAM , in

the long run, leads to the less costly total solution. We note that there are no guar-

antees, in terms of the mathematical model proposed, on how formulations IFAM

and RIFAM would perform in the long simulation run. We also note that formu-

lation RRIFAM is an approximation of the true optimal result. Even though we

would expect that, in the long simulation run, result of worst-case expected per-

formance of formulation RRIFAM would out perform the two other formulations,

and that is the case.
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Chapter 7

Conclusions

We have reviewed recent developments in the literature of robust optimization in op-

erations research and management science. We present new algorithmic approaches

based on these developments, by applying them to different applications. Robust

optimization, including its new developments, has been more and more applied to

different application-specific frameworks. In particular in areas such and finance,

health-care and energy systems we have seen many developments. Also it is im-

portant noticing the tendency of integration of robust optimization with stochastic

optimization and the connection with different disciplines such as machine learning

and decision theory. We expect that issues such as distributionally robust opti-

mization and tractability of policies in large-scale dynamic problems under high

uncertainty will continue to receive much attention in the future.

We conclude by reviewing results of each chapter where robust problems algo-

rithms were developed.

7.1 Robust network loading problem

We have performed a numerical experiment in order to provide efficient routings

and less conservative solutions to RNL. The k-adaptive routing scheme was able to

provide good solutions and time performance when compared to other partitioning

algorithms. In particular, the extension of the k-adaptive volume routing scheme

was the routing that provided the best solutions. The method utilized does suffer

from dimensionality issues so that special techniques to control time performance

are fundamental. For instance, k-adaptive partial partitioning can provide good

results when compared to full partitioning and has better time performance.

Our results also showed that Benders decomposition was efficient to speed up

more complex instances.
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7.2 Robust scheduling problem

We develop a new branch-and-bound approach for the robust single machine total

tardiness problem, extending dominance rules and lower bounds concepts used for

the deterministic case. We define MILP formulations for our problem and apply the

dominance rules studied as additional precedence constraints for these formulations.

We have experimented different algorithms and presented computational results

where we were able to verify in which conditions algorithms better perform. More

specifically we were able to identify:

• The dominance rules were fundamental for a good performance of our branch-

and-bound algorithms and MILP formulations algorithms.

• We could verify characteristics of our instances that influence performance and

suggest the best algorithm, in general, for each type of instance.

• Depth first search strategy was a key feature for our branch-and-bound algo-

rithm.

We have shortly assessed the cost of the solutions returned by the robust model,

and compared them to the deterministic solutions. The latter seem to indicate that:

• The deterministic solutions overestimating the parameters should be preferred

over those underestimating the latter.

• The robust solution with Γ = n/4 seems to perform well under all circum-

stances, improving over the static model that has been used before in other

contexts (e.g. [55]).

7.3 Min-max-min robustness

We study the min-max-min approach for combinatorial optimization problems with

uncertain objective functions where there are no first stage variables. A new ex-

tended formulation was developed, with a tight relaxation bound.

The modified algorithms, embedding the generation of the inequalities and vari-

ables inside a single branch-cut-and-price algorithm and the bound procedure were

effective in improving time performance even further. BaPCod, with its unique

column generation features, was a important tool to implement the modified algo-

rithms.
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7.4 Distributionally robust fleet assignment prob-

lem

In that chapter an alternative two-stage distributionally robust optimization ap-

proach is proposed for solving the fleet management problem. We propose a method

to capture uncertain demand and facilitate the difficult procedure of having to fore-

cast airline itinerary demands. This method is based on different consolidated ma-

chine learning techniques and are able to incorporate correlations between uncer-

tainty parameters, reducing conservatism of robust solutions. Although we report

results only considering a small airline instance, the less conservative solutions pro-

vided by the two stage, data-driven, distributionally robust optimization indicates

it should be considered for larger instances if other algorithmic measures exploring

the structure of the problem are put in place, like heuristics, strong valid inequalities

exploring the fact that uncertainty is only right-hand sided or even using different

algorithms not based in the master and adversarial approach that was used.
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[87] MÓDOS, I., ŠŮCHA, P., HANZÁLEK, Z., 2016, “Robust scheduling for man-

ufacturing with energy consumption limits”. In: 2016 IEEE 21st Inter-

national Conference on Emerging Technologies and Factory Automation

(ETFA), pp. 1–8.

[88] NEYSHABOURI, S., BERG, B. P., 2017, “Two-stage robust optimization ap-

proach to elective surgery and downstream capacity planning”, European

Journal of Operational Research, v. 260, n. 1, pp. 21 – 40.

[89] NING, C., YOU, F., 2018, “Data-driven decision making under uncertainty in-

tegrating robust optimization with principal component analysis and ker-

nel smoothing methods”, Computers and Chemical Engineering, v. 112,

pp. 190 – 210.

[90] NOHADANI, O., SHARMA, K., 2016, “Optimization under decision-dependent

uncertainty”, arXiv 1611.07992.

112
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