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Introduction Conformal structure

A semi-Riemannian metric g on a smooth manifold M is a smooth symmetric nondegenerate (0, 2)-tensor field on M of signature (p, q). The pair (M, g) is called Riemannian (resp. Lorentzian) if p = 0 (resp. p = 1 and q > 0). For a semi-Riemannian manifold (M, g) one can consider the conformal class [g] which is the set of all semi-Riemannian metrics on M of the form e f g where f is a smooth function on M . Given such conformal class of metrics is called a semi-Riemannian conformal structure on M .

A differomorphism ϕ : M → M is called a conformal map if it preserves the conformal structure on M , i.e., for a metric g (hence for any) in the conformal class [g] there exists a smooth function f such that the pullback metric ϕ * g coincides with e f g. The group of conformal transformations on (M, [g]) is denoted by Conf(M, [g]). When the metric class [g] is understood we simply denote the conformal group by Conf(M ). Indeed, if dim M ≥ 3, then Conf(M ) is a Lie group ( [START_REF] Sh | Transformation Groups in Differential Geometry[END_REF]).

The concept of geodesic in a conformal class [g] is not relevant, since a geodesic γ respect to a metric g ∈ [g] may fails to be a geodesic respect to other metrics in [g]. However, if [g] is an indefinite structure and γ is a lightlike geodesic respect to g, then it is a (unparametrized) geodesic respect to all the metrics in [g]. Indeed two indefinite semi-Riemannian metrics on a manifold lie in the same conformal class if and only if they determine the same lightcone cone in the tangent space of every point.

Two semi-Riemannian manifolds (M, g) and (N, h) are said to be conformally equivalent if there exists a conformal map ϕ from M onto N such that ϕ * h belongs to the conformal class [g]. A semi-Riemannian conformal structure [g] on a manifold M is called essential if the conformal group Conf(M ) does not preserves any metric in the class [g]. A conformal structure is called inessential if it is not essential. Indeed, given an inessential structure (M, [g]), the conformal group Conf(M ) coincides with the isometry group of (M, g), for all g ∈ [g]. Roughly speaking, the conformal group of an essential structure [g] is strictly bigger than the isometry group of any metric g ∈ [g].

A semi-Riemannian manifold (M, g) of signature (p, q) is called locally conformally flat if for every point p ∈ M there exists an open neighborhood U around p, and a conformal map f : U → R p,q .

Riemannian geometry

Let R 1,n+1 = (R n+2 , q) be a Lorentzian vector space. The nullcone N 1,n+1 of R 1,n+1 is a degenerate hypersurface. The image of nullcone by the natural projection P : R 1,n+1 \ {0} → RP n+1 is homeomorphic to the n-sphere S n . The degenerate metric on N 1,n+1 admits a canonical Riemannian conformal structure The standard Riemannian sphere S n is the central object of the Riemannian geometry. It conformally compactifies the Euclidean space

S n = E n ∪ {∞}.
Theorem 0.1. (Liouville's Theorem) Let U, V ⊂ E n (n ≥ 3) be two connected nonempty open subsets, and f : U → V be a conformal map. Then f extends to a global conformal map on E n .

The stereographic projection from the Euclidean space E n into S n is a conformal map. Hence, by Liouville's theorem, one can conclude that, a conformal map between two open non-empty connected subsets of S n (n ≥ 3) is the restriction of an element of P O (1, n+1). Therefore, every locally conformally flat Riemannian manifold of dimension greater than or equal to 3 admits a (P O(1, n + 1), S n )-structure.

The image of the domain {q < 0} ⊂ R 1,n+1 by P is conformally equivalent to the hyperbolic space H n+1 . The boundary of H n+1 in RP n+1 is exactly S n . Hence, S n can be seen as the conformal boundary in infinity of hyperbolic space.

In [START_REF] Ferrand | The action of conformal transformations on a Riemannian manifold[END_REF], J. Ferrand proved that if [g] is an essential Riemannian structure on a manifold M of dimension n ≥ 2 then (M, [g]) is conformally equivalent to the round n-sphere S n or the Euclidean space E n . However, if the metric g is not definite, there is no such classification of essential structures. Even if we restrict ourselves to the compact manifolds or Lorentzian metrics, there are infinitely many examples of essential structures, see for example [START_REF] Frances | Essential conformal structures in Riemannian and Lorentzian geometry[END_REF][START_REF] Alekseevski | Self-similar Lorentzian manifolds[END_REF].

Lorentzian geometry

In contrast with Riemannian geometry and the sphere S n , the (n + 1)-dimensional Einstein universe Ein 1,n (n ≥ 1) is the Lorentzian analogue. It is a compact manifold equipped with a Lorentzian conformal structure. Indeed, up to a double cover � Ein

1,n

Einstein universe is conformally equivalent to the direct product (S 1 × S n , -dt 2 + ds 2 ) where dt 2 and ds 2 are the usual round metrics on the spheres S 1 and S n of radius one, respectively. There is a Lorentzian version of Liouville's Theorem.

Theorem 0.2. (Liouville's Theorem [START_REF] Frances | Geomeetrie et dynamique lorentziennes conformes[END_REF]Theorem 4.4]) Let U, V ⊂ Ein 1,n be non-empty connected open subsets, and f : U → V be a conformal map. Then f extends to a unique global conformal map on Ein 1,n .

Therefore, every locally conformally flat Lorentzian manifold of dimension n + 1 ≥ 2 admits a (Conf(Ein 1,n ), Ein 1,n )-structure. In particular, the Lorentzian model spaces of constant sectional curvatures c, namely, the Minkowski space E 1,n for c = 0, the Anti de-Sitter space AdS 1,n for c = -1, and the de-Sitter space dS 1,n for c = 1, all are conformally equivalent to some specific open dense subsets of Ein 1,n .

V. Pecastaing in [START_REF] Pecastaing | Lorentzian manifolds with a conformal action of SL[END_REF] proved that, if M is a compact manifold of dimension ≥ 3 equipped with a Lorentzian conformal structure [g], and G is a connected Lie group, locally isomorphic to SL(2, R), which acts on (M, [g]) essentially, then (M.[g]) is locally conformally flat.

Let R 2,n+1 be the (n + 3)-dimensional real vector space endowed with a quadratic form q of signature (2, n + 1). The nullcone N 2,n+1 of R 2,n+1 is the set of non-zero vectors v ∈ R 2,n+1 with q(v) = 0. The nullcone N 2,n+1 is a degenerate hypersurface of R 2,n+1 . The (n + 1)-dimensional Einstein universe Ein 1,n is the projectivization of the nullcone N 2,n+1 via P : R 2,n+1 \ {0} → RP n+2 . It is a compact submanifold of RP n+2 , and the degenerate metric on N 2,n+1 induces a Lorentzian conformal structure on Ein 1,n . The group O(2, n + 1) -group of the linear isometries of R 2,n+1 -acts on Einstein universe conformally. Indeed, on can see the full conformal group Conf(Ein 1,n ) is P O(2, n + 1).

A (inextendable) lightlike geodesic in Einstein universe Ein 1,n is called a photon. In fact, photons are the images of totally isotropic linear 2-planes in R 2,n+1 by P. The lightcone L(p) with vertex p ∈ Ein 1,n is the set of photons through a point p. The lightcone L(p) is a singular degenerate hypersurface. The only singular point is the vertex p and L(p) \ {p} is homeomorphic to S n-1 × R. The complement of a lightcone L(p) in Ein 1,n is an open dense subset called the Minkowski patch at p. Every Minkowski patch in Ein 1,n is conformally equivalent to the Minkowski space E 1,n .

A Linear isometry R 2,n → R 2,n+1 (n ≥ 2) embeds naturally a copy of Ein 1,n-1 in Ein 1,n called an Einstein hypersphere. The complement of an Einstein hypersphere in Ein 1,n is an open dense subset conformally equivalent to the Anti de-Sitter space AdS 1,n . On the other hand, a linear isometry R 1,n+1 → R 2,n+1 embeds naturally a copy conformal sphere S n in Ein 1,n called a spacelike hypersphere.

The complement of S n in Ein 1,n is an open subset conformally equivalent to the de-Sitter space dS 1,n .

The projectivization of domain {q < 0} ⊂ R 2,n+1 via P is an open subset of RP n+2 , and it is (up to a double cover) conformally equivalent to the model Anti de-Sitter space AdS 1,n+1 = q -1 (-1) ⊂ R 2,n+1 .

Obviously, the boundary of P(q < 0) in RP n+2 is Ein 1,n . Hence, one can consider the (n+1)-dimensional Einstein universe as the conformal boundary of the (n + 2)-dimensional Anti de-Sitter space. Indeed, this is the Lorentzian analogy of the hyperbolic space H n+1 and its conformal boundary S n .

For n ≥ 2, the universal covering space � Ein 1,n of Einstein universe Ein 1,n is conformally equivalent to the direct product (R × S n , -dt 2 + ds 2 ) where dt 2 and ds 2 are the canonical Riemannian metrics on R and S n , respectively. The group of conformal transformations of � Ein

1,n
is locally isomorphic to Conf(Ein 1,n ) (see [START_REF] Frances | Geomeetrie et dynamique lorentziennes conformes[END_REF]Proposition 4.5]). The four-dimensional (simply connected) Einstein universe � Ein

1,3
was the first cosmological model for our universe proposed by A. Einstein soon after the birth of General Relativity.

The typical example of essential Lorentzian structures is the Minkowski space E 1,n . However, Einstein universe Ein 1,n , its double covering � Ein On the other hand, the model spaces of non-zero constant sectional curvature, namely, Anti de-Sitter space AdS 1,n and de-Sitter space dS 1,n are examples of inessential structures.

Cohomogeneity one actions: a brief history

Felix Klein is known for his work on the connections between geometry and group theory. By his 1872

Erlangen Program, geometries are classified by their underlying symmetry groups. According to his approach, a geometry is a G-space M , where G is a group of transformations of M . This makes a link between geometry and algebra. The most natural case occurs when the group G acts on M transitively. In this case M is called a homogeneous G-space. For instance Euclidean, affine and projective geometries are homogeneous spaces.

One special case of non-transitive actions of transformation groups on manifolds is when the action has an orbit of codimension one, the so called cohomogeneity one action. The concept of a cohomogeneity one action on a manifold M was introduced by P.S. Mostert in his 1956 paper [START_REF] Mostert | On a compact Lie group acting on a manifold[END_REF]. The key hypothesis was the compactness of the acting Lie group in the paper. He assumed that the acting Lie group G is compact and determined the orbit space up to homeomorphism. More precisely, he proved that by the cohomogeneity one action of a compact Lie group G on a manifold M the orbit space M/G is homeomorphic to R, S 1 , [0, 1], or [0, 1). In the general case, in [START_REF] Berard-Bergery | Sur de nouvells variété riemanniennes d'Einstein[END_REF] B. Bergery showed that if a Lie group acts on a manifold properly and with cohomogeneity one, then the orbit space M/G is homeomorphic to one of the above spaces. Regarding to this classification, for a point p ∈ M the orbit G(p) is called principal (resp. singular) if its corresponding point in the orbit space M/G is an internal (resp. boundary) point.

If G is a compact Lie group which acts on a smooth manifold M , then there exists a complete Ginvariant Riemannian metric on M . The compactness assumption is not necessary condition for existence of the metric. A result by D. Alekseevsky in [START_REF] Alekseevsky | On a proper action of a Lie group[END_REF] says that, for an arbitrary Lie group G, there is a complete G-invariant Riemannian metric on M if and only if the action of G on M is proper. This theorem provides a link between proper actions and Riemannian G-manifolds.

Cohomogeneity one Riemannian manifolds have been studied by many mathematicians (see, e.g., [START_REF] Alekseevsky | G-manifolds with one dimensional orbit space[END_REF][START_REF] Berard-Bergery | Sur de nouvells variété riemanniennes d'Einstein[END_REF][START_REF] Grove | Positively curved cohomogeneity one manifolds and 3-Sasakian geometry[END_REF][START_REF] Grove | Curvature and symmetry of Milnor spheres[END_REF][START_REF] Grove | Cohomogeneity one manifolds with positive Ricci curvature[END_REF][START_REF] Mirzaie | On cohomogeneity one flat Riemannian manifolds[END_REF][START_REF] Mostert | On a compact Lie group acting on a manifold[END_REF][START_REF] Neumann | 3-dimensional G-manifolds with 2-dimensional orbits[END_REF][START_REF] Parker | 4-dimensional G-manifolds with 3-dimensional orbit[END_REF][START_REF] Podesta | Cohomogeneity one manifolds and hypersurfaces of the Euclidean spaces[END_REF][START_REF] Searle | Cohomogeneity and positive curvature in low dimension[END_REF][START_REF] Verdiani | Cohomogeneity one Riemannian manifolds of even dimension with strictly positive sectional curvature[END_REF][START_REF] Verdiani | Cohomogeneity one manifolds of even dimension with strictly positive sectional curvature[END_REF]). The subject is still an active one. The common hypothesis in the theory is that the acting group is closed in the full isometry group of the Riemannian manifold and the action is isometrically. When the metric is indefinite, this assumption in general does not imply that the action is proper, so the study becomes much more complicated. Also, some of the results and techniques of definite metrics fails for indefinite metrics. It is shown in [START_REF] Eschenburg | The initial value problem for cohomogeneity one Einstein metrics[END_REF] that for a Riemannian Einstein manifold (M, g) the PDE Ric(g) = λ.g (λ ∈ R constant) becomes an ODE if there exists a Lie group G ⊂ Iso(M ) acting properly and with cohomogeneity one.

The natural way to study a cohomogeneity one semi-Riemannian manifold M is to determine the acting group in the full isometry group Iso(M ), up to conjugacy, since the actions of two subgroups of Iso(M ) one conjugate to the other with an element in Iso(M ) admit almost the same orbits in M . This has been done for space forms in some special cases (see [START_REF] Ahmadi | Cohomogeneity one de Sitter space S n 1[END_REF], [START_REF] Ahmadi | Cohomogeneity one Minkowski space R n 1[END_REF] and [START_REF] Ahmadi | Cohomogeneity one three dimensional anti-de Sitter space, proper and nonproper actions[END_REF]). There is another approximation of acting groups on a manifold: the actions of two Lie subgroups G, H ⊂ Iso(M ) are called orbitally equivalent to each other if there exists an element g ∈ Iso(M ) such that for all p ∈ M , the orbits G(p)

and H(g(p)) coincide. It is obvious that, the action of two subgroup of Iso(M ) one conjugate to the other are orbitally equivalent, but the converse is not nessarely true (for example, the action of additive group R 1,n on the Minkowski space E 1,n by translations is orbitally equivalent to the action of Iso(Ein 1,n ), but evidently they are not conjugate to each other).

Cohomogeneity one three-dimensional Einstein universe

In this thesis, we propose to study conformal actions of cohomogeneity one on the three-dimensional Einstein universe Ein 1,2 . Our strategy in the study is to determine the representation of the acting group in the conformal Lie group of the Einstein universe up to conjugacy. Also, we describe the topology and the causal character of the orbits induced by cohomogeneity one actions in Ein 1,2 . As a matter fact, it follows from our study that a 2-dimensional orbit in Ein 1,2 induced by the conformal action of a connected Lie group is homeomorphic to R 2 , S 1 × R, S 2 , or T 2 = S 1 × S 1 .

The group of conformal transformations of Ein 1,2 is isomorphic to O(2, 3). The identity component of O(2, 3) is SO • (2, 3) which acts on Ein 1,2 transitively. Hence, a cohomogeneity one action on Ein 1,2 comes from a proper subgroup of Conf(Ein 1,2 ).

The proper actions are significant and they deserve to be studied first. Let G be a connected Lie subgroup of Conf(Ein 1,2 ). Then G acts on Ein 1,2 properly if and only if it is compact, since the Einstein universe is compact. Hence, up to conjugacy, G is a subgroup of the connected maximal compact subgroup of SO • (2, 3), namely SO(2) × SO [START_REF] Alekseevski | Self-similar Lorentzian manifolds[END_REF]. This group preserves a 2-dimensional linear subspace of R 2,3 of signature (2, 0). In Chapter 2, we show that up to conjugacy there are exactly two cohomogeneity one proper actions on Ein 1,2 , namely, SO(3) and SO(2) × SO [START_REF] Alekseevsky | On a proper action of a Lie group[END_REF]. The action of SO(3) on Einstein universe Ein 1,2 admits a codimension one foliation on which each leaf is a spacelike hypersphere. On the other hand, SO(2) × SO(2) admits a unique 1-dimensional timelike orbit homeomorphic to RP 1 , and on the complement, admits a codimension one foliation one which every leaf is conformally equivalent to the 2-dimensional Einstein universe Ein 1,1 , and exactly one of them is an Einstein hypersphere.

Rolling out the proper case already discussed above, in the non-proper case, we deal with subgroup of some known geometric groups such as: (R * × O(1, 2)) � R 1,2 group of conformal transformations on the 3-dimensional Minkowski space E 1,2 , O(2, 2) group of isometries of 3-dimensional Anti de-Sitter space AdS 1,2 , and O(1, 3) group of isometries of the 3-dimensional de-Sitter space dS 1,2 . In particular, we consider various representations of Möbius group PSL(2, R) and its subgroups in O [START_REF] Alekseevsky | On a proper action of a Lie group[END_REF][START_REF] Alekseevski | Self-similar Lorentzian manifolds[END_REF]. In most of the cases, we determine the Lie subgroups acting with cohomogeneity one on Ein 1,2 considering their corresponding subalgebras in the Lie algebra so(2, 3) = Lie(O(2, 3)).

In order to study the non-proper cohomogeneity one actions we have the following definition.

Definition 0.3. The action of a Lie subgroup G ⊂ Conf(Ein 1,2 ) is called irreducible if G preserves no non-trivial linear subspace of R 2,3 , and it is called reducible if it is not irreducible.

Theorem 0.4. [START_REF] Di Scala | Connected subgroups of SO(2, n) acting irreducibly on R 2,n[END_REF] Let G be a connected Lie subgroup of SO • (2, n) which acts on R 2,n irreducibly.

Then G is conjugate to of the following:

i: for arbitrary n ≥ 1: SO • (2, n).

ii: for n = 2p even: U (1, p), SU (1, p) or S 1 .SO • (1, p) if p > 1,

iii: for n = 3: SO • (1, 2) ⊂ SO • [START_REF] Alekseevsky | On a proper action of a Lie group[END_REF][START_REF] Alekseevski | Self-similar Lorentzian manifolds[END_REF].

Thanks to above theorem, we have the following result about the irreducible cohomogeneity one actions on Ein 1,2 .

Theorem 0.5. Let G ⊂ Conf(Ein 1,2 ) be a connected Lie subgroup which acts on Ein 1,2 irreducibly and with cohomogeneity one. Then G is conjugate to SO • (1, 2) � PSL(2, R).

In Chapter 3, we prove Theorem 0.5. Indeed, this action comes from the known irreducible action of PSL(2, R) on the vector space R 4 [X, Y ] of homogeneous polynomials of degree 4 in two variables X and Y . We show that, this action admits in Ein 1,2 three orbits: a 1-dimensional lightlike orbit homeomorphic to RP 1 which is not a photon, a 2-dimensional degenerate orbit homeomorphic to R 2 , and an open orbit on which PSL(2, R) acts freely. Also, we describe the orbits induced by this action on the complement of Einstein universe Ein 1,2 in RP 4 .

According to Theorem 0.4, one way to classify the cohomogeneity one reducible actions is to consider the stabilizer of various (in dimension and signature) linear subspaces of R 2,3 by the action of SO • [START_REF] Alekseevsky | On a proper action of a Lie group[END_REF][START_REF] Alekseevski | Self-similar Lorentzian manifolds[END_REF].

The following theorem shows that considering the actions preserving a 1-dimensional linear subspace of R 2,3 is enough (even the proper actions are included in the following).

Theorem 0.6. Let G be a connected Lie subgroup of Conf(Ein 1,2 ) which acts on Ein 1,2 reducibly and with cohomogeneity one. Then G fixes a point in the projective space RP 4 . By Theorem 0.6 which will be proved in Chapter 7, every reducible cohomogeneity one action G on Ein 1,2 preserves a line � ≤ R 2,3 . The line � can be lightlike, spacelike or timelike.

The case when G preserves a lightlike line � is the richest one, i.e., actions fixing a point in Einstein universe, which are fully studied in Chapter 4. By the action of O(2, 3), the stabilizer of a point in Einstein universe is isomorphic to the group of conformal transformations of the Minkowski space. More precisely, if G fixes a point p ∈ Ein 1,2 , then it preserves the lightcone L(p) and its corresponding Minkowski patch. Hence, the action of G on the Minkowski patch is equivalent to the action of a Lie subgroup of Conf(E 1,2 ) = (R * × O(1, 2)) � R 1,2 on Minkowski space E 1,2 . We apply the adjoint action of Conf(E 1,2 ) on its Lie algebra (R ⊕ so(1, 2)) ⊕ θ R 1,2 , and then, we determine all the Lie subalgebras g of (R ⊕ so(1, 2)) ⊕ θ R 1,2 with dim g ≥ 2, up to conjugacy. This leads to the classification of the connected Lie subgroups of Conf(E 1,2 ) with dimension greater than or equal to 2, up to conjugacy (Theorem 4.6).

Actually, there are infinitely many subgroups of Conf(E 1,2 ) with dim ≥ 2, up to conjugacy. All those subgroups act on Einstein universe Ein 1,2 with cohomogeneity one except two of them. Even, up to orbit equivalence, still the number of distinguished actions is infinite.

In Chapter 5, we study the actions preserving a non-degenerate line � ≤ R 2,3 . Indeed, in this chapter we only consider the cohomogeneity one actions on Ein 1,2 with no fixed point in Ein 1,2 .

• If G preserves a spacelike line �, then it preserves an Einstein hypersphere Ein 1,1 ⊂ Ein 1,2 , and its complement Ein 1,2 \ Ein 1,1 which is conformally equivalent to de-Sitter space dS 1,2 . Since AdS 1,2 is an inessential space, the action of G is conformally equivalent to the natural action of a Lie subgroup of the group of isometries of AdS 1,2 , namely, O(2, 2). We show that, up to orbit equivalency there are exactly seven connected Lie subgroups which preserve an Einstein hypersphere Ein 1,1 in Ein 1,2 , act on Ein 1,2 non-properly, with cohomogeneity one, and with no fixed point in Ein 1,2 .

• If G preserves a timelike line, then it preserves a spacelike hypersphere S 2 ⊂ Ein 1,2 , and its complement Ein 1,2 \ S 2 which is conformally equivalent to de-Sitter space dS 1,2 . Again, since dS 1,2 is an inessential space, the action of G is conformally equivalent to the action a Lie subgroup of the group of isometries of dS 1,2 , namely, O [START_REF] Alekseevsky | G-manifolds with one dimensional orbit space[END_REF][START_REF] Alekseevski | Self-similar Lorentzian manifolds[END_REF]. It is shown that, up to conjuagcy, there is only one connected Lie subgroup which preserves a spacelike hypersphere in Ein 1,2 , acts non-properly and with cohomogenity one, and fixes no point in Ein 1,2 .

Actions preserving a photon in Ein 1,2 are very interesting. In Chapter 6, we prove a theorem which states that a cohomogeneity one action on Ein 1,2 which preserves a photon, fixes a point in RP 4 . This theorem will play a key role in proof of Theorem 0.6 .

Finally, in Chapter 7, we prove Theorem 0.6. This completes the classification of the cohomogeneity one actions on Ein 1,2 .

Appendix A is devoted to the technical proof of Theorem 4.6, which classifies all the connected Lie subgroups of Conf(E 1,2 ) of dimension greater than or equal to 2. In Appendix B, we give a list of 1-parameter subgroups of Conf(E 1,2 ) which are used in Chapter 4, where we will show that any Lie subgroup of Conf(E 1,2 ) of dimension ≥ 2 contains either one of these 1-parameter subgroups or admits a non-trivial translation part.

Résumé de la thèse

Structure conforme

Une métrique semi-Riemannienne g sur une variété lisse M est un champ tensoriel lisse de type (0, 2) qui est symétrique, non dégéneré, de signature contante (p, q). La paire (M, g) est dite Riemannienne (resp.

Lorentzienne) si p = 0 (resp. p = 1 et q > 0). Pour une variété semi-Riemannienne (M, g), sa classe conforme, notée [g], est l'ensemble de toutes les métriques pseudo-Riemanniennes sur M de la forme e f g où f est une fonction lisse sur M . Un difféomorphisme ϕ : M → M est une application conforme si il préserve la classe conforme [g], i.e., si pour un représentant g (et donc pour tous) la métrique tirée en arrière ϕ * g est dans la classe conforme Une variété semi-Riemannienne (M, g) de signature (p, q) est localement conformément plate si pour tout point p ∈ M il existe un voisinage ouvert U de p et une application conforme de cet ouvert dans un ouvert de R p,q , où R p,q désigne un espace vectoriel de dimension p + q muni d'une forme quadratique de signature (p, q).

Le cas de la géométrie Riemannienne

Soit R 1,n+1 = (R n+2 , q) un espace vectoriel muni d'une forme Lorentzienne de signature (1, n). Le cône lumière N 1,n+1 de R 1,n+1 formé des vecteurs isotropes est une hypersurface singulière dégénérée. Sa projection (une fois l'origine enlevée) dans l'espace projectif P : R 1,n+1 \{0} → RP n+1 est homéomorphe à la sphère S n . La métrique dégénérée sur N 1,n+1 induit une structure conforme Riemannienne essentielle [g] sur S n , qui contient la métrique ronde usuelle. Si n ≥ 2, le groupe P O(1, n + 1) est précisément le groupe des transformations conformes de (S n , [g]).

La sphère Riemannienne standart S n un objet central en géométrie Riemannienne. C'est le compactifié conforme de l'espace Euclidien

S n = E n ∪ {∞}.
Théorème 0.1. (Théorème de Liouville) Soient U, V ⊂ S n (n ≥ 3) deux ouverts connexes non vides, et f : U → V une application conforme. Alors f s'étend en une application conforme de S n .

Il s'en suit que toute variété conformément plate de dimension supérieure ou égale à 3 admet une

(P O(1, n + 1), S n )-structure.
L'image du domaine {q < 0} ⊂ R 1,n+1 par P est conformément équivalente à l'espace hyperbolique H n+1 . Le bord de H n+1 dans RP n+1 est précisément S n . Ainsi, S n peut être vue comme le bord conforme de l'espace hyperbolique.

Dans [START_REF] Ferrand | The action of conformal transformations on a Riemannian manifold[END_REF], J. Ferrand a montré que si [g] est une classe conforme essentielle sur une variété M de dimension n ≥ 2, alors (M, [g]) est conformément équivalent à la sphère ronde S n ou à l'espace Euclidien E n . Cependant, la classification des structures conformes essentielles pour les autres signatures n'est pas complète, même dans le cas des variétés compactes Lorentziennes où il existe de nombreux exemples de telles structures, voir par exemple [START_REF] Frances | Essential conformal structures in Riemannian and Lorentzian geometry[END_REF][START_REF] Alekseevski | Self-similar Lorentzian manifolds[END_REF].

Géométrie Lorentzienne

L'analogue Lorentzien de la sphère conforme S n est l'univers d'Einstein Ein 1,n de dimension n + 1 (n ≥ 1) qui, comme dans le cas Riemannien, est le projectivisé dans RP n+2 du lieu des vecteurs isotropes d'une forme quadratique sur R n+3 , mais cette fois de signature (2, n + 1). Son groupe de transformation conforme est alors P O(2, n + 1). Toute isométrie linéaire R 2,n → R 2,n+1 (n ≥ 2) plonge naturellement Ein 1,n-1 en une copie dans Ein 1,n appelé hypersphère d'Einstein. Le complémentaire d'une telle hypersphère est un ouvert dense conformément équivalent à l'espace Anti de-Sitter AdS 1,n . On peut ainsi aussi considérer l'univers d'Einstein comme étant le bord conforme de l'espace Anti de-Sitter.

Son revêtement double, noté � Ein

De même, toute isométrie linéaire R 1,n+1 → R 2,n+1 induit une réalisation de la sphère conforme S n dans Ein 1,n appelée a hypersphère de type espace. Son complément dans Ein 1,n est un ouvert dense conformément équivalent à l'espace de-Sitter dS Les exemples typiques de structures Lorentziennes conformes essentielles sont l'espace de Minkowski E 1,n ainsi que l'univers d'Einstein. Les variétés Riemanniennes de cohomogénéité un ont été étudiées par plusieurs mathématiciens (voir par exemple [START_REF] Alekseevsky | G-manifolds with one dimensional orbit space[END_REF][START_REF] Berard-Bergery | Sur de nouvells variété riemanniennes d'Einstein[END_REF][START_REF] Grove | Positively curved cohomogeneity one manifolds and 3-Sasakian geometry[END_REF][START_REF] Grove | Curvature and symmetry of Milnor spheres[END_REF][START_REF] Grove | Cohomogeneity one manifolds with positive Ricci curvature[END_REF][START_REF] Mirzaie | On cohomogeneity one flat Riemannian manifolds[END_REF][START_REF] Mostert | On a compact Lie group acting on a manifold[END_REF][START_REF] Neumann | 3-dimensional G-manifolds with 2-dimensional orbits[END_REF][START_REF] Parker | 4-dimensional G-manifolds with 3-dimensional orbit[END_REF][START_REF] Podesta | Cohomogeneity one manifolds and hypersurfaces of the Euclidean spaces[END_REF][START_REF] Searle | Cohomogeneity and positive curvature in low dimension[END_REF][START_REF] Verdiani | Cohomogeneity one Riemannian manifolds of even dimension with strictly positive sectional curvature[END_REF][START_REF] Verdiani | Cohomogeneity one manifolds of even dimension with strictly positive sectional curvature[END_REF]). C'est toujours un sujet de recherche actif.

Actions de cohomogénéité un: une histoire brève

L'hypothèse commune dans ces travaux est la fermeture du groupe G considéré dans le groupe d'isométrie de la variété ambiante. Quand la métrique semi-Riemannienne et non plus Riemannienne, l'action n'est en général pas propre, ce qui complique l'étude. De fait, beaucoup de résultats et techniques valables dans le contexte Riemannien ne s'appliquent plus dans le cas semi-Riemannien général. Il est montré dans [START_REF] Eschenburg | The initial value problem for cohomogeneity one Einstein metrics[END_REF] que pour une variété Riemannienne d'Einstein (M, g) l' équation d'Einstein Ric(g) = λ.g (λ ∈ R constant) devient une équation différentielle ordinaire dans le cas de cohomogénéité un.

Une manière naturelle d'étudier une G-variété Riemannienne (M, g) de cohomogénéité un est de déterminer quels sont les sous-groupes possibles G de Iso(M ) à conjugaison près. Celà a été fait dans le cas de certains espaces modèles (voir [START_REF] Ahmadi | Cohomogeneity one de Sitter space S n 1[END_REF], [START_REF] Ahmadi | Cohomogeneity one Minkowski space R n 1[END_REF] et [START_REF] Ahmadi | Cohomogeneity one three dimensional anti-de Sitter space, proper and nonproper actions[END_REF]). Une autre notion utile dans le sujet est celle d'équivalence orbitale entre deux sous-groupes de Lie G, H ⊂ Iso(M ) signifiant que les orbites G(p) and H(g(p)) pour tout point p peuvent coïncider à conjugaison près. Il est évident que deux sous-groupes conjugués définissent des actions orbitalement équivalentes, mais l'inverse n'est pas vrai, comme le montre le fait que deux sous-groupes non conjugués peuvent fort bien avoir des actions transitives.

Actions sur l'univers d'Einstein tridimensionel de cohomogénéité un

Le sujet de cette thèse est l'étude des actions conformes de cohomogénéité un sur l'univers d'Einstein tridimensionel Ein 1,2 . Notre stratégie est d'établir dans un premier temps quel peut être le groupe de transformations conformes impliqué, à conjugaison près. Nous décrivons aussi la topologie et la nature causale des orbites d'une telle action. On établira, entre autre choses, que les orbites bidimensionnelles d'une telle action sont toujours homéomorphes à

R 2 , S 1 × R, S 2 , ou T 2 = S 1 × S 1 .
Le groupe des transformations conformes de Ein [START_REF] Alekseevsky | On a proper action of a Lie group[END_REF][START_REF] Alekseevski | Self-similar Lorentzian manifolds[END_REF]. Il doit donc préserver un sous-espace vectoriel de dimension 2 de R 2,3 de signature (2, 0). Au Chapitre 2, nous montrons qu'il n'y a, à conjugasion près, que deux telles actions propres, qui sont celles des sous-groupes SO(3) et SO(2) × SO(2) de SO(2) × SO(3). Les orbites de la première action sont toutes de codimension un; ce sont plus précisément des hypersphères de type espace. La seconde une orbite de dimension un, qui est une géodésique de type temps dans un ouvert Anti de-Sitter, dont le complémentaire est feuilleté par des hypersphères d'Einstein.

Une fois traité le cas propre, nous supposons désormais que le groupe G est non compact. Un point clé est le théorème suivant: Définition 0.3. Une action d'un sous-groupe de Lie G ⊂ Conf(Ein 1,2 ) est réductible si G préserve un sous-espace vectoriel propre de R 2,3 . Elle est irréductible si elle n'est pas réductible. Théorème 0.4. [START_REF] Di Scala | Connected subgroups of SO(2, n) acting irreducibly on R 2,n[END_REF] Soit G un sous-groupe de Lie connexe de SO • (2, n) agissant sur R 2,n de manière irréductible. Alors, G est isomorphe à l'un des groupes suivants:

i: SO • (2, n). ii: si n = 2p est pair: U (1, p), SU (1, p) ou S 1 .SO • (1, p) si p > 1, iii: si n = 3: SO • (1, 2).
Il s'en suit, dans notre cas: Théorème 0.5. Soit G ⊂ Conf(Ein 1,2 ) un sous-groupe de Lie connexe agissant sur Ein 1,2 de manière irréductible et de cohomogénéité un. Alors G est conjugué à SO • (1, 2) � PSL(2, R).

Nous montrons le Théorème 0.5 au Chapitre 3. Ce chapitre est consacré à l'étude du cas irréductible.

Il est bien connu que la seule action irréductible de PSL(2, R) de dimension 5 est celle provenant de l'action canonique sur les polynômes homogènes de degré 4 à deux variables. Nous montrons que cette action a trois orbites: une orbite de dimension un (qui est un photon), une orbite dégénerée de dimension 2 homéomorphe à R 2 , et une orbite de dimension 3 sur laquelle PSL(2, R) agit librement. Nous décrivons aussi les orbites induites sur le complémentaire de Ein 1,2 dans l'espace projectif RP 4 . Nous avons publié ces résultats dans l'article [START_REF] Hassani | On the irreducible action of PSL(2, R) on the 3-dimensional Einstein Universe[END_REF].

Le dernier cas à considérer est donc celui des actions réductibles. Le point clé de notre étude, qui résulte d'une étude cas par cas selon la dimension et la nature causale du sous-espace vectoriel G-invariant est le suivant: Théorème 0.6. Soit G ⊂ Conf(Ein 1,2 ) un sous-groupe de Lie connexe de SO • (2, 3) agissant sur R 2,3 de manière réductible et de cohomogénéité un. Alors, G admet un point fixe global dans l'espace projectif RP 4 .

La situation la plus intéressante et la plus riche pour établir le Théorème 0.6 est celle où G préserve un plan isotrope dans R 2,3 , i.e. un photon dans Ein 

Conf(E 1,2 ) = (R * × O(1, 2)) � R 1,2 . On étudie l'action adjointe de Conf(E 1,2 ) sur son algèbre de Lie (R ⊕ so(1, 2)) ⊕ θ R 1,2 ,
puis déterminons toutes les sous-algèbres de Lie g de (R ⊕ so(1, 2)) ⊕ θ R 1,2 de dimension ≥ 2 et à conjugaison près. Il s'avère qu'il y a une infinité de sous-groupes de Conf(E 1,2 ) de dimension ≥ 2 à conjugaison près. Tous ces sous-groupes agissent sur Ein 1,2 avec cohomogénéité un sauf deux d'entre eux. Même à équivalence orbitale près, il y a une infinité d'actions possibles à distinguer.

Au Chapitre [START_REF] Ahmadi | Cohomogeneity one Minkowski space R n 1[END_REF], nous étudions le cas où la droite � ≤ R 2,3 n'est pas isotrope, et où G ne fixe aucun point de Ein 1,2 .

• Si � est de type espace, alors G préserve une hypersphère d'Einstein Ein 1,1 ⊂ Ein 1,2 bordant une copie conforme de l'espace Anti de-Sitter AdS 1,2 . Nous montrons qu'à conjugaison près, il y a exactement 7 sous-groupes de Lie préservant une hypersphère d'Einstein Ein 1,1 dans Ein • Si � est de type temps, alors G préserve une hypersphère de type espace S 2 ⊂ Ein 1,2 bordant une copie conforme de l'espace de-Sitter dS 1,2 . Nous montrons qu'à conjugaison près, il n'y a qu'un seul sous-groupe de Lie préservant une hypersphère de type espace dans Ein 1,2 , agissant sur Ein 1,2 non-proprement, avec cohomogénéité un et sans point fixe global dans Ein 1,2 .

Finalement, au Chapitre 7, nous montrons le Théorème 0.6. Ceci achève la classification des actions de cohomogénéité un sur Ein 1,2 . L'appendice A, assez technique, est dédié à une preuve du Théorème (3.4) qui classifie les sousgroupes de Lie connexes de Conf(E 1,2 ) de dimension supérieure ou égale à 2. Dans l'appendice B, on donne une liste de sous-groupes à un paramètre de Conf(E 1,2 ) qui est utilisée au Chapitre (3). 

Preliminaries

We fix the following notation and definitions for the rest of this work.

Let R m+n be the (m + n)-dimensional real vector space. Assume that q m,n is a quadratic form on R m+n of signature (m, n), i.e., in a suitable basis for R m+n and a vector

v = (v 1 , • • • , v m+n ) ∈ R m+n
we have:

q m,n (v) = - m � i=1 v 2 i + m+n � j=m+1 v 2 j .
We denote by R m,n the vector space R m+n equipped with q m,n .

Definition 1.1. A linear subspace V ≤ R m,n is said to be of signature (p, q, r) if the restriction of q m,n on V is of signature (p, q, r), meaning that the maximal totally isotropic subspace has dimension r, and that the maximal definite negative and positive subspaces have dimensions p and q, respectively. If V is nondegenerate (i.e., r = 0), we forgot r and simply denote its signature by (p, q). Also, we call V

• spacelike, if q � = 0 and p = r = 0.

• timelike, if p = 1 and q = r = 0.

• lightlike, if r = 1 and p = q = 0.

• Lorentzian, if p = 1, q � = 0, and r = 0.

• degenerate, if p + q, r � = 0.

A non-zero vector v ∈ R m,n is called spacelike (resp. timelike, lightlike) if the value q m,n (v) is positive (resp. negative, zero).

Group action

In this section, we give some definitions and properties of group action. For more details, we refer to [START_REF] Duistemaat | Lie Groups[END_REF].

We use G, H, K, etc. to denote a group, and M to denote a topological space or a manifold.

Definition 1.2. For a manifold M and a Lie group G, a smooth action of G on M , is a group morphism A from G to Dif f (M ) the group of diffeomorphisms from M to itself such that the map G × M → M sending (g, x) to A(g)(x) is smooth. For a point x ∈ M and an element g ∈ G, we denote A(g)(x) by g(x) or gx, when the action is understood.

Definition 1.3. Let A be an action of a Lie group G on a manifold M , and x ∈ M be an arbitrary point.

• The orbit of x denoted by G(x) is {gx : g ∈ G}.

• The stabilizer of x denoted by Stab G (x) or G x is {g ∈ G : gx = x}.

• The orbit map at point x is A x : G →, with A x (g) = gx.

• The stabilizer of a subset S ⊂ M denoted by Stab G (S) is {g ∈ G : gx ∈ S, ∀x ∈ S}.

• The orbit space of the action A denoted by M/G is the set of orbits induced by A. Let G be a lie group acting on a smooth manifold M . The orbits induced by G in M are immersed submanifolds of M . In fact, for a point x ∈ M , the orbit G(x) is the image of the orbit map A x . The stabilizer of each point in M is a closed Lie subgroup of G. Also, the orbit space M/G is endowed with quotient topology.

• A subset S ⊂ M is called G-invariant, if G(S) = ∪ x∈S G(x) ⊂ S.
Definition 1.5. Let M be a smooth manifold equipped with a semi-Riemannian metric g and S ⊂ M an immersed submanifold. Then, S is said to be of signature (p, q, r) if for all x ∈ S the restriction of the ambient metric g x on the tangent space T x S is of signature (p, q, r).

Let (M, g) be a semi-Riemannian manifold and G a Lie group. If G acts on M smoothly and preserves the metric g, then every orbit has constant signature, meaning that for all x ∈ M and all y, z ∈ G(x), the restrictions of the ambient metrics on T y G(x) and T z G(x) have the same signature. Thus, we can speak about the signature of an orbit. 

Affine space

In this section we give the definition of affine space and some properties of it. We refer to [START_REF] Berger | Geometry I[END_REF] for additional details.

Definition 1.8. Let V be a real n-dimensional vector space. A non-empty set Ω is said to be an affine space associated to V , if there is a mapping

Ω × Ω → V, (p, q) � → -→ pq,
satisfying the following axioms:

(i) for any p, q, r ∈ Ω, we have -→ pr = -→ pq + -→ qr;

(ii) for any p ∈ Ω and any v ∈ V , there is one and only one q ∈ Ω such that x = -→ pq.

The dimension of Ω is defined as the dimension of V , and we call V the underlying vector space of affine space Ω.

Proposition 1.9. ([9] p.p. 34). A non-empty set Ω is an affine space associated to a vector space V if and only if there exists a free and transitive action Θ :

V × Ω → Ω.
It is convenient to write q = p + x instead of x = -→ pq, where �� + �� denotes the action of V on Ω.

Essentially the only difference between Ω and V is that, Ω has not an origin, and thus it is not linear.

Choosing a point p ∈ Ω, the orbit map Θ p : V → Ω induces a vector space structure on Ω with origin p, such that Θ p becomes an isomorphism. We denote Ω with the vector space structure induced from Θ p , by Ω p . Definition 1.10. For a vector v ∈ V , we call the map T v : Ω → Ω, p � → p + v a translation on Ω. We denote the set of all translations on Ω by T (Ω).

In fact, T (Ω) has a natural vector space structure which makes it isomorphic to V .

Let V and W be real vector spaces. We denote the space of linear maps from V to W by L(V, W ). Definition 1.11. We call a map f :

Ω → Ω an affine morphism if f ∈ L(Ω p , Ω f (p) ) for all p ∈ Ω.
For an affine morphism f , we denote the map

Θ -1 f (p) • f • Θ p ∈ L(V, V ) by -→ f . One can see that the map -→ f is independent of p. Furthermore, f (p + v) = f (p) + -→ f (v), ∀p ∈ Ω, ∀v ∈ V. (1.1)
We call f an affine isomorphism, if it is a bijective affine morphism. Obviously every translation on Ω is an affine isomorphism.

Lemma 1.12. Let f be an affine morphism on Ω. Then f is a translation on Ω if and only if

-→ f = Id V .
Proof. Let f be a translation, which means there exists a vector v ∈ V such that f = T v . Then,

-→ T v = Id V .
Conversely, let f be an affine morphism and -→ f = Id V . Let p, q ∈ Ω be two arbitrary points. There exist unique vectors w, v ∈ V such that q = p + v and f (p) = p + w. Thus by (1.1), we have

f (q) = f (p + v) = f (p) + v = p + w + v = q + w. Therefore f = T w .
For a linear map B ∈ L(V, V ), choosing a point p ∈ Ω, we can define a map B p :

Ω → Ω with B p (p + v) = p + B(v). It is clear that B p is an affine map and -→ B p = B.
Lemma 1.13. Let f be an affine morphism on Ω and p ∈ Ω an arbitrary point. Then, there exit a unique vector w ∈ V and a linear map

B ∈ L(V, V ) such that f = T w • B p .
Proof. There exists a unique vector w ∈ V such that f (p) = p + w. Now, by (1.1), obviously

f = T w • ( -→ f ) p .
The set of all affine morphisms on Ω is a group under composition of maps. We denote it by A(Ω).

Also, we denote the set of all affine isomorphisms on Ω by Aff(Ω), and call it the affine group of Ω. It is a subgroup of A(Ω).

Corollary 1.14. The affine group Aff(Ω) is isomorphic to the semi-direct product GL(V ) � V .

Proof. It follows from Lemma 1.13.

The following map is a surjective group morphism

L : Aff(Ω) → GL(V ), f → -→ f ,
and we call it the linear projection. By Lemma 1.12, the kernel of L is T (Ω). Therefore, the group of translations T (Ω) is a normal subgroup of Aff(Ω), and so, Aff(Ω) acts on it by conjugation.

The affine group Aff(Ω) acts on Ω transitively, since T (Ω) � V does. Hence, for an arbitrary point q ∈ Ω and its stabilizer Aff(Ω), the affine space Ω is isomorphic to the homogeneous space Aff(Ω)/Aff(Ω) p , as sets.

Lemma 1.15. Let p ∈ Ω be an arbitrary point. Then Aff(Ω) = Aff(Ω) p � T (Ω).

Proof. By Lemma 1.13, Aff(Ω) = Aff(Ω) p .T (Ω). Since T (Ω) is a normal subgroup of Aff(Ω) and

T (Ω) ∩ Aff(Ω) p = Id Ω , we get Aff(Ω) = Aff(Ω) p � T (Ω).
Note that, the splitting Aff(Ω) = Aff(Ω) p � T (Ω) depends strongly on the point p ∈ Ω. Indeed, for two points p, q ∈ Ω, we have Aff(Ω) p = Aff(Ω) q if and only if p = q.

Definition 1.16. An affine d-plane (for d ≤ dim V ) in Ω through a point p ∈ Ω, is p + Π, where Π ≤ V is a d-dimensional linear plane.

In fact, an affine d-plane in Ω through p is the orbit induced by the action of a d-dimensional linear subspace of V at p.

Conformal Structure

Definition 1.17. Let (M, g) be a semi-Riemannian manifold. The conformal structure on M associated to g (denoted by [g]) is the class of metrics conformal to g, i.e., metrics of the form e f g, for some smooth

function f : M → R.
The concept of geodesic is not relevant in a conformal structure (M, [g]), since a geodesic in M respect to the metric g ∈ [g] may fails to be a geodesic respect to the other metrics in the class [g].

However, if g is a indefinite metric, a lightlike geodesic respect to g is a lightlike (unparametrized) geodesic respect to the all metrics in the metric class and S ⊂ M an immersed submanifold. Then, S is said to be of signature (p, q, r) if for all x ∈ S the restriction of the ambient metric [g] x on the tangent space T x S is of signature (p, q, r).

For dim M ≥ 3, the group of conformal transformations of M is a Lie group ( [START_REF] Sh | Transformation Groups in Differential Geometry[END_REF]) and we denote it by Conf(M ). Two orbitally-equivalent actions on a conformal structure (M, [g]) give the same information about the orbits. So, it seems considering the conformal actions up to orbit equivalency is a good approximation.

However, sometimes finding an equivalent map for two actions is not easy. The following lemma gives a nice tool to distinguish these maps.

Lemma 1.21. Let G and H be connected Lie subgroups of Conf(M ) and ϕ be a conformal map on M .

Then the following statements are equivalent:

(i) G and H are orbitally-equivalent via ϕ.

(ii) for all p ∈ M ,

dϕ p (T p G(p)) = T ϕ(p) H(ϕ(p)). (1.2) 
Proof. (i)⇒ (ii) It is obvious.

(ii)⇒ (i) Assume that ϕ satisfies (1.2). For an arbitrary point p ∈ M , define the following set

A p = {q ∈ G(p) : ϕ(q) ∈ H(ϕ(p))}.
Evidently, A p is nonempty. Observe that (1.2) implies, for q ∈ A p , there exist two neighborhoods U ⊂ G(p) and V ⊂ H(ϕ(p)) containing q and ϕ(q), respectively, such that ϕ| U : • If A has two distinct real eigenvalues (λ and λ -1 ), then we call it a hyperbolic element. Every hyperbolic element fixes exactly two points on the boundary ∂H 2 .

U → V is a diffeomorphism. This
• If A has no real eigenvalues, then we call it an elliptic element. Every elliptic element fixes exactly one point in the hyperbolic plane H 2 .

Connected subgroups

We characterize all the connected Lie subgroups of PSL(2, R) up to conjugacy. [START_REF] Ratcliffe | Foundations of Hyperbolic Manifolds[END_REF] p.p. 141-144). Thus, for any connected abelian

Let [A], [B] ∈ PSL(2, R) and [A] � = [Id]. Define F ix([A]) = {x ∈ H 2 : [A](x) = x}. If [B] commutes with [A], then [B] preserves F ix([A]) (see
subgroup G ⊂ PSL(2, R), F ix(G) = {x ∈ H 2 : ∀[A] ∈ G, [A](x) =
x} is a non-empty set. Therefore all the non-trivial elements in a connected abelian subgroup of PSL(2, R) have same fixed point(s).

Definition 1.23. Let G ⊂ PSL(2, R) be a connected abelian subgroup. We call G

• parabolic, if it contains a parabolic element.

• hyperbolic, if it contains a hyperbolic element.

• elliptic, if it contains an elliptic element.

Since PSL(2, R) acts on H 2 transitively, the stabilizer of a point x ∈ H 2 is a 1-dimensional subgroup. The commutator subgroup G � = [G, G] is an abelian subgroup since it is 1-dimensional and connected, and so, The set of following matrices is a basis for sl(2, R) as a vector space, The following map is an explicit linear isometry.

F ix(G � ) � = ∅. Let x 0 ∈ F ix(G � ), [A] ∈ G, and [B] ∈ G � . We have [A][B][A] -1 [B] -1 (x 0 ) = x 0 ⇒ [A](x 0 ) = [B]([A](x 0 )) ⇒ [A](x 0 ) ∈ F ix([B]) = F ix(G � ). Thus G preserves F ix(G � ),
Y E = � 0 1 -1 0 � , Y H = � 1 0 0 -1 � , Y P = � 0 1 0 0 � ,
(sl(2, R), B) -→ (sl(2, R), -det), X � → 1 √ 8 X.
Lemma 1.32. The connected components of the group of automorphisms on affine group Aff and the group of automorphisms of affine algebra aff are isomorphic to Aff.

Proof. First assume that f is an automorphism on the Lie algebra aff. There are constants a, b, c, d ∈ R such that f (Y H ) = aY H + bY P and f (Y P ) = cY H + dY P . Since f preserves the Lie bracket, we have c = 0, a = 1, and d � = 0. This shows that Aut(aff) is a 2-dimensional Lie group. On the other hand, the adjoint action of Aff on aff induced a faithful representation from Aff to Aut(aff). This proves the lemma.

Irreducible representation

In this section we describe the irreducible representation of PSL(2, R) on a (n + 1)-dimensional vector space.

Let V be real a (n + 1)-dimensional vector space. There is only one irreducible representation of PSL(2, R) in GL(V ). This representation is the natural action of PSL(2, R) on the vector space V = R n [X, Y ] of homogeneous polynomials of degree n in two variables X and Y [START_REF] Hall | Lie Groups, Lie Algebras, and Representations: An Elementary Introduction[END_REF]. This action preserves the bilinear form Q n given in the coordinate system

(X n , X n-1 Y, ..., XY n-1 , Y n ) by the matrix          α n,0 -α n,1 . . . (-1) n-1 α n,n-1 (-1) n          where α n,k = (k!(n -k)!)/n! [11].
The bilinear form q n is anti-symmetric for n odd and symmetric of signature (n/2, n/2 + 1) when n is even. In particular, for n = 2, the quadratic form -2Q 2 is the discriminant of quadratic polynomials, and this representation gives an isomorphism between PSL(2, R) and SO • (1, 2).

For n = 4, we have

Q 4 (a 4 X 4 + a 3 X 3 Y + a 2 X 2 Y 2 + a 1 XY 3 + a 0 Y 4 ) = 2a 4 a 0 - 1 2 a 3 a 1 + 1 6 a 2 2 .
It is easy to see that the following map is PSL(2, R)-equivariant.

κ : R 2 [X, Y ] -→ R 4 [X, Y ], F � → F 2 .

Minkowski space

In this section, we give the definition of Minkowski space, and we consider some of the properties of this space.

Definition 1.33. The Minkowski space E 1,n is the affine space with underlying scalar product space

R 1,n = (R n+1 , q 1,n ).
Let Θ denotes the action of R 1,n on E 1,n . The topology and differential structure induced by R 1,n via Θ on E 1,n , makes it a smooth manifold diffeomorphic to R 1,n . The tangent space of each point p ∈ E 1,n is naturally isomorphic to R 1,n , via Θ p . Therefore, the quadratic form q 1,n defines a Lorentzian metric tensor g on E 1,n . The Lorentzian manifold (E 1,n , g) is isometric to R 1,n , and so, it is a simply-connected geodesically complete, flat Lorentzian manifold.

The geodesics in E 1,n are affine lines γ : R → E 1,n , t � → p + tv, where p ∈ E 1,n and v ∈ R 1,n (see [37, p.p. 69]). We call p and v, the start point and the direction of γ, respectively. The causal character of a geodesic is the causal character of its direction.

A homothety on E 1,n (centered at x 0 ∈ E 1,n ) is any map conjugate by a translation to scalar multiplication:

E 1,n → E 1,n , x � → x 0 + r(x -x 0 ).
A conformal map on the Minkowski space E 1,n is a composition of an isometry of E 1,n with a homothety:

f : x → rA(x) + v.
where A ∈ O(1, n), r � = 0, and v ∈ R 1,n .

Definition 1.34. Let p ∈ E 1,n and r ∈ R * + . The de Sitter hypersphere of radius r centered at p is defined as

S r (p) = {p + v ∈ E 1,n : q 1,n (v) = r 2 }.
The Lorentzian metric on E 1,n restricts to a Lorentzian metric on S r (p) having constant sectional curvature 1/r 2 . It is geodesically complete and homeomorphic to S n × R. It is a model for de-Sitter space dS 1,n-1 for r = 1.

Definition 1.35. For an arbitrary point p ∈ E 1,n , the affine nullcone centered at p denoted by L af f (p) is the union of the lightlike geodesics through p.

Transformation group

The Lorentz group O(1, n) acts on R 1,n naturally by Γ(A, x) = Ax. The Poincaré group is the group of isometries on R 1,n and it is isomorphic to the semi-direct product O(1, n) � Γ R 1,n . Also, the direct product group R * × O(1, n) acts linearly and conformally on R 1,n by Θ((r, A), x) = rAx. The group of conformal transformations on R 1,n is isomorphic to the semi-direct product (R

* × O(1, n)) � Θ R 1,n . The group Conf(E 1,n ) is a Lie subgroup of Aff(E 1,n ). Since E 1,n is isometric to R 1,n , we have Iso(E 1,2 ) � O(1, n) � R 1,n , Conf(E 1,2 ) � (R * × O(1, n)) � R 1,n . The multiplication rule in Conf(E 1,n ) is (r, A, v), (s, B, w) ∈ Conf(E 1,n ), (r, A, v)(s, B, w) = (rs, AB, rA(v) + w),
and so, the inverse element (r,

A, v) -1 is (r -1 , A -1 , -r -1 A -1 (v)).
The Lie algebra of

Conf(E 1,n ) is isomorphic to the semi-direct sum g = (R ⊕ so(1, n)) ⊕ θ R 1,n ,
where θ denotes the representation of R ⊕ so(1, n) in gl(R 1,n ) corresponding to the action Θ.

Notation 1.36. For elements a ∈ R, V ∈ so(1, n), and v ∈ R 1,n , we denote the corresponding element in g simply by a + V + v.

According to Notation (1.36), the Lie bracket rule on g is

[a + V + v, b + W + w] = [V, W ] + V (w) + aw -W (v) -bv.
The adjoint action of Conf(E 1,n ) on g is as following. For an arbitrary element (r,

A, v) ∈ Conf(E 1,n ),
we have

Ad (r,A,v) : g → g, a + W + w � → a + AW A -1 + rA(w) -av -AW A -1 (v).

Three dimensional Minkowski space

The group of conformal transformations on the 3-dimensional Minkowski space E 1,2 is isomorphic to

(R * × O(1, 2)) � R 1,2 and its connected component is isomorphic to (R * + × SO • (1, 2)) � R 1,2
, where SO • (1, 2) is the group of linear isometries on R 1,2 preserving both time and space orientations.

Every element A ∈ SO • (1, 2) has determinate 1, and because of the dimension, 1 is the common eigenvalue of all the elements in O(1, 2). Lemma 1.37. Let A ∈ O(m, n), and λ ∈ Spec(A). Then λ -1 ∈ Spec(A).

Proof. Assume that B = {e 1 , • • • , e n+m } be an orthonormal basis for R m,n and ε be a signature matrix for q m,n respect to B (see [37, p.p. 234]). Then for all v, w ∈ R m,n , we have �v, w� = εv.w, where �� . �� is the usual euclidean inner product respect to the basis B.

Now, A ∈ O(m, n) if and only if ∀v, w ∈ R m,n , �Av, Aw� = �v, w� ⇐⇒ ∀v, w ∈ R m,n , εAv.Aw = εv.w ⇐⇒ ∀v, w ∈ R m,n , A † εAv.w = εv.w ⇐⇒ ∀v ∈ R m,n , A † εAv = εv ⇐⇒ A † εA = ε ⇐⇒ ε -1 A † ε = A -1 .
This implies that A † and A -1 are similar, thus Spec(A) = Spec(A † ) = Spec(A -1 ). On the other hand,

if λ ∈ Spec(A), then λ -1 ∈ Spec(A -1 ). Therefore λ -1 ∈ Spec(A). Lemma 1.38. The Lie group PSL(2, R) is isomorphic to the Lie groups SO • (1, 2) and SO • (2, 1).
Proof. By Proposition 1.31, (sl(2, R), B) is a scalar product space of signature (1, 2). The adjoint action of PSL(2, R) on sl(2, R) is isometric respect to both B and -B, since the killing form is Ad-invariant.

Hence,

PSL(2, R) � SO • (1, 2) � SO • (2, 1).
Remark 1.39. According to Lemma 1.38, we use the same terminology and the same symbols for the objects related to the Lie groups SO • (1, 2) and SO • (2, 1) as we used for those of PSL(2, R), when there is no ambiguity.

Definition 1.40. Let Id � = A ∈ SO • (1,

2). Then

• If A has only one eigenvalue, namely 1, then we call it a parabolic element. Every parabolic element of SO • (1, 2), preserves a unique lightlike line in R 1,2 , and its corresponding (orthogonal) lightlike plane.

• If A has three distinct real eigenvalues, then we call it a hyperbolic element. Every hyperbolic element in SO • (1, 2) preserves exactly two lightlike lines in R 1,2 and their corresponding (orthogonal) lightlike planes.

• If A has two non-real eigenvalues, then we call it an elliptic element. Every elliptic element in SO • (1, 2) preserves a timelike line in R 1,2 and its corresponding (orthogonal) spacelike plane.

The set of following matrices is a basis of the Lie algebra so(1, 2) = Lie(SO • (1, 2)) as a vector space

Y E =    0 0 0 0 0 1 0 -1 0    , Y H =    0 1 0 1 0 0 0 0 0    , Y P =    0 0 1 0 0 1 1 -1 0    , and we have, [Y E , Y H ] = Y E -Y P , [Y E , Y P ] = Y H and [Y H , Y P ] = Y P .
The group SO • (1, 2) has exactly three distinct 1-parameter subgroups up to conjugacy. We call a 1-parameter subgroup parabolic, hyperbolic, or elliptic, if it contains a parabolic, hyperbolic, or elliptic element. The 1-parameter subgroups generated by Y E , Y H , and Y P are elliptic, hyperbolic, and parabolic respectively and we denote them by Y E , Y H , and Y P , respectively. Furthermore, SO • (1, 2) has only one connected 2-dimensional subgroup up to conjugacy. We denote the 2-dimensional Lie subalgebra of so(1, 2) generated by {Y H , Y P } by aff. We call the connected Lie subgroup of SO • (1, 2) corresponding to aff, the affine subgroup and denote it by Aff. Affine subgroup contains parabolic and hyperbolic elements, and they all preserve a lightlike line in R 1,2 and its corresponding (orthogonal) lightlike plane. Also, we have

Aff = Y H � Y P . Remark 1.41.
Here is a useful model for the conformal group of the 3-dimensional Minkowski space E 1,2 which will be used it in Chapter 6. Recall from Section 1.4.3 that, the Lie algebra sl(2, R) equipped with the quadratic formdet is a model of Minkowski space. The direct product group R * × PSL(2, R) acts on (sl(2, R),det) linearly and conformally as following

(r, [A]).X := rAXA -1 , r ∈ R * , [A] ∈ PSL(2, R), X ∈ sl(2, R).
Now, in this model, the group of conformal transformations of 3-dimensional Minkowski space is isomor-

phic to (R * × PSL(2, R)) � sl(2, R) which acts on sl(2, R) ≈ E 1,2 naturally as following (r, [A], V ).X := rAXA -1 + V, r ∈ R * , [A] ∈ PSL(2, R), V, X ∈ sl(2, R).

de-Sitter and Anti de-Sitter space

In this section, we give the definitions of de-SItter and Anti-de-Sitter space. For more details we refer to [START_REF] O'neill | Semi-Riemannian geometry with applications to relativity[END_REF].

Definition 1.42. The (n + 1)-dimensional de-Sitter space dS 1,n is the hypersurface {v ∈ R 1,n+1 :

q 1,n+1 (v) = 1} of R 1,n+1 = (R n+2 , q 1,n+1
) endowed with the Lorentzian metric obtained by restriction of q 1,n+1 .

The de-Sitter space has constant sectional curvature 1. The geodesics in de-Sitter space, are the intersection of dS 1,n with 2-planes in R 1,n+1 . The isometry group of dS 1,n is isomorphic to the Lorentz group O(1, n + 1).

Definition 1.43. The (n + 1)-dimensional Anti de-Sitter space AdS 1,n is the hypersurface {v ∈ R 2,n :

q 2,n (v) = -1} of R 2,n = (R n+2 , q 2,n
) endowed with the Lorentzian metric obtained by restriction of q 2,n .

The Anti de-Sitter space has constant sectional curvature -1. The geodesics in Anti de-Sitter space, are the intersection of AdS 

(2, 2) is isomorphic to (SL(2, R) × SL(2, R))/Z 2 .
Proof. Let (M (2, R),det) denote the vector space consists of 2 × 2 real matrices endowed with the quadratic form negative determinant of signature (2, 2). The group

SL(2, R) × SL(2, R) acts on M (2, R)
linearly and isometrically by

X � → AXB -1 , X ∈ M (2, R), (A, B) ∈ SL(2, R) × SL(2, R) (1.3) This induces a surjective representation from SL(2, R) × SL(2, R) to SO • (2, 2). The kernel of this representation is Z 2 = {±(Id, Id)}.
This completes the proof.

Remark 1.45. In the semi-Euclidean space (M (2, R),det), the 3-dimensional Anti de-Sitter space

AdS 1,2 of radius 1 is the level set -det -1 (-1) which coincides with SL(2, R) ⊂ M (2, R).

Einstein universe

In this section, we give the definition and some properties of Einstein universe Ein 1,n . For more details, we refer to [START_REF] Frances | Geomeetrie et dynamique lorentziennes conformes[END_REF], and [START_REF] Barbot | A primer on the (2+1) Einstein universe, Recent developments in pseudo-Riemannian geometry[END_REF].

Consider the scalar product space R 2,n+1 = (R n+3 , q 2,n+1 ) for n ≥ 1 and denote by �., .� the bilinear form corresponding to q 2,n+1 . The semi-orthogonal group O(2, n + 1) is the set of all linear isometries of R 2,n+1 . The nullcone N 2,n+1 of R 2,n+1 is the set of non-zero null (lightlike) vectors in R 2,n+1

N 2,n+1 = {v ∈ R 2,n+1 \ {0} : q 2,n+1 (v) = 0}.
The nullcone is a degenerated hypersurface of R 2,n+1 homeomorphic to S n × (R 2 \ {0}), and it is invariant by the action of O(2, n + 1).

Definition 1.46. The (n + 1)-dimensional Einstein universe Ein 1,n is the image of N 2,n+1 under projectivization:

P : R 2,n+1 \ {0} -→ RP n+2 .
In the sequel, for notational convenience, we will denote P as a map from R 2,n+1 implicitly assuming that the origin 0 is removed from any subset of R 2,n+1 on which we apply P.

Definition 1.47. The double covering space � Ein

1,n
of Einstein universe is the quotient space of the nullcone N 2,n+1 by the action of positive scalar multiplication.

For many purposes the double covering may be more useful than Ein 1,n , itself. Considering the bilinear form q 2,n+1 , the nullcone is defined by

v 2 1 + v 2 2 = v 2 3 + • • • + v 2 n+3 .
This common value is always positive. Dividing a vector v ∈ N 2,n+1 by the positive number

� v 2 1 + v 2 2 , we may assume that v 2 1 + v 2 2 = v 2 3 + • • • + v 2 n+3 = 1, which describes the product S 1 × S n . Thus � Ein 1,n is diffeomorphic to S 1 × S n ⊂ R 2,0 × R 0,n+1
. Scalar multiplication by -1 acts by the antipodal map on both S 1 and S n -factor. Thus Ein

1,n = � Ein 1,n /{±Id} is deffeomorphic to (S 1 × S n )/{±Id}.
For an arbitrary open subset U ⊂ Ein 1,n , any local section σ : U → R 2,n+1 \ {0}, of the restriction of P to U determines a pullback of the metric on R 2,n+1 , to a Lorentzian metric g σ on U . For every section σ � : U → R 2,n+1 \ {0}, we have σ � = f σ for some non-vanishing function f : U → R. Then g σ � = f 2 g σ , so the pullbacks are conformally equivalent. Hence the metrics g σ altogether define a canonical conformal structure [g] on Ein 1,n . Obviously, this structure is O(2, n + 1)-invariant.

The structure [g] lifts to a conformal Lorentzian structure [� g] on the double cover � Ein

1,n . The double cover ( � Ein 1,n , [� g]) is conformaly equivalent to (S 1 × S n , -dθ 2 + ds 2 )
, where dθ 2 and ds 2 are the usual round metrics on the spheres S 1 and S n of radius one [START_REF] Barbot | A primer on the (2+1) Einstein universe, Recent developments in pseudo-Riemannian geometry[END_REF].

The group of conformal transformations on � Ein 

1,2 is O(2, n + 

A lightcone L([p]

) can be equivalently defined as the projectivization of the orthogonal complement p ⊥ ∩ N 1,n . Furthermore, L([p]) is a singular hypersurface, and the only singular point on it is [p]. We denote the lightcone with removed vertex by L([p]) and call it a vertex-less lightcone. A vertex-less lightcone is a degenerate hypersurface of Ein 1, and it is homeomorphic to S n-1 × R. We also denote a photon φ ⊂ L([p]) with removed the vertex [p] by φ and call it a vertex-less photon.

Conformal compactification of Minkowski space

Consider the scalar product space R 2,n+1 . Here it will be convenient to use the following scalar product

�v, w� := - 1 2 v 1 w 2 - 1 2 v 2 w 1 -v 3 w 3 + v 4 w 4 + • • • + v n+3 w n+3 .
Let �., .� • denote the bilinear form defined by q 1,n = -I 1 ⊕ I n on R 1,n . Now, consider the following embedding of the Minkowski space R 1,n into N 2,n+1 .

E : R 1,n -→ N 2,n+1 ⊂ R 2,n+1 , x � →    1 �x, x� • x    .
(1.4)

The composition Φ := P • E, is a conformal embedding, and its image is a dense open subset of Ein 

: • • • : 0]. Now, the conformal map Φ defined above, maps E 1,n to M ink([0 : 1 : 0 : • • • : 0]).
This completes the proof.

Recall from Section 1.5, a geodesic γ through a point x in Minkwoski space E 1,n has the form γ(t) = x + tv where x ∈ E 1,n and v ∈ R 1,n . Also, an affine d-plane through a point x in Minkowski space, is x + Π, where Π is a linear d-plane in underlying vector space R 1,n .

Definition 1.52. Let [p] ∈ Ein 1,n and γ(t) = x + tv be a geodesic in M ink([p]) ≈ E 1,n . We call the point [q] ∈ L([p]) the limit point of γ in L([p]) ⊂ Ein 1,n , if lim t→±∞ γ(t) = [q]. Similarly, for an affine degenerate hyperplane Π ⊂ M ink([p]), we call the point [q] ∈ L([p]) the limit point of Π in L([p]) if for all lightlike geodesics γ(t) ⊂ Π, lim t→±∞ γ(t) = [q]. Lemma 1.53. Let [p] ∈ Ein 1,n and [q] ∈ � L([p]
) be an arbitrary point. Then there exists a lightlike

geodesic γ(t) = x + tv in M ink([p]) such that [q]
is the limit point of γ. Furthermore, for every lightlike

geodesic β(t) = y + tw in M ink([p]), the limit point of β is [q] if and only if v = λw and �x -λy, v� = 0 for some λ ∈ R * .
Proof. Without loosing generality, we may assume that [p] has homogeneous coordinate [0 : 1 : 0 :

• • • : 0], since, Ein 1,n is PO(2, n + 1)-homogeneous. Since [q] ∈ L([p]
), the first coordinate of [q] is zero, i.e.,

[q] = [0 : u : v] for some u ∈ R and some null vector v ∈ R 1,n . There exists x ∈ E 1,n such that �x, v� = 1 2 u. Now define γ(t) = x + tv. The image of γ has homogeneous coordinate

γ(t) = [1 : �x, x� + 2t�x, v� + t 2 �v, v� : x + tv] = [1 : �x, x� + tu : x + tv].
For t � = 0 we have

γ(t) = [1/t : �x, x�/t + u : x/t + v].
and

lim t→±∞ γ(t) = [0 : u : v] = [q].
For second part, we have

lim t→±∞ β(t) = [0 : 2�y, w� : w].
Obviously, [q] is the limit point of β if and only if, v = λw and �xλy, v� = 0, for some λ ∈ R * .

Lemma 1.54. Let [p] ∈ Ein 1,n and [q] ∈ M ink([p]) be an arbitrary point. The intersection of the lightcone L([q]) with the Minkowski patch M ink([p]) is the affine nulcone of L af f ([q]).

Proof. Assume that γ : R → M ink([p]) be a lightlike geodesic through

[q]. Obviously, γ(t) ∈ L([q]) ∩ M ink([p]), for all t ∈ R. Hence, L af f ([q]) ⊂ L([q]) ∩ M ink([p]
). On the other hand, suppose

that [q] � = [x] ∈ L([q]) ∩ M ink([p]). The intersection of the unique photon φ in L([q]) through [x] with the Minkowski patch M ink([p]) is the unique lightlike geodesic in L af f ([q]) through [x] ∈ M ink([p]). Thus, [x] ∈ L af f ([q]
). This proves the lemma.

Proposition 1.55. Let [q] ∈ � L([p]
) be an arbitrary point. Then there exists a unique affine degenerate hyperplane Π in M ink([p]), such that [q] is the limit point of Π.

Proof. By Lemma 1.53, there exists a lightlike geodesic γ(t) = x + tv, such that [q] is the limit point of γ. We show that x + v ⊥ is the desired affine hyperplane. Let β(t) = y + tw, be a lightlike geodesic in

x + v ⊥ . There exist λ ∈ R * and u ∈ v ⊥ such that β(t) = x + u + tλv. Consider the limit point of β in L([p]). lim t→±∞ β(t) = [0 : 2λ�u + x, v� : λv]. Since �x + u, v� -�x, v� = 0, Lemma 1.53 implies that lim t→±∞ β(t) = [q].
For uniqueness, let Π � be an affine lightlike hyperplane with limit point

[q]. Let α(t) = z + tw be a lightlike geodesic in Π � . Then lim t→±∞ α(t) = [0 : 2�z, w� : w] = [q] = [0 : 2�x, v� : v].
Using Lemma 1.53 again we have, w = λv and �xλz, v� = 0. Hence xλz ∈ v ⊥ and so, z

∈ x + v ⊥ . Thus α(t) ⊂ x + v ⊥ . This completes the proof. Lemma 1.56. Let [q 1 ], [q 2 ] ∈ L([p]
) be two distinct points. Then [q 1 ] and [q 2 ] lie on the same photon in

L([p]) if and only if their corresponding degenerate affine planes in M ink([p]

) are parallel.

Proof. In the setting of Proposition 1.55, we have

[q 1 ] = [0 : u 1 : v 1 ] and [q 2 ] = [0 : u 2 : v 2 ],
where u 1 , u 2 ∈ R are constant numbers and v 1 , v 2 ∈ R 1,2 are null vectors. Then, there exist

x 1 , x 2 ∈ M ink([p]) ≈ E 1,2 such that x 1 + v ⊥ 1 and x 2 + v ⊥ 2 are the degenerate affine hyperplanes in M ink([p]) correspond to [q 1 ]
and [q 2 ], respectively. The linear 2-plane in R 2,n+1 generated by vectors q 1 = (0, u 1 , v 2 ) and q 2 = (0, u 2 , v 2 ) is totally isotropic if and only if �q

1 |q 2 � = 0 if and only if �v 1 , v 2 � = 0 if and only if v 1 = λv 2 if and only if there exists a translation w ∈ R 1,2 such that x 1 + v ⊥ 1 + w = x 2 + v ⊥ 2 .
This completes the proof. Lemma 1.57. [18, p.p. 56] By the action of O(2, n) on Einstein universe Ein 1,n , the stabilizer of a point

in Ein 1,n is isomorphic to Conf(E 1,n ) � (R * × O(1, n)) � R 1,n .
Let φ be a photon in Einstein universe Ein 1,n . The complement of φ in Ein 1,n is an open dense subset and we denote it by Ein

1,n φ . It is diffeomorphic to S 1 × R n .
There is a natural codimension 1 foliation F φ on Ein 1,n φ on which the leaves are degenerate hypersurfaces diffeomorphic to R n . Fixing a point [p] ∈ φ, the complement of φ in the lightcone L([p]) is a leaf of F φ . The other leaves are the degenerate affine hyperplanes in M ink([p]) with limit point in φ. The group of conformal transformations on Ein 1,n φ acts on Ein 1,n φ transitively and it preserves the foliation F φ . In fact, Conf(Ein 1,n φ ) is the stabilizer of φ by the action of P O(2, n) [START_REF] Frances | Geomeetrie et dynamique lorentziennes conformes[END_REF]. Definition 1.58. For an integer n, the (2n+1)-dimensional Heisenberg group H(2n+1) is the unique (up to isomorphism) simply connected Lie group which its center C is a 1-dimensional subgroup isomorphic to R, and the quotient H(2n + 1)/C is isomorphic to the additive group R 2n .

The Heisenberg group H(2n + 1) is a unipotent group and one can consider it as a subgroup of GL(n + 2, R) as following:

        1 u a 0 I n×n v † 0 0 1×n 1    : u, v ∈ R n , a ∈ R      .
Lemma 1.59. [START_REF] Frances | Geomeetrie et dynamique lorentziennes conformes[END_REF]Lemma 4.15] By the action of P O(2, n) on Einstein universe Ein 1,n , the stabilizer

of a photon is isomorphic to (R * × SL(2, R) × O(n -2)) � H(2n -3)
where H(2n -3) is the (2n -3)-dimensional Heisenberg group.

de Sitter and Anti-de Sitter components

In this section, we describe de-Sitter and Anti de-Sitter components in Einstein universe Ein 1,n .

Definition 1.60. A spacelike hypersphere in Ein 1,n is the one-point compactification of a spacelike affine hyperplane of a Minkowski patch in Ein 1,n .

Equivalently, spacelike hyperspheres are projectivizations of v ⊥ ∩ N 2,n+1 for timelike vectors v ∈ R 2,n+1 . It can be easily seen that a spacelike hypersphere in Ein 1,n is naturally conformally equivalent to the usual Riemannian round n-sphere S n . Definition 1.61. A de-Sitter component in Ein 1,n is the complement of a spacelike hypersphere S n ⊂ Ein 1,n . It is homeomorphic to S n × R and evidently, its conformal boundary is S n . Lemma 1.62. A de-Sitter component in Ein 1,n is conformally equivalent to the model de-Sitter space dS 1,n in R 1,n+1 (described in Definition 1.42).

Proof. Assume that v ∈ R 2,n+1 is a timelike vector. The orthogonal complement subspace v ⊥ is of signature (1, n + 1). Let {e 1 , • • • , e n+2 } be an orthonormal basis for v ⊥ on which e 1 is a timelike, and e n+3 ∈ Rv be a unit vector. Then B = {e 1 , • • • , e n+2 , e n+3 } is an orthonormal basis for R 2,n+1 . Let

[p] ∈ Ein 1,n \ P(v ⊥ ) be an arbitrary point. There exist unique non-zero vectors x ∈ v ⊥ and y ∈ Rv such

that p = x + y. Let (x 1 , • • • , x n+2 , y) denotes the coordinate of p = x + y respect to the basis B. Then -x 2 1 + x 2 2 + • • • + x 2 n+2 = y 2 .
Since y is non-zero, dividing p by y, we may assume

-x 2 1 + x 2 2 + • • • + x 2 n+2 = 1,
which describes the de-Sitter space dS 1,n in v ⊥ ≈ R 1,n+1 .

Definition 1.63. An Einstein hypersphere is the closure of a de-Sitter hypersphere S r (

[q]) ⊂ M ink([p]) (defined in Definition 1.35) in Ein 1,n , for some [p] ∈ Ein 1,n and [q] ∈ M ink([p]).
The Einstein hyperspheres are projectivizations of v ⊥ ∩ N 2,n+1 for spacelike vectors v ∈ R 2,n+1 .

For n ≥ 2, every Einstein hypersphere in Ein 1,n has a natural structure of Ein 1,n-1 . For n = 1, every Einstein hypersphere is homeomorphic to disjoint union of two circles.

Definition 1.64. For n ≥ 2, an Anti de-Sitter component in Ein 1,n is the complement of an Einstein hypersphere Ein 1,n-1 ⊂ Ein 1,n . It is homeomorphic to S 1 × R n and evidently, its boundary is Ein 1,n-1 .

Lemma 1.65. An Anti de-Sitter component in Ein 1,n is conformally equivalent to the model Anti-de Sitter space AdS 1,n in R 2,n (described in Definition 1.43).

Proof. Assume that v ∈ R 2,n+1 be a spacelike vector. The orthogonal complement subspace v ⊥ is of signature (2, n). Let {e 1 , e 2 , • • • , e n+2 } be an orthonormal basis for v ⊥ on which e 1 and e 2 are timelike vectors, and e n+3 ∈ Rv be a unit vector. Then

B = {e 1 , • • • , e n+2 , e n+3 } is an orthonormal basis for R 2,n+1 . Let [p] ∈ Ein 1,n \ P(v ⊥
) be an arbitrary point. There exist unique non-zero vectors x ∈ v ⊥ and y ∈ Rv such that p = x + y.

Let (x 1 , • • • , x n+2 , y) denotes the coordinate of p = x + y respect to the basis B. Then -x 2 1 -x 2 2 + x 2 3 + • • • + x 2 n+2 = -y 2 .
Since y is non-zero, dividing p by y, we may assume

-x 2 1 -x 2 2 + x 2 3 + • • • + x 2 n+2 = -1, which describes the Anti de-Sitter space AdS 1,n in v ⊥ ≈ R 2,n .
Remark 1.66. It is remarkable that, for an Einstein hypersphere Ein 1,n-1 ⊂ Ein 1,n and an arbitrary point p ∈ Ein 1,n-1 , the intersection of Ein 1,n-1 with M ink 1,n (p) (the Minkowski patch at p in Einstein universe Ein 1,n ) is an affine Lorentzian hyperplane Π in the Minkowski patch M ink(p). One can see that, the limit points of the geodesics in Π in the lightcone L 1,n (p) (the lightcone of p in Ein 1,n ) determines the lightcone L 1,n-1 (p) (the lightcone of p in Ein 1,n-1 ). This is an alternate description of Einstein hyperspheres in Ein 1,n which is th Lorentzian analogue of Definition 1.60.

Two dimensional Einstein universe

The 2-dimensional Einstein universe is diffeomorphic to a 2-torus.

Each lightcone L([p]) in Ein 1,1 consists of two photons which intersects at [p]. The conformal group of Ein 1,1 is isomorphic to PO(2, 2).
Here is a useful model of Ein 1,1 . We use again the vector space M (2, R) equipped with the quadratic formdet as we used in the proof of Lemma 1.44. In this model, the nullcone

N 2,2 of (M (2, R), -det)
is the set of nonzero singular matrices and the 2-dimensional Einstein universe Ein 1,1 is the quotient of the nullcone by the action of nonzero scalar multiplication. By Lemma 1.44, the groups

P O • (2, 2) and PSL(2, R) × PSL(2, R) are isomorphic.
Every nonzero singular X ∈ M (2, R) determines two lines in R 2 : its kernel and its image. Let

([A], [B]) ∈ PSL(2, R) × PSL(2, R) be an arbitrary element. Then [A] preserves ker X and [B] preserves Im X. Therefore, there is a canonical identification of Ein 1,1 with RP 1 × RP 1 by Ein 1,1 → RP 1 × RP 1 , [X] � → [ker X : Im X].
By this identification, the left factor of PSL(2, R) × PSL(2, R) acts trivially on the left factor RP 1 , and the right factor acts trivially on the right factor RP 1 .

Three dimensional Einstein universe

The 3-dimensional Einstein universe Ein 1,2 is conformally equivalent to (S 1 × S 2 )/{±Id} on which S 1 × S 2 is equipped with the metric tensor -dθ 2 + ds 2 , where dθ 2 and ds 2 are the usual round metrics on the spheres S 1 and S 2 of radius one. The group of conformal transformations on Ein 1,2 is isomorphic to O(2, 3). We denote its identity component by SO • (2, 3), which is the set of linear isometries on R 2,3

preserving both space and time orientations.

Definition 1.67. Let [p], [q] ∈ Ein 1.2 be two distinct point and they do not lie on a common photon. Then, the intersection of the lightcones L([p]) and L([q]) is called an ideal circle.

Lemma 1.68. An ideal circle is projectivized nullcones of a linear subspace of R 2,3 of signature (1, 2).

Proof. Let [p], [q] ∈ Ein 1,2 and [q] ∈ M ink(p).
Observe that, the intersection of the two degenerate Observe that (p 4 , p 5 ) ∈ V ⊥ is a non-zero vector. Therefore, dividing p by the positive number � p 2 4 + p 2 5 , we may assume

hyperplanes p ⊥ , q ⊥ ≤ R 2,
-p 2 1 -p 2 2 -p 2 3 = -p 2 4 -p 2 5 = -1, which describes the product AdS 1,1 × S 1 ⊂ � Ein 1,2
.

Obviously, the identity component of the stabilizer of V is isomorphic to direct product SO • (2, 1) × SO(2). This completes the proof. we use the same symbol p when there is no ambiguity.

Chapter 2

Proper actions

In this chapter, we describe the cohomogeneity one proper actions on the 3-dimensional Einstein universe Ein 1,2 . Theorem 2.1. Let G ⊂ SO • (2, 3) be a connected Lie group which acts on Ein 1,2 properly and with cohomogeneity one. Then G is conjugate to either SO(3) or SO(2) × SO(2). Furthermore, the action of SO(3) on Ein 1,2 admits a codimension 1 foliation on witch each leaf is a spacelike hypersphere. Moreover, the action of SO(2) × SO(2) on Ein 1,2 preserves a timelike circle and acts on it transitively. Also, it admits a codimension 1 foliation on the complement of timelike circle on which each leaf is conformally equivalent to 2-dimensional Einstein universe Ein 1,1 and exactly one of them is an Einstein hypersphere. Lemma 2.2. Let G be a Lie group with acts on a compact space X continuously and properly. Then G is compact.

Proof. Since G acts on X continuously and properly the following map is proper.

π : G × X -→ X × X, (g, x) � → (gx, x).
The space G × X is compact, since it is the inverse image of the compact space X × X through the proper map π. This implies that G is compact.

It is well-known that every maximal compact subgroup of [27, p.p. 275]). This group preserves a 3-dimensional subspace V ≤ R 2,3 of signature (0, 3). Also, it preserves the orthogonal complement subspace [START_REF] Lawson | [END_REF]). Hence, H fixes a point in S 2 .

SO • (2, 3) is conjugate to SO(2) × SO(3) (cf.
V ⊥ ≤ R 2,
Assume the contrary statement of the proposition which is: G is a 2-dimensional Lie subgroup of SO(3). In the one hand, by preceding paragraph, every 1-parameter subgroup of G is isomorphic to SO(2). On the other hand, by [38, p.p. 212], G is isomorphic to the 2-torus T 2 , R 2 , SO(2) × R, or affine group Aff. This is a contradiction, since all these groups admit a 1-parameter subgroup isomorphic to R.

Lemma 2.4. Let G be a proper connected Lie subgroup of SO(2) × SO(3) with dim G ≥ 2. Then, either

G = {Id} × SO(3) � SO(3) or G is conjugate to SO(2) × SO(2).
Proof. Let P 1 and P 2 denote the projection morphisms from SO(2) × SO(3) to SO(2) and SO(3), 3). This contradicts the simplicity of so(3). Hence

respectively. The group G is a subgroup of P 1 (G) × P 2 (G). Proposition 2.3 implies that dim P 2 (G) ∈ {1, 3}. If dim P 2 (G) = 1, then P 2 (G) = SO(2) up to conjugacy and P 1 (G) = SO(2). Therefore, G = SO(2) × SO(2) up to conjugacy. Now, suppose that dim P 2 (G) = 3. Since G is a proper subgroup, dim G = 3. Hence, the differential map dP 2 at the identity element of G is a Lie algebra isomorphism from g = Lie(G) to Lie(SO(3)) = so(3). So, f = dP 1 • (dP 2 ) -1 : so(3) → dP 1 (g) is a surjective Lie algebra morphism. If P 1 (G) = SO(2), then ker f is a 2-dimensional ideal of so(
P 1 (G) = {Id}. Therefore, G = {Id} × SO(3) � SO(3).
Proof of Theorem 2.1. In the one hand, since G acts properly, Lemma 2.2 implies that it is compact, since Ein 1,2 is compact. So, it is a subgroup of SO(2) × SO(3) up to conjugacy. On the other hand, since G acts with cohomogeneity one, it is a proper subgroup of SO(2) × SO(3). Hence, by Lemma 2.4, G is conjugate either to SO(3) or SO(2) × SO(2). We show that both these groups act by cohomogeneity one. There exist a unique SO(2) × SO(3)-invariant decomposition for R 2,3 = V ⊕ V ⊥ where V is of signature (2, 0) (and hence V ⊥ is of signature (0, 3)).

Observe that by the action of SO(3) on the double cover space � Ein 1,2

, the induced orbit at each point

(x, y) ∈ S 1 × S 2 is {x} × S 2 . This orbit is the projectivization of x ⊥ ∩ N 2,3 ⊂ R 2,3 on � Ein 1,2
. It is clear that the group Z 2 = {±Id} acts on {x} × S 2 trivially, for all x ∈ S 1 . Hence, each orbit induced by SO(3)

in Ein 1,2 is a spacelike hypersphere.

The action of SO(2) on S 2 admits two antipodal fixed points {x 0 , -x 0 } ∈ S 2 ∈ P(V ⊥ ) and acts on

S 2 \ {x 0 , -x 0 } freely. Hence, SO(2) × SO(2) preserves a circle C = (S 1 × {x 0 , -x 0 })/Z 2 = P(V ⊕ Rx 0 ) ∩ Ein 1,2 ,
and acts on it transitively. It is clear that, for arbitrary y ∈ S 1 and x ∈ S 2 \ {x 0 , -x 0 }, the orbit induced by SO(2

) × SO(2) at (y, x) ∈ S 1 × S 2 is conformally equivalent to � Ein 1,1
. Hence, the orbit induced at Chapter 3

[x : y] ∈ Ein 1,2 is conformally equivalent to � Ein 1,1 /Z 2 = Ein 1,1 . Since SO(2) × SO(2) preserves the spacelike line Rx 0 , it preserves the orthogonal complement subspace x ⊥ 0 ≤ R 2,3 . Hence the orbit induced at [p] ∈ P(x ⊥ 0 ) ∩ Ein
The irreducible action of PSL(2, R)

In this chapter, we study the irreducible action of PSL(2, R) on the 3-dimensional Einstein universe Ein 1,2 which is of cohomogeneity one 1 . Also, this action preserves the quadratic form q of signature (2, 3) given in the coordinate system

By

(X 4 , X 3 Y, X 2 Y 2 , XY 3 , Y 4 ), by q(a 4 X 4 + a 3 X 3 Y + a 2 X 2 Y 2 + a 1 XY 3 + a 0 Y 4 ) = 2a 4 a 0 - 1 2 a 1 a 3 + 1 6 a 2 2 .
This induces a representation PSL(2, R) → O(2, 3) ⊂ PSL(5, R). Consequently, the irreducible action of PSL(2, R) on R 2,3 induces a conformal action on 3-dimensional Einstein universe Ein 1,2 .

Theorem 3.1. The irreducible action of PSL(2, R) on the 3-dimensional Einstein universe Ein 1,2 admits three orbits:

• an 1-dimensional lightlike orbit, i.e. of signature (0, 0, 1),

• a 2-dimensional degenerate orbit i.e. of signature (0, 1, 1),

• an open orbit (hence of signature (1, 2)) on which the action is free.

The 1-dimensional orbit is lightlike, homeomorphic to RP 1 , but not a photon. The union of the 1-dimensional orbit and the 2-dimensional orbit is an algebraic surface, whose singular locus is precisely the 1-dimensional orbit. It is the union of all projective lines tangent to the 1-dimensional orbit. Figure 3.1 describes a part of the 1 and 2-dimensional orbits in the Minkowski patch Mink([Y 4 ]). 1 The results of this chapter are published in [START_REF] Hassani | On the irreducible action of PSL(2, R) on the 3-dimensional Einstein Universe[END_REF]. is the projection of the domain R2,3 defined by {q < 0} (respectively {q > 0}).

We will also describe the actions on Anti de-Sitter space and the generalized hyperbolic space H 2,2 : Theorem 3.2. The orbits of PSL(2, R) in the Anti de-sitter component AdS1,3 are Lorentzian, i.e. of signature [START_REF] Alekseevsky | G-manifolds with one dimensional orbit space[END_REF][START_REF] Alekseevsky | On a proper action of a Lie group[END_REF]. They are the leaves of a codimension 1 foliation. In addition, PSL(2, R) induces three types of orbits in H 2,2 : a 2-dimensional spacelike orbit (of signature (2, 0)) homeomorphic to the hyperbolic plane H 2 , a 2-dimensional Lorentzian orbit (i.e., of signature (1, 1)) homeomorphic to the de-Sitter space dS 1,1 , and four kinds of 3-dimensional orbits where the action is free:

• one-parameter family of orbits of signature (2, 1) consisting of elements with four distinct non-real roots,

• one-parameter family of Lorentzian (i.e. of signature (1, 2)) orbits consisting of elements with four distinct real roots,

• two orbits of signature (1, 1, 1),

• one-parameter family of Lorentzian (i.e. of signature (1, 2)) orbits consisting of elements with two distinct real roots, and two distinct complex conjugate roots so that the cross-ratio of the four roots has an argument strictly between -π/3 and π/3.

Let f be an element in V. We consider it as a polynomial function from C 2 into C. Actually, by specifying Y = 1, we consider f as a polynomial of degree at most 4. Such a polynomial is determined, up to a scalar, by its roots z 1 , z 2 , z 3 , z 4 in CP 1 (some of these roots can be ∞ if f can be divided by Y ).

It provides a natural identification between P(V) and the set � CP 1 4 made of 4-tuples (up to permutation) (z 1 , z 2 , z 3 , z 4 ) of CP 1 such that if some z i is not in RP 1 , then its conjugate zi is one of the z j 's. This identification is PSL(2, R)-equivariant, where the action of PSL(2, R) on � CP Actually, the complement of RP 1 in CP 1 is the union of the upper half-plane model H 2 of the hyperbolic plane, and the lower half-plane. We can represent every element of � CP -either every z i lies in RP and such that the argument of the cross-ratio of z 1 , z 2 , z 3 , z 4 has absolute value < π/3.

Proof. Assume that f has no real root. Hence we are in the situation where z 1 , z 2 lie in H 2 and z 3 = z1 , z 4 = z2 . By applying a suitable element of PSL(2, R), we can assume z 1 = i, and z 2 = ri for some

r > 0. In other words, f is in the PSL(2, R)-orbit of (X 2 + Y 2 )(X 2 + r 2 Y 2 ). The value of q on this polynomial is 2 × 1 × r 2 + 1 6 (1 + r 2 ) 2 > 0, hence [f ] lies in H 2,2
. Hence we can assume that f admits at least one root in RP 1 , and by applying a suitable element of PSL(2, R), one can assume that this root is ∞, i.e. that f is a multiple of Y .

We first consider the case where this real root has multiplicity at least 2:

f = Y 2 (aX 2 + bXY + cY 2 )
Then, q(f ) = 1 6 a 2 : it follows that if f has a root of multiplicity at least 3, it lies in Ein 1,2 , and if it has a real root of mulitplicity 2, it lies in H 2,2 .

We assume from now that the real roots of f have multiplicity 1. Assume that all roots are real. Up to PSL(2, R), one can assume that these roots are 0, 1, r and ∞ with 0 < r < 1.

f (X, Y ) = XY (X -Y )(X -rY ) = X 3 Y -(r + 1)X 2 Y 2 + rXY 3 . Then, q(f ) = -1 2 r + 1 6 (r + 1) 2 = 1 6 (r 2 -r + 1) > 0. Therefore f lies in H 2,2
once more. The only remaining case is the case where f has two distinct real roots, and two complex conjugate roots z, z with z ∈ H 2 . Up to PSL(2, R), one can assume that the real roots are 0, ∞, hence:

f (X, Y ) = XY (X -zY )(X -zY ) = XY (X 2 -2|z| cos θXY + |z| 2 Y 2 )
where z = |z|e iθ . Then:

q(f ) = 2|z| 2 3 (cos 2 θ - 3 4 
).

Hence f lies in Ein 1,2 if and only if θ = π/6 or 5π/6. The proposition follows easily. -one orbit N comprising polynomials with a root of multiplicity 4, i.e. of the form [(sY -tX) 4 ] with s, t ∈ R. It is clearly 1-dimensional, and equivariantly homeomorphic to RP 1 with the usual projective

action of PSL(2, R). Since d dt | t=0 (Y -tX) 4 = -4XY
3 is a q-null vector, this orbit is lightlike (but cannot be a photon since the action is irreducible).

-one orbit L comprising polynomials with a real root of multiplicity 3, and another real root. These are the polynomials of the form [(sY -tX) 3 

(s � Y -t � X)] with s, t, s � , t � ∈ R. It is 2-dimensional,
and it is easy to see that it is the union of the projective lines tangent to N . The vectors tangent to L induced by the 1-parameter subgroups Y P and

Y E at [XY 3 ] ∈ L are v P = -Y 4 and v E = 3X 2 Y 2 + Y 4 . Obviously, v P is orthogonal to v E and v E + v P is spacelike. Hence L is of signature (0, 1, 1).
-one open orbit comprising polynomials admitting two distinct real roots and a root in H 2 such that the argument of the cross-ratio of the four roots is π/3. The stabilizers of points in this orbit are trivial since an isometry of H 2 preserving a point in H 2 and one point in ∂H 2 is necessarily the identity. � Proof of Theorem 3.2. According to Proposition 3.3, the polynomials in AdS 1,3 have two distinct real roots, and a complex root H 2 (and its conjugate) such that the argument of the cross-ratio of the four roots has absolute value > π/3. It follows that the action in AdS 1,3 is free, and that the orbits are the level sets of the function θ. Suppose that M is a PSL(2, R)-orbit in AdS 1,3 . There exists r ∈ R such that Then q( dγ dt | t=0 ) = -2-2r 2 < 0. This implies, as for any submanifold of a Lorentzian manifold admitting a timelike vector, that M is Lorentzian, i.e., of signature (1, 2).

[f ] = [Y (X 2 + Y 2 )(X -rY )] ∈ M . The orbit induced by the 1-parameter subgroup Y E at [f ] is γ(t) = � (X 2 +Y 2 ) � (sin t cos t-
The case of H 2,2 is the richest one. According to Proposition 3.3 there are four cases to consider:

• No real roots. Then f has two complex roots z 1 , z 2 in H 2 (and their conjugates). It corresponds to two orbits: one orbit corresponding to the case z 1 = z 2 : it is spacelike and has dimension 2. It is the

only maximal PSL(2, R)-invariant surface in H 2,2 described in [11, Section 5.3]. The case z 1 � = z 2
provides a one-parameter family of 3-dimensional orbits on which the action is free (the parameter being the hyperbolic distance between z 1 and z 2 ). One may assume that z 1 = i and z 2 = ri for some r > 0. Denote by M the orbit induced by PSL(2, R)

at [f ] = [(X 2 + Y 2 )(X 2 + r 2 Y 2 )].
The vectors tangent to M at [f ] induced by the 1-parameter subgroups Y H H, Y P and Y E are:

v H = -4X 4 +4r 2 Y 4 , v P = -4X 3 Y -2(r 2 +1)XY 3 , v E = 2(r 2 -1)X 3 Y +2(r 2 -1)XY 3 ,
respectively. The timelike vector v H is orthogonal to both v P and v E . It is easy to see that the 2-plane generated by {v P , v E } is of signature (1, 1). Therefore, the tangent space T [f ] M is of signature (2, 1).

• Four distinct real roots. This case provides a one-parameter family of 3-dimensional orbits on which the action is free -the parameter being the cross-ratio between the roots in RP 

v H = -rY 4 + 2(r + 1)XY 3 -3X 2 Y 2 , v P = -2X 3 Y + 2rXY 3 , v E = X 4 -rY 4 + 3(r -1)X 2 Y 2 + 2(r + 1)XY 3 -2(r + 1)X 3 Y, respectively. A vector x = av H + bv P + cv E is orthogonal to v P if and only if 2ra + b(r + 1) + c(r + 1) 2 = 0. Set a = � b(r + 1) + c(r + 1) 2 � / -2r in q(x) = 2ra 2 + 3 2 b 2 + � 7 2 (r 2 + 1) -r � c 2 + 2(r + 1)ab + 2(r + 1) 2 + ac(2r 2 -r + 5).
Consider q(x) = 0 as a quadratic polynomial F in b. Since 0 < r < 1, the discriminant of F is non-negative and it is positive when c � = 0. Thus, the intersection of the orthogonal complement of the spacelike vector v P with the tangent space

T [f ] M is a 2-plane of signature (1, 1
). This implies that M is Lorentzian, i.e., of signature (1, 2).

• A root of multiplicity 2. Observe that if there is a non-real root of multiplicity 2, when we are in the first "no real root" case. Hence we consider here only the case where the root of multiplicity 2 lies in RP 1 . Then, we have three subcases to consider:

two distinct real roots of multiplicity 2:

The orbit induced at X 2 Y 2 is the image of the PSL(2, R)-equivariant map dS 1,1 ⊂ P(R 2 [X, Y ]) -→ H 2,2 , [L] � → [L 2 ],
where R 2 [X, Y ] is the vector space of homogeneous polynomials of degree 2 in two variables X and Y , endowed with discriminant as a PSL(2, R)-invariant bilinear form of signature 

v H = -2XY 3 , v P = Y 4 -2XY 3 , v E = Y 4 -X 4 -2X 2 Y 2 + X 3 Y -XY 3 ,
respectively. Obviously, the lightlike vector v H + v P is orthogonal to

T [f ] M . Therefore, the restriction of the metric on T [f ] M is degenerate. It is easy to see that the quotient of T [f ] M
by the action of the isotropic line R(v H + v P ) is of signature (1, 1). Thus, M is of signature (1, 1, 1).

-one real root of multiplicity 2, and one root in • Two distinct real roots, and a complex root in H 2 (and its conjugate) such that the argument of the cross-ratio of the four roots has absolute value < π/3. Denote by M the orbit induced by 

PSL(2, R) at [f ] = [Y (X 2 + Y 2 )(X -rY )].
v H = -4rY 4 -2X 3 Y +2XY 3 , v P = -3X 2 Y 2 +2rXY 3 -Y 4 , v E = X 4 -Y 4 -2rX 3 Y -2rXY 3 ,
respectively. The following set of vectors is an orthogonal basis for T [f ] M where the first vector is timelike and the two others are spacelike.

{(7r + 3r 3 )v H + (6 -2r 2 )v P + (5 + r 2 )v E , 4v P + v E , v H }.
Therefore, M is Lorentzian, i.e., of signature [START_REF] Alekseevsky | G-manifolds with one dimensional orbit space[END_REF][START_REF] Alekseevsky | On a proper action of a Lie group[END_REF]. �

Chapter 4

Actions on Mikowski patch and lightcone

In this chapter, we study the cohomogeneity one actions on Einstein universe Ein 

M ink(p) ≈ E 1,2 .
Recall from Section 1.7.1, by the action of SO • (2, 3), the identity component of the stabilizer of a as the origin of Minkowski space, it becomes a vector space. Moreover, the quadratic form q 1,2 on R 1,2 induces a quadratic form q := q 1,2

point p ∈ Ein 1,2 is isomorphic to Conf • (E 1,2 ) � (R * + × SO • (1, 2)) � R 1,2
• (Θ o ) -1 on E 1,2
where Θ o is the orbit map of the point o. This makes (E 1,2 , o) a Lorentzian scalar product space.

The following maps are Lie group morphisms:

P l : (R * + × SO • (1, 2)) � R 1,2 -→ R * + × SO • (1, 2), (λ, A, v) � → (λ, A), P li : (R * + × SO • (1, 2)) � R 1,2 -→ SO • (1, 2), (λ, A, v) � → A, P h : (R * + × SO • (1, 2)) � R 1,2 -→ R * + , (λ, A, v) � → λ.
The morphisms P l , P li , and P h are called the linear projection, the linear isometry projection and the homothety projects, respectively. if and only if dim G ≥ 2 and it satisfies one of the following conditions.

-The linear isometry projection P li (G) is non-trivial.

-The linear isometry projection P li (G) is trivial and the translation part T (G) has dimension less that or equal to 2.

Actions on lightcone

According to Proposition 1.55, for an arbitrary point q ∈ L(p), there exists a unique affine degenerate plane � Π in E 1,2 ≈ M ink(p) such that q is the limit point of � Π. This induces a one-to-one correspondence between the set of photons in L(p) and the set of degenerate (linear) 2-planes in R 1,2 : Choosing a photon φ ⊂ L(p) there exists a unique degenerate plane Π ≤ R 1,2 such that the corresponding affine degenerate planes with limit points in φ are parallel to Π. On the other hand, choosing a degenerate plane Π in R 1,2 there exists a unique photon φ on which the limit points of the leaves of the foliation induced by Π in E 1,2 lie in φ (see Lemma 1.56). From now on, for a photon φ in the lightcone L(p), we denote the corresponding degenerate plane in R 1,2 by Π φ and the foliation induced by

Π φ in E 1,2 by F Π φ . The subgroup R * + × SO • (1, 2) fixes a unique point o in Minkowski space E 1,2 . Thus, every element of R * + × SO • (1, 2
) maps each affine degenerate plane through o to an affine degenerate plane through o. Hence, this group preserves an ideal circle S ∞ � RP 1 which is the intersection of the lightcones L(p) and L(o).

Suppose λ is a homothety on Minkowski space E 1,2 respect to the origin. Obviously, λ preserves every degenerate affine plane through o. Thus, the homothety factor R * + acts on the ideal circle S ∞ trivially. Let φ be a photon through p and � Π q be the corresponding affine degenerate plane with limit point q = S ∞ ∩ φ. For an arbitrary point u ∈ φ \ [q] with corresponding affine degenerate plane Π u , the homothety λ maps Π u to a parallel affine degenerate plane above [or below] (depending on the position of Π u respect to Π q ) Π q . Thus, the homothety factor R * + maps Π u to all affine degenerate planes parallel to Π q above [or below] Π q . Therefore, R * + acts on the both connected components of φ \ q, transitively. Let g be a non-trivial element in SO • (1, 2).

• If g is an elliptic element, then it preserves no degenerate plane in R 1,2 , and so, g preserves no photon in L(p). This implies that every elliptic 1-parameter subgroup of SO • (1, 2) acts on L(p) freely.

• If g is a parabolic element, then it preserves a unique degenerate plane in R 1,2 . Consequently, g preserves a unique photon φ in L(p) and admits a unique fixed point in the ideal circle S ∞ .

Therefore, every parabolic 1-parameter subgroup of SO • (1, 2) acts on L(p) \ φ freely.

• If g is a hyperbolic element, then it preserves exactly two degenerate planes in R 1,2 . Hence, g preserves two photons φ and ψ in the lightcone L(p) and admits exactly two fixed points in the ideal circle S ∞ . Henceforth, every hyperbolic 1-parameter subgroup of SO • (1, 2) acts on L(p) \ (φ ∪ ψ) freely. Now, let v ∈ R 1,2 be a translation on Minkowski space E 1,2 . Assume that Π ≤ R 1,2 be a degenerate linear plane and � Π be an affine degenerate plane in E 1,2 parallel to Π. Then, v maps � Π to the parallel plane v + � Π. Hence, every translation preserves each photon in L(p) (see Lemma 1.56).

• If v is a timelike vector, then it preserves no affine degenerate plane in E 1,2 . Hence, a timelike vector admits no fixed point in the vertex-less lightcone L(p).

• If v is a lightlike vector, then it preserves all the affine degenerate planes in E 1,2 parallel to v ⊥ . This implies that the set of points in L(p) fixed by a lightlike element is a unique photon.

• If v is a spacelike vector, then it preserves the two degenerate planes Π, Π � ≤ R 1,2 directed by the two distinct lightlike directions in the timelike plane v ⊥ . Obviously, v preserves all the affine degenerate planes in E 1,2 which are parallel to one of Π or Π � . Hence the set of points in L(p) fixed by a spacelike element is the union of two distinct photons.

Let G be a connected Lie subgroup of

R * + × SO • (1, 2)) � R 1,2 .
The translation part T (G) is a normal subgroup of G, hence G acts on T (G) by conjugation. Therefore, the natural action of the linear isometry projection P li (G) on R 1,2 preserves the translation part T (G) ≤ R 1,2 . Furthermore, assume that T (G) fixes a photon φ in the lightcone L([p]) pointwisely. Thus, T (G) preserves the leaves of the foliation F Π φ in E 1,2 . Henceforth, T (G) is a linear subspace of Π φ . This implies that, T (G) is either a degenerate subspace or it is a spacelike line. In the first, obviously P li (G) preserves Π φ . In the later, it is easy to see that P li (G) is a hyperbolic 1-parameter subgroup. Hence, it preserves the two degenerate planes generated by T (G) and one of the null directions in the timelike plane T (G) ⊥ . We conclude that, if T (G) fixes a photon φ ⊂ L(p) pointwisely, then φ is invariant by P li (G) and consequently, by G. Proof. First assume that P h (G) is trivial. Then, obviously G = T (G). Now, suppose that P h (G) � = {1}.

Let L be a 1-parameter subgroup of G transversal to T (G). Considering the Lie algebra of L, one can see, there exists a unique vector v ∈ R 1,2 , such that L = �� e t , (e t -1)v

� : t ∈ R � ⊂ R * + � R 1,2 . Observe that L is conjugate to R * + via (1, v) and T (G) is invariant by this conjugation. Therefore, G is conjugate to R * + � T (G).
Proof of Theorem 4.4. Assume that G admits a 2-dimensional orbit at q ∈ Ein 1,2 . Obviously

dim G ≥ 2. If q ∈ L(p), then P li (G) is nontrivial, since the subgroup R * + � R 1,2 admits no open orbit in L(p). If q belongs to the Minkowski patch M ink(p) ≈ E 1,2 , then dim T (G) ≤ 2, since the subgroup R 1,2 acts on E 1,2 transitively.
Now, we prove the reverse direction. Suppose that dim G ≥ 2. First, assume that the linear isometry projection P li (G) is non-trivial. There are some cases:

Case I: The translation part is non-trivial. In this case, the photons which are fixed pointwisely by T (G) (if there exists any) are exactly those which P li (G) preserves them. Hence there exists a photon φ ⊂ L(p) such that T (G) acts on φ transitively and G does not preserve it. Let H be a 1-parameter subgroup of G which is transversal to T (G) and its linear isometry projection P li (H) is non-trivial. Since P li (G) � = {Id}, such a subgroup exists. Assume that q ∈ φ is an arbitrary point. Then the vector tangent to G(q) at q induced by L is spacelike, since L does not preserve φ. On the other hand, the tangent space T q G(q) contains a lightlike vector, since φ is a lightlike curve in G(q) through q. This shows that T q G(q) is 2-dimensional and so, G admits an open orbit in L(p). Case II: The translation part is trivial: There are two subcases.

� G contains the homothety factor R * + as a subgroup. The subgroup R * + preserves the ideal circle S ∞ and acts on L(p) \ (S ∞ ∪ {p}) freely. Let L be a 1-parameter subgroup of G transversal to R * + . Obviously, P li (L) is non-trivial. There exists a photon φ ⊂ L(p) which is not invariant by L. For an arbitrary point q ∈ φ \ (S ∞ ∪ {p}), the vectors tangent to the orbit G(q) at q induced by R * + and L are lightlike and spacelike, respectively. Hence, G admits an open orbit in L(p).

� The homothety factor R * + is not a subgroup of G. In this case, we have dim

G = dim P li (G) ∈ {2, 3}. -If dim G = 3, then P li (G) = SO • (1, 2) -in fact G is isomorphic to SO • (1, 2)-. The group G is a Levi factor of (R * + × SO • (1, 2)) � R 1,2
. By the uniqueness of Levi factor we have G = SO • (1, 2), up to conjugacy (see [29, p.p. 93]). Obviously,

SO • (1, 2) admits a 2-dimensional orbit in E 1,2 .
-If dim G = 2, then P li (G) = Aff • (1, R), up to conjugacy. Hence, G preserves a unique photon φ ⊂ L(p). Let P be a 1-parameter subgroup of G which its linear isometry projection P li (P) is parabolic. Furthermore, assume that H is a 1-parameter subgroup of G which is transversal to P. Obviously, H has hyperbolic linear isometry projection and it also preserves Observe that H admits a 1-dimensional orbit at some point q ∈ E 1,2 included in the leaf F Π ψ (q), since the action of Conf(E 1,2 ) is faithful. The vector tangent to G(q) at q induced by P does not lie in Π ψ , since P does not preserve Π ψ . Hence, G admits a 2-dimensional orbit at q. Finally, assume that the linear isometry projection 2 and so, all the orbits in E 1,2 are 2-dimensional.

P li (G) is trivial, then G is a subgroup of R * + � R 1,2 . By Proposition 4.5, G is conjugate to P h (G) � T (G). Observe that T (G) admits a dim T (G)-dimensional foliation in E 1,2 . If the homothety projection P h (G) is trivial, then G is a linear 2-plane in R 1,
If P h (G) = R * + , then it fixes a unique point x 0 in E 1,2 . The subgroup R *
+ preserves exactly one of the leaves induced by T (G); namely the leaf containing x 0 . Now, the result follows easily. �

Orbits

In this section we give a complete list of the Lie subgroups of Conf • (E 1,2 ) with dim G ≥ 2, up to conjugacy. Also, we will describe the orbits induced by the cohomogeneity one actions of the connected Lie subgroups of Conf • (E 1,2 ).

Let B = {e 1 , e 2 , e 3 } be an orthonormal basis for R 1,2 , where e 1 is a timelike vector, and let (x, y, z)

be the coordinate on E 1,2 with origin o = (0, 0, 0) corresponding to B (here o is the unique point

fixed by R * + × SO • (1, 2) ⊂ Conf(E 1,2 )). Recall from Section 1.5.1, the Lie algebra of Conf(E 1,2 ) is isomorphic to the semi-direct sum (R ⊕ so(1, 2)) ⊕ θ R 1,2
, where θ is the natural representation of R ⊕ so(1, 2) into gl(R 1,2 ). Also, recall that, the simple Lie group SO • (1, 2) � PSL(2, R) has exactly three 1-dimensional Lie subgroups, up to conjugacy, namely, Y E , Y P , and Y H . Moreover, SO • (1, 2) has only one 2-dimensional connected Lie subgroup, up to conjugacy, namely, Aff. The set {Y E , Y P , Y H } is a basis for the Lie algebra so(1, 2) as a vector space, where, Y E , Y P , and Y H are the generators of the corresponding Lie algebras of the subgroups Y E , Y P , and Y H , respectively. For arbitrary elements λ ∈ R, X ∈ so(1, 2), and v ∈ R 1,2 , we denote the corresponding element in (R ⊕ so(1, 2)) ⊕ θ R 1,2 simply by λ + X + v, when there is no ambiguity. Furthermore, we denote by R(λ + X + v) the linear subspace of (R ⊕ so(1, 2)) ⊕ θ R 1,2 generated by the vector λ + X + v. Also, for a Lie subalgebra

g ≤ (R ⊕ so(1, 2)) ⊕ Θ R 1,2 , we denote by exp(g) the corresponding connected Lie subgroup of (R * + × SO • (1, 2)) � R 1,2 .
The following theorem, classifies all the connected Lie subgroups of Conf(E Subgroups with a Lorentzian plane as the translation part

Subgroups with full translation part

R * + � R 1,2 (R * + × SO • (1, 2)) � R 1,2 SO • (1, 2) � R 1,2 exp � R(a + Y E )) � R 1,2 R 1,2 (R * + × Aff) � R 1,2 Aff � R 1,2 exp � R(a + Y P )) � R 1,2 Y H � R 1,2 (R + × Y H ) � R 1,2 Y P � R 1,2 exp � R(a + Y H ) + RY P � � R 1,2 Y E � R 1,2 (R + × Y P ) � R 1,2 (R + × Y E ) � R 1,2 exp � R(a + Y H )) � R 1,2
(R * + × Y H ) � (Re 1 ⊕ Re 2 ) Y H � (Re 1 ⊕ Re 2 ) exp � R(a + Y H ) � � (Re 1 ⊕ Re 2 ) � exp � R(Y H + e 3 ) � � (Re 1 ⊕ Re 2 ) R * + � (Re 1 ⊕ Re 2 ) Re 1 ⊕ Re 2 Table 4.2: Here a ∈ R * is a constant number.
Subgroups with a spacelike plane as the translation part 

(R * + × Y E ) � (Re 2 ⊕ Re 3 ) Y E � (Re 2 ⊕ Re 3 ) exp � R(a + Y E ) � � (Re 2 ⊕ Re 3 ) � exp � R(Y E + e 1 ) � � (Re 2 ⊕ Re 3 ) R * + � (Re 2 ⊕ Re 3 ) Re 2 ⊕ Re 3
R * + � R 1,2 .
For an arbitrary point q ∈ E 1,2 , there is a natural identification between the tangent space T q E 1,2 and the underlying scalar product space R 1,2 . Therefore, by the action of a Lie subgroup

G ⊂ Conf(E 1,2 ),
Subgroups with a degenerate plane as the translation part Subgroups with a timelike line as the translation part

Aff � Π φ exp � R(a + Y H ) + RY P � � Π φ (R * + × Aff) � Π φ exp � R(a + Y P ) � � Π φ Y P � Π φ exp � R(a + Y H ) � � Π φ (R * + × Y P ) � Π φ exp � R(1 + Y H + e 1 ) + RY P � � Π φ Y H � Π φ exp � R(Y P + e 1 ) � � Π φ (R * + × Y H ) � Π φ exp � R(1 + Y H + e 1 ) � � Π φ Π φ exp � R(2 + Y H ) + R(Y P + e 1 ) � � Π φ R * + � Π φ
R * + � Re 1 (R * + × Y E ) � Re 1 Y E × Re 1 exp � R(a + Y E ) � � Re 1 Table 4.5: Here a ∈ R * is a constant number.
Subgroups with a spacelike line as the translation part

R * + � Re 3 (R * + × Y H ) � Re 3 Y H × Re 3 exp � R(a + Y H )) � Re 3 exp � R(1 + Y H + e 1 ) � � Re 3 exp � R(-1 + Y H + e 1 ) � � Re 3 Table 4.6: Here a ∈ R * is a constant number.
Subgroups with a lightlike line as the translation part

(R * + × Aff) � L exp � R(a + Y H ) + RY P � � L Y H � L exp � R(a + Y P ) � � L Aff � L exp � R(Y H + e 3 ) + RY P � � L (R * + × Y P ) � L exp � R(Y P + e 1 ) � � L Y P × L exp � R(2 + Y H ) + R(Y P + e 1 ) � � L (R * + × Y H ) � L exp � R(1 + Y H + e 1 ) � � L exp � R(a + Y H ) � � L exp � R(Y H + e 3 ) � � L Table 4.7:
Here L denotes the lightlike line R(e 1 + e 2 ) ≤ R 1,2 and a ∈ R * is a constant number.

Subgroups with trivial translation part SO

• (1, 2) R * + × SO • (1, 2) Aff R * + × Aff R * + × Y E exp � R(a + Y H ) + RY P � R * + × Y P exp � R(2 + Y H ) + R(Y P + e 1 -e 2 ) � R * + × Y H exp � R(-1 + Y H + e 1 + e 2 ) + RY P � Table 4.8: Here a ∈ [-1, 1] is a constant number.
we may always consider the translation part T (G) as a linear subspace of T q G(q), since R 1,2 acts on E 1,2 freely.

We fix some notations here. Denote by Π φ and φ the unique degenerate plane R(e

1 +e 2 )⊕Re 3 ≤ R 1,2
invariant by the 1-parameter parabolic subgroup Y P ⊂ SO • (1, 2) and its corresponding photon in L(p), respectively. Furthermore, denote by Π ψ and ψ the degenerate plane R(e 1e 2 ) ⊕ Re 3 ≤ R 1,2 and its corresponding photon in L(p), respectively, which both are invariant by the 1-parameter hyperbolic subgroup Y H ⊂ SO • (1, 2). Also, for a linear subspace V ≤ R 1,2 , denote by F V the foliation induced by V in Minkowski space E 1,2 .

Remark 4.7. Let λ + X + v be an arbitrary element in (R ⊕ so(1, 2)) ⊕ θ R 1,2 and q ∈ E 1,2 be an arbitrary point. There is an easy way to determine the tangent vector in T q E 1,2 induced by the action of

exp(R(λ + X + v)) on E 1,2 : the vector d dt | t=0 � exp(t(λ + X + v))(q)
� coincides with λX(q) + v where λ and X act on E 1,2 (with origin o) as linear maps. Now, we are ready to describe the orbits induced by the subgroups indicated in Tables 4.1-4.8.

Subgroups with full translation part

Here, we consider the orbits of a Lie subgroup G ⊂ Conf • (E 1,2 ) with T (G) = R 1,2 . These groups have been listed in Table (4.1). Obviously, G acts on Minkowski space E 1,2 transitively, since it contains R 1,2 as a subgroup. Note that the groups R 1,2 and R * + × R 1,2 admit 2-dimensional orbit neither in E 1,2 nor in the lightcone L(p).

Observe that, the translation part T (G) = R 1,2 acts on each vertex-less photon in L(p) transitively.

• If the linear isometry projection P li (G) contains an elliptic element, then G acts on the vertex-less lightconeL(p) transitively. Hence, the orbits induced in Ein 1,2 by the following groups are exactly the same as the orbits induced by

Y E � R 1,2 . (R * + × SO • (1, 2)) � R 1,2 , SO • (1, 2) � R 1,2 , (R + × Y E ) � R 1,2 , exp � R(a + Y E )) � R 1,2 , a ∈ R * .
Therefore, the orbits induced by these five groups are: a fixed point p, a 2-dimensional degenerate (i.e. of signature (0, 1, 1)) orbit L(p), and an open orbit E 1,2 ⊂ Ein 1,2 .

• If the linear isometry projection P li (G) is a proper subgroup of SO • (1, 2) and it contains a parabolic element, then G preserves a unique photon φ, and acts on its complement in the lightcone L(p)

transitively. Thus all the following groups admit in Ein 1,2 the same orbits as

Y P � R 1,2 . (R * + × Aff • (1, R)) � R 1,2 , Aff • (1, R) � R 1,2 , exp � R(a + Y P )) � R 1,2 , (R + × Y P ) � R 1,2 , exp � R(a + Y H ) + RY P � � R 1,2 , a ∈ R *
Therefore, the orbits induced by these six groups are: a fixed point p, a vertex-less photon φ, a 2-dimensional degenerate obit L(p) \ φ, and an open orbit E 1,2 .

• If the linear isometry projection P li (G) is a 1-parameter hyperbolic subgroup of SO • (1, 2), then G preserves two distinct photons φ and ψ, and acts on the two connected components of L(p)\(φ∪ψ),

transitively. This implies that the following groups admit in Ein 1,2 the same orbits as

Y H � R 1,2 . (R + × Y H ) � R 1,2 , exp � R(a + Y H )) � R 1,2 , a ∈ R * .
Therefore, the orbits induced by these three groups are: a fixed point p, two vertex-less photons φ and ψ, the two connected components of L(p) \ (φ ∪ ψ) which are degenerate orbits, and an open orbit E 1,2 .

Subgroups with a timelike plane as the translation part

In this section we describe the orbits induced by a connected Lie subgroup G ⊂ Conf • (E 1,2 ) which its translation part is a Lorentzian plane. These groups has been listed in Table (4.2).

Observe that, the translation part T (G) acts on each vertex-less photon in the lightcone L(p) transitively, since the action of a timelike plane does not preserve any degenerate affine plane in E 1,2 . In this case, the linear isometry projection P li (G) is either trivial or it is a 1-parameter hyperbolic subgroup of SO • (1, 2). In the first, G preserves every vertex-less photon in L(p). In the later, G preserves two distinct photons φ and ψ and acts on the both connected components of the complement L(p) \ (φ ∪ ψ)

transitively. Also, T (G) induces a codimension 1 foliation F T (G) in E 1,2 on which the leaves are affine Lorentzian planes.

• G = T (G) = Re 1 ⊕ Re 2 .
The orbits induced in by G are: a fixed point p, the vertex-less photons in L(p), and the leaves of the foliation induced by F G in E 1,2 ⊂ Ein 1,2 which are Lorentzian affine planes.

• G = R * + � (Re 1 ⊕ Re 2 )
. The homothety factor R * + preserves the leaf F T (G) (o). Thus this leaf is a 2-dimensional G-orbit. Furthermore, one can see, G acts on the both connected components of E 1,2 \ F T (G) (o) transitively. Thus, the orbits induced by G in Ein 1,2 are: a fixed point p, the vertex-less photons in L(p), the leaf F T (G) (o) which is a Lorentzian affine plane, and the two

connected components of E 1,2 \ F T (G) (o). • G = Y H � (Re 1 ⊕ Re 2 )
. The 1-parameter hyperbolic subgroup Y H preserves the leaves of the foliation F T (G) , so does G. Thus, the orbits induced by G are: a fixed point p, two vertex-less photons φ and ψ, the two connected components of L(p) \ (φ ∪ ψ) which are degenerate surfaces, and the leaves of the foliation F T (G) in E 1,2 , which are Lorentzian affine planes.

• G = (R * + × Y H ) � (Re 1 ⊕ Re 2 ). The leaf F T (G) (o) is a G-orbit, since it is invariant by the action of R * + × Y H .
Also, G acts on the both connected components of E 1,2 \ F T (G) (o) transitively. Therefore, the orbits induced by G in Ein 1,2 are: a fixed point p, the two vertex-less photons φ and ψ, the two connected components of L(p) \ (φ ∪ ψ) which are degenerate surfaces, the leaf F T (G) (o), and the two connected components of E 1,2 \ F T (G) (o).

• G = exp � R(a+Y H ) � �(Re 1 ⊕Re 2 ), a ∈ R * . Since, G is a subgroup of (R * + ×Y H )�(Re 1 ⊕Re 2 ), the leaf F T (G) (o) is a G-orbit.
For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) at q induced by the 1-parameter

subgroup exp � R(a + Y H ) � is v = (ax + y, x + ay, az).
The set {e 1 , e 2 , v} ⊂ T q G(q) is a basis if and only if q / ∈ F T (G) (o) if and only if z � = 0. This implies that G acts on the both connected components of E 1,2 \ F T (G) (o) transitively. Therefore, G admits the same orbits in Ein 1,2 as

(R * + × Y H ) � (Re 1 ⊕ Re 2 ). • G = exp � R(Y H + e 3 ) � � (Re 1 ⊕ Re 2 ):
For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) at q induced by the 1-parameter subgroup exp � R(Y H + e 3 ) � is v = (y, x, 1) (see B.10). Obviously, {e 1 , e 2 , v} is a basis of the tangent space T q G(q). This implies that G acts on E 1,2 , transitively. Hence, G admits the same orbits in Ein 1,2 as Y H � R 1,2 . Subgroups with a spacelike plane as the translation part

Now, suppose that G ⊂ Conf • (E 1,2
) is a connected Lie subgroup which its translation part T (G) is a spacelike plane. These groups have been listed in Table (4.3).

Observe that, the translation part T (G) acts on each vertex-less photon in the lightcone L(p) transitively, since the action of a spacelike plane does not preserve any degenerate affine plane in E 1,2 . In this case the linear isometry projection P li (G) is either trivial or it is a 1-parameter elliptic subgroup of SO • (1, 2). In the first case, G preserves every vertex-less photon in L(p). In the later, G acts on the vertex-less lightcone L(p) transitively. Also, T (G) induces a codimension 1 foliation F T (G) in E 1,2 ⊂ Ein 1,2 on which the leaves are affine spacelike planes.

• G = Re 2 ⊕ Re 3 . The orbits induced by G in Ein 1,2 are: a fixed point p, the vertex-less photons in L(p), and the leaves of the foliation F T (G) in E 1,2 which are affine spacelike planes. • G = Y E � (Re 2 ⊕ Re 3 ). The 1-parameter elliptic subgroup Y E preserves the leaves of the foliation F T (G) , so does G. Therefore, the orbits induced by G in Ein 1,2 are: a fixed point p, the vertex-less lightcone L(p), and the leaves of the foliation F T (G) in E 1,2 which are affine spacelike planes.

• G = R * + � (Re 2 ⊕ Re 3 ). The homothety factor R * + preserves the leaf F T (G) (o). Consequently, the leaf F T (G) (o) is a G-orbit.
• G = (R * + × Y E ) � (Re 2 ⊕ Re 3 ). The subgroup R * + × Y E preserves the leaf F T (G) (o). Hence, F T (G) (o) is a G-orbit.
Moreover, one can see G acts on the both connected components of E 1,2 \ F T (G) (o) transitively. Therefore, the orbits induced by G in Ein 1,2 are: a fixed point p, the vertex-less lightcone L(p), the leaf F T (G) (o) which is a spacelike affine plane, and the two

connected components of E 1,2 \ F T (G) (o). • G = exp � R(a + Y E ) � � (Re 2 ⊕ Re 3 ), a ∈ R * . The 1-parameter subgroup H = exp � R(a + Y E ) � preserves the leaf F T (G) (o). Hence, F T (G) is a G-orbit.
For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) at q induced by H is v = (ax, ay + z, azy). The set {e 2 , e 3 , v} ⊂ T q G(q) is a basis if and only if x � = 0 if and only if q / ∈ F T (G) (o). This implies that G acts on the both connected components of E 1,2 \ F T (G) (o) transitively. Therefore, G admits the same orbits in Ein 1,2 as (R * + × Y E ) � (Re 2 ⊕ Re 3 ).

• G = exp � R(Y E + e 1 )
� � (Re 2 ⊕ Re 3 ): For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) at q induced by the 1-parameter

subgroup exp � R(Y E + e 1 ) � is v = (1, z, -y) (see B.7
). The set {e 2 , e 3 , v} is a basis for the tangent space T q G(q). This implies that G acts on E 1,2 , transitively. Hence, the orbits induced by G in Ein 1,2 are the same as the orbits induced by Y E � R 1,2 . Remark 4.9. Observe that by the action of G = (R * + × Y E ) � (Re 2 ⊕ Re 3 ) the union of the leaf F T (G) (o) (which is a spacelike affine 2-plane) and the vertex {p} is G-invariant. Actually, F T (G) (o) ∪ {p} is a spacelike hypersphere (Definition 1.60). Furthermore, G is the unique (up to conjugacy) maximal connected Lie subgroup in SO • (2, 3) which preserves a spacelike hypersphere S 2 ⊂ Ein 1,2 and admits a fixed point on it.

Subgroups with a degenerate plane as the translation part

Assume that G ⊂ Conf • (E 1,2
) is a connected Lie subgroup which its translation part T (G) is a degenerate plane, i.e., G belongs to Table (4.4).

The translation part T (G) preserves the leaves of the foliation F T (G) . Hence, T (G) fixes the corresponding photon in L(p), pointwisely. In this case, the linear isometry projection P li (G) is either trivial or it is a subgroup of Aff ⊂ SO • (1, 2), up to conjugacy.

Case I: Suppose that the linear isometry projection P li (G) is trivial.

• G = Π φ = R(e 1 + e 2 ) ⊕ Re 3 .
The orbits induced by G in Ein 1,2 are: the points in φ, the vertex-less photons in L(p) different from φ, and the leaves of the foliation F Π φ in E 1,2 which are degenerate affine planes.

• G = R * + � Π φ . The homothety factor R * + preserves the leaf F Π φ (o). Hence, F Π φ (o) is a G-orbit.
Thus, G fixes the corresponding point d ∈ φ. On the other hand G acts on the both connected components of E 1,2 \ F Π φ (o) transitively. This shows that G acts on the both connected components of φ \ {d} transitively. Therefore, the orbits induced by G in Ein 1,2 are: two fixed points p and d, the two connected components of φ \ {d}, the vertex-less photons in L(p) different form φ, the leaf F Π φ (o), and the two connected components of E 1,2 \ F Π φ (o).

Case II: Assume that the linear isometry projection P li (G) is a 1-parameter parabolic subgroup. Then, it can be easily seen that G acts on the degenerate surface L(p) \ φ transitively.

• G = Y P � Π φ . The 1-parameter parabolic subgroup Y P (consequently G) preserves the leaves of the foliation induced by Π φ . Hence, G acts on the photon φ trivially. Therefore, the orbits induced by G in Ein 1,2 are: the points in φ, the degenerate surface L(p) \ φ, and the leaves of the foliation F Π φ in E 1,2 which are degenerate affine planes.

• G = (R * + × Y P ) � Π φ . The subgroup R * + × Y P preserves the leaf F Π φ (o). Hence, F Π φ (o) is a G-orbit.
Therefore, G fixes the corresponding point d ∈ φ. Furthermore, G acts on the both connected components of E 1,2 \ F Π φ (o) transitively. This implies that G acts on the both connected components of φ \ {d} transitively. Therefore, the orbits induced by G in Ein 1,2 are: two fixed points p and d, the two connected components of φ \ {d}, the degenerate surface L(p) \ φ, the degenerate affine plane F Π φ (o), and the two connected components of E 1,2 \ F Π φ (o).

• G = exp � R(a + Y P ) � � Π φ , a ∈ R * . The 1-parameter subgroup H = exp � R(a + Y P ) � preserves the leaf F P i φ (o). Therefore, F Π φ (o) is a G-orbit. Hence, G fixes the corresponding point d ∈ φ.
For an arbitrary point q = (x, y, z) ∈ E 1,2 the vector tangent to the orbit G(q) at (q) induced by the 1-parameter subgroup H is v = (ax + z, ay + z, xy + az). The set {(e 1 + e 2 ), e 3 , v} ⊂ T q G(q) is a basis if and only if x � = y if and only if q / ∈ F Π φ (o). Hence, G acts on the both connected components of E 1,2 \ F Π φ (o), transitively. Thus, G acts on the both connected components of φ \ {d} transitively. Observe that the orbits induced by G in Ein 1,2 are exactly the same as the orbits induced by (R * + × Y P ) � Π φ .

• G = exp � R(Y P + e 1 ) � � Π φ : For an arbitrary point q = (x, y, z) ∈ E 1,2 the vector tangent to the orbit G(q) at q induced by the 1-parameter subgroup exp � R(

Y P + e 1 ) � is v = (z + 1, z, x -y) (see B.8
). The set {(e 1 + e 2 ), e 3 , v} ⊂ T q G(q) is a basis. Hence, G acts on E 1,2 transitively. This implies that G acts on the vertex-less photon φ transitively. It follows that, the orbits induced by G in Ein 1,2 are exactly the same as the orbits induced by

Y P � R 1,2 .
Case III: Suppose that the linear isometry projection is a 1-parameter hyperbolic subgroup of

SO • (1, 2).
Then G preserves two distinct photons φ and ψ in L(p). Moreover, G acts on the vertex-less photon ψ transitively, since T (G) = Π φ does. Also, G acts on the both connected components of L(p) \ (φ ∪ ψ) transitively.

• G = Y H � Π φ . The 1-parameter subgroup Y H preserves the leaf F Π φ (o). Thus, F Π φ (o) is a 2-dimensional G-orbit.
Hence, G fixes the corresponding point d ∈ φ. For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) at q induced by Y H is v = (y, x, z). The set {(e 1 + e 2 ), e 3 , v} ⊂ T q G(q) is a basis if and only if x � = y if and only if q / ∈ F Π φ (o). Therefore, G acts on the both connected components of E 1,2 \ F Π φ (o) transitively, and consequently, it acts on the both connected components of φ \ {d} transitively. Henceforth, the orbits induced by G in Ein 1,2 are: two fixed points p and d, the two connected components of φ \ {d}, the vertex-less photon ψ, the two connected components of L(p) \ (φ \ ψ), the degenerate affine plane F Π φ (o), and the two connected components of E 1,2 \ F Π φ (o).

• G = (R * + × Y H ) � Π φ . The subgroup R * + × Y H preserves the leaf F Π φ (o). Thus F Π φ (o) is a G-orbit.
Hence, G fixes the corresponding point d ∈ φ. On the other hand, G acts on the both connected components of E 1,2 \ F Π φ (o) transitively, and consequently, it acts on the both connected components of φ \ {d} transitively. Observe that the orbits induced by G in Ein 1,2 are exactly the same as the orbits induced by Y H � Π φ .

• G = exp � R(a + Y H ) � � Π φ , a ∈ R * \ {1}. The 1-parameter subgroup H = exp � R(a + Y H ) � preserves the leaf F Π φ (o). Thus, F Π φ (o) is a G-orbit.
Henceforth, G fixes the corresponding point d ∈ φ. For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) at q induced by H is v = (ax + y, x + ay, az). It follows that, the set {(e 1 + e 2 ), e 3 , v} ⊂ T q G(q) is a basis if and only if x � = y if and only if q / ∈ F Π φ (o). This implies that, G acts on the both connected components of E 1,2 \ F Π φ (o) transitively, and so, it acts on the both connected components of φ \ {d} transitively too. Observe that the orbits induced by G are exactly the same as the orbits induced by Y H � Π φ .

• G = exp � R(1 + Y H ) � � Π φ .
For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) at q induced by exp

� R(1 + Y H ) � is v = (x + y, x + y, z). Observe that v ∈ Π φ ≤ T q G(q)
. Therefore, G preserves the leaves of the foliation F Π φ . This implies that G acts on φ trivially. Hence, the orbits induced by G in Ein 1,2 are: the points in φ, the vertex-less photon ψ, the two connected components of L(p) \ (φ ∪ ψ) which are degenerate surfaces, and the leaves of the foliation F Π φ in Ein 1,2 which are degenerate affine planes.

• G = exp � R(1 + Y H + e 1 )
� � Π φ : For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) at q induced by exp

� R(1 + Y H + e 1 ) � is v = (x + y + 1, x + y, z) (see B.11).
Observe that the set {(e 1 + e 2 ), e 3 , v} ⊂ T q G(q) is a basis. Therefore, G acts on E 1,2 transitively, This implies that G acts on the vertex-less photon φ transitively. Hence, the orbits induced by G in Ein 1,2 are exactly the same as the orbits induced by

Y H � R 1,2 .
Case IV: Finally, assume that the linear isometry projection P li (G) is a 2-dimensional subgroup of SO • (1, 2), hence P li (G) = Aff up to conjugacy. Since, P li (G) contains parabolic elements, G acts on

L(p) \ φ transitively. • G = Aff � Π φ . The subgroup Aff ⊂ SO • (1, 2) preserves the leaf F Π φ (o). Hence, F Π φ (o) is a 2-dimensional G-orbit.
Thus G fixes the corresponding point d ∈ φ. For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) at q induced by the 1-parameter subgroup

Y H ⊂ Aff is v = (y, x, z). The set {(e 1 + e 2 ), e 3 , v} ⊂ T q G(q) is a basis if and only if x � = y if and only if q / ∈ F Π φ (o). Henceforth, G acts on the both connected components of E 1,2 \ F Π φ (o),
(and consequently on the both connected components of φ \ {d}) transitively. Observe the orbits induced by G in Ein 1,2 are exactly the same as the orbits induced by

(R * + × Y P ) � Π φ . • G = (R * + × Aff) � Π φ . The subgroup R * + × Aff preserves the leaf F Π φ (o). Hence, F Π φ (o)
is a G-orbit, and so, G fixes the corresponding point d ∈ φ. For an arbitrary point q = (x, y, z) the vector tangent to the orbit G(q) at q induced by the homothety factor R * + is v = (x, y, z). The set {(e 1 + e 2 ), e 3 , v} is a basis if and only if x � = y if and only if q / ∈ F Π φ (o). Therefore, G acts on the both connected components of E 1,2 \ F Π φ (o) (and consequently on the both connected components of φ \ {d}) transitively. Observe G admits exactly the same orbits in Ein 1,2 as (R * + × Y P ) � Π φ .

• G = exp � (R(a + Y H ) + RY P ) � � Π φ , a ∈ R * \ {1}. The subgroup exp � (R(a + Y H ) + RY P ) � preserves the leaf F Π φ (o). Thus, F Π φ (o)
is a G-orbit, and so, G fixes the corresponding point d ∈ φ. For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) at q induced by the 1-parameter

subgroup exp � R(a + Y H ) � is v = (ax + y, x + ay, z).
The set {(e 1 + e 2 ), e 3 , v} ⊂ T q G(q) is a basis if and only if x � = y if and only q / ∈ F Π φ (o). Therefore, G acts on the both connected components of E 1,2 \ F Π φ (o) (and consequently on the both connected components of φ \ {d}) transitively. Observe the orbits induced by G in Ein 1,2 are exactly the same as the orbits induced by (R * + × Y P ) � Π φ .

• G = exp � (R(1 + Y H ) + RY P ) � � Π φ .
For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vectors tangent to the orbit G(q) at q induced by the 1-parameter subgroups exp � R(1 + Y H ) � and Y P are v = (x + y, x + y, z) and w = (z, z, xy), respectively. Obviously, v, w ∈ Π φ ≤ T q G(q). Therefore, G preserves the leaves of the foliation F Π φ . This implies that G acts on the photon φ trivially. Henceforth, the orbits induced by G in Ein 1,2 are exactly the same as the orbits induced by Y P � Π φ .

• G = exp � R(2 + Y H ) + R(Y P + e 1 ) � � Π φ .
For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) at q induced by the 1-parameter subgroup exp � R(Y P + e 1 ) � is v = (z + 1, z, xy) (see B.8). The set {(e 1 + e 2 ), e 3 , v} ⊂ T q G(q) is a basis. Hence, G acts on E 1.2 transitively. This implies that G acts on the vertex-less photon φ transitively as well. Therefore, the orbits induced by G in Ein 1,2 are exactly the same as the orbits induced by Y P � R 1,2 .

• If G = exp � R(1 + Y H + e 1 ) + RY P � � Π φ .
For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) at q induced by exp

� R(1 + Y H ) � is v = (x + y + 1, x + y, z) (see B.11).
Observe that the set {(e 1 + e 2 ), e 3 , v} ⊂ T q G(q) is a basis. Therefore, G acts on E 1,2 transitively, This implies that G acts on the vertex-less photon φ transitively. Clearly, G admits the same orbits in Ein 1,2 as Y P � R 1,2 .

Definition 4.10. The subgroup exp

� (R(1 + Y H ) + RY P ) � � Π φ
is the identity component of the intersection of the stabilizers of the points in the photon φ. In other words, up to conjugacy, it is the unique (up to conjugacy) maximal connected Lie subgroup of SO • (2, 3) which acts on a photon trivially.

We denote this group by the special symbol K • .

Subgroups with a timelike line as the translation part

Let G ⊂ Conf • (E 1,2 ) be a connected Lie subgroup on which its translation part T (G) is a timelike line, i.e., G is an element in Table 4.5.

The translation part T (G) = Re 1 admits a codimension 2 foliation F Re 1 in E 1,2 on which the leaves are affine timelike lines. On the other hand, Re 1 preserves no degenerate affine plane in E 1,2 , hence, it acts on each vertex-less photon in the lightcone L(p), transitively. In addition, every G-orbit in E 1,2 is either timelike (if it is 1-dimensional) or it is Lorentzian (if the dimension > 1), since the timelike vector e 1 is tangent to all the orbits induced in E 1,2 . In this case, the linear isometry projection P li (G) is either trivial or it is a 1-parameter elliptic subgroup of SO • (1, 2). In the first case, the orbits induced by G in the lightcone L(p) are the vertex-less photons. In the later, the vertex-less lightcone L(p) is a G-orbit.

• G = R * + � Re 1 .
The homothety factor R * + preserves the leaf F Re 1 (o). Hence, F Re 1 (o) is a G-orbit. Also, G preserves every affine Lorentzian plane in E 1,2 containing F Re 1 (o). One can see that, G acts on E 1,2 \F Re 1 (o) freely. Furthermore, every 2-dimensional orbit in E 1,2 intersects the spacelike curve γ θ = {(0, cos θ, sin θ) : θ ∈ R} in a unique point. Therefore, the orbits induced by G in Ein 1,2 are: a fixed point p, the vertex-less photons in L(p), the affine timelike line F Re 1 (o), and a 1-parameter family of Lorentzian affine half-planes in E 1,2 on which G acts freely -the parameter being q ∈ γ θ -.

• G = Y E × Re 1 . The 1-parameter elliptic subgroup Y E preserves the leaf F Re 1 (o). Hence, F Re 1 (o)
is a G-orbit. For an arbitrary point q ∈ E 1,2 \ F Re 1 (o), one can see that the orbit G(q) intersects the affine spacelike half-line � = {(0, t, 0) : t ∈ R * + } in a unique point. It follows that G acts on E 1,2 \ F Re 1 (o) freely. Therefore, the orbits induced by G in Ein 1,2 are: a fixed point p, a timelike affine line F Re 1 (o), the vertex-less lightcone L(p), and a 1-parameter family of Lorentzian orbits on which G acts freely -the parameter being q ∈ �-.

• G = (R * + × Y E ) � Re 1 . The subgroup R * + × Y H preserves the leaf F Re 1 (o), Hence, F Re 1 (o) is a G- orbit.
For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vectors tangent to the orbit G(q) at q induced by the 1-parameter subgroups R * + and Y E are v = (x, y, z) and w = (0, z, -y), respectively. The set {e 1 , v, w} ⊂ T q G(q) is a basis if and only if y, z � = 0 if and only if q / ∈ F Re 1 (o). Thus, G acts on E 1,2 \ F Re 1 (o) transitively. Therefore, the orbits induced by G in Ein 1,2 are: a fixed point p, the timelike affine line F Re 1 (o), the vertex-less lightcone L(p), and an open orbit E 1,2 \ F Re 1 (o).

• G a = exp � R(a + Y E ) � � Re 1 , a ∈ R * . The 1-parameter subgroup exp � R(a + Y E ) � preserves the leaf F Re 1 (o). Hence, F Re 1 (o) is a G a -orbit.
For an arbitrary point q ∈ E 1,2 \ F Re 1 (o) the orbit G a (q) intersects the spacelike affine half-line � = {(0, t, 0) : t ∈ R * + }. Now, it can be easily seen that, G a acts on E 1,2 \ F Re 3 (o) freely. Therefore, the orbits induced by G a in Ein 1,2 are: a fixed point p, a timelike affine line F Re 1 (o), the vertex-less lightcone L(p), and a 1-parameter family of Lorentzian orbits in E 1,2 on which G a acts freely -the parameter being q ∈ �-. By Lemma 1.21, the action of G a on Ein 1,2 is orbitally-equivalent to the action of G -a via the element in O(1, 2) which maps (x, y, z) ∈ E 1,2 to (x, z, y).

Subgroups with a spacelike line as the translation part

Suppose that G ⊂ Conf • (E 1,2
) is a connected Lie subgroup with a spacelike line as the translation part.

These groups have been listed in Table 4.6.

The translation part T (G) = Re 3 admits a codimension 2 foliation F Re 3 in E 1,2 on which the leaves are affine spacelike lines parallel to Re 3 . In the one hand, the translation part fixes two photons φ, ψ ⊂ L(p), pointwisely, since Re 3 is contained in the both lightlike planes Π φ = R(e 1 + e 2 ) ⊕ Re 3 and Π ψ = R(e 1e 2 ) ⊕ Re 3 . On the other hand, the linear projection P l (G) preserves both foliations F Π φ and F Π ψ . Hence, the photons φ and ψ are invariant by G. Also, Re 3 acts on all the vertex-less photons in the lightcone L(p) different form φ and ψ transitively.

In this case, the linear isometry projection is either trivial or it is a 1-parameter hyperbolic subgroup of SO • (1, 2). In the first, every vertex-less photon in L(p) different from φ and ψ is a G-orbit. In the later, G acts on the both connected components of L(p) \ (φ ∪ ψ) transitively.

• G = R * + � Re 3 :
The homothety factor R * + preserves the leaf F Re 3 (o). Hence, F Re 3 (o) is a Gorbit. Also, G preserves every affine plane in E 1,2 containing F Re 3 (o). Specially, G preserves the degenerate leaves F Π φ (o) and F Π ψ (o). This implies that G fixes their corresponding limit points d φ ∈ φ and d ψ ∈ ψ. Clearly, the homothety factor R * + acts on the both connected components of φ \ {d φ } and ψ \ {d ψ } transitively. For an arbitrary point q = (x, y, z) ∈ Ein 1,2 , the vector tangent to the orbit G(q) at q induced by homothety factor R * + is v = (x, y, z). Observe that the set {v, e 3 } ⊂ T q G(q) is a basis if and only if x � = 0 or y � = 0 if and only if q / ∈ F Re 3 (o). In fact, every 2-dimensional orbit intersects the curve γ(θ) = {(cos θ, sin θ, 0) : of Lorentzian orbits on which every orbit is a Lorentzian affine half-plane -the parameter being θ ∈ (π/4, 3π/4) ∪ (-3π/4, -π/4)-, and a 1-parameter family of spacelike orbits on which every orbit is a spacelike affine half-plane -the parameter being θ ∈ (-π/4, π/4) ∪ (3π/4, 5π/4).

0 ≤ θ ≤ 2π} in a unique point. A 2-dimensional G-orbit in E
• G = Y H × Re 3 . Every G-orbit in E 1,2 intersects either the timelike affine line � t = {(t, 0, 0) :

t ∈ R} or the spacelike affine line � s = {(0, t, 0) : t ∈ R} or one of the lightlike affine lines � l = {(t, t, 0) : t ∈ R} and � � l = {(t, -t, 0) : t ∈ R}. Also, G preserves the leaves F Re 3 (o), F Π φ (o), and F Π ψ (o). Hence, G fixes the corresponding limit points d φ ∈ φ and d ψ ∈ ψ. On the other hand,Y H (and consequently G) acts on the both connected components of φ\{d φ } and ψ\{d ψ } transitively. For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) at q induced by the 1-parameter subgroup Y H is v = (y, x, 0). The set B = {e 3 , v} ⊂ T q G(q) is a basis if and only if x � = 0 or y � = 0 if and only if q / ∈ F Re 3 (o). In fact, one can see, G acts on E 1,2 \F Re 3 (o)

freely. Hence, G acts on the four connected components of (

F Π φ (o)∪F Π ψ (o))\F Re 3 (o) transitively.
Observe, for q ∈ � t \ {o} (resp. q ∈ � s \ {o}) the orbit G(q) is spacelike (resp. Lorentzian).

Therefore, the orbits induced by G in Ein 1,2 are: three fixed points p, d φ and d ψ , the four connected components of ( φ ∪ ψ) \ {d φ , d ψ }, the two connected components of L(p) \ (φ ∪ ψ), the affine spacelike line F Re 3 (o), the four connected components of (

F Π φ (o) ∪ F Π ψ (o)) \ F Re 3 (o) which
are degenerate affine half-planes, a 1-parameter family of Lorentzian orbits on which G acts freely -the parameter being q ∈ � s \ {o}-, and a 1-parameter family of the spacelike orbits on which G acts freely -the parameter being q ∈ � t \ {o}-.

• G = (R * + × Y H ) � Re 3 . The subgroup R * + × Y H preserves the leaf F Re 3 (o). Hence, F Re 3 (o) is a G-orbit.
Observe that G also preserves the leaves F Π φ (o), and F Π ψ (o). Hence, G fixes the corresponding limit points d φ ∈ φ and d ψ ∈ ψ. On the other hand, the homothety factor R * + (and consequently G) acts on the both connected components of φ \ {d φ } and ψ \ {d ψ } transitively. The group G acts on the four connected components of (

F Π φ (o) ∪ F Π ψ (o)) \ F Re 3 (o)
transitively, since its subgroup Y H × Re 3 does. For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vectors tangent to the orbit G(q) at q induced by the 1-parameter subgroups Y H and R * + are v = (y, x, 0) and w = (x, y, z). The set {e 3 , v, w} ⊂ T q G(q) is a basis if and only if x � = ±y if and only if q / ∈ (F Π φ (o) ∪ F Π ψ (o)). This implies that G acts on the four connected components

of E 1,2 \ (F Π φ (o) ∪ F Π ψ (o))
transitively. Therefore, the orbits induced by G in Ein 1,2 are: three fixed points p, d φ , d ψ , the four connected components of ( φ ∪ ψ) \ {d φ , d ψ }, the two connected components of L(p) \ (φ ∪ ψ), the spacelike affine line

F Re 3 (o), the four connected components of (F Π φ (o) ∪ F Π ψ (o)) \ F Re 3 (o)
which are affine degenerate half-planes, and the four connected

components of Ein 1,2 \ (F Π φ (o) ∪ F Π ψ (o)). • G a = exp � R(a + Y H ) � � Re 3 , a ∈ R \ {-1, 0, 1}. The 1-parameter subgroup H a = exp � R(a + Y H ) � preserves the leaf F Re 3 (o). Hence, F Re 3 (o) is a G a -orbit.
Also, G a preserves the leaves F Π φ (o), and F Π ψ (o). Hence, G a fixes the corresponding limit points d φ ∈ φ and d ψ ∈ ψ.

Moreover, H a (and consequently G a ) acts on the connected components of φ \ {d φ } and ψ \ {d ψ } transitively. For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G a (q) at q induced by the 1-parameter subgroup H a is v = (ax + y, x + ay, az). The set {e 3 , v} ⊂ T q G a (q) is a basis if and only if x � = 0 or y � = 0 if and only if q / ∈ F Re 3 (o). Hence, G a acts on the four connected components of (

F Π φ (o) ∪ F Π ψ (o)) \ F Re 3 (o) transitively. For a point q ∈ E 1,2 \ (F Π φ (o) ∪ F Π ψ (o))
, it is not hard to see that the orbit G a (q) intersects either the spacelike affine line � s = {(0, t, 0) : t ∈ R} or the timelike affine line � t = {(t, 0, 0) : t ∈ R}.

Now, one can see

G a acts on E 1,2 \ (F Π φ (o) ∪ F Π ψ (o)
) freely. By Lemma 1.21, one can see that the action of G a on Ein 1,2 is orbitally-equivalent to G -a via the element in O(1, 2) which maps (x, y, z) ∈ E 1,2 to (-x, y, z). Hence, we may restrict ourselves to a ∈ (0, ∞) \ {1}.

-If a ∈ (0, 1). the orbit induced at q ∈ � t \ {o} (resp. q ∈ � s ) is spacelike (resp. Lorentzian).

-If a ∈ (1, ∞). the orbit induced at q ∈ � t \ {o} (resp. q ∈ � s ) is Lorentzian (resp. spacelike).

Therefore, the orbits induced by G a in Ein if a ∈ (0, 1), a 1-parameter family of Lorentzian surfaces in E 1,2 on which G a acts freely -the parameter being q ∈ � t \ {o}-, and a 1-parameter family of spacelike surfaces in E 1,2 on which G a acts freely -the parameter being q ∈ � s \ {o}-.

if a ∈ (1, ∞), a 1-parameter family of spacelike surfaces in E 1,2 on which G a acts freely -the parameter being q ∈ � t \ {o}-, and a 1-parameter family of Lorentzian surfaces in E 1,2 on which G a acts freely -the parameter being q ∈ � s \ {o}-.

•

G 1 = exp � R(1 + Y H ) � � Re 3 . The 1-parameter subgroup H 1 = exp � R(1 + Y H ) � preserves the leaf F Re 3 (o). Hence, F Re 3 (o) is a G 1 -orbit.
For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G 1 (q) at q induced by H 1 is v = (x + y, x + y, z). Observe that v ∈ Π φ . This implies that G 1 preserves the leaves of the foliation F Π φ . Hence, G 1 acts on the photon φ trivially (in fact G 1 is a subgroup of K • described in Definition 4.10). On the other hand, the vector v belongs to Π ψ if and only if x = -y if and only if q ∈ F Π ψ (o). Hence, G 1 fixes the corresponding limit point d ψ ∈ ψ and acts on the both connected components of ψ \ {d ψ } transitively. The set {e 3 , v} ⊂ T q G 1 (q) is a basis if and only if x � = -y if and only if q / ∈ F Π ψ (o). Every G 1 -orbit in E 1,2 intersects one of the lightlike affine lines

� l = {(t, -t, 0) : t ∈ R} ⊂ F Π ψ (o), � + l = {(t, -t, 1) : t ∈ R}, or � - l = {(t, -t, -1) : t ∈ R}.
Observe that for q ∈ (� + l ∪ � - l ) the orbit G 1 (q) is a degenerate affine half-plane. Therefore, the orbits induced by G 1 in Ein 1,2 are: the points in φ ∪ {d ψ }, the two connected components of ψ \ {d ψ }, the two connected components of L(p) \ (φ ∪ ψ), a 1-parameter family of 1-dimensional spacelike orbits in E 1,2 on which every orbit is a leaf F Re 3 (q) -the parameter being q ∈ � l -, and a 1-parameter family of degenerate surfaces in E 1,2 on which every orbit is a degenerate affine half-plane -the parameter being q ∈ (� + l ∪ � - l )-.

• G -1 = exp � R(-1 + Y H ) � � Re 3 .
For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vectors tangent to the orbit G -1 (q) at q induced by the 1-parameter subgroups exp

� R(-1 + Y H ) � is v = (-x + y, x -y, z). By Lemma 1.21, the action of G -1 on Ein 1,2 is orbitally-equivalent to the action of exp � R(1 + Y H ) � � Re 3 via the element in O(1, 2) which maps (x, y, z) ∈ R 1,2 to (-x, y, z). • G = exp � R(1+Y H +e 1 ) � �Re 3 .
For an arbitrary point p = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) induced by the 1-parameter [START_REF] Collier | The geometry of maximal representations of surface groups into SO(2,n)[END_REF]. The set {e 3 , v} is a basis for the tangent space T p G(p). Thus, all the orbits induced by G in E 1,2 are 2-dimensional. Therefore, the action of G admits a codimension 1 foliation in E 1,2 . In the one hand, G(p) is degenerate if and only if x + y = -1/2. On the other hand, G preserves the affine lightlike plane F Π ψ (-1/2, 0, 0), and acts on it transitively. Hence, G admits a unique degenerate orbit F Π ψ (-1/2, 0, 0) in E 1,2 . Consequently, G admits a unique fixed point d ψ on ψ, which is the limit point of F Π ψ (-1/2, 0, 0), and acts on the both connected components of ψ \ {d ψ } and on the vertex-less photon φ transitively. Furthermore, for a point q ∈ E 1,2 \ F Π ψ (-1/2, 0, 0) the orbit induced at G(q) intersects either the affine timelike half-line � t = {(t, 0, 0) : -∞ < t < -1/2} or the spacelike affine half-line � s = {(0, t, 0) : -1/2 < t < ∞} in a unique point. Now, it can be easily seen that G acts on E 1,2 \ F Π ψ (-1/2, 0, 0) freely. Observe that, the orbit induced at q ∈ � t (resp. q ∈ � s ) is Lorentzian (resp. spacelike). Therefore, the orbits induced by G in Ein 1,2 are: two fixed points p and d ψ , the two connected components of ψ \ {d ψ }, the vertex-less photon φ, the two connected components of L(p) \ (φ ∪ ψ), the lightlike affine plane F Π ψ (-1/2, 0, 0), a 1-parameter family of Lorentzian orbits on which G acts freely -the parameter being q ∈ � t -, and a 1-parameter family of spacelike orbits on which G acts freely -the parameter being q ∈ � s .

subgroup exp � R(1+Y H +e 1 ) � is v = (x+y+1, x+y, z) (see B.
• G = exp � R(-1 + Y H + e 1 ) � � Re 3 .
For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) at q induced by the 1-parameter

subgroup exp � R(-1 + Y H + e 1 ) � is v = (-x + y + 1, x -y, z). By Lemma 1.21, the action of G on Ein 1,2 is orbitally equivalent to the action of exp � R(1 + Y H + e 1 ) � � Re 3 via the element in O(1.2) which maps (x, y, z) ∈ E 1,2 to (-x, y, z).

Subgroups with a lightlike line as the translation part

Assume that G ⊂ Conf • (E 1,2 ) is a connected Lie subgroup with a lightlike line as the translation part, i.e., G is an element of Table 4.7.

Throughout, this section we denote by L the lightlike line R(e 1 + e 2 ) ≤ R 1,2 . Also, recall that, the unique lightlike plane in R 1,2 invariant by the 1-parameter parabolic subgroup Y P is L ⊥ = R(e 1 + e 2 ) ⊕ Re 3 and is denoted by Π φ .

The translation part T (G) = L induces a codimension 2 foliation F L in E 1,2 on which the leaves are affine lightlike lines parallel to L . Observe that, the translation part preserves the leaves of the foliation F Π φ , since L ≤ Π φ . Hence, L acts on the photon φ trivially. Furthermore, L acts on all the vertex-less photons in L(p) different form φ transitively. On the other hand, all the subgroups listed in Table (4.7) preserve the foliation F Π φ . Hence, they preserve the photon φ. Also, the subgroups with hyperbolic linear projection preserve the foliation F Π ψ , and so, these subgroups preserve both photons φ and ψ.

Case I: The linear isometry projection trivial. In this case

G = R * + � L . The homothety factor R * + preserves the leaf F L (o). Hence, F L (o) is a G-orbit. Also, G preserves the leaf F Π φ (o)
. This implies that G fixes a point d in φ which is the limit point of F Π φ (o). The group G acts on the both connected components of φ\{d} transitively. Moreover, one can see, R * + (and consequently G) preserves all the affine planes in E 1,2 containing F L (o). Observe that all those affine planes are Lorentzian except F Π φ (o). For an arbitrary point q = (x, y, z) ∈ E 1,2 the vector tangent to the orbit G(q) at q induced by R * + is v = (x, y, z). The set {(e 1 + e 2 ).v} ⊂ T q G(q) is a basis if and only if z � = 0 or x � = y if and only if q / ∈ F L (o).

Thus, G acts on the both connected components of

F Π φ (o) \ F L (o) transitively. Furthermore, every G-orbit in E 1,2 \ F Π φ (o) intersects one of the spacelike curves γ + η = {(1, cos η, sin η) : 0 < η < 2π} or γ - η = {(-1
, cos η, sin η) : 0 < η < 2π} in a unique point. Therefore, the orbits induced by G in Ein 1,2 are: two fixed points {p} and {d}, the two connected components of φ \ {d}, the vertex-less photons in L(p) different from φ, the affine lightlike line F L (o), the two connected components of

F Π φ (o) \ F L (o)
which are affine degenerate half-planes, and a 1-parameter family of Lorentzian affine half-planes -the parameter being q ∈ (γ + η ∪ γ - η )-. Case II: The linear isometry projection is a 1-parameter parabolic subgroup of SO • [START_REF] Alekseevsky | G-manifolds with one dimensional orbit space[END_REF][START_REF] Alekseevsky | On a proper action of a Lie group[END_REF]. In this case, G preserves a unique photon in L(p), namely φ, and acts on L(p) \ φ transitively.

• G = Y P × L . For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) at q induced by Y P is v = (z, z, xy). Since v ∈ Π φ , G preserves the leaves of the foliation F Π φ . Actually, G is a subgroup of K • (Definition 4.10). Thus, G acts on the photon φ trivially.

The set {(e 1 + e 2 ), v} is a basis if and only if x � = y, which describes the leaf F Π φ (o). Hence, G acts on all the leaves of F Π φ different form F Π φ (o) transitively. Observe that the orbits induced by G in F Π φ (o) are lightlike affine lines, namely, they are the leaves of the foliation induced by L .

Therefore, the orbits induced by G in Ein 1,2 are: the points in φ, the degenerate surface L(p) \ φ, the lightlike affine lines in F Π φ (o), and the leaves of the foliation

F Π φ different form F Π φ (o),
which are degenerate affine planes.

• G = (R * + × Y P ) � L . The subgroup R * + × Y P preserves the leaves F L (o). Hence, F L (o) is a G-orbit. Moreover, G preserves the leaf F Π φ (o)
. This implies that G fixes a point d ∈ φ, which is the limit point of F Π φ (o). The homothety factor R * + acts on the both connected components of φ \ {d} transitively. For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vectors tangent to the orbit G(q) at q induced by Y P and R * + are v = (z, z, xy) and w = (x, y, z), respectively. The set {(e 1 + e 2 ), v, w} ⊂ T q G(q) is a basis if and only if x � = y if and only if q / ∈ F Π φ (o).

Thus, G acts on the both connected components of E 1,2 \ F Π φ (o) transitively. Observe that for a point q ∈ F Π φ (o) the set {(e 1 + e 2 ), w} ⊂ T q G(q) is a basis if and only if z � = 0 if and only if q / ∈ F L (0). Hence, G acts on the both connected components of

F Π φ (o) \ F L (o) transitively.
Therefore, the orbits induced by G in Ein 1,2 are: two fixed points {p} and {d}, the two connected components of φ \ {d}, the degenerate surface L(p) \ φ, the lightlike affine line F L (o), the two connected components of F Π φ (o) \ F L (o) which are affine degenerate half-planes, and the two

connected components of E 1,2 \ F Π φ (o). • G a = exp � R(a+Y P ) � �L , a ∈ R * . The 1-parameter subgroup H a = exp � R(a+Y P ) � preserves the leaf F L (o). Hence, F L (o) is a G a -orbit. Moreover, G a preserves the leaf F Π φ (o).
This implies that G a fixes a point d ∈ φ, which is the limit point of F Π φ (o). One can see that H a acts on the both connected components of φ \ {d} transitively. For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G a (q) at q induced by the H a is v = (ax + z, ay + z, xy + az). The set {(e 1 + e 2 ), v} ⊂ T q G a (q) is a basis if and only if z � = 0 or x � = y if and only if q / ∈ F L (o).

Henceforth, G a acts on the both connected components of F Π φ (o) \ F L (o) transitively. It is not hard to see that every orbit induced by G a in E 1,2 \ F Π φ (o) intersects the affine spacelike line � s = {(0, t, 0) : t ∈ R}. Now, it can be easily seen that G a acts on E 1,2 \ F L (o) freely. For a point q ∈ E 1,2 \ F Π φ (o) the orbit G a (q) is Lorentzain, since the orthogonal space of the null vector e 1 + e 2 in T q G(q) is L . Therefore, the orbits induced by G a in Ein 1,2 are: two fixed points {p, d}, the two connected components of φ \ {d}, the affine lightlike line F L (o), the degenerate surface L(p) \ φ, the two connected components of F Π φ (o) \ F L (o) which are degenerate affine half-planes, and a 1-parameter family of Lorentzain orbits in E 1,2 on which G a acts freely -the parameter being q ∈ � s \ {o}.

It is remarkable that the action of G a is orbit equivalent to the action of G -a via the element in O(1, 2) which maps (x, y, z) ∈ E 1,2 to (x, y, -z).

• G = exp � R(Y P + e 1 ) � � L . For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(p) at q induced by the 1-parameter subgroup [START_REF] Berard-Bergery | Sur de nouvells variété riemanniennes d'Einstein[END_REF]. Observe that v / ∈ Π φ , hence, G preserves no leaf of the foliation F Π φ , and so, G acts on the vertex-less photon φ transitively. It is clear that the set {(e 1 + e 2 ), v} ⊂ T q G(q) is a basis.

H = exp � R(Y P +e 1 ) � is v = (z +1, z, x-y) (see B.
Thus all the orbits induced by G in E 1,2 are 2-dimensional. By applying a suitable element of L , we may assume q = (x, 0, z). On the other hand, the orbit induced by H at q is

H(q) = � � x(1 + 1 2 )t 2 + tz + t + t 3 6 , 1 2 t 2 x + tz, tx + z + t 2 2 
� : t ∈ R � .
Setting t = -x, the orbit H(q) intersects the affine degenerate plane {x = y}. Hence, once more, applying a suitable element of L , we may assume that q = (0, 0, z). We conclude that every G-orbit in Ein 1,2 intersects the affine spacelike line � = {(0, 0, t) : t ∈ R}. Now, it can be easily seen that G acts on E 1,2 freely and every G-orbit intersects � in a unique point. The orthogonal space of the null vector e 1 + e 2 in T p G(p) is L . Hence, all the orbits are Lorentzian. Therefore, the orbits induced by G in Ein 1,2 are: the fixed point p, the vertex-less photon φ, the degenerate surface L(p) \ φ, and a 1-parameter family of Lorentzian orbits on which G acts freely -the parameter being q ∈ �.

Case III: The linear isometry projection P li (G) is a 1-parameter hyperbolic subgroup of SO • [START_REF] Alekseevsky | G-manifolds with one dimensional orbit space[END_REF][START_REF] Alekseevsky | On a proper action of a Lie group[END_REF].

In this case G preserves both foliations F Π φ and F Π ψ , and so, it preserves both photons φ and ψ in the lightcone L(p). Also, G acts on the two connected components of L(p) \ (φ ∪ ψ) transitively.

• G = (R * + × Y H ) � L . The subgroup R * + × Y H preserves the leaf F L (o). Hence, F L (o) is a G-orbit. Moreover, G preserves the leaf F Π φ (o)
. This implies that, G admits a fixed point d ∈ φ, which is the limit point of F Π φ (o). The homothety factor R * + acts on the both connected components of φ \ {d} transitively. Furthermore, G preserves the affine Lorentzian plane

L 0 = {z = 0} ⊂ E 1,2 .
For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vectors tangent to the orbit G(q) at q induced by the 1-parameter subgroups R * + and Y H are v = (x, y, z) and w = (y, x, 0), respectively. The set {(e 1 + e 2 ), v, w} ⊂ T q G(q) is a basis if and only if z � = 0 and x � = y if and only if q / ∈

(L 0 ∪ F Π φ (o)). Thus, G acts on the four connected components of E 1,2 \ (L 0 ∪ F Π φ (o)) transitively.
Also, one can see that G acts on the four connected components of

(L 0 ∪ F Π φ (o)) \ F L (o)
transitively. Therefore, the orbits induced by G in Ein 1,2 are: two fixed points {p, d}, the two connected components of φ \ {d}, the vertex-less photon ψ, the affine lightlike line F L (o), the two connected components of L(p) \ (φ ∪ ψ), the two connected components of L 0 \ F L (o) which are affine Lorentzian half-planes, the two connected components of F Π φ (o) \ F L (o) which are affine degenerate half-planes, and the four connected components of

E 1,2 \ (L 0 ∪ F Π φ (o)). • G = Y H � L . The 1-parameter subgroup Y H preserves the leaf F L (o). Hence, F L (o) is a G-orbit.
Moreover, G preserves the leaf F Π φ (o). This implies that, G admits a fixed point d ∈ φ, which is the limit point of F Π φ (o). The subgroup Y H acts on the both connected components of φ \ {d} transitively. Furthermore, G preserves the leaves of the foliation F L induced by the Lorentzian and� - s = {(-1, t, 0) : t ∈ R} in a unique point. For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) at q induced by Y H is v = (y, x, 0). Observe that, the set {(e 1 + e 2 , v}) ⊂ T q G(q) is a basis if and only if x � = y if and only if q / ∈ F Π φ (o). Hence, for a point q ∈ � s , the orbit G q is F L (q). For a point q ∈ (� + s ∪ � - s ), the orbit G q is the connected component of F L (q) \ F Π φ (o) which contains q, and it is a Lorentzian affine half plane. Therefore, the orbits induced by the G in Ein 1,2 are: two fixed points {p, d}, the two connected components of φ \ {d}, the vertex-less photon ψ, a 1-parameter family of lightlike affine lines in E 1,2 -the parameter being q ∈ � s -, and a 1-parameter family of the 2-dimensional orbits which are Lorentzian affine half-planes -the parameter being q ∈ � + s ∪ � - s .

plane L = Re 1 ⊕ Re 2 ≤ R 1,2 . Every G orbit in E 1,2 intersects one of the spacelike affine lines � s = {(0, t, 0) : t ∈ R} ⊂ F Π φ (o), � + s = {(1, t, 0) : t ∈ R},
•

G a = exp � R(a + Y H ) � � L , a ∈ R * \ {1}.
The group G a preserves the orbits induced by

(R * + × Y H ) � L , since G is a subgroup of (R * + × Y H ) � L .
In fact, one can see, the orbits induced by G a in the lightcone L(p) are exactly the same as orbits induced by (R * + × Y H ) � L . For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) at q induced by the

1-parameter subgroup exp � R(a+Y H ) � is v = (ax+y, x+ay, az). The set {e 1 +e 2 , v} ⊂ T q G(q)
is a basis if and only if z � = 0 or x � = y if and only if p / ∈ F L (o). This shows that G acts on the four connected components of

(L 0 ∪ F Π φ (o)) \ F L (o)
transitively. In the one hand, for all q ∈ E 1,2 \ F Π φ (o) the orbit G(q) is Lorentzain, since the orthogonal space of the null vector e 1 + e 2 ∈ T q G(q) is L . On the other hand, the orbit G(q) intersects one of the four timelike affine half-lines

� ± 1 = {(±t, 0, 1) : 0 < t < ∞)}, � ± -1 = {(±t, 0, -1) 
: 0 < t < ∞)}. Now, it can be easily seen that G acts on E 1,2 \ (L 0 ∪ F Π φ (o)) freely. Therefore, the orbits induced by G in Ein 1,2 are: two fixed points {p, d}, the two connected components of φ \ {d}, the vertex-less photon ψ, the lightlike affine line F L (o), the two connected components of L(p) \ (φ ∪ ψ), the two connected components of F Π φ (o) \ F L (o) which are affine degenerate half-planes, the two connected components of L 0 \ F L (o) which are affine Lorentzian half-planes, and a 1-parameter family of Lorentzian orbits on which G acts freely -the parameter being q ∈ (� ± 1 ∪ � ± -1 )-.

Note that, for all a ∈ R * \ {1}, the action of G a on Ein 1,2 is orbitally-equivalent to the the action of G 1/a via the homothety in Conf(E 1,2 ) which maps (x, y, z) ∈ E 1,2 to (x/a, y/a, z/a).

• If G = exp � R(1 + Y H ) � � L . Since, G is a subgroup of K • (Definition 4.10
), it preserves the leaves of the foliation F Π φ (o). Hence, G acts on the photon φ trivially. Also, G preserves the leaf F L (o), and the affine Lorentzian plane L 0 = {z = 0} ⊂ E 1,2 . For an arbitrary point q = (x, y, z) ∈ E 1,2 the vector tangent to the orbit G(q) at q induced by the 1-parameter subgroup

exp � R(1 + Y H ) � is v = (x + y, x + y, z
). The set {e 1 + e 2 , v} ⊂ T q G(q) is a basis if and only if z � = 0 if and only if q / ∈ L 0 . Thus for all q ∈ E 1,2 , G acts on the both connected components of F Π φ (q) \ L 0 , transitively. The intersection of a leaf F Π φ (q) with L 0 is a leaf of F L . Indeed, every G-orbit in L 0 (resp. E 1,2 \ L 0 ) intersects the timelike affine line � = {(t, 0, 0) : t ∈ R} (resp.

one of the timelike affine lines � + = {(t, 0, 1) : t ∈ R}, � -= {(t, 0, -1) : t ∈ R}) in a unique point. Therefore, the orbits induced by G in Ein 1,2 are: the points in φ, the vertex-less photon ψ, a 1-parameter family of 1-dimensional orbits which are lightlike affine lines -the parameter being q ∈ �-, the two connected components of L(p) \ (φ ∪ ψ), and a 1-parameter family of 2-dimensional orbits which are degenerate affine half-planes -the parameter being q ∈ � + ∪ � --.

• G = exp � R(Y H + e 3 ) � � L .
For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(p) induced by the 1-parameter subgroup B.10). It is clear that G preserves the degenerate affine plane F Π φ (o). Thus, it fixes the a point d ∈ φ which is the limit point of F Π φ (o). Also, one can see that H acts on the both connected components of φ \ {d} transitively. The set {e 1 + e 2 , v} ⊂ T q G(q) is a basis. Thus, all the orbits induced by G in E 1,2 are 2-dimensional. Every G-orbit in E 1,2 intersects the timelike affine line � = {(t, 0, 0) : t ∈ R} in a unique point. Now, one can see that G acts on E 1,2 freely. Observe that, for all points q ∈ E 1,2 \ F Π φ (o), the tangent space T q G(q) is Lorentzian, since the orthogonal space of the lightlike vector e 1 + e 2 in T p G(p) is L . Therefore, the orbits induced by G in Ein 1,2 are: two fixed points {p, d}, the two connected components of φ \ {d}, the vertex-less photon ψ, the two connected components of L(p) \ (φ ∪ ψ), and a 1-parameter family of 2-dimensional orbits in E 1,2 on which one of the is the degenerate affine plane F Π φ (o), and the other orbits are Lorentzian and G acts on them freely -the parameter being q ∈ �.

H = exp � R(Y H + e 3 ) � is v = (y, x , 1) (see 
• exp � R(1 + Y H + e 1 ) � � L .
For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vector tangent to the orbit G(q) at q induced by the 1-parameter [START_REF] Collier | The geometry of maximal representations of surface groups into SO(2,n)[END_REF]. The set {e 1 + e 2 , v} ⊂ T q G(q) is a basis, and so, all the orbits induced by G in E 1,2 are 2-dimensional. Observe that, the Lorentzian affine plane

subgroup exp � R(1+Y H +e 1 ) � is v = (x+y+1, x+y, z) (see B.
L 0 = {z = 0} is G-invariant.
Hence, G acts on L 0 transitively. Moreover, every G-orbit in E 1,2 intersects the spacelike affine lines � = {(0, 0, t) : t ∈ R} in a unique point. Now, it can be easily seen that G acts on E 1,2 freely.

Furthermore, all the orbits induced by G in E 1,2 are Lorentzian, since the orthogonal space of the null vector e 1 + e 2 in T q G(q) is L . This shows that G acts on the vertex-less photon φ transitively.

Therefore, the orbits induced by G in Ein 1,2 are: a fixed point p, the two vertex-less photons φ and ψ, the two connected components of L(p) \ (φ ∪ ψ), and a 1-parameter family of Lorentzian orbits in E 1,2 on which G acts freely and on of them is a Lorentzian affine plane -the parameter being q ∈ �.

• exp � R(-1 + Y H + e 1 ) � � L .
For an arbitrary point q = (x, y, z) ∈ R 1,2 , the vector tangent to the orbit G(q) at q induced by the 1-parameter subgroup

H = exp � R(-1 + Y H + e 1 ) � is v = (-x + y + 1, x -y, -z) (see B.12). The set {e 1 + e 2 , v} ⊂ T q G(q) is a basis if and only if z � = 0 and x -y � = 1/2 if and only if q / ∈ F L (1/2, 0, 0). It is not hard to see that G acts on E 1,2 \ F L (1/2, 0, 0) freely. Observe that G preserves the degenerate affine plane F Π φ (1/2, 0, 0).
Hence, G fixes a point d ∈ φ which is the limit point of F Π φ (1/2, 0, 0). The subgroup H acts on the both connected components of φ \ {d} transitively. For all q ∈ E 1,2 \ F Π φ (1/2, 0, 0), the orbit G(q) intersects exactly one of the timelike affine lines � + = {(t, 0, 1) : t ∈ R}, � -= {(t, 0, -1) :

t ∈ R} in a unique point. Furthermore, for q ∈ � + ∪ � -, the orbit G(q) is Lorentzian, since the orthogonal space of the null vector e 1 + e 2 in T q G(q) is L . Therefore, the orbits induced by G in Ein 1,2 are: two fixed points {p, d}, the two connected components of φ \ {d}, the vertex-less photon ψ, the two connected components of L(p) \ (φ ∪ ψ), the lightlike affine line F L (1/2, 0, 0), the two connected components of F Π φ (1/2, 0, 0) \ F L (1/2, 0, 0) which are degenerate affine half-planes, and a 1-parameter family of Lorentzian orbits in E 1,2 on which G acts freely, -the parameter being q ∈ � + ∪ � -.

Case IV: The linear isometry projection P li (G) is a 2-dimensional subgroup of SO • (1, 2). In this case, G preserves the foliation F Π φ , and so it preserves the photon φ. Thus, G acts on the degenerate surface L(p) \ φ transitively.

• G = (R * + × Aff) � L . The subgroup R * + × Aff preserves the leaf F L (o). Hence, F L (o) is a G-orbit.
Also, G preserves the degenerate affine plane F Π φ (o). Thus, G fixes a point d ∈ φ which is the limit point of F Π φ (o). The homothety factor R * + acts on the both connected components of φ \ {d} transitively. For an arbitrary point q = (x, y, z) ∈ E 1,2 the vectors tangent to the orbit G(q) at q induced by the 1-parameter subgroups R * + and Y H are v = (x, y, z) and w = (y, x, 0), respectively. Observe that for q ∈ F Π φ (o) \ F L (o), the set {v, w} ⊂ T q G(q) is a basis. Hence G acts on the both connected components of F Π φ (o) \ F L (o) transitively. On the other hand, for q ∈ E 1,2 \ F Π φ (o), the set {e 1 + e 2 , v, w} ⊂ T qG(q) is a basis. Thus, G acts on the both connected connected components of E 1,2 \ F Π φ (o) transitively. Therefore, the orbits induced by G in Ein 1,2 are: two fixed points {p, d}, the two connected components of φ \ {d}, the affine lightlike line F L (o), the degenerate surface L(p) \ φ, the two connected components of F Π φ \ F L (o) which degenerate affine half-planes, and the two connected components of E 1,2 \ F Π φ (o). Note that the orbits induced by G in Ein 1,2 are exactly the same as the orbits induced by (R * + × Y P ) � L .

• G = Aff � L . The group G preserves the orbits induced by (R * + × Aff) � L . In fact, one can see G and R * + × Aff) � L admit the same orbits in the lightcone L(p). For an arbitrary point q = (x, y, z) ∈ E 1,2 the vectors tangent to the orbit G(q) at q induced by the 1-parameter subgroups Y P and Y H are v = (z, z, xy) and w = (y, x, 0), respectively. Observe that for all q ∈ F Π φ (o), the leaf F L (q) is invariant by G, and it intersects the affine spacelike line � = {(0, 0, t) : t ∈ R} ⊂ E 1,2 in a unique point. The set {e 1 + e 2 , v, w} ⊂ T q G(q) is a basis for all q ∈ E 1,2 \ F Π φ (o). Thus, G acts on the both connected components of E 1,2 \ F Π φ (o) transitively. Therefore, the orbits induced by G in Ein 1,2 are: two fixed point {p, d}, the two connected components of φ \ {d}, the degenerate surface L(p) \ φ, a 1-parameter family of 1-dimensional orbits which are lightlike affine lines -the parameter being q ∈ �-, and the two

connected components of E 1,2 \ F Π φ (o). • G = exp � (R(a + Y H ) + RY P ) � � L , a ∈ R * \ {1}.
Obviously, G preserves the orbits induced by (R * + × Aff) � L . In fact, G and (R * + × Aff) � L admit the same orbits in the lightcone L(p). For an arbitrary point q = (x, y, z) ∈ E 1,2 the vectors tangent to the orbit G(q) at q induced by the 1-parameter subgroups exp � R(a + Y H ) � and Y P are v = (ax + y, x + ay, az) and w = (z, z, xy), respectively. For a point q ∈ F Π φ (o) \ F L (o), the set {v, w} ⊂ T q G(q) is a basis. Hence, G acts on the both connected components of

F Π φ (o) \ F L (o) transitively. Also, for a point q ∈ E 1,2 \ F Π φ (o), the set {e 1 + e 2 , v
, w} is a basis. Thus G acts on the both connected components of E 1,2 \ q ∈ F Π φ (o) transitively. Therefore, the orbits induced by G in Ein 1,2 are: two fixed point {p, d}, the two connected components of φ \ {d}, the degenerate surface L(p) \ φ, the affine lightlike line F L (o), the two connected components of F Π φ (o)\F L (o) which are degenerate affine half-planes in E 1,2 , and the two connected components of E 1,2 \ F Π φ (o). Note that the orbits induced by G in Ein 1,2 are exactly the same as the orbits induced by (R * + × Y P ) � L .

• G = exp � (R(1 + Y H ) + RY P ) � � L . Since G is a subgroup of K • (Definition 4.10
), it preserves the leaves of the foliation F Π φ . Hence, G acts on the photon φ trivially. Every leaf of F Π φ intersects the lightlike affine line � = {(t, -t, 0) : t ∈ R} in a unique point. It is clear that G preserves the leaf F L (o). For an arbitrary point q = (x, y, z) ∈ E 1,2 the vectors tangent to the orbit G(q) at q induced by the 1-parameter subgroups exp

� R(1 + Y H ) � and Y P = exp � RY P � are v = (x + y, x + y, z)
and w = (z, z, xy), respectively. For a point q ∈ F Π φ (o) \ F L (o), the set {e 1 + e 2 , v} is a basis.

So, G acts on the both connected components of F Π φ (o) \ F L (o) transitively. Furthermore, for a point q ∈ E 1,2 \ F Π φ (o), the set {e 1 + e 2 , w} ⊂ T q G(q) is a basis. This implies that G acts on each leaf F Π φ (q) different form F Π φ (o) transitively. Therefore, the orbits induced by G in Ein 1,2 are: the point in the photon φ, the affine lightlike line F L (o), the degenerate surface L(p) \ φ, the two connected components of F Π φ (o) \ F L (o) which are affine degenerate half-planes in Ein 1,2 , and 1-parameter family of 2-dimensional which are degenerate affine planes -the parameter being q ∈ � \ {o}.

• G = exp � R(2 + Y H ) + R(Y P + e 1 ) � � L .
For an arbitrary point q = (x, y, z) ∈ E 1,2 the vectors tangent to orbit G(q) at q induced by subgroups exp

� R(2 + Y H ) � and exp � R(Y P + e 1 ) � are v = (2x + y, x + 2y, 2z
) and w = (z + 1, z, xy), respectively (see B.8 and B.5). The set {e 1 + e 2 , v, w} ⊂ T q G(q) is a basis if and only if z � = (xy) 2 /2. The set of points in E 1,2 with z = (xy) 2 /2 is a connected Lorentzian surface S, and G acts on it transitively (in fact it is the orbit induced by the free action of the subgroup exp � R(Y P + e 1 ) ⊕ θ L � at o). Hence, G acts on the both connected components of E 1,2 \ S transitively. Also, G acts on the vertex-less photon φ transitively, since it preserves no leaf of F Π φ . Therefore, the orbits induced by G in Ein 1,2 are: a fixed point p, the vertex-less photon φ, the degenerate surface L(p) \ φ, the Lorentzian surface S which is diffeomorphic to R 2 , and the two connected components of E 1,2 \ S.

• G = exp � R(Y H + e 3 ) + RY P � � L . Since G is a subgroup of Aff • (1, R) � Π φ , it preserves the leaf F Π φ (o). Hence, it fixes a point d ∈ φ which is the limit point of F Π φ (o). The 1-parameter subgroup H = exp � (R(Y H + e 3 )
� acts on the both connected components of φ \ {d} transitively.

For an arbitrary point q = (x, y, z) ∈ E 1,2 the vectors tangent to orbit G(q) at q induced by subgroups H and Y P are v = (y, x, 1) and w = (z, z, xy), respectively (see B.10). The set {e 1 + e 2 , v, w} ⊂ T q G(q) is a basis if and only if x � = y if and only if q / ∈ F Π φ (o). Observe that for a point q ∈ F Π φ (o) the set {e 1 + e 2 , v} ⊂ T q G(q) is a basis. Hence, G acts on

F Π φ (o)
transitively. Therefore, the orbits induced by G in Ein 1,2 are: two fixed points {p, d}, the two connected components of φ \ {d}, the degenerate surface L(p) \ φ, the degenerate affine plane F Π φ (o), and the two connected components of En 1,2 \ F Π φ (o). Note that the orbits induced by G are exactly the same as orbits induced by (R * + × Y P ) � (R(e 1 + e 2 ) ⊕ Re 3 ).

Subgroups with trivial translation part

Finally, assume that

G ⊂ Conf • (E 1,2
) is a connected Lie subgroup with trivial translation part T (G) = {0}. These groups have been listed in Table 4.8.

First, assume that G is a subgroup of R * + × SO • [START_REF] Alekseevsky | G-manifolds with one dimensional orbit space[END_REF][START_REF] Alekseevsky | On a proper action of a Lie group[END_REF]. This group fixes the origin o = (0, 0, 0) ∈ E 1,2 . By Remark 4.2, the Minkowski space E 1,2 with origin o is endowed with the quadratic form q := q 1,2 • (Θ o ) -1 , and this makes E 1,2 a Lorentzian scalar product space.

The linear group R * + × SO • (1, 2) (and all its subgroups) preserves the nullcone centered at o

N(o) = {q = (x, y, z) ∈ E 1,2 \ {o} : q(q) = -x 2 + y 2 + z 2 = 0}.
Also, it preserves the three connected components of the complement of the nullcone N(o) in E 1,2 which are: the domain {q > 0} and the two connected components of the domain {q < 0}. Also, this group preserves the ideal circle

S ∞ = L(p) ∩ L(o). Observe that, if G is a subgroup of SO • (1, 2), it
also preserves the de-Sitter spaces dS 1,1 (r) = q -1 (r), and the hyperbolic planes H 2 (r) (the connected components of q -1 (-r)) in E 1,2 centered at o with radius r ∈ R * + . Moreover, the group R * + × Aff preserves the foliation F Π φ , and also, preserves the leaves F Π φ (o) and F L (o).

• G = R * + × SO • (1, 2
). This group acts on the both components of the nullcone N(o) , transitively. The complement of N(o) ∪ {o} in E 1,2 has three connected components: the domain with q > 0 and the two connected components with q < 0. One can see that G acts on these components transitively. The group G preserves no foliation in E 1,2 induced by a degenerate plane in R 1,2 .

Hence, it acts on the ideal circle S ∞ and the both connected components of L(p) \ (S ∞ ∪ {p}) transitively. Therefore, the orbits induced by G in Ein 1,2 are: two fixed point p and o, the ideal circle S ∞ , the two connected components of L(p) \ S ∞ which are degenerate surfaces, the two connected components of N(o), the two connected components of the domain {q < 0}, and the domain {q > 0}.

• G = SO • [START_REF] Alekseevsky | G-manifolds with one dimensional orbit space[END_REF][START_REF] Alekseevsky | On a proper action of a Lie group[END_REF]. This group acts on the both connected components of N(o) transitively. Also, it preserves the de-Sitter spaces dS 1,1 (r) and the hyperbolic planes H 2 (r), and acts on them transitively. Indeed, every de-Sitter space dS 1,1 (r) (resp. hyperbolic plane H 2 (r)) intersects the spacelike affine half-line � s = {(0, t, 0) : 0 < t < ∞} (resp. the timelike affine line � t = {(t, 0, 0) : t ∈ R) in a unique point. Observe that G preserves no foliation in Ein 1,2 induced by a degenerate plane in R 1,2 . Hence, it acts on S ∞ and the both connected components of L(p) \ (S ∞ ∪ {p}), transitively. Therefore, the orbits induced by G in Ein 1,2 are: two fixed points {p, o}, a spacelike curve S ∞ , the two connected components of L(p) \ S ∞ and the two connected components of N(o) which are degenerate surfaces, a 1-parameter family of 2-dimensional Lorentzian orbits on which every orbit is conformally equivalent to dS 1,1 -the parameter being q ∈ � s -, and a 1-parameter family of 2-dimensional spacelike orbits on which every orbit is conformally equivalent to H 2 -the parameter being q ∈ � t \ {o}.

• G = Aff. This group fixes the point d = φ ∩ S ∞ which is the limit point of F Π φ (o), and acts on S ∞ \ {p}, the both connected components of φ \ {d}, and the both connected components of L(p) \ (S ∞ ∪ φ) transitively. The intersection of the leaf

F Π φ (o) with the nullcone N(o) is a lightlike line, namely, it is F L (o).
One can see G acts on the both connected components of F L (o) \ {o} and on the both connected components of N(o) \ F L (o) transitively. Also, G acts on every hyperbolic plane H 2 (r), transitively. The intersection of the degenerate plane F Π φ (o) with a de-Sitter space dS 1,1 (r) is two disjoint affine lightlike lines. It is not hard to see that G acts on the both connected components of dS 1,1 (r) \ F Π φ (o) transitively. Moreover, the 1 -parameter parabolic subgroup Y P (and consequently G) acts on each connected component of dS 1,1 (r) ∩ F Π φ (o) transitively. Indeed, every G-orbit in E 1,2 intersects one of the affine lines � t = {(t, 0, 0) : t ∈ R}, � s = {(0, t, 0) : t ∈ R}, and � � s = {(0, 0, t) : t ∈ R}. Therefore, the orbits induced by G in Ein 1,2 are, three fixed points {p, o, d}, the spacelike curve S ∞ \ {d}, the two connected components of φ \ {d} and the two connected components of F L (o) \ {o}, the two connected components of L(p) \ (S ∞ ∪ φ) and the two connected components of N(o) \ F L (o), a 1-parameter family of 1-dimensional orbits on which every orbit is an lightlike affine line -the parameter being q ∈ � � s \ {o}-, a 1-parameter family of 2-dimensional spacelike orbits on which every orbit is conformally equivalent to H 2 -the parameter being q ∈ � t \ {o}-, and a 1-parameter family of 2-dimensional Lorentzian orbits on which every orbit is conformally equivalent to a connected component of dS 1,1 \ F Π φ (o) -the parameter being q ∈ � s \ {o}. and four open orbits in E 1,2 .

• G = R * + × Aff
• G a = exp � R(a + Y H ) + RY P � , 0 < |a| < 1.
The group G a admits the same orbits in the lightcone L(p) as Aff. For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vectors tangent to the orbit G a (q) at q induced by the 1-parameter subgroups exp � R(a + Y H ) � and Y P are v = (ax + y, x + ay, az) and w = (z, z, xy), respectively. Note that, by Lemma 1.21, the action of G a is orbitally-equivalent to the action G -a via the element in O(1, 2) which maps (x, y, z) ∈ E 1,2 to (-x, -y, z). Hence, we may restrict ourselves to the case 0 < a < 1. The set {v, w} ⊂ T q G a (q) is a basis if and only if z � = 0 and x � = y if and only if q � = F L (o). Thus, G a acts on the both connected components of F Π φ (o) \ F L (o), and on the both connected components of N(o) \ F L (o) transitively. Also, G a acts on the both connected components of F L (o) transitively. For all q ∈ E 1,2 \ (N(o) ∪ F Π φ (o))

with q(q) > 0 (resp. q(q) < 0) the orbit G a (q) intersects the timelike line � t = {(t, 0, 0) : t ∈ R} (resp. the spacelike line � s = {(0, t, 0) : t ∈ R}) in a unique point. Now, one can see that G a acts on E 1,2 \ (N(o) ∪ F Π φ (o)) freely. For a point q ∈ � t \ {o} (resp. q ∈ � s \ {o}), the orbit G(q) is spacelike (resp. Lorentzian). Therefore, the orbits induced by G a in Ein 1,2 are: three fixed and w = (z, z, xy) respectively. The set {u, v} ⊂ T q G(q) is a basis if and only if q / ∈ N(o).

Hence, G acts on the both connected components of F Π φ (o) \ F L (o) transitively. Every leaf of the foliation F Π φ intersects the lightlike line � l = {(t, -t, 0) : t ∈ R} in a unique point. For a point q ∈ � l \ {o}, the intersection of the leaf F Π φ (q) with the nullcone N(o) is a spacelike curve γ q which the 1-parameter subgroup Y P acts on it transitively. For all q ∈ � \ {o}, G acts on the both connected components of F Π φ (q) \ γ q transitively. Therefore, the orbits induced by G in Ein 1,2 are: the points in φ ∪ {o}, the spacelike curve S ∞ \ φ, the two connected components of L(p) \ (φ ∪ S ∞ ), a 1parameter family of 1-dimensional spacelike orbits γ q in E 1,2 -the parameter being q ∈ � l \ {o}-, the two connected components of F L (o) \ {o}, the two connected components of F Π φ (o) \ F L (o) which are affine degenerate half-planes, and a 1-parameter family of degenerate orbits which are the connected components of F Π φ (q) \ γ q -the parameter being q ∈ � \ {o}.

• G = exp � R(-1 + Y H ) + RY P �
. This group preserves the leaf F Π φ (o), and so it fixed the corresponding limit point d ∈ φ. In the one hand, G acts on the lightlike affine line F L (o) ⊂ F Π φ (o) trivially. On the other hand, ψ = F L (o) ∪ {d} is a photon which G acts on it trivially.

Therefore, G is a subgroup of K • (Definition (4.10)), up to conjugacy.

• G = R * + × Y P . One can see that G admits the same orbits in the lightcone L(p) as Aff. For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vectors tangent to the orbit G(q) at q induced by the 1-parameter subgroups R * + and Y P are w = (x, y, z) and v = (z, z, xy) respectively. The set {w, v} ⊂ T q G(q) is a basis if and only if q / ∈ F L (o). In fact, G acts on E 1,2 \ F L (o) freely.

Thus G acts on the two connected components of F Π φ (o) \ F L (o), and on the both connected components of N(o) \ F L (o) transitively. For a point q ∈ E 1,2 \ F Π φ (o), the orbit G(q) intersects the Lorentzian affine plane {z = 0}. Hence, by applying a suitable element of G we may assume q = (x, y, 0). Now, it can be easily seen that, for a point q ∈ E 1,2 \ (F Π φ (o)) with q(q) > 0 (respectively, q(q) < 0 ) the orbit G(q) is spacelike (respectively, Lorentzian) and G acts on it freely. So, the orbits induced by G at the points q 1 = (1, 0, 0) and q 2 = (-1, 0, 0) are Lorentzian.

Also, for a point q ∈ E 1,2 \ (N(o) ∪ F Π φ (o) ∪ G(q 1 ) ∪ G(q 2 )), the orbit G(q) intersects one of the timelike affine half-lines � ± 1 = {(±t, ±1, 0) : 1 < t < ∞}, � ± 2 = {(t, ±1, 0) : -1 < t < 1} in a unique point. Therefore, the orbits induced by G in Ein 1,2 are: three fixed points {p, o, d}, the spacelike curve S ∞ \ {d}, the two connected components of φ \ {d}, the two connected

components of L(p) \ (φ ∪ S ∞ ), the two connected components of F L (o) \ {o}, the two connected components of F Π φ (o)\F L (o), the two connected components of N(o)\F L (o), two 2-dimensional
Lorentzian orbits G(q 1 ) and G(q 2 ) on which G acts freely, a 1-parameter family of 2-dimensional spacelike orbits on which G acts freely -the parameter being q ∈ � ± 2 -, and a 1-parameter family of 2-dimensional Lorentzian orbits on which G acts freely -the parameter being q ∈ � ± 

� s = F Π φ (o)∩F Π ψ (o).
The group G acts on the six connected components of (F L (o) ∪ � 0 ∪ � s ) \ {o} transitively. For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vectors tangent to the orbit G(q) at q induced by the 1-parameter subgroups R * + and Y H are v = (x, y, z) and w = (y, x, 0), respectively. The set {w, v} ⊂ T q G(q) is a basis if and only if q / ∈ (F L (o) ∪ � 0 ∪ � s ). Hence, G acts on the four connected components of

N(o) \ (F L (o) ∪ � 0 ), the eight connected components of (F Π φ (o) ∪ F Π ψ (o)) \ (F L (o) ∪ � 0 ∪ � s )
, and the four connected components of L 0 \ (F L (o) ∪ � 0 ) transitively. On the other hand, for q ∈ E 1,2 \ L 0 , the orbit G(q)

intersects the timelike plane y = 0, hence, by applying a suitable element of G we may assume q = (x, 0, z). Now it can be easily seen that, for a point q

∈ E 1,2 \ (N(o) ∪ L 0 ∪ F Π φ (o) ∪ F Π ψ (o))
with q(q) > 0 (resp. q(q) < 0 ) the orbit G(q) is spacelike (resp. Lorentzian) and G acts on it freely. So, the orbits induced by G at q 1 = (1, 0, 0) and q 2 = (-1, 0, 0) are Lorentzian. For a

point q ∈ E 1,2 \ (L 0 ∪ F Π φ (o) ∪ F Π ψ (o) ∪ N(o) ∪ G(q 1 ) ∪ G(q 2
)) the orbit G(q) intersects one of the timelike affine half-lines � ± 1 = {(±t, 0, ±1) : 1 < t < ∞}, � ± 2 = {(t, 0, ±1) : -1 < t < 1}. Therefore, the orbits induced by G in Ein 1,2 are: four fixed points {p, o, d φ , d ψ }, the four connected components of ( φ ∪ ψ) \ {d φ , d ψ }, the two connected components of S ∞ \ {d φ , d ψ }, the four connected components of L(p) \ (φ ∪ ψ ∪ S ∞ ), the four connected components of F L (o) ∪ � 0 \ {o} which are lightlike affine half-lines, the two connected components of � s \ {o} which are spacelike affine half-lines, the eight connected components of (F

Π φ ∪ F Π ψ (o)) \ (F L (o) ∪ � 0 ∪ � s ) which
are degenerate affine half-planes, the four connected components of L 0 \ (F L (o) ∪ � 0 ) which are Lorentzian affine half-planes, the four connected components of N(o) \ (F L (o) ∪ � 0 ) which are degenerate surfaces, two Lorentzian orbits G(q 1 ) and G(q 2 ) which G acts freely, a 1-parameter family of 2-dimensional spacelike orbits on which G acts freely -the parameter being q ∈ � ± 2 -, and a 1-parameter family of Lorentzian orbits on which G acts freely -the parameter being q ∈ � ± 1 .

• G = R * + × Y E .
It is clear that G acts on the ideal circle S ∞ and the both connected components of L(p) \ S ∞ transitively. Observe that G preserves the timelike line � t = {(t, 0, 0) : t ∈ R} ⊂ E 1,2 and the spacelike plane L 0 = {x = 0} ⊂ E 1,2 . Obviously G acts on the both connected components of � t \ {o} transitively. For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vectors tangent to the orbit G(q) at q induced by the 1-parameter subgroups R * + and Y E are w = (x, y, z) and v = (0, z, -y) respectively. The set {w, v} is a basis if and only if q / ∈ � t . Hence, G acts on the both connected components of N(o) transitively. Also, L 0 \ {o} is a G-orbit. Every G-orbit in E 1,2 \ (N(o) ∪ L 0 ∪ � t ) intersects one of the affine timelike half-lines � ± 1 = {(t, ±1, 0) : 0 < t < 1}, � ± 2 = {(t, ±1, 0) : 1 < t < ∞}. Now, one can see that G acts on E 1,2 \ � t freely. For a point q ∈ � ± 1 (resp. q ∈ � ± 2 ) the orbit G(q) is spacelike (resp. Lorentzian). Therefore, the orbits, induced by G in Ein 1,2 are: two fixed point {p, o}, the ideal circle S ∞ , the two connected components of L(p) \ S ∞ , the both connected components of � t \ {o} which are timelike affine half-lines, a 2-dimensional Lorentzian orbit L 0 \ {o}, the two connected components of N(o), a 1-parameter family of 2-dimensional Lorentzian orbits on which G acts freely -the parameter being q ∈ � ± 2 , a 1-parameter family of 2-dimensional spacelike orbits on which G acts freely -the parameter being q ∈ � ± 1 .

Spacial subgroups with trivial translation part

Here, we describe the orbits of the two subgroups in 

× Aff • (1, R)) � R(e 1 + e 2 )
. Also, it preserves the leaf F Π φ (o) and the affine lightlike line F L (o). For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vectors tangent to the orbit G(q) at q induced by the 1-parameter subgroups H = exp � R(-1 + Y H + e 1 + e 2 ) � and Y P are v = (-x + y + 1, xy + 1, -z) and w = (z, z, xy), respectively (see B.13). The subgroup H acts on the vertex-less photon ψ transitively, since v / ∈ Π ψ . Therefore, G acts on L(p) \ φ transitively.

On the other hand, F Π φ (o) is the only G-invariant leaf of the foliation F Π φ . Hence, G fixes its limit point d ∈ φ, and acts on the both connected components of φ \ {d} transitively. Observe that v is a non-vanishing vector. So, G admits no fixed point in E 1,2 . Hence, G acts on the lightlike affine line F L (o) transitively. The set {u, v} ⊂ T q G(q) is a basis if and only if x � = y and z � = 0 if and only if q / ∈ F L (o). This implies that G acts on the both connected components of

F Π φ (o) \ F L (o) transitively.
In the one hand, for q ∈ E 1,2 \ F Π φ (o), the orbit induced by Y P at q intersects the Lorentzian plane L 0 = {z = 0}. On the other hand, for a point q ∈ L 0 , the orbit H(q) intersects either the timelike affine line � t = {(t, 0, 0) : t ∈ R} or the spacelike affine line � s = {(0, 0, t) : t ∈ R}. Now, it can be easily seen that G acts on E 1,2 \ F Π φ (o) freely. Also, for q ∈ � t (resp. q ∈ � s ) the orbit G(q)

is Lorentzian (resp. spacelike). Therefore, the orbits induced by G in Ein 1-parameter family of Lorentzian orbits in E 1,2 on which G acts freely -the parameter being q ∈ � t -, and a 1-parameter family of spacelike orbits in E 1,2 on which G acts freely -the parameter being q ∈ � s -. 

� G = exp � R(2 + Y H ) + R(Y P + e 1 -e 2 ) �
. This group preserves the foliation F Π φ . Observe that G(o) is a 1-dimensional lightlike orbit, but it is not a geodesic. Actually, G is the only (up to conjugacy) connected Lie subgroup of Conf(E 1,2 ) induces a 1-dimensional lightlike orbit in Ein 1,2 which is not a lightlike geodesic. We conclude that, the action of G on Ein 1,2 is conjugate to the action of affine group Aff ⊂ PSL(2, R) within the irreducible action of PSL(2, R) on Einstein universe described in Chapter 3. Indeed, up to conjugacy, this is the action of the stabilizer of Y 4 ∈ N on Ein 1,2 where N is the 1-dimensional orbit induced by PSL(2, R). So, we study the orbits induced by this action in the setting of Chapter 3. Actions on Anti de-sitter and de-Sitter components and their boundaries

In this chapter we consider the cohomogeneity one actions on Einstein universe Ein 1,2 preserving a spacelike or a timelike direction in R 2,3 . The first corresponds to the actions preserving an Anti de-Sitter component AdS 1,2 and its conformal boundary ∂AdS 1,2 = Ein 1,1 an Einstein hypersphere. The second corresponds to the actions preserving a de-Sitter component dS 1,2 and it conformal boundary ∂dS 1,2 = S 2 .

Actions on Anti de-Sitter component and its boundary

Here, we study cohomogeneity one actions of connected subgroups of Conf(Ein 1,2 ) on Einstein universe Ein 1,2 preserving a 1-dimensional spacelike linear subspace of R 2,3 .

Let G be a connected Lie subgroup of SO • (2, 3) admitting a 2-dimensional orbit at p ∈ Ein 1,2 and preserving a spacelike line � ≤ R 2,3 . Then G preserves the orthogonal complement subspace � ⊥ ≈ R 

Y E × Y P , Y E × Y H , (Y E × Y E )/Z 2 , G λ , Y E × Aff, (Y E × SL(2, R))/Z 2 , graph(ϕ)/Z 2 , SL(2, R) × Y H , SL(2, R) × Y P , SL(2, R) × Aff, Iso • (AdS 1,2 ),
where λ ∈ R * , and ϕ : SL(2, R) → SL(2, R) is an isomorphism which is not a conjugation.

The cohomogeneity one isometric actions on 3-dimensional Anti de-Sitter space has been studied by Ahmadi in [START_REF] Ahmadi | Cohomogeneity one three dimensional anti-de Sitter space, proper and nonproper actions[END_REF]. We will study some of the actions directly.

The actions which fix a point in Einstein universe Ein In fact, it is conjugate to the Levi factor of Conf • (E 1,2 ) which has been considered in Section 4.2. Hence, we only discuss on the subgroups on which fix no point in Ein 1,2 .

The group of conformal transformations on 2-dimensional Einstein universe is P O(2, 2) and its identity component is isomorphic to PSL(2, R) × PSL(2, R). As we mentioned earlier in Section 1.7. Consider the following natural group morphisms

P 1 : SL(2, R) × SL(2, R) -→ SL(2, R), (g, h) � → g P 2 : SL(2, R) × SL(2, R) -→ SL(2, R), (g, h) � → h
We call P 1 and P 2 the first and the second projection, respectively. By the action of SL(2, R) × SL(2, R), the identity component of the stabilizer of a point in Ein

1,1 ≈ RP 1 × RP 1 is conjugate to Aff × Aff.
Therefore, a subgroup G ⊂ Conf • (Ein 1,1 ) admits no fixed point in Ein 1,1 if and only if the first or the second projection of � G contains an elliptic element. 

Stab SL(2,R)×SL(2,R) (I) = graph(id SL(2,R) ) = diag(SL(2, R), SL(2, R)) � SL(2, R).
The action of G = graph(id SL (2, R)) admits 2-dimensional orbits in Einstein universe. Indeed, G/Z 2 is conjugate to SO • (1, 2), the Levi factor of Conf • (E 

Y E × Y P , Y E × Y H , Y E × Y E , G λ , Y E × Aff • (1, R), Y E × SL(2, R), graph(ϕ), SL(2, R) × Y H , SL(2, R) × Y P , SL(2, R) × Aff • (1, R), SL(2, R) × SL(2, R),
where λ ∈ R * , and ϕ : SL(2, R) → SL(2, R) is an isomorphism which is not a conjugation.

Proof. First, suppose that � G fixes no point in Ein Case I:

P 1 ( � G) = Y E . In this case � G is a subgroup of Y E × SL(2, R) up to conjugacy. • If dim P 2 ( � G) = 1, then � G is a 2-dimensional subgroup of Y E × P 2 ( � G) up to conjugacy. Therefore, By Corollary 1.27, � G is conjugate to Y E × Y P , Y E × Y H , or Y E × Y E . • If dim P 2 ( � G) = 2, then � G is a subgroup of Y E × Aff up to conjugacy. -If dim � G = 3, then � G = Y E × Aff up to conjugacy. -If dim � G = 2.
The second projection p 2 = dP 2 from g to aff is a Lie algebra isomorphism.

Hence, f =:

p 1 • p -1 2 : aff → p 1 (h) = RY E is a surjective Lie algebra morphism.
The kernel of f is a 1-dimensional ideal of aff, hence ker f = RY P . This induces an isomorphism from aff/RY P � RY H to RY E . Thus, there exists a real nonzero number λ, such that f (tY H + sY P ) = λtY E , for all t, s ∈ R. This implies that � G is conjugate to G λ for some λ ∈ R * .

• If dim P 2 ( � G) = 3, then P 2 ( � G) = SL(2, R). Assume that dim � G = 3. Then the map p 2 : g → sl(2, R) is a Lie algebra isomorphism. Hence, f := p 1 • p -1 2 : sl(2, R) → p 1 (g) is a surjective Lie algebra morphism. But, this contradicts the semi-simplicity of sl(2, R), since ker f is a 2- dimensional ideal of sl(2, R). Therefore, dim � G = 4 and so, � G = Y E × SL(2, R) up to conjugacy. Case II: P 1 ( � G) = SL(2, R).
Case II: dim V = 2

• Assume that dim V = 2 and the restriction ofdet on V is definite (positive or negative). Hence, there is a representation ρ : SL(2, R) → SO(2) × SO(2), since the identity component of the groups of linear isometries on V and V ⊥ are isomorphic to SO [START_REF] Alekseevsky | On a proper action of a Lie group[END_REF]. By Lemma 1.29, ρ is trivial, a contradiction.

• Suppose that dim V = 2 and the restriction ofdet on V has signature (1, 1), (1, 0, 1), or (0, 1, 1).

In all the cases, G preserves a lightlike line. Hence, it admits a fixed point in Ein 1,1 . Once more, a contradiction.

• If V has signature (0, 0, 2), then it preserves a photon on Ein From now on, we assume that P 1 ( � G), P 2 ( � G) � = {Id}. Suppose that G admits no fixed point in Ein 1,2 .

Then � G is conjugate to one of the subgroups mentioned in Proposition 5.5. It is not hard to see that every subgroup � G which is the direct product

P 1 ( � G) × P 2 ( � G) admits an open orbit in Ein 1,1 ≈ RP 1 × RP 1 .
On the other hand, by Lemma 5.7, graph(ϕ) admits a 2-dimensional orbit in Ein 1,2 .

The remaining case is

G λ . Observe that G λ is a subgroup of Aff • (1, R) × Y E . On can see Aff • (1, R) × Y E acts on AdS 1,2 = SL(2, R) freely.
Hence, G λ acts on the Anti de-Sitter component AdS 1,2 with cohomogeneity one. This completes the proof. �

Actions on de-Sitter component and its boundary

In this section we consider cohomogeneity one actions of connected subgroups of SO • (2, 3) on Einstein universe Ein 1,2 preserving a 1-dimensional timelike linear subspace of R 2,3 .

Let G be a connected Lie subgroup of SO • (2, 3) admitting a 2-dimensional orbit at p ∈ Ein 1,2 and preserving a timelike line � ≤ R 2,3 . Hence G preserves the orthogonal complement subspace � ⊥ ≈ R 

or it is Iso • (dS 1,2 ).
The actions admitting a fixed point in the Einstein universe Ein 1,2 has been described in Chapter 4. In fact, if a connected Lie subgroup G ⊂ SO • (1, 3) fixes a point in the boundary ∂dS 1,2 = S 2 , then it is a subgroup of (R * + × Y E ) � (Re 2 ⊕ Re 3 ) (described in Remark 4.9) up to conjugacy. On the other hand, by the action of Iso • (dS 1,2 ) on dS 1,2 the stabilizer of a point is a 3-dimensional subgroup isomorphic to SO • (1, 2). In fact, it is conjugate to the Levi factor of Conf • (E 1,2 ) which has been considered in Section 4.2. Hence, we only discuss on the subgroups which admit no fixed point Ein 1,2 .

Here is a useful model for the action of SO • (1, 3) on the de-Sitter component dS 1,2 and its conformal boundary in Ein 1,2 . Consider the 4-dimensional Lorentzian vector space R 1,3 = (R 4 , q 1,3 ). The de-Sitter space in R 1,3 is the level set q -1 1.3 [START_REF] Alekseevsky | G-manifolds with one dimensional orbit space[END_REF]. Obviously, SO • (1, 3) preserves this level set and acts on it isometrically. On the other hand, the image of the nullcone N 1,3 of R 1,3 by P : R 1,3 \ {0} → RP 3 is conformally equivalent to the conformal 2-sphere S 2 . Moreover, SO • (1, 3) acts on P(N 1,3 ) ⊂ RP 3 conformally. Indeed, it is the identity component of the group of conformal transformations of S 2 . We deduce that, the actions of SO • (1, 3) on the de-Sitter component dS 1,2 ⊂ Ein 1,2 and its conformal boundary S 2 is conformally equivalent to its actions on the de-Sitter space q -1 1,3 (1) ⊂ R 1,3 and P(N 1,3 ) ⊂ RP 3 , respectively.

The following theorem will play a key rule in the proof of Theorem 5.8. Theorem 5.9. [13, Theorem 1.1]. Let G be a connected (non necessarily closed) Lie subgroup of SO (1, n) and assume that the action of G on the Lorentzian space R 1,n is irreducible. Then

G = SO • (1, n).
Let G ⊂ Iso(dS 1,3 ) � SO • (1, 3) be a connected subgroup which preserves a proper linear subspace V of R 1,3 . Observe that since G preserves the orthogonal space V ⊥ as well, it is suffix to consider the case dim V ≤ 2. Furthermore, if V (resp. V ⊥ ) contains a lightlike vector, then the intersection of P(V ) (resp. P(V ⊥ )) with P(N 1,3 ) is a discrete subset A consisting of one or two points. Hence, by connectedness, G acts on A trivially. If V is a 1-dimensional timelike subspace, then G is a subgroup of SO(3) -the maximal compact subgroup-up to conjugacy.

Proof of Theorem 5.8. First, assume that G acts on R 1,3 irreducibly. Then by Theorem 5.9 G = SO • (1, 3). Now, suppose that G preserves a proper linear subspace V ≤ R 1,3 .

• If V or V ⊥ contains a unique (linear) lightlike line, then G fixes a point in the spacelike hypersphere S 2 .

• If V is a timelike line, then G ⊂ SO(3) up to conjugacy. Since G admits a 2-dimensional orbit in Ein This completes the proof. �

Orbits

Now, we describe the orbits induced in Ein 1,2 by the subgroups obtained in Theorem 5.2 and Theorem 5.8.

In order to describe the orbits induced by SO • (2, 1) we need the following lemma.

First assume that G is a subgroup of Iso • (AdS • G is one the groups Iso

• (AdS 1,2 ) or (SL(2, R) × Y E )/Z 2 .
It is obvious that G acts on the Anti de-Sitter component AdS 1,2 transitively, since it contains SL(2, R) as a subgroup. Also, it is easy to see that G acts on the boundary ∂AdS 1,2 = Ein 1,1 transitively. For an arbitrary point q = (q 0 , q 1 ) = ([x 0 : y 0 ], [x 1 : y 1 ]) ∈ RP 1 × RP 1 = Ein 1,1 the vectors tangent to the orbit G λ (q) at q induced by the 1-parameter subgroups H λ and {Id} × Y P are v = ((x 0 , -y 0 ), (λy 1 , -λx 1 )), w = ((y 0 , 0), (0, 0)), respectively. Obviously, G λ admits no fixed point in Ein 1,1 . Hence, it acts on the photon φ = {∞} × RP 1 transitively. The set {v, w} ⊂ T q G λ (q) is a basis if and only if y 0 � = 0 if and only if q / ∈ φ. This implies that G λ acts on Ein 1,1 \ φ transitively.

• G is one of the groups SL(2, R) × Aff or SL(2, R) × Y P . Since G contains SL(2,
As we mentioned in the previous case, Y E × Aff acts on AdS 1,2 freely, so does G λ . For an arbitrary point p ∈ AdS • G = Y E × Y P . It is easy to see that G acts on the photon φ = {∞} × RP 1 ⊂ Ein 1,1 and on Ein 1,1 \ φ transitively. On the other hand G acts on AdS 1,2 freely, since Y E × Aff • (1, R) does. For an arbitrary point p ∈ AdS 1,2 , the vector tangent to the orbit G(p) at p induced by the 1-parameter

subgroup Y E × {Id} is v = � p 21 p 22 -p 11 -p 12 � .
Observe that v is a timelike vector. Hence, G admits a codimension 1 foliation on AdS 1,2 where every orbit is Lorentzian and G acts freely. Observe that v is a timelike vector. Hence, G admits a codimension 1 foliation on AdS 1,2 where every orbit is Lorentzian and G acts on freely.

• G = Y E × Y H . It is easy to see that G acts on the photons φ = {∞} × RP 1 , ψ = {0} × RP 1 ⊂ Ein 1,1 ,
• G = graph(ϕ)/Z 2 . By Lemma 5.6, the action of G on Ein 1,1 is conjugate to the action of SO • (2, 1) which preserves a linear subspace V ≤ R 2,3 of signature (2, 1), and acts on the orthogonal complement space V ⊥ trivially. Observe that G is a subgroup of the stabilizer of a timelike circle C (Definition 1.69). By the action of SO • (2, 3) the stabilizer of C is conjugate to SO • (2, 1) × SO(2) (Lemma 1.70). Indeed, by the identification in Lemma 1.70 the complement of C in Ein 1,2 is conformally equivalent (up to double cover) to the direct product AdS 

Y E × Y P , Y E × Y H , G 1 , SO • (2, 1), SL(2, R) × Y H , SL(2, R) × Aff, Iso • (AdS 1,2 ).
Now, we consider the orbits induced by the subgroups obtained in Theorem 5.8. Indeed, there is only one remaining group, say Iso • (dS 1,2 ), since the action of SO(3) has been described in Chapter 2.

Obviously, Iso • (dS 1,2 ) � SO • (1, 3) acts on the de-Sitter component and its conformal boundary ∂dS 1,2 ≈ S 2 transitively.

Chapter 6

Actions preserving a photon

In this Chapter, we consider the cohomogeneity one actions on Einstein universe Ein 1,2 preserving a photon. Let G be a connected Lie subgroup of SO • (2, 3) stabilizing a photon φ ⊂ Ein 1,2 and admitting a 2-dimensional orbit in Ein 1,2 . Recall from Section 1.7.1 that, the complement of φ in Ein 1,2 is an open homogeneous subset diffeomorphic to S 1 × R 2 . The group of conformal transformations on Ein 1,2 φ = Ein 1,2 \ φ is Stab O(2,3) (φ). Furthermore, Ein 1,2 φ admits a codimension 1 foliation F φ invariant by Conf(Ein 1,2 φ ), for which each leaf is a degenerate surface diffeomorphic to R 2 . More precisely, choosing a point x 0 ∈ φ, one of the leaves is L(x 0 ) \ φ and the other leaves are the degenerate affine 2-planes in the Minkowski patch M ink(x 0 ) with limit point in φ. Therefore, we may determine a leaf of F φ by its limit point x ∈ φ and denote it by F φ (x). In other words, for an arbitrary point x ∈ φ, the leaf F φ (x) is the degenerate surface L(x) \ φ.

Recall form Section 1.7.1, by the action of Conf(E 1,2 ), the stabilizer of a photon in Ein

1,2 is isomorphic to (R * × SL(2, R)) � H(3), where H(3) is the 3-dimensional Heisenberg group. The action of Conf(Ein 1,2 φ ) on φ ≈ RP 1 admits a surjective representation π : Conf • (Ein 1,2 φ ) -→ PSL(2, R) � Conf • (RP 1 ).
The kernel K = ker π has two connected components. The identity component K

• is conjugate to the Lie subgroup exp (R(1 + Y H ) + RY P ) � (R(e 1 + e 2 ) ⊕ Re 3 ), (6.1) 
described in Definition 4.10.

Choosing an arbitrary point x 0 ∈ φ, the group K splits as the semi-direct product A � Π. where A is a 2-dimensional Lie subgroup with two connected components which fixes a unique point in the Minkowski patch M ink(x 0 ) and Π is the unique A-invariant degenerate 2-plane in R 1,2 . Note that this splitting depends strongly on x 0 . Considering M ink(x 0 ) ≈ E 1,2 with underlying Lorentzian vector space (sl(2, R),det) (described in Remark 1.41), we have

K = �� e 2t , � εe t s 0 εe -t � , � u v 0 -u �� : t, s, u, v ∈ R, ε = ±1 � . (6.2) Now, A = �� e 2t , � εe t s 0 εe -t � , 0 2×2 � : t, s ∈ R, ε = ±1 � , and 
Π = �� 1, I 2×2 , � u v 0 -u �� : u, v ∈ R � .
The subgroup Y P � Π ⊂ K (which in Eq. 6.2 consists of elements in K with t = 0) is the unique connected maximal unipotent subgroup (up to conjugacy) of K and it is isomorphic to the 3-dimensional

Heisenberg group H(3).

The center of Heisenberg group H(3) � Y P � Π is a 1-dimensional Lie subgroup L isomorphic to R. Observe that, L is the set of lightlike (elements in Π) translations in the Minkowski patch M ink(x 0 ). More precisely, considering Eq. 6.2, L is the set of the element in K with t = s = u = 0.

The following proposition gives a powerful tool to prove Theorem 6.1. • a lightlike transformation on M ink(x), if it fixes no point in Ein 1,2 φ .

• a spacelike transformation on M ink(x), if the set of its fixed points in Ein 1,2 φ is a unique lightlike geodesic included in the leaf F φ (x) ⊂ L(x).

• a parabolic transformation on M ink(x), if the set of its fixed points in Ein 1,2 φ is a unique lightlike geodesic in the Minkowski patch M ink(x).

Observe that, if g ∈ H(3) is a lightlike transformation on a Minkowski patch M ink(x 0 ) (for some x 0 ∈ φ), then for all y ∈ φ, it is a lightlike transformation on the Minkowski patch M ink(y). Indeed, one can see, g is a lightlike translation in M ink(y). Considering the splitting Y P � Π, it is easy to see that an element g in H(3) is a lightlike transformation on M ink(x 0 ) if and only if it is a non-trivial element in L . This implies that an element g ∈ H(3) is a lightlike transformation on a (hence any) Minkowski patch M ink(y) (y ∈ φ) if and only if g is a non-trivial element of the center L . Thus, we may talk about a lightlike transformation without mentioning a Minkowski patch.

Assume that g ∈ H(3) is a spacelike transformation on a Minkowski patch M ink(x 0 ) (for some x 0 ∈ φ). Again, considering the splitting Y P � Π, it can be easily seen that g is an element in Π \ L .

Observe that for a non-trivial element g ∈ Π the g-invariant subsets of F φ (x 0 ) = L(x 0 ) \ φ are included in the vertex-less photons in the lightcone L(x 0 ). In other words, elements in Π preserve no spacelike curve in F φ (x 0 ). Furthermore, assume that g ∈ H(3) is a parabolic transformation on a Minkowski patch M ink(x) (for some x ∈ φ). Denote by γ the lightlike geodesic in M ink(x) which is fixed pointwisely by g. By continuity, g fixes the limit point of γ in the lightcone L(x). Hence, the limit point of γ is contained in φ, since g fixes no point in the leaf F φ (x) = L(x) \ φ. This shows that γ is contained in a leaf of F φ . One can see that the 1-parameter subgroup of H(3) generated by g acts on the leaf F φ (x) freely and every orbit is a spacelike curve (i.e. of signature (0, 1)). Lemma 6.4. Let g be a non-trivial element in H(3). Then there exists a unique point x 0 ∈ φ such that g is a spacelike transformation on M ink(x 0 ) if and only if for all x ∈ φ \ {x 0 }, g is a parabolic transformation on M ink(x).

Proof. Assume that g is a spacelike transformation on M ink(x 0 ). Then the set of points fixed by g in Ein 1,2 φ is a unique lightlike geodesic γ ⊂ F φ (x 0 ) = L(x 0 ) \ φ. The union of γ with x 0 is a photon ψ. For an arbitrary point x ∈ φ \ {x 0 }, γ is a lightlike geodesic in the Minkowski patch M ink(x). Hence, g is a parabolic transformation of M ink(x) for all x ∈ φ \ {x 0 }.

Conversely, assume that g is a parabolic transformation in a Minkowski patch M ink(x) (for some x ∈ φ). Then the set of points fixed by g in Ein 1,2 φ is a unique lightlike geodesic γ ⊂ M ink(x). Let x 0 denotes the limit point of γ in the lightcone L(x). Obviously, x 0 ∈ φ. Observe that γ is a vertex-less photon in F φ (x 0 ) = L(x 0 ) \ φ. Hence, g is a spacelike transformation on M ink(x 0 ). This completes the proof. Corollary 6.5. Let g ∈ H(3) be a non-trivial element. Then, either g ∈ L (hence, for all x ∈ φ, it is a lightlike transformation on the Minkowski patch M ink(x)), or there exists a unique point x 0 ∈ φ such that g is a spacelike transformation on M ink(x 0 ) and for all x ∈ φ\{x 0 } it is a parabolic transformation on M ink(x).

Proof. Fix a point x 0 ∈ φ and consider the splitting H(3) � Y P � Π. By some computation, one can see, the composition of a non-trivial element in Y P and an arbitrary element in Π is a parabolic transformation on M ink(x 0 ). Now, the corollary follows from Lemma 6.4. Proof of Proposition 6.2. Assume the contrary, which is: g is an element in the connected component of G ∩ H(3) and g / ∈ L . There exists a point x 0 ∈ φ such that p ∈ F φ (x 0 ). By Corollary 6.5, g is either a spacelike or parabolic transformation on the Minkowski patch M ink(x 0 ). Denote by O p , g t and γ, the orbit induced by Stab G (x 0 ) at p, the 1-parameter subgroup of G ∩ H(3) generated by g, and the unique lightlike geodesic in Ein 1,2 φ pointwisely fixed by g, respectively. By Proposition 6.6, the orbit O p is 1-dimensional. Also, g t preserves γ, since it is an abelian group.

• If g is a spacelike transformation on M ink(x 0 ), then γ ⊂ F φ (x 0 ) = L(x 0 ) \ φ. For an arbitrary point x ∈ φ \ {x 0 }, there exists h ∈ G such that hx 0 = x, since G acts on φ transitively. By Lemma 6.4 g is a parabolic transformation on M ink(x). Hence, g t acts on F φ (x) freely. Thus, the orbit C = g t (hp) is an open subset of the orbit induced by Stab G (x) at hp and it is spacelike (i.e. of signature (0, 1)). Hence, the orbit induced by Stab G (x) at hp is spacelike. Obviously, h -1 (C) ⊂ F φ (x 0 ) is an open subset of O p . This is a contradiction, since g preserves no spacelike curve in F φ (x 0 ).

• If g is a parabolic transformation of M ink(x 0 ), then the orbit C = g t (p) is a spacelike (i.e. of signature (0, 1)) curve in F φ (x 0 ). By Lemma 6.4, there exists a unique point x ∈ φ \ {x 0 } such that g is a spacelike transformation on the Minkowski patch M ink(x). There exists h ∈ G such that hx 0 = x. The same argument as the previous case shows that h(C) is an open subset of the orbit induced by Stab G (x) at hp. This contradicts the fact that g preserves no spacelike curve in F φ (x). Let g ∈ K be an HH-transformation and ψ ⊂ Ein 1,2 φ be the unique photon fixed pointwisely by g. The photon ψ intersects every leaf of F φ in a unique point. More precisely, for an arbitrary point x ∈ φ, the intersection of ψ with the Minkowski patch M ink(x) is a lightlike geodesic γ. The limit point of γ is contained in F φ (x) = L(x) \ φ. Hence, γ intersects every affine degenerate plane in M ink(x) with limit point in φ. Assume g t is the 1-parameter subgroup generated by g ∈ K • . Observe that g t preserves ψ, since it is abelian. On the other hand g t preserves the leaves of the foliation F φ , hence g t fixes γ pointwisely. Henceforth, γ is the unique photon fixed pointwisely by every element in g t . Lemma 6.8. Let g be a non-trivial element in K. Then either g ∈ H(3) or it is an HH-transformation.

Proof. Fix a point x 0 ∈ φ and consider the splitting Eq. 6.2. Every element in K with t = 0 belongs to H(3). On the other hand, if t � = 0, it is not hard to see that the element is an HH-transformation. Lemma 6.9. Let x 0 ∈ φ be an arbitrary point. Then every HH-transformation in K preserves a unique L -invariant affine Lorentzian 2-plane in M ink(x 0 ).

By differentiating the morphisms P l , P h , and P li at the identity element of G we obtain three Lie algebra morphisms p l = dP l : (R ⊕ so(1, 2)) ⊕ θ R 1,2 → R ⊕ so(1, 2)

p h = dP h : (R ⊕ so(1, 2)) ⊕ θ R 1,2 → R p li = dP li : (R ⊕ so(1, 2)) ⊕ θ R 1,2 → so(1, 2).
which are the corresponding projections in Lie algebra level. For a Lie subalgebra h ≤ g, we use the same terminology for T (h) := ker p l | h , p l (h), p h (h), and p li (h) as we introduced in Lie group level. Observe that T (h) is invariant by the action of p l (h) and p li (h).

We will characterize the Lie subalgebras of g using the adjoint action Ad of G on g. The procedure is that, for a Lie subalgebra h ≤ g, we take a basis {w i } (0 ≤ i ≤ 3) for T (h), and expand it to a basis {a j + V j + v j , w i } (0 ≤ j ≤ 4) for h. The main problem is that, in general, the subspace n ≤ h generated by {a j + V j + v j } is not a Lie algebra. This problem arise from v j vectors. Restricting Ad to (R * + × {Id}) � R 1,2 , it preserves the translation part T (h). Thus, first we try to linearize n by Ad ((R * + ×{Id})�R 1,2 ) as more as possible, meaning that: we try to omit the vectors v j by Ad ((R * + ×{Id})�R 1,2 )

as more as possible, and if it is not possible, we replace v j with a more suitable vector. Actually, for vectors a i + V i + w i ∈ h, we apply Ad (r,Id,x) and obtain

Ad (r,Id,x) (a i + V i + w i ) = a i + V i + rw i -a i x -V i (x).
Then, we try to solve the linear systems rw ia i x -V i (x) ∈ T (h), 0 ≤ i ≤ dim p l (h), a i + V i + w i ∈ h, simultaneously for x. However, in general, it is not possible to find such solution x, but we may simplify the vectors rw ia i x -V i (x) ∈ R 1,2 as more as it is possible.

Furthermore, we may use the elements in O(1, 2) which preserve the linear isometry part p li (h) to obtain a simpler subalgebra.

Consider the scalar product space R 2,3 . Here it will be convenient to use the scalar product We denote the affine subalgebra of so(1, 2) by aff. We denote by λ = 1 ∈ R, the generator (basis) of the Lie algebra R.

�v|w� := - 1 2 v 1 w 2 - 1 
Let V be a linear subspace of R 3 and A a linear map on R 3 . There exists a unique linear map A : R 3 → R 3 /V which maps x to [Ax]. For simplicity we denote the linear system Ax = [v] by Axv ∈ V , when there is no ambiguity. Theorem (4.6) follows from the following theorem.

Theorem A.1. Let H ⊂ G be a connected Lie subgroup with dim H ≥ 2. Then, the Lie algebra h = Lie(H) is either conjugate to a semi-direct sum h L ⊕ Θ T (h), where h L is a Lie subalgebra of The Lie algebra h � = Ad (1,Id,x) (h) is conjugate to h and clearly u � , v � ∈ T (h � ). Thus {-1 + Y H , Y P , e 1 + e 2 , e 3 } is a basis for h � . Therefore, h is conjugate to the semi-direct sum (R(-1 + Y H ) + RY P ) ⊕ θ (R(e 1 + e 2 ) ⊕ Re 3 ).

For a = 2, the linear system v -Y P (x) ∈ T (h), has a solution if and only if v 1 = v 2 . On the other hand the vector x = ( -u 2 +2u 1 This subalgebra is conjugate to the following subalgebra via Ad (β -1 ,Id,0) (R(2 + Y H ) + R(Y P + e 1 )) + θ (R(e 1 + e 2 ) ⊕ Re 3 ).

Case III: T (h) = R(e 1 + e 2 ).

• p l (h) = R ⊕ aff. There are three vectors u, v, w ∈ R 1,2 such that {e 1 + e 2 , λ + u, Y P + v, Y H + w}, is a basis for h. By considering the Lie bracket

[λ + u, Y P + v] = v -Y P (u) = (v 1 -u 3 , v 2 -u 3 , v 3 -u 1 + u 2 ) ∈ T (h), [λ + u, Y H + w] = w -Y H (u) = (w 1 -u 2 , w 2 -u 1 , w 3 ) ∈ T (h).
implies that v 1 = v 2 , v 3 = u 1u 2 , w 3 = 0, and w 1u 2 = w 2u 1 . Now, applying Ad For a = 1, the vector x = ( v 3 +u 2 2 , -v 3 +u 2

2

, v 1 ) is the common solution of the linear systems ux -Y H (x) = 0 and v -Y P (x) = 0.

This implies that h is conjugate to the semi-direct sum R(a + Y H ) + R(Y P ).

For a = -1, the linear system u + x -Y H (x) = 0, has a solution if and only if u 1 = -u 2 . On the other hand, the vector x = ( u 2 2 , u 1 2 , -u 3 ) is a solution of the linear system v -Y P (x) = 0. • T (h) = Re 1 .

Now, we have

If dim p l (h) = 1, then there exist a constant a ∈ R and a vector v ∈ R 1,2 such that {a +Y E +v, e 1 } is a basis for h. For a = 0, setting the vector x = (0, -v 3 , v 2 ) is a solution of the linear system v -Y E (x) ∈ T (h).

In other words, we have

Ad (1,Id,x) (Y E + v) = Y E + v 1 e 1 ,
Ad (1,Id,x) (e 1 ) = e 1 .

Thus Y E ∈ h � = Ad (1,Id,x) (h). Therefore, h is conjugate to the direct sum

RY E ⊕ Re 1 .
For a � = 0, the vector x = ( v 1 a , av 2 -v 3 a 2 +1 , av 3 +v 2 a 2 +1 ) is the solution of the linear system vax -Y E (x) = 0.

Hence, Thus a + Y E ∈ h � = Ad (1,Id,x) (h). Therefore, h is conjugate to the semi-direct sum

Ad (1,Id,x) (a + Y E + v) = a + Y E , Ad (1, 
R(a + Y E ) ⊕ Θ Re 1 .
If dim p l (h) = 2, then there exist two vectors u, v ∈ R 1,2 such that {λ + u, Y E + v, e 1 } is a basis for h. Considering the Lie bracket we get

[λ + u, Y E + v] = v -Y E (u) ∈ Re 1 =⇒ (v 1 , v 2 -u 3 , v 3 + u 2 ) = βe 1 , for some β ∈ R.
Observe that u is a solution of the linear system v -Y E (x) ∈ T (h).

Hence

Ad (1,Id,u) (λ + u) = λ , Ad Obviously, λ, Y E ∈ h � = Ad (1,Id,u) (h). Therefore h is conjugate to the semi-direct sum (R ⊕ RY E ) ⊕ Θ Re 1 .

• T (h) = Re 2 ⊕ Re 3 .

If dim L(h) = 1, then there exist a constant a ∈ R and a vector v ∈ R 1,2 such that {a + Y E + v, e 2 , e 3 } is a basis for h.

For a = 0, obviously Y E + v 1 e 1 ∈ h. Therefore, if v 1 = 0, then h is conjugate to the semidirect sum RY E ⊕ Θ (Re 2 ⊕ Re 3 ).

-If dim p l (h) = 1, then there exist a constant a ∈ R and a vector v ∈ R 1,2 such that {a + Y P + v, e 1 + e 2 } is a basis for h.

For a = 0, the linear system v -Y P (x) ∈ T (h), has a solution if and only if v 1 = v 2 . Now, setting x = (0, -v 3 , v 2 ), we have Thus if v 1 = v 2 , then h is conjugate to the direct sum

RY P ⊕ R(e 1 + e 2 ).
If v 1 � = v 2 , then there exists h is conjugate to the following Lie subalgebra via Ad ( 1

v 1 -v 2
,Id,0) R(Y P + e 1 ) + Θ R(e 1 + e 2 ).

For a � = 0, the vector

x = ( (a 2 + 1)v 1 -av 3 -v 2 a 3 , (a 2 -1)v 2 -av 3 + v 1 a 3 , av 3 -v 1 + v 2 a 2 ),
is the solution of the linear system vax -Y P (x) = 0.

In other words, we have Thus a + Y P ∈ h � = Ad (1,Id,x) (h). Therefore h is conjugate to the semi-direct sum R(a + Y P ) ⊕ Θ R(e 1 + e 2 ).

-If dim p l (h) = 2, then there exist two vectors u, v ∈ R Obviously, λ, Y P ∈ h � = Ad (1,Id,u) (h). Therefore h is conjugate to the semi-direct sum (R ⊕ RY P ) ⊕ Θ R(e 1 + e 2 ).

• T (h) = R(e 1 + e 2 ) ⊕ Re 3 .

• T (h) = R 1,2 .

-If dim p l (h) = 1, then there exist a constant a ∈ R and a vector v ∈ R 1,2 such that {a + Y P + v, e 1 , e 2 , e 3 } is a basis for h. Obviously, v ∈ T (h), and so a + Y P ∈ h. Therefore h is conjugate to the semi-direct sum R(a + Y P ) ⊕ θ R 1,2 for a constant a ∈ R.

-If dim p l (h) = 2, then there exist two vectors u, v ∈ R 1,2 such that {λ + u, Y P + v, e 1 , e 2 , e 3 } is a basis for h. Clearly u, v ∈ T (h), and so λ, Y P ∈ h. Therefore h is conjugate to the semi-direct sum (R ⊕ RY P ) ⊕ θ R 1,2 .

Case III: The linear isometry part is hyperbolic.

The Y H -invariant subspaces of R 1,2 are {0}, R 1,2 , the two lightlikee lines R(e 1 + e 2 ), R(e 1e 2 ),

and their corresponding lightlike planes R(e 1 + e 2 ) ⊕ Re 3 , R(e 1e 2 ) ⊕ Re 3 , the spacelike line Re 3 , and the timelike plane contains Re 1 ⊕ Re 2 , orthogonal to Re 3 .

It is remarkable that conjugation by

Q =    1 0 0 0 -1 0 0 0 -1    ∈ SO • (1, 2)
leaves RY H invariant, and maps the two lightlike lines R(e 1 + e 2 ) and R(e 1e 2 ), to each other.

Consequently, Q maps the two corresponding lightlike planes R(e 1 + e 2 ) ⊕ Re • T (h) = R(e 1 + e 2 ).

-If dim L(h) = 1, then there exist a constant a ∈ R and a vector v ∈ R 1,2 such that {a + Y H + v, e 1 + e 2 } is a basis for h.

For a = 0, the linear system v -Y H (x) ∈ T (h).

has a solution if and only if v 3 = 0. Hence, setting x = (v 2 , v 1 , 0), we have Thus if v 3 = 0, then h is conjugate to the semi-direct sum R(Y H ) ⊕ θ R(e 1 + e 2 ).

Ad (1,Id,x) (Y H + v) = Y H + v 3 e 3 , Ad ( 
If v 3 � = 0, then h is conjugate to the following lie subalgebra via Ad (1/v 3 ,Id,0) R(Y H + e 3 ) + θ R(e 1 + e 2 ).

For a ∈ R * \ {1, -1}, the vector x = ( -v 2 +av 1 a 2 -1 , -v 1 +av 2 a 2 -1 , v 3 a ) is the solution of the linear system vax -Y H (x) = 0

• T (h) = Re 3 .

-If dim p l (h) = 1, then there exist a constant a ∈ R and a vector v ∈ R 1,2 such that {a + Y H + v, e 3 } is a basis for h.

If a = 0, the vector x = (v 2 , v 1 , 0) is a solution of the linear system v -Y H (x) ∈ T (h).

In other words, we have Obviously Y H ∈ h � = Ad (1,Id,x) (h). Therefore, h is conjugate to the direct sum

RY H ⊕ Re 3 .
For a ∈ R * \ {1, -1}, the vector x = ( -v 2 +av 1 a 2 -1 , -v 1 +av 2 a 2 -1 , v 3 a ) is the solution the linear system vax -Y H (x) = 0, and we have So, if v 1 = -v 2 , h is conjugate to the semi-direct sum

Ad (1,Id,x) (a + Y H + v) = a + Y H , Ad (1, 
R(-1 + Y H ) ⊕ θ Re 3 .
Otherwise, it is conjugate to the following Lie algebra via Ad 

  [g] on S n . The metric class [g] contains the usual round metric on S n of reduces 1. The Lorentz group O(1, n + 1) leaves the metric class [g]. Indeed, P O(1, n + 1) is the conformal group of (S n , [g]).

,

  and its universal covering space � Ein 1,n are the other examples.

  [g]. Le groupe des transformations conformes de (M, [g]) est noté Conf(M, [g]), ou simplement Conf(M ) lorsqu'aucune confusion n'est à craindre. Si dim M ≥ 3, alors Conf(M ) est un groupe de Lie ([31]). A priori, la notion de géodésique pour une structure conforme n'a pas de sens, cependant, les géodésiques isotropes, i.e. celles dont les vecteurs tangents sont isotropes, ne dépendent pas du représentant de la classe conforme à reparamétrisation près. Deux variétés semi-Riemanniennes (M, g) et (N, h) sont conformément équivalentes si il existe un difféomorphisme ϕ de M vers N qui soit une application conforme, i.e. tel que ϕ * h soit dans la classe conforme [g]. La structure conforme [g] est dite essentielle si le groupe conforme Conf(M ) ne préserve aucune métrique dans la classe [g]. Elle est dite inessentielle sinon.

,

  est conformément équivalent au produit (S 1 × S n , -dt 2 + ds 2 ) où dt 2 et ds 2 sont les métriques rondes usuelles sur les sphères S 1 et S n de même diamètre 1. L'analogue Lorentzien du Théorème de Liouville reste vrai: Théorème 0.2. (Théorème de Liouville, cas Lorentzien [18, Theorem 4.4]) Soient U, V ⊂ Ein 1,n deux oiuverts connexes non vides, et soit f : U → V une application conforme. Alors, si n ≥ 2, l'application f s'étend de manière unique en une transformation conforme globale de Ein 1,n . Ainsi, toute variété Lorentzienne conformément plate de dimension 1+n ≥ 3 admet une (Conf(Ein 1,n ), Ein 1,n )structure. En particulier, les variétés modèles Lorentziennes à courbure constante c, qui sont l'espace de Minkowski R 1,n pour c = 0, l'espace Anti de-Sitter AdS 1,n pour c = -1, et l'espace de-Sitter dS 1,n pour c = 1, sont chacune conformément équivalente à un domaine ouvert spécifique de Ein

Felix

  Klein est notamment connu pour son travail sur le lien entre géométrie et théorie des groupes. Dans son Programme d'Erlangen (1872), les géométries sont classifiées selon le groupe des isométries sous-jacent. Dans l'esprit de cette approche, une géométrie est un G-espace M . Le cas le plus courant est celui où G agit transitivement sur M . Dans ce cas, M est dite un G-espace homogène. Les exemples les plus connus de G-espaces homogènes sont les géométries Euclidienne, affine ou projective. Un cas qui a attiré l'attention de plusieurs chercheurs est le cas des actions dites de cohomogénéité un: c'est celui des actions admettant une orbite de codimension un. Ce concept a été introduit par P.S. Mostert dans son article de 1956 [35]. L'hypothèse clé dans cet article était la compacité prescrite du groupe agissant. Il montre qu'alors l'espace des orbites M/G est homéomorphe à R, S 1 , [0, 1], ou [0, 1). Dans [8] B. Bergery a montré que ce résultat reste vrai son on remplace l'hypothèse de compacité de G par la l'hypothèse de propreté de l'action. Au vu de ce résultat, l'orbite G(p) d'un point p ∈ M the orbit est dite principale (resp. singulière) si le point correspondant dans l'espace des orbites M/G est un point intérieur (resp. un point du bord).
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 5 [g]. Moreover, the cuasal character of a vector tangent to M is invariant in the metric class [g]. Hence, we can speak about the cuasal character of tangent vectors, curves, or signatures of submanifold etc.. Hence, we have the following definition which is the conformal version of Definition 1.Definition 1.18. Let M be a smooth manifold equipped with a semi-Riemannian conformal structure [g]

1 ).

 1 photons containing [p]:

  Proof. Let C ⊂ Ein 1,2 be a timelike circle and V ≤ R 2,3 the linear subspace corresponding to C. The orthogonal complement V ⊥ is of signature (0, 2). Choose an orthonormal basis {e 1 , e 2 , e 3 } for V where e 3 is spacelike, and an orthonormal basis {e 4 , e 5 } for V ⊥ . Then B = {e 1 , • • • , e 5 } is an orthonormal basis of R 2,3 . Suppose that [p] ∈ Ein 1,2 \ C is an arbitrary point, and p = (p 1 , • • • , p 5 ) is an arbitrary representative of [p]. We have -p 2 1p 2 2 + p 2 3 = -p 2 4p 2 5 .

Remark 1 .

 1 71. From now on, for a point [p] ∈ Ein 1,2 ⊂ RP 4 and a representative in R 2,3 of the class [p],

  Theorem 0.4, up to conjugacy, PSL(2, R) � SO • (1, 2) is the only connected proper subgroup of O(2, 3) which acts on R 2,3 irreducibly. Recall from Section 1.4.4, there is only one irreducible representation of PSL(2, R) in GL(R 5 ). This representation is the natural action of PSL(2, R) on the vector space V = R 4 [X, Y ] of homogeneous polynomials of degree 4 in two variables X and Y . This action induces three types of orbits in the 4-dimensional projective space RP 4 = P(V): an 1-dimensional orbit, three 2-dimensional orbits, and the orbits which PSL(2, R) acts on them freely.

Figure 3 . 1 :

 31 Figure 3.1: Two partial views of the intersection of the 1 and 2-dimensional orbits in Einstein universe with Mink([Y 4 ]). Red: Part of the 1-dimensional orbit in Minkowski patch. Green: Part of the 2-dimensional orbit in Minkowski patch.

1 4

 1 is simply the one induced by the diagonal action on (CP 1 ) 4 .

Remark 3 . 4 .

 34 F. Fillastre indicated to us that our description of the open orbit in Ein 1,2 appearing in the first item of Proposition 3.3 has an alternative and more elegant description: this orbit corresponds to polynomials whose roots in CP 1 are ideal vertices of a regular ideal tetraedra in H 3 . Proof of Theorem 3.1. It follows from Proposition 3.3 that there are precisely three PSL(2, R)-orbits in Ein 1,2 :

( 1 , 2 )

 12 [START_REF] Collier | The geometry of maximal representations of surface groups into SO(2,n)[END_REF] Section 5.3]. (Here, L is the projective class of a Lorentzian bilinear form on R 2 ).The vectors tangent to the orbit at X 2 Y 2 induced by the 1-parameter subgroups Y P and Y E are v P = -2XY3 and v E = 2X 3 Y -2XY 3 , respectively. It is easy to see that the 2-plane generated by {v p , v E } is of signature (1, 1). Hence, the orbit induced at X 2 Y 2 is Lorentzian.-three distinct real roots, one of them being of multiplicity 2: Denote by M the orbit induced by PSL(2, R) at [f ] = [XY 2 (X -Y )]. The vectors tangent to M at [f ] induced by the 1-parameter subgroups Y H , Y P and Y E are:

H 2 :

 2 Denote by M the orbit induced by PSL(2, R) at [f ] = [Y 2 (X 2 + Y 2 )]. The vectors tangent to M at [f ] induced by the 1parameter subgroups Y H , Y P and Y E are v H = 4Y 4 , v P = -2XY 3 , and v E = 2X 3 Y + 2XY 3 , respectively. Obviously, the lightlike vector v H is orthogonal T [f ] M . Therefore, the restriction of the metric on T [f ] M is degenerate. It is easy to see that the quotient of T [f ] M by the action of the isotropic line R(v H ) is of signature (1, 1). Thus M is of signature (1, 1, 1).

Definition 4 . 3 .

 43 Let G be a Lie subgroup of Conf • (E 1,2 ). We call the image of G under P l , P li , and P h the linear projection, the linear isometry projection, and the homothety projection of G, respectively. Also, we call the identity component of the kernel of P l | G the translation part of G and denote it by T (G).

Theorem 4 . 4 .

 44 Let G be a Lie subgroup of Conf • (E 1,2 ). Then G admits a 2-dimensional orbit in Ein1,2 

Proposition 4 . 5 .

 45 Let G be a connected Lie subgroup of R * + � R 1,2 . Then G is conjugate to the semidirect product P h (G) � T (G).

a

  photon ψ ⊂ L(p) different from φ. Denote by Π ψ the degenerate plane in R 1,2 correspond to ψ. Observe that P acts on L(p) \ φ freely, since it preserves only φ. Assume that H induces an open orbit I ⊂ ψ. Then P maps I to other photons, and therefore, G admits an open orbit in L(p). If H fixes ψ pointwisely, then it preserves the leaves of the foliation F Π ψ induced by Π ψ in E 1,2 . Note that, because of the parabolicity of P, it does not preserve this foliation.

Remark 4 . 8 .

 48 Observe that by the action of G= (R * + × Y H ) � (Re 1 ⊕ Re 2 ) the union of the leaf F T (G) (o)(which is a Lorentzian affine 2-plane) and the photons φ and ψ is G-invariant. Actually, F T (G) (o) ∪ φ ∪ ψ is an Einstein hypersphere (Definition 1.63). Moreover, G is the unique (up to conjugacy) maximal connected Lie subgroup in SO • (2, 3) which preserves an Einstein hypersphere Ein 1,1 ⊂ Ein 1,2 and admits a fixed point on it.

  Furthermore, G acts on the both connected components of E 1,2 \ F T (G) (o) transitively. Therefore, the orbits induced by G in Ein 1,2 are: a fixed point p, the vertexless photons in L(p), the leaf F T (G) (o), and the two connected components of E 1,2 \ F T (G) (o).

1 , 2

 12 are: three fixed points p, d φ and d ψ , the four connected components of ( φ ∪ ψ) \ {d φ , d ψ }, the two connected components of L(p) \ (φ ∪ ψ), the spacelike affine line F Re 3 (o), the four connected components of (F Π φ (o) ∪ F Π ψ (o)) \ F Re 3 (o) which are degenerate affine half-planes,

.

  The orbits induced by G in the lightcone L(p) is exactly the same as the orbits induced by Aff. The intersection of the leaf F Π φ (o) with the nullcone N(o) is a lightlike line, namely, it is F L (o). The group G acts on the both connected components of F L (o) \ {o} and on the both connected components of N(o) \ F L (o) transitively. Observe that G also acts on the both connected components of the domain {q < 0} transitively. Moreover, G acts on the both connected components of F Π φ (o) \ F L (o), and on the both connected components of E 1,2 \ � N(o) ∪ {q < 0} ∪ F Π φ (o) � transitively. Therefore, the orbit by G in Ein 1,2 are: three fixed points {p, o, d}, the spacelike curve S ∞ \ {d}, the two connected components of φ \ {d}, the two connected components of F L (o) \ {o}, the two connected components of L(p) \ (S ∞ ∪ φ), the two connected components of N(o) \ F L (o), the two connected components of F Π φ (o) \ F L (o),

  points {p, o, d}, the spacelike curve S ∞ \ {d}, the two connected components of φ \ {d}, the twoconnected components of L(p) \ (φ ∪ S ∞ ), the two connected components of F L (o) \ {o}, the two connected components of F Π φ (o) \ F L (o), the two connected components of N(o) \ F L (o),a 1-parameter family of 2-dimensional Lorentzian orbits on which G acts freely -the parameter being q ∈ � s \ {o}-, and a 1-parameter family of 2-dimensional spacelike orbits on which G acts freely -the parameter being q ∈ � t \ {o}.• G = exp � R(1 + Y H ) + RY P �. This group preserves the leaves of the foliation F Π φ , since it is a subgroup of K • (Definition 4.10). Hence, G acts on the photon φ trivially. It is not hard to see that G acts on S ∞ \ φ and on the both connected components of L(p) \ (φ ∪ S ∞ ) transitively. Also, G preserves the lightlike line F L (o) and acts on the both connected components of F L (o) \ {o} transitively. For an arbitrary point q = (x, y, z) ∈ E 1,2 , the vectors tangent to the orbit G(q) at q induced by the 1-parameter subgroups exp � R(1 + Y H ) � and Y P are v = (x + y, x + y, z)

1 •

 1 G = R * + × Y H . This group preserves also the foliation F Π ψ . Observe that G preserves the leaves F Π φ (o) and F Π ψ (o). Hence, G fixes two point d φ = φ ∩ S ∞ and d ψ = ψ ∩ S ∞ which are the limit points of F Π φ (o) and F Π ψ (o) respectively. Furthermore, G acts on the two connected components of φ \ {d φ }, the two connected components of ψ \ {d ψ }, the two connected components of S ∞ \{d φ , d ψ }, and the four connected components of L(p)\(S ∞ ∪φ∪ψ) transitively. Moreover, G preserves the timelike plane L 0 = {z = 0} ⊂ E 1,2 . Also, G preserves the two lightlike lines F L (o) and � 0 = F Π ψ (o)∩N(o), and the spacelike line

  1,2 are: two fixed points {p, d}, the two connected components of φ \ {d}, the affine lightlike line F L (o), the degenerate surface L(p) \ φ, the two connected components of F Π φ (o) \ F L (o) which are affine degenerate half-planes, a

Figure 4 . 1 :

 41 Figure 4.1: Two partial views of the 1-dimensional orbit and four 2-dimensional orbits induced by exp � R(-1 + Y H + e 1 + e 2 ) + RY P � in the Minkowski patch M ink(p). Red: Part of the 1-dimensional orbit. Green: Part of a 2-dimensional Lorentzian orbit. Brown: Part of a 2-dimensional spacelike orbit. Blue: Parts of the two 2-dimensional degenerate orbits.

Figure 4 . 2 :

 42 Figure 4.2: Two partial views of the 1-dimensional orbit and three 2-dimensional orbits induced by exp � R(2 + Y H ) + R(Y P + e 1e 2 ) � in the Minkowski patch M ink(p). Red: Part of the 1-dimensional orbit. Green: Part of a 2-dimensional Lorentzian orbit. Yellow: Part of a 2-dimensional degenerate orbit. Purple: Part of a 2-dimensional spacelike orbit.

3 ,

 3 there is a canonical PSL(2, R) × PSL(2, R)-invariant identification of Ein 1,1 with RP 1 × RP 1 . According to that, the left factor (resp. the right factor) PSL(2, R) acts on every photon { * } × RP 1 (resp. RP 1 × { * }) trivially. Note that, the characterization of the connected Lie subgroups of (SL(2, R) × SL(2, R))/Z 2 is equivalent to characterization of the connected Lie subgroups of SL(2, R) × SL(2, R). Therefore, first we consider the action of SL(2, R) × SL(2, R) and its connected Lie subgroups on the Einstein universe, then, we obtain the corresponding subgroups in (SL(2, R) × SL(2, R))/Z 2 . For a connected Lie subgroup G ⊂ (SL(2, R) × SL(2, R))/Z 2 , we denote by � G the corresponding connected Lie subgroup in SL(2, R) × SL(2, R).

Remark 5 . 3 .

 53 By the action of SL(2, R) × SL(2, R) on Ein 1,1 the identity component of the stabilizer of a photon is conjugate to SL(2, R) × Aff which stabilizes φ 0 = {∞} × RP 1 . This group acts on AdS 1,2 ≈ SL(2, R) transitively, since its Levi factor SL(2, R) does. Moreover, the Levi factor SL(2, R) preserves every photon { * } × RP 1 . Remark 5.4. The inversion map i on SL(2, R) sending A to A -1 is an isometry respect to the metric induced bydet. Hence, by Theorem 0.2, i extends to a unique global conformal transformation ĩ on Ein 1,2 . The restriction of ĩ on the boundary ∂AdS 1,2 = Ein 1,1 = RP 1 × RP 1 sends ([x], [y]) to ([y], [x]) On the other hand, the map j on SL(2, R) × SL(2, R) sending an element (A, B) to (B, A) is an Lie group isomorphism. The action of a connected Lie subgroup H ⊂ SL(2, R) × SL(2, R) on Ein 1,2 = SL(2, R) ∪ Ein 1,1 is orbitally equivalent to the action of j(H) via ĩ. By the action of SL(2, R) × SL(2, R) on Anti de-Sitter space AdS 1,2 ≈ SL(2, R), the stabilizer of a point is conjugate to the graph of the identity map Id SL(2,R) : SL(2, R) → SL(2, R) which is the stabilizer of the identity element I ∈ SL(2, R)

  R) as a subgroup, it acts on the Anti de-Sitter component transitively. In the both cases, the right factors Aff and Y P fix a unique photon φ = {∞} × RP 1 pointwisely. Moreover, they act on each lightlike geodesic RP 1 × {x} \ φ transitively. On the other hand, the left factor SL(2, R) acts on every photon {x} × RP 1 transitively. Hence, G acts on φ and Ein 1,1 \ φ transitively.• G = SL(2, R) × Y H .This group acts on Anti de-Sitter component transitively, since it contains SL(2, R) as a subgroup. The right factor Y H fixes exactly two photons φ = {∞} × RP 1 and ψ = {0} × RP 1 pointwisely. Moreover, it acts on the both connected components of each lightlike geodesic RP 1 × {x} \ (φ ∪ ψ) transitively. On the other hand, the left factor SL(2, R) acts on every photon {x} × RP 1 transitively. Hence, G acts on φ, ψ, and the two connected components of Ein 1,1 \ (φ ∪ ψ) transitively. • G = Y E × Aff. The right factor Aff fixes a unique photon φ = {∞} × RP 1 pointwisely. Moreover, it acts on each lightlike geodesic RP 1 × {x} \ φ transitively. On the other hand, the left factor Y E acts on every photon {x} × RP 1 transitively. Hence, G acts on φ and Ein 1,1 \ φ transitively. Observe that, by the action of G on the Anti de-Sitter component AdS 1,2 = SL(2, R) the orbit at I ∈ SL(2, R) is SL(2, R). Hence, G acts on AdS 1,2 transitively. • G = G λ , λ ∈ R * + . This group preserves the orbit induced by Y E × Aff. Denote by H λ the following 1-parameter subgroup of G λ ��� cos(λt) sin(λt) sin(λt) cos(λt) � , � e t 0 0 e -t �� : t ∈ R � .

  and on the two connected components of Ein 1,1 \ (φ ∪ ψ) transitively. On the other hand G acts on AdS 1,2 freely, since Y E × Aff • (1, R) does. For an arbitrary point p ∈ AdS 1,2 , the vector tangent to the orbit G(p) at p induced by the 1-parameter subgroup Y E × {Id} is

Theorem 6 . 1 .

 61 Let φ be a photon in Einstein universe Ein 1,2 ⊂ RP 4 and G ⊂ Conf(Ein 1,2 ) a connected Lie subgroup which preserves φ. If G acts on Ein 1,2 with cohomogeneity one, then it fixes a point in the projective space RP 4 . Therefore, either G fixes a point in Ein 1,2 or it preserves an Anti de-Sitter component or a de-Sitter component in Ein 1,2 .

Proposition 6 . 2 .Definition 6 . 3 .

 6263 Let G be a connected Lie subgeoup of Conf(Ein 1,2 φ ) which acts transitively on φ and admits a 2-dimensional orbit at p ∈ Ein 1,2 φ . Then the identity component of G ∩ H(3) is a subgroup of L . Let x ∈ φ be an arbitrary point. A non-trivial element g ∈ H(3) is called:

Proposition 6 . 6 .

 66 Let φ be a photon in Ein 1,2 and G a connected Lie subgroup of Conf(Ein 1,2 φ ) acting transitively on φ. Then, for x ∈ φ and p ∈ F φ (x) the orbit induced byG at p is k-dimensional if and only if the orbit induced by Stab G (x) at p is (k -1)-dimensional.Proof. In the one hand, since G acts on φ transitively, dim G = dim Stab G (x) + 1, for all x ∈ φ. On the other hand, for p ∈ Fφ ([x]), Stab G (p) is a subgroup of Stab G (x), since the action of G preserves the foliation F φ . More precisely, Stab G (p) = Stab Stab G (x) (p). Hence, dim G(p) = dim Gdim Stab G (p) = dim Stab G (x) + 1dim Stab Stab G (x) (p) = dim � Stab G (x) � (p) + 1.

This completes the proof. � Definition 6 . 7 .�:

 67 A non-trivial element g ∈ K is called a hyperbolic-homothety (abbreviation HH)transformation if the set of its fixed points in Ein1,2 φ is a photon.The non-trivial elements in the following 1-dimensional subgroup of K are the obvious examples of HHt ∈ R, ε = ±1 � .

2 v 2 w 1 -v 3 w 3 + v 4 w 4 + v 5 w 5

 1345 Let �-, -� denotes the bilinear form defined byQ = -I 1 ⊕ I n on R 1,2 . Consider the representation of Conf(E 1,2 ) in O(2,Actually, this representation maps Conf(E 1,2 ) surejectively to the stabilizer of the point p ∈ Ein 1,2 with homogeneous coordinate [0 : 1 : 0 : 0 : 0]. Observe that, conjugation by the element R := [ 0 1 1 0 ] ⊕ I 3 ∈ O(2, 3) leaves the linear subgroup R * × O(1, 2) ⊂ Conf(E 1,2) invariant and changes the roles of r and r -1 . We will use this element in squeal.Let {e 1 , e 2 , e 3 } be an orthonormal basis of R 1,2 and e 1 be timelike. The set of following matrices is a basis for so(1, 2) as a vector space

  The elliptic element Y E has only one real eigenvalue, namely 0. The hyperbolic element Y H has three distinct real eigenvalues {-1, 0, 1}. The parabolic element Y P is nilpotent, and so, 0 is the only eigenvalue for Y P . Therefore, we haveY E (e 1 ) = Y H (e 3 ) = 0, -Y E (e 2 )= Y P (e 1 ) = -Y P (e 2 ) = e 3 , Y E (e 3 ) = Y H (e 1 ) = e 2 , Y P (e 3 ) = e 1 + e 2 .

3 , -u 1 +2u 2 3 , u 3 2 3 Ad ( 1 ,

 33231 ) is the solution of the linear system u -2x -Y H (x) = 0.Now, we haveAd (1,Id,x) (e 1 + e 2 ) = e 1 + e 2 , Ad (1,Id,x) (e 3 ) = e Id,x) (2 + Y H + u) = 2 + Y H , Ad (1,Id,x) (Y P + v) = Y P + v � for some v � ∈ R 1,2 . The vector v � does not belong to h � = Ad (1,Id,x) (h) necessarily. But, subscribing (v � 2 , v � 2 , v � 3 ) ∈ T (h � ) from Y P + v � , we get Y P + βe 1 ∈ h � for some β ∈ R. Therefore the set {e 1 + e 2 , e 3 , 2 + Y H , Y P + βe 1 } is a basis for h � .Hence, in this case, there are two kinds of Lie algebras. If β = 0, then h is conjugate to the semidirect sum (R(2 + Y H ) + R(Y P )) ⊕ θ (R(e 1 + e 2 ) ⊕ Re 3 ).

Otherwise, h

  is conjugate to the following Lie algebra (R(2 + Y H ) + R(Y P + βe 1 )) + θ (R(e 1 + e 2 ) ⊕ Re 3 ).

( 1 ,•

 1 Id,u) , we get Ad (1,Id,u) (e 1 + e 2 ) = e 1 + e 2 , Ad[START_REF] Alekseevsky | G-manifolds with one dimensional orbit space[END_REF]Id,u) (λ + u) = λ Ad (1,Id,u) (Y H + w) = Y H + w � , w � = (w 1u 2 , w 1u 2 , 0), Ad (1,Id,u) (Y P + v) = Y P + v � , v � = (v 1u 3 , v 1u 3 , 0).Thus, the vector x = (u 2 , u 1 , v 1 ) is the common solution of the linear systemsu -Y H (x) = 0 and v -Y P (x) = 0.In other words, we haveAd (1,Id,x) (Y H + u) = Y H , Ad 1,Id,x (Y P + v) = Y P .Hence h is conjugate to aff. If dim p l (h) = 2 and the homothety projection p h (h) is nontrivial. There are two constants a, b ∈ R and two vectors u, v ∈ R 1,2 such that {b + Y P + v, a + Y H + u} is a basis for h. Closeness under the Lie bracket[a + Y H + u, b + Y P + v] = Y P + av + Y H (v)bu -Y P (u)implies that b = 0, and since the homothety part is nontrivial, a � = 0. Furthermore(2a)v 1 = (2a)v 2 , (1a)v 3 = u 2u 1 , 2u 3 = a(v 1 + v 2 ). For a ∈ R * \ {-1, 1, 2}, the vector x = ( -u 2 +au 1 a 2 -1 , -u 1 +au 2 a 2 -1 , u 3 a )is the common solution of the linear systemsuax -Y H (x) = 0 and v -Y P (x) = 0.In other words, we haveAd (1,Id,x) (a + Y H + u) = a + Y H , Ad (1,Id,x) (Y P + v) = Y P .Hence for a ∈ R * \ {-1, 1, 2}, the Lie algebra h is conjugate to R(a + Y H ) + R(Y P ).

Ad ( 1 ,

 1 Id,x) (Y P + v) = Y P , Ad (1,Id,x) (-1 + Y H + u) = -1 + Y H + u 1 + u 2 2 (e 1 + e 2 ),

  Id,x) (e 1 ) = e 1 .

( 1 ,

 1 Id,u) (Y E + v) = Y E + v 1 e 1 , Ad (1,Id,u) (e 1 ) = e 1 .

Ad ( 1 ,

 1 Id,x) (Y P + v) = Y P + (v 1v 2 )e 1 , Ad (1,Id,x) (e 1 + e 2 ) = e 1 + e 2 .

Ad ( 1 ,

 1 Id,x) (a + Y P + v) = a + Y P , Ad (1,Id,x) (e 1 + e 2 ) = e 1 + e 2 .

[

  λ + u, Y P + v] = v -Y P (u) ∈ T (h), we obtain v 3 = u 1u 2 .Observe that conjugating by u we getAd (1,Id,u) (λ + u) = λ, Ad (1,Id,u) (Y P + v) = Y P + (v 1u 3 )(e 1 + e 2 ),Ad (1,Id,u) (e 1 + e 2 ) = e 1 + e 2 .

  3 and R(e 1e 2 ) ⊕ Re 3 to each other. Therefore, Lie subalgebras with translation part R(e 1e 2 ) (resp. R(e 1e 2 ) ⊕ Re 3 ), are conjugate to the corresponding Lie subalgebras with translation part R(e 1 + e 2 ) (resp. R(e 1 + e 2 ) ⊕ Re 3 ).

1 ,

 1 Id,x) (e 1 + e 2 ) = e 1 + e 2 .

Ad ( 1 ,

 1 Id,x) (Y H + v) = Y H + v 3 e 3 , Ad (1,Id,x) e 3 = e 3 .

1 v 1 -v 2 ,

 112 Id,x) (e 3 ) = e 3 .Thus a + YH ∈ h � = Ad (1,Id,x) (h). Therefore h is conjugate to the semi-direct sum R(a + Y H ) ⊕ θ Re 3 . If a = 1, the linear system ux -Y H (x) ∈ T (h),has a solution if and only if v 1 = v 2 . Now, setting x = (0, v 2 , v 3 ), we getAd (1,Id,x) (1 + Y H ) = 1 + Y H + (v 1v 2 )e 1 , Ad (1,Id,x) (e 3 ) = e 3 , So, if v 1 = v 2 , h is conjugate to the semi-direct sum R(1 + Y H ) ⊕ θ Re 3 .Otherwise, it is conjugate to the following Lie algebra via Ad ( Id,0)R(1 + Y H + e 1 ) + θ Re 3 . If a = -1, the linear system v + x -Y H (x) ∈ T (h),has a solution if and only if v 1 = -v 2 . Now, setting x = (0, -v 2 , -v 3 ), we getAd (1,Id,x) (-1 + Y H ) = -1 + Y H + (v 1 + v 2 )e 1 ,Ad (1,Id,x) (e 3 ) = e 3 .

( 1 v 1 +v 2 ,

 12 Id,0) R(-1 + Y H + e 1 ) + θ Re 3 .Finally, we list some of the 1-parameter subgroups of Conf(E 1,2 ) which have trivial translation part but they are not subgroups of the linear subgroup R * + × SO • (1, 2). A subgroup with elliptic linear isometry projection exp � R(Y E + e 1 )

1 + Y H + e 1 + e 2

 112 

  1,n . × S n , -dt 2 + ds 2 ) où dt 2 et ds 2 sont les métriques Riemanniennes usuelles sur R et S n . Le groupe des transformations conformes de � Ein

	Ein Pour n ≥ 2, le revêtement universel � au produit direct (R 1,n 1,n de l'univers d'Einstein Ein 1,n est conformément équivalent est localement isomorphe à Conf(Ein

  1,2 est isomorphe à P O[START_REF] Alekseevsky | On a proper action of a Lie group[END_REF][START_REF] Alekseevski | Self-similar Lorentzian manifolds[END_REF]. Sa composante neutre est SO • (2, 3) qui agit sur Ein 1,2 de manière transitive -elle est constituée des transformations préservant l'orientation temporelle.Les actions propres méritent un traitement particulier. Soit G un sous-groupe de Lie connexe de Conf(Ein1,2 

  ). Puisque l'univers d'Einstein est compact, G agit proprement si et seulement si il est compact, donc si et seulement si il est, à conjugaison près, contenu dans le sous-groupe compact maximal SO(2) × SO(3) de SO •

  1,2 . Elle est traitée au Chapitre 6. D'après le Théorème 0.6, qui est établi au Chapitre 7, toute action réductible de cohomogénéité un sur Ein 1,2 préserve une droite dans � ≤ R 2,3 . Cette droite � est soit de type lumière, de type espace, ou de type temps. Le cas le plus riche est celui où la droite � est isotrope. Il est étudié au Chapitre 4. Dans ce cas, le groupe G préserve un point p ∈ Ein 1,2 , son cône lumière L(p) et la carte de Minkowski correspondante.

L'action dans cette carte de Minkowski est équivalente à celle d'un sous-groupe de

  1,2 , agissant sur Ein 1,2 non-proprement, avec cohomogénéité un et sans point fixe global dans Ein1,2 

  Given a Lie group G we call the connected component of G containing its identity element the identity component of G and denote it by G • .

Definition 1.4. Let G be a Lie group and H, K ⊂ G be Lie subgroups. The subgroup K is called transversal to H if the Lie subgroup generated by HK has dimension strictly greater than max{dim H, dim K}.

  Definition 1.19. A conformal semi-Riemannian manifold (M, [g]) is said to be essential if the action of its conformal group Conf(M ) preserves no metric in the metric class [g]. The conformal structure [g] is called inessential if its conformal group preserves a metric in the class [g]. Definition 1.20. Let G and H be Lie subgroups of Conf(M ). Then the actions of G and H on M

	Observe that, for an inessential conformal structure (M, [g]) the group of conformal transformations
	preserves every metric in the metric class [g]. In other words, the conformal group of an inessential
	conformal structure is the isometry group of every element in the conformal class.
	On the opposite side, for an essential conformal structure (M, [g]), its conformal group is strictly
	bigger that the group of isometries of any metric g ∈ [g]. By the conformal action of a Lie group G on a semi-Riemannian conformal structure (M, [g]), every
	orbit has constant signature, and so, we can speak about the signature of the orbits induced by G.
	are said to be orbitally-equivalent if there exists a conformal map ϕ on M such that for all p ∈ M , ϕ(G(p)) = H(ϕ(p)).

  shows that A p is open in G(p). By the same argument, it can be easily seen that the complement of A p in G(p) is open too. Hence, by connectedness G(p) = A p , and so ϕ(G(p)) ⊂ H(ϕ(p)).The special linear group SL(2, R) is the group of linear transformations of a 2-dimensional real vector space V with determinant 1. It is a closed connected 3-dimensional simple Lie subgroup of general linear group GL(V ).

	1.4 Projective Special Linear group
		The projective special linear group PSL(2, R) is the quotient of SL(2, R) by Z 2 = {±Id}. The group
	PSL(2, R) acts on the Poincaré half-plane model of hyperbolic plane with conformal boundary in infinity
	H	2 = H 2 ∪ ∂H 2 by mobiüs transformation
		x � →	ax + b cx + d	, a, b, c, d ∈ R, ad -bc = 1.
	This action preserves the hyperbolic plane H 2 and its boundary ∂H 2 � RP 1 . Indeed, PSL(2, R) is the group of orientation-preserving isometries of hyperbolic plane, and acts on it transitively. Furthermore it
	acts on the conformal boundary of hyperbolic plane conformaly and transitively.
	Definition 1.22. [42, p.p. 141]. Let [I] � = [A] ∈ PSL(2, R). Then
		• If A has only one eigenvalue, namely 1, then we call it a parabolic element. Every parabolic
		element fixes a unique point on the boundary ∂H 2 .
		Using the same argument, one can show ϕ -1 (H(ϕ(p))) ⊂ G(p). This completes the proof.

  The affine subgroup of PSL(2, R) is the stabilizer of ∞ ∈ ∂H2 , and we denote it by Aff.The affine subgroup acts on ∂H 2 \{∞} transitively. In fact Aff is isomorphic to the identity component of the group Aff(1, R) consists of all the affine isomorphisms on the real line R � ∂H 2 \ {∞}. This justifies our notation and terminology for the stabilizer of a point on the boundary.The affine group Aff is non-abelian and (as the all 2-dimensional Lie groups) solvable. It consists of parabolic and hyperbolic elements. The commutator subgroup of Aff is the only connected 1-dimensional parabolic subgroup of Aff. One can see all the connected 1-dimensional hyperbolic subgroups of Aff are conjugate to each other. G admits a fixed point on the boundary ∂H 2 . Thus, up to conjugacy, G is a subgroup of Aff. Since G and Aff both are connected and 2-dimensional, G = Aff up to conjugacy. But this is a contradiction, since affine group is not abelian. Therefore G is non-abelian.

	Actually, Stab PSL(2,R) (x) is connected (hence it is abelian) and so, it is an elliptic subgroup. It follows that, all the connected elliptic subgroups of PSL(2, R) are conjugate to each other. Also, PSL(2, R) acts on the boundary ∂H 2 , transitively. Thus the stabilizer of each point on the boundary is a 2-dimensional Lie subgroup. Proof. Let G ⊂ PSL(2, R) be a 2-dimensional connected Lie subgroup. Since all 2-dimensional Lie groups are solvable (see [25, p.p. 61]), G is either abelian or solvable and non-abelian. Assume that G is abelian. Then it admits a fixed point in H 2 . Since the stabilizer of each point in H 2 Definition 1.24. Lemma 1.25. Every 2-dimensional connected Lie subgroup of PSL(2, R) is conjugate to Aff. is 1-dimensional,

  and since it is connected, it fixes F ix(G � ) pointwisely. Therefore G is the stabilizer of a point in ∂H 2 , which implies G = Aff up to conjugacy. The kernel ker ϕ is a normal subgroup of PSL(2, R). Since dim PSL(2, R) > dim G, ker ϕ � = {[Id]}. Since PSL(2, R) is a simple Lie group, we get ker ϕ = PSL(2, R). This completes the proof.

	Corollary 1.30. Let ϕ : PSL(2, R) → PSL(2, R) be a Lie group morphism. Then either ϕ is the trivial map or it is an isomorphism.
	1.4.3 Lie algebra				
	The Lie algebra of projective special Lie group PSL(2, R) is isomorphic to sl(2, R) -the set of traceless
	2 × 2 matrices-. It is a simple Lie algebra, and its corresponding killing form B is a Lorenzian bilinear
	scalar product.				
	Notation 1.26. We denote by Y E the 1-parameter elliptic subgroup of PSL(2, R) stabilizing i ∈ H 2 . Also, we denote by Y P the commutator subgroup [Aff, Aff] of Aff ⊂ PSL(2, R) which is a 1-parameter parabolic subgroup. Furthermore, we denote by Y H the 1-parameter hyperbolic subgroup of Aff stabiliz-
	ing {0, ∞} ⊂ ∂H 2 .				
	Corollary 1.27. Let G be a non-trivial connected Lie subgroup of PSL(2, R). Then G is conjugate to
	one of the following subgroups.				
	Y E ,	Y P ,	Y H ,	Aff • (1, R),	PSL(2, R).
	Remark 1.28. The map SL(2, R) → PSL(2, R) sending A to [A] is a Lie group double covering. We call an element A ∈ SL(2, R) elliptic, parabolic, or hyperbolic if the corresponding element [A] ∈ PSL(2, R) is elliptic, parabolic, or hyperbolic, respectively. Also, one can see that the group SL(2, R) has three
	distinct 1-parameter subgroup up to conjugacy, and it has a unique (up to conjugacy) 2-dimensional
	connected Lie subgroup isomorphic to Aff. Hence, we may use the same terminology and notations for
	the elements and subgroup of SL(2, R) as we used for those of PSL(2, R), when there is no ambiguity.
	1.4.2 Morphisms				
	The projective special linear group PSL(2, R) is a simple Lie group. Thus, it has no non-trivial normal
	subgroup.				

Lemma 1.29. Let G be a Lie group with 1 ≤ dim G ≤ 2, and ϕ : PSL(2, R) → G be a Lie group morphism. Then ϕ is trivial map.

Proof.

  and we have [Y E , Y H ] = 2Y E -4Y P , [Y E , Y P ] = Y H and [Y H , Y P ] = 2Y P . Lie subalgebras generated by Y E , Y H , and Y P , which are the corresponding Lie algebras of the 1-parameter subgroups Y E , Y H , and Y P , respectively. The 2-dimensional Lie algebra generated by {Y H , Y P }, is a non-abelian solvable Lie algebra, and we denote it by aff. Obviously, aff is the corresponding Lie algebra of affine group Aff. The set of vectors {Y E , Y H , Y E -2Y P } is an orthogonal basis for sl(2, R) respect to the killing form B anddet. The vector Y E is timelike, and the vectors Y H and Y E -2Y P are spacelike respect

	By Corollary (1.27), sl(2., R) has exactly four non-trivial proper Lie subalgebras, up to conjugacy;
	Three 1-dimensional Proposition 1.31. The killing form B on the Lie algebra sl(2, R) is a scalar product of signature (1, 2).
	Furthermore, (sl(2, R), B) and (sl(2, R), -det) are isometric.
	Proof. to both B and -det. Since the scalar product spaces (sl(2, R), B) and (sl(2, R), -det) have the same signatures (i.e., (1, 2)), they are isometric.

  1,n with 2-planes in R 2,n . The isometry group of AdS 1,n is isomorphic to the semi-orthogonal group O(2, n).

Lemma 1.44. The group SO •

  3 is a linear subspace of signature (1, 2). Now, the lemma follows easily.

Definition 1.69. A timelike circle in Ein 1,2 is the projectivized nullcone of a linear subspace of R 2,3 of signature (2, 1).

Lemma 1.70. The complement of a timelike circle in Ein 1,2 is conformally equivalent (up to double cover) to (AdS 1,1 × S 1 , dσ 2 + dθ 2 ) where dσ 2 (resp. dθ 2 ) is the usual Lorentzian metric on AdS 1,1 of constant sectional curvature -1 (resp. positive definite metric on S 1 of constant sectional curvature 1). Furthermore, by the action of O(2, 3), the identity component of the stabilizer of a timelike circle is isomorphic to the direct product SO • (2, 1) × SO(2).

  The group SO(3) � Iso • (S 2 ) has no 2-dimensional connected Lie subgroup.

	1,2
	transitively.
	Proposition 2.3.

3 

(which is of signature (2, 0)). Considering the action of SO(2) × SO(3) on the double cover space � Ein 1,2 ≈ S 1 × S 2 , the SO(2)-factor acts on { * } × S 2 trivially and SO(3)-factor acts on S 1 × { * } trivially. Obviously, SO(2) × SO(3) acts on � Ein Proof. First, we show that every 1-parameter subgroup of SO(3) is conjugate to SO(2), the identity component of the stabilizer of a point in S 2 by the action of SO(3). Let H ⊂ SO(3) be a 1-parameter subgroup. We show that H admits a fixed point in S 2 , then the desiered result follows, since SO(3) acts on S 2 transitively. Assume the contrary which is: H admits no fixed point in S 2 . Therefore, the stabilizer of each point is discrete. By [10, Theorem 11.3.9 ], H admits a codimension 1 foliation on S 2 . But this contradicts the fact that a compact manifold admits a codimension 1 foliation if and and only if its Euler characteristic vanishes (see

  By Theorem 2.1, G is conjugate either to SO(3) or SO(2) × SO[START_REF] Alekseevsky | On a proper action of a Lie group[END_REF]. According to the proof of Theorem 2.1, considering the actions on the double cover space � Ein = S 1 × S 2 , the group SO(3) fixes the S 1 -factor pointwisely. On the other hand, SO(2) × SO(2) preserves the spacelike line Rx 0 . Hence, it fixes P(Rx 0 ) ∈ RP 4 . This completes the proof.

	1,2

1,2 

is an Einstein hypersphere. This completes the proof. � Corollary 2.5. Let G ⊂ SO • (2, 3) be a connected Lie subgroup which acts on Ein 1,2 properly and with cohomogeneity one. Then G admits a fixed point in the projective space RP 4 . Proof.

  1 , -or z 1 , z 2 lies in RP 1 , z 3 lies in H 2 and z 4 = z3 , -or z 1 , z 2 lies in H 2 and z 3 = z1 , z 4 = z2 . Theorems 3.1 and 3.2 will follow from the following proposition: Proposition 3.3. Let [f ] be an element of P(V). Then:• it lies in Ein 1,2 if and only if it has a root of multiplicity at least 3, or two distinct real roots z 1 , z 2 , and two complex roots z 3 , z 4 = z3 , with z 3 in H 2 and such that the argument of the cross-ratio of z 1 , z 2 , z 3 , z 4 is ±π/3.• it lies in AdS 1,3 if and only it has two distinct real roots z 1 , z 2 , and two complex roots z 3 , z 4 = z3 , with z 3 in H 2 and such that the argument of the cross-ratio of z 1 , z 2 , z 3 , z 4 has absolute value > π/3.

• it lies in H 2,2 if and only if it has no real roots, or four distinct real roots, or a root of multiplicity exactly 2, or it has two distinct real roots z 1 , z 2 , and two complex roots z 3 , z 4 = z3 , with z 3 in H 2

  The vectors tangent to M at [f ] induced by the 1-parameter subgroups Y H , Y P and Y E are:

  1,2 ) with dim ≥ 2, up to conjugacy.

Theorem 4.6. Let G ⊂ Conf • (Ein 1,2 ) be a connected Lie subgroup with dim G ≥ 2. Then G is conjugate to one of the subgroups in Tables 4.1-4.8. Proof. It follows immediately from Theorem A.1 and Lemma A.5.

Table 4 .

 4 

1: Here a ∈ R * is a constant number.

Table 4 .

 4 3: Here a ∈ R * is a constant number. By Theorem 4.6, it is not hard to see that, all the subgroups of Conf • (E 1,2 ) with dim ≥ 2 admit

a 2-dimensional orbit in Einstein universe Ein 1,2 except the subgroups which are conjugate to R 1,2 or

Table 4 .

 4 4: Here Π φ denotes the degenerate plane R(e 1 + e 2 ) ⊕ Re 3 ≤ R 1,2 , and a ∈ R * is a constant number.

  1,2 is degenerate if and only if θ = ±π/4, ±3π/4. Moreover, a 2-dimensional orbit is Lorentzian (resp. spacelike) if and only if π/4 < θ < 3π/4 or -3π/4 <

θ < -π/4 (resp. -π/4 < θ < π/4 or 3π/4 < θ < 5π/4). Therefore, the orbits induced by G in Ein 1,2 are: three fixed points p, d φ and d ψ , the four connected components of φ ∪ ψ \ {p, d φ , d ψ }, the two connected components of L(p) \ (φ ∪ ψ), the affine spacelike line F Re 3 (o), four degenerate orbits which are the degenerate affine planes in E 1,2 with θ = ±π/4, ±3π/4, a 1-parameter family

Table 4

 4 .8 which have trivial translation part, but they are not subgroups of the linear group R * + × SO • (1, 2), i.e., these groups fix no point in the Minkowski space E 1,2 . + Y H + e 1 + e 2 ) + RY P � . This group preserves the foliation F Π φ , since it is a subgroup of (R * +

	� G = exp	�	R(-1

  2,2 as well. Obviously, G acts on � trivially, and so, it is a subgroup of Stab SO•(2,3) (�) � SO •[START_REF] Alekseevsky | On a proper action of a Lie group[END_REF][START_REF] Alekseevsky | On a proper action of a Lie group[END_REF]. Hence, G preserves an Einstein hypersphere (Definition 1.63), which is a copy of 2-dimensional Einstein universe Ein 1,1 ⊂ Ein 1,2 . Also, G preserves the complement of Ein 1,1 in Ein 1,2 which by Lemma 1.62 is an Anti de-Sitter component AdS 1,2 . Hence, in this case, the problem reduces to the consideration of the conformal actions with an open orbit in Ein 1,1 or the isometric actions with a 2-dimensional orbit in AdS 1,2 .Recall from Remark 1.45, the 3-dimensional Anti de-Sitter space is isometric to SL(2, R) ⊂ M (2, R) endowed with the metric induced from (M (2, R),det). Also, the identity component of Iso(AdS1,2 ) is isomorphic to (SL(2, R) × SL(2, R))/Z 2 (Lemma 1.44). Moreover, recall from Remark 1.28, the Lie group SL(2, R) has three 1-parameter subgroups Y E , Y P and Y H and a unique 2-dimensional connected subgroup Aff up to conjugacy. Theorem 5.2. Let G be a connected Lie subgroup of Iso • (AdS 1,2 ) � (SL(2, R) × SL(2, R))/Z 2 which acts on Ein 1,2 with cohomogeneity one. Then either G fixes a point in Ein 1,2 or it is conjugate to one of the following groups.

	Notation 5.1. We denote by G λ the following 2-dimensional subgroup of Y E × Aff
	���	cos(λt) sin(λt) -sin(λt) cos(λt)	�	,	�	e t s 0 e -t	��	: t, s ∈ R	�	,
	where λ ∈ R * + is a constant number.								

  1,2 are considered in Chapter 4. Indeed, a subgroup of SO • (2, 2) which admits a fixed point in the boundary ∂AdS1,2 = Ein 1,1 is a subgroup of (R * + × Y H ) � (Re 1 ⊕ Re 2 ) (described in Remark 4.8) up to conjugacy. On the other hand, by the action of SO • (2, 2) on AdS 1,2 , the stabilizer of a point is a 3-dimensional Lie subgroup isomorphic to SO • (1, 2).

  1,2 ) (see Chapter 4).

	Theorem 5.2 follows from the following Proposition.
	Proposition 5.5. Let � G ⊂ SL(2, R) × SL(2, R) be a connected Lie subgroup with dim � G ≥ 2. Let � G fixes no point in Ein 1,2 and P 1 ( � G), P 2 ( � G) � = {Id}. Then � G is conjugate to one of the following subgroups

  1,1 . Therefore, � G contains an element (g, h), such that either g or h is elliptic. By Remark 5.4, we may restrict ourselves to the case g is elliptic, since j( �

	G) is
	orbitally equivalent to � G. Hence, according to Corollary 1.27, P

1 ( � G) is either conjugate to Y E or it is SL(2, R).

Denote by g the Lie algebra of � G and by p i the differential of P i at identity element for i = 1, 2.

  1,1 . Thus, G is conjugate to the Levifactor of Stab PSL(2,R)×SL(2,R) (φ) = SL(2, R) × Aff which is SL(2, R). By Remark 5.3, the Levi factor does not admit a 2-dimensional orbit in Ein 1,2 . Again, a contradiction.Henceforth, V is a spacelike line in M (2, R), and G acts on it trivially. We have assumed in very beginning of this section that G preserves a spacelike line in R 2,3 which is orthogonal to M (2, R). Thus G acts on a positive definite 2-dimensional linear subspace Π, generated by V and �, of R 2,3 trivially. This induces a surjective faithful representation from G to SO • (2, 1), the group of linear isometries of Π

⊥ 

. This completes the proof.

Lemma 5.7. The group SO • (2, 1) (described in Lemma 5.6) acts on AdS 1,2 with cohomogeneity one.

Proof. According to the proof of Lemma 5.6, V ⊥ has signature (2, 1). The intersection of V ⊥ with AdS 1,2 is a copy of 2-dimensional Anti de-Sitter space AdS 1,1 , and SO • (2, 1) acts on it transitively. This completes the proof.

Proof of Theorem 5.2. Assume that, the first projection

P 1 ( � G) is trivial. Then � G is either conjugate to Aff • (1, R) or it is SL(2, R).

Observe that, affine group admits a fixed point in Ein 1,1 . Also, SL(2, R) acts on AdS 1,2 transitively and preserves every photon { * }×RP 1 . Thus, it does not admit a 2-dimensional orbit in Ein 1,2 . The same happens for the case P 2 ( � G) = {Id}.

  1,3 as well. The Lie group G acts on � trivially, and it is a subgroup of Stab SO•(2,3) (�) � SO •[START_REF] Alekseevsky | G-manifolds with one dimensional orbit space[END_REF][START_REF] Alekseevski | Self-similar Lorentzian manifolds[END_REF]. Hence, G preserves an spacelike hypersphere (Definition 1.60), which is a copy of the conformal 2-sphere S 2 ⊂ Ein 1,2 . Also, G preserves the complement of S 2 in Ein 1,2 which by Lemma 1.62 is conformally equivalent to the 3-dimensional de-Sitter space dS 1,2 . Henceforth, in this case, the problem reduces to the consideration of conformal actions with an open orbit in S 2 or the isometric actions with a 2-dimensional orbit in dS 1,2 . Theorem 5.8. Let G be a connected Lie subgroup of Iso • (dS 1,2 ) � SO • (1, 3) which acts on the Einstein universe Ein 1,2 with cohomogeneity one. Then either G fixes a point in Ein 1,2 or it is conjugate to SO[START_REF] Alekseevski | Self-similar Lorentzian manifolds[END_REF] 

  If V is a spacelike line, then G is a subgroup of SO • (1, 2) up to conjugacy. Obviously, SO • (1, 2)admits a fixed point in the de-Sitter component dS 1,2 .

1.2 

, dim G ≥ 2. By Proposition 2.3, SO(3) has no 2-dimensional Lie subgroup. Hence, G = SO(3) up to conjugacy.

•

  1.2 ) � SO •[START_REF] Alekseevsky | On a proper action of a Lie group[END_REF][START_REF] Alekseevsky | On a proper action of a Lie group[END_REF]. Note that the subgroup (Y E ×Y E )/Z 2 is compact and its orbits has been described in Theorem 2.1. Observe that, every subgroup containing SL(2, R) as the left or right factor acts on the Anti de-Sitter component AdS 1,2 transitively. In order to determine the orbits in AdS 1,2 , let

	�	
	p =	p 11 p 12 p 21 p 22

�

, det(p) = 1 be an arbitrary point in AdS 1,2 ≈ SL(2, R).

  1,2 , the vectors tangent to the orbit G λ (p) at p induced by H λ and {Id} × Y P are: It is not hard to see that, the orthogonal space of the null vector v P in the tangent space T p G(p) is Rv P . Hence, G λ admits a codimension 1 foliation on AdS 1,2 where every orbit is Lorentzian and G λ acts freely. Note that, for all λ ∈ R * + , the orbits induced by G λ in Ein 1,2 are exactly the same as the orbits induced by G 1 . In other words, G λ is orbit equivalent to G 1 via the identity map on Ein1,2 

	v λ = λ	�	-p 21 p 22 p 11 -p 12	�	,	v P =	�	0 -p 11 0 -p 21	�	,
	respectively.									

  1,1 × S 1 ⊂ � Ein SO • (2, 1) × SO(2) on AdS 1,1 × SO(2), the SO(2, 1)-factor (resp. SO(2)-factor) acts on S 1 -factor (resp. AdS 1,1 -factor) trivially. On the other hand, for all x ∈ S 1 , G ∼ = SO • (2, 1) acts on AdS 1,1 × {x} transitively. Observe that Z 2 acts on AdS 1,1 × {x} trivially, however, the orbits AdS 1,1 × {x} and AdS 1,1 × {-x} coincide in Ein 1,2 . Hence, the orbits induced by G in Ein 1,2 are: a timelike circle C, and a 1-parameter family of 2-dimensional Lorentzian orbits on which every orbit is conformally equivalent to the 2-dimensional Ant de-Sitter space AdS 1,1 -the parameter being x ∈ RP 1 .Corollary 5.10. Let G be a connected Lie subgroup of Iso • (AdS 1,2 ) which admits a 2-dimensional orbit in Einstein universe Ein 1,2 . Then either G fixes a point in Ein 1,2 or it is compact or it admits the same orbits in Ein 1,2 as one of the following groups.

	1,2	. By the
	action of	

  The group SO • (1, 2) � PSL(2, R) has exactly three 1-parameter subgroups up to conjugacy, namely Y E , Y H , and Y P . Also, up to conjugacy, SO • (1, 2) has only one 2-dimensional Lie subgroup witch is exp(RY H + RY P ) = Aff • (1, R). In Lie algebra level we have[Y E , Y H ] = Y E -Y P , [Y E , Y P ] = Y H , [Y H , Y P ] = Y P .

	1 2 t 2 -1 2 t 2 2 t 2 1 1 -1 2 t 2 t t t -t 1    : t ∈ R	    	.

  1,2 such that {λ + u, Y P + v, e 1 + e 2 } is a basis for h. Considering the Lie bracket

4 by a 4-tuple (up to permutation) (z 1 , z

, z

, z

) such that:
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Consider (XY 3 , X 3 Y, X 2 Y 2 ) as a coordinate for the Minkowski patch M in(Y 4 ) ⊂ Ein 1,2 . The restriction of the quadratic form Q 4 (Section 1.4.4) on M ink(Y 4 ) ≈ E 1,2 with origin o = (0, 0, 0) is

For a point q = (x, y, z) ∈ M ink(Y 4 ), the orbit induced by Aff ⊂ PSL(2, R) is Aff(q) = � (xe 6t + 3ye 4t s 2 -2ze 5t s -4e 3t s 3 , ye 2t -4e t s, ze 4t -3ye 3t s + 6e 2t s 2 ) : t, s ∈ R � .

The affine group Aff preserves the foliation F Π φ on M ink(Y 4 ) induced by the degenerate plane Π φ = (XY 3 ) ⊥ ≤ R 1,2 . Hence, it preserves the corresponding photon φ ⊂ L(Y 4 ). On the other hand, one can see, the 1-parameter parabolic subgroup Y P ⊂ Aff preserves no leaf of F Π φ . Thus, Aff acts on the vertex-less photon φ = φ \ {Y 4 } transitively. The 1-parameter hyperbolic subgroup Y H ⊂ Aff preserves the foliation F Π ψ where Π ψ is the degenerate hyperplane (X 3 Y ) ⊥ ≤ R 1,2 . Also, Y H preserves the leaf F Π ψ (o), and so, it fixes the corresponding limit point d ∈ ψ ⊂ L(Y 4 ). Therefore, Aff induces a 1-dimensional spacelike orbit in L(Y 4 ) at d. It is not hard to see that Aff acts on the both connected components of L(Y 4 ) \ (φ ∪ Aff(d)) transitively. Now, we describe the orbits induced by Aff in the Minkowski patch M ink(Y 4 ). For an arbitrary point q = (x, y, z) ∈ M ink(Y 4 ), the vectors tangent to the orbit G(q) at q induced by the 1-parameter subgroups Y P and Y H are v = (-2z, -4, -3y) and w = (6x, 2y, 4z), respectively. Observe that v is a non-vanishing vector. Hence, Aff fixes no point in M ink(Y 4 ). The orbit Aff(q) intersects the affine Lorentzain plane L 0 = {z = 0} if and only if 3y 2 ≥ 8z. Consequently, the domain D = {3y 2 < 8z} ⊂ M ink(Y 4 ) is Aff-invariant.

Case I: Orbits with a representative in L 0 . For a point q ∈ L 0 , the orbit Aff(q) intersects one of the affine lines � t = {(t, t, 0) : t ∈ R}, � s = {(t, -t, 0)}, � 1 = {(t, 0, 0) : t ∈ R} and � 2 = {(0, t, 0) : t ∈ R}. The origin o = (0, 0, 0) is in the intersection of these four lines and the orbit Aff(o)

is the only 1-dimensional orbit in M ink(Y 4 ) (in fact Aff(o) = N \ {Y 4 }). One can see, Aff acts on M ink(Y 4 ) \ Aff(o) freely.

• If q ∈ � t \ {o}, then the orbit Aff(q) is Lorentzian, since the w is a timelike tangent vector.

• If q ∈ � s \ {o}, then the tangent vector u = vw/t is orthogonal to the spacelike vector w. The vector u is spacelike (resp. timelike, lightlike) if |t| > 1 (resp. |t| < 1, |t| = 1). Therefore, the orbit Aff(q) is spacelike (resp. Lorentzian, degenerate) for |t| > 1 (resp. |t| < 1, |t| = 1).

• If q ∈ � 1 \ {o}, then the orbit Aff(q) is Lorentzian, since both the vectors v and w are lightlike.

• If q ∈ � 2 , then the orbit Aff(o) is degenerate, since the lightlike vector w is orthogonal to the tangent space T q Aff(q).

Case II: Orbits in the domain D = {3y 2 < 8z}. For a point q ∈ D, the orbit Aff(q) intersects the affine line � 3 = {(-t, t, 1) : t ∈ R}. Hence, we may assume q = (-y, y, 1). Observe that the tangent vector v = (-2, -4, -3y) ∈ T q Aff(q) is timelike, since q ∈ D = {3y 2 < 8z}. Therefore, all the orbits induced by Aff in D are Lorentzian.

• dim P 2 ( � G) = 1. We claim that dim � G � = 3. On the contrary, assume that dim � G = 3. Then p 1 : g → sl(2, R) is an Lie algebra isomorphism. Thus, f = p 2 • p -1 1 : sl(2, R) → p 2 (g) is a surjective Lie algebra morphism. But, this contradicts the simplicity of sl(2, R), since ker f is a 2-dimensional ideal of sl (2, R) • dim P 2 ( � G) = 2. In this case, � G is a subgroup of SL(2, R) × Aff up to conjugacy. We show that dim � G = 5. If dim � G = 3, then using the same argument as the previous case, f = p 2 • p -1 1 : sl(2, R) → aff is a surjective Lie algebra morphism. But, this contradicts the simplicity of sl(2, R), since ker f is a 1-dimensional ideal of sl(2, R). If dim � G = 4, then the kernel of Thus, dim � G = 5, and so, � G = SL(2, R) × Aff up to conjugacy.

where ϕ = P 1 • P -1 2 . In the one hand, � G fixes no point in the boundary ∂AdS 1,2 = Ein 1,1 , since the stabilizer of a point in Ein 

Lemma 5.6. Let ϕ : SL(2, R) → SL(2, R) be an isomorphism which is not a conjugation, and let

preserves a unique spacelike line. Therefore, its action on R 2,3 is conjugate to the action of SO

which acts on a 2-dimensional positive definite linear subspace (i.e. of signature (0, 2)) of R 2,3 trivially.

Proof. Consider the action of G = graph(ϕ) on (M (2, R),det). By Theorem 0.4, G preserves a non-trivial linear subspace V of (M (2, R),det). Since it also preserves the orthogonal space V ⊥ , it is suffix to focus on dim V ≤ 2. We show that V has signature (0, 1). Assume the contrary:

V , which contradicts the fact that ϕ is not a conjugation.

• If V is a lightlike line, then G fixes a point in the boundary Ein 1,1 . This is a contradiction, since the stabilizer of a point in Ein 1,1 is a solvable group isomorphic to Aff × Aff.

Proof. Let g ∈ K • be an HH-transformation. Denote by ψ the unique photon in Ein 1,2 φ fixed pointwisely by g. Assume that p is an arbitrary point of the lightlike geodesic γ = M ink(x 0 ) ∩ ψ. The orbit induced by the 1-parameter subgroup L at p is a lightlike geodesic η with limit point in φ. The lightlike geodesics γ and η generate a unique affine Lorentzian 2-plan T ⊂ M ink(x 0 ). Obviously, T is invariant by L .

Observe that, a 1-parameter subgroup g t generated by an HH-transformation g ∈ K • preserves the unique g-invariant affine Lorentzian 2-plane in M ink(x 0 ), since g t is abelian. Notation 6.10. We denote by P the totally isotropic plane in R 2,3 corresponding to the photon φ. Also, for a Lie subgroup G ⊂ Conf(Ein 1,2 φ ), we denote by K G and K G • the kernel ker π| G and its identity component, respectively. Lemma 6.11. Let x 0 ∈ φ and G be a 1-parameter subgroup of Conf(Ein 1,2 φ ) with dim π(G) = 1 which acts on φ transitively. Then the kernel K G = ker π| G contains neither a parabolic nor a spacelike transformation of M ink(x 0 ).

Proof. Assume the contrary that g ∈ K G is a parabolic or spacelike transformation on M ink(x 0 ). The element g fixes pointwisely a unique lightlike geodesic γ ⊂ Ein 1,2 φ contained in a leaf of F φ . Note that, G preserves γ, since it is abelain. But, this contradicts the fact that every G-orbit in Ein 1,2 φ intersects every leaf of F φ . This completes the proof. Lemma 6.12. Let G be a connected Lie subgroup of Conf(Ein 1,2 φ ) with dim π(G) = 1 which acts on φ transitively and admits a 2-dimensional orbit in Ein 1,2 . Then, there exists a 1-parameter subgroup

), or every non-trivial element of K L is an HH-transformation.

Proof. Let L ⊂ G be an arbitrary 1-parameter subgroup transversal to K G

• . Obviously, L acts on φ transitively. If K L is trivial, then lemma follows evidently. Otherwise, L is isomorphic to R and K L � Z.

Assume that g ∈ K L is a generator. By Lemma 6.11, g is either an HH-transformation or a lightlike transformation. In the first, lemma follows easily. If g is a lightlike transformation, by Proposition 6.2, there are two possibilities:

• is a 1-parameter subgroup consisting of the identity element and HH-transformations. Also, G is a 2-dimensional connected Lie group and so, by [38, p.p. 212] 

• be an arbitrary non-trivial element. Then hg is an HH-transformation by Lemma 6.8. Since the exponential map exp : Lie(G) → G is surjective, there exists a 1-parameter subgroup L � through hg. In the one hand, hg ∈ K L � , so all the non-trivial elements in K L � are HH-transformations. On the other hand,

Let P be the totally isotropic 2-plane in R 2,3 corresponding to the photon φ ⊂ Ein 1,2 , and Q be a subspace of R 2,3 supplementary to P ⊥ . There is a canonical identification between Q and the dual space P * . Let �., .� denote the bilinear form on R 2,3 . The map ϑ sending a vector v ∈ Q to the functional �v, .� : P → R is linear. Also, ϑ is injective: ϑ(v) = ϑ(w) implies that �vw, .� ≡ 0, since �., .� is non-degenerate, we get vw = 0. Hence, ϑ is an isomorphism.

Furthermore, let H ⊂ SO • (2, 3) preserves P and Q be an H-invariant complement for P ⊥ in R 2,3 .

In the one hand, the action of H on P induces a representation (not unique) from H to GL(P * ) by duality.

On the other hand, the action of H on Q induces a unique representation from H to GL(P * ) on which the isomorphism ϑ is H-equivariant. It is not hard to see that the representation induced via P is conjugate to the one induced via Q.

Let ψ ⊂ Ein 1,2 φ be a photon and denote by P ψ its corresponding totally isotropic 2-plane in R 2,3 . The linear subspace P ∪ P ψ ≤ R 2,3 is of signature (2, 2). Hence, the union of φ and ψ determines a unique Einstein hypersphere Ein 1,1 ⊂ Ein 1,2 . Let x 0 ∈ φ be an arbitrary point. Then by Remark 1.66, the intersection of Ein 1,1 with the Minkowski patch M ink(x 0 ) is a Lorentzian affine 2-plane T . The intersection of Ein 1,1 with the lightcone L(x 0 ) is the lightcone of x 0 in Ein 1,1 consisting of φ and another photon ξ which contain the limit points of lightlike geodesics in T . Indeed, φ ∪ ξ is the set of the limit points of lightlike geodesics of every Lorentzian affine 2-plane in M ink(x 0 ) parallel to T . But, T is the unique such affine plane which contains the lightlike geodesic ψ ∩ M ink(x 0 ).

Proof of Theorem 6.1. First, consider the action of G on φ. If G admits a fixed point [x] ∈ φ, then x is the desired fixed point. Now, assume that G acts on φ transitively. Obviously, π(G) is either PSL(2, R) or it is conjugate to SO(2) � Y E . We show that in the both cases, G preserves a line in R 2,3 .

Case I: π(G) = PSL(2, R). Denote by g, k, and h the Lie algebras correspond to G, K G and π(G), respectively. The following short sequence of Lie algebras and Lie algebra morphisms is exact.

One can see h � sl(2, R) as the Levi factor of g, since k is the radical solvable ideal of g. Henceforth, PSL(2, R) is a subgroup of G, up to finite cover and G = K G .PSL(2, R). It is clear that G acts on the totally isotropic plane P irreducibly and preserves the orthogonal space P ⊥ . By Proposition 6.2, the connected component of the intersection of G with Heisenberg group H(3) is either trivial or it is L � R.

Therefore, K G

• is either trivial or it is isomorphic to R or Aff. The subgroup PSL(2, R) ⊂ G (up to finite cover) acts on K G by conjugacy, since K G is a normal subgroup of G. The simplicity of PSL(2, R), and Lemma 1.32 imply that this action is trivial. Moreover, using the simplicity of PSL(2, R) again, its action on R 2,3 splits as the sum of irreducible actions (cf. [28, p.p. 28]). 3 . The canonical identification between Q and P * shows that PSL(2, R) acts on Q irreducibly. It is not hard to see that � is the only PSL(2, R)-invariant line in R 2,3 . Since the conjugacy action of PSL(2, R) on K G is trivial, every element of PSL(2, R) commutes with all the elements of K G . This implies that K G preserves � as well. Thus, any element of G preserves �. Henceforth P(�) ∈ RP 4 is the desired fixed point.

• is isomorphic to either R or Aff. We split this case to two subcases: G contains a 1-dimensional compact subgroup (a copy of SO(2)), and there is no 1-dimensional compact subgroup in G: Lemma 1.32). Furthermore, the action of SO(2) on R 2,3 splits as the sum of irreducible actions, since it is compact (cf, [START_REF] Hall | Lie Groups, Lie Algebras, and Representations: An Elementary Introduction[END_REF]Proposition 4.36]). Using the same symbols as we used for the previous case, suppose that R 2,3 = P ⊕ � ⊕ Q is a SO(2)-invariant splitting. It is easy to see that SO [START_REF] Alekseevsky | On a proper action of a Lie group[END_REF] acts irreducibly on Q. Also, � is the only SO(2)-invariant line in R 2,3 . Since the conjugacy action of SO(2) on K G

• is trivial, every element of SO( 2) commutes with all the elements of K G • . This implies that K G

• preserves � as well. Consequently, all the elements in G preserve �. Henceforth P(�) ∈ RP 4 is the desired fixed point.

• G contains no 1-dimensional compact subgroup. In this case, every 1-parameter subgroup transversal to K G

• is isomorphic to R. By Lemma 6.12, there exists a 1-parameter subgroup L ⊂ G transversal to K G

• such that the kernel K L = ker π| L consists of the identity element and HHtransformations. Let g ∈ K L be a non-trivial element. Then g fixes a unique photon ψ ⊂ Ein 1,2 φ pointwisely. Observe that L preserves ψ since it is abelian. Therefore, L preserves the Einstein hypersphere Ein 1,1 ⊂ Ein 1,2 containing φ and ψ. Also, by Lemma 6.9, g preserves a unique L -invariant affine Lorentzian 2-plane T g in the Minkowski patch M ink(x 0 ). In fact, T g coincides with the intersection of Ein

• contains an HH-transformation h, then by Lemma 6.9, h preserves a unique L -invariant affine Lorentzian 2-plane T h . In fact,

. Therefore, G preserves the spacelike direction in R 2,3 corresponding to Ein 1,1 , and so, it admits a fixed point in the projective space RP 4 .

�

Chapter 7

Proof of the main theorem

In this chapter we prove Theorem 0.6. This theorem together with Theorem 0.5 complete the classification of the cohomogeneity one action on the three-dimensional Einstein universe Ein 1,2 .

The following proposition is one element of the proof of Theorem 0.6. Proposition 7.1. Let V be a linear subspace of R 2,3 of signature (0, 2), and G a connected Lie subgroup of Stab SO•(2,3) (V ) which acts on Ein 1,2 with cohomogeneity one. Then G preserves a 1-dimensional The following projections are group morphisms

, up to conjugacy. We show that both these groups preserve a line in R 2,3 . Then the result follows easily.

The 1-parameter elliptic subgroup Y E preserves a unique 1-dimensional spacelike linear subspace

The affine group Aff preserves a unique lightlike line � in V ⊥ . Since the action of SO(2)-factor is

Proof of Theorem 0.6.

Suppose that V is a G-invariant non-trivial proper linear subspace of R 2,3 . Denote by sgn(V ) the signature of the restriction of the metric from R 2,3 on V . We consider all the possible signatures for V .

If dim V = 1, then obviously, G fixes a point in the projective space RP 4 , namely P(V ).

In this appendix, we prove Theorem (4.6) by characterizing the Lie subalgebras of Lie(Conf(E 1,2 )) with dim ≥ 2.

Recall from Section (1.5.2), the group of conformal transformations on

corresponding to Θ. For elements a ∈ R, V ∈ so(1, 2) and w ∈ R 1,2 , we denote the corresponding element in g simply by a + V + w when there is no ambiguity. Also, we denote by R(a + V + w) the linear subspace of g generated by a + V + w. The Lie bracket on g is

The adjoint action of G on its Lie algebra g is as following. For an arbitrary element (r, A, v) ∈ G, we have

Consider the following natural projections which are evidently Lie group morphisms

For a Lie subgroup H ⊂ G we denote the identity component of the kernel ker P l | H by T (H) and call it the translation part of H. Also, we call the image of H under the projections P l , P h , and P li , the linear projection, the homothety projection, and the linear isometry projection of H, respectively. Obviously T (H) is a linear subspace of R 

Proof. We prove this theorem by the three following lemmas.

Lemma A.2. Let h ≤ g be a Lie subalgebra with p li )(h) = so(1, 2). Then h is conjugate to one the following Lie algebras.

Proof. The so(1, 2)-invariant subspace of R 1,2 are {0} and R 1,2 . Assume that dim p l (h) = 4, then

If T (h) = {0}, then there are four vectors r, u, v, w ∈ R 1,2 such that

is a basis for h. Solving the linear system uλx = 0, we get x = u. On the other hand, considering the Lie bracket on h, we get

These three equations lead to

Now, we have

e 2 , e 3 } is a basis for h, and so, h = so(1, 2)

If T (h) = {0}, there are three vectors v, u, w ∈ R 1,2 such that {Y E + v, Y H + u, Y P + w} is a basis for h. In the one hand, considering the Lie bracket on h, we get

These three equations lead to

On the other hand, solving the linear systems

simultaneously we obtain x = (u 2 , u 1 , v 2 ). Now, we have

Thus h = so(1, 2) up to conjugacy.

Lemma A. 

Proof. Since every 2-dimensional Lie subalgebras of so(1, 2) is conjugated to aff, we may assume p li (h) = aff. Therefore p l (h) is a Lie subalgebra of R ⊕ aff up to conjugacy. The aff-invariant subspace of R 1,2 are R 1,2 , {0}, the lightlike line R(e 1 + e 2 ), and its corresponding (orthogonal) lightlike plane R(e 1 + e 2 ) ⊕ Re 3 .

Case I: T (h) = R 1,2 . Take {e 1 , e 2 , e 3 } as a basis for T (h).

• If p l (h) = R ⊕ aff. There are three vectors u, v, w ∈ R Therefore h is conjugate to the semi-direct sum

• If the homothety projection p h (h) is trivial. Then p li (h) = aff and by the same argument as the previous case, we obtain a basis {e 1 , e 2 , e 3 , Y P , Y H }, for h. Therefore h is conjugate to the semi-direct sum 

Case II: T (h) = R(e 1 + e 2 ) ⊕ Re 3 .

• p l (h) = R ⊕ aff. There are three vectors u, v, w ∈ R 

The second equation implies that w -

Hence, w 1 = w 2 . Now, by applying Ad (1,Id,u) on h, we obtain a Lie algebra h � which is conjugate to h. 

Therefore, there exist β, α ∈ R such that Y H (v) -Y P (u) = v + β(e 1 + e 2 ) + αe 3 . This implies that

On the other hand solving the linear systems

simultaneously, we obtain x = (u 2 , u 1 , v 1 ). Now, applying Ad (1,Id,x) on h, we obtain a Lie algebra h � which is conjugated to h.

is a basis for h � . Therefore, h is conjugate to the semi-direct sum 

which implies that b = 0. Since the homothety projection p h (h) is not trivial, we have a � = 0.

Furthermore, the above equation implies that, there exist β, η ∈ R such that

This implies that (2-a)v 1 = (2-a)v 2 . Note that for a � = 2 we have v 1 = v 2 . For a / ∈ {-1, 0, 1, 2},

is the solution of the linear system

On the the other hand we have,

).

The Lie algebra h � = Ad (1,Id,x) (h) is conjugated to h and obviously v � ∈ T (h � ) = T (h). Hence (a+Y H ), Y P ∈ h and so, {e 1 +e 2 , e 3 , a+Y H , Y P } is a basis for h � . Thus, for a ∈ R\{-1, 0, 1, 2}, the lie algebra h is conjugate to the semi-direct sum

For a = 1, the linear system

has a solution if and only if u 1 = u 2 . Thus, setting x = (0, u 2 , u 3 ) we get

The Lie algebra

For a = -1, the vector x = ( -u 1 2 , -u 2 2 , -u 3 ) is a solution for the linear system

Now, we have

).

The Lie algebra h � = Ad (1,Id,x) (h) is conjugated to h, and obviously, v � , w � ∈ T (h � ), and so, Y H , Y P ∈ h � . Hence {e 1 + e 2 , λ, Y H , Y P } is a basis for h � . Therefore h is conjugate to the semidirect sum

• If the homothety projection p h (h) is trivial. Then p l (h) = aff and there exist two vectors u, v ∈ R 

implies that, there exists

. Thus, by

In the one hand, the vector x = (u 2 , u 1 , v 1 ) is the solution of the linear system v -Y P (x) = 0.

On the other hand, the linear system

has a solution if and only if u 3 = 0. Therefore, conjugating by x = (u 2 , u 1 , v 1 ) we get

Therefore, there are two cases: If u 3 = 0, then h is conjugate to the semi-direct sum

If u 3 � = 0, then h is conjugate to the following Lie subalgebra via Ad (u -1

• If dim p l (h) = 2 and the homothety projection p h (h) is not trivial. There are two constants a, b ∈ R

is a basis for h. Considering the Lie bracket

implies that b = 0, and since the homothety part is nontrivial a � = 0. Furthermore, the above equation implies that, there exist β ∈ R such that

Thus,

is the common solution of the linear systems

Hence, we have

Obviously, h is conjugate to the Lie algebra h � = Ad (1,Id,x) (h) and we have v � ∈ T (h � ) = T (h).

Thus

For a = 1, the vector x = (v 3 , 0, u 3 ) is a common solution of the linear systems

In fact we have

For a = -1, the vector x = ( u 2 2 , u 1 2 , -u 3 ) is a common solution of the linear systems

In fact, we have

For a = 2, the linear system

has a solution if and only if v 1 = v 2 . On the other hand, the vector x = ( -u 2 +2u 1 3

2 ) is the solution of the linear system

Now, conjugating by x we obtain

It is easy to see that

, and so,

is a basis for h � . Hence there are two kinds of subalgebras:

Otherwise, h is conjugated to the following Lie algebra via

Case IV: T (h) = {0}

• p l (h) = R ⊕ aff. There are three vectors u, v, w ∈ R 1,2 such that {λ + u, Y P + v, Y H + w}, is a basis for h. Considering Lie bracket, we get

Thus applying Ad (1,Id,u) , we have

• p l (h) = aff. There are two vectors u, v ∈ R 1,2 such that {Y H + u, Y P + v} is a basis for h.

Closeness under Lie bracket

Otherwise, it is conjugate to the following Lie algebra via Ad ( 2

Hence, for all a ∈ R * \ {2}, the Lie algebra h is conjugate to R(a + Y H ) + RY P .

For

2 ), we get

Otherwise, h is conjugate to

Note that, for all a ∈ R * , the Lie algebra R(a 

Proof. Observe that, the linear isometry projection p li (h) is generated by Y E , Y H , or Y P up to conjugacy.

Notice that, if

such that {λ + u, V + v} is a basis for h. Considering the Lie bracket, we have

Hence conjugating by u we have

Now, assume that T (h) � = {0}.

Case I: The linear isometry projection p li (h) is elliptic. The Y E -invariant subspaces of R 1,2 are {0}, R 1,2 , the timelike line Re 1 , and its corresponding (orthogonal) spacelike plane Re 2 ⊕ Re 3 .

If v 1 � = 0, then h is conjugate to the following semidirect sum via Ad (1/v 1 ,Id,0) R(Y E + e 1 ) + Θ (Re 2 ⊕ Re 3 ).

For a � = 0, the vector x = ( v 1 a , av 2 -v 3 a 2 +1 , av 3 +v 2 a 2 +1 )is the solution of the linear system

Hence, a + Y E ∈ h � = Ad (1,Id,x) (h). Therefore h is conjugate to the semi-direct sum

If dim p l (h) = 2, then there are two vectors u, v ∈ R 1,2 such that {λ + u, Y E + v, e 2 , e 3 } is a basis for h. Considering the Lie bracket

we get v 1 = 0. Observe that u is a solution of the linear system

Precisely, we have

Ad (1,Id,u) (e 2 ) = e 2 , Ad (1,Id,u) (e 3 ) = e 3 .

Obviously, λ, Y E ∈ h � = Ad (1,Id,u) (h). Therefore h is conjugate to the semi-direct sum

If dim p l (h) = 1, then there exist a constant a ∈ R and a vector v ∈ R 1,2 such that {a + Y E + v, e 1 , e 2 , e 3 } is a basis for h. Obviously, v ∈ T (h), and so a + Y E ∈ h. Therefore h is conjugate to the semi-direct sum

If dim p l (h) = 2, then there exist two vectors u, v ∈ R 1,2 such that {λ + u, Y E + v, e 1 } is a basis for h. Clearly u, v ∈ T (h), and so λ, Y E ∈ h. Therefore h is conjugate to the semi-direct sum

Case II: The linear isometry projection p li (h) is parabolic. The Y P -invariant subspaces of R 1,2 are {0}, R 1,2 , the lightlike line R(e 1 +e 2 ), and its corresponding (orthogonal) lightlike plane R(e 1 +e 2 )⊕Re 3 .

• T (h) = R(e 1 + e 2 ).

-If dim p l (h) = 1, then there exist a constant a ∈ R and a vector v ∈ R 1,2 such that {a + Y P + v, e 1 + e 2 , e 3 } is a basis for h.

If a = 0, the linear system v -Y P (x) ∈ T (h), has a solution if and only if v 1 = v 2 . Hence, setting x = (0, -v 3 , v 2 ) we have

Thus, if v 1 = v 2 , then h is conjugate to the semi-direct sum

,Id,0) R(Y P + e 1 ) + Θ (R(e 1 + e 2 ) ⊕ Re 3 ).

For a � = 0, the vector

is the solution of the linear system vax -Y P (x).

Precisely, we have

Ad (1,Id,x) (a+Y P +v) = a+Y P , Ad (1,Id,x) (e 1 +e 2 ) = e 1 +e 2 , Ad(1, Id, x)(e 3 ) = e 3 .

Thus a + Y P ∈ h � = Ad (1,Id,x) (h). Therefore h is conjugate to the semi-direct sum R(a + Y P ) ⊕ θ (R(e 1 + e 2 ) ⊕ Re 3 ).

-If dim p l (h) = 2, then there exist two vectors u, v ∈ R 1,2 such that {λ+u, Y P +v, e 1 +e 2 , e 3 } is a basis for h. Considering the Lie bracket

Observe u is a solution of the linear system v -Y P (x) ∈ T (h).

Hence, we have

Obviously, λ, Y P ∈ h � = Ad (1,Id,u) (h). Therefore h is conjugate to the semi-direct sum (R ⊕ RY P ) ⊕ θ (R(e 1 + e 2 ) ⊕ Re 3 ).

Hence, we have

Thus a + Y H ∈ h � = Ad (1,Id,x) (h). Therefore h is conjugate to the semi-direct sum

For a = 1, the linear system

has a solution if and only if v 1 = v 2 . Hence, setting x = (0, v 2 , v 3 ), we get

Otherwise, h is conjugate to the following Lie algebra via Ad ( 1

For a = -1, the vector

In other words, we have

-If dim p l (h) = 2, then there are two vectors u, v ∈ R 1,2 such that {λ + u, Y H + v, e 1 + e 2 } is a basis for h. Considering the Lie bracket

and we have

Ad (1,Id,u) (e 1 + e 2 ) = e 1 + e 2 .

Obviously, λ, Y H ∈ h � = Ad (1,Id,u) (h). Therefore, h is conjugate to the semi-direct sum

-If dim p l (h) = 2, then there are two vectors u, v ∈ R 1,2 such that {λ + u, Y H + v, e 3 } is a basis for h. Considering the Lie bracket

we get, v 1 = u 2 and v 2 = u 1 . Observe that u is a solution of the linear system v -Y H (x) ∈ T (h).

Precisely, we have

-If dim p l (h) = 1, then there exist a constant a ∈ R and a vector v ∈ R 1,2 such that {a + Y H + v, e 1 + e 2 , e 3 } is a basis for h.

and we have Clearly Y H ∈ h � = Ad (1,Id,x) (h). Therefore, h is conjugate to the semi-direct sum

is the solution of the linear system vax -Y H (x) = 0, and we have

has a solution if and only if v 1 = v 2 . Now, setting x = (0, v 2 , v 3 ), we get

Otherwise, it is conjugate to the following Lie algebra via Ad ( 1

and we have

-If dim L(h) = 2, then there exist two vectors u, v ∈ R 

Obviously, λ, Y H ∈ h � = Ad (1,Id,u) (h), and therefore h is conjugate to the semidirect sum (R ⊕ RY H ) ⊕ Θ (R(e 1 + e 2 ) ⊕ Re 3 ).

• T (h) = Re 1 ⊕ Re 2 .

-If dim p l (h) = 1, then there exist a constant a ∈ R and a vector v ∈ R 1,2 such that {a + Y H + v, e 1 , e 2 } is a basis for h. Obviously, a + Y H + v 3 e 3 ∈ h, hence we may assume v = (0, 0, v 3 ).

If a = 0, the linear system v -Y H ∈ T (h), has a solution if and only if v -3 = 0. Therefore, if v 3 = 0, h is conjugate to the semi-direct sum

Otherwise, h is conjugate to the following Lie algebra via Ad (1/v 3 ,Id,0) R(Y H + e 3 ) + θ (Re 1 ⊕ Re 2 ).

For a ∈ R * , the vector x = (0, 0, Obviously, λ, Y H ∈ h � = Ad (1,Id,u) (h), and therefore h is conjugate to the semi-direct sum (R ⊕ RY H ) ⊕ Θ (Re 1 ⊕ Re 2 ).

• T (h) = R 1,2 .

If dim p l (h) = 1, then there exist a constant a ∈ R and a vector v ∈ R 1,2 such that {a + Y H + v, e 1 , e 2 , e 3 } is a basis for h. Obviously, v ∈ T (h), and so a + Y ∈ h Therefore h is conjugate to the semi-direct sum R(a + Y H ) ⊕ θ R 1,2 for a constant a ∈ R.

If dim p l (h) = 2, then there exist two vectors u, v ∈ R Appendix B Some 1-parameter subgroups of

Conf(E 1,2 )

Here we indicate some 1-parameter subgroups of Conf(E 1,2 ) which we used in Chapter (4) to determine the orbits induced by some cohomogeneity one actions on Ein 1,2 .

First of all, we list the three 1-parameter subgroups of SO • (1, 2) � PSL(2, R).