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i Résumé Cette thèse est consacrée à l'étude des monoïdes plaxiques par une nouvelle approche utilisant des méthodes issues de la réécriture. Ces méthodes sont appliquées à des présentations de monoïdes plaxiques décrites en termes de tableaux de Young, de bases cristallines de Kashiwara et de modèle des chemins de Littelmann.

On étudie le problème des syzygies pour la présentation de Knuth des monoïdes plaxiques. En utilisant la procédure de complétion homotopique basée sur les procédures de complétion de Squier et de Knuth-Bendix, on construit des présentations cohérentes de monoïdes plaxiques de type A. Une telle présentation cohérente étend la notion de présentation convergente d'un monoïde par une famille génératrice de syzygies, décrivant toutes les relations entre les relations. On explicite une présentation cohérente finie des monoïdes plaxiques de type A avec les générateurs colonnes. Cependant, cette présentation n'est pas minimale dans le sens que plusieurs de ses générateurs sont superflus. En appliquant la procédure de réduction homotopique, on réduit cette présentation en une présentation cohérente finie qui étend la présentation de Knuth, donnant ainsi toutes les syzygies des relations de Knuth. D'une manière plus générale, on étudie des présentations de monoïdes plaxiques généralisés du point de vue de la réécriture. On construit des présentations convergentes finies de ces monoïdes en utilisant les chemins de Littelmann. De plus, on étudie ces présentations pour le type C en termes de bases cristallines de Kashiwara. En introduisant les générateurs colonnes admissibles, on construit une présentation convergente finie du monoïde plaxique de type C avec des relations explicites. Cette approche nous permettrait d'étudier le problème des syzygies des présentations de monoïdes plaxiques en tout type. 

General introduction

The plactic monoid and its generalisations . 

Introduction 1

Cette thèse porte sur l'étude des monoïdes plaxiques par de nouvelles méthodes issues de la réécriture. Notre approche consiste à étudier les présentations de monoïdes plaxiques du point de vue de la réécriture et, en particulier, à calculer une famille de générateurs de toutes les syzygies de ces présentations. Pour cela, nous orientons les relations de monoïdes plaxiques et nous appliquons une procédure de complétion et de réduction homotopique donnée dans [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] en utilisant des méthodes introduites par Squier, Knuth et Bendix. De cette façon, notre travail constitue une interaction entre l'algèbre et la réécriture.

Les monoïdes plaxiques admettent plusieurs descriptions. En particulier, ils sont reliés aux représentations d'algèbres de Lie semi-simples de dimension finie. On étudie leurs interprétations en termes de tableaux de Young, de bases cristallines de Kashiwara et de chemins de Littelmann. La structure de monoïde plaxique a été introduite par Lascoux et Schützenberger [START_REF]Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics[END_REF] suite aux travaux de Schensted [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF] et Knuth [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF] sur les propriétés combinatoires des tableaux de Young. En type A, le monoïde plaxique est relié aux représentations de l'algèbre de Lie des matrices carrées de taille n. Il est appelé le monoïde plaxique de type A [START_REF] Date | Representations of U q (gl(n, C)) at q = 0 and the Robinson-Shensted [Schensted] correspondence, Physics and mathematics of strings[END_REF][START_REF] Lascoux | Crystal graphs and q-analogues of weight multiplicities for the root system A n[END_REF][START_REF] Leclerc | The Robinson-Schensted correspondence, crystal bases, and the quantum straightening at q = 0[END_REF]. De plus, la classification des algèbres de Lie semi-simples de dimension finie en plusieurs types entraine l'existence des monoïdes plaxiques généralisés de mêmes types. Il y a deux approches pour définir ces monoïdes. En effet, ils peuvent être définis cas par cas, en utilisant la théorie des bases cristallines de Kashiwara [START_REF]Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF] ou d'une manière générale, grâce à la théorie des chemins de Littelmann [START_REF]A plactic algebra for semisimple Lie algebras[END_REF].

Le problème des syzygies consiste à trouver toutes les relations algébriques irréductibles indépendantes entre les générateurs d'un module sur un anneau, [START_REF] Evans | The syzygy problem[END_REF]. Le problème des syzygies a été aussi étudié du point de vue de la réécriture en trouvant toutes les relations entre les relations de présentations de monoïdes. Une 2-syzygie pour une présentation d'un monoïde est une relation entre les relations. Le problème des syzygies pour les présentations de monoïdes peut être algorithmiquement résolu grâce aux systèmes de réécriture convergents. Les systèmes de réécriture sont des présentations orientées de monoïdes formées d'un ensemble de générateurs et de règles de réécriture reliant des mots sur cet ensemble. Un système de réécriture est terminant s'il n'admet pas une suite infinie d'étapes de réécriture. Il est confluent si pour tous mots u, u et u" tel que u se réécrit en u et u", il existe un mot v tel que u et u" se réécrivent en v. Un système de réécriture est convergent s'il est terminant et confluent. Cela signifie que dans un système de réécriture convergent, toutes règles de réécriture sur un même mot conduisent à un unique mot irréductible, c'est-à-dire qui ne peut pas se réécrire en un autre mot.

Récemment, les monoïdes plaxiques ont été étudiés par des méthodes de réécriture, [START_REF] Kubat | Gröbner-Shirshov bases for plactic algebras[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF]Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF][START_REF] Hage | Finite convergent presentation of plactic monoid for type C[END_REF][START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n[END_REF][START_REF]Column presentations of plactic monoids[END_REF]. Dans ce travail, on utilise la structure de polygraphes basée sur une interprétation catégorique des systèmes de réécriture, où les générateurs et les règles de réécriture sont représentés par des 1-cellules et des 2-cellules construites sur une unique 0-cellule. On donne une description des 2-syzygies de certaines présentations du monoïde plaxique de type A en utilisant la notion de présentation cohérente. Une présentation cohérente étend la notion de présentation d'un monoïde par des 3-cellules, décrivant toutes les relations entre les relations. Le calcul de présentations cohérentes d'un monoïde à partir d'une présentation convergente fournit une méthode pour calculer une résolution polygraphique du monoïde, c'est-à-dire un remplacement cofibrant du monoïde dans une (∞, 1)-catégorie libre dont les cellules de dimension supérieure ou égale à 2 sont inversibles, [START_REF]Higher-dimensional normalisation strategies for acyclicity[END_REF]. Une présentation cohérente d'un monoïde constitue les deux premières étapes dans le calcul d'une résolution polygraphique. De plus, une telle étude des relations entre les relations dans un monoïde permet de calculer ses invariants homologiques. Les présentations cohérentes sont aussi utiles pour décrire la notion des actions du monoïde sur les catégories, [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF].

On calcule une présentation cohérente du monoïde plaxique de type A en utilisant la procédure de complétion et de réduction homotopique introduite dans [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF][START_REF] Guiraud | A homotopical completion procedure with applications to coherence of monoids[END_REF]. Une telle procédure étend la complétion de Knuth-Bendix [START_REF] Knuth | Simple word problems in universal algebras[END_REF] en utilisant une méthode introduite par Squier qui calcule une présentation cohérente à partir d'une présentation convergente du monoïde, [START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF][START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]. La présentation cohérente obtenue pour le monoïde plaxique de type A n'est pas minimale dans le sens que plusieurs de ses générateurs sont superflus. Après plusieurs étapes de réduction homotopique, on la réduit en une présentation cohérente minimale ayant les générateurs de Knuth. De cette façon, on donne une méthode algorithmique pour calculer les 2-syzygies de la présentation de Knuth du monoïde plaxique de type A.

Afin d'étendre ce résultat aux monoïdes plaxiques généralisés, on construit des présentations convergentes de ces monoïdes. Grâce aux chemins de Littelmann, on construit des présentations convergentes finies de monoïdes plaxiques de tous types. De plus, on étudie ces présentations en termes de graphes cristallins de Kashiwara pour le type C, en utilisant des outils combinatoires tels que les colonnes admissibles introduites par Kashiwara et Nakashima, [START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF].

LE MONOÏDE PLAXIQUE ET SES GÉNÉRALISATIONS

Dans cette section, on présente un panorama historique sur les monoïdes plaxiques. On rappelle la définition du monoïde plaxique de type A et le lien entre ce monoïde, les graphes cristallins de Kashiwara et le modèle des chemins de Littelmann. Une généralisation du monoïde plaxique est alors décrite en termes de cristaux et de chemins de Littelmann.

Le monoïde plaxique de type A et les tableaux. Afin de calculer la longueur de la plus longue sous-suite décroissante d'un mot dans le monoïde libre [n] * sur l'ensemble ordonné

[n] := 1 < . . . < n , Schensted a donné des algorithmes d'insertion sur les tableaux de Young. Ces tableaux ont été introduits par Young, [START_REF] Young | On Quantitative Substitutional Analysis[END_REF], et ils ont été utilisés pour la première fois par Frobenius afin d'étudier les représentations du groupe symétrique [START_REF] Georg | Über die charakteristischen Einheiten der symmetrischen Gruppe[END_REF]. Les algorithmes de Schensted ont été aussi décrits par Robinson, [START_REF] De | On the Representations of the Symmetric Group[END_REF], qui a essayé de donner une preuve de la règle de Littelwood-Richardson. Cette règle décrit d'une manière combinatoire la multiplicité d'un polynôme de Schur dans un produit de polynômes de Schur, c'est-à-dire, la multiplicité d'une représentation irréductible de l'algèbre de Lie générale dans un produit tensoriel de deux représentations irréductibles, voir [START_REF] Marc | The Littlewood-Richardson rule and related combinatorics[END_REF] et [START_REF] Stanley | Enumerative combinatorics[END_REF]Chapter 7]. Avant de présenter les algorithmes de Schensted, nous allons introduire les notions de tableaux et de tableaux standard. Un tableau de forme λ = (λ 1 , . . . , λ k ) ∈ N k , avec n λ 1 . . . λ k 1, est une collection de cases justifiées à gauche telle que la i ème ligne contient λ i cases, pour i = 1, . . . , k, et ces cases sont remplies par des éléments de [n] où les entrées sont croissantes dans les lignes de gauche à droite et sont strictement décroissantes dans les colonnes de bas en haut. Un tableau standard de forme λ, est un tableau de forme λ dont les entrées sont des entiers de 1 à k i=1 λ i , distinctes deux-à-deux. Par exemple, un tableau de forme (5, 3, 1) et un tableau standard de forme (4, 3, 2) sont respectivement . Soit T un tableau et x un élément de [n]. L'algorithme de Schensted, appelé insertion par colonne, insère l'élément x dans le tableau T de la façon suivante. Soit y le plus petit élément de la première colonne de T qui est plus grand ou égal à x. Alors x remplace y dans cette colonne et y est inséré dans la colonne suivante où le processus est répété. Cette procédure termine lorsqu'un élément inséré dans une colonne est supérieur à tous ses éléments. Alors il est placé au bas de cette colonne. Notons qu'il existe un algorithme similaire, appelé insertion par ligne, qui est aussi introduit par Schensted. Il consiste à insérer les éléments de [n] dans les lignes d'un tableau au lieu de ses colonnes, voir chapitre 1, section 1.2.1.

Pour tout mot w dans le monoïde libre [n] * , on peut calculer un unique tableau P(w), appelé tableau de Schensted, en commençant par le mot vide et en appliquant l'algorithme de Schensted d'une façon itérative sur les éléments de w. Durant le calcul du tableau P(w), un tableau standard Q(w), [104, Lemma 2], est obtenu en mettant successivement un i dans une case à la même place de la case ajoutée en insérant la lettre x i de w. La bijection w → (P(w), Q(w)), [104, Lemma 3], est appelée la correspondance de Robinson-Schensted. Par exemple, les étapes successives pour calculer le tableau P(1213214) et le tableau standard Q(1213214) sont = P(1213214). (

Le monoïde plaxique de rang n, noté P n , est défini comme le quotient du monoïde libre [n] * par l'équivalence ∼ plax , [START_REF]Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics[END_REF]. Depuis son introduction, plusieurs applications ont montré l'intérêt du monoïde plaxique dans divers domaines de la combinatoire et de la théorie des représentations [START_REF] Lascoux | Crystal graphs and q-analogues of weight multiplicities for the root system A n[END_REF][START_REF]Pour le monoïde plaxique[END_REF][START_REF] Fulton | Young tableaux[END_REF]. En particulier, le monoïde plaxique a été utilisé par Lascoux et Shützenberger afin de donner une description combinatoire des polynômes de Kostka-Foulkes, [START_REF] Lascoux | Sur une conjecture de H. O. Foulkes[END_REF][START_REF]Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics[END_REF], et une version noncommutative des polynômes de Schubert, [START_REF]Schubert polynomials and the Littlewood-Richardson rule[END_REF][START_REF]Noncommutative Schubert polynomials[END_REF]. Par ailleurs, le monoïde plaxique a été utilisé par Schützenberger, [START_REF] Schützenberger | La correspondance de Robinson, Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS[END_REF], afin de fournir la première preuve correcte de la règle de Littelwood-Richardson. Notons qu'une autre preuve a été aussi donnée par Thomas, [START_REF] Glanffrwd | On Schensted's construction and the multiplication of Schur functions[END_REF].

Récemment, plusieurs monoïdes similaires ont été introduits comme le monoïde chinois, [START_REF] Cassaigne | The Chinese monoid[END_REF], le monoïde plaxique décalé, [START_REF] Serrano | The shifted plactic monoid[END_REF], le monoïde hypoplaxique, [START_REF] Novelli | On the hypoplactic monoid[END_REF], le monoïde sylvestre, [START_REF] Hivert | The algebra of binary search trees[END_REF], et le monoïde superplaxique, [START_REF] Roberto | Super RSK-algorithms and super plactic monoid[END_REF][START_REF] Loday | Parastatistics algebra, Young tableaux and the super plactic monoid[END_REF]. Ces monoïdes ont aussi plusieurs applications dans divers domaines de la combinatoire et de la théorie des représentations.

Généralisations du monoïde plaxique via les graphes cristallins. Depuis 1990, il y a eu un lien entre la correspondance de Robinson-Schensted et la théorie des bases cristallines de Kashiwara. Avant de présenter ce lien, nous allons introduire le contexte de la théorie des représentations. Une représentation d'une algèbre de Lie est une façon de décrire cette algèbre comme une algèbre de matrices où le crochet de Lie est donné par le commutateur. Depuis leur introduction, les représentations des algèbres de Lie ont eu plusieurs applications dans différents domaines des mathématiques et de la physique. En particulier, certaines représentations des algèbres de Lie semi-simples englobent toutes les particules fondamentales en physique qui sont décrites par le paradigme de la théorie de jauge. De plus, en utilisant les diagrammes de Dynkin, les algèbres de Lie semi-simples de dimension finie sont classifiées en types A, B, C et D et en types exceptionnels E 6 , E 7 , E 8 , F 4 et G 2 . Les types A, B, C et D correspondent respectivement à l' algèbre de Lie spéciale linéaire sl n+1 (C) (voir chapitre 1, sous-section 1.3.2), l'algèbre de Lie spéciale orthogonale de dimension impaire so 2n+1 (C), l'algèbre de Lie symplectique sp 2n (C) (voir chapitre 1, sous-section 1.3.3), et l'algèbre de Lie spéciale orthogonale de dimension paire so 2n (C), voir [START_REF] Humphreys | Introduction to Lie algebras and representation theory[END_REF][START_REF] Fulton | Representation theory. A first course[END_REF][START_REF] Bourbaki | Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines[END_REF][START_REF] Hong | Introduction to quantum groups and crystal bases[END_REF].

Afin d'étudier des solutions des équations de Yang-Baxter classiques qui sont reliées à la mécanique statistique, Jimbo [START_REF] Michio | A q-difference analogue of U(g) and the Yang-Baxter equation[END_REF] et Drinfeld [START_REF] Drinfeld | Hopf algebras and the quantum Yang-Baxter equation[END_REF] ont introduit indépendamment en 1985 la notion des groupes quantiques. Un groupe quantique U q (g) associé à une algèbre de Lie semi-simple g est une déformation de l'algèbre enveloppante universelle de g. C'est une algèbre associative sur le corps C(q) des fonctions rationnelles à coefficients complexes. Quand q tend vers zéro, Kashiwara a montré que les représentations de U q (g) possèdent des bases particulières, qu'il a appelé les bases cristallines, [START_REF] Kashiwara | Crystallizing the q-analogue of universal enveloping algebras[END_REF][START_REF]Global crystal bases of quantum groups[END_REF][START_REF]On crystal bases, Representations of groups[END_REF]. Ces bases peuvent être étendues pour tout le q-espace pour obtenir des vraies bases pour les représentations, appelées les bases globales. Notons que les bases globales coincïdent avec les bases canoniques introduites indépendamment pour les groupes quantiques par Lusztig [START_REF] Lusztig | Introduction to quantum groups[END_REF]. Une base cristalline est aussi munie d'une structure de graphe orienté et étiqueté, appelé le graphe cristallin, tel que ses flèches sont définies par les opérateurs de Kashiwara, voir chapitre 1, section 1.3. Un graphe cristallin peut être aussi décomposé en composantes connexes. Un isomorphisme de cristaux entre deux composantes connexes est un isomorphisme de graphes préservant les poids et les étiquettes. Depuis lors, la théorie des bases cristallines est devenue un outil combinatoire très utile pour l'étude des représentations des groupes quantiques et des algèbres de Lie semi-simples.

En utilisant la théorie des groupes quantiques, le premier lien entre la correspondance de Robinson-Schensted et les représentations de l'algèbre de Lie générale gl n (C) des matrices de taille n a été obtenue par Date, Jimbo et Miwa, [START_REF] Date | Representations of U q (gl(n, C)) at q = 0 and the Robinson-Shensted [Schensted] correspondence, Physics and mathematics of strings[END_REF]. Dans le même esprit, le même lien a été obtenu par Lascoux, Leclerc et Thibon en utilisant le théorie des bases cristallines de Kashiwara, [START_REF] Lascoux | Crystal graphs and q-analogues of weight multiplicities for the root system A n[END_REF][START_REF] Leclerc | The Robinson-Schensted correspondence, crystal bases, and the quantum straightening at q = 0[END_REF]. Plus précisément, considérons la représentation naturelle V n = C n de l'algèbre de Lie gl n (C). La base canonique de V n est indexée par l'ensemble ordonné [n]. Chaque sommet x 1 ⊗ . . . ⊗ x l du graphe cristallin de la représentation l V ⊗l n est considéré comme un mot x 1 . . . x l dans le monoïde libre [n] * . Pour tous mots u et v dans [n] * , on a Les monoïdes plaxiques via les chemins de Littelmann. Le modèle des chemins de Littelmann établit un pont entre la théorie des monômes standard de Lakshmibai-Sechadri [START_REF] Lakshmibai | Geometry of G/P. V[END_REF][START_REF]Standard monomial theory[END_REF] et la théorie des bases cristallines de Kashiwara [START_REF] Kashiwara | Crystallizing the q-analogue of universal enveloping algebras[END_REF][START_REF]Global crystal bases of quantum groups[END_REF][START_REF]On crystal bases, Representations of groups[END_REF]]. Littelmann a construit un modèle combinatoire unifié pour toutes les algèbres de Kac-Moody symétrisables, ce qui lui a permis d'obtenir des formules combinatoires explicites pour les multiplicités des poids, la règle du produit tensoriel et les règles des branchements [START_REF]A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras[END_REF][START_REF]Paths and root operators in representation theory[END_REF]. Il a introduit des chemins linéaires par morceaux reliant l'origine à un poids et une paire d'opérateurs de racines pour toute racine simple d'une algèbre de Kac-Moody symétrisable. Les chemins de Littelmann peuvent être encodés dans un graphe orienté et étiqueté tel que ses étiquettes sont données par les opérateurs de racines. De plus, le graphe défini par les opérateurs de racines de Littelmann est isomorphe au graphe cristallin de Kashiwara [START_REF] Joseph | Quantum groups and their primitive ideals[END_REF][START_REF]Similarity of crystal bases, Lie algebras and their representations[END_REF].

Tel que discuté auparavant, les monoïdes plaxiques peuvent être définis cas par cas pour toutes les algèbres de Lie semi-simples classiques et pour l'algèbre de Lie semi-simple exceptionnelle de type G 2 . En utilisant son modèle des chemins, Littelmann a défini d'une manière générale une algèbre plaxique pour toute algèbre de Lie semi-simple, [START_REF]A plactic algebra for semisimple Lie algebras[END_REF]. Par conséquent, il a obtenu des présentations par générateurs et relations de l'algèbre plaxique de type A, B, C, D et G 2 , [START_REF]A plactic algebra for semisimple Lie algebras[END_REF]Theorem C]. Il a aussi introduit la notion de tableau standard qui est une généralisation pour tous les types de la notion de tableau définie pour le type A . Les tableaux standard coincïdent avec la notion de tableau symplectique pour le type C et de tableau orthogonal pour les types B et D dans le sens de Lecouvey, [START_REF]Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF].

Soit g une algèbre de Lie semi-simple et P son réseau de poids. Un chemin est une application π : [0, 1] → P ⊗ Z R continue et linéaire par morceaux. On note par Π = π : [0, 1] → P ⊗ Z R π(0) = 0 et π(1) ∈ P l'ensemble de tous les chemins de source 0 et de buts appartenant à P. Considérons deux chemins π 1 et π 2 dans Π, la concaténation π 1 π 2 est définie par:

π 1 π 2 (t) := π 1 (2t) pour 0 t 1 2 , π 1 (1) + π 2 (2t -1) pour 1 2 t 1.
Par exemple, considérons W = (x 1 , x 2 , x 3 ) ∈ R 3 x 1 + x 2 + x 3 = 0 et soit {ε 1 , ε 2 , ε 3 } la base canonique de R 3 . On note aussi par ε i la projection de ε i dans W. On a P = Zε 1 ⊕ Zε 2 et ε 3 = -ε 1 -ε 2 . Les poids α 1 = ε 1 -ε 2 et α 2 = ε 2 -ε 3 sont appelés les racines simples de l'algèbre de Lie linéaire spéciale sl 3 . Les poids Λ 1 = ε 1 et Λ 2 = ε 1 + ε 2 sont appelés ses poids fondamentaux. Un exemple de poids dominant de sl 3 est Λ 1 + Λ 2 . Considérons les chemins π 1 : t → tε 1 et π 2 : t → tε 2 , le chemin π 1 π 2 est le chemin vert et la chambre dominante est la partie hachurée dans la figure suivante:

ε 1 = Λ 1 ε 2 ε 3 α 1 Λ 1 + Λ 2 Λ 2 α 2 0
Pour toute racine simple α d'une algèbre de Lie g, Littelmann a défini les opérateurs de racines e α et f α de Π à Π ∪ {0} comme suit. Chaque chemin π dans Π est coupé en trois parties π 1 π 2 π 3 . Alors le nouveau chemin e α (π) ou f α (π) est égal à 0 ou π 1 s α (π 2 ) π 3 , où s α est la réflexion orthogonale par rapport à α, voir chapitre 1, section 1.4.1.

On note par ZΠ l'algèbre des chemins définie comme le Z-module libre de base Π tel que le produit est donné par la concaténation des chemins et l'unité est le chemin de source et but 0. Soit A la sous-algèbre de End Z (ZΠ) engendrée par les opérateurs de racines f α et e α . On note par Π + l'ensemble des chemins π tels que leurs images sont contenues dans la chambre dominante et par M π le A-module Aπ. Notons que deux A-modules sont isomorphes si leurs chemins contenus dans la chambre dominante ont le même but.

Soit ZΠ 0 le A-sous-module AΠ + de ZΠ engendré par les chemins de Π + . Pour deux chemins π 1 et π 2 dans ZΠ 0 , on note par π + 1 et π + 2 les uniques chemins dans Π + tels que π 1 est dans M π + 1 et π 2 est dans M π + 2 . On définit une relation ∼ path sur ZΠ 0 par : π 1 ∼ path π 2 si et seulement si π + 1 (1) = π + 2 (1) et ψ(π 1 ) = π 2 sous l'isomorphisme ψ : M π + 1 → M π + 2 . Pour toute algèbre de Lie semi-simple g, le monoïde plaxique correspondant est le quotient du A-sous-module ZΠ 0 par la relation d'équivalence ∼ path .

Il convient de mentionner que les équivalences ∼ path et ∼ crys coincïdent dans le sens qu'on obtient les mêmes monoïdes plaxiques de types A, B, C, D et G 2 si on les étudie au cas par cas, voir [START_REF]Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF] et [START_REF]A plactic algebra for semisimple Lie algebras[END_REF]Theorem C].

PRÉSENTATIONS CONVERGENTES DES MONOÏDES PLAXIQUES

Les systèmes de réécriture et le problème du mot. Les systèmes de réécriture sont des présentations orientées de monoïdes formées d'un ensemble de générateurs et de règles de réécriture reliant des mots sur cet ensemble. La notion de systèmes de réécriture a été introduite par Thue dans son étude du problème du mot pour les monoïdes finiment présentés, [START_REF] Thue | Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln[END_REF]. Le problème du mot pour un monoïde M consiste à trouver un ensemble de générateurs Σ 1 et une procédure décidant si deux éléments dans le monoïde libre Σ * 1 représentent le même élément dans M. Le problème du mot a été aussi décrit par Dehn pour les groupes finiment présentés, [START_REF] Dehn | Über die Topologie des dreidimensionalen Raumes[END_REF]. Un peu plus tard, Post [START_REF] Post | Recursive unsolvability of a problem of Thue[END_REF] et Markov [START_REF] Markov | On the impossibility of certain algorithms in the theory of associative systems[END_REF][START_REF]On the impossibility of certain algorithms in the theory of associative systems. II[END_REF] ont montré indépendamment que le problème du mot est indécidable. Ensuite, le problème du mot a été considéré dans plusieurs contextes de l'algèbre et de l'informatique théorique. La réécriture apparaît aussi sous différentes formes dans l'algèbre selon l'objet présenté. Elle apparaît pour les algèbres commutatives et les algèbres de Lie avec la notion des bases de Gröbner-Shirshov, [START_REF] Buchberger | Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal[END_REF][START_REF]History and basic features of the critical-pair/completion procedure[END_REF][START_REF] Illarionovich | Some algorithmic problems for Lie algebras[END_REF], pour les algèbres associatives et les opérades, [START_REF] Bokut | Imbeddings into simple associative algebras[END_REF][START_REF] Bergman | The diamond lemma for ring theory[END_REF][START_REF] Mora | An introduction to commutative and noncommutative Gröbner bases[END_REF][START_REF] Victor | Combinatorial and asymptotic methods in algebra[END_REF][START_REF]Gröbner bases for operads[END_REF] ainsi que pour les termes dans une théorie algébrique, [START_REF] Baader | Term rewriting and all that[END_REF][START_REF] Willem | Term rewriting systems[END_REF][START_REF]Term rewriting systems[END_REF], et pour les chaînes de caractères dans un monoïde, [START_REF] Book | String-rewriting systems[END_REF].

Dans ce travail, une présentation Σ 1 , Σ 2 d'un monoïde M est un système de réécriture tel que le monoïde M est isomorphe au quotient du monoïde libre Σ * 1 par la relation de congruence engendrée par Σ 2 . Dans la littérature, une présentation d'un monoïde est appelée un système de réécriture des mots ou un système semi-Thue, [START_REF] Baader | Term rewriting and all that[END_REF].

Par exemple, le monoïde plaxique P n de rang n est présenté par le système de réécriture Knuth 2 (n), dont l'ensemble de générateurs est {1 < . . . < n} et l'ensemble de règles de réécriture est

{ zxy η x,y,z =⇒ xzy | 1 x y < z n } ∪ { yzx ε x,y,z =⇒ yxz | 1 x < y z n }.
Les règles de réécriture de Knuth 2 (n) correspondent aux relations de Knuth, [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF], avec une orientation compatible avec l'ordre lexicographique induit par l'ordre total sur {1 < . . . < n}. La présentation Knuth 2 (n) est appelée présentation de Knuth.

Soit Σ un système de réécriture. Une étape de réécriture de Σ est une règle de réécriture de la forme wαw : wuw ⇒ wvw où α : u ⇒ v est une règle de réécriture dans Σ et w et w sont des générateurs dans le monoïde libre Σ * 1 . Un branchement local de Σ est une paire non-ordonnée (f, f 1 ) d'étapes de réécriture f : u ⇒ v et f 1 : u ⇒ v 1 de la 2-catégorie libre Σ * 2 avec une source commune u. Un branchement critique est un chevauchement d'application de deux étapes de réécriture différentes en un même mot u, où u est de longueur minimale, voir chapitre 2, section 2.1.2. Un branchement (f, f 1 ) est confluent s'il existe des étapes de réécriture f et f 1 dans Σ * 2 , comme suit

v f " B u f 9 Y f 1 4 T u . v 1 f 1 U u
Un système de réécriture est terminant s'il n'existe pas de suite de réécriture infinie et il est confluent si pour tous mots u, u et u" tel que u se réécrit en u et u", il existe un mot v tel que u et u" se réécrivent en v. Il est convergent s'il est terminant et confluent. Cela signifie qu'après l'application d'un nombre finie de règles de réécriture, toutes suites de réécriture sur un mot se terminent par un même mot irréductible, appelé une forme normale. Un système de réécriture est localement confluent si tous ses branchements locaux sont confluents. Selon le lemme des branchements critiques, [39, Theorem 3.1.5.], un système de réécriture est localement confluent si et seulement si ses branchements critiques sont confluents. Selon le lemme de Newman, [39, Theorem 3.1.6.], pour les systèmes de réécriture terminants, les propriétés de confluence et de confluence locale sont équivalentes. Par exemple, la présentation de Knuth du monoïde plaxique P 2 dont les générateurs sont 1 et 2 et les relations de Knuth sont ε 1,2,2 : 221 ⇒ 212 et η 1,1,2 : 211 ⇒ 121 est convergente. En effet, comme l'ordre lexicographique est monomial, cette présentation est terminante. De plus, elle est confluente car elle admet un unique branchement critique confluent:

2211 2η 1,1,2 ' G ε 1,2,2 1 H h 2121.
Notons que 2η 1,1,2 et ε 1,2,2 1 sont les étapes de réécriture appliquées sur le mot 2211.

Une façon de résoudre le problème du mot d'un monoïde M est de trouver une présentation convergente finie Σ 1 , Σ 2 de ce monoïde. En effet, deux éléments dans le monoïde libre Σ * 1 représentent le même élément dans le monoïde M si, et seulement si, leurs formes normales sont égales dans Σ * 1 . Ainsi, si un monoïde admet une présentation convergente finie alors son problème du mot est décidable. La réciproque de cette implication a été considéré comme un problème ouvert, [START_REF] Jantzen | Semi Thue systems and generalized Church-Rosser properties[END_REF][START_REF]A note on a special one-rule semi-Thue system[END_REF]. Squier a donné une réponse négative à ce problème, [START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF], en construisant des monoïdes finiment présentés avec un problème du mot décidable et qui ne peuvent pas être présentés par des présentations convergentes finies. Ensuite, Squier a introduit la condition de type de dérivation fini, qui est une propriété de finitude homotopique sur le complexe de présentation associé à une présentation d'un monoïde. Il a donné une méthode constructive pour montrer cette propriété de finitude basée sur le calcul des branchements critiques. Squier a montré que la condition de type de dérivation fini est nécessaire pour qu'un monoïde finiment présenté admette une présentation convergente finie, [START_REF] Squier | A finiteness condition for rewriting systems[END_REF].

Les polygraphes de dimension 2. Les polygraphes ont été introduits comme des présentations par générateurs et relations de catégories de dimension supérieure. Afin de trouver des présentations pour les 2-catégories, Street a introduit la notion de computade qui est définie comme un graphe orienté équipé de bords supplémentaires de dimension 2 reliant ses chemins parallèles, [START_REF] Street | Limits indexed by category-valued 2-functors[END_REF][START_REF]The algebra of oriented simplexes[END_REF]. Un peu plus tard, Power a donné une définition inductive des computades de dimension supérieure, appelés les n-computades, [START_REF] Power | A 2-categorical pasting theorem[END_REF][START_REF]An n-categorical pasting theorem[END_REF]. Burroni a introduit indépendamment la notion de n-polygraphe en utilisant aussi une définition inductive, [START_REF] Burroni | Higher-dimensional word problem, Category theory and computer science[END_REF][START_REF]Higher-dimensional word problems with applications to equational logic[END_REF]. Un 1-polygraphe est un graphe orienté (Σ 0 , Σ 1 ), donné par un ensemble Σ 0 de 0-cellules, un ensemble Σ 1 de 1cellules avec deux applications s 0 et t 0 envoyant une 1-cellule x à sa source s 0 (x) et son but t 0 (x). Un 1-polygraphe correspond à un système abstrait de réécriture, [START_REF] Baader | Term rewriting and all that[END_REF]. Dans le cas des monoïdes, l'ensemble Σ 0 est réduit à un ensemble avec un seul élément • et le 1-polygraphe (Σ 0 , Σ 1 ) s'identifie avec l'ensemble Σ 1 . De plus, un 2-polygraphe est une paire Σ = (Σ 1 , Σ 2 ) formée d'un 1-polygraphe Σ 1 et d'un ensemble de 2-cellules globulaires Σ 2 sur le monoïde libre Σ * 1 équipé d'applications source et but s 1 , t 1 : Σ 2 → Σ * 1 qui vérifient les relations globulaires: s 0 s 1 = s 0 t 1 et t 0 s 1 = t 0 t 1 . Les 2-cellules de Σ 2 ont la forme globulaire suivante: En utilisant l'approche polygraphique, plusieurs travaux ont développé la réécriture en dimension supérieure. De plus, les résultats de Squier ont été présentés dans le langage des polygraphes et des catégories de dimension supérieure, donnant de nouvelles preuves de ces résultats, voir [START_REF] Métayer | Resolutions by polygraphs[END_REF][START_REF] Lafont | Algebra and geometry of rewriting[END_REF][START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF][START_REF]Identities among relations for higher-dimensional rewriting systems[END_REF][START_REF]Coherence in monoidal track categories[END_REF][START_REF]Higher-dimensional normalisation strategies for acyclicity[END_REF][START_REF]Polygraphs of finite derivation type[END_REF].

• s 1 (β) 1 1 t 1 (β) b b β Õ % • Un 2-polygraphe Σ
Complétion de la présentation de Knuth. Une présentation non-convergente d'un monoïde peut être transformée en une présentation convergente du même monoïde en utilisant la complétion de Knuth-Bendix. Cette complétion calcule une présentation convergente d'un monoïde à partir d'une présentation terminante en ajoutant itérativement des règles de réécriture, [START_REF] Knuth | Simple word problems in universal algebras[END_REF]. En d'autres termes, soit Σ une présentation terminante d'un monoïde M, la complétion de Knuth-Bendix de Σ est le 2-polygraphe obtenu à partir de Σ en examinant chacun de ses branchements critiques et en ajoutant des 2-cellules quand un branchement critique n'est pas confluent. Les 2-cellules ajoutées peuvent aussi créer de nouveaux branchements critiques. Ces branchements sont aussi examinés et de nouvelles 2-cellules peuvent être ajoutées. Finalement, le 2-polygraphe obtenu est une présentation convergente du monoïde M.

Pour le monoïde P 3 , la présentation de Knuth Knuth 2 (3) admet les générateurs 1, 2 et 3, et les 8 relations suivantes

211 η 1,1,2 =⇒ 121, 311 η 1,1,3 =⇒ 131, 312 η 1,2,3 =⇒ 132, 322 η 2,2,3 =⇒ 232 ∪ 221 ε 1,1,2 =⇒ 212, 231 ε 1,2,3 =⇒ 213, 331 ε 1,3,3 =⇒ 313, 332 ε 2,3,3 =⇒ 323 .
En utilisant la complétion de Knuth-Bendix, une présentation convergente finie du monoïde P 3 est obtenue en ajoutant les relations suivantes 32321 ⇒ 32132, 32131 ⇒ 31321 et 3212 ⇒ 2321 à sa présentation de Knuth, voir chapitre 2, section 2.3.2.

Pour n > 3, Kubat et Okniński ont montré que la présentation de Knuth du monoïde plaxique P n n'admet pas de complétion finie, [65, Theorem 3]: Théorème 2.3.3.3. Pour n > 3, la présentation de Knuth n'admet pas de complétion finie compatible avec l'ordre lexicographique.

La présentation colonne. Bokut, Chen, Chen et Li dans [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF] et Cain, Gray et Malheiro dans [START_REF]Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF] ont construit indépendamment une présentation convergente finie du monoïde plaxique P n . Leurs méthodes consistent à ajouter de nouveaux générateurs, appelés les générateurs colonnes, à la présentation de Knuth. La nouvelle présentation réécrit deux colonnes qui ne forment pas un tableau en deux autres obtenues après l'application de l'algorithme d'insertion de Schensted. Cette présentation, appelée la présentation colonne, est Tietze équivalente à la présentation de Knuth. Cain, Gray et Malheiro ont utilisé l'insertion par ligne dans la définition des 2-cellules de la présentation tandis que Bokut, Chen, Chen et Li ont utilisé l'insertion par colonne. Notons aussi que Bokut, Chen, Chen et Li ont construit dans [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF] une présentation convergente infinie du monoïde P n en ajoutant l'ensemble infini de lignes sur l'ensemble [n].

Nous considérons la présentation colonne du monoïde P n construite par Cain, Gray et Malheiro, [START_REF]Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF]. Dans ce cas, une colonne est la 1-cellule obtenue en lisant un tableau de forme (1, . . . , 1) de bas en haut. En d'autres termes, une colonne est une 1-cellule strictement décroissante dans le monoïde libre [n] * . Par exemple, la 1-cellule 76431 est une colonne sur l'ensemble [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF]. On note par col(n) l'ensemble des colonnes non-triviales sur l'ensemble [n]. Pour chaque 1-cellule u dans [n] * , on note par (u) sa longueur. De plus, le tableau P(u) est calculé en utilisant la procédure d'insertion par ligne.

Soient u = x p . . . x 1 et v = y q . . . y 1 deux colonnes dans col(n), le tableau P(uv) contient au plus deux colonnes, voir chapitre 3, sous-section 3.2.1. On note par u v × si la juxtaposition des colonnes u et v ne forme pas un tableau, c'est-à-dire si p < q ou x i > y i pour certain i q.

Dans ce cas, on note par u v ×1 si le tableau P(uv) contient une colonne et par u v ×2 s'il contient deux colonnes. Afin d'obtenir une présentation convergente finie du monoïde plaxique P n , on ajoute des générateurs superflus c u à la présentation Knuth 2 (n), pour toute colonne u dans l'ensemble col(n). On note par Col 1 (n) l'ensemble des générateurs colonnes c u du monoïde P n , pour tout u dans col(n), et par γ u : c xp . . . c x 1 ⇒ c u les relations correspondantes au rajout de ces générateurs, pour toute colonne u = x p . . . x 1 de longueur supérieure ou égale à 2.

Pour toutes colonnes

u et v dans col(n) telles que u v × , on définit une 2-cellule α u,v : c u c v ⇒ c w c w où w = uv et c w = 1 si u v ×1 , et w et w sont respectivement les colonnes gauches et droites du tableau P(uv) si u v ×2 . Considérons le 2-polygraphe Col 2 (n) dont l'ensemble des 1-cellules est Col 1 (n) et l'ensemble des 2-cellules est c u c v α u,v =⇒ c w c w u, v ∈ col(n) et u v × .
Comme l'ensemble des générateurs colonnes Col Le théorème de Squier donne une méthode pour calculer une présentation cohérente d'un monoïde à partir d'une présentation convergente, [START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF]. Plus précisément, tous les branchements critiques d'une présentation convergente sont confluents. Alors l'adjonction des 3-cellules résultant de ces branchements critiques à la présentation convergente donne lieu à une présentation cohérente du monoïde. Afin de construire des présentations cohérentes des monoïdes plaxiques, on utilise la procédure de complétion et de réduction homotopique introduite dans [START_REF] Guiraud | A homotopical completion procedure with applications to coherence of monoids[END_REF][START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]. La procédure de complétion homotopique étend la complétion de Squier, [START_REF] Squier | A finiteness condition for rewriting systems[END_REF], aux 2-polygraphes terminants en utilisant la complétion de Knuth-Bendix, [START_REF] Knuth | Simple word problems in universal algebras[END_REF]. Elle examine chacun des branchements critiques d'un 2-polygraphe terminant, ajoute des 2-cellules pour atteindre la confluence et ajoute des 3-cellules pour obtenir une présentation convergente cohérente. Cette présentation cohérente n'est pas minimale en général, alors la procédure de réduction homotopique élimine d'une manière cohérente les cellules superflues de cette présentation en utilisant la notion de partie collapsible des (3, 1)-polygraphes. En particulier, une méthode pour éliminer certaines 3-cellules superflues est de calculer un branchement triple critique afin d'obtenir des relations entre les 3-cellules et alors d'éliminer certaines d'elles par des transformations de Tietze, voir chapitre 4, sous-section 4.2.1.

Par exemple, la présentation de Knuth du monoïde plaxique P 2 admet un unique branchement critique confluent. Alors la présentation Knuth 2 (2) peut être étendue en une présentation cohérente en ajoutant la 3-cellule suivante: 

2211 2η 1,1,2 $ D ε 1,2,2 1 Q q 2121. Õ % (2 

PRÉSENTATION DES RÉSULTATS

Présentations colonnes des monoïdes plaxiques

Comme il a déjà été mentionné dans le chapitre 2, section 2.3.2, la présentation de Knuth du monoïde P 2 est finie et convergente et la présentation de Knuth du monoïde P 3 se transforme en une présentation convergente en ajoutant trois 2-cellules par la complétion de Knuth-Bendix. De plus, pour n > 3, la présentation de Knuth du monoïde plaxique P n n'admet pas de complétion finie compatible avec l'ordre lexicographigue, [START_REF] Kubat | Gröbner-Shirshov bases for plactic algebras[END_REF]Theorem 3]. Les présentations par générateurs et relations construites pour les monoïdes plaxiques pour les types classiques contiennent les relations de Knuth,[START_REF]A plactic algebra for semisimple Lie algebras[END_REF][START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF][START_REF]Schensted-type correspondences and plactic monoids for types B n and D n[END_REF][START_REF]Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF]. Par conséquent, ces présentations n'admettent pas de complétion finie compatible avec l'ordre lexicographique sans le rajout de nouveaux générateurs.

Question. Est-ce que les monoïdes plaxiques généralisés admettent des présentations convergentes finies?

La notion de chemin L-S introduite par Littelmann dans [START_REF]A plactic algebra for semisimple Lie algebras[END_REF] permet de répondre positivement à cette question. En effet, un chemin L-S correspond à une colonne pour le type A et à une colonne admissible pour les types C, B, D et G 2 au sens de Lecouvey, voir [START_REF]Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF]. Comme pour le type A, cette présentation est aussi appelée présentation colonne. La présentation colonne est une présentation des monoïdes plaxiques généralisés, [START_REF]A plactic algebra for semisimple Lie algebras[END_REF]Theorem B]. On étudie cette présentation en utilisant des méthodes de réécriture. On considère le système de réécriture dont l'ensemble des générateurs est l'ensemble fini des chemins L-S. Ce système de réécriture réécrit deux chemins L-S tels que leur concaténation ne forme pas un tableau standard au sens de Littelmann en des chemins L-S formant un tableau standard. En utilisant les formes des tableaux, on montre que cette présentation est convergente et finie.

En traitant les monoïdes plaxiques cas par cas et en utilisant la théorie des bases cristallines de Kashiwara, la présentation colonne peut être aussi construite pour les monoïdes plaxiques de type C, B, D et G 2 . On construit la présentation colonne pour le monoïde plaxique de type C en ajoutant les générateurs colonnes admissibles, [START_REF] Hage | Finite convergent presentation of plactic monoid for type C[END_REF]. La notion de tableau est généralisée à la notion de tableau symplectique pour le type C. La partie droite des règles de réécriture de la présentation colonne pour le type C est le résultat de l'insertion de Lecouvey de deux colonnes admissibles. En effectuant une analyse minutieuse des formes des tableaux symplectiques obtenus après cette insertion, on montre que cette présentation est convergente.

Un peu plus tard, Cain, Gray et Malheiro ont construit des présentations colonnes similaires pour les monoïdes plaxiques de type B, C, D et G 2 en ajoutant aussi les générateurs colonnes admissibles, [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n[END_REF]. Les tableaux symplectiques introduits comme une généralisation des tableaux pour le type C sont aussi généralisés pour les autres types, [START_REF]Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF]. La présentation colonne des monoïdes plaxiques pour ces types réécrit deux colonnes admissibles qui ne forment pas un tableau (généralisé) en des colonnes admissibles formant un tableau (généralisé). Cain, Gray et Malheiro ont utilisé les présentations de Lecouvey pour les monoïdes plaxiques alors qu'on utilise les insertions de Lecouvey.

Il convient de noter que la présentation colonne construite d'une manière générale en utilisant les chemins L-S coincïde avec les présentations construites séparément pour les types A, B, C, D et G 2 . De plus, cette présentation couvre les types exceptionnels dont les monoïdes plaxiques correspondants n'admettent pas de présentations explicites par de générateurs et de relations.

Dans les parties ci-après, on va détailler les constructions des présentations colonnes des monoïdes plaxiques. Dans un premier temps, on montre comment ces présentations peuvent être construites en introduisant les chemins L-S. Ensuite, on illustre la présentation colonne du monoïde plaxique de type C en utilisant des outils combinatoires et la théorie des bases cristallines de Kashiwara.

Le présentation colonne généralisée des monoïdes plaxiques. Considérons les monoïdes plaxiques généralisés construits par Littelmann, [START_REF]A plactic algebra for semisimple Lie algebras[END_REF]. Notre objectif est de construire des présentations convergentes finies de ces monoïdes en utilisant les chemins de Lakshmibai-Seshadri. On utilise la notion de tableau standard définie par Littelmann dans [START_REF]A plactic algebra for semisimple Lie algebras[END_REF] comme une généralisation de la notion de tableau pour tout type.

Soit g une algèbre de Lie semi-simple et Λ 1 , . . . , Λ n ses poids fondamentaux. Pour un poids λ dans P ⊗ Z R et t dans [0, 1], on définit le chemin π λ (t) := tλ reliant l'origine et λ par une ligne droite. Pour un poids dominant λ, les chemins de Lakshmibai-Seshadri, ou chemins L-S, de forme λ sont des chemins de la forme f α 1 • . . . • f αs (π λ ), où α 1 , . . . , α s sont des racines simples de g. Un tableau de Young de forme λ = a 1 Λ 1 + . . . + a n Λ n est une concaténation 1 i n π 1,Λ i . . . π a i ,Λ i où π i,Λ i est un chemin L-S de forme Λ i , pour 1 i n. C'est-à-dire, les premiers a 1 chemins sont de forme Λ 1 , les a 2 suivants sont de forme Λ 2 ,. . . , les a n derniers chemins sont de forme Λ n .

Un tableau de Young de forme λ = a 1 Λ 1 + . . . + a n Λ n est un tableau standard de forme λ s'il est de la forme On note par acol(n) l'ensemble de tous les mots admissibles non triviaux dans le monoïde libre C * n . Un tableau symplectique est un tableau rempli par les éléments de l'ensemble C n et composé par la juxtaposition de colonnes admissibles avec une propriété supplémentaire sur elles, voir chapitre 3, section 3.3.1. En utilisant un algorithme d'insertion, Lecouvey a montré que pour tout mot w dans le monoïde libre C * n , on peut construire un unique tableau symplectique, noté par P(w), [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF].

f α 1 • . . . • f αs ((π Λ 1 . . . π Λ 1 ) a 1 fois (π Λ 2 . . . π Λ 2 )
En utilisant la théorie des bases cristallines de Kashiwara, on généralise la présentation colonne de type A. On consruit une présentation convergente finie du monoïde P n (C) en ajoutant les générateurs colonnes admissibles, [START_REF] Hage | Finite convergent presentation of plactic monoid for type C[END_REF]. La partie droite des règles de réécriture de cette présentation est le résultat de l'insertion de Lecouvey de deux colonnes admissibles. En d'autres mots, le résultat est un tableau symplectique qui consiste en au plus deux colonnes.

Dans le but de construire une présentation convergente finie du monoïde plaxique P n (C), on introduit les générateurs colonnes admissibles. L'ensemble des générateurs est

ACol 1 (n) = c u u ∈ acol(n) ,
où chaque élément c u est égal à u dans le monoïde P n (C).

Soient u et v les lectures de haut en bas de deux colonnes admissibles U et V respectivement. On note par U V si la 1-cellule uv n'est pas la lecture d'un tableau symplectique. C'est-à-dire, quand la juxtaposition de U et V de droite à gauche ne forme pas un tableau symplectique.

Pour définir les 2-cellules de la nouvelle présentation, on a besoin de connaître la forme du tableau symplectique P(uv), pour tous mots admissibles u et v dans acol(n). On a Lemme 3.3.3.1. Soient u et v les lectures de deux colonnes admissibles U et V respectivement. Le tableau symplectique P(uv) consiste en au plus deux colonnes.

Soient u et v dans acol(n) tels que leur colonnes admissibles U et V satisfont U V. On définit la 2-cellule α u,v par • c u c v α u,v
=⇒ c w c w , où les mots w et w sont respectivement les lectures de la colonne droite W et la colonne gauche W de P(uv) si ce tableau symplectique consiste en deux colonnes.

• c u c v α u,v =⇒ c w , où w est la lecture de la colonne W de P(uv) si ce tableau consiste en une seule colonne. 

• c u c v α u,v =⇒ c ε ,

Présentations cohérentes des monoïdes plaxiques de type A

Comme il a déjà été mentionné, pour un rang supérieur ou égal à 4, le problème des syzygies pour la présentation de Knuth est difficile à cause de la complexité combinatoire des relations de Knuth. Grâce à la procédure de complétion et de réduction homotopique, on construit une présentation cohérente finie du monoïde plaxique P n qui étend la présentation de Knuth. On construit une présentation cohérente finie du monoïde P n à partir de sa présentation colonne. Cette présentation n'est pas minimale dans le sens que certains de ses générateurs sont superflus. Après plusieurs étapes de réduction, on obtient une présentation cohérente de P n avec les générateurs de Knuth. Par conséquent, on obtient des formes explicites des 2-syzygies de la présentation de Knuth.

Par exemple, la présentation colonne Col 2 (2) du monoïde P 2 peut être étendue en une présentation cohérente en ajoutant l'unique 3-cellule génératrice (2). En appliquant notre construction sur cette présentation cohérente, on montre que la présentation de Knuth peut être étendue en une présentation cohérente en ajoutant la 3-cellule génératrice (3).

Le diagramme suivant décrit les étapes principales de la construction 

Knuth 2 (n) équivalence de Tietze G G Col 2 (n) complétion homotopique G G Col 3 (n)
X u,v,t Õ % c e c b c b α e,b c b 2 R c u c v c t α u,v c t B b c u α v,t 2 R
pour toutes colonnes u = x p . . . x 1 , v = y q . . . Présentation cohérente de Knuth. La dernière étape de la procédure de réduction homotopique consiste à réduire la présentation cohérente PreCol 3 (n) en une présentation cohérente du monoïde P n qui étend la présentation de Knuth. On définit une présentation étendue Knuth 3 (n) du monoïde P n obtenue à partir de Knuth 2 (n) en ajoutant l'ensemble des 3-cellules suivantes 

{ R(C x,v,t ) x v t ×1 ×2 } ∪ { R(D x,v,t ) x v t ×2 ×2 }, où R : Col 3 (n) → Knuth 3 (n) est
: c 2 c 1 c 1 ⇒ c 1 c 2 c 1 et ε 1,2,2 : c 2 c 2 c 1 ⇒ c 2 c 1 c 2 et la 3-cellule est c 2 c 2 c 1 c 1 2η 1,1,2 ' G ε 1,2,2 1 F f c 2 c 1 c 2 c 1 . C Õ %
Cette présentation coincïde avec la présentation cohérente Knuth 3 (2), voir sous-section 4.2.4.

Nombre des cellules des présentations cohérentes de P n . On note par KB(Knuth 2 (n)) la complétion de Knuth-Bendix de Knuth 2 (n) et par Knuth KB 3 (n) la complétion de Squier de KB(Knuth 2 (n)). Le tableau suivant présente le nombre des cellules des présentations cohérentes Knuth KB 3 

(n), Knuth 3 (n), Col 3 (n) et Col 3 (n) du monoïde P n , pour 1 n 10. n Knuth 1 (n) Col 1 (n) Knuth 2 (n) KB(Knuth 2 (n)) Col 2 (n) Knuth KB 3 (n) Knuth 3 (n) Col 3 (n) Col 3 (n) 1 1 1 0 0 0 0 0 0 2 2 3 2 2 3
A(uv)A(w) A uv,w & F = A(u)A(v)A(w) A u,v A(w) 9 Y A(u)A v,w 5 U A(uvw) A(u)A(vw) A u,vw H h
ii) pour tout élément u du monoïde M, les diagrammes suivants commutent Une implementation de la présentation cohérente de Knuth. Comme il est décrit dans le chapitre 4, section 4.2, on construit une présentation cohérente finie du monoïde plaxique P n , qui étend sa présentation de Knuth. En particulier, on montre que ses 3-cellules sont de la forme

A(1)A(u) A 1,u ! A A(u) A • A(u) A a A(u) = A(u)A(1) A u,1 $ D A(u) A(u)A • @ `A(u) = Le résultat
{ R(C x,v,t ) x v t ×1 ×2 } ∪ { R(D x,v,t ) x v t ×2 ×2 },
où R est une transformation de Tietze construite au cours de plusieurs étapes de réduction. On a implémenté un programme en Python donnant le nombre des cellules de la présentation cohérente de Knuth comme présenté dans le tableau ci-dessus. Ce programme consiste à calculer le nombre des sources s 1 (X u,v,t ) des 3-cellules X u,v,t de cette présentation.

Notons que notre construction permet de donner les formes explicites de ces 3-cellules. Notons aussi qu'après l'application de la transformation de Tietze R, aucune 3-cellule ne peut se transfomer en identité. Nous implémenterions un programme donnant les formes explicites des 3-cellules de la présentation cohérente de Knuth pour les rangs supérieurs. Par exemple, la présentation cohérente de Knuth P 8 contient 275868 3-cellules. Afin d'obtenir les formes de ces 3-cellules, le programme devrait donner les formes explicites des 3-cellules des présentations Col 3 [START_REF] Bokut | Imbeddings into simple associative algebras[END_REF], Col 3 (8) et PreCol 3 [START_REF] Bokut | Imbeddings into simple associative algebras[END_REF] construites durant l'application de la transformation R.

Les résolutions d'Anick des monoïdes plaxiques via les chemins de Littelmann. Anick a construit une résolution d'un corps K vu comme un G-module, où G est une algèbre associative augmentée sur K, [START_REF] Anick | On monomial algebras of finite global dimension[END_REF][START_REF]On the homology of associative algebras[END_REF]. Il a défini un ensemble de n-chaînes en utilisant la notion des bases de Gröbner-Shirshov. De plus, il a donné une définition inductive des différentielles en utilisant une homotopie contractante définie d'une manière inductive. Par la suite, la résolution d'Anick a été généalisée aux cas des opérades et des catégories, [START_REF] Malbos | Rewriting systems and hochschild-mitchell homology[END_REF][START_REF] Dotsenko | Free resolutions via Gröbner bases[END_REF]. Par ailleurs, la théorie algébrique de Morse discrète introduite indépendamment dans [START_REF] Jöllenbeck | Minimal resolutions via algebraic discrete Morse theory[END_REF][START_REF] Sköldberg | Morse theory from an algebraic viewpoint[END_REF] décrit explicitement les différentielles de la résolution d'Anick en utilisant les graphes orientés. Un telle résolution permet de calculer les invariants homologiques du monoïde étudié.

Lopatkin a construit une résolution d'Anick du monoïde plaxique P n à partir de sa présentation colonne Col 2 (n) en utilisant la théorie de Morse, [START_REF] Viktor Lopatkin | Cohomology rings of the plactic monoid algebra via a Gröbner-Shirshov basis[END_REF]. Par conséquent, il a calculé les invariants homologiques du monoïde P n . En utilisant la même stratégie, nous devrions ainsi obtenir des résolutions d'Anick pour les monoïdes plaxiques généralisés d'une manière générale à partir de leur présentation colonne avec les chemins L-S. Par conséquent, les invariants homologiques de ces monoïdes pourraient être calculés.

Les syzygies de dimension supérieure pour le monoïde plaxique. Dans [START_REF]Higher-dimensional normalisation strategies for acyclicity[END_REF], Malbos et Guiraud on montré comment étendre une présentation convergente d'un monoïde en une résolu-tion polygraphique de ce monoïde. La présentation colonne Col 2 (n) du monoïde P n peut alors être étendue en une résolution polygraphique dont les n-cellules, pour tout n 3, sont indexées par des (n -1) branchements de Col 2 (n). On peut expliciter les 4-cellules de cette résolution, qui correspondent aux diagrammes de confluence induits par des branchements triple critiques. 

c u c v c m c m α v,m 7 W c u X v,t,e Õ % c u c s 1 c s 1 c m α s 1 ,m 7 W c u c s 1 c e 1 c e 1 α u,s 1 7 W X u,p 1 ,f 1 c e 1 Õ % c n 1 c n 1 c e 1 c e 1 α n 1 ,e 1 ) I c u c p 1 c f 1 c e 1 α p 1 ,f 1 F f α u,p 1 ( H c n 1 c b 1 c b 1 c e 1 α b 1 ,e 1 ) I c u c v c t c e α t,e V v α v,t 7 W α u,v 8 c u c p 1 c p 1 c e α p 1 ,e F f α u,p 1 ( H X u,v,t c e Õ % ≡ c d 1 c g 1 c f 1 c e 1 α g 1 ,f 1 7 W c d 1 X g 1 ,p 1 ,e Õ % c d 1 c m 1 c b 1 c e 1 α d 1 ,m 1 E e α b 1 ,e 1 ) I ≡ c n 1 c b 1 c m 1 c a 1 c d 1 c g 1 c p 1 c e α p 1 ,e F f α g 1 ,p 1 ( H c d 1 c m 1 c m 1 c a 1 α d 1 ,m 1 E e c w c
c u c s 1 c s 1 c m α u,s 1 7 W α s 1 ,m E e X u,v,m c m Õ % c n 1 c n 1 c s 1 c m α s 1 ,m E e α n 1 ,s 1 ) I c n 1 X n 1 ,s 1 ,m Õ % c n 1 c b 1 c b 1 c e 1 α b 1 ,e 1 ! A c u c v c m c m α v,m F f α u,v ( H c n 1 c b c n c m α n ,m ) I c u c v c t c e α t,e G g α u,v ' G ≡ c w c w c m c m α w ,m 7 W X w,w ,t c e Õ % c w c n c n c m α w,n E e α n ,m ) I ≡ c n 1 c b c e c a 1 α b ,e 7 W X w,s,a 1 c a 1 Õ % c n 1 c b 1 c m 1 c a 1 c w c w c t c e α t,e F f α w ,t ( H c w c n c e c a 1 α w,n E e c d 1 c m 1 c m 1 c a 1 α d 1 ,m 1 i c w c s c s c e α s ,e 7 W c w c s c a 1 c a 1 α w,s 7 W α s,a 1 E e c d 1 c d 1 c a 1 c a 1 α d 1 ,a 1 E e
Dans cette 3-sphère, certaines colonnes peuvent être triviales et alors les 2-cellules α correspondantes sont les identités. Pour faciliter la lecture du diagramme, on a omis le contexte des 2-cellules α.

Plus généralement, nous prévoyons que la n-cellule génératrice de cette résolution aurait la forme du permutohedron de dimension n.

Le monoïde chinois. Le monoïde chinois de rang n est le quotient du monoïde libre [n] * par la relation de congruence engendrée par la famille de relations suivante zyx = zxy = yzx, pour x y z.

(

) 5 
Ce monoïde apparaît dans la classification des monoïdes de classes dont la fonction de croissance coincïde avec le monoïde plaxique, [START_REF] Duchamp | Plactic-growth-like monoids, Words, languages and combinatorics[END_REF]. Un futur travail serait de construire une présentation cohérente du monoïde chinois à partir d'une présentation convergente finie. Grâce à la procédure de complétion homotopique, on devrait obtenir un théorème similaire au Théorème 4.1.3.1 pour les monoïdes chinois en prenant en considération que dans ce cas on a besoin d' au plus cinq étapes de réécriture pour obtenir la forme normale alors que dans le cas du monoïde plaxique elle est atteinte après au plus trois étapes. De plus, une telle présentation cohérente pourrait être réduite en utilisant la même stratégie utilisée pour le monoïde plaxique grâce à la procédure de réduction homotopique. Les présentations cohérentes des monoïdes chinois pourraient nous permettre de calculer leurs invariants homologiques et de décrire leurs actions sur les catégories.

Comme présenté dans ce travail, les graphes cristallins et les opérateurs de Kashiwara interagissent avec les tableaux et leurs généralisations et ils fournissent des outils combinatoires pour étudier les monoïdes plaxiques. Un futur travail serait de construire une structure cristalline du monoïde chinois. Les éléments du nouveau graphe cristallin seraient identifiés avec les tableaux chinois et la congruence engendrée par la famille des relations [START_REF] Bourbaki | Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines[END_REF] devrait avoir une interprétation en termes d'un isomorphisme de cristaux. Une question est d'étudier l'interaction du graphe cristallin du monoïde plaxique de type A avec celui construit pour le monoïde chinois.

Le monoïde sylvestre. La structure des monoïdes sylvestres apparaît dans l'étude combinatoire de l'algèbre de Loday-Ronco des arbres binaires planaires reliée aux fonctions symétriques non-commutatives et aux fonctions symétriques libres, [START_REF] Hivert | The algebra of binary search trees[END_REF]. Le monoïde sylvestre est construit en utilisant la notion des arbres binaires de recherche et en introduisant un algorithme d'insertion similaire à l'insertion de 

ORGANISATION DU DOCUMENT

Le document s'organise de la façon suivante. Le chapitre 1 présente une introduction des monoïdes plaxiques en utilisant les notions de tableaux de Young [START_REF] Young | On Quantitative Substitutional Analysis[END_REF][START_REF] Georg | Über die charakteristischen Einheiten der symmetrischen Gruppe[END_REF], de graphes cristallins de Kashiwara, [START_REF] Kashiwara | Crystallizing the q-analogue of universal enveloping algebras[END_REF][START_REF]Global crystal bases of quantum groups[END_REF][START_REF]On crystal bases, Representations of groups[END_REF][START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF] et du modèle de chemins de Littelmann [START_REF]A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras[END_REF][START_REF]Crystal graphs and Young tableaux[END_REF][START_REF]Paths and root operators in representation theory[END_REF][START_REF]A plactic algebra for semisimple Lie algebras[END_REF]. Nous rappelons dans la section 1.1 les définitions et les propriétés des algèbres de Lie semi-simples complexes de dimensions finies. La section 1.2 est consacrée à la définition et aux propriétés du monoïde plaxique de type A . Le matériel de la section 1.3 illustre le lien entre les graphes cristallins de Kashiwara et les monoïdes plaxiques. Nous terminons ce chapitre avec la section 1.4 sur le lien du modèle de chemins de Littelmann avec les monoïdes plaxiques.

On construit dans le chapitre 2 des presentations de monoïdes plaxiques. Après avoir rappelé la définition des 2-polygraphes comme des présentations de monoïdes, nous construisons dans 2.1.3 une présentation convergente finie du monoïde plaxique de type A en utilisant les notions de tableaux de Yamanouchi, des graphes cristallins et des chemins. Nous rappelons dans 2.2 la définition des Tietze transformations entre les 2-polygraphes. Nous construisons dans 2.2.2 une présentation du monoïde plaxique de type A qui est Tietze équivalente à la présentation de Knuth. Nous terminons ce chapitre en rappelant dans 2.3.1 la complétion de Knuth-Bendix qui calcule une présentation convergente d'un monoïde à partir d'une présentation terminante. Nous montrons que la présentation de Knuth du monoïde plaxique de rang 3 admet une complétion finie après l'ajout de 3 relations et qu'à partir du rang 4 cette présentation n'admet pas de complétion finie compatible avec l'ordre lexicographique.

L'objectif du chapitre 3 est de construire des présentations convergentes finies des monoïdes plaxiques. On construit dans la section 3.1 une présentation convergente finie des monoïdes plaxiques généralisés en utilisant les chemins de Lakshmibai-Sechadri introduits par Littelmann. Cette présentation, appelée présentation colonne, peut être aussi construite au cas par cas, en utilisant la théorie des bases cristallines de Kashiwara. Dans la section 3.2, on considère la présentation colonne du monoïde plaxique de type A. On montre comment une telle présentation est construite en utilisant les tableaux de Young et les algorithmes d'insertion de Schensted. On construit dans la section 3.3 la présentation colonne du monoïde plaxique de type C en utilisant les notions de colonnes admissibles et tableaux symplectiques introduits dans 3.3.1. Les règles de réécriture de cette présentation sont définies en utilisant l'algorithme d'insertion de 

General introduction

This thesis focuses on the study of plactic monoids by new methods issued from rewriting theory. Our approach is to investigate the presentations of plactic monoids from the rewriting theory perspective and in particular to compute a family of generators for all syzygies for these presentations. In order to achieve our goal, we have to orient the presentations of plactic monoids, then a study of the relations among the relations in these monoids is done. Such a study is carried out due to a homotopical completion-reduction procedure introduced in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] using methods based on Squier's and Knuth-Bendix's completions. In this manner, our work constitutes an interplay between algebra and rewriting theory.

Plactic monoids admit many descriptions. In particular, they are related to the representations of finite-dimensional complex semisimple Lie algebras. We study their interpretations in terms of Young tableaux, Kashiwara's crystal bases and Littelmann path model. The structure of plactic monoids was introduced by Lascoux and Schützenberger [START_REF]Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics[END_REF] after the works of Schensted [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF] and Knuth [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF] on the combinatorial study of Young tableaux. In type A, the plactic monoid is related to the representations of the Lie algebra of square matrices, and is now called the plactic monoid of type A, [START_REF] Date | Representations of U q (gl(n, C)) at q = 0 and the Robinson-Shensted [Schensted] correspondence, Physics and mathematics of strings[END_REF][START_REF] Lascoux | Crystal graphs and q-analogues of weight multiplicities for the root system A n[END_REF][START_REF] Leclerc | The Robinson-Schensted correspondence, crystal bases, and the quantum straightening at q = 0[END_REF]. Moreover, the classification of finite-dimensional complex semisimple Lie algebras in different types leads to the existence of generalised plactic monoids of the same types. There are two approaches to define these monoids. Indeed, they can be defined by a case-by-case analysis, using Kashiwara's theory of crystal bases [START_REF]Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF] or in a general way thanks to Littelmann path model [START_REF]A plactic algebra for semisimple Lie algebras[END_REF].

The syzygy problem consists in finding all independent irreducible algebraic relations among the generators of a module over a ring, [START_REF] Evans | The syzygy problem[END_REF]. The syzygy problem was studied in the point of view of rewriting theory by finding all the relations between the relations for presentations of monoids. A 2-syzygy for a presentation of a monoid is a relation amongst relations. The syzygy problem for presentations of monoids can be algorithmically solved thanks to convergent rewriting systems. Rewriting systems are oriented presentations of monoids consisting of a generating set and rewriting rules relating words over this generating set. A rewriting system is convergent if it does not admit an infinite sequence of rewritings and it satisfies the confluence property. The confluence property states that for every words u, u and u" such that u rewrites into u and u", there exists a word v such that u and u rewrite into v. This means that in a convergent rewriting system any rewritings starting on a same word lead to a unique word that cannot be rewritten into another one.

Lately, plactic monoids were investigated by rewriting methods, [START_REF] Kubat | Gröbner-Shirshov bases for plactic algebras[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF]Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF][START_REF] Hage | Finite convergent presentation of plactic monoid for type C[END_REF][START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n[END_REF][START_REF]Column presentations of plactic monoids[END_REF]. In our study of plactic monoids, we use the structure of polygraphs based on a categorical interpretation of rewriting systems, where the generators and the rewriting rules are represented by 1-cells and 2-cells constructed over a unique 0-cell. We give a description of 2-syzygies of some presentations of the plactic monoid of type A using the notion of coherent presentations. A coherent presentation extends the notion of a presentation of a monoid by 3-cells in a coherent way, taking into account the relations among the relations. The computation of coherent presentations for a monoid starting by a convergent one provides a method to compute a polygraphic resolution of the monoid, that is, a categorical cofibrant replacement of the monoid in a free (∞, 1)-category whose cells of dimension 2 and higher are invertible, [START_REF]Higher-dimensional normalisation strategies for acyclicity[END_REF]. Indeed, a coherent presentation for a monoid constitutes the first two steps in the computation of a polygraphic resolution. In addition, such a study of the relations among the relations in a monoid allows to compute its homological invariants. Moreover, coherent presentations are also useful to describe the notion of an action of the monoid on categories, [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF].

We compute a coherent presentation of the plactic monoid of type A using the homotopical completion procedure introduced in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF][START_REF] Guiraud | A homotopical completion procedure with applications to coherence of monoids[END_REF]. Such a procedure extends the Knuth-Bendix's completion [START_REF] Knuth | Simple word problems in universal algebras[END_REF] using a method introduced by Squier that computes a coherent presentation from a convergent one, [START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF][START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]. The obtained coherent presentation of the plactic monoid of type A is not minimal in the sense that many of its generators are superfluous. After several steps of homotopical reduction, we reduce it to a smaller one having Knuth's generators. In this way, we give an algorithmic method to compute 2-syzygies for the Knuth presentation of the plactic monoid of type A.

In order to extend the latter result to plactic monoids of any type, we construct finite convergent presentations for these monoids. Thanks to Littelmann paths, we construct finite convergent presentations of plactic monoids in a general way covering all the types. Moreover, we study the latter presentations in terms of Kashiwara's crystal graphs for type C, using combinatorial ingredients such as the admissible columns introduced by Kashiwara and Nakashima, [START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF].

THE PLACTIC MONOID AND ITS GENERALISATIONS

In this section, we will give an historical overview of plactic monoids. We recall the definition of the plactic monoid of type A and we present the connection between this monoid, Kashiwara crystal graphs and Littelmann path model. A generalisation of the plactic monoid is then discussed in terms of crystals and Littelmann paths.

The plactic monoid of type A and tableaux. In order to compute the length of the longest non-decreasing subsequence of a given word in the free monoid [n] * over the ordered set

[n] := 1 < . . . < n , Schensted introduced combinatorial algorithms that deal with Young tableaux. The latter objects were introduced by Young, [START_REF] Young | On Quantitative Substitutional Analysis[END_REF], and they were used for the first time to investigate representations of the symmetric group by Frobenius [START_REF] Georg | Über die charakteristischen Einheiten der symmetrischen Gruppe[END_REF]. Schensted's algorithms were originally found by Robinson, [START_REF] De | On the Representations of the Symmetric Group[END_REF], who tried to give a proof of the Littelwood-Richardson rule. This rule describes in a combinatorial way the multiplicity of a Schur polynomial in a product of Schur polynomials, that is, the multiplicity of an irreducible representation of the general Lie algebra in a tensor product of two irreducible representations, see [START_REF] Marc | The Littlewood-Richardson rule and related combinatorics[END_REF] and [START_REF] Stanley | Enumerative combinatorics[END_REF]Chapter 7]. Before presenting Schensted's algorithms, let us introduce the notions of tableaux and standard tableaux. A tableau of shape λ = (λ 1 , . . . , λ k ) ∈ N k , with n λ 1 . . . λ k 1, is a collection of boxes in a left-justified rows such that the ith row contains λ i boxes, for i = 1, . . . , k, and filled by elements of [n] where the entries weakly increase along each row and strictly increase down each column. A standard tableau of shape λ, is a tableau of shape λ where the entries are the numbers from 1 to k i=1 λ i , each occurring once. For instance, a tableau of shape (5, 3, 1) and a standard tableau of shape (4, 3, 2) are respectively .

Consider a tableau T and an element x in the set [n]. Schensted's algorithm, called the columninsertion, inserts the element x into the tableau T as follows. Let y be the smallest element of the first column of the tableau T that is greater or equal to x. Then x replaces y in the first column and y is bumped into the next column where the process is repeated. This procedure terminates when the element which is bumped is greater than all the elements of the next column. Then it is placed at the bottom of that column. Note that a similar algorithm, called the row-insertion, was also introduced by Schensted. It consists in inserting elements of [n] in the rows of a tableau instead of its columns, see Chapter 1, Section 1.2.1.

For every word w in the free monoid [n] * , one computes a unique tableau P(w), called Schensted's tableau, by starting with the empty word and iteratively applying Schensted's algorithm to the letters of w. During the computation of the tableau P(w), a standard tableau Q(w), [104, Lemma 2], is obtained by successively putting i in a box at the same place as the added box when inserting the letter x i of w. The bijection w → (P(w), Q(w)), [104, Lemma 3], is called the Robinson-Schensted correspondence. For instance, the successive steps of the computation of the tableau P(1213214) and the standard tableau Q(1213214) are

1 1 2 1 1 2 1 1 2 3 1 1 2 2 3 1 1 1 2 2 3 1 1 1 2 2 3 4
= P(1213214). 

The plactic monoid of rank n, denoted by P n , is defined as the quotient of the free monoid [n] * by the equivalence ∼ plax , [START_REF]Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics[END_REF]. Since its introduction, the plactic monoid has found several applications in algebraic combinatorics and representation theory [START_REF] Lascoux | Crystal graphs and q-analogues of weight multiplicities for the root system A n[END_REF][START_REF]Pour le monoïde plaxique[END_REF][START_REF] Fulton | Young tableaux[END_REF]. In particular, the plactic monoid was used by Lascoux and Shützenberger in order to give a combinatorial description of the Kostka-Foulkes polynomials, [START_REF] Lascoux | Sur une conjecture de H. O. Foulkes[END_REF][START_REF]Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics[END_REF], and a noncommutative version of the Schubert polynomials, [START_REF]Schubert polynomials and the Littlewood-Richardson rule[END_REF][START_REF]Noncommutative Schubert polynomials[END_REF]. Furthermore, the plactic monoid was used by Schützenberger, [START_REF] Schützenberger | La correspondance de Robinson, Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS[END_REF], in order to provide the first correct proof of the Littelwood-Richardson rule. Note that another proof of this rule was also independently found by Thomas, [START_REF] Glanffrwd | On Schensted's construction and the multiplication of Schur functions[END_REF].

Later, many similar monoids were introduced like the chinese monoid, [START_REF] Cassaigne | The Chinese monoid[END_REF], the shifted plactic monoid, [START_REF] Serrano | The shifted plactic monoid[END_REF], the hypoplactic monoid, [START_REF] Novelli | On the hypoplactic monoid[END_REF], the sylvester monoid, [START_REF] Hivert | The algebra of binary search trees[END_REF], and the super plactic monoid, [START_REF] Roberto | Super RSK-algorithms and super plactic monoid[END_REF][START_REF] Loday | Parastatistics algebra, Young tableaux and the super plactic monoid[END_REF]. These monoids have also many applications in combinatorics and representation theory.

Generalisations of the plactic monoid via crystals graphs. Since 1990, there was a very useful relationship between the Robinson-Schensted correspondence and Kashiwara's theory of crystal bases. Before talking about this relationship, let us introduce the context of the representation theory of Lie algebras. A representation of a Lie algebra is a way to describe this algebra as an algebra of matrices where the Lie bracket is given by the commutator. Since their introduction, the representations of Lie algebras have found interesting applications in several areas of mathematics and physics. In particular, some representations of semisimple Lie algebras encompass all the fundamental particles in physics which are described by the gauge theory paradigm. Moreover, using Dynkin diagrams, the finite complex dimensional semisimple Lie algebras are classified in classical types A, B, C and D and in exceptional ones E 6 , E 7 , E 8 , F 4 and G 2 . The type A, B, C and D corresponds respectively to the special linear Lie algebra sl n+1 (C) (see Chapter 1, Subsection 1.3.2), the odd-dimensional special orthogonal Lie algebra so 2n+1 (C), the symplectic Lie algebra sp 2n (C) (see Chapter 1, Subsection 1.3.3), and the even-dimensional special orthogonal Lie algebra so 2n (C), see [START_REF] Humphreys | Introduction to Lie algebras and representation theory[END_REF][START_REF] Fulton | Representation theory. A first course[END_REF][START_REF] Bourbaki | Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines[END_REF][START_REF] Hong | Introduction to quantum groups and crystal bases[END_REF].

In order to study solutions of the classical Yang-Baxter equations that are related to statistical mechanics, Jimbo [START_REF] Michio | A q-difference analogue of U(g) and the Yang-Baxter equation[END_REF] and Drinfeld [START_REF] Drinfeld | Hopf algebras and the quantum Yang-Baxter equation[END_REF] introduced independently in 1985 the notion of quantum groups. The quantum group U q (g) associated to a semisimple Lie algebra g is a deformation of the universal envelopping algebra of g. It is an associative algebra over the field C(q) of rational functions with complex coefficients. When q tends to zero, Kashiwara showed that the representations of U q (g) have special bases, which he called crystal bases, [START_REF] Kashiwara | Crystallizing the q-analogue of universal enveloping algebras[END_REF][START_REF]Global crystal bases of quantum groups[END_REF][START_REF]On crystal bases, Representations of groups[END_REF]]. These bases can be extended to the whole q-space to obtain true bases of the representations, which are called global bases. Note that global bases coincide with canonical bases which were independently introduced for quantum groups by Lusztig [START_REF] Lusztig | Introduction to quantum groups[END_REF]. A crystal basis was also given a structure of a labelled oriented graph, called the crystal graph, with arrows defined by the Kashiwara operators, see Chapter 1, Section 1.3. A crystal graph can also be decomposed into connected components and a crystal isomorphism between two connected components is a weight-preserving labelled graph isomorphism from one to the other. Since then, the theory of crystal bases has been a very useful combinatoric tool to study the representations of quantum groups and of semisimple Lie algebras.

Using the theory of quantum groups, the first connection between the Robinson-Schensted correspondence and the representations of the general Lie algebra gl n (C) of n by n matrices was obtained by Date, Jimbo and Miwa, [START_REF] Date | Representations of U q (gl(n, C)) at q = 0 and the Robinson-Shensted [Schensted] correspondence, Physics and mathematics of strings[END_REF]. In the same spirit, the same connection was obtained by Lascoux, Leclerc and Thibon using Kashiwara's theory of crystal bases, [START_REF] Lascoux | Crystal graphs and q-analogues of weight multiplicities for the root system A n[END_REF][START_REF] Leclerc | The Robinson-Schensted correspondence, crystal bases, and the quantum straightening at q = 0[END_REF]. More specifically, consider the vector representation V n = C n of the Lie algebra gl n (C). The standard basis of V n is indexed by the ordered set

[n]. Each vertex x 1 ⊗ . . . ⊗ x l of the crystal graph of the representation l V ⊗l
n is considered as a word x 1 . . . x l on the free monoid [n] * . For any words u and v in the free monoid [n] * , we have P(u) = P(v) if, and only if, u and v have the same place in their two isomorphic connected components of the crystal graph of l V ⊗l n . Moreover, we have Q(u) = Q(v) if, and only if, u and v occur in the same connected component Since Kashiwara's theory of crystal bases also exists for classical semisimple Lie algebras and for the exceptional one of type G 2 , a plactic monoid was introduced for each of these algebras using a case-by-case analysis, [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF][START_REF] Baker | An insertion scheme for C n crystals, Physical combinatorics[END_REF][START_REF]Schensted-type correspondences and plactic monoids for types B n and D n[END_REF][START_REF]Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF]. To each semisimple Lie algebra, one associates a finite alphabet S indexing a basis of the vector representation V of the algebra. Two words u and v in the free monoid S * are plactic congruent, and denoted by u ∼ crys v, if they appear in the same place in their isomorphic connected components of the crystal graph of the representation l V ⊗l . For each semisimple Lie algebra, the corresponding plactic monoid is defined as the quotient of the free monoid S * by the congruence ∼ crys .

The plactic monoid of type C, B and D corresponds respectively to the representations of the symplectic Lie algebra, the odd-dimensional orthogonal Lie algebra and the even-dimensional orthogonal Lie algebra. Lecouvey in [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF] and Baker in [START_REF] Baker | An insertion scheme for C n crystals, Physical combinatorics[END_REF] introduced independently the plactic monoid of type C using Kashiwara's theory of crystal bases and the notion of admissible columns introduced by Kashiwara and Nakashima, [START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF]. In [START_REF]Schensted-type correspondences and plactic monoids for types B n and D n[END_REF], Lecouvey gave presentations for plactic monoids of types B and D using the notion of admissible columns generalised to these types. Lecouvey also introduced the plactic monoid for type G 2 by generalising the notion of admissible columns to this type, [START_REF]Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF]. As an application of the presentations of plactic monoids, Lecouvey gave a combinatorial description of certain Kostka-Foulkes polynomials for type B, C and D which arise as entries of the character table of the finite reductive groups, [START_REF]Combinatorics of crystal graphs and Kostka-Foulkes polynomials for the root systems B n , C n and D n[END_REF].

Plactic monoids via Littelmann paths. Littelmann path model establishes a bridge between

Lakshmibai-Sechadri's theory of standard monomials [START_REF] Lakshmibai | Geometry of G/P. V[END_REF][START_REF]Standard monomial theory[END_REF] and Kashiwara's theory of crys-tal bases [START_REF] Kashiwara | Crystallizing the q-analogue of universal enveloping algebras[END_REF][START_REF]Global crystal bases of quantum groups[END_REF][START_REF]On crystal bases, Representations of groups[END_REF]]. Littelmann gave a unified combinatorial model to all symmetrizable Kac-Moody algebras that allows him to obtain explicit combinatorial formulas for weight multiplicities, tensor product rules and branching rules, [START_REF]A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras[END_REF][START_REF]Paths and root operators in representation theory[END_REF]. He introduced piecewise-linear paths connecting the origin to a weight and a pair of root operators for each simple root of a symmetrizable Kac-Moody algebra. Littelmann's paths can be encoded in a labelled directed graph, with labels given by the roots operators. Moreover, the latter graph defined by Littelmann's root operators is isomorphic to Kashiwara's crystal graph [START_REF] Joseph | Quantum groups and their primitive ideals[END_REF][START_REF]Similarity of crystal bases, Lie algebras and their representations[END_REF].

As we have discussed previously, using a case-by-case analysis, plactic monoids can be defined for all classical semisimple Lie algebras and for the exceptional one of type G 2 . Using his path model, Littelmann defined in a general way a plactic algebra for any semisimple Lie algebra, [START_REF]A plactic algebra for semisimple Lie algebras[END_REF]. As a consequence, he gave some presentations by generators and relations of the plactic algebra of types A, B, C, D and G 2 , [88, Theorem C]. Littelmann also introduced the notion of standard tableaux as a generalisation of the notion of tableaux defined for type A to any type. Standard tableaux coincide also with the notion of symplectic tableaux for type C and orthogonal tableaux for types B and D in the Lecouvey sense, [START_REF]Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF].

Let g be a semisimple Lie algebra and let P be its weight lattice. A path is a piecewise linear continuous map π : [0, 1] → P ⊗ Z R. We denote by

Π = π : [0, 1] → P ⊗ Z R π(0) = 0 and π(1) ∈ P
the set of all paths with source 0 and whose target belongs to P up to reparametrization. Given two paths π 1 and π 2 in Π, the concatenation π 1 π 2 is defined by:

π 1 π 2 (t) := π 1 (2t) for 0 t 1 2 , π 1 (1) + π 2 (2t -1) for 1 2 t 1.
For instance, consider W = (x 1 , x 2 , x 3 ) ∈ R 3 x 1 +x 2 +x 3 = 0 and let {ε 1 , ε 2 , ε 3 } be the canonical basis of R 3 . We still denote by ε i the projection of ε i onto W. We have P = Zε 1 ⊕ Zε 2 and ε 3 = -ε 1 -ε 2 . The weights α 1 = ε 1 -ε 2 and α 2 = ε 2 -ε 3 are called the simple roots of the special linear algebra sl 3 . The weights Λ 1 = ε 1 and Λ 2 = ε 1 + ε 2 are called its fundamental weights. An example of dominant weight of sl 3 is Λ 1 + Λ 2 . Consider the paths π 1 : t → tε 1 and π 2 : t → tε 2 , the path π 1 π 2 is the green path and the dominant chamber is the hatched area in the following figure:

ε 1 = Λ 1 ε 2 ε 3 α 1 Λ 1 + Λ 2 Λ 2 α 2 0
For each simple root α of the Lie algebra g, Littelmann defined the root operators e α and f α from Π to Π ∪ {0} as follows. Every path π in Π is cutted into three parts π 1 π 2 π 3 . Then the new path e α (π) or f α (π) is either equal to 0 or π 1 s α (π 2 ) π 3 , where s α denotes the orthogonal reflection with respect to the root α, see Chapter 1, Section 1.4.1.

Denote by ZΠ the algebra of paths defined as the free Z-module with basis Π whose product is given by the concatenation of paths and where the unity is the path with source and target 0. Let A be the subalgebra of End Z (ZΠ) generated by the root operators f α and e α . Define Π + to be the set of paths π such that the image is contained in the dominant chamber and denote by M π the A-module Aπ. Note that two A-modules are isomorphic if their paths contained in the dominant chamber have the same target.

Let ZΠ 0 be the A-submodule AΠ + of ZΠ generated by the paths in Π + . For two paths π 1 and π 2 in ZΠ 0 , denote by π + 1 and π + 2 the unique paths in

Π + such that π 1 is in M π + 1 and π 2 is in M π + 2 .
One can define a relation ∼ path on ZΠ 0 by : π 1 ∼ path π 2 if, and only if,

π + 1 (1) = π + 2 (1) and ψ(π 1 ) = π 2 under the isomorphism ψ : M π + 1 → M π + 2 .
For each semisimple Lie algebra g, the corresponding plactic monoid is defined as the quotient of the A-submodule ZΠ 0 by the equivalence ∼ path .

It is worth mentioning that the equivalences ∼ path and ∼ crys coincide in the sense that we obtain the same plactic monoids of types A, B, C, D and G 2 if we treate them by a case-by-case analysis, see [START_REF]Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF] and [START_REF]A plactic algebra for semisimple Lie algebras[END_REF]Theorem C].

CONVERGENT PRESENTATIONS OF PLACTIC MONOIDS

Rewriting systems and the word problem. Rewriting systems are oriented presentations of monoids consisting of a generating set Σ 1 and a set Σ 2 of rewriting rules relating words over this generating set. The notion of rewriting systems was introduced by Thue in his study of the word problem for finitely presented monoids, [START_REF] Thue | Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln[END_REF]. The word problem for a monoid M consists in finding a generating set Σ 1 and a procedure deciding if two elements of the free monoid Σ * 1 represent the same element in the monoid M. The word problem was also described for finitely presented groups by Dehn [START_REF] Dehn | Über die Topologie des dreidimensionalen Raumes[END_REF]. Much later, Post [START_REF] Post | Recursive unsolvability of a problem of Thue[END_REF] and Markov [START_REF] Markov | On the impossibility of certain algorithms in the theory of associative systems[END_REF][START_REF]On the impossibility of certain algorithms in the theory of associative systems. II[END_REF] showed independently that the word problem is undecidable. Thereafter, the word problem has been considered in many contexts in algebra and computer science. Rewriting theory appeared also in different forms in algebra according to the object to be presented. It appears for commutative algebras and Lie algebras with the notion of Gröbner-Shirshov bases, [START_REF] Buchberger | Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal[END_REF][START_REF]History and basic features of the critical-pair/completion procedure[END_REF][START_REF] Illarionovich | Some algorithmic problems for Lie algebras[END_REF], for associative algebras and operads, [START_REF] Bokut | Imbeddings into simple associative algebras[END_REF][START_REF] Bergman | The diamond lemma for ring theory[END_REF][START_REF] Mora | An introduction to commutative and noncommutative Gröbner bases[END_REF][START_REF] Victor | Combinatorial and asymptotic methods in algebra[END_REF][START_REF]Gröbner bases for operads[END_REF] as well as for terms in an algebraic theory, [START_REF] Baader | Term rewriting and all that[END_REF][START_REF] Willem | Term rewriting systems[END_REF][START_REF]Term rewriting systems[END_REF], strings in a monoid, [START_REF] Book | String-rewriting systems[END_REF].

In this work, a presentation Σ 1 , Σ 2 of a monoid M is a rewriting system such that the monoid M is isomorphic to the quotient of the free monoid Σ * 1 by the congruence generated by Σ 2 . In the literature, a presentation of a monoid is called a string rewriting system or a semi-Thue system, [START_REF] Baader | Term rewriting and all that[END_REF].

For instance, the plactic monoid P n of rank n is presented by the rewriting system Knuth 2 (n), whose generating set is {1 < . . . < n} and the set of rewriting rules is

{ zxy η x,y,z =⇒ xzy | 1 x y < z n } ∪ { yzx ε x,y,z =⇒ yxz | 1 x < y z n }.
The rewriting rules of Knuth 2 (n) correspond to the Knuth relations, [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF], with orientation given by the lexicographic order induced by the total order on {1 < . . . < n}. The presentation Knuth 2 (n) is called the Knuth presentation.

Let Σ be a rewriting system. A rewriting step of Σ is a rewriting rule of the form wαw : wuw ⇒ wvw where α : u ⇒ v is a rewriting rule in Σ and w and w are generators in the free monoid

Σ * 1 . A local branching of Σ is a non ordered pair (f, f 1 ) of rewriting steps f : u ⇒ v and f 1 : u ⇒ v 1 of the free 2-category Σ *
2 with a common source u. A critical branching is an overlapping application of two different rewriting steps on the same word u, where u has minimal length, see Chapter 2, Section 2.1.2. A branching (f, f 1 ) is confluent if there exist rewriting steps f and f 1 in Σ * 2 , as follows

v f ! A u f 9 Y f 1 4 T u v 1 f 1 V v
A rewriting system terminates if all the applications of rewriting rules end eventually and it is confluent if for every words u, u and u" such that u rewrites into u and u", there exists a word v such that u and u rewrite into v. It is convergent if it terminates and it is confluent. This means that any rewritings starting on a same word can be extended to end on a same reduced word, called a normal form, after applying a finite number of rewriting rules. A rewriting system is locally confluent if all of its local branchings are confluent. The critical branching Lemma, [39, Theorem 3.1.5.], states that a rewriting system is locally confluent if and only if all its critical branchings are confluent. Newman's Lemma, [39, Theorem 3.1.6.], states that for terminating rewriting systems, local confluence and confluence are equivalent properties.

For instance, the Knuth presentation Knuth 2 (2) of the plactic monoid P 2 with two generators 1 and 2 subject to the Knuth relations ε 1,2,2 : 221 ⇒ 212 and η 1,1,2 : 211 ⇒ 121 is convergent. Indeed it is terminating, thanks to the fact that the lexicographic order is monomial. On the other hand, the presentation Knuth 2 (2) is confluent since it admits a unique confluent critical branching:

2211 2η 1,1,2 & F ε 1,2,2 1 I i 2121
Note that 2η 1,1,2 and ε 1,2,2 1 are the rewriting steps applied on the word 2211.

A way to solve the word problem of a monoid M is to find a finite convergent presentation Σ 1 , Σ 2 of this monoid. Indeed, two elements in the free monoid Σ * 1 represent the same element in the monoid M if, and only if, their normal forms are equal in Σ * 1 . In this way, if a monoid admits a finite convergent presentation then it has a decidable word problem. The inverse of the latter implication was considered as an open problem, [START_REF] Jantzen | Semi Thue systems and generalized Church-Rosser properties[END_REF][START_REF]A note on a special one-rule semi-Thue system[END_REF]. Squier gave a negative answer to this question, [START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF], by constructing finitely presentable monoids with a decidable word problem that cannot be presented by finite convergent presentations. Later, he introduced the condition of finite derivation type, which is a homotopical finiteness property on the presentation complex associated to a presentation of a monoid. He gave a constructive way to prove this finiteness property based on the computation of the critical branchings. Squier showed that being of finite derivation type is a necessary condition for a finitely presented monoid to admit a finite convergent presentation [START_REF] Squier | A finiteness condition for rewriting systems[END_REF].

Two-dimensional polygraphs. Polygraphs were introduced independently by several authors as presentations by generators and relations of higher-dimensional categories. In order to give presentations of 2-categories, Street introduced the notion of computad as a directed graph equipped with extra 2-dimensional directed edges between parallel paths in the graph, [START_REF] Street | Limits indexed by category-valued 2-functors[END_REF][START_REF]The algebra of oriented simplexes[END_REF]. Later on, Power gave an inductive definition of higher dimensional computads, called n-computads, [START_REF] Power | A 2-categorical pasting theorem[END_REF][START_REF]An n-categorical pasting theorem[END_REF]. Right after that, Burroni introduced independently the notion of n-polygraphs using also an inductive definition, [START_REF] Burroni | Higher-dimensional word problem, Category theory and computer science[END_REF][START_REF]Higher-dimensional word problems with applications to equational logic[END_REF]. A 1-polygraph corresponds to an abstract rewriting system, [START_REF] Baader | Term rewriting and all that[END_REF]. More explicitly, a 1-polygraph is a directed graph (Σ 0 , Σ 1 ), given by a set Σ 0 of 0-cells, a set Σ 1 of 1-cells together with two maps s 0 and t 0 sending a 1-cell x on its source s 0 (x) and its target t 0 (x). Since we study monoids, the set Σ 0 is reduced to a set with exactly one element • and the 1-polygraph (Σ 0 , Σ 1 ) is identified to the set Σ 1 . Moreover, a 2-polygraph is a pair Σ = (Σ 1 , Σ 2 ) made of a 1-polygraph Σ 1 and a set of globular 2-cells Σ 2 on the free monoid Σ * 1 equipped with source and target maps s 1 , t 1 : Σ 2 → Σ * 1 that satisfy the globular relations: s 0 s 1 = s 0 t 1 and t 0 s 1 = t 0 t 1 . The elements of Σ 2 are called the rewriting rules of Σ. They have the following globular form:

• s 1 (β) 1 1 t 1 (β) b b β Õ % • A 2-polygraph Σ is a presentation of a monoid M if the monoid M is isomorphic to the quotient of the free monoid Σ *
1 by the congruence generated by the set Σ 2 . Moreover, two 2-polygraphs are Tietze equivalent if their presented monoids are isomorphic. For n 2, an (n + 1)-polygraph is given by an n-polygraph Σ n , with a family Σ n+1 of additional (n + 1)-cells between parallel n-cells of the n-category Σ * n free generated by the n-polygraph Σ n . Using the polygraphical approach, many works have developed the higher-dimensional rewriting theory. Moreover, Squier's results were also presented in the language of polygraphs and higher-dimensional categories yielding new proofs of these results, see [START_REF] Métayer | Resolutions by polygraphs[END_REF][START_REF] Lafont | Algebra and geometry of rewriting[END_REF][START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF][START_REF]Identities among relations for higher-dimensional rewriting systems[END_REF][START_REF]Coherence in monoidal track categories[END_REF][START_REF]Higher-dimensional normalisation strategies for acyclicity[END_REF][START_REF]Polygraphs of finite derivation type[END_REF].

Completion of the Knuth presentation. A presentation of a monoid which is not convergent can be transformed into a convergent one that represents the same monoid, by the Knuth-Bendix's completion. This completion computes a convergent presentation of a monoid from a terminating one by iteratively adding rules, [START_REF] Knuth | Simple word problems in universal algebras[END_REF]. Roughly speaking, let Σ be a terminating presentation of a monoid M, the Knuth-Bendix's completion of Σ is the 2-polygraph obtained from Σ by examining its critical branchings one by one and by adding 2-cells when a critical branching is not confluent. The added 2-cells can make new critical branchings that are also examined and then new 2-cells can be added. The resulted 2-polygraph is a convergent presentation of the monoid M.

For the monoid P 3 , the Knuth presentation Knuth 2 (3) admits three generators 1, 2 and 3, together with the following 8 relations

211 η 1,1,2 =⇒ 121, 311 η 1,1,3 =⇒ 131, 312 η 1,2,3 =⇒ 132, 322 η 2,2,3 =⇒ 232 ∪ 221 ε 1,1,2 =⇒ 212, 231 ε 1,2,3 =⇒ 213, 331 ε 1,3,3 =⇒ 313, 332 ε 2,3,3 =⇒ 323 .
A finite convergent presentation of the monoid P 3 is obtained by adding the following three 2-cells 32321 ⇒ 32132, 32131 ⇒ 31321 and 3212 ⇒ 2321 to its Knuth presentation using the Knuth-Bendix's completion, see Chapter 2, Section 2.3.2.

For n > 3, Kubat and Okniński showed that there is no finite completion of the Knuth presentation of the monoid P n , [65, Theorem 3]: Theorem 2.3.3.3. For n > 3, there is no finite completion of the 2-polygraph Knuth 2 (n) compatible with the lexicographic order.

The column presentation. Bokut, Chen, Chen and Li in [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF] and Cain, Gray and Malheiro in [START_REF]Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF] constructed a finite convergent presentation of the monoid P n with different methods. Both of their methods consist in adding new generators, called the column generators, to the Knuth presentation. The new presentation rewrites two adjacent pairs of columns that do not form a tableau to their corresponding tableau form using Schensted's insertion algorithms. This presentation, called the column presentation, is Tietze equivalent to the Knuth presentation. Cain, Gray and Malheiro used the row-insetion algorithm in the definition of the 2-cells of this presentation whereas Bokut, Chen, Chen and Li used the column-insertion procedure. Note also that Bokut, Chen, Chen and Li obtained in [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF] an infinite convergent presentation of the monoid P n by adding the infinite set of rows over the set [n].

We consider the column presentation for the plactic monoid P n constructed by Cain, Gray and Malheiro, [START_REF]Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF]. In this case, a column is the 1-cell obtained by reading a tableau of shape (1, . . . , 1) from bottom to top. That is, a column is a decreasing 1-cell in the free monoid [n] * . For instance, the 1-cell 76431 is a column over the set [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF]. We denote by col(n) the set of non-empty columns over the set [n]. For every 1-cell u in [n] * , we denote by (u) its length. Moreover, the tableau P(u) is computed by the row-insertion procedure.

Consider two columns u = x p . . . x 1 and v = y q . . . y 1 in col(n), the tableau P(uv) contains at most two columns, see Chapter 3, Subsection 3.2.1. We will denote by u v × when the juxtaposition of the columns u and v does not form a tableau, that is, if p < q or x i > y i for some i q. In this case, we denote by u v ×1 if the tableau P(uv) has one column and by u v ×2 if the tableau P(uv) has two columns.

In order to obtain a finite convergent presentation of the plactic monoid P n , one adds to the presentation Knuth 2 (n) one superfluous generator c u for any u in the set col(n). We will denote by Col 1 (n) the set of column generators c u , for u in col(n), of the monoid P n and by c xp . . . c x 1 γ u =⇒ c u the defining relations for the column generators u = x p . . . x 1 in col(n) of length greater than 2.

For every columns u and v in col(n

) such that u v × , we define a 2-cell α u,v : c u c v ⇒ c w c w
where w = uv and c w = 1 if u v ×1 , and w and w are respectively the left and right columns of

the tableau P(uv) if u v ×2 .
Let us denote by Col 2 (n) the 2-polygraph whose set of 1-cells is Col 1 (n) and the set of

2-cells is c u c v α u,v =⇒ c w c w u, v ∈ col(n) and u v × .
Since the set of column generators Col The Column presentation and Schensted's algorithm. The row-insertion introduced by Schensted corresponds to the leftmost reduction path in Col * 2 (n) from a 1-cell w to its Schensted's tableau, that is, the reduction paths obtained by applying the rules of Col 2 (n) starting from the left. For instance, consider the 1-cell w = 43152452 in [5] * . To compute the tableau P(w), one applies the following successive rules of Col 2 (5) starting in each step from the left: Syzygies and coherent presentations. The syzygy problem for presentations of monoids consists in finding all the relations amongst the relations for these presentations. More explicitly, let (Σ 1 , Σ 2 ) be a presentation of a monoid. A 2-syzygy for 

w = 4 3 1 5 2 4
(Σ 1 , Σ 2 ) is a non trivial 2-sphere of the free (2, 1)-category Σ 2 , that is, a pair (f, g) of 2-cells of Σ 2 such that s 1 (f) = s 1 (g) and t 1 (f) = t 1 (g). A globular extension of Σ 2 is a set Σ 3 equipped
$ D ε 1,2,2 1 R r

2121

that gives two ways to prove the equality 2211 = 2121 in the monoid P 2 . For rank greater than 3, it is difficult to compute a family of syzygies of the Knuth presentation due to the combinatorial complexity of the relations. A (3, 1)-polygraph is a pair (Σ 2 , Σ 3 ) made of a 2-polygraph Σ 2 and a globular extension Σ 3 of Σ 2 . An extended presentation of a monoid is a (3, 1)-polygraph whose 2-polygraph is a presentation of the monoid. A coherent presentation of a monoid is an extended presentation (Σ 2 , Σ 3 ) of this monoid such that the set Σ 3 is a family of generating 2-syzygies of Σ 2 , that we call a homotopy basis, see Chapter 4, Subsection 4.1.1. Squier's theorem gives a method to compute a coherent presentation of a monoid from a convergent one, [START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF]. More precisely, all the critical branchings of a convergent presentation are confluent. Then the adjunction of the 3-cells resulting from these critical branchings to the convergent presentation gives rise to a coherent presentation of the monoid. In order to obtain coherent presentations for plactic monoids, we use the homotopical completion-reduction procedure introduced in [START_REF] Guiraud | A homotopical completion procedure with applications to coherence of monoids[END_REF][START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]. The homotopical completion procedure extends Squier's completion, [START_REF] Squier | A finiteness condition for rewriting systems[END_REF], to terminating 2-polygraphs using the Knuth-Bendix's completion, [START_REF] Knuth | Simple word problems in universal algebras[END_REF]. It examines the critical branchings of a terminating 2-polygraph one by one, add 2-cells to reach the confluence and add also 3-cells to obtain a convergent coherent presentation. This coherent presentation is not minimal in general, then the homotopical reduction procedure coherently eliminates unnecessary superfluous cells from this presentation using the notion of collapsible parts of (3, 1)-polygraphs. In particular, a method to eliminate some superfluous 3-cells is to compute the critical triple branchings in order to obtain relations between 3-cells and then eliminate some of them by Tietze transformations, see Chapter 4, Subsection 4.2.1.

For instance, the Knuth presentation Knuth 2 (2) of the plactic monoid P 2 admits a unique confluent critical branching. Thus the presentation Knuth 2 (2) can be extended into a coherent presentation with the 3-cell:

2211 2η 1,1,2 $ D ε 1,2,2 1 R r 2121 Õ % (7)
Moreover, the column presentation for the monoid P 

Note that for column presentations of the monoids P 3 , P 4 and P 5 we count respectively 7, 15 and 31 generators, 22, 115 and 531 relations, 42, 621 and 6893 3-cells.

MAIN RESULTS

Column presentations of plactic monoids

As discussed in Chapter 2, Section 2.3.2, the Knuth presentation of the plactic monoid P 2 is finite and convergent and the Knuth presentation of the monoid P 3 can be completed into a finite convergent one by adding three 2-cells using the Knuth-Bendix's completion. Moreover, for n > 3, there is no finite completion of the Knuth presentation of the plactic monoid P n compatible with the lexicographic order, [65, Theorem 3]. The presentations by generators and relations constructed for plactic monoids for the classical types contained the Knuth relations, [START_REF]A plactic algebra for semisimple Lie algebras[END_REF][START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF][START_REF]Schensted-type correspondences and plactic monoids for types B n and D n[END_REF][START_REF]Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF]. Therefore, these presentations do not admit a finite completion compatible without adding new generators.

Question. Do plactic monoids admit finite convergent presentations?

In order to answer positively this question, we consider plactic monoids for any semisimple Lie algebra as introduced by Littelmann in [START_REF]A plactic algebra for semisimple Lie algebras[END_REF]. We construct a finite convergent presentation of these monoids in a general way by adding the L-S paths generators. An L-S path corresponds to a column for type A, and to an admissible column for types C, B, D and G 2 in the Lecouvey sense, see [START_REF]Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF]. As for type A, this presentation is also called the column presentation. The column presentation was shown to be a presentation of plactic monoids for any semisimple Lie algebras, [START_REF]A plactic algebra for semisimple Lie algebras[END_REF]Theorem B]. We study this presentation using rewriting methods. For this, we consider a rewriting system where the generating set contains the finite set of L-S paths. The right-hand sides of rewriting rules are tableaux for any type as defined by Littelmann, [START_REF]A plactic algebra for semisimple Lie algebras[END_REF]. The rewriting system rewrites two L-S paths that their concatenation do not form a (generalised) tableau to their corresponding tableau form. Using the shapes of tableaux, we show that this presentation is finite and convergent.

Using a case-by-case analysis and thanks to Kashiwara's theory of crystal bases, the column presentation can be constructed for plactic monoids of type C, B, D and G 2 . We construct the column presentation of the plactic monoid for type C by adding the admissible column generators, [START_REF] Hage | Finite convergent presentation of plactic monoid for type C[END_REF]. The notion of tableaux is generalised to symplectic tableaux for type C. The right-hand side of the rewriting rules of the column presentation for type C is the result of Lecouvey's insertion of an admissible column into another one. By a careful analysis of what shapes of symplectic tableaux can result after this insertion, we show that this presentation is convergent. A bit later, Cain et al. constructed similar column presentations for plactic monoids of type B, C, D and G 2 by also adding the admissible columns generators, [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n[END_REF]. The notion of symplectic tableaux introduced as a generalisation of tableaux for type C has also been generalised to the other types, [START_REF]Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF]. The column presentation for plactic monoids of these types rewrite two admissible columns that do not form a tableau (generalised for these types) to the corresponding tableau form. Cain et al. used Lecouvey's presentations for plactic monoids whereas we use Lecouvey's insertions.

It is worth noting that the column presentation constructed in a general way using L-S paths coincide with the ones constructed separately for types A, B, C, D and G 2 . This presentation covers also the exceptional types that their corresponding plactic monoids do not admit explicit presentations with generators and relations.

In the following, we will give an overview on column presentations of plactic monoids. Firstly, we will show how such presentations can be constructed by introducing the L-S paths. Afterwards, we illustrate the column presentation for the plactic monoid of type C using combinatorial tools and by the use of Kashiwara's theory of crystal bases.

The generalised column presentation of plactic monoids. We consider plactic monoids for any semisimple Lie algebras as defined by Littelmann, [START_REF]A plactic algebra for semisimple Lie algebras[END_REF]. Our aim is to construct finite convergent presentations of theses monoids using Lakshmibai-Seshadri's paths. We use also the notion of standard tableaux defined by Littelmann in [START_REF]A plactic algebra for semisimple Lie algebras[END_REF] as a generalisation of tableaux for any type.

Let us denote by Λ 1 , . . . , Λ n the fundamental weights of a semisimple Lie algebra g. For λ a weight in P ⊗ Z R and t in [0, 1], we define π λ (t) := tλ the path that connects the origin with λ by a straight line. For a dominant weight λ, the Lakshmibai-Seshadri paths, or L-S paths for short, of shape λ are the paths of the form f α 1 • . . . • f αs (π λ ), where α 1 , . . . , α s are simple roots of the semisimple Lie algebra g. A Young tableau of shape λ = a 1 Λ 1 + . . . + a n Λ n is a concatenation where π i,Λ i is an L-S path of shape Λ i , for 1 i n. That is, the first a 1 paths are of shape Λ 1 , the next a 2 are of shape Λ 2 ,. . . , the final a n paths are of shape Λ n .

A Young tableau of shape λ = a 1 Λ 1 + . . . + a n Λ n is a standard tableau of shape λ if it is of the form

f α 1 • . . . • f αs ((π Λ 1 . . . π Λ 1 ) a 1 times (π Λ 2 . . . π Λ 2 ) a 2 times . . . (π Λn . . . π Λn ) an times )
where α 1 , . . . , α s are simple roots of the semisimple Lie algebra g. Note that this notion of standard tableaux introduced by Littelmann using paths correspond to tableaux for type A, symplectic tableaux for type C and orthogonal tableaux for type B and D in the Lecouvey sense, [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF][START_REF]Schensted-type correspondences and plactic monoids for types B n and D n[END_REF][START_REF]Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF].

Let B i be the set of L-S paths of shape Λ i and B = ∪ n i=1 B i . For every L-S paths c 1 and c 2 in B such that c 1 c 2 is not a standard tableau, we define a 2-cell

c 1 .c 2 γ c 1 ,c 2 =⇒ T
where T is the unique standard tableau such that the equality T = c 1 c 2 holds in the corresponding plactic monoid. The 2-polygraph of paths, denoted by Path 2 (n), is the 2-polygraph with only one 0-cell whose set of 1-cells is B and whose set of 2-cells is

Path 2 (n) = c 1 .c 2 γ c 1 ,c 2 =⇒ T c 1 , c 2 ∈ B and c 1 c 2 is not a standard tableau .
This presentation is called the column presentation. It is a presentation of the plactic monoid for any semisimple Lie algebra [START_REF]A plactic algebra for semisimple Lie algebras[END_REF]Theorem B]. Using the shapes of tableaux, we show that this presentation is terminating and confluent. As a consequence, we obtain the following result Theorem 3.1.0.1. For any semisimple Lie algebra g, the 2-polygraph Path 2 (n) is a finite convergent presentation of the plactic monoid for g.

As we will see below for type C, the 2-polygraph Path 2 (n) can be constructed by a case-bycase analysis for plactic monoids of types A, B, C, D and G 2 using the terminology of columns and admissible columns.

The column presentation for the plactic monoid of type C. Consider the plactic monoid P n (C) of type C and the ordered set

C n = 1 < 2 < . . . < n < n < . . . < 1 .
Let us recall some combinatorial ingredients for type C that will be useful afterwards. For a column U, we denote by h(U) the number of its elements. A column U is admissible if for m = 1, . . . , h(U), the number N(m) of letters x in U such that x m or x m satisfies N(m) m. A word is called an admissible column word if it is the reading of an admissible column from top to bottom. For instance, the word 5688 5 is an admissible column word over the ordered set C 8 . We denote by acol(n) the set of non-empty admissible column words in the free monoid C * n . A symplectic tableau is a tableau filled by elements of the set C n and composed by the juxtaposition of admissible columns with an additional property, see Chapter 3, Section 3.3.1. Using his insertion algorithm, Lecouvey showed that for any word w in the free monoid C * n , one can compute a unique symplectic tableau, denoted by P(w), [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF].

Using Kashiwara's theory of crystal bases, we generalized the column presentation for type A. We constructed a finite convergent presentation of the monoid P n (C) by adding admissible column generators, [START_REF] Hage | Finite convergent presentation of plactic monoid for type C[END_REF]. The right-hand side of the rewriting rules of this presentation is the result of the Lecouvey's insertion of an admissible column into another one. In other words, the result is a symplectic tableau consisting of at most two admissible columns as shown in the following.

In order to give a finite convergent presentation of the plactic monoid P n (C), one introduces the admissible column generators. The set of generators is

ACol 1 (n) = c u u ∈ acol(n) ,
where each element c u is equal to u in the monoid P n (C).

Let u and v be the readings from top to bottom of two admissible columns U and V respectively. We will denote by U V when the 1-cell uv is not the reading of a symplectic tableau. That is, when the juxtaposition of U and V from right to left does not form a tableau.

To define the 2-cells of the new presentation, we need to know the shape of the symplectic tableau P(uv) for each admissible columns words u and v in acol(n). We have Lemma 3.3.3.1. Let u and v be the readings of two admissible columns U and V respectively. The symplectic tableau P(uv) consists of at most two columns.

Let u and v be in acol(n) such that their corresponding admissible columns U and V satisfy U V. We define a 2-cell α u,v by

• c u c v α u,v
=⇒ c w c w , where the words w and w are respectively the readings of the right and left columns W and W of P(uv) if this symplectic tableau consists of two columns.

• c u c v α u,v =⇒ c w , where w is the reading of the column W of P(uv) if it consists of one column.

• c u c v α u,v =⇒ c ε , where ε is the empty word if P(uv) consists of zero column.

Let ACol 2 (n) be the 2-polygraph whose set of 1-cells is ACol 1 (n) and whose set of 2-cells contains all the 2-cells α u,v for u and v in acol(n) such that U V. We show that 2polygraph ACol 2 (n) is a presentation of the plactic monoid P n (C) of type C, called the column presentation, see Chapter 3, Lemma 3.3.4.5.

Our aim is to prove that the 2-polygraph ACol 2 (n) is finite and convergent. It is finite thanks to the fact that the set ACol 1 (n) is finite. Knowing about the resulting shapes of tableaux allows us to define a well-order on products of columns such that rewriting always decrease with respect to this order. Lemma 3.3.3.2. Let u and v be the readings of two admissible columns U and V respectively, such that U V. Suppose that P(uv) has two columns and let W be the rightmost column. Then the column U contains more elements than W.

Thus the 2-polygraph ACol 2 (n) is terminating. The confluence follows from the fact that symplectic tableaux form a cross-section of the monoid P n (C). As a consequence, we obtain 

Coherent presentations of plactic monoids of type A

As mentioned previously, for rank greater or equal to 4, the syzygies problem for the Knuth presentation is difficult due to the combinatorial complexity for the Knuth relations. Thanks to the homotopical completion-reduction procedure, we construct a finite coherent presentation of the monoid P n that extends the Knuth presentation Knuth 2 (n). In a first step, starting from the column presentation Col 2 (n), we construct a coherent presentation of the plactic monoid P n . This presentation is not minimal in the sense that some of its generators are superfluous. After several steps of reduction, we obtain a coherent presentation of the monoid P n with the Knuth generators giving syzygies of the Knuth presentation.

For instance, the column presentation Col 2 (2) of the monoid P 2 can be extended into a coherent presentation by adding the unique generating 3-cell [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF]. After applying our construction on this coherent presentation, we show that the Knuth presentation can be extended into a coherent one by adding the generating 3-cell [START_REF] Bokut | Imbeddings into simple associative algebras[END_REF].

The following diagram illustrates our construction 

Knuth 2 (n) Tietze equivalence G G Col 2 (n) Homotopical completion G G Col 3 (n) Homotopical reduction Knuth 3 (n) PreCol 3 (n)
for any columns u = x p . . . x 1 , v = y q . . . y 1 and t = z l . . . z 1 such that uv and vt are not tableaux, where e and e (resp. w and w ) denote the two columns of the tableau P(uv) (resp. P(vt)) and a and a (resp. b and b ) denote the two columns of the tableau P(uw) (resp. P(e t)) and a, d, b are the three columns of the tableau P(uvt), which is a normal form in the 2-polygraph Col 2 (n). We denote by Col 3 (n) the extended presentation of the monoid P n obtained from Col 2 (n) by adjunction of 3-cells of the form X u,v,t . We obtain the following result: Pre-column coherent presentation. In a second step of reduction, we reduce the coherent presentation Col 3 (n) into a smaller one. This reduction, denoted by R Γ 3 , is given by a collapsible part defined by a set of 3-cells of Col 3 (n), see Chapter 4, Subsection 4.2.3. The homotopical reduction R Γ 3 eliminates from Col 3 (n) the 3-cells of the form A x,v,t , B x,v,t and C x,v,t , which are not of the form C x,v,t . The reduction R Γ 3 also eliminates some superfluous 2-cells from Col 3 (n).

More precisely, let PreCol 3 (n) be the (3, 1)-polygraph whose set of

1-cells is Col 1 (n), the set of 2-cells is c x c zy α x,zy =⇒ c zx c y | 1 x y < z n ∪ c y c zx α y,zx =⇒ c yx c z | 1 x < y z n ∪ c x c u α x,u =⇒ c xu | xu ∈ col(n) and 1 x n ,
and whose 3-cells are the form R Γ 3 (C x,v,t ) where 

c xv c t C x,v,t Õ % c x c v c t α x,v c t
{ R(C x,v,t ) x v t ×1 ×2 } ∪ { R(D x,v,t ) x v t ×2 ×2 },
where R : Example: the case of the monoid P 2 . The coherent presentation PreCol 3 (2) of the monoid P 2 is reduced to the presentation with generators c 1 and c 2 subject to the relations η 1,1,2 : 

Col 3 (n) → Knuth 3 (n) is a
c 2 c 1 c 1 ⇒ c 1 c 2 c 1 and ε 1,2,2 : c 2 c 2 c 1 ⇒ c 2 c 1 c 2 and the following 3-cell c 2 c 2 c 1 c 1 2η 1,1,2 ' G ε 1,2,2 1 F f c 2 c 1 c 2 c 1 C Õ % which coincides
(n) Col 1 (n) Knuth 2 (n) KB(Knuth 2 (n)) Col 2 (n) Knuth KB 3 (n) Knuth 3 (n) Col 3 (n) Col 3 (n) 1 1 1 0 0 0 0 0 0 2 2 3 2 2 3
A(uv)A(w) A uv,w & F = A(u)A(v)A(w) A u,v A(w) 9 Y A(u)A v,w 5 U A(uvw) A(u)A(vw) A u,vw H h
ii) for every element u of the monoid M, the following diagrams commute

A(1)A(u) A 1,u ! A A(u) A • A(u) A a A(u) = A(u)A(1) A u,1 $ D A(u) A(u)A • @ `A(u) =
The following result relates coherent presentations and the actions of monoids on categories. Let M be a monoid and let Σ be an extended presentation of M. The (3, 1)-polygraph Σ is a coherent presentation of M if, and only if, for every 2-category C, there is an equivalence of categories Act(M) ≈ 2Cat(Σ * 1 /Σ 2 , C) that is natural in C, [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]Theorem 5.1.5]. In this way, up to equivalence, the actions of a monoid M on categories are the same as the 2-functors from Σ * 1 /Σ 2 to Cat. Using this description, Theorem 4.2.4.3 allows to present actions of plactic monoids on categories as follows. The category Act(P n ) of actions of the plactic monoid P n on categories is equivalent to the category of 2-functors from the (2, 1)-category Knuth 2 (n) to the category Cat of categories, that sends the 3-cells of Knuth 3 (n) to commutative diagrams in Cat. An interesting question is to study the actions of the plactic monoid on the category of finite-dimensional representations of the general Lie algebra or in the category O whose objects are some representations of the general Lie algebra and morphisms are homomorphisms of representations, [START_REF]Representations of semisimple Lie algebras in the BGGcategory O[END_REF].

Higher syzygies for the plactic monoid. In [START_REF]Higher-dimensional normalisation strategies for acyclicity[END_REF], the authors show how to extend a convergent presentation of a monoid into a polygraphic resolution of the monoid. The column presentation Col 2 (n) of the monoid P n can then be extended into a polygraphic resolution whose n-cells, for every n 3, are indexed by (n -1)-fold branching of Col 2 (n). We can explicit the 4-cells of this resolution, which correspond to the confluence diagrams induced by critical triple branchings. That is, for columns u, v, t and e in col(n) such that u v × , v t × and t e × , there is a critical triple branching with source c u c v c t c e . Using the same arguments of Section 4.2.2, we can show that the confluence diagram induced by this triple branching is represented by the 3-sphere Ω u,v,t,e whose the source is the 3-cell

c u c v c m c m α v,m 7 W c u X v,t,e Õ % c u c s 1 c s 1 c m α s 1 ,m 7 W c u c s 1 c e 1 c e 1 α u,s 1 7 W X u,p 1 ,f 1 c e 1 Õ % c n 1 c n 1 c e 1 c e 1 α n 1 ,e 1 ) I c u c p 1 c f 1 c e 1 α p 1 ,f 1 F f α u,p 1 ( H c n 1 c b 1 c b 1 c e 1 α b 1 ,e 1 ) I c u c v c t c e α t,e V v α v,t 7 W α u,v 8 c u c p 1 c p 1 c e α p 1 ,e F f α u,p 1 ( H X u,v,t c e Õ % ≡ c d 1 c g 1 c f 1 c e 1 α g 1 ,f 1 7 W c d 1 X g 1 ,p 1 ,e Õ % c d 1 c m 1 c b 1 c e 1 α d 1 ,m 1 E e α b 1 ,e 1 ) I ≡ c n 1 c b 1 c m 1 c a 1 c d 1 c g 1 c p 1 c e α p 1 ,e F f α g 1 ,p 1 ( H c d 1 c m 1 c m 1 c a 1 α d 1 ,m 1 E e c w c w c t c e α w ,t 7 W c w c s c s c e α w,s 7 W α s ,e ( H c d 1 c d 1 c s c e α s ,e 7 W c d 1 c d 1 c a 1 c a 1 α d 1 ,a 1 E e c w c s c a 1 c a 1 α w,s E e ≡
and the target is the 3-cell

c u c s 1 c e 1 c e 1 ≡ α u,s 1 7 W c n 1 c n 1 c e 1 c e 1 α n 1 ,e 1 ) I c u c s 1 c s 1 c m α u,s 1 7 W α s 1 ,m E e X u,v,m c m Õ % c n 1 c n 1 c s 1 c m α s 1 ,m E e α n 1 ,s 1 ) I c n 1 X n 1 ,s 1 ,m Õ % c n 1 c b 1 c b 1 c e 1 α b 1 ,e 1 ! A c u c v c m c m α v,m F f α u,v ( H c n 1 c b c n c m α n ,m ) I c u c v c t c e α t,e G g α u,v ' G ≡ c w c w c m c m α w ,m 7 W X w,w ,t c e Õ % c w c n c n c m α w,n E e α n ,m ) I ≡ c n 1 c b c e c a 1 α b ,e 7 W X w,s,a 1 c a 1 Õ % c n 1 c b 1 c m 1 c a 1 c w c w c t c e α t,e F f α w ,t ( H c w c n c e c a 1 α w,n E e c d 1 c m 1 c m 1 c a 1 α d 1 ,m 1 i c w c s c s c e α s ,e 7 W c w c s c a 1 c a 1 α w,s 7 W α s,a 1 E e c d 1 c d 1 c a 1 c a 1 α d 1 ,a 1 E e
In the generating triple confluence, some columns may be empty and thus the indicated 2-cells α may be identities. To facilitate the reading of the diagram, we have omitted the context of the 2-cells α.

More generally, we expect that the generating n-cell of the resolution has the form of the permutohedron of dimension n.

An implementation of the Knuth coherent presentation. As described in Chapter 4, Section 4.2, we construct a finite coherent presentation of the plactic monoid P n , whose underlying 2-polygraph is the Knuth presentation. In particular, we show that the 3-cells of this presentation are of the form

{ R(C x,v,t ) x v t ×1 ×2 } ∪ { R(D x,v,t ) x v t ×2 ×2 },
where R is a Tietze transformation constructed throughout several steps. We have implemented a program in Python that gives the number of cells of the Knuth coherent presentation as presented in the above table. This program consists in the computation of the number of sources s 1 (X u,v,t ) of the 3-cells X u,v,t of this presentation. Note that our construction allows to give explicit forms for these 3-cells. Note also that after applying the Tietze transformation R, no 3-cell can be transformed to the identity. We would implement a program that gives the explicit forms of the 3-cells of the Knuth coherent presentation for higher ranks. For instance, the Knuth coherent presentation of the monoid P 8 contains 275868 3-cells. In order to obtain the forms of these 3-cells, the program should give the explicit forms of the 3-cells of the presentations Col 3 (8), Col 3 (8) and PreCol 3 (8) constructed during applying the Tietze transformation R.

Anick's resolutions of plactic monoids via Littelmann paths. Anick constructed a resolution of a field K seen as a G-module, where G is an associative augmented algebra over K, [START_REF] Anick | On monomial algebras of finite global dimension[END_REF][START_REF]On the homology of associative algebras[END_REF]. He defined a set of n-chains using the notion of Gröbner-Shirshov basis. Moreover, he gave an inductive definition of differentials using a contracting homotopy defined by an inductive way. Afterwards, Anick's resolution was extended to the cases of operads and categories, [START_REF] Malbos | Rewriting systems and hochschild-mitchell homology[END_REF][START_REF] Dotsenko | Free resolutions via Gröbner bases[END_REF]. Furthermore, the technique of algebraic discrete Morse theory introduced independently in [START_REF] Jöllenbeck | Minimal resolutions via algebraic discrete Morse theory[END_REF][START_REF] Sköldberg | Morse theory from an algebraic viewpoint[END_REF] describes explicitly the differentials of Anick's resolution by a very useful machinery using directed graphs. Such resolution allows to compute the homological invariants of the studied monoid.

Starting from the column presentation Col 2 (n) of the plactic monoid P n , Lopatkin construced an Anick resolution of the monoid P n by the use of Morse theory, [START_REF] Viktor Lopatkin | Cohomology rings of the plactic monoid algebra via a Gröbner-Shirshov basis[END_REF] . As a consequence, he computed the homological invariants of the monoid P n . Using the same strategy and starting from the column presentation of plactic monoids for any type constructed using L-S paths, we should obtain Anick's resolutions for these monoids in a general way recovering Lopatkin's work. Homological invariants of plactic monoids for any type could then be computed.

The Chinese monoid. For a totally ordered finite set [n] = {1 < . . . < n}, the Chinese monoid over [n] is the monoid generated by [n] and submitted to the relations zyx = zxy = yzx, for x y z. [START_REF] Bourbaki | Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines[END_REF] This monoid appeared in the classification of classes monoids with growth function coinciding with that of the plactic monoid [START_REF] Duchamp | Plactic-growth-like monoids, Words, languages and combinatorics[END_REF]. Since Young tableaux play an important role in the structure of plactic monoids, a similar notion of Chinese staircases was found for the Chinese monoid, [ Starting from a convergent presentation of the Chinese monoid, a future work would be to compute coherent presentations for this monoid. Thanks to the homotopical completion procedure, we expect to obtain a result similar to Theorem 4.1.3.1 for Chinese monoids taking into account that we need at most five steps of rewriting to obtain a normal form whereas the normal form in the plactic case is attained in at most three steps. Moreover, such a coherent presentation could be homotopically reduced into a minimal one using the same strategy as in the plactic monoid case. Coherent presentations of the Chinese monoids should allow us to compute their homological invariants and to describe their actions on categories.

As presented in our work, crystal graphs and Kashiwara's operators interact with the notion of tableaux and their generalisations and provide combinatorial tools to study plactic monoids. A future work might be to construct a crystal structure for the Chinese monoid. The elements of the new crystal graph would be identified to Chinese staircases and the congruence generated by the relations [START_REF] Bourbaki | Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines[END_REF] would have an interpretation in terms of a crystal isomorphism. A question is to study the interaction of the crystal graph of the plactic monoid of type A and the one constructed for the Chinese monoid.

The sylvester monoid. The structure of sylvester monoids appeared in the combinatorial study of Loday-Ronco's algebra of planar binary trees related to non-commutative symmetric functions and free symmetric functions, [START_REF] Hivert | The algebra of binary search trees[END_REF]. The sylvester monoid is constructed using the notion of binary search trees in a similar way as for the plactic monoid by introducing a Schensted-like insertion on these trees.

The sylvester monoid of rank n is defined as the quotient of the free monoid over the ordered set [n] by the congruence generated by the family of the following relations:

cavb = acvb, such that a b < c,
where v is a word in the free monoid [n] * . This infinite presentation introduced by Hivert, Novelli and Thibon, [START_REF] Hivert | The algebra of binary search trees[END_REF], was shown to be convergent by Cain, Gray and Malheiro, [START_REF]Rewriting systems and biautomatic structures for Chinese, hypoplactic, and Sylvester monoids[END_REF]. Constructing a finite convergent presentation of the sylvester monoid is still an open problem. Using a process similar to the construction of the column presentation of the plactic monoid, one should construct a finite convergent presentation of the sylvester monoid by adding new families of binary trees. Starting from a convergent presentation of the sylvester monoid, one could give an algorithmic method to compute 2-syzygies for the presentation introduced by Hivert, Novelli and Thibon by constructing coherent presentations for this monoid. In this chapter, we give a full overview on plactic monoids using the notions of Young tableaux, [START_REF] Young | On Quantitative Substitutional Analysis[END_REF][START_REF] Georg | Über die charakteristischen Einheiten der symmetrischen Gruppe[END_REF], Kashiwara's crystal bases, [START_REF] Kashiwara | Crystallizing the q-analogue of universal enveloping algebras[END_REF][START_REF]Global crystal bases of quantum groups[END_REF][START_REF]On crystal bases, Representations of groups[END_REF][START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF] and Littelmann path model [START_REF]A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras[END_REF][START_REF]Crystal graphs and Young tableaux[END_REF][START_REF]Paths and root operators in representation theory[END_REF][START_REF]A plactic algebra for semisimple Lie algebras[END_REF].

We begin in Section 1.1 by recalling some definitions and properties about finite-dimensional semisimple Lie algebras that will be crucial afterwards.

We define in Section 1.2 the plactic monoid introduced by Lascoux and Schützenberger and known as the plactic monoid of type A. This monoid is presented by the use of Young tableaux and their properties. We explain in 1.2.1 the notion of tableaux and we give in details Schensted's insertion algorithms with additional examples. We recall in 1.2.2 some properties concerning the longest decreasing and non-decreasing subsequences of a given word over the ordered set {1 < . . . < n}. We recall in 1.2.3 the definition and some properties of the plactic monoid P n of type A and rank n.

The material of Section 1.3 illustrates the connection between Kashiwara's theory of crystal bases and plactic monoids. For this, we first recall in 1.3.1 the definition of crystal graphs and we give in 1.3.2 the notion of crystal graphs for type A. Equipped with these definitions, we describe the connection between the representations of the special linear Lie algebra and the combinatorics of Young tableaux. We explain in 1.3.3 in details the notion of a crystal graph for type C. After we recall in 1.3.4 how the plactic monoid introduced by Lascoux and Schützenberger is related to the representations of the general Lie algebra. Using Kashiwara's theory of crystal bases, we give the definition of the plactic congruence generalised to other semisimple Lie algebras. Finally, we briefly outline the notion of plactic monoids of type B, C, D and G 2 .

We end this chapter with Section 1.4 on the relationship between Littelmann path model and plactic monoids. The definition of these monoids given in a general way using Littelmann paths coincide in some sense with the one given by a case-by-case analysis using Kashiwara's crystal graphs. In 1.4.1, we recall the definitions of paths, root operators and Lakshmibai-Seshadri's paths. After, we present in 1.4.2 the definition and some properties of standard tableaux as defined by Littelmann and we recall the definition of the plactic algebra for any semisimple Lie algebra.

PRELIMINARIES ON REPRESENTATION THEORY

In this section, we recall the definition and some properties of semisimple Lie algebras. We refer the reader to [START_REF] Humphreys | Introduction to Lie algebras and representation theory[END_REF][START_REF] Fulton | Representation theory. A first course[END_REF][START_REF] Bourbaki | Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines[END_REF][START_REF] Hong | Introduction to quantum groups and crystal bases[END_REF] for a full introduction.

Semisimple Lie algebras.

A Lie algebra is a vector space g over a field K with a binary operation [., .] : g × g → g called the Lie bracket, satisfying the following properties: Let g 1 and g 2 be Lie algebras. A Lie algebra morphism of g 1 to g 2 is a linear map ϕ :

g 1 → g 2 satisfying [ϕ(x), ϕ(y)] = ϕ([x, y]
), for all x and y in g 1 .

If it is also bijective, it is a Lie algebra isomorphism. A subspace h of a Lie algebra g is a Lie subalgebra of g if h itself is a Lie algebra with the bracket induced from g. A Lie subalgebra I of g is an ideal if the bracket [x, y] is in I, for all x in g and y in I.

1.1.0.1. Example. Let V be a vector space over a field K. Denote by EndV the set of all linear transformations on V. We define the bracket on EndV by [f, g] = fg -gf, for all f and g in EndV.

Then, the vector space EndV becomes a Lie algebra, called the general linear Lie algebra, and denoted by gl(V). Suppose V = C n , then the general linear Lie algebra is denoted by gl n (C) and the linear endomorphisms of C n are identified with the n by n matrices over C.

A simple Lie algebra is a non abelian Lie algebra whose only ideals are 0 and itself. For a Lie algebra g, the derived Lie algebra is the subalgebra of g, denoted by [g, g], that consists of all Lie brackets of pairs of elements of g. The derived series is a sequence of derived Lie algebras D i g, for i 0, defined by induction as follows

D 0 g = g and D i+1 g = [D i g, D i g].
A Lie algebra g is solvable, if the derived series eventually arrives at the zero subalgebra.

A Lie algebra g is semisimple, if there are no non-zero solvable ideals in g. Note that a semisimple Lie algebra g is a direct sum of simple Lie algebras. In particular, every simple Lie algebra is also semisimple. Representations of Lie algebras. Let g be a Lie algebra and let V be a vector space over a field K. A representation of g on V is a Lie algebra homomorphism ψ : g → gl(V). A vector space V is called an g-module if there is a bilinear map g × V → V, denoted by (x, v) → x.v, and satisfying

[x, y].v = x.(y.v) -y.(x.v) for x, y ∈ g, v ∈ V.
A representation ψ : g → gl(V) of a Lie algebra g on a vector space V defines an g-module structure on V by

x.v = ψ(x)(v) for x ∈ g, v ∈ V. (1.1)
Conversely, if V is a g-module, we obtain a representation ψ : g → gl(V) defined by (1.1).

1.1.0.3. Example. Let g = gl n (C) be the general linear Lie algebra and V = C n . One defines a map g × V → V (x, v) → xv by matrix multiplication. Then V is given an g-module structure called the vector representation or the natural representation of gl n (C).

Root system. Let g be a semisimple Lie algebra and let S be a finite vector space with standard inner product •, • . A root system Φ of the Lie algebra g is a subset of S \ {0} satisfying the following:

1. The set Φ is finite and it contains a basis of the vector space S.

2. For roots α and β in Φ, we have 2 α,β β,β ∈ Z.

3. For a map s α : S → S satisfying s α (v) = v -2 α,v α,α α, we have s α (β) in Φ, for all roots α and β in Φ. Note that a root system is symmetric with respect to the zero vector, we have that -α is in Φ if α is in Φ. Given a root system Φ, one can always choose a subset of positive roots Φ + satisfying:

• for each root α in Φ, exactly one of the roots α or -α is contained in Φ + ,

• for any two distinct roots α and β in Φ + such that α + β is a root, we have that α + β is in Φ + .

A positive root α in Φ + is simple, if it can not be written as α 1 + α 2 , where α 1 and α 2 are positive roots. The coroot of a root α is α ∨ := 2α α,α . Denote by

P := v ∈ S v, α ∨ i ∈ Z, for all i
the weight lattice of the Lie algebra g. A fundamental weight Λ i in P satisfies Λ i , α ∨ j = δ ij , for all i and j. The set of dominant weights is

P + = λ ∈ P λ, α ∨ i 0, for all i ,
and the dominant chamber is

P + R = λ ∈ P R λ, α ∨ i 0, for all i .
1.1.0.4. Example. Let g = sl 3 (C). Consider S = (x 1 , x 2 , x 3 ) ∈ R 3 x 1 + x 2 + x 3 = 0 and let {ε 1 , ε 2 , ε 3 } be the canonical basis of R 3 . The simple roots of g are α 1 = ε 1 -ε 2 and α 2 = ε 2 -ε 3 . Its fundamental weights are Λ 1 = ε 1 and Λ 2 = ε 1 + ε 2 (we still denote by ε i the projection of ε i onto S). An example of dominant weight is Λ 1 + Λ 2 . The dominant chamber is the hatched area on the following figure: 

ε 1 = Λ 1 ε 2 ε 3 α 1 Λ 1 + Λ 2
Λ 2 = ε 1 + ε 2 . An example of dominant weight is Λ 1 + Λ 2 .
The dominant chamber is the hatched area on the following figure:

0 ε 2 α 2 ε 1 = Λ 1 α 1 Λ 2 Λ 1 + Λ 2
Weight module. Let g be a Lie algebra. The lower central series of g is defined inductively as follows: g (1) = g and g (i) = [g, g (i-1) ], for i > 1. A Lie algebra is nilpotent if its lower central series eventually becomes zero. A normalizer of a Lie subalgebra h of g is the set of elements x in g such that [x, h] ⊂ h. In other words, the normalizer of h is the biggest subalgebra of g such that h is an ideal of it. A subalgebra h of g is called a Cartan subalgebra of g if h is nilpotent and equal to its own normalizer. Let h be a maximal Cartan subalgebra of a Lie algebra g and let V be a representation of g. The weight space of V with weight λ: h → K is the subspace

V λ := v ∈ V ∀ξ ∈ h, ξ • v = λ(ξ)v
where ξ • v denotes the action of h on V. A weight of the representation V is a weight λ such that the corresponding weight space V λ is non-zero. A highest weight of the representation V is a weight λ such that V λ = 0 but V λ+α = 0 for all positive root α. If V is the direct sum of its weight spaces

V = λ∈h * V λ
then it is called a weight module.

For instance, let g be a Lie algebra. Define a map ad : g → gl(g) by

adX(Y) = [X, Y],
for all X and Y in g. The Lie algebra homomorphism ad is called the adjoint representation of g.

It is isomorphic to the following direct sum α∈Φ∪{0} V α .

PLACTIC MONOID OF TYPE A

For a natural number n > 0, let denote by [n] the finite set {1, 2, . . . , n} totally ordered by 1 < . . . < n. For every word w in the free monoid [n] * , we denote by (w) the length of w and by l nds (w) the length of its longest non-decreasing subsequence.

Schensted's insertion algorithms

In order to compute the length of the longest decreasing and non-decreasing subsequences of a given word on the free monoid [n] * , Schensted, [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF], introduced two insertion algorithms: the column and the row insertion. These algorithms describe how an element in the set [n] acts on a Young tableau to create a new tableau with one extra entry than before.

Tableaux. A Young diagram of shape λ = (λ 1 , . . . , λ k ) ∈ N k , with n λ 1 . . . λ k 1, is a collection of boxes in left-justified rows, where the i-th row is of length λ i , for i = 1, . . . , k.

For instance, a Young diagram of shape (6, 4, 1) is .

A Young tableau of shape λ is a Young diagram of the same shape filled with elements of the ordered set [n] where the entries strictly increase down each column. For example, a Young tableau of shape (4,3,1) is 2 1 2 3 3 3 3 4

.

A semistandard tableau of shape λ, or tableau for short, is a Young tableau of shape λ where the entries weakly increase along each row and strictly increase down each column. For instance, a tableau of shape (4,3,1) is 1 1 2 3 2 3 3 3

.

A standard tableau of shape λ is a tableau of shape λ where the entries are elements from 1 Any word w in the free monoid [n] * has a unique decomposition as a product of rows of maximal length w = u 1 . . . u k . Such a word w is a word tableau if u 1 u 2 . . . u k . It is usual to write words tableaux in a planar form, with the rows placed in order of domination from bottom to top and left-justified as mentionned by Fulton in [START_REF] Fulton | Young tableaux[END_REF]. In other words, a word tableau admits a tableau as a planar representation.

to k i=1 λ i ,
In the sequel, if there is no confusion we will say a tableau for a word tableau or for its planar form. .

Since the first row does not dominate the second one, the word w 1 is not a tableau.

iii) Consider the word w 2 = 23412 in the free monoid [4] * . Its planar representation is

1 2 2 3 4
Since it is not a Young diagram, it is not a tableau.

Column readings. The column reading of the planar representation of a tableau w constructs a word, denoted by C(w), obtained by reading the planar representation of w columnwise from bottom to top and from left to right. For example, the column reading of the tableau (1.2) is 6421852153163254744.

The Japanese reading of the planar representation of a tableau w constructs a word, denoted by w(w), obtained by reading the planar representation of w columnwise from top to bottom and from right to left. For instance, the Japanese reading of the tableau (1.2) is 4474523613512581264.

The column-insertion. The column-insertion procedure, denoted by x → w, inserts a word x in [n] into a Young tableau w as follows. Let y be the smallest element of the first column of the Young tableau w such that y x. Then x replaces y in the first column and y is bumped into the next column where the process is repeated. This procedure terminates when the element which is bumped is greater than all the elements of the next column. Then it is placed at the bottom of that column.

For each word w = x 1 . . . x p , a tableau P(w) can be computed by starting with the empty word, which is a valid tableau, and iteratively applying Schensted's algorithm. That is, For instance, the successive steps of the computation of the tableau P(1213214) and the standard tableau Q(1213214) are

P(w) = x p → (x p-1 → (. . . → (x 2 → x 1 ))).
1 1 2 1 1 2 1 1 2 3 1 1 2 2 3 1 1 1 2 2 3 1 1 1 2 2 3 4
= P(1213214). The row-insertion. As for the column-insertion, one can compute a tableau from a word w in [n] * by inserting elements in the rows of tableaux instead of columns. The resulted tableau is also denoted by P(w).

Given a tableau w written as a product of rows of maximal length w = u 1 . . . u k and y in [n], the row-insertion algorithm, denoted by w ← x, computes the tableau P(wx) as follows:

-If u k x is a row, the result is u 1 . . . u k x.

-If u k x is not a row, then suppose u k = x 1 . . . x l , with x i in [n] and let j minimal such that x j > x. Then the result is P(u 1 . . . u k-1 x j )v k , where v k = x 1 . . . Robinson-Schensted's correspondence. The Robinson-Schensted correspondence can be also constructed using the row-insertion algorithm. For any word w = x 1 . . . x l in the free monoid [n] * the tableau P(w) is computed by starting with the empty word, which is a valid tableau, and iteratively applying Schensted's algorithm. That is,

P(w) = (((x 1 ← x 2 ) ← . . .) ← x p-1 ) ← x p .
During the computation of the tableau P(w), the standard tableau Q(w) is obtained by successively putting i in a box at the same place of the added box when inserting the element x i of w. 

1 ← 2 , 1 2 ← 1 , 1 1 2 ← 3 , 1 1 3 2 ← 2 , 1 1 2 2 3 ← 1 , 1 1 1 2 2 3 ← 4 , 1 1 

Longest non-decreasing subsequence of a word

Let w be a permutation in the free monoid [n] * , that is a word in which no elements are repeated. The j-th basic subsequence of w consists of the elements which are inserted into the j-th place in the first row of the tableau P(w), where P(w) is computed by the row-insertion procedure. We have the following properties:

1. Each basic subsequence is a decreasing subsequence [104, Lemma 1]. Indeed, by definition of the row-insertion procedure, each element in the j-th basic subsequence replaces a previous larger element.

2. Given any member of the j-th basic subsequence, we can find a member of the (j -1)st basic subsequence which is smaller and which occurs further to the left in the given sequence [104, Lemma 2]. Indeed, when a given member of the j-th basic subsequence is inserted in the first row, the element in the (j -1)st place is a member of the (j -1)st basic subsequence, it is smaller than the inserted one and occurs further to the left in the given sequence.

Theorem ([104, Theorem 1]

). Let w be a permutation in [n] * . The number of columns in the tableau P(w) is equal to the length of the longest increasing subsequence of w.

Proof. The number of columns is the same as the number of basic subsequences. By 1., there can be at most one member of each basic subsequence in any increasing subsequence. By 2., we can construct any increasing subsequence with one element from each basic subsequence.

Let w back be the word obtained from w by writing its elements backwards. Then the tableau P(w back ) is obtained from P(w) by interchanging rows and columns [104, Lemma 7]. Since writing a sequence backwards changes increasing subsequences into decreasing ones, one obtains the following theorem 1.2.2.2. Theorem ([104, Theorem 2]). Let w be a permutation in [n] * . The number of rows in the tableau P(w) is equal to the length of the longest decreasing subsequence of w.

Furthermore, Schensted showed in Part II of [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF] that we can obtain the same properties for words in which no elements are repeated and the ones in which some of the elements are repeated. For this, he considered the following procedure. For any word w in [n] * , suppose the smallest element of w appears p times in it, the next smallest q times, and so on. One replaces the p occurrences of the smallest number by the numbers 1, . . . , p, the occurrences of the next element by p + 1, . . . , p + q, and so on. Then the decreasing subsequences of the two sequences are in one-to-one correspondence, and the increasing subsequences of the new sequence are in one-to-one correspondence with the non-decreasing subsequences of w. Hence, one obtains the following theorem 1.2.2.3. Theorem ( [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF]). Let w be a word in the free monoid [n] * . The number of columns of the tableau P(w) is equal to l nds (w). The number of rows of P(w) is equal to the length of the longest decreasing subsequence in w.

Another proof of this theorem is also given in Section 5.2 in [START_REF] Lothaire | Algebraic combinatorics on words[END_REF]Chapter 6] by proving a more general result of Greene, which gives an interpretation of the lengths of all rows and the heights of all columns of the tableau P(w), for any word w in the free monoid [n] * .

The plactic monoid

The plactic congruence. We will denote by ∼ plax the equivalence relation on the free monoid [n] * defined by u ∼ plax v if and only if P(u) = P(v),

where the tableaux P(u) and P(v) are respectively computed by the row-insertion procedure.

The plactic monoid of rank n, denoted by P n , [START_REF]Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics[END_REF], is the quotient of the free monoid [n] * by the congruence ∼ plax . The congruence ≡ on the free monoid [n] * generated by the Knuth relations:

{ zxy ≡ xzy | 1 x y < z n } ∪ { yzx ≡ yxz | 1 x < y z n }, (1.3) 
is called the plactic congruence. Moreover, the equivalence relation coincides with the plactic congruence, see [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF]Theorem 6] or [91, Theorem 5.2.5]. In particular, each plactic class contains exactly one tableau. In 1.3.4, we will show how the plactic monoid P n is related to the representations of the general Lie algebra, which is of type A, and thus called as the plactic monoid of type A, [START_REF] Lascoux | Crystal graphs and q-analogues of weight multiplicities for the root system A n[END_REF].

Properties. Any word w in [n] * is equal to its Schensted's tableau in P n , that is, w = P(w) holds in P n , [91, Proposition 5.2.3]. Indeed, one proceeds by induction on the length of the word w. By definition of the congruence ≡, the result is true for (w) 3. Suppose that for a word w, we have P(w) ≡ w, and let x be an element in [n]. One has to show that P(wx) ≡ wx. Note that it is sufficient to suppose that w is a row. If wx is a row then P(wx) = wx and otherwise P(wx) = yw where y is the leftmost letter in w such that y > x, and w is obtained from w by replacing y by x. Then by a sequence of applications of the relations (1.3), one obtains wx ≡ uyxv ≡ yuxv = P(wx).

In addition, we have that every word w in the free monoid [n] * is equal to the column reading of the tableau P(w), that is, w = C(P(w)) holds in P n [91, Problem 5.2.4].

1.2.3.1. Remark. For every words u and v in the free monoid [n] * , if we compute the tableaux P(u) and P(v) by the column-insertion algorithm then the relation ∼ plac coincides with the congruence generated by the following Knuth relations:

{ zxy = xzy | 1 x < y z n } ∪ { yzx = yxz | 1 x y < z n }.
(1.4)

This comes from the fact that, for any word w in the free monoid [n] * , computing the tableau P(w) by the row-insertion algorithm is the same as computing the tableau P(w back ) by the columninsertion algorithm. For a word w in [n] * , if the tableau P(w) is computed by the row-insertion algorithm then we read it using the column reading, whereas we use the Japanese reading when it is computing by the column-insertion procedure.

CRYSTAL GRAPHS AND PLACTIC MONOIDS

In the following section, we will detail the notion of crystal graphs and we show how the plactic monoid introduced by Lascoux and Schützenberger is related to the representations of the general Lie algebra. Using Kashiwara's theory of crystal bases, we give the definition of the plactic congruence for any semisimple Lie algebra. After, we briefly outline the notion of plactic monoids of type B, C, D and G 2 .

Crystal graphs

Crystals. Let g be a semisimple Lie algebra , let P be its weight lattice and let P * = Hom Z (P, Z).

Let {α i } i∈I be the simple roots of g and {h i } i∈I the corresponding coroots. The two lattices P and P * are free Z-modules of rank I. Let •, • : P * × P → Z be the canonical pairing. A crystal is a set B endowed with applications wt :

B → P, ε i : B → Z ∪ {-∞}, ϕ i : B → Z ∪ {-∞}, e i : B → B ∪ {0}, f i : B → B ∪ {0},
satisfying the following properties:

1. ϕ i (b) = ε i (b) + h i , wt(b) , for any i. Tensor product of crystals. The tensor product of two crystals B 1 and B 2 is defined by

+ α i . 3. If b is an element in B satisfying f i (b) = 0, then ε i ( f i (b)) = ε i (b) + 1, ϕ i ( f i (b)) = ϕ i (b) -1 and wt( f i (b)) = wt(b) -α i .
B 1 ⊗ B 2 = {b 1 ⊗ b 2 b 1 ∈ B 1 , b 2 ∈ B 2 }.
The set B 1 ⊗ B 2 is endowed with a structure of crystal by defining the action of e i and f i on the tensor product by

f i (b 1 ⊗ b 2 ) = f i (b 1 ) ⊗ b 2 if ϕ i (b 1 ) > ε i (b 2 ) b 1 ⊗ f i (b 2 ) if ϕ i (b 1 ) ε i (b 2 ) e i (b 1 ⊗ b 2 ) = b 1 ⊗ e i (b 2 ) if ϕ i (b 1 ) < ε i (b 2 ) e i (b 1 ) ⊗ b 2 if ϕ i (b 1 ) ε i (b 2 )
Crystal graphs. Crystal graphs are oriented graphs with labelled arrows. The set of vertices is B and an arrow a i → b means that f i (a) = b and e i (b) = a. For any vertex u of B, we denote by B(u) the connected component of the crystal graph containing u. Note that every representation of a semisimple Lie algebra admits a crystal graph.

An crystal isomorphism between two connected components B(u) and B(v) is a bijective map ψ : B(u) → B(v) that satisfies the following conditions: i) it is weight-preserving, that is wt(u) = wt(ψ(u), for all u in B(u),

ii) for all u and u in B(u), if there is an arrow u i → u , then there is an arrow ψ(u

) i → ψ(u ) in B(v).
If there is a crystal isomorphism between two connected components B(u) and B(v), we say simply that B(u) and B(v) are isomorphic.

For a deeper information, we refer the reader to [START_REF] Kashiwara | Crystallizing the q-analogue of universal enveloping algebras[END_REF][START_REF]Global crystal bases of quantum groups[END_REF][START_REF]On crystal bases, Representations of groups[END_REF][START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF].

Crystal graphs for Type A

The special linear Lie algebra. The special linear Lie algebra sl n (C) is the Lie algebra of traceless square matrices of rank n. It is a simple Lie algebra of type A n-1 . Let E i,j be the n by n elementary matrix having 1 at the (i, j)-entry and 0 elsewhere. Let I = {1, 2, . . . , n -1} be an index set, the Lie algebra sl n (C) is generated by the elements e i , f i and h i , where

e i = E i,i+1 , f i = E i+1,i , h i = E ii -E i+1,i+1 for i ∈ I.
Consider the linear functional

ε i : M n×n (C) → C (t ij ) i,j=1,...,n → t ii .
The simple roots of sl n (C) are given by α i = ε i -ε i+1 , for i ∈ I. The fundamental weights of sl n (C) are

Λ i = ε 1 + . . . + ε i , for i ∈ I. Note that ε 1 + • • • + ε n = 0. In this case, the weight lattice is P = i∈I ZΛ i . A dominant weight λ of sl n (C) is of the form λ = λ 1 ε 1 + . . . + λε n with λ 1 λ 1 . . . λ n .
Let λ be a dominant weight and let V(λ) be the irreducible highest weight module with highest weight λ of sl n (C). We denote by B(λ) its crystal graph.

The vector representation. Let W n = Cv 1 ⊕ . . . ⊕ Cv n be a n-dimensional vector space of sl n (C), where v i 's are the elements of the standard basis. The Lie algebra sl n (C) acts on W n by matrix multiplication:

e i v j = v i if j = i + 1, 0 otherwise, f i v j = v i+1 if j = i, 0 otherwise, h i v j =    v i if j = i, -v i+1 if j = i + 1, 0 otherwise.
The vector space W n is called the vector representation of the Lie algebra sl n (C). It is also denoted by V(Λ 1 ) because it is a representation of highest weight Λ 1 . The crystal graph of the vector representation V(Λ 1 ) is

B(Λ 1 ) : 1 1 → 2 2 → . . . → n -1 n-1 → n.
The crystal operators. The free monoid [n] * over [n] is a crystal, see [START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF]. Indeed, for a fixed i, the action of the crystal operators e i and f i on a word w of the monoid [n] * is described as follows. First, one considers the word w i obtained by deleting all symbols other that i and i + 1 from w. Secondly, we remove adjacent letters (i, i + 1), then we obtain a new subword of w.

The second step of the process is repeated until it is impossible to remove more letters.

• The word e i (w) is obtained by replacing in w the rightmost element i + 1 of the final subword, by i and the others elements of w stay unchanged. If such i + 1 does not exist, then e i (w) = 0.

• The word f i (w) is obtained by replacing in w the leftmost element i of the final subword, by i + 1 and the others elements of w stay unchanged. If such i does not exist, then f i (w) = 0. 

λ i i. For instance, the Young diagram Y(2Λ 1 + 3Λ 2 + Λ 3 ) is .
Let B(λ) be the set of all tableaux of shape λ. If we replace each tableau by its Japanese reading, then the set B(λ) becomes a subset of the free monoid [n] * that is a crystal as shown above.

Hence, we obtain that B(λ) has a crystal structure. By [START_REF]On crystal bases, Representations of groups[END_REF][START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF], the crystal graph B(λ) of V(λ) is identified with the set B(λ). Its highest weight vertex is the reading of the tableau of shape λ filled with 1 on the 1st row, 2 on the 2nd row, ... , and n on the nth row.

1.3.2.2. Example. For g = sl 3 (C), the crystal graph of B(2Λ 1 ) is the following

11 1 21 1 Ñ Ñ 2 ) ) 22 2 
) ) where the vertices are the Japanese readings of all tableaux of shape 2Λ 2 .

Crystal graphs for type C

The symplectic Lie algebra. The symplectic Lie algebra sp 2n (C) is the Lie algebra of 2n by 2n matrices M, for n > 0, that satisfy

ΩM + M T Ω = 0,
where M T is the transpose of M and Ω = 0 I n -I n 0 .

This Lie algebra is a simple Lie algebra of type C n , for n 2. Let E i,j be the 2n by 2n elementary matrix having 1 at the (i, j)-entry and 0 elsewhere. Then, the Lie algebra sp 2n (C) is generated by e i , f i , h i , for i = 1, . . . , n, where

e i = E i,i+1 -E n+i+1,n+i , f i = E i+1,i -E n+i,n+i+1 , h i = E ii -E i+1,i+1 -E n+i,n+i + E n+i+1,n+i+1 , e n = E n,2n , f n = E 2n,n , h n = E n,n -E 2n,2n
for i = 1, . . . , n -1. Consider the linear functional

ε i : M 2n×2n (C) → C (t ij ) i,j=1,...,2n → t ii .
The simple roots of sp 2n (C) are α i = ε i -ε i+1 , for i = 1, . . . , n -1 and α n = 2ε n . The fundamental weights of sp 2n (C) are Λ i = ε 1 + . . . + ε i , for i = 1, . . . , n. In this case, the weight lattice of sp 2n (C) is P = i ZΛ i .

The vector representation. Let V n = C 2n be the vector representation of sp 2n (C), this representation is of dimension 2n and we index a basis of V n by the set C n = {1, 2, . . . , n, n, . . . , 1}, totally ordered by 1 < 2 < . . . < n < n < . . . < 1.

Note that every representation of the Lie algebra sp 2n admits a crystal graph, [START_REF]On crystal bases, Representations of groups[END_REF]. The crystal graph of the vector representation V n is :

1 1 → 2 2 → . . . → n -1 n-1 → n n → n n-1 → n -1 n-2 → . . . → 2 1 → 1.
The crystal operators. Denote by C * n the free monoid over C n . Kashiwara and Nakashima showed in [START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF] that the free monoid C * n is a crystal and described a process to compute the action of the crystal operators e i and f i on a word w of the monoid C * n , for a fixed i. First, one considers the word w i obtained by deleting all symbols other that i, i + 1, i + 1 and i from w. One identifies the letters i and i + 1 by the symbol + and the letters i + 1 and i by the symbol -. Secondly, we remove the subwords of length 2 in w i which correspond to the symbol +-, i.e, we remove adjacent letters (i, i + 1), (i, i), (i + 1, i + 1) and (i + 1, i). Then we obtain a new subword of w. The second step of the process is repeated until it is impossible to remove more letters. Let r and s be respectively the number of letters corresponding to the symbolsand + in the final subword.

• If r > 0 then e i (w) is obtained by replacing in w the rightmost element with the symbolof the final subword, by its corresponding element with the symbol +, i.e, i + 1 is transformed into i or i into i + 1 or for i = n, n into n, and the others elements of w stay unchanged. If r = 0, then e i (w) = 0.

• If s > 0 then f i (w) is obtained by replacing in w the leftmost element with the symbol + of the final subword, by its corresponding element with the symbol -, i.e, i is transformed into i + 1 or i + 1 into i or for i = n, n into n, and the others elements of w stay unchanged. If s = 0, then f i (w) = 0. After deleting subwords corresponding to +-, the first subword of w i is 3333. After repeating this process, the second subword is 33. We cannot remove new elements from the last subword, then r = s = 1. Finally, we obtain : e 2 (w) = 332312323331 and f 2 (w) = 332313323321.

Connected components of crystal graphs. Now, we consider tensor products of the vector representation V ⊗l n , for any l and the infinite dimensional representation l V ⊗l n . The crystal graphs of these representations are respectively denoted by G n,l and G n . Note that each vertex x 1 ⊗ x 2 ⊗ . . . ⊗ x l of the crystal graph of V ⊗l n is identified with the word x 1 x 2 . . . x l in the monoid C * n . In other words, the vertices of G n are indexed by the words of C * n and those of G n,l by the words of length l.

In addition, the crystal graph G n,l can be decomposed into connected components. They correspond to the crystal graphs of the irreducible representations occurring in the decomposition of V ⊗l n . In each connected component, there exists a unique vertex w 0 which satisfy the following property:

e i (w 0 ) = 0, for i = 1, . . . , n.

This vertex is called the vertex of highest weight, and its weight is

wt(w 0 ) = d n Λ n + n-1 i=1 (d i -d i+1 )Λ i ,
where d i is the number of letters i in w 0 minus the number of letters i. where the vertices are labelled by words. In this case, the vertex of highest weight is 11 and its weight is 2Λ 1 .

Lemma ([61]

). For any words u and v in C * n , the word uv is a vertex of highest weight of a connected component of G n if, and only if, u is a vertex of highest weight and ε i (v) ϕ i (u) for any i = 1, . . . , n.

Crystal plactic monoids

The Robinson-Schensted correspondence has found an interpretation in terms of Kashiwara's theory of crystal bases [START_REF] Date | Representations of U q (gl(n, C)) at q = 0 and the Robinson-Shensted [Schensted] correspondence, Physics and mathematics of strings[END_REF][START_REF] Lascoux | Crystal graphs and q-analogues of weight multiplicities for the root system A n[END_REF][START_REF] Leclerc | The Robinson-Schensted correspondence, crystal bases, and the quantum straightening at q = 0[END_REF]. In the following, we will show how the plactic monoid introduced by Lascoux and Schützenberger is related to the representations of the general linear Lie algebra gl n (C). Since the theory of Kashiwara crystal bases exists also for the classical simple Lie algebras, a corresponding plactic monoid was constructed for each of these algebras by a case-by-case analysis. We call these monoids, the crystal plactic monoids.

The general linear Lie algebra. Recall from Example 1.1.0.1 that the general linear Lie algebra gl n (C) is the Lie algebra of n by n matrices with the bracket defined by [X, Y] = XY-YX, for X and Y in gl n (C). Let I = {1, 2, . . . , n -1} be an index set, the Lie algebra gl n (C) can be generated by the elements e i , f i , for i ∈ I and E jj for j = 1, . . . , n, where

e i = E i,i+1 , f i = E i+1,i , h i = E ii -E i+1,i+1 for i ∈ I.
The maximal Cartan subalgebra for gl n (C) is given by

h = CE 11 ⊕ . . . ⊕ CE n,n .
For each i = 1, . . . , n, one defines a linear map ε i : h → C by

ε i (h) = λ i , with h = diag λ j j = 1, . . . , n ∈ h.
The simple roots of gl n (C) are given by α i = ε i -ε i+1 , for i = 1, 2, . . . , n -1. Its fundamental weights are Λ i = ε 1 + . . . + ε i , for i = 1, . . . , n. Its weight lattice is P = Zε 1 ⊕ . . . ⊕ Zε n . Let V = C n be its vector representation as defined in Example 1.1.0. As we have seen in the previous section, the plactic monoid P n of rank n is defined as the quotient of the free monoid [n] * by the plactic congruence ∼ plax . As previously discussed, this congruence is also interpreted in terms of Kashiwara's crystal graphs of the representations the general Lie algebra. In this way, the plactic monoid P n is related to the representations of the general Lie algebra, which is of type A, and called the plactic monoid of type A. The Knuth relations appear in the crystal isomorphism between B(121) and B(112): For each classical simple Lie algebra, the corresponding crystal plactic monoid is defined as the quotient of the free monoid S * by the congruence ∼ crys .

121 1 Ñ Ñ 2 ) ) 122 
1.3.4.1. Remark. As we have seen above, the crystal plactic monoid corresponding to the representations of the general Lie algebra is equal to the plactic monoid P n . Now if we consider the representations of the special linear Lie algebra sl n (C), the corresponding crystal plactic monoid is equal to the quotient of the free monoid [n] * by the congruence generated by the following families of relations: i) yzx = yxz, for x y < z and xzy = zxy, for x < y z, ii) 1 . . . n = ε, where ε is the empty word.

The relations i) are the Knuth relations and the relation ii) comes from the fact that for the special linear Lie algebra we have the following equality ε 1 + . . . + ε n = 0.

Plactic monoids of type C, B, D and G 2 . In the literature, the crystal plactic monoid corresponding to the representations of the symplectic Lie algebra, the odd-dimensional orthogonal Lie algebra and the even-dimensional orthogonal Lie algebra is respectively called the plactic monoid of type C, B and D.

Several works have generalised the notions of tableaux for other types, see [START_REF] Berele | A Schensted-type correspondence for the symplectic group[END_REF][START_REF] Sundaram | Orthogonal tableaux and an insertion algorithm for SO(2n + 1)[END_REF][START_REF] Littelmann | A generalization of the Littlewood-Richardson rule[END_REF][START_REF]Crystal graphs and Young tableaux[END_REF][START_REF]A plactic algebra for semisimple Lie algebras[END_REF][START_REF] Sheats | A symplectic jeu de taquin bijection between the tableaux of King and of De Concini[END_REF][START_REF] Gaussent | One-skeleton galleries, the path model, and a generalization of Macdonald's formula for Hall-Littlewood polynomials[END_REF]. Kashiwara and Nakashima was also obtained a generalisation for all classical Lie algebras by introducing the notion of admissible columns, see [START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF].

Lecouvey in [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF] and Baker in [START_REF] Baker | An insertion scheme for C n crystals, Physical combinatorics[END_REF] introduced independently the plactic monoid of type C using Kashiwara's theory of crystal bases and they introduced an insertion procedure similar to the Schensted's one for type A. Let u and v be two words in C * n . The relation ∼ crys is defined on the free monoid C * n by : u ∼ crys v if, and only if, B(u) and B(v) are isomorphic and u and v have the same position in their isomorphic connected components B(u) and B(v) of the crystal G n . In other words, u ∼ crys v if and only if there exist i 1 , . . . , i r such that u =

f i i • • • f ir (u 0 ) and v = f i i • • • f ir (v 0 )
, where u 0 and v 0 are the vertices of highest weight of B(u) and B(v).The quotient P n (C) := C * n / ∼ crys is called the plactic monoid for type C or the symplectic plactic monoid. We will explain in details this monoid in Chapter 3 and we will show how a finite convergent presentation is constructed for it using admissible columns.

In [START_REF]Schensted-type correspondences and plactic monoids for types B n and D n[END_REF], Lecouvey gave presentations for plactic monoids of types B and D. He used the notion of admissible columns and orthogonal tableaux introduced by Kashiwara and Nakashima for these types, see [START_REF]Schensted-type correspondences and plactic monoids for types B n and D n[END_REF]Section 3]. Let B n and D n be respectively the alphabets corresponding to type B and D. Using the same insertion's algorithm described for type C, Lecouvey showed that for any word w in the free monoids B * n and D * n , one can compute a unique orthogonal tableau P(w) that its reading is equal to w in the corresponding plactic monoid.

Note also that a plactic monoid for type G 2 was also introduced by Lecouvey by generalising the notion of admissible columns to this type. He also gived an insertion algorithm similar to the ones for the classical types, see [START_REF]Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF].

Numerous applications of plactic monoids have been discovered including a combinatorial description of the Kostka-Foulkes polynomials which arise as entries of the character table of the finite reductive groups, see [START_REF]Kostka-Foulkes polynomials cyclage graphs and charge statistic for the root system C n[END_REF][START_REF]Combinatorics of crystal graphs and Kostka-Foulkes polynomials for the root systems B n , C n and D n[END_REF][START_REF]Branching rules, Kostka-Foulkes polynomials and q-multiplicities in tensor product for the root system B n , C n and D n[END_REF].

LITTELMANN PATHS AND PLACTIC MONOIDS

In the following section, we recall the definitions and properties of paths, root operators and Lakshmibai-Seshadri's paths. After, we introduce the notion of standard tableaux as defined by Littelmann and we recall the definition of plactic algebra for any semisimple Lie algebra. We refer the reader to [START_REF]A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras[END_REF][START_REF]Paths and root operators in representation theory[END_REF][START_REF]A plactic algebra for semisimple Lie algebras[END_REF] for a full introduction.

Lakshmibai-Seshadri's paths

Let us fix a semisimple Lie algebra g. Le P be its weight lattice and let P * = Hom Z (P, Z). Let {α i } i∈I be the simple roots of g and {h i } i∈I the corresponding coroots. Let •, • : P * × P → Z be the canonical pairing.

Paths. A path is a piecewise linear continuous map π : [0, 1] → P R . We will consider paths up to a reparametrization, that is, the path π is equal to any path π • ϕ, where ϕ : [0, 1] → [0, 1] is a piecewise linear non-decreasing surjective continuous map. The weight of a path π is defined by wt(π) := π(1). For instance, for the Lie algebra g = sl n (C), the paths π ε i : t → tε i are of weight ε i , for i = 1, . . . , n.

Given two paths π 1 and π 2 , the concatenation π 1 π 2 is defined by:

π 1 π 2 (t) := π 1 (2t) for 0 t 1 2 , π 1 (1) + π 2 (2t -1) for 1 2 t 1.
1.4.1.1. Example. Let g = sl 3 (C). Consider the paths π 1 : t → tε 1 and π 2 : t → tε 2 . The path π 1 π 2 is the green path on the following figure:

ε 1 = Λ 1 ε 2 ε 3 Λ 2 0
We denote by Π = π : [0, 1] → P R π(0) = 0 and π(1) ∈ P the set of all paths with sources 0 and whose weights lie in P. We will denote by θ : [0, 1] → P R the trivial path defined by θ(t) = 0, for any t ∈ [0, 1]. For λ in P R , consider the path π λ : [0, 1] -→ P R that connects the origin with λ by a straight line, that is π λ (t) = tλ, for any t ∈ [0, 1]. The path π λ is in Π if and only if λ is in P.

Denote by ZΠ the algebra of paths defined as the free Z-module with basis Π whose product is given by the concatenation of paths and where the unity is the trivial path.

Root operators. For each simple root α, one defines root operators e α , f α : Π → Π ∪ {0} as follows. Every path π in Π is cutted into three parts π 1 π 2 π 3 . Then the new path e α (π) or f α (π) is either equal to 0 or π 1 s α (π 2 ) π 3 , where s α denotes the simple reflection with respect to the root α.

More explicitly, consider the function

h α : [0, 1] → R t → π(t), α ∨
Let Min := min(Im(h α ) ∩ Z) be the minimum attained by h α . If Min = 0, define e α (π) = 0.

If Min < 0, let t 1 = min{ t ∈ [0, 1] h α (t) = Min } and t 0 = max{ t < t 1 h α (t) = Min + 1 }.
Denote by π 1 , π 2 and π 3 the paths defined by

π 1 (t) := π(tt 0 ) π 2 (t) := π(t 0 + t(t 1 -t 0 )) -π(t 0 ) π 3 (t) := π(t 1 + t(1 -t 1 )) -π(t 1 ), for t ∈ [0, 1].
By definition of the π i , we have π = π 1 π 2 π 3 . Then e α (π) = π 1 s α (π 2 ) π 3 .

Similarly, one can define the operator f α . Let

p = max{ t ∈ [0, 1] h α (t) = Min }.
Denote by I the integral part of h α (1) -Min. If I = 0, define f α (π) = 0. If I > 0, let x > p such that h α (x) = Min + 1 and Min < h α (x) < Min + 1, for p < t < x.

Denote by π 1 , π 2 and π 3 the paths defined by

π 1 (t) := π(tp) π 2 (t) := π(p + t(x -p)) -π(p) π 3 (t) := π(x + t(1 -x)) -π(x), for t ∈ [0, 1].
By definition of the π i , we have π = π 1 π 2 π 3 . Then f α (π) = π 1 s α (π 2 ) π 3 . Note that these operators preserve the length of the paths. We have also that if f α (π) = π = 0 then e α (π ) = π = 0 and wt(f α (π)) = wt(e α (π)) -α.

The algebra generated by the roots operators. For all simple root α, let A be the subalgebra of End Z (ZΠ) generated by the root operators f α and e α . Define Π + to be the set of paths π such that the image is contained in P + R and denote by M π the A-module Aπ. Let B π be the Zbasis M π ∩ Π of M π . In other words, let I be the set indexing the set of simple roots of g, we have

B π = f α i 1 • . . . • f α ir (π) π ∈ Π + and i 1 , . . . , i r ∈ I .
Given two paths π and π in Π + , if wt(π) = wt(π ), then the A-modules M π and M π are isomorphic. For π in Π + , let π in M π be an arbitrary path. We have e α (π ) = 0 if and only if π = π . We denote by M λ the A-module Aπ λ generated by the path π λ . In addition, the Z-module M λ has for a basis the set B π λ consisting of all paths in M λ .

1.4.1.2. Example. Let g = sl 3 (C) and let α 1 , α 2 be its simple roots and Λ 1 , Λ 2 be its fundamental weights. For λ = Λ 1 + Λ 2 , consider the path π λ : t → tλ. Let us compute B π λ . We have

Λ 1 ε 2 ε 3 fα 2 (π λ ) α 1 fα 2 (fα 1 (π λ )) fα 2 (fα 2 (fα 1 (π λ ))) fα 1 (fα 2 (π λ )) fα 1 (fα 1 (fα 2 (π λ ))) λ π λ Λ 2 fα 1 (π λ ) α 2 fα 2 (fα 1 (fα 1 (fα 2 (π λ ))))
where

π λ : t → tλ f α 1 (π λ ) =: π 2 : t → tα 2 f α 2 (π λ ) =: π 3 : t → tα 1 f α 2 (π 2 ) =: π 4 : t → -tα 2 for 0 t 1 2 (t -1)α 2 for 1 2 t 1 f α 1 (π 3 ) =: π 5 : t → -tα 1 for 0 t 1 2 (t -1)α 1 for 1 2 t 1 f α 2 (π 4 ) =: π 6 : t → -tα 2 f α 1 (π 5 ) =: π 7 : t → -tα 1 f α 2 (π 7 ) = f α 1 (π 6 ) =: π 8 : t → -tλ
Hence we obtain B π λ = {π λ , π 2 , π 3 , π 4 , π 5 , π 6 , π 7 , π 8 }.

Crystal graphs. For π in Π + , let B(π) be the oriented graph with set of vertices B π and an arrow π i → π means that f α i (π) = π and e α i (π ) = π. We denote by G(Π + ) the union of G(Π + ).

π∈Π + B(π).
L-S paths. For a dominant weight λ, the Lakshmibai-Seshadri paths, L-S paths for short, of shape λ are the paths π of the form

π = f α 1 • . . . • f αs (π λ )
where α 1 , . . . , α s are simple roots of a semisimple Lie algebra g. That is, these paths are all the elements of B π λ .

Examples. Consider g = sl 3 (C) and let Λ 1 and Λ 2 be its fundamental weights. Let λ = Λ 1 + Λ 2 , the L-S paths of shape λ are all the elements of B π λ as obtained in Example 1.4.1.2. The L-S paths of shape Λ 2 are the elements of

B π Λ 2 = { π ε 1 +ε 2 , π ε 1 +ε 3 , π ε 2 +ε 3 }.
For the Lie algebra sl n (C), the L-S paths of shape Λ 1 are the paths π ε i , for i = 1, . . . , n + 1.

Examples. For the Lie algebra gl n (C), the L-S paths of shape Λ 1 are the paths π ε i , for i = 1, . . . , n.

Consider the Lie algebra gl 3 (C), the L-S paths of shape Λ 2 are the vertices of the following connected component

B(π Λ 2 ): π Λ 2 2 π ε 1 +ε 3 1 π ε 2 +ε 3 1.4.

Plactic algebra for any semisimple Lie algebra

Standard tableaux. Let λ = λ 1 + . . . + λ k be a sum of dominant weights. If for all i = 1, . . . , k, the path π i is an L-S path of shape λ i , then the monomial π 1 . . . π k is called an L-S monomial of shape λ = (λ 1 , . . . , λ k ).

A Young tableau of shape λ = a 1 Λ 1 + . . . + a n Λ n is an L-S monomial

1 i n π 1,Λ i . . . π a i ,Λ i
where π i,Λ i is an L-S path of shape Λ i , for 1 i n. That is, the first a 1 paths are of shape Λ 1 , the next a 2 are of shape Λ 2 ,. . . , the final a n paths are of shape Λ n .

Let T be a Young tableau of shape λ = a 1 Λ 1 + . . . + a n Λ n . The Young tableau T is called standard of shape λ if

T ∈ A((π Λ 1 . . . π Λ 1 ) a 1 times (π Λ 2 . . . π Λ 2 ) a 2 times . . . (π Λn . . . π Λn ) an times
).

The case of type A. For type A n , consider the ordered set [n + 1]. For a dominant weight λ = a 1 Λ 1 + . . . + a n Λ n , set p i = a i + . . . + a n . Consider the Young diagram with p 1 boxes in the first row, p 2 boxes in the second row, etc. A standard tableau of shape λ = a 1 Λ 1 +. . .+a n Λ n and type A is a filling of the boxes of this Young diagram with elements of the set [n + 1] such that the entries are strictly increasing in the column from top to bottom and weakly increasing in the rows from left to right. In other words all the standard tableaux of shape λ and type A are the elements of B π Λ 1 ... π Λn , where the L-S monomial

(π Λ 1 . . . π Λ 1 ) a 1 times (π Λ 2 . . . π Λ 2 ) a 2 times . . . (π Λn . . . π Λn )
an times corresponds to the Young tableau with only 1's in the first row, 2's in the second row,. . . , n's in the n-th row. Note that the standard tableaux of type A correspond to tableaux as defined in Section 1.2.

Example.

In the following two examples, we consider the Lie algebra gl 3 (C).

• The L-S monomial π ε 2 π ε 1 +ε 3 π ε 1 +ε 3 π ε 1 +ε 2 +ε 3 of shape λ = Λ 1 +2Λ 2 +Λ 3 corresponds
to the following tableau

1 1 1 2 2 3 3 3 .
In addition, we have that

π ε 2 π ε 1 +ε 3 π ε 1 +ε 3 π ε 1 +ε 2 +ε 3 ∈ B(π Λ 1 π Λ 2 π Λ 2 π Λ 3 ) with π ε 2 π ε 1 +ε 3 π ε 1 +ε 3 π ε 1 +ε 2 +ε 3 = f α 2 (f α 1 (f α 2 (π Λ 1 π Λ 2 π Λ 2 π Λ 3 )))
where the path π Λ 1 π Λ 2 π Λ 2 π Λ 3 corresponds to the following tableau

1 1 1 1 2 2 2 3
.

• The tableaux of shape Λ 1 + Λ 2 on the set [START_REF] Baader | Term rewriting and all that[END_REF] are the vertices of the following connected component B(π

Λ 1 π Λ 2 ) π Λ 1 π Λ 2 = 1 1 2 1 v v 2 @ @ π ε 2 π ε 1 +ε 2 = 1 2 2 2 π ε 1 π ε 1 +ε 3 = 1 1 3 1 π ε 3 π ε 1 +ε 2 = 1 3 2 2 π ε 2 π ε 1 +ε 2 = 1 2 3 1 π ε 3 π ε 1 +ε 3 = 1 3 3 1 @ @ π ε 2 π ε 2 +ε 3 = 2 2 3 2 v v π ε 3 π ε 2 +ε 3 = 2 3 3
The case of type C. Consider the ordered set C n = {1 < . . . < n < n < . . . < 2 < 1}. For a dominant weight λ = a 1 Λ 1 + . . . + a n Λ n , set p 1 = a 1 + 2a 2 + . . . + 2a n and for i 2 set p i = 2a i + . . . + 2a n . Consider the Young diagram with p 1 boxes in the first row, p 2 boxes in the second row, etc. A standard tableau of shape λ and type C is a filling of the boxes of this Young diagram with elements of the set C n such that the entries are strictly increasing in the column from top to bottom, but i and i are never entries in the same column, and the entries are weakly increasing in the rows from left to right. In addition, for each pair of columns C a 1 +2j-1 and C a 1 +2j ), for j = 1, . . . , a 2 + . . . + a n , either these columns are equal or the column C a 1 +2j is obtained from C a 1 +2j-1 by exchanging an even number of times an entry k, 1 k 1, in C a 1 +2j-1 by k, see [START_REF] Gaussent | One-skeleton galleries, the path model, and a generalization of Macdonald's formula for Hall-Littlewood polynomials[END_REF]Section 4.2]. Note that the standard tableaux of type C correspond to symplectic tableaux as defined in Chapter 3, Section 3.3.1.

For type C 3 , the following Young tableau is a standard tableau of shape

Λ 1 + 2Λ 3 1 1 1 2 3 2 2 3 3 3 3 2 1
Columns and L-S paths for type A. Every L-S path of shape Λ i , for i in [n], is a Young tableau of shape Λ i consisting of one column. Thus, the L-S paths of shape Λ i and the columns of length i are in one-to-one correspondence.

1.4.2.2. Example. Consider the Lie algebra gl 3 (C). The columns of length 2 on the set [START_REF] Baader | Term rewriting and all that[END_REF] are the vertices of the following connected component B(π Λ 2 ): Plactic algebra. Let ZΠ 0 be the A-submodule AΠ + of ZΠ generated by the paths in Π + . For two paths π 1 and π 2 in ZΠ 0 , denote by π + 1 and π + 2 the unique paths in Π + such that π 1 ∈ M π + 1 and π 2 ∈ M π + 2 . One can define a relation ∼ path on ZΠ 0 by : π 1 ∼ path π 2 if, and only if, wt(π + 1 ) = wt(π + 2 ) and ψ(π 1 ) = π 2 under the isomorphism ψ :

π Λ 2 = 1 2 2 π ε 1 +ε 3 = 1 3 1 π ε 2 +ε 3 = 2 
M π + 1 → M π + 2 .
The plactic algebra for g is the quotient ZP := ZΠ 0 / ∼ path .

For π ∈ ZΠ 0 , we denote by (c) 12 . . . n is the empty word.

PRESENTATIONS OF MONOIDS BY 2-POLYGRAPHS

In this section, we briefly recall the notion of two dimensional polygraphs. We present rewriting properties of presentations of monoids in terms of 2-polygraphs and we refer the reader to [START_REF]Polygraphs of finite derivation type[END_REF] for a deeper presentation.

2-polygraphs

1-polygraphs. A 1-polygraph is a directed graph (Σ 0 , Σ 1 ) Σ 0 Σ 1 t 0 o o s 0 o o
given by a set Σ 0 of 0-cells, a set Σ 1 of 1-cells together with two maps s 0 and t 0 sending a 1-cell x on its source s 0 (x) and its target t 0 (x). A 1-polygraph (Σ 0 , Σ 1 ) is finite if the sets Σ 0 and Σ 1 are finite. We will denote by Σ * 1 the free category generated by the 1-polygraph (Σ 0 , Σ 1 ), that is, the category defined as follows: i) its objects are the 0-cells in Σ 0 , ii) for any 0-cells p and q, the elements of the homset Σ * 1 (p, q) are paths from p to q in the 1-polygraph (Σ 0 , Σ 1 ), i.e., the finite sequences

p x 1 G G p 1 x 2 G G p 2 x 3 G G . . . x n-1 G G p n-1 x n G G q of 1-cells of Σ 1 ,
iii) the composition is the concatenation of paths, iv) the identity on a 0-cell p is the empty path with source and target p.

The notion of 1-polygraphs correspond to abstract rewriting systems [START_REF] Book | String-rewriting systems[END_REF].

Globular extension.

A globular extension of the free category Σ * 1 is a set Σ 2 equipped with maps

Σ * 1 Σ 2 t 1 o o s 1 o o
such that, for every α in Σ 2 , the following globular relations are satisfied s 0 (s 1 (α)) = s 0 (t 1 (α)) and t 0 (s 1 (α)) = t 0 (t 1 (α)). 94

2-polygraphs

The pair (s 1 (α), t 1 (α)) is called a 1-sphere in the free category Σ * 1 . A 2-cell α of the globular extension Σ 2 is graphically represented by the following globular shape

p u 2 2 v a a α Õ % q that relates parallel 1-cells s 1 (α) = u and t 1 (α) = v in the free category Σ * 1 .
In this work, we deal with monoids, that is, categories with only one 0-cell. Then the set Σ 0 is reduced to a set with exactly one element denoted •. In this case, the 1-polygraph (Σ 0 , Σ 1 ) will be identified to a set Σ 1 and the free category Σ * 1 will be identified to the free monoid on Σ 1 .

2-polygraphs.

Let us introduce the notion of 2-polygraphs that correspond in the literature to string rewriting systems [START_REF] Book | String-rewriting systems[END_REF]. A 2-polygraph Σ is a triple (Σ 0 , Σ 1 , Σ 2 ), where (Σ 0 , Σ 1 ) is a 1-polygraph and the set Σ 2 is a globular extension of the free category Σ * 1 :

Σ 0 Σ * 1 t 0 o o s 0 o o Σ 2 t 1 o o s 1 o o .
The elements of the set Σ 2 are called the 2-cells of Σ, or the rewriting rules of Σ. If there is no possible confusion, we will denote by Σ 2 the set of 2-cells of the 2-polygraph Σ or the 2-polygraph itself.

2-categories.

A 2-category is a category enriched in categories. When two 1-cells, or 2-cells, f and g of a 2-category are i-composable, that is t i (f) = s i (g), for i = 0, 1, we denote by f i g their i-composite. A (2, 1)-category is a category enriched in groupoid, that is a 2-category whose 2-cells are invertible for the 1-composition. We will denote by Σ * 2 (resp. Σ 2 ) the 2category (resp. (2, 1)-category) freely generated by the 2-polygraph Σ. For further informations about 2-categories and the construction of the 2-categories Σ * 2 and Σ 2 , we refer the reader to [39, Section 2.4.].

Presentations of monoids by 2-polygraphs. The monoid presented by a 2-polygraph Σ, denoted by Σ, is defined as the quotient monoid Σ * 1 /Σ 2 , that one gets from the free monoid Σ * 1 by identification of the 1-cells s 1 (α) and t 1 (α), for every 2-cell α in Σ * 2 . Let M be a monoid, a presentation of M is a 2-polygraph Σ whose presented monoid Σ is isomorphic to M. Two 2-polygraphs Σ and Υ are Tietze equivalent if the presented monoid Σ and Υ are isomorphic.

Example: the plactic monoid of type A. The plactic monoid P n of rank n is presented by the 2-polygraph Knuth 2 (n), whose set of 1-cells is the set [n] and the set of 2-cells is

zxy η x,y,z =⇒ xzy 1 x y < z n ∪ yzx ε x,y,z =⇒ yxz 1 x < y z n . (2.1)
The 2-cells of Knuth 2 (n) correspond to Knuth relations defined in Chapter 1, Section 1.2, with orientation given by the lexicographic order induced by the total order on [n] given by 1 < . . . < n. The presentation Knuth 2 (n) is called the Knuth presentation.

Note that the lexicographic order < lex induced by the total order < on the 1-cells on [n] is defined by x 1 . . . x p < lex y 1 . . . y q , if p < q,

x 1 . . . x k-1 x k . . . x p < lex x 1 . . . x k-1 y k . . . y p , if x k < y k .
where each x i and y j is a 1-cell of [n].

Rewriting properties of 2-polygraphs

Let us fix a 2-polygraph Σ = Σ 1 , Σ 2 .

Rewriting sequences. A rewriting step of Σ is a 2-cell of the free 2-category Σ * 2 with shape

x 1 w G G x 2 u 5 5 v X X α Õ % x 3 w G G x 4
where α is a 2-cell in Σ and w and w are 1-cells of Σ * . A rewriting sequence of Σ is a finite or infinite sequence of rewriting steps

w 1 7 W w 2 7 W • • • 7 W w n 7 W • • • .
A 1-cell w rewrites into a 1-cell w if Σ has a non-empty rewriting sequence from w to w . A 1-cell w of Σ * 1 is a normal form if Σ has no rewriting step with source w. A normal form of w is a 1-cell w that is a normal form and such that w rewrites into w .

Termination of 2-polygraphs. We say that Σ terminates if it has no infinite rewriting sequences. In this case, every 1-cell has at least one normal form.

A termination order on Σ is an order on parallel 1-cells in Σ * 1 that satisfies the following:

i) the composition of 1-cells in Σ * 1 is strictly monotone in both arguments, ii) every decreasing family (v n ) n∈N of parallel 1-cells in Σ * 1 is stationary,
iii) for every 2-cell α in Σ 2 , we have s(α) > t(α).

As a consequence, if Σ admits a termination order, then it terminates. An example of termination order is the lexicographic order defined previously in the example above.

Rewriting properties of 2-polygraphs

Confluence of 2-polygraphs. A branching of Σ is a pair (f, f 1 ) of 2-cells f : u ⇒ v and f 1 : u ⇒ v 1 in Σ * 2 with a common source u. The 1-cell u is the source of this branching and the pair (v, v 1 ) is its target. When f and f 1 are rewriting steps, the branching (f, f 1 ) is called local.

A branching (f, f 1 ) with source u and target (v, v 1 ) is confluent if there exist 2-cells f : v ⇒ u and f 1 :

v 1 ⇒ u in Σ * 2 , as follows v f @ u f @ f1 3 S u . v 1 f 1 W w A 2-polygraph Σ is confluent if all of
its branchings are confluent. It is locally confluent if all of its local branchings are confluent. In a confluent 2-polygraph, every 1-cell admits at most one normal form.

The local confluence does not generally imply confluence. Newman's Lemma, called the Diamond Lemma, states that these properties are equivalent for terminating 2-polygraphs [98, Theorem 3].

Convergence of 2-polygraphs. A 2-polygraph Σ is convergent if it terminates and it is confluent. Such a Σ is called a convergent presentation of any monoid isomorphic to Σ. In that case, every 1-cell w in the free monoid Σ * 1 has a unique normal form, denoted by w, so that we have w = w in Σ if, and only if, w = w holds in Σ * 1 .

Critical branchings.

Local branchings belong to one of the following three families:

i) aspherical branchings have shape (f, f) with source u and target (v, v) where f is a rewriting step.

ii) Peiffer branchings have shape

vu 1 uu 1 fu 1 A a uf 1 3 S uv 1
where f : u ⇒ v and f 1 : u 1 ⇒ v 1 are rewriting steps.

iii) overlapping branchings are the remaining local branchings.

Local branchings are ordered by the order generated by the relations

(f, f 1 ) ufv, uf 1 v)
given for any local branching (f, f 1 ) and any possible 1-cells u and v of the free monoid Σ * 1 . An overlapping local branching that is minimal for the order is called a critical branching.

The critical branching Lemma, [39, Theorem 3.1.5.], states that a 2-polygraph is locally confluent if, and only if, all its critical branchings are confluent.

Example: the monoid P 2 . The Knuth presentation of the monoid P 2 with two generators 1 and 2 subject to the Knuth relations ε 1,2,2 : 221 =⇒ 212 and η 1,1,2 : 211 =⇒ 121 is convergent. Indeed, the lexicographic order being monomial, the 2-polygraph Knuth 2 (2) is terminating. Moreover, this 2-polygraph admits a unique confluent critical branching:

2211 2η 1,1,2 & F ε 1,2,2 1 I i 2121.

The crystal presentation of the plactic monoid of type A

Using the notions of paths, L-S paths and tableaux presented in Chapter 1, Section 1.4, we construct a convergent presentation of the plactic monoid of type A. In this case, the plactic congruence ∼ path is defined by the corresponding crystal isomorphism explained in Chapter 1, Subsection 1.4.2. Since we study the plactic monoid of type A, we consider the root system of the general Lie algebra gl n and we denote by F the set of its fundamental weights.

Paths and words for type A. Any word in the free monoid P * R on P R is a finite sequence of weights. We define a map P * R -→ Π sending any word w = λ 1 . . . λ r , with λ i in P R , to a path π w = π λ 1 . . . π λr . The path π w is in Π if and only if λ 1 +. . .+λ r is in P. In addition, if we identify every path π ε i with the integer i, for 1 i n, then the set of paths {π ε i | 1 i n} is identified with the set [n]. Hence, for every word w = x 1 . . . x r in the free monoid [n] * , with x i in [n], we associate a path π w = π εx 1 . . . π εx r . We will denote by Π W the free monoid over

{π ε i | 1 i n}.
The root operators for type A. Let π w be a path in Π W . For each i in [n] and each simple root α i of gl n , the roots operators defined on the free monoid [n] * in Chapter 1, Subsection 1.3.2 can be used to define similar root operators on Π W :

e α i , f α i : Π W -→ Π W ∪ {0}.
For instance, consider the path 

π w = π ε 1 π ε 2 π ε 2 π ε 1 π ε 3 π ε 3 π ε 1 . Let us compute f α 1 (π w ) and e α 1 (π w ). We have π w 1 = π ε 1 π ε 2 π ε 2 π ε 1 π ε 1 . After removing the adjacent paths (π ε 1 , π ε 2 ), the final path is π ε 2 π ε 1 π ε 1 . Then r = 1 and s = 2. Hence we obtain f α 1 (π w ) = π ε 1 π ε 2 π ε 2 π ε 2 π ε 3 π ε 3 π ε 1 , and e α 1 (π w ) = π ε 1 π ε 2 π ε 1 π ε 1 π ε 3 π ε 3 π ε 1 . Yamanouchi path tableau. A Yamanouchi path is a path π in Π W such
(π ε 1 . . . π ε 1 ) a 1 times (π ε 1 π ε 2 ) . . . (π ε 1 π ε 2 ) a 2 times . . . (π ε 1 . . . π ε k ) . . . (π ε 1 . . . π ε k ) a k times .
A Yamanouchi path that represents a tableau is called a Yamanouchi path tableau. Yamanouchi paths form a single plactic class whose representative path is a unique Yamanouchi path tableau, [START_REF] Lothaire | Algebraic combinatorics on words[END_REF]Lemma 5.4.7].

Yamanouchi's map. Let us define a map

Y : Π + W → Π + W
that transforms a Yamanouchi path that does not represent a tableau to a Yamanouchi path tableau as follows. Let π w be a non-Yamanouchi path tableau, then Y(π w ) is equal to the path π w(T) , where w(T) is the Japanese reading of the tableau T obtained from π w by putting for every π ε i in π w an element i in the i-th row of T. Note that for every path π w in Π + W , we have wt(π w ) = wt(Y(π w )).

2.1.3.1. Example. For n = 3, the path π w = π ε 1 π ε 1 π ε 2 π ε 3 π ε 1 π ε 2 π ε 1 π ε 2 π ε 3 is a Yamanouchi path
that is not a Yamanouchi path tableau. Moreover, this path can be transformed to the following tableau

T = 1 1 1 1 2 2 2 3 3
after replacing each π ε 1 in π w by the element 1 in the first row of T, each π ε 2 in π w by the element 2 in its second row and each π ε 3 in π w by the element 3 in its third row. Hence we obtain

Y(π w ) = π w(T) = π ε 1 π ε 1 π ε 2 π ε 1 π ε 2 π ε 3 π ε 1 π ε 2 π ε 3 .
Equivalence on paths. Let π w and π w be two paths in Π W . Recall from Chapter 1, Subsection 1.4.2 the definition of the relation ∼ path on Π W by : π w ∼ path π w if, and only if, the two following conditions are satisfied: i) the connected components B(π w ) and B(π w ) are isomorphic, that is wt(π + w ) = wt(π + w ), where π + w and π + w are the highest weight paths of B(π w ) and B(π w ).

ii) π w and π w have the same position in the components B(π w ) and B(π w ), that is, there exist i 1 , . . . , i r such that

π w = f α i 1 • • • f α ir (π + w ) and π w = f α i 1 • • • f α ir (π + w ).
2-polygraph of crystals. Let Crys 0 2 (n) be the 2-polygraph whose set of 1-cells is {π ε i | 1 i n} and whose set of 2-cells is

π w ϑ πw =⇒ Y(π w ) π w ∈ Π + W . For π w in Π + w , the path f α j k •f α j k-1 •. . .•f α j 1 (π w
) will be denoted by f α , where α = (α j k , α j k-1 , . . . , α j 1 ) and for i = 1, . . . , k, every j i is an element of [n], α j i is a simple root and f α j i is the corresponding root operator.

For k 0, let us define the 2-polygraph Crys k 2 (n) whose set of 1-cells is {π ε i | 1 i n} and whose set of 2-cells is

f α (π w ) ϑ α j k πw =⇒ f α (Y(π w )) π w ∈ Π + W .
Let Crys 2 (n) be the 2-polygraph whose set of 1-cells is {π ε i | 1 i n} and whose set of

2-cells is ∪ i 0 Crys i 2 (n).
This 2-polygraph is called the 2-polygraph of crystals. By construction, the monoid presented by the 2-polygraph Crys 2 (n) is isomorphic to the quotient of Π W by the equivalence ∼ path .

2.1.3.2. Theorem. For n > 0, the 2-polygraph Crys 2 (n) is a convergent presentation of the monoid P n .

Proof. By Chapter 1, Subsection 1.2.3 the equivalence ∼ plac coincides with the equivalence ∼ path , taking into account that the column reading of Schensted's tableaux obtained by the row-insertion is replaced by the Japanese reading of Schensted's tableaux that are obtained by the columninsertion. Thus, the monoid P n is isomorphic to the quotient of Π W by the equivalence ∼ path . Hence, the 2-polygraph Crys 2 (n) is a presentation of the monoid P n . Proof of the convergence of the 2-polygraph Crys 2 (n). The termination is proved by showing that Crys 2 (n) is compatible with a total order n-weight defined on the set F n as follows. First, we fix an ordering ≺ weight on the set of fundamental weights F of the Lie algebra gl n by

Λ 1 ≺ weight Λ 2 ≺ weight . . . ≺ weight Λ n .
Let n-weight be the lexicographic order on the set F n induced by the order ≺ weight , that is,

(Λ i 1 , . . . , Λ in ) n-weight (Λ i 1 , • • • , Λ i n ) if Λ i 1 ≺ weight Λ i 1 or [Λ i 1 = Λ i 1 and (Λ i 2 , . . . , Λ in ) n-weight (Λ i 2 , . . . , Λ i n )],
where for every 1 k n, Λ i k and Λ i k are fundamental weights in F. Then n-weight is a wellordering on the set F n . Since the root operators preserve the lengths of paths and the shapes of tableaux, we will suppose that all the paths are Yamanouchi paths. Note also that any path in Π W has a unique decomposition as an L-S monomial π 1 . . . π k of shape (Λ j 1 , . . . , Λ j k ), where the path π i is an L-S path of maximal shape Λ j i , for every 1 i k and 1 j i n. In this way, we will consider this unique decomposition for all the Yamanouchi paths. By construction of the Yamanouchi map Y, every non-Yamanouchi L-S monomial tableau is transformed to a Yamanouchi path tableau by beginning with the concatenation of its L-S paths of shape Λ 1 , after by the concatenation of its paths of shape Λ 2 and so on until the concatenation of its L-S paths of maximal shape with respect to the order ≺ weight . Then, for every 2-cell ϑ πw : π w ⇒ Y(π w ) in Crys 2 (n), we have Y(π w ) ≺ n-weight π w . Hence, the 2-polygraph Crys 2 (n) is compatible with the order n-weight . Hence, rewriting an L-S monomial that is not a Yamanouchi path tableau always decreases it with respect to the order n-weight . Since every application of a 2-cell in Crys 2 (n) yields a n-weight -preceding L-S monomial, it follows that any sequence of rewriting using Crys 2 (n) must terminate.

Let us show that Crys 2 (n) is confluent. Let π w be a path in Π W and π w , π w" be two normal forms such that π w ⇒ π w and π w ⇒ π w" . It is sufficient to prove that π w = π w" . We have that π w is a Yamanouchi path tableau such that π w ∼ path π w . Similarly, the path π w" is a Yamanouchi path tableau such that π w ∼ path π w" . Since π w ∼ path π w ∼ path π w" and each plactic congruence contains exactly one Yamanouchi path tableau, we obtain that π w = π w" . Since the 2-polygraph Crys 2 (n) is terminating, and rewriting any non-Yamanouchi path tableau must terminate with a unique normal form, Crys 2 (n) is confluent.

TIETZE TRANSFORMATIONS AND THE PRE-COLUMN PRESENTATION

In this section, we begin by recalling the notions of Tietze transformations of 2-polygraphs as presented in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]Subsection 2.1.1.]. In a second time, we construct a presentation of the plactic monoid of type A that is Tietze equivalent to the Knuth presentation. This presentation, called the pre-column presentation, will be used in Chapter 4 in order to compute a coherent presentation of plactic monoids of type A with the Knuth generators.

Tietze transformations of 2-polygraphs

Tietze transformations were introduced in group theory in order to transform a presentation of a group into a presentation of the same group by adding or removing generators and rules, [START_REF] Tietze | Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten[END_REF]. This notion is also defined for 2-polygraphs, [31, Subsection 2.1.1.], as we will see in the following. Let before recall the notion of redundant cells.

Redundant 1-cells. Let Σ be a 2-polygraph. A 2-cell α of Σ is called collapsible if its target is a generating 1-cell of Σ 1 and its source is a 1-cell of the free 1-category generated by the

1-polygraph Σ 1 \ {t 1 (α)}. If α is collapsible, then its target is called a redundant cell.
Elementary Tietze transformations. An elementary Tietze transformations of a 2-polygraph Σ is a 2-functor with domain Σ 2 that belongs to one of the following four operations:

i) adjunction ι 1 α : Σ 2 → Σ 2 [x](α) of a redundant 1-cell x with its collapsible 2-cell α: • u G G • ι 1 α G G • u 2 2 x b b α Õ % • ii) elimination π α : Σ 2 → (Σ 1 \ {x}, Σ 2 \ {α}) of a redundant 1-cell x with its collapsible 2-cell α: • u 2 2 x b b α Õ % • π α G G • u G G •
which maps x to u and the 2-cell α on 1 u and being identity on the others cells.

iii) adjunction ι α : Σ 2 → Σ 2 (α) of a redundant 2-cell α: 

• 2 2 b b β Õ % • ι α G G • 2 2 b b β Õ % α Õ % • iv) elimination π (β,α) : Σ 2 → Σ 2 /(β, α) of a redundant 2-cell α: • 2 2 b b β Õ % α Õ % • π (β,α) G G • 2 2 b b β Õ % • where Σ 2 /(β,
u 1 γ 1 =⇒ u γ =⇒ v γ 2 =⇒ v 2
in Σ 2 , the Nielsen transformation κ γ←β is the Tietze transformation that replaces in the (2, 1)category Σ 2 the 2-cell γ by a 2-cell β : u 1 ⇒ v 2 . The transformation κ γ←β can be decomposed into the following composition of elementary Tietze transformations:

Σ 2 ι β -→ Σ 2 (β) π (γ - 1 1 β 1 γ - 2 ,γ) -→ Σ 2 /(γ - 1 1 β 1 γ - 2 , γ).
When γ 2 is an identity, we will denote by κ γ←β the Nielsen transformation which, given a

2-cell u 1 γ 1 =⇒ u γ =⇒ v in Σ 2 , replaces the 2-cell γ by a 2-cell β : u 1 ⇒ v.

Pre-column presentation of the plactic monoid of type A

Columns. A column is a decreasing 1-cell x p . . . x 1 in the free monoid [n] * , i.e., with x i+1 > x i , for 1 i p -1. We will denote by col(n) the set of non-empty columns in [n] * .

Total orders on columns. We will denote by deglex the total order on col(n) defined by

u deglex v if (u) < (v) or (u) = (v) and u < lex v ,
for all u and v in col(n), where < lex denotes the lexicographic order on [n] * induced by the total order on [n].

We will denote by rev the total order on col(n) defined by u rev v if

(u) > (v) or (u) = (v) and u < lex v ,
for all u and v in col(n).

Columns as generators. One adds to the presentation Knuth 2 (n) one superfluous generator c u for any u in col(n). Let us denote by

Col 1 (n) = c u u ∈ col(n)
the set of column generators of the plactic monoid P n and by

C 2 (n) = c xp . . . c x 1 γ u =⇒ c u u = x p . . . x 1 ∈ col(n) with (u) 2
the set of the defining relations for the column generators. In the free monoid Col 1 (n) * , the Knuth relations (2.1) can be written in the following form

c z c x c y η c
x,y,z =⇒ c x c z c y 1 x y < z n ∪ c y c z c x ε c

x,y,z =⇒ c y c x c z 1 x < y z n .

(2.2) Let denote by Knuth c 2 (n) the 2-polygraph whose set of 1-cells is {c 1 , . . . , c n } and whose set of 2-cells is given by (2.2). By definition, this 2-polygraph is Tietze equivalent to the 2polygraph Knuth 2 (n). Indeed, the mapping i → c i , for any i in [n], induces an isomorphism between the two presented monoids. In the sequel, we will identify the 2-polygraphs Knuth c 2 (n) and Knuth 2 (n) through this mapping.

Let us define the 2-polygraph Knuth cc 2 (n), whose 1-cells are columns and 2-cells are defining relations for columns generators and Knuth relations:

Knuth cc 2 (n) := Col 1 (n) | C 2 (n) ∪ Knuth c 2 (n) .
2.2.2.1. Proposition. For n > 0, the 2-polygraph Knuth cc 2 (n) is a presentation of the monoid P n .

Proof. We have Col

1 (n) = { c 1 , . . . , c n } ∪ { c u u ∈ col(n), (u)
2 }, thus in order to prove that the 2-polygraphs Knuth cc 2 (n) and Knuth c 2 (n) are Tietze equivalent, we add to the 2-polygraph Knuth c 2 (n) all the column generators c u , for all u = x p . . . x 1 in col(n) such that (u) 2, and the corresponding collapsible 2-cell : γ u : c xp . . . c x 1 ⇒ c u . We apply successively a Tietze transformation ι 1 γu , defined in 2.2.1. i), from the bigger column in col(n) to the smaller one with respect to the order deglex . The composite

T 1 = ι 1 γ 1 • . . . • ι 1 γu i • ι 1 γu i+1 • . . . • ι 1 γ n...1 ,
with u i deglex u i+1 , defines a Tietze transformation

T 1 : Knuth c 2 (n) -→ Knuth cc 2 (n) , which proves that Knuth cc 2 (n) is Tietze equivalent to Knuth c 2 (n), hence Tietze equivalent to Knuth 2 (n). Pre-column presentation. Let define the 2-polygraph PreCol 2 (n) whose set of 1-cells is Col 1 (n) and the set of 2-cells is PreCol 2 (n) = PC 2 (n) ∪ c x c u α x,u =⇒ c xu | xu ∈ col(n) and 1 x n ,
where

PC 2 (n) = c x c zy α x,zy =⇒ c zx c y | 1 x y < z n ∪ c y c zx α y,zx =⇒ c yx c z | 1 x < y z n .
We will see in Lemma 2.2.2.3 that the 2-cells α x,zy and α y,zx correspond respectively to the Knuth relations η x,y,z for 1 x y < z n and ε x,y,z for 1 x < y z n. They also correspond to the following Schensted transformations as indicated in the following diagrams: x,y,z ←α x,zy :

CPC 2 (n) := Col 1 (n) | C 2 (n) ∪ PC 2 (n) is Tietze equivalent to the 2-polygraph Knuth cc 2 (n). Proof.
Knuth cc 2 (n) -→ Knuth cc 2 (n) /(η c
x,y,z ← α x,zy ), that substitutes the 2-cell α x,zy : c x c zy ⇒ c zx c y to the 2-cell η c

x,y,z , for every 1 x y < z n. We denote by T η←α the successive applications of the Nielson transformation κ η c

x,y,z ←α x,zy , for every 1 x y < z n, with respect to the lexicographic order on the triples (x, y, z) induced by the total order on [n].

Similarly, for 1 x < y z n, consider the following critical branching

c y c x c z γ yx c z 7 W c yx c z c y c z c x ε c
x,y,z A a c y γ zx 4 T c y c zx with x 3 x 2 x 1 deglex . . . deglex x n . . . x 1 . This gives us a Tietze transformation:

T γ←α : CPC 2 (n) -→ PreCol 2 (n) .
In this way, we prove that PreCol 2 (n) is Tietze equivalent to CPC 2 (n).

To resume the construction of this section, we have constructed the following Tietze equivalences:

Knuth 2 (n) T 1 -→ Knuth cc 2 (n) T η,ε←α -→ CPC 2 (n) T γ←α -→ PreCol 2 (n) .

THE KNUTH-BENDIX'S COMPLETION OF THE KNUTH PRESENTATION

We recall in 2.3.1 the Knuth-Bendix's completion that computes convergent presentations of monoids from terminating ones. After that, we show in 2.3.2 that the Knuth presentation of the plactic monoid P 3 is completed into a convergent one after adding three 2-cells. Finally, we show in 2.3.3 that for higher values of n there is no finite convergent completion of the Knuth presentation of the monoid P n without adding new generators. The latter result is also presented in [START_REF] Kubat | Gröbner-Shirshov bases for plactic algebras[END_REF].

The Knuth-Bendix's completion

Recall from [39, Section 3.2.1] the Knuth-Bendix's completion. Consider a terminating 2polygraph Σ, with a total termination order . The Knuth-Bendix's completion of Σ is the 2-polygraph KB(Σ) obtained as follows. One starts with KB(Σ) equal to Σ and with the set CB of critical branchings of Σ. If the set CB is empty, then the procedure stops. Otherwise, it picks a branching (f, f 1 ) with source u and target (v, v 1 ) from CB and performs the following operations:

1. It computes 2-cells f : v ⇒ v and f 1 : v 1 ⇒ v 1 of KB(Σ) *
, where v and v 1 are normal forms for v and v 1 , respectively,

v f 7 W v u f @ f1 3 S v 1 f 1 7 W v 1 2. It tests if v = v 1 or v = v 1
, then there are three possibilities:

(a) If v = v 1 , then the critical branching v f $ D u f A a f 1 2 R v = v 1 v 1 f 1 R r
is already confluent and it passes to the next critical branching in CB.

(b) If v > v 1
, the procedure adds the 2-cell α : v =⇒ v 1 to KB(Σ) and all the new critical branchings created by α to CB,

v f 7 W v α Õ % u f @ f1 3 S u 1 f 1 7 W v 1 (c) If v < v 1
, the procedure adds the 2-cell α : v 1 =⇒ v to KB(Σ) and all the new critical branchings created by α to CB,

v f 7 W v u f @ f1 3 S u 1 f 1 7 W v 1 α i 3.
It removes the branching (f, f 1 ) from CB and restarts from the beginning.

If the procedure stops, then it returns the 2-polygraph KB(Σ). Otherwise, one obtains an increasing sequence of 2-polygraphs, whose limit is the 2-polygraph KB(Σ). Note that if the initial 2-polygraph Σ is convergent, then its Knuth-Bendix's completion KB(Σ) is Σ itself. The Knuth-Bendix's completion KB(Σ) of a 2-polygraph Σ is a convergent presentation of the monoid Σ. In addition, the 2-polygraph KB(Σ) is finite if, and only if, the 2-polygraph Σ is finite and if, and only if, the Knuth-Bendix's completion procedure halts, see [START_REF] Knuth | Simple word problems in universal algebras[END_REF][START_REF] Huet | A complete proof of correctness of the Knuth-Bendix completion algorithm[END_REF].

The computation of KB(Knuth 2 (3))

The monoid P 3 . For the monoid P 3 , the Knuth presentation Knuth 2 (3) admits three generators 1, 2 and 3, together with the following 8 relations

211 η 1,1,2 =⇒ 121, 311 η 1,1,3 =⇒ 131, 312 η 1,2,3 =⇒ 132, 322 η 2,2,3 =⇒ 232 ∪ 221 ε 1,1,2 =⇒ 212, 231 ε 1,2,3 =⇒ 213, 331 ε 1,3,3 =⇒ 313, 332 ε 2,3,3 =⇒ 323 .
This presentation admits the following critical branchings: 21 7 W 13121

13211 13η 1,1,2 7 W 13121 1η 1,2,3 1 8 31211 η 1,2,3 11 E e 31η 1,1,2 0 P 11321 31121 η 1,1,3
1η 1,2,3 1 W w 2321 3221 η 2,2,3 1 C c 3ε 1,1,2 1 Q 3212 β 9 i 13231 13ε 1,2,3 ! A 31231 η 1,2,3 31 C c 31ε 1,2,3 1 Q 13213 31213 η 1,2,3 13 U u 23211 23η 1,1,2 7 W 23121 2η 1,2,3 1 7 W 21321 32211 η 2,2,3 11 @ 32η 1,1,2
4 T 32121

β 9 1 7 W 23211 23η 1,1,2 7 W 23121 2η 1,2,3 1 i 13221 1η 2,2,3 1 7 W 12321 31221 η 1,2,3 21 @ 31ε 1,1,2 4 T 31212 η 1,2,3 12 7 W 13212 1β 9 i 23221 2η 2,2,3 1 7 W 22321 32221 η 2,2,3 21 @ 32ε 1,1,2
4 T 32212 η 2,2,3 12 7 W 23212

2β 9 i 23231 23ε 1,2,3 ! A 32231 η 2,2,3 31 C c 32ε 1,2,3 1 Q 23213 32213 η 2,2,3 13 U u 2211 ε 1,1,2 1 4 T 2η 1,1,2 @ `2121 2311 ε 1,2,3 1 4 T 2η 1,1,3 @ `2131 2312 ε 1,2,3 2 4 T 2η 1,2,3 @ `2132 3311 ε 1,3,3 1 4 T 3η 1,1,3 @ `3131 3312 ε 1,3,3 2 4 T 3η 1,2,3 @ `3132 3322 ε 2,3,3 2 4 T 3η 2,2,3 @ `3232 32311 32η 1,1,3 7 W 32131 β 10 Õ % 33211 ε 2,3,3 11 C c 33η 1,1,2 1 Q 33121 3η 1,2,3 1 7 W 31321 32321 β 11 7 W 32132 33221 ε 2,3,3 21 C c 33ε 1,1,2 1 Q 33212 ε 2,3,3 12 7 W 32312 32η 1,2,3 i 32331 32ε 1,3,3 7 W 32313 3ε 1,2,3 3 @ 33231 ε 2,3,3 31 C c 33ε 1,2,3 1 Q 32133 33213 ε 2,3,3 13 7 W 32313 3ε 1,2,3 3 U u
Thus, by the Knuth-Bendix's completion procedure, one adds the following 2-cells 3212

β 9
=⇒ 2321, 32131

β 10
=⇒ 31321, 32321

β 11 =⇒ 32132.
Again using these new 2-cells, one obtains the following critical branchings

323321 32ε 2,3,3 1 7 W 323231 323ε 1,2,3
7 W 323213 

β 11 3 # C 332321 ε 2,3,3 321 C c 3β 11 1 Q 321323 332132 ε 2,3,3 132 7 W 323132 3ε 1,2,3 32 7 W 321332 321ε 2,3,3 R r 321322 321η 2,2,3 7 W 321232 β 9 32 # C 323212 β 11 2 B b 32β 9 2 R 232132 322321 η 2,2,3 321 7 W 232321 2β 11 R r 313211 313η 1,1,2 7 W 313121 31η 1,2,3 1 7 W 311321 η 1,1,2 321 % E 321311 β 10 1 A a 321η 1,1,3
# C 33212 ε 2,3,3 12 B b 3β 9 2 R 32132 323212 β 11 R r 323131 3ε 1,2,3 1 7 W 321331 321ε 1,3,3 7 W 321313 
β 10 3 ' G 332131 ε 2,3,3 131 @ 3β 10 4 T 313213 331321 ε 1,3,3 321 7 W 313321 31ε 2,3,3 1 7 W 313231 313ε 1,2,3 G g 323211 β 11 1 7 W 323η 1,1,2 2 R 32η 1,2,3 1 i 232111 23η 1,1,2 1 7 W 231211 231η 1,1,2 7 W 231121 2η 1,1,3 21 7 W 213121 21η 1,2,3 1 7 W η 1,1,2 321 & F 321211 β 9 11 A a 321η 1,1,2 3 S 313213 321121 3η 1,1,2 21 7 W 312121 η 1,2,3 121 7 W 132121 1β 9 1 7 W 123211 123η 1,1,2 7 W 12η 1,2,3 1 I i 232131 2β 10 7 W 231321 ε 1,2,3 321 7 W 213321 21ε 2,3,3 1 7 W 213231 213ε 1,2,3 Õ % 321231 β 9 31 A a 321ε 1,2,3
3 S 321213 β 9 13 7 W 232113 23η 1,1,2 3 7 W 231213 2η 1,2,3 13 7 W 213213 which are all confluent. Then the Knuth-Bendix's completion procedure halts. As a consequence, the monoid P 3 admits a convergent presentation with 3 generators 1, 2 and 3, together with the following 11 relations:

232121 2β 9 1 7 W 223211 223η 1,1,2 7 W 223121 22η 1,2,3 1 7 W 221321 ε 1,1,2 321 % E 321221 β 9 21 A a 321ε 1,1,2
211 η 1,1,2
=⇒ 121, 311

η 1,1,3
=⇒ 131, 312

η 1,2,3
=⇒ 132, 322

η 2,2,3 =⇒ 232 ∪ 221 ε 1,1,2 =⇒ 212, 231 ε 1,2,3
=⇒ 213, 331

ε 1,3,3
=⇒ 313, 332

ε 2,3,3 =⇒ 323 ∪ 3212 β 9
=⇒ 2321, 32131

β 10
=⇒ 31321, 32321

β 11
=⇒ 32132 .

The completion for higher ranks

In the following, we will show that for higher values of n, the Knuth-Bendix's completion procedure cannot succeed on the Knuth presentation. For this, we will show that the Knuth presentation Knuth 2 (4) of the monoid P 4 does not admit a finite completion with the lexicographic order.

The monoid P 4 . For the monoid P 4 , the Knuth presentation does not admit a finite completion compatible with the lexicographic order. The proof of this result is given by the following two lemmas. Note that we use the column reading of tableaux defined in 1. We have that C(P(a)) = (421)(3) i+1 . Hence the tableau P(a) consists of 3 rows, and all the 1-cells equal to a in P 4 contain a decreasing subsequence of maximal length 3. The reduction being compatible with the lexicographic order, a cannot be reduced into 4u, 3u or 24u, for some u in [4] * . Suppose a is reduced into 21u, for some u in [4] * . In this case, 21u doesn't contain any decreasing subsequences of maximal length 3, then a cannot be reduced into it.

Suppose a is reduced into 1u, for some u in [4] * . In this case, we have the following possibilities: if a is reduced into 12u, 132u, or 142u, then we can not find any 1-cells that contains a decreasing subsequence of maximal length 3. Else a is reduced into a 1 = 1343 j 23 i-j , for some j > 0, a 2 = 1343 i 2, a 3 = 133 j 43 i-j 2, for some j > 0, a 4 = 143 i+1 2, or a 5 = 1433 j 23 i-j , for some j > 0. We have

C(P(a 1 )) = C(P(a 2 )) = C(P(a 3 )) = C(P(a 4 )) = C(P(a 5 )) = (431)(2)(3) i = C(P(a)).
Then a cannot be reduced into 1u, for some u in [4] * . So a minimal 1-cell that represents a in P 4 should start with 23 and it must be of the form 23 i 431 = a, then a is a normal form.

We have that C(P(b)) = (32)(43)(3) i-1 . Hence the tableau P(b) consists of 2 rows, and all the 1-cells equal to b in P 4 contain a decreasing subsequence of maximal length 2. The reduction being compatible with the lexicographic order, b cannot be reduced into 4u, 33u, or 34u, for some u in Proof. It is sufficient to show that the factors e = 213 i 43 and d = 3213 i 4 of b i are normal forms of KB(Knuth 2 (4)). We have C(P(e)) = (21)(43)(3) i . Hence the tableau P(e) consists of 2 rows and all the 1-cells equal to e in the monoid P 4 contain a decreasing subsequence of maximal length 2. The reduction being compatible with the lexicographic order, we can not reduce e into 4u, 3u, 23u or 24u, for some u in [4] * .

Suppose e is reduced to 1u, for some u in [4] * . In this case, we have the following possibilities: suppose e is reduced into e 1 = 123 i 43, e 2 = 123 j 43 i-j+1 , for some j > 0, e 3 = 1243 i+1 , e 4 = 13 i+1 24, e 5 = 13 i+1 42, e 6 = 13 j 23 i-j+1 4, for some j > 0, e 7 = 13 j 423 i-j+1 , for some j > 0, e 8 = 13 j 4323 i-j or e 9 = 1423 i+1 , we have We have C(P(d)) = (321)(3) i (4). Hence the tableau P(d) consists of 3 rows, and all the 1cells equivalent to d in P 4 contain a decreasing subsequence of maximal length 3. The reduction being compatible with the lexicographic order, we can not reduce d into 4u, 33u or 34u, for some u in [4] * . Suppose d is reduced into 31u, for some u in [4] * . In this case 31u does not contain a decreasing subsequence of maximal length 3, then b cannot be reduced into it.

Suppose d is reduced into 1u, for some u in [4] * . In this case, we have the following possibilities: if d is reduced into d 1 = 143 i+1 2 or d 2 = 143 j 23 i-j+1 , for some j > 0, we have

C(P(d 1 )) = C(P(d 2 )) = (431)(2)(3) i+1 = C(P(d)).
Then d cannot be reduced into 1u, for some u in [4] * . So a minimal 1-cell that represents d in P 4 should start with 32 and it must be of the forms 3213 i 4 = d, then d is a normal form.

Theorem.

For n > 3, there is no finite completion of the 2-polygraph KB(Knuth 2 (n)) compatible with the lexicographic order.

Proof. We prove the result for n = 4. Since the relations in Knuth 2 (4) are included in Knuth 2 (n), for n > 3, the result is also true for any n > 3.

Suppose that the 2-polygraph Knuth 2 (4) admits a finite completion KB(Knuth 2 (4)), compatible with the lexicographic order. After one step of the Knuth-Bendix's completion procedure, one adds 22 rules. In particular, the rule β 0 : 32431 ⇒ 32143 is added according to the following critical pair:

32431 34231 η 2,3,4 31 A a 34η 1,2,3 3 S 34213 η 2,3,4 13 7 W 32413 32η 1,3,4 7 W 32143
We prove by induction that, the completion add a rule β i : 323 i 431 ⇒ 3213 i 43, for any i 1.

At the second step of the completion procedure, the following critical pair occurs

323431 332431 ε 2,3,3 431 A a 3β 0 3 S 332143 ε 2,3,3 143 7 W 323143 3ε 1,2,3 43 7 W 321343
where, thanks to Lemmas 2.3.3.1 and 2.3.3.2, the 1-cells 323431 and 321343 are in normal form for KB(Knuth 2 (4)). It follows that the rule β 1 : 323431 ⇒ 321343 must be added.

FINITE CONVERGENT PRESENTATION OF PLACTIC

MONOIDS

Since there is no finite completion of the Knuth presentation of the plactic monoid P n , for n 3, without adding new generators, an open problem was to find a finite convergent presentation of this monoid. Bokut et al. in [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF] and Cain et al. in [START_REF]Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF] answered positively this question using different methods. Their methods consist in adding column generators to the Knuth presentation, in the spirit of Kapur and Narendran in [START_REF] Kapur | A finite Thue system with decidable word problem and without equivalent finite canonical system[END_REF]. Bokut et al. used the column-insertion algorithm whereas Cain et al. used the row-insertion algorithm. We discuss in details the construction of this presentation with additional properties in Section 3.2. The presentations by generators and rules of plactic monoids for the classical types contain the Knuth relations, see [START_REF]A plactic algebra for semisimple Lie algebras[END_REF][START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF][START_REF]Schensted-type correspondences and plactic monoids for types B n and D n[END_REF][START_REF]Combinatorics of crystal graphs for the root systems of types A n , B n , C n , D n and G 2[END_REF] and Subsection 3.3.1 for the presentation of the plactic monoid of type C. Since these presentations contain the Knuth relations, they don't admit a finite completion without adding generators. In this way, a question is to find finite convergent presentations of theses monoids. In order to solve this question, we consider plactic monoids for any semisimple Lie algebra. We construct a finite convergent presentation of these monoids, called the column presentation, in terms of L-S paths. As discussed in Chapter 1, an L-S path corresponds to a column for type A, and to an admissible column for types C, B, D and G 2 in the Lecouvey sense. Littelmann showed that the column presentation is a presentation of plactic monoids for any semisimple Lie algebra, [START_REF]A plactic algebra for semisimple Lie algebras[END_REF]Theorem B]. We show that this presentation is finite and convergent, [START_REF]Column presentations of plactic monoids[END_REF].

Note that the column presentation of plactic monoids for any semisimple Lie algebra given in this section using L-S paths coincides with the presentations constructed for type A in [START_REF]Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF] as presented in Section 3.2, for type C as constructed in Section 3.3 and for types B, D and G 2 in [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n[END_REF] as shown in Section 3.4.

2-polygraph of paths.

Let g be a semisimple Lie algebra and let Λ 1 , . . . , Λ n be its fundamental weights. Let B i be the set of L-S paths of shape Λ i and B = ∪ n i=1 B i . Denote by B * the free monoid over B.

For every L-S paths c 1 and c 2 in B such that c 1 c 2 is not a standard tableau, we define a

2-cell c 1 .c 2 γ c 1 ,c 2 =⇒ T
where T is the unique standard tableau such that

[T ] = [c 1 c 2 ].
The 2-polygraph of paths, denoted by Path 2 (n), is the 2-polygraph with only one 0-cell and whose set of 1-cells is B and the set of 2-cells is

Path 2 (n) = c 1 .c 2 γ c 1 ,c 2 =⇒ T c 1 , c 2 ∈ B and c 1 c 2 is not a standard tableau .
This presentation is called the column presentation. It is a presentation of the plactic monoid for any semisimple Lie algebra [START_REF]A plactic algebra for semisimple Lie algebras[END_REF]Theorem B]. Let us prove that is convergent, [START_REF]Column presentations of plactic monoids[END_REF].

3.1.0.1. Theorem. For any semisimple Lie algebra g, the 2-polygraph Path 2 (n) is a finite convergent presentation of the plactic monoid for g.

Proof. Every semisimple Lie algebra g admits a finite number of fundamental weights, then there is a finite number of L-S paths of shape Λ i , for i = 1, . . . , n. Thus the 2-polygraph Path 2 (n) is finite.

Prove the termination of the 2-polygraph Path 2 (n). Consider the partial order on dominant weights defined by

λ 1 λ 2 if and only if λ 2 -λ 1 ∈ NΦ +
where λ 1 and λ 2 are dominant weights. That is, λ 2 -λ 1 is a non-negative integral sum of positive roots. Using this order, one can find for each dominant weight, a finite number of dominant weights that are smaller than it, then the partial order is a well-founded order. Let us define an order on the tableaux of B * as follows. For two tableaux m and m of shape λ and λ respectively, we have m m if and only if λ λ .

Let us show that the 2-polygraph Path 2 (n) is compatible with the order . We have to prove that if h ⇒ h , then h ≺ h, where h is not a standard tableau and h is a standard tableau of shape λ . There are two cases depending on whether or not h is a tableau. In the proof of Theorem B in [START_REF]A plactic algebra for semisimple Lie algebras[END_REF], Littelmann showed that for every tableau m of shape λ that is not standard, the shape of the standard tableau m such that [m] = [m ] is strictly smaller than λ. Moreover, Littelmann also showed that if we transform an L-S monomial π Λ π Λ of shape Λ + Λ that is not a tableau to a standard tableau T. Then the shape of T is strictly smaller than the shape of π Λ .π Λ . Thus, in all cases, we have h ≺ h. Hence, rewriting an L-S monomial that is not a standard tableau always decreases it with respect to the order . Since every application of a 2-cell of Path 2 (n) yields a ≺-preceding tableau, it follows that any sequence of rewriting using Path 2 (n) must terminate. Let us show that the 2-polygraph Path 2 (n) is confluent. Let m ∈ B * and T , T be two normal forms such that m ⇒ T and m ⇒ T . It is sufficient to prove that T = T . Suppose T = c 1 . . . c k , where the L-S monomial c 1 . . . c k is a standard Young tableau such that

[m] = [c 1 . . . c k ]. Similarly, T = c 1 . . . c l where the L-S monomial c 1 . . . c l is a standard Young tableau such that [m] = [c 1 . . . c l ]. Since [m] = [c 1 . . . c k ] = [c 1 . . . c l ]
and each plactic congruence contains exactly one standard tableau, we have k = l and c i = c i , for all i = 1, . . . , k. Thus T = T . Since the 2-polygraph Path 2 (n) is terminating, and rewriting any non-standard tableau must terminate with a unique normal form, Path 2 (n) is confluent.

3.1.0.2. Example. In order to ensure consistency with the next section, we construct the column presentation for the case of gl 3 instead of sl 3 . This presentation can be transformed to the case of sl 3 by replacing the path π ε 1 +ε 2 +ε 3 by the trivial one. Note also that the concatenation of paths in the following crystal isomorphisms corresponds to the Japanese reading of tableaux.

COLUMN PRESENTATION OF THE PLACTIC MONOID OF TYPE A

In this section, we present in details a particular case of Theorem 3.1.0.1 that corresponds to the column presentation of the plactic monoid P n of type A. Using combinatorial properties of tableaux, we give some properties and examples of this presentation and we show how it is related to Schensted's insertion algorithm.

The columns generators

Combinatorial properties of two columns tableaux. Recall from Chapter 2, Subsection 2.2.2 that a column is a decreasing 1-cell x p . . . x 1 in the free monoid [n] * . We denote by col(n) the set of non-empty columns in [n] * . For a word u in [n] * , we denote by (u) the length of u and by l nds (u) the length of its longest non-decreasing subsequence. Consider two columns u = x p . . . x 1 and v = y q . . . y 1 in col(n) of length p and q, respectively. Suppose that the juxtaposition of u and v does not form a tableau. The tableau P(uv), obtained by the row-insertion procedure, contains at most two columns [START_REF]Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF]Lemma 3.1]. Indeed, by Chapter 1, Theorem 1.2.2.3, the number of columns of the tableau P(uv) is equal to l nds (uv). If uv is a column, necessarily its non-decreasing subsequences are each of length equal to one and thus l nds (uv) = 1. Otherwise, if uv is not a column, then x 1 y q . Hence all the non-decreasing subsequences of uv are of length 2.

Furthermore, if the tableau P(uv) contains exactly two columns, the left column contains more elements than u [17, Lemma 3.1]. Indeed, since the juxtaposition of u and v does not form a tableau, we have either p < q or x i > y i for some i q. In the first case, the column v is a decreasing subsequence of uv containing more elements than the length of u. In the second case, x p . . . x i y i . . . y q is a decreasing subsequence of uv of length p + q and hence contains more elements than u. In either case, uv contains a decreasing sequence of length greater than u, and so by Theorem 1.2.2.3, the tableau P(uv) contains more rows than there are elements in the column u, and hence the left column of the tableau P(uv) contains more elements than u.

Graphical notations. For every columns u = x p . . . x 1 and v = y q . . . y 1 in col(n), consider the tableau P(uv) obtained by the row-insertion procedure. In the sequel, we will use graphical notations depending on whether the tableau P(uv) consists in two columns: i) we will denote u v if the planar representation of P(uv) is the tableau:

x 1 y 1 . . . . . . y q
x p that is, p q and x i y i , for any i q,

ii) we will denote u v × in all the other cases, that is, when p < q or x i > y i for some i q.

In the case ii), we will denote u v ×1 if the tableau P(uv) has one column and we will denote u v ×2 if the tableau P(uv) has two columns.

The column presentation for type A

Construction of the presentation. For every 1-cell w in the free monoid [n] * , we compute the tableau P(w) by the row-insertion procedure. Given two columns u = x p . . . x 1 and v = y q . . . y 1 in col(n), we consider the tableau P(uv). As we have seen previously, the tableau P(uv) contains at most two columns.

For every columns u and v in col(n) such that u v × , we define a 2-cell α u,v : c u c v ⇒ c w c w where i) w = uv and w is the empty column, when u v ×1 , ii) w and w are respectively the left and right columns of the tableau P(uv), when u v ×2 .

Let us denote by Col 2 (n) the 2-polygraph whose set of 1-cells is Col 1 (n) and the set of

2-cells is Col 2 (n) = c u c v α u,v =⇒ c w c w u, v ∈ col(n) and u v × . (3.1) 
Note that the 2-cells of PreCol 2 (n) constructed in Chapter 2, Subsection 2.2.2 correspond to the 2-cells α u,v of Col 2 (n), where (u) = 1 and (v) = 2. Moreover, we notice that, for any 2-cells α u,v : c u c v ⇒ c w c w of Col 2 (n), there exists a 2-cell in PreCol 2 (n) * with source c u c v and target c w c w .

Column presentation and Schensted's algorithm. Let us remark that Schensted's Algorithm Chapter 1, Section 1.2.1 that computes a tableau P(w) from a 1-cell w in [n] * , corresponds to the leftmost reduction path in Col * 2 (n) from the 1-cell w to its normal form P(w), that is, the reduction paths obtained by applying the rules of Col 2 (n) starting from the left. For example, consider the 1-cell w = 421532435452 in [5] * . To compute the tableau P(w), one applies the following successive rules of Col 2 (5) starting in each step from the left: = P(w)

w = 4 2
In particular, for any columns u and v in col(n) such that u v × , applying successive rules of Col 2 (n) on uv starting in each step from the left leads to a unique normal form, which is the tableau P(uv). Proof. Consider a 1-cell w in Col 1 (n) * and let w and w be normal forms of w. Proving the unique normal form property consists in showing that the normal forms w and w are equal. Let T (resp. T ) be the planar representation of w (resp. w ). Since w and w are normal forms, they don't contain any subsequences that form sources of 2-cells in Col 2 (n). As a consequence, T (resp. T ) is a juxtaposition of columns that form a tableau. Hence, the normal forms w and w are tableaux such that the equality w = w = w holds in the monoid P n . Since each congruence class contains exactly one tableau [91, Theorem 5.2.5], we have that w = w .

Proposition.

For n > 0, the 2-polygraph Col 2 (n) is a presentation of the monoid P n .

The 2-polygraph Col 2 (n) is called the column presentation of the plactic monoid P n . Note that, the set of columns being finite, this 2-polygraph is finite.

Proof. Let us prove that the 2-polygraph Col 2 (n) is Tietze equivalent to the 2-polygraph Knuth cc 2 (n) defined in Chapter 2, Subsection 2.2.2. Any 2-cell in Knuth cc 2 (n) can be deduced from a 2-cell in Col 2 (n) as follows. For any 1 x y < z n (resp. 1 x < y z n), the 2-cells η c

x,y,z (resp. ε c x,y,z ) can be deduced by the following composition

c z c x c y η c x,y,z 7 W α z,x c y Õ % c x c z c y c x α z,y Õ % c zx c y c x c zy α x,zy e y (resp. c y c z c x ε c x,y,z 7 W c y α z,x Õ % c y c x c z α y,x c z Õ % c y c zx α y,zx 7 W c yx c z ).
For any column x p . . . x 1 , the 2-cell γ xp...x 1 can be deduced by the following composition

c xp . . . c x 1 γ xp...x 1 7 W α xp,x p-1 c x p-2 . . . c x 1 Õ % c xp...x 1 c xpx p-1 c x p-2 . . . c x 1 7 W (. . . ) 7 W c xp...x 2 c x 1 α xp...x 2 ,x 1 i
As a consequence, if the 1-cells w and w in Col 1 (n) * are equal modulo relations in Knuth cc 2 (n), then they are equal modulo relations in Col 2 (n).

Conversely, if the 1-cells w and w in Col 1 (n) * are equal modulo relations in Col 2 (n), by Proposition 3.2.2.1, they have the same normal form with respect to Col 2 (n). Moreover, this normal form is the common tableau of the 1-cells w and w . It follows that w and w are in the same plactic congruence class and hence they are equal modulo Knuth cc 2 (n).

Termination of the column presentation. The termination of the 2-polygraph Col 2 (n) can be proved using the terminating order defined on Col 1 (n) * as follows. For c u i and c v j in Col 1 (n),

we have c u 1 . . . c u k c v 1 . . . c v l , if
k < l or k = l and ∃ i ∈ {1, . . . , k} such that u i rev v i and c u j = c v j for any j < i.

where the order rev on columns is defined in Chapter 2, Subsection 2.2.2. The relation is a well ordering on Col 1 (n) * , which is compatible with rules in Col 2 (n) proving the termination [START_REF]Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF]Lemma 3.2]. Indeed, one has to prove that if pc u c v q ⇒ pc w c w q then pc w c w q pc u c v q, for any pc u c v q and pc w c w q in Col 1 (n) * . If c w = 1, then pc u c v q contains more symbols than pc w q. Thus pc w q pc u c v q. On the other hand, suppose that the tableau P(uv) consists of two columns w and w . By the combinatorial properties obtained in Section 3.2.1, the column w contains more elements than u. Then, we obtain w rev u. Hence we have again that pc w c w q pc u c v . Since every application of a rule yield a -preceding 1-cell, it follows that every sequence of rewriting using the 2-cells of Col 2 (n) must terminate.

An other method to prove termination of the 2-polygraph Col 2 (n) will be given in Chapter 4, Remark 4.1.3.6.

Confluence of the column presentation. The column presentation is confluent, [START_REF]Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF]Lemma 3.3]. The proof given in [START_REF]Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF] 
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Column presentation of the symplectic plactic monoid

Proof. The number κ(n, 1) is the sum of the number of columns of length k for any 1 k n.

Moreover, the number of columns of length k is equal to n k . Hence we have

κ(n, 1) = n k=1 n k = 2 n -1.
Denote by S n,q the set of all tableaux with at most q columns and with entries in [n]. By Gordon [START_REF] Gordon | A proof of the Bender-Knuth conjecture[END_REF], we have

|S n,q | = 1 i j n q + i + j -1 i + j -1 .
Then, for two columns u and v in col(n) the number of possibilities of The aim of this section is to construct a finite convergent presentation of the symplectic plactic monoid using the notion of symplectic tableaux presented in 3.3.1. The generating set of our presentation contains the finite set of admissible columns. The right side of the relations of this presentation is the result of Lecouvey's insertion of an admissible column into another one. This insertion algorithm is fully presented in 3.3.2. We show in 3.3.4 that this presentation is finite and convergent.

u v × is |S n,2 | -|S n,1 |. In

Symplectic tableaux

The notion of admissible columns for type C was introduced as a generalisation of columns of type A, [START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF][START_REF] Sheats | A symplectic jeu de taquin bijection between the tableaux of King and of De Concini[END_REF][START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF]. Using admissible columns, one constructs a generalisation of tableaux for type C, called symplectic tableaux. In the following, we will recall the notions of admissible columns and symplectic tableaux as defined by Lecouvey in [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF].

Columns for type C. A column for type C is a Young diagram U consisting of one column filled by letters of C n strictly increasing from top to bottom. We call the reading of a column U the word w(U) obtained by reading the letters of U from top to bottom. The height of a column U is the number of letters in U and denoted by h(U). A word w is a column word if there exists a column U such that w = w(U). Admissible columns. In [START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF], Kashiwara and Nakashima introduced the notion of admissible column. Let w(U) = x 1 . . . x h(U) be the reading of a column U. For us, the column C is admissible if for m = 1, . . . , h(U), the number N(m) of letters x in U such that x m or x m satisfies N(m) m. We will denote by acol(n) the set of readings of non-empty admissible columns in the free monoid C * n . Let U be a column and I = {x 1 > . . . > x r } be the set of unbarred letters such that x i and x i in U , for i = 1, . . . , r. The column U can be split if there exists a set of unbarred letters J = {y 1 > . . . > y r } containing r elements of C n such that :

• y 1 is the greatest letter of C n satisfying y 1 < x 1 , y 1 / ∈ U and y 1 / ∈ U,

• for i = 2, . . . , r, y i is the greatest letter of C n such that y i < min(y i-1 , x i ), y i / ∈ U and y i / ∈ U.

Denote by rU the column obtained by changing in U, x i into y i for each letter x i in the set I up to reordering. Denote by lU the column obtained by changing in U, x i into y i for each letter x i in the set I up to reordering. The column U can be split, so that it is an admissible column. and we cannot find an element y 3 of C n such that y 3 < 1. Thus U cannot be split.

Using admissible columns, one can construct a tableau whose columns are admissible with an additional property on them. This tableau is called the symplectic tableau. We will recall its definition in our context.

Notations. Let U 1 , . . . , U r be the r columns from left to right of a Young tableau T , then T is denoted by T = U 1 . . . U r .

Let U 1 and U 2 be two admissible columns. Consider the following notation :

• U 1 U 2 if h(U 1 ) h(U 2
) and the rows of the tableau U 1 U 2 are weakly increasing from left to right.

• U 1 U 2 if rU 1 lU 2 .
Symplectic tableaux. A tableau T = U 1 . . . U r is a symplectic tableau if we have U i U i+1 for i = 1, . . . , r -1. The reading of the symplectic tableau T is the word w(T ) obtained by reading the columns of T from right to left, that is w(T ) = w(U r )w(U r-1 ) . . . w(U 1 ). T is a symplectic tableau. Indeed,

• w(U 1 ) = 123, I U 1 = J U 1 = ∅ and w(rU 1 ) = w(lU 1 ) = 123.

• w(U 2 ) = 23 2, I U 2 = {2}, J U 2 = {1}, w(rU 2 ) = 23 1 and w(lU 2 ) = 13 2.

• w(U 3 ) = 3, I U 3 = J U 3 = ∅ and w(rU 3 ) = w(lU 3 ) = 3.

The columns U 1 , U 2 and U 3 can be split, so they are admissible columns. We have U 1 U 2 U 3 , so T is a symplectic tableau and w(T ) = 323 2123.

Crystal graphs and symplectic tableaux. In the following remark, we will characterize the crystal graph B(λ) of the irreducible module V(λ) of highest weight λ as the set of symplectic tableaux of shape λ. coincides with the set of symplectic tableaux of shape λ. More precisely, the readings of these tableaux are the vertices of a connected component of G n,|λ| isomorphic to B(λ). The highest weight vertex of this component is the reading of the tableau of shape λ filled with 1 on the 1st row, 2 on the 2nd row, ... , and n on the nth row. In particular, the reading of the highest weight vertex of a connected component containing admissible columns of height p is 12 . . . p. with w(T The unique symplectic tableau T such that w ∼ crys w(T ) is denoted by P(w).

) = f 1 • f 2 • f 3 • f 2 • f 1 • f 2 • f 3 (1123123).
Knuth-like presentation of the symplectic plactic monoid. The symplectic plactic monoid P n (C) can be presented by generators and relations. Consider the congruence ≡ generated by the following families of relations on C * n :

(R 1 ) : yzx ≡ yxz for x y < z with z = x xzy ≡ zxy for x < y z with z = x (R 2 ) : y(x -1)(x -1) ≡ yxx for 1 < x n and x y x xxy ≡ (x -1)(x -1)y for 1 < x n and x y x (R 3 ) : let w be a nonadmissible column word whose each strict factor is an admissible column word. Let z be the lowest unbarred letter such that z and z are in w and N(z) = z + 1. Then w ≡ w, where w is the column word obtained by erasing z and z from w. 

A bumping algorithm for type C

In [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF], Lecouvey introduces an insertion scheme to compute the symplectic tableau P(w) analogous to the Schensted's algorithm for type A. We present in the following sections Lecouvey's algorithms and we refer the reader to [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF] for more details.

Let denote by x → T the insertion of a letter x in a symplectic tableau T .

Insertion of a letter in an admissible column. Consider a word w = w(U)x, where x is a letter and U is an admissible column of height p. We have three cases :

• If w is the reading of an admissible column, then x → U is the column obtained by adding a box filled by the letter x at the bottom of U. In this case, the highest weight vertex of B(w) is equal to 1 . . . p(p + 1).

• If w is a nonadmissible column word such that each strict factor of it is admissible, then x → U is the column of reading w obtained from w by applying one relation of type (R 3 ), which is uniquely determined [START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n[END_REF]. In this case, the highest weight vertex of B(w) is equal to 1 . . . pp.

• If w is not a column word, then x → U is obtained by applying relations of type (R 1 ) or (R 2 ) to the final subword of length 3 of w. On the resulting word, one continues by applying relations of type (R 1 ) or (R 2 ) to the maximal overlapping factor of length 3 to the left and this procedure is repeated until the first factor of length 3 has been operated. The result is the reading of a symplectic tableau consisting of a column U of height p and a column x , where x is an element of C n . Then

x → U = U x = P(w).

In this case, the highest weight vertex of B(w) is equal to 1 . . . p1. .

Insertion of a letter in a symplectic tableau. Let T = U 1 . . . U r be a symplectic tableau with admissible column U i , for i = 1, . . . , r, and x be a letter. We have three cases:

• If w(U 1 )
x is an admissible column word, then x → T is the tableau obtained by adding a box filled by x on the bottom of U 1 .

• If w(U 1 )x is a nonadmissible column word whose each strict factor is an admissible column word. Let w(U 1 )x = y 1 . . . y s be the admissible column word obtained from w(U 1 )x by applying relation of type (R 3 ) and T = U 2 . . . U r be the tableau obtained from T after eliminating the leftmost column U 1 . Then x → T is obtained by inserting successively the elements of w(U 1 )x in the tableau T . That is,

x → T = y s → (y s-1 → (• • •y 1 → T )).
Moreover, the insertion of y 1 , . . . , y s in T does not cause a new contraction.

• If w(U 1 )x is not a column word, then

x → U 1 = U 1 y ,
where U 1 is an admissible column of height h(U 1 ) and y a letter. Then

x → T = U 1 (y → U 2 . . . U r ),
that is, x → T is the juxtaposition of U 1 with the tableau obtained by inserting y in the tableau U 2 . . . U r .

Example. Consider a symplectic tableau

T 1 = 1 2 3 2 3 3 2
and a letter x = 1. Let us compute x → T 1 . First, we begin inserting x in the leftmost column U 1 of T 1 . The word 1231 is not a column word, then by applying at each step (R 1 ) or (R 2 ), we obtain :

1231 ≡ 1213 ≡ 1123, so 1 → 1 2 3 = 1 1 2 3
.

Then 1 → T 1 = U 1 (1 → T 1 )
, where

U 1 = 1 2 3
and T 1 = .

So 1 → T 1 = U 1 U 2 2 → 3 , where U 2 = 1 3 2
.

Finally, we have 32 ≡ 32, then 2 → 3 = 2 3 .

Hence,

1 → T 1 = 1 1 2 3 2 3 3 2
.

into the column of reading uy 1 . . . y i and of height p + i. Thus uv is an admissible column word and the tableau P(uv) consists of one column uv. Second, suppose that there exists an element y k of the column word v such that uy 1 . . . y k-1 y k is a nonadmissible column word whose each strict factor is an admissible column word, then z k = p + k -1 and wt(z k ) = Λ p+k-2 -Λ p+k-1 , then during the insertion of y k in the admissible column of reading uy 1 . . . y k-1 , this column of height p + k -1 is transformed into a column of height p + k -2. After one continues inserting the remaining elements of v, then one adds those letters in distinct rows in the considered column or one removes some letters from distinct rows of the same column.

Hence, in this case the symplectic tableau P(uv) consists of one column.

Case 2: u 0 z 1 = 1 . . . pp. In this case, uy 1 is a nonadmissible column word such that each strict factor is an admissible column word. We have wt(z 1 ) = Λ p-1 -Λ p , then during the insertion of y 1 in the admissible column U, this column of height p is turned into a column of height p -1.

Since the elements of the column V are strictly increasing, one can prove by similar arguments of Case 1, that during the computation of P((uy 1 )y 2 . . . y q ), one adds a number of boxes of the considered column in distinct rows and one removes some boxes from distinct rows of the same column. Note also that the column U can be contracted to become empty. Hence, we have in this case that the symplectic tableau P(uv) consists of one column or zero columns.

Case 3: u 0 z 1 = 1 . . . p1. In this case, uy 1 is not a column word, then during the insertion of y 1 in the admissible column U, an element appears in a second column. After, one inserts the next element y 2 of the column V in P(uy 1 ), the highest weight of the connected component containing w(P(uy 1 ))y 2 may be written w(P(uy 1 ) 0 )z 2 , where w(P(uy 1 ) 0 ) is of highest weight and by Lemma 1.3.3.3, we have: (i) z 2 = i (with i = p + 1 or i = 2), then its weight is equal to Λ i -Λ i-1 , then during the insertion y 2 → P(uy 1 ) a column of height i -1 is turned into a column of height i. Then one adds a box in the left column or in the right column of P(uy 1 ).

(ii) z 2 = p, then its weight is equal to Λ p-1 -Λ p , then during the insertion y 2 → P(uy 1 ), the right column of height p is turned into a column of height p -1.

After we continue inserting the remaining letters of v, and since every element is strictly larger than its preceding, one adds boxes in distinct rows in the right or in the left column and similarly one removes boxes from distinct rows of the considered symplectic tableau. Note also that it is impossible that one of the columns contracts to become empty. Indeed, let u and v be respectively the readings of two admissible columns U and V such that uv is of highest weight. Suppose that after adding k boxes in the right column, one inserts p boxes in the left column to contract it into an empty one. Then in this case we have u = 1 . . . p and v = 1 . . . kp(p -1) . . . 1. We have in the word v that N(p) = p + k > p. So the column V is not admissible, which yields a contradiction.

Hence, the symplectic tableau P(uv) consists of two columns. 

(n) = c u u ∈ acol(n) ,
where each symbol c u represents the element u of P n (C). In particular, the word c x represents the letter x in C n , hence the set ACol 1 (n) also generates P n (C).

Let w = x 1 . . . x (w) and w = x 1 . . . x ( w) be two columns such that w ≡ w by a relation of type (R 3 ). The 2-cells corresponding to the relations (R 1 ), (R 2 ) and (R 3 ) can be written in the following form Well-ordering on ACol * 1 . Let < be the total order on C n defined by 1 < 2 < . . . < n < n < . . . < 1.

Denote by < deg the deglex order induced by < on the monoid C * n . Let us define an order on ACol * 1 . First, let be the total order on ACol 1 (n) defined by

c u c v if (u) < (v) or [ (u) = (v) and u < lex v].
Secondly, consider the order ≺ on ACol 1 (n) * , defined as follows. We have

c u 1 c u 2 . . . c um ≺ c v 1 c v 2 . . . c vn if m < n
or m = n and there exists i such that c u i c v i and ∀j < i, c u j = c v j , where c u i and c v j are elements of ACol 1 (n), for i = 1, . . . , m and j = 1, . . . , n.

That is, two elements in ACol 1 (n) * are compared using the number of theirs symbols. If they have the same number of symbols, we compare them using the total order on the elements of ACol 1 (n) which is induced by the deglex order on the columns words in C * n . Then ≺ is a total order on ACol 1 (n) * and it is a well-ordering. Let w = x 1 . . . x p . . . x q . . . x k be a nonadmissible column word of length k whose each strict factor is an admissible column word. Let z = x p be the lowest unbarred letter such that z = x p and z = x q occur in w and N(z) = z + 1. Then the 2-cell c ζw is deduced from rules in ACol Proof. By Lemma 3.3.4.4, the 2-polygraph ACol 2 (n) is finite. Let us show that it is also convergent. First, in order to prove the termination of ACol 2 (n), we show that if h =⇒ h then h ≺ h. One finds two cases. First case: let h = pc u c v q and h = pc w q, with p and q are in ACol 1 (n) * and c u , c v , and c w are in ACol 1 (n). One remarks that the length of h is smaller than h, then h ≺ h. Second case: let h = pc u c v q and h = pc w c w q, with p and q are in ACol 1 (n) * and c u , c v , c w and c w are in ACol 1 (n), where w and w are respectively the readings of the right and left columns of P(uv). One remarks that h and h have the same length. By Lemma 3.3.3.2 the length of u is strictly larger than the length of w, then c w c u . Consider i = (p) + 1, c u i = c w and c u = c v i then we have c u i c v i and for all j < i, c u j = c v j . Hence h ≺ h.

Since every application of a 2-cell of ACol 2 (n) yields a ≺-preceding word, it follows that any sequence of rewriting using ACol 2 (n) must terminate. Hence, the 2-polygraph ACol 2 (n) is terminating.

Let us show the confluence of the 2-polygraph ACol 2 (n). Let h ∈ ACol 1 (n) * and h , h be two normal forms obtained from h. We have to prove that h = h . Suppose that h = c u k . . . c u 1 . Since h is a normal form, the words u 1 , . . . , u k are respectively the readings of k admissible columns U 1 , . . . , U k of a symplectic tableau, i.e, U i U i+1 , ∀i. Then u k . . . u 1 = w(T ), where T is the unique symplectic tableau such that w(T ) = u k . . . u 1 ≡ h .

Similarly, h = c v l . . . c v 1 is a normal form, then there exists a unique symplectic tableau T such that w(T ) = v l . . . v 1 ≡ h .

Since h ≡ h ≡ h , we have by Theorem 3.3.1.10 that T = T . Then we have k = l and u i = v i , ∀i = 1, . . . , k. Thus h = h .

Hence, the 2-polygraph ACol 2 (n) is convergent.

Example. Consider the monoid P 2 (C). The admissible columns words over the ordered set C 2 = {1, 2, 2, 1} are the readings of the following columns

1 , 2 , 2 , 1 , 1 2 , 1 2 , 2 2 , 2 1 , 2 1 
. 

COLUMN PRESENTATION FOR PLACTIC MONOIDS OF TYPES B, D AND G 2

For type A, using Schensted's column insertion we can insert a column V into a column U and during this insertion either we add boxes at the bottom of the column U filled by the elements of V or the elements of the column V bump some boxes of U into a new column. Thus we have directly that the result is a tableau consisting of at most two columns where the right one contains fewer elements than U. Note that it is more difficult to prove the later result using the Knuth presentation.

For type C, using Lecouvey's insertion we generalise this construction and we prove the same results in Lemma 3.3.3.1 and Lemma 3.3.3.2 for admissible columns. Using the same strategy as in Subsection 3.3, one can construct finite convergent presentations of plactic monoids for type B and D by introducing admissible column generators. The rewriting system rewrites two admissible columns that do not form an orthogonal tableau to their corresponding orthogonal tableau form. Since Kashiwara's theory of crystal graphs exists for type B and D, one can show that Lemmas 3.3.3.1 and 3.3.3.2 are also true for these types. Hence by this approach, we should obtain the same result as Theorem 3.3.4.6 for plactic monoids of type B and D. Similarly, the notion of Kashiwara's theory exists for type G 2 , then Theorem 3.3.4.6 can be generalised to this type. Hence, using our method and strategy, one can construct the column presentation for plactic monoids of type B, D and G 2 .

The case of type B. For type B, one considers the following totally ordered set Let us now recall from [79, Subsection 3.1] the notion of admissible columns for type B. A column for type B is a Young diagram U consisting of one column filled by letters of B n strictly decreasing from bottom to top such that 0 is the unique element that can appear more than once. As for type C, the reading of a column U is the word w(U) obtained by reading the letters of U from top to bottom. For instance, the word 12302 1 is the reading of a column of type B. The height of a column U is the number of letters in U and denoted by h(U). A word w is a column word if there exists a column U such that w = w(U). For a column U, we denote by N(z) the number of elements x in U such that x z or x z. An admissible column U for type B is a column such that for any z n, we have N(z) z and if 0 is in U then h(U) n. For instance, for n = 6, the word 5 60654 is an admissible column word. Note that a column U for type B can be also splitted into a right and a left one in a similar procedure as described in 3. Using admissible columns, one can construct a tableau whose columns are admissible with an additional property on them. This tableau is called the orthogonal tableau. The notion of orthogonal tableau is a generalisation for type B of the notions of tableaux for type A and symplectic tableaux for type C, see [START_REF]Schensted-type correspondences and plactic monoids for types B n and D n[END_REF]Subsubsection 3.1.2]. An orthogonal tableau is of highest weight if and only if it has i-th row filled by i, for i = 1, . . . , n, [61, Theorem 5.7.1]. Note also that, as for type C, the crystal operators preserve the shapes of orthogonal tableaux. Thus, after applying the crystal operators on an orthogonal tableau of highest weight, one obtains all the orthogonal tableaux of the same shape. For instance, consider the word 021 obtained by reading the following tableau

B n = 1 < 2 < . . . < n < 0 < n < . . . <
T = 2 0 1 • c u c v α u,v
=⇒ c w c w , where the words w and w are respectively the readings of the right and left columns W and W of P(uv) if this orthogonal tableau consists of two columns.

• c u c v α u,v =⇒ c w , where w is the reading of the column W of P(uv) if it consists of one column. Since the set of admissible columns for type B is finite, the presentation ACol 2 (n) B is finite. Moreover, the well-founded order defined in 3.3.4 can be also defined on the set of non-empty admissible columns for type B. Using Lemma 3.3.3.2, on can show that the 2polygraph ACol 2 (n) B is compatible with this order. In addition, the confluence of ACol 2 (n) B is shown using the unique normal form property. Indeed, each plactic congruence contains a unique orthogonal tableau. Hence, the 2-polygraph ACol 2 (n) B is a finite convergent presentation of the plactic monoid of type B. In this way, Theorem 3.1.0.1 is generalised for type B The construction of Cain, Gray and Malheiro. After our construction of the column presentation of the plactic monoid of type C, similar finite convergent presentations were constructed for plactic monoids of type B, D and G 2 by Cain, Gray and Malheiro, [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n[END_REF]. They used Lecouvey's presentations of these plactic monoids and the notions of admissible columns and tableaux in the Lecouvey sense. Using Kashiwara's operators for types B, C, D and G 2 and by a case-by-case analysis, they showed that for every two admissible columns such that their juxtaposition does not form a (generalised) tableau, the corresponding (generalised) tableau form consists in at most two columns for type B, C and D, [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n[END_REF]Subsections 5.2,5.3,5.4] and in at most three columns for type G 2 , [16, Subsections 5.5]. Moreover, they proved that the first admissible column contains more elements than the right most column of the corresponding tableau, [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n[END_REF]Sections 5]. Using the latter result, they introduced a rewriting system that rewrites two admissible columns to their corresponding (generalised) tableau form. After introducing a well-order on products of columns such that rewriting always decreases with respect to this order, they showed that this rewriting system is terminating, [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n[END_REF]Lemma 6.1]. Using the unique normal form property and the fact that tableaux form a cross section for plactic monoids, they showed that the rewriting system is confluent, [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types A n , B n , C n[END_REF]Lemma 6.2]. As a consequence, they constructed the column presentation for plactic monoids of type B, D and G 2 , [16, Theorem 6.3]. plactic monoid P n , whose underlying 2-polygraph is PreCol 2 (n) presented in Chapter 2, Subsection 2.2.2. In a last step, we reduce in 4.2.4 the coherent presentation PreCol 3 (n) into a coherent presentation Knuth 3 (n) of the monoid P n whose underlying 2-polygraph is the Knuth presentation Knuth 2 (n). Finally, we give in 4.2.5 the values of number of cells of the coherent presentations for plactic monoids of low-dimensional rank.

• c u c v α u,v =⇒ c ε ,

COHERENT COLUMN PRESENTATIONS OF PLACTIC MONOIDS

Coherent presentations of monoids

A coherent presentation of a monoid expresses a system of generators and relations for the monoid extended in a coherent way to present all the relations amongst the relations. In the following, we will recall the notion of coherent presentations and we we refer the reader to [START_REF] Guiraud | A homotopical completion procedure with applications to coherence of monoids[END_REF][START_REF]Polygraphs of finite derivation type[END_REF][START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] for a full introduction.

(3, 1)-polygraphs. A (3, 1)-polygraph is a pair (Σ 2 , Σ 3 ) made of a 2-polygraph Σ 2 and a set of globular 3-cells of the free (2, 1)-category Σ 2 equipped with source and target maps s 2 , t 2 : Σ 3 → Σ 2 that satisfy the globular relations: s 1 s 2 = s 1 t 2 and t 1 s 2 = t 1 t 2 .

A (3, 1)-polygraph Σ can be summarised by a diagram representing the cells and the sources of target maps as following

Σ 0 Σ * 1 t 0 o o s 0 o o Σ 2 t 1 o o s 1 o o Σ 3 t 2 o o s 2 o o .
A element of the globular extension Σ 3 can be represented by a 3-cell with the following globular shape

• u 3 3 v a a f Õ % g Õ % X 7 W • or u f @ g T t v X Õ %
that relates parallel 2-cells f and g in the (2,1)-category Σ 2 .

A pair (f, g) of 2-cells of Σ 2 such that s 1 (f) = s 1 (g) and t 1 (f) = t 1 (g) is called a 2-sphere of Σ 2 . We will denote by Σ 3 the free (3, 1)-category generated by the (3, 1)-polygraph (Σ 2 , Σ 3 ), see [START_REF]Polygraphs of finite derivation type[END_REF]Subsection 4.1.]. A 3-sphere of the (3, 1)-category Σ 3 is a pair (f, g) of 3-cells of Σ 3 such that s 2 (f) = s 2 (g) and t 2 (f) = t 2 (g).

Coherent presentations of monoids. An extended presentation of a monoid M is a (3, 1)polygraph Σ whose presented monoid is isomorphic to M. Explicitly, it is defined by a presentation (Σ 1 , Σ 2 ) of M, together with a set Σ 3 of globular 3-cells on the free (2, 1)-category Σ 2 .

A homotopy relation on the (2, 1)-category Σ 2 is an equivalence relation on parallel 2-cells of Σ 2 , stable under context and composition, that is, for every 1-cells u and v and every 2-cells α, β, θ 1 and θ 2 in Σ 2 ,

x u G G y % %5 5 Y Y i i z v G G t θ 1 Õ % α Õ % β Õ % θ 2 Õ % α β implies u 0 (θ 1 1 α 1 θ 2 ) 0 v u 0 (θ 1 1 β 1 θ 2 ) 0 v,
whenever the composites are possible.

A coherent presentation of a monoid M is an extended presentation Σ of M such that the smallest homotopy relation containing Σ 3 is the full homotopy relation on Σ 2 , that is, for every 2-sphere γ of Σ 2 , there exists a 3-cell in Σ 3 with boundary γ. In this case, the globular extension Σ 3 is called a homotopy basis of the (2, 1)-category Σ 2 .

Cofibrant approximations of 2-categories. A 2-category is cofibrant if its underlying 1category is free, [START_REF] Lack | A Quillen model structure for 2-categories[END_REF][START_REF]A Quillen model structure for bicategories[END_REF]. A 2-functor G : C 1 → C 2 is called weak equivalence if it satisfies the following conditions: i) every 0-cell y of C 2 is equivalent to a 0-cell G(x) for x in C 1 . That is, there exists 1cells u : G(x) → y and u : y → G(x) and invertible 2-cells α :

u 1 u =⇒ 1 G(x) and β : u 1 u =⇒ 1 y in C 2 ,
ii) for every 0-cells x and x in C 1 , the induced functor G(x, x ) :

C 1 (x, x ) → C 2 (G(x), G(x ))
is an equivalence of categories.

A cofibrant approximation of a Using the notion of polygraphic resolution, one can define the higher-dimensional finite derivation type properties FDT ∞ . Guiraud and Malbos generalised in any dimension the finite derivation type FDT 3 , [START_REF]Higher-dimensional normalisation strategies for acyclicity[END_REF]. A monoid is said to be FDT ∞ if it admits a finite polygraphic resolution. By [START_REF]Higher-dimensional normalisation strategies for acyclicity[END_REF]Corollary 4.5.4], a monoid with a finite convergent presentation is FDT ∞ .

In the homological way, a monoid M is of homological type FP ∞ when there exists a resolution of M by projective, finitely generated ZM-modules. By [START_REF]Higher-dimensional normalisation strategies for acyclicity[END_REF]Corollary 5.4.4], the property FDT ∞ implies the property FP ∞ .

By Chapter 3,Theorem 3.1.0.1, for any semisimple Lie algebra the corresponding plactic monoid admit a finite convergent presentation. Hence, plactic monoids satisfy the homotopical finiteness condition FDT ∞ and the homological finiteness property type FP ∞ . 

/Υ 2 are isomorphic. Let Σ be a (3, 1)-polygraph. A 2-cell (rep. 3-cell) γ of Σ is called collapsible, [11], if its target is a generating 1-cell (rep. 2-cell) of Σ, and its source is a 1-cell (rep. 2-cell) of the free (3, 1)-category over Σ \ {t(γ)}. If γ is collapsible, then its target is called a redundant cell.
The notion of Tietze transformations defined for presentations of groups, [START_REF] Tietze | Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten[END_REF] and for 2-polygraphs, [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] can be also defined for (3, 1)-polygraphs. Recall from [31, Section 2.1] that an elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with domain Σ 3 that belongs to one of the following operations: i) adjunction ι 1 α and elimination π α of a 2-cell α as described in Chapter 2,Subsection 2.2.1,

ii) coherent adjunction ι 2 X : Σ 3 → Σ 3 (α)(X ) of a redundant 2-cell α with its collapsible 3-cell X : • 2 2 b b β Õ % • ι 2 X G G • 8 8 V V β Õ % α Õ % X 7 W • iii) coherent elimination π X : Σ 3 → Σ 3 /X of a redundant 2-cell α with its collapsible 3-cell X : • 8 8 V V β Õ % α Õ % X 7 W • π X G G • 2 2 b b β Õ %
• where Σ 3 /X is the free (3, 1)-category generated by the (3, 1)-polygraph (Σ 2 \{α}, Σ 3 \{X }). iv) coherent adjunction ι X : Σ 3 → Σ 3 (X ) of a redundant 3-cell X : The presentation Knuth 2 (2) of the monoid P 2 admits a unique confluent critical branching:

• 5 5 Y Y Õ % Õ % Y 7 W • ι X G G • 5 5 Y Y Õ % Õ % X 7 W Y 7 W • v) coherent elimination π (Y,X ) : Σ 3 → Σ 3 /(Y, X ) of a redundant 3-cell X , that maps X to Y: • 5 5 Y Y Õ % Õ % X 7 W Y 7 W • π (Y,X ) G G • 5 5 Y Y Õ % Õ % Y 7 W • where Σ 3 /(Y,
-cell v f $ D Õ % u f 9 Y f 1 4 T u v 1 f 1 R r for every critical branching (f, f 1 ) of Σ. Squier's completion of Σ is the (3, 1 
2211 2η 1,1,2 & F ε 1,2,2 1 I i 2121 Õ % (4.1)
Thus the presentation Knuth 2 (2) can be extended into a coherent presentation with the 3cell (4.1).

Example: the plactic monoid P 3 . The plactic monoid P 3 admits a coherent presentation with 3 generators, 11 relations and 27 3-cells corresponding to the 27 critical branchings explained in Chapter 2, Subsection 2.3.2.

Homotopical completion procedure

Using Squier's construction, the homotopical completion procedure introduced in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF][START_REF] Guiraud | A homotopical completion procedure with applications to coherence of monoids[END_REF] extends the Knuth-Bendix completion procedure to the case of (3, 1)-polygraphs in order to compute a coherent and convergent presentation from a terminating presentation. The procedure examines the critical branchings one by one, add 2-cells to reach the confluence and add also 3-cells in order to obtain a coherent presentation. If the starting presentation is convergent, the 3-cells induced by confluence diagrams of the critical branchings form a homotopy basis and thus they suffice to obtain a coherent presentation.

Given a terminating 2-polygraph Σ, equipped with a total termination order . For any critical branching (f, f 1 ) of Σ, there are two possible situations:

i) If (f, f 1 ) is confluent, then one adds the dotted 3-cell X : v f & F X Õ % u f 9 Y f 1 4 T v = v 1 v 1 f 1 I i ii) If (f, f 1 ) is not confluent, then (a) if v > v 1
, one performs a Tietze transformation on Σ to coherently add the 2-cell α : v ⇒ v 1 case, the tableau P(uv) contains at most two columns ; we will denote u v ×1 if the tableau P(uv)

has one column and we will denote u v ×2 if the tableau P(uv) has two columns.

For every columns u and v in col(n) such that u v × , we define a 2-cell α u,v : c u c v ⇒ c w c w where w = uv and c w = 1, if u v ×1 , and w and w are respectively the left and right columns of

the tableau P(uv), if u v ×2 .
The column presentation of the plactic monoid

P n is the 2-polygraph Col 2 (n) whose set of 1-cells is Col 1 (n) = c u u ∈ col(n)
and the 2-cells are the α u,v such that u and v are in col(n) and we have u v × .

Coherent column presentation. By definition of the rules α u,v , the presentation Col 2 (n) has exactly one critical branching of the form

c e c e c t c u c v c t α u,v c t 9 Y c u α v,t 5 U c u c w c w (4.2) 
for any u, v, t in col(n) such that u v t × × , where e and e (resp. w and w ) denote the two columns of the tableau P(uv) (resp. P(vt)). We prove in this section that all of these critical branchings are confluent. This gives an alternative proof of the confluence of 2polygraph Col 2 (n) given in Chapter 3, Subsection 3.2.2. Moreover, we prove that all the confluence diagrams of these branchings are of the following form: vt is a column, in particular y j+1 > z l . It follows that e t is a column. Suppose that i 0 > 1, then x 1 y 1 and the smallest element of e is y 1 . Since y 1 > z l by hypothesis, the word e t is a column. Hence, in all cases, e t is a column and there is a 2-cell α e ,t : c e c t ⇒ c e t . Case 2: p < q and x i y i for any 1 i p.

We have e = y q . . . y p+1 x p . . . x 1 and e = y p . . . y 1 . By hypothesis, y 1 > z l , hence e t is a column and there is a 2-cell α e ,t : c e c t ⇒ c e t . Case 3: p < q and x i 0 > y i 0 for some 1 i 0 p.

With the same arguments of Case 1, the smallest element of e is y 1 or y j+1 , where y j is the biggest element of the column v such that y j < x 1 . Hence, e t is a column and there is a 2-cell α e ,t : c e c t ⇒ c e t .

In case 1, 2 and 3, we have l nds (uv) = 2, hence l nds (uvt) = 2. Thus the tableau P(uvt) consists of two columns, that we denote s and s and there is a 2-cell α u,vt : c u c vt ⇒ c s c s . Moreover, to compute the tableau P(uvt), one begins by computing P(uv) and after by introducing the elements of the column t on the tableau P(uv). As C(P(uv)) = ee , we have P(uvt) = P(P(uv)t) = P(ee t). Hence C(P(ee t)) = ss and there is a 2-cell α e,e t which yields the following confluence diagram . . . where w and w (resp. a and a ) denote the two columns of the tableau P(vt) (resp. P(uw)).

z l α u,v c t @ cu α v,t 1 
c uv c t C u,v,t Õ % α uv,t 4 T c u c v c t α u,v c t @ cu α v,t 2 R
Proof. By hypothesis, uv is a column hence x 1 > y q . Moreover, the tableau P(vt) consists of two columns w and w , then l nds (vt) = 2, hence y 1 z l . We have v t ×2 , so that we distinguish the three possible following cases.

Case 1: q l and y i 0 > z i 0 for some 1 i 0 l. Let us denote w = w r . . . w 1 and w = w r . . . w 1 . Since q l, we have w r = y q . By hypothesis, x 1 > y q . Then the word uw is a column. As a consequence, there is a 2cell α u,w : c u c w ⇒ c uw . In addition, the column w appears to the left of w in the planar representation of the tableau P(vt), that is, (w) (w ) and w i w i for any i (w ). Then (uw) (w ). We set uw = ξ (uw) . . . ξ 1 and we have ξ i w i for any i (w ). Then uww and c uw c w is a normal form.

On the other hand, the tableau P(vt) consists of two columns, hence l nds (vt) = 2. As a consequence, l nds (uvt) = 2 and the tableau P(uvt) consists of two columns. Since q l, we have C(P(uvt)) = uww , hence the two columns of P(uvt) are uw and w . Then there is a 2-cell α uv,t : c uv c t ⇒ c uw c w which yields the confluence of the critical branching on c u c v c t , as follows Case 2: q < l and y i z i for any i q.

We have w = z l . . . z q+1 y q . . . y 1 and w = z q . . . z 1 . There are two cases along uw = x p . . . x 1 z l . . . z q+1 y q . . . y 1 is a column or not.

Case 2. A. If x 1 > z l , then uw is a column. Hence, there is a 2-cell α u,w : c u c w ⇒ c uw . Moreover, using Schensted's algorithm we prove that C(P(uvt)) = uww , it follows that the columns of P(uvt) are uw and w . Thus there is a 2-cell α uv,t : c uv c t ⇒ c uw c w which yields the confluence diagram (4.6).

Case 2. B. If x 1 z l , then l nds (uw) = 2 and P(uw) consists of two columns, that we denote by a and a . Then there is a 2-cell α u,w : c u c w ⇒ c a c a . In addition, by Schensted's algorithm, we deduce that a = z i k . . . z i 1 , with q + 1 i 1 < . . . < i k l. We have a w = z i k . . . z i 1 z q . . . z 1 . Since all the elements of a are elements of t and bigger than z q , we have z i 1 > z q . It follows that a w is a column and there is a 2-cell α a ,w : c a c w ⇒ c a w .

In the other hand, we have two cases whether uv t × or uv t. Suppose uv t × . By Schensted's algorithm, we have C(P(uvt)) = aa w , showing that the two columns of P(uvt) are a and a w . Hence there is a 2-cell α uv,t : c uv c t ⇒ c a c a w , which yields the confluence of Diagram (4.5). Suppose uv t. Then we obtain C(P(uw)) = uvz l . . . z q+1 , and C(P(z l . . . z q+1 w )) = t. Hence there is a 2-cell α z l ...z q+1 ,w yielding the confluence diagram

c uv c t C u,v,t Õ % c u c v c t α u,v c t 8 X c u α v,t 4 T c u c w c w α u,w c w 7 W c uv c z l ...z q+1 c w c uv α z l ...z q+1 ,w r 
Case 3: q < l and y i 0 > z i 0 for some 1 i 0 q. We compute the columns w and w of the tableau P(vt). If the biggest element of the column w is y q , then we obtain the same confluent branching as in Case 1. If the first element of w is z l , then one obtains the same confluent critical branchings as in Case 2. where e, e (resp. w, w ) denote the two columns of the tableau P(uv) (resp. P(vt)) and a, a (resp. b, b ) denote the two columns of the tableau P(uw) (resp. P(e t)).

Proof. By hypothesis, l nds (uv) = 2 and l nds (vt) = 2, hence x 1 y q and y 1 z l . In addition, since u v ×2 , the tableau P(uw) consists of two columns, that we denote by a and a . Thus there is a 2-cell α u,w : c u c w ⇒ c a c a . Moreover, as u v ×2 and v t ×2 , we have ((p < q) or (x i 0 > y i 0 for some i 0 q)) and ((q < l) or (y j 0 > z j 0 for some j 0 l)), thus we consider the following cases.

Case 1: p < q < l and y i z i , for all i q, and x i y i , for all i p. 

Case 3:

q l and y i 0 > z i 0 for some i 0 l p < q and x i y i for all i p or q < l and y i 0 > z i 0 for some i 0 q p < q and x i y i for all i p We have e = y q . . . y p+1 x p . . . x 1 and e = y p . . . y 1 . Since y 1 z l , the tableau P(e t) consists of two columns, that we denote by b and b . The first element of the column b is either z l or y p which are bigger or equal to x 1 , then the tableau P(eb) consists of two columns, that we denote by s and s . Suppose l p. Then by Schensted's insertion algorithm, we obtain C(P(e t)) = bw and w = y q . . . y p+1 b. On the other hand, since x p < y p+1 , we have P(uw) = P(u(y q . . . Suppose l > p, then we consider two cases depending on whether or not the first element of the column b is y p . If this element is y p , then when computing the tableau P(vt) no element of the column t is inserted in y q . . . y p+1 . Hence we have w = y q . . . y p+1 b and b = w . On the other hand, by Schensted's insertion procedure we have P(uw) = P(eb). Hence, there is a 2-cell α e,b : c e c b ⇒ c a c a which yields the confluence diagram (4.9). Suppose that the first element of the column b is z l . Then when computing the tableau P(vt) some elements of the column t are inserted in y q . . . y p+1 . In this case, we have that the column w contains more elements than b and that c s c s c b is a tableau. Moreover, by Schensted's insertion procedure, we have a = s. Since c s c s c b is the unique tableau obtained from c u c v c t and a = s, we obtain C(P(a w )) = s b . As a consequence, there is a 2-cell α a ,w : c a c w ⇒ c s c b which yields the confluence diagram (4.7).

Case 4: q l and y i 0 > z i 0 for some i 0 l p q and x j 0 > y j 0 for some j 0 q or q l and y i 0 > z i 0 for some i 0 q p < q and x j 0 > y j 0 for some j 0 p or q < l and y i 0 > z i 0 for some i 0 q, p q and x j 0 > y j 0 for some j 0 q or q < l and y i 0 > z i 0 for some i 0 q p < q and x j 0 > y j 0 for some j 0 p By Lemma 4.1.3.3, the last term of e is y 1 or y j+1 , where y j is the biggest element of v such that y j < x 1 . Suppose that the last term of e is y 1 . Since z l y 1 , the tableau P(e t) consists of two columns. Furthermore, if the last term of e is y j+1 , then we consider two cases: z l y j+1 or z l < y j+1 . Suppose z l < y j+1 , then the tableau P(e t) consists of one column e t. We consider two cases depending on whether or not c e c e t is a tableau. With the same arguments of Case 2, we obtain a confluence diagram of the following forms: 

u,v,t or D

u,v,t . 4.1.3.6. Remark. We recall in the following the notion of quadratic normalisations of monoids introduced in [START_REF] Guiraud | Quadratic normalisation in monoids[END_REF]. A normalisation is a pair (Σ 1 , Φ), where Σ 1 is a set and Φ is a map from the free monoid Σ * 1 to itself, satisfying: i) (Φ(w)) = (w), ii) (w) = 1 implies Φ(w) = w, iii) Φ(uΦ(w)v) = Φ(uwv), for all 1-cells u, v and w in Σ * 1 . A 1-cell w in Σ * 1 is called Φ-normal if it satisfies Φ(w) = w. The normalisation determines a monoid via the defining relation w = Φ(w). A normalisation (Σ 1 , Φ) is quadratic if the Φ-normality of a 1-cell in Σ * 1 only depends on its factors of length two and if we can go from a 1-cell w to the 1-cell Φ(w) in finitely many steps, each of which consists in applying Φ to some factors of length two. The class of a quadratic normalisation is a pair (x, y) of positive integers which means that one obtains the normal form after at most x steps when starting from the left and y steps from the right. Let Φ be the restriction of Φ to the set of 1-cells of length two. Every quadratic normalisation (Σ, Φ) gives rise to a quadratic 2-polygraph (Σ 1 , Σ 2 ), where Σ 2 consists of 2-cells of the form w ⇒ Φ(w), with the 1-cell w is of length two. If (Σ 1 , Φ) is a quadratic normalisation of class [START_REF] Baader | Term rewriting and all that[END_REF][START_REF] Baader | Term rewriting and all that[END_REF], then the associated 2-polygraph (Σ 1 , Σ 2 ) is convergent [START_REF] Guiraud | Quadratic normalisation in monoids[END_REF]Proposition 5.1.1].

In the proof of Theorem 4. source and target maps of Σ by their compositions with R Γ . We refer the reader to [31, 2.3.1] for details on the definition of the Tietze transformation R Γ defined by well-founded induction as follows. For any γ in Γ R Γ (t(γ)) = R Γ (s(γ)) and R Γ (γ) = 1 R Γ (s(γ)) .

In any other cases, the transformation R Γ acts as an identity.

Triple branchings. Let Σ be a convergent and coherent (3, 1)-polygraph. Its triple critical branchings are used to build a collapsible set of 3-spheres of Σ that contributes to a coherent elimination of 3-cells of Σ by homotopical reduction. For a 2-polygraph Σ, recall from [START_REF]Higher-dimensional normalisation strategies for acyclicity[END_REF] that a triple branching of Σ is a triple (f, f 1 , f 2 ) of 2-cells in Σ * 2 with a common source u, as in the following diagram

v u f 8 X f 1 7 W f 2 5 U v 1 v 2
A triple branching (f, f 1 , f 2 ) is local if f, f 1 and f 2 are rewriting steps. The local triple branchings are classified into the following three families:

• Peiffer triple branchings have at least one of their 2-cells that form a Peiffer branching with the other two,

• aspherical triple branchings have two of their 2-cells equal,

• overlap triple branchings are the remaining local triple branchings.

Local triple branchings are ordered by the order generated by the relations

(f, f 1 , f 2 ) ufv, uf 1 v, uf 2 v)
given for any local triple branching (f, f 1 , f 2 ) and any possible 1-cells u and v of the category Σ * 1 . A overlap triple branching that is minimal for the order is called critical.

Generating triple confluences. If Σ is a coherent and convergent (3, 1)-polygraph, recall from [31, Section 2.3.2] that a triple generating confluence of Σ is a 3-sphere

v f 3 S X v 2 f 2 v f 3 S f @ v 2 f 2 u f E e f 1 7 W f 2 ( H v 1 f 1 T t f 1 @ Z u Ω 1 c u f E e Z f 2 ( H v 1 f 1 7 W Y X u v 2 f 2 A a Y v 2 f 2 b v 2 f 2 T t f 2 A a v 2 f 2 b
where (f, f 1 , f 2 ) is a triple critical branching of Σ and the other cells are obtained as follows. First, one considers the branching (f, f 1 ), the 2-cells f and f 1 are obtained using the confluence of (f, f 1 ) and the coherence is used to get the 3-cell X . The same procedure is applied on the branchings (f 1 , f 2 ) and (f, f 2 ). Then, one considers the branching (f , f ) and using the convergence one obtains the 2-cells f 1 and f with common target u , plus the 3-cell Y by coherence. The same operation is applied on (f 2 , f 2 ) to get X . Finally, one builds the 3-cell Z to relate the parallel 2-cells f 1 1 f and f 1 1 f 2 .

Homotopical completion-reduction. Fix a terminating 2-polygraph Σ. One applies the homotopical reduction to the homotopical completion S(Σ) by considering a collapsible part Γ of S(Σ) made of some of the generating triple confluences of S(Σ), the 3-cells coherently added with a 2-cell by homotopical completion and some collapsible 2-cells or 3-cells already present in the initial presentation Σ.

The homotopical completion-reduction of Σ is the (3, 1)-polygraph

R(Σ) = R Γ (S(Σ))
which is obtained from S(Σ) by homotopical reduction with respect to some collapsible part Γ of S(Σ). For every terminating presentation Σ of a monoid M, the homotopical completionreduction R(Σ) of Σ is a coherent presentation of M, [31, Theorem 2.3.4].

A reduced column presentation

We apply the homotopical reduction procedure in order to reduce the (3, 1)-polygraph Col 3 (n) using the generating triple confluences. Let us consider such a triple (u, v, t) with (u) 2. Let x p be in [n] such that u = x p u 1 with u 1 in col(n). There is a critical triple branching with source c xp c u 1 c v c t . Let us show that the confluence diagram induced by this triple branching is represented by the 3-sphere Ω xp,u 1 ,v,t whose source is the following 3-cell In the generating triple confluence, some columns may be empty and thus the indicated 2-cells α may be identities. To facilitate the reading of the diagram, we have omitted the context of the 2-cells α.

Let us explain how the 3-sphere Ω xp,u 1 ,v,t is constructed. We have x p u 1

×1

and u 1 w × , thus X xp,u 1 ,w is either of the form A xp,u 1 ,w or C xp,u 1 ,w . Let us denote by a 1 and a 1 the two columns of the tableau P(u 1 w). The 3-cell X xp,u 1 ,w being confluent, we have C(P(x p a 1 )) = az with z in [n] and C(P(za 1 )) = a .

In addition, from z a 1

×1

and a 1 w × , we deduce that X z,a 1 ,w is either of the form A z,a 1 ,w or C z,a 1 ,w .

A well-founded order on 2-cells. Consider two columns u and v in col(n) such that u v × .

Let denote by C r (P(uv)) the reading of the right column of the tableau P(uv). We define a well-founded order on the 2-cells of Col 2 (n) as follows The homotopical reduction R Γ 3 . Consider the well-founded order on the 2-cells of Col 2 (n) defined above and the well-founded order on 3-cells defined in the proof of Proposition 4.2.2.1. The reduction R Γ 3 induced by these orders can be decomposed as follows.

α u ,v α u,v if      ( 
For any x in [n] and columns v, t such that x v t ×1 ×1 , we have α x,v α xv,t , α v,t α xv,t and α x,vt α xv,t . The reduction R Γ 3 removes the 2-cell α xv,t together with the following 3-cell: Thus, by Lemma 4.2.3.1, the set of 2-cells defined in (4.12) is equal to PreCol 2 (n).

Pre-column coherent presentation. The homotopical reduction R Γ 3 , defined in 4.2.3, reduces the coherent presentation Col 3 (n) into a coherent presentation of the monoid P n . The set of 2-cells of this coherent presentation is given by (4.12), which is PreCol The homotopical reduction R Γ 3 eliminates the 3-cells of Col 3 (n) of the form A x,v,t , B x,v,t and C x,v,t , which are not of the form C x,v,t . We have then proved the following result. 

Knuth's coherent presentation

We reduce the coherent presentation PreCol 3 (n) into a coherent presentation of the plactic monoid P n whose underlying 2-polygraph is Knuth 2 (n) using the Tietze transformations defined in Chapter 2, Subsection 2.2.2. We proceed in three steps developed in this section.

Step 1. We apply the inverse of the Tietze transformation T γ←α , that coherently replaces the 2cells γ xp...x 1 by the 2-cells α xp,x p-1 ...x 1 , for each column x p . . . x 1 such that (x p . . . x 1 ) > 2.

Step 2. We apply the inverse of the Tietze transformation T η,ε←α , that coherently replaces the 2-cells α x,zy by η c x,y,z for 1 x y < z n and the 2-cells α y,zx by ε c

x,y,z for 1 x < y z n.

Step 3. Finally for each column x p . . . In this way, we obtain the Knuth's coherent presentation of the monoid P 2 that we obtain in Example 4.2.3 as a consequence of the fact that the 2-polygraph Knuth 2 (2) is convergent.

Actions of plactic monoids on categories. In [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF], the authors give a description of the category of actions of a monoid on categories in terms of coherent presentations. Using this description, Theorem 4.2.4.3 allows to present actions of plactic monoids on categories as follows. The category Act(P n ) of actions of the monoid P n on categories is equivalent to the category of 2-functors from the (2, 1)-category Knuth 2 (n) to the category Cat of categories, that sends the 3-cells of Knuth 3 (n) to commutative diagrams in Cat.

Higher syzygies for the plactic monoid. The column presentation Col 2 (n) of the monoid P n can then be extended into a polygraphic resolution whose n-cells, for every n 3, are indexed by (n -1)-fold branching of Col 2 (n). We can explicit the 4-cells of this resolution, which correspond to the confluence diagrams induced by critical triple branchings. That is, for columns u, v, t and e in col(n) such that u v × , v t In the generating triple confluence, some columns may be empty and thus the indicated 2-cells α may be identities. To facilitate the reading of the diagram, we have omitted the context of the 2-cells α. More generally, we expect that the generating n-cell of the resolution has the form of the permutohedron of dimension n.

Coherent presentations in small ranks

As we have shown in Chapter 2, Subsection 2.3, the convergent 2-polygraph KB(Knuth 2 (3)) obtained from Knuth 2 (3) by the Knuth-Bendix's completion is finite. For n 4, the 2polygraph KB(Knuth 2 (n)) is infinite. We denote by Knuth KB 3 (n) the Squier's completion of KB(Knuth 2 (n)). For n 4, the polygraph KB(Knuth 2 (n)) having an infinite set of critical branching, the set of 3-cells of Knuth KB 3 (n) is infinite. However, the (3, 1)-polygraph Knuth 3 (n) constructed in this chapter is a finite coherent convergent presentation of the plactic monoid P n .

As shown in Chapter 2, Proposition 3.2.2.3, the number of 1-cells of the 2-polygraph Col 2 (n) is the sum of the number of all the columns over the set [n]. Then it is equal to 2 n -1. Moreover, the sources of the 2-cells of Col 2 (n) consists in two columns that do not form a tableau. Hence, their number is equal to x < y z n. The number of its 3-cells is obtained after eliminating from Col 3 (n) all the 3-cells of the form A x,v,t for x v t ×1 ×1 , B x,v,t for x v t ×2 ×1 and C x,v,t for x v t ×1 ×2 which are not of the form C x,v,t . Thus, we obtain a finite set of 3-cells in Knuth 3 (n).

2 n -1 2 - 1 i j n i + j + 1 i + j -1 - 1 i j n i + j i + j -1 .
The following table presents the number of cells of the coherent presentations Knuth 3 (n), Col 3 (n) and Col 3 (n) of the monoid P n , for 1 n 10. 

n Knuth 1 (n) Col 1 (n) Knuth 2 (n) KB(Knuth 2 (n)) Col 2 (n) Knuth KB 3 (n) Knuth 3 (n) Col 3 (n) Col 3 (n) 1 1 0 0 0 0 0 0 0 2 3 2 2 
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  on peut définir une relation d'équivalence ∼ plax reliant les mots du monoïde [n] * qui donnent le même tableau de Schensted. En d'autres termes, u ∼ plax v si et seulement si P(u) = P(v), pour tous mots u et v dans [n] * . De plus, Knuth a montré que la relation d'équivalence ∼ plax coïncide avec la congruence engendrée par la famille de relations de Knuth, [63, Theorem 6]: yzx = yxz, pour x y < z ∪ xzy = zxy, pour x < y z .

)

  De plus, la présentation colonne du monoïde P 2 est donnée par les 1-cellules c 1 , c 2 , c 21 , et les 2-cellules α 2,1 : c 2 c 1 ⇒ c 21 , α 1,21 : c 1 c 21 ⇒ c 21 c 1 et α 2,21 : c 2 c 21 ⇒ c 21 c 2 . Cette présentation peut être étendue en une présentation cohérente en ajoutant la 3-cellule suivante: Notons que pour les présentations colonnes des monoïdes P 3 , P 4 et P 5 on compte respectivement 7, 15 et 31 1-cellules, 22, 115 et 531 2-cellules, 42, 621 et 6893 3-cellules.

a 2

 2 fois . . . (π Λn . . . π Λn ) an fois ) où α 1 , . . . , α s sont des racines simples de g. Notons que les tableaux standard introduits par Littelmann en utilisant les chemins correspondant aux tableaux pour le type A, aux tableaux symplectiques pour le type C et aux tableaux orthogonaux pour les types B et D dans le sens de Lecouvey, [78, 79, 83]. Soit B i l'ensemble des chemins L-S de forme Λ i et B = ∪ n i=1 B i . Pour tous chemins L-S c 1 et c 2 dans B tels que c 1 c 2 n'est pas un tableau standard, on définit la 2-cellule c 1 .c 2 γ c 1 ,c 2 =⇒ T où T est l'unique tableau standard tel que T et c 1 c 2 sont égaux dans le monoïde plaxique correspondant. Le 2-polygraphe des chemins, noté par Path 2 (n), est le 2-polygraphe avec une seule 0-cellule et dont l'ensemble des 1-cellules est B et l'ensemble des 2-cellules est Path 2 (n) = c 1 .c 2 γ c 1 ,c 2 =⇒ T c 1 , c 2 ∈ B et c 1 c 2 n'est pas un tableau standard . Cette présentation est appelée présentation colonne. C'est une présentation du monoïde plaxique pour toute algèbre de Lie semi-simple [88, Theorem B]. En utilisant les formes des tableaux, on montre que cette présentation est terminante et confluente. Par conséquent, on obtient le résultat suivant Théorème 3.1.0.1. Pour toute algèbre de Lie semi-simple g, le 2-polygraphe Path 2 (n) est une présentation convergente finie du monoïde plaxique de g. Comme nous le verrons ci-dessous pour le type C, le 2-polygraphe Path 2 (n) peut être construit en raisonnant cas par cas sur les monoïdes plaxiques de types A, B, C, D et G 2 en utilisant la terminologie des colonnes et des colonnes admissibles. La présentation colonne du monoïde plaxique de type C. Considérons le monoïde plaxique P n (C) de type C et l'ensemble ordonné C n = 1 < 2 < . . . < n < n < . . . < 1 . Pour une colonne U, on note par h(U) le nombre de ses éléments. Une colonne U est admissible si pour m = 1, . . . , h(U), le nombre N(m) des lettres x dans U tel que x m ou x m satisfait N(m) m. Un mot est dit admissible s'il est la lecture de haut en bas d'une colonne admissible. Par exemple, le mot 5688 5 est admissible sur l'ensemble ordonné C 8 .

c a c d c b c u c w c w α u,w c w 7 W

 7 c a c a c w c a α a ,w B b

  can define an equivalence ∼ plax relating words in the free monoid [n] * yielding the same Schensted's tableau. That is, u ∼ plax v if and only if P(u) = P(v), for any words u and v in [n] * . Moreover, Knuth showed that the equivalence ∼ plax coincides with the congruence generated by the following family of Knuth relations, [63, Theorem 6]: yzx = yxz, for x y < z ∪ xzy = zxy, for x < y z .

  2 has generators c 1 , c 2 , c 21 , with the rules α 2,1 : c 2 c 1 ⇒ c 21 , α 1,21 : c 1 c 21 ⇒ c 21 c 1 and α 2,21 : c 2 c 21 ⇒ c 21 c 2 . This presentation has only one critical branching: c 21 c 21 Õ % c 2 c 1 c 21 α 2,1 c 21 9 Y c 2 α 1,21 5 U c 2 c 21 c 1 α 2,21 c 1 7 W c 21 c 2 c 1 c 21 α 2,1 p

Theorem 3 . 3 . 4 . 6 .

 3346 The 2-polygraph ACol 2 (n) is a finite convergent presentation of the plactic monoid P n (C) of type C.

  c e c e c t c e α e ,t 7 W X u,v,t Õ % c e c b c b α e,b c b 2 R c u c v c t α u,v c t B b c u α v,t 2 R c a c d c b c u c w c w α u,w c w 7 W c a c a c w c a α a ,w B b

Theorem 4 . 1 . 3 . 1 .

 4131 For n > 0, the plactic monoid P n admits Col 3 (n) as a coherent presentation.

  For instance, since the first column in c 2 c 1 c 21 in the 3-cell of Col 3 (2) is of length 1, the coherent presentations Col 3 (2) and Col 3 (2) of the monoid P 2 coincide.

8 X 1 c 21 α 2, 1 p

 811 c x α v,t 4 T c x c w c w α x,w c w 7 W c xv c z l ...z q+1 c w c xv α z l ...z q+1 ,w r 56 with x v t ×1 ×2 , and of the form R Γ 3 (D x,v,t ) where c e c e c t c e α e ,t 7 W D x,v,t Õ % c e c b c b α e,b c b 2 R c x c v c t α x,v c t B b c x α v,t 2 R c a c d c b c x c w c w α x,w c w 7 W c a c a c w c a α a ,w B b with x v t ×2 ×2 . We obtain the following result Theorem 4.2.3.2. For n > 0, the plactic monoid P n admits PreCol 3 (n) as a coherent presentation. Example: the case of the monoid P 2 . The coherent presentation PreCol 3 (2) of the plactic monoid P 2 is given by the set of 1-cells {c 1 , c 2 , c 21 }, the set of 2-cells α 2,1 : c 2 c 1 ⇒ c 21 , α 1,21 : c 1 c 21 ⇒ c 21 c 1 , α 2,21 : c 2 c 21 ⇒ c 21 c 1 , and the following 3-cell C 2,1,21 : 1 c 21 9 Y c 2 α 1,21 5 U c 2 c 21 c 1 α 2,21 c 1 7 W c 21 c 2 c Knuth coherent presentation. In a last step of the homotopical reduction procedure, we reduce the coherent presentation PreCol 3 (n) into a coherent presentation of the monoid P n whose underlying 2-polygraph is the Knuth presentation Knuth 2 (n). We define an extended presentation Knuth 3 (n) of the monoid P n obtained from Knuth 2 (n) by adjunction of the following set of 3-cells

  Coherent presentations and actions on categories. A monoid M can be seen as a 2-category with exactly one 0-cell •, with the elements of the monoid M as 1-cells and with identity 2-cells only. The category of actions of M on categories is the category Act(M) of 2-representations of M in the category Cat of categories. The full subcategory of Act(M) whose objects are the 2-functors is denoted by 2Cat(M, Cat). We refer the reader to [31, Section 5.1] for a full introduction on the category of 2-representations of 2-categories. More explicitly, an action A of the monoid M is specified by a category C = A(•), an endofunctor A(u) : C → C for every u in M, a natural isomorphism A u,v : A(u)A(v) ⇒ A(uv) for every elements u and v of M, and a natural isomorphism A • : 1 C ⇒ A(1) such that: i) for every triple (u, v, w) of elements of the monoid M, the following diagram commutes

1

 1 Preliminaries on representation theory . . . . . . . . . . . . . . . . . . . 64 1.2 Plactic monoid of type A . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 1.3 Crystal graphs and plactic monoids . . . . . . . . . . . . . . . . . . . . . 75 1.4 Littelmann paths and plactic monoids . . . . . . . . . . . . . . . . . . . . 84

  i) the Jacobi identity: [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0, for all x, y and z in g, ii) alternativity: [x, x] = 0, for all x in g, iii) anticommutativity: [x, y] = -[y, x], for all x and y in g, iv) bilinearity: [ax + by, z] = a[x, z] + b[y, z] and [z, ax + by] = a[z, x] + b[z, y], for all a and b in K and x, y and z in g.

1. 1

 1 .0.2. Example. The only simple Lie algebras over the complex numbers are the following four families of classical semisimple Lie algebras: i) type A n corresponding to the special linear Lie algebra sl n+1 (C), as explained in 1.3.2, ii) type B n corresponding to the odd-dimensional special orthogonal Lie algebra so 2n+1 (C), iii) type C n corresponding to the symplectic Lie algebra sp 2n (C), as explained in 1.3.3, iv) type D n corresponding to the even-dimensional special orthogonal Lie algebra so 2n (C), together with the five exceptional ones E 6 , E 7 , E 8 , F 4 , and G 2 .

4 .

 4 If α and cα are in Φ, for some real c, then c = 1 or c = -1.

  0.5. Example. Let g = sp 4 . Consider S = R 2 with its canonical basis {ε 1 , ε 2 }. The simple roots are α 1 = ε 1 -ε 2 and α 2 = 2ε 2 . The fundamental weights are Λ 1 = ε 1 and

1. 2 . 1 . 1 .

 211 Example. i) The word w = 6845562233571112444 in the free monoid [8] * is a word tableau whose planar representation is 1 the word w 1 = 435334 in the free monoid [5] * . Its planar representation is

1. 2 . 1 . 2 . 1 .

 2121 Example. Consider again the tableau w with planar representation (1.2) and let us compute 3 First we begin inserting 3 in the first column, Schensted's insertion algorithms then we insert 5 in the next column, 's correspondence. For each word w in the free monoid [n] * , one can construct a pair (P(w), Q(w)) consisting of a tableau P(w) and a standard tableau Q(w) as follows. As previously discussed, for every word w = x 1 . . . x p in the free monoid [n] * , a tableau P(w) is computed starting with the empty word and iteratively applying Schensted's algorithm. During the computation of the tableau P(w), a standard tableau Q(w), [104, Lemma 2], is obtained by successively putting i in a box at the same place of the added box when inserting the element x i of w. The bijection w → (P(w), Q(w)), [104, Lemma 3], between words in [n] * and pairs consisting of a tableau over [n] * and a standard tableau of the same shape is called the Robinson-Schensted correspondence.

  x j-1 xx j+1 . . . x l . 1.2.1.3. Example. Consider again the tableau w with planar representation (1.2) and let us compute w ← 3.

2 .

 2 If b is an element in B satisfying e i (b) = 0, then ε i ( e i (b)) = ε i (b) -1, ϕ i ( e i (b)) = ϕ i (b) + 1 and wt( e i (b)) = wt(b)

4 .

 4 For two elements b 1 and b 2 in B, we have b 2 = f i (b 1 ) if and only if b 1 = e i (b 2 ).5. If b is an element in B satisfying ϕ i (b) = -∞, then e i (b) = f i (b) = 0. Note that for b in B, we have ε i (b) = max{k e k i (b) = 0} and ϕ i (b) = max{k f k i (b) = 0}, see [59, Section 4].

3 .

 3 Crystal graphs for type C
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 331 Example. Consider the word w = 332313323331. For i = 2, we have w i = 3323332333.

1. 3 . 3 . 2 .

 332 Example. For n = 2, the crystal B(11) is presented by :

  3 and we denote by [n] = {1 < . . . < n} the ordered set indexing the standard basis of V. Plactic monoid of type A. Each vertex v 1 ⊗ . . . ⊗ v l of the crystal graph of the representation l V ⊗l is considered as the word v 1 . . . v 1 in the free monoid [n] * . For any words u and v in [n] * , we have, [21]: • P(u) = P(v) if and only if u and v occur at the same place in their isomorphic connected components of the crystal graph of l V ⊗l , • Q(u) = Q(v) if and only if u and v occur in the same connected component of this graph. As a consequence, we obtain that for any words u and v in the free monoid [n] * , the following assertions are equivalent: a) u ∼ plax v, b) the words u and v appear in the same place in isomorphic connected components of the crystal graph of the representation l V ⊗l , c) P(u) = P(v), where P(u) and P(v) are the unique tableau obtained from u and v by Schensted's column-insertion, d) one can transform u into v using the Knuth relations: xzy = zxy 1 x < y z n ∪ yxz = yzx 1 x y < z n .

323

  Crystal plactic monoids. The plactic congruence can be generalised for all classical simple Lie algebras as follows. To each classical simple Lie algebra, one associates a finite alphabet S indexing a basis of the vector representation V of the algebra. Two words u and v in the monoid S * are plactic congruent, and denoted by u ∼ crys v, if they appear in the same place in their isomorphic connected components of the crystal graph of the representation l V ⊗l .

  The graph G(Π + ) is a crystal graph in the Kashiwara sense, see Subsection 1.3.1. 1.4.1.3. Example. Consider the semisimple Lie algebra g = sl 3 (C). For λ = Λ 1 + Λ 2 , the elements of B π λ , obtained in Example 1.4.1.2, can be represented by the following connected component B(π λ )

3 1. 4 . 2 . 3 .

 3423 Remark. As previously discussed, L-S paths correspond to columns for type A. Similarly, these paths coincide with the notion of admissible columns for type C, B and D in the Lecouvey sense, see Chapter 3, Subsection 3.3.1.

  [π] ∈ ZP its equivalence class. The classes [m] of standard Young tableaux form a basis of the plactic algebra ZP, see [88, Theorem 7.1]. 1.4.2.4. Example ([88, Theorem C]). For type A, consider the alphabet {1, . . . , n}. The plactic congruence coincides with the congruence generated by the following families of relations on the word algebra Z{1, . . . , n} : (a) xzy = zxy for 1 x < y z n. (b) yxz = yzx for 1 x y < z n.

  For 1 x y < z n, consider the following critical branching c x c z c y c x γ zy 7 W c x c zy c z c x c y η c x,y,z A a γ zx c y 4 T c zx c y of the 2-polygraph Knuth cc 2 (n). Let consider the Nielsen transformation κ η c

Proof.

  It suffices to show that the factors a = 23 i 431 and b = 323 i 43 of a i are in normal forms for the 2-polygraph KB(Knuth 2 (4)).

[ 4 ]

 4 * . Suppose b is reduced into 2u, for some u in [4] * . In this case b can be reduced into b 1 = 23 i+1 43, b 2 = 23 j 43 i-j+2 , for some j > 0, b 3 = 2343 i+1 , or b 4 = 243 i+2 . We have C(P(b 1 )) = C(P(b 2 )) = C(P(b 3 )) = C(P(b 4 )) = (42)(3) i+2 = C(P(b)), then b cannot be reduced into 2u, for some u in [4] * . So a minimal 1-cell that represents b in P 4 should start with 32 and it must be of the forms 323 i 43 = b or 323 i+1 4, but C(P(323 i+1 4)) = (32)(3) i+1 4 = C(P(b)), then it must be of the form 323 i 43 = b, so b is a normal form. 2.3.3.2. Lemma. For any i 1, the 1-cell b i = 3213 i 43 in [4] * is a normal form for KB(Knuth 2 (4)).

C

  (P(e 1 )) = C(P(e 2 )) = C(P(e 3 )) = C(P(e 9 )) = (41)(2)(3) i+1 = C(P(e)), C(P(e 4 )) = C(P(e 5 )) = C(P(e 6 )) = (31)(2)(3) i (4) = C(P(e)), C(P(e 7 )) = C(P(e 8 )) = (431)(2)(3) i = C(P(e)). Then e cannot be reduced into 1u, for some u in [4] * . So a minimal 1-cell that represents e in P 4 should start with 21 and it must be of the forms 213 i 43 = e or 213 i 34, but C(P(213 i 34)) = (21)(3) i+1 4 = C(P(e)), so it must be of the form 213 i 43 = e, then e is a normal form.
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 221 Proposition. The 2-polygraph Col 2 (n) has the unique normal form property.

  consists in showing that the 2-polygraph Col 2 (n) has the unique normal form property. Note that our construction in Chapter 4, Section 4.1 gives an other proof of the confluence of the 2-polygraph Col 2 (n) by showing the confluence of all the critical branchings of the column presentation. Cardinality of the column presentation. For m = 1 and m = 2, let denote by κ(n, m) the number of m-cells of the presentation Col 2 (n) of the monoid P n . We refer the reader to Chapter 4, Subsection 4.2.5 for the values of number of cells of the 2-polygraph Col 2 (n) for plactic monoids of low-dimensional rank n.
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 223 Proposition. For n > 0, we have κ(n, 1) = 2 n -1 and κ(n, 2) = κ(n, 1) 2 -

3 . 1 . 2 . 2 . 1 c 21 α 1 , 21 =⇒ c 21 c 1 , c 1 c 31 α 1 , 31 =⇒ c 31 c 1 , c 1 c 32 α 1 , 32 =⇒ c 31 c 2 , c 2 c 32 α 2 , 32 =⇒ c 32 c 2 , c 2 c 31 α 2 , 31 =⇒ c 21 c 3 , c 2 c 1 α 2 , 1 =⇒ c 21 , c 3 c 32 α 3 , 32 =⇒ c 32 c 3 , c 3 c 2 α 3 , 2 =⇒ c 32 =⇒ c 321 c 31 , c 2 c 21 α 2 , 21 =⇒ c 21 c 2 , c 32 c 31 α 32 , 31 =⇒ c 321 c 3 .

 312212112113113113213223223223123131212132332323232312122123132313 addition, the number of possibilities of u v × and u v is κ(n, 1)2 . Since κ(n, 2) is equal to the number of possibilities of u v × , we haveκ(n, 2) = κ(n, 1) 2 -(|S n,2 | -|S n,1 |).Examples. Let us compute the column presentation of the plactic monoids P 2 and P The column presentation Col 2 (2) of the monoid P 2 has generators c 1 , c 2 , c 21 , together with the rules α 2,1 : c 2 c 1 ⇒ c 21 , α 1,21 : c 1 c 21 ⇒ c 21 c 1 and α 2,21 : c 2 c 21 ⇒ c 21 c The column presentation Col 2 (3) of the monoid P 3 admits 7 generators c 1 , c 2 , c 3 , c 32 , c 31 , c 21 , c 321 with the following 22 rules c We have seen in Example 3.1.0.2 that the previous 22 2-cells appear in crystal isomorphisms. 3.3. COLUMN PRESENTATION OF THE SYMPLECTIC PLACTIC MONOID In this section, we consider the plactic monoid P n (C) of type C. As shown in Subsections 1.3.3 and 1.3.4 of Chapter 1, this monoid is constructed using the crystal graphs of the representations of the symplectic Lie algebra sp 2n (C) . It is defined as the quotient of the free monoid C * n over the ordered set C n = {1 < 2 < . . . < n < n < . . . < 1}, by the equivalence ∼ crys , see Subsection 1.3.4 of Chapter 1.
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 311 Example. The following Young tableau . Its reading is w(U) = 1236 5.

3. 3 . 1 . 3 .

 313 Example. Let w(U) = 25688 5 2 be the reading of a column U. Then I = {8 > 5 > 2} , J = {7 > 4 > 1}, w(rU) = 25687 4 1 and w(lU) = 14678 5 2.

3. 3 . 1 . 4 .

 314 Example. Let w(U ) = 23466 3 2 be the reading of a column U . Then I = {6, 3, 2}, y 1 = 5, y 2 = 1

3. 3 . 1 . 5 .

 315 Example. Let us consider the tableau

3. 3 . 1 . 6 .

 316 Remark. Let λ = n i=1 λ i Λ i be a dominant weight. By Theorem 4.5.1 in [61], B(λ)

3. 3

 3 .1.7. Example. Let us consider the symplectic Lie algebra g = sp 6 (C) of dimension 6 and the symplectic tableau T defined in Example 3.3.1.5. The reading w(T ) = 323 2123 of T is a vertex of B(Λ 1 +2Λ 2 ) where its vertex of highest weight is 1123123. Note that the word 1123123 is the reading of the following tableau

3. 3 . 1 . 8 .

 318 Proposition ([78, Proposition 3.1.2]). Every word w in C * n admits a unique symplectic tableau T such that w ∼ crys w(T ).

3. 3

 3 .1.9. Remark. The relations (R 1 ) contain the Knuth relations for type A. The relations (R 3 ) are called the contraction relations.

3. 3 . 1 .

 31 10. Theorem ([78, Theorem 3.2.8]). For any words u and v in C * n , we have u ∼ crys v if and only if u ≡ v if and only if P(u) = P(v).

3. 3 . 1 .

 31 11. Remark ([88, Theorem C]). The monoid P n (C) is generated by the crystal isomorphisms B(121) ∼ = B(112) and B(12 . . . pp) ∼ = B(12 . . . (p -1)), where the words occurring in the left and right sides of the relations (R 1 ) and (R 2 ) are the vertices of B(121) and B(112) respectively and the words occurring in the left and right sides of (R 3 ) are the vertices of B(12 . . . pp) and B(12 . . . (p -1)) respectively. Note that the crystals B(121) and B(112) are the following:

3. 3 . 2 . 1 . 1 . 3 . 2 . 2 . 3 .

 32113223 Example. Let us consider the following three examples. Suppose w(U) = 366 4 and x = 3, Suppose w(U) = 144 3 and x = 2, the word 144 3 2 is a nonadmissible column word such that each strict subword of it is an admissible column word, then we obtain by applying relation of type (R 3 ), Suppose w(U) = 144 3 and x = 2, then the word 144 32 is not a column word. By applying relations of type (R 1 ) or (R 2 ), we obtain: 144 32 ≡ 14423 ≡ 1424 3 ≡ 4124 3.

SP 2

 2 (n) = c x c z c y c κx,y,z =⇒ c z c x c y x < y z and z = x ∪ c y c x c z c κ x,y,z =⇒ c y c z c x x y < z and z = x ∪ c y c x c x c ξ x,y,x =⇒ c y c (x-1) c (x-1) x y x and 1 < x n ∪ c x c x c y c ξ x,y,x =⇒ c (x-1) c (x-1) c y x y x and 1 < x n ∪ c x 1 . . . c x (w) c ζw =⇒ c x 1 . . . c x ( w) w and w verify the relation (R 3 ) .

3. 3 . 4 . 4 .

 344 Lemma. The 2-polygraph ACol 2 (n) is finite. Proof. The set ACol 1 (n) is finite thanks to the fact that the admissible columns words in the free monoid C * n have length at most n. Hence, the 2-polygraph ACol 2 (n) is finite. The following lemma shows that the 2-polygraph ACol 2 (n) is a presentation of the symplectic plactic monoid P n (C): 3.3.4.5. Lemma. The 2-polygraphs SP (n) 2 and ACol 2 (n) are Tietze equivalent.Proof. Every relation in SP 2 (n) can be deduced from rules in ACol 2 (n) as follows. The 2cells c κx,y,z for x < y z and z = x, c κ x,y,z for x y < z and z = x, c ξ x,y,x and c ξ x,y,x for x y x and 1 < x n are obtained from rules in ACol 2 (n) according to the following composition

together with the 2 -cells c 1 c 1 α 1 , 1 =⇒ c ε and c 12 c 2 1 α 12 ,2 1 =⇒

 21111121 c ε .

3 . 1 .

 31 Splitting columns allows to give a new description of admissible columns for type B, see [79, Subsection 3.1].

c e c e c t c e α e ,t 7 W

 7 X u,v,t Õ % c e c b c b α e,b c b 2 R c u c v c t α u,v c t B b c u α v,t 2 R c a c d c b c u c w c w α u,w c w 7 W c a c a c w c a α a ,w B b (4.3) where a and a (resp. b and b ) denote the two columns of the tableau P(uw) (resp. P(e t)) and a, d, b are the three columns of the tableau P(uvt), which is a normal form for the 2-polygraph Col 2 (n). Note that in some cases described below, one or further columns e , w , a and b can be empty. In those cases some indicated 2-cells α in the confluence diagram correspond to identities. Let us denote by Col 3 (n) the extended presentation of the monoid P n obtained from Col 2 (n) by adjunction of one 3-cell X u,v,t of the form (4.3), for every columns u, v and t such that u v t × × . 4.1.3.1. Theorem. For n > 0, the (3, 1)-polygraph Col 3 (n) is a coherent presentation of the monoid P n .

c a c a w c u c w c w α u,w c w 7 W

 7 c a c a c w c a α a ,w

4. 1 . 3 . 5 .

 135 Lemma. If u v t ×2 ×2 , we have the following confluent critical branching: c e c e c t c e α e ,t 7 W D u,v,t Õ % c e c b c b α e,b c b 2 R c u c v c t α u,v c t B b c u α v,t 2 R c a c d c b c u c w c w α u,w c w 7 W c a c a c w c a α a ,w B b (4.7)

  addition, we have b = d = z i k . . . z i 1 with 1 i 1 < . . . < i k q and C(P(eb)) = ad. Hence there is a 2-cell α e,b : c e c b ⇒ c a c d which yields the confluence diagram (4.7).

  y p+1 b)) = P(eb). Hence there is a 2-cell α e,b : c e c b ⇒ c a c a which yields the confluence diagram:

  v c t α u,v c t B b c u α v,t 2 Rc u c w c w α u,w c w 7 W c a c a c w (4.9)

  v c t B b c u α v,t 2 Rc a c a w c u c w c w α u,w c w 7 W c a c a c w c a α a ,w B b Suppose the tableau P(e t) consists of two columns. Using the same arguments of Case 2 and Case 3, we obtain a confluence diagram of the form D u,v,t , D

1 . 3 . 1 ,

 131 we don't use the fact that the 2-polygraph Col 2 (n) is convergent. Using the notion of quadratic normalisation of monoids, our construction allows us to give a new proof of the termination of the 2-polygraph Col 2 (n) without considering the combinatorial properties of tableaux. Consider the map Φ : Col 1 (n) * → Col 1 (n) * sending a 1-cell in Col 1 (n) * to its unique corresponding tableau. Then (Col 1 (n), Φ) is a quadratic normalisation of the monoid P n . Using the fact that the 2-polygraph Col 2 (n) has the unique normal form property as proved in Chapter 3, Proposition 3.2.2.1, we show by Theorem 4.1.3.1 that the quadratic normalisation (Col 1 (n), Φ) is of class (3, 3), that is, one obtains the normal form after at most 3 steps when starting from the left and 3 steps from the right. Hence, we obtain by [34, Proposition 5.1.1], that the corresponding 2-polygraph Col 2 (n) is finite and convergent. As a consequence, we obtain a new proof of the termination of the 2-polygraph Col 2 (n) .

Generating triple confluences of Col 2

 2 (n). Consider the homotopical reduction procedure on the (3, 1)-polygraph Col 3 (n) defined using the collapsible part made of generating triple confluences. By Theorem 4.1.3.1, the family of 3-cells X u,v,t given in (4.3) and indexed by columns u, v and t in col(n) such that u v t × × forms a homotopy basis of the (2, 1)-category Col 2 (n) .

≡ c e c y c d 1 c d 1 α y,d 1 7 W 1 Õ % c e c b c s 2 c d 1 α s 2 c a c d c s 2 c d 1 α s 2 ,d 1 q c xp c u 1 c w c w α xp,u 1 D d α u 1 ,w 0 P c a c z c s 3 c d 1 α z,s 3 E e c xp c a 1 c a 1 c w α xp,a 1 7 W c a c z c a 1 c w α a 1

 71121111371 xp X u 1 ,v,t Õ % X xp,s,d 1 c d c u 1 c w c w α u 1 ,w 0 P c xp c s c d 1 c d 1 α s,d 1 ) I α xp,s E e c a c d c s 2 c d 1 α α s 2 ,d 1 F f c xp c a 1 c a 1 c w α a 1 ,w 7 W α xp,a 1 0 P c xp c a 1 c s 3 c d 1 α xp,a 1 7 W c a c z c s 3 c d 1 α z,s 3

  uv) > (u v ) or (uv) = (u v ) and (u) > (C r (P(u v ))) or (u) (C r (P(u v ))) and u rev u for any columns u, v, u and v in col(n) such that u v × and u v × .

c xv c t α xv,t 2 R

 2 A x,v,t Õ % c x c v c t α x,v c t B b

7 W

 7 By iterating this reduction on the length of the column v, we reduce all the 2-cells α u,v of Col 2 (n) to the following set of 2-cells{ α u,v | (u) 1, (v) 2 and u v ×2 } ∪ { α u,v | (u) = 1, (v) 1 and u v ×1 }.(4.10)For any x in [n] and columns v, t such that x v t ×1 ×2 , consider the following 3-cell: c a c a c w c a α a ,wB bwhere w, w , a and a are defined in Lemma 4.1.3.4. The 2-cells α x,v , α v,t , α x,w and α a ,w are smaller than α xv,t for the order . The reduction R Γ 3 removes the 2-cell α xv,t together with the 3-cell C x,v,t . By iterating this reduction on the length of v, we reduce the set of 2-cells given in (4.10) to the following set:{ α u,v | (u) = 1, (v) 2 and u v ×2 } ∪ { α u,v | (u) = 1, (v)1 and u v ×1 }. (4.11) For any x in [n] and columns v, t such that x v t ×2 ×1 , consider the following 3-cell: , s and s are defined in Lemma 4.1.3.3. Note that α e,e t is the 2-cell in (4.11) obtained from the 2-cell α e,e t by the previous step of the homotopical reduction by the 3-cell C x,v,t . Having x in [n], by definition of α we have e in [n]. The 2-cells α x,v, α e ,t , α v,t and α e,e t being smaller than α x,vt for the order , we can remove the 2-cells α x,vt together with the 3-cell B x,v,t . By iterating this reduction on the length of the column t, we reduce the set (4.11) to the following set{ α u,v | (u) = 1, (v) = 2 and u v ×2 } ∪ { α u,v | (u) = 1, (v) 1 and u v ×1 }. (4.12)Let us recall from Chapter 2, Subsection 2.2.2 that the set of the defining relations for the column generators isC 2 (n) = c xp . . . c x 1 γ u =⇒ c u u = x p . . . x 1 ∈ col(n) with (u) 2 ,and that PC 2 (n) is the cellular extension of Col * 1 (n) whose set of 2-cells isc x c zy α x,zy =⇒ c zx c y | 1 x y < z n ∪ c y c zx α y,zx =⇒ c yx c z | 1 x < y z n .4.2.3.1. Lemma. We havePC 2 (n) = { α u,v : c u c v ⇒ c w c w | (u) = 1, (v) = 2 and u v ×2 }. Proof. Consider the 2-cells α u,v in Col 2 (n) such that (u) = 1, (v) = 2 and u v ×2 . Suppose that v = xx with x > x in [n]. Since u v ×2 ,we obtain that u x. Hence, we have two cases to consider. If u x , then C(P(uv)) = (xu)x . Hence, the 2-cell α u,v is equal to the 2-cell α u,xx : c u c xx ⇒ c xu c x . In the other case, if x < u, then C(P(uv)) = (ux )x. Hence the 2-cell α u,v is equal to α u,xx : c u c xx ⇒ c ux c x . Recall from Chapter 2, Subsection 2.2.2 that the set of 2-cells PreCol 2 (n) is given by PreCol 2 (n) = PC 2 (n) ∪ c x c u α x,u =⇒ c xu | xu ∈ col(n) and 1 x n .

  2 (n) by Lemma 4.2.3.1. Let us denote by PreCol 3 (n) the extended presentation of the monoid P n obtained from PreCol 2 (n) by adjunction of the 3-cell R Γ 3 (C x,v,t ) wherec xv c t C x,v,t Õ % c x c v c t α x,v c t 8 Xc x α v,t 4 T c x c w c w α x,w c w 7 W c xv c z l ...z q+1 c w c xv α z l ...z q+1 ,w r with x v t ×1 ×2 , and the 3-cell R Γ 3 (D x,v,t ) where c e c e c t c e α e ,t 7 W D x,v,t Õ % c e c b c b α e,b c b 2 R c x c v c t α x,v c t B b c x α v,t 2 R c a c d c b c x c w c w α x,w c w 7 W c a c a c w c a α a ,w B b with x v t ×2 ×2 .
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 21 .3.2. Theorem. For n > 0, the (3, 1)-polygraph PreCol 3 (n) is a coherent presentation of the monoid P n . Example: coherent presentation of monoid P 2 . The Knuth presentation Knuth 2 (2) of the plactic monoid P 2 has generators 1 and 2 subject to the Knuth relations η 1,1,2 : 211 ⇒ 121 and ε 1,2,2 : 221 ⇒ 212. This presentation is convergent with only one critical branching with source the 1-cell 2211. This critical branching is confluent: Following the homotopical completion procedure given in 4.1.2, the 2-polygraph extended by the previous 3-cell is a coherent presentation of the monoid P 2 . Consider the column presentation Col 2 (2) of the monoid P 2 with 1-cells c 1 , c 2 and c 21 and 2-cells α 2,1 , α 1,21 and α 2,21 . The coherent presentation Col 3 (2) has only one 3It follows that the (3, 1)-polygraphs Col 3 (2) and Col 3 (2) coincide. Moreover, in this case the set Γ 3 is empty and the homotopical reduction R Γ 3 is the identity and thus PreCol 3 (2) is also equal to Col 3 (2).In next section, we will show how to relate the coherent presentations Col 3 (2) and Knuth 2 (2) | C . Example: coherent presentation of monoid P 3 . For the monoid P 3 , the Knuth presentation has 3 generators and 8 relations. It is not convergent, but it can be completed by adding 3 relations. The obtained presentation has 27 homotopy generators corresponding to the 27 critical branchings. The column coherent presentation Col 3 (3) of P 3 has 7 generators, 22 relations and 42 homotopy generators. The coherent presentation Col 3 (3) has 7 generators, 22 relations and 34 homotopy generators. After applying the homotopical reduction R Γ 3 , the coherent presentation PreCol 3 (3) admits 7 generators, 22 relations and 24 homotopy generators. We give in 4.2.5 the values of number of cells of the (3, 1)-polygraphs Col 3 (n) and PreCol 3 (n) for plactic monoids of rank n 10.

1 p 1 , 1 ,2 and ε c 1 , 2 ,2 as in the following diagram c 21 c 21 C 2 1 i 3

 1111221213 x 1 , we coherently eliminate the generator c xp...x 1 together with the 2-cell γ xp...x 1 with respect to the order deglex .Let us denote by Knuth 3 (n) the extended presentation of the monoid P n obtained from Knuth 2 (n) by adjunction of the following set of 3-cells{ R(C x,v,t ) for x v t ×1 ×2 } ∪ { R(D x,v,t ) for x v t ×2 ×2 }, v,t 4 T c x c w c w α x,w c w 7 W c xv c z l ...z q+1 c w c xv α z l ...z q+1 ,w r with x v t ×1 ×2 , and c e c e c t c e α e ,t 7 W D x,v,t Õ % c e c b c b α e,b c b 2 R c x c v c t α x,v c t B b c x α v,t 2 R c a c d c b c x c w c w α x,w c w 7 W c a c a c w c a α a ,w B b with x v t ×2 ×2 . The transformation R being a composite of Tietze transformations, it follows the following result. 4.2.4.3. Theorem. For n > 0, the (3, 1)-polygraph Knuth 3 (n) is a coherent presentation of the monoid P n . Example: Knuth's coherent presentation of the monoid P 2 . We have seen in Example 4.2.3 that the (3, 1)-polygraphs Col 3 (2), Col 3 (2) and PreCol 3 (2) are equal. The coherent presentation PreCol 3 (2) is given by PreCol 1 (2) = {c 1 , c 2 , c 21 }, PreCol 2 (2) = {α 2,1 , α 1,21 , α 2,21 }, PreCol 3 (2) = {C 2,1,21 }, where C 2,1,21 is the following 3-cell: By definition of the 2-cells of C 2 (2), we have γ 21 := α 2,1 . Thus we obtain that T -1 γ←α (C 2,1,21 ) = C 2,1,21 up to replace all the 2-cells α 2,1 in C 2,1,21 by γ 21 . Hence, the coherent presentation CPC 3 (2) is equal to PreCol 3 (2). In order to compute the 3-cell T -1 η,ε←α (T -1 γ←α (C 2,1,21 )), the 2-cells α 1,21 and α 2,21 in C 2,1,21 are respectively replaced by the 2-cells η c symbol means that the corresponding 2-cell is removed. Hence the coherent presentation Knuth cc 3 (2) of P 2 has for 1-cells c 1 , c 2 and c 21 , for 2-cells α 2,1 , α 1,21 and α 2,21 and the only 3-cell (4.13). Let us compute the Knuth coherent presentation Knuth 3 (2). The 3-cell R Γ 2 (T -1 η,ε←α (T -1 γ←α (C 2,1,21 ))) is obtained from (4.13) by removing the 2-cell γ 21 together with the 1-cell c 21 . Thus we obtain the following 3-cell, where the cancel symbol means that the corresponding element is removed, Hence, the Knuth coherent presentation Knuth 3 (2) of the plactic monoid P 2 has generators c 1 and c 2 subject to the Knuth relations η c 1,1,2 : c 2 c 1 c 1 ⇒ c 1 c 2 c 1 and ε c 1,2,2 : c 2 c 2 c 1 ⇒ c 2 c 1 c 2 and the following

× 1 Õ % c n 1 c n 1 c e 1 c e 1 α n 1 ,e 1 ) I c u c p 1 c f 1 c e 1 α p 1 ,f 1 F f α u,p 1 ( 1 α d 1 ,m 1 E e α b 1 ,e 1 ) I ≡ c n 1 c b 1 c m 1 c a 1 c d 1 c g 1 c p 1 c e α p 1 ,e F f α g 1 ,p 1 ( H c d 1 c m 1 c m 1 c a 1 α d 1 ,m 1 E e c w c w c t c e α w ,t 7 W c w c s c s c e α w,s 7 Wc d 1 c d 1 c s c e α s ,e 7 W c d 1 c d 1 c a 1 c a 1 α d 1 ,a 1 E e c w c s c a 1 c a 1 αc s 1 c e 1 c e 1 ≡ α u,s 1 7 W c n 1 c n 1 c e 1 c e 1 α n 1 ,e 1 )α n 1 ,s 1 ) I c n 1 X n 1 ,s 1 ,m Õ % c n 1 c b 1 c b 1 c e 1 α b 1 ,e 1 c n 1 c b c e c a 1 α b ,e 7 WX w,s,a 1 c a 1 Õ % c n 1 c b 1 c m 1 c a 1 cc d 1 c m 1 c m 1 c a 1 α d 1 ,m 1 i c w c s c s c e α s ,e 7 W c w c s c a 1 c a 1 α w,s 7 W α s,a 1 E e c d 1 c d 1 c a 1 c a 1 α d 1 ,a 1 E

 111111111111777111711111117111177111 and t e × , there is a critical triple branching with source c u c v c t c e . Using the same arguments of Section 4.2.2, we can show that the confluence diagram induced by this triple branching is represented by the 3-sphere Ω u,v,t,e whose the source is the 3-cellc u c v c m c m α v,m 7 W c u X v,t,e Õ % c u c s 1 c s 1 c m α s 1 ,m 7 W c u c s 1 c e 1 c e 1 α u,s 1 7 W X u,p 1 ,f 1 c e H c n 1 c b 1 c b 1 c e 1 α b 1 ,e 1 c g 1 c f 1 c e 1 α g 1 ,f 1 7 W c d 1 X g 1 ,p 1 ,e Õ % c d 1 c m 1 c b 1 c e I c u c s 1 c s 1 c m α u,s 1 7 W α s 1 ,m E e X u,v,m c m Õ % c n 1 c n 1 c s 1 c m α s 1 ,mE e e

The 3 -

 3 cells of the (3, 1)-polygraph Col 3 (n) are of the form X u,v,t as presented in 4.3, for every columns u, v and t such that u v t × × . Then the number of these 3-cells is equal to the number of possibilities u v t × × , for any columns u, v and t over the set [n]. The number of 1-cells and 2-cells in Col 3 (n) and Col 3 (n) is the same. The number of 3-cells in Col 3 (n) is obtained after eliminating all the 3-cells X u,v,t with (u) > 1 from Col 3 (n). The number of 1-cells of the (3, 1)-polygraph Knuth 3 (n) is equal to n. The number of its 2-cells is equal to the number of possibilities to have zxy for 1 x y < z n and yzx for 1
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  est une présentation d'un monoïde M si le monoïde M est isomorphe au quotient du monoïde libre Σ * 1 par la relation de congruence engendrée par l'ensemble Σ 2 . De plus, deux 2-polygraphes sont Tietze équivalents si les monoïdes qu'ils présentent sont isomorphes. Pour n 2, un (n + 1)-polygraphe est donné par un n-polygraphe Σ n , avec une famille Σ n+1 de (n + 1)-cellules additionnelles reliant des n-cellules parallèles de la n-catégorie Σ * n engendrée librement par le n-polygraphe Σ n .

  Lemme 3.2.2.2, alors le 2-polygraphe Col 2 (n) est une présentation du monoïde P n , appelé la présentation colonne. En utilisant certaines propriétés combinatoires des tableaux, on peut montrer que le 2-polygraphe Col 2 (n) est confluent et terminant, voir chapitre 3, section 3.2. Par conséquent, le 2-polygraphe Col 2 (n) est une présentation convergente finie du monoïde P n , [17, Theorem 3.4.]. La présentation colonne et l'algorithme de Schensted. L'algorithme d'insertion par ligne de Schensted correspond au chemin de réduction le plus à gauche dans Col * 2 (n) d'une 1-cellule w à son tableau de Schensted. C'est-à-dire, les chemins de réduction obtenus en appliquant les règles de Col 2 (n) en commençant de la gauche. Par exemple, considérons la 1-cellule w = 43152452 dans [5] * . Pour calculer le tableau P(w), on applique les règles consécutives suivantes de Col 2 (5) en commençant en chaque étape de la gauche:

	w = 4 3 1 5 2 4 5 2 α 4,3 =⇒ 3 4	1 5 2 4 5 2 α 43,1 =⇒ 1 3	5 2 4 5 2 α 5,2 =⇒ 1 3	5 2	4 5 2
								4	4
	1 3	2 5	4 5 2 α 5,2 =⇒ 1 3	2 5	4 2 5	α 4,52 =⇒ 1 3	2 5	2 4
	4			4			4	

1 (n) est fini, le 2-polygraphe Col 2 (n) est fini. De plus, les 2-polygraphes Col 2 (n) et Knuth 2 (n) sont Tietze équivalents, voir Chapter 3, 5 = P(w)

Les syzygies et les présentations cohérentes. Le problème des syzygies pour les présentations de monoïdes consiste à trouver toutes les relations entre les relations de ces présentations. Plus précisément, soit (Σ 1 , Σ 2 ) une présentation d'un monoïde. Une 2-syzygie pour (Σ 1 , Σ 2 ) est une 2-sphère non-triviale dans la (2, 1)-catégorie libre Σ 2 , c'est-à-dire, une paire (f, g) de 2-cellules de Σ 2 telle que s 1 (f) = s 1 (g) et t 1 (f) = t 1 (g). Une extension globulaire de Σ 2 est un ensemble Σ 3 équipé d'une application de Σ 3 dans l'ensemble des 2-sphères de Σ 2 . Une famille de 2-syzygies génératrices est une extension globulaire Σ 3 de Σ 2 telle que pour toute 2sphère γ dans Σ 2 il existe une 3-cellule dans la (3, 1)-catégorie libre Σ 3 de bordure γ, voir soussection 4.1.1. Par exemple, pour le monoïde P 2 , les relations de Knuth η 1,1,2 : 211 ⇒ 121 et ε 1,2,2 : 221 ⇒ 212 sont reliées par la 2-syzygie suivante 2211 2η 1,1,2

  Il est fini grâce au fait que l'ensemble ACol 1 (n) est fini. De plus, on définit un bon ordre sur le produit des colonnes admissibles tel que les résultats des règles de réécriture décroissent par rapport à cet ordre. Lemme 3.3.3.2. Soient u et v les lectures de deux colonnes admissibles U et V respectivement, tels que U V. Supposons que le tableau P(uv) est un remplissage de deux colonnes admissibles et soit W la colonne droite. Alors la colonne U contient plus d'éléments que W. Alors le 2-polygraphe ACol 2 (n) est terminant. La confluence est une conséquence du fait que les tableaux symplectiques forment une section du monoïde P n (C). Par conséquent, on obtient Théorème 3.3.4.6. Le 2-polygraphe ACol 2 (n) est une présentation convergente finie du monoïde plaxique P

où ε est le mot vide si P(uv) contient zéro colonne. Soit ACol 2 (n) le 2-polygraphe dont l'ensemble des 1-cellules est ACol 1 (n) et l'ensemble des 2-cellules contient toutes les 2-cellules α u,v , pour tous u et v dans acol(n) avec U V. On montre que le 2-polygraphe ACol 2 (n) est une présentation du monoïde plaxique P n (C) de type C, appelée présentation colonne, voir Chapter 3, Lemme 3.3.4.5. Notre objectif est de montrer que le 2-polygraphe ACol 2 (n) est fini et convergent. n (C) de type C.

  On note par Col 3 (n) la présentation étendue du monoïde P n obtenue à partir de Col 2 (n) en ajoutant les 3-cellules de la forme X u,v,t . On obtient le résultat suivant: Théorème 4.1.3.1. Pour n > 0, le monoïde plaxique P n admet Col 3 (n) comme présentation cohérente. Ce théorème est montré en vérifiant la confluence des branchements critiques du 2-polygraphe Col 2 (n) dans chacun des cas suivants u v t

	×1 ×1 , u v t ×2 ×1 , u v t ×1 ×2 , et u v t ×2 ×2 . No-

y 1 et t = z l . . . z 1 telles que uv et vt ne sont pas des tableaux, où e et e (resp. w et w ) représentent les deux colonnes du tableau P(uv) (resp. P(vt)) et a et a (resp. b et b ) représentent les deux colonnes du tableau P(uw) (resp. P(e t)) et a, d, b sont les trois colonnes du tableau P(uvt), qui est une forme normale dans le 2polygraphe Col 2 (n). tons que les 3-cellules de Col 3 (n) sont de la forme A u,v,t pour u v t ×1 ×1 , B u,v,t pour u v t, ×2 ×1 C u,v,t pour u v t ×1 ×2 et D u,v,t pour u v t ×2 ×2 , voir chapitre 4, sous-section 4.1. Exemple: le cas du monoïde P 2 . Considérons la présentation colonne Col 2 (2) du monoïde P 2 dont les 1-cellules sont c 1 , c 2 et c 21 et les 2-cellules sont α 2,1 : c 2 c 1 ⇒ c 21 , α 1,21 : c 1 c 21 ⇒ c 21 c 1 et α 2,21 : c 2 c 21 ⇒ c 21 c 1 . La présentation cohérente Col 3 (2) admet une unique 3-cellule c 21 c 21 C 2,1,21

  Par exemple, comme la première colonne de c 2 c 1 c 21 dans la 3-cellule de Col 3 (2) est de longueur 1, les présentations cohérentes Col 3 (2) et Col 3 (2) du monoïde P 2 coincïdent. La réduction homotopique R Γ 3 élimine de Col 3 (n) les 3-cellules de la forme A x,v,t , B x,v,t et C x,v,t qui ne sont pas de la forme C x,v,t . La réduction R Γ 3 élimine aussi certaines 2-cellules superflues de Col 3 (n).

	Plus précisément, soit PreCol 3 (n) le (3, 1)-polygraphe dont l'ensemble des 1-cellules
	est Col 1 (n), l'ensemble des 2-cellules est
	c x c zy	α x,zy =⇒ c zx c y | 1 x y < z n ∪ c y c zx	α y,zx =⇒ c yx c z | 1 x < y z n
		∪ c x c u	α x,u =⇒ c xu | xu ∈ col(n) et 1 x n ,
	et dont les 3-cellules sont de la forme R Γ 3 (C x,v,t ) où
		c xv c t C x,v,t c x α v,t 4 T c x c w c w α x,w c w Õ % c x c v c t α x,v c t 8 X c xv α z l ...z q+1 ,w 7 W c xv c z l ...z q+1 c w r
	avec x v t ×1 ×2 , et de la forme R Γ 3 (D x,v,t ) où
			c e c e c t	c e α e ,t 7 W	c 21 α 2,1
				5 U c 2 c 21 c 1 α 2,21 c 1	7 W c 21 c 2 c 1
	Présentation pré-colonne cohérente. La deuxième étape de réduction homotopique consiste à
	réduire la présentation cohérente Col 3 (n). Cette réduction, notée par R Γ 3 , est donnée par la partie
	collapsible définie par l'ensemble des 3-cellules de Col 3 (n), voir chapitre 4, sous-section 4.2.3.

p Une présentation colonne cohérente réduite. La présentation cohérente Col 3 (n) du monoïde plaxique P n n'est pas minimale. En utilisant la procédure de réduction homotopique, on la réduit à la présentation Col 3 (n) obtenue à partir du 2-polygraphe Col 2 (n) en ajoutant une famille de 3-cellules X x,v,t de la forme (9), avec x est un élément de [n] de longueur 1, voir chapitre 4, sous-section 4.2.2. Les 3-cellules de Col 3 (n) sont de la forme A x,v,t , B x,v,t , C x,v,t et D x,v,t . Par conséquent, on obtient Proposition 4.2.2.1. Pour n > 0, le monoïde plaxique P n admet Col 3 (n) comme présentation cohérente.

  suivant relie les présentations cohérentes avec les actions des monoïdes sur les catégories. Soient M un monoïde et Σ une présentation étendue de M. les catégories de la manière suivante. La catégorie Act(P n ) des actions du monoïde plaxique P n sur les catégories est équivalente à la catégorie des 2-foncteurs de la (2, 1)-catégorie Knuth 2 (n) dans la catégorie Cat des catégories, qui envoie les 3-cellules de Knuth 3 (n) à des diagrammes commutatifs dans Cat. Une question intéressante est d'étudier les actions du monoïde plaxique sur la catégorie des représentations de dimension finie de l'algèbre de Lie générale ou sur la catégorie O dont les objets sont certaines représentations de l'algèbre de Lie générale et les morphismes sont des homomorphismes de représentations,[START_REF]Representations of semisimple Lie algebras in the BGGcategory O[END_REF].

	Le (3, 1)-polygraphe Σ
	est une présentation cohérente de M si, et seulement si, pour toute 2-catégorie C, il existe une
	équivalence de catégories
	Act(M) ≈ 2Cat(Σ * 1 /Σ 2 , C)
	qui est naturelle dans C, [31, Theorem 5.1.5]. De cette façon, les actions d'un monoïde M sur les
	catégories sont à une équivalence près les 2-foncteurs de Σ * 1 /Σ 2 dans Cat.
	En utilisant cette description, le Théorème 4.2.4.3 permet de présenter les actions des
	monoïdes plaxiques sur

  Schensted. Le monoïde sylvestre de rang n est le quotient du monoïde libre [n] * par la relation de congruence engendrée par la famille des relations suivantes:

	cavb = acvb, tel que a b < c,
	où v est un mot dans [n] * . La convergence de la présentation infinie introduite par Hivert, Novelli
	et Thibon, [46], est montrée par Cain, Gray et Malheiro, [18]. Construire une présentation
	convergente finie du monoïde sylvestre est considéré comme un problème ouvert. En utilisant
	une approche similaire à celle utilisée pour la construction de la présentation colonne du monoïde
	plaxique, on devrait construire une présentation convergente finie du monoïde sylvestre en
	ajoutant de nouvelles familles d'arbres binaires de recherche. À partir d'une présentation
	convergente finie du monoïde sylvestre, on devrait aussi donner une méthode algorithmique pour
	calculer les 2-syzygies de la présentation introduite par Hivert, Novelli et Thibon en construisant
	des présentations cohérentes de ce monoïde.

  with a map from Σ 3 to the set of 2-spheres of Σ 2 . A family of generating 2-syzygies is a globular extension Σ 3 of Σ 2 such that for every 2-sphere γ in Σ 2 there exists a 3-cell in the free (3, 1)-category Σ 3 with boundary γ, see Subsection 4.1.1. For instance, for the monoid P 2 , the Knuth relations η 1,1,

2 : 211 ⇒ 121 and ε 1,2,2 : 221 ⇒ 212 are related by the following 2-syzygy 2211 2η 1,1,2

  This theorem is proved by examining the confluence of the critical branchings of the 2polygraph Col 2 (n) in each of the four cases u v t Example: the case of the monoid P 2 . Consider the column presentation Col 2 (2) of the monoid P 2 with 1-cells c 1 , c 2 and c 21 and 2-cells α 2,1 : c 2 c 1 ⇒ c 21 , α 1,21 : c 1 c 21 ⇒ c 21 c 1 and α 2,21 : c 2 c 21 ⇒ c 21 c 1 . The coherent presentation Col 3 (2) has only one 3-cell

	c 21 c 21 α 2,1 c 21 9 Y
	C 2,1,21 c 2 α 1,21 5 U c 2 c 21 c 1 α 2,21 c 1 Õ % c 2 c 1 c 21 c 21 α 2,1 7 W c 21 c 2 c 1
	×1 ×1 , u v t ×2 ×1 , u v t ×1 ×2 , and u v t ×2 ×2 . Note that

the 3-cells of Col 3 (n) are of the form A u,v,t for u v t ×1 ×1 , B u,v,t for u v t ×2 ×1 , C u,v,t for u v t ×1 ×2 and D u,v,t for u v t ×2 ×2 , see Chapter 4, Subsection 4.1. p A reduced coherent column presentation. The coherent presentation Col 3 (n) of the plactic monoid P n is not minimal. Using the homotopical reduction procedure, we reduce it into the presentation Col 3 (n) obtained from the 2-polygraph Col 2 (n) by adjunction of one family of 3-cells X x,v,t of the form (9), but with x is of length 1, see Chapter 4, Subsection 4.2.2. The 3-cells of Col 3 (n) are of the form A x,v,t , B x,v,t , C x,v,t and D x,v,t . In this way, we obtain Proposition 4.2.2.1. For n > 0, the plactic monoid P n admits Col 3 (n) as a coherent presentation.

  with the Knuth coherent presentation Knuth 3 (2), see Subsection 4.2.4. Coherent presentations in small ranks. We denote by KB(Knuth 2 (n)) the convergent 2polygraph obtained from Knuth 2 (n) by the Knuth-Bendix's completion and by Knuth KB 3 (n) the Squier completion of KB(Knuth 2 (n)). The following table presents the number of cells of the coherent presentations Knuth KB

3 (n), Knuth 3 (n), Col 3 (n) and Col 3 (n) of the monoid P n , for 1 n 10. n Knuth 1

  Sections 5.2]. Recently, the Chinese monoid has motivated a wide range of other interesting work in rewriting theory including computing finite convergent presentations[START_REF] Chen | Gröbner-Shirshov basis for the Chinese monoid[END_REF][START_REF] Güzel | Finite derivation type property on the Chinese monoid[END_REF][START_REF]Finite derivation type property on the Chinese monoid[END_REF][START_REF]Rewriting systems and biautomatic structures for Chinese, hypoplactic, and Sylvester monoids[END_REF], and in the theory of quadratic normalisations,[START_REF] Guiraud | Quadratic normalisation in monoids[END_REF] Example 5.3.2].

19, Section 2.1]. An insertion algorithm similar to Schensted's algorithm was introduced yielding a cross-section theorem, [19, Sections 2.2]. Moreover, a Robinson-Schensted correspondence was also established, [19,

.

  each occurring once. For example, a standard tableau of shape (5, 4, 2, 1) is Words tableaux. A row is a non-decreasing word x 1 . . . x k in the free monoid [n] * , i.e., with x i x i+1 for 1 i k -1. A row x 1 . . . x k dominates a row y 1 . . . y l , and we denote by x 1 . . . x k y 1 . . . y l , if k l, and x i > y i , for 1 i k.

	1 3 7 10 11
	2 4 6 9
	5 8
	12

  1.2.2. Longest non-decreasing subsequence of a word 1.2.1.4. Example. The successive steps of the computation of the tableau P(1213214) are

  1.3.2.1. Example. Let w = 1322312331112 be a word on the free monoid [3] * . Let us compute e 2 (w) and f 2 (w). We have w 2 = 32232332. After deleting adjacent letters (2, 3), the first subword of w 2 is 3232. After repeating this process, the second subword is 32. We cannot remove new elements from the last subword, then we obtain:

e 2 (w) = 122231233112 and f 2 (w) = 132231233113. Crystal graphs and Young tableaux. Let λ = n i=1 λ i Λ i be the highest weight of an irreducible representation V(λ) of sl n (C). For λ, we associate the Young diagram Y(λ) containing λ i columns of height i. This Young diagram is said to have shape λ. The length of its i-th row is λ i + . . . + λ n and the number of its boxes is n i=1

  that any of its left factor path π satisfies |π | 1 . . . |π | n where |π | i denotes the number of occurrences of the path π ε i in π . We denote by Π + W the set of all Yamanouchi paths. A path is a Yamanouchi path if and only if it is a path of highest weight, [109, Proposition 2.6.1]. As we have seen in Chapter 1, the highest weight tableau of the connected component containing tableaux of shape a 1 Λ 1 + . . . + a k Λ k has only i's in the i-th row for 1 i k. Then this highest weight tableau can be represented by the following Yamanouchi path

  α) is the free (2, 1)-category generated by the 2-polygraph (Σ 1 , Σ 2 \ {α}). Nielsen transformations. Recall the notion of Nielsen transformation from [31, Subsection 2.1.4.]. Given a 2-polygraph Σ and a 2-cell

If Σ and Υ are 2-polygraphs, a Tietze transformation from Σ to Υ is a 2-functor from Σ to Υ that decomposes into sequence of elementary Tietze transformations. Two 2-polygraphs are Tietze equivalent if, and only if, there exists a Tietze transformation between them [31, Theorem 2.1.3.].

  The 2-polygraph PreCol 2 (n) is called the pre-column presentation of P n . The proof of Proposition 2.2.2.2 is given by the following two lemmas.2.2.2.3. Lemma. The 2-polygraph

2.2.2.2. Proposition. For n > 0, the 2-polygraph PreCol 2 (n) is a presentation of the monoid P n .

  2.1 of Chapter 1, and we use Theorem 1.2.2.2 on the length of the longest decreasing subsequence in a word over the set [n]. 2.3.3.1. Lemma. For any i 1, the 1-cell a i = 323 i 431 in [4] * is a normal form for KB(Knuth 2 (4)).

  3.3.1.2. Proposition ([108, Section 4]).A column U is admissible if, and only if, it can be split.

  3.3.4. The column presentation for type CKnuth-like presentation. Consider a presentation of the plactic monoid P n (C), by the 2polygraph SP 2 (n), whose set of 1-cells is C n and whose 2-cells correspond to the relations (R 1 ), (R 2 ) and (R 3 ) oriented with respect to the reverse deglex order, that is =⇒ w w and w satisfy the conditions of the relation (R 3 ) . order being monomial, the 2-polygraph SP 2 (n) is terminating.3.3.4.1. Remark. For n 4, the Knuth presentation of the plactic monoid for type A doesn't admit a finite completion compatible with the reverse deglex order. Indeed, by similar arguments used in Chapter 2, Theorem 2.3.3.3, one can show that during the completion one adds an infinity of 2-cells of the form 232 i 124 =⇒ 2342 i 12, for i > 1. The 2-polygraph SP 2 (n) contains the Knuth relations for type A and we can not apply relations of type (R 2 ) and (R 3 ) on the words 232 i 124 and 2342 i 12, for i > 1, then the 2-polygraph SP 2 (n) does not also admit a finite completion compatible with the reverse deglex order.Column generators. In order to give a finite convergent presentation of the plactic monoid P n (C), one introduces the admissible column generators. The set of generators is ACol 1

	SP 2 (n) = xzy	κ x,y,z =⇒ zxy x < y z and z = x
	∪ yxz	κ x,y,z =⇒ yzx x y < z and z = x
	∪ yxx	ξ x,y,x =⇒ y(x -1)(x -1) x y x and 1 < x n
	∪ xxy	ξ x,y,x =⇒ (x -1)(x -1)y x y x and 1 < x n
	∪ w	ζ w
	The	

  2 (n) according to the following composition c x 1 . . . c xp . . . c xq . . . c x k c ζw 7 W α x 1 ,x 2 c x 3 . . . c x k Õ % c x 1 . . . c xp . . . c xq . . . c x k α x 1 ,x 2 c x 3 . . . c x k ...xp...xq...x k-1 c x k α x 1 ...xp...xq...x k-1 ,x k 7 W c x 1 ... xp... xq...x k where the symbol x means that x is removed. In addition, any rules γ y 1 ,...,y k in SP y 1 y 2 c y 3 . . . c y k α y 1 y 2 ,y 3 c y 4 . . . c y k 7 W (• • • ) α y 1 ...y k-2 ,y k-1 c y k 7 W c y 1 ...y k-1 c y k α y 1 ...y k-1 ,y k As a consequence, if 1-cells w and w in ACol 1 (n) * are equal modulo relations in SP 2 (n) ∪ SP Conversely, if 1-cells w and w in ACol 1 (n) * are equal modulo relations in ACol 2 (n), by Remark 3.3.4.3, they are equal modulo relations in SP 2 (n) ∪ SP The 2-polygraph ACol 2 (n) is a finite convergent presentation of the symplectic plactic monoid P n (C).

	3.3.4.6. Theorem.		
		Õ %	
	(. . .)	(. . .)	
	α x 1 ...x k-2 ,x k-1 c x k	α x 1 ... xp... xq...xk-1,xk
	Õ % c x 1 c(n) 2	Õ % can be obtained using those in ACol 2 (n), according
	to the following composition		
	c y 1 . . . c y k	γ y 1 ,...,y k	7 W c y 1 ...y k
	α y 1 ,y 2 c y 3 . . . c y k		
	Õ %		
			c(n) 2 ,
	then they are equal modulo relations in ACol 2 (n).	
		c(n) 2 .	

c i

1 .

 1 The free monoid B * n over the set B n is a crystal and the action of the crystal operators on a word of B * n is similar to the one defined for type C in Subsection 1.3.3. Moreover, Lemma 1.3.3.3 and all combinatorial properties for crystal graphs given in Subsection 1.3.3 for type C can be generalised for type B, see [61, Section 5].

  where ε is the empty word if P(uv) consists of zero columns.Let ACol 2 (n) B be the 2-polygraph whose set of 1-cells consists of non-empty admissible columns and the 2-cells are of the form α u,v as defined above. Using the same arguments of Lemma 3.3.4.5 on the five families of relations presented in [79, Definition 3.2.2], one can show that the 2polygraph ACol 2 (n) B is a presentation of the plactic monoid of type B. This presentation is called the column presentation.

  2-category C is a cofibrant 2-category D that is weakly equivalent to C. Let M be a monoid and let Σ be an extended presentation of M. The (3, 1)-polygraph Σ is a coherent presentation of M if, and only if, the (2, 1)-category Σ presented by Σ is a cofibrant approximation of M [31, Theorem 1.3.1].Finiteness properties of monoids. A 2-polygraph Σ is of finite derivation type if it is finite and the (2, 1)-category Σ 2 has a finite homotopy basis. A monoid M is of finite derivation type (FDT 3 ) if it admits a finite coherent presentation. The property FDT 3 is a natural extension of the properties of being finitely generated (FDT 1 ) and finitely presented (FDT 2 ).

  Tietze transformations of (3, 1)-polygraphs. An equivalence of 2-categories C → D is a Tietze equivalence if the quotient categories C 1 /C 2 and D 1 /D 2 are isomorphic. Two (3, 1)polygraphs Σ and Υ are Tietze-equivalent if the 2-categories Σ 2 /Σ 3 and Υ 2 /Υ 3 they present are Tietze-equivalent. That is, there exists an equivalence of 2-categories Σ 2 /Σ 3 → Υ 2 /Υ 3 and the quotient monoids Σ * 1 /Σ 2 and Υ * 1

  )-polygraph obtained from Σ by adjunction of a chosen family of generating confluences of Σ.Let M be a monoid presented by a convergent 2-polygraph Σ. Squier's completion of Σ is a coherent presentation of M [113, Theorem 5.2]. Note that a new proof of this result is given in [39, Theorem 4.3.2] using the polygraphical approach. Furthermore, if a monoid M admits a finite convergent presentation, then it is of finite derivation type[START_REF] Squier | A finiteness condition for rewriting systems[END_REF] Theorem 5.3].Example: the plactic monoid P 2 . The Knuth presentation Knuth 2 (2) of the plactic monoid P 2 has generators 1 and 2 subject to the Knuth relations η 1,1,2 : 211 ⇒ 121 and ε 1,2,2 : 221 ⇒ 212.

  Q x 1

				(4.4)
		z 1		
		. . .		
	. . .	z l y 1	α u,vt	7 W s s
	xp			
		. . .		
		yq		
	4.1.3.4. Lemma. If u v t ×1 ×2 , we have the following confluent critical branching:
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Cette introduction est une traduction française du chapitre introductif du manuscrit.
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Remerciements

Chapter 2

Presentations of plactic monoids In order to make this document self-contained, we recall in this chapter the basic definitions and properties of presentations of monoids in the language of polygraphs. Examples of presentations of plactic monoids are also presented.

In Section 2.1, we recall the notion of low-dimensional polygraphs. We develop in 2.1.1 the case of 2-polygraphs and we give in 2.1.2 some of their rewriting properties as termination and confluence. After recalling the definition of Yamanouchi path tableaux and using the notions of paths and L-S paths presented in Chapter 1, we construct in 2.1.3 a convergent presentation of the plactic monoid in terms of the crystal isomorphism defined in Chapter 1, Subsection 1.3.4.

In Section 2.2, we recall the notion of Tietze transformations of 2-polygraphs from [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] and we construct in 2.2.2 a presentation of the plactic monoid, called the pre-column presentation, that is Tietze equivalent to the Knuth presentation.

In 2.3.1, we recall the Knuth-Bendix's completion that computes a convergent presentation of a monoid from a terminating one. In 2.3.2, we compute the Knuth-Bendix's completion of the Knuth presentation of the plactic monoid of type A and rank 3. We recall in 2.3.3 that for higher values of n, the Knuth presentation does not admit a finite completion compatible with the lexicographic order without adding new generators.

For deeper informations, we refer the reader to [START_REF]Higher-dimensional normalisation strategies for acyclicity[END_REF][START_REF]Coherence in monoidal track categories[END_REF][START_REF]Polygraphs of finite derivation type[END_REF][START_REF] Guiraud | A homotopical completion procedure with applications to coherence of monoids[END_REF][START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] of the 2-polygraph Knuth cc 2 (n). Let consider the Nielsen transformation κ ε c x,y,z ←α y,zx : Knuth cc 2 (n) -→ Knuth cc 2 (n) /(ε c x,y,z ← α y,zx ), that substitutes the 2-cell α y,zx : c y c zx ⇒ c yx c z to the 2-cell ε c x,y,z , for every 1 x < y z n. We denote by T ε←α the successive applications of the Tietze transformation κ ε c

x,y,z ←α x,zy , for every 1 x < y z n, with respect to the lexicographic order on the triples (x, y, z) induced by the total order on [n].

Let define the composite T η,ε←α = T η←α • T ε←α , this gives us a Tietze transformation:

In this way, the 2-polygraphs Knuth cc 2 (n) and CPC 2 (n) are Tietze equivalent. The following lemma proves that the 2-polygraph PreCol 2 (n) is a presentation of the monoid P n .

2.2.2.4. Lemma. The 2-polygraph PreCol 2 (n) is Tietze equivalent to the 2-polygraph CPC 2 (n).

Proof. Let x p . . . x 1 be a column with (x p . . . x 1 ) > 2 and define α y,x := γ yx : c y c x ⇒ c yx , for every x < y. Consider the following critical branching such that (x p . . . x 1 ) > 2, from the bigger to the smaller one with respect to the total order deglex .

Let us define the composite

Suppose now that there exists a rule β i-1 : 323 i-1 431 ⇒ 3213 i-1 43 added after the ith step of completion. Then after the (i + 1)th step of it, there is the following critical pair: It follows that the completion is infinite, making a contradiction and the assertion follows.

Chapter 3

Column presentations of plactic monoids The aim of this chapter is to construct finite convergent presentations of plactic monoids using three approaches: Young tableaux, Littelmann paths and Kashiwara's crystal bases.

We construct in Section 3.1 a finite convergent presentation of plactic monoids for any type using L-S paths. This presentation, called the column presentation, can be constructed by a case-by-case analysis using Young tableaux and Kashiwara's crystal bases.

In section 3.2, we consider the plactic monoid P n of type A. The column presentation of this monoid was constructed by Cain, Gray and Malheiro in [START_REF]Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF]. We give some properties and examples of this presentation and we show how it is related to Schensted's insertion algorithm.

We construct in Section 3.3 the column presentation of the symplectic plactic monoid by adding the admissible columns generators introduced by Kashiwara and Nakashima. The right side of the relations is the result of Lecouvey's insertion of an admissible column into another one, [START_REF] Hage | Finite convergent presentation of plactic monoid for type C[END_REF]. In 3.3.1, we recall the definitions and some properties of admissible columns and symplectic tableaux. We describe in 3.3.2 the column insertion algorithm for type C introduced by Lecouvey. We study in 3.3.3 the shape of the symplectic tableau obtained after inserting an admissible column into another one. We construct in 3.3.4 the column presentation of the symplectic plactic monoid and we compute this presentation in rank 2.

We end this chapter by showing in 3.4 how the column presentation can be constructed for types B, D and G 2 .

Consider the general Lie algebra gl 3 and let us compute the column presentation Path (3) of the monoid P 3 . The set of 1-cells is

The left and right sides of the 2-cells of Path 2 (3) are the paths attached to the vertices which correspond under the following crystal isomorphisms

and under the following crystal isomorphism and under the following crystal isomorphisms

and under the following crystal isomorphisms

and a letter x = 3. Let us compute x → T 2 . First, we begin inserting x = 3 in the leftmost column U 1 of T 2 . The word 1233 is a nonadmissible column word, that each strict factor is an admissible column word, we have by applying (R 3 ),

and T 2 = .

We have 231 ≡ 213, then

Hence

Secondly, one inserts 2 in the tableau T 2 : we have 1332 ≡ 1323 ≡ 3123, then

We have 133 ≡ 313, then

We have 23 ≡ 23, then

Hence,

3.3.2.4. Remark. Consider a word w in C * n . The symplectic tableau P(w) can be computed by starting with the empty word, which is a valid tableau, and iteratively applying the insertion schemes described above. Notice that when w is the reading of a symplectic tableau T , we have P(w) = T .

The two two-columns lemmas

Let u and v be the readings of two admissible columns U and V respectively. As we have seen in Subsection 3.3.1, U V means that the column U can appear to the right of V in a symplectic tableau. Note that U V means that the word uv is not the reading of a symplectic tableau.

3.3.3.1. Lemma. Let u and v be the readings of two admissible columns U and V respectively. The symplectic tableau P(uv) consists of at most two columns.

Proof. For U V, the result is trivial. Let u = x 1 . . . x p and v = y 1 . . . y q be respectively the readings of two admissible columns U and V of height p and q, such that U V. Let u 0 z 1 . . . z q be the highest weight vertex of the connected component containing uv. We begin inserting the first element y 1 of v in the column U. The shape of the tableau P(uy 1 ) depends of the connected component containing uy 1 . The highest weight vertex of this component is u 0 z 1 . By Lemma 1.3.3.3, u 0 is of highest weight and ε i (z 1 ) ϕ i (u 0 ), for any i = 1, . . . , n. Then we obtain the following cases.

Case 1: u 0 z 1 = 1 . . . p(p + 1). In this case, uy 1 is an admissible column word, z 1 = p + 1 and wt(z 1 ) =Λ p+1 -Λ p . Then during the insertion of the letter y 1 in the column U, this column of height p corresponding to the weight Λ p is transformed into a column of height p + 1 corresponding to the weight Λ p+1 . Its reading is uy 1 . After one continues inserting the others elements y 2 , . . . , y q of the column word v. We know by the definition of an admissible column that every element of this column is strictly larger than its preceding, then we have two cases: First, suppose that z i = p + i, for i = 2, . . . , q. Then wt(z i ) = Λ p+i -Λ p+i-1 and during the insertion of y i in the column of reading uy 1 . . . y i-1 , this column of height p + i -1 is turned 3.3.3.2. Lemma. Let u and v be the readings of two admissible columns U and V respectively, such that U V. Suppose that P(uv) has two columns and let W be the rightmost column. Then the column U contains more elements than W.

Proof. Let u = x 1 . . . x p and v = y 1 . . . y q be respectively the readings of two admissible columns U and V of height p and q, such that U V. Let w and w be respectively the readings of the right and left column W and W of P(uv). If the height of U is greater than the height of V, then in all cases we have h(W) < p.

Suppose that q p and the columns U and V contain only unbarred letters. Suppose that during the computation of P(uv), we only add boxes by applying relations of type (R 1 ). In other words, we compute P(uv) by Schensted's insertion. If h(W) = p, then during inserting the first p elements of V, p boxes are added in the second column and they are all filled by elements of U. Since the number of added boxes is equal to the height of U, w(P(uv)) = uv. Then U V which yields a contradiction. Hence, h(W) < p.

Suppose now that during the computation of P(uv), we only add boxes by applying relations of type (R 1 ) or (R 2 ). By definition of P(uv) we have w(P(uv)) = ww ≡ uv. Then the words uv and ww occur at the same place in their isomorphic connected components B(uv) and B(ww ) of the crystal G n . Note that all the vertices in a connected component are the readings of tableaux of the same shape. Let (uv) 0 and (ww ) 0 be respectively the highest weight vertices of B(uv) and B(ww ). By Remark 3.3.1.6, the word (ww ) 0 is the reading of a tableau that all its elements are unbarred letters, then (uv) 0 and (ww ) 0 are related by relations of type (R 1 ). Hence, as we have seen above, the height of the second column of P((uv) 0 ) is strictly less than p. Since (ww ) 0 and ww are the readings of two symplectic tableaux of the same shape, the length of w is strictly less than p.

Suppose that during the insertion of the first k elements of v, for k p-1, into the column U, we add k boxes in a second column. Then

where U 1 contains p elements and U 2 contains the k added boxes. After we insert y k+1 in the column U 1 . Suppose that w(U 1 )y k+1 is a nonadmissible column word such that all of its proper factors are admissible. Let w(U 1 )y k+1 be the column word obtained from w(U 1 )y k+1 after applying relation of type (R 3 ). Then we insert the elements of w(U 1 )y k+1 in the column U 2 . This insertion does not cause a new contraction. Then if we obtained two columns, the height of the right one is strictly less than the height of U 2 which is strictly less than p. After we continue inserting the remaining elements of v, and the height of the right column of the final tableau is strictly less than p. 

The following lemma shows that the 2-polygraphs SP 2 (n) and SP Proof. We have ACol

2 }. Thus in order to prove the Tietze equivalence, we add to the 2-polygraph SP 2 (n) all the column generator c u , for all u = y 1 . . . y k in acol(n) such that (u) 2, and the corresponding collapsible 2-cell : γ u : c y 1 . . . c y k ⇒ c u . We apply successively a Tietze transformation ι 1 γu , from the bigger column in acol(n) to the smaller one with respect to the order deglex . The composite of these Tietze transformations defines a Tietze equivalence from SP 2 (n) to SP

Definition of the new 2-cells. Let u and v be respectively the readings of two non-empty admissible columns U and V. Suppose that U V, by Lemma 3.3.3.1 the symplectic tableau P(uv) consists of at most two columns. Define a 2-cell

=⇒ c w c w , where the words w and w are respectively the readings of the right and left columns W and W of P(uv) if this symplectic tableau consists of two columns.

• c u c v α u,v =⇒ c w , where w is the reading of the column W of P(uv) if it consists of one column.

• c u c v α u,v =⇒ c ε , where ε is the empty word if P(uv) consists of zero columns.

As we will see in Lemma 3.3.4.5, the 2-polygraph ACol 2 (n) is a presentation of the symplectic monoid P n (C), called the column presentation. The left and right sides of the 2-cells of the 2-polygraph ACol 2 (n) are the readings of the vertices which correspond under the following crystal isomorphisms columnwise from right to left and from top to bottom. We have

where 112 is the reading of the following orthogonal tableau of highest weight

Hence, we obtain that T is an orthogonal tableau. By a similar approach as for type C, Lecouvey defined an insertion algorithm that computes an orthogonal tableau P(w) from every word w in the free monoid B * n , see [START_REF]Schensted-type correspondences and plactic monoids for types B n and D n[END_REF]Subsection 3.3]. The plactic monoid of type B is isomorphic to the quotient of the free monoid B * n by the equivalence relating words having the same orthogonal tableau after Lecouvey's insertion procedure. Moreover, the latter equivalence coincides with the congruence generated by the five families of relations presented in [79, Definition 3.2.2]. In addition, Lecouvey showed that each plactic congruence contains a unique orthogonal tableau, [79, Theorem 3.2.4].

Lemma 3.3.3.1 can be extended for type B. In other words, let u and v be the readings of two admissible columns U and V respectively. The orthogonal tableau P(uv) consists of at most two columns. Indeed, since the crystal operators preserve the shape of orthogonal tableaux, we suppose that uv is of highest weight. Thus, we obtain by Lemma 1.3.3.3 that the column word u is of highest weight and ε i (v) ϕ i (u), for any i = 1, . . . , n. Since u is of highest weight, it can be written on the following form 1 . . . q, for q n. The shape of the tableau P(uv) depends of the first element of the column v. Using Lemma 1.3.3.3, if u = 1 . . . q, for q n -1, then the first element of v is 1, q + 1 or q. If u = 1 . . . n, then the first element of v is 1, 0 or n. Hence, in all cases, when inserting the first element of v, we obtain an orthogonal tableau that consists of one or two columns. After, one continues inserting the remaining elements of v in the resulted tableau. Since every element of an admissible column is strictly larger than its preceding, one adds boxes in distinct rows in the right or in the left column of the resulted tableau and similarly one removes boxes from distinct rows of the considered tableau. As a consequence, we obtain that the tableau P(uv) consists of zero columns, one column or two columns.

Similarly, one can show that Lemma 3.3.3.2 is also true for type B. Let u and v be the readings of two admissible columns U and V such that the juxtaposition of U and V does not form an orthogonal tableau. Suppose that P(uv) consists of two columns. Then the column U contains more elements than the rightmost column of P(uv). Indeed, since the crystal operators preserve the shape of orthogonal tableaux, the idea is to suppose again that uv is of highest weight. In this case, the tableau P(uv) contains only unbarred letters. By reasoning on which of the five families of relations defined in [79, Definition 3.2.2] are used during the insertion of V into U, and by the same arguments of type C, this lemma is generalised for type B.

Let u and v be respectively the readings of two non-empty admissible columns U and V. Suppose that the juxtaposition of the columns U and V does not form an orthogonal tableau. Define a 2-cell Chapter 4

Knuth's coherent presentations of plactic monoids of type A The aim of this chapter is to construct coherent presentations of plactic monoids of type A, [START_REF] Hage | Knuth's coherent presentations of plactic monoids for type A[END_REF]. We compute a finite coherent presentation of the plactic monoid from its column presentation that is finite and convergent. Then, in a second time, we show how to reduce this coherent presentation to a Tietze equivalent one having Knuth's generators.

In 4.1.1, we recall the definition and some properties of coherent presentations of monoids and we present Squier's completion that extends a convergent presentation of a monoid into a coherent one. We review in 4.1.2 the homotopical completion procedure introduced in [START_REF] Guiraud | A homotopical completion procedure with applications to coherence of monoids[END_REF][START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] that combines the Knuth-Bendix and the Squier's completions in order to compute a coherent presentation of a monoid starting with a not necessarily convergent presentation. We extend in 4.1.3 the column presentation Col 2 (n) of the plactic monoid P n presented in Chapter 3, Section 3.2 into a coherent presentation Col 3 (n).

After recalling in 4.2.1 the homotopical reduction procedure that eliminates superfluous elements from a coherent presentation, we apply three steps of homotopical reduction on the coherent presentation Col 3 (n). In a first step, we apply in 4.2.2 a homotopical reduction on Col 3 (n) with a collapsible part defined by some of the generating triple confluences of the presentation Col 2 (n). Thus, the coherent presentation Col 3 (n) is reduced into a coherent presentation Col 3 (n) of the monoid P n , whose underlying 2-polygraph is Col 2 (n). In 4.2.3, we reduce the coherent presentation Col 3 (n) into a coherent presentation PreCol 3 (n) of the and the 3-cell X :

, one performs a Tietze transformation on Σ to coherently add the 2-cell α : v 1 ⇒ v and the 3-cell X :

When adjunction of 2-cells α, new critical branchings can be created. The examination of the confluence of these new critical branchings can give rise to the adjunction of additional 2-cells and 3-cells. This defines an increasing sequence of (3, 1)-polygraphs, where Σ n+1 is obtained by completion of the critical branchings of Σ n :

Hence, the homotopical completion of Σ is the (3, 1)-polygraph

For every terminating presentation Σ of a monoid M, the homotopical completion S(Σ) of Σ is a coherent convergent presentation of M [31, Theorem 2.2.5].

Coherent column presentation

Using the homotopical completion procedure described above, we extend the column presentation Col 2 (n) defined in Chapter 3, Section 3.2 into a coherent presentation of the plactic monoid P n .

The column presentation. Let us recall from Chapter 3, Section 3.2 the definition of the column presentation. Given two columns u and v in the set of non-empty columns col(n), we consider the tableau P(uv) computed by the row-insertion algorithm. We denote u v if the planar representation of P(uv) is a tableau and we will denote u v × in the other cases. In this

The extended presentation Col 3 (n) is called the column coherent presentation of the plactic monoid P n . In 4.2.5, we give the values of number of cells of the coherent presentation Col 3 (n) for plactic monoids of low-dimensional rank n. The rest of this section is devoted to the proof of Theorem 4.1.3.1. It is based on the following arguments. The presentation Col 2 (n) is convergent, thus using the homotopical completion procedure described above, it suffices to prove that the 3-cells X u,v,t with u v t × × form a family of generating confluences for the presentation Col 2 (n). There are four possibilities for the critical branching (4.2) depending on the following four cases:

Each of these cases is examined in the following four lemmas. In the rest of this section, we will denote by u = x p . . . x 1 , v = y q . . . y 1 and t = z l . . . z 1 the three columns u, v and t.

, we have the following confluent critical branching: 

@ ẁhere e and e (resp. s and s ) denote the two columns of the tableau P(uv) (resp. P(uvt)).

Proof. By hypothesis, vt is a column and y 1 > z l . The tableau P(uv) consists of two columns, that we will denote e and e , then l nds (uv) = 2 and x 1 y q . We have u v ×2 , so that we distinguish the following possible three cases.

Case 1: p q and x i 0 > y i 0 for some 1 i 0 q. Suppose that i 0 = 1, that is, x 1 > y 1 . We consider y j the biggest element of the column v such that x 1 > y j , then the smallest element of the column e is y j+1 . By hypothesis, the word We have w = z l . . . z q+1 y q . . . y 1 , w = z q . . . z 1 , e = y q . . . y p+1 x p . . . x 1 and e = y p . . . y 1 .

Since z l y 1 , the tableau P(e t) consists of two columns, that we denote by b and b . Thus there is a 2-cell α e ,t : c e c t ⇒ c b c b . In addition, we have b = z l . . . z p+1 y p . . . y 1 , b = z p . . . z 1 , a = z l . . . z q+1 y q . . . y p+1 x p . . . x 1 and a = y p . . . y 1 .

Since z q y 1 , the tableau P(a w ) consists of two columns, that we denote by d and d . Thus there is a 2-cell α a ,w : c a c w ⇒ c d c d . Since z l x 1 , the tableau P(eb) consists of two columns, that we denote by s and s . Then there is a 2-cell α e,b : c e c b ⇒ c s c s . In the other hand, we have d = z q . . . z p+1 y p . . . y 1 , d = z p . . . z 1 , s = z l . . . z q+1 y q . . . y p+1 x p . . . x 1 and s = z q . . . z p+1 y p . . . y 1 . Hence a = s, d = s and d = b which yields the confluence diagram (4.7).

Case 2:

q < l and y i z i for all i q p q and x i 0 > y i 0 for some i 0 q or q < l and y i z i for all i q p < q and x i 0 > y i 0 for some i 0 p

We have w = z l . . . z q+1 y q . . . y 1 and w = z q . . . z 1 . Using Schensted's algorithm the smallest element of the column a is an element of v. Since z q is greater or equal than each element of v, the tableau P(a w ) consists of two columns, that we denote by d and d .

On the other hand, all the elements of e are elements of v. Since z l is bigger than each element of v, the tableau P(e t) consists of two columns, that we denote by b and b . Thus there is a 2-cell α e ,t : c e c t ⇒ c b c b . Hence, we consider two cases depending on whether or not c e c b c b is a tableau. Suppose c e c b c b is a tableau. The column e does not contain elements from the column t, then during inserting the column w into the column u, we can only insert some elements of y q . . . y 1 into u and we obtain a = e. Since c e c b c b is the unique tableau obtained from c u c v c t and a = e, we obtain C(P(a w )) = bb . As a consequence, there is a 2-cell α a ,w : c a c w ⇒ c b c b yielding the following confluence diagram:

Suppose c e c b c b is not a tableau. The first element of the column b is z l . The smallest element of the column e is either x 1 or y j , where y j is the biggest element of the column v such that y j < x 1 .

By hypothesis the tableau P(uw) consists of two columns, then x 1 z l . In addition, z l is greater than each element of v then y j z l . Hence, in all cases, the tableau P(eb) consists of two columns. On the other hand, using Schensted's algorithm, we have a = z i k . . . z i 1 y j k . . . y j 1 with q + 1 i 1 < . . . < i k l, 1 j 1 < . . . < j k q and we have e = y j k . . . y j 1 . In 

Homotopical reduction procedure

Coherent presentations of monoids constructed by the homotopical completion procedure are not minimal in general. The homotopical reduction procedure introduced in [31, Section 2.3.] is used to eliminate superfluous cells thanks to the notions of collapsible parts and generating triple confluences that we recall in the following.

Collapsible part of (3, 1)-polygraphs. Let Σ be a (3, 1)-polygraph. A collapsible part of Σ is a triple Γ = (Γ 2 , Γ 3 , Γ 4 ) made of a family Γ 2 of 2-cells of Σ, a family Γ 3 of 3-cells of Σ and a family Γ 4 of 3-spheres of Σ 3 , such that the following conditions are satisfied:

ii) no cell of Γ 2 (resp. Γ 3 ) is the target of a collapsible 3-cell of Γ 3 (resp. 3-sphere of Γ 4 ),

iii) there exists a well-founded order on the cells of Σ such that, for every γ in every Γ k , t k-1 (γ) is strictly greater than every generating (k -1)-cell that occurs in the source of γ. and u = x p u 1 . On the 3-cells of Col 3 (n) we define a well-founded order by

for any u, v, t in col(n) such that u v t × × .

By construction of the 3-sphere Ω xp,u 1 ,v,t , its source contains the 3-cell X u 1 ,v,t and its target contains the 3-cell X u,v,t with (u 1 ) < (u). Up to a Nielsen transformation, the homotopical reduction R Γ 4 applied on the (3, 1)-polygraph Col 3 (n) with respect to Γ 4 and the order give us the (3, 1)-polygraph Col 3 (n). In this way, the presentation Col 3 (n) is a coherent presentation of the plactic monoid P n .

Pre-column coherent presentation

We reduce the coherent presentation Col 3 (n) into a coherent presentation whose underlying 2-polygraph is PreCol 2 (n). This reduction is obtained using the homotopical reduction R Γ 3 on the (3, 1)-polygraph Col 3 (n) whose collapsible part Γ 3 is defined by

and the well-founded order defined as follows.

Step 1. The Tietze transformation 

In this way, we extend the Tietze transformation T -1 γ←α into a Tietze transformation between the (3, 1)-polygraphs PreCol 3 (n) and CPC 3 (n). The (3, 1)-polygraph PreCol 3 (n) being a coherent presentation of the monoid P n and the Tietze transformation T -1 γ←α preserves the coherence property, hence we have the following result. 4.2.4.1. Lemma. For n > 0, the plactic monoid P n admits CPC 3 (n) as a coherent presentation.

Step 2. The Tietze transformation T η,ε←α from Knuth cc 2 (n) into CPC 2 (n) defined in the proof of Lemma 2.2.2.3 of Chapter 2, replaces the 2-cells η c

x,y,z and ε c x,y,z in Knuth cc 2 (n) by composite of 2-cells in CPC 2 (n).

Let us consider the inverse of this Tietze transformation η,ε←α preserves the coherence property, hence we have the following result.

4.2.4.2. Lemma. For n > 0, the plactic monoid P n admits Knuth cc 3 (n) as a coherent presentation.

Step 3. Finally, in order to obtain the Knuth coherent presentation, we perform an homotopical reduction, obtained using the homotopical reduction R Γ 2 on the (3, 1)-polygraph Knuth cc 3 (n) whose collapsible part Γ 2 is defined by the 2-cells γ u of C 2 (n) and the well-founded order deglex . Thus, for every 2-cell γ xp...x 1 : c xp . . . c x 1 =⇒ c xp...x 1 in C 2 (n), we eliminate the generator c xp...x 1 together with the 2-cell γ xp...x 1 , from the bigger column to the smaller one with respect to the order deglex .

Knuth coherent presentation. Using the Tietze transformations constructed in the previous sections, we consider the following composite of Tietze transformations

defined from Col 3 (n) to Knuth cc 3 (n) as follows. Firstly, the transformation R eliminates the 3cells of Col 3 (n) of the form A x,v,t , B x,v,t and C x,v,t which are not of the form C x,v,t and reduced its set of 2-cells to PreCol 2 (n). Secondly, this transformation coherently replaces the 2-cells γ xp...x 1 by the 2-cells α xp,x p-1 ...x 1 , for each column x p . . . x 1 such that (x p . . . x 1 ) > 2, the 2-cells α x,zy by η c

x,y,z for 1 x y < z n and the 2-cells α y,zx by ε c x,y,z for 1 x < y z n. Finally, for each column x p . . . x 1 , the transformation R eliminates the generator c xp...x 1 together with the 2-cell γ xp...x 1 with respect to the order deglex .