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Résumé

Avec l’avènement de l’ère intellectuelle et de l’Internet of Everything (IoE), les besoins
de la communication mondiale et des applications diverses ont explosé. Cette révolu-
tion exige que les futurs réseaux de communication soient plus efficaces, intellectuels,
agiles et évolutifs. De nombreuses technologies réseau sont apparues pour répondre à
la tendance des réseaux de communication de nouvelle génération tels que les réseaux
optiques élastiques (EONs) et la virtualisation de réseau. De nombreux défis apparais-
sent avec les apparences de la nouvelle architecture et de la nouvelle technologie, telles
que le routage et l’allocation de ressource spectrale (RSA) dans les EONs et l’intégration
de réseaux virtuels (Virtual Network Embedding ou VNE) dans la virtualisation de
réseau.

Cette thèse traite la conception et l’analyse d’algorithmes d’approximation dans
trois problèmes d’optimation du RSA et du VNE : les impacts de la distribution du trafic
et de la topologie du réseau sur le routage tout optique, de l’allocation de ressource
spectrale, et du VNE dans les topologies des chemins et cycles.

Pour le routage tout optique, le premier sous-problème du RSA, il y a toujours un
problème en suspens concernant l’impact de la distribution du trafic et de la topologie
EON. Comme le routage tout optique joue un rôle essentiel pour la performance globale
de la RSA, cette thèse fournit une analyse approfondi théorique sur ces impacts.

Pour le deuxième sous-problème du RSA, l’allocation de ressource spectrale, deux
chemins optiques quelconques partageant des fibres optiques communes pourraient
devoir être isolés dans le domaine spectral avec une bande de garde appropriée pour
empêcher la diaphonie et / ou réduire les menaces de sécurité de la couche physique.
Cette thèse considère le scénario dans lequel les exigences de bandes de garde réelles
optiques sont différentes pour différentes paires de chemins, et étudie comment affecter
les ressources spectrales efficacement dans une telle situation.

L’hétérogénéité de la topologie des demandes de réseau virtuel (VNR) est un fac-
teur important qui entrave les performances de la VNE. Cependant, dans de nom-
breuses applications spécialisées, les VNR ont des caractéristiques structurelles com-
munes par exemple, des chemins et des cycles. Pour obtenir de meilleurs résultats, il
est donc essentiel de concevoir des algorithmes dédiés pour ces applications en ten-
ant compte des caractéristiques topologiques. Dans cette thèse, nous prouvons que
les problèmes VNE dans les topologies de chemin et de cycle sont NP-difficiles. Afin
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de les résoudre, nous proposons des algorithmes efficaces également analysons leurs
ratios d’approximation.

Mots-clés: Réseaux optiques élastiques (EONs), Routage et allocation de ressource
spectrale (RSA), Allocation de ressource spectrale sous contrainte de distance (DSA),
Virtual Network Embedding (VNE), Algorithme d’approximation
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Abstract

With the coming of intellectual era and Internet of Everything (IoE), the needs of world-
wide communication and diverse applications have been explosively growing. This in-
formation revolution requires the future communication networks to be more efficient,
intellectual, agile and scalable. Many technologies have emerged to meet the require-
ments of next generation communication networks such as Elastic Optical Networks
(EONs) and networking virtualization. However, there are many challenges coming
along with them, such as Routing and Spectrum Assignment (RSA) in EONs and Vir-
tual Network Embedding (VNE) in network virtualization. This dissertation addresses
the algorithm design and analysis for these challenging problems: the impacts of traffic
distribution and network topology on lightpath routing, the distance spectrum assign-
ment and the VNE problem for paths and cycles.

For lightpath routing, the first subproblem of the RSA, there is always a pending
issue that how the changes of the traffic distribution and EON topology affect it. As the
lightpath routing plays a critical role in the overall performance of the RSA, this disser-
tation provides a thoroughly theoretical analysis on the impacts of the aforementioned
two key factors. To this end, we propose two theoretical chains, and derive the optimal
routing scheme taking into account two key factors.

We then treat the second subproblem of RSA, namely spectrum assignment. Any
two lightpaths sharing common fiber links might have to be isolated in the spectrum
domain with a proper guard-band to prevent crosstalk and/or reduce physical-layer
security threats. We consider the scenario with diverse guard-band sizes, and investi-
gate how to assign the spectrum resources efficiently in such a situation. We provide
the upper and lower bounds for the optimal solution of the DSA, and further devise an
efficient algorithm which can guarantee approximation ratios in some graph classes.

The topology heterogeneity of Virtual Network Requests (VNRs) is one important
factor hampering the performance of the VNE. However, in many specialized appli-
cations, the VNRs are of some common structural features e.g., paths and cycles. To
achieve better outcomes, it is thus critical to design dedicated algorithms for these ap-
plications by accounting for topology characteristics. We prove the NP-Harness of
path and cycle embeddings. To solve them, we propose some efficient algorithms and
analyze their approximation ratios.

Key-words: Elastic Optical Networks (EONs), Routing and Spectrum Assignment
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(RSA), Distance Spectrum Assignment (DSA), Virtual Network Embedding (VNE), Ap-
proximation Algorithms.
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Introduction

Nowadays, the trend of Internet, especially driven by Big data applications and Artifi-
cial Intelligence (AI) [46, 47], marches towards involving more network elements and
end-users, larger volume of traffic, and more various applications. The demands of
traffic bandwidths are growing exponentially and the types of communication requests
are exploding aggressively. To meet the needs of the next generation communication
networks, many advanced network architectures and technologies such as Elastic Op-
tical Networks (EONs) and network virtualization arise rapidly.

On the one hand, to address the rapid growth of traffic demands in backbone net-
works, how to utilize the spectral resources in optical fibers efficiently and intelligently
has become a key challenge for all-optical networks. To address this challenge, flexible-
grid EONs have been proposed to enhance the agility of bandwidth allocation in the
optical layer [35, 83]. Specifically, by the bandwidth-variable transponders (BV-Ts) and
wavelength-selective switches (BV-WSS’), EONs can establish lightpaths with several
narrow-band (i.e., 12.5 GHz) and spectrally-contiguous frequency slots (FS) and real-
ize data transmissions over them [46]. Therefore, with the fine bandwidth allocation
granularity of an FS, EONs can offer just-enough bandwidth to traffic demands from
upper-layer networks [37, 71]. The spectrum utilization thus can be effectively im-
proved in EONs in contrast to the traditional fixed-grid Wavelength Division Multi-
plexing (WDM) optical networks whose channel sizes are usually at 50 GHz-100 GHz.

On the other hand, to prop up multi-types network elements, Internet infrastructure
should support new networking mechanisms and applications timely. However, cur-
rent Internet infrastructures, consisting of a variety of technologies to run distributed
protocols, become a barrier to the improvement of Internet service. This diversification
is often referred to as the Internet ossification problem [67]. Network virtualization has
been regarded as a compelling tool to overcome the Internet ossification and attracting
a lot of researches [10, 17, 25, 28, 33, 77]. In the paradigm of network virtualization, the
role of traditional Internet Service Providers (ISPs) is separated into two new entities:
Infrastructure Provider (InP) and Service Provider (SP). The InP owns and manages the
substrate network while the SP focuses on offering customized services to clients. Thus,
network virtualization supports various networks of diverse natures (e.g., network ar-
chitectures, protocols, and user interactions [77]) to coexist in a same substrate network
and share substrate resources (e.g., CPUs and bandwidths).

Coming along with these novel architectures and network technologies are many
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pristine and complicated problems for service provisioning. In EONs, the fundamental
problem is the Routing and Spectrum Assignment (RSA) [21, 30], i.e., how to route a
connection request from its source to its destination by a lightpath, and then assign a
block of available FSs on it. The RSA problem has been proven NP-hard in [21], which
naturally consists of two subproblems: (i) lightpath routing, and (ii) spectrum assign-
ment. More specially, in the lightpath routing, a request should be routed by setting
up an appropriate lightpath to connect its source to its destination. While the spec-
trum assignment, relatively analogous to the graph coloring problem [75], is to allocate
available FSs on the lightpath. In network virtualization, how to effectively allocate
resources of the substrate network to Virtual Network Requests (VNRs) is a vital prob-
lem, which is often referred to as the Virtual Network Embedding (VNE) problem [25].
Explicitly, the VNE needs to find a Substrate Node (SN) (a substrate path, respectively)
to meet the computing requirement of each VN (the bandwidth requirement of each VL,
respectively) of a VNR. The former is also called Node Mapping and the latter is named
Link Mapping. This thesis revolves closely around the algorithm design and analysis in
the three important topics: the lightpath routing, spectrum assignment and the VNE
problem to address some challenges appearing in communication networks.

The rest of this chapter is organized follows:

• Motivation and Objectives

• Contributions of the Thesis

• Organization of the Thesis

Motivation and Objectives

The lightpath routing is critical to the final performance of the RSA, and many routing
schemes have been proposed [16, 49, 52, 71]. The performance evaluations for the most
of the existing routing schemes have been conducted only through numerical simula-
tions. However, the numerical results are significantly influenced by the assumptions
on traffic distributions and EON topologies. On the one hand, given a same EON,
the performances of a routing scheme can be different under different traffic distribu-
tions. On the other hand, given a same traffic distribution, the performance of a rout-
ing scheme can also vary for EON with different topologies. Further, when the EON
topology and traffic distribution are given, how to take into account the two factors to
optimize the lightpath routing is desired. Thus, it is pivotal to figure out how the traffic
distribution and EON topology impact on the lightpath routing by deeply theoretical
studies. By leveraging random graph theory, this thesis studies the synthesized impact
of the two factors on the lightpath routing of the RSA problem.

The spectrum assignment for a set of requests in EONs needs more delicate works
to mitigate the interferences among requests than that in a WDM network. More spe-
cially, after routing all requests on lightpaths, for any two requests whose lightpaths
share some common fiber link(s), the FSs assigned to them should be separated by a
guard band in the spectrum domain. In the literature [37, 44, 60, 82], the guard bands
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are set as the same frequency size. However, the interference levels between different
request pairs vary accordingly. Therefore the guard band with the constant size can
not adapt to the changeable interferences and will cause a waste of spectrum resources
since the frequency size of the guard band is usually set big enough so as to mitigate
all possible interferences. This thesis studies a new spectrum assignment model, where
guard bands with different sizes can adapt to the interference levels in an EON. This
model is named as distance spectrum assignment (DSA). The DSA tries to achieve ef-
ficient spectrum assignment that can not only use guard bands with various sizes to
adapt to the mutual interference levels of the lightpaths, but also minimize the maxi-
mum FS index used in EONs.

The VNE, as the main challenging problem in network virtualization, drew a lot of
attentions of researchers [10, 25]. To address this extremely hard problem, many solu-
tions have been proposed in the literature [17, 28, 33, 51, 77, 81] including heuristics and
Integer Linear Programming (ILP), etc. One of the key impediments to solve the VNE
problem is the topology heterogeneity of both VNRs and substrate networks [10]. How-
ever, this is not always true in many specific applications and substrate networks. For
instance, the topologies of network service chains are paths [38], and there are many
optical rings (i.e., cycles) [61]. For these applications and infrastructures, specialized
cloud service providers outperforming the general SPs are desired, which can afford
dedicated algorithms taking into account the topology characteristics of the VNRs and
substrate networks. Besides, paths and cycles are two of the most fundamental topolo-
gies in network structures. Exploiting the characteristics of path and cycle embeddings
is vital to tackle general topology embedding. In this thesis, we systematically, from
theoretical hardness analysis to practical algorithm design, investigate the VNE prob-
lem for the two special topologies.

Figure 1: The skeleton of this thesis.

xi



Contributions of the Thesis

This thesis investigates the algorithm design and analysis for some challenging prob-
lems in next generation communication networks: RSA in EONs and VNE in network
virtualization. The studied problems are very challenging and generally NP-hard.
The techniques based on graph theory are very powerful and helpful to model and
then solve them. To this end, we proposed some approximation algorithms and gave
some theoretical analysis on them by leveraging graph theory as shown in Fig. 1. The
contributions of this thesis are listed and explained in detail below.

1. The synthesized impact of the traffic distribution and network topology on
the lightpath routing in EONs: For this topic, we first provide a theoretical analysis
about the impact of the lightpath routing on the overall performance of RSA. We prove
that the optimality of the RSA can be measured by the chromatic number of the con-
flict graph. More specifically, the conflict graph is an auxiliary graph that describes the
intersections among the lightpaths for routing requests. Based on the theoretical analy-
sis, we derive several RSA algorithms of constant approximation ratios. We then show
the intersecting probability of the lightpath routing determines the chromatic number
of its conflict graph by leveraging random graph theory. We further introduce a ma-
trix of conflict coefficients concerning intersection probability, which establishes the
connection between the lightpath routing and the traffic distribution as well as EON
topology. Finally, we propose a quadratic programming named Global Optimal For-
mulation (GOF) to derive the optimal routing scheme, which results in the minimum
intersecting probability.

2. The distance spectrum assignment in EONs: We prove the NP-hardness of
the DSA problem, analyze its inapproximability and also formulate an ILP model to
solve it exactly. By connecting with Hamilton path and graph coloring, we formally
provide the upper and lower bounds of the optimal solution of the DSA and prove
that they are tight. Then, we propose a two-phase algorithm to solve the DSA problem
time-efficiently, and study its performance in various situations, which are represented
by different conflict graphs. Specifically, in a conflict graph of the DSA, each vertex
represents a lightpath while an edge signifies the guard band requirement between
two lightpaths. In its first phase, the proposed algorithm generates an initial solution,
which is optimal in bipartite conflict graphs and can guarantee an approximate ratio in
complete conflict graphs. The second phase improves the initial solution with a random
optimization procedure, which proves to be converged.

3. The VNE problem in paths and cycles: For the two special embeddings (path
and cycle), we address several important theoretical questions and propose some al-
gorithms. We prove that path embedding problem is still NP-hard even in a simpli-
fied model. Especially, the hardness of single path embedding is equivalent to that
of determining Supereulerian graph or longest trail problem in two different models.
Leveraging Eulerian trail, some approximation algorithms are thus proposed for the
first time. We further characterize the topologies of substrate networks which is more
suitable for path embedding. For path embedding in realistic scenarios, we give the
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inapproximability of path embedding. Then, by connecting with Multiple Knapsack
Problem (MKP) and Multi-Dimensional Knapsack Problem (MDKP), efficient and ef-
fective MKP-MDKP-based algorithms are developed. For cycle embedding, we pro-
pose a Weighted Directed Auxiliary Graph (WDAG) by which we succeed to establish
an one-to-one relation between each directed cycle in WDAG and each feasible em-
bedding. Based on that, a polynomial-time algorithm is herein devised to achieve the
least-resource-consuming cycle embedding.

Organization of the Thesis

Following the three topics mentioned above, the thesis unfolds corresponding inves-
tigations respectively. The rest of the thesis is divided into four parts: Background
and Technological Context (Chapter 1); On the Impacts of Traffic Distribution and Net-
work Topology on Lightpath Routing in Elastic Optical Networks (Chapter 2); On the
Distance Spectrum Assignment in Elastic Optical Networks (Chapters 3); On Virtual
Network Embedding: Paths and Cycles (Chapter 4).

In Chapter 1, we give the backgrounds on the EONs and network virtualization
respectively. The evolution of the optical networks from the traditional WDM net-
works to the EONs is presented. Specially, we introduce the RSA problem in EONs and
present an important concept in the RSA problem, i.e., the conflict graph. For network
virtualization, Chapter 1 profiles the future Internet infrastructure under the business
model of Infrastructure as a Service (IaaS) and two important components in network
virtualization: the substrate network and VNRs. The VNE problem is also put forward.
Besides, the techniques in graph theory have been used through the thesis to solve all
the three topics presented. Chapter 1 also provides relevant concepts and useful nota-
tions in graph theory such as trail, graph coloring, Hamilton path, etc.

Chapter 2 concerns the impact of traffic distribution and network topology on the
lightpath routing. We provide a theoretical analysis framework that reveals the relation
between the optimality of the lightpath routing and the chromatic number of its con-
flict graph. Based on this theoretical deduction, some approximation algorithms are
presented. By random graph theory, we then introduce the connection between inter-
secting probability and chromatic number, and propose the conflict coefficients and a
quadratic programming, which embody the impact of the traffic distribution and net-
work topology. Within the proposed theoretical analysis, we evaluate three EONs un-
der two traffic distributions. Extensive simulations are conducted to verify our analysis
framework.

Chapter 3 addresses the DSA problem. We formally model the DSA problem in an
ILP and analyze its NP-hardness and inapproximability. The upper and lower bounds
of the optimal solution of the DSA are analyzed by leveraging Hamilton path and graph
coloring, which prove to be tight. We then transform the DSA into a Permutation-based
Optimization Problem (POP). With this transformation, a two-phase algorithm is devel-
oped. The performance of the two-phase algorithm is theoretically analyzed. The first
phase outputs an initial solution, which can guarantee approximation ratios in some
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special graph classes, and the second phase improves the quality of the initial solution
by a random approach whose convergence is also proved. The numerical results show
that the proposed algorithm approaches the optimal solution well. The work of this
chapter can be found in the publications [J1, C1].

Chapter 4 treats the VNE problems in two special topologies, paths and cycles. We
present the network models and the formal description of the VNE problem. As for
path embedding, we put forward a preliminary model to help understand its character-
istics. The proof of NP-hardness and some approximation algorithms are provided in
the preliminary model. For realistic scenarios, we present the inapproximability result
and devise the MKP-MDKP-based algorithms. For cycle embedding, we elaborate the
construction of WDAG, bear out the one-to-one relation between directed cycles and
feasible embedding ways, and also craft the specialized cycle-embedding algorithm.
We conduct simulations under different scenarios to demonstrate the superiority of
our proposed algorithms over existing ones in the two special topologies.

Finally, Chapter 5 concludes this thesis and envisions future work.
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Chapter 1. Background and Technological Context

1.1 Introduction

In this chapter, we introduce the challenging RSA problem in EONs and the VNE prob-
lem in network virtualization. To solve these challenging problems, optimization tech-
niques based on graph theory are required. Thus, some concepts in graph theory used
in this thesis are also presented.

The organization of this chapter is as follows.

• In Section 1.2, we introduce the advantage of EONs over the traditional WDM
networks and expatiate related works of the RSA problem.

• In Section 1.3, we outline the business model of network virtualization and sum-
marize related work in the VNE problem.

• In Section 1.4, some concepts in graph theory are introduced.

1.2 The Background and RSA problem in EONs

1.2.1 Evolution from fixed-grid WDM to flexible-grid EON in optical net-
works

In the last decade, due to the proliferation of various types of bandwidth-hungry appli-
cations such as IPTV, video-ondemand, inter-datacenter networking, etc, Internet traffic
is explosively growing [16, 57, 65, 66]. Cisco predicted that Internet traffic will increase
nearly threefold over the next 5 years [1]. Optical networking technologies are crucial
to the operation of the global Internet and its ability to support critical and reliable com-
munication services [65]. Optical networks have the potential to support the continued
bandwidth demands [16]. According to the expectation of TeleGeography that interna-
tional bandwidth demands will be approximately 606.6 Tb/s in 2018 and 1,103.3 Tb/s
in 2020 [16], optical networks will be required to support Tb/s order transmission in
the near future [36]. However, traditional WDM networks are incompetent of scaling
performance to meet the growing traffic demands. The technology of WDM networks
follows the standardized ITU-T fixed frequency grids [2] of 50 GHz or 100 GHz. Under
this coarse granularity of channel size, spectrum resources will hugely wast if a com-
plete optical channel is allocated even when the data rate of an upper-layer application
can only partially occupy the whole capacity pipe of a WDM optical channel [57] as
shown in Fig. 1.1.

Whereas the limitation of fixed-grid of conventional WDM networks, which dose
not adapt to bandwidth heterogeneity of future traffics, the concept of flexible-grid
EON has been introduced to improve the utilization efficiency of spectrum resources
[37]. With the advances in Orthogonal Frequency-Division Multiplexing (OFDM), by
BV-Ts and BV-WSS’, an EON has the ability to dynamically adjust its channel size in
an optimum and elastic way according to the continuous varying traffic bandwidth de-
mands [66]. More specifically, the optical spectrum of a fiber link in EONs is divided
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Figure 1.1: IUT-T fixed-grid [16].

into narrow FSs, having a spectral width of 12.5 GHz (or less), and the channel can be
a combination of a set of continuous FSs as shown in Fig. 1.2. Thus, with the fine-
granularity and flexible channel size, the spectrum utilization in EONs is greatly im-
proved compared to WDM networks. With advanced elastic optical components and
techniques such as BV-Ts and BV-WSS’, EONs will boost the next generation optical
networks moving towards to the goals of greater efficiency flexibility, scalability [16].
Therefor, the EON architecture is considered as one of the most promising candidates
for next generation optical networks.

Flexible-grid channel size in EONs  

12.5 GHz 

Figure 1.2: Flexible-grid in EONs [16].

1.2.2 The RSA problem in EONs

Nevertheless, EONs not only bring in the benefits but increase the complexity of net-
work planning. The RSA problem in EONs is much more challenging than its counter-
part Routing and Wavelength Assignment (RWA) in WDM networks for two reasons:
(1) the spectrum contiguity; (2) the channel size heterogeneity.

In this thesis, an EON is usually denoted by a connected graph G(V, E), where V
represents the set of underlying nodes and E is the set of fiber links as shown in Fig.
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1.3. Note that usually there are two fibers in each link and each fiber is in charge of one
opposite communication. All fiber links have the same set of spectrum resources.

Figure 1.3: A 6-node-and-8-link EON.
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The spectrum resource in each fiber link are measured by the number of FSs as
shown in Fig. 1.4.

Figure 1.4: The spectrum resource in a fiber link e.

A communication request R in the EON G(V, E) is represented by a 3-tuple (s, d, Rw),
where s ∈ V and d ∈ V are the source and destination node respectively and Rw is the
bandwidth requirement in terms of a number of FSs. When a set of requests R arrive,
the EON needs to find an appropriate lightpath to connect the source and destination
of each request and allocate suitable FSs on the routed lightpath, which is also known
as the RSA problem [75].

The RSA is the fundamental problem in EONs for service provisioning. In the study
of the RSA problem, we generally take into account the following constraints.

• Bandwidth Requirement Constraint. The number of FSs assigned to each re-
quest should be no smaller than its bandwidth requirement.

• Spectrum Contiguity Constraint. The FSs assigned to a request must be con-
tiguous in the spectrum domain. This is a physical layer constraint for all-optical
communications in EONs.

• Spectrum Continuity Constraint. All the fiber links on the lightpath for a request
should be assigned with the same set of contiguous FSs.

• Guard Band Constraint. To mitigate mutual interference, when two lightpaths
share some fiber link(s), the FSs assigned to the two requests should be separated
in the spectrum domain by a guard band frequency.
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With respect to the objective function of the RSA problem, two variants have been
studied in the literature: max-RSA and min-RSA [43, 69]. The former problem focuses
on the service provisioning in EONs with limited spectrum resources, and the objective
is to maximize the number of requests that can be served. The latter one has a planning
concern and its objective is to minimize the required spectrum resource to route all the
requests [43, 69]. In this thesis, we focus on the latter one with planning concern.

The RSA problem, which prove to be NP-hard [21], can be naturally separated into
two subproblems: (i) lightpath routing and (ii) spectrum assignment.

Lightpath Routing

Many routing schemes have been proposed in the literature [41, 49, 52, 64] to address
the lightpath routing. To search suitable lightpaths between source-destination pairs,
these approaches can be mainly classified into four types [16]: (i) fixed routing, (ii) fixed
alternative routing, (iii) least congested routing, and (iv) adaptive routing.

1) Fixed Routing: For each source-destination pair, the fixed routing scheme [49, 52]
precomputes a single fixed lightpath by some shortest path algorithm such as Dijkstra’s
algorithm. When a request arrives in the EON, this scheme attempts to establish a light-
path along the predetermined fixed route. Then, it checks whether there are enough
available FSs on each link of the predetermined lightpath to satisfy the request. If even
one link does not have the desired FSs, the request is blocked, i.e., can not be served.

2) Fixed Alternative Routing: The fixed alternative routing [49, 52] can be consid-
ered as a revision or improvement of the fixed routing scheme. The fixed alternative
routing precomputes several candidate lightpaths for each source-destination pair by
some K-shortest paths algorithms such as [76]. When a request arrives, this scheme
attempts to establish a lightpath through checking each of the candidate routes in se-
quence, until a route with the required FSs is found. If there does not exist such a
lightpath, the request is blocked. Although the computation complexity of this scheme
is higher than that of the fixed routing, its blocking probability is comparatively lower
than the fixed routing scheme.

3) Least Congested Routing: Similar to the previous one, the least congested rout-
ing [16, 49, 52] first predetermines several candidate lightpaths for each source-destination
pair. The difference is that when a request arrives, this scheme estimates the congestion
on each candidate lightpath, which is measured by the number of FSs available on the
each link of the candidate lightpath and selects the least one. The fewer the available
FSs are on a candidate lightpath, the more congested it is. While the computation com-
plexity of the least congested routing is higher than the fixed alternative routing, its
blocking probability is almost the same as that of the fixed alternative routing scheme.

4) Adaptive Routing: In the adaptive routing [41, 52] the lightpath between the
source-destination pair of the request is selected dynamically, relying on the link-state
information of the EON. The link-state information of the EON is determined by the
set of all requests that are currently served. The most acceptable form of the adaptive
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routing is the adaptive shortest path routing, which sets each unused FS in a fiber link
as a cost of 1 unit, whereas the cost of each used FS in the link is taken to be α > 1.
When a request arrives, the shortest path between a source-destination pair is selected.

From the introductions of the above four types of lightpath routing schemes, the
main intention of routing schemes is to select an appropriate lightpath for each request
and properly dispense all the requests on the candidate lightpaths so that as many
requests can be served as possible, which is the center challenge in lightpath routing.
Apparently, the lightpath routing is deeply influenced by the traffic distribution and
underlying topology of the EON. Motivated by this fact, how to take into account
the two factors to devise a better routing scheme is the first problem that we tend to
address in this thesis.

Besides the above four types of routing schemes, there also exist many variants
of lightpath routing considering other aspects such as elastic characteristics, spectrum
fragmentations, etc [16].

Spectrum Assignment

When a set of requests arrive in an EON, after the lightpath routing phase, all requests
are routed on their own lightpaths. Since in this thesis, we consider the RSA prob-
lem with planning concern, the spectrum assignment is to assign FSs to each routed
lightpath while satisfying the four constraints above. The objective is to minimize the
maximum FS index used. Among the approaches to spectrum assignment, leveraging
graph-coloring together with conflict graph is an important one [78]. First, we intro-
duce the important concept of conflict graph.

A conflict graph [78] G(V, E) is such a graph whose vertex set represents the set of
requests in the EONs. For example, each vi in Fig. 1.5(a) represents the Ri in Fig.
1.5(b) where 1 ≤ i ≤ 4. Any two vertices are connected by an edge if and only if
the lightpaths, on which the requests are routed, share some fiber link(s) as shown in
Fig. 1.5. Besides, each vertex is associated with a vertex weight equal to the required
bandwidths of the corresponding request.

In addition, we can define a proper spectrum assignment in the conflict graph as fol-
lows: It needs to assign enough FSs to each vertex to meet the vertex weight meanwhile
the FSs assigned to two vertices adjacent in the conflict graph must be separated by a
guard band frequency appropriately. According to the definition, obviously, any proper
spectrum assignment for the conflict graph corresponds to a proper spectrum assign-
ment for the lightpaths, vice versa as shown in Fig. 1.6, where it is assumed that each
bandwidth requirement is 1 FS and so as the guard band.

Thus, the conflict graph embodies all the four constraints of RSA mentioned above,
and is very important to analyze spectrum assignment. Especially in traditional WDM
networks, the chromatic number of the conflict graph is equal to the optimal solution
of wavelength assignment [78].
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(a) The Routed lightpaths. (b) The Conflict graph.

Figure 1.5: An example of conflict graph.

(a) Routed lightpaths. (b) Conflict graph.

Figure 1.6: The corresponding proper spectrum assignments in the lightpaths of Fig. 1.5(a) and
conflict graph of Fig. 1.5(b).

Revolving around the conflict graph, graph coloring plays an important role in the
spectrum assignment. Many graph-coloring-based approaches have been proposed
in the literature. In [71], after the construction of the conflict graph, two spectrum
assignment algorithms, the Maximum Reuse Spectrum Allocation (MRSA) and Bal-
anced Load Spectrum Allocation (BLSA), are proposed, which are shown to work well
through the numerical simulations. [78] reveals many connections between the opti-
mal solution of spectrum assignment and the properties of the conflict graphs. Besides,
there exist many other heuristics in the literature [78] such as random, first-fit, least-
used, most-used, min-product, etc. Therefore, analyzing and leveraging the properties
of the conflict graph is a chief way to address the spectrum assignment problem. To
overcome the drawback of constant-size guard band, this thesis analyzes the conflict
graph of the DSA problem in which we consider heterogeneous guard band sizes
among lightpaths to mitigate mutual interferences.

All of the RSA problems discussed in this thesis are off-line or static. In addition
to the off-line version, there exist many other variants in literature such as on-line RSA
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in which we do not have all the informations of the requests at hand, defragmenta-
tion, modulation, Quality-of-Transmission (QoT), grooming, survivability, energy sav-
ing, filter-less [7, 8, 65], etc. A comprehensive survey on the RSA problem can be found
in [16].

1.3 Network Virtualization and the VNE problem

1.3.1 The background of network virtualization

Over the past three decades, Internet achieves a stunning success and becomes the core
architecture to provide services for global commerce, media, and defense [5, 20, 53].
This utterly changes the way we work, play and learn [5]. Its ability to support diverse
distributed applications and a wide variety of network technologies make the ubiquity
and centrality of Internet keep increasing [5]. Nonetheless, this popularity becomes the
radical barrier to its further growth. Since current Internet deeply depends on a variety
of infrastructure technologies to run protocols and distributed applications, this multi-
provider nature makes any adopting a new architecture or modification require con-
sensus among competing stakeholders [10, 20]. Developers and researchers have been
craving for new architectures that could address many challenges in next generation
Internet such as Cloud computing [23]. However, the requirement of Internet Service
Providers (ISPs)’ joint agreement on any architectural change makes the prospects for
significant change in its existing architecture daunting [5]. This resistance of the current
Internet to fundamental changes is known as the ossification problem [10]. Even worse,
the inability to adapt to new pressures and requirements continues to deteriorate.

Figure 1.7: The IaaS business model in network virtualization [25].

To address the Internet ossification, network virtualization is proposed by the re-
search community and considered as a compelling solution [5, 10, 25]. In network vir-
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tualization, future Internet architectures will be based on the Infrastructure as a Service
(IaaS) business model [25]. In this model, the role of current ISPs is decoupled into
two new entities: Service Provider (SP) and Infrastructure Provider (InP) as shown in
the left side of Fig. 1.7. The InP sets up and maintains the physical equipments and
substrate resources while the SP is in charge of deploying network protocols and offers
end-to-end services [25]. In some research projects such as 4WARD [55], the manage-
ment and business roles of the SP are further separated into three parts as shown in the
right side of Fig. 1.7: The Virtual Network Provider (VNP) which deals with a number
of InPs and assembles virtual resources from one or more InPs; the Virtual Network
Operator (VNO) which takes care of managing existing virtual networks, and the SP
which is free of management and focuses on offering customized services according to
demands of clients [10, 25].

In a network virtualization environment, there are two key components: A substrate
network and a set of Virtual Network Requests (VNRs) to be served on it.

• Substrate Network: A substrate network is owned and operated by an InP which
earns a profit from leasing substrate resources to its customers (SPs or VNPs).
The physical layer of the substrate network could be all sorts of data informa-
tion transport networks, both wired e.g., copper, WDM and the EONs mentioned
above and wireless. A substrate network consists of a set of Substrate Nodes (SNs)
and Substrate Links (SLs). The InP manage kinds of resources and attributes on
the substrate network. The computing processes of the VNRs are conducted on
the SNs, and thus the CPU capabilities are the most important resources on the
SNs. Besides, there usually exit many other attributes on the SNs, e.g. locations,
storages and protocols etc, to satisfy some VNRs of special settings. The inter-
communications between different SNs are conducted in the SLs, and thus the
bandwidth resources are crucial in each SL. For example, if the substrate network
is an EON, then the bandwidth resources are the spectrum resource FSs.

• Virtual Network Request: A VNR is a combination of Virtual Nodes (VNs) and
Virtual Links (VLs), which is a upper-layer application and constructed by the SP
according to the service demands of clients. Each VN usually represents some
computing tasks and the VLs deal with the intercommunications between VNs.

After the VNRs are configured pursuant to service demands of clients, the SP needs
to discovers resources available in substrate networks by the attributes of InPs and
selects appropriate ones for the deployment of VNRs, which is usually referred to as
the VNE problem [77].

1.3.2 The VNE problem in network virtualization

The VNE is to deal with the resource allocations both in nodes and links, and thus is the
fundamental problem to the service provision in network virtualization. For each VNR
served, the VNE needs to (i) select an SN to meet the computing requirement of each
VN, and (ii) search a substrate path to satisfy the bandwidth requirement of each VL in
a VNR. The former is also called Node Mapping and the latter is named Link Mapping.

9



Chapter 1. Background and Technological Context

Assuming the SP has constructed a VNR and selected a substrate network to serve the
VNR, the constraints of the node mapping and the link mapping of the VNE problem
are as follows.

• Node Mapping Constraint. For each VN, the VNE needs to select an appropri-
ate SN of enough CPU capability to serve it. Besides, some VNRs have special
settings, such as the types of protocols to run and special requirements on the
attributes of SNs to serve. For example, in [28], to reduce the latency so as to
guarantee the Quality of Experience (QoE), the VNs of VNRs have specific loca-
tion constraint that they can only be served on specially located SNs. Meanwhile,
for each SN, the CPU consumption of the VNs embedded on it can not exceed its
capability.

• Link Mapping Constraint. Each VL should be embedded into a substrate path
which connect the SNs that serve the VNs connected by the VL. Each SL on the
embedded substrate path should have enough bandwidth resources to serve the
VL.

The 
Substrate

Network

A VNR
10

7

5

20

8

25

10

10

10

10

1015

10

30

30

Figure 1.8: An example of the VNE process.

Figure 1.8 illustrates an example of the VNE process, where the red numbers indi-
cate the CPU capabilities/requirements of the SNs/VNs respectively and blue numbers
beside the SL/VL indicate the bandwidth capabilities/requirements respectively.

In the study of the VNE, there exist many variants for the node mapping and link
mapping. For example, for the node mapping, many literatures such as [17, 73, 81],
just take into account the CPU requirements of VNs to advance the corresponding re-
searches. In this thesis, we call the generic VNE that only considers the CPU require-
ment as G-VNE. While in some literatures such as [28], the VNs have other special
attribute requirements on the SNs, and we call them S-VNE. The relation between the
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G-VNE and the S-VNE will be discussed in Chapter 4. Besides, sometimes embedding
many VNs on a same SN makes a VNR more vulnerable to the substrate network fail-
ure, some literatures add an additional constraint that two VNs of a same VNR can
not be embedded on a same SN. For the link mapping, in [77], the substrate network
has the ability to allow substrate path splitting and migrating. Thus, under this link
mapping scheme, a VL can be embedded on one or more substrate paths.

For the VNE problem, two main objective functions are generally considered.

• The Acceptance Ratio: Given a substrate network and a set of VNRs, the objec-
tive is to maximize the number of VNRs that can be embedded on the substrate
network. We denote by AcR the acceptance ratio problem in this thesis.

• The Revenue: Each VNR is associated with a revenue. Its objective is to maximize
the total revenue of VNRs that can be embedded on the substrate network. We
denote by Rev the revenue problem. One may notice that AcR actually is a special
case of Rev by setting each revenue as one.

The VNE problem has been proven NP-hard [4]. To address this extremely hard
problem, all VNE approaches in the literature can be categorized depending on whether
they are static or dynamic, centralized or distributed, and concise or redundant [25] as
follows.

• Static vs Dynamic [25]: When a set of VNRs arrive, the static approach embed
them on the substrate network following a fixed mapping scheme without con-
sidering remapping one of more VNRs to improve the performance of the em-
bedding. While in reality, as new VNRs arrive and others expire and, both the
substrate resources in SNs and SLs become fragmented. Consequently over the
time, the ratio of accepted VNRs diminishes, reducing a long-term revenue. Be-
sides, sometimes, there are some changes and updates taking place in both the
topologies of substrate networks and VNRs. The dynamic VNE approaches try to
reconfigure the embedded VNRs so as to reorganize the resource allocation and
optimize the utilization of substrate resources.

• Centralized vs Distributed [25]: There exist two fundamentally different ways to
tackle the VNE problem, centralized and distributed. Each method has its own
advantages and disadvantages. In a centralized approach, there is one dedicated
entity taking the responsibility of embedding. The advantage of this approach
is that the entity has the global knowledge about each step of the situation of
overall network, and thus facilitates more optimal embeddings. But the central-
ized is two-edged. If the centralized entity fails, the entire VNE mapping process
fails. Besides, the scalability is another problem in large networks, where a single
mapping entity may be overwhelmed by the number of VNRs to handle. In con-
trast, the distributed approach employs multiple entities for the VNE process. By
some internal organization, the embedding is distributed among the participat-
ing entities. The advantages of such an approach lie at its better scalability and
survivability. However, one has to pay for this with synchronization costs. Be-
sides, the lack of global information in each individual entity abut current status
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of overall networks may impede the performance of the VNE process.

• Concise vs Redundant [25]: The failure of any SNs/SLs will affect all VNs/VLs
embedded upon them. Therefore, for some fault-sensitive VNRs, some backup
substrate resources should be set up to cope with the failures of SNs and SLs.
The concise approaches just utilize as many substrate resources as necessary to
satisfy the VNRs. There is no reservation of redundant resources. While a re-
dundant approach reserves additional resources for VNRs in case some substrate
resources fail at run-time. In general, the higher the amount of reserved substrate
resources and the degree of reliability, the less VNRs can be embedded. A better
trade-off should be found between the quality of the reliability and the revenue
of embedding.

For the perspective of the methodology, studying the topological characteristics of
both the substrate networks and VNRs is an important approach to address the VNE
problem. Many topology-aware methods are proposed in the literature. In [17], based
on their resource and topological attributes the authors adopt Markov random walk
model to rank SNs. According to the ranking, VNs are first embedded onto SNs. Then
VLs are embedded between the mapped nodes by finding the shortest paths. [77] re-
thinks the design of the substrate network. The authors advocate a different approach
to allow the substrate network to split VLs and migrate multiple substrate paths. Mean-
while, for some common topology classes, to meet the needs of the key applications,
[77] investigates customized embedding algorithms by taking into account the topolog-
ical characteristics and proves them more effective than general algorithms. In [33], the
authors consider embedding VNRs across multiple substrate networks. After splitting
VNRs across substrate networks, the VNE problem is solved by using both max-flow
min-cut algorithms and linear programming techniques. Since path and cycle are two
fundamental network structures, this thesis investigates the topological characteris-
tics of the corresponding VNE problems and propose effective algorithms to solve
them.

Furthermore, many metrics are used to evaluate the quality of a successful embed-
ding: The Quality of Service (QoS) metrics to measure the impact of an embedding
with respect to the service quality when using the VNR, which include many aspects
such as path length, stress level, utilization, delay, jitter, etc; resource spending metrics;
resilience-related metrics and so on. For more details about the VNE problem, one can
refer to two comprehensive surveys [10, 25]. In [25], the authors expanded the roles of
the SP and InP in the paradigm of network virtualization and proposed a novel clas-
sification scheme for current VNE algorithms. The other survey [10] elaborated and
emphasized the importance of resource discovery.

1.4 Relevant Concepts in Graph Theory

Graph theory is an important branch of modern applied mathematics. The subject that
graph theory studies is a graph G(V, E) consisting of a set V of vertices and a set E of
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edges. Definitely, all kinds of communication networks existing in reality, such as the
EONs, substrate networks and virtual networks mentioned above, can be characterized
by a graph. Thus, this versatility makes graph theory an indispensable tool in the de-
sign and analysis of communication networks [13]. The paper “On the Seven Bridges
of Konigsberg” written by Euler in 1736 is considered as the first paper in the history
of graph theory, in which an important concept , Eulerian trail, was proposed. During
the development of graph theory, the Four-Colour Conjecture and Traveling Salesman
Problem (TSP) are two core topics [13], which involve many aspects such as graph col-
oring and Hamilton path. As we shall see, all of the Eulerian trail, graph coloring and
Hamilton path play import roles in analyzing and solving the RSA and VNE problems.
Here, we introduce relevant graph concepts involved in this thesis in a nutshell as fol-
lows.

• A graph G(V, E): A graph G is an ordered pair (V, E) consisting of a set V of ver-
tices and a set E, disjoint from V, of edges, together with an incidence function f
that associates with each edge of E an unordered pair of (not necessarily distinct)
vertices of V. If e is an edge and u and v are vertices such that f (e) = {u, v}, then
e is said to connect u and v, and the two vertices u and v are adjacent in G, called
the ends of e [13].

• Degree: In a graph G(V, E), the degree of a vertex v is the number of edges con-
necting it denoted by dv. The maximum degree of G is max

v∈V
(dv) denoted by ∆(G).

The number of vertices of odd degrees in G is denoted by o(G).

• Subgraph: Given a graph G(V, E), a subgraph G�(V �, E�) is a graph where V � ⊆ V
and E� ⊆ E.

• Spanning Subgraph: Given a graph G(V, E), a spanning subgraph G�(V �, E�) is a
graph that V � = V and E� ⊆ E.

• Path: A path is a graph whose vertices can be arranged in a linear sequence such
that two vertices are adjacent if they are consecutive in the sequence, otherwise
nonadjacent [13].

• Cycle: A cycle is a graph of three or more vertices whose vertices can be arranged
in a cyclic sequence in such a way that two vertices are adjacent if they are con-
secutive in the sequence, otherwise nonadjacent [13].

• Hamilton Path: In a graph G, a Hamilton path is a subgraph which is a path
traversing all vertices of G. Note that not every graph has a Hamilton path.

• Hamilton Cycle: In a graph G, a Hamilton cycle is a subgraph which is a cycle
traversing all vertices of G. Similarly, not every graph has a Hamilton cycle.

• Trail: In a graph G(V, E), a trail is such a subgraph that can be expressed as a
sequence of vertices "v1, v2, ..., vn", where for any two adjacent vertices vi and vi+1,
1 ≤ i ≤ n − 1, vivi+1 is an edge, i.e., vivi+1 ∈ E and no repeated edge occurs in
the trail, i.e., the pair (vi, vi+1) only occurs once in the trail. A closed trail is such
a trail "v1, v2, ..., vn", with v1 = vn. Figure 1.9 illustrates a trail T1 (left in blue), a
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closed trail T2 (right in red), and the corresponding vertex sequences. The length
of a trail is the number of edges on it. For example, in Fig. 7, T1’s length is 6 while
T2’s length is 7.

Figure 1.9: An example of trail and closed trail.

• Eulerian trail: In a graph G, an Eulerian trail is a trail traversing all edges. Notice
that not every graph has an Eulerian trail. An Eulerian circuit is a closed Eule-
rian trail. Therefore, in Fig. 1.9, if we treat the two trails as two graphs (not
subgraphs), then they can also be regarded as an Eulerian trail and an Eulerian
circuit respectively.

• Eulerian graph: A graph G is called Eulerian graph iff it has an Eulerian circuit. In
Fig. 1.9, if we treat T2 as a graph, then T2 is an Eulerian graph.

• Supereulerian graph: A graph G is called Supereulerian graph iff it contains a span-
ning subgraph which is an Eulerian graph. Similarly, if a graph G is formed by
adding one edge v2v6 to T2 in Fig. 1.9, i.e., G = T2 + v2v6, then G is a Supereulerian
graph.

• Independent Set: An independent set is a set of vertices in a graph, no two of which
are adjacent.

• Clique: A clique is a set of vertices in a graph, every two vertices of which are
adjacent.

• Chromatic Number χ(G): Given a graph G(V, E), a proper graph coloring is that
we need to assign each vertex a color such that any adjacent vertices receive dif-
ferent colors. The minimum number of colors we can use to get a proper graph
coloring is the chromatic number of G denoted by χ(G). Since in a proper graph
coloring, those vertices receiving a same color must belong to a same independent
set, the chromatic number χ(G) is equal to the minimum number of independent
sets into which V can be partitioned.

• Bipartite Graph: A bipartite graph is a graph whose chromatic number is 2 or
whose vertices can be partitioned into two independent sets.

• Complete Graph: A complete graph is a graph that itself is a clique, i.e., any two
vertices in it are adjacent.

14
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• Perfect Graph: A perfect graph is a graph in which the chromatic number of every
induced subgraph equals the size of the largest clique of that subgraph. A perfect
graph has many good properties. For instance, its chromatic numbers can be
obtained in polynomial time.

1.5 Conclusion

In this chapter, we first introduced related backgrounds of the EONs and network vir-
tualization. Then some necessary concepts in graph theory are presented, which will
be helpful to solve the studied networking problems. We presented the RSA problems
and the VNE problems, including their constraints and objective functions, and sum-
marized the existing methods to address them. After having a sketched impression on
the problems studied in this thesis, we will go in-depth in the next chapters.
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Chapter 2. Impacts of Traffic Distribution and Network Topology on Lightpath
Routing in Elastic Optical Networks

2.1 Introduction

As introduced in Chapter 1, the fundamental problem to realize service provisioning in
EONs is the RSA problem, i.e., how to route a connection request from its source to its
destination by a lightpath, and then assign a block of available FSs on it. Apparently,
the lightpath routing is a determinant for the final performance of the RSA. From the
introductions of constraints of the RSA problem in Chapter 1, the intersections between
the routed lightpaths are most important to the final performance of the RSA problem,
since the less intersections, the better optimization in spectrum assignment.

Many routing schemes [16, 49, 52, 71] have been proposed to address the light-
path routing such as: the fixed routing schemes (e.g., shortest paths or other K-shortest
paths), and the alternate routing schemes, which, based on some "optimal" principles,
e.g., "the least congested" and "the smallest load" etc, select the "optimal" path for each
request in a set of predetermined candidate paths. Nonetheless, most of current rout-
ing schemes are unadaptable to the changes in traffic distributions and EON topologies,
and their performance evaluations are mainly based on numerical results rather than
rigorous theoretical analysis. However, the numerical results can be easily biased by
the choice of traffic distributions and EON topologies. Thus, it is pivotal to figure out
how the traffic distribution and EON topology impact the lightpath routing by deep
theoretical studies. So that it can provide guidance on how to adapt the routing scheme
to achieve the best performance for different network configurations.

In this chapter, to analyze the synthesized impact of the two factors on lightpath
routing, we derive two important theoretical chains. In the first theoretical chain, by
the chromatic number of the conflict graph and rand graph theory, we provide a theo-
retical analysis about the impact of the lightpath routing on the overall performance of
RSA. Especially, the intersecting probability of lightpaths is pivotal to the optimality of
the RSA. In second theoretical chain, we propose a novel concept, conflict coefficients
by which the traffic distribution and network topology of the EON decide the intersect-
ing probability. Thus, combining the two theoretical chains, we reveal the synthesized
impact. The main contributions of this chapter are summarized as follows.

• We give the upper and lower bounds of the optimal solution of the lightpath rout-
ing by analyzing the chromatic number of its conflict graph, which is a non-trivial
extension of the counterpart in WDM networks. Several constant approximation
ratios of RSA algorithm have also been derived through the theoretical analysis.

• By leveraging random graph theory, we provide an analytical approach on how to
connect the chromatic number of conflict graph with the intersecting probability
of the lightpath routing. Meanwhile, a matrix of conflict coefficients and the GOF,
which embody the impact of the traffic distribution and network topology, are
also proposed to determine the intersecting probability.

• Within the proposed theoretical analysis, we evaluated three realistic EONs under
two traffic distributions by the conflict coefficients and GOFs. Extensive simula-
tions have also been conducted, results of which verify the effectiveness of our
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theoretical deductions.

The remaining of this chapter is organized as follows. We present the formulation
of RSA problem and the conflict graph in Section 2.2. Then, the theoretical work that
reveals the relation between the optimality of the lightpath routing and the chromatic
number of its conflict graph is discussed in Section 2.3. In Section 2.4, we introduce
the connection between intersecting probability and chromatic number, and propose
the conflict coefficients and a quadratic programming. Within the proposed theoretical
analysis, we evaluated three EONs under two traffic distributions in Section 2.5. Ex-
tensive simulations under different scenarios are conducted in Section 2.6 to verify our
analysis. Finally, Section 2.7 summarizes this paper.

2.2 Network Model and Problem Description

In this section, we present the network model considered in this chapter and the for-
mulation of RSA. Some necessary notations are summarized in Table 2.1.

2.2.1 Network Model

Network Topology

We use a directed graph G(V, E) to represent the topology of an EON, where V and E
denote the sets of nodes and directed fiber links respectively as in Fig. 2.1. A bunch of
FSs lies on each directed fiber link as in Fig. 2.2.

Figure 2.1: An EON of 4 nodes and 4 bidirectional fiber links.

Figure 2.2: FSs and guard-bands in a directed fiber link of an EON.
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Table 2.1: Notations I of Chapter 2

G(V, E) The underlying EON, where V is the set of nodes, and E is the set of
directed fiber links.

D The traffic distribution, which specially refers to the distribution of oc-
currence probabilities of source-destination pairs.

wsd The occurrence probability of source-destination pair (s, d) determined
by the traffic distribution D.

R The set of connection requests in G(V, E).
n = |R|, the number of connection requests.
Ri(si, di) Ri ∈ R represents the i-th connection request, where si, di ∈ V are the

source and destination nodes respectively generated by D.
N

+ The set of positive natural numbers representing the FS index set in the
spectrum domain lying in each directed fiber link e ∈ E.

α α ∈ N
+ is the upper bound of the bandwidth demanded by requests,

expressed in the number of FSs.
β β ∈ N

+ is the lower bound of the bandwidth demanded by requests,
expressed in the number of FSs.

Rw
i The number of contiguous FSs (bandwidth requirement) required by

Ri, which is in the range of [α, β].
Pi The set of all the directed paths from si to di in G(V, E).
Pi Pi ∈ Pi is the directed path on which Ri is routed.
Wi The set of contiguous FSs assigned to Ri.
Rb

i Rb
i ∈ N

+ is the start-index of Wi.
Ra

i Ra
i ∈ N

+ is the end-index of Wi.
GB GB ∈ N

+ is the number of FSs required for the guard-band.
MUFI = max

s∈(∪Wi)
(s), is the maximum used FS index.

Ĝ(V̂, Ê) The conflict graph which is a weighted undirected graph, where V̂ is
the vertex set corresponding to R, and Ê is the edge set.

v̂i v̂i ∈ V̂ corresponds to Ri.
v̂w

i = Rw
i , the vertex weight of v̂i.

Wv̂i
The set of contiguous FSs assigned to v̂i.

v̂b
i v̂b

i ∈ N
+ is the start-index of Wv̂i

.
v̂a

i v̂a
i ∈ N

+ is the end-index of Wv̂i
.

v̂w
I(i) The i-th biggest vertex weight in V̂ i.e., v̂w

I(1) ≥ v̂w
I(2) ≥ ... ≥ v̂w

I(n).
v̂w

D(i) The i-th smallest vertex weight in V̂ i.e., v̂w
D(1) ≤ v̂w

D(2) ≤ ... ≤ v̂w
D(n).

opt(Ĝ) The optimal spectrum assignment for Ĝ(V̂, Ê).
|opt(Ĝ)| The MUFI of opt(Ĝ), which is the optimal one.
χ(Ĝ) The chromatic number of Ĝ.

Traffic Distribution

In this chapter, the traffic distribution D specially refers to the distribution of occurrence
probabilities of source-destination pairs. Taking G(V, E) in Fig. 2.1 for example, if
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the occurrence probabilities of the source-destination pairs (v1, v3) and (v3, v1) are 45%
respectively, and the other node pairs equally take the remaining 10%, then the traffic
distribution D is shown in Table 2.2.

Table 2.2: Traffic Distribution D

Node Pair (s, d) Occurrence Probability Node Pair (s, d) Occurrence Probability
(v1, v2) wv1v2 = 1% (v2, v1) wv2v1 = 1%
(v1, v3) wv1v3 = 45% (v3, v1) wv3v1 = 45%
(v1, v4) wv1v4 = 1% (v4, v1) wv4v1 = 1%
(v2, v3) wv2v3 = 1% (v3, v2) wv3v2 = 1%
(v2, v4) wv2v4 = 1% (v4, v2) wv4v2 = 1%
(v3, v4) wv3v4 = 1% (v4, v3) wv4v3 = 1%

2.2.2 Formulation of RSA

In this thesis, we study the RSA problem with a planning concern, i.e., given a set of
connection requests R in an EON G(V, E), we intend to minimize the spectrum usage
in optical fibers. For each request Ri(si, di) ∈ R, we need to establish a lightpath and
assign enough bandwidth on it so as to forward the data of the request. More specially,
the RSA problem consists in choosing a path Pi from the set Pi for Ri and assigning just
enough FS set Wi on this path while satisfying the following constraints:

• Bandwidth Requirement Constraint. The number of FSs assigned to each re-
quest should no smaller than its bandwidth requirement, i.e., the cardinality of
Wi assigned to Ri must be equal to its weight:

|Wi| = Rw
i , ∀Ri ∈ R. (2.1)

Without loss of generality, we make the following assumption in this chapter.
Hypothesis 2.2.1. The bandwidth of each request is uniformly distributed in the range
of [α, β], i.e., Rw

i ∈ [α, β] ∀i, where α and β are two constant integers, e.g., [α, β] = [1, 2]
in [71] or [1, 3] in [72].

• Spectrum Contiguity Constraint. The FSs assigned to request Ri must be con-
tiguous in the spectrum domain, i.e., N

+. Thus, Wi can be expressed as {Rb
i , Rb

i +
1, ..., Ra

i − 1, Ra
i }. This is a physical layer constraint for all-optical communications.

• Spectrum Continuity Constraint. All the directed fiber links on the lightpath for
Ri (i.e., e ∈ Pi) should be assigned with the same set of contiguous FSs Wi.

• Guard Band Constraint. To mitigate mutual interference, when Pi and Pj share
common some directed fiber link(s), the distance between Wi and Wj in the spec-
trum domain should be no less than GB (as shown in Fig. 2.2):

distance(Wi, Wj) ≥ GB, ∀Pi ∩ Pj �= ∅, (2.2)
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where,
distance(Wi, Wj) = min

s ∈ Wi, t ∈ Wj

(|s − t|− 1) .

Note that in this chapter, for ease of the study of the sophisticated topic, the size
of GB is set as a constant number of FSs for all request pairs whose lightpaths
intersect.

For planning purposes, the RSA problem studied in this thesis aims to minimize the
Maximum Used FS Index (MUFI), which can be expressed by Eq. (2.3):

min
�

max
s∈(∪Wi)

(s)

�

(RSA). (2.3)

2.2.3 Conflict Graph

To solve the RSA problem, we should first compute a lightpath for each request, and
then minimize the MUFI. Since the latter is similar to the classic coloring problems to
some extent [75], a practical solution is to build an auxiliary graph, namely the conflict
graph, whose formal definition is given as follows.
Definition 2.2.1. The conflict graph [78] Ĝ(V̂, Ê) 1 is such a weighted undirected graph
whose vertex set V̂ represents the set of requests, i.e., R. Any two vertices v̂i, v̂j ∈ V̂ (repre-

senting Ri and Rj respectively) are connected by an edge ê ∈ Ê, i.e., they are adjacent in Ĝ, if
and only if Pi intersects with Pj, i.e., Pi ∩ Pj �= ∅ (at least one directed fiber link shared
by Pi and Pj), where Pi and Pj are the lightpaths for Ri and Rj respectively. We denote by v̂w

i

the weight of vertex v̂i, and v̂w
i = Rw

i . Besides, v̂b
i , v̂a

i and Wv̂i
have the same meanings as Rb

i ,
Ra

i and Wi respectively. If v̂i and v̂j are adjacent in Ĝ, then the distance between Wv̂i
and Wv̂j

should be no less than GB.

(a) Routed lightpaths. (b) Conflict graph.

Figure 2.3: The conflict graph of the routed lightpaths.

1In this chapter, to distinguish the conflict graph from the EON, we use Ĝ to represent a conflict graph.
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Figure 2.3(b) showcases a 4-node conflict graph for the 4 requests (they are already
routed on their lightpaths) in Fig. 2.3(a), where v̂i corresponds to Ri, ∀1 ≤ i ≤ 4.
According to the definition, obviously, any proper spectrum assignment for the conflict
graph corresponds to a proper spectrum assignment for the requests, vice versa. Thus,
the conflict graph embodies all the four constraints of RSA mentioned above, and is
very important to analyze the RSA problem. Given a set of requests R, no matter how
they are routed, we can use the conflict graph to characterize the intersections among
them.

2.3 Optimal MUFI and Chromatic Number of Conflict Graph

Since the conflict graph utterly depicts the lightpath routing, it is important to charac-
terize its graph property so as to study its impact on the final MUFI.

Obviously, once a conflict graph Ĝ is established, there is an optimal spectrum as-
signment opt(Ĝ) which produces the minimum MUFI, i.e., the optimal MUFI denoted
by |opt(Ĝ)|. Conversely, the optimal MUFI |opt(Ĝ)| can be viewed as the lower bound
on Ĝ that all feasible spectrum assignments can reach. Thus, the optimal MUFI |opt(Ĝ)|
of a conflict graph Ĝ is vital to the final performance of the RSA problem. Next, we first
explore the relation between the |opt(Ĝ)| and the conflict graph Ĝ itself.

2.3.1 Optimal MUFI and Chromatic Number

In WDM networks, the parallel relation is that the minimum number of wavelengths
used on a conflict graph is equal to its chromatic number. However, in EONs, how to
determine the |opt(Ĝ)| for a conflict graph Ĝ has not been investigated yet. Thus, we
address this issue by giving Theorem 2.3.1.
Theorem 2.3.1. Assuming Ĝ(V̂, Ê) is the conflict graph, then

(χ(Ĝ)− 1) · GB +
χ(Ĝ)

∑
i=1

v̂w
D(i) ≤ |opt(Ĝ)| ≤ (χ(Ĝ)− 1) · GB +

χ(Ĝ)

∑
i=1

v̂w
I(i). (2.4)

where v̂w
I(i) and v̂w

D(i) are the i-biggest and i-smallest vertex weight in V̂ respectively, and χ(Ĝ)

is the chromatic number of Ĝ.

Proof. We prove the upper bound by finding a feasible spectrum assignment f whose
MUFI is smaller than it. This solution f can be obtained in such way as shown in Fig.
2.4: (1) separating V̂ into χ(Ĝ) disjoint independent sets; (2) assigning FSs for each
independent set (the number of FSs assigned is equal to the biggest vertex weight in
this set); (3) patching them up. It is easy to see the MUFI of f is smaller than the upper
bound.

Now, we prove the lower bound. Let opt(Ĝ) = {Wv̂, ∀v̂ ∈ V̂} be the optimal spec-
trum assignment. With respect to opt(Ĝ), let A = {v̂a, ∀v̂ ∈ V̂} and B = {v̂b, ∀v̂ ∈ V̂}
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Figure 2.4: A feasible spectrum assignment f where each circle represents a vertex and the number
in the circle is the corresponding vertex weight.

be the optimal end-index and start-index sets for all Wv̂ in opt(Ĝ) respectively. We then
can separate V̂ into different parts as follows:

First, let, w.l.o.g., v̂1 be the vertex whose end-index v̂a
1 is the minimum in A, then

we assert that F1 = {v̂|v̂b ≤ v̂a
1 + GB, ∀v̂ ∈ V̂} is an independent set of Ĝ, i.e., for

any two vertices v̂i, v̂j ∈ F1, v̂i is not adjacent to v̂j in Ĝ. We prove it by contradic-
tion. Assuming v̂i is adjacent to v̂j in Ĝ and Wv̂i

= [v̂b
i , v̂a

i ] and Wv̂j
= [v̂b

j , v̂a
j ], we

have distance(Wv̂i
, Wv̂j

) ≥ GB. Thus, we, w.l.o.g., can assume v̂a
i + GB < v̂b

j . However,

according to F1, we have v̂b
j ≤ v̂a

1 + GB and v̂a
i ≥ v̂a

1 (since v̂a
1 is the minimum in all end-

indices), which means v̂b
j ≤ v̂a

i + GB, a contradiction. Therefore F1 is an independent
set of Ĝ.

Next, let, w.l.o.g., v̂2 be the vertex whose end-index is the minimum in V̂ \ F1, and
similarly, we can assert F2 = {v̂|v̂b ≤ v̂a

2 + GB, ∀v̂ ∈ V̂ \ F1} is an independent set of
Ĝ. After finite steps using the same technique, say k, we can separate V̂ into k disjoint
independent sets: F1, F2,..., Fk. Besides, according to the principle of selecting Fi, ∀1 ≤

i ≤ k, we have v̂a
i + GB < v̂b

i+1, ∀1 ≤ i ≤ k. Therefore, we have (k − 1) · GB +
k

∑
i=1

v̂w
i ≤

|opt(Ĝ)|. Figure 2.5 sketches the process above.

Finally, according to the definition of chromatic number that χ(G) is the minimum
number of independent sets into which we can separate V̂, so we immediately have

χ(G) ≤ k. Besides
k

∑
i=1

v̂w
D(i) ≤

k

∑
i=1

v̂w
i , we hence have (χ(Ĝ) − 1) · GB +

χ(Ĝ)

∑
i=1

v̂w
D(i) ≤
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Figure 2.5: The lower bound of |opt(Ĝ)|.

(k − 1) · GB +
k

∑
i=1

v̂w
D(i) ≤ (k − 1) · GB +

k

∑
i=1

v̂w
i ≤ |opt(Ĝ)|. Thus, we get the proof.

Theorem 2.3.1 reveals the relation between the chromatic number of the conflict
graph Ĝ and the optimal MUFI |opt(Ĝ)|, which is a non-trivial generation from RWA.
Under Hypothesis 2.2.1 and Theorem 2.3.1, we can get Corollary 2.3.1.
Corollary 2.3.1. Assuming Ĝ(V̂, Ê) is the conflict graph and v̂w ∈ [α, β], then we have

(χ(Ĝ)− 1) · GB + χ(Ĝ) · α ≤ |opt(Ĝ)| ≤ (χ(Ĝ)− 1) · GB + χ(Ĝ) · β. (2.5)

In practice, as v̂w
D(i) and v̂w

I(n−i) will become closer with the growth of i, the gap
between the upper and lower bounds in Theorem 2.3.1 will be smaller than that in
Corollary 2.3.1. In other words, the |opt(Ĝ)| is limited in a narrow interval bounded by
the chromatic number χ(Ĝ). Thus, χ(Ĝ) directly determines |opt(Ĝ)|.

2.3.2 Some Approximation Results

After the lightpath routing, the conflict graph Ĝ(V̂, Ê) is constructed. Now, a natural
question is how to obtain a good spectrum assignment to approach |opt(Ĝ)|. Since
the |opt(Ĝ)| is bounded by the chromatic number χ(Ĝ), we can get an approximation
algorithm (say APX) of spectrum assignment from a graph coloring algorithm (say
COL) by slightly modifying it as follows: (1) using COL to partition the vertex set V̂
into k disjoint independent sets (each set in a monochrome), i.e., C1, C2,...,Ck, where k
is the chromatic number produced by COL; (2) using the same way that we obtain the
upper bound in Theorem 2.3.1 (in the Appendix A) to assign FS sets. We get Corollary
2.3.2.
Corollary 2.3.2. Given a conflict graph Ĝ(V̂, Ê), if there is a polynomial algorithm COL which
can guarantee a ρ approximation ratio for chromatic number, then there is a polynomial algo-

rithm APX which can guarantee a ρ · max{
β

α
, 2} approximation ratio for |opt(Ĝ)|, where α

and β are defined in Hypothesis 2.2.1.

Proof. Since χ(Ĝ) = 1 is a trivial case, we just consider χ(Ĝ) ≥ 2. Supposing that COL
separates V̂ into C1, C2, ..., Ck, let, w.l.o.g., v̂1, v̂2, ..., v̂k be the vertices with the biggest
vertex weight in each independent set respectively (just like that in Fig. 2.4). Then

according to the construction of APX, we have |APX(Ĝ)| ≤ (k − 1) · GB +
k

∑
i=1

v̂w
i ,
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where |APX(Ĝ)| is the MUFI computed by APX. According to Corollary 2.3.1 and

the deduction above, we have
|APX(Ĝ)|

|opt(Ĝ)|
≤

(k − 1) · GB + k · β

(χ(Ĝ)− 1) · GB + χ(Ĝ) · α
≤ max{ρ ·

β

α
,

k − 1
χ(Ĝ)− 1)

}. Since χ(Ĝ) ≥ 2,
k − 1

χ(Ĝ)− 1
≤ 2 ·

k

χ(Ĝ)
= 2 · ρ. Hence,

|APX(Ĝ)|

|opt(Ĝ)|
≤

ρ · max{
β

α
, 2}.

For some special conflict graphs, their chromatic number can be solved in polyno-
mial time. Here, we have Corollary 2.3.3.
Corollary 2.3.3. If conflict graph Ĝ(V̂, Ê) is a perfect graph, then there is a polynomial algo-

rithm which can guarantee a
β

α
approximation ratio for |opt(Ĝ)|.

Proof. According to [31], the chromatic numbers of perfect graphs can be solved in
polynomial time, i.e., there is an algorithm such that ρ = 1. In the proof of Corollary

2.3.2, we have
|APX(Ĝ)|

|opt(Ĝ)|
≤ max{ρ ·

β

α
,

k − 1
χ(Ĝ)− 1)

}. By ρ =
k

χ(Ĝ)
= 1, and

β

α
≥ 1, we

get this Corollary.

In EONs with a tree topology, the conflict graphs over them are always perfect
graphs. Then, we have:
Corollary 2.3.4. If EON G(V, E) is a tree, there is a polynomial algorithm which can guarantee

a
β

α
ratio for the optimal MUFI.

Proof. Because the G(V, E) is a tree, there is only one way to route each request, i.e.,
the conflict graph is unique. Besides, according to [27], the conflict graphs over a tree
network are always chordal graphs which belong to the perfect graph class. Therefore,
the proof follows.

However, in general cases, for a conflict graph Ĝ(V̂, Ê), it is intractable to approx-
imate χ(Ĝ) within a ratio of |V̂|1−� for any constant � > 0 [24], i.e., compared with
χ(Ĝ), the final result could be very bad for any polynomial-time algorithm. Now, the
best approximation ratio ρ for χ(Ĝ) is O(|V̂| · (log log |V̂|)2/ log(|V̂|)3) [32].

From above discussion, we can see that the spectrum assignment, closely analogous
to the graph coloring problem, is intractable, and the |opt(Ĝ)| is determined by the
conflict graph of the routed lightpahs. Therefore, a good routing scheme should be to
reduce the chromatic number χ(Ĝ), thereby the |opt(Ĝ)|, which is critical for the final
performance of RSA.

26



2.4. Theoretical Chains of the Impact

2.4 Theoretical Chains of the Impact

In the previous section, we theoretically deduced the impact of χ(Ĝ) on the |opt(Ĝ)|,
i.e., the minimum MUFI that Ĝ can obtain. Now, the important thing is to study how
the traffic distribution D and the EON topology G affect χ(Ĝ). Once we figure this out,
the impact of these two factors on |opt(Ĝ)| will become clear.

To this end, we need some preparations in random graph theory. We first intro-
duce the concept of intersecting probability and its relation with the chromatic number.
Then, we shall see how the intersecting probability can be influenced by the traffic
distribution D and network topology G. Thus, by the connection of intersecting prob-
ability, we finally figure out the impacts of the two factors. Here, we need some other
necessary notations summarized in Table 2.3.

Table 2.3: Notations II of Chapter 2

p The intersecting probability of the lightpaths for any two requests.
K The number of candidate paths for each source-destination pair.
pi The probability for a request to be routed on the i-th candidate path.
θij The conflict coefficient that represents the intersecting probability of any two

requests, one routed on the i-th candidate path and the other on the j-th path.
CM = [θij], the real symmetric Conflict Matrix composed of all θij.

2.4.1 Intersecting Probability and Chromatic Number

In a backbone EON G(V, E), the traffic distribution D may statistically has some char-
acteristics: For example, each source-destination pair in G may occur with equiproba-
bility, or there are some important date-center nodes which constitute the majority of
the connection requests. Support we have already at hand both the traffic distribution
D and the EON topology G(V, E).

Under the random circumstance, the source and the destination of each request are
generated by D, and its bandwidth follows a uniform distribution in the range [α, β]
by Hypothesis 2.2.1. In light of this, each request Ri can thus be viewed as a random
variable. Herein, we introduce the intersecting probability of the lightpaths for any two
requests.
Definition 2.4.1. In an EON G(V, E), the intersecting probability (denoted by p) of any two
requests generated by D (say R1 and R2) is the probability that their lightpaths P1 and P2 share
at least one common fiber link, i.e., P1 ∩ P2 �= ∅.

Given R = {R1, R2, ..., Rn}, the vertex set of the conflict graph Ĝ(V̂, Ê) is that V̂ =
{v̂1, v̂2, ..., v̂n}. Thus, the edge set Ê determines the final χ(Ĝ). For any two vertices, say
v̂1, v̂2 ∈ V̂, the probability that they are adjacent in the conflict graph Ĝ is equal to the
intersecting probability p. We introduce an important Lemma in random graph theory
which reveals the relation between the probability that two vertices are adjacent in Ĝ
and the chromatic number χ(Ĝ).
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Lemma 2.4.1. [12] Let |V̂| = n, p be the intersecting probability for any two vertices in V̂,

and Ĝ be the conflict graph, then we have χ(Ĝ) = (
1
2
+ o(1)) · log(

1
1 − p

) ·
n

log n
, where o(1)

is an infinitesimal of n.

From Lemma 2.4.1, we can see that there is a strongly positive correlation between
the χ(Ĝ) and the intersection probability p. More specifically, the smaller the intersec-
tion probability p, the smaller the χ(Ĝ), which conforms to our intuition. Meanwhile,
by Theorem 2.3.1, the smaller chromatic number χ(Ĝ), the smaller |opt(Ĝ)|. Therefore,
we obtained the first important theoretical chain in Fig. 2.6.

Figure 2.6: Theoretical Chain 1.

Now, the question is that how to determine the intersecting probability p of the
lightpath routing. Obviously, the p depends on three factors: 1 the traffic distribution
D, 2 the EON topology G(V, E), and 3 the routing scheme. We use a simple example
below to illustrate that.

(a) Network Configuration. (b) Intersecting Probabilities.

Figure 2.7: An example of intersecting probability.

Example 2.4.1. The network topology of the EON is a bidirectional cycle G(V, E) = [v1v2...v2tv1],
whose vertice are labeled clockwise from v1 to v2t as shown in Fig. 2.7. We assume the follow-
ing traffic distribution D: The occurrence probability of the source-destination pair (v1, vt) is
wv1vt = 100% while it is zero for the others. We can see there are two candidate paths marked
by blue and red respectively.

If the routing scheme routes all the requests on the first shortest path (the blue one),
then the lightpath intersecting probability p is 100%, which will produce a complete
conflict graph Ĝ with the biggest chromatic number, thereby resulting in the maximum
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|opt(Ĝ)|. Obviously, it is a bad routing scheme. An intuitively optimal routing scheme
is that half of the requests are routed on the red one and the remaining on the blue one.
In other words, the request (since we treat each request as a random variable in this
chapter) should be routed on the shortest path with probability 0.5 and the second path
with the same probability. With this new routing scheme, the intersecting probability
becomes p = 50%.

From the above example, it is not difficult to observe that the routing scheme should
take into account the traffic distribution D and the EON topology. Besides, we can
also find that there is a lower bound on the intersecting probability p. In other words,
no matter what routing scheme is used, there is a minimum intersecting probability
pmin that we can not decrease, for instance pmin = 50% for the above example. The
limitation on pmin obviously comes from the impact of D and G. Next, we investigate
the mechanism of their impact.

2.4.2 Conflict Coefficients

Here, we introduce a new concept named conflict coefficients of an EON, which will
play an important role for lightpath routing in EONs.
Definition 2.4.2. The conflict coefficient θij of EON G(V, E) is the intersecting probability of
any two requests, say R1(s1, d1) and R2(s2, d2) generated by D, which are routed on the i-th
shortest path of (s1, d1) and j-th shortest path of (s2, d2) in G respectively.

Table 2.4: Matrix Mθij for the conflict coefficient θij.

On the j-th path

. . (s2, d2) ws2d2 . .

On . . . . . .

the (s1, d1) . . ws1d1 × ws2d2 . .

i-th ws1d1 . . . . .

path . . . . . .
� �� �

|V|×(|V|−1)

The θij is related to D and G(V, E), which can be computed as follows. We first
generate the i-th and j-th shortest paths for all |V| × (|V|− 1) source-destination pairs
in G(V, E). We construct a matrix Mθij in Table 2.4.

The top row in Table 2.4 represents that all the |V| × (|V| − 1) source-destination
pairs are routed on their own j-th shortest paths, while the leftmost column means
the |V| × (|V|− 1) source-destination pairs are routed on their own i-th shortest paths
(Note that requests with the same s and d are regarded as different). The weight wsd

for each source-destination pair (s, d) is its occurrence probability determined by the
traffic distribution D. If the i-th shortest path of (s1, d1) intersects with the j-th shortest

29



Chapter 2. Impacts of Traffic Distribution and Network Topology on Lightpath
Routing in Elastic Optical Networks

path of (s2, d2) in G(V, E), then this entry is ws1d1 × ws2d2 , otherwise 0. Then, we have
Theorem 2.4.1.
Theorem 2.4.1. The conflict coefficient θij = ∑ Mθij , where ∑ Mθij represents the sum of all
entries in the matrix.

Proof. According to the definition, θij is the intersecting probability of any two re-
quests, say R1 routed on the i-th shortest path and R2 on the j-th shortest path. Since
both R1 and R2 are generated by the traffic distribution D in G(V, E), the probabil-
ity that the source-destination pairs of R1 and R2 are (s1, d1) and (s2, d2) respectively is
ws1d1 ×ws2d2 . Therefore, θij = ∑

�
(s1,d1)i∩(s2,d2)j �=∅

�
ws1d1 ×ws2d2 , where (s1, d1)

i ∩ (s2, d2)
j �=

∅ means that the i-th shortest path of (s1, d1) intersects with the j-th shortest path of
(s2, d2) in the G(V, E). Finally, it is easy to see that ∑

�
(s1,d1)i∩(s2,d2)j �=∅

�
ws1d1 × ws2d2 =

∑ Mθij and the proof follows.

The conflict coefficient θij is an integral reflection on the impact of both the traffic
distribution D and the EON topology G. Following the same idea, we can compute all
the conflict coefficients of an EON G under a specific traffic distribution D, which com-
pose a real symmetric Conflict Matrix (CM) as below. CM is an important evaluation
metric for an EON G under a specific traffic distribution D as we shall see later.

CM =









θ11 θ12 θ13 . . . θ1K . . .
θ21 θ22 θ23 . . . θ2K . . .

. . . . . . . . . . . .
θK1 θK2 θK3 . . . θKK . . .

. . . . . . . . . . . .









2.4.3 Global Optimal Formulation (GOF)

In general, the number of paths connecting a source-destination pair is exponential in
an EON. It is impossible to enumerate all possible paths. Thus, a practical way is to pre-
compute a set of K shortest candidate paths for each source-destination pair by some
K-shortest path algorithms, and then route each request on one of them. Given a set of
R = {R1, R2, ..., Rn}, we use pi to denote the percentage of requests which are routed

on the i-th shortest candidate path and
K

∑
i=1

pi = 1. The proportion array (p1, p2, ..., pk)

is determined by the routing scheme used. As mentioned above that each request is
treated as a random variable independently generated by D in this chapter, pi can also
be interpreted as the probability of the request routed on the i-th shortest candidate
path.

Thus, for any two requests, say R1 and R2, the probability that the R1 routed on the
i-th shortest candidate path and R2 on the j-th shortest candidate path is pi pj. Combing
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with conflict coefficient θij, the conditional probability that any two requests intersect,
routed on i-th and j-th shortest candidate paths respectively, is θij pi pj. Finally, we sum
all the conditional probabilities and obtain a Global Optimal Formulation (GOF) as
follows, which is a quadratic programming, and determines the intersecting probability
p:

p = ∑
1≤i,j≤K

θij pi pj (GOF), (2.6)

s.t.
K

∑
i=1

pi = 1, (2.7)

pi ≥ 0, 1 ≤ i ≤ K. (2.8)

Here, K is the number of pre-computed candidate paths per source-destination pair,
and θij, ∀i, j are the conflict coefficients. In GOF, K is predetermined, and θij are the pa-
rameters determined by the traffic distribution D and the network topology G, while
pi is determined by the routing scheme used. Thus, the complexity of the quadratic
programming is with one constraint, K variables and K2 parameters. By now, we sum-
marize what we have obtained in Fig. 2.8 which is another important theoretic chain.

Figure 2.8: Theoretical Chain 2.

Combing Theoretic Chain 1 in Fig. 2.6 with Theoretic Chain 2 in Fig. 2.8, we
finally figured out the impact of the traffic distribution D and network topology G on
the lightpath routing. More specifically, the CM composed of the conflict coefficients,
embodies the impact of the traffic distribution D and network topology G. All the
conflict coefficients can be viewed as the capacity of an EON G under a specific traffic
distribution D, which determine the final performance of lightpath routing.

Besides, we can also see that the routing scheme, which determines the proportional
array (p1, p2, ..., pK), is another important factor to determine the intersecting probabil-
ity. A good routing scheme should get a proper array (p1, p2, ..., pK) resulting in a small
intersecting probability p. In fact, after obtaining the CM, we can minimize the GOF to
obtain the optimal (p1, p2, ..., pK) which reaches the minimum intersecting probability
p. We also use Example 2.4.1 to illustrate this. In the Example 2.4.1 of Fig. 2.7, we set
K = 2. According to the traffic distribution (wv1vt = 100%) and the topology of cycle-
EON, the conflict coefficients are θ11 = 1, θ12 = θ21 = 0 and θ22 = 1. Therefore, we can
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compute the intersecting probability p of any two requests in this example as follows.

p = p2
1 + p2

2,

s.t. p1 + p2 = 1.
(2.9)

Obviously, the intersecting probability p in Eq. (2.9) reaches the minimum when p1 =
p2 = 0.5. It means the optimal routing scheme should route half of the requests on one
candidate path and the remaining on the other one, which conforms to the intuition.

2.5 CM Estimation and Optimal Routing Decision in Realistic
EONs

In this section, we estimate the conflict coefficients and solve the corresponding GOFs
in three realistic EONs under two traffic distributions respectively. The three EONs are,
as shown in Fig. 2.9, the Ring, NSFNET and NJ-LATA [18] respectively. The three EONs
are of almost the same size in terms of the number of nodes. Thus, we also uniformly
compare the three EONs from the perspective of intersecting probability. Since in the
Ring, there are only two candidate paths for each source-destination pair, to make a fair
comparison, we set K = 2 for all EONs by pre-computing the first and second shortest
paths for each source-destination pair. Therefore, the intersecting probability p in GOF
can be written as

p =
�
p1 p2

�
�

θ11 θ12
θ21 θ22

� �
p1
p2

�

or
p = θ11 × p2

1 + 2θ12 × p1 p2 + θ22 × p2
2, (2.10)

where, p1 + p2 = 1.

In the following, we compute the intersecting probability p under two traffic distri-
bution scenarios respectively: uniform and weighted.

2.5.1 Uniform Traffic Distribution

In this subsection, we consider a uniform traffic distribution D in the three EONs, i.e.,

each source-destination pair occurs with the same occurrence probability
1

|V| × (|V|− 1)
.

Following the computing method in Section 2.4, we can get the corresponding conflict
coefficients and GOFs of the three EONs under uniform distribution.

We denoted by CMUni
Ring, CMUni

NSF and CMUni
NJ the conflict matrices of the Ring, NSFNET

and NJ-LATA respectively in the uniform traffic distribution. Following the computing
method in Section 2.4.2, the three CMs are as follows.
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(a) Ring (12 nodes and 12 bidirectional
fiber links).

(b) NSFNET (14 nodes and 22 bidirectional fiber links).

(c) NJ-LATA (11 nodes and 23 bidi-
rectional fiber links).

Figure 2.9: Three realistic EON topologies.
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CMUni
Ring =

�
0.2328 0.4360
0.4360 0.5014

�

, CMUni
NSF =

�
0.0979 0.1377
0.1377 0.2042

�

, CMUni
NJ =

�
0.0901 0.0852
0.0852 0.1157

�

.

Also we can obtain the the GOFs of the three EONs and the corresponding mini-
mum intersecting probabilities in the uniform distribution as follows.

• For the Ring
p = 0.2328 × p2

1 + 0.8720 × p1 p2 + 0.5014 × p2
2, (2.11)

the minimum intersecting probability pmin = 23.28% when p1 = 1 and p2 = 0.

• For the NSFNET

p = 0.0979 × p2
1 + 0.2754 × p1 p2 + 0.2042 × p2

2, (2.12)

the minimum intersecting probability pmin = 9.79% when p1 = 1 and p2 = 0.

• For the NJ-LATA

p = 0.0901 × p2
1 + 0.1704 × p1 p2 + 0.1157 × p2

2, (2.13)

the minimum intersecting probability pmin = 8.94% when p1 = 0.8621 and p2 =
0.1379.

2.5.2 Weighted Traffic Distribution

Nowadays, EONs begin to support new networking capabilities and demanding net-
work services such as data centers and clouds. Hence, the Optical Cross-Connect (OXC)
in EONs connected to data-centers will produce a large amount of traffic among them,
for instance data migration and content provisioning. This kind of traffic contributes
to the majority of the total traffic. In other words, the nodes connected to data centers
tend to have a much higher occurrence probability to serve as the source or destination
of a request than the other nodes in V [40].

In this subsection, we assume that there are two data-center nodes (as shown in Fig.
2.9) in the three EONs for simplicity. Both the two data-center nodes have the same big
occurrence probability (45% in this chapter) to be involved in a request (as source or
destination), while the other EON nodes equally share the remaining 10% possibility. It
should be noted the value of the occurrence probability given here is just for illustrative
purpose, which can be in fact arbitrary. We call this distribution the weighted traffic
distribution in this chapter.

We denoted by CMWei
Ring, CMWei

NSF and CMWei
NJ the conflict matrices of the Ring, NSFNET

and NJ-LATA respectively in the weighted traffic distribution, and the three CMs are
as follows.
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CMWei
Ring =

�
0.3829 0.1766
0.1766 0.5000

�

, CMWei
NSF =

�
0.3554 0.2119
0.2119 0.3982

�

, CMWei
NJ =

�
0.2758 0.0616
0.0616 0.3306

�

.

The GOFs of the three EONs and the corresponding minimum intersecting proba-
bilities in the weighted distribution are shown as follows.

• For the Ring

p = 0.3829 × p2
1 + 0.3532 × p1 p2 + 0.5000 × p2

2, (2.14)

the minimum intersecting probability pmin = 30.26% when p1 = 0.6105 and p2 =
0.3895.

• For the NSFNET

p = 0.3554 × p2
1 + 0.4238 × p1 p2 + 0.3982 × p2

2, (2.15)

the minimum intersecting probability pmin = 29.30% when p1 = 0.5648 and p2 =
0.4352.

• For the NJ-LATA

p = 0.2758 × p2
1 + 0.1232 × p1 p2 + 0.3306 × p2

2, (2.16)

the minimum intersecting probability pmin = 18.08% when p1 = 0.5568 and p2 =
0.4432.

Now, we compare the minimum intersecting probability of the three EONs under
the two traffic distributions in Table 2.5.

Table 2.5: Comparison of the Minimum Intersecting Probability

Traffic
EON

Ring NSFNET NJ-LATA

Uniform Distribution 23.28% 9.79% 8.94%
Weighted Distribution 30.26% 29.30% 18.08%

The minimum intersecting probabilities of the Ring and NSFNET under weighted
distribution are the two highest ones, 30.26% and 29.30% respectively, while these of
the NJ-LATA and NSFNET under uniform distribution are the two lowest ones, 8.94%
and 9.79% respectively.

Thus, if taking their own optimal routing schemes and with a same spectrum as-
signment method, the final MUFIs of the Ring and NSFNET under the weighted dis-
tribution should be the two maximums, and these of NJ-LATA and NSFNET under
uniform distribution should be the two minimums.
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2.6 Numerical Results

As discussed above, we derived the impact of traffic distribution D and EON topology
G on the lightpath routing by combing Theoretic Chains 1 and 2 in Figs. 2.6 and 2.8
respectively. In this section, we verify the effectiveness of the two theoretic chains by
simulations:

• The effectiveness of Theoretic Chain 2 in Fig. 2.8, i.e., the conflict coefficients and
the computing method for intersecting probability. In other word, whether the
theoretical intersecting probability computed by GOF can fit the realistic one.

• The effectiveness of Theoretic Chain 1 in Fig. 2.6, i.e., the intersecting probability
itself. In other words, whether the intersecting probability is positively correlated
to the final MUFI.

We conduct simulations on the three EONs under both the uniform and the weighted
traffic distributions described before. In our simulations, after the lightpath routing,
we utilize a same spectrum assignment algorithm MRSA in [71] to assign FS sets to
requests. We consider six scenarios in our simulations, which are labeled in Table 2.6.

Table 2.6: Six Simulation Scenarios

Traffic
EON

Ring NSFNET NJ-LATA

Uniform Distribution R-U NSF-U NJ-U
Weighted Distribution R-W NSF-W NJ-W

In each scenario, we first pre-compute two candidate paths for each source-destination
pair, i.e., the first and second shortest paths as mentioned in Section 2.5. Eleven rout-
ing schemes will be conducted and compared in each scenario by increasing p1 (the
percentage of requests routed on the first shortest path) from 0 to 1 with a step of 0.1.
Hence, there are 66 cases in total for the six scenarios. Meanwhile, for each case, we
compare the realistic intersecting probability p with the one theoretically estimated by
GOF through substituting the value of p1 into the corresponding formulation obtained

in Section 2.5. Here the realistic intersecting probability is
#{e}

(n
2)

, where #{e} is the num-

ber of realistic edges in the conflict graph.

Besides, from viewpoint of intersecting probability, we shall also uniformly analyze
the six scenarios and 66 cases as follows.

• The final RSA performance of the six scenarios under their own optimal routing
schemes.

• The performance differences in the 66 cases.

For the bandwidth range and guard band size, we set α = 1, β = 4, and GB = 1
respectively. The number of requests is set as n = 1000 in each simulation. We repeat
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each simulation 50 times under the same circumstance to ensure sufficient statistical ac-
curacy, and a 95% confidence interval is given to each numerical result. All the simula-
tions have been run by MATLAB 2015a on a computer with 3.2 GHz Intel(R) Core(TM)
i5-4690S CPU and 8 GBytes RAM.

2.6.1 Uniform Traffic Distribution

We first verify the three scenarios with the uniform traffic distribution: R-U, NSF-U and
NJ-U. The corresponding results are demonstrated in Figs. 2.10(a), 2.10(b) and 2.10(c)
respectively.

From these results, we can observe that in all the three scenarios, the realistic inter-
secting probabilities (marked by blue lines) fit perfectly with the theoretic ones (marked
by red lines) that we can barely see the blue lines in the three figures.

The results of intersecting probabilities prove the effectiveness of our Theoretic Chain
2 in Fig. 2.8, i.e., the conflict coefficients and the computing method of GOF.

For R-U and NSF-U, with the intersecting probabilities gradually declining, the cor-
responding MUFIs decrease and reach the minimum when p1 = 1 in Figs. 2.10(a) and
2.10(b), i.e., their own optimal routing schemes. For NJ-U in Fig 2.10(c), as we can
observe that the intersecting probability p is within a narrow range of [8.94%, 11.57%]
which means the difference of intersecting probabilities is less than 3%. Thus, the dif-
ference of the corresponding conflict graphs is so subtle that only a small volatility of
MUFIs ([357.38, 379.06]) is observed.

This results of MUFIs mainly prove the effectiveness of our Theoretic Chain 1 in Fig.
2.6, i.e., the intersecting probability is positively correlated to the final MUFI. Further,
the results in NJ-U also reflect some insufficiency of the intersecting probability, which
needs further investigation on small difference among intersecting probabilities.

2.6.2 Weighted Traffic Distribution

Here, we evaluate the other three scenarios with the weighted traffic distribution: R-W,
NSF-W and NJ-W. The corresponding results are demonstrated in Figs. 2.11(a), 2.11(b)
and 2.11(c) respectively.

Similarly, the realistic intersecting probabilities match very well with the theoretical
one in the three scenarios, which again prove the effectiveness of Theoretic Chain 2 of
the conflict coefficients and GOF.

From the aspect of final MUFIs, the three scenarios of R-W, NSF-W and NJ-W rep-
resent a common characteristic: First, with the declining of intersecting probabilities,
the corresponding MUFIs decrease. After passing some watersheds, the correspond-
ing MUFIs keep increasing as the intersecting probability grows. These results further
verify the effectiveness of Theoretic Chain 1 of the intersecting probability.
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(a) R-U Scenario.
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(b) NSF-U Scenario.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

Value of p1

M
U

FI

0 %

10 %

20 %

30 %

40 %

50 %

In
te

rs
ec

ti
ng

P
ro

ba
bi

lit
yFinal MUFI

Realistic Probability
Theoretic Probability

(c) NJ-U Scenario.

Figure 2.10: Numerical results for uniform distribution.
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Figure 2.11: Numerical results for weighted distribution.
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Meanwhile, the results also exhibited the importance of designing efficient routing
scheme to decrease the intersecting probability. When the information of the traffic
distribution and network topology are obtained, how to optimally assign the requests
on the K candidate paths to reduce the intersecting probability is crucial to the final
performance of RSA. Taking the three scenarios of R-W, NSF-W and NJ-W with K = 2
for examples, the (worst, best) MUFI pairs are (1786.51, 1132.32), (1500.23, 1319.02) and
(1398.41, 774.08) respectively. Thus, reducing the intersecting probability can obtain a
huge gain in the final RSA performance.

2.6.3 Comparisons in the Frame of Intersecting Probability

In this subsection, we compare the intersecting probability of the six scenarios using
their own optimal routing schemes in Table 2.5. Besides, we present the numerical
results of all the 66 cases in the panoramic Fig. 2.12(b) with intersecting probabilities as
the X-axis and MUFIs as the Y-axis to show clearly their correlation.

In Fig. 2.12(a), we present the final MUFIs of the six scenarios using their own opti-
mal routing schemes. Compared to the results in Figs. 2.10(a)-2.11(c), it can be observed
that the MUFI of the optimal routing scheme of each scenario is indeed the minimum.
The realistic intersecting probability, as always, matches very well the theoretic one,
which once again proves the effectiveness of the Theoretic Chain 2 of the conflict coef-
ficients and GOF.

From the final MUFIs of Fig. 2.12(a), we can see that the intersecting probabilities
are in general positively correlated to the final MUFIs except two cases: NSF-U vs. NJ-
U and NSF-W vs. R-W. This exception can be interpreted as follows. We can see that the
intersecting probability difference between NSF-U and NJ-U is less than 1% (similar for
NSF-W and R-W). Similar with the phenomena in Fig. 2.10(c), the effectiveness of the
intersecting probability will become insignificant when two intersecting probabilities
are very close (within 3% gap from our simulations), which needs more delicate works
to figure out.

To give a panoramic picture of the relation between intersecting probabilities and
final MUFIs, we collect together in Fig. 2.12(b) the numerical results of the 66 cases.
Although the 66 cases are conducted in different EONs, traffic distributions as well as
routing schemes, we can uniformly analyze their differences in terms of the intersecting
probability. Figure 2.12(b) further confirms the Theoretical Chain 1 in Fig. 2.6.

In summary, the numerical results validated the proposed Theoretical Chain 1 in
Fig. 2.6 and Theoretical Chain 2 in Fig. 2.8. With the help of the key role, intersecting
probability, the two theoretical chains exactly figure out the impact of traffic distribu-
tion and EON topology on the lightpath routing. They demonstrate the importance of
decreasing the intersecting probability in order to find the optimal routing decision.
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2.7 Conclusions

In this chapter, we provided a theoretical analysis to reveal the impact of traffic distri-
bution and EON topology on the lightpath routing of RSA problem in EONs. In this
sophisticated theoretical analysis, we developed two theoretical chains to figure out the
mechanism.

We investigated first the property of the conflict graph built upon the computed
lightpaths, since it permits measure to the quality of the RSA. We proved that the opti-
mal MUFI of a conflict graph is directly determined by its chromatic number, and the
later one has a strongly positive correlation to the edge existence probability in the con-
flict graph, i.e., lightpath intersecting probability between any two requests. In other
words, the smaller the intersection probability, the smaller optimal MUFI for the RSA,
which constitutes our first theoretical chain.

We then characterized the impact of traffic distribution and EON topology by a
matrix of conflict coefficients, which together with the routing scheme determines the
intersecting probability of any two requests. In order to minimize the intersecting prob-
ability so as to minimize the optimal MUFI for RSA, we further developed the quadratic
programming GOF to determine the optimal routing scheme. This constitutes our sec-
ond theoretical chain. Finally, the proposed theoretical chains have been validated by
extensive simulations in several well-known EONs.
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3.1 Introduction

In this chapter, we devote to another important subproblem of the RSA, spectrum as-
signment. We investigate such spectrum assignment in EONs that the sizes of guard-
band frequencies vary.

After all requests in an EON have been routed on their own lightpaths, in order
to minimize the potential physical-layer security threat due to inter-channel crosstalk
[48], the spectrum assignments of two lightpaths should be separated by a sufficient
guard-band when their routing paths share one or more fiber links [82].

For instance, in Fig. 3.1, there are three lightpath requests in an EON, i.e., R1, R2
and R3, and their bandwidth requirements are 2, 4 and 3 FS, respectively. The spectrum
assignments of these lightpaths are illustrated at the bottom of Fig. 3.1 with blocks in
different colors.

Figure 3.1: Spectrum assignments with guard-bands in EONs.

These guard-bands, as shown in Fig. 3.1, can have different sizes, which are not triv-
ial since they determine the impact of inter-channel crosstalk between the lightpaths.
In general, the stronger the crosstalk level is or the higher the security requirement is, a
larger sized guard-band should be applied. Since the crosstalk level can be affected by
many factors such as the required bandwidth, the number of common fiber links and
the lightpaths’ modulation-levels [44] while the security requirement would depend on
the defense of various physical-layer attacks, e.g., eavesdropping and jamming attacks
[26], the actual guard-band requirements in EONs would change for different light-
path pairs. Nevertheless, the guard-bands’ sizes and the way in which we deploy them
would generate spectrum fragmentation and hence significantly influence the spectrum
utilization in EONs [60, 80].
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Therefore, the service provisioning scheme that uses guard-bands with constant
sizes [29, 71] might not be suitable to handle the situation in which the crosstalk levels
and/or the security requirements of lightpath pairs are diverse. For instance, a fix-
sized guard-band might be insufficient to mitigate a strong crosstalk level while result
in spectrum waste for satisfying a relatively low security requirement. Hence, it would
be relevant to study how to realize spectrum assignments with various guard-band
sizes efficiently.

In this chapter, we put forward a new spectrum assignment model, which uses
guard-bands with different sizes to adapt to the crosstalk level or the security require-
ment of each lightpath pair in an EON. Our model is named as distance spectrum as-
signment (DSA). We consider the network planning problem in which all the lightpath
requests and their routing paths are known, the spectral resources in the EON are suffi-
cient to serve all the requests, and the mutual crosstalk levels or security requirements
of the lightpath pairs are also known. With all the aforementioned information, DSA
tries to achieve efficient spectrum assignment. Note that, to the best of our knowledge,
the problem described by DSA has never been studied theoretically in the literature.
Moreover, as we will explain in the chapter, it is an extremely challenging problem.
Hence, we explore the characteristics of the DSA problem and provide some interest-
ing and insightful theoretical results to support future studies in this direction. Our
theoretical approach mainly revolves around the conflict graph of the DSA, in which
each vertex represents a lightpath while an edge signifies the guard-band requirement
between two lightpaths. The contributions of this work can be summarized as follows.

• To the best of our knowledge, this is the first work to formally study the DSA
problem. We prove the NP-hardness of the problem and analyze its inapprox-
imability, and also formulate an integer linear programming (ILP) model to solve
it exactly.

• We formally provide the upper and lower bounds of the optimal solution of DSA
and prove that they are tight.

• We propose a two-phase algorithm to solve the DSA problem time-efficiently, and
study its performance in various DSA situations, which are represented by differ-
ent conflict graphs. In its first phase, the algorithm generates an initial solution,
which is proven to be the optimal solution in bipartite conflict graphs and can
guarantee an approximate ratio of O(log |V|) in complete conflict graphs. The
second phase improves the initial solution with a random optimization proce-
dure, whose convergence performance are also analyzed mathematically.

The rest of this chapter is organized as follows. Section 3.2 presents our motiva-
tion and the related work. In Section 3.3, we model the DSA problem and analyze its
hardness. The upper and lower bounds of the optimal solution of DSA are analyzed in
Section 3.4. In Section 3.5, we transform DSA into a permutation-based optimization
problem (POP), and with this transformation, the two-phase algorithm is developed
in Section 3.6. The performance of the two-phase algorithm is theoretically analyzed
in Section 3.7, and the numerical results for performance evaluation are presented in
Section 3.8. Finally, Section 3.9 summarizes the paper.
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3.2 Motivation and Related Work

Since the channel spacing in EONs becomes much narrower than that in WDM net-
works, the usage of guard-bands, i.e., the unused FS in between the spectrum assign-
ments of two spectrally adjacent lightpaths, becomes more tricky. Specifically, if the
guard-bands are not properly chosen, the physical impairments in fibers would induce
crosstalk between the lightpaths and thus their Quality of Transmission (QoT) would be
deteriorated. Moreover, the crosstalk between two spectrally adjacent lightpaths can be
easily utilized to realize physical-layer attacks such as eavesdropping and power jam-
ming [26, 48, 62, 82], and mixed modulation attacks can also degrade the quality of
high-bit-rate phase-modulated lightpaths with cross-phase modulation [63]. Therefore,
we have to carefully choose the guard-bands to reduce the risk of physical-layer attacks,
the degradation of QoT and the nonlinear penalty in EONs [26, 48, 63].

In order to realize spectrally efficient lightpath provisioning, the RSA problem has
already been intensively studied. In [71], RSA has been formally defined along with the
discussion on its complexity, and an ILP model and two time-efficient heuristics have
been designed to solve the RSA problem. The authors of [29] have considered to provi-
sion multicast requests in EONs with the multicast-capable Routing, Modulation-level,
and Spectrum Assignment (RMSA). However, most of the previous studies on RSA as-
sumed that the guard-bands use a constant size for all the lightpath pairs. Note that,
the work in [44] had already revealed that the filtering characteristics of optical compo-
nents can make the selection of guard-band sizes extremely sophisticated. Therefore,
using a fixed guard-band size does not coincide with the practice and thus the problem
of DSA, i.e., the spectrum assignment with various guard-band sizes should be investi-
gated in a timely manner.

In general, the Wavelength Assignment (WA) problem in WDM networks (each re-
quest in WA problem is assigned with a fixed-wavelength frequency) and the Spec-
trum Assignment (SA) problem in EONs (each request in SA problem is assigned with
a number of FS, the details of distinction between the WA and SA are shown in Table
3.1) can both be studied by leveraging the graph coloring method [13] in conflict graphs
that are constructed based on the routing results of lightpaths. Specifically, WA can be
solved by finding the chromatic number of the conflict graph [9, 74] while SA can be
solved with the interval chromatic number [61, 71]. Nevertheless, DSA differs from
the classical graph coloring problem [13] in two aspects: 1) each vertex in the conflict
graph, which represents a lightpath, is assigned with a set of contiguous colors (i.e., FS)
according to the bandwidth demand rather than only one color; and 2) the distance of
the color sets of two adjacent vertices is no longer one but a positive integer, represent-
ing the guard-band requirement, which is not identical for all the vertex pairs. More
specifically, DSA is similar to the fractional coloring problem [56], with two differences:
1) contiguous colors should be assigned to each vertex in DSA, while this is not the case
for fractional coloring; and 2) various distances between adjacent color sets should be
kept in DSA while color sets only need to be disjoint in the latter one. For clarity, Table
3.1 provides the comparison of the four coloring related problems that have been dis-
cussed above, i.e., the classical coloring, the fractional coloring, the traditional SA, and
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Table 3.1: Comparison of related coloring problems

Classical
Coloring [13]
(e.g., WA [9])

Fractional
Coloring

[56]

Traditional
SA [71]

DSA (this
work)

Vertex Color One color A set of
colors

A set of
colors

A set of
colors

Color
Contiguity

N/A No need Required Required

Color
Distance of
Adjacent
Vertices

Disjoint Disjoint Identical
positive
integer

Various
positive
integers

the DSA problem. We can see that DSA is apparently a new combinatorial optimization
problem, which has not yet been studied before. In the next section, we will formally
define the DSA problem.

3.3 Distance Spectrum Assignment (DSA) Problem

In an EON, a set of FS is available in each optical fiber to carry lightpaths. Hence, effi-
cient spectrum assignment algorithms are needed to optimize the spectrum usages of
lightpaths under the spectrum contiguous and non-overlapping constraints [83]. Mean-
while, in DSA, to address the crosstalk level and/or security requirement of each light-
path pair, we need to choose a proper guard-band to insert.

3.3.1 Problem Description

For DSA, we consider the network planning problem in which all the lightpath requests
and their routing paths are known, the spectral resources in the EON are sufficient
to serve all the requests, and the mutual crosstalk levels or security requirements of
the lightpath pairs are also known (i.e., the required guard-band sizes are given for all
the spectrally adjacent lightpath pairs). Then, DSA tries to achieve efficient spectrum
assignment that can not only accommodate all the lightpath requests to satisfy all the
constraints, but also minimize the maximum used FS index (MUFI) in the EON.

To solve DSA, we construct a conflict graph based on the known information re-
garding the lightpaths. Specifically, we first use a vertex to represent each lightpath
and assign a weight to it for its bandwidth demand in FS, and then we connect two
vertices with an edge if there would be crosstalk between their lightpaths or a guard-
band has to be inserted in between the lightpaths’ spectrum assignments due to certain
customer-specified security reasons. Note that, a weight is also assigned to each edge
in the conflict graph to represent the actual required guard-band size. Figs. 3.2 and
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3.3 and Table 3.2 show an illustrative example on how to construct the conflict graph.
There are four lightpaths with the information in Table 3.2 and their routing paths in a
4-node ring topology is illustrated in Fig. 3.2. Then, we assume that the guard-band re-
quirements for the lightpaths are shown in Fig. 3.3(a), where for simplicity, we use the
number of common links in two lightpaths’ routing paths as their guard-band require-
ment. Note that, previous experimental investigation has suggested that the crosstalk
level between two spectrally adjacent lightpaths is positively correlated with the num-
ber of common links in their routing paths [44]. For instance, since the routing path of
R1, i.e., B-A-D, shares two common links with that of R4 (C-B-A-D), the required guard-
band size between them would be at least 2 FS. In the conflict graph in Fig. 3.3(a), the
number inside a cycle is the bandwidth demand in FS while the number on an edge
indicates the required guard-band size. Based on the conflict graph in Fig. 3.3(a), we
can figure out that optimal solution of DSA is that in Fig. 3.3(b), where the assigned FS
to each lightpath are marked with red braces.

Table 3.2: Information on Lightpaths

Bandwidth Demand Route
Request R1 3 FS B-A-D
Request R2 2 FS C-B-A
Request R3 3 FS A-D-C-B
Request R4 1 FS C-B-A-D

Figure 3.2: Lightpaths in Table 3.2 in a 4-node ring topology.

3.3.2 The DSA model and Integer Linear Program

Note that, since we only consider the spectrum assignment problem in DSA, which is
already a relatively complex problem as we will explain below, we assume that the rout-
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(a) Conflict graph (b) Optimal solution

Figure 3.3: Conflict graph for lightpaths in Fig. 3.2 and optimal DSA solution.

ing and guard-band information on the lightpaths are known and thus for each instance
of DSA, the conflict graph has already been constructed. Therefore, from now on, we
concentrate on how to obtain the optimal spectrum assignments for the lightpaths (i.e.,
the optimal solution of DSA) based on a known conflict graph, and consider various
types of conflict graphs in our analysis. We first introduce the following notations for
DSA.

Necessary Notations:

• G(V, E): The DSA conflict graph, where V is the set of vertices, and E is the set of
the conflict edges.

• N
+: The set of natural numbers for representing the FS indices in the spectrum

domain, which starts from 1.

• vi: vi ∈ V represents the i-th lightpath request.

• vw
i : The integer weight signifies bandwidth demand of lightpath vi, in the number

of contiguous FS.

• wvi
: The set of contiguous FS assigned to vi.

• vb
i : vb

i ∈ N
+ is the start-index of wvi

.

• va
i : va

i ∈ N
+ is the end-index of wvi

.

• e or vivj: The edge e ∈ E connecting vi and vj, which represents that the lightpaths
of vi and vj share common link(s). For convenience, we also use vivj to represent
an edge e.

• de (dvivj
): The positive integer weight that represents the least guard-band size

between lightpaths vi and vj.
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• B: B ∈ N
+ is a reasonably large integer.

For ease of discussion, we also use G(V, E, {vw
i }, {dvivj

}) to represent a DSA graph, i.e.,
making the weights of vertices and edges explicit. Our objective is to minimize the
MUFI in the EON. Note that, it is also possible that the conflict graph G is not a fully
connected one. In that case, we can partition G in to a few connected components,
solve the DSA problem in them, and then get the MUFI in all the components as the
final solution. Hence, we will ignore the cases of non-connected conflict graph in our
discussions. The DSA problem can then be defined as

Minimize max
s∈

�

∪
vi∈V

wvi

�(s) (DSA), (3.1)

where s ∈ N
+ is the index of a used FS. Meanwhile, DSA should be subject to the

following constraints:

• Bandwidth Requirement Constraint: Each lightpath should be assigned with
enough FS to satisfy its bandwidth demand. In other words, the cardinality of FS
set assigned to a vertex vi ∈ V should be equal to its weight:

|wvi
| = vw

i , ∀vi ∈ V, (3.2)

• Spectrum Continuity Constraint: The FS assigned to a lightpath should be the
same on each fiber link in its routing path. Basically, since each lightpath is pre-
routed and represented by a vertex in the conflict graph, this constraint will al-
ways be satisfied automatically.

• Spectrum Contiguity Constraint: The FS assigned to a vertex should be contigu-
ous in N

+, i.e., wvi
can be expressed as {vb

i , vb
i + 1, ..., va

i − 1, va
i }, where vb

i , va
i ∈

N
+.

• Spectrum Set Distance Constraint: To satisfy the guard-band requirements, the
distance between the FS sets assigned to two spectrally adjacent lightpaths should
be large enough. Specifically, for each edge vivj ∈ E, the distance between wvi

and
wvj

in N
+ should not be smaller than the edge’s weight:

distance(wvi
, wvj

) ≥ dvivj
, ∀vivj ∈ E, (3.3)

where,
distance(wvi

, wvj
) = min

s ∈ wvi
t ∈ wvj

(|s − t|− 1).

One can easy find the difference between the guard band constraint defined in
Eq. 2.2 in previous chapter and the distance constraint in Eq. 3.3.

The DSA problem is NP-hard, which will be proven formally in the next subsec-
tion. To solve DSA exactly, we formulate an ILP model to obtain the optimal spectrum
assignment scheme.

Decision Variables:
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• xb
i : Integer variable to represent the value of vb

i .

• xa
i : Integer variable to represent the value of va

i .

• y: Integer variable to represent the upper bound of xa
i .

• ovivj
: Boolean variable for each edge vivj to represent the order of xb

i and xb
j , i.e., if

xb
i > xb

j , we have ovivj
= 1, and ovivj

= 0 otherwise.

Objective Function:

Minimize y (ILP-DSA),

s.t. Eqs. (3.5)-(3.10).
(3.4)

xa
i − xb

i + 1 = vw
i , ∀vi ∈ V (3.5)

ovivj
+ ovjvi

= 1, ∀vivj ∈ E (3.6)

xa
i − xb

j + dvivj
+ 1 ≤ B × ovivj

, ∀vivj ∈ E (3.7)

y ≥ xa
i , ∀vi ∈ V (3.8)

xa
i ∈ N

+, xb
i ∈ N

+, ∀vi ∈ V (3.9)

ovivj
∈ {0, 1} ∀vivj ∈ E (3.10)

3.3.3 Hardness and Inapproximability Analysis

To analyze the hardness of the DSA problem, we introduce the Minimum Hamilton
Path problem (MHP) [11], whose objective is to find a minimum Hamilton path in a
weighted complete graph. MHP is strongly NP-hard [11].

If the conflict graph of a DSA instance is complete, which means every two vertices
vi and vj are directly connected. Hence, the FS sets assigned to the lightpaths should
be pairwise disjoint. If the complete graph satisfies the triangle inequality, i.e., dvivk

+
dvkvj

≥ dvivj
, ∀vi, vj, vk ∈ V, owing to this inequality, any Hamilton path satisfies the

spectrum set distance constraint of DSA. Therefore, in this case, the DSA problem is
equivalent to the MHP problem. If the triangle inequality cannot be satisfied in the
complete graph, then the solution of DSA might be longer than a Hamilton path. This
is because the spectrum set distance constraint might not be satisfied by a Hamilton
path. Precisely speaking, the distance between two vertices vi, vj ∈ V in a Hamilton
path may be smaller than the required spectrum distance dvivj

. Theorem 3.3.1 indicates
the hardness of DSA.
Theorem 3.3.1. MHP ≤P

T
1 DSA

Proof. To prove the NP-hardness of DSA, we just need to prove: 1) any instance I of
MHP can be polynomial-time reduced to an instance I � of DSA, and 2) the solution of
I � can be converted to that of I in polynomial time.

1≤P
T means a polynomial-time Turing reduction.
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We get I � from I by giving the biggest edge weight b to each vertex of I as its weight
and keeping the edges’ weights unchanged. Then, we have dvivk

+ b + dvkvj
≥ dvivj

,
∀vi, vj, vk. With this reduction, each vertex pair in a Hamilton path in I � should satisfy
the spectrum set distance constraint. Hence, the solution of I equals that of I � minus
|V| · b, where |V| is the number of vertices. For example, in Fig. 3.4, if we set the
weights of the four vertices (i.e., v1, v2, v3 and v4) to 3, which is the biggest edge weight,
the MHP instance I becomes a DSA instance I �. The minimum Hamilton path can be
obtained by solving the DSA instance, which is shown in Fig. 3.4 with red color. The
total weight of the minimum Hamilton path is 5, which is obtained by subtracting 12
from the solution of I �. Therefore, we prove that the DSA problem is also NP-hard.

Figure 3.4: Example on reducing MHP to DSA in polynomial time.

To analyze the inapproximability of DSA, we first introduce the inapproximability
result on the chromatic number χ(G) of a graph G(V, E). Given a polynomial-time
algorithm A to compute the chromatic number of a graph G, we use A(G) to denote
the chromatic number obtained by A. The inapproximability of χ(G) is given by the
following statement:

Unless NP ⊂ ZPP , no polynomial-time algorithm A that computes the chromatic

number of G can guarantee
A(G)

χ(G)
within O(|V|1−�) for an arbitrary graph G, where

|V| is the number of vertices in G and � > 0 [24].
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Then, we have Theorem 3.3.2.
Theorem 3.3.2. Unless NP ⊂ ZPP , no polynomial-time heuristic algorithm APX for DSA

can guarantee
APX(I)

OPT(I)
within O(|V|1−�) for all the instances I of DSA, where APX(I)

denotes the MUFI obtained by APX, OPT(I) denotes the optimal result, |V| is the number of
vertices in I and � > 0.

Proof. For an arbitrary graph G(V, E), we can reduce G to a DSA instance I in polyno-
mial time by setting the weights of all the vertices and edges as one. Here, we denote
this reduction as R, i.e., R(G) = I . According to Theorem 3.4.2, which will be given in
the next section, OPT(R(G)) < 2χ(G). Therefore, if we assume that APX can ensure
APX(I)

OPT(I)
< O(|V|1−�) for an arbitrary DSA instance I ,

APX(R(G))

OPT(R(G))
< O(|V|1−�)

would be valid for an arbitrary graph G. Hence,
APX(R(G))

2χ(G)
<

APX(R(G))

OPT(R(G))
<

O(|V|1−�) would be valid for an arbitrary graph G, which means that APX(R(G))
can guarantee a ratio within O(|V|1−�) for χ(G). This, however, contradicts with the
inapproximability of χ(G). Thus, we get the proof.

3.4 Upper and Lower Bounds of DSA’s Optimal Solution

In this section, we analyze the upper and lower bounds of DSA’s optimal solution. For
ease of discussion, we first introduce some terminologies and definitions.

• Maximal clique ψ and Maximal clique set Ψ: In a graph G(V, E), a clique ψ(Vψ, Eψ)
is a maximal clique if and only if there is no clique ψ� ⊆ G and ψ � ψ�. We use
Ψ(G) to denote the set of maximal cliques in G. In the example in Fig. 3.5, there
are three maximal cliques ψ1, ψ2 and ψ3, and thus Ψ(G) = {ψ1, ψ2, ψ3}.

• C(G): The condensation graph of a DSA conflict graph G(V, E, {vw
i }, {dvivj

}). For
the conflict graph, the vertex set V can be partitioned into χ(G) independent sets.
We merge the vertices in the same set as a single super-vertex and assign the
maximum weight of the vertices in the set as the weight of the super-vertex. Then,
each super-vertex pair in the new graph might have multiple edges. Among these
edges, we only keep the one with the biggest weight and remove the others. Fi-
nally, we obtain the condensation graph of G.

• VC(G): Set of the vertices in C(G) and |VC(G)| = χ(C).

• EC(G): Set of the edges in C(G).

• v�i and v�wi : v�i ∈ VC(G) is the vertex with the i-th biggest weight and v�wi is its
weight.

• wv�i
, v�bi and v�ai : Their definitions are similar as those of wvi

, vb
i and va

i .

• e�i and de�i
: e�i ∈ EC(G) is the edge with the i-th biggest weight and de�i

is its weight.
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Figure 3.5: Maximal clique ψ and maximal clique set Ψ(G).

To study the feature of DSA’s optimal solution, we start with the bipartite graphs
whose chromatic number χ(G) is 2. Then, we continue to investigate the connection
between the optimal solution and χ(G) of a DSA conflict graph. Firstly, we give an
obvious fact, which is needed in later proofs.
Fact 3.4.1. Given a DSA conflict graph G(V, E), if there is a solution whose MUFI equals
max

vivj∈E
(dvivj

+ vw
i + vw

j ), then it is an optimal one.

Proof. Due to the spectrum set distance constraint, the MUFI cannot be less than dvivj
+

vw
i + vw

j for any vivj ∈ E. Hence, if a solution reaches this lower bound, it is optimal.

We use opt(G) to represent an optimal solution of a DSA conflict graph G, and
|opt(G)| to denote the numerical value of the optimal solution, i.e., the optimal MUFI.
A proper spectrum assignment means that we assign FS sets to the vertices under the four
constraints of the DSA problem.
Theorem 3.4.1. If a DSA conflict graph G(V, E) is a bipartite graph (as shown in Fig. 3.6),
where V = (V1, V2) with vi ∈ V1, 1 ≤ i ≤ |V1| and uj ∈ V2, 1 ≤ j ≤ |V2|, we have
|opt(G)| = max

viuj∈E
{dviuj

+ vw
i + uw

j }.

Proof. Based on Fact 3.4.1, we just need to find a proper spectrum assignment for all
the vertices in G(V, E) whose MUFI equals dviuj

+ vw
i + uw

j for certain edge viuj ∈ E.

For each vi ∈ V1, we assign the FS set wvi
with vb

i = 1, va
i = vw

i . For vertex uj ∈ V2,
we assign the FS set wuj

with ub
j = max

viuj∈E
{va

i + dviuj
+ 1} and ua

j = ub
j + uw

j − 1. Because

vertices in the same side of the bipartite graph are not adjacent, we can simply verify
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Figure 3.6: Bipartite DSA graph G(V, E), V = (V1, V2).

that the aforementioned spectrum assignment is proper. Hence, we can see that the
final MUFI equals max

viuj∈E
{dviuj

+ vw
i + uw

j }. Hence, we finish the proof.

Corollary 3.4.1. If a DSA conflict graph G(V, E) is of such topological structure as tree, even
ring or grid, we have |opt(G)| = max

vivj∈E
{dvivj

+ vw
i + vw

j }.

Proof. Since tree, even ring and grid are bipartite graphs, the proof is trivial based on
Theorem 3.4.1.

Based on the analysis above, we can see that the optimal solution for a DSA conflict
graph G with χ(G) = 2 can be obtained easily. Next, the question is how about the
conflict graph with χ(G) ≥ 3. Apparently, the analysis becomes more difficult for a
larger chromatic number. But fortunately, we can get the upper and lower bounds for
|opt(G)| by leveraging χ(G) and the maximal clique ψ. We use MHP(ψ) to represent
a minimum Hamilton path in a clique ψ, |MHP(ψ)| to represent its length, and ψw to
denote the total weight of the vertices in ψ, i.e., ψw = ∑

vi∈Vψ

vw
i .

Theorem 3.4.2. Given an arbitrary conflict graph G, the inequality in Eq. (3.11) holds for the
optimal solution of the DSA problem.

max
ψ∈Ψ(G)

{|MHP(ψ)|+ ψw} ≤ |opt(G)| ≤
χ(G)−1

∑
i=1

de�i
+

χ(G)

∑
i=1

v�wi . (3.11)
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Figure 3.7: A proper spectrum assignment for C(G).

Proof. Firstly, we prove |opt(G)| ≤
χ(G)−1

∑
i=1

de�i
+

χ(G)

∑
i=1

v�wi . To achieve this inequality, we

just need to find proper spectrum assignments for all the vertices in G(V, E) and the

MUFI would not be bigger than
χ(G)−1

∑
i=1

de�i
+

χ(G)

∑
i=1

v�wi . Hence, we can first treat C(G) as

a conflict graph and find a proper spectrum assignment P∗ for C(G). Since each super-
vertex v�i ∈ VC(G) represents an independent set of G (i.e., its weight is the maximum
weight of the vertices in the independent set of G and edge v�iv

�
j ∈ EC(G) is the largest-

weighted edge between the independent sets represented by v�i and v�j), we can utilize
P∗ to find a proper spectrum assignment for G by packing the vertices in v�i into the
FS set wv�i

(as shown in the example in Fig. 3.7). Therefore, if the MUFI of P∗ does

not exceed
χ(G)−1

∑
i=1

de�i
+

χ(G)

∑
i=1

v�wi , we prove the inequality. Here, the solution P∗ can be

obtained with Algorithm 3.1. In Algorithm 3.1, we start from an arbitrary vertex in C(G),
e.g., v�i1 , and get the FS set wv�i1

by setting v
�b
i1

= 1, v
�a
i1

= v
�w
i1

. We select the largest-

weighted incident edge of v�i1 , e.g., e��1 = v�i1 v�i2 , and the corresponding adjacent vertex
v�i2 is chosen as the next vertex. Then, we assign wv�i2

by setting v
�b
i2

= v
�a
i1
+ de��1

+ 1,

v
�a
i2
= v

�b
i2
+ v

�w
i2
− 1. After that, we select the largest-weighted incident edge of v�i2 to a

vertex whose FS set has not been assigned. The same procedure is repeated until all the
vertices in C(G) are assigned with FS sets, and it terminates in χ(G)− 1 steps.

The assignment P∗ satisfies all the constraints in DSA, since we select the largest-
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Algorithm 3.1: Process Get P∗

Input : C(G)
Output: A proper spectrum assignment P∗ for C(G)

1 P∗ ← ∅;
2 V �

C ← Random Select v�i1 ; % Let v�i1 be Current Vertex
3 V �w

C ← v�wi1 ;
4 V �b

C ← 1;
5 V �a

C ← V �w
C ;

6 P∗ ← P∗ ∪ [V �b
C , V �a

C ];
7 mark V �

C visited;
8 while C(G) still has unvisited vertices do
9 search the vertex v� which is the farthest neighbour of V �

C among the
unvisited vertices in C(G);

10 set e�� as the edge linking v� and V �
C;

11 V �
N ← v�; % Let v� be Next Vertex

12 V �w
N ← v�w;

13 V �b
N ← V �a

C + de�� + 1;
14 V �a

N ← V �b
C + V �w

N − 1;
15 P∗ ← P∗ ∪ [V �b

N , V �a
N ];

16 V �
C ← V �

N ;
17 mark V �

C visited;
18 end
19 return P∗

weighted incident edge in each step. Hence, P∗ is a proper spectrum assignment, and

the MUFI of P∗ equals
χ(G)−1

∑
i=1

de��i
+

χ(G)

∑
i=1

v�wi ≤
χ(G)−1

∑
i=1

de�i
+

χ(G)

∑
i=1

v�wi .

Next, we prove the left side. As a maximal clique ψ is a subgraph of G, we have
|opt(ψ)| ≤ |opt(G)|. Hence, we just need to prove |MHP(ψ)|+ ψw ≤ |opt(ψ)| for any
ψ. If we assume that P(ψ) is an optimal proper spectrum assignment for ψ, the FS sets
assigned to all the vertices would be mutually disjoint since ψ is a complete subgraph.
The distance between any two FS sets in P(ψ) would not be smaller than the weight of
the edge connecting the two vertices. Hence, the value of solution P(ψ) would not be
smaller than the length of the minimum Hamilton path plus the total weight of all the
vertices, i.e., |MHP(ψ)|+ ψw ≤ |P(ψ)| = |opt(ψ)| and the proof follows.

In general, it is known that calculating the chromatic number of a graph is extremely
difficult. Hence, we provide a more practical method to calculate the bounds. For a
graph G, we have χ(G) ≤ ∆(G) + 1 according to the Brook’s theorem [13], where ∆(G)
is the maximum degree of G. With a DSA conflict graph G(V, E, {vw

i }, {dvivj
}), we sort

the edges and vertices in G in the descending order of their weights, respectively. To
avoid confusion, we rename the sorted edges and vertices by denoting the i-th largest-
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weighted edge as es
i and the vertex with the i-th biggest weight as vs

i , i.e., des
i
≥ des

j
, vsw

i ≥

vsw

j , ∀i < j, es
i , es

j ∈ E, vs
i , vs

j ∈ V. Then, we have the following corollary.

Corollary 3.4.2. If G(V, E, {vsw

i }, {des
i
}) is a DSA conflict graph, we have |opt(G)| ≤

∆(G)

∑
i=1

des
i
+

∆(G)+1

∑
i=1

vsw

i .

Proof. Based on the construction procedure of C(G) and the Brook’s Theorem, we have
χ(G)−1

∑
i=1

de�i
+

χ(G)

∑
i=1

v�wi ≤
χ(G)−1

∑
i=1

des
i
+

χ(G)

∑
i=1

vsw

i ≤
∆(G)

∑
i=1

des
i
+

∆(G)+1

∑
i=1

vsw

i . Then, with Theorem

3.4.2, we can verify the proof.

In order to make a fast estimation for the bounds of the DSA’s optimal solution,
we can say that the MUFI would not exceed the total weight of ∆(G) largest-weighted
edges plus the total weight of ∆(G) + 1 largest-weighted vertices in G.
Corollary 3.4.3. The two bounds obtained in Theorem 3.4.2 are tight.

Proof. χ(G) and ψ are vital for the two bounds. If G(V, E) is a perfect graph 2, then
the two bounds can converge under certain conditions. For instance, bipartite graphs
are perfect graphs. For a bipartite graph G(V, E), each ψ(G) just contains one edge.
As a result, the lower bound max

ψ∈Ψ(G)
{|MHP(ψ)|+ ψw} becomes max

viuj∈E
{dviuj

+ vw
i + uw

j }.

In this case, |opt(G)| reaches this lower bound according to Theorem 3.4.1. Moreover,
when χ(G) = 2, the upper bound equals max

e∈E
(de)+ max

∀vi ,∀uj

{vw
i + uw

j }. When vw
i and uw

j

are the weights of two adjacent largest-weighted vertices and dviuj
is also the maximum

weight of the edges, the upper bound equals the lower bound. Hence, the two bounds
are tight.

3.5 Ordered Distance Spectrum Assignment (ODSA)

In order to solve DSA efficiently, we simplify it to an ordered DSA (ODSA) problem,
which we will prove that can be solved optimally in polynomial time. Basically, ODSA
bears the same objective and constraints of DSA, and besides, it imposes a new ver-
tex order constraint as follows. The vertices should be ordered such that the start-FS
indices of vertices are in the ascending order, i.e.,

Oi = (vi1 , vi2 , ..., vin
) : vb

ij
≥ vb

ik
, ∀j > k (3.12)

2A graph G is perfect if χ(G) = max
ψ∈Ψ

|ψ(G)| [13].
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With the ordered vertices, ODSA becomes a much easier problem than DSA. We
formulate the ILP model for ODSA:

Minimize y (ILP-ODSA),

s.t. Eqs. (3.14)-(3.18).
(3.13)

xa
ij
− xb

ij
+ 1 = vw

ij
, ∀1 ≤ j ≤ |V| (3.14)

xb
ij
− xa

ik
≥ dvij

vik
+ 1, ∀j > k, vij

vik
∈ E (3.15)

xb
ij
≥ xb

ik
, ∀j > k (3.16)

y ≥ xa
ij
, ∀1 ≤ j ≤ |V| (3.17)

xa
ij
∈ N

+, xb
ij
∈ N

+, ∀1 ≤ j ≤ |V| (3.18)

Then, we design a polynomial-time algorithm (O-L) to solve ODSA optimally, and
its procedure is shown in Algorithm 3.2.

Algorithm 3.2: Procedure of O-L
Input : A DSA graph G(V, E, {vw

i }, {dvivj
}), and a vertex order

Oi = (vi1 , vi2 , ..., vin
)

Output: An assignment strategy for the star-index Seq = {vb
ij

: 1 ≤ j ≤ |V|}

and the MUFI
1 vb

i1
← 1;

2 va
i1
← vw

i1
;

3 Seq ← vb
i1

;
4 j ← 2;
5 while j ≤ |V| do
6 s1 ← max

∀k<j,vik
vij

∈E
{va

ik
+ dvik

vij
+ 1};

7 s2 ← vb
ij−1

;

8 vb
ij
← max{s1, s2};

9 va
ij
← vb

ij
+ vw

ij
− 1;

10 Seq ← Seq ∪ {vb
ij
};

11 j ← j + 1;
12 end
13 return Seq and max

1≤j≤|V|
(va

ij
)

The main idea of Algorithm 3.2 is to assign the FS sets to vertices in sequence ac-
cording to the pre-defined order such that vb

ij
takes the smallest possible value to satisfy

all the constraints of ODSA. We begin with vertex vi1 , and set its start-FS index vb
i1

as
1 and its end-FS index according to its bandwidth demand, i.e., va

i1
= vw

i1
. Then, vb

i1
is added to the spectrum assignment scheme Seq. For each vertex vij

, we use s1 to
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denote the smallest index permitting to keep enough guard-bands from the adjacent
vertices of vij

that have already been assigned FS sets, and use s2 = vb
ij−1

to satisfy the
order constraint. Then, the start-index of vij

is max{s1, s2}, and the end-index equals
max{s1, s2} + vw

ij
− 1. The procedure terminates when all the vertices have been as-

signed FS sets. The time complexity of Algorithm 3.2 is O(|E|).
Theorem 3.5.1. Algorithm 3.2 obtains an optimal FS assignment scheme for ODSA.

Proof. Firstly, it is easy to verify that the spectrum assignment scheme in Seq is a feasible
solution for ODSA, since all the constraints are satisfied. Then, we prove that Seq indi-
cates an optimal ODSA solution by contradiction. If Seq is not optimal, opt = {vbopt

ij
:

1 ≤ j ≤ |V|} would be the optimal start-index arrangement for ODSA and opt �= Seq.
Let j be the index of the first vertex such that vbopt

ij
�= vb

ij
( ∵ vbopt

i1
= vb

i1
= 1 ⇒ j ≥ 2

). Then, with the greedy strategy, we have vbopt

ij
> vb

ij
. For j + 1, let F opt

j+1 and Fj+1

be the feasible region for vbopt

ij+1
and vb

ij+1
in ILP-ODSA (cf., Eq. (3.13)), respectively. The

other constraints are the same for vbopt

ij+1
and vb

ij+1
except for Eq. (3.16), i.e., vbopt

ij+1
≥ vbopt

ij

and vb
ij+1

≥ vb
ij
. As vbopt

ij
> vb

ij
, the lower bound of Fj+1 denoted as ζ j+1 would not be

larger than that of F opt
j+1 denoted as ζ

opt
j+1. Since we can get vb

ij+1
= ζ j+1 with the greedy

strategy of Algorithm 3.2, we have vbopt

ij+1
≥ ζ

opt
j+1 ≥ ζ j+1 = vb

ij+1
. By induction, we have

vbopt

ik
≥ vb

ik
, where k is within [j, |V|]. Therefore, we prove that the MUFI of ODSA under

opt arrangement would not be smaller than that is provided by Seq, which causes the
contradiction. Then, we finish the proof.

Corollary 3.5.1. A DSA problem can be solved optimally with Algorithm 3.2 under certain
vertex order.

Proof. If opt is an optimal solution for a DSA problem, there has to be an order Oopt

among the start-FS indices of opt. Therefore, the optimal solution for ODSA with vertex
order Oopt equals that of the DSA problem. With Theorem 3.5.1, we prove that Algorithm
3.2 can get the optimal solution for the DSA problem under the order Oopt.

Now, we can see that it would be vital to determine the optimal vertex order. Note
that, in the analysis above, we actually have already transformed the DSA problem into
the Permutation-based Optimization Problem (POP). POP is a classical combinational
optimization [68]: Let S be a set of n elements, Σ be the permutation space that consists
of n! permutations over S, and f (·) be an estimation function for any σ ∈ Σ. The
objective of POP is to optimize f (·) over Σ.

σ∗ = arg min
σ∈Σ

f (σ). (3.19)

For the DSA problem, S is vertex set V, Σ is the whole |V|! vertex orders and we
can utilize Algorithm 3.2 as our estimation function. In the next section, we will get an
initial vertex order with a heuristic algorithm and then improve the vertex order with
the Nested Partitions Method (NPM) [58].
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3.6 Time-Efficient Approximation Algorithm for DSA

For any DSA problem, if the vertex order (i.e., in the ascending order of the start-FS
index) in the optimal solution is known beforehand, then it can be transformed into an
ODSA problem and solved optimally by Algorithm 3.2 in polynomial time. Inspired by
this, we develop a two-phase algorithm to solve DSA. Specifically, in the first phase,
we use a greedy strategy to generate an initial vertex order, and then the second phase
utilizes NPM to improve the initial order.

3.6.1 First Phase Greedy Algorithm (FPGA)

For a DSA conflict graph G(V, E, {vw
i }, {dvivj

}), we can get the initial vertex order with
the following procedure. Firstly, we start from any vertex vi ∈ V, and find the FS set
for vi with a greedy strategy, i.e., vb

i = 1 and va
i = vw

i . Meanwhile, we set a variable
Oi to record the order of vertices according to the assigned FS sets. Hence, Oi takes vi

as the first element. Then, we find the vertex vj from the vertices that are not yet in Oi

to ensure that vb
j is the minimum to satisfy the constraints of DSA for all the vertices

that are in Oi. We insert this vj into Oi and assign the corresponding FS set to it. The
same procedure is repeated until all the vertices have been included into Oi. After |V|
while-loops, |V| vertex orders {O1, O2, ..., O|V|} have been generated and we choose
the one that results in the minimum MUFI as our initial order. Algorithm 3.3 gives the
procedure of the proposed First Phase Greedy Algorithm (FPGA). In Lines 1-3, starting
from j = 1, we initialize Oj as ∅ and use sj to record the current MUFI used in Oj,
whose initial value is 0. Then, in Lines 4-20, with the |V| while loops, we generate |V|
vertex orders. As mentioned above, Lines 5-8 let vj be added into Oj, assign the FS set
to it, and update sj as sj = vw

j . In the for-loop covering Lines 9-20, we organize the
remaining vertices for Oj one by one using the aforementioned greedy strategy. Finally,
we select the vertex order that results in the minimum MUFI. We can see that there are
three cascading loops in Algorithm 3.3, and thus its time complex is O(|V|3 · ∆), where
|V| is the number of vertices and ∆ is the maximum degree of G.

After getting the initial vertex order O∗ and initial MUFI value s∗, we utilize NPM
to improve the initial solution. In the next subsection, we will provide the details of
NPM and our two-phase algorithm.

3.6.2 Two-phase Algorithm

The NPM method was proposed in [58] to leverage a general random method to solve
global optimization problems, which includes POP. Specifically, we consider the fol-
lowing problem

θ∗ = arg min
θ∈Θ

f (θ), (3.20)

where Θ is the entire solution space and f (·) : Θ → R is the objective function. Firstly,
NPM gives a partitioning scheme to partition Θ systematically, and then it uses a iterative
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Algorithm 3.3: Procedure of FPGA
Input : G(V, E, {vw

i }, {dvivj
})

Output: An initial vertex order and an initial MUFI
1 j ← 1;
2 Oj ← ∅; % initialize vertex order O1

3 sj ← 0; % record the MUFI of O1

4 while j ≤ |V| do
5 Oj ← Oj ∪ {vj};
6 vb

j ← 1;
7 va

j ← vw
j ;

8 sj ← vw
j ;

9 for i = 2 : |V| do
10 v ← ∅; % v is the next vertex entering Oj

11 vb ← B; % B is large enough
12 vw ← 0;
13 for k = 1 : |V| do
14 if vk /∈ Oj then
15 vb

k ← max
∀vl∈Oj,vkvl∈E

{va
l + dvkvl

+ 1};

16 if vb
k < vb then

17 v ← vk; vb ← vb
k; vw ← vw

k ;
18 end
19 end
20 end
21 Oj ← Oj ∪ {v};
22 va ← vb + vw − 1;
23 sj ← max{sj, va};
24 end
25 j ← j + 1; Oj ← ∅; sj ← 0;
26 end
27 O∗ = argmin

Oj
1 ≤ j ≤ |V|

sj; s∗ = argmin
sj

1 ≤ j ≤ |V|

sj;

approach to optimize f (·). In each iteration, NPM operates on a solution space η, which
is a subset of Θ from the partitioning scheme and is named as the most promising region.
Then, according to the partitioning scheme, we divide the most promising region η into
M(η) disjoint subregions, and we call Θ\η surrounding region. Note that, if the partition
scheme obtains a region, then we say the region is valid, and if a valid region σ is formed
by partitioning a valid region η, then σ is a subregion of η and η is called the superregion
of σ. Therefore, η is divided into M(η) disjoint subregions. Next, each of the M(η) sub-
regions and the surrounding region are sampled by a random sampling scheme and we
use the objective function to evaluate the samples and calculate the promising index for
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each subregion. If the promising index of a subregion among the M(η) subregions of η

turns to be the best one, we set this subregion as the most promising region in the next
iteration. If the surrounding region is proven to be the best, the method will backtrack
to another region to be the next most promising region (e.g., a region that contains the
previous most promising region or a subregion of Θ that contains the best sample). The
most promising region is then partitioned and sampled with the procedure discussed
above.

For DSA, the entire solution space Θ is the |V|! vertex orders and the objective func-
tion is Algorithm 3.2. In the second phase of the time-efficient approximation algorithm
for DSA, the partitioning scheme is as follows: we first divide Θ into n disjoint sub-
regions by choosing v1, v2, ..., v|V| as the first vertex in the ordered vertices, and then
each of the |V| subregions is divided into |V| − 1 subregions by selecting the second
vertex and so on so forth. Fig. 3.8 provides an illustrative example on the partitioning
scheme for DSA. The random sampling scheme samples the surrounding region and
each subregion uniformly and the most promising region will backtrack to the least
supperregion if the promising index in the surrounding region is the best. The vertex
order O∗ obtained by Algorithm 3.3 is the original most promising region.

Figure 3.8: Example on the partitioning scheme for DSA.

3.7 Algorithm Analysis

In this section, we analyze the performance of the two-phase algorithm, which is com-
posited by Algorithm 3.3 (i.e., an approximation algorithm) and NPM (i.e., a random
optimization algorithm). For Algorithm 3.3, as DSA is intractable according to Theorem
3.3.2, we focus the analysis on some specific graph types, e.g., complete graphs and
bipartite graphs. For NPM, we provide two of its key properties, i.e., the convergence
performance and the number of expected iterations.
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3.7.1 Approximate Ratio of FPGA in Special Graphs

Complete Graph with Triangle Inequality

If a DSA conflict graph G(V, E) is a complete graph, the FS sets assigned to the vertices
must be pairwise disjoint. Hence, to satisfy the bandwidth requirement and spectrum
contiguity constraints, the union of the FS sets assigned to the vertices has a fixed cardi-

nality, denoted as Vw =
n

∑
i=1

vw
i . Consequently, the optimization objective in this case is

equivalent to minimize the sizes of the guard-band between any two spectrally adjacent
FS sets under the spectrum set distance constraint.

An algorithm, called Nearest Neighbor (NN) to solve MHP, can guarantee an approx-
imate ratio for complete conflict graphs that satisfy the triangle inequality. Algorithm
3.4 shows the procedure of NN.

Algorithm 3.4: Procedure of NN
Input : G(V, E), vi, {dvivj

}
Output: A Hamilton path P

1 set CurrentVertex ← vi;
2 mark vi visited;
3 while G still has unvisited vertices do
4 find vertex v which is the nearest neighbor to CurrentVertex among all the

unvisited vertices in G;
5 CurrentVertex ← v;
6 mark CurrentVertex visited;
7 P ← P ∪ {v};
8 end
9 return P

Let |NN(G)| denote the length of the Hamilton path produced by Algorithm 3.4
and |MHP(G)| denote the length of the minimum Hamilton path. Then according

to [11, 39], we have the approximate ratio
|NN(G)|

|MHP(G)|
≤

1
2
(�log2(|V|)� + 1). For a

complete DSA conflict graph G(V, E, {vw
i }, {dvivj

}) that satisfies the triangle inequality,
we apply Algorithm 3.3 to G. Note that, the while-loop in Algorithm 3.3 obtains a vertex
order Oj in the j-th iteration. There is a proper spectrum assignment induced by Oj,
which in fact represents a Hamilton path in G. Then, we have Lemma 3.7.1.
Lemma 3.7.1. If the conflict graph G is a complete graph that satisfies the triangular inequality,
the Hamilton path induced by the order Oj from Algorithm 3.3 is equivalent to the result from
Algorithm 3.4 with input vj.

Proof. We assume that the order Oj obtained in the j-th while-loop of Algorithm 3.3 is
(vj1 , vj2 , ..., vjn), where vj1 = vj. At first we have |Oj| = 1, which means that only vj1 is
included in order Oj. Then, with the greedy strategy of Algorithm 3.3, vj2 is the nearest
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neighbor to vj1 in G. Supposing this inference is true when |Oj| = k, where k < |V|,
we assert vjk+1 is the nearest neighbor of vjk among those vertices that are not yet in Oj.
After we have included the first k vertices in Oj, the innermost for-loop of Algorithm
3.3 searches the (k + 1)-th vertex i.e., vjk+1 , whose FS start-index is the smallest among
those unordered vertices. We use vl to denote the nearest neighbor of vjk among all
the unordered vertices. Since the triangle inequality is held, the spectrum set distance
constraint for vjk+1 only comes from vjk , i.e., vb

jk+1
= va

jk
+ dvjk

vjk+1
+ 1. As dvjk

vl
is the

smallest guard-band size, vb
jk+1

= va
jk
+ dvjk

vl
+ 1 reaches the minimum. Therefore, using

the greedy strategy, we can get vjk+1 = vl and the proof is verified.

In fact, we select the minimum one from {O1, O2, ..., On} after |V| while-loops in Al-
gorithm 3.3. Let |FPGA(G)| be the finial output value and |opt(G)| be the optimal value
for a DSA conflict graph G. Then, according to Lemma 3.7.1 and the analysis above,
|FPGA(G)|− Vw and |opt(G)|− Vw are the length of the Hamilton path produced by
Algorithm 3.4 and |MHP(G)| respectively. Then, we get the following theorem.
Theorem 3.7.1. If G(V, E, {vw

i }, {dvivj
}) is a complete DSA conflict graph that satisfies the

triangle inequality, the approximate ratio of Algorithm 3.3 would not be larger than
1
2
(�log2(|V|)�

+1).3

Proof. According to the analysis above, we have
|FPGA(G)|− Vw

|opt(G)|− Vw
≤

1
2
(�log2(|V|)�+

1). As |FPGA(G)| ≥ |opt(G)|, we have
|FPGA(G)|

|opt(G)|
≤

|FPGA(G)|− Vw

|opt(G)|− Vw
≤

1
2
(�log2(|V|)�

+1).

Bipartite Graphs

Then, we consider the case in which the DSA conflict graph is a bipartite graph. Before
the analysis, we introduce the following definition.
Definition 3.7.1. For a bipartite graph G(V1, V2), V1 and V2 are the two parts of the vertices in
G. We call its vertex labeling is good if the vertices are labeled in the way that the vertices in
V1 are labeled as the first |V1| ones, i.e., {v1, v2, ..., v|V1|} = V1, and apparently, the remaining
vertices are all in V2 and labeled as {v|V1|+1, v|V1|+2, ..., v|V|} = V2. For a bipartite graph
G(V1, V2), the time needed to get a good vertex labeling is O(|E|).
Theorem 3.7.2. If a DSA conflict graph G(V, E, {vw

i }, {dvivj
}) is a bipartite graph and we

label its vertices in a good way, Algorithm 3.3 can get the optimal solution for DSA.

Proof. Let V1 and V2 be the two parts of a bipartite V. According to Algorithm 3.3 and
Theorem 3.4.1, we just need to prove the MUFI obtained with order O1 in Algorithm 3.3
equals max

vivj∈E
{dvivj

+ vw
i + vw

j }. After v1 has entered O1, since V1 is an independent set,

Algorithm 3.3 includes vertices v2, ..., v|V1| in O1 in sequence and vb
i = 1, 1 ≤ i ≤ |V1|.

3Actually, for this special case, Double Minimum Spanning Tree algorithm [54] of MHP can be utilized
for DSA, which can guarantee a 2-approximation ratio with the similar proof of Theorem 3.7.1.
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Also, because V2 is an independent set, vb
i = max

∀vj∈V1,vivj∈E
{va

j + dvivj
+ 1}, |V1| + 1 ≤

i ≤ |V|. Therefore, considering the four constraints of DSA, we get the MUFI of O1 as
max
vivj∈E

{dvivj
+ vw

i + vw
j }.

3.7.2 Convergence Performance and Expected Number of Iterations of Two-
phase Algorithm

Convergence Performance

For Algorithm 3.3, we assume that the partitioning scheme has been defined and let
Σ denote the set of all the valid regions, where σ(0) is the initial region state, i.e., the
initial vertex order that is obtained, and σ(k) ∈ Σ is the region state of the k-th iteration.
Then, {σ(k)}∞

k=0 is the iteration sequence and the region state σ(k + 1) depends on the
estimated values of the promising index in the state σ(k), which is related with the
sampling points. Therefore, {σ(k)}∞

k=0 is a Markov chain with state space Σ, and we
have Theorem 3.7.3 according to [58].
Theorem 3.7.3. η ∈ Σ is an absorbing state of the Markov chain {σ(k)}∞

k=0, if and only if η

is the optimal vertex order for DSA.

Proof. Firstly, we prove the “if" part and use Algorithm 3.2 as the object function f (·) to
evaluate the promising index of a region. If we assume that η is the optimal vertex order
for DSA, then the transition probability of staying in η is: Pηη = P[ f (η) ≤ f (Θ\η)] = 1.
Hence, η is an absorbing state. Next, we prove the reverse. Supposing ξ is an absorbing
state and ξ does not represent the optimal order for DSA, the transition probability of
not staying in ξ is: PξΘ\ξ = P[ f (ξ) > f (Θ\ξ)] ≥ P[randomly select a point θ in Θ\ξ and
f (θ) < f (ξ)] > 0. This inequality reveals that ξ is a transient state, which leads to a
contradiction. Therefore, we finish the proof.

According to Theorem 3.7.3, the Markov chain will eventually converge to an opti-
mal vertex order and stay there forever. Since the transient states are finite, we can see
that the Markov chain would reach an optimal vertex order within finite time.

Expected Number of Iterations

The expected number of iterations to reach the optimal vertex order directly impacts
the time-efficiency of our two-phase algorithm. To evaluate the expected number of
iterations, we need to introduce several random variables and symbols [59]. We use
Σ to represent the state space, σopt to represent the optimal solution regions, i.e., the
optimal vertex order. We define Σ1 = {η ∈ Σ\{σopt}|σopt ∈ η}, i.e., the valid regions
that include σopt and Σ2 = {η ∈ Σ\{σopt}|σopt /∈ η}, i.e., the valid regions that do not
include σopt. Then, we have Σ = {σopt} ∪ Σ1 ∪ Σ2. We use Yη to denote the number of
visits of a state η ∈ Σ and use Tη to represent its hitting time (the first time of visiting
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this state). Besides, we denote the probability of an event under constraint that the
chain starts in a state η ∈ Σ as Pη [event].

According to [59], the number of iterations for the Markov chain to reach an absorb-
ing state Y equals the number of iterations to visit all the transient states plus one (i.e.,
the transition to the absorbing state), which is Y = 1 + ∑

η∈Σ1

Yη + ∑
η∈Σ2

Yη . As Σ is finite,

we get the expected number of iterations as

E[Y] = 1 + ∑
η∈Σ1

E[Yη ] + ∑
η∈Σ2

E[Yη ]. (3.21)

Theorem 3.7.4. Let σ(0) be the initial vertex order provided by Algorithm 3.3. The expected
number of iterations for our two-phase algorithm to get the optimal solution for DSA is

E[Y] = 1 + ∑
η∈Σ1

1
Pη [Tσopt < Tη ]

+ ∑
η∈Σ1

Pσ(0)[Tη < min{Tσ(0), Tσopt}]

Pη [Tσ(0) < Tη ] · Pσ(0)[Tσopt < min{Tσ(0), Tη}]
.

(3.22)

Proof. As given in [58], the expected number of visits to the transient states is

E[Yη ] =







1
Pη [Tσopt < Tη ]

, η ∈ Σ1,

Pσ(0)[Tη < min{Tσ(0), Tσopt}]

Pη [Tσ(0) < Tη ] · Pσ(0)[Tσopt < min{Tσ(0), Tη}]
, η ∈ Σ2.

(3.23)

By substituting Eq. (3.23) in Eq. (3.21), we finish the proof.

In each iteration, we at most take n sampling points in the n valid regions. Each
sampling and calculating of the promising index will use the Procedure O-L whose time
complexity is O(|E|). Therefore, the expected time complexity for the second phase is
O(|V| · |E| · E(Y)).

Although we have Theorem 3.7.4, calculating the expected number is still tough.
Hence, we leverage the approximation stochastic model in [59]. Specifically, in each
iteration, if the promising index of the surrounding region is the best, we backtrack to
the entire solution space Θ. Let P0 be the the probability of the two-phase algorithm
moving towards the correct direction, i.e., backtracking if the optimal solution is not in
the current most promising region and selecting the correct subregion otherwise. Then,
we have Theorem 3.7.5.
Theorem 3.7.5. Assuming the above approximation stochastic model is held, the expected num-
ber of iterations for two-phase algorithm to find the optimal solution for DSA is

E(|Y|) =
1

Pn
0
(1 −

(1 − P0)n

n!
)− (

n−2

∑
d=0

(n − d)!
n!

·
(1 − P0)d

Pn−1
0

) + (
1

Pn−1
0

·
P0 − Pn

0
1 − P0

), (3.24)

where n = |V| is the number of vertices in G.
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Proof. Theorem 3.7.5 can be proved using the similar procedure that proves Theorem 2
in [59].

With the approximate expected number, we can set the stopping criteria to terminate
the two-phase algorithm under certain probability significance. We utilize the expected

number in Eq. (3.24) and apply the Markov inequality: P(|Y| ≥ ε) ≤
1
εα

E(|Y|)α to get

the upper bound of the number of iterations for finding the optimal solution for DSA.

3.8 Numerical Results

In this section, we evaluate the performance of our proposed two-phase algorithm. As
DSA is a new spectrum assignment model, there is no existing heuristic algorithm for
comparison. Hence, we applied Pure Random Algorithm (PRA) as the benchmark al-
gorithm, in which we randomly selected a vertex order at each iteration and calculate
the optimal solution for this vertex order by using Algorithm 3.2. The ILP model for
DSA was solved by MATLAB2015a with the CPLEX toolbox and the approximate solu-
tions from our two-phase algorithm and PRA were both obtained with MATLAB2015a
under the same number of iterations. We run 30 independent simulations on each con-
flict graph and average the results to ensure sufficient statistical accuracy. We set the
probability of moving in the correct direction as P0 = 0.5 in Eq. (3.24) and the signifi-
cance probability as 90%. All the simulations run on a computer with 3.2 GHz Intel(R)
Core(TM) i5-4690S CPU and 8 GBytes RAM.

3.8.1 Simulation Setup

We perform simulations in different scenarios:

• Random graphs: We use the NetworkX package [3] to generate random graphs,
in which each vertex pair is directly connected with a probability of 0.5, as DSA
conflict graphs. The weights of vertices and edges are randomly chosen within
[1, |V|]. Specifically, Fig. 3.9 shows the six random graphs that are used in the
simulations. They have |V| ∈ [14, 19]. Hence, we assessed the performance of
Algorithm 3.3 and our two-phase algorithm under the pure random conditions.

• Complete graphs with random weights: To reveal the effectiveness of the two-
phase algorithm, we also use complete conflict graphs with |V| ∈ [14, 19], whose
vertex and edge weights were also randomly chosen within [1, |V|], as the DSA
conflict graphs.

• Edge number: By intuition, the more edges or the larger the biggest guard-band
size that a conflict graph has, the bigger its MUFI is. Therefore, we apply the two-
phase algorithm on six random conflict graphs, each of which has 14 vertices and
the number of edges ranges within {15, 30, 45, 60, 75, 90} as shown in Fig. 3.10.
The vertex and edge weights are still chosen randomly as above.
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(a) 14-vertex (b) 15-vertex (c) 16-vertex

(d) 17-vertex (e) 18-vertex (f) 19-vertex

Figure 3.9: Six random graphs with 14-19 vertices.

(a) 15 edges (b) 30 edges (c) 45 edges

(d) 60 edges (e) 75 edges (f) 90 edges

Figure 3.10: Six random graphs with 14 vertices and 15-90 edges.
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• 14-node NSFNET and 28-node US Backbone: To mimic the realistic situations,
we run simulations on two practical EON topologies, i.e., the 14-node NSFNET
and the 28-node US Backbone [29]. Here, each lightpath request is randomly
generated and we use the shortest path to route it. The guard-band requirement
between two lightpaths is computed as the number of common links on their
routing paths. Following these principles, DSA conflict graphs are constructed
and we applied the two-phase algorithm to solve the DSA problems.

3.8.2 Simulation Results

Random Graphs

Table 3.3 presents the average MUFI computed by PRA, FPGA, two-phase and ILP-
DSA, respectively for the six random topologies in Fig. 3.9. The relative gaps (errors-
optimal ratios) with a 95% confidence interval are shown in Fig. 3.11. In Table 3.3,
both the initial solutions from FPGA and the improved solutions from the two-phase
algorithm are better than those from PRA under the same number of iterations. We also
observe that the solutions are truly improved in the second phase, since the MUFI from
the two-phase algorithm are closer to the optimal one obtained from FPGA, as shown
in Fig. 3.11. Another notable fact is that the results of Fig. 3.9(b) are better than those
in Fig. 3.9(a). We observe that there is a vertex with degree one in the topology of Fig.
3.9(b), which is different from Fig. 3.9(a). This fact implies that the topology does have
impact on the final MUFI.

Table 3.3: Numerical Results for Fig. 3.9

Fig. 3.9 (a) (b) (c) (d) (e) (f)
PRA 95.2 92.8 104. 128. 147. 160.

FPGA 75.4 75.3 77.4 96.5 101. 111.
Two-phase 72.7 72.5 75.5 91.0 99.4 110.
ILP-DSA 71.6 70.1 73.6 87.5 94.5 105.

Random Complete Graphs

Table 3.4 presents the average MUFI obtained in the six random complete graphs. The
relative gaps with a 95% confidence interval are shown in Fig. 3.12. We can observe
the similar trends as discussed above for random conflict graphs. Moreover, we can see
that both the relative gaps and the confidence intervals in complete graphs are smaller
than those in random graphs for two-phase, FPGA and PRA. This can be interpreted
as follows. In complete graphs, the FS set assigned to each vertex should be mutually
disjoint, which makes the optimal MUFI (computed by the ILP) bigger. While in ran-
dom graphs, the FS sets assigned to certain vertices could be overlapped, and hence
the optimal value of MUFI would be smaller. However, the overlapped FS sets make
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Figure 3.11: Relative gaps of Table 3.3 by Two-phase, FPGA and PRA.

it more difficult for the three algorithms to optimize the spectrum assignment, which
leads to smaller relative gaps and confidence intervals in complete graphs.

Table 3.4: Numerical Results for Random complete graphs

# vertices 14 15 16 17 18 19
PRA 169.0 194.1 238.7 259.1 283.3 297.3

FPGA 145.0 164.7 197.4 216.5 234.4 246.1
Two-phase 143.6 163.6 196.6 213.3 231.3 241.5
ILP-DSA 142.4 160.5 191.1 207.6 223.7 231.8

Edge number

Fig. 3.13 plots the simulation results on six random graphs in Fig. 3.10. The results
on MUFI from two-phase algorithm and ILP-DSA are marked as purple and blue bars
respectively, and the approximate ratio is plotted in red line. It can be seen that the
approximate ratio of the two-phase algorithm increases with the number of edges in
the conflict graph.

These results coincided well with the intuitive observation that the more edges or
the bigger edge weights that a graph has, the more spectrum resources that DSA would
consume. The feature also inspires us that a good routing algorithm should be used to
reduce the common links and thus further improve the quality of the results for DSA
in EONs.
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Figure 3.12: Relative gaps of Table 3.4 by Two-phase, FPGA and PRA.
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Figure 3.13: Numerical results for Edge number scenario.
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Table 3.5: Simulation Results for EONs with NSFNET and US Backbone Topologies

NSFNET

#
requests

ILP-
DSA

Two-
phase

PRA

US

#
requests

ILP-
DSA

Two-
phase

PRA

10 29 29 29

Backbone

10 33 33 33
20 72 72 76 30 186 189 197
30 153 153 177 50 351 363 462
40 200 201 252 100 — 1339 1898
50 420 423 500 150 — 2843 4666
60 — 469 602 200 — 3784 7743
70 — 598 805 250 — 6347 13020
80 — 890 1155 300 — 8140 17303

14-vertex NSFNET and the 28-vertex US Backbone

We evaluate the performance of two-phase algorithm with two practical EON topolo-
gies. In Table 3.5, we can see that ILP-DSA can only get the optimal solution when
the number of lightpaths is within 50. Meanwhile, our two-phase algorithm can obtain
almost the same solutions as ILP-DSA.

Based on all these observations, we can conclude that our proposed two-phase al-
gorithm can approximate the optimal solution for DSA well.

3.9 Conclusions

In this chapter, we studied the DSA problem in EONs. By reducing MHP and graph
coloring to DSA, we have proven that DSA is NP-hard and inapproximable. Then, we
analyzed and provided the upper and lower bounds for the optimal solutions of DSA,
and proved that they are tight. Next, by leveraging a vertex order and developing a
polynomial-time algorithm (i.e., Algorithm 3.2), we transformed DSA into POP. Then,
we developed a two-phase algorithm to solve DSA time-efficiently. For the first phase
(i.e., Algorithm 3.3) in the algorithm, we theoretically proved that its time complexity is
O(|V|3 · ∆), and it can get the optimal solution for bipartite conflict graphs and guar-
antee an approximate ratio of O(log(|V|)) for complete conflict graphs with triangle
inequality. The second phase utilized a random optimization algorithm, and we ap-
plied theoretical analysis to obtain the expected number of iterations for getting the
optimal solution. The numerical simulation results demonstrated that our two-phase
algorithm can find the near-optimal solutions for DSA in various conflict graphs.
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4.1 Introduction

In previous two chapters, we investigated the RSA problem in EONs from lightpath
routing to spectrum assignment. In this chapter, we turn our attention to another
promising technology in next generation communication networks, network virtualiza-
tion. As introduced in Chapter 1, the diversification of current Internet infrastructures
results in a serious Internet ossification problem [67], and Network virtualization has
been proposed to overcome the Internet ossification and attracting a lot of researches
[10, 17, 25, 28, 33, 77]. It supports various networks of diverse natures (e.g., network ar-
chitectures, protocols, and user interactions [77]) to coexist in a same substrate network
and share substrate resources (e.g., CPUs and bandwidths). In the paradigm of net-
work virtualization, the role of traditional Internet Service Providers (ISPs) is separated
into two new entities: Infrastructure Provider (InP) and Service Provider (SP). The InP
owns and manages the substrate network while the SP focuses on offering customized
services to clients. In this business model as shown in Fig. 4.1, the InP sets up and
maintains the physical equipments and substrate resources such as optical fibers, CPUs
and bandwidths as well as network protocols. Herein, these physical equipments and
resources compose the attributes of the InP, which serve to discover resources for SPs
[10]. The SP, pursuant to service demands of clients, creates Virtual Network Requests
(VNR) (A VNR is a combination of Virtual Nodes (VNs) and Virtual Links (VLs) [25]).
It then discovers resources available in substrate networks by the attributes of InPs and
selects appropriate ones for the deployment of VNRs [10].

Figure 4.1: The paradigm of network virtualization.

How to effectively allocate resources of the substrate network to VNRs is a vital
problem in network virtualization, which is often referred to as the Virtual Network
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Embedding (VNE) problem [25]. Explicitly, the VNE needs to (a) find a Substrate Node
(SN) to meet the computing requirement of each VN, and (b) find a substrate path
to satisfy the bandwidth requirement of each VL in a VNR. The former is also called
Node Mapping and the latter is named Link Mapping. The VNE has been proven NP-
hard [4] and studied intensively [17, 19, 28, 33, 34, 45, 51, 77, 81]. These works in-
troduce different methods like heuristic algorithms and Integer Linear Programming
(ILP) models, etc, and cover many aspects, such as distributed computing of the VNE
and embedding across multiple substrate networks.

One of the key impediments in the VNE problem is the topological heterogeneity
of both VNRs and substrate networks [10]. However, this is not always true in many
specific applications and substrate networks. For instance, the topologies of network
service chains are paths [38], and there are many substrate optical rings (i.e., cycles) [61].
For these applications and infrastructures, specialized cloud service providers outper-
forming the general SPs are desired, where dedicated algorithms, taking into account
the topological characteristics of the VNRs and substrate networks, can be afforded.
Besides, paths and cycles are two of the most fundamental topologies in network struc-
tures. Exploiting the characteristics of path and cycle embeddings is vital to tackle
general topology embedding.

For example, if path and cycle embeddings can be effectively solved, we can de-
compose a general VNR into paths and cycles and then embed them on the specialized
platforms, as shown in Fig. 4.2, to boost the performance of the VNE. (The feasibility of
embedding a VNR across multiple substrate networks has been verified in [33], which
makes the idea of decomposition practicable.)

Figure 4.2: A general VNR decomposed into two sub-VNRs, one cycle and one path.

In the wake of the idea of the two special embeddings (paths and cycles), there are
some important questions not answered yet: How hard are they? Still NP-hard or
there exist polynomial-time algorithms to solve them exactly or approximately? Which
kind of substrate network topology is more suitable for the special embeddings? In this
chapter, we comprehensively investigate path and cycle embeddings from hardness
and approximation analysis to effective-algorithm design. The main contributions of
this work are summarized as follows:
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• We proved that path embedding problem is still NP-hard even in a simplified
model. Leveraging Eulerian trail, some approximation algorithms are thus pro-
posed for the first time. We further characterized the topologies of substrate net-
works which is more suitable for path embedding.

• For path embedding in realistic scenarios, we gave the inapproximability result of
path embedding. By transforming this problem into a Multiple Knapsack Prob-
lem (MKP) and Multi-Dimensional Knapsack Problem (MDKP), efficient and ef-
fective MKP-MDKP-based algorithms are developed.

• For cycle embedding, we proposed a Weighted Directed Auxiliary Graph (WDAG)
and succeeded to establish a one-to-one relation between each directed cycle in
WDAG and each feasible embedding. Based on that, a polynomial-time algo-
rithm is herein devised to achieve the least-resource-consuming embedding.

The rest of this chapter is organized as follows. Section 4.2 briefly introduces the
related work and our motivation. We present the network models and the formal de-
scription of the VNE problem in Section 4.3. Then for path embedding, in our pre-
liminary model, the proof of NP-hardness and some approximation algorithms are
provided in Section 4.4. For realistic scenarios, we present the inapproximability re-
sult and devise the MKP-MDKP-based algorithms in Section 4.5. For cycle embedding,
Section 4.6 elaborates the construction of WDAG, characterizes the one-to-one relation
between directed cycles and feasible embedding ways, and further devise the special-
ized cycle-embedding algorithm. We conduct simulations under different scenarios in
Section 4.7 to demonstrate the superiority of our proposed algorithms over the existing
general algorithms in the two special embeddings. Finally, Section 4.8 summarizes this
paper.

4.2 Related Work and Motivation

The VNE, as the main challenging problem in network virtualization, drew a lot of at-
tentions of researchers. In [25], the authors expanded the roles of the SP and InP in the
paradigm of network virtualization and proposed a novel classification scheme for cur-
rent VNE algorithms. Another comprehensive survey [10] elaborated and emphasized
the importance of resource discovery and allocation of the VNE. Many solutions to the
VNE problem have been proposed in the literature [17, 19, 28, 33, 34, 45, 51, 77, 81] in-
cluding heuristic-based, ILP, etc. Later in [17, 77], researchers found that the topology
information of VNRs and substrate networks can be utilized to improve the perfor-
mance of the VNE. The authors of [17] applied a Markov random walk model, analo-
gous to the idea of PageRank [14], to rank network nodes based on its resource and
topological attributes. In [77], customized embedding algorithms for some special
classes of topologies have been investigated and proven more effective than the general
algorithms. Although VNRs may have arbitrary topologies, the network structures of
some key applications are of common topologies e.g., paths and cycles [38, 61]. How-
ever, few relevant works intentionally pay attention to the two special but relatively
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common topologies in the VNE problem. Besides, paths and cycles are two of the most
fundamental topologies in network structures. Since the general VNE problem is com-
putationally hard, it is a pragmatic way to decompose VNRs into several specific sub-
structures of paths and cycles and then effectively embed them separately. Embedding
across multiple substrate networks and distributed embeddings of the VNE have been
shown to be feasible [25, 33]. This makes the idea of decomposing VNRs and embed-
ding separately practicable. Therefore, a devoted study to explore the characteristics of
path and cycle embeddings is desired, which has not yet been researched.

In this chapter, we shall systematically, from theoretical hardness analysis to practi-
cal algorithm design, investigate the VNE problem for the two special topologies.

4.3 Network Models and Problem Description

In this section, we will present the network models considered in this chapter and the
formulation of the VNE. Some necessary notations are summarized in Table 4.1.

4.3.1 Network Models

Substrate Network

In this chapter, the substrate network Gs(Vs, Es) is an undirected connected graph.
Usually, there are kinds of resources and attributes on the substrate network managed
by the InP, such as the computing capabilities and attributes (e.g. locations, storages
and protocols etc) of the SNs and bandwidths of the SLs. Here, we denote by CPU(vs)
and A(vs) the computing capability and the attribute array of each SN vs, and denote
BW(es) as the bandwidth of SL es. Figure 4.3 gives an example of a 4-node substrate
network, where each number in the square indicates the CPU capability of the SN and
each number beside the SL indicates its BW (The attribute arrays A(vs) are not shown
explicitly).

Figure 4.3: A 4-node substrate network.
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Table 4.1: Notations of Chapter 4

Notation Description

Gs(Vs, Es)
A substrate network, where Vs is the set of SNs, and Es is
the set of Substrate Links (SLs)

vs vs ∈ Vs, a Substrate Node (SN)
es es ∈ Es, a Substrate Link (SL)

vs
i v

s
j vs

i v
s
j ∈ Es, the SL connecting vs

i ∈ Vs and vs
j ∈ Vs

deg(vs)
The degree of vs, i.e., the number of SLs es connecting with
vs

o(Gs) The number of SNs vs ∈ Vs of odd degrees
Pvs

i vs
j

The set of all substrate paths from vs
i to vs

j in Gs

Pvs
i vs

j
Pvs

i vs
j
∈ Pvs

i vs
j
, a substrate path from vs

i to vs
j

Ps A substrate network which is a path with |Ps| SLs on it

Cs(vs
1, ..., vs

mvs
1)

A substrate cycle with clockwise order of SNs i.e., starting
from vs

1 clockwise to vs
m, where m is the number of SNs on

Cs

Gr(Vr, Er)
A Virtual Network Request (VNR), where Vr is the set of
VNs and Er is the set of VLs

vr vr ∈ Vr, a Virtual Node (VN)
er er ∈ Er, a Virtual Link (VL)

vr
i v

r
j vr

i v
r
j ∈ Er, the VL connecting vr

i ∈ Vr and vr
j ∈ Vr

Pr(vr
1vr

2...vr
n)

A path VNR with n VNs, i.e., from vr
1, through vr

j,2≤j≤n−1, to
vr

n.
|Pr| The length of Pr, i.e., the number of VLs in Pr

Cr(vr
1, ..., vr

nvr
1)

A cycle VNR with clockwise order of VNs, where n is the
number of VNs on Cr

CPU(vs) The CPU capacity of SN vs

A(vs)
The array of attributes of SN vs, such as the location, stor-
age, protocol etc.

BW(es)
or BW(vs

i v
s
j ) The bandwidth capacity of SL es or vs

i v
s
j

CPU(vr) The CPU demand of VN vr

A(vr)
The array of attribute requirements of VN vr, such as the
location, storage, protocol etc.

Φ(vr)
The set of SNs vs that A(vs) fit A(vr) denoted by {vs ∈
Vs|A(vr) → A(vs)}.

BW(er)
or BW(vr

i v
r
j ) The bandwidth demand of SL er or vr

i v
r
j

Fvr
{vs ∈ Vs|CPU(vs) ≥ CPU(vr)}, i.e., the set of feasible SNs
whose CPUs are not smaller than VN vr’s

Fer or Fvr
i vr

j

{es ∈ Es|BW(es) ≥ BW(er) or BW(vr
i v

r
j )}, i.e., the set of

feasible SLs whose bandwidths are not smaller than er or
vr

i v
r
j

vr → vs vr is embedded on vs

er → es The embedded substrate path of er which passes through es
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Virtual Network Request

A VNR Gr(Vr, Er) is still modeled by an undirected connected graph, which is con-
structed by the SP according to the service demands of clients. The demanded comput-
ing capability of each vr ∈ Vr is CPU(vr). In some studies such as Location-constrained
VNE (LC-VNE) [28], the VNR has location constraints that some VNs can only be em-
bedded onto specific locations of SNs. For this kind of VNRs, besides the computing
capability, there exists an array of attribute requirements A(vr) on each vr such that the
vr can only be embedded onto a subset of Vs: Φ(vr) = {vs ∈ Vs|A(vr) → A(vs)},
where A(vs) satisfies the requirements of A(vr). The demanded bandwidth of each
er ∈ Er is BW(er). In this work, we focus on two special topologies of VNRs i.e., paths
and cycles. Figure 4.4 illustrates a path VNR and a cycle VNR, where, similarly, the
numbers in squares (beside VLs respectively) indicate the corresponding CPUs of VNs
(BWs of VLs respectively).

Figure 4.4: An example of path and cycle VNRs.

The scope of this paper

In the study of the VNE problem, many literatures [17, 73, 81] focus on the generic
setting VNRs, where only the CPU requirement of each VN is taken into account. There
are also some works [28] considering special setting VNRs, where an array of attribute
requirements A(vr) is imposed by the VNR. In this chapter, we call the former as G-
VNE and the latter as S-VNE. From the theoretical point of view, the G-VNE is in fact a
special case of the S-VNE by setting each Φ(vr) = Vs, which means that all SNs vs are
eligible to embed the VN vr. In this chapter, we mainly focus on the G-VNE problem.
Our work addresses two aspects of the VNE problem in paths and cycles as follows.

• Hardnesses Analysis: Since the G-VNE is a special case of the S-VNE, all of the
conclusions about the NP-hardnesses and inapproximability of the G-VNE in
paths and cycles can be directly applied to the S-VNE with the same topology.

• Heuristic Design: As we shall see, the VNE problem is still extremely hard even in
paths and cycles. Effective heuristics, which capture the "nature" of the problem
to some extent, are thus more practical to solve the VNE problem.
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4.3.2 Problem Formulation

Constraints

As mentioned above, the VNE problem contains two constraints: Node Mapping Constraint
and Link Mapping Constraint.

Node Mapping Constraint For the node mapping, there are two main embedding
methods in the literature: Many-to-One and One-to-One [28].

• Many-to-One (M2O): In this type of node embedding, given the Gs(Vs, Es) and a
VNR Gr(Vr, Er), each VN vr ∈ Vr must be embedded onto such an SN vs ∈ Vs,
i.e., vr → vs, that CPU(vs) ≥ CPU(vr). Meanwhile, for each SN vs on which some
VNs vr ∈ Vr are embedded, CPU(vs) ≥ ∑

vr→vs

CPU(vr). Figure 4.5 illustrates an

example of the M2O embedding.

Figure 4.5: Many-to-One (M2O) node embedding.

• One-to-One (O2O): As the M2O embedding sometimes makes a VNR more vul-
nerable to the substrate network failure [28], some literatures add an additional
constraint that two VNs vr

i and vr
j of a same VNR can not be embedded on a same

SN vs, i.e., if vr
1 → vs and vr

2 → vs then vr
1 = vr

2. Thus, the embedding way of vr
1

and vr
4 in Fig. 4.5 is not allowed in the O2O embedding.

Link Mapping Constraint For each VL vr
i v

r
j , assuming vr

i → vs
i and vr

j → vs
j , vr

i v
r
j

should be embedded on a substrate path Pvs
i vs

j
∈ Pvs

i vs
j
, and for each SL es on Pvs

i vs
j
,

BW(es) ≥ BW(vr
i v

r
j ). Meanwhile, for each SL es, through which the embedded sub-
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strate paths of VLs er pass, i.e., er → es, BW(es) ≥ ∑
er→es

BW(er). In this chapter, the VNs

embedded on a same SN are isolated i.e., the SN does not support intercommunications
between VNs [70].

Here, we give the definition of the decision problem Emb(·, ·) as follows.
Definition 4.3.1. Emb(Gs, Gr) is such a decision problem that its answer is Yes iff the VNR Gr

can be embedded on the substrate network Gs satisfying the node and link mapping constraints,
and No otherwise.

The definition can be extended to a set of n VNRs: Emb(Gs, {Gr
1, Gr

2, ..., Gr
n}) whose

answer is Yes iff all of Gr
i,1≤i≤n(V

r
i , Er

i ) can be embedded on the Gs while simultaneously
satisfying the node and link mapping constraints, and No otherwise. Here, the node
mapping constraint of a set of VNRs embedded on a substrate network is that for each
SN vs, CPU(vs) ≥ ∑

vr→vs

CPU(vr), ∀vr ∈ Vr
1 ∪Vr

2 ∪ ...∪Vr
n , and the link constraint means

for each SL es, BW(es) ≥ ∑
er→es

BW(er), ∀er ∈ Er
1 ∪ Er

2 ∪ ... ∪ Er
n. Figure 4.6 shows two

path VNRs embedded on the 4-node substrate network in the M2O embedding.

Figure 4.6: Two path VNRs embedded on a 4-node substrate network.

Objective Functions

There are two main objective functions in the study of the VNE problem: The accep-
tance ratio and revenue.

The Acceptance Ratio (AcR) Given a substrate network Gs and a set of VNRs to be
served on Gs {Gr

1, Gr
2, ..., Gr

n}, the objective is to maximize the number of VNRs that can
be embedded on the Gs. We denote by AcR the acceptance ratio problem as formally
defined below.
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Maximize |S| (AcR),

s.t. Emb(Gs, S) is Yes,

S ⊆ {Gr
1, Gr

2, ..., Gr
n}.

(4.1)

The Revenue (Rev) Each VNR Gr
i is associated with a revenue wi. Its objective is to

maximize the total revenue of VNRs that can be embedded on Gs. We denote by Rev
the revenue problem defined below.

Maximize ∑
Gr

i ∈S

wi (Rev),

s.t. Emb(Gs, S) is Yes,

S ⊆ {Gr
1, Gr

2, ..., Gr
n}.

(4.2)

One may notice that AcR actually is a special case of Rev by setting each revenue wi

to be one. In this chapter, the set of VNRs {Gr
1, Gr

2, ..., Gr
n} is particularly a path set or a

cycle set, i.e., {Pr
1 , Pr

2 , ..., Pr
n} or {Cr

1, Cr
2, ..., Cr

n}.

4.4 Path Embedding in the Preliminary Model

In this section, we will explore the path embedding problem in a preliminary model.
This helps shed light on the characteristics of embedding for this special type of topolo-
gies and inspires us to develop efficient and effective algorithms for path embedding
in realistic scenarios.

The preliminary model is defined with the following network configurations: 1
The substrate network Gs(Vs, Es) is that: ∀es ∈ Es, BW(es) = 1; ∀vs ∈ Vs, CPU(vs) =
deg(vs), where deg(vs) is the degree of vs. 2 The path VNR Pr(vr

1vr
2...vr

n) is that: ∀i,
CPU(vr

i ) = 1; ∀vr
i v

r
i+1, BW(vr

i v
r
i+1) = 1. This preliminary model can be interpreted

as follows: Each SL es, whose bandwidth is 1 unit, can be utilized by at most one VL
er, and the computing capability of each SN vs

i CPU(vs
i ) = ∑

vs
i vs

j∈Es

BW(vs
i v

s
j ). All the

substrate networks and VNRs discussed in this section are in the framework of the
preliminary model and G-VNE.

4.4.1 The Hardnesses

In path embedding, given a substrate network Gs and a path VNR Pr, an elementary
and essential question is how hard Emb(Gs, Pr) is. Since there are two node embedding
modes, the O2O and the M2O, we inspect the hardness of Emb(Gs, Pr) in each mode
respectively.
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Emb(Gs, Pr) problem of the O2O embedding

Let Gs(Vs, Es) and Pr be the substrate network and a path VNR respectively. In the
O2O model, the number of VNs is at most |Vs|. Thus, a special case of Emb(Gs, Pr) is
to answer whether a path VNR Pr(vr

1vr
2, ..., vr

|Vs|) can be embedded on Gs(Vs, Es). The
following lemma gives the necessary and sufficient condition that whether a Pr of |Vs|
VNs can be embedded on Gs in the O2O model.
Lemma 4.4.1. In the preliminary model with the O2O embedding, a Pr of |Vs| VNs can be
embedded on the Gs if and only if Gs has a trail traversing all SNs. In other words, Gs

contains a spanning subgraph having an Eulerian trail.

Proof. If Pr(vr
1vr

2, ..., vr
|Vs|) can be embedded on Gs by, w.l.o.g., vr

i → vs
i , ∀i, then we can

express this embedding way as a sequence "vs
1Pvs

1vs
2
vs

2Pvs
1vs

3
...vs

|Vs|". This sequence, if ex-
pressing each Pvs

i vs
i+1

by its vertex sequence, in fact is a trail which traverses all SNs in
Gs (but not necessary all SLs).

Conversely, if Gs has a trail, say T, traversing all SNs, let, w.l.o.g., "vs
1, ..., vs

2, ..., vs
i , ..., vs

|Vs|"
be T’s corresponding vertex sequence. By the definition of trail, there must be a path
connecting vs

i and vs
i+1, say Pvs

i vs
i+1

, ∀i, and Pvs
i vs

i+1
∩ Pvs

j v
s
j+1

= ∅, ∀i �= j. Therefore we can
embed Pr by "vs

1Pvs
1vs

2
vs

2Pvs
1vs

3
...vs

|Vs|".

Lemma 4.4.2. The hardness of determining whether a graph contains a spanning subgraph
having an Eulerian trail (or SSET in short) is equivalent1 to that of determining whether a
graph is a Supereulerian graph (or SG).

Consequently, by Lemmas 4.4.1 and 4.4.2, we have Theorem 4.4.1.
Theorem 4.4.1. The hardness of Emb(Gs, Pr) problem in O2O embedding is not less than that
of determining whether Gs is a Supereulerian graph.

Proof. To this end, we need to prove that one of the two problems can be reduced to the
other in polynomial time.

First, we prove SSET ≤P
T SG: Given a graph G(V, E), for each vertex pair v, u ∈ V,

we construct a graph Gvu by adding a new vertex v∗ and connecting v∗v and v∗u as
shown in Fig. 4.7(a). Afterwards, we obtain a set G = {Gvu|∀v, u ∈ V} and |G| =
�
|V|

2

�

. It is easy to see that G contains a spanning subgraph which has an Eulerian

trail iff there exists one Gvu ∈ G which is a Supereulerian graph.

Then for SG ≤P
T SSET: Given a graph G(V, E), arbitrarily selecting one vertex v ∈

V, we construct a graph G∗ by adding two new vertices u1 and u2 and connecting them
to v as shown in Fig. 4.7(b). It is easy to see that G is a Supereulerian graph iff G∗

contains a spanning subgraph which has an Eulerian trail.

1The equivalence is under the polynomial-time Turing reduction.
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(a) Gvu. (b) G∗.

Figure 4.7: Polynomial-time reduction of SSET and SG.

Unfortunately, given a graph G, it is NP-hard to determine whether G is a Supereu-
lerian graph [15].

Emb(Gs, Pr) problem of the M2O embedding

Given a Gs(Vs, Es) and Pr, the number of VNs of Pr is not limited by the |Vs| for the
M2O embedding. Hence, the hardness of Emb(Gs, Pr) problem for the M2O embedding
is equivalent to determining the length of the longest Pr that can be embedded on Gs.
There is a fact as below.
Fact 4.4.1. In the M2O embedding, given a Gs(Vs, Es) and Pr in the preliminary model, Pr

can be embedded on Gs if and only if there exits a trail T in Gs with a length of |Pr|.

Proof. If Pr(vr
1vr

2, ..., vr
|Pr |+1) can be embedded on Gs by, w.l.o.g., "vs

1Pvs
1vs

2
vs

2Pvs
1vs

3
...vs

|Pr |+1",
we can easily shorten each substrate path to an SL to obtain a trail T with a length of
|Pr|.

Conversely, let T be a trail of length |Pr| in Gs whose vertex sequence is, w.l.o.g.,
"vs

1, vs
2, ..., vs

|Pr |+1". We can embed Pr on T by vr
i → vs

i , ∀1 ≤ i ≤ |Pr|+ 1. Now, we check
the feasibility of this embedding. The link mapping constraint is obviously satisfied.
For node mapping constraint, it is easy to see that the number of VNs embedded on a
same SN vs

i will not exceed deg(vs
i ) = CPU(vs

i ).

Hence, in the M2O embedding, the length of the longest Pr that can be embedded
on Gs is equal to the length of the longest trail on Gs.
Theorem 4.4.2. In the M2O embedding, the hardness of Emb(Gs, Pr) problem in the prelimi-
nary model is equivalent to determining the length of the longest trail in Gs.

Unfortunately, the longest trail problem is also an NP-hard problem [50].

After obtaining above results, immediately, we can get the inapproximability of the
AcR and Rev problems of path embedding in the preliminary model as follows.
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Theorem 4.4.3. For path embedding in the preliminary model, both the AcR and Rev problems
have an NP-hard gap [�, 1]2, ∀0 < � < 1, i.e., unless NP = P , there is no polynomial-time

algorithm of an approximation ratio
1
�

for both problems.

Proof. Given an instance of the AcR problem consisting of a Gs and a Pr, if the answer
of Emb(Gs, Pr) is Yes, then OPTAcR ≥ 1, otherwise, OPTAcR < �, where OPTAcR is the
optimal solution of the AcR. Since Emb(Gs, Pr) is NP-hard, the AcR problem in the
preliminary model has an NP-hard gap3 [�, 1]. For the Rev, as the AcR is its special
case, the proof also follows.

As mentioned above that the G-VNE is a special case of the S-VNE, all of these
results can be directly applied to the S-VNE problem in path embedding.

4.4.2 Some Approximation Algorithms

From the above hardness analysis, any polynomial-time algorithm of a constant ap-
proximation ratio is implausible for the AcR and Rev of path embedding in the prelim-
inary model. However, in the preliminary model, if Gs itself is also a path, the AcR and
Rev problems can be easily solved as shown in Lemma 4.4.3.
Lemma 4.4.3. In the preliminary model, if the substrate network is a path denoted by Ps, given
a set of {Pr

1 , Pr
2 , ..., Pr

n}, then the AcR and Rev problems can be solved in polynomial time.

Proof. We use Fig. 4.8 to demonstrate the substrate path Ps and the set of path VNRs
{Pr

1 , Pr
2 , ..., Pr

n}. In this special case, we can regard Ps as a "knapsack" with a capacity
of |Ps| (edge number), and the n path VNRs Pr

i,1≤i≤n as n items with a size of |Pr
i,1≤i≤n|

respectively.

The AcR can be easily solved in this way: First arrange the n path VNRs in the
increasing order of their sizes, then sequentially pack them into the "knapsack" until
cannot (This embedding is feasible since each middle SN vs of CPU(vs) = deg(vs) = 2,
and at most two VNs will be embedded on vs). The Rev problem in this special case
is equivalent to the classical 0-1 Knapsack Problem (KP) and it thus can be solved by a
dynamic programming algorithm of time complexity O(n|Ps|) [42] 4.

But the topologies of substrate networks in reality could not always be perfect path-
like structures. Therefore, given a substrate network Gs, we may hope to "expand"
it into a "path" in some way as shown in Fig. 4.9, where we "split" v3 into two new
vertices. One may notice that the final "path" we obtained in Fig. 4.9 is literally the

2If an optimization problem has an NP-hard gap [α, β], then it has no polynomial-time algorithm of an

approximation ratio
β

α
unless NP = P [22].

3For a maximization problem Π and an NP-hard decision problem Λ, if Λ is Yes ⇒ OPTΠ ≥ β and Λ

is No ⇒ OPTΠ < α, where OPTΠ is the optimal solution of Π, then Π has an NP-hard gap [α, β] [22].
4Although KP is NP-hard, for the substrate network, whose space complexity is |Ps| (not log(|Ps|)),

the dynamic programming algorithm runs in polynomial time (rather than pseudo-polynomial time).
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Figure 4.8: An example of the substrate network being a path.

Figure 4.9: An example of expanding a trail.

vertex sequence corresponding to the trail T1. In fact, for all trails, following their vertex
sequences, we can expand them into "paths". Given a Gs, the longest trail of Gs(Vs, Es)
is the Eulerian trail (if it has) with a length of |Es|. Here, we give a famous theorem in
graph theory which characterizes the type of graphs having an Eulerian trail.
Lemma 4.4.4. [13] Given a graph G, let o(G) be the number of vertices of odd degree, then G
has an Eulerian trail if and only if o(G) ≤ 2.

Therefore, for all substrate network Gs with o(Gs) ≤ 2, we can expand it into a
"path" by its Eulerian trail using many polynomial-time algorithms [13]. In the ex-
panded "path", there are several duplicated vertices like the v3 in Fig. 4.9. For those
"split" SNs vs, since CPU(vs) = deg(vs), we dispense CPU(vs) to its duplicated v�s in
this way: CPU(v�s) = 2 if v�s is in the middle otherwise, i.e., v�s is one end of the "path",
CPU(v�s) = 1. For example, for the v3 of T1 in Fig. 4.9 whose CPU(v3) = deg(v3) = 4,
its two duplicated vertices are of CPU = 2. Afterward, we can optimally solve the AcR
and Rev problems in the expanded "path" by Lemma 4.4.3. Notice that this method only
works for the M2O embedding, because some VNs of a path VNR may be embedded
on multiple duplicated vertices of an SN which violates the node mapping constraint
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of the O2O embedding.
Theorem 4.4.4. For the M2O embedding in the preliminary model, given a substrate network
Gs and a set of {Pr

1 , Pr
2 , ..., Pr

n}, let OPTAcR be the maximum accepted number of VNRs for
the AcR problem. There is a polynomial-time algorithm of accepted number APXAcR such that

OPTAcR − APXAcR ≤ max(
o(Gs)

2
− 1, 0).

Proof. If o(Gs) ≤ 2, we can expand Gs into a "path" by its Eulerian trail and optimally
solve the AcR problem by Lemma 4.4.3, and the conclusion follows.

For o(Gs) > 2, since o(Gs) is even [13], we can arbitrarily group the vertices of

odd degree into
o(Gs)

2
pairs. From them we arbitrarily select

o(Gs)

2
− 1 pairs and add

o(Gs)

2
− 1 new edges to connect them, resulting in a new graph denoted by Gs∗ with

o(Gs∗) = 2. Then, we can expand Gs∗ into a "path" by its Eulerian trail, and solve the
AcR problem by Lemma 4.4.3 (not feasible). Finally, we drop such path VNRs embed-
ded on Gs∗ that pass through those newly added edges (now feasible). The number

of dropped path VNRs is not greater than
o(Gs)

2
− 1, because each new edge can be

utilized by at most one path VNR, and the proof follows.

For the Rev problem, to develop some approximation algorithms, we may need
more informations about the substrate network. Given a substrate network Gs, we can
see from the hardness analysis that it is NP-hard to determine whether a path VNR
can be embedded on Gs. In other words, whether Gs can serve the path VNR is hard
to answer. In fact, the InP should offer its maximum service capacity of a single path
VNR in its attributes. When discovering available resources, the SP should not assign
the path VNR exceeding the single service capacity to the InP. We call this MaxCap
business model: The substrate network Gs with a trail Tmax, and all Pr to be embedded
on it with a length of |Pr| ≤ |Tmax|.
Theorem 4.4.5. For the M2O embedding in the preliminary model, given a substrate network
Gs with Tmax and a set of {Pr

1 , Pr
2 , ..., Pr

n}, ∀|Pr
i | ≤ |Tmax|, there is a polynomial-time algorithm

for the Rev problem, which can guarantee an approximation ratio ρ = max(
o(Gs)

2
, 1).

Proof. Let OPTRev be the maximum revenue. For o(Gs) ≤ 2, we can expand Gs by its
Eulerian trail, and the Rev problem corresponds to the case of Lemma 4.4.3 which can
be polynomial-timely solved to obtain OPTRev.

For o(Gs) > 2, similarly, we can add
o(Gs)

2
− 1 new edges resulting in a new graph

Gs∗ with o(Gs∗) = 2. By Gs∗’s Eulerian trail, we can obtain a embedding way (not
feasible) of a revenue at least OPTRev. In this embedding way, the number of path

VNRs which are embedded on the newly added edges is not bigger than
o(Gs)

2
− 1,

and we treat such path VNRs as different parts. Besides, we treat those path VNRs

embedded on the original SLs of Gs as one part. Now, we have at most
o(Gs)

2
different
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parts, whose sum of revenue is at least OPTRev. Therefore, we can select the part of the
largest revenue to be embedded on Gs: If the part is a Pr embedded on newly added
edges, we can embed it on Tmax since |Pr| ≤ |Tmax|, otherwise the part is those path
VNRs already embedded on Gs. Finally the part of the greatest revenue is not less than

the average, i.e.,
OPTRev

o(Gs)
2

.

Moreover, if the InP can offer more information about the substrate network Gs such

as providing
o(Gs)

2
− 1 edge-disjoint trails, and the lengths of all Pr to be embedded

are not longer than these trails, we can then obtain a better approximation ratio for the
substrate network Gs with o(Gs) > 2.

Corollary 4.4.1. For the M2O embedding in the preliminary model, given a Gs with
o(Gs)

2
− 1

edge-disjoint trails where o(Gs) > 2, and a set of {Pr
1 , Pr

2 , ..., Pr
n}, where ∀i, |Pr

i | is not greater
than these trails, there is a polynomial-time algorithm for the Rev problem which can guarantee
an approximation ratio ρ = 2.

Proof. Similar to the proof of Theorem 4.4.5, assuming that we have reached the step

that there are at most
o(Gs)

2
parts: at most

o(Gs)

2
− 1 parts are those path VNRs em-

bedded on the newly added edges and the remaining part corresponds to path VNRs
embedded on the original SLs. Now, we regard those path VNRs on new edges to-
gether as one part, and then we have just two parts that the sum revenue is at least
OPTRev. Hence, our solution is to take the part of the largest revenue to be embedded
on Gs. If the part corresponds to the path VNRs embedded on the newly added edges,

we embed them on the
o(Gs)

2
− 1 edge-disjoint trails. Otherwise the part corresponds

to path VNRs already embedded on Gs. Therefore, the part of the largest revenue is no

less than the average
OPTRev

2
.

Theorems 4.4.4 and 4.4.5 and Corollary 4.4.1 give us an insight that we can approach
the AcR and Rev problems by means of o(Gs). From the above analysis, the smaller
o(Gs) a substrate network Gs has, the better approximation ratio the polynomial-time
algorithm can achieve. Therefore, these substrate networks with fewer SNs of odd
degree are more suitable for path embedding in the preliminary model with the M2O
embedding.

4.5 Path Embedding in Realistic Settings

Here, we account for the path embedding problem in the realistic settings, where the
CPUs of SNs and VNs are arbitrary and so as the BWs of SLs and VLs. Thus, in the re-
alistic settings, the path VNE problem should be more difficult than in the preliminary
model. Here, we present the following theorem to explicitly show the inapproximabil-
ity of both the AcR and Rev for path embedding in the realistic settings.
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Theorem 4.5.1. For path embedding in the realistic settings, unless NP ⊆ ZPTIME(npolylog(n))5,

there is no O(log
1
2−� |Es|) approximation for both the AcR and Rev problems, where |Es| is the

number of SLs in the substrate network.

Proof. First, we introduce the Edge-Disjoint Paths (EDP) problem: Given a connected
graph G(V, E) and a set of pairs of vertices {(s1, t1), (s2, t2), ..., (sk, tk)} on it, the objec-
tive of the EDP is to connect as many pairs as possible via edge-disjoint paths. Unless

NP ⊆ ZPTIME(npolylog(n)), there is no O(log
1
2−� |E|) approximation for the EDP prob-

lem [6].

Now given an instance of the EDP, i.e., a graph G(V, E) where V = {v1, ...vi, ..., vn}
and a set of pairs of vertices {(s1, t1), (s2, t2), ..., (sk, tk)}, we translate it into an instance
of the AcR in path embedding as follows. To completing the translation, for each vi ∈ V,
we first denote by Nvi

the total number of vi appearing in the sets {si}
k
i=1 and {ti}

k
i=1.

Figure 4.10: The constructed substrate network.

The construction of the substrate network Gs is that: The set of SNs Vs consists of
two parts, V = {v1, ...vi, ..., vn} and V � = {v�1, ..., v�i, ..., v�n} where V � is a copy of V. The
set of SLs Es also consists of two parts, E and {viv

�
i}

n
i=1 as shown in Fig. 4.10.

The setting of CPUs and BWs is as follows.

• For each vi ∈ V, CPU(vi) = 1 and for each e ∈ E, BW(e) = 1.

• For V �, CPU(v�1) = Cv1 × Nv1 where Cv1 = 2 and for 2 ≤ i ≤ n, CPU(v�i) =
Cvi

× Nvi
where Cvi

= CPU(v�i−1) + 1.

• For {viv
�
i}

n
i=1, BW(vnv�n) = Bvn × Nvn where Bvn = 2 and for n − 1 ≥ i ≥ 1,

BW(viv
�
i) = Bvi

× Nvi
where Bvi

= BW(vi+1v�i+1) + 1.

The path VNRs set is {Pr
1 , ..., Pr

i , ..., Pr
k}, where the i-th Pr

i , which corresponds to
(si, ti), consists of 4 VNs and its CPUs and BWs requirements are shown as in Fig.
4.11

From the setting of CPUs and BWs, we can see that Cvi
is increasing with the i grow-

ing while Bvi
is decreasing. Thus, following the constraints of node and link mappings,

5ZPTIME(npolylog(n)) is the set of languages that have randomized algorithms that always give the
correct answer and have expected running time npolylog(n)
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Figure 4.11: The i-th path VNR Pr
i .

it is easy to see that the two ends of the Pr
i must be embedded on the copies of si and ti

respectively, if the Pr
i is embedded.

Hence, for any pairs we can connect by edge-disjoint paths in the instance of the
EDP, we can embed their corresponding path VNRs in the substrate network, vice
versa.

Besides, since the number of SLs |Es| = |E|+ |V| ≤ 3|E|, we get the inapproxima-
bility.

Similarly, this inapproximability result can be directly applied for the S-VNE of path
embedding.

Theorem 4.5.1 implies that for path embedding in the realistic settings, it is even im-
plausible to find a polynomial-time algorithms of an approximation ratio with respect
to the parameters of the substrate graph like that in the preliminary model. Thus, we
should turn our attention from developing approximation algorithms to designing bet-
ter heuristic algorithms, which is able to capture the "nature" of the path VNE problem.

As proven in the previous section, if Gs is a path, then the AcR and Rev problems
can be easily solved in the preliminary model by leveraging KP. This result relatively
reflects some essentials of the path VNE problem that can be regarded as "packing"
(embedding) a set of "items" (VNRs) into a special "knapsack" (the substrate network).
Inspired by this, given a substrate network Gs and a set of {Pr

1 , Pr
2 , ..., Pr

n}, we propose
a framework of algorithm design for the realistic settings. The main idea is described
as follows. First, we decompose Gs into several substrate paths. This phase is thus
called path decomposition. By regarding each substrate path as a knapsack and each
Pr

j as an item with size |Pr
j | and profit wj, and we then pack these items into multiple

knapsacks, which can be formulated as a Multiple Knapsack problem (MKP). Finally,
we assign the CPU and BW resources to those packed path VNRs, and it corresponds
to the Multi-Dimensional Knapsack Problem (MDKP). To this end, we review the two
well-studied MKP and MDKP.

Multiple Knapsack Problem (MKP)

MKP[42] is a classical variation of KP. In MKP, there are a set of knapsacks M :=
{1, ..., i, ..., m} each with positive capacities bi, and a set of items N := {1, ...j, ..., n} each
with size sj ≥ 0 and profit wj ≥ 0. The goal is to find a subset of the n items of maximum
profit which can be packed into the m knapsacks.
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In this chapter, we measure the time complexity of solving an instance of MKP by
its numbers of knapsacks and items, m and n respectively, denoted by TMKP(m, n).

Multi-Dimensional Knapsack Problem (MDKP)

MDKP[42] is another well-known variation of KP. In d dimensional MDKP de-
noted by d-DKP, there are a knapsack of d-dimensional positive capacity attributes
(b1, .., bi, ..., bd) and a set of items N := {1, ...j, ..., n} each with profit wj and d-dimensional
size attributes (sj1, ...sji, ..., sjd), where all of bi and wj and sji are non-negative. The goal
is to find a subset of the n items of maximum profit which can be packed into the knap-
sack while not exceeding each of d-dimensional capacity attributes.

In this chapter, we measure the time complexity of solving an instance of MDKP by
its numbers of dimensions d and items n respectively, denoted by TMDKP(d, n). Next,
we assume that the substrate network Gs(Vs, Es) and a set of path VNRs {Pr

1 , Pr
2 , ..., Pr

n}
are given as the input of our algorithm.

4.5.1 Path Decomposition Phase

In this phase, we decompose the substrate network into a set of substrate paths. These
decomposed paths are treated as the multiple knapsacks for the optimization of the
next phase. Intuitively, if these "knapsacks" are of bigger capacities, i.e., much longer,
the embedding optimization in the next phase by the MKP will be better. Staring from
this point, we develop two decomposition methods to obtain longer decomposed paths
for the O2O and M2O embeddings respectively.

The O2O embedding

We extract a substrate path Ps by finding the longest path in a Depth-first Search Tree
(DST) of Gs. We repeat the process by keeping extracting substrate paths until Gs is
completely decomposed into a set of Ps

i , 1 ≤ i ≤ m, where m is the number of substrate
paths obtained.

The M2O embedding

For the M2O embedding, we can utilize the substrate trails as the substrate "path" as
proven above. Therefore, we try to obtain the substrate trail as long as possible. Since

Euler trail is the longest one, we first add
o(Gs)

2
− 1 new edges to connect

o(Gs)

2
− 1

pairs of SNs of odd degree, then utilize an Eulerian trail algorithm to expand it. Finally,
after deleting these newly added edges, we decompose Gs into a set of trails Ts

i , 1 ≤
i ≤ m, where m is the number of trails obtained.

93



Chapter 4. Virtual Network Embedding: Paths and Cycles

4.5.2 Embedding by MKP

After the path decomposition phase, we regard each path VNR Pr
j as an item with

size |Pr
j | and profit wj, and treat each substrate path Ps

i or trail Ts
i as a knapsack with

capacity |Ps
i | or |Ts

i | in the O2O or M2O embeddings respectively as shown in Fig. 4.12.
Obviously, it is an m-knapsacks-n-items MKP, where m ≤ |Es|.

Figure 4.12: MKP embedding.

4.5.3 Resource Assignment by MDKP

After embedding some path VNRs by MKP without considering CPUs and BWs, we
need to assign the corresponding demanded CPU and BW resources to as many embed-
ded path VNRs as possible. Here, we treat each embedded Pr

j as an item with (|Vs|+

|Es|)-dimensional size attributes: (sjvs
1
, sjvs

2
, ..., sjvs

|Vs |
, sjes

1
, sjes

2
, ..., sjes

|Es |
). For the first |Vs|

attributes, if some VNs vr of the Pr
j are embedded on an SN, say vs

k, then the attribute
sjvs

k
= ∑

vr→vs
k

CPU(vr), otherwise 0. For the last |Es| attributes, if a VL er of the Pr
j is em-

bedded on an SL, say es
l , then the attribute sjes

l
= BW(er), otherwise 0. Finally, the array

of capacity attributes of the knapsack is that: (CPU(vs
1), ..., CPU(vs

|Vs|), BW(es
1), ..., BW(es

|Es|).
How to assign resources to these embedded path VNRs to maximize revenue is obvi-
ously a (|Vs| + |Es|)-DKP with n1 items as shown in Fig. 4.13, where n1 ≤ n is the
number of embedded path VNRs by MKP.

4.5.4 Final Assembled Algorithm and Time Complexity

After the resource assignment, we can update the CPU and BW of each SN and SL,
resulting in a remained substrate network. We then continue the whole process, from
path decomposition to resource assignment, to embed the rest path VNRs until no more
paths can be embedded. The final assembled algorithm is shown in Algorithm 4.1.
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Figure 4.13: MDKP assignment.

Algorithm 4.1: Procedure of Path-Embedding (PE)

Input : A substrate network Gs(Vs, Es) and a set of path VNRs {Pr
1 , Pr

2 , ..., Pr
n}.

Output: Final revenue.
1 set Flag ← ture;
2 while Flag do
3 run Path Decomposition Phase on Gs;
4 run Embedding by MKP;
5 run Resource Assignment by MDKP;
6 if no path VNR can be embedded then
7 Flag ← false;
8 end
9 update the substrate network Gs;

10 end

The time complexity of the path decomposition phase is as follows:

• The O2O embedding: The time complexity of extracting one substrate path by
constructing a DST is O(|Vs| + |Es|) and there are at most |Es| paths extracted.
Hence, the total time complexity is O(|Es| × (|Vs|+ |Es|)).

• The M2O embedding: The time complexity is combined by connecting pairs of
SNs of odd-degree and expanding the Eulerian trail, that is O(|Es|) [13]. There-
fore, the overall time complexity is O(|Vs|+ |Es|).

The time complexity of embedding by MKP and resource assignment by MDKP, de-
pending on the algorithms for solving MKP and MDKP, are bounded by TMKP(|E

s|, n)
and TMDKP(|V

s|+ |Es|, n) respectively [42], where n is the number of path VNRs. Net-
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work operators can select algorithms according to their computing capability. ([42]
elaborates most of the current algorithms for MKP and MDKP.)

The time complexity for updating the substrate network is O(|Vs|+ |Es|), and we
repeat the while-loop at most n times. Thus, the time complexity of Procedure PE
is O

�
n × (|Es|2 + TMKP(|E

s|, n) + TMDKP(|V
s| + |Es|, n)

�
for the O2O embedding and

O
�
n × (|Es|+ TMKP(|E

s|, n) + TMDKP(|V
s|+ |Es|, n)

�
for the M2O embedding respec-

tively. In this chapter, we use PEM2O and PEO2O to denote the path embedding algo-
rithms for the M2O and O2O embeddings respectively.

4.6 Cycle Embedding

In this section, we investigate the cycle embedding problem when the substrate net-
work is also a cycle, i.e., Emb(Cs, {Cr

1, Cr
2, ..., Cr

n}) where Cs is the substrate cycle and
{Cr

1, Cr
2, ..., Cr

n} is the set of cycle VNRs. (CPUs and BWs are arbitrary.) In this chapter,
we focus on a natural embedding way called Simplex Cycle Embedding, which evenly
embeds VNs and VLs on the substrate cycle.

Figure 4.14: Two simplex cycle embeddings: clockwise and anticlockwise.

Definition 4.6.1. Simplex Cycle Embedding: We assume the substrate cycle is Cs(vs
1, ..., vs

mvs
1).

Given a starting SN vs
i ∈ Cs with one direction dir (clockwise or anticlockwise denoted by "+"

or "-" respectively), we arrange all SNs of Cs in such a sequence, denoted by Seq(vs
i , dir), that

for dir = "+", [vs
i , vs

i+1, vs
i+2, ..., vs

i−1], and for dir = "-", [vs
i , vs

i−1, vs
i−2, ..., vs

i+1], where all
arithmetical operations of subscripts of SNs are modulo m.

Given a cycle VNR Cr(vr
1, ..., vr

nvr
1), Simplex Cycle Embedding is that: vr

j → vs
ij
, 1 ≤ j ≤
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n, which can be expressed as

�

vr
1 ... vr

j vr
j+1 ... vr

n

vs
i1

... vs
ij

vs
ij+1

... vs
in

�

, where the node mapping uses the

O2O embedding and follows one direction dir. More specifically, ∀j, vs
ij

is ahead of vs
ij+1

in

Seq(vs
i1

, dir). Figure 4.14 illustrates a triangle VNR embedded on a substrate cycle in clock-
wise and anticlockwise simplex cycle embeddings, where the numbers beside VLs indicate the
demanded BWs.

Similarly, given a Cs and a Cr, Emb(Cs, Cr) is the elementary and primary problem in
simplex cycle embedding. The similar problem Emb(Gs, Pr) of path embedding is NP-
hard even in the preliminary model. Is Emb(Cs, Cr) also NP-hard? Moreover, even
the answer of Emb(Cs, Cr) is Yes, different embedding ways could result in different
resource consumptions: In Fig. 4.14, the BW consumption of the clockwise is 1 + 2 ×
2 + 3 = 8 while that for the anticlockwise is 2 × 3 + 2 + 1 = 9. Can we efficiently find
the least-resource-consuming embedding way? How about the AcR and Rev problems
in cycle-to-cycle embedding?

Following the three important questions, we unfold this section as follows.

• First, we construct a Weighted Directed Auxiliary Graph (WDAG) in polynomial-
time and prove that each of its directed cycles corresponds to a feasible simplex
cycle embedding.

• Then, the minimum weighted directed cycle corresponds to the least-resource-
consuming embedding, which can be obtained by dynamic programming in poly-
nomial time.

• Finally, we prove that both the AcR and Rev problems are strongly NP-hard, and
thus devise effective heuristic algorithms to solve them.

Given a substrate cycle Cs(vs
1, ..., vs

mvs
1) and a cycle VNR Cr(vr

1, ..., vr
nvr

1), for all vr
j , let

Fvr
j
= {vs

i ∈ Vs|CPU(vs
i ) ≥ CPU(vr

j )}, i.e., the set of feasible SNs on which vr
j can be

embedded, and for all vr
j v

r
j+1, Fvr

j v
r
j+1

= {es ∈ Es|BW(es) ≥ BW(vr
j v

r
j+1)}, i.e., the set

of feasible SLs whose BW is not smaller than vr
j v

r
j+1’s. If Emb(Cs, Cr) is Yes in simplex

cycle embedding, there must exist an embedding way that vr
1 → vs

i1
∈ Fvr

1
, following

one direction dir. With respect to the condition that vr
1 → vs

i1
∈ Fvr

1
and the embedding

direction dir, we construct a WDAG denoted by Ĝ
vs

i1
dir(V̂, Â), where V̂ is the vertex set

and Â is the arc set.

1) The vertex set V̂ comprises of n parts {F̂vr
j
|nj=1}, where the j-th part F̂vr

j
corre-

sponds to the set Fvr
j
. Except F̂vr

1
, there is a one-to-one mapping, denoted by MP,

between vertices in F̂vr
j

and SNs in Fvr
j
. In other words, ∀v̂ ∈ F̂vr

j
one-to-one corre-

sponds to MP(v̂) ∈ Fvr
j
. In F̂vr

1
, there is only one vertex, v̂1, which corresponds to vs

i1
,

i.e., MP(v̂1) = vs
i1

as shown in Fig. 4.15.

2) The arc set Â is iteratively constructed as below: First starting at v̂1, for each such
vertex in F̂vr

2
, say v̂2, that satisfies two criteria with v̂1, an arc is constructed with v̂1 as

tail and v̂2 as head. The two criteria are as follows. Criterion 1: MP(v̂1) is ahead of
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MP(v̂2) in Seq(vs
i1

, dir). Criterion 2: each SL es, lying in the segment from MP(v̂1) to
MP(v̂2) following dir, belongs to Fvr

1vr
2
. Besides, a weight is assigned to this arc which

equals |MP(v̂1) − MP(v̂2)| × BW(vr
1vr

2), where |MP(v̂1) − MP(v̂2)| is the number of
SLs in the segment from MP(v̂1) to MP(v̂2) following dir. Next, for each such vertex in
F̂vr

2
with incoming edges, say v̂2 and d−(v̂2) > 0, we repeat the same procedure on it as

we did for v̂1: Searching those vertices in F̂vr
3

which satisfy the two criteria with v̂2; and
arcs are constructed with v̂2 as tail; and weights are computed and assigned to these
arcs. After some iterations, at certain vertex part, say F̂vr

j
, j < n, if there is no vertex in

F̂vr
j

whose indegree is greater than 0, then the whole process is terminated. Otherwise,

we reach the vertex part F̂vr
n
. For each such vertex in F̂vr

n
with non-zero indegree, say

v̂n and d−(v̂n) > 0, an arc with the corresponding weight is constructed with v̂n as tail
and v̂1 as head, if v̂n satisfies Criterion 2 with v̂1, i.e., each SL es lying in the segment
from MP(v̂n) to MP(v̂1) following dir, belongs to Fvr

nvr
1
. Figure 4.15 shows a complete

WDAG Ĝ
vs

i1
dir , and Algorithm 4.2 formally gives the construction of WDAG Ĝ

vs
i1

dir .

Figure 4.15: The WDAG Ĝ
vs

i1
dir with respect to vs

i1
and dir.

Theorem 4.6.1. The time complexity of Algorithm 4.2 is O(m3n), where m and n are the SN
and the VN numbers of the substrate cycle Cs and the cycle VNR Cr respectively.

Proof. The time complexity of Algorithm 4.2 consists of two parts: 1) establishing the
vertex set V̂; 2) constructing the weight arc set Â. For the first part, the Lines 1-2 set
up the n vertex parts F̂vr

j
, ∀1 ≤ j ≤ n, and build a one-to-one mapping MP between

vertices in F̂vr
j

and Fvr
j
. Since each |F̂vr

j
| ≤ m, time consumption of this part is up to

O(mn). For the second part, in the worst case, for each vertex pair (v̂j, v̂j+1) between F̂vr
j

and F̂vr
j+1

, we need to check Criterion 1 and Criterion 2 to decide whether to construct
an arc. The time consumption of checking Criterion 1 and Criterion 2 is O(m). There
are at most m2n arcs, and thus the time consumption of constructing the arc set Â is
O(m3n). Combing O(mn) and O(m3n), the total time complexity is O(m3n).
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Algorithm 4.2: Procedure of Constructing the Weighted Directed Auxiliary
Graph (C-WDAG)

Input : Cs, Cr, and a vertex vs
i1
∈ Fvr

1
as well as a direction dir.

Output: The Ĝ
vs

i1
dir .

1 set F̂vr
1
← v̂1 and MP(v̂1) ← vs

i1
;

2 set F̂vr
j

and MP(F̂vr
j
) ← Fvr

j
∀2 ≤ j ≤ n;

3 set Flag ← true, j ← 1;
4 while Flag do
5 if j = 1 then
6 set V2 ← {v̂2|v̂2 ∈ F̂vr

2
& satisfying Criterion 1 and Criterion 2 with v̂1};

7 for v̂2 ∈ V2 do
8 set an arc with v̂1 as tail and v̂2 as head;
9 assign arc weight |MP(v̂1)− MP(v̂2)| × BW(vr

1vr
2);

10 end
11 j ← j + 1;
12 end
13 else if 2 ≤ j ≤ n − 1 then
14 set Vj ← {v̂j|v̂j ∈ F̂vr

j
& d−(v̂j) > 0};

15 if Vj = ∅ then
16 Flag ← false;
17 end
18 else
19 for v̂j ∈ Vj do
20 set Vj+1 ← {v̂j+1|v̂j+1 ∈ F̂vr

j+1
& satisfying Criterion 1 and

Criterion 2 with v̂j};
21 for v̂j+1 ∈ Vj+1 do
22 set an arc with v̂j as tail and v̂j+1 as head;
23 assign arc weight |MP(v̂j)− MP(v̂j+1)| × BW(vr

j v
r
j+1);

24 end
25 end
26 j ← j + 1;
27 end
28 end
29 else if j = n then
30 set Vn ← {v̂n|v̂n ∈ F̂vr

n
& d−(v̂n) > 0 & satisfying Criterion 2 with v̂1};

31 for v̂n ∈ Vn do
32 set an arc with v̂n as tail and v̂1 as head;
33 assign arc weight |MP(v̂n)− MP(v̂1)| × BW(vr

nvr
1);

34 end
35 Flag ← false;
36 end
37 end

38 return Ĝ
vs

i1
dir .
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The WDAG Ĝ
vs

i1
dir constructed in Algorithm 4.2 has an important property described

in Theorem 4.6.2.
Theorem 4.6.2. Given a substrate cycle Cs(vs

1, ..., vs
mvs

1) and a cycle VNR Cr(vr
1, ..., vr

nvr
1),

under the condition that vr
1 → vs

i1
∈ Fvr

1
and following dir, there is a one-to-one relation

between each directed cycle in the WDAG Ĝ
vs

i1
dir and each feasible simplex cycle embedding way.

Proof. For each feasible simplex cycle embedding way under the condition that vr
1 → vs

i1

and following dir, w.l.o.g., we assume it is

�

vr
1 vr

2 ... vr
j vr

j+1 ... vr
n

vs
i1

vs
i2

... vs
ij

vs
ij+1 ... vs

in

�

, where each

vr
j → vs

ij
and vs

ij
∈ Fvr

j
. Since MP is a one-to-one mapping from F̂vr

j
to Fvr

j
, we use

MP−1 to represent the inverse, i.e., MP−1(vs
ij
) ∈ F̂vr

j
, MP(MP−1(vs

ij
)) = vs

ij
. As it is

feasible, MP−1(vs
ij+1

) must satisfy Criterion 1 and Criterion 2 with MP−1(vs
ij
). There-

fore, according to the construction process, there is an arc with MP−1(vs
ij
) as tail and

MP−1(vs
ij+1

) as head, and
�

MP−1(vs
i1
), ..., MP−1(vs

ij
), ..., MP−1(vs

in
)MP−1(vs

i1
)
�

forms a directed

cycle in Ĝ
vs

i1
dir .

For each directed cycle in Ĝ
vs

i1
dir , say Ĉ, according to the construction process, Ĉ must

pass through exactly one vertex in each vertex part F̂vr
j
, ∀1 ≤ j ≤ n, say

�
v̂1, ..., v̂j, ..., v̂n

�
.

Since v̂j+1 satisfies Criterion 1 and Criterion 2 with v̂j, it is obvious that MP(Ĉ) =
�

vr
1 ........ vr

j ....... vr
n

MP(v̂1)...MP(v̂j)...MP(v̂n)

�

must be a feasible simplex cycle embedding way.

Subsequently, combining with the weights assigned to arcs of the WDAG Ĝ
vs

i1
dir , the

sum of arc weights of a directed cycle in Ĝ
vs

i1
dir is equal to the total BW consumption of

the embedding way which corresponds to the directed cycle. Since the CPU consump-
tion is fixed to the sum of all demanded CPUs of VNs, to obtain the least-resource-
consuming embedding way, we just need to search the minimum weighted directed

cycle in the WDAG Ĝ
vs

i1
dir which can be solved by dynamic programming in polynomial

time.

Moreover, to obtain the optimal least-resource-consuming simplex cycle embed-
ding, we just need to construct 2 × |Fvr

1
| WDAGs (two directions), search the directed

cycle with the minimum weigth in each WDAG, and finally output the smallest one
among them. We formally give Algorithm 4.3.

In Lines 1-2, for each VN vr
j and VL vr

j v
r
j+1, we set up the feasible SN sets and SL

sets. The time complexity of Lines 1-2 is O(mn). At Lines 3, we set a variable EMB to
record the optimal embedding way whose initial value is ∅ and another variable Cost
to record the BW consumption of the EMB whose initial value is large enough denoted
by ∞. In Lines 4-9, for each vs

i1
∈ Fvr

1
and each direction dir ("+" or "-"), we construct

the corresponding WDAG by procedure C-WDAG at Line 6 whose time complexity
is O(m3n) by Theorem 4.6.1. At Line 7, we search the minimum weighted directed

100



4.6. Cycle Embedding

Algorithm 4.3: Procedure of Cycle-to-Cycle Embedding (C2CE)

Input : Cs(vs
1, ..., vs

mvs
1) and Cr(vr

1, ..., vr
nvr

1)
Output: The least-resource-consuming embedding way.

1 set Fvr
j
← {vs

i |CPU(vs
i ) ≥ CPU(vr

j )}, ∀j;

2 set Fvr
j v

r
j+1

← {vs
i v

s
i+1|BW(vs

i v
s
i+1) ≥ BW(vr

j v
r
j+1)};

3 set EMB ← ∅, Cost ← ∞;
4 for vr

i1
∈ Fvr

1
do

5 for dir ("+" or "-") do
6 construct the WDAG by Procedure C-WDAG;
7 search the minimum weighted directed cycle Ĉ in the WDAG;
8 if w(Ĉ) < Cost then
9 EMB ← MP(Ĉ), Cost ← w(Ĉ);

10 end
11 end
12 end
13 return EMB;

cycle Ĉ, and its time complexity is O(m2n) by dynamic programing. At Lines 8-9, if
the weight of Ĉ denoted by w(Ĉ) is less than current Cost, we replace Cost by w(Ĉ)
and EMB by the embedding way denoted by MP(Ĉ) which corresponds to Ĉ. Finally,
at Line 10, we return the EMB (if EMB = ∅ then Cr can not be embedded on Cs by
simplex cycle embedding). The total time complexity of Algorithm 4.3 is O(mn) +
2m ×

�
O(m3n) +O(m2n)

�
+O(1) = O(m4n), where m and n are the SN and the VN

numbers of the substrate cycle Cs and the cycle VNR Cr respectively.

Notice that the WDAG can be applied in simplex cycle embedding in the S-VNE by
slightly modifying Fvr = {vs ∈ Φ(vr)|CPU(vs) ≥ CPU(vr)}. Thus Emb(Cs, Cr) in the
S-VNE can be also solved in polynomial time.

For the Emb(Cs, Cr) problem in simplex cycle embedding, we can solve it in poly-
nomial time. How about the AcR and Rev problem? Unfortunately, both of them are
still NP-hard.
Theorem 4.6.3. In cycle-to-cycle embedding, both the AcR and Rev problems are NP-hard.
Moreover, the hardnesses of each problem is no less than any d-DKP, where d is any constant
integer.

Proof. Since the AcR problem is a special case of the Rev problem, we just need to prove
the AcR problem is NP-hard. To this end, we polynomial-timely reduce the NP-hard
problem "Cardinality d-DKP" [42] to the AcR problem. Cardinality d-DKP is a spe-
cial d dimensional MDKP, i.e., the knapsack is with a d-dimensional capacity attributes
(b1,...,bi,...,bd) and each j-th item is with a d-dimensional size attributes (sj1, ..., sji, ..., sjd).
The objective is to maximize the number of packed items.

Given an instance in Cardinality d-DKP, we construct the substrate cycle in such
way: There are d SNs in the substrate cycle Cs(vs

1, ..., vs
i , ..., vs

d), and CPU(vs
1) = b1 and
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CPU(vs
i ) = Bi × bi, ∀1 < i ≤ d where Bi are relatively big numbers explained later.

Each SL is with BW = n, i.e., the number of items. We construct n cycle VNRs in such
way: For the j-th cycle VNR Cr(vr

j1, ..., vr
ji, ..., vr

jd), there are d VNs, and CPU(vr
j1) =

sj1 and CPU(vr
ji) = Bi × sji, ∀1 < i ≤ d such that Bi × sji > max

1<k<i
(Bk × bk, b1) (by

setting CPUs like this the vr
ji can only be embedded on vs

i ). Each VL is with BW = 1.
Thus, the solution of the instance of Cardinality d-DKP is equivalent to that of the AcR
problem.

As shown in [42], even the 2-DKP is strongly NP-hard and the hardness of solv-
ing d-DKP keeps entrenched with the increase of d. To effectively solve the strongly
NP-hard problem, we herein develop a heuristic algorithm based on the optimization
for single cycle embedding as follows. Intuitively, for a cycle Cr, if its ratio of revenue
to resource consumption is higher than the others, it tends to be embedded so as to
achieve a more efficient income for the InP. This consists of the main motivation of our
greedy strategy in Algorithm 4.4: Given a substrate cycle Cs and a set of cycle VNRs
{Cr

1, Cr
2, ..., Cr

n}, for each Cr
j , we first estimate the ratio of revenue to resource consump-

tion, i.e.,
wj

∑vr∈Cr
j
CPU(vr) + ∑er∈Cr

j
BW(er)

. We then arrange them in the descending

order of the estimated ratios, and sequentially embed them on the Cs by procedure
C2CE until no more cycle VNR can be embedded by simplex cycle embedding. How-
ever, one thing should be noted that the simplex cycle embedding has its own shortage,
i.e., it limits the solution space. Therefore, if no cycle VNR can be embedded by simplex
cycle embedding, we continue the embedding by running general algorithms. Via this
combination, both merits of simplex cycle embedding and general algorithms can be
conflated.

Algorithm 4.4: Procedure of Greedy Revenue (GR)

Input : Cs and {Cr
1, Cr

2, ..., Cr
n}.

Output: The final revenue.
1 set cycle VNRs in descending order by estimated ratios;
2 run C2CE to sequentially embed cycle VNRs until can’t;
3 run general algorithms;
4 return final revenue;

4.7 Numerical Results

In this section, we compare our proposed algorithms PEO2O and PEM2O respectively
for path embedding and GR for cycle embedding to the existing general algorithms.
Two general embedding algorithms from [17] and [77], denoted by RW and BA respec-
tively, are used as our benchmarks. Here, we use GRRW and GRBA to denote the
procedures GR which invoke RW and BA respectively. We repeat each simulation 50
times under the same circumstance to ensure sufficient statistical accuracy, and a 95%
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confidence interval is given to each numerical result. All the simulations have been run
by MATLAB 2015a on a computer with 3.2 GHz Intel(R) Core(TM) i5-4690S CPU and 8
GBytes RAM.

4.7.1 Evaluation Environments

Path Embedding

Substrate Networks We use the GT-ITM tool [79], prevailing in the generation of
practical network topologies, to randomly generate two substrate networks denoted
by Gs

1, Gs
2 respectively. Both of these substrate networks have 100 SNs and 1000 SLs,

corresponding to a medium-sized ISP. Besides, we also use a complete graph of 100
SNs as the substrate network denoted by CGs. The CPU and BW of each SN and SL are
set as 100 units.

Virtual Network Requests The length of each path VNR is randomly generated in
the range of [5, 10]. The CPU and BW of each VN and VL are randomly generated in
the range of [1, 5] units. The number of path VNRs is set as 1000 in each simulation.

Cycle Embedding

Substrate Networks We set up three substrate cycles denoted by Cs
20, Cs

25, Cs
30 respec-

tively, whose number of SNs are 20, 25 and 30 respectively, corresponding to the sizes
of existing substrate optical rings. The CPU and BW of each SN and SL are set as 100
units.

Virtual Network Requests The number of VNs of each cycle VNR is randomly gen-
erated in the range of [5, 10]. The CPU and BW of each VN and VL are randomly
generated in the range of [1, 5] units. The number of cycle VNRs is set as 100 in each
simulation.

Performance Metrics

The comparisons are performed for both the AcR and Rev problems.

• The AcR problem: The revenue of each VNR is set to be one. Besides, we tweak

the objective function of the AcR problem as
|S|

n
, where S is the subset of embed-

ded VNRs and n is the number of total VNRs.
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• The Rev problem: The revenue of each VNR is proportional to its VN number in
the range of [5,10].

4.7.2 Simulation Results

Path Embedding

Figures 4.16 and 4.17 respectively demonstrate the numerical results of the AcR and
Rev problems in path embedding. The average acceptance ratio of all the three sub-
strate networks, as shown in Fig 4.16(a), are 41.06% and 40.77% for PEO2O and PEM2O
respectively, compared to 30.70% and 29.75% for RW and BA respectively. The aver-
age revenue, as shown in Fig. 4.17(a), are 3052.12 and 2994.28 for PEO2O and PEM2O
respectively, compared to 2308.05 and 2251.01 for RW and BA respectively. For time
complexity as shown in Figs. 4.16(b) and 4.17(b), both PEO2O and PEM2O are compa-
rable with an average run time of 1.32s and 1.84s respectively, obviously smaller than
that of RW and BA, 20.44s and 8.28s. We can also find that PEO2O outperforms PEM2O
in Gs

1, while it is inverse in Gs
2, which indicates that their performance depends on the

topologies of the substrate networks. In summary, PEO2O and PEM2O are much more
efficient and effective than the two general algorithms RW and BA in path embedding.
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Figure 4.16: Numerical results of the AcR problem in path embedding.
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Figure 4.17: Numerical results of the Rev problem in path embedding.

Cycle Embedding

Figures 4.18 and 4.19 respectively showcase the numerical results of the AcR and
Rev problems in cycle embedding. The average acceptance ratio, as shown in Fig.
4.18(a), of GRRW and GRBA are 31.13% and 30.31% respectively compared to 25.63%
and 24.84% of RW and BA respectively. The average revenue, as shown in Fig. 4.19(a),
of GRRW and GRBA are 239.68 and 234.96 respectively while 189.80 and 185.62 of RW
and BA respectively. From the aspect of final results of acceptance ratios and revenues,
GRRW and GRBA take advantage over RW and BA. For the time complexity as shown
in Figs. 4.18(b) and 4.19(b), while the run times of RW and BA are relatively stable and
smaller than 2.5s, that of GRRW and GRBA are quickly climbing because the time com-
plexity of construction of the WDAG is fourth-order about the number of SNs. But, the
corresponding acceptance ratios and revenues do not improve much with the increase
of run times of GRRW and GRBA. Thus, in general substrate networks, in the future
more work is needed to balance the size of decomposed substrate cycles and develop
decomposition strategies so as to constitute cycle embedding algorithms as competitive
as PEO2O and PEM2O for path embedding.
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Figure 4.18: Numerical results of the AcR problem in cycle embedding.
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Figure 4.19: Numerical results of the Rev problem in cycle embedding.

4.8 Conclusions

In this chapter, we systematically investigated the VNE problems in path and cycle
topologies. For path embedding, we proved its NP-hardnesses for both the O2O and
M2O embeddings. Leveraging Eulerian trail, we developed some approximation algo-
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rithms for the AcR and Rev problems in the preliminary model. In the realistic settings,
we proved the inapproximability of path embedding in Theorem 4.5.1. Following the
idea of expanding substrate networks into "paths", we further developed the MKP-
MDKP-based algorithms for the path embedding, which turn out to be more efficient
and effective than its counterparts. Regarding cycle embedding, we proposed an auxil-
iary graph WDAG, based on which we are able to characterize the one-to-one relation
between a directed cycle in WDAG and a feasible simplex cycle embedding. Herein
is devised a polynomial-time algorithm C2CE to obtain the optimal least-resource-
consumption embedding solution.
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Chapter 5

Conclusions and Perspectives

5.1 Summary

In this thesis, we concentrate on three challenging problems appearing in next genera-
tion communication networks. The studied problems include (1) lightpath routing and
spectrum assignment for RSA in EONs and (2) the VNE for network virtualization. To
solve them efficiently, we first give a theoretical analysis on them and then propose
dedicated approximation algorithms based on graph theory.

In Chapter 2, we inspected how the traffic distribution and network topology im-
pact the lightpath routing. All investigations revolve around a central concept: the con-
flict graph. Since whatever lightpath routing schemes are employed, the intersections
among the routed lightpaths are the key matters determing the quality of optimization
in the spectrum assignment. Theorem 2.3.1 bounds the optimality of the RSA by the
chromatic number of the conflict graph. By Lemma 2.4.1, the first theoretical chain in
Fig. 2.6 bridges the intersecting probability of lightpaths and the optimality of the RSA.
Then, via the new concept conflict coefficients, the second theoretical chain in Fig. 2.8
unveils that the traffic distribution and network topology through the GOF impact the
intersecting probability of lightpaths. Consequently, the two theoretical chains together
figure out the synthesized impact of the two factors on the lightpath routing.

Chapter 3 investigated the DSA problem in EONs. We consider guard bands with
adaptive sizes between different lightpath pairs. The main approach in this chapter is
to leverage the conflict graph of the DSA problem. Through analyzing the properties of
the DSA conflict graph, the NP-hardness, inapproximability, upper and lower bounds
of the DSA problem are obtained. After analyzing the theoretical characteristics of the
DSA problem, we proposed the ODSA problem and transformed the DSA problem to
a special case of POP. Then, a two-phased algorithm is devised to solve DSA efficiently.
The first phase outputs an initial solution which is optimal in the bipartite graph while
assuring a certain approximation ratio in complete conflict graph. The second phase
improves the quality of the initial solution obtained in the first phase by a random
approach NPM whose convergence is deducted.
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In Chapter 4, we explored the topological features of the VNE under this paths
and cycles. For the essential question in VNE problem Emb(Gs, Gr), we proved that
Emb(Gs, Pr) is NP-hard while Emb(Cs, Cr) is in P class by the WDAG. Moreover, we
give the inapproximability results about the path embedding in a preliminary model
and realistic settings. In the preliminary model, unless NP = P , there is no polynomial-
time algorithm of constant approximation ratio. But we proved the path embedding
can be approached in terms of the vertex number of odd degree in the substrate net-
work. In realistic settings, we proved that unless NP = P , there is no polynomial-time
algorithm of approximation ratio |Es| for both the AcR and Rev problems. We further
devised an efficient and effective heuristic algorithm which demonstrate obvious ad-
vantage over the general algorithms in the literature.

5.2 Future work

There are many future work which can go in-depth for these problems studied in this
thesis.

For the lightpath routing, Chapter 2 just analyzes the unicast communications. The
concept of conflict coefficients can also be extended to all-optical multicast communi-
cations. In general, light-trees are used to route multicast requests instead of light-
paths. The assignment of FS on light-trees can also be solved by constructing a conflict
graph exactly in the same way as we discussed in the Chapter 2. Thus, similarly, we
can construct a set of candidate light-trees for each multicast request, and calculate the
corresponding matrix of conflict coefficients on different candidate light-trees to min-
imize the expected intersecting probability. But, it should be noted that the computa-
tion of candidate light-trees is more complicated than lightpaths. Besides, as analyzed
in Chapter 2, the routing scheme is another key factor to influence the performance of
lightpath routing. In Chapter 2, we deduced the optimal routing decision. However,
this optimal routing decision is based on the assumption that the traffic distribution is
obtained. In reality, how to obtain or predict the traffic distribution is another tough
task which may require some other optimization techniques such as AI.

For DSA problem, as introduced in Chapter 3, it is extremely hard to approach in the
general conflict graphs. But in some relatively simple graphs such as bipartite graphs,
the DSA problem can be easily solved. Thus, in future work, it will be interesting to
study how to properly route the lightpaths so as to obtain a simple conflict graph for the
DSA problem. Besides, in this thesis, we mainly consider the min-RSA problem. Thus,
its dual problem, i.e., max-RSA, is also of great interest. The objective of max-RSA is
to maximize the number of requests, which is also NP-hard and requires optimization
techniques based on graph theory. Furthermore, to efficiently solve the DSA problem,
we proposed a two-phase algorithm, of which the second phase is a random approach.
Actually, many other meta-heuristics can be utilized to improve the initial solution such
as local search, simulated annealing, ant colony optimization, etc. To obtain a better
outcome, these methods sometime can be combined together.
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5.2. Future work

Through the analyses in Chapter 4, there still exist a lot of work to do for the path
and cycle embeddings in the future. For example: (a) for path embedding in the real-
istic setting, whether there exist other approaches to improve the proposed KP-based
algorithms; (b) for cycle embedding in substrate networks of general topologies, how to
decompose the general substrate network Gs into a set of substrate cycles and develop
efficient algorithms to embed a set of cycle VNRs {Cr

1, Cr
2, ..., Cr

n} on a set of substrate
cycles {Cs

1, Cs
2, ..., Cs

m}; (c) for the VNE problem in EONs, how to take into account the
features of EONs, for instance, the continuity and contiguity of spectrum resource in
optical fibers. Besides, it is of great interest to further investigate path and cycle em-
beddings in the S-VNE. Their theoretical hardnesses are already obtained in Chapter
4, since the G-VNE is a special case of the S-VNE. For practical algorithms, the cur-
rent work for G-VNE, reflecting some topological-structure features of path and cycle
embeddings, can give some inspirations to the S-VNE.
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