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INTRODUCTION

1.1 BACKGROUND

Quality of food supplies has always being an issue in human societies. Having access to proper
food supplies is necessary to avoid potential risk to human and animal health. Some fungi, especially
from Ascomycota, are capable to synthesize a plethora of products as part of their metabolism, some
of them toxic to humans and vertebrates, named mycotoxins. The ubiquitous presence of fungi in
staples cannot be avoided, thus, their presence become a potential health risk for humans and
livestock

Mycotoxin contamination of staples is an important risk to public health because these
compounds produce detrimental effects on vertebrates and humans. Since their discover, several
studies have been performed to identify the principal mycotoxins depending on the geographical
areas, the minimal doses of their toxicity, the fungi responsible of their production, and to develop
strategies to control them in order to avoid their effects on human health, as well on animal health
and to reduce economic losses. Once the amount of mycotoxins exceeds the levels permitted by the
regulations, it is hardly recommended to eliminate staples from the food chain. However, in some
regions worldwide, especially those including developing countries, monitoring and policies against
mycotoxin presence in food and feed for human and animal consumption unfortunately are not well
regulated. As consequence, the risk of entrance of mycotoxins in the food chain is high (Bhatnagar et
al. 2002).

Aspergillus section Flavi is one of the most economically important groups of molds; their
detrimental effects are an important public health issue, furthermore the stability of its taxonomy is
of practical concern (Geiser et al. 2007; Pildain et al. 2008). The section encloses species able to
produce several mycotoxins, among them, aflatoxins are a major concern because their deleterious
effects in vertebrates (IARC 2003). Due to their physiological requirements, these species grow
principally in tropical and subtropical regions worldwide. In these areas, they are a problem because
harvest and storage conditions are not always the most appropriated ones to avoid mold
development and mycotoxins production, besides, environmental conditions generally contributes to
their production. Resulting in two main issues, the first is the risk on human and animal health, and
the second, staples that are contaminated cannot be exported, which affects negatively some
countries’ economies because they are based on exportation. In fact, staples contamination of
mycotoxins lead to great economic losses. In temperate regions, the importance of section Flavi is
linked to the importation of contaminated raw material, as well as the possibility of the colonization
of harmful species due to climate change, which could result in new niches for these species (Perrone

et al. 2014).
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INTRODUCTION

The present introduction is divided in three parts: the first introductive part encloses a general
overview of molds and the principal mycotoxins; the second part includes an overview of Aspergillus

section Flavi, and the third part that summarizes the principal secondary metabolites yield by them.
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1.2 FUNGI OVERVIEW

Fungi is a diverse eukaryotic kingdom containing an estimated of 3.5 to 5.1 million organisms,
from unicellular to macroscopic multicellular, that inhabit a wide range of ecological niches
worldwide (O’Brien et al. 2005). These organisms play a key role in nutrient cycle as decomposers,
and include saprophages, symbionts and pathogens. As heterotrophs fungi fed from others organism
by extracellular digestion, yielding enzymes that able them to digest and absorb nutrients. Fungi
development requires certain elements that are used in their primary and secondary metabolisms,
principally sources of carbon and nitrogen, and in a lesser extent potassium, phosphorus and
magnesium, among others trace elements. Additionally, environmental factors, such as pH, light,
temperature and water availability, are crucial for their development (Dix 2013; Dighton 2016).

Due to fungi diversity of life history strategies, several species are widely studied and applied
in biotechnological industries to produce enzymes, medicines, biocontrol agents, natural fertilizers,
natural pigments, cosmetics, alcoholic drinks, and food (Galagan et al. 2005; Schoch et al. 2009;
Dupont et al 2016; Blackwell 2011; Jayasiri et al. 2015; Bill and Gloer 2016). Taking into account their
diversity, the number of infectious species is low, yet those species have detrimental effects in
organisms’ health, including plants, animals and humans, and can be a worldwide threat for food
security. Similarly, during the last decades, novel diseases produced by fungi have been discovered,
and in some cases host population infected have decreased in alarming numbers, almost
disappearing (Fischer et al. 2013). Summarizing, several fungi are economically important organisms,
making their study mandatory (Mitchell 2010).

Fungi reproductive cycles include sexual and asexual reproduction, both mechanisms are
mediated by spores (conidia, ascospores etc.), which have reproductive and dispersal functions.
Some species present only sexual or asexual cycles while others a combination of both reproductive
mechanisms. A holomorph fungus present both types of reproduction, an anamoph fungus presents
the asexual type and a teleomorph fungus the sexual type. A fungus can have strains in anamorph
state and others in teleomorph state; phenotypically they might be different and hence, be classified
under different names. Moreover, some fungi show different anamorphic states, like some species of
Neurospora, Fusarium and Botrytis, which show strong differences between their micro- and
macroconidia (Webster and Weber 2007; Dix 2013).

Fungi are divided in ascomycetes, basidiomycetes, zygomycetes, and chytrids (Figure 1); the
first two, Basidiomycota and Ascomycota, contain most species, including the most important to
humankind. Ascomycota contains approximately 33.000 described species, including most lichens
known and about 90% of pathogenic fungi (ca 400 species). Ascomycota fungi are characterized by

their reproductive structures, ascus, nevertheless most species produce also asexual spores (Pitt and
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Hocking, 2009), in fact they are most commonly found in their conidial state, and for some species,
the sexual reproduction seems to be lost; this phenomenon seems to have occurred several times in
the evolution of the group. The conidial states of Aspergillus and Penicillium are generally arranged in
phialides, and their arrangements are generally used as diagnostic state. In Aspergillus, the
conidiophore tip is swollen, forming the vesicle, and phialides start directly on its surface (uniseriate)
or present a palisade of sterile cells, metulae, followed by phialides (biseriate) (Raper and Fennell
1965). Penicillium lacks vesicles, and the conidiophore tip has directly a monoverticillate
arrangement or series of metulae followed by philiades, the levels of ramification could be from one
to several series of metulae (Raper and Thon 1968). The cell walls in Ascomycetes are composed
mainly by chitin and glucans and in general the septum is incomplete, forming a central pore that
result in coenocytic mycelia (Webster and Weber 2007). Ascomycota probably arose around 500 to
900 million years ago; it is subdivided in three main groups, Archiascomycetes, Hemiascomycetes

(yeasts), and the large Euascomycetes (molds) (Mitchell 2010).

Chytridiomycota \‘“.
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Figure 1: Fungi classification. The figure shows the relationships of fungi with other groups of
Eukaryotes. In addition, it shows the main groups with Fungi, and the division of Ascomycota, and the

placement of Aspergillus. The figure is adapted from Pitt and Hocking (2009).
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Climate change presents a challenge for fungal relationships, between different fungi, between
fungi and other organisms, and between fungi and their ecosystems. Resulting in shifts in community
composition, creating new ecological niches, therefore, producing changes in the symbiotic
associations between fungi and other organisms, changes in the distribution patterns of species, and
the increment of detrimental effects caused by harmful fungi (Jayasiri et al. 2015). Climatic model
predictions suggest that climatic conditions will vary over the next two decades, atmospheric
concentrations of CO; are expected to double or triple (from 350 to 700 or 900-1000 ppm) and the
regional cycles are going to change, some areas will become drier, and global temperatures will
increase by approximately 2-5 °C (Medina et al. 2014). These environmental changes would result in
homeostatic stress in crops. Hence, environmental changes would modify the agricultural cycles,
affecting mycobiota composition in soils and crops, and the mycotoxinogen species, therefore the

mycotoxins yield (Medina et al. 2014).

1.3 FILAMENTOUS FUNGI AND THEIR SECONDARY METABOLITES

Filamentous fungi are considered as the main producers of mycotoxins. It is a paraphyletic
group, enclosing the Ascomycota phylum and some species from Mucorophyta (zygomycetes).
Nevertheless, Ascomycota species are the most diverse and the most important at economical level,
as they are linked to staple spoilage during harvesting or storage processes. In fact, the genera
Aspergillus, Fusarium and Penicillium are considered as the main source of mycotoxins (Pitt and
Hocking 2009).

Aspergillus and Penicillium genera are important to humankind not only because of their
detrimental effects, but also because of their use in biotechnology; enzymes and other compounds
synthesized as part of their primary and secondary metabolisms are used, as well as a direct
inoculation of fungi on foodstuff. Aspergillus and Penicillium have been used in food production for
several centuries in fermentation processes to produce beverages, sauces and in the cheese industry.
Likewise, proteases, amylases, lipases and pectinases are important in the manufacture of dairy,
bakery, distillery and brewery products, juices and leather, and in the starch industry. Furthermore,
they have been used to synthesize antibiotics, such as penicillins and cephalosporins that comprise
around the 50% of antibiotics production worldwide (Kavanagh 2017); or griseofulvin used as anti-

tumoral and in dermatology (Banani et al. 2016).
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1.4 WHAT IS A SECONDARY METABOLITE? DEFINITION, FUNCTION AND MYCOTOXINS

In order to cope with their environment, fungi have developed the ability to produce several
extracellular chemicals, called secondary metabolites, which are not essential in the primary
metabolism of fungi (i.e. growth, reproduction, respiration), and not required for their survival when
growth in laboratory conditions. These compounds are low-weight molecules (< 1000 Daltons)
produced by their secondary metabolism, which encloses the molecular pathways that are not
essential for the survival of the organism (Bennet 1987; Bennet and Klich 2003). These molecules are
diverse in their chemical nature, including polyketides, non-ribosomal peptides, terpene, indole
terpenes and hybrids (Figure 2). These organisms are capable to produce a large number of these
compounds, and their secondary metabolic profile will vary depending on the genetic information
(presence of secondary metabolic gene clusters), environmental conditions (mainly nutrients and

water availability), and community composition (Brakhage 2013; Bills and Gloer 2016).
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Figure 2: Biosynthetic pathways of secondary metabolites. In blue the groups of secondary
metabolites. In black the main mycotoxins produced by these pathways. In orange the enzymes associated with
each pathway; NRPS: non-ribosomal peptide synthetase, PKS: polyketide synthetase, TC: terpene cyclase,

DMAT: dimethyl allyl transferase.

Polyketides are the most diverse group of secondary metabolites, including polyphenols,
polyenes and macrolides. Due to their diversity, they exert different biological activities, some of

them exploited in industrial processes. Fungal polyketides are synthesized by type | polyketide
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synthases (PKSs) that are multidomain proteins linked to eukaryotic fatty acid synthases. Polyketides
result from the metabolization of acetate, and are formed by the consecutive polymerization of
ketide groups (CH,-CO). The main difference between fungal polyketides and fatty acids is that
polyketides are formed by PKSs able to use other carboxylic acids, rather than acetyl-coenzyme A as
substrate. In addition, the oxidation state is variable and B-carbon is not necessary fully reduced in
polyketides synthesis, for which the ketoacyl CoA synthase (KS), acyltransferase (AT) and acyl-carrier
(ACP) domains are essential. Fungal PKSs are considered ‘iterative PKSs’ because they present just
one module for the addition of methylmalonyl CoA, so the processes of addition require repeated
biosynthetic reactions. Fungal PKSs are divided in three groups: non-reduced, partially reduced and
highly reduced synthases. In addition, five of the six mycotoxins regulated to date by the EU,
aflatoxins, ochratoxin A, patulin, fumonisins and zearalenone belongs to this group (Keller et al.
2005; Cano et al. 2016).

Terpenes are yielded by fungi, bacteria and plants. Plant terpenes are the best known, and are
essential for plant growth, development, and interactions with their environment. Terpenes play a
main role in interaction with pollinators and predators (i.e. herbivores), in the protection against
photo-oxidative stress, in thermoregulation, among others (Tholl 2006). Aristolochenes, carotenoids,
gibberellins and trichothecenes are some important terpenes characterized in fungi. Terpenes are
formed by the combination of dimethylallyl pyrophosphate (DAMPP) and isopentenyl diphosphate
(IPP), this reaction is catalyzed by isoprenyl diphosphate synthases, which belong to the family of
phenyl transferases. Based on their chemical structures terpenes are classified as: (i) monoterpenes
or geranyl diphosphate that are rarely yield by fungi, (ii) triterpenes that are mainly produce by
plants, (iii) sesterterpenes, tetraterpenes or carotenoids linked to the defense against UV radiation,
and (iv) sesquiterpenes that enclose the tricothecenes family known as an important group of
mycotoxins (Cano et al. 2016).

Non-ribosomal peptides (NRPs) are compounds not involved in the primary metabolism. As
their name suggest, their synthesis does not include proofreading mechanisms, making their
structure highly variable, in fact, at the moment several hundreds of substrates of NRPs have been
identified in comparison to the 20 amino acid involved in protein synthesis (Finking and Marahiel
2004). The synthesis of NRPs is catalyzed by non-ribosomal peptide synthetases (NRPSs), which have
functions similar to those of enzymes catalyzing ribosomal peptides. When compared, fungal NRPs
are reported to achieve bigger sizes than bacteria NRPs, and could be explained because their
synthesis in fungi is generally catalyzed by one NRPS. These enzymes have a dual function, working as
temperate and as biosynthetic machinery; actually, they are organized in different modules that
integrate amino acids into the polypeptide chain. The synthesis of NRPs requires the presence of at

least three domains: (i) the A-domain that determines the amino acid to be included and activates
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the amino acid or the hydroxyl acid; (ii) the T or PCP domain, a thiolation or peptidyl-carrier protein,
which transports the activated units between active sites of the domains; and (iii) the C-domain, a
condensation domain, where the formation of the peptide bond (C-N) occurs between the
polypeptide chain and the new amino acid. Other domains could also play a role in the synthesis, by
adding special features, like non-proteinogenic amino acids, fatty acids, carboxylic acids, among
others (Pang et al. 2016).

Indole alkaloids are mainly synthesized from tryptophan and DAMPP, but sometimes they
include other amino acids as precursors. The steps of biosynthesis are yet to be elucidated, for some
known compounds three processes were described that include steps of tryptophane prenylation
catalyzed by DMATS, followed by the methylation of dimethylallyl tryptophan, and finally, a series of
oxidation steps, which can be catalyzed by NRPSs. Some other enzymes can be involved in the
biosynthetic pathways, like oxidases, methylases and prenyl transferases (Keller et al. 2005).

The development of genomic, transcriptomic, and proteomic is unmasking processes linked to
compound synthesis in fungi. In fact, the genome characterization of several species has enabled to
elucidate the biosynthetic pathways of several mycotoxins and the processes occurring in fungal
cells, including an increase of knowledge of the biology of harmful fungi. For instance, pathogenic
ascomycetes present more genes for polyketides, peptides, terpenes and other secondary
metabolites than those non-pathogens such as Neurospora crassa (Desjardins 2006). Likewise,
genome studies have shown that secondary metabolic yield depends on global transcriptional
factors, encoded by unrelated genes with a specific biosynthetic pathway (e.g. VeA and LaeA), and on
specific enzymes for each biosynthetic pathways that differ from primary metabolism enzymes. In
Ascomycetes, biosynthetic pathways of secondary metabolites are often clustered together, which
makes them different from other eukaryotes. The purpose of secondary metabolites is still not
completely understood, however it is believed that they confer selective advantages to fungi under
natural conditions, especially under stress conditions (e.g. environmental stress, nutrient availability,
interspecies competition, predator defense) (Magan and Adred 2007; Fox and Howlett 2008, Schwab
and Keller 2008; Brakhage 2013).

As aforementioned, several secondary metabolites are beneficial to humankind and are used
in pharmacology, food industry, cosmetics, energy and construction (Bhatnagar et al. 2002). Some
others, known as mycotoxins, are toxic and could exert deleterious effects on vertebrates, including
humans (Peraica et al. 1999). Mycotoxins are amply studied due to their detrimental effects on
vertebrates’ health and their impact in agriculture and economy. Nowadays, over 1000 secondary
metabolites are described, ca 400 are considered mycotoxins, 30 are considered as important

mycotoxins for their effects, and from them just 7 are legally regulated by the European Union. Best-
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known mycotoxins include aflatoxins, ergot alkaloids, fumonisins, ochratoxin, patulin, trichothecenes

and zearalenone (Bennet and Klich 2003; Cano et al. 2016) (Table 1).

Table 1: Principal mycotoxins and producing species, frequent sources and effects (AFSSA 2009; CAST 2003,

Bbosa et al. 2013). In red the mycotoxin and their principal producer.

CONTAMINATED

CHEMICAL NATURE

MYCOTOXIN TYPE MAIN PRODUCERS EFFECTS
PRODUCTS
Cereals: maize, Polyketide
Aspergillus flavus, wheat, rice, Hepatoxic,
A. parasiticus, sorghum; spices, Carcinogenic,
Aflatoxins B1, B, G, G2 A. nomius, sunflower, nuts, Immunotoxic,
Several spp. in A. section | almonds, pistachio, Teratogenic,
Flavi coconut, cotton, Acute toxicity
dried fruit
F. tricinctum, Terpene
Genotoxic,
F. langsethiae, Cereals: wheat,
Immunotoxic,
T-2 Toxin and HT-2 F. sporotrichioides, maize, rice, soy,
Reprotoxic,
F. poae, beans and barley
Neurotoxic
F. equiseti
Fusarium graminearum,
Trichotecenes F. culmorum,
F. sporotrichoides,
Cereals: wheat, Immunotoxic,
F. langsethiae,
Deoxynivalenol maize, rice and Digestive problems, Terpene
F. tricinctum,
sorghum Haematopoietic
F. poae,
F. solani,
F. equiseti
F. verticillioides, Cereals: maize, rice, | Carcinogenic, Polyketide
Fumonisis Bs, Bz, B3
F. proliferatum sorghum Neurotoxic
Penicillium verrucosum, Polyketide
Cereals, cacao, Nephrotoxic,
Penicillium nordicum
Ochratoxin A coffee, wine, grape Immunotoxic,
A. ochraceus,
juice and spices Teratogenic
A. carbonarius
F. graminearum, Cereals: maize, soy, Polyketide
Reprotoxic,
Zearalenone F-2 Toxin F. culmorum, sorghum, wheat,
Immunotoxic
F. crookwellense rice and oat
P. expansum, Neurotoxic, Polyketide
Apples, pears and
Patulin Byssochlamys nivea Genotoxic,
derivates juices
Cytotoxic
Claviceps purpurea, Alkaloids
Neurotoxic,

Ergot alkaloids

C. paspali,
C. africana,

C. fusiformis

Rye, wheat and

triticale

Digestive problems,

Vasoconstriction
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1.4.1 Mycotoxins

Mycotoxins are classified based on fungus that produce them, chemical structure and/or mode
of action. Their degradation is a challenge because most are heat-stable and form toxic compounds
while degradation processes are applied. Generally this compounds are hydrophobic (except for the
fumonisins), allowing them to accumulate in lipophylic tissues in plants and animals (Hussein and
Brasel 2001).

Mycotoxicosis symptoms depend on several variables that interacts synergistically, including
the mycotoxin chemical nature, the exposure time (duration and dose), the organism that intakes the
mycotoxin (species, sex, age, health, diet), and the mixed effects of mycotoxin with other
xenobiotics. The effects exerted on vertebrates could be chronic (low doses, long periods of time) or
acute toxic (high doses, short periods of time), mutagenic, teratogenic, carcinogenic, nephrotoxic,
hepatotoxic, immunotoxic and estrogenic. The main target organs depend on the mycotoxin and the
organisms that ingest it, and include the liver, kidney, lungs and the nervous, digestive, endocrine
and immune systems (Bhatnagar et al. 2002). In general, more than one mycotoxin is found in
staples, and a mix of them is thus usually ingested. The interaction between mycotoxins can produce
different effects in the organism: antagonists, additive or synergic, which are linked to the mycotoxin
nature, the decontamination pathway, of the host species, the time of exposure, and the doses and
ratio of mycotoxins (Peraica et al. 1999; Alassane-Kpembi et al. 2017).

Mycotoxins have being around humans for as long as agriculture was developed, or even
before, when recollection started as mechanisms for food storage (Richard 2007). Some episodes of
mycotoxicosis can be traced in the literature, myths, and arts. For instance, they could be tracked in
the Bible, as part of the Seven Plagues of Egypt or in the Dead Sea Scrolls (Richard 2007). Withal, the
decline of Etruscan civilization (5% century B.C.) could be related to fusariotoxins (toxin T2 and ZAE)
(Yiannikouris and Jouany 2002). Howbeit, the episodes of hallucinations of “Saint Antony’s fire” or
ergotism (11 century), produced by alkaloids of Claviceps purpurea on rye, might be the best-known
example of mycotoxicosis in ancient times (Figure 3). During the Middle Ages outbreaks were
common, some registered epidemic episodes occurred during 8" and 15™ century A.D.; also some
more recently episodes are also suggested to be caused by ergotism, like witchcraft in Salem, USA,
and Finnmar, Norway. Symptoms of ergotism include delirium, prostration, acute pain, abscess and
gangrene of the limbs, and sometimes death (Peraica et al. 1999; Richard 2007; AFSSA 2009).
Likewise, “Shoshin-kakke” or “yellow rice disease” is another well-known example of mycotoxicosis
outbreak, this disease that causes acute cardiac beri-beri, was reported in Japan, affecting especially
the colder regions. This illness is caused by the exposure to citreoviridin, a Penicillium citreonigrum

mycotoxin. The fungus contaminated rice during the storage processes due to poor conditions and
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practices. Once these conditions were controlled, the disease disappeared from the region, and has
not been reported lately (Udagawa and Tatsuno 2004). Although fungal contamination occurred and
relations with some diseases were perceived, the awareness of mycotoxins and their toxic effects
arose for the first time in London (England) in 1962. Poultry presented a strange disease, “turkey X
syndrome”, which killed at least 10,000 birds. Interestingly, while tracing the origin of the illness, it
was discovered that peanuts used to feed poultry were contaminated by secondary metabolites,
aflatoxins, named after Aspergillus flavus (Bennet and Klich 2003); years later, cyclopiazonic acid was
also proved to interfere in this outbreak (Richard 2008). Other compounds were also recognized as
mycotoxins and their study became under scope. Mycotoxins are found in a wide variety of staples,
use as animal and human food, principally cereals (maize, wheat, rye, rice, etc.), oligenosus seeds

(peanuts, cotton, nuts, pistachios, etc.), and spices (Bath et al. 2010).

Figure 3: Art as evidence of mycotoxins contamination. Above: Paint exemplifying an ergotism outbreak. Down
left: “Saint Anthony’s hallucinations” by Mathias Griinewald (effects of hallucinations associated to ergotism).

Down right: rye ear contaminated by Claviceps purpurea.
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1.4.2 How mycotoxins enter in the chain food and their distribution

Occurrence of mycotoxin contamination can be divided in pre-harvest (crops and recollect)
and post-harvest steps (mainly storage). The fungi that contaminate staples will vary depending on
the geographical region, but also of the agriculture methods, crop cycles, harvesting and storage
conditions. Humans’ exposure to mycotoxins can occur by direct intake of staples of vegetal origin
contaminated by mycotoxins, or by the intake of contaminated animal products. There is also the risk
of dermal, respiratory and maternal exposure routes (Bath et al. 2010; IARC 2015).

In general, mycotoxigenic fungi are divided in two main groups, one enclosing species more
prone to colonize staples and yield mycotoxins in crops (principally Fusarium species), and another
group more prone to colonize and yield mycotoxins during storage (principally Aspergillus and
Penicillium), yet, some fungi are able to colonize during both steps, like A. flavus (AFSS 2009;
Antonissen et al. 2014). For example, Fusarium generally colonized grains before harvest, where
moisture is high, whereas maize and peanuts are generally colonized in post-harvest, where
temperatures and drought are more suitable for Aspergillus section Flavi colonization (Bryden 2012).
As aforementioned, fungi reproduce by spores that are dispersed principally by the wind and insect
vectors. Once the spores reach a suitable nutrient source, suitable environmental and atmospheric
conditions, such water availability, humidity and drought conditions, pH, and temperature, they will
germinate (Figure 4). Besides, these environmental conditions can trigger stress and predisposition of
cultivars, helping fungi developpment. The optimal for these variables depend on the fungus, for
example, Aspergillus glaucus requires approximately 10% less of water availability than A. flavus.
Substrate is also important; some fungi are generalist, while others have more constrained niches.
Generalist fungi might prefer a substrate that suits better their nutrimental and physiological
requirements, like A. flavus that will prefer maize (though it colonized several commodities), whereas
some Fusarium species prefer cereals with small grains (Dierkman and Green 1992; AFSSA 2009;

Pinnoti et al. 2016).
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PRE-HARVEST
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Figure 4: Pre-harvest contamination and main factors affecting mold contamination. Modified from Paterson

and Lima 2010.

Insects have a key role in fungi contamination; they not only disperse spores, but also damage
raw products, allowing an easier colonization by fungi. In fact, insects wound maize kernels, and
transport spores of Aspergillus and Fusarium, resulting in disturbance of the natural barrier (leaves

protecting kernels) (Aiko and Mehta 2015) (Figure 5).
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Figure 5: Cycle of fungi contamination (Modified from Abbas et al. 2009).
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Agricultural practices are part of the factors that interact in pre-harvest contamination, some
of the main practices include the variety of plants used (more or less sensitive), the type of crop
rotation and soil tillage. Some techniques used to diminish fungi contamination includes growing
resistant crop varieties, management of crop rotation, the type of soil tillage, chemical and biological
control of plant diseases, and insect control (Rychlik et al. 2014).

Post-harvest contamination includes steps from crop maturation to feed and food
consumption. Abiotic conditions, such as water availability, temperature, oxygen availability, are
more easily controlled than the pre-harvest steps, facilitating the control of mold growth.
Nevertheless, methods to storage following all the requirements are expensive, and easier to obtain
in products that have higher markets, making this process not always achievable for small production
or in some countries (Dierkman and Green 1992; Magan et al. 2003; Paterson and Lima 2010). Grain
storage is a good example of how mycotoxins can contaminate feed and food supplies. In general, a
community of microorganisms, most of them innocuous, colonizes grains. Mycotoxigenic fungi can
be good competitors, and under proper temperatures and water availability, they can develop and
produce mycotoxins. Insects play a similar role in the storage processes as well (Magan et al. 2003;

Paterson and Lima 2010) (Figure 6).
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Figure 6: Post-harvest contamination and main factors affecting mold contamination. Modified from Paterson

and Lima 2010.

Once the mycotoxins are present in feed and food commaodities, they can contaminate the

whole food chain. As said above, humans can ingest mycotoxins in two ways, by direct consumption
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of contaminated vegetal commodities or by ingesting contaminated animal products, and in general
are contaminated with more than one mycotoxin. A study case of nephropathy in Bulgarian pigs and
chickens was caused by cocktail of mycotoxins, including ochratoxin A, penicillic acid, FB1 and an
uncharacterized metabolite (Bryden 2012).

In animals, ruminants have a gastric system with a rich microbiota that facilitates the
degradation of mycotoxins, whereas monogastric species, like pork and poultry, are especially
sensible to mycotoxicosis because intestinal microbiota is less diverse. Poultry is less prone to
biotransform toxins to less toxic compounds before the intestine absorbs them. For ruminants it has
been documented that rumen function is nevertheless affected negatively by the presence of
mycotoxins, as well some biotrasformation can produce toxic products, which can be excreted thus
making it available, like the case of AFy; (Hussein and Brasel 2001; AFSSA 2009). The major problem
for livestock and poultry associated with ingestion of mycotoxins is the poor animal performance,
which can be difficult to diagnose and quantify because of the diversity of life histories, physiological
status, biotransformation pathways, detoxification mechanisms and the intra- and inter variability of
species that ingested them. Similarly, the type and level of mycotoxin in feed, the time of the
exposure, and the interaction between mycotoxins are also a problem (Bryden 2012; Alassane-
Kpembi et al. 2015).

In addition, there are the ‘masked’ or conjugated mycotoxins that occur in vegetal food
supplies, and are often linked with livestock and poultry feed intake, resulting in a decrease in their
performance. These types of mycotoxins are the result of biotransformation processes occurring in
plants (Bryden 2012; Pierron et al. 2016). Some examples are zearalenone-4-glucoside, a conjugate
of zearalenone, and deoxynivalenol-3-glucoside a conjugate of deoxynivalenol. There is some
evidence that OTA and fumonisins can also be conjugated in plants (Bryden 2012). The discovery of

these mycotoxins has put them under scope.

1.4.3 Impact of mycotoxins

The presence of mycotoxins in staples is a major concern, not only for public health, but also
for their economic impact. Food commodities losses due to mycotoxin contamination represent
above 25% of spoiled food (FAO 2003). For instance, only in the United States the Food and Drug
Administration (FDA) has estimated that the losses exceed $900 million per year (CAST report 2003).
Due to its impacts, food security associated to mycotoxin contamination is a major issue worldwide;
public health commissions all over the world try to ensure safe and healthy feed and food for animals
and humans (Stoev 2013). In developed countries, food security is carried out better than in

developing countries, in which food quality monitoring and the infrastructure to avoid mycotoxin
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contamination are more difficult to settle. Nevertheless, regulation of mycotoxins reduced the intake
in those countries that have proper regulation and monitoring, and increase exportation standards
around the world. On the other hand, it could result in a higher risk of consumption of mycotoxins by
human and animal populations of developing countries, as the best quality staples are exported,
whereas the poor quality ones remain for domestic consumption (Wild and Gong 2009; Stoev 2013).
As aforementioned, the global distribution of mycotoxins is not homogenous, the conditions in
each region will favor the development of certain fungi over others, thus favor some mycotoxins over
others. In addition, climate change is shifting distribution and prevalence of some fungi, and thereby,
mycotoxin distribution. Streit et al. (2013) determined the presence of the main mycotoxins
(aflatoxins, zearalenone, deoxynivalenol, fumonisins and ochratoxins) around the world for a period
of eight years. Their results showed that most of the samples (72%) were mycotoxin positive, and
38% showed a multicontamination (more than one mycotoxin). In addition, they determined that the
percentages of each mycotoxin were more or less stable during the years, with the exception of
aflatoxins, their level increased between 2005 and 2009 in tropical regions. Another study, that also
screened mycotoxin presence in long term, showed the risk of mycotoxin contamination depending

of the geographical distribution worldwide (Figure 7).
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Figure 7: Global distribution of the main mycotoxins. Survey performed by Biomin 2017 based on more
than 3715 samples and 14244 analyses in 54 countries. Afla: aflatoxins, ZEN: zearalenone, DON:
deoxynivalenol, T-2: T-2 toxin, FUM: fumonisins and OTA: ochratoxin A. Moderate risk: 0-25% of samples above
risk threshold; High risk: 26-50% of samples above risk threshold; Severe risk: 51-75% of samples above risk
threshold; Extreme risk: 76-100% of samples above risk threshold.
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1.5 BIODIVERSITY OF ASPERGILLUS SECTION FLAVI: FOLLOWING THE TRACES OF CRYPSIS

Aspergillus is a group of filamentous ascomycetes that encloses some of the most widespread
fungi, containing approximately 350 recognized species. It encloses species of high economic
importance for their compound production. Some species are used in biotechnology (enzymes,
organic acids, bioactive metabolites), other species are harmful and considered as foodborne
contaminants (food spoilage and mycotoxin contamination) or as causal agents of human mycoses
(pulmonary, otomycosis, keratitis) (Kocsubé et al. 2016), and others use as model species to
understand eukaryotic cell biology and molecular processes (i.e. A. nidulans) (Whiteway and
Bachewich 2017). This genus is endowed with a diagnostic morphological trait reminding the holy
water sprinkler, the ‘aspergillum’, which consists on a conidiophore that ends in a spherical vesicle
bearing phialides and metulae that generate chains of conidia (Dyer and O’Gorman 2012) (Figure 8).
The classification of Aspergillus has undergone several modifications over the past years using
different approaches aiming to group the growing number of species according to its phylogenetic
relationships (Scheidegger and Payne 2003). Aspergilli classification was traditionally based on
morphological traits, and has nowadays extended to include the secondary metabolic profile and
molecular approaches. This review will focus on the Flavi section of the Circumdati subgenus. This
section bears a particular interest since it includes human pathogens, important mycotoxin
producers, especially of aflatoxins, as well as safe enzyme producers commonly used in the food

industry.

“Se
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Figure 8. Aspergillum structure. Figures on left represent the mature conidiophore with primary sterigmata

(above) and secondary sterigmata (below); right figure microscopic photo of Aspergillus flavus.
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1.5.1 A compendium of section Flavi

Aspergillus section Flavi is mainly composed of saprophytic molds occurring in diverse
ecological niches and playing a keystone role in the first steps of the nutrient cycle (Cotty et al. 1994;
Rodrigues et al. 2012). Among their general phenotypical characteristics are the conidial heads
yellow-green to brown shades, uniseriate or biseriate and the production of black sclerotia (Varga et
al. 2011; Houbraken et al. 2014). The characteristic secondary metabolites in the group include
aflatoxins (AF), paspaline, kojic acid, aspergillic acid, and cyclopiazonic acid (CPA) (Frisvad and
Samson 2000). These molds grow better under environmental conditions of humidity (around 0.85 to
0.99 au) (Medina et al. 2015; Yogendrarajah et al. 2016) and temperatures ranging from 28 to 42 °C
and several grow faster at 37 °C (Varga et al. 2011). The environmental humidity and temperature
preferences make the species within the section Flavi suitable to grow in the tropics and subtropics
over the world, yet some of them are able to grow in temperate regions, like A. flavus. Furthermore,
climate change affects principally these two environmental variables, creating new niches in areas
that in the past were not suitable for Aspergillus section Flavi species development, which could
favor their colonization into temperate regions (Perrone et al. 2014).

Extrolites produced by these fungi make the section interesting for studying purposes. Some
species, such as A. flavus and A. parasiticus have an impact on human and animal health as well as on
international economy, as they are able to produce aflatoxins, especially aflatoxin Bi (AFei),
considered as mycotoxins of high health risk due to their carcinogenic, mutagenic and teratogenic
potential (IARC 2012). In addition, species belonging to this section are also able of producing a wide
range of other mycotoxins such as CPA, aflatrems, versicolorins, sterigmatocystin, ochratoxin A
(OTA), etc. Albeit, other species are not toxinogenic and are used in biotechnology for producing
enzymes and organic compounds commonly used in several industrial processes (Houbraken et al.
2014). For example, A. oryzae and A. sojae synthesize kojic acid, a secondary metabolite used in the
production of soy sauce, a market with estimated shares of billions of dollars worldwide (Chang et al.
2007a).

Although there are some morphological characters and secondary metabolites that allow
identification at species level, when cryptic species are present they become insufficient for
taxonomical differentiation. In addition, morphological analyses to discriminate among isolates can
be tricky, because mold phenotype is affected by environmental and nutritional conditions, creating
overlapping phenotypical traits (Chang et al. 2007a). Inclusion of molecular analyses to the methods
aforementioned is crucial for species identification and to clearly define relations within the Flavi
section (Samson et al. 2014). However, finding differences at the molecular level can be challenging

since species of this group shares several conserved traits. For instance, Aspergillus flavus and A.
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parasiticus share approximately 97-99% nucleotide identity of their genomes (Chang et al. 2007a).
ITS gene is usually used as a barcode gene to differentiate fungal species, but in this section, it is
highly conserved, making it almost uninformative (Varga et al. 2011; Houbraken et al. 2014). Even
though, there are challenges to characterize these organisms at species level, it is important to
keep a practical taxonomic system because it is the base to the development of regulations to favor
food safety and control (Geiser et al. 2007; Godet and Munaut 2010).

Over the last two decades, Aspergillus section Flavi has suffered several modifications in their
composition; currently 26 species have been described based on a polyphasic approach, which
includes phylogenetic, morphological and secondary metabolites analyses. The section is constituted
by Aspergillus flavus, A. oryzae, A. parvisclerotigenus, A. minisclerotigenes, A. parasiticus, A. sojae, A.
arachidicola, A. novoparasiticus, A. sergii, A. transmontanesis, A. mottae, A. nomius, A.
pseudonomius, A. bombycis, A. tamarii, A. pseudotamarii, A. caelatus, A. pseudocaelatus, A.
bertholletius, A. coremiformiis, A. togoensis, A. leporis, A. hancockii, A. alliaceaus, A. lanosus, and A.
avenaceus. From these, the genome (strain = GenBank assembly accession numbers) of A. flavus
(NRRL 3357 = EQ963472, AF70 = ASM95283v1), A. oryzae (RIB40 = GCA_000965245.1), A. parasiticus
(SU-1= GCA_000956085.1, 68-5 = GCA_001576805.1), A. nomius (NRRL 13137 = GCA_001204775.1),
A. bombycis (NRRL 26010 = GCA_001792695.1), A. hancockii (FRR 3425 = GCA_001696595.1), and A.
arachidicola (CBS 117610 = GCA_002749805.1) have been sequenced.

1.5.2 Reproduction in Aspergillus section Flavi

Most Aspergillus fungi are only known in an asexual state (64%) (Dyer and O’Gormann 2011),
nevertheless, there is evidence that cryptic reproduction occurs in some species. In ascomycetes,
sexual identity and later stages of sexual development are partially regulated by the MAT locus,
conformed by two idiomorphs MATI-1 and by the Mat1-2 genes, encoding a protein with a a-box
motif and a protein of the high mobility group (HMG), respectively (Ramirez-Prado et al. 2008; Dyer
and O’Gorman 2011). In heterothallic species, only one of the idiomorphs is present, whereas in
homothallic both idiomorphs are present and they occur in the same loci or in different
chromosomes (Dyer and Kiick 2017). The section Flavi is mainly composed by heterothallic species,
and asexual reproduction seems to occur more frequently. Sexual reproduction is reported only for
six species and from them only one species is homothallic, A. alliaceus (Horn et al. 2011; Dyer and
Gorman 2012). It has been hypothesized that homothallic type can be the ancestral state in this
section because A. alliaceus is a basal species (Ramirez-Prado et al. 2008). The presence of both
idiomorphs in most analyzed species, however, suggests that heterothallic type could be the

ancestral trait in Aspergillus (Ramirez-Prado et al. 2008). Sexual forms in this section are clustered in
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the genus Petromyces, erected to include the teleomorph of A. alliaceus. Later on, sexual states of A.
flavus, A. parasiticus, A. nomius and A. oryzae were incorporated, based on morphological evidence,
like cleistothecia structure, and to maintain the monophyly of the group (Moore et al. 2009; Horn et
al. 2009). Another important trait in the section is the production of sclerotia, which occur in several
species. In asexual species, it has been hypothesized that sclerotia aid species to cope with adverse
environmental conditions and predators, which is supported by the type of secondary metabolites
produced (McAlpin and Wicklow 2005; Cary et al. 2015b), while in sexual species they also play a role

in the formation of cleistothecia (Horn et al. 2009).
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Another way Aspergillus species recombinate is by the formation of a stable heterokaryon,
resulting from hyphal anastomosis between strains sharing the same alleles of het loci (Pal et al.
2007). These heterokaryons are used to test species diversity, which might limit heterokaryosis and
asexual gene flow in communities (Barros et al. 2007). Species from the section Flavi present
different level of diversity of vegetative compatibility groups (VCGs), for instance A. flavus presents
higher diversity than A. parasiticus, the first one tends to present several VCGs in one community,
whereas the latest presents few. Making the study of VCGs appropriated to estimate diversity at
community level, niche use, life cycles, and to control aflatoxigenic strains (Barros et al. 2007,

Ramirez-Prado 2008; Grubisha and Cotty 2015).

1.6 DIVERSITY IN THE SECTION

A. flavus, A. parasiticus and A. nomius were considered as the only producers of aflatoxins. A.
flavus produces type B aflatoxins (AFs), whereas A. parasiticus and A. nomius produce B and G
aflatoxins (Perrone et al. 2014). The discovery of other species, including species phylogenetically
close to A. flavus able to produce AFs and AFs and non-aflotoxigenic species, accentuated the
complexity of the section Flavi. Varga et al. (2011), in an attempt to organize the section, suggested
the division in seven clades using a polyphasic approach: Aspergillus flavus clade (7 species), A.
tamari clade (4 species), A. nomius clade (3 species), A. alliaceus clade (2 species), A. togoensis clade
(2 species), A. leporis (2 species) and A. avenaceus (Figure 10). The addition of new species in the
section increased the number of clades to ten. The principal modification is the division of Aspergillus
flavus clade in two groups, A. flavus and A. parasiticus clades. Aspergillus flavus clade contains A.
flavus, A. oryzae, A. parvisclerotigenus, and A. minisclerotigenes, whereas A. parasiticus clade
contains A. parasiticus, A. sojae, A. arachidicola, A. novoparasiticus, A. sergii and A. transmontanensis
(Soares et al. 2012). The other important modification is the inclusion of two clades, A. mottae and A.

bertholletius, both composed by a single species (Taniwaki et al. 2012; Soares et al. 2012).
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1.6.1 Basal species

Basal species are less studied because they are rare and do not produce secondary metabolites
considered as main mycotoxins. Aspergillus avenaceus, A. leporis and A. alliaceus are characterized
by a Q-10 ubiquinone system, while derivate species often have Q-10 (H2) ubiquinone system
(Yamatova et al. 1990; Kuraishi et al. 1990; Rigo et al. 2002; Varga et al. 2003). Conidia of A. leporis
and A. alliaceaus are mostly globose, like the majority of species in the section, though they are

smaller, whereas the conidia of A. togoensis clade are irregular and larger (Varga et al. 2011).

» Aspergillus avenaceus clade

Aspergillus avenaceus clade is formed by a single species, which is the basal taxon of the
section (Figure 11). Aspergillus avenaceus home range in restrained to the USA, and it has been
isolated from soil, seeds, peanuts and cornmeal. Phenotypic traits are colonies in olive shades, long
conidiophores and black and long sclerotia, small and relative globose conidia, biseriate and radiate
heads, and a restricted growth up to 37 °C (Christensen 1981). It is a heterothallic fungus that forms
multiple nonostiolate ascocarps within the matrix of sclerotia (Horn et al. 2011). Though it is unable
to produce aflatoxins, it is able to produce ochratoxin A, and avenaciolide, an extrolite with antibiotic

properties (Bayman et al. 2002 ; Varga et al. 2011).

Figure 11. Colonies of Aspergillus avenaceus CBS109.46. Cultures on CYA and MEA, 7 days at 25 °C (modified
Varga et al. 2011)

» Aspergillus togoensis clade

Aspergillus togoensis clade is a basal group formed by two species, A. coremiiformis and A.
togoensis (Figure 12). Both species have been isolated from forest environments in Africa and are
rare (Wicklow et al. 1989; Christensen 1990). Evidence that these species are sister taxa includes
phenotypic traits, gene sequences, presence of synnemata (Varga et al. 2003), and it is the only basal
clade presenting a Q-10 (H2) ubiquinone system in the section (Yamatova et al. 1990). These fungi

have radiate and biseriate conidial heads, yellowish to brown colonies, and sclerotia (Wicklow et al.
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1989; Christensen 1990). A. togoensis and A. coremiformiis were included in the section Flavi for
their phenotypic characteristics, which overlap those of A. tamarii, aside from the presence of
septate phialides in the first two species (Rigo et al. 2002). Molecular data confirmed that they
belong to A. section Flavi, but they are not closely related to A. tamarii (Varga et al. 2011; Taniwaki et
al. 2012). Available isolates of both species are scant, making difficult to elucidate the relations
between them, and to fully characterize their secondary metabolic profiles. Aspergilllus togoensis
distributes in Central Africa, and grows on seeds in tropical forests (Wicklow and McAlpin 1990). It
produces AFg and is the only species documented to storage sterigmatocystin in the section Flavi
(Rank et al. 2011; Varga et al. 2015). Aspergilllus coremiiformis has been isolated in Cote d’lvoire
from soil, their colonies are olive to brown shades, and conidiophores are in coremiform

arrangements (Christensen 1981; Kozakiewicz 1989).

Figure 12. Colonies of Aspergillus togoensis clade. A= A. togoensis CBS272.89; B= A. coremiiformis CBS553.77.
Cultures on CYA and MEA, 7 days at 25 °C (modified Varga et al. 2011).

» Aspergillus alliaceus clade

Aspergillus alliaceus clade encloses two species, A. alliaceus and A. lanosus (Figure 13). The
classification of these species was complicated, at the beginning they were placed in the A. ochraceus
group based on their metabolite production and phenotypical traits, and later on in the A. wentii
group (Kozakiewicz 1989). Finally, the clade was moved to A. section Flavi based on a more complete
profile of its secondary metabolites and molecular markers (Varga et al. 2000a). In addition, Varga et
al. (2011) synonymized A. albertensis with A. alliaceus based on their secondary metabolic profiles,
phenotypic and molecular traits. Literature described A. alliaceus and A. lanosus as different species,
although, overlapping traits are observed while analyzing them, and generally both species do not

show important differences (Varga et al. 2000a), with the exception of the amino acidic sequence of


http://www.sciencedirect.com/science/article/pii/S0166061614600580#bib111

INTRODUCTION

Mat1.1 (Soares et al. 2012), which has an histidine and a tyrosine at the position 43, respectively.
More analyses are required to understand the relations between these species.

Aspergillus alliaceus was described as a pathogen of onion bulbs, it has a cosmopolitan
distribution, and it is isolated from grassland soils, groundnuts, nuts, figs, and air (Christensen 1981;
Wagacha et al. 2013). A. alliaceus is found in its homothallic state (formerly Petromyces alliaceus),
loci MAT1-1 and MATI1-2 are linked in the same chromosome, which differs from other homothallic
genera were both genes are not placed together, like some species of Emericella (Horn et al. 2011).
A. alliaceus teleomorphic state has smooth ascospores with several equatorial lines and a fine ridge,
they are found as ascocarps encapsulated in stromata, their germination is slow (Horn et al. 2009).
Colonies are in ochre shades, conidia heads yellow to cinnamon, smooth and ovate, biseriate, stipes
smooth, abundant sclerotia, and growth intensified at 37 °C (Chistensen 1981; Horn et al. 2009). It is
non-aflatoxigenic, but it produces several others mycotoxins, like ochratoxins A and B, the first one
being linked to figs contamination in California (McAlpin and Wicklow 2005). Furthermore, A.
alliaceus is associated to certain cases of othorrea, invasive aspergillosis and pulmonary infection; it
also produces asperlicins, an antagonist of cholecystokinin, affecting the pancreatic hormonal
regulation, gastric secretion, gallbladder contraction and gut motility. Howbeit, some enzymes are
used in industry to perform steroid and alkaloid transformations, as peptin degrading enzymes and
for their insecticidal properties (in Varga et al. 2000b), also it produces kojic acid and kotanins
(Frisvad and Varga 2000). Its sister taxon, Aspergillus lanosus, is an asexual rare species occurring in
India in teak forest soil. A. lanosus is characterize by a colony surface with spicular and trailing
hyphae in shades yellow becoming in ochre shades with time, conidia smooth, ovate, globose to

subglobose, teratological heads are rare, and lacks sclerotia (Christensen 1982; Varga et al. 2000a).

Figure 13. Colonies of Aspergillus alliaceuss clade. A= A. alliaceus 110.26; B= A. lanosus 654.74. Cultures on CYA
and MEA, 7 days at 25 °C (modified Varga et al. 2011).
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» Aspergillus leporis clade

Aspergillus leporis clade encloses two non-aflatoxigenic species, A. leporis, and the recently
described species A. hancockii (Figure 14).

Aspergillus leporis occurs in soils associated with shrub communities in the desert areas and
woodlands in the USA, where its frequency could be important, and in rabbit feces (Wicklow 1985).
Its conidia are globose and small, conidial heads in olive shades, reverse uncolored or pale yellow and
white-tipped cinnamon long sclerotia, and slow growth at 37 °C (Christensen 1981). Sclerotia
production has been reported on rabbit dung, whereas on Czapek Yeast Autolysate Agar (CYA) or on
Malt Extract Agar (MEA) is absent (Wicklow 1985). The sclerotia of A. leporis produce the N-
alkoxypyridone antiinsectan metabolite, leporin A, suggested to be useful in control of Lepidoptera
pests (Varga et al. 2011). The second species, A. hancockii is a rare species reported near Kumbia,
Australia. Based on phenotypic traits and phylogenetic analyses it is clustered as a sister taxon of A.
leporis. Its colonies are floccose, with a low sporulation rate, conidial heads radiate, greyish green to
olive, sclerotia produced mainly in the center of the colonies, conidia small, spherical to sub-
spheroidal, greyish green to olive. New metabolites were reported as part of the screening of its
secondary metabolic profile, hancockiamides A-F, dehydroterrestric acid and 7-
hydroxytrichothecolon. Additionally, A. hancockii yields onychoins A and B, speradine F, kojic acid,
fumitremorgin A and eupenifeldin. Its genome was sequenced and deposited in GeneBank, under the

BioProject accession PRINA328536 (Pitt et al. 2017).

Figure 14. Colonies of Aspergillus leporis clade. A= A. leporis CBS151.66; B= A. hancockii Cultures on CYA and
MEA, 7 days at 25 °C (modified from Varga et al. 2011 and Pitt et al. 2017).
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» Aspergillus bertholletius clade

Aspergillus bertholletius is a mold associated with Bertholletia excelsa nuts (Figure 15). It is the
sister taxon of a group that includes A. nomius clade, A. tamarii clade, A. mottae, A. parasiticus clade
and A. flavus clade (Taniwaki et al. 2012). It occurs in Brazilian Amazonia, it is rare and it has been
isolated from soil nearby the trees, nuts and shell nuts of B. excelsa. Its optimal temperature varies
from others species in the section, growing slowly at 37 °C. Phylogenetic analyses suggested that is a
monophyletic group, composed by a unique species (Taniwaki et al. 2012). Its conidia are profuse
and brown on CYA and greenish on MEA, there is a lack of exudate, and reverse coloration is pale.
The isolates of A. bertholletius do not produce aflatoxins, but some isolates can produce
intermediary products (i.e. O-methylsterigmatocystin), suggesting the presence of an in complete
aflatoxin gene cluster. Other secondary metabolites include CPA and its precursors, tenuazonic acid,

kojic acid, ustilaginoidin C and indole alkaloids (Taniwaki et al. 2012).

Figure 15. Colonies of Aspergillus bertholletius. Cultures on CYA and MEA, 7 days at 25 °C (modified from
Taniwaki et al. 2012).

1.6.2 Clades of species of major economical interest

» Aspergillus flavus clade

Aspergillus flavus was considered as a unique species, nevertheless, several studies support
that A. flavus sensu lato is a species complex, which includes cryptic species, making their
differentiation complicated as they overlap several phenotypic and molecular traits. Species nested
in the clade present colonies green to yellowish shades, conidial heads mostly biseriate and splitting
radiate (Varga et al. 2011), and a Q-10 (H2) ubiquinone system (Varga et al. 2003). Species nested in
the clade are heterothallic, and both idiomorphs of mating type gene Matl.1 and Mat1.2 have been
amplified (Soares et al. 2012). Aspergillus flavus sensu lato has been divided in two morphotypes

based on the amount of conidia and sclerotia size: (1) “L” morphotype: high production of conidia,
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large sclerotia (> 400 um), and variable production of aflatoxin B and cyclopiazonic acid; and (2) “S”
morphotype: low production of conidia, conspicuously production of small sclerotia (< 400 um) and
high production of aflatoxins and generally produce cyclopiazonic acid. The morphotype “S” is less
frequently found, and is subdivided into two groups distributed differently in the world, and with a
different synthesis of aflatoxins: the “Sg”, strains that are only able to produce B aflatoxins and found
in USA; and the “Sgs” strains that are able to produce B and G aflatoxins (Cotty 1989; Geiser et al.
2000; Chang et al. 2009b). Furthermore, based on molecular data A. flavus sensu lato was also split in
two reproductively isolated groups, | and Il, which were not necessary monophyletic (Geiser et al.
1998). Ehrlich et al. (2004) suggested, based on molecular analyses, that strains belonging to the
morphotype “L” were a monophyletic group, and strains belonging to “Sgs” should be place into a
different taxon. Later on, isolates classified as “Sgs” and belonging to the group Il have been
reclassified as A. minisclerotigenes and A. parvisclerotigenus (Frisvad et al. 2005; Pildain et al. 2008).
Further analyses determined that the lack of production of G aflatoxins was linked to deletions in the
norB-cypA (AfIF-AfIU) region of the aflatoxin gene cluster on A. flavus sensu stricto. Two types of
deletion were found, type | deletion (1.5 kb) mostly overlaps the type Il deletion (1 kb), both
deletions have arisen from independent evolutionary events. The type Il deletion comprises two
gaps, one absent in type | deletion, this gap of 32 bp in the norB (afIF) gene that encodes for amino
acid residues 300-310 of the NorB aryl alcohol dehydrogenase (Chang and Erlich 2010). Further,
Chang et al. (2006) showed that A. flavus L morphotype generally presents a 0.8 kb deletion, whereas
A. flavus Sg morphotype present of 1.5 kb. The inability of producing G- aflatoxin is suggested to have
occurred several times in the group (Ehrlich and Yu 2010).

Aspergillus flavus is the most well known species in section Flavi (Figure 16). This fungus is
thermotolerant, growing at temperatures between 12 — 48 °C, yet its optimal temperature range is
28 — 37 °C (Yu et al. 2005). Its sexual state has been characterized in laboratory conditions and
named as Petromyces flavus, and cryptic sexual reproduction is accepted to occur in nature (Horn et
al. 2009). Among fungi in the section, it has the wider distribution worldwide, being more common
between latitudes 35 N to 35 S, and less frequent in temperate regions (Mehl et al. 2012). It is
normally associated with cultivars and different storage commodities that are principally colonized
by airborne conidia. Maize is its optimal substratum, followed by cottonseed, peanuts, nuts, spices,
oil seed crops, among others (Horn 2003). A. flavus is considered as a minor phytopathogen
associated with rot in certain crops like maize, peanuts and cotton seeds (Klich 2007). This species is
the main producer of AFB; worldwide, which is considered as the most potent natural compound
with carcinogenic, teratogenic and mutagenic characteristics (IARC 1993), despite the majority of
isolates identified are not AFB; producers (60-70 %) (Varga et al. 2011). The genomic analysis

showed that A. flavus and A. oryzae genomes present more genes than A. fumigatus and A. nidulans
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(Machida et al. 2008). The acquisition of the genes can occur via two mechanisms, horizontal gene
transfer (HGT) and gene duplication and divergence (GDD). These processes were suggested based
on the mosaic distribution of anomalous genes on the chromosomes. Aspergillus flavus is also the
second source for aspergillosis (Gongalves et al. 2013). As Amaike and Keller (2011) reported that this
illness is caused by the spores, principally via inhalation and less frequently by wounds. Aspergillosis
affects mostly immunosuppressed patients, and has a high level of mortality (Gongalves et al. 2013).
It is also associated to invasive cutaneous aspergillosis in low-birth-weight infants in neonatal
intensive care unit (McAlpin et al. 2005). A. flavus is the primary causative agent of keratitis that
results in corneal damage and sight loss in patients from tropical regions, especially from India
(Srinivasan 2004). Animals can also suffer from this illness, especially rabbits, poultry and bees
(Amaike and Keller 2011). As aforementioned, Aspergillus flavus is characterized by its phenotypic
and genotypic plasticity. Morphological traits include greenish to yellowish colonies, conidial heads
usually biseriate and radiate, vesicles globose to elongate, conidia globose to ellipsoidal, smooth to
finely roughened walls, sclerotia if present usually “L” and in some population of the USA “Sg”
morphotypes (Klich 2007). The production of mycotoxins is extremely variable, from highly toxigenic
to nontoxigenic strains (Horn 2003).

The most important extrolites associated with A. flavus are AFB;, cyclopiazonic acid, kojic
acid, aspergillic acid, aflatrems, aflavinin and versicolorins. Nowadays, somewhat 56 putative gene
clusters associated to secondary metabolites synthesis are presumed based on polyketide synthases
(PKSs), nonribosomal peptide synthetases (NRPSs), hybrid PKS-NRPSs, and prenyltransferases (PTRs)
genes (Georgianna et al. 2010; Arroyo-Manzanares et al. 2015; Cary et al. 2015b). The study of gene
clusters and biosynthetic pathways in this fungus is ample; to date, secondary metabolites belonging
to gene clusters linked to aflatoxins, cyclopiazonic acid, aflatrem, asparasone, leporins, bicumarins,
piperazines, ditryptophenaline have been identified experimentally (Arroyo-Manzanares et al. 2015;
Cary et al. 2015a; Cary et al. 2015b). These studies also evidenced the correlation of extrolite
production and fungus physiology. Cary et al. (2015b) showed the conspicuous expresion of genes
belonging to the cluster 39 in sclerotia, linked to the production of aflavarin that has anti-insectan
activity. The authors suggested that aflavarin could play a key role in A. flavus ecology and survival, a
part of its effects on insects.

Several strategies to avoid the presence of aflatoxins in crops and storage have been
developed, and most of them targets A. flavus as the main producer. The use of non-aflotoxigenic
strains of A. flavus (e.g. AF36) as biocontrol in crops is already use for over a decade. This biocontrol
benefits from parasexual reproduction, by controlling VCGs ratios in natural populations. In this type
of reproduction, as aforementioned, stable hyphal fusions take place between VCGs with compatible

het loci (Amaike and Keller 2011). Each VCG could comprise a variable number of aflatoxigenic and
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non-aflatoxigenic strains. Non-aflatoxigenic strains are inoculated as part of a mix that includes the
fungus and all the nutritional requirements for its development. As a result, changes in the genotype
composition of A. flavus communities occur, reducing ratios of aflatoxigenic strains. It is suggested
that is a safe type of biocontrol because there is not recombination between AF36 and strains
belonging to other VCGs (Grubisha and Cotty 2015).

Aspergillus oryzae is recognized as a domesticated A. flavus (Geiser et al. 2000), that is non-
aflatoxigenic and is considered as safe (GRAS status, FAO 2016) (Figure 16). This species is reported in
Japan and China, and not in nature. A. oryzae is widely use in industrial processes, some linked to
koji, as starters in the first steps of fermentation to digest ingredients such as steamed rice, soybean,
and wheat, being its conidia the target structure (Machida et al. 2008; Ogawa et al. 2010). Similarly,
it is also used as source for enzymes, like glucoamylase, alpha-amylases and proteases, for the
production of starch, baking, and brewing worldwide (Machida et al. 2008). The lack of aflatoxin
production is not a unique feature of A. oryzae considering that approximately 60% of A. flavus
strains are non-producers (Cotty and Cardwell 1999), making their species status more practical than
evolutionary, as it is easier to differentiate these isolates from the potential aflatoxigenic isolates of
A. flavus. Amongst the evidence of its domestication is that both species shares 99.5% genome-wide
nucleotide similarity (Chang and Erlich 2010). A. oryzae appears to come from a group of non-
aflatoxigenic A. flavus group |, since they share phenotypical traits, like olive green and floccose
colonies, large conidia, large sclerotia if present, and molecular analyses clustered them (Geiser et al.
1998, 2000; Chang and Erlich 2010). Genome data have shown that both species share common
characters, like 8 chromosomes, and a common entire genome size around 37.6 Mb (Machida et al.
2008; Cleveland et al. 2009). Further, deletions of type | and Il in the aflF-aflU (norB-cypA) region,
and a complete deletion of the region were also observed in A. oryzae (Chang et al. 2015).

The most important genetic differences between A. flavus and A. oryzae are linked with the
aflatoxin biosynthesis gene cluster, such as the deletion of AfIT gene, a frameshift mutation in gene
norA (AflE) and a nucleotide substitution in VerA (AfIN) in A. oryzae, which leads to the non
production of this mycotoxin (Lee et al. 2006; Tominga et al. 2006). Regarding the aflatoxin cluster
gap, A. oryzae could be splitted in groups: (i) group 1 has the pksA (AfIC), fas1 (AfIB), afIR, verl (AfIM)
and vbs (AfIK) orthologs; (ii) group 2 has the verl (AfIM) and vbs (AfIK) orthologs, in addition strains
have a unique structure adjacent to the ‘breakdown and restoration’ region, located upstream of the
verl (AfIM) gene, suggesting a monophyletic group; and (iii) group 3 has the vbs (AfIK) orthologs
(Chang and Erlich 2010). Some other genomic differences are associated to other processes, like the
presence of two or three copies of a-amylase (versus one copy in A. flavus), which facilitates starch
degradation, as well as genotypic differences on the glutaminase and sesquiterpene loci (Gibbons et

al. 2012). In addition, the absence of cyclopiazonic acid in A. oryzae is linked to gaps in the
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chromosome 3 subtelomeric region, which interferes with the biosynthesis pathway (Geiser et al.
2000; Chang and Erlich 2010).

Gibbons et al. (2012) suggested that differences between A. oryzae and A. flavus primary and
secondary metabolisms could partially be explained by the domestication of the first. The principal
secondary metabolite produced by A. oryzae is kojic acid, which is used in industrial processes. In
addition, Rank et al. (2012) identified some secondary metabolites that are not produced by A.
flavus, an aflatrem precursor (13-dehydroxypaxilline), and two analogues of parasiticolide A (dide-
and 14-deacetyl parasiticolide A).

Regardless the presence of mating type genes Mat-1 in A. oryzae, Wada et al. (2012) isolated
Mat1-1 and Mat1-2 idiomorphs in a study performed with 164 tane-koji strains. Abundance ratios of
both idiomorphs were close to 1:1, suggesting that sexual reproduction could occur under certain

circumstances, even though the scarce production of sclerotia.

Figure 16. Colonies of Aspergillus flavus clade. A= A. flavus CBS100927; B= A. oryzae CBS100929; Cultures on
CYA and MEA, 7 days at 25 °C (modified from Varga et al. 2011).

» Species Sse

Morphotype strains “Sgs” had been reclassified as Aspergillus minisclerotigenes and A.
parvisclerotigenus, one of the most conspicuous traits is the small size of their sclerotia, as both
names suggest (Figure 17). A. minisclerotigenes is reported in different world regions (Africa, South
and North America and Australia), whereas, A. parvisclerotigenus has a restricted distribution, it has
been found in the Guinean Gulf, in Africa (Perrone et al. 2014; Adjovi et al. 2014). At the beginning
both species where considered as A. flavus, nevertheless data accumulated suggested that the

differences were enough to rise both at species level, like the production of B- and G- aflatoxins, and
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the molecular evidence inferred from gene markers benA, cmdA and mating type genes MATI1
(Pildain et al. 2008; Soares et al. 2012).

Moreover, phylogenetic inference studies suggest that “Sgs” morphotype is a paraphyletic
group, which places A. minisclerotigenes as the sister taxon of a group formed by A. flavus and A.
oryzae, whereas A. parvisclerotigenus is placed as the sister taxon of a group that includes the
aforementioned species (Soares et al. 2012). Both species seems to share similar metabolic profiles,
AFgs, CPA, kojic acid, aspergillic acid, aflatrem, and aflavarins. However, A. minisclerotigenes
produces aflavinins, which are not reported for A. parvisclerotigenus, and the latest produces

aspirochorin not produced by the former (Varga et al. 2011).

Figure 17. Colonies of Aspergillus flavus clade Sss. A= A. minisclerotigenus CBS117635; B= A.
parvisclerotigenus CBS121.62; Cultures on CYA and MEA, 7 days at 25 °C (modified from Varga et al. 2011).

» Aspergillus parasiticus clade

Aspergillus parasiticus clade was proposed by Soares et al. (2012), before the species and
species related to A. parasiticus were shown to be nested in A. flavus clade. The number of species
related to A. parasiticus has increased during the last decade grace to the use of the polyphasic
approach. These species have colonies in green shades, darker than those of A. flavus, conidial heads
mostly uniseriate, a Q-10(H2) ubiquinone system (Varga et al. 2003), species are heterothallic, and
present both idiomorphs for mating type gene Mat1 loci (Soares et al. 2012). They have smaller
home ranges, and have more constrained niches regarding their substrate preferences while
compared to A. flavus.

Aspergillus parasiticus is considered as the second producer of aflatoxins, it is able to

produce B- and G- aflatoxins, and only 3 to 6% of isolates are considered non-aflatoxigenic (Chang et



INTRODUCTION

al. 2007a) (Figure 18). It is mostly associated with ground crops and with almonds, and rarely in other
commodities (Amaike and Keller 2011). Like A. flavus, it occurs frequently in tropical and subtropical
areas, however it can also be found in temperate regions (Varga et al. 2011; Baranyi et al. 2015). This
species is heterothallic, and its populations are genetically diverse, which suggests that cryptic sexual
reproduction occurs in nature (Horn 2007). Horn et al. (2009), after crossing different vegetative
strains in laboratory conditions, identified the sexual form that was named Petromyces parasiticus.
Morphological characters include conidial heads mostly uniseriate, rarely biseriate, and loosely
radiate. Conidia globose to subglobose, conspicuously roughened. Sclerotia and stromata external
appearance globose to ellipsoidal, becoming darker with time. Stroma contains fertile, infertile, or a
combination of both types of ascospores. Ascospores oblate, finely tuberculate, presence of a thin
equatorial ridge, hyaline to pale brown, frequently an oil droplet present, globose to subglobose or
irregularly shaped, nonostiolate, with white to light brown interior (Horn et al. 2009). Aspergillus
parasiticus produces aflatoxins, kojic acid and aspergillic acid but not cyclopiazonic acid (Varga et al.
2015).

Over the last decade Aspergillus parasiticus composition has changed, for instance, A.
toxicarius has been synonymized based on phenotypical and molecular data (Rigo et al. 2002; Varga
et al. 2011). On the other hand, some populations are questioned to belong to the same species. For
instance, Garber and Cotty (2014) suggested that the populations of A. parasiticus associated to
sugarcane from Japan and Rio Grande Valley (USA) presented considerable differences at molecular,
phenotypical and VCGs level from A. parasiticus. These populations associated with sugarcane could
be a new species that has coevolved with its host, and could play an important role in the community
dynamics of sugar cane crops (Kumeda et al. 2003; Garber and Cotty 2014), however further analysis
are required to understand their phylogenetic relationships.

Aspergillus sojae is considered the domesticated species of A. parasiticus, and similarly to A.
oryzae, this decision is based on practical purposes because it produces kojic acid, which is used in
fermentation processes (Rigo et al. 2002). This species occurs in China, India and Japan, but it has not
been reported in agricultural soils (Chang et al. 2007b; Varga et al. 2011). Morphologically, its isolates
traits overlaps those of A. parasiticus; however differences in colonies coloration and texture, and
conidia diameter are used as diagnostic traits. For instance, A. sojae colonies tend to be brownish
olive versus dark olive green in A. flavus (Chang et al. 2007) (Figure 18). Genetically, the haplotypes
of this species present differences from A. parasiticus. The main mutations are related to the
aflatoxin biosynthetic pathway, especially differences observed on AfIR (an insert of six-base repeat
CTCATG in the amino-terminal coding region and a transition on nucleotide 1153 C for T) that creates
a premature stop codon, resulting in a suppression of gene expression, and a disruption of

interaction between AfIR and the AflJ co-activator. In addition, the polyketide synthase gene presents
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abnormalities (Chan et al. 2007). These differences between A. parasiticus and A. sojae explain why
the latest does not produce aflatoxins and can be safely used.

Description of Aspergillus arachidicola was based on an isolate from Arachis glabrata leaves
in Argentina (Figure 18). Morphologically, the colony surface is floccose with plenty conidial heads
olive to olive brown, uniseriate to biseriate, conidia globose to subglobose, echinulate, greenish,
absence of sclerotia, vesicles globose to subglobose. A. arachidicola extrolites profile includes B- and
G- aflatoxins, kojic acid and aspergillic acid, chrysogine, parasiticolide, ditryptophenaline and “NO;”
metabolite (Pildain et al. 2008; Varga et al. 2011; Varga et al. 2015). The genome of the type strains is
being sequenced (Moore et al. in preparation 2018).

Aspergillus novoparasiticus (Gongalves et al. 2012) is morphologically similar to A. parasiticus
and is an aflatoxin producer. It was described in South America in hospital environments, yet latter it
was isolated from crops (Viaro et al. 2017), and its home range shifted, including a population in the
Guinea Gulf (Adjovi et al. 2014). In Africa, it was reported to grow on cassava (Adjovi et al. 2014).
Morphologically this species is characterized by greenish-yellow to olive colonies, with profuse
amount of conidiophores, conidia globose to subglobose, lobate-reticulate, green conidial heads
columnar olive yellow, generally uniseriate, rare biseriate, absence of sclerotia, presence of
exudates, vesicles spatulate to pyriform (Figure 18). Extrolites associated to this species are B- and G-
aflatoxins and kojic acid.

Soares et al. (2012) described three new aflatoxin producer species from Portugal, whose
phenotypical features overlap those of A. parasiticus, including the production of B- and G-
aflatoxins, A. sergii, A. transmontanensis and A. mottae. All species are rare species. Aspergillus sergii
grows in almond shells (Prunus dulcis), it is able to produce aspergillic acid and cyclopiazonic acid in
addition to aflatoxins (Varga et al. 2015). Morphologically it differs from A. parasiticus since it has
rough conidia and mostly uniseriate conidial heads, presence of dark large sclerotia, and its conidia
coloration tends to be lighter (Soares et al. 2012) (Figure 18). A. transmontanesis grows in almond
shells (Prunus dulcis). Morphologically this species resembles to A. parasiticus, but it presents
biseriate conidial heads and larger, darker and profuse sclerotia (Soares et al. 2012). Apart of

aflatoxins, it produces aspergillic acid (Varga et al. 2015) (Figure 18).
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Figure 18. Colonies of Aspergillus parasiticuss clade. A= A. parasiticus CB5100926; B= A.sojae CBS100928; C=
A. arachidicola CBS117610; D= A. novoparasiticus CBS126849; E= A. sergii MUM10.219; F= A.
transmontanensis MUM10.214; Cultures on CYA and MEA, 7 days at 25 °C (modified from Pildain et al.
2008; Varga et al. 2011; Soares et al. 2012).

A. mottae is the sister taxon of the group formed by A. flavus and A. parasiticus. It was
isolated from maize kernels in Portugal and its occurrence is rare. In addition to aflatoxins, it
produces aspergillic acid and cyclopiazonic acid. Morphologically, it is characterized by flat colonies,
with scarce yellow-green conidia heads, small and profuse dark sclerotia, generally biseriate heads,

rarely uniseriate, and vesicles globose to subglobose (Soares et al. 2012) (Figure 19).

Figure 19. Colonies of Aspergillus mottae MUM10.231. Cultures on CYA and MEA, 7 days at 25 °C (modified
from Varga et al. 2011).
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» Aspergillus tamarii clade

Aspergillus tamarii clade is composed by cryptic species with ubiquinone system Q-10 (H3),
and overlapping phenotypic traits, for instance their colonies are initially in green or yellowish shades
becoming brown to brown-bronze over time (Ito et al. 2001; Varga et al. 2003). Data from the genes
benA and cmdA allowed the differentiation of four species in this group: A. tamari and A. caelatus
that do not produce aflatoxins, and A. pseudotamarii and A. pseudocaelatus that produce B and G
AFs (Varga et al. 2011). Metulae and philiades of A. caelatus and A. pseudotamarii are smaller than
those of A. tamarii. In addition, temperature requirements are different among species, A. tamarii
grows at 37 and 42° C whereas A. pseudotamarii and A. caelatus grow only at 37 ° C. Relationships
among the species within the clade have been confirmed by molecular markers and secondary
metabolic profiles (Ito et al. 2001; Soares et al. 2012).

Aspergillus tamarii isolates are considered as a low risk species and several of its extrolites
are used in fermentation processes in the food industry (Varga et al. 2011). Some health problems
were related to it, for example the human keratitis in Southern India (Kredics et al. 2007) and several
potential allergens that could be spread by spores in the air (Vermani et al. 2010). A. tamarii has
been found in tropical and subtropical areas in Africa, Asia, North and South America on nuts,
coconuts, coffee beans, soil, sugarcane, spices, cereals, Xylotrechus insects and soils (Rigo et al. 2002;
Kumeda et al. 2003; Pitt and Hocking 2009). Phenotypic traits are colonies in brown to bronze
shades, colorless to pinkish reverse, radiate and biseriate conidial heads, globose to subglobose
conidia, roughened with tubercles, and rare sclerotia (Ito et al. 2001; Rigo et al. 2002) (Figure 20).
Among its secondary metabolites, kojic acid, speradine A, cyclopiazonic acid, fumigaclavines,
amylases, proteases and xylanolytic enzymes are produced.

Aspergillus pesudotamarii occurs in South America and Japan (Varga et al. 2011). It is
morphologically similar to some isolates of A. tamarii, showing an orange-brown or brownish bronze
coloration on mature colonies. However, coloration differs at the first days of colony development; in
A. pseudotamarii it is green or yellowish green, whereas in A. tamari it is mainly brown. Colonies are
generally velvety and present abundant sporulated conidia, reverse pale yellowish brown. Conidial
heads globose to radiate, generally splitting into several columns, biseriate. Sclerotia small and
pyriform (Goto et al. 1996; Ito et al. 2001) (Figure 20). Aspergillus pseudotamarii produces AFB;,
cyclopiazonic acid and kojic acid, yet its association with commodities contamination is unknown
(Varga et al. 2015).

Aspergillus caelatus is reported in the USA and Japan, it has been isolated from agricultural
field soils, peanut damaged by insects and tea fields (McAlpin et al. 2005). Phenotypical traits include

colonies in shades olive that become brownish-olive over time of maturation, reverse pale yellowish.
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Conidiophores, vesicles and stipes are smaller than A. tamarii (Goto et al. 1996; Ito et al. 2001)
(Figure 20). As well, A. caelatus can form synnemata and sclerotia sessile and stipitate, which
resemble those of A. togoensis, but smaller (McAlpin 2004). It produces kojic acid and aspirochlorin,
but not cyclopiazonic acid (Rigo et al. 2002; Varga et al. 2011). McAlpin and Wicklow (2005)
suggested that VCGs in tea plantations in Japan are less diverse that VCGs in the USA, and this could
be related to the agricultural systems; in the USA, fields uses a rotation crop system that causes more
disruption in microbial communities and creates different niches, allowing the colonization by other
genotypes.

Aspergillus pseudocaelatus was described by Varga et al. (2011) based on a sample found in
Argentina on a leaf of Arachis burkartii. Its distribution is restricted to South America, in some areas
of Argentina (Corrientes) and Brazil (Varga et al. 2011; Taniwaki et al. 2017; Viaro et al. 2017).
Colonies have a velvet surface and abundant conidial heads. Conidial heads olive to brown, uniseriate
or biseriate. Conidia are greenish, globose to subglobose and echinulate; it does not produce
sclerotia, and its vesicles are globose to subglobose (Figure 19). It produces AFBG, cyclopiazonic acid

and kojic acid.

Figure 20. Colonies of Aspergillus tamarii clade. A= A. tamari CBS104.13; B= A. pseudotamarii CBS766.97; C= A.
caelatus CBS763.27; D= A. pseudocaelatus CBS117616; Cultures on CYA and MEA, 7 days at 25 °C (modified
from Varga et al. 2011).

» Aspergillus nomius clade

The lack of production of cyclopiazonic acid is a diagnostic trait within the clade nomius and
can be considered a synapomorphy of the clade. Moore et al. (2016) showed that the three genes

responsible of CPA production are present in A. bombycis, but a deletion of a nucleotide at position
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954 in the pks-nrps gene suppresses CPA production. Moore et al. (2016) also showed in A. bombycis
that the gene cluster of aflatoxins is located in a different chromosome than the CPA gene, whereas
in A. flavus and A. parasiticus both clusters are juxtaposed. Lack of information on the other two
species of the clade does not allow confirming that this arrangement is fixed in the clade, but studies
of CPA gene cluster could elucidate the evolution of the pathway, in addition to shed some light on
the evolution of the Flavi section. Species in this clade have colonies in green shades, are
aflatoxigenic, and sclerotia if present are small and oval (Barros et al. 2007).

Aspergillus nomius is an important aflatoxigenic species (Figure 21), just below A. flavus and
A. parasiticus. This species has a restricted distribution area, nevertheless, over the last years new
reports suggest that it is widespread, occurring mainly in tropical and subtropical areas, and less
frequently in temperate regions (Baranyi et al. 2015). In some regions (Brazil), the ability of A. nomius
to produce aflatoxins is higher than that of the other two producers (Baquido et al. 2014). At the
beginning, it was only associated with insects, but it also grows on other substrates, including
Brazilian nuts, sugarcane, nuts, crops and seeds (Horn et al. 2011, Baquido et al. 2014). Ehrlich et al.
(2007) suggested that this species is a complex species; based on DNA regions, it could be divided
into three groups, likewise, sclerotia size of some strains are unusually big (1.00 to 4.00 mm), several
small (> 400 um) and coloration varies from tan to black. A. nomius is able to produce B and G
aflatoxins, kojic acid, aspergillic acid, tenuazonic acid, miyakamides, anominine, aspernomine,
pseurotin, parasiticol, paspaline, paspalinin, pseurotin A, tenuazonic acid, versicolorins, 3-O-
methylsterigmatocystin (Massi et al. 2014). This species is heterothallic and its sexual state was
identified in laboratory as Petromyces nomius, yet the majority of crosses resulted in infertile crosses
(76%) (Horn et al. 2010).

Aspergillus pseudonomius (Varga et al. 2011) (Figure 21) is the sibling species of A. nomius,
though their traits overlap, some are use as diagnostic, like floccose colonies, profuse aerial
mycelium and low sporulation, lack of sclerotia, uniseriate conidia heads, globose to subglobose
vesicles and stipes rough-walled when observed under scanning electron microscope (Massi et al.
2014). A. pseudonomius has a restricted distribution in South America and it has been found on
Brazilian nuts and peanuts (Baquido et al. 2014). Its produces B and G AFs, chrysogine, kojic acid and
miyakamides, aspergillic acid, 3-O-methylsterigmatocystin, tenuazonic acid, a versicolorin and
parasiticol (Massi et al. 2014).

Aspergillus bombycis was described in 2001, the isolates were obtained from silkworm
excreta in Japan and the home range settled in Asia (Peterson et al. 2001) (Figure 21). This species
was previously misidentified as A. nomius since they have common traits (Peterson et al. 2001;
Ehrlich et al. 2007; Moore et al. 2016), some of the diagnostic traits are related to temperature, A.

bombycis grows slowly at 37 °C, and growth is inhibited at 42 °C. Colony texture is loose and deep,
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green or yellowish, rarely brownish; roughened, globose to subglobose conidia; conidial heads
arranged into loose columns; globose vesicles. Although this species is able to produce B and G AFs, it
is not a pathogen for humans or animals. It also produces aspergillic acid and kojic acid (Varga et al.
2015; Moore et al. 2016).

Proper species identification is important at regional level, for instance, A. nomius and A.
pseudonomius are large aflatoxinogenic contaminants of commodities in Brazil. Baquido et al. (2013)
suggested that A. nomius contamination was more important than that of A. flavus and A. parasiticus
in Brazil nuts, A. nomius producing higher amounts of aflatoxins and being more suitable for storage
conditions. Later, Massi et al. (2014) suggested that part of the strains found in Brazilian studies
corresponded to A. pseudonomius. Both examples underline the importance of a proper recognition

at species level.

Figure 21. Colonies of Aspergillus nomius clade. A= A. nomius CBS260.88; B= A. pseudonomius; C= A. bombycis
CBS117187; Cultures on CYA and MEA, 7 days at 25 °C (modified from Varga et al. 2011).

1.7 SECONDARY METABOLITES IN SECTION FLAVI

Aspergillus section Flavi includes a plethora of secondary metabolites and only a small portion
has been characterized that includes some beneficial compounds used in biotechnological processes
and some mycotoxins. Among the most important mycotoxins in the group are aflatoxins (AFs) and

their biosynthetic intermediates such as sterigmatocystin (ST). In addition, among the most
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important secondary metabolites are other toxic compounds, such cyclopiazonic acid (CPA),
ochratoxin A (OTA) and emergent mycotoxins such as tenuazonic acid (TeA). Here, only a dozen are
shown, and their selection is based on the importance in the group (AFs, CPA, ST, aflavarin), or

because of its importance as mycotoxins (OTA, TeA).

» Aflatoxin biosynthetic pathway

The aflatoxin biosynthetic pathway has been extensively studied because it contains the genes
for the biosynthesis of at least ten mycotoxins, including AFs as final products, and sterigmatocystin
(Georgianna et al. 2010). Among the species presenting this cluster are species from Aspergillus
sections Flavi, Nidulantes and Ochraceorosei.

In A. flavus, the gene cluster in charge of AF synthesis is the cluster 54. In several species, it is
located near the telomere of the chromosome 3 (Georgianna and Payne 2009). In A. flavus, the
cluster contains at least 25 genes and it spans a region of approximately 70 kb. The cluster is flanked
on the distal end by four putative sugar-use genes and on the proximal end by the cyclopiazonic acid
cluster (Amare and Keller 2014). The main cascade regulator genes are afIR and afiS (Yu 2012).

Studies on several genomes of aflatoxin producer species (A. flavus, A. oryzae, A. parasiticus,
A. fumigatus and A. terreus) have shown that the aflatoxin gene cluster is arranged into seven
modules: aflA (fas2)/aflB (fas1), aflR/aflS (afl)), afiX (ordB)/aflY (hypA), aflF (norB)/aflE (norA),
afiT/aflQ (ordA), afIC (pksA)/afW (moxY) and aflG (avnA)/aflL (verB) (Carbone et al. 2007a) (Figure
22). Cluster evolution studies suggest that the cluster was transferred vertically and that the
retention or loss of the modules occurred differently among species, resulting in divergent lineages.
In A. fumigatus and A. terreus, the clusters have five genes, afIC, aflS, afIR, afiX and aflY, it has been
suggested that they derive from an ancestor with a more complete cluster and that several genes
have been lost, as well as that the ancestral cluster may had other functions (Chang and Ehrlich
2010). In A. fumigatus and A. terreus, these genes are implicated in the synthesis of trypacidin and
geodin (Nielsen et al. 2013; Mattern et al. 2015; Trockmorton et al. 2016). In species that have the
cluster of aflatoxin, some genes are conserved through evolution, some are duplicated and some
genes are transcribed bidirectionally from a single promoter (aflA-afiB and afiR-aflS) (Chang and
Ehrlich 2010).
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Figure 22. Aflatoxin gene cluster arrangement. Arrows represent the gene position and transcription
orientation. Genes are named with the old nomenclature (below arrows) and with the actual nomenclature
(above arrows) (modified from Amaike and Keller 2011).

In the next paragraphs, the biosynthetic pathway of AFs in A. flavus will be summarized. Some
genes have homologs in other species that produce these compounds.The first steps of the synthesis
is the transformation of acetyl-CoA and malonyl-CoA into norsoloric acid (NOR). This step requires
four genes (enzyme encoded in parenthesis), afl/A and afIB (fatty acid synthases), afIC (polyketide
synthase) and hypC (anthrone oxidase) (Ehrlich 2009; Yu et al. 2004b; Roze et al. 2013). AfIA and AfIB
are in charge of the transformation of the acetyl-CoA and malonyl-CoA in their polyketide structure;
AfIC catalyzes the formation of the polyketide skeleton and the formation of norsoloric acid anthrone
(NAA), which is the substrate for the formation of NOR, and this transformation is catalyzed by HypC
(Yu et al. 2004b; Roze et al. 2013) (Figure 23). Then, NOR is transformed into averatin (AVN), and the
reaction is catalyzed by a norsolorinic acid ketoreductase encoded by the gene afID (or nor-1). In this
reaction, the enzyme converts the 1'-keto group of NOR into the 1'-hydroxyl group of AVN (Zhou and
Linz 1999) (Figure 23).

The next steps include the transformation of AVN in 5’hydroxyaverantin (HAVN); this
hydrolysis reaction is catalyzed by a cytochrome P-450 monooxygenase (cytP450) encoded by afiG
(avnA) (Yu et al. 2000a). Then, HAVN is transformed into 5’-oxoaverantin (OAVN) by the action of an
alcohol dehydrogenase encoded by aflH (adhA). OAVN is the substrate for averufin (AVN); this
reaction is catalyzed by a cyclase encoded by aflK (vbs) (Sakuno et al. 2005). The next reactions
include the conversion of AVN into versiconal hemiacetal acetate (VHA). Three genes are involved in
this two-step process. The first step is the transformation of AVN into hydroxyversicolorone (HVN)
(Yu et al. 2000b), which is carried out by a cytP450 encoded by the gene afll (avfA) that is supposed
to catalyze the ring formation. HVN is then used as a substrate for VHA. Two enzymes are involved in
this step, a cytP450 (cyclization) and a monooxygenase (transformation by a Baeyer-Villiger reaction),

encoded by aflV (cypX) and aflW (moxY), respectively (Wen et al. 2005; Yu et al. 2004a). Then,
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versiconal hemiacetal acetate is transformed into versiconal (VAL) by an esterase encoded by afl/
(estA); this is a reaction in both directions. Another gene that interacts in this reaction is the
aforementioned aflK, which encodes a cyclase, and transforms versiconal (VAL) in versicolorin B
(VERB) (Yu et al. 2004b; Ren et al. 2017). The transformation of VERB to versicolorin A (VERA) is
carried out by a cytP450 encoded by afiL (verB). Formation of VERA and VERB are important steps in
the production of B and G aflatoxins (Yabe et al 1991) (Figure 23).

The conversion of VERA into demethylsterigmatocystin (DMST) is encoded by 4 genes: i) afiM
(ver-1) encodes a ketoreductase (Hong et al. 2013); ii) afIN (verA) encodes a cytP450 whose role is
unknown, but it is suggested that it can be linked to the formation of an intermediate and the
formation of sterigmatocystin (Yu et al. 2004b; Cary et al. 2006); iii) aflY (hypA) seems to play a role
in two hypothetical intermediate structures between VERA and DMST, catalyzed by a Baeyer-Villiger
reaction (Ehrlich et al. 2005; Cary et al. 2006); iv) and afIX (ordB) encodes an oxido-reductase that
catalyzes an oxidative decarboxylation and a ring-closure using a Baeyer-Villiger intermediate that
results from AflY-catalyzed oxidation (Cary et al. 2006; Ehrlich 2009). Demethylsterigmatocystin is the
substrate for O-methylsterigmatocystin (OMST) and two genes are involved in this process, aflO
(omtB) and aflP (omtA). Both codes for O-methyltransferases, and the reaction catalyzed by AfIP
(OmtA) is reversible (Caceres 2016) (Figure 23).

The transformation of demethylsterigmatocystin into O-methylsterigmatocystin involves 4
genes: aflQ (ordA), hypB (hypB2), aflE and hypE, the functions of the first two were elucidated. AflQ
encodes a cytP450 monooxygenase that is important for oxidation of the A-ring of OMST and leads
to the AFB1 precursor, 11-hydroxyOMST (HOMST). HypB encodes an oxidase, linked with the
conversion of HOMST into a 370 Da 7-ring lactone (Ehrlich 2009) (Figure 23).
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Figure 23. Biosynthetic pathway of aflatoxin in Aspergillus flavus (modified from Yu et al. 2004).

> Aflatoxins

As aforementioned, aflatoxins were isolated and characterized for the first time after being

identified as the cause of turkey X syndrome, an acute aflatoxicosis outbreak that killed over 100,000

poultry in England in the 60s’. Poultry were intoxicated by eating Brazilian peanut (Arachis hypogaea)
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cake contaminated with Aspergillus flavus (Blount 1961). Further studies based on the
symptomatology suggested that CPA was also involved (Chang et al. 2009a). AFs are mainly produced
by species of the Flavi section, however some species of Aspergillus section Ochraceorosei (i.e. A.
ochraceoroseus and A. rambellii) and A. section Nidulantes (i.e. A. astellatus) are also producers
(Varga et al. 2009). The role of AFs is not fully understood, however, they do not seem to be essential
for the development of the fungus. Assumptions of AF functionality include the removal of excess
carbon in carbon-rich substrates, chemical signals between species, compounds linked to some
development processes, protection against soil microbial and insect competitors, and being a
vestigial trait that has survived through gene clusters and horizontal gene transfer mechanisms.
Conversely, they do not appear to have phytotoxic functions (Ehrlich et al. 2004).

Aflatoxins are derivatives of difuranocoumarin formed by two furans and one coumarin ring
synthesized by a polyketide pathway. This family of secondary metabolites includes around 20
compounds (e.g. AFB1, AFB2, AFG1, AFG2, AFM1, P1, Q1, B2a, G2a, D1, B3) (Ashiq et al. 2014). This
group of mycotoxins is known to be the most dangerous of the mycotoxins due to their carcinogenic,
teratogenic and mutagenic effects on vertebrates. The most studied for their potential adverse
effects are AFB1, AFB2, AFG1, and AFG2 (Figure 24), which are produced by fungi while the other
compounds are the result of biotransformation processes (Groopman et al. 2008). In fact, AFB1 is the
most potent naturally occurring chemical liver carcinogen known. Mixtures of naturally occurring
aflatoxins have been classified as a Group 1 human carcinogens by the International Agency Research
on Cancer (IARC) and have demonstrated carcinogenicity in many animal species, including rodents,
nonhuman primates, and fish (IARC 1993; Groopman et al. 2008). B and G aflatoxins have been
named based on their fluorescent characteristics under longwave ultraviolet light (A=365 nm), AFBs
have a blue fluorescence, while AFGs have a green fluorescence, in addition to having an extra
oxygen atom in the A-ring (Ehrlich t al. 2008, Abbas et al. 2009). The absence of AFG in some species,
like A. flavus, is due to deletion in the afIF (norB) — aflU (cypA) region, which is linked to the AFG
promoter, and the expression of afly (nadA) gene (Ehrlich et al. 2008; Chang and Ehrlich 2010). AfIF
encodes an aryl alcohol dehydrogenase, AfIU encodes a cyt P450 monooxygenase and nadA encodes
a reductase (Ehrlich et al. 2004; 2008). The inability to produce AFG is suggested to have occurred
several times in the group (Ehrlich and Yu 2010). In the Flavi section, the AFB and AFG producing
species have the same orientation for this cluster and have similar genomic distances (A. bombycis =
68.1 kb, A. parasiticus = 68.3 kb and A. nomius = 68.4 kb) (Moore et al. 2016). AFB2 and AFG2 are the
dihydro-derivatives of the parent compounds AFB1 and AFG1 (Pitt and Tomaska 2001).



INTRODUCTION

Figure 24. Aflatoxin structure

Once AFs have contaminated staples, toxins are hard to remove because of their chemical
conformation; their denaturation temperature is above 200° C (IARC 2002), they are liposoluble,
therefore soluble in polar solvents like methanol and dimethyl sulfoxide, and slightly soluble in water
(10-20 mg/L) (Jalili 2015).

Effects of aflatoxins depend on the doses and time exposure and on the characteristics of the
organism that ingest them (species, gender, age, tolerance and health conditions). For instance,
sheep, rats and dogs are more sensitive than monkeys, chicken, mice and humans (Bbosa et al.,
2013). Acute exposure can cause jaundice, vomiting, hemorrhages, abdominal pain, acute liver
failure, problems with absorption of nutrients, and can be lethal (IARC 2015). Outbreaks in India
(during the 70s) and in Kenya (2004) caused the death of 100 and 125 people, respectively (Lewis et
al. 2005; Azziz-Baumagarner et al. 2005). Chronic exposure is associated to high risk of
hepatocarcinoma, immunosuppression, teratogenic and mutagenic effects, reduction in nutrient
absorption , child stunting, effects in the endocrinal system and liver failure (Stack and Carlson 2003;
Turner et al. 2005; Bbosa et al. 2013). Teratogenic effects occur during pregnancy, AFs are
transferred into the placenta, causing congenital malformations of the fetus, and can also lead to a
high risk of childhood cancer (Wangikar et al. 2007). In world regions where incidence of hepatitis B
is high and where AFs contaminate food and feed, hepatocarcinoma is more common, suggesting a
synergistic association between the two (Liu and Wu 2010).

The biotransformation of AFs occurs mainly in the liver. However, the most studies pathways
concern those related to AFB1, as this aflatoxin is the most frequent and dangerous (Figure 25). In
general, biotransformation is carried out by different cytP450s (Wild and Gong 2009). AFB1 enters
the human body when contaminated products are ingested and then biotransformed. Once AFB1

reaches the intestine, it is absorbed by the intestinal cells and from there it reaches the blood and
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reaches the liver. In the liver, AFB1 is metabolized by cytP450s (in particular CYP3A4 and CYP1A2) to
an unstable intermediate compound, AFB1-ex0-8,9-epoxide (Wu et al. 2013). The molecule AFB1-
exo-8,9-epoxide is likely to form covalent bonds with different cellular components such as proteins
to form AFBl-albumin and other protein adducts. AFBl-exo-8,9-epoxide also binds with DNA
guanines to the N’position of the p53 gene, codon 249, which results in a transversion GC>TA,
forming AFB1-guanine adducts that lead to more than 60% of AFB1- linked hepatocarcinoma (Hsu et
al. 1991; Bennet and Klich 2003; Groopman et al. 2008; Xia et al. 2010; Bbosa et al. 2013). Another
compound formed by the biotransformation of AFB1 is AFM1, which is sometimes bioaccumulated in
lipophylic tissues of vertebrates and can be excreted by different fluids such as urine, bile, feces and
the most important milk from which it takes its name. This AF is also heat resistant, so it cannot be
eliminated by pasteurization or other food processing (Vidal et al. 2013). It has been suggested that
the cytP450 involved and the adducts formed differ according to the species that has digested the
AFs (Bbosa et al. 2013).
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Figure 25. Biotransformation pathways of AFB1. AFB1, when ingested by humans, is metabolized by

cytochrome P450 enzymes to its reactive form, AFB1-8,9-epoxide (AFB1-epoxide). Then, AFB1-epoxide forms
covalent bonds with DNA strands, forming AFB1-DNA adducts (AFB1-N7-Gua adduct and AFB1-FAPy adduct)

(reprinted from Xia et al. 2013).
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» Sterigmatocystin (ST)

Sterigmatocystin is regarded as an emerging mycotoxin and is synthesized by several
Aspergillus (e.g. A. flavus, A. parasiticus, A. togoensis, A. nidulans, A. versicolor, A. ochraceoroseus),
Penicillium, Bipolaris and Chaetomium fungi. This mycotoxin is one of the last precursors of aflatoxin
and is synthesized via the AF pathway. In some non-AF producing species such as A. nidulans, ST is
the last product and the cluster has fewer genes (Gruber-Dorninger et al. 2017; Bertuzzi et al. 2017).
This mycotoxin is prevalent in the environment (Jaksi¢ et al. 2012). It is suggested that the ST cluster
was transferred horizontally and evolved independently in different groups of fungi (Rank et al.
2011). In A. nidulans, the ST cluster has 20 genes that are homologous to AF genes, but some of the
open reading frames (ORFs) in A. nidulans cluster (e.g. ST and STD) have not been found in the AF
cluster (Ehrlich et al. 2005). Generally, the homologous genes in the AF and ST clusters have similar
lengths and rarely differ in number of introns (Yu et al. 2004a).

Sterigmatocystin has been recognized as potentially carcinogenic, mutagenic and teratogenic
in animals and was classed as group 2B carcinogen (possibly carcinogen for humans) (IARC 2013;
Bertuzzi et al. 2017). As well as AFs, this compound is a polyketide and its toxic effect is linked to its
furofuran ring structure that forms DNA adducts after metabolic activation to an epoxide (Gruber-
Dorninger et al. 2016) (Figure 26). The role of this metabolite is unknown, yet it may have synergistic
effects with other toxic secondary metabolites. ST has active effects against fungivorous insects,
probably provides chemical protection for conidia and sclerotia. ST biosynthesis is related to

conidiation, so it can play a role in survival fitness (Rank et al. 2011).

Figure 26. Sterigmatocystin structure

It is suggested that Flavi section species are weak producers of sterigmatocystin because
most of it is biotransformed into AFs. The main producers of ST are the non-aflatoxigenic species, in
particular A. nidulans and A. versicolor as they do not produce AFs (Varga et al. 2003; Bertuzzi et al.

2017).
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The biosynthetic pathway includes the genes previously mentioned of the AF pathway. The
fluG and fIbA genes regulate asexual development and ST production. fluG acts upstream of fIbA and
appears to be involved in the production of extracellular low-molecular-weight diffusible factors that

activate conidiation and ST production (Calvo et al. 2002).

» Versicolorin A and B (VerA and VerB)

A and B versicolorins are part of the AF and ST biosynthetic pathways (Figure 23 and 27).
These compounds can be present in mold particles and conidia and can be taken by the respiratory
system. Cytotoxic and genotoxic effects of verA and verB were tested in pulmonary A549 cell line and
have shown positive effects, ICso of 109 + 3.5 uM and 172 + 4 uM, respectively. However, their
effects were 10 — to 20 times and 30- to 50 times less toxic than AFs and ST, respectively (Jaksic¢ et al.
2012). It would be interesting to check the concentrations of these compounds in natural

environments because they are metabolized to AFs and ST, so they effects can be less strong.

Figure 27. Versicolorin A and versicolorin B structures. Left = VerA and right = VerB.

» Cyclopiazonic Acid (CPA)

Cyclopiazonic acid is an indole-tetramic acid compound, synthesized by PKS-NRPS enzymes
(Chang et al. 2009b). CPA is produced by species of Penicillium, Aspergillus section Flavi, A. section
Versicolores and A. section Fumigati. Amongst the principal producer are P. camembertii, P.
chrysogenum, P. verrucosum, A. flavus, A. minisclerotigenes, A. oryzae, A. parvisclerotigenus, A.
pseudocaelatus, A. pseudotamarii, A. tamarii and A. bertholletius (Varga et al. 2015). CPA was first
identified in Penicillium cyclopium, but it is not known how the cluster was inherited in both genera,
anyway horizontal gene transfer mechanisms are not discarded (Moore et al. 2016). Its main effect is
the inhibition of the calcium-dependent ATPase in the sarcoplasmic reticulum, leading to increased

muscle contractions. Its effects vary on different vertebrates. In rodents, it could cause liver, kidney,
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pancreatic, spleen and heart damage. In poultry, it could cause ulcerative proventriculitis, mucosal
necrosis and lead to a significant mortality rate, and in mammals, dogs are more sensitive than pigs,
and the two species are more sensitive than other animals. In addition, it is suggested that it could be
involved in the ‘kodo poisoning’, which occurred in India when contaminated kodo millet was
ingested (Vaamonde et al. 2006, Chang et al. 2009a). Moreover, in some species such as poultry and

pigs, CPA has additive effects with AFs and OTA, respectively (Chang et al. 2009a) (Figure 28).

Figure 28. Cyclopiazonic acid structure

The function of CPA is not known, but it might play a role in niche adaptation, providing an
advantage in fungus fitness under specific environmental conditions (Georgianna et al. 2010), or it
can act as sequestering agent of Fe® because it is an excellent chelator. CPA might have partially
fulfilled the function of ion-chelation before siderophore molecules were incorporated in the fungus
genome. In A. flavus, sidC and sidT (msf2), which encode a siderophore and a siderochrome-iron
transporter, are settled in the same subtelomeric region than the CPA gene cluster, yet they are
located at the terminus of the chromosome 3, suggesting that they were incorporated later (Chang
et al. 2009a).

In Aspergillus flavus and A. oryzae, CPA is synthesized by the cluster 55, which is located in the
subtelomeric region of chromosome 3, close to the AF cluster (Chang et al. 2005; Tominaga et al.
2006). On the other hand, in A. bombycis, this cluster is settled in a genomic region different from
that of the AF cluster and it has some deletions, such as a deletion in the 11.7-kb pks-nrps gene at
position 954, which results in a frameshift stop codon at position 1096, stopping the translation of
3541 amino acids and thus the lack of production of CPA (Moore et al. 2016).

The CPA biosynthetic cluster contains three essential genes, identified in the genome of A.
flavus and A. oryzae (Figure 29). CPA precursors include a tryptophan residue, two units of acetic acid

and an isoprenoid moiety (dimethylallyl diphosphate—DMAPP) in a three-enzyme biochemical
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pathway. Two stable intermediates are produced in the synthesis of CPA: cyclo-acetoacetyl-L-
tryptophan (cAATrp) and B-cyclopiazonic acid (B-CPA), by the action of Cpa$S, CpaD and CpaO, which
form an hybrid two-module polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS). Cpa$S
(or CpaA), catalyzes the formation of the tetramic acid cyclo-acetoacetyl-L-tryptophan (cAATrp). It is
prenylated by the prenyltransferase CpaD (or dmaT), producing a B-CPA, which is the ultimate
tricyclic precursor of a-CPA. The conversion of B- to a-CPA is catalyzed by a cyclo-oxidase CpaO (or
maoA) in a redox reaction forming two rings (ring C and D) (Uka et al. 2017). Gaps in the CPA cluster
have been identified, and depending on the size of the gap differences, the synthesis of this
mycotoxin can be altered. For instance, the non-toxigenic strains of A. flavus, NRRL 21882 and NRRL

35739, lack the CPA cluster.

¢

cpaA cpaD cpaO

2kb

Figure 29. Cyclopiazonic acid cluster. Arrows represent the gene position and transcription orientation

(modified from Tokuoka et al. 2015)

» Kojic acid (KA)

Kojic acid is a beneficial secondary metabolite produced by the species Acetobacter,
Penicillium and Aspergillus, including several species in the Flavi section, but the main producers are
A. oryzae, A. sojae and A. tamarii (the three species are used in biotechnology processes) (Burdock et
al. 2001; Terabayashi et al. 2010) (Figure 30). This metabolite is used in the production of several
food processes including miso (soybean paste), shoyu (soy sauce) and fermented beverages such as
sake, amazake, shouchu and mirin (mostly Asian products) during fermentation processes. KA is used
for its antioxidant properties in food processing for example in beef, fried bacon and fruits to prevent
the formation of warmed-over flavor, nitrosopyrrolidine production and fruit oxidation, respectively.
It has also been used as starting material for the synthesis of the food enhancers: maltol and ethyl
maltol. In the cosmetic industry, it is used as a skin-lightening agent, as KA is a copper-sequestrating
agent; it inhibits the activation of tyrosinase and thus inhibits melanine production; additionally, KA
has UV protective properties. Finally, KA has been used as an antibiotic and pesticide (Burdock et al.

2001; Bentley 2006; Terabayashi et al. 2010; Sanchez et al. 2012). Toxicological studies suggested
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that it is a safe compound for vertebrates because it has no acute toxic effects, is not mutagenetic,
and although chronic exposure tests have shown a tendency to affect pituitary function, these effects

were easily reversible and not linked to a genotoxic pathway (Burdock et al. 2001; Bentley 2006).

OH

HO
O

Figure 30. Kojic acid structure

Although KA has been known for over a century, its biosynthesis is not fully understood.
During the last decade, some of the genes in A. oryzae have been identified. The cluster is located on
the chromosome 5, in the genomic region between A0090113000132 and A0O090113000145 that
includes approximately 14 genes. Three genes have been identified and tested to play a role in KA
synthesis, one gene (kojR or AO090113000137) encoding a transcription factor, one gene (kojA or
A0090113000136) encoding an enzyme and one gene (kojA or AO090113000136) encoding a
transporter (kojT or AO090113000138). kojR encodes a fungal-specific Zn(ll),Cys transcription factor
located between kojA (upstream 743 bp) and kojT (downstream 383 bp). The experiments have
shown that KojR regulates the transcription of kojA and kojT (Terabayashi et al. 2010; Yamada et al.
2014) (Figure 31). It is postulated that kojR is expressed at low levels, causing an accumulation of
kojA and kojT transcripts, which leads to the synthesis of KA. When KA synthesis reaches a threshold,
it induces a higher production of kojA and kojT, which increases the synthesis of KA (Maraui et al.

2010)
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Figure 31. Schematic diagram showing the genes in the kojic acid cluster. KojR (transcription factor) activates

one gene (KojA) encoding an enzyme and one gene (KojT) encoding a transporter (reprinted from Terabayashi

et al. 2010).

> Aflatrem

This mycotoxin belongs to the indole terpene family and is classified as a potent tremorgenic
compound that causes neurological disorders. The mechanism by which aflatrem exerts its effects in
mammals is unknown, however it appears that this could be related to interaction with receptors
and interference with the release of neurotransmitters in the central and peripheral nervous systems
(Zhang et al. 2004).

Studies in A. flavus and A. oryzae have elucidated the biosynthesis of aflatrem, two clusters
are in charge: cluster 32 (chromosome 7) and cluster 15 (chromosome 5). Cluster 32 loci (ATM1) is
located telomere proximal and contains three genes, atmG, atmC, and atmM, while cluster 15 loci
(ATM2) is located telomere distal and contains five genes, atmD, atmQ, atmB, atmA, and atmP
(Nicholson et al. 2009). The backbone enzyme for cluster 15 is a dimethylallyl tryptophan synthase,
whereas there is no backbone for cluster 32 (Dolezal et al. 2013). One of the regulators of this
mycotoxin is VeA and mutants for this gene no longer produce the mycotoxin, besides, exposure to

light increases the synthesis of this mycotoxin (Duran et al. 2007) (Figures 32-33).
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Figure 32. Aflatrem clusters in Aspergillus flavus and A. oryzae. Physical maps of ATM1 and ATM2 loci and the
syntenic regions of other Aspergillus species. Arrows represent the gene position and transcription orientation
(modified from Nicholson et al. 2009).
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Figure 33. Biosynthetic pathway of aflatrem in Aspergillus flavus (modified from Nicholson et al. 2009)

» Aflavinine
This secondary metabolite is part of the indole-diterpenes, they have a cyclic diterpene

backbone in their structure derived from geranylgeranyl diphosphate and an indole group that is

derived from indole-3-glycerol phosphate (Figure 34). These compounds are associated with
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antiinsectan activities and can confer an ecological advantage to fungi that produce them. In fact,
aflavinines occur in the sclerotia of some species of A. section Flavi and they belong to the non-
paxilline indole-diterpenes (Saikia et al. 2008). It is suggested that the production of aflavinines and
their derivates is linked to sclerotia production (Gloer et al. 1980). Among the antiinsectan activity
are their effects ion the fungivorous beetle Carpophilus hemipterus and the Lepidoptera Helicoverpa
zea (Parker and Scott 2005). To date, the cluster responsible from its synthesis has not been

elucidated.

Figure 34. Aflavinine structure.

> Aflavarins

Aflavarins are bicoumarins and their synthesis is hypothesized to occur by the dimerization of
monomeric coumarins (Figure 35). Aflavarins are produced in sclerotia and can have antiinsectan and
actibacterial properties, but they are not cytotoxic; hence, they play an important ecological role in
producing species and contribute to their survival (TePaske et al. 1992, Cary et al. 2015b). Besides,
the cluster in charge of aflavarin biosynthesis is necessary for normal production of sclerotia (Cary et
al. 2015b). This polyketide secondary metabolite is found in some Aspergillus species, including

several species of A. section Flavi.

Figure 35. Aflavarin structure
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The cluster responsible for the production of these metabolites has recently been
characterized by Cary et al. (2015) in Aspergillus flavus and corresponds to the cluster 39. The cluster
is conserved in some species (e.g. A. oryzae, A. nidulans, A. niger, A. terreus, A. fumigatus, A.
fischerianus and A. clavatus), and homologs for the genes are found. There are at least four isomers

of aflavarin and its diversity is linked to the the C-C bridge (biaryl axis) (Figure 36).
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Figure 36. Comparison of cluster 39 among Aspergillus species. The scheme shows the cluster 39 in A. flavus
NRRL3357 (above the arrows the names of genes encoding each enzyme), and compares it with others species

of the genus, showing the level of conserved genes (reprinted from Cary et al. 2015).

» Tenuazonic Acid (TeA)

Tenuazonic acid is a tetramic acid derivative mainly synthesized by species of Alternaria
followed by Phoma sorghina and Magnaporthe oryzae and rarely by Aspergillus nomius, A. caelatus
and A. bertholletius of Flavi section (Varga et al. 2011; Taniwaki et al. 2012; Gruber-Dorninger et al.
2016). This mycotoxin is non-mutagenic and its effects might be associated with the interference of
protein biosynthesis. The effects of this mycotoxin include tremors, diarrhea, vomiting, and
hemorrhages; for some species like rodents it can be lethal. Toxicity experiments have shown that in

mice, rats, beagle dogs, chickens and monkeys, it has a certain degree of toxicity. A survey performed
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by EFSA (2011) has shown that TeA was present in 15% of the samples (n = 300) of European feed
and agricultural commodities at concentrations of about 500 and 4310 pg/kg, and in feed and feed
raw materials in 65% of the samples (n = 83) at median and maximum concentrations of 68 and 1980
ug/kg, respectively. The product that presented the higher levels of TeA (up to 1200 pg/kg) was
Sorghum-based infant food. EFSA (2011) concluded that TeA is unlikely to be of human health
concern, but more recent studies have nonetheless suggested that because of the high doses in
Sorghum-based infant food, TeA can pose health risks, so further experiments are needed. In
addition, more experiments are needed to confirm that TeA is not a risk for poultry (chickens)

(Gruber-Dorninger et al. 2016) (Figure 37).

Figure 37. Tenuazonic acid structure

» Ochratoxin A (OTA)

Ochratoxins are mycotoxins produced by Aspergillus and Penicillium species. It was first
described in A. ochraceus, and later found in P. verrucosum, P. nordicum and in the Nigri and Flavi
sections of subgenus Circumdati and in the Flavi section it is produced by A. alliaceus clade (Varga et
al. 2015). Ochratoxins are 3,4-dihydromethylisocoumarin derivatives linked with an amide bond to
the amino group of L-phenylalanine (Dirheimer and Creppy 1991, Fungaro and Sartori 2009) (Figure
38). The staples that are contaminated by this mycotoxin include cereals, spices, coffee, cocoa and
grape derived products. Like other mycotoxins, OTA is very stable and very little degradation occurs
during food processing such as cooking, washing, and fermenting, therefore, it is found in staples

(Fungaro and Sartori 2009).



INTRODUCTION

“1cH
Cl

Figure 38. Ochratoxin A structure

Ochratoxin A is known for nephrotoxic, immunosuppressive, teratogenic and carcinogenic
effects. Toxicity of OTA is caused by the lactone moiety, which has a structure similar to that of tRNA
phenylalanine synthetases, therefore it competes with it and binds to the substrate, thus
interrupting protein synthesis (Dirheimer and Creppy 1991). OTA appears to act as a competitive
inhibitor of ATPase, succinate dehydrogenase and cytochrome C oxidase in rat liver mitochondria. In
addition, OTA produces cellular damage through the formation of hydroxyl radical and lipid
peroxidation. Amongst the vertebrates sensitive to the toxin are poultry, rats and mice. Experiments
in vitro on human and dog kidney cells at concentrations of 100 nmol/L resulted in apoptosis.
Besides, OTA is associated with several nephropathies in humans and mammals (Hussein Brasel
2001; Varga et al. 2015). OTA was classified by IARC (2012) in 2b group. Although the mechanisms by
which OTA produces its carcinogenic and teratogenic effects is not totally clear, the formation of

DNA adducts and single strand breaks have been reported (Lihe et al. 2003).
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AIM OF THE STUDY

Aspergillus section Flavi is a group of molds that are at risk to health and the economy and
widespread worldwide, formed by species able to produce a plethora of secondary metabolites,
including several mycotoxins and beneficial compounds. The principal mycotoxins, which have
already been highlighted, are AFs, CPA, ST, aflatrems, OMST, versicolorins and OTA. To date, this
group comprises 26 described species, including a number of cryptic species. The majority of species
are generally isolated from tropical and subtropical regions worldwide; hence, these regions are
more affected by AFs and other mycotoxins, causing human health impacts and economically issues.
The presence of A. section Flavi is not only an issue for countries in these geographical regions, but
also a problem in temperate regions due to the importation of potentially contaminated raw
materials. In addition, climate change is leading to environmental shifts that might alter the home
range and frequency of Aspergillus section Flavi worldwide.

As aforementioned, the ability of species to produce secondary metabolites is in part species-
specific, hence the need for adequate characterization from a food safety perspective. The
characterization of species in the section is traditionally morphological, yet currently secondary
metabolite screening and the inclusion of molecular markers are also performed, which facilitates
identification. Molecular marker techniques used to characterize Flavi section include RFLPs, AFLPs,
RAPDs and phylogenetic inference. Regardless of these methods usefulness, to date there is no
agreement on which are the best molecular markers and combinations to distinguish between the
species in the Flavi section.

The general aim of this dissertation was to identify the molecular markers that allow
appropriate characterization at species level in Aspergillus section Flavi.

The first aim of the study was to develop a molecular tool based on phylogenetic inference to
identify species from Flavi section. To achieve this goal, a pool of 11 genes has been selected from
the literature. At the same time, a collection of fungi, including most of the section’s species, was
created. Genes were amplified when possible, and their potential applicability as molecular markers
using phylogenetic inference was tested using Maximum Likelihood and Bayesian Inference (Chapter
2).

The second aim was to test the effectiveness of the molecular tool with unidentified strains of
Aspergillus from the section. We collaborated with Dr. Catherine Brabet for a screening of the Flavi
section in the peanut production chain in the Cote d’lvoire. This collaboration allowed us to test the
molecular tool and identify the best combination of the different genes (Chapter 2.2 and 2.3). We
also collaborated in the project ARVALIS for screening maize samples in France, this work also

allowed to test the molecular tool (Chapter 2.4).
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2.1 CHAPITRE 1

Molecular Flavi Tool
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As mentioned before, species identification in Aspergillus can be challenging, and section Flavi
is one of the best examples of their complexity. Species have high inter and intra variability of traits,
making only one of identification methods (morphological, molecular characterization and secondary
metabolites profile characterization) futile (Taylor et al. 2000; Geiser et al. 2007). Conversely, the
development of molecular tools over the last two decades has allowed the development of new
techniques that are useful for species identification in Aspergillus, nevertheless a combination of

methods is recommended to achieve robust results (Geiser et al. 2007; Varga et al. 2011).

2.1.2 Polyphasic approach, ways of determining section Flavi species
» Species concept

There are several concepts of species, depending on the field the definition of a species is
slightly different (Table 1). However, several authors suggested that all these concepts had a main
core, and that the species concept should be based on it, and so the unified species concept was
born (De Queiroz 1998; 2005; 2007). Under this concept, a species is a lineage that has evolved
separately from other lineages, so it is not mandatory to be verified under the limits of other species
concepts, it does not need to be recognized for its phenotype, diagnose as monophyletic, nor

reproductively isolated, etc. (de Queiroz 2007).

Table 1. Species concepts (Reprinted from de Queiroz 2007)

CLASS OF SPECIES PROPERTY UPON WHICH IT IS BASED

DEFINITION

BIOLOGICAL Interbreeding (natural reproduction resulting in viable and fertile offspring)
Isolation Intrinsic reproductive isolation (absence of interbreeding between organisms

of different species based on intrinsic properties, as opposed to
geographic barriers)

Recognition Shared specific mate recognition or fertilization system
(mechanisms by which organisms of the same species, or their gametes,
recognize one another for mating and fertilization)

Ecological Same niche or adaptive zone (all components of the environment with
which the organisms interact)

PHYLOGENETIC Heterogeneous

Monophyletic Monophyly (consisting of an ancestor and all of its descendants;
commonly inferred from possession of shared derived character states)

Genealogical Exclusive coalescence of alleles (all alleles of a given gene are
descended from a common ancestral allele not shared with
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those of other species)
Diagnosable Form a diagnosable group (qualitative difference)

EVOLUTIONARY Form a diagnosable group (qualitative difference)/ Separation of lineages (intrinsic
or extrinsic)

PHENETIC Form a phenetic cluster (quantitative difference)

GENOTYPIC CLUSTER  Form a genotypic cluster (inferred from deficits of genetic
intermediates, e.g. heterozygotes)

Species classification in Aspergillus, and especially in section Flavi include differences in the
approach of the terms, nevertheless, it is possible to use the unified species concept to include all the
information obtained, hence, better acknowledging the relationships in the genus. There are two
main currents in species classification of section Flavi, one more conservative proposed by Cotty and
collaborators, and other more flexible, supported by Samson, Ehrlich, Frisvad, Pitt, Varga and
collaborators. The first one suggests that A. flavus clade and A. parasiticus clade are, each of them,
one species, and both species are plastic. Cotty and collaborators in some studies have accepted the
possibility of species complexes; however, they do not openly incorporate the recently described
species, especially for A. minisclerotigenes and A. parvisclerotigenus. These species are mainly
supported by the ITS gene, VCGs, and phenetic traits. From all of them, A. flavus is the more plastic
species, presenting strains with large and small sclerotia, and producers of B- and G- AFs. The more
lax current suggests that A. flavus, A. parasiticus and A. nomius are species complexes that enclose
cryptic species that are more feasible to be recognized by the combination of phenetic and
physiological traits, secondary metabolic compounds, and molecular markers. The idea of species
complex in section Flavi is increasingly been accepted as it is well supported by secondary metabolic
profiles and molecular data. With the acquisition of more information of gene expression and omics,

these cryptic species are better supported.

» Morphology and physiology

Conventional classification of the Aspergillus section Flavi includes several phenotypic traits,
which, when used together, allow most species to be grouped. This approach presents some
difficulties especially when cryptic species are present. In addition, phenotypic traits are variable and
depend on environmental conditions, such as temperature, nutrient availability, moisture,
competitors, microorganism communities, host, etc. The morphological traits include macro and

microscopic traits. For example, colony color and texture, arrangement of conidial heads (globose to
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radiate) and coloration in shades of yellow-green to brown; globose to subglobose or flask shapes
vesicles; conidia form, coloration and texture; uni- and biseriate sterigmata; dark sclerotia (Raper and
Fennell 1965; Varga et al. 2011). Other traits include ubiquinone systems, growth at different
temperatures, media color shifts due to metabolite production (AFPA and CREA media) (Varga et al.

2003; Rigo et al. 2002; Gongalves et al. 2012).

» Secondary metabolites

The secondary metabolic profile of a species comprises all the secondary metabolites that a
species can produce, including toxins, antibiotics, among others. Although, several species can
produce similar secondary metabolites, the secondary metabolic profile is species specific, working
like a fingerprint, and is helpful for species characterization in ascomycetes like Alternaria,
Aspergillus, Fusarium and Penicillium (Frisvad et al. 2008). However, some species present a highly
similar metabolic profile, especially those species that are closely related. Furthermore, the
expression of the genes encoding for secondary metabolites in fungi depends on abiotic and biotic
factors, triggering different genes. Some of the secondary metabolites frequent synthesized by
Aspergillus section Flavi are kojic acid, aspergillic acid, aflatoxin B (Samson et al. 2014). The
disadvantages of this approach includes the intra species variability (e.g. AffF-AflU region in A.
flavus), the development of the fungus (during different steps in their life different secondary
metabolites can be expressed), and the response to stimuli including environmental, like pH,
temperature, carbon and nitrogen sources, and stimuli derived from other organisms (Frisvad et al.

2008; Brakhage 2013).

> Molecular markers

The advantage of molecular markers over phenotypic markers (including those linked to
secondary metabolites) is that they are more stable. In addition, the development of biotechnology
and the development of biostatistics approaches and software facilitate the analyses, making them
quicker, less expensive and more robust (Mitchell 2010). The use of molecular markers has helped to
resolve taxonomic questions that have not been resolved by morphological and physiological
approaches (Perrone et al. 2004).

Molecular markers are defined as any region of the genome that could be identified, and must
be designed with the purpose of the study in mind, targeting the genomic regions that will be more
informative to accomplish it. Molecular markers include DNA, RNA, and amino acid sequences of

proteins. In fact, the design must consider the potential variability between gene sequences, a
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conserved marker will be preferred to determine higher taxonomic groups than the marker used at
population level (Taylor 2000; Aguileta et al. 2008; Mitchell 2010). In strains identification studies,
the use of markers that include noncoding regions, hence that lack selective pressure, are preferred.
Some uses of molecular markers include fingerprinting of allozymes of fungi with medical purposes,
electrophoretic karyotypes, DNA hybridization probes, PCR-based genotypes, endonuclease
restriction fragment length polymorphisms (Table 1) (Mitchell 2010).

Several molecular markers and techniques have been tested in an attempt to properly classify
the species in A. section Flavi, including RAPDs (random amplified polymorphic DNA), AFLPs
(amplified fragment length polymorphism), RFLPs (restriction fragment polymorphism), sequence
analyses of cytochrome b gene, ITS region, and analyses of the aflatoxin gene cluster. However, the
use of a single molecular marker has not been sufficient to solve the identification issues (Geiser et

al. 2007; Godet and Manaut 2010).

Table 2. Screening methods to determine fungal species (Reprinted from Mitchell, 2010)

APPLICATION
Strain identification, . Examples Aspergillus
lecul Phylogenetics,
eI Species identification section Flavi*
epidemiology, systematics
METHOD population genetics
Electrophoretic karyotype X
RFLP X X Somashekar et al. 2004
Southern hybridation X X Kumeda and Asao 1996
Massi et al. 2014;
RAPD, AFLP, PCR fingerprint X X
Viaro et al. 2017
Tran-Dinh et al. 2009
Microsatellites X X
Microarrays X X Guo et al. 2011
Pildain et al. 2008;
SNP, MLST, DNA sequencing X X X

Varga et al. 2011

*=There are only shown a couple of examples per method

» Phylogenetic inference

Nowadays, the use of molecular markers for phylogenetic inference is not only applied to
understand inter species relationships, it is also used to identify the relationships between genes, to
decipher evolutionary history at several levels (kingdoms, families, genera, species, populations,
cellular lineages, genes), and to compare and understand pathogens dynamics, metagenomic

regions, regulatory elements, and non-coding RNAs (Taylor et al. 2000; Ziheng and Rannala 2012).
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The use of molecular markers in fungi is controversial. Depending on the target group, some
markers could be more informative than others. However, markers can include genes that have
biases or are not good enough for unmasking relationships in certain groups (Aguileta et al. 2008;
Schimitt et al. 2009). For instance, in Aspergillus the most preferred molecular markers are ITS, 8-
tubulin and calmodulin genes, yet the first two have been reported to have problems in relationships
inference, particularly /TS (internal transcribed spacer located between RNA subunit genes) (Geiser
2007). Withal, the robustness of the analysis will increase when multiple independent loci lead to a
congruent answer (Taylor et al. 2000; Begerow et al. 2004; Townsend 2007), and the inclusion of
molecular markers have to take into account their plausibility for molecular inference (Aguileta et al.
2008).

The use of phylogenetic inference to identify species in the section Flavi was included as part
of the polyphasic approach. Generally, it includes one or more genes, which are mostly analyzed
independently or together. The inclusion of this technique has allowed addressing the complexity of
this group, and has reinforced the idea that species, such as A. parasiticus sensu lato and A. flavus
sensu lato corresponded to species complexes (Peterson 2008; Pildain et al. 2008; Varga et al. 2001;

Soares et al. 2012; Taniwaki et al. 2012).

2.1.3 Objective

To screen the species relationships in this group based on different markers, and subsequently,
identify a combination of several molecular markers that allows species delimitation and

classification in the section Flavi by phylogenetic inference.

2.1.4 Material and methods

Creating the database of Aspergillus section Flavi, “THE FLAVI TOOL”

GENES

For the present study, we chose twelve genes based on their function and their use in
phylogenetic studies on fungi, in addition, for some strains the region afIF-aflU was analyzed (Figure

1).
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GENES

FUNGIC CELL FUNCTION AFI.A’IDX.B BIOSYNTHETIC
benA Matl.2 aflF-aflu

cmdA ppga

RPB1 preA

mecm7 preB

amdS

Figure 1. Genes used during the study, and their main classification.

Fungal cell function genes

» Nuclear Ribosomal Internal Transcribed Spacer (/ITS):

This ribosomal region is universally used as bar coding gene for fungi. ITS is formed by a rRNA
cistron constituted of 18S, 5.8S, and 28S rRNA genes, that suffer post-transcriptional processes
resulting in the cleavage of the cistron by removing two internal transcribed spacers (White et al.
1990; Schoch et al. 2012). These loci are useful to infer relationships among fungi species, as they
have different segments with different resolution at different scales; ITS1 has a fast evolution rate,
5.8S is highly conserved and ITS2 displays a moderately rapid evolution rate (Nilsson et al. 2008).
Studies suggested that it is informative to delimit at genus level, and in some groups at species level
(Nilsson et al. 2008; Scorzetti et al. 2002). ITS is suggested to be useful to obtain an idea of genera
and species at community level (Buchan et al. 2002). However, the use of this gene as barcode for
Ascomycota is sometimes insufficient; it can present pleomorphisms and alignment difficulties
(Scorzetti et al. 2002; Nilsson et al. 2008; Seifert 2009). Furthermore, it has already been shown that
this marker is insufficient to discriminate at species level in some groups of fungi. In some sections of
Aspergillus and Penicillium it is not suitable because of difficulties in the alignment and/or the regions
are highly conserved, indeed, the use of this markers is advise to use while other markers are also

present (not necessarily in a multilocus dataset) (Varga et al. 2003; Geiser et al. 2007; Seifert 2009).
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In the specific case of A. section Flavi it is informative for certain taxa, yet its ability to be useful at

species level is questionable (Rigo et al. 2002).

» B-tubulin (benA)

Tubulins are crucial proteins for cells, they are an important component of the cytoskeleton,
and essential for several processes such as chromosome segregation, cell division, cell shape,
intracellular transport, and flagellar or ciliar movement (Einax and Voigt 2013). The family of tubulin
proteins contains seven groups, a-tubulin and B-tubulin being the most frequent in Eukaryotes. B-
tubulin genes are useful for phylogenetic studies in Eukaryotes because they are easily amplified,
they have some highly conserved regions, especially at N-terminal ends, which share approximately
65-70% of their sequence (Glass and Donaldson 1995; Baldauf et al. 2000; Einax and Voigt 2003). On
the other hand, intron sequences are more variable, as they can vary in number and position, which
contributes to the variability of this gene, and enables the resolution of relationships at species level
in certain clades (Einax and Voigt 2003; Peterson 2008; Samson et al. 2014). The use of benA for
phylogenetic inference is currently widespread in different fungi taxa, and is generally accepted as a
good phylogenetic marker (Begerow et al. 2004; Soares et al. 2012). Conversely, some studies
suggest that the presence of orthologs of this gene can be an issue in some taxa (Begerow et al.
2004; Ziheng and Rannala 2012). The inclusion of this gene can improve the robustness of the

inference analysis (Schoch et al. 2012).

> Calmodulin (cmdA)

Calmodulin is an important intracellular Ca®* receptor among eukaryotes. This small acidic
protein complex has several functions, such as regulation of cell growth and cycle. It activates
phosphodiesterases, Ca?*-ATPase, protein kinases, and adenylate cyclase (Yasui et al. 1995). Similarly
to B-tubulin, calmodulin has been chosen as marker because it is easily amplified and it has
conserved and variable regions (Geiser et al 2000; Samson et al. 2014). The region works for most
Aspergillus groups as a reliable marker (Samson et al. 2014). The primers of calmodulin used in this
study contain approximately 580 bp, and includes introns 2, 3 and 4, and exons 2, 3, 4 and partial

exon 5 (Hong et al. 2006).

» Minichromosome maintenance protein (mcm?7):

The minichromosome maintenance protein encodes for essential proteins in the first steps of

eukaryotic replication (Raja et al. 2011). This gene is present as a single copy in the genome, giving it
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some advantages over other markers, such as B-tubulin or small ribosomal subunits 18S and 28S
(Schmitt et al. 2009; Raja et al. 2011). Schmitt et al. (2009) suggested that mcm?7 has characteristics
that make it a good gene marker for phylogenetic inference among fungi, at large and fine scale.
They tested this molecular marker across a wide range of unrelated taxa, resulting in good and
robust topologies, with good resolution power and branch support. In fungi, phylogentic studies
using this marker have showed that it is a suitable marker (Raja et al. 2011; Morgenstern et al. 2012;
Schoch et al. 2012; Tretter et al. 2013). Raja et al. (2012) suggested that, although mcm7 did not
always provide reliable relationships, it should be considered as useful marker for fungi, and

Ascomycota.

» RNA polymerase Il, largest subunit (rpb1)

RNA polymerase Il is in chart of transcribing all mMRNAs and several noncoding RNAs. Rpb1 has
a C-terminal domain (CTD), consisting of about 25 repeats of the heptamer sequence Tyr1-Ser2-Pro3-
Thr4-Ser5-Pro6-Ser7; of which five amino acids can be phosphorylated, and prolines can be in cis or
trans configurations (Suh et al. 2016). RNA polymerase genes are used as markers to understand
evolutionary relationships between several eukaryotic taxa, including plants, fungi and protists
(Cheney et al. 2004; Nickerson and Grouin 2004; James et al. 2006; Morgenstern et al. 2012). Among
its advantages as a marker are that rpb1 is present as a single copy in the genome (Stockinger et al.
2014), Rpb1 protein features include nine amino acid regions highly conserved among eukaryotes,
bacteria, and archaea, named regions A-I. In addition, it has different evolutionary rates, allowing
some studies at finer scale. For instance, the use of rpbl has facilitated the comprehension of the
evolution of arthropods, rhodophytes and protists (Nickerson and Grouin 2004). In fungi, its use can
facilitate the understanding of evolutionary relationships at different levels, like in Glomeromycota

(Stockinger et al. 2014) and Inocybe (Matheny et al. 2002).

» Acetamidase (amdS)

Certain Aspergillus can use acetamide as source of nitrogen thanks to the presence in their
genomes of the enzymes belonging to the acetemidase family. The search of these genes in
Aspergillus section Flavi arose because of their use in industrial processes (Katsuya et al. 1991). A.
oryzae was one of the first species of the genus where this gene was characterized (Katsuya et al.
1991). Later on, Geiser et al. (1998) used this gene to infer relationships among A. flavus strains. This
gene presents exons and introns, hence, it has conserved and variable regions that can be useful for

phylogenetic inference (Geiser et al. 1998; Gongcalves et al. 2012).
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Reproduction genes
» MAT genes

As aforementioned, sexual reproduction in fungi can be heterothallic, requiring fungi with
vegetative compatibility groups strains with opposite MAT loci, or homothallic, self-reproduction
where the fungus present the two MAT loci (Paoletti et al. 2007). It is suggested that besides of the
sexual reproduction, MAT loci are involved in several other cellular processes (Dyer and O’Gorman
2012). MAT loci are formed by two gene regions, called MAT1-1 and MAT1-2 in euascomycetes.
MAT1-1 encodes an a-domain transcription factor, and MAT1-2 encodes for a transcription factor
with a high-mobility group (HMG) domain (Dyer and Kiick 2017) (Figure 2). Some studies have tested
that MAT loci and their ratios in the section Flavi and have shown that the vast majority of fungi are
heterothallic (Geiser et al. 1998; Carbonne et al. 2007; Ramirez-Prado et al. 2008; Horn et al. 2011),
nevertheless it is not known if all species present both idiomorphs. These genes are not suitable for
phylogenetic inference per se, yet their analysis is interesting in order to increase the knowledge of

the species in the section.

> Pheromone precursor ppgA and pheromone receptors preA and preB

These genes have important roles in mating recognition. PpgA encodes for an a-pheromone
precursor that binds to PreB, whereas preA and preB encode a-pheromone and a-pheromone
receptors target by MAT, currently the gene that codes for the a-pheromone has not been identified
(Dyer et al. 2003; Dyer and O’Gorman 2012) (Figure 2). Although some studies have compared these
genes among different fungi taxa (Péggeler 2002; Dyer et al. 2003; Hoff et al. 2008), their use as
phylogenetic markers has not been performed.

Poggeler (2002) identified in A. fumigatus a type of gene that seemed to play a role as pro-a-
factor-like- pheromone precursor, ppgA, and suggested that it was involved in cell recognition and
mating in filamentous ascomycetes. Moreover, she identified that the polypeptide encoded by ppgA
had two identical repeats of a non-peptide hydrophilic pheromone sequence, and these regions were
flanked by maturation signals that can lead to cleavage, like a-factor precursors found in
Saccharomyces cerevisiae.

Poggeler (2002) also identified an ORF in A. fumigatus that had significant similarity with
pheromone receptors of other filamentous ascomycetes, preA, whose protein sequence blasted with
some Ascomycota and Basidiomycota pheromone receptors. In the same study, she identified

another region similar to an a-factor receptor, preB. Although sequences are not identical, their
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structures resemble and belong to the 7-transmembrane-type receptor family. Later on, Hoff et al.

(2008) identified similar genes in Penicilium chrysogenum.
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Figure 2. Scheme of reproduction genes. MAT1loci, target genes of MAT1-1, and encoded transcription factors
inferred from functional genomics experiments in Penicillium chrysogenum. The scheme shows that MAT1-1

regulates several functions (reprinted from Dyer and Kiick 2017).

Genes linked to aflatoxin pathway
> aflp

AfIP encodes an O-methyltransferase, an enzyme that is expressed only in suitable conditions
for aflatoxin production and catalyzes the transformation of sterimatocystin into O-
methylsterigmatocystin (Yu et al. 1995; Scherm et al. 2005). It is suggested that this enzyme can also
be involved in conidiation (Lee et al. 2002). The presence of this gene has been investigated in some

aflatoxin producing species (Yabe et al. 1989; Yu et al. 1993; 1995). In fact, a comparison between A.
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parasiticus and A. flavus suggested that aflP is similar in both species, sharing the same number of
exons and introns, and at the same positions, as well as similar nucleotides and amino acidic
sequences (Yu et al. 1995). Despite, some studies linking the function of the gene and its presence in
section Flavi species have been performed, its use as a phylogenetic marker is not common (Geiser et
al. 1998; Gongalves et al. 2012). This gene can be interesting for phylogenetic inference in A. section

Flavi because it is linked with aflatoxin production.

» aflF-aflU region

Like aflP gene, the comparison of AfIF-aflU amongst species of A. section Flavi can be
interesting as a marker to understand evolution of aflatoxins, especially AFGs. This section can be
amplified and compared between species that produce these aflatoxins. In addition, for A. flavus it is
an interesting genomic region to address question at population level. In several species of
Aspergillus section Flavi, aflF and aflU are close together, aflF encodes for an aryl alcohol
dehydrogenase and aflU encodes for a cytochrome P450 monooxygenase. Ehrlich et al. (2008)
suggested that aflF may catalyze the biosynthesis step after the rearrangement and decarboxylation
of the NadA-reduced 386 Da intermediate. As mentioned before, A. flavus is incapable to produce G-
aflatoxins because it presents a deletion of 1-1.5 kb, this gaps occurs nearby 0.4 to 0.6 kb from the

translational stop codon of afiF (Ehrlich et al. 2004) (Figure 3).
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Figure 3. Scheme of the aflF-aflU genomic region in different strains of Aspergillus section Flavi. Arrows shows
the coding region and the transcription direction of afiF and af/U. Gaps are present in all samples. Asterisks
show small gaps in G aflatoxin producers: A. nomius (13 bp), A. parasiticus (11 bp) and strain BNOOSR (4 bp).

Aspergillus flavus and oryzae have different gaps that inhibits the synthesis of aflatoxins G. A. flavus AF70 and

A. oryzae ATCC46264: Gap = 1516 bp; Strain AF13: gaps = 32 and 854 bp. Small arrows = position of
oligonucleotide primers AP1729 and AP3551 (reprinted from Ehrlich et al. 2004).
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ISOLATES
» Fungal Strains and Culture Conditions

A collection of Aspergillus section Flavi strains that includes at least one isolate of almost all
species of the section are kept at Toxalim, INRA under controlled conditions (on Malt Extract Agar
slope cultures at 4 °C). The strains used in this study and the isolates available in GenBank database
that were included for constructing phylogenetic trees are listed in the Annexes and tables of
chapters 2.2, 2.3 and 2.4.

In addition, some isolates were included in the analyses to test the application of the tool and
its robustness. Seventy-one strains from Cote d’lvoire were obtained from a collaboration with
CIRAD, and fifteen isolates from a study linked to the project ARVALIS (see Chapter 2.2 and Chapter
2.4).

» DNA Extraction, Amplification and Sequencing

The DNA extraction protocol, and the amplification and sequencing conditions and protocols

are described on chapters 2.2 and 2.3 (Figure 4).

PHYLOGENETIC APPROACH: Alignment, Model Selection and Phylogenetic Inference
» Alignment and Model selection

We performed several analyses, each one contained different genes and gene mixes, to test
the best combination with most robust results (Figure 4).

We used BioEdit (http://www.mbio.ncsu.edu/bioedit/bioedit.html) to assemble, align and trim
the databases for each gene, and to trim concatenated datasets. The alignments were performed
using ClustalW algorithm in this program, and checked with the naked eye to avoid errors.
Concatenated dataset were performed using Mesquite v3.2 (Maddison and Maddison 2017).

To perform phylogenetic analyses, the determination of the best-fit model of nucleotide or
amino acid substitution for each gene or each partition is required. Models of evolutionary
substitution are based on the likelihood that a nucleotide or an amino acid changed into another
one, resulting in a set of probabilistic assumptions that are accepted over others. Choosing a
substitution model is problematic because assuming the wrong model would provide an evolutionary
scenario that does not fit the real relationships among set of sequences. Thus, leading to a topology
that does not correspond to the true evolutionary processes and that shows the wrong relationships

among sequences (Posada 2009).
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Figure 4. Phylogenetic inference process. The scheme shows all the steps and the software used.
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Another issue in phylogenetic inference is to choose between two analyzing approaches,
create a consensus from different single topologies or performing concatenated analyses. Consensus
analyses have the advantage that, when performed properly, they produce branching pattern with
high resolution, thus the topology provides a safe estimate of the phylogeny. It is easy to perform
evolutionary model analyses for each gene, but with this method polytomies can increase, because there
are not as many variation sites than in a concatenated matrix (Gadagkar et al. 200; Kubatko and Degnan
2007). Additionally, genes do not evolve at the same rates, or necessary present the same scenarios,
and one gene can lead to more incongruences between topologies (Ziheng and Rannala 2012). On the
other hand, the use of concatenated dataset can increase the number of variable sites, adding important
information to clarify relationships. However, one of the problems that rise while using concatenated
datasets is that different genes can be assumed to follow the same type of evolutionary model for
nucleotide variation, leading to misinterpretation of the data, and a poor inference of the
relationships (Gadagkar et al. 2005). Lanfear et al. (2016) partially solved this issue by providing
software that allows testing different partitions in a dataset, and including complex algorithms and
mathematical processes to improve the analyses. Nowadays, is also recommended to test for
coalescence, especially when various genes are used, and some test has been developed to verify if
data follows the parameters proposed by software (Degnan and Rosenberg 2009; Liu et al. 2009).

In the present study, depending on the purpose of the analysis and the amount of genes used,
one gene datasets and multilocus dataset were analyzed. To choose the best substitution model for
nucleotide evolution in single gene datasets we used jModelTest v2.1.6 (Darriba and Posada 2012),
and for concatenated datasets we used PartitionFinder v2.00 (Lanfear et al. 2016). jModelTest
analyses were run using three different criterion: Akaike Information Criterion corrected (AICc)
(Sugiura 1978), decision-theoretic performance-based approach (DT) (Minim et al. 2003) and
Bayesian Information Criterion (BIC) (Kass and Wasserman 1995). Conversely, the best-fit nucleotide
substitution model for concatenated dataset and partitioning scheme were calculated under BIC. To
search for the best scheme we used the “greedy” algorithm with branch lengths of alternative
partitions “linked”. The use of Bayesian Information Criterion increased over the last decade in the
phylogenetic field (Lanfear et al. 2016). This criterion gives an approximate solution to the natural log
of the Bayes factor, facilitating the analyses of large samples and nested competing hypotheses, and
usually chooses simpler models than AIC (Posada 2009). In general, each gene has been analyzed
alone and with a varying number of isolates (depending on the goal of each analysis). In some other

cases, different genes were concatenated to obtain results that were more robust.
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» Maximum Likelihood and Bayesian Inference
Maximum Likelihood

Maximum likelihood (ML) inference is one of the most widely used statistical methods for
phylogenetic inference. This method is based on a priori conditions (evolutionary models), that are
used as baseline for further probability analysis. ML searches for the best evolutionary model that
has the highest likelihood with the given data, and also finds the best tree. Calculations are based on
the probability that the pattern of variation of a site occurs given a particular substitution process, a
particular tree and the overall observed base frequencies. The likelihoods for all the sites are
multiplied to provide an overall likelihood. A good tree should have as many sites with high
likelihoods, so the product of likelihoods is high (Brinkman and Leipe 2001; Ziheng and Rannala
2012).

Bayesian Inference (BI)

This statistical method has become more popular over the last two decades. The main
difference between Bayesian inference (Bl) and ML is that for the first the parameters in the
evolutionary model are considered random variables, whereas for the latest they are considered
fixed constants. In Bl the parameters are assigned a prior distribution, which is combined with the
likelihood for the given data to calculate posterior distribution. The strength of the method lies in the
Markov Chain Monte-Carlo (MCMC) algorithms, which enables independent branch lengths on

unrooted trees (Ziheng and Rannala 2012).

Advantages and Disadvantages of Both Methods

The two inference methods are based on evolutionary models, hence, it is important to choose
and adequate substitution model. Likewise, both require complex calculations that are
computationally demanding. Nevertheless, both methods have advantages over the maximum
parsimony methods, making them widely used nowadays for systematics and phylogenetic analyses
(Ziheng and Rannala 2012).

These methods are based on maximum likelihood, however, the way in which statistic are
inferred varies from one method to the other. For example, Bayesian statistics answers biological
questions directly and their results are easy to interpret. Posterior probability of a tree is interpreted
as the probability that the tree is correct for the data under a provided model, yet sometimes it is

inflated. In the case of likelihood analysis, concepts, such as the confidence interval, requires a basic
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knowledge of statistics for a proper interpretation. The confidence interval for the tree widely used

bootstrap method, which could be difficult to interpret (Ziheng and Rannala 2012)

Analyses

Once best nucleotide substitution model was chosen, we performed ML and BI statistical
methods to test the accuracy of our results, and to identify the best gene combination. ML analyses
were performed in MEGA v6.0.6 (Tamura et al. 2013) or in GARLI v2.01 (Zwickl 2006). Analyses in
MEGA 6.0.6 were performed using just one gene and when the model existed in the parameters.
GARLI analyses were performed following the manual. Four independent analyses were carried out,
two rounds were carried out following random starting tree, and two more following stepwise
starting tree. We compared the trees/InL scores, checked if they were similar, and then we chose to
run with the best tree/InL score. Boostrap was performed using 200 replicates, and Mesquite was
used to visualize the results.

For the Bayesian analyses, four independent runs were carried out for 107 generations, each
with four MCMC chains, and sampling every 500 generations. More generations were added if the p-
value was higher than 0.01, because significance was not achieved after finishing the analysis. We
confirmed, for each analysis that the average standard deviation of split frequencies between chains
approaches to values of < 0.01, and the potential scale factor reduction factor (PSRF) to 1. For all the
analyses, 25% were arbitrarily discarded as “burn-in” from the total number of trees per run. The
remaining trees were used to calculate posterior probabilities (PP) for each bipartition in a 50%
majority-rule consensus tree using Tracer v1.6 (Rambaut et al. 2014). Phylogenetic trees were

visualized and edited with FigTree v1.4.2 (Rambaut 2014).
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2.2 CHAPITRE 2

Biodiversity of Aspergillus isolates potentially
aflatoxigenic recovered from peanuts in Cote
d’lvoire
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2.2.1 BACKGROUND

The present study resulted from a collaboration between CIRAD and Toxalim. The goal was to
characterize at species level some strains from Flavi section isolated along the peanut paste
production chain at Korhogo region (Coéte d’lvoire). Some strains were already characterized using
the PCR-DDGE, yet some strains were not recognized using this technique. Additionally, the
confirmation of the results of PCR-DDGE was necessary. This collaboration enabled us to test the
“Phylogenetic Molecular Tool” developed. The phylogenetic inference analyses were performed
using ITS, benA and cmdA genes.

Risk of mycotoxin contamination is a global issue; however, some regions are more exposed to
them, like sub-Saharan Africa, Latin America, and Asia. In fact, it is estimated that in these regions ca
500 million people are at high mortality and morbidity risk (IARC 2015).

In Africa, the presence of fungi belonging to section Flavi is frequent. The screening reports of
mycotoxins are commonly positive for aflatoxins. Reasons for their presence in staples include
suitable environmental variables, staples inadequate storage and transport conditions, and the
unawareness of mycotoxin risk (Shephard 2003, Ezekiel et al. 2013; Wagacha and Muthomi 2008). In
some African regions, aflatoxin contamination is a main public health problem, affecting people of all
ages, including in utero infants (Lewis et al. 2005, Shephard 2008, Streit 2013). Actually, over the last
decades, several aflatoxicosis outbreaks were reported, and were caused by the consumption of
highly contaminated staples (Lewis et al. 2005; Azziz-Baumagarner et al. 2005). Moreover, aflatoxin
contamination impacts African countries economy, since exportation of raw materials has to suit
international mycotoxin policies (PACA 2013).

Peanut is an important staple in African countries, is nutritionally rich, and an important
economic source. Unfortunately, it is a host for several species from section Flavi, including
aflatoxinegic ones (Matumba et al. 2014, IARC 2015). The frequent presence of G1 and G2 aflatoxins
(AFG1 and AFG2) in peanut products (Kamika et al. 2014, Matumba et al. 2014; 2015) suggests that
Aspergillus flavus is not the only species contaminating this kind of commodities, making peanuts an
excellent product to test the “Phylogenetic Molecular Tool”.

The manuscript is been prepared in order to be submitted in a journal.
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ABSTRACT

Mycotoxin contamination of staples is an issue in Sub-Saharan regions, especially aflatoxins and
fumonisins, resulting in severe health and economy risks. Aflatoxins are important mycotoxins
because they have detrimental effects in vertebrates, principally aflatoxin B1, which is consider as
the most potent liver carcinogenic natural compound (IARC 1993). Maize and peanuts are important
staples in Sub-Saharan region, and are among the staples more affected by AFs contamination. In the
region, the main producers of aflatoxins are species belonging to Aspergillus section Flavi, the
principal producer is A. flavus followed by other species from A. flavus clade and A. parasiticus. In the
present study the biodiversity of Aspergillus section Flavi was assessed using a polyphasic approach
along the peanuts chain process in Cbéte d’lvoire. Experiments included morphological analyses,
aflatoxins production, DGGE-PCR and phylogenetic inference. The results showed that in Korhogo
region, in Cote d’Ivoire, three species of Aspergillus flavus clade grow on peanuts, the most frequent
A. flavus, followed by A. parvisclerotigenus and the novel species A. korhogoensis. The lasts two
species produced B- and G- aflatoxins, and in higher rates than A. flavus. The results also showed that
the DGGE-PCR and multilocus phylogenetic analyses are elegant strategies for recognizing species of

section Flavi, especially for A. flavus clade.
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1 INTRODUCTION

Mycotoxins are low-weight molecules (< 1000 Daltons), yield by the secondary metabolism of
filamentous fungi, which are detrimental to vertebrates and humans. Mycotoxins are common
contaminants of food and feed staples that contaminate approximately 25% of crops worldwide
(CAST 2003), and generate important health and economic risks (Wu et al. 2014). Only in the sub-
Saharan Africa, Latin America, and Asia, an estimated number of 500 million people are exposed to
mycotoxins at high levels, putting them at high mortality and morbidity risk (IARC 2015). Nowadays,
400 putative fungal toxins have been described, seven of which are characterized as major
mycotoxins and regulated by the European Union (EU) based on their effects and prevalence:
aflatoxins, fumonisins, ochratoxin A, trichothecenes (specifically deoxynivalenol), zearalenone, ergot
alkaloids and patulin (Bennet and Klich 2003; Cano et al. 2016).

Among mycotoxins, aflatoxins have received lot of attention for their detrimental effects.
Aflatoxin B1 (AFB;) is the most potent liver carcinogenic natural compound (IARC 1993). Chronic
exposure to aflatoxins is linked with teratogenic, mutagenic and immune suppression effects, child
stunting, hepatotoxic effects with a high risk of hepatocarcinoma (Turner et al. 2005; IARC 2015).
Acute aflatoxicosis can cause hemorrhages, acute liver damage, issues in the absorption and/or
metabolism of nutrients, and death (Bbosa et al. 2013). Several episodes of acute toxicosis due to the
consumption of high-contaminated foods have been reported in the last decades. The most
important occurred in Kenya on 2004, causing the death of 125 people (Lewis et al. 2005; Azziz-
Baumagarner et al. 2005). Aflatoxins are mainly produced by fungi of Aspergillus section Flavi in a
variety of matrices, especially maize, peanuts, cotton seeds, oleaginous seeds, cereals and spices and
are commonly found in tropical and subtropical regions worldwide, where the environmental
conditions favor their production (Klich 2007). Aflatoxin B1 is the most recurrent aflatoxin and
Aspergillus flavus is recognized as the main source of this toxin in warm and wet regions of the world.

In Africa, aflatoxins are frequently found in mycotoxin screenings, favored by a combination of
suitable environmental variables, inadequate storage and transport conditions of staples and the
unawareness of mycotoxin risk (Shephard 2004, Ezekiel et al. 2013; Wagacha and Muthomi 2008).
Regardless the fact that in certain Sub-Saharan African regions the level of aflatoxins is controlled, in
some other regions it is a main public health issue, affecting people of all ages, including in utero
infants (Lewis et al. 2005, Shephard 2008, Streit 2013). Chronic exposure in these areas can start as
early as in uterus, and continue through adulthood (Turner et al. 2013). Infant population present a
high risk of aflatoxin exposure, in some Western African regions 99% of children are positive to
aflatoxins in blood (Gong et al. 2002), likewise, breastfed infants are also at risk of B1, B2 M1 and M2
aflatoxin intake via their mothers’ milk (Shepard 2004). Additionally, aflatoxin contamination has an

economic impact in African countries since international regulations were applied, especially EU
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legislation, export rejection has increased. For instance, during 2007-2012, the EU issued 346
notifications (PACA 2013).

Aflatoxin intake within West Africa involves principally maize and groundnuts (IARC 2015). The
latter is an important staple in some of these countries; it plays a role in nutrition as a cheap source
of protein and nutrients, as well as income (Matumba et al. 2014). Fungi of Aspergillus section Flavi
can contaminate peanuts during pre- and post-harvesting steps, and the main factors facilitating
their development are plant stress, insect damage, environmental conditions, specially temperatures
and humidity, inadequate storage, transporting and marketing conditions (Pitt et al. 2013).
Aspergillus flavus is not able to produce G-aflatoxins due to a deletion of 0.9-2.2 kb in the norB (afIF)-
cypA (aflU) region, which modifies the promoter and coding regions (Ehrlich et al. 2004; Probst et al.
2012). Therefore, the frequent presence of G1 and G2 aflatoxins in peanut products (Kamika et al.
2014, Matumba et al. 2014; Matumba et al. 2015; Manizan et al. in press) suggests that A. flavus is
not the only species contaminating this kind of commodities. Therefore, while G-aflatoxins are
detected on staples, it is necessary to target other species as producers. Historically, peanuts’
aflatoxin contamination was associated with A. parasiticus (Pitt et al. 2013), however, in certain areas
of the world aflatoxin contamination of peanuts produced by species such as A. minisclerotigenes, A.
pseudocaelatus, A. pseudotamarii and A. flavus were also reported (Pildain et al. 2008; Martins et al.
2017; Oyedele et al. 2017).

The aim of the present work is to address the diversity of the section Flavi in peanuts in the
Cote d’lvoire. In pursuance of species identification, a polyphasic approach, enclosing macro- and
microscopic analyses, characterization of aflatoxin production and two different molecular
approaches were carried out. We developed a Polymerase Chain Reaction-Denaturin Gradient Gel
Electophoresis (PCR-DGGE) analysis using a fragment of 8-tubulin gene, in addition phylogenetic

inference analyses were performed using ITS, 8-tubulin (benA) and calmodulin (cmdA) genes.

2 MATERIALS AND METHODS
2.1 Fungal strains

The biological material used in this study consists of 256 strains of Aspergillus isolated from
peanut samples (pods, seeds, paste) collected along the peanut chain in Céte d'lvoire. Peanuts
samples were collected precisely in the Korhogo area in northern Céte d'lvoire, in the villages of
Gbandokaha (9°32’N 5°33’W) and Pokaha (9°24’N 5°30’W) and in the markets of Korhogo city
(9°29’N 6°49'W). Strains were isolated after inoculation of samples on Aspergillus flavus/Aspergillus
parasiticus Agar (AFPA) (Merck KGaA, Darmstadt, Germany) incubated at 30°C for 48 h (Pitt et al.

1983). Then, isolated strains were stored at 4°C on inclined Potato Dextrose Agar (PDA) (Biokar
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Diagnostics, Allonne, France), and at -80°C in physiological saline solution (NaCl 9 g/L) containing 20%

glycerol in cryotubes (MAST, Biovalley, Nanterre, France).

2.2 Morphological characterization

For experiments, calibrated semi-solid spore suspensions (10° conidia/mL) were prepared from
the 256 strains conserved on inclined PDA medium. For macro- and microscopic analyses, 3 x 5 pL of
calibrated spore suspension were inoculated at three equidistant points on Czapek Yeast Agar (CYA)
and on Malt Extract Agar (MEA) (Difco Bacto, France); cultures were incubated at 25°C for 7 days.
Macroscopic analyses were carried on CYA and MEA (Pildain et al. 2008), whereas microscopic
analyses were observed from colonies on PDA after 5 days of incubation at 25°C, using a microscope

(Leitz Laborux S) at X400 and X1000.

2.3 Aflatoxinogenesis tests of Aspergillus isolated
2.3.1 Cultures and aflatoxin extraction

After macroscopic and microscopic characterization, the 256 strains were divided into 179
groups, from which one strain was tested for aflatoxin production potential. Test of potential of
aflatoxin production were performed on PDA following the method described by Dachoupakan et al.
(2009).

Cultures stored at -80°C were used to inoculate the 179 strains on PDA at 25°C for seven days.
Then, spore suspensions calibrated at 10° conidia/mL were calculated using a THOMA cell. For
experiments, 5 L of calibrated spore suspension (10° conidia / mL) were centrally inoculated on PDA
and incubated at 25°C for 7 days. Inoculations were carried out in duplicate.

For aflatoxin extraction, 4 plugs of 6 mm diameter were taken (2 plugs at the centre and 2 at
the margins of the colony), and weighed in 4 mL amber vials. Then, 2.5 mL of methanol: formic acid
(25: 1, v/v) solution was added. Next, samples were agitated for 20 min in an ultrasound bath
(Brasonic, 3510E-MT, Danbury, USA). Extracts were obtained by filtration of the samples with a
syringe (10cc) through a 0.45 um PTFE syringe filter (Teflon PTFE, Interchim, France). Next, samples
were evaporated under a flux of nitrogen at 45°C. Finally, the dry extracts were suspended in 1 mL of
mobile phase (qH,0: methanol, 55:45, v/v, 350 pL of 4 M nitric acid, 119 mg potassium bromide) and

passed in an ultrasound bath for 10 min before HPLC analyses.

2.3.2 Determination of AFs by HPLC/ FLD

The aflatoxins recovered were quantified by reversed-phase high performance liquid
chromatography (RP-HPLC) with fluorometric detection (Shimadzu RF 20A, Kyoto, Japan) according
to the method of R-Biopharm, Aflaprep IFU (P07.V18) (2013). An aliquot of 100 pL of the extract was
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injected into a C18 grafted column (250x4.6 mm, 5 pum, Uptisphere 120 A OBD silica, Interchim,
Montlugon, France) heated to 40°C. The flow rate of the mobile phase was 0.8 mL min™. Aflatoxins
were detected by fluorescence (Aexc 362 nm, Aem 425 nm) after post-column derivatization in a 100
pA electrochemical cell (Kobra Mobile™ R. Biopharm Rhone Ltd., Glasgow, United Kingdom). The

results were expressed in pg of aflatoxins g of culture medium.

2.4 Molecular analyses
2.4.1 Extraction and purification of DNA using Cethy Trimethyl Ammonium Bromure (CTAB) method
The DNA extraction method was adapted from the protocols of Prabha et al. (2012) and Borges
et al. (2009). It was performed in three steps. 1) cell lysis: 5-day-old mycelium and conidia were
suspended in 500 pL of CTAB buffer (1 M Tris pH 8, 5 M NaCl, 0.5 M EDTA, 20 g CTAB, 2.5 ulL B-
mercaptoethanol) in an Eppendorf tube containing 0.3 g of glass beads (425 to 600 um, Merck,
KGaA). The suspension was vigorously homogenized for 2 min in a bead-beater instrument (Vortex
Genie 2 SI-A256, USA Scientific, Orlando, FL, USA), then incubated at 65°C for 15 min in a water bath.
The suspension was homogenized again for 1 min and incubated at 65°C for 15 min in a water bath.
2) Inactivation of cellular nucleases: after incubation, 500 uL of a chloroform: isoamyl alcohol (24: 1,
v/v) solution were added to the suspension and centrifuged for 5 min at 17000xg (centrifuge Heraeus
Pico 21, ThermoFisher Scientific, lllkirch, France). 3) Purification of the DNA: 64 uL of 3 M sodium
acetate (Merck, KGaA) and 233 pL of isopropanol (CARLO ERBA Reagents, Val de Reuil, France) were
added to supernatant and centrifuged at 21,000xg for 5 min. The pellet was washed by adding 500 pL
of 70% glacial ethanol. After centrifugation at 21,000xg for 5 min, the supernatant was removed and
the pellet dried under a hood at room temperature for at least 4 h. The dry pellet was resuspended

in 50 L of sterile water and quantified using a Nanodrop (Biospec Nano, Shimadzu, Kyoto, Japan).

2.4.2 PCR-DGGE analyses
2.4.2.1 Protocol Polymerase Chain Reaction (PCR) amplification

A region of the benA gene was amplified for the 179 isolates using the primer pair Bt2a and
Bt2b-GC (Table 1). Using of the GC clamp prevents complete separation of the DNA strand during
polyacrylamide gel migration (Huang et al. 2016). The amplification of the DNA was done according
to the following steps: 1) Pre-denaturation at 94° C for 4 min. 2) Denaturation at 94°C for 40 s. 3)
Annealing at 58°C for 1 min. 4) Extension at 72°C for 1 min. Steps 2 to 4 were carried out for 35
cycles. 5) Final extension at 72°C for 5 min. 6) Final temperature 4°C. Negative controls and
contamination checks were performed for all amplifications. PCR amplicons were analyzed on 2%

agarose gels by horizontal electrophoresis in TAE 1X (Tris-acetate EDTA pH 8.3; EUROMEDEX,
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Souffelweyersheim, France), molecular weight markers of 100 pb (DNA ladder, Promega, Madison,

USA) were used to estimate the size of target fragments.

Table 1: Primer sequences

PRIMERS SEQUENCES USING

Bt2a 5’-GGTAACCAAATCGGTGCTGCTTTC-3’ PCR-DGGE

Bt2b-GC 5’-GCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCACGGGGG analyses
GACCCTCAGTGTAGTGACCCTTGG C-3'

ITS1 5’-TCCGTAGGTGAACCTGCGG-3’

1754 5’-TCCTCCGCTTATTGATATGC-3’

Bt2a 5’-GGTAACCAAATCGGTGCTGCTTTC-3’ Phylogenetic

Bt2b 5’-ACCCTCAGTGTAGTGACCCTTGGC-3’ S

cmd5 5’-CCGAGTACAAGGAGGCCTTC-3'

cmd6 5'-CCGATAGAGGTCATAACGTGG-3'

2.4.2.2 Denaturing Gradient Gel Electrophoresis (DGGE) Analyses

PCR products of DGGE were analyzed using a Bio-Rad DcodeTM universal mutation detection
system (Bio-Rad Laboratories, USA). Samples containing 40 uL of PCR amplicons were loaded into 8%
(w/v) polyacrylamide gels (acrylamide: bisacrylamide, 37.5:1, v/v, Biosolve Chimie, Dieuze, France) in
1X TAE buffer (40 mM Tris-HCl pH 7.4, 20 mM sodium acetate, 1.0 mM Na,-EDTA). All electrophoresis
experiments were performed at 60°C using a denaturing gradient ranging from 30 to 60% (100%
corresponded to 7 mol L urea and 40% [v/v] formamide, Promega, Charbonniéres-les-Bains,
France). The electrophoreses were performed at 20 V for 10 min and then at 80 V for 16 h (El Sheikha
and Montet 2011). After electrophoresis, gels were stained for 45 min with a solution of Gelred®
(Biotium, Fremont, CA, USA) at 0.1 ug mL* and visualized on a UV transilluminator with the Gel Smart
7.3 system (Clara Vision, Les Ulis, France). Two series of analyses were carried out by DGGE. First, the
179 strains were compared against on the reference strains on A. flavus, A. parasiticus and A.
nomius, and then against on the reference strains of A. parvisclerotigenus, A. minisclerotigenes and

A. arachidicola. The reference strains used are listed in Annex 1.

2.4.2.3 Image Analyses

Images were processed using ImageQuantTL® Version 2003 software (Amersham Biosciences,
Piscataway, NJ, USA). This software automatically covers the DNA bands constituting the DGGE
profiles and generates the migration fronts. Each band corresponds to an individual sequence
(Kowalchuk et al. 1997; Nakatsu et al. 2000) representing a genus or a species of mold. The DNA of
reference strains were used as a marker (Aspergillus flavus, A. parasiticus, A. nomius, A. arachidicola,

A. minisclerotigenes and A. parvisclerotigenus). These control DNAs account for the good migration in
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the DGGE gel, and their migration position constitutes the reference position for each species in the

analyses.

2.4.3 Phylogenetic analyses
2.4.3.1 Strain selection and PCR

Strains classified as group 2, 3, and 4 were selected for phylogenetic inference analyses using
other molecular markers. Some of the strains classified as group 1 were also selected. In total, 71
strains were selected for ITS phylogenetic analyses (group 1 = 20, group 2 = 45, group 3 = 4, and
group 4 = 1); and a subsample of 40 strains for benA and cmdA analyses (group 1 = 10, group 2 = 25,
group 3 =4, and group 4 =1).

All genes were amplified as follows: 1) Pre-denaturation at 94°C for 5 min. 2) Denaturation at
94°C for 1 min. 3) Annealing at 55°C for 1 min. 4) Extension at 72°C for 1 min. Steps 2 to 4 were
carried out for 40 cycles. 5) Final extension at 72°C for 10 min. 6) Final temperature 4°C. PCRs were
performed in the C1000 Touch™ thermocycler (BioRad, Marnes-la-Coquette, France). Primers used
in the study are shown in Table 1. Negative controls and contamination checks were performed for
all amplifications. PCR amplicons were analyzed on 1% agarose gels by horizontal electrophoresis,
molecular weight markers were used to estimate the size of target fragments. Purification of PCR
amplicons were carried out with GeneElute™ PCR Clean-Up Kit (Merck KGaA). Double stranded
sequencing was performed in both directions by Plateau de Génomique GeT-Purpan (Toulouse,
France). New sequences were deposited in GenBank under the accession numbers indicated in the

Table 2.

Table 2: Isolates and accession numbers deposited in GenBank. In normal sequences deposited in GenBank. In

bold sequences recovered from a previous study. "= type strain, — = sequences not determined.

Table continues in following pages

T s e
A. flavus

MACI1 KY689211 KY628762 KY661255 Group 1
MACI3 KY689212 KY628763 KY661256 Group 1
MACI16 — KY628764 KY661257 Group 1
MACI18 KY689213 — — Group 1
MACI21 KY689214 — — Group 1
MACI22 KY689215 — — Group 1
MACI26 KY689216 — - Group 1
MACI30 KY689217 — - Group 1
MACI36 KY689218 — — Group 1
MACI69 KY689219 — — Group 1
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MACI70 — KY628765 KY661258 Group 1
MACI72 KY689220 — — Group 1
MACI77 — KY628766 KY661259 Group 1
MACI79 KY689221 - — Group 1
MACI83 KY689222 - — Group 1
MACI84 KY689223 KY628767 KY661260 Group 1
MACI97 KY689224 KY628768 KY661261 Group 1
MACI99 KY689225 — — Group 1
MACI121 KY689226 — — Group 1
MACI126 KY689227 - — Group 1
MACI133 - KY628769 KY661262 Group 1
MACI145 — KY628770 KY661263 Group 1
MACI156 KY689228 — — Group 1
MACI165 KY689229 — — Group 1
MACI204 — KY628771 KY661264 Group 1
MACI250 KY689230 — — Group 1

A. parvisclerotigenus

MACI5 KY689161 KY628772 KY661269 Group 2

MACI6 KY689162 — — Group 2

MACI8 KY689163 KY628794 KY661270 Group 4
MACI12 KY689164 KY628795 KY661271 Group 2
MACI14 KY689165 KY628773 KY661272 Group 2
MACI15 KY689166 KY628774 KY661273 Group 2
MACI20 KY689167 KY628775 KY661274 Group 2
MACI62 KY689168 — — Group 2
MACI63 KY689169 — — Group 2
MACI65 KY689170 KY628776 KY661275 Group 2
MACI118 KY689171 — — Group 2
MACI122 KY689172 — — Group 2
MACI139 KY689173 KY628777 KY661276 Group 2
MACI140 KY689174 — — Group 2
MACI142 KY689175 KY628778 KY661277 Group 2
MACI143 KY689176 — — Group 2
MACI177 KY689177 KY628796 KY661278 Group 2
MACI179 KY689178 — — Group 2
MACI180 KY689179 KY628779 KY661279 Group 2
MACI184 KY689180 KY628797 KY661280 Group 2
MACI185 KY689181 KY628780 KY661281 Group 2
MACI188 KY689182 — — Group 2
MACI191 KY689183 KY628781 KY661282 Group 2
MACI192 KY689184 — — Group 2
MACI198 KY689185 — — Group 2
MACI200 KY689186 KY628782 KY661283 Group 2
MACI201 KY689187 KY628783 KY661284 Group 2
MACI202 KY689188 — — Group 2
MACI203 KY689189 KY628784 KY661285 Group 2
MACI206 KY689190 — — Group 2
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MACI208 KY689191 — — Group 2
MACI210 KY689192 KY628785 KY661286 Group 2
MACI213 KY689193 KY628798 KY661287 Group 2
MACI214 KY689194 — — Group 2
MACI217 KY689195 KY628799 KY661288 Group 2
MACI218 KY689196 KY628800 KY661289 Group 2
MACI220 KY689197 KY628786 KY661290 Group 2
MACI221 KY689198 KY628787 KY661291 Group 2
MACI222 KY689199 KY628801 KY661292 Group 2
MACI223 KY689200 — — Group 2
MACI224 KY689201 KY628788 KY661292 Group 2
MACI226 KY689202 - — Group 2
MACI238 KY689203 — — Group 2
MACI255 KY689204 — — Group 2
MACI258 KY689205 KY628789 KY661293 Group 2
MACI262 MG745384 MG757370 MG757370 Group 2

Aspergillus spp.

MACI46 KY689207 KY628790 KY661265 Group 3
MACI219 KY689208 KY628791 KY661266 Group 3
MACI2547 KY689209 KY628792 KY661267 Group 3
MACI264 KY689210 KY628793 KY661268 Group 3

2.4.3.2 Alignment, model selection and phylogenetic analyses

Sequences obtained were combined with published available sequences for species of
Aspergillus section Flavi (Annex 1). BioEdit (http://www.mbio.ncsu.edu/bioedit/bioedit.html) was
used to assemble, align and trim the databases for genes ITS, benA, and cmdA, using ClustalW
algorithm. The best-fit nucleotide substitution model for ITS was chosen using jModelTest v2.0
(Darriba and Posada 2012). Evolution model analyses were run using three different criterion: Akaike
Information Criterion corrected (AICc), decision-theoretic performance-based approach (DT) and
Bayesian Information criterion (BIC); however, for the analyses, BIC criterion was chosen (ITS =
TPM2uf + G). BenA and cmdA datasets were concatenated using Mesquite v3.2 (Maddison and
Maddison 2017), and resulted in a matrix of 845 bp. The best-fit nucleotide substitution model for
the concatenated matrix and its partitioning scheme were calculated using PartitionFinder v2.0
(Lanfear et al. 2016) under BIC. To search for the best scheme the “greedy” algorithm with branch
lengths of alternative partitions “linked” was used, and resulted in one partition: benA + cmdA (K80 +
G).

Both, maximum likelihood (ML) and Bayesian inference (Bl) statistical methods were carried
out, using the best-fit substitution models, to obtain tree topologies for ITS and benA + cmdA. ITS ML

analyses were performed in MEGA 6.0.6 (Tamura et al. 2013) with a modification of the best
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substitution model (HYK), whereas multilocus benA + cmdA ML analyses was performed in GARLI
2.01 (Zwickl 2006). Two hundred bootstrap replicates were run for bootstrap support statistics. For
the Bayesian analyses, four independent runs were carried out for 107 generations, each with four
MCMC chains, and sampling every 1,000 generations. For each analysis it was confirmed that the
average standard deviation of split frequencies between chains approaches to values of < 0.01, and
the potential scale factor reduction factor (PSRF) to 1. For all the analyses, from the total number of
trees per run (/TS = 10.001; benA + cmdA = 30.004), 25% were arbitrarily discarded as “burn-in”. The
remaining trees were used to calculate posterior probabilities (PP) for each bipartition in a 50%
majority-rule consensus tree. Aspergillus niger was used as outgroup for /TS and benA + cmdA
inference analyses. Phylogenetic trees were visualized and edited with FigTree v1.4.2 (Rambaut

2014).

3 RESULTS
3.1 Macroscopic and microscopic strains characterization

Macroscopic analysis of 256 strains isolated from peanuts and grown on MEA and CYA media
allowed a preliminary classification into 179 groups. Several macroscopic traits were taken into
account for the classification. On MEA, discriminating traits included colony coloration: white and
brown shades, orangish brown (less frequent), dark brown, green shades, green and white, yellowish
green or less frequent yellow-orange; floccose or flat colonies. Presence of sclerotia and exudates
was rarely observed (43% of strains) on this medium. Colony diameter ranged from 30 to70 mm. For
colony reverse, any strain penetrated the agar, and reverse coloration was in white, yellow or orange
shades (Figure 1). On CYA, discriminating traits included colony coloration, brown, white or green,
floccose or flat colonies, presence or absence of sclerotia (74% and 26%, respectively) and presence
of exudates, abundant or reduced sporulation. Colony diameter ranged from 50 to 70 mm. Colony
reverse was characterized by regular or irregular concentric penetration of agar, in beige, orange or

brown shades (Figure 1).
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REVERSE

Figure 1. Macroscopic comparison of strains on CYA and MEA media. a: MACI5; b: MACI12; c: MACI84; d:
MACI219; e: MACI250. Cultures were grown on CYA and MEA at 25°C for 7 days.

Microscopic analyses were performed on 51 strains. Strains observed, had conidial heads
characteristic of Aspergillus with a radial or apical head. Conidial heads were mainly biseriate, rarely
uniseriate. Conidia were usually round and the hyphae septate. Microscopic analysis confirmed that

the isolated strains belonged to Aspergillus genus (Figure 2).
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Figure 2. Microscopic comparison of conidial heads. A: MACI3; B: MACI12; C: MACI179; D: MACI46; E:
MACI214; F: MACI254. Analysis performed at 400x

3.2 Toxigenic potency of isolated Aspergillus strains

The 179 strains, representing all the groups, were split according to their aflatoxin yield; 150
strains (83.8%) were aflatoxigenic, while 29 strains (16.2%) were non-aflatoxigenic. Aflatoxigenic
samples (150 strains) were once again divided based on their aflatoxin yield, 8 strains produced
AFB1, 92 produced AFB1 and AFB2, and 50 produced the four aflatoxins (AFB1, AFB2, AFG1 and
AFG2). Strains that yielded the four AFs presented the highest levels of aflatoxin production. AFB1
and AFG1 yield were the highest among strains, reaching maximum levels of 108.37 ug/g and 103.89
ug/g, respectively. AFB2 and AFG2 were yield at lower levels, ranging from 0.02 to 2.02 ug/g and 0.07
to 3.44 ug/g, respectively.

3.3 PCR-DGGE analyses

The group of 179 strains obtained from the macroscopic analysis were subjected to DGGE
analyses. Fungal genomic DNA of each sample was amplified by PCR. All bands had a molecular
weight around 550 bp, which corresponds to the fragment of 8-tubulin gene; hence, amplicons were
used for DGGE analysis.

DGGE migration allowed the differentiation amplicons with the same size according to the
composition of their DNA. GC-rich DNAs are less rapidly denatured than GC-poor ones and therefore

migrate much further (El Sheikha and Montet 2011). DNA migration of reference strains indicates
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that DGGE was perfectly performed. Each vertical lane represents one strain. The migration distance
of the strains was compared with each other and with the reference strains.

The results for the first DGGE analysis compared the 179 strains against the reference strains
of A. flavus, A. parasiticus and A. nomius. Based on this analysis, the strains were divided into 4
groups. Group 1 comprised 129 strains, and was characterized as A. flavus (Figure 3). The remaining
50 strains were divided into 3 groups according to their migration distance: group 2 (45 strains),
group 3 (4 strains) and group 4 (1 strain). The 50 strains were reanalysed by PCR DGGE in a finer
analysis that included the reference strains of A. arachidicola, A. parvisclerotigenus and A.
minisclerotigenes (Figure 4). This second analysis permitted to identify group 2 as A.
parvisclerotigenus, conversely groups 3 and 4 were not characterized at species level. A. parasiticus,

A. nomius, A. arachidicola and A. minisclerotigenes were not detected in this study.
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Figure 3. PCR-DGGE B-tubulin profile of Aspergillus strains. Reference strains (R): A. flavus, A. parasiticus and A.

nomius.
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Figure 4. PCR-DGGE B-tubulin profile of Aspergillus strains. Reference strains (R): A. arachidicola, A.

parvisclerotigenus and A. minisclerotigenes.

3.4 Phylogenetic analyses
3.4.1ITS analyses

ITS 1-2 region was sequenced for 71 isolates from Cote d’lvoire (Group 1 = 20, Group 2 = 45,
Group 3 =4, and Group 4 =1). All sequences were blasted against NBCI database, and characterized
as Aspergillus flavus/Aspergillus oryzae. In addition, a subsample of 49 isolates (Group 1 = 18, Group
2 =22, Group 3 =4, and Group 4 =1), was analyzed using a phylogenetic approach. The alignment of
these sequences contained 507 bp. The results from Bayesian Inference (BlI) and Maximum
Likelihood (ML) suggested that samples from Cote d’lvoire cluster together with strains of A. flavus,
its domesticated species A. oryzae, A. minisclerotigenes and A. parvisclerotigenus. However, the
relations within the cluster were not clear because all samples presented polytomies, hence the

result suggested that strains belonged to A. flavus clade (PP=98) (Figure 5).
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Figure 5. Phylogenetic tree of Aspergillus section Flavi based on ITS data. Bayesian tree calculated from 82
strains of Aspergillus section Flavi, which includes the reference strain of economically most important species.
Species isolates numbers are indicated in each terminal, isolates coded as MACI corresponds to the strains used

in this study. A. niger NRRL 35173 was used as outgroup.
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3.4.2 Multilocus analysis

In order to better place strains of the different groups, a phylogenetic analysis comprising
genes benA and cmdA was also performed. The results obtained from Bl and ML analyses were
consistent for the basal groups, however, for more derived taxa (A. parasiticus clade and A. flavus
clade) important differences were observed. The topology from the Bayesian analysis was selected as
the best hypothesis for inferring the phylogenetic relationships since it was more congruent with
other analyses previously performed in the section (Pildain et al. 2008; Rodrigues et al. 2009; Varga
et al. 2011; Soares et al. 2012). However, samples isolated from Cote d’lvoire were clustered
following the same pattern under both statistical analyses, forming three clusters. Samples named
group 1 clustered together with A. flavus and A. oryzae strains, samples named group 3 clustered
together, and strains named groups 2 and 4 clustered together with A. parvisclerotigenus strains.

The topology of Bl for the aforementioned derived taxa suggested three clusters. A first one
comprising strains belonging to A. parasiticus clade, including the strains of A. transmontanensis, A.
sergii, A. arachidicola, A. novoparasiticus, A. sojae and A. parasiticus (PP=1). A second cluster
comprising strains belonging to group 4, which did not cluster with any described species (PP=1); and
a third cluster formed by A. flavus clade (PP=1). The latter enclosed three clusters: one formed by A.
parvisclerotigenus and samples from groups 2 and 3 (PP=1), allowing the identification of these
strains as A. parvisclerotigenus. A second group formed by A. minisclerotigenes strains (PP=0.98), and
a third group formed by A. flavus, its domesticated species A. oryzae, and samples from group 1

(PP=1), hence the group 1 was confirmed as A. flavus (Figure 6).
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Figure 6. Phylogenetic tree of Aspergillus section Flavi based on benA + cmdA combined data. Bayesian tree
calculated from 81 strains of Aspergillus section Flavi, which includes the reference strains of economically
most important species. Posterior probability values are shown. The name of each strain is indicated in each
terminal; isolates coded as Maci corresponds to the strains used in this study. A. niger CBS51388 was used as
outgroup.
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The combination of morphological analyses, aflatoxigenicity test, PCR-DGGE analyses, and
phylogenetic analyses allowed the characterization of 256 isolates collected along the peanut paste
production chain to species level. Group 1 was characterized as A. flavus, and strains were divided in
three groups, AFB1 producers, AFB1 and AFB 2 producers, and non— aflatoxigenic. Groups 2 and 4
were identified as A. parvisclerotigenus, and all strains were able to produce the 4 aflatoxins. Group 3
was identified as a potential new species that produced the 4 aflatoxins, and was recently described
as a new species, closely related to Aspergillus parvisclerotigenus: A. korhogoensis (Carvajal-Campos

etal.2017).

4. DISCUSSION

Peanuts are important sources of nutrients and economic income in Sub-Saharan regions,
especially in rural areas (Ndung’u et al. 2013; Wagacha and Muthomi 2008; Wagacha et al. 2013;
Matumba et al. 2014). In fact, peanuts are ranked sixth among oil producing crops and eighth among
nutritional crops because they are nutrient-rich, providing carbohydrates, lipids, proteins, vitamins,
minerals, fiber and some organic acids (Mupunga et al. 2017). Peanuts are considered to be one of
the main commodities that are frequently contaminated by aflatoxins. In Asian countries, such as
Thailand, Philippines and Indonesia, the prevalence of A. flavus in peanut samples is very high (Pitt et
al. 1993; Pitt et al. 1998) while A. parasiticus is the most frequent aflatoxigenic species recovered
from United States (Horn 2007; Moore et al. 2017). Several studies have been performed to address
the microbiota that grows on peanuts in Africa (Ndung’u et al. 2013; Wagacha and Muthomi 2008;
Wagacha et al. 2013; Kamika et al. 2014; Waliyar et al. 2015). In these reports, the most frequent
species is Aspergillus flavus (aflatoxic and non-aflatoxic strains) and A. flavus Sgc is less frequent. In
East Africa, studies on this staple suggested that species contaminating peanuts included Penicillium,
A. flavus L sensu stricto, A. flavus Sgs, A. parasiticus, A. niger, A. tamarii, A. alliaceus and A. caelatus
(information from Kenya and Malawi) (Ndung'u et al. 2013; Wagacha et al. 2013). In West Africa, in
particular Nigeria, peanuts are mainly contaminated by A. flavus although contamination by G
aflatoxins is frequent (Oyedele et al. 2017). One of the problems with the characterization of Flavi
species in Africa is the definition of A. flavus, generally the definition of the A. flavus sensu lato
species is used, which encloses A. flavus L and A. flavus S morphotypes. It has already been suggested
that A. flavus S morphotypes are divided in S strains that are AFB producers and the Sgc morphotype,
which includes at least three cryptic species, A. minisclerotigenes (Pildain et al. 2008), A.
parvisclerotigenus (Frisvad et al., 2005) and the novel species A. korhogoensis isolated in this study
and recently described (Carvajal-Campos et al. 2017). Thus, A. flavus sensu stricto includes L and S
morphotypes incapable of producing G-aflatoxins (Ehrlich 2004). As a result, in the past the

biodiversity of the Flavi section has been underestimated.
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The goal of the present study was to identify the biodiversity of Aspergillus section Flavi along
the peanut value chain in Cote d'lvoire. The species were identified using a polyphasic approach
consisting of morphological, biochemical and molecular traits. Although morphological
characterization is basic for identification in this section, overlapping traits resulted in a poor
discrimination.

In order to quickly gather strains in definite groups, PCR-DGGE analysis was performed. This
allowed the discrimination among DNA strains based on differences in the nucleotide sequence of a
target gene. For these analyses is important to choose molecular markers that contain conserved and
variable DNA regions (Sheffield et al. 1989; Yoshikawa et al. 2010). In this study, analyses of the 8-
tubulin gene by PCR-DGGE allowed the discrimination of isolates into four groups. Group 1 was
characterized as A. flavus, groups 2 and 4 were characterized as A. parvisclerotigenus and group 3
was characterized as Aspergillus korhogoensis. Laforgue et al. (2009) performed PCR-DGGE using 8-
tubulin gene as molecular marker and showed that several species of Aspergillus, A. niger, A.
aculeatus, A. carbonarius, A. fumigatus and A. japonicus could be discriminated with this method.
Our study confirmed that PCR-DGGE using B-tubulin as molecular marker is useful for Aspergillus
species characterization not only in sections of the genus, but also at a finer scale. Although no
isolates belonging to A. parasiticus, A. arachidicola and A. minisclerotigenes were recovered from
peanuts, the results obtained from PCR-DGGE analysis of their respective reference strains showed
that the methodology is sufficiently accurate to discriminate these species. The results obtained with
PCR-DGGE were validated by a phylogenetic approach based on benA and cmdA genes, which are
also often used for the identification of Aspergillus species (Pildain et al. 2008; Soares et al. 2012;
Varga et al. 2011). The two genes are considered informative, and when used together, the results
are more robust. Moreover, it is a good method to rapidly identify species from the section Flavi. By
contrast, our results confirmed that /TS sequence was highly conserved in Aspergillus, making it a
poor marker for species identification in this genus (Geiser et al. 2007; Schoch et al. 2012) and not
suitable for discrimination of A. flavus clade species.

Aflatoxin production was also measured in this study. Among the 179 strains, 83.8 % were
aflatoxin producers and 16.2 % were non-aflatoxigenic A. flavus. Among the aflatoxin producers, 66.6
% were A. flavus sensu stricto and produced B-aflatoxins but at smaller rates (28%) than the 33 % B-
and G-aflatoxin producers (A. parvisclerotigenus and A. korhogoensis), which reached levels of
108.37 pg/g for AFB1 and 103.89 ug/g for AFG1. Our results showed that G-aflatoxin peanut
contamination in Coéte d'lvoire was mainly caused by A. parvisclerotigenus, followed by A.
korhogoensis.

Before their description, the presence of these species in Benin has been evoked as A. flavus

See (Cotty and Cardwell, 1999) and has been reported in several parts of Sub-Saharan Africa. A study
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of soil biota reported that A. flavus Sec morphotype was significantly more frequent in the northern
areas of Benin (Cardwell and Cotty, 2002). This observation has been strengthened by subsequent
studies. Sgc morphotype or A. parvisclerotigenus strains was isolated from maize samples collected in
Mokwa (9°12 N, Nigeria) (Atehnkeng et al. 2008; Perrone et al. 2014), Abuja (9°03N, Nigeria)
(Atehnkeng et al. 2008), Akwanga (8°55N, Nigeria) (Atehnkeng et al. 2008), from sesame harvested in
Plateau State (8°38N-9°10N, Nigeria) (Ezekiel et al. 2014) and from cassava in Sinissou (9°51N, Benin)
(Adjovi et al. 2013). In our study, the high frequency of A. flavus Sgc (A. parvisclerotigenus and A.
korhogoensis) can be explained by the sampling area, which is limited to the northern region of the
Cote d’lvoire (9° and 10°N latitude). These latitudes correspond to the agro-ecological zone of
Northern Guinea savannah. In Senegal, Sgc strains were present in maize and sesame samples from
two successive agro-ecological zones: sub-humid Guinea savannah and semi-arid Sudan savannah
(Diedhiou et al.,, 2010). The highest frequency of Sgs isolates was also observed in poultry feed
samples from Northern Guinea savannah and Sudanese savannah zones of Nigeria (Ezekiel et al.
2014). The impact of the presence of A. flavus Sgc (A. parvisclerotigenus and A. korhogoensis) on the
aflatoxin contamination of staples is not well evaluated. While the studies above-quoted have shown
that 40 % to 60 % A. flavus L strains are not aflatoxigenic, all A. flavus Sgc strains produced the four
aflatoxins at higher rates. In their founder study, Cardwell and Cotty suggested that crop
contamination with G-aflatoxins in Northern Benin could be caused by the Sgc strains. By contrast, in
the study of Diedhiou et al. (2010), although Sgc strains were sometimes present at high frequency,
the aflatoxin content of maize and sesame samples has not been greatly influenced by the Sg
isolates.

Conversely, better knowledge of the species that contaminate peanuts can contribute to the
biocontrol already performed. Some attempts to perform biological control have been done in maize
using cultivars resistant to pre-harvest contamination, but they have been limited by the lack of
resistance genes. Although some resistant varieties have been developed to increase the germplasm
in crops, resistance to aflatoxins in peanuts has not yet been achieved (Torres et al. 2014). Besides,
the use of the Aflasafe™ biocontrol containing non-aflatoxigenic A. flavus strains has been used in
Nigeria, Australia and Argentina. The first essay, in USA, reduced aflatoxin yield by approximately 85
% on peanut stock and to a maximum of 98 % on shelled stock. Additionally, a novel strategy to
target resistance-related genes in peanuts has been developed. The idea was to identify resistance-
related genes involved in defense response against A. parasiticus infection and subsequent aflatoxin
contamination by developing expressed sequence tags (ESTs) from contaminated peanut seeds; the
data obtained were used to create a microarray to identify candidate genes that confer resistance to

A. flavus infection (Torres et al. 2014).
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Aspergillus flavus is the main mold responsible of food and feed aflatoxin contamination
worldwide (Perrone et al. 2014), and its toxinogenicity varies according to the geographical origin
and the substrate (Rodrigues et al. 2009). Strains of A. flavus clade have a wide distribution in Africa
and contaminate important staples, like maize and peanuts. Strains that do not belong to A. flavus
sensu stricto are important in the region and have been associated with the outbreak in Kenya in
2004. It is important to recognize these species, even though they are less frequent than A. flavus
sensu stricto, they are a risk to human and animal health due to their B- and G-aflatoxin yield is
higher (Wagacha and Muthomi 2008; Wagacha et al. 2013), hence when population booms occur,
the likelihood of outbreaks increases (Probst et al. 2010). The two molecular analyses performed in
this study showed excellent results to discriminate among species of section Flavi, providing fine
results to discriminate amongst species of A. flavus sensu lato. Analyses are feasible and could be
easily performed to unmask biodiversity and therefore, to perform better risk assessment.

PCR-DGGE B-tubulin and phylogenetic analyses based on benA and cmdA are robust methods
to characterize species from Aspergillus section Flavi. Results from the two studies were congruent
suggesting that the methods can be useful tools; especially in areas were B- and G-aflatoxins are

widespread.
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Annex 1: Aspergillus isolates used in the study

Species Strain Sampling Data Reference GeneBank accession number
Substrate Country ITS benA cmdA
A. alliaceus NRRL 4181 =CBS Soil Australia D. I. Fennell, University of EF661556 AY160978 EF661536
542657 Wisconsin, Madison, Wisconsin (in
NRRL database)
A. arachidicola CBS 117610T =IBT Arachis glabatra leaf Argentina Pildain et al. 2008 HM560045 EF203158 EF202049
25020
A. arachidicola CBS 117614 = IBT Arachis glabatra leaf Argentina Pildain et al. 2008 KY937923 KY924665  KY924677
27183
A. avenaceus NRRL 5177 Seed peas England Smith 1943 EF661556 EF661501 EF661503
A. bertholletius CCT 76157 Soil nearby Betholletia  Brazil Taniwaki et al. 2012 KY937924 KY924666  KY924678
excelsa trees
A. bombycis NRRL 26010 =CBS Silk worm excrement Japan Goto, National Food Research AF104444 AY017547 AY017594
117187 Institute, Japan (in NRRL database)
A. caelatus NRRL 25528T=ATCC Peanut field soil Georgia, USA Bruce W. Horn, National Peanut AF004930 EF661470 EF661522
201128 =CBS Lab., Dawson, GA (in NRRL
763.97=JCM 10151 database)
A. coremiiformis CBS 553.77T=ATCC Soil Ivory Coast Centralbureau voor F1491474 F149482 F1491488
38576 Schimmelcultures, Baarn, The
Netherlands (in NRRL database)
A. flavus NRRL 3518 Wheat flour Illinois, USA D. Graves NRRL isolate (in NRRL EF661552 EF661487 EF661510
database)
A. flavus NRRL 4818=CBS 16870 Food, butter USA D. I. Fennell, University of EF661563 EF661489 EF661510
Wisconsin, Madison, Wisconsin (in
NRRL database)
A. flavus * NRRL 3357 = CBS Peanuts cotyledons USA Nierman et al. 2015 MF966967 M38265 EED55330
128202
A. flavus * AF70 Seed of upland cotton, Arizona, USA ASM95283vl — —
Gossypium hirsutum :751:1381:22
30:-1
A. leporis CBS 151.66™= NRRL Dung of Lepus USA States and Chistensen 1966 AF104443 EF203171 EF202078
3216 townsendii
A. minisclerotigenes  CBS 1176357 Arachis hypogaea seed Argentina Pildain et al. 2008 KY937925 KY924667  KY924679
A. minisclerotigenes  E21 Cumin Morocco El Mahgubi et al. 2013 KY937926 JX456195  JX456196
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A. minisclerotigenes

A. minisclerotigenes

A. minisclerotigenes

> > > >

. mottae

. nomius

. novoparasiticus
. novoparasiticus
. novoparasiticus

. novoparasiticus

. novoparasiticus

. oryzae

. oryzae *

. parasiticus

A. parasiticus

A. parasiticus *

. parvisclerotigenus

A. parvisclerotigenus

. pseudocaelatus

E44
E74
NRRL 29000

MUM 10.231™=CBS
130016

NRRL 13137=CBS
260.88

AFc31
AFc32
LEMI 149
LEMI 267

CBS 126849™=LEMI 250

CBS 100925™=IMI
16266

RIB40

CBS 100926

NRRL 492
SU-1

CBS 121.627
AFc36
CBS 117616

White pepper
Paprika

Peanut field soil

Maize seed

Wheat

Cassava
Cassava
Hospital air

Sputum, leukemic
patient
Sputum, leukemic
patient

Unkown source

Cereal (broad bean)

Pseudococcus
calceolariae, sugar
cane mealy bug
Unkown source

Unkown source

Arachis hypogaea
Cassava

Arachis burkartii leaf

Morocco
Morocco

Australia

Portugal

Illinois, USA

Benin
Benin
Sao Paulo, Brazil

Sdo Paulo, Brazil

Sao Paulo, Brazil

Osaka, Japan

Kyoto, Japan

Hawaii, USA

China

Unkown

Nigeria
Benin

Argentina

El Mahgubi et al. 2013
El Mahgubi et al. 2013

David Gaiser, Pennsilvania State
University (in Rodrigues et al
2011)

Rodrigues et al. 2011

A.F. Schindler, Food and Drug
Administration, Wasington D.C. (in
NRRL database)

Adjovi et al. 2014
Adjovi et al. 2014
Gongalves et al. 2012
Gongalves et al. 2012

Gongalves et al. 2012

Varga et al. 2011

Machida et al. 2005

Spaere 1912 (in Varga et al. 2011)

Shin, China (in NRRL database)
Yu et al. 2015

Frisvad and Samson 2005
Adjovi et al. 2014
Varga et al. 2011

KY937927
KY937928
KY937929

JF412768

AF027860

KC9640099
KC964100
KY937931
KY937932

KY937930

MF668185

AP007173

KY937933

KY937934

MF668183
KC964102
KY937935

JX456210
JX456211
KY924668

HM803086

AY017541

KY924669
KY924670
KY924671
KY924672

KY924673

EF203138

BAE64122

EF203155

KY924674

ASM95608
v1:498:145
22:16215:1

EF203130
KC954604
EF203128

JX456214
J1X456212
KY924680

HM803015

EF661531

KY924681
KY924682
KY924683
KY924684

KY924685

EF202055

XP_0018203
02
EF202043

KY924686
KJK65439

EF202077
KC954606
EF202037
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A. pseudonomius NRRL 3353™=CBS Diseased alkali bees, USA Varga et al. 2011 AF338643 EF661495 EF661529
119388
A. pseudotamarii NRRL 443 Soil Brazil Da fonseca, Brazil (in NRRL AF004931 EF661476  EF661520
database)
A. pseudotamarii NRRL 22518 Tea field soil Miyazaki, Japan Tetsu Goto (in NRRL database) KY937937 KY924675  KY924687
A. sergii MUM 10.219™=CBS Almond shell, Portugal Rodrigues et al. 2011 KY937936 HM803082 HQ340097
130017
A. sojae CBS 100928 Soy sauce, Japan Sakag and Yamada ex Murak 1971 NR_111545 KJ175494 KJ17555
A. tamarii NRRL 20818=CBS Activated carbon Unkown CBS database AF004929 EF661474  EF661526
104.13=QM 9374
A. togoensis CBS 272.897= NRRL Seed, near La Maboké Central Africa Samson and Seifert 1985 (in CBS AJ874113 F1491477 F1491489
13550 database)
A. transmontanensis MUM 10.2147=CBS Almond shell, Portugal Rodrigues et al. 2011 JF412771 HM803101 HMS803020
130015
A. niger* NRRL 35173 Cofffe Unkown Peterson 2007 (unpublished) AM270982 — —
A. niger* CBS 513.88 Unkown source Unkown CBS database — GU296692 NT_166539.1
:c1747409-
1745942

CBS, Centraalbureau voor Schimmelcultures, Utrech, The Netherlands; NRRL: National Center for Agricultural Utilization Research, U.S. Department of Agriculture,
Peoria, IL, USA; LEMI: Laboratério Especial de Micologia, Sdo Paulo, Brazil; MUM: Micoteca da Universidade de Minho, Braga, Portugal; CCT: Colecdo de Cultura
Tropical, Campinas, Brazil. SF: Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, USA.

T=type strain; * = genome sequenced strains
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2.3 CHAPITRE 3

Aspergillus korhogoensis, a novel aflatoxin
producing species from the Cote d’lvoire
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2.3.1 BACKGROUND

The present study is also a result from the collaboration between CIRAD and Toxalim. The goal
of the present work was to characterize the four strains named Group 3 in the previous study, and
that were identified as a possible new species. These strains were interesting for further analyses for
three main reasons:

1) They grouped like a new clade while using benA and cmdA, suggesting a new species.

2) Topologies for the genes ITS, benA and cmdA placed the strains in differently, making them
interting to test the “phylogenetic molecular tool”.

3) The four strains produce B- and G- aflatoxins, making them hazardous, even though they occur
at low frequency.

In order to characterize the four strains, phylogenetic analyses using ten genes (ITS, benA,
cmdA, memc7, ppgA, amdsS, rbpl, preA, preB, AfIP) were performed (single genes analyses and a
combination of them). The publication of the new species was based on the ML (annex 1) and BI
results for the phylogenetic analyses using nine genes, and the results of Bl were shown. By this
approach the description of a new species, belonging to Aspergillus section Flavi, was possible.
Aditionally, morphological analyses, and secondary profile characterization were performed. The
mating type MAT loci were analyzed for several species in the section, allowing a better
understanding of these genes in the section Flavi.

This work was published in Toxins, 2017, 9: 353, and was the cover of that issue. In addition, a
summary of the study has been lectured in the 39" mycotoxins workshop (Poland, 2017), and in the

1°t International MycoKey conference (Belgium, 2017).
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Abstract: Several strains of a new aflatoxigenic species of Aspergillus, A. korhogoensis, were isolated in
the course of a screening study involving species from section Flavi found contaminating peanuts
(Arachis hypogaea) and peanut paste in the Cote d'Ivoire. Based on examination of four isolates,
this new species is described using a polyphasic approach. A concatenated alignment comprised of
nine genes (ITS, benA, cmdA, mcm7, amdS, rpbl, preB, ppgA, and preA) was subjected to phylogenetic
analysis, and resulted in all four strains being inferred as a distinct clade. Characterization of
mating type for each strain revealed A. korhogoensis as a heterothallic species, since three isolates
exhibited a singular MAT1-1 locus and one isolate exhibited a singular MAT1-2 locus. Morphological
and physiological characterizations were also performed based on their growth on various types
of media. Their respective extrolite profiles were characterized using LC/HRMS, and showed
that this new species is capable of producing B- and G-aflatoxins, aspergillic acid, cyclopiazonic
acid, aflavarins, and asparasones, as well as other metabolites. Altogether, our results confirm the
monophyly of A. korhogoensis, and strengthen its position in the A. flavus clade, as the sister taxon of
A. parvisclerotigenus.

Keywords: Aspergillus section Flavi; aflatoxins; cyclopiazonic acid; polyphasic approach; versicolorins

1. Introduction

The presence of mycotoxins in agricultural commodities poses serious economic and health
risks [1-3]. Among the mycotoxins, aflatoxins are by far the most studied since their ingestion can
cause deleterious health effects in humans and animals including hepatic cancer and, in some instances,
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death [4]. Aflatoxin Bq is the potent compound of this chemical family as it displays mutagenic,
teratogenic and hepatocarcinogenic effects in humans and animals [5]. To date, it is considered as the
most carcinogenic, teratogenic and genotoxic substance of natural origin [6,7].

Species that have so far been reported to produce aflatoxins are all classified in Aspergilllus
subgenus Circumdati and section Flavi, with the exception of two other species originally sampled in
the Cote d'Ivoire, A. ochraceoroseus and A. rambelli [8,9)]. Species from Aspergillus section Flavi represent
a well-known group of saprophytic filamentous fungi, several of which have the ability to produce
beneficial secondary metabolites or enzymes used in food fermentation and biotechnology, such as
kojic acid and a-amylase [10]. Conversely, some of these species have the potential to produce one or
more harmful mycotoxins, such as aflatoxins, cyclopiazonic acid, versicolorins, and aflatrems [11,12].
Due to extensive research into their aflatoxin production, A. flavus, A. parasiticus, and A. nomius are
considered major species in section Flavi. Among them, A. flavus is the most important because of its
worldwide distribution, and it represents the largest source of aflatoxin By contamination of several
staple crops, including maize, tree nuts, peanuts, cottonseed, grains, cassava, and spices [13-16].

Although some species relationships in section Flavi are still unclear, the section can be separated
into one of seven main clades based on a polyphasic approach: A. flavus clade, A. parasiticus
clade, A. tamarii clade, A. nomius clade, A. alliaceus clade, A. togoensis clade, or A. avenaceus clade,
and A. mottae and A. bertholletius [17-19]. Each clade may contain cryptic species that are difficult to
identify, based solely on morphological characters or extrolite profiles, but can be delineated using
a polyphasic approach that also includes molecular analyses [12,17,18]. It has been suggested that
two cryptic species, A. minisclerotigenes and A. parvisclerotigenus, belong to the A. flavus clade [9,20].
However, in addition to B-aflatoxins these species produce G-aflatoxins, which A. flavus is incapable of
producing [17,21] due to a deletion of genomic sequence between the aflatoxin pathway genes, norB
(aflF) and cypA (aflll), thereby altering the promoter and coding regions [22].

In this paper, we describe A. korhogoensis sp. nov. as a novel cryptic species within the A. flavus
clade, based on a polyphasic analysis of four strains isolated from peanuts collected in the region of
Korhogo, Cote d’Ivoire.

2. Results
2.1. Molecular Analyses

2.1.1. Multilocus Phylogenetic Analysis

The phylogenetic tree inferred from nine concatenated genes (ITS, benA, cmdA, mem7, amds, rpbl,
preB, ppgA, and preA), obtained from Bayesian and ML analyses, yielded largely similar topologies,
particularly congruent for Aspergillus flavus clade. Here, we chose the Bayesian topology as hypothesis
of phylogenetic relationships because the results were of greater robustness (Figure 1). Our results
support previous phylogenetic inferences involving species from section Flavi. Aspergillus bertholletius
was used as the outgroup taxon. The A. nomius clade, which included A. bombycis and A. nomius,
was monophyletic and appeared as a basal group (Posterior Probability, PP = 1). The topology then split
in two robust groups, one formed by the A. tamarii clade, which included A. caelatus, A. pseudocaelatus
and A. pseudotamarii, and a second monophyletic group, which included the A. parasiticus and A. flavus
clades, as well as A. mottae. This latter was placed as the ancestral taxon of the group including
A. parasiticus and A. flavus clades. Aspergillus parasiticus clade was consistent with Soares et al.
results [18] and included A. parasiticus, A. sojae, A. arachidicola, A. novoparasiticus, A. sergii and
A. transmontanensis. A. sergii and A. transmontanensis are basal taxa, respectively. The A. flavus clade
included A. flavus, A. oryzae, A. minisclerotigenes, A. parvisclerotigenus and A. korhogoensis, the herein
described new species.

The A. flavus clade is comprised of two main groups: one that includes A. flavus, its domesticated
species A. oryzae and A. minisclerotigenes (PP = 1); and the other group encompasses A. parvisclerotigenus
and A. korhogoensis sp. nov. (PP = 1). The four isolates (MACI46, MACI219, MACI254 and
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MACI264) putatively identified as A. korhogoensis were tightly clustered, suggesting they were
a distinct species from A. parvisclerotigenus. Strains from the latter species included isolates from
different populations, which were clustered together, suggesting a monophyletic group with no major
differences among populations.

Aspergillus novoparasiticus was represented by two well-supported groups, which segregated
based on geography since one group corresponds to the strains isolated from Brazil [23], while the
other group corresponds to strains isolated from Benin [14]. Besides their geographical distributions,
both groups were isolated from different environments, such as hospital environments (Brazil samples)
or foodstuffs (Benin samples).

2.1.2. Mating Type Analysis

Results from our mating type diagnostic PCR revealed that isolates MACI46, MACI254 and
MACI264 contained a single Mat1-1 gene, and that isolate MACI219 contained a single Mat1-2 gene.
These findings demonstrate that A. korhogoensis sp. nov. is likely a heterothallic (self-infertile) fungus.
Whether these mating-type genes are functional is unknown. Future mating tests will be required to
determine this.

The MAT1I-1 amino acid sequence of A. bertholletius was used as the reference sequence to
compare with Mat1-1 genes from other examined taxa. Basal taxa (A. bertholletius, A. nomius, A. caelatus,
A. pseudocaelatus, A. tamarii and A. pseudotamarii) presented alanine, asparagine, histidine and threonine
at position 36, 46, 61 and 65, respectively, which changed in derived species into serine, lysine,
asparagine and asparagine (Figure 2). The A. famarii clade presented four apomorphies that are
specific to the clade, and one apomorphy that was fixed in the derived species. The A. parasiticus and
A. flavus clades exhibited a highly conserved MAT1-1 amino acid sequence, except for one amino acid
substitution in A. parasiticus at position 101, and two substitutions in both A. flaous and A. oryzae at
positions 49 and 75. Although haplotypes of A. minisclerotigenes, A. parvisclerotigenus and A. korhogoensis
sp. nov. shared identity for their respective MAT1-1 amino acid sequences (Figure 2), there were
single nucleotide polymorphism (SNP) differences that did not result in an amino acid replacement.
Aspergillus minisclerotigenes exhibited two apomorphies, whereas A. parvislerotigenus and A. korhogoensis
sp. nov. each exhibited only one (except MACI264, which exhibited the conserved ancestral state).

In the case of Mat1-2 gene, amino acid sequences were identical for A. nomius, A. pseudonomius,
A. sergii, A. transmontanensis, A. arachidicola, A. parasiticus, A. parvisclerotigenus and A. minisclerotigenes.
There was one substitution in the amino acid sequence for A. korhogaensis sp. nov. (5168P), and one for
A. flavus (E181K) (Figure 3). Basal taxa, A. avenaceus and A. alliaceus, exhibited several differences in
their amino acid sequences.

2.2. Secondary Metabolism Characterization

An analysis of secondary metabolites produced by the four A. korhogoensis strains was performed
and the results are summarized in Table 1. Metabolites were identified according to the Metabolomics
Standard Initiative level definitions [24]. Metabolites were identified at level 1 when they displayed
the same retention time, and UV and M5/MS spectra as the authentic standard. They were identified
at level 2 when the metabolites shared the same UV spectrum and/or the same MS/MS fragmentation
pattern in accordance with the literature.
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Figure 1. Phylogenetic tree of Aspergillus section Flavi based on concatenated sequences from nine genomic loci (ITS, ben A, cmdA, mem7, amds, rpbl, preB, ppgA,
and preA). Bayesian tree was calculated from 41 strains, and includes the Type strain for most species. Strong bootstrap values are shown at branch nodes. Species
isolate numbers are indicated at branch tips. A. bertholletius CCT 7615 was used as the outgroup taxon.
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Species Isolate Mat1-1 amino acid sequences

Amino acid position
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Figure 2. Amino acid sequence alignment for the Mat1-1 locus in examined strains representing several Aspergillus species. The amino acid positions were determined
based on the complete amino acid sequence of A. flavus NRRL 3357 strain (accession number = EED46656). Accession numbers recovered from GenBank: A. parasiticus
MUM 10.212 = HM80303, A. parasiticus MUM 10.224 = HM803058, and A. tamarii NRRL 20818 = HM803044. Other accession numbers are given in Table S2.
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Figure 3. Amino acid sequence alignment for the Mat1-2 locus in examined strains representing several Aspergillus species. The amino acid positions were determined
based on the complete amino acid sequence of A. bombycis NRRL 26010 strain (accession number = OGM45987). Accession numbers recovered from GenBank:
A. avenaceus NRRL 517 = HM802955, A. alliaceus NRRL 4181 = HM802964, and A. fransmontanensis MUM 10223 = HM802958. Other accession numbers are given in
Table S2 except for Aspergillus parvisclerotigenus MACI5 (MF966968). Aspergillus parvisclerotigenus MACIS species identification was based on genomic sequences from
ITS (KY689161), benA (KY628772) and cmdA (KY661269). The A. sergii sequence available from GenBank is shorter.
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Table 1. Principal secondary metabolites produced by Aspergillus korhogoensis.,
Metabolite cﬁﬁ?j:::i . iz Ion Rm’::::::r’ me MS/MS Error (ppm) 1D Level *  References
AFLATOXIN BIOSYNTHESIS PATHWAY
Aflatexin By SET 313.07 M+ HJ 17.37 285 (100), 298, 284, 270, 257, 243, 229 —D.398 1,2 [25]
Aflatoxin B CrrHiaOg 315.07 M + HJ" 1495 297, 287 (100), 259, 269, 273 —5.920 1,2 [25]
Aflatoxin Gy CrrH120; 329,08 M+ HJ 15.25 311 (100), 301, 300, 283, 243 0119 1,2 [25]
Aflatoxin G, CyoHy O, 331.08 M+ HJ* 12.84 313 (100), 303, 285, 275, 257, 245 0511 1,2 [25]
O-methyl-sterigmatocystin CroHyg0g 339,08 [M + HJ' 24.21 324 (100), 311, 306, 295 2817 I
Sterigmatocy stin C1sH120¢ 325.07 M+ H]" 33.59 310 (100), 297, 282 0.570 1,2 [26]
Versicolorin A CisH100; B703 M- H] 35.95 309 (100), 319, 308, 293, 265, 253 —2.094 1,2 27]
Versicolorin B C1sH1205 339.05 M- H] 34.40 311 (100) 310, 309, 295, 297, 283 —0.578 1,2 27]
Norsolorinic acid CaoH1g0; %910 [M - H] 12.07 351 (100), 341, 325, 308, 297, 270 1.528 1
CYCLOPIAZONIC ACID BIOSYNTHETIC PATHWAY
acy clopiazonic acid CoHagN; 0, 337.15 M+ HJ 36.77 182 (100), 196, 154, 140 0.561 1,2 (28]
B-cyclopiazonic acid CanHaaN2 05 339.17 M+ HJ 37.58 198 (100), 324, 283, 183, 144, 130 1.289 2 (28]
2 -oxo-cyclopiazonic acid CanHagN2Oy 353.15 M+ H]" 36.20 335 (100), 311, 293, 252, 224, 212 1174 2 (28]
¥_hy droxy-speradine A CayHas N,Os 316 M + HJ* 21.19 355 (100), 365, ,ﬂjﬁ BB 2 [25]
Speradine C CaoHazz NzOs 37116 [M + HJ 18.19 353 (100), 287, 269, 259, 226, 184 2780 2 (28]
Speradine D CaoHz N;Og W7.16 M+ HJ 20.80 369 (100), 269, 226, 184 2.679 2 (28]
Speradine F CayHas N,O- 11515 [M + HJ* 18.99 7 ”;ﬁ;,;;;’;:;’ ;f: ;,_?; E ML peay 2 (28]
Cyclopiamide ] CaaHagN, O 42917 M + HJ' 23.96 287 (100), 4 121;::;;:;';1;@ B0 _peen 2 (28]
KOJIC ACID BIOSYNTHETIC PATHWAY
Kojic acid CsHe Oy 143.03 M+ HJ 157 143 (100) 125, 113, 97 1432 1,2 [29]
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Table 1. Cont.

Metabolite Elemental Composition miz Ion Reter::‘?::lﬁme MS/MS Error (ppm) ID Lewel * References

AFLATREM BIOSYNTHETIC PATHWAY

a-aflatrem CaaHaaNOy 502,29 [M + HJ* 4145 444 (100), 484, 426, 412, 376, 198 1144
Paspalinine CarHy NOYy 43433 [M + HJ 39.22 376 (100), 416, 419, 362, 358, 344, 130 0.726 2 [30]
Paspaline CagHaaNOy 47231 [M + HJ* 43.96 130 (100), 404, 407 —(.583 2 [30]
Hydroxyaflatrem CazH3aNOsg 518.29 IM + HJt 3822 4460 (100), 500, 482, 442, 444, 428 —0.347

Paxilline CorHaaNOy 43635 [M + HJ* 418 (100}, 421, 400, 378, 360, 345, 130 —27h2 .2 [30]
13"-desoxypavilline CpHaNOy 42025 [M+ HJ* 402 (100), 405, 362, 130 —11.320 : (20
ASPARASONE BIOSYNTHESIS PATHWAY

Asparasone A CraHyOy 357.06 M — H] 2213 339 (100) 299 1315 2 [31]
b e eapinore CioH140s 7304 M~ H] 0.3 355 (100) 315 0629 2 (1)
L;?\TETLE‘?:?_I:;LHH CrsHyar 315.05 M — H] 2798 297 (100} 0775 2 (31
];3-5--’513“.1&'-"-}'14““}'-%-[3?"\0':ut CysHya07 339,05 M - H] 2977 297 (100) 321, 206, 205, 311, 306 1428 2 [31]
1%-ene- 1%y 1) anthraquincne

LEPORINS BIOSYNTHESIS PATHWAY

Leporin B CaaHagNO, 5219 [M+ HJ* 4078 214 (100), 230, 244, 258, 270, 282, 296, 306 —1.505 2 [25]
Leporin B precursor CaaHag N0, 336,20 [M + HJ* 7.7 200 (100, 214, 228, 243, 354, 266, 780 010z 2 [25]
AFLAVARIN BIOSYNTHESIS PATHWAY

Aflavarin CagHay Oy 45513 [M + HJ* 1822 £13 (100), 425, 437, 395, 379, 364, 348, 303 —3.732 .2 32
7'-demethyl-siderin Ci HypOy 207.07 M+ HJ 1358 - T:T 51.4;.:;_:?. -~ 0.312 2 32]
Aflavarin precursar 6 CpaH 0 a1 M+ HJ 20,69 369 (100), 7‘“;-\:1: “"jﬁ“‘ 337, 279, 0560 2 3]
Aflavarin precursor 5 CaaHapOy 42512 IM+ HJY 2675 383 (100}, 393, 369, 363, 357, 349 0.454 2 32]
Aflavarin precursor 4 CagHag Oy 43014 [M+ HJ* 30.52 397 (100, 383, 371, 367, 365, 351, 341, 321 —0.624 2 32
AFLAVININE BIOSYNTHESIS PATHWAY

20'-hydroxyaflavinine CagHaygOs N 40479 M — HO + HJ* 37.53 386 (100), 287, 269, 243, 144, 130 0.071

Unknown aflavanine CogHagOu N 40429 M — H0 4+ HJ* 3814 386 (100), 287, 260, 224 0.170

* 1D Level 1: Metabolites that displaved the same retention time, UV and M5/ MS spectra than the authentic standard. Level 20 Metabolites that displayed the same UV spectrum and/or
the same M5/ M5 fragmentation patbern in accordance with the likeratare.
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All strains produced aflatoxins By, Bz, G1, and Gz, as well as several aflatoxin biosynthetic
intermediates including 3-O-methylsterigmatocystin, sterigmatocystin and versicolorins A and B.
Cyclopiazonic acid (CPA) and different other members of the CPA family were detected in the whole
fungal extract of each strain. This new species also produced kojic acid, aflatrem, and its precursors or
related compounds (paspaline, paspalinine, paxilline, and 13-desoxypaxilline). Aflatrem and paspaline
were also present in the sclerotium extracts, as well as another related compound that appears to be
an uncharacterized hydroxylated form of aflatrem ([M + H]*/z = 518.28992; deviation = —0.347 ppm)
previously evoked by Nicholson et al. [33]. Leporin B and its precursor were previously detected in
culture extracts [25].

The HPLC-DAD analysis of sclerotium extracts revealed the presence of members of at least three
families. First, five compounds showed a typical anthraquinone UV spectrum (nm): 223 (100%), 269sh,
293, 319sh, 455. On the bases of UV and MS/MS fragmentation patterns, this compound was identified
as asparasone A [31,34]. Three other asparasone-derived anthraquinones were identified in sclerotium
extracts (Table 1). Six compounds displayed an aflavarin UV spectrum (nm): 221 (100%), 238sh, 291,
310, 322sh [35]. The LC-HRMS allowed the identification of aflavarin and four aflavarin-associated
compounds previously reported by Cary etal. [32]. The last chemical family identified in A. korhogoensis
sclerotia were aflavinines [36,37]. Indeed, three compounds with a typical aflavinine UV spectrum (nm):
224 (100%), 283, and 291, were present in the sclerotium extracts of each tested strain. The comparison
with the 20-hydroxyaflavinine standard confirmed the presence of this metabolite.

2.3. Taxonomy

Aspergillus korhogoensis A. Carvajal-Campos, A.L. Manizan, S. Tadrist, D.K. Akaki, R. Koffi-Nevry,
G.G. Moore, S.0O. Fapohunda, S. Bailly, D. Montet, LP. Oswald, S. Lorber, C. Brabet and O. Puel sp. nov.
(Figures 4-7).

Figure 4. Comparison between cultures of Aspergillus korhogoensis sp. nov. and other species from the
A. flavus clade: (a) A. korhogoensis MACI46; (b) A. korhogoensis MACI219; (c) A. korhogoensis MACI254;
(d) A. korhogoensis MACI264; (e) A. parvisclerotigenus CBS 121.62; and (f) A. minisclerotigenes J117c.
Cultures were grown on MEA, CYA, YES, CZ, and MS at 25 “C for Seven days.
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Figure 5. Comparison between sclerotia of A. korhogaensis sp. nov. and other species from A. flavus
clade. Sclerotia recovered from cultures grown on MEA at 25 “C for seven days.

Figure 6. Conidial heads of A. korhogoensis MACI254 (100 ): (a) radiate splitting conidial heads; and (b)

columnar conidial heads (100¢).

Figure 7. Conidiophores of A. korhogoensis MACI254 (400x): (a) typical conidiophore, radiate and
biseriate, mostly observed in basal mycelium; and (b) atypical conidiophore uniseriate, found in

aerial mycelium.

Etymology: The specific epithet “korhogoensis” is a noun in the genitive case and refers to the
Korhogo region located in the Cote d'Ivoire, from where the new species was isolated.
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Diagnosis: Colonies on MEA deeply floccose with a dominant white aerial mycelium. Sporulation
dull yellowish green. Abundant sclerotia (especially on MEA and CYA), mostly at the colony surface,
small size (<400 pm), dark brown at mature state; conspicuous amber exudate produced b],r sclerotia.
Reverse orange to brownish orange, more conspicuous on MS, and on MEA and CYA presence
of concentric rings on orange shades. Conidial heads typically radiate, fertile upper 75% of their
surface and splitting, less frequent narrow and long columnar to short columnar, rarely micro-heads.
Conidiophores of radiate heads are hyaline, long, large and slightly roughened, whereas conidiophores
of columnar heads and micro-heads are short, narrow and smooth. Conidial heads biseriate for
radiate heads, and uniseriate for the others. Vesicles ublong to spatulate, 2547 pm in diam; metulae
6.7-11.2 pm X 4-5.5 pm; phialides 7-10 um X 3-5.7 pm; conidia yellowish green to green, oblong and
smooth or slightly rough, 3-5 pm diam.

Colony diameters: After seven days at 25 °C, colonies reached 37-60 mm on MEA, 59—67 mm on
MS5, 3657 mm on YES, and 57-80 mm on CYA. Colonies kept seven days at 37 “C on MEA reached
38-57 mm, whereas colonies kept at 42 °C reached 7.5-12 mm.

Physiological studies: All strains analyzed on AFPA showed a bright orange reverse, a sign of
aspergillic acid production. The colonies did not sporulate and presented reduced aerial mycelia.
On CREA, the strains showed a positive production of organic acids, except for MACI219.

Extrolite production: Aflatoxins By, By, Gy, Gy, 3-O-methylsterigmatocystin, versicolorins A and
B, aspergillic acid, o- and p-CPA, 2 oxo-CPA, aflatrem, paspaline, paspalinine, aflavarins, asparasones,
aflavinines, leporin B.

Aspergillus korhogoensis sp. nov. exhibited phenotypic characters that place it within the A. flavus
clade, such as conidial heads typically radiate that split into several columns in green shades.
Phenotypically, the new species resembled A. parvisclerotigenus. Both species shared several common
traits, making difficult to distinguish between them; however, some subtle differences were observed.
The new species grew faster on MEA and CYA at 25 °C than A. parvisclerotigenus, and the reverse
coloration on MEA and MS was orange for A. korhogoensis and cream for A. parvisclerotigenus. The size
of sclerotia was also comparatively smaller in A. korhogoensis. On MEA at 42 °C, A. parvisclerotigenus
grew faster (15.5-20 mm) than A. korhiogoensis, for which growth was reduced (7.5-12 mm) or inexistent
in strain MACI219. On AFPA, A. parvisclerotigenus colonies were mildly to highly floccose, produced
profuse sclerotia and conidia in yellowish shades, whereas A. korhogoensis sp. nov. colonies exhibited
sparse aerial mycelium and sclerotia, and conidia were almost non-existent.

Holotype: Isolated from Gbandokaha. Deposited in the NRRL collection.

Isolates examined: MACI254 (NRRL £6710), Cote d’Ivoire, Gbandokaha (9°32" N, 5733" W),
from peanut pods, 15 November 2014, A L. Manizan MACI254. MACI46 (NRRL 66708), Cote d'Tvoire,
Korhogo (9729 N, 6749" W), from peanut seeds, 19 November 2014, A.L. Manizan MACH46, MACI219
(NREL 66709), Cote d'Ivoire, Pokaha (9°24" N, 5°30° W), from peanut pods, 15 November 2014,
AL Manizan MACI219. MACI264 (NRRL 66711), Cote d'Ivoire, Gbandokaha (9732" N, 533" W),
from peanut pods, 17 November 2014, A.L. Manizan MACI264.

Habitat: Found on peanuts.

Distribution: Korhogo region, North Céte d'Ivoire.

3. Discussion

The number of species in section Flawi, in direct correlation with the number of species capable
of producing aflatoxins, has increased over the last decade [17-19,23]. Although unable to produce
aflatoxins, a 26th species, A. hancockii sp. nov.,, was very recently identified and grouped with section
Flavi species [38]. The use of a polyphasic approach to characterize a species, based on the unified
species concept [39,40], has enabled mycologists to acknowledge cryptic diversity in Aspergillus section
Flawi. By using this approach, morphological, physiological, and molecular characters are integrated to
understand species relationships [12,17-20,23,41]. It is accepted that the use of a single approach will
mask the exact relationships among species, not only in Aspergilli, but also in other fungi [12].
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In the present study, we included an ensemble of six genomic regions already tested to be
informative for section Flavi (ITS, benA, cmdA, mon7, rpbl and amd5). Three other genes (ppgA, pred,
preB), reportedly involved in sexual development, were added and the set resulted in a concatenated
sequence of 4624 bp. These three genes are required in the specific mating recognition. Pred and
preB are MAT target genes that encode a-pheromone and a-pheromone receptors, respectively [42].
PpgA encodes the a-pheromone precursor that binds to PreB [43]. To our knowledge, this is the first
study to make a phylogenetic inference that includes genes PreA, PreB and PpgA. Some authors have
suggested that the accuracy of the phylogenetic approach could be increased by adding molecular data
with different evolutive rates, diminishing possible artifacts caused by polymorphic haplotypes [44,45]
and providing more robust information to elucidate potential complexity within a clade. The use
of nine concatenated genes resulted in a robust phylogenetic tree topology, which includes the
most important species of the section in terms of economic and public health impact, as well
as species described in the last decade (not basal taxa). The results of the present study were
congruent with several studies performed involving species from section Flavi [17-20,23]. The tree
obtained from nine concatenated genes showed a clear partiion of A. novoparasilicus strains in
two, one subgroup containing South American isolates and another containing African isolates.
More A. novoparasiticus strains isolated from both continents would be needed in order to confirm this
observation. Additionally, the ensemble allowed to determine a cryptic species, A. korhogoensis sp. nov.

Most species in section Flawi are considered heterothallic, containing either the MAT1-1 or MATI1-2
idiomorph [15,18,46], and from the present study so is A. kerhogoensis. Thus far, A. alliaceus is the
only homothallic species in section Flavi [46]. Reportedly, strains of A. nomius may contain both
idiomorphs, but only one is functional [11]. Diversity from sexual reproduction in these fungi is
expected to arise from out-crossing of heterothallic species, between complementary strains that are
able to produce sclerotia [47,48]. Laboratory crosses between sexually compatible strains showed that
sexual reproduction was possible in A. parasiticus, A. flavus, and A. nomius [11,49,50]. Inter-specific
hybridization was shown to be a possibility via laboratory crosses that resulted in viable ascospores,
including recombinant offspring, being produced [51]. Moreover, sexual reproduction is more likely
to occur within populations having a 1:1 ratio of both idiomorphs [11,42,48], although asexual
reproduction is still a large component to the life cycle of micro-fungi such as the Aspergilli [52].
Presence of both idiomorphs in A, parvisclerotigenus, and A. korhogoensis suggests that eryptic sexuality
might occur in natural populations, yet laboratory mating experiments inveolving these species is
necessary to yvield conclusions. As well, more population-scale field sampling of strains from these
species are necessary to determine if they have a history of recombination as observed in A. flavus and
A. parasificus populations [53,54]. Indeed, the ratio 1:1 is not discernable due to the few strains isolated
and curated in different collections.

The present study increases the number of species in the A. flavus clade, which is comprised
of many heterothallic species that share common morphological characters, such as biseriate heads,
greenish to brownish colony coloration, ability to produce sclerotia, among others [17]. Likewise,
species in this clade are capable of producing aflatoxins, aspergillic acid, CPA, kojic acid, versicolorins,
aflatrem, ete. [20,55]. Within the clade, the main difference between A. flavus and the remaining species
(A. minisclerotigenes, A. parvisclerotigenus and A. korhogoensis sp. nov.), is that A. flavus has lost the
ability to produce G-aflatoxins [22]. Another important difference is that A. flavus is comprised of
two morphotypes: small sclerotium producers and those that are able to produce larger sclerotia
than the other three species. Aspergillus flavus is a ubiquitous fungus, being readily sampled across
the globe, but A. minisclerotigenes, A. parvisclerotigenus, and A. korhogoensis sp. now. have smaller
geographic distributions. For example, A. minisclerotigenes has been isolated from Africa, South and
North America, Europe, and Australia, whereas A. parvisclerotigenus has been isolated from Guinea
Gulf [16], and A. korhogoensis has only been found in the Céte d'Tvoire.

Herein, we proposed that Aspergillis kovhogoensis sp. now. is the sister taxon of A. parvisclerotigenus,
based on secondary metabolite analyses, morphology and molecular evidence. Both species share
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a similar secondary metabolic profile according to Frisvad et al. [9]. However, there are some differences
in their secondary metabolite production. Unlike A. parvisclerotigenus, the production of A-30461
(aspirochlorin) was not observed in any A. korhogoensis extracts. On the other hand, A. korhogoensis
produced aflavinines, asparasones and leporin B. A pattern close to each other could be appreciated
while comparing morphological characters, though subtle differences were observed between strains
of both species. On AFPA, A parvisclerotigenus had a trend to produce yellowish spores and highly
floccose colonies, whereas A. korhogoensis sp. nov. tended to have flatter colonies and reduced
sporulation. At the molecular level, the concatenation of nine different loci strongly suggested that they
were two different species. The inclusion of strains from different populations of A. parvisclerotigenus
(Benin, Nigeria and Cote d'Ivoire) reduced the possibility of any artifact linked with polymorphisms.

Sub-Saharan West Africa, and especially the Guinea Gulf, displays an interesting diversity of
species from section Flavi, including several cryptic species, although A. flavus continues to be the
most frequent species sampled [56]. Despite the prevalence of A, flavus, it is noteworthy that other
S-strain species are present at lower rates, are usually G-aflatoxin producers, and their production
of aflatoxins is usually higher than that of A. flavus sensu stricto [57,58]. Some strains, previously
characterized as A. flavus Sgi, are nowadays being classified as A. minisclerotigenes, A. parvisclerotigenus,
and in this study as A. korhogoensis. In different countries of the Guinea Gulf, strains exhibiting the Spg
chemotype have been associated with drier agroecological zones bordering the Sahara desert [14,59,60].
Cadwell and Cotty [59] suggested that production of G-aflatoxins in Northern Benin could be mainly
due to Spg; strains. Likewise, in this area, the environmental conditions could allow the presence
of species that could be more sensitive to climate changes, resulting in a shift of the frequency of
these strains [59]. Inter-specific sex is possible for these fungi, which has been shown via laboratory
crosses [51]. All that is required for these strains to override heterokaryon incompatibility, or even
species boundaries, is the need to circumvent an unfavorable environmental situation [61]. It may
eventually be determined that many of the recently characterized novel species, with such similar
morphological, genetic, metabolic and physiological characteristics, are hybrids resulting from cryptic
inter-specific sex that comprise a species complex. However, much more research is required before this
can be proven or refuted. Moore and co-workers [62-64] are sequencing the genomes of aflatoxigenic
fungi in an effort to determine the relatedness of these fungi and to elucidate the evolution of aflatoxin
production. The comparison of the genomes of species close to A. flavus such as A. minisclerotigenes,
A. parvisclerotigenus and A. korhogoensis will also help to understand the genetic determinants of the
A. flavus success.

4, Materials and Methods

4.1. Chemicals

Solvents (phenol, chloroform, ethanol, ethyl acetate, methanol, and acetonitrile) of analytical
grade used in the extraction and high-performance liquid chromatography (HPLC) were obtained
from ThermoFisher Scientific (Illkirch, France). Ultrapure water used for HPLC with Diode Array
Detector (DAD), LC/MS analyses, and for molecular biology experiments was purified from a MilliQ
purification system (Millipore, Billerica, MA, USA). Unless otherwise specified, chemicals were
purchased from Sigma-Aldrich (Saint Quentin Fallavier, France).

4.2, Fungal Isolates and Culture Conditions

Seven atypical Spc A. flavus strains were isolated in 2014 from peanuts in the Northern Korhogo
region of Cote d'Ivoire. Four other atypical Spg; strains isolated from food, decaying leaves, and logs of
wood collected in Southwest Nigeria [65] were added. To identify these eleven Sy strains to species
level, we compared them against a dataset comprised of strains obtained from different international
collections and stored under controlled conditions at Research Center in Food Toxicology TONALIM,
Toulouse. We included at least one strain belonging to most species within the section Flavi (Table 3).
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The isolates were cultured on Malt Extract Agar (MEA) (Biokar Diagnostics, Allone, France) at 25 °C for
seven days, and stored as spore suspensions on 20% glycerol for further analyses. The A. korhogoensis
Type strain, along with three other strains, were deposited at Agricultural Research Service Culture
Collection (NRRL) (Peoria, L, USA).

Table 2. Aspergillus isolates used in this study.

5 ling Dat
Strain ampTing et Re ference
Substrate Country
A. arachidicola
CBS 1176107 = IBT 25020 Arachis glabatra leaf Argentina [20]
CB5 117614 = IBT 7183 Arachis glabatra leaf Argentina [20]
A. bertholletius
CCT 76157 Soil near I:‘ftrfhnfh'fr.-,? excelsa Brazil [19]
rees
A, bombycis
g T TG 4 A Frass, silkworm rearing
MERL 26010° = CBS 117187 hoss Japan [66]
ouse
A. caelatus
- oT _ N . ' - .
MERL 25528° = ATCC 201128 Peanut field soil Georgia, USA Horn B.W., Mational Peanut Lab,

= CBS 783.97 = [CM 10151

Dawson, GA (in NRRL database)

A. flavus

MERL 3518

Wheat flour

Mlinois, USA

Graves NREL isolate {in NEEL
database)
Fennell DL, University of

NERL 4818 = CBS 16870 Food, butter UsA Wisconsin, Madison, Wisconsin
(in NREL database)

MEEL 3357 = CBS 128202 Peanut cotyledons Usa [67]

A. minisclerotigenes

CBS 1176357 Arachis hypogae seed Argentina [20]

NERL 29000 Peanut soil Australia Lise r_]?-'f.. ! m:ins%._h ETIE State
University (in [21])

EX1 Cumin Morocco [15]

Ed4 Whife pepper Morocco [15]

E74 Paprika Morocco [15]

A. mottae

MUM 10.2317 = CBS 130016 Maize seed Portugal [15]

A nomius

NRRL 131377 = CBS 260.88 Wheat Mlinois, USA Schindler A F, FDA, Washington

D.C. (in NERL database)

A. novoparasiticus

CBS 1268497 = LEMI 250 Sputum, leukemic patient Sao Paulo, Brazil [23]
LEMI 149 Hospital air Sdo Paulo, Braxil [23]
LEMI 267 Sputum, leukemic patient Sao Paulo, Brazil [23]
AFc31 = NRRL 62794 Cassava Benin [14]
AFc32 = NRRL 62795 Cassava Benin [14]
A oryzae

CBS 1009257 = IMI 16266 = - -
NERL 447 Unknown source Japan [17]
RIB40 Cereal (broad bean) Kyoto, Japan [6&]
A. parasiticus

CES 1000267 Pseudococaus calceolariae, Hawaii, USA [17]

sugar cane mealy bug
NERL 492 Unknown source China [23]
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Table 3. Aspergillus isolates used in this study.

Sampling Data

Strain Re ference
Substrate Country

A. parvisclerotigenus
CBS121.627 Arachis hypogea Nigeria [4]
AFc36 = NREL 62796 Cassava Benin [14]
MaACTS Peanuts Cote d'lvoire This study
MACIZH Peanuts Cote d'hvoire This study
MACI258 Peanuts Cote d'hvoire This study
5F1 Rain forest soil Migeria [65]
SF3 Rain forest soil Migeria [65]
S5Fa Rain forest soil Migeria [65]
Sk Food item Migeria [65]
A. pseudocaelatus
CBS 1176167 Arachis burkartii leaf Argentina [17]
A. pseudotamarii
MNERL 443 Sail Brazil [69]
NEEL 25518 Tea field soil Miyazaki, Japan [70]
A sergii
MUM 102197 = CBS 130017 Almond shell Portugal [18]
A. sofae
CBS 1000287 Soy sauce Japan [17]
A. transmontanensis
MUM 10.214T = CBS 130015 Almond shell Portugal [1#]
A korhogoensis sp. now.
MACT254T Peanuts Cote d'hvoire This study
MACT4A Peanuts Cote d'hvoire This study
MACI219 Peanuts Cote d'hvoire This study
MACT264 Peanuts Cote d'hvoire This study

CBS, Centraalbureau voor Schimmelcultures, Utrecht, The Metherlands; NERL: National Center for Agricultural
Utilization Research, U.S. Department of Agriculture, Peoria, IL, USA; LEME Laboratério Especal de Micologia,
5a0 Paulo, Brazil; MUM: Micoteca da Universidade de Minho, Braga, Portugal; CCT: Cole¢ao de Cultura Tropical,
Campinas, Brazil; 5F: Southem Eegional Research Center, ULS. Department of A griculture, Mew Orleans, USA.

4.3. DNA Extraction and Amplification

A loopful of spores from each of the examined Aspergillus isolates was inoculated on Yeast Extract
Sucrose (YES) liquid medium, and kept in agitation in an orbital incubator at 170 rpm at 27 °C for
five days. DNA extraction was performed according to Girardin et al. [71] by grinding a portion of
mycelium in a 5 mL mortar on ice, followed by the addition of 5.5 mL lysis buffer 2 (5 mL Tris-HCL
1M, 3.65 g NaCl, 125 mL EDTA 0.5 M pH 8, 2.5 g 5D5, H»0O gsp 250 mL). The content was transferred
to a 15 mL tube, and 12.5 puL of proteinase K were added, before being incubated from 30 min to 1 h at
37 °C, and then incubated for 10 min at 65 C. Afterwards, one volume of phenol/ chloroform (7:3, v/ o)
was added and samples were then centrifuged at 3000 g for 1 h. The supernatant was recovered into
a new tube, where 6 L. RNAse were added, and it was subsequently incubated for 2-3 h at 37 °C.
Next, one volume of chloroform was added and centrifuged at 3000 g for 10 min. The supernatant
was recovered into a new tube and one volume of isopropanol was added. At this point, samples were
softly shaken for 2 h in a horizontal shaker and kept overnight at 4 °C. The following day, samples
were centrifuged at 10,000 g for 30 min. The supernatant was eliminated and the pellet carefully
washed with 300 pL of 70% ethanol, and centrifuged at 10,000x g for 15 min, followed by a gentle
aspiration of the supernatant. Finally, the pellet was resuspended with 30 pL. of pure water. DNA of
samples was quantified using a NanoDrop ND-1000 (NanoDrop Technologies, Wilmington, DE, USA).
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4.4, Amplification and Sequencing of Genomic Loci

Genes were amplified as follows: (1) pre-denaturation at 94 °C for 5 min; (2) denaturation at
94 °C for 45 s; (3) annealing at 55-57.3 °C for 1 min (55 °C = IT5, benA, cmdA, mom7, preB and preA;
56 °C = ppeA; 57.3 °C = amd5 and rpbl); (4) extension at 72 °C for 1 min (Steps 2 to 4 were carried out
for 40 cycles); (5) final extension at 72 °C for 10 min; and (6) final temperature hold at 4 °C. Primers
used in the study are shown in Table S51. Polymerase Chain Reaction (PCR) amplifications were
performed in a C1000 Touch™ thermal cycler (BioRad, Marnes-la-Coquette, France). PCR amplicons
were purified with GeneElute™ PCR Clean-Up Kit (Sigma-Aldrich, Saint Quentin Fallavier, France).
Sanger sequences were obtained by using the Applied Biosystems Big Dye Terminator v3.1 chemistry
(ThermoFisher Scientific, Illkirch, France), they were then purified with the Applied Biosystems Big
Dye XTerminator protocol (Thermofisher Scientific, Illkirch, France) and finally processed on the
ABI 31301 Genetic Analyzer (Thermofisher Scientific, Illkirch, France), available on the GeT-Purpan
technological facility (Genome and Transcriptome, GenoToul, Toulouse, France). New sequences were
deposited in GenBank and accession numbers are reported in Table S2. Sequence data of some isolates,
obtained from previously accessioned data in the GenBank database, were included for constructing
phylogenetic trees (Table 52).

4.5. Alignment, Model Selection, and Molecular Analyses

Data were assembled, aligned and trimmed in BioEdit/ClustalW (http:/ /www.mbio.nesu.
edu/ bicedit/bicedit.html). Gene regions with multiple gaps were aligned to minimize indels and
optimize nucleotide identities among different strains. Sequences from multiple genomic regions
were concatenated using Mesquite v3.2 [72], but the mating type loci were analyzed independently.
For concatenated data, the best-fit nucleotide substitution models and partitioning scheme were chosen
using PartitionFinder v2.0.0 [72] under BIC. To search for the best-fit scheme, a greedy algorithm with
linked branch lengths of alternative partitions was used. Partitions obtained consisted of four subsets
that corresponded to a specific model (noted in parentheses): Subset 1 included ppgA, cmdA, benA, rpbl
and mem7 = 2129 bp (K80+G); Subset 2 included ITS = 778 bp (TRNEF+I); Subset 3 included preB and
preA = 1223 bp (HKY+G); and Subset 4 included amdS = 491 bp (K80+G).

Bayesian inference statistical methods were used to obtain tree topologies for concatenated data,
using the best-fit substitution models listed above. For Bayesian analyses, MrBayes v3.2 [74] was
used, and four independent runs were carried out for 107 generations, each with four chains, Markowv
Chain Monte Carlo, and sampling every 10° generations. We confirmed for each analysis that the
average standard deviation of split frequencies between chains approached values of <0.01, and the
potential scale factor reduction factor (PSRF) to 1. For all the analyses, and from the total number of
trees per run, 25% were arbitrarily discarded as “burm-in”. The remaining trees were used to calculate
posterior probabilities (PP) for each bipartition in a 50% majority-rule consensus tree using Tracer
v1.6 [75]. Phylogenetic trees were visualized and edited with FigTree v1.4.2 [76].

4.6. Morphological and Physiological Studies

Morphological and growth analyses were carried on MEA, High Salt MEA (MS) (MEA complemented
with NaCl 60 g/L}, Czapek agar (CZ) (Oxoid, Dardly, France), Czapek Yeast Autolysate agar (CYA),
YES agar. Physiological analyses were carried out on creatine agar (CREA) [77], and Aspergillus
flavus/ parasiticus agar (AFPA) [78]. Strains MACI46 (NRRL 66708), MACI219 (NRRL 66709), MACI254
(NRRL 66710), MACI264 (NRRL 66711), A. parvisclerotigenus CBS 121.62 and A. minisclerotigenes [117e
were used for the analyses on M5, CYA, CZ, YES, and CREA. In addition, four strains belonging to
A. parvisclerotigenus were included for the analyses on MEA and AFPA: MACIS, MACI258, MACI221,
and AFc36.

Cultures on MEA, MS, CZ, CYA, YES, CREA, and AFPA were seeded with three calibrated
inoculates of 500 spores, and incubated in the dark at 25 °C for seven and ten days. Macroscopic
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characters were observed with a stereomicroscope SZX9—X12-120 (Olympus, Rungis, France).
Microscopic characters were observed on MEA at 7 and 10 days using a microscope CX41—X400 and
X1000 (Olympus, Rungis, France). In addition, growth analyses were calculated from MEA cultures,
which were centrally inoculated with 10° spores, and incubated at 25 °C, 37 °C and 42 °C for seven
days [17,79,80].

4.7, LC/MS Secondary Metabolic Characterization

4.7.1. Secondary Metabolic Characterization of Whole Fungal Culture

Pre-cultures of strains MACI46 (NRRL 66708), MACI219 (NRRL 66709), MACI254 (NRRL 66710)
and MACI264 (NRRL 66711) incubated in the dark at 27 °C for seven days. For metabolite profile
characterization, isolates were cultured in four different media: MEA, CYA, YES agar, and Potato
Dextrose Agar medium (PDA) (Sigma-Aldrich, Saint Quentin Fallavier, France). For each medium,
three biological replicates were inoculated centrally with 10 pL of calibrated spore suspensions
(10° spores,/ mL) prepared from seven-day cultures on 7.5 cm Petri dishes. The samples were incubated
in the dark at 27 °C for seven days.

To perform extrolite extractions, culture media were macerated and placed in 50 mL sterilized
tubes, and thereafter 35 mL of ethyl acetate was added to each sample. Samples were agitated 48 h in
an orbital incubator at 170 rpm at room temperature. Ethyl acetate was filtered through a Whatman
1PS phase separator (GE Healthcare Life Sciences, Vélizy-Villacoublay, France) and evaporated at
60 °C until dry. Samples were then dissolved in 400 pL of methanol. To eliminate possible impurities,
each sample was filtered through a 0.45 pm disk filter (ThermoFisher Scientific, Illkirch, France) [81].

4.7.2. Secondary Metabolic Characterization of Sclerotia

The isolates were cultured on MEA whereby a loopful of spores was taken from seven-day
cultures and streaked onto 9 cm Petri dishes. The MEA samples were incubated in the dark at 27 °C for
eight days. To recover sclerotia from culture media, 10 mL of 0.01% Triton-X solution were added to
each Petri dish. Sclerotia were gently scraped and transferred into 15 mL tubes. To remove mycelium
and conidium debris, 10 mL of 0.01% Triton-X were added to each tube and homogenized in a vortex.
Ongce the sclerotia precipitated, the supernatant was discarded. This step was carried out 4 to 5 times
to eliminate possible residual debris [52].

Sclerotia were transferred into a 5 mL mortar. Then 5 mL of ethyl acetate were gently added
while grinding the sclerotia. This step was carried out three times. Next, 5 mL of chloroform were
gently added and the same procedure followed. This step was repeated three times. Samples were
evaporated at 60 °C until dry, and resuspended in 0.5 mL solution methanol/ acetonitrile/ H2O qsp
(30:30:40, v/v/v) [31,52]. To remove possible impurities, samples were filtered through 0.45 pm disk
filters (ThermoFisher Scientific, Illkirch, France).

4.7.3. Secondary Metabolic Analysis

Extrolite analyses were carried out on a HPLC apparatus coupled to an LTQ Orbitrap XL
high-resolution mass spectrometer (HRMS) (ThermoFisher Scientific, Illkirch, France). Extracted
samples contained 10 pL of each replicate diluted with 170 pL. methanol. For the analyses, 10 uL
of each sample were injected into a reverse-phase 5 pm Luna C18 column (150 mm > 2.0 mmj}
(Phenomenex, Torrance, CA, USA) operated at a flow rate of 0.2 mL/min. A gradient program of 0.1%
formic acid in water (phase A) and 100% acetonitrile (phase B) was executed as follows: 0 min 20% B,
30 min 50% B, from 35 to 45 min 90% B, from 50 to 60 min 20% B. HRMS acquisitions were obtained b}f
electrospray ionization (ESI) in the positive and negative modes under the subsequent parameters:
(1) positive mode: spray voltage + 4.5 kV, capillary temperature 350 °C, sheath gas (N2) flow rate
40 au (arbitrary units), auxiliary gas (N2) flow rate 6 au; and (2) negative mode: spray voltage—3.7 kV,
capillary temperature 350 °C, sheath gas (N;) flow rate 30 au, auxiliary gas (N3) flow rate 10 au.
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Full M5 spectra were accomplished at a resolution of 60,000 with a mass-to-charge ratio (m/z) range
50-800. The MS/MS spectra were generated by collision-induced dissociation (CID) according the
following parameters: collision energy = 35 eV, resolution = 7500, isolation width = 1.5 Da, activation
) =0.250, and activation time = 30 ms.

Supplementary Materials: The following are available online at www.mdpi.com/2072-6651/9/11/353/=1,
Table 51: Primers used to amplify multiple genomic regions within Aspergillus species, Table S2: Isolates examined
and accession numbers deposited in GenBank.
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Supplementary Materials: Aspergillus korhogoensis, a Novel Aflatoxin Producing

Species from the Cote d'Ivoire

Amaranta Carvajal-Campos, Ama Lethicia Manizan, Souria Tadrist, David Koffi Akaki, Rose Koffi-Nevry, Geromy G. Moore, Stephen O. Fapohunda,

Sylviane Bailly, Didier Montet, Isabelle P. Oswald, Sophie Lorber, Catherine Brabet and Olivier Puel

Table S1. Primers used to amplify multiple genomic regions within Aspergillus species.

Gene Length bp* Primers Sequence Reference
ITS 1152 Itsl 5 - GGAAGTAAAGTCGTAACAAGGY [11
2r 5 - TIGGTCCGTGTTTICAAGACG-3 [21
benA 541 Btub2a 5 - GGTAACCAAATCGGTGCTGCTTTC-Y [31
Btub2b 5 - ACCCTCAGTGTAGTGACCCTTIGGC-3" [3]
andA 543 cmd5 5 - CCGAGTACAAGGAGGCCTTC-3 [4]1
cmdb 5 - CCGATAGAGGTCATAACGTGG-3 [4]1
bl 860 FORWARD 5 - GARTGYCCDGGDCAYTTYGG-3 This study
REVERSE 5 - CCNGCDATNTCRTTRTCCATRTA-Y This study
mem’7 544 memF 5 - CAATGCCTACACTTIGTGATCGC- This study
memR 5 - CTCCAATGAGCAAAAGAAGCAAGS This study
amdS 566 amdS1 5 - CCATCGGTATAGGAACTGA-Y [51
amdS2 5 - AGGGTGCCACGGTATGTC-3 [51
Mat1-1 PN MIF 5 - ATTGCCCATTTGGCCTTGAA-3 [6]
MATIR3* 5 —ACMGARTARTTGGTMGAAATATCGGCTTIC-3 This study
Mati-2 645 MATZFZ* 5 - GAYGCTYTGCGTCACCTYGAGY This study
MIR 5 - GCTTCTITICGGATGGCTTGCG-3 [6]
pred 1336 PreAF2 5 - TGCTSACCATCMCTCCSTTGATCTT-3 This study
PreAR3 5 - GCINGINCCTGCCCATGCATIWG-3 This study
preB ) PreBF1 5 - ATCCAGATCTGCATCAACT-3 This study
PreBR1 5 - AGCGGGAGAGAGATAGTGACCAG-Y This study
prsd 258 PpeAF 5 - GCAGCCACCAGIGTACAGGC-3 This study
PpeAR 5 - CCATAGCATCCGCAAGGGCATC-Y This study

* Amplicon size corresponds to A. flavns NERL3357 sequences except for Maf1-2. For Matl-2, amplicon size corresponds to A. bombycs sequence.
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Table 52: Isolates examined and accession numbers deposited in GenBank. In bold sequences recovered from GenBank; normal sequences obtain in this
study. T= type strain, * = strains of which the whole genome is sequenced; **= also found under accession number JX456214; / = gene not present.

Table continues in following pages

SPECIES ACCESSION NUMEBER
AND

ISOLATE ITS benA cmud A jiTe il amdS mpbl preB PrsA pred Matl-1 Matl-2

NUMEBER
A. arachidicola
CBS 1176107 MFe68184 EF203138 EF202049 MF427568 GU203491 MF448475 MF427533 MF427635 MEF427600 MF966969 /
CB5117614 KY937923 KY924665 KY924677 MF427569 MF427670 MF448476 MF427534 MF427636 MEF427601 / MFE448470
A. berthoelletius
CCT 76157 KY937924 KY924666 KY924678 MF427570 MF427671 MF448477 MF427535 MF427637 MEF427602 MF448449 /
A. bomlnyeis
NEEL
260107 AF104444 AY017547 AY017594 JQ690064 MF427672 MF448478 OGM45283 OGM40854 OQGM42599 / OGM45987
A. caelatus
NEEL )
255087 AF004930 EF661470 EF661522 JO690063 MF427673 MF448479 MEF427536 MF427638 MEF427603 MEF448450 /
A. flavus
NREL 3518 EF661552 EF661487 EF661510 WMF427572 MF427675 MF443481 MF427537 MF427640 MEF427605 / WF448471
NREL 4818 EF661563 EF661439 EF661510 WMF427571 MF427674 MF443480 MF427538 MF427639 MF427604 MF448451 /
NEREL 3357* MF966967 M38265 EED55330 EED51746 EED48415 EED56055 EED51811 EED556518 EED51899 EED46656 /
A minisclerotigenes
CBS5 1178357 KY937925 KY924667 KY924679 MF427573 MF427677 MF448483 MF427539 MF427642 MEF427607 MF448453 /
E21 KY93792¢6 IX456195 TX456196 MF427574 MF427678 MF4484584 MF427540 MF427643 MF427608 JX456194 /
E44 KY937927 IX456210 TX456214 MF427575™  MF427679 MF448485 MF427541 MF427644 MEF427609 / Jx456216
E74 KY937928 IX456211 TX456212 MF427576 MF427680 MF448486 MF427542 MF427645 MF427610 / TX456213
NEREL 29000  EKY937929 KY924668 KY924680 MFA27577 MF427676 MF448482 MF427543 MF427641 ME427606 MF448452 /
A. mottae
MUM

JE412768 HMB303086 HMS03015 HME03059 MF427681 MF448487 MF427544 MF427646 MEF427611 HME03042 /

102317
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SPECIES ACCESSION NUMEBER
AND

ISOLATE ITS Bened cndA HCm7 amds bl preB prpgd preA Mntl-1 Matl-2

NUMEBER
A. noveparasiticus
CBS 1268497 EY937930 KY924673 KY924585 MF427583 GU203478 MF448490 MF427549 MF427649 MF427614 MF448456 /
AFc31 KC964009 KY924669 KY924581 MF427579 KC921994 MF448488 MF427545 MF427647 MF427612 MF448454 /
AFc32 KC964100 KY924670 KY924582 MF427580 KC921995 MF448489 MF427546 MF427648 MF427613 MF448455 /
LEMI 149 EY937931 KY924671 KY924583 MF427581 MF427682 MF448491 MF427547 MF427650 MF427615 MF448457 /
LEMI 267 KY937932 KY924672 KY924584 MF427582 GU203480 MF448492 MF427548 MF427651 MF427616 MF448458 /
A. oryzae
CBS 1009257 MF668185 EF203138 EF202055 MF427584 MF427683 MF448493 MF427550 MF427652 MF427617 MF448459 /
RIB40* APOOT173 BAE64122 XP_UD;BZB'}D BAEG5095 D10492 XP_UD;[BlQ&ﬁ BAEG2296 APO0OT155 E_UU:SBSD BAEG3328 /
A. parasiticus
CBS 1009267 KY937933 EF203155 EF202043 MF427585 GU203403 MF445494 MF427551 MF427653 MF427618 f MF445472
NRRL 492 EY937934 KY924674 EKY924686 MF427586 GU203404 MF448495 MF427552 MF427654 MF427619 MF495344
A. parvisclerotigenns
CB5121.627 MFe658183 EF203130 EF202077 MF427587 MF427684 MF448496 MEF427553 MF427655 MF427620 MF448460 /
AFc36 KC964102 KC954604 KC954606 MF427588 MF427685 MF448497 MF427554 MF427656 MF427621 MF448461 /
MACIS KYe89163 KY625794 KYe61270 MF427589 MF427686 MF4458498 MEF427555 MF427657 MF427622 MF448462 /
MACIZ22]1 KYos89198 KY625787 KYe61291 MF427590 MF427687 MF4458499 MF427556 MF427658 MF427623 MF495342 /
MACI258 KYe89205 KY625789 KYe61293 MF427591 MF427688 MF448500 ME427557 MF427659 MF427624 MF495343 /
SF1 MFe6e8179 MF521634 MF521638 MF521646 MF521642 MF521662 MF521658 MF521650 MF521654 MF537434 /
SE3 MFe68180  MF521635 MF521639 MF521647 MF521643 MF521663 MF521659 MF521651 MF521655 MF537435 /
SFe MFe658181 MF521636 MF521640 MF521648 MF521644 MF521664 MF521660 MF521652 MF521656 MF537436 /
SF9 MFe68182  MF521637 MF521641 MF521649 MF521645 MF521665 MF521661 MF521653 MF521657 MFE537437 /
A. psendocaelatus
CBS 117616T EY937935 EF203128 EF202037 MEF427592 MF427689 MF448501 MF427558 MF427660 MF427625 MF448463 /
A. psendotanarii
NRRL 443 AF004931 EF661476 EF661520 MF427593 MF427650 MF448502 MEF427559 MF427661 MF427626 MF448464 /
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SPECIES ACCESSION NUMEBER
AND
ISOLATE ITS DenA cindA mem? amds bl preB prrsa pred Matl-1 Matl-2
NUMEBER
NREL 25518 KY937937 KY924675 KY924687 WMF427594 MF427691 WMF448503 MF427560 MF427662 MEF427627 MF448465 !
A sergii
MUM i - _ . i
102197 KY937936  HMB03082 H(Q340097 HME03071 MF427692 MF448504 MF427561 MF427663 MEF427628 / HME02967
A. sojae
CBS 1009287 MFo65186 KJ175494 KJ175550 WF427595 GU203490 WF4458505 MF427562 MF427664 MEF427629 MEF537438 /
A. transmontanensis
MUM - i - -
102147 JF41277 HM303101 HM303020 HME03065 MF427693 WMF4458506 MF427563 MF427665 MF427630 HMBE03050 [
A. korhogoensis spp. nov.
MACI4e KY689207 KY628790 KYe61265 MF4275% MF427694 MEF448507 MF427564 MF427666 MEF427631 MF448466 /
MACI219 KY689208 KYe28791 KYe6l266 MFE427597 MF427695 MEF448508 MEF427565 MEF427667 MEF427632 / MFE448474
MACTI254T KYe89209 KY628792 KY661267 WMFE427598 MF4276% WMF448509 MF427566 MF427668 MF427633 MF448467 /
MACI264 KY689210 KY628793 KYoe61268 WMF427599 MF427697 MF448510 MF427567 MF427669 MF427634 MF448468 [

CBS, Centraalbureau voor Schimmelcultures, Utrech, The Netherlands; NRRL: National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria, IL, USA;
LEMI: Laboratério Especial de Micologia, Sio Paulo, Brazil; MUM: Micoteca da Universidade de Minho, Braga, Portugal; CCT: Colegio de Cultura Tropical, Campinas, Brazil SF:
Southern Regional Research Center, U.5. Department of Agriculture, New Orleans, USA.
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Annex 1. Maximum likelihood phylogenetic tree of Aspergillus section Flavi (based on concatenated sequences from nine genomic loci: ITS, benA, cmdA, mcm7, amdS, rpbl,
preB, ppgA, and preA). Maximum likelihood tree was calculated from 41 strains, and includes the Type strain for most species. Strong bootstrap values are shown at branch
nodes. Species isolate numbers are indicated at branch tips. A. bertholletius CCT 7615 was used as the outgroup taxon.
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2.4 CHAPITRE 4

Identification of Aspergillus section Flavi in
French maize
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4.1 BACKGROUND

The present study is part of a preliminary survey on French maize in 2015. The interest of the
survey was to evaluate the risk of aflatoxin production on maize kernels and to identify the species
that synthesize these compounds. The study consisted in testing the mycobiota in 19 maize samples
contaminated with AFB and 24 none contaminated. The mycobiota was characterized based on a
polyphasic approach. Isolation, morphological test and analyses of aflatoxin potential production
(HPLC MS/MS) were performed by our colleagues from the Ecole Nationale Vétérinaire de Toulouse
(France) (Sylviane and Jean-Denis Bailly). Here, phylogenetic analyses of selected strains to confirm
the species identification are shown.

Climatic conditions in Southern France were atypical that year, with warmer than normal
temperatures and a drier summer. Maize was analyzed because under these climatic conditions
kernels were prone to the development of Aspergillus section Flavi species.

The results showed that all samples had Fusarium in their growing mycobiota. Regardless
Aspergillus section Flavi diversity, mycological analyses resulted in the isolation of 67 strains from the
section, recovered from samples contaminated and no contaminated with AF. The most frequent
species was A. flavus, followed by A. parasiticus, and A. tamarii. To our knowledge, this is the first
time that A. tamari is reported on maize in France. These results showed that Aspergillus section
Flavi may be part of the soil mycobiota in France, and that two species, A. flavus and A. parasiticus

represent a potential risk, the latter being able to produce B and G aflatoxins.
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4.2 IDENTIFICATION OF ASPERGILLUS SECTION FLAVI IN FRENCH MAIZE

» Climate change

Climate change threatens food availability worldwide, alters primary agricultural systems, and
therefore, affecting livestock and plant production (Van der Fels-Klerx et al. 2016). Climate change
would have negative effects worldwide, though in some regions it could favor the development of
some crops. Abiotic factors that have the greatest influence on crop changes are temperature,
precipitation patterns and CO; availability, which change due to climate change (Paterson and Lima
2010; Medina et al. 2017). Overall, projections suggest that annual precipitations will increase in high
latitudes and tropical regions, whereas in mid-latitudes conditions will become extreme, arid regions
will become drier and wet regions wetter. Worldwide, extreme events will become more frequent,
more intense and longer (Qin et al. 2013). According to some projections, atmospheric CO,
concentrations will double or triple in the next 25 to 50 years (increasing to 800 - 1200 ppb),
temperatures will rise in 2-5° C range, and extreme rain/drought conditions are expected in parts of
Europe, Asia, and Central and South America. In these regions, several crops, such as wheat, maize
and soya, are produced (Medina et al. 2017).

Temperature, precipitation patterns and CO; are important for agriculture, because they are
key factors in plant development. Actually, changes in these factors are altering plant distribution
patterns in the world and the associated pathosystems, because they influence host—pathogen
dynamics, including mycotoxin distribution patterns (Paterson and Lima 2011; Battilani et al. 2016,
Van der Fels-Klerx et al. 2016). In addition, some pathogens can be favored due to plant stress
conditions, becoming more frequent, and the development of some pathogens can also be favored
by climatic changes, increasing the number of their populations (Paterson and Lima 2010; Ehrlich
2014; Van der Fels-Klerx et al. 2016). In general, there is a tendency of species to migrate towards
the poles, some pests are suggested to migrate at a rate of 3-5 km/year (Medina et al. 2017). Abiotic
and biotic pressures on plants can create new niches or/and create new conditions for the

production of certain mycotoxins (Van der Fels-Klerx et al. 2016; Medina et al. 2017).

» Europe, climate change effects on crops and mycotoxins

Climate change in Europe may have different effects depending on the region; the positive or
negative effects will depend mainly on increased temperature, the precipitation pattern, and
physiological response of crops enriched with CO,. As consequence, crops, grazing livestock and plant
pests may change. The biogeographic agricultural scenario for Europe suggests that crop production

and arable areas will expand northwards, making northern Europe more suitable for agricultural
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production, while southern regions may experience a reduction of production and a decrease of
arable areas. Maize, sunflowers, and soybean are crops expected to follow these patterns (Miraglia
et al. 2009, Medina et al. 2017).

In northern Europe (Norway, Sweden, Finland and Baltic States) temperatures are expected to
increase around 3-4.5 °C, resulting in mild temperatures, increase of rainfall, and higher risk of
floods. Agriculture could benefit from these changes by increasing crop production (European
Commission, 2007; Miraglia et al. 2009). In southern and south-Eastern Europe (Portugal, Spain,
Southern France, ltaly, Slovenia, Greece, Malta, Cyprus, Bulgaria, and Southern Romania), the
projections suggest an increase in average annual temperature around 4-5 °C, a reduction of
precipitations, especially in summer, a decrease in water availability, and an increase of CO,. These
phenomena will lead to a decrease in agricultural production in the range of 10-30% in many
regions, drought, heat waves, soil and ecosystem degradation, and ultimately desertification. In
central Europe (Poland, Czech Republic, Slovakia, Hungary, Northern Romania, Southern and Eastern
Germany, and Eastern Austria) annual temperatures will rise by 3—4.5° C, rainfall will increase in
winter and decrease in summer, increasing the risk of flooding. Impacts on agriculture include soil
erosion, drought and higher temperatures in summer. In addition, in southern and central Europe,
the changes of abiotic factors will affect the development of pathogens and insects, causing earlier
flowering and ripening of cereals (Schroter et al. 2005; European Commission 2007; Miraglia et al.

2009; Medina et al. 2017).

>  Aflatoxins in Europe

In Europe, the main mycotoxins are produced by Fusarium spp., being F. graminearum one of
the main contaminating fungi. However, since 2003 A. flavus has been recognized as an emerging
problem (Piva et al. 2006). The increasing risk of AF contamination in Europe is due to the effects of
climate change. Battilani et al. (2016), based on a study in maize, suggested that Aspergillus flavus
can increase its home range in Europe in temperature rise scenarios of 2-5 °C, and that the most
threatened areas are southern and central Europe.

Although, species of Aspergillus section Flavi are not common in Europe, there are reports of
some species, which present a risk because they are aflatoxins producers. The species most
frequently reported is A. flavus, and staples contaminated with AFs included maize, nuts, barley and
milk (Perrone et al. 2014; Battilani et al. 2016; Giorni et al. 2016; Prencipe et al. 2018). Another
species that have been reported in Europe in isolated cases was A. parasiticus, which were identified

in chestnuts (Prencipe et al. 2018), other rare species, reported only in Europe, are A. sergii, A.
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transmontanensis, and A. mottae, found in Portugal in restricted niches (Soares et al. 2012). The non-
aflatoxigenic species A. tamarii has also been reported (Prencipe et al. 2018).

Outbreaks of AFs in Europe have shown that it is important to perform analyses targeting AF
contamination in the region. In fact, a major survey conducted by the European Food Safety
Authority [EFSA] (2007) revealed that aflatoxins were an emerging problem, as contaminated corn,
almonds, pistachios were identified, and A. flavus was the main producer. Contamination of milk
with AFM1 has also been reported in Europe. In 2006 in Sweden, cattle feed with contaminated rice
produced milk with AFM1 concentration that exceeded the EU legal limit of 0.05 pg/kg, therefore
thousands of tons of milk were discarded; unfortunately, this was not an isolated event (Perrone et

al. 2014).

> Maize and aflatoxins

Maize is an important crop in Europe and is used for different purposes, like grains for food,
feed and processing, and green maize for silage or biogas production. It is one of the region main
cereals and is grown in at least 27 countries (Figure 1) (Battilani et al. 2012). France is the leading
producer of grain maize and the third largest corn silage producer in Europe. Grain maize is the
second largest crop after wheat, covering about 6% of the agricultural area. Maize is mainly grown in
two regions with different climatic conditions: the northeast (Grand-Est) and the south-west

(Nouvelle Aquitaine, Occitanie) (Caubel et al. 2018).

Absent
< 1.000.000 ha
> 1.000.000 ha

Figure 1. European distribution of maize crops (reprinted from Battilani et al. 2012).
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The main fungi that attack maize in the region are Fusarium species; therefore, their
mycotoxins are a more frequent. Dispersion of Fusarium benefits from intense rainfall during the
anthesis period, to disperse in maize ears, and from the prolonged period of warm humid conditions
to infect the kernels. However, in recent years, the occurrence of species belonging to Flavi section,
in particular A. flavus, has become more frequent (Battilani et al. 2012). Contamination by A. flavus is
enhanced by plant stress, insect damage, especially the European corn borer Ostrinia nubilalis, and
warmer and drier conditions (Van der Fels-Klerx et al. 2016). Although Aspergillus section Flavi is not
frequent in the area, a survey in northern Italy on 2003 showed that out of 110 maize samples, 75%
was positive for AFBs with an average of 4.4 and a maximum of 154.5 pg/kg (Piva et al. 2006). Under
the changing climatic conditions, species belonging to Flavi section could become prevalent
(Bunyavanich et al., 2003), especially in Romania and Italy (Battilani et al. 2012).

Several studies have tested the possible effects of climate change on maize production,
particularly those associated with plant performance under patterns of seasonal drought-stress
conditions. As a result, maize sensitive traits, including phenology (maturity), anthesis-silking
synchrony, kernels per ear and ears per plant will be altered (Harrison et al. 2014). The same
conditions of drought and high temperatures during kernel development are also the suitable
conditions for fungi colonization and aflatoxin production (Bruns 2003). A. flavus colonization of
kernels starts after silking (female flowering) and continues during the season, and it is only observed

when kernels are mature (Giorni et al. 2016).

4.2 MATERIALS AND METHODS

» FUNGAL STRAINS

Twenty-two strains belonging to Aspergillus section Flavi, which did not displayed the A. flavus
characteristic morphological traits, were selected for performing phylogenetic analyses. All samples
were previously identified morphologically and their ability to synthesize aflatoxins and cyclopiazonic
acid was analyzed by HPLC (Table 1). Of these samples, three strains were of particular interest
because they showed interesting morphological traits: G641b, G649b and G644a (Figure 1). The first
two were characterized as A. parasiticus with a profuse sclerotia production, and the latter as A.

flavus with special sclerotia (Figure 2).
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Table 1. Strains selected for phylogenetic analyses.

TOXINOGENIC POTENTIAL MORPHOLOGICAL
STRAINS
AFB AFG CPA IDENTIFICATION

G632b + + - A. parasiticus
G632c - - - A. parasiticus
G638b + + - A. parasiticus
G639 + + - A. parasiticus
G640a + + - A. parasiticus
G641b - - - Section Flavi
G644a - - - A. flavus

G644b + + - A. parasiticus
G648b + + - A. parasiticus
G649a + + - A. parasiticus
G649b + + - Section Flavi
G650d + + - A. parasiticus
G651a + + - A. parasiticus
G651c - - + A. tamarii

Gb651e - - - A. parasiticus
G652b + + - A. parasiticus
G622Rc + + - A. parasiticus
G622Rd + + - A. parasiticus
G628Ra + + - A. parasiticus
G629Ra ” - - A. parasiticus
G643Rb + + - A. parasiticus

G647Rc + + - A. parasiticus
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Figure 2. Non identified strains by morphological exam. Cultures grown on MEA at 25° C for 7 days (Photos: S.

Bailly).

Figure 3. Sclerotia of weird strains. Sclerotia isolated from 7 days-old cultures of at 25° C (Photos: S. Bailly).

» MOLECULAR ANALYSES

Molecular analyses were performed on the 22 strains following the processes previously
explained: i) cultures and DNA extraction, ii) amplicon amplification by PCR of /TS 4-5, benA and
cmdA genes, iii) annealing, trimming and alignment of sequences, and iv) phylogenetic analyses by

ML and Bl (see chapters 2.1-2.3).

4.3 RESULTS

For the ITS gene, the best-fit nucleotide substitution model was TIM2+I+G (jModelTest),
whereas for the concatenated data benA + cmdA a partition was obtained, and the best substitution
model was K80+G (PartitionFinder).

The results from ITS 4-5 showed several polytomies, the A. flavus clade was nested in the A.
parasiticus clade. Resolution of A. nomius and A. tamarii clades was low. For the maize strains, two

(G529Ra and G644a) were nested in “A. flavus clade”, 19 strains (G638b, G622Rc, G622Rd, G628Ra,
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G632b, G632c, G639, G640a, G641b, G643Rb, G644, G647Rc, G648b, G649a, G649b, G650d, G6513,
G651b, G651e) in A. parasiticus clade, and one strain (G651c) was nested as basal taxon of a group
including A. tamarii and A. nomius strains (Figure 4).

On the other hand, the results from the concatenated genes benA+cmdA showed a better
representation of the clades, the A. flavus clade species clustered together (with the exception of A.
korhogoensis that formed a new branch, as in previous analyses). Members of the A. parasiticus
clade were clustered together; A. mottae was settled as basal taxon of the former clusters. A. nomius
and A. tamarii clusters contained the species expected. For the samples recovered from French
maize, we observed that G529Ra and G644a clustered with A. flavus and A. oryzae (PP=1). The
sequences belonging to the 19 samples G638b, G622Rc, G622Rd, G628Ra, G632b, G632c, G639,
G640a, G641b, G643Rb, G644, G647Rc, G648b, G649a, G649b, G650d, G651a, G651b, G651e) were
grouped with A. parasiticus and A. sojae (PP=89). Finally, G651c clustered with A. tamarii (PP=1),
both sequences forming the sister taxon of A. pseudotamarii (Figure 5).

Hence, based on phylogenetic inference, three species of A. section Flavi were identified, A.
flavus, A. parasiticus and A. tamarii. The atypical strains G644a and G649b were confirmed as A.

parasiticus and G641b was confirmed as A. flavus.
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Figure 4. ITS 4-5 Bl tree. The tree included 58 isolates: 22 sequences from French maize samples and 36 recovered from GenBank (including the reference strain for most
species in the section). PP values are shown. Strains for this study are indicated by brackets, clades are indicated with bars (in red shades: A. flavus; in green shades: A.
parasiticus and in purple shades: A. tamarii).
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Figure 5. BenA-cmdA BI tree. The tree included 67 isolates: 22 sequences from French maize samples, and 36 recovered from GenBank (including the reference strain for

most species in the section). PP values are shown. Strains for this study are indicated by brackets, clades are indicated with bars (in red shades: A. flavus; in green shades: A.
parasiticus and in purple shades: A. tamarii).
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4.4 DISCUSSION

The results confirmed the presence of A. section Flavi species in French maize. In this study,
three species were isolated, A. flavus, A. parasiticus and the non-aflatoxigenic species A. tamarii.
Aspergillus flavus represented the 69% of the 67 strains isolated from section Flavi. From the 67
strains, 22 produced important quantities of AF, and in 8 non aflatoxigenic strains traces of CPA were
observed. The weird isolate G641b with pigmented sclerotia was confirmed as A. flavus (PP=1,
benA+cmdA). The presence of A. parasiticus, especially in post-harvest samples, suggests that this
species is important in soil in France; and as expected, the majority of the strains were aflatoxigenic.
Eventhough, samples G644a and G649b were atypical, molecular result showed that they are
clustered with strains of A. parasiticus (PP=0.89, benA+cmdA).

Aspergillus tamarii has a wide distribution in tropical and subtropical areas. It is frequently
isolated in nuts, such as betel nuts (Misra and Misra 1981), peanuts (Martins et al. 2017), pecans, and
in a wide variety of sources like spices, peppercorns, cocoa and yams (Pitt and Hocking 1985; 2009).
Although, its isolation in cereals is less frequently reported, most reports involve maize. In fact,
several publications have reported A. tamarii in harvested maize in different African countries
(Perrone et al. 2014; Probst et al. 2014). The occurrence of A. tamarii in Europe has been rarely
reported and the majority of these reports are recent. In a Portuguese study, 8.2% of Aspergillus
section Flavi isolates from almonds harvested in Morocco and Faro regions were identified as A.
tamarii (Rodrigues et al. 2012). Another report concerns the presence of A. tamarii in “vinho verde”
(Lago et al. 2014). In Italy, this species was reported in chestnuts mycoflora (Prencipe et al. 2018). To
our knowledge, this is the first time that the presence of A. tamarii in European maize is reported.

Studies of climate change scenarios for maize in France suggest that maize is likely to remain
an important crop. Nevertheless, climatic change challenges the region by the increasing
temperatures and the risk of water stress. In fact, Occitanie and lle-de-France regions should be
sensitive to water stress during grain development; especially Occitanie, where rainfall is expected to
decrease. It is important to understand the effects of abiotic factors in maize and the risks for its
production. Abiotic factors change phenology, vegetative and reproductive growth, grain quality
(sugar or protein content) and the performance of cultural practices, which can lead to the
development of maize grain under drier and warmer conditions (Olesen et al. 2011; Caudal et al.
2018). These plants changes can make maize more vulnerable to contamination of A. Flavi section
species. Actually, climate change scenarios in France suggest than maize will be prone to the
colonization of A. Flavi section species, resulting in reduce safe maize production and economical
losses. Therefore, the major challenge in France is to reduce drought stress, which is an important

factor to reduce A. flavus colonization and AF production (Battilani et al. 2012)



EXPERIMENTAL WORK

Biocontrol is used to inhibit the growth of fungi and AF production. For instance, the use of
maize cultivars more resistant to water stress is a strategy to limit the impact of water deficit on
maize production and quality (Caudal et al. 2018). Similarly, the use of non-aflatoxigenic strains of A.
flavus can also reduce the increasing risk of aflatoxigenic strains in fields. The isolation of “safe”
strains during survey studies contributes to the search for French strains of A. flavus that could be

used as biocontrol. The use of strains from the same region increases the reliability of the biocontrol

(Battilani et al. 2012; Bandyopadhyay et al. 2016).
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3.1 GENERAL DISCUSSION
» A proper identification of species: why is it crucial?

A proper characterization of species from Aspergillus section Flavi, which are potentially
contaminants of staples, is necessary to ensure consumers safety (RASFF 2011; Prencipe et al. 2018).
A proper identification of species prevents food and feed contamination, as life histories and
ecological features of species are better addressed, improving risk assessment and reducing the
potential risk of these species on human and animal health. This is particularly crucial for potential AF
producer species, and for other important mycotoxin producers, though characterizing species and
the strains occurring in different worldwide areas is also important (Vaamonde et al. 2003). Some
species appear to have reduced home ranges and niches that are closely related to their host, such as
A. sergii, A. mottae, A. transmontanensis, which have only been isolated in Portugal and are linked to
specific substrates (Soares et al. 2012), or like A. parvisclerotigenus and A. korhogoensis that have
been found in the Guinean Gulf (Adjovi et al. 2014; Chapter 2.2). A proper identification of strains
may show that the home ranges are wider or even identify more species.

Species characterization of molds, especially Flavi section, is not straightforward because the
section present intra- and inter- variability, which results in phenotypic and physiologic overlapping
traits. Additionally, some studies of species characterization include only one approach, leading to
poor classification at species level. Several species have been misidentified, some of which were
subsequently recognized as novel species, such as A. minisclerotigenes and A. parvisclerotigenus
considered to be part of A. flavus; or A. pseudonomius considered to be A. nomius, which is the main
aflatoxigenic species in Brazilian nuts (Pildalin et al. 2008; Varga et al. 2011; Massi et al. 2014), and
the possible new species from A. parasiticus that grows in sugar cane crops (Kumeda et al. 2003;
Garber et al. 2014). Likewise, there are studies where G-aflatoxins were identified, yet the species
were not characterized, e.g. Matumba et al. (2014) found high levels of G-aflatoxins in Malawi
peanuts, but they did not identify the producer.

Species description in Flavi section is still under debate, A. flavus, A. parasiticus and A. nomius
species are defined differently depending on the research team. Some authors (Cotty and
collaborators) consider that phenotypic, molecular and physiology traits and in the production of
secondary metabolites of these species are highly variable. Some others (Frisvad, Samson, Ehrlich
and collaborators) consider these species as species complexes and that cryptic species embedded in
them can be identify by a polyphasic approach. The latest statement is in agreement with the unified
species concept and the phylogenetic concept. The recognition of these cryptic species is becoming
each day increasingly accepted by researchers in the field because these new cryptic species can be

considered as lineages that have evolved separately from other lineages, which has been proven by
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phenetic and physiological data, secondary metabolic compounds, phylogenetic and molecular
evidence, as well as some insights of ecology and life histories. | agree with the statement that A.
flavus, A. parasiticus and A. nomius are species complexes and that most species described over the
last decade are cryptic species.

The plethora of mycotoxins synthesized by fungi belonging to Aspergillus section Flavi, includes
AFs, VER A and B, STC, OMST, CPA, OTA, aflatrems, TeA, amongst others (Varga et al. 2011; 2015). It
is important to take into account that mycotoxins yield depend on inter- and intra- species variability.
To recognize species, and the specific isolates in specific geographical areas, is thus important to
have an overview of the secondary metabolites yield in those areas and to assess the potential
health risks (FAO 2003; IARC 2015). Generally, a mixture of secondary metabolites is yield by a strain,
resulting in staples contaminated by several mycotoxins. As aforementioned, a mixture of
mycotoxins leads to antagonist, additive or synergic effects, depending on the mycotoxin structure,
as well as the amount of each compound, the host (species, sex, age, health, diet), and the intake
pathway (Paterson and Lima 2010; IARC 2015).

A good example of the importance and applicability of proper recognition of strains is the use
of “non-toxigenic” strains to reduce the impact of “toxigenic-strains”. This method is based on the
importance of microbiota diversity and the competition between strains, in order to reduce the
prevalence and effects of undesirable strains. In fact, this method seems to have excellent results,
and its use is widespread in the USA, Africa and Eastern Europe (IARC 2015; Bandyopadhyay et al.
2016). Rodrigues et al. (2013) already underlined the importance of a diverse microbiota, which
could explain the low rates of detrimental species and isolates of Aspergillus identified in their
chestnut samples. Similarly, Prencipe et al. (2018) explained their results by the diversity of species
and non-aflatoxigenic strains that reduce the presence of aflatoxigenic strains.

Aspergillus from Flavi section also synthesizes beneficial compounds, some of which are linked
to billion dollar markets. A. sojae, A. oryzae and A. tamarii are used for the production of kojic acid
and several enzymes, like a-amylase, glucoamylase, and proteases, for the production of starch,
baking, and brewing worldwide (Rigo et al. 2002; Machida et al. 2008). In this section, non-
aflatoxigenic species in particular are interesting to study and to identify new beneficial compounds.

On the other hand, climate change is challenging fungal relationships because fluctuations in
temperature and rainfall are creating new environmental conditions that lead to shifts in community
composition and the formation of new ecological niches. These changes will vary depending on the
worldwide areas, and will create new pressures and scenarios; in general, these environmental
changes will affect the agricultural cycles. Therefore, climate change affects microbiota composition
in soils and crops, modifying associations (symbiotic or not) between fungi and other organisms, and

creates changes in the species distribution patterns. Modeling projections suggest a worldwide
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increase of detrimental effects caused by harmful fungi (Wu et al. 2011; Medina et al. 2014; Jayasiri
et al. 2015).

In Europe, climate change could increase the risk of AF contamination. Battilani et al. (2016)
suggested that the risk of Aspergillus flavus presence increases in scenarios with a temperature rise
of 2 to 5 °C, and its home range could expand. In general, areas that are most at risk are the south
and central parts of Europe, with migrations northwards. Moreover, these scenarios place AF
production above the threshold set by the European Regulations in food and feed (Commission
Regulation 2001/466/EC). Battilani et al. (2016) study focused on A. flavus and maize, its principal
substrate. Likewise, other species from the section, that have not been studied, can follow the same
patterns (Prencipe et al. 2018). For instance, some AF producers, like A. parasiticus, A. sergii, A.
transmontanensis, and A. mottae, contaminate other staples, in particular nuts and oily grains.
Although, these species are less frequent in staples, they produce B- and G- aflatoxins, as well of
other mycotoxins, and may cause health risks. Regardless the preliminary results of ARVALIS project,
this is the first report of A. parasiticus and A. tamarii on maize in France, and the frequency of Flavi
section is expected to increase under the climate change scenarios.

In tropical and subtropical areas, species belonging to Flavi section are more frequent, growing
principally on maize, peanuts, nuts, spices, which are ingested on daily basis by the inhabitants. In
these areas, an important part of smallholder farmers consume the products as home-grown foods.
Besides, commercialization of the products in small markets is usual; conversely, the methods to
control mycotoxins contamination in food and feed are scarce. Altogether, Flavi species place the
population at high risk of mycotoxin consumption (Paterson and Lima 2011; IARC 2015;
Bandyopadhyay et al. 2016). Depending on the region, climate change would not be favorable either,
as these areas would become more arid, and rainfall would fluctuate. For instance, in Africa and
Oceania the projections suggest a decrease in suitable areas for agriculture, whereas in Asia and
Latin America they suggest more savanna and fewer tropical forests (Figure 1) (Paterson and Lima
2011). Once again, the lack of knowledge of the diversity of Aspergillus section Flavi, and the poor
information of the life history and ecology of most species could lead to more health risk in these
areas. Under climatic changing conditions there is a possibility that in Africa, A. minisclerotigenes, A.
parvisclerotigenus and A. korhogoensis could expand their home ranges; the scenarios of climate
change suggest drier and warmer conditions that apparently favor their frequency. A recent study on
Aspergillus flavus clade showed that strains from Benin grouped together, forming a group
evolutionary different from the other strains of the clade (Moore et al. 2017). These strains
correspond to A. parvisclerotigenus strains and support the results showed in this study. To

summarized, Aspergillus flavus is the most frequent species in Africa, however, some areas have high
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presence of A. flavus Sgc morphotype, in the agro-ecological zone of Northern Guinea savannah, A.

parvisclerotigenus, and in Kenya, A. minisclerotigenes.

Figure 1: Predicted areas to become tropical. In light color, the predicted areas to become tropical, therefore
more suitable to mycotoxin contamination (reprinted from Paterson and Lima 2011).

> Phylogenetic inference vs. other molecular techniques

The use of molecular markers revolutionized science. They opened a new understanding of the
world, and provided new tools to comprehend life. They enabled the recognition of the biodiversity
and to clarify relatedness between different groups, from kingdom to species. Fungi were thus
recognized as the closest group of Animalia thanks to molecular markers, which also helped to
recognize among cryptic species. In a practical way, molecular markers have allowed the
identification of pathogens and their biological machinery. In addition, they can also be used for
screening species in different environments.

Mitochondrial RFLPs in fungal systematics gave fruitful results, resolving some relatedness in
Aspergillus, and has been suggested to be relevant for Flavi section screening. Several restriction
enzymes were used, but the procedure sometimes failed to discriminate strains, which can be linked
to section variability (Quirk and Kupinsky 2002). To date, this technique is less applied because it is
time consuming and unfriendly, requires important amounts of DNA, and has screening limitations
(Grover and Sharma 2014). RAPDs have also been widely used as screening tool in the section. Tran-
Dinh et al. (1999) reported a population study that used a battery of RAPDs combining several
primers to distinguish isolates of A. flavus and A. parasiticus. They have shown that A. flavus is more

polymorphic, which contributes to the hypothesis that its plasticity confers advantages in its life



GENERAL DISCUSSION, PERSPECTIVES AND DISCUSION

history and pathogenicity (Hedayatii et al. 2007). Gongalves et al. (2012b) used RAPDs as screening
technique for section Flavi in Brazilian nuts, and identified a high variation in the fungal populations.
They complemented their studies with other techniques, including phylogenetic inference. Godet
and Munaut (2010) performed another example of RAPDs, showing interesting results. They
developed a molecular analytical tool that included several RAPDs and a small digestion; this
technique used several markers and real-time PCR to discriminate among species. Using this
technique, they could distinguish important species from the section, albeit, they could not
differentiate A. parvisclerotigenus. Again, the use of more than one molecular marker showed better
results than the use of a single marker. However, there are some drawbacks, RAPDs often target
unknown dominant markers, the results are not always reproducible because of low annealing
temperatures, and differences due to Taq polymerases are found. To solve these problems there are
variations of the technique that can improve it (Grover and Sharma 2014). Another technique useful
to screen in this section is the PCR-DGGE based on 8-tubulin (Chapter 2.2), since, it was able to
distinguish between A. flavus clade and A. parasiticus clade species, and highlighted the four strains
belonging to A. korhogoensis.

Although these techniques showed good results, phylogenetic inference is a finer tool for
species screening. Its robustness makes it the third axis of the polyphasic approach, which is
mandatory for species description in Aspergillus section Flavi. Phylogenetic inference uses identified
gene markers, and compares the sequences based on complex mathematical algorithms that test the
plausibility of evolutionary scenarios based on their nucleotides. Since it includes all these data, it is
an excellent tool when used properly. An example of the ability to discriminate among strains in Flavi
section, is the comparison with PCR-DGGE, although this technique is innovative, its accurateness
was lower than that of phylogenetic inference. The latter resolved the relationships for group 4 (Maci
8 sample), which was characterized as A. parvisclerotigenus, and showed robust evidence of group 3
as a novel species.

As suggested in the last paragraph, phylogenetic inference is convenient to unmask
relationships amongst fungal species and can be used as screening tool for taxa, like Aspergillus
(Taylor et al. 2002; Peterson 2008; Mitchell 2010; Raja et al. 2011). Some of the characteristics that
make it a robust molecular tool are highlighted. First, phylogenetic inference allows the use of more
than one molecular marker to solve questions regardless relationships (Peterson 2008; Soares et al.
2012). Second, this technique is friendly and quick. Third, the algorithms used by the software are
complex and include several evolutionary scenarios that enable to test complex assumptions to test
relatedness between isolate sequences. Fourth, the data generated for each marker can be reused,
and by anyone, once deposited in GenBank; whereas other molecular techniques requires new

control cultures for each new analysis to compare results. Fifth, free software for analysis are
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available, as well as tutorials and manuals explaining how to use them. Besides, on line courses
become frequent and inexpensive.

Conversely, the main issues with phylogenetic inference are to properly perform the steps.
Molecular markers should be selected according to the aim of the study, markers has to be
informative, and can be one or several. The same gene has to be amplified from different organisms,
and amplicons have to be confirmed as the correct sequences in order to compare the same gene,
and avoid the amplification of ortholog sequences or genes with multiple copies in the genome. A
proper alignment of sequences must be performed, to date there are several software that performs
this step, usually using CrustalW algorithm, but alighnments must always be checked by the naked
eye. This is a crucial step, because if there are some errors in the alignment, a completely different
inference can be obtained from the data. Depending on the aim of the study, introns can be used;
and gaps must be treated carefully. The best evolutionary nucleotide model must always be tested
and software that test different evolutionary scenarios should be chosen (e.g. jModelTest,
PartitioningFinder). If a concatenated dataset was chosen, it is important to run tests of evolutionary
nucleotide model for each partition and coalescence test (Beast and Mesquite, among other
programs include complex test to try to find the likelihood of all possible scenarios). Once these steps
are performed, the next step, which is time consuming, is to perform the analyses. This step must
include all the priors of the alignment, and it is suggested to run likelihood and Bayesian analyses to
infer properly the relationships between the sequences of the sample. There are different software
to perform these analyses, such as BEAST, GARLI, MrBayes, as well as some platforms developed to
save computing time that are online, like CIPRES. Finally, once the analyses have been performed,
the interpretation of topologies has to be performed thinking in the question to be solved and

including the knowledge of the group that is being studied.

» Single locus vs. multilocus

Phylogenetic studies to discriminate among species in Flavi section are based in a few genes
already considered as informative markers (ITS, B-tubulin, cmdA, mcm?7, rpb2, tsrl, etc.). Some
authors analyzed single genes and subsequently compared their topologies to classify species (Varga
et al. 2011; Gongalves et al. 2012b; Taniwaki et al. 2012; Tam et al. 2014, Pitt et al. 2017; Prencipe et
al. 2018); while others used a mixture of single and multilocus analyses to classify them (Probst et al.
2012; Gongalves et al. 2012; Soares et al. 2012). However, the use of multilocus datasets has been
suggested as a good tool to perform robust phylogenetic analyses (Taylor et al. 2000; Samson and
Varga 2009; Houbraken et al. 2014). The advantage of using concatenated matrices over the use of

single genes analyses lies in the addition of informative sites to the final analysis, whereas in single
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genes analyses the branches should be compared at the end of the analysis in order to obtain a
consensus between the genes. Before, the main issue with a concatenated approach was that the
analysis of all genes was done as a single gene, which can be reflected in the loss of coalescence, but
nowadays this problem can be solved by analyzing the evolutionary models of each gene and
performing coalescence tests (Gadagknar et al. 2005; Degnan and Rosenberg 2009; Lanfear et al.
2016). It is important to recall that evolution rates are directly associated to selection pressures, and
their effects differ between genomic region, genes loci, and the sections of a gene (exons, introns,
and nucleotide position in the codon) (Huelsenbeck et al. 1996; Degnan and Rosenberg 2009).
Herein, | agree with this statement, based on the slightly differences observed by each gene, that the
incorporation of more genes to the analyses can help to discriminate in a proper way the species in
this section.

The use of a single gene can be useful to have a picture of the relatedness of species in the
section. As part of the work conducted in this study, several single gene analyses were performed
using variable number of haplotypes to test among genes. As a result, the use of at least three genes
is hardly recommended. The results observed during the analyses are also comparable to those
reported in the literature (previously mentioned).

| agree with the suggestion of several authors (Geiser et al. 2007; Seifert 2009; Schoch et al.
2012) that explain that the use of /TS is useless to predict the relatedness within section Flavi. The
use of this gene permits to split the section Flavi into the main clades: A. nomius, A. tamarii, and A.
flavus sensu Varga et al. (2011). Albeit, /TS gene is too conserved to clarify relationships within these
clades, making it not recommended to screen these fungi because it does not add valuable
information and its amplification and sequencing increase the cost and time of the analyses.

The genes benA and cmdA are widely used to characterization of Aspergillus species, and in the
Flavi section (Taniwaki et al. 2012; Gongalves et al. 2012b; Soares et al. 2012; Prencipe et al. 2018).
They are generally used in single gene analyses, and topologies are then compared. However, the
resulting topologies often differ slightly in the placement of species in the clades (Hong et al. 2006).
The same tendency was observed in the analyses performed in this study. The results for benA and
cmdA had the same tendency, but slightly differences were identified in certain species relationships.
A main difference was observed when A. korhogoensis strains were analyzed. The four strains were
always nested in the A. flavus clade (following Varga et al. 2011 classification), but there were
differences between both topologies. Topology of benA showed several polytomies in the clade A.
flavus (following Varga et al. 2011 classification); in fact, A. novoparasiticus, A. korhogoensis and
some strains of A. parvisclerotigenus are not resolved with this gene, whereas, cmdA had a tendency

to group the species as expected (following the classification of Soares 2012).
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Mcm7 and rpbl genes have also been tested for phylogenetic inference in Aspergillus,
although their use is less frequent than the previous two genes. Single gene analyses for mecm7 and
rpb1 tested in this study showed that both genes discriminate the A. parasiticus clade from the A.
flavus clade, but they are not informative enough to solve relationships within each clade. Similarly,
A. mottae was placed differently in both analyses; it was nested in A. flavus clade with mecm?7, and in
A. parasiticus clade with rpb1.

Mcm7 topology clustered together species belonging to A. flavus clade, and the strains nested
inside were grouped more or less as expected, yet it was not useful to divide the sister species A.
parvisclerotigenus and A. korhogoensis. Conversely, the results of A. parasiticus clade were less
robust, the topology showed polytomies for almost all species. The topology for rpb1 showed clear
differences between A. flavus clade and A. parasiticus clade, but it was not informative enough to
solve the relationships within each clade, in particular for A. parasiticus clade. Rpb1 divided A. flavus
clade in three main groups (A. flavus, A. minisclerotigenes and A. parvisclerotigenus/A. korhogoensis),
but strains of A. minisclerotigenes did not formed a group with a node, they were placed as
polytomies in the cluster. A. tamarii clade and A. nomius clade were placed as expected with the
genes mcm7 and rpb1. AmdS followed a similar trend; A. bertholletius was settled as a basal group,
followed by the clades A. nomius and A. tamarii. The clades A. parasiticus and A. flavus were
evidenced using amdsS. A. flavus clade was divided in three polytomic clusters, A. flavus/A. oryzae, A.
minisclerotigenes and A. parvisclerotigenus/A. korhogoensis. The clade A. parasiticus was clustered
as expected, except for A. sergii, which was settled as the ancestral taxon of A. parasiticus/A. flavus
clades and A. mottae was nested as the sister taxon of A. novoparasiticus. AmdS was quite
informative, but it is not so easy to amplify because there are several copies in the genome, hence,
this gene is not the best option for phylogenetic inference in Aspergillus.

To our knowledge, the use of genes related to reproduction is not common in phylogenetic
analyses of Aspergilli. Here, we tested ppgA, preA and preB. The results for the three genes showed
interesting topologies. PreA and PreB had similar topologies, which were congruent with the
expected results as they split the A. flavus clade from the A. parasiticus clade. The relatedness within
each of these clades was congruent with the expected topologies; in general, all species were
clustered together. They differed slightly in the position of A. korhogoensis, which was settled as
basal taxon of A. flavus clade with PreA, and as sister taxon of A. parvisclerotigenus with PreB. The
placement of A. transmontanesis changed in the A. parasiticus clade. A. mottae was embedded in A.
parasiticus clade with both genes. The results with ppgA were different; the topology clustered
species of the A. flavus clade together, but the relationships within the clade were poorly resolved,
showing several polytomies. Conversely, the relationships in A. parasiticus clade were better

explained and species were clustered together as expected.



GENERAL DISCUSSION, PERSPECTIVES AND DISCUSION

In general, the use of a single gene solves poorly the relationships within A. flavus and A.
parasiticus clades, particularly in the last one. A. mottae was nested differently with the different
genes. All genes placed A. bertholletius as basal group and all genes placed A. tamarii and A. nomius
clades as expected.

On the other hand, AfIP showed poor results. First, amplification of the genes was not
straightforward. Secondly, the species were generally poorly clustered, with the exception of A.
minisclerotigenes, A. parvisclerotigenus/A. korhogoensis and A. tamari clade; whose haplotypes were
grouped as expected. Polytomies were identified in all the clades, and A. novoparasiticus was split in
two basal clades. This gene was not informative at any level and was quite complicated to amplify, so
it is not recommended for use in phylogeny.

The use of concatenated genes helped to clarify the relationships within the group. As
explained above, genes have different evolutionary rates, which were expressed as differences in the
topologies. The use of concatenated genes incorporates the different evolutionary histories,
providing more robust results (Huelsenbeck et al. 1996; Seifert 2009; Taylor et al. 2000), so the use of
concatenated matrix is therefore recommended, and the advantages and disadvantages of three

genes matrices will be explained in the next section.

» Selecting the best genes for the “phylogenetic molecular tool”

The use of benA and cmdA are highly recommended to unmask the relationships in this
section. Both markers are highly recommended for use in a concatenated matrix, because the
relationships in the group are better explained than when single gene matrices are used, thus, both
genes are necessary to cluster isolates and species properly. Moreover, the copious amount of
published data on both genes is an advantage, because haplotypes of several strains can be
integrated into the matrices, adding more information to the analyses. Nevertheless, | observed that
they were not sufficient to place properly A. korhogoensis. Further, partition analyses had sometimes
integrated both genes into the same partition and under the same evolutionary model, whereas, in
some other cases both genes were included in different partitions, indicating the need of
evolutionary model analyses each time than an analysis is performed.

In this study, two good examples of the applicability of benA and cmdA as molecular markers
for Flavi section are shown. The first shows how the use of both genes facilitates the identification of
strains in this section (chapters 2.2 and 2.4). In the study of strains isolated along the peanut
production chain, both genes allowed the classification of strains as A. flavus, A. parvisclerotigenus
and four strains as a new clade, A. korhogoensis. Albeit, the two genes used independently or

together were not sufficient to nest the new species in Aspergillus flavus clade. These results were
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improved by including at least one gene. In the ARVALIS study, we observed that the strains were
placed consistently with morphological results when both molecular markers were used.

Despite this, the addition of more genes resulted always in an improvement of the analyses;
with results more consistent with the information already known from the literature and previous
analyses (species classification in the section).

Three gene matrices (benA and cmdA + one more gene) were tested to identify the advantages
and disadvantages of each combination. The tested genes included mecm?7 (Figure 2), rpb1 (Figure3),
ppgA, preA (Figure 4) and preB (Figures 5). The inclusion of either of them settled A. mottae as the
basal taxon of A. flavus + A. parasiticus clades. The clades A. nomius and A. tamarii with all the
combinations were settled as basal clusters of the previous taxa (A. mottae (A. parasiticus clade + A.
flavus clade)). However, the matrices including preB and ppgA clustered A. nomius and A. tamarii as
a sister group of the aforementioned taxa (A. mottae (A. parasiticus clade + A. flavus clade)), whereas
mcm7, rpb1 and preA settled A. nomius as the most ancestral clade, followed by the A. tamari clade
and the more derived clades. Perhaps the lack of some taxa in both clades did not allow a more
precise resolution for preB and ppgA.

In the case of A. parasiticus clade, all combinations clustered species together, and settled A.
sergii as the basal taxon in the cluster, although A. transmontanensis and A. arachidicola were placed
differently depending on the gene combination. For A. flavus clade, all genes related A. flavus strains
(A. flavus + A. oryzae) with A. minisclerotigenes, and overall all showed acceptable results. A.
parvisclerotigenus, in most cases, was settled in a cluster as sister taxon of the group composed by A.
flavus, A. oryzae and A. minisclerotigenes (with or without A. korhogoensis). Despite, the main
difference among the topologies was the settlement of A. korhogoensis. The topology of benA, cmdA
and mcm7 genes did not nested A. korhogoensis in A. flavus clade, placing A. korhogoensis as a
cluster related with A. flavus and A. parasiticus clades. Conversely, A. korhogoensis was nested with
A. parvisclerotigenus, as it sister taxon, with preB, and as basal taxon of A. flavus clade when either
rpbl, preA, ppgA genes were added. It is important to recall that A. korhogoensis is a cryptic species
that was nested with A. parvisclerotigenus after analyses based on a polyphasic approach that
included analyses of a matrix concatenating all genes, morphological analyses and secondary
metabolic profile, this result is robust and confirms A. korhogoensis position as sister taxa of A.

parvisclerotigenus.
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An overview of the results confirms that the use of at least one of these genes is strongly
recommended for performing a robust topology of the section. As described before, these genes are
presented as a single copy in the genome. Further, these genes could help to solve discrepancies
obtained by the use of only benA and cmdA, as explained above and through chapter 2.3.

Sexual genes Preb and PreA showed interesting topologies, grouping most clades as expected,
which make them suitable for phylogenetic analyses in section Flavi. They were more easily amplified
for derived taxa. In the case of preA, it was not easily amplified, and it is necessary to develop new
primers in order to be use in other sections of Aspergillus. For preB even though it was easier to
amplify, it is also necessary to develop more universal primers for its use in other sections of
Aspergillus. On the contrary, for the discrimination among “economically important species” from
section Flavi, both genes add information to the multilocus analyses. The use of mecm7 did not
increase the reliability of the analysis for A. korhogoensis, but it is informative for the other clusters
of the section Flavi. Furthermore, it has the advantage that is more frequently amplified, making
more feasible to obtain data of several species, and also it is a gene that was quite easily amplified, it
has already used with good results in studies on A. section versicolores (Jurgevic et al. 2012). Mcm7
has been suggested to be a good marker in other section of Aspergillus, in Ascomycota, and fungi
(Schmitt et al. 2009). Based on that, it can also be recommended as a third marker for other sections
of Aspergillus, and when A. korhogoensis is not included in the matrix, it is robust for this section.
Rpb1 and ppgA, show as well good results, making them also good candidates for analyses. Rpb1 is a
longer region and includes exons and introns, adding more informative sites, there are also evidence
that it is informative in studies comprising several genes, like in A. section versicolores (Jurgevic et al.
2012), or in combination with the gene tsrl, which allowed the description of A. tanneri species
(Sugui et al. 2012).

To summarize, the genes tested are informative for the section Flavi, and they might be
informative for other economically important sections of Aspergillus, such as section Nigri, Fumigat,
and Nidulans and in Penicillium. Before testing these genes in other sections, the development of
primers that targets these regions might be necessary, especially for sexual genes. The inclusion of
one or two more genes (mcm7, rpbl or a sexual gene), add robustness to the analyses in section
Flavi, and are therefore necessary to be included. ITS gene is not useful for characterization at
species level, and its use should be avoided. In addition, phylogenetic inference is a robust approach
to screen species of section Flavi, it is true that slightly differences can be appreciated while different
genes are used, but the species clustered together and most combination allowed settling correctly

the species within their clusters.
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3.2 CONCLUSION

Molecular markers have highlighted the diversity of fungi, including species that cannot be
grown under laboratory conditions, which confirms the use of molecular inference as an appropriate
tool. This is not only restricted to fungi. The inclusion of molecular data has allowed unmasking the
biodiversity of several taxa, including archeas, bacteria, vertebrates, plants and algae. In relation with
the molecular approach, the results obtained during this study have evidenced that the use of
phylogeny inference based on a concatenated matrix is a fine tool to discriminate among species of
Aspergillus section Flavi. This technique was used to confirm the characterization performed by other
approaches, and proved to be a feasible and robust technique. Several species described after 2012
that were not analyzed together, were included in the analyses and their position within the section
was strengthened by adding information from more genes. Furthermore, a novel species belonging
to the section was described, A. korhogoensis. Based on the literature of the selected markers, it may
be interesting to apply the same combination of markers to discriminate between other sections of
Aspergillus and Penicillium.

A good combination of molecular markers is required; based on the results, | recommend the
use of a multilocus matrix that includes at least benA and cmdA, which have proven several times to
be two excellent markers. To increase the power of the analysis, at least one additional marker must
be added, such as mecm7, rpb1, preB, preA and ppgA are recommended. Conversely, the use of ITS in
Aspergillus can lead to an underestimation of the diversity because it is a too conserved gene. The
study of mating type MAT1 loci in the section is useful for increasing knowledge of reproduction.
Further analyses could help to understand better the many functions of these genes in the biological
machinery of fungi, and in the future can be used in biotechnological processes to control
development of strains.

| agree with the statement that A. flavus, A. parasiticus and A. nomius are species complexes,
and that the majority of species described over the last decade are cryptic (except A. bertholletius
and A. hancockii). Further, the recognition of the new species is increasingly accepted by researchers
as they were described using several traits, which show the reliability of these independent evolutive
lineages. More studies should be done in the section Flavi because there is a high probability that the
number of species will increase, as well as the ecological knowledge and information regardless the
species life histories.

Even though the use of phylogenetic inference is a good method to identify species at fine
scale, and that | hardly recommend its application, it is important to keep in mind that it is not the

only available tool. It has to be used cautiously, and bearing in mind that a morphological approach
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and a secondary metabolic characterization are also important. There are several critical moments

that can lead to misidentification.
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RESUME :

Certains champignons, notamment des Ascomycetes, peuvent synthétiser des métabolites secondaires toxiques
pour les hommes et les vertébrés, appelés mycotoxines. Etant donné que la présence de ces champignons dans les aliments
de base constitue un risque potentiel pour la santé humaine et animale, les aliments de base sont éliminés lorsqu’ils sont
contaminés.

La section Flavi est un des groupes de champignons les plus importants du point de vue économique et sanitaire car
il comprend des especes productrices de mycotoxines. Parmi les mycotoxines produites par ce groupe se trouvent les
aflatoxines (AF), considérées comme une préoccupation majeure en raison de leurs effets délétéres chez les vertébrés. Les
especes de la section Flavi se développent principalement dans les régions tropicales et subtropicales car elles bénéficient
de conditions environnementales optimales. De plus, les conditions de récolte et de stockage sont souvent inappropriées,
favorisant ainsi leur développement. Dans les régions tempérées, ces especes se rencontrent moins fréquemment.
Cependant, le réchauffement climatique pourrait favoriser leur colonisation.

L'identification des espéces d’Aspergillus de la section Flavi est un défi, en raison de I'inter- et intra-variabilité des

caractéres. Par conséquent, I'utilisation d'une seule méthode d'identification (caractérisation morphologique, moléculaire
ou du profil des métabolites secondaires) est insuffisante. Inversement, le développement d'outils moléculaires a facilité la
tache. Le but de notre étude était de déterminer les relations entre les espéces d’Aspergillus de la section Flavi a partir de
différents marqueurs moléculaires (ITS, benA, cmdA, amdS, préA, perB, ppgA, aflP, génes Mat1), puis d'identifier ceux qui
permettent une classification des especes par inférence phylogénétique.
L'utilisation de I'inférence phylogénétique dans cette étude a montré qu'il s'agit d'une approche robuste pour identifier les
especes d’Aspergillus de la section Flavi, notamment en confirmant certaines hypothéses déja proposées pour les especes
de la section Flavi. En effet, I'ajout de marqueurs moléculaires a permis de confirmer le placement phylogénétique des
especes dans la section Flavi. De plus, une nouvelle espéce cryptique a pu étre décrite: Aspergillus korhogoensis
(appartenant au clade A. flavus). Notre étude a également pu mettre en évidence que les marqueurs moléculaires
sélectionnés (benA, cmdA, mcm7, rpbl, preB, preA et ppgA) sont de bons candidats pour I'étude d’autres sections
d'Aspergillus. L'utilisation de I'inférence phylogénétique est une méthode élégante permettant d’identifier de fagon précise
les especes. Sur la base de nos résultats, il est recommandé d'utiliser des matrices concaténées pour effectuer une
inférence phylogénétique dans cette section, et la meilleure combinaison inclut les génes benA, cmdA, et l'inclusion d’un
autre géne : mem7, rpbl, preB, preA ou ppgA. A l'inverse, I'utilisation du gene ITS chez Aspergillus peut conduire a une
sous-estimation de la diversité car le géne est tres fortement conservé. L'étude des génes du loci Mat1 dans la section est
utile pour accroitre les connaissances sur la reproduction sexuée chez les ascomycétes. De plus, plusieurs fonctions de la
machinerie biologique fongique sont liées aux genes du loci Mat1.

La caractérisation du profil métabolique secondaire chez les souches d’Aspergillus de la section Flavi doit étre
utilisée, non seulement comme outil d'identification, mais également pour discriminer les souches toxinogénes et
atoxinogénes. La section Flavi renferme des espéces capables de produire a la fois de mycotoxines et de composés
bénéfiques. Parmi les mycotoxines qui devraient faire I'objet d'une attention particuliere figurent les AF, I'acide
cyclopiazonique, les versicolorines a et b, la stérigmatocystine. Une étude plus approfondie du métabolisme secondaire
sera également utile pour la recherche de nouveaux composés bénéfiques.
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