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Objective and overview

Gene regulation is tightly controlled to ensure a wide variety of cell types and functions.

These controls take place at different levels (transcriptional, post-transcriptional, . . . ) and

are associated with distinct genomic regulatory regions (promoters, exons, introns, . . . ). An

actual challenge is to understand how the gene regulation machinery works in each cell type

and to identify the most important regulators. Several studies attempt to understand the

regulatory mechanisms by modeling gene expression using epigenetic marks. Nonetheless,

these approaches rely on experimental data which are limited to some samples, costly and

time-consuming. Besides, the critical component of gene regulation based at the sequence

level cannot be captured by these approaches. Our primary objective is to explain mRNA

expression based only on DNA sequences features.

In this thesis, we assessed the ability of sequence-levels features to regulate gene expression

in the different cancer type. To achieve this objective, we propose two statistical approaches

able to explain gene expression in each patient sample using only DNA features. The

first chapter is a background on the molecular biology, statistics and informatics fields

introducing different terminologies and models of interest. It is also an opportunity to

present a brief state of the art related to modeling gene expression and its controls, tackled

in this dissertation. Each chapter is then dedicated to my contributions of the field of

modeling gene expression based only on DNA sequence. In Chapter 2 we present an

approach based on a Lasso penalized regression. Chapter 3 is an attempt to improve the

model retained in Chapter 2. In Chapter 4, we provide a novel model to predict gene

expression based on neural networks in different architecture: deep neural networks and

convolution networks. The final chapter is a global discussion about all the results and

limitations of our models as well as essential perspectives to tackle.
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Chapter 1

State of the art

This chapter aims to describe the biological and statistical background of this thesis. First

of all, we briefly introduce relevant aspects of molecular biology related to gene regulation

in human cells in Section 1.1. In Section 1.2, we present statistical analyses and machine

learning models used in this thesis. Finally, we review different biostatistics and bioinfor-

matics studies about gene expression and its regulation in human and other organisms in

Section 1.4.

1.1 Biological background

In this part, we introduce the different key aspects of gene regulation in the eukaryotic cell

at the transcriptional and post-transcriptional levels. First, we describe different biological

elements involved in gene regulation.

1.1.1 DNA and RNA

1.1.1.1 DNA and chromatin

Deoxyribonucleic acid (DNA) is a molecule that encodes genetic information. DNA con-

tains the instructions that an organism needs to develop, live and reproduce. These in-

structions are found inside every cell and are passed down from parents to their children.

Frederich Miescher first presented DNA in 1869 [MR71], but the importance of DNA re-
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mained mainly unknown. In 1953, Watson-Crick, Wilkins, and Franklin ([WC+53],[WSW53],

[FG53]) changed our understanding of biology by resolving the structure of DNA and re-

alizing that it carries biological information.

DNA is mostly located in the cell nucleus. It is stored as a code of four nucleotides:

adenine (A), guanine (G), cytosine (C), and thymine (T). Human DNA consists of about

3 billion bases [Ann08]. The order of the bases on the DNA (i.e. sequence) determines

the genetic information as well as its function in the cell. DNA is formed of two anti-

parallel complementary strands with A being complementary of T and G complementary

of C. Nucleotides are arranged in two long strands that form a spiral called a double

helix defining the structure of the DNA. The senses of each strand are determined by the

5’phosphate of the first base and 3’OH ends of the last base. In human cells, DNA totals

about 2 meters in length and is organized into compact structures called chromosomes.

Each chromosome is made up of one DNA coiled tightly around proteins called histones

that support its structure. The complexes between DNA and these proteins are called

chromatin. The human genome contains 23 pairs of chromosomes. Figure 1.1 shows DNA

structured in a chromosome.

Architecture of the chromatin

The development of Chromosome Conformation Capture technologies has led to the dis-

covery of sets of physical interactions of DNA, between chromosomes (inter) or within the

same chromosome (intra), known as chromatin domains.

First, Hi-C for High-throughput Chromosome Conformation Capture was introduced in

2009 by Lieberman-Aiden & al. [LAVBW+09] to explore the three-dimensional archi-

tecture across the entire genome. Using a special adaptation of the Chromosome Con-

formation Capture (3C), they were able to identify long-range interactions between pairs

of loci (fixed position on the chromosome). In that same year, another mapping process

was introduced to detect high order interactions, ChIA-PET [FLP+09] (Chromatin Inter-

action Analyses by Paired-End Tag sequencing) based on Chromatin Immunoprecipitation

(ChIP). ChIA-PET identifies chromatin interactions between distal and proximal regula-
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1.1. BIOLOGICAL BACKGROUND

Figure 1.1: Structure of the DNA in a double helix. A chromosome composed of double-

stranded DNA coiled around histones. Each strand is a sequence of bases. The two strands are

complementary, A corresponds to T and C corresponds to G.

tory regions among the DNA sequence. This method was developed to detect genome-wide

interactions that are mediated by some proteins of interest with a high resolution of one

kilobase [FLP+09] while Hi-C is a genome-wide (probabilistic) assessment of proximity

between all genomic regions within one megabase resolution [LAVBW+09].

Chromosomal compartments

One of the first discoveries using Hi-C technology in human is that all the regions in the

genome can be classified into two different compartments noted A and B [LAVBW+09].

Regions that belong to a compartment will preferably interact with other regions of the

same compartment. With this discovery, Lieberman-Aiden & al. [LAVBW+09] define

compartment A as the set of active and open chromatin regions while B contains inactive

and closed chromatin regions. Besides, they showed that these compartments are cell-type

specific, in other words, A/B compartments vary between different cell types. A and B
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compartments are about five megabases each and alternate along the chromosome [GD13].

Figure 1.1 shows regions of DNA loops that are clustered in two compartments: A (active

in yellow) and B (repressed in violet)

Figure 1.2: The A and B compartments. Three-dimensional representation of the genome,

where interactive regions are arranged in compartments (A or B). [Figure adapted from [GD13]]

Topologically associated domains

On a lower scale than that of the compartments, Hi-C highlights the existence of another

chromatin structure known as Topologically Associated Domains (TADs). TAD was de-

fined by Dixon & al. in 2012 [DSY+12] as a genomic region in the range of megabases

within which DNA physical interactions are persistent, as opposed to inter-TAD inter-

actions, which are rare. The restriction of inter-TAD interactions is likely maintained by

boundary activity between neighboring TADs [DGR16] (see Figure 1.3). Each chromosome

is divided into multiple TADs, and the human genome is composed of almost 2000 TADs.

Dixon & al. also showed that TADs are stable and conserved between cell types as well as

between different species [DSY+12]. One TAD belongs to either active A or repressed B

compartments [RIGP18]

TADs contain smaller subTADs that are not necessary conserved among cell types [PCSS+13]

(see Figure 1.3). An example of this is presented in Figure 1.3, where X, Y, and Z are

different regions equally distant (in term of bases), but X and Y are located in the same

TAD while Z is in the neighbor TAD. The frequency of interactions between X and Y is
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higher than that between Y and Z (Figure 1.3)

Figure 1.3: Visualization of a region of one chromosome. TADs are the domains of DNA

interactions and are represented here by the red triangles. SubTADs are also displayed. Red

refers to high interactions while white refers to no interactions. X, Y, and Z are three equidistant

regions. However, X and Y are in the same TAD while Z is in the neighboring TAD. X and Y

show a high interaction frequency (red) while Y and Z show very low interaction frequency (white)

Isochores

In 1981, Bernadi & al. [CSMB81] developed a strategy to understand the organization

of the genome. This strategy relied on a fundamental property of the DNA: the base

composition especially that GC content is not homogeneous along the DNA. They defined

"isochores" as large regions of DNA (greater than 300 kb) that can be separated in two

major classes: i) Heavy isochores with a high frequency of GC and ii) light isochores with

a low frequency of GC. Years later, in 2017, Jabbari and Bernardi [JB17] showed that

isochores are the genomic structure that underlies TADs.

1.1.1.2 RNA and the central dogma

Ribonucleic Acid (RNA) is a single-stranded copy of the DNA that can be transported

from the nucleus to the cytoplasm. A specific sequence of DNA known as a gene (see

Section 1.1.2) is transcribed to an RNA sequence using a complex of proteins including

RNA polymerases. RNA is complementary to the DNA strand from which it is transcribed:

the nucleotide composition of the RNA molecule is identical to that of the DNA except for

the substitution of the thymidine (T) by uracil (U).
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There are different types of RNA with various functions in the cell: i) Non-coding RNA

(ncRNA,microRNA, . . . ) that can fine-tune gene expression. ii) RNAs implicated in the

translation process (transfer and ribosomal RNA: tRNA & rRNA). iii) Messenger RNA

(mRNA) that is translated to form specific proteins. mRNA is an intermediate molecule

in the central dogma of life. The central dogma of molecule biology explains the flow of

genetic information, from DNA to RNA, to make a functional product: the protein. It is

often stated as “DNA makes mRNA and mRNA makes proteins”. The central dogma is

presented in Figure 1.4 where the coding gene in DNA is transcribed to messenger RNA

that carries the information necessary to form a protein by a process known as translation.

Even though for a long time the central dogma was a fundamental principle that infor-

mation flows from DNA to RNA to protein, novel discoveries are challenging this classical

concept. In fact, hundreds of thousands of noncoding RNAs (ncRNAs) are now identified

([HRH+17], [HFG+12]). These RNAs were once written off as junk RNA. However, it is

well known now that ncRNAs have critical regulatory roles in diverse molecular networks.

With this revelation, the depiction of the genome has expanded to include thousands of

non-coding genes that produce RNAs without producing proteins as their functional prod-

ucts ([HRH+17], [HFG+12],[Koo12], [MS15]).

1.1.2 Genes

The basic elements of hereditary information in DNA are genes. Genes were first defined

by Johannsen in 1909 [Joh09] as the physical and functional unit of biological inheritance,

but its meaning has been evolving since. Later, the concept of a gene was imposed as a

sequence of DNA that conduct RNA synthesis that code for one protein. However, it is

known that a gene is a sequence of DNA that can code for more than one protein. Besides,

not all genes are protein-coding (in particular, miRNA, long non-coding RNA, . . . ). Thus

a gene can be defined as a sequence of DNA that produces at least one RNA molecule with

known, or unknown function [HFG+12].
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Figure 1.4: The central dogma. From a double stranded DNA, genes will be transcribed to

mRNA of single strand where A is transcribed to U, C to G and vise-versa. Then mRNA is

translated to form a protein.

1.1.2.1 Diversity of genes

The diversity of RNAs (Subsection 1.1.1.2) results from the variety of genes. Gene tran-

scribed into RNAs not translated into proteins are known as non-coding genes. Protein-

coding genes, on the other hand, are transcribed into Messenger RNAs. These genes

represent around 42% of all genes annotated [HRH+17].

1.1.2.2 Protein coding genes

In this thesis, we will focus on protein-coding genes (referred to later as genes). The

human genome contains around 20, 000 − 25, 000 genes [HRH+17] with a median length of

12,426 bases. Each gene harbors one, or several transcription start sites (TSSs) and the

most upstream is referred to as the gene start. The body of the gene is composed of two

elements: exons and introns.

1. Exons are translated into proteins. These regions are retained in the mRNA after its

maturation (splicing see introns). The number of exons, as well as their length and
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composition, vary from a gene to another. The average number of exons in human

genes is about 8 − 10 and the average exon length is about 170 bases [SCK04]. A

gene starts and ends with exons, these exons can intersect partially or totally with

UTR regions (see Figure 1.5). Exons contain the coding DNA sequence (CDS). The

rest of the exonic sequences, located upstream and downstream CDS, is referred to

as 5’UTR and 3’UTR respectively (explained below).

2. Introns are sequences separating exons ([CGBR77], [BMS77]) (see Figure 1.5) and

are present in immature pre-mRNA. These regions are transcribed then removed

during the maturation of RNA in a process known as splicing [SL87]. Introns play

a role in gene regulation ([CC12],[Ros08]). An average human gene contains about

6 − 9 introns and the average intron length is about 5419 bases. A small proportion

(5%) of introns is large (more than 200,000 bp) [SCK04]. The total length of introns

cover almost 50% of the total length of the genome.

3. UTRs for Untranslated Transcribed Regions. Each gene has 2 UTRs: i) Upstream

(on the 5’END) noted 5’UTR. In average, the length of this regions is around 150

bp [LM15] ii) Downstream (on the 3’ END) noted 3’UTR with an average length of

350 bp [LM15]. These regions play a role in gene regulation ([RKC+13], [LML+13],

[LQLM10]) as well as in mRNA stability [MP11].

Figure 1.5: Gene structure. A coding gene with a start (on 5’) and an end (on 3’). Exons are

presented in blue, introns in red and UTRs in green.

1.1.3 Gene Regulation

Although all the cells of an organism contain almost the same DNA [com16], they still

carry specialized biological functions. This is due to differential gene expression and reg-

ulation in each cell. Genes are not expressed in the same way in all cells [Dra03]. Some
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genes known as Housekeeping genes are expressed all the times in all cells. However, the

changes in the expression level of some particular genes in a specific cell, at a specific time,

determine its characteristic and functions. This concept is the root of the complexity and

the diversity of the organism. Gene expression varies from highly expressed to unexpressed

at all. Quantifying the level of gene expression is the subject of different studies. Gene

expression regulation occurs at different stages that include, transcription, translation, and

degradation. The combination of all these processes determines when and where specific

genes are activated, and the number of proteins or RNAs produced.

In this thesis, we are interested in the transcriptional and post-transcriptional regulation

of gene expression. Figure 1.6 shows the detailed processes of transcription and post-

transcription regulation of a gene. In Sections 1.1.3.1 & 1.1.3.2, we present the different

regulatory elements illustrated in the Figure 1.6

1.1.3.1 Transcription regulation

Transcription is the first step of gene expression. During this process, the DNA sequence of

a protein-coding gene is transcribed (copied) into a pre-mRNA. The transcription process

is divided into three stages, i) initiation: beginning of the transcription (from the TSS) ii)

elongation, which is the process of copying the gene into RNA and iii) termination: the

end of the transcription (at gene end). Different elements control each of these stages,

and in this section, we present the elements controlling mostly initiation and elongation.

Termination is a poorly understood process.

Regulatory regions

An important element in transcription is regulatory regions. They are non-coding DNA

sequences that are targets of RNA polymerase and other regulatory molecules involved

in the process of gene transcription. These regions regulate the start and the level of

transcription. Next, we present two types of regulatory regions: promoters and enhancers.

Promoters:

Promoters are a regulatory region located around the transcription start sites (TSSs) of the
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Figure 1.6: Different levels and mechanisms of gene expression regulation From the

DNA, a gene is first transcribed to pre-mRNA by RNA polymerases with the help of transcrip-

tion factors (transcriptional level). At the post-transcriptional level, the pre-mRNA undergoes a

process of maturation that will lead to a stable mRNA ready to be transported to the cytoplasm.

All the mechanisms and biological elements are discussed below.

gene (see Figure 1.6). Promoters contain specific DNA sequences which bind polymerase

as well as other regulatory proteins called transcription factors (TFs) (see Section 1.1.3.1).

Promoters harbor specific sequence features. One of these features is CpG (Cytosine −

phosphate − Guanine) islands: short regions of DNA with an average length of 1,000 bp

(500-4,000 bp), which are relatively GC-rich (65% GC content) compared to the whole

genome (40% GC content). In fact, in humans, about 70% of gene promoters contain a

CpG island [DB11]. Two other specific features are also important: The TATA box, which

is a DNA consensus sequence of TATA repetition located 25 nucleotides upstream the TSS.

This sequence is in part responsible for recognition of RNA polymerase II [Her93]. Finally,

the initiator element (Inr) is a 17 bp sequence located at the TSS and has a similar function

to that of the TATA box [XYF+07].
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We define the position of a promoter in function of the TSS of a gene. However, a gene

can have multiple TSSs [HFG+12] thus multiple promoters. The average number of TSS

in the human genome is five [HFG+12].

Enhancers:

Enhancers are short nucleotide sequences in DNA that increase the rate of transcription of

particular target genes. They act on promoters by binding regulatory elements and bring-

ing them closer to promoters by a phenomenon known as DNA looping (see Figure 1.6).

Although enhancers and promoters share many properties ([And15], [DS18]), enhancers

can carry out their effects regardless of transcriptional orientation. Also, they can be both

proximal (within the 5’UTR, the introns or the 3’UTR) and very distal from the target

gene (Megabase order) [PBD+13].

Epigenetics

Epigenetics are the modifications at the genomic activity that occur without changes in

the DNA sequence. Epigenetic is interested in a level of information that defines how genes

will be expressed or not expressed in a cell.

Epigenetic modifications are natural and essential to many organism functions, but if they

occur improperly, there can be major adverse health and behavioral effects [MA16]. Many

types of epigenetic modifications have been identified including DNA methylation, histone

modifications, and others. Next, we present some epigenetic modifications that can occur

on regulatory regions, as well as their influence on gene expression and transcription.

DNA methylation

DNA methylation is a stable epigenetic modification that regulates gene expression. DNA

methylation is the addition of a methyl group at cytosines (C) that occurs in the context of

CpG di-nucleotides [SB08]. The human genome has a bimodal distribution of CpG methy-

lation: i) most of the genome that is highly methylated ii) few regions with a CpG island

enrichment that are not methylated. CpG islands mainly co-localize with promoters, the

transcription regulatory unit of a gene.

It has been showed that DNA methylation of CpG islands functions to maintain a repressed
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chromatin state and silence promoter activity [SB08]. The effect of the DNA methylation

on gene transcription seems to depend on the CpG content of the promoter. Weber &

al. [MWR+08] showed a clear anti-correlation between transcription of a gene and DNA

methylation of a CpG-rich promoter. On the other hand, they showed that even though

methylation of a CpG-poor promoter can repress transcription, sometimes the correspond-

ing gene is actively transcribed.

Histone modifications

Histone modifications are post-translational modifications (PTMs) that take place on the

tail of the histone and affect the structure of the chromatin. These modifications regulate

gene expression by organizing the genome into active regions where DNA is accessible

for transcription, or inactive regions, where DNA is more compact and less accessible for

transcription. There are different types of histone modifications such as mono-, di-, and

tri-methylation, acetylation, phosphorylation, and others. Each modification can lead to

either the activation or inhibition of gene expression. Histone acetylation, for example,

is often associated with transcriptional activation, while histone methylation can promote

both transcriptional activation and inhibition. Each modification has a specific signature,

for example, the trimethylation of the lysine 4 of histone 3 noted H3k4me3 is a particular

modification of chromatin at the level of promoters that control actively transcribed genes

in eukaryotes.

DNA accessibility

The binding of RNA polymerase and other regulatory elements is associated with DNA

accessibility, in other words to the state (open or closed) of the chromatin near a particular

gene. DNA accessibility is controlled by epigenetic regulations and can be measured, for

example, by DNase I hypersensitivity [Wu80]. Deoxyribonuclease I (DNase I) is an enzyme

that can cut free DNA. In figure 1.1 regions between two compacted histones are known as

DNase I hypersensitive sites, short regions of chromatin that are highly sensitive to cleav-

age by DNase I [Wu80]. These sites are often considered as marks for transcriptionally

active regions of the genome [WZW+12]. DNase-seq [KCLE81] is a method used to detect

DNase I hypersensitive sites.
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Transcription factors

Transcription factors (TFs) are molecules that control the activity of a gene by determining

whether it is transcribed into RNA. Transcription factors control when, where, and how

efficiently RNA polymerases function. TFs recognize specific short DNA sequence located

on genes regulatory regions (promoter and enhancers). This short sequence of length be-

tween 5 and 30 nucleotides are known as transcription factors binding sites (TFBSs) or

motifs. One TF can recognize several TFBSs that can differ in certain nucleotides. The

representative model of motifs will be extended below.

TFs can be distinguished into two types: i) General transcription factors (GTF) needed

in general for transcription to occur. These TFs form a complex called pre-initiation com-

plex that binds specific sequences of the DNA especially the TATA box and the Inr. ii)

Gene-specific TFs that are responsible for differentially regulate gene expression.

Specific transcription factors are often crucial in initiating gene expression that results

in major developmental changes. A TF can be either an activator or an inhibitor of the

transcription. An activator boosts gene transcription and helps the recruitment of RNA

polymerase, while an inhibitor decreases transcription and/or impedes the binding of the

activators and RNA polymerase. Although binding of TFs is a necessary factor in tran-

scription, it is not in itself sufficient. Thus, following DNA binding, the factor must interact

with other factors to form a complex and recruit RNA polymerase II (see Figure 1.6).

Motifs and PWMs A motif is an abstraction that models the sequence preferences of

DNA binding proteins. The motif is built from multiple sequences known to be bound by

the transcription factor (see Figure 1.7 a). Different models of representation have been

elaborated. The simplest kind of motif representation is the consensus sequence [PMP04]

i.e. a string of nucleotides that represents the most abundant nucleotides in each position

of the protein’s binding site. Variability between nucleotides at specific positions can be

considered by using the IUPAC symbols [ZSRU91] to describe the motif (see Figure 1.7 b).

However, this model is not flexible enough, since proteins often display variations in binding

14



CHAPTER 1. STATE OF THE ART

specificities, besides, this is a deterministic model that presents a loss of information when

compared with the collection of binding sites sequences[WS04]. Also, in positions where a

base is not conserved (for example it can be T or A or C), the model does not give any

information about the probability of having each of the three bases.

A visualization model was then introduced by Scheinder & al [SS90] to characterize each

motif by its sequence logo (see Figure 1.7 e). In this model, bases are stacked on top of

each other in increasing order of frequencies, and the importance of a nucleotide at each

position is related to it size.

Another common representation relatively simple yet flexible is a matrix of positions in the

binding site versus nucleotides [Sto00]. In the matrix, each row represents one residue (A,

C, G or T), and each column represents a position in a set of aligned binding sites. There

are several types of matrix representation: i) A position probability matrix (PPM) (Figure

1.7 c) that shows at each position, the probability of having a specific base based on the

alignment of known sites (Figure 1.7 a). A probability of 1 means the base is conserved..

ii) A position weight matrix (PWM) (Figure 1.7 d) which can be deduced from the PPM.

A PWM holds the log-ratio of the probability to observe the nucleotide given the motif

model (PPM), and the probability to observe the nucleotide given the background model

of the frequencies of each nucleotide in the genomic context.

Note that each motif has a specific length (number of bases) as well as a number of known

sites to be aligned. Figure 1.7 illustrates an example of a motif with 14 bases length and

eight known sites.

Direct interaction with the gene

RNA polymerase is an enzymatic complex responsible for the synthesis of RNA. In the

human genome, three types of RNA polymerase exist I, II and III. Each type is specialized

in the transcription of certain classes of genes. The RNA polymerase binds specific binding

sites on the promoter and forces the DNA to unwind to expose the two strands of DNA.

The RNA polymerase uses a single-stranded DNA template to synthesize a complementary

strand of pre-mRNA, it builds a pre-mRNA strand in the 5’ to 3’ direction. The transcrip-

tion of protein-coding genes into mRNA is produced using RNA polymerase II.
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Figure 1.7: Different Models of

representation of a motif with

14 bases. a) Eight different bind-

ing sites of a TF collected from the

literature and aligned. b) A consen-

sus sequence model using the IUPAC

symbols. c) Position Probability ma-

trix (PPM) with 14 column one for

each position and four rows one for

each base. The probability of having

C on the first position is 0.375 while

there 0% chance to have an A. d) Po-

sition weight matrix (PPM) calculated

using the PPM. e) Sequence logo model

where the size of the base at a posi-

tion represents its frequency. Figure

adapted from [WS04]

The RNA pol II propagates along the copied DNA strand to form the pre-mRNA similar to

the coding strand with U instead of T (elongation). The RNA pol II continues transcribing

the DNA until it gets to the gene end (termination). In the human genome, the binding of

the RNA poly II is controlled by transcription factors and epigenetic modifications [LJZ15].

1.1.3.2 Post-transcription regulation

At the RNA level, post-transcriptional controls of gene expression and RNA maturation

are exerted through splicing, RNA-binding proteins regulation, and mRNA nuclear export.

One of the first steps of RNA maturation is the splicing process in which introns are re-

moved from pre-mRNA and exons are joined together to form the mRNA that will be

transcribed into proteins. Brenner & al. [LBS+07] showed that pre-mRNAs in humans

undergo alternative splicing in 95% of genes. The process of alternative splicing can gen-
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erate multiple transcripts from the same gene, thus potentially increasing the proteomic

diversity and then influencing gene regulation. In addition to this, the importance of al-

ternative splicing is further supported by its link with development and disease [OC07].

On the other hand, RNA-binding proteins (RBPs) can co- or post-transcriptionally regulate

the fate of RNAs. The vast majority of RBPs appear to bind target sequences in single-

stranded RNA (see Figure 1.6) ([RKC+13], [LQLM10], [AOA06]). Some RBPs can also

recognize specific sequences in their RNA targets through small non-coding RNAs i.e. mi-

croRNAs (miRNAs), and this recognition eventually leads to RNA degradation [SCFK14].

Finally, the regulation of gene expression relies partially on the controlled exchange of

molecules between the nucleus and the cytoplasm. The RNAs produced in the nucleus

have to be exported, either to be translated into protein or to mature into functional par-

ticles, whereas factors implicated in transcription regulation have to be imported into the

nucleus. Export of mRNAs is unique as it is extensively coupled to splicing [RDS04].

The RNA regions involved in post-transcriptional regulations mostly correspond to the 5’

and 3’ untranslated regions (5’UTR and 3’UTR) ([RKC+13], [SCFK14], [GHT14]). The

coding DNA sequence (CDS) also plays a key role in post-transcriptional regulation [RH05].

Intronic sequences have also been reported to affect gene regulation in many ways, from

transcription to RNA stability ([CC12], [Ros08]).

1.1.4 Gene deregulation in cancer

1.1.4.1 Introduction to cancer

Cancer is a term that refers to a collection of diseases that have the common feature of

uncontrolled cell growth and invasion. The general term "cancer" does not refer to a disease

but applies to a range of pathologies that can affect any part of our body. There are more

than 100 different types of cancer usually named according to the cell type.

In 2016, The International Agency for Research on Cancer (IARC) declared 14 million

new incidences worldwide, of which almost 8 million deaths occurred in one year [O+05].

According to the "Institut National du cancer" (INCa), cancer is the principal cause of
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death in France. They estimated almost 400, 000 new cancer cases with 150, 000 deaths in

2017.

Cancer starts when a cell acquires a series of modifications that collectively change a

normal cell into a cancerous cell, which divides uncontrollably and may eventually spread

throughout the body. The first indications of the significant role of genetics in cancer

development date from the beginnings of the XX th century. Nowadays, it is demonstrated

that cancers are mostly genetic pathologies [Wei07]. Cancer-causing modifications can

occur on different levels: epigenetic modifications and genetic mutations on the DNA

sequence. These modifications may occur on all the genome, and they can lead to the

development of cancer only when occurring on specific genes implicated in cancer called

cancer-genes.

1.1.4.2 Cancer genes

Cancer genes can be classified into two types, proto-oncogenes/oncogenes and tumor sup-

pressor genes. In the normal state of the cell, a balance exists between the expression

of these two types and their modifications/mutations may break this balance and favors

carcinogenesis.

Proto-oncogenes and oncogenes:

Proto-oncogenes are a group of genes that cause normal cells to become cancerous when

they are mutated. Proto-oncogenes code for proteins implicated in growth factors, tran-

scription factors, and regulators of cell death. All of these processes are important for

normal human development and the maintenance of tissues and organs.

Oncogenes induce positive regulation of proliferation and differentiation. Oncogenes typ-

ically increase cell division, decrease cell differentiation, and inhibit cell death. These

phenotypes define cancer cells.

Tumor suppressor genes:

Tumor suppressor genes are involved in the negative regulation of proliferation and act

either by inhibiting signaling pathways that may favor oncogenesis or by activating path-
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ways that can block oncogenesis. We regularly observe inactivation of tumor suppressor

genes in cancer cells [dL94].

1.1.4.3 Epigenetic modifications

The first human disease to be linked to epigenetic modifications was cancer. Feinberg &

Vogelstein [FV83] (1983) found that diseased cells from patients with colorectal cancer

had less DNA methylation than the normal cells of the same patients. Modified histones

complex disrupt the pattern and levels of histone marks and consequently deregulate the

control of chromatin-based processes (activation or inhibition of cancer-genes transcrip-

tion), ultimately leading to the development of cancer [SH10]. In the same concept, DNA

methylation can also be a cause of cancer. Effectively, specific hypermethylation of CpG is-

lands silences tumor suppressor genes while a global hypomethylation of the genome favors

oncogenes activation [Est08].

1.1.4.4 Mutations

When talking about mutation, one should first introduce genetic variations. Genetic vari-

ations are changes to our DNA that can modify genetic information. These changes are

always happening, and they can be caused by exogenous exposures such as chemicals and

radiations, as well as by endogenous mechanism during cell division. The most common

way through which simple variations occur is DNA copying errors. Given the number of

nucleotides in the DNA to be copied at each cell division, mistakes are inevitable. The rate

of variation in eukaryotes is 1 per every 100,000 nucleotides [Nog18]. Even though most

of the mistakes are repaired or eliminated by DNA processes, few mistakes do get through

each and every cycle [Pra08]. Every cell has thousands of genetic variations that make it

a little bit different from its mother cell [JWPP00].

Types of variations:

The genetic variation occurs at vastly different scales, from a single base in a genome to

entire chromosome structure. Mutations can be derived from single nucleotide variations
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and small insertions and deletions (SNVs) or from copy number variations.

Single nucleotide variations can be: i) punctual variations, i.e. substitution of one nu-

cleotide by another, which constitute 95% of genetic variations. ii) Indels variations i.e.

variation by deletion or insertion of a small sequence in the genome. These variations may

occur in different regions of the DNA: genes, promoters, intronic regions, and others.

The other type of mutations is copy number variation (CNV). Genes are presents in two

copies in a genome, one from each parent. For some genes, however, the copy number

varies from this norm, and they can be present in one (deletion), three, or more than three

copies (amplification). This is known as copy number variation of DNA segments, and it

is ranging from kilobases (kb) to megabases (Mb) in size [SLT+04].

When these variations occur in more than 1% of the population with no negative effect,

they are known as Polymorphisms. In particular, the substitution of one nucleotide, in

this case, is known as Single Nucleotide Polymorphisms (SNP) [Sha13].

However, when the genetic variation rate is often identified in the same disease (for example

cancer), these variations are known as mutations [KPEF15]. Mutations can be classified

into two classes: i) passenger mutations, i.e. do not cause diseases especially cancer. Oth-

erwise, when one or more of these mutations occur in a cancer gene (proto-oncogene or

tumor suppressor gene), they become driver mutations and lead to cancer development

[PM15].

Even though it is known that somatic mutations can be generated by endogenous (DNA

machinery) or exogenous (tobacco, ultraviolet, . . . ) factors, the understanding of the muta-

tional processes that cause somatic mutations in cancer is limited. A number of “signature”

characterizes each type of cancer. A signature is a combination of different somatic mu-

tations generated by different mutational processes. In 2013, two back to back studies by

Lawrence & al. [LSP+13] and Alexandrov & al. [ANZW+13] proposed methods to iden-

tify cancer-associated signatures and evaluate the heterogeneity of the mutational process

among cancer types.

Alexandrov & al. [ANZW+13] were able to distinguish different elements (age, transcrip-
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tion, type of mutation) that are correlated to the cancer signatures. On the other hand,

Lawrence & al. proposed a method using the background mutation rate (i.e. the per base

rate at which new mutations occur) to identify cancer genes with a low false positive rate.

1.2 Statistical methods

For the methods presented below, let n and p be respectively the number of individuals

and that of variables. The notation of variables used in this section is: i)Y is an [n × 1]

vector of the response variable and ii) X = (X1, . . . , Xp) an [n × p] variable matrix where

Xj(j=1,...,p) = (x1j,. . . , xnp) is a column vector corresponding to the observation of variable

j for the n individuals.

1.2.1 Parametric regression

1.2.1.1 Linear regression

A linear regression is a statistical method that aims to find a linear relationship between

a response variable Y and one or more predictive variables. The terminology linear re-

gression was introduced by Francis Galton in 1886 [Gal86]. Although the method used to

estimate this type of model in general, known as Least squares, was introduced long before

by Legendre in 1805 [Leg05].

A linear regression can be written in a matrix form as in Equation (1.1)

Y = Xβ + ǫ (1.1)

where X is the [n×p] predictive variables matrix, ǫ = (ǫ1, . . . , ǫn) is the vector of residuals.

The vector of parameters β = (β0, β1, . . . , βp) is the regression coefficients to be estimated.

β0 is the intercept or bias of the machine learning and is estimated to the mean of the

response variable when predictive variables are standardized. In Equation (1.1), X is the

matrix of variables with adding a vector 1 (corresponding to β0). Matrix X is then written

as :
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X[n×(p+1)] =




1 x11 x12 · · · x1p

1 x21 x22 · · · x2p

...
...

...
. . .

...

1 xn1 xn2 · · · xnp




(1.2)

The application of the linear regression model requires the validity of the three assumptions

presented below:

1. For all i = 1, . . . , n, ǫi are independent identically distributed ǫi ∼ N (O, σ2)

2. Homoscedasticity: Same variance σ2 for all {ǫi}i=1,...,p

3. No or little multicollinearity between {Xj}j=1,...,p

4. n ≫ p

Each of these assumptions has its importance in the model estimation. First, from the first

assumption, the normality of residuals is necessary for the tests of the nullity of coefficients

and calculation of their confidence intervals. Zero means an ad hoc assumption used to

simplify the calculation. On the other hand, the independence of the residuals leads to

non-biased estimators (not valid otherwise) [SW15].

The importance of the second assumptions is related to coefficient estimation. Homoscedas-

ticity establishes independence between residuals and the predictive variables. This is nec-

essary for the least square that by definition accord equal weights to the variables [AS95].

Finally, high multicollinearity between variables affects the persistent of the estimations

as well as the stability of the model. Besides, it can lead to overfitting [MPJ91]. Regard-

ing the last assumption, its importance is explained later after the presenting the optimizer.

For estimation, let β̂ be the vector of estimated coefficients and Ŷ = Xβ̂ the predicted

vector. The estimator β̂ is obtained by the Ordinary Least Square (OLS) estimator that

minimizes the residuals sum of squares in Equation (1.3) :

RSS =
n∑

i=1

(yi − ŷi)
2 (1.3)
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This is a quadratic function and its minimum always exists but may not be unique. The

explicit formula of β̂ is presented in Equation (1.4):

β̂ = argmin
β




n∑

i=0

(yi −
p∑

j=0

βjxij)
2


 (1.4)

when XT X is invertible, the unique solution β̂ is given by Equation (1.5).

β̂ = (XT X)−1XT Y (1.5)

This estimator is convergent and known as the Best Linear Unbiased Estimator [Ait36].

The importance of the last assumption presented previously (n ≫ p) intervene in the com-

putation of β̂. If p is higher than n, there is no longer a unique least squares coefficient

estimate. The inverse of XT X does not exist, and the method is not useful [Clo09].

When fitting a linear model, the aim is not only to calculate prediction but also to select

a subset of variables that are significant to explain the response variable. In literature,

different methods exist for variable selections for linear models [Hoc76]. These methods

showed high performance in low dimension studies. When the study is in high dimension,

especially when p is high, the methods in [Hoc76] were not very efficient. For this reason,

the ultimate model (see Section 1.2.1.1) was proposed with the aim of variable selection

especially when the number of variables is high.

1.2.1.2 Penalized linear regression

A variable selection model was developed by Robert Tibshirani in 1996 known as Lasso

regression for Least Absolute Shrinkage and Selection Operator [Tib96]. In addition to its

capacity of variable selection. This model was built to overcome the Curse of dimensional-

ity, in other words, the model is efficient in high dimensional problems when the number of

variables is higher than the number of individuals (n ≪ p) [Tib96]. Lasso optimization is

an extension of the least square optimizer. The solution of lasso is obtained by minimizing

the residual sum of squares (From Equation (1.1) with a norm ℓ1 penalty term weighted

by the regularization parameter λ as in Equation (1.6).
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β̂LASSO = argmin
β




n∑

i=0

(yi −
p∑

j=1

β0xij)
2 + λ

p∑

j=0

|βj|


 (1.6)

The solution can also be seen as a minimization of the RSS under a constraint of type

norm ℓ1. The solution is then :

β̂LASSO = argmin
β




n∑

i=0

(Y −
p∑

j=0

βjxij)
2


 under the constraint

p∑

j=0

|βj| ≤ t (1.7)

where t is a parameter to control the level of regularization. This constraint penalizes

the regression coefficients with a norm ℓ1. Parameters λ and t are related by an explicit

relation that depends on the training data. The solution with a penalty allows a moder-

ate increase in the residuals sum of squares but with a decrease of the standard error of

each estimation. The choice of the ℓ1 norm comes from the fact that it leads to variable

selection by forcing the coefficients of the predictive variables with no effect to be zero

[FB17]. Variable selection is an advantage of Lasso contrary to other norms, for example,

ℓ2 norm knows as ridge regression [HK70]. Figure 1.8 shows a graphical representation

of the solution of a norm ℓ1 versus norm ℓ2 penalty in RRR2. The shape of the ℓ1 penalty

(square) leads to intersections with the axes and consequently to null coefficients. This

is not the case for the ℓ2 norm (Figure 1.8 right graph) where a circular shape leads to

minimum variance which stabilizes the estimations [HTF01]. The Ridge optimization is

useful when it comes to model performances, but it can not affect a variable selection (as

for Lasso).

The choice of the value of λ is crucial and depends on the data. λ = 0 leads to the OLS

solution and if λ−→∞ all the coefficients are set to zero. To estimate the model, a set

of values of λ is defined and the value that minimizes the mean square error by cross-

validation [RTL16] is chosen. The number of selected variables is inversely proportional

to the value of λ. The higher the value of λ is, the fewer variables are selected [FB17].

An example of a Lasso penalized regression fitted on 20 predictive variables to predict a

response variable Y is illustrated in Figure 1.9. The first graph Figure 1.9 (a) shows that

when λ is higher (log scale), the number of selected variables is lower. For log(λ) = −5 all

variables are selected. On the other hand, when log(λ) = 0 no variable is selected.
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Universally, two values of λ are used: the one that minimizes the mean square error (λmin),

and the one that gives an error which is one standard error away from the minimum error

[FHT10]. (λ1se). λmin is lowest than λ1se which induces a model with a higher number

of selected variables. Figure 1.9 (b) shows, for the same example as Figure 1.9 (a), the

output of the cross-validation applied to select to best value of λ. λmin and λ1se are also

presented in the graph. The model fitted using λmin as the penalty parameter has ten

non-zero coefficients and the one using λ1se has only eight non-zero coefficients.

Figure 1.8: Estimation for lasso and ridge regression in RRR2. Representation corresponds to

a model with two variables with coefficients respectively β1 and β2. The ellipses represent the RSS

as it increase from its minimum value β̂. The square (lasso) and the circle (Ridge) represents

the shape in RRR2 of the constraint of norm ℓ1 and ℓ2. The solution of each optimization is the

intercept between the ellipse and the constraint. Figure inspired from The elements of statistical

learning page 71 [HTF01].
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Figure 1.9: Representations of the output of a Lasso penalized regression model fitted

on 20 predictive variables. a) Path of the coefficients against the value of log(λ). Each curve

represents one of the 20 variables. Values on the upper axis represent the number of nonzero

coefficients. b) Cross-validation errors and their upper and lower confidence interval for each

value of λ. The upper axis represents the number of selected variables. Vertical dotted lines refer

to the values of λmin and λ1se respectively.

1.2.1.3 Stability selection

This method comes in a logic continuity of the Lasso regression. It is used to select stable

variables. In other terms, variables that are selected with high probabilities even after

a slight changing in the training dataset. This method, introduced by Meinshausen and

Bühlmann in 2010, [MB10] is based on a sub-sampling and a selecting algorithm.

The concept of the method is to find, among p predictive variables, the set {Ŝstable} of

stable variables when randomly resampling the training data. A variable is considered

as stable if its probability to be selected is higher than a defined threshold πthr over a

large number of resampled training datasets [MB10]. As for the Lasso penalized linear

regression, one should identify a set regularization parameter Λ. The choice of Λ and its

effect on the algorithm will be discussed later in this section. The stability selection is

explained in Algorithm (1)

In their paper, Meinshausen and Bühlmann [MB10] show that when πthr varies in a range

of 0.7 and 0.9, the results are slightly affected. Also, they show that the choice of Λ do not
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affect the set of selected stable variables dramatically, as long as Λ varies within reason.

In fact, the set Λ can be chosen in a way that guarantees a bound on the expected number

of false selections. In fact, some of the variables selected as stable may be false positives.

With the aim of controlling the error of the method, let V be the number falsely selected

variables and qΛ the average number of selected variables. The per-family error rate is

defined as the expected number of false positives E(V ) [MB10]. The error of the method

is controlled either by πthr or qΛ as defined in Equation (1.8):

E(V ) ≤
1

2πthr − 1

q2
Λ

p
(1.8)

Algorithm 1: Stability selection

Input : Response variable Y[n×1] and predictive variables matrix X[n×p]

Output: Set of stable selected variables and a matrix of selection frequencies.

Initialize : The Number of repeats B. The set of regularization parameter Λ. The

threshold of selection πthr

for λ ∈ Λ do

for i = 1 to B do

- Draw from population, without replacement, a subset Zi of n
2

individuals;

- Attribute a random uniform weight for each variable;

- Run a Lasso penalized regression on Zi using the penalty λ;

- Note Ŝλ
i The set of selected variables;

end

for k = 1 to p do

Calculate a selection frequency ;

∏λ
k = 1

B

B∑
i=1

I{k∈Ŝλ

i
} ;

end

end

Construct the set of stable variables according to the following definition:

Ŝstable = {k : max
λ∈Λ

∏λ
k ≥ πthr};

return {Ŝstable, {
∏λ

k}{λ∈Λ,k=1,...,p}} ;
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1.2.2 Non-parametric regression

1.2.2.1 Regression Trees

Decision trees are non-parametric and non-linear models used to predict a response vari-

able Y using a set of predictive variables X. The algorithm CART for classification and

regression trees presented by Breiman in 1984 [BFOS84] is the most popular. The CART

is a recursive binary partitioning of the variables X to predict the class or the continuous

value of Y for classification and regression respectively.

Next, we will detail the different steps of the procedure to obtain a regression tree. In

this thesis, we are only interested in regression questions (predictions of continuous gene

expression). We will not detail classification.

Construction of the tree for regression:

The result is presented as a hierarchical tree. The start is with a root node including all

individuals. At each partitioning, the method consider all the possible divisions of form

Xj(j=1,...,p) ≤ t where t ∈ Xj = (x1j, . . . , xnj) and divide the node into two nodes (left and

right). In each node, Y is fitted by the mean of the observations in this region according

to the division variable. The best division (variable and threshold) is selected to minimize

the cost function defined in Equation (1.9) [RRCB10]:

Cost = SST − (SSL + SSR) (1.9)

SST is the sum of squares before the division, SSL and SSR are respectively the sum of

squares in the left and right node.

The selected division is the one that induces the higher loss of error i.e. the one that

minimizes the cost function. This criterion is known as anova because it reduces the inter-

groups variance at each division [?].

All individual satisfying the selected division Xj ≤ t will be set on the left child node and

the rest on the right child node. This procedure will be repeated for each child node until
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having homogeneous leaf nodes or until attaining a stopping criterion.

Figure 1.10 illustrates an example for CART in RRR2 fitted on 40 individuals. For the root

node, the algorithm select X1 < t1 as the best division creating a left child node A with

12 individuals almost homogeneous (small error) (Figure 1.10 a). For the rest of the data

(in the right node) the algorithm selects the division X2 < t2 to create another nodes B

with 8 individuals (Figure 1.10 b). The algorithm continues with the last division (Figure

1.10 c) to obtain two additional partitions C & D that are not as homogeneous as A & B.

The algorithm stops and returns the decision tree in Figure 1.10 d.

Figure 1.10: CART algorithm example in RRR2 The data on this example are simulated. a)

First split under the condition X1 < t1 b) The rest of the data are divided according to X2 < t2.

c) Final division with X1 < t3 d) The results of CART algorithm in form of an hierarchical tree.
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Stopping criteria:

The more we progress in the partitioning (i.e. the deeper the tree is), the higher is the

risk of overfitting. This algorithm needs to know when to stop. Different stopping criteria

exist [Kra96], and one of the most common criteria is to define a minimum count of indi-

viduals for leaf nodes. If at an internal node, the number of individuals is less then the

minimum the split is not accepted, and the node is considered as a leaf node. In general,

the minimum is set to be at least the third of the number of individuals of the divided node.

Pruning the tree:

Another method proposed by Breiman to avoid over-fitting of the CART algorithm is the

pruning of the tree [HTF01]. This method will determine the depth of the tree i.e. the

number of internal nodes by using a complexity parameter. The pruning consists of three

steps i) Grow a maximal depth tree T0 where at each leaf node we have the minimum

node size (in general 5). ii) Using the maximal tree T0, define T1, . . . , TM all the sub-trees

that can be pruned by the complexity parameter from T0 (explained later). iii) Select the

sub-tree that has the lowest mean square error on a test sample using cross-validation.

Define the sub-trees:

Let T0 be the full tree and T any pruned sub-tree from T0. T is obtained by collapsing a

number of internal nodes [?]. First, one should calculate R(T ) the error committed with

the sub-tree T. let T̃ the set of leaf nodes of T, R(T ) =
∑

t∈T̃

(yi − ȳt)
2 where ȳt is the mean

of the observations in the leaf node t. The cost complexity function Cα(T ) is defined by:

Cα(T ) = R(T ) + α|T | (1.10)

where α is a tuning parameter that penalizes |T | the number of leaf nodes in T. A higher

value of α induces a smaller tree (less deep). The idea is to find for each α, the unique

sub-tree Tα ⊂ T that minimize Cα(T ). The value of α is estimated by cross-validation on

k-folds.
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1.2.2.2 Random Forest

Random Forest was developed in 1991 by Leo Breiman [Bre01] as an upgrade of the initial

method of decision trees. Sensibility and instability are two big inconvenient for decision

trees. Random Forest, constructed on the base of multiple decision trees overcome these

limits and provide a new non-parametric powerful framework valid for regression as well

as for classification.

Random Forests is also based on a bagging method [Bre96]. Bagging is an abbreviation

of bootstrap aggregation is an ensemble method [Zho12] used to reduce the variance for

those algorithms that have high variation. Bagging is usually very useful for CART.

The algorithm of construction of a Forest in the context of regression is presented in Al-

gorithm (2).

Algorithm 2: Random Forest

Input : Response variable Y[n×1] and predictive variables matrix X[n×p]

Output: One Random forest

Initialize : ntree: number of decision trees used to construct the forest;

for t = 1 to ntree do

- nobs: number of observations to train each tree;

- m: number of variables used at each node of the tree;

Grow a full tree using nobs individuals and for each node choose the best cut

when using only m predictive variables;

P̂tree(t) = (Ptree(1, t), . . . , Ptree(n, t)) is the vector of mean predictions of the

individuals calculated on tree t.

end

Aggregate all the trees predictions to create the prediction of the random forest;

P̂forest = 1
ntree

ntree∑
t=1

Ptree(t);

return the predictions P̂forest.
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Figure 1.11 shows an example of the algorithm 2 with ntree = 3 trees. Three trees are

grown on three different subsets of nobs individuals and m variables each (bagging part).

The resulted prediction in one leaf is an aggregation of the three predictions calculated on

the different trees.

Figure 1.11: Example of the Random Forest algorithm. For this example ntree is equal

to 3. From the original subset with n individuals and p variables, three independent subsets with

nobs individuals and m variables are selected. Tree 1, Tree 2 and Tree 3 are grown on each subset.

The predictions of a leaf node of each tree is respectively 0.2, −0.1, 0.5. The prediction from the

random forest is the mean of three predictions i.e. 0.2

1.2.2.3 Local regression: Loess

Loess for LOcal regrESSion is a non-parametric local regression method introduced by

Cleveland in 1979 [Cle79]. This method combines linear least square error regression as

well as nonlinear regression. At each point, a low degree polynomial is fitted using only

the k-nearest neighbors of the estimated point. The polynomial is fitted using a weighted

least square error optimizer: higher weights are attributed to points closer to the estimated

point, and lower weights for those further away. The algorithm stops after estimating each
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point of the training set with polynomial regression. Different parameters interfere in the

estimation: the degree of the polynomial, the attributed weights as well as the percentage

of neighbors to use. Note that this method can be applied in RRRp for p ≥ 1 but in this

thesis, we will only present the algorithm in RRR1 (i.e. with only one variable). The purpose

is then to predict Y = (y1, . . . , yn) in function of one variable X = (x1, . . . , xn).

First, we will start by defining our model by the Equation (1.11)

yi = f(xi) + ǫi i = 1, . . . , n (1.11)

where f(X) is an unknown function with no assumptions to be estimated [Cle79]. The

errors ǫi are supposed independent identically distributed with zero mean and constant

variance σ2 (i.e. same hypothesis as in linear model).

Before presenting the implicit equation of the estimation of f(xi), we should define some

parameters and notations. First, one should choose the degree of the polynomial to be

fitted locally. In general, we use first or second-degree regression (linear or quadratic

regression). A zero degree polynomial is a weighted moving average [Cle79].

Once the degree of the polynomial is set, the subset of neighbors should be selected. For

that a parameter α is set as the percentage of k-neighbors with α ∈ [0, 1]. For a point x0

the model is fitted on nα individuals.

Last, a weight function is defined to privileges the points nearest to the estimated ones.

Different weight functions exist in literature, but in general (as well as in R packages), tri-

cube weight function is used. If x0 is the estimated point, each x selected in the neighbor

of x0 is weighted by w(x) defined as:

w(x) =
(
1 − |x − x0|

3
)3

(1.12)

For each point x0, let I be the set of nα nearest neighbors. The estimation of the coefficient

β̂(x0) is :

β̂(x0) = argmin
β(x0)

∑

i∈I

w(xi) (yi − f(xi))
2 (1.13)
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where f(xi) is either a constant, linear or quadratic function.

1.2.3 Segmented models

For the regression models presented above, the response variable is modeled on the overall

range of the predictive variables. Sometimes it may happen that the relationship between

the response and some explanatory variables shows a few values where the effect on the

response changes abruptly. These values are called breakpoints. Their are different mod-

els of segmented regression (logistic ([PG98],[Cox87]), Generalized Linear Models [MN89],

. . . ). In this thesis, we will only present linear segmented regressions: Piecewise regres-

sion and Hockey stick regression (Subsections 1.2.3.1, 1.2.3.2) applied in RRR1 and MARS

(Subsections 1.2.3.3) applied in RRRp.

1.2.3.1 Piecewise regression

This is a linear model where the effect on the response changes before and after the break-

points with continuous regression functions. Piecewise regression may have one or more

breakpoint, but in this work, we only consider the case where we have one breakpoint (2

ranges of observations) and two regression models, one for each range. One should estimate

not only the regression models coefficients but also the breakpoint.

Breakpoints are non-linear parameters, and standard maximization procedures cannot be

used [SW89]. Different scientists were interested in this problem and presented different

approaches to estimate the parameters of a piecewise regression ([EF76], [TZ81]). These

methods showed significant results, but their estimation of regression coefficients assumes

prior knowledge of the breakpoint. In this thesis, we use the approach presented by Muggeo

in 2003 [Mug03] (Corresponding to the used R package Segmented [M+08]). Muggeo

introduces a linear piecewise regression that can be used for simple or multiple regression

as well as with one or numerous breakpoints (not explained in here). No prior information

is needed for the estimation other than the starting value of the breakpoint.

Let Y[n×1] be the response variable and X[n×1] one predictive variable.
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The piecewise regression model is presented by Muggeo as:

Y = β1X + β2(X − t)+ + ǫ (1.14)

where t is the breakpoint, (X − t)+ = (X − t)×I(X > t) with I(A) = 1 if A is true. In this

equation β1 is the slope of left line segment (for X ≤ t) and β2 is the difference-in-slopes

which means that (β1 + β2) is the slope of the right line segment. ǫ is the residual error.

The aim is to estimate model parameters (β1, β2 and t) in Equation (1.14). Starting with

an initial value of the breakpoint, noted t̃, the approach fit iteratively the linear model in

Equation (1.15) using the Maximum Likelihood (ML) approach [A+97]:

β1X + β2(X − t̃)+ + γI(X > t̃)− (1.15)

where I(A)− = −I(A) and γ is the parameter known as a re-parametrization of t and

accounts for the estimation of the breakpoint t. The iterative algorithm used to estimate

parameters in Equation (1.15) is presented below:

1. Fix a start value for the breakpoint, say t̃ and calculate:

Ũ = (X − t̃)+ and Ṽ = −I(W > t̃) (1.16)

2. Fit the linear model with additional variate Ũ and Ṽ presented as:

β1X + β2Ũ + γṼ (1.17)

3. Improve the break-point estimate by:

t̂ = t̃ +
γ̂

β̂2

(1.18)

4. Repeat 2 and 3 until convergence.

When the algorithm converges, γ̂ is expected to be approximately zero, or rather non-

statistically different from zero. The estimators obtained at the final iteration (when the

algorithm converge) are assumed the be the ML estimates. In general, the convergence of

the algorithm indicates that significant breakpoints are believed to exist. If the algorithm

fails to converge, one could not say that there is no breakpoint. A breakpoint could exist

but not detected, in this case, the parameters will be estimated as a linear model.
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1.2.3.2 Hockey stick regression

Hockey stick regression [HCN76] is a model based on segmentation. This is a special case

of piecewise regression where one of the regions is estimated as a constant. A hockey stick

regression has two different types of equations type I and type II. In type I, observations

lower the breakpoint are estimated as constant (Figure 1.12 a); on the other side, in Type

II, the constant model is estimated by the observation higher than the breaking point

(Figure 1.12 b). The type I and type II hockey stick are presented in Equation (1.19):

type I type II

f(X) =





β0 if X 6 t

β1+β2X if X > t
Or f(X) =





β1+β2X if X 6 t

β0 if X > t
(1.19)

where β1 and β2 are regression coefficients and β0 the constant model to be estimated (see

later). Parameter t is the breakpoint to be selected by minimizing the mean square error.

This method is general applied in RRR1.

Figure 1.12 illustrates an example of simulated data in the form of the type I and type II

hockey stick regression.

Figure 1.12: Hockey stick regression on simulated data (x,y). a) Type I. b) Type II
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The equations presented in Equation (1.19) are not continuous for every β0, β1 and β2. To

conserve the continuity of the stick, we decided to proceed as:

• Estimate β̂1 and β̂2 on the correspondent region using the least square error optimizer

• Calculate β̂0 = β̂1 + β̂2 × t

Other approaches have been used for estimating the coefficients. In particular, Hasselblad

[HCN76] proposed to calculate β0 as the mean of the data and use it as the constant in the

linear equation. Notice that one should reconsider the coefficients of the linear equation

in this case. Besides, there is one less coefficient to estimate (one less degree of freedom)

compared to other methods.

As for piecewise regression in Section 1.2.3.1, the value of the breakpoint is selected by a

grid search. First, a set of breakpoints is defined, and data is divided into training and

test subsets for model selection. For each breakpoint, coefficients for both types of models

(I) and (II) are estimated on the training set. Mean square errors are calculated on the

test set. The type of model and the breakpoint with the minimal mean square error on

the test subset is selected to fit the data.

1.2.3.3 Multivariate adaptive regression splines

Multivariate adaptive regression splines (MARS) was introduced by Friedman in 1991

[Fri91] as a non parametric regression. The model is similar to a stepwise linear regres-

sion, fitted not directly on the original variables but on a new set of transformed variables

(defined in Equation (1.21)). In addition this method consider significant interactions be-

tween predictive variables (as products of the transformed variables). The model equation

is defined by:

f(X) = β0 +
M∑

m=1

βmhm(X) (1.20)

where β0 and βm are coefficients estimated by minimizing the residual sum-of-squares, M

is the number of all possible functions (see Equation (1.21)) and hm(X) is a transformed

variable or the product of 2 or more transformed variables.
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From original variables, MARS creates a new set of variables C of dimension 2np where n

is the number of examples and p is the number of variables:

C = {(Xj − tij)+, (tij − Xj)+} j = 1, 2, . . . , p , i = 1 . . . , n (1.21)

where Xj is the jth variable and tij = {xij}{i=1,...,n}, is the observed values of the variable

Xj for each individual i. For one variable Xj, and for t (a value of tij), (Xj − t)+ and

(t − Xj)+ are two basis function defined as:

(X − t)+ =





X − t if X > t

0 otherwise
and (t − X)+ =





t − X if X < t

0 otherwise

Figure 1.13 illustrates an example of the basis functions (X − t)+ and (t − X)+.

Figure 1.13: The basis functions (t − X)+ (broken red) and (X − t)+ (solid red) used by MARS

to create the new set of variables.

As well as for hockey stick regression, data is divided into training and test subset. Using

Equation (1.20), the first step is to run a forward selection where all possible functions

are tested one by one. The function that induces the highest error decrease on the test

subset at each time is selected. The model obtained using this procedure overfits the data.

This is why the second step consists in running a backward deletion procedure. The term

that causes the lowest error increase on the test set is removed. To be noted that the

model, when adding interactions, is built with a hierarchical forward step; in other terms,

a product of functions can only be tested if at least one of the functions is already selected

in the model.
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1.3 Artificial Neural Networks

Artificial neural networks (ANN) were inspired from the brain network by McCulloch

& Pitts in 1943 [MP43]. Figure 1.14 shows the similarity between the brain and the

mathematical neurons. The mathematical neurons take an input vector x (dendrites in

the brain), to compute an output (terminals axons) using an activation function (axons)

and an internal function (cell body).

Artificial networks are often known as black box procedures which can learn complex

relationships. The first proposed network was a simple perceptron (see Section 1.3.1)

then it was developed later to multilayers perceptrons and deep networks (Section 1.3.2)

especially convolution networks (Section 1.3.5).

Figure 1.14: A brain neuron Versus a mathematical neurone. Picture extracted from

"Prostate Cancer Classification using Convolutional Neural Networks, Anna Gummeson 2016"

1.3.1 Simple perceptron

Simple Perceptron is the first form of artificial neural network. Introduced by Rosenblatt

in 1958 [Ros58], it consists of one binary neuron, i.e. one output y which is 0 or 1. An

illustration of one perceptron is presented in Figure 1.15.

At each input (x1, . . . , xn) a weight w1, . . . , wn is assigned. The output y is estimated by

an activation function f applied on an intermediate output ξ calculated by a summation

function with a bias θ.
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Figure 1.15: Illustration of a simple perceptron with n inputs, one output and an activation

function f

The intermediate output ξ of the neuron is computed as:

ξ =
n∑

i=1

(wixi) + θ (1.22)

Then the output y is computed as:

y = f(ξ) = f(
n∑

i=1

(wixi) + θ) (1.23)

with f the step activation function defined as:

f(x) =





x if x > 0

0 otherwise
(1.24)

A network of two perceptrons with three inputs would look like the one presented in Figure

1.16. Note that they do not interact with each other. We call this a “single layer percep-

tron network”.

A simple perceptron (only one neuron) could be seen as a classifier, that can discriminate

only two classes with a straight line. This method is not able to solve XOR (Exclusive OR)

function. This function is not linearly separable. Lets consider the 2 dimension problem

presented in Figure 1.17 where data should be classified in two classes: (0,0), (1,1) in
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Figure 1.16: Two perceptrons network with three inputs (x1, x2, x3) and two outputs (y1, y2)

one class and (0,1), (1,0) in the other class. The perceptron will fail to find the line that

separates these data [RN16].

Figure 1.17: Set of examples that are not linearly separable RRR2. x1 and x2 are the

perceptron inputs. The first class is represented by a blue cross and the second by a red circle

1.3.2 Multilayer neural networks

The multilayer network is a feed-forward network with one or more hidden layers, of which

the computation nodes are called hidden neurons or hidden units. The term hidden is

used because those layers are seen from neither the input nor the output layers. The task

of these hidden units is to be part of the analysis of data flowing between the input and

output layers. By adding one or more hidden layer the network, higher order statistics

may be extracted from its input. The feed-forward term comes from the fact that the
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information flows only from the input layer through the hidden layer(s) to the output.

1.3.2.1 Multilayer perceptrons

Multilayer perceptron (MLP) [RHW85] is the most popular class of multilayer feed-forward

ANNs and was developed to overcome the limits of a simple perceptron. MLP consists

on stacked hidden fully-connected layers with specific activation function (see Section Ac-

tivation functions) to learn non-linear and linear relationships between input and output

layers. In fully-connected layers, each neuron is connected to each other neuron in the pre-

vious and the next layer. Training MLPs involves adjusting the parameters (weights and

biases) of the model by Backpropagation (see Section 1.3.3.2) to minimize a cost function.

Three layers MLP:

Considering an example of MLP with: i) an input layer (x1, x2, and x3), ii) one hidden

layer with 4 neurons, an activation function f, a weight matrix W and a bias vector θ and

iii) an output layer with response variable Y. Each layer is fully connected to the previous

and next layers. The example is presented in Figure 1.18.

Figure 1.18: Multilayer perceptron with 3 layers where the first layer is an input layer (x1,

x2 and x3). The last layer is the output layer with one response variable Y and an activation

function f (2). These layers are fully connected to a hidden layer with 4 neurons. The hidden

layer is characterized by an activation function f (1), weight matrix W, and bias vector θ. Figure

adapted from http: // blog. christianperone. com

Similar to the perceptron, the mathematical formula of the MLP presented in Figure 1.18
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can be written in two equations, one corresponding to the intermediate output ξ of the

hidden layer, and one given for prediction Y. The intermediate output is calculated as:

ξj = f (1)

(
∑

i

(Wij
(1)xi) + θ

)
(1.25)

The prediction of the response variable is computed as:

Y = f (2)(ξ) = f (2)


∑

j

Wj
(y)ξj


 (1.26)

The reasoning is similar when adding more hidden layers with specific activation function

and weights matrix. Model architecture is critical and should be chosen with caution (see

Section 1.3.6).

1.3.2.2 Activation functions

Each hidden layer and the output layer of a multilayer network is characterized by an

activation function. The activation functions most commonly used for perceptrons are the

following (see Figure 1.19).

1. Linear function: This function is only used on the output layer for regression

problems:

f(x) = βx

2. hyperbolic tangent: Used in general for hidden layers. It works for output values

in interval [-1,1]:

f(x) = ex−e−x

ex+e−x

3. Sigmoid function: This logistic function is used on the output layer for classifica-

tion problems (output in [0,1]):

f(x) = 1
1+e−x
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4. ReLU: Rectified linear unit’s function is used for hidden layers. This function ben-

efits from its simplicity, resulting in faster training [KSH12]:

f(x) = max(0, x)

Figure 1.19: Visual comparison of different activation functions. a) linear. b) Sigmoid.

c) hyperbolic tangent. d) Rectified linear unit

1.3.2.3 Regression and classification

Multilayer networks are suitable to solve regression as well as classification problems. The

difference between those tasks is in how the output layer is presented: continuous response

for regression and binary response for classification. This difference induces a difference

in the activation function of the output layer (see Section 1.3.2.2). Besides, in the train-

ing process, the difference will be seen in the definition of the cost function that will be

minimized (see Section 1.3.3).

1.3.3 Training of a neural network

The process aims to find the optimal parameters of the network. Training DNNs is an

iterative process where the outputs created on each input are analyzed, and the network

(parameters) is repeatedly being adjusted to produce better results. The network is con-

sidered to be trained when minimizing a define cost function (presented below). In this
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thesis, we are interested in supervised learning where the dataset is labeled. Such dataset

consists of input patterns for the network with their corresponding labels - observed net-

work outputs.

1.3.3.1 Cost function

As mentioned in the previous paragraph, during the training, the algorithm minimizes a

cost function that should be defined. This function is used to measure the performance of

the network. The cost function represents the differences between predicted and observed

values. In the regression case, that is typically the mean square error. It corresponds to

the minimization of the Gaussian likelihood with expectation equal to the function defined

by the network. In classification, the cost function can be the error rate, that corresponds

to minimization the cross-entropy. The cost function for a neural network is similar to

that used to optimize parametric models. The principle of maximum likelihood is often

used, and the cost function is the negative log-likelihood which is the cross-entropy between

training data and model predictions. In regression models, the cross-entropy is equivalent

to mean square error.

1.3.3.2 Gradient-descent algorithm

The training algorithm of a neural network is based on gradient descent optimizer [Cau47]

applied to minimizes the cost function by updating the parameters. This is an iterative

algorithm, and on each iteration, parameters are updated in the opposite direction of the

gradient of the cost function considering the parameters. The size of the step we take on

each iteration to reach the local minimum is determined by the learning rate η.

The steps of a gradient-descent optimizer, for a defined learning rate η, are as following:

1. Initialize the network parameters (weights and bias).

2. Calculate the derivative (gradient) of the cost function. The derivative refers to the

slope of the function at a given point that defines the direction for updating weights.

The gradient (i.e. change in the cost function) when the parameters are changed by

a very small value η from their original value.
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3. Adjust each parameter using the gradient descent updates with learning rate η.

4. Repeat steps 2 and 3 until further adjustments to weights do not significantly reduce

the cost function.

Gradient-descent optimization algorithms The choice of the learning rate η is crit-

ical. A very low learning rate leads to slow convergence, while a very high learning rate can

lead to divergence. Besides, a constant learning rate through the process is not ideal. For

these reasons, different optimizers of gradient descent were implemented to overcome the

limitations of the choice of η [Rud16]. In this thesis, we present two optimizers: RMSprop

and ADAM. For these two optimizers, an initialization of the learning rate is requested.

In general it is in powers of 10, specifically 0.001, 0.01, 0.1, 1.

1. Root Mean Square Propagation (RMSprop) is not published yet, and it was presented

by Geoff Hinton [HSS]. RMSProp divides the overall learning rate by the square root

of the error of the previously updated gradients for a given parameter. The updated

gradients are exponentially weighted by a moving average. This means that old

values contribute less than new ones.

2. Adaptive Moment Estimation (Adam) [KB14] computes adaptive learning rates for

each parameter. Adam is an extension of RMSprop with a bias correction using the

mean and the variance of the past gradients for parameter updates. Using Adam,

the learning rate will decrease, as it approaches the minimum.

Overall, RMSprop and Adam lead to similar results in most of the cases with a slight out-

performance of Adam in certain networks [Rud16]. The choice of the optimizer is made

with respect to the data and the architecture.

Gradient-descent solution: backpropagation algorithm

Backpropagation [RHW86] is the algorithm used in machine learning to calculate the gra-

dient (derivative) of the cost function needed to update the neural network parameters
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(weights and bias). The result of this algorithm is a neural network configured to mini-

mize the cost function when solving a given problem using a gradient descent algorithm.

The algorithm consists of two steps: forward and backward propagation. In the forward

propagation, from the inputs, using the weights and the activation function, we compute

the output of the network. One should notice that it is essential to initialize weights and

the biases of each layer (see Section 1.3.6). The backward propagation is used to adjust

the weights of neurons in function of the learning rate η and the descent gradient of the

cost function. This is an iterative algorithm. An epoch (iteration) is defined as a forward

and backward propagation. The number of epoch should be set. The backpropagation

algorithm is described in Algorithm 3.

Algorithm 3: Backpropagation algorithm

1 Propagate the input through the network layer and calculate the predicted

output of the model (Forward propagation).

2 Calculate the cost function between predicted and observed output.

3 Backpropagate the cost function from the output layer to the input layer passing

by all hidden layers

4 Calculate the derivatives of the cost function at each node for the output layers

as well as for each hidden layer.

5 Calculate the update rule using the selected optimizer in function of the

derivatives and the learning rate η

6 Update weights using the following equation:

New weight = old weight + update rule (1.27)

7 Repeat until convergence or until reaching the defined number of epochs

8 return Trained optimized network and weights at each layer (wk
ij).

1.3.3.3 Overfitting

A common problem in the learning process is overfitting. One method to avoid overfitting

in training neural networks is to split the dataset into a training and a validation set.
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A good starting point for determining this ratio is to put 80% of the available data into

the training set and 20% into the validation set. While learning, the performance of the

network is regularly examined on the validation data set by the cost function. Figure 1.20

shows the evolution of the cost function (error) on the training and the validation set.

While going towards the right of the figure (forward in the learning process), the com-

plexity of the model increases such that the training error is reduced, but the validation

error does not. This is when we speak about overfitting. When the cost function on the

validation data reaches a minimum and start to increase (see Figure 1.20) the network is

considered trained and can be generalized to other sets of data. The minimum is known

as the stopping point at which the model with the best parameter estimators is returned.

Figure 1.20: Evolution of the cost function in the training dataset Vs. in the validation

dataset. The stopping point is the minimum of the cost function on the validation dataset. Figure

adapted from [Voj16]

In general, the training continues until reaching the defined number of iterations even af-

ter hitting the minimum point on the validation set. To avoid the high computational

time and to prevent additional overfitting, early stopping concept was introduced. Early

stopping [Pre98] is a technique for controlling overfitting by stopping training when the

performance has stopped improving on a validation set after a number of iterations. A

parameter known as patience (pa) should be identified for early stopping. The patience

(pa) is the number of epochs with no improvement after which training will be stopped.

After (pa) iterations, if the cost function on the validation set is higher than it was the
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last time it was checked (the stopping point in Figure 1.20, the training is stopped. The

model with the lowest cost function is retained.

Mini-batch gradient-descent

Gradient descent can vary in terms of the number of training data used to calculate the cost

function, that is in turn used to update the network. The gradient descent has three main

types: batch, stochastic, and mini-batch [Rud16]. In this thesis, we use the mini-batch

gradient. Mini-batch gradient descent provides a balanced optimization between the ro-

bustness and the efficiency of other gradient descent and helps to overcome overfitting. The

algorithm splits the training dataset into small batches that are used to calculate the cost

function and update network parameters. Even though mini-batch requires an additional

parameter (the mini-batch size), but it shows several advantages: it is faster than batch and

stochastic gradient because of the lower number of examples and it reduces the variance

of the parameter updates, which can lead to more stable convergence [Rud16]. The choice

of the mini-batch size, known in implementation as the batch size, depends in general on

the architecture of the network. Common batch sizes vary from 50 and 256 and are, for

the Graphics Processing Unit (GPU) memory reasons (see Chapter 4), a power of 2 [Jai17].

Cost function regularization

Computing validation error and early stopping are used to overcome overfitting. However,

other methods, known as regularization, used at each layer, or between layers of a net-

work can be used for the same purpose. Regularization is a technique that implies slight

modifications to the cost function allowing a better generalization of the model. There are

different types of regularizations. In this thesis, we present two different types: weights

regularization and dropout.

Norm penalties regularization ℓ1 and ℓ2 are the most common types of norm penal-

ties regularization. This regularization modifies the general cost function by adding another
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term known as the regularization term applied on network weights.

Regularized cost = cost function + Regularization term (1.28)

This regularization term forces a penalty on weights and induces a convergence (or equality)

of the weights to 0 (see Section 1.2.1.2) for details). This decrease is due to the regular-

ization term that forces. Therefore, it will also reduce overfitting to quite an extent.

The regularization term differs in ℓ1 and ℓ2. The definitions are similar to those presented

in Section 1.2.1.2 to explain penalized regressions. Each regularization term is composed of

a regularization parameter λ to be optimized and ||W ||1 or ||W ||2 the norms of the weight

matrices using ℓ1 or ℓ2 respectively. ℓ1 is very useful when trying to compress our model.

Otherwise, usually ℓ2 is used.

Dropout [SHK+14] is a hidden layer that can be applied to hidden layers as well as for the

input layer. The term dropout refers to dropping out some units which mean temporarily

removing it from the network, along with all its incoming and outgoing connections. The

choice of which units to drop is random. A dropout layer is characterized only by a fraction

p representing the fraction of neurons to be randomly dropped from the target layer. The

parameter p ∈ [0, 1] has to be tuned (see Section 1.3.6).

Figure 1.21 shows for an iteration in the training process, the effect of applying dropout

on the input layer as well as on both hidden layers with different fractions p.

Each iteration has a different set of nodes, which results in a different set of outputs,

reason why dropout can be viewed as a form of averaging multiple models. Notice that

the dropout is applied only in training, and at the end of the processes, all weights of

all neurons are estimated. In the validation process, all neurons are considered, and each

activation is reduced by a factor p. Dropout roughly doubles the number of iterations

required to converge. However, training time for each epoch is less [PY].

1.3.4 Deep learning

Deep learning [GBC16] is a set of learning methods attempting to model data with complex

architectures combining different non-linear transformations.
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Figure 1.21: Dropout in the neural network. Left: A fully connected network with two hidden

layers with five neurons each. Right: An example of one iteration in the training of the network

on the left with dropout layers applied on the input layer as well as for each hidden layer with

fractions 0.4, 0.6, and 0.4 respectively. Crossed neurons have been dropped in this iteration.

Figure from [SHK+14]

The multilayer perceptron is a type of deep learning. When the problem is more complex,

and MLP is not sufficient, we start talking about deep feedforward neural networks that

have the same architecture as MLPs with a large number of hidden layers (neurons).

Even though for an important time, the term deep referred to a high number of layers

and of neurons but then, different other types of networks were developed under the name

of deep learning. More precisely, two networks that are widely used in image processing,

speech recognition, computer vision, text classification, and others: i) the Convolution

Neural Network (CNN) and ii) the Recurrent Neural Network (RNN). For these two types,

deep learning does not necessarily mean a larger number of layers, but rather a very high

number of neurons. In this thesis, we will focus only on the convolution network.
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1.3.5 Convolution networks

Convolutional Neural Networks (CNNs) are deep neural networks that take account of

spatial dependence in the input data. They were originally inspired by Hubel and Wiesel’s

[HW63].

A convolution network is designed to model input data in the form of multidimensional

arrays (images) [L+16] or one dimensional sequence (genomic or text) ([ADWF15], [SS09]).

The size of these data makes a fully connected neural network very challenging since the

number of parameters in such models would exceed the number of training data. Con-

volution networks add assumptions on the structure of the network to force only local

connections (not fully) and reduce the effective number of parameters to learn. Contrarily,

the convolution network has significantly high computational cost. If the network is pretty

deep, each training step is going to take much longer. This limit is becoming less question-

able with the development of GPU’s. Besides, the training of such a network needs many

data.

Convolution networks are based on a stack of convolution, and pooling layers, followed by

fully connected layers used to predict the output (see Figure 1.23). Convolution can be

used for different input dimensions, 1D, 2D and even higher. In this thesis, we will only

present the 1-dimensional convolution network (for genomic sequences).

In a Convolution Neural Network, the hidden layers may have different types. Most of

these layers are optional, but there has to be at least one convolution layer for the net

to be called a convolution network. In the below sections, we will present each layer that

can be used with this type of networks as well as the choice of architecture and training

process.

1.3.5.1 The input layer

The input layer represents the entries of the model (predictive variables). It is the first

layer in the network, and as such, it is not counted to the number of CNN layers. For

1D convolution, the input layer is a set of matrices where each matrix contains predictive

variables of one individual. For example, when studying DNA sequences using a convolu-
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tion network, the input layer is a matrix with a dimension (4 × l) where 4 is the number

of DNA bases and l is the length of the DNA sequence. The dimension of the input data

defines the dimension of the neurons in the first convolution layer (see Chapter 4).

1.3.5.2 Convolution layers

Convolution is a mathematical operation which takes two functions q and g as input and

generates a function which is the summation of multiplication of q and a reversed and

shifted version of g. Formally, the convolution operator (*) is defined as in Equation

(1.29):

(q ∗ g)(x) =
∑

t

q(x)g(x − t) (1.29)

In convolution networks, g is known as the convolution filter and acts on the input q. The

resulting output is called a feature map. In general, the input function is a multidimen-

sional array (see Section 1.3.5.1).

A convolution layer plays the role of a scanner that will detect the presence of certain

features in the input data. It consists of multiple filters, each recognizing certain specific

features. A filter is a multidimensional array of parameters, consisting of the weights of

the connections and the bias. All filters in the same layer have the same length. In 1D

convolution, a filter is a matrix of dimension w × N , where w is the length of the filter

and N is the number of rows of the input X (For example N = 4 with genetic sequences

(see Section 4.4.1.1). A filter K scans an input X, and the result is then calculated as the

sum of the product between the filter K and the relevant portion I of the input X. More

precisely, the output of the filter at a position j is calculated as in Equation (1.30):

f

(
w∑

k=1

N∑

n=1

(In,kKn,k) + θ

)
(1.30)

where f is the activation function of the convolution layer. Figure 1.22 shows the output of

a convolution with an input X and a filter K with N = 4 and w = 4. At each position j,

the filter scans a region Ij and calculates the matrix product to produce the feature map.

The blue box in the feature map is the output for region I1 while the green box is the

output for region I3.
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Figure 1.22: Convolution layer with an input X and a filter K. The output (feature map) of

the convolution layer function calculated by Equation (1.30) is presented on the right.

In contrast to traditional multilayer neural networks, where higher level neurons are con-

nected to all previous neurons, the convolution units are only connected to a local region

in the input. This sparse connectivity allows the CNN to exploit the local correlations

efficiently. The activation function of this layer is usually a ReLU. At the end of a convo-

lution layer, for each filter, the weight matrix is estimated. Higher weights mean a higher

occurrence of a filter in the input. The output of this layer has the same spatial form of

the input with reduced dimension.

During training, one can regulate overfitting in convolution layers by adding an ℓ1 or ℓ2

regularization. Dropout is rarely applied to this type of layers especially when they have

followed the input layer.
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1.3.5.3 Pooling layers

The pooling layer can be used to compress spatial information of the feature maps. In

particular, the pooling layer makes the network less sensitive to small changes in the

location of a feature, i.e. the output of the pooling layer remains the same even when a

feature is moved a little. Pooling also reduces the size of the output of the convolution

layer, which simplifies computation in later layers.

There are different pooling operations, but the most used in practice is the maximum

pooling. To perform max pooling, we slide a window across the output of the convolution

layer. As the window moves across the sequence, the window is resumed by the largest

value. An average pooling also exists where for each window the mean is calculated.

The size of the window is a parameter to be tuned. There is no specific rule to set the size

of the pooling window, in general, it is tuned by hand from prior knowledge.

Convolution/pooling layers can be stacked onto each other, neurons in higher layers will

cover increasingly larger parts of the input. This is valid in 2D and 3D convolutions. In

general, in 1D convolution, the model architecture contains one convolution/pooling layer

followed by one or more fully-connected layers.

1.3.5.4 Fully-connected layers

As presented before, the convolution layers are used to extract features from the data.

After feature extraction, fully-connected layers are used to learn a function that predicts

the response variable. These layers are also known as dense layers. The last layer of a

CNN network is a fully-connected layer with a specific activation function: i) sigmoid for

classification or ii) linear for regression. Also, the number of neurons in this layer is similar

to the output layer: i) number of classes in a classification problem and ii) number of

outputs in regression (e.g 1 if one-dimensional regression) .

In addition to this final layer, a stack of dense layers with a ReLU activation can be added

to the network and increases the non-linearity aspect. The number of neurons in each

dense layer is set in function of the network and have to be tuned by experience. To avoid

overfitting, each of these dense layers can be regularized by either ℓ1 and ℓ2 regularization

or by adding after each layer a dropout layer with a specific fraction p.
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Figure 1.23 shows an example of a convolution network with one convolution/pooling layer

and one fully connected layer. The example shows an input matrix X used to predict the

output layer Y . The convolution layer contains three filters (boxes in color) of dimension

4 × 4. The output of the convolution layer is then reduced using a max-pooling layer with

a window size equal to two. The last layer is a fully connected layer with four neurons.

Figure 1.23: Convolution neural network with one convolution/pooling layer and a fully-

connected layer. Figure inspired from [AWLS16]

1.3.5.5 Training

Convolution network is one type of DNNs, and it is trained using gradient descent algorithm

as well (see Section 1.3.3). Model parameters (weights and bias) are estimated by the

descent gradient using the backpropagation algorithm. The learning rate and the optimizer

must be carefully chosen by hand (see Section 1.3.3). Also, during training, one can regulate

overfitting in adding ℓ1/ℓ2 regularization or dropout layers. To be noted that dropout is

rarely applied after convolution layers especially when they followed the input layer.
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1.3.6 Tuning network parameters

For the different models of artificial neural networks, MLP, and CNN, several parameters

are to be initialized and chosen to define the architecture of the network. In Section 1.3.3,

we already discussed the choice of the learning rate η, the batch size, and the optimizer.

In this section, we present other parameters, their sets of choices as well as their effect on

the network.

Before presenting the different parameters, one should mention that there are no defined

strategies to choose each parameter, they are dataset dependent and should be chosen by

a grid search over different parameters: For a parameter P , all other parameters are fixed,

and for different values of P , the model is fitted and evaluated (using cross-validation).

The final parameters are the ones that minimize the cost function on the validation set.

Here are the different parameters to be tuned:

1. The number of hidden layers and the number of neurons per layer: these parameters

depend on the number of input and output data as well as on the training algorithm

and the activation function. In general, we start by a network with a few numbers

of layers and increase the number of hidden layers and the number of neurons suc-

cessively until no additional improvement is seen. Too many hidden units will make

the training unnecessarily slow and will result in poor generalization.

2. The initialization of weights and bias: the process of gradient descent requires small

(even zero) weight and biases initialization. The bias can be initialized to zero with

no effect on the backpropagation algorithm. However, setting all weights to zero will

induce symmetry to the algorithm i.e the layers will receive the same gradient, hence

performing the same update and remaining identical, thus wasting capacity. Provide

that, weights are generally initialized to uniform random small values and bias to zero

[Ben12]. Furthermore, known weight matrices may be used for initializing depending

on the model hypotheses (always positive, pre-defined weights). In general, the final

network performance is independent of the choice of initial weights, but this needs

to be checked on the data.
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3. Dropout rate: Values between 0 and 1 are accepted. Empirically, a rate between 0.4

and 0.6 is the most used rate.

4. Number of Epochs: Try different values based on the time and the computational

resources. A high number of epochs may over-fit to the data, and a lower number of

epochs may limit the potential of the model. This can be controlled by early stopping

criteria where a high number of epochs is chosen, and the model stops earlier if no

improvement on performances is detected after a defined number of epochs (patience).

Patience is also a parameter to be tuned

5. Regularization: Choice between ℓ1 and ℓ2 regularization. Besides, the regularization

parameter λ should be set in general to a small value of around 0.001.

1.4 Bioinformatic context

Understanding gene expression regulation and identifying its components is a challenging

problem that was studied under a different point of views. Bioinformatics and biostatistics

have a huge role in revealing novel and fundamental aspects of the mechanisms of gene

regulation. In this section, we present different bioinformatics and biostatistics studies

about gene expression linked to our work.

Subsection 1.4.1 describes how gene expression can be predicted from experimental and

epigenetic data, while in Subsection 1.4.2 studies about modulation of these epigenetic

data by DNA sequences are considered. In the third Subsection, we briefly present the

work with a similar objective as ours: predicting gene expression using DNA sequence. In

the last subsection, we explain our motivation behind the Chapter 3 when integrating and

searching for interactions between variables.

1.4.1 Prediction of gene expression using experimental data

When explaining gene expression in Section 1.1, we presented different biological com-

ponents that are involved in gene regulation at the transcriptional level, especially tran-

scription factors, DNA methylation, histone modifications, and others. In this section, we
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highlight some works that aim at predicting gene expression using transcriptional regula-

tion data. Note that binding of transcriptional regulators can be quantified by experiments

using the chromatin immunoprecipitation (ChIP) sequencing technology [JMMW07] which

is a powerful method based on ChIP [KA99] for identifying genome-wide DNA binding sites

for transcription factors, histone modifications and, other regulators.

In 2009, Ouyang & al. proposed a regression method to predict gene expression based on

TF-DNA binding quantified by ChIP-seq. First, TF association strength was built using a

weighted sum of the ChIP-seq signal of 12 TFs located around the TSS of each gene. Then

a two-stage model was used: in the first stage, they used principal component analysis

(PCA) to extract uncorrelated combinations of TFBS. At a second stage, a linear model

was fitted to predict gene expression using PCA variables. The model was applied using

RNA-seq expressions in mouse cells and yielded a Pearson correlation of 0.81 between ob-

served and predicted gene expression. This method used only TF bindings and did not

take into consideration histone modifications. However, Karlic & al. [KCL+10] presented,

in 2010, a similar regression model to predict gene expression as measured by microarray

in human CD4 T+ cells using only 38 histone modifications quantified by ChIP-seq. The

model also had a high performance with a Pearson correlation of 0.74. Two years after,

Mcleay & al. [MLCPB12] proposed to predict gene expression using both TF bindings and

histone modifications as well as chromatin accessibility data. Based on a regression model

and 12 TFBs in [OZW09] 7 histone modifications and chromatin accessibility, the model

performances reached a Pearson correlation of 0.835.

Cheng & al. [CAM+12] presented some limitations of the approach shown below, in partic-

ular, the low number of TFs and the fact that the models were tested in only one cell line.

To overcome these limitations, Cheng & al. proposed to predict gene expression quantified

by CAGE expression (Cap Analysis of Gene Expression [SKK+03]) using the binding site

of 120 TFs in the human genome in 6 cell types. They tested four different regression

models and restrained their studies to Random Forest that presented the higher accuracy

(Pearson correlation = 0.81). Besides, they showed that when adding 12 different histone

modifications to predictive variables, the prediction correlation increases to 0.92.
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The relationship between gene expression and experimental data (TFs, . . . ) was also stud-

ied in cancer cells. In 2014, Li & al. [LLZ14a] presented RACER for Regression Analysis of

Combined Expression Regulation to predict mRNA expression (RNA-seq) based on tran-

scriptional and post-transcriptional data in Acute Myeloid Leukemia (AML) with a Lasso

penalized linear regression [Tib96]. In addition to 97 TF ChIP-seq signal, they integrated

expression of 470 miRNAs, as well as DNA methylation and copy number variation (CNV)

of each gene, as two additional predictive variables. Note that TF binding signals were

calculated on +/-50 bp around TSS. The model was tested on 173 AML patients. A model

including all variables had a median Spearman correlation of 60%. They further showed

that CNV and miRNA have a minor contribution to the model performance, and DNA

methylation increases the model by only 5%. The highest effect is attributed to TF bind-

ing. Later in 2015, Jiang & al. proposed RABIT (Regression analysis with background

integration) [JFLL15a], another regression framework to predict gene expression differenti-

ation using TF ChIP-seq signals in cancer cells. The originality of this work is the control

of the background effect such as the copy number variation (CNV) and DNA methylation.

The performances of RABIT showed higher accuracy than other methods (AUC = 0.72).

Also, they were able to identify cancer-associated TFs.

Finally, Schmidt & al. [SGG+16] presented a new approach to predict gene expression.

Provided the limits of ChIP-seq data (necessity of huge amount of biological materials,

high costs, . . . ), they first proposed TEPIC, a segmented method that predicts TF bind-

ing by combining position weights matrices [Sto00] and open chromatin regions (OCRs).

In a second step, they used the TEPIC TF scores to predict gene expression using an

elastic net regression [ZH05]. The model was tested in 4 cell lines. They showed that when

predicting gene expression using TEPIC, that is based on one single open-chromatin assay,

it is possible to achieve approximately the same accuracy as when using several expensive

ChIP-seq assays.
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1.4.2 Predicting epigenome marks via the DNA sequence

In Section 1.1.3, we explained the importance of epigenome, especially histone modifica-

tions, DNA methylation, and DNA structure in gene regulation at the transcriptional level.

It is then important to understand the main causes of these modifications. It was known

that the epigenome in a cell is dynamic and can be affected by environmental factors or

diseases [MA16]. Along the years, different studies showed that DNA sequences have a

major effect on the epigenome.

In 2013, three papers published in Science ([KKPG+13], [KWG+13], [MvdGD+13]) showed

a strong relation between DNA sequence variation and histone modifications. Furthermore,

McVicker & al. [MvdGD+13] developed the “combined haplotype test” and identified QTLs

(quantitative trait loci: specific DNA regions) associated with histone modifications.

One of the most exciting works that underline a relationship between histone modifications

and DNA sequence was presented in 2015 by Whitaker & al. [WCW14]. They created a

pipeline called Epigram to predict histone modifications and DNA methylation from DNA

motifs. The method succeeded to select motifs that discriminate modified regions with 79%

accuracy. Besides, it revealed mark-specific motifs associated with chromatin-modifying

enzymes.

Furthermore, Illingworth & al. [IGSDS+15] studied alterations in DNA methylation in

brain cells. They suggested that DNA sequence compositions are the principal determi-

nant of the human brain DNA methylome. More precisely, they showed that hypomethy-

lated Deferentially Methylated Regions (DMRs) are enriched with CpG islands where,

on the other hand, the regions that are CpG-deficient are hypermethylated. Quante and

Bird (2016) [QB16] discussed the effect of short, frequent DNA sequence motifs on the

epigenome. Short motifs are in general 2-5 bp and thus are more frequent in the DNA

sequence (CpG, AT, . . . ). Quante and Bird proposed that proteins recognizing short,

frequent AT - rich sequences, can as well modulate aspects of chromosome structure.

Some scientists also used deep learning to predict epigenetic marks using DNA sequences.

Angermueller & al. [ALRS17] presented DeepCpG a computational method based on con-
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volution neural networks (Section 1.3.5) for predicting single-cell CpG methylation states

using DNA sequences. The model was applied to mouse and human cells and showed an

accuracy of AUC = 0.83 (AUC for Area Under the Curve). Also, using DeepCpG, they

were able to detect known and new motifs that are associated with methylation changes

between cells. Two other methods also based on deep learning, Deepsea [ZT15] and DanQ

[QX16], were published to predict the effects of non-coding variants using only DNA infor-

mation. Their models are based on the same data but with different model architectures.

Deepsea is based only on convolution networks, and they predict non-coding functions

including histone modifications with an AUC = 0.896. DanQ was rather an amelioration

of the Deepsea method using not only a convolution network but also recurrent network

[SP97] and predicted functions using DNA sequences with AUC = 0.927. As well as for

DeepCpG, Deepsea and DanQ capture known and new regulatory motifs.

All of these studies and many more provide evidence that DNA sequences contain infor-

mation able to shape epigenome and thus gene expression.

1.4.3 Gene expression prediction using DNA sequence

In their work presented in Subsection 1.4.2, Quant and Bird proposed that proteins able to

read domains of relatively uniform DNA base composition may modulate the epigenome

and ultimately gene expression [QB16]. In line with this statement, we propose in this

thesis a model to predict gene expression directly from DNA sequences.

This problem has already been tackled in yeast. Most of the studies concentrated on the

relationship between gene expression and amino acid (codon) and were tested in Saccha-

romyces cerevisiae. At first, the relation between gene expression and codon was based on

numerical indices. Codon adaptive index (CAI, Sharp 1987 [SL87]) and codon usage (CU,

Karlin 1998 [KMC98]) are the most known numerical indicators based on frequencies of

amino acids of each gene. One of the flaws of these methods is that they are applied to

small sets of highly expressed genes. In 2003 a revision of these two methods was presented
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by Jansen & al. [JBG03]. They used genome-wide yeast expression data and introduced

a procedure to improve indicators parameters. An improvement of 10% of correlation was

observed with the revisited method. In 2000, Coghlan and Wolfe [CW00] studied the re-

lationship between the frequency of preferred codons in a gene and mRNA concentration.

They compared different published methods (one of which is CAI) and three different

mRNA concentration data sets from whole-genome studies. Using CAI they found strong

correlation on different data sets (correlation(CAI) = 0.62). Last, Raghava & al. [RH05]

used Support vector machine (SVM) based method [CV95] and predicted gene expression

using amino acid and dipeptide compositions with 71% of correlation.

In the same context, in 2004 Beer and Tavazoie (BT) [BT04] attempt to predict gene

expression from DNA sequence in Saccharomyces cerevisiae. First, they used a clustering

algorithm to find 49 different sets of co-expressed genes. For each set, they identified the

common DNA sequence features (motifs) among gene promoters and calculated a score for

each motif (using PWM). A Bayesian Network [FK03] was used to predict gene expression

in each set using calculated motif scores as well as their position and orientation. The

model was applied using 5-folds cross-validation (CV) and had an accuracy of 73%. This

paper was severely criticized and reexamined in 2007 by Yuan & al. [YGSL07]. First,

Yuan & al. declared that the accuracy of the BT model was overestimated by 10% due

to a flawed cross-validation process that does not include the step of motif identification.

Besides, Yuan & al. criticized the choice of model that is a black box and lead to overfit-

ting. For these reasons, Yuan & al. proposed to adjust the cross-validation process and to

use a naive Bayes classifier [R+01] to estimate co-expressed gene expressing using motifs

(same data sets from BT). They reached an accuracy of 75% with the adjusted model and

CV. They also showed that both the orientation and the position of motifs do not affect

the results of the naive Bayes classifier.

These studies suggest that there is a direct relationship between gene expression and DNA

sequence in yeast and motivate our work aimed at predicting gene expression using DNA

sequence in human using mRNA expressions from cancer patients.
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1.4.4 Interactions framework in bio-statistics

Gene regulation is a complex process that requires combinations of many different biolog-

ical elements such as TFs, proteins, chromatin structure, and other genomic factors. To

understand gene regulation, we do not restrict the study to a single regulatory element and

single gene. Instead, scientists started to explore complex relationships between different

elements.

In statistics as well as in biology, interactions have attracted the attention of most statis-

ticians. Basic models in regression do not always detect interactions, which opened a new

concept of models developed specially to detect interactions between predictive variables.

Different types of biological interactions (TFs, . . . ) were well studied in the biostatistics

field. We have discussed above the importance of combinations of TFs to control gene

expression. One challenge is to identify these combinations. Das [DBZ04] used the MARS

model to create a model that studies the significance of both single motifs and pairs of

motifs on gene expression predictions in the yeast cell. The method provides a variable

selection framework via a method that fits a model by using the stepwise forward addition

of linear splines (a function of the motif) and their product. Likewise, Yu & al. (2006)

[YLM+06] identified significant interactions of pairs of TFs in Saccharomyces cerevisiae.

The method is based on the co-occurrence of their binding sites and the distance between

them on the promoter. These two papers are restrained to pairs of interactions. On the

other hand, Terada & al. (2013) [TOHTS13] presented a statistical model based on the

Fisher test as well as multiple test corrections to detect significant combinations of different

motifs (2 or more). Tested on human breast cancer gene expression and using known motifs

from available ChIP-seq data, they detected 23 significant motif combinations with one of

an eight-motifs combination. From a statistical point of view, many methods are available

to detect interactions. In the same concept, Basu & al. (2017) [BKBY18] presented the

iterative Random Forests method to detect high order proteins interactions. The method

is based on iterating a number of the forests with weighted features and applying on the

last one decision rules on significant combinations of variables using Random Intersection

Trees [SM14]. Selected interactions are stable. This method shows very high performances
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in classification problems.

Sequence interactions are another type of interactions that control gene expression. Ex-

ploring the 3-dimensional chromatin as well as the DNA structure, interactions between

close and distal regulatory regions (e.g. promoter/enhancer) is of crucial importance be-

cause they play an essential role in gene transcriptions (see [BF15] for review).

Over the years, new advanced bioinformatics and biostatistics tools were developed with

the capacity of detecting sequence interactions. One of the most common sequence inter-

actions studied using these tools is that between enhancer and promoters. In 2015, Roy &

al [RSC+15] presented RIPPLE for Regulatory Interaction Prediction for Promoters and

Long-range enhancers. The method uses machine learning to predict enhancer-promoter

interactions using 5C [SLJD12] interactions on few genomic data. In the same concept,

Singh [SYPM16] in 2016 and Mao [MKC17] in 2017 developed deep network (Convolution)

frameworks to show that only DNA sequence features can predict long-range enhancer-

promoter interactions. Similar results were found by Nikumbh [NP17] based on an SVM

predictor [BGV92] and including all the chromatin sequences.

Finally, our method aims at detecting interactions between two regulatory regions (inter)

or within one regulatory region (intra) on the DNA sequence. The statistical tests were

inspired by the work of Wein-Yin Loh (2002) [Loh02]. He presented the GUIDE method

that can select interactions of two variables as a decision rule in a tree nodes. The model

is based on a χ2 test that selects an interaction of pairs of variables if it is more significant

than each variable alone. This method increased model performances by 20% compared

to CART model.
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Accurately predicting gene

expression from nucleotide

composition using linear regression

We presented previously different biological elements that control gene expression at differ-

ent levels of the regulation process. Besides, we presented the deregulation of these controls

in cancer cells (Section 1.1.3). In this chapter, we present a framework with the aim of

predicting and explaining gene expression from DNA sequences in tumors from different

cancer types. In the previous chapter (Section 1.4), we presented different approaches that

were developed to predict gene expression from experimental data (Section 1.4.1). Also,

others approaches used the DNA sequences with the aim of predicting experimental data,

more precisely epigenetics (Section 1.4.2). Our study was partially motivated by these

frameworks to establish a relationship between gene expression and variables computed

directly on the DNA sequence of different regulatory regions. Also, concurrent works were

very recently published based on deep learning with the aim of predicting gene expression

from the sequence ([ZTY+18], [AS18], [KRB+18]). Since they are very recent, these papers

are not presented in the State-of-the-art but will be discussed later in the Discussion and

perspectives. This project was a teamwork work with other PhD students and researchers.

In this chapter, I present my contribution to this project as well as some results in Section

2.1. The article is included in Section 2.2.
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2.1 Contributions and first results

The main objective of this work is to develop a model that predicts gene expression in func-

tion of variables computed on the DNA sequence. First, we chose the predictive model.

For this chapter, we used a Lasso linear regression model [Tib96] (see Section 1.2.1.2 for

more information). The choice of the model was based on its ability of variable selection

and its simplicity of evaluation the contribution of each variable.

A part of this project was conducted by Chloé Bessière (PhD student) to evaluate different

regulatory elements and regions using the Lasso penalized linear model. The choice of this

model was based on a model comparison that I performed (see the following paragraph).

At first, The study was restrained to gene promoters using as predictive variables scores

of motifs and nucleotide compositions. The results of the different comparisons showed

that nucleotide compositions presented good accuracy in predicting gene expression and

outperformed the contributions of motifs that increased slightly model performances. The

results of this model (based on both nucleotide compositions and motifs) were compared to

those of models based on experimental data (i.e. RACER [LLZ14a] and TEPIC [SGG+16])

based on ChIP-seq and DNA accessibility data. Our model presented similar performances.

Finally, Chloé showed the contribution of different regulatory regions (introns, CDS, . . . )

in predicting gene expression using a forward procedure. One of the most revealing con-

clusions was the high importance of introns in regulating gene expression. The model with

the highest performances was a Lasso penalized linear regression fitted to predict gene ex-

pression based on nucleotide compositions in 8 different regulatory regions (160 variables

in total). Based on that model, I went further in the study to explain the results and select

significant variables.

Different models comparison

First, I compared the Lasso penalized regression to two other non-parametric models, Re-

gression Trees [BFOS84] and Random Forests [Bre01] (see Sections 1.2.2.1 and 1.2.2.2).

Regression Trees presented the lowest performances while Random Forests showed similar
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results as the Lasso penalized linear regression. However, the Lasso penalized linear regres-

sion was favored given its low time of execution and its simplicity. Results are presented

in Supplementary Table 1.

Stability selection

To go further in the study, I applied a stability selection approach to the Lasso penalized

regression. This approach selected the nucleotide composition in different regions that

were stable and important for predicting gene expression. The study showed that some

nucleotide compositions were important despite the cancer type while others were cancer

type specific. Besides, I ran a regression model using only stable variables and based

on the sign of the regression coefficients of each stable variable, and I classified variables

in function of their role in the regulation: activator if positive and inhibitor if negative.

Despite some specificities, but our model was not cell-specific. A model fitted to predict

gene expression on one tumor from a cancer type, showed similar accuracy on another

tumor from a different cancer type. This concept is further developed in the Discussion

and perspective Chapter.

Gene classification

Based on the residuals of the Lasso penalized linear model as the response variable and the

nucleotide compositions as predictive variables, I fitted a Regression Tree, for each tumor,

to classify genes based on their prediction accuracy. A set of groups of genes was poorly

predicted in all cancer types. However, the other groups of genes were well predicted with

low residuals either in all cancer types or a specific type. For each well-predicted group

of genes, I further studied its functional annotations enrichment and succeeded to identify

specific functions in each group. Also, Chloé tested the ubiquitous of the genes using the

Gini coefficients.
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Link to topological chromatin domains

Further validation of the model was relating the different groups found in the previous

section to the DNA architecture groups, more precisely TADs (see Section 1.3) which

biologically create groups of genes. Using the groups of genes classified as well predicted in

all cancer types, I ran an enrichment test in each group of genes for each TADs. From this

method, I showed that genes grouped in the same TADs were based on the same nucleotide

compositions.

Mutations

Finally, I used the results of mutation counts presented by Lawrence & al. [LSP+13] to

test if the stable selected variables by our model in a cancer type, were those that were

highly mutated in the same type. For that, I used a hypergeometric enrichment test. This

work is not presented nor published provide the high bias I detected in the results. One of

the highest mutated di-nucleotides were CpG in different regulatory regions in most cancer

types. In the same way, CpG in different regions were stable in almost all cancers which

biased the enrichment tests. Further work is required to overcome this bias (additional

information in the discussion Chapter 5)

Conclusion

In this article, we provide a framework to predict gene expression from DNA sequences

using a Lasso penalized linear regression. The model shows the importance of the DNA

sequence in gene regulation compared to experimental data. Furthermore, we highlight

the importance of some regulatory regions, especially introns, in gene regulation. Finally,

we found that the model well predicts housekeeping genes with general functions as well

as some cancer-specific genes with specific biological functions.

2.2 The integral article

The article is published in PLOS Computional Biologie ,January 2, 2018
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Abstract

Gene expression is orchestrated by distinct regulatory regions to ensure a wide variety of

cell types and functions. A challenge is to identify which regulatory regions are active, what

are their associated features and how they work together in each cell type. Several

approaches have tackled this problem by modeling gene expression based on epigenetic

marks, with the ultimate goal of identifying driving regions and associated genomic varia-

tions that are clinically relevant in particular in precision medicine. However, these models

rely on experimental data, which are limited to specific samples (even often to cell lines) and

cannot be generated for all regulators and all patients. In addition, we show here that,

although these approaches are accurate in predicting gene expression, inference of TF

combinations from this type of models is not straightforward. Furthermore these methods

are not designed to capture regulation instructions present at the sequence level, before the

binding of regulators or the opening of the chromatin. Here, we probe sequence-level

instructions for gene expression and develop a method to explain mRNA levels based solely

on nucleotide features. Our method positions nucleotide composition as a critical compo-

nent of gene expression. Moreover, our approach, able to rank regulatory regions according

to their contribution, unveils a strong influence of the gene body sequence, in particular

introns. We further provide evidence that the contribution of nucleotide content can be linked

to co-regulations associated with genome 3D architecture and to associations of genes

within topologically associated domains.

Author summary

Identifying a maximum of DNA determinants implicated in gene regulation will acceler-

ate genetic analyses and precision medicine approaches by identifying key gene features.

In that context decoding the sequence-level instructions for gene regulation is of prime

importance. Among global efforts to achieve this objective, we propose a novel approach
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able to explain gene expression in each patient sample using only DNA features. Our

approach, which is as accurate as methods based on epigenetics data, reveals a strong

influence of the nucleotide content of gene body sequences, in particular introns. In con-

trast to canonical regulations mediated by specific DNAmotifs, our model unveils a con-

tribution of global nucleotide content notably in co-regulations associated with genome

3D architecture and to associations of genes within topologically associated domains.

Overall our study confirms and takes advantage of the existence of sequence-level instruc-

tions for gene expression, which lie in genomic regions largely underestimated in regula-

tory genomics but which appear to be linked to chromatin architecture.

Introduction

The diversity of cell types and cellular functions is defined by specific patterns of gene expres-

sion. The regulation of gene expression involves a plethora of DNA/RNA-binding proteins

that bind specific motifs present in various DNA/RNA regulatory regions. At the DNA level,

transcription factors (TFs) typically bind 6-8bp-long motifs present in promoter regions,

which are close to transcription start site (TSS). TFs can also bind enhancer regions, which are

distal to TSSs and often interspersed along considerable physical distance through the genome

[1]. The current view is that DNA looping mediated by specific proteins and RNAs places

enhancers in close proximity with target gene promoters (for review [2–5]). High-resolution

chromatin conformation capture (Hi-C) technology identified contiguous genomic regions

with high contact frequencies, referred to as topologically associated domains (TADs) [6].

Within a TAD, enhancers can work with many promoters and, on the other hand, promoters

can contact more than one enhancer [5, 7]. Several large-scale data derived from high-

throughput experiments (such as ChIP-seq [8], SELEX-seq [9], RNAcompete [10]) can be

used to highlight TF/RBP binding preferences and build Position Weight Matrixes (PWMs)

[11]. The human genome is thought to encode*2,000 TFs [12] and>1,500 RBPs [13]. It

follows that gene regulation is achieved primarily by allowing the proper combination to

occur i.e. enabling cell- and/or function-specific regulators (TFs or RBPs) to bind the proper

sequences in the appropriate regulatory regions. In that context, epigenetics clearly plays a

central role as it influences the binding of the regulators and ultimately gene expression [14].

Provided the variety of regulatory mechanisms, deciphering their combination requires math-

ematical/computational methods able to consider all possible combinations [15]. Several

methods have recently been proposed to tackle this problem [16–19]. Although these models

appear very efficient in predicting gene expression and identifying key regulators, they mostly

rely on experimental data (ChIP-seq, methylation, DNase hypersensitivity), which are limited

to specific samples (often to cell lines) and which cannot be generated for all TFs/RBPs and all

cell types. These technological features impede from using this type of approaches in a clinical

context in particular in precision medicine. In addition, we show here that, although these

approaches are accurate, their biological interpretation can be misleading. Finally these meth-

ods are not designed to capture regulation instructions that may lie at the sequence-level

before the binding of regulators or the opening of the chromatin. There is indeed a growing

body of evidence suggesting that the DNA sequence per se contains information able to shape

the epigenome and explain gene expression [20–25]. Several studies have shown that sequence

variations affect histone modifications [21–23]. Specific DNA motifs can be associated with

specific epigenetic marks and the presence of these motifs can predict the epigenome in a

given cell type [24]. Quante and Bird proposed that proteins able to “read” domains of

Probing sequence-level instructions for gene expression
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relatively uniform DNA base composition may modulate the epigenome and ultimately gene

expression [20]. In that view, modeling gene expression using only DNA sequences and a set

of predefined DNA/RNA features (without considering experimental data others than expres-

sion data) would be feasible. In line with this proposal, Raghava and Han developed a Support

Vector Machine (SVM)-based method to predict gene expression from amino acid and dipep-

tide composition in Saccharomyces cerevisiae [26].

Here, we built a global regression model per sample to explain the expression of the differ-

ent genes using their nucleotide compositions as predictive variables. The idea beyond our

approach is that the selected variables (defining the model) are specific to each sample. Hence

the expression of a given gene may be predicted by different variables in different samples.

This approach was tested on several independent datasets: 2,053 samples from The Cancer

Genome Atlas (1,512 RNA-sequencing data and 582 microarrays) and 3 ENCODE cell lines

(RNA sequencing). When restricted to DNA features of promoter regions our model showed

accuracy similar to that of two independent methods based on experimental data [17, 19]. We

confirmed the importance of nucleotide composition in predicting gene expression. Moreover

the performance of our approach increases by combining the contribution of different types

of regulatory regions. We thus showed that the gene body (introns, CDS and UTRs), as

opposed to sequences located upstream (promoter) or downstream, had the most significant

contribution in our model. We further provided evidence that the contribution of nucleotide

composition in predicting gene expression is linked to co-regulations associated with genome

architecture and TADs.

Materials andmethods

Datasets, sequences and online resources

RNA-seq V2 level 3 processed data were downloaded from the TCGA Data Portal. Our train-

ing data set contained 241 samples randomly chosen from 12 different cancers (20 cancerous

samples for each cancer except 21 for LAML). Our model was further evaluated on an addi-

tional set of 1,270 tumors from 14 cancer types. We also tested our model on 582 TCGA

microarray data. The TCGA barcodes of the samples used in our study have been made avail-

able at http://www.univ-montp3.fr/miap/~lebre/IBCRegulatoryGenomics.

Isoform expression data (.rsem.isoforms.normalized_results files) were downloaded from

the Broad TCGA GDAC (http://gdac.broadinstitute.org) using firehose_get. We collected data

for 73599 isoforms in 225 samples of the 241 initially considered. All the genes and isoforms

not detected (no read) in any of the considered samples were removed from the analyses.

Expression data were log transformed.

All sequences were mapped to the hg38 human genome and the UCSC liftover tool was

used when necessary. Gene TSS positions were extracted from GENCODEv24. UTR and CDS

coordinates were extracted from ENSEMBL Biomart. To assign only one 5UTR sequence to

one gene, we merged all annotated 5UTRs associated with the gene of interest using Bedtools

merge [27] and further concatenated all sequences. The same procedure was used for 3UTRs

and CDSs. Intron sequences are GENCODEv24 genes to which 5UTR, 3UTR and CDS

sequences described above were substracted using Bedtools substract [27]. These sequences

therefore corresponded to constitutive introns. The intron sequences were concatenated per

gene. The downstream flanking region (DFR) was defined as the region spanning 1kb after

GENCODE v24 gene end. Fasta files were generated using UCSC Table Browser or Bedtools

getfasta [27].

TCGA isoform TSSs were retrieved from https://webshare.bioinf.unc.edu/public/

mRNAseq_TCGA/unc_hg19.bed and converted into hg38 coordinates with UCSC liftover.

Probing sequence-level instructions for gene expression

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005921 January 2, 2018 3 / 28



For other regulatory regions associated to transcript isoforms (UTRs, CDS, introns and DFR),

we used GENCODE v24 annotations.

Nucleotide composition

The nucleotide (n = 4) and dinucleotide (n = 16) percentages were computed from the differ-

ent regulatory sequences where:

percentageðN; sÞ ¼
]N

l

is the percentage of nucleotide N in the regulatory sequence s, with N in {A, C, G, T} and l the

length of sequence s, and

percentageðNpM; sÞ ¼
]NpM

l  1

is the NpM dinucleotide percentage in the regulatory sequence s, with N andM in {A, C, G, T}

and l the length of sequence s.

Motif scores

Motif scores in core promoters were computed using the method explained in [11] and Posi-

tion Weight Matrix (PWM) available in JASPAR CORE 2016 database [28]. Let w be a motif

and s a nucleic acid sequence. For all nucleotide N in {A, C, G, T}, we denoted by P(N|wj) the

probability of nucleotide N in position j of motif w obtained from the PWM, and by P(N) the

prior probability of nucleotide N in all sequences.

The score of motif w at position i of sequence s is computed as follows:

scoreðw; s; iÞ ¼
X

jwj 1

j¼0

log
PðsiþjjwjÞ

PðsiþjÞ

with |w| the length of motif w, si+j the nucleotide at position i + j in sequence s, The score of

motif w for sequence s is computed as the maximal score that can be achieved at any position

of s, i.e.:

scoreðw; sÞ ¼ max
l jwj

i¼0
scoreðw; s; iÞ;

with l the length of sequence s.

Models were also built on sum scores as:

scoreSumðw; sÞ ¼
X

l jwj

i¼0

scoreðw; s; iÞ;

and further compared to models built on mean scores (S1 Fig). Taking mean or sum scores

per region yielded similar results (Wilcoxon test p-value = 0.68).

DNAshape scores

DNA shape scores were computed using DNAshapeR [29]. Briefly, provided nucleotide

sequences, DNAshapeR uses a sliding pentamer window to derive the structural features corre-

sponding to minor groove width (MGW), helix twist (HelT), propeller twist (ProT) and Roll

from all-atomMonte Carlo simulations [29]. Thus, for each DNA shape, a score is given to

Probing sequence-level instructions for gene expression
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each base of each sequence considered (DU, CORE and DD—see Fig 1). We then computed

the mean of these scores for each sequence providing 12 additional variables per gene.

Enhancers

The coordinates of the enhancers mapped by FANTOM on the hg19 assembly [7] were con-

verted into hg38 using UCSC liftover and further intersected with the different regulatory

regions. We computed the density of enhancers per regulatory region (R) by dividing the sum,

for all genes, of the intersection length of enhancers with gene iðLenhi
Þ by the sum of the lengths

of this regulatory region for all genes:

enhDensityðRÞ ¼

P

i ðLenhi
in RiÞ

P

i lengthðRiÞ

Copy Number Variation (CNV)

Processed data were downloaded from the firehose Broad GDAC (https://gdac.broadinstitute.

org/). We used the genome-wide SNP array data and the segment mean scores. In order to

assign a CNV score to each gene, the coordinates (hg19) of the probes were intersected with

that of GENCODE v19 genes using Bedtools intersect [27] and an overlap of 85% of the gene

total length. The corresponding segment mean value was then assigned to the intersecting

genes. In case no intersection was detected, the gene was assigned a score of 0. We next com-

puted Spearman correlations between genes absolute error (lasso model) and genes absolute

segment mean score for each of the 241 samples of the training set.

Fig 1. Genomic regions considered for gene expression prediction. An illustrative transcript is shown as example.

https://doi.org/10.1371/journal.pcbi.1005921.g001
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Expression quantitative trait loci and single nucleotide polymorphisms

The v6p GTex cis-eQTLs were downloaded from the GTex Portal (http://www.gtexportal.org/

home/). The hg19 cis-eQTL coordinates were converted into hg38 using UCSC liftover and

further intersected with the different regulatory regions. We restricted our analyses to cis-

eQTLs impacting their own host gene. We computed the density of cis-eQTL per regulatory

region (R) by dividing the sum, for all genes, of the number of cis-eQTLs of gene i (eQTLsi)

located in the considered region for gene i (Ri) by the sum of the lengths of this regulatory

region for all genes:

eQTLdensityðRÞ ¼

P

i #ðeQTLsi in RiÞ
P

i lengthðRiÞ

Likewise we computed the density of SNPs in core promoters and introns by intersecting coor-

dinates of these two regions (liftovered to hg19) with that of SNPs detected on chromosomes

1, 2 and 19 (ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b150_GRCh37p13/BED/):

SNPdensityðRÞ ¼

P

i #ðSNPi in RiÞ
P

i lengthðRiÞ

Methylation

Illumina Infinium Human DNAMethylation 450 level 3 data were downloaded from the

Broad TCGA GDAC (http://gdac.broadinstitute.org) using firehose_get. The coordinates of

the methylation sites (hg18) were converted into hg38 using the UCSC liftover and further

intersected with that of the core promoters (hg38). For each gene, we computed the median of

the beta values of the methylation sites present in the core promoter and further calculated the

median of these values in 21 LAML and 17 READ samples with both RNA-seq and methyla-

tion data. We compared the overall methylation status of the core promoters in LAML and

READ using a wilcoxon test.

Gini coefficient

We used 8,556 GTEx RNA-seq libraries (https://www.gtexportal.org/home/datasets) to com-

pute the Gini coefficient for 16,134 genes on the 16,294 considered in our model. Gini coeffi-

cient measures statistical dispersion and can be used to measure gene ubiquity: value 0

represents genes expressed in all sam- ples while value 1 represents genes expressed in only

one sample. To compute Gini coefficient we used R package ineq. We then computed, for

the 241 samples, Spearman correlation between Gini coefficients and model gene absolute

errors. Similar analyses were performed with 1,897 FANTOM 5 CAGE libraries to compute

the Gini coefficients for 15,904 genes.

Functional enrichment

Gene functional enrichments were computed using the database for annotation, visualization

and integrated discovery (DAVID) [30].

Linear regression with ℓ1-norm penalty (Lasso)

We performed estimation of the linear regression model (1) via the lasso [31]. Given a linear

regression with standardized predictors and centered response values, the lasso solves the

Probing sequence-level instructions for gene expression

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005921 January 2, 2018 6 / 28



ℓ1-penalized regression problem of finding the vector coefficient = { i} in order to minimize

Min jjycðgÞ  
X

i

bix
s
i;gjj

2

þ l

X

i

jbij

 !

;

where yc(g) is the centered gene expression for all gene g, xs
i;g is the standardized DNA feature i

for gene g and ∑i | i| is the ℓ1-norm of the vector coefficient . Parameter is the tuning param-

eter chosen by 10 fold cross validation. The higher the value of , the fewer the variables. This

is equivalent to minimizing the sum of squares with a constraint of the form ∑i | i|� s. Gene

expression predictions are computed using coefficient estimated with the value of that min-

imizes the mean square error. Lasso inference was performed using the function cv.glmnet

from the R package glmnet [32]. The LASSO model was compared to two non parametric

approaches: Regression trees (CART) [33] and Random forest [34]. S1 Table summarizes accu-

racy and computing time of each approach. Regression trees achieved significantly lower accu-

racy than the two other approaches (Wilcox test p-values< 2e−16), while linear model and

random forest yielded similar results (p-value 0.18). Moreover, computing time for linear

model was much lower than that of random forest. These results emphasize the merits of linear

model such as LASSO in their interpretability and efficiency.

Variable stability selection

We used the stability selection method developed by Meinshausen et al. [35], which is a classi-

cal selection method combined with lasso penalization. Consistently selected variables were

identified as follows for each sample. First, the lasso inference is repeated 500 times where, for

each iteration, (i) only 50% of the genes is used (uniformly sampled) and (ii) a random weight

(uniformly sampled in [0.5;1]) is attributed to each predictive variable. Second, a variable is

considered as stable if selected in more than 70% of the iterations, using the method proposed

in [36] to set the value of lasso penalty . One of the advantage of this method is that the vari-

able selection frequency is computed globally for all the variables by attributing a random

weight to each variable at each iteration, thus taking into account the dependencies between

the variables. This variable stability selection procedure was implemented using functions

stabpath and stabsel from the R package C060 for glmnetmodels [36].

Regression trees

Regression trees were implemented with the rpart package in R [32]. In order to avoid over-

fitting, trees were pruned based on a criterion chosen by cross validation to minimize mean

square error. The minimum number of genes was set to 100 genes per leaf.

TAD enrichment

We considered TADs mapped in IMR90 cells [6] containing more than 10 genes (373 out of

2243 TADs with average number of genes = 14). The largest TAD had 76 associated genes.

First, for each TAD and for each region considered, the percentage of each nucleotide and

dinucleotide associated to the embedded genes were compared to that of all other genes using

a Kolmogorov-Smirnov (KS) test. For a given dinucleotide (for example CpG), we applied KS

tests to assess whether the CpG frequency distribution in genes in one specific TAD differs

from the distribution in genes in other TADs. Correction for multiple tests was applied using

the False Discovery Rate (FDR)< 0.05 [37] and the R function p.adjust [32]. Second, for

each of the 967 groups of genes (identified by the regression trees, with mean error<mean

error of the 1st quartile), the over-representation of each TAD within each group was tested

Probing sequence-level instructions for gene expression
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using the R hypergeometric test function phyper [32]. Correction for multiple tests was

applied using FDR< 0.05 [37].

Availability of data and materials

The matrices of predicted variables (log transformed RNA seq data) and predictive variables

(nucleotide and dinucleotide percentages, motifs and DNA shape scores computed for all genes

as described above) as well as the TCGA barcodes of the 241 samples used in our study have

been made available at http://www.univ-montp3.fr/miap/~lebre/IBCRegulatoryGenomics.

Results

Mathematical approach to model gene expression

We built a global linear regression model to explain the expression of genes using DNA/RNA

features associated with their regulatory regions (e.g. nucleotide composition, TF motifs, DNA

shapes):

yðgÞ ¼ aþ
X

i

bixi;g þ eðgÞ ð1Þ

where y(g) is the expression of gene g, xi,g is feature i for gene g, e(g) is the residual error associ-

ated with gene g, a is the intercept and bi is the regression coefficient associated with feature i.

The advantage of this approach is that it allows to unveil, into a single model, the most

important regulatory features responsible for the observed gene expression. The relative con-

tribution of each feature can thus be easily assessed. It is important to note that the model is

specific to each sample. Hence the expression of a given gene may be predicted by different

variables depending on the sample. Our computational approach was based on two steps.

First, a linear regression model (1) was trained with a lasso penalty [31] to select sequence fea-

tures relevant for predicting gene expression. Second, the performances of our model was eval-

uated by computing the mean square of the residual errors, and the correlation between the

predicted and the observed expression for all genes. This was done in a 10 fold cross-validation

procedure. Namely, in all experiments hereafter, the set of genes was randomly split in ten

parts. Each part was alternatively used for the test (i.e. for comparing observed and predicted

values) while the remaining genes were used to train the model. This ensures that the model

used to predict the expression of a gene has not been trained with any information relative to

this gene. Our approach was applied to a set of RNA sequencing data from TCGA. We ran-

domly selected 241 gene expression data from 12 cancer types (see http://www.univ-montp3.

fr/miap/~lebre/IBCRegulatoryGenomics for the barcode list). For each dataset (i.e sample),

a regression model was learned and evaluated. See Materials and methods for a complete

description of the data, the construction of the predictor variables and the inference procedure.

We further evaluated our model on 3 independent ENCODE RNA-seq, 1,270 TCGA RNA-seq

and 582 microarrays datasets (see below).

Contribution of the promoter nucleotide composition

We first evaluated the contribution of promoters, which are one of the most important regula-

tory sequences implicated in gene regulation [38]. We extracted DNA sequences encompass-

ing ±2000 bases around all GENCODE v24 TSSs and looked at the percentage of dinucleotides

along the sequences (S2 Fig). Based on these distributions, we segmented the promoter into

three distinct regions: -2000/-500 (referred here to as distal upstream promoter, DU),

-500/+500 (thereafter called core promoter though longer than the core promoter traditionally

Probing sequence-level instructions for gene expression
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considered) and +500/+2000 (distal downstream promoter, DD)(Fig 1). We computed the

nucleotide (n = 4) and dinucleotide (n = 16) relative frequencies in the three distinct regions of

each gene. For each sample, we trained one model using the 20 nucleotide/dinucleotide rela-

tive frequencies from each promoter segment separately, and from each combination of

promoter segments. We observed that the core promoter had the strongest contribution com-

pared to DU and DD (Fig 2A). Considering promoter as one unique sequence spanning

-2000/+2000 around TSS achieved lower model accuracy than combining different promoter

segments (Fig 2A). The highest accuracy was obtained combining all three promoter segments

(Fig 2A).

Promoters are often centered around the 5’ most upstream TSS (i.e. gene start). However

genes can have multiple transcriptional start sites. The median number of alternative TSSs for

the 19,393 genes listed in the TCGA RNA-seq V2 data is 5 and only 2,753 genes harbor a single

TSS (S3 Fig). We therefore evaluated the performance of our model comparing different pro-

moters centered around the first, second, third and last TSS (Fig 2B). In the absence of second

TSS, we used the first TSS and likewise the second TSS in the absence of a third TSS. The last

TSS represents the most downstream TSS in all cases. We found that our model achieved

higher predictive accuracy with the promoters centered around the second TSS (Fig 2B), in

agreement with [16]. As postulated by Cheng et al. [16] in the case of TFs, the nucleotide com-

position around the first TSS may be linked to the recruitment of chromatin remodelers and

thereby prime the second TSS for gene expression. Dedicated experiments would be required

to assess this point.

We noticed that incorporating the number of TSSs associated with each gene drastically

increased the performance of our model (S4 Fig). Multiplying TSSs may represent a genuine

mechanism to control gene expression level. On the other hand this effect may merely be due

to the fact that the more a gene is expressed, the more its different isoforms will be detected

(and hence more TSSs will be annotated). Because the number of known TSSs results from

annotations deduced from experiments, we decided not to include this variable into our final

model.

Contribution of specific features associated with promoters

Provided the importance of CpGs in promoter activity [38], we first compared our model with

a model built only on promoter CpG content. We confirmed that CpG content had an impor-

tant contribution in predicting gene expression (median R = 0.417, Fig 2C). However consid-

ering other dinucleotides achieved better model performances, indicating that dinucleotides

other than CpG contribute to gene regulation. This is in agreement with results obtained by

Nguyen et al., who showed that CpG content is insufficient to encode promoter activity and

that other features might be involved [39].

We integrated TF motifs considering Position Weight Matrix scores computed in the core

promoter and observed a slight but significant increase of the regression performance (median

r = 0.543 with motif scores vs. r = 0.502 without motif scores, Fig 2D). As DNA sequence is

intrinsically linked to three-dimensional local structure of the DNA (DNA shape), we also

computed, for each promoter segment (DU, CORE and DD), the mean scores of the four

DNA shape features provided by DNAshapeR [29] (helix twist, minor groove width, propeller

twist, and Roll), adding 12 variables to the model. Although the difference between models

with and without DNA shapes is also significant, the increase in performance is more modest

than when including TF motif scores (Fig 2D).

Our model suggested that nucleotide composition had a greater contribution in predicting

gene expression compared to TF motifs and DNA shapes. This is in agreement with the

Probing sequence-level instructions for gene expression
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Fig 2. A: Contribution of the promoter segments. The model was built using 20 variables corresponding to the
nucleotide (4) and dinucleotide (16) percentages computed in the CORE promoter (red), DU (green) or DD (yellow).
These variables were then added in different combinations: CORE+DU (pink, 40 variables); CORE+DD (orange, 40
variables); CORE+DU+DD (light blue, 60 variables). Promoter segments were centered around the first most
upstream TSS. For sake of comparison, the model was also built on 20 variables corresponding to the nucleotide and

Probing sequence-level instructions for gene expression
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findings revealing the influence of the nucleotide environment in TFBS recognition [40]. Note

however that nucleotide composition, TF motifs and DNA shapes may be redundant variables.

Besides, a linear model may not be optimal to efficiently capture the contributions of TF motifs

and/or DNA shapes. The highest performance was achieved by combining nucleotide compo-

sition with TF motifs (Fig 2D). In the following analyses, the model was built on both dinucle-

otide composition and core promoter TF motifs.

Comparison with models based on experimental data

The wealth of TF ChIP-seq, epigenetic and expression data has allowed the development of

methods aimed at predicting gene expression based on differential binding of TFs and epige-

netic marks [16–19]. We sought to compare our approach, which does not necessitate such

cell-specific experimental data, to these methods. We first compared our results to that of Li

et al. who used a regression approach called RACER to predict gene expression on the basis of

experimental data, in particular TF ChIP-seq data and DNAmethylation [17]. Note that, with

this model, the contribution of TF regulation in predicting gene expression is higher than that

of DNAmethylation [17].

We computed the Spearman correlations between expressions observed in the subsets of

LAMLs studied in [17] and expressions predicted by our model or by RACER (Fig 3A). For

the sake of comparison, we used the RACER model built solely on ChIP-seq data, hereafter

referred to as “ChIP-based model”. RACER performance was assessed using the same cross-

validation procedure we used for our method. Overall our model was as accurate as ChIP-

based model (median correlation r = 0.529 with our model vs. median r = 0.527 with ChIP-

based model (Fig 3A)). We then controlled the biological information retrieved by the two

approaches by randomly permuting, for each gene, the values of the predictive variables (dinu-

cleotide counts/motif scores in our model and ChIP-seq signals in the ChIP-based model).

This creates a situation where the links between the combination of predictive variables and

expression is broken, while preserving the score distribution of the variables associated with

each gene. For example, genes associated with numerous ChIP-seq peaks will also have numer-

ous ChIP-seq peaks in random data. In such situation, a regression model is expected to poorly

perform. Surprisingly, the accuracy of ChIP-based model was not affected by the randomiza-

tion process (median r = 0.517, Fig 3A) while that of our model was severely impaired (median

r = 0.076, Fig 3A). We built another control model using a single predictive variable per gene

corresponding to the maximum value of all predictive variables initially considered. Here

again the ChIP-based model was not affected by this process (median r = 0.520, Fig 3A) while

our model failed to accurately predict gene expression with this type of control variable

(median r = -0.016, Fig 3A).

dinucleotide compositions of the non segmented promoters (-2000/+2000 around the first most upstream TSS)(light
blue). All different models were fitted on 19,393 genes for each of the 241 samples considered. The prediction accuracy
was evaluated in each sample by evaluating the Spearman correlation coefficients between observed and predicted gene
expressions in a cross-validation procedure. The correlations obtained in all samples are shown as violin plots. B:
Prediction accuracy comparing alternative TSSs. The model was built using the 60 nucleotide/dinucleotide
percentages computed in the 3 promoter segments (CORE+DU+DD) centered around 1st, 2nd, 3rd and last TSSs
(from left to right). C: Contribution of CpG. The model was built using the 60 nucleotide/dinucleotide or only the 3
CpG percentages computed in the 3 promoter segments (CORE+DU+DD) centered around the 2nd TSS.D:
Contribution of motifs and local DNA shapes. The model was built using (i) 60 nucleotide/dinucleotide percentages
computed in the 3 promoter segments (CORE+DU+DD) (“dint”, pink),(ii) 471 JASPAR2016 PWM scores computed
in the CORE segment (“motifs”, light blue) and (iii) the 12 DNA shapes corresponding to the 4 known DNAshapes
computed in CORE, DU and DD (“DNAshape”, green). All sequences were centered around the 2nd TSS. These
variables were further added in different combinations to build the models indicated: dint+motifs (531 variables,
green), dint+DNAshapes (32 variables, dark blue), motifs+DNAshapes (483 variables, light green).

https://doi.org/10.1371/journal.pcbi.1005921.g002
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Fig 3. A: Comparison with model integrating TF-binding signals. The model was built using 531 variables
corresponding to the 60 nucleotide/dinucleotide percentages and the 471 motif scores computed in the 3 promoter
segments (CORE, DU, DD) centered around the 2nd TSS (pink). A model built on ChIP-seq data [17] was used for
comparison (green). Both models were fitted on the same gene set (n = 16,298) for 21 LAML samples and assessed by
cross-validation. The correlations obtained with ChIP-based RACER and our model were compared usingWilcoxon
test but no significant difference was observed (p-value = 0.425). The two models were also built on randomized values
of predictive variables (rand) and on the maximum value of all predictive variables (max). B: Comparison with model
integrating open-chromatin signals. The linear model was built using the 531 variables (nucleotide/dinucleotide
percentages and motif scores in CORE, DU and DD) and the expression data obtained in K562, hESC and GM12878
[19]. TEPIC was built as described in [19], within a 3 kb or a 50 kb window around TSSs. The scaled version of TEPIC

Probing sequence-level instructions for gene expression
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ChIP-seq data are probably the best way to measure the activity of a TF because binding of

DNA reflects the output of RNA/protein expression as well as any appropriate post-transla-

tional modifications and subcellular localizations. However this type of data also reflects chro-

matin accessibility (i.e. most TFs bind accessible genomic regions) and TFs tend to form

clusters on regulatory regions [41]. The binding of one TF in the promoter region is therefore

likely accompanied by the binding of others. Hence, rather than inferring the TF combination

responsible for gene expression, linear models based of ChIP-seq data predominantly captures

the quantity of TFs (i.e. the opening of the chromatin) in the promoter region of each gene,

which explains their good accuracy on randomized or maximized variables.

We indeed observed a similar bias in the results obtained by TEPIC [19], a regression

method that predicts gene expression from PWM scores and open-chromatin data. Specifi-

cally, TEPIC computes a TF-affinity score for each gene and each PWM by summing up the

TF affinities in all open-chromatin peaks (DNaseI-seq) within a close (3,000 bp) or large

(50,000 bp) window around TSSs. This scoring takes into account the scores of PWMs in the

open-chromatin peaks but is also influenced by the number of open-chromatin peaks in the

analyzed sequences and the abundance of open-chromatin peaks (“scaled” version). As a

result, genes with many open-chromatin peaks tend to get higher TF-affinity scores than genes

with low number of open-chromatin peaks. We trained linear models on three cell-lines using

either the four TEPIC affinity-scores or our variables and compared the results (Fig 3B). As for

the ChIP-based models, we observed that our model was approximately as accurate as TEPIC

score model, validating our approach with an independent dataset. Applying the random per-

mutations on the TEPIC scores did not significantly impact the accuracy of the approach in

most cases, especially for the scaled versions (Fig 3B). Hence, as for the ChIP-based model, the

TEPIC score model seems to mainly capture the level of chromatin opening rather than the TF

combinations responsible for gene expression. Conversely, our model solely built on DNA

sequence features is not influenced by the chromatin accessibility and thus can yield relevant

combinations of explanatory features (see the randomized control in Fig 3A and 3B). Note

that the non-scaled version of TEPIC did show a loss of accuracy for cell-line H1-hESC (as

well as a moderate loss for K562, but none for GM12878) when randomizing or maximizing

the variables (Fig 3B). This result indicates that, although taking the abundance of open-chro-

matin peaks in the analyzed sequences does increase expression prediction accuracy, it might

generate more irrelevant combinations of explanatory features than non-scaled versions.

Contribution of additional genomic regions

Additional genomic regions were integrated into our model. We first thought to consider

enhancer sequences implicated in transcriptional regulation. We used the enhancer mapping

made by the FANTOM5 project, which identified 38,554 human enhancers across 808 samples

[7]. This mapping uses the CAGE technology, which captures the level of activity for both pro-

moters and enhancers in the same samples. It is then possible to predict the potential target

genes of the enhancers by correlating the activity levels of these regulatory regions over

incorporates the abundance of open-chromatin peaks in the analyzed sequences. All types of TEPIC models were tested
(3kb, 3kb-scaled, 50kb and 50kb-scaled) by cross-validation. In each case, our model was built on the set of genes
considered by TEPIC. TEPIC uses 12 conditions making hard to compute Wilcoxon tests. A direct comparison showed
that, in “normal” conditions (first column of each panel), our model and TEPIC give overall very similar results (our
model being as accurate as TEPIC in 2 conditions and slightly better in 5 out of the 10 remaining conditions). Models
were further built on randomized values of predictive variables (rand) and on the maximum value of all predictive
variables (max). Overall, absence of effect of the randomization procedure suggests that RACER and TEPIC mainly
capture the level of chromatin opening rather than the TF combinations responsible for gene expression.

https://doi.org/10.1371/journal.pcbi.1005921.g003
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hundreds of human samples [7]. However FANTOM5 enhancers are only assigned to 11,359

genes from the TCGA data, which correspond to the most expressed genes across different

cancers (S5 Fig). Provided that the detection of enhancers relies on their activity, it is expected

that enhancers are better characterized for the most frequently expressed genes. Because con-

sidering only the genes with annotated enhancers would considerably reduce the number of

genes and including enhancers features only when available would introduce a strong bias in

the performance of our model, we decided not to include these regulatory regions.

Second we analyzed the contribution of regions defined at the RNA level, namely 5’UTR,

CDS, 3’UTR and introns, which can be responsible for post-transcriptional regulations [13, 17,

26, 42–50] (Fig 1). For all genes, we extracted all annotated 5’UTRs, 3’UTRs and CDSs, which

were further merged and concatenated to a single 5’UTR, a single CDS, and a single 3’UTR per

gene. Introns were defined as the remaining sequence (Fig 1). We also tested the potential con-

tribution of the 1kb region located downstream the gene end, called thereafter Downstream

Flanking Region (DFR, Fig 1). Our rationale was based on reports showing the presence of

transient RNA downstream of polyadenylation sites [51], the potential presence of enhancers

[7] and the existence of 5’ to 3’ gene looping [52].

We used a forward selection procedure by adding one region at a time: (i) all regions were

tested separately and the region leading to the highest Spearman correlation between observed

and predicted expression was selected as the ‘first’ seed region, (ii) each region not already in

the model was added separately and the region yielding the best correlation was selected (‘sec-

ond region’), (iii) the procedure was repeated till all regions were included in the model. The

correlations computed in a cross-validation procedure at each steps are indicated in S2 Table.

As shown in Fig 4, the nucleotide composition of intronic sequences had the strongest contri-

bution in the accuracy of our model, followed by UTRs (5’ then 3’) and CDS (Fig 4). The

Fig 4. Contribution of additional genomic regions.Genomic regions were ranked according to their contribution in predicting gene
expression. First, all regions were tested separately. Introns yielded the highest Spearman correlation between observed and predicted
expressions (in a cross-validation procedure) and was selected as the ‘first’ seed region. Second, each region not already in the model
was added separately. 5’UTR in association with introns yielded the best correlation and was therefore selected as the ‘second’ region.
Third, the procedure was repeated till all regions were included in the model. The contribution of each region is then visualized
starting from the most important (left) to the less important (right). Note that the distance between the second TSS and the first ATG
is> 2000 bp for only 189 genes implying that 5’UTR and DD regions overlap. The correlations computed at each steps are indicated in
(S2 Table). ns, non significant.

https://doi.org/10.1371/journal.pcbi.1005921.g004
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nucleotide composition of core promoter moderately increased the prediction accuracy. In

contrast the composition of regions flanking core promoter (DU and DD, Fig 1) as well as

regions located downstream the end of gene (DFR, Fig 1) did not significantly improve the

predictions of our model. Note that combining all regions improved the performance of our

model compared to promoter alone (compare Figs 2B and 4).

We compared models built on ssDNA and dsDNA, and ssDNA-based models yielded bet-

ter accuracy S6 Fig. We also compared models built on percentages of nucleotides (n = 4),

dinucleotides (n = 16) and nucleotides+dinucleotides (n = 20). As shown S7A Fig, dinucleo-

tides provided stronger prediction accuracy than nucleotides and the best accuracy was

obtained combining both nucleotides and dinucleotides. We also built a model on trinucleo-

tide percentage (n = 64) (S7A Fig). This model did yield better results than model built on

nucleotide+dinucleotide. However, the correlation increase was not as important as that

observed when adding dinucleotides to nucleotides. Besides, the model built on trinucleotides

involves more variables and is computationally demanding. We compared models built on

nucleotides+dinucleotides adding individually trinucleotide percentages of each region (i.e. 8

models built on nucleotides+dinucleotides in all regions + trinucleotides in one specific

region) (S7B Fig). This analysis revealed that the correlation increase observed when incorpo-

rating trinucleotides was mostly due to the contribution of trinucleotides computed in introns,

reinforcing our conclusions regarding the importance of sequence-level instructions located in

this region.

Because RNA-associated regions (introns, UTRs, CDSs) had greater contribution to the

prediction accuracy compared to DNA regions (promoters, DFR), we compared the accuracy

of our model in predicting gene vs. transcript expression. We retrieved the normalized results

for gene expression (RNAseqV2 rsem.genes.normalized_results) and the matched normalized

expression signal of individual isoforms (RNAseqV2 rsem.isoforms.normalized_results) for

225 TCGA samples. Accordingly, we generated a set a predictive variables specific to each iso-

form (see Material and methods). We found that models built on isoforms are less accurate

than models built on genes (median r = 0.35, S8 Fig and (S3 Table)). Focusing on the broad

nucleotide composition may not be optimal to model isoform expression and to differentiate

expression of one isoform from another. Yet another simple explanation could be that recon-

structing and quantifying full-length mRNA transcripts is a difficult task, and no satisfying

solution exists for now [53]. Consequently isoform as opposed to gene expression is more diffi-

cult to measure and thus to predict.

Additional validation of the model

In the above sections, our complete model, built on 160 variables corresponding to 4 nucleo-

tide and 16 dinucleotide rates in 8 distinct regions (Fig 1), was trained with a data set contain-

ing 241 RNA-seq samples randomly chosen from 12 different cancers, and on 3 independent

ENCODE RNA-seq datasets (see TEPIC comparison). We further evaluated our approach

using two independent additional datasets: (a) a set of 1,270 RNA-seq samples collected from

14 cancer types and (b) a set of 582 microarray data. Overall, the RNA-seq and the microarray

samples were collected from respectively 109 and 41 source sites and sequenced in 3 analysis

centers. Similar accuracy was observed in all datasets (S9 and S10 Figs). Note that the correla-

tions computed with microarray data were lower than that computed with RNA-seq data but

involved lower number of genes (9,791 genes in microarrays vs. 16,294 in RNA-seq). For sake

of comparison, we restricted RNA-seq data to the 9,791 microarray genes and we observed

similar correlation (S10 Fig). Because our model was built on human reference genome, we

also have computed the Spearman correlations between absolute values of CNV segment
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mean scores and model prediction errors calculated for each gene in 241 samples correspond-

ing to 12 cancer types. The median correlation was -0.014, arguing against the model perfor-

mance being related to CNV-density (S11 Fig).

Selecting DNA features related to gene expression

We sought the main DNA features related to gene expression. The complete model built on all

8 regions (160 variables) selected* 129 predictive variables per sample. We used the stability

selection algorithm developed by Meinshausen et al. [35] to identify the variables that are con-

sistently selected after data subsampling (see Materials and methods for a complete description

of the procedure). This procedure selected a median of* 16 variables per sample. The barplot

in Fig 5A shows, for each variable, the proportion of samples in which the variable is selected

with high consistency (> 70% of the subsets).

We next determined whether stable variables exert a positive (activating) or a negative

(inhibiting) effect on gene expression. For each sample, we fitted a linear regression model pre-

dicting gene expression using only the standardized variables that are stable for this sample.

The activating/inhibiting effect of a variable is then indicated by the sign of its regression coef-

ficient:< 0 for a negative effect and> 0 for a positive effect. The outcome of these analyses for

all variables and all samples is shown Fig 5B. With the noticeable exception of CpG in the core

promoter, all stable variables had an invariable positive (e.g. GpT in introns) or negative (e.g.

CpA in DD and in 5UTR) contribution in gene expression prediction in all samples. In con-

trast, CpG in the core promoter had an alternating effect being positive in LAML and LGG for

instance while negative in READ. It is also the only variable with a regression coefficient close

to 0 (absolute value of median = 0.1, see S12 Fig), providing a partial explanation for the

observed changes. As CpG methylation inhibits gene expression [38], we also investigated

potential differences in core promoter methylation in LAML (positive contribution of

CpG_CORE) and READ (negative contribution of CpG_CORE). We used the Illumina Infi-

nium Human DNAMethylation 450 made available by TCGA and focused on the estimated

methylation level (beta values) of the sites intersecting with the core promoter. We noticed

that core promoters in LAML were overall more methylated (median = 0.85) than in READ

(median = 0.69, wilcoxon test p-value< 2.2e-16), opposite to the sign of CpG coefficient

in LAML (positive contribution of CpG_CORE) and READ (negative contribution of

CpG_CORE). This argued against a contribution of methylation in the alternating effect of

CpG_CORE.

We observed that the accuracy of our model varied between cancer types (S9 Fig). In order

to characterize well predicted genes in each sample, we used a regression tree [54] to classify

genes according to the prediction accuracy of our model (i.e. absolute error). The nucleotide

and dinucleotide compositions of the various considered regions were used as classifiers.

This approach identified groups of genes with similar (di)nucleotide composition in the regu-

latory regions considered and for which our model showed similar accuracy (S13 Fig). Implic-

itly, it identified the variables associated with a better or a poorer prediction. We applied this

approach to the 241 linear models. The number of groups built by a regression tree differs

from one sample to another (average number = 14). The resulting 3,680 groups can be visual-

ized in the heatmap depicted in Fig 6, wherein each column represents a sample and each line

corresponds to a group of genes identified by a regression tree. This analysis showed that our

model is not equally accurate in predicting the expression of all genes but mainly fits certain

classes of genes (bottom rows of the heatmap, Fig 6) with specific genomic features (S13 Fig).

Note that the groups well predicted in all cancers presumably correspond to highly and ubiqui-

tously expressed housekeeping genes: groups with low prediction error in all samples and
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cancer types (see S13 Fig for an example group of 996 genes identified by a regression tree

learned in one PRAD sample) are functionally enriched for general and widespread biological

processes (S4 Table). In contrast, groups well predicted in only certain cancers were associated

to specific biological function. For instance, a regression tree learned on one PAAD sample

identified a group of 1,531 genes, which has low prediction error in LGG and PAAD samples

but high error in LAML, LIHC and DLBC samples (Fig 6 and S13 Fig). Functional annotation

of this group showed that, in contrast to the group described above (S13 Fig and S4 Table), this

group is also linked to specific biological processes (S5 Table).

Fig 5. A: Consistently selected variables among 12 types of cancer. For each variable, the fraction of samples in which the variable is
considered as stable (i. e. selected in more than 70% of the subsets after subsampling) is shown. Each color refers to a specific type of cancer.
Only variables consistently selected in at least one sample are shown (out of the 160 variables). See Materials and methods for stable variable
selection procedure and cancer acronyms. B: Biological effect of the stable variables. For each of the 241 samples (columns), a linear model
was fitted using the variables (rows) stable for this sample only. The sign of the contribution of each variable in each sample is represented as
follows: red for positive contribution, dark blue for negative contribution and sky blue refers to variables not selected (i.e. not stably selected
for the considered sample). Only the variables stable in at least one sample are represented. Cancers and samples from the same cancer types
are ranked by decreasing mean error of the linear model.

https://doi.org/10.1371/journal.pcbi.1005921.g005
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We further computed Gini coefficient for 16,134 genes using 8,556 GTEx libraries [55]. Gini

coefficient measures statistical dispersion which can be used to measure gene expression ubiq-

uity: value 0 represents genes expressed in all samples, while value 1 represents genes expressed

in only one sample. We observed that the correlations obtained between Gini coefficient and

model errors in each TCGA sample ranged from 0.22 to 0.36. We also compared model errors

associated to first and last quartiles of the Gini coefficient distribution using a Wilcoxon test for

each of the 241 samples. The test was invariably significant with maximum p-value = 2.881e−7.

Likewise analyses were performed with 1,897 FANTOM CAGE libraries [56] considering

15,904 genes. In that case, correlation between models errors and Gini coefficients ranged from

0.25 to 0.4. Overall these analyses suggested that our model better predicts expression of highly

and ubiquitously expressed genes. We do not exclude that, when predicting tissue-specific

genes, ChIP-seq data collected from the same tissue may add explanatory power to the

sequence model. Note, however, that the model performances vary between cancer and cell

types implying that part of cell-specific genes are also well predicted by the model (S9 Fig).

Relationships between selected nucleotide composition and genome
architecture

We probed the regulatory activities of the selected regions. We first determined whether

introns contained specific regulatory sequence code by assessing the presence of cis expression

Fig 6. Gene classification according to prediction accuracy. Columns represent the various samples gathered by cancer type. Samples
from the same cancer type are ranked by decreasing mean squared prediction error. Lines represent the 3,680 groups of gene obtained with
the regression trees (one tree for each of the 241 samples) ranked by decreasing mean squared prediction error. Groups gathering the top
25% well predicted genes (error<* 1.77) are indicated in red and light blue.

https://doi.org/10.1371/journal.pcbi.1005921.g006
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quantitative trait loci (cis-eQTLs). Zhou et al. indeed showed that the effect of eQTL SNPs can

be predicted from a regulatory sequence code learned from genomic sequences [25]. These

findings also implied that cis-eQTLs preferentially affect DNA sequences at precise locations

(e.g. TF binding sites) rather than global nucleotide composition (i.e. nucleotide/dinucleotide

percentages used as variables in our model). We used the v6p GTEx release to compute the

average frequencies of cis-eQTLs present in the considered genomic regions and directly linked

to their host genes (S6 Table). We noticed that introns contained the smallest density of cis-

eQTLs (10 times less than any other regions), while containing comparable amount of SNPs

(S7 Table). This result argued against the presence of a regulatory sequence code similar to that

observed in promoters for instance [25], despite the presence of enhancers (S8 Table. These

results rather unveiled the existence of another layer of intron-mediated regulation, which

involves global nucleotide compositions of larger DNA regions. We then asked whether the

groups of genes identified by the regression trees (Fig 6) correspond to specific TADs. Genes

within the same TAD tend to be coordinately expressed [57, 58]. TADs with similar chromatin

states tend to associate to form two genomic compartments called A and B: A contains tran-

scriptionally active regions while B corresponds to transcriptionally inactive regions [59]. The

driving forces behind this compartmentalization and the transitions between compartments

observed in different cell types are not fully understood, but chromatin composition and tran-

scription are supposed to play key roles [5]. Jabbari and Bernardi showed that nucleotide com-

position along the genome (notably isochores) can help define TADs [60]. As intronic

sequences represent* 50% of the human genome (1,512,685,844 bp out of 3,137,161,264

according to ENSEMBL merged intron coordinates), the nucleotide composition of introns

likely resemble that of neighbor genes and more globally that of the corresponding TAD. We

used the 373 TADs containing more than 10 genes mapped in IMR90 cells [6]. For each TAD

and each (di)nucleotide, we used a Kolmogorov-Smirnov test to compare the (di)nucleotide

distribution of the embedded genes with that of all other genes. We used a Benjamini-Hoch-

berg multiple testing correction to control the False Discovery Rate (FDR), which was fixed at

0.05 (see Materials and methods section). We found that 324 TADs out of 373 (*87%) are

characterized by at least one specific nucleotide signature (Fig 7A). In addition, our results

clearly showed the existence of distinct classes of TADs related to GC content (GC-rich, GC-

poor and intermediate GC content) (Fig 7A), in agreement with [60]. We next considered the

967 groups of genes defined in Fig 6 whose expression is accurately predicted by our model

(i.e. groups with mean error<mean error of the 1st quartile). We thus focused our analyses on

genes for which we did learn some regulatory features. We evaluated the enrichment for spe-

cific TADs in each group (considering only TADs containing more than 10 genes) using an

hypergeometric test (Fig 7B). We found that 60% of these groups were enriched for at least one

TAD (p-value< 0.05). Hence, several groups of genes identified by the regression trees (Fig 6)

do correspond to specific TADs (Fig 7B). We concluded that our model, primarily based on

intronic sequences, select gene nucleotide compositions that better distinguish active TADs.

Discussion

In this study, we corroborate the hypothesis that DNA sequence contains information able to

explain gene expression [20–25]. We built a global regression model to predict, in any given

sample, the expression of the different genes using only nucleotide compositions as predictive

variables. Overall our model provided a framework to study gene regulation, in particular the

influence of regulatory regions and their associated nucleotide composition.

A surprising result of our study is that sequence-level information is highly predictive of

gene expression and in some occasions comparable to reference ChIP-seq data alone [17, 19].
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Fig 7. A: Nucleotide compositions of resident genes distinguish TADs. For each TAD and for each region considered, the
percentage of each nucleotide and dinucleotide associated to the embedded genes were compared to that of all other genes
using a Kolmogorov-Smirnov test. Red indicates FDR-corrected p-value� 0.05 and yellow FDR-corrected p-value< 0.05.
TAD clustering was made using this binary information. Only TADs with at least one p-value< 0.05 are shown (i.e. 87% of
the TADs containing at least 10 genes). y-axis from top to bottom: G_INTR, GpC_INTR, CpC_INTR, CpC_3UTR,

Probing sequence-level instructions for gene expression
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The similar accuracy of models built on real and randomly permuted experimental data indi-

cated that, though the experimental data are biologically relevant, their interpretation through

a linear model, in particular inference of TF combinations, is not straightforward as randomi-

zation of experimental data did not show the expected loss of accuracy (Fig 3). An interesting

perspective would be to devise a strategy to infer TF combinations from experimental data

without being influenced by the opening of the chromatin.

The accuracy of our model confirmed that DNA sequence per se and basic information like

dinucleotide frequencies have very high predictive power. It remains to determine the exact

nature of these sequence-level instructions. Interestingly, nucleotide environment contributes

to prediction of TF binding sites and motifs bound by a TF have a unique sequence environ-

ment that resembles the motif itself [40]. Hence, the potential of the nucleotide content to pre-

dict gene expression may be related to the presence of regulatory motifs and TFBSs. However,

we showed that the gene body (introns, CDS and UTRs), as opposed to sequences located

upstream (promoter) or downstream (DFR), had the most significant contribution in our

model. Moreover, cis-eQTL frequencies argue against the presence of a regulatory sequence

code in introns similar to that observed in promoters, suggesting the existence of another layer

of regulation implicating the nucleotide composition of large DNA regions.

Gene nucleotide compositions vary across the genome and can even help define TAD

boundaries [60]. In line with [60], we showed that genes located within the same TAD share

similar nucleotide compositions, which provides a nucleotide signature for their TADs (Fig

7A). Our model aimed at predicting gene expression, and therefore intimately linked to TAD

compartmentalization, appeared to capture these signatures. Several studies have already dem-

onstrated the existence of sequence-level instructions able to determine genomic interactions.

Using an SVM-based approach, Nikumbh et al demonstrated that sequence features can deter-

mine long-range chromosomal interactions [61]. Similar results were obtained by Singh et al.

using deep learning-based models [62]. Using biophysical approaches, Kornyshev et al.

showed that sequence homology influences physical attractive forces between DNA fragments

[63]. It would be interesting to determine whether the nucleotide signatures identified by our

model are directly implicated in DNA folding and 3D genome architecture.

Finally, although sequence-level instructions are—almost—identical in all cells of an indi-

vidual, their usage must be cell-type specific to allow proper A/B compartimentalization of

TADs, gene expression and ultimately diversity of cell functions. At this stage, the mechanisms

driving this cell-type specific selection of nucleotide compositions remain to be characterized.

Supporting information

S1 Fig. Comparison of models built on maximum or sum PWMmotif scores. The model

was built (i) using 60 nucleotide/dinucleotide percentages computed in the 3 promoter

GpC_3UTR, G_3UTR, GpC_CDS, CpC_CDS, G_CDS, G_DFR, CpC_DFR, GpC_DFR, CpG_INTR, CpG_3UTR, CpG_CDS,
CpG_DFR, G_DU, GpC_DD, CpG, DU, CpG_DD, GpC_DU, CpC_DU, CpC_DD, G_DD, GpC_5UTR, CpG_5UTR,
G_5UTR, GpC_CORE, CpG_CORE, CpC_CORE, G_CORE, CpC_5UTR, CpT_3UTR, CpT_CDS, CpT_INTR, ApT_INTR,
TpA_INTR, A_INTR, ApA_INTR, TpA_3UTR, ApT_3UTR, A_3UTR, ApA_3UTR, ApA_CDS, A_CDS, ApT_CDS,
TpA_CDS, A_DD, ApA_DD, ApT_DD, TpA_DD, TpA_DU, ApT_DU, ApA_DU, A_DU, TpA_DFR, ApT_DFR, A_DFR,
ApA_DFR, ApA_CORE, A_CORE, ApT_CORE, TpA_CORE, ApA_5UTR, ApT_5UTR, A_5UTR, TpA_5UTR, ApC_DFR,
ApC_DD, ApC_DU, TpC_DU, TpC_DFR, ApC_CORE, CpA_DU, CpA_DFR, CpA_CDS, ApC_CDS, ApC_3UTR,
TpC_CDS, TpC_CORE, CpT_5UTR, TpC_5UTR, CpT_CORE, TpC_DD, CpA_CORE, ApC_5UTR, CpA_5UTR,
ApC_INTR, CpA_DD, CpT_DFR, CpT_DD, CpT_DU, TpC_3UTR, TpC_INTR, CpA_INTR, CpA_3UTR. B: TAD
enrichment within groups of genes whose expression is accurately predicted by our model. The enrichment for each TAD
(containing more than 10 genes) in each gene group accurately predicted by our model (i.e. groups with mean error<mean
errors of the 1st quartile) was evaluated using an hypergeometric test. The fraction of groups with enriched TADs (p-
value< 0.05) is represented.

https://doi.org/10.1371/journal.pcbi.1005921.g007
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segments (CORE+DU+DD) and 471 JASPAR2016 PWMmaximum scores computed in the

CORE segment (pink) or (ii) using 60 nucleotide/dinucleotide percentages computed in the 3

promoter segments (CORE+DU+DD) and 471 JASPAR2016 PWM sum scores computed in

the CORE segment (green). All sequences were centered around the 2nd TSS and the 2 models

were fitted on 16,294 genes for each of the 241 samples.

(PDF)

S2 Fig. Dinucleotide local distribution around GENCODEv24 TSSs.Dinucleotide percent-

ages (y-axis) along 140,604 DNA regions centered around GENCODE v24 TSSs ±2000 bp (the

distance to TSS is shown in the x-axis). Dinucleotide combinations are represented as first

nucleotide on left and second nucleotide on top. The promoter segmentation used in this

study (Fig 1) is indicated with vertical dashed lines at -500 bp and 500 bp from the TSS.

(PDF)

S3 Fig. Number of TSSs by gene.We considered 19,393 TCGA genes listed in TCGA and the

TSSs annotated by GENCODE v24.

(PDF)

S4 Fig. Contribution in the model of the TSS number. The model is built using 20 variables

corresponding to the nucleotide (4) and dinucleotide (16) percentages computed in the CORE

promoter (red), DU (green) or DD (yellow) centered around the second TSS as predictive vari-

ables (green). Linear models are also built on the number of isoforms (dark pink) and the

number of TSSs (dark blue). Finally models are built using the combinations of variables indi-

cated. All different models were fitted on 19,393 genes for each of the 241 samples considered.

The prediction accuracy was evaluated in each sample by evaluating the Spearman correlation

coefficients between observed and predicted gene expressions. The correlations obtained in all

samples are shown as violin plots. These two last plots underscored the importance of these

two variables in predicting gene expression.

(PDF)

S5 Fig. Gene expression distribution and FANTOM5 enhancer association. The 19,393

genes listed in one LAML sample (TCGA.AB.2939.03A.01T.0740.13_LAML) (pink) and a sub-

set of 11,359 genes with assigned FANTOM enhancers (green) were considered. The median

expression of genes with assigned enhancers is greater than that of all genes (wilcoxon test

p-value< 2.2e-16)

(PDF)

S6 Fig. Accuracies of models built on dsDNA or ssDNA. A:Models were built using nucleo-

tide and dinucleotide percentages computed on dsDNA (2 nucleotides + 8 dinucleotides;

green violin) or on ssDNA (4 nucleotides + 16 dinucleotides; purple violin) in all the regula-

tory regions (CORE, DU, DD, 5UTR, CDS, 3UTR, INTR, DFR). The 2 models were fitted on

16,294 genes for each of the 241 samples. The prediction accuracy was evaluated in each sam-

ple by evaluating the Spearman correlation coefficients. B: Same analyses focusing on each of

the indicated regions.

(PDF)

S7 Fig. Model accuracy with different set of nucleotide predictive variables. A:Models were

built using different set of variables including nucleotide (4 x 8 regions), dinucleotide (16 x 8

regions) and/or trinucleotide (64 x 8 regions) percentages computed in all the regulatory

regions (CORE, DU, DD, 5UTR, CDS, 3UTR, INTR, DFR). All different models were fitted on

16,280 genes for each of the 241 samples considered. The prediction accuracy was evaluated in

each sample by evaluating the Spearman correlation coefficients. B:Models were built using
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nucleotide (4 x 8 regions) and dinucleotide (16 x 8 regions) percentages computed in all the

regulatory regions and trinucleotide (64) percentages computed in each of the indicated region

separately.

(PDF)

S8 Fig. Forward selection procedure with models built on isoform expressions. The proce-

dure is identical to that described in Fig 4 but models were built on isoform-specific variables

and correlations were computed between observed and predicted isoform expression, not

gene expression.

(PDF)

S9 Fig. Model accuracy in different cancer types. The model with 160 variables (20 (di)nucle-

otide rates in 8 regions) was built on 16,294 genes in 241 samples corresponding to the initial

training set corresponding to 12 cancer types (A) and in an additional set of 1,270 samples cor-

responding to 14 different cancer types (B). The prediction accuracy was evaluated in each

sample by evaluating the Spearman correlation coefficients between observed and predicted

gene expressions. The correlations obtained in all samples of each data sets are shown as violin

plots in A (training set) and B (additional set). The color code indicates the cancer types. The

horizontal dashed lines indicates the median correlation (A, 0.582; B, 0.577).

(PDF)

S10 Fig. Comparison on models built on RNA-seq or microarray data. The model with 160

variables (20 (di)nucleotide rates in 8 regions) was built on 9,791 genes in 582 samples with

matched RNA-seq and microarray data. The prediction accuracy was evaluated in each sample

by evaluating the Spearman correlation coefficients between observed and predicted gene

expressions. The correlations obtained in all samples with RNA-seq- or microarray-built mod-

els are shown as violin plots.

(PDF)

S11 Fig. Spearman correlations between CNV segment mean score and model prediction

error. CNV absolute segment mean scores were computed for each as explained in Materials

and Methods section. Model prediction absolute error for each gene are given by our predic-

tive model using nucleotide and dinuclotide percentages computed in all the regulatory

regions. Models were fitted on 16,294 genes for each of the 234 on 241 samples having CNV

TCGA data available. The median correlation for the 234 samples is -0.014.

(PDF)

S12 Fig. Absolute values of the regression coefficients. A linear regression model was built,

for each sample, on standardized stable variables only. The boxplots show absolute values of

the corresponding coefficients in all samples for each variable considered. Color code as in Fig

5. CpG in the core promoter is highlighted in white. Purple line represents the median of

CpG_CORE coefficients.

(PDF)

S13 Fig. Example of regression trees learned on two linear models. A: Regression tree lead-

ing to a group of genes well predicted in all samples. This tree has been learned on the sam-

ple TCGA.FC.A5OB.01A.11R.A29R.07_PRAD using all nucleotide composition in all regions.

The red path defines a group of 996 genes which has low Lasso error in all samples and cancer

types. This group was used for functional annotation (S4 Table). B: Regression tree leading to

a group of genes well predicted in LGG and PPAD samples. This tree has been learned on

the sample TCGA.IB.7646.01A.11R.2156.07_PAAD using all nucleotide composition in all
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regions. The red path defines a group of 1,531 genes which has low Lasso error in LGG and

PAAD samples but high error in LAML, LIHC and DLBC samples. This group was used for

functional annotation (S5 Table).

(PDF)

S1 Table. Model comparison. Each model is fitted for each tumor, using all the variables over

all regions (160 variables among 8 regulatory regions). First and second columns are median

correlation and mean square error over all the tumors. The third column represents mean

computing time per tumor (in minutes) on a standard laptop.

(PDF)

S2 Table. Contributions of additional genomic regions. Genomic regions were ranked

according to their contribution in predicting gene expression. First, all regions were tested sep-

arately. Introns yielded the highest Spearman correlation between observed and predicted

expressions and was selected as the ‘first’ seed region. Second, each region not already in the

model was added separately. 5UTR in association with introns yielded the best correlation and

was therefore selected as the ‘second’ region. Third, the procedure was repeated till all regions

were included in the model. The contribution of each region is then visualized starting from

the most important (left) to the less important (right). The correlations computed at each steps

are indicated.

(PDF)

S3 Table. Correlations between observed and predicted isoform expression. The procedure

is identical to that described in S2 Table but models were built on isoform-specific variables

and correlations were computed between observed and predicted isoform expression, not

gene expression.

(PDF)

S4 Table. Functional enrichment of a group of genes well predicted in all samples. The

group of 996 genes is obtained by fitting a regression tree on the sample TCGA.FC.

A5OB.01A.11R.A29R.07_PRAD using all the nucleotide composition in all regions. These

genes are well predicted (mean error< 1st quartile) for all samples of different type cancers.

This group of genes was further annotated using the DAVID functional annotation tool. Only

the top 5 biological processes indicated by DAVID is shown. The GO term yielded by this

analysis corresponded to general and widespread biological processes indicating that these

genes likely corresponded to housekeeping genes.

(PDF)

S5 Table. Functional enrichment of a group of genes well predicted in LGG and PAAD.

The group of 1,531 genes is obtained by fitting a regression tree on the sample TCGA.

IB.7646.01A.11R.2156.07_PAAD using all the nucleotide composition in all regions. These

genes are well predicted (mean error< 1st quartile) for all LGG and PAAD samples but not

that of LAML, DBLC and LIHC. This group of genes was further annotated using the DAVID

functional annotation tool. Only the top 5 biological processes indicated by DAVID is shown.

The GO term “Nervous system development” indicates that these genes can be involved in spe-

cific biological processes.

(PDF)

S6 Table. Frequencies of cis-eQTLs in the genomic regions considered.We computed the

density of cis-eQTL per regulatory region by dividing the sum of cis-eQTLs intersecting with

the region considered for all genes by the sum of the lengths of the same regulatory region of
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all genes. see Material and methods for details.

(PDF)

S7 Table. Frequencies of SNPs in CORE and INTRON regions.We computed the density of

SNPs per regulatory region by dividing the sum of SNPs intersecting with the region consid-

ered for all genes by the sum of the lengths of the same regulatory region of all genes. We only

considered SNPs detected on chromosomes 1, 2 and 19. see Material and methods for details.

(PDF)

S8 Table. Intersection between enhancers and the genomic regions considered.We com-

puted the density of enhancers per regulatory region by dividing the total length of the inter-

section between the enhancers and the region considered for all genes by the sum of the

lengths of the same regulatory region of all genes. see Material and methods for details.

(PDF)
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Conceptualization: Laurent Bréhélin, Sophie Lèbre, Charles-Henri Lecellier.
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Method Median correlation Median error Mean time

Linear model (with Lasso) 0.578 6.50 0.13
Random Forest 0.592 6.293 5.033
Regression trees 0.45 7.456 0.172
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Table S3

Gene ontology term Count Benjamini corrected P-value

Cellular macromolecule metabolic process 612 1.8E-23
Cellular metabolic process 681 1.2E-16

Cellular protein metabolic process 390 2.8E-16
Macromolecule metabolic process 624 4.0E-16
Nucleic acid metabolic process 404 4.0E-16

Table S4

Gene ontology term Count Benjamini corrected P-value

Positive regulation of cellular process 528 7.0E-14
Nervous system development 284 1.3E-13

Positive regulation of macromolecule metabolic process 346 3.5E-12
Positive regulation of biological process 565 8.1E-12

Neurogenesis 200 5.9E-11

Table S5
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SNP density CORE INTR

chr1 0.03937541 0.02680815
chr19 0.05870189 0.04408599
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Chapter 3

Attempt to improve model

performances

In the first chapter, we fitted gene expression in function of nucleotide compositions, and we

focused on the biological significance of the selected nucleotide compositions. A penalized

linear model followed by a stability selection method were proposed for this aim. Although

these model performances are satisfying compared to a model fitted with experimental

data, one can think about different approaches to increase these performances. In this

chapter, the primary objective is model accuracy and model prediction improvement. The

model we attempt to improve is the one presented in the previous Chapter with the high-

est performances (Chapter 2, Figure 4) i.e the Lasso penalized linear regression fitted on

16,294 genes, to predict gene expression using 160 nucleotide compositions (20 nucleotide

composition in each of the 8 regulatory regions (Chapter 2, Figure 1)) .

On one hand, a way to improve model performances is to add to the model variables that

are biologically significant to predict gene expression. It is known that gene regulation is

related to different regulatory regions of DNA and that these regions interfere together to

transcribe the gene. Hence, we propose including interactions between nucleotide compo-

sitions in different regions to predict gene expression with higher accuracy.

On another hand, low model performances may be related to specific model hypotheses
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CHAPTER 3. ATTEMPT TO IMPROVE MODEL PERFORMANCES

that may not be satisfied. The model that we considered in the previous chapter is based

on a linear relationship between the gene expression (log transformed) and the nucleotide

compositions. This hypothesis might not be valid and limits its performances. To overcome

this limit, one can think about variable transformations that allow a non-linear relationship

between gene expression and nucleotide compositions.

Different approaches in the literature allow taking into account variable interactions and

non-linear relationships. First, in chapter 2, we used Random Forests [Bre01]. These are

non-linear models where, at each node, a threshold is selected, and the continuous variable

is transformed into a binary decision variable based on a threshold. The performances

of this method for predicting gene expression from the nucleotide compositions of the

eight chosen DNA regions were similar to those of the Lasso penalized linear regression

(Chapter 2, Table S1). However, defining a transformation rule based on Random Forests

is not straightforward given that, for each tree, the variables and the binary decisions

are different. Although, Random Forest were developed and used to detect interactions

[BKBY18] (see Section 1.4.4). This method was presented in a classification framework and

generalized to a regression framework, but the application of this algorithm in regression

requires a transformation of the continuous responses into a range of interests (classes)

using clustering methods [BKBY18]. However, MARS model [Fri91] was built with the

same aim as our approach, i.e. fitting a regression model with non-linear transformed

variables and interactions. This last one is used for comparison with our approaches.

In this chapter, we study each case (interactions and transformations) using different mod-

els and algorithms. First, we define a sampling method for evaluation in Section 3.1. In

Section 3.2, we consider adding variable interactions to the original model. Then, a non-

linear transformation framework is presented in Section 3.3. In this Section, new variables

are built using different forms of known transformations then a penalized model is fitted

with these variables. Finally in Section 3.4 we fit a model based on both approaches i.e

a model with transformed variables as well as interactions between these variables and

compare our results with the MARS model.
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3.1. SAMPLING

3.1 Sampling

In the analysis performed in this chapter, two types of sampling are used, one on the

individuals and one on the conditions (tumors) whose number is vast in the database

TCGA.

3.1.1 Individuals for training and validation

The studies presented in this chapter require to train, validate and select different models

and variables. In order to avoid over-fitting, we randomly partition the data into three

datasets (in total we have 16294 genes). One dataset (test subset) of 2000 genes is used

only to evaluate the performance of the penalized linear model (Spearman correlations).

The rest of the genes are randomly separated in two datasets of equal size, one (train-

ing 1 subset) is used to build novel predictive variables (non-linear transformations or

combinations of variables, . . . ) and the other (training 2 subset) is used to fit a Lasso

penalized linear regression.

3.1.2 Number of conditions

First, gene expression in different tumors of same cancer has very similar distributions.

Figure 3.1 shows the log of the gene expression in 6 tumors, two for each type of cancer:

i) Ovarian (OV), ii) Acute Myeloid Leukemia (AML) and iii) Prostate Adenocarcinoma

(PRAD). We notice that in each type of cancer, the distributions, as well as the median

expression, are similar. However, these distributions are distinct from one type of cancer

to another. For this reason, and considering that this is an exploratory phase, we decide

to restrict this study to 12 tumors, one for each type of cancer considered in Chapter 2

defining our reference model.
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Figure 3.1: Distribution of gene expression in tumors from three different types of

cancer. For each type of cancer: i) Ovarian (OV) in cyan, ii) Acute Myeloid Leukemia (AML)

in purple and iii) Prostate Adenocarcinoma (PRAD) in green, the distribution of gene expression

in two tumors is represented. Each boxplot contains 16294 values one for each gene.

3.2 Contribution of second-order interactions between

nucleotide compositions

In Section 1.4, we presented different papers that studied interactions between DNA re-

gions as well as their influence on gene regulation ([TOHTS13], [RSC+15], [SYPM16]).

In general, interactions may appear between two or more components, but in this thesis,

only second-order interactions are discussed. Higher order interactions are not tested for

computational reasons knowing that this is an exploratory phase. We consider all pairs of

nucleotides (and di-nucleotides) interactions between two regulatory regions (inter regions

interactions) and within one regulatory region (intra region interactions). In total for 160

nucleotide compositions, the number of second order interactions is a combination without

repetition of 2 among 160 which results in 12720 second-order interactions.

Our objective is to fit an ℓ1 penalized linear model (Lasso) based on nucleotide composi-

tions and their second-order interactions, to explain and predict gene expression. One can

think about fitting the model using all possible second-order interactions (12720 variables)

and let the ℓ1-regularization procedure selects essential interactions. Two possible aspects
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of these variables may limit the model and bias the results: i) a high number of variables,

among which only a few variables are associated with gene expression, and ii) high correla-

tions between interaction variables. To avoid this problem, in a first step, we set a selection

algorithm to pre-select nucleotide interactions with a considerable influence on gene ex-

pression. The selected interactions are added to simple nucleotide compositions (noted by

the following original variables) to fit a Lasso penalized linear regression in a second step.

The performances of the model fitted in step 2 (original and interactions variables) are

compared to those of the model fitted with only the original variables. Furthermore, we

proceed with a stability selection algorithm (see Section 1.2.1.3) to select interactions that

are stable and relevant to the model.

3.2.1 Algorithm for pre-selecting interactions

As we presented in Section 1.4, different approaches exist to detect interactions. Our work

was inspired by the approach presented by of Wein-Yin Loh (2002) [Loh02] based on χ2

test. In this section, we use the χ2 test of independence to pre-select second-order inter-

actions based on their influence of gene expression. These variables are then used in a

penalized linear model fitted to predict gene expression. First, we should define the type

of interactions that we consider. Let Xi be the vector of the ith nucleotide composition, Xj

be the vector of the jth nucleotide composition and Zij the interaction between Xi and Xj.

We define three types of interactions: i) Conjunction (and): Zij = minimum(Xi,Xj). ii)

Disjunction (or): Zij = maximum(Xi,Xj). iii) Product: Zij = product(Xi,Xj). The idea

of the product form of interaction comes from the linear model that define interactions as

the product of two variables. Algorithm 4 describes our two-stage procedure for selecting

interactions using the p − values of different χ2 tests. In the first stage, we set a selection

rule by a threshold defined on the χ2 test p − values computed on the original variables

(step 2 in Algorithm 4). The second stage is based on computing χ2 test p − values for all

interaction variables and pre-select those that verify the selection rule (step 2 in Algorithm

4). For this Section, the selection rule is defined as: an interaction is selected if its adjusted

p-value (P adj
interaction: Algorithm 4 step 2 (b)) is lower than the minimum of the adjusted

p-values of the χ2 test computed with the original variables (i.e. P
inf
original Algorithm 4 step
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1 (b)). The algorithm is applied three times for each tumor on the training 1 subset, one

for each defined form of interaction (minimum, maximum and product).

Algorithm 4: χ2 test of independence to pre-select second order interactions

Calculate the residuals from a constant model (mean) fitted to gene expression data.

Each gene is then classified as positive or negative whether if its residual is positive

or negative respectively.

Step 1 - Selection threshold definition:

a) For each variable Xi, divide the data into four groups at the sample quartiles.

Construct a 2 × 4 contingency table with the signs of the residuals (positive versus

negative) as rows and the groups as columns then count the number of

observations in each cell of the table. Compute a χ2-statistic and its p-value from a

χ2
3 distribution. This test is noted as original test.

b) Compute adjusted p-values for the original tests (160 values) using the false

discovery rate (FDR) method [BH95]. Let P
inf
original be the smallest adjusted p-value

of the original tests.

Step 2 - Interaction selection:

a) For each defined interaction Zij, divide the data into four groups at the sample

quartiles. Construct a 2 × 4 contingency table with the signs of the residuals as

rows and the groups as columns then count the number of observations in each cell

of the table. Compute a χ2-statistic and its p-value from a χ2
3 distribution. This is

noted for next as interaction test.

b) Compute P
adj
interaction adjusted p-values for the interaction tests (12720 values)

using FDR. The interactions are pre-selected with respect to a selection rule

defined base on the threshold in step 1.

The average number of pre-selected interactions by tumors is 5, 1, and 3 respectively for the

minimum, maximum and product definition. In Figure 3.2 are presented the pre-selected

second-order interactions over the 12 tumors for the minimum and the product operator
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(names at each barplot). Besides, for each interaction, the bar represents the number of

tumors in which it is selected. For example in (a), when using the minimum operator,

the interaction between the CpG in the CORE promoter (CpG_CORE) and the GpT

in the introns (GpT_INTR) is pre-selected in all tumors (12) while the intersection be-

tween theCpG in the CORE promoter (CpG_CORE) and the GpA in the CDS region

(GpA_CDS) was pre-selected only in one tumor (of Type BRCA). When using the max-

imum operator, just the interaction between CpG in the CORE promoter (CpG_CORE)

and CpG in 5’UTR (CpG_5UTR) is pre-selected in each of the 12 tumors.

Figure 3.2: Nucleotide interactions pre-selected by our procedure described in Algo-

rithm 1. In each plot, each bar represents the number of tumor in which the correspondent

interaction (i.e names on x-lable) is pre-selected by our procedure. a) shows pre-selected inter-

actions using the minimum operator while b) shows pre-selected interactions using the product

operator.

These pre-selected interactions in each tumor, are then considered in addition to original

variables (160 nucleotide composition) as predictive variables in a ℓ1 penalized linear model

fitted to predict gene expression.

3.2.2 Interaction operators evaluation and comparison

The first step of the method was to pre-select interactions that may be related to gene

expression. The next step is to compute the contribution of these novel variables in a
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Lasso penalized linear regression fitted to predict gene expression. As mentioned in Sec-

tion 3.2.1, we tested three definitions of interactions: the minimum, the maximum and the

product of pairs of nucleotide composition, both intra and inter regions. First, we compare

the contribution of each operator separately, and then we test different combinations of

operators.

First, we evaluate the contribution, in term of increasing model performances, for each

type of operators. For that, we fit three Lasso penalized linear regressions on three sets

of variables, each using original variables and pre-selected interactions for each operator

independently. For each set of variables, models are fitted for 12 tumors on the training

2 subset and evaluated on the test subset. Spearman correlations are presented in Figure

3.3 (boxplots in green). The three different operators show a small increase in model

performances with median Spearman correlations respectively of 0.5654, 0.5624, and 0.5622

for the minimum, product, and maximum operators compared to a median correlation of

0.5609 for the reference model (with original variables). Furthermore, the interactions

defined by the minimum between two variables showed the highest increase when added

to the model.

Secondly, we consider combining the pre-selected interactions between two or three different

operators. Lasso penalized regression models were fitted for three different sets of predictive

variables. Just like before, for each combination, models are fitted for 12 tumors on the

training 2 subset and evaluated on the test subset. The different sets contain original

variables (160 nucleotide compositions) then we add: i) pre-selected interactions defined

by the minimum and the product operator, ii) pre-selected interactions defined by the

minimum and the maximum operator, and iii) pre-selected interactions defined by the

maximum and the product operator. The final considered Lasso penalized regression model

is fitted using original variables as well as pre-selected interactions defined by the three

different operators.

Spearman correlations of the three sets of predictive variables (boxplots in blue) as well

as that of the model with all variables (boxplot in cyan) are presented in Figure 3.3 with

respective median Spearman correlations of i) 0.5654, ii) 0.5650, iii) 0.5625 and 0.5656 for

the complete model.
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The performances were slightly similar, with a maximum increase of 0.47% when adding

all the pre-selected interactions. This result may be explained by the few numbers of

interactions that are pre-selected using the selection rule in Algorithm 4. One can think

of changing the selection rule to increase the number of pre-selected interactions. This is

performed in the next subsection.
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Figure 3.3: Comparing the performances for different interaction combinations The

first boxplot (pink) refers to the reference model fitted with original variables. Boxplots in green

are for models fitted with 2 types of variables: original and selected interactions defined by (from

left to right) minimum, product and maximum. Blue boxplots are for models fitted with original

variables in addition to the set of selected interactions defined by two different operators, from left

to right: minimum & product, minimum & maximum and maximum & product. The last boxplot

(cyan) represents a model fitted with original variables and all the interactions selected for the

3 operators. Note that Spearman correlations for different models are calculated for 12 tumors

using the test subset. The horizontal black line represents median correlation of the reference

model fitted with only original variables.
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3.2.3 Changing the selection rule using minimum interactions

In Section 3.2.1, we presented an algorithm to select interactions with a strong selecting

rule where an interaction is selected if only its χ2 test p-value (P adj
interaction) is lower than

the threshold (P inf
original) i.e. computed based on the χ2 independence test for the original

variables. Model performances do not increase significantly, and one of the causes may

be the low number of pre-selected interactions. We propose in this Section to resolve this

by changing the selecting rule to increase the number of pre-selected interactions. For

computational reasons, we only focus on interactions defined by the minimum operator,

the one that had, when tested separately, the higher contribution on model performances

in term of correlation between observed and predicted gene expression on the test subset

(see Figure 3.3).

To increase the number of pre-selected interactions progressively, we increase the threshold

of the selecting rule successively. Instead of setting the threshold to the lowest p-values

of original test (P inf
original), we set three different thresholds to test: i) P

q2
original: the quan-

tile 2%, ii) P
q5
original: the quantile 5% and iii) P

q10
original: the quantile 10%, of the adjusted

p-values calculated from tests for original variables.

When increasing the threshold of the selection rule, the number of selected interactions

increase as well. In the first column of Table 3.1 figure the mean numbers of pre-selected

interactions using each one of the four different thresholds. We notice that the number of

pre-selected interactions is exponential in function of the threshold.

In order to select a threshold (i.e the number of pre-selected interactions), we fit Lasso

penalized regression models on 4 different sets of variables, one for each threshold, on

the training 2 subset using original variables and pre-selected interactions corresponding

to each threshold. Median Spearman correlations, over 12 tumors, between predicted and

observed gene expression, calculated on the test subset, are presented in the second column

of Table 3.1.

From Table 3.1, we notice that model performance increases slightly with the increase
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threshold mean number of interactions median Spearman correlation

P
inf
original 5 0.565

P
q2
original 150 0.567

P
q5
original 366 0.569

P
q10
original 801 0.572

Table 3.1: Summary of numbers of pre-selected interaction and Spearman correlations

for each used threshold. P
inf
original, P

q2
original, P

q5
original and P

q10
original refers respectively to the

quantiles of order 0% (inf), 2%, 5% and 10% of the adjusted p-value calculated from a χ2 test on

the original variables. The means of number of selected interactions and the medians of Spearman

correlation are calculated over 12 tumors. Correlations are calculated on the test subset.

in the number of pre-selected interactions, but the improvement is minimal compared

to the number of variables added to the model. Furthermore, with the aim to study

the stability of each interaction and select interactions that are significant in the Lasso

penalized regression model, we consider the model using the 2% quantile threshold with a

mean number of interactions of 143 and a median Spearman correlation of 0.567.

3.2.4 Variable stability and region interactions selection

To go further in this procedure and study the explanatory power of the interaction vari-

ables, we consider the threshold defined by the 2% quantile, leading to the selection of 143

interactions in average (see the previous Section). Using these interactions as well as the

original variables we run a stability selection algorithm (1.2.1.3) and select the stable vari-

ables. For this study, we consider a variable as stable if its selection frequency in the model

over 500 repetitions is higher than 70% (the choice of parameters is explained in 1.2.1.3).

Table 3.2 shows the number of stable variable in each tumor when using original variables

(first row), and when using original variables and pre-selected interactions (second row) as

well as the ratio of the number of stable interactions, with respect to the total number of

stable variables (last row) of the model.
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Table 3.2: Number of stable variables with interactions. For each tumor, first and second

row represent the number of stable variables in: i) model with only original variables. ii) model

with original variable and pre-selected interactions. The third row is the percentage of stable

interactions among stable variables from the model in second row. The last column is the mean

of each row.

We can see that the mean number of stable variables when using both original variables

and interactions is slightly higher than that when using only original variables (20 Vs. 16).

More importantly, more than half of the stable variables are pre-selected interactions. To

compute the contribution of only stable variables in predicting gene expression, we run

a linear regression model (without regularization) to predict gene expression in each tu-

mor using only stable variables in both cases (with or without interactions). The median

Spearman correlations between observed and predicted gene expression are 47% and 52%

respectively for the model fitted with only original variables and the model fitted with

original variables and interactions. Hence, from an explicative point of view (using stable

variables only), adding interactions of nucleotide compositions to the model brings a sub-

stantial gain (plus 5% correlation between observations and predictions).

We further study the importance of interactions when the original variables are excluded

from the model. First, the median Spearman correlation of a Lasso penalized regression

model fitted with only pre-selected interactions is 0.565. The performances are similar

to those of a model fitted with both original variables and interactions with a median

correlation of 0.567. However, when running a stability selection algorithm for a regularized

model using only interaction variables, only two interactions are stable in each tumor.

This result may be explained by the fact that only interactions are not sufficient to predict

gene expression. Further, the interactions selected by a Lasso penalized regression model
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reflect somehow the information of original variables. The non-stability of the variables

may be explained by the fact that at each step, to compensate for the information given

by an original variable, the Lasso regularization procedure selects one of the numerous

interactions with this variable. For example, if CpG_CORE is necessary for the model,

the Lasso penalized regression model can select any interaction that contains CpG_CORE

and not necessarily the same at each step.

3.3 Introducing non-linear transformations of nucleotide

compositions

In this section, we aim to consider non-linear relationships between gene expression and

nucleotide composition. This is already partially addressed in Chapter 2 with regression

trees and random forests. The performances are similar to those of ℓ1 penalized linear model

but studying each variable, and the explicit form of its non-linearity with the response

variable is not straightforward. In this section, we provide a framework to evaluate more

general non-linear relationships between gene expression and nucleotide composition in two

consecutive steps. The first step consists in finding appropriate non-linear transformations

of the variables and the second step, in including transformed variables in a Lasso penalized

linear regression to evaluate their importance. Each step is applied to a different subset

to avoid overfitting. In the following, we present different methods to adjust non-linear

transformations. The results of each transformation are compared to the model with the

original variables (see Chapter 2, Figure 4). Finally, the best model of each transformation

are compared (with MARS) in Section 1.2.3.3

3.3.1 Basic transformations

When we talk about non-linearity, one would at first think about testing basic form of

non-linear mathematical transformations. In this part, we consider four different forms of

non-linearity: square, cube, exponential and logarithmic transformations. Note that for

logarithmic transformation, zeros are replaced by 10−5. In this section, we do not fit a

model to build our transformation model. Hence this method do not require to be applied
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on the training 1 subset first. However, to compare this transformation with other types of

transformations that require a sampling, we build transformations directly on nucleotide

composition from the training 2 subset.

For each one of these non-linear transformations (square, cube, exponential and logarith-

mic), we fit two ℓ1 penalized regression models on the training 2 subset i) one using only

transformed variables (160 variables) and ii) one using both original and transformed vari-

ables (320 variables). These models are then evaluated by Spearman correlation between

predicted and observed gene expression on 2000 genes from the (test subset). Figure 3.4 il-

lustrates boxplots of these correlations computed in 12 tumors for the various fitted models.

Notice that each one of these non-linear transformations increases the model performance.

Compared to the model fitted with only original variables (median Spearman correlation =

0.5609), models fitted with only square transformed variables present the highest increase

(median Spearman correlation = 0.578). When adding original variables to the trans-

formed ones, square and exponential transformations show similar performances (median

Spearman correlation = 0.583).

Elementary non-linear transformations of nucleotide compositions have shown significant

improvement in explaining gene expression. This gives credit for a non-linear relation-

ship. Thus we pursue further with more complex non-linear transformations. Next, we

present three non-linear transformation models: loess regression, hockey stick regression,

and piecewise regression. Finally, these models are compared to MARS.

Algorithm 5 explains briefly the steps to be followed for each transformation model to build

the new variables and uses them to predict gene expression.

3.3.2 Loess regression

Loess regression is a non-linear regression model based on the k-nearest neighbors (see Sec-

tion 1.2.2.3). As already presented, fitting a loess regression requires initialization of two

parameters: i) the degree of the polynomial that can be 0, 1 or 2 and ii) α the percentage

of k-neighbors. In general, α is known as the span and can take values between 0 and 1

(including). Usually, three values are used: 25%, 50%, and 75%. The loess transformations
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Figure 3.4: Basic non-linear transformations The first boxplot in pink represents the corre-

lation coefficients using variables in their original form. For each type of transformations, two

boxplots of correlations are shown: one for a model using only transformed variables (first box-

plot), and one using original and transformed variables (second boxplot). Each color refers to one

transformation: square (red), cube (green), exponential (blue) and logarithmic (cyan). Note that

the correlations are computed for 12 tumors on the test subset. The black line represents the

median correlation of the model fitted with original variables.

are fitted using the function loess in R from the package stat. For a given response vari-

able y, one predictive variable x, a degree, and a span, the function fits a local polynomial

at each point of the vector x using its neighbors to predict y. The protocol presented in

algorithm 5 is repeated nine times, to cover the possible combination of the three polyno-

mial degrees with the three considered percentages of nearest neighbors. In total, we have

18 models, 2 for each degree-span combination. Median Spearman correlation coefficients

for each model are shown in Table 3.3.

First, all models fitted with loess transformed variables (no matter the parameters) show

higher performances than the reference model fitted with original variables (median cor-

relations = 0.5609). In addition, if we compare models with only transformed variables
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Algorithm 5: Protocol of model fitting and evaluation for each type of transforma-

tions
Data: Gene expression in a tumor and nucleotide compositions in training 1 subset

(yset1, Xset1), and in training 2 subset(yset2, Xset2).

Result: Two Lasso penalized linear regression fitted with i) transformed variables

or ii) original and transformed variables.

Steps to apply for each tumor:

1. For each variable in Xset1, estimate the non-linear transformation (loess, hockey

stick or segmented regression) of Xset1 to explain yset1

2. Apply the estimated non-linear transformation to Xset2. Let F (Xset2) be the new

transformed variables.

3. Fit an ℓ1 penalized regression model using only F (Xset2) the new transformed

variables on training 2 subset (160 variables).

4. Fit an ℓ1 penalized regression model using both original and transformed variables

on training 2 subset (320 variables).

5. Evaluate both models on test subset (Spearman correlation).

(160 variables), a Lasso penalized regression model fitted with Loess transformation with

degree 1 and 75%-nearest neighbors present the highest performances (median correlation

= 0.5752) while the one fitted with degree 1 and 25%-nearest neighbors has the lowest

performance (median correlation = 0.5611).

Furthermore, the model fitted with both original variables and loess transformations of

degree 1 and an α = 75% (median correlation = 0.5939) shows the highest correlations

compared to all models evaluated in this section. The performances of this model are

slightly higher than that fitted with original variables and square transformations (best

model performances in Section 3.3.1 with median correlation = 0.583). Besides, we notice

that when adding original variables to all the models fitted with loess transformed vari-

ables, the correlations of the different models increase of about 2% (see Table 3.3). This
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Table 3.3: Performances of the loess transformation For each combination, the degree of

the polynomial and the span, two median correlation are shown: one for the model fitted with only

transformed variables and one for the model fitted with original and transformed variables. In

red and blue, respectively the highest and the lowest correlation using only transformed variables.

These correlations are compared to those of the reference model of median correlation equal to

0.5609.

result indicates that even though loess transformed variables allow to retrieve an essen-

tial part of information for predicting gene expression, complementary information is still

present in the original variables. One can conclude that we observe both a linear and a

non-linear contribution of the nucleotide compositions for explaining gene expression.

3.3.3 Hockey stick regression

Figure 3.5 shows an example where the distribution of the median gene expression is rep-

resented in function of quantile of CpG composition in CORE promoter. To represent this

distribution, we divide genes into ten groups of equal size in respect to the ten quantiles of

their correspondent values of CpG_CORE, and for each group of genes, we calculated the

median of gene expression in an Ovarian tumor. We can notice that there are two different

trends before and after the 7th quantile (bar at x = 0.071). This representation is similar

for many nucleotide compositions. This is our motivation to use hockey stick regression

and piecewise regression (see next subsection) to evaluate two different non-linear models
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that predict gene expression in function of each one of the nucleotide composition. The

distribution of the medians of gene expressions in functions of groups of nucleotide com-

position in Figure 3.5 can be seen as hockey stick model (linear model & constant model).

Figure 3.5: Distribution of the median of the log of gene expression in an Ovarian

tumor in function of 10% quantiles of CpG in the CORE promoter. Each bar repre-

sents the median of the log expression of genes belonging to each quantile groups of CpG in the

CORE promoter. The values on the x-axis represents the different quantiles of CpG_CORE at

respectively q = [10%, 90%]. The values of the median gene expression in each group are noted in

the top of each bar.

Hockey stick regression (see Section 1.2.3.2) is a non-linear model for predicting a response

variable using two models, delimited by a breakpoint: i) a constant model, and ii) a linear

model. As presented in Section 1.2.3.2, there are two types of hockey stick regression, Type

I: the constant model for values of the predictive variable lower than the breakpoint, and

Type II: the constant model for values of the predictive variable highest than the break-

point (see Equation (1.19)).
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As explained in our protocol for model fitting and evaluation (Algorithm 5), for each nu-

cleotide composition, we learn a hockey stick regression transformation on training 1 subset

then we fit two Lasso penalized regression models one with only hockey stick transformed

variables and one using original and transformed variables on the training 2 subset. Note

that when fitting hockey stick regression on training 1 subset, we select the best type (I

or II) for each predictive variable. We proceed as follows. First, for each variable, we

select a set of equidistant breakpoints between the quantiles 10% et 90%, and for each

breakpoint, we learn two hockey stick models (type I and type II) on the training 1 subset.

The mean square error is calculated for each model on the same subset. For each variable,

the selected hockey stick transformation type is the one having the lowest mean square

error. Then the selected hockey stick transformation is applied to the same variables in

the training 2 subset. Finally, two comprehensive models are fitted: i) One using only

hockey stick transformed variables and ii) one using original and transformed variables

on the training 2 subset. Spearman correlation coefficients calculated on the test subset,

for each tumor, are illustrated in Figure 3.6. However, fitting a model with both original

and transformed variables shows higher performances (median correlation = 0.58) than

the model fitted with only transformed variables (median correlation = 0.553). Potential

reasons were presented previously (Section 3.3.2). Surprisingly, a model using only hockey

stick transformed variables without original variables (median correlation = 0.553) does

not outperform a model fitted with only original variables (median correlation = 0.560).

Such a result may have several interpretations. One can suggest that, despite the median

behavior that we observed in Figure 3.5, some important variables are not suitable for such

form of transformation and thus lose their real ability to explain gene expression. Another

explanation could be that the predicted mean square error computed on genes fitted with

a constant model is very high. One can think that these genes are not constant and can

be fitted with another linear model. From this observation, we consider fitting the genes

with one another segmented transformation known as piecewise regression.
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3.3.4 Piecewise regression

A piecewise linear regression (see Section 1.2.3.1) is the general form of linear segmented

regression where, using the same concept as hockey stick, in order to predict a response

variable y in function of a predictive variable x, two distinct linear models are fitted de-

limited by an estimated breakpoint (see Equation (1.14)).

The first step in our protocol (Algorithm 5) is to learn the transformation model. The

steps of learning piecewise transformation on the training 1 subset are described in the

algorithm 6. This procedure is applied to each variable of each tumor.

Algorithm 6: Piecewise transformation

Data: Gene expression in a tumor (ytrain), nucleotide composition (Xtrain) in

training 1 subset, and nucleotide composition (Xmodel) in training 2 subset

Result: Estimation of the piecewise transformation parameters (β and x0) and a

vector of transformed nucleotide compositions from training 2 subset

Function segmented of R:

1. Learn a linear model on training 1 subset: LM = lm(ytrain Xtrain)

2. Initialize the breakpoint: ψ= median(Xtrain)

3. Fit the segmented model on training 1 subset: SEG = segmented(LM, Xtrain, psi)

4. Return the best segmented model (estimated coefficients and threshold)

5. Build transformed variable on training 2 subset: PRED = predict(SEG,Xmodel)

6. Return the best model parameters: β and x0 and the vector of new transformed

variables: PRED

The algorithm is based on the function segmented from the R package Segmented. This

function takes as an input a linear model fitted with the function lm to predict a response

variable y in function of a predictive variable x. The breakpoint (noted in R as ψ) must

be initialized. We use the default value that is the median of x. The function segmented
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fit the model as explained in Section 1.2.3.1. The output of this function is the best model

coefficients estimations (Equation (1.15)) as well as the estimated breakpoint (x0). Finally,

we apply the estimated a piecewise transformation to variables in training 2 subset and

fit, on that same training subset, two Lasso penalized regression models with transformed

variables and with transformed and original variables. Spearman correlation coefficients

for each model calculated on the test subset on 2000 genes for 12 tumors are presented

in Figure 3.6. A Lasso penalized regression model fitted with piecewise transformations

only presents slightly higher performance (median correlation = 0.5694) than a Lasso pe-

nalized regression model fitted with only hockey stick transformation (median correlation

= 0.5536), and then a Lasso penalized regression model fitted with original data (median

correlation = 0.5609). When combining original and transformed variables, a model fitted

with piecewise transformation present the highest performances with a median correlation

of 0.5905.

3.3.5 Comparison with MARS

To evaluate our methods, we compare the performances of the best model, from each non-

linear transformation to those of MARS: the Multivariate adaptive regressions splines (see

Section 1.2.3.3). In this section, we fit a MARS model to explain gene expressions with

all nucleotide compositions (160 variables) on training 2 subset using a forward selection

without interactions (Section 1.2.3.3). The initial aspect that differentiates MARS from

our approach is that MARS generates base functions by stepwise searching over all possible

univariate candidate breakpoints and across interactions among all variables while in our

approach we deal with each variable independently.

MARS model is fitted using the function earth from the R package earth. All the pa-

rameters are set to the default except the degree of interaction (equal to 1 by default i.e

no interactions), we consider degrees of interaction equal to 1 and 2 where a degree equal

to 2 refers to including second-order interactions.
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Figure 3.6: Performances of Hockey stick and piecewise transformations. Colors respec-

tively correspond to models fitted with: original variables (pink), hockey stick (blue) and piecewise

transformation (cyan). For each transformation the first boxplot represents a model fitted only

with transformed variables and the second to a model with original and transformed variables.

The black horizontal line represents the median correlation of the model fitted with only original

variables.

Figure 3.7 illustrates Spearman correlations for the model fitted on original variables, and

the models fitted with only transformed variables (160 variables) using the best estima-

tion of the different methods: simple transformation (Square), loess regression (degree = 1,

spam = 0.75), hockey stick regression, piecewise regression as well as those for MARS with-

out interactions (degree=1). The performances of the model fitted with original variables

(median correlation = 0.56) are higher than those of the MARS model (median correla-

tion = 0.52). This can be explained by the strong regulation when fitting a MARS model

(mean number of selected variables for MARS is equal to 19 whereas the reference model

includes 160 variables). Besides, the MARS model is designed to include interactions and

may present better performances then.

In this section, we present different non-linear variables transformations and evaluate the
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Figure 3.7: Performances comparison between best models of each non-linear trans-

formation. From left to right, boxplots represent correlations for a penalized model fitted on

the training 2 subset using: original variables (pink), square transformed variables (red), loess

transformation with a polynomial of degree 1 and 75% nearest neighbors (green), hockey stick

transformation (blue), piecewise transformation (clear blue) and MARS with a forward selection

where non interaction is included (orange). The black line is the median correlation of the model

fitted with original data

effect of non-linearity in predicting gene expression. Even though considering a non-linear

relationship between gene expression and nucleotide compositions shows similar or slightly

higher performances (maximum increase of 0.8% in correlations), this increase is limited.

Also, adding variable interactions to the MARS model (with parameter degree equal to 2)

should increase its performances. This can also be true for our models. For this reason, in

the next section, we include pre-selected interactions of non-linear transformed variables

using the chi-square test approach introduced in Section 3.2 and compare our results to

the MARS model with interactions.
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3.4 Including interactions of non-linear transforma-

tion

In Section 3.2, we prested that using a χ2 test, allows us to detect second order interac-

tions with a small increase in model performances. In addition, in Section 3.3, we presented

different non-linear transformation models specially loess which seems to increase slightly

model performances. In this section, we fit a model using transformed variables and pre-

selected second order interactions calculated on transformed variables. This work can be

compared to a MARS model (Section 3.3.5) including second-order interactions. For this

aim, we proceed as described in Algorithm 7.

Algorithm 7: Non-linear transformations and interactions in linear models

Data: Gene expression in a tumor and nucleotide compositions in the training 1

subset, the training 2 subset and the test subset.

Result: A Lasso penalized linear regression model fitted with transformed variables

and their pre-selected second order interactions.

Steps to apply for each tumor:

1. Transform the 160 variables with a loess regression for all the genes (16294 genes)

with a first degree polynomial and 75% of nearest neighbors (see Section 3.3.2).

2. Run the interaction algorithm χ2 test on the loess transformed data (see Section

3.2.1) using interactions defined by the minimum operator and a quantile of 2% as

a threshold for the selection rule. The test is applied on the training 1 subset.

3. Run an ℓ1 penalized regression model with transformed variables and pre-selected

interactions for each tumor on the training 2 subset.

4. Apply and evaluate (Spearman correlation between predicted and real gene

expression) on the test subset.
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Figure 3.8 shows Spearman correlation for different lasso penalized linear regression fit-

ted with: 1) original variables (Reference Model) 2) loess transformed variables (Section

3.3.2) 3) original variables along with their pre-selected second-order interactions (inferred

in Section 3.2.3) 4) loess transformed variables along with their pre-selected second-order

interactions (Section 3.4) and finally 5) MARS with a forward selection and with second-

order interactions. Lasso penalized regression model fitted with loess transformations and

their pre-selected second-order interactions presents the highest performances (median cor-

relation = 0.5872). MARS model with second-order interactions presents slightly higher

performances than a the model fitted with original variables (median correlation for MARS

= 0.5666 Vs. 0.5606 for the original variables) but not higher than loess transformations.

In this Chapter, the initial aim was to add new variables (interactions) or change the model

hypothesis (non-linearity) to increase model performances. Besides, we searched for differ-

ent model combinations that can be significantly better than the reference model. Even

though we obtained small improvements, they are not very significant, and they complicate

the training process without considerable advantages.

However, predicting a response variable using non-linearity and including interactions be-

tween predictive variables, is not a new subject. Very advanced methods using deep learn-

ing exist with this aim. In the next Chapter, we study these models with different architec-

tures to explore further the interest of non-linearity and variable interactions in predicting

gene expression from the sequence.
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Figure 3.8: Performances of a model using interactions based on loess transformed

variables. The first four boxplot are the performances of an ℓ1 penalized regression on different

types of variables: original variables (pink), loess transformation with degree 1 and span of 75%

(red), model with original variables along with the interactions between original variables selected

with a χ2 test with a min operator with the quantile 2% as threshold (green), model with loess

transformed variables along with interactions between loess transformed variables selected with a

χ2 test with a min operator with the quantile 2% as threshold (blue). The final boxplot (orange)

represents a MARS model fitted on original data with second order interactions. The black line

is the median correlation of the models fitted with original data
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Chapter 4

Artificial neural networks

In this Chapter, we present the results for different artificial neural networks with the aim

of predicting gene expression from DNA sequences. Two different problems are considered.

The purpose, for both studies, is to predict gene expression but the types of predictive

variables are different for each problem. The first study is a deep neural network based

on the same predictive variables defined in previous chapters (nucleotide compositions)

while the second problem is a convolution network based on the entire DNA sequences

as predictive variables. This chapter is divided as follow, in Section 4.1 we present Keras

library for artificial neural networks. A validation process required for both problems is

shown in Section 4.2. In Sections 4.3 and 4.4, we present respectively, the optimization

process and the results of both problems.

4.1 Keras

Keras is a high-level neural network API, written in Python and that uses Tensorflow, or

Theano (not used in this thesis) as a backend. It was developed as part of the research

efforts of the ONEIROS project (Open-ended Neuro-electronic Intelligent Robot Oper-

ating System) [C+15]. Its primary author and maintainer is François Chollet, a Google

engineer. Keras contains numerous implementations of commonly used neural network

building blocks such as layers, objectives, activation functions, optimizers, and many tools

to make working with image and text data easier. The core data structure of Keras is a
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model, i.e a way to organize layers. The simplest type of model is the Sequential model, a

linear stack of layers. Four steps are required: stacking layers, compilation, training, and

evaluation. Next, we present different functions with their parameters used in each of the

steps.

1. Step 1 - Stacking layers: Create model architecture by adding different hidden

layers. The different layers we use in this chapter are:

• Dense: a fully connected layer. A necessity to specify the number of outputs and

the activation function. Regularization and neuron constraint can be added.

• Conv1D: convolution layer. A necessity to specify the shape of the input layer

(if the first layer), the number of filters (kernels) and the length of these filters

as well as the activation function. Regularization and neuron constraint can be

added.

• Maxpooling1D and Averagepooling1D: pooling layer using the maximum or the

average functions, respectively. This layer comes after a convolution layer. Two

parameters have to be tuned: the pool, i.e. size of the pooling window, and the

stride, i.e. the factor by which to downscale. In general, the stride is equal to

the pool.

• Dropout: applies Dropout to the input. To initialize the fraction p of dropped

neurons.

2. Step 2 - Compilation step: Used to configure the model for training. The compile

function is used and requires to choose the optimization algorithm (RMSprop or

Adam), the learning rate, and the cost function (mean square error for regression,

see Section 1.3.3.2). After this step and before the training, additional parameters

known as callbacks should be initialized if needed. One of the essential callbacks

is the early stopping regularization with defined patience (see Section 1.3.5). An

additional important callback is to monitor the evolution of model performances at

each iteration and save the best model, the ModelCheckpoint function is used and

requires the name and the directory of the saved model.
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3. Step 3 - Training step: The backpropagation algorithm. This step is applied using

the fit function that requires the following entries:

• Training data: the input (predictive variables) and output (predicted variable)

• Validation split: percentage of examples of the training data used as the vali-

dation set.

• Validation data: a subset of data (input, output) used for validation. This entry

is used instead of Validation split.

• Batch size: the mini-batch size for the gradient descent.

• Number of epochs: number of forward/backward passes.

• Callback (if required): Defined in step 2.

4. Step 4 - Evaluation: Apply the network to the test set using the best model

obtained from the training in step 3. The evaluate function returns, for an input

and output test set and batch-size, the mean square error. Additional evaluation

of model performances is done by computing the Spearman correlation coefficients

between the predicted and the observed output on the test set.

Note that training a neural network can take days or even weeks to converge, which can be

hugely expensive. To overcome this problem, we used a Graphics Processing Unit (GPU)

valid for the tenserflow−gpu version used by keras (https://github.com/mind/wheels).

4.2 Validation procedure

As in the previous chapter, an independent set of genes is used for assessing the different

models. From the initial dataset, we randomly select a set of 2000 genes (i.e. individuals)

noted hereafter as the “test set”. This subset is only used for evaluation and model com-

parison and will not be included for training and validation of the neural network. The

remained individuals of the dataset are then divided for training and validation either by a

percentage of data (80%- 20%) or by a random selection of a defined number of individuals

for the validation set (see Section 1.3.3.3).
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In this chapter, as well as in chapter 3, all models are fitted for 12 tumors chosen randomly

from 12 different cancer types.

4.3 Predicting gene expression from nucleotide com-

positions

In this Section, the objective is to fit multilayer perceptrons and/or deep feed-forward

networks to predict gene expression (output layer) in function of nucleotide compositions

(input layer). The problem is equivalent to that studied in previous chapters, using the

same response and predictive variables. The model trained in this section is a regression

network with continuous variables. As presented in Section 1.3.3, this model is trained

using the gradient descent optimization. We first present a procedure to optimize model

parameters (Section 4.3.1). Then the selected model with the highest performances (in

term of Spearman correlation) is compared to a Lasso regression model fitted on the same

data frame (Section 4.3.2).

The model is fitted for each tumor to predict gene expression (response variable) in function

of nucleotide compositions in different regulatory regions (160 predictive variables) using

16,298 genes (number of individuals). Before training, predictive variables are normalized

as for the Lasso penalized linear regression fitted with the glmnet function from R (see

Section 1.2.1.2).

4.3.1 Optimizing network architecture

A neural network has a certain number of parameters that must be initialized before train-

ing, such as the number of layers and of neurons, the optimizer, the regularization, and

others (see Section 1.3.6). The choice of each parameter depends on the dataset and should

be chosen to induce the maximum improvement of the model performances.

In this section, starting from a set of parameters, we proceed in a forward study where, at

each step, only one parameter is tuned (other parameters are conserved from the previous

step), and its best value is retained for the next steps. Let P be the parameter to tune at
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one step, and let {pj}j∈1,...,M
be the set of M different values of P . M different networks,

one with each pj, are trained and then evaluated on the test set. The value of P that

corresponds to the highest Spearman correlation between observed and predicted gene ex-

pression is retained. We detail below the different steps used in this study for optimization

(see Figure 4.1).

1. Initialization step: We start the training by a model with the nucleotide com-

positions of a gene (160 predictive variables) as input layer and the log of the gene

expression as fully-connected output layer (one neuron) with a linear activation func-

tion. In addition, we initialized the following training parameters:

• Optimizer: Adam with learning rate η = 0.001

• Number of iteration: epochs = 1000

• Data partition: validation split = 20%

• Mini-batch: batch size = 200

• Early stopping: patience = 100

• Each layer is followed by a dropout layer with a fraction p = 0.4

2. Step 1: Tuning the number of layers and the number of neurons per layer (Section

4.3.1.1). The number of layers/neurons that present the higher performance are

selected and are called architecture 1 in the following.

3. Step 2: Tuning the optimizer (Section 4.3.1.2). A new network is fitted while

retaining all the parameters of architecture 1 except the optimizer. The architecture

2 represents the network with the best optimizer.

4. Step 3: Tuning training parameters (Sections 4.3.1.3 and 4.3.1.4). In this step,

one by one, we select the type of regularization (dropout, ℓ1 or ℓ2) as well as the

batch size and the early stopping patience. At the end of this step, we obtain the

optimized architecture, i.e the one that provides the highest Spearman correlation

between observed and predicted gene expression on the test set.
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Note that the number of epochs, as well as the validation split, are conserved over all the

optimization process. Finally, each network is fitted for 12 tumors and evaluated (correla-

tions) on the test set of 2000 genes.

Figure 4.1: Steps of architecture optimization. hyperparameters to tune. From left to right:

number of layers, number of neurons, optimizers, training and validation parameters.

In the following, we present the different values tested for each parameter, the Spearman

correlations of the corresponding networks, as well as the best architecture obtained.

4.3.1.1 Number of layers and neurons

One critical parameter to be tuned in all neural networks models is the number of hidden

layers and the number of neurons in each layer. In our networks, all layers are fully-

connected (Dense function). The number of layers and neurons in a network highly depend

on the dimension of the trained data and on its complexity. In addition to the number of

neurons, each hidden layer is characterized by an activation function (see Section 1.3.2.2).

In this study, all hidden layers have a ReLU activation function. With the aim of selecting

the best number of layers and neurons for this regression problem, we define a set of

possible values for the number of hidden layers {L} = [1, 10] and a set of neuron numbers
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per layer {N} = {200, 500}. Note that we only consider the case where all layers in the

same network have the same number of neurons. Furthermore, for each layer, the weight

matrices are initialized with a random uniform distribution. For each l in L and n in N ,

we fit a network with l layers and n neurons per layer. All other parameters are used as

initialized. In total, we fit 20 networks, 2 for each number of layer. Table 4.1 displays the

median Spearman correlations of all fitted networks. Columns represent the number of

hidden layers in the network, and rows indicate the number of neurons in each layer. First,

when comparing rows, we observe that the median correlations vary very slightly between

networks with 200 neurons or 500 neurons per layer. Besides, in some models (with four

layers for example) the performance with 500 neurons per layer is lower than that with

200 neurons per layer (median correlation = 0.617 vs. 0.624).

On the other hand, if we compare the performances of the model when adding more layers,

we notice that the model with only one hidden layer shows the lowest performances. As we

go deeper in the model (i.e adding more hidden layers), the performances of the networks

increase in term of correlation until they reach a maximum of 0.628 for a network with

five layers and 200 neurons in each. Adding more than five hidden layers does not improve

predictions, on the contrary, we notice a slight decrease in Spearman correlation. This

decrease may be explained by the fact that deeper networks require the training of a larger

set of parameters, hence require a larger set of data.

Table 4.1: Comparison between the number of layers and the number of neurons..

Each column represents the number of ReLU hidden layers in the fitted network, and each row

represents the numbers of neurons in each layer. Correlations are computed on the test set (2000

genes)Median Spearman correlation coefficients over 12 tumors.

As explained above, the number of hidden layers and the number of neurons that induce

the highest correlation are selected for the following optimization. We define architecture 1
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as the network built with five hidden layers with ReLU activation function and 200 neurons

each. All other parameters are retained from the Initialization step.

4.3.1.2 Optimizers

In Section 1.3.3.2, we presented two different optimizers, Adam and RMSprop, that both

require initialization of the learning rate that is modified during the training in function

of the gradient. In this section, we will compare the performances of both optimizers.

Note that the initialization of the learning rate is set to η = 0.001 for both optimizers.

Figure 4.2 illustrates the Spearman correlations of the network fitted with Adam (cyan),

and fitted with RMSprop (purple). The median correlation of the network fitted with RM-

Sprop over 12 tumors is 0.617 while that of Adam is 0.628. The Adam optimizer seems to

outperform RMSprop in this study. At the end of step 2, the architecture 2 is the same as

architecture 1 with five hidden ReLU layers with 200 neurons each and an Adam optimizer.
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0.64

2
0
0
N

Optimizer
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Figure 4.2: Tuning the optimizer. The first boxplot (cyan) represents Spearman correlations

of the network with architecture 1, the optimizer used in this architecture is Adam. The second

boxplot (purple) represents the Spearman correlation of a network with the same parameters of

architecture 1 except for the optimizer that is RMSprop.
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Note that the number of layers and of the number of neurons in each layer were tuned

using the Adam optimizer (see Section 4.3.1.1). Hence it is possible that the performances

presented above are biased. To ensure that this is not the case, we repeat the procedure

of the previous section (i.e. tuning the number of layers) but only with 200 neurons by

layer using the RMSprop optimizer. For each number of layer in {L} = [1, 10], we fit a

network with L layers of 200 neurons each. Figure 4.3 illustrates a comparison between the

optimizers. For each number of layer L, two boxplots are showed corresponding respectively

to the network fitted using Adam (cyan) and the network fitted using RMSprop (purple).

We notice that using RMSprop as optimizer provide almost systematically slightly lower

correlations than with Adam. The model with five hidden layers and 200 neurons in

each has the higher performances with both optimizers. This result shows that the Adam

optimize seems better for this problem. In the following, we proceed using the model fitted

with Adam optimizers noted as architecture 2.
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Figure 4.3: Comparison betwen Adam and RMSprop optimizers. Spearman correlation

for each network computed on the test set. For each number of layer {L} = [1, 10] with 200

neurons each, two networks are fitted: i) using Adam optimizor (cyan) and ii) using RMSprop

optimizer (purple). The dashed horizontal line represents the median correlation of the network

with architecture 2 with 5 layers of 200 neurons each and Adam optimizer.
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4.3.1.3 Weight regularization

In the third and final step, we optimize the parameters used to avoid overfitting in the

training process. First, we start by selecting the type of weight regularization, i.e choice

between dropout and ℓ1/ℓ2 regularization. Secondly, we optimized the gradient descent

regularization, i.e. the mini batch-size and the patience of the early stopping.

In Section 1.3.3.3, we presented two methods of regularization applied at each layer: i)

dropout layers, and ii) ℓ1/ℓ2 regularization. Each regularization has a parameter to be

optimized: i) fraction p for dropout, and ii) regularization parameter λ for ℓ1 and ℓ2. In

this section, we aim to select the best form of regularization as well as the best parameter

value. The previous model denoted architecture 2 was fitted using dropout layers with

fraction p = 0.4 following each layer. First, we proceed by optimizing the fraction p of

dropout. Let S = {0, 0.5, 0.6} the set of values of p. We fit three different networks with

the same exact parameters as architecture 2, except for the dropout fraction where for

each model we change p ∈ S. Note that p = 0 refers to a network with no regularization.

The Spearman correlations of the three models are presented in Figure 4.4 (boxplots in

purple). We notice that a model with no regularization (p = 0) presents low performances

compared to other models and hence that regularization is useful here to avoid overfitting.

For p = 0.5 and p = 0.6, the correlations are slightly lower than those of p = 0.4. Hence,

for dropout, the best fraction seems to be 0.4.

In a second time, we study the effect of ℓ1 and ℓ2 regularization. Let Λ = {0.001, 0.01}

be the set of values that λ can take. Using each regularization, we fit two models, one

for each value of λ. These models have similar parameters as architecture 2 except that

we use a regularization parameter instead of dropout. Spearman correlations for each

model are summarized in Figure 4.4: i) green boxplots for ℓ1 and ii) orange boxplots for

ℓ2. The ℓ2 regularization provide low performances, with median correlations of 0.571 and

0.580 for λ = 0.001 and λ = 0.01 respectively. Performances of the networks regularized

by ℓ1 are higher than those with ℓ2 but do not defeat the dropout regularization with a

fraction p = 0.4: median correlations equal to 0.625 and 0.61 for λ = 0.001 and λ = 0.01
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respectively, versus a median correlation of 0.628 with dropout. However, this result may

be due to the value of the parameter λ since not all possible values were tested due to

lack of time. Furthermore, one can think of using both dropout and ℓ2 regularization.

However, Krizhevsky & al. [KSH12] showed that dropout tends to have a much stronger

effect than ℓ2 regularization which hides the impact of the ℓ2 regularization. Furthermore,

using a dropout with an ℓ1 regularization may lead to errors in the training process when

at one layer, all weights are set to zero at a given iteration. An interesting perspective for

the future would be to try a model with double regularization. We should also consider

changing the parameter λ for ℓ2 regularization to test if that increases the performances.
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Figure 4.4: Comparison between regularization approaches and their parameters. The

first boxplot (cyan) refers to architecture 2 with dropout fraction p =0.4. For the other boxplots,

each color represents a type of regularization and for each type each boxplot represents a model

fitted with a different parameter’s values: 1) dropout (purple) with p = {0, 0.5, 0.6}, ii) ℓ1 (green,

refereed to as L1), and iii) ℓ2 (orange, refereed to as L2) with λ = {0.001, 0.01} for each (l1 and

l2 represent λ).
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4.3.1.4 Batch-size and patience

At this stage of the optimization, the architecture 2 presents the higher performances. It

is built with 5 ReLU hidden layers with 200 neurons in each and all the parameters from

Initialization step, more precisely with a batch size of 200 and patience for early stopping

of 100 iterations. In this last part of optimization, we tune these two parameters.

First, the batch size is the number of examples used to calculate the gradient at each

iteration. The size of the batch depends on the number of individuals in the study. To

cover different possibilities, we fit a model with a batch-size equal to 100 and another

model with a batch-size equal to 300 (lower and higher than 200). All other parameters

of the networks are conserved. Spearman correlations of the three different models with

different batch-size are showed in Figure 4.5. A batch-size equal to 100 presented similar

performances as a batch-size equal to 200, and a very slight decrease is noticed with a

batch-size equal to 300 (median correlation = 0.623). In conclusion, the batch-size in this

study does not have a strong influence on model performances, and hence we continue with

a batch-size equal to 200.

Finally, with architecture 2, the final parameter to tune is the patience (see Section 1.3.3.3).

A small value of the patience may lead to underfitting and not reaching the stopping point

(Section 1.3.3.3), while a high value leads to overfitting. architecture 2 was fitted with a

patience pa = 100. Let {E} = {30, 50, 150} be a set of values that can be attributed to

the patience pa. For each pa ∈ {E}, we fit a model while maintaining all other parameters

from architecture 2. Figure 4.6 shows the Spearman correlation coefficients for each fitted

model. The first boxplot illustrates the network with architecture 2. A first conclusion

is that the correlation with a pa = 150 is slightly lower than other values of pa with a

median correlation of 0.624, indicating a possibility of overfitting. Correlations computed

for networks with pa = 30 and pa = 50 are higher than that computed with pa = 100

with respective median correlations of 0.633 and 0.629. In conclusion, the patience of the

early stopping has not a huge effect on the network. However, choosing small patience will

reduce the time of execution for each model. The optimized model is that with patience

equal to 30.
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Figure 4.5: Batch-size optimization. The first boxplot refers to correlations of architecture 2

with batch-size = 200. The two other boxplots represent correlations for networks with batch-size

equal to 100 and 300 respectively. Each boxplot contains 12 values of correlation (one for each

tumor) computed on the test set.

4.3.1.5 Summary

Table 4.2 summarizes the optimization process. For each parameter (rows) the first column

shows the set of tested value tested and the second column give the parameter retained for

the optimized architecture. The final architecture involves:

• 5 hidden layers with ReLU activation function and 200 neurons with random initial-

ization.

• Adam optimizer with a learning rate initialization η = 0.001

• Dropout layers following each layer with a fraction p = 0.4

• A batch-size of 200 example and an early-stopping with a patience of 30 iterations.

Our procedure to select the best architecture was based on the Spearman correlation

between observed and predicted gene expression, calculated on an independent test set.
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Figure 4.6: Tuning the early-stopping parameter. Spearman correlation computed on the

test set for 12 tumors. Each boxplot represent a network fitted with parameters of architecture 2

except for the patience that is for each boxplot from left to right: 100, 30, 50, and 150.

One can also evaluate the model during the training algorithm by tracking the evolution

of the mean square error (see Section 1.3.3.3). Figure 4.7 illustrates for one tumor (an

Ovarian patient) the path of the error during the process on the training set (in blue) and

on the validation set (in green) at each epoch. The error on the training set is always

decreasing while the error on the validation set is fluctuating. At a certain epoch, the

error on the validation set reaches its minimum value. This is the epoch where the model

weights are optimized and retained for predicting new data. This epoch is not necessarily

the last epoch the training process pursues until reaching the stopping point after pa (30

in this example) iterations with no improvements.

Finally, this procedure does not lead to the best-fitted network (all the parameters are opti-

mized). Some of the presented results may be biased by the fact that each hyperparameter

is tuned independently without taking into considerations the inerrant dependencies be-

tween parameters. This bias can be reduced using different strategies (more details are

presented in Section 4.5).
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Table 4.2: Summary of the optimization process. For each hyper-parameter, the first column

presents all the correspondent values tested while in the second column, the retained values of each

parameter, i.e. those used in the optimized architecture, are shown.

4.3.2 Comparison with Lasso penalized linear regression

In chapter 2, we used a linear regression model with Lasso penalization to predict gene

expression from nucleotide compositions, and we observe that the model often exhibits

good performances. In this chapter, we trained a multilayer neural network for the same

purpose. In this section, we compare the performances of these two approaches in term of

prediction as well as in term of model complexity.

Figure 4.8 shows the Spearman correlations for the Lasso penalized linear regression (blue)

and the multilayer network (green) with the architecture retained in the previous section.

The neural network presents a higher performance in term of prediction than the Lasso

penalized linear regression with a median correlation of 0.633 versus a median correlation

of 0.614 for Lasso.

On the other hand, the Lasso penalized linear regression is a simpler model both in term

of complexity (number of parameters) and training time. The mean time of execution of a
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Figure 4.7: Graph of the evolution of the error on the training and the validation set for

the network optimized above. The graph refers to an ovarian tumor. The retained model and

the stopping point represent the minimum of the validation error and the epoch of early stopping

respectively

Lasso penalized linear regression for one tumor is around 7 seconds on a standard computer

while for the neural network, it can vary between 45 to 60 seconds depending on the

architecture and on the GPU. More importantly, the Lasso penalized linear regression has

an advantage in the term of variable explanation (important variables are easily identified)

while the neural network is more like a black box. However, there is some interesting work

in development for identifying the most important variables of the neural network (see

Chapter 5 for further details).
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Figure 4.8: Comparison between multilayer network and Lasso penalized linear re-

gression model. Both models are fitted on the same training set with 160 variables and 14, 298

individuals and then evaluated (correlations) on a test set of 2000 genes. The first boxplot is the

correlations of the Lasso penalized linear regression (blue) and the second refers to correlations

of a multilayer neural network optimized above (green). The horizontal dotted line is the median

correlation of the Lasso penalized linear regression.

4.4 Convolution neural network

In all what we presented before, our models are based on a summary of DNA sequences

defined by the nucleotide compositions and/or motifs scores (model from Chapter 2) in

different regulatory regions as predictive variables. Even though these variables allowed

us to achieve quite a good prediction accuracy, one can assume that resuming kilobases of

DNA sequence with dozens of variables induces a certain loss of information. Hopefully,

a one-dimensional convolution network can be fitted directly on DNA sequences. The ar-

chitecture and the hyperparameters of the convolution network are presented in Sections

1.3.5 and 1.3.6. In this section, we present the pre-processing of the data (DNA sequences

and PWM) and the iterative procedure we use to select the best architecture and the best

choice for each parameter. Finally, we compare our model with the model fitted with linear
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regression.

4.4.1 Global architecture and data pre-possessing

For this model, we use two types of data: i) DNA sequences of the CORE promoter for each

gene, and ii) the position probability matrix for each motif given by the Jaspar database.

4.4.1.1 Input and output layers

The convolution network is used to predict gene expression from the DNA sequence of the

promoter. Following the input layer, come a convolution and a pooling layer. In this study,

all networks have only one convolution/pooling layer that aims to detect the presence of

certain motifs in the DNA sequence (see Section 4.4.3 for more details). The output layer

is a fully connected layer with linear activation function and one neuron representing the

gene expression. These layers are retained all over the study, and additional layers can be

added next.

Input layer

In this chapter, we use only CORE promoter sequences for 19393 genes. Motifs are mostly

located on this sequences spread on -500/+500 base around the TSS. Each gene is char-

acterized by a sequence of 1001 bases of A, C, G, and T. The adequate form of input for

the 1D-convolution is a hot coding matrix, i.e. a 4-raw binary matrix with the number of

columns equal to the length of the sequence (1001 bases). Each column is a binary vector

of length four denoting the existence of each of the four nucleotides. Figure 4.9 shows the

transformations of the CORE promoter sequence of each gene into hot coding matrix.

Output layer

This method aims to predict gene expression. The output layer is the expression of a gene

in a tumor. Gene expression is downloaded from the TCGA Data Portal (see chapter 2).

Each network was fitted for 12 tumors from 12 different types of cancer (see Section 3.1).
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Figure 4.9: CORE promoter sequence transformed into hot coding matrix. Each gene

sequence of 1001 bases corresponds to a hot matrix of dimension 4 × 1001. For Gene 1, the base

at position -500 is A (in blue) hence the first column at the hot coding matrix is {1, 0, 0, 0} (first

matrix in blue).

4.4.1.2 Convolution layer

For the convolution layer, we consider initializing the filters with known filters: the motifs.

In Chapter 1, we presented a probabilistic model to define motifs (see Section 1.1.3.1). In

this thesis, we use both position probability matrices (PPM) and position weight matrices

(PWM) to initialize weights. The matrices were collected from the Jaspar 2018 database

[KFS+17]. The database provides PPM for 638 known motifs in the human genome. The

length of motifs varies between 5 and 30 bases with a median of 11 bases. These motifs

represent the filters in the first convolution layer.

Most motifs (550) have a length lower or equal to 15 bases. The 88 other motifs have a

length between 16 and 30 with a median of 18 bases and are often a combination of two

smaller motifs. In this study, motifs are restrained to those with a length lower or equal

to 15.
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Keras impose that filters in a convolution layer all have the same length (see Section

1.3.5.2). Hence for each motif with a length w lower than 15, we add n = 15 − w columns

with a uniform distribution (the sum of each column is equal to 1).

For each motif, we also calculate the PWM from the PPM using the following equation:

Wb,i = log

(
Pb,i

p(b)

)
(4.1)

where Wb,i is the value of PWM for base b and position i, Pb,i is the value of PPM for base

b and position i and p(b) is the prioir probability of base b, i.e. the proportion of b in the

CORE promoters. Note that we correct the position probability matrix by a pseudocount

number equal to 10−5 in order to avoid zeros. According to what is done for PPM, we

complete each PWM by null (0) columns in order to have filters of the same length.

4.4.2 Hyper-parameter optimization

The experiments are organized as follows. 2000 genes are retained as the test set for the

model evaluation (correlations). Among the remaining 17393 genes, we randomly select

4000 genes used for validation (see Section 1.3.3.3 for details). All networks are hence

trained on 13393 genes.

4.4.2.1 The first model

With the aim to optimize hyperparameters, we will start with a model called model 1 that

will be used as a reference in the following sections. As a start, we trained model 1 with

a set of hyperparameters (see below) and then, one by one, we test the effect of changing

one hyper-parameter. When a tested value induces better performance, it is retained for

the next steps. Note that some parameters are not examined in this thesis and will be

maintained all over the study. The following layers and parameters constitute the model 1

architecture.

• Convolution layer: 550 filters (number of PPMs) of size 15 bases each, and a ReLU

activation function. Filters are initialized with PPM matrices (see Section 4.4.1.2).
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• Pooling layer: global maximum over all the feature map (Section 1.3.5.3).

• Dropout layer with p = 0.4.

• Dense layer: fully-connected with 2000 neurons and ReLU activation.

• Dropout layer with p = 0.4.

Note that all the networks are trained using RMSprop optimizer with a learning rate

η = 0.001, a batch-size equal to 200, 1000 epochs and with an early stopping of patience

= 30. These hyper-parameters were not optimized for time reason.

To evaluate the model we apply the network on the test set and calculate the Spearman

correlations for each tumor. The median correlation of model 1 is 0.486. The boxplot of

the correlations is presented in Figure 4.10 (first boxplot).

4.4.2.2 Effect of the weight initialization

First, we compared the performances of the network when changing the initialization of

the weights on the convolution layer. For that we fitted two other networks, having the

same architecture as model 1 except that weights where i) initialized by PWM matrices

(see Section 4.4.1.2) or ii) initialized with random uniform values ∈ [0, 1].

The correlations of each network calculated on the test set are presented in Figure 4.10.

The first boxplot (cyan) represents the accuracy of model 1. We notice that using PWM

matrices or uniform random values as weights initialization decreases model performances

(median correlation = 0.454, and 0.476 respectively). Hence model 1 is retained after this

step.

4.4.2.3 Effect of the pooling method and window size

The pooling layer in model 1 is based on a maximum global pooling, i.e. the pooling size

is equal to the length of the convolution output. In this section, we compare different

sizes of pooling window with both the maximum and the average pooling (see Section

1.3.5.3). For each type of pooling, we assess four different models with different window

sizes ∈ {global, 10, 100, 400} were global corresponds to the length of the convolution layer
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Figure 4.10: Comparison of weight initialization in convolution using Spearman correla-

tion on the test set. The first boxplot (cyan) refers to model 1 initialized by PPM matrices. The

second and third boxplots represent respectively models initialized with PWM matrices and with

random values.

output. Note that the output length of the pooling layer is 1, 2, 9 and 98 for a window

size equal to global, 400, 100 and 10 respectively. Figure 4.11 illustrates the results of

this parameter tuning. The first boxplot (po_m = global) refers to model 1 with a global

max-pooling. The three other boxplots in cyan refer from the left to the right to networks

fitted with maximum pooling with window size = {10, 100, 400} respectively. Boxplots

in purple illustrates the Spearman correlations of networks fitted using a pooling layer

with the average operator with different window size po_av equals to (from left to right)

{global, 10, 100, 400}, where global refers to a global average-pooling.

We note that the network trained with a max pooling of window size equal to 10 provides

performances slightly lower than an overall max pooling (median correlation = 0.483).

However, pooling sizes of 100 and 400 increase model performances with respective median

correlations of 0.501 and 0.493. Similar to the maximum operator, an average pooling

with a window size equal to 100 provides higher performances that other window sizes.

The median correlation using the average are respectively 0.500, 0.465, 0.502 and 0.500
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Figure 4.11: Comparison of pooling methods and window size using Spearman correlation

on the test set. Boxplots in cyan represents the maximum pooling and those in purple represents

the average pooling. For each operator (color), each boxplot represents a window size, that is

from left to right, po = {global, 10, 100, 400} where global refers to a pooling over all the output.

po_m and po_av means pool for respectively maximum and average. Note that the first boxplot

corresponds to model 1.

for po_av equal to global, 10, 100 and 400 respectively. Finally, when comparing the two

operators, we can note that there are no significant differences between maximum and

average. Furthermore, if we consider the two higher performances, pooling maximum with

window equal to 100 and a pooling average with a window equal to 100, median correlation

is almost the same with a p − value of Wilcox test of 0.9. Note that the test was applied

to 12 tumors.

After this parameter optimization, we define model 2 as a network with the same parame-

ters as model 1 but with a maximum pooling layer with a window size equal to 100. This

model is used next as a reference model for comparison (median correlation = 0.501).
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4.4.2.4 Network without regularization

In this section, we study the importance of the regularization in CNN. For this, we trained

a network with the same architecture as model 2 without the two dropout layer (no reg-

ularization). The correlations of this model computed on the test set for 12 tumors are

presented in Figure 4.12 (purple boxplot).
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Figure 4.12: Network trained with or without dropout regularization The first boxplot

(cyan) refers to correlations of model 2 where a dropout layers (p = 0.4) follows each of the the

pooling layer and the ReLU layer. The second boxplot (purple) is correlations of a network trained

with no dropout.

The median correlation is 0.458 versus 0.501 for the model 2 (cyan boxplot in Figure

4.12) trained with two dropout layers with fraction p = 0.4. This shows the importance

of dropout and, more generally, of regularization methods when training networks with

thousand parameters (9, 937, 571 parameters in our case).

4.4.2.5 Importance of the non-linear dense layer

In Section 1.3.5.4, we explained how a dense layer with ReLU activation function increases

non linearity. This layer is characterized by its number of hidden neurons. The model
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optimized in previous sections (model 2 architecture) is fitted with a ReLU dense layer

with 2000 neurons. In this section, we compare model performances whit different number

of neurons in this layers. For this, we considered two different models with the same

architecture as model 2, but with changing the number of neurons in the ReLU dense layer

of each model. The numbers of neurons considered are {200, 400}. Besides, we fitted a

model without the non-linear dense layer to evaluate the importance of this hidden layer.
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Figure 4.13: Optimization of the dense layer following the pooling. The first boxplot

(cyan) refers to model 2 where a fully connected layer with a ReLU activation function and

2000 neurons follows the pooling layer. Second and third boxplots (purple and green) refer to

networks including in their architecture a dense layer with RelU activation function with 200

and 400 neurons respectively. The last boxplot (orange) corresponds to Spearman correlations

with a network trained without a non-linear dense layer. Each boxplot represents the Spearman

correlations computed for 12 tumors on the test set.

Figure 4.13 illustrates Spearman correlations of the different models. The first boxplot

(cyan) refers to model 2 architecture with a median correlation of 0.501. First, we notice

that the networks fitted with no ReLU dense layers (orange boxplot in Figure 4.13) have

the lowest Spearman correlations compared to all tested networks (median correlation =

0.458). This result highlights the importance of the non-linear hidden fully-connected layer

in this type of convolution network. Second, the correlations computed by the models fitted

with a ReLU layer with 200 (in purple) or 400 neurons (in green) are similar to those of

model 2 with respective median correlations of 0.500 for 200 neurons and 0.498 for 400
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neurons. However, the most important difference between these two models is the number

of trained parameters: models with 200 neurons and 400 neurons have 1, 023, 951 and

2, 014, 351 parameters, respectively, which is very lower than that required for model 2

(9, 937, 571). This difference induces as well a high difference in execution time. Hence, we

define model 3 as the architecture where the non-linear dense layer with ReLU activation

possesses only 200 neurons.

4.4.2.6 Freezing the convolution layer

In this last step, the aim is not to optimize a parameter of the model. Instead, it is to show

the importance of updating the weights during convolution. Freezing the weights of the

convolution layer means that the backpropagation algorithm does not update the weights

of this layer. This method is generally used in transfer learning and pre-trained models

[YCBL14], where convolution weights (i.e. filters) trained on one network are transferred to

another network, instead of training it from scratch. Convolution weights are frozen during

the training of the second network, which reduces the number of trained parameters and

the execution time, and in some cases, improves network performances [KBFS16].

In our case, we freeze the weights in the first and only one convolution layer, which means

that the PPMs will not be updated during the training. All other weights (from dense

layers) are updated. This method is applied to model 3 architecture using the parameter

trainable = FALSE in the convolution layer in Keras. Spearman correlations computed on

the test set, using the network with frozen convolution weights are presented in Figure 4.14

(green boxplot), with a median correlation of 0.419. Freezing the convolution layer induces

a decrease of 9% of correlations compared to model 3 architecture (median correlation =

0.500). Note that in the network with frozen weights, the number of non-trained parameters

is 33, 550 among 1, 023, 951 parameter in total. This reduces the training time almost to

the half. The last experiment shows that this convolution network does not just learn the

possible motifs combinations, but also optimize some motifs and can potentially learn new

complementary motifs.
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Figure 4.14: Performances of networks when freezing the convolution layer. The first

boxplot (cyan) refers to model 3 where the weights of the convolution layer are trained and updated.

The second boxplot (purple) contains Spearman correlations of a network where the convolution

layer is frozen and its weights are not updated in the process.

4.4.3 Optimized architecture

In the previous section, we manually optimized each hyperparameter of the convolution

layer independently. The network with the highest median Spearman correlation on the

test set was selected. This model, denoted as model 3, involves three hidden layers and

two dropout layers:

1. Convolution layer with ReLU activation function and 550 filters of size equal to 15.

The weights are initialized with position probability matrices (see Section 4.4.1.2).

2. Pooling layer: using the maximum operator and pooling with a window size equal to

100.

3. Dropout layer with fraction p = 0.4.

4. Dense layer: with ReLU activation function and 200 neurons.

5. Dropout layer with fraction p = 0.4.
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A graphical representation of this network is illustrated in Figure 4.15 where for each layer,

the optimal parameters found by this study are indicated on the right.

Figure 4.15: The optimized convolution neural network architecture. Graphical represen-

tation of the convolution network optimized in Section 4.4.2 denoted as model 3. For each layer

of the network, the parameters of the layer are noted on the right. Figure inspired by [LQX17]

It is important to note that the architecture retained at this stage was obtained from a

set of hyperparameters values. Hence it is not necessarily the most optimized architecture.

Notably, the components of the architecture were tested independently and sequentially,

and due to lack of time, we did not assess the effect when combining parameters. The

point is further discussed in Section 4.5. Furthermore, in this section, we trained a con-

volution network with only one convolution layer with pre-defined filters. First, one can

think of increasing the number of filters by adding filters initialized randomly with the aim

to detect novel motifs not known in the literature. Second, we could also think of adding

additional convolution layers. In fact, in our network, the first convolution layer detects
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the presence of PPMs in the input layer and the output of this layer provides, at each posi-

tion, the information about the presence/absence of the motif. An additional convolution

layer above the PPM level may capture recurrent combinations between different motifs

in the same positions or at consecutive positions along the sequence. Note that several

studies based on convolution in one-dimension showed that, one their problems, additional

convolution layer does not increase model [ZELG16]. However, it is known that neural

networks, in general, are dataset specific and no general rules exist. Further work would

be to try to add, one by one, hidden convolution layer and evaluate their effect on model

performances as well as trying to detect essential variables from each layer based on their

estimated weights.

4.4.4 Comparison with Lasso linear regression

In the previous section, we tried to find manually, among different parameters those that

best fit a convolution neural network that predicts gene expression using CORE promoter

sequences as input. We optimized the architecture noted as model 3 with a median corre-

lation of 0.500. This model was presented as a potential alternative to the Lasso penalized

linear model. To compare the performances of the two models, we fit a Lasso penalized

linear model on the training set (17939 genes) using motifs scores calculated on the CORE

promoter (see Chapter 2 page 4). We used only motifs scores with length less or equal to

15. The Lasso penalized linear model is then applied and evaluated on 12 tumors using the

test set and presents a median correlation of 0.445. The correlations are presented in the

second boxplot (blue) in Figure 4.16. The convolution network outperforms the Lasso pe-

nalized linear model fitted using only motif scores with an increase of 5.6% in correlations.

Finally, we also compared the model 3 architecture to a Lasso penalized linear model fitted

using not only motifs scores but also the nucleotide compositions calculated on the CORE

promoter. This last one presents a median correlation of 0.505. Results are presented in

the last boxplot of Figure 4.16.

The optimized architecture of the convolution network presents similar results as the linear

model fitted using scores of motifs and nucleotide compositions. However, the complexity
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Figure 4.16: Comparison between convolution network and Lasso penalized linear re-

gression models. The first boxplot in purple refers to Spearman correlations for the convolution

network with the optimized architecture presented in Section 4.4.3 with CORE promoter sequences

as input. The boxplots in blue refer to Spearman correlations of the models fitted with ℓ1 penal-

ized linear regression using: i) scores of motifs in the CORE promoter, and ii) scores of motif

and percentages of nucleotides in the CORE promoter. The horizontal line represents the me-

dian correlation of the ℓ1 penalized linear regression fitted with motifs and nucleotides. Spearman

correlations are computed for 12 tumors using the test set.

of the convolution network is much higher than that of the linear model. Furthermore,

the Lasso penalization allows us to efficiently identify the most important variables, which

renders this approach much more interpretive than convolution networks from a biology

perspective (see Chapter 5).

4.5 Discussion about optimization of hyperparame-

ters

In this chapter, for both types of networks (multilayer and convolution), the optimization

procedure was manual. For each network, we started with a certain architecture and
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then for each parameter independently, we chose a set of potential values and compared

networks when changing this values one by one. Even though the final performances were

good compared to a Linear model, this is evidently not the best optimization procedure.

First, all parameters were not optimized (for example batch size, number of epochs, . . . ).

Second, it is known that some dependencies between different parameters exist and may

be very high. For this reason, tuning independently the parameters do not necessarily lead

to the best architecture. On the other hand, running a grid-search [PVG+11] algorithm

that exhaustively searches through all combinations of hyperparameters suffers from the

curse of dimensionality and of prohibitive execution time. Another possibility would be

to use a random search strategy such as the one described in reference [BB12]. Random

search differs from grid search in that we no longer provide a discrete set of values to

explore for each hyperparameter. Rather, we provide a statistical distribution for each

hyperparameter from which values may be randomly sampled. Finally, an algorithm that

also shown good results in the literature is the Bayesian optimization based on probabilistic

models [SLA12]. This algorithm uses the results of the previous iteration to improve the

sampling method of the next experiment. The python package ′′Hyperopt′′ [BYC13] is an

implementation of the Bayesian optimization. Future work is to apply these algorithms

using our data and networks with the aim to find the best architecture.
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Chapter 5

Discussion and perspectives

Gene regulation is the key differentiation between different cell types and functions. Even

though the relations between gene expressions and several biological elements (TF, epige-

netics, . . . ) are established ([LLZ14b], [JFLL15b], [SGG+16], [KCL+10], [KSR16]). Models

that provide a direct relationship between sequence and gene regulation are very restrained

for the moment, especially in the human genome. The main objective of this thesis is to

model gene expression based only on genomic variables computed on different regulatory

regions of the DNA sequence. For that aim, we proposed two frameworks to model gene

expression, one based on a Lasso penalized regression model and the other one based on

deep neural networks.

In a first direction, we presented a Lasso penalized linear regression model to predict and

explain gene expression based only on features computed from DNA sequences of different

regulatory regions. More precisely, our model is based on nucleotide compositions calcu-

lated for eight different regulatory regions (promoter, CDS, introns, . . . ) 2. Surprisingly,

we showed that the gene body, especially introns, highly contributed (more than promot-

ers) in predicting gene expression. The accuracy of our model is comparable to models

based on experimental data ChIP-seq/DNaseI (RACER [LLZ14b], Rabit [JFLL15b] and

TEPIC [SGG+16]). Furthermore, we presented a procedure of predictive variables ran-

domization per gene to evaluate the biological significance and interpretations of each type

of predictive variables (sequences features and experimental variables). We showed that
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when fitting a model with sequence features randomized by gene, correlations are almost

null. This result indicates that our model captures certain combinations between these

features. However, this information was not present for ChIP-seq and DNase features

(i.e. the model stays accurate when randomizing the variables per gene). This result in-

dicates the existence of a bias in experimental data certainly related to the opening of

the chromatin. Genes that are present in an open chromatin area are often bound by a

high number of TFs, by consequences, scores of ChIP-seq of TFs are almost similar which

makes these variables exchangeable in each gene. Very recently, Schmidt & al., the author

of TEPIC [SGG+16], discussed the presence of the open chromatin bias in experimental

data and, regarding our randomization procedure, presented a method to correct this bias

on experimental data based on different score penalizations [SS18]. Even though this ap-

proach allows to correct a part of that bias, the results are still not fully satisfying, (i.e.

correlations after randomization are still not close to zero).However, they observed that

the structure of the regression coefficients strongly differ when variables are randomized.

With original variables, some coefficients are much more important than others, whereas,

after a randomization step, all the coefficients are very similar and close to zero. This

result indicates that these experimental data could provide a meaningful interpretation

despite the persistent open chromatin bias. Another possible method is to fit a model on

randomized experimental predictive variables and then apply this model to the original

set of experimental variables (without randomization). If both sets of data provide similar

predictions, i.e. similar model performances, we can conclude that experimental data have

no meaningful interpretation. However, the primary results showed that the performance

of the model applied to the original variables present a large decrease compared to those

of randomized variables which may be a confirmation for the conclusions of Schmidt & al.

[SS18]. This validation process is yet primary, and Chloé Bessiére, a PhD student in the

team, is developing additional validations.

Furthermore, we evaluated the contribution of the score of DNA binding motifs in the

CORE promoter in predicting gene expression. Even though it is known that the binding

of TFs to specific DNA sites (motifs) is essential in regulating gene expression, the con-

tribution of motifs scores in predicting gene expression were not very high compared to

those of nucleotide compositions. This result may be due to the definition of the scores
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(maximum score when scanning the CORE promoter sequence) based on its probability

weight matrix (PWM). Each PWM provides a huge number of binding sites (motifs) while

it was shown that only a few of these sites are bound by TFs [KLS+11]. To overcome

the limitations of certain PWMs, a method was proposed in our team to provide a binary

classifier to provide a binary classifier approach of the presence of a TF binding site in a

region based on TF combinations [VCL+17]. The prediction obtained by this approach

can be used as predictive variables (instead of PWM scores) in our model to predict gene

expression. A perspective would be to evaluate their contributions to our model. Note that

we will further highlight the importance of the motifs by using their position probability

matrix (PPM) as filters in convolution networks.

Moreover, in Chapter 2 we briefly presented an attempt to detect mutational signatures

based on stable nucleotide compositions in different regulatory regions. Our method is

based on the mutation signatures provided in [LSP+13]. These mutations were computed

using only exome genome sequencing which is considered as a limitation of the method.

Besides, our model was biased by the CpG content that is at a time highly mutated and

with high importance for gene expression prediction. Actually, characterization of mu-

tational signatures for regulatory regions is being addressed. In 2016 and in 2018, two

papers ([KTS16] & [CGB+18]) were published with the aim of providing mutation profiles

of different TFBSs (motifs). These methods are advantageous as they are based on whole

genome mutation annotations and take non-coding sequences into consideration. On one

hand, Kaiser & al. [KTS16] concentrated on characterizing each motif by a mutational

profile across different cancer types. They considered two types of alterations (mutations)

those that transform a binding motif to a non-binding (disruption) and vice-versa (cre-

ation). They succeeded to identify alterations signatures for 81 motifs in 11 cancer types,

and they showed that functional TFBSs (motifs) are enriched for mutations in the different

cancer type. Their method was based on a comparison of PWM-scores between functional

altered motifs and a defined reference motif for each single base substitution occurring

within tri-nucleotides. On the other hand, Chan & al. [CGB+18] highlighted the impact

of mutations on motifs in cancer and also constructed mutational signatures for 512 TFBS

(motifs) in different cancer types. They proceed with a Bayesian framework and compute

each motif signature in function of the probability of motif alteration conditionally to the
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occurred mutation (mk) and the probability of this mutation conditionally to the existing

signatures. An alteration can be a creation or a disruption, and the possible mutation (mk)

corresponds to tri-nucleotide alteration. The methods proposed in both articles may pro-

vide a possible solution to overcome the limitations of the CpG in our proposed approach.

On a different direction, and with the aim of refining the model presented in Chapter

2, Christophe Menichelli, a PhD student in the team, developed a new method recently

denoted Dexter. This approach can detect from the DNA sequence, possible k-mers from

different regulatory regions that are important in gene expression prediction. This method

may be used to further investigate signature mutations on different k-mers in different

regulatory regions based on whole sequencing mutation counts.

Finding sequence-level instructions in DNA is an emerging field. As said in Chapter 3,

recently, three papers were published to predict gene expression based on DNA sequences

using artificial neural networks ([ZTY+18], [AS18], [KRB+18]). In this paragraph, I will

discuss the global approach as well as some results and limitations. The details of the

convolution architecture will be discussed in the following paragraph.

First, Zhou & al. [ZTY+18] developed a two-stage model, denoted ExPecto, to predict

gene expression based on DNA sequences and epigenetic marks. The first stage is an

extension of their previous model, Deepsea [ZT15] to predict epigenetic variants based

on DNA sequences using a deep convolution network. The second stage is based on a

Ridge (ℓ2) penalized linear regression to predict gene expression based on the predictions

of the epigenetics in the first stage of the model. This strategy yielded a median Spearman

correlation, between observed and predicted gene expression, of 0.81 over 218 tissues.

Even though their aim is to predict gene expression based on the DNA sequences, they

use experimental data as well as an intermediate predictive variable which provides a

higher order of information from both sequence and experimental variables. However, the

comparison with our model performances is not evident as our model is based only on the

information containing in the sequence.

The Second paper is a work of Agarwal & Shendure [AS18] posted in bioRxiv. They aim at

predicting gene expression based only on the sequence and on sequence features related to

mRNA half-life (stability and degradation) using a convolution network. Different models
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were trained and their retained model (with the highest accuracy) was built to predict the

median gene expression across 56 tissues using the DNA sequence located at -7000/+3500

b around the TSS as well as the CG content and the lengths of different functional regions

(UTR, exon, introns, . . . ). Their model presented high accuracy in human and mouse

respectively. The highest accuracy was obtained when considering a region of -7000/+3500

around TSS. However, they showed that the majority of the information was captured

within smaller regions localized around the TSS. Furthermore, the performances of their

model when used to predict gene expression in a cell type-specific were lower than those

when predicting the median of expression over 56 tissues. However, their choice of resuming

the information of gene expression over the tissues in the median value is not arbitrary. For

that they showed that their set of gene expression (based only on coding genes) is highly

correlated among pairs of tissues (median gene expression correlation among 56 tissues of

73%). Indeed, coding gene expressions are highly correlated among different tissues as well

as among cancer tissues. This high correlation presents a limitation to condition-specific

models based on coding genes when it comes to differentiating cancer types (see Chapter

3). This assumption is validated by a model swap approach. For that, we fitted a model

on one tumor from a cancer type, then applied the model and computed its accuracy on

different tumors from different cancer types. Surprisingly, the correlations were not very

different from a cancer type to another. This result means that our model is not able to

differentiate different cancer types and one potential cause is the high correlations between

coding genes among different cancer types. However, this limitation almost faded away

when including non-coding genes. The correlations between genes in different cancer types

when considering both coding and non-coding gene expression decrease vastly (almost of

30% compared to only considering coding genes). A potential perspective will be to adjust a

statistical model to predict gene expression (coding and non-coding) that can discriminate

the different types of genes. Such a model may provide a significant differentiation between

cell-types.

The third and final paper is published by Kelly & al. [KRB+18] in spring 2018. Their article

is not restrained to modeling gene expression. They present an approach of convolution

neural network, to predict different types of variables, in particular CAGE genes expression,

based only on DNA sequences. Their method denoted Basenji is a modified version of
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their previous model [KSR16] that they presented to predict peaks using DNA sequence

(classification model). The median Pearson correlation, between observed and predicted

CAGE gene expression, across different cell types, is 0.86. Besides, they showed that

the performances of Bessenji are higher than their previous model (Basset). Note that

their study was not restrained to the promoters. Actually, they extract 131 KB sequences

across the chromosomes. Several other biological aspects were also addressed in this paper

especially about the influence of distal regions on gene expression.

Note that these last two approaches ([AS18], [KRB+18]) present very high performances

based on DNA sequence, even higher than models fitted based only on experimental data.

Further validations of the methods and the dataset is necessary to understand these results

0

With the aim of increasing the performances of our model, we considered interactions. The

concept of biological interactions itself inspired the idea of adding interactions between

different nucleotide compositions. In Chapter 1 we presented the different interactions ex-

isting in biology and controlling gene regulation. The approach that we presented induced

a slight increase in model performances with selections of some significant interactions be-

tween different regions. In our approach, we used mathematical operations to define an

interaction (minimum, maximum and product). However, this may not be the best way to

define an interaction. Using the maximum or the minimum definition may create new in-

teractions variables that are very correlated to original variables. This limitation is further

highlighted by the approach of stability where we showed that when using only interaction

variables to fit a Lasso penalized linear regression, the performances were high, but no

variables were stable. Besides, the interpretation of interactions defined as the product is

difficult to interpret in biology. Furthermore, we noticed that all nucleotide compositions

are significant in the model i.e. all p − values of original test (Section 3.2.1) are very low.

Such results complicate the rules to select an interaction. To overcome this limitation, we

can define different selection rules specific for each interaction, instead of a global threshold

rule. One rule that we aim to consider is to select an interaction between two variables if

it is more important to the model that both original variables. Another limitation of this

method is its high computational cost even when considering only second-order interac-

tions which makes it difficult to consider higher order interactions. All these limitations
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CHAPTER 5. DISCUSSION AND PERSPECTIVES

and other causes motivated the idea of our last project based on neural networks. As I will

explain in the following, via neural networks, we can detect interactions between variables

at an even higher level than second-order.

Finally, for each approach presented with the aim to detect interactions, further validation

should be applied, if possible, by comparing the selected interactions to those already ex-

isting in the biological literature. For instance, a potential validation track is Bunting &

al [BSS+16]. They presented biological interactions within promoters and emphasis on the

existence of 5’ to 3’ gene looping that may induce interactions with these regions.

The second framework we presented to predict gene expression consists of two types of

artificial neural networks: deep networks and convolution networks. The hyperparameters

of each neural network were optimized based on a manual search. We discussed in Chapter

4 the importance of using algorithms to optimize parameters considering the dependencies

between them. In [AS18], Agarwal & al. used the “hyperopt” package from python that to

apply the random search algorithm to optimize different parameters. Also, they compared

the optimized parameters by this algorithm to manual search optimizations and showed

that the model optimized by a random search outperformed the network based on a manual

optimization with a difference of almost 7% of accuracy. On another hand, Kelley & al.

[BSS+16] optimized the hyperparameters of Basenji based on a Bayesian optimization al-

gorithm. A first important direction is to apply one or both algorithms to our network and

optimize architectures (for MLP and CNN), compare the different optimization methods

and retain the high accuracy model.

In this project, we examined the performances of both multilayer networks and convo-

lutions networks to performances of a Lasso penalized regression model. The accura-

cies of the models were very similar in term of Spearman correlations. However, the

Lasso penalized regression model is much simpler to explain and to extract significant

features with substantial effects on gene expression while neural networks are more like a

black box. Nonetheless, recent studies are being developed by the Anshul Kundaje team

(https://sites.google.com/site/anshulkundaje/Home) to extract some critical infor-

mation from neural networks hidden layers. In 2017, they presented DeepLIFT for Deep

Learning Important FeaTures [SGK17]. In their procedure, first, they applied a neural
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network and learned the weights. Further, they assigned a score of contribution for each

neuron considering the difference between its activation and a reference activation defined

in prior. Computing the scores also depends on the sign of the difference (this overcomes

the limitation of saturation). These scores can describe the most important features to pre-

dict the response variable. Besides, in the paper, they present different strategies to define

the reference depending on the dataset and the dimension of the input. At the beginning

of September 2018, researchers from the same team published their latest study denoted

DFIM for Deep Features Interactions Maps [GSFK18]. DFIM is based on convolution

networks to detect synergistic interactions between DNA features, especially nucleotide

compositions and motifs. For each interaction, they computed a score using the partial

derivation of the output depending on the input (gradient of the network). One of our

perspectives is to apply these methods to our convolution network and detect essential

features (nucleotide compositions and motifs in the sequences) as well as potential inter-

actions between motifs in the CORE promoter. However, to be able to detect inter and

intra regions interactions, we should adapt our convolution network with a larger sequence

in input to include more regulatory regions (UTR, gene body, . . . ).

Finally, our convolution network does not take into consideration the nucleotide composi-

tions of the DNA sequences. The performances of our network with one convolution layer

and PPM as filters are similar to those of a Lasso penalized linear regression fitted to

predict gene expression based on motifs scores and nucleotide compositions. This result

highlights the importance of motifs provide the fact that the results suggested that the

PPMs may cover the effect of nucleotide compositions Another exciting direction could

be to add nucleotide compositions from different regulatory regions as neurons in the lat-

est dense layers in the convolution networks. This addition may establish combinations

between motifs and nucleotide compositions that may increase the accuracy of predicting

gene expression. This idea was inspired by [AS18] who showed that an increase of about

9% occurs on model performances when adding continuous variables as neurons in their

first dense layers.
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