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Chapter 1
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1.2 Viscoplastic fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Augmented Lagrangian algorithm . . . . . . . . . . . . . . . . . . . . . 12

1.3 Introduction to Hybrid High-Order (HHO) methods . . . . . . . . 14
1.3.1 Discrete setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Local reconstruction and stabilization operators . . . . . . . . . . . . . 16
1.3.3 HHO discretization of a model elliptic problem . . . . . . . . . . . . . 18

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

This thesis is concerned with the devising and analysis of hybrid discretization methods
for nonlinear variational inequalities arising in computational mechanics. The main example
of hybrid discretization methods considered in this thesis is the Hybrid High-Order (HHO)
method recently introduced in 2014 by Di Pietro et al. [60, 59]. Hybrid discretization methods
are based on discrete unknowns attached to the mesh faces. Discrete unknowns attached to the
mesh cells are also introduced, but they are eliminated locally by means of a Schur complement
technique known as static condensation, thereby increasing computational efficiency. Salient
advantages of hybrid discretization methods are local conservation at the cell level, robustness
in various regimes and the possibility to use polygonal/polyhedral meshes with hanging nodes,
which is very attractive in the framework of mesh adaptation. Two main applications are
addressed in this thesis. The first one is the treatment of Signorini’s unilateral contact problem
(in the scalar-valued case) with a nonlinearity in the boundary conditions. The second main
application is viscoplastic Bingham flows which are governed by a nonlinear relation between
the stress tensor and the strain rate tensor.

This Chapter is organized as follows. In Section 1.1 we briefly review the state-of-the-art
and the mathematical setting for Signorini’s unilateral contact problem. We do the same in
Section 1.2 for viscoplastic Bingham flows. We present an introduction to HHO methods in
Section 1.3. Finally, we outline the contents of the following chapters in Section 1.4 and we
highlight our main contributions.
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ΩΓD
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Figure 1.1: Boundary setting for Signorini’s unilateral contact problem. The contact boundary
is represented by a straight red line where contact is happening (u = 0, σn(u) ≤ 0) and by a
dashed red line otherwise (u < 0, σn(u) = 0).

1.1 Signorini’s unilateral contact problem
Signorini conditions were introduced by Signorini [122] in 1933. They are the constitutive
building block to model unilateral contact between a deformable body and a rigid support, or
between deformable bodies. Moreover, these conditions appear naturally as the Karush–Kuhn–
Tucker conditions in the context of variational inequalities whenever some convex functional
is minimized under some inequality constraint at the boundary. Signorini conditions also rep-
resent the first step toward more comprehensive models in computational mechanics including
friction. Contact and friction problems are relevant to a broad range of applications (see e.g.
Kikuchi & Oden [94], Glowinski & Le Tallec [77], Haslinger et al. [86], Han & Sofonea [82],
Laursen [101], Wriggers [130], Wohlmuth [129] and Section 1.1.4). In this section, we briefly
present the mathematical setting for Signorini’s unilateral contact problem, its discretization by
conforming finite elements, and the treatment of the nonlinear boundary conditions by means
of Nitsche’s method.

1.1.1 Mathematical model
Let Ω ⊂ Rd, d ≥ 2, denote an open, bounded, connected subset of Rd with a Lipschitz boundary
∂Ω, and unit outward normal vector n. Let f : Ω→ R be a source term. Let

∂Ω = ΓD ∪ ΓN ∪ ΓS (1.1)

be a partition of the boundary ∂Ω into three mutually disjoint subsets, where the boundary
condition is respectively a Dirichlet, a Neumann, and Signorini’s unilateral contact condition,
see Figure 1.1. We assume that ΓD has nonempty relative interior. We consider the following
model problem:

∆u+ f = 0 in Ω, (1.2a)
u = 0 on ΓD, (1.2b)

σn(u) = 0 on ΓN , (1.2c)

and the unilateral contact boundary conditions on ΓS as follows:

u ≤ 0 on ΓS , (1.3a)
σn(u) ≤ 0 on ΓS , (1.3b)
uσn(u) = 0 on ΓS , (1.3c)

with the shorthand notation σn(w) = n·∇w for a smooth enough function w : Ω→ R.

2



1.1. Signorini’s unilateral contact problem

Remark 1.1 (Mechanical interpretation). When d = 2, the primal unknown can be viewed
as the vertical displacement of a membrane (along the transverse direction z). The reference
configuration of the membrane is Ω. The membrane has unit tension, is subjected to a surface
load f (along the direction z); it is clamped on ΓD and is free on ΓN . On ΓS, the first
condition (1.3a) enforces that the admissible displacements must accomplish the condition of
non-penetration into the rigid support located at {z = 0}. The second condition (1.3b) enforces
that the normal reaction of the rigid support must be oriented toward the membrane. The
last condition (1.3c) means that either the membrane and the support are in contact (u = 0),
or the membrane is still unconstrained so that the rigid support does not exert any reaction
(σn(u) = 0).

Let L2(Ω) denote the space of square-integrable functions over Ω and let us set L2(Ω) :=
L2(Ω;Rd). The inner product in both spaces is denoted (·, ·)Ω and the associated norm ‖ · ‖Ω.
Let γ∂Ω : H1(Ω;R) → H

1
2 (∂Ω;R) be the classical trace map. Let the following subspace

specifying a zero-trace of the displacement on the Dirichlet boundary:

H1
D(Ω) := {w ∈ H1(Ω) | γ∂Ω(w)|ΓD

= 0}. (1.4)

Let us enforce the non-penetration condition u ≤ 0 on ΓS by considering the following closed
convex cone:

KD(Ω) = {w ∈ H1
D(Ω) | γ∂Ω(w)|ΓS

≤ 0}, (1.5)
so that the closed convex cone KD(Ω) specifies the admissible solutions. Assuming f ∈ L2(Ω),
the solution of (1.2)-(1.3) is the unique minimizer in KD(Ω) of the following strongly convex
energy functional:

u = arg min
v∈KD(Ω)

1
2‖∇v‖

2
Ω − (f, w)Ω. (1.6)

The unique minimizer of (1.6) can be characterized as the unique solution of the following
elliptic variational inequality:{

Find u ∈ KD(Ω) such that
(∇u,∇(w − u))Ω ≥ (f, w − u)Ω ∀w ∈ KD(Ω).

(1.7)

It is well-known that the problem (1.7) is well-posed (see, e.g., Lions & Stampacchia [104] or
Glowinski [80]).

1.1.2 Finite element discretization
We focus now on the discretization of Signorini’s unilateral contact problem by means of the
well-known Finite Element (FE) method. This allows us to highlight the difficulties arising in
the treatment of the nonlinear boundary conditions.

Let (Th)h>0 be a mesh sequence. For simplicity, we assume that Ω is a polygon / polyhedron
in Rd, d ∈ {2, 3} and that the meshes cover Ω exactly. For all h > 0, the mesh Th is composed
of nonempty disjoint open cells such that Ω = ⋃

T∈Th
T . We assume that the meshes are

compatible with the boundary partition (1.1). We assume that the mesh cells are simplices in
Rd, that is, triangles if d = 2 and tetrahedrons if d = 3. The mesh sequence (Th)h>0 is assumed
to be shape-regular in the usual sense of Ciarlet [49]. The mesh-size is denoted h = maxT∈Th

hT ,
with hT the diameter of the cell T . We define the space of continuous, piecewise polynomials
with degree k ∈ {1, 2} (higher values of k are not considered owing to the lack of regularity of
the exact solution see Andersson [5], Kinderlehrer [95] and Moussaoui & Khodja [109]):

Vh := {wh ∈ C0(Ω;R) | wh|T ∈ Pk(T ;R);∀T ∈ Th}, (1.8)

together with the subspace satisfying the homogenuous Dirichlet boundary condition on ΓD:

Vh,D := Vh ∩H1
D(Ω). (1.9)
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We also introduce the discrete convex cone Kh,D. For k = 1, this cone is defined as

Kh,D := KD(Ω) ∩ Vh,D = {wh ∈ Vh,D | wh(ai) ≤ 0, ∀ai ∈ ΓS}, (1.10)

where ai, 1 ≤ i ≤ I, denote a generic vertex of the mesh Th. For k = 2, one possibility is to
define

Kh,D := {wh ∈ Vh,D | vh(ai) ≤ 0,∀ai ∈ ΓS , wh(mj) ≤ 0,∀mj ∈ ΓS}, (1.11)

where mj , 1 ≤ j ≤ J , denotes a generic edge midpoint. Note that for k = 2, Kh,D * KD, i.e.,
the approximation setting is nonconforming. Other possibilities exist for defining Kh,D with
k ∈ {1, 2}; for instance, one can only enforce the mean-value of vh to be non-negative on the
mesh faces located in ΓS . The discrete solution uh is the unique minimizer in Kh,D of the same
energy functional as in (1.6), i.e., the discrete problem is

uh := arg min
uh∈Kh,D

1
2‖∇wh‖

2
Ω − (f, wh)Ω. (1.12)

Note that we can use the same energy functional as in (1.6) since the FE method is a conforming
method. The unique minimizer of (1.12) can be characterized as the unique solution of the
following discrete variational inequality:{

Find uh ∈ Kh,D such that
(∇uh,∇(wh − uh))Ω ≥ (f, wh − uh)Ω. ∀vh ∈ Kh,D.

(1.13)

For the above FE discretization as well as for many variants such as mixed/nonconforming
methods (e.g., Hild [90], Ben Belgacem & Renard [13], Laborde & Renard [99]), stabilized
mixed methods (e.g., Hild & Renard [91]), penalty methods (e.g., Chouly & Hild [41]), it has
been quite challenging to establish optimal convergence in the H1-norm in the case the solution
belongs to H 3

2 +s(Ω) (0 < s ≤ 1/2). The first fully optimal result without extra assumptions
for the standard FE discretization has been achieved only recently, in 2015, see Drouet & Hild
[65]. The first analyses in the 1970s were actually sub-optimal with a convergence rate of order
O(h 1

2 + s
2 ), instead of O(h 1

2 +s), see Scarpini & Vivaldi [120], Haslinger [85], Haslinger et al. [86],
see also Hild & Renard [92]. Optimal error bounds were devised under additional assumptions
on the contact set for the exact solution, see Belhachmi & Ben Belgacem [12] and Hüeber &
Wohlmuth [93], whereas Drouet & Hild [65] have circumvented this assumption. We refer the
reader, e.g., to Wohlmuth [93, 129] and Hild & Renard [92, 65] for more detailed reviews on
the subject.

In what follows when stating error estimates, we often abbreviate as a . b the inequality
a ≤ Cb with positive real numbers a, b and a constant C > 0 whose value can change at each
occurrence but is independent of the mesh size and the exact solution u (the value can depend
on the mesh shape-regularity and the polynomial degree). Let us state for completeness the
classical error estimate for the above FE discretization of the scalar Signorini problem.

Theorem 1.2 (Finite Element error estimate). Let k ∈ {1, 2} and d ∈ {2, 3}. Suppose that
the solution u of (1.6) belongs to H 3

2 +s(Ω) ∩H1
D(Ω) with 0 < s < k − 1

2 . The following error
estimate for the discrete solution uh solving (1.12) holds true:

‖∇(u− uh)‖Ω . h
1
2 +s|u|

H
3
2 +s(Ω)

. (1.14)

Proof. See Drouet & Hild [65].

A drawback of the FE discretization is the difficulty to handle the discrete convex coneKh,D.
One possibility to circumvent this difficulty is to use Lagrange multipliers to enforce the non-
penetration constraint, resulting in the need to solve a saddle-point problem. Another relatively
recent approach, which is the focus of the next section, is to use Nitsche’s method to enforce

4



1.1. Signorini’s unilateral contact problem

weakly the nonlinear conditions. For a review of numerical approximations to Signorini’s
unilateral contact conditions, we refer the reader to [38], see also e.g Herbin & Marchand [88]
for the Finite Volumes method, and more recently Alnashri & Droniou [4] for the Gradient
schemes framework.

1.1.3 Nitsche’s enforcement of Signorini’s conditions

Nitsche’s method has been introduced in 1971 to enforce weakly Dirichlet boundary conditions
in linear elliptic problems [110]. This method has been extended to Signorini’s problem dis-
cretized with Lagrange finite elements by Chouly & Hild [40, 45] (see also Chouly et al. [38] for
an overview of recent results). For this Nitsche-based FE discretization, optimal convergence
in the H1(Ω)-norm of order O(h 1

2 +s) has been proved, provided the solution has a regularity
H

3
2 +s(Ω), 0 < s ≤ k − 1/2 (k = 1, 2 is the polynomial degree of the Lagrange finite elements).

As for the FE analysis by Drouet & Hild [65], there is no need of any additional assumption
on the contact/friction zone, such as an increased regularity of the contact stress or a finite
number of transition points. Moreover, the proof applies in the two-dimensional and in the
three-dimensional cases, and for continuous affine and quadratic finite elements.

The key idea to devise the Nitsche-FEM discretization of (2.7)-(2.8) is to reformulate Sig-
norini conditions (2.8) as a single nonlinear equation on the normal flux σn(u). Thus, let
us first present a reformulation of the unilateral contact conditions, as introduced by Alart &
Curnier [54].

Lemma 1.3 (Reformulation of Signorini’s condition). Let γ > 0 be a positive real number.
Signorini’s unilateral contact condition (1.3) is equivalent to

σn(u) = [φγ(u)]R− , (1.15)

with φγ(w) := σn(w) − γw = n·∇w − γw for any smooth enough function w : Ω → R, and
where [x]R− := min(x, 0) denotes the projection onto the convex subset R− := (−∞, 0] of any
real number x.

Proof. See the work by Alart & Curnier [54] and the work by the Chouly & Hild [40, Proposition
2.1]. Let us briefly sketch the proof.
(i) (1.15) =⇒ (1.3). The second contact condition (1.3b) follows from [x]R− ≤ 0. If σn(u) = 0,
then (1.15) implies [−γu]R− = 0. Otherwise, σn(u) < 0 and (1.3c) implies σn(u) = φγ(u) =
σn(u)− γu, so that u = 0. This proves (1.3a) and (1.3c).
(ii) (1.3) =⇒ (1.15). Observe that (1.3) results in two possible scenarios: The first one is
u = 0 and σn(u) ≤ 0, which can be written as σn(u) = [σn(u)]R− = [σn(u)− γu]R− . The
second scenario is σn(u) = 0 and u ≤ 0, which can be written as σn(u) = 0 = [−γu]R− =
[σn(u)− γu]R− . Whence the equivalence.

We are now in a position to formulate Nitsche’s method for Signorini’s unilateral contact
conditions. Let us first define the energy functional Jγ,h : Vh,D → R originally used for Dirichlet
boundary conditions, and adapted here to treat Signorini’s unilateral contact conditions (see,
e.g, Chouly et al. [48] for a complete derivation):

Jγ,h(wh) := 1
2‖∇wh‖

2
Ω − (f, wh)Ω −

1
2

∫
ΓS

1
γ
σn(wh)2 + 1

2

∫
ΓS

1
γ

[φγ(wh)]2R− , (1.16)

where γ > 0 is a penalty parameter specified in Theorem 1.6. The discrete solution is defined
to be the unique minimizer of this convex functional over Vh,D, namely

uh = arg min
wh∈Vh,D

Jγ,h(wh). (1.17)

5
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The discrete problem in weak form follows from the Euler equations characterizing the unique
minimizer in (1.17). Nitsche’s formulation for the discrete Signorini problem thus reads:{

Find uh ∈ Vh,D such that
aγ,h(uh, wh) = `γ,h(wh) ∀wh ∈ Vh,D,

(1.18)

with the semi-linear form

aγ,h(vh, wh) = (∇vh,∇wh)Ω −
∫

ΓS

1
γ
σn(vh)σn(wh) +

∫
ΓS

1
γ

[φγ(vh)]R− φγ(wh),

`γ,h(wh) = (f, wh)Ω.

Remark 1.4 (Linear case). Consider the linear case where one wants to solve the PDE (1.2a)
supplemented with the Dirichlet condition u = g on ΓD with g ∈ H 1

2 (∂Ω;R), and σn(u) = 0
on ΓN , with ∂Ω = ΓD ∪ΓN . Then, the usual Nitsche’s formulation is recovered by considering
the functional J̃γ,h : Vh → R such that

J̃γ,h(vh) = 1
2‖∇vh‖

2
Ω − (f, vh)Ω −

∫
ΓD

(vh − g)σn(vh) + 1
2

∫
ΓD

1
γ

(vh − g)2. (1.19)

Considering the Euler equation leads to the following weak formulation for the unique minimizer
of J̃γ,h over Vh: {

Find uh ∈ Vh such that
aγ,h(uh, vh) = `γ,h(vh) ∀vh ∈ Vh,

(1.20)

where

aγ,h(uh, vh) = (∇uh,∇vh)Ω −
∫

ΓD

(σn(uh)vh + σn(vh)uh) +
∫

ΓD

1
γ
uhvh,

`γ,h(vh) = (f, vh)Ω −
∫

ΓD

(
gσn(vh) + 1

γ
gvh

)
.

Note that aγ,h is nonlinear in its first argument. Adding and subtracting the term 1
2
∫

ΓD

1
γσn(vh)2

in (1.19), we obtain

J̃γ,h(vh) = 1
2‖∇vh‖

2
Ω − (f, vh)Ω −

1
2

∫
ΓS

1
γ
σn(vh)2 + 1

2

∫
ΓS

1
γ

(σn(vh)− γ(vh − g))2.

Letting g = 0, this makes the link with the energy functional defined in (1.16) more explicit.
A key property of the discrete problem (1.18) is its strong consistency whenever the exact

solution has enough regularity to be used as the first argument of the semi-linear form aγ,h.

Lemma 1.5 (Strong consistency). Suppose that the solution u of (1.6) belongs to H 3
2 +s(Ω),

with s > 0. The following holds true:
aγ,h(u; vh) = (f, vh)Ω ∀vh ∈ Vh,D. (1.21)

Proof. Since u ∈ H 3
2 +s(Ω), s > 0, we have

(∇u,∇vh)Ω = (f, vh)Ω −
∫

ΓS

σn(u)vh ∀vh ∈ Vh,D, (1.22)

where we used that vh|ΓD
= 0 and that σn(u)|ΓN

= 0 (this localization of the Neumman
boundary condition is possible since u ∈ H 3

2 +s(Ω), and s > 0). Moreover, Lemma 1.3 implies
that σn(u) = [φγ(u)]R− . Hence, we complete the proof as follows:

aγ,h(u; vh) = (∇uh,∇vh)Ω −
1
γ

∫
ΓS

σn(u) (φγ(vh)− σn(vh))

= (∇uh,∇vh)Ω +
∫

ΓS

σn(u)vh

= (f, vh)Ω.
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1.1. Signorini’s unilateral contact problem

Theorem 1.6 (Error estimate for Nitsche’s method). Suppose that the solution u of (1.6)
belongs to H 3

2 +s(Ω) with s > 0. Assume that γ = γ0h
−1 with γ0 large enough (the minimum

value depends on a discrete trace inequality and therefore on the shape-regularity of the mesh
sequence and the polynomial degree k, see, e.g., [110, 123, 84]). Then the following error
estimate for the discrete solution uh of (1.18) holds true:

‖∇(u− uh)‖Ω+γ−
1
2 ‖σn(u)− [φγ(uh)]R−‖L2(ΓS)

. inf
v∈Vh

{
‖∇(u− vh)‖Ω + γ

1
2 ‖u− vh‖L2(ΓS) + γ−

1
2 ‖σn(u− vh)‖L2(ΓS)

}
,

(1.23)

and for 0 < s ≤ k − 1
2 , k ∈ {1, 2}, we have

‖∇(u− uh)‖Ω + γ−
1
2 ‖σn(u)− [φγ(uh)]R−‖L2(ΓS) . h

1
2 +s|u|

H
3
2 +s(Ω)

. (1.24)

Proof. See Chouly & Hild [40].

Taking for example the primal unknown with enough regularity, i.e., u ∈ H2(Ω) so that
s = 1/2, we obtain a convergence, as in Theorem 1.2 for FEM, of order O(h) (optimal) from
Theorem 1.6.

In this thesis we use the semi-smooth Newton method to obtain the numerical solution of
the discrete Signorini problem. The steps of this method are listed in Algorithm 1.

Algorithm 1 Semi-smooth Newton method for the discrete Signorini problem
1: Choose u0

h ∈ Vh,D
2: Choose ε > 0, set R0 =∞ and n = 0
3: while Rn > ε do
4: Seek δh ∈ Vh,D solving the linear problem

a
(N)
γ,h (δh, vh)−

∫
ΓS

H(φγ(unh))φγ(δh)φγ(vh) = rh(unh; vh) ∀vh ∈ Vh,D, (1.25)

where H denotes the Heaviside function (H(s) = 1ifs ≥ 0 or H(s) = 0 otherwise),
whereas the bilinear form and the nonlinear residual in (1.25) are defined as follows
for all wh, vh ∈ Vh:

a
(N)
γ,h (wh, vh) := (∇wh,∇vh)Ω −

∫
ΓS

1
γ
σn(wh)σn(vh), (1.26)

rh(wh; vh) := a
(N)
γ,h (wh, vh) +

∫
ΓS

[φγ(wh)]R− φγ(vh)− (f, vh)Ω (1.27)

5: Compute un+1
h := unh + δh

6: Compute Rn+1 := ‖∇δh‖Ω
7: n = n+ 1
8: end while

1.1.4 Variants and extensions
The Nitsche-based FE discretization introduced by Chouly et al. [45] encompasses symmetric
and nonsymmetric variants depending upon a parameter denoted θ ∈ {−1, 0, 1}. The symmet-
ric case presented in the previous section is recovered when θ = 1. When θ 6= 1, the advantage
of having a variational formulation is lost. Nevertheless, some other advantages are recovered,
mostly from the numerical viewpoint. Namely, one of the variants (θ = 0) involves a reduced
quantity of terms, which makes it easier to implement and to extend to contact problems in the
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Chp. 1. Introduction

framework of nonlinear elasticity. In addition, numerical experiments reported by Renard [116]
indicate that this nonsymmetric variant with θ = 0 performs better in the sense that it requires
less Newton iterations to converge for a wide range of values of the Nitsche parameter, than
the symmetric variant with θ = 1. Concerning the skew-symmetric variant θ = −1, the main
advantage is that the well-posedness of the discrete formulation and the optimal convergence
are preserved irrespectively of the value of the Nitsche parameter γ0, that can even be taken
as 0 (penalty-free Nitsche’s method, see, e.g., Boiveau & Burman [18, 23]). Note that in the
linear case when enforcing a non-homogeneous Dirichlet boundary condition, the symmetric
variant (θ = 1) as originally proposed by Nitsche [110] is the most widespread, since on the
one hand it preserves symmetry and therefore leads to optimal L2-error estimates by means of
duality arguments, and on the other hand it allows for efficient solvers for linear systems with
a symmetric matrix. However, some nonsymmetric variants have been reconsidered recently,
due to some remarkable robustness properties (see, e.g., Burman et al. [23], Boiveau & Bur-
man [18]). In the context of discontinuous Galerkin methods, such nonsymmetric variants are
well-known as well (see, e.g., Di Pietro & Ern [58, Section 5.3.1] and the references therein).

Recently, various extensions of the Nitsche-based FE method have been devised. The
method has been adapted to Tresca friction by Chouly [37], to Coulomb’s friction by Chouly
et al. [42], Renard [116], to contact in elastodynamics by Chouly et al. [43, 44], Verlet et
al. [47], and to contact between two elastic bodies by Fabre et al. [71], Chouly et al. [46], Mlika
et al. [105]. In Fabre et al. [71], Nitsche’s method is combined with a Cut-FEM / fictitious
domain discretization in the small deformations framework. In Chouly et al. [46], Mlika et
al. [105], an unbiased variant treats the contact between two elastic bodies without making
any difference between master and slave contact surfaces, i.e., the contact condition is the
same on each surface. This is an advantage for the treatment of self-contact and multi-body
contact problems. Residual-based a posteriori error estimates are presented and analyzed by
Chouly [39], with a saturation assumption, and by Gustafsson et al. [81], without a saturation
assumption. The topic of small-sliding frictional contact in 3D has been studied by Annavarapu
et al. [6], where a weighted Nitsche method is designed and tested numerically. In Hansbo et
al. [83], a least-squares stabilized Augmented Lagrangian method, inspired by Nitsche’s method,
is introduced for unilateral contact. It shares some common features with Nitsche’s method
and allows for increased flexibility in the discretization of the contact pressure. This has
been followed up recently by some papers by Burman et al. [29, 31, 27], that explore further
the link between Nitsche’s and the Augmented Lagrangian methods for unilateral contact,
obstacle, and interface problems with adhesive contact. A penalty-free Nitsche’s method has
been designed and studied by Burman et al. [30] for the scalar Signorini’s unilateral contact
problem; this method is an extension of the one studied by Burman [23] for the Dirichlet
problem. It is combined with a non-conforming discretization based on Crouzeix–Raviart finite
elements. Stability and optimal convergence rates in the broken H1-norm are established. Very
recently, the idea of Chouly & Hild [40] has been transposed in the context of the transport
equation to enforce the discrete maximun principle by Burman & Ern [40]. Other extensions
include complex multi-physics problems such as finite deformation thermomechanical contact
by Seitz et al. [121], fluid-structure-contact interaction by Burman et al. [26], and the Stefan–
Signorini problems by Claus et al. [26]. Finally, an abstract framework to derive Nitsche-based
formulations for different (linear and nonlinear) boundary and interface problems, combined
with a numerical study in the context of isogeometric approximation (IGA) has been provided
by Hu et al. [26].

1.2 Viscoplastic fluids
Viscoplastic fluids belong to the family of non-Newtonian fluids and describe materials which
behave like a rigid solid for stresses below a critical yield stress and flow like a viscous fluid
otherwise. They stand out from other materials since the change of regime is due to stress,
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1.2. Viscoplastic fluids

Figure 1.2: Examples of applications of viscoplastic fluids.

contrary to other phenomena due to temperature variations. Viscoplastic fluids are of interest
in applications encountered in civil and material engineering and in the food, petroleum, and
biological industries, see Figure 1.2 for some illustrations.

The notion of viscoplasticity can be traced back to Bingham [15] in 1922, where exper-
imental and theoretical data were presented to study the complex behavior of some flowing
materials. This seminal work opened the door to a new branch of physics, called rheology,
to study the relationship between stress and strain rates in materials capable of flowing. The
Bingham model specifies a constitutive relation with a von Mises criterion based on a threshold
on the norm of the deviatoric part of the stress tensor, as introduced in this context by Oldroyd
in 1947 [112]. Such a relatively simple model turns out to be sufficient to reproduce relevant
behaviors in several practical situations. For recent reviews on yield stress fluids and their
applications, we refer the reader to the work of Balmforth et al. [8] and Coussot [53].

1.2.1 Mathematical model
The mathematical formulation of Bingham flow models rests on variational inequalities, and
their analysis has been developed by Mosolov & Miasnikov [106, 107, 108] for pipe flows and
more generally by Duvaut & Lions [66]; see also the book of Fuchs & Seregin [74] and the
references therein for the mathematical analysis and the book of Glowinski et al. [78] for the
numerical analysis of variational inequalities. The expected regularity of the solution is still an
open question, but it seems unreasonable to hope for a high regularity.

Let Ω ⊂ Rd, d ≥ 2, denote an open, bounded, connected subset of Rd with a Lipschitz
boundary. Given an external force field f : Ω → Rd and considering, for simplicity, homoge-
neous Dirichlet boundary conditions, the Bingham flow model consists of looking for the total
symmetric stress tensor field σtot : Ω→ Rd×ds and the velocity field u : Ω→ Rd such that

∇·σtot + f = 0 in Ω,
∇·u = 0 in Ω,
u = 0 on ∂Ω,

(1.28)

and the constitutive relation
σ = 2µ∇su+

√
2σ0

∇su

|∇su|`2
for |σ|`2 >

√
2σ0,

∇su = 0 for |σ|`2 ≤
√

2σ0,

(1.29)

where the deviatoric part σ of the total stress tensor σtot and the symmetric velocity gradient
∇su are defined as follows:

σ = σtot −
1
d

tr(σtot)Id, ∇su = 1
2(∇u+∇uT), (1.30)

9



Chp. 1. Introduction

and Id is the identity tensor of Rd×d. Moreover, µ > 0 and σ0 > 0 denote, respectively, the
shear viscosity and the shear yield stress, and the Frobenius norm of a tensor is defined as
follows:

|τ |`2 := (τ : τ )
1
2 =

 d∑
i,j=1

τ2
ij

 1
2

∀τ ∈ Rd×d. (1.31)

The region where |σ|`2 >
√

2σ0 is called the yielded zone and corresponds to liquid behavior,
whereas the region where |σ|`2 ≤

√
2σ0 is called the unyielded zone and corresponds to solid

behavior. The yield surface where |σ|`2 =
√

2σ0 separates the two regions. The yield surface
is not known a priori, and its prediction is an important aspect of viscoplastic flow simulation.

Remark 1.7 (Yield stress). In the literature, the yield stress is sometimes defined as σ̃0 :=√
2σ0, and in certain cases, the Frobenius norm is defined as (1

2τ : τ ) 1
2 . The present choice is

just one possibility for the definition of σ0.

As in the previous section, let L2(Ω) denote the space of square-integrable functions over
Ω and let us set L2(Ω) := L2(Ω;Rd). We also consider the space L2(Ω;Rd×ds ) composed of
square-integrable tensor-valued functions taking symmetric values. The inner product in all
spaces is denoted (·, ·)Ω and the associated norm ‖ · ‖Ω. Let H1(Ω) := H1(Ω;Rd), H 1

2 (∂Ω) :=
H

1
2 (∂Ω;Rd) and let γ∂Ω : H1(Ω)→H

1
2 (∂Ω) be the classical trace map acting componentwise.

Let us consider the following subspace where a zero-trace of the velocity on the boundary of
the domain is specified:

H1
0(Ω) := {v ∈H1(Ω) | γ∂Ω(v) = 0}, (1.32)

and the subspace of velocities with zero divergence

V 0(Ω) := {v ∈H1
0(Ω) | ∇ · v = 0}. (1.33)

Let us now introduce the dissipation potential H : Rd×ds → R such that

H(d) = µ|d|2`2 +
√

2σ0|d|`2 ∀d ∈ Rd×ds . (1.34)

The first term on the right-hand side of (1.34) evaluated with d = ∇su represents the viscous
dissipation potential and the second term the plastic dissipation potential. Note that due to
the latter term, the classical derivative of H is not well defined when d = 0, and we need to
consider a generalized concept of differentiation for convex functions, called the sub-differential
(see Figure 1.3)

∂H(d) =
{
τ ∈ Rd×ds | H(e)−H(d) ≥ τ : (e− d) ∀e ∈ Rd×ds

}
. (1.35)

Let us briefly prove that the constitutive relation (1.29) is equivalent to σ ∈ ∂H(∇su). The
identification of the sub-differential ∂H(d) can be decomposed in two cases: when d 6= 0, it
reduces to a single element which is computed using the usual derivative. Instead, when d = 0,
we use the definition (1.35) to infer that σ ∈ ∂H(0) if and only if

H(e)−H(0) = µ|e|2`2 +
√

2σ0|e|`2 ≥ σ : e ∀e ∈ Rd×ds . (1.36)

Applying the Cauchy-Schwarz inequality, we can see that a sufficient condition for σ ∈ ∂H(0)
is |σ|`2 ≤

√
2σ0. This is also a necessary condition. Indeed, let us take e = cσ/|σ|`2 , with

c > 0 an arbitrary constant in (1.36), then we obtain µc +
√

2σ0 ≥ |σ|`2 , and the expected
result follows by letting c→ 0+. Hence, it follows that for all d ∈ Rd×ds ,

∂H(d) =


{

2µd+
√

2σ0
d

|d|`2

}
for d 6= 0,{

τ | |τ |`2 ≤
√

2σ0

}
for d = 0.

(1.37)
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dd

H(d)H(d)

00

Figure 1.3: Schematic representation of the sub-differential for a functional with 0 6∈ ∂H(0)
(gray line) and a functional with 0 ∈ ∂H(0) (blue line). Arrows represent the elements in
∂H(0).

Let us now consider the weak formulation of (1.28)-(1.29) and let us assume that f ∈
L2(Ω). Since we have (tr(σtot)Id,∇sv)Ω = 0 for all v ∈ V 0(Ω) since ∇·v = 0, we infer that
(σtot,∇sv)Ω = (σ,∇sv)Ω for all v ∈ V 0(Ω). Hence, the weak formulation of (1.28)-(1.29) is:

Find u ∈ V 0(Ω) such that
(σ,∇sv)Ω = (f ,v)Ω ∀v ∈ V 0(Ω),
σ ∈ ∂H(∇su).

(1.38)

Remark 1.8 (Mixed formulation). We can also look for u ∈ H1
0(Ω), without the divergence

constraint embedded in the trial and test spaces. Let

L2
0(Ω) :=

{
q ∈ L2(Ω) |

∫
Ω
q = 0

}
be the space composed of square-integrable functions with zero mean in the domain. Owing to
de Rham’s Theorem, the first equation in (1.38) holds true if and only if there exists p ∈ L2

0(Ω)
such that (σ,∇sv)Ω − (p,∇·v)Ω = (f ,v)Ω for all v ∈ H1

0(Ω). Therefore, (1.38) is equivalent
to: Find (u, p) ∈H1

0(Ω)× L2
0(Ω) such that

(σ,∇sv)Ω − (p,∇·v)Ω = (f ,v)Ω ∀v ∈H1
0(Ω),

(q,∇·u)Ω = 0 ∀q ∈ L2
0(Ω),

(1.39)

together with σ ∈ ∂H(∇su). The total stress tensor is then given by σtot = σ − pId, i.e.,
we have p = −1

dtr(σtot). The system (1.39) is called the mixed formulation, whereas the first
equation in (1.38) is called the primal formulation.

It is well-known that the velocity field solving (1.28)-(1.29) is the unique minimizer in
V 0(Ω) of the following energy functional:

u = arg min
v∈V 0(Ω)

{
(H(∇sv), 1)Ω − (f ,v)Ω

}
. (1.40)

The existence and uniqueness of the velocity field satisfying (1.40) relies on standard results of
convex analysis, see the book of Glowinski [76, Chapter 1, Theorem 4.1 and Lemma 4.1]. Note
however that the stress tensor σ is not uniquely defined in the solid region where ∇su = 0.
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Proposition 1.9 (Variational inequality). The minimizer of (1.40) is the unique solution in
V 0(Ω) of the variational inequality

2µ(∇su,∇s(v − u))Ω + (hp(∇sv)− hp(∇su), 1)Ω ≥ (f ,v − u)Ω. ∀v ∈ V 0(Ω), (1.41)

with the plastic dissipation potential such that hp(d) =
√

2σ0|d|`2 for all d ∈ Rd×ds .

Proof. See the book of Glowinski [76].

1.2.2 Augmented Lagrangian algorithm
The numerical simulation of viscoplastic fluids is extremely challenging because of the lack of
smoothness in the constitutive relation between the stress and the strain rate tensors. Moreover,
the yield surface, which separates the solid region (or unyielded region) from the flowing region
(or yielded region), is not known a priori. In addition, the stress field is not unique in the solid
region.

The numerical methods used for viscoplastic flow simulations over the past three decades
can be classified into two groups. The first approach hinges on introducing a small artificial
parameter in the constitutive relation, thereby replacing solid zones by flowing zones with a
very high viscosity, as in the work by Bercovier & Engelman [14] or Papanastasiou [114]. The
advantage is that the regularized equations become differentiable and are suitable for Newto-
nian fluid solvers. Nonetheless, this benefit comes at the expense of difficulties in accurately
capturing the yield surface. The second approach is based on introducing an augmented La-
grangian and using a steepest descent method of Uzawa-type to solve the problem. Augmented
Lagrangian methods have been introduced by Hestenes [89] and by Powell [115] for nonlinear
constrained minimization problems and have been successfully used in the context of Bing-
ham flow models and nonlinear mechanics by Fortin & Glowinski [72], and by Glowinski &
Le Tallec [77]. The work by Saramito & Roquet [118, 117] demonstrated the effectivity of the
approach, combined with adaptive finite element techniques, to accurately capture the yield
surface in various settings, see also the works by Wang [128] and more recently Zhang [132].
Despite the need for introducing two additional tensor fields (a proxy for the strain rate tensor
and the corresponding tensor-valued Lagrange multiplier), Augmented Lagrangian methods
have progressively emerged over the last decade as the method of choice to simulate viscoplas-
tic flows. For a recent review, we refer the reader to the paper of Saramito & Wachs [119]. We
also mention the recent interior-point methods combined with second-order cone programming
considered by Bleyer et al. [16, 17].

The minimization problem (1.40) can be tackled by decomposition-coordination methods
so as to decouple the nonlinearity from the velocity field. To this purpose, an auxiliary field
γ ∈ L2(Ω;Rd×ds ) is introduced and the equality γ = ∇su is enforced by means of the Lagrange
multiplier σ ∈ L2(Ω;Rd×ds ) (which turns out to be indeed the deviatoric stress tensor) together
with a least-squares penalty term. Let us set

X(Ω) := V 0(Ω)× L2(Ω;Rd×ds )× L2(Ω;Rd×ds ). (1.42)

The augmented Lagrangian is defined as L : X(Ω)→ R such that

L(u,γ,σ) := (H(γ), 1)Ω + (σ,∇su− γ)Ω + α‖∇su− γ‖2Ω − (f ,u)Ω, (1.43)

where α > 0 is the augmentation parameter. The triplet (u,γ,σ) ∈ X(Ω) is a saddle-point of
the Lagrangian L, that is to say

L(u,γ, τ ) ≤ L(u,γ,σ) ≤ L(v, δ,σ) ∀(v, δ, τ ) ∈ X(Ω), (1.44)

if and only if γ = ∇su and the pair (u,σ) solves (1.38).
In this thesis, we will resort to the Alternating Direction Method of Multipliers (ADMM),

originally introduced by Glowinski & Marrocco [79] and Gabay & Mercier [75], to solve the
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discrete variational inequalities of viscoplasticity. The convergence rate to be expected with the
ADMM is of the order of O(1/n), where n is the iteration number, see He & Yuan [87]. Recent
advances leading to faster convergence rates include the accelerated ADMM from Treskatis et
al. [125] and the ADMM with variable step sizes from Bartels & Milicevic [9]. For a review
on the ADMM and other steepest-descent methods for Augmented Lagrangian methods, we
refer the reader to the book of Glowinski [76]. The so-called ALG2 method from Fortin &
Glowinski [72] and Glowinski & Le Tallec [77] is an Uzawa-type iterative method that, at each
step, minimizes first the augmented Lagrangian L jointly with respect to the pair (u,γ) and
then updates the Lagrange multiplier σ. The idea in the ADMM is that the joint minimization
is replaced by a successive minimization with respect to γ and then to u. This method is
presented in Algorithm 2.

Algorithm 2 Bingham vector flows: ADMM in continuous form
1: Choose u0 ∈ V 0(Ω) and σ0 ∈ L2(Ω;Rd×ds )
2: Choose ε > 0, set R0 =∞ and n = 0
3: while Rn > ε do
4: Step 1: Given (un,σn) ∈ V 0(Ω)×L2(Ω;Rd×ds ), define γn+1 ∈ L2(Ω;Rd×ds ) such that:

γn+1 :=


1

2(α+ µ)
(
|θn|`2 −

√
2σ0

) θn

|θn|`2
if |θn|`2 >

√
2σ0,

0 if |θn|`2 ≤
√

2σ0.

(1.45)

where θn := σn + 2α∇su
n.

5: Step 2: Seek un+1 ∈ V 0(Ω) solving

2α(∇sun+1,∇sv)Ω = (f ,v)Ω − (σn − 2αγn+1,∇sv)Ω ∀v ∈ V 0(Ω). (1.46)

6: Step 3: Update the Lagrange multiplier σn+1 ∈ L2(Ω;Rd×ds ):

σn+1 := σn + 2α(∇su
n+1 − γn+1). (1.47)

7: Evaluate the residual:

Rn+1 :=
(
‖σn+1 − σn‖2Ω + α2‖∇s(un+1 − un)‖2Ω

) 1
2 . (1.48)

8: n = n+ 1
9: end while

Remark 1.10 (Variants for decomposition-coordination). It is possible to consider other de-
compositions for the nonlinear convex minimization problem (1.28)-(1.29), e.g., one where the
auxiliary variable is only used for the plastic dissipation potential. It is observed by Dean et
al. [55] that both formulations lead to fairly comparable computational costs. Therefore, we
only consider in what follows the method where the auxiliary variable is used for the whole
dissipation potential.

Remark 1.11 (Critical point). It is readily verified that Step 1 of Algorithm 2 amounts to

∂γL(un,γn+1,σn) = 0,

that Step 2 amounts to
∂uL(un+1,γn+1,σn) = 0,

and that Step 3 amounts to

(σn+1 − σn, τ )Ω = 2α∂σL(un+1,γn+1,σn+1)[τ ] ∀τ ∈ L2(Ω,Rd×ds ).

Thus, if the ADMM convergences, it reaches a critical point of the Lagrangian.
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Remark 1.12 (Mixed formulation). Note that, alternatively, in Step 2 of Algorithm 2, we
can solve the following mixed formulation: Find (un+1, pn+1) ∈ H1

0(Ω)× L2
0(Ω) s.t. ∀(v, q) ∈

H1
0(Ω)× L2

0(Ω):

2α(∇sun+1,∇sv)Ω − (pn+1,∇·v)Ω = (f ,v)Ω − (σn − 2αγn+1,∇sv)Ω,

(q,∇·un+1)Ω = 0.

Proposition 1.13 (Identification of the limit). The ADMM from Algorithm 2 converges and
at convergence reaches a saddle-point of the Lagrangian L.

Proof. For the convergence proof, see the work by Fortin & Glowinski [72]. Let the triplet
(u,γ,σ) be the limit. One possibility to prove that (u,γ,σ) is a saddle-point of the Lagrangian
L is to observe that it is a critical point and invoke convexity arguments, as observed in Remark
1.11. One can also proceed directly as follows. Step 3 implies that the constraint γ = ∇su
introduced by the augmented Lagrangian method is accomplished, so that we replace γ by
∇su. Next, it suffices to cancel out in (1.46) the terms having the augmentation parameter α
to recover the momentum conservation equation

(σ,∇sv)Ω = (f ,v)Ω ∀v ∈ V 0(Ω).

Finally, in Step 1, the constitutive equation is recovered as follows: a) Replace γ = ∇su to
obtain

∇su :=


1

2(α+ µ)

(
1−
√

2σ0
|θ|`2

)
θ if |θ|`2 >

√
2σ0,

0 if |θ|`2 ≤
√

2σ0.

b) Apply |·|`2 and rearrange terms to find |θ|`2 = 2(α+ µ)|∇su|`2 +
√

2σ0.
c) If |θ|`2 >

√
2σ0, use the proportionality between ∇su and θ to obtain

θ = ∇su

|∇su|`2
|θ|`2 = 2(α+ µ)∇su+

√
2σ0∇su

|∇su|`2
.

d) Finally, use that θ = σ + 2α∇su, cancel out terms and rearrange terms. If |θ|`2 ≥
√

2σ0,
∇su = 0, so that we have |σ|`2 ≤

√
2σ0.

1.3 Introduction to Hybrid High-Order (HHO) methods
In this section, we briefly present the Hybrid High-Order (HHO) methods introduced for linear
elasticity by Di Pietro & Ern [59] and for linear diffusion problems by Di Pietro et al. [60]. HHO
methods have been extended to other linear PDEs, such as advection-diffusion by Di Pietro et
al. [57] and Stokes by Di Pietro et al. [61], and to nonlinear PDEs, such as Leray–Lions by Di
Pietro & Droniou [56], steady incompressible Navier–Stokes by Di Pietro & Krell [63], nonlinear
elasticity by Botti et al. [20], elastoplasticity with small deformations by Abbas et al. [2], and
hyperelasticity with finite deformations by Abbas et al. [1]. HHO methods are formulated in
terms of face unknowns which are polynomials of arbitrary order k ≥ 0 on each mesh face and
in terms of cell unknowns which are polynomials of order l ≥ 0, with l ∈ {k, k ± 1} ∩ N, in
each mesh cell. The cell unknowns can be eliminated locally by static condensation leading to
a global transmission problem posed solely in terms of the face unknowns. HHO methods offer
various assets:

• They support polyhedral meshes;

• They lead to a local conservation principle in each mesh cell;

• Their construction is independent of the space dimension;
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• They offer robustness in various regimes (dominant advection, incompressible elasticity
and flows);

• They offer attractive computational costs owing to the compactness of the face-based
stencil (compared to FE methods) and to the fact that the number of local degrees of
freedom scales to kd−1 (as opposed to kd for discontinuous Galerkin methods).

Lowest-order HHO methods are closely related to the Hybrid Finite Volume method by Eymard
et al. [69], the Compatible Discrete Operator framework by Bonelle & Ern [19], and the Mimetic
Finite Difference methods by Kuznetsov et al. [98], Brezzi et al [22], see also the unifying
viewpoint devised by Droniou et al. [64]. HHO methods have been bridged by Cockburn et
al. [51] to the Hybridizable Discontinuous Galerkin (HDG) methods devised by Cockburn et
al. [52] and to the nonconforming Virtual Element (ncVEM) methods devised by Ayuso de
Dios et al. [7].

The goal of this section is to outline the main principles for devising a HHO discretization.
For the sake of simplicity, we consider a diffusion model with homogeneous Dirichlet boundary
conditions:

−∆u = f in Ω,
u = 0 on ∂Ω,

(1.49)

where u ∈ H1
0 (Ω) = {v ∈ H1(Ω) | γ∂Ω(v) = 0}, γ∂Ω : H1(Ω) → H

1
2 (∂Ω) is the classical

trace map, f ∈ L2(Ω) is the forcing term, and Ω is for simplicity a polygon/polyhedron in Rd,
d ∈ {2, 3}. The weak formulation of the model problem (1.49) is as follows:{

Find u ∈ H1
0 (Ω) such that

a(u,w) = `(w), ∀w ∈ H1
0 (Ω),

(1.50)

with the bilinear and linear forms

a(v, w) = (∇v,∇w)Ω, `(w) = (f, w)Ω. (1.51)

1.3.1 Discrete setting
Let (Th)h>0 be a mesh sequence where for all h > 0 the mesh Th is composed of nonempty
disjoint cells such that Ω = ⋃

T∈Th
T . The mesh cells are conventionally open subsets in Rd

which can have a polygonal/polyhedral shape with straight edges (if d = 2) and planar faces
(if d = 3). The mesh sequence (Th)h>0 is assumed to be shape-regular (in the sense of Di
Pietro & Ern [59]). In a nutshell, each mesh Th admits a matching simplicial submesh =h
having locally equivalent length scales, and the mesh sequence (=h)h>0 is shape-regular in the
sense of Ciarlet [49]. Examples of polygonal meshes supported by HHO methods are shown in
Figure 1.4. The mesh-size is denoted h = maxT∈Th

hT , with hT the diameter of the cell T . A
closed subset F of Ω is called a mesh face if it is a subset with nonempty relative interior of
some affine hyperplane HF and if (i) either there are two distinct mesh cells T1(F ), T2(F ) ∈ Th
so that F = ∂T1(F ) ∩ ∂T2(F ) ∩HF (and F is called an interface) (ii) or there is one mesh cell
T (F ) ∈ Th so that F = ∂T (F ) ∩ Γ ∩ HF (and F is called a boundary face). The mesh faces
are collected in the set Fh which is further partitioned into the subset of interfaces F ih and the
subset of boundary faces Fbh. For all T ∈ Th, F∂T is the collection of the mesh faces that are
subsets of ∂T and nT is the unit outward normal to T . Let S be a mesh cell or a mesh face,
then (·, ·)S denotes the L2(S)-inner product and ‖ · ‖S the corresponding norm.

Let a polynomial degree k ≥ 0 be fixed. For all T ∈ Th, the local space of degrees of freedom
is defined as

ÛkT := Pk(T ;R)× Pk(F∂T ;R), (1.52)

where Pk(T ;R) is the space of d−variate polynomials of total degree ≤ k on T , whereas
Pk(F∂T ;R) is the space of piecewise (d − 1)−variate polynomials of total degree ≤ k on the
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Figure 1.4: Examples of polygonal meshes: triangular, nonmatching (with local refinement
producing hanging nodes) and hexagonal-dominant meshes.

Figure 1.5: Schematical representation of the face (green) and cell (blue) degrees of freedom
in a pentagonal mesh cell for k = 0, 1, 2. Note that the degrees of freedom are polynomial
coefficients and do not have any "physical" positioning in the actual element.

faces of T , see Figure 1.5. Following (1.52), a generic element v̂T ∈ ÛkT is a pair v̂T = (vT , v∂T )
with vT ∈ Pk(T ;R) and v∂T ∈ Pk(F∂T ;R).

Remark 1.14 (Cell unknowns). HHO methods allow for some variations in the degree ` of the
polynomial associated with the cells, since we can take ` ∈ {k − 1, k, k + 1} ∩ N, see Cockburn
et al. [51] for more details.

1.3.2 Local reconstruction and stabilization operators
We define a local reconstruction operator Rk+1

T : ÛkT → Pk+1(T ;R) such that, for all v̂T =
(vT , v∂T ) ∈ ÛkT , Rk+1

T (v̂T ) ∈ Pk+1(T ;R) solves the following equation:

(∇Rk+1
T (v̂T ),∇w)T = (∇vT ,∇w)T + (v∂T − vT ,nT ·∇w)∂T ∀w ∈ Pk+1(T ;R), (1.53)

together with the condition (Rk+1
T (v̂T ), 1)T = (vT , 1)T . This corresponds to solving a local

and well-posed Neumann problem, see Figure 1.6 for a schematic representation with constant
polynomials on the faces and in the cell. The local reconstruction operator defined in (1.53)
is not stable in the sense that ∇Rk+1

T (v̂T ) = 0 does not imply that vT = v∂T = cte. In fact,
we introduce an additional local stabilization operator Sk∂T : ÛkT → Pk(F∂T ;R) to penalize the
difference between v∂T and vT |∂T in a least-squares sense. The operator Sk∂T is defined such
that, for all v̂T = (vT , v∂T ) ∈ ÛkT , we have

Sk∂T (v̂T ) := πk∂T
(
v∂T −Rk+1

T (v̂T )|∂T
)− πkT (vT −Rk+1

T (v̂T )
)
|∂T , (1.54)

where πkT and πk∂T denote the L2-orthogonal projectors onto Pk(T ;R) and Pk(F∂T ;R), respec-
tively.

We use the two above operators to formulate the local bilinear form âT on ÛkT × ÛkT , that
mimics locally the exact local bilinear form (∇v,∇w)T from (1.51):

âT (v̂T , ŵT ) := (∇Rk+1
T (v̂T ),∇Rk+1

T (ŵT ))T + (η∂TSk∂T (v̂T ), Sk∂T (ŵT ))∂T , (1.55)
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T

vF4 vF2

vF1

vF3 Reconstruction

T

Rk+1
T (v̂T )

Figure 1.6: Schematic representation of the local reconstrunction from v̂T in a quadrangular
mesh cell (a triangle with a hanging node depicted in black) for constant polynomials.

where η∂T is the piecewise constant function on ∂T such that η∂T |F = h−1
F for all F ∈ F∂T . Let

us briefly outline the stability and boundedness properties associated with the bilinear form
âT . We equip the discrete space ÛkT with the following H1-like seminorm:

|v̂T |2Ûk
T

:= ‖∇vT ‖2T + ‖η
1
2
∂T (v∂T − vT )‖2∂T ∀v̂T = (vT , v∂T ) ∈ ÛkT . (1.56)

Lemma 1.15 (Stability and boundedness). There is a real number ρ > 0, independent of h,
such that, for all T ∈ Th and all v̂T ∈ ÛkT ,

ρ−1|v̂T |2Ûk
T

≤ ||∇Rk+1
T (v̂T )||2T + ‖η

1
2
∂TS∂T (v̂T )‖2∂T ≤ ρ|v̂T |2Ûk

T

. (1.57)

The parameter ρ only depends on the mesh regularity and the polynomial degree.

Proof. See the proof by Di Pietro et al. [60, Lemma 4].

The first inequality in (1.57) implies the coercivity of the bilinear form âT on ÛkT , up to
constant arguments. In particular, âT (v̂T , v̂T ) = 0 implies that both functions vT and v∂T are
constant functions taking the same value.

The design of the two operators Rk+1
T and Sk∂T is also motivated by the polynomial invari-

ance in Pk+1(T ;R) stated in the next lemma.

Lemma 1.16 (Polynomial invariance). Let ÎkT : H1(T ) → ÛkT be the local reduction operator
such that ÎkT (v) = (πkT (v), πk∂T (v|∂T )) ∈ ÛkT , for all v ∈ H1(T ) and all T ∈ Th. Then we have

Rk+1
T (ÎkT (v)) = Ek+1

T (v) ∀v ∈ H1(T ), (1.58)

where Ek+1
T : H1(T ) → Pk+1(T ;R) is the standard local elliptic projector such that, for all

v ∈ H1(T ),

(∇Ek+1
T (v)− v,∇w)T = 0, ∀w ∈ Pk+1(T ;R), (Ek+1

T (v)− v, 1)T = 0. (1.59)

The second important result on polynomial invariance is

Sk∂T (ÎkT (p)) = 0 ∀p ∈ Pk+1(T ;R). (1.60)

Proof. See the proof by Di Pietro et al. [60]. Let us briefly prove (1.58). Let v ∈ H1(T ). Let
us use the definition of the local reconstruction and reduction operators to infer that, for all
w ∈ Pk+1(T ;R),

(∇Rk+1
T (ÎkT (v)),∇w)T = −(πkT (v),∇·(∇w))T + (πk∂T (v),nT ·∇w)∂T

= −(v,∇·(∇w))T + (v,nT ·∇w)∂T
= (∇v,∇w)T ,

where we integrated by parts and used that ∇·(∇w) ∈ Pk−1(T ;R) ⊂ Pk(T ;R) as well as
nT ·∇w ∈ Pk(F∂T ;R). Since (Rk+1

T (ÎkT (v)), 1)T = (πkT (v), 1)T = (v, 1)T = (Ek+1
T (v), 1)T , we

conclude the proof of (1.58).
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Figure 1.7: Example of global patching of the face unknowns (blue) with a nonmatching mesh
(a hanging node is depicted in black).

Remark 1.17 (Link with HDG). The HDG-like stabilization operator is Sk∂T (v̂T ); = πk∂T (vT −
v∂T ), instead of (1.54). However, this operator does not lead to (1.60) on Pk+1(T ;R), but only
on Pk(T ;R). However, this operator leads to optimmal convergence whenever the cell unknowns
are of degree ` = k + 1, as shown in the HDG setting by Lehrenfeld & Schöberl [102] and by
Oikawa [111].

1.3.3 HHO discretization of a model elliptic problem

The global discrete space is obtained by assembling the local spaces ÛkT and forcing the interface
DOFs to be single-valued (see Figure 1.7):

Ûkh := UkTh
× UkFh

, (1.61)

where

UkTh
:=

{
vTh
∈ L2(Th) | vTh|T ∈ Pk(T ;R), ∀T ∈ Th

}
, (1.62)

UkFh
:=

{
vFh
∈ L2(Fh) | vFh|F ∈ Pk(F∂T ;R), ∀F ∈ Fh

}
. (1.63)

We enforce strongly the homogeneous Dirichlet boundary conditions by considering the sub-
space Ûkh,0 := UkTh

× UkFh,0, with

UkFh,0 =
{
vFh
∈ UkFh

| vF = 0 ∀F ∈ Fbh
}
. (1.64)

The HHO discretization of the elliptic model problem (1.50) is as follows:{
Find ûh ∈ Ûkh,0 such that
ah(ûh, v̂h) = ˆ̀

h(v̂h) ∀v̂h ∈ Ûkh,0,
(1.65)

where âh is the global version of the local bilinear form âT . The bilinear form âh and the source
term contribution ˆ̀

h are simply built by elementwise assembly as follows:

ah(ŵh, v̂h) =
∑
T∈Th

âT (ŵT , v̂T ) on Ûkh,0 × Ûkh,0,

ˆ̀
h(vh) =

∑
T∈Th

(f, vT )T on Ûkh,0,
(1.66)

Here, for a generic element v̂h ∈ Ûkh,0, and a mesh cell T ∈ Th, we denote v̂T = (vT , v∂T ) ∈ ÛkT
the local component of v̂h associated with T . Let us now address the error estimate. Recall
the notation a . b defined above Theorem 1.2.
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Theorem 1.18 (Energy error-estimate). Let k ≥ 0. Let u ∈ H1
0 (Ω) be the solution to the

model problem (1.49) and assume the additional regularity u ∈ Hk+2(Ω). Let ûh ∈ Ûkh,0 be the
unique solution to the discrete problem (1.65). Then, the following energy-norm error estimate
holds true:

‖Îkh(u)− ûh‖Ûk
h,0

. hk+1|u|Hk+2(Ω). (1.67)

with the global reduction map Îkh : H1
0 (Ω) → Ûkh,0 such that Îkh(u)|T = ÎkT (u) ∈ ÛkT , for all

T ∈ Th, and the global norm on Ûkh,0 such that

‖v̂h‖2Ûk
h,0

=
∑
T∈Th

|v̂T |2Ûk
T

, (1.68)

with the local seminorm | · |Ûk
T
defined in (1.56).

Proof. See the proof by Di Pietro et al. [60].

We say that elliptic regularity holds true if for all g ∈ L2(Ω), the unique solution z ∈ H1
0 (Ω)

of (∇z,∇v)Ω = (g, v)Ω for all v ∈ H1
0 (Ω), satisfies ‖z‖H2(Ω) . ‖g‖L2(Ω).

Theorem 1.19 (L2-error estimate). Let the assumptions of Theorem 1.28 and elliptic regu-
larity hold true. Then the following holds true: For all k ≥ 1,

∑
T∈Th

‖πkT (u)− uT ‖2T

 1
2

. hk+2|u|Hk+2(Ω), (1.69)

and for k = 0, assuming that f ∈ H1(Ω),
∑
T∈Th

‖π0
T (u)− uT ‖2T

 1
2

. h2‖f‖H1(Ω). (1.70)

Proof. See the proof by Di Pietro et al. [60].

1.4 Outline of the thesis
This thesis is composed of 4 chapters. Chapters 2 to 4, summarized below, are presented in a
fashion to allow for an independent reading. Finally, conclusions are drawn in Chapter 5.

Chapter 2) Nitsche’s method for diffusion and Signorini problems In this chapter,
we present two primal methods to weakly discretize (linear) Dirichlet and (nonlinear) Signorini
boundary conditions in elliptic model problems. Both methods support polyhedral meshes
with nonmatching interfaces and are based on a combination of the Hybrid High-Order (HHO)
method and Nitsche’s method. We extend the ideas of Chouly & Hild [41] for conforming finite
elements to hybrid discretization methods and we derive optimal H1-error estimates of order
hk+1, if face polynomials of order k ≥ 0 are used together with cell polynomials of order (k+1)
(recall that the cell unknowns are eliminated locally by static condensation). As a preliminary
step in our analysis, we estimate the HHO error in the case of linear Dirichlet boundary
conditions that are weakly enforced by means of Nitsche’s method. This is also a novel result in
the analysis of HHO methods. The main difficulties associated with the mathematical analysis
are i) the non-conformity of the HHO approximation, (ii) the bound on the consistency error,
and (iii) the appropriate design of Nitsche’s contact terms from face/cell unknowns in order
to preserve optimal convergence properties. Since HHO methods involve both cell unknowns
and face unknowns, this leads to different formulations of Nitsche’s consistency and penalty
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Figure 1.8: Signorini’s exact solution for our numerical results from Chapter 2. The magenta
dots represent the values of the numerical solution at the faces and cells barycenters of an
hexagonal mesh (depicted in black). The contact boundary corresponds to the side {y = 0}.

terms, either using the trace of the cell unknowns (cell-based trace version) or using directly
the face unknowns (face-based trace version). The face-based trace version uses equal order
polynomials for cell and face unknowns, whereas the cell-based trace version uses cell unknowns
of one order higher than face unknowns. The latter choice turns out to be the only one leading
to theoretical optimal error estimates for Signorini’s problem. For Dirichlet conditions, optimal
error estimates are established for both versions. The key idea in the analysis, which is inspired
from Burman & Ern [24] is to devise a local reconstruction operator without Dirichlet/contact
faces contribution. Numerical results are presented for a test case with analytical solution to
verify the theoretical predictions. The exact solution is depicted in Figure 2.6. Finally, although
we do not exploit here the capability of hybrid discretization methods to support polyhedral
meshes, we observe that the idea of using polyhedral meshes for contact problems has been
advocated for instance by Wriggers et al. [131], where the authors use a Virtual Element method
combined with either Lagrange multipliers or penalized formulations for contact problems. The
work developed in this chapter has been submitted as the paper [36].

Chapter 3) Lowest-order adaptive method for antiplanar Bingham flows In Bing-
ham pipe flow simulations (i.e., the antiplanar configuration where the velocity field is unidi-
rectional), the velocity field is usually discretized using conforming Lagrange finite elements,
see for instance the work by Saramito & Roquet [118, 117]. In contrast, we devise a hybrid
lowest-order method for Bingham pipe flows, where the velocity is discretized by means of one
unknown per mesh face and one unknown per mesh cell. The cell unknowns can be eliminated
locally by static condensation. We consider the augmented Lagrangian method recalled in
Section 1.2.2 to solve iteratively the variational inequalities resulting from the discrete Bing-
ham problem. We use piecewise constant vector-valued fields for the auxiliary variable and the
associated Lagrange multiplier. The advantage of considering hybrid discretization methods is
twofold. First, these methods lead to local conservation properties at the cell level, whereas this
conservation property is somewhat less local using nodal-based finite elements (typically, one
needs to consider cell patches around mesh vertices, see, e.g., the work by Ern & Vohralík [67]).
Second, and more importantly in the present context, hybrid discretization methods support
polygonal/polyhedral meshes including cells with hanging nodes. The use of such meshes is ex-
ploited here when performing local mesh adaptation, including local refinement near the yield
surface and possibly agglomeration-based coarsening in unyielded regions. For earlier works
on agglomeration-based coarsening, we refer, e.g., to the work by Bassi et al. [11, 10] and
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1.4. Outline of the thesis

Figure 1.9: Discrete velocity and adapted mesh for the circular cross-section test case from
Chapter 3.

Figure 1.10: Uniform (left) and 5th adaptive mesh (right) for the circular cross-section test
case from Chapter 3: the Bingham numbers are Bi = 0.3 (top) and Bi = 0.9 (bottom).

the references therein. We present numerical results in pipes with a circular cross-section, see
Figures 1.9 and 1.10, and with an eccentric annulus cross-section, see Figure 1.11, for different
Bingham numbers. The work developed in this chapter has been pusblished in the paper [35].

Chapter 4) Extension to Bingham vector flows In the general case of Bingham vec-
tor flows with an incompressibility constraint on the velocity field, one usually employs either
inf-sup stable mixed finite elements as in the work of Saramito & Roquet [117] or stabilized
equal-order finite element pairs as in the work of Latché & Vola [100]. The novelty in this
chapter is that we devise a hybrid discetization method for Bingham vector flows, where the
velocity is discretized by means of cell and face unknowns, which are polynomials of degree
k ≥ 0. We consider the lowest-order method with k = 0, where the face unknowns are con-
stant polynomials but the cell unknowns are linear polynomials (so as to control the rigid-body
motions). We also consider a higher-order method with k = 1, where the face and the cell un-
knowns are both linear polynomials. One difficulty with the higher-order method is the need
to introduce quadrature rules in the formulation, mainly for the tensor variables. Another
novelty is that we now need to account for the divergence-free constraint on the velocity, which
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Figure 1.11: Initial (left) and 6th adaptive (right) meshes for the eccentric annulus cross-section
test case from Chapter 3: discrete velocity (top) and stress colormap in the vicinity of the yield
stress (bottom).

Figure 1.12: Velocity magnitude for the vane-in cup geometry test case from Chapter 4.

we do by introducing a discrete pressure. We consider the augmented Lagrangian method from
Section 1.2.2 to solve the variational inequalities resulting from the discrete Bingham vector
problem. The resulting linear Stokes-like system in the ADMM is solved, after static condensa-
tion, with discrete face-based velocities and cell-wise constant pressures. Additional variables
as the auxiliary variable and the associated stress are discretized only with cell unknowns.
Numerical results are presented for two test cases. The first one considers a confined flow in
the well-known lid-driven cavity problem. Various results in this test case are available in the
literature. The second test case is a confined flow in, this time in a Couette geometry with a
vane tool. We are interested in this problem since there exist relatively recent experimental
results challenging the assumption of a cylindrical thin layer of the material flowing around
the vane tool at low velocity, see the work by Ovarlez et al. [113] for a further discussion on
this topic. From our numerical simulations, we observe close agreement with the results from
the above reference. The work developed in this chapter is intended under preparation for the
paper [34].
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Nitsche’s method for Dirichlet
conditions and Signorini contact
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In this chapter, we devise optimally convergent Hybrid High-Order (HHO) methods com-
bined with Nitsche’s method to impose boundary conditions in a natural fashion by means of
a boundary penalty technique. We apply these methods to the Poisson model problem with
linear Dirichlet boundary conditions and also to the nonlinear contact boundary conditions of
Signorini’s problem. Using Nitsche’s technique, the contact conditions are treated in a weak
sense without introducing Lagrange multipliers.

Before considering contact, and to exemplify the main ideas in the devising and analysis
of Nitsche-HHO, we first deal with the linear case of Dirichlet boundary conditions. For both
Dirichlet and Signorini conditions, the formulation of Nitsche’s terms in combination with
HHO methods leads to different schemes according to the choice of the unknown to be used
in the writing of the boundary terms, namely: (i) the face unknown, for which we design an
equal-order method, where the face and cell unknowns are of the same order; (ii) the trace
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of the cell unknown, for which we need a mixed-order method, where the cell unknowns are
of one order higher than the face unknowns. In what follows, we refer to these variants as
the face-based and the cell-based trace versions of Nitsche-HHO, respectively. The devising
of the cell version elaborates on the idea of modifying the local reconstruction operator, as
proposed in [25] in the different context of geometrically unfitted methods.The difference with
the usual HHO reconstruction operator is to drop the contribution of those boundary faces
located on the part of the boundary treated by Nitsche’s method. A third variant is to employ
the trace of the reconstruction, but it will not be considered since it does not appear to bring
further advantages. Our main results are on the one hand Theorem 2.12 and Theorem 2.17
which establish the optimal convergence of Nitsche-HHO for Dirichlet conditions, using face and
cell versions, respectively, and on the other hand Theorem 2.21 which establishes the optimal
convergence of the cell version of Nitsche-HHO for Signorini conditions. As for Nitsche-FEM,
our proofs are valid in two and three dimensions and any polynomial degree k ≥ 0, and do not
require any extra assumption apart from suitable Sobolev regularity of the exact solution. To
our knowledge, this is the first optimal error estimate of such generality for Signorini conditions
using polyhedral methods. The face version can also be extended to Signorini conditions and
indeed delivers optimally convergent results according to our simulations.

This chapter is organized as follows. We briefly recall the model problems in Section 2.1
as well as their conforming Nitsche-FEM discretization. We introduce the discrete setting in
Section 2.2, and we also recall some useful analysis tools. Then, we present the Nitsche-HHO
methods for Dirichlet conditions in Section 2.3 and in Section 2.4, where we use the face-based
trace version and the cell-based trace version, respectively. In Section 2.5, we extend the cell-
based trace discretization of Nitsche-HHO to Signorini conditions. For each section, we present
numerical results of test cases with analytical solutions.

2.1 Model problems
The goal of this section is to briefly present the two model problems to be discretized by means
of the Nitsche-HHO method. Let Ω be a polygon/polyhedron in Rd, d ∈ {2, 3}, with boundary
∂Ω and unit outward normal vector n. The scalar product in the Lebesgue space L2(Ω) is
denoted by (·, ·)Ω. We denote by Hs(Ω), s > 0, the Sobolev spaces with scalar product (resp.
norm) denoted by (·, ·)s,Ω (resp. ‖ · ‖s,Ω). Let f : Ω → R be a source term; we assume that
f ∈ L2(Ω). For a smooth enough function v ∈ Hs(Ω), s > 3

2 , we use in the entire chapter the
following notation:

σn(v) = n·∇v on ∂Ω. (2.1)

2.1.1 Dirichlet conditions

We consider a partition of the boundary ∂Ω into two mutually disjoint subsets:

∂Ω = ΓD ∪ ΓN , (2.2)

where the boundary condition is respectively a Dirichlet and a Neumann condition. We assume
that ΓD has nonempty relative interior. Let us consider Dirichlet data gD ∈ H

1
2 (∂Ω) restricted

to ΓD and Neumann data gN ∈ L2(ΓN ). The Poisson model problem with mixed Dirichlet–
Neumann conditions reads as follows:

∆u+ f = 0 in Ω,
u = gD on ΓD,

σn(u) = gN on ΓN .
(2.3)

It is well-known that this problem is well-posed.
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ΩΓD

ΓS

ΓD

ΓD

Figure 2.1: Boundary setting for Signorini’s unilateral contact problem. The contact boundary
is represented by a straight red line where contact is happening (u = 0, σn(u) ≤ 0) and by a
dashed red line otherwise (u < 0, σn(u) = 0).

The conforming Nitsche-FEM discretization of the model problem (2.3) is as follows:{
Find uh ∈ Vh such that
aγθ,h(uh, wh) = `γθ,h(wh) ∀wh ∈ Vh,

(2.4)

where Vh := {vh ∈ C0(Ω;R) | vh|T ∈ Pk(T ;R);∀T ∈ Th}, k ≥ 1 is the polynomial degree, Th
is a member of a shape-regular sequence of meshes of Ω, and the bilinear and linear forms are
defined as follows:

aγθ,h(vh, wh) = (∇vh,∇wh)Ω −
∫

ΓD

(σn(vh)wh + θvhσn(wh)) +
∫

ΓD

γvhwh, (2.5a)

`γθ,h(wh) = (f, wh)Ω −
∫

ΓD

gD (θσn(wh)− γwh) +
∫

ΓN

gNwh. (2.5b)

Here, the user-dependent parameters are the symmetry parameter θ ∈ {−1, 0, 1} and the
penalty parameter γ, that scales as γ = γ0 h

−1 with γ0 taken large enough to ensure coercivity
(the minimum value depends on a discrete trace inequality and therefore on the shape-regularity
of the mesh sequence and the polynomial degree k, see, e.g., [110, 123, 84]).

Remark 2.1. The Nitsche-based FEM (2.4) encompasses symmetric and nonsymmetric vari-
ants depending upon the parameter θ. The symmetric case of [110] is recovered when θ = 1.
For the skew-symmetric variant θ = −1, the well-posedness of the discrete formulation and the
optimal convergence are preserved irrespectively of the value of the penalty parameter γ, that
can even be taken as 0 (penalty-free Nitsche’s method, see, e.g., [18, 23]). In the context of
discontinuous Galerkin methods, such nonsymmetric variants are well-known as well (see, e.g.,
[58, Section 5.3.1]).

2.1.2 Signorini’s unilateral contact conditions

Let us now consider a partition of the boundary ∂Ω into three mutually disjoint subsets:

Ω = ΓD ∪ ΓN ∪ ΓS , (2.6)

where the boundary condition is respectively a Dirichlet, a Neumann, and Signorini’s unilateral
contact condition, see Figure 2.1. We assume that ΓD has nonempty relative interior, and for
simplicity, we consider a homogeneous Dirichlet boundary condition on ΓD. The model problem
reads as follows:
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Chp. 2. Nitsche’s method for Dirichlet conditions and Signorini contact

∆u+ f = 0 in Ω, (2.7a)
u = 0 on ΓD, (2.7b)

σn(u) = gN on ΓN , (2.7c)

and the unilateral contact boundary conditions on ΓS as follows:

u ≤ 0 on ΓS , (2.8a)
σn(u) ≤ 0 on ΓS , (2.8b)
uσn(u) = 0 on ΓS , (2.8c)

It is well-known that the model problem (2.7)-(2.8) is well-posed (see, e.g., [80]).
The key idea to devise the Nitsche-FEM discretization of (2.7)-(2.8) is to reformulate

Signorini conditions (2.8) as a single nonlinear equation on the normal flux σn(u). For any
real number x, let [x]R− := min(x, 0) denotes its projection onto the closed convex subset
R− = (−∞, 0]. Let us recall from Lemma 1.3 (see also [54] and [37, Prop. 2.4]) that Signorini’s
unilateral contact conditions (2.8) are equivalent to

σn(u) = [φγ(u)]R− , (2.9)

with the notation
φγ(v) := σn(v)− γv, (2.10)

for any smooth function v : Ω → R. This leads to the following conforming Nitsche-FEM
discretization of the model problem (2.7)-(2.8) (see [38]):{

Find uh ∈ Vh,D such that
aγθ,h(uh;wh) = `γθ,h(wh) ∀wh ∈ Vh,D,

(2.11)

where Vh,D := {vh ∈ Vh | vh|ΓD
= 0}, Vh being defined above, and the semilinear and linear

forms are defined as follows:

aγθ,h(vh;wh) = (∇vh,∇wh)Ω −
∫

ΓS

θ

γ
σn(vh)σn(wh) +

∫
ΓS

1
γ

[φγ(vh)]R− φθγ(wh), (2.12a)

`γθ,h(wh) = (f, wh)Ω +
∫

ΓN

gNwh, (2.12b)

with φθγ(v) := θσn(v)−γv (so that φ1γ = φγ). Note that aγθ,h is nonlinear in its first argument
owing to the weak enforcement of Signorini’s condition. The user-dependent parameters θ and
γ play the same role as in Section 2.1.1.

2.2 Discrete setting
In this section, we recall the basic notions concerning meshes and we restate some important
functional inequalities to be used in the stability and error analysis of the various Nitsche-HHO
methods.

2.2.1 Meshes
Let (Th)h>0 be a mesh sequence, where for all h > 0, the mesh Th is composed of nonempty
disjoint cells such that Ω = ⋃

T∈Th
T . The mesh cells are conventionally open subsets in Rd,

they can have a polygonal/polyhedral shape with straight edges (if d = 2) or planar faces (if
d = 3). The mesh sequence (Th)h>0 is assumed to be shape-regular in the sense of [59]. In
a nutshell, each mesh Th admits a matching simplicial submesh =h having locally equivalent
length scales to those of Th, and the mesh sequence (=h)h>0 is shape-regular in the usual sense
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of Ciarlet [49]. The meshsize is denoted h = maxT∈Th
hT , with hT the diameter of the cell T .

A closed subset F of Ω is called a mesh face if it is a subset with nonempty relative interior of
some affine hyperplane HF and if (i) either there are two distinct mesh cells T1(F ), T2(F ) ∈ Th
so that F = ∂T1(F ) ∩ ∂T2(F ) ∩HF (and F is called an interface) (ii) or there is one mesh cell
T (F ) ∈ Th so that F = ∂T (F ) ∩ Γ ∩ HF (and F is called a boundary face). The mesh faces
are collected in the set Fh which is further partitioned into the subset of interfaces F ih and the
subset of boundary faces Fbh. For all T ∈ Th, F∂T is the collection of the mesh faces that are
subsets of ∂T and nT is the unit outward normal to T .

We use the symbol C to denote a generic constant whose value can change at each occur-
rence as long as it is uniform with respect to the mesh size; the value, which can change at
each occurrence, depend on the mesh regularity and the underlying polynomial degree. We
abbreviate as a . b the inequality a ≤ Cb with positive real numbers a, b and a constant C > 0,
as above.

2.2.2 Analysis tools

Let us briefly state without proof four important technical results to be used in what follows:
a discrete trace inequality on polynomials, a multiplicative trace inequality on H1-functions,
the Poincaré inequality on H1-functions having zero mean-value and approximation properties
of the L2-orthogonal projection onto polynomials. The trace inequalities and the polynomial
approximation error estimates are classical on meshes generated from a reference cell, whereas
the Poincaré inequality is classical if the mesh cells are convex sets. On more general polyhedral
meshes, we refer the reader to [58] and [68] for the proofs of the trace inequalities and the
Poincaré inequality, respectively.

Lemma 2.2 (Discrete trace inequality). Let k ≥ 0 be the polynomial degree. The following
holds true:

‖vh‖∂T ≤ Cdth
− 1

2
T ‖vh‖T , (2.13)

for all T ∈ Th and all vh ∈ Pk(T ;R).

Lemma 2.3 (Multiplicative trace inequality). The following holds true:

‖v‖∂T ≤ Cmt
(
h
− 1

2
T ‖v‖T + h

1
2
T ‖∇v‖T

)
, (2.14)

for all T ∈ Th and all v ∈ H1(T ).

Lemma 2.4 (Poincaré inequality). The following holds true:

‖v‖T ≤ CPhT ‖∇v‖T , (2.15)

for all T ∈ Th and all v ∈ H1(T ) such that (v, 1)T = 0.

Lemma 2.5 (Polynomial approximation). Let k ≥ 0 be the polynomial degree. Let πk+1
T

denote the L2-orthogonal projection onto Pk+1(T ;R). Let s > 1
2 and set t := min(k+1, s). The

following holds true:

‖v − πk+1
T (v)‖T + h

1
2
T ‖v − πk+1

T (v)‖∂T + hT ‖∇(v − πk+1
T (v))‖T

+ h
3
2
T ‖∇(v − πk+1

T (v))‖∂T ≤ Capp h
1+t
T |v|H1+t(T ), (2.16)

for all T ∈ Th and all v ∈ H1+s(T ). The estimate (2.16) is optimal for t = s = k+1, in which
case the right-hand side scales as O(hk+2

T |v|Hk+2(T )).
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2.3 Dirichlet conditions with face-based traces
In this section, we devise and analyze the face-based trace version of the Nitsche-HHO method
to approximate Dirichlet boundary conditions. We consider the face-based trace version with
an equal order for the face and the cell unknowns. We assume that the meshes are compatible
with the boundary partition ∂Ω = ΓD∪ΓN from (2.2), which leads to the partition of boundary
faces as Fbh = Fb,Dh ∪ Fb,Nh (with obvious notation). We first present the local reconstruction
and stability operators which will be used for this method, then we define the corresponding
discrete Nitsche-HHO formulation and prove its well-posedness. Finally we prove its optimal
convergence.

2.3.1 Local reconstruction and stability operators
Let k ≥ 0 be the polynomial degree. For all T ∈ Th, the local discrete space is

ÛkT := Pk(T ;R)× Pk(F∂T ;R), (2.17)

where Pk(T ;R) and Pk(F∂T ;R) are the spaces spanned by the restrictions to T and F∂T ,
respectively, of d-variate and piecewise (d − 1)-variate polynomials of total degree ≤ k. A
generic element v̂T ∈ ÛkT is a pair v̂T = (vT , v∂T ) with vT ∈ Pk(T ;R) and v∂T ∈ Pk(F∂T ;R).

For all T ∈ Th, we define the local reconstruction operator Rk+1
T : ÛkT → Pk+1(T ;R) such

that, for all v̂T = (vT , v∂T ) ∈ ÛkT ,
(∇Rk+1

T (v̂T ),∇w)T = (∇vT ,∇w)T + (v∂T − vT ,nT ·∇w)∂T ∀w ∈ Pk+1(T ;R), (2.18)
(Rk+1

T (v̂T ), 1)T = (vT , 1)T , (2.19)

which leads to a local well-posed Neumann problem that is solved by inverting the local stiffness
matrix in Pk+1(T ;R). The local stabilization operator Sk∂T : ÛkT → Pk(F∂T ;R) is used to
penalize the difference between the face unknown v∂T and the trace of the cell unknown vT |∂T
in a least-squares sense. The operator Sk∂T is defined such that, for all v̂T = (vT , v∂T ) ∈ ÛkT ,

Sk∂T (v̂T ) := πk∂T
(
v∂T −Rk+1

T (v̂T )|∂T
)− πkT (vT −Rk+1

T (v̂T )
)
|∂T , (2.20)

where πkT and πk∂T denote the L2-orthogonal projectors onto Pk(T ;R) and Pk(F∂T ;R), respec-
tively. One readily verifies that Sk∂T (v̂T ) = 0 whenever v∂T = vT |∂T since Rk+1

T (vT , vT |∂T ) = vT .
We use the two above operators to formulate the following local bilinear form âT on ÛkT×ÛkT

that mimics locally the exact local bilinear form (∇v,∇w)T :

âT (v̂T , ŵT ) := (∇Rk+1
T (v̂T ),∇Rk+1

T (ŵT ))T + (η∂TSk∂T (v̂T ), Sk∂T (ŵT ))∂T , (2.21)

where η∂T is the piecewise constant function on ∂T such that η∂T |F = h−1
F , for all F ∈ F∂T .

We equip the discrete space ÛkT with the following H1-like seminorm:

|v̂T |2Ûk
T

:= ‖∇vT ‖2T + ‖η
1
2
∂T (v∂T − vT |∂T )‖2∂T ∀v̂T = (vT , v∂T ) ∈ ÛkT , (2.22)

so that |v̂T |Ûk
T

= 0 implies that vT = v∂T = cte. Let us briefly outline the stability, boundedness,
and polynomial invariance properties that motivate the design of the local operators Rk+1

T and
Sk∂T . For the proofs, we refer the reader to [60].
Lemma 2.6 (Stability and boundedness). There is a real number ρ > 0, independent of h,
such that, for all T ∈ Th and all v̂T ∈ ÛkT ,

ρ−1|v̂T |2Ûk
T

≤ ||∇Rk+1
T (v̂T )||2T + ‖η

1
2
∂TS

k
∂T (v̂T )‖2∂T ≤ ρ|v̂T |2Ûk

T

. (2.23)

The parameter ρ only depends on the mesh regularity and the polynomial degree. The first in-
equality in (2.23) implies the coercivity of the bilinear form âT on the one-dimensional subspace
{v̂T ∈ ÛkT ; vT = v∂T = c}.
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Proof. See [60, Lemma 4].

Lemma 2.7 (Polynomial invariance). Let ÎkT : H1(T ) → ÛkT be the local reduction operator
such that ÎkT (v) = (πkT (v), πk∂T (v|∂T )) ∈ ÛkT , for all v ∈ H1(T ) and all T ∈ Th. Then we have

Rk+1
T (ÎkT (v)) = Ek+1

T (v) ∀v ∈ H1(T ), (2.24)

where Ek+1
T : H1(T ) → Pk+1(T ;R) is the standard local elliptic projector such that, for all

v ∈ H1(T ),

(∇(Ek+1
T (v)− v),∇w)T = 0, ∀w ∈ Pk+1(T ;R), (Ek+1

T (v)− v, 1)T = 0. (2.25)

Moreover the following holds true for the local stabilization operator:

Sk∂T (ÎkT (p)) = 0 ∀p ∈ Pk+1(T ;R). (2.26)

Proof. See [60] or the sketch of the proof in Section 1.3.2.

We will also need the following approximation result for the local elliptic projector and for
the stabilization operator.

Lemma 2.8 (Approximation). Let s > 1
2 and set t := min(k + 1, s). There is a uniform

constant C such that the following holds true for all T ∈ Th and all v ∈ H1+s(T ):

‖v − Ek+1
T (v)‖T + h

1
2
T ‖v − Ek+1

T (v)‖∂T + hT ‖∇(v − Ek+1
T (v))‖T

+ h
3
2
T ‖∇(v − Ek+1

T (v))‖∂T ≤ C h1+t
T |v|H1+t(T ). (2.27)

Moreover, for all T ∈ Th and all v ∈ H1(T ), we have

‖η
1
2
∂TS

k
∂T (ÎkT (v))‖∂T ≤ C‖∇(v − Ek+1

T (v))‖T . (2.28)

Proof. See [60, Lemma 3] for (2.27) (the proof uses the approximation result from Lemma 2.5).
Concerning (2.28), we proceed as in [60, Eq. (45)]. Owing to the definition of Sk∂T and since
Ek+1
T = Rk+1

T ◦ ÎkT (see (2.24)), we have

Sk∂T (ÎkT (v)) = πk∂T (v − Ek+1
T (v)|∂T )− πkT (v − Ek+1

T (v))|∂T .

We then use the triangle inequality, the stability of the L2-projectors, that η∂T is piecewise
constant, the regularity of the mesh sequence, and the discrete trace inequality from Lemma 2.2
to infer that (the value of C can change at each occurrence)

‖η
1
2
∂TS

k
∂T (ÎkT (v))‖∂T ≤ ‖η

1
2
∂Tπ

k
∂T (v − Ek+1

T (v))‖∂T + ‖η
1
2
∂Tπ

k
T (v − Ek+1

T (v))‖∂T
≤ ‖η

1
2
∂T (v − Ek+1

T (v))‖∂T + Ch−1
T ‖πkT (v − Ek+1

T (v))‖T
≤ Ch−1

T

(
h

1
2
T ‖v − Ek+1

T (v)‖∂T + ‖v − Ek+1
T (v)‖T

)
.

To conclude, we invoke the multiplicative trace inequality from Lemma 2.3 and the local
Poincaré inequality from Lemma 2.4 (since the function v − Ek+1

T (v) has, by construction,
zero mean-value in T ).
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2.3.2 Discrete problem, stability and well-posedness
The global discrete space for the face-based trace version of the Nitsche-HHO method is defined
to be

Ûkh := Pk(Th;R)× Pk(Fh;R), (2.29)

with the notation v̂h =
(
(vT )T∈Th

, (vF )F∈Fh

)
for a generic element v̂h ∈ Ûkh . For all T ∈ Th,

we denote by v̂T = (vT , v∂T ) ∈ ÛkT the components of v̂h attached to the mesh cell T and the
faces composing its boundary.

As in the conforming Nitsche-FEM (2.4), we consider a symmetry parameter θ ∈ {−1, 0, 1}
and a penalty parameter γ > 0 that will be taken of the form γ|F = γ0h

−1
F , for all F ∈ Fb,Dh ,

with γ0 large enough (depending on the constant Cdt from Lemma 2.2). The discrete Nitsche-
HHO problem is as follows:{

Find ûh ∈ Ûkh such that
âγθ,h(ûh, ŵh) = ˆ̀

γθ,h(ŵh) ∀ŵh ∈ Ûkh .
(2.30)

with the global discrete bilinear form âγθ,h defined on Ûkh × Ûkh and the global discrete linear
form ˆ̀

γθ,h defined on Ûkh such that (compare with (2.5))

âγθ,h(v̂h, ŵh) :=
∑
T∈T

h

âT (v̂T , ŵT )−
∑

F∈Fb,D
h

(
σn(Rk+1

T (F )(v̂T (F ))), wF
)
F

−
∑

F∈Fb,D
h

θ
(
vF , σn(Rk+1

T (F )(ŵT (F )))
)
F

+
∑

F∈Fb,D
h

γ(vF , wF )F , (2.31a)

ˆ̀
γθ,h(ŵh) :=

∑
T∈T

h

(f, wT )T +
∑

F∈Fb,N
h

(gN , wF )F

−
∑

F∈Fb,D
h

θ
(
gD, σn(Rk+1

T (F )(ŵT (F ))))F +
∑

F∈Fb,D
h

γ(gD, wF )F , (2.31b)

where, for all F ∈ F bh, we recall that T (F ) is the single mesh cell of which F is a boundary
face. We equip the space Ûkh with the norm

‖v̂h‖2Ûk
h

:=
∑
T∈Th

|v̂T |2Ûk
T

+
∑

F∈Fb,D
h

h−1
F ‖vF ‖2F , ∀v̂h ∈ Ûkh , (2.32)

with the local seminorms |·|
Ûk

T

defined in (2.22). Let us briefly outline why ‖·‖
Ûk

h

defines a norm

on Ûkh . The only non-trivial property is the definiteness. Let v̂h ∈ Ûkh be such that ‖v̂h‖Ûk
h

= 0,
then vT = v∂T = cT for all T ∈ Th (a constant depending on the mesh cell T ). Since face
unknowns are single-valued, this implies that vT = v∂T = c (a global constant). Finally, since
vF = 0 for all F ∈ Fb,Dh , which is a non-empty set since the Dirichlet boundary has a nonempty
relative interior, we conclude that vT = v∂T = 0.

Let us now address the well-posedness of the discrete problem (2.30). To avoid the prolif-
eration of proofs, we only present the proof for the choice θ = 1 of the symmetry parameter.
Well-posedness also holds true for θ = 0 (with a less stringent lower bound on γ0) and for
θ = −1 (with the simple requirement that γ0 > 0). Let nb,D be the maximum number of faces
in Fb,Dh that a mesh cell can have (nb,D ≤ d on simplicial meshes).

Lemma 2.9 (Coercivity and well-posedness). Assume that θ = 1 and that γ0 > 2nb,DC2
dt,

where Cdt results from the discrete trace inequality of Lemma 2.2. Let us set the penalty
parameter to γ|F := γ0h

−1
F , for all F ∈ Fb,Dh . Then the discrete bilinear form âγθ,h is coercive,

and the discrete problem (2.30) is well-posed.
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Proof. It suffices to prove coercivity since well-posedness then follows from the Lax–Milgram
Lemma. Let v̂h ∈ Ûkh . Using the discrete trace inequality from Lemma 2.2, we have

∑
F∈Fb,D

h

2
(
σn(Rk+1

T (F )(v̂T (F ))), vF
)
F
≥ −

∑
F∈Fb,D

h

(nb,D)−
1
2C−1

dt h
1
2
F ‖∇Rk+1

T (F )(v̂T (F ))‖F × 2(nb,D)
1
2Cdth

− 1
2

F ‖vF ‖F

≥ −
∑

T∈T b,D
h

1
2‖∇R

k+1
T (v̂T )‖2T −

∑
F∈Fb,D

h

2nb,DC2
dth
−1
F ‖vF ‖2F ,

where we used the discrete trace inequality from Lemma 2.2 and T b,D
h is the collection of the

mesh cells having a boundary face in Fb,Dh . Bounding the first summation by the summation
over all the mesh cells and using the definition of âγθ,h, we infer that

âγθ,h(v̂h, v̂h) ≥
∑
T∈T

h

1
2‖∇R

k+1
T (v̂T )‖2T +

∑
T∈T

h

‖η
1
2
∂TS

k
∂T (v̂T )‖2∂T + (γ0 − 2nb,DC2

dt)
∑

F∈Fb,D
h

h−1
F ‖vF ‖2F

≥ min
(1
2ρ
−1, γ0 − 2nb,DC2

dt
)‖v̂h‖2Ûk

h

.

This concludes the proof.

Remark 2.10 (Choosing the symmetry parameter θ). (i) For θ = 1, one obtains a discrete
problem with variational structure, that is, the discrete problem takes the form of the Euler
equations characterizing the minimizer of a convex energy functional, see the functional J̃γ,h
defined by (1.16). (ii) For θ = 0, one recovers a simpler method since some terms in the
formulation vanish, and the lower bound on γ0 becomes γ0 >

1
2n

b,DC2
dt. (iii) For θ = −1, the

stability properties of the method are stronger since it suffices to take γ > 0.

2.3.3 Error analysis

The first important step in the error analysis is to bound the consistency error which is defined
as follows:

Eh(ŵh) := ˆ̀
γθ,h(ŵh)− âγθ,h(Îkh(u), ŵh), ∀ŵh ∈ Ûkh , (2.33)

where the global reduction operator Îkh : H1(Ω)→ Ûkh is defined such that the local components
of Îkh(v), for all v ∈ H1(Ω), attached to a mesh cell T ∈ Th, are ÎkT (v|T ) (this definition is
meaningful since a function in H1(Ω) is single-valued at all the mesh interfaces). As above,
we only give proofs for θ = 1; the proofs for the other values θ ∈ {−1, 0} follow by minor
adaptations of the arguments for θ = 1.

Lemma 2.11 (Consistency). Assume that θ = 1 and that u ∈ H1+s(Ω) with s > 1
2 . The

following holds true:

|Eh(ŵh)| .
∑
T∈T

h

‖u− Ek+1
T (u)‖2],T

 1
2

‖ŵh‖Ûk
h

, ∀ŵh ∈ Ûkh , (2.34)

with ‖v‖2],T := ‖∇v‖2T + hT ‖nT ·∇v‖2∂T for any function v ∈ H1+s(T ), s > 1
2 , and all T ∈ Th.

Proof. Let ŵh ∈ Ûkh . Let us introduce the shorthand notation

ηγθ(ŵT (F )) := −θσn(Rk+1
T (F )(ŵT (F ))) + γwF .
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Using the definitions (2.31a)-(2.31b) of âγθ,h, ˆ̀
γθ,h, the PDE and the boundary conditions

satisfied by the exact solution u, and since Rk+1
T ◦ ÎkT = Ek+1

T (see (2.24)), we have

Eh(ŵh) =
∑
T∈T

h

(−∆u,wT )T +
∑

F∈Fb,N
h

(σn(u), wF )F +
∑

F∈Fb,D
h

(
u, ηγθ(ŵT (F ))

)
F

−
∑
T∈T

h

(∇Ek+1
T (u),∇Rk+1

T (ŵT ))T −
∑
T∈T

h

(η∂TSk∂T (ÎkT (u)), Sk∂T (ŵT ))∂T

+
∑

F∈Fb,D
h

(
σn(Ek+1

T (F )(u)), wF
)
F
−
(
πkF (u), ηγθ(ŵT (F ))

)
F
.

Since ηγθ(ŵT (F )) is a polynomial of degree at most k on each boundary face in Fb,Dh , we infer
that

(
u, ηγθ(ŵT (F ))

)
F

=
(
πkF (u), ηγθ(ŵT (F ))

)
F
. Re-arranging terms leads to

Eh(ŵh) = T1 − T2 − T3,

where

T1 =
∑
T∈T

h

(−∆u,wT )T +
∑

F∈Fb,N
h

(σn(u), wF )F ,

T2 =
∑
T∈T

h

(∇Ek+1
T (u),∇Rk+1

T (ŵT ))T −
∑

F∈Fb,D
h

(
σn(Ek+1

T (F )(u)), wF
)
F
,

T3 =
∑
T∈T

h

(η∂TSk∂T (ÎkT (u)), Sk∂T (ŵT ))∂T .

Integrating by parts in each mesh cell and using that σn(u) is single-valued across all the mesh
interfaces (and well-defined since s > 1

2), we obtain

T1 =
∑
T∈T

h

(∇u,∇wT )T −
∑
T∈T

h

(σn(u), wT )∂T +
∑

F∈Fb,N
h

(σn(u), wF )F

=
∑
T∈T

h

(∇u,∇wT )T −
∑
T∈T

h

(σn(u), wT − w∂T )∂T −
∑

F∈Fb,D
h

(σn(u), wF )F .

Using the definition of Rk+1
T (ŵT ), we infer that

T2 =
∑
T∈T

h

(∇Ek+1
T (u),∇wT )T −

∑
T∈T

h

(σn(Ek+1
T (u)), wT −w∂T )∂T −

∑
F∈Fb,D

h

(σn(Ek+1
T (F )(u)), wF )F .

Consequently, if we define for all T ∈ Th the function δT := u|T − Ek+1
T (u|T ), we obtain

T1 − T2 =
∑
T∈T

h

(∇δT ,∇wT )T −
∑
T∈T

h

(σn(δT ), wT − w∂T )∂T −
∑

F∈Fb,D
h

(σn(δT (F )), wF )F

= −
∑
T∈T

h

(σn(δT ), wT − w∂T )∂T −
∑

F∈Fb,D
h

(σn(δT (F )), wF )F ,

where we used that (∇δT ,∇wT )T = 0 since wT is a polynomial of order at most k in T .
Invoking the Cauchy–Schwarz inequality and recalling the definition of the norm ‖ŵh‖Ûk

h

, we
infer that

|T1 − T2| .
∑
T∈T

h

‖δT ‖2],T

 1
2

‖ŵh‖Ûk
h

.
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Finally, the Cauchy–Schwarz inequality, the bound (2.28) and the upper bound in (2.23) imply
that

|T3| ≤
∑
T∈T

h

‖η
1
2
∂TS

k
∂T (ÎkT (u))‖2∂T

 1
2
∑
T∈T

h

‖η
1
2
∂TS

k
∂T (ŵT )‖2∂T

 1
2

.

∑
T∈T

h

‖δT ‖2],T

 1
2

‖ŵh‖Ûk
h

.

This concludes the proof.

We now prove the optimal convergence of the method (2.30).

Theorem 2.12 (H1-error estimate). Assume that u ∈ H1+s(Ω) with s > 1
2 . The following

holds true: ∑
T∈T

h

‖∇(u−Rk+1
T (ûT ))‖2T .

∑
T∈T

h

‖u− Ek+1
T (u)‖2],T . (2.35)

Consequently, letting t := min(k + 1, s), we have∑
T∈T

h

‖∇(u−Rk+1
T (ûT ))‖2T

∑
T∈T

h

h2t
T |u|2Ht+1(T ). (2.36)

Proof. Let us set ŵh := ûh − Îkh(u) ∈ Ûkh . The coercivity of âγθ,h from Lemma 2.9 and the
bound on the consistency error from Lemma 2.11 imply that

‖ŵh‖Ûk
h

.
âγθ,h(ŵh, ŵh)
‖ŵh‖Ûk

h

= Eh(ŵh)
‖ŵh‖Ûk

h

.

∑
T∈T

h

‖u− Ek+1
T (u)‖2],T

 1
2

.

Using the upper bound from Lemma 2.6, we infer that∑
T∈T

h

‖∇(Rk+1
T (ûT )− Ek+1

T (u))‖2T

 1
2

=

∑
T∈T

h

‖∇Rk+1
T (ŵT )‖2T

 1
2

. ‖ŵh‖Ûk
h

.

∑
T∈T

h

‖u− Ek+1
T (u)‖2],T

 1
2

,

The estimate (2.35) results from this bound, the triangle inequality, and the definition of ‖·‖],T .
Finally, the estimate (2.36) is a consequence of (2.35) and Lemma 2.8.

2.4 Dirichlet conditions with cell-based traces
The goal of this section is to extend our analysis to the cell-based trace version of the Nitsche-
HHO method. In short, the cell unknowns are of one order higher than the face unknowns and
are used in the formulation of Nitsche’s consistency and penalty terms. We consider the linear
model problem (2.3), as in the previous section, and we assume that the meshes are compatible
with the boundary partition ∂Ω = ΓD ∪ ΓN from (2.2), which leads again to the partition of
boundary faces as Fbh = Fb,Dh ∪ Fb,Nh .

From the analysis viewpoint, the main novelty is that we need to change the definition of
the reconstruction operator. The reason for this change is somewhat subtle and will appear
when bounding the consistency error; this change will be crucial to derive optimal energy-error
estimates.
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2.4.1 Local reconstruction and stability operators
In what follows, it is important to identify, for any mesh cell T ∈ Th, the (possibly empty) part
of its boundary that is not located on the subset ΓD (where Nitsche’s method is employed).
Thus, we set

∂T \ := ∂T ∩ (Ω \ ΓD
)
. (2.37)

Let F∂T \ collect the faces of T located on ∂T \. Let k ≥ 0 be the polynomial degree. For
all T ∈ Th, the local discrete space is (we keep the same notation as in the previous section
although the local space is now different concerning the degree of the cell unknowns and the
support of the face unknowns):

ÛkT \ := Pk+1(T ;R)× Pk(F∂T \ ;R), (2.38)

that is, the local face unknowns are only attached to those faces of T that are not located in
ΓD (this is why we introduce the subscript T \ rather than T for the local space). A generic
element in Ûk

T \
is denoted v̂T = (vT , v∂T \) with vT ∈ Pk+1(T ;R) and v∂T \ ∈ Pk(F∂T \ ;R).

For all T ∈ Th, we define the local reconstruction operator Rk+1
T \

: Ûk
T \
→ Pk+1(T ;R) such

that, for all v̂T = (vT , v∂T \) ∈ ÛkT \ ,

(∇Rk+1
T \

(v̂T ),∇w)T = (∇vT ,∇w)T + (v∂T \ − vT ,nT ·∇w)∂T \ ∀w ∈ Pk+1(T ;R), (2.39)
(Rk+1

T \
(v̂T ), 1)T = (vT , 1)T , (2.40)

which leads, as usual, to a local well-posed Neumann problem that is solved by inverting the
local stiffness matrix in Pk+1(T ;R). The local stabilization operator Sk

∂T \
: Ûk

T \
→ Pk(F∂T \ ;R)

is defined such that, for all v̂T = (vT , v∂T \) ∈ ÛkT \ ,

Sk
∂T \

(v̂T ) := πk
∂T \

(
v∂T \ − vT |∂T \

)
= v∂T \ − πk∂T \

(
vT |∂T \

)
. (2.41)

Observe that the above form of the stabilization operator is similar (up to the restriction to
∂T \) to the Lehrenfeld–Schöberl stabilization in the context of mixed-order HDG methods
[102].

The local bilinear form âT \ on ÛkT \ × ÛkT \ is

âT \(v̂T , ŵT ) := (∇Rk+1
T \

(v̂T ),∇Rk+1
T \

(ŵT ))T + (η∂TSk∂T \(v̂T ), Sk
∂T \

(ŵT ))∂T \ , (2.42)

where η∂T is still the piecewise constant function on ∂T (which is only needed on ∂T \ now)
given by η∂T |F = h−1

F for all F ∈ F∂T \ . We equip the discrete space Ûk
T \

with the following
H1-like seminorm: for all v̂T = (vT , v∂T \) ∈ ÛkT \ ,

|v̂T |2Ûk

T\
:= ‖∇vT ‖2T + ‖η

1
2
∂T (v∂T \ − vT |∂T \)‖2∂T \ , (2.43)

so that |v̂T |Ûk

T\
= 0 implies that vT = v∂T \ = cte. One can verify that the stability and

boundedness properties from Lemma 2.6 still hold true for the discrete bilinear form âT \ .
For all T ∈ Th, we define the local reduction operator Îk

T \
: H1(T )→ Ûk

T \
such that, for all

v ∈ H1(T ),
ÎkT \(v) :=

(
πk+1
T (v), πk

∂T \
(v)
) ∈ ÛkT \ . (2.44)

There are two differences with the usual HHO reduction operator ÎkT considered in Lemma 2.7:
for the cell component, we use a higher-order L2-orthogonal projector onto Pk+1(T ;R), and for
the face component, we only project on those faces in F∂T \ . Then,

Ek+1
T \

:= Rk+1
T \
◦ ÎkT \ : H1(T )→ Pk+1(T ;R) (2.45)

34



2.4. Dirichlet conditions with cell-based traces

still acts as an approximation operator, but it is no longer the elliptic projector, at least
on those mesh cells having a boundary face in Fb,Dh . It is therefore crucial at this stage
to assert that Ek+1

T \
still enjoys optimal approximation properties. Let us recall the norm

‖v‖2],T := ‖∇v‖2T + hT ‖nT ·∇v‖2∂T , for all v ∈ H1+s(T ), s > 1
2 , and all T ∈ Th.

Lemma 2.13 (Approximation). There exists a uniform constant such that the following holds
true:

‖v − Ek+1
T \

(v)‖],T ≤ C‖v − πk+1
T (v)‖],T . (2.46)

for all v ∈ H1+s(T ), s > 1
2 , and all T ∈ Th. Moreover, for all T ∈ Th and all v ∈ H1(T ), we

have
‖η

1
2
∂TS

k
∂T \

(ÎkT \(v))‖∂T \ ≤ C‖∇(v − πk+1
T (v))‖T . (2.47)

Proof. To prove (2.46), let us start by bounding ‖∇(v − Ek+1
T \

(v))‖T . We have

‖∇(Ek+1
T \

(v)− πk+1
T (v))‖T = sup

q∈Pk+1(T ;R)
‖∇q‖T =1

(∇(Ek+1
T \

(v)− πk+1
T (v)),∇q)T

= sup
q∈Pk+1(T ;R)
‖∇q‖T =1

(∇Rk+1
T \

(ÎkT \(v))− πk+1
T (v)),∇q)T

= sup
q∈Pk+1(T ;R)
‖∇q‖T =1

(πk
∂T \

(v)− πk+1
T (v),nT ·∇q)∂T \

= sup
q∈Pk+1(T ;R)
‖∇q‖T =1

(v − πk+1
T (v),nT ·∇q)∂T \ ,

where we used that Ek+1
T \

(v) − πk+1
T (v) ∈ Pk+1(T ;R) in the first line, the definition of Ek+1

T \

in the second line, the definition of Rk+1
T \

in the third line, and the fact that nT ·∇q|∂T \ ∈
Pk(F∂T \ ;R) in the fourth line. Using the Cauchy–Schwarz inequality followed by the discrete
trace inequality from Lemma 2.2 to bound ‖nT ·∇q‖∂T \ and since ‖∇q‖T = 1, we conclude
that

‖∇(Ek+1
T \

(v)− πk+1
T (v))‖T ≤ Ch

− 1
2

T ‖v − πk+1
T (v)‖∂T \ .

The multiplicative trace inequality from Lemma 2.3 followed by the Poincaré inequality from
Lemma 2.4 then lead to

‖∇(Ek+1
T \

(v)− πk+1
T (v))‖T ≤ C‖∇(v − πk+1

T (v))‖T . (2.48)

Let us now estimate h
1
2
T ‖nT ·∇(Ek+1

T \
(v) − πk+1

T (v))‖∂T . The discrete trace inequality from
Lemma 2.2, estimating the normal derivative by the norm of the full gradient, and the above
bound (2.48) lead to

h
1
2
T ‖nT ·∇(Ek+1

T \
(v)− πk+1

T (v))‖∂T ≤ C‖∇(Ek+1
T \

(v)− πk+1
T (v))‖T ≤ C‖∇(v − πk+1

T (v))‖T .

We complete the proof of (2.46) by using the triangle inequality. We now turn to the proof
of (2.47). Since πk

∂T \
◦ πk

∂T \
= πk

∂T \
, we have

‖η
1
2
∂TS

k
∂T \

(ÎkT \(v))‖∂T \ = ‖η
1
2
∂Tπ

k
∂T \

(v − πk+1
T (v))‖∂T \ ≤ Ch

− 1
2

T ‖v − πk+1
T (v)‖∂T ,

where we used the L2-stability of πk
∂T \

, that η∂T is piecewise constant, and that ∂T \ ⊆ ∂T .
We conclude by invoking the multiplicative trace inequality from Lemma 2.3 followed by the
Poincaré inequality from Lemma 2.4.
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Remark 2.14 (Other estimates). The bound (2.48) together with a triangle inequality implies
that ‖∇(v − Ek+1

T \
(v))‖T ≤ C‖∇(v − πk+1

T (v))‖T . Invoking the multiplicative trace inequality
from Lemma 2.3 followed by the Poincaré inequality from Lemma 2.4, we conclude that

‖v − Ek+1
T \

(v)‖T + h
1
2
T ‖v − Ek+1

T \
(v)‖∂T + hT ‖∇(v − Ek+1

T \
(v))‖T ≤ ChT ‖∇(v − πk+1

T (v))‖T

Optimal convergence rates on (v − Ek+1
T \

(v)) for smooth functions v ∈ H1+s(T ), s > 1
2 , can

then be inferred from Lemma 2.5.

2.4.2 Discrete problem, stability and well-posedness
The definition of the global discrete space is slightly modified (we keep the same notation for
simplicity) since, in the cell-based trace version, there are no face unknowns attached to those
faces in Fb,Dh :

Ûkh := Pk+1(Th;R)× Pk(F ih ∪ Fb,Nh ;R). (2.49)

A generic element in Ûkh is denoted ŵh = ((wT )T∈Th
, (wF )

F∈Fi
h
∪Fb,N

h
), and for all T ∈ Th, we

denote by
ŵT =

(
wT , (wF )F∈F

∂T\

)
∈ ÛkT \ (2.50)

the components of ŵh attached to the mesh cell T and its faces composing ∂T \. We consider
the following discrete Nitsche-HHO problem:{

Find ûh ∈ Ûkh such that
âγθ,h(ûh, ŵh) = ˆ̀

γθ,h(ŵh) ∀ŵh ∈ Ûkh .
(2.51)

For all v̂h, ŵh ∈ Ûkh , the global discrete bilinear form âγθ,h and the global discrete linear form
ˆ̀
γθ,h are defined respectively by (compare with (??))

âγθ,h(v̂h, ŵh) :=
∑
T∈T

h

âT (v̂T , ŵT )−
∑

F∈Fb,D
h

(
σn(Rk+1

T (F )\(v̂T (F ))), wT (F )
)
F

−
∑

F∈Fb,D
h

θ
(
vT (F ), σn(Rk+1

T (F )\(ŵT (F )))
)
F

+
∑

F∈Fb,D
h

γ(vT (F ), wT (F ))F , (2.52a)

ˆ̀
γθ,h(ŵh) :=

∑
T∈T

h

(f, wT )T +
∑

F∈Fb,N
h

(gN , wF )F

−
∑

F∈Fb,D
h

θ
(
gD, σn(Rk+1

T (F )\(ŵT (F )))
)
F

+
∑

F∈Fb,D
h

γ(gD, wT (F ))F . (2.52b)

Comparing (2.31a) with (2.52a), we see that vT (F ) and wT (F ) are now used in place of vF and
wF in the three terms on Fb,Dh defining âγθ,h, and comparing (2.31b) with (2.52b), we see that
wT (F ) is now used in place of wF in the penalty term on Fb,Dh defining ˆ̀

γθ,h; notice, however,
that the enforcement of the Neumann condition in ˆ̀

γθ,h still involves the face component wF
of the test function ŵh.

We equip the space Ûkh with the norm

‖v̂h‖2Ûk
h

:=
∑
T∈Th

|v̂T |2Ûk

T\
+

∑
F∈Fb,D

h

h−1
F ‖vT (F )‖2F , ∀v̂h ∈ Ûkh , (2.53)

with the local seminorms |·|Ûk

T\
defined in (2.43). That ‖·‖

Ûk
h

defines a norm on Ûkh follows
from similar arguments to those considered for the face-based trace scheme in the previous
section. Let us now address the well-posedness of the discrete problem (2.51). As above, we
only consider θ = 1. Well-posedness also holds true for θ = 0 (with a less stringent lower bound
on γ0) and for θ = −1 (with the simple requirement that γ0 > 0).
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Lemma 2.15 (Coercivity and well-posedness). Assume that θ = 1 and that γ0 > 2nb,DC2
dt,

where Cdt results from the discrete trace inequality of Lemma 2.2. Let us set the penalty
parameter to γ|F := γ0h

−1
F , for all F ∈ Fb,Dh . Then the discrete bilinear form âγθ,h is coercive,

and the discrete problem (2.51) is well-posed.

Proof. Identical to the proof of Lemma 2.9.

2.4.3 Error analysis
We carry out the error analysis for θ = 1; the proofs for the other values θ ∈ {−1, 0} follow by
minor adaptations of the arguments for θ = 1. As above, the first important step in the error
analysis is to bound the consistency error; we recall that this error is defined such that

Eh(ŵh) := ˆ̀
γθ,h(ŵh)− âγθ,h(Îkh(u), ŵh), ∀ŵh ∈ Ûkh , (2.54)

where the global reduction operator Îkh : H1(Ω) → Ûkh is now such that the local components
of Îkh(v), for all v ∈ H1(Ω), attached to a mesh cell T ∈ Th, are ÎkT \(v|T ).

Lemma 2.16 (Consistency). Assume that θ = 1 and u ∈ H1+s(Ω) with s > 1
2 . The following

holds true:

|Eh(ŵh)| .
∑
T∈T

h

‖u− πk+1
T (u)‖2],T

 1
2

‖ŵh‖Ûk
h

, ∀ŵh ∈ Ûkh . (2.55)

Proof. Let ŵh ∈ Ûkh . Let us introduce the shorthand notation ηγ(ŵT (F )) := −σn(Rk+1
T (F )\(ŵT (F )))+

γwT (F ). Using the definitions (2.52a)-(2.52b) of âγθ,h, ˆ̀
γθ,h, the PDE and the boundary con-

ditions satisfied by the exact solution u, and since Rk+1
T \
◦ Îk

T \
= Ek+1

T \
, we have

Eh(ŵh) =
∑
T∈T

h

(−∆u,wT )T +
∑

F∈Fb,N
h

(σn(u), wF )F +
∑

F∈Fb,D
h

(
u, ηγ(ŵT (F ))

)
F

−
∑
T∈T

h

(∇Ek+1
T \

(u),∇Rk+1
T \

(ŵT ))T −
∑
T∈T

h

(η∂TSk∂T \(Î
k
T \(u)), Sk

∂T \
(ŵT ))∂T \

+
∑

F∈Fb,D
h

(
σn(Ek+1

T (F )\(u)), wT (F )
)
F
−
(
πk+1
T (F )(u), ηγ(ŵT (F ))

)
F
.

Re-arranging terms leads to
Eh(ŵh) = T1 − T2 − T3+T4,

where

T1 =
∑
T∈T

h

(−∆u,wT )T +
∑

F∈Fb,N
h

(σn(u), wF )F ,

T2 =
∑
T∈T

h

(∇Ek+1
T \

(u),∇Rk+1
T \

(ŵT ))T −
∑

F∈Fb,D
h

(
σn(Ek+1

T (F )\(u)), wT (F )
)
F
,

T3 =
∑
T∈T

h

(η∂TSk∂T \(Î
k
T \(u)), Sk

∂T \
(ŵT ))∂T \ ,

T4 =
∑

F∈Fb,D
h

(
u− πk+1

T (F )(u), ηγ(ŵT (F ))
)
F
.

Note that a term of the form T4 is not present in the consistency error of the face version
of Nitsche-HHO. Integrating by parts in each mesh cell and using that σn(u) is single-valued
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across all the mesh interfaces (and well-defined since s > 1
2), we obtain

T1 =
∑
T∈T

h

(∇u,∇wT )T −
∑
T∈T

h

(σn(u), wT )∂T +
∑

F∈Fb,N
h

(σn(u), wF )F

=
∑
T∈T

h

(∇u,∇wT )T −
∑
T∈T

h

(σn(u), wT − w∂T \)∂T \ −
∑

F∈Fb,D
h

(σn(u), wT (F ))F .

Comparing with the term T1 from the consistency proof of the face-based trace scheme, we see
that on the right-hand side, the second term is now restricted to ∂T \ and that the third term
is thus evaluated using wT (F ) instead of wF . Moreover, using the definition of Rk+1

T \
(ŵT ), we

infer that

T2 =
∑
T∈T

h

(∇Ek+1
T \

(u),∇wT )T −
∑
T∈T

h

(σn(Ek+1
T \

(u)), wT − w∂T \)∂T \

−
∑

F∈Fb,D
h

(σn(Ek+1
T (F )\(u)), wT (F ))F .

Consequently, if we define for all T ∈ Th the function δT := u|T − Ek+1
T \

(u|T ), we obtain

T1 − T2 =
∑
T∈T

h

(∇δT ,∇wT )T −
∑
T∈T

h

(σn(δT ), wT − w∂T \)∂T \ −
∑

F∈Fb,D
h

(σn(δT (F )), wT (F ))F .

We can now bound T1 − T2 by proceeding as in the analysis of the face version, invoking the
Cauchy–Schwarz inequality and recalling the definition of the norm ‖ŵh‖Ûk

h

, we infer that

|T1 − T2| .
∑
T∈T

h

‖δT ‖2],T

 1
2

‖ŵh‖Ûk
h

.

∑
T∈T

h

‖v − πk+1
T (v)‖2],T

 1
2

‖ŵh‖Ûk
h

.

where the last bound follows from the approximation result (2.46). Finally, the bound (2.47)
on the stabilization operator composed with the reduction operator and the boundedness of
âT \ imply that

|T3| ≤
∑
T∈T

h

‖η
1
2
∂TS

k
∂T \

(ÎkT \(u))‖2
∂T \

 1
2
∑
T∈T

h

‖η
1
2
∂TS

k
∂T \

(ŵT )‖2
∂T \

 1
2

.

∑
T∈T

h

‖v − πk+1
T (v)‖2],T

 1
2

‖ŵh‖Ûk
h

.

Finally, we bound T4 by means of the Cauchy–Schwarz inequality and observing that h−
1
2

T (F )‖u−
πk+1
T (F )(u)‖F . ‖∇(u− πk+1

T (F )(u))‖T (F ), as already argued in the proof of Lemma 2.13, and that

h
1
2
T (F )‖ηγ(ŵT (F ))‖F ≤ h

1
2
T (F )‖σn(Rk+1

T (F )\(ŵT (F )))‖F + γ0h
− 1

2
T (F )‖wT (F )‖F

. ‖Rk+1
T (F )\(ŵT (F ))‖T (F ) + h

− 1
2

T (F )‖wT (F )‖F . |ŵT |Ûk

T\
+ h

− 1
2

T (F )‖wT (F )‖F ,

owing to the triangle inequality, the discrete trace inequality from Lemma 2.2, and the bound-
edness of the local bilinear form âT defined in (2.42). This concludes the proof.

Theorem 2.17 (H1-error estimate). Assume that u ∈ H1+s(Ω) with s > 1
2 . The following

holds true: ∑
T∈T

h

‖∇(u−Rk+1
T \

(ûT ))‖2T .
∑
T∈T

h

‖u− πk+1
T (u)‖2],T . (2.56)
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Consequently, letting t := min(k + 1, s), we have∑
T∈T

h

‖∇(u−Rk+1
T \

(ûT ))‖2T .
∑
T∈T

h

h2t
T |u|2H1+t(T ). (2.57)

Proof. The proof of (2.56) uses Lemma 2.16 and proceeds as that of (2.35) for the face-based
trace scheme. Finally, the estimate (2.57) is a consequence of (2.56) and Lemma 2.5.

2.4.4 Numerical results
We consider the Poisson model problem (2.3). The domain Ω is the unit square. The numerical
results are compared to the closed-form solution u(x, y) = cos(πx) cos(πy) corresponding to the
right-hand side f(x, y) = 2π2 cos(πx) cos(πy) and satisfying a homogeneous Dirichlet condition
over the whole boundary, i.e. we set ΓD = ∂Ω. We consider uniformly refined sequences of
triangular meshes and of hexagonal meshes to illustrate the polyhedral capabilities of Nitsche-
HHO.

The errors in the H1-norm and the convergence rates are reported in Table 2.2 using the
face version of Nitsche-HHO. We observe convergence rates that match those predicted by the
theory (Theorem 2.12).

Table 2.2: H1-error and convergence rates for Dirichlet conditions. Face version with θ = 1,
γ0 = 5 and k ∈ {0, 1, 2, 3}.

Triangles
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
0.230 7.183e-01 9.291e-02 9.617e-03 5.278e-04
0.115 3.418e-01 1.071 2.399e-02 1.953 1.241e-03 2.955 3.457e-05 3.932
0.057 1.665e-01 1.037 6.081e-03 1.980 1.569e-04 2.983 2.205e-06 3.971
0.029 8.217e-02 1.019 1.530e-03 1.991 1.971e-05 2.993 1.391e-07 3.986

Hexagons
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
0.176 5.385e-01 5.005e-02 3.244e-03 1.438e-04
0.091 2.633e-01 1.078 1.277e-02 2.059 4.183e-04 3.088 9.295e-06 4.129
0.046 1.299e-01 1.044 3.216e-03 2.038 5.303e-05 3.052 5.898e-07 4.075
0.023 6.446e-02 1.023 8.065e-04 2.021 6.674e-06 3.028 3.713e-08 4.040

We now consider the symmetric and nonsymmetric variants of the cell version of Nitsche-
HHO. The errors in theH1-norm and the convergence rates for the symmetric variant θ = 1 and
γ0 = 5 are reported in Table 2.3. These results confirm the predictions from Theorem 2.17. The
numerical results for the nonsymmetric variants are reported in Table 2.4 (θ = 0 and γ0 = 1)
and Table 2.5 (θ = −1 and γ0 = 0). Notice that for the skew-symmetric method (θ = −1),
we consider the penalty-free variant (γ0 = 0) and we still observe optimal rates. Though the
analysis presented in this paper does not cover this case, our results are in agreement with the
analysis presented in [23] for Lagrange and Crouzeix–Raviart finite elements. Moreover, we also
performed convergence tests for in the equal-order case (l = k), and suboptimal convergence
rates were observed (as expected). We do not present these results for the sake of brevity.

2.5 Signorini’s conditions with cell-based traces
In this section, we devise and analyze a Nitsche-HHO method to approximate the model prob-
lem (2.7) with Signorini’s unilateral contact conditions as specified in (2.8). We consider the
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Table 2.3: H1-error and convergence rates for Dirichlet conditions. Cell version with θ = 1,
γ0 = 5 and k ∈ {0, 1, 2, 3}.

Triangles
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
0.230 6.179e-01 9.071e-02 9.739e-03 5.222e-04
0.115 3.188e-01 0.954 2.442e-02 1.893 1.322e-03 2.882 3.570e-05 3.87166
0.057 1.615e-01 0.982 6.323e-03 1.950 1.708e-04 2.952 2.330e-06 3.93836
0.029 8.118e-02 0.992 1.608e-03 1.976 2.167e-05 2.978 1.487e-07 3.97069

Hexagons
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
0.176 4.895e-01 4.723e-02 3.150e-03 1.402e-04
0.091 2.514e-01 1.004 1.239e-02 2.017 4.129e-04 3.063 9.184e-06 4.108
0.046 1.270e-01 1.010 3.168e-03 2.015 5.271e-05 3.042 5.864e-07 4.066
0.023 6.375e-02 1.007 8.005e-04 2.010 6.654e-06 3.024 3.702e-08 4.036

Table 2.4: H1-error and convergence rates for Dirichlet conditions. Cell version with θ = 0,
γ0 = 1 and k ∈ {0, 1, 2, 3}.

Triangles
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
0.230 7.312e-01 9.482e-02 1.128e-02 6.219e-04
0.115 3.453e-01 1.083 2.486e-02 1.931 1.409e-03 3.001 3.942e-05 3.979
0.057 1.678e-01 1.041 6.375e-03 1.963 1.760e-04 3.001 2.456e-06 4.004
0.029 8.271e-02 1.020 1.614e-03 1.982 2.199e-05 3.001 1.528e-07 4.007

Hexagons
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
0.176 5.184e-01 5.140e-02 3.269e-03 1.448e-04
0.091 2.582e-01 1.050 1.291e-02 2.083 4.196e-04 3.094 9.321e-06 4.134
0.046 1.286e-01 1.030 3.232e-03 2.047 5.311e-05 3.055 5.906e-07 4.077
0.023 6.414e-02 1.016 8.086e-04 2.025 6.678e-06 3.029 3.715e-08 4.041

cell-based trace scheme with a mixed-order, where the cell unknowns are of one order higher
than the face unknowns. We assume that the meshes are compatible with the boundary par-
tition ∂Ω = ΓD ∪ ΓN ∪ ΓS from (2.6), which leads to the partition of boundary faces as
Fbh = Fb,Dh ∪ Fb,Nh ∪ Fb,Sh (with obvious notation). For simplicity, we employ the Nitsche tech-
nique only on the subset ΓS where the nonlinear Signorini conditions are enforced, whereas we
resort to a strong enforcement of the homogeneous Dirichlet condition on the subset ΓD.

2.5.1 Local reconstruction and stability operators

For simplicity, we keep the same notation as in the previous section, although we keep in mind
that we are now concerned with the subset ΓS rather than ΓD. For all T ∈ Th, we identify the
(possibly empty) part of its boundary that is not located on the subset ΓS (where Nitsche’s
method is employed):

∂T \ := ∂T ∩ (Ω \ ΓS
)
, (2.58)
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Table 2.5: H1-error and convergence rates for Dirichlet conditions. Cell version with θ = −1,
γ0 = 0 and k ∈ {0, 1, 2, 3}.

Triangles
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
0.230 6.767e-01 9.044e-02 1.019e-02 5.403e-04
0.115 3.322e-01 1.026 2.426e-02 1.898 1.346e-03 2.920 3.635e-05 3.893
0.057 1.646e-01 1.013 6.298e-03 1.946 1.722e-04 2.967 2.352e-06 3.950
0.029 8.193e-02 1.006 1.604e-03 1.973 2.176e-05 2.985 1.494e-07 3.977

Hexagons
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
0.176 5.069e-01 5.029e-02 3.213e-03 1.416e-04
0.091 2.553e-01 1.034 1.278e-02 2.065 4.165e-04 3.079 9.227e-06 4.117
0.046 1.279e-01 1.022 3.216e-03 2.039 5.293e-05 3.049 5.877e-07 4.069
0.023 6.397e-02 1.012 8.065e-04 2.021 6.668e-06 3.027 3.706e-08 4.038

and we let, as before, F∂T \ collect the faces of T located on ∂T \. Let k ≥ 0 be the polynomial
degree. For all T ∈ Th, the local discrete space is (we keep the same notation as in the previous
section although the support of the face unknowns has changed):

ÛkT \ := Pk+1(T ;R)× Pk(F∂T \ ;R), (2.59)

that is, the local face unknowns are only attached to those faces of T that are not located in
ΓS . A generic element in Ûk

T \
is denoted v̂T = (vT , v∂T \) with vT ∈ Pk+1(T ;R) and v∂T \ ∈

Pk(F∂T \ ;R).
For all T ∈ Th, the local reconstruction operator Rk+1

T \
: Ûk

T \
→ Pk+1(T ;R) is still defined

by (2.39), and the local stabilization operator Sk
∂T \

: Ûk
T \
→ Pk(F∂T \ ;R) is still defined by

(2.41). The local bilinear form âT \ on Ûk
T \
× Ûk

T \
is still defined by (2.42). We equip the

discrete space Ûk
T \

with the H1-like seminorm | · |Ûk

T\
defined by (2.43), and we recall that the

discrete bilinear form âT \ satisfies the stability and boundedness properties from Lemma 2.6.
We let the local reduction operator Îk

T \
: H1(T ) → Ûk

T \
be defined by (2.44), and, as before,

we let Ek+1
T \

:= Rk+1
T \
◦ Îk

T \
: H1(T )→ Pk+1(T ;R). The approximation properties of Ek+1

T \
and

of Sk
∂T \
◦ Îk

T \
are those stated in Lemma 2.13.

2.5.2 Discrete problem and well-posedness
The global discrete space is

Ûkh := Pk+1(Th;R)× Pk(F ih ∪ Fb,Dh ∪ Fb,Nh ;R). (2.60)

A generic element in Ûkh is denoted ŵh = ((wT )T∈Th
, (wF )

F∈Fi
h
∪Fb,D

h
∪Fb,N

h
), and for all T ∈ Th,

we denote by ŵT = (wT , (wF )F∈F
∂T\

) ∈ Ûk
T \

the components of ŵh attached to the mesh cell
T and its faces composing ∂T \. We enforce strongly the homogeneous Dirichlet condition on
ΓD by considering the subspace

Ûkh,0 := {ŵh ∈ Ûkh | wF = 0 ∀F ∈ Fb,Dh }.
We consider the following discrete Nitsche-HHO problem:{

Find ûh ∈ Ûkh,0 such that
âγθ,h(ûh; ŵh) = ˆ̀

γθ,h(ŵh) ∀ŵh ∈ Ûkh,0.
(2.61)
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For all v̂h, ŵh ∈ Ûkh,0, the global discrete semilinear form âγθ,h and the global discrete linear
form ˆ̀

γθ,h are defined respectively by (compare with (2.12))

âγθ,h(v̂h; ŵh) :=
∑
T∈T

h

âT (v̂T , ŵT )−
∑

F∈Fb,S
h

θ

γ

(
σn(Rk+1

T (F )\(v̂T (F ))), σn(Rk+1
T (F )\(ŵT (F )))

)
F

+
∑

F∈Fb,S
h

1
γ

( [
φ̂γ(v̂T (F ))

]
R−

, φ̂γθ(ŵT (F ))
)
F
, (2.62a)

ˆ̀
γθ,h(ŵh) :=

∑
T∈T

h

(f, wT )T +
∑

F∈Fb,N
h

(gN , wF )F , (2.62b)

where

φ̂γθ(ŵT (F )) := θσn(Rk+1
T (F )\(ŵT (F )))− γwT (F ), (2.63a)

φ̂γ(ŵT (F )) := φ̂γ1(ŵT (F )) = σn(Rk+1
T (F )\(ŵT (F )))− γwT (F ). (2.63b)

Note that we are employing the trace of the cell unknown in the definition of φ̂γθ and φ̂γ .
We equip the space Ûkh,0 with the norm

‖v̂h‖2Ûk
h,0

:=
∑
T∈Th

|v̂T |2Ûk

T\
, ∀v̂h ∈ Ûkh,0, (2.64)

with the local seminorms | · |Ûk

T\
defined in (2.43). That ‖·‖

Ûk
h,0

defines a norm on Ûkh,0 follows

from the usual arguments, keeping in mind that the subset Fb,Dh , where the face unknowns are
set to zero, is non-empty. Let us now address the well-posedness of the discrete problem (2.61).
As above, we only consider θ = 1. Well-posedness also holds true for θ = 0 (with a less stringent
lower bound on γ0) and for θ = −1 (with the simple requirement that γ0 > 0). Let nb,S be the
maximum number of faces in Fb,Sh that a mesh cell can have (nb,S ≤ d on simplicial meshes).
In what follows, we use the fact that

([x]R− − [y]R−)(x− y) ≥ ([x]R− − [y]R−)2 ≥ 0, ∀x, y ∈ R. (2.65)

Lemma 2.18 (Well-posedness). Assume that θ = 1 and that γ0 ≥ 2nb,SC2
dt, where Cdt results

from the discrete trace inequality of Lemma 2.2. Let us set the penalty parameter to γ|F :=
γ0h
−1
F , for all F ∈ Fb,Sh . Then the discrete problem (2.61) is well-posed.

Proof. Let us first prove the following monotonicity property: for γ0 ≥ 2nb,SC2
dt, there is α > 0,

uniform with respect to h, such that, for all v̂h, ŵh ∈ Ûkh,0,

âγ1,h(v̂h; v̂h − ŵh)− âγ1,h(ŵh; v̂h − ŵh) ≥ α‖v̂h − ŵh‖2Ûk
h,0

+ ∆φ̂γ(v̂h, ŵh), (2.66)

with the shorthand notation

∆φ̂γ(v̂h, ŵh) :=
∑

F∈Fb,S
h

1
γ

( [
φ̂γ(v̂T (F ))

]
R−
−
[
φ̂γ(ŵT (F ))

]
R−

, φ̂γ(v̂T (F ))− φ̂γ(ŵT (F ))
)
F
. (2.67)

Note that the identity (2.65) implies that ∆φ̂γ(v̂h, ŵh) ≥ 0. Moreover, we have

âγ1,h(v̂h; v̂h − ŵh)− âγ1,h(ŵh; v̂h − ŵh)

=
∑
T∈Th

âT \(v̂T − ŵT , v̂T − ŵT )−
∑

F∈Fb,S
h

hF
γ0
‖σn(Rk+1

T \
(v̂T (F ) − ŵT (F )))‖2F + ∆φ̂γ(v̂h, ŵh).

(2.68)
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Let us denote by T1 and T2 the first two terms on the above right-hand side. We use the lower
bound on γ0 and the discrete trace inequality from Lemma 2.2 to infer that

T1 + T2 ≥
1
2
∑
T∈Th

âT \(v̂T − ŵT , v̂T − ŵT ),

and the stability property of âT \ in the seminorm |·|Ûk

T\
then implies that T1 + T2 ≥ α‖v̂h −

ŵh‖2Ûk
h,0

for some uniform positive constant α. This proves the monotonicity property (2.66).
To infer well-posedness from this property, we use the argument from [21, Corollary 15, p. 126].
Let (·, ·)Ûk

h,0
denote the inner product associated with the norm ‖·‖Ûk

h,0
. We define the nonlinear

operator Bh : Ûkh,0 → Ûkh,0 so that (Bh(v̂h), ŵh)Ûk
h,0

= âγ1,h(v̂h; ŵh), for all v̂h, ŵh ∈ Ûkh,0. We
prove as in [40] that Bh is hemicontinuous and, invoking (2.66), we conclude that Bh is a
one-to-one operator.

Remark 2.19. For θ = 1, the Nitsche-HHO formulation (2.61) can be recovered as the first-
order optimality condition of the functional

J Sh,γ(v̂h) := 1
2
∑
T∈T

h

âT (v̂T , v̂T )−
∑

F∈Fb,S
h

1
2γ ||σn(Rk+1

T (F )\(v̂T (F )))||2F

+
∑

F∈Fb,S
h

1
2γ ||

[
φ̂γ(v̂T (F ))

]2
R−
||2F −

∑
T∈T

h

(f, wT )T −
∑

F∈Fb,N
h

(gN , wF )F ,

for all v̂h ∈ Ûkh,0. Lemma 2.18 implies that for γ0 large enough, J Sh,γ is strongly convex.

2.5.3 Error analysis
The consistency error is defined by

Eh(ŵh) := ˆ̀
γθ,h(ŵh)− âγθ,h(Îkh(u); ŵh), ∀ŵh ∈ Ûkh,0, (2.70)

with the global reduction operator Îkh : H1
D(Ω) := {v ∈ H1(Ω) | γ∂Ω(v)|ΓD

= 0} → Ûkh,0 such
that the local components of Îkh(v), for all v ∈ H1

D(Ω), attached to a mesh cell T ∈ Th, are
Îk
T \

(v|T ). Owing to the nonlinearity of âγθ,h in its first argument, we will not proceed with the
same level of generality as in the linear case by bounding the consistency error acting on an
arbitrary test function ŵh ∈ Ûkh,0. We will consider more specifically the test function

ẑh := ûh − Îkh(u) ∈ Ûkh,0. (2.71)

We only give proofs for θ = 1; the proofs for the other values θ ∈ {−1, 0} follow by minor
adaptations of the arguments for θ = 1. Recall that ‖v‖2],T := ‖∇v‖2T + hT ‖nT ·∇v‖2∂T for any
function v ∈ H1+s(T ), s > 1

2 .

Lemma 2.20 (Consistency). Assume that u ∈ H1+s(Ω) with s > 1
2 . Let ẑh := ûh − Îkh(u).

There is a uniform constant C such that the following holds true:

Eh(ẑh) +
∑

F∈Fb,S
h

1
2γ
∥∥∥ [φγ(u)]R− −

[
φ̂γ(ûT (F ))

]
R−

∥∥∥2

F

.

∑
T∈T

h

‖u− πk+1
T (u)‖2],T

 1
2

‖ẑh‖Ûk
h,0

+
∑
T∈Th

‖u− πk+1
T (u)‖2],T + ∆φ̂γ(ûh, Îkh(u)), (2.72)

with the notation ∆φ̂γ(v̂h, ŵh) defined in (2.67).
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Proof. Using the PDE and the Neumann boundary condition satisfied by the exact solution u,
and since Rk+1

T \
◦ Îk

T \
= Ek+1

T \
for all T ∈ Th, we have

Eh(ẑh) =
∑
T∈Th

(−∆u, zT )T +
∑

F∈Fb,N
h

(σn(u), zF )F −
∑
T∈Th

âT (ÎkT \(u), ẑT )

+
∑

F∈Fb,S
h

1
γ

(
σn(Ek+1

T (F )\(u)), σn(Rk+1
T (F )\(ẑT (F )))

)
F

−
∑

F∈Fb,S
h

1
γ

( [
φ̂γ(ÎkT (F )\(u))

]
R−

, φ̂γ(ẑT (F ))
)
F
.

Adding and subtracting ∑
F∈Fb,S

h
(σn(u), zT (F ))F , we infer that

Eh(ẑh) = T1 + T2,

where

T1 :=
∑
T∈Th

(−∆u, zT )T +
∑

F∈Fb,D
h
∪Fb,N

h

(σn(u), zF )F +
∑

F∈Fb,S
h

(σn(u), zT (F ))F (2.73)

−
∑
T∈Th

âT (ÎkT \(u), ẑT ), (2.74)

T2 :=
∑

F∈Fb,S
h

1
γ

(
σn(Ek+1

T (F )\(u)), σn(Rk+1
T (F )\(ẑT (F )))

)
F

(2.75)

−
∑

F∈Fb,S
h

1
γ

( [
φ̂γ(ÎkT (F )\(u))

]
R−

, φ̂γ(ẑT (F ))
)
F
−

∑
F∈Fb,S

h

(σn(u), zT (F ))F , (2.76)

where we used in T1 that zF is zero for all F ∈ Fb,Dh . We then observe that the term T1 can
be estimated as in the proof of Lemma 2.16 (by letting Fb,Sh play the former role of Fb,Dh and
Fb,Dh ∪ Fb,Nh play the former role of Fb,Nh ). This leads to

T1 =
∑
T∈T

h

(∇(u− Ek+1
T \

(u)),∇zT )T −
∑
T∈T

h

(σn(u− Ek+1
T \

(u)), zT − z∂T \)∂T \ (2.77)

−
∑
T∈T

h

(η∂TSk∂T \(Î
k
T \(u)), Sk

∂T \
(ẑT ))∂T \ . (2.78)

so that, owing to the approximation result (2.46)-(2.47), we have

|T1| .
∑
T∈Th

‖u− πk+1
T (u)‖2],T

 1
2

‖ẑh‖Ûk
h,0
.

Concerning T2, we use that σn(u) = [φγ(u)]R− , and re-arranging terms, we infer that T2 =
−T2,1 + T2,2, where

T2,1 :=
∑

F∈Fb,S
h

1
γ

(
σn(u− Ek+1

T (F )\(u)), σn(Rk+1
T (F )\(ẑT (F )))

)
F
, (2.79)

T2,2 :=
∑

F∈Fb,S
h

1
γ

(
[φγ(u)]R− −

[
φ̂γ(ÎkT (F )\(u))

]
R−

, φ̂γ(ẑT (F ))
)
F
. (2.80)

Recalling that γ|F = γ0h
−1
F , we can bound T2,1 using the approximation result (2.46) together

with the discrete trace inequality from Lemma 2.2 as follows:

|T2,1| .
∑
T∈Th

‖u− πk+1
T (u)‖2],T

 1
2

‖ẑh‖Ûk
h,0
.

44



2.5. Signorini’s conditions with cell-based traces

Moreover, concerning T2,2, we have T2,2 = T2,2,1 + T2,2,2 + T2,2,3, where

T2,2,1 :=
∑

F∈Fb,S
h

1
γ

( [
φ̂γ(ûT (F ))

]
R−
−
[
φ̂γ(ÎkT (F )\(u))

]
R−

, φ̂γ(ẑT (F ))
)
F
, (2.81)

T2,2,2 :=
∑

F∈Fb,S
h

1
γ

(
[φγ(u)]R− −

[
φ̂γ(ûT (F ))

]
R−

, φ̂γ(ûT (F ))− φγ(u)
)
F
, (2.82)

T2,2,3 :=
∑

F∈Fb,S
h

1
γ

(
[φγ(u)]R− −

[
φ̂γ(ûT (F ))

]
R−

, φγ(u)− φ̂γ(ÎkT (F )\(u))
)
F
. (2.83)

We have T2,2,1 = ∆φ̂γ(ûh, Îkh(u)) and

T2,2,2 ≤ −
∑

F∈Fb,S
h

1
γ

∥∥∥ [φγ(u)]R− −
[
φ̂γ(ûT (F ))

]
R−

∥∥∥2

F
,

where we used the identity (2.65). Moreover, using Young’s inequality, we infer that

T2,2,3 ≤
∑

F∈Fb,S
h

1
2γ
∥∥∥ [φγ(u)]R− −

[
φ̂γ(ûT (F ))

]
R−

∥∥∥2

F
+

∑
F∈Fb,S

h

2
γ

∥∥∥φγ(u)− φ̂γ(ÎkT (F )\(u))
∥∥∥2

F
,

(2.84)

and recalling the definitions of φγ , φ̂γ , and γ, we have

2
γ

∥∥∥φγ(u)− φ̂γ(ÎkT (F )\(u))
∥∥∥2

F
. hF ‖nT (F )·∇(u− Ek+1

T \
(u))‖2F + h−1

F ‖u− πk+1
T (F )(u)‖2F (2.85)

. ‖u− πk+1
T (F )(u)‖2],T (F ), (2.86)

where we used the approximation result (2.46) to bound the first term on the right-hand side
and the arguments in the proof of Lemma 2.13 to bound the second term (implying that
h−1
F ‖u− πk+1

T (F )(u)‖2F . ‖∇(u− πk+1
T (F )(u))‖2T (F ) . ‖u− πk+1

T (F )(u)‖2],T (F )). Therefore, we obtain

T2,2,2 + T2,2,3 ≤ −
∑

F∈Fb,S
h

1
2γ
∥∥∥ [φγ(u)]R− −

[
φ̂γ(ûT (F ))

]
R−

∥∥∥2

F
+ C

∑
T∈Th

‖u− πk+1
T (u)‖2],T .

(2.87)

Putting everything together, we obtain the expected estimate.

Theorem 2.21 (H1-error estimate). Assume that u ∈ H1+s(Ω) with s > 1
2 . The following

holds true:∑
T∈Th

‖∇(u−Rk+1
T \

(ûT ))‖2T +
∑

F∈Fb,S
h

hT (F )

∥∥∥ [φγ(u)]R− −
[
φ̂γ(ûT (F ))

]
R−

∥∥∥2

F

.
∑
T∈Th

‖u− πk+1
T (u)‖2],T . (2.88)

Consequently, letting t := min(k + 1, s), we have,

∑
T∈T

h

‖∇(u−Rk+1
T \

(ûT ))‖2T +
∑

F∈Fb,S
h

hT (F )

∥∥∥ [φγ(u)]R− −
[
φ̂γ(ûT (F ))

]
R−

∥∥∥2

F

.
∑
T∈T

h

h2t
T |u|2Ht+1(T ). (2.89)
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Proof. Recall that ẑh = ûh − Îkh(u). Owing to the monotonicity property (2.66), the definition
of the consistency error, and the bound from Lemma 2.20, we infer that

α‖ẑh‖2Ûk
h,0

+ ∆φ̂γ(ûh, Îkh(u)) +
∑

F∈Fb,S
h

1
2γ
∥∥∥ [φγ(u)]R− −

[
φ̂γ(ûT (F ))

]
R−

∥∥∥2

F
(2.90)

≤ Eh(ẑh) +
∑

F∈Fb,S
h

1
2γ
∥∥∥ [φγ(u)]R− −

[
φ̂γ(ûT (F ))

]
R−

∥∥∥2

F
(2.91)

≤
∑
T∈T

h

‖u− πk+1
T (u)‖2],T

 1
2

‖ẑh‖Ûk
h

+ ∆φ̂γ(ûh, Îkh(u)). (2.92)

Hence, clearing the term ∆φ̂γ(ûh, Îkh(u)) and invoking Young’s inequality leads to the expected
bound (2.88). Finally, (2.89) follows from (2.88) and Lemma 2.5.

Remark 2.22 (Face-based trace version). The main bottleneck when considering the face-based
trace version of the Nitsche-HHO method is to bound the term hF ‖φγ(u)−φ̂γ(Îk

T (F )\(u))‖2F when
estimating T2,2,3. Indeed, in this case, we end up with a term of the form h−1

F ‖u − πkF (u)‖2F ,
which is of order O(h2k), instead of h−1

F ‖u− πk+1
T (F )(u)‖2F , which is of order O(h2(k+1)). Thus,

the above analysis for the face version leads to a suboptimal H1-error estimate of order O(hk).
Our numerical experiments, yet, indicate that one can still hope for the optimal rate O(hk+1).

2.5.4 Numerical results
We present here two test cases for Signorini conditions. We consider the model problem (2.7)-
(2.8) in two dimensions. To deal with the nonlinearity, we use a semi-smooth Newton solver
[3, 97, 116] (see Algorithm 1.

Test case 1: manufactured solution

We build an exact solution using polar coordinates for the model problem (2.7)–(2.8), defined
in Ω = [−1, 1]× [−1, 0]. The closed form solution u : Ω→ R2 in polar coordinates is

u(r, θ) = −r 11
2 sin

(11
2 θ
)
, (2.93)

with a source term f = 0. The Signorini boundary is located at the top of the domain
ΓS = [−1, 1] × {0}, and the transition between contact (u = 0) and non-contact (u < 0)
happens at (0, 0). Appropriate Dirichlet conditions are applied on the remaining boundaries.
The exact solution is depicted in Figure 2.6 along with the numerical solution at each barycenter
of faces and cells of an hexagonal mesh.

We present in Table 2.7 and Table 2.8 the errors in the H1-norm and convergence rates
using the symmetric variant of Nitsche-HHO (θ = 1) and polynomial degrees up to 3, for the
face and the cell versions, respectively. Notice that the analytical solution (2.93) enjoys the
needed regularity to expect optimal convergence rates for these polynomial orders. We report
the numerical results for the nonsymmetric variants of the cell version in Table 2.9 (θ = 0) and
Table 2.10 (θ = −1). In order to match the theoretical lower bound on the penalty parameter,
we use γ0 = (k + 1)(k + 2) for θ = 1 and γ0 = 1

4(k + 1)(k + 2) for θ = 0. In all cases, the
numerical results are in good agreement with the expected asymptotic convergence rates, even
for the face version.

We display in Figure 2.11 and Figure 2.12 the H1-error (left) and the number of iterations
(right) as a function of the penalty parameter γ0 with k ∈ {0, 3} and θ ∈ {−1, 1}. We present
the relative errors, using the term ∑

T∈Th
||∇(Rk+1

T \
◦ Îk

T \
(u))||T for normalization. We set a

residual convergence threshold of 10−9 for the semi-smooth Newton solver. We run our test
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Figure 2.6: Exact solution for Signorini conditions and test case 1. The magenta dots represent
the values of the numerical solution at the faces and cells barycenters of an hexagonal mesh
(depicted in black). The contact boundary corresponds to the side {y = 0}.

Table 2.7: Test case 1 for Signorini conditions. H1-error and convergence rates for the face
version with θ = 1, γ0 = (k + 1)(k + 2) and k ∈ {0, 1, 2, 3}.

Triangles
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
0.168 1.311e+00 1.727e-01 1.68e-02 2.606e-04
0.084 7.144e-01 0.876 4.588e-02 1.912 1.403e-03 3.058 1.667e-05 3.966
0.042 3.741e-01 0.933 1.186e-02 1.951 1.654e-04 3.084 1.054e-06 3.984

Hexagons
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
0.622 3.621e+00 1.576e+00 2.262e-01 2.517e-02
0.338 2.564e+00 0.566 4.494e-01 2.058 3.973e-02 3.327 1.809e-03 4.342
0.177 1.508e+00 0.824 1.190e-01 2.063 3.814e-03 3.188 1.214e-04 4.203
0.091 8.179e-01 0.918 3.057e-02 2.039 4.835e-04 3.100 7.856e-06 4.112

over a coarse uniform triangulation with meshsize h = 0.168 and a coarse hexagonal mesh
with meshsize h = 0.622. For the value θ = 0, and the lowest values of γ0, we observed a
severe degradation on the semi-smooth Newton convergence, and therefore the corresponding
results are not reported. For triangular meshes, and for a wide range of values, the parameter
γ0 has almost no influence on the H1-error. Also, the number of Newton iterations is almost
independent of θ, and, as expected, depends mostly of the order k and the value of γ0. Remark
that for k = 3, the number of iterations increases notably when γ0 is increased. For hexagonal
meshes, γ0 has a stronger influence, especially in the case θ = 1. For instance, when k = 3,
the semi-smooth Newton solver does not provide a good approximation if γ0 = 10−1 and does
not even converge if γ0 is taken smaller and below a threshold of approximatively 10−2. This
emphasizes the role of the shape of the cells on the constant Cdt involved in Lemma 2.18
(well-posedness).

47



Chp. 2. Nitsche’s method for Dirichlet conditions and Signorini contact

Table 2.8: Test case 1 for Signorini conditions. H1-error and convergence rates for the cell
version with θ = 1, γ0 = (k + 1)(k + 2) and k ∈ {0, 1, 2, 3}.

Triangles
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
0.168 1.338e+00 1.948e-01 1.377e-02 2.937e-04
0.084 7.268e-01 0.880 5.210e-02 1.903 1.789e-03 2.944 1.917e-05 3.938
0.042 3.802e-01 0.935 1.356e-02 1.942 2.220e-04 3.010 1.220e-06 3.973

Hexagons
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
0.622 3.708e+00 1.719e+00 2.2488e-01 2.582e-02
0.338 2.613e+00 0.574 4.775e-01 2.100 3.142e-02 3.393 1.828e-03 4.342
0.177 1.525e+00 0.837 1.233e-01 2.101 3.927e-03 3.229 1.219e-04 4.203
0.091 8.226e-01 0.926 3.117e-02 2.064 4.907e-04 3.121 7.872e-06 4.112

Table 2.9: Test case 1 for Signorini conditions. H1-error and convergence rates for the cell
version with θ = 0, γ0 = 1

4(k + 1)(k + 2) and k ∈ {0, 1, 2, 3}.

Triangles
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
0.168 1.338e+00 1.944e-01 9.741e-03 2.880e-04
0.084 7.271e-01 0.880 5.206e-02 1.901 1.265e-03 2.945 1.896e-05 3.925
0.042 3.803e-01 0.935 1.355e-02 1.942 1.609e-04 2.975 1.214e-06 3.964

Hexagons
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
0.622 3.663e+00 1.719e+00 2.478e-01 2.526e-02
0.338 2.604e+00 0.560 4.773e-01 2.101 3.129e-02 3.393 1.815e-03 4.317
0.177 1.522e+00 0.834 1.233e-01 2.101 3.918e-03 3.226 1.216e-04 4.197
0.091 8.218e-01 0.924 3.117e-02 2.064 4.901e-04 3.119 7.864e-06 4.109

A second test–case

We now consider a test case described in [13] (see also [29]) on the unit square Ω = (0, 1)2.
The contact boundary is located at the bottom of the domain ΓS = [0, 1] × {0}, whereas an
homogeneous Dirichlet condition is applied at the top boundary ΓD = [0, 1] × {1}. On the
remaining parts of the boundary, homogeneous Neumann boundary conditions are applied, i.e.
ΓN = ({0} × [0, 1]) ∪ ({1} × [0, 1]). The expression for the source term is f = 2π sin(2πx).

There is no closed-form solution to this problem up to our knowledge, so that the reference
solution is computed using a very fine triangulation with mesh size h = 0.005 and with quadratic
and cubic polynomials on the faces and in the cells, respectively. A transition between contact
(u = 0) and non-contact (u < 0) on ΓS has been reported numerically in [13, 29], as well
as optimal convergence rates in L2- and H1-norms for piecewise linear finite elements. We
depict in Figure 2.13 our numerical solution, which matches (qualitatively) the one presented
in [29]. We present H1-errors and convergence rates in Table 2.14 with polynomials of order
k ∈ {0, 1, 2}. Remark that for k ∈ {1, 2} the convergence rates are below the optimal value of
k + 1, due to the limited regularity of the exact solution, which is expected to be H 5

2−ε,ε > 0,
in the neighborhood of ΓS (see, e.g., [109]).
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Table 2.10: Test case 1 for Signorini conditions. H1-error and convergence rates for the cell
version with θ = −1, γ0 = 0.005 and k ∈ {0, 1, 2, 3}.

Triangles
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
0.168 1.311e+00 1.733e-01 8.645e-03 1.801e-04
0.084 7.144e-01 0.876 4.601e-02 1.931 1.105e-03 2.968 1.149e-05 3.970
0.042 3.741e-01 0.933 1.189e-02 1.953 1.391e-04 2.989 7.231e-07 3.990

Hexagons
k = 0 k = 1 k = 2 k = 3

h error rate error rate error rate error rate
0.622 3.640e+00 1.721e+00 2.487e-01 2.538e-02
0.338 2.599e+00 0.552 4.780e-01 2.100 3.151e-02 3.387 1.824e-03 4.317
0.177 1.522e+00 0.831 1.235e-01 2.101 3.943e-03 3.227 1.219e-04 4.200
0.091 8.221e-01 0.924 3.121e-02 2.065 4.920e-04 3.123 7.875e-06 4.111
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Figure 2.11: Influence of the penalty parameter γ0 on the H1-relative errors (left) and the
number of semi-smooth Newton iterations (right). Triangular mesh with size h = 0.168, θ ∈
{−1, 1} and k ∈ {0, 3}.
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Figure 2.12: Influence of the penalty parameter γ0 on the H1-relative errors (left) and the
number of semi-smooth Newton iterations (right). Hexagonal mesh with mesh-size h = 0.622,
θ ∈ {−1, 1} and k ∈ {0, 3}.
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Figure 2.13: Computed numerical solution for Signorini conditions and test case 2.

Table 2.14: Test case 2 for Signorini conditions. H1-errors and convergence rates. Cell version
with θ = 1 and γ0 = 10.

k = 0 k = 1 k = 2
h error rate error rate error rate
0.168 2.492e-01 3.734e-02 9.746e-03
0.084 1.275e-01 0.967 9.794e-03 1.931 2.938e-03 1.730
0.042 6.445e-02 0.984 2.666e-03 1.877 1.143e-03 1.361
0.021 3.240e-02 0.992 7.754e-04 1.781 3.409e-04 1.746
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Chapter 3

A lowest-order adaptive method for
Bingham antiplanar flows
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We devise a hybrid lowest-order discretization method for Bingham antiplanar flows, where
the velocity is discretized by means of one unknown per mesh face and one unknown per mesh
cell. The cell unknowns can be eliminated locally by static condensation. The main advan-
tages of this hybrid discretization method are local conservativity and the possibility to use
polygonal/polyhedral meshes. We exploit this feature in the context of adaptive mesh refine-
ment to capture the yield surface by means of local mesh refinement and possible coarsening
by agglomeration in the unyielded region. We consider the augmented Lagrangian method to
solve iteratively the variational inequalities, using piecewise constant vector fields for the aux-
iliary variable and the associated Lagrange multiplier. Numerical results are presented in pipes
with circular and eccentric annulus cross-section for different Bingham numbers. Analytical
solutions are available for the first test case, whereas for the second test case, we compare our
results to those in [124, 127].

This chapter is organized as follows. In Section 3.1, we present the model problem and we
recall the Augmented Lagrangian setting. In Section 3.2, we describe the discrete formulation
and the discrete augmented Lagrangian method. In Section 3.3, we outline the adaptive algo-
rithm for the detection of the yield surface. Finally, in Section 3.4 we present our numerical
results on Bingham antiplanar flows.

3.1 Introduction
The goal of the present chapter is to devise a hybrid discretization method of the velocity field
to accurately track the yield surface using adaptive mesh refinement. Hybrid discretization
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methods are formulated in terms of discrete unknowns attached to mesh faces. Cell-based
unknowns are also introduced, but they are eliminated locally by a Schur complement technique
known as static condensation. Salient examples of hybrid discretization methods include in the
lowest-order case are Hybrid Finite Volumes (HFV) [70] and Mimetic Finite Differences (MFD)
[22] (a unifying viewpoint between these two methods within the broad family of Hybrid-Mixed-
Mimetic methods is developed in [64]), and in the higher-order case, Hybridizable Discontinuous
Galerkin (HDG) methods [52] and Hybrid High-Order (HHO) methods [62, 59]. HHO and HDG
methods have been bridged in [51], whereas in the lowest-order case, HHO methods are closely
related to HFV methods, up to an equivalent choice of stabilization (see [62, Section 2.5] for
further insight).

In this chapter, we consider a hybrid lowest-order discretization method. The present
method can be recovered by setting the polynomial degree k = 0 in the HHO method. Specif-
ically, the velocity unknown is approximated by a pair of discrete unknowns, consisting of
a collection of values attached to the mesh faces and a collection of values attached to the
mesh cells. In addition, we consider piecewise constant vector fields for the proxy of the strain
rate vector and the associated Lagrange multiplier. We do not consider higher-order approx-
imations in this chapter; such approximations (for k = 1) are considered in Chapter 4. The
resulting discrete variational inequalities are solved using the Alternating Direction Method of
Multipliers (ADMM) [79, 75].

Let us briefly outline the simplified version of the Bingham flow model for a viscoplastic
fluid in pipes and the corresponding Augmented Lagrangian formulation. Let Ω ⊂ R2 denote
the cross-section of the pipe; Ω is an open, bounded, connected subset of R2 with a Lipschitz
boundary. Given an external uni-directional force field f : Ω→ R aligned with the transverse
direction to the cross-section, and considering, for simplicity, homogeneous Dirichlet boundary
conditions, the Bingham antiplanar flow model consists of looking for the stress vector field
σ : Ω→ R2 and the uni-directional velocity field u : Ω→ R such that

∇·σ + f = 0 in Ω,
u = 0 on ∂Ω,

(3.1)

with the constitutive equationσ = µ∇u+ σ0
∇u
|∇u|`2

for |σ|`2 > σ0,

∇u = 0 for |σ|`2 ≤ σ0,

(3.2)

with µ > 0 and σ0 > 0 denoting, respectively, the shear viscosity and the shear yield stress and
|τ |`2 denoting the Euclidean norm of any vector τ ∈ R2. The region where |σ|`2 > σ0 is called
the yielded zone and corresponds to liquid behavior, whereas the region where |σ|`2 ≤ σ0 is
called the unyielded zone and corresponds to solid behavior. The yield surface where |σ|`2 = σ0
separates the two regions. The yield surface is not known a priori, and its prediction is an
important aspect of viscoplastic flow simulation.

Remark 3.1 (Derivation from the full Bingham flow model). We recall from Chapter 1 that
the Bingham flow model consists of looking for the total symmetric stress tensor field σtot :
Ω→ Rd×ds (with d = 3) and the velocity field u : Ω→ Rd such that

∇·σtot + f = 0 in Ω,
∇·u = 0 in Ω,
u = 0 on ∂Ω.

(3.3)

The constitutive equation involves a von Mises criterion, i.e., a threshold on the norm of the
deviatoric part of the stress tensor σ = σtot− 1

dtr(σtot)Id with Id the identity tensor of Rd×d.
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Specifically, σ is related to the symmetric velocity gradient ∇su = 1
2(∇u+∇uT) as follows:

σ = 2µ∇su+
√

2σ0
∇su

|∇su|`2
for |σ|`2 >

√
2σ0,

∇su = 0 for |σ|`2 ≤
√

2σ0,

(3.4)

with |τ |`2 =
√
τ : τ now denoting the Frobenius norm for any tensor τ ∈ Rd×d. In the specific

situation of pipe flows, the model problem can be simplified by assuming that the velocity field
is a divariate uni-directional field, that is, Ω ⊂ R2 now denotes the cross-section of the pipe,
and letting x = (x, y) be the position vector in Ω, we have

u(x) = (0, 0, u(x))T, 2∇su =
[

0 ∇u
∇uT 0

]
. (3.5)

Let us denote with σ(3.4) ∈ R3×3
s the symmetric stress tensor satisfying (3.4) and by σ(3.2) ∈ R2

the stress vector satisfying (3.2). Then, we readily verify that

σ(3.4) =

 0 σ(3.2)

σT
(3.2) 0

 , (3.6)

so that (0, 0,∇ · σ(3.2))T = ∇ · σ(3.4) = −f = −(0, 0, f)T.

Let L2(Ω) denote the space of square-integrable functions over Ω and let us set L2(Ω) :=
L2(Ω;R2). The inner product in both spaces is denoted (·, ·)Ω and the associated norm ‖ · ‖Ω.
Let H1

0 (Ω) denote the space of functions from the Sobolev space H1(Ω) (that is, functions from
L2(Ω) whose weak gradient is in L2(Ω)) with null trace on ∂Ω. Assuming f ∈ L2(Ω), it is
well-known that the velocity field solving (3.1)-(3.2) is the unique minimizer in H1

0 (Ω) of the
following energy functional:

u = arg min
v∈H1

0 (Ω)

{
(H(∇v), 1)Ω − (f, v)Ω

}
, (3.7)

with the dissipation potential H : R2 → R such that

H(g) = µ

2 |g|
2
`2 + σ0|g|`2 , ∀g ∈ R2. (3.8)

The first term in the right-hand side of (3.8) evaluated with g = ∇v represents the viscous
dissipation potential and the second term the plastic dissipation potential. The weak form
of (3.1) together with (3.2) is

(σ,∇v)Ω = (f, v)Ω ∀v ∈ H1
0 (Ω), (3.9)

where the stress vector σ is in the sub-differential

∂H(∇u) = {τ ∈ R2 | H(j)−H(∇u) ≥ τ · (j −∇u), ∀j ∈ R2}. (3.10)

Note that u is uniquely defined, whereas σ is uniquely defined only in the fluid regions where
|σ|`2 > σ0.

The minimization problem (3.7) can be tackled by decomposition-coordination methods. To
decouple the nonlinearity from the velocity field, one introduces an auxiliary field γ ∈ L2(Ω),
and one enforces that γ = ∇u by means of the Lagrange multiplier σ ∈ L2(Ω) (which turns
out to be indeed the stress vector) together with a least-squares penalty term. Let us set

X(Ω) := H1
0 (Ω)×L2(Ω)×L2(Ω). (3.11)
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Chp. 3. A lowest-order adaptive method for Bingham antiplanar flows

The augmented Lagrangian is defined as L : X(Ω)→ R such that

L(u,γ,σ) := (H(γ), 1)Ω + (σ,∇u− γ)Ω + α

2 ‖∇u− γ‖
2
Ω − (f, u)Ω, (3.12)

where α > 0 is the augmentation parameter. The triplet (u,γ,σ) ∈ X(Ω) is a saddle-point of
the Lagrangian L, that is to say, L(u,γ, τ ) ≤ L(u,γ,σ) ≤ L(v, δ,σ) for all (v, δ, τ ) ∈ X(Ω),
if and only if γ = ∇u and the pair (σ, u) solves (3.1) and (3.2).

The ALG2 iterative method [77] minimizes first the augmented Lagrangian L jointly with
respect to the pair (u,γ) and then updates at each iteration the Lagrange multiplier σ. The
idea in the ADMM is that the joint minimization is replaced by a successive minimization with
respect to γ and then to u. Let the superscript n ≥ 0 denote the iteration index in the ADMM.
Given the initial values u0 ∈ H1

0 (Ω) and σ0 ∈ L2(Ω), we perform, for all n ≥ 0, the three steps
in Algorithm 3.

Algorithm 3 Antiplanar Bingham flows: ADMM in continuous form
1: Choose (u0,σ0) ∈ H1

0 (Ω)×L2(Ω)
2: Choose ε > 0, set R0 =∞ and n = 0
3: while Rn > ε do
4: Step 1: Given un ∈ H1

0 (Ω) and σn ∈ L2(Ω), we define the field γn+1 ∈ L2(Ω)
pointwise (a.e.) in Ω as follows:

γn+1 :=


1

(α+ µ) (|θn|`2 − σ0) θn

|θn|`2
if |θn|`2 > σ0,

0 if |θn|`2 ≤ σ0,

(3.13)

where θn := σn + α∇un. A straightforward computation shows that we are actually
enforcing ∂γL(un,γn+1,σn) = 0.

5: Step 2: We seek un+1 ∈ H1
0 (Ω) solving the following variational problem where the

stress terms are treated as explicit force terms:

α(∇un+1,∇v)Ω = (f, v)Ω − (σn − αγn+1,∇v)Ω, ∀v ∈ H1
0 (Ω), (3.14)

which amounts to enforcing ∂uL(un+1,γn+1,σn) = 0.
6: Step 3: Finally, we update the Lagrange multiplier σn+1 ∈ L2(Ω) by setting

σn+1 := σn + α(∇un+1 − γn+1). (3.15)

As the ADMM approaches convergence, we have (∇un+1 − γn+1) → 0 so that
∂σL(un+1,γn+1,σn+1)→ 0.

7: We evaluate

Rn+1 :=
(
‖σn+1 − σn‖2Ω + α2‖∇un+1 −∇un‖2Ω

) 1
2 . (3.16)

8: n = n+ 1
9: end while

3.2 Hybrid lowest-order discretization

In this section, we describe the hybrid lowest-order discretization method for our model prob-
lem, together with the resulting discrete augmented Lagrangian and the ADMM.
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3.2. Hybrid lowest-order discretization

3.2.1 Discrete minimization problem on the velocity

We employ a hybrid lowest-order discretization method [62, 70, 64], with scalar velocity u
approximated by a pair of discrete unknowns, consisting of a collection of scalar unknowns
attached to the mesh faces and a collection of scalar unknowns attached to the mesh cells.
The auxiliary variable γ and the Lagrange multiplier (or stress) σ are both discretized by a
collection of vector unknowns attached to the mesh cells. One key advantage of considering
a hybrid lowest-order discretization method is that all the discrete vector fields are piecewise
constant on the mesh, which substantially facilitates the enforcement at the discrete level of
Step 1 in Algorithm 4.

We consider a mesh sequence (T`)`∈N where, for all ` ∈ N, T` is a finite collection of
nonempty, disjoint, open cells whose closures either cover Ω exactly or cover a close approx-
imation thereof Ω` = ∪T∈T`

T if Ω has curved boundaries. The subscript ` typically refers to
a step in an adaptive mesh procedure which can involve local mesh refinement (and possibly
coarsening). A generic mesh cell is denoted T , its boundary ∂T , its diameter hT , and its unit
outward normal nT . The mesh cells can have a polygonal shape, and the meshes can possess
hanging nodes. We set h` := minT∈T`

hT (we consider the minimum value instead of the more
usual maximum value since the meshes are locally refined). The mesh sequence is assumed
to be shape-regular in the sense, e.g., of [59], meaning that every mesh T` admits a simpli-
cial matching refinement belonging to a shape-regular mesh sequence in the sense of Ciarlet.
This assumption can be relaxed to allow for polygonal meshes with some face degeneration
as in [32]; this is useful for instance when considering agglomeration-based mesh coarsening
procedures. We say that the one-dimensional subset F ⊂ Ω is a mesh interface (resp., mesh
boundary face) if there are two distinct mesh cells TF,1, TF,2 ∈ T` and an affine hyperplane
HF so that F = ∂TF,1 ∩ ∂TF,2 ∩ HF (resp., there is a mesh cell TF ∈ T` and an affine hy-
perplane HF so that F = ∂TF ∩ ∂Ω` ∩ HF , where Ω` := int(⋃T∈T`

T )). Mesh interfaces are
collected in the set F i` , mesh boundary faces in Fb` , and we let F` := F i` ∪Fb` be the collection
of the mesh faces. The diameter of a mesh face F ∈ F` is denoted by hF . For all T ∈ T`,
we let F∂T := {F ∈ F` |F ⊂ ∂T} be the collection of the mesh faces composing ∂T . For all
F ∈ F∂T ,nT,F is defined as the unit normal to F pointing outward T ; notice that, by definition,
nT,F is a constant vector over F . Let A ⊂ Ω` be a mesh cell, its boundary, or one of its faces;
the inner product in L2(A) and in L2(A) := L2(A;R2) is denoted (·, ·)A and the associated
norm ‖ · ‖A. For a finite set S, |S| denotes its cardinal number.

Let T ∈ T` be a mesh cell. Recall from [59, 62] that HHO methods are devised from a local
reconstruction operator and a local stabilization operator. In the present lowest-order setting
where k = 0, both operators can be written explicitly, see also [70, 64]. The local space of
discrete velocity unknowns is defined as

ÛT := P0(T ;R)× P0(F∂T ;R) ≡ R× R|F∂T | ∀T ∈ T`, (3.17)

where the first component of the pair is related to the cell and the second component to the
faces composing its boundary. Moreover, P0(F∂T ) denotes the space composed of piecewise
constant functions over ∂T . We use the notation v̂T = (vT , (vF )F∈F∂T

) for a generic element
in ÛT . Let P0(T ;Rd) be composed of constant Rd-valued functions in T . The local gradient
reconstruction operator GT : ÛT → P0(T ;Rd) is such that, for all v̂T ∈ ÛT ,

GT (v̂T ) =
∑

F∈F∂T

|F |d−1
|T |d

(vF − vT )nT,F , (3.18)

where |F |d−1 is the measure of the face F and |T |d that of the cell T . The stabilization operator
ST : ÛT → P0(F∂T ) is such that, for all v̂T ∈ ÛT , its restriction to a face F ∈ F∂T is defined as

S∂T (v̂T )|F := vF − vT +GT (v̂T ) · (xF − xT ), (3.19)
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Chp. 3. A lowest-order adaptive method for Bingham antiplanar flows

where xF and xT are, respectively, the barycenter of F and of T . The above local gradient
reconstruction and stabilization operators are to be used jointly to discretize the viscous energy.
The main motivation is the following stability property (see, e.g., [62, Lemma 4]): letting η∂T
be the piecewise constant function on ∂T such that η∂T |F = h−1

F , there is a real number ρ > 0,
independent of `, such that, for all v̂T ∈ ÛT and all T ∈ T`,

ρ|v̂T |2T ≤ ‖GT (v̂T )‖2T + ‖η
1
2
∂TS∂T (v̂T )‖2∂T ≤ ρ−1|v̂T |2T , (3.20)

with the local H1-like seminorm on ÛT such that

|v̂T |2T :=
∑

F∈F∂T

h−1
F ‖vF − vT ‖2F . (3.21)

This result shows that the gradient reconstruction operator together with the stabilization
operator are able to act as an H1-like seminorm on ÛT .

We can now assemble the convex nonlinear minimization problem solved by the discrete
velocity. Let us set

Û` := P0(T`)× P0(F`) ≡ R|T`| × R|F`|, (3.22)

where the first component of the pair is related to the mesh cells and the second component
to the mesh faces. We use the notation v̂` = ((vT )T∈T`

, (vF )F∈F`
) for a generic element in Û`,

and for any mesh cell T ∈ T` and any v̂` ∈ Û`, we let v̂T ∈ ÛT be composed of the components
of v̂` attached to the cell T and its faces. We enforce the homogeneous Dirichlet condition on
the discrete velocity explicitly by introducing the subspace

Û`,0 := {v̂` ∈ Û` | vF = 0, ∀F ∈ Fb` }. (3.23)

The discrete counterpart of (3.7) is to seek the unique discrete velocity field û` = (uT`
, uF`

) ∈
Û`,0 such that

û` = arg min
v̂`∈Û`,0

∑
T∈T`

{
(H(GT (v̂T )), 1)T + α

2 ‖η
1
2
∂TS∂T (v̂T )‖2∂T − (f, vT )T

}
, (3.24)

with the dissipation potential H : R2 → R defined in (3.8) and where α is the augmentation
parameter of the Lagrangian. The stabilization term is needed to ensure stability in the discrete
system of Step 2 of Algorithm 4, see below. Our numerical experiments in Section 3.4.1 show
that this term does not have an influence on the velocity error if the parameter α is not too
small (e.g., of the order of the shear viscosity or larger).

3.2.2 Discrete augmented Lagrangian and ADMM
The derivation of the discrete augmented Lagrangian is identical to the continuous setting in
that we introduce, for all T ∈ T`, the auxiliary field γT ∈ R2, and we enforce that γT = GT (ûT )
by means of the Lagrange multiplier σT ∈ R2. Then, setting

X(T`) := Û`,0 × R2|T`| × R2|T`| R2|T`| := R2|T`|, (3.25)

the discrete augmented Lagrangian is defined as L` : X(T`)→ R such that

L`(û`,γ`,σ`) :=
∑
T∈T`

{
(H(γT ), 1)T + α

2 ‖η
1
2
∂TS∂T (ûT )‖2∂T − (f, uT )T

+ (σT ,GT (ûT )− γT )T + α

2 ‖GT (ûT )− γT ‖2T
}
, (3.26)
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where we used the notation γ` = (γT )T∈T`
and σ` = (σT )T∈T`

for all γ`,σ` ∈ R2|T`|. If
(û`,γ`,σ`) is a saddle-point of the discrete Lagrangian L`, then GT (ûT ) = γT for all T ∈ T`
and û` is the unique minimizer of (3.24).

The ADMM applied to the discrete augmented Lagrangian reads as follows: Given the initial
values û0

` ∈ Û`,0 and σ0
` ∈ R2|T`|, we perform, for all n ≥ 0, the three steps in Algorithm 4.

Notice in Step 2 that, as it is customary with hybrid discretization methods, the cell unknowns
can be locally eliminated in each mesh cell by static condensation. After this elimination
is performed, (3.28) reduces to a linear system in terms of the face unknowns whose stencil
couples neighboring faces sharing a mesh cell. As shown, e.g., in [51], this linear system
can be interpreted as a global transmission problem expressing the balance of appropriately
defined local fluxes in each mesh cell. We refer the reader to [50] for further aspects of the
implementation of HHO methods.

Algorithm 4 Antiplanar Bingham flows: ADMM in discrete form
1: Choose (û0

` ,σ
0
` ) ∈ Û`,0 × R2|T`|

2: Choose ε > 0, set R0 =∞ and n = 0
3: while Rn > ε do
4: Step 1: Given ûn` ∈ Û`,0 and σn` ∈ R2|T`|, we define the field γn+1

` ∈ R2|T`| such that,
for all T ∈ T`,

γn+1
T :=


1

(α+ µ) (|θnT |`2 − σ0) θnT
|θnT |`2

if |θnT |`2 > σ0,

0 if |θnT |`2 ≤ σ0,

(3.27)

where θnT := σnT + αGT (ûnT ).
5: Step 2: We seek ûn+1

` ∈ Û`,0 solving the following discrete variational problem where
the stress terms are treated as explicit force terms: For all v̂` ∈ Û`,0,

∑
T∈T`

{
α(GT (ûn+1

T ),GT (v̂T ))T + α(η∂TS∂T (ûn+1
T ), S∂T (v̂T ))∂T

}

=
∑
T∈T`

{
(f, vT )T − (σnT − αγn+1

T ,GT (v̂T ))T
}
. (3.28)

6: Step 3: Finally, we update the Lagrange multiplier σn+1
` ∈ R2|T`| by setting, for all

T ∈ T`,
σn+1
T := σnT + α(GT (ûn+1

T )− γn+1
T ). (3.29)

7: We evaluate the residual:

Rn+1
` :=

( ∑
T∈T`

‖σn+1
T − σnT ‖2T + α2 ∑

T∈T`

‖GT (ûn+1
T )−GT (ûnT )‖2T

) 1
2
.

8: n = n+ 1
9: end while

Remark 3.2 (Jump-based plastic energy). In each mesh cell T ∈ T`, the stabilization operator
S∂T defined in (3.19) essentially depends on the difference between the face unknowns and the
trace of cell unknown, i.e., it represents a jump term. We notice that in (3.24) and in (3.26)
this jump term only contributes to the viscous potential. This is rather natural since the jump
term tends to zero as the mesh is refined (see, e.g., [62, Eq. (45)]). One can consider an addi-
tional jump-based contribution to the plastic energy. This presents, however, the drawback of
introducing additional face-based auxiliary variables and Lagrange multipliers, thus significantly
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Figure 3.1: Schematic of the marking procedure for refinement.

increasing the computational costs. Moreover, we have observed in our numerical experiments
that these additional auxiliary variables and Lagrange multipliers do not improve the accuracy
of the simulations, even on relatively coarse meshes.

3.3 Mesh adaptation
The mesh sequence (T`)`∈N is generated iteratively by means of an adaptive procedure. The
step ` ≥ 0 of this procedure consists of solving the discrete minimization problem (3.24) on T`
by means of Algorithm 4, marking some cells of T` for refinement or coarsening, and producing
the new mesh T`+1. To describe our adaptive procedure, we introduce, for any mesh cell T ∈ T`,
the subset N v

T := {T ′ ∈ T` | ∂T ′ ∩ ∂T 6= ∅} which collects all the mesh cells (including T itself)
sharing at least a vertex with T , and the subset N f

T := {T ′ ∈ T` | ∂T ′ ∩ ∂T ∈ F`} which
collects all the mesh cells sharing a face with T . Furthermore, during the adaptive procedure,
any mesh cell is assigned a level ι(T ) ∈ N which is equal to the number of refinements that
were necessary to obtain the cell T from its ancestor in the original mesh T0 (and all the mesh
cells in T0 are assigned the level 0); thus, if T ∈ T`, then ι(T ) ∈ {0, . . . , `}.

3.3.1 Cell marking for refinement
The marking of the cells in T` for refinement involves two steps. First, all the cells in T` are
flagged according to the value of the quantities {|θnT |`2}T∈T`

once the ADMM has reached
convergence, that is, the cell flag is set to flag(T ) = SOLID if |θnT |`2 < σ0 and to flag(T ) =
LIQUID otherwise. Then, the first marking step increases by one the level of all the mesh cells
such that the setMv

T := {flag(T ′) | T ′ ∈ N v
T } contains both LIQUID and SOLID flags. The aim

of the second marking step is to control the level of hanging nodes produced by the first step.
Although the present hybrid discretization method can support more than one hanging node
per edge, we actually limit the number of hanging nodes per edge to one at most so as to ensure
a smoother transition of the mesh near the yield surface. To achieve this goal, we perform a
second marking of the cells to ensure that in any subset N f

T , the difference of cell levels is one at
most. The whole marking procedure is summarized in Algorithm 5 and Figure 3.1. Finally, the
mesh refinement step consists in performing a subdivision of the marked cells in 4 congruent
subcells (known in the literature as red refinement [126]).

Remark 3.3 (Comparison). Other criteria for flagging the cells near the yield surface can be
considered. For instance, in [128, 132], the contrast in the norm of the strain rate tensor in
vertex-based cell patches is used. We also notice that the present local mesh refinement procedure
is more local than those considered in the context of conforming finite elements which need to
build a mesh without hanging nodes. Here, there is still some non-locality because we limit the
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3.3. Mesh adaptation

Algorithm 5 Marking procedure
1: Require: collection of cell flags {flag(T )}T∈T`

2: for T ∈ T` do
3: Build the subsets of neighbors N v

T and their labelsMv
T

4: if Mv
T = {LIQUID,SOLID} then

5: Mark T and increase level ι(T ) = ι(T ) + 1
6: end if
7: end for
8: for T ∈ T` do
9: Build the subset of neighbors N f

T

10: for T ′ ∈ N f
T do

11: if |ι(T ′)− ι(T )| > 1 then
12: Mark and increase level of cell with lower level
13: end if
14: end for
15: end for

Figure 3.2: Adaptive meshes: (a) Initial mesh, (b) 2nd adapted mesh, (c) 5th adapted mesh

number of hanging nodes to one, but we can also consider a larger value for the number of
hanging nodes.

In order to test the adaptive procedure with control on the number of hanging nodes, we
perform an adaptation test in Ω = [−1, 1]2 by considering that the interface is a circle of radius
0.7 and marking the cells for refinement whenever the circle cuts them. Figure 3.2 shows the
resulting meshes with hanging nodes. The circle is depicted in red. The final figure confirms
the expected behavior of the algorithm.

3.3.2 Agglomeration-based coarsening

The agglomeration strategy is devoted to eliminate possible unnecessary degrees of freedom.
This can be exploited in antiplanar viscoplastic flows where the velocity is constant in the
unyielded region. The main idea is to agglomerate a collection of neighboring cells with SOLID
flags, denoted here as the agglomerate A. We additionally impose a restriction over each cell
T to be included in A, which reads such thatMv

T = {SOLID} and assures T is surrounded by
cells in solid state. This strategy searches to take only cells inside the unyielded region and
to limit the coarsening procedure close enough to the yield surface. In this fashion, we allow
a transition between unyielded and yielded regions, which in turns leaves a strip to drive the
adaptation refinement (keeping the search of the yield surface) and to prevent the partition of
the agglomerates.
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Notice that there can be different agglomerates through the domain, which allows to handle
problems with different unyielded regions as in the annulus cross-section problem (shown in
below). The set A is composed minimun by one cell.

We introduce two additional subsets N v
T \

:= N v
T \ {T} to denote the neighbors of a mesh

cell T (without including T itself), andMv
T \

:= {flag(T ′) | T ′ ∈ N v
T } to denote the subset of

flags for the neighbors of T . See Algorithm 7.

Algorithm 6 Recursive Function findPatch

1: findPatch(T,A)
2: Build the subsets of neighbors N v

T \
and their labelsMv

T \

3: if Mv
T \

= {SOLID} then
4: A = {T} ∪ A
5: for T ′ ∈ N v

T \
\A do

6: findPatch(T ′,A)
7: end for
8: end if

Algorithm 7 Module AGGLOMERATE
1: for T ∈ T` do
2: Build the subset of neighbors N v

T

3: if flag = SOLID then
4: A = φ
5: findPatch (T,A)
6: Agglomerate cells in A
7: end if
8: end for

3.4 Numerical results

In this section, we present our numerical results for Bingham flow problems. We consider flows
in pipes with a circular cross-section and an eccentric annular cross-section. The first setting
leads to one of the few Bingham pipe flow problems with known exact solution, whereas the
second setting is well-documented in the literature (see, among others, [124, 127, 16]). In all
cases, the external force f , which represents the transverse pressure gradient forcing the flow,
is constant over the cross-section. The (non-dimensional) Bingham number is defined as

Bi = σ0R

µV
, (3.30)

where R is a reference length (the radius of the outer boundary) and the reference velocity V
is computed as V = fR2

2µ , so that we have

Bi = 2σ0
fR

. (3.31)

In our numerical experiments, we set the convergence threshold in the ADMM to ε = 10−8.
The augmentation parameter is set to α = 10 and the pipe radius to R = 1. The external force
is set to f = 1 and then the yield stress is equal to the half of the Bingham number.
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3.4. Numerical results

Figure 3.3: Velocity profiles along the line with azimuthal angle π
6 for uniform triangulations

with mesh-sizes h ∈ {0.5, 0.1, 0.05}.

3.4.1 Circular cross-section
The cross-section Ω is a disk centered at the origin and of radius R. The exact velocity only
depends on the radial coordinate r and is given by

u(r)
V

=


1
2

(
1− r2

R2

)
− Bi

(
1− r

R

)
if r
R
≥ Bi,

1
2 (1− Bi)2 if r

R
≤ Bi.

(3.32)

The flow consists of a central solid region of radius Bi×R moving at a uniform velocity and a
liquid region connecting the central rigid plug to the pipe walls. In particular, no flow occurs
(u = 0) if the Bingham number is larger than 1 whereas the case Bi = 0 (no solid region)
corresponds to the classical Newtonian Poiseuille flow, i.e. either we consider the stress yield
is zero or the pressure gradient (represented here as f) goes to infinity.

We use the hybrid discretization method from Section 3.2.1 together with the augmented
Lagrangian and ADMM from Section 3.2.2. We actually discretize only one eighth of the unit
disk and enforce symmetry conditions on the sides of the resulting angular sector. In Figure 3.3,
we display the velocity profile along a line of azimuthal angle π

6 for uniform triangulations with
mesh-sizes h ∈ {0.5, 0.1, 0.05}. In each mesh cell, the velocity is reconstructed as an affine
function using the cell-value to assign its mean-value and the gradient reconstruction operator
to evaluate its gradient. We observe very close profiles between h = 0.1 and h = 0.05.

We show in Figure 3.4 the velocity error ‖u− uh‖L2(T`) vs. the mesh-size for the values of
the augmentation parameter α = 10k with k ∈ {−2,−1, 0, 1, 2}. We first observe for α ≥ 1,
the velocity error is essentially independent of this parameter (and converging with first-order
in the mesh-size). For lower values of α, we see a degradation of the velocity error, which is
more pronounced for coarser meshes. Additionally, we found that the number of iterations to
reach a residual threshold of 10−5 for the above values of α is {5, 4, 14, 93, 913}. The choice
α = 10 made above appears as a reasonable compromise between (velocity) accuracy and
computational efficiency.

The approximation of the curved boundary with the mesh triangulation introduces an
error on the boundary conditions. To address this issue, we compute the energy of the discrete
solution using sequences of meshes producing circumscribed and inscribed polygons to the
exact circular domain. By placing the mesh nodes on the unit circle, we form an inscribed
polygon, whereas by placing them on a circle with radius 1/ cos(θ/2J), where J = 2j is the
number of boundary segments and j ∈ {3, 4, 5, 6}, we form a circumscribed polygon. In Table
3.5, we report the energy difference for the discrete solutions produced by the circumscribed
and inscribed triangulations. We observe that this difference converges to zero with essentially
second-order in the mesh-size.
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Figure 3.4: Velocity error ||u − uh||L2(T`) vs. the mesh-size for Bi = 0.3 and various values of
the augmentation parameter α. The curves calculated with α ∈ {1, 10, 100} overlap.

Table 3.5: Energy difference between circumscribed and inscribed uniform triangulations with
radial boundary divided by J = 2j segments and hJ the maximum mesh-size of the circum-
scribed mesh-triangulation.

j hJ Bi = 0.3 Bi = 0.9
3 1.55E-1 4.323e-4 9.667e-5
4 7.08E-2 1.076e-4 2.159e-5
5 3.57E-2 2.699e-5 5.753e-6
6 1.81E-2 9.237e-6 2.131e-6

We perform local mesh adaptation to detect the yield surface as described in Section 3.3
starting from an initial triangulation T0 with uniform mesh-size h0 = 0.1. We run the adaptive
loop five times, thereby producing the locally refined triangulations T`, ` ∈ {1, . . . , 5}. Figure
3.6 shows the discrete residual R` as a function of the iteration number in the ADMM for a
fine uniform triangulation with mesh-size h = 0.0075 and for the adaptation levels ` ∈ {1, 3, 5}
and for Bi = 0.3 and Bi = 0.9. We observe a similar convergence behavior for all meshes and
for both Bingham numbers. Notice that we do not initialize the ADMM at some level ` ≥ 1
with the interpolated solution from level (`− 1), but simply by zero; we indeed observed that
after a few tens of iterations, the behavior of the ADMM is similar for both choices of the
initialization. Moreover, we observe in this specific example that in all cases, the ADMM first
reaches a convergence rate of order O(1/n), but then switches to a faster rate as the discrete
residual approaches zero.

In Figures 3.7 and 3.8, we show for Bi = 0.3 and Bi = 0.9, respectively, the locally refined
meshes and the stress norm |σ|`2 for the adaptation levels ` ∈ {0, 1, 3, 5}. The exact yield
surface is depicted in red. We observe the progressive capture of the yield surface as the
adaptation loop progresses. Note that the locally refined meshes have a mesh-size near the
yield surface that is about the same as that of the uniform triangulation (h = 0.0075), but
they lead to reduction factors in the number of DOFs of 15 for Bi = 0.3 and of 6 for Bi = 0.9. To
provide a more quantitative measure of accuracy in the detection of the yield surface, we report
in Tables 3.9 and 3.10, for Bi = 0.3 and Bi = 0.9, respectively, the error on the mean-value and
variance for the distribution of the normalized radial coordinate of the mesh nodes attached
to edges separating a cell marked as belonging to the unyielded region with a cell marked as
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Figure 3.6: Discrete residual vs. ADMM iteration number for Bi = 0.3 (left) and Bi = 0.9
(right) for a fine uniform triangulation with h = 0.0075 and for locally refined meshes at
adaptation levels ` ∈ {1, 3, 5}.

Figure 3.7: Stress norm |σ|`2 for Bi = 0.3 and, from top to bottom and from left to right, for
adaptation levels ` ∈ {0, 1, 3, 5}. The colormap (from dark blue to light blue) corresponds to
the interval [σ0, σ0 + δ] with σ0 = 0.15 and δ = 0.005.
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Figure 3.8: Stress norm |σ|`2 for Bi = 0.9 and, from top to bottom and from left to right, for
adaptation levels ` ∈ {0, 1, 3, 5}. The colormap (from dark blue to light blue) corresponds to
the interval [σ0, σ0 + δ] with σ0 = 0.45 and δ = 0.005.

Table 3.9: Error on the mean-value and variance for the distribution of the radial coordinate
at the vertices of the discrete yield surface for Bi = 0.3.

` h` DOFs mean err. var.
0 8.10E-2 167 3.55E-2 1.78E-2
1 5.00E-2 217 2.51E-2 1.67E-2
2 2.50E-2 343 8.93E-3 7.79E-3
3 1.25E-2 563 3.39E-3 3.80E-3
4 6.25E-3 1011 1.26E-3 1.73E-3
5 3.12E-3 1864 7.20E-4 9.07E-4

belonging to the yielded region (we can view the collection of such edges as the discrete yield
surface). The radial coordinate is normalized by the exact radius of the yield surface which is
equal to Bi. In Tables 3.9 and 3.10, the column DOFs reports the total number of face-based
velocity unknowns. We observe from these tables that the error on the mean-value and the
variance converge to zero, essentially with first-order in h`. It is also interesting to notice that
the variance ranges between one-third and one-fourth of h`.

Finally, we study the possibility of agglomeration-based mesh coarsening in the unyielded
region. We consider here just a simple illustration where we perform the coarsening on the
locally refined mesh T3. We agglomerate all the cells in T3 that are in the unyielded region and
such that all their neighbors in the sense of faces are also in the unyielded region. We call the
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Table 3.10: Error on the mean-value and variance for the distribution of the radial coordinate
at the vertices of the discrete yield surface for Bi = 0.9.

` h` DOFs mean err. var.
0 8.10E-2 167 6.29e-3 1.27E-2
1 4.62E-2 321 4.03e-4 9.70E-3
2 2.31E-2 632 2.00e-3 5.71E-3
3 1.15E-2 1256 1.49e-3 3.04E-3
4 5.77E-3 2499 7.22e-4 1.99E-3
5 2.88E-3 5058 4.24e-4 8.66E-4
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Figure 3.11: Locally refined meshes with agglomeration-based coarsening in the unyielded
region for Bi = 0.3 (left) and Bi = 0.9 (right).

resulting mesh T ∗3 . These meshes are shown in Figure 3.11 for Bi = 0.3 and Bi = 0.9. They lead,
respectively, to 511 and 1027 DOFs (face-based velocity unknowns), which represents a relative
savings of 9.2% and 58.9% with respect to the corresponding mesh without agglomeration.
Computing a new discrete solution on T ∗3 , we observe that the H1-error on the velocity is
1.5 × 10−3 whereas it is 1.1 × 10−3 when computed on the mesh T3. Thus, performing an
agglomeration-based mesh coarsening does not really hamper accuracy while at the same time
reducing the computational costs, especially for Bi = 0.9 where the unyielded region is quite
large.

3.4.2 Eccentric annular cross-section

The geometric setting for the eccentric annular cross-section is illustrated in Figure 3.12. The
parameters are Re = 1 for the external radius, Ri = 0.4 for the inner radius, and e = −0.15
for the eccentricity of the inner hole. We take advantage of the symmetry by discretizing only
one half of the cross-section. The Bingham number is set to Bi = 0.2.

Figure 3.13 shows the discrete residual R` as a function of the iteration number in the
ADMM for a fine uniform triangulation with mesh-size h = 0.0075 and for the adaptation
levels ` ∈ {2, 4, 6} with initial mesh-size h = 0.05. As before, we observe a similar convergence
behavior for all meshes (with a few irregularities). However, in contrast with the previous test
case, the convergence rate is O(1/n) when the discrete residual goes below 10−6, whereas this
rate is higher when the residual is in the range [10−6, 10−2]. The locally refined meshes at the
adaptation levels ` ∈ {2, 6} are presented in Figure 3.14.

The left panel of Figure 3.15 shows the spatial distribution of the velocity field and of the
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Figure 3.12: Geometric setting for the eccentric annular cross-section.
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Figure 3.13: Discrete residual vs. ADMM iteration number for adaptation levels ` ∈ {0, 2, 4, 6}.
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Figure 3.14: Locally refined meshes for ` = 2 (left) and ` = 6 (right).

66



3.4. Numerical results

Figure 3.15: Computations on a uniform triangulation with mesh-size h = 0.0075. Left: ve-
locity field and unyielded region (gray); Right: stress norm with colormap (from dark gray to
light gray) corresponding to the interval [σ0, σ0 + δ] with σ0 = 0.1 and δ = 0.005.

Table 3.16: Velocity field and unyielded region (gray). From top to bottom and left to right:
adaptation levels ` ∈ {0, 2, 4, 6}.

unyielded region (notice that this region is composed of two connected components having a
different shape). The right panel of Figure 3.15 shows the spatial distribution of the stress norm
|σ|`2 . These results are obtained using a fine uniform triangulation with mesh-size h = 0.0075,
and can be compared with the results presented in Figure 3.16 (velocity field and unyielded
region) and in Figure 3.17 (stress norm) which are obtained using locally refined meshes. We
can observe the progressive capture of the yield surface and that the predictions on the sixth
locally refined mesh match well with those on the fine uniform triangulation. We notice that the
locally refined mesh T6 leads to about 105 DOFs as the uniform triangulation with h = 0.0075,
but the local mesh-size in T6 near the yield surface is about 10 times smaller. This leads to
a much sharper resolution as shown in Figure 3.18, where we provide a zoom of two regions
around the yield surface for the stress norm distribution.

The above results on the velocity field and the localization of the yield surface also match
well with the predictions reported in [16]. To provide a more quantitative comparison, we
present in Table 3.19 the value of the flux Q = (uh, 1)Ω`

across the cross-section as pre-
dicted using the methodology from [16] (recall that it is based on a conforming finite element
discretization, and the numerical solver uses either the ADMM or second-order cone program-
ming) and the present one. We consider uniformly refined meshes as the conforming finite
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Figure 3.17: Stress norm with colormap (from dark gray to light gray) corresponding to the
interval [σ0, σ0 + δ] with σ0 = 0.1 and δ = 0.005. From top to bottom and left to right:
adaptation levels ` ∈ {0, 2, 4, 6}.

Figure 3.18: Zoom of two regions around the yield surface. Top row: calculation using the
uniform triangulation with h = 0.0075; bottom row: calculations using the locally refined mesh
T6. Both meshes lead to approximately the same number of DOFs.
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Table 3.19: Fluxes Q for σ0 = 0.1 and different values of f computed with the finite element
method and the present hybrid lowest-order method.

f
h 0.5 1 1.5 2

Finite element method
0.100 3.55e-3 2.38e-2 4.57e-2 6.77e-2
0.050 3.40e-3 2.34e-2 4.49e-2 6.67e-2
0.025 3.36e-3 2.33e-2 4.48e-2 6.64e-2

Hybrid lowest-order method
0.100 3.55e-3 2.37e-2 4.57e-2 6.77e-2
0.050 3.40e-3 2.34e-2 4.49e-2 6.67e-2
0.025 3.36e-3 2.32e-2 4.47e-2 6.63e-2

element solver does not support locally refined meshes with hanging nodes. We consider mesh-
sizes h ∈ {0.1, 0.05, 0.025}. We observe that the results obtained with both methods match
quite closely.
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Chapter 4

Lowest- and higher-order methods
for Bingham vector flows
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The goal of this chapter is to devise hybrid discretization methods for Bingham vector flows.
Contrary to the previous chapter, the velocity is now vector-valued. Another novelty is that
both a lowest-order method with piecewise constant face velocities and a higher-order method
with piecewise affine face velocities are considered. In both cases piecewise affine cell velocities
are considered. The difficulty with the latter method is the need to introduce quadrature rules.
The third novelty is that we now need to account for the divergence-free constraint on the
velocity, which we do by introducing a pressure.

This chapter is organized as follows. In Section 4.1, we recall the model problem and the
Augmented Lagrangian setting. In Section 4.2, we describe the hybrid lowest-order discretiza-
tion method and the discrete ADMM algorithm. In Section 4.3, we extend our discretization
to higher-order using quadrature rules. Finally in Section 4.4, we present numerical results on
the lid-driven cavity problem and on a problem involving a rotating vane-in-cup geometry.

4.1 Continuous setting
Let us briefly recall the viscoplastic flow model described in Chapter 1. Let Ω ⊂ Rd, d ≥ 2,
denote an open, bounded, connected subset of Rd with a Lipschitz boundary. Let f : Ω→ Rd
be the external force field and let us consider non-homogeneous Dirichlet boundary conditions,
where the Dirichlet datum g : ∂Ω→ Rd satisfies the compatibility condition

∫
∂Ω g ·n = 0 and n

is the unit outward normal to ∂Ω. The model problem consists of finding the total symmetric
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stress tensor field σtot : Ω → Rd×ds and the velocity field u : Ω → Rd solving the following
boundary-value problem:

∇·σtot + f = 0 in Ω,
∇·u = 0 in Ω,
u = g on ∂Ω,

(4.1)

with the constitutive relation
σ = 2µ∇su+

√
2σ0

∇su

|∇su|`2
for |σ|`2 >

√
2σ0,

∇su = 0 for |σ|`2 ≤
√

2σ0,

(4.2)

where the deviatoric part σ of the total stress tensor σtot and the symmetric velocity gradient
∇su are defined as follows:

σ = σtot −
1
d

tr(σtot)Id, ∇su = 1
2(∇u+∇uT), (4.3)

and Id is the identity tensor of Rd×d. Moreover, µ > 0 and σ0 > 0 denote, respectively, the
shear viscosity and the shear yield stress, and the Frobenius norm is defined as follows:

|τ |`2 := (τ : τ )
1
2 =

 d∑
i,j=1

τ2
ij

 1
2

∀τ ∈ Rd×d. (4.4)

The yield surface corresponds to |σ|`2 =
√

2σ0 and separates the solid and liquid regions. To
obtain the yielded zone, corresponding to liquid behavior, the criterion |σ|`2 >

√
2σ0 must be

satisfied. Otherwise, the region is called the unyielded zone and corresponds to solid behavior.
Let L2(Ω) denote the space of square-integrable functions over Ω and let us set L2(Ω) :=

L2(Ω;Rd). We also consider the space L2(Ω;Rd×ds ) composed of square-integrable tensor-valued
functions taking symmetric values. The inner product in the three spaces is denoted (·, ·)Ω
and the associated norm ‖ · ‖Ω. Let H1(Ω) := H1(Ω;Rd), H 1

2 (∂Ω) := H
1
2 (∂Ω;Rd), and let

γ∂Ω : H1(Ω) → H
1
2 (∂Ω) be the classical trace map acting componentwise. Let the following

affine subspace specifying the velocity trace on the boundary of the domain:

H1
g(Ω) := {v ∈H1(Ω) | γ∂Ω(v) = g}, (4.5)

and the affine subspace of velocities with zero divergence:

V g(Ω) := {v ∈H1
g(Ω) | ∇·v = 0}. (4.6)

The tangent space to V g(Ω) is the linear subspace

V 0(Ω) := {v ∈H1
0(Ω) | ∇·v = 0}, (4.7)

where we recall that

H1
0(Ω) := {v ∈H1(Ω) | γ∂Ω(v) = 0}. (4.8)

Let us now introduce the dissipation potential H : Rd×ds → R such that

H(d) = µ|d|2`2 +
√

2σ0|d|`2 , ∀d ∈ Rd×ds . (4.9)

The first term in the right-hand side of (4.9) evaluated with d = ∇su represents the viscous
dissipation potential and the second term the plastic dissipation potential. Note that due to
the latter term, the classical derivative of H is not well-defined when d = 0, and we need to
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consider a generalized concept of differentiation for convex functions, named the sub-differential

∂H(d) =
{
τ ∈ Rd×ds | H(e)−H(d) ≥ τ : (e− d) ∀e ∈ Rd×ds

}
. (4.10)

Let us now consider the weak formulation for (4.1) and let us assume f ∈ L2(Ω) and
g ∈ H 1

2 (∂Ω). Since we have (tr(σtot)Id,∇sv)Ω = 0 for all v ∈ V 0(Ω), since ∇·v = 0, we
infer that (σtot,∇sv)Ω = (σ,∇sv)Ω for all v ∈ V 0(Ω) (to recover the trace of the total stress,
we have to consider de Rham’s theorem and search u ∈H1

g(Ω), see Remark 1.12). Hence, the
weak form of (4.1)-(4.2) is: Find u ∈ V g(Ω) such that{

(σ,∇sv)Ω = (f ,v)Ω ∀v ∈ V 0(Ω),
σ ∈ ∂H(∇su).

(4.11)

It is well-known, see [76], that the velocity field solving (4.1)-(4.2) is the unique minimizer in
V g(Ω) of the following energy functional:

u = arg min
v∈V g(Ω)

{
(H(∇sv), 1)Ω − (f ,v)Ω

}
, (4.12)

Recall that σ is uniquely defined only in the unyielded region.
The minimization problem (4.12) can be tackled by decomposition-coordination methods.

To decouple the nonlinearity from the velocity field, an auxiliary symmetric tensor field γ ∈
L2(Ω;Rd×ds ) is introduced and one enforces that γ = ∇su by means of the Lagrange multiplier
σ ∈ L2(Ω;Rd×ds ) (which turns out to be indeed the deviatoric stress tensor) together with a
least-squares penalty term. Let us set

X(Ω) := V g(Ω)× L2(Ω;Rd×ds )× L2(Ω;Rd×ds ). (4.13)

The augmented Lagrangian is defined as L : X(Ω)→ R such that

L(u,γ,σ) := (H(γ), 1)Ω + (σ,∇su− γ)Ω + α‖∇su− γ‖2Ω − (f ,u)Ω, (4.14)

where α > 0 is the augmentation parameter. The triplet (u,γ,σ) ∈ X(Ω) is a saddle-point of
the Lagrangian L, that is to say

L(u,γ, τ ) ≤ L(u,γ,σ) ≤ L(v, δ,σ) ∀(v, δ, τ ) ∈ X(Ω), (4.15)

if and only if γ = ∇su and the pair (u,σ) solves (4.1)-(4.2). Note that ∇·u = 0 in Ω and the
boundary condition u = g on ∂Ω are enforced directly from u ∈ V g(Ω).

The ALG2 method from [72, 77] is an iterative method that, at each step, minimizes the
augmented Lagrangian L jointly with respect to the pair (u,γ) and then updates the Lagrange
multiplier σ. The idea in the Alternating Direction Method of Multipliers (ADMM) [79, 75] is
that the joint minimization is replaced by a successive minimization with respect to γ, and then
with respect to u. This method is presented in Algorithm 8, where in Step 2 we use H1

g(Ω)
as trial space and we enforce the divergence constraint ∇·un+1 = 0 weakly, which leads to a
mixed formulation. The stopping criterion for the ADMM is Rn+1 ≤ ε with ε > 0 a prescribed
stopping tolerance, and the residual is defined in terms of discrete stress and discrete gradient
residuals, see (4.19).

Remark 4.1 (Optimality conditions). It is readily seen that the optimality conditions are ob-
tained by zeroing the following equations for all (v, δ, τ ) ∈ V 0(Ω)×L2(Ω;Rd×ds )×L2(Ω;Rd×ds ):

∂γL(u,γ,σ)[δ] = 2(µ+ α)(γ, δ)Ω + (
√

2σ0sgn(γ), δ)Ω − (σ + 2α∇su, δ)Ω,

∂uL(u,γ,σ)[v] = (σ − 2αγ,∇sv)Ω + 2α(∇su,∇sv)Ω − (f ,v)Ω,

∂σL(u,γ,σ)[τ ] = (∇su− γ, τ )Ω,
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Algorithm 8 Bingham vector flows: ADMM in continuous form
1: Choose (u0,σ0) ∈H1

g(Ω)× L2(Ω;Rd×ds )
2: Choose ε > 0, set R0 =∞ and n = 0
3: while Rn > ε do
4: Step 1: We define γn+1 ∈ L2(Ω;Rd×ds ) such that:

γn+1 :=


1

2(α+ µ)
(
|θn|`2 −

√
2σ0

) θn

|θn|`2
if |θn|`2 >

√
2σ0,

0 if |θn|`2 ≤
√

2σ0,

(4.16)

with θn := σn + 2α∇sun.
5: Step 2: We seek (un+1, pn+1) ∈H1

g(Ω)× L2
0(Ω) s.t. ∀(v, q) ∈H1

0(Ω)× L2
0(Ω):

2α(∇sun+1,∇sv)Ω − (pn+1,∇·v)Ω = (f ,v)Ω − (σn − 2αγn+1,∇sv)Ω,

(q,∇·un+1)Ω = 0.
(4.17)

6: Step 3: We update the Lagrange multiplier σn+1 ∈ L2(Ω;Rd×ds ):

σn+1 := σn + 2α(∇su
n+1 − γn+1). (4.18)

7: We evaluate the residual:

Rn+1 :=
(
‖σn+1 − σn‖2Ω + α2‖∇s(un+1 − un)‖2Ω

) 1
2 . (4.19)

8: n = n+ 1
9: end while

where sgn(·) is defined such that for all δ ∈ Rd×ds ,

sgn(δ) =


{ς ∈ Rd×ds | |ς|`2 ≤ 1} for |δ|`2 = 0,
δ

|δ|`2
for |δ|`2 > 0.

(4.20)

A straightforward computation shows that we are actually enforcing ∂γL(un,γn+1,σn) = 0 in
Step 1, see (4.16). Next in Step 2, (4.17) amounts to enforcing ∂uL(un+1,γn+1,σn) = 0 (first
line) and ∇·un+1 = 0 (second line). Finally, as the ADMM approaches convergence, we have
(∇su

n+1 − γn+1) → 0 so that ∂σL(un+1,γn+1,σn+1) → 0 owing to Step 3, see (4.18). In
conclusion, the ADMM converge to a critical point of the augmented Lagrangian.

4.2 Hybrid lowest-order (HLO) discretization
In this section, we devise a hybrid lowest-order discretization method for Bingham vector flows.
HHO family. We also introduce some notation for the discrete setting, which will also be useful
in the next section.

4.2.1 Discrete setting
We consider a mesh sequence (T`)`∈N where, for all ` ∈ N, T` is a finite collection of nonempty,
disjoint, open cells whose closures either cover Ω exactly or cover a close approximation thereof
if Ω has curved boundaries. In this case, we set Ω` := int(⋃T∈T`

T )). The subscript ` typically
refers to a step in an adaptive mesh procedure which can involve local mesh refinement (and
possibly coarsening). A generic mesh cell is denoted T , its boundary ∂T , its diameter hT , and
its unit outward normal nT . The mesh cells can have a polygonal/polyhedral shape, and the
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4.2. Hybrid lowest-order (HLO) discretization

meshes can possess hanging nodes. We set h` := minT∈T`
hT (we consider the minimum value

instead of the more usual maximum value since the meshes are locally refined). The mesh
sequence is assumed to be shape-regular in the sense, e.g., of [59], meaning that every mesh
T` admits a simplicial matching refinement belonging to a shape-regular mesh sequence in the
sense of Ciarlet. This (d−1)-assumption can be relaxed to allow for polygonal meshes with some
face degeneration as in [32]; this is useful for instance when considering agglomeration-based
mesh coarsening procedures. We say that the dimensional subset F ⊂ Ω is a mesh interface
(resp., mesh boundary face) if there are two distinct mesh cells TF,1, TF,2 ∈ T` and an affine
hyperplane HF so that F = ∂TF,1∩∂TF,2∩HF (resp., there is a mesh cell TF ∈ Th and an affine
hyperplane HF so that F = ∂TF ∩∂Ω`∩HF . Mesh interfaces are collected in the set F i` , mesh
boundary faces in Fb` , and we let F` := F i`∪Fb` be the collection of the mesh faces. The diameter
of a mesh face F ∈ F` is denoted by hF . For all T ∈ T`, we let F∂T := {F ∈ F` |F ⊂ ∂T}
be the collection of the mesh faces composing ∂T . For all F ∈ F∂T ,nT,F := nT |F is the unit
normal to F pointing outward T ; notice that, by definition, nT,F is a constant vector over F .
Let A ⊂ Ω` be a mesh cell, ∂A its boundary, or one of its faces; the inner product in L2(A)
and in L2(A) := L2(A;Rd) is denoted (·, ·)A and the associated norm ‖ · ‖A. For a finite set S,
|S| denotes its cardinal number.

4.2.2 Discrete minimization problem on the velocity
Let T ∈ T` be a mesh cell. Recall from [59, 62] that HHO methods are devised from a local
reconstruction operator and a local stabilization operator. In the present lowest-order setting
where k = 0, both operators can be written explicitly, see also [70, 64]. The local space of
discrete velocity unknowns is defined as

ÛT := P1(T ;Rd)× P0(F∂T ;Rd) ∀T ∈ T`, (4.21)

where the first component of the pair is related to the cell and the second component to the
faces composing its boundary. Here, P0(F∂T ;Rd) denotes the space composed of piecewise
constant vector functions over ∂T . We use the notation v̂T = (vT , (vF )F∈F∂T

) for a generic
element in ÛT . This is the same discrete setting as in Chapter 3 for antiplanar flows, except
that both cell- and the face-velocities are now vector-valued. The local symmetric gradient
reconstruction operator ET : ÛT → Rd×ds is such that, for all v̂T ∈ ÛT ,

ET (v̂T ) =
∑

F∈F∂T

|F |d−1
2|T |d

(
vF ⊗ nT,F + nT,F ⊗ vF

)
, (4.22)

where |F |d−1 is the measure of the face F and |T |d the measure of the cell T . It is also
convenient to define a local discrete divergence by setting

DT (v̂T ) :=
∑

F∈F∂T

|F |d−1
|T |d

vF ·nT,F . (4.23)

where we used that ∑F∈F∂T
|F |d−1nT,F = 0. Note that

DT (v̂T ) = tr(ET (v̂T )). (4.24)

The local symmetric gradient reconstruction is to be used to discretize the viscous and the
plastic dissipation potential.

The local stabilization operator S∂T : ÛT → P0(F∂T ;Rd) is such that, for all v̂T ∈ ÛT , its
restriction to a face F ∈ F∂T is defined as

S∂T (v̂T )|F := π0
F (vF − vT ), (4.25)

We can now assemble the convex nonlinear minimization problem solved by the discrete velocity.
Let us set

Û ` := P1(T`;Rd)× P0(F`;Rd), (4.26)
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where the first component of the pair is related to the mesh cells and the second component to
the mesh faces. We use the notation û` = ((vT )T∈T`

, (vF )F∈F`
) for a generic element in Û `,

and for any mesh cell T ∈ T` and any v̂` ∈ Û `, we let v̂T ∈ ÛT be composed of the components
of v̂` attached to the cell T and its faces. We enforce the Dirichlet condition on the discrete
velocity explicitly by introducing the subspace

Û `,g :=
{
v̂` ∈ Û ` | vF = π0

F (g);∀F ∈ Fb`
}
, (4.27)

where π0
F denotes the L2(F ;Rd)-orthogonal projection onto P0(F ;Rd). Note that vF = π0

F (g)
is nothing but the mean-value of g over F . We also define the subspace with homogeneous
discrete velocities on the boundary

Û `,0 :=
{
v̂` ∈ Û ` | vF = 0; ∀F ∈ Fb`

}
. (4.28)

The incompressibility condition is enforced by defining the following subspaces:

V̂ `,g :=
{
v̂` ∈ Û `,g | DT (v̂T ) = 0;∀T ∈ T`

}
, (4.29)

V̂ `,0 :=
{
v̂` ∈ Û `,0 | DT (v̂T ) = 0;∀T ∈ T`

}
. (4.30)

The discrete counterpart of (4.12) is to seek the discrete velocity field û` ∈ V̂ `,g such that

û` = arg min
v̂`∈V̂ `,g

∑
T∈T`

{
(H(ET (v̂T )), 1)T + β‖η

1
2
∂TS∂T (v̂T )‖2∂T − (f ,vT )T

}
, (4.31)

with the dissipation potential H : Rd×ds → R defined in (4.9), where β > 0 is a numerical
parameter, and η∂T is, as before, the piecewise constant function on ∂T such that η∂T |F = h−1

F ,
for all F ∈ F∂T . The stabilization term is needed to ensure stability in the discrete system
considered in Step 2 of Algorithm 9 below. We set in what follows the parameter β = µ. We
notice that as the mesh is refined, the stabilization term tends to zero, so that the influence of
β on the minimizer becomes more and more marginal.

4.2.3 Discrete augmented Lagrangian
The derivation of the discrete augmented Lagrangian is identical to the continuous setting. We
introduce, for all T ∈ T`, the space ΣT := P0(T ;Rd×ds ) ≡ Rd×ds and the auxiliary field γT ∈ ΣT

and we enforce γT = ET (ûT ) by means of the Lagrange multiplier σT ∈ ΣT . Then, setting

Σ` :=
(
Rd×ds

)|T`|
, X(T`) := Û ` ×Σ` ×Σ`, (4.32)

the discrete augmented Lagrangian is defined as L` : X(T`)→ R such that

L`(û`,γ`,σ`) :=
∑
T∈T`

{
(H(γT ), 1)T + µ‖η

1
2
∂TS∂T (v̂T )‖2∂T − (f ,uT )T

+ (σT ,ET (ûT )− γT )T + α‖ET (ûT )− γT ‖2T
}
, (4.33)

where we used the notation γ` = (γT )T∈T`
and σ` = (σT )T∈T`

for all γ`,σ` ∈ Σ`. Note that
(û`,γ`,σ`) is a saddle-point of the discrete Lagrangian L` if and only if ET (ûT ) = γT for all
T ∈ T` and û` is the unique minimizer of (4.31).

The ADMM applied to the discrete augmented Lagrangian is described in Algorithm 9:
Given the initial values û0

` ∈ Û `,g and σ0
` ∈ Σ`, we perform, for all n ≥ 0, the following three
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Algorithm 9 Bingham vector flows: ADMM in discrete form for HLO
1: Choose (û0

` ,σ
0
` ) ∈ Û `,g ×Σ`

2: Choose ε > 0, set R0 =∞ and n = 0
3: while Rn` > ε do
4: Step 1: We define γn+1

` ∈ Σ` such that, ∀T ∈ T`,

γn+1
T :=


1

2(α+ µ)
(
|θnT |`2 −

√
2σ0

) θnT
|θnT |`2

if |θnT |`2 >
√

2σ0,

0 if |θnT |`2 ≤
√

2σ0,

(4.34)

with θnT := σnT + 2αET (ûnT ).
5: Step 2: We seek (ûn+1

` , pn+1
l ) ∈ Û `,g × P` s.t. ∀(v̂`, q`) ∈ Û `,0 × P`:

∑
T∈T`

{
2âT,αµ(ûn+1

T , v̂T )− |T |dDT (v̂T )pn+1
T

}
=
∑
T∈T`

{
(f ,vT )T

− (σnT − 2αγn+1
T ,ET (v̂T ))T

}
, (4.35)∑

T∈T`

|T |dDT (ûn+1
T )qT = 0, (4.36)

where âT,αµ ∈ Û `,g × Û `,0 is the local bilinear form defined as

âT,αµ(ŵT , v̂T ) := α(ET (ŵT ),ET (v̂T ))T + µ(η∂TS∂T (ŵT ),S∂T (v̂T ))∂T , (4.37)

and where we recall that DT (v̂T ) = tr(ET (v̂T )).
6: Step 3: We update the Lagrange multiplier σn+1

` ∈ Σ` for all T ∈ T`,

σn+1
T := σnT + 2α(ET (ûn+1

T )− γn+1
T ). (4.38)

7: We evaluate the residual:

Rn+1
` :=

( ∑
T∈T`

‖σn+1
T − σnT ‖2T + α2 ∑

T∈T`

‖ET (ûn+1
T )−ET (ûnT )‖2T

) 1
2
. (4.39)

8: n = n+ 1
9: end while

steps: We first define γn+1
` ∈ Σ`. Given σn` and γn+1

` in Step 2, letting P` := P0(T`;R) ≡
R|T`| denote the space of piecewise constant pressures having zero mean-value in Ω, we seek
(ûn+1

` , pn+1
l ) ∈ Û `,g×P` solving the Stokes-like discrete variational problem (4.35)-(4.36), where

the stress terms are treated explicitly. Finally in Step 3, we update the Lagrange multiplier
σn+1
` ∈ Σ`.

4.3 Hybrid higher-order (HHO) discretization

In this section, we generalize the previous developments to the HHO method. Let k ≥ 1 be the
polynomial degree. For the sake of simplicity, we use a similar notation to that of the previous
section, just by adding a superscript k to denote the obvious analogous higher-order version of
the formerly defined spaces and variables.
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4.3.1 Discrete minimization problem on the velocity
For all T ∈ T`, the local discrete space is

Û
k
T := Pk(T ;Rd)× Pk(F∂T ;Rd), (4.40)

where Pk(T ;Rd) and Pk(F∂T ;Rd) are the spaces spanned by the restrictions to T and F∂T ,
respectively, of d− and piecewise (d − 1)−variate vector-valued polynomials of total degree
≤ k. A generic element of Ûk

T is denoted by v̂T = (vT ,v∂T ). Following [20], we reconstruct a
symmetric discrete gradient in the space Pk(T ;Rd×ds ), such that the local symmetric gradient
operator Ek

T : Ûk
T → Pk(T ;Rd×ds ) is obtained by solving the following problem: For all v̂T =

(vT ,v∂T ) ∈ Ûk
T ,

(Ek
T (v̂T ),w)T = (∇svT ,w)T + (v∂T − vT ,wnT )∂T ∀w ∈ Pk(T ;Rd×ds ). (4.41)

Computing Ek
T (v̂T ) entails inverting the mass matrix in Pk(T ;Rd×ds ). Actually, we only need to

invert the mass matrix in Pk(T ;R), and Ek
T (v̂T ) is then computed componentwise by solving a

system similar to (4.41) for various right-hand sides. This results in significant computational
savings. For the purpose of stabilization, we also define for all T ∈ T` the local reconstruction
operator Rk+1

T : Ûk
T → Pk+1(T ;Rd) so that, for all v̂T = (vT ,v∂T ) ∈ Ûk

T ,

(∇sR
k+1
T (v̂T ),∇sw)T = (∇svT ,∇sw)T + (v∂T − vT ,∇swnT )∂T ∀w ∈ Pk+1(T ;Rd), (4.42)

which entails inverting the local stiffness matrix in Pk+1(T ;Rd) with Neumann boundary con-
ditions. The rigid-body motion of Rk+1

T (v̂T ) are prescribed by those of vT ; this actual value is
irrelevant on what follows.

We define the local stabilization operator Sk∂T : Ûk
T → Pk(F∂T ;Rd) to penalize the differ-

ence between v∂T and vT |∂T such that, for all v̂T = (vT ,v∂T ) ∈ Ûk
T , we have

Sk∂T (v̂T ) := πk∂T
(
v∂T −Rk+1

T (v̂T )|∂T
)− πkT (vT −Rk+1

T (v̂T )
)
|∂T . (4.43)

where πk∂T and πkT denote the L2-orthogonal projectors onto Pk(F∂T ;Rd) and Pk(T ;Rd), re-
spectively. Finally, the local discrete divergence operator Dk

T : ÛT → Pk(T ;R) acts as follows:
For all v̂T ∈ Û

k
T ,

(Dk
T (v̂T ), q) := (∇·vT , q)T + (v∂T − vT , qnT )∂T ,

= − (vT ,∇q)T + (v∂T , qnT )∂T ∀q ∈ Pk(T ;R).
(4.44)

Taking ω = qId in (4.41), it is readily seen that Dk
T (v̂T ) = tr(Ek

T (v̂T )).
Turning now to the assembly of the convex nonlinear minimization problem solved by the

discrete velocity, let us set

Û
k
` := Pk(T`;Rd)× Pk(F`;Rd). (4.45)

We also define the spaces

Û
k
`,g = {v̂` ∈ Û

k
` | vF = πkF (g);∀F ∈ F b` }, (4.46)

Û
k
`,0 = {v̂` ∈ Û

k
` | vF = 0; ∀F ∈ F b` }, (4.47)

where πkF denote the L2-orthogonal projection onto Pk(F ;Rd). The incompressibility constraint
is enforced by defining the subspaces

V̂
k
`,g = {v̂` ∈ Û

k
`,g | Dk

T (v̂T ) = 0;∀T ∈ T`}, (4.48)

V̂
k
`,0 = {v̂` ∈ Û

k
`,0 | Dk

T (v̂T ) = 0;∀T ∈ T`}. (4.49)
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The plastic term cannot be computed exactly for polynomials of degree k ≥ 1, so that
quadrature rules must be used. This occurs when the cells lie at the same time in the yielded
and the unyielded regions (recall that we do not know a priori the location of the yield surface).
Our first step is therefore to rewrite the minimization problem by means of quadrature rules.
For all T ∈ T`, let χT =

(
χT,g

)
1≤g≤Nq

with χT,g ∈ T , for all 1 ≤ g ≤ Nq, denote the set of
quadrature points in T . We write more concisely χT ∈ TNq . Similarly, let ωT = (ωT,g)1≤g≤Nq

with ωT,g ∈ R, for all 1 ≤ g ≤ Nq, denote the corresponding quadrature weights. We write
more concisely ωT ∈ RNq . We assume that the quadrature is at least of order 2k, so that

(s, 1)T =
Nq∑
g=1

ωT,gs(χT,g) ∀s ∈ P2k(T ;R). (4.50)

Let us define for symmetric tensors ρ and τ :

(ρ, τ )QT
:=

Nq∑
g=1

ωT,gρ(χT,g) : τ (χT,g), |ρ|QT
:= (ρ,ρ)

1
2
QT
. (4.51)

Then, we introduce the local and global spaces of degrees of freedom for the auxiliary variables
and Lagrange multipliers only defined at the quadrature points, such that

Σ̌T =
(
Rd×ds

)Nq

, Σ̌` =
(
Rd×ds

)Nq×|T`|
. (4.52)

The integration of the dissipation potential must take into account the quadrature rule. To
this aim, we introduce a discrete integrated dissipation potential hQT

: Σ̌T → R such that

hQT
(e) = µ|e|2QT

+
√

2σ0|e|QT
∀e ∈ Σ̌T . (4.53)

The discrete counterpart of (4.12) for the higher-order discretization is to seek the discrete
velocity field û` ∈ V̂

k
`,g such that

û` = arg min
v̂`∈V̂

k
`,g

∑
T∈T`

{
hQT

(Ěk
T (v̂T )) + µ‖η

1
2
∂TS

k
∂T (v̂T )‖2∂T − (f ,vT )T

}
, (4.54)

where we introduced Ěk
T (v̂T ) ∈ Σ̌T as the vector collecting the values of Ek

T (v̂T ) at all the
quadratures points

(
χT,g

)
1≤g≤Nq

. Note that we keep for the two rightmost terms in (4.54) the
integral notation, since first, we can assume that f is a smooth enough function so that the
integration of (f ,vT )T in each cell is not an issue, and second, we can assume that the surface
quadrature rule is exact for the stabilization term by using a surface quadrature of degree 2k.

4.3.2 Discrete augmented Lagrangian
Owing to the inexactness of the numerical integral of the plastic term, the constraint γ = ∇su
can be ensured only at the quadrature points. We introduce a global auxiliary field γ̌` :=
(γT )T∈T`

∈ Σ̌` and we enforce that γ̌` := (γT )T∈T`
satisfies γT = Ě

k
T (ûT ) for all T ∈ T`, by

means of the Lagrangian multiplier σ̌` := (σT )T∈T`
∈ Σ̌`. Then, we define

X` := Û
k
`,g × Σ̌` × Σ̌`, (4.55)

and additionally P k` := L2
0(Ω)∩Pk(T`,R) for the discrete pressures with zero mean-value in the

domain. We introduce the discrete augmented Lagrangian L` : X` → R such that

L`(û`, γ̌`, σ̌`) :=
∑
T∈T`

{
hQT

(γ̌T ) + µ‖η
1
2
∂TS

k
∂T (ûT )‖∂T − (f ,uT )T

+ (σ̌T , Ě
k
T (ûT )− γ̌T )QT

+ α‖Ěk
T (ûT )− γ̌T ‖2QT

}
. (4.56)
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Algorithm 10 Bingham vector flows: ADMM in discrete form for HHO
1: Choose (û0

` , σ̌
0
` ) ∈ Û `,g × Σ̌`

2: Choose ε > 0, set R0 =∞ and n = 0
3: while Rn` > ε do
4: Step 1: We define γ̌n+1

` ∈ Σ̌`, for all T ∈ T` and all 1 ≤ g ≤ Nq, such that

γ̌n+1
T,g =


1

2(α+ µ)
(
|θnT,g| −

√
2σ0

) θnT,g
|θnT,g|`2

for |θnT,g|`2 >
√

2σ0,

0 for |θnT,g|`2 ≤
√

2σ0.

(4.57)

with θnT,g := σ̌nT,g + 2αEk
T (ûnT )(χT,g).

5: Step 2: We seek (ûn+1
` , pn+1

` ) ∈ Ûk
`,g × P k` s.t. ∀(v̂`, q`) ∈ Û

k
`,0 × P k` :

∑
T∈T`

{
2âT,αµ(ûn+1

T , v̂T ) + b̂T (pn+1
T , v̂T )

}
=
∑
T∈T`

{
(f ,vT )T

− (σ̌nT − 2αγ̌n+1
T , Ě

k
T (v̂T ))QT

}
, (4.58)∑

T∈T`

b̂T (qT , ûn+1
T ) = 0, (4.59)

where âT,αµ ∈ Û
k
T × Û

k
T and b̂T ∈ Pk(T ;R)× Ûk

T are the bilinear forms defined as

âT,αµ(ŵT , v̂T ) := α(Ek
T (ŵT ),Ek

T (v̂T ))T + µ(η∂TSk∂T (ŵT ),Sk∂T (v̂T ))∂T , (4.60)
b̂T (qT , ûT ) := − (qT , Dk

T (v̂T ))T . (4.61)

6: Step 3: We update the Lagrange multiplier σ̌n+1
` ∈ Σ̌` for all T ∈ T` and all 1 ≤ g ≤

Nq,
σ̌n+1
T,g := σ̌nT,g + 2α

(
Ek
T (ûn+1

T )(χT,g)− γ̌n+1
T,g

)
. (4.62)

7: We evaluate the residual

Rn+1
` :=

∑
T∈Th

(|σ̌n+1
` − σ̌n` |2QT

+ α2|Ẽk
T (ûn+1

T − ûnT )|2QT
)

 1
2

. (4.63)

Note that |Ěk
T (v̂T )|QT

= ‖Ek
T (v̂T )‖T for all v̂T ∈ Û

k
T .

8: n = n+ 1
9: end while
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The ADMM algorithm is devised as in the previous sections, see Algorithm 10. We perform
the standard three steps. First, given (ûn` , σ̌n` ) ∈ Ûk

`,g×Σ̌`, the minimization of the Lagrangian
with respect to γ̌` leads to a point-wise definition of γ̌n+1

` at all the Gauss quadrature points of
all the mesh cells. Second, we seek (ûn+1

` , pn+1
` ) ∈ Ûk

`,g×P k` by solving the Stokes-like discrete
variational problem (4.59), where the stress terms are treated as explicit force terms. Finally,
we update the Lagrange multiplier in each mesh cell, at each quadrature point, see (4.62).

Remark 4.2 (Number of points). Note that γ̌n+1
` and σ̌n+1

` are computable at any point x,
where ET (ûn+1

T )(x) is known. Therefore, it is possible to have a more detailed knowledge
of these fields by evaluating them at more points. However, this comes at the expense of an
increase in the computational cost (storage and computations).

4.4 Numerical results
In this section, we present our numerical results for Bingham vector flow problems. We use the
hybrid lowest-order discretization with the ADMM from Section 4.2; results with the higher-
order discretization from Section 4.3 and are under way. The first setting is the lid-driven cavity
benchmark, which is well documented in the literature (see, among others, [16, 124, 127]). The
second test case we consider is a confined flow in a Couette geometry (i.e. a hollow circular
cylinder) with a vane tool. It is a commonly used geometry in the viscoplasticity community,
especially to study the behavior of pasty materials that are difficult to pour in the annulus
of one cylinder inside another (classical Couette geometry) or that are likely to slip along the
inner cylinder wall. However, due to the complexity of the geometry, solving analytically the
flow equations is not feasible in practice and therefore there is no explicit solution for nonlinear
cases. However, there exist numerical and experimental results relying on the assumption of a
cylindrical thin layer of the material flowing around the vane tool at low velocity. Nonetheless,
this assumption was recently questioned in [113]. To our knowledge, there are no numerical
simulations that replicate the recent experimental data.

4.4.1 Lid-driven cavity
We consider the standard Lid-driven cavity problem with unitary square domain, where the
flow is driven by a lid moving with uniform horizontal velocity and the remaining walls are
stationary. Despite the simplicity of the cavity setting, singular effects may occur at the top
corners, since the velocity field is required to accomplish the non-homogeneous and the no-slip
boundary conditions at the same time. The singularities at the corners weaken the expected
regularity of the solution, so that u ∈ Hs(Ω) with s < 1.

The adimensional Bingham number is defined as

Bi = σ0L

µV
, (4.64)

where L is a reference length (the width of the square) and V the reference velocity (the lid
velocity V = 1). We set the augmentation parameter to α = 10 and the convergence threshold
for the discrete residual defined in (4.39) is set to ε = 10−8.

Figure 4.1 shows the discrete residual R` as a function of the iteration number in the ADMM
for quadrilateral meshes with h = 1/32 and h = 1/128 for Bi = 2 and Bi = 50. We also vary the
α parameter of the ADMM algorithm. We observe similar convergence behavior for all the cases,
where there are some perturbations before changing to a faster convergence. We also notice
that these perturbations are more pronounced when increasing Bi. One possible explanation
is that yield effects dominate the solution when increasing Bi, which is a well-known reason of
numerical difficulties, caused by the non-smoothness of the yield term. We additionally observe
that using finer meshes for both Bi numbers results in general in an increasing of the number
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Figure 4.1: Discrete residual vs. ADMM iteration number for Bi = 2 (top) and Bi = 50
(bottom) for quadrilateral meshes with h = 1/32 (left) and h = 1/128 (right).

of iterations. However, we notice that when the augmentation parameter α = 100, the ADMM
algorithm is in general taking less number of iterations for the finer meshes. Thus, all the
experiments shown in what follows are computed using this value for the α parameter.

In Figure 4.2, we display the velocity profile along the middle axis x = 1/2 for uniform
quadrilateral meshes with mesh-size h = 1/256 and various Binhgam numbers Bi = 2, 5, 20, 50.
We observe very close profiles (qualitatively) and a good agreement with the results found in
[124]. In Figure 4.3, present color isocontours for the velocity magnitude. We also show the
mesh cells so as to illustrate the presence of polygonal (hexagonal) cells in two cases.
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Figure 4.2: Horizontal velocity profile along the axis x = 0.5 for Bi = 2, 5, 20, 50 and α = 100.

Figure 4.3: Velocity magnitude with α = 100, varying the Bi number and different polygonal
meshes: Bi = 2 (left-top) and Bi = 50 (right–bottom) with quadrilateral meshes, and Bi = 5
(right-top) and Bi = 20 (left-bottom) with hexagonal meshes.

83



Chp. 4. Lowest- and higher-order methods for Bingham vector flows

We show the spatial distribution of the stress norm |σ|`2 in Figure 4.4 for Bi = 2, 50 and
in Figure 4.5 for Bi = 5, 20. We can observe in general two solid regions. The first solid region
is placed in the lower part of the cavity, where the flow is slowed down due to the nonslip
boundary conditions (considering also the lack of an external force). The second solid region
is located in the middle upper part of the cavity, driven by the rotating motion and occurring
around the central vortex (caused by the lid movement). As expected, we can see that both
regions expand when Bi increases, which leads to a very tight unyielded zone closer and closer
to the lid. In 4.4, we also notice two liquid diagonal strips from the lower corners of the cavity.
We believe that this is in fact due to the lack of mesh resolution and we see that these strips
tend to change to solid state with a higher mesh quality. Mesh requirements are stronger with
the increase of the Bingham number, mainly due to the higher gradients occurring when the
plastic terms dominate over viscous terms. The steepest gradients can also be observed with
the horizontal-component velocity profiles in Figure 4.2.

4.4.2 The vane-in-cup geometry
Adapting the test case proposed by [113], we consider the computational domain depicted in
Figure 4.6. No-slip conditions are applied on the external border and a velocity u = (−ωy, ωx)
on the internal border due to the rotation of the vane, with ω the angular velocity. The
(non-dimensional) Bingham number is defined as

Bi = σ0R

µV
, (4.65)

where R is a reference length (the radius of the outer boundary) and the reference velocity V
is computed as V = ωRi, so that we have Bi = σ0

µω . In our numerical experiments, we take
ω = 1, Re = 6, Ri = 4 and the characteristic dimension R = Re −Ri.

Bi = σ0(Re −Ri)
µωRi

= σ0
2 , (4.66)

The augmentation parameter is set to α = 5.
This example is slightly more difficult than the previous one. We used a quadrangular mesh

refined near the vane tips, due to the reported high shear in the region around the tips. We
see that this local refinement of the mesh is justified in Figure 4.8 for Bi = 1, 10, where we
observe the strong dependency of the velocity profile and the stress magnitude with respect to
the angle θ for both Bingham numbers.

It is important to recall that we do not compare quantitatively our results, since in [113]
the experiments were carried out for a Herschel-Buckley material. Therefore, we claim a
fair agreement with [113] in the sense that we reproduce the concept of the non-cylindrical
streamlines near the blades.
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Figure 4.4: Stress colormap with [σ0;σ0+δ]; δ = 0.05 for Bi = 2 (top) and Bi = 50 (bottom) for
uniform quadrangular meshes varying the mesh size and with α = 100. For Bi = 2 (top), the
coarser mesh (left-top) has a mesh size h = 1/32 and the finer mesh has a mesh size h = 1/256
(right-top). For Bi = 50, the coarser mesh (left-bottom) has a mesh size h = 1/128 and the
finer mesh has a mesh size h = 1/256 (right-bottom).

Figure 4.5: Colormap for [σ0;σ0 + δ]; δ = 0.05 for Bi = 5 (left) and Bi = 20 (right) for
hexagonal meshes with α = 100, with mesh size h = 0.023.
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No-slip condition 
u = 0

R Re i

u =      x

Figure 4.6: Sketch of the vane-in-cup geometry (light grey) and the computational domain
(dark grey).

Figure 4.7: Velocity field for Bi = 1 (left) and Bi = 10 (right) for a quadrangular mesh with
h = h = 0.144 and α = 0.1. Colormap is [σ0;σ0 + δ]; δ = 0 : 0.05
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Figure 4.8: Stress colormap for Bi = 1 (left) and Bi = 10 (right) for a quadrangular mesh with
h = h = 0.144 and α = 5.. Colormap is [σ0;σ0 + δ]; δ = 0 : 0.05
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Chapter 5

Conclusions and perspectives

The work carried out in this thesis made it possible to introduce a polyhedral method to
approximate the solution of two nonlinear problems: Signorini’s unilateral contact problem
and Bingham’s viscoplastic flows, commonly solved using conforming Finite Element methods.
More precisely, we have brought the following contributions:

• We have devised a hybrid discretization method combined with Nitsche’s method to
handle Signorini’s unilateral contact conditions in a weak fashion. We proved convergence
estimates of order (k+1) provided a mixed order is used with face polynomials of order k ≥
0 together with cell polynomials of order (k+ 1). As a preliminary step, we have devised
a novel analysis for the Poisson model problem with linear Dirichlet conditions, and
afterwards, we have extended the analysis to the nonlinear case of Signorini’s conditions.
We have proposed two consistent formulations for the trace of the primal unknown result-
ing from this approach. The first formulation uses the degrees of freedom associated with
the faces of the mesh. The second formulation uses instead the trace of the unknowns
associated with the cells of the mesh. The latter approach was chosen since it preserves
optimal convergence in the nonlinear case. The main idea in the analysis is to introduce a
variant of the Hybrid High-Order (HHO) local operators that does not take into account
the Dirichlet/contact boundary contribution.
Concerning the error estimates, we have proved optimal convergence with both variants
of the Nitsche-HHO formulation in the linear case and with the cell-based trace of the
Nitsche-HHO formulation in the nonlinear case.

• Concerning viscoplastic flows, we have first presented a new discretization scheme for
Bingham pipe flows by means of a hybrid lowest-order method combined with the Alter-
nating Direction Method of Multipliers (ADMM). The velocity is discretized by means
of one unknown per mesh face and one unknown per mesh cell (the cell unknowns can
be locally eliminated by static condensation). We have also used piecewise constant
vector-valued fields for the auxiliary variable and the associated Lagrange multiplier.
We have exploited the possibility of using polygonal meshes including hanging nodes to
perform local mesh adaptation around the yield surface. We have performed numerical
tests in pipe geometries, where we have considered a circular cross-section test case with
analytical solution, and an annulus cross-section. Our numerical experiments for the
analytical test case have showed quantitatively the capture of the yield surface as the
adaptation loop progressed. We have additionally observed a substantial reduction of de-
grees of freedom, when compared with a uniform mesh of equivalent meshsize around the
yield surface). Exploiting the capabilities of polyhedral methods, we have also evaluated
agglomeration-based mesh coarsening in the solid regions, where there are no stringent
requirements on mesh resolution. The numerical results showed that the resulting de-
crease of degrees of freedom slightly decreases the accuracy of the approximation. On the
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other hand, the results for the annulus-cross section have confirmed the usefulness of the
local mesh adaptation, observed in the previous test case, when compared with a uniform
mesh of equivalent meshsize. We have also provided more quantitative comparisons on
the value of the flux across the cross-section and we have observed a good agreement with
the results from the literature.
In a second step, we have extended our lowest-order discretization method to model
Bingham vector flows with ADMM. We have first devised a lowest-order method with
k = 0 for the face unknowns and ` = 1 for the cell unknowns. We have also devised a
higher-order method with k = ` = 1 for the face and the cell unknowns and for which we
have introduced quadrature rules in the formulation. We have presented numerical results
on the lid-driven cavity benchmark and as second test case, we have considered a confined
flow in a Couette geometry with a vane tool. For the first test case, we have observed a
close agreement with previously published results on the velocity profiles, on the vertical
axis {x = 0.5} and for different Bingham numbers. We have additionally observed the
matching of the yield surface in our experiments with simulations when compared with
the previous references. The second test case has no explicit solution and additionally,
the shape of the velocity field between the blades of the vane has been debated in the
literature, with recent experiments [113] contradicting previously published simulation
results. We have provided numerical simulations that are in good agreement with the
recent experiments data in the previous reference.

• Finally, the methods devised in this thesis have been implemented in the Open Source
Disk++ library, available at https://github.com/wareHHOuse/diskpp. Disk++ is a
C++ template library for Discontinuous Skeletal methods like discontinuous Galerkin
(dG) and Hybrid High-Order (HHO) methods. We have contributed with the modules
concerning viscoplasticity, explicitly written for the bi-dimensional scalar and the bi-
dimensional vector Bingham problem, with the additional corresponding tools for the
augmented Lagrangian algorithm. We have also added the module for Signorini’s unilat-
eral contact using a Generalized Newton’s method or the fixed steepest descent method
to solve Nitsche’s formulation. Additionally, we have added a module for mesh refinement
using hanging nodes (triangles and squares) and coarsening tools for agglomeration of
polygonal mesh cells.

Several further developments of mathematical and numerical nature can be identified as
possible perspectives to this thesis.

In Chapter 2, we have developed a method for scalar Signorini’s unilateral contact problem.
An extension to vector deformations seems to be the obvious next step to be considered.
Additionally, the physics of the model might be enriched by adding friction laws such as Tresca’s
friction or the much more challenging Coulomb friction. The latter law poses difficulties in the
proof of existence and uniqueness, since the standard results of convex analysis do not apply.

In Chapter 3, we have highlighted in the scalar case the computational effectiveness of the
adaptive mesh procedure to capture the yield surface. Nonetheless, the current numerical pro-
cedure can be enhanced by using hp-refinement techniques, and a posteriori error estimation
in the yielded regions. Moreover, some of the acceleration techniques mentioned in the intro-
duction for the ADMM [125, 9] can be considered, as well as second-order cone programming
[16, 17].

The mathematical model could be also enriched by using a Herschel-Buckley constitutive
law or by enhancing the state law with visco-elasto-plasticity models, see the review [73]. The
first improvement intends to have a more accurate representation of physical effects, by adding
a power law for the viscous term. The second approach includes elastic effects to have a more
accurate characterization of different phenomena [53].

Regarding the extension of our developments to 3D in the Disk++ library, let us emphasize
that this library is based upon dimension-independent and element-independent data struc-
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tures. Therefore, it already supports 1D, 2D and 3D settings with polygonal / polyhedral
shape meshes and hence, it is readily feasible to implement a 3D Bingham vector model.

Finally, an interesting perspective is the simulation of an air bubble immersed in a non-
Newtonian fluid [33, 103, 96]. This problem is of considerable interest for many materials such
as food foams, insulating building materials, among others. The modeling and the numerical
treatment of these airy materials is very challenging due to the bubble-fluid interface, the
bubble shape deformation, the forces exerted by the fluid, etc. An immersed boundary based
method using the so-called Cut-FEM approach [28] can be considered. Note that some recent
advances in the state-of-the-art have been achieved on the unfitted version of the HHO method
(Cut-HHO) for interface problems [25]. These advances can be highly instrumental to extend
the present work to the simulation of a suspension of air bubbles in a non-Newtonian fluid.
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Résumé

Cette thèse s’intéresse à la conception et à l’analyse de méthodes de discrétisation hybrides
pour les inégalités variationnelles non linéaires apparaissant en mécanique des fluides et des
solides. Les principaux avantages de ces méthodes sont la conservation locale au niveau des
mailles, la robustesse par rapport à différents régimes de paramètres et la possibilité d’utiliser
des maillages polygonaux / polyédriques avec des nœuds non coïncidants, ce qui est très in-
téressant dans le contexte de l’adaptation de maillage. Les méthodes de discrétisation hybrides
sont basées sur des inconnues discrètes attachées aux faces du maillage. Des inconnues discrètes
attachées aux mailles sont également utilisées, mais elles peuvent être éliminées localement par
condensation statique. Deux applications principales des discrétisations hybrides sont abor-
dées dans cette thèse. La première est le traitement par la méthode de Nitsche du problème de
contact de Signorini (dans le cas scalaire) avec une non-linéarité dans les conditions aux limi-
tes. Nous prouvons des estimations d’erreur optimales conduisant à des taux de convergence
d’erreur d’énergie d’ordre (k + 1), si des polynômes de face de degré k ≥ 0 sont utilisés. La
deuxième application principale concerne les fluides à seuil viscoplastiques. Nous concevons
une méthode de Lagrangien augmenté discrète appliquée à la discrétisation hybride. Nous ex-
ploitons la capacité des méthodes hybrides d’utiliser des maillages polygonaux avec des nœuds
non coïncidants afin d’effectuer l’adaptation de maillage local et mieux capturer la surface lim-
ite. La précision et la performance des schémas sont évaluées sur des cas tests bidimensionnels,
y compris par des comparaisons avec la littérature.

Mot-clés. Méthodes de discrétisation hybrides, problème de contact de Signorini, méthode
de Nitsche, viscoplasticité, fluides à seuil, adaptation du maillage.

Abstract

This thesis is concerned with the devising and the analysis of hybrid discretization methods
for nonlinear variational inequalities arising in computational mechanics. Salient advantages
of such methods are local conservation at the cell level, robustness in different regimes and the
possibility to use polygonal/polyhedral meshes with hanging nodes, which is very attractive in
the context of mesh adaptation. Hybrid discretization methods are based on discrete unknowns
attached to the mesh faces. Discrete unknowns attached to the mesh cells are also used, but they
can be eliminated locally by static condensation. Two main applications of hybrid discretization
methods are addressed in this thesis. The first one is the treatment using Nitsche’s method
of Signorini’s contact problem (in the scalar-valued case) with a nonlinearity in the boundary
conditions. We prove optimal error estimates leading to energy-error convergence rates of
order (k + 1) if face polynomials of degree k ≥ 0 are used. The second main application is
on viscoplastic yield flows. We devise a discrete augmented Lagrangian method applied to the
present hybrid discretization. We exploit the capability of hybrid methods to use polygonal
meshes with hanging nodes to perform local mesh adaptation and better capture the yield
surface. The accuracy and performance of the present schemes are assessed on bi-dimensional
test cases including comparisons with the literature.

Keywords. Hybrid discretization methods, Signorini’s contact problem, Nitsche’s method,
viscoplasticity, yield fluids, adaptive mesh refinement.
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