
THESE DE DOCTORAT DE

L'UNIVERSITE DE RENNES 1

COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : Informatique

Light Field Editing and Rendering

Thèse présentée et soutenue à Rennes, le 21 Novembre 2018
Unité de recherche : INRIA Rennes - Bretagne Atlantique et Technicolor R&I

Par

Matthieu HOG

Rapporteurs avant soutenance :

Bastian GOLDLUECKE Professor, University of Konstanz
Pascal MONASSE Professor, Ecole des Ponts ParisTech

Composition du Jury :

Président : Luce MORIN Professor, INSA Rennes
Examinateurs : Frederic DEVERNAY Researcher, Amazon

Bastian GOLDLUECKE Professor, University of Konstanz
Pascal MONASSE Professor, Ecole des Ponts ParisTech
Aljosa SMOLIC Professor, Trinity College Dublin

Dir. de thèse : Christine GUILLEMOT Research Director, INRIA Rennes
 Neus SABATER Researcher, Technicolor R&I

Acknowledgments

I want to first and foremost express my gratitude to my PhD advisors Christine and Neus
who not only guided me with their expertise, but also knew when to give me autonomy
and when to push me to write. I couldn’t have hoped for better mentors.

I would like to re-iterate my gratitude to the defense committee for their time, positive
feedback, interesting questions and discussions.

Thank you to the 3rd floor team at Technicolor, especially Arno, Artem, Benoist, Didier,
Frederic, Guillaume, Laurent, Mitra, Mozhdeh, Olivier, Paul, Remy, Tristan, Valérie and
Valter. These 3 years have been really fun, and I’ll miss your good company.

I also want to thank the PhD and postdoc dream-team, especially Dmitry, Fatma, Guillaume,
Jean, Juan, Julia, Martin and Salma. Thank you for all the good laugh, happy lunch time
and also getting me out of my cave sometimes.

Finally, I thank my family, especially Marie, for their endless support and love.

Contents

Contents 2

List of figures 2

List of tables 4

List of algorithms 5

Résumé En Français 7

I Opening 15

1 General Introduction 17

1.1 Context . 17

1.2 Motivations and Goals . 18

1.3 Thesis Structure and Contributions . 21

2 Background in Light Field Imaging 25

2.1 Formal Definition . 25

2.2 Acquisition and Sampling . 26

2.3 Applications . 31

II Light Field Image Rendering 35

3 An Image Rendering Pipeline for Focused Plenoptic Cameras 37

3.1 Introduction . 37

3.2 Related Work . 38

3.3 Plenoptic Image calibration . 40

3.4 Proposed Depth Estimation Method . 44

3.5 Rendering using a Focus Map . 47

3.6 Experiments . 49

3.7 Conclusion . 53

4 Light Field View Synthesis with Recurrent Neural Networks 55

4.1 Introduction . 55

4.2 Related Work . 56

4.3 LSTMs for View Synthesis . 58

4.4 Experiments . 60

4.5 Conclusion . 67

1

III Light Field Editing 69

5 Light Field Segmentation Using a Ray-Based Graph Structure 71

5.1 Introduction . 71
5.2 Related Work . 72
5.3 Ray-based Graph Structure . 73
5.4 Energy Function . 75
5.5 Experiments . 78
5.6 Conclusion . 82

6 Super-rays for Efficient Light Field Processing 85

6.1 Introduction . 85
6.2 Related Work . 86
6.3 Super-ray Light Field Over-Segmentation 88
6.4 Super-ray Applications . 97
6.5 Conclusion . 102

7 Dynamic Super-Rays for Efficient Light Field Video Processing 103

7.1 Introduction . 103
7.2 Related Work . 104
7.3 Dynamic super-rays . 104
7.4 Experiments . 108
7.5 Conclusion . 111

IV Closing 113

8 General Conclusion 115

8.1 Summary . 115
8.2 Future work and Perspectives . 116

Appendix A Author’s publications 119

Appendix B List of Notations 121

Appendix C Additional Results for Chap 3 125

Bibliography 139

2

List of Figures

1.1 Lenticular print principle . 19

1.2 Example of depth estimation from light fields 20

1.3 Example of post-shot image rendering . 21

1.4 Example of light field capturing devices . 21

2.1 Plenoptic function vs the two-plane parametrization 26

2.2 Example of a light field captured with a camera array. 27

2.3 How a plenoptic camera captures a light field 29

2.4 Example of light field captured with a plenoptic camera 30

2.5 Example of refocusing . 32

3.1 The two plenoptic camera designs . 38

3.2 Proposed pipeline to process a raw light field captured with a focused
plenoptic camera. 39

3.3 Estimated subaperture image from a focused plenoptic camera 40

3.4 Micro-lens array calibration parameters . 41

3.5 A white plenoptic image is a sum of three 2D cosine 41

3.6 Comparison of a white image synthesized with our model versus a real white
Raytrix image . 42

3.7 Comparison with Dansereau’s calibration 44

3.8 Calibration on a natural raw plenoptic image 45

3.9 The stereo focal stack computation . 46

3.10 Projection of a scene point visible on two microlens images 48

3.11 Results on the donkey dataset . 50

3.12 Comparison of our depth maps with R11 test images 51

3.13 Comparison of our depth maps using the Georgiev’s dataset 52

3.14 R11 all-in-focus rendering on test image Andrea 52

3.15 Refocusing with and without splatting comparison 53

4.1 A typical LSTM cell . 59

4.2 Our LSTM cell . 61

4.3 Visualization of the LSTM memory state 63

4.4 Interpolation with wide baseline . 64

4.5 Visualization of the LSTM memory state for wide baseline 65

4.6 View synthesis results for a deep hierarchical approach 66

4.7 Comparison with the . 67

5.1 Proposed light field representation . 75

5.2 Illustration of the over-connectivity problem. 77

5.3 Light field segmentation results on synthetic light fields 79

5.4 Visualization of the graph nodes for the dataset ’Tsukuba’ 81

5.5 Experiments with our synthetic, sparsely sampled light field 81

3

5.6 Light-field segmentation results on real datasets 83

6.1 Example of angular patches . 89
6.2 The super-ray assignment step . 90
6.3 The super-ray update step . 91
6.4 Average displacement of the super-ray centroids with respect to the number

of iterations . 93
6.5 Different super-rays evaluation metrics across different parameters for a

synthetic scene . 94
6.6 Comparison of super-rays versus independently merged super-pixels 95
6.7 Super-rays for a sparsely sampled light field 96
6.8 Super-rays for a densely sampled light field 96
6.9 Graph-cut segmentation using our super-rays 98
6.10 Angular aliasing comparison . 101
6.11 Refocusing on a sparsely sampled dataset 102

7.1 Illustration of our algorithm in a simple case 105
7.2 Duper-ray neighborhood. 107
7.3 Dynamic super-rays for a few frames and views 108
7.4 Over-segmentation comparison with the state of the art 109

4

List of Tables

3.1 Calibration errors comparison with the state of the art 43

4.1 Image quality metrics for the compared approaches 64

5.1 Segmentation accuracy comparison . 80

6.1 Comparison of the total segmentation running times with the state of the art 99
6.2 Super-rays segmentation accuracy . 99

5

List of Algorithms

1 Super-ray algorithm . 92

2 Dynamic super-ray algorithm . 105

6

Résumé En Français

Contexte

Que ce soit pour les films, les jeux vidéo ou même la photographie, il y a un intérêt
particulier à donner une impression de profondeur, de géométrie au contenu que nous
souhaitons capturer et diffuser. Au cours de cette dernière décade, plusieurs domaines de
recherche et de l’industrie se sont penchés sur le problème de la capture et de la restitution de
contenus avec des informations géométriques supplémentaires, pas nécessairement présentes
ou faciles à obtenir à partir d’une imagerie 2D classique.

Les films 3D stéréoscopiques illustrent bien cet investissement. En moins de 10 ans, ils sont
devenus une norme dans l’industrie du film à gros budget. Le nombre de films 3D produits
par an est passé de 6 en 2007 à 52 en 2016 et le nombre d’écrans 3D dans le monde est
passé de 45 546 en 2012 à 87 176 en 2016 [1].

Un autre exemple est le contenu de réalité virtuelle (VR). L’amélioration récente du prix
et de la qualité des casques VR (par exemple, le HTC Vive, Daydream project, Oculus Go
pour n’en citer que quelques-uns) ouvrent un nouveau marché de production d’images et
de vidéos stéréoscopiques et 360◦. Une partie de ce type de contenu est capturée à partir
de scènes réelles, utilisant souvent des systèmes multi-caméras complexes, tels que le court
métrage MPC VR Catatonic 1, ou des configurations plus accessibles 2.

Un dernier exemple, peut-être assez différent des deux autres, est celui des smartphones.
Motivés par le fait que nous atteignons les limites de résolution des capteurs et aussi
des performances des optiques portables, les smartphones de la génération actuelle ont
désormais une paire (ou plus) de caméras et utilisent du traitement d’image pour produire
la photographie finale. Il est intéressant de noter que l’application la plus populaire pour
ces images stéréo est de produire un flou artistique (bokeh) pour donner une impression de
profondeur aux photographies, une tâche impossible pour un objectif portable classique
doté d’une ouverture trop étroite.

Pour les médias que nous avons mentionnés, un nouveau défi à résoudre semble être la
capture et le rendu de contenus augmentés en 3D. Malgré les dernières avancées en matière
d’imagerie tridimensionnelle, il s’agit toujours d’un problème qu’en partie résolu. Par
exemple, la génération des cartes de profondeur pour les films stéréoscopiques nécessite
encore beaucoup d’interventions humaines, manuelles, fastidieuses et coûteuses. Les films
VR sont encore assez coûteux à produire et reposent souvent sur des capteurs actifs pour
capturer la profondeur de la scène, ce qui présente certaines limites. Même sur les téléphones
haut de gamme, les images générées par les appareils photo doubles sont d’une qualité
moindre que les appareils photo ordinaires. Les erreurs dans l’effet de bokeh mentionné

1http://www.moving-picture.com/advertising/work/catatonic-vr
2la chaine VR officielle de youtube contient plus de 300 vidéos VR . https://www.youtube.com/channel/

UCzuqhhs6NWbgTzMuM09WKDQ/videos

7

sont particulièrement désagréables, soulignant la nécessité de meilleurs algorithmes de
traitement.

Dans ce contexte, l’imagerie par champs de lumière (light field) est une alternative sérieuse
pour gérer de nombreux aspects de la capture d’images 3D.

Motivation et Objectif

Comme son nom l’indique, le terme champ de lumière réfère au concept de représentation
de la lumière en tant que champ vectoriel. Formellement, il s’agit d’une description des
intensités d’une collection de rayons, circulant de, et vers tous les points de l’espace. D’un
point de vue plus grossier, cependant, un champ de lumière est un terme large qui désigne
la capture simultanée d’une scène à partir de plusieurs points de vue. Dans de nombreux
cas, un champ de lumière peut être représenté comme un ensemble de vues décrivant la
même région d’intérêt.

Beaucoup de contenus entrent dans cette définition très générique mais nous nous concen-
trons toutefois sur un cas particulier, lorsque le champ de lumière est structuré, dans le sens
où les vues doivent être prises (approximativement) sur un plan et à une distance régulière
les unes des autres. Nous supposons également que le nombre de vues est supérieur à deux.
Grâce à ces hypothèses, et contrairement à une image standard, un champ de lumière
enregistre de nombreuses informations sur la géométrie d’une scène. Cette information
peut être récupérée et exploitée pour des traitements ultérieurs.

Une première utilisation et peut-être la plus simple des champs de lumière consiste à
reconstruire directement différents points de vue de la même scène. Lorsqu’il est combiné
avec une surface qui rend les rayons capturés par la direction, il est alors possible de simuler
un changement de point de vue pour un observateur. Un exemple bien connu de ce principe
est celui des impressions lenticulaires, très populaires pour les cartes postales. Des lentilles
cylindriques sont placées sur une image imprimée composée de deux (ou plus) images
entrelacées avec des points de vue différents ou capturées à un moment différent (Fig. 1).
La version moderne de ce principe sont les écrans auto-stéréoscopiques, qui remplacent le
papier par un affichage numérique et utilisent des microlentilles pour re-projeter les rayons
à la verticale et à l’horizontale. Cela permet à un spectateur de percevoir la profondeur et
la parallaxe de mouvement sans être équipé d’aucun autre appareil.

Bien que le résultat de ces affichages puisse être assez surprenant, du fait que le nombre de
vues d’un champ de lumière est limité, la transition entre les points de vue peut paraître
brusque (problème de sous-échantillonage). Cela motive le deuxième exemple d’application:
synthétiser des points de vue supplémentaires à partir du signal capturé. Dans le cas
particulier où les vues sont suffisamment proches, une simple interpolation peut être utilisée
pour compenser cet effet. Toutefois, dans le cas où la distance entre les vue est importante,
des informations sur la géométrie de la scène sont nécessaires.

Parce que nous capturons une scène avec différents points de vue et avec une disposition
connue, le mouvement de parallaxe permet une reconstruction 3D passive. Bien que la
disposition et le nombre de vues déterminent le type de méthode d’estimation de profondeur
à utiliser, la redondance des vues du champ de lumière et la régularité de l’échantillonnage
donnent généralement des cartes de profondeur de haute qualité. Ces cartes de profondeur
peuvent alors être utilisées pour générer des modèles 3D ou des nuages de points très denses
et précis (exemple de la Fig 2a). Avoir une estimation de profondeur de haute qualité à
partir de capteurs passifs est particulièrement intéressant pour l’industrie du film 3D, car
elle nécessite moins de corrections manuelles. Cela peut également être intéressant dans

8

L R L R R L R L
Printed surface

Lenticular lenses

Observers

Figure 1: Principe de l’impression lenticulaire. Nous montrons un schéma en 2D par souci
de simplicité. Deux images différentes L et R sont entrelacées sur une surface imprimée.
Les lentilles cylindriques re-projettent les rayons de la surface imprimée selon leur direction.
Les observateurs sont à deux points de vue différents et voient respectivement les images A
et B. Ce principe peut être étendu sans perte de généralité en 2D.

le contexte de la fabrication industrielle, où l’inspection d’objets est souvent complexe,
en gros plan et lorsque des objets non Lambertiens sont examinés. Par exemple, la carte
de profondeur de la Fig. 2b serait difficile à obtenir avec une configuration stéréo ou des
capteurs de profondeur actifs.

Ces informations de géométrie peuvent également être utilisées pour la synthèse des vues,
que ce soit en tant que contrainte dure ou relaxée. Ceci est d’un intérêt particulier
pour les écrans VR, ce qui nécessite un changement de point de vue très fluide pour
préserver l’expérience utilisateur. Un exemple particulièrement impressionnant de cela est
la démonstration Welcome to light field3.

Néanmoins, toutes les applications ne visent pas à fournir plusieurs vues. Comme les rayons
capturés d’un champ de lumière ont des coordonnées connues, il est possible de reproduire
le processus d’intégration effectué par une caméra conventionnelle après la capture et avec
des paramètres ajustables. Le problème d’ouverture synthétique permet ainsi de rendre des
images avec différentes profondeurs de champs et plans de mise au point à partir de champs
de lumière. Ceci est particulièrement utile dans les situations où la mise au point de la
caméra est difficile à ajuster (comme illustré sur la Fig. 3), ou pour produire différents
effets à partir d’images statiques (comme par exemple changer le plan de mise au point
pour produire un effet de découverte).

Pour longtemps restées comme un concept théorique, toutes ces applications ont pris de
l’ampleur dans la recherche et l’industrie grâce au développement récent des dispositifs
d’acquisition de champs de lumière. Par exemple, les caméras plénoptiques ou les matrices
de caméras (Fig. 4) sont devenues de plus en plus communes ces dernières années, tant
du côté de la recherche que de l’industrie. Comme on peut le déduire de par la taille
des deux types d’appareils, les champs de lumière capturés sont assez différents dans leur
échantillonnage. En effet, dans certains cas, le champ de lumière capturé ne peut pas être
directement présenté comme un ensemble de vues ou alors les vues sont très éloignées. Cela
nous amène au premier problème que nous abordons dans cette thèse: comment traiter
et restituer des images à partir de champs de lumière pour des cas particuliers, qui sont
difficiles et moins explorés dans la littérature actuelle.

Un autre problème est qu’il existe une multitude de méthodes et de solutions commerciales

3https://store.steampowered.com/app/771310/Welcome_to_Light_Fields/

9

(a) Nuage de point obtenu à partir d’un champ de lumière
(b) Carte de profondeur obtenue à
partir d’un champ de lumière

Figure 2: Exemple d’estimation de profondeur à partir d’un champ de lumière. Sur la figure
(a) nous montrons le rendu d’un nuage de point généré à partir de cartes de profondeur
calculées à partir d’un champ de lumière [2]. Sur la figure (b), nous montrons la vue
originale et la carte de profondeur obtenues à partir d’un champ de lumière[3]. La scène
capturée est complexe car elle contient des surfaces très spéculaires et est proche du système
d’acquisition.

pour modifier une image ou une vidéo (e.g. Photoshop, GIMP, Adobe Premiere), cependant,
peu d’options sont disponibles dans le cas de contenu 3D, et encore moins pour les champs
de lumière. Pourtant, une interaction à posteriori au rendu (possiblement guidée par un
utilisateur) ouvre la voie à des applications plus avancées. Ceci est le deuxième sujet
abordé lors de cette thèse: comment interagir avec les champs de lumière avant toute
modification ultérieure. Plus précisément, le problème est double. Puisque le contenu décrit
par le champ de lumière est redondant, nous nous attendons à ce qu’une modification soit
cohérente d’une vue à une autre. Dans certains cas également, la quantité d’informations
capturées est problématique si la méthode d’interaction ne s’adapte pas au volume de
l’entrée.

Comme contrainte supplémentaire, nous avons essayé de ne faire aucune hypothèse sur la
densité d’échantillonnage des champs de lumière capturés. Et la plupart des approches
proposées ne sont pas liées à un type spécifique de périphérique. Nous avons également
essayé de garder les méthodes aussi peu complexes que possible pour pouvoir les utiliser
dans un contexte industriel.

Résumé des Contributions

Les contributions de cette thèses sont organisées en deux parties, correspondant aux deux
problématiques mentionnées.

La partie II présente deux travaux liés à la première question de recherche que nous avons
mentionnée: comment produire des images à partir de champs de lumière? Il contient deux

10

(a) La photo n’est pas focalisée sur la région
d’intérêt.

(b) La photo est focalisée sur la région
d’intérêt.

Figure 3: Exemple de rendu d’image après la capture. Dans certaines situations, ajuster
le plan de mise au point est difficile. Sur la figure (a), nous montrons la photo que l’on
obtiendrait probablement avec une caméra conventionnelle, dans ce scénario dynamique.
Mais comme cette photo a été rendue à partir d’un champ de lumière, il est possible de
régler le plan de mise au point après que la photo ait été prise, comme illustré sur la figure
(b).

chapitres qui peuvent être résumés comme suit.

Chapitre 3 : Dans ce premier chapitre de contribution, nous présentons un pipeline
complet pour traiter le type particulier de champs de lumière produits par les caméras
plénoptiques focalisées. En particulier, nous proposons un nouvel algorithme de
calibration entièrement dans le domaine de Fourier, un nouvel algorithme pour le
calcul de cartes de profondeur utilisant une pile focale stéréoscopique et enfin, un
algorithme de rendu d’image basé sur la profondeur, capable de produire des images
nettes de partout. Les algorithmes proposés sont rapides, précis et n’ont pas besoin
de générer des images de sous-ouverture ou des images de plan épipolaire, ce qui est
capital pour les caméras plénoptiques focalisées. Le pipeline a été testé sur plusieurs
caméras plénoptiques et les images rendues étaient d’une qualité comparable à l’état
de l’art, même pour des solutions commerciales.

Chapter 4 : Ce court chapitre tente de résoudre le problème de la synthèse des vues
intermédiaires à partir d’un ensemble de 4 vues seulement. Les réseaux neuronaux
récurrents (RNN) sont utilisés pour déduire de manière itérative la couleur la plus
probable de la vue à synthétiser, à partir des 4 images d’entrées re-projetées sur
différents plans de profondeur. L’approche est nouvelle, présente une très faible
empreinte mémoire et peut être utilisée sur des scènes présentant toutes sorte de
disparités. Nous montrons que l’approche se comporte comme prévu et fournit des
résultats de bonne qualité dans un cas d’usage limité. Cependant, nous montrons
également que, dans son état actuel, la méthode ne se généralise pas facilement et
nous donnons des indications pour améliorer la méthode.

Ensuite, la partie III regroupe les travaux liés au problème de l’édition des champs de
lumière. Le but global de cette partie est d’assigner des labels pertinents à chaque rayon
du champ de lumière.

Chapter 5 : Dans ce chapitre, nous nous intéressons à la segmentation au niveau
pixel des champs de lumière, faite de manière interactive. Plus précisément, nous nous
concentrons sur l’utilisation de techniques bien connues de type champs aléatoires
de Markov (Markov Random Field) pour attribuer, à partir d’un ensemble épars
d’annotations utilisateur, un label d’objet à chaque rayon d’un champ de lumière. Le

11

(a) La caméra plénoptique Lytro Illum (b) La matrice de caméra de Technicolor

Figure 4: Exemples de système d’acquisition de champs de lumière. Sur la figure (a), nous
montrons une caméra Lytro Illum qui ressemble à une caméra réflex standard. Sur l’image
(b) est montrée la matrice de caméra utilisée à Technicolor [2], composée de 16 caméras
video.

plus grand obstacle à l’adoption des champs de Markov pour le traitement des champs
de lumière est le grand volume de données en entrée, qui rend rapidement impossible
toute tâche d’optimisation basée sur ce principe. Pour aborder ce problème, nous
introduisons une nouvelle représentation basée graphe qui exploite la redondance
dans l’espace des rayons afin de réduire la taille du graphe avant tout calcul intensif.
Nous proposons ensuite un algorithme de segmentation interactive du champ de
lumière par coupe de graphe qui utilise cette structure de graphe. Ceci garantit la
cohérence de la segmentation entre toutes les vues. Nos expériences avec plusieurs
ensembles de données montrent des résultats proches de la vérité terrain, compétitifs
avec les méthodes de segmentation de champs de lumière de l’état de l’art en terme
de précision et avec une complexité nettement inférieure. Elles montrent également
que notre méthode fonctionne bien sur des champs de lumière à échantillonnage
dense et parcimonieux. Nous montrons également un exemple de la façon dont
la segmentation obtenue peut être utilisée pour supprimer un objet d’une scène
capturée.

Chapter 6 : Pour les champs de lumière plus volumineux, l’énorme quantité de
données de grande dimensionalité pose des problèmes à l’édition interactive. Afin de
permettre le traitement des champs de lumière avec une complexité raisonnable, nous
abordons dans ce chapitre le problème de la sur-segmentation des champs de lumière.
Nous introduisons le concept de super-rayon, qui est un regroupement de rayons
dans et à travers des vues, en tant que composant clé d’un pipeline de traitement
de champ de lumière. L’approche proposée est simple, rapide, précise, facilement
parallélisable et ne nécessite pas d’estimation de profondeur dense. Nous démontrons
expérimentalement l’efficacité de l’approche proposée sur des jeux de données réels
et synthétiques, pour des champs de lumière échantillonnés de manière dense et
éparse. Comme les super-rayons capturent une information de géométrie grossière,
nous présentons également comment ils peuvent être utilisés pour la segmentation de
champ de lumière en temps réel et la correction du sous-échantillonage angulaire qui
apparaît lors de la refocalisation de champs de lumière épars.

12

Chapter 7 : Ce dernier chapitre de contribution est la suite logique du chapitre
6. Nous nous appuyons sur notre travail de super-rayons pour proposer la première
approche de la sur-segmentation de champs de lumière vidéo, appelée super-rayons
dynamiques. Cette approche peut être vue comme des superpixels temporellement et
angulairement cohérents. Notre algorithme a la même qualité que les super rayons
statiques et est également efficace en terme de mémoire en ce qui concerne le nombre
de trames chargées simultanément. En tirant parti de la puissance de calcul des cartes
graphiques, nos résultats indiquent des performances proches du temps réel.

13

14

Part I

Opening

15

16

Chapter 1

General Introduction

1.1 Context

I’ll never work without 3D again, even for small dialog scenes. I love the whole process. 3D opens
up the universe of even a small dialog scene [...]

Ridley Scott, film director and producer (Alien, Blade Runner, ...)

May it be for movies, video-games or even photography, it is clear that there is a particular
interest to give a sense of depth, of geometry to the content we wish to capture and deliver.
This makes sense, as after all, we have two eyes, we can move, we can focus our gaze
on a particular object, and as such, stereo disparity, motion parallax, focus blur are all
important geometric cues our visual system relies on. In the last years, several research
and industry fields have paid attention to the problem of capturing and restituting content
with this extra geometrical information, not necessarily present or easy to obtain from
mainstream, 2D imaging.

A great illustration of this investment are 3D stereoscopic movies. In less than 10 years,
they became a standard in the (high-budget) movie industry. The number of 3D movies
produced per year rose from 6 in 2007 to 52 in 2016 and the number of 3D worldwide
screen jumped from 45 546 in 2012 to 87 176 in 2016 [1].

Another example are contents for Virtual Reality (VR). The recent improvements in quality
and mass production of cheap head mounted displays (e.g. the HTC Vive, Daydream
project, Oculus Go to mention only a few) open up a new market for 360◦-stereoscopic
images and videos. Some of this content is captured from real scenes often using heavy
multi-camera systems, such as the MPC VR short movie Catatonic1, or more accessible
setups2 .

A last example, perhaps quite different from the other one, are smartphones. Motivated by
the fact that we are reaching the limits of sensors resolution and optical system that can
be packed inside, current generation smartphones now embeds a pair of cameras and use
image processing to produce the final image. Interestingly, the most popular application
for these stereo images is to produce an artistic defocus blur (bokeh) to give a sense of
depth to photos, an impossible task for a regular smartphone camera that typically has a
narrow aperture.

1http://www.moving-picture.com/advertising/work/catatonic-vr/
2The youtube official VR channel has more than 300 VR videos https://www.youtube.com/channel/

UCzuqhhs6NWbgTzMuM09WKDQ/videos

17

It is tempting to affirm that this taste for 3D cues in media is recent, but if we take
a brief overview of how we save and visualize events, we see that this idea is perhaps
part of a long chain of innovation focused on a wider goal: improving the capture and
the restitution of events to make it closer to the natural, volumetric perception we have.
The first challenge that has been solved is to take flat photos that actually look like the
original scene. Early 16th century improvements of the age-old pinhole camera with lenses
and diaphragms and the plethora of light-sensitive materials proposed during the 17th

and early 18th century, made possible to build the very first cameras. By the end of the
mid-19th century, the Daguerreotypy process was a wide-spread, commonly adopted mean
of photography. Interestingly, the first stereoscopic photographs were also produced during
this time and were quite popular. Color photography process came near the end of the
19th century to provide long-lasting colorful photos. The second milestone was to introduce
movement in pictures. The end of the 19th century notably saw the creation of the first
moving picture acquisition, with continuous improvements of the frame rate and image
quality. The third task was to make photos and video easy to capture and modify. This
was made possible by first, the invention of digital sensors, i.e. the Nobel-price-wining
CDD and later the CMOS, in the late ’60s, second by the democratization of cheap and
efficient electronics for smartphones and cameras between 1990 and 2010, and third, by
the development of image editing software, allowing to change a shot after its capture.
While this progress transformed the way we produce and consume media, the captured
signal did not fundamentally changed: it is still an image projection on a photo-sensible
material.

Nowadays, if we take the example of media we mentioned, the new challenge to solve seems
to be the capture and rendering of 3D-augmented contents. Despite the latest advances
in 3D imaging, this is still a partially-solved problem. For instance, generating the depth
maps for stereoscopic movies still requires a lot of tedious, expensive and manual human
interventions. VR movies are still quite expensive to produce and often rely on active
sensors to capture the depth of the scene, which have some limitations. Even on high-end
phones, the images generated by dual cameras are still worse than normal cameras. Errors
in the mentioned bokeh effect are particularly unpleasant, stressing the need for better
processing algorithms.

In this context, light fields imaging is a serious proposition to handle numerous aspects of
3D image capture.

1.2 Motivations and Goals

As its name suggests, a light field is the embodiment of the concept of representing light as
a vector field. It is a formal description of the intensities of a collection of rays, flowing
from and into every point in space. From a high perspective however, a light field is a
broad term referring to the simultaneous capture of a scene from several viewpoints. In
many cases, a light field can be represented as a collection of views describing the same
region of interest.

A lot of content falls into this generic definition. Frames from a video recorded by a moving
camera, photos of a building taken at different perspectives or even two views of a stereo
camera setup are technically light fields. We focus however on a particular instance, when
the light field is (approximately) structured, in the sense that the views must be taken
roughly on a plane and at a regular distance from each other. We also typically assume
the number of views to be greater than two. Because of these hypotheses, and in contrast

18

L R L R R L R L
Printed surface

Lenticular lenses

Observers

Figure 1.1: Lenticular print principle. We show a sketch in 2D for a sake of simplicity.
Two different images L and R are interlaced on a printed surface. The cylindrical lenses
re-projects rays from the printed surface according to their direction, such that observers
at two different viewpoints see image A and B respectively. This principle can be extended
in 2D, used with digital displays and with viewpoints without loss of generality, hence can
be used to show the views of a light field.

to a standard picture, a light field records a lot of information about the geometry of a
scene that can be recovered and leveraged for further processing.

A first and perhaps the most straightforward use for light fields is to directly provide
different viewpoints of the same scene. When combined with a display that de-projects
the captured rays by direction, it is then possible to simulate a change a viewpoint for a
moving observer. A well-known example of this are lenticular prints, quite popular for
postcards and other gimmicks. It uses cylindrical lenses over a printed image composed
of, often only two, interlaced images with different viewpoints or captured at a different
time (as sketched on Fig. 1.1). The modern version of such display are auto-stereoscopic
screens, that replaces paper with digital displays and use microlenses to de-project rays
vertically and horizontally. This allows a viewer to perceive depth and motion parallax
without any wearable apparatus.

Notwithstanding that the result of such displays can be quite surprising, because the number
of views a light field samples is limited, the transition between viewpoints can appear
abrupt, i.e. it suffers from aliasing. This motivates the second example of application:
synthesize extra viewpoints from the captured signal. In the special case when the views
are close enough, mixing consecutive views with an interpolation method compensate for
this effect. However, in the case when the view distance is large, information about the
scene geometry needs to be leveraged.

Because we capture a scene with varying viewpoints with know disposition, view parallax
allows for passive 3D reconstruction. While the disposition and number of views dictate
the kind of depth estimation method to use, the redundancy of the light field views and the
regularity of the sampling usually yields in high-quality depth maps. These depth maps
can then be used to generate meshes or very dense and accurate point clouds (example
of Fig 1.2a). Having a high-quality depth estimation from passive sensors is particularly
interesting for the 3D movie industry, as it needs less manual correction. It can also be
interesting in an industrial manufacturing setup when the inspection of often complex,
close-up and non-Lambertian objects is needed. For instance, the depth map in Fig. 1.2b
would be really hard to obtain with a stereo setup or active depth sensors.

This geometry information can be used for view synthesis as well, either as a hard or soft

19

(a) Point cloud from a light field (b) Depth map from a light field

Figure 1.2: Example of depth estimation from light fields. In (a) we show a rendering of a
point cloud obtained from a depth map estimated with a light field [2]. In (b) we show the
original view and a depth map for a very close-up and specular scene [3].

proxy. This is of a particular interest for VR displays, that do require a seamless change of
viewpoint to preserve a good user experience. A particularly impressive example of this is
the Welcome to light field3 VR demo.

Nevertheless, not all applications aim at providing several views. Because the rays captured
of a light field have known coordinates, it is possible to replicate the ray integration process
done by conventional cameras, only after the shot and with tweakable parameters. The
obtained so call synthetic aperture allows rendering images with varying depth of field and
focus plane from light fields. This is particularly useful in situations where the camera
focus is difficult to adjust (as illustrated on Fig. 1.3), or to produce animations from static
images (such as varying the focus plane to produce a blur discovery effect).

Kept for a long time as a theoretical concept, all these applications gained in momentum in
research and industry thanks to the recent development of light fields acquisition devices.
For instance plenoptic cameras or camera arrays (Fig. 1.4) have become increasingly
available in the past few years, from both the research and the industry side. We give a
review of this types of equipment in Chapter 2. The light fields they produce are quite
different in their sampling and in their nature. Indeed, in some cases, the captured light
field cannot directly be presented as a set of views, or the views are very far away. This
leads us to the first problem we address in this thesis: how to process and render images
from light fields for particular cases that are challenging and somewhat less explored in
the current literature.

Another problem is that it exists a plethora of methods and commercial solutions to
modify an image or a video (e.g. Photoshop, GIMP, Adobe Premiere). However, not a lot
of options are available in the case of 3D content, let alone light fields. This is quite a
shame since, possibly user-guided, interactions with light fields before further processing
could potentially open up the door for more advanced applications. This is the second

3https://store.steampowered.com/app/771310/Welcome_to_Light_Fields/

20

(a) Region of interest is out of focus (b) Region of interest is in focus

Figure 1.3: Example of post-shot image rendering. In some situations, setting the focus
plane can be challenging. Image (a) shows what is likely to be the output of a conventional
camera in this particularly difficult setup. But since this shot is rendered from a light field,
the focus plane of the picture can be set after the shot is taken, as shown on (b).

(a) Lytro Illum Plenoptic Camera (b) Technicolor Camera Array

Figure 1.4: Example of light field capturing devices. (a) A Lytro Illum camera, its form
factor is that of a regular DSLR. (b) Technicolor’s camera array[2] prototype, composed of
16 video cameras.

topic addressed during this thesis: how to interact with light fields prior to any further
alteration. Specifically the problem is two-fold. Since the content described by the light
field is redundant, we expect a modification to be consistent from a view to another. Also
in some cases, the amount of information captured is problematic if the editing method
does not scale with the volume of the input.

As an extra constraint, in this work, we tried to make no assumption on the sampling
density of the captured light fields. And most of the proposed approaches are not bound to
a specific type of device. We also tried to keep the methods as computationally tractable
as possible in order to be usable in an industrial setup.

1.3 Thesis Structure and Contributions

We structure this dissertation into 8 chapters and 3 parts.

21

In part I, this current introduction chapter gives a global understanding of the context
and problems addressed during the thesis. Chapter 2 then gives a broad background in
light field imaging. Specifically, we introduce the formal definition of light field along with
the relevant taxonomy and notations used in this work. We also discuss different ways of
capturing a light field and what new possibilities it provides.

Part II presents our contributions related to the first research question we mentioned : how
do we render images from light fields? It contains two chapters that can be summarized as
follow.

Chapter 3 : In this first contribution chapter, we present an end-to-end complete
processing pipeline tailored to handle the special kind of light fields produced by
focused plenoptic cameras. In particular, we propose a new calibration algorithm
fully in the Fourier domain, a novel algorithm for depth map computation using a
stereo focal stack and a depth-based rendering algorithm that is able to refocus at a
particular depth or to create all-in-focus images. The proposed algorithms are fast,
accurate and do not need to generate subaperture images or epipolar plane images
which is capital for focused plenoptic cameras. The pipeline is tested on several
focused plenoptic cameras and the rendered images are of a quality comparable to
the state of the art, even for commercial solutions.

Chapter 4 : This short chapter attempts to tackle the problem of variable baseline
views synthesis from only a set of 4 corner views. Recurrent Neural Networks (RNNs),
and in particular Long Short Term Memory (LSTM) cells, are used to iteratively infer
the most probable color of the view to synthesize from the 4 corner views warped at
different depth planes. The approach is new, has a very low memory footprint and
can be run on scenes with any range of disparity. We show that the approach does
behave as expected and provides high-quality results in a simple setup (generating
the central view only). However, we also show that, in its current state, the method
does not generalize easily and give directions to improve the method.

Then, part III groups our contributions related to our second research question : how
can we edit light fields? We focus on segmentation and over-segmentation for static and
dynamic light fields.

Chapter 5 : In this chapter, we are interested in pixel-wise and interactive light
field segmentation. Specifically, we focus on using well known Markov Random Field
(MRF) techniques to assign, from a sparse set of user annotations, an object label
to each ray of a light field. The greatest barrier to the adoption of MRF for light
field processing is the large volume of input data, promptly making MRF-based
optimization tasks intractable. To tackle this issue, we introduce a novel graph
representation that exploits the redundancy in the ray space in order to reduce the
graph size prior to any intensive computation. We then propose a graph-cut light
field interactive segmentation algorithm, that uses such ray space graph structure,
that guarantees the segmentation consistency across all views. Our experiments with
several datasets show results that are close to the ground truth, competing with
state of the art light field segmentation methods in terms of accuracy and with a
significantly lower complexity. They also show that our method performs well on
both densely and sparsely sampled light fields. We also show some examples of how
the obtained segmentation can be used for object removal.

Chapter 6 : For voluminous light fields, the huge amount of high dimensional data
yields challenging problems to interactive time edition. In order to enable light field
processing with a tractable complexity, in this chapter, we address the problem of light

22

field over-segmentation. We introduce the concept of super-ray, which is a grouping
of rays within and across views, as a key component of a light field processing pipeline.
The proposed approach is simple, fast, accurate, easily parallelisable, and does not
need a dense depth estimation. We demonstrate experimentally the efficiency of the
proposed approach on real and synthetic datasets, for sparsely and densely sampled
light fields. As super-rays capture a coarse scene geometry information, we also
present how they can be used for real time light field segmentation and correcting
refocusing angular aliasing.

Chapter 7 : This last contribution chapter is the logical sequel to Chapter 6.
We build on our super-ray work to propose the first approach for video light field
over-segmentation, called dynamic super-rays, which can be seen as temporally
and angularly consistent superpixels. Our algorithm has the same computational
advantage as static super rays, and is also memory efficient with respect to the
number of video frames. By leveraging GPU computational power, the results show
running times close to editing time.

Finally, in part IV, we close this manuscript by discussing contributions and future
perspectives in Chapter 8. The list of publications produced during this thesis and a
summary of the notations used in this dissertation can be found in Appx. A and B
respectively. In addition, C contains more results for Chapter 3. Because it is easier to
visualize, we display extra results for all the other chapters as videos hosted on different
web-pages.

23

24

Chapter 2

Background in Light Field

Imaging

2.1 Formal Definition

2.1.1 Definition and the Plenoptic Function

From a purely geometric point of view, light is composed of rays: directed lines in 3D
space that carry a certain intensity value, or radiance. Although light fields come in many
types and shapes, the fundamental concept is always the same: it is a representation of a
3D scene as a collection of light rays coming through every point in space and flowing in
all possible directions[4].

The plenoptic function[5] is often used to describe a light field.

R = Π(X, Y, Z, θ, ρ, f, λ) (2.1)

It maps a radiance R to rays parametrized with 5 to 7 components:

• a 3D position in space (X, Y, Z)
• a direction, represented by its polar coordinates (θ, ρ)
• optionally, a particular point in time f and a specific ray wavelength λ.

The temporal dimension is usually sampled depending on the framerate of the capturing
device and the wavelength is decomposed into 3 Red-Green-Blue (RGB) components.
Without any consideration about the range and sampling of the function, intuitively, the
plenoptic function can be used to represent all possible observable scenes. To generate a
conventional photo for instance, a pinhole camera samples Π at a range of (θ, ρ) for a fixed
(X, Y, Z).

2.1.2 The Lumigraph

However, capturing the entire or even a bounded sampling of the plenoptic function, is often
very difficult and yields a lot of redundant information. Indeed, if we take the reasonable
assumption that the air around an object, does not absorb or deflect light (i.e. has a
transmittance of 1 and a constant refractive index), all the ray intensities remain constant
along their path. This observation led to the Lumigraph representation [6]. The idea of the
Lumigraph is to only consider the plenoptic function at the surface of a hull, specifically

25

(s, t)

(x, y)

θ

ρ
(X, Y, Z)

Figure 2.1: Plenoptic function vs the two-plane parametrization: the ray flowing of the
left is sampled with the plenoptic function by 5 coordinates, (θ, ρ) being the direction and
(X, Y, Z) the 3D location of the sampling, while the ray flowing on the right is sampled
with the two-plane parametrization. A ray is described by 4 coordinates corresponding to
its intersection with two parallel planes noted (s, t) and (x, y).

a cube, enclosing the region of interest. Doing so, at every point in space outside of the
cube, one can trace-back a ray down to its surface and then get the corresponding ray
intensity value. Sampling rays at each face of the cube give a Lumigraph, and the full
Lumigraph is then constituted of the 6 cube faces. Although other shapes can be used for
the hull, e.g a sphere, the flat faces of the cube offer a very simple and convenient way of
representing ray coordinates: the two-plane parametrization [7, 8]. Each ray is described
by its intersection with two distinct and parallel planes that we denote (x, y) and (s, t) (as
illustrated on Fig. 2.1). Ignoring the optional terms, the plenoptic function reduces to the
4D light field function :

R = L(s, t, x, y) (2.2)

Similarly to the plenoptic function, a colored light field adds a color dimension, and a
dynamic light field gives radiance of rays depending on the time, or rather the captured
frame index f .

By convention, we call (s, t) the angular coordinates, as they define the angle of the ray
relative to the second intersection (x, y), the spatial coordinates. Using this terminology,
we can say that a pinhole camera only captures the spatial dimension of the light field, as
rays pass through a single aperture and lens, i.e a single point on the angular plane.

Note that we use the term pixel when handling the data at the sensor level and the term
ray otherwise. Also, although the term light field is more general, we adopt the common
practice to refer to a Lumigraph directly as light field, unless stated otherwise. This
confusion is perhaps due to the fact that most popular devices to capture a light field
actually produce Lumigraphs.

2.2 Acquisition and Sampling

A regular camera captures rays at different angles, as its aperture is non-punctual. However,
as rays from different viewpoints are projected to the same spot on the sensor by the main
lens, the angular information is mixed up, forming the focus blur of the camera, and is

26

Figure 2.2: Example of a light field captured with a camera array. Because a camera array
multiplexes the spatial dimension into the angular dimension, the result is a matrix of
views with different viewpoints.

very hard to recover. In contrast, light field acquisition devices sample both the angular
and spatial dimensions. We classify these devices into 3 broad categories.

2.2.1 Camera Arrays

Although the light field formalism we described is rather recent, the basis for its capture was
laid more than a century ago by Lippmann[9]. He proposed an imaging device composed of
an array of 12 small lenses on top of a photosensitive plate to capture a scene from different
viewpoints. The collection of images was then viewed through the same lens, providing a
different viewpoint for each eye, and depending on the pair of lenses the observer looks
into. The modern version of such apparatus, and the first class of light-field capturing
devices we are interested in, are camera arrays. As their name suggests, camera arrays are
matrices of synchronized cameras organized on a plane, often at a regular interval.

Considering the thin lens model and in the case where the cameras are identical and perfectly
placed, the collection of images is directly a Lumigraph, where cameras correspond to
angular samples, and each image captures the spatial dimensions. The light field captured
by a camera array can be represented as a matrix of views, as shown in fig. 2.2. Abusing
the notation, we can say that a camera array light field is L(s, x, t, y). Because each camera
has a different viewpoint, each view exhibits parallax. Also, because the baseline is usually
big, several zones of the image are visible only on certain views because of occlusions.

However in practice, because of misalignment and optical aberrations, the angular and
spatial sampling is not regular, or not even done on a plane. Camera calibration is then
needed to either rectify the images (but not without introducing errors) or use the calibration

27

parameters to establish the angular correspondence between camera views.

Most of the work presented in this thesis assumes the images to be rectified for the sake
of simplicity. Nevertheless, the proposed methods can be adapted to use the camera
calibration. The baseline, i.e. the distance between each pair of cameras dictates the
angular sampling while the sensor resolution fixes the spatial sampling. Most camera
arrays have rather big baselines and big camera resolutions yielding a spatially dense but
angularly sparse light field.

Designing a camera array is not trivial. The camera synchronization, their geometrical and
color calibration are big technical challenges. Furthermore, they are bulky and often power-
hungry. For these reasons, camera arrays are still quite rare, but there are a few notable
designs. The most impressive ones in the academic side are the Stanford camera arrays
[10] with their specific synchronization hardware, but other efforts have been proposed as
well [11, 12]. In the industry we find both experimental video camera arrays [2, 13] with
modern cameras, capturing high resolution and high frame rate synchronized sequences, as
we show in Fig. 1.4 in Chap. 1. Presently, on-the-shelf commercial solutions are mostly
available as a service (e.g. Radiant Images1), or are targeted towards 360 videos. But the
popularization of relatively cheap and fully controllable and synchronizable cameras (e.g
the Sony RX0 and its camera control box2) is likely to change this.

However, not all camera arrays are costly and cumbersome. Smaller all-in-one devices can
also be assimilated to camera arrays although they don’t have quite the same baseline, like
the Pelican Imaging Sensor[14], the ProFUSION-25C 3, wafer-level-optics camera array
[15] and, arguably, multi-camera smartphones that provide very few (2 or 3) views (e.g
the Huawei P20 Pro4) . In the same spirit, it is worth mentioning the Light 16 5 camera,
a dedicated phone-like device that combines 16 different sensors and cameras to produce
enhanced images.

2.2.2 Plenoptic cameras

The origin of the second class of device can also be traced back to the research of Lippmann.
Prior to proposing his 12-lens prototype, his approach was to use a great number of tiny
lenses or glass beads in front of a photosensitive material [9]. The desired effect would be the
same as for his other prototype, but the observer could move his head and observe different
viewpoints seamlessly. Unfortunately, the manufacturing of these so-called microlenses
turned out to be too difficult and he never managed to show a working appartus.

It is only one century later that actual prototypes were proposed. Adelson et al.[16] used an
array of pinholes to replace the microlenses proposed by Lippman. Equally, they placed the
pinhole array inside of a camera body, behind the main lens, directly in front of the sensor.
However, because of the low quantity of light passing into the pinholes, this approach was
producing very low-quality images. This concept truly gained in momentum when Ng et
al. [17] managed to use an actual microlens array instead of pinholes, making the first
so-called plenoptic camera.

A plenoptic camera also captures a Lumigraph. Indeed, in contrast to a regular camera,
when two rays coming from the main lens arrive at a same sensor spot with different angles,
instead of being integrated by one sensor pixel, they are re-oriented to different pixels by

1https://www.radiantimages.com
2https://www.sony.com/electronics/cyber-shot-compact-cameras/dsc-rx0
3https://www.ptgrey.com/Content/Images/uploaded/KB-Data/ProFUSION_25_datasheet.pdf
4https://consumer.huawei.com/en/phones/p20-pro/
5https://light.co/camera

28

Main lens focal plane

Main Lens

Sensor Plane

Micro Lenses

Figure 2.3: How a plenoptic camera captures a light field. We take an over-simplified 2D
plenoptic camera with 2 microlenses and 3 pixels. Here the angular plane corresponds to
the main lens plane and the spatial plane to the microlens plane. Therefore, each pixel
in a microlens image corresponds to the same scene point, represented here by its color,
imaged at different angles (i.e passing into distinct portions of the main lens). Conversely,
corresponding pixels between two microlens images correspond to two different scene points
imaged at the same angle, represented by the dash pattern (i.e they pass into the same
portion of the main lens).

the microlenses. In other words, the microlenses multiplex the rays by direction into the
sensor. Each image under a microlens, the so-called microlens image, corresponds to a
specific point of the image passing through the main lens. The two Lumigraph planes then
match the main lens plane and the microlens plane as shown in Fig. 2.3. Specifically, this
is achieved by placing the sensor plane in the focal plane of the microlenses, and having the
microlenses focused at infinity. The f-number of the main lens is also adjusted to match the
one of the microlenses in order to have the biggest possible microlens images but without
overlap between each of them.

Because the rays are multiplexed by direction into a single sensor, plenoptic cameras trade
spatial resolution for angular resolution. And because the distance between the microlenses
is very small, their angular sampling is dense. Conversely, because there is a limit to the
number of microlenses we can use, the generated images are fairly low resolution: the
spatial sampling is sparse.

In contrast to a camera array, a plenoptic camera multiplexes the angular dimension onto
the spatial dimensions, hence it captures what we could denote L(x, s, t, y). A light field
from a plenoptic camera is a collection of microlens images, as illustrated in 2.4a, that is
difficult to visualize. That is why a popular method is to de-multiplex the captured light
field in order to obtain the so-called subaperture images. It consists simply in gathering
pixels with the same relative position in a microlens image (i.e. with the same angle) and
placing them in a new image depending of the microlens image it came from (i.e. by spatial
coordinates). Doing so, we obtain an array of images similar to a camera array view matrix
but with much smaller baseline (see Fig 2.4b). The number of subaperture images depends
on the number of pixels underneath each microlens while the view resolution depends on
the number of microlenses.

Another way of slicing such light field could be noted L(s, x) and L(t, y). First proposed
to analyze a spatio-temporal volume [18], Epipolar Plane Images (EPIs) intuitively offer a
way to visualize pixel intensities as a function of its horizontal (or vertical) spatial and
angular coordinates. The obtained image, as in Fig. 2.4c for instance, is hard to make

29

(a) Microlenses images from a plenoptic cam-
era

(b) Sub-aperture images from a plenoptic
camera.

(c) An example of horizontal epipolar plane images from a plenoptic camera.

Figure 2.4: Example of light field captured with a plenoptic camera. (a) A plenoptic
camera multiplexes the angular dimension into a unique 2D sensor. Therefore, the raw
output of the sensor is a matrix of microlenses images imaging the same spot of the camera
main lens, but observed at different angles. Note that the white pixels correspond to the
gap between the microlens images and contain no data. (b) Reorganizing the pixels by
angle into different images gives a matrix of views called subaperture images, like a camera
array, but with a smaller baseline. (c) An epipolar plane image shows, for a fixed pair
of vertical (or horizontal) angular and spatial coordinates, the variations in intensities
depending on the horizontal (or vertical) angular and spatial coordinates.

sense of but is of particular interest as it allows direct study of intensity variations along
angular and spatial dimensions.

Although it is possible to produce EPIs for camera arrays, their sparse and limited angular
sampling makes any approach relying on EPIs suffer from aliasing.

There is a second way of designing plenoptic cameras, called focused plenoptic cameras[19],
that do not directly capture a Lumigraph. We specifically talk about this design in Chap.
3.

Apart from custom-made plenoptic cameras [17, 19], there are a few plenoptic cameras
available in the market. The Lytro 1 and Lytro Illum6 (that we display on Fig. 1.4 in the
introduction chapter) are two affordable cameras focused to the consumer level, while the
company Raytrix7 focuses on making high-end focused plenoptic cameras for the industry.
Some high-end camera (e.g. the Canon 5D Mark IV) also have a microlens covering two
pixels [20] and could arguably be considered as a light field camera, but in practice they
are used for auto-focusing.

6http://www.lytro.com/imaging
7http://www.raytrix.de

30

2.2.3 Other Devices

There are some devices that capture a light field but do not fall into the two mentioned
categories. Popular in this class are camera gantries, where a camera is moved, often along
a plane, and shots are taken at regular intervals. Intuitively, they are sampling the light
field in the same way as camera arrays but are relatively cheaper and somehow easier to
implement. For this reason, camera gantries were implemented before camera arrays [8].
The camera resolution and the displacement in between each shot dictate the spatial and
the angular sampling respectively. However, this type of device is obviously limited to
the capture of static light fields. A notable example of camera gantries is the simple but
exceptionally cost-effective Stanford Lego gantry8. An interesting mix between a camera
array and a camera gantry is also proposed by Google 9 for VR content generation.

Finally, it is worth mentioning that some more exotic devices use mirrors instead of lenses
to capture the light field [21, 22, 23]

2.3 Applications

From the few application examples we gave in Chap. 1, we can broadly separate light field
applications in the 3 following categories. First, we have the depth estimation methods,
that seek to extract explicitly the scene geometry from the captured light field. Then
image rendering techniques that aim at producing conventional images, either relying on an
explicit geometry estimation or not. Finally, the applications that leverage the geometry
information contained in light fields but do not fall into either of these two categories.
Because the body of literature related to light fields is quite large, we give a non-exhaustive
overview, rather than a comprehensive list of applications.

2.3.1 Geometry Estimation

Depth estimation from a pair of stereo cameras is one of the most well-studied problem in
the computer vision literature [24]. Classical correlation-based methods can be extended
considering several views instead of two [16, 12, 13] to robustify the estimation. But
there are several other ways of leveraging the views redundancy that are exclusive to light
fields.

Arguably, the first interest of having many viewpoints is to handle the occlusion problem,
i.e. when a scene point is visible on one view and not the other. This problem that is
ill-posed in classical stereo depth estimation becomes much easier to solve when reasoning
in terms of pixel visibility. This can be done by building explicitly pixel visibility maps
[25, 26, 27] in a conventional stereo estimation method. Alternatively, the distribution of
colors given by the views projected at different depth planes can be used to detect the most
probable depth plane and occlusion probability [28, 29]. These approaches, sometimes
referred to as depth from defocus, do not necessarily model occlusions explicitly and provide
unreliable depth maps. In that case defocus cues are usually combined with correspondence
techniques [30, 31, 32, 33].

Albeit exclusive to densely sampled light fields, the EPIs we mentioned previously are very
useful for estimating depth. The slope of the line formed by the pixels corresponding to the
same scene point in an EPI is proportional to the depth of the said point [18]. Structure

8http://lightfield.stanford.edu/lfs.html
9https://www.blog.google/products/google-vr/experimenting-light-fields/

31

(a) Image refocused on foreground (b) Image refocused on background

Figure 2.5: Example of refocusing. (a) and (b) are rendered from a light field and focused
on different depth planes.

tensors can then be used on the EPIs to measure the slope and infer the corresponding
disparity [34]. The depth values can be regularized [34] or given sufficient sampling, simply
filtered [35] to take into account occlusion and produce the final depth map.

2.3.2 Image Rendering

Traditionally, light field imaging belongs to the image-based rendering field which aims at
generating images from processing rather than direct sampling. One of the first example
was to generate new views after the capture by direct interpolation in the captured 4D
volume [8]. This is possible without computing any sort of explicit geometrical proxy given
a light field that is sufficiently angularly sampled.

In the opposite case, depth estimation is used to compute the corresponding rays of the
captured views and interpolation is done from these re-projections [6]. Of course, errors in
the depth estimation yield artifacts on the reconstructed images. Chapter 4 gives more
details on this particular case.

The other concept we mentioned is the synthetic aperture principle. Because a light field
captures rays sorted by angle, it is possible to computationally replicate the ray angular
integration happening inside of the body of a conventional camera [36, 37]. In other words,
we can render new images with arbitrary focus plane and aperture from a light field. In
the case of a Lumigraph, this is simply done by warping and averaging the light field, or a
subset, in the angular dimensions. I.e. if we take a reference view (s0, t0), an arbitrary
focus plane d and a set of views coordinates V , we produce a refocused image as :

Id
s0,t0

(x, y) =
�

(s,t)∈V

L(s, t, x − d(s − s0), y − d(y − y0)) (2.3)

The virtual aperture can be tweaked by letting V be a set of coordinates for the views
around (s0, t0) within a given distance. Fig. 2.5 shows how the light field in Fig. 2.4 can
be used for refocusing.

32

2.3.3 Other Applications

The angular information encoded in a light field can also be used for other purposes than
image rendering and depth estimation.

In the case of densely sampled light fields, the discrepancy between angular samples at a
given location can be used to classify material properties. For instance, non-Lambertian
surfaces, such as glass, yield irregular intensity in the angular dimension that can be used
to detect and extract objects [38, 39]. These same variations can also be used to learn
classifiers on objects materials [40], that can leverage the angular intensity changes to
robustify the classification.

Light fields can also provide a soft depth measure that, when combined with other clues,
can help to disambiguate difficult scenes. By studying the changes in sharpness at different
depth planes, it is possible to use an indirect depth measurement to help determine the
salience of objects in a scene [41]. This is especially interesting in cases where color is not
enough to differentiate objects. The angular intensity gradients can also be combined with
spatial gradients to learn descriptors embedding depth information, that can then be used
to learn a classifier that can differentiate between an actual 3D object, such as a face, and
its 2D image [42].

33

34

Part II

Light Field Image Rendering

35

36

Chapter 3

An Image Rendering Pipeline for

Focused Plenoptic Cameras
∗

3.1 Introduction

As we stated in Chap. 2, plenoptic cameras are divided into two categories, depending on
the microlens array position. Perhaps because of its accessibility and low cost, most of the
research focused on the original, type 1 plenoptic camera design.

In the type 1 design, the sensor is placed exactly at the micro-lens array focal plane, and
the micro-lenses are focused at infinity [43]. By construction, this yield that any pixel of a
microlens image represents exactly one point of the main lens (see Fig. 3.1a), hence only
one ray direction. However, as we saw in the introduction, this also means that the spatial
resolution of the captured light field is strictly equal to the number of microlenses, that is
fixed for each camera.

The type 2 or focused plenoptic cameras in contrast have the main lens focused in front of
the microlenses and the microlenses focused (hence the name) on the image formed at the
virtual plane of the mains lens [44] (as sketched on Fig. 3.1b). In this configuration, each
microlens image pixel images an area of the entrance pupil, integrating light rays with
different directions. This has for consequence that focused plenoptic cameras have the big
advantage of controlling the spatial and angular resolution trade-off. Another difference
concerns the generation of subaperture and epipolar plane images. As we presented in
Chap. 2, subaperture and epipolar planes images are easily generated by taking all pixels
at the same relative position in the microlens with respect to the microlens center [43].
On the contrary, because a microlens image pixel embeds information from several angles,
generating subaperture images on type 2 cameras requires to first estimate the depth
[45, 46]. Estimating depth directly from the microlens image is difficult and prone to error,
but other depth estimation techniques rely on subapertures or EPIs. In other words, in
the focused camera case, the image rendering is ill-posed.

In this chapter, we are interested in the entire processing chain to generate images from
focused plenoptic camera raw data. In particular, we address the problem of microlens
array calibration, depth estimation and finally the image rendering in a pipeline that can
be summarized in Fig. 3.2. Note that, despite its name, the calibration step is not referring
to the geometrical calibration of a conventional camera.

∗This work was partially done during my master thesis internship.

37

f

(a) Type 1 plenoptic camera

a
bf

(b) Type 2 plenoptic camera

Figure 3.1: The two plenoptic camera designs. (a) Given f the microlenses focal, in the
type 1, the sensor is placed at a distance f of the micro lenses, and the mains lens is several
orders of magnitude away from the microlenses. (b) In the type 2, the microlens array is
placed such that 1

a + 1
b = 1

f .

Specifically, the microlens array calibration algorithm we propose is entirely in the Fourier
domain and has proved to be fast, insensitive to noise and robust to different microlens
array configurations (different microlens radius, offset, rotation etc.). Furthermore, even if
it is not the scope of the chapter, we also give some hints on how our calibration could be
used on natural images and more complex microlens array geometries.

While our calibration is independent of the type of plenoptic camera, the method we
propose for depth estimation is specialized for type 2 cameras. Indeed, the main asset
of our approach is that subaperture images or EPIs are not computed. Instead, the
data captured in the sensor plane is directly projected into the rendering plane, in which
depth estimation is performed. This relaxes the mentioned chicken-egg problem (depth is
needed to render subaperture images but depth estimation is usually done on subaperture
images).

Finally, we show how the generated depth maps in the image domain can be used during
the rendering step. In particular, we show how to render all-in-focus images and how to
correct angular aliasing.

This chapter, in contrast to the rest of this dissertation, does not use the two-plane
parametrization but rather reasons directly in the sensor coordinate system. By convention,
we use the notation k, l for the sensor coordinates and m, n for the coordinates on rendered
images.

3.2 Related Work

Regarding plenoptic camera calibration several solutions have already been explored either
in the spatial domain [47], or using a combination of Fourier and spatial analysis [48, 49].
However, our algorithm estimates all parameters on the frequency domain which has the
advantage of being fast and accurate.

In the literature, plenoptic depth estimation has aroused great interest and many research
works have been published. We classify them in four different approaches depending on

38

Raw light field I

Center
Estimation
(Sec. 3.3)

(ok, ol)
Stereo

Focal Stack
Rendering

Ig
l , Ig

r

Focus Map
Estimation
(Sec. 3.4)

gf
Rendering
(Sec. 3.5)

Output image

Figure 3.2: Proposed pipeline to process a raw light field captured with a focused plenoptic
camera. Microlens centers are first estimated. Then a stereo focal stack is computed
projecting directly the data from the sensor. The stereo focal stack allows to estimate a
focus map, which is used in the final rendering step.

the image type they consider as input: subaperture images, microlens images, EPIs or
refocused images.

First, subaperture image-based depth estimation methods rely on the fact that computed
subaperture images from plenoptic cameras are well rectified images with constant baseline.
Among these techniques, we can find local block-matching [16, 50, 51] and global matching
methods [52, 53, 54]. Then, microlens-based depth estimation methods consider each
microlens image as separated camera images with a very small baseline. For this type
of methods local and global approaches are also adapted to the plenoptic framework. In
[44, 55, 56] a block-matching algorithm for microlens images is used, and [57, 58, 59]
formalize the problem as an energy minimization task in which cost volumes are computed
for each microlens.

As we presented in the background section, another type of method for plenoptic depth-
estimation uses EPIs with different strategies to extract the depth information from the
EPIs gradients [60, 61, 31, 32, 62].

Finally, other approaches use refocused images or images in a focal stack to perform depth
computation [63, 64]. However, when defocus cues are used they are usually combined
with other measures [31, 52] because of their poor accuracy.

Among plenoptic depth estimation methods we would like to highlight some recent ap-
proaches that explicitly estimate occlusions and seem to give the best results. Occlusions
can be detected by studying the variance of the pixel re-projections on several views as in
[29] or an occlusion coefficient can be used in a regularization framework. For instance, [65]
statistically computes the probability of a pixel to be in an occlusion boundary, [33] uses
the log likelihood of the probability of the pixel color to appear in the projected views and
[26] compares depth and variance of occluding candidates normalized by the region mean
(to handle uniform areas). It is also possible to learn occlusion and depth simultaneously
as in [66].

While plenty of contributions on plenoptic depth estimation significantly improving the
state-of-the-art have been published the last years, few papers address the problem for the
type 2 plenoptic setup. Moreover, almost all the proposed approaches rely on re-sampling
the captured light field to a traditional subaperture image-based representation. Yet,
subaperture images or EPIs are not well adapted to type 2 plenoptic cameras [44, 67].
Indeed, it has been proved [68] that subaperture images suffer from strong aliasing artifacts
(even with anti-aliasing filters) which affects depth estimation. But above all, as mentioned
in the introduction, estimating subaperture images or EPIs for type 2 plenoptic cameras is

39

Figure 3.3: Subaperture image from a focused plenoptic camera estimated with the approach
in [45]. Note the microlens artifacts on the two zoom-ins that may be detrimental to
depth estimation. Unlike type 1, rendering subaperture images without errors in a type 2
plenoptic cameras requires to know the depth. Our approach circumvents this problem
estimating depth without subaperture images.

prone to errors. In [45], the authors point out that depth needs to be known for computing
subaperture images on type 2 cameras while depth estimation methods are based on
subaperture images (chicken-egg problem). So, in [45] it is proposed to stitch hexagonal
patches of different diameters to form the subaperture images. Since depth is unknown,
the diameter is computed such that the gradient at the patch borders is minimized. This
processing is not without errors, especially in the out of focus areas and objects edges (see
Fig. 3.3).

Microlens-based methods [44] can be a good alternative for focused plenoptic cameras
provided the size of the microlens are big enough as it happens to be with the Georgiev’s
prototype, but this is not always the case.

In this context, our motivation is to provide a depth estimation method that works with
arbitrarily sized microlenses and operates in the refocusing image domain without the need
of subaperture images or EPIs. This approach has the advantage of creating depth maps of
the resolution of the final rendered image and that are not affected by subaperture image
rendering artifacts.

Concerning plenoptic image rendering, many algorithms have been proposed since the
pioneer work of [43] using the Fourier Slice Theorem. On the one hand, there are approaches
using subaperture images (shift and add) [49, 69] and on the other hand, the approaches
using the projection rendering algorithm [48, 70] which are the closer works to ours.

3.3 Plenoptic Image calibration

In this chapter, plenoptic calibration refers to estimating the microlens image centers (see
[71] for a complete plenoptic camera calibration method). More precisely, in our calibration,
we compute the microlens image diameter �, the translation offset (Tk, Tl) and the rotation
α with respect to the coordinate system given by the sensor array (see Fig. 3.4).

40

�

Tk

Tl

α

Sensor Array

Microlens Array

Figure 3.4: Micro-lens array calibration parameters. Microlens images (of diameter �) are
arranged in a hexagonal grid and pixels in a squared grid. Microlens images are misaligned
with respect to the pixel grid. There is a rotation of angle α and a translation offset (Tk, Tl)
between the origins of both grids placed at the most top-left pixel and microlens image
respectively.

+ + =

Figure 3.5: An ideal white plenoptic image is a sum of three 2D cosine images. The
intersection of the lines along which the 3 cosines oscillate defines the offset T of the white
image.

The pixel coordinates (ok, ol) of the (k, l)-indexed microlens image center are computed as:

�

ok

ol

�

=

�

Tk

Tl

�

+ �

�

1 1/2

0
√

3/2

� �

cos(α) −sin(α)
sin(α) cos(α)

� �

k
l

�

, (3.1)

where (k, l) ∈ Z
2 are the elements of an integer grid.

Our approach leans on the observation that a white plenoptic image Iw can be modeled as
a sum of three 2D cosines (see Fig. 3.5), oscillating at different angles:

Iw(k, l) =
1

3

2
�

i=0

cos
�2π

�
ηi(k, l)

�

, (3.2)

with ηi(k, l) = (k−Tk) cos
� iπ

3
+α

�

+ (l−Tl) sin
� iπ

3
+α

�

.

Consequently, its Fourier transform F (Iw) is a Dirac comb function. In this work we
propose to estimate all calibration parameters α, � and T directly from F (Iw).

Let F m and F p be the magnitude and phase of F (Iw). Let ξ0
i ∈ Z

2 be the pixel coordinates
of the i-th peak (local maxima) of F m obtained by thresholding. In practice our threshold
is fixed to 100 ·Variance(F m). Note however, that the peaks of the Dirac comb in the
frequency domain need to be evaluated with great accuracy (much below the pixel size) in
order to obtain precise microlens image centers. Inspired by [72], the final peak locations
ξi = ξ0

i + Δξ0
i ∈ R

2 are estimated with sub-pixel accuracy.

41

(a) Real white Raytrix image (b) Synthesized white image

(c) Fourier transform of (a) (d) Fourier transform of (b)

Figure 3.6: Comparison of a white image synthesized with our model (b) versus a real
white Raytrix image (a). The two images are visually similar, but the important similarity
lies in the Fourier frequency spectrum (c&d). The Fourier transform of an ideal white
image is a perfect Dirac comb with 6 peaks at a constant frequency radius (c). On real
white image many replicas appear. Our algorithm selects the six concentric peaks with
highest energy (d).

More precisely, each component of Δξ0 = (Δξ0
u, Δξ0

v) is computed as

sign
�

F m(ξ+) − F m(ξ−)
� M

M + F m(ξ0)
,

where M = max
�

F m(ξ+), F m(ξ−)
�

) , (3.3)

and ξ+ = (ξ0
u + 1, ξ0

v), ξ− = (ξ0
u − 1, ξ0

v) when estimating Δξ0
u and ξ+ = (ξ0

u, ξ0
v + 1),

ξ− = (ξ0
u, ξ0

v − 1) when estimating Δξ0
v .

The number of peaks, card(i), is equal to six in the ideal case of the white image being a
sum of pure cosines (Eq. 3.2) but many replicas appear on real images. In that case, we
select the six peak locations with most energy and at the same distance from the center
(Fig 3.6).

The microlens images diameter and the rotation are then computed as

� =
N

1
6

�6
i=1 ρi

, (3.4)

α =
1

6

6
�

i=1

mod

�

θi,
π

3

�

, (3.5)

where θi and ρi are the polar coordinates of ξi, N is the size of the white input image and
mod is the modulo function.

Finally, the lines along which the three cosines oscillate (color lines in Fig. 3.5), intersect
at the offset phase T. Considering only three peaks among the six not being symmetric,
we define the oscillation lines as

Λi=1,2,3(k) := k sin

�

θi +
π

2

�

− l cos

�

θi +
π

2

�

+
F p(ξi)

2π
= 0 , (3.6)

42

Table 3.1: Errors (Euclidean distances) of our approach and the method in [47] with several
parameter variations.

Parameters Mean Error

� α Tk, Tl Γ V (10−2) Ours [47]

10.1 0.03 -5 0 1.7 0.01 0.0821 0.0365

10.2 // // // // 0.1357 0.3741

10.5 // // // // 0.3139 0.3150

10.8 // // // // 0.1886 0.0209

10 0.01 -5 0 1.7 0.01 0.0887 0.0817

// 0.04 // // // 0.0923 0.0355

// 0.05 // // // 0.0929 0.3288

// 0.1 // // // 0.0937 0.0349

10 0.03 -5.1 0 1.7 0.01 0.0911 0.0280

// // -5.5 0 // // 0.0982 0.3165

// // -5 0.1 // // 0.0905 0.0379

// // -5 0.5 // // 0.1168 0.3489

10 0.03 -5 0 2 0.01 0.0882 0.0590

// // // 1.5 // 0.0916 0.3580

// // // 1 // 0.0954 0.4166

// // // 0.7 // 0.0972 Fail

10 0.03 -5 0 1.7 0.015 0.0900 0.0410

// // // // 0.03 0.0893 0.0776

// // // // 1 0.0905 0.3749

// // // // 10 0.0904 Fail

where k = (k, l). We write the three line equations as Ak = B and its solution T =
(AT A)−1AT B is estimated by least squares.

Note that our model is not a perfect fit of a real white image but in the Fourier domain it
reproduces with high accuracy the behavior of real white images. (Fig. 3.6)

For the comparison of our method with existing techniques, Fig. 3.7 show two crops of
our result and the result of [47] using a white image captured with our Raytrix R5 in
an integration sphere. The distance between the calibrated centers is of the order of 0.1
pixels.

In the absence of ground-truth for plenoptic calibration, we have tested our algorithm
with synthetic white plenoptic images, generated using Eq. 3.2. We have verified its
robustness with many parameter values for T, α and � simulating different plenoptic
camera configurations. We have also added Gaussian noise of variance V and simulated
different camera apertures by Gamma-correcting the white image by a factor Γ. For
the sake of comparison, we have also estimated in all of our tested synthetic images the
microlens images centers with the method of [47], a full spatial calibration method. Tab.
3.1 shows the average Euclidean distance between the real and estimated centers with the
two methods. The error has been computed for different microlens array configurations,
amount of noise and the simulated apertures. In average, both methods are comparable,
but we have observed a larger robustness in our solution (smaller variance) when changing
the parameters.

Also, the algorithm in [47] has failed in two cases. While this error distance allows to
measure the robustness of the proposed method, a calibration ground-truth would be

43

(a) Microlens image close to optical center (b) Microlens image at the sensor border

Figure 3.7: Comparison of the calibration in [47] (green) and ours (blue) for two microlenses
near the image center (a) and the image border (b), which has a cat-eye shape due to
vignetting.

required to assert the superiority of a calibration method over another.

Our model assumes � to be constant which is sound given that microlens manufacturing
accuracy is of the order of 0.01 pixels (our calibration being accurate at ∼ 0.1 pixels).
However, the sensor plane might be slightly tilted with respect to the microlens array. We
have not included this aspect in our implementation but it could be modeled knowing that
such a tilt would make the 6 peaks to be around an ellipse. In that case the major and
minor axis ratio would provide the angle tilt.

We have also noticed that the proposed method is extremely robust and does not require
the images to be demozaiced. Also, we have observed that it would also work on natural
images provided a bright uniform area appears in the scene (Fig. 3.8). In the case of video,
it would be sufficient to integrate and clip the radiance of the raw image.

3.4 Proposed Depth Estimation Method

In this section we present our method for depth estimation. Unlike other methods we
compute a focus map which gives the in-focus value of each pixel without using defocus
cues but stereo matching. The novelty of our method is that we first compute a so-called
stereo focal stack, then stereo matching is performed for each of the pairs of images of
the stereo focal stack and, finally, the obtained disparities are combined to obtain a focus
map.

3.4.1 Stereo Focal Stack Computation

A focal stack is a collection of photographs focused at different depths. In order to render
each image (slice) Ig of the focal stack, refocused at the focal value g, we use the projection
algorithm as in [48, 70]. This is, each pixel (k, l) of the raw light field I belonging to the
microlens with center coordinates (ok, ol), is projected at position

(k�, l�) =
�

σ(g(k − ok) + ok), σ(g(l − ol) + ol)
�

, (3.7)

44

(a) Natural raw Raytrix R5 image (b) Zoom on the microlenses

Figure 3.8: Calibration on a natural raw plenoptic image (a) and a zoom on the microlenses
calibration (b).

where σ controls the size of the rendered image. Formally, the refocused image is computed
as

Ig(m, n) =
1

W (m, n)

�

k,l

K(k� − m, l� − n)I (k, l) ,

where W (m, n) =
�

k,l

K(k� − m, l� − n) ,

and K(u, v) =

�

1
u2+v2 , if ||(u, v)|| < 0.5

0 , otherwise.

(3.8)

K being a fixed kernel with a very small support (4 closest pixels from the projected
coordinates). Note that when a splatted pixel falls very near an integer pixel coordinates,
the corresponding weight goes to infinity, which is the behavior we seek (no interpolation
is needed from the other pixels). In practise, we add a small constant to u2 + v2 to avoid
the division per 0 while preserving the expected behavior.

Now, a stereo focal stack is rendered using Eq. 3.7 and Eq. 3.8 but separately for pixels
(k, l) belonging to the left part and the right part of the microlens images (see Fig. 3.9).
This strategy creates a stereo pair of images Ig

l and Ig
r for each focus value g.

The size σ depends on the desired image size. A too large σ leads to a low density in the
refocusing plane of the projected points (k�, l�), requiring interpolation to fill the areas with
no splatted pixels. In contrast, if σ is too small, small details will be lost. Also, given a
fixed size σ, the spatial resolution on the refocus plane depends on the depth of the scene
as pointed out in [70].

In practice, σ is chosen to be a good compromise for the range of depth values in the scene
and the range of g is picked manually depending on the scene content. Besides, after fixing
σ, the projected points (k�, l�) falling outside the refocus image plane are not considered,
so all slices on the focal stack have the same size. Also inspired by [70], demosaicing is

45

I

M
ic

ro
le

n
s

cu
t

Ig2

l

. . .

Ig2
r

. . .

R
ef

o
cu

si
n
g

g1 g2

Ig1

l

Ig1
r

Figure 3.9: Stereo focal stack computation. Points in the raw light field are projected
separately depending on their positions on the microlens. Points belonging to the left (resp.
right) side of the microlens are projected into Ig

l (resp. Ig
r). For each g, Ig

l and Ig
r is a

rectified pair of stereo images such that points at the focus plane g appear sharp.

done during the rendering step, so the color channels are projected separately with Eq.
3.7.

3.4.2 Focus Map Estimation from the Stereo Focal Stack

In the following the pixels coordinates will be omitted but note that images, and focus and
disparity maps are defined for each pixel (m, n).
Proposition 1. Let gf be the value for which a certain point on the scene is in-focus.
Then, for any focus value g, the difference between g and gf is proportional to the disparity
dg of this point in the stereo pair of images Ig

l and Ig
r . Also, a point appears in-focus in

the refocused images Ig
l and Ig

r (i.e. g = gf) if and only if its corresponding disparity is
null (dg = 0).

Proof. Let us consider a point in the scene that is seen by two microlenses (Fig. 3.10).
The same reasoning is valid for more microlenses but we consider only two for the sake of
clarity. Let k1 and k2 be the x-coordinates in I of this point and Δ the distance between
them. Using Eq. 3.7 we know that for each g, the disparity dg of the corresponding points
in Ig

l and Ig
r is

dg = k�
2 − k�

1 = σ(g(k2−c2)+c2) − σ(g(k1−c1)+c1)

= σ(g(Δ − �) + �) .
(3.9)

Now dg = 0 if and only if

g =
�

� − Δ
, (3.10)

which turns out to be the value gf for which a point is in-focus (i.e. image points of a
same scene point are projected at the same position).

46

From Eq. 3.9 and 3.10 we get the relationship between the refocusing parameter g used
for rendering and gf the value at which the point is in-focus

g =
1

σ(Δ − �)
dg + gf . (3.11)

From the previous proposition we know that there is a linear relationship between g and
dg and estimating the focus gf is equivalent to estimating the value g such that dg = 0. In
practice, gf is estimated as the root of the line passing through two points (g1, dg

1) and
(g2, dg

2) for two particular focus values g1 and g2. Precisely,

gf = dg
2 − g2

dg
1 − dg

2

g1 − g2
. (3.12)

In order to compute Eq. 3.12, it is sufficient to render two pairs of stereo images at g1

and g2 and to estimate the corresponding disparities dg
1 and dg

2. Notice, however, that it is
possible to estimate the corresponding disparity dg for each slice of the focal stack. In that
case gf is the root of the regression line of all (g, dg). This solution produces slightly more
accurate results at the expense of greatly increasing the computational cost. This is why
in our algorithm the focus map at each point is estimated using Eq. 3.12 which is a good
trade-off between accuracy and complexity.

Note that, our algorithm does not compute subaperture images but projects the information
into the refocusing plane. Also, our focus map has the same size than the rendered images
(same σ value). Besides, it is interesting to point out that since the projection is done
in a stereo focal stack it creates a parallax at each slice g. Thanks to this parallax, any
binocular stereo algorithm can be exploited for evaluating dg. Depending on the desired
accuracy and complexity any algorithm robust to blur can be used. In this work we have
used the algorithm presented in [73] because it is multi-scale (thus robust to blur) real-time
and accurate.

3.5 Rendering using a Focus Map

3.5.1 Adaptive Splatting for Refocusing

Inspired by [48, 68] we define a splatting kernel K � to be used instead of K in Eq. 3.8. K �

adaptively changes for each point of the scene. In particular, we exploit the focus map
obtained previously to define a Gaussian-like splatting kernel

K �(u, v) = exp
�

−
�

(k� − u)2 + (l� − v)2

λ |gf (u, v) − g| + ε

�

, (3.13)

where ε is a very small value to avoid dividing by zero and λ controls the weighting of
the spatial distance to (k�, l�) and the g focus difference. The Gaussian-like kernel K �

aims to penalize distant points from (k�, l�) while its standard deviation results from the
difference in absolute value between the refocusing value g and the in-focus value of the
point gf (u, v).

The idea behind the weighting is that the kernel K � has a small support when the point
is in-focus (i.e. g = gf (u, v)). On the contrary, the farther g is from gf , the bigger the

47

c1

k1

c2

k2
Δ

�

(a) Raw light field

k�
1 = k�

2

(b) Point in-focus in the refocused image (g = gf)

k�
1 k�

2

dg

(c) Point out-of-focus in the refocused image g �= gf . The left (green) and right (orange) parts of
the microlenses form the left and right slices of the focal stack respectively.

Figure 3.10: Projection of a scene point visible on two microlens images (a). Both points
are projected at the same position (dg = 0) when the point is in-focus, i.e. g = gf (b) and
there is a shift dg �= 0 when the point is not in-focus (c).

support of K � which increases blurriness at that particular point. Besides, the splatting
strategy also helps to densify the rendered image. Indeed, we know that in particular cases
several values of (k, l) are projected to the same point (k�, l�) or different values of (k�, l�)
but very close from each other creating areas with few, or no pixel contributions [70].

One problem that rises, when using splatting is the spreading of background out-of-
focus pixels intensities on foreground pixels, creating unwanted artifacts around edges of
foreground objects. To overcome this issue we use a bilateral filtering strategy. We alter
the kernel in such way that background pixel values are not propagated on the kernel area
where the depth is inferior to the depth of the splatted pixel. The depth reshaped kernel is
defined as K �� = K � ◦ S where

S(u, v) =

�

1 , if gf ([k�], [l�]) > gf (u, v),

0 , otherwise.
(3.14)

Thus, S is not null when the point (u, v) is behind ([k�], [l�]). The refocusing is performed
as in Eq. 3.8, replacing K with K ��.

3.5.2 Gathering for All-in-Focus Rendering

Splatting can also be seen backwards. Instead of spreading the ray values around the
splatting coordinates, it is possible for a pixel (m, n) in the refocused image, knowing gf ,
to compute the corresponding set of coordinates (k, l) of pixels in the raw light field that
see (m, n):

(k, l) =

�

u
σ

− ok

gf (u, v)
+ ok ,

v
σ

− ol

gf (u, v)
+ ol

�

. (3.15)

We call this approach gathering, in the sense that we aim at integrating ray-pixels from the
raw light field rather than projecting them into a refocused image. Doing so, we integrate
only the pixel describing the same scene point, creating an image that is sharp everywhere.
This is similar to the approach proposed in [55], but in our case, the depth information

48

is contained directly in the refocused image domain, not in the raw light field domain.
Formally, the all in-focus image is computed as

Ia(m, n) =
1

W (m, n)

�

ok,ol

Kok,ol
(m, n)I ([k], [l])

where W (m, n) =
�

ok,ol

Kok,ol
(m, n)

and Kok,ol
(m, n)=

1
{k}2+{l}2 , if ||(k, l)−(ok, ol)||<

�
2 ,

0, otherwise

(3.16)

where {a} is the decimal part of a and K checks if the back-projected pixel is visible on a
microlens image of center (ok, ol) (i.e. it is null if the back-projected pixel coordinates (k, l)
is outside of the microlens image) and otherwise, weighs the pixel contribution according
to its distance from the (non-integer) back-projected image coordinates. Carrying the
microlens image visibility test for all microlens images can be extremely heavy. However,
a pixel (m, n) can only be seen within a small radius around (m/σ, n/σ) in the raw light
field. That is why, in practice, the search for the microlens images can be bounded to few
microlenses.

Note that depending on its depth, one pixel may receive incomplete color channel in-
formation. In that case, we interpolate with the neighbourhood pixels in the raw light
field.

3.6 Experiments

In this section we show the results of our depth estimation and rendering algorithms. We
show experiments on Raytrix R5 data we have captured, on a Raytrix R11 dataset1 and
on the Georgiev’s dataset2 for comparison purposes. As far as we know these are the
only available type 2 plenoptic datasets providing raw data, which is the input of our
pipeline.

For the Raytrix datasets we use the calibration described in Sec. 3.3 on the white images we
captured or the given white images from Raytrix. For the Georgiev dataset, the white images
not being available, we have manually calibrated them (squared big microlenses).

In our experiments we divide the raw light field by its corresponding white image to correct
vignetting, and we fix σ = 0.5. Our focus map is neither filtered nor regularized.

Fig. 3.11a shows the focus map of one of the images of the Raytrix R5 dataset. The two
focus slices are rendered at g = 2.5 and g = 5.5. The corresponding all-in-focus image
in Fig. 3.11b is entirely sharp, demonstrating the validity of the focus map. Fig. 3.11c
and Fig. 3.11d compare two images refocused using adaptive splatting, refocused on the
background and the donkey flank respectively.

We notice that adapting the kernel allows to recover the details of the objects in-focus
while showing a uniform blur in the out-of-focus areas.

Appx. C contains more examples of depth estimation and rendering of our R5 dataset.

1Available online: https://www.raytrix.de
2Available online: http://www.tgeorgiev.net

49

(a) Focus map (b) All-in-focus image

(c) Refocusing with g = 2.6 (d) Refocusing with g = 4

Figure 3.11: Results on the donkey dataset captured with a Raytrix R5 camera. In (a) we
show a computed focus map, in (b) an all-in-focus image rendered from the focus map. In
(c) and (d) we show two images refocused with our adaptive splatting approach.

Fig. 3.12 compares the obtained focus maps with the manufacturer depth map for a Raytrix
R11 camera (most likely obtained with the microlens-based approach in [55]). We notice
that the errors introduced by our method are essentially different than Raytrix’s.

Indeed, our algorithm performs better in uniform areas (e.g. region between the arm and
head of the pilot). Nevertheless, our algorithm is more sensitive to the reflection halos
(e.g. specularities into the ship’s wheel). Also, our algorithm generally has a better edge
preservation while Raytrix depth maps suffer from fattening (e.g. branches of the forest).
Fig.3.14 compares an all-in-focus image provided by Raytrix with ours. In general, our
refocused images are comparable to Raytrix quality (more images can be found in Appx.
C).

On Fig. 3.13, we compare our depth maps with the results in [61, 67]. We can see that
our method allows to recover more depth planes than the two microlens-bases approaches
[61, 67]. This is due to the fact that our depth measurement is done on the image domain,
with a bigger baseline than in the microlens domain. The depth maps for the rest of the
Georgiev’s dataset are available in Appx. C.

Regarding the refocusing, Fig. 3.15 shows how adaptive splatting compensates for angular
aliasing and the sparse image sampling (pixels with no contribution are visible as 0 channel
values) that arises when using a fixed splatting (Fig. 3.15a). The images on Fig. 3.15b to
3.15d show the effect of changing the blur parameter λ.

Discussion : Our microlens centers calibration algorithm has been tested with real white
images and natural images captured with a Raytrix camera in addition to our simulated
white images. We have observed that both estimations provide very close microlens image
center positions for the great majority of the scenes we captured. Besides, our calibration

50

A
n
d
re

a
P

il
ot

W
at

ch
F

or
es

t

Reference Image Raytrix Ours

Figure 3.12: Comparison of our depth maps with R11 test images provided by Raytrix.
In general, our method deals better with objects borders and poor textured region but it
provides erroneous disparities in specular regions.

method is fast (less than 0.2 seconds for Raytrix R5 images in our Matlab implementation)
and could be used to monitor the microlens image center positions dynamically on a
plenoptic video. These two features are of major interest if the plenoptic camera has a
zoom lens or interchangeable lenses. In that situation, calibration could be done "on the
fly" from the captured sequence which is not possible with existing methods.

Usually, the resolution of the final depth map is substantially smaller than the size of the raw
light field for most of the state-of-the-art methods. In fact, the resolution depends on the
considered image type for depth estimation (subaperture images, microlens images, EPIs
or refocused images). For instance, the size of each Lytro subaperture image is 328 × 328
pixels which produces rather small depth maps (without super-resolution algorithms). In
that sense, depth estimation on the refocused image plane provides the best resolution.
In our approach, the resolution of the depth map and the rendered image are tuned with
parameter s. The interesting point is that the depth map perfectly matches in terms of
spatial resolution the rendered image which is a real advantage for depth-based editing
tasks or in the rendering process itself as we have seen in Sec. 3.5.

About the limitations of our approach, as for all the depth-based rendering approaches,
errors during the depth estimation produce artifacts in the final images. When this occurs
in uniform areas (which is often the case because of the stereo matching algorithm), it has
few consequences on the rendering. However, for errors on textured zones, artifacts may

51

Z
h
en

gy
u
n
1

S
er

gi
o

Reference Image [67] [61] Ours

Figure 3.13: Comparison of our depth maps with [67] and [61] using the Georgiev’s dataset.
Our approach is able to discern more depths and is more accurate. See the level of detail
in the background of Zhengyun1 or the faces in Sergio.

(a) Raytrix (b) Ours

Figure 3.14: R11 all-in-focus rendering on test image Andrea for the Raytrix software (a)
and our method (b). The fine details on the eyelashes are well recovered using our technique.
Note that Raytrix uses a color and contrast correction and potentially a sharpening filter
on their output images.

be visible. Fortunately, stereo algorithms are usually robust in textured areas.

Also, even if the presented pipeline is particularly adapted for Raytrix cameras, we have not
taken into account the tri-focal property of the microlens array. Taking it in consideration
during the splatting process will surely improve the rendering image quality.

Note that different disparity estimation algorithms could be used in our framework [24].
However, the goal of this chapter is not to compare such methods but to show that the
depth estimation problem in a plenoptic camera can be treated as a stereo problem via a
stereo focal stack and without estimating subaperture images. In fact, our depth estimation

52

(a) No splatting (b) λ = 2 (c) λ = 3 (d) λ = 5

Figure 3.15: Refocusing via point projection without splatting using Eq. 3.8 (a) and
adaptive splatting for different λ (b-d) on a region of the test image R11 Pilot. We can see
that the adaptive strategy compensates for angular aliasing and that blur intensity can be
controlled by the parameter λ.

strategy could also be applied to type 1 data but it would not be optimal. In that case, our
half-apertures would not capture all the angular information as all the subaperture images
do in a type 1. We believe however that this is a good alternative for focused plenoptic
cameras for which subaperture images are not available without errors.

Moreover, it is interesting to point out that the proposed approach is somehow related to
coded apertures [74]. Indeed, cutting the microlens images in half is equivalent to mask
half of the aperture of a conventional camera. In particular, [75] compares the use of stereo
aperture masks and depth from defocus using several masks and show that the second
provides a better depth discrimination. As the study focused on the setup where the focus
depth is fixed, it would be interesting to see how this conclusion holds in our case, since
the scene depth is triangulated using several artificial focus depths.

Finally, regarding the complexity, we believe our algorithm is significantly lighter than
other methods. Our Matlab implementation for generating the two slices of the focal stack
runs in approximately 2.5 and 7 seconds per stereo slice for Raytrix R5 and R11 images
respectively. We believe that a GPU implementation of our depth estimation and rendering
can be done in real-time provided the used stereo algorithm is real-time.

3.7 Conclusion

We have introduced a novel pipeline for processing focused plenoptic camera images. First
we have presented a detailed description of our calibration algorithm that fully estimates
all parameters in the Fourier domain allowing a fast and robust microlens image center
estimation on white and natural images. Then, we have proposed a new algorithm for depth
estimation from a stereo focal stack. Our algorithm does not require estimating subaperture
images or EPIs but can bring into play any stereo algorithm. Moreover, it provides a depth
map in the refocused image domain, and does not require any knowledge about the camera
parameters (except the microlens image centers, estimated at the beginning of our pipeline).
Finally, our image rendering is guided by the estimated scene depth and allows to refocus
the images or render all-in-focus images. We have tested our algorithm on images captured
with a Raytrix camera but our modelling is not restricted to it and could be applied to
other focused plenoptic cameras. Further work will include combining the defocus cues
introduced by the stereo focal stack in order to improve the depth measurement, especially
in the specular areas and occlusions.

53

54

Chapter 4

Light Field View Synthesis with

Recurrent Neural Networks
∗

4.1 Introduction

In the previous chapter, we saw how to render images from the specific kind of light field a
focused plenoptic camera captures. We now leave non-Lumigraph light fields behind to
focus only on light fields that can be represented as a set of views.

As we saw in the previous section, plenoptic cameras give up spatial, pixel resolution for
angular, view resolution. Although the pixel race of sensor manufacturer has led to huge
sensor resolutions (i.e. greater that 40Mp on some devices), it is unlikely that users will
accept the 10 − 20 times decrease of resolution of plenoptic sensors. Perhaps a better
solution in the short to medium term is to use fewer pixels per microlens or directly use a
few cameras.

Arguably, the minimal case of light fields is when we have 4 distinct views, ideally placed
on the corner of a square or rectangle. Except in some particular scenes containing an
occluder object with a repetitive structure, these 4 views contain all the information we
need to reconstruct any virtual view contained in between the 4 cameras. In other words,
it is possible to reconstruct an arbitrary dense light field from a set of only four views. One
could for instance use computed depth maps to directly re-project rays onto a virtual view.
But because 4 views provide low redundancy, depth maps are usually prone to errors that
yields very unpleasant artifacts in the synthesized view.

To solve this issue, approaches that rely only partially on depth estimation have been
proposed in the literature. In particular, deep learning approaches provide visually pleasant
and convincing virtual views.

In this chapter, we propose a brief study of how Recurrent Neural Networks (RNNs), and
in particular Long short-term memory (LSTM) RNNs, can be used in the context of view
synthesis. RNNs are a type of neural network where instead of statically chaining layers,
recurrent connections are made between so-called cells. Each cell shares its parameters
with all the other cells, and takes as input the output of the previous cell and a different
element of a sequence, outputs a value and pass on some information to the next cell. Such
network structure has several advantages. First and foremost the number of parameters is
ridiculously small compared with CNNs, since the cells have the same weights. Second, by

∗This work has been done during the last part of the thesis.

55

changing the number of cells, one can run the RNN on different sequence lengths. Also, the
recurrent loop can be run sequentially during the forward pass, making the GPU memory
requirement a lot smaller than a conventional CNN.

We show that our approach can produce images of comparable quality with the state of
the art with a significantly lower number of weights. As an interesting byproduct, we also
show that RNN somehow learns differently than CNN for view synthesis. Indeed, while
a single CNN usually gives blurred results when used for frame or view synthesis, the
proposed approach did not suffers significantly from this defect. Finally, we briefly study
the limitation of the method in its current state and how it behaves on wider baselines
and give perspectives on how to improve the method.

4.2 Related Work

We divide the related work in 3 parts: the classical (i.e. non-deep learning) approaches,
deep learning for frame interpolation which is related to some extent to our problem, and
finally we focus on the few deep approaches for light field view synthesis.

Classical View Synthesis: Methods that rely on a hard depth prior to render an image
[76, 6, 77], for instance by directly re-projecting pixels with their depth, have the problem
that faulty depth estimation yield very unpleasant artifacts in the rendered image.

A way of dealing with the view synthesis problem is to adopt a two-stage model, where
depth is estimated on input views and then used to warp and combine the images. In
[78] a user-defined image labeling is used in combination with a dense depth estimation to
warp each image with a triangle-mesh-based warping operator optimized to be smooth,
to satisfy the user segmentation, to preserve shape and to fill up disocclusions. Because
manually annotating each view is cumbersome, this approach has been modified to use
superpixels instead [79]. Super-pixels are computed independently and matched according
to their appearance, depth and neighbors. Warping is done in a similar fashion as [78].
In both cases, the final image is rendered by blending the warped images. This second
approach gives good results but a lot of artifacts are still visible.

More recently, in [27] is proposed a multi-step approach to propagate depth uncertainties
from the depth estimation to the image rendering. From neighborhood views, a depth
map is computed for each of the light field views. The scene then is voxelised into volumes
(one per pixel and per view), where a voting system determines, from each depth map,
the likeliness of a given voxel to correspond to an actual scene point. This voting volume
is then used to refine each depth map. A second volume is computed to assign voxels a
final visibility factor from the refined depth maps. The final image is obtained by first,
computing the average of the color values of pixels corresponding to each voxel on each
view, weighted by its visibility factor and second summing and clipping each depth plane
of the volume. The results of this approach are numerically and visually superior to the
methods in this state of the art but this comes with some serious computational and
memory issues. Indeed, a depth map needs to be computed and saved per view, followed
by two voting volumes, another set of depth maps and finally the warped version of each
input view.

A part of the literature focuses on formulating view synthesis as a maximum a posteriori
estimation. In [80] the energy to minimize is defined as the de-projection error of the
synthetic view onto all the other views according to known depth and visibility maps. To
compensate for the depth failure cases and regions that are visible on none of the views,
the Total Variation (TV) is used as a regularizer. It also limits the solution hyperspace, i.e.

56

the set of all possible pixel intensity combinations for the synthetic image. Improvements
of this idea have been proposed to better handle depth estimation errors [81] or to further
reduce the solution hyperspace by enforcing that gradients match between the synthetic
view and the corresponding areas on the original views.

Although more related to compressed sensing, it is worth mentioning methods that aim
at reconstructing the full 4D Fourier spectrum of a dense light field from the 2D Fourier
spectrum of a subset of views [82] or incomplete views [83].

Learning Frame Synthesis: being able to generate intermediate views of a video is
very interesting to artificially augment its frame rate [84]. It can also be used for video
compression, where only a few frames are encoded and used to predict intermediate frames
[85].

The training is usually done in an unsupervised way, using triplets of video frames, two for
the input frames to interpolate and one in between for the ground truth. This methodology
allows unsupervised training and avoids to rely on synthetic data for training, that are
known to be too perfect to match the reality of the video acquisition.

Early methods were using CNNs to hallucinate each pixel color value [86, 87]. However,
the results of these approaches are usually blurred. For this reason, optical flow is used
as an intermediate step for the view rendering. The common framework is to estimate a
flow, then warp and mix the input images to obtain the final synthetic view. Given that
image warping is differentiable [88], the loss is usually simply defined as the L1 difference
between the ground truth and predicted frame.

In [84], a multi-scale approach is proposed to infer pixel displacement (on the coordinate
system of the frame to interpolate), along with frame interpolation weights. The architecture
is composed of 3 scales of auto-encoders with skip connections, taking the downsampled
frames as input, along with the output at the previous scale. The final, interpolated
image is rendered by warping the two input frames and computing the average weighed
by the interpolations factors. While the paper showed pleasant results, the approach is
computationally expensive and relies on a lot of training parameters, mostly because it
does not re-use the results at lower scale, but rather uses it as an extra information.

In other words, the approach is multi-scale but not hierarchical, which is the approach
taken in [89]. It has a similar architecture composed of 3 scales where a simple (and
compact) CNN is used at each scale to compute the flow. The interpolation weights are
computed at full scale. They are however some major differences in the training. First,
part of the loss enforces that each scale CNN learns a flow, by putting in the loss the
reconstruction error of the input image warped with the optical flow of each scale. Also,
the input of each scale is composed of the flow at the previous scale plus the input images
pre-warped with it. This allows each scale network to learn a residual flow that is then
summed to the flow of the previous scale.

Apart from the number of reference images to input, frame interpolation is different from
view interpolation for different reasons. First, view interpolation does have to deal with
the challenge of non-rigid object motion, the objects are strictly the same from one view to
another. Second, because a light field is captured at a single point in time, the illumination
is the same from one view to another. Finally, and perhaps more importantly, frame
synthesis relies on flow estimation and view synthesis on epipolar geometry. Therefore,
view synthesis will be a lot more sensitive to geometric and colorimetric calibration errors
but is somehow simpler because it needs to estimate a single scalar per pixel instead of
two.

57

Learning View Synthesis: To the best of our knowledge, the first deep-learning-related
work to address the problem of view synthesis for light fields is [90]. In this paper, a Plane
Sweep Volume (PSV), i.e. a set of views warped with disparities in a given range, is used
as input of two, so-called network towers, i.e. a series of CNN per slice of the PSV, with
shared weights. The first tower learns masks on each slice of the PSV, selecting zones
that correspond to actual points in the scene. The second tower learns the most probable
color at a given point, regardless if it corresponds to an actual physical object or not (i.e.
the colors are consistent in each image of the PSV slice). The final image is rendered,
similarly to [27], as the product and summation of the output of the selection tower and
the color tower. Although the results are visually stunning and work perfectly for sparsely
sampled views, the major problem of this approach is its complexity. Indeed, to establish
connections between each depth plane, intermediate outputs of each CNNs are combined
for each slice of the PSV. This yields a lot of parameters, but also a lot of operations to
carry out in parallel to render one image.

Because of this, the authors in [91] propose an approach tailored for the narrow baseline
of plenoptic cameras. The mean and variance for each slice of the PSV are fed to a first
CNN, that learns a disparity on the synthetic view coordinate system. The corner images
are then warped with the disparity and concatenated with the depth plus the new view
index and passed into a second CNN that learns to refine and combine the warped corner
images. The approach gives very good results on Lytro images, however the PSV is rather
dense (100 slices), yielding a lot of operations on the first layers of the network. Besides,
the network is trained for a fixed amount of slices and, as in [90], does require to load the
entire network at once for the forward pass.

4.3 LSTMs for View Synthesis

For view synthesis, we believe there are currently two problems that are somehow not
receiving enough attention in the state of the art.

The first, and perhaps main point is that all current architectures are, by design, bound
to only one disparity range. Therefore, the features trained for a given device, cannot be
re-used for devices with different baselines. This is mostly due to the fact that, for the two
mentioned approaches, the relationship between depth planes is learned by concatenating
depth-dependent features. In [91], features from a PSV are directly input to the depth
network, as a single channel of the input matrix. In [90], the relationship between each
depth plane is established in stage 2 of their selection tower, where outputs from networks
for each PSV slice are concatenated and passed into a single convolution. Although these
techniques are then able to learn depth-specific filters, we can intuit that layers are learning
very similar information for each depth plane, as the task is not so different from a plane
to another.

This leads us to our second point. These methods use an important number of parameters
and operations to generate a single image. This is an issue for computationally limited
devices, such as smartphones, that have memory capacities much tighter than those of
desktop computers. This is even worse when considering high-resolution images.

Hierarchical approaches, like [89], could be a workaround this particular issue, but as we
will show in the experimental section, this is not without a certain loss of details.

To solve the aforementioned problems, we propose to use LSTMs to directly learn view
synthesis from a PSV in a lighter and modular fashion.

58

σi σu Tanhu σo

× +

× ×

Tanh

Ct−1

Prev. Cell State

ht−1

Prev. Cell Output

It

Input at time t

Ct

New Cell State

ht

New Cell Output

Figure 4.1: A typical LSTM cell. Rectangular items represent a neural layer, ellipses are
the numerical operations. Splitting lines corresponds to data duplication and merging lines
correspond to concatenation.

LSTMs[92] networks are a variation of RNNs where each cell has a memory, a state, that
is updated across the RNN loop. This is to help the propagation of information across
RNN iterations.

It also solves the problem of vanishing gradients [93], an issue that occurs because the
propagated loss gradients tend to decrease during the back-propagation stage of the training,
until the gradients at the top layers are so close to 0 that the network is not learning
anymore (they can even reach floating point underflow).

Classical LSTMs are made of 3 parts, composed of neural layers activated by a sigmoid
function, called gates. Fig. 4.1 summarizes all the components of a regular LSTM cell. In
particular, we denote C the cell memory, h the cell output. Because LSTMs are typically
used to process temporal sequences (e.g. text, sound), a RNN cell is run on temporal
steps noted t. The top line between Ct−1 and Ct is where the cell state is updated, first
by removing information (the point wise multiplication), then by adding new information
(with the addition step).

The cell has an input gate σi, that filters relevant information in the previous cell output
and the current input, an update layer Tanhu and gate σu, that computes and selects the
update to be done to the cell state, and finally an output gate σo to select relevant feature
to pass in the RNN loop.

Specifically, because we are dealing with images in this work, we use convolutional
LSTMs[94], a variant of LSTMs that replaces the matrix multiplication done at each
layer with convolutions, making the LSTMs cell effectively capturing both spatial and
sequence information. In contrast to conventional LSTMs, the cell output and memory is
then of the same size as its input.

The main idea behind our proposal is that, instead of establishing links in the z-dimension
of the PSV via a single, or multiple layers, we learn how to do it with a RNN. Fig. 4.2
offers a comprehensive overview of our approach.

In particular and in contrast to the state of the art, we try to learn directly the image to
synthesize from the PSV, without any depth or selection map estimation. Each LSTM cell
takes as input the 4 corner views warped with a depth plane d and concatenated along the

59

color dimension (the depth of the input is then 12). In other words, we tread the depth
dimension of the PSV as a temporal dimension for LSTMs traditional approaches. As for
the state of the art [91, 90] a ground truth view is used to evaluate the model prediction
and update the learned filter accordingly.

In our approach, the cell memory is used to encode information about the most probable
color for each pixel of the new view. One could expect the LSTM to behave as follows.
The input and update gates σi and σu will select the most relevant color features from the
previous cell output and from the current PSV slice. The update gate σu will deduce, from
the previous RNN iterations and the current PSV slice color values what color features are
unlikely to compose the true new view colors. The update gate and layer σu and Tanhu

will then compute the new color features to save, presumably because they are more likely.
After the new cell memory state is updated, the output gate σo will filter out the color
features that are important to pass on to the next cell.

We used a fixed kernel size of 3 × 3 for all the gates and a feature size of 32. Using fewer
filters had a negative impact on the approach performance and interestingly, adding more
as well.

On the very last RNN iteration, we pass the state of the cell through a simple convolutional
layer σd with a kernel size of 1 × 1 and depth of 3 in order to decode the learned features
into the final image. Interestingly, we noticed that using a deeper decoding step provides
drastically worse results.

As the gates of the LSTM are composed of only one layer, the filters and update function
they can learn from the input are rather limited. To circumvent this issue, we use a small
CNN to learn a set of features from the 4 input views in order to learn more complex
representations of each slice of the PSV. In contrast to what is typically done in the state of
the art [95], we learn the features on the set of 4 views and not on each view independently.
Equally, we do not replace the cell input with the learned features but concatenate them.
This is to introduce more context in-between views rather than simple image features, but
without replacing the input signal, and in practice, we find out it improves significantly the
results and is worth the added parameters. The network used is a simple CNN composed
of 5, 32-features-deep, layers with a kernel size of 3 × 3.

We perform the RNN loop warping the views from foreground to background (as in
the rendering step of [27]). Reversing the order did provide a significantly worse result.
Interestingly, using a bi-directional scheme, as in [96], did not improve the results but also
gave slightly worse results.

As a loss function, we simply use the L1 difference between the reconstructed image Îd at
the very last iteration of the LSTM loop, as it has been shown to provide with sharper
image result [87].

4.4 Experiments

We follow the training protocol proposed in [91]. That is to say, we use Lytro Illum
subaperture images as training input and ground truth. The central 7 × 7 views are
extracted from the microlens images, as they don’t suffer from vignetting and chromatic
aberration as much as the views on the periphery. The PSV is rendered for each integer
disparity in the range [−12, 12] for the central view. The ground truth central view is used
as a reference to compute the loss and the test metrics.

60

σi σu Tanhu σo

× +

× ×

Tanh

Cd−δd

Prev. Cell State

hd−δd

Prev. Cell Output

IdViews warped a d

Cd

New Cell State

hd

New Cell Output

R
eL

U

R
eL

U

R
eL

U

R
eL

U

R
eL

U

σd Îd

Synthetic view at d

Figure 4.2: The LSTM cell used in our approach. Each cell takes as input the 4 corner
views warped at a specific depth plane d. It embeds a small CNN to learn features on
each slice of the PSV that are later concatenated with the input. At the very last RNN
iteration, we pass the cell state into a single layer (in gray) to generate the final image.

In order to avoid color and optical aberrations that are specific to one camera, we augment
the dataset of [91] with 3 other Lytro Illum datasets 123.

The network is trained using ADAM [98], with a learning rate of 0.0003, and for 200K
iterations. We used a batch size of 10 and as in [91], we trained our network on patches.
The patch size was 128 × 128. We did not use batch normalisation and did not crop the
final images borders, neither during training nor during testing.

Tensorflow implementation of dynamic RNNs was used for training with our custom cell.
Training is quite slow for RNNs and the overall training time is a bit less than 2 days
(although the results did not change much after 100K iterations).

We decompose our experiments in two steps, the first one is to verify that the network does
learn as expected, the second one is to assess the quality of the synthetic image compared
to the state of the art.

4.4.1 Model Validation

In order to verify that the network learns as expected we employ the following strategy.
We manually unroll the RNN loop and apply the decoding layer σd of the last iteration to
the cell memory state at each iteration. Although it is not strictly what the LSTM memory
saves, this technique gives us a visualization of what is happening from an iteration to
another.

On Fig. 4.3, we clearly see that zones that have been in focus in the previous iterations
adopt their final color, overwriting the previous features, at a current time step. This
is done independently at each scene depth plane, showing that our LSTM strategies do
indeed learn features about the best color it has seen so far. This result was consistent
across the entire test set and interestingly, we observe a correlation between the artifacts
in the selection done at each step and artifacts in the final image. These artifacts mostly

1Stanford dataset http://lightfields.stanford.edu/
2EPFL dataset [97] https://jpeg.org/plenodb/lf/epfl/
3INRIA dataset https://www.irisa.fr/temics/demos/IllumDatasetLF/index.html

61

occur at the edge of objects (as in the third slice of Fig. 4.3) and usually yield blurred
borders in the final image.

Now we use the same strategy to test how the model generalizes to bigger disparities. We
use the Beergarten sequence in [13], as it is close to a Lytro sequence (i.e. a rectified
light field with the same baseline in the vertical and horizontal baseline) with a much
bigger disparity. Fig. 4.5 shows some slices near the middle of the PSV. Ignoring the
unsurprising artifact in the image boundaries, for foreground objects on the table, the
approach seems to behave the same way as with Lytro images, the network extracting
color features as the focus plane approaches the real object depth plane. We see that for
the background however, the network fixes the color too early in the PSV. This explains
why the final synthetic image, shown in 4.4 is so far from the ground truth. From this test,
we can theorize that the network somehow does take assumptions on the connection length
between disparity levels when trained on Lytro images and therefore does not generalizes
automatically for wider baselines, even though is is technically possible to change the PSV
disparity range after training. We also note a significant color shift that could be explained
by the color discrepancies between the central view and the corner views in the Lytro
subaperture images, mostly caused by vignetting.

4.4.2 Comparisons

The author implementation of [91] is used as a baseline to evaluate our method. We also
use their test set composed of 30 Lytro Illum images. Note that, as in their experiments,
the interpolation and metrics are computed on the input under-exposed images, but
gamma-corrected images are shown.

For sake of comparison, we also re-implemented and re-trained the state of the art in frame
interpolation method [89]. The architecture we used is the same as what is described in the
original paper, with a few modifications to modify the approach for view synthesis. First,
4 views are input instead of two frames. Second, the network outputs a matrix with 5
channels, 1 corresponding to the disparity map (normalized in between -1 and 1), and a set
of 4 weight maps, weighting the contribution of each input view (to detect the occlusions
between each view and the central view). The weight maps pass through a softmax to
ensure they sum to 1. The final image is produced by a linear combination of the 4 views
warped with the disparity, using the interpolations weights maps. The adversarial term is
also removed from the loss for sake of comparison. Note that in order to have an integer
image size at each scale, we pad the input image with zeros. The padding is removed to
compute the image quality metrics.

In Tab. 4.1, we compare the three approaches for all the images of the test set of [91]. We
see that our approach is at least on par with [91], with a PSNR of 38 vs 37.2 for [91] and
34.5 for [89]. Our approach performed worse than [91], but better than [89] in terms of
MSE and SSIM however.

The main reason why the two full-resolution images are numerically and visually better
than the hierarchical is that they rely on full-resolution images for the entire pipeline.
Indeed, as we show in Fig 4.6, small details are not well captured in the depth estimation,
and are not recovered during the upper scale depth estimation either, since the depth
estimation is hierarchical.

Visually, it is hard to distinguish the results from the two approaches. We show a visual
comparison in Fig. 4.7; note that in [91], an important portion of the image is cropped. We
notice that for both approaches, most of the error is contained in the objects boundaries.

62

Figure 4.3: Visualization of the LSTM state at different RNN iterations (to be read from
top to bottom). On the left we show the decoded memory state of the LSTM, on the right,
we display the refocused 4 input views to see which depth plane is currently valid.

63

(a) Synthetic view LSTM (b) Ground truth

Figure 4.4: Interpolation with wide baseline. (a) is the output of our network (b) is the
ground truth.

Table 4.1: Image quality metrics for the compared approaches

Dataset [89] LSTM [91]

MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

IMG_1085 11.40 37.56 0.96 3.21 43.07 0.98 2.01 42.53 0.98
IMG_1086 7.66 39.29 0.96 2.27 44.57 0.97 1.16 45.36 0.99
IMG_1184 13.55 36.81 0.95 3.97 42.14 0.97 2.50 41.73 0.96
IMG_1187 14.80 36.43 0.96 3.99 42.12 0.98 2.19 42.12 0.98
IMG_1306 19.68 35.19 0.98 7.34 39.47 0.98 7.60 37.43 0.98
IMG_1312 10.28 38.01 0.96 3.20 43.08 0.98 1.91 42.67 0.98
IMG_1316 16.57 35.94 0.97 6.63 39.91 0.93 3.80 40.15 0.98
IMG_1317 16.34 36.00 0.96 7.42 39.43 0.89 3.51 39.51 0.98
IMG_1320 20.70 34.97 0.96 12.87 37.03 0.96 11.94 34.53 0.98
IMG_1321 10.60 37.88 0.97 2.99 43.37 0.98 3.49 41.48 0.98
IMG_1324 6.18 40.22 0.96 2.59 44.00 0.95 1.36 45.14 0.98
IMG_1325 15.45 36.24 0.96 6.36 40.09 0.95 2.79 40.92 0.98
IMG_1327 19.08 35.32 0.96 8.19 39.00 0.97 4.68 38.48 0.98
IMG_1328 21.27 34.85 0.96 6.07 40.30 0.98 3.42 39.95 0.97
IMG_1340 7.78 39.22 0.97 2.70 43.83 0.97 1.07 44.99 0.99
IMG_1389 7.35 39.47 0.96 2.51 44.14 0.99 11.30 37.29 0.99
IMG_1390 8.61 38.78 0.97 1.91 45.32 0.97 2.32 43.73 0.99
IMG_1411 59.11 30.41 0.97 35.60 32.62 0.96 14.91 31.97 0.95
IMG_1419 25.57 34.05 0.96 16.61 35.93 0.96 9.97 33.40 0.97
IMG_1528 105.51 27.90 0.93 87.93 28.69 0.95 19.81 28.18 0.94
IMG_1541 77.37 29.25 0.95 37.20 32.43 0.97 17.89 32.37 0.96
IMG_1554 145.60 26.50 0.94 113.76 27.57 0.95 24.76 26.59 0.94
IMG_1555 100.02 28.13 0.95 51.95 30.97 0.96 15.83 29.78 0.95
IMG_1586 16.43 35.98 0.96 8.74 38.71 0.97 2.59 39.59 0.98
IMG_1743 41.71 31.93 0.89 8.82 38.67 0.95 12.44 30.72 0.91

Cars 33.58 32.87 0.96 61.55 30.24 0.97 17.24 31.93 0.97
Flower1 47.56 31.36 0.97 24.69 34.21 0.97 12.95 33.43 0.97
Flower2 46.82 31.43 0.97 30.69 33.26 0.97 12.33 32.11 0.96

Rock 45.56 31.54 0.96 26.58 33.88 0.98 10.12 35.63 0.97
Seahorse 43.46 31.75 0.96 34.09 32.80 0.95 10.72 31.62 0.97

Average 33.85 34.51 0.96 20.75 38.03 0.96 8.29 37.18 0.97

64

Figure 4.5: Visualization of the LSTM memory state for a wide baseline dataset.

65

(a) Depth at scale N-3 (b) Depth at scale N-2 (c) Depth at scale N-1

(d) Synthetic view [89] (e) Synthetic view LSTM (f) Ground truth view

Figure 4.6: View synthesis results for the deep, hierarchical approach in [89] compared to
ours. As we can see with the tip of the grass strand, thin details that are lost at a lower
scale (a) in the depth estimation, cannot be recovered totally at the upper scales (b&c).
Despite the residual network, this produces artifacts in the final synthesized image (d).
This problem is not present in approaches computing the synthetic view at full resolution,
like the proposed method (e).

Our approach suffers slightly less from these artifacts (e.g. with the foreground leaf) but
can sometimes introduce slight color bleeding, in some objects (e.g. the purple flower
petal on the white wall). This could be explained by the fact that our network does have
to reconstruct colors, while [91] only warps the input textures. We did not observe any
significant deviations between the two approaches across the test set, the results in 4.1 are
consistent with the observed visual quality.

In terms of parameters, [91] has 1 644 204 while ours only has 59 000 without the PSV
feature network and 114 400 with.

There is however a significant shortcoming in the current experiments that needs to be
stressed. The presented results are for the central view only. It is to be expected that the
image quality would be lower by training and testing with arbitrary views.

Discussion: our current experiments do suggest that recurrent neural network, with the
proposed architecture, are indeed suitable for view synthesis. Not only do they provide
synthetic views on par with the state of the art, but also with a reduced number of
parameters.

However, we demonstrated that, despite not being trained explicitly for narrow baselines,
the propagation of features related to the most probable color is only done for a limited
number of slices of the PSV. Therefore, adapting the approach to bigger baselines is not as
straightforward as adding more iterations to the RNN loop. That being said, we believe
that a LSTM network trained with a dataset composed of both sparse and dense corner
views would be able to perform well on arbitrary baselines.

Our experiments were focused on generating the central view. Since the input of the
method is a PSV, we do not expect the results of a training on arbitrary views, done for
instance by inputting the PSV warped in the new view coordinate system and concatenated
with normalized view index, to be drastically significant. However, some loss of quality is

66

(a) Synthetic view [91] (b) Synthetic view LSTM

(c) Leaf [91] (d) Leaf LSTM (e) Petal [91] (f) Petal LSTM

Figure 4.7: Comparison with [91]. (a&b) show the entire image. In (c&d) we observe that
our approach suffer less at objects boundaries. However, as shown in (e&f), our approach
is subjects to color bleeding artifacts is some areas.

to be expected.

There are numerous improvements that can be brought to this method. First, the use of
deeper gates (i.e. gates with more than one layer) would allow the LSTM cells to learn
more complex representation about the best synthetic view color. This might be necessary
to extend the approach to wider baselines and multi-view rendering. Another improvement
could be to follow classical approaches and decompose the problem of view synthesis by
learning depth. We could imagine for instance passing the normalized disparity plane as
an extra channel in the cell input and instead of learning features about the most probable
color, let the network infer the most probable depth of each pixel of the view to synthesize.
The output would then be a disparity map and possibly interpolation weights as in [89],
used to generate the final image. This would allow keeping a level of disparity range
genericity in contrast to the refinement network in [91].

Finally, we also note that is it interesting to see that the results of our approach, that
directly learns to generate an image, yields a coherent synthesis, in contrast to a single
CNN (as illustrated in [91]).

4.5 Conclusion

We proposed what we believe to be the first attempt to use RNNs to solve the problem
of view synthesis. RNNs have the advantage of having a much smaller memory footprint
and that they can be run on sequences of any length. The method uses LSTMs to learn
features about the most probable color iteratively from slices of a PSV. At the end of
the RNN iterations, the features are decoded into an output synthetic image directly.

67

Our experiment confirmed that the network, trained on Lytro images, has this expected
behaviors. In terms of image quality, we show that our approach performs well, sometimes
better than the state of the art in the case of generating the central view only. However,
we show that, interestingly, even though the methods can be run with any number of slices
in the PSV (i.e. any baseline) the learned features do not generalize well for an arbitrary
baseline. Although some improvements need to be brought to the method in order to be
comparable with the state on the art for arbitrary view synthesis, we believe this kind of
approach to be promising and we hope to see more research about baseline agnostic view
synthesis with reasonable memory footprint.

68

Part III

Light Field Editing

69

70

Chapter 5

Light Field Segmentation Using a

Ray-Based Graph Structure

5.1 Introduction

In the first part of this dissertation, we studied how to render images from light fields. In
this part, we focus on how to compute meaningful ray groups that can be later used as
a basis for further processing. In this chapter, we are specifically interested in pixel, or
rather ray-wise segmentation.

Image segmentation is a key step in numerous image processing and computer vision
problems. Many powerful solutions to this ill-posed problem have been proposed in the
image editing domain. However, user interaction is often necessary to compensate for the
lack of high level reasoning of segmentation algorithms. Because light fields are rather
new, there are very few work focused on providing the equivalent of image segmentation
for light fields.

Meanwhile, Markov Random Fields (MRF) have proved to be a very powerful tool for
multiview segmentation and co-segmentation [99, 100]. In that framework, MRF are
coupled with optimization techniques such as graph-cuts [101]. Multiview segmentation
and co-segmentation are in some aspects similar to light field segmentation. However, the
principal challenge with light fields is the very large volume of input data which makes
the MRF unsuitable for this task. The definition of the underlying graph structure and
the corresponding energy terms are indeed crucial in the performance in terms of accuracy
and complexity of the segmentation algorithm. For instance, our preliminary tests showed
that a straightforward implementation of [102], using one node per ray of the light field
and a simple 8-neighbourhood on the four light field dimensions, has a high computational
complexity (about one hour of computation for a Lytro 1 light field image).

In this chapter, we propose a novel graph structure aiming to overcome the above problem.
The philosophy of the approach is to consider that views of a light field, densely sampled or
not, mostly describe the same scene (with the exception of occlusion and non-Lambertian
surfaces). Therefore, it is unnecessary to segment separately each captured ray. Rays
corresponding to the same scene point are detected thanks to a depth estimation of the
scene on each view. Placed in a graph context, this means that all rays coming from the
same scene point, according to their local depth measure, are represented as a ray bundle
in a graph node. And rays having an incoherent depth measure, because of occlusion,
non-Lambertian surfaces or faults in depth estimation, are represented as a free ray in

71

a graph node. Pairwise connectivity is defined from the spatial neighbourhood on the
views. Finally, in order to apply the graph-cut algorithm, energy terms are defined on the
simplified graph structure based on free rays, ray bundles and the relationships between
these entities.

To summarize, our contributions are twofold. First, we give a new representation of the light
field based on a graph structure, where the number of nodes does not strictly depend on
the number of considered views, decreasing greatly the running time of further processing.
Second, we introduce an energy function for object segmentation using graph-cut on the
new graph structure. This strategy provides a coherent segmentation across all views,
which is a major benefit for further light field editing tasks.

Our experiments on various datasets [103, 24, 104] show first that the proposed segmentation
method yields the same order of accuracy as the state of the art [60], with a notably lower
complexity and second that the approach is very efficient for both densely and sparsely
sampled light fields.

5.2 Related Work

Light field segmentation : Light field editing has only been recently addressed with
methods targeting either automatic propagation of user inputs from one view to the others,
or object segmentation.

In the first class of approaches, the authors in [105] describe an approach using a 3D
voxel-based model of the scene with an associated radiance function to propagate pixel
edits and illumination changes in a consistent manner from one view to the other views
of the light field. The 3D voxels are then carved away to enforce consistency with an a
priory specified scene radiance model. The voxels whose image projections do not conform
well to the local scene radiance model are carved away. Thus, propagating a pixel edit
requires determining the voxels that correspond to that pixel and modifying their radiance
functions, the change is then propagated by projecting the voxel into each image. In [106]
the stroke-based 2D image edit propagation method of [107] is extend to light fields. To
overcome the computational burden inherent to light field data, the edits are propagated in
a downsampled version of the light field. The downsampling step can be seen as some pixel
clustering based on an affinity metric defined in the 4D light field space. The pixels are first
projected into the affinity space which is then subdivided into clusters, in a way similar to
the bounding volume hierarchy. Once the edits have been propagated in the low resolution
version of the light field, an upsampling is performed guided by the full resolution data as
in the joint bilateral upsampling technique [108]. In [109], the authors present a study on
two ways users can interact with light fields. Experiments have been carried out where
subjects are asked to perform different typical light field editing tasks, using a ground
truth depth map. It is shown that the same tasks can be performed without having a
perfect depth map. Using an estimated depth map they observe only a few differences on
the capacity of the users to perform the editing. Assuming that light field data can be well
approximated by a fixed number of scene layers at different depth, a depth-layer-aware
image synthesis method is proposed in [110] for edit propagation.

The second class of approaches aims at providing object segmentation masks on all views.
This can be done using level sets [111, 112, 113], but this assumes each segmented object
to be fronto-planar to the camera. An alternative is to segment each ray using the spatial
and angular neighbourhood. In [60], the authors use a random forest to learn a joint color
and depth ray classifier from a set of input scribbles on the central view. The output of

72

the random forest classification is then regularized to obtain a segmentation close to the
ground truth on synthetic images. Nevertheless, the authors report an important running
time for the regularization, over 5 minutes on a modern GPU, to compute the segmentation
on 9 × 9 views of size 768×768. Finally, in [114], published in parallel of this work, a graph
structure is proposed using one node per ray and a spatial and angular neighborhood that
is not depth-dependant (in contrast to [60]). A Support Vector Machine (SVM) is used to
learn a joint color and depth model and a Graph-Cut is applied to obtain the final object
segments from user annotations. However, as our preliminary experiment showed and as
reported by the authors, this approach presents memory and computational time issues
and the authors experiment with only 25 of the 81 available views.

Co and multiview segmentation : The problem of extracting one or more visible
objects in a set of images has also been addressed in the co-segmentation and multiview
segmentation literature using MRF and graph representations. The authors in [115] present
a co-segmentation approach which extracts a common object from a set of images. Other
approaches build an appearance model based on color [115] or more advanced cues [116] and
then use a MRF for each view to iteratively extract the objects with the graph-cut technique
[101]. The model is updated until convergence is reached. In [99], the authors propose
to model explicitly the correspondences between pixels that are similar in appearance by
linking them to an introduced similarity node. Image geometry has also been used in a
similar way to establish correspondences between pixels of the different views. Indeed, to
avoid handling a space voxelisation [117], pixels or superpixels are linked directly using
epipolar geometry [118] or as in [100] where extra nodes, corresponding to 3D scene samples,
are used to propagate the labelling across a set of calibrated views. Equally, in [119], a
graph structure is used to propagate a pre-segmented silhouette, assumed constant, to
another view. Finally, in [120] the authors show that it is possible to entangles depth
estimation and background separation from multiview images by minimizing a joint energy
function using graph cuts.

These works show how powerful MRF modelling is to represent arbitrarily defined relation-
ships between arbitrarily defined nodes. However, the problem of light field segmentation
differs from those approaches in two points. First, the light field views are much more corre-
lated than in co-segmentation and multiview segmentation, therefore labelling consistency
can be further enforced. Second, where multiview and co-segmentation consider a relatively
limited number of views, light fields typically consist in a dozen to a hundred of views,
causing a serious increase in running time during the energy minimization. In the next
sections, we describe how, from the same idea of MRF modelling with arbitrarily defined
nodes, we design an MRF model that copes with the above mentioned problems.

5.3 Ray-based Graph Structure

In this section, we define the proposed graph structure to perform the light field seg-
mentation. We first give the formal definitions and then explain the motivations of the
design.

5.3.1 Free Rays and Ray Bundles

Let us remind that we consider an input light field, L(s, t, x, y) represented with the two
plane parametrization, where (s, t) are the angular (view) coordinates and (x, y) the spatial
(pixel) coordinates.

73

Let ri be a light ray represented by its 4-D coordinates (si, ti, xi, yi) in the light field. We
denote dri

its local disparity measurement. dri
is estimated along s and/or t in the adjacent

views, either by traditional disparity estimation for sparsely sampled light fields, or by
studying intensity variations on epipolar images [34] for densely sampled light fields. We
define a ray bundle bi as the set of all rays describing the same 3D scene point, according
to its depth measurements dri

. Formally, two rays ri and rj belong to the same bundle if
and only if they satisfy the left-right coherence check

�

[xi + dri
(si − sj)] = xj ,

[xj + drj
(sj − si)] = xi .

(5.1)

where [a] denotes the rounded value of a. The same test is performed for the t − y
direction. Note that Eq. (5.1) holds for uniformly sampled and calibrated light fields but
can straightforwardly be adapted to a light field with different geometry.

A ray bundle gathers all rays emitted by the same 3D scene point according to their local
depth measurement. On the contrary, a ray is called free if it has not been assigned to any
ray bundle. Generally free rays correspond to occlusions or light rays having wrong depth
estimates.

Now let R be the set of all free rays and B the superset that contains all ray bundles. In
this setup, if L denotes the set of all rays (i.e. the light field), regardless if they are free or
not, then L = R ∪̇ B. Fig. 5.1 summarizes this light field representation.

5.3.2 Graph Construction

For constructing the graph, we need to define the neighbouring relationships between
free rays and ray bundles. Let N (ri) be the 4-connect neighbourhood of ri on each view,
that is to say the set of rays {rj , rk, rl, rm} with rj of coordinates (si, ti, xi − 1, yi), rk

of coordinates (si, ti, xi + 1, yi), rl of coordinates (si, ti, xi, yi − 1) and rm of coordinates
(si, ti, xi, yi + 1). One ray ri is neighbour of a ray bundle bi if and only if one ray element
of bi is neighbour of ri:

ri ∈ N (bi) ⇐⇒ bi ∩ N (ri) �= ∅. (5.2)

Similarly, two ray bundles bi and bj are neighbours if they have at least one element in the
neighbourhood of the elements of each other, i.e.,

bi ∩ N (bj) �= ∅. (5.3)

Finally, we build the graph G = {V, E} where each node V corresponds to either one element
of R or one element of B, and the edges E are defined by the neighbouring relationships
between two rays, two bundles, and between rays and bundles:

V = B ∪̇ R ,

E =
�

(ri, rj), rj ∈ N (ri)
� ∪ �

(bi, ri), ri ∈ N (bi)
� ∪

∪ �

(bi, bj), bi ∩ N (bj) �= ∅�

, ∀ri, rj , bi, bj ∈ V .

(5.4)

The main motivation behind our graph construction is to reduce the amount of data to
process compared to a naive graph (one node per light ray). With our approach, in the
best case scenario, when the depth is perfect and almost all light rays are grouped in
bundles, the number of nodes of our graph is roughly divided by the number of views with
respect of the number of nodes of the naive graph (minus the occlusions). This is of a

74

x

s r5

r4

r6

r3

r2

r1

(a) Scene view

LB

b1 b2

R

x

s

r1

r3

r2

r4

r5

r6

(b) EPI view

Figure 5.1: Proposed light field representation illustrated as scene/view (a) and EPI (b).
We only keep one angular an spatial dimension for sake of readability. In both sketches, we
show three scene points as red, green and blue crosses (and their resp. lines in the EPI). 6
rays ri (in gray) come from those points and hit three different views. The black arrows
represent the local depth measurement. The rays r1 and r2 are assigned to the same ray
bundle b1 because their depth measurement satisfies the left-right coherence check (Eq.
(5.1)). Similarly r4 and r5 are assigned to b2. On the contrary, r3 has an incoherent (noisy)
depth estimate and is classified as a free ray and not as a ray of b1. Finally, the red scene
point occludes the green scene point in the first view, so r6 is also classified as a free ray
and not as a ray of b2.

particular interest for problems that need global or semi global optimisations, such as image
segmentation, which are usually not solvable in polynomial time (they are NP-complete
problems).

The strategy of keeping free rays which are not grouped in bundles allows the use of a
relatively coarse and fast depth estimation methods. With our approach, a low quality
depth estimation only affects the number of free rays compared to the number of ray
bundles, increasing the running time, but it has limited impact on the segmentation
quality.

However, one problem arises when two rays ri and rj have wrong depth estimates, while still
satisfying the left-right coherence check Eq. (5.1). In practice, we will see that these errors
do not have many consequences on the overall result, since the mismatch usually happens
on rays having very similar appearances, thus likely to belong to the same object.

5.4 Energy Function

The goal is now to express the energy function for the segmentation in a way that takes
into account the proposed hybrid graph structure. Let us denote Ω the labelling function
that assigns a label ω to each free ray and ray bundle. The energy we seek to minimize is

75

of the form:

ϕΩ =
�

ri∈R

U(ri) +
�

bi∈B

U(bi)

+ τ

�

�

ri, rj

ri∈R, rj∈N (ri)

P (ri, rj) +
�

bi, ri

bi∈B, ri∈N (bi)

P (bi, ri) +
�

bi, bj

bi∈B, bj∩N (bi)�=∅

P (bi, bj)

�

, (5.5)

where U denotes the data terms and P the smoothness terms, all depending on Ω (despite
our omission of Ω in each term to lighten the equation). As, in conventional non-iterative
graph-cut, τ is the parameter that balances the data term with the smoothness term. In
practise, we find the labelling Ω that yields the minimum energy using the alpha-expansion
algorithm [121, 122].

We now give the details of the energy function terms.

5.4.1 Unary Energy Terms

An annotated image is obtained by asking the user to draw scribbles of different colors
over the objects he wants to segment on the reference view of the light field. We call
S the scribble image of the same size as the reference view. Each pixel value under a
scribble represents a label code (from 1 to the number of scribbles) and 0 otherwise. These
scribbles are used to build a color and depth model for each free ray and ray bundle using
the following approach.

Defining and learning a joint color and depth model is still an active research problem. color
and depth are by nature hard to fuse because they represent different physical attributes.
One solution is to learn a separate color and depth model and use a weighted fusion for
classification, but that introduces extra data-dependent parameters to be either fine-tuned
[123] or approximated [124]. Deep learning algorithms have proven to be efficient to
overcome this limitation but are usually heavy and beyond the scope of this chapter. On
the other end, multivariate Gaussian Mixture Models (GMM) have proven to be efficient
to model color. The learning step of GMM however can be very time consuming depending
on the number of mixture components. Fortunately, 5 to 8 components have been shown
to be enough for most cases [125].

In our approach, a joint color and depth GMM is learned for each label. A fixed number
of 8 components is used to infer the GMM with the Expectation Maximization algorithm
[126]. While mixtures of Gaussian are sub-optimal to infer depth, previous work [127] has
shown convincing results and we will see that it suffices to demonstrate the interest of the
proposed graph structure. One way of further improving the method could be to use a
more specific type of joint distribution to characterize the depth [128] but the study of
color and depth statistical models is not the point of this work.

Now, since our segmentation method is a human-guided task, we first convert the in-
put light field from RGB to CIELab color-space to have a perceptually uniform color
distance in the segmentation process. Let the color value of a ray be denoted Labri

=
CIELab(L(si, ti, xi, yi)).

Then, the color of a ray bundle is defined as the average color of its element rays Labbi
=

1
|bi|

�

ri∈bi
Labri

. Similarly, the depth of a bundle is the mean depth of its components

dbi
= 1

|bi|

�

ri∈bi
dri

.

76

Scene

p1 p2 p3

p4 p5 p6

Neigborhood on each view

b1 b2 b3 b6

b1 b2 b3 b5 b6

b1 b2 b3 b4 b5 b6

Graph with minimum connection

b1 b2 b3

b4 b5 b6

Graph with summed connection

b1 b2 b3

b4 b5 b6

View 1 View 2 View 3

Figure 5.2: Illustration of the over-connectivity problem. We show what happens to the
neighbourhood of a ray bundle b3 in our approach. Given a simple scene with 2 planes
composed of 6 scene points pi and their corresponding rays bundles bi, we see that b3 has
4 different neighbours across the 3 views (represented in red, green, and blue).

The data term of a ray bundle bi for a label ω is then defined as the negative log likelihood
of the bundle joint color and depth probability P to belong to an object of label ω, i.e. the
data term is computed as

U(bi) =

−log
�

P
�

Labbi
, dbi

|Ω(bi) = ω
�

�

if ∃ri ∈ bi, S(ri) = 0,

0 if ∃ri ∈ bi, S(ri) = ω,

∞ otherwise.

(5.6)

The joint color and depth probability P is computed from the GMM. In Eq. (5.6) above,
we use the input scribbles as hard constraints by setting U(bi) to 0 and ∞ if at least one
of the rays of bi is under a scribble.

Unfortunately, the depth information for free rays is unreliable. To compute P we assume
the color and depth values for a given ray to be independent. Hence, we can compute the
probability P of the 3-dimensional sample ri from the learnt 4 dimensional multivariate
mixture Gaussian by removing the depth component from the learnt covariance matrix
and mixture component means. Similarly to ray bundles, the scribbles are used as a hard
constraint to compute the unary term for free rays as

U(ri) =

−log
�

P
�

Labri
|Ω(ri) = ω

�

�

if S(ri) = 0,

0 if S(ri) = ω,

∞ otherwise.

(5.7)

5.4.2 Pairwise Energy Terms

Because of the new graph structure, we need to define 3 types of pairwise energy terms
(i.e. edge weights): between two rays, between one ray and one bundle and between two

77

bundles. One specificity of the proposed graph structure is that the connectivity between
ray bundles depends on the captured geometry of the scene. One solution could be to
define ray bundles connectivity from the 3D scene points they represent and keep the free
ray pairwise energy as in conventional monocular segmentation. However, the combination
of the two terms in a single energy function would require tuning an extra coefficient to
balance their relative importance. Moreover, it involves surface reconstruction which is
still a challenging and computationally expensive problem.

Instead, we propose to derive the energy function from a classical monocular framework.
We start from the classical 4-connect neighbourhood to define the pairwise energy for free
rays and ray bundles in order to obtain consistent energy terms.

The pairwise term between two rays is not different from the one used in classical image
segmentation and is defined from the color distance of the rays:

P (ri, rj) = δ
Ω(rj)
Ω(ri)

exp

�

−ΔE(Labri
, Labrj

)

σLab

�

, (5.8)

where σLab is the local image color standard deviation, ΔE the euclidean distance in the
CIELab color space and δ the inverse Kronecker delta δa

b = [a �= b] so that our term is on
the form of a contrast sensitive Potts model [122]. Similarly, since one ray bundle can only
have one of its component as a neighbour of a free ray r, the pairwise term between a free
ray and a ray bundle is defined as:

P (bi, ri) = δ
Ω(bi)
Ω(ri)

exp

�

−ΔE(Labbi
, Labri

)

σLab

�

. (5.9)

One specificity of the proposed graph structure is that the connectivity is dependent of
the scene geometry. In fact, as illustrated in Fig. 5.2, an occlusion yields a duplicated
neighbourhood for points at the border of foreground objects. If the weights on the
corresponding edges were defined between two bundles having at least one neighbouring
ray (minimal connectivity), red nodes corresponding to points at the border of foreground
objects would be more connected to background points than to their foreground neighbours.
To overcome this issue, we define the strength of the connections between two scene points
as the sum of the color differences of its corresponding rays (summed connection), which is
a major twist to conventional pairwise energy design. Doing so, the sum of edge weights at
the border of objects compensates for the over-connectivity.

In addition, we use the depth information of each bundle to favour the assignment of the
same label to two neighbouring bundles which are on the same depth layer. The bundle
pairwise probability term is then expressed as

P (bi, bj) = δ
Ω(bi)
Ω(bj) |bj ∩ N (bi)| exp

�

−ΔE(Labbi
, Labbj

)

σLab
− (dbi

− dbj
)2

σd

�

, (5.10)

where σLab and σd are the local color and depth variances.

5.5 Experiments

We first perform a quantitative evaluation of our light field segmentation approach using
the dataset proposed in [103]. It is composed of 4 densely sampled synthetic light fields with

78

Input images
and scribbles GT labels Result of [60] Our results

B
u
d
h
a

P
ap

il
lo

n
2

H
or

se
s

2
S
ti

ll
li
fe

2

Figure 5.3: Light field segmentation results obtained with the synthetic light field dataset
proposed in [103]. From left to right, we show, the input central view with scribbles, the
ground truth labelling, the results in [60] and our results. While both algorithms have a
similar performance, in general, our results are more accurate in some challenging cases
(see ’Horses 2’).

known depth and ground truth labelling, along with a set of pre-defined input scribbles. The
input data contains 9×9 views of 768×768 pixels. We compare the obtained segmentation
with the results in [60]. Similarly, we use the ground truth labelling to find the optimum
parameter τ and we use the same input scribbles.

Fig. 5.3 shows that our method yields a segmentation which is visually closer to the ground
truth segmentation than the one obtained with the method of [60]. Tab. 5.1 gives the
percentage of successfully segmented rays with respect to the ground truth. We can observe
that this percentage is very close in terms of accuracy to the ground truth segmentation. It
is also close to the one obtained in [60], even if in some cases it can be slightly lower.

We have seen that our wrongly labeled pixels (less than 1% of total) are on the 1-pixel
wide outskirt of the segmented objects.

However, the big advantage of the method is the very significant gain in terms of running
time. With a mono-thread CPU implementation of alpha-expansion1, we perform the
optimisation in 4 to 6 seconds depending on τ , on an Intel Xeon E5640. Using the ground
truth depth, we typically reduce the number of nodes by a factor of 50 (from 4.77 · 107 to
8.19 · 105 on ’Budha’).

1http://vision.csd.uwo.ca/code/

79

Table 5.1: Segmentation accuracy comparison as the percentage of successfully segmented
pixels. The results are for the entire light field views.

Dataset: Still life 2 Papillon 2 Horses 2 Budha

Result of [60]: 99.3 99.4 99.3 98.6

Our results: 99.2 99.5 99.1 99.1

Our results w/o depth: 98.91 99.4 95.5 98.8

Another interesting point is that, with our framework, using depth in the unary term is
only required to segment complex scenes. Indeed, we can see in Tab. 5.1 that running
the same experiment without the depth in the unary term (Eq. 5.6), we can obtain very
similar results. The only challenging case was the dataset ’Horses 2’, for which the depth is
required to differentiate adjacent objects having the same color. The first row in Fig. 5.5
shows the segmentation result on a 4×4 synthetic sparsely sampled light field we produced.
The segmentation result is very close to the ground truth showing that our approach is not
limited to densely sampled light fields.

The approach has also been validated on the real, sparsely sampled light field of the
Middlebury dataset [24] ’Tsukuba’. The input light field is composed of 5×5 rectified
views of 288×384 pixels. We estimate, for each view, a disparity map using the algorithm
presented in [73], which is real-time and accurate. More precisely, we only compute 25
right-to left conventional disparity maps for each view, without any fusion of the obtained
depth maps. The first row of Fig. 5.6 shows the input image, the scribbles, the depth
map and the segmentation result using τ = 20. The segmentation step takes 3 seconds.
Fig. 5.4 visualises as a point cloud the obtained graph nodes for the light field ’Tsukuba’.
We represent free rays as a 2D array on the background and the ray bundle as 3D points.
We can see that, because the connectivity is defined from the views neighbourhood, the
bundles do not need to be accurately estimated to have a coherent segmentation. As shown
on the second row of Fig. 5.6, we further tested the approach on the densely sampled
’Legos’ dataset from the new Stanford light field archive [104]. The images have been
down-sampled by a factor of two to decrease the effect of mis-rectification. We see that our
approach can handle challenging setups, where very few elements differentiate the scene
objects.

We also tested the method on several 3D sparse light fields from the Middlebury [24]
dataset. Initially proposed for multiview depth estimation, the light fields are composed
of 7 high resolution views with important baselines. As visible on the 3 last rows of Fig.
5.6, we see that the free ray strategy copes efficiently with errors in the depth maps, while
being able to segment arbitrarily defined objects.

Finally, a major advantage of the proposed method is that a coherent segmentation across
all views is available. This is of particular interest for light field editing tasks. As an
example, we show (see second row of Fig. 5.5) how the obtained segmentation can be
used to remove an occluding object from a scene during synthetic aperture refocusing
[129].

A video containing the results of our experiments is made available online2.

Discussion: Our experiments allow us to draw conclusions at several levels. First, we show
that the proposed framework is an efficient solution to reduce the computational load of
MRF-based light field processing problems. In terms of accuracy, objective comparison on
ground truth data shows results competing with the state of the art. We also validate our

2https://www.irisa.fr/temics/demos/RayBasedGraphStructure/index.html

80

Figure 5.4: Visualization of the graph nodes for the dataset ’Tsukuba’ with 3 different
viewpoints. Points on the background planes are free rays, points projected in 3D represent
ray bundles. We invite the reader to see the video on our website2 for more details.

(a) User labels (b) Ground truth labels (c) Our labels

(d) Object to remove (e) Refocusing (f) Refocusing with removal

Figure 5.5: Experiments with our synthetic, sparsely sampled light field. The first row
shows, from right to left, in (a) the input image and scribbles, (b) the ground truth labels
and (c) our result . The second row shows an example of application for the light field
segmentation: object removal via synthetic aperture [129]. From right to left, in (d) the
obtained light field segmentation with only two labels (the object to remove in red), (e) the
image refocused using the full light field and (f) the image refocused using the segmented
light field.

approach on real data, showing the flexibility of the proposed framework and its robustness
to faults in depth estimation. The running time for the graph cut on CPU being of the order
of the second, a GPU implementation as in [130] could give even better performances. As a
limitation of our approach, we can see that it requires a relatively accurate depth estimation
on all the views. Indeed, a too incoherent depth estimation will result in too many free
rays, greatly increasing the running time but also losing segmentation coherence.

In that case, the angular neighbourhood concept newly introduced in [114] (for densely
sampled light fields) or interactive scribbling of several views (for sparsely sampled light
fields) could be good workarounds.

Hopefully, this is mitigated by the fact that, for sparsely sampled light fields, research on
disparity estimation is mature, proposing a lot of reliable and fast disparity estimation.
For densely sampled light fields, depth estimation is one of the main research interests
and several efficient approaches have been proposed [34, 50]. Equally, in some rare cases,
two rays with faulty depth estimate will still satisfy the re-projection constraint, leading
to the creation of a bundle that does not exist. The bundle has generally a depth value
different from its neighbourhood, making it isolated according to the smoothness term. As

81

a consequence it can be assigned a label different from its neighbourhood. One solution
could be to increase the smoothness parameter to force consistency, but this also triggers
loss in small details. Another solution could be to forbid the creation of bundles containing
very few rays.

5.6 Conclusion

We present a novel approach to deal with light field processing needing a MRF formulation.
Instead of using the full ray space in a MRF, the solution exploits the redundancy of the
captured data estimated from a fast, local depth estimation to reduce the amount of nodes,
in order to cope with the fact that the optimisation of MRF problems scales badly with
the input size. We demonstrate the efficiency of the framework by proposing a user guided
multi-label light field segmentation, where scribbles on a light field view are used to learn
a color and depth model for each object to segment. Unary and pairwise terms are defined
according to the new graph representation. Graph-cut is then used to find the optimal
segmentation. Comparison on synthetic light fields, with known ground truth show that
our approach is close to state of the art in accuracy, while keeping a lower running time.
Experiments on real light fields show that the proposed approach is not too sensitive to
the errors in the required depth estimation, and is rather flexible regarding the arbitrary
definition of objects to segment. Moreover, the solution is shown to be as effective for
sparse light fields as for dense light fields.

82

Input images and scribbles Estimated Depth Our results

T
su

k
u
b
a

L
eg

os
B

ab
y

1
M

id
d

1
L

am
p
sh

a
d
e

2

Figure 5.6: Light-field segmentation results on real datasets from [24, 104].

83

84

Chapter 6

Super-rays for Efficient Light Field

Processing

6.1 Introduction

As we saw on the previous chapter, state of the art light field editing methods either
only deal with densely sampled light fields or use a dense depth estimation to perform
user-guided segmentation [60, 114] or to propagate user inputs [105, 106, 131, 110, 132].
Despite the latest advances [29, 65, 33, 26] in light field depth estimation, these methods
use computationally expensive regularization to obtain satisfactory depth maps.

Our goal is instead to propose a solution for unsupervised light field over-segmentation
which would in addition be angular sampling agnostic and rely less on depth estimation.
Our approach is motivated by the observation that, for most editing applications, it might
be more important to have accurate object boundaries, even with coarse depth information,
than having a refined depth map. We show in Section 6.4, as already noticed by the
authors in [109], that a dense and accurate (in terms of disparity values) depth estimation
is not needed for some typical light field applications.

To treat the aforementioned problems, we introduce in this chapter the concept of super-ray
which is the counterpart of super-pixels [133] for light fields. The major difference with
conventional super-pixels and super-voxels is that super-rays group perceptually similar
and corresponding pixels across several views. In other words, super-rays are groups of
rays of similar color coming from the same scene area. We then propose what we believe
to be the first light field over-segmentation algorithm. It is inspired by SLIC [134], a
state of the art super-pixel generation method with good properties in terms of accuracy
over complexity and parallelism. The major difference is that centroids, initialized on a
reference view, are shared by all the views with a unique spatial and color coordinate and
an attached depth information. Then, the assignment step is simultaneously performed by
projecting the centroids onto each view and the update is done by re-projecting all the
rays assigned to the super-ray onto the reference view, using a fronto planar assumption.
The approach is fast, free of any strong scene geometry prior, easy to understand and to
implement, and it gives satisfactory results. Moreover, it does not require a dense depth
map estimation, making it a suitable candidate for a first step of a light field processing
pipeline.

A new metric is then introduced to evaluate an important feature of super-rays: the
view-consistency of the over-segmentation. We also quantitatively and qualitatively test

85

our approach on synthetic and real light field data-sets having different angular and spatial
resolutions, using standard super-pixel metrics. Finally, in [106, 109] the authors observe
that an accurate dense depth map is not crucial for editing. As a follow-up of this work,
we show that super-rays enable light field processing tasks which are typically done using
a dense depth map, such as light field segmentation and correcting the angular aliasing
that occurs when refocusing sparsely sampled light fields.

6.2 Related Work

We split the related work in 4 part. First we present the problems with the light field editing
methods presented in the previous chapter, then we review existing over-segmentation
methods for video, multiview stereo and RGB-D data.

Light field editing: In the previous chapter we presented, along with our work, methods
that use pixel-level representations [45, 114]. There is one major problem with these works.
Unfortunately, global or semi-global regularization methods such as graph cut, do not scale
well with the size of the input data, let alone adding a temporal dimension. And although
the method we presented in Chap. 5 solves the issue of scalability due to the number of
views, views with a too high resolution (e.g. more than 2K) require a very high running
time for the graph cut step, which is a problem since the smoothness parameter τ needs to
be interactively adjusted.

Super-pixel algorithms: Superpixels have been introduced to circumvent this computa-
tional complexity issue in traditional image processing. The term super-pixel, first coined
in [133] is often described as the partitioning (or clustering) of image pixels into a set of
perceptually uniform regions. Ideally super-pixels should be compact (uniform in size),
adhere well to the boundaries of objects and be fast to compute.

Because of these properties, super-pixels efficiently represent the image content and are
often used as an alternative to pixel representations. Super-pixels allow reducing the
computational complexity of many image processing tasks such as object segmentation or
object tracking, while providing useful region-based information (e.g texture description or
guided regularisation).

Many super-pixel approaches have been proposed and they can be classified into two main
categories (see [135] for a recent overview). The first type of methods concerns graph
based approaches [136, 137, 138, 139, 140]. While these methods offer a good accuracy,
they either do not provide control on the shape of super-pixels, are very computationally
expensive or are not parallelisable, hence not suitable for our applications. The second
category of approaches, usually faster than graph-based solutions, aims at growing or
evolving existing super-pixels. This category includes a variety of methods such as the
multi-scale watershed segmentation approach proposed in [141], the turbopixels segmenting
the image into a lattice-like structure of compact regions by dilating seeds [142], and the
quick shift clustering technique [143]. In the latter category, one also finds the SLIC [134]
and the SEEDS [135] methods for super-pixels on which we focus in the sequel.

Simple Linear Iterative Clustering (SLIC) super-pixels [134] rely on a reformulation of
Loyd’s algorithm for the k-means problem with two novelties. First, the distance metric is
a weighted sum of the CIELab color distance and the Euclidean pixel distance. Second
a search window around the centroid is used to reduce the complexity of the algorithm.
This approach has been extended in [144] to take into account a geodesic distance between
pixels. Color and spatial information are integrated along the shortest path between two
pixels in order to guarantee compactness, color consistency and connectivity.

86

SEEDS super-pixels [135] take quite the opposite approach. The method starts from a
regular, coarse grid segmentation, and iteratively updates blocks of pixels at the edge
for the current segmentation. That update is done such that each block can change its
super-pixel labelling if it decreases a total energy function of the color distribution of the
super-pixels. The block size is reduced along the iterations at a given rate.

Despite the fact that the last two approaches provide better results, as they enforce
continuity between super-pixels, in SLIC, the computation for the assignment and update
steps can be done for each pixel independently. This is not the case for all approaches
relying on any stack formulation, which makes the methods awkward to implement in
parallel. To the best of our knowledge, only SLIC has been successfully implemented on
GPUs [145] to provide results in real time.

Multiview segmentation: Since a light field can be seen as a (possibly dense) collection
of views, the proposed work raises issues one can also find when dealing with multiview
segmentation. One issue is in particular the possibility of simultaneously performing
segmentation and depth estimation.

Super-rays imply establishing correspondences between rays corresponding to different
views during the segmentation. The correspondences are found with the help of sparse
depth information. While it is possible to simultaneously estimate depth and perform the
segmentation [146] or the over-segmentation [147], this can understandably be achieved at
the expense of a very high computational cost.

As we briefly mentioned in Chap. 5, an alternative approach is to first compute super-pixels
independently for each view, and then find correspondences between them. In [118], a graph
is constructed connecting relatively small super-pixels computed on each view separately.
The super-pixels form the vertexes of the graph, while the edges connect super-pixels in all
the neighbouring images that satisfy the epipolar constraint. To enforce spatial consistency,
the weights on edges are given by the color-consistency of two connected super-pixels. Using
a foreground and background color model, the authors are able to extract a foreground
object directly. The goal being object segmentation, the super-pixels are not explicitly
grouped in a consistent manner across views, as targeted here with the proposed super-rays.
In [148], super-pixels are computed on one view only, and are assigned a normal and depth
measure using photo-consistency with the other views. The authors are more interested
in estimating depth information in a reference view rather than by the correspondence
established by view segments.

Video over-segmentation: Over-segmentation has also been studied for reducing the
complexity of video analysis tasks. Two main categories of approaches exist for video
over-segmentation, either considering a set of consecutive frames as a volume or processing
each image separately and updating super-pixels as a new frame arrives.

In [149], super-voxels are computed for a set of consecutive frames. The authors assess
five super-voxel algorithms in terms of spatio-temporal coherence, object and region
boundary detection, region compression and parsimony. Redundancy between frames in the
temporal dimension is hence exploited to construct the super-voxels as it is in the inter-view
dimension for multiview data. The authors in [150, 151, 152, 153, 154] instead try to
compute temporally consistent super-pixels. The approaches hence consist in updating the
super-pixels as each frame arrives, either by deleting, creating or updating super-pixels to
account for the scene motion. Equally, optical flow is often used as an additional clustering
information, but also when large displacements are involved.

Although applicable to densely sampled light fields, the first kind of approaches is likely to
fail in the case of sparsely sampled light fields as they usually fail for videos in the case of

87

large object displacements. The second type of approaches applies to light fields but does
not exploit the fact that object displacements from one view to the other is, due to the
scene geometry, uniform.

RGB-D clustering: To be complete, one should also mention the work focusing on
RGB-D over-segmentation. However, this problem differs from ours in the sense that the
goal is to segment a point cloud rather than pixels on several views. Nevertheless, one
paper [155] interestingly uses a modified version of SLIC, using seeds defined from the
3D map, and performs the assignment step using the image distance from the centroid
projection in order to circumvent the errors in depth estimation. Note that this work differs
from ours as we do not assume dense depth information to be available and, in addition,
we target view segmentation rather than point cloud segmentation.

6.3 Super-ray Light Field Over-Segmentation

Let r be a light ray of the light field set L, and (s, t, x, y) its coordinates using the two-planes
parametrization as described in the introduction and as in the previous chapter. Each ray
also has an associated CIELab color value Labr.

In this chapter, we note (x�, y�) := Pd
s�,t�(x, y) ∈ R

2 the spatial pixel position in view (s�, t�)
imaging the same scene point, at a distance d, as (x, y) in view (s, t). This is, (x, y) and
Pd

s�,t�(x, y) are corresponding pixels imaging the same scene point in different views. In
particular, in the case of a uniformly sampled light field we have

Pd
s�,t�(x, y) =

�

d (s − s�) + x, d (t − t�) + y
�

. (6.1)

However, if the light field has been acquired with a camera array, P should take into account
the extrinsic and intrinsic matrices of each camera, and allow us to estimate the pixel
correspondences in this particular setting. Using this notation, r ∼ r� are corresponding
rays imaging the same scene point, where r� := (s�, t�, Pd

s�,t�(x, y)).

Now, given a light field, our goal is to group in the so-called super-rays, all perceptually
similar rays corresponding to the same scene area. Formally, we aim to compute the
mapping A : L ⊂ Z

4 → Z, such that each light ray r of the light field is assigned with a
super-ray label c. We define Sc the set of rays r such that A(r) = c. Each super-ray Sc is
characterised by a centroid ray rc. By definition, the angular coordinates of rc correspond
to the fixed reference view (sc, tc). Besides, each centroid ray has a depth dc associated to
it.

6.3.1 Method description

Initialisation and depth estimation for centroids: First of all, the spatial positions
(xc, yc) of the centroid rays are initialized on a regular grid of step S in the reference view.
The corresponding CIELab color values on such positions are the initial color values of
the centroid rays Labrc .

Then, a depth dc is estimated for each centroid ray rc. As this step is important for the
rest of the algorithm the depth estimation needs to be robust. Thus, inspired by the recent
works on light field depth estimation [26], we consider a multi-baseline block-matching
strategy with angular patches in order to be more robust to occlusions and fattening errors.
Let Ω be the set of angular patches where each patch o ∈ Ω is defined such that o(s, t) is 1
if a ray is visible on the view (s, t), and 0 otherwise. Each angular patch can be seen as a

88

Figure 6.1: Example of angular patches in Ω for a light field of 3 × 3 views. The orange
color corresponds to the reference view (sc, tc) so the angular patches are equal to 1 at this
position. White positions corresponds to visible rays, so its value is equal to 1, and grey
positions are equal to 0. The leftmost patch assumes the ray is visible in all views. Other
patches correspond to partial visibility.

visibility mask. In practice, we define Ω as a predefined set of angular patches, one patch
that corresponds to the full view visibility and eight patches corresponding to different
half view visibilities (top-bottom, right-left and diagonals). See an example for a 3 × 3
light field in Fig. 6.1. Hence, the depth for the centroid c is estimated, given a range of
depth candidates D, by minimizing the color distance in the RGB color space using the
different angular patches :

dc = arg min
d∈D

�

min
o∈Ω

�

s�,t�

o(s�, t�) Δ
B
RGB(rc, r�

c)
�

,

where r�
c = (s�, t�, Pd

s�,t�(xc, yc))

and Δ
B
RGB(rc, r�

c) =
�

(i,j)∈[−B,B]2

�

RGBrc(i, j) − RGBr�

c
(i, j)

�2
,

(6.2)

is the patch color distance between the patch in the reference view (sc, tc) and the patch
in (s�, t�) �= (sc, tc). In particular, RGBrc(i, j) = L(sc, tc, xc + i, yc + j) is the RGB-color
value of the ray (sc, tc, xc + i, yc + j).

In this work, we fix B = 3 and we consider 9 angular patches (their size being equal to
the number of views in the light field). Since the depth is estimated for a few points (the
centroids), this choice is acceptable for low complexity applications.

Assignment step: At each iteration, each light ray r(s, t, x, y) of the light field is assigned
a super-ray label. First, the depth estimation in the previous step is used to compute the
corresponding rays of rc. Formally, we compute r�

c = (s�, t�, Pdc

s�,t�(xc, yc)) such that rc ∼ r�
c.

Then, each ray in a neighbourhood NS(r�
c) of size S around r�

c, is assigned to the super-ray
Sc if it minimizes the color and spatial distances:

A(r) = arg min
c

�

ΔLab(r, rc) + m Δxy(r, r�
c)

�

,

where ΔLab(r, rc) = ||Labr − Labrc ||2 , Δxy(r, r�
c) = ||(x, y) − Pdc

s�,t�(xc, yc)||
2 ,

(6.3)

and m is the parameter weighting the color and spatial distances. A visual explanation can
be found in Fig 6.2. Note that, when r belongs to the reference view, rc = r�

c in Eq. 6.3
and our assignment step is equivalent to the SLIC assignment step. However, our approach
allows to coherently assign a label to all rays in the other light field views.

In our assignment step we assume, as in Chap. 5, that two light rays from the same
view and close spatial coordinates are likely to image two close scene points. Therefore,
a ray that is similar in appearance and close to a centroid light ray or close to one of its
corresponding rays is considered likely to belong to the same scene object. Therefore, it
should belong to the super-ray corresponding to this centroid.

Update step: In this step, the spatial coordinates of the ray centroid and its corresponding
Lab values are updated. In particular, the new color value of rc is the average of the color

89

(sc, tc)

(xc, yc)

(si, ti)

Pdc
si,ti

(xc, yc)

(sj , tj)

Pdc
sj ,tj

(xc, yc)

S
(x, y)

Δ

rc

r

Figure 6.2: The assignment step. r is a ray inside the search window of the super-ray Sc,
defined according to the projection of its centroid rc, P dc

s�,t�(xc, yc) in the view where r lies.
The color and spatial distances in Eq. 6.3 is denoted Δ.

values of all rays in Sc and the new spatial coordinates are the average coordinates of all
light rays, r = (s, t, x, y) in Sc projected on the reference view using the depth dc:

Labrc =
1

|Sc|

�

r∈Sc

Labr , (6.4)

(xc, yc) =
1

|Sc|

�

r∈Sc

Pdc
sc,tc

(x, y) . (6.5)

Note that the centroid rays are defined on a reference view so its angular coordinates
(sc, tc) are not changed in our algorithm. On the contrary, the centroid spatial coordinates
(xc, yc) are first initialized on a regular grid in Z

2 and then updated in Eq. 6.5, which
produces new coordinate values in R

2. So, rc is defined as a virtual light ray which is not
necessarily one of the light rays captured in the light field. We summarize the update step
in Fig. 6.3.

When updating the spatial coordinates we assume that rays inside the same super-rays
are likely to have similar depth, so Eq. 6.5 is a good approximation with respect to the
centroid position we would obtain using the true depth per ray.

Furthermore, Eq. 6.5 ensures that two corresponding rays, on two different views, have
nearly the same spatial distance Δxy (as in Eq. 6.3) from a given centroid ray. This is not
necessarily the case when seeding the centroids independently on all the views.

Cleanup step: Similarly to SLIC, our algorithm does not enforce super-ray spatial
connectivity, so after our light ray grouping procedure some rays may remain isolated,
specially when the spatial term in Eq. 6.3 has a low weight. For this reason, a simple post-
processing is performed, that consists in re-labeling super-ray disconnected components
(with a number of pixels < 1

4S2) with the closest super-ray label.

The entire algorithm proposed in this chapter is described in Algorithm 1.

90

(sc, tc)

(si, ti)

(sj , tj)

(xi, yi)

Pdc
sc,tc

(xi, yi)

(xc, yc)

Pdc
sc,tc

(xj , yj) (xj , yj)

Figure 6.3: Update step. Each ray of the super-ray Sc is reprojected on the reference view
using the depth of the super-ray. Here we show ri and rj being reprojected on the reference
view (sc, tc). The projections are averaged, giving the new centroid ray position on the
reference view (xc, yc).

6.3.2 Experiments

In order to quantitatively evaluate the proposed approach, well-known super-pixel quality
measures can be trivially extended considering all views, such as the Achievable Segmenta-
tion Accuracy (ASA), the Boundary Recall (BR) [156] or the Corrected Under-segmentation
Error (CUE) [135]. However, these measures do not evaluate the coherence through the
light field views. For this reason, we introduce a new evaluation measure called View
Consistency (VC). This new measure assumes that the ground truth depth dr is known for
each ray r and uses it to select the light rays to consider. Indeed, given a light ray r, our
measure aims at evaluating the assignment consistency for the set of corresponding rays
imaging the same scene point as r:

L�
r =

�

r� ∈ L s.t. (x�, y�) = Pdr

s�,t�(x, y), (x, y) = P
dr�

s,t (x�, y�), (s�, t�) �= (s, t)
�

. (6.6)

Note that the re-projection check using the ground truth d takes into account the occlusions
and guarantees that L�

r contains light rays imaging the same scene point. Therefore, we
define

V C(A) =
1

|L|

�

r∈L

1

|L�
r|

�

r�∈L�

r

δ
A(r)
A(r�) , (6.7)

where δ is the Kronecker delta. This metric is somehow related to the Inter-Frame Label
Consistency [151] for super-pixel evaluation in the case of videos, but instead of computing
the consistency from frame to frame using the ground truth optical-flow, we measure the
consistency between all light field views simultaneously using the ground truth depth.

Our quantitative evaluation is performed on synthetic datasets, with segmentation and
depth ground truth. We use the dataset in [34], that is composed of 9×9 densely sampled

91

Algorithm 1: Super-ray algorithm

Data: Input Light Field L
Result: Super-ray assignments A
Initialize centroids on reference view;
while not (converged OR max. iteration reached) do

\\ Assignment step
for each centroid c do

for each view (s�, t�) do

Compute (x�
c, y�

c) = Pdc

s�,t�(xc, yc);

for each ray r in NS(r�
c) do

A(r) = c (c minimizing Eq. 6.3);

\\ Update step
for each centroid c do

Compute Pdc
sc,tc

(x, y), ∀r ∈ Sc;

Update Labc and (xc, yc) (Eqs. 6.4 & 6.5);

Cleanup step

views of 768 × 768 pixels (Papillon 2, Horses 2, Stilllife 2, Budha). We also use the dataset
in 5, which is a 4 × 4 sparsely sampled light field views of 640 × 360 pixels (Scene 4).
Finally, we propose a new dataset of 5 × 5 views of 640 × 480 pixels (Tricycle), which is
rather sparse.

First, we observe that our approach converges in 10-15 iterations, similarly to SLIC, as
shown in Fig. 6.4, for both dense and sparse light fields.

We compare the proposed super-rays construction method with what we would obtain by
separately computing super-pixels on each view, and then merging super-pixels having
the highest number of corresponding rays across views. In particular, we use the ground
truth depth in the synthetic datasets to re-project rays onto the central view, and we
then merge the super-pixels of different views with the super-pixels on the central view
having the highest number of re-projected rays, i.e such that V C is maximised. Fig. 6.5
and Fig. 6.6 show the superiority of our strategy compared to the merging of independent
super-rays.

Fig. 6.5 shows the behaviour of the four quality metrics (ASA, BR, CUE, VC), when
varying the different parameters, i.e., the size S of the super-rays and the compactness
parameter m, for the dataset Scene 4. We observe in Fig. 6.5a that when increasing the
values of S and m, the super-rays do not segment correctly the objects in the scene, as
it was observed with SLIC super-pixels. We also remark that ASA, BR and CUE have
similar behaviours with similar numerical values when varying S and m, but the proposed
metric VC has an opposite behaviour. Indeed, decreasing S and m decreases the view
consistency. This can be explained by the fact that decreasing S and m increases the
number of super-rays, hence of super-ray edges near which rays are more prone to labelling
errors. So, the view consistency decreases. Fig. 6.5b shows that merging independent
super-pixels has no impact on the super-pixel metrics (ASA, BR, CUE) as one may expect,
but view consistency is severely deteriorated.

The same observations generalises to the rest of our test set. Fig. 6.6 shows how the
two approaches compare when fixing one of the parameters. To be able to compare light
fields of different spatial resolutions, we use k, the number of visible super-rays per view.
Once again, we observe very close results when changing k and the spatial weighting

92

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0

0.5

1

1.5

Iterations

A
ve

ra
ge

d
is

p
la

ce
m

en
t

Papillon 2 Horses 2
Stilllife 2 Budha
Scene 4 Tricycle

Figure 6.4: Average displacement in pixels of the centroid spatial coordinates with respect
to the number of iterations.

parameter m for the ASA, BR and CUE. However, enforcing the super-rays to have the
same centroid ray imaging the same scene point, yields super-pixel consistency across views.
Our approach allows the segmentation consistency to be independent of the parameters k
and m, whereas when computing super-pixels on each view, one super-pixel on a view can
be described at two (or more) disjoint pieces of super-pixels on another view, depending
mostly on the initial seeding. The other thing we notice is the significant difference in
terms of over-segmentation performance between densely sampled and sparsely sampled
light fields. The over-segmentation of sparsely sampled light fields is less consistent across
views, and usually slightly less accurate than for dense light fields. This can be explained
by errors in the initial depth estimation, leading to some inconsistent super-rays.

Fig. 6.7 and 6.8 show the super-rays constructed by the proposed algorithm, with m = 1
for the smoothness parameter and S = 15 and S = 20 for the super-pixels size respectively.
Note that we only display 3 × 3 views for the sake of readability. Each super-ray is
reassigned a random color, the projection of each centroid ray on the different views is
represented with a small cross.

At a first glance, the super-rays on each view look like regular super-pixels, but the main
difference is that super-rays are overall consistent from a view to another, despite occlusions.
We invite the reader to zoom in to see the details.

Regarding the running time, we currently have two implementations, one on CPU using
C++ and the other one on GPU using Python and Opencl. None of these implementation
is optimised (the GPU implementation uses global memory and atomic operations) but
still give low run-time on our laptop equipped with an Intel i7 − 5600U and a Radeon
R7 − M260X. On the Tsukuba dataset, the super-pixels are computed in 6s and 0.3s on
GPU. For the dataset of [34], we have a run-time of 80s on CPU and 4.2s on GPU1. For
Lytro Illum light field, it takes 57s on CPU and 3s on GPU.

We invite the reader to consult our website2 for more detailed results.

1we used 7x7 views on GPU because the entire light field overflowed the maximum allowed buffer size in
our implementation

2http://www.irisa.fr/temics/demos/Superrays/index.html

93

0
2

4
50

100

0.8

0.9

1

m S

A
S
A

0
2

4
50

100

0.5

1

m S

B
R

0
2

4 50

100
0

0.2

0.4

m S

C
U

E

0
2

4 50

100

0.8

1

m S

V
C

(a) Super-rays evaluation

0
2

4
50

100

0.8

0.9

m S

A
S
A

0
2

4
50

100

0.5

1

m S

B
R

0
2

4 50

100
0

0.2

0.4

m S

C
U

E

0
2

4 50

100
0.6

0.8

m S

V
C

(b) Evaluation of independent super-pixel estimation and a posteriori merging.

Figure 6.5: Different evaluation metrics across different parameters for Scene 4. Green
means good score while red represent bad score. For the sake of readability, the axes are
flipped differently for each metric.

94

0 500 1,000 1,500 2,000

0.6

0.8

1

k

A
S
A

0 1 2 3 4
0.92

0.94

0.96

0.98

m

A
S
A

0 500 1,000 1,500 2,000

0.5

1

k

B
R

0 1 2 3 4

0.85

0.9

0.95

1

m

B
R

0 500 1,000 1,500 2,000

0

0.2

0.4

0.6

k

C
U

E

0 1 2 3 4

0.05

0.1

0.15

m

C
U

E

0 500 1,000 1,500 2,000

0.6

0.8

1

k

V
C

0 1 2 3 4
0.4

0.6

0.8

1

m

V
C

Papillon 2 super-rays Horses 2 super-rays
Stilllife 2 super-rays Budha super-rays
Scene 4 super-rays Tricycle super-rays
Papillon 2 independent super-pixels Horses 2 independent super-pixels
Stilllife 2 independent super-pixels Budha independent super-pixels
Scene 4 independent super-pixels Tricycle independent super-pixels

Figure 6.6: Comparison of super-rays versus merged independent super-pixels, when varying
k, the number of super-rays visible on each view with m = 1 fixed (left column) and when
varying m the compactness parameter, with k = 500 fixed (right column).

95

(a) Original light field (b) Color-coded super-rays

Figure 6.7: Super-rays for the sparsely sampled light field in the Tsukuba dataset [24].

(a) Original light field (b) Color-coded super-rays

Figure 6.8: Super-rays for the densely sampled light field we have captured with the Lytro
Illum and decoded using the toolbox in [47, 157].

6.3.3 Discussion

The main interest of super-rays is to give a compact mutli-view representation of the scene,
without relying on dense depth estimation. This representation can be used directly or
with depth information associated to each centroid ray, as we show in the next section. One
main challenge of super-rays is to be as computationally efficient as super-pixels. While it
would be possible to integrate some photo-consistency prior in the assignment step (Eq.
6.3), this would come with a huge computational cost, since the photo-consistency would
either need to be pre-computed for each ray and for each candidate disparity value, or to
be computed at each iteration. Moreover, the K-means strategy applied here relies on some
strong assumptions on the data (e.g. spherical distribution variance or uniform cluster
size), that get easily violated when dealing with other quantities such as color and spatial
information. Instead, our approach only uses the disparity of centroid rays, and lets the
spatial distance of the re-projected rays do the grouping. In that sense, the geometric
information given by the light field is not fully exploited, but on the other hand, as long as
two objects have sufficiently different colors, our approach is still sufficient to yield a good
segmentation.

The first obvious limitation of this method is that it relies heavily on the centroid depth
initialisation. Even if we propose a method to robustify this initial search, errors may
have negative consequences on the output segmentation, rays being assigned to the wrong
super-ray. Precisely, this is a problem when the disparity error is greater than the super-ray

96

size, as the centroid would potentially fall outside an object during projection. This being
said, light-field depth estimation is an active research topic and our depth estimator could
be replaced in the future with another sparse and more accurate method.

The second limitation is related to occlusions. Indeed, because the projected centroids
coordinates are not placed regularly, but rather warped according to the scene depth, zones
with large occlusion have few, or no nearby centroids projections. If an occlusion is bigger
than the search window of the super-ray, rays of a view might not be assigned to any
super-rays.

6.4 Super-ray Applications

In this section we propose two examples of editing applications that exploit the super-rays
presented in this chapter. On the one hand, we present a fast light field segmentation
algorithm based on super-rays. On the other hand, we present a novel algorithm for
correcting angular aliasing for sparsely sampled light fields.

6.4.1 Real Time Interactive Segmentation

Light field segmentation has a high computational complexity [60, 114] and using super-
rays is a good strategy for decreasing it, similarly to temporal super-pixels for video
segmentation. We use the same graph structure introduced in Chap. 5, only this time we
do not need dense depth maps. We use the super-rays and the centroid depth estimates to
create the graph. This is, we build a graph G = {V, E} where each node in V corresponds
to one super-ray Sc and we set an edge in E between two nodes if the two super-rays
share a common border in at least one view (adjacent super-rays). This decreases the
number of nodes approximately by the size of a super ray, giving a graph of hundreds to
few thousands of nodes instead of millions. Then, we define the energy

ϕΩ =
�

ci

U(ci) + τ
�

ci

cj∈N (ci)

P (ci, cj) , (6.8)

where as before τ is the smoothness parameter, U and P the unary and pairwise terms
respectively. N (ci) is the set of super-rays that are adjacent to ci. U uses the super-
ray average color probability, defined as in Chap. 5 from a Gaussian mixture learned
from the user input and P is defined as a summation of the view conventional pairwise
relationship.

In order to minimize Eq. 6.8 the multi-label Graph-Cuts algorithm in [101, 122] is also
applied, using the same available implementation3. Fig. 6.9 shows the final segmentation
for the Tsukuba dataset along with the input scribbles in the reference view and the results
of Chap. 5 for comparison.

The main interest of using super-rays as a base for segmentation is the gain in running time
as summarized in Tab.6.1. For the Tsukuba data set, the graph cut applied on super-rays
only takes 1 ms on the same machine as in Sec. 6.3.2 (a laptop with an Intel i7 − 5600U
and a Radeon R7 − M260X). The complete segmentation algorithm takes 8.1s on CPU
with the following running times for each step: 6s to compute the super-rays, 2.1s to build
the graph (i.e to compute the models, unary and pairwise costs), 1ms to do the graph cut.

3http://vision.csd.uwo.ca/code/

97

(a) Reference view with input scribbles

(b) Super-rays segmentation (c) Chap. 5 segmentation

Figure 6.9: Graph-cut segmentation of the dataset Tsukuba using our super-rays. In (a)
we show the reference input view with color-coded user annotations, in (b) and (c) we
compare the corresponding segmentation masks obtained when using our super-rays and
the techniques of Chap. 5 respectively. Our strategy allows a significant reduction of the
running time compared to the state of the art light field segmentation.

With super-rays computed on GPU, the segmentation only only takes 2.4s with 0.3s for
the super-rays computation, 2.1s to build the graph, and 1ms to do the graph cut. On the
dataset in [60] the approach takes 94s (80s for the super-rays, 14s to build the graph, 4ms
for the graph cut) on CPU and 18.2s (4.2s for the super-rays, 14s to build the graph, 4ms
for the graph cut) on GPU.

These running times are significantly reduced compared with the state-of-the-art methods
in [60, 114] and our previous chapter. The authors in [60] report a segmentation time
between 6 and 10min, including 1 to 5min to learn the models and 5min to perform the
optimization on a more powerful desktop GPU (Nvidia GTX − 580). The approach in
Chap. 5 which uses depth to reduce the number of nodes in the graph takes 9.3s on the
Tsukuba dataset with the same hardware. It takes 6.3s to build the graph and 3s to do
the segmentation. On the dataset in [60] and using real depth, in contrast to what we
indicated, the approach in the previous chapter takes 122.6s (82s to build the graph, 40s
to do the segmentation).

The above figures for the reference methods in [60] and Chap. 5 do not take into account
the time needed to compute the dense depth map on each view, while our super-ray
construction method includes the coarse depth estimation. For a fair comparison, the time
needed to estimate the dense depth maps should be added to the above timing reported for
[60] and Chap. 5 which respectively takes 2.9s and 33.6s for the Tsukuba data set and the
data set in [60] using the approach in [73] (implemented as pre-processing on a desktop
GPU using C++/OpenCL).

98

Table 6.1: Comparison of the total segmentation running times, including depth estimation
if any. Results of [60] were computed on a more powerful machine than the others.

Approach
Dataset

Tsukuba [60] dataset

[60] (GPU) N/S 393.6 to 633.6s
Chap. 5 (CPU) 12.2s 156.2s

Ours (CPU) 8.1s 94s
Ours (GPU) 2.4s 14s

Table 6.2: Segmentation accuracy (ratio of pixel assigned to the right labels according
to the ground truth) with a synthetic dataset. The parameters were fixed to k = 2000
and m = 1. We first show our results with respect to the dominant ground truth label
assignment for the segmentation (as when computing the ASA metric). This allows us to
measure the loss in segmentation accuracy solely introduced by the super-rays (i.e assuming
the segmenting process does not introduce additional errors). We also give the results
using the super-rays followed by the graph cut approach of Chap. 5.

Dataset: Still life 2 Papillon 2 Horses 2 Budha

Result in [60]: 99.3 99.4 99.3 98.6

Result from Chap. 5: 99.2 99.5 99.1 99.1

Our results
(GT Segmentation)

99.0 99.5 97.0 98.1

Our results
(Graph cut)

98.8 99.1 96.1 96.6

In conclusion, in the context of interactive segmentation, we see that avoiding to compute
dense depth maps and running the segmentation on a much more compact light field
representation allow a significant reduction of the segmentation running time on CPU, and
thanks to the parallelizable nature of super-rays, a dramatic reduction when using GPU.
We are confident that more implementation efforts will lead the super-rays computation to
be near real-time.

This gain comes at the expense of losing precision, but the obtained accuracy is sufficient
for many real-time applications requiring a fast (rather than accurate) segmentation. We
illustrate this loss of accuracy in Tab 6.2. We see that super-rays introduce errors with a
rate of 0.1% to 2% in the best case scenario, when the algorithm used to assign a label
to each super-ray does not do any error. Using the graph structure and the data and
pairwise terms introduced in Chap. 5, the accuracy drops, with an error rate of 1% to 3%,
mostly due to the limited data cost model. Using a more complex model, using textural
information provided by super rays will solve this issue.

6.4.2 Correcting Angular Aliasing

As we previously stated, one of the major new light field applications compared to con-
ventional cameras is the post-capture image refocusing. In fact, light fields captured with
plenoptic cameras provide quite impressive refocusing results [17] but angular aliasing
appears when refocusing light fields from camera rigs or angularly sparse plenoptic cameras.
This is due to the poor angular sampling of such acquisition systems. Angular aliasing is
particularly visible when the simple shift-and-add algorithm is used for refocusing, whereas,
as we previously saw, other solutions such as the adaptive splatting [48] or the rendering

99

of novel views [91, 15] decrease the artifacts.

However, these solutions are depth-based methods which makes them unsuitable for fast
editing applications. Here we propose to refocus using our super-rays to avoid angular
aliasing while maintaining a low complexity. Our goal is not to render new views but our
philosophy is similar in the sense that we use approximate intermediate views computed
with our super-rays. Thus, refocusing is performed via shift-and-add using both original
and approximate intermediate views that we call virtual views.

With our notations, the shift-and-add method to compute the refocused image at depth d
from the viewpoint (sc, tc) is defined as

Id
sc,tc

(x, y) =
1

N2

�

s,t

RGB(s, t, Pd
s,t(x, y)) , (6.9)

where the original angular coordinates s, t = 0, · · · , N − 1; correspond to the original
image views available in the light field, and in the case of a Lumigraph light field,
RGB(s, t, Pd

s,t(x, y)) = L(s, t, x + d(sc − s), y + d(tc − t)) .

Now, we define the virtual positions (u, v) ∈ R
2 as

(u, v) = (s, t) +
1

�d
(i, j) , i, j = 1, · · · , �d − 1 , (6.10)

where the number of virtual views between two original views is �d = [|(dc − d)|] the integer
part of the absolute value of the depth difference between the refocusing depth d and the
centroid depth dc, c being the centroid label to which (sc, tc, x, y) belongs. Therefore, the
corrected refocused image is defined as the sum of the original images and the virtual views
contribution:

Îd
sc,tc

(x, y) =
1

(N · �d)2

�

s,t

�

RGB(s, t, Pd
s,t(x, y)) +

�

u,v

RGB(u, v, Pd
u,v(x, y))

�

. (6.11)

Note that Eq. 6.11 requires to interpolate the virtual views, which can be quite memory
and time consuming. However, in our strategy we do not explicitly compute them but we
use the super-rays depth dc to approximate ray colors in virtual views:

RGB(u, v, Pd
u,v(x, y)) � RGB([u], [v], Pdc

[u],[v](P
d
u,v(x, y))) , (6.12)

where ([u], [v]) is the closest original view.

Considering dc as the depth of all rays of a super-ray is a coarse approximation but it
has few or no consequences on the final result since we only approximate for the blurred,
out of focus areas. However, the high frequencies on the blur due to the poor angular
sampling are successfully removed. Moreover, using the approximate depth information
is sufficient to prevent out of focus rays coming from the background to be mixed with
occluding in-focus rays which may create artifacts.

Fig. 6.11 shows the angular aliasing correction using the dataset from [24] when refo-
cusing at the sculpture bust. Our method successfully decreases the angular aliasing on
the background. Note that we simulate a squared aperture which provides a squared
bokeh.

Finally, we compare our approach with the two-CNNs view synthesis approach [91] we
presented in Chap. 4. It provides excellent results, with quite big computational cost both
for training but also for generating the views (the authors report 12s to generate a single

100

GT 2x2 views GT 8x8 views [91] Super-rays

Figure 6.10: Angular aliasing comparison. From left to right, we show the images refocused
with the 2x2 corner views in the test set in [91], the full 8x8 light field (ground truth), the
8x8 synthesized light field with the approach in [91] and the 8x8 light field synthesized
with our approach. We use k = 1000 and m = 1.

541x376 view). Their training and test set consist of Lytro Illum light fields. Only the
four corner views are kept, giving a sparse light field with a very small number of views,
and the 60 views in between these images are generated to extrapolate an 8x8 light field
which is compared to the captured Lytro Illum ground truth. We use our approach on the
2x2 corner views to generate the other views the same way. The parameters used were
k = 1000 and m = 1. The computation of the super-rays takes 0.36s (0.17s per iteration)
and generating a view takes 0.007s. Then, we compare on Fig. 6.10 the refocused image
obtained with the shift-and-add algorithm using the 2x2 views, the synthesized views from
[91] and our synthesized views using the super-rays. We also show the refocused ground
truth using the 8x8 Lytro Illum real views.

Quantitatively, on the test set, the average SSIM (Structural Similarity) and PSNR (Peak
Signal to Noise Ratio) between the ground truth refocused image and our approach is
respectively 0.98 and 39.0 versus 0.99 and 42.6 using [91] and 0.92 and 34.5 for the image
refocused using only the 2x2 views. Note that we had to crop a 22 pixels border on the
reference and our refocused images to comply with the output of [91] that loses the border
pixels. Overall, our results are of lower quality because of depth estimates, but in the zones
where depth is correct, we see no or few differences between our result and the ground
truth. However, our approach has a significantly lighter complexity compared to [91] (the
authors report 10s to generate a single view using Matlab and CuDNN, while our approach
runs in the order of 1

100s) which is the main interest of our super-rays.

101

Figure 6.11: Refocusing the sparsely sampled Tsukuba dataset. Left: Shift-and-add
algorithm which creates disturbing angular aliasing artifacts. Right: Our strategy using
real and virtual views. The virtual views have been rendered with our super-rays. We
invite the reader to zoom-in to see the details.

6.5 Conclusion

We have introduced the concept of super-ray and we have proposed an implementation
that is suitable for sparsely and densely sampled light fields. Our solution is fast, easy
to implement, and suitable for GPU implementations. Besides, our super-rays are view
consistent, which is a major advantage for light field editing. In particular, we have
shown the interest of super-rays for light field segmentation and refocusing without angular
aliasing. In the future, the proposed approach could be used for other light field editing
tasks, such as intrinsic decomposition [158] or video light field processing.

102

Chapter 7

Dynamic Super-Rays for Efficient

Light Field Video Processing

7.1 Introduction

Not only in this dissertation, but also in the current literature, most of the used light field
content was static. This is perhaps due to the difficulties of capturing a dynamic light field
for either of the aforementioned devices. Specifically, camera gantries are by design unable
to record dynamic light fields, and the available plenoptic cameras are either limited to
static light fields (e.g. Lytro cameras) or cannot easily produce a Lumigraph as we saw in
Chap. 3. Camera arrays require to build a synchronized camera acquisition system, which
is a real technical challenge.

However, latest advances in light field video acquisition systems [13, 2] show that it is
possible to capture quite voluminous light fields in real time, without specific hardware and
with reasonable capturing systems. The problem of efficiently processing the captured 5D
light field content is then twofold. First, the amount of data to handle, already a problem
for static light fields, reaches a critical point for video light fields. As a consequence,
computational efficiency is a core aspect in many light fields processing tasks, such as
editing. Secondly, to enable editing via user interaction on a single key frame, algorithms
must consistently propagate the edits angularly and temporally to the rest of the dynamic
light field.

In this last contribution chapter, we build on the work in Chap. 6 to present an over-
segmentation scheme that exploits the light field redundancy in both the temporal and
angular dimensions and leverages GPU computational power to enable easy and fast light
field editing from a single reference view and frame. The proposed over-segmentation
approach generalizes the concept of super-rays, to dynamic super-rays for video light
fields.

Several constraints are taken into consideration in the design of the proposed method.
First, the approach is kept parallelizable to take advantage of a GPU implementation.
Second, it processes different frames sequentially and on-the-fly, so the memory footprint
is reasonable, in contrast to methods operating on sliding windows. This is mandatory
as the amount of data per frame is much greater than a conventional 2D video. Finally,
super-rays are consistent across views and across frames in the temporal dimension.

Specifically, our contributions are:

103

• An end to end approach to create an angularly and temporally consistent light field
over-segmentation that we call dynamic super-rays

• A new update term for creating and deleting superpixels and super-rays specially
tailored for dynamic content

• A new strategy for creating a temporal over-segmentation that is consistent with the
scene movement

7.2 Related Work

The related work of Chap. 6 is also valid for this chapter. However, we only briefly
mentioned methods that aim to compute a dynamic over-segmentation for conventional,
2D videos. We give more details on how these methods work in this section.

The first one assumes the entire video sequence to be processed as a whole. For instance,
in [134], the temporal dimension is treated in the same way as the spatial dimensions in
order to create a single volume, where volumetric superpixels are computed. Whereas in
[159], superpixels are computed separately on each frame, then temporal correspondences
between superpixels are established using an affinity metric in order to extract object
segments.

The second and more popular category aims at computing the segmentation consistently,
from a frame to another. Several approaches have been proposed. In [151] a pre-computed
dense optical flow is used along with a Gaussian process to update the labeling from a
frame to another. The superpixels deletion or creation is done by inference using the same
Gaussian process. In [153], the framework proposed in [160] is extended to videos. When
a new frame arrives, the same moves are performed to adapt for the new frame geometry,
using the previous frame assignments. Creation and deletion of superpixels are done by
looking at color histogram distances. In [152], the most related work to ours, dynamic
SLIC superpixels are computed in a sliding window of 20 frames. A dense flow is used to
propagate the assignment from a frame to another and several SLIC iterations are run. The
centroid color is shared between corresponding superpixels on several frames of a sliding
window. The superpixel update criteria is solely based on the superpixel size evolution.
Unfortunately, none of the aforementioned approaches are readily applicable for video light
field over-segmentation for different reasons. Loading all, or a large amount of the frames
of the video sequence as in [152, 134] is prohibitive in the case of a light field. Performing
a late merge of frames superpixels as in [159] does not provide any temporal consistency.
Methods taking the assumption that the temporal dimension is densely sampled, as in
the temporal propagation step of [151], will most likely fail in our case, where objects
with wide motion are involved. Finally, all the approaches relying on a stack of granular
operations as in [153], are not suitable for a GPU implementation, necessary to handle the
large volume of data in editing time.

7.3 Dynamic super-rays

The proposed approach is a follow up to the previous chapter and is inspired from
techniques proposed to generate temporally consistent superpixels [152, 151], that can
be decomposed into three main steps: (i) initialize the current frame segmentation by
temporally propagating the segmentation of previous frames, (ii) adapt the segmentation
to changes in geometry and (iii) create and delete segments to take into account occlusions
and objects entering or leaving the scene.

104

Frames
V

ie
w

s

Pd
c

δx

c

Pd+δd
c

Figure 7.1: Illustration of our algorithm in a simple case. The red foreground super-ray is
tracked over the consecutive frames of a 2 × 1 light field. Other super-rays do not move
since the background is static. The depth d is used to enforce angular consistency from
a view to another, while the scene flow (δx, δd) guarantees temporal consistency. On the
third frame, the moving red super-ray becomes too close to the pink super-ray and too far
from the green one, triggering the creation of the orange super-ray and the deletion of the
pink one on the next frame.

In this chapter, we consider a dynamic light field Lf with the temporal dimension being
denoted by superscript f . We use almost the same notation as in Chap. 6 for the super
rays index Sc of label c, the assignments A are now temporal assignments Af , dynamic
rays are noted rf . We however collapse the angular and spatial coordinates into (s, x) to
avoid long equations. P then becomes x� := Pd

s
�(x).

Our algorithm is summarized in Alg. 2 and illustrated in Fig. 7.1.

Algorithm 2: Dynamic super-ray algorithm

Data: Input light field frame Lf

Result: Super-ray assignments Af

if f == first frame then

Compute Af as in Chap. 6

else

Move centroids with (δx

c , δd
c) (Sec . 7.3.1)

Delete and create centroids (Sec. 7.3.2)
for 5 iterations do

Do the assignment step Eq. 6.3
Do the update step (Sec 7.3.3)

7.3.1 Sparse temporal propagation

Computing a dense and accurate optical flow for light fields can be a quite tedious task,
especially when memory and time requirements are taken into account. Moreover, because
super-rays embed a depth information per segment, the problem we aim to resolve is a
scene flow estimation problem. That is, we aim to find the displacements of 3D points in

105

the scene rather than pixels shifts in the image plane. Fortunately, in the case of super-rays,
the scene flow estimation needs to be estimated only for centroids and not for all rays
of the light field. Formally, for two consecutive light field frames f and f + 1, one could
estimate the scene flow (δx

c , δd
c) at the centroid ray rf

c = (sc, xc) as

(δx

c , δd
c) = arg min

δx,δd

�

s
�

Δ
B
RGB(rf+1

c , r�f+1
c)

where rf+1
c = (sc, xc + δx)

and r�f+1
c =

�

s�, Pdc+δd

s
� (xc + δx)

�

;

(7.1)

and ΔB
RGB the color distance between two patches of size B centered at rf+1

c and
r�f+1

c .

However, this 3-dimensional cost function being quite expensive to minimize, we have split
the problem into optical flow and depth estimation, like other methods for light field scene
flow estimation in the literature [28, 161]. Besides, it is not clear to which extent solving
jointly the displacement for x and d would be beneficial.

Now, in the state of the art optical flow estimation methods [162] Deep Flow [163] stands
out for its performance in terms of quality and run-time. Deep flow first searches for sparse
matches using Deep Match [164] between downsampled versions of the input frames, and
then the matches are densified by regularizing a selected set of sparse matches. Deep Match
has many properties which are interesting for our problem. It is robust and efficient since
it can be implemented on GPU1 and the matches are searched in a limited local window.
Thus, we solve the sparse flow estimation using deep matches. In contrast to Deep Flow,
we do not seek to obtain a dense and precise optical flow, but rather a robust and fast
sparse flow for each centroid.

We compute a set of deep matches µ [164], with their coordinates in the reference view
noted xf

µ and xf
µ, from two downsampled frames f and f + 1. Then, the estimated flow

δx

µ = xf+1
µ − xf

µ, using the deep matches in the full resolution coordinate system, is used
to compute the flow of each centroid δx

c using a simple and fast bilinear interpolation.
Precisely, δx

c is the distance-weighted average flow δx

m of its 4 nearest matches.

Using the notation above, the depth is updated using the same strategy as in Chap. 6:

δd
c = arg min

δ∈D

�

min
o∈Ω

�

s
�

o(s�) Δ
B
RGB(rf+1

c , r�f+1
c)

�

, (7.2)

where D is the small range of potential depth movements and Ω is a family of spatio-angular
patches.

7.3.2 Centroid creation and deletion

Because of object movements in the scene, the super-ray topology can change in time. For
instance, parts of the super-rays can be occluded or disoccluded, or completely appear
or disappear due to objects entering or leaving the scene. For this reason, creating and
deleting super-rays might be necessary. While the superpixel size or color consistency
has been used to determine the creation or deletion in other research works, we propose
to leverage the depth information associated to the super-ray to detect occlusions and
disocclusions.

1http://lear.inrialpes.fr/src/deepmatching/

106

S
c

cdown

cleft

cup

cright

Figure 7.2: Super-ray neighborhood. Each super-ray is represented by a solid color and its
centroid by a black dot. The search area for the left neighbor cleft of the red super-ray c
is represented by the blue dots, and the final neighborhood connections of c by the black
lines.

In particular, a new super-ray is candidate to be created at the midpoint of two super-rays
when their centroid distance exceeds a given threshold S ∗q. Conversely, a super-ray will be
a candidate to be deleted if two super-rays are too close from each other, i.e. their centroid
distance is lower than a threshold S/q. In particular, the occluded super-ray (with the
smallest disparity or biggest depth) is the candidate for deletion. For the sake of efficiency,
and to avoid duplicates, we search the candidate centroids to be deleted or created in a
4-nearest neighborhood, computed as illustrated in Fig. 7.2. Specifically, the approximate
neighborhood of a centroid c is defined as N (c) = {cleft, cright, cup, cdown} where

cleft = arg min
ĉ

�

|yĉ − yc| s.t. xĉ < xc, |yĉ − yc| < S
�

, (7.3)

and similarly for the other neighbor centroids.

Now, in order to maintain the number of super-rays constant, we create the same number
of super-rays we delete. If the number of candidates for deletion is smaller (resp. bigger)
than the number of candidates for creation, only the centroids with the biggest (resp.
smallest) centroid distance are created (resp. deleted).

Finally, because objects can move inside or outside of the reference view, the super-rays near
the image borders are treated as follows. New super-rays are created in the reference view
between the image borders and the closest centroids. For instance, if a centroid c does not
have a neighbor cright, a new centroid will be (xc+M

2 , yc), M being the reference view width.
Super-rays that leave the reference view image plane are automatically deleted.

Note that the centroid neighborhood can be used for further processing, as it is a convenient
way of representing the super-rays structure.

7.3.3 New frame over-segmentation

In the new frame, after defining the set of centroids in the reference view, all the rays of
the light field are assigned to a centroid. Similarly to super-rays, the assignment is done
using Eq. 6.3 in an iterative process with color and position centroid updates. While the
centroid color is updated with the same color average strategy as super-rays, the centroid

107

Frames

V
ie

w
s

Figure 7.3: Dynamic super-rays for 3 frames and 2 views of the dataset Birthday [2].

position update changes for dynamic super-rays. So Eq. 6.5 becomes

xf+1
c =

�

p

|Sf+1
c |

�

r∈Sf+1
c

Pdc
sc

(xf
r)

�

+ (1 − p)(xf
c + δx

c) (7.4)

where p is a parameter controlling how much the super-rays are allowed to move from their
theoretical position. When p = 1, this step corresponds to the same SLIC iteration as in
Eq. 6.5, and when p = 0, the super-ray centroids are not updated at all, providing the best
temporal consistency. Newly created centroids (as described in Sec. 7.3.2) are updated
using p = 1, allowing them to adapt to scene changes.

In [152], 5 SLIC iterations are run, where the centroids are allowed to move freely. As
a consequence, superpixels of static objects tend to move since they are affected by the
creation, deletion and movements of nearby superpixels. On the contrary, our dynamic
super-rays movement is congruous with the objects movement in the scene, providing a
more consistent temporal over-segmentation.

7.4 Experiments

Currently, two datasets for video light fields captured with camera arrays are available.
The Fraunhofer dataset [13], with sequences of 3 × 3, 3 × 5 and 4 × 4 views, a camera
resolution of 1920 × 1080 pixels and sequences between 150 and 400 frames. On the other
hand, the Technicolor dataset [2] with sequences of 4 × 4 pseudo-rectified views, a camera
resolution of 2048 × 1088 pixels and sequences between 300 and 390 frames. The cameras
baseline is quite important for the second dataset.

108

Frames

Figure 7.4: Over-segmentation comparison with [152] on the reference view over 5 frames.
Our dynamic super-rays (second row) are consistent with the scene movement while the
superpixels in [152] (third row) move in static regions.

As hyper-parameters, fixed for all the datasets, we use a down-sampling factor of 2 and a
flow window of 30 pixels for the computation of the deep matches. The δd search range is
limited to 1/10 of the depth search range, given for each dataset. The depth block size is
fixed to 11 × 11 pixels. The compactness parameter m is fixed to 0.5 and q and p are fixed
to 1.9 and 0.4 respectively.

We generated 1500 super-rays for the Technicolor dataset and 2000 for the Fraunhofer
dataset. These number of super-rays offer a good trade-off between segmentation accuracy
and super-ray tolerance to occlusions (as discussed in Chap. 6) for each of the datasets. Our
dynamic super-rays are computed in the whole sequences without fragmenting them.

Fig. 7.3 shows the output of our algorithm for a small area of the dataset Birthday [2].
For the sake of visualization, results are only shown for two views, the reference view
sc = (1, 1) and another view s = (1, 0), and three non-consecutive frames f = 95, 100, 105.
For each view, we show the input image with the optical flow only on the reference view
(top left), the color-coded assignment (top right), the super-ray average color (bottom left)
and finally the super-ray contours (bottom right).

Please note that it is hard to evaluate our over-segmentation results on paper due to the
reduced number of frames or views we can illustrate compared with the full light-field
videos. We strongly encourage the reader to visualize all our results on our web-page2.
The resulting videos show concatenated views with usual visualization methods, namely,
the super-ray average color, the color-coded super-ray labels, and the super-ray contours
(as in Fig. 7.3). We also visualize the value of the flow for each centroid, as well as the
coarse depth of each super-ray, by assigning the super-ray centroid depth to all the rays
having the same label. Finally, we show the centroids neighborhood structure in which the
deleted or created centroids are differently colored.

We compare our method with the algorithm in [152] which is the state of the art for
temporaly consistent superpixels on videos. Note that in this experiment we focus on

2 https://www.irisa.fr/temics/demos/DynamicSuperrays/index.html

109

the temporal aspect since we already show in Chap. 6 that computing superpixels on
each of the views separately does not guarantee angular consistency. So, here we show
our over-segmentation results for the reference view only. Fig. 7.4 shows this comparison
on five frames, f = 260, 262, 263, 264, 265. In particular, on the top row, we show the
neighborhood structure described in Sec. 7.3.2. Each centroid appears as a blue dot,
and horizontal and vertical neighborhoods are illustrated with cyan and magenta edges
respectively. Centroids of deleted super-rays are represented in red, while new super-rays
are represented in yellow. The second and third rows correspond to our results and the
results of [152] respectively.

We observe that the update step in [152] allows the superpixels on the static background
to move freely. On the contrary, our super-rays are not moving so the scene movement is
consistent with the super-rays movement. We believe this is a major benefit if dynamic
super-rays are to be used in further editing tasks. We invite the reader to view the video
in the supplementary material where temporal consistency is more visible2.

Besides the qualitative comparison with [152] we have also observed considerable differences
in terms of computational complexity. Depending on the datasets, the algorithm in [152]
takes several hours and up to one day (using the original implementation) to run for all the
frames of a single view video. In our case, the biggest advantage is the GPU friendliness.
Indeed, the SLIC-based iterations, the deep flow computation and the super-ray creation
and deletion, are highly parallelizable. On the same machine (equipped with an Nvidia
GTX 1080 GPU hosted by an Intel Xeon E5-2630 CPU) our current Python/PyOpenCL
implementation gives an average running time for each iteration of 0.157s and 0.059 to
0.083s (depending on the input size), respectively on [2] and [13]. Further improvements
are to be expected by a more optimized implementation.

Dynamic super-rays with the neighborhood structure presented in Sec. 7.3.3 offer a useful
representation of the scene captured by the light field videos. Temporal super-rays can
be seen as a powerful tool for efficient light-field video editing in which the edits in one
reference view of the light-field can be easily propagated to other frames and views. Apart
from the angular aliasing correction and the segmentation presented in Chap. 6.3, dynamic
super-rays can be used for temporal image interpolation without flickering caused by an
inconsistent interpolation. Other examples of temporal super-rays applications include
light-field video compression (e.g. adapting the approach in [165]), or light field color
transfer (e.g. using the algorithm in [166]).

Limitations: We have observed that our approach has some limitations, in particular,
when the depth or the flow estimation becomes erroneous, the super-ray consistency is not
guaranteed from one view to another. Such failure case is visible in the dataset Newspeaker
[13], where a very uniform green background challenges both the depth and flow estimations.
When the depth is inconsistent, the centroids are wrongly projected, leading to large areas
with no nearby centroid for the rays to be assigned to.

The other failure case involves small moving objects, because of our sparse flow computation
strategy, the optical flow for small object can be wrongly evaluated to the flow value of its
surrounding. This is visible on the dataset Train [2], where centroids struggle to follow the
train wagons.

In conclusion, even if depth and flow estimation are mature research topics we have observed
that challenging datasets may still produce inaccurate estimates. In particular, the images
in the two datasets suffer heavily from motion blur, noise and over and under exposition.
Furthermore, the dataset in [13] has some large texture-less areas.

However, losing consistency in flat areas is not critical. Indeed, if the zone to edit is totally

110

uniform, the editing becomes trivial (e.g. using a simple color threshold), dismissing the
needs for super-rays in the first place.

7.5 Conclusion

We presented an approach to generate angularly and temporally consistent light field
video over-segmentations. Our algorithm design allows a GPU implementation, allowing
computational performances that are required to cope with the high volume of data. To
the best of our knowledge, this is the first approach to deal with the problem of video light
field editing.

111

112

Part IV

Closing

113

114

Chapter 8

General Conclusion

8.1 Summary

Light field imaging is a renewed and dynamic research field. Because of the technical
challenges of its capture, the complexity and the trade-off it introduces, a lot of problems
remain to be addressed before we see a mass adoption of light fields into conventional
imaging pipeline. In particular, we believe that both future phones and professional camera
systems could benefit greatly from the geometric information a light field captures, may
it be to directly produce better images (e.g. via synthetic aperture, object dis-occlusion,
super-resolution) or to provide with a depth-augmented user experience (e.g. view synthesis,
depth estimation).

In this thesis we addressed two main topics. The first one focuses on image rendering in
cases that are somewhat less explored in the literature.

Focused plenoptic camera, have the advantage to control the trade-off between the angular
and spatial resolution. However, since they are unable to render a Lumigraph without
a depth estimation, a lot of the state of the art methods in plenoptic image rendering
are irrelevant. In Chap. 3, we proposed a novel end-to-end pipeline to transform a light
field captured with a focused plenoptic camera into conventional images. We proposed
a calibration that has the advantage of being carried out entirely in the Fourier domain,
making it robust to noise and relatively exempt of a particular calibration setup. A novel
depth estimation algorithm that uses and combines conventional stereo methods is then
used to render all in focus and refocused images, based on splatting approaches, of quality
comparable with the state of the art and commercial solutions.

Plenoptic cameras trade spatial resolution for angular resolution. An alternative to this
trade-off could be to capture only a sparse set of angular samples and reconstruct the
rest. In Chap. 4, we investigate a new way of generating intermediate views from a
set of only four views. The main goal of the approach is to enable view synthesis on
memory and computationally limited devices, and for input images with an arbitrary
baseline. We proposed a new usage of recurrent neural networks, and in particular long
short-term memory cells to directly learn to synthesize a new view from a plane sweep
volume. Our experiments show that, on a limited scenario, our approach does provide
good interpolation results. However, our study also shows that in its current state the
methods need improvement to handle arbitrary baseline sequences and we give possible
direction for further work.

In a second part, we addressed the problem of light field editing by methods that compute

115

meaningful segments directly in the set of all views of a light field. This is of a particular
interest when we need to perform an operation consistently from a view to another, e.g. to
remove or to recolor an object from a light field.

In Chap. 5, we proposed a novel user-guided and pixel-wise segmentation technique.
The goal is, from only one reference view and a set of sparse user annotations, to extract
corresponding object segments. Our approach is based on graph-cut, with a graph structure
tailored to handle the important number of rays of the light field. Specifically, we leverage a
dense depth information to collapse the segmentation graph, decreasing greatly the running
time of the segmentation. We also show how the segments can be used for dis-occlusion.
Although the results on synthetic data showed to be competitive compared to the state
of the art, our approach does rely on a decent depth estimation. Also, as for a lot of
segmentation approaches in the state of the art, our method does not scale well with the
size of individual views, let alone video light fields.

Hence, in Chap. 6, we propose another approach which is more tailored toward real-
time automatic editing. We propose an over-segmentation scheme that leverages GPU
computational power and that does not rely on a dense depth estimation. The main idea
of the approach is to alter the SLIC algorithm (based on Loyd’s algorithms for k-means)
with cluster centroids that have their average color and spatial positions shared in between
views. The obtained segments are then used to interactively segment objects in real-time,
and to correct angular aliasing that occurs during synthetic aperture rendering. Because
the approach is efficient and scalable, we extend it in Chap. 7 to video light fields. The idea
is to propagate temporally the segments in an on-line fashion. Specifically, we use a sparse
optical flow on only one view to establish centroid moves and re-run several iterations of
the segmentation in Chap. 6 with several variations. First the centroid are forced to only
move slightly in order to encourage over-segmentation consistency from a frame to another.
Second, centroids are created and deleted using their respective distance as a proxy.

8.2 Future work and Perspectives

We believe that the work in this thesis has opened up some interesting research direc-
tions.

Regarding the proposed plenoptic camera pipeline, the major upgrade to be done in
the depth estimation part could be to perform the disparity estimation and the depth-
triangulation step at once instead of separately. This especially could help in cases where
the disparity algorithm fails. Another improvement could be to leverage the fact that we
are in fact refocusing with a known half-aperture mask. Deconvolution methods could
be combined with the stereo estimation to extract the depth, similarly to coded aperture
approaches. The rendering could also benefit from more advanced techniques than splatting.
Global or semi-global regularization could be used to improve the result where the depth
is faulty.

For view synthesis, we mentioned several ways to improve the methods that need to be
tested to definitively validate the use of the proposed architecture. May the proposal of
using deeper gates, or use an inferred depth followed by a manual warping, not be enough
to provide with arbitrary view synthesis on any baseline, the following re-work of the
approach could be proposed. Instead of trying to solve the problem with a single RNN, we
could imagine using first a cascade of CNNs with shared weights, taking into input slices
of a sparse PSV. The disparity step of the PSV would be inferior or equal to the CNNs
receptive fields. The output of each CNN would be a partial disparity map, i.e. a depth

116

that is only valid for the areas that are close to their true depth plane on the PSV slice,
along with a confidence map, illustrating how confident the network is that the zone is
valid. This would be enforced with a loss term, encouraging the warping of the corner views
with the partial depth map to be close to the ground truth, if they have a high confidence
value (e.g. with a weighted L1 norm). The RNN would then only be taking as input the
partial depth maps, along with their confidence to synthesize the final, complete, depth
map, along with interpolation weights as in [89]. This proposal, while being significantly
heavier than the proposed approach, do preserve the baseline-agnostic part the proposed
LSTM method, while delegating the most complicated task (i.e. computing a depth) to
CNNs. Augmenting or diminishing the disparity range would be done by simply adding or
removing more CNNs with shared weights and adjusting the number of cells in the RNN
accordingly.

Very recent advances in deep learning allow to use convolutional networks directly on
point clouds [167]. An ambitious modification of our graph segmentation method could
be to learn an end-to-end automatic segmentation method using a first CNN to compute
depth maps and generate the aggregated graph structure, and a second network to do the
segmentation on it.

Regarding over-segmentation, we took SLIC as our baseline implementation but many new
variations for this algorithm have been proposed to improve the overall over-segmentation
accuracy. Specifically, if we wish to keep the GPU efficiency part of the approach, a good
upgrade could be to use a variant of SCALP[168], that augment the SLIC distance metric
with a linear path. It is a nice way to include edge and structure information into SLIC
while keeping its low complicity.

To end this thesis on a more general note, light fields capturing devices currently have
significant trade-offs in terms of quality or computational requirements. However, with the
developments of phones, dual and quad pixels sensors, we expect these concessions to be
overcome. Light field imaging has been a long-standing research area, and we are excited
to see if this progress will finally lead to mass adoption of light field capable devices. We
also hope the solutions proposed in this thesis to be useful to provide users with new and
interesting imaging capabilities.

117

118

Appendix A

Author’s publications

This thesis manuscript is based upon the following publications.

Articles

Conference papers

M. Hog, N. Sabater, C. Guillemot , ”Light Field Segmentation Using a Ray-Based Graph
Structure”, European Conference on Computer Vision (ECCV), pp. 35–50, 2016.

M. Hog, N. Sabater, C. Guillemot , ”Dynamic Super-Rays for Efficient Light Field Video
Processing”, British Machine Vision Conference (BMVC), pp. 1–12, 2018

M. Hog, N. Sabater, C. Guillemot , ”Long Short Term Memory Networks for Light Field
View Synthesis”, Submitted, 2019

Journal papers

M. Hog, N. Sabater, B. Vandame, V. Drazic, ”An Image Rendering Pipeline for Focused
Plenoptic Cameras”, IEEE Transactions on Computational Imaging (TCI), vol. 3, no. 4,
pp. 811-821, 2017.

M. Hog, N. Sabater, C. Guillemot, “Super-rays for Efficient Light Field Processing”, IEEE
Journal of Selected Topics in Signal Processing (J-STSP), 2017.

119

120

Appendix B

List of Notations

We use a set of unique and consistent notations for the items that are commons and
consistent in between chapters. However, for a sake on simplicity, we might use redundant
notations with different meaning in each chapter.

Global notations:

s, t angular coordinates with the two plane parametrisation
x, y spatial coordinates with the two plane parametrisation
r an arbitrary ray
L the light-field function that maps rays coordinates to radiance

We usually consider the radiance to be expressed as RGB or Lab triplets.
L light field set of all rays
Ia Image refocused using a.

a can be an arbitrary focus plane or correspond to a particular depth

Î a virtual view
d depth or disparity
D a range of depth or disparity
i, j usually denote an arbitrary index value
f time coordinate we usually consider a frame index
d a depth or disparity
θ, ρ a set of polar coordinates
N neighborhood of a given item
G a graph
V a set of graph vertices
E a set of graph edges
U Unary energy term
P Pairwise energy term
ϕΩ energy function for the label assignment Ω

τ smoothness parameter used in graph cut
� usually denotes a coordinate after projection
Laba color in the CIELAB color space of a a can be a ray, a ray bundle or a super-ray
c super-ray index
Sc super ray of index c
rc centroid ray

121

Chap 2

R the radiance of a ray
X, Y, Z 3D coordinates
λ ray wavelength
Π the plenoptic function
A a set of view coordinates defining the aperture of a refocused image

Chap 3

� microlens diameter
Tx, Ty microlens array offset form the sensor
T shortcut for (Tx, Ty)
α microlens array angle with respect to the sensor
k, l pixel coordinate on the raw plenoptic image
k�, l� pixel projection from the sensor plane to rendered image plane
m, n pixel coordinate on the rendered image
I Raw light field image
Iw a raw white plenoptic image
Ia an all-in-focus image
Ig

l , Ig
r images refocused at g using the left and right microlens images

N size of the image
g focal value
ok, ol microlens image center
Λ line along which the cosine oscillates
F m, F p Fourier magnitude and phase
ξ peaks coordinate in the Fourier space
Δξ a small offset in the Fourier space
Γ gamma correction factor
V Gaussian noise variance
K static splatting kernel
λ parameter that controls the spread of the splatting kernel K �

dg disparity of a pixel between Ig
l and Ig

r

gf g value for which a pixel is in focus
Δ distance between two pixel in the raw light field
K �, K �� adaptive splatting kernel
σ image rendering size factor
S masking kernel to handle occlusions during splatting

Chap 4

It a cell input at step t
Ct a cell memory state at step t
ht a cell output at step t
σi the input gate
σu the update gate
σo the output gate
Tanhu the update layer
Id the four input views warped with d

122

Îd the synthetic view sat step d
δd a disparity step

Chap 5

b ray bundle, i.e. a set of ray coming form the same scene point
R set of free rays
B superset of all ray bundles
Ω The labelling function that maps labels to pixels
ω An object label
P notation for conditional probability
σLab, σd local variance for the color and the depth
S Scribbles images

Chap 6

k number of super rays
x�, y� projected pixel coordinates
P projection function
r� corresponding ray or r, of coordinates x�t�s�t�

sc, tc, xc, yc centroid ray coordinates
A super-ray label assignments
o angular masks
B size of a patch
ΔB

RGB color difference for a patch of size (2B + 1)2

m weighting parameter between color and spatial distance
S max size of a super-ray
L�

r set of all rays imaging the same scene point as r
u, v virtual view index

Chap 7

Sf
c dynamic super ray at frame f

δx
c , δy

c flow for centroid c
rf

c centroid ray at frame f
Af assignments at time f
s, x collapsed notation for s, t, x, y
µ a deep match
xf

µ coordinate of a deep match at frame f

δx

µ sparse flow from deep matches

cleft/right/up/down centroid neighborhood of c in each cardinal direction
m parameter for Lab xy weighting
p parameter controlling the centroid temporal moves
q threshold update

123

124

Appendix C

Additional Results for Chap 3

Fig. C.1 reproduces the same experiment as with the Donkey test set but with a more
challenging close-up setup. The depth estimation on the Lion background is noisy due to
the lack of texture in the background. On the Tiger however, there is enough texture to
successfully reconstruct the entire depth from the two slices of the focal stack.

Fig. C.3 compares the depth we obtain with the depth in [18] and [42] for the images Jeff

and Fontain. Finally, Fig. C.2 shows how our algorithms perform for the other images of
the Georgiev’s dataset.

Fig. C.4 show the rest of the all in focus images from the Raytrix R1 dataset we rendered
with our pipeline. Interestingly, the images do not present the same artifacts. Ours
tend to have sharper edges with less artifact and a better rendering of small textured
details. However, our approach struggles with thin structures and areas too close to the
camera.

L
io

n
T

ig
re

Figure C.1: Depths maps for the other images of our R5 dataset.

125

F
re

d
o

L
au

ra
S
ea

gu
ll

B
ik

e

Reference Image Our depth map

Figure C.2: Our depth maps for the rest of the Georgiev’s dataset

126

P
h
ot

og
ra

p
h
er

F
on

ta
in

Reference image [18] / [42] Ours

Figure C.3: Comparison with depth from [18] and [42] (1 depth per microlens)

Figure C.4: Our rendered images for the rest of the Raytrix R11 dataset.

127

128

Bibliography

[1] Motion Picture Association of America, “Theatrical Market Statistics,” 2017.

[2] N. Sabater, G. Boisson, B. Vandame, P. Kerbiriou, F. Babon, M. Hog, R. Gendrot,
T. Langlois, O. Bureller, A. Schubert, and V. Allié, “Dataset and Pipeline for Multi-
view Light-Field Video,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pp. 1743–1753, jul 2017.

[3] L. Guillo, X. Jiang, G. Lafruit, and C. Guillemot, Light field video dataset captured
by a R8 Raytrix camera (with disparity maps). PhD thesis, INTERNATIONAL
ORGANISATION FOR STANDARDISATION ISO/IEC JTC1/SC29/WG1 & WG11,
2018.

[4] A. Gershun, “The light field,” Studies in Applied Mathematics, vol. 18, no. 1-4,
pp. 51–151, 1939.

[5] E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early
vision,” tech. rep., 1991.

[6] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” in
Proceedings of the 23rd annual conference on Computer graphics and interactive
techniques, pp. 43–54, ACM, 1996.

[7] M. W. Halle, “Holographic stereograms as discrete imaging systems,” in Practical
Holography VIII, vol. 2176, pp. 73–85, International Society for Optics and Photonics,
1994.

[8] M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques, pp. 31–42, ACM, 1996.

[9] L. Gabriel, “La photographie intégrale,” Comptes-Rendus, Académie des Sciences,
vol. 146, pp. 446–551, 1908.

[10] B. Wilburn, N. Joshi, V. Vaish, M. Levoy, and M. Horowitz, “High-speed videography
using a dense camera array,” in CVPR, vol. 2, pp. II—-294, IEEE, 2004.

[11] J. C. Yang, A light field camera for image based rendering. PhD thesis, Massachusetts
Institute of Technology, 2000.

[12] C. Zhang and T. Chen, “A self-reconfigurable camera array,” in SIGGRAPH Sketches,
p. 151, ACM, 2004.

[13] L. Dabala, M. Ziegler, P. Didyk, F. Zilly, J. Keinert, K. Myszkowski, H.-P. Seidel,
P. Rokita, and T. Ritschel, “Efficient Multi-image Correspondences for On-line Light
Field Video Processing,” Comput. Graph. Forum, vol. 35, no. 7, pp. 401–410, 2016.

129

[14] K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee,
R. Mullis, and S. Nayar, “Picam: An ultra-thin high performance monolithic camera
array,” ACM Transactions on Graphics (TOG), vol. 32, no. 6, p. 166, 2013.

[15] C.-T. Huang, J. Chin, H.-H. Chen, Y.-W. Wang, and L.-G. Chen, “Fast realistic
refocusing for sparse light fields,” in 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1176–1180, IEEE, 2015.

[16] E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE
Transactions on Pattern Analysis & Machine Intelligence, no. 2, pp. 99–106, 1992.

[17] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light
field photography with a hand-held plenoptic camera,” Computer Science Technical
Report, vol. 2, no. 11, pp. 1–11, 2005.

[18] R. C. Bolles, H. H. Baker, and D. H. Marimont, “Epipolar-plane image analysis: An
approach to determining structure from motion,” International Journal of Computer
Vision, vol. 1, no. 1, pp. 7–55, 1987.

[19] A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Computational
Photography (ICCP), 2009 IEEE International Conference on, pp. 1–8, IEEE, 2009.

[20] M. Kobayashi, M. Johnson, Y. Wada, H. Tsuboi, H. Takada, K. Togo, T. Kishi,
H. Takahashi, T. Ichikawa, and S. Inoue, “A low noise and high sensitivity image
sensor with imaging and phase-difference detection af in all pixels,” ITE Transactions
on Media Technology and Applications, vol. 4, no. 2, pp. 123–128, 2016.

[21] S. Krishnan, “Capturing wide field of view light fields using spherical mirrors,”

[22] D. Tsai, D. G. Dansereau, T. Peynot, and P. Corke, “Image-based visual servoing
with light field cameras,” IEEE Robotics and Automation Letters, vol. 2, no. 2,
pp. 912–919, 2017.

[23] Y. Taguchi, A. Agrawal, S. Ramalingam, and A. Veeraraghavan, “Axial light field for
curved mirrors: Reflect your perspective, widen your view,” in Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 499–506, IEEE, 2010.

[24] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms,” International journal of computer vision, vol. 47, no. 1-3,
pp. 7–42, 2002.

[25] C.-K. Liang, T.-H. Lin, B.-Y. Wong, C. Liu, and H. H. Chen, “Programmable
aperture photography: multiplexed light field acquisition,” in ACM Transactions on
Graphics (TOG), vol. 27, p. 55, ACM, 2008.

[26] T.-C. Wang, A. A. Efros, and R. Ramamoorthi, “Occlusion-aware Depth Estimation
Using Light-field Cameras,” in Proceedings of the IEEE International Conference on
Computer Vision, pp. 3487–3495, 2015.

[27] E. Penner and L. Zhang, “Soft 3d reconstruction for view synthesis,” ACM Transac-
tions on Graphics (TOG), vol. 36, no. 6, p. 235, 2017.

[28] T. Basha, S. Avidan, A. Hornung, and W. Matusik, “Structure and motion from scene
registration,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1426–1433, jun 2012.

[29] C. Chen, H. Lin, Z. Yu, S. Bing Kang, and J. Yu, “Light field stereo matching using
bilateral statistics of surface cameras,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1518–1525, 2014.

130

[30] V. Vaish, M. Levoy, R. Szeliski, C. L. Zitnick, and S. B. Kang, “Reconstructing
occluded surfaces using synthetic apertures: Stereo, focus and robust measures,” in
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference
on, vol. 2, pp. 2331–2338, IEEE, 2006.

[31] M. W. Tao, S. Hadap, J. Malik, and R. Ramamoorthi, “Depth from combining
defocus and correspondence using light-field cameras,” in Computer Vision (ICCV),
2013 IEEE International Conference on, pp. 673–680, IEEE, 2013.

[32] M. W. Tao, P. P. Srinivasan, J. Malik, S. Rusinkiewicz, and R. Ramamoorthi, “Depth
from Shading, Defocus, and Correspondence Using Light-Field Angular Coherence,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1940–1948, 2015.

[33] W. Williem and I. Kyu Park, “Robust Light Field Depth Estimation for Noisy Scene
With Occlusion,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4396–4404, 2016.

[34] S. Wanner and B. Goldluecke, “Globally consistent depth labeling of 4D light fields,”
in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,
pp. 41–48, IEEE, 2012.

[35] C. Kim, H. Zimmer, Y. Pritch, A. Sorkine-Hornung, and M. Gross, “Scene recon-
struction from high spatio-angular resolution light fields,” ACM Transactions on
Graphics, vol. 32, no. 4, pp. 73–1, 2013.

[36] A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized light fields,”
in Proceedings of the 27th annual conference on Computer graphics and interactive
techniques, pp. 297–306, ACM Press/Addison-Wesley Publishing Co., 2000.

[37] M. Levoy, B. Chen, V. Vaish, M. Horowitz, I. McDowall, and M. Bolas, “Synthetic
aperture confocal imaging,” in ACM Transactions on Graphics (ToG), vol. 23,
pp. 825–834, ACM, 2004.

[38] Y. Xu, H. Nagahara, A. Shimada, and R.-i. Taniguchi, “Transcut: Transparent object
segmentation from a light-field image,” in Proceedings of the IEEE International
Conference on Computer Vision, pp. 3442–3450, 2015.

[39] K. Maeno, H. Nagahara, A. Shimada, and R.-i. Taniguchi, “Light field distortion
feature for transparent object recognition,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2786–2793, 2013.

[40] T.-C. Wang, J.-Y. Zhu, E. Hiroaki, M. Chandraker, A. A. Efros, and R. Ramamoorthi,
“A 4d light-field dataset and cnn architectures for material recognition,” in European
Conference on Computer Vision, pp. 121–138, Springer, 2016.

[41] N. Li, J. Ye, Y. Ji, H. Ling, and J. Yu, “Saliency detection on light field,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2806–2813, 2014.

[42] Z. Ji, H. Zhu, and Q. Wang, “Lfhog: a discriminative descriptor for live face detec-
tion from light field image,” in Image Processing (ICIP), 2016 IEEE International
Conference on, pp. 1474–1478, IEEE, 2016.

[43] R. Ng, “Digital light field photography,” Stanford PhD Thesis, 2006.

[44] T. Georgiev and A. Lumsdaine, “Focused plenoptic camera and rendering,” Journal
of Electronic Imaging, vol. 19, no. 2, p. 21106, 2010.

131

[45] S. Wanner, J. Fehr, and B. Jaehne, “Generating EPI Representations of 4D Light
Fields with a Single Lens Focused Plenoptic Camera,” in International Symposium
on Visual Computing (ISVC, oral presentation), 2011.

[46] T. Georgiev and A. Lumsdaine, “Full resolution lightfield rendering,” 2008.

[47] D. G. Dansereau, O. Pizarro, and S. B. Williams, “Decoding, calibration and rec-
tification for lenselet-based plenoptic cameras,” in Computer Vision and Pattern
Recognition (CVPR), 2013 IEEE Conference on, pp. 1027–1034, IEEE, 2013.

[48] J. Fiss, B. Curless, and R. Szeliski, “Refocusing plenoptic images using depth-
adaptive splatting,” in Computational Photography (ICCP), 2014 IEEE International
Conference on, pp. 1–9, IEEE, 2014.

[49] D. Cho, M. Lee, S. Kim, and Y.-W. Tai, “Modeling the calibration pipeline of the
lytro camera for high quality light-field image reconstruction,” in Computer Vision
(ICCV), 2013 IEEE International Conference on, pp. 3280–3287, IEEE, 2013.

[50] T. E. Bishop and P. Favaro, “Plenoptic depth estimation from multiple aliased views,”
in Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International
Conference on, pp. 1622–1629, IEEE, 2009.

[51] N. Sabater, M. Seifi, V. Drazic, G. Sandri, and P. Perez, “Accurate disparity estima-
tion for plenoptic images,” in ECCV Workshop on Light Fields for Computer Vision,
2014.

[52] M.-J. Kim, T.-H. Oh, and I. S. Kweon, “Cost-aware depth map estimation for
Lytro camera,” in Image Processing (ICIP), 2014 IEEE International Conference
on, pp. 36–40, IEEE, 2014.

[53] S. Heber, R. Ranftl, and T. Pock, “Variational shape from light field,” in Energy
Minimization Methods in Computer Vision and Pattern Recognition, pp. 66–79,
Springer Berlin Heidelberg, 2013.

[54] H.-G. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y.-W. Tai, and I. S. Kweon, “Accurate
Depth Map Estimation from a Lenslet Light Field Camera,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1547–1555, 2015.

[55] C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” in
Proc. SPIE, vol. 8291, p. 829108, 2012.

[56] C.-W. Chang, M.-R. Chen, P.-H. Hsu, and Y.-C. Lu, “A pixel-based depth estimation
algorithm and its hardware implementation for 4-D light field data,” in Circuits and
Systems (ISCAS), 2014 IEEE International Symposium on, pp. 786–789, IEEE, 2014.

[57] S. Tulyakov, T. H. Lee, and H. Han, “Quadratic formulation of disparity estima-
tion problem for light-field camera,” in Image Processing (ICIP), 2013 20th IEEE
International Conference on, pp. 2063–2067, IEEE, 2013.

[58] O. Fleischmann and R. Koch, “Lens-Based Depth Estimation for Multi-focus Plenop-
tic Cameras,” Pattern Recognition, pp. 410–420, 2014.

[59] M. Uliyar, G. Putraya, S. Ukil, S. V. Basavaraja, K. Govindarao, and M. Veldandi,
“Pixel resolution plenoptic disparity using cost aggregation,” in Image Processing
(ICIP), 2014 IEEE International Conference on, pp. 3847–3851, IEEE, 2014.

[60] S. Wanner, C. Straehle, and B. Goldluecke, “Globally consistent multi-label assign-
ment on the ray space of 4d light fields,” in Computer Vision and Pattern Recognition
(CVPR), 2013 IEEE Conference on, pp. 1011–1018, IEEE, 2013.

132

[61] M. Uliyar, G. Putraya, and S. V. Basavaraja, “Fast EPI based depth for plenoptic
cameras,” in Image Processing (ICIP), 2013 20th IEEE International Conference on,
pp. 1–4, IEEE, 2013.

[62] D. Dansereau and L. Bruton, “Gradient-based depth estimation from 4d light fields,”
in Circuits and Systems, 2004. ISCAS’04. Proceedings of the 2004 International
Symposium on, vol. 3, pp. III—-549, IEEE, 2004.

[63] Y.-H. Kao, C.-K. Liang, L.-W. Chang, and H. H. Chen, “Depth detection of light field,”
in Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International
Conference on, vol. 1, pp. I—-893, IEEE, 2007.

[64] A. Mousnier, E. Vural, and C. Guillemot, “Partial light field tomographic reconstruc-
tion from a fixed-camera focal stack,” arXiv preprint arXiv:1503.01903, 2015.

[65] H. Lin, C. Chen, S. Bing Kang, and J. Yu, “Depth Recovery from Light Field Using
Focal Stack Symmetry,” in Proceedings of the IEEE International Conference on
Computer Vision, pp. 3451–3459, 2015.

[66] S. Heber and T. Pock, “Convolutional Networks for Shape From Light Field,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3746–3754, 2016.

[67] T. Georgiev and A. Lumsdaine, “Reducing plenoptic camera artifacts,” in Computer
Graphics Forum, vol. 29, pp. 1955–1968, Wiley Online Library, 2010.

[68] C.-K. Liang and R. Ramamoorthi, “A light transport framework for lenslet light field
cameras,” ACM Transactions on Graphics (TOG), vol. 34, no. 2, p. 16, 2015.

[69] M. Seifi, N. Sabater, V. Drazic, and P. Perez, “Disparity guided demosaicking of light
field images,” in IEEE International Conference on Image Processing (ICIP), 2014.

[70] Z. Yu, J. Yu, A. Lumsdaine, and T. Georgiev, “An analysis of color demosaicing
in plenoptic cameras,” in Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pp. 901–908, IEEE, 2012.

[71] Y. Bok, H.-G. Jeon, and I. S. Kweon, “Geometric Calibration of Micro-Lens-Based
Light-Field Cameras using Line Features,” in Proceedings of European Conference on
Computer Vision (ECCV), 2014.

[72] B. G. Quinn, “Estimating frequency by interpolation using Fourier coefficients,”
Signal Processing, IEEE Transactions on, vol. 42, no. 5, pp. 1264–1268, 1994.

[73] V. Drazic and N. Sabater, “A precise real-time stereo algorithm,” in Proceedings
of the 27th Conference on Image and Vision Computing New Zealand, pp. 138–143,
ACM, 2012.

[74] A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a
conventional camera with a coded aperture,” in TOG, vol. 26, p. 70, 2007.

[75] A. Levin, “Analyzing depth from coded aperture sets,” in ECCV, pp. 214–227,
Springer, 2010.

[76] L. McMillan and G. Bishop, “Plenoptic modeling: An image-based rendering system,”
in Proceedings of the 22nd annual conference on Computer graphics and interactive
techniques, pp. 39–46, ACM, 1995.

133

[77] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen, “Unstructured
lumigraph rendering,” in Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pp. 425–432, ACM, 2001.

[78] G. Chaurasia, O. Sorkine, and G. Drettakis, “Silhouette-aware warping for image-
based rendering,” in Computer Graphics Forum, vol. 30, pp. 1223–1232, Wiley Online
Library, 2011.

[79] G. Chaurasia, S. Duchene, O. Sorkine-Hornung, and G. Drettakis, “Depth synthesis
and local warps for plausible image-based navigation,” ACM Transactions on Graphics
(TOG), vol. 32, no. 3, p. 30, 2013.

[80] S. Wanner and B. Goldluecke, “Variational light field analysis for disparity estimation
and super-resolution,” PAMI, vol. 36, no. 3, pp. 606–619, 2014.

[81] S. Pujades, F. Devernay, and B. Goldluecke, “Bayesian view synthesis and image-
based rendering principles,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3906–3913, 2014.

[82] L. Shi, H. Hassanieh, A. Davis, D. Katabi, and F. Durand, “Light field reconstruction
using sparsity in the continuous fourier domain,” ACM Transactions on Graphics
(TOG), vol. 34, no. 1, p. 12, 2014.

[83] F. Hawary, G. Boisson, C. Guillemot, and P. Guillotel, “Compressive 4d light field
reconstruction using orthogonal frequency selection,” in ICIP 2018, 2018.

[84] Z. Liu, R. A. Yeh, X. Tang, Y. Liu, and A. Agarwala, “Video frame synthesis using
deep voxel flow.,” in ICCV, pp. 4473–4481, 2017.

[85] C.-Y. Wu, N. Singhal, and P. Krähenbühl, “Video compression through image
interpolation,” arXiv preprint arXiv:1804.06919, 2018.

[86] M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert, and S. Chopra, “Video
(language) modeling: a baseline for generative models of natural videos,” arXiv
preprint arXiv:1412.6604, 2014.

[87] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video prediction beyond
mean square error,” arXiv preprint arXiv:1511.05440, 2015.

[88] M. Jaderberg, K. Simonyan, A. Zisserman, et al., “Spatial transformer networks,” in
Advances in neural information processing systems, pp. 2017–2025, 2015.

[89] J. van Amersfoort, W. Shi, A. Acosta, F. Massa, J. Totz, Z. Wang, and J. Caballero,
“Frame interpolation with multi-scale deep loss functions and generative adversarial
networks,” arXiv preprint arXiv:1711.06045, 2017.

[90] J. Flynn, I. Neulander, J. Philbin, and N. Snavely, “Deepstereo: Learning to predict
new views from the world’s imagery,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5515–5524, 2016.

[91] N. K. Kalantari, T.-C. Wang, and R. Ramamoorthi, “Learning-Based View Syn-
thesis for Light Field Cameras,” ACM Transactions on Graphics (Proceedings of
SIGGRAPH Asia 2016), vol. 35, no. 6, 2016.

[92] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[93] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, et al., “Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies.”

134

[94] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo, “Convo-
lutional lstm network: A machine learning approach for precipitation nowcasting,”
in Advances in neural information processing systems, pp. 802–810, 2015.

[95] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient deep learning for stereo matching,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 5695–5703, 2016.

[96] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE
Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[97] M. Rerabek and T. Ebrahimi, “New light field image dataset,” in 8th International
Conference on Quality of Multimedia Experience (QoMEX), no. EPFL-CONF-218363,
2016.

[98] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[99] D. S. Hochbaum and V. Singh, “An efficient algorithm for co-segmentation,” in ICCV,
pp. 269–276, IEEE, 2009.

[100] A. Djelouah, J.-S. Franco, E. Boyer, F. Clerc, and P. Pérez, “Multi-view object
segmentation in space and time,” in ICCV, pp. 2640–2647, 2013.

[101] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via
graph cuts,” PAMI, vol. 23, no. 11, pp. 1222–1239, 2001.

[102] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient ND image segmentation,”
IJCV, vol. 70, no. 2, pp. 109–131, 2006.

[103] S. Wanner, S. Meister, and B. Goldluecke, “Datasets and benchmarks for densely
sampled 4D light fields,” in VMV Workshop, pp. 225–226, 2013.

[104] A. Andrew, “The (New) Stanford Light Field Archive.”
\url{http://lightfield.stanford.edu/lfs.html}.

[105] S. M. Seitz and K. N. Kutulakos, “Plenoptic image editing,” IJCV, vol. 48, no. 2,
pp. 115–129, 2002.

[106] A. Jarabo, B. Masia, and D. Gutierrez, “Efficient propagation of light field edits,”
SIACG, 2011.

[107] X. An and F. Pellacini, “AppProp: all-pairs appearance-space edit propagation,” in
ACM Transactions on Graphics (TOG), vol. 27, p. 40, ACM, 2008.

[108] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele, “Joint bilateral upsampling,”
in ACM Transactions on Graphics (TOG), vol. 26, p. 96, ACM, 2007.

[109] A. Jarabo, B. Masia, A. Bousseau, F. Pellacini, and D. Gutierrez, “How Do Peo-
ple Edit Light Fields?,” ACM Transactions on Graphics (SIGGRAPH Conference
Proceedings), vol. 33, no. 4, 2014.

[110] F.-L. Zhang, J. Wang, E. Shechtman, Z.-Y. Zhou, J.-X. Shi, and S.-M. Hu,
“PlenoPatch: Patch-based Plenoptic Image Manipulation,” Transactions on Vi-
sualization and Computer Graphics, 2016.

[111] J. Berent and P. L. Dragotti, “Unsupervised Extraction of Coherent Regions for
Image Based Rendering.,” in BMVC, pp. 1–10, 2007.

135

[112] P. L. Dragotti and M. Brookes, “Efficient Segmentation and Representation of
Multi-View Images,” in SEAS-DTC workshop, SEAS-DTC workshop, Edinburgh,
2007.

[113] J. Berent and P. L. Dragotti, “Plenoptic Manifolds–Exploiting structure and coherence
in multiview images,” Signal Processing Magazine, 2007.

[114] H. Mihara, T. Funatomi, K. Tanaka, H. Kubo, H. Nagahara, and Y. Mukaigawa, “4D
Light-field Segmentation with Spatial and Angular Consistencies,” in ICCP, 2016.

[115] C. Rother, T. Minka, A. Blake, and V. Kolmogorov, “Cosegmentation of image pairs
by histogram matching-incorporating a global constraint into mrfs,” in CVPR, vol. 1,
pp. 993–1000, IEEE, 2006.

[116] L. Mukherjee, V. Singh, and J. Peng, “Scale invariant cosegmentation for image
groups,” in CVPR, pp. 1881–1888, IEEE, 2011.

[117] C. Reinbacher, M. Rüther, and H. Bischof, “Fast variational multi-view segmentation
through backprojection of spatial constraints,” Image and Vision Computing, vol. 30,
no. 11, pp. 797–807, 2012.

[118] N. D. F. Campbell, G. Vogiatzis, C. Hernández, and R. Cipolla, “Automatic object
segmentation from calibrated images,” in CVMP, pp. 126–137, IEEE, 2011.

[119] M. Sormann, C. Zach, and K. Karner, “Graph cut based multiple view segmentation
for 3d reconstruction,” in 3DPVT, pp. 1085–1092, IEEE, 2006.

[120] B. Goldlucke and M. A. Magnor, “Joint 3d-reconstruction and background separation
in multiple views using graph cuts,” in 2003 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2003. Proceedings., vol. 1, pp. I–I, IEEE,
2003.

[121] V. Kolmogorov and R. Zabin, “What energy functions can be minimized via graph
cuts?,” PAMI, vol. 26, no. 2, pp. 147–159, 2004.

[122] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision,” PAMI, vol. 26, no. 9, pp. 1124–1137,
2004.

[123] C. Dal Mutto, P. Zanuttigh, and G. M. Cortelazzo, “Scene Segmentation by Color
and Depth Information and its Applications,” University of Padova, 2010.

[124] C. D. Mutto, P. Zanuttigh, and G. M. Cortelazzo, “Fusion of geometry and color
information for scene segmentation,” J-STSP, vol. 6, no. 5, pp. 505–521, 2012.

[125] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: Interactive foreground extraction
using iterated graph cuts,” in TOG, vol. 23, pp. 309–314, ACM, 2004.

[126] J. A. Bilmes and Others, “A gentle tutorial of the EM algorithm and its application
to parameter estimation for Gaussian mixture and hidden Markov models,” ICSI,
vol. 4, no. 510, p. 126, 1998.

[127] M. Harville, G. Gordon, and J. Woodfill, “Foreground segmentation using adaptive
mixture models in color and depth,” in Workshop on Detection and Recognition of
Events in Video, pp. 3–11, IEEE, 2001.

[128] M. A. Hasnat, O. Alata, and A. Trémeau, “Unsupervised RGB-D image segmentation
using joint clustering and region merging,” J-STSP, vol. 6, no. 5, pp. 505–521, 2012.

136

[129] T. Yang, Y. Zhang, J. Yu, J. Li, W. Ma, X. Tong, R. Yu, and L. Ran, “All-In-Focus
Synthetic Aperture Imaging,” in ECCV, pp. 1–15, Springer, 2014.

[130] V. Vineet and P. J. Narayanan, “CUDA cuts: Fast graph cuts on the GPU,” in
CVPR, pp. 1–8, IEEE, 2008.

[131] H. Ao, Y. Zhang, A. Jarabo, B. Masia, Y. Liu, D. Gutierrez, and Q. Dai, “Light Field
Editing Based on Reparameterization,” in Pacific Rim Conference on Multimedia,
pp. 601–610, Springer, 2015.

[132] K. W. Shon, I. K. Park, and Others, “Spatio-angular consistent editing framework
for 4D light field images,” Multimedia Tools and Applications, pp. 1–17, 2016.

[133] X. Ren and J. Malik, “Learning a classification model for segmentation,” in ICCV,
pp. 10–17, IEEE, 2003.

[134] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “SLIC
superpixels compared to state-of-the-art superpixel methods,” IEEE transactions on
pattern analysis and machine intelligence, vol. 34, no. 11, pp. 2274–2282, 2012.

[135] M. den Bergh, X. Boix, G. Roig, and L. Van Gool, “Seeds: Superpixels extracted via
energy-driven sampling,” International Journal of Computer Vision, vol. 111, no. 3,
pp. 298–314, 2015.

[136] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions
on pattern analysis and machine intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[137] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmen-
tation,” International Journal of Computer Vision, vol. 59, no. 2, pp. 167–181,
2004.

[138] A. P. Moore, S. J. D. Prince, J. Warrell, U. Mohammed, and G. Jones, “Superpixel
lattices,” in Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pp. 1–8, IEEE, 2008.

[139] O. Veksler, Y. Boykov, and P. Mehrani, “Superpixels and supervoxels in an energy
optimization framework,” in European conference on Computer vision, pp. 211–224,
Springer, 2010.

[140] Y. Zhang, R. Hartley, J. Mashford, and S. Burn, “Superpixels via pseudo-boolean
optimization,” in 2011 International Conference on Computer Vision, pp. 1387–1394,
IEEE, 2011.

[141] F. Meyer and P. Maragos, “Multiscale morphological segmentations based on wa-
tershed, flooding, and eikonal PDE,” in International Conference on Scale-Space
Theories in Computer Vision, pp. 351–362, Springer, 1999.

[142] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi,
“Turbopixels: Fast superpixels using geometric flows,” IEEE transactions on pattern
analysis and machine intelligence, vol. 31, no. 12, pp. 2290–2297, 2009.

[143] A. Vedaldi and S. Soatto, “Quick shift and kernel methods for mode seeking,” in
European Conference on Computer Vision, pp. 705–718, Springer, 2008.

[144] P. Wang, G. Zeng, R. Gan, J. Wang, and H. Zha, “Structure-sensitive superpixels via
geodesic distance,” International journal of computer vision, vol. 103, no. 1, pp. 1–21,
2013.

137

[145] R. Birkus, “Accelerated gSLIC for Superpixel Generation used in Object Segmenta-
tion,” Proc. of CESCG, vol. 15, 2015.

[146] M. Bleyer, C. Rother, P. Kohli, D. Scharstein, and S. Sinha, “Object stereo—joint
stereo matching and object segmentation,” in Computer Vision and Pattern Recogni-
tion (CVPR), 2011 IEEE Conference on, pp. 3081–3088, IEEE, 2011.

[147] Y. Taguchi, B. Wilburn, and C. L. Zitnick, “Stereo reconstruction with mixed pixels
using adaptive over-segmentation,” in Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, pp. 1–8, IEEE, 2008.

[148] B. Mičuš\’\ik and J. Košecká, “Multi-view superpixel stereo in urban environments,”
International journal of computer vision, vol. 89, no. 1, pp. 106–119, 2010.

[149] C. Xu and J. J. Corso, “Evaluation of super-voxel methods for early video processing,”
in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,
pp. 1202–1209, IEEE, 2012.

[150] A. Levinshtein, C. Sminchisescu, and S. Dickinson, “Spatiotemporal closure,” in
Asian Conference on Computer Vision, pp. 369–382, Springer, 2010.

[151] J. Chang, D. Wei, and J. W. Fisher, “A video representation using temporal super-
pixels,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2051–2058, 2013.

[152] M. Reso, J. Jachalsky, B. Rosenhahn, and J. Ostermann, “Temporally consistent
superpixels,” in Proceedings of the IEEE International Conference on Computer
Vision, pp. 385–392, 2013.

[153] M. den Bergh, G. Roig, X. Boix, S. Manen, and L. Van Gool, “Online video seeds for
temporal window objectness,” in Proceedings of the IEEE International Conference
on Computer Vision, pp. 377–384, 2013.

[154] M. Reso, J. Jachalsky, B. Rosenhahn, and J. Ostermann, “Fast label propagation
for real-time superpixels for video content,” in Image Processing (ICIP), 2015 IEEE
International Conference on, pp. 902–906, IEEE, 2015.

[155] J. Yang, Z. Gan, K. Li, and C. Hou, “Graph-Based Segmentation for RGB-D Data
Using 3-D Geometry Enhanced Superpixels,” IEEE transactions on cybernetics,
vol. 45, no. 5, pp. 927–940, 2015.

[156] P. Neubert and P. Protzel, “Superpixel benchmark and comparison,” in Proc. Forum
Bildverarbeitung, pp. 1–12, 2012.

[157] D. G. Dansereau, O. Pizarro, and S. B. Williams, “Linear Volumetric Focus for Light
Field Cameras,” ACM Transactions on Graphics (TOG), vol. 34, no. 2, 2015.

[158] E. Garces, J. I. Echevarria, W. Zhang, H. Wu, K. Zhou, and D. Gutierrez, “Intrinsic
Light Field Images,” in Computer Graphics Forum, Wiley Online Library, 2017.

[159] F. Galasso, R. Cipolla, and B. Schiele, “Video Segmentation with Superpixels,” in
Proceedings of the 11th Asian Conference on Computer Vision - Volume Part I,
ACCV’12, (Berlin, Heidelberg), pp. 760–774, Springer-Verlag, 2013.

[160] M. den Bergh, X. Boix, G. Roig, B. de Capitani, and L. Van Gool, “SEEDS: Super-
pixels extracted via energy-driven sampling,” in European conference on computer
vision, pp. 13–26, Springer, 2012.

138

[161] P. P. Srinivasan, M. W. Tao, R. Ng, and R. Ramamoorthi, “Oriented light-field
windows for scene flow,” in Proceedings of the IEEE International Conference on
Computer Vision, pp. 3496–3504, 2015.

[162] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A
database and evaluation methodology for optical flow,” International Journal of
Computer Vision, vol. 92, no. 1, pp. 1–31, 2011.

[163] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, “DeepFlow: Large dis-
placement optical flow with deep matching,” in IEEE Intenational Conference on
Computer Vision (ICCV), (Sydney, Australia), dec 2013.

[164] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid, “Deepmatching: Hierarchical
deformable dense matching,” International Journal of Computer Vision, vol. 120,
no. 3, pp. 300–323, 2016.

[165] G. Fracastoro, F. Verdoja, M. Grangetto, and E. Magli, “Superpixel-driven graph
transform for image compression,” in Image Processing (ICIP), 2015 IEEE Interna-
tional Conference on, pp. 2631–2635, IEEE, 2015.

[166] R. Giraud, V.-T. Ta, and N. Papadakis, “Superpixel-based Color Transfer,” in IEEE
International Conference on Image Processing (ICIP), 2017.

[167] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic
graph cnn for learning on point clouds,” arXiv preprint arXiv:1801.07829, 2018.

[168] R. Giraud, V.-T. Ta, and N. Papadakis, “Scalp: Superpixels with contour adherence
using linear path,” in 23rd International Conference on Pattern Recognition (ICPR
2016), 2016.

139

Titre : Edition et Rendu de Champs de Lumière

Mots clés : Traitement du signal, Vision par Ordinateur, Photographie de Calcul

Résumé : En imageant une scène à partir de
différents points de vue, un champ de lumière
permet de capturer de nombreuses informations
sur la géométrie de la scène. Grâce aux récents
progrès de ses dispositifs d’acquisition, l’imagerie
par champs de lumière est devenue une
alternative sérieuse à la capture de contenu 3D et
à d’autres problèmes connexes. Le but de cette
thèse est double.
 L'une des principales applications de l'imagerie
par champs de lumière est sa capacité à produire
de nouvelles vues à partir d'une capture unique.
Dans une première partie, nous proposons de
nouvelles techniques de rendu d’image dans deux
cas qui s’écartent des cas usuels. Nous proposons
d’abord un pipeline complet pour les caméras
plénoptiques focalisées, traitant la calibration,
l’estimation de profondeur et le rendu de l’image.
Nous passons ensuite au problème de la synthèse
des vues, nous cherchons à générer des vues
intermédiaires

à partir d’un ensemble de 4 vues seulement.
 La retouche d'image est une étape commune
de la production de média. Pour les images et les
vidéos 2D, de nombreux outils commerciaux
existent. Cependant, le problème est plutôt
inexploré pour les champs de lumière. Dans une
seconde partie, nous proposons des techniques
d’édition de champs de lumière à la fois nouvelles
et efficaces. Nous proposons tout d’abord une
nouvelle méthode de segmentation niveau pixel
basée sur des graphes, qui à partir d’un
ensemble limité d’entrées utilisateur, segmente
simultanément toutes les vues d’un champ de
lumière. Nous proposons ensuite une approche
de segmentation automatique des champs de
lumière qui utilise la puissance de calcul des
GPUs. Cette approche diminue encore les
besoins en calcul et nous étendons l'approche
pour la segmentation de champs de lumières
vidéo.

Title : Light Field Editing and Rendering

Keywords : Signal Processing, Computer Vision, Computational Photography

Abstract : By imaging a scene from different
viewpoints, a light field allows capturing a lot of
information about the scene geometry. Thanks to
the recent development of its acquisition devices
(plenoptic camera and camera arrays mainly), light
field imaging is becoming a serious alternative for
3D content capture and other related problems.
The goal of this thesis is twofold.
 One of the main application for light field imaging
is its ability to produce new views from a single
capture. In a first part, we propose new image
rendering techniques in two cases that deviate
from the mainstream light field image rendering.
We first propose a full pipeline for focused
plenoptic cameras, addressing calibration, depth
estimation, and image rendering. We then move to
the problem of view

synthesis, we seek to generate intermediates
views given a set of only 4 corner views of a light
field.
 Image editing is a common step of media
production. For 2D images and videos, a lot of
commercial tools exist. However, the problem is
rather unexplored for light fields. In a second part,
we propose new and efficient light field editing
techniques. We first propose a new graph-based
pixel-wise segmentation method that, from a
sparse set of user input, segments
simultaneously all the views of a light field. Then
we propose an automatic light field over-
segmenting approach that makes use of GPUs
computational power. This approach further
decreases the computational requirement for light
field segmentation and we extend the approach
for light field video segmentation.

