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Introduction

Conformal structure

A semi-Riemannian metric g on a smooth manifold M is a smooth symmetric nondegenerate (0, 2)-tensor
field on M of signature (p, q). The pair (M, g) is called Riemannian (resp. Lorentzian) if p = 0 (resp.
p = 1 and ¢ > 0). For a semi-Riemannian manifold (), g) one can consider the conformal class [g]
which is the set of all semi-Riemannian metrics on M of the form e/g where f is a smooth function
on M. Given such conformal class of metrics is called a semi-Riemannian conformal structure on M.
A differomorphism ¢ : M — M is called a conformal map if it preserves the conformal structure on
M, i.e., for a metric g (hence for any) in the conformal class [g] there exists a smooth function f such
that the pullback metric ¢*g coincides with e/g. The group of conformal transformations on (M, [g]) is
denoted by Conf (M, [g]). When the metric class [g] is understood we simply denote the conformal group
by Conf(M). Indeed, if dim M > 3, then Conf (M) is a Lie group ([31]).

The concept of geodesic in a conformal class [g] is not relevant, since a geodesic y respect to a metric
g € [g] may fails to be a geodesic respect to other metrics in [g]. However, if [g] is an indefinite structure
and -y is a lightlike geodesic respect to g, then it is a (unparametrized) geodesic respect to all the metrics
in [g]. Indeed two indefinite semi-Riemannian metrics on a manifold lie in the same conformal class if
and only if they determine the same lightcone cone in the tangent space of every point.

Two semi-Riemannian manifolds (M, g) and (NN, h) are said to be conformally equivalent if there
exists a conformal map ¢ from M onto N such that ¢*h belongs to the conformal class [g]. A semi-
Riemannian conformal structure [g] on a manifold M is called essential if the conformal group Conf (M)
does not preserves any metric in the class [g]. A conformal structure is called inessential if it is not
essential. Indeed, given an inessential structure ()M, [g]), the conformal group Conf (M) coincides with
the isometry group of (M, g), for all g € [g]. Roughly speaking, the conformal group of an essential
structure [g] is strictly bigger than the isometry group of any metric g € [g].

A semi-Riemannian manifold (M, g) of signature (p, q) is called locally conformally flat if for every
point p € M there exists an open neighborhood U around p, and a conformal map f : U — RP9.

Riemannian geometry

Let RL"H = (R"+2 q) be a Lorentzian vector space. The nullcone 911" +1 of R} +1 is a degenerate hy-
persurface. The image of nullcone by the natural projection P : R1"+1\ {0} — RP"*! is homeomorphic

to the n-sphere S™. The degenerate metric on 9t%"*! admits a canonical Riemannian conformal structure
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[g] on S™. The metric class [g] contains the usual round metric on S™ of reduces 1. The Lorentz group
O(1,n + 1) leaves the metric class [g]. Indeed, PO(1,n + 1) is the conformal group of (S, [g]).
The standard Riemannian sphere S™ is the central object of the Riemannian geometry. It conformally
compactifies the Euclidean space
S =E" U {c0}.

Theorem 0.1. (Liouville’s Theorem) Let U,V C E™ (n > 3) be two connected nonempty open subsets,
and f : U — V be a conformal map. Then f extends to a global conformal map on E™.

The stereographic projection from the Euclidean space E™ into S™ is a conformal map. Hence, by
Liouville’s theorem, one can conclude that, a conformal map between two open non-empty connected
subsets of S (n > 3) is the restriction of an element of PO(1, n+1). Therefore, every locally conformally
flat Riemannian manifold of dimension greater than or equal to 3 admits a (PO(1,n + 1), S™)-structure.

The image of the domain {q < 0} C R'™*! by IP is conformally equivalent to the hyperbolic space
H"*!. The boundary of H"*! in RP"*! is exactly S". Hence, S™ can be seen as the conformal boundary
in infinity of hyperbolic space.

In [16], J. Ferrand proved that if [g] is an essential Riemannian structure on a manifold M of
dimension n > 2 then (M, [g]) is conformally equivalent to the round n-sphere S™ or the Euclidean space
[E™. However, if the metric g is not definite, there is no such classification of essential structures. Even if
we restrict ourselves to the compact manifolds or Lorentzian metrics, there are infinitely many examples

of essential structures, see for example [17, 3].

Lorentzian geometry

In contrast with Riemannian geometry and the sphere S”, the (n + 1)-dimensional Einstein universe
Ein'" (n > 1) is the Lorentzian analogue. It is a compact manifold equipped with a Lorentzian conformal
structure. Indeed, up to a double cover EEL" Einstein universe is conformally equivalent to the direct
product (S' x S", —dt? + ds?) where dt? and ds? are the usual round metrics on the spheres S' and S™

of radius one, respectively. There is a Lorentzian version of Liouville’s Theorem.

Theorem 0.2. (Liouville’s Theorem [18, Theorem 4.4]) Let U,V C Ein'" be non-empty connected open

subsets, and f : U — V be a conformal map. Then f extends to a unique global conformal map on

Einb™,

Therefore, every locally conformally flat Lorentzian manifold of dimension n 4+ 1 > 2 admits
a (Conf(Ein!™), Ein!")-structure. In particular, the Lorentzian model spaces of constant sectional
curvatures ¢, namely, the Minkowski space E1" for ¢ = 0, the Anti de-Sitter space AdS'" for ¢ = —1,
and the de-Sitter space dS'" for ¢ = 1, all are conformally equivalent to some specific open dense subsets
of Ein'".

V. Pecastaing in [40] proved that, if M is a compact manifold of dimension > 3 equipped with a
Lorentzian conformal structure [g], and G is a connected Lie group, locally isomorphic to SL(2, R), which
acts on (M, [g]) essentially, then (M.[g]) is locally conformally flat.

Let R?"*+! be the (n + 3)-dimensional real vector space endowed with a quadratic form q of signature
(2,n + 1). The nullcone 9127+ of R+ is the set of non-zero vectors v € R?"+! with q(v) = 0. The

nullcone M7 *1 is a degenerate hypersurface of R*>"*!, The (n + 1)-dimensional Einstein universe
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Ein'" is the projectivization of the nullcone M>"*! via P : RZ"+1\ {0} — RP"*2, It is a compact
submanifold of RP"*2, and the degenerate metric on 9t>"*! induces a Lorentzian conformal structure
on Ein'". The group O(2,n + 1) -group of the linear isometries of R?>"1- acts on Einstein universe
conformally. Indeed, on can see the full conformal group Conf(Ein'") is PO(2,n + 1).

A (inextendable) lightlike geodesic in Einstein universe Ein'" is called a photon. In fact, photons are
the images of totally isotropic linear 2-planes in R?>"*! by P. The lightcone L(p) with vertex p € Ein!"
is the set of photons through a point p. The lightcone L(p) is a singular degenerate hypersurface. The
only singular point is the vertex p and L(p) \ {p} is homeomorphic to S*~! x R. The complement of a
lightcone L(p) in Ein'"™ is an open dense subset called the Minkowski patch at p. Every Minkowski patch
in Ein'" is conformally equivalent to the Minkowski space E1".

A Linear isometry R>" — R2"+1 (n > 2) embeds naturally a copy of Ein’"~! in Ein'" called

an Einstein hypersphere. The complement of an Einstein hypersphere in Ein!"

is an open dense
subset conformally equivalent to the Anti de-Sitter space AdS™™. On the other hand, a linear isometry
REn+E 5 RZ7+1 embeds naturally a copy conformal sphere S™ in Ein'" called a spacelike hypersphere.

L is an open subset conformally equivalent to the de-Sitter space dS'".

The complement of S” in Ein

The projectivization of domain {q < 0} C R*"*! via P is an open subset of RP"*2, and it is (up to a
double cover) conformally equivalent to the model Anti de-Sitter space AdSH"+! = g~1 (—1) c R2n+HL,
Obviously, the boundary of P(q < 0) in RP"*2 is Ein!". Hence, one can consider the (rn4-1)-dimensional
Einstein universe as the conformal boundary of the (n + 2)-dimensional Anti de-Sitter space. Indeed, this
is the Lorentzian analogy of the hyperbolic space H"*! and its conformal boundary S".

For n > 2, the universal covering space IEHM of Einstein universe Ein'" is conformally equivalent
to the direct product (R x S™, —dt? + ds?) where dt? and ds? are the canonical Riemannian metrics
on R and S", respectively. The group of conformal transformations of ml’” is locally isomorphic to
Conf (Einl’") (see [18, Proposition 4.5]). The four-dimensional (simply connected) Einstein universe
Eﬁm was the first cosmological model for our universe proposed by A. Einstein soon after the birth of
General Relativity.

The typical example of essential Lorentzian structures is the Minkowski space E!'". However, Einstein

. . /‘\1,71 . . . /\./1777‘
Ln 'its double covering Ein ~, and its universal covering space Ein ~ are the other examples.

universe Ein
On the other hand, the model spaces of non-zero constant sectional curvature, namely, Anti de-Sitter space

AdSY"™ and de-Sitter space dS'" are examples of inessential structures.

Cohomogeneity one actions: a brief history

Felix Klein is known for his work on the connections between geometry and group theory. By his 1872
Erlangen Program, geometries are classified by their underlying symmetry groups. According to his
approach, a geometry is a G-space M , where G is a group of transformations of M. This makes a link
between geometry and algebra. The most natural case occurs when the group G acts on M transitively. In
this case M is called a homogeneous GG-space. For instance Euclidean, affine and projective geometries
are homogeneous spaces.

One special case of non-transitive actions of transformation groups on manifolds is when the action
has an orbit of codimension one, the so called cohomogeneity one action. The concept of a cohomogeneity
one action on a manifold M was introduced by P.S. Mostert in his 1956 paper [35]. The key hypothesis

was the compactness of the acting Lie group in the paper. He assumed that the acting Lie group G
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is compact and determined the orbit space up to homeomorphism. More precisely, he proved that by
the cohomogeneity one action of a compact Lie group G on a manifold M the orbit space M /G is
homeomorphic to R, St, [0, 1], or [0, 1). In the general case, in [8] B. Bergery showed that if a Lie group
acts on a manifold properly and with cohomogeneity one, then the orbit space M /G is homeomorphic
to one of the above spaces. Regarding to this classification, for a point p € M the orbit G(p) is called
principal (resp. singular) if its corresponding point in the orbit space M /G is an internal (resp. boundary)
point.

If G is a compact Lie group which acts on a smooth manifold M, then there exists a complete G-
invariant Riemannian metric on M. The compactness assumption is not necessary condition for existence
of the metric. A result by D. Alekseevsky in [2] says that, for an arbitrary Lie group G, there is a complete
G-invariant Riemannian metric on M if and only if the action of G on M is proper. This theorem provides
a link between proper actions and Riemannian G-manifolds.

Cohomogeneity one Riemannian manifolds have been studied by many mathematicians (see, e.g.,
[1,8,21,22,23, 33,35, 36, 39,41, 43, 44, 45]). The subject is still an active one. The common hypothesis
in the theory is that the acting group is closed in the full isometry group of the Riemannian manifold
and the action is isometrically. When the metric is indefinite, this assumption in general does not imply
that the action is proper, so the study becomes much more complicated. Also, some of the results and
techniques of definite metrics fails for indefinite metrics. It is shown in [15] that for a Riemannian Einstein
manifold (M, g) the PDE Ric(g) = A.g (A € R constant) becomes an ODE if there exists a Lie group
G C Iso(M) acting properly and with cohomogeneity one.

The natural way to study a cohomogeneity one semi-Riemannian manifold M is to determine the
acting group in the full isometry group Iso(M), up to conjugacy, since the actions of two subgroups of
Iso(M) one conjugate to the other with an element in Iso(M) admit almost the same orbits in M. This
has been done for space forms in some special cases (see [4], [S] and [6]). There is another approximation
of acting groups on a manifold: the actions of two Lie subgroups G, H C Iso(M) are called orbitally
equivalent to each other if there exists an element g € Iso(M) such that for all p € M, the orbits G(p)
and H(g(p)) coincide. It is obvious that, the action of two subgroup of Iso(M) one conjugate to the other
are orbitally equivalent, but the converse is not nessarely true (for example, the action of additive group
R on the Minkowski space E1™ by translations is orbitally equivalent to the action of Iso(Ein'™), but

evidently they are not conjugate to each other).

Cohomogeneity one three-dimensional Einstein universe

In this thesis, we propose to study conformal actions of cohomogeneity one on the three-dimensional
Einstein universe Ein'2. Our strategy in the study is to determine the representation of the acting group in
the conformal Lie group of the Einstein universe up to conjugacy. Also, we describe the topology and the

causal character of the orbits induced by cohomogeneity one actions in Ein'2. As a matter fact, it follows

1,2

from our study that a 2-dimensional orbit in Ein™* induced by the conformal action of a connected Lie

group is homeomorphic to R?, S! x R, S, or T? = S! x S!.
1.2 is isomorphic to O(2, 3). The identity component
1,2

The group of conformal transformations of Ein
of 0(2,3) is SO (2, 3) which acts on Ein'»? transitively. Hence, a cohomogeneity one action on Ein

comes from a proper subgroup of Conf(Ein'?).
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The proper actions are significant and they deserve to be studied first. Let G be a connected Lie

1.2). Then G acts on Ein'? properly if and only if it is compact, since the Einstein

subgroup of Conf(Ein
universe is compact. Hence, up to conjugacy, G is a subgroup of the connected maximal compact subgroup
of SO, (2, 3), namely SO(2) x SO(3). This group preserves a 2-dimensional linear subspace of R?? of
signature (2,0). In Chapter 2, we show that up to conjugacy there are exactly two cohomogeneity one
proper actions on Ein'+?, namely, SO(3) and SO(2) x SO(2). The action of SO(3) on Einstein universe
Ein'? admits a codimension one foliation on which each leaf is a spacelike hypersphere. On the other
hand, SO(2) x SO(2) admits a unique 1-dimensional timelike orbit homeomorphic to RPP!, and on the
complement, admits a codimension one foliation one which every leaf is conformally equivalent to the

2-dimensional Einstein universe Ein*!

, and exactly one of them is an Einstein hypersphere.

Rolling out the proper case already discussed above, in the non-proper case, we deal with subgroup of
some known geometric groups such as: (R* x O(1,2)) x R"2 group of conformal transformations on
the 3-dimensional Minkowski space E12, O(2, 2) group of isometries of 3-dimensional Anti de-Sitter
space AdS™?, and O(1, 3) group of isometries of the 3-dimensional de-Sitter space dS'2. In particular,
we consider various representations of Mébius group PSL(2,R) and its subgroups in O(2, 3). In most of
the cases, we determine the Lie subgroups acting with cohomogeneity one on Ein'? considering their
corresponding subalgebras in the Lie algebra s0(2,3) = Lie(O(2, 3)).

In order to study the non-proper cohomogeneity one actions we have the following definition.

Definition 0.3. The action of a Lie subgroup G C Conf(Ein'?) is called irreducible if G preserves no

non-trivial linear subspace of R*3, and it is called reducible if it is not irreducible.

Theorem 0.4. [12] Let G be a connected Lie subgroup of SO(2,n) which acts on R*™ irreducibly.
Then G is conjugate to of the following:

i: for arbitraryn > 1: SO (2, n).
ii: forn = 2peven: U(1,p), SU(1,p) or S*.SO,(1,p) ifp > 1,
iii: forn =3: SO.(1,2) C SO(2,3).

Thanks to above theorem, we have the following result about the irreducible cohomogeneity one

actions on Ein%2,

Theorem 0.5. Let G C Conf(Ein'?) be a connected Lie subgroup which acts on Ein'? irreducibly and
with cohomogeneity one. Then G is conjugate to SO.(1,2) ~ PSL(2,R).

In Chapter 3, we prove Theorem 0.5. Indeed, this action comes from the known irreducible action of
PSL(2, R) on the vector space R4[X, Y] of homogeneous polynomials of degree 4 in two variables X and
Y. We show that, this action admits in Ein'-? three orbits: a 1-dimensional lightlike orbit homeomorphic
to RP! which is not a photon, a 2-dimensional degenerate orbit homeomorphic to R?, and an open orbit
on which PSL(2, R) acts freely. Also, we describe the orbits induced by this action on the complement of
Einstein universe Ein"? in RP?.

According to Theorem 0.4, one way to classify the cohomogeneity one reducible actions is to consider
the stabilizer of various (in dimension and signature) linear subspaces of R?3 by the action of SO, (2, 3).
The following theorem shows that considering the actions preserving a 1-dimensional linear subspace of

R?3 is enough (even the proper actions are included in the following).



Theorem 0.6. Let G be a connected Lie subgroup of Conf(Ein'?) which acts on Ein'? reducibly and

with cohomogeneity one. Then G fixes a point in the projective space RP*.

By Theorem 0.6 which will be proved in Chapter 7, every reducible cohomogeneity one action G on
Ein'2 preserves a line £ < R>3. The line ¢ can be lightlike, spacelike or timelike.

The case when G preserves a lightlike line ¢ is the richest one, i.e., actions fixing a point in Einstein
universe, which are fully studied in Chapter 4. By the action of O(2, 3), the stabilizer of a point in Einstein
universe is isomorphic to the group of conformal transformations of the Minkowski space. More precisely,
if G fixes a point p € Ein'2, then it preserves the lightcone L(p) and its corresponding Minkowski
patch. Hence, the action of G on the Minkowski patch is equivalent to the action of a Lie subgroup
of Conf(E!?) = (R* x O(1,2)) x RY? on Minkowski space E1'2. We apply the adjoint action of
Conf(E'?2) on its Lie algebra (R @ s0(1,2)) &g RY2, and then, we determine all the Lie subalgebras g of
(R @ s50(1,2)) ©p RY2 with dim g > 2, up to conjugacy. This leads to the classification of the connected
Lie subgroups of Conf(E!?) with dimension greater than or equal to 2, up to conjugacy (Theorem 4.6).
Actually, there are infinitely many subgroups of Conf(IE!?) with dim > 2, up to conjugacy. All those

1,2

subgroups act on Einstein universe Ein"’“ with cohomogeneity one except two of them. Even, up to orbit

equivalence, still the number of distinguished actions is infinite.
In Chapter 5, we study the actions preserving a non-degenerate line ¢/ < R??3. Indeed, in this chapter

1,2 1,2

we only consider the cohomogeneity one actions on Ein*“ with no fixed point in Ein

e If G preserves a spacelike line £, then it preserves an Einstein hypersphere Ein!! c Ein'2, and
its complement Ein'? \ Ein"! which is conformally equivalent to de-Sitter space dS!2. Since
AdS!? is an inessential space, the action of G is conformally equivalent to the natural action
of a Lie subgroup of the group of isometries of AdS"?, namely, O(2,2). We show that, up to
orbit equivalency there are exactly seven connected Lie subgroups which preserve an Einstein

1,1 1,2 1,2

hypersphere Ein™" in Ein"*, act on Ein"“ non-properly, with cohomogeneity one, and with no

fixed point in Ein'2.

e If G preserves a timelike line, then it preserves a spacelike hypersphere S* C Ein'2, and its
complement Ein'? \ S? which is conformally equivalent to de-Sitter space dS'%. Again, since
dS*2 is an inessential space, the action of G is conformally equivalent to the action a Lie subgroup

of the group of isometries of dS'2, namely, O(1, 3). It is shown that, up to conjuagcy, there is only

one connected Lie subgroup which preserves a spacelike hypersphere in Ein'»?

and with cohomogenity one, and fixes no point in Ein'2.

, acts non-properly

Actions preserving a photon in Ein'? are very interesting. In Chapter 6, we prove a theorem which
states that a cohomogeneity one action on Ein'? which preserves a photon, fixes a point in RP?. This
theorem will play a key role in proof of Theorem 0.6 .

Finally, in Chapter 7, we prove Theorem 0.6. This completes the classification of the cohomogeneity
one actions on Ein'*2,

Appendix A is devoted to the technical proof of Theorem 4.6, which classifies all the connected
Lie subgroups of Conf(E!?) of dimension greater than or equal to 2. In Appendix B, we give a list of
1-parameter subgroups of Conf(E!?) which are used in Chapter 4, where we will show that any Lie
subgroup of Conf(IE!:2) of dimension > 2 contains either one of these 1-parameter subgroups or admits a

non-trivial translation part.
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Résumeé de la these

Structure conforme

Une métrique semi-Riemannienne g sur une variété lisse M est un champ tensoriel lisse de type (0, 2) qui
est symétrique, non dégéneré, de signature contante (p, q). La paire (M, g) est dite Riemannienne (resp.
Lorentzienne) si p = 0 (resp. p = 1 et ¢ > 0). Pour une variété semi-Riemannienne (M, g), sa classe
conforme, notée [g], est I’ensemble de toutes les métriques pseudo-Riemanniennes sur M de la forme e/ g
ou f est une fonction lisse sur M. Un difféomorphisme ¢ : M — M est une application conforme si
il préserve la classe conforme [g], i.e., si pour un représentant g (et donc pour tous) la métrique tirée en
arriere p*g est dans la classe conforme [g]. Le groupe des transformations conformes de (M, [g]) est noté
Conf (M, [g]), ou simplement Conf (M) lorsqu’aucune confusion n’est a craindre. Si dim M > 3, alors
Conf (M) est un groupe de Lie ([31]).

A priori, la notion de géodésique pour une structure conforme n’a pas de sens, cependant, les
géodésiques isotropes, i.e. celles dont les vecteurs tangents sont isotropes, ne dépendent pas du représen-
tant de la classe conforme a reparamétrisation pres.

Deux variétés semi-Riemanniennes (M, g) et (N, h) sont conformément équivalentes si il existe un
difféomorphisme ¢ de M vers N qui soit une application conforme, i.e. tel que ¢*h soit dans la classe
conforme [g]. La structure conforme [g] est dite essentielle si le groupe conforme Conf (M) ne préserve
aucune métrique dans la classe [g]. Elle est dite inessentielle sinon.

Une variété semi-Riemannienne (M, g) de signature (p, q) est localement conformément plate si pour
tout point p € M il existe un voisinage ouvert U de p et une application conforme de cet ouvert dans un

ouvert de R4, ot RP? désigne un espace vectoriel de dimension p 4+ ¢ muni d’une forme quadratique de

signature (p, q).

Le cas de la géométrie Riemannienne

Soit RL"+1 = (R"*2 ) un espace vectoriel muni d’une forme Lorentzienne de signature (1, 7). Le cone
lumiere 9117+ de RV formé des vecteurs isotropes est une hypersurface singuliere dégénérée. Sa
projection (une fois 1’origine enlevée) dans 1’espace projectif P : RL+1\ {0} — RP"*! est homéomorphe
a la sphere S™. La métrique dégénérée sur 911" +1 induit une structure conforme Riemannienne essentielle
[g] sur S™, qui contient la métrique ronde usuelle. Sin > 2, le groupe PO(1,n + 1) est précisément le
groupe des transformations conformes de (S™, [g]).

La sphere Riemannienne standart S™ un objet central en géométrie Riemannienne. C’est le compactifié
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conforme de 1’espace Euclidien
S =E" U {oo}.

Théoreme 0.1. (Théoreme de Liouville) Soient U,V C S™ (n > 3) deux ouverts connexes non vides, et

f : U — V une application conforme. Alors f s’étend en une application conforme de S™.

Il s’en suit que toute variété conformément plate de dimension supérieure ou €gale a 3 admet une
(PO(1,n + 1),S™)-structure.

L’image du domaine {q < 0} C RY™*1 par IP est conformément équivalente 2 I’espace hyperbolique
H"*+1. Le bord de H"*! dans RP"*! est précisément S™. Ainsi, S™ peut étre vue comme le bord conforme
de I’espace hyperbolique.

Dans [16], J. Ferrand a montré que si [g] est une classe conforme essentielle sur une variété M de
dimension n > 2, alors (M, [g]) est conformément équivalent a la sphére ronde S™ ou a I’espace Euclidien
E". Cependant, la classification des structures conformes essentielles pour les autres signatures n’est pas
complete, méme dans le cas des variétés compactes Lorentziennes ot il existe de nombreux exemples de

telles structures, voir par exemple [17, 3].

Géométrie Lorentzienne

L’analogue Lorentzien de la sphere conforme S™ est [’univers d’Einstein Ein’"™ de dimension n + 1
(n > 1) qui, comme dans le cas Riemannien, est le projectivisé dans RP"*2 du lieu des vecteurs isotropes
d’une forme quadratique sur R""3, mais cette fois de signature (2, + 1). Son groupe de transformation
conforme est alors PO(2,n + 1).

Son revétement double, noté E?f’", est conformément équivalent au produit (S' x S", —dt? + ds?)
ot dt? et ds? sont les métriques rondes usuelles sur les sphéres S' et S” de méme diamétre 1. L’ analogue

Lorentzien du Théoreme de Liouville reste vrai:

Théoréme 0.2. (Théoréme de Liouville, cas Lorentzien [18, Theorem 4.4]) Soient U,V C Ein™" deux
oiuverts connexes non vides, et soit f : U — V une application conforme. Alors, si n > 2, ’application

f s’étend de maniére unique en une transformation conforme globale de Ein'",

Ainsi, toute variété Lorentzienne conformément plate de dimension 14+n > 3 admet une (Conf(Ein!"), Ein'")-
structure. En particulier, les variétés modeles Lorentziennes a courbure constante ¢, qui sont 1I’espace
de Minkowski R>" pour ¢ = 0, I’espace Anti de-Sitter AdS™" pour ¢ = —1, et I’espace de-Sitter dS'"
pour ¢ = 1, sont chacune conformément équivalente 2 un domaine ouvert spécifique de Ein'".

Dans [40] V. Pecastaing montre que, si (M, [g]) est une variété Lorentzienne conforme compacte de
dimension > 3 dont le groupe conforme contient un sous-groupe de Lie localement isomorphe a SL(2, R)
agissant de maniere essentielle, alors (M, [g]) est conformomément plate.

Une géodésique de type lumiere (i.e. isotrope) et inextensible de I’univers d’Einstein est appelée
photon. Ce sont en fait les projections des 2-plans totalement isotropes de R?>"+! par P. Le cone
Iumiére L(p) de sommet p € Ein'™ est I’'union des photons contenant p. C’est une hypersurface
singuliere dégénérée. Son unique point singulier est le point p, et L(p) \ {p} homéomorphe 4 S"~! x R.

1,n

Le complémentaire de L(p) dans Ein"" est un ouvert dense conformément équivalent a 1’espace de

Minkowski E'™. 1l est appelé carte de Minkowski au point p.
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Toute isométrie linéaire R>™ — R2"*1 (n > 2) plonge naturellement Ein'"~!

en une copie dans
Ein'" appelé hypersphére d’Einstein. Le complémentaire d’une telle hypersphére est un ouvert dense
conformément équivalent a I’espace Anti de-Sitter AdS)™. On peut ainsi aussi considérer 1’univers
d’Einstein comme étant le bord conforme de 1’espace Anti de-Sitter.

De méme, toute isométrie linéaire R ! — R2?7+1 induit une réalisation de la sphére conforme
S™ dans Ein'"™ appelée a hypersphére de type espace. Son complément dans Ein"" est un ouvert dense
conformément équivalent a 1’espace de-Sitter dS".

Pour n > 2, le revétement universel IE\iI/an de I’univers d’Einstein Ein'™ est conformément équivalent
au produit direct (R x S, —dt? + ds?) ol dt? et ds? sont les métriques Riemanniennes usuelles sur R et
S™. Le groupe des transformations conformes de Ein' " est localement isomorphe & Conf(Ein!") (voir
[18, Proposition 4.5]).

Les exemples typiques de structures Lorentziennes conformes essentielles sont I’espace de Minkowski

E'"™ ainsi que ’univers d’Einstein.

Actions de cohomogénéité un: une histoire bréve

Felix Klein est notamment connu pour son travail sur le lien entre géométrie et théorie des groupes.
Dans son Programme d’Erlangen (1872), les géométries sont classifiées selon le groupe des isométries
sous-jacent. Dans I’esprit de cette approche, une géométrie est un G-espace M. Le cas le plus courant est
celui ol G agit transitivement sur M. Dans ce cas, M est dite un G-espace homogene. Les exemples les
plus connus de G-espaces homogenes sont les géométries Euclidienne, affine ou projective.

Un cas qui a attiré I’attention de plusieurs chercheurs est le cas des actions dites de cohomogénéité
un: c’est celui des actions admettant une orbite de codimension un. Ce concept a été introduit par P.S.
Mostert dans son article de 1956 [35]. L’hypothese clé dans cet article était la compacité prescrite du
groupe agissant. Il montre qu’alors 1’espace des orbites M /G est homéomorphe a R, S, [0, 1], ou [0, 1).
Dans [8] B. Bergery a montré que ce résultat reste vrai son on remplace I’hypothése de compacité de G
par la I’hypothése de propreté de I’action. Au vu de ce résultat, 1’orbite G(p) d’un point p € M the orbit
est dite principale (resp. singuliére) si le point correspondant dans 1’espace des orbites M /G est un point
intérieur (resp. un point du bord).

Les variétés Riemanniennes de cohomogénéité un ont été étudiées par plusieurs mathématiciens (voir
par exemple [1, 8, 21, 22, 23, 33, 35, 36, 39, 41, 43, 44, 45]). C’est toujours un sujet de recherche actif.
L’hypothése commune dans ces travaux est la fermeture du groupe G considéré dans le groupe d’isométrie
de la variété ambiante. Quand la métrique semi-Riemannienne et non plus Riemannienne, 1’action n’est
en général pas propre, ce qui complique I’étude. De fait, beaucoup de résultats et techniques valables dans
le contexte Riemannien ne s’appliquent plus dans le cas semi-Riemannien général. Il est montré dans
[15] que pour une variété Riemannienne d’Einstein (M, g) I’ équation d’Einstein Ric(g) = A.g (A € R
constant) devient une équation différentielle ordinaire dans le cas de cohomogénéité un.

Une maniére naturelle d’étudier une G-variété Riemannienne (), g) de cohomogénéité un est de
déterminer quels sont les sous-groupes possibles G de Iso(M ) a conjugaison pres. Cela a été fait dans
le cas de certains espaces modeles (voir [4], [5] et [6]). Une autre notion utile dans le sujet est celle
d’équivalence orbitale entre deux sous-groupes de Lie G, H C Iso(M) signifiant que les orbites G(p)

and H (g(p)) pour tout point p peuvent coincider a conjugaison pres. Il est évident que deux sous-groupes
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conjugués définissent des actions orbitalement équivalentes, mais 1’inverse n’est pas vrai, comme le

montre le fait que deux sous-groupes non conjugués peuvent fort bien avoir des actions transitives.

Actions sur l'univers d’Einstein tridimensionel de cohomogénéité
un

Le sujet de cette these est 1’étude des actions conformes de cohomogénéité un sur I’univers d’Einstein
tridimensionel Ein'?. Notre stratégie est d’établir dans un premier temps quel peut étre le groupe de
transformations conformes impliqué, a conjugaison pres. Nous décrivons aussi la topologie et la nature
causale des orbites d’une telle action. On établira, entre autre choses, que les orbites bidimensionnelles
d’une telle action sont toujours homéomorphes 2 R?, S! x R, S?, ou T? = S! x S™.

Le groupe des transformations conformes de Ein'»?

est isomorphe a PO(2, 3). Sa composante neutre
est SO,(2,3) qui agit sur Ein'? de maniére transitive - elle est constituée des transformations préservant
I’ orientation temporelle.

Les actions propres méritent un traitement particulier. Soit G' un sous-groupe de Lie connexe de
Conf(Ein?). Puisque I’'univers d’Einstein est compact, GG agit proprement si et seulement si il est
compact, donc si et seulement si il est, a conjugaison pres, contenu dans le sous-groupe compact maximal
SO(2) x SO(3) de SO,(2,3). 1l doit donc préserver un sous-espace vectoriel de dimension 2 de R%? de
signature (2,0). Au Chapitre 2, nous montrons qu’il n’y a, a conjugasion pres, que deux telles actions
propres, qui sont celles des sous-groupes SO(3) et SO(2) x SO(2) de SO(2) x SO(3). Les orbites de
la premiere action sont toutes de codimension un; ce sont plus précisément des hyperspheres de type
espace. La seconde une orbite de dimension un, qui est une géodésique de type temps dans un ouvert Anti
de-Sitter, dont le complémentaire est feuilleté par des hyperspheres d’Einstein.

Une fois traité le cas propre, nous supposons désormais que le groupe G est non compact. Un point

clé est le théoreme suivant:

Définition 0.3. Une action d’un sous-groupe de Lie G C Conf(Ein'2) est réductible si G préserve un

sous-espace vectoriel propre de R?3. Elle est irréductible si elle n’est pas réductible.

Théoréme 0.4. [12] Soit G un sous-groupe de Lie connexe de SO,(2,n) agissant sur R*"™ de maniére

irréductible. Alors, G est isomorphe a l'un des groupes suivants:
i: SO.(2,n).
ii: sin = 2pestpair: U(1,p), SU(1,p) ou S*.SO.(1,p) sip > 1,
iii: sin=3: 5S0.(1,2).
Il s’en suit, dans notre cas:

Théoreme 0.5. Soit G C Conf (Einm) un sous-groupe de Lie connexe agissant sur Ein"? de maniére
irréductible et de cohomogénéité un. Alors G est conjugué a SO, (1,2) ~ PSL(2,R).

Nous montrons le Théoreme 0.5 au Chapitre 3. Ce chapitre est consacré a 1’étude du cas irréductible.
Il est bien connu que la seule action irréductible de PSL(2, R) de dimension 5 est celle provenant de

I’action canonique sur les polyndmes homogenes de degré 4 a deux variables. Nous montrons que cette
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action a trois orbites: une orbite de dimension un (qui est un photon), une orbite dégénerée de dimension 2
homéomorphe a R?, et une orbite de dimension 3 sur laquelle PSL(2, R) agit librement. Nous décrivons
aussi les orbites induites sur le complémentaire de Ein'? dans I’espace projectif RP*. Nous avons publié
ces résultats dans 1’article [26].

Le dernier cas a considérer est donc celui des actions réductibles. Le point clé de notre étude, qui
résulte d’une étude cas par cas selon la dimension et la nature causale du sous-espace vectoriel G-invariant

est le suivant:

Théoréme 0.6. Soit G C Conf(Ein'?) un sous-groupe de Lie connexe de SO, (2, 3) agissant sur R*3

de maniere réductible et de cohomogénéité un. Alors, G admet un point fixe global dans I’espace projectif
RP*,

La situation la plus intéressante et la plus riche pour établir le Théoreme 0.6 est celle ou G préserve
un plan isotrope dans R, i.e. un photon dans Ein'2. Elle est traitée au Chapitre 6.

D’apres le Théoreme 0.6, qui est établi au Chapitre 7, toute action réductible de cohomogénéité un sur
Ein'2 préserve une droite dans ¢ < R?3. Cette droite ¢ est soit de type lumiére, de type espace, ou de
type temps.

Le cas le plus riche est celui ou la droite £ est isotrope. Il est étudié au Chapitre 4. Dans ce cas, le

groupe G préserve un point p € Ein'?

, son cone lumiere L(p) et la carte de Minkowski correspondante.
L action dans cette carte de Minkowski est équivalente a celle d’un sous-groupe de Conf(E!?) = (R* x
O(1,2)) x RY2. On étudie I’action adjointe de Conf(E!?) sur son algebre de Lie (R @ s0(1,2)) &g RH2,
puis déterminons toutes les sous-algebres de Lie g de (R @ s0(1,2)) @y RY? de dimension > 2 et a
conjugaison pres. Il s’avére qu’il y a une infinité de sous-groupes de Conf(E!2) de dimension > 2 a

conjugaison prés. Tous ces sous-groupes agissent sur Ein'»?

avec cohomogénéité un sauf deux d’entre
eux. Méme a équivalence orbitale pres, il y a une infinité d’actions possibles a distinguer.
Au Chapitre (5), nous étudions le cas ot la droite £ < R?3 n’est pas isotrope, et ot G ne fixe aucun

point de Ein'+2,

e Si / est de type espace, alors G préserve une hypersphere d’Einstein Ein''! ¢ Ein'? bordant
une copie conforme de I’espace Anti de-Sitter AdS™?. Nous montrons qu’a conjugaison pres, il
y a exactement 7 sous-groupes de Lie préservant une hypersphére d’Einstein Ein'! dans Ein'2,

1,2 1,2

agissant sur [Ein“ non-proprement, avec cohomogénéité un et sans point fixe global dans Ein "=,

e Si / est de type temps, alors G préserve une hypersphere de type espace S> C Ein'? bordant une
copie conforme de I’espace de-Sitter dS!2. Nous montrons qu’a conjugaison pres, il n’y a qu’un

1,2 1,2

seul sous-groupe de Lie préservant une hypersphere de type espace dans Ein"»“, agissant sur Ein

non-proprement, avec cohomogénéité un et sans point fixe global dans Ein'2.

Finalement, au Chapitre 7, nous montrons le Théoréme 0.6. Ceci acheve la classification des actions
de cohomogénéité un sur Ein':?.

L’appendice A, assez technique, est dédié a une preuve du Théoréme (3.4) qui classifie les sous-
groupes de Lie connexes de Conf(IE!2) de dimension supérieure ou égale a 2. Dans 1’appendice B, on

donne une liste de sous-groupes 4 un parametre de Conf(E2) qui est utilisée au Chapitre (3).
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Chapter 1

Preliminaries

We fix the following notation and definitions for the rest of this work.

Let R be the (m + n)-dimensional real vector space. Assume that gy, , is a quadratic form on

R™*"™ of signature (m, n), i.e., in a suitable basis for R™*™ and a vector v = (v1, -+ , Uiy ) € R
we have:
m m+n
2 2
Gm,n(v) = —E vy + E V5.
i=1 j=m+1

We denote by R™" the vector space R™ " equipped with gy, ,,.

Definition 1.1. A linear subspace V- < R"™" is said to be of signature (p, q, r) if the restriction of Qm,n,
on 'V is of signature (p, q, ), meaning that the maximal totally isotropic subspace has dimension r, and
that the maximal definite negative and positive subspaces have dimensions p and q, respectively. If V is

nondegenerate (i.e., r = 0), we forgot r and simply denote its signature by (p, q). Also, we call V
e spacelike, if ¢ = 0andp =1 = 0.

o timelike, ifp =1and q =r = 0.

lightlike, if r = 1landp = q = 0.

Lorentzian, ifp =1, ¢ # 0, and r = 0.
e degenerate, if p+ q,r # 0.

A non-zero vector v € R™" is called spacelike (resp. timelike, lightlike) if the value gy, ,,(v) is

positive (resp. negative, zero).

1.1 Group action

In this section, we give some definitions and properties of group action. For more details, we refer to [14].

We use G, H, K, etc. to denote a group, and M to denote a topological space or a manifold.

Definition 1.2. For a manifold M and a Lie group G, a smooth action of G on M, is a group morphism
A from G to Dif f(M) the group of diffeomorphisms from M to itself such that the map G x M — M
sending (g,x) to A(g)(z) is smooth. For a point x € M and an element g € G, we denote A(g)(x) by

g(x) or gz, when the action is understood.
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Definition 1.3. Let A be an action of a Lie group G on a manifold M, and x € M be an arbitrary point.

e The orbit of x denoted by G(z) is {gx : g € G}.

The stabilizer of x denoted by Stabg(x) or G, is {g € G : gx = z}.

The orbit map at point x is A, : G —, with Az(g) = gx.

The stabilizer of a subset S C M denoted by Stabg(S) is {g € G : gx € S,Vx € S}.

The orbit space of the action A denoted by M /G is the set of orbits induced by A.
e A subset S C M is called G-invariant, if G(S) = USG(x) CS.
xe

Given a Lie group G we call the connected component of G containing its identity element the identity

component of G and denote it by G..

Definition 1.4. Let G be a Lie group and H, K C G be Lie subgroups. The subgroup K is called transver-
sal to H if the Lie subgroup generated by H K has dimension strictly greater than max{dim H, dim K}.

Let GG be a lie group acting on a smooth manifold M. The orbits induced by G in M are immersed
submanifolds of M. In fact, for a point x € M, the orbit G(x) is the image of the orbit map A,. The
stabilizer of each point in M is a closed Lie subgroup of G. Also, the orbit space M /G is endowed with
quotient topology.

Definition 1.5. Let M be a smooth manifold equipped with a semi-Riemannian metric g and S C M an
immersed submanifold. Then, S is said to be of signature (p, q,r) if for all x € S the restriction of the

ambient metric g, on the tangent space TS is of signature (p, q,).

Let (M, g) be a semi-Riemannian manifold and G a Lie group. If G acts on M smoothly and preserves
the metric g, then every orbit has constant signature, meaning that for all x € M and all y, z € G(x), the
restrictions of the ambient metrics on 7,,G(x) and T, G(x) have the same signature. Thus, we can speak

about the signature of an orbit.

Definition 1.6. The action of a Lie group G on a manifold M is called proper if the map Gx M — M x M
sending (g,x) to (gz,x) is a proper map, i.e., the preimage of each compact subset of M x M is a

compact subset of G X M. A group action is called non-proper if it is not proper.

Definition 1.7. Let G be a Lie group which acts on a manifold M smoothly. The action of G is called of

cohomogeneity one, if G admits a codimension one orbit in M.

1.2 Affine space

In this section we give the definition of affine space and some properties of it. We refer to [9] for additional

details.

Definition 1.8. Ler V be a real n-dimensional vector space. A non-empty set () is said to be an affine

space associated to 'V, if there is a mapping
QxQ =V, (p,q) = Pl

satisfying the following axioms:
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(i) forany p,q,r € §, we haveﬁ :@4- (17

(ii) for any p € Q and any v € V, there is one and only one q € () such that x = @

The dimension of § is defined as the dimension of V, and we call V' the underlying vector space of

affine space (.

Proposition 1.9. (/9] p.p. 34). A non-empty set () is an affine space associated to a vector space V' if

and only if there exists a free and transitive action © : 'V x & — .

It is convenient to write ¢ = p + z instead of z = p¢, where ”+" denotes the action of V on £).
Essentially the only difference between €2 and V is that, €2 has not an origin, and thus it is not linear.

Choosing a point p € €2, the orbit map ©,, : V' — () induces a vector space structure on {2 with origin
p, such that ©,, becomes an isomorphism. We denote {2 with the vector space structure induced from ©,,
by €2,

Definition 1.10. For a vector v € V, we call the map T, : 2 — €, p — p + v a translation on 2. We
denote the set of all translations on 2 by T (2).

In fact, T'(2) has a natural vector space structure which makes it isomorphic to V.

Let V and W be real vector spaces. We denote the space of linear maps from V' to W by L(V, W).
Definition 1.11. We call amap f : Q — Q an affine morphism if f € L(Sp, Qy(p,)) for all p € Q.

For an affine morphism f, we denote the map @;(11;) ofo®,e L(V,V)by 7 One can see that the

map 7 is independent of p. Furthermore,

fo+v)=f@) + F), VYpeQweV. (1.1)

We call f an affine isomorphism, if it is a bijective affine morphism. Obviously every translation on €2 is

an affine isomorphism.
Lemma 1.12. Let f be an affine morphism on ). Then f is a translation on €} if and only lf? = Idy.

%
Proof. Let f be a translation, which means there exists a vector v € V such that f = T;,. Then, T, = Idy .
Conversely, let f be an affine morphism and 7 = Idy. Let p, q € Q) be two arbitrary points. There
exist unique vectors w,v € V such that ¢ = p + v and f(p) = p + w. Thus by (1.1), we have

o) =Ffp+v)=flp)+v=ptwtv=q+uw.
Therefore f = T,,. O

For a linear map B € L(V, V), choosing a point p € 2, we can define a map B), :  — Q with
—
By(p+v) = p+ B(v). Itis clear that By, is an affine map and B, = B.

Lemma 1.13. Let f be an affine morphism on 2 and p € ) an arbitrary point. Then, there exit a unique
vector w € V and a linear map B € L(V,V') such that f =T, o By,

Proof. There exists a unique vector w € V such that f(p) = p + w. Now, by (1.1), obviously f =

Tyo () O
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The set of all affine morphisms on €2 is a group under composition of maps. We denote it by A (€2).
Also, we denote the set of all affine isomorphisms on 2 by Aff(€2), and call it the affine group of Q0. It is a
subgroup of A(€2).

Corollary 1.14. The affine group Aff(QY) is isomorphic to the semi-direct product GL(V) x V.
Proof. Tt follows from Lemma 1.13. ]
The following map is a surjective group morphism
L:ARQ) - GL(V), f— T,

and we call it the linear projection. By Lemma 1.12, the kernel of L is T'(Q2). Therefore, the group of
translations 7°(2) is a normal subgroup of Aff(£2), and so, Aff(€2) acts on it by conjugation.

The affine group Aff(Q2) acts on Q transitively, since 7'(2) ~ V does. Hence, for an arbitrary
point ¢ €  and its stabilizer Aff(2), the affine space €2 is isomorphic to the homogeneous space
AfE(Q)/AfE(Q2),,, as sets.

Lemma 1.15. Let p € Q) be an arbitrary point. Then Aff(Q2) = Aff(Q2), x T'(2).

Proof. By Lemma 1.13, Aff(Q2) = Aff(Q2),.7(Q2). Since T'(2) is a normal subgroup of Aff(€2) and
T(Q) NAfE(Q), = Idq, we get Aff(Q) = Aff(Q2), x T'(2). O

Note that, the splitting Aff(Q) = Aff(Q), x T'(2) depends strongly on the point p € €. Indeed, for
two points p, ¢ € 2, we have Aff((2),, = Aff(2), if and only if p = ¢.

Definition 1.16. An affine d-plane (for d < dim V') in 2 through a point p € €, is p + 11, where I1 <V

is a d-dimensional linear plane.

In fact, an affine d-plane in €2 through p is the orbit induced by the action of a d-dimensional linear

subspace of V' at p.

1.3 Conformal Structure

Definition 1.17. Let (M, g) be a semi-Riemannian manifold. The conformal structure on M associated
to g (denoted by [g)) is the class of metrics conformal to g, i.e., metrics of the form e/ g, for some smooth
function f : M — R.

The concept of geodesic is not relevant in a conformal structure (M, [g]), since a geodesic in M
respect to the metric g € [g] may fails to be a geodesic respect to the other metrics in the class [g].
However, if g is a indefinite metric, a lightlike geodesic respect to g is a lightlike (unparametrized)
geodesic respect to the all metrics in the metric class [g]. Moreover, the cuasal character of a vector
tangent to M is invariant in the metric class [g]. Hence, we can speak about the cuasal character of tangent
vectors, curves, or signatures of submanifold etc.. Hence, we have the following definition which is the

conformal version of Definition 1.5:

Definition 1.18. Let M be a smooth manifold equipped with a semi-Riemannian conformal structure [g]
and S C M an immersed submanifold. Then, S is said to be of signature (p,q,r) if for all x € S the

restriction of the ambient metric g, on the tangent space TS is of signature (p, q,r).
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For dim M > 3, the group of conformal transformations of M is a Lie group ([31]) and we denote it
by Conf(M).

Definition 1.19. A conformal semi-Riemannian manifold (M, [g]) is said to be essential if the action of
its conformal group Conf (M) preserves no metric in the metric class [g]. The conformal structure [g) is

called inessential if its conformal group preserves a metric in the class [g].

Observe that, for an inessential conformal structure (M, [g]) the group of conformal transformations
preserves every metric in the metric class [g]. In other words, the conformal group of an inessential

conformal structure is the isometry group of every element in the conformal class.

On the opposite side, for an essential conformal structure (M, [g]), its conformal group is strictly
bigger that the group of isometries of any metric g € [g].

By the conformal action of a Lie group G on a semi-Riemannian conformal structure (M, [g]), every

orbit has constant signature, and so, we can speak about the signature of the orbits induced by G.

Definition 1.20. Let G and H be Lie subgroups of Conf(M). Then the actions of G and H on M

are said to be orbitally-equivalent if there exists a conformal map ¢ on M such that for all p € M,
e(G(p)) = H(e(p))-

Two orbitally-equivalent actions on a conformal structure (MM, [g]) give the same information about
the orbits. So, it seems considering the conformal actions up to orbit equivalency is a good approximation.
However, sometimes finding an equivalent map for two actions is not easy. The following lemma gives a

nice tool to distinguish these maps.

Lemma 1.21. Let G and H be connected Lie subgroups of Conf(M ) and ¢ be a conformal map on M.

Then the following statements are equivalent:

(i) G and H are orbitally-equivalent via .
(ii) forallp € M,

dpp(T,G(p)) = Ty H (0(p))- (1.2)

Proof. (1)=- (ii) It is obvious.
(i)=- (i) Assume that ¢ satisfies (1.2). For an arbitrary point p € M, define the following set

Ap={q € G(p): ¢(q) € H(p(p))}-

Evidently, A, is nonempty. Observe that (1.2) implies, for ¢ € A,, there exist two neighborhoods
U C G(p) and V C H(p(p)) containing g and ¢(q), respectively, such that |y : U — Vis a
diffeomorphism. This shows that A, is open in G(p). By the same argument, it can be easily seen that the
complement of A, in G(p) is open too. Hence, by connectedness G(p) = A,, and so ¢(G(p)) C H(p(p)).
Using the same argument, one can show ¢ 1 (H ((p))) C G(p). This completes the proof. O
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1.4 Projective Special Linear group

The special linear group SL(2, R) is the group of linear transformations of a 2-dimensional real vector
space V' with determinant 1. It is a closed connected 3-dimensional simple Lie subgroup of general linear
group GL(V).

The projective special linear group PSL(2, R) is the quotient of SL(2, R) by Zy = {£Id}. The group
PSL(2,R) acts on the Poincaré half-plane model of hyperbolic plane with conformal boundary in infinity
A = H2 U §H2 by mobits transformation

o + b’
cr+d

a,b,c,d € R, ad —bc=1.

This action preserves the hyperbolic plane H? and its boundary OH? ~ RP'. Indeed, PSL(2, R) is the
group of orientation-preserving isometries of hyperbolic plane, and acts on it transitively. Furthermore it

acts on the conformal boundary of hyperbolic plane conformaly and transitively.
Definition 1.22. [42, p.p. 141]. Let [I] # [A] € PSL(2,R). Then

o If A has only one eigenvalue, namely 1, then we call it a parabolic element. Every parabolic

element fixes a unique point on the boundary OH?.

o If A has two distinct real eigenvalues (XA and \~1), then we call it a hyperbolic element. Every
hyperbolic element fixes exactly two points on the boundary OH?.

o [If A has no real eigenvalues, then we call it an elliptic element. Every elliptic element fixes exactly

one point in the hyperbolic plane H?.

1.4.1 Connected subgroups

We characterize all the connected Lie subgroups of PSL(2, R) up to conjugacy.

Let [4],[B] € PSL(2,R) and [A] # [Id]. Define Fiz([A]) = {x € i [A](xz) = z}. If [B]
commutes with [A], then [B] preserves F'iz([A]) (see [42] p.p. 141-144). Thus, for any connected abelian
subgroup G C PSL(2,R), Fiz(G) = {x € H V[A] € G, [A](z) = =} is a non-empty set. Therefore

all the non-trivial elements in a connected abelian subgroup of PSL(2, R) have same fixed point(s).
Definition 1.23. Let G C PSL(2,R) be a connected abelian subgroup. We call G

e parabolic, if it contains a parabolic element.

e hyperbolic, if it contains a hyperbolic element.

e clliptic, if it contains an elliptic element.

Since PSL(2, R) acts on H? transitively, the stabilizer of a point z € H? is a 1-dimensional subgroup.
Actually, Stabpgr,(2,r) () is connected (hence it is abelian) and so, it is an elliptic subgroup. It follows
that, all the connected elliptic subgroups of PSL(2, R) are conjugate to each other.

Also, PSL(2,R) acts on the boundary OH?, transitively. Thus the stabilizer of each point on the

boundary is a 2-dimensional Lie subgroup.

Definition 1.24. The affine subgroup of PSL(2, R) is the stabilizer of oo € OH?, and we denote it by Aff.
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The affine subgroup acts on 9H?\ {oo} transitively. In fact AfF is isomorphic to the identity component
of the group Aff(1,R) consists of all the affine isomorphisms on the real line R ~ 9H? \ {oc}. This
justifies our notation and terminology for the stabilizer of a point on the boundary.

The affine group Aff is non-abelian and (as the all 2-dimensional Lie groups) solvable. It consists of
parabolic and hyperbolic elements. The commutator subgroup of Aff is the only connected 1-dimensional
parabolic subgroup of Aff. One can see all the connected 1-dimensional hyperbolic subgroups of Aff are

conjugate to each other.
Lemma 1.25. Every 2-dimensional connected Lie subgroup of PSL(2,R) is conjugate to Aff.

Proof. Let G C PSL(2,R) be a 2-dimensional connected Lie subgroup. Since all 2-dimensional Lie
groups are solvable (see [25, p.p. 61]), G is either abelian or solvable and non-abelian.

Assume that GG is abelian. Then it admits a fixed point in . Since the stabilizer of each point in H?
is 1-dimensional, G admits a fixed point on the boundary OH?. Thus, up to conjugacy, G is a subgroup
of Aff. Since G and Aff both are connected and 2-dimensional, G = Aff up to conjugacy. But this is a
contradiction, since affine group is not abelian. Therefore G is non-abelian.

The commutator subgroup G’ = [G, G] is an abelian subgroup since it is 1-dimensional and connected,
and so, Fiz(G') # 0. Let 29 € Fiz(G'), [A] € G, and [B] € G'. We have

[AIBI[A] 7' [B) ™! (20) = z0 = [A](x0) = [B]([A](z0)) = [A](x0) € Fiz([B]) = Fiz(G").

Thus G preserves Fiiz(G'), and since it is connected, it fixes Fiiz(G') pointwisely. Therefore G is the

stabilizer of a point in OH?, which implies G = Aff up to conjugacy. O

Notation 1.26. We denote by Y the 1-parameter elliptic subgroup of PSL(2,R) stabilizing i € H>.
Also, we denote by Yp the commutator subgroup [Aff, Aff] of Aff C PSL(2, R) which is a 1-parameter
parabolic subgroup. Furthermore, we denote by Y the 1-parameter hyperbolic subgroup of Aff stabiliz-
ing {0,000} C OHZ

Corollary 1.27. Let G be a non-trivial connected Lie subgroup of PSL(2,R). Then G is conjugate to
one of the following subgroups.

Yg, Yp, Yy, Affo(1,R), PSL(2,R).

Remark 1.28. The map SL(2,R) — PSL(2,R) sending A to [A] is a Lie group double covering. We call
an element A € SL(2,R) elliptic, parabolic, or hyperbolic if the corresponding element [A] € PSL(2,R)
is elliptic, parabolic, or hyperbolic, respectively. Also, one can see that the group SL(2,R) has three
distinct 1-parameter subgroup up to conjugacy, and it has a unique (up to conjugacy) 2-dimensional
connected Lie subgroup isomorphic to Aff. Hence, we may use the same terminology and notations for

the elements and subgroup of SL(2,R) as we used for those of PSL(2,R), when there is no ambiguity.

1.4.2 Morphisms

The projective special linear group PSL(2, R) is a simple Lie group. Thus, it has no non-trivial normal

subgroup.

Lemma 1.29. Let G be a Lie group with 1 < dim G < 2, and ¢ : PSL(2,R) — G be a Lie group

morphism. Then @ is trivial map.

25



Proof. The kernel ker ¢ is a normal subgroup of PSL(2,R). Since dim PSL(2,R) > dim G, ker ¢ #
{[Zd]}. Since PSL(2, R) is a simple Lie group, we get ker ¢ = PSL(2, R). This completes the proof. []

Corollary 1.30. Ler ¢ : PSL(2,R) — PSL(2,R) be a Lie group morphism. Then either  is the trivial

map or it is an isomorphism.

1.4.3 Lie algebra

The Lie algebra of projective special Lie group PSL(2, R) is isomorphic to s[(2, R) -the set of traceless
2 x 2 matrices-. It is a simple Lie algebra, and its corresponding killing form B is a Lorenzian bilinear
scalar product.

The set of following matrices is a basis for s[(2, R) as a vector space,

0 1 1 0 01
yE—[ ]7 Yu = 0 _1], yP—lo 0],

-1 0
and we have [V, Vy] = 2Ve — 4Yp. [VE,Vp| = Vi and [Vg, Vp] = 2Vp.
By Corollary (1.27), s[(2.,R) has exactly four non-trivial proper Lie subalgebras, up to conjugacy;

Three 1-dimensional Lie subalgebras generated by Vg, Y, and Vp, which are the corresponding Lie
algebras of the 1-parameter subgroups Yg, Yy, and Yp, respectively. The 2-dimensional Lie algebra
generated by {Vg, Vp}, is a non-abelian solvable Lie algebra, and we denote it by aff. Obviously, aff is
the corresponding Lie algebra of affine group Aff.

Proposition 1.31. The killing form B on the Lie algebra s1(2,R) is a scalar product of signature (1, 2).
Furthermore, (sl(2,R), B) and (s[(2,R), — det) are isometric.

Proof. The set of vectors { Vg, Vi, Yr — 2Yp} is an orthogonal basis for s[(2, R) respect to the killing
form B and — det. The vector Vg is timelike, and the vectors Vg and Vg — 2)p are spacelike respect
to both B and — det. Since the scalar product spaces (sl(2,R), B) and (s[(2,R), — det) have the same
signatures (i.e., (1, 2)), they are isometric. O

The following map is an explicit linear isometry.

1
sl(2,R), B) — (sl(2,R), —det), X m—» —X.
(612, ). B) — (s1(2, ), — det) N
Lemma 1.32. The connected components of the group of automorphisms on affine group Aff and the

group of automorphisms of affine algebra aff are isomorphic to Aff.

Proof. First assume that f is an automorphism on the Lie algebra aff. There are constants a, b, c,d € R
such that f(Vg) = aYy + bYp and f(Vp) = cVy + dYp. Since f preserves the Lie bracket, we have
¢ =0,a =1, and d # 0. This shows that Aut(aff) is a 2-dimensional Lie group. On the other hand,
the adjoint action of Aff on aff induced a faithful representation from Aff to Aut(aff). This proves the

lemma. O
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1.4.4 Irreducible representation

In this section we describe the irreducible representation of PSL(2,R) on a (n + 1)-dimensional vector
space.

Let V be real a (n + 1)-dimensional vector space. There is only one irreducible representation
of PSL(2,R) in GL(V'). This representation is the natural action of PSL(2,R) on the vector space
V = R,[X, Y] of homogeneous polynomials of degree n in two variables X and Y [25]. This action

preserves the bilinear form (), given in the coordinate system
(X", XY, XYy
by the matrix

Qn 0

—0n 1

)

where o, = (k!(n — k)!)/n! [11].

The bilinear form g, is anti-symmetric for n odd and symmetric of signature (n/2,n/2 + 1) when n
is even. In particular, for n = 2, the quadratic form —2()5 is the discriminant of quadratic polynomials,
and this representation gives an isomorphism between PSL(2,R) and SO, (1, 2).

For n = 4, we have

1 1
Qu(asX* + a3 X3V + aa X*Y?2 + a1 XY + agY*) = 2a4a0 — 50301 + gag.

It is easy to see that the following map is PSL(2, R)-equivariant.

K Ro[X,Y] — Ry[X,Y], F F2

1.5 Minkowski space

In this section, we give the definition of Minkowski space, and we consider some of the properties of this

space.

Definition 1.33. The Minkowski space EY™ is the affine space with underlying scalar product space
Rl,n — (Rn—ﬁ—l’ an).

Let © denotes the action of R'™ on E™. The topology and differential structure induced by R>" via
© on E''", makes it a smooth manifold diffeomorphic to R". The tangent space of each point p € Eb?
is naturally isomorphic to R, via ©,,. Therefore, the quadratic form qy ,, defines a Lorentzian metric
tensor g on 1™, The Lorentzian manifold (E*", g) is isometric to R%", and so, it is a simply-connected
geodesically complete, flat Lorentzian manifold.

The geodesics in E1" are affine lines v : R — E'", t + p + tv, where p € EL™ and v € RY™ (see
[37, p.p. 69]). We call p and v, the start point and the direction of -y, respectively. The causal character of

a geodesic is the causal character of its direction.
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A homothety on EL™ (centered at zy € E'™) is any map conjugate by a translation to scalar
multiplication:
Eb 5 BV 2z + r(x — 20).

A conformal map on the Minkowski space E1" is a composition of an isometry of EL™ with a homothety:
[z —rAx) 4.
where A € O(1,n), r # 0, and v € Rb",

Definition 1.34. Letp € EY" and r € R . The de Sitter hypersphere of radius r centered at p is defined

as
Sp(p) = {p+v € E" : q1,(v) =%}

The Lorentzian metric on E" restricts to a Lorentzian metric on S, (p) having constant sectional
curvature 1/72. It is geodesically complete and homeomorphic to S” x R. It is a model for de-Sitter space
dstmL forr = 1.

Definition 1.35. For an arbitrary point p € EY", the affine nullcone centered at p denoted by L%/ (p) is
the union of the lightlike geodesics through p.

1.5.1 Transformation group

The Lorentz group O(1,n) acts on RY™ naturally by I'(A, z) = Ax. The Poincaré group is the group

of isometries on RY™ and it is isomorphic to the semi-direct product O(1,n) xp RY™. Also, the direct

product group R* x O(1,n) acts linearly and conformally on R%" by ©((r, A), ) = r Azx. The group of

conformal transformations on R%™ is isomorphic to the semi-direct product (R* x O(1,n)) xg R,
The group Conf(E!") is a Lie subgroup of Aff(E!™). Since E! is isometric to R1™, we have

Iso(EM?) ~ O(1,n) x RY™,  Conf(EM?) ~ (R* x O(1,n)) x RY™.
The multiplication rule in Conf(E!"™) is
(r, A,v), (s, B,w) € Conf(EM"), (r, A,v)(s, B,w) = (rs, AB,rA(v) + w),

and so, the inverse element (r, A,v) " tis (r~!, A7, —r=1A71(v)).
The Lie algebra of Conf(E'™) is isomorphic to the semi-direct sum g = (R @ s0(1,n)) @y RL™,
where 6 denotes the representation of R @ so0(1, n) in g/(R'™) corresponding to the action ©.

Notation 1.36. For elements a € R, V € so(1,n), and v € RY", we denote the corresponding element
in g simply by a+V +v.

According to Notation (1.36), the Lie bracket rule on g is
[a+V+v,b+W4+w =[V,W|+V(w)+aw—W(v) — b.

The adjoint action of Conf(E>™) on g is as following. For an arbitrary element (r, A, v) € Conf(E*"),

we have

Ad(T,A,v) ‘g—g, a+WH+wr—a—+ AWA_l + TA(’LU) —av — AWA_l(’U)_
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1.5.2 Three dimensional Minkowski space

The group of conformal transformations on the 3-dimensional Minkowski space E'2 is isomorphic to
(R* x O(1,2)) x RY? and its connected component is isomorphic to (R* x SOo(1,2)) x RY2, where
S0,(1,2) is the group of linear isometries on R'? preserving both time and space orientations.

Every element A € SO,(1,2) has determinate 1, and because of the dimension, 1 is the common

eigenvalue of all the elements in O(1, 2).
Lemma 1.37. Let A € O(m,n), and A\ € Spec(A). Then \=! € Spec(A).

Proof. Assume that B = {e1, -+ , €,4+m } be an orthonormal basis for R”*" and ¢ be a signature matrix

for gy, respect to B (see [37, p.p. 234]). Then for all v, w € R™", we have (v, w) = ev.w, where ”.”

is the usual euclidean inner product respect to the basis B. Now, A € O(m, n) if and only if

Vo, w e R™" (Av, Aw) = (v, w) <= Yo, w € R™" cAv.Aw = ev.w
— Vo,w e R™", AfeAv.w = ev.w <= Yo e R™", Afedv = ev

e Ated = = c1Ate = A~ L.

This implies that AT and A~ are similar, thus Spec(A) = Spec(AT) = Spec(A~'). On the other hand,
if A € Spec(A), then \=1 € Spec(A~1). Therefore \™1 € Spec(A). O

Lemma 1.38. The Lie group PSL(2,R) is isomorphic to the Lie groups SO.(1,2) and SO, (2,1).

Proof. By Proposition 1.31, (sl(2,R), B) is a scalar product space of signature (1, 2). The adjoint action
of PSL(2, R) on sl(2,R) is isometric respect to both B and — B, since the killing form is Ad-invariant.

Hence,
PSL(2,R) ~ SO,(1,2) ~ SO.(2,1).
L]

Remark 1.39. According to Lemma 1.38, we use the same terminology and the same symbols for the
objects related to the Lie groups SOo(1,2) and SO, (2, 1) as we used for those of PSL(2,R), when there

is no ambiguity.
Definition 1.40. Let [d # A € SO(1,2). Then

e If A has only one eigenvalue, namely 1, then we call it a parabolic element. Every parabolic
element of SO, (1,2), preserves a unique lightlike line in RY2, and its corresponding (orthogonal)

lightlike plane.

o [f A has three distinct real eigenvalues, then we call it a hyperbolic element. Every hyperbolic ele-
ment in SO, (1, 2) preserves exactly two lightlike lines in RY? and their corresponding (orthogonal)

lightlike planes.

o If A has two non-real eigenvalues, then we call it an elliptic element. Every elliptic element in

SO, (1,2) preserves a timelike line in RY? and its corresponding (orthogonal) spacelike plane.
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The set of following matrices is a basis of the Lie algebra so(1,2) = Lie(SO,(1,2)) as a vector

space
0 0 O 010 0 0 1

Ye=10 0 1, Yg=1|1 0 0|, Yp=1|0 0 1},
0 -1 0 000 1 -1 0

and we have, Vg, V| = Vg — Vp, [VE,Vp| = Y and [Vg, Vp] = Vp.

The group SO,(1,2) has exactly three distinct 1-parameter subgroups up to conjugacy. We call a
1-parameter subgroup parabolic, hyperbolic, or elliptic, if it contains a parabolic, hyperbolic, or elliptic
element. The 1-parameter subgroups generated by Vg, Vg, and Vp are elliptic, hyperbolic, and parabolic
respectively and we denote them by Yg, Yy, and Yp, respectively.

Furthermore, SO, (1, 2) has only one connected 2-dimensional subgroup up to conjugacy. We denote
the 2-dimensional Lie subalgebra of so(1,2) generated by {Vy,Yp} by aff. We call the connected
Lie subgroup of SO,(1,2) corresponding to aff, the affine subgroup and denote it by Aff. Affine
subgroup contains parabolic and hyperbolic elements, and they all preserve a lightlike line in R"? and its

corresponding (orthogonal) lightlike plane. Also, we have Aff = Yy x Yp.

Remark 1.41. Here is a useful model for the conformal group of the 3-dimensional Minkowski space
EY2 which will be used it in Chapter 6. Recall from Section 1.4.3 that, the Lie algebra sl(2,R) equipped
with the quadratic form — det is a model of Minkowski space. The direct product group R* x PSL(2,R)
acts on (s1(2,R), — det) linearly and conformally as following

(r,[A]).X :=rAXA™',  reR* [A] € PSL(2,R), X € sl(2,R).

Now, in this model, the group of conformal transformations of 3-dimensional Minkowski space is isomor-
phic to (R* x PSL(2,R)) x sl(2,R) which acts on sl(2,R) ~ EY? naturally as following

(r,[A,V).X :=rAXA ' +V, reR* [A € PSL(2,R), V,X € sl(2,R).

1.6 de-Sitter and Anti de-Sitter space

In this section, we give the definitions of de-Sltter and Anti-de-Sitter space. For more details we refer to
[37].

Definition 1.42. The (n + 1)-dimensional de-Sitter space dS'™ is the hypersurface {v € RLHL .
q1n+1(v) = 1} of RLVFL = (R"F2 qy .1 1) endowed with the Lorentzian metric obtained by restriction

of 91, n+1-

The de-Sitter space has constant sectional curvature 1. The geodesics in de-Sitter space, are the
intersection of dS'" with 2-planes in R1"*+1. The isometry group of dS™" is isomorphic to the Lorentz
group O(1,n +1).

Definition 1.43. The (n + 1)-dimensional Anti de-Sitter space AdSY" is the hypersurface {v € R>™ :
qon(v) = =1} of R2"™ = (R""2 qy,,) endowed with the Lorentzian metric obtained by restriction of

q2,n-
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The Anti de-Sitter space has constant sectional curvature —1. The geodesics in Anti de-Sitter space,
are the intersection of AdS'" with 2-planes in R?™. The isometry group of AdS™" is isomorphic to the

semi-orthogonal group O(2,n).
Lemma 1.44. The group SO, (2,2) is isomorphic to (SL(2,R) x SL(2,R))/Zs.

Proof. Let (M (2,R), — det) denote the vector space consists of 2 x 2 real matrices endowed with the
quadratic form negative determinant of signature (2, 2). The group SL(2,R) x SL(2,R) acts on M (2,R)

linearly and isometrically by
X — AXB™', X e M(2,R), (A4, B) € SL(2,R) x SL(2,R) (1.3)

This induces a surjective representation from SL(2,R) x SL(2,R) to SO,(2,2). The kernel of this
representation is Zo = {£(Id, Id)}. This completes the proof. O

Remark 1.45. In the semi-Euclidean space (M (2,R), — det), the 3-dimensional Anti de-Sitter space
AdSY? of radius 1 is the level set — det™'(—1) which coincides with SL(2,R) ¢ M(2,R).

1.7 Einstein universe

In this section, we give the definition and some properties of Einstein universe Ein'". For more details,
we refer to [18], and [7].

Consider the scalar product space R?"*1 = (R"*3 g5 ,,11) forn > 1 and denote by (., .) the bilinear
form corresponding to g2, ,41. The semi-orthogonal group O(2,n + 1) is the set of all linear isometries
of R?"+1, The nullcone M?"+! of R2"+! is the set of non-zero null (lightlike) vectors in R2"+!

N2 = Ly € RPN {0} : qo.n41(v) = 0}.

The nullcone is a degenerated hypersurface of R2"*! homeomorphic to S x (R? \ {0}), and it is
invariant by the action of O(2,n + 1).

Definition 1.46. The (n + 1)-dimensional Einstein universe Ein'" is the image of W1 under projec-
tivization:
P: R\ {0} — RP"2,

In the sequel, for notational convenience, we will denote PP as a map from R%"*! implicitly assuming

that the origin 0 is removed from any subset of R?™*1 on which we apply P.

/\17 . . . . .
Definition 1.47. The double covering space Ein " of Einstein universe is the quotient space of the

nullcone >+ by the action of positive scalar multiplication.

For many purposes the double covering may be more useful than Ein!", itself. Considering the

bilinear form q2 5,41, the nullcone is defined by
v+ v =05+ vy

This common value is always positive. Dividing a vector v € 91>"*! by the positive number / v? + v3,
we may assume that

v%—f—v%:v%—i-'”—kv,%%:l,
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which describes the product S* x S”. Thus ml’” is diffeomorphic to S* x S* ¢ R*0 x R%"*1, Scalar
multiplication by —1 acts by the antipodal map on both S! and S™-factor. Thus Ein'" = @Ln /{£Id}
is deffeomorphic to (S! x S")/{+Id}.

For an arbitrary open subset U C Ein'", any local section o : U — R2"+1\ {0}, of the restriction of
IP to U determines a pullback of the metric on R%™*!, to a Lorentzian metric g, on U. For every section
o' : U — R?"+1\ {0}, we have 0/ = fo for some non-vanishing function f : U — R. Then g, = f?g,,
so the pullbacks are conformally equivalent. Hence the metrics g, altogether define a canonical conformal
structure [g] on Ein"™. Obviously, this structure is O(2, n + 1)-invariant.

The structure [g] lifts to a conformal Lorentzian structure [g] on the double cover Eim ", The double
cover (ﬁlm, [g]) is conformaly equivalent to (S' x S™, —d#? + ds?), where df? and ds? are the usual
round metrics on the spheres S' and S™ of radius one [7].

The group of conformal transformations on @1’2 is O(2,n + 1). The conformal group of Einstein
universe is the projective group PO(2,n + 1) = O(2,n + 1)/{xId}. The groups O(2,n + 1) and
PO(2,n + 1) act transitively on Ein " and Ein'™, respectively, since, O(2,n + 1) acts transitively on
the nullcone M2+,

Definition 1.48. A photon in Einstein universe Ein'? is the projectivizations of a totally isotropic 2-plane
in R2™. We denote the set of all photons by Pho'™.

In fact, a photons is a lightlike geodesic in Einstein universe and it is naturally homeomorphic to the

real projective line RPP'.

Definition 1.49. Given any point [p] € Ein'"™ the lightcone L([p]) with vertex [p] is the union of all

photons containing [p):

L([p]) :== {¢ € Pho"" : [p] € ¢}.

A lightcone L([p]) can be equivalently defined as the projectivization of the orthogonal complement
pt N NL". Furthermore, L([p]) is a singular hypersurface, and the only singular point on it is [p]. We
denote the lightcone with removed vertex by L([p]) and call it a vertex-less lightcone. A vertex-less
lightcone is a degenerate hypersurface of Ein" and it is homeomorphic to S*~! x R. We also denote a
photon ¢ C L([p]) with removed the vertex [p] by ¢ and call it a vertex-less photon.

1.7.1 Conformal compactification of Minkowski space

Consider the scalar product space R+, Here it will be convenient to use the following scalar product

1 1
(v,w) := —5 V1w = SUaWL — V3w + 04w + -+ Vng3Wni3.

Let (.,.)o denote the bilinear form defined by q1,, = —I; & I,, on RL™. Now, consider the following
embedding of the Minkowski space R into 9127 +1,

E RV — 2 C REMHL s | (2,10 | - (1.4)

The composition ® := P o £, is a conformal embedding, and its image is a dense open subset of Ein'".
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Definition 1.50. Given any point [p] € Ein'", the Minkowski patch Mink([p)) is the complement of the
lightcone L([p]) in Ein'",

Proposition 1.51. For an arbitrary point [p] € Ein'", the Minkowski patch Mink([p]) is conformally

equivalent to the Minkowski space EM™,

Proof. Since Ein" is PO(2,n + 1)-homogeneous, we may assume that [p] has homogeneous coordinate
[0:1:0:--:0]. Now, the conformal map ® defined above, maps E™ to Mink([0:1:0:---:0]).
This completes the proof. O

Recall from Section 1.5, a geodesic v through a point = in Minkwoski space E!'" has the form
y(t) = z + tv where z € EV™ and v € RY™. Also, an affine d-plane through a point x in Minkowski

space, is x + I1, where IT is a linear d-plane in underlying vector space R,

Definition 1.52. Let [p] € Ein'"™ and v(t) = = + tv be a geodesic in Mink([p]) ~ EY". We call the
point [q] € L([p]) the limit point of v in L([p]) C Ein>", if lim; 400 v(t) = [q]. Similarly, for an affine
degenerate hyperplane I1 C Mink([p]), we call the point [q] € L([p]) the limit point of 11 in L([p]) if for
all lightlike geodesics ~(t) C I1, lim;_,1 o0 Y(t) = [q].

Lemma 1.53. Let [p| € Ein'" and |q] € L([p]) be an arbitrary point. Then there exists a lightlike
geodesic y(t) = x + tv in Mink([p]) such that [q] is the limit point of y. Furthermore, for every lightlike
geodesic B(t) = y+tw in Mink([p]), the limit point of 3 is [q] if and only if v = Aw and (x — \y,v) =0
for some A € R*.

Proof. Without loosing generality, we may assume that [p] has homogeneous coordinate [0 : 1: 0 : - -+ : 0],

since, Ein®" is PO(2,n 4 1)-homogeneous. Since [q] € L([p]), the first coordinate of [q] is zero, i.e.,

[q) = [0 : u : v] for some u € R and some null vector v € RY™, There exists z € E!™ such that
1

(z,v) = su. Now define () = x + tv. The image of v has homogeneous coordinate

y(t) =[1: (z,x) + 2t(z,v) + t2(v,v) x4+ tv] = [1: (z,2) +tu: z + tv].

For t # 0 we have
y(t)=[1/t: (z,x) [t +u:x/t + v].

and
lm ~(t) =[0:wu:v] =g

t—+oo

For second part, we have
lim B(t) =[0: 2(y,w) : w].

t—+oo

Obviously, [g] is the limit point of 3 if and only if, v = Aw and (x — Ay, v) = 0, for some A € R*. [

Lemma 1.54. Let [p] € Ein'" and [q] € Mink([p]) be an arbitrary point. The intersection of the
lightcone L([q]) with the Minkowski patch Mink([p]) is the affine nulcone of L/ ([q]).

Proof. Assume that v : R — Mink([p]) be a lightlike geodesic through [g]. Obviously, v(t) €
L([q]) N Mink([p]), for all t € R. Hence, L%/ ([q]) C L([q]) N Mink([p]). On the other hand, suppose
that [¢] # [z] € L([q]) N Mink([p]). The intersection of the unique photon ¢ in L([g]) through [z] with
the Minkowski patch Mink([p]) is the unique lightlike geodesic in L%/ ([q]) through [z] € Mink([p]).
Thus, [x] € L%/ ([q]). This proves the lemma. O
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Proposition 1.55. Let [q] € L([p]) be an arbitrary point. Then there exists a unique affine degenerate
hyperplane 11 in Mink([p]), such that [q] is the limit point of T1.

Proof. By Lemma 1.53, there exists a lightlike geodesic v(¢) = x + tv, such that [g] is the limit point of
7. We show that z + v is the desired affine hyperplane. Let 3(t) = y + tw, be a lightlike geodesic in
x + vt There exist A € R* and u € v such that 5(t) = = + u + tAv. Consider the limit point of 3 in

L([p]).-
lim B(t) =[0: 2\ (u+ z,v) : Av].

t—+o0

Since (x + u,v) — (x,v) = 0, Lemma 1.53 implies that lim; 1+ 5(¢) = [q].
For uniqueness, let IT" be an affine lightlike hyperplane with limit point [g]. Let a(t) = z + tw be a
lightlike geodesic in IT'. Then

tl}lrinooa(t) =[0:2(z,w) :w] =[q] =1[0:2(x,v) : v].
Using Lemma 1.53 again we have, w = v and (z — Az, v) = 0. Hence z — Az € v* and s0, z € z + v,
Thus a(t) C = + v*. This completes the proof. O

Lemma 1.56. Let [q1], [q2] € L([p]) be two distinct points. Then [q1] and [q2] lie on the same photon in
L([p]) if and only if their corresponding degenerate affine planes in Mink([p]) are parallel.

Proof. In the setting of Proposition 1.55, we have [g1] = [0 : w1 : v1] and [g2] = [0 : w2 : w2,
where u1,us € R are constant numbers and v1, vy € RY2 are null vectors. Then, there exist z1, xo €
Mink([p]) ~ EV? such that 1 + vi- and x5 + vy are the degenerate affine hyperplanes in Mink([p)])
correspond to [¢1] and [ga], respectively. The linear 2-plane in R?"*! generated by vectors q; = (0, u1,v2)
and g2 = (0, ug, v2) is totally isotropic if and only if (g1|g2) = 0 if and only if (v, v2) = 0 if and only
if vy1 = Avy if and only if there exists a translation w € RY2 such that 21 + vll +w =129+ U2L. This
completes the proof. O

Lemma 1.57. [18, p.p. 56] By the action of O(2,n) on Einstein universe Ein'", the stabilizer of a point
in Ein'" is isomorphic to Conf(EL™) ~ (R* x O(1,n)) x RV,

Let ¢ be a photon in Einstein universe Ein'"". The complement of ¢ in Ein'" is an open dense subset
and we denote it by Ein;’". It is diffeomorphic to S' x R™. There is a natural codimension 1 foliation Fo
on Einé)’" on which the leaves are degenerate hypersurfaces diffeomorphic to R™. Fixing a point [p] € ¢,
the complement of ¢ in the lightcone L(([p]) is a leaf of F4. The other leaves are the degenerate affine
hyperplanes in Mink([p]) with limit point in ¢. The group of conformal transformations on Ein;’" acts
on Ein;’n transitively and it preserves the foliation F. In fact, Conf (Einé’") is the stabilizer of ¢ by the
action of PO(2,n) [18].

Definition 1.58. For an integer n, the (2n-+1)-dimensional Heisenberg group H (2n+1) is the unique (up
to isomorphism) simply connected Lie group which its center C' is a 1-dimensional subgroup isomorphic
to R, and the quotient H(2n + 1)/C'is isomorphic to the additive group R*".
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The Heisenberg group H(2n + 1) is a unipotent group and one can consider it as a subgroup of
GL(n + 2,R) as following:

1 U a
0 ILixn v|:uveR" acR
0 01><TL 1

Lemma 1.59. [18, Lemma 4.15] By the action of PO(2,n) on Einstein universe Ein'™, the stabilizer
of a photon is isomorphic to (R* x SL(2,R) x O(n — 2)) x H(2n — 3) where H(2n — 3) is the

(2n — 3)-dimensional Heisenberg group.

1.7.2 de Sitter and Anti-de Sitter components

In this section, we describe de-Sitter and Anti de-Sitter components in Einstein universe Ein'".

Definition 1.60. A spacelike hypersphere in Ein™ is the one-point compactification of a spacelike affine

1n

hyperplane of a Minkowski patch in Ein

Equivalently, spacelike hyperspheres are projectivizations of v+ N 9M>"*! for timelike vectors v €
R27+1 It can be easily seen that a spacelike hypersphere in Ein'" is naturally conformally equivalent to

the usual Riemannian round n-sphere S'™.

Definition 1.61. A de-Sitter component in Ein'" is the complement of a spacelike hypersphere S™ C

Ein'™. It is homeomorphic to S™ x R and evidently, its conformal boundary is S™.

Lemma 1.62. A de-Sitter component in Ein'" is conformally equivalent to the model de-Sitter space
dSH™ in RV (described in Definition 1.42).

Proof. Assume that v € R*"*! is a timelike vector. The orthogonal complement subspace v is of
signature (1,n + 1). Let {e1, - - - , e,12} be an orthonormal basis for v on which ey is a timelike, and
en+s € Ro be a unit vector. Then B = {ej, - ,ep42,ept+3} is an orthonormal basis for R2nH+1 | Let
[p] € Ein?™ \ P(v") be an arbitrary point. There exist unique non-zero vectors x € v and y € Rv such

that p = x + y. Let (z1,- - - , Zp+2,y) denotes the coordinate of p = = + y respect to the basis B. Then
SR R AR

Since y is non-zero, dividing p by ¥, we may assume
—wi At T, =

which describes the de-Sitter space dS'" in v+ ~ RV H, O

Definition 1.63. An Einstein hypersphere is the closure of a de-Sitter hypersphere S, ([q]) C Mink([p])
(defined in Definition 1.35) in Ein'", for some [p] € Ein'" and [q] € Mink([p]).

The Einstein hyperspheres are projectivizations of v N 92"+ for spacelike vectors v € R2"+1,
For n > 2, every Einstein hypersphere in Ein'"" has a natural structure of Ein'"~!. For n = 1, every

Einstein hypersphere is homeomorphic to disjoint union of two circles.
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Definition 1.64. For n > 2, an Anti de-Sitter component in Ein'" is the complement of an Einstein
hypersphere Eint"~!  Ein'™. It is homeomorphic to S* x R™ and evidently, its boundary is Eint" 1.
Lemma 1.65. An Anti de-Sitter component in Ein™" is conformally equivalent to the model Anti-de Sitter
space AdSY™ in R*™ (described in Definition 1.43).

Proof. Assume that v € R>"*1 be a spacelike vector. The orthogonal complement subspace v is of
signature (2,n). Let {e, €2, -+ , e, 2} be an orthonormal basis for v~ on which e; and e are timelike
vectors, and e,,+3 € Ru be a unit vector. Then B = {ey, -+, e,12,en4+3} is an orthonormal basis for
R27+1, Let [p] € Ein'™ \ P(v) be an arbitrary point. There exist unique non-zero vectors = € v and
y € Ru such that p = = + y. Let (21, -+ , X,42,y) denotes the coordinate of p = x + y respect to the
basis B. Then

2 2., 2 2 2
LTy a3 F L0 = Y

Since y is non-zero, dividing p by ¥, we may assume

2 2, 2 2
—x] —xy w3t 0 = 1,

which describes the Anti de-Sitter space AdSH" in v+ ~ R?". O

Remark 1.66. It is remarkable that, for an Einstein hypersphere Eint"~! C Ein"" and an arbitrary
point p € Einb" =1 the intersection of Ein'""~1 with Mink'"(p) (the Minkowski patch at p in Einstein
universe Ein'") is an affine Lorentzian hyperplane 11 in the Minkowski patch Mink(p). One can see that,
the limit points of the geodesics in 11 in the lightcone L' (p) (the lightcone of p in Ein'"™) determines
the lightcone LY ~1(p) (the lightcone of p in Ein'"~1). This is an alternate description of Einstein

1n

hyperspheres in Ein>" which is th Lorentzian analogue of Definition 1.60.

1.7.3 Two dimensional Einstein universe

The 2-dimensional Einstein universe is diffeomorphic to a 2-torus. Each lightcone L([p]) in Ein'-! consists
of two photons which intersects at [p]. The conformal group of Einl'! is isomorphic to PO(2, 2).

Here is a useful model of Ein!

. We use again the vector space M (2, R) equipped with the quadratic
form — det as we used in the proof of Lemma 1.44. In this model, the nullcone 91?2 of (M (2, R), — det)
is the set of nonzero singular matrices and the 2-dimensional Einstein universe Ein®! is the quotient of
the nullcone by the action of nonzero scalar multiplication. By Lemma 1.44, the groups PO,(2,2) and
PSL(2,R) x PSL(2,R) are isomorphic.

Every nonzero singular X € M (2,R) determines two lines in R?: its kernel and its image. Let
([A],[B]) € PSL(2,R) x PSL(2, R) be an arbitrary element. Then [A] preserves ker X and [B] preserves

Im X. Therefore, there is a canonical identification of Ein'! with RP! x RP' by
Ein'! — RP!' x RP!,  [X]~— [ker X : Im X].

By this identification, the left factor of PSL(2,R) x PSL(2,R) acts trivially on the left factor RP!, and
the right factor acts trivially on the right factor RP!.
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1.7.4 Three dimensional Einstein universe

The 3-dimensional Einstein universe Ein'? is conformally equivalent to (S x S?)/{#Id} on which
S! x §? is equipped with the metric tensor —df? + ds?, where df? and ds? are the usual round metrics

on the spheres S' and S? of radius one. The group of conformal transformations on Ein'»?

is isomorphic
to O(2, 3). We denote its identity component by SO, (2, 3), which is the set of linear isometries on R?3

preserving both space and time orientations.

Definition 1.67. Let [p], [q] € Ein'2 be two distinct point and they do not lie on a common photon. Then,
the intersection of the lightcones L([p]) and L(|[q)) is called an ideal circle.

Lemma 1.68. An ideal circle is projectivized nullcones of a linear subspace of R*? of signature (1,2).

Proof. Let [p],[q] € Ein'? and [q] € Mink(p). Observe that, the intersection of the two degenerate
hyperplanes p*, g= < R%?3 is a linear subspace of signature (1,2). Now, the lemma follows easily. [

Definition 1.69. A timelike circle in Ein'? is the projectivized nullcone of a linear subspace of R*3 of

signature (2, 1).

Lemma 1.70. The complement of a timelike circle in Ein'? is conformally equivalent (up to double
cover) to (AdSl’1 x St do? + db?) where do? (resp. df?) is the usual Lorentzian metric on AdStt of
constant sectional curvature —1 (resp. positive definite metric on S' of constant sectional curvature
1). Furthermore, by the action of O(2,3), the identity component of the stabilizer of a timelike circle is
isomorphic to the direct product SO(2,1) x SO(2).

Proof. Let € C Ein'? be a timelike circle and V' < R?3 the linear subspace corresponding to ¢. The
orthogonal complement V' is of signature (0,2). Choose an orthonormal basis {e1, €2, e3} for V where
es is spacelike, and an orthonormal basis {e4, e5} for V. Then B = {ey,--- ,e5} is an orthonormal
basis of R?3. Suppose that [p] € Ein'? \ ¢ is an arbitrary point, and p = (py,- - - ,ps) is an arbitrary
representative of [p]. We have
—pi — P53 +p3 = —pi — 1.
Observe that (py, ps) € V' is a non-zero vector. Therefore, dividing p by the positive number \/piTpg ,
we may assume
—pi —p3 —pi=—pi—ps =1,

—12

which describes the product AdS!! x S' ¢ Ein
Obviously, the identity component of the stabilizer of V' is isomorphic to direct product SO, (2, 1) x
SO(2). This completes the proof. O

Remark 1.71. From now on, for a point [p] € Ein'? C RP* and a representative in R*3 of the class [p),

we use the same symbol p when there is no ambiguity.
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Chapter 2

Proper actions

In this chapter, we describe the cohomogeneity one proper actions on the 3-dimensional Einstein universe
Ein'2.

Theorem 2.1. Let G C SO,(2,3) be a connected Lie group which acts on Ein'? properly and with
cohomogeneity one. Then G is conjugate to either SO(3) or SO(2) x SO(2). Furthermore, the action of
SO(3) on Ein"? admits a codimension 1 foliation on witch each leaf is a spacelike hypersphere. Moreover,
the action of SO(2) x SO(2) on Einl'? preserves a timelike circle and acts on it transitively. Also, it
admits a codimension 1 foliation on the complement of timelike circle on which each leaf is conformally

equivalent to 2-dimensional Einstein universe Ein'' and exactly one of them is an Einstein hypersphere.

Lemma 2.2. Let G be a Lie group with acts on a compact space X continuously and properly. Then G is

compact.

Proof. Since G acts on X continuously and properly the following map is proper.
T:GxX —XxX, (g,2) (g9z,2).

The space G x X is compact, since it is the inverse image of the compact space X x X through the proper

map 7. This implies that G is compact. O

It is well-known that every maximal compact subgroup of SO, (2, 3) is conjugate to SO(2) x SO(3)
(cf. [27, p.p. 275]). This group preserves a 3-dimensional subspace V' < R?3 of signature (0, 3). Also, it
preserves the orthogonal complement subspace V- < R?3 (which is of signature (2,0)). Considering
the action of SO(2) x SO(3) on the double cover space Em' "~ ~ S! x S?, the SO(2)-factor acts on
{x} x S? trivially and SO(3)-factor acts on S! x {*} trivially. Obviously, SO(2) x SO(3) acts on Ein

transitively.
Proposition 2.3. The group SO(3) ~ Iso,(S?) has no 2-dimensional connected Lie subgroup.

Proof. First, we show that every 1-parameter subgroup of SO(3) is conjugate to SO(2), the identity
component of the stabilizer of a point in S? by the action of SO(3). Let H C SO(3) be a 1-parameter
subgroup. We show that H admits a fixed point in S?, then the desiered result follows, since SO(3) acts
on S? transitively. Assume the contrary which is: H admits no fixed point in S?. Therefore, the stabilizer

of each point is discrete. By [10, Theorem 11.3.9 ], H admits a codimension 1 foliation on S. But this
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contradicts the fact that a compact manifold admits a codimension 1 foliation if and and only if its Euler
characteristic vanishes (see [30]). Hence, H fixes a point in S2.

Assume the contrary statement of the proposition which is: GG is a 2-dimensional Lie subgroup of
SO(3). In the one hand, by preceding paragraph, every 1-parameter subgroup of G is isomorphic to
SO(2). On the other hand, by [38, p.p. 212], G is isomorphic to the 2-torus T2, R2, SO(2) x R, or affine
group Aff. This is a contradiction, since all these groups admit a 1-parameter subgroup isomorphic to
R. O

Lemma 2.4. Let G be a proper connected Lie subgroup of SO(2) x SO(3) with dim G > 2. Then, either
G = {Id} x SO(3) ~ SO(3) or G is conjugate to SO(2) x SO(2).

Proof. Let P; and P, denote the projection morphisms from SO(2) x SO(3) to SO(2) and SO(3),
respectively. The group G is a subgroup of P;(G) x P»(G). Proposition 2.3 implies that dim P»(G) €
{1,3}. If dim P5(G) = 1, then P,(G) = SO(2) up to conjugacy and P;(G) = SO(2). Therefore,
G = S0(2) x SO(2) up to conjugacy.

Now, suppose that dim P»(G) = 3. Since G is a proper subgroup, dim G = 3. Hence, the differential
map dP, at the identity element of G is a Lie algebra isomorphism from g = Lie(G) to Lie(SO(3)) =
50(3). So, f = dP; o (dP2)™! : 50(3) — dPi(g) is a surjective Lie algebra morphism. If P;(G) =
SO(2), then ker f is a 2-dimensional ideal of so(3). This contradicts the simplicity of so(3). Hence
P (G) = {Id}. Therefore, G = {Id} x SO(3) ~ SO(3). O

Proof of Theorem 2.1. In the one hand, since G acts properly, Lemma 2.2 implies that it is compact,

1.2 is compact. So, it is a subgroup of SO(2) x SO(3) up to conjugacy. On the other hand, since

since Ein
G acts with cohomogeneity one, it is a proper subgroup of SO(2) x SO(3). Hence, by Lemma 2.4, G is
conjugate either to SO(3) or SO(2) x SO(2). We show that both these groups act by cohomogeneity
one. There exist a unique SO(2) x SO(3)-invariant decomposition for R*? = V @ V1 where V is of
signature (2, 0) (and hence V* is of signature (0, 3)).

Observe that by the action of SO(3) on the double cover space IEi?lm, the induced orbit at each point
(z,y) € S* x S?is {x} x S2. This orbit is the projectivization of z N N3 C R?3 on Ein . 1t is clear
that the group Zy = {#£1d} acts on {z} x S? trivially, for all z € S'. Hence, each orbit induced by SO(3)
in Ein'?

The action of SO(2) on S? admits two antipodal fixed points {xq, —z¢} € S* € P(V ') and acts on
S?\ {wo, —w0} freely. Hence, SO(2) x SO(2) preserves a circle

is a spacelike hypersphere.

¢ = (St x {z0, —20})/Zo = P(V & Rzp) N Einb?,

and acts on it transitively. It is clear that, for arbitrary y € S! and x € S\ {zg, —x0}, the orbit induced
by SO(2) x SO(2) at (y,z) € S! x S? is conformally equivalent to Em . Hence, the orbit induced at
[z : y] € Ein'? is conformally equivalent to m171/22 = Ein"!. Since SO(2) x SO(2) preserves the
spacelike line Rz, it preserves the orthogonal complement subspace xOL < R?3. Hence the orbit induced

at [p] € P(zg) N Ein'? is an Einstein hypersphere. This completes the proof. O

Corollary 2.5. Let G C SO, (2, 3) be a connected Lie subgroup which acts on Ein'? properly and with

cohomogeneity one. Then G admits a fixed point in the projective space RP*,
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Proof. By Theorem 2.1, G is conjugate either to SO(3) or SO(2) x SO(2). According to the proof of

Theorem 2.1, considering the actions on the double cover space Ein = =S! x S, the group SO(3) fixes
the S*-factor pointwisely. On the other hand, SO(2) x SO(2) preserves the spacelike line Rz. Hence, it
fixes P(Rzg) € RP*. This completes the proof. O
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Chapter 3

The irreducible action of PSL(2, R)

In this chapter, we study the irreducible action of PSL(2,R) on the 3-dimensional Einstein universe
Ein'? which is of cohomogeneity one'.

By Theorem 0.4, up to conjugacy, PSL(2,R) ~ SO,(1,2) is the only connected proper subgroup
of O(2,3) which acts on R?3 irreducibly. Recall from Section 1.4.4, there is only one irreducible
representation of PSL(2,R) in G L(R®). This representation is the natural action of PSL(2,R) on the
vector space V = R4[X, Y] of homogeneous polynomials of degree 4 in two variables X and Y. This
action induces three types of orbits in the 4-dimensional projective space RP* = P(V): an 1-dimensional
orbit, three 2-dimensional orbits, and the orbits which PSL(2, R) acts on them freely.

Also, this action preserves the quadratic form q of signature (2, 3) given in the coordinate system
(X4, X3Y, X?Y?, XY3, YY),

by
1 1
q(a4X4 + a3 X3 4+ X?Y2 + a XY + a0Y4) = 2a4a0 — §a1a3 + 6a%.
This induces a representation PSL(2,R) — O(2,3) C PSL(5,R). Consequently, the irreducible action

of PSL(2,R) on R?? induces a conformal action on 3-dimensional Einstein universe Ein%?2.

Theorem 3.1. The irreducible action of PSL(2,R) on the 3-dimensional Einstein universe Ein>? admits

three orbits:
e an 1-dimensional lightlike orbit, i.e. of signature (0,0,1),
e a 2-dimensional degenerate orbit i.e. of signature (0,1, 1),
e an open orbit (hence of signature (1,2)) on which the action is free.

The 1-dimensional orbit is lightlike, homeomorphic to RP!, but not a photon. The union of the
1-dimensional orbit and the 2-dimensional orbit is an algebraic surface, whose singular locus is precisely
the 1-dimensional orbit. It is the union of all projective lines tangent to the 1-dimensional orbit. Figure
3.1 describes a part of the 1 and 2-dimensional orbits in the Minkowski patch Mink([Y4]).

The results of this chapter are published in [26].
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Figure 3.1: Two partial views of the intersection of the 1 and 2-dimensional orbits in Einstein universe with
Mink([Y%]). Red: Part of the 1-dimensional orbit in Minkowski patch. Green: Part of the 2-dimensional
orbit in Minkowski patch.

The complement of the Einstein universe in R has two connected components: the 3-dimensional
Anti de-Sitter space AdS"? and the generalized hyperbolic space H??2: the first (respectively the second)
is the projection of the domain R defined by {q < 0} (respectively {q > 0}).

We will also describe the actions on Anti de-Sitter space and the generalized hyperbolic space H??:

Theorem 3.2. The orbits of PSL(2,R) in the Anti de-sitter component AdS? are Lorentzian, i.e. of
signature (1,2). They are the leaves of a codimension 1 foliation. In addition, PSL(2,R) induces
three types of orbits in H>2: a 2-dimensional spacelike orbit (of signature (2,0)) homeomorphic to the
hyperbolic plane H2, a 2-dimensional Lorentzian orbit (i.e., of signature (1,1)) homeomorphic to the

de-Sitter space dS*™', and four kinds of 3-dimensional orbits where the action is free:

e one-parameter family of orbits of signature (2, 1) consisting of elements with four distinct non-real

roots,

e one-parameter family of Lorentzian (i.e. of signature (1,2)) orbits consisting of elements with four

distinct real roots,
o two orbits of signature (1,1, 1),

e one-parameter family of Lorentzian (i.e. of signature (1,2)) orbits consisting of elements with two
distinct real roots, and two distinct complex conjugate roots so that the cross-ratio of the four roots

has an argument strictly between —7 /3 and /3.

Let f be an element in V. We consider it as a polynomial function from C? into C. Actually, by
specifying Y = 1, we consider f as a polynomial of degree at most 4. Such a polynomial is determined,
up to a scalar, by its roots z1, 29, 23, 24 in CP! (some of these roots can be oo if f can be divided by Y").
It provides a natural identification between P(V) and the set (C/II\F’i made of 4-tuples (up to permutation)
(21, 22, 23, 24) of CP! such that if some z; is not in RP!, then its conjugate z; is one of the z;’s. This
identification is PSL(2, R)-equivariant, where the action of PSL(2, R) on @\P’i is simply the one induced
by the diagonal action on (CP!)4,

Actually, the complement of RP! in CP! is the union of the upper half-plane model H? of the
hyperbolic plane, and the lower half-plane. We can represent every element of @i by a 4-tuple (up to

permutation) (z1, 22, 23, 24) such that:
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— either every z; lies in RP!,
—or 21, zo lies in RPY, z3 lies in H? and 24 = Z3,
—or z1, z9 lies in H? and 23 = 21, 24 = Z22.

Theorems 3.1 and 3.2 will follow from the following proposition:

Proposition 3.3. Let [f]| be an element of P(V). Then:

L2 if and only if it has a root of multiplicity at least 3, or two distinct real roots z1, 2,

e it lies in Ein
and two complex roots z3, z4 = Z3, with z3 in H? and such that the argument of the cross-ratio of

21,22, 23, 24 is £m/3.

e it lies in AdS'3 if and only it has two distinct real roots z1, z2, and two complex roots zs3, z4 = Z3,
with z3 in H? and such that the argument of the cross-ratio of z1, 22, 23, 24 has absolute value
> /3.

o it lies in H>? if and only if it has no real roots, or four distinct real roots, or a root of multiplicity
exactly 2, or it has two distinct real roots z1, za, and two complex roots zs, z4 = Z3, with z3 in H?

and such that the argument of the cross-ratio of z1, z2, 23, z4 has absolute value < 7 /3.

Proof. Assume that f has no real root. Hence we are in the situation where z1, zo lie in H? and 23 = 7,
z4 = Z3. By applying a suitable element of PSL(2,R), we can assume z; = 4, and z2 = ri for some
r > 0. In other words, f is in the PSL(2, R)-orbit of (X2 + Y2)(X? 4 72Y2). The value of q on this
polynomial is 2 x 1 x 72 + %(1 +72)2 > 0, hence [f] lies in H2?2,

Hence we can assume that f admits at least one root in RP!, and by applying a suitable element of
PSL(2,R), one can assume that this root is oo, i.e. that f is a multiple of Y.

We first consider the case where this real root has multiplicity at least 2:
f=Y?aX?+bXY +cY?)

Then, q(f) = %aQ: it follows that if f has a root of multiplicity at least 3, it lies in Ein'"?, and if it has a
real root of mulitplicity 2, it lies in H?>?2.
We assume from now that the real roots of f have multiplicity 1. Assume that all roots are real. Up to

PSL(2,R), one can assume that these roots are 0, 1, 7 and co with 0 < r < 1.
fX,Y)=XY(X -Y)(X —rY) =X — (r + DX?Y? + 7 XY?3,

Then, q(f) = —4r + £(r + 1)> = {(r* = r + 1) > 0. Therefore f lies in H*? once more.
The only remaining case is the case where f has two distinct real roots, and two complex conjugate

roots z, zZ with z € HZ2. Up to PSL(2,R), one can assume that the real roots are 0, oo, hence:
f(X,Y) = XY (X —2Y)(X —2Y) = XY (X% — 2|2|cos 0XY + |2|*Y?)

where z = |z|e?. Then:

1,2

Hence f lies in Ein™ if and only if § = 7 /6 or 57/6. The proposition follows easily. O
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Remark 3.4. F Fillastre indicated to us that our description of the open orbit in Ein“? appearing in the
first item of Proposition 3.3 has an alternative and more elegant description: this orbit corresponds to

polynomials whose roots in CP! are ideal vertices of a regular ideal tetraedra in H>.

Proof of Theorem 3.1. It follows from Proposition 3.3 that there are precisely three PSL(2, R)-orbits
in Ein!?2:

— one orbit V' comprising polynomials with a root of multiplicity 4, i.e. of the form [(sY — ¢.X)*] with
s,t € R. Itis clearly 1-dimensional, and equivariantly homeomorphic to RP! with the usual projective
action of PSL(2,R). Since %\t:() (Y —tX)* = —4XVY3 is a g-null vector, this orbit is lightlike (but
cannot be a photon since the action is irreducible).

— one orbit £ comprising polynomials with a real root of multiplicity 3, and another real root. These
are the polynomials of the form [(sY — tX)3(s'Y — #'X)] with s, ¢, s, ¢’ € R. It is 2-dimensional, and it
is easy to see that it is the union of the projective lines tangent to A/. The vectors tangent to £ induced by
the 1-parameter subgroups Yp and Yz at [XY3] € Lare vp = —Y* and vp = 3X2Y 2 + Y. Obviously,
vp is orthogonal to vy and vy + vp is spacelike. Hence L is of signature (0,1, 1).

— one open orbit comprising polynomials admitting two distinct real roots and a root in H? such that
the argument of the cross-ratio of the four roots is 7/3. The stabilizers of points in this orbit are trivial
since an isometry of H? preserving a point in H? and one point in OH? is necessarily the identity. O

Proof of Theorem 3.2. According to Proposition 3.3, the polynomials in AdS'3 have two distinct
real roots, and a complex root H? (and its conjugate) such that the argument of the cross-ratio of the four
roots has absolute value > /3. It follows that the action in AdS'? is free, and that the orbits are the
level sets of the function 6. Suppose that M is a PSL(2, R)-orbit in AdS"3. There exists 7 € R such that
[f] = [Y(X%2+Y?)(X —rY)] € M. The orbit induced by the 1-parameter subgroup Yz at [f] is

v(t) = [(X*+Y?)((sint cost—rsin® t) X*—(sint cos t+r cos® £)Y?+(cos” t—sin® t+2r sint cos t) X Y)].

Then q(% li=0) = —2—2r? < 0. This implies, as for any submanifold of a Lorentzian manifold admitting
a timelike vector, that M is Lorentzian, i.e., of signature (1, 2).

The case of H? is the richest one. According to Proposition 3.3 there are four cases to consider:

e No real roots. Then f has two complex roots z1, 2z in H? (and their conjugates). It corresponds to
two orbits: one orbit corresponding to the case z; = z3: it is spacelike and has dimension 2. It is the
only maximal PSL(2, R)-invariant surface in H?2 described in [11, Section 5.3]. The case 21 %+ 2o
provides a one-parameter family of 3-dimensional orbits on which the action is free (the parameter
being the hyperbolic distance between z; and z2). One may assume that z; = % and 2o = ¢ for
some r > 0. Denote by M the orbit induced by PSL(2,R) at [f] = [(X? + Y?)(X?2 + 72Y?)].
The vectors tangent to M at [f] induced by the 1-parameter subgroups Yy H, Yp and Yy are:

vg = —4X 4V, vp = —4AX3Y 2P+ 1)XY3,  wp =20 -1) X3V 42(r?-1)XY3,

respectively. The timelike vector vy is orthogonal to both vp and vg. It is easy to see that the
2-plane generated by {vp,vg} is of signature (1,1). Therefore, the tangent space Tjs M is of
signature (2, 1).

e Four distinct real roots. This case provides a one-parameter family of 3-dimensional orbits on

which the action is free - the parameter being the cross-ratio between the roots in RP'. Denote
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by M the PSL(2,R)-orbit at [f] = [XY (X — Y)(X — rY)] (here as explained in the proof of
Proposition 3.3, we can restrict ourselves to the case 0 < r < 1). The vectors tangent to M at [f]

induced by the 1-parameter subgroups Yy, Yp, and Yf are:

v = —rY 4+ 2(r + DXY3 - 3X%Y?%, wp = 2X3Y + 2rXY3,
vp =Xt =Yt 4 3(r — DX2Y2 4+ 2(r + D)XY? = 2(r + 1) XY,

respectively. A vector x = avy + bvp + cvg is orthogonal to vp if and only if 2ra + b(r + 1) +
c(r+1)*=0.Seta = (b(r + 1) +¢(r +1)*)/ — 2rin
3 7
q(z) = 2ra® + §b2 + (5(7“2 +1) =)t +2(r + L)ab + 2(r + 1)* + ac(2r? — r + 5).
Consider q(z) = 0 as a quadratic polynomial F'in b. Since 0 < r < 1, the discriminant of F is
non-negative and it is positive when ¢ # 0. Thus, the intersection of the orthogonal complement of
the spacelike vector vp with the tangent space T} M is a 2-plane of signature (1, 1). This implies

that M is Lorentzian, i.e., of signature (1,2).

o A root of multiplicity 2. Observe that if there is a non-real root of multiplicity 2, when we are in the
first "no real root" case. Hence we consider here only the case where the root of multiplicity 2 lies

in RP!. Then, we have three subcases to consider:

— two distinct real roots of multiplicity 2: The orbit induced at X2Y? is the image of the
PSL(2, R)-equivariant map

dSt! ¢ P(Ro[X,Y]) — H22,  [L] — [L7],

where Ry [ X, Y] is the vector space of homogeneous polynomials of degree 2 in two variables
X and Y, endowed with discriminant as a PSL(2, R)-invariant bilinear form of signature
(1,2) [11, Section 5.3]. (Here, L is the projective class of a Lorentzian bilinear form on R?).
The vectors tangent to the orbit at X2Y 2 induced by the 1-parameter subgroups Yp and Yz
are vp = —2XY3 and v = 2X3Y — 2X Y3, respectively. It is easy to see that the 2-plane
generated by {v,, vg} is of signature (1, 1). Hence, the orbit induced at X?Y? is Lorentzian.

— three distinct real roots, one of them being of multiplicity 2: Denote by M the orbit induced
by PSL(2,R) at [f] = [XY?(X — Y)]. The vectors tangent to M at [f] induced by the

1-parameter subgroups Yy, Yp and Y are:
vg = —2XY3  up=Y*—2XY3 op=Y?*-X*-2X?Y?4+ X3V — XV3,

respectively. Obviously, the lightlike vector vy + vp is orthogonal to 777 M. Therefore, the
restriction of the metric on T}z M is degenerate. It is easy to see that the quotient of 7j; M
by the action of the isotropic line R(vg + vp) is of signature (1,1). Thus, M is of signature
(1,1,1).

— one real root of multiplicity 2, and one root in H?: Denote by M the orbit induced by
PSL(2,R) at [f] = [Y2(X? + Y?)]. The vectors tangent to M at [f] induced by the 1-
parameter subgroups Yz, Yp and Yz are vy = 4Y4, vp = —2XY3, and vg = 2X3Y +
2XY3, respectively. Obviously, the lightlike vector vz is orthogonal 114 M. Therefore, the
restriction of the metric on 775 M is degenerate. It is easy to see that the quotient of 774 M by
the action of the isotropic line R(wvp) is of signature (1, 1). Thus M is of signature (1,1, 1).
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e Two distinct real roots, and a complex root in H? (and its conjugate) such that the argument of
the cross-ratio of the four roots has absolute value < /3. Denote by M the orbit induced by
PSL(2,R) at [f] = [Y(X? + Y?)(X — rY)]. The vectors tangent to M at [f] induced by the

1-parameter subgroups Yz, Yp and Y are:
vy = —4rY1=2X3Y 42XY3,  vp = —3X?Y2422rXY3-Y?  op = X'-Y1-2r X3V -2rXY?3,

respectively. The following set of vectors is an orthogonal basis for 775 M where the first vector is

timelike and the two others are spacelike.
{(7r 4+ 3r3) vy + (6 — 2r2)vp + (5 + r2)vp, dvp + vE, vy }.

Therefore, M is Lorentzian, i.e., of signature (1, 2). O



Chapter 4

Actions on Mikowski patch and
lightcone

In this chapter, we study the cohomogeneity one actions on Einstein universe Ein'? admitting a fixed
point in Ein'2. Let G C Conf(Ein'?) be a Lie subgroup fixing a point p € Ein'2. Then G preserves
the lightcone L(p), since G preserves the degenerate hyperplane p~ < R%3 . Hence, it also preserves the
Minkowski patch Mink(p) ~ E2. This induces a representation from G into Conf(E%?) the group of
conformal transformations of Minkowski space E!»2. Therefore, a cohomogeneity one action on Ein'-?
fixing a point p € Ein'? admits either an open orbit in L(p) or a 2-dimensional orbit in the Minkowski
space Mink(p) ~ EL2,

Recall from Section 1.7.1, by the action of SO, (2, 3), the identity component of the stabilizer of a
point p € Ein'? is isomorphic to Conf, (E1?) ~ (R* x SO,(1,2)) x RY2. Also, recall form Section 1.2
that, the splitting (R* x SO,(1,2)) x R™? depends on the unique point o € E? fixed by R% x SO,(1,2).

Theorem 4.1. All the connected Lie subgroups of Conf E'?) ~ (R* x SO,(1,2)) x Rb? with dim > 2

acts with cohomogeneity one on Einstein universe, except R\? and R x R12,
Proof. It follows immediately from Theorem 4.4. O

Remark 4.2. It is remarkable that choosing o € EY? as the origin of Minkowski space, it becomes a
vector space. Moreover, the quadratic form qy 2 on RY2 induces a quadratic form q := qi,20 (©,) ' on

EY2 where ©, is the orbit map of the point o. This makes (E'2,0) a Lorentzian scalar product space.

The following maps are Lie group morphisms:

P (R% x SO6(1,2)) x RM? — R* x SO,(1,2), (N, A,0) = () A),
Py : (R% x SO.(1,2)) x RM — SO.(1,2), (N, A, v) — A,
Py (R x SO6(1,2)) x RY? — RY, W/ RHI=DY

The morphisms P;, Pj;, and P, are called the linear projection, the linear isometry projection and the

homothety projects, respectively.

Definition 4.3. Let G be a Lie subgroup of Conf,(IEY?). We call the image of G under P;, Py, and Py,
the linear projection, the linear isometry projection, and the homothety projection of G, respectively. Also,
we call the identity component of the kernel of P)|q the translation part of G and denote it by T'(G).

49



Theorem 4.4. Let G be a Lie subgroup of Conf,(EY2). Then G admits a 2-dimensional orbit in Ein':2
if and only if dim G' > 2 and it satisfies one of the following conditions.

- The linear isometry projection Py;(G) is non-trivial.

- The linear isometry projection Py;(G) is trivial and the translation part T'(G) has dimension less

that or equal to 2.

4.1 Actions on lightcone

According to Proposition 1.55, for an arbitrary point ¢ € L(p), there exists a unique affine degenerate
plane MinEY2 ~ M ink(p) such that ¢ is the limit point of IL. This induces a one-to-one correspondence
between the set of photons in L(p) and the set of degenerate (linear) 2-planes in R!:2: Choosing a photon
¢ C L(p) there exists a unique degenerate plane IT < R%?2 such that the corresponding affine degenerate
planes with limit points in ¢ are parallel to II. On the other hand, choosing a degenerate plane II in
R12 there exists a unique photon ¢ on which the limit points of the leaves of the foliation induced by II
in E'2 lie in ¢ (see Lemma 1.56). From now on, for a photon ¢ in the lightcone L(p), we denote the
corresponding degenerate plane in R1? by I1, and the foliation induced by Il in E2 by Fip oy

The subgroup R* x SO, (1, 2) fixes a unique point o in Minkowski space E'2. Thus, every element
of R% x SO,(1,2) maps each affine degenerate plane through o to an affine degenerate plane through o.
Hence, this group preserves an ideal circle S, ~ RP! which is the intersection of the lightcones L(p)
and L(o).

Suppose A is a homothety on Minkowski space E'2 respect to the origin. Obviously, \ preserves
every degenerate affine plane through o. Thus, the homothety factor R acts on the ideal circle S
trivially. Let ¢ be a photon through p and ﬁq be the corresponding affine degenerate plane with limit
point ¢ = S N ¢. For an arbitrary point u € ¢3 \ [g] with corresponding affine degenerate plane II,,, the
homothety A maps 11, to a parallel affine degenerate plane above [or below] (depending on the position of
IL, respect to I1,) II,. Thus, the homothety factor R”, maps I, to all affine degenerate planes parallel to
I1, above [or below] II,. Therefore, R* acts on the both connected components of quS \ g, transitively.

Let g be a non-trivial element in SO, (1, 2).

e If ¢ is an elliptic element, then it preserves no degenerate plane in R, and so, g preserves no
photon in L(p). This implies that every elliptic 1-parameter subgroup of SO, (1,2) acts on L(p)
freely.

e If g is a parabolic element, then it preserves a unique degenerate plane in R2. Consequently,
g preserves a unique photon ¢ in L(p) and admits a unique fixed point in the ideal circle Sy.
Therefore, every parabolic 1-parameter subgroup of SO, (1,2) acts on L(p) \ ¢ freely.

e If g is a hyperbolic element, then it preserves exactly two degenerate planes in R"2. Hence, g
preserves two photons ¢ and % in the lightcone L(p) and admits exactly two fixed points in the ideal
circle S.. Henceforth, every hyperbolic 1-parameter subgroup of SO, (1,2) acts on L(p) \ (¢ U))
freely.

50



Now, let v € R12 be a translation on Minkowski space E'2. Assume that IT < R!? be a degenerate
linear plane and II be an affine degenerate plane in E'? parallel to II. Then, v maps II to the parallel

plane v + II. Hence, every translation preserves each photon in L(p) (see Lemma 1.56).

e If v is a timelike vector, then it preserves no affine degenerate plane in E1:2. Hence, a timelike

vector admits no fixed point in the vertex-less lightcone L(p).

e If v is a lightlike vector, then it preserves all the affine degenerate planes in EL2 parallel to v=. This

implies that the set of points in L(p) fixed by a lightlike element is a unique photon.

e If v is a spacelike vector, then it preserves the two degenerate planes II, II’ < R'? directed by
the two distinct lightlike directions in the timelike plane v=. Obviously, v preserves all the affine
degenerate planes in E2 which are parallel to one of IT or I". Hence the set of points in L(p) fixed

by a spacelike element is the union of two distinct photons.

Let G be a connected Lie subgroup of R x SO,(1,2)) x Rb2. The translation part 7(G) is a normal
subgroup of G, hence G acts on 7'(G) by conjugation. Therefore, the natural action of the linear isometry
projection Pj;(G) on RY2 preserves the translation part 7(G) < RY2. Furthermore, assume that 7'(G)
fixes a photon ¢ in the lightcone L([p]) pointwisely. Thus, T'(G) preserves the leaves of the foliation
Fi1, in EY?. Henceforth, T'(G) is a linear subspace of IT,. This implies that, T'(G) is either a degenerate
subspace or it is a spacelike line. In the first, obviously P;(G) preserves I1,. In the later, it is easy to see
that P;(QG) is a hyperbolic 1-parameter subgroup. Hence, it preserves the two degenerate planes generated
by T(G) and one of the null directions in the timelike plane T'(G)*. We conclude that, if T'(G) fixes a
photon ¢ C L(p) pointwisely, then ¢ is invariant by Pj;(G) and consequently, by G.

Proposition 4.5. Let G be a connected Lie subgroup of R*, x RY2. Then G is conjugate to the semidirect
product Py (G) x T(QG).

Proof. First assume that Pp,(G) is trivial. Then, obviously G = T'(G). Now, suppose that P}, (G) # {1}.
Let L be a 1-parameter subgroup of G transversal to 7'(G). Considering the Lie algebra of L, one can see,
there exists a unique vector v € R2, such that L = {(et, (el — 1)U) 1t e R} C RY x RY2. Observe
that L is conjugate to R* via (1,v) and T'(G) is invariant by this conjugation. Therefore, G is conjugate
to RY x T(G). O

Proof of Theorem 4.4. Assume that G admits a 2-dimensional orbit at ¢ € Ein2. Obviously
dim G > 2. If ¢ € L(p), then P,;(G) is nontrivial, since the subgroup R* x R!? admits no open orbit
in L(p). If ¢ belongs to the Minkowski patch Mink(p) ~ E!2, then dim T'(G) < 2, since the subgroup
R2 acts on EM? transitively.

Now, we prove the reverse direction. Suppose that dim G > 2. First, assume that the linear isometry
projection P;(G) is non-trivial. There are some cases:

Case I: The translation part is non-trivial. In this case, the photons which are fixed pointwisely by
T(G) (if there exists any) are exactly those which Pj;(G) preserves them. Hence there exists a photon
¢ C L(p) such that T'(G) acts on & transitively and G does not preserve it. Let H be a 1-parameter
subgroup of G which is transversal to 7'(G) and its linear isometry projection P;(H) is non-trivial. Since
P;(G) # {1d}, such a subgroup exists. Assume that ¢ € & is an arbitrary point. Then the vector tangent
to G(q) at ¢ induced by L is spacelike, since L does not preserve ¢. On the other hand, the tangent space
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T,G(q) contains a lightlike vector, since ¢ is a lightlike curve in G(q) through g. This shows that T,G(q)
is 2-dimensional and so, G admits an open orbit in L(p). Case II: The translation part is trivial: There

are two subcases.

» G contains the homothety factor R’ as a subgroup. The subgroup R* preserves the ideal circle
Soo and acts on L(p) \ (Sec U {p}) freely. Let L be a 1-parameter subgroup of G transversal to
R* . Obviously, Fj;(L) is non-trivial. There exists a photon ¢ C L(p) which is not invariant by L.
For an arbitrary point ¢ € ¢ \ (S U {p}), the vectors tangent to the orbit G(¢) at ¢ induced by R,

and L are lightlike and spacelike, respectively. Hence, G admits an open orbit in L(p).

» The homothety factor R, is not a subgroup of G. In this case, we have dim G = dim P;(G) €
{2,3}.

- If dimG = 3, then P;(G) = SO.(1,2) -in fact G is isomorphic to SO.(1,2)-. The
group G is a Levi factor of (R% x SO,(1,2)) x R'?. By the uniqueness of Levi factor we
have G = SO,(1,2), up to conjugacy (see [29, p.p. 93]). Obviously, SO,(1,2) admits a
2-dimensional orbit in E1+2,

- If dim G = 2, then P;(G) = Aff;(1,R), up to conjugacy. Hence, G preserves a unique
photon ¢ C L(p). Let P be a 1-parameter subgroup of G which its linear isometry projection
P,;(P) is parabolic. Furthermore, assume that  is a 1-parameter subgroup of G' which is
transversal to P. Obviously, H has hyperbolic linear isometry projection and it also preserves
a photon ¢ C L(p) different from ¢. Denote by II,, the degenerate plane in R'? correspond
to 1. Observe that P acts on L(p) \ ¢ freely, since it preserves only ¢. Assume that H induces
an open orbit I C ). Then P maps I to other photons, and therefore, G admits an open orbit
in L(p). If H fixes ¢ pointwisely, then it preserves the leaves of the foliation Fiy ., induced
by IL; in E'2. Note that, because of the parabolicity of P, it does not preserve this foliation.
Observe that 7 admits a 1-dimensional orbit at some point ¢ € E!? included in the leaf
Fi1, (q). since the action of Conf(IE"?) is faithful. The vector tangent to G(¢) at ¢ induced
by P does not lie in IL, since P does not preserve II,,. Hence, G admits a 2-dimensional

orbit at q.

Finally, assume that the linear isometry projection P;;(G) is trivial, then G is a subgroup of R x R12,
By Proposition 4.5, G is conjugate to P, (G) x T'(G). Observe that 7'(G) admits a dim 7'(G)-dimensional
foliation in E2. If the homothety projection P, (G) is trivial, then G is a linear 2-plane in R%? and so,
all the orbits in E1? are 2-dimensional. If P,(G) = R*, then it fixes a unique point zy in E%. The
subgroup R preserves exactly one of the leaves induced by T'((); namely the leaf containing xy. Now,

the result follows easily. O

4.2 Orbits

In this section we give a complete list of the Lie subgroups of Conf,(E»?) with dim G > 2, up to
conjugacy. Also, we will describe the orbits induced by the cohomogeneity one actions of the connected
Lie subgroups of Conf,(E!?2).

Let B = {eq, e2, €3} be an orthonormal basis for R, where e; is a timelike vector, and let (x,y, 2)

be the coordinate on E? with origin 0 = (0,0, 0) corresponding to B (here o is the unique point
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fixed by R* x SO(1,2) C Conf(E"?)). Recall from Section 1.5.1, the Lie algebra of Conf(E"?)
is isomorphic to the semi-direct sum (R @ so0(1,2)) ©p RY2, where 6 is the natural representation of
R @ so(1,2) into gl(R"?). Also, recall that, the simple Lie group SO, (1,2) ~ PSL(2,R) has exactly
three 1-dimensional Lie subgroups, up to conjugacy, namely, Yz, Yp, and Y. Moreover, SO, (1, 2) has
only one 2-dimensional connected Lie subgroup, up to conjugacy, namely, Aff. The set {Vg, Vp, Vi }
is a basis for the Lie algebra so(1,2) as a vector space, where, Vg, Vp, and Yy are the generators of
the corresponding Lie algebras of the subgroups Yg, Yp, and Yy, respectively. For arbitrary elements
A €R, X €50(1,2), and v € R2, we denote the corresponding element in (R @ s0(1,2)) @y R?
simply by A + X + v, when there is no ambiguity. Furthermore, we denote by R(\ + X + v) the linear
subspace of (R @ so(1,2)) @y R'? generated by the vector A + X + v. Also, for a Lie subalgebra
g < (R ® s0(1,2)) ®e R2, we denote by exp(g) the corresponding connected Lie subgroup of
(R* x SO.(1,2)) x R12.

The following theorem, classifies all the connected Lie subgroups of Conf (E!?) with dim > 2, up to

conjugacy.

Theorem 4.6. Let G C Conf,(Ein'?) be a connected Lie subgroup with dim G > 2. Then G is
conjugate to one of the subgroups in Tables 4.1-4.8.

Proof. 1t follows immediately from Theorem A.1 and Lemma A.5. O
Subgroups with full translation part
R* x RM? [ (R x SO6(1,2)) x RV [ SO,(1,2) x R12 exp (R(a+ Vg)) x RY?
R%? (R%. x Aff) x R} Aff x RL2 exp (R(a + Yp)) x R'?
Y x RL2 Ry x Yp) x RD? Yp x RL2 exp (R(a + Vi) + RYp) x R'?
Yg x R12 (R, x Yp) x R12 Ry x Yg) x R12 exp (R(a + Vp)) x R

Table 4.1: Here a € R* is a constant number.

Subgroups with a Lorentzian plane as the translation part
(R x Yi) x (Rey @ Reg) Y x (Re; @ Res)
exp (R(a + V) x (Rey @ Rez)) | exp (R(Vy + €3)) x (Rey @ Rea)
Rj_ X (Rel D Reg) Req @ Reo

Table 4.2: Here a € R* is a constant number.

Subgroups with a spacelike plane as the translation part
(Rj_ X YE) X (Reg D Reg) Yr X (Reg D Reg)
exp (R(a + Vg)) x (Rea @ Res)) | exp (R(Vg + €1)) x (Rez @ Res)
Rj_ X (Reg D Reg) Reo @ Reg

Table 4.3: Here a € R* is a constant number.

By Theorem 4.6, it is not hard to see that, all the subgroups of Conf,(E!?) with dim > 2 admit
a 2-dimensional orbit in Einstein universe Ein'? except the subgroups which are conjugate to R%2 or
1,2
R% x R>=
For an arbitrary point ¢ € EM2, there is a natural identification between the tangent space T, E!? and

the underlying scalar product space R'-2. Therefore, by the action of a Lie subgroup G C Conf(E!?),
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Subgroups with a degenerate plane as the translation part
Aff x TI, exp (R(a + V) + Ryp) x I
(R x Aff) x T exp (R(a + Yp)) x 11,
Yp x Il exp (R(a + Yg)) x Il
(R x Yp) x I, exp (R(l +Vy+e)+ Ryp) X 11y
Yy X H¢ exp (R(yp + 61)) X H¢
(Rj_ X YH) X H¢ exp (R(l + Vg + 61)) X H¢
H¢ exp (R(2+yH)+R(yp+el)) [><H¢
R*-l- X H¢

Table 4.4: Here II; denotes the degenerate plane R(e1 + e2) @ Reg < RY2 and a € R* is a constant

number.

Subgroups with a timelike line as the translation part

RY x Rey | (RY x Vi) x Rey | Y x Rey [ exp (R(a + Vg)) x Rey

Table 4.5: Here a € R* is a constant number.

Subgroups with a spacelike line as the translation part

R x Reg

(R%, X Yg) X Reg

exp (R(a + Vp)) x Res

exp (]R(l + Vg + el)) X Res

Table 4.6: Here a € R* is a constant number.

Subgroups with a lightlike line as the translation part

(R x Aff) x .2

exp (R(a + Vi) + RVp) x &

Y x & exp (R(a+ Yp)) x &

Af x & exp (R(Vu +e3) + RYp) x £
(R* x Yp) x & exp (R(Vp +e1)) x &

Yp x & exp (R(2+ V) + R(Vp +€1)) x £

(RE x Yy)x &

exp (]R(l + Vg + 61)) X &

exp (R(a + yH)) X &

exp (R()}H + 63)) X &

Table 4.7: Here .Z denotes the lightlike line R(e; + e2) < RY2 and a € R* is a constant number.

Subgroups with trivial translation part

SO.(1,2)

R x SOo(1,2)

Aff

R% x Aff

RY. X Y

exp (R(a + Vi) + RYp)

R% X Yp

exp (R(2+ Vi) + R(Vp + €1 — e2))

Ri XYH

exp (R(—14 Yy + €1 + e2) + RVp)

Table 4.8: Here a € [—1, 1] is a constant number.

we may always consider the translation part 7'(G) as a linear subspace of T,G(q), since R'? acts on E!+2

freely.

We fix some notations here. Denote by II,; and ¢ the unique degenerate plane R(e; +e2) ®Reg < R1:2
invariant by the 1-parameter parabolic subgroup Yp C SO,(1,2) and its corresponding photon in L(p),
respectively. Furthermore, denote by II,;, and ¢ the degenerate plane R(e; — e2) @ Rez < RY2 and

its corresponding photon in L(p), respectively, which both are invariant by the 1-parameter hyperbolic
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YH X Reg
exp (R(—l + Vg + el)) X Res




subgroup Yz C SO, (1,2). Also, for a linear subspace V' < R':2, denote by JF  the foliation induced by
V in Minkowski space E!»2.

Remark 4.7. Let A\ + X + v be an arbitrary element in (R @ s0(1,2)) ®g RY? and q € E'? be an
arbitrary point. There is an easy way to determine the tangent vector in Tq,IEll’2 induced by the action of
exp(R(A+ X +v)) on EV2: the vector &|,—o(exp(t(A+ X +v))(q)) coincides with XX (q) + v where

X and X act on EY2 (with origin o) as linear maps.

Now, we are ready to describe the orbits induced by the subgroups indicated in Tables 4.1-4.8.

Subgroups with full translation part

Here, we consider the orbits of a Lie subgroup G C Conf,(E!?) with T(G) = R2. These groups have
been listed in Table (4.1). Obviously, G acts on Minkowski space E!»? transitively, since it contains R1-2
as a subgroup. Note that the groups R'? and R* x R'? admit 2-dimensional orbit neither in E nor in
the lightcone L(p).

Observe that, the translation part T(G) = R? acts on each vertex-less photon in L(p) transitively.

e If the linear isometry projection P;;(G) contains an elliptic element, then G acts on the vertex-less
lightcone L(p) transitively. Hence, the orbits induced in Ein? by the following groups are exactly

the same as the orbits induced by Yz x RY2,

(R% x SO.(1,2)) x R'2, SO,(1,2) x RY2,
Ry x Yg) x RY2, exp (R(a+ Vg)) x R, a € R,

Therefore, the orbits induced by these five groups are: a fixed point p, a 2-dimensional degenerate
(i.e. of signature (0, 1,1)) orbit L(5), and an open orbit E1-? C Ein'2.

e If the linear isometry projection P;;((G) is a proper subgroup of SO, (1, 2) and it contains a parabolic
element, then G preserves a unique photon ¢, and acts on its complement in the lightcone L(p)

1,2

transitively. Thus all the following groups admit in Ein'? the same orbits as Yp x R12.

(R x Affo(1,R)) x RM, Affo(1,R) x RM?,  exp (R(a + Yp)) x RY?,
(Ry x Yp) x RM, exp (R(a+ Yu) + RYp) x RM2 a € R*

Therefore, the orbits induced by these six groups are: a fixed point p, a vertex-less photon gZ;, a

2-dimensional degenerate obit L(p) \ ¢, and an open orbit E!:2.

e If the linear isometry projection P;(G) is a 1-parameter hyperbolic subgroup of SO,(1,2), then G
preserves two distinct photons ¢ and v, and acts on the two connected components of L(p) \ (¢ U1)),

L2 the same orbits as Yz x RM2.

transitively. This implies that the following groups admit in Ein
(R4 x Yg) x RY2, exp (R(a+ Vi) x R"?, a € R,

Therefore, the orbits induced by these three groups are: a fixed point p, two vertex-less photons qB
and v), the two connected components of L(p) \ (¢ U 1) which are degenerate orbits, and an open
orbit E1:2,
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Subgroups with a timelike plane as the translation part

In this section we describe the orbits induced by a connected Lie subgroup G C Conf,(E!?) which its

translation part is a Lorentzian plane. These groups has been listed in Table (4.2).

Observe that, the translation part T'(G) acts on each vertex-less photon in the lightcone L(p) transi-

tively, since the action of a timelike plane does not preserve any degenerate affine plane in E'2. In this

case, the linear isometry projection Pj;(G) is either trivial or it is a 1-parameter hyperbolic subgroup

of SO,(1,2). In the first, G preserves every vertex-less photon in L(p). In the later, G preserves two

distinct photons ¢ and 1) and acts on the both connected components of the complement L(p) \ (¢ U v))

transitively. Also, 7'(G) induces a codimension 1 foliation Fr(qy in E'2 on which the leaves are affine

Lorentzian planes.
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e G =T(G) = Rej @ Rey. The orbits induced in by G are: a fixed point p, the vertex-less photons

in L(p), and the leaves of the foliation induced by F in E1? C Ein'*? which are Lorentzian affine

planes.

G = R} x (Re; @ Rez). The homothety factor R preserves the leaf Fr)(0). Thus this leaf
is a 2-dimensional G-orbit. Furthermore, one can see, GG acts on the both connected components
of E1:2 \ Fr(c)(o) transitively. Thus, the orbits induced by G'in Ein'? are: a fixed point p, the
vertex-less photons in L(p), the leaf Frp)(0) which is a Lorentzian affine plane, and the two

connected components of 2\ Frg)(0).

G = Yy x (Re; @ Reg). The 1-parameter hyperbolic subgroup Y preserves the leaves of the
foliation Fr(g), so does G. Thus, the orbits induced by G are: a fixed point p, two vertex-less
photons ¢ and ), the two connected components of L(p) \ (¢ U ¢) which are degenerate surfaces,

and the leaves of the foliation F7(g) in E'2, which are Lorentzian affine planes.

G = (R} x Y) x (Rey @ Rey). The leaf Fr(g) (o) is a G-orbit, since it is invariant by the action
of R} x Yp. Also, G acts on the both connected components of E'? \ Fr(¢)(0) transitively.
Therefore, the orbits induced by G in Ein'? are: a fixed point p, the two vertex-less photons g%
and 1), the two connected components of L(p) \ (¢ U 1)) which are degenerate surfaces, the leaf

Fr(c)(0), and the two connected components of B2\ Fr(q(0).

G = exp (R(a+Yn)) x (Re; ®Rey), a € R*. Since, G is a subgroup of (R*%. x Vi) x (Re; ®Reg),
the leaf Fr(q)(0) is a G-orbit. For an arbitrary point ¢ = (z,y,2) € EL2, the vector tangent to the
orbit G(q¢) at ¢ induced by the 1-parameter subgroup exp (R(a+ Vg )) is v = (az +y,z + ay, az).
The set {e1,e2,v} C Ty;G(q) is a basis if and only if ¢ ¢ Fr()(0) if and only if 2z # 0. This
implies that G acts on the both connected components of E!»? \ Fr(c) (o) transitively. Therefore,
G admits the same orbits in Ein'? as (R* x Yp) x (Re; & Reo).

G = exp (R(Vu + €3)) x (Rey @ Rey): For an arbitrary point ¢ = (z,y,z) € E?, the vector
tangent to the orbit G(g) at ¢ induced by the 1-parameter subgroup exp (R(Vy + e3)) is v =
(y,z,1) (see B.10). Obviously, {e;, e2, v} is a basis of the tangent space T;,G(q). This implies that
G acts on B2, transitively. Hence, G admits the same orbits in Ein'? as Y x R12.



Remark 4.8. Observe that by the action of G = (R} x Yg) x (Re1 @ Rez) the union of the leaf Fr)(0)
(which is a Lorentzian affine 2-plane) and the photons ¢ and 1 is G-invariant. Actually, Frq) (o)Up U
is an Einstein hypersphere (Definition 1.63). Moreover, G is the unique (up to conjugacy) maximal
connected Lie subgroup in SO (2,3) which preserves an Einstein hypersphere Ein*' C Ein'? and

admits a fixed point on it.

Subgroups with a spacelike plane as the translation part

Now, suppose that G C Conf,(IE!?) is a connected Lie subgroup which its translation part T'(G) is a
spacelike plane. These groups have been listed in Table (4.3).

Observe that, the translation part 7'(G) acts on each vertex-less photon in the lightcone L(p) tran-
sitively, since the action of a spacelike plane does not preserve any degenerate affine plane in E'2. In
this case the linear isometry projection P;;(G) is either trivial or it is a 1-parameter elliptic subgroup
of SO,(1,2). In the first case, G preserves every vertex-less photon in L(p). In the later, G acts on
the vertex-less lightcone L(p) transitively. Also, T'(G) induces a codimension 1 foliation Fr ¢ in

E12 c Ein'? on which the leaves are affine spacelike planes.

e G = Rey @ Res. The orbits induced by G in Ein'»? are: a fixed point p, the vertex-less photons in
L(p), and the leaves of the foliation Fr (¢ in E'2 which are affine spacelike planes.

e G =R} x (Rez @ Res). The homothety factor R preserves the leaf Frp)(0). Consequently,
the leaf Fr(¢)(0) is a G-orbit. Furthermore, G acts on the both connected components of EL2\
Fr@) (0) transitively. Therefore, the orbits induced by G in Ein'? are: a fixed point p, the vertex-
less photons in L(p), the leaf Fr ¢ (0), and the two connected components of EM2 \ Fr (o).

e G =Yg X (Reg @ Res). The 1-parameter elliptic subgroup Yz preserves the leaves of the foliation
Fr(a)» s0 does G. Therefore, the orbits induced by G in Ein'? are: a fixed point p, the vertex-less
lightcone L(p), and the leaves of the foliation Fr ¢ in EY2 which are affine spacelike planes.

e G = (R} x Yg) x (Rez @ Res). The subgroup R’ x Y preserves the leaf Fr ) (o). Hence,
Fr(a (o) is a G-orbit. Moreover, one can see i acts on the both connected components of
EL2\ Fr(c)(o) transitively. Therefore, the orbits induced by G in Ein'? are: a fixed point p,
the vertex-less lightcone L(p), the leaf Frp(q) (0) which is a spacelike affine plane, and the two

connected components of E'? \ Fr ¢y (0).

e G =exp(R(a+Yg)) x (Reg ®Res), a € R*. The 1-parameter subgroup H = exp (R(a+ Vg))
preserves the leaf Fr()(0). Hence, Fr(q) is a G-orbit. For an arbitrary point ¢ = (z,y, z) € EL2,
the vector tangent to the orbit G(q) at ¢ induced by H is v = (az,ay + z,az — y). The set
{e2,e3,v} C T;G(q) is a basis if and only if 2 # 0 if and only if ¢ ¢ Fp(¢)(0). This implies that
G acts on the both connected components of E!2 \ Fr(c) (o) transitively. Therefore, G admits the
same orbits in Ein"? as (R%. x Yg) x (Rez & Rey).

e G =exp(R(VE + e1)) x (Rez ® Reg): For an arbitrary point ¢ = (,y, z) € E!?, the vector
tangent to the orbit G(¢) at ¢ induced by the 1-parameter subgroup exp (R(Vg + €1)) is v =
(1,2, —y) (see B.7). The set {e2, €3, v} is a basis for the tangent space 7,G(q). This implies that
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G acts on E2, transitively. Hence, the orbits induced by G in Ein'? are the same as the orbits
induced by Yz x R12.

Remark 4.9. Observe that by the action of G = (R%. X Yg) x (Rea @ Reg) the union of the leaf Frpq)(0)
(which is a spacelike affine 2-plane) and the vertex {p} is G-invariant. Actually, Fr(g)(o) U {p} is
a spacelike hypersphere (Definition 1.60). Furthermore, G is the unique (up to conjugacy) maximal
connected Lie subgroup in SO, (2, 3) which preserves a spacelike hypersphere S* C Ein'? and admits a
fixed point on it.

Subgroups with a degenerate plane as the translation part

Assume that G C Conf,(E"?) is a connected Lie subgroup which its translation part 7'(G) is a degenerate
plane, i.e., G belongs to Table (4.4).

The translation part 7'((7) preserves the leaves of the foliation Fr(¢). Hence, T'(G) fixes the corre-
sponding photon in L(p), pointwisely. In this case, the linear isometry projection P;;(G) is either trivial
or it is a subgroup of Aff C SO,(1,2), up to conjugacy.

Case I: Suppose that the linear isometry projection Py;(G) is trivial.

o G =1I; = R(e; +e2) ®Res. The orbits induced by G in Ein'? are: the points in ¢, the vertex-less
photons in L(p) different from QAS, and the leaves of the foliation Fiy, in E!2 which are degenerate

affine planes.

e G =R} x I, The homothety factor R’ preserves the leaf Fi1, (o). Hence, Fi1, (o) is a G-orbit.
Thus, G fixes the corresponding point d € dg On the other hand G acts on the both connected
components of EL2\ , (0) transitively. This shows that G acts on the both connected components
of ¢ \ {d} transitively. Therefore, the orbits induced by G in Ein'-? are: two fixed points p and d,
the two connected components of ¢ \ {d}, the vertex-less photons in L(p) different form ¢, the leaf

Fi1,(0), and the two connected components of E? \ Fig, (0).

Case II: Assume that the linear isometry projection F};(G) is a 1-parameter parabolic subgroup. Then, it

can be easily seen that G acts on the degenerate surface L(p) \ ¢ transitively.

e (G = Yp x 4. The 1-parameter parabolic subgroup Yp (consequently (&) preserves the leaves of
the foliation induced by II,. Hence, G acts on the photon ¢ trivially. Therefore, the orbits induced
by G in Ein'? are: the points in ¢, the degenerate surface L(p) \ ¢, and the leaves of the foliation

Fi1, in E2 which are degenerate affine planes.

¢

e G = (R} x Yp) x Ils. The subgroup R* x Yp preserves the leaf Fy,(0). Hence, F, (o) is
a G-orbit. Therefore, G fixes the corresponding point d € ¢. Furthermore, G acts on the both
connected components of E12\ Fj , (0) transitively. This implies that G acts on the both connected
components of b \ {d} transitively. Therefore, the orbits induced by G in Ein!*? are: two fixed
points p and d, the two connected components of ¢ \ {d}, the degenerate surface L(p) \ ¢, the
degenerate affine plane 71y, (0), and the two connected components of E'2 \ Fip, (o).

o G =exp (R(a+Yp)) x 1y, a € R*. The 1-parameter subgroup H = exp (R(a+ Vp)) preserves
the leaf Fp;, (o). Therefore, Fi1,(0) is a G-orbit. Hence, G fixes the corresponding point d € o.
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For an arbitrary point ¢ = (z,y, z) € EL? the vector tangent to the orbit G(q) at (¢) induced by the
1-parameter subgroup H is v = (ax + z,ay + z,x —y + az). The set {(e1 + e2), e3,v} C T,G(q)
is a basis if and only if x # y if and only if ¢ ¢ Ji1,(0). Hence, GG acts on the both connected
components of B2 \ Fjy ,(0), transitively. Thus, G acts on the both connected components of
¢\ {d} transitively. Observe that the orbits induced by G in Ein'? are exactly the same as the
orbits induced by (R* x Yp) x IL4.

e G =exp (R(Yp + e1)) x Il For an arbitrary point ¢ = (z,y, z) € E!? the vector tangent to the
orbit G(q) at ¢ induced by the 1-parameter subgroup exp (R(Vp +e1)) isv = (2 + 1,2,z — y)
(see B.8). The set {(e1 + e2), e3,v} C T,G(q) is a basis. Hence, G acts on E>? transitively. This
implies that G acts on the vertex-less photon qg transitively. It follows that, the orbits induced by G
in Ein"? are exactly the same as the orbits induced by Yp x Rb2.

Case III: Suppose that the linear isometry projection is a 1-parameter hyperbolic subgroup of

S0O,(1,2). Then G preserves two distinct photons ¢ and 1 in L(p). Moreover, G acts on the vertex-less

photon 1/3 transitively, since 7'(G) = Il, does. Also, G acts on the both connected components of
L(p) \ (¢ U ) transitively.

e G = Yy x Ily. The 1-parameter subgroup Yy preserves the leaf Jyy, (0). Thus, Fr1 ¢(0) isa
2-dimensional G-orbit. Hence, G fixes the corresponding point d € gzg For an arbitrary point
q = (z,y,2) € EL2, the vector tangent to the orbit G(q) at ¢ induced by Yy is v = (y,x, ). The
set {(e1 +e2),e3,v} C TyG(q) is abasis if and only if z # y if and only if ¢ & Fi1,(0). Therefore,
G acts on the both connected components of EL2 \ Fip , (0) transitively, and consequently, it acts
on the both connected components of ¢ \ {d} transitively. Henceforth, the orbits induced by G

1.2 are: two fixed points p and d, the two connected components of ) \ {d}, the vertex-less

in Ein
photon %), the two connected components of L(p) \ (¢ \ ), the degenerate affine plane Fy; ,(0),

and the two connected components of B2\ Fip, (o).

o G = (R% x Ypy) x ILg. The subgroup R* x Yy preserves the leaf .7-"H¢(0). Thus ]:H¢(o) is a
G-orbit. Hence, G fixes the corresponding point d € g5 On the other hand, G acts on the both
connected components of E12\ , (0) transitively, and consequently, it acts on the both connected
components of g% \ {d} transitively. Observe that the orbits induced by G in Ein'"? are exactly the
same as the orbits induced by Yy x IL.

o G =exp (R(a+ Vu)) x Iy, a € R*\ {1}. The 1-parameter subgroup H = exp (R(a + Vp))
preserves the leaf Fiy, (0). Thus, Fi1, (0) is a G-orbit. Henceforth, G fixes the corresponding point
d € ¢. Foran arbitrary point ¢ = (x,y, z) € EM2, the vector tangent to the orbit G(q) at ¢ induced
by H isv = (ax + vy, + ay, az). It follows that, the set {(e; + e2), e3,v} C T,G(q) is a basis
if and only if x # y if and only if ¢ ¢ Fi1,(0). This implies that, G acts on the both connected
components of B2 \ Fpy ,(0) transitively, and so, it acts on the both connected components of
¢\ {d} transitively too. Observe that the orbits induced by ( are exactly the same as the orbits
induced by Yy x II,.

e G = exp (R(1 + Yu)) x . For an arbitrary point ¢ = (z,y,2) € E-2, the vector tangent
to the orbit G(q) at ¢ induced by exp (R(1 + Yg)) is v = (z 4+ y,z + y,z). Observe that
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v € Iy < T,G(q). Therefore, G preserves the leaves of the foliation Fy,. This implies that G acts

on ¢ trivially. Hence, the orbits induced by G in Ein':

are: the points in ¢, the vertex-less photon
1, the two connected components of L(p) \ (¢ U 1)) which are degenerate surfaces, and the leaves

of the foliation Fry,, in Ein'? which are degenerate affine planes.

G = exp (R(1 + Vg + e1)) x I4: For an arbitrary point ¢ = (z,y, z) € E'?, the vector tangent
to the orbit G(q) at ¢ induced by exp (R(1 + Yy +e1)) isv = (z+y + 1,2+ y, 2) (see B.11).
Observe that the set {(e1 + €2), e3,v} C T,G(q) is a basis. Therefore, G acts on E1? transitively,
This implies that G acts on the vertex-less photon qg transitively. Hence, the orbits induced by G in

Ein'? are exactly the same as the orbits induced by Yz x R1:2.

Case IV: Finally, assume that the linear isometry projection FPj;(G) is a 2-dimensional subgroup of

SO.(1,2), hence P;(G) = Aff up to conjugacy. Since, Pj;(G) contains parabolic elements, G acts on
L(p) \ ¢ transitively.
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e G = Aff x Il;. The subgroup Aff C SO, (1,2) preserves the leaf Fi,(0). Hence, Ji1,(0) is

a 2-dimensional G-orbit. Thus G fixes the corresponding point d € ¢. For an arbitrary point
q = (z,y, 2z) € E2, the vector tangent to the orbit G(q) at q induced by the 1-parameter subgroup
Yr C Affisv = (y,, 2). The set {(e1 + e2),e3,v} C T,G(q) is a basis if and only if z # y if
and only if ¢ ¢ F1,(0). Henceforth, G acts on the both connected components of E1-2 \ Fyy ,(0),
(and consequently on the both connected components of ¢ \ {d}) transitively. Observe the orbits

induced by G in Ein'+? are exactly the same as the orbits induced by (R% x Yp) x 1.

G = (R} x Aff) x I14. The subgroup R x Aff preserves the leaf Fi1, (o). Hence, Ji1,(0) is a
G-orbit, and so, G fixes the corresponding point d € qAS For an arbitrary point ¢ = (z,v, z) the
vector tangent to the orbit G(¢) at ¢ induced by the homothety factor RY is v = (z,y, z). The set
{(e1+e2), e3,v} is abasis if and only if x # y if and only if ¢ ¢ Fi1, (0). Therefore, G acts on the
both connected components of B2\ Fi n (0) (and consequently on the both connected components
of ¢\ {d}) transitively. Observe G admits exactly the same orbits in Ein"? as (R*. x V) x IT,.

G =exp ((R(a+ Yu) +RYp)) x Iy, a € R*\ {1}. The subgroup exp ((R(a + Vi) + RYp))
preserves the leaf iy, (0). Thus, F,(0) is a G-orbit, and so, G fixes the corresponding point
d € ¢. For an arbitrary point ¢ = (z,1,z) € EL2, the vector tangent to the orbit G(q) at ¢
induced by the 1-parameter subgroup exp (R(a + Vg )) is v = (az + y,z + ay,z). The set
{(e1 +e2),e3,v} C TyG(q) is abasis if and only if = # y if and only ¢ ¢ i1, (0). Therefore, G
acts on the both connected components of E}2 \ Fip ,(0) (and consequently on the both connected
components of <;3\ {d}) transitively. Observe the orbits induced by G in Ein'+? are exactly the same
as the orbits induced by (R x Yp) x L.

G = exp ((R(1 + Yu) + RYp)) x Is. For an arbitrary point ¢ = (z,y, z) € E"?, the vectors
tangent to the orbit G(q) at ¢ induced by the 1-parameter subgroups exp (R(l + yH)) and Yp
arev = (v +y,x +y,2) and w = (z, z,x — y), respectively. Obviously, v,w € I, < T;G(q).
Therefore, G preserves the leaves of the foliation iy, This implies that G acts on the photon ¢
trivially. Henceforth, the orbits induced by G in Ein'+? are exactly the same as the orbits induced
by Yp x Ily.



e G =exp (R(2+ Vi) +R(Vp + €1)) x IIy. For an arbitrary point ¢ = (z,y,z) € E'?, the
vector tangent to the orbit G(q) at ¢ induced by the 1-parameter subgroup exp (]R(yp + 61)) is
v=(z+1,2z,2 —y) (see B.8). The set {(e1 + e2), e3,v} C T,G(q) is a basis. Hence, G acts on
E!2 transitively. This implies that G acts on the vertex-less photon qg transitively as well. Therefore,

the orbits induced by G in Ein'+? are exactly the same as the orbits induced by Yp x R1:2,

o If G =exp (R(1+ Yy +e1) + RYp) x I1y. For an arbitrary point ¢ = (z,y, z) € EY?, the vector
tangent to the orbit G(g) at ¢ induced by exp (R(1+ Vg )) isv = (z+y+ 1,2 +y, z) (see B.11).
Observe that the set {(e1 + €2),e3,v} C T,G(q) is a basis. Therefore, G acts on E? transitively,
This implies that GG acts on the vertex-less photon é transitively. Clearly, G admits the same orbits

in Ein'? as Yp x RL2.

Definition 4.10. The subgroup exp ((R(l + Vo) + Ryp)) x Ily is the identity component of the
intersection of the stabilizers of the points in the photon ¢. In other words, up to conjugacy, it is the
unique (up to conjugacy) maximal connected Lie subgroup of SO.(2,3) which acts on a photon trivially.

We denote this group by the special symbol KCo.

Subgroups with a timelike line as the translation part

Let G C Conf,(E%?) be a connected Lie subgroup on which its translation part 7(G) is a timelike line,
i.e., G is an element in Table 4.5.

The translation part T'(G) = Re admits a codimension 2 foliation Fi, in E'? on which the leaves
are affine timelike lines. On the other hand, Re; preserves no degenerate affine plane in E:2, hence, it
acts on each vertex-less photon in the lightcone L(p), transitively. In addition, every G-orbit in E!2 is
either timelike (if it is 1-dimensional) or it is Lorentzian (if the dimension > 1), since the timelike vector
e1 is tangent to all the orbits induced in EL:2. In this case, the linear isometry projection P;(G) is either
trivial or it is a 1-parameter elliptic subgroup of SO, (1, 2). In the first case, the orbits induced by G in
the lightcone L(p) are the vertex-less photons. In the later, the vertex-less lightcone L(p) is a G-orbit.

e G =R} x Re;. The homothety factor R*. preserves the leaf Fg., (0). Hence, Fre, (0) is a G-orbit.
Also, G preserves every affine Lorentzian plane in E'? containing Fg,, (0). One can see that, G
acts on E12\ Fi,, (o) freely. Furthermore, every 2-dimensional orbit in E12 intersects the spacelike
curve 9 = {(0,cos6,sinf) : 6 € R} in a unique point. Therefore, the orbits induced by G in
Ein'?2 are: a fixed point p, the vertex-less photons in L(p), the affine timelike line F, (0), and a
1-parameter family of Lorentzian affine half-planes in E!'? on which G acts freely -the parameter

being q € vy-.

e G =Yg x Rej. The 1-parameter elliptic subgroup Yz preserves the leaf Fg., (0). Hence, Fre, (0)
is a G-orbit. For an arbitrary point ¢ € E}? \ Fge, (0), one can see that the orbit G(q) intersects
the affine spacelike half-line ¢ = {(0,¢,0) : ¢ € R* } in a unique point. It follows that G acts on
B2\ Fge, (0) freely. Therefore, the orbits induced by G in Ein'? are: a fixed point p, a timelike
affine line Fre, (0), the vertex-less lightcone L(p), and a 1-parameter family of Lorentzian orbits

on which G acts freely -the parameter being g € /-.

o G = (R} xYE)xRe;. The subgroup R x Y preserves the leaf ., (0), Hence, Fge, (0) is a G-
orbit. For an arbitrary point ¢ = (x, v, z) € E!2, the vectors tangent to the orbit G(q) at ¢ induced
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by the 1-parameter subgroups R* and Yg are v = (z,y, 2) and w = (0, z, —y), respectively. The
set {e1,v,w} C T,G(q) is a basis if and only if y, z # 0 if and only if ¢ ¢ Fge, (0). Thus, G acts
on B2\ Fi, (0) transitively. Therefore, the orbits induced by G in Ein'»? are: a fixed point p, the
timelike affine line Fe, (0), the vertex-less lightcone L(p), and an open orbit EL? \ Fi,, (o).

e G, =exp (R(a+ Vg)) x Rey, a € R*. The 1-parameter subgroup exp (R(a + Vg)) preserves
the leaf Fie, (0). Hence, Fge, (0) is a G4-orbit. For an arbitrary point ¢ € E}? \ Fg., (0) the orbit
G (q) intersects the spacelike affine half-line £ = {(0,¢,0) : ¢t € R }. Now, it can be easily seen
that, G, acts on E}? \ Fg,, (o) freely. Therefore, the orbits induced by G, in Ein'? are: a fixed
point p, a timelike affine line Fg,, (0), the vertex-less lightcone L(p), and a 1-parameter family of
Lorentzian orbits in E1:2 on which G, acts freely -the parameter being ¢ € /-. By Lemma 1.21, the

1,2

action of G, on Ein"* is orbitally-equivalent to the action of G _, via the element in O(1, 2) which

maps (z,y,2) € EL? to (z, 2,y).

Subgroups with a spacelike line as the translation part

Suppose that G C Conf,(E"?) is a connected Lie subgroup with a spacelike line as the translation part.
These groups have been listed in Table 4.6.

The translation part 7(G) = Res admits a codimension 2 foliation Fg., in E*? on which the
leaves are affine spacelike lines parallel to Res. In the one hand, the translation part fixes two photons
¢, C L(p), pointwisely, since Res is contained in the both lightlike planes I1, = R(e1 + e2) @ Resz and
I, = R(e1 — e2) @ Res. On the other hand, the linear projection P;(G) preserves both foliations Fi o
and Jy,,. Hence, the photons ¢ and ¢ are invariant by G. Also, Reg acts on all the vertex-less photons in
the lightcone L(p) different form ¢ and ¢ transitively.

In this case, the linear isometry projection is either trivial or it is a 1-parameter hyperbolic subgroup
of SO,(1,2). In the first, every vertex-less photon in L(p) different from ¢ and 1) is a G-orbit. In the
later, G acts on the both connected components of L(p) \ (¢ U 1)) transitively.

e G = R% x Res: The homothety factor R’ preserves the leaf Fg.,(0). Hence, Fre,(0) is a G-
orbit. Also, G preserves every affine plane in E!? containing Fge,(0). Specially, G preserves the
degenerate leaves J11,(0) and F11,,(0). This implies that G fixes their corresponding limit points
dg € qg and dy, € 1& Clearly, the homothety factor R” acts on the both connected components
of ¢\ {d4} and ¥\ {dy} transitively. For an arbitrary point ¢ = (z,y,z) € Ein?, the vector
tangent to the orbit G/(¢) at ¢ induced by homothety factor R* is v = (z,y, z). Observe that the
set {v,e3} C T,G(q) is a basis if and only if z # 0 or y # 0 if and only if ¢ ¢ Fre,(0). In fact,
every 2-dimensional orbit intersects the curve y(6) = {(cosf,siné,0) : 0 < 6 < 27} in a unique
point. A 2-dimensional G-orbit in [E!-? is degenerate if and only if § = 47 /4, 437 /4. Moreover, a
2-dimensional orbit is Lorentzian (resp. spacelike) if and only if 7/4 < § < 37 /4 or —37/4 <
0 < —m/4 (resp. —m/4 < 0 < w/4or3m/4 < 60 < 5r/4). Therefore, the orbits induced by G in
Ein'? are: three fixed points p, d, and d,, the four connected components of ¢ Ut \ {p, ds, dy },
the two connected components of L(p) \ (¢ U 1)), the affine spacelike line Fre, (0), four degenerate
orbits which are the degenerate affine planes in E'? with § = £ /4, 437 /4, a 1-parameter family

of Lorentzian orbits on which every orbit is a Lorentzian affine half-plane -the parameter being
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0 € (w/4,3n/4) U (=3m /4, —7/4)-, and a 1-parameter family of spacelike orbits on which every
orbit is a spacelike affine half-plane -the parameter being 0 € (—n/4,7/4) U (37/4,57/4).

G = Yy x Resz. Every G-orbit in E1? intersects either the timelike affine line ¢, = {(¢,0,0) :
t € R} or the spacelike affine line ¢, = {(0,¢,0) : ¢ € R} or one of the lightlike affine lines
0 = {(t,t,0) : t € R} and ¢; = {(t,—t,0) : t € R}. Also, G preserves the leaves Fre,(0),
JFi1,(0), and Fig,,(0). Hence, G fixes the corresponding limit points d, € ¢ and dy € . On the
other hand,Y; (and consequently &) acts on the both connected components of qﬁ\{dd)} and @\{dqb}
transitively. For an arbitrary point ¢ = (z,y, z) € E!2, the vector tangent to the orbit G(q) at ¢
induced by the 1-parameter subgroup Y is v = (y,x,0). The set B = {e3, v} C T;G(q) is a basis
ifand only if z # O ory # O if and only if ¢ & Fge,(0). In fact, one can see, G acts on E2\ Fg,., (0)
freely. Hence, G acts on the four connected components of (Fir, (0)UF1,, (0))\ Fre; (0) transitively.
Observe, for ¢ € ¢ \ {o} (resp. q € 45\ {o}) the orbit G(q) is spacelike (resp. Lorentzian).
Therefore, the orbits induced by G in Ein'-? are: three fixed points p, dg and dy,, the four connected
components of (¢ U 1)) \ {dg, dy}, the two connected components of L(p) \ (¢ U 1), the affine
spacelike line Fe; (0), the four connected components of (Fir, (0) U F1,,(0)) \ FRres (0) which
are degenerate affine half-planes, a 1-parameter family of Lorentzian orbits on which G acts freely
-the parameter being ¢ € /s \ {0}-, and a 1-parameter family of the spacelike orbits on which G
acts freely -the parameter being ¢ € ¢, \ {o}-.

G = (R x Ypy) x Res. The subgroup R* x Yy preserves the leaf Fre,(0). Hence, Fre,(0)
is a G-orbit. Observe that G also preserves the leaves i1, (0), and Fi1,(0). Hence, G fixes
the corresponding limit points dy € g% and dy, € 1[1 On the other hand, the homothety factor
R* (and consequently () acts on the both connected components of o\ {dg} and ¥\ {dy}
transitively. The group G acts on the four connected components of (i1, (0) U Fi1,,(0)) \ FRres(0)
transitively, since its subgroup Yz x Resz does. For an arbitrary point ¢ = (x,y,2) € EM2,
the vectors tangent to the orbit G(¢) at ¢ induced by the 1-parameter subgroups Yz and R are
v = (y,z,0) and w = (z,y, 2). The set {e3,v,w} C T,G(q) is a basis if and only if x # +y if
and only if ¢ ¢ (F11,(0) U F11,,(0)). This implies that G acts on the four connected components
of EY2 \ (Fi1,(0) U Fi1,,(0)) transitively. Therefore, the orbits induced by G in Ein"? are: three
fixed points p, dg, dy, the four connected components of (¢ U )\ {dg, dy}, the two connected
components of L(p) \ (¢ U 1), the spacelike affine line Fg,, (0), the four connected components
of (F,(0) U F1,,(0)) \ Fre;(0) which are affine degenerate half-planes, and the four connected
components of Ein’? \ (Fm, (0) U F, (0)).

Go = exp (R(a+ Yg)) x Res, a € R\ {—1,0,1}. The 1-parameter subgroup H, = exp (R(a +
yH)) preserves the leaf Fpr.,(0). Hence, Fre,(0) is a G4-orbit. Also, G, preserves the leaves
Fi1,(0), and Fip,(0). Hence, G, fixes the corresponding limit points dy € ¢ and dy, € 1.
Moreover, H, (and consequently G,) acts on the connected components of ¢ \ {dg} and AN {dy}
transitively. For an arbitrary point ¢ = (x,y,2) € E!2, the vector tangent to the orbit G, (q)
at ¢ induced by the 1-parameter subgroup H, is v = (ax + y,z + ay,az). The set {e3,v} C
T,Gq(q) is a basis if and only if x # 0 or y # 0 if and only if ¢ ¢ Fge,(0). Hence, G, acts
on the four connected components of (F,(0) U F1,,(0)) \ Fres(0) transitively. For a point
q € EM?\ (F1,(0) U Fi, (0)), it is not hard to see that the orbit G,(q) intersects either the
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spacelike affine line ¢; = {(0,¢,0) : ¢t € R} or the timelike affine line ¢, = {(¢,0,0) : t € R}.
Now, one can see G, acts on EL:2 \ (Fm, (0) U Fn, (0)) freely. By Lemma 1.21, one can see that

1,2

the action of G, on Ein"~ is orbitally-equivalent to G_, via the element in O(1, 2) which maps

(z,y,2) € EM? to (—x,y, 2). Hence, we may restrict ourselves to a € (0,00) \ {1}.

— Ifa € (0, 1). the orbit induced at g € ¢; \ {o} (resp. q € s) is spacelike (resp. Lorentzian).

- Ifa € (1,00). the orbit induced at g € ¢, \ {0} (resp. q € ¢,) is Lorentzian (resp. spacelike).

Therefore, the orbits induced by G, in Ein'? are: three fixed points p, dg and d,, the four connected
components of (¢ U 1) \ {dg, dy}, the two connected components of L(p) \ (¢ U 1), the spacelike
affine line Fg,(0), the four connected components of (F, (0) U Fr1,(0)) \ Fres(0) which are

degenerate affine half-planes,

- if a € (0,1), a 1-parameter family of Lorentzian surfaces in E'2 on which G, acts freely
-the parameter being q € #; \ {0}-, and a 1-parameter family of spacelike surfaces in E!? on

which G, acts freely -the parameter being g € 5 \ {o}-.

— ifa € (1,00), a 1-parameter family of spacelike surfaces in E1:2 on which G|, acts freely -the
parameter being ¢ € /; \ {0}-, and a 1-parameter family of Lorentzian surfaces in E'2 on

which G|, acts freely -the parameter being ¢ € /5 \ {o}-.

Gy = exp (R(1 + Yu)) x Reg. The 1-parameter subgroup Hy = exp (R(1 + Vy)) preserves the
leaf e, (0). Hence, Fire, (0) is a G1-orbit. For an arbitrary point ¢ = (,y, z) € E!2, the vector
tangent to the orbit G'1(¢) at ¢ induced by Hy is v = (x + y,x + y, 2). Observe that v € IL4. This
implies that G preserves the leaves of the foliation Fyj,. Hence, G acts on the photon ¢ trivially
(in fact GG1 is a subgroup of I, described in Definition 4.10). On the other hand, the vector v
belongs to I1y if and only if x = —y if and only if ¢ € 11, (0). Hence, G1 fixes the corresponding
limit point dy, € ¢ and acts on the both connected components of ¢ \ {d,} transitively. The
set {ez,v} C TyG1(q) is a basis if and only if z # —y if and only if ¢ ¢ F1,(0). Every
G1-orbit in E? intersects one of the lightlike affine lines ¢; = {(¢,—t,0) : t € R} C Fi, (o),
6 ={(t,—t,1): t € R},or {; = {(t,—t,—1) : t € R}. Observe that for ¢ € ({;” U ¢;") the

L2 are: the

orbit G1(q) is a degenerate affine half-plane. Therefore, the orbits induced by G in Ein
points in ¢ U {d,,}, the two connected components of 1 \ {d,;}, the two connected components of
L(p) \ (¢ U1), a 1-parameter family of 1-dimensional spacelike orbits in E1? on which every orbit
is a leaf FRe,(q) - the parameter being g € ¢;-, and a 1-parameter family of degenerate surfaces in

E'2 on which every orbit is a degenerate affine half-plane -the parameter being ¢ € (€l+ ue)-.

G-1 = exp (R(=1 + Yg)) x Res. For an arbitrary point ¢ = (z,y,2) € E'?, the vectors
tangent to the orbit G_1(q) at ¢ induced by the 1-parameter subgroups exp (R(—l + yH)) is
v=(—x+y,zr—y,z). By Lemma 1.21, the action of G_; on Ein'?
the action of exp (R(1 + V7)) x Res via the element in O(1, 2) which maps (z,y,z) € R? to

(_$a Y, Z)

is orbitally-equivalent to

G = exp (R(1+Yg +e1)) x Reg. For an arbitrary point p = (z,y, z) € E"?, the vector tangent to
the orbit G(g) induced by the 1-parameter subgroup exp (R(1+Yg+e1)) isv = (z+y+1,z+y, 2)
(see B.11). The set {e3, v} is a basis for the tangent space 7, G(p). Thus, all the orbits induced by G



in E12 are 2-dimensional. Therefore, the action of G admits a codimension 1 foliation in E>2. In the
one hand, G(p) is degenerate if and only if x +y = —1/2. On the other hand, G preserves the affine
lightlike plane Fiy, (—1/2,0,0), and acts on it transitively. Hence, G admits a unique degenerate
orbit iy, (—1/2,0,0) in E2. Consequently, G admits a unique fixed point d;, on 1, which is the
limit point of Fy,(—1/2,0,0), and acts on the both connected components of ¢ \ {d} and on
the vertex-less photon ¢ transitively. Furthermore, for a point ¢ € E-2 \ Fip ,(—1/2,0,0) the orbit
induced at G(q) intersects either the affine timelike half-line ¢, = {(¢,0,0) : —oo <t < —1/2} or
the spacelike affine half-line /5 = {(0,¢,0) : —1/2 < t < oo} in a unique point. Now, it can be
easily seen that G acts on EY? \ Fiy, (—1/2,0,0) freely. Observe that, the orbit induced at ¢ € 4

1.2 are: two

(resp. q € {;) is Lorentzian (resp. spacelike). Therefore, the orbits induced by G in Ein
fixed points p and d, the two connected components of ¥\ {dy}, the vertex-less photon , the two
connected components of L(p) \ (¢ U1)), the lightlike affine plane Fiy, (—1/2,0,0), a 1-parameter
family of Lorentzian orbits on which G acts freely -the parameter being ¢ € /;-, and a 1-parameter

family of spacelike orbits on which G acts freely -the parameter being g € /.

e G = exp (R(—1+4 Yy + €1)) x Res. For an arbitrary point ¢ = (z,y,2) € E'?, the vector
tangent to the orbit G(g) at ¢ induced by the 1-parameter subgroup exp (R(—1 + Vg + 1)) is
v=(—x+y+1,x—1y,z). By Lemma 1.21, the action of G on Ein'? is orbitally equivalent to
the action of exp (R(1 + Yy + €1)) x Reg via the element in O(1.2) which maps (z,y, z) € E*?
to (—x,y, 2).

Subgroups with a lightlike line as the translation part

Assume that G C Conf,(E!?) is a connected Lie subgroup with a lightlike line as the translation part,
i.e., G is an element of Table 4.7.

Throughout, this section we denote by .Z the lightlike line R(e; + e2) < R12. Also, recall that, the
unique lightlike plane in R'? invariant by the 1-parameter parabolic subgroup Yp is £+ = R(ey + e2) @
Res and is denoted by IIL.

The translation part 7'(G) = . induces a codimension 2 foliation F & in E1? on which the leaves are
affine lightlike lines parallel to .. Observe that, the translation part preserves the leaves of the foliation
F o since . < Il4. Hence, .2 acts on the photon ¢ trivially. Furthermore, .Z acts on all the vertex-less
photons in L(p) different form gZ; transitively. On the other hand, all the subgroups listed in Table (4.7)
preserve the foliation Fip,. Hence, they preserve the photon ¢. Also, the subgroups with hyperbolic linear
projection preserve the foliation iy, and so, these subgroups preserve both photons ¢ and 1.

Case I: The linear isometry projection trivial. In this case G = R x .. The homothety factor R”.
preserves the leaf F.# (o). Hence, F.¢(0) is a G-orbit. Also, G preserves the leaf Fiy, (0). This implies
that GG fixes a point d in gg which is the limit point of Fry, (0). The group G acts on the both connected
components of é\{d} transitively. Moreover, one can see, R*, (and consequently ) preserves all the affine
planes in E? containing F (o). Observe that all those affine planes are Lorentzian except Fir,, (o). For an
arbitrary point ¢ = (z,y, z) € EL? the vector tangent to the orbit G(q) at ¢ induced by R isv = (z,y, 2).
The set {(e1 + e2).v} C T,G(q) is a basis if and only if z # 0 or  # y if and only if ¢ ¢ F(0).
Thus, G acts on the both connected components of Fii, (0) \ F.# (o) transitively. Furthermore, every
G-orbit in E? \ Fip, (0) intersects one of the spacelike curves v, = {(1,cosn,sinn) : 0 <7 < 27} or
¥y, = {(=1,cosn,sinn) : 0 < n < 27} in a unique point. Therefore, the orbits induced by G in Ein'?
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are: two fixed points {p} and {d}, the two connected components of ¢ \ {d}, the vertex-less photons in
L(p) different from ¢, the affine lightlike line F (o), the two connected components of Fi; »(0) \ Fz(o)

which are affine degenerate half-planes, and a 1-parameter family of Lorentzian affine half-planes -the

parameter being ¢ € (v, U, )-.

Case II: The linear isometry projection is a 1-parameter parabolic subgroup of SO.(1,2). In this

case, GG preserves a unique photon in L(p), namely ¢, and acts on L(p) \ ¢ transitively.
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e G = Yp x . For an arbitrary point ¢ = (,y,z) € E'2, the vector tangent to the orbit G(q)

at ¢ induced by Yp is v = (2,2,2 — y). Since v € Il4, G preserves the leaves of the foliation
J11,- Actually, G is a subgroup of K5 (Definition 4.10). Thus, G acts on the photon ¢ trivially.
The set {(e1 + e2), v} is a basis if and only if x # y, which describes the leaf Fy1, (0). Hence, G
acts on all the leaves of Jpy f different form JFg n (0) transitively. Observe that the orbits induced by
G in Fip,, (o) are lightlike affine lines, namely, they are the leaves of the foliation induced by .Z.
Therefore, the orbits induced by G in Ein'»? are: the points in ¢, the degenerate surface L(p) \ ¢,
the lightlike affine lines in Fig ¢(0), and the leaves of the foliation 77y, different form Fi; ¢(o),

which are degenerate affine planes.

G = (R% x Yp) x Z. The subgroup R x Yp preserves the leaves F (o). Hence, F#(0) is a
G-orbit. Moreover, G preserves the leaf Fiy, (0). This implies that G fixes a point d € ¢, which
is the limit point of Fi1,(0). The homothety factor R? acts on the both connected components
of ¢ \ {d} transitively. For an arbitrary point ¢ = (z,y,2) € E!2, the vectors tangent to the
orbit G(q) at ¢ induced by Yp and R* are v = (2,2, — y) and w = (z,y, ), respectively.
The set {(e1 + e2),v,w} C T,G(q) is a basis if and only if x # y if and only if ¢ ¢ Fi1,(0).
Thus, G acts on the both connected components of E12 \ Fj , (0) transitively. Observe that for
a point ¢ € JFii,(0) the set {(e1 + e2),w} C T,G(q) is a basis if and only if 2 # 0 if and only
if ¢ ¢ F£(0). Hence, G acts on the both connected components of iy, (0) \ F.z (o) transitively.
Therefore, the orbits induced by G in Ein'? are: two fixed points {p} and {d}, the two connected
components of ¢ \ {d}, the degenerate surface L(p) \ ¢, the lightlike affine line (o), the two
connected components of iy, (0) \ F.z (o) which are affine degenerate half-planes, and the two

connected components of B2\ Fip, (o).

Gq = exp (R(a+Yp)) xZ, a € R*. The 1-parameter subgroup H, = exp (R(a+Yp)) preserves
the leaf F.& (0). Hence, F.¢(0) is a G 4-orbit. Moreover, G, preserves the leaf Fiy,, (0). This implies
that GG, fixes a point d € qg, which is the limit point of Fpg o (0). One can see that H, acts on the
both connected components of ¢ \ {d} transitively. For an arbitrary point ¢ = (z,y, z) € E12, the
vector tangent to the orbit G,(q) at ¢ induced by the H, is v = (ax + z,ay + 2,2 — y + az). The
set {(e1 + e2),v} C T,G4(q) is a basis if and only if z # 0 or z # y if and only if ¢ ¢ F.#(0).
Henceforth, G, acts on the both connected components of Fiy, (0) \ F.¢(0) transitively. It is not
hard to see that every orbit induced by G, in E}2 \ Fj ,(0) intersects the affine spacelike line
¢s = {(0,t,0) : t € R}. Now, it can be easily seen that G, acts on E'2 \ F¢(o) freely. For
a point ¢ € B2\ Fig, (0) the orbit G,(q) is Lorentzain, since the orthogonal space of the null
vector e + eg in T;G(q) is £ Therefore, the orbits induced by G, in Ein'? are: two fixed points
{p, d}, the two connected components of ¢ \ {d}, the affine lightlike line F (o), the degenerate
surface L(p) \ ¢, the two connected components of Fiy, (0) \ F.¢(0) which are degenerate affine



half-planes, and a 1-parameter family of Lorentzain orbits in E1'? on which G, acts freely -the

parameter being g € /5 \ {o}.

It is remarkable that the action of G, is orbit equivalent to the action of G_, via the element in
O(1,2) which maps (z,y, z) € EM? to (z,y, —2).

o G =exp (R(Yp+e1)) x Z. For an arbitrary point ¢ = (z,y, z) € E1?, the vector tangent to the
orbit G(p) at ¢ induced by the 1-parameter subgroup H = exp (R(Yp+e1)) isv = (2+1,z,2—y)
(see B.8). Observe that v ¢ Il4, hence, G preserves no leaf of the foliation Fiy o and so, (G acts
on the vertex-less photon ¢ transitively. It is clear that the set {(e; + e2), v} C T;G(q) is a basis.
Thus all the orbits induced by G in E? are 2-dimensional. By applying a suitable element of .,
we may assume ¢ = (z, 0, z). On the other hand, the orbit induced by H at q is

1, 31, t2
H(q) = {(w(1+2)t —i—tz—i—t—l-g,it a:+tz,t:c—|—z+5) :tER}.
Setting ¢ = —x, the orbit H (q) intersects the affine degenerate plane {x = y}. Hence, once more,
applying a suitable element of ., we may assume that ¢ = (0,0, z). We conclude that every
G-orbit in Ein'? intersects the affine spacelike line £ = {(0,0,t) : t € R}. Now, it can be easily
seen that G acts on E1? freely and every G-orbit intersects £ in a unique point. The orthogonal
space of the null vector e1 + ez in T),G (p) is -Z. Hence, all the orbits are Lorentzian. Therefore, the

1.2 are: the fixed point p, the vertex-less photon ¢3, the degenerate surface

orbits induced by G in Ein
L(p) \ ¢, and a 1-parameter family of Lorentzian orbits on which G acts freely -the parameter being

q €l

Case III: The linear isometry projection Py;(G) is a 1-parameter hyperbolic subgroup of SO.(1,2).
In this case G preserves both foliations J1, and Jy1,,, and so, it preserves both photons ¢ and ¥ in the
lightcone L(p). Also, G acts on the two connected components of L(p) \ (¢ U ) transitively.

o G = (RY xYy) x Z. The subgroup R* x Yy preserves the leaf F«(0). Hence, F¢(o) is a
G-orbit. Moreover, G preserves the leaf 1, (o). This implies that, G admits a fixed point d € o,
which is the limit point of 711, (0). The homothety factor R’ acts on the both connected components
of (%\ {d} transitively. Furthermore, i preserves the affine Lorentzian plane Ly = {z = 0} C E}2.
For an arbitrary point ¢ = (z,y, 2) € E!2, the vectors tangent to the orbit G(q) at ¢ induced
by the 1-parameter subgroups R* and Yy are v = (x,y,2) and w = (y, x, 0), respectively. The
set {(e1 + e2),v,w} C T,G(q) is a basis if and only if z # 0 and  # y if and only if ¢ ¢
(LoUFi1,(0)). Thus, G acts on the four connected components of E'?\ (Lo U Fir,, (0)) transitively.
Also, one can see that G acts on the four connected components of (Lo U Fii,(0)) \ Fz(0)

1.2 are: two fixed points {p, d}, the two

transitively. Therefore, the orbits induced by G in Ein
connected components of ¢ \ {d}, the vertex-less photon 1), the affine lightlike line F ¢ (0), the two
connected components of L(p) \ (¢ U 1), the two connected components of Lg \ F.¢(0) which are
affine Lorentzian half-planes, the two connected components of F1,(0) \ F.# (o) which are affine

degenerate half-planes, and the four connected components of E'?\ (Lo U Fi1,(0)).

e G =Yy x.Z. The 1-parameter subgroup Y preserves the leaf F (o). Hence, F #(0) is a G-orbit.
Moreover, G preserves the leaf J1, (o). This implies that, G admits a fixed point d € ¢, which is
the limit point of Fyy, (0). The subgroup Yy acts on the both connected components of o\ {d}
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transitively. Furthermore, GG preserves the leaves of the foliation 7, induced by the Lorentzian
plane L = Re; @ Rea < RM2. Every G orbit in E'? intersects one of the spacelike affine lines
ts ={(0,£,0) : t € R} C Fri,(0), €& = {(1,t,0) : t € R}, and £ = {(—1,£,0) : t € R} ina
unique point. For an arbitrary point ¢ = (x,y, z) € EY2, the vector tangent to the orbit G(q) at ¢
induced by Yy is v = (y, x, 0). Observe that, the set {(e; + e2,v}) C T;G(q) is a basis if and only
if z # y if and only if ¢ ¢ Fi1,(0). Hence, for a point g € /s, the orbit G, is F.#(q). For a point
q € (£F ULy ), the orbit G, is the connected component of F,(q) \ Fi1, (o) which contains ¢, and

L2 are: two fixed

it is a Lorentzian affine half plane. Therefore, the orbits induced by the G in Ein
points {p, d}, the two connected components of ¢ \ {d}, the vertex-less photon t), a 1-parameter
family of lightlike affine lines in E'2 -the parameter being q € /;-, and a 1-parameter family of the

2-dimensional orbits which are Lorentzian affine half-planes -the parameter being ¢ € £ U ¢ .

Go = exp (R(a + Vi) x &, a € R*\ {1}. The group G, preserves the orbits induced by
(R% x Yg) x &, since G is a subgroup of (R} x Yp) x .Z. In fact, one can see, the orbits
induced by G, in the lightcone L(p) are exactly the same as orbits induced by (R% x Yz) x Z.
For an arbitrary point ¢ = (x, %, z) € E2, the vector tangent to the orbit G(q) at ¢ induced by the
1-parameter subgroup exp (R(a+ Yy )) is v = (az+y, z+ay, az). The set {e1 +e2, v} C T,G(q)
is a basis if and only if z # 0 or z # y if and only if p ¢ F (o). This shows that G acts on
the four connected components of (Lo U Fi1,(0)) \ F. (o) transitively. In the one hand, for all
q € EY?\ Fi1,(0) the orbit G(q) is Lorentzain, since the orthogonal space of the null vector
e1 + ez € T,G(q) is .Z. On the other hand, the orbit G(q) intersects one of the four timelike
affine half-lines /F = {(£¢,0,1) : 0 < t < o0)}, £, = {(£t,0,—1) : 0 < t < 00)}. Now, it
can be easily seen that G acts on EM2 \ (Lo U Fip,(0)) freely. Therefore, the orbits induced by G

12 are: two fixed points {p, d}, the two connected components of ¢ \ {d}, the vertex-less

in Ein
photon ), the lightlike affine line F (o), the two connected components of L(p) \ (¢ U 1)), the
two connected components of Fiy, (0) \ F.z(0) which are affine degenerate half-planes, the two
connected components of Ly \ F.¢(0) which are affine Lorentzian half-planes, and a 1-parameter

family of Lorentzian orbits on which G acts freely -the parameter being ¢ € (fli U ﬂfl)—.

Note that, for all @ € R* \ {1}, the action of G, on Ein'+? is orbitally-equivalent to the the action
of G/, via the homothety in Conf(E"?) which maps (z,y,z) € EM? to (z/a,y/a, z/a).

If G = exp (R(1 + Yu)) x Z. Since, G is a subgroup of K, (Definition 4.10), it preserves
the leaves of the foliation F1,(0). Hence, G acts on the photon ¢ trivially. Also, GG preserves
the leaf F¢(0), and the affine Lorentzian plane Ly = {z = 0} C E'2. For an arbitrary point
qg=(x,y,2) € E12 the vector tangent to the orbit G (q) at ¢ induced by the 1-parameter subgroup
exp (R(1+ Yg))isv = (z 4+ y,z + y,2). The set {e1 + ez, v} C T,G(q) is a basis if and only
if z # 0 if and only if ¢ ¢ Lg. Thus for all ¢ € E'2, G acts on the both connected components
of F11,(q) \ Lo, transitively. The intersection of a leaf Fiy,(q) with Lo is a leaf of F¢. Indeed,
every G-orbit in Lo (resp. E1? \ L) intersects the timelike affine line £ = {(¢,0,0) : t € R} (resp.
one of the timelike affine lines /™ = {(¢,0,1) : ¢t € R}, £~ = {(¢,0,—1) : ¢ € R}) in a unique

1.2 are: the points in ¢, the vertex-less photon 12), a

point. Therefore, the orbits induced by G in Ein
1-parameter family of 1-dimensional orbits which are lightlike affine lines -the parameter being

q € (-, the two connected components of L(p) \ (¢ U1)), and a 1-parameter family of 2-dimensional



orbits which are degenerate affine half-planes -the parameter being ¢ € £+ U £~ -.

G = exp (R(yH + 63)) x .Z. For an arbitrary point ¢ = (z,v,2) € E2, the vector tangent to
the orbit G(p) induced by the 1-parameter subgroup H = exp (R(Vy + e3)) is v = (y,z, 1) (see
B.10). Itis clear that & preserves the degenerate affine plane Fy, (o). Thus, it fixes the a point
d € ¢ which is the limit point of Fiy,(0). Also, one can see that H acts on the both connected
components of ¢ \ {d} transitively. The set {e; 4 ez, v} C T,G(q) is a basis. Thus, all the orbits
induced by G in E»? are 2-dimensional. Every G-orbit in E? intersects the timelike affine line
¢ ={(t,0,0) : t € R} in a unique point. Now, one can see that G acts on E? freely. Observe that,
for all points ¢ € B2\ Fy , (0), the tangent space T, G (q) is Lorentzian, since the orthogonal space
of the lightlike vector e; + ez in T,G/(p) is .Z. Therefore, the orbits induced by G in Ein!+? are:
two fixed points {p, d}, the two connected components of ¢ \ {d}, the vertex-less photon 1, the
two connected components of L(p) \ (¢ U 1), and a 1-parameter family of 2-dimensional orbits in
E'2 on which one of the is the degenerate affine plane F ,(0), and the other orbits are Lorentzian

and G acts on them freely -the parameter being g € ¢.

exp (R(1 + Yu + e1)) x Z. For an arbitrary point ¢ = (z,y, z) € E!2, the vector tangent to the
orbit G(q) at ¢ induced by the 1-parameter subgroup exp (R(1+Ypg+e1)) isv = (z4y+1, 24y, 2)
(see B.11). The set {e1 + e2,v} C T,G(q) is a basis, and so, all the orbits induced by G in E!2
are 2-dimensional. Observe that, the Lorentzian affine plane Ly = {z = 0} is G-invariant. Hence,
G acts on Ly transitively. Moreover, every G-orbit in E1? intersects the spacelike affine lines
¢ = {(0,0,t) : t € R} in a unique point. Now, it can be easily seen that G acts on E1? freely.
Furthermore, all the orbits induced by G in E1? are Lorentzian, since the orthogonal space of the
null vector e; + e in T,G(q) is .Z. This shows that G acts on the vertex-less photon b transitively.
Therefore, the orbits induced by G in Ein'? are: a fixed point p, the two vertex-less photons qg and
¢, the two connected components of L(p) \ (¢ U ), and a 1-parameter family of Lorentzian orbits
in E12 on which G acts freely and on of them is a Lorentzian affine plane -the parameter being
q€l.

exp (R(—1 + Vi + e1)) x £Z. For an arbitrary point ¢ = (z,y,2) € R!?, the vector tangent
to the orbit G(q) at ¢ induced by the 1-parameter subgroup H = exp (]R(—l + Vi + el)) is
v=(—z+y+1lz—y,—z) (see B.12). The set {e; + e2,v} C T,G(q) is a basis if and only
ifz#0and x —y # 1/2if and only if ¢ ¢ F(1/2,0,0). It is not hard to see that G acts on
EY?\ F(1/2,0,0) freely. Observe that G preserves the degenerate affine plane Fir,(1/2,0,0).
Hence, G fixes a point d € ¢ which is the limit point of Fip »(1/2,0,0). The subgroup H acts on
the both connected components of ¢ \ {d} transitively. For all ¢ € E-2 \ Fip ,(1/2,0,0), the orbit
G/(q) intersects exactly one of the timelike affine lines /T = {(¢,0,1) : t € R}, £~ = {(¢,0,—1) :
t € R} in a unique point. Furthermore, for ¢ € ¢+ U ¢~ the orbit G(q) is Lorentzian, since the
orthogonal space of the null vector e; + e in T,G(q) is -£. Therefore, the orbits induced by G in
Ein"? are: two fixed points {p, d}, the two connected components of ¢\ {d}, the vertex-less photon
1), the two connected components of L(p) \ (¢ U)), the lightlike affine line F ¢ (1/2,0,0), the two
connected components of iy, (1/2,0,0) \ F(1/2,0,0) which are degenerate affine half-planes,
and a 1-parameter family of Lorentzian orbits in E'? on which G acts freely, -the parameter being
qgeELt UL,
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Case IV: The linear isometry projection Py;(G) is a 2-dimensional subgroup of SOo(1,2). In this

case, GG preserves the foliation Jiy,, and so it preserves the photon ¢. Thus, G acts on the degenerate

surface L(p) \ ¢ transitively.
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o G = (R% x Aff) x .. The subgroup R* x Aff preserves the leaf F ¢ (0). Hence, F#(0) is a

G-orbit. Also, G preserves the degenerate affine plane Fyp,, (0). Thus, G fixes a point d € qAS which
is the limit point of iy, (0). The homothety factor R* acts on the both connected components
of ¢ \ {d} transitively. For an arbitrary point ¢ = (z,y, z) € E12 the vectors tangent to the orbit
G(q) at ¢ induced by the 1-parameter subgroups R* and Yy are v = (x,y, 2) and w = (y, z,0),
respectively. Observe that for ¢ € Fi1,(0) \ F.¢(0), the set {v, w} C T,;G(q) is a basis. Hence
G acts on the both connected components of F1, (0) \ F.# (o) transitively. On the other hand, for
q € B2\ Fp, (o), the set {e1 +e2,v,w} C TqG(q) is a basis. Thus, G acts on the both connected
connected components of E12 \ Fj , (0) transitively. Therefore, the orbits induced by G in Ein!?
are: two fixed points {p, d}, the two connected components of ¢ \ {d}, the affine lightlike line
F.¢(0), the degenerate surface L(p) \ ¢, the two connected components of Fiy, \ F.¢ (o) which
degenerate affine half-planes, and the two connected components of E»? \ Fpy ,(0). Note that the
orbits induced by G in Ein"? are exactly the same as the orbits induced by (RY xYp) x Z.

G = Aff x Z. The group G preserves the orbits induced by (R* x Aff) x .Z. In fact, one
can see GG and R x Aff) x .Z admit the same orbits in the lightcone L(p). For an arbitrary
point ¢ = (x,y,2) € E2 the vectors tangent to the orbit G(q) at ¢ induced by the 1-parameter
subgroups Yp and Yz are v = (z,z,2 — y) and w = (y, x,0), respectively. Observe that for
all ¢ € Fip, (o), the leaf Fg(q) is invariant by G, and it intersects the affine spacelike line
¢ = {(0,0,t) : t € R} C E'? in a unique point. The set {e; + e2,v,w} C T,G(q) is a basis
for all ¢ € B\ Fi1,(0). Thus, G acts on the both connected components of B2 \ Fip, (o)
transitively. Therefore, the orbits induced by G in Ein'? are: two fixed point {p, d}, the two
connected components of ¢ \ {d}, the degenerate surface L(p) \ ¢, a 1-parameter family of
1-dimensional orbits which are lightlike affine lines -the parameter being ¢ € ¢-, and the two

connected components of B2\ Fip, (o).

G =exp (R(a+ Yu) +RYp)) x £, a € R*\ {1}. Obviously, G preserves the orbits induced
by (R% x Aff) x Z. In fact, G and (R* x Aff) x £ admit the same orbits in the lightcone
L(p). For an arbitrary point ¢ = (z,y,2) € E? the vectors tangent to the orbit G(q) at ¢
induced by the 1-parameter subgroups exp (R(a + Yp)) and Yp are v = (az + y, z + ay, az) and
w = (2,2, — y), respectively. For a point ¢ € Fi1,(0) \ Fz(0), the set {v,w} C T,G(q) is a
basis. Hence, G acts on the both connected components of Fiy, (0) \ F.¢(0) transitively. Also, for
apoint ¢ € EM?\ Fi1, (o), the set {e; + e, v, w} is a basis. Thus G acts on the both connected

1,2 are: two

components of '\ ¢ € Fiy, (o) transitively. Therefore, the orbits induced by G in Ein
fixed point {p, d}, the two connected components of ¢ \ {d}, the degenerate surface L(p) \ ¢, the
affine lightlike line . (0), the two connected components of Fiy,, (0) \ F.z (o) which are degenerate
affine half-planes in E'2, and the two connected components of E»? \ Fi ,(0). Note that the orbits

induced by G in Ein'? are exactly the same as the orbits induced by (R* x Yp) x .Z.

G =exp ((R(1+Yu) +RYp)) x Z. Since G is a subgroup of K, (Definition 4.10), it preserves
the leaves of the foliation Fyy,. Hence, GG acts on the photon ¢ trivially. Every leaf of Fiy, intersects



the lightlike affine line ¢ = {(¢, —t,0) : ¢ € R} in a unique point. It is clear that G preserves the leaf
F.¢(0). For an arbitrary point ¢ = (x,y, z) € E12 the vectors tangent to the orbit G(q) at ¢ induced
by the 1-parameter subgroups exp (R(1 + Yp)) and Yp = exp (RVp) arev = (z + y,x + y, 2)
and w = (z, z, z — y), respectively. For a point ¢ € Fy1,(0) \ F.z(0), the set {e1 + e, v} is a basis.
So, G acts on the both connected components of F,(0) \ F.z (o) transitively. Furthermore, for
a point ¢ € B2\ Fp, (o), the set {e; + e, w} C T,G(q) is a basis. This implies that G acts on
each leaf 11, (¢) different form Fiy, (o) transitively. Therefore, the orbits induced by G in Ein'?
are: the point in the photon ¢, the affine lightlike line F ¢ (0), the degenerate surface L(p) \ ¢, the
two connected components of iy, (0) \ F.z (o) which are affine degenerate half-planes in Ein'2,

and 1-parameter family of 2-dimensional which are degenerate affine planes -the parameter being
q € £\ {o}.

G = exp (R(2 4 Yg) + R(Yp + €1)) x £. For an arbitrary point ¢ = (z,y,z) € E"? the
vectors tangent to orbit G(q) at ¢ induced by subgroups exp (R(2 4+ Yy )) and exp (R(Vp + €1))
are v = (2x +y,x + 2y,2z) and w = (z + 1, z, x — y), respectively (see B.8 and B.5). The set
{e1 + ea,v,w} C T,G(q) is a basis if and only if z # (z — y)?/2. The set of points in E»? with
z = (z — y)?/2 is a connected Lorentzian surface S, and G acts on it transitively (in fact it is the
orbit induced by the free action of the subgroup exp (R(yp +e1) @y L ) at o). Hence, G acts on
the both connected components of E12 \ S transitively. Also, G acts on the vertex-less photon g%
transitively, since it preserves no leaf of Fry,. Therefore, the orbits induced by G in Ein'? are: a
fixed point p, the vertex-less photon qg the degenerate surface L(p) \ ¢, the Lorentzian surface S

which is diffeomorphic to R?, and the two connected components of E}»? \ S.

G =exp (R(Yy + e3) + RYp) x Z. Since G is a subgroup of Aff,(1,R) x ILy, it preserves the
leaf Fp1,(0). Hence, it fixes a point d € ¢ which is the limit point of Fi; ,(0). The 1-parameter
subgroup H = exp ((R(Vg + e3)) acts on the both connected components of ¢\ {d} transitively.
For an arbitrary point ¢ = (z,y,2) € E'? the vectors tangent to orbit G(g) at q induced by
subgroups H and Yp are v = (y,z,1) and w = (z, z,x — y), respectively (see B.10). The set
{e1 + e2,v,w} C TyG(q) is a basis if and only if x # y if and only if ¢ ¢ Fi,(0). Observe
that for a point ¢ € Ji1,(0) the set {e1 + e2,v} C TyG(q) is a basis. Hence, G acts on Fyp,(0)
transitively. Therefore, the orbits induced by G in Ein'? are: two fixed points {p, d}, the two
connected components of ¢ \ {d}, the degenerate surface L(p) \ ¢, the degenerate affine plane
Fi1,(0), and the two connected components of En'? \ Fi, (o). Note that the orbits induced by G
are exactly the same as orbits induced by (R%. x Yp) x (R(e; + e2) @ Regz).

Subgroups with trivial translation part

Finally, assume that G C Conf,(IE'2) is a connected Lie subgroup with trivial translation part 7'(G) =
{0}. These groups have been listed in Table 4.8.

First, assume that G is a subgroup of R x SO,(1,2). This group fixes the origin o = (0,0,0) €

E'2. By Remark 4.2, the Minkowski space E!* with origin o is endowed with the quadratic form

q:=q120° (©,)7!, and this makes E!»? a Lorentzian scalar product space.

The linear group R* x SO,(1,2) (and all its subgroups) preserves the nullcone centered at o
N(o) ={q = (x,y,2) € EY*\ {0} : q(q) = —2* +y* + 2° = 0}.
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Also, it preserves the three connected components of the complement of the nullcone (o) in E!2

which are: the domain {q > 0} and the two connected components of the domain {q < 0}. Also, this

group preserves the ideal circle So, = L(p) N L(0). Observe that, if G is a subgroup of SO,(1,2), it

also preserves the de-Sitter spaces dS™!(r) = q~!(r), and the hyperbolic planes H?(r) (the connected

components of q~!(—r)) in E12 centered at o with radius r € R% . Moreover, the group R’ x Aff

preserves the foliation Fiy,, and also, preserves the leaves Ji,, (0) and F¢(o).
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e G =R% x SO,(1,2). This group acts on the both components of the nullcone 91(0) , transitively.

The complement of D(0) U {0} in E1? has three connected components: the domain with g > 0
and the two connected components with ¢ < 0. One can see that G acts on these components
transitively. The group G preserves no foliation in E'2? induced by a degenerate plane in R%2,
Hence, it acts on the ideal circle S, and the both connected components of L(p) \ (Sec U {p})

transitively. Therefore, the orbits induced by G in Ein':?

are: two fixed point p and o, the ideal
circle Sy, the two connected components of L(p) \ So, which are degenerate surfaces, the two
connected components of 91(0), the two connected components of the domain {q < 0}, and the

domain {q > 0}.

G = SO.(1,2). This group acts on the both connected components of 91(0) transitively. Also,
it preserves the de-Sitter spaces dSl’l(r) and the hyperbolic planes H?(r), and acts on them
transitively. Indeed, every de-Sitter space dS'!(r) (resp. hyperbolic plane H?(r)) intersects the
spacelike affine half-line £, = {(0,¢,0) : 0 < ¢t < oo} (resp. the timelike affine line ¢, = {(¢,0,0) :
t € R) in a unique point. Observe that G preserves no foliation in Ein'? induced by a degenerate
plane in R}2. Hence, it acts on S, and the both connected components of L(p) \ (S U {p}),
transitively. Therefore, the orbits induced by G in Ein'? are: two fixed points {p, 0}, a spacelike
curve S, the two connected components of L(p) \ S and the two connected components of 9%(0)
which are degenerate surfaces, a 1-parameter family of 2-dimensional Lorentzian orbits on which
every orbit is conformally equivalent to dS'! -the parameter being ¢ € /-, and a 1-parameter
family of 2-dimensional spacelike orbits on which every orbit is conformally equivalent to H? -the

parameter being g € ¢; \ {o}.

G = Aff. This group fixes the point d = (ﬁ N Se which is the limit point of Fiy, (o), and acts
on Sy \ {p}. the both connected components of ¢ \ {d}, and the both connected components
of L(p) \ (Sec U @) transitively. The intersection of the leaf Fij, (0) with the nullcone 9N(o) is
a lightlike line, namely, it is F.#(0). One can see GG acts on the both connected components of
Fg(0) \ {0} and on the both connected components of 91(0) \ F (o) transitively. Also, G acts
on every hyperbolic plane H?(r), transitively. The intersection of the degenerate plane Fiy ,(0)
with a de-Sitter space dSl’l(r) is two disjoint affine lightlike lines. It is not hard to see that
G acts on the both connected components of dS™!(r) \ Fi ,(0) transitively. Moreover, the 1
-parameter parabolic subgroup Yp (and consequently (7) acts on each connected component of
dst(r) N Fo ,(0) transitively. Indeed, every G-orbit in E'? intersects one of the affine lines
¢ = {(t,0,0) : t € R}, £s = {(0,¢,0) : t € R}, and £, = {(0,0,¢) : t € R}. Therefore, the

1.2 are, three fixed points {p, 0, d}, the spacelike curve S, \ {d}, the

orbits induced by G in Ein
two connected components of ¢ \ {d} and the two connected components of F(0) \ {0}, the two

connected components of L(p) \ (Ss U ¢) and the two connected components of 9t(0) \ F¢(o),



a 1-parameter family of 1-dimensional orbits on which every orbit is an lightlike affine line -the
parameter being g € /., \ {o0}-, a 1-parameter family of 2-dimensional spacelike orbits on which
every orbit is conformally equivalent to H? -the parameter being g € ¢; \ {0}-, and a 1-parameter
family of 2-dimensional Lorentzian orbits on which every orbit is conformally equivalent to a

connected component of dS'! \ Fyy , (0) -the parameter being ¢ € /s \ {o}.

G = R} x Aff. The orbits induced by G in the lightcone L(p) is exactly the same as the orbits
induced by Aff. The intersection of the leaf Fy,(0) with the nullcone 91(o) is a lightlike line,
namely, it is F¢(0). The group G acts on the both connected components of F¢ (o) \ {o}
and on the both connected components of 91(0) \ F¢ (o) transitively. Observe that G also acts
on the both connected components of the domain {q < 0} transitively. Moreover, G acts on
the both connected components of Fii,(0) \ F.#(0), and on the both connected components of
EY2\ (M(0) U{q < 0} U F1,(0)) transitively. Therefore, the orbit by G in Ein'-? are: three fixed
points {p, 0, d}, the spacelike curve Sa \ {d}, the two connected components of ¢ \ {d}, the two
connected components of F¢(0) \ {0}, the two connected components of L(p) \ (Ss U ¢), the
two connected components of (o) \ F.# (o), the two connected components of Fi1,(0) \ F.¢(0),

and four open orbits in E12.

Gq = exp (R(a+Yg)+RYp), 0 < |a| < 1. The group G, admits the same orbits in the lightcone
L(p) as Aff. For an arbitrary point ¢ = (,y, z) € EM2, the vectors tangent to the orbit G,(q) at ¢
induced by the 1-parameter subgroups exp (R(a + Yy7)) and Yp are v = (az + y, z + ay, az) and
w = (z,z,x — y), respectively. Note that, by Lemma 1.21, the action of G|, is orbitally-equivalent
to the action G_,, via the element in O(1,2) which maps (z,y, 2) € E*? to (—z, —y, 2). Hence,
we may restrict ourselves to the case 0 < a < 1. The set {v, w} C T;,G4(q) is a basis if and only if
z # 0 and x # y if and only if ¢ # F (o). Thus, G, acts on the both connected components of
F1,(0) \ Fz(0), and on the both connected components of (o) \ F.#(o) transitively. Also, G,
acts on the both connected components of F¢ (o) transitively. For all ¢ € E'?\ (0M(0) U Fi1,(0))
with q(q) > 0 (resp. q(¢) < 0) the orbit G,(q) intersects the timelike line ¢; = {(¢,0,0) : t € R}
(resp. the spacelike line ¢; = {(0,¢,0) : t € R}) in a unique point. Now, one can see that G,
acts on E12 \ (9(0) U Fiy, (0)) freely. For a point ¢ € £, \ {0} (resp. ¢ € /5 \ {0}), the orbit

L2 are: three fixed

G(q) is spacelike (resp. Lorentzian). Therefore, the orbits induced by G, in Ein
points {p, 0, d}, the spacelike curve Sa, \ {d}, the two connected components of ¢ \ {d}, the two
connected components of L(p) \ (¢ U Sx), the two connected components of F (o) \ {0}, the
two connected components of J1, (0) \ F.#(0), the two connected components of (o) \ F.#(0),
a 1-parameter family of 2-dimensional Lorentzian orbits on which G acts freely -the parameter
being g € /s \ {o}-, and a 1-parameter family of 2-dimensional spacelike orbits on which G acts

freely -the parameter being ¢ € ¢, \ {o}.

G =exp (R(l + Vi) + Ryp). This group preserves the leaves of the foliation iy, since it is a
subgroup of X', (Definition 4.10). Hence, G acts on the photon ¢ trivially. It is not hard to see that
G acts on S, \ ¢ and on the both connected components of L(p) \ (¢ U Sx) transitively. Also,
G preserves the lightlike line F & (0) and acts on the both connected components of F (o) \ {o}
transitively. For an arbitrary point ¢ = (z,y,2) € E'2, the vectors tangent to the orbit G(q)
at ¢ induced by the 1-parameter subgroups exp (R(1 + Yy )) and Yp are v = (z + y,z + y, 2)
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and w = (z, z,x — y) respectively. The set {u,v} C T,G(q) is a basis if and only if ¢ ¢ (o).
Hence, G acts on the both connected components of Fi1,(0) \ F.(0) transitively. Every leaf of
the foliation Fiy,, intersects the lightlike line ¢; = {(¢,—t,0) : t € R} in a unique point. For a
point g € £; \ {0}, the intersection of the leaf Fyy, (¢q) with the nullcone 91(0) is a spacelike curve
4 Which the 1-parameter subgroup Yp acts on it transitively. For all ¢ € ¢\ {o}, G acts on the
both connected components of Fi1,(q) \ 74 transitively. Therefore, the orbits induced by G in
Ein'? are: the points in ¢ U {0}, the spacelike curve S, \ ¢, the two connected components of
L(p) \ (¢ U Swo), a 1- parameter family of 1-dimensional spacelike orbits 7, in E!? -the parameter
being ¢ € ¢; \ {o}-, the two connected components of F (o) \ {0}, the two connected components
of F11,(0) \ F.z(0) which are affine degenerate half-planes, and a 1-parameter family of degenerate
orbits which are the connected components of Fiy, (¢) \ 7, -the parameter being g € £\ {o}.

G = exp (R(—=1 + Vi) + RYp). This group preserves the leaf Fiy, (o), and so it fixed the
corresponding limit point d € ¢. In the one hand, G acts on the lightlike affine line F»(0) C
J11, (o) trivially. On the other hand, ¢ = F.¢(0) U {d} is a photon which G acts on it trivially.
Therefore, G is a subgroup of /., (Definition (4.10)), up to conjugacy.

G = R} x Yp. One can see that G’ admits the same orbits in the lightcone L(p) as Aff. For
an arbitrary point ¢ = (z,y, z) € E1?2, the vectors tangent to the orbit G(q) at ¢ induced by the
1-parameter subgroups R’ and Yp are w = (,y,2) and v = (2,2, — y) respectively. The set
{w,v} C T,G(q) is a basis if and only if ¢ ¢ F¢(0). In fact, G acts on E1? \ F (o) freely.
Thus G acts on the two connected components of iy, (0) \ F.#(0), and on the both connected
components of N(o) \ F¢ (o) transitively. For a point ¢ € E»?\ Fg, (o), the orbit G(q) intersects
the Lorentzian affine plane {z = 0}. Hence, by applying a suitable element of G we may assume
q = (2,y,0). Now, it can be easily seen that, for a point ¢ € E? \ (Fi,(0)) with q(g) > 0
(respectively, q(q) < 0) the orbit G(q) is spacelike (respectively, Lorentzian) and G acts on it
freely. So, the orbits induced by G at the points ¢; = (1,0,0) and g2 = (—1, 0,0) are Lorentzian.
Also, for a point ¢ € EM?\ (91(0) U Fi1,(0) U G(q1) U G(g2)). the orbit G(g) intersects one of
the timelike affine half-lines £+ = {(%t,41,0) : 1 <t < oo}, ff = {(t,£1,0) : -1 < t < 1}

1.2 are: three fixed points {p, o, d},

in a unique point. Therefore, the orbits induced by G in Ein
the spacelike curve S, \ {d}, the two connected components of ¢ \ {d}, the two connected
components of L(p) \ (¢ U S ), the two connected components of F ¢ (0) \ {0}, the two connected
components of Fy, (0)\F.#(0), the two connected components of 9(0)\ F.¢(0), two 2-dimensional
Lorentzian orbits G(¢1) and G(g2) on which G acts freely, a 1-parameter family of 2-dimensional
spacelike orbits on which G acts freely -the parameter being g € E;t—, and a 1-parameter family of

2-dimensional Lorentzian orbits on which G acts freely -the parameter being g € Gt

G = R% x Yp. This group preserves also the foliation F1y,,. Observe that G preserves the leaves
Fi1,(0) and Fi1,, (0). Hence, G fixes two point dy, = ¢ N Sy and dy, = ¥ N S, which are the limit
points of Fi1, (0) and Fiy,,(0) respectively. Furthermore, G acts on the two connected components
of ¢ \ {dy}, the two connected components of ¢ \ {dy}, the two connected components of
Soo \{dg, dy }, and the four connected components of L(p) \ (Sec U¢pU1)) transitively. Moreover, G
preserves the timelike plane Ly = {z = 0} C EL2. Also, G preserves the two lightlike lines F ¢ (0)
and £y = Fi1,,(0)N91(0), and the spacelike line /5 = F1, (0) N F11, (0). The group G acts on the six



connected components of (F ¢ (0) UlyUls)\ {o} transitively. For an arbitrary point ¢ = (z,y, z) €
E12, the vectors tangent to the orbit G(q) at ¢ induced by the 1-parameter subgroups R% and Yy
are v = (x,y, z) and w = (y, x,0), respectively. The set {w,v} C T,G(q) is a basis if and only if
q ¢ (Fg(o)ULyULs). Hence, G acts on the four connected components of 9%(o) \ (F.¢(0) U ),
the eight connected components of (Fi1, (0) U F11,,(0)) \ (F.z(0) Ul ULs), and the four connected
components of Lo \ (Fg(0) U £p) transitively. On the other hand, for ¢ € E12\ Ly, the orbit G(q)
intersects the timelike plane y = 0, hence, by applying a suitable element of G we may assume
q = (2,0, z). Now it can be easily seen that, for a point ¢ € E1?\ (9(0) U Lo U Fi1, (0) U Fi1,, (0))
with q(g) > 0 (resp. q(¢g) < 0) the orbit G(q) is spacelike (resp. Lorentzian) and G acts on it
freely. So, the orbits induced by G at ¢g; = (1,0,0) and g2 = (—1,0,0) are Lorentzian. For a
point ¢ € EM2\ (Lo U Fir, (0) U Fi1, (0) UN(0) U G(q1) U G(g2)) the orbit G(g) intersects one
of the timelike affine half-lines ¢/ = {(4t,0,41): 1 <t < oo}, 3 = {(t,0,41): =1 <t < 1}.
Therefore, the orbits induced by G in Ein'? are: four fixed points {p,0,dg,dy}, the four connected
components of (¢ U 1) \ {dy, dy}, the two connected components of Su, \ {dg,dy}, the four
connected components of L(p) \ (¢ U1 U S ), the four connected components of F ¢ (o) Ulp \ {o}
which are lightlike affine half-lines, the two connected components of ¢ \ {0} which are spacelike
affine half-lines, the eight connected components of (Fi1, U Ji1,,(0)) \ (Fz(0) U £y U £s) which
are degenerate affine half-planes, the four connected components of Ly \ (F.¢(0) U £y) which are
Lorentzian affine half-planes, the four connected components of 9%(o) \ (F.¢(0) U £y) which are
degenerate surfaces, two Lorentzian orbits G(q1) and G(g2) which G acts freely, a 1-parameter
family of 2-dimensional spacelike orbits on which G acts freely -the parameter being ¢ € ¢3 -, and

a 1-parameter family of Lorentzian orbits on which G acts freely -the parameter being g € Ef.

e G =R% x Yg. Itis clear that G acts on the ideal circle S, and the both connected components of
L(p) \ S transitively. Observe that G preserves the timelike line ¢, = {(¢,0,0) : t € R} C El2
and the spacelike plane Lg = {z = 0} C EM2. Obviously G acts on the both connected
components of ¢; \ {0} transitively. For an arbitrary point ¢ = (z,y, z) € E!2, the vectors tangent
to the orbit G(q) at ¢ induced by the 1-parameter subgroups R* and Yz are w = (x,y, z) and
v = (0, z, —y) respectively. The set {w, v} is a basis if and only if ¢ ¢ ¢;. Hence, G acts on the
both connected components of 91(o0) transitively. Also, Lo \ {0} is a G-orbit. Every G-orbit in
EL2\ (9(0) U Lo U¥;) intersects one of the affine timelike half-lines /£ = {(t,+1,0): 0 < t < 1},
(F = {(t,+£1,0) : 1 <t < oo}. Now, one can see that G acts on E'2 \ ¢; freely. For a point
q € ﬁ[ (resp. q € K;t) the orbit G(q) is spacelike (resp. Lorentzian). Therefore, the orbits, induced
by G in Ein'? are: two fixed point {p, 0}, the ideal circle S, the two connected components
of L(p) \ Sec, the both connected components of /; \ {o} which are timelike affine half-lines, a
2-dimensional Lorentzian orbit Ly \ {0}, the two connected components of 91(0), a 1-parameter
family of 2-dimensional Lorentzian orbits on which G acts freely -the parameter being g € E;E, a
1-parameter family of 2-dimensional spacelike orbits on which G acts freely -the parameter being
q e li.

Spacial subgroups with trivial translation part

Here, we describe the orbits of the two subgroups in Table 4.8 which have trivial translation part, but they
are not subgroups of the linear group R* x SO, (1,2), i.e., these groups fix no point in the Minkowski
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space 12,

» G = exp (R(—1+ Vi + e1 + ez) + RYp). This group preserves the foliation Fiy,, since it
is a subgroup of (R} x Affo(1,R)) x R(e1 + e2). Also, it preserves the leaf Fy1,(0) and the affine
lightlike line F¢(0). For an arbitrary point ¢ = (x,y,z) € E!2, the vectors tangent to the orbit
G(q) at g induced by the 1-parameter subgroups H = exp (R(—1 + Yy + €1 + €2)) and Yp are
v=(—r4+y+l,z—y+1,—2)and w = (z,2,x — y), respectively (see B.13). The subgroup H
acts on the vertex-less photon ) transitively, since v ¢ I1. Therefore, G acts on L(p) \ ¢ transitively.
On the other hand, i1, (0) is the only G-invariant leaf of the foliation Jy1,. Hence, G fixes its limit
point d € ¢, and acts on the both connected components of ¢ \ {d} transitively. Observe that v is a
non-vanishing vector. So, GG admits no fixed point in E12. Hence, G acts on the lightlike affine line
F (o) transitively. The set {u,v} C T,G(q) is a basis if and only if z # y and z # 0 if and only if
q & F.¢(0). This implies that G acts on the both connected components of i1, (0) \ F.# (o) transitively.
In the one hand, for ¢ € E? \ 7 ,(0), the orbit induced by Yp at ¢ intersects the Lorentzian plane
Ly = {z = 0}. On the other hand, for a point ¢ € Ly, the orbit H(q) intersects either the timelike
affine line ¢; = {(¢,0,0) : t € R} or the spacelike affine line £ = {(0,0,¢) : ¢ € R}. Now, it can
be easily seen that G acts on EL2 \ ,(0) freely. Also, for ¢ € {; (resp. q € () the orbit G(q)

is Lorentzian (resp. spacelike). Therefore, the orbits induced by G in Ein'?

are: two fixed points
{p, d}, the two connected components of ¢ \ {d}, the affine lightlike line F (o), the degenerate surface
L(p) \ ¢, the two connected components of Fiy,(0) \ F.¢(0) which are affine degenerate half-planes, a
1-parameter family of Lorentzian orbits in E"? on which G acts freely -the parameter being g € ¢;-, and

a 1-parameter family of spacelike orbits in E1? on which G acts freely -the parameter being q € /-.

Figure 4.1: Two partial views of the 1-dimensional orbit and four 2-dimensional orbits induced by
exp (R(=1+ Yp + €1 + €2) + RYp) in the Minkowski patch Mink(p). Red: Part of the 1-dimensional
orbit. Green: Part of a 2-dimensional Lorentzian orbit. Brown: Part of a 2-dimensional spacelike orbit.
Blue: Parts of the two 2-dimensional degenerate orbits.

» G =exp (R(2 + V) +R(Vp+e1— 62)). This group preserves the foliation Fry,,. Observe that
G (o) is a 1-dimensional lightlike orbit, but it is not a geodesic. Actually, G is the only (up to conjugacy)
connected Lie subgroup of Conf(E"?) induces a 1-dimensional lightlike orbit in Ein'? which is not a

1.2 is conjugate to the action of affine group

lightlike geodesic. We conclude that, the action of G on Ein
Aff € PSL(2, R) within the irreducible action of PSL(2, R) on Einstein universe described in Chapter
3. Indeed, up to conjugacy, this is the action of the stabilizer of Y* € A on Ein'? where N is the
1-dimensional orbit induced by PSL(2, R). So, we study the orbits induced by this action in the setting of

Chapter 3.
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Consider (XY3, X3Y, X2Y2) as a coordinate for the Minkowski patch Min(Y4) c Ein!2. The
restriction of the quadratic form Q4 (Section 1.4.4) on Mink(Y*) ~ E'2 with origin o = (0, 0,0) is

1 1
q(aXY? +bX3Y 4 cX?Y?) = —5ab+ 602'

For a point ¢ = (=, y, z) € Mink(Y*?), the orbit induced by Aff C PSL(2,R) is
Aff(q) = {(me& + 3yelts® — 22e%s — 4353 ye? — dels, zett — 3yedls + 6e*s%) i t, s € R} .

The affine group Aff preserves the foliation Fig, on M ink(Y*) induced by the degenerate plane Iy =
(XY3)+ < RY2. Hence, it preserves the corresponding photon ¢ C L(Y*). On the other hand, one
can see, the 1-parameter parabolic subgroup Yp C Aff preserves no leaf of Fy,. Thus, Aff acts on the
vertex-less photon b=0 \ {Y*} transitively. The 1-parameter hyperbolic subgroup Yz C Aff preserves
the foliation Fi1, where ILy is the degenerate hyperplane (X?Y)~ < R'“2. Also, Yy preserves the
leaf i1, (0), and so, it fixes the corresponding limit point d € ¢ C L(Y*). Therefore, Aff induces a
1-dimensional spacelike orbit in L(Y*) at d. It is not hard to see that Aff acts on the both connected
components of L(Y?) \ (¢ U Aff(d)) transitively.

Now, we describe the orbits induced by Aff in the Minkowski patch Mink(Y*). For an arbitrary
point ¢ = (z,y, z) € Mink(Y*), the vectors tangent to the orbit G(q) at ¢ induced by the 1-parameter
subgroups Yp and Yy are v = (—2z, —4, —3y) and w = (6z, 2y, 42), respectively. Observe that v is
a non-vanishing vector. Hence, Aff fixes no point in Mink(Y*). The orbit Aff(q) intersects the affine
Lorentzain plane Lo = {z = 0} if and only if 3y? > 8z. Consequently, the domain D = {3y* < 82} C
Mink(Y*) is Aff-invariant.

Case I: Orbits with a representative in Ly. For a point ¢ € Lo, the orbit Aff(q) intersects one
of the affine lines ¢, = {(¢,,0) : t € R}, {5 = {(¢,—t,0)}, {1 = {(¢,0,0) : t € R} and /5 =
{(0,¢,0) : t € R}. The origin o = (0,0, 0) is in the intersection of these four lines and the orbit Aff (o)
is the only 1-dimensional orbit in Mink(Y*) (in fact Aff(0) = A\ {Y*}). One can see, Aff acts on
Mink(Y*) \ Aff(o) freely.

o If g € ¢, \ {0}, then the orbit Aff(g) is Lorentzian, since the w is a timelike tangent vector.

o If g € /5 \ {o}, then the tangent vector u = v — w/t is orthogonal to the spacelike vector w. The
t| = 1). Therefore, the orbit
Aff(q) is spacelike (resp. Lorentzian, degenerate) for |¢| > 1 (resp. [t| < 1, |t| = 1).

vector wu is spacelike (resp. timelike, lightlike) if || > 1 (resp. || < 1,

o If g € {1\ {0}, then the orbit Aff(q) is Lorentzian, since both the vectors v and w are lightlike.

e If ¢ € /5, then the orbit Aff(o) is degenerate, since the lightlike vector w is orthogonal to the
tangent space T, Aff(q).

Case II: Orbits in the domain D = {3y? < 8z}. For a point ¢ € D, the orbit Aff(q) intersects the affine
line /3 = {(—t,t,1) : t € R}. Hence, we may assume ¢ = (—y,y, 1). Observe that the tangent vector
v =(—2,—4,-3y) € T,Aff(q) is timelike, since ¢ € D = {3y* < 8z}. Therefore, all the orbits induced
by Aff in D are Lorentzian.

77



Figure 4.2: Two partial views of the 1-dimensional orbit and three 2-dimensional orbits induced by
exp (R(2+4 Vi) +R(Yp + €1 — e2)) in the Minkowski patch Mink(p). Red: Part of the 1-dimensional
orbit. Green: Part of a 2-dimensional Lorentzian orbit. Yellow: Part of a 2-dimensional degenerate orbit.
Purple: Part of a 2-dimensional spacelike orbit.
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Chapter 5

Actions on Anti de-sitter and de-Sitter
components and their boundaries

In this chapter we consider the cohomogeneity one actions on Einstein universe Ein'? preserving a
spacelike or a timelike direction in R?3. The first corresponds to the actions preserving an Anti de-Sitter
component AdS!? and its conformal boundary JAdS'? = Ein"! an Einstein hypersphere. The second

corresponds to the actions preserving a de-Sitter component dS'2 and it conformal boundary ddS'? = S2.

5.1 Actions on Anti de-Sitter component and its boundary

Here, we study cohomogeneity one actions of connected subgroups of Conf(Ein'?) on Einstein universe
Ein'2 preserving a 1-dimensional spacelike linear subspace of R%3.

Let G be a connected Lie subgroup of SO,(2, 3) admitting a 2-dimensional orbit at p € Ein'? and
preserving a spacelike line £ < R%3. Then G preserves the orthogonal complement subspace ¢+ ~ R>?2
as well. Obviously, G acts on £ trivially, and so, it is a subgroup of Stabgo, (2,3)(f) =~ SO (2, 2). Hence,
G preserves an Einstein hypersphere (Definition 1.63), which is a copy of 2-dimensional Einstein universe
Ein'! ¢ Ein'2. Also, G preserves the complement of Ein'! in Ein'? which by Lemma 1.62 is an
Anti de-Sitter component AdS!2. Hence, in this case, the problem reduces to the consideration of the

1,1

conformal actions with an open orbit in Ein™" or the isometric actions with a 2-dimensional orbit in

Ads™?.

Recall from Remark 1.45, the 3-dimensional Anti de-Sitter space is isometric to SL(2,R) C M (2, R)
endowed with the metric induced from (M (2, R), — det). Also, the identity component of Iso(AdS'?) is
isomorphic to (SL(2,R) x SL(2,R))/Zs (Lemma 1.44). Moreover, recall from Remark 1.28, the Lie
group SL(2, R) has three 1-parameter subgroups Yz, Yp and Yy and a unique 2-dimensional connected

subgroup Aff up to conjugacy.
Notation 5.1. We denote by Gy, the following 2-dimensional subgroup of Yi x Aff
s(At) - sin(A¢ t
cos(At)  sin(\t) ’ e s tseR\.
—sin(At) cos(At) 0 et
where A € R?, is a constant number.
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Theorem 5.2. Let G be a connected Lie subgroup of Iso,(AdS™?) ~ (SL(2,R) x SL(2,R))/Zy which

1,2 1,2

acts on Ein™* with cohomogeneity one. Then either G fixes a point in Ein>~ or it is conjugate to one of

the following groups.

YE X Yp, Yex Yy, (YexYg)/Zs, Gr,  Yp x Aff, (Y x SL(2,R))/Zs,
graph(¢)/Zs,  SL(2,R) x Yz,  SL(2,R) x Yp,  SL(2,R) x Aff, Isoo (AdS™?),

where \ € R*, and ¢ : SL(2,R) — SL(2, R) is an isomorphism which is not a conjugation.

The cohomogeneity one isometric actions on 3-dimensional Anti de-Sitter space has been studied by
Ahmadi in [6]. We will study some of the actions directly.

The actions which fix a point in Einstein universe Ein'? are considered in Chapter 4. Indeed, a
subgroup of SO,(2,2) which admits a fixed point in the boundary dAdS'? = Ein"! is a subgroup of
(R% x Yg) x (Rey @ Rey) (described in Remark 4.8) up to conjugacy. On the other hand, by the action of
SO,(2,2) on AdS'?, the stabilizer of a point is a 3-dimensional Lie subgroup isomorphic to SO, (1,2).
In fact, it is conjugate to the Levi factor of Conf,(E!?) which has been considered in Section 4.2. Hence,
we only discuss on the subgroups on which fix no point in Ein'2.

The group of conformal transformations on 2-dimensional Einstein universe is PO(2,2) and its
identity component is isomorphic to PSL(2,R) x PSL(2,R). As we mentioned earlier in Section 1.7.3,
there is a canonical PSL(2, R) x PSL(2, R)-invariant identification of Ein'! with RP! x RP!. According
to that, the left factor (resp. the right factor) PSL(2, R) acts on every photon {*} x RP! (resp. RP* x {x})
trivially.

Note that, the characterization of the connected Lie subgroups of (SL(2,R) x SL(2,R))/Zs is
equivalent to characterization of the connected Lie subgroups of SL(2,R) x SL(2,R). Therefore,
first we consider the action of SL(2,R) x SL(2,R) and its connected Lie subgroups on the Einstein
universe, then, we obtain the corresponding subgroups in (SL(2, R) x SL(2,R))/Zs. For a connected Lie
subgroup G C (SL(2,R) x SL(2,R))/Zo, we denote by @ the corresponding connected Lie subgroup in
SL(2,R) x SL(2,R).

Consider the following natural group morphisms

Py :SL(2,R) x SL(2,R) — SL(2,R),  (g,h) — g
Py : SL(2,R) x SL(2,R) —» SL(2,R),  (g,h) — h

We call P; and P the first and the second projection, respectively. By the action of SL(2, R) x SL(2,R),
the identity component of the stabilizer of a point in Ein>! ~ RP! x RP' is conjugate to Aff x Aff.
Therefore, a subgroup G' C Conf,(Ein'!) admits no fixed point in Ein'-! if and only if the first or the

second projection of G contains an elliptic element.

Remark 5.3. By the action of SL(2,R) x SL(2,R) on Ein'! the identity component of the stabilizer
of a photon is conjugate to SL(2,R) x Aff which stabilizes ¢pg = {00} x RPL. This group acts on
AdS'? ~ SL(2,R) transitively, since its Levi factor SL(2, R) does. Moreover, the Levi factor SL(2, R)
preserves every photon {*} x RP",

Remark 5.4. The inversion map i on SL(2,R) sending A to A=1 is an isometry respect to the metric

induced by — det. Hence, by Theorem 0.2, i extends to a unique global conformal transformation i
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on Ein'2. The restriction of i on the boundary 9AdSH? = Einb! = RP' x RP' sends ([z], [y]) to
([y], [x]) On the other hand, the map j on SL(2,R) x SL(2,R) sending an element (A, B) to (B, A)
is an Lie group isomorphism. The action of a connected Lie subgroup H C SL(2,R) x SL(2,R) on
Ein? = SL(2,R) U Ein"' is orbitally equivalent to the action of j(H) via i.

By the action of SL(2,R) x SL(2,R) on Anti de-Sitter space AdS™? ~ SL(2,R), the stabilizer of
a point is conjugate to the graph of the identity map Idgy,or) : SL(2,R) — SL(2,R) which is the
stabilizer of the identity element I € SL(2, R)

Stabgy,(2,R)xsL(2,r) (1) = graph(idsy,or)) = diag(SL(2,R), SL(2,R)) ~ SL(2,R).

The action of G = graph(idgr,(2,R)) admits 2-dimensional orbits in Einstein universe. Indeed, G/Zs is
conjugate to SO,(1,2), the Levi factor of Conf,(E!?) (see Chapter 4).
Theorem 5.2 follows from the following Proposition.

Proposition 5.5. Let G C SL(2,R) x SL(2,R) be a connected Lie subgroup with dim G > 2. Let G
fixes no point in Ein“? and P, ((A;), Pg(@) # {Id}. Then G is conjugate to one of the following subgroups

YE X Yp, YE X YH, YE X YE, g)\, YE X Affo(l,R), YE X SL(Q,R), graph(go),
SL(2,R) x Yz, SL(2,R) x Yp, SL(2,R) x Affo(1,R), SL(2,R) x SL(2,R),

where A € R*, and ¢ : SL(2,R) — SL(2,R) is an isomorphism which is not a conjugation.

Proof. First, suppose that G fixes no point in Ein'!. Therefore, G contains an element (g, h), such that

either g or h is elliptic. By Remark 5.4, we may restrict ourselves to the case g is elliptic, since j (é) is

orbitally equivalent to G. Hence, according to Corollary 1.27, P; (@) is either conjugate to Y or it is

SL(2,R). Denote by g the Lie algebra of G and by p; the differential of P; at identity element for i = 1, 2.
Case I: Pl(CAJ) = Y. In this case G is a subgroup of Yz x SL(2,R) up to conjugacy.

o If dim PQ(@) =1, then G is a 2-dimensional subgroup of Yg X Pg(@) up to conjugacy. Therefore,
By Corollary 1.27, G is conjugate to Yg X Yp, Yg X Yg,or Yg X YE.

e If dim Pg(é) = 2, then G is a subgroup of Y x Aff up to conjugacy.

~ Ifdim G = 3, then G = Yp x Aff up to conjugacy.

— If dim G = 2. The second projection p2 = dP, from g to aff is a Lie algebra isomorphism.
Hence, f =: p1 op;1 : aff — p1(h) = RYg is a surjective Lie algebra morphism. The
kernel of f is a 1-dimensional ideal of aff, hence ker f = RYp. This induces an isomorphism
from aff/RYp ~ RYy to RYpg. Thus, there exists a real nonzero number A, such that
f(tYHg + s¥Yp) = AtYVg, for all t,s € R. This implies that G is conjugate to G for some
A e R%

e If dim P»(G) = 3, then P»(G) = SL(2,R). Assume that dim G = 3. Then the map ps : g —
sl(2,R) is a Lie algebra isomorphism. Hence, f := p; o p;* : sl(2,R) — p1(g) is a surjective
Lie algebra morphism. But, this contradicts the semi-simplicity of s[(2,R), since ker f is a 2-
dimensional ideal of s[(2, R). Therefore, dim G = 4 and so, G = Yz x SL(2,R) up to conjugacy.

Case II: P, (G) = SL(2,R).
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e dim PQ(@) = 1. We claim that dim G = 3. On the contrary, assume that dim G = 3. Then
p1 = g — sl(2,R) is an Lie algebra isomorphism. Thus, f = po opf1 0 5l(2,R) — pa(g) is
a surjective Lie algebra morphism. But, this contradicts the simplicity of s[(2,R), since ker f
is a 2-dimensional ideal of s[(2,R). Thus dimG = 4 and G is conjugate to SL(2,R) x Yg,
SL(2,R) x Yz, or SL(2,R) x Yp. By Remark 5.4, SL(2,R) x Yg is conjugate to Y x SL(2,R).

e dim PQ(@) = 2. In this case, G is a subgroup of SL(2,R) x Aff up to conjugacy. We show that
dim G = 5. If diim G = 3, then using the same argument as the previous case, f = ps © pl_l :
sl(2,R) — aff is a surjective Lie algebra morphism. But, this contradicts the simplicity of
sI(2,R), since ker f is a 1-dimensional ideal of s[(2,R). If dimG = 4, then the kernel of
p1: g — sl(2,R) is a 1-dimensional ideal of {0} @ aff, hence kerp; = {0} @ RYp. In the one
hand, g/ ker p; ~ sl(2,R), thus it is a simple Lie algebra. On the other hand, the map

g/ kerp; — aff/RYVp, (X,a¥py)+kerps — po(X,ady) + RYp = aYy + RYp,

where (X, aYy) € g < sl(2,R) & aff, is a surjective Lie algebra morphism. But, this contradicts
the simplicity of g/ ker p;.

Thus, dim G = 5, and so, G = SL(2,R) x Aff up to conjugacy.

e dim P5(G) = 3. In this case P»(G) = SL(2,R), and dim G € {3,4,5, 6}. We claim that dim G ¢

{4,5}, otherwise, ker P is a nontrivial proper normal solvable Lie subgroup of {Id} x SL(2,R),
which contradicts the simplicity of SL(2, R). Thus dim G € {3, 6}.
If dim G = 3, then P, P, : G — SL(2,R) are isomorphisms and G = graph(p) ~ SL(2,R)
where ¢ = P o P, !, In the one hand, G fixes no point in the boundary 9AdS!? = Ein"!, since
the stabilizer of a point in Ein'! is a solvable group conjugate to Aff x Aff. On the other hand, ¢
is a conjugation if and only if Gis conjugate to graph(idgy,2r)) if and only if it fixes a point in
AdS'? ~ SL(2,R) (which should be excluded by assumption).

If diim G = 6, then G = SL(2,R) x SL(2, R).
O

Lemma 5.6. Let ¢ : SL(2,R) — SL(2,R) be an isomorphism which is not a conjugation, and let
G = graph(yp) admit a 2-dimensional orbit in Ein>2. Then the action of graph(p) on (M (2,R), — det)
preserves a unique spacelike line. Therefore, its action on R*3 is conjugate to the action of SO, (2,1)

which acts on a 2-dimensional positive definite linear subspace (i.e. of signature (0,2)) of R*? trivially.

Proof. Consider the action of G = graph(y) on (M (2,R), — det). By Theorem 0.4, G preserves a
non-trivial linear subspace V' of (M (2, R), — det). Since it also preserves the orthogonal space V+, it is
suffix to focus on dim V' < 2. We show that V' has signature (0, 1). Assume the contrary:

Case I: dimV =1

e If V is a timelike line, then obviously G fixes two points on AdS!? ~ SL(2,R), namely, SL(2,R)N

V', which contradicts the fact that  is not a conjugation.

e If V is a lightlike line, then G fixes a point in the boundary Ein':!. This is a contradiction, since the

stabilizer of a point in Ein'! is a solvable group isomorphic to Aff x Aff.
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CaseIl: dimV =2

e Assume that dim V' = 2 and the restriction of — det on V' is definite (positive or negative). Hence,
there is a representation p : SL(2,R) — SO(2) x SO(2), since the identity component of the
groups of linear isometries on V and V'* are isomorphic to SO(2). By Lemma 1.29, p is trivial, a

contradiction.

e Suppose that dim V' = 2 and the restriction of — det on V" has signature (1,1), (1,0,1), or (0,1, 1).

1,1

In all the cases, G preserves a lightlike line. Hence, it admits a fixed point in Ein™". Once more, a

contradiction.

e If V has signature (0,0, 2), then it preserves a photon on Ein''!. Thus, G is conjugate to the Levi
factor of Stabpgr,2r)xsr(2,r) (#) = SL(2,R) x Aff which is SL(2, R). By Remark 5.3, the Levi

1,2

factor does not admit a 2-dimensional orbit in Ein*+“. Again, a contradiction.

Henceforth, V' is a spacelike line in M (2,R), and G acts on it trivially. We have assumed in very
beginning of this section that G preserves a spacelike line in R? which is orthogonal to M (2, R). Thus
G acts on a positive definite 2-dimensional linear subspace II, generated by V' and ¢, of R??3 trivially.
This induces a surjective faithful representation from G to SO, (2, 1), the group of linear isometries of

II+. This completes the proof. O
Lemma 5.7. The group SO (2,1) (described in Lemma 5.6) acts on AdS™? with cohomogeneity one.

Proof. According to the proof of Lemma 5.6, V* has signature (2,1). The intersection of V- with
AdS'? is a copy of 2-dimensional Anti de-Sitter space AdS™!, and SO, (2, 1) acts on it transitively. This
completes the proof. O

Proof of Theorem 5.2. Assume that, the first projection P; (@ ) is trivial. Then G is either conjugate
to Aff,(1,R) or it is SL(2,R). Observe that, affine group admits a fixed point in Ein®!. Also, SL(2,R)
acts on AdS'+? transitively and preserves every photon {x} x RP'. Thus, it does not admit a 2-dimensional
orbit in Ein'2. The same happens for the case P»(G) = {Id}.

From now on, we assume that Py (G), P»(G) # {Id}. Suppose that G admits no fixed point in Ein'2.
Then G is conjugate to one of the subgroups mentioned in Proposition 5.5. It is not hard to see that every
subgroup G which is the direct product Pl(é) X PQ(@) admits an open orbit in Ein™! ~ RP' x RP!.
On the other hand, by Lemma 5.7, graph(¢) admits a 2-dimensional orbit in Ein!+2,

The remaining case is G. Observe that G, is a subgroup of Aff,(1,R) X Yz. On can see Aff,(1, R) x
Yg acts on AdS™? = SL(2,R) freely. Hence, Gy acts on the Anti de-Sitter component AdS'? with
cohomogeneity one.

This completes the proof. (|

5.2 Actions on de-Sitter component and its boundary

In this section we consider cohomogeneity one actions of connected subgroups of SO, (2, 3) on Einstein
universe Fin"? preserving a 1-dimensional timelike linear subspace of R?3.
Let G be a connected Lie subgroup of SO, (2, 3) admitting a 2-dimensional orbit at p € Ein'? and

preserving a timelike line ¢ < R, Hence G preserves the orthogonal complement subspace /- ~ R!3
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as well. The Lie group G acts on / trivially, and it is a subgroup of Stabgo, (2,3)(£) =~ SOo(1, 3). Hence,
(G preserves an spacelike hypersphere (Definition 1.60), which is a copy of the conformal 2-sphere

S? c Ein'2. Also, G preserves the complement of S? in Ein'?

which by Lemma 1.62 is conformally
equivalent to the 3-dimensional de-Sitter space dS'2. Henceforth, in this case, the problem reduces to the
consideration of conformal actions with an open orbit in S? or the isometric actions with a 2-dimensional

orbit in dS2.

Theorem 5.8. Let G be a connected Lie subgroup of Iso,(dS™?) ~ SO, (1, 3) which acts on the Einstein

universe Bin'? with cohomogeneity one. Then either G fixes a point in Ein'? or it is conjugate to SO(3)
or it is Tso, (dSH?).

The actions admitting a fixed point in the Einstein universe Ein'? has been described in Chapter 4. In
fact, if a connected Lie subgroup G' C SO, (1, 3) fixes a point in the boundary ddS'? = S2, then it is a
subgroup of (R* x Yg) x (Rez @ Res) (described in Remark 4.9) up to conjugacy. On the other hand,
by the action of Iso,(dS>?) on dS!? the stabilizer of a point is a 3-dimensional subgroup isomorphic to
S0,(1,2). In fact, it is conjugate to the Levi factor of Conf,(IE!?) which has been considered in Section
4.2. Hence, we only discuss on the subgroups which admit no fixed point Ein'2.

Here is a useful model for the action of SO,(1,3) on the de-Sitter component dS"? and its conformal
boundary in Ein'2. Consider the 4-dimensional Lorentzian vector space R3 = (R%, q1,3). The de-
Sitter space in R'? is the level set q; 3(1). Obviously, SO,(1,3) preserves this level set and acts on
it isometrically. On the other hand, the image of the nullcone M3 of R by P : RL3 \ {0} — RP?
is conformally equivalent to the conformal 2-sphere S?. Moreover, SO, (1, 3) acts on P(M'3) C RP3
conformally. Indeed, it is the identity component of the group of conformal transformations of S?. We
deduce that, the actions of SO,(1,3) on the de-Sitter component dS''?  Ein'? and its conformal
boundary S? is conformally equivalent to its actions on the de-Sitter space q 1_%;(1) C RY3 and P(M?) C
RIP3, respectively.

The following theorem will play a key rule in the proof of Theorem 5.8.

Theorem 5.9. [13, Theorem 1.1]. Let G be a connected (non necessarily closed) Lie subgroup of SO(1,n)

and assume that the action of G on the Lorentzian space RY™ is irreducible. Then G = SO, (1,n).

Let G C Iso(dS!3) ~ SO, (1, 3) be a connected subgroup which preserves a proper linear subspace
V of RL:3. Observe that since G preserves the orthogonal space V- as well, it is suffix to consider the case
dim V' < 2. Furthermore, if V (resp. V) contains a lightlike vector, then the intersection of P(V') (resp.
P(V1)) with P(913) is a discrete subset A consisting of one or two points. Hence, by connectedness,
G acts on A trivially. If V' is a 1-dimensional timelike subspace, then G is a subgroup of SO(3) -the
maximal compact subgroup- up to conjugacy.

Proof of Theorem 5.8. First, assume that G acts on R!3 irreducibly. Then by Theorem 5.9 G =
S0,(1,3). Now, suppose that G preserves a proper linear subspace V' < R13.

e If V or V! contains a unique (linear) lightlike line, then G fixes a point in the spacelike hypersphere
S2.

e If V is a timelike line, then G C SO(3) up to conjugacy. Since G admits a 2-dimensional orbit
in Ein'2, dim G > 2. By Proposition 2.3, SO(3) has no 2-dimensional Lie subgroup. Hence,
G = SO(3) up to conjugacy.
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e If V is a spacelike line, then G is a subgroup of SO, (1, 2) up to conjugacy. Obviously, SO,(1, 2)

admits a fixed point in the de-Sitter component dS%2.

This completes the proof. O

5.3 Orbits

Now, we describe the orbits induced in Ein!'? by the subgroups obtained in Theorem 5.2 and Theorem
5.8.

In order to describe the orbits induced by SO,(2, 1) we need the following lemma.

First assume that G is a subgroup of Iso, (AdS?) ~ SO,(2, 2). Note that the subgroup (Yz x Yx) /Zs
is compact and its orbits has been described in Theorem 2.1. Observe that, every subgroup containing
SL(2,R) as the left or right factor acts on the Anti de-Sitter component AdS'? transitively. In order to

determine the orbits in AdS!?2, let

P21 D22

P11 p12] ’ det(p) —1

be an arbitrary point in AdS"? ~ SL(2,R).

e G is one the groups Iso,(AdS'?) or (SL(2,R) x Yg)/Zs. It is obvious that G acts on the Anti
de-Sitter component AdS™? transitively, since it contains SL(2, R) as a subgroup. Also, it is easy
to see that G acts on the boundary AdS'? = Ein'! transitively.

e (i is one of the groups SL(2,R) x Aff or SL(2,R) x Yp. Since G contains SL(2, R) as a subgroup,
it acts on the Anti de-Sitter component transitively. In the both cases, the right factors Aff and Yp
fix a unique photon ¢ = {00} x RP! pointwisely. Moreover, they act on each lightlike geodesic
RP! x {z} \ ¢ transitively. On the other hand, the left factor SL(2,R) acts on every photon
{x} x RP! transitively. Hence, G acts on ¢ and Ein'! \ ¢ transitively.

e G = SL(2,R) x Yy. This group acts on Anti de-Sitter component transitively, since it contains
SL(2,R) as a subgroup. The right factor Yy fixes exactly two photons ¢ = {co} x RP! and
1 = {0} x RP! pointwisely. Moreover, it acts on the both connected components of each lightlike
geodesic RP! x {z} \ (¢ U ) transitively. On the other hand, the left factor SL(2,R) acts on
every photon {z} x RP! transitively. Hence, G acts on ¢, v, and the two connected components of
Einb! \ (¢ U1) transitively.

e G =Yg x Aff. The right factor AfF fixes a unique photon ¢ = {00} x RP! pointwisely. Moreover,
it acts on each lightlike geodesic RP! x {x} \ ¢ transitively. On the other hand, the left factor
Y acts on every photon {x} x RP! transitively. Hence, G acts on ¢ and Ein®! \ ¢ transitively.
Observe that, by the action of G on the Anti de-Sitter component AdS!? = SL(2, R) the orbit at
I € SL(2,R) is SL(2,R). Hence, G acts on AdS™? transitively.

e G = Gy, A € RY.. This group preserves the orbit induced by Yz x Aff. Denote by H) the following

1-parameter subgroup of G

cos(At) sin(At)| fe' 0 teR
—sin(At) cos(A)| [0 et ) |
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For an arbitrary point ¢ = (g0, 1) = ([zo : wol, [z1 : ¥1]) € RP! x RP! = Ein! the vectors
tangent to the orbit G, (q) at ¢ induced by the 1-parameter subgroups Hy and {Id} x Yp are

v = ((ZL'U, *yo), ()\yly *)\551))’ w = ((yO, 0)7 (0’ 0))7

respectively. Obviously, G, admits no fixed point in Ein''!. Hence, it acts on the photon ¢ =
{oo} x RP! transitively. The set {v,w} C T,Gx(q) is a basis if and only if yo # 0 if and only if
q ¢ ¢. This implies that Gy acts on Ein'+! \ ¢ transitively.

As we mentioned in the previous case, Yz x Aff acts on AdS!? freely, so does Gy. For an arbitrary
point p € AdS'?, the vectors tangent to the orbit Gy(p) at p induced by H) and {Id} x Yp are:

vy = A [—pm P22 ] ’ b= [0 —pn] ’
P11 —Ppi2 0 —p2n

respectively. It is not hard to see that, the orthogonal space of the null vector vp in the tangent
space 1),G(p) is Rvp. Hence, G, admits a codimension 1 foliation on AdS'? where every orbit
is Lorentzian and G acts freely. Note that, for all A € R* , the orbits induced by G in Ein'? are
exactly the same as the orbits induced by G;. In other words, G, is orbit equivalent to G; via the
identity map on Ein'2.

G = Yg x Yp. Itis easy to see that G acts on the photon ¢ = {oc} x RP! C Ein'! and on
Ein®! \ ¢ transitively. On the other hand G acts on AdS'? freely, since Yz x Aff,(1,R) does. For
an arbitrary point p € AdS%?, the vector tangent to the orbit G (p) at p induced by the 1-parameter
subgroup Yg x {Id} is

—P11 —P12

P21 D22 ]

Observe that v is a timelike vector. Hence, G admits a codimension 1 foliation on AdS"? where

every orbit is Lorentzian and G acts freely.

G =Yg x Yg. Itis easy to see that G acts on the photons ¢ = {co} x RP! ¢ = {0} x RP! C
Ein"!, and on the two connected components of Ein:! \ (¢ U 1) transitively. On the other hand G
acts on AdS"? freely, since Yz x Aff,(1,R) does. For an arbitrary point p € AdS'?, the vector
tangent to the orbit G(p) at p induced by the 1-parameter subgroup Yz x {Id} is

P21 D22
—P11 —P12

Observe that v is a timelike vector. Hence, G admits a codimension 1 foliation on AdS"? where

every orbit is Lorentzian and G acts on freely.

G = graph(y)/Zs. By Lemma 5.6, the action of G on Ein'! is conjugate to the action of SO, (2, 1)
which preserves a linear subspace V' < R?3 of signature (2, 1), and acts on the orthogonal
complement space V' trivially. Observe that G is a subgroup of the stabilizer of a timelike circle €
(Definition 1.69). By the action of SO, (2, 3) the stabilizer of € is conjugate to SO,(2,1) x SO(2)

(Lemma 1.70). Indeed, by the identification in Lemma 1.70 the complement of € in Ein®? is



conformally equivalent (up to double cover) to the direct product AdSY! x S' ¢ @1’2. By the
action of SO,(2,1) x SO(2) on AdS"! x SO(2), the SO(2, 1)-factor (resp. SO(2)-factor) acts
on S'-factor (resp. AdS™!-factor) trivially. On the other hand, for all z € S', G’ = SO(2, 1) acts
on AdSY! x {x} transitively. Observe that Zs acts on AdS"! x {z} trivially, however, the orbits
AdS"! x {2} and AdS"! x {—z} coincide in Ein'2. Hence, the orbits induced by G in Ein'? are:
a timelike circle €, and a 1-parameter family of 2-dimensional Lorentzian orbits on which every
orbit is conformally equivalent to the 2-dimensional Ant de-Sitter space AdS'! -the parameter
being x € RP!.

Corollary 5.10. Let G be a connected Lie subgroup of Isoo(AdSm) which admits a 2-dimensional orbit

in Einstein universe Bin%2. Then either G fixes a point in Ein'-?

1,2

or it is compact or it admits the same

orbits in Kin™* as one of the following groups.

Yg x Yp, YE x Y, g1, S06(2,1),
SL(2,R) x Yz, SL(2,R) x Aff,  Iso,(AdS'?).
Now, we consider the orbits induced by the subgroups obtained in Theorem 5.8. Indeed, there is only
one remaining group, say Iso, (dS'?), since the action of SO(3) has been described in Chapter 2.

Obviously, Iso, (dSH?) ~ SO,(1,3) acts on the de-Sitter component and its conformal boundary
0dS1? ~ S? transitively.
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Chapter 6

Actions preserving a photon

In this Chapter, we consider the cohomogeneity one actions on Einstein universe Ein!'? preserving a

photon.

Theorem 6.1. Let ¢ be a photon in Einstein universe Ein'* C RP* and G C Conf(Ein'?) a connected

1,2

Lie subgroup which preserves ¢. If G acts on Ein~* with cohomogeneity one, then it fixes a point in

1,2

the projective space RIP*. Therefore, either G fixes a point in Ein'? or it preserves an Anti de-Sitter

component or a de-Sitter component in Ein'-2.

Let G be a connected Lie subgroup of SO, (2, 3) stabilizing a photon ¢ C Ein'? and admitting
a 2-dimensional orbit in Ein'2. Recall from Section 1.7.1 that, the complement of ¢ in Ein'? is an
open homogeneous subset diffeomorphic to S' x R2. The group of conformal transformations on
IEin;;2 = Ein"?\ ¢ is Stabo (o 3)(¢). Furthermore, ]Einé)’2 admits a codimension 1 foliation F,, invariant
by Conf (Ein(lf), for which each leaf is a degenerate surface diffeomorphic to R?. More precisely,
choosing a point zg € ¢, one of the leaves is L(xg) \ ¢ and the other leaves are the degenerate affine
2-planes in the Minkowski patch Mink(x¢) with limit point in ¢. Therefore, we may determine a leaf of
F by its limit point € ¢ and denote it by F (). In other words, for an arbitrary point = € ¢, the leaf
Fo(z) is the degenerate surface L(x) \ ¢.

Recall form Section 1.7.1, by the action of Conf(E!?), the stabilizer of a photon in Ein'? is
isomorphic to (R* x SL(2,R)) x H(3), where H (3) is the 3-dimensional Heisenberg group. The action
of Conf (Einiﬁ) on ¢ ~ RP! admits a surjective representation

T Confo(Ein;’Q) — PSL(2,R) ~ Conf,(RP').

The kernel K = ker 7 has two connected components. The identity component /C,, is conjugate to the Lie

subgroup
exp (R(14+ Vi) + RYp) x (R(e1 + e2) @ Res), (6.1)

described in Definition 4.10.
Choosing an arbitrary point ¢ € ¢, the group K splits as the semi-direct product A x II. where
A is a 2-dimensional Lie subgroup with two connected components which fixes a unique point in the

Minkowski patch Mink(xq) and II is the unique .A-invariant degenerate 2-plane in R'2. Note that this
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splitting depends strongly on x. Considering Mink(xo) ~ E? with underlying Lorentzian vector space
(sl(2,R), —det) (described in Remark 1.41), we have

t
K= e?t, =¢ s , wov s, u,vER, e ==41,. (6.2)
0 ee | |0 —u
o |68 s
A= e, 702><2 :tv‘SER)SZil ;
0 eet
n:{(l,fgxg,[u ])R}
0 —u

The subgroup Yp x II C K (which in Eq. 6.2 consists of elements in K with ¢ = 0) is the unique

Now,

and

connected maximal unipotent subgroup (up to conjugacy) of X and it is isomorphic to the 3-dimensional
Heisenberg group H(3).

The center of Heisenberg group H(3) ~ Yp x Il is a 1-dimensional Lie subgroup . isomorphic to
R. Observe that, . is the set of lightlike (elements in IT) translations in the Minkowski patch Mink(xg).
More precisely, considering Eq. 6.2, .Z is the set of the element in C witht = s = u = 0.

The following proposition gives a powerful tool to prove Theorem 6.1.

Proposition 6.2. Let G be a connected Lie subgeoup of Conf (Einglb’z) which acts transitively on ¢ and
admits a 2-dimensional orbit at p € Einé’% Then the identity component of G N H(3) is a subgroup of
Z.

Definition 6.3. Let x € ¢ be an arbitrary point. A non-trivial element g € H(3) is called:

e a lightlike transformation on Mink(x), if it fixes no point in Ein;ﬁ’Q.
e a spacelike transformation on Mink(x), if the set of its fixed points in I[Efin(;’2 is a unique lightlike
geodesic included in the leaf Fy(x) C L(x).

e a parabolic transformation on Mink(x), if the set of its fixed points in IEin(lb’2 is a unique lightlike
geodesic in the Minkowski patch Mink(x).

Observe that, if g € H(3) is a lightlike transformation on a Minkowski patch Mink(xq) (for some
xo € @), then for all y € ¢, it is a lightlike transformation on the Minkowski patch Mink(y). Indeed, one
can see, g is a lightlike translation in Mink(y). Considering the splitting Yp x II, it is easy to see that
an element ¢ in H (3) is a lightlike transformation on Mink(x) if and only if it is a non-trivial element
in .Z. This implies that an element g € H (3) is a lightlike transformation on a (hence any) Minkowski
patch Mink(y) (y € ¢) if and only if g is a non-trivial element of the center .. Thus, we may talk about
a lightlike transformation without mentioning a Minkowski patch.

Assume that g € H(3) is a spacelike transformation on a Minkowski patch Mink(z¢) (for some
xo € ¢). Again, considering the splitting Yp x II, it can be easily seen that g is an element in IT \ .Z.
Observe that for a non-trivial element g € II the g-invariant subsets of Fy(zo) = L(xo) \ ¢ are included
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in the vertex-less photons in the lightcone L(z). In other words, elements in II preserve no spacelike
curve in Fy(zo).

Furthermore, assume that g € H(3) is a parabolic transformation on a Minkowski patch Mink(z)
(for some x € ¢). Denote by ~ the lightlike geodesic in Mink(z) which is fixed pointwisely by g. By
continuity, g fixes the limit point of ~y in the lightcone L(z). Hence, the limit point of ~ is contained in ¢,
since g fixes no point in the leaf Fy(x) = L(x) \ ¢. This shows that y is contained in a leaf of F4. One
can see that the 1-parameter subgroup of H (3) generated by g acts on the leaf Fy(x) freely and every

orbit is a spacelike curve (i.e. of signature (0, 1)).

Lemma 6.4. Let g be a non-trivial element in H(3). Then there exists a unique point xy € ¢ such
that g is a spacelike transformation on Mink(xq) if and only if for all x € ¢ \ {xo}, g is a parabolic

transformation on Mink(x).

Proof. Assume that g is a spacelike transformation on Mink(zp). Then the set of points fixed by g in
IEin;;2 is a unique lightlike geodesic v C Fy (o) = L(xo) \ ¢. The union of  with x is a photon ). For
an arbitrary point x € ¢ \ {xo}, 7 is a lightlike geodesic in the Minkowski patch Mink(z). Hence, g is a
parabolic transformation of Mink(x) forall z € ¢ \ {xo}.

Conversely, assume that g is a parabolic transformation in a Minkowski patch Mink(z) (for some
x € ¢). Then the set of points fixed by g in Einé;2 is a unique lightlike geodesic v C Mink(x). Let z
denotes the limit point of  in the lightcone L(z). Obviously, xy € ¢. Observe that «y is a vertex-less
photon in Fy(zo) = L(xo) \ ¢. Hence, g is a spacelike transformation on M ink(zo). This completes the
proof. O

Corollary 6.5. Let g € H(3) be a non-trivial element. Then, either g € £ (hence, for all x € ¢, itis a
lightlike transformation on the Minkowski patch Mink(x)), or there exists a unique point o € ¢ such

that g is a spacelike transformation on Mink(xo) and for all x € ¢\ {x} it is a parabolic transformation
on Mink(z).

Proof. Fix a point xg € ¢ and consider the splitting H(3) ~ Yp x II. By some computation, one can see,
the composition of a non-trivial element in Yp and an arbitrary element in II is a parabolic transformation

on Mink(zp). Now, the corollary follows from Lemma 6.4. O

Proposition 6.6. Let ¢ be a photon in Ein™? and G a connected Lie subgroup of Conf (Einf) acting
transitively on ¢. Then, for x € ¢ and p € Fy(x) the orbit induced by G at p is k-dimensional if and only
if the orbit induced by Stabg(x) at p is (k — 1)-dimensional.

Proof. In the one hand, since G acts on ¢ transitively, dim G = dim Stabg(x) 4 1, for all z € ¢. On the
other hand, for p € Fy([z]), Stabg(p) is a subgroup of Stabg(x), since the action of G preserves the
foliation . More precisely, Stabg (p) = Stabgap, (x)(p). Hence,

dim G(p) = dim G — dim Stabg(p)
= dim Stabg(z) + 1 — dim Stabgape () (P)
= dim (Stabg(z))(p) + 1.
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Proof of Proposition 6.2. Assume the contrary, which is: g is an element in the connected component
of GN H(3) and g ¢ .£. There exists a point 29 € ¢ such that p € Fy(xo). By Corollary 6.5, g is
either a spacelike or parabolic transformation on the Minkowski patch Mink(z). Denote by O,, g* and
7, the orbit induced by Stabg(xg) at p, the 1-parameter subgroup of G N H(3) generated by g, and the
unique lightlike geodesic in IEin(lz)’2 pointwisely fixed by g, respectively. By Proposition 6.6, the orbit O,

is 1-dimensional. Also, g' preserves +, since it is an abelian group.

e If g is a spacelike transformation on Mink(xg), then v C Fy4(xo) = L(xo) \ ¢. For an arbitrary
point x € ¢ \ {zo}, there exists h € G such that hxg = x, since G acts on ¢ transitively. By
Lemma 6.4 g is a parabolic transformation on Mink(z). Hence, ¢* acts on Fy(z) freely. Thus,
the orbit C = g(hp) is an open subset of the orbit induced by Stabg () at hp and it is spacelike
(i.e. of signature (0,1)). Hence, the orbit induced by Stabg(z) at hp is spacelike. Obviously,
h=1(C) C Fy(wo) is an open subset of O,,. This is a contradiction, since g preserves no spacelike
curve in Fy(xo).

e If g is a parabolic transformation of Mink(x), then the orbit C' = g*(p) is a spacelike (i.e. of
signature (0, 1)) curve in Fy(xo). By Lemma 6.4, there exists a unique point z € ¢ \ {zg} such
that g is a spacelike transformation on the Minkowski patch Mink(x). There exists h € G such
that hxp = z. The same argument as the previous case shows that 2(C') is an open subset of the

orbit induced by Stabg(x) at hp. This contradicts the fact that g preserves no spacelike curve in
Fo(z).

This completes the proof. O

Definition 6.7. A non-trivial element g € K is called a hyperbolic-homothety (abbreviation HH) -

transformation if the set of its fixed points in IEini;2 is a photon.

The non-trivial elements in the following 1-dimensional subgroup of X are the obvious examples of

Lt
H = {<e2t7 [88 5et] ,02><2> cteR, e= :El}.

Let g € K be an H H-transformation and ¢ C I[-Ein(li)’2 be the unique photon fixed pointwisely by g. The

H H -transformations

photon ¢ intersects every leaf of F in a unique point. More precisely, for an arbitrary point x € ¢, the
intersection of 1) with the Minkowski patch Mink(x) is a lightlike geodesic . The limit point of ~ is
contained in Fy(x) = L(z) \ ¢. Hence, v intersects every affine degenerate plane in Mink(z) with
limit point in ¢. Assume g’ is the 1-parameter subgroup generated by g € K,. Observe that g* preserves
1), since it is abelian. On the other hand g* preserves the leaves of the foliation F4, hence g fixes v

pointwisely. Henceforth, - is the unique photon fixed pointwisely by every element in g.
Lemma 6.8. Let g be a non-trivial element in KC. Then either g € H(3) or it is an H H-transformation.

Proof. Fix a point xg € ¢ and consider the splitting Eq. 6.2. Every element in }C with ¢ = 0 belongs to
H (3). On the other hand, if ¢ # 0, it is not hard to see that the element is an H H-transformation. O

Lemma 6.9. Let xg € ¢ be an arbitrary point. Then every H H-transformation in K preserves a unique

Z-invariant affine Lorentzian 2-plane in Mink(x).
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Proof. Let g € K, be an H H-transformation. Denote by ) the unique photon in IElin(;’2 fixed pointwisely
by g. Assume that p is an arbitrary point of the lightlike geodesic v = Mink(xo) N 1. The orbit induced
by the 1-parameter subgroup .Z at p is a lightlike geodesic 7 with limit point in ¢. The lightlike geodesics
~ and 7 generate a unique affine Lorentzian 2-plan 7" C Mink(zp). Obviously, 7" is invariant by .. [

Observe that, a 1-parameter subgroup g' generated by an H H-transformation g € K, preserves the

unique g-invariant affine Lorentzian 2-plane in Mink(x), since g' is abelian.

Notation 6.10. We denote by P the totally isotropic plane in R*3 corresponding to the photon ¢. Also,
for a Lie subgroup G C Conf(Ein;’z), we denote by K and KS the kernel ker 7| and its identity

component, respectively.

Lemma 6.11. Let x¢ € ¢ and G be a 1-parameter subgroup of Conf(Ein(lz)’Q) with dim 7(G) = 1 which
acts on ¢ transitively. Then the kernel K¢ = ker r|q contains neither a parabolic nor a spacelike

transformation of Mink(x).

Proof. Assume the contrary that g € K is a parabolic or spacelike transformation on Mink(zo). The
element g fixes pointwisely a unique lightlike geodesic v C IEin;;2 contained in a leaf of F;. Note that, G
preserves 7, since it is abelain. But, this contradicts the fact that every G-orbit in IEinjb’2 intersects every

leaf of F. This completes the proof. O

Lemma 6.12. Let G be a connected Lie subgroup of Conf (Einf) with dim 7w(G) = 1 which acts on
& transitively and admits a 2-dimensional orbit in Ein“2. Then, there exists a 1-parameter subgroup
L C G transversal to KS such that either the kernel K = ker |y is trivial (hence L ~ SO(2)), or

every non-trivial element of K" is an H H-transformation.

Proof. Let L C G be an arbitrary 1-parameter subgroup transversal to K&. Obviously, L acts on ¢
transitively. If K'” is trivial, then lemma follows evidently. Otherwise, L is isomorphic to R and K ~ Z.
Assume that g € K is a generator. By Lemma 6.11, g is either an H H-transformation or a lightlike
transformation. In the first, lemma follows easily. If g is a lightlike transformation, by Proposition 6.2,

there are two possibilities:

o Zisa subgroup of K& : There exists a 1-parameter subgroup L' C G transversal to K& such that

it intersects .Z only in the identity element, since . C G.

o 7 is not a subgroup of K&: Observe that in this case, K& is a 1-parameter subgroup consisting of
the identity element and H H -transformations. Also, G is a 2-dimensional connected Lie group and
50, by [38, p.p. 212] it is isomorphic to the 2-torus T2, R x SO(2), R?, or Aff,(1,R). Leth € K&
be an arbitrary non-trivial element. Then hg is an H H-transformation by Lemma 6.8. Since the
exponential map exp : Lie(G) — G is surjective, there exists a 1-parameter subgroup L’ through
hg. In the one hand, hg € K L' 5o all the non-trivial elements in K~ are H H-transformations. On
the other hand, L’ is transversal to K, since hg ¢ K&

O]

Let P be the totally isotropic 2-plane in R?3 corresponding to the photon ¢ C Ein'?, and Q be a

subspace of R?3 supplementary to P--. There is a canonical identification between @ and the dual space
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P*. Let (.,.) denote the bilinear form on R?3. The map ¥ sending a vector v € @ to the functional
(v,.) : P — Ris linear. Also, ¥ is injective: ¥(v) = ¥(w) implies that (v — w,.) = 0, since (., .) is
non-degenerate, we get v — w = 0. Hence, ¥ is an isomorphism.

Furthermore, let H C SO,(2, 3) preserves P and @ be an H-invariant complement for P~ in R??,
In the one hand, the action of H on P induces a representation (not unique) from H to G L(P*) by duality.
On the other hand, the action of H on () induces a unique representation from H to GL(P*) on which the
isomorphism ¢ is H-equivariant. It is not hard to see that the representation induced via P is conjugate to
the one induced via ().

Let ¢ C I[*Zin(lz;2 be a photon and denote by P, its corresponding totally isotropic 2-plane in R23,
The linear subspace P U P, < R*3 is of signature (2,2). Hence, the union of ¢ and ¢ determines a
unique Einstein hypersphere Ein'' C Ein'2. Let 2y € ¢ be an arbitrary point. Then by Remark 1.66,
the intersection of Einl"! with the Minkowski patch Mink(zo) is a Lorentzian affine 2-plane 7. The
intersection of Ein’! with the lightcone L () is the lightcone of g in Ein''! consisting of ¢ and another
photon ¢ which contain the limit points of lightlike geodesics in 7. Indeed, ¢ U £ is the set of the limit
points of lightlike geodesics of every Lorentzian affine 2-plane in Mink(x() parallel to 7. But, T is the
unique such affine plane which contains the lightlike geodesic ¥ N Mink(z).

Proof of Theorem 6.1. First, consider the action of G on ¢. If G admits a fixed point [z] € ¢, then x
is the desired fixed point.

Now, assume that G acts on ¢ transitively. Obviously, 7(G) is either PSL(2,R) or it is conjugate to
SO(2) =~ Yg. We show that in the both cases, G preserves a line in R,

Case I: 7(G) = PSL(2,R). Denote by g, £, and b the Lie algebras correspond to G, K¢ and

7 (G), respectively. The following short sequence of Lie algebras and Lie algebra morphisms is exact.
dm
l—t—>g—bHh—1.

One can see ) >~ s[(2,R) as the Levi factor of g, since £ is the radical solvable ideal of g. Henceforth,
PSL(2,R) is a subgroup of G, up to finite cover and G = K. PSL(2, R). It is clear that G acts on the
totally isotropic plane P irreducibly and preserves the orthogonal space P+. By Proposition 6.2, the
connected component of the intersection of G with Heisenberg group H (3) is either trivial or it is .Z ~ R.
Therefore, K€ is either trivial or it is isomorphic to R or Aff. The subgroup PSL(2,R) C G (up to finite
cover) acts on K@ by conjugacy, since K¢ is a normal subgroup of G. The simplicity of PSL(2, R), and
Lemma 1.32 imply that this action is trivial. Moreover, using the simplicity of PSL(2, R) again, its action
on R?3 splits as the sum of irreducible actions (cf. [28, p.p. 28]).

Suppose that R?3 = P @ ¢ © Q is a PSL(2, R)-invariant splitting, where £ < P~ is a line sup-
plementary to P in Pt and Q is a 2-plane supplementary to P+ in R?3. The canonical identification
between @ and P* shows that PSL(2, R) acts on @ irreducibly. It is not hard to see that ¢ is the only
PSL(2, R)-invariant line in R%3. Since the conjugacy action of PSL(2,R) on K is trivial, every element
of PSL(2,R) commutes with all the elements of K“. This implies that K preserves ¢ as well. Thus,
any element of GG preserves /. Henceforth P(¢) € RP* is the desired fixed point.

Case II: 7(G) = SO(2) up to conjugacy. In this case dim K& > 1, since dim G' > 2. Proposition
6.2 implies that K& is isomorphic to either R or Aff. We split this case to two subcases: G contains a
1-dimensional compact subgroup (a copy of SO(2)), and there is no 1-dimensional compact subgroup in
G:
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e G contains a 1-dimensional compact subgroup. In this case we have G = K$.S0(2). The group
SO(2) C G acts on KS by conjugacy, since K& is a normal subgroup of G. This action is trivial,
since both R ~ Aut,(R) and Aff ~ Aut,(Aff) contain no 1-dimensional compact Lie subgroup
(see Lemma 1.32). Furthermore, the action of SO(2) on R%? splits as the sum of irreducible actions,
since it is compact (cf, [25, Proposition 4.36]). Using the same symbols as we used for the previous
case, suppose that R?3 = P @ £ @ Q is a SO(2)-invariant splitting. It is easy to see that SO(2)
acts irreducibly on Q. Also,  is the only SO(2)-invariant line in R?3. Since the conjugacy action
of SO(2) on K¢ is trivial, every element of SO(2) commutes with all the elements of K. This
implies that K& preserves ¢ as well. Consequently, all the elements in G preserve £. Henceforth
P(¢) € RP* is the desired fixed point.

o G contains no 1-dimensional compact subgroup. In this case, every 1-parameter subgroup transver-
sal to K& is isomorphic to R. By Lemma 6.12, there exists a 1-parameter subgroup L C G
transversal to K& such that the kernel K* = ker 7|y, consists of the identity element and H H-
transformations. Let g € K be a non-trivial element. Then g fixes a unique photon 1) C IEin;;2
pointwisely. Observe that L preserves v since it is abelian. Therefore, L preserves the Einstein
hypersphere Ein'"! ¢ Ein'? containing ¢ and 7. Also, by Lemma 6.9, g preserves a unique
Z-invariant affine Lorentzian 2-plane 7}, in the Minkowski patch Mink(xo). In fact, T, coincides
with the intersection of Ein'! with Mink(zg). It is suffix to show that K preserves T,. If

K& = 2, then obviously G = K& .L preserves the Einstein hypersphere Ein':!

, since Ty is
Z-invariant. If K& contains an H H-transformation A, then by Lemma 6.9, h preserves a unique
Z-invariant affine Lorentzian 2-plane T}, In fact, T), = T, g» since K f is normal in KC. Now, it is
easy to see that T}, is K, G_invariant. Hence, once more, G = KL preserves Ein'!. Therefore, G

1,1

preserves the spacelike direction in R?3 corresponding to Ein''!, and so, it admits a fixed point in

the projective space RP*.
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Chapter 7

Proof of the main theorem

In this chapter we prove Theorem 0.6. This theorem together with Theorem 0.5 complete the classification
of the cohomogeneity one action on the three-dimensional Einstein universe Ein'+2,

The following proposition is one element of the proof of Theorem 0.6.

Proposition 7.1. Let V be a linear subspace of R*3 of signature (0,2), and G a connected Lie subgroup

1,2

of Stabso, (2,3)(V') which acts on Ein™= with cohomogeneity one. Then G preserves a 1-dimensional

linear subspace of R*3.

Proof. Note that € = P(V1) N Ein'? is a timelike circle (Definition 1.69) and the complement in
Ein'? \ € is conformally equivalent (up to double cover) to AdSY! x S! (Lemma 1.70). Moreover, by
the second part of Lemma 1.70 the stabilizer of € is conjugate to SO,(2,1) x S!, and clearly acts on €
and AdS™! x S! ¢ EELZ transitively. Therefore, G is a proper subgroup of SO,(2,1) x SO(2).

The following projections are group morphisms

Py :S04(1,2) x SO(2) — SO.(2,1),  (g,h) — g
Py : SO.(1,2) x SO(2) — SO(2).  (g.h) = h.

If P(G) = {Id} then dim G < 1, which is a contradiction , since G admits a 2-dimensional orbit in
Ein'2. On the other hand, if P,(G) = {Id}, then G acts on V trivially.

Now, assume that P (G), P»(G) # {Id}. Observe that G is a subgroup of P;(G) x P»(G). It follows
from Remark 1.39 and Corollary 1.27 that, G is a subgroup of Y x SO(2) or Aff x SO(2), up to
conjugacy. We show that both these groups preserve a line in R?3. Then the result follows easily.

The 1-parameter elliptic subgroup Yg preserves a unique 1-dimensional spacelike linear subspace
¢ < V. Since the action of SO(2)-factor on V' is trivial, £ is invariant by Yz x SO(2).

The affine group Aff preserves a unique lightlike line £ in V1. Since the action of SO(2)-factor is
trivial on V1, £ is invariant by Aff x SO(2). O

Proof of Theorem 0.6.

Suppose that V' is a G-invariant non-trivial proper linear subspace of R?3. Denote by sgn (V) the
signature of the restriction of the metric from R?3 on V. We consider all the possible signatures for V.

If dim V = 1, then obviously, G fixes a point in the projective space RP*, namely P(V). Assume

that V' is 2-dimensional.
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(I) If sgn(V) = (1,1). Then, V contains exactly two distinct lightlike lines. Hence, the intersection of

P(V') with Ein? consists of two points. Since G is connected, it fixes both the points.

(D) If sgn(V) = (2,0). Since G preserves the orthogonal space V* (sgn(V+) = (0,3)), itis a
subgroup of SO(2) x SO(3) up to conjugacy. By Corollary 2.5, G fixes a point in RP*.

M) If sgn(V) = (0,1,1) or (1,0, 1). Then, V' contains a unique lightlike line ¢. Since the action of G

on R?3 is isometric, it preserves £. Hence, G fixes P(¢) € Ein'2.

(IV) If sgn(V) = (0,2). By Lemma 1.70, G is a proper subgroup of SO, (2, 1) x SO(2) up to conjugacy.
Proposition 7.1 shows that G fixes a point in RIP*.

(V) If sgn(V) = (0,0,2). By Theorem 6.1, G fixes a point in RP*.

Now, suppose that dim V' > 2. Since G preserves V- and dim V+ < 2, G fixes a point in RPP4. This
completes the proof. (|

We now end this concluding chapter by the following remark.

Remark 7.2. According to Section 4.2, Section 5.3, and Chapter 3, if G is a connected Lie group which

L2 non-properly and with cohomogeneity one, then there are two distinct

acts on Einstein universe Ein
orbits G(p) and G(q) such that G(p) accumulates to G(q), i.e., G(q) is in the closure of G(p) in Einl2.
Hence, every G-invariant open neighborhood in Ein'? around G(q) contains G(p) as well. This implies
that the orbit space Ein*? /G is not Hausdorff. Therefore, the properness of a cohomogeneity one action

1,2

on Ein™* is equivalent to the Hausdorff condition on the orbit space.
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Appendix A

Connected subgroups of Conf(E"?) of
dimension > 2

In this appendix, we prove Theorem (4.6) by characterizing the Lie subalgebras of Lie(Conf (E!?)) with
dim > 2.

Recall from Section (1.5.2), the group of conformal transformations on 3-dimensional Minkowski
space E-? is isomorphic to the semi-direct product G = (R* x O(1,2)) xg R!2, where © denotes the
natural action of R* x O(1,2) on R'2. Hence, the Lie algebra Lie(Conf (E!?) is isomorphic to the semi-
direct sum g = (R @ s0(1,2)) ©p RY2, where 6 is the natural representation of R & so(1,2) in gI(R2)
corresponding to ©. For elements a € R, V € s0(1,2) and w € RY2, we denote the corresponding
element in g simply by a + V 4+ w when there is no ambiguity. Also, we denote by R(a + V 4 w) the
linear subspace of g generated by a + V' + w. The Lie bracket on g is

[a+V +v,b+W4+w =[V,W]|+V(w)+aw—W(v) — b.

The adjoint action of G on its Lie algebra g is as following. For an arbitrary element (r, A,v) € G, we

have

Adgaa) 0= 8 0T+ ot AWAT +rA(w) —av = AWAT ().

Consider the following natural projections which are evidently Lie group morphisms

P (R* x O(1,2) xg RY? = R* x O(1,2)
P, : (R* x O(1,2)) xg RM? — R*
P (R* x 0(1,2)) xe R — O(1,2).

For a Lie subgroup H C G we denote the identity component of the kernel ker Pz by T'(H ) and call it
the translation part of H. Also, we call the image of H under the projections P, P, and P, the linear
projection, the homothety projection, and the linear isometry projection of H, respectively. Obviously
T(H) is a linear subspace of R!? and it is normal in H. Thus H acts on it by conjugacy. This implies that
the translation part T'( H ) is invariant by the action of the linear projection P;(H ) and the linear isometry

projection P;(H).
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By differentiating the morphisms P, Py, and Pj; at the identity element of G we obtain three Lie

algebra morphisms

p=dP : (R®s0(1,2)) ®g RY? = RD so(1,2)
pn=dP, : (RPso0(1,2)) @y R - R
pii = dPy; - (R®s0(1,2)) @g RY? — s0(1,2).

which are the corresponding projections in Lie algebra level. For a Lie subalgebra i) < g, we use the same
terminology for T'(h) := ker p; |y, pi(h), pn(h), and p;;(h) as we introduced in Lie group level. Observe
that 7'(h) is invariant by the action of p;(h) and py; ().

We will characterize the Lie subalgebras of g using the adjoint action Ad of G on g. The procedure
is that, for a Lie subalgebra h < g, we take a basis {w;} (0 < i < 3) for T'(h), and expand it to a
basis {a; + V;j + v, w;} (0 < j < 4) for h. The main problem is that, in general, the subspace n < b
generated by {a; + V; + v;} is not a Lie algebra. This problem arise from v; vectors. Restricting
Ad to (R% x {Id}) x RY2, it preserves the translation part T'(h). Thus, first we try to linearize n by
Ad((Ri x{Id})xR1:2) a8 more as possible, meaning that: we try to omit the vectors v; by Ad((Ri % {Id})xR1:2)
as more as possible, and if it is not possible, we replace v; with a more suitable vector. Actually, for

vectors a; + V; +w; € b, we apply Ad; 14 and obtain
Ady 14,0y (@i + Vi +w;) = a; + Vi + rw; — azx — Vi(z).
Then, we try to solve the linear systems
rw; —a;x — Vi(z) € T(h), 0<i<dimpy(h), a;+Vi+w; €b,

simultaneously for z. However, in general, it is not possible to find such solution x, but we may simplify
the vectors rw; — a;z — V;(z) € RY2 as more as it is possible.

Furthermore, we may use the elements in O(1, 2) which preserve the linear isometry part p;; () to
obtain a simpler subalgebra.

Consider the scalar product space R%3. Here it will be convenient to use the scalar product

1 1
(vjw) == —gUIW2 — SUawy — U3w3 + vgwy + vsws
Let (—, —) denotes the bilinear form defined by Q = —1I; @ I,, on R12. Consider the representation of

Conf(E*?) in O(2, 3)

1 0 0 rt
(r,A,v) = |(v,v) 1 207Q 0

0
0
v 0 I3 0 A

o 3 O

Actually, this representation maps Conf (E!?) surejectively to the stabilizer of the point p € Ein%? with
homogeneous coordinate [0 : 1: 0 : 0 : 0]. Observe that, conjugation by the element R := [ }] ® I3 €
O(2, 3) leaves the linear subgroup R* x O(1,2) C Conf(E!?) invariant and changes the roles of r and

r~1. We will use this element in squeal.
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Let {e1, €2, e3} be an orthonormal basis of R'? and e; be timelike. The set of following matrices is a

basis for so(1,2) as a vector space

0O 0 O 010 0 1
Ye=1|0 0 1, Yg=|1 0 0|, Yp=1|0 0 1], (A.1)
-1 0 0 0 O 1 -1 0
where,
(1 0 0
exp(RVg) =Yg =< |0 cost sint|:teR,,
|0 —sint cost
[cosht sinht 0
exp(RVy) =Yy = sinht cosht 0| :t€R},
| 0 0 1
1+ 12 42 ¢
exp(RYp) = Yp = st 1—35* t|:teR
t —t 1

The group SO,(1,2) ~ PSL(2,R) has exactly three 1-parameter subgroups up to conjugacy, namely
YE, Y, and Yp. Also, up to conjugacy, SO, (1, 2) has only one 2-dimensional Lie subgroup witch is
exp(RYy + RYp) = Aff,(1,R). In Lie algebra level we have

Ve, Yul=Ye—-Yp, Ve, VP =Yu, [Yu,Vpr]=Ip.

We denote the affine subalgebra of s0(1, 2) by aff.

The elliptic element Vg has only one real eigenvalue, namely 0. The hyperbolic element Vg has
three distinct real eigenvalues {—1, 0, 1}. The parabolic element }p is nilpotent, and so, 0 is the only

eigenvalue for Vp. Therefore, we have

Ye(e1) = Yr(e3) =0, —YVE(e2) = Yp(e1) = =Vp(e2) = e3,
YVe(e3) = Yu(e1) = ea, Yp(e3) = e1 + ea.

We denote by A = 1 € R, the generator (basis) of the Lie algebra R.

Let V be a linear subspace of R and A a linear map on R3. There exists a unique linear map
A : R® — R3/V which maps z to [Ax]. For simplicity we denote the linear system Az = [v] by
Az — v € V, when there is no ambiguity.

Theorem (4.6) follows from the following theorem.

Theorem A.l. Let H C G be a connected Lie subgroup with dim H > 2. Then, the Lie algebra
b = Lie(H) is either conjugate to a semi-direct sum b, ®g T (), where by, is a Lie subalgebra of
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R @ s0(1,2) or it is conjugate to one of the following Lie algebras.

(R(14 Y +e1) + RYp) +¢ (R(e1 + e2) & Res), R(—=14 Yu + e1) +¢ Res,
(R(VH +e3) + RYp) +g R(e1 + e2), (R(2+Yu) +R(YVp +e1)) +o R(er + e2),
(R(2+Yu) +R(Yp +e1)) +o (R(er + e2) © Rez), R(2+ Vi) +R(Vp +e1 — e2),
R(VE + €1) +¢ (Rea & Res), R(YVp +e1) +o R(e1 + e2),
R(Yp +e1) +¢ (R(e1 + €2) ® Res), R(Yu + e3) +9 R(e1 + e2),
R(1+ Yy +e1) +o R(eg + e2), R(1 + Yy + e1) +¢ Res,
R(1+ Vg + e1) +¢ (R(eg + e2) @ Res), R(Yu + e3) +9 (Re; & Rea).
Proof. We prove this theorem by the three following lemmas. O

Lemma A.2. Let ) < g be a Lie subalgebra with py;)(h) = so0(1,2). Then b is conjugate to one the
following Lie algebras.

s0(1,2), R®so(1,2), s0(1,2)@eR"™,  (R@®s0(1,2)) ®e R

Proof. The so0(1,2)-invariant subspace of R%? are {0} and R'2. Assume that dim p;(h) = 4, then
p(h) = R@s0(1,2). If T(h) = R, then clearly h = (R @ 50(1,2)) ©g RY2.
If T(h) = {0}, then there are four vectors 7, u, v, w € R%2 such that

AN+ u, Ve +v,Yg+w,Yp+r},
is a basis for . Solving the linear system
u—Ar =0,
we get x = u. On the other hand, considering the Lie bracket on b, we get

A+u, Ve +v]=v—YVp(u) =v—Ye(u) =0
A+ u, Vg +w=w—Yg(u) =w—Yg(u) =0
A+u,Yp+r]=r—Yp(u)=r—Yp(u) =0.

These three equations lead to
v=(0,u3, —u2) , w=(ug,u1,0) , r= (us, uz,u; — ug).
Now, we have

Ad 14,0 (Ve +v) = Ve, Ad 14,0 (Vu +w) = Y,
Ad a0 (Yp+1) = Vp, Ad(114.0) (A +u) = A
Therefore h = R @ so(1, 2) up to conjugacy.
Now assume that dimp;(h) = 3, then pj, o pl_il : 50(1,2) — pp(h) is a surjective Lie algebra

morphism. Lemma 1.29 implies that pj, o p;;' = 0. Hence p;(h) = so(1,2).
If T(h) = RY2, then clearly {Vg, Y, Vp, €1, €2, e3} is a basis for b, and so, h = so(1,2) G R2.
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If T'(h) = {0}, there are three vectors v, u, w € RY2 such that {Vg + v, Yy + u, ¥Yp + w} is a basis

for h. In the one hand, considering the Lie bracket on fj, we get

Ve +0v,Yu+ul=Ye—YVp+Ve(u) —Yu) = Vp(u) —Ya(v) =v—w
Ve +0,Yp +w] =Yy + Ve(w) = Yp(v) = Ve(w) — Vp(v) =u
Yu +u,Yp +w| =YVp+ Vu(w) = Vp(u) = Vr(w) — YVp(u) = w.

These three equations lead to
v=(0,v3,—u1) , u=(u1,us0) ,  w= (vg,v2,us — uy).
On the other hand, solving the linear systems
u—Yu(x)=0 and v—Yg(z)=0,
simultaneously we obtain z = (ug, u1,v2). Now, we have

Ad@ 14.2)(VE +v) = VB, Ad(1,1d,2)(Vu +u) = Y,
Ad(1 1d,.2) (VP +w) = Vp.

Thus h = s0(1, 2) up to conjugacy. O

Lemma A.3. Let ) < g be a Lie subalgebra with dimpy;(h) = 2. Then either b is conjugate to a
semi-direct sum b, ®g T'(h), where b, is a Lie subalgebra of R @ s0(1, 2) or it is conjugate to one the of
following Lie algebras.

(R(1+Yu +e1) +RYp) +¢ (R(e1 +e2) DRez),  (R(2+Vy) +R(Yp+e1)) +9R(er +e2)
(R(yH + 63) + Ryp) “+o R(el + 62), R(—l +YVu +e1+ 62) +RYp,
(R(2+Vu) +R(Yp +e1)) +o (R(er + e2) @ Res), R(2+4+Yu) +R(Vp +e1 —e2).

Proof. Since every 2-dimensional Lie subalgebras of so(1,2) is conjugated to aff, we may assume
pii(h) = aff. Therefore p;(h) is a Lie subalgebra of R & aff up to conjugacy. The aff-invariant subspace
of R12 are R12, {0}, the lightlike line R(e; + e3), and its corresponding (orthogonal) lightlike plane
R(e1 + e2) @ Res.

Case I: T(h) = RY2, Take {e1, e, e3} as a basis for T'(h).

e If pj(h) = R @ aff. There are three vectors u, v, w € R™? such that
{er ez, €3, A +u, Vp + v, V5 +w},

is a basis for h. Since T(h) = RY2, we have v, w,u € T(h), and so, {e1,e2,e3,\, Vp, Yy}
is a basis for h. Furthermore the subspace generated by {\, Y, Yp}, is a Lie subalgebra of b.

Therefore h is conjugate to the semi-direct sum
(R ® (RYVg +RYVp)) Bp R = (R @ aff) @ R'.

103



e If the homothety projection py(h) is trivial. Then py;(h) = aff and by the same argument as the

previous case, we obtain a basis
{61, €2, €3, yP7 yH}a

for . Therefore b is conjugate to the semi-direct sum
RV +RYp) @g RY? = aff @y RV2

If dim p;(h) = 2 and the homothety projection pp,(h) is not trivial, by the same argument in the two
previous cases, there are two constants a, b € R such that a + Vg, Vp € b, and

{e1,e2,e3,b+YVp,a+ Vu},

is a basis for h. By closeness under the Lie bracket we obtain

l[a+ Yu,b+ YVp] = Vp.

The above equation implies that b = 0, and since the homothety projection is not trivial, we have
a # 0. So

{e1,e2,e3,Vp,a+ Vu},

is a basis for h. The vector subspace generated by {a + Vi, Vp} is a Lie subalgebra of hj. Therefore
b is conjugate to the semidirect sum

(R(a + Vi) +RYp) @y R:2.

Case II: T(h) = R(e; + e2) @ Res.
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e pi(h) = R @ aff. There are three vectors u, v, w € RY? such that

{er +e2,e3, A\ +u, Yp +w, Vg + v},
is a basis for h. Considering the Lie bracket on hj, we obtain
A+ u, Vg +v]=v—Yy(u), A+ u,Yp +w] =w—Yp(u).

The first equation implies v — Vg (u) = (v1 — ug, va — ug,v3) € T'(h). Thus, vi — uz = vy — u;.
The second equation implies that w — Vp(u) = (w1 — us, wa — ug, ws — u1 +ug2) € T'(h). Hence,

w1 = wa. Now, by applying Ad; 14,,) on b, we obtain a Lie algebra b’ which is conjugate to b.

Ad(l,ld,u)(el +e)=e+e Ad(l,ld,u) (e3) =e3 Ad(l,ld,u)()‘ +u) = A,
Ad rgu) (Y +v) =Yg+, v = (v1 —ug,v1 — up,v3),

Ad 1g0)(Yp+w) =Yp+uw',  w' = (w1 —uz,wi —ug, w3 —uy + up),
Obviously v/, w’" € T'(§’") = T(h), thus Yy, Vp € b’ and
{e1 +e2,e3,A, Y, Vp},
is a basis for i’. Therefore, b is conjugate to the semidirect sum

(R® (RYr +RYp)) By (R(e1 + e2) @ Rez) = (R @ aff) Bp (R(er + e2) ® Res).



If the homothety projection py(h) is trivial. Then p;(h) = aff up to conjugacy. There are two

vectors u, v € R12 such that
{e1+e2,e3,Yp +v,Vy +u},
is a basis for h. Considering the Lie bracket on j, we obtain
Vi +u,Vp +v] = Vp + Vu(v) — Vp(u).

Therefore, there exist 5, « € R such that Vg (v) — Vp(u) = v + S(e1 + e2) + aes. This implies
that

(v2 —u3,v1 —uz, —u1 +u2) = Yu(v) — Yp(u)
=v+ B(e1 +e2) + aes
= (U1+/8702+B7U3+a)

So, we have v; = vy. On the other hand solving the linear systems
w—Yu(x) €T(h) and v—Yp(z) € T(H),

simultaneously, we obtain x = (usg, u1, v1). Now, applying Ad1,14,z) On b, we obtain a Lie algebra
b’ which is conjugated to b.

Ad(l,[d,a:)<81 + 62) =e1 t+ e s Ad(171d7x)(63) = e3,
Ad 14y (Ve +u) =Yg +u', o' =(0,0,u3),
Ad1, 140 Vp+0v) =Yp+0, v =(0,0,03 — uz + u1),

Obviously u/,v" € T(h') = T(h), thus Yy, Yp € b’ and
{el + €9, €3, yH7 yP}a
is a basis for i’. Therefore, b is conjugate to the semi-direct sum

(RyH + Ryp) Do (R(el + 62) D Reg) = lef Do (R(@l + 62) ) Reg).

If dim p;(h) = 2 and the homothety projection py (h) is not trivial. There are two constants a, b € R
and two vectors u, v € RY2 such that (a + Vg + u), (b+ Yp +v) € b, and

{e1+e2,e3,04+Vp +v,a+ Vg + u},
is a basis for h. Considering the Lie bracket on ) we have
la+Yu +u,b+Yp+v]=Vp+Vu) +av—Yp(u) — bu,

which implies that b = 0. Since the homothety projection py(h) is not trivial, we have a # 0.

Furthermore, the above equation implies that, there exist 5,7 € R such that

VY (v) +av — Yp(u) = v+ Ber + e2) + nes.
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So,

(vg + avy — us,v1 + avg — uz,avy — uy + UQ) =

Vi (v) 4+ av—Yp(u) = v+ Bler + e2) + nes = (v1 + B,v2 + B,v3 + 1)
This implies that (2—a)v; = (2—a)ve. Note that for a # 2 we have v; = v9. Fora ¢ {—1,0,1,2},
the vector x = (=Ugtaw —witaus us) o RL2 g the solution of the linear system

a2—1 a?—1 "’ a

u—azr — Yg(z) =0.

Therefore, Ad(l,ldw) (a 4+ Yg + u) = a + Yg. On the the other hand we have,

Ad raz)(e1+e2) =e1+ex , Adq iz (es) = es,
Ad1anyVp+v)=YVp+0 , V= (v - %,m _ %,’Ug L U2 u1).
a a a—1
The Lie algebra b’ = Ad(; 144)(h) is conjugated to h and obviously v' € T'(h’) = T'(h). Hence
(a4+Ym),Yp € handso, {e1 +e2, e3,a+ Vg, Vp} is abasis for . Thus, fora € R\{-1,0,1,2},
the lie algebra b is conjugate to the semi-direct sum

(R(a +Yu) +RYp) @ (R(e1 + e2) © Res).
For a = 1, the linear system
u—x—Yu(x) € T(h).
has a solution if and only if u; = ug. Thus, setting x = (0, ug, u3) we get
Ad rge) (€1 +e2) =e1+ex Ad(1,14,0)(€3) = €3

Adg 1414+ YVa+u)=1+Yp+u , o = (u1 —u,0,0)
Ad 4y (Yp+v) =Yp+0" , v = (v1 —u3,v1 — u3,v3 + ug).

The Lie algebra b’ = Ad( 14.4)(b) is conjugate to h and clearly v" € T'(h'). Thus if u; = ug, then
Yp,1+ Yy € b'. Therefore, b is conjugate to the semi-direct sum

(R(1 4+ Yu) +RYp) &g (R(e1 + e2) & Resy).

If u1 # wg, then b is conjugate to the following Lie algebra via Ad( L 1d0)

(R(14+ Y +e1) + RYp) +o (R(e1 + e2) @ Res).

For a = —1, the vector z = (=5, =2, —u3) is a solution for the linear system
u+z—Yu(z) € T(h).

Now, we have

Ad1,1az)(e1+e2) =e1+ex Ady 1a,2)(e3) = e3
Ad(l,ld,m)(l +YVp+u)=14+Yy tu o= (u1 ;ru27 Uy ;ru270)

/ / Up — u2
Ad 1az) (VP +v) =Vp+0" , v = (v1+uz, v +us,vz+ 5 )-
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The Lie algebra b’ = Ady 1q.4)(b) is conjugate to b and clearly u',v" € T'(y’). Thus {—1 +

Y, Yp,e1 + ez, es} is a basis for h'. Therefore, b is conjugate to the semi-direct sum

(R(=14 Yg) + RYp) @ (R(e1 + €2) @ Res).

For a = 2, the linear system
v—Yp(z) € T(h),

has a solution if and only if v; = v. On the other hand the vector z = (_“2;2“1 , _“1;2“2 , ) is

the solution of the linear system
u—2x— Yu(x) =0.

Now, we have

Adq raey(e1+e2) =e1+ex , Adg 1aq)(e3) = e3
Ad 14024+ Va +u) =2+, Adyan(Vp+v) =Yp+ 0

for some v/ € RY2. The vector v’ does not belong to ' = Ad, [d@)(h) necessarily. But,
subscribing (vh, vh, v5) € T(h') from YVp + v/, we get Vp + Se; € b/ for some 5 € R. Therefore
the set {e1 + €2, e3,2 4+ Vi, Vp + Be1 } is a basis for b'. Hence, in this case, there are two kinds of

Lie algebras. If 5 = 0, then b is conjugate to the semidirect sum
(R(24 Yu) +R(Yp)) o (R(e1 + e2) & Reg).
Otherwise, b is conjugate to the following Lie algebra
(R(2+YVu) + R(Yp + Ber)) +o (R(e1 + €2) © Rey).
This subalgebra is conjugate to the following subalgebra via Ad3-1 14)

(R(24 V) +R(Vp +e1)) +o (R(eg + e2) @ Res).

Case IlII: T'(h) = R(eq + e2).
e p;(h) = R @ aff. There are three vectors u, v, w € RY? such that
{er + e, A\ +u, Yp + v, Vg +w},

is a basis for h. By considering the Lie bracket

A +u,Yp+v] =v—Vp(u) = (v1 — us,va — ug, v3 — u1 + uz) € T'(h),
A+u, Vr +w =w—YVg(u) = (wg —ug, wa —ui,ws) € T(h).

implies that v; = vg, v3 = u; — ug, ws = 0, and w; — ugs = w2 — u;. Now, applying Ad(171d7u),
we get

Ad(le’u) (61 + 62) =e1+ex , Ad(l,ld,u)(/\ + u) =A
Ad gy (Ve +w) =Yy +w',  w' = (w1 —ug, wi — us,0),
Ad(l,]dVU)(yP-i-U) =YVp+7, v = (v1 — ug, v1 — us,0).
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The Lie algebra b’ = Ady 1q4)(h) is conjugated to b, and obviously, v',w" € T'(h’), and so,
Yu,Yp € . Hence {e; + e2, A\, Yy, Vp} is a basis for h’. Therefore h is conjugate to the

semidirect sum
(R® RV +RYp)) o R(er + e2) = (R @ aff) Gy R(er + e2).

e If the homothety projection py, (h) is trivial. Then p;(h) = aff and there exist two vectors u, v € R!2
such that

{er +e2, Vu +u, Yp + v},
is a basis for h. Considering the Lie bracket
Vi +u,Yp+v]=YVp+ Vu(v) — Vp(u),
implies that, there exists 8 € R such that Yy (v) — Vp(u) = v + B(e1 + ez2). Thus, by
(v2 —ug, v1 — uz,v3 — w1 +uz) = Y (v) — Yp(u) = (v1 + B,v2 + B, v3),

we have v; = v and v3 = u; — ug. In the one hand, the vector z = (ug, u,v;) is the solution of
the linear system
v—Yp(z)=0.
On the other hand, the linear system
u—Yu(z) € T(h),

has a solution if and only if u3 = 0. Therefore, conjugating by = = (ug, u1, v1) we get

Adq iz (erte) =erter , Adqri.(Vp+v)=YVp
Ad 14wy (Ve +u) =Yg +u', o' =(0,0,u3).
Therefore, there are two cases: If uz = 0, then b is conjugate to the semi-direct sum
(RYu +RYp) &g R(e1 + e2) = aff &g R(er + e2).
If ug # 0, then b is conjugate to the following Lie subalgebra via Ad(u

5 1.1d,0)

(R(Vu +e3) + RYp) +o R(eq + e2).

e If dim p;(h) = 2 and the homothety projection py,(h) is not trivial. There are two constants a,b € R
and two vectors u, v € R such that (a + Yy +u), (b + Yp +v) € b, and

{e1+e2,0+Vp+v,a+ Yy +u},
is a basis for h. Considering the Lie bracket
[a+ Vg +u,b+Yp+v]=YVp+av+ Yg(v) —bu — Vp(u),

implies that b = 0, and since the homothety part is nontrivial a # 0. Furthermore, the above

equation implies that, there exist 5 € R such that
av + Y (v) — Vp(u) = v+ B(e1 +e1) € T(h).
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Thus,
(av1 4+ v2 — u3, avy +v1 — u3, av3 — ur +uz) = av + Y (v) — Yp(u) = (v1 + B,v2 + 3,v3),

implies that (2 — a)v; = (2 — a)va, (@ — 1)vz = u; — ug.

Fora € R* \ {—1,1,2}, the vector z = (=344 —4tau2 13) js the common solution of the

linear systems
u—ar—Yg(zr)=0 and v—Yp(z) < T(h).

Hence, we have

Adq raey(e1 +e2) =e1+ex , Adqrig(a+Vu+u)=a+Vy

Ad 14z (VP +v)=Vp+, v = (v~ o0
Obviously, b is conjugate to the Lie algebra b’ = Ad(y 14, (h) and we have v" € T'(h’) = T'(h).
Thus {e1 + e2,a + Vg, Vp} is a basis for h’. Henceforth, for a € R* \ {—1, 1,2}, b is conjugate

to the semi-direct sum
(R(a + yH) + Ryp) Do R(e1 + 62).

For a = 1, the vector z = (v3, 0, u3) is a common solution of the linear systems
u—x—Yg(x) €T(h) and v—Yp(x) € T(h).
In fact we have

Ad(1,1a,2)(e1 + e2) = e1 + ez,
Ad 14z (14 Vg +u) =1+ Vg + o, u' = (w1 — v, u1 — v3,0),
Ad 14,0 (VP +v) = Vp + v, v' = (v1 — us,v1 — us,0).

The Lie algebra b’ = Ad(y 144)(h) is conjugate to h and evidently v’,v" € T'(h’) = T'(h). Thus,
{e1 + e2,1+ Vg, Yp} is abasis for h’. Hence, ) is conjugate to the semi-direct sum

(R(1+Yu) +RYp) @y R(eg + e2).

u2 Ul

For a = —1, the vector x = (g, %5, —u3) is a common solution of the linear systems

u+x—Yu(x)€eT(h) and v—Yp(z)eT(h).
In fact, we have

Ad( raz)(e1+e2) = e+ e

U+ u2 U1+ u2
2 ’ 2

Ad 140 (Yp+v) =Yp+0', v = (v1+us,v1 +u3,0).

Adq g (=14 Vg +u)=-1+Yg+u/, v =( ,0)

Obviously, =1 + Vg, Vp € b = Ad( 144)(h). Hence b is conjugate to the semi-direct sum
(R(=1+Yu) +RYp) @y R(e1 + e2),
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Cas
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For a = 2, the linear system

v—Yp(z) €T(H),

has a solution if and only if v; = vy. On the other hand, the vector z = (_“2;2“1 , _“1;2“2 , 5 is

the solution of the linear system
u—2x— Yyu(r)=0.

Now, conjugating by = we obtain

Ad1raz)(er+e2) =er+ex ,  Ady a2+ Va+u)=2+Vu
Ad 14y (Yp+v)=Yp+0 , v = (v - %,Uz - %70)-

It is easy to see that Yp + vie1 € b’ = Ad(y 1q.4)(h), and so,
{e14e2,2+ Yy, Yp + vier}

is a basis for h’. Hence there are two kinds of subalgebras: If v/ = 0 then b is conjugate to the

semi-direct sum
(R(24+ Yu) +RYp) @o R(e1 + e2).

Otherwise, f is conjugated to the following Lie algebra via Ad; /v},1d,0)
(R(2+ Vi) +R(YVp +e1)) +o R(er + e2).
e IV: T(h) = {0}
e p;(h) = R @ aff. There are three vectors u, v, w € R? such that
{A 4w, Yp+v, Y +w},
is a basis for h. Considering Lie bracket, we get
A+u,YVp+v]=v—-Yp(u) =0, A+ u, Vg +w =w—Yg(u) =0.
Thus applying Ad(1 14, we have
Ad rgu) (A +u) = A, Ad(1,14,0)(VE +w) = Vi Ad1,14.0)(Vp +v) = Vp.
Obviously, {\, Yu, Vp} is a basis for b’ = Ady 14.,)(h). Therefore, b is conjugate to

R @ aff.

e pi(h) = aff. There are two vectors u,v € RY? such that {Vy + u,Vp + v} is a basis for b.

Closeness under Lie bracket

Yu +u,Yp+v]=Yp+Vu(v) — Yp(u) = Yu(v) — Vp(u) = v,

implies that

V] = Vo, uz = 0, V3 = U9 — UT.



Thus, the vector z = (ug, u1,v1) is the common solution of the linear systems
u—Yp(r)=0 and v—Yp(z)=0.
In other words, we have
Ad 14,0) (Ve +u) = Vg , Ady 14,2(Yp +v) = Vp.
Hence | is conjugate to aff.

If dim p;(h) = 2 and the homothety projection py,(h) is nontrivial. There are two constants a,b € R
and two vectors u, v € R such that {b 4+ Vp + v, a + Vg + u} is a basis for h. Closeness under
the Lie bracket

[a+ Vg +ub+YVp+v|=YVp+av+ YVu(v) —bu— Yp(u)
implies that b = 0, and since the homothety part is nontrivial, a # 0. Furthermore
(2 - a)m = (2 — a)vg, (1 - a)Ug = Uu2 — Uy, 2'LL3 = a(v1 + 212).

Fora € R* \ {—1,1,2}, the vector z = (=444 —4+au2 13) js the common solution of the

linear systems
u—ar—Yg(r)=0 and v-—)Yp(z)=0.

In other words, we have
Ad( a2 (a+ Vu +u) = a+ Vg, Ad(1,14,0) (VP +v) = Vp.
Hence for a € R* \ {—1, 1,2}, the Lie algebra b is conjugate to

R(a+ Yu) +R(Yp).

For a = 1, the vector z = (%542, =442 4),) js the common solution of the linear systems

u—x—Yg(x)=0 and v—Yp(z)=0.
This implies that b is conjugate to the semi-direct sum

R(a+ Yu)+R(Yp).

For a = —1, the linear system
u+z—Yg(r) =0,

has a solution if and only if u; = —us. On the other hand, the vector x = (%, 5, —u3) is a

solution of the linear system
v—Yp(x)=0.
Now, we have

Ul + ug
2

Ad1 142 (VP +v) =Vp , Adqraqz(—1+Vu+u)=-14+Vy+ (e1 + e2),
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Therefore, if u; = —uq, then b is conjugate to

R(=1+Yu) + RYp.
Otherwise, it is conjugate to the following Lie algebra via Ad( 2 14,0)

uqtug

R(=1+ Yy +e1 +e2) +RYp.

Hence, for all a € R* \ {2}, the Lie algebra b is conjugate to R(a + Vg) + R)p.

For a = 2 setting = = (*“2;{2“1 , *”1;2“2, %), we get
Adq ra(2+Ya+u)=2+Y ,  Adqran(Vp+v)=Vp+0

where v = (v1 — v2)(e1 — ez). Therefore, if v1 = vy, then
h=R(2+Vu)+RVp.
Otherwise, b is conjugate to

R(2+YVy)+R(Vp +e1—e2).

Note that, for all a € R*, the Lie algebra R(a + Vg ) + R)p is conjugate to the Lie algebra R(1/a +
Vi) + RYp viathe element R := [{ ] @ I3 € O(2, 3). O

Lemma A4. Let ) < g be a Lie subalgebra with dimb > 2 and dim py;(h) = 1. Then either b is
conjugate to a semi-direct sum h, Go T'(h) where b, < R @ so(1,2) is a Lie subalgebra, or it is

conjugate to one the of following Lie algebras.

R(VE + 1) +¢ (Rez & Res), R(Yp + e1) +o R(e1 + €2),
R(YVp + e1) +¢ (R(e1 + e2) P Res), R(Yu + e3) +9 R(e1 + e2),
R(1+ Yy +e1) +o R(er + e2), R(1+ Vi +e1) +o Res
R(1+4+ Yg +e1) +o (R(e + e2) @ Res), R(—=1+ Yy +e1) +o Res,
R(VH + e3) +9 (Re; @ Rey).

Proof. Observe that, the linear isometry projection py;(h) is generated by Vg, Yy, or YVp up to conjugacy.
Notice that, if T'(h) = {0}, then p;(h) = R and for V = Vg, Yy, or Vp, there are vectors u,v € R12
such that {\ + u, V + v} is a basis for h. Considering the Lie bracket, we have

A+u,V+o=v—-V(u) =v—-V(u) =0.
Hence conjugating by u we have
Ad(114.0) (A +u) = A, Ad(1, 140 (V +v) =V.

Therefore, \,V € §' = Ad(l,ld,u)(b)' Thus, in this case b is conjugate to R & RYg, R & R)y, or
R® RYp.

Now, assume that 7'(h) # {0}.

Case I: The linear isometry projection py;(h) is elliptic. The Y g-invariant subspaces of R12 are {0},
R12, the timelike line Rey, and its corresponding (orthogonal) spacelike plane Res @& Res.

112



T(h) = ]Rel.

If dim p; (h) = 1, then there exist a constant @ € R and a vector v € RY2 such that {a+ Vg +v, e}

is a basis for h. For a = 0, setting the vector z = (0, —v3, v2) is a solution of the linear system
v—Ye(z) € T(h).
In other words, we have
Ad 14,0)(VE +v) = Ve + v1€1, Ad 14,0)(€1) = e1.
Thus Vg € b’ = Ad(y 14,4)(h). Therefore, b is conjugate to the direct sum

RYE @ Re;y.

For a # 0, the vector z = (3, “3-72, %) is the solution of the linear system
v—ax — Yg(x) =0.

Hence,
Ad(171d7m)(a+3}E —|—U) =a+ Vg, Ad(l,ld,x)(el) = e1.

Thus a + Vg € b’ = Ad(y 14,4)(b). Therefore, b is conjugate to the semi-direct sum

R(a 4+ YE) ®o Rey.

If dim p;(h) = 2, then there exist two vectors u, v € RY2 such that {\ + u, Vg + v, e1} is a basis
for . Considering the Lie bracket we get

A+ u, Ve +v]=v—YVp(u) € Rey = (v1,v2 — us, v3 + uz) = Pey, forsome 3 € R.
Observe that u is a solution of the linear system
v—Yg(z) € T(h).
Hence
Adq rguyA+u) =X Adq a0 (Ve +v) = Ve +vier , Adq g (e1) = er.
Obviously, \, Vg € b/ = Ad(1,1d,u)(h). Therefore b is conjugate to the semi-direct sum

(R@®RYE) ®e Rey.

T(h) = Res & Res.

If dim L(h) = 1, then there exist a constant € R and a vector v € R? such that {a + Vg +

v, €2, e3} is a basis for b.

For a = 0, obviously Vg + vie; € . Therefore, if v; = 0, then § is conjugate to the semidirect
sum
RYE ©o (Rea © Res).
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If v1 # 0, then b is conjugate to the following semidirect sum via Ad(y /y, 14,0)

]R()JE + 61) +o (Reg D ]R€3).

For a # 0, the vector x = (%, 45372, %)is the solution of the linear system
v—ax — Yg(x) =0.
Hence,a + Vg € b/ = Adq, [d,x)(b). Therefore h is conjugate to the semi-direct sum

R(a + Vi) ®e (Rez ® Rey).

If dim p;(h) = 2, then there are two vectors u, v € RY? such that {\ 4+ u, Vg + v, ea, e3} is a basis
for b. Considering the Lie bracket

A+ u, Vi +v] =v—Ygr(u) € T(h),
we get v1 = 0. Observe that u is a solution of the linear system
v—Yg(z) € T(h).
Precisely, we have

AdprgyAN+u) =X, Adq rau (Ve +v) =X + (0,02 — uz, v3 + uz),
Ad rau(e2) =e2  ,  Ada rau(es) = es.

Obviously, \, Vg € b/ = Ad(1,14,4) (). Therefore b is conjugate to the semi-direct sum

(R®RYE) ®o (Rea @ Res).

e T(h) = RY2.

If dim p;(h) = 1, then there exist a constant @ € R and a vector v € RY? such that {a + Vg +
v, €1, ez, ez} is a basis for . Obviously, v € T'(h), and so a + Vg € h. Therefore b is conjugate to

the semi-direct sum

R(a + Yg) ®e R for a constant a € R.

If dim p;(h) = 2, then there exist two vectors u, v € RY2 such that {\ + u, Vg + v, e1} is a basis
for b. Clearly u,v € T'(h), and so A\, Vg € h. Therefore b is conjugate to the semi-direct sum

(R ® RYVE) @o RY2.

Case II: The linear isometry projection py; () is parabolic. The Yp-invariant subspaces of R'? are
{0}, RY2, the lightlike line R(e1 +e2), and its corresponding (orthogonal) lightlike plane R(e; +e2) ®Res.

o T(h) =R(ey + e2).
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— If dimp;(h) = 1, then there exist a constant « € R and a vector v € RY2 such that
{a+ Yp +v,e1 + ey} is a basis for b.
For a = 0, the linear system

v—Yp(z) €T(h),

has a solution if and only if v; = vo. Now, setting x = (0, —v3, v3), we have
Ad 14,0) (VP +v) =Vp + (v1 —va)er,  Adq gz (e1+e2) = e +ea.
Thus if v; = vo, then b is conjugate to the direct sum

RYp & R(eq + e2).

If v1 # va, then there exists b is conjugate to the following Lie subalgebra via Ad( 1 7d,0)

vy —vy’
R(Yp +e1) +o R(er + €2).
For a # 0, the vector
_(a®+ 1)y —avs — vy (a® — 1)vg — avs 4+ vy avz — v1 + va
T = ( a3 I a3 9 a2 )7

is the solution of the linear system
v—ax—Yp(x)=0.
In other words, we have
Ad1 1az)(a+Yp+v)=a+Vp,  Ady raqz(e1+e2) =e1+ea.
Thus a + Vp € b' = Ad(1,144)(h). Therefore b is conjugate to the semi-direct sum
R(a + Yp) ®o R(e1 + e2).

— If dim p;(h) = 2, then there exist two vectors u, v € RY2 such that {\ +u, Yp + v, e1 + €3}

is a basis for . Considering the Lie bracket
A+, Vp +v] =v—Yp(u) € T(h),
we obtain v3 = u; — ug. Observe that conjugating by u we get

Ad(1 1au) (A +u) = A, Ad 14,0 (VP +v) = Yp + (v1 — uz)(e1 + e2),
Ad(1 1au)(e1 +e2) = e1 + ea.

Obviously, A, Vp € b’ = Ad1 14,4)(h). Therefore b is conjugate to the semi-direct sum
(R®RYp) ®o R(eg + e2).
° T(f)) = ]R(el + 62) @ Res.
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— If dimp;(h) = 1, then there exist a constant « € R and a vector v € RY? such that

{a+ Yp +v,e1 + ez, e3} is a basis for b.
If a = 0, the linear system

v—Yp(z) € T(h),
has a solution if and only if v; = vy. Hence, setting x = (0, —v3, v2) we have
Ad 14,0)(Vp+v) = Vp+(vi—v2)er, Adq rqq)(e1+e2) = e1tes, Ad( 1a.2)(e3) = es.
Thus, if v1 = vg, then § is conjugate to the semi-direct sum
RYp @p (R(e1 + e2) @ Res).

If v1 # w9, then b is conjugate to the following Lie algebra via Ad( L 1d0)

v]—wvg’

R(Yp +e1) +o (R(e1 + e2) © Res).

For a # 0, the vector

B <(a2+1)v1—avg—vg (a% — 1)vy — avs + 11 avg—v1+v2>

a3 ’ a3 ’ a?

is the solution of the linear system
v —azx — Yp(x).
Precisely, we have
Adq 140y (a+Yp+v) =a+Yp, Ad; raz)(e1+e2) =ei+es, Ad(1,1d,z)(e3) = e3.
Thusa+YVp € b/ = Ad(l, Id’x)(h). Therefore h is conjugate to the semi-direct sum
R(a+ Yp) @ (R(e1 + e2) & Res).

If dim p; () = 2, then there exist two vectors u, v € RY2 such that {\+u, Yp+v,e;+e, e3}

is a basis for . Considering the Lie bracket
A+u,Yp+v] =v—YVp(u) € T(h),
we have v; = va. Observe v is a solution of the linear system
v—Yp(z) € T(h).
Hence, we have

Ad 1dg,u) (A +u) = A ; Ad(1,1a,u)(e1 + e2) = e1 + ez,
Ad(1, 14,0 (VP +v) = Vp + (v1 —uz)(e1 + e2) + (v3 — ur + uz)es.

Obviously, \, Vp € b/ = Ad 1 14,4) (). Therefore b is conjugate to the semi-direct sum

(R®RYp) ®p (R(e1 + e2) @ Regs).



e T(h) = RM2.

— If dimp;(h) = 1, then there exist a constant @ € R and a vector v € RY2 such that
{a+ Yp+wv,e1,es,e3} is a basis for h. Obviously, v € T'(h), and so a + Vp € . Therefore

b is conjugate to the semi-direct sum

R(a 4+ Yp) ®p RY? for a constant a € R.

— Ifdim p;(h) = 2, then there exist two vectors u, v € RY? such that {\+u, Yp +v, e, €2, 3}
is a basis for h. Clearly u,v € T'(h), and so A\, Vp € h. Therefore b is conjugate to the
semi-direct sum

(R ®RYp) @9 R,

Case 111: The linear isometry part is hyperbolic.

The YVp-invariant subspaces of R%2 are {0}, R12, the two lightlikee lines R(e; + e2), R(e; — e3),
and their corresponding lightlike planes R(e; + e2) @ Res, R(e; — e2) @ Res, the spacelike line Reg,
and the timelike plane contains Re; & Reg, orthogonal to Res.

It is remarkable that conjugation by

1 0 0
Q: 0 -1 0 € 500(1,2)
0 0 -1

leaves RYy invariant, and maps the two lightlike lines R(e; + e2) and R(e; — eg), to each other.
Consequently, () maps the two corresponding lightlike planes R(e; + e2) @ Reg and R(e; — e2) @ Reg
to each other. Therefore, Lie subalgebras with translation part R(e; — ez) (resp. R(e; — e2) @ Res), are

conjugate to the corresponding Lie subalgebras with translation part R(e; 4 e2) (resp. R(e1 + e2) @ Res).
e T(h) =R(e1 + e2).
— If dim L(h) = 1, then there exist a constant @ € R and a vector v € RY2 such that
{a + Y +v,e1 + ey} is a basis for b.
For a = 0, the linear system
v—Yu(x) € T(h).
has a solution if and only if v3 = 0. Hence, setting = = (v, v1,0), we have
Ad(l,ld,x) (Vu +v) = Vg + vses, Ad(1’1d7x)(€1 +e2) = e1 + ea.
Thus if v3 = 0, then b is conjugate to the semi-direct sum
R(Vu) ©o R(e1 + e2).
If v3 # 0, then b is conjugate to the following lie subalgebra via Ad /4, 14,0)

R(VH + e3) +o R(eg + e2).

For a € R*\ {1,—1}, the vector z = (=23H4% =%tats 1) jg the solution of the linear

system
v—axr—Yu(x)=0
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Hence, we have
Adq rgey(a+ Y +v) =a+ Vg, Adq ez (el +e2) =e1+ e
Thus a + Yy € b = Ad(y 144)(h). Therefore b is conjugate to the semi-direct sum
R(a + YVy) ®e R(er + e2).

For a = 1, the linear system
v—z—YVu(r) € T(h),
has a solution if and only if v; = vo. Hence, setting x = (0, va, v3), we get
Adq 1)1+ Vu) =14+ Vg + (v1 — v2)e, Ad rq,0) (€1 + €2) = e1 + ez,
Therefore, if v1 = vg, then b is conjugate to the semi-direct sum
R(1 + Vi) ©g R(e1 + e2).
Otherwise, [ is conjugate to the following Lie algebra via Ad( L 1d,0)
vy —vg "

R(1 4+ Yu +e1) +9 R(er + e2).

For a = —1, the vector z = (

In other words, we have

U1 + U2
2

Ad(1 140 (=1 + V) = =1+ Yy + (e1 + e2), Ady 140y (e1 4 €2) = e1 + e,
Obviously, —1 + Vg € b’ = Ad(y 14.4)(h). Therefore, b is conjugate to the semi-direct sum
R(—14 Yu) ®g R(e1 + e2).

If dim p;(h) = 2, then there are two vectors u,v € RY2 such that {\ + u, Yy + v, e1 + ea}

is a basis for h. Considering the Lie bracket
A+ u, Y +v]=v—Yu(u) € T(h).
we get vs = 0 and v; — ug = v2 — u;. Observe that u is a solution of the linear system
v—Yu(x) € T(h),
and we have

Ad(l,ld,u) ()‘ + u) = A Ad(l,ld,u) (yH + U) =Vu + (Ul - uQ)(el + 62)7
Ad 1gu)(e1+ e2) = e1 + ea.

Obviously, A, Vi € b" = Ady 1q,u)(h). Therefore, b is conjugate to the semi-direct sum

(R RYy) @ R(eq + e2).



° T(h) = R€3.

— If dimp;(h) = 1, then there exist a constant @ € R and a vector v € RY2 such that
{a + Y + v, e3} is a basis for b.

If a = 0, the vector = = (ve, v1,0) is a solution of the linear system
v—Yu(z) € T(h).
In other words, we have
Ad1 1d2)(Vu +v) = Vi +vses,  Ad(i 1az)e3 = €3
Obviously Yy € b/ = Ad 1 14,2)(b). Therefore, b is conjugate to the direct sum

RYy @ Res.

For a € R*\ {1, —1}, the vector x = (=344 =Utav2 13 s the solution the linear system
v—azx — Yg(x) =0,
and we have
Adq rgpy(a+ Y +v)=a+ Vg, Adq 1az)(es) = es.
Thus a + Vi € b’ = Ad(1 14,42)(h). Therefore b is conjugate to the semi-direct sum

R(a 4+ Vi) ®o Res.
If a = 1, the linear system
u—x—Yu(z) € T(h),
has a solution if and only if v; = vy. Now, setting = = (0, va, v3), we get
Ad1,1az) (L + V) =1+ Vu + (v1 —wv2)er ,  Adq rae)(es) = es,
So, if v; = w9, h is conjugate to the semi-direct sum
R(1+ Yu) ®g Res.

Otherwise, it is conjugate to the following Lie algebra via Ad( L 1d,0)

g
R(1+ Y + e1) +o Res.
If a = —1, the linear system
vtz —Yu(z) € T(h),
has a solution if and only if v; = —wvy. Now, setting x = (0, —va, —v3), we get
Ad 1d0) (=1 + Vi) = =1+ Vg + (v1 +v2)eq, Ad 14,0 (e3) = e3.
So, if vy; = —wg, h is conjugate to the semi-direct sum

R(=1+ Ypg) @y Res.
Otherwise, it is conjugate to the following Lie algebra via Ad( L 14,0

v]+vg

R(—=1+ Yy + e1) +¢ Res.
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— If dim p;(h) = 2, then there are two vectors u,v € RY? such that {\ +u, Yy + v,e3} is a

basis for h. Considering the Lie bracket
A +u, Vi +v] =v—Vu(u) € T(h),
we get, v1 = ug and v2 = u;. Observe that u is a solution of the linear system
v—Yu(z) € T(h).
Precisely, we have

Ad (1 1au) (A +u) = A, Ad(1,1d,u)(Vr +v) = Vi + vses,
Ad 1 1d,0)(€3) = e3.

Obviously, \, Vg € b’ = Ad 1 14,4) (). Therefore, b is conjugate to the semi-direct sum

(R ®RY) &g Res.

° T(f)) = R(el + 62) @ Res.

— If dimp;(h) = 1, then there exist a constant @ € R and a vector v € RY? such that

{a+ Yy +v,e1 + ea,e3} is a basis for b.

If a = 0, the vector z = (ve, v1, 0) is a solution of the linear system
v—Yu(x) € T(h),
and we have
Ad( 1a2)(VE+V) = VE+vses,  Adg iz (ertes) =ei+ez,  Ady q0)(e3) = es.
Clearly Vi € b’ = Ad(1,144)(h). Therefore, b is conjugate to the semi-direct sum

RYy Do (R(el + 62) (&) Reg).

For a € R* \ {1, -1}, the vector z = (=244 =U+at2 1) jg the solution of the linear

system

v—azx —Yg(x) =0,
and we have
Ad(1 140yt +v) = a+Vn,  Adqgaq(eiter) =ei+ez,  Adq raq)(es) = es.
Thus a + Vi € b’ = Ad(1 14,4)(h). Therefore b is conjugate to the semi-direct sum
R(a+ Yu) ®g (R(e1 + €2) © Res).

If a = 1, the linear system
v—x—Yu(z) € T(h),



has a solution if and only if v; = vo. Now, setting = = (0, va, v3), we get

Ad(l,ld,m) (61 + 62) =e+e Ad(l,ld,x) (63) = es,
Adq 140y (1 + V) =14+ Yy + (v1 — v2)er,

Hence, if v; = v2, then b is conjugate to the semi-direct sum
R(l + yH) Do (R(el + 62) D Reg).

Otherwise, it is conjugate to the following Lie algebra via Ad(v1 L 1d0)

R(1 4+ Yu +e1) +¢ (R(er + e2) @ Res).
If a = —1, the vector = = (%4, %, —v3) is a solution for the linear system
v—z—Yu(z) € T(h),

and we have

Adq rgz)(e1+e2) =e1+ex ,  Adg 1aq)(es) = es,
(e
Ad(l,]d,ac)(_1 +yH) =—-1+YVy+ ! 5 2(61 —|—€2),

Obviously, —1 + Vg € b’ = Ad(y 14,2)(bh). Therefore, b is conjugate to the semi-direct sum
R(—=1+ V) ®g (R(e1 + e2) ® Regs).

— Ifdim L(h) = 2, then there exist two vectors u, v € RY2 such that {\+u, Yy +v, e1 +e2, 3}

is a basis for h. Considering the Lie bracket
A+ u, Yy +v] =v—Vu(u) € T(h),
we get v; — ug = v2 — uy. Hence

Ad rau) (A +u) = A, Ad 14,0 (Ve +v) = Vi + (v1 —u2)(e1 + e2) + vses,
Ad(1,1au)(e1 +e2) = e1 + ez, Ad(1,14,u)(€3) = es.

Obviously, \, Vg € b/ = Ad1,14,4) (), and therefore b is conjugate to the semidirect sum
(ReRYVu) ®o (R(e1 + €2) & Res).

e T(h) = Re; @ Rea.

— If dimp;(h) = 1, then there exist a constant « € R and a vector v € RY? such that
{a+ Vi +v,e1,ex} is a basis for h. Obviously, a + Vg + vses € b, hence we may assume
v =1(0,0,v3).
If a = 0, the linear system

v—Yu €T(h),
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has a solution if and only if v — 3 = 0. Therefore, if v3 = 0, § is conjugate to the semi-direct

sum
RYy Py (Rel D Reg).

Otherwise, b is conjugate to the following Lie algebra via Ad(1 /y; 14,0)

R(YVu + e3) +9 (Rey @ Rey).
For a € R*, the vector = = (0,0, %) is the solution of the linear system

v—azr — Yg(x) =0,
and we have
Adq rgey(a+Yu +vses) =a+Vu,  Adqrig(er) =e1,  Adq raz)(e2) = e

Thusa+Y € b/ = Ad 1 14,2)(h). Therefore b is conjugate to the semi-direct sum

R(a 4+ Vi) @ (Re; @ Rey).

If dim p;(h) = 2, then there exist two vectors u, v € RY2 such that {\ + u, Yy + v, e1, €2}

is a basis for . Considering the Lie bracket
A+ u,YVu +v] =v—Vu(u) € T(h),
we get vs3 = 0. Hence, Vg € §. On the other hand, we have

Ady rau) (A +u) = A, Ad 14,0 (Vr) = Vi + (—ug, —u1,0),
Ad(y 14,4y (e1) = ex, Ad(1,1d,u)(e2) = ea.

Obviously, A, Vg € b' = Ad 1 14.,)(h), and therefore b is conjugate to the semi-direct sum

(R®RYy) ®e (Rey @ Reg).

o T'(h) = R1:2.

If dim p;(h) = 1, then there exist a constant a € R and a vector v € RY? such that {a + Yy +
v, e1, e, es} is a basis for h. Obviously, v € T'(h), and so a + Y € b Therefore b is conjugate to

the semi-direct sum

R(a+ Vi) ®o RY? for a constant a € R.

If dim p; (h) = 2, then there exist two vectors u, v € RY2 such that {\ +u, Yy + v, e1, e2,e3} isa
basis for h. Clearly u,v € T'(h), and so A\, Y € h. Therefore § is conjugate to the semi-direct sum

(R @ RYy) @9 RM2.



Lemma A.5. Let i) < g be a Lie subalgebra with dim b > 2 and its linear isometry projection py;() be

trivial. Then Yy is conjugate to one of the following Lie subalgebras.

Rag R,  R@y (Re; dRes), Ry (Rex @ Rez), Ry (R(er + e2) ® Rey), R @g Rey,
R &g Res, R@sR(e; +e2), RY  Rey ®Res, Rey ®Res, R(ep + ez) @ Res.

Proof. By Proposition (4.5), b is conjugate to pp(h) @g T'(h). On the other hand, by the action of
S0,(1,2) on RM2, every 2-dimensional (resp. 1-dimensional) linear subspace of R'? is conjugate to
Re; @ Reg, Rey @ Res or R(eg + e2) @ Reg (resp. Rep, Reg or R(eg + e2)). Now, the lemma follows
easily. O
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Appendix B

Some 1-parameter subgroups of
Conf(EH?)

Here we indicate some 1-parameter subgroups of Conf (E!?) which we used in Chapter (4) to determine

the orbits induced by some cohomogeneity one actions on Elnl’2
First of all, we list the three 1-parameter subgroups of SO, ( ~ PSL(2,R).
10
Y =exp(RVg) = |0 cost sint| :t (B.1)
|0 —sint cost
[cosht sinht 0
Y =exp(RYy) = sinht cosht 0Of :t€ (B.2)
| 0 0
[1+12 42 ¢
Yp = exp(RVp) = 21— t|:teRy. (B.3)
t —t 1

Now, we list some of the 1-parameter subgroups of R’ x SO,(1,2) on which both homothety and linear

isometry projections are non-trivial. Note that, here a € R* is a constant number.

1 0 0
exp (R(a + yE)) =<{e™ |0 cost sint|:teR}, (B.4)
0 —sint cost

cosht sinht 0

exp (R(a+ V) = { ™ [sinh¢ cosht 0] :t€R, (B.5)
0 0 1
1+ 42 42 ¢

exp (Rla+Yp)) =qe™ | 12 1-12 ¢ :teRy. (B.6)
t —t 1
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Finally, we list some of the 1-parameter subgroups of Conf (E!?) which have trivial translation part
but they are not subgroups of the linear subgroup R x SO.(1,2).
A subgroup with elliptic linear isometry projection

1 0 0 t
exp (R(Vg +e1)) = 0 cost sint|,|0| |[teR,. B.7)

0 —sint cost 0

Subgroups with parabolic linear isometry projection

1+32 12 4] [e+%

exp (R(Vp +e1)) = 2 1= | & teR Y, (B.8)
t2
t —t 1 £
142 142 t3
1+ 12 L2 ¢ 45
exp (R(Vp +e1 —e2)) = g2 1= t|,|—t+ 5| [:teRy. (B
t -t 1 t2
Subgroups with hyperbolic linear isometry projection
cosht sinht 0 0
exp (R(J/H + 63)) = sinht cosht Of, |0 teR,, (B.10)
0 0
cosht sinht 0 %
exp (R(l + Vg + 61)) = ¢! |sinht cosht 0], % teR (B.11)
0 0 1 0
[cosht sinht 0 %
exp (R(=14 Yy +e1)) = e ' |sinht cosht 0, % teR3, (B.12)
| 0 0 1 0
cosht sinht 0 t
exp (R(—1+Yu+e1+es)) =4 | e |sinht cosht Of,|t||:teR, (B.13)

L0010
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