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Abstract

This thesis enters within the framework of Machine learning and concerns the study

of a variety of classification methods for numerical data.

The first issue in this work concerns the study of Rule based classification. In

fact, rule induction algorithms have gained a high popularity among machine learning

techniques due to the ”intelligibility” of their output, when compared to other ”black-

box” classification methods. However, they suffer from two main drawbacks when

classifying test examples: i) the multiple classification problems when many rules

cover an example and are associated with different classes, and ii) the choice of

a default class, which concerns the non-covering case. Our fist contribution is to

propose a family of Possibilistic Rule-based Classifiers (PRCs) to deal with such

problems which are an extension and a modification of the PART algorithm. The

PRCs keep the same rule learning step as PART, but differ in other respects. In

particular, the PRCs learn fuzzy rules instead of crisp rules, consider weighted rules

at deduction time in an unordered manner instead of rule lists and reduce the number

of examples not covered by any rule using a fuzzy rule set with large supports.

The experiments reported show that the PRCs lead to improve the accuracy of the

classical PART algorithm.

On the other hand Naive Bayesian Classifiers (NBC), which relies on indepen-

dence hypotheses, together with a normality assumption to estimate densities for

numerical data, are known for their simplicity and their effectiveness. However es-

timating densities, even under the normality assumption, may be problematic in

case of poor data. In such a situation, possibility distributions may provide a more

faithful representation of these data. Naive Possibilistic Classifiers (NPC), based on

possibility theory, have been recently proposed as a counterpart of Bayesian classi-

fiers to deal with classification tasks. There are only few works that treat possibilistic

classification and most of existing NPC deal only with categorical attributes.

A second contribution in this thesis focuses on the estimation of possibility dis-

tributions for continuous data. For this purpose we investigate two families of possi-

bilistic classifiers. The first one is derived from classical or flexible Bayesian classifiers
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by applying a probability-possibility transformation to Gaussian distributions which

introduces some further tolerance in the description of classes and gives place to the

Naive Possibilistic Classifier (NPC) and the Flexible Naive Possibilistic Classifier

(FNPC). In the same context, we also use a probability-possibility transformation

method enabling us to derive a possibilistic distribution as a family of Gaussian dis-

tributions. First, we have applied the transformation method to move from a classical

NBC to NPC-2, which takes into account the confidence intervals of the Gaussian

distributions. Then, we have tested the feasibility of a Flexible Naive Possibilistic

Classifier (FNPC-2).

The second family of possibilistic classifiers abandons the normality assumption

and has a direct representation of data. We propose two other classifiers named

Fuzzy Histogram Classifier (FuHC) and Nearest Neighbor-based Possibilistic Classi-

fier (NNPC) in this context. The two proposed classifiers exploit an idea of proximity

between attribute values in order to estimate possibility distributions. We show that

Possibilistic Classifiers have a better capability to detect new instances for which

the classification is ambiguous than Bayesian classifiers, where probabilities may be

poorly estimated and illusorily precise. Moreover, we propose, in this case, an hy-

brid Possibilistic Classification approach based on a Nearest Neighbour Heuristics

to improve the accuracy of the proposed possibilistic classifiers when the available

information is insufficient to choose between classes.

The last issue in this thesis concerns the classification of data with continuous

input variables in presence of uncertainty. In many real-world problems, input data

may be pervaded with uncertainty. Naive possibilistic classifiers have been proposed

as a counterpart to Bayesian classifiers to deal with classification tasks in presence

of uncertainty for categorical data. Following this line, we extend possibilistic clas-

sifiers that we have previously proposed for numerical data, in order to cope with

uncertainty in data representation. We consider two types of uncertainty: i) the

uncertainty associated with the class in the training set, which is modelled by a

possibility distribution over class labels, and ii) the imprecision pervading attribute

values in the testing set represented under the form of intervals for continuous data.

We first adapt the possibilistic classification model, previously proposed for the cer-

tain case, in order to accommodate the uncertainty about class labels. Then, we

propose an extension principle-based algorithm to deal with imprecise attribute val-

ues.

Possibilistic classifiers are compared to classical or flexible Bayesian classifiers on

a collection of benchmarks databases. The experiments reported show the interest

of possibilistic classifiers. In particular, flexible possibilistic classifiers perform well

for data agreeing with the normality assumption, while proximity-based possibilistic

classifiers outperform others in the other cases. On the other hand, results in the
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uncertain case show the efficiency of possibilistic classifiers for handling uncertainty

in data. In particular, the probability-to-possibility transform-based classifiers show

a robust behaviour when dealing with imperfect data.

Key words: Naive Possibilistic Classifier, Possibility Theory, Gaussian distribu-

tion, Proximity, Naive Bayesian Classifier, Numerical Data, Uncertainty, Possibilistic

Rule-based Classifier, Fuzzy Rules, Decision List.



Résumé

Le sujet de cette thèse entre dans le cadre d’apprentissage automatique et concerne

l’étude d’une variété de méthodes de classification pour les données numériques.

Notre premier intérêt dans ce travail concerne l’étude des algorithmes d’induction

des règles et leurs performances lors de la classification. Ces algorithmes gagnent

plus de popularité parmi les autres méthodes d’apprentissage automatique grâce à

leurs capacités d’interprétation. Toutefois, l’étude de ces classifieurs nous a montré

qu’ils souffrent principalement de deux limites : (i) le problème de classification

multiple qui se produit quand plusieurs règles couvrent l’exemple à classer mais qui

ont différent conséquents (classes) et (ii) le problème de non couverture quand aucune

règle ne couvre l’exemple et qui concerne le choix de la classe/règle par défaut. Notre

contribution dans ce cadre consiste à proposer une famille de Classifieur à base de

Règles Possibiliste (Possibilistic Rule-based Classifiers (PRCs)) pour traiter ce type

de problèmes qui est une extension et une modification de l’algorithme PART. Le

classifieur PRC garde le même principe d’apprentissage que celui de PART et diffère

de ce dernier en plusieurs aspects. En particulier, le PRC apprend des règles floues

au lieu des règles classiques, considère des règles non ordonnées assignées à des

poids au moment de la déduction au lieu de listes de décision et réduit le nombre

d’exemples non couverts par aucune règle en utilisant un ensemble de règles floues à

large support. Les expérimentations ont montré l’efficacité des PRCs d’améliorer le

taux de classification si comparé à l’algorithme PART classique.

D’autres parts, les classifieurs Bayésiens Näıfs (NBC) ont été largement utilisés

dans plusieurs domaines pour classer les données numériques. Ces classifieurs se

basent sur l’hypothèse d’indépendance et l’hypothèse de normalité pour estimer les

densités des probabilités des attributs. En fait, ces deux hypothèses sont limitantes

dans le sens qu’elles peuvent être problématique dans le cas où les données sont très

réduites. Dans ce genre de cas, les distributions de possibilités peuvent offrir une

meilleure représentation de ces données.

Les Classifieurs Possibilistes Näıfs (NPC), basés sur la théorie de possibilité, ont

été récemment proposés comme une contre partie des classifieurs Bayésiens pour
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traiter les problèmes de classification. Il existe uniquement très peu de travaux

qui s’intéressent à la classification possibiliste dans la littérature malgré que la

théorie des possibilités est connue comme un outil convenable pour le traitement

des données réduites et/ou imparfaites. Deux sous-problèmes sont principalement

traités dans ce cadre : (i) l’estimation d’une distribution de possibilité associée aux

attributs numériques qui doit être la plus représentative des données réelles et (ii) la

modélisation et le traitement d’incertitude reliée aux attributs et à la classe lors de

l’estimation de cette distribution.

Une deuxième contribution dans cette thèse consiste à estimer les distributions

de possibilités pour les données continues. Dans ce cadre, nous avons proposé et

étudié deux familles des classifieurs possibilistes pour des attributs numériques. La

première famille, adoptant l’hypothèse de normalité des distributions des données,

est basée sur une méthode de transformation de probabilité en possibilité permettant

de transformer un Classifieur Bayésien Näıf classique en un Classifieur Possibiliste

Näıf (Näıf Possibilistic Classifier: NPC). Cette transformation a l’avantage d’ajouter

plus de tolérance dans la description des classes. Nous avons également analysé la

faisabilité d’un Classifieur Possibiliste Näıf Flexible (Flexible Näıf Possibilistic Clas-

sifier : FNPC) qui constitue la contre partie possibiliste du Classifieur Bayésien Näıf

Flexible. Dans le même contexte, nous avons aussi utilisé une deuxième méthode

de transformation de probabilité en possibilité permettant de dériver une distribu-

tion de possibilité comme une famille de distributions Gaussiennes. En premier lieu,

nous avons transformé le classifieur NBC classique en un NPC-2, qui prend en con-

sidération l’intervalle de confiance des distributions Gaussiennes. Ensuite nous avons

testé la faisabilité d’un Classifieur Possibiliste Näıf Flexible (FNPC-2).

La deuxième famille de classifieurs possibilistes abandonne l’hypothèse de nor-

malité et reflète une représentation directe et plus proche sur les données. Nous avons

proposé deux classifieurs appelés Classifieur à base des Histogrammes Floues (Fuzzy

Histogram Classifier : FuHC) et Classifieur Possibiliste à base du plus Proche Voisin

(Nearest Neighbor-based Possibilistic Classifier: NNPC). Le premier classifieur ex-

ploite une idée de proximité entre les valeurs d’attribut d’une façon additive tandis

que le second est basé seulement sur l’analyse des proximités entre les attributs sans

les compter.

Nous avons montré que les classifieurs possibilistes possèdent une meilleure ca-

pacité de détecter l’ambigüıté lors la classification que celui des classifieurs Bayésiens,

pour lesquels les probabilités, estimées à partir des données limitées, sont illusoire-

ment précises. Dans le but d’améliorer la performance des classifieurs possibilistes,

nous avons proposé une approche de classification possibiliste hybride basée sur une

heuristique à base de plus proche voisin. Cette heuristique permet d’augmenter

l’exactitude de ces classifieurs dans le cas où le classifieur possibiliste est incapable
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de distinguer entre deux classes à plausibilités proches.

Une troisième contribution principale dans cette thèse est le traitement d’incertitude

lors de la classification des données numériques utilisant la théorie de possibilité.

Dans ce cadre, nous avons étendu les classifieurs possibilistes proposés dans le cas

certain pour être compatibles en présence d’incertitude aux niveaux des données.

Nous avons considéré deux types d’incertitude : (i) l’incertitude reliée à la classe

dans l’ensemble d’apprentissage modélisée à travers une distribution de possibilité

sur les valeurs de la classe et (ii) l’imprécision au niveau des valeurs d’attributs dans

l’ensemble de test représentée sous forme d’intervalles dans le cas continu. En pre-

mier lieu, nous avons adapté le modèle de classification possibiliste, précédemment

développé pour le cas certain, pour prendre en considération l’incertitude au niveau

des valeurs de la classe. En second lieu, nous avons aussi proposé un algorithme basé

sur le principe d’extension qui consiste à estimer les distributions des possibilités

pour un attribut incertain (intervalle) en regardant les distributions des possibilités

de chaque attribut dans l’ensemble d’apprentissage appartenant à cet intervalle.

Nous avons implémenté et testé les différentes familles de classifieurs possibilistes

sur une collection de bases de données. Une étude comparative entre les classi-

fieurs possibilistes proposés et les approches de classification Bayésiènnes classiques

a montré l’efficacité des classifieurs possibilistes pour traiter les données continues.

En particulier, les Classifieurs Possibilistes Flexibles sont performants dans le cas

des données vérifiant l’hypothèse de normalité, tandis que les classifieurs possibiliste

à base de proximité sont meilleurs dans les autres cas. D’autres parts, les résultats

dans le cas incertain ont montré l’efficacité des classifieurs possibiliste lors du traite-

ment d’incertitude au niveau des données. En particulier, les classifieurs basés sur

la transformation de probabilité en possibilité sont robustes lors de la classification

des données imparfaites.

Key words: Classifieur Possibiliste Näıf, Théorie des Possibilités, Distribution

gaussiènne, Proximité, Classifieur Bayésien Näıf, Données numériques , Incertitude,

Classifieur à base de Règles Possibiliste, Règles floues, Listes de décision.
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Introduction

Panoply of artificial intelligence techniques has been developed in order to imitate

intelligent human behaviour. Using the available knowledge on a given problem,

these techniques try to reproduce the process of human reasoning as close as pos-

sible. The general issue of simulating intelligence has been applied in a number of

specific sub-problems such as: deduction, learning, reasoning, decision making, and

knowledge representation.

There is no established unifying theory that guides AI research. At its beginning,

research field in AI claims that human intelligence could be reduced to symbol ex-

ploration using symbolic methods. However, the development of symbolic systems

has showed that they would never be able to imitate all processes of human cog-

nition, especially pattern recognition, learning, and robotics. Many researchers are

rather interested to sub− symbolic methods such as connexionist methods and also

statistical methods (probabilistic methods). Each of these approaches has its advan-

tages, but also some drawbacks. Recently, there has been extensive research activity

at combining (or integrating) symbolic and statistical (or connexionist) approaches.

What they do is a kind of mapping from symbolic rules to other formalisms in order

to gain from the complementarily between these methods and so help to improve

their ability to reproduce human reasoning. From the beginning, machine learning

has been central to AI research. Machine learning consists in the development of

programs which can be improved by experience. The applications are numerous and

concern a variety of fields. For example, we can cite the pattern recognition, espe-

cially text and voice recognition, the process control and the diagnosis of breakdowns,

game programs.

Learning methods from examples are very used in information retrieval applied

to a big mass of data. Indeed, the evolution of data processing nowadays enables

to handle a data with a very big size such as DataWarehouse. For example, su-

permarkets can memorize large quantities of data concerning consumers and their

purchases. The development of Internet and Intranet technologies makes that a

heterogeneous variety of data resulting from different sources and in varied formats

become accessible. The process of information retrieval in large quantity of data

(KDD: Knowledge Discovery in Databases) includes various steps: data selection
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(extraction of information from the Data warehouse); data preparation (removal of

redundancy and noises in data), the data coding (normalization, choice of coding,...);

the data extraction known as: DataMining.

This extraction phase exploits common tools for interrogation such as standard

SQL query and the multidimensional queries, but also, for the extraction of hidden

information, the learning algorithms are very useful. There are different domain of

interest in machine learning, especially supervised, unsupervised and semi-supervised

learning depending on whether outputs (for the given problem) are given or not for

the learner when accomplishing the learning task. Among these domains we are

interested to supervised learning and especially to Classification.

The purpose of classification methods is to identify the class to which belongs

an object given certain descriptive features. They are applied to a large number

of human activities and are in particular appropriated to the problem of automatic

decision making. For example, one can establish a medical diagnosis from clinical

description of a patient; answer to the request of a customer for a bank loan according

to his personal situation, start an alarm process according to signals received by

sensors. A first possible solution to solve this type of problem is expert systems

based approaches. Within this framework, the knowledge of an expert (or a group

of experts) is described through rules.

This set of rules forms an expert system which is used to classify new cases.

This approach, largely used in the Eighties years, strongly depends on the capacity

to extract and formalize knowledge from the expert. Other approaches are largely

considered thereafter for which the procedure of classification will be automatically

extracted from a set of examples. An example contains a set of descriptive features

with the corresponding target (class).

For example, given the history of the loans accorded to each customer with the

personal information for each customer and also the result of the loan request. Then,

a learning system starts from this set of examples can execute a classification process

and will be able to decide the attribution or not of the loan to a new customer

according to its personal information. The main issue of classification is to induce a

general procedure to classify a new example by looking to a set of already observed

examples. The generated procedure will be able to correctly classify these samples

of examples; but especially to have a good predictive capacity to correctly classify

new cases.

Methods used by learning systems are very numerous and result from a variety

of scientific disciplines. The statistical classification methods assume that descrip-

tions of objects in a given class are divided according to a specific structure of the

class. These methods makes priori assumptions on the distributions of features in

the context of classes and the classification procedure will be built using probabilistic
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assumptions like in Bayesian classifiers. The variety of methods comes from diversity

of possible assumptions. These methods are called sub-parametric. Non-parametric

methods (without priori assumption on distributions) were also proposed in statis-

tics. Methods resulting from artificial intelligence are non-parametric methods. We

distinguish the symbolic methods (the produced classification procedure can be writ-

ten in the form of a set of rules), the non-symbolic methods or adaptive methods

(the produced classification procedure is like a ”black box”). Among the symbolic

methods, the most used are based on the decision trees and rule-based learning. For

the adaptive methods, we distinguish two big classes: neuron networks and genetic

algorithms.

In this thesis, we first investigate a primary reflection on symbolic classification

methods especially rule-based learning before going to a deep study on statistical

classification methods which constitute our principal contribution in this work. The

interest accorded to rule-based learning is motivated by more than one reason: in

fact, most of existing expert systems are rule-based since they use symbolic rules of

the form if-then rules in their knowledge representation language. This is due to the

very important benefits that production rules offer to knowledge representation and

reasoning in expert systems, such as naturalness, modularity and ease of explanation.

Although their advantages, in terms of expressivity power, serious problems could

be identified when learning rules. First, it is known that the search process for a

set of rules that optimize the cost function is the main drawback of rule induction

methods because this searching is considered as a difficult optimization problem.

Second even after learning these rules, different problems can occur: especially the

multiple covering case where a test example could be covered or classified by more

than one rule having different labels. The non-covering case is also a conflicting

situation in which no rule can cover the test example.

In this work, we first focus to review the most known rule based classifiers in

the literature and then test the ability of using fuzzy rules instead of crisp ones to

overcome some previously cited problems. In this context, we propose a Possibilistic

Rule based Classifier (PRC) which is mainly based on the learning process of the

well known PART algorithm proposed by Frank and Witten (1998) [85] and aims

to extend and modify this algorithm in order to improve its efficiency. The PRC

differs from the PART algorithm mainly in three ways. In particular, this classifier

investigates fuzzy rules instead of crisp rules to give more flexibility to rule decision

boundaries. Moreover, it considers rules in unordered manner instead of decision

lists at deduction time. The PRC is mainly based on a Possibilistic Rule-based

Reasoning which enables computing the relevance possibility of each rule to a given

test example and thus considering rules in a symmetric way. Finally in the PRC,

we propose to use a rule fuzzy extension with large supports to cover non-covreing

examples instead of a prefixed default class.
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The objective of this part is thus to test the ability of the proposed PRC to

ameliorate the classification ability of a classical rule-based classifier. In fact, we aim

to measure the effect of rule fuzzification on the performance of a classical classifier.

When we deal with classification, we are faced to another serious problem which

is related to the quality of data to classify. Most of existing classification techniques

assume that the available set of examples, from which a classifier will be trained, is

perfect which is not always realistic. In many real world problems, data could be

pervaded with imperfection (imprecision or uncertainty). So it is important for any

information system to be able to deal with such type of data if it attempts to provide

a complete and accurate model of reality. However, this task is hardly achieved by

classical classification techniques for more than one reason: i) first it is difficult to

understand the various aspects of imprecision and uncertainty and ii) in practice

there aren’t standard imperfect benchmarks which could be used in classification as

in the perfect case.

In real classification problems, imperfect information is ubiquitous, almost all

of the information we have about the real world is imperfect. Incompleteness,

imprecision and uncertainty are the very common situations of imperfect data. A

collected data set may include examples with some missing attributes. Incomplete-

ness in attributes may be caused by failures of sensors or bad maintenance of the

data set. On the other hand, data may contain training examples with imprecise

and/or uncertain attributes or class labels. In such situation, attributes or classes

might be labeled in a vague way by a subset of values or by assigning a degree of

belief for each possible label.

For a long time, almost all aspects of imperfect data were modeled by probability

theory but in the last 40 years, many new models, such as fuzzy set theory [173],

evidence theory [49] [156] and possibility theory [63] have been developed to represent

imperfection in data. The large number of models reflects the recent appreciation

that there exist many aspects of imperfection. Probability theory, as good as it is,

is not the unique normative model that can deal with all kinds of imperfect data.

As discussed in Dubois et al. [56], this theory is limited in the sense that it cannot

distinguish between total ignorance and ambiguity.

The subject of this thesis enters within the framework of uncertainty treatment

in the classification of numerical data. Possibilistic classifiers are recent approaches,

based on possibility theory, to study the classification problem. There are only few

works that treat the problem of possibilistic classification in the literature, although

possibility theory is a suitable tool for the treatment of imperfect knowledge. It

should be noted that most of existing Näıve Possibilistic Classifiers deal only with

categorical attributes and require a supplementary discretization phase for numerical

data. Possibilistic classifiers, which are mainly based on naive possibilistic networks,

have similar architecture than that of Bayesians networks known by their simplicities
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and effectiveness for classification.

The aim of this work is to investigate possibilistic classifiers and to discuss their

ability to deal with perfect and imperfect numerical data. These classifiers can be

viewed as a natural counterpart of Naive Bayesian Classifiers (NBCs) mainly based

on probabilistic distributions. The study of possibilistic classifiers is motivated by

the good performance of NBCs and by the ability of possibility theory to handle poor

and imperfect data. For this reason in the second part of this thesis we are interested

to develop and test a variety of possibilistic classifiers which are appropriate to the

perfect or imperfect data.

In this thesis, we propose and study two families of possibilistic classifiers for

numerical attributes which constitute our principal contribution. The first fam-

ily, adopting the normality assumption of data distributions, is based on a method

of transformation from probability to possibility allowing transforming traditional

Naive Bayesian Classifier (NBC) into a Naive Possibilistic Classifier (NPC). The

advantage of this transformation is to add more tolerance in the description of

the classes. We also analyze the feasibility of Flexible Naive Possibilistic Classifier

(FNPC) which constitutes a possibilistic counterpart of the Flexible Naive Bayesian

Classifier (FNBC). In the same family, we also study other variants of Gaussian

based Possibilistic classifiers denoted NPC-2 and FNPC-2 which are based on com-

puting a possibility distribution as a family of Gaussian distributions for which the

parameters are in a chosen confidence interval.

The second family of possibilistic classifiers gives up the normality assumption

and reflects a direct representation of data. We propose two classifiers denoted

Fuzzy Histogram Classifier (FuHC) and Nearest Neighbor-based Possibilistic Clas-

sifier (NNPC). The first one exploits an idea of proximity between attribute values

in an additive manner, while the second one is based only on analyzing proximities

between attributes without counting them. We also develop an approach improving

the performance of possibilistic classifiers in the case of undistinguishable classes

where class plausibilities are too close. We propose to exploit a nearest neighbor

approach to separate undistinguishable classes.

Our last contribution in this thesis consists to extend possibilistic classifiers, pro-

posed for numerical data, to support uncertainty in data representation. Indeed,

we intend to deal with two types of uncertainty: uncertainty related to the class

attribute in the training set modeled through a possibility distribution over class la-

bels and uncertainty related to attribute values in the testing set represented through

intervals for continuous data. We first adjust possibilistic classification model, pre-

viously proposed for the certain case, to support uncertainty in class labels. Then,

we propose an extension principle based algorithm to deal with uncertain attribute

values.
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This thesis is organized in the following six chapters:

- Chapter 1: Possibility theory for uncertainty treatment. This chapter offers an

overview of essential concepts of possibility theory and a brief presentation of other

related uncertainty theories such as probability theory, belief function theory and

fuzzy set theory. A discussion and links between possibility theory and probability

theory is given at the end of this chapter.

- Chapter 2: Classification Methods. In this chapter we have briefly presented

the most used classification techniques and we focused more on Bayesian classifiers.

Advantages and limits of each method are also studied. In this dissertation, we are

mainly interested to statistical methods based on Bayesian networks.

- Chapter 3: Rule-based learning. This chapter gives an overview of the most

known rule-based learning. Two families of methods are pointed out: the method

based on sequential covering algorithm and methods based on decision tree for rule

generation. Other hybrid approaches exploiting a combined process from the two

previously methods are also presented mainly the PART algorithm. Finally experi-

ments for the proposed approaches has been reported.

- Chapter 4: A Possibilistic Rule based Classifier. In this chapter we propose a

family of Possibilistic Rule-based Classifiers (PRCs) which uses a Possibilistic Rule-

based Reasoning to deal with the multiple classification and non-covering problems.

The PRC is an extension and a modification of the PART algorithm which keeps

the same rule learning step as the PART and differs mainly in the type of rules it

represent, the manner to consider rules for deduction and the choice of the default

class.

- Chapter 5: Possibilistic Classifiers for perfect/imperfect numerical data: This

chapter investigates a possibilistic classification paradigm that may be viewed as a

counterpart of Bayesian classification and that applies to continuous attribute do-

mains. For this purpose, we have proposed two families of possibilistic classifiers:

the first family called, Gaussian-based Possibilistic Classifiers. The second family of

possibilistic classifiers abandons the normality assumption and has a direct represen-

tation of data. As an attempt to improve the performance of possibilistic classifiers,

we have proposed a hybrid classification method that is based on a Nearest Neighbor

Heuristic used for separating classes having close plausibility estimates. In this chap-

ter we also extend the possibilistic classifiers to handle uncertainty and imprecision

in input data sets.

- Chapter 6: Experimenting Possibilistic Classifiers for perfect/imperfect data.

This chapter presents all necessary elements which are needed to experiment all

the proposed possibilistic classifiers presented in Chapter 5. Data sets have been

presented and the way these data sets have been contaminated by uncertain class

labels and attributes is detailed. Then, different performance criteria have been
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proposed for the evaluation of possibilistic classifiers. Results of the application of

the proposed approaches on different perfect/imperfect data sets have been reported

and analyzed.

Finally, a general conclusion summarizes the major achievements of this thesis

and presents possible future developments.

An appendix shows some graphical interfaces of the toolbox that we have de-

veloped to implement the PRC approaches as well as all Possibilistic Classifiers i.e.

the NBC, the FNBC, the NPC, the NPC-2, the FNPC, the FNPC-2, the FuHC, the

NNPC, and the NNH.
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Chapter 1

Possibility theory for uncertainty
treatment

1.1 Introduction

Most of existing methods for data analysis have been developed to treat perfect

numeric data which are usually supposed to be valid, complete and specially prepared

for a special purpose. However in practice, statistician are more and more faced to

data whose nature and format do not correspond to this traditional scheme.

There are many reasons which cause the appearance of imperfection in data

representation. In particular, we note the development of exponential means of data

recording and storage. Those are not systematically validated and formatted for a

traditional analysis. Besides, it seems illusory to consider an absolute precision of

the data. Any measurement system has its limits in terms of precision estimated

by its error risk. Thus instead of masking imprecision in real problems dealing with

numerical data (by considering only the median value for example), it can be more

interesting in contrary to integrate the imprecise knowledge in the analysis.

Linguistic descriptions provided by experts, which are usually vague, uncertain

and/or imprecise are another common forms of data not easily analyzable in a tra-

ditional manner. In fact, imperfection can be caused by the difficulty for a expert to

express his knowledge about a situation to which he likes to make decision. Indeed

the precise qualification of a situation by an expert may be difficult in some domains

(e.g., in medical diagnosis, or in law application data) and may be also costly.

Since imperfect knowledge-bases will always exist in practical systems, it is usual

for a system has to be able to model and deal with data base imperfection and

uncertainty. In practice, it is expected that ignoring a partial knowledge about a

situation and considering it as unknown is not faithful and may conducts to erroneous
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decision making. Thus, the solution is to find suitable tools for modeling and dealing

with such imperfect knowledge.

For a long time, probability theory was the classical most used tool. In the last

years, several non-classical theories of uncertainty have been proposed in order to

deal with uncertain and imprecise data. The most known are evidence theory [156],

fuzzy set theory [173], possibility theory [174][63], imprecise probabilities [165].

Even if we briefly introduce a panoply of theories for data imperfection in this

chapter, we are mainly interested to discuss basic foundation of possibility theory.

This last is known by its simplicity and its ability to be applied in different areas

such as information fusion, machine learning, default reasoning and diagnostics...

This chapter is organized as follows: in the next section we distinguish between

different types of imperfect data mainly imprecision and uncertainty. Section 3

provides basic theories dealing with data imperfection. In Section 4, we are totally

interested to give basic notions in possibility theory. Section 5 gives a comparative

study between possibility and probability theory for handling uncertainty in data.

1.2 Imperfection in data

In many domains, numerical data is assumed to give a true representation of reality

such as in pattern recognition, data sensor based systems and data analysis. However

in general, such data may be pervaded with imperfection: imprecision, uncertainty,

ambiguity and incompleteness...

Several authors are interested to precisely analyze different forms of imperfection

in data. We cite for example Bonissone and Tong [15], Bosc et al.[19], Smets [157],

Dubois and Prade [73]. In this section, we give a brief presentation of the topology of

imperfect data. One can decompose imperfection in data mainly into three categories

(nonexclusive): uncertainty, inconsistency and imprecision, each one can be divided

into several sub-categories [128] (Figure 1.1).

To illustrate these concepts, let us consider the example of election for the

Tunisian Constituent Assembly hold on 23 October 2011. For a particular agent,

an observer or a journalist for example, we consider that there are a lot of unknown

information that should be defined such as the name of each politic Party (P1, P2,...),

the elected Parties, and the number of members in the Tunisian Constituent Assembly

for each Party.

We note that incompleteness can be considered as a particular case of imprecision

and refers to a totally absence of information. For example an observer do not ac-

tually has the election result. In contrary, if the observer only know that elected

9
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Figure 1.1: Different forms of imperfect data

Parties will be P1, P2 or P5 or that P1 wins P2 on at least five members, this avail-

able information will be considered as imprecise. For the categorical feature, only

a set of different issues is given to describe this imprecise information, i.e: Elected

Parties ∈ {P1, P2, P5}. For the numerical feature, we know that its value belongs to

a certain interval, i.e: Win− difference ≤ 5.

Other forms of imprecision could also be considered in the same context. Data

could be represented in a vague and/or a fuzzy manner if this data is announced

in a linguistic form. For example, one can say that Party P1 gains the ”major”

members in the Constituent Assembly or that P2 wins P5 with a ”large” difference

of members. These information are considered as vague since no unique significance

can be given for ”major” or ”large” terms and thus they refers to a set of values

whose boundaries are not precisely defined.

Uncertainty refers to the veracity of the information which describes the state of

knowledge of an observer. For example if information misses to a journalist, it can

think to acquire a politician to give him the expected number of elected members

for the Party P1. This journalist should takes into account the credibility of this

politician since even if the given information is precise and complete it could be

erroneous.

Some authors choose to distinguish three types of uncertainty:

� Objective uncertainty that one can randomly assimilate (one can use sensor

networks which may have some error risks such as a temperature or pelvimetry

sensors).

� Subjective uncertainty primarily related to credibility that one assigns to an
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information source which provides the information (the journalist should dis-

tinguish reliable politician.

� Epistemic uncertainty which is related to the lack or the incompleteness of the

information [75].

In numerical case, the precision concept could be represented by a set of points

in the space of possible states. The more this set tends to the singleton, the more

the information is precise. Imprecision occurs when the desired information is only a

simple element, whereas the available information is sub-set containing the element

we search. The certainty is a more delicate concept to represent. It constitutes an

appreciation on the veracity of the obtained information: it is a concept different

from imprecision. Generally the doubt is evaluated by a level on a scale from 0 to

1, level 0,5 corresponds to the maximum uncertainty.

These types of uncertainty can be modelled in more than one way:

- Probabilistic uncertainty: what is the success chance of Party P1 in the next

election,

- Possibilistic uncertainty: the possibility that Party P1 wins more than 3 members,

- Credibilistic uncertainty: my own belief that Party P1 will gain.

To these two forms of imperfection, Bosc et al.[19] adds the inconsistency which

occurs in presence of redundancy when many information are in conflict. For exam-

ple, if we consider two journalists asked to give the total number of electoral lists for

a given Party. The first one say that there is five lists, the second say that it exceeds

seven lists. This inconsistent information can occur when the two journalists consult

two different information sources and one of them is outdated for example.

It is seen that data imperfection can take several nonexclusive forms. For a long

time, it is considered that the probabilistic framework is the only suitable framework

for representing and handling imperfect data. In the thirty last years, others theories

for imprecision and uncertainty management have been considered as alternative

to the probabilistic framework. This is due to the fact that, in many real world

problems, imperfection could not always be explained by a random phenomenon. So

the probabilistic vision seems to be unsatisfactory.

The following sections report basic notions of these theories and also a compar-

ative study between them.
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1.3 Theories dealing with imperfect data

In this section we briefly recall basic notions of the main used theories dealing with

uncertainty in the literature. For this purpose, we will present probability, evidence,

fuzzy set and possibility theories. In the following we also give some notations useful

for this presentation:

� Let denote Ω the universe of discourse for the given problem with Ω = w1, w2, ..., wn.

� 2Ω the set of all possible subsets of Ω.

� A is an element of 2Ω or a subset of Ω .

1.3.1 Probability theory

Probability theory is the most traditional model to deal with uncertain informa-

tion. It dates from the 17th century. It is mainly a quantitative tool for uncertainty

treatment which often touches several real world domains (management, economy,

sciences, industry, etc...). Whereas for several people the probability means a quan-

titative (based on frequency) process of uncertainty treatment, for others it is rather

a Game theory or a randomness theory which is an indispensable tool to model any

real world problem [62].

A probability measure p on a finite space Ω is a non-negative mapping p : Ω →
[0, 1] such that

∑
x∈Ω p(x) = 1. A subset A ⊆ Ω, is called a random event, and

for a given p, the probability measure P of the event A is P (A) =
∑

x∈A p(x). This

measure evaluates to what extend this event could happen in term of likelihood which

is simply the total mass that was assigned collectively to elements of A. Note that

the probability P (A) of the event A corresponds to the expectation of the function

of A which is such that it takes values 1 on elements x ∈ A, and zero on elements

x ∈ Ac, with Ac is the complement of the event A.

The probability of the event A could have a purely classical frequency based

interpretation usually called objective probability which is described by the quotient

of the number of favorable issues (realizing A), NA, on the number of possible issues

N , this quotient requires that the number of possible issues is finite.

In the other hand, probability could be interpreted as the degree of confidence

that someone assigns to the occurrence of an event A. This is the case of subjective

probablity which basis concepts have been introduced by Finetti [81], Savage [154]

and Berenji [11]. The probability interpretation proposed by L.J. Savage is classically

called ”subjective”; it considers that a probability value on an alternative set is given

12
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as a feeling representation of uncertainty in respect to an eventual choice between

several eventualities [154][78].

Formal probability theory is essentially based on the three Kolmogorov axioms

and deduced properties:

Axiom 1.1. ∀A ⊂ Ω, P (A) ≥ 0, P (A) ≤ P (Ω)

Axiom 1.2. P (∅) = 0, and P (Ω) = 1

Axiom 1.3. ∀A,B ⊂ Ω, P (A ∪B) = P (A) + P (B)− P (A ∩B)

A and B are considered as independent events if P (A∩B) = P (A)×P (B). From

the three axioms we can conduct the following properties [153].

Property 1.1. ∀A ⊂ Ω, 0 ≤ P (A) ≤ 1

Property 1.2. ∀A ⊂ Ω,
∑

i P (Ai) = 1

Property 1.3. ∀A ⊂ Ω, P (A) + P (Ā) = 1

Given a probability distribution p : Ω → [0, 1] on element w of event A, a

probability measure can be deduced from the additive property (1.2) in the discrete

domain:

∀A ⊂ Ω, P (A) =
∑
w∈A

p(w), (1.1)

In the continuous domain, the function p is a probability density which is totally

defined by its cumulative distribution P : R→ [0, 1]:

∀w ∈ R,
∫

Ω

p(w)dw = 1, and P (A) =

∫
A

p(w)dw (1.2)

Conditional probability

Assigning a probability measure to an event A, mainly in the subjective case, is not

carried out definitively. This assignment can be justified in a certain context which

is limited by the available knowledge base of the expert. If then later this expert

obtains new pieces of information, this leads to change the knowledge base and thus

update these probabilities.

The Bayes reasoning is a continuation of classical probabilistic reasoning which

enables modeling uncertain situation. Bayes rule can be defined as a model by which

the expert can update his belief about an event A using conditional probabilities.

13
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Conditional probability P(A/B) estimates the probability that an event A occurs

if we know that event B has happen. This probability is formulated by Bayes in the

following:

∀A,B ⊂ Ω, P (A/B) =
P (A ∩B)

P (B)
, P (B) 6= 0 (1.3)

In this context, the knowledge base can simply be defined by all probabilities

P(A/B) for all events A and B. Then for a current situation, an expert only selects the

appropriate conditional probability based on the available knowledge. Conditional

probability can be viewed as a revising probability measure based on the arrival of

new knowledge. The quantity P(A/B) is then considered as the new probability of A

when the expert hears that event B occurred [73]. The principle of minimal change

is the basic for belief revision: the expert minimally revises his/her beliefs so as to

absorb the new information item without violating property 1.2. [73].

Bayes Theorem

Bayes’ Theorem is a theorem of probability theory originally stated by the Reverend

Thomas Bayes and it is used for determining conditional probability. The theorem

provides a way for understanding how the probability that a theory is true is affected

by a new piece of evidence. It has been used in a wide variety of contexts, for example

in finance, Bayes’ Theorem can be used to rate the risk of lending money to potential

borrowers.

Let’s consider the definition of conditional probability: P (A ∩ B) = P (A/B) ∗
P (B). But we can switch the roles of A and B: P (A∩B) = P (B/A)∗P (A). Equating

the right hand sides, we obtain: P(B/A)* P(A) = P(A/B)*P(B) which leads to the

following Bayes’Theorem:

P (A/B) =
P (B/A) ∗ P (A)

P (B)
(1.4)

In problems related to probabilistic inference, we are often trying to estimate

the most probable underlying model for a random process, based on some observed

evidence. If A represents a given set of model parameters, and B represents the

set of observed data values, then the terms in Equation 1.4 are given the following

terminology:

� P(A) is the prior probability of the model A (in the absence of any evidence);

� P(B) is the probability of the evidence B;
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� P(B/A) is the likelihood that the evidence B was produced, given that the

model was A;

� P(A/B) is the posterior probability of the model being A, given that the evi-

dence is B.

Imprecise probability

Assigning precise probabilities for events can be seen as limiting in some contexts.

In fact, the probability theory cannot adequately model any type of uncertainty

because probability measures are too precise such that they do not reflect domain

reality. Precise probabilities are limiting in more than one sight:

- When dealing with objective probabilities, it can be happen that frequency

cannot be precisely defined. At the limit, we can only know that this event frequency

belongs to an interval [166].

- In general, there is rarely sufficient information about the data to help choosing

the convenient probability distribution which best estimates the true distribution of

data.

- In a probabilistic model the estimated parameters, such as the mean or the

standard deviation, could be irrelevant when few samples are available.

- The indifference principle, used in probability theory, seems to be the most point

which should be discussed. This principle assumes that in the case of total ignorance,

it is recommended to say that all possible events are equi-probable. This subjective

probability theory seems to be not very adapted to situations where knowledge is

poor [62].

- Walley [165] proposes the idea of exchangeable bets and thinks that it is more

natural, for an expert, to give prices for example as an interval by providing maximal

baying and minimal selling prices for gambles instead of giving precise values. These

probability intervals allow some imprecision in the expectation provided by experts.

Other justifications can be found in Walley [165]. Upper and lower expectations

defines a closed convex sets of probabilities also called credal sets [73].

Imprecise probability is modeled by a family ℘ of probability distributions used

to generate uncertainty models instead of using only one particular probability dis-

tribution. Lower and upper probability bounds are defined as follows:

P∗(A) = inf
P∈℘

P (A) and P ∗(A) = sup
P∈℘

P (A) (1.5)
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P∗ and P ∗ are usually called lower and upper envelopes [165]. These two mea-

sures are dual to each other i.e. P∗(A) = 1 − P ∗(¬A) and the probability family

is completely defined if one of the two measures is given. Moreover, the interval

[P∗(A), P ∗(A)] represents the expert ignorance about the event A. When this inter-

val become too width, we can say that it represents total ignorance and when it is

reduced to only one point it represent a precise probability.

1.3.2 Belief function theory

Belief function theory is initially named evidential theory and also Dempster-Shafer

theory since it is developed by Dempster (1967)[49] and Shafer (1976)[156]. This

theory is a robust tool for representing uncertain data. We give here some basic

notions of this theory.

Given Ω the universe of discourse, a mass function is defined on the set of all

possible sub-sets 2Ω and affects to each sub-set a value in [0, 1] representing its ele-

mentary belief mass. This later enables modeling uncertain and imprecise knowledge

given by an expert (a source, a classifier,...). More formally, a basic belief assignment

(bba) is defined as follows:

m : 2Ω → [0, 1]

m(∅) = 0 and
∑

A⊆Ω m
Ω(A) = 1

The mass m(A), assigned to the element A and usually called basic belief mass

(bbm), represents the elementary belief degree of the expert that the real value of

a variable is included or equal to A. A sub-set A having a not null belief mass is a

said to be a focal element.

Although condition m(∅) = 0 is not always necessarily, it helps to get bba nor-

malization. This condition supposes that we are in a closed domain Ω. If m(∅) 6= 0,

this mass can be interpreted as the degree of belief that the desired value is a non

enumerated hypothesis in Ω. In a closed domain, Ω is assumed to be exhaustive

which means that all possible hypothesis are enumerated in Ω and thus requires a

null mass to be assigned to the empty set.

Smets and Kennes (1994)[159] claims that an open domain Ω is assumed to be

non exhaustive so a non null mass could be assigned to the empty set.

The belief function (or credibly function) bel represents the minimal belief de-

gree affected to a sub-set of 2Ω which is justified by available information. belΩ(A)

measures the degree for which the information B ⊆ A, given by a source, supports

A. The belief function bel is defined as follows:
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belΩ : 2Ω → [0, 1]

A 7→
∑

B⊆A,B 6=∅m(B)

The plausibility function pl quantifies the belief degree assigned to propositions

not contradictory with sub-set A. It is the maximum belief degree that could be

given to A:

plΩ : 2Ω → [0, 1]

A 7→
∑

A∩B 6=0m(B))

The plausibility function is a dual value to the belief function:

pl(A) = 1− bel(A)

Combination rules

Belief function provides a robust tool for combining different knowledge, represented

by mass functions defined on the same domain and given by different sources. Com-

bination enables confronting these different knowledge in the aim to obtain a unified

one used for decision making.

There are many different combination rules, we present here only the most used

rules. A more complete survey on these rules can be found in Sun and Farooq

(2004)[163]. The conjunctive combination rule (CCR) is used when information

sources are fully reliable. The conjunctive rule enables to combine two distinct

mass functions mΩ
1 and mΩ

2 as follows:

(mΩ
1 ∩mΩ

2 )(A) =
∑

B∩C=Am1(B)×m2(C)

When one or more sources are non reliable, it is recommended to use the disjunc-

tive combination rule defined by [158]:

(mΩ
1 ∪mΩ

2 )(A) =
∑

B∪C=Am1(B)×m2(C)
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1.3.3 Fuzzy set theory

As introduced in the beginning of this chapter, developed systems should be able to

deal with data imprecision and uncertainty often involved in real world problems.

Classical mathematical models usually make restrictive hypotheses that require data

to be strongly precise.

Let us take the example of air-conditioning: if we want to obtain a ”fresh” tem-

perature, we want to know which range of temperature will be appropriate (the

request is obviously vague); moreover the reliability of sensors should be taken into

account (the measurement of the room temperature is uncertain). Linguistic vari-

ables like ”fresh”, ”hot”, or ”cold” have different interpretations which differ from

one individual to another. In addition, the treatment of such data is attached to

uncertainty.

In order to be able to represent such types of information, Zadeh proposed to

model the mechanism of human thought using an approximate reasoning based on

linguistic variables. He introduced the fuzzy set theory in 1965 [173], which gen-

eralizes classical set theory. More generally, the term of fuzzy logic corresponds to

all the developments resulting from the fuzzy set theory.

Many applications have been developed in several domains where any determin-

istic model could not be applied like situations for which data imprecision returns

impossible the control using traditional methods.

Contrary to the boolean logic, fuzzy logic allows to a variable to be in another

state than ”true” (1) or ”false” (0). There are, rather, degrees of checking for each

variable.

Example 1.1.

To illustrate the contribution of fuzzy sets if compared to boolean logic, let us

consider the example of vehicle speed on a trunk road. Normal speed is of 90 km/h.

A speed can be seen as high above 100 km/h, and as not at all high under 80 km/h.

Boolean logic would consider that the speed will be at 100% high starting from 100

km/h and low otherwise. In the opposite, fuzzy logic allows associating a function

degree ∈ [0, 1] for each element w in the fuzzy set A. In this fuzzy extension, the

speed is seen as not at all high only for the lower part of 80km/h. One can say that,

in the lower part of 80 km/h, speed is high to the degree 0. Speed is seen as surely

high (with the degree 1) above 100 km/h. The speed is thus high at the degree 0.5

for 90 km/h, and at the degree 0.25 for 85 km/h (Figure 1.2).

After this brief introduction, let us give now some basic notions in fuzzy set

theory.
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Figure 1.2: Vehicle speed example

A fuzzy set A of Ω is totally defined by a membership function which corresponds

to each element w ∈ Ω the degree µA(w) ∈ [0, 1].

Definitions

The following basic notions characterizes the fuzzy set A (Figure 1.3):

� Support(A): {w ∈ Ω : µA(w) 6= 0},

� Core (A): {w ∈ Ω : µA(w) = 1},

� Height : h(A) = Supw∈ΩµA(w),

� Normalized fuzzy set : A is normalized if h(A) = 1,

� Cardinality : | A |=
∑

w∈Ω µA(w),

� The α − cut of A denoted Aα is the set of elements in A whose membership

function µA(w) ≥ α.

Figure 1.3: A membership function
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Fuzzy operators

Fuzzy subsets are used to describe vague/ imprecise concepts, gradual properties or

uncertain events. Various properties, initially appropriate for classical set theory, are

extended in the context of fuzzy sets. In particular, inclusion, union, intersection,

complement, relation and convexity are established to such subsets. Let A, B, C and

D be fuzzy sets:

1. Equality : A = B if ∀w ∈ Ω : µA(w) = µB(w)

2. Inclusion: A ⊂ B if ∀w ∈ Ω : µA(w) ≤ µB(w)

3. Intersection: A ∩B = C such as ∀w ∈ Ω : µC(w) = min(µA(w), µB(w))

4. Union: A ∪B = D such as ∀w ∈ Ω : µD(w) = max(µA(w), µB(w))

5. Complement : ∀A ∈ Ω : µAc(w) = 1− µA(w)

Fuzzy concepts

- A fuzzy sub-set is said to be convex if its membership function is convex.

- The cartesian product of two fuzzy sets A1 and A2 is defined by:

A = A1 × A2,∀w = (w1, ..., wn) ∈ Ω;µA(w) = min(µA1(w1), ..., µAn(wn))

- The projection on Ω1 of a fuzzy set A ∈ Ω1×Ω2 is the fuzzy set B with membership

function defined by:

∀w1 ∈ Ω1, µB(w1) = Supw2∈Ω2µA(w1, w2)

Extension principle

Zadeh in [173] introduced the extension principle, one of the most important issues

in fuzzy set theory, which allows to exploit our classical knowledge in the case of

fuzzy data (fuzzy arithmetic, fuzzy relations...).

Let F be a real function such that F : Ω → R,R being the set of real numbers.

Let F (w) = u and let µA(w) be membership for w.

Assume that A is a fuzzy set defined in Ω, using the extension principle, the

membership for u is:

µB(u) = sup{µA(w)|F (w) = u}. (1.6)
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The extension principle defines a fuzzy set B in R which is the direct image of A

in the intermediate of F .

1.4 Basic notions in possibility theory

Possibility theory [63] has been introduced by Zadeh [174]. It handles epistemic

uncertainty in a qualitative or quantitative way. In particular, possibility theory is

suitable for the representation of imprecise information. For a more complete in-

troduction to possibility theory, see [70]. Possibility theory deals with possibility

degrees which is rather employed as a graded notion much in the same way as prob-

abilities. Before going to more technical aspects, we first give the basic underlying

the notion of possibility.

As with probability theory, which can produce different interpretations (frequen-

tist or subjective sense), in possibility theory, possibilistic degrees may support sev-

eral interpretations [69]. The most used senses of ”possibility” are the feasibility

or the degree of ease to achieve an action. A logical interpretation of ”possibility”

is that of consistency of a given event with the available knowledge which evaluates

to what degree this event is not contradicting with what we know.

In this quantitative setting, possibility distributions have two types of interpreta-

tions. The first one, that is related to fuzzy set theory, is the description of gradual

properties. For instance, the definition of linguistic expressions such that ”long”,

”old” or ”expensive” does not refer to a specific value, but to a set of possible values

in a specific context. For instance, a possibility distribution may describe the con-

cept ”expensive” for a house in a particular area. In such a case, each price will be

associated with a possibility degree which quantifies how much this price is typical

with respect to the concept ”expensive”. Assigned to events, possibility degrees can

also represent plausibility which reflects the belief degree of the expert that a certain

event will occur.

1.4.1 Possibility distributions

Possibility theory is based on possibility distributions. Given a universe of discourse

Ω = {ω1, ω2, ..., ωn}, a possibility distribution π is a function that associates to each

element ωi from the universe of discourse Ω a value in a bounded and linearly ordered

valuation set (L,<). This value is called a possibility degree. This scale may be

quantitative, or qualitative when only the ordering between the degrees makes sense.

In this thesis, we are only interested to the quantitative reading of possibility degrees

and L is taken as the unit interval [0, 1]. A possibility distribution is used as an
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elastic constraint that restricts the more or less possible values of a single-valued

variable.

In this scope, a possibility distribution is viewed as a family of probability distri-

butions (see [55] for an overview). Thus, a possibility distribution π represents the

family of the probability distributions for which the measure of each subset of Ω is

bounded by its necessity and its possibility measures.

By convention, π(ωi) = 1 means that it is fully possible that ωi is the value

of the variable. Note that distinct value ωi, ωj may be such that π(ωi) = 1 =

π(ωj). π(ωi) = 0 means that ωi is impossible as the value of the variable. Thanks

to the use of the interval [0,1], intermediary degrees of possibility can be assessed,

which enable us to acknowledge that some values are more possible than others. In

possibility theory, different important particular cases of knowledge situation can be

represented:

� Complete knowledge: ∀ωi, π(ωi) = 1 and ∀ωi 6= ωj, π(ωj) = 0.

� Partial ignorance: ∀ωi ∈ A ⊆ Ω, π(ωi) = 1, ∀ωi /∈ A, π(ωi) = 0 when A is not

a singleton.

� Total ignorance: ∀ωi ∈ Ω, π(ωi) = 1 (all values in Ω are possible).

1.4.2 Possibility and Necessity measures

A possibility distribution π on Ω enables events to be qualified in terms of their plau-

sibility and their certainty, by means of two dual possibility and necessity measures

that are respectively defined for an event A ⊆ 2Ω by the formulas:

Π(A) = maxω∈Aπ(ω) (1.7)

N(A) = minω/∈A(1− π(ω)) = 1− Π(A) (1.8)

Π(A) evaluates to what extent A is consistent with our knowledge represented by

π. Indeed, the evaluation provided by Π(A) corresponds to a degree of non-emptiness

of the intersection of the classical subset A with the fuzzy set having π as membership

function. Moreover, N(A) evaluates to what extent A is certainly implied by our

knowledge, since it is a degree of inclusion of the fuzzy set corresponding to π into

the subset A.
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Quantitative possibility distributions can represent, or more generally approxi-

mate, a family of probability measures [66]. Indeed, a possibility measure Π can be

viewed as an upper bound of a probability measure, and associated with the family

of probability measures defined by:

P(Π) = {P s. t. ∀A,Π(A) ≥ P (A)}

Thanks to the duality between Π and N and the auto-duality of P (P (A) =

1− P (A)), it is clear that:

∀P ∈ P(Π),∀A,Π(A) ≥ P (A) ≥ N(A).

This is the starting point for defining a probability-possibility transform. The

width of the gap between N(A) and Π(A) evaluates the amount of ignorance about

A, since it corresponds to the interval containing the imprecisely known probabil-

ity. Thus, possibility distributions can in particular represent precise or imprecise

information (representable by classical subsets) as well as complete ignorance. The

possibilistic representation of complete ignorance should not be confused with a

uniform probability distribution. Indeed, with the above representation, we have

Π(A) = 1 for any non empty event A, and N(A) = 0 for any event A different from

Ω, while a uniform probability distribution on a universe with more than two ele-

ments associates non trivial events with a probability degree strictly between 0 and

1, which sounds paradoxical for a situation of complete ignorance. Possibility theory

is particularly suited for representing situations of partial or complete ignorance (see

[55], [73] for detailed comparative discussions between probability and possibility).

1.4.3 Conditional Possibility and Possibilistic Bayesian Rule

Conditioning in possibility theory is defined through a counterpart of Bayes rule,

namely

Π(A ∩B) = Π(A|B) ∗ Π(B)

It is has been shown that there are only two basic choices for ∗, either minimum

or the product [65]. The min operator is suitable in the qualitative possibility theory

setting, while the product should be used in quantitative possibility theory [40].

Thus, possibilistic conditioning corresponds to revising an initial possibility dis-

tribution π, when a new information B ⊆ Ω is now available.

- Qualitative setting: ordinal conditioning based on the minimum operator which

is suitable for the ordinal setting:
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π(w |m B) =


1 if π(w) = Π(B), w ∈ B

π(w) if π(w) < Π(B), w ∈ B
0 otherwise

(1.9)

- Quantitative setting: Conditioning based on the product operator and suitable

for the numerical setting:

π(w |p B) =

{
π(w)
Π(B)

if w ∈ B
0 otherwise

(1.10)

Quantitative possibilistic conditioning can be viewed as a particular case of

Dempster’s rule of conditioning since possibility measures are special cases of plau-

sibility functions [156].

Possibility theory have many definitions of independence [5]. In particular, two

common definitions have been used to develop possibilistic networks as will be pre-

sented in the next section:

- Non interactive relation [174]: This relation is based on the ordinal conditioning

and is defined as follows:

Π(x ∧ y | z) = min(Π(x | z),Π(y | z)), ∀x, y, z. (1.11)

- Product based independence relation: this relation is based on product based

conditioning and is defined by:

Π(x ∧ y | z) = Π(x | z).Π(y | z),∀x, y, z. (1.12)

1.4.4 Possibilistic networks: PN

Existing works on possibilistic networks are either a direct adaptation of the proba-

bilistic approach [8] or a way to perform learning from imprecise training data [16],

or from imprecise training and testing data [93].

Possibility theory provides two ways to define a counterpart of Bayesian net-

works (presented in Chapter 2) depending on if we use a ordinal or a product based

possibilistic conditioning. Product-based possibilistic networks are very similar to

probabilitic based networks. Minimum based possibilistic networks differ from them.

The key difference concerns the recovering of the initial data from the network, which

is not ensured in minimum based networks.
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Possibilistic networks Representation

A directed possibilistic network on a variable set V is characterized by a graphical

component and a numeric component.

- A graphical component: It is a Directed Acyclic Graph (DAG). The graph

structure encodes independence relation sets between nodes. Each node in the graph

represents a domain variable and each link represents a dependency between two

variables. The DAG enables representing conditional dependency between dependent

or independent variables.

- A numerical component: it quantifies distinct links in the graph and repre-

sents conditional possibility matrix of each node in the context of its parents. These

possibility distributions should respect normalization.

For each variable V :

• If V is a root node and Dom(V ) the domain of V , the prior possibility of V should

satisfy:

max
v∈Dom(V )

Π(v) = 1 (1.13)

• If V is not a root node, conditional distribution of V in the context of its parents

denoted UV should satisfy:

max
v∈Dom(V )

Π(v | uV ) = 1, ∀uV ∈ Dom(UV ) (1.14)

where UV is the value of parents of V and Dom(UV ) is the domain of parent set

of V .

Given all conditional and priori distributions, joint distribution relative to all

variable set can be expressed by the following rule chain:

π(V1, ..., VN) = ⊗i=1..NΠ(Vi | UVi) (1.15)

Where⊗ is a t-norm operator which could be themin or the product. Possibilistic

networks are too related to the adopted conditioning type, it is called a Min-based

Possibilistic Network when we use a Min-based conditioning and a product-based

Possibilistic Network when we rather use a product-based conditioning.
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Product-based Possibilistic Network A product-based possibilistic graph, de-

noted by PPG, is a possibilistic graph whose associated conditional possibility dis-

tribution is based on the product operator. The PPG is mainly suitable for the

numerical setting where possibility measures represents numerical values in [0, 1].

The possibility distribution of product-based possibilistic networks πp, obtained

by the associated chain class is:

π(V1, ..., VN) =
N∏
i=1

Π(Vi | UVi) (1.16)

Min-based Possibilistic Network: A Min-based possibilistic graph, denoted by

MPG, is a possibilistic graph based on the minimum operator suitable for the ordinal

setting where only order between possibility measures is taken into account. The

possibility distribution of Min-based possibilistic networks can be derived from the

following:

π(V1, ..., VN) =
N

min
i=1

Π(Vi | UVi) (1.17)

Example 1.2.

The following figure represents an example of a possibilistic network:

Figure 1.4: An example of a Possibilistic Network

Table 1.1 shows priori and conditional possibility distributions corresponding

to variables A, B, and C. Using the chain rule in (equation 1.16) based on the

product-operator, Table 1.2 includes the joint distribution for the product based

setting. In the same manner, we can obtain posterior possibility distributions in

the min based setting, in particular: π(a2b1c2) = min(π(a2), π(b1), π(c2|a2b1)) =

min(0.7, 0.3, 0.2) = 0.2
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Table 1.1: Initial distributions

a Π(a) b Π(b) a b c Π(c | a ∧ b) a b c Π(c | a ∧ b)
a1 1 b1 0.3 a1 b1 c1 0.5 a2 b1 c1 1
a2 0.7 b2 1 a1 b1 c2 0.3 a2 b1 c2 0.2

a1 b2 c1 1 a2 b2 c1 0.8
a1 b2 c2 0.5 a2 b2 c2 1

Table 1.2: Posteriori possibility distributions

w π(w) w π(w)
a1b1c1 0.15 a2b1c1 0.21
a1b1c2 0.09 a2b1c2 0.042
a1b2c1 1 a2b2c1 0.56
a1b2c2 0.5 a2b2c2 0.7

Propagation in Possibilistic Networks

The main interest of possibilistic networks is the evaluation of the realization impact

of certain event on the remaining variables. This process is usually named propa-

gation which enables to compute posterior possibility distributions for each variable

given the evidence on the rest of variables.

Many possibilistic propagation algorithms have been proposed in the literature

and are especially a direct adaptation of exact or approximate methods proposed for

Bayesian networks [83] [17] and have the same NP-complete aspect. In particular,

these are some related works that treated propagation in possibilistic networks: [83],

[17] and [4].

1.4.5 Information fusion in possibility theory

The need to fusion uncertain pieces of information from different sources is an im-

portant issue in many areas, such as, multi-sensor data fusion, image data fusion,

expert opinion fusion, and multiple classifier results combination.

The information fusion problem differs from both two other problems:

i) Information revision problem: this problem concerns updating available

information upon the arrival of a new piece of information using conditioning as

previously described. Information revision has non symmetrical view to knowledge
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which assumes that prior knowledge is less evaluated than the new knowledge. How-

ever in the fusion problem, all information are treated in a symmetric way and

sources play the same role even if information is heterogeneous.

ii) Multiple criteria agent preferences: the aim in this problem is to search

for a compromise between different view of agents whereas in information fusion, the

aim is to search for a common knowledge by merging different uncertain information

coming from agents.

Uncertainty theories investigate different information merging rules. In partic-

ular, probability theory makes use of the Bayesian probabilistic fusion [73], the

Dempster-Shafer evidence theory makes use of Dempster’s combination rules and

possibility theory exploits the disjunctive or conjunctive (or more generally, t-norm

and t-conorm) fusion operators. In the following, we will only be interested to de-

velop possibility theory merging rules useful in our searching field in this work.

The choice of the information merging rule is too related to the problem under

study and the reliability of information sources [64]. In particular, the conjunctive

fusion operator is commonly applied to a set of reliable sources which agree with

each other. When reliability condition could not totally be checked, the disjunctive

fusion operator seems to be more appropriate. Other refining rules, combining con-

junctive and disjunctive operators, have been proposed for situation where sources

may partially be in agreement and/or only some sources are reliable.

Aggregation rules:

Before going through the development of information merging rules, we first give a

formal representation of the fusion problem.

Given two information sources S1 and S2, the fusion problem account to search

for a value of a variable w considering that:

1. S1 affirms that w ∈ A1

2. S2 affirms that w ∈ A2

3. A1, A2 ∈ Ω

Information provided by each source is usually a possibility distribution π defined

on Ω which reflects the expert belief about the value of the variable w. If n sources

are to be considered, the problem amounts to merge these pieces of information

(πi, i = 1, ..., n ) in order to define a new possibility distribution π which is a function

of all other possibility distributions coming from different sources. More formally:
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π(w) = f(π1(w), ..., πn(w)),∀w ∈ Ω (1.18)

A complete overview of aggregation rules can be found in Dubois and Prade [62],

Fodor and Yager [82].

Conjunctive fusion Triangular norms (t−norms) [110] are mainly used for con-

junctive fusion. Such functions are associative, monotonically increasing, and have

a neutral element 1. The conjunctive fusion rule is defined by:

π(w) = ⊗i=1..nπi(w),∀w ∈ Ω (1.19)

Conjunctive fusion is mainly suitable for problems where all information sources

are reliable and each of them agree with each other. This combination mode uses

intersection between pieces of information to derive the resulting conclusion. In

particular, there are the minimum, the product, and the linear conjunction rule:

� The minimum based-rule : a⊗ b = min(a, b)

� The product based-rule : a⊗ b = a.b

� The linear conjunction rule : a⊗ b = max(0, a+ b− 1)

Given a, b, c and d ∈ [0, 1], the following axioms can be checked for t-norms.

1. Boundary conditions: a⊗ 1 = a and a⊗ 0 = 0

2. Monotonicity: a⊗ b ≤ c⊗ d if and only if a ≤ c and b ≤ d

3. Commutativity : a⊗ b = b⊗ a

4. Associativity : (a⊗ (b⊗ c)) = ((a⊗ b)⊗ c).

When using t−norms, the main question is which rule could be more appropriate

to a given situation?

To answer to this question, we should study characteristics of each combination

operator. In particular, the min based rule enables preserving idempotency which

means that if the n sources give the same possibility distribution it is this distri-

bution which will be considered in result. This case is faithful to avoid redundant

information. The product based rule is assumed to be more applicable than the min

when sources are assumed to be independent.
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This product operator have a more reinforcement effect on the resulting distri-

bution than the min in the sense that the combined information will usually have a

possibility degree very small if compared to possibility degrees assigned by sources.

Finally the linear conjunction rule have a stronger reinforcement effect since it

discards any information that is considered as very little plausible by all sources.

In more recent work, Liu et al. [123] addressed the problem of selecting the best

merging rule. The conjunctive fusion usually generates sub-normalized possibility

distributions (i.e. π(w) < 1, ∀w ∈ Ω) mainly when sources are very inconsistent and

do not agree that there is one totally plausible value for a variable w.

This result could be normalized as follows:

π(w) =
⊗i=1..nπi(w)

maxw∈Ω ⊗i=1..n πi(w)
,∀w ∈ Ω (1.20)

The associativity is preserved when the product operator is used in this normalization

and is lost when the minimum is applied.

Disjunctive fusion Triangular conorms (t−conorms) [110] are dual to t−norms
and are the principal used disjunctive fusion. The disjunctive fusion rule is defined

by:

π(w) = ⊕i=1..nπi(w),∀w ∈ Ω (1.21)

Disjunctive fusion is applied when information sources disagree and when we are

sure that one of the sources is reliable but, given the available knowledge about these

sources, we are enable to know which one is the reliable.

This combination mode assumes that if propositions are contradictory, then it

is better to consider the maximum consistent subsets of propositions by assuming

that the real proposition is one of them. This logic comes from the fact that if

propositions are very discarded (intersection gives the empty set with t-norms very

close to 0), it is more natural to say that one of them may be reliable rather than to

say that simply we are in a total conflict and no proposition could be assumed. The

following disjunctive fusion rules are usually used:

� The maximum based-rule : a⊕ b = max(a, b)

� The probabilistic sum : a⊕ b = a+ b− a.b

� Bounded sum : a⊕ b = min(1, a+ b)

Given a, b, c and d ∈ [0, 1], the following axioms can be checked for t− conorms.
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1. Boundary conditions: a⊕ 1 = 1 and a⊕ 0 = a

2. Monotonicity: a⊕ b ≤ c⊕ d if and only if a ≤ c and b ≤ d

3. Commutativity : a⊕ b = b⊕ a

4. Associativity : (a⊕ (b⊕ c)) = ((a⊕ b)⊕ c)

Contrary to conjunction fusion, this disjunctive fusion provides normalized pos-

sibility distributions. Nevertheless, the main disadvantage of disjunctive merging

operator is that the obtained distribution could be very imprecise since this operator

assumes that only one source is reliable. In particular when possibility distributions

given by sources is very inconsistent, we risk to obtain a possibility equal to 1 for all

subsets, which represents total ignorance.

More refined fusion rules have been proposed as an attempt to integrate both

conjunctive and disjunctive operators into a single merging rule. These rules are ba-

sically more suitable for problems where only some sources are reliable and that they

partially agree with each other. We cite for example the weighted fusion operator,

the adaptive fusion and the accumulative fusion. More details about these fusion

modes is in [64].

1.4.6 Possibilistic logic

In this section, we briefly restate the background on standard possibilistic logic. For

a complete presentation of possibilistic logic you can see [57].

Possibilistic logic, developed by [57] [72] is a convenient tool for handling uncer-

tain or prioritized pieces of information. Possibilistic logic includes a set of logical

formulas associated with a certainty factor (weights) and an inference process used

in deductive reasoning.

Before going for more details, we will first give principal notations used in this

section:

- Let φ, ϕ, χ, ... denote logical formulas.

- α, β, ... denote certainty factors or necessity measures associated to formulas.

- let ¬, ∧ and ∨ are respectively the negation, the conjunctive and the disjunctive

operators.

- Let w ∈ Ω be a possible interpretation.

- |= denotes a syntactic inference.

31



CHAPTER 1. POSSIBILITY THEORY FOR UNCERTAINTY TREATMENT

- ⊥ and > are respectively contradiction and tautologies.

A possibilistic logic expression is a pair (φ, α), where φ is a first-order formula

and α ∈ (0, 1] corresponds to a lower bound of a necessity measure N (also called

certainty factor). A formula of the form (φ, α) means that φ is certain at least

to the degree α (N(φ) ≥ α), where N is a necessity measure. In the qualitative

framework, an ordered scale can be used instead of the numerical [0, 1] scale.

Possibilistic Knowledge base

A possibilistic knowledge base denoted K is a set of logic formulas defined as follows:

K = {(φi, αi), i = 1, ..., n}

n is the number of formulas in K, usually formulas are presented as conjunctions

associated to their necessity measure. We note that the knowledge base K covers a

classical knowledge base where all propositions have the same certainty factor 1.

A possibilistic knowledge base is characterized by a possibility distribution πK
representing a fuzzy set on interpretations w ∈ Ω of K. A distribution πK on Ω is a

function from Ω to [0,1]. πK is said to be normalized if ∃w ∈ Ω such that πK(w) = 1.

A normalized distribution codes a total order on interpretations defined as follows:

πK(w) =

{
1 if w |= φi,∀(φi, αi)

(1− αi) otherwise

A key issue in possibilistic logic is to define and treat inconsistent knowledge

bases. Inconsistency is defined by the highest necessity of the interpretation in K

which leads to a contradiction:

Inc(K) = max({α;K |= (⊥, α)}.

K is also called a knowledge base of α level of inconsistency, which means that

all proposition φi ∈ K has certainty factor αi greater or at least equal to α.

Necessity and possibility measures

A necessity measure N is a function defined on a set of logical formulas to a totally

ordered bounded set with the following axioms:
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1. N(>) = 1,

2. N(⊥) = 0,

3. N(φ ∧ ϕ)) = min(N(φ), N(ϕ))

The last axiom states that to be certain about φ ∧ ϕ to a certain degree, we

should be certain (at least) as much as φ and ϕ separately.

The possibility degree of each interpretation w can be estimated by the dual

measure of the maximum necessity of a formulas satisfied by w. This means that, w

is impossible (π(w) = 0) if there exists a formula with a certainty factor 1 falsified

by w. From the possibility distribution πK , the possibility measure is defined for

formula φ which is a dual measure of necessity N :

Π(φ) = 1−N(¬φ) = max{πK(w), w ∈ Ω, w |= φ}.

Possiblistic inference

The min-decomposability of necessity measures enables to work with weighted clauses

without lack of generality, since N(∧i=1..nφi) ≥ α ⇐⇒ ∀iN(φi) ≥ α. This means

that a weighted conjunctive logical formula is equivalent to a set of weighted clauses

as follows:

(∧i=1..nφi, α) ≡ ∧i=1..n(φi, α).

The basic inference rules in possibilistic logic are [57] :

� Resolution: (¬φ ∨ ψ, α); (φ ∨ ϕ, β) |= (ψ ∨ ϕ,min(α, β))

� The weight weakening: for β ≤ α, (φ, α) |= (φ, β)

Note that classical inference is retrieved when all the weights are equal to 1. The

following inference rules are also valid for propositional formulas:

� Formula weakening : if φ entails ψ classically, (φ, α) |= (ψ, α).

� Weight fusion: (φ, α); (φ, β) |= (φ,max(α, β)).

Refutation can be easily extended to possibilistic logic. Given the knowledge base

K, proving (φ, α) from K returns to add (¬φ, 1) in a clausal form to K and using

the previous rules show that K ∪ (¬φ, 1) |= (⊥, α).

A complete presentation of resolution and refutation based inference in possibilis-

tic logic is given in [57].
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1.5 Links between probability and possibility the-

ories

A variety of works are interested, in the literature, to compare the existing uncer-

tainty theories. Beyond giving only some differences which may be uninterpreted,

it is clearly difficult to conclude the superiority of one of the previously presented

theories. It was proven in [73][60] that, if mathematical object are close, the be-

lief function theory can be viewed as more general than probability and possibility

theories since they can be considered as a particular case, in fact:

� If the mass is attributed to only singleton, the mass is called Bayesian, the

construction of the corresponding belief function gives only one probability

measure bel = P = pl.

� If the mass is attributed to focal element Ai which are consonant (i < j ⇒ Ai ⊆
Aj), then the corresponding belief function is a necessity function (bel = N)

and the plausibly function is a possibility measure ( pl = Π).

However combination operators are different and the result of the combination

of two consonant belief masses is rarely consonant. Moreover, we note that the

classical statistical inference based on likelihood (which is not a probability) and if

normalized, is similar to a possibility distribution.

These are some reflections which incites us not to consider these theories as rivals,

but as proposing complementary representations of uncertainty. A more deep com-

parison between these theories is necessary to show which theory is more convenient

to a special field. In particular, we note the interest of handling conjointly different

formalisms notably to manipulate heterogeneous data. For this reasons some au-

thors have proposed transformations enabling to pass from one formalism to another

[61][34][48][111][119] [59].

In the following, we only give further reflections on comparison between proba-

bility and possibility theories and then present a widely used transformation method

from probability to possibility and inversely in which we are only concentrated on

the numerical case.

A main difference between a possibility distribution π and a probability function

p is that the latter is a normalized measure that requires that the probability sum

of elements in the universe of discourse is equal to 1, whereas in possibility theory

no constraint of this type is required. Probability theory claims that the probability

of an event could simply determined by the probability of the complement of that

event whereas possibility theory involves non-additive measures. So, the crucial

disadvantage of the use of probabilities in uncertainty representation resides in the
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necessity to list an exhaustive set of mutually exclusive alternatives. In real world

problems, it is difficult for an expert to provide facts that are exhaustive and mutually

exclusive because his/her knowledge increases along time and so uncertainty about

the situation decreases.

In the other hand, possibility theory could represent an ordinal scale of uncer-

tainty where only the order between events is important to consider. In some situa-

tion, an expert could only assigns a general order on variables which reflects his/her

qualitative belief on their existence. This field of interest is known under the noun

qualitative possibility which looks similar to subjective probability proposed as a

counterpart to the quantitative probability based on frequency of events. However

the two concepts are radically different in their structure.

It is important to note that the frequency of observations usually provides valu-

able information. However, the frequency-based approach are usually depending on

statistical assumptions when estimating probability distributions. Thus, these later

might be misleading if these assumptions are strongly violated.

Moreover, a possibility distribution is more expressive in some situations. In fact,

possibility measures can reflect ignorance: in particular, the distribution π(w) =

1,∀w ∈ Ω is an expression of total ignorance and reflects the absence of any relevant

information, which means that the expert ”knows that it doesn’t know”. We can

see, in the following, that this type of uncertainty cannot be clearly represented by

the use of probabilities.

Let us continue with the Constituent Assembly election example given in Section

1.2. Considering candidate Parties P1, P2 and P3, we assume that π(P1) = 1,

π(P2) = 1 and π(P3) = 1 which reflects the idea that the three Parties are entirely

possible to gain election. If one wants to use probabilities, he could assign the

weight 1/3 to each Party. Let us suppose now that a new candidate Party P4 has

been added to the list of politic Parties, but that old Parties keep the same statute as

previously presented i.e. that there isn’t any supplementary information that comes

to reinforce or decrease probabilities for the three first Parties. The possibilities are

consequently: π(P1) = 1, π(P2) = 1, π(P3) = 1 and π(P4) = 1. However, the use

of probabilities would now results in assigning the weight 1/4 to each Party. This is

due to the principle of insufficient reason which models complete ignorance by the

uniform distribution. This new assignment means that the first three Parties became

less ”probable” although we have any supplementary knowledge which confirms this

redistribution.

Thus we can say that the probability theory can represent ambiguity whereas the

possibility theory can distinguish between both problems, ambiguity and ignorance.

Ambiguity is present if there is several plausible events with close confidence support

and ignorance can be reflected by the fact that even the most supported event has
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a small degree of possibility.

An other disadvantage of probabilistic measures has a more practical nature. The

calculation rules in probability theory are principally based on products and sums.

The use of these operators encourage the propagation of errors essentially when the

calculus process is too long. Also, this makes the probabilistic model distinguish

much between alternatives whereas this distinction may be unmeaningness in some

situations. This can be prevented by using the min and the max operators which

makes the principal sense of ordinal possibility theory.

Finally as presented in Section 1.4.2, a possibility degree can be viewed as, an

upper bound of probability degrees [66]. Let ℘π = {P, ∀A,N(A) ≤ P (A) ≤ Π(A)} be

the set of probability measures encoded by a possibility distribution π. This notation

is coherent with imprecise probabilities since P ∗(A) and P∗(A) are respectively Π

and N .

In the following we only present transformation from probability to possibility

and inversely which will be basically used in next chapters. Further transformations

between other formalisms such us belief function and probability or possibility could

be found in [73].

1.5.1 Probability to possibility transformation

There are several transformations for moving from the probability framework to

the possibility framework based on various principles such as consistency (what is

probable is possible) or information invariance [35, 47, 111, 67, 58].

The transformation from probability to possibility distributions [58], which has

been extended to continuous universes, accounts for epistemic uncertainty. It yields

the most restrictive possibility distribution that is co-monotone with the probability

distribution and that provides an upper-bound on the probability of any event.

Let us recall the principle underline the transformation from probability distri-

bution p to possibility distribution π∗ proposed in [58][74]. The resulting possibility

distribution should satisfy the following properties:

- Possibility - probability consistency: For any probability density p, the possi-

bility distribution π∗ is consistent with p, that is: ∀A,Π∗(A) ≥ P (A), with Π∗ and

P being the possibility and probability measures associated to π∗ and p respectively.

- Co-monotony of distributions: π(w) > π(w′) if and only if p(w) > p(w′).

The rationale behind this transformation is that given a probability p, one tries

to preserve as much information as possible. This leads to select the most specific
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element in the set PI(P ) = Π : Π ≥ P of possibility measures dominating P such

that π(w) > π(w′) iff p(w) > p(w′).

Dubois et al.[74] suggest to use the ”maximum specificity” principle which aims

at finding the most informative possibility distribution that encodes the considered

probability information. A possibility distribution π1 is more specific than a possi-

bility distribution π2 if and only if

∀x ∈ Ω, π1(x) ≤ π2(x).

Since a possibility distribution explicitly handles the imprecision and is also based

on an ordinal structure rather than an additive one, it has a weaker representation

power than a probability one. This kind of transformation (probability to possi-

bility) may be desirable when we are in presence of poor source of information, or

when it is computationally harder to work with the probability measure than with

the possibility measure.

In the case where the universe of discourse is discrete (i.e. Ω = {w1, . . . , wn}),
the most specific possibility distribution π∗ given a probability distribution p over Ω

is defined by:

∀i ∈ {1, . . . , n}, π∗(wi) =
n∑

wj |p(wj)≤p(wi)

p(wj). (1.22)

Example 1.3.

If we consider Ω = {w1, w2, w3} and p such that p(w1) = 0.5, p(w2) = 0.3 and

p(w3) = 0.2. We obtain π∗(w1) = 0.5 + 0.3 + 0.2 = 1, π∗(w2) = 0.3 + 0.2 = 0.5 and

π∗(w3) = 0.2.

Dubois et al. [74] have justified a probability-possibility transformation method

in the continuous case in terms of confidence intervals (with level ranging from 0

to 1) built around a nominal value which is the mode. It generalizes the previously

presented method for the discrete case [74]. In this context, densities are assumed

to be symmetric with unique mode. Then, the mode is equal to the mean and

to the median. A confidence interval Iα represents the smallest range of values

that is believed to include the ”true” value of the considered variable, with a fixed

probability α. Its confidence level is P (Iα) = α (usually 95%), 1− P (Iα) is the risk

level, that is, the probability for the real value to be outside the interval. It leads to

build the following possibility distribution Π∗ in the continuous case:

π∗(x) = sup{1− P (I∗α), x ∈ I∗α}. (1.23)
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Where Iα is the α% confidence interval.

Figure 1.5: Confidence Interval IL for a given aL

To model this possibility distribution, the authors replace a unimodal probability

distribution by a collection of intervals IL with their confidence level α such that:

π(w) =

{
1 if w ∈ IL

(1− α) if w /∈ IL

Where IL is the smallest interval of the collection that contains w. The most

specific possibility distribution thus obtained satisfies the above requirements: con-

sistency with p, and comonotony:

∀L > 0, π(aL) = π(aL + L) = 1− P (IL). (1.24)

where IL is the smallest confidence interval, of length L, that contains aL (see

Figure 1.5).

Figure 1.6 presents the maximally specific probability-possibility transformation

(in blue) of a normal distribution (in green).

1.5.2 Possibility to probability transformation

Dubois et al. [74] proposed a possibility to probability transformation which is based

on the Laplace principal. This later claims that anything equiplausible should be

equiprobable.

Given a possibility distribution π, the problem is to find a probability distribution

p satisfying the following properties:

∀A,P (A) ≤ Π(A) (probability-possibility consistency)
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Figure 1.6: The maximum specific possibility distribution for N (0, 1).

π(w) > π(w
′
)⇔ p(w) > p(w

′
) ( preference preservation)

p contains as much uncertainty as possible

The authors use the insufficient reason principle to satisfy the last property. To

apply this principle, one can assume that the maximum uncertainty about w can be

represented by a uniform probability distribution on A.

In the discrete case, given a possibility distribution π which can be described

by a finite set w1, w2, ..., wn corresponding to π(w1) = 1 > π(w2) > ... > π(wn) >

π(wn+1) = 0, the following density p is the transform of π:

p(wi) =
n∑
j=i

π(wj)− π(wj+1)

j
, ∀i = 1..n (1.25)

Example 1.4.

Let Ω = {w1, w2, w3, w4} and a possibility distribution π such that π(w1) = 1,

π(w2) = 0.5, π(w3) = 0.3 and p(w4) = 0. We obtain p∗(w1) = (1 − 0.5)/1 + (0.5 −
0.3)/2 + (0.3− 0)/3 = 0.7, π∗(w2) = (0.5− 0.3)/2 + (0.3− 0)/3 = 0.2, π∗(w3) = 0.1

and π∗(w4) = 0.

In the continuous case, given the possibility distribution π, the main idea is to

estimate a probability distribution from α − cuts of the possibility distribution π,

the transformation is:

∀w ∈ Ω, p(w) =

∫ π(w)

0

dα

| (π)α |
(1.26)

where (π)α = {w, π(w) ≥ α} is the α-cut of π, and p is a probability density.
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If we consider the case where π is a membership function with a support [SL, SU ]

and a core [CL, CU ] defined by:

π(w) =


F (w) if w ∈ [SL, CL]

1 if w ∈ [CL, CU ]
G(w) if w ∈ [CU , SU ]

This transformation become:

p(w) =

∫ π(w)

0

dα

(G−1(α)− F−1(α))
(1.27)

If π is a trapezoid function such that:

F (w) = (w − SL)/(CL − SL), F−1(α) = (CL − SL)α + SL

G(w) = (w − SU)/(CU − SU), G−1(α) = (CU − SU)α + SU

we obtain:

p(w) =

∫ π(w)

0

dα

(pα + q)
(1.28)

p(w) = 1/p.Ln((p.π(w) + q)/q) (1.29)

where: p = CU − SU − CL + SL and q = SL − SU .

Transformation of other kinds of possibility distributions can be found in [74]. For

a more deep analysis of the two uncertainty paradigms you can see [32]. In this work,

the authors study the coherence between the probability and possibility measures

obtained using possibility distribution and density functions in the continuous case.

1.6 Conclusion

This chapter offers a summary of imperfection in data representation where a dis-

tinction is made between different forms of imperfect data in particular imprecision

and uncertainty.

In the second part, we have briefly recall basic notions of theories dealing with

uncertainty, principally probability theory, belief function theory and fuzzy set the-

ory. In particular, possibility theory is a new tractable theory that offers a common

setting for modelling imprecision and uncertainty.
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In a large part of this chapter, we investigate an overview of basic concepts related

to possibility theory mainly possibilistic distributions, possibilistic conditioning, pos-

sibilistic networks, fusion and possibilistic logic, etc. In the last part, we involve a

discussion between uncertainty theories and we have mainly emphasized comparison

between probability and possibility theories. Probability-possibility transformation

methods are also presented in the discrete and continuous cases.

In the next chapter, we will focus on the most important machine learning tech-

niques, namely classification. Our interest to possibility theory comes from the

intuition that this theory, if merged with an appropriate classification method, could

be a promising tool for classifying imperfect data.
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Chapter 2

Classification methods

2.1 Introduction

Low costs of machines in term of storage and power computing and also the devel-

opment of data-processing techniques encouraged the companies and organizations

to accumulate large masses of data. These databases are usually under exploited in

spite of they can contain strategic knowledge that can help experts in their reasoning.

These data reserves constitute an important information mine which companies

must exploit and explore in order to discover relevant information useful for predic-

tion and decision making. Data Mining (DM) or Knowledge Discovery in Databases

(KDD) are convenient tools for data exploring need and they include many research

domains principally: databases, statistics and machine learning.

Actually Machine Learning (ML) is the most popular, in this field, which concerns

the searching and discovering of relation, links and logic rules from instance bases.

Machine learning is the origin of a large number of algorithms used for knowledge

discovery and applied in several domains such as medicine, physics and industry.

These algorithms vary in the context of the solution they propose, the data

they exploit, the model they generate and the strategy for training. In spite of these

differences, all ML techniques seek to find an acceptable generalization of the problem

when learning from possible space of concepts. The learning problem amount for

double objectives: avoiding the combinative explosion due to the vastness search

field of possible generalizations and selecting good generalization from all possible

ones. There are several learning methods which are principally divided on supervised,

unsupervised or semi-supervised learning.

Supervised learning concerns all algorithms that exploit labeled training data,

where the desired outputs are usually provided by human experts, to generate a
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general model that maps inputs to desired outputs. In unsupervised learning, the

aim is to analyze the general organization of data where the learner is given only

unlabeled instances. The semi-supervised learning generates learner which combines

both labeled and unlabeled instances.

Among this panoply of machine learning techniques, we emphasize classification

problems as a supervised learning which aims to approximate a model or a function

mapping input vectors into output classes by looking at training input-output ex-

amples.

In this chapter we will mainly be interested to classification task and we will

present an overview of the most used classification techniques. Especially, two fami-

lies of methods are described: methods based on risk minimization such as decision

trees and artificial neural networks and methods based on the maximum likelihood

estimation such as Bayesian networks and instance-based learning.

For these techniques, we only give the basic principle and we principally focus

more on Bayesian networks which are detailed in this chapter because they con-

stitute the background for possibilistic classification approaches that we propose in

this work. This chapter also includes a comparative study of these classification

techniques which discusses their positive and negative aspects.

This chapter includes seven sections: the first five sections corresponds respec-

tively to a brief recall of decision trees, rule-based learning, neural networks, sup-

port vector machine and instance-based learning techniques. Section 6 presents the

Bayesian networks and the main existing algorithms of Naive Bayesian Classifiers.

In Section 7, we give a comparative study between different techniques.

2.2 Notations for classification techniques

In the following, we give some notations to unify the learning process for all classi-

fication techniques:

� A = {A1, A2, ..., AM}: the set of M attributes (properties) or domain vari-

ables of objects in the problem under study.

� V (A) = {a1, a2, ..., aM}: the value of each numerical attribute in A which can

be a real number < or an interval in the numerical case.

� C = {c1, c2, ..., cC}: the set of C discrete labels or classes, i.e., the output

variable for each object.
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� T = {a, b, ...}: the set of all examples or instances corresponding to all ob-

served examples in the universe of discourse. More formally each ak is repre-

sented by V (A).

� Tr = {atr, btr, ...}: the training set (a subset of T ) containingN labeled/unlabelled

instances used in the learning phase. In supervised learning, an instance include

both V (A) combined with a class value cj whereas in unsupervised learning

only V (A) is given in each instance.

� Ts = {ats, bts, ...}: the testing set that contains all instances in T not exploited

for training. This set is used to test the generalization ability of the classifier.

2.3 Decision Trees

For many learning tasks, it is important to produce classifiers that are not only

highly accurate, but also easily understood by humans. Decision Trees (DTs) are a

particular type of rule-based tools. The attractiveness of these models rests on the

rules they learn which can simply be understandable and interpretable. Supervised

learning algorithms uses recursive partitioning to form a tree structure with if-then

rules (each of them is applied with a particular feature as splitting criteria). These

tests are chosen to best discriminate among target choices. Each branch on different

levels of the tree represents a subgroup of observations with homogeneity of different

degrees. Homogeneity increases from top to bottom where the bottom leaves contain

the cases with the same target (classes) while the top branches offer the roughest

split.

Decision trees are generated in two phases:

i) The building phase: two main steps are conducted here. The first one concerns

the tree structure growing and the second one consists in optimizing by punning

the tree induced in the first step.

ii) The classification phase: the induced decision tree is used to classify test

instances.

To induce a decision tree, a training set is usually used which can include either

discrete or continuous attributes.

For a given training set, the general idea when constructing a DT, is to create

a test on an attribute in each construction step. Then the main question is how to

choose the best attribute to create branches in the tree. Several methods can be

applied to define the optimal test, however the objective is always the same : choose
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the test on an attribute that best discriminates classes in the training data. This

process is repeated on each partition of the divided data, creating branches in the

tree until training data in divided on subsets labeled with the same class. At this

moment, a leaf node is created and the target class is assigned to this leaf.

The most used methods for feature selection is the Information Gain [100] and

the Gini Index [27]. In particular, the information gain computes the estimated en-

tropy reduction of examples when a particular attribute is selected for splitting. The

DT algorithm calculates this value for each attribute and chooses the one reducing

more the entropy, i.e. which contributes to best separate the remaining examples.

The general principal of building a decision tree is presented in Algorithm 1.

Algorithm 1 Basic Algorithm for building Decision Tree

if all training examples belong to only one class then
make a leaf node labeled with that class

else
repeat

Given a training set Tr, select the attribute that maximizes the splitting
criteria such as Information Gain
Split Tr into different subsets, one for each value of the selected attribute.

until a stopping criteria is satisfied
end if

In the tree construction phase, an important problem usually occurs; overfitting.

The DT classifies very well training examples, but it fails in generalization; it finds

difficult to classify unseen examples [134]. Overfitting can occur when examples are

noisy or there is’nt enough examples for a particular spitting. In general, the risk of

overfitting increases when the tree becomes deep. To ovoid overfitting, the idea is to

find the optimal depth of the tree.

To estimate the best size of the tree, we divide the training set in three partitions,

then we use only 2/3 for DT construction and the remaining 1/3 for tree validation

or punning. The validation procedure consists to successively remove some nodes in

the tree. Each removed node becomes a leaf with the same label as its immediate

parent node.

Other pruning methods have been proposed, notably those used in the C4.5

algorithm [145]. In this technique, a DT model can simply be presented by a set of

rules of the form IF(Premise) THEN (Conclusion). In the pruning step, the algorithm

progressively eliminates selectors (conditions) in the premise part. A selector is only

removed if it does not decrease the capacity of the tree to classify examples. The final

set of rules may contain redundant rules because some examples can be covered by

more than one rule. Rules are then ordered: rules making the lowest error rate (False

Positive) are presented initially. Examples not covered by any rule are assigned to

a default class which is generally the largest class. Pruning reduces the number of
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rules and selectors in each rule without affecting the hole accuracy.

The most commonly used DT algorithms include the 1R algorithm which pro-

duces the most simple decision rule [96]. This algorithm seeks for the best attribute

with many values for which examples of the same class dominates other classes and

presents them as a rule. ID3 [146] and its successors C4.5 [145] and C5.0, are actually

the most largely used algorithms for DT classification. A study done by Kotsiantis

[114] has showed that the C4.5 has the best error rate and rapidity compromise

among other machine learning techniques. The principle of this algorithm (and its

basic version ID3) will be presented in Chapter 3 as a basic step for inducing a

rule-based learner from an initial decision tree.

We also cite the CART algorithm [27] where the abbreviation means ”Classifica-

tion And Regression Trees”. This DT algorithm is based on the Gini index criteria

for attribute splitting and produces only binary branching nodes in the tree. In fact,

the C4.5 algorithm is gaining more popularity. Compared to the CART algorithm,

this later can produce trees with varying numbers of branches at each node and deal

with both continuous and discrete variables

Among machine learning techniques, decision trees are considered as powerful

tools which are very useful for prediction. As stated before, they gain their popu-

larity, with respect to other classification techniques, considering their comprehensi-

bility and interpretation ability. Simple rules of the form IF-THEN presented in the

DT, are convincing tool able to explain, for a decision maker, why a particular class

is assigned to a given instance.

2.4 Rule-based learning

As announced in the previous section, rule induction algorithms, like decision trees,

are conceived to acquire general models from training data. These models are pre-

sented through a set of classification rules. Each rule is of the form: IF Conj1 AND

Conj2 ....THEN Conclusion, where conjunctions describe a selector on an attribute

and its value and Conclusion represents predicted value of the class attribute. In

this section, we only give a brief introduction to rule-based learning allowing us to

compare the general principle of this method to other machine learning techniques.

A deep presentation of rule based learners and the corresponding algorithms will be

reserved in Chapter 3.

During the 30 last years, several rule induction algorithms have been developed.

Almost all these algorithms use one of the following strategies to induce rules from

data [134]. The first strategy consists to build a decision tree, using one of the

algorithms described in the previous section, then extract one rule for each leaf in
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the induced tree. We can cite, in this field, the PART algorithm [85] which is based

on the C4.5 algorithm previously introduced. The second strategy, usually based on

the sequential covering principal, is used in the AQ [132], CN2 [36] and RIPPER [39]

algorithms. The third strategy is used in evolutionary algorithms, such as genetic

algorithm for rule extraction. We cite for example, the GABIL algorithm [46], and

algorithms for genetic programming presented in [86] and [169]. Some other hybrid

algorithms combining more than one strategy can also be used.

The sequential covering strategy generates a rule set instead of a decision tree.

Rule induction using the sequential covering, learns one rule from the available train-

ing set, remove from this set examples that are covered by this rule and then learns

recursively an other rule covering the remaining examples. This process is repeated

until all examples are covered. This strategy is the most commonly used in a large

set of rule induction algorithms. Methods based on this strategy differ principally in

the induction procedure used to explore rule candidates and the pruning procedure

used to refine induced rules. The rule learning step concerns the feature selection

techniques to construct rule selector and the choice of cuts on each feature. This

part will be detailed in Chapter 3.

2.5 Neural Network Classifiers

Artificial neural networks are information processing structures containing basic

units designed to model the behavior of human neurons. Like the physical archi-

tecture of the brain, they are composed of a number of parallel, distributed and

interconnected neurons or processing elements (PEs) to produce linear or nonlinear

mapping between input and output variables [178]. ANN use pattern association and

error correction as an underlying mechanism to represent a problem or relationship.

ANN operate as a simple process: a unit or neuron combines its inputs into a single

output value, a process usually called the unit’s activation function. An activation

function has two parts: Combination Function, which merges all the inputs into a

single value; and Transfer Function, which transfers the value of the Combination

Function to the output of the unit. A network can contain units with different trans-

fer functions serving different operations. Usually the sigmoid function is the most

used activation function. A common neural network structure used for classifica-

tion is the topology called multi-layer perceptron (MLP) [151] with an architecture

similar to that in Figure 2.1.

In the following we give the general principle of classification with Artificial neural

networks. Zhang [175] presents a general overview of the most existing works on

ANN. A multilayered perceptron is a network with one or more neurons in the

hidden layer (nodes between input and output layers). The number of hidden layer

and the number of neurons in each layer are not limited and are too related to the
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problem under study. In multilayered perceptron, there is no connection between

nodes in the same layer nor loops from output to input nodes.

Figure 2.1: A multilayered perceptron

Classification with ANN is conducted into two phases: in the beginning, the net-

work is learned from a training set to determine its structure and then this structure

is used to classify new examples.

The network structure defines the relationship between inputs (variables) and

outputs (classes). The first learning step enables adjusting activation weights of

the network: weights, initially randomly assigned to nodes, are iteratively adjusted.

Supervised learning uses labeled examples (pairs of input-outputs) to enable the

network to correct its responses in a manner to get closer to the desired responses.

In non supervised learning, only input data are given to the network and we expect

that this later will be able to define correlation with outputs.

The main problem when learning the structure of the network is the choice of the

hidden layer size. In fact, an under-estimation of the node number in this layer may

lead to erroneous approximation and so a week generalization ability. In the other

hand a high number of redundant units may cause overfitting. Generally, a failure

in the application of a NN can be attributed to a inappropriate learning, inadequate

number of units in the hidden layer or to the presence of a stochastic instead of a

determinist relation between inputs and outputs. A complete study of this problem

can be found in [31] in which the authors give a justification of the choice of the

network structure.

ANNs are based on the evaluation of the error between the predicted response

given by the network and the real response. The network recalculates the connec-

tion weights in order to minimize this error. The most known algorithm for super-

vised learning to estimate weights is the Back Propagation algorithm [122] presented

in the following. The back propagation is a generalization of the LMS algorithm

(Least Mean Square), which uses the gradient descent technique to minimize the

error square sum between desired outputs and predicted ones. The back propaga-

tion algorithm requires a non linear activation function of neurons which should be

differentiable. The most widely used activation function is the Sigmoid.
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The back propagation algorithm includes the following steps:

� In the first step, the network is initialized with arbitrary weights.

� Present a set of training examples a, b, ... and their desired outputs, c1, c2, ... to

the network.

� Compute the response y1, y2, ... of the network to input examples a, b, ... and

their weights.

� Adjust the weights of each neuron to minimize the local error. The weight

update is carried out through the following formula:

Wij(t + 1) = Wij(t)− ε α ioj where oj is the output of the neuron j and ε is

the training level.

– If i is an output neuron: α i = 2(ci − yi)f
′
(I), where I is the total input

for this neuron (
∑

jwijoj).

– If i is a neuron in the hidden layer : α i =
∑

h α hWhif
′
(i), where h are

neurons connected to i.

These steps are repeated until weights Wij become more steady. The network do

not carry out a feedback connection however the error is propagated, in the training

phase, from outputs to inputs which justifies the name : ”error back propagation

algorithm”.

The multilayered perceptron has a high ability to generalization i.e. predict

responses for examples not observed in the training set. The multilayered perceptron

has been used in different domains such as classification, expectation and control.

Although the back propagation algorithm allowed to the neuron networks to conquer

several real world domains such as pattern recognition, control quality and robotics

it has the drawback of being very slow at the training time for the majority of

applications. One of the suggested approaches to accelerate training is to initialize

the network by optimal weights [170]. The genetic algorithm as well as Bayesian

Networks were proposed as alternative to learn NN weights and thus improve its

response time.

2.6 Support Vector Machines

The Support V ector Machine (SVM) [164], used in the classification task, is based

on the principal of structural risk minimization contrary to empirical methods which

minimize error caused by training examples such as neuron networks. A survey of
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SVM approaches can be found in [30]. The SVM method aims to minimizing the

hole error (approximate error and estimated error). In its basic form, the SVM

method enables to accomplish binary classification which consists to construct an

hyperplane described by weight vectors w and bias terms b as shown in Figure 2.2.

This hyperplane separates positive and negative examples with a maximal margin.

Figure 2.2: Maximum Margin based SVM

Considering the training set with N labeled examples, the SVM method seeks for

the optimal hyperplane according to a set of criteria to optimize. In the classification

phase, the class to attribute to a test example x, is defined by projecting x on weight

vectors w as follow:

f(x) = w.x+ b (2.1)

The sign of the projection enables estimating the predicted class. Several hy-

perplane choices can be used to separate data space into two subsets. The method

based on the maximum margin criteria can be seen as convenient optimality criteria.

This criteria favors the hyperplane with the most large separation margin (Figure

2.2). To describe the optimal hyperplane, only vectors on the margin, called support

vectors, are necessary.

The searching process for this hyperplane returns to an optimization problem

which consists at minimizing 1/2‖w‖2 under constraint yi(w.xi + b) ≥ 1. For a more

relaxed constraints, we obtain the following optimization problem:

Minimize Φ(w) =
1

2
‖w‖2 + C

∑
i

εi

Subject to : yi(w.xi + b) ≥ 1− εi, εi > 0,∀i.
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Large regularization parameter C involves high penalty for constraint violation.

A possible solution for this problem, is to re-write C in terms of positive lagrangian

multipliers αi [164]. So the dual representation of the previous equation requires

maximizing the following optimization problem:

LD =
N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyj(xi.xj)

Subject to:0 ≤ αi ≤ C,
∑
i

αiyi = 0 and yields

w =
N∑
i=1

αixiyi

Results of this optimization problem is thus a set of α∗i coefficients so that the

previous equation is maximized. These coefficients will be used to construct the

optimal hyperplane. This latter can be seen as a linear combination of training

examples. Only examples with αi ≥ 0 are useful, they correspond to support vectors

having a minimal distance to the hyperplane; the bias b is calculated by taking two

arbitrary examples from the (+) and the (-) classes.

We can say that the SVM technique is a supervised learning where a training

and a testing set are used. The training phase amounts to the generation of support

vectors which constitute the representative of the class (the most near points to the

separation border between classes).

Classification using the SVM method, is conducted by resolving a problem of

the dimension N where N is the size of the training set. To resolve such problem,

operations on large dimension matrices should be conducted which make this method

considerably slow. This is the main drawback of this classification method.

However, the optimization problem presented in the SVM method, necessarily

reaches a global minimum and avoid falling into a local minimum as in the case

of Neural Networks [114]. In the other hand, SVM techniques are binary, so for a

multi-class problem, we should reduces this latter to multiple binary classification

problems. Discrete data are also problematic, a supplementary step which consists

to rename these variables is necessarily in order to have good classification results.

2.7 Instance-based learning

Instance-based learning is a kind of lazy methods which are based on maximum

likelihood estimation. It is a family of learning algorithms that, instead of performing

explicit generalization, compare an instance to classify to instances observed in the
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training set, which have been stored in memory. The principle of instance-based

learning is to transfer past experiences (cases) on a problem to give a solution to

a present situation. The main advantage of instance-based learning, if compared

to other classification techniques, is its ability for incremental learning. Because no

explicit model is needed to be generated in the training phase, the update of a new

instance have no effect on the relevance of the model. This instance can simply be

added to past experiences. Other methods, such as decision trees, generally require

the entire set of training data to be re-examined in this case.

The most well known algorithm in instance based learning is the k-Nearest Neigh-

bour algorithm [44]. The work in [1] and [126] presented an overview of most used

instance based learning classifiers. The K-NN algorithm is based on the idea that

instances, in the training set, usually exist in the proximity of other instances having

similar proprieties [42]. To classify a new instance, the k-NN assigns the instance to

the class labeling its nearest neighbor instance observed in the training set.

The k-NN identifies the k nearest neighbor instances to the instance to classify

and then votes for the class with the highest frequency. In the following, we give the

general principle of an instance based learning algorithm:

Algorithm 2 Instance-based classifier (Training instances Tr, Test instance ats)

class(ats) = ∅
find the k most nearest instances in the training set according to a distance metric
Class(ats) = most frequent class label of the k nearest instances
return Class(ats)

A good distance measure is a measure that minimize the distance between similar

instances and maximize the distance between instances with different classes. Given

two instances a and b, many metrics have been proposed to measure to what extend

a is close to b.

� D(a, b) = (
∑M

i=1 |ai − bi|r)1/p: denotes the Minkowsky distance.

� DM(a, b) =
∑M

i=1 |ai − bi|: denotes the Manhattan distance.

� DE(a, b) = (
∑M

i=1 |ai − bi|2)1/2: denotes the Euclidean distance.

� DCheb(a, b) = maxMi=1 |ai − bi|: denotes the Chebychev distance.

� DCamb(a, b) =
∑M

i=1
|ai−bi|
|ai+bi| : denotes the Camberra distance.

To improve the accuracy of instance-based learning, a variant of algorithms use

weighted vote to define the importance of each neighbor on the decision to take. A

survey of weighting algorithms can be found in [167].
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The k-NN has showed its efficiency in many real world problems, however there

are some limits according to this learning method:

i) It requires a large set of data.

ii) It is sensitive to the choice of the distance measure when classifying new instances.

iii) The large storage requirement in the classification step caused by the necessity

to scan all training instances in order to compute the distance from a testing

instance.

iv) The difficulty to choose the optimal parameter k.

In particular, the choice of the parameter k affects the efficiency of the k-NN algo-

rithm for more than one raison: if instances, not similar to an example to classify, are

in its proximity, these instances will win the vote which causes a false classification.

Usually a large k is recommended. In the other hand, if the region defining a class of

instances is so small so that instances from this class surrounding the example win

the vote, a small k should be used.

The work in [167] studied the effect of the choice of parameter k in presence

on noisy instances. In [136] the authors presented a study of the k-NN efficiency

as a function of domain characteristics which includes the size of the training set,

the number of relevant or irrelevant attributes, the degree of noise in the data and

parameter k.

The major advantage of instance-based learning is the simplicity of the training

phase. In deed, this method do not require to generate any model for this step,

if compared to decision trees for example. In addition, instance-based learning is

known by its rigidity and stability to training set updating. While a small change

in this set could involve re-examining all training instances in order to learn a new

decision tree, this change have’nt an important effect on instance-based learning.

This characteristic enables it to be a incremental classification technique.

As we have already mentioned, the main drawback of instance-based learning is

the high computational time in the classification step. Many heuristics have been

proposed to deal with this problem. The idea is to filter irrelevant instances for

classification [115]. We cite for example, the ICF algorithm proposed by [28], in

which the authors showed that the number of relevant instances can be reduced

until 80% without considerably affecting the classification accuracy.
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2.8 Statistical learning methods

Contrary to ANNs, statistical approaches are characterized by generating an explicit

probabilistic model in the training step. The produced model is then used to pro-

vide the probability, for a test instance, to belong to each class, rather than simply

choosing a class in an obscure way. Linear Discriminating Analysis: LDA and Fisher

linear discriminants are simple methods used in statistics and machine learning to

find linear combination of attributes which best separates binary or multiple object

classes [87].

Other techniques are based on the maximum entropy to estimate probability

distributions on data. The principle of this technique is that if nothing is known,

the distribution should be the most uniform that possible, i.e., having a maximum

entropy. Bayesian Networks are the most known statistical learning algorithms.

2.8.1 Bayesian Networks

Bayesian Networks(BN), initially proposed by [139], are graphic probabilistic models

which enables acquiring and modeling knowledge from data. Particularly adapted

to deal with uncertainty, these models can be manually described by domain experts

or also automatically generated by learning.

A Bayesian Network have the same architecture as a Possibilistic Network previ-

ously introduced in Chapter 1. It is a simple graph in which nodes represent domain

variables, and arcs (the graph is thus directed) connecting these variables are at-

tached to conditional probabilities. Bayesian Networks are represented by acyclic

graphs without loop (DAG). The arcs represent relations between variables which

are either deterministic, or probabilistic. Thus, observing one or more causes do not

systematically imply effects which depend on it, but only modifies the probability

of observing them. The main interest of the BNs is to take into account simulta-

neously the a priori knowledge of experts (in the graph) and experience contained

in the data. More formally, BNs are concise representations of the joint probability

distribution (JPD)P (V ) on a set of random variables V = {V1, ..., Vn}. The authors

in [139] define a BNs as a triplet 〈V, G, P (Vi|U(Vi)) 〉 defined by:

� A set of random variables V = {V1, ..., Vn}.

� An oriented acyclic graph (DAG) G, where each node is associated to a variable

V.

� Conditional probability distribution P (Vi|U(Vi)) of each variable V given its

immediate parent U in the graph G.
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A BN propagates probability distributions through the graph. This propagation

results from the application of probability chaining rule to joint probability distri-

bution. More precisely, after propagation, the following distributions are obtained:

P (V1 = v
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i1
, ..., Vn = v

(n)
in

)
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in
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∗P (V1 = v
(1)
i1

)

The independence assumption, usually adopted, announces that each variable

Vi is independent of each other variable. This assumption considerably simplifies

the previous equation because, in this case, each variable Vi is only dependent on

its immediate parent. This simplification enables to eliminate variables Vi in the

conditional structure. The joint probability distribution is calculated as follows:

P (V1, ..., Vn) =
n∏
i=1

P (Vi|U(Vi)) (2.2)

In BNs, a child variable Vi is connected by an oriented arc to his immediate

parent (U(Vi) ). Arcs are drown from parent to child.

To model a Bayesian Network, usually a database should be given which is used to

generate the graph characterizing conditional dependencies between variables. This

is held in two phases:

� Network training: The main question, in this step, is to derive the struc-

ture of the DAG. Then it is necessary to define its parameters; probabilities

associated to the network from the given data.

� Bayesian inference: From results given in the first step, the network prop-

agates information inside its structure, allowing any interrogation and can

provide, for each partial or complete state of the database, the occurrence

probabilities of all possible values of each variable.
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The main contribution of BNs, if compared to decision trees or neural networks,

is certainly the capacity to take into account priori knowledge for the given prob-

lem. This knowledge is represented through the structural relation between random

variables. The a priori expertise or knowledge of the domain can take various forms

according to the node which represents it. Indeed a node can be the root without

any parent, a leaf without any child, a cause or a direct effect of another node. BNs

offer also a complete or a partial order on nodes which requires that a given node

must obligatorily appear before another node in the network.

Construction of the BN structure by training

The structure of Bayesian Networks is defined by the set of arcs of the directed graph

in the network. In some cases, the BN structure is provided by an expert. If it is not

the case, this structure can be learned from complete or incomplete data. The search

of the network structure is a difficult problem mainly because the search space is of

an exponential size according to the number of variables. So the main question is

how to derive the best structure of the BN?

There are two general approaches of BN structure construction by training [84].

The first one is based on searching and scoring methods, the second one is rather

based on dependency analysis methods.

The first approach have a heuristic nature, it seeks for the best structure which

adapts to the data. It starts with a disconnected graph, uses search methods to

add arcs and tests by the use of a score if the new structure is better than the old

one. In the second approach, the problem is seen differently. The algorithms of

this approach try to discover the dependency of the data and then employ these

dependencies to imply the structure. Each of these approaches have advantages and

disadvantages. Generally the approach based on the dependency analysis is more

effective for a network in which the structure is not too complex, but the majority of

these algorithms require an exponential number of tests on conditional independence.

François and Leray [84] have developed a comparative study of algorithms for BN

structure construction by training [130]. This study is related to algorithms MWST

(maximum covering tree), PC, K2 and GS (gloutonne search). The authors affirm

that, MWST algorithm gives a graph close to the origin graph, in spite of the fact

that this method traverses only the poorer space of the tree. The heuristic PC also

gives good performances. This method builds structures with few arcs, all of them

are almost relevant. The K2 method is very fast and is often used in the literature.

It remains however too sensitive to initialization. Two different scheduling give two

different BNs. For a fixed order, K2 always finds the same graph. On the other

hand by changing scheduling, the final graph changes radically. K2 is employed with

the algorithm MWST in order to give good performances. The algorithm GS is also
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robust with respect to the variation of the database size especially if it is initialized

with the tree obtained by MWST.

Inference in Bayesian Networks

Bayesian Networks enables representing a set of random variables for which we know

that a dependency relation could exist. Let V be this set of variables and P(V) the

probability distribution on V. If a new information on one or more variables is given,

then one would like to update knowledge represented in the BN through P(V) in

the light of this new information. This updating, conducted by using the Bayes

rule, is called the inference process. More formally, the inference in a BN amounts

to calculating P (V |ε), i.e. the calculus of the posteriori probability of the network

knowing ε.

The first algorithms used exact inference (in opposition to approximate) for

Bayesian Networks and are proposed by [138] and [109]: it is an architecture based

on transferring message between nodes. In this technique, to each node is associated

a processor which sends messages, in an asynchronous way, to its neighbors until sta-

bility is reached in a finished number of steps. This method was extended to other

types of networks to give the algorithm JLO. This method is also called junction

tree algorithm developed by [120] and [106].

Another method, developed in [139] and [105], is called the cat-set-conditioning:

it consists in instancing a number n of variables so that the remaining graph forms a

tree. We carry out a propagation by messages on this tree, then a new instantiation

is selected. We reiterates this process until all possible instantiations were used.

Another algorithm is initially proposed by Zhang and Poole in [177]. It is pri-

marily the variable elimination based algorithm of Dechter [45] which eliminates

by marginalization (i.e. integration) variables one after the others. An order in

which variables must be marginalized is required as input to the algorithm called

the elimination order. The complexity of the variable elimination algorithm could be

estimated by the number of numerical addition and multiplication operations which

it carries out. Finding an optimal elimination order is considered as a difficult NP

problem.

The inference in unspecified networks is NP-difficult [41], the complexity of the

inference can lead to prohibitory computing times for complex networks. It is im-

possible to directly calculate the probability distribution of a node or to carry out a

more complex inference, for this raison, a new type of inference named approximate

inference is introduced. The approximation methods seek to consider the complete

probability distribution represented by the network, by carrying out random pullings

with simple distributions. The two main families of approximate inference algorithms
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are the Monte Carlo algorithm [124] and the variational algorithm [108].

2.8.2 Naive Bayesian Classifiers

The Naive Bayesian Classifier (NBC) is a classification technique based on Bayes

rule and Bayesian networks. This method is mainly suitable for data with high

dimension. Despite its simplicity, NBC can often outperform more sophisticated

classification methods [117]. NBC can be seen as a Bayesian network connecting

attribute nodes to class nodes in which predictive attributes are assumed to be

conditionally independent given the class attribute (Figure 2.3). This hypothesis is

usually called independence hypothesis. Even if this hypothesis cannot usually be

justified for some data sets, it contributes to clearly simplify the classification task

since it enables calculating conditional probabilities p(ai|cj) for each attribute in a

separate way.

Figure 2.3: The NBC is a BN with a star structure

Even under the independence assumption, the NBC have shown good perfor-

mance for datasets containing dependent attributes. Domingos and Pazzani [54]

explain that attribute dependency does not strongly affect the classification accu-

racy. They also relate good performance of NBC to the zero-one loss function which

considers that a classifier is successful when the maximum probability is assigned

to the correct class (even if estimated probability is inaccurate). The work in [176]

gives a deeper explanation about the reasons for which the efficiency of NBC is not

affected by attribute dependency. The author shows that, even if attributes are

strongly dependent (if we look at each pairs of attributes), the global dependencies

among all attributes could be insignificant because dependencies may cancel each

other out and so they do not affect classification.

Many Bayesian classifiers have been proposed, in the literature, to classify data

with independent attributes in the case of discrete or continuous data [117][118][92]

[88]. A semi-naive Bayesian classifier (SNBC) have been developed by [52] which

is mainly suitable for discrete and continuous data. The SNBC takes into account

correlation between attributes by grouping those which are very dependants and

considering them as one attribute.
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Existing approaches for Naive Bayesian Classifiers

A NBC can be defined by conditional probability distributions and the density func-

tion which estimates the dependency between attributes and classes. To estimate a

density function for continuous data, principally three approaches are usually con-

sidered [141]:

� Discretize each continuous attribute and then estimate its probability distri-

bution using a multinomial probability distribution.

� Directly estimate the density function in a parametric way by means of Gaus-

sian densities.

� Directly estimate this density in a non parametric way using for example kernel

density functions.

� Directly estimate this density in a semi parametric way using finite mixture

models.

The most known Bayesian classification approach, in the literature, is that based

on multinomial distribution estimation applied to discretized attributes. Since this

first family of approaches supports only discrete variables, all continuous attributes

must be discretized before classification. Certainly the discretized process contributes

to an information loss. Even with discretization and the use of multinomial distri-

butions, this family of classifier shows a high ability to estimate the true density

when classifying new examples [33]. However, these approaches could be limited

when we are faced to a classification problem having variables with many intervals

because, in this case, the number of parameter to be estimated is relatively high.

In such situation, the risk of overfitting should also be high. In the other hand, the

number of examples used to estimate the distribution for each parameter become

very low when attributes have many attribute values which involve to have a erro-

neous statistical calculus. This first family of Bayesian Classifiers is usually called

Multinomial Classifiers (MC). A variety of multinomial classifiers are proposed to

handle an arbitrary number of independent attributes. We cite for example, Naive

Bayesian Classifiers [117][118][92], the tree-augmented naive Bayes classifier [88],

the k-dependence Bayesian classifier (kDB)[152], the semi-naive Bayesian classifier:

SNBC [112][52] and finally the Bayesian network-augmented naive Bayes [33].

The second family of approaches uses parametric densities to estimate the true

density for variables. The most used densities are Gaussian functions which are, gen-

erally, considered as a good approximation for the true densities in many domains

[107]. This approach is based on the normality assumption of attributes in the con-

text of parents (classes). Such classifiers are named Gaussian Classifiers (GC)

59



CHAPTER 2. CLASSIFICATION METHODS

since they combine Bayesian Networks with the normality assumption [91][140]. We

note that these classifiers have fewer complexity difficulties, if compared to Multino-

mial classifiers, to model complex graphs. Moreover, parameter estimation is more

robust because distributions are learned from an example set more large than that

used in MCs. In fact, the training set is partitioned only according to class values

i.e. in average, we have N/C examples for each estimation with N is the size of the

training set and C is the number of class values.

When the true density is not too far from the Gaussian, GCs show a classifica-

tion at least as good as MCs. Although the normality assumption may be a real

approximation for many benchmarks, it is not always the best estimation. A new

family of approaches, using non parametric approximation, have been proposed to

overcome limits of GCs and to improve their efficiency.

The non parametric approaches abandon the normality assumption and use in-

stead a kernel density based estimation. The derived classifier is named Flexible

Classifier. This nomenclature is due to the ability of such classifier to represent den-

sities with more than one mode if compared to a simple Gaussian classifier. Flexible

classifiers represent densities of different shapes with high accuracy; however they

contribute to a considerable increase in complexity. In fact, this family of approaches

is able to model real densities with many shapes with a high precision. Kernel den-

sities are more flexible than Gaussians when modeling densities with many modes.

The semi parametric approaches can be seen as a second alternative to break with

the strong parametric assumption. These methods combine the advantages of both

parametric and non parametric family approaches. The semi parametric methods

are not limited to a particular shape of the density function. The training process, in

semi parametric models, is more complex than the simple process used in parametric

or non parametric.

The most used non parametric methods are the mixture models [80][129], the

Gaussian mixture models [14] [129] and the kernel density based approaches [107].

Pérez et al. [141] have recently proposed a new approach for Flexible Bayesian Clas-

sifiers based on kernel density estimation that extends the FNBC proposed by [107]

in order to handle dependent attributes and abandon the independence assumption.

In this work, three classifiers: tree-augmented naive Bays, a k-dependence Bayesian

classifier and a complete graph are adapted to support kernel Bayesian network

paradigm.

The main drawbacks of Bayesian classifiers is that they are not appropriate for

databases with many attributes. In this case the network construction become

rapidly difficult in terms of time and space.
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Principle of Naive Bayesian Classifiers (NBC)

Given a new vector a = {a1, a2, ..., aM} to classify, a NBC calculates the posterior

probability for each possible class cj(j = 1, ..., C) and labels the vector a with the

class cj that achieves the highest posterior probability, that is:

c∗ = argmax
cj

p(cj|a) (2.3)

Using the Bayes rule:

P (cj|a1, a2, ..., aM) =
P (a1, a2, ..., aM |cj) ∗ P (cj)

P (a1, a2, ..., aM)
(2.4)

The denominator P (a1, a2, ..., aM) is a normalizing factor that can be ignored

when determining the maximum posterior probability of a class, as it does not depend

on the class. The key term in equation 2.4 is P (a1, a2, ..., aM |cj) which is estimated

from training data. Since Naive Bayes assumes that conditional probabilities of

attributes are statistically independent we can decompose the likelihood to a product

of terms:

P (a1, a2, ..., aM |cj) =
M∏
i=1

p(ai|cj) (2.5)

In the continuous case, each numerical attribute is modeled in different ways

using normal, uniform or gamma density functions.

A supplementary common assumption made by the NBC in this case, is that

within each class the values of numeric attributes are normally distributed around the

mean and so models each attribute through a single Gaussian. The NBC represent

such distribution in terms of its mean and standard deviation and compute the

probability of an observed value from such estimates. This probability is calculated

as follow:

p(ai|cj) = g(ai, µj, σj) =
1√

2Πσj
e
−

(ai−µj)
2

2σ2
j (2.6)

The Gaussian classifiers [91][107] are known by their simplicity and have a fewer

complexity if compared to other non-parametric approximation. Although the nor-

mality assumption may be a real estimation for many real world problems, it is

not always the best estimation. Moreover, if the normality assumption is violated,

classification results of NBC may deteriorate.
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John and Langley [107] proposed a Flexible Naive Bayesian Classifier (FNBC)

that abandons the normality assumption and instead use nonparametric kernel den-

sity estimation for each conditional distribution. The FNBC has the same properties

as those introduced for the NBC, the only difference is instead of estimating the den-

sity for each continuous attribute ai by a single Gaussian g(ai, µj, σj), this density

is estimated using a averaged large set of Gaussian kernels. To compute continu-

ous attribute density for a specific class j, FNBC calculates n Gaussians each of

them stores each attribute value encountered during training for this class and then

takes the average of the n Gaussians to estimate p(ai|cj). More formally, probability

distribution is estimated as follow:

p(ai|cj) =
1

Nj

Nj∑
k=1

g(ai, µik, σj) (2.7)

where k ranges over the training set of attribute ai in class cj, Nj is the number

of instances belonging to the class cj. The mean µik is equal to the real value of

attribute i of the instance k belonging to the class j, e.g. µik = aik. For each class

j, FNBC estimates this standard deviation by:

σj =
1√
Nj

(2.8)

The authors also prove kernel estimation consistency using (2.8), (see [107] for

details). It has been shown that the kernel density estimation used in the FNBC and

applied on several datasets, enables this classifier to perform well in datasets where

the parametric assumption is violated with little cost for datasets where it holds.

2.9 Evaluation methods of classifiers

It is important to evaluate classifier performance in order to determine whether to

employ this classifier for a given situation. For example when learning the effective-

ness of medical treatments from a limited-size data, it is important to estimate the

error rate of the classifier.

In general, evaluation methods can differ by which metric(s) they use for measur-

ing performance. The most common metrics are Accuracy (the number of correct

classification examples) or Error rate (the number of incorrect classifications). These

metrics are either used alone or combined with other metrics, e.g., some methods

combine accuracy with classifier complexity metric. Using complexity to evaluate

a classifier performance is justified by the fact that if we have two equally good

solutions we should pick the simplest one.
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Some other methods for using the data to estimate and compare classifier accu-

racy may also be used. To compare two classifiers to each others, more advanced

statistical tests can be used such us: Student t-test, Signed-Ranks test, McNemar,...

The common way used for these tests is to check whether the difference between two

classifiers results over various data sets is non-random (significantly different from

zero). For this purpose, a statistical hypothesis test h should be formulated:

- Claim that both classifiers have equally good performance.

- If claim is rejected, we accept that the first classifier is better.

To accept or reject such hypothesis, we need to compute some statistical metrics

which are specific to each typical test. A complete review of statistical comparison

between classifiers is given by Demsar [50].

2.9.1 Accuracy

The simplest way to evaluate a classifier is accuracy: it is the proportion of instances

whose class the classifier can correctly predict. To do this we need a dataset that

contains instances whose class already known. We ask the classifier to predict the

class of each of these instances in turn. Then we compare the classifier prediction

with the real class of each instance. We estimate the accuracy by the Percent of

Correct Classification(PCC) defined as follows:

PCC =
number of well classified instances

total number of classified instances
∗ 100 (2.9)

Calculating accuracy using the same dataset that we used to build the classifier

is not a proper way to evaluate the classifier. Its accuracy on examples it has already

seen (the ones stored in the memory of a kNN classifier for example) could be an

optimistic estimate of its future performance. Thus in classification problems, we

try to find a good generalization of the classifier, i.e. to what extend it is able to

perform on unseen examples that will be presented to it in future when it is applied

to real data.

In order to guarantee this generalization ability, the classifier should be build

using one dataset, what we have called training set and evaluated it on different

dataset, usually called testing set which is a set of independent instances not used

for building the classifier. For these two datasets, we need : i) instances to be already

classified, ii) the sample to be representative of the real population, and iii) ideally

large number of examples in the training set in order to have a good classifier an in

the testing set in order to have more reliable estimate of accuracy.
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2.9.2 Testing strategies

In real world problems, it is always difficult to collect two large, independent and

representative datasets of already-classified instances. A common way is to collect

one large dataset and then seek for many ways to construct the training and testing

sets from this original dataset. We give here some of these methods.

The holdout validation

The simplest method is to partition the original dataset into two randomly selecting

instances for a training set (usually 2/3 of the original dataset) and a test set (1/3

of the dataset). The classifier is build using the training set and then evaluated on

the remaining testing set. This method has the advantage of being simple. But the

problem is that we cannot be sure about the representativeness of each dataset and

consequently we can just be in a very optimistic or pessimistic case.

This method can be considerably improved by repeating it several times. In each

time, the training and testing set are randomly selected. The overall accuracy is

estimated by averaging accuracies obtained in each time.

Cross Validation

In k-fold cross-validation, the data is divided into k subsets of equal size. The

classifier is trained k times, in each time only one of the k subsets is used for testing

(computing accuracy) and the remaining k − 1 subsets for training. The overall

accuracy is obtained by averaging the k elementary accuracies. A value of 10 for

k is commonly used. Cross validation is a good estimate of accuracy especially for

datasets with small size. It allows the use of all of the data for training.

Leave-one-out cross-validation

This method is a particular case of k-fold cross-validation in which k = n, where n

is the size of the original dataset. Thus from this dataset only a single instance is

used for test and all remaining n− 1 instances for training. Repeating this process

for all instances will guarantee that each of these instances is used for testing and

avoid the problems of random selections but this method has a higher complexity if

compared to the k-fold cross-validation.
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2.10 Comparative study of classification methods

Machine learning techniques can be useful in several domains. Each technique have

its particular advantages and drawbacks. An important question for a decision maker

is ”which algorithm is the most appropriate for a given situation ?”. In order to

have a convenient response to this question, we try to discuss in this section positive

and negative points for each classification technique and their relation to real world

problems.

To conduct this comparative study, we are based on the study done in [114].

The Table 2.1 includes author appreciation against these techniques according to the

most known criterions in the literature. The evaluation consists to assign a particular

number of stars for each technique. In this comparison, (****) stars represent the

best and (*) star the worst performance.

Table 2.1: Indexation of criterions

Criteria Indexes Description of the criteria
CA Classification accuracy
SL Speed of learning
SC Speed of classification
TMA Tolerance to missing attributes
TIA Tolerance to irrelevant attributes
TRA Tolerance to redundant attributes
TIA Tolerance to highly independent attributes
TD Type of data (discrete, binary, continuous)
TN Tolerance to noise
OR Dealing with overfitting risk
IL Incremental learning ability
EA Explanation ability / transparency of knowledge
MP Model parameter handling

By analyzing evaluation results in Table 2.1 and 2.2, we can see that the NN and

SVM are similar in more than one point as DT and rule learner are. We also note

that NBC and K-NN have their particular characteristics. Overall, Neural Networks

and SVM are the most efficient methods in terms of classification accuracy whereas

Bayesian Networks seems to be the least accurate. However this evaluation corre-

sponds only to classical NBCs and do not consider new extensions of this technique

such as Flexible Naive Bayesian Classifiers (FNBC) which are largely better than

the classical NBC, as will be shown in Chapter 5.

The NN and SVM are more appropriate for classification of continuous attributes

and data with high dimensionality (large number of attributes and instances). For

these two techniques, a large set of training examples should be given in order to

reach the highest prediction accuracy. We can also note that these methods are
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Table 2.2: Comparative evaluation of classification algorithms

DTs NN NBCs kNN SVM RL
CA ** *** * ** **** **
SL *** * **** **** * **
SC **** **** **** * **** ****
TMA *** * **** * ** **
TIA *** * ** ** **** **
TRA ** ** * ** *** **
TIA ** *** * * *** **
TD **** *** **** *** ** ***
TN ** ** *** * ** *
OR ** * *** *** ** **
IL ** *** **** **** ** *
EA **** * **** ** * ****
MP *** * **** *** * ***

principally efficient to deal with problems having a non linear relation between inputs

and outputs.

As we have already mentioned, the SVM has the limit of being a binary algo-

rithm, a pre-treatment step is necessary in order to reduce a multi-class problem

to more than one two-class problems. NN and SVM have mainly two important

drawbacks, not only they are too slow in the training phase but also are seen as

”Black boxes” because of their weak interpretation capacity. Several approaches are

interested to extract IF-THEN rules from NN in order to give for this technique

more comprehensibility. A complete study for rule extraction from NN can be found

in [76].

In contrary, DTs and Rule-base learning are models with high interpretation

ability and are very quick in training if compared to NN and SVM. This clearly

show a high complementarity between these two families of methods (DTs and NN

for example) which explains hybridizing between these methods in a variety of neuro-

symbolic systems, we cite for example [94] [95].

It is also known that inductive methods are well suitable for discrete data. A

discretization phase of continuous data is necessary which leads, in general, to loss

of information. In addition, algorithms for learning DTs divide example space or-

thogonally to the axe specific to one attribute and parallels to all other axes. This

process prevent DTs to be appropriate for problems where a diagonal partitioning of

data is recommended. Moreover, the pruning procedure described in DTs and also

rule-based learners enables to these techniques to be more resistant to data errors if

compared to kNN technique for example.

On the other hand, algorithms for instance-based learning are known as lazy
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methods. Despite the negligible training step, these methods makes a large time in

classification. To classify each test example, the kNN algorithm scans all training

examples to calculate distances. In contrary, NBC seems to be the most rapid, among

all other techniques, as well as in training and classification. In fact this technique

requires only one scan on the data to calculate probability distributions as well as

in the discrete or continuous case.

We usually reproach to instance-based learning of being very sensitive to noisy

and irrelevant data. The similarity measure become simply erroneous in presence of

a noise in one attribute value which leads to falsify the process of searching for the

nearest neighbor and so incorrectly classifies the test example. This technique has a

weak interpretation capacity principally when the nearest instances, used for classi-

fication, are very heterogeneous. In such situation, we cannot be able to extract any

interpretation from them mainly if these instances are numerous (large k). However,

instance-based learning is transparent and can be simply implemented because it is

totally inspired from human reasoning.

The Naive Bayes technique has the advantage of requiring a limited memory space

in the training and testing phases: The only necessary space is that for saving priori

and conditional probabilities. In the contrary, kNN requires a more large memory

space in classification which should be as large as the training set size. It should

be noted that NBC and kNN have one common characteristic: they are viewed as

powerful techniques to deal with incremental training (when the training set is not

very representative of the real world data) whereas induction algorithms (such as

DTs) are too limited in this context.

To all previously cited advantages of NBCs, we add that these classifiers are very

robust to deal with incomplete attributes. While these attributes can be simply

ignored when estimating conditional distributions in NBC, the kNN requires all

attribute values to be completely specified to do classification. This characteristic

enables to NBCs to be the best classifier to use in presence of data uncertainty or

imperfection.

However, NBCs presents some pitfalls. In particular, they assume that a data set

could simply be represented through a unique probability distribution and that this

statistical model will be sufficiently able to generalize and to discriminate between

classes. This justifies, in the first hand, low classification accuracy of classical NBC,

if compared to other technique generating more complex models such as DTs, and

largely better classification results of the FNBC (based on kernel distributions) in

the other hand. NBCs are also viewed as transparent models very easy to exploit in

many domains such as physics and mechanics to reflect human diagnostics.

This comparative study shows that the NBC may be a promising technique which

is advantageous in more than one sight and could be improved (mainly the limiting
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criterions) if more attention is given in order to estimate the convenient probability

distribution.

In this chapter and in the frame of this thesis, we are principally interested to

Bayesian Classifiers in their classical and extended versions. Various advantages of

NBCs give as the intuition to more develop these models which seem to be promising

if faced to imperfect data which is, actually, a serious problem in many real world

domains.

2.11 Conclusion

In this chapter, we briefly presented the most used classification techniques and we

focused more on Bayesian classifiers. Advantages and limits of each method are also

studied. In this dissertation, we are mainly interested to statistical methods based

on Bayesian networks. Our first focus is to study the possibility of extending these

classifiers, known by their simplicity and efficiency, to support uncertainty in data

representation.

A major classification problems, usually encountered in real world databases, is

how to deal with imperfect data in the training/testing sets?. Most of existing meth-

ods fails to accomplish classification when they are faced with uncertain or imprecise

data. A common way to deal with such case is to clean imperfect instances before

conducting classification. This heuristic reinforces generating incoherent models in

context of the available data. In contrary, there is a high necessity to adapt clas-

sification techniques to be more able to treat and support uncertain data instead

of going through rejection heuristic because uncertain data could contain important

knowledge about the domain. In the third chapter we present a complete discuss

of rule induction methods since the first contribution in this work focuses on this

classification technique.
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Chapter 3

Rule-based learning

3.1 Introduction

Rule induction holds a privileged place in machine learning techniques as it provides

many benefits to decision makers. In fact, it ensures an easily interpretable predictive

model. Furthermore, this method produces such a model without any preliminary

statistical knowledge. The produced model include a set of rules of the form ”IF

condition THEN Conclusion” (e.g. If the bank customer is faithful and its salary is

high Then the decision is to grant the credit”). On the other hand, generated rules

can easily be implemented in information systems (e.g. translation of rules to SQL

queries).

In this chapter, we focus on supervised rule-based learning. Among rule induction

methods, we are interested to the ”separate-and-conquer” based approach, which

monopolized the methods of machine learning in the Nineties.

The second family of approaches for rule induction is the decision tree technique

previously introduced in Chapter 2. Indeed, a decision tree can be translated to a

set of rules where each branch of the tree, starting from the root node and going to

the leaves, constitutes a rule having as premise all conditions (tests) in this branch.

To this list of methods is added approaches based on rule extraction from neural

networks. These latter have been proposed to answer criticisms made to connexionist

methods seen as ”black boxes”. Techniques for rule extraction from neural networks

have the capacity to improve the legibility of artificial neural networks without de-

creasing its high classification accuracy. This family of methods will not be detailed

in this context. An excellent review of most existing approaches for rule extraction

from neural network is given in Duch et al. [76].
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In the following section, we first give a general presentation for rule based clas-

sifiers without any technical details. Section 3 recapitulates the decision trees for

rule generation, where we focused on ID3 and C4.5 algorithms as basic algorithms

to produce a decision tree model. In this section we also present the method for

rule extraction from a decision tree. In Section 2, we present the background of

sequential covering method used in the literature. In this context, we first introduce

the general sequential algorithm proposed by Fürnkranz (1999)[89] and then present

a variety of rule induction algorithms based on this method. The PART algorithm

is presented in Section 4, an illustrative example is also given.

Through the different sections of this chapter, we give a discuss of the presented

rule-based learning approaches. This analysis enables us to propose, in Chapter 4, a

new approach for evaluation and selection of classification rules seen as an attempt

to solve some problems countered with rule-based learning.

3.2 Rule representation

A rule-based classifier represents a function mapping examples, described by a set

of attributes (features), to target classes (output concept). Rules considered in

such problems are called classification rules and they are expressed in the form: IF

(antecedent) THEN (class), where the antecedent part is formed by a conjunction of

elementary tests on values of attributes and the class part indicates the assignment

of a example, which satisfies the antecedent part, to the given class label.

Although the form of a decision rule may differ if we deal with crisp or fuzzy

paradigm, they always partition the whole feature space into some sub-spaces. A

decision rule r assigning examples to a class c is represented in the form:

r : If(A1 op a1) ∧ (A2 op a2) ∧ ... ∧ (AM op aM) then c

Where (A1 op a1)∧ (A2 op a2)∧ ...∧ (AM op aM) is the antecedent part of r and c

is its class label. The antecedent part is a conjunction of elementary conditions (Ai
op ai). Each condition represents a test on a value of a corresponding attribute. For

a symbolic attribute, the test compares its value to a constant (op is the equality),

and for numerical attributes other comparisons relations are rather used (e.g., op ∈
{=,≤,≥, <,>})

Rules induced for classification are represented in a disjunctive normal form,

R = (r1∨r2∨ ...∨rk), where R is known as the rule set forming the induced classifier

and ri’s are the classification rules or disjuncts presented by a set of conjunctions.
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A training set Tr is usually used for learning the set of rules R. For a given class

c , training examples from this class are called its positive examples, while examples

belonging to the remaining classes are called negative examples of c.

In the following, we briefly present some definitions of basic decision rule prop-

erties:

- A rule r covers an example if it matches the condition part of this rule. We

also say that the rule is satisfied or fulfilled by the given example. The set of all

examples, which descriptions (attribute values) satisfy elementary conjuncts of

the rule, is called the covering set of r.

- The rule set R completely covers all positive examples of class c, if each of

these examples is covered by at least one decision rule from R.

- Furthermore, we say that R is the minimal cover of c if there is no other

R′ ⊂ R that covers all positive examples of c. This means that R completely

represents positive examples of this class by the smallest number of rules.

Given the training set Tr and a decision rule r, two quality measures are usually

used to evaluate a decision rule:

� The coverage of the rule is defined by the number of examples in Tr that

satisfies the antecedent part of the rule divided by the number of examples in

Tr.

� The accuracy also called confidence factor is defined by the number of

examples coved by r whose class labels are equal to c, i.e. the examples satis-

fying rule antecedent and consequent at the same time. More formally these

measures are defined by:

Coverage(r) =
| T coverr |
| Tr |

(3.1)

Rule− accuracy(r) =
| T cover∩correctr |
| T coverr |

(3.2)

where | T coverr | is the cardinal of examples covered by the rule r and | T cover∩correctr |
is the cardinal of examples covered by r and having the same class label c.
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3.2.1 How to classify a new example using a rule-based clas-
sifier ?

A rule-based classifier classifies a test example using the rule covering this example.

To illustrate how a rule-based classifier works, let consider the following example:

Example 3.1.

The iris data set [131] contains 150 examples each one is a flower (iris) of one of

the different categories: ′Iris − setosa′, ′Iris − versicolor′ and ′Iris − virginica′.
Each category represents the class of the example. For each example, 4 numerical

attributes are assessed: the sepallength(SL), sepalwidth(SW ), petallength(PL)

and petalwidth(PW ) of iris plants. In this classification problem, the goal is to

determine what distinguishes each category of iris plants from one another so that

it is possible to know to which category an iris plant belongs given the four input

variables. Assume that the following set of rules is generated using a rule based

learning method.

r1 : If(petalwidth ≤ 0.6)→′ Iris− setosa′

r2 : If(petalwidth ≤ 1.7) ∧ (petallength ≤ 4.9)→′ Iris− versicolor′

Table 3.1: Testing set

Instance SL SW PL PW Class
1 6.9 3.1 4.2 1.5 ?
2 5.1 3.5 1.8 0.2 ?
3 5.5 2.3 6.1 1.9 ?

Let consider the three test examples to classify given in Table 3.1. By inferring

the two previous rules for each test example, we can see that:

� The first iris, having petal width equal to 1.5 and a petal length equal to 4.2

triggers only the rule r2, and thus is classified as ′Iris− versicolor′.

� The second iris, triggers both rules r1 and r2. Since the classes predicted by

the two rules are contradictory (′Iris − setosa′ and ′Iris − versicolor′), this

rises a conflicting class problem usually denoted by the multiple classification

problem.

� None of the two rules can be fired if confronted to the third iris. This case

shows that the rule set may not cover some testing examples. The produced

classifier should be able to classify test examples not covered by any rule.
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To avoid the two last problems, the rule set should be mutually exclusive and

exhaustive. Rules in a rule set R are mutually exclusive if no two rules in R are

satisfied by the same example which means that no conflict between rules can be

detected. The rule set R is exhaustive if all examples are covered by at least one rule

in R. A rule set satisfying these two properties, can avoid the multiple classification

and non-covering problems at the same time.

To deal with the non-covering case, most rule-based classifiers add a default

class (a rule with an empty antecedent) to cover the remaining examples. This

rule is triggered if all other rules are not satisfied. A common way to choose the

default class, is to use the largest class covering the large set of examples or the

majority class of examples not covered by existing rules. To overcome the multiple

classification problem, two ways are usually applied: ordered versus unordered rule

based classifiers.

3.2.2 Ordered rule-based classifiers

Rules are ordered in decreasing order of their priority, e.g. in a descending accuracy

or coverage order. Then a test example is classified by the first matching rule in

the rule set (that covers the example). So even if there are further rules covering

this example, only the first one is triggered. This process will avoid the multiple

classification problem. The rule set is usually tailed by a default class used to classify

each non covered example. Ordered rule-based classifiers are also named decision

lists.

Applying the ordered rule principle for the previous iris example, the second

instance will be classified as ’Iris- setosa’ whereas the third one can be assigned to a

default class covering the ’Iris-virginica’.

3.2.3 Unordered rule-based classifiers

This approach supports the multiple classification case where a test example can

be satisfied by many rules and considers the consequent of each satisfied rule as a

vote for a particular class. The vote strategy enables to select a class label for the

test example. The class with the highest number of votes is usually assigned to this

example. Voting is usually based on weighted rules (using accuracy for instance).

Unordered rules have some advantages if compared to decision lists. In particular,

rules are considered in a symmetric way by giving the same chance for each rule to

be triggered however in decision lists, some rules are prioritized which may reinforce

neglecting some other relevant rules. That’s way, unordered rules are assumed to be

less sensitive to errors caused by the choice of the wrong rule used for classification
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while ordered rules are too related to the rule ordering method. Furthermore, un-

ordered rule-based classifiers have a little cost in the building phase because there is

no need to sorting rules with a supplementary cost in the classification phase since

a test example should be compared to each rule in the rule set.

3.3 Decision trees for rule generation

We first present the background for this method, before going up to rule generation

from decision trees. As previously presented in Chapter 2, the most basic algorithm

for decision tree construction is the ID3 and its successor C4.5. Thus we first give

the principle for these two algorithms and then develop the method for extracting

rules from DTs.

3.3.1 The ID3 Algorithm

ID3 builds a decision tree in a recursive way by choosing the best attribute for

separation. This algorithm uses exclusively categorical attributes and a node is

created for each value of the selected attribute. ID3 is a basic algorithm which

is easy to implement, however the generated decision trees are neither robust, nor

compact what makes them not adapted to large datasets. ID3 builds the tree by

dividing the training set, at each node, according to a criterion depending only on

one attribute.

The first step for building the decision tree consists at choosing the attribute

that will be used for the first partitioning (the first division node or test). To build

each node, one can use a strategy which best separates between classes. The initial

junction produces several nodes that will be divided, in the same way as the root

node, by searching a candidate attribute for a new partitioning. If an enumerative

attribute were used for division in a higher level of the tree and since it can take

only one value, thus it will be removed from the list of candidate attributes for

a new division or branching. A node is considered as a leaf if we cannot find a

supplementary partitioning that decreases the heterogeneity of this node.

At the end of the building process, a Tmax tree is produced. Each leaf in this tree,

covers only pure data which reflects an exact learning of the given training examples.

The basic ID3 algorithm

The main idea of this algorithm is to build a classification tree with a null error rate.

When the tree is partially built, each node covers a subset of training examples:

74



CHAPTER 3. RULE-BASED LEARNING

those which satisfy all tests leading to this node. The building process should be

continued if this subset contains examples from different classes. At each iteration,

the best attribute is chosen for partitioning.

Algorithm 3 ID3 Algorithm

if all instances belong to only one class then
The decision node is a leaf labeled by that class

else
repeat

for each generated subset Tr do
Select the attribute that maximizes Gain(Tr, Ak)
Split Tr into several subsets, one for each value of the selected attribute.

end for
until One of the stopping criteria is satisfied

end if

The choice of the best attribute (Splitting strategy)

ID3 starts by deciding which attribute will make the best partitioning. This latter

is defined as that which best separates the current training set into groups in a way

they are covered by the same class. The partitioning strategy used in ID3 is the

Information Gain. This strategy is based on the information theory that can be

explained as follows:

In general, we note that the necessary number of bytes required to describe a

situation or a result depends on the size of the possible result set. For example,

if there are eight possible classes of equal probabilities, we need log2(8) or 3 bits

to identify one of them. On the other hand, if there are only four classes, we only

need log2(4) or 2 bits. Thus, a division starting from a node whose examples belong

to eight classes and producing new nodes whose examples belong to four classes in

average, has an information gain equal to: log2(8)− log2(4) or one bit.

The information size necessary for representing a random variable belonging to

a certain class is: −Log2(P (C = cj)) bits, with C is a discrete random variable

describing the class attribute and cj is its value.

Based on these definitions, the average information quantity necessary to identify

the class of a given example in a training set denoted entropy can be deduced as

follows:

Info(Tr) = −
∑
cj∈C

P (C = cj)log2P (C = cj)bits (3.3)
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The quantity P (C = cj) is estimated by the frequency of the class cj; i.e:

freq(cj) = |T jr |
|Tr| , where | T jr | represents the number of examples in the training

set Tr labeled with the class cj.

The entropy can also be measured after splitting the set Tr under several subsets

using the partitioning results carried according to attribute Ai:

Info(Tr|Ai) = −
∑

ai∈DAi

| T air |
| Tr |

Info(T air ) (3.4)

Where T air denotes the training subset containing examples whose attribute value

is ai.

Using these two measurements, one can define the expected reduction in entropy

(impurity) after partitioning according to Ai also known as the information gain

defined by:

Gain(Tr, Ai) = Info(Tr)− Info(Tr|Ai) (3.5)

At each node, the training subset of Tr is partitioned according to the attribute

that maximized the gain.

3.3.2 The C4.5 Algorithm

This algorithm have been proposed by Quinlan 1993 [145] in order to palliate limits

of the ID3 algorithm. Since the C4.5 is completely reposed on the ID3, we will

restrict this section to give principal improvement provided by C4.5.

In particular, C4.5 uses an elaborate strategy: the ”Gain Ratio ” in order to

limit the tree partitioning by penalizing attributes leading to many branching (with

many different values). The C4.5 also gives more flexibility for the use of input data

sets. The main improvements, is the possibility of using:

� Continuous attribute values.

� Grouping a set of discrete or nominal attribute values in order to support more

complex tests.

� The NULL value.

� Missing attribute values.
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Possible Candidate Tests

C4.5 uses tests of three types, each one involves only a single attribute Ai. Decision

regions in the instance space are thus bounded by hyperplanes, each of them is

orthogonal to one of the attribute axes.

� If Ai is a discrete attribute with v different values, v possible tests of the form

”Ai = ai” can be defined one for each value ai of this attribute.

� More complex tests for discrete values can also be used in the form: Ai ∈ S
with 2 ≤ S ≤ v outputs, where S = {S1, S2, ..., Ss} is a partition set of the

values of attribute Ai. To find such tests C4.5 uses a greedy search and selects

the partition set S that maximizes the value of the splitting criteria (discussed

below).

� If Ai has numeric values, the form of the test is ”Ai ≤ θ” with a boolean result

true or false, where θ is a constant threshold. To find possible values of θ,

all distinct values ai of attribute Ai that are observed in the training set Tr
are sorted and then one threshold is identified between each pair of adjacent

values. (So, if we have v distinct values for Ai in Tr, v − 1 thresholds can be

considered.)

The partitioning strategy (Gain Ratio)

The C4.5 is mainly based on the divide and conquer algorithm, where the most focus

is to choose the best test at each step. In this algorithm any test on an attribute Ai
that partitions Tr non-trivially will produce a decision tree, but different tests give

different trees.

A serious challenge of decision tree algorithms is to produce models as simple

as possible because a complex tree does not help for a good understanding. Such

complex decision trees may also have weak predictive accuracy [150]. As an attempt

to optimize the size of the tree, C4.5 selects the best candidate attribute, at each

step, using a greedy search. For this purpose, the gain ratio criterion is used as an

attribute selection heuristic. This criterion is defined by:

SplitInfo(Tr, Ai) = −
∑

ai∈D(Ai)

(
| T air |
| Tr |

∗ log2(
| T air |
| Tr |

)) (3.6)

SplitInfo(Tr, Ai) measures the information obtained after dividing the set Tr
into v sub sets according to the different values of the attribute Ai.
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GainRatio(Tr, Ai) =
Gain(Tr, Ai)

SplitInfo(Tr, Ai)
(3.7)

After evaluating all possible attribute tests, C4.5 selects the one that maximizes

the value of gain ratio.

In the particular case of continuous attribute values, the algorithm searches for

the best threshold to separate independent numerical values observed in the training

data. The idea is to pick a threshold that have the highest gain ratio. The algorithm

starts by sorting numeric attribute values, that appear in the training set, and then

identifying adjacent examples that differ in their class labels, this enables to produce

a set of candidate thresholds. Finally the gain ratio is computed for each candidate

and choose the best one for splitting.

The tree pruning

Once the initial decision tree is constructed, a pruning procedure should be performed

in order to decrease the overall tree size and decrease the error rate made by the tree

[145]. Tree pruning is an important part of decision tree construction as it is used to

improve the prediction accuracy by ensuring that the constructed tree model do not

overfit the data set. The strategy used by C4.5 for pruning is based on the prediction

error rate criteria.

C4.5 eliminates the branches from the tree by using a pessimistic elimination

method. Tree pruning involves replacing a whole sub-tree by a leaf. Substitution

occurs if a given decision rule shows that the expecting error rate in this sub-tree is

higher than those of a simple leaf.

3.3.3 Rule extraction from a Decision Tree

Decision tree models are known by their comprehensibility and efficiency in the

classification task. The C4.5 is the most popular algorithm for decision tree induction

since it is widely available and reasonably well tested.

However for some data sets, especially when categorical attributes have many

values, decision tree model can become quickly large and so losses its interpretation

ability. A common way to overcome this limit is to transform the decision tree into

a rule set. In this section, we review the method, used by the C4.5, to build a rule-

based classifier by extracting IF-THEN rules from the tree model. In compared to a

decision tree, IF-THEN rules may be easier for humans to understand, especially if

the decision tree is very complex.
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Rule Generation

To extract rules from a decision tree, one rule is created for each path from the root

to a leaf node. Each attribute test given by a node in each path, becomes a conjunct

in the rule antecedent; all conjuncts are logically combined using the logical AND.

The leaf node in each path forms the consequent part of the rule.

Generated rules are then grouped in a disjunctive way using the logical OR.

All rules extracted in this way are exhaustive and mutually exclusive. They are

exhaustive since all examples are covered by at least one rule in the rule set, so no

default rule is needed to be defined and rules can be triggered in unordered manner.

Rules extracted from the tree model are also mutually exclusive since any example

can be satisfied by only one rule which means that no conflict between rules can be

observed. This prevents the multiple classification problem.

Rule pruning

Most rules extracted from a decision tree, following this rule generation process,

are also too complex and even more difficult to interpret. The set of rules can be

significantly simplified without decreasing their classification ability. In fact, the

decision tree model usually contains unnecessarily branching which leads to a set of

disjunctions that are not very concise. This is which is often known by the ”replicated

subtree” problem [137].

Rules should be pruned by greedily removing conjuncts in the rule antecedent

or even some rules. Let consider a conjunctive rule r : A → cj where A is the

rule antecedent and cj is its consequent (class). In the pruning step, we look for

many simplified versions r′ : A′ → cj of the rule r. Then the pessimistic error rate

is computed for each of these simplified rules, then the rule with the best quality

measure is chosen to replace the original rule r. This process is iterated until the

quality measure (The minimum description length principle) of the rule cannot be

more improved. Rule pruning may produce identical rules, the next step consists to

remove all duplicate rules.

Rule ordering

In contrary to the original rule set, pruned rules may lead to the multiple classifi-

cation problem in which more than one rule can cover a given example reflecting a

competition or a conflict situation.

To resolve the conflict between rules, C4.5 sorts rules by training (validation)

accuracy to create an ordered decision list. To do this, C4.5 groups all rules that
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predict the same class together into the same subset and then orders these class rule

sets so as to minimize the number of false-positive errors (i.e., where a rule predicts

a class cj, but the real class is not cj). The class that has the smallest number of

false positives is given the highest priority since it is expected to contain the best set

of rules. For the classification purpose, the first rule in the decision list that applies,

is used to classify a test example.

Since pruned rules are not necessarily exhaustive, a default class should be defined

in order the rule set covers the whole set of examples. A common way to choose

the default class is to assign an example not covered by any rule to the largest or

majority class. Other more sophisticated methods are developed in the related work

of Chapter 4. In contrary to these methods, C4.5 does not choose the majority class,

because this class will likely have many rules and many covered examples for each

rule. Instead, it selects the class that includes the most training examples that were

not covered by any rule.

Example 3.2.

Let us continue with the previous example treating the problem of classifying

’iris’ plants. Using the original 150 examples from the ’iris’ data set [131], C4.5

builds the decision tree given in Figure 3.1 in which, the partitioning of the data

space by the decision tree is shown:

Figure 3.1: A decision tree constructed by C4.5 for the iris dataset [131]

The decision tree can be interpreted as follows: an iris plant with ”petal width”

less than 0.6 is classified as ’setosa’ and an iris plant with a ’petal width’ bounded

in [0.6, 1.7] and a ’petal length’ less than 4.9 is categorized as ’versicolor’. Three

other remaining paths can also be drawn. Note that only ’petal width’ and ’petal

length’ are used to construct the decision tree and the two remaining attributes are

irrelevant. The Induced decision tree made a classification error of 6 out of 150 (total

number of instances in the original data set, that is 4%. Therefore, it can be said

that the error rate for this tree is 4%.
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The decision tree of Figure 3.1 can be transformed to a set of classification rules by

converting the path from the root node to each leaf to a classification rule. Extracted

rules are in Figure 3.2:

Figure 3.2: Rules extracted from C4.5 decision tree for the iris dataset [131]

Let consider the two rules from Figure 3.2 predicting the class ′Iris−versicolor′:

r2 : If(petalwidth > 0.6) ∧ (petalwidth ≤ 1.7) ∧ (petallength ≤ 4.9)→′
Iris− versicolor′

r5 : If(petalwidth > 0.6) ∧ (petalwidth ≤ 1.7) ∧ (petallength >

4.9) ∧ (petalwidth > 1.5)→′ Iris− versicolor′

Observe that the first test (petalwidth > 0.6) in r2 is redundant if we assume

that rules are ordered. In a decision list, a test example is classified by a particular

rule only if all previous rules are not satisfied, thus this conjunct should be simplified

considering that the rule r1 is prioritized. Furthermore, if we observe that the rule

set always predicts ′Iris− versicolor′ when the value of petallength is less than 4.9,

we can assume that the rule r5 is a particular case of r2 thus r5 may be removed and

we obtain only one rule for the class ′Iris− versicolor′ as follow:

r′2 : If(petalwidth ≤ 1.7) ∧ (petallength ≤ 4.9)→′ Iris− versicolor′

The same process can be applied to simplify rules for other classes.

3.4 Rule induction using Sequential Covering Al-

gorithm

A common way to learn a rule based classifier is to extract IF-THEN rules directly

from the training data without having to generate a decision tree first. The most
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used rule induction methods exploit the Sequential Covering Algorithm. The basic

idea of this algorithm is to sequentially learn rules (one at a time), where each rule

should cover the maximum examples in a given class and hopefully none of examples

of other classes.

Panoply of sequential covering algorithms has been developed in the literature.

The most known include the AQ [134], CN2 [37] [36], FOIL [147] [149], GOLEM

[135] and the more recent, RIPPER [39]. In the following, we will first give the

general principle of sequential covering algorithm on which are based most of rule

based learning methods before going through introducing the basis of each of these

algorithms,

It should be mentioned that the general principle of sequential covering algorithm

can be applied to induction of propositional rules as well as first order logic rules.

Mitchell (1997)[134] presents a sequential covering algorithm very cited in the

literature. However, the pseudo-code of this algorithm by Mitchell is directly ap-

plicable only for induction of propositional rules in a downward way. Fürnkranz

(1999)[89] presents an alternate version of this algorithm which can be applied to

produce propositional rules as well as first order logic rules. Moreover, the algo-

rithm enables to support various search schemes such as searching candidate rules

in a descending or ascending way. The work by Fürnkranz also summarizes how the

proposed algorithm can be instanced to be used in systems based on propositional

rule induction techniques such as AQ by Michalski and CN2 or those for first order

rule induction techniques such as FOIL and GOLEM.

3.4.1 General procedure of Sequential Covering Algorithm

The general strategy used in the sequential covering algorithm is as follows. In

each iteration one rule is learned, examples covered by this rule are removed, and

the process is iterated on the remaining examples. This sequential learning of rules

differs from the heuristic used in decision tree induction. Since the path from the

root to each leaf in a DT corresponds to a rule, we can say that DT model is a process

of learning a set of rules simultaneously. Besides, to decide for the best branching, a

DT evaluates the average quality of a number of disjointed sets (one for each value

of the attribute that is tested), while rule based classifier only evaluates the quality

of the set of instances that is covered by the candidate rule [114]

More formally rule-based learning using sequential covering algorithm can be

summarized by the following steps:

1. To learn a set of rules for a class cj, divide the training data into positive

examples those that belong to cj, and negative examples those belonging to
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other classes;

2. Learn a conjunctive rule that covers as many positive examples as possible and

only few negative examples;

3. Remove positive examples that are covered by this rule from the training set;

4. Repeat steps 2 and 3 as long as there are positive examples that are not covered

by the generated rules or until a stopping criteria is met.

5. Repeat the above process for all other classes and learn a rule set for each of

them.

The basic sequential covering algorithm is shown by the generic pseudo-code

of Algorithm 4 proposed by Fürnkranz (1999)[89] (the SeparateAndConquer proce-

dure).

Algorithm 4 Procedure SeparateAndConquer (Examples)

Theory = ∅
while POSITIVE(Examples) 6= ∅ do

Rule=FindBestRule(Examples)
Covered = Cover(Rule, Examples)
if RuleStoppingCriterion(Theory, Rule, Examples) then

exit While
end if
Examples=Examples\ Covered
Theory=Theory ∪ Rule
Theory = PostProcess(Theory)

end while
Return (Theory)

As mentioned above, rules are learned for one class at a time. Ideally, we would

like that each learned rule for a class cj covers all (or at least many) of the training

examples of this class and none (or few) examples from the remaining classes. This

helps inducing rules of high accuracy but not necessary of high coverage. The whole

coverage of all positive examples in this class is guaranteed because more than one

rule can be learned for a specific class; these different rules may cover different

examples for the same class. The process will iterate until a stopping criteria is met,

such as when all training examples are covered by at least one rule or if the quality

of an induced rule is below a given threshold.

In this algorithm, to learn a single conjunctive rule, a general- to-specific search

can be performed which corresponds to a beam search. In this search mechanism, we

start with a rule with an empty antecedent and then gradually add attribute tests
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Algorithm 5 Procedure FindBestRule(Examples)

InitRule=InitializeRule(Examples)
InitVal=EvaluateRule(InitRule)
BestRule=(InitVal, InitRule)
Rules={BestRule}
while Rules 6= ∅ do

Candidates=SelectCandidates(Rules, Examples)
Rules=Rules \ Candidates
for Candidate ∈ Candidates do

Refinements=RefineRule (Candidate, Examples)
for Refinement ∈ Refinements do

Evaluation=EvaluateRule(Refinement, Examples)
unless StoppingCriterion(Refinement, Evaluation, Examples)
New Rule=(Evaluation, Refinement)
Rules=InsertSort(NewRule, Rules)
if NewRule > BestRule then

BestRule=NewRule
end if

end for
end for
Rules=FilterRules(Rules, Examples)

end while
Return (BestRule)
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to it that optimizes an objective function until it covers only positive examples or a

stopping criterion is checked.

After a rule is learned, post-pruning is usually conducted to prevent the rule from

overfitting the data. In post-pruning, some of attribute tests in the rule are removed

if their removal improve or at least do not decrease the classification efficiency of this

rule according to a quality measure.

The FindBestRule procedure in Algorithm 5 finds the best rule for the cur-

rent class, given the current set of training examples. This procedure includes the

following operations [121]:

- An initial rule (InitRule) is used to initialize the search process which could be

very general (with an empty antecedent), or very specific (directly represented

by an example) or a combination of the two cases.

- The initial rule is then evaluated (EvaluateRule) using some criteria (e.g.

information gain, other criteria are detailed in the following section). This rule

is assumed to be the best one and is added to the list of rules to be considered.

- The procedure performs a set of iterations, in each of them a sub-set of can-

didate rules is selected using SelectCandidates; and removed from the list of

rules to be considered. This procedure choose the subset of rules to be gen-

eralized/specialized. It involves a random search for the number of best rules

considered to be refined.

- Candidate rules are then refined (RefineRule), producing a set of refinements

(every technique use a specific refinement process). Possible refinements are

evaluated using (EvaluateRule) and may be filtered by some criteria and then

added to the list of rules to be explored. The refinement having the best

evaluation will replace the current best rule.

- The current rule can optionally be filtered according to a specific search method;

one or more rules can be refined during the iteration. This procedure can use

the same search method as of the SelectCandidates procedure.

This general pseudo-code recapitulates, with a very concise manner, the general

structure of a panoply of rule induction algorithms.

3.4.2 Principal choices in sequential covering method

The majority of rule induction algorithms based on sequential covering method differ

by at least these four points: (1) the rule representation, (2) the search mechanism
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used to explore the candidate rules space, (3) the rule evaluation measures and (4)

the pruning methods. The items (2) (3) and (4) will be discussed in the following

with more details.

The search mechanism

The search mechanism can be divided to a search strategy and a search method. The

search strategies refer to the global directions of search: top − down, bottom − up,
or bidirectional search:

� A top− down search starts from the most general rule hypothesis (a rule with

an empty antecedent) and then gradually specify it. This search type is the

most used in rule learning (it is used for example in AQ, CN2 and FOIL).

� A bottom−up search consists to start with one or more specific rule hypothesis

and then make them more generic (by pruning). This type of search is only

supported by very few rule learning techniques (such as the system GOLEM).

A common problem involved in ascending search is the choice of the starting

rule hypothesis. Given a set of training examples, a large number of initial

hypotheses is possible. In contrary, descending search trivially determines the

starting rule hypothesis by generally choosing the most generic rule (something

true unconditionally).

� Bidirectional search combines both descending and ascending search. There

exist only little of techniques supporting this search strategy.

The search method corresponds to the exploration techniques of the search space.

Fürnkranz (1999) [89] described the search algorithms of mainly four different types:

hill − climbing, beam search, best − first search and stochastic search. In the

general algorithm presented in Section 3.4.1, these search techniques can be consid-

ered in procedure FindBestRule in a various ways, including the iteration on rule

candidates, the sub-procedure RefineRule, and FilterRules:

� The hill−climbing search is usually the most used technique which is supported

for example by the algorithms AQ, CN2, FOIL and GOLEM . This search

consists in selecting the rule hypothesis having the best evaluation in a given

space and continuing this search by refining this rule recursively. Although,

the hill− climbing search is limited to the local maxima, it is usually efficient.

� The beam search is also rather usually used and supported by the AQ and

CN2 algorithms. This type of search adds to the hill − climbing search the

possibility of exploring a number N (one or more) of better rule hypothesis. The
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number N corresponds to the width of the search beam: value 1 corresponds

to the hill − climbing search. The main advantage of the beam search is its

ability to reduce (without generally eliminating it) the myopia relative to the

hill-climbing search, which is limited to the local minima. The beam search is

however more expensive in terms of search time.

� The best − first search selects the best candidate hypothesis and all its re-

finements without using any pruning criteria (sub-procedure StoppingCriteria

in Algorithm 5). Starting from the basic general hypothesis and without any

pruning, the best-first search can find the optimal rule. This type of search is

however always very expensive in terms of time and is used only in relatively

few rule-based learning techniques.

� The stochastic search usually introduces a certain degree of randomness into

the rule refinement (sub-procedure RefineRule in Algorithms 5); this aims to

avoid the local minima while also avoiding expensive search. Stochastic search

is only used in few rule-based learning techniques.

Pruning methods

Each rule induction method, has its particular procedure to learn simple and spe-

cific rules. Almost all of these methods adopt a pruning heuristic which helps to

avoid overfitting and trait noisy data. Pruning can occur during rule learning (pre-

pruning) or in a posterior step (post-pruning). The pre-pruning enables to stop

rule refinement before theses rules become too specific or before reaching overfitting.

Among methods for rule pre-pruning, we can cite the following heuristics. The sta-

tistical significance test is a criterion used to stop rule generalisation/specification.

It compares the distribution of the observed class, among examples covered by the

rule, with the predicted distribution resulting if the rule has randomly chosen ex-

amples. Other pruning criteria are also used for example, the minimal purity which

requires a positive percentage of covered examples by a rule should be maintained.

The restriction of coding length used in FOIL, aims to restrict the length of the rule

in order to avoid rules with complex antecedent usually covering few examples. The

cut criteria can also be used [89].

Post-pruning helps to improve the induced model after construction. The main

idea is to remove some rules or conjunctions in each rule if this removing preserve or

improve the predictive accuracy of the rule classifier. The most used post-pruning

techniques are reduced pruning error (REP)[29] and Grow [38].

Pre-pruning based learning techniques are more efficient (in terms of rapidity)

than post-pruning based learning techniques. However, post-pruning usually extracts

models with high accuracy and with a more simple rules than that of the pre-pruning.
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Intuitively, this related to the fact that post-pruning has more available information

(the hole model is induced) to make decision and so tries to be less specific than

pre-pruning. We note that the majority of post-pruning techniques, removing one

rule conjunction in each time, are still greedy.

Rule quality measures

The procedure FindBestRule needs a rule quality measure to decide which rule

should be retained. At each iteration a test on an attribute should be checked in

order to see if adding such a test to the rule antecedent will improve the rule or

not. The heuristics for rule quality measure are implemented in the sub-procedure

EvaluateRule. One can simply use accuracy for this evaluation, but this isn’t always

the best quality measure. Let consider the following example:

Example 3.3.

Let us consider that we have two rules r1 and r2, both are for the positive class

(+). Rule r1 correctly classifies 40 of the 43 examples it covers. Rule r2 covers only

four examples, which it correctly classifies. The accuracies for r1 and r2 are thus

respectively 93.02% and 100%. It seems that r2 is preferred to r1 because it has

higher accuracy. However, r1 is more representative of the dataset since its covers

more examples than r2. From the above example, we can say that both accuracy

and coverage taken alone cannot be a good quality measure: for a given class we

could have a rule that covers many examples, most of them belong to other classes.

On the other hand, rules with high accuracy may cover only few examples.

Figure 3.3: Rules for the positive class including positive and negative examples

For this reason some other rule quality measures, which combine both accuracy

and coverage, have been developed. In the following, we only present the most used

evaluation criteria, denoted Statistical test, Laplace measure and Information Gain.
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A more complete survey of most used rule quality measures can be found in [2] which

also includes a comparative study between these approaches.

� A statistical test of significance can be used to see if the correct classifica-

tion made by a rule is not attributed to random guessing but instead reflects a

real correlation between attribute values and classes. In this test, the observed

frequency among classes of examples that are covered by the rule are compared

to the expected frequency obtained if the rule randomly made predictions.

The following likelihood ratio statistic is computed:

Likelihood Ratio = 2
C∑
j=1

fjlog(
fj
ej

) (3.8)

where C is the number of class labels, fj is the observed frequency of class cj
i.e. examples that are covered by the rule, and ej is the expected frequency of a

rule that makes random predictions. The statistic has a chi-square distribution

with C-1 degrees of freedom. A large ratio shows that the number of correct

predictions made by the rule is significantly larger than that expected by

”random guesser”.

� Laplace estimate: this metric aims to penalize rule having low coverage, it

favours rules covering few negative examples but many positive examples over

a rule that do not covers any negative examples but only few positive examples.

This evaluation measure is used in recent versions of CN2.

Laplace =
p+ 1

ncover + C
(3.9)

m− estimate =
p+ CProb+

ncover + C
(3.10)

where ncover is the number of examples covered by the rule (positives and

negatives), p is the number of positive examples covered by the rule, C is the

total number of classes, and Prob+ is the prior probability for the positive class.

Note that the m-estimate is equivalent to the Laplace measure by choosing

Prob+ = 1/C.

These measures are largely affected by the rule coverage. If the rule has large

coverage, then both measures tends to the rule accuracy p/ncover, however if

the rule coverage is close to 0, then the Laplace measure is reduced to 1/C,

which is the prior probability of the positive class assuming a uniform class

distribution. So we can say that these two metrics reflect a balance between

accuracy and prior probability of the positive class.
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� The FOIL’s Information Gain: Another measure is based on information

gain which is firstly proposed in the algorithm FOIL. Let us consider the rule

r : A → + which covers p positive examples and n negative examples. We

would like to know if an added conjunct B to the antecedent of r resulting

a new rule r
′

: A ∧ B → + could contribute to improve the rule quality.

We assume that the new rule r
′

covers p
′

positive examples and n
′

negative

examples.

For the positive class (+), the amount of information necessary to correctly

classify an instance into class (+) whose prior probability is Prob(+) is defined

by [113] −log(Prob(+)) [bit], where the log function is of base 2. If we consider

the rule r, the amount of information we need to correctly classify an instance

into class (+) is −logProb(+ | r) [bit], where Prob(+ | r) is the posterior

probability of the class (+) given r. Now taking into account the two rule

versions (r and r
′
), the amount of information obtained by adding the new

conjunct B is: logProb(+ | r′) − logProb(+ | r)[bit]. By using frequencies to

estimate probabilities, the Foil-Gain is defined by:

FOIL Gain = p
′ ∗ (log2

p
′

p′ + n′
− log2

p

p+ n
) (3.11)

Since this measure is proportional to p
′

and p
′

p′+n′
, rules having high accuracy

and coverage will be preferred.

3.4.3 Rule induction algorithms

In this section, we present some sequential covering based algorithms. We first give

the background for the well known RIPPER algorithm. Then, we only introduce a

brief descriptions of the CN2, FOIL and GOLEM algorithms. For more details about

algorithm CN2 see [37][36], and for learning first order rules from propositional ones

see [116].

The RIPPER algorithm

RIPPER (Repeated Incremental Pruning to Produce Error Reduction) is a well-

known rule-based algorithm initially proposed by Cohen [39]. It is the successor of

IREP algorithm for rule induction [90]. Although the two algorithms have the same

principal, the RIPPER improves IREP in many details and is also able to cope with

multiclass problems.

This algorithm scales almost linearly with the number of training examples and

is especially appropriate for inducing rules from data sets with imbalanced class
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distributions. RIPPER is also efficient to deal with noisy data sets because it uses a

validation set to avoid overfitting. For two-class problems, RIPPER use the majority

class as a default class and learns rules representing the minority class.

For multiclass problems before learning rules, the training data is sorted by

class labels in ascending order according to the corresponding class frequencies. Let

(c1, c2, ..., cC) be the ordered classes, where c1 is the least frequent class and cC is the

most frequent class. Rules are then learned for the first C-1 classes, starting with

the least frequent ones. During the first step, instances that belong to c1 are labeled

as positive examples, while those that belong to other classes are labeled as negative

examples. The sequential covering method is used to generate rules that discrimi-

nate between the positive and negative examples. Next, RIPPER extracts rules that

distinguish c2 from other remaining classes. This process is repeated until it finds

no more rules to learn. At this moment, a default rule (with empty antecedent) is

added for the last (the most frequent) class.

The RIPPER algorithm is composed of two principal phases: the rule learning

and the rule optimization. In the first phase an initial rule base is built using the

rule induction algorithm denoted IREP* [90]; in this phase two steps are involved:

the rule growing and rule punning.

The rule growing: The initial form of a rule is just a conclusion (the class

value) and an empty antecedent. In each iteration the best conjunct, based on its

Information Gain, is added to the antecedent. The process of growing conjuncts

in the rule antecedent is stopped if we reach to an empty set of non covered positive

examples or if no improvement in the information gain score can be observed. The

information gain measure is calculated as in Equation 3.11.

The rule pruning: Pruning is an attempt to prevent rules to be too specific.

Pruning is made according to a metric denoted V ∗(R). IREP* chooses a literal

(conjunct) candidate to be pruned based on a score which will be computed for all

rule antecedent literals when applied to the validation data. This score is defined as

follows:

V ∗(R) =
p− n
p+ n

(3.12)

where p (respectively n) is the number of positive (negative) examples in the

validation set covered by the rule. This metric is especially related to the rule’s

accuracy when confronted to the validation set.

A conjunct is removed if the above evaluation metric will be improved after
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pruning. The pruning is involved starting from the last conjunct added to the rule.

For example, let r : a1 ∧ a2 ∧ a3 ∧ a4 → cj, RIPPER checks if a4 should be pruned

first, followed by a3 ∧ a4 , a2 ∧ a3 ∧ a4, etc. To ovoid overfitting, the pruned rule

may cover some of negative examples and is more efficient for generalization than

the original rule if confronted to unseen examples.

The last phase in this algorithm consists to optimize the already generated rule

base. Rule optimization involves a process of replacement or revision of each rule in

the rule set which aims to determine whether some of existing rules can be replaced

by better alternative rules. To decide for the best version of each rule to retain, the

algorithm uses the MDL (Minimum Description Length) criterion [148].

By applying it to several databases, this algorithm is simple and generates more

robust rules than those generated by the C4.5 algorithm in the rule mode [76].

Example 3.4.

This example presents the rule set generated for the ’Iris’ data set using the

RIPPER algorithm. The induced model, given in Figure 3.4, includes four rules for

different class labels where the last one is a default class.

Figure 3.4: A rule set generated by the RIPPER algorithm for the iris dataset [131]

The CN2 algorithm

CN2 [37][36][134] is an algorithm for induction of propositional rule. It integrates

functionalities of two types of algorithms; it integrates the basic principal of AQ

algorithm using a beam − search exploration of data; and it introduces the ability

of ID3 algorithm [37] for decision trees induction to cope with noisy data, especially

the use of statistical methods for rule evaluation.

The first versions of CN2 [37] use the entropy in the rule evaluation whereas the

more recent versions [36] use Laplace estimate, which allows better results when the

data are noisy.

Also we note that the oldest versions of CN2 produce ordered rules whereas the

more recent versions enable to produce unordered rules. CN2 uses a significance
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test as an heuristic for pre-pruning. The sequential covering algorithm presented

by Mitchell (1997)[134] is well applied to the CN2 algorithm. Inside the procedure

of search for the best rule, attributes are iteratively added to the candidate rule

antecedent in order to specialize them until it reaches a suitable covering level. The

CN2 algorithm induces rules for two class problems where a default rule is predicted

for the negative class.

The FOIL algorithm

FOIL [147][149][134] is an algorithm for learning Horn clauses. As in the case of CN2

algorithm, FOIL produces rules in a downward way and uses statistical metrics for

evaluating and pre-pruning rules. However, statistical methods used by FOIL are

different from those used by CN2: for rule evaluation, FOIL uses metrics based on

a weighted information gain but adapted to literals and variables; for pre-pruning

FOIL uses metrics based on the Minimum Description Length (MDL).

FOIL only supports hill − climbing exploration whereas CN2 supports both

hill− climbing and beam− search exploration at the same time. In addition, FOIL

searches for rules predicting only positives concepts. The rule-based learning enables

producing rules whose conclusion is a predicate. In the rule refinement step, FOIL

recursively adds premises to the rule in the form of literals. Each literal is an existing

predicate, an equality function, or a negation of this predicate or equality function.

Some used heuristics enable introducing a new variable which is not related neither

to the conclusion nor to literals of the current premises.

The GOLEM algorithm

GOLEM is also an algorithm for learning Horn clauses [135]. Contrary to CN2

and FOIL, GOLEM applies a rule search strategy in an ascending way. GOLEM

starts the search process by a too specific rule formed from a pair of random positive

examples, then it generalizes this rule by a hill-climbing exploration. The technique

of ascending exploration used by GOLEM is based on the reversed resolution and

the procedure of relative least general generalization: this procedure combines two

or more clauses in only one clause and can apply a substitution operation to the

variables.

3.5 The PART Algorithm

To summarize the two previously presented sections, we can say that rule induction

for classification purpose operates in two-steps. First, a set of rules is initially induced
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which should be representative of the training data. Then, this rule set will be refined

later according to a global optimization procedure. This process can be performed

by two different ways: either by using the Sequential Covering algorithm including a

rule refinement strategy able to produce a set of optimized rules or by constructing

a decision tree, transforming the tree to a rule set and then pruning the rule set as

already described.

It has been shown in [85] that rules induced by separate−and−conquer methods

may have over-pruning usually called ”hasty generalization”, while rules extracted

from a decision trees are computationally expensive especially in presence of noisy

data [39]. As an attempt to avoid problems encountered with these two techniques,

Frank and Witten (1998)[85] proposed an algorithm called PART (Partial decision

trees) which is basically founded on combining the two previous approaches.

PART induces the set of rules as follows. The main separate and conquer idea

is maintained where rules are iteratively built and all their covered examples are

removed until all examples are covered. However, it differs from the standard ap-

proach in the way that each rule is learned. In particular, to learn one rule a partial

pruned decision tree is built for the current set of examples, the leaf with the largest

coverage is made into a rule, and the tree is discarded. The pruned decision tree

helps to avoid the over-pruning problem of methods that immediately prune an indi-

vidual rule after construction. In addition, inducing partial decision trees can avoid

expensive rule optimization procedure performed in decision tree based rule learning.

The authors in [85] have shown that this algorithm leads to less complex rule size

and higher accuracy if compared to both C4.5 decision tree [145] and separate−and−
conquer based RIPPER [39]. See [85] for a comparative study between RIPPER,

C4.5 and PART.

Example 3.5.

This example shows the rule set generated for the ”iris” data set using the PART

algorithm which includes three rules. The last induced rule is the default class.

Figure 3.5: A rule set generated by the PART algorithm for the iris dataset [131]

Although the two decision lists obtained by RIPPER and PART algorithms have

the same accuracy (94%), obtained by applying the WEKA software implementation

of the two algorithms [168], the rule set generated by PART seems to be more

compact (See Figures 3.4 and 3.5).
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3.6 Conclusion

In this chapter, we reviewed principal rule based learning methods. In particular,

we focused on two families of rule based classifiers: the first family learns a classical

decision tree and then extracts IF-THEN rules using a rule extraction process. The

second family is rather based on the sequential covering algorithm which enables

extracting rules directly from data without going through a decision tree model.

Positive and negative aspects of these two family of methods are also discussed.

In the last part of the chapter, we described a particular rule based classifier; the

PART algorithm; which combines the sequential covering principle and the decision

tree extraction in a same algorithm in order to overcome some drawbacks of these

methods. In the next Chapter, the PART algorithm will be used as a basic algorithm

to propose a variety of fuzzy versions of this classifier in the hope to improve its

efficiency.
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Chapter 4

A Possibilistic Rule based
Classifier

4.1 Introduction

In many applications, rule induction algorithms gain the most popularity among

machine learning techniques. If the number of rules is relatively small and accuracy

is sufficiently high such classifiers are a good choice. Rules are desirable since they

are more readable [168] than black box methods such as SVMs. However searching

for a set of rules that optimize the cost function based on the error rate made by

the classifier is one the main issues to tackle in rule induction methods because this

searching is considered as a difficult optimization problem [76] [142] [155].

As previously introduced in Chapter3, once rules have been induced from training

instances, there are three possible situations that demand different solutions, when

classifying unseen examples [125]:

- One-covering case: one or more rules cover a test example and are associated

with the same class. In this easy case, the example is assigned to this class.

- Multiple covering case: several rules cover the example and they are associated

with different classes. This is clearly an issue because, even if one of the rules

correctly classifies the example, it is considered as wrongly classified since no rule

can be preferred in such situation. A default choice of the rule may deteriorate the

classification accuracy.

- Non-covering case: no rule covers the example. As in the multiple covering

case, the example is considered as wrongly classified. In this case, a simple solution

is to take the most frequent class as a default choice. One might also associate the

class of the closest training example.
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In this chapter, we propose a family of Possibilistic Rule-based Classifiers (PRC)

to deal with such problems which are an extension and a modification of the PART

algorithm [85] previously described in Chapter 3.

The PRCs, which keep the rule learning process of the PART algorithm, differ

from it in more than one respect. First, the PRCs generate a set of fuzzy rules

instead of crisp rules. Fuzzy rules, by their flexible boundaries, enables a gradual

transition when discretizing real-valued attributes, and so overcome the drawbacks

of crisp rules making an abrupt transition [97]. The rationale behind the use of fuzzy

sets is that they make a distinction between rules that are strongly satisfied when

the attribute value (of the example to classify) is inside the core of the fuzzy sets

and rules that are weakly satisfied when this value is near the boundaries.

Second, in the classification phase, PRCs evaluate rules in an unordered manner

instead of using a decision list, i.e. all rules in the rule set are evaluated in an

equivalent way by estimating their relevance and then choose the rule with the

highest estimate. The main advantage of using unordered fuzzy rules, compared

to decision lists, is that the order among rules is determined by their degree of

satisfaction for the current example. Finally, fuzzy rules are more flexible, cover

larger sets of cases than crisp rules and contribute to reduce (or totally eliminate by

using very large supports) the number of non-covered examples.

This chapter is structured as follows: Section 2 reviews some related works. We

describe along Section 3, the architecture of the Possibilistic Rule based Classification

approach where we present the rule fuzzification algorithm and the Possibilistic Rule-

based Reasoning. The hybrid version is detailed in Section 4. In Section 5, we report

the experiments for all PRCs that we propose in this chapter. Finally, Section 6

concludes and proposes some directions of future research.

4.2 Related works

Getting a set of rules that does not lead to ambiguity in classification for the training

set, does not guarantee that multiple (or the absence of) classification will not occur

when considering a new example. Many methods have been proposed to deal with

this problem. The simplest one is to use decision lists [39] [79] where a test example

is classified using the first satisfied rule. Serrurier and Prade [155] have proposed

a formalization of the ILP problem using first-order possibilistic logic to deal with

multiple classification. In order to prevent an example to be classified in more than

one class, the authors exploit the fact that possibilistic logic associates a priority

level to each rule. However in this kind of method, rules need to be sorted at the

induction step, which may favor some rules and penalize others in a non symmetric

way.
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In contrast with decision lists, some other methods learn rules in an unordered

manner. To deal with the multiple classification problem, a first idea is to assign

weights to the rules at the deduction step in order to distinguish between the satisfied

rules. One type of approach for computing these weights is to learn fuzzy rules

instead of crisp ones. Thanks to their flexible boundaries, fuzzy rules in numerical

settings no longer cover an instance with a {0, 1} degree, but rather in a gradual

manner using a membership function with values in [0,1]. This process enables us

to distinguish between strongly satisfied rules and those weakly satisfied for a given

example.

Ishibuchi and Yamamoto [101] have proposed heuristic methods to define weights

for fuzzy rules. Mainly two strategies are adopted: i) the single winner method:

where the rule having the highest estimate, in terms of its compatibility grade and

its certainty factor (weight), is used to classify the example and ii) the weighted vote

method: where the vote is for the class with the highest estimate defined by the sum

of products of the compatibility grade and the certainty factor of rules labeled with

this class (see [101] for details).

In the same context, the estimate of probability (EP) method [133][125] used

in the HCV induction algorithm assigns an EP value for each class by examining

training set coverage of satisfied rules for this class. More recently the FURIA

algorithm [97] which is an extension of the RIPPER algorithm [39] has been proposed.

In this work, the authors use a rule fuzzification algorithm for learning unordered

rules instead of rule lists and adopt a weighted vote method, whereas the classifiers

that we are going to present use the single winner method. Still FURIA looks similar

to our PRC since it is a fuzzy extension of RIPPER algorithm as the PRCs are an

extension of the PART algorithm. However, the main difference is that FURIA

uses only one type of fuzzification, whereas our PRCs exploit different forms of

fuzzification to deal with different situations (see Section 3).

A standard way to deal with the non-covering problem is to adopt a default class

strategy, which assigns an example not covered by any rule to the most frequent

class [9][37]. The choice of the default class is done at the induction time and is not

dynamically updated at the classification time [125]. Using a pre-fixed default class

for any example in the test set could deteriorate the classification results.

An alternative to a fixed default class strategy, is to consider a neighborhood of

the unclassified example in the training set [133][125]. The Measure of Fit (MF)

method [133][125] calculates the MF value of each class for each test example not

covered by any rule. The MF value is interpreted as the closeness of the test example

to a class based principally on the rule coverage of the training set for that particular

class.

In [22] the authors proposed a possibilistic approach which dynamically assigns
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a default class to each example not covered by any rule. For this purpose, they used

a possibilistic class based-reasoning which searches for the most plausible class by

quantifying relationship between examples and classes through a distance measure.

Other methods have been proposed in this context, for example the FURIA

algorithm [97] makes use of a stretching method which generalizes induced rules

until they cover an example initially not covered by any rule. The rule generalization

method is first proposed in [77]. It searches for the optimal rule antecedent to delete

in order to cover the example. The authors evaluate rules using Laplace accuracy on

the training data and classify the example by the rule with the highest evaluation.

In the context of rule fuzzification, Muñoz et al. [127] have recently proposed an

algorithm to extract fuzzy classification rules from training examples. This algorithm

is a fuzzy extension of the well-known CN2 algorithm [37] which exploits linguistic

hedges to obtain more precise and compact rules. Contrary to our proposed rule

based classifier, this approach makes use of ordered rule lists.

4.3 The Possibilistic Rule-based Classifiers: PRCs

In this chapter, we propose a family of Possibilistic Rule based Classifiers using the

architecture described in Figure 4.1. These classifiers use a training module which

allows to learn a set of crisp rules from training examples based on the standard

learning process used by the PART algorithm [85] (detailed in section 3.5 page 93).

We recall that this latter is basically founded on combining the sequential covering

principle [89] and the decision tree induction method as in C4.5 algorithm [145]. The

PART algorithm is considered among the best-known rule induction algorithms in

terms of simplicity of induced rules and accuracy [85].

Figure 4.1: Architecture of the Hybrid Possibilistic Classification approach

The PRCs, which keeps the same rule learning process of the PART algorithm,

aims to extend and modify this algorithm in order to improve its efficiency. Even if
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the proposed classifier can be easily adjusted to classify certain or uncertain data,

we are only interested to deal with certain numerical data in this work. The PRCs

differ from the PART algorithm in more than one sight. First, the PRCs generates

a set of fuzzy rules (through the fuzzification module) instead of crisp rules. Fuzzy

rules, by their flexible boundaries, enables a gradual transition between classes and

so overcome drawbacks of crisp rules making an abrupt transition [97]. The intuitive

behind the use of fuzzy rules is that they contribute to distinguish more between

rules that are strongly satisfied when the attribute value (of the example to classify)

is inside the core and rules that are weekly satisfied when this value is near to the

boundary.

The main contribution of PRCs over the standard PART is in the classification

phase. In fact, the classification module is founded on a Possibilistic Rule-based

Reasoning (PRR in Figure 4.1) which uses the generated fuzzy rules to classify testing

instances. The PRR allows sorting rules according to their degree of Possibilistic

Relevance to each test example. The PRR (detailed in Section 4.3.2) evaluates rules

in an unordered manner instead of using decision lists as in the case of the PART

algorithm, i.e. all rules in the rule set are evaluated in a symmetric way by estimating

their relevance possibility and then choose the rule with the highest estimator. In

a decision list, an example is classified by the first satisfied rule in the list. These

rules are sorted at the induction step according to their coverage for example and

never adapted after in the deduction step. The main advantage of using unordered

rules, if compared to a decision list, is sorting satisfied rules at the deduction step

depending on their degree of satisfaction against the current example.

Finally, using a pre-fixed default class to classify all non covered examples (based

on the largest class for example) seems to be disadvantageous since this class may be

inappropriate to some examples. To deal with such problem, we propose to extend

and so generalize fuzzy rules in order to cover examples not covered by any classical

rule. Rule generalization enables to seek for an adjusted default class specific to

each test example. In this context, we propose a rule fuzzification approach which

searches for the largest support for rules that could extend crisp rules in order to

cover all non covered examples.

Although, we are only interested to the PART algorithm in this work, the generic

nature of the proposed architecture given in Figure 4.1 allows it to be a possibilistic

extension for any other classical rule based classifier that learns crisp rules such as

the RIPPER algorithm [39].

4.3.1 Rule fuzzification

In this section, we first present fuzzy rules, and we then propose a new algorithm for

rule fuzzification which is used to refine crisp rules, learned by the PART algorithm,
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into fuzzy rules.

Rule representation

In most rule based classifiers, a rule is of the form:

IF 〈antecedent〉THEN〈consquence〉

where antecedent is the conjunction of a set of n selectors {A1, ..., An}. When

we deal with numerical attributes, the general syntax of a selector is:

〈Selector〉 ::= 〈LowerBound〉〈 Operator〉〈Attribute−Name〉 〈Operator〉
〈UpperBound〉

with Operator ∈ {<,>,≤,≥}.

Note that the PART algorithm produce rules with selectors limited only in one

part i.e. selectors of the form: (Ai ≤ u) or (Ai ≥ l). If we only consider normalized

numerical attribute values in [0, 1], this means that Ai ∈ [0, u] or Ai ∈ [l, 1].

A fuzzy rule is obtained by replacing each selector in the initial crisp rule by a

fuzzy selector with trapezoid membership function. A fuzzy selector AFi is identified

by the core and the support which can be for the upper (CU and SU) or the lower

bound (CL and SL) as in Figure 4.2. Given an attribute value ai and a fuzzy selector

AFi with the same attribute name, a membership function µAFi reflects to what extend

ai is covered by AFi with values in [0, 1] defined as follows:

µAFi (ai) = max(0,min(
ai − SL
CL − SL

, 1,
SU − ai
SU − CU

)) (4.1)

Figure 4.2: Trapezoid membership function

In this work, we propose three fuzzification approaches to deal with different

aspects [26]:
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Approach A: We consider a restrictive reading of the crisp rule. In this case the

initial rule set is refined by a fuzzy rule set with the same support and a

restricted core. We expect that this fuzzification approach will help to separate

the multiple-classification cases.

Approach B: We consider a reading of the crisp rule that is robust to small varia-

tions of data. In this case, a selector in the original rule is refined by a fuzzy

set having a larger support and a more restricted core. More precisely, for

each fuzzy selector, the support and core should be chosen so that the 0.5-cut

corresponds to the classical crisp selector. It may help to separate multiple-

classification cases, while taking advantage of rule robustness.

Approach C: We consider a permissive reading of the crisp rule. A classical rule

selector is then refined by a fuzzy selector with the same core and a wider sup-

port. This last approach contributes to decrease the number of non-classification

cases. By using very large supports the non-covering problem may be totally

solved.

Parts b, c and d in Figure 4.3 show the representation of fuzzy rules for each

proposed approach where xi is the value of the crisp selector in the rule, the grey

part corresponds to the original set, and the dotted lines to its fuzzy version.

Figure 4.3: Fuzzification approaches

Rule Fuzzification Algorithm

In order to fuzzify a rule in the rule set, we propose to fuzzify each selector in this

rule independently to other selectors as described in Algorithm 6 [26].

The process of selector fuzzification amounts to search for the best core (approach

A or B) or support (approach B or C) that could extend a crisp selector to a fuzzy one.

Given the training set Tr for each crisp selector Ai, we look for all possible attribute

values in Tr that could be its core or support. Core (resp. support) candidates are

those satisfying condition CL ∈]xLi , 1] (resp. SL ∈ [0, xLi [) if the crisp selector is of

the form (Ai ≥ xLi ) and CU ∈ [0, xUi [ (resp. SU ∈]xUi , 1]) if selector is of the form
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Algorithm 6 Fuzzify (rj)

n = Number of selectors of rj
rFj = ∅
for i = 1 to n do
A[i]F = BestFuzzification(A[i])
rFj = rFj AND A[i]F

end for
Consequence (rFj )= Consequence (rj )
return rFj

(Ai ≤ xui ) (Figure 5.2). Then we evaluate these candidates in terms of their accuracy

and their proximity to the crisp value of the selector. The core or support used to

fuzzify Ai is that having the highest quality (Equation 4.3).

Algorithm 7 describes the search process of support candidates. Analogous pro-

cess is used to search for core candidates by reversing conditions. For approach B,

the process returns to search for all possible cores and supports. For each of them,

we make sure that the 0.5-cut corresponds to the original crisp version.

Algorithm 7 BestFuzzification(Ai)

Tr = Number of training Instances
Supports = ∅
BestSupp = ∅
Qualitymax = 0
for k = 1 to | Tr | do

if (aki < xLi ) then
Add aki to Supports

end if
if (aki > xUi ) then

Add aki to Supports
end if

end for
for each Support S do
Quality(S) = GetSelectorQuality(S)
if Quality(S) > Qualitymax then
Qualitymax = Quality(S)
BestSupp = S

end if
end for
return BestSupport

To measure the quality of fuzzy selector, we use the accuracy defined by:
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acc(AFi ) =
tp

tp+ fp
, tp =

∑
a∈T+

r

µAFi (a), fp =
∑
a∈T−r

µAFi (a) (4.2)

T+
r : the training set labeled with the same class as the rule rj|AFi ∈ rj.

T−r : the training set labeled with other classes than that of rj.

The accuracy measure favor selector with core/support very far from the value

of crisp selector xi which enables fuzzy sets to be too flatten and thus have more

conflicting decision bound between classes. That’s why, we investigate a more suit-

able quality measure for fuzzy selectors which combines the core/support accuracy

(of the selector) with its proximity to the crisp value in a conjunctive manner:

Quality(AFi ) = acc(AFi ) ∗ prox(AFi ) (4.3)

prox(AFi ) = 1− |distance(core(orsupport), xi)| (4.4)

This quality measure leads to choose a fuzzy selector with the nearest core/sup-

port to xi among those having high accuracy. To compare our fuzzification algorithm

to that proposed by [97] in terms of complexity, we note that the Algorithm 7, used

to fuzzify each selector Ai, exploits at most |Tr| instances. If we consider that the

size of the rule is bounded by the number of attributes M , our algorithm complexity

is O(M |Tr|) whereas that of [97] is O(M2|Tr|).

4.3.2 Possibilistic Rule-based Reasoning: PRR

Given a test instance ats to classify with the following attributes: (a1, ..., aM), pos-

sibilistic rule based classification [26] consists in estimating the relevance possibility

of each rule to the test instance and in assigning the rule output with the highest

possibility for the instance ats calculated as follow:

Π(rj|ats) =
Π(ats|rj) ∗ Π(rj)

Π(ats)
(4.5)

Since Π(ats) = 1, only the numerator is useful for comparing rule relevance

possibilities. It measures the potential relevance of a rule given the instance to

classify. We assume conditional independence for the fuzzy selectors inside the rules.

The possibility distribution in the numerator can easily be built by the product or

the minimum of conditional possibilities Π(ai|rj).
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Π(rj|ats) =
M∏
i=1

Π(ai|rj) ∗ Π(rj) (4.6)

The possibility of attribute ai given the rule rj can be estimated by the member-

ship function µAFi e.g. Π(ai|rj) = µAFi (ai), where AFi is the selector i in rj with the

same attribute name as ai. Prior possibility of each rule Π(rj) is estimated through

the rule certainty factor CF introduced here as a weight for each rule. Ishibuchi

and Yamamoto [101] showed that weighted rules allows to improve classification ac-

curacy of rules. We note that adding weights to rules helps to distinguish between

satisfied rules in the multiple classification case.

CF (rj) =

∑
a∈T+

r
Π(rj|a)∑

a∈Tr Π(rj|a)
(4.7)

where Π(rj|a) is computed as in Equation 4.6 without considering prior possibility

for rj.

The rule chosen by the classifier to classify the current instance, is the one having

the highest possibility:

c∗ = argmax
rj

Π(rj|ats) (4.8)

In this work, we propose three possibilistic rule based classifiers each of them

corresponds to each fuzzification approach (A, B or C). In the following we note

respectively these classifiers PRCA, PRCB, and PRCC [26].

Example 4.1.

This example illustrates the process of rule evaluation by the Possibilistic Rule

based Reasoning. For this reason, we investigate to test it on a fuzzy rule set ex-

tracted by the fuzzification module (shown in Figure 4.1) for the ”Iris” dataset [23].

We recall that this data set contains four continuous attributes and three categorical

classes. For simplicity, we note respectively attributes: SL, SW , PL and PW and

classes: Set, Col and Gin. Characteristics for this dataset are given in Table 5.1

and its normalized version in Table 5.2.

Let consider the following crisp rule set generated by the standard learning pro-

cess of the PART algorithm.

r1 : IF (PW ≤ 0.208) Then ”Iris− setosa”

r2 : IF (PL ≤ 0.627) Then ”Iris− versicolor”
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r3 : IF (PW > 0.667) Then ”Iris− virginica”

r4 : IF (PL > 0.661), (PW ≤ 0.583) Then ”Iris− virginica”

We assume that, if confronted to a training set, these rules have the following

certainty factors (CF) computed using Formula 4.7 and given in Table 4.1. We also

give the fuzzy version for each rule selector obtained by applying the fuzzification

algorithm. For simplicity, we only consider the fuzzification ApproachC in this

example. Thus, only the support for each rule selector is given in Table 4.1, the core

is equal to the crisp value of each selector.

Table 4.1: Fuzzy rules and their CF

Rule CF Selector Core Support
r1 1 (PW ≤ 0.208) 0.208 0.375
r2 0.463 (PL ≤ 0.627) 0.627 0.644
r3 0.958 (PW > 0.667) 0.667 0.625
r4 0.816 (PL > 0.661) 0.661 0.644

(PW ≤ 0.583) 0.583 0.917

Let consider the three following test instances presented in Table 4.2:

Table 4.2: Test instances to classify

Instance: SL SW PL PW Class
a 0.778 0.417 0.831 0.833 ?
a′ 0.167 0.208 0.593 0.665 ?
a′′ 0.083 0.5 0.068 0.042 ?

Following equation 4.6, we obtain:

Π(r1|a) = Π(PW = 0.833|r1) ∗Π(r1) = 0 ∗ 1 = 0 (0.833 is outside the support of

r1 selector)

Π(r2|a) = Π(PL = 0.831|r1) ∗ Π(r2) = 0 ∗ 0.463 = 0 (0.831 is also outside the

support of r2 selector)

Π(r3|a) = Π(PW = 0.833|r3) ∗ Π(r3) = 1 ∗ 0.958 = 0.958 (r3 is strongly satisfied

by a since 0.833 in side the core of r3 selector)

Π(r4|a) = Π(PL = 0.831|r4)∗Π(PW = 0.833|r4)∗Π(r4) = 1∗0.25∗0.816 = 0.205

If we use the crisp version of r4, we can see that this rule do not cover this example

(especially the second selector) since the value PW=0.833 is outside the boundaries

of the second rule selector. However, rule fuzzification enables to r4 to be relevant to
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some degree with a possibility > 0 since Π(PW = 0.833|r4)) = µF(PW≤0.583)(0.833) =
0.917−0.833
0.917−0.583

= 0.25 (µF(PW≤0.583) is the membership function for (PW ≤ 0.583)).

Now let consider the second instance a′:

Π(r1|a′) = Π(PW = 0.665|r1) ∗ Π(r1) = 0 ∗ 1 = 0

Π(r2|a′) = Π(PL = 0.593|r2) ∗ Π(r2) = 1 ∗ 0.463 = 0.463

Π(r3|a′) = Π(PW = 0.665|r3) ∗ Π(r3) = 0.952 ∗ 0.958 = 0.912

(Since Π(PW = 0.665|r3) = 0.665−0.625
0.667−0.625

= 0.952 by Formula 4.1 applied to the left

part of the membership)

Π(r4|a′) = Π(PL = 0.593|r4) ∗Π(PW = 0.665|r4) ∗Π(r4) = 0 ∗ 0.754 ∗ 0.816 = 0

(Since Π(PW = 0.665|r4) = 0.917−0.665
0.917−0.583

= 0.754 by Formula 4.1 applied to the

right part of the membership)

Following the same process, we computed the possibility measures for the third

instance a′′. Rule relevance possibilities given test instances are summarized in Table

4.3 (Column PRCC for each rule). For the PART algorithm, rules are evaluated in

a binary manner using true/false values desponding on if the crisp rule covers the

current instance or not.

Table 4.3: Results of the rule evaluation by PART and the PRC

Rules r1 r2 r3 r4 Class
Part PRCC Part PRCC Part PRCC Part PRCC Part PRCC

a false 0 false 0 true 0.958 false 0.205 Gin Gin
a′ false 0 true 0.463 false 0.912 false 0 Col Gin
a′′ true 1 true 0.463 false 0 false 0 Set Set

By analyzing results in Table 4.3, we note that using the original crisp rule set,

only one rule covers the first instance a. Rule fuzzification, used by the PRC, causes

a multiple classification of a mono-classified by PART (r3 and r4 has a possibility

degree > 0). In spite of the multiple-covering case, the PRC shows a high ability to

distinguish between the strongly satisfied rule (r3) and that which is weekly satisfied

(r4). The classification for the PART and the PRC coincides.

When classifying the third instance a′′, at the origin we are faced to a multiple

classification case where more than one rule covers the instance (r1 and r2). Applying

the decision list principal, PART will use the first satisfied rule (r1) to classify this

instance. We can see that the PRC also succeeds to distinguish between the two

satisfied rules using the PRR principal. The two classifiers also coincides in this case
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and assign this instance to the class ′Setosa′.

However, for the second instance a′ the two classifiers produce different decisions.

Since the PART considers only satisfied rules, it will classify a′ as ′Iris− versicolor′
(the output of r2) without looking for remaining rules. However, the PRC estimates

the relevance possibility of rules in a more flexible way. Although r3, in its crisp

version, do not cover instance a′, it has a high possibility to be relevant for this

instance since the attribute value (PW = 0.665) is too near to the core (CL = 0.667)

of the rule selector that’s why it has a high degree of membership. Moreover, this rule

has also a high certainty factor. So if compared to r2, r3 seems to be more relevant

with a high possibility degree than that of r2 even it is ”slightly” not satisfied. The

two classifiers diverge for this instance, this divergence in classification enables to

the PRC to be more efficient when classifying instances with attribute values near

to the decision boundaries of rules as will be shown in the experimental section.

4.4 The Hybrid Possibilistic Rule-based Classi-

fiers: HPRCs

In the multiple classification case, the main problem of unordered rule selection

is that classification accuracy may significantly deteriorate if the classifier fails to

distinguish between satisfied rules. Mainly for the PRCB and in some particular

cases, rules may have too close plausibility estimates even if the PRC include weights

to be able to distinguish between satisfied rules as in Equation 4.6. To deal with

this problem, we investigate the idea of integrating the PRCB with the PRCA in a

hybrid classifier. In this later case, if the main classifier based on the approach B fails

to distinguish between the most relevant rules, we expect that the classifier based

on approach A will help to distinguish between these rules and thus better separate

the conflicting situations. Furthermore to deal with the non-covering examples for

the PRCB, we also investigate the hybridizing with the PRCC . The fuzzification

approach C, by using large support, is able to cover examples not covered by any rule

in approach B. The Hybrid classifier denoted PRC(B+A+C) is based on the following

algorithm [26]:

If r1 and r2 are respectively the most and the second most relevant rules for an

instance ats, the classification ambiguity with respect to rules is defined by:

Ambiguity(ats, r1, ..., rn) = 1− (Π(r1|ats)− Π(r2|ats)) (4.9)

In this algorithm we can also estimate ambiguity by considering more than two

rules. In practice, au maximum three levels is sufficient for disambiguation even for

data sets with high number of classes.
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Algorithm 8 The Hybrid Possibilistic Rule based Classifier PRC(B+A+C) (ats)

Classify ats by PRCB
c1 ← Class of the most plausible rule r1 in the PRCB (Given by Formula 4.8)
c2 ← Class of the second most plausible rule r2

if (¬MultipleClassification OR Ambiguity(ats, r1, r2) < ε) then
Class(ats) = c1

else
Classify ats by PRCA
Class(ats)= Class of the most plausible rule r1 in the PRCA

end if
if non− covering − case then

Classify ats by PRCc
Class(ats)= Class of the most plausible rule r1 in the PRCC

end if
return Class(ats)

4.5 Experiments and discussion of Possibilistic Rule-

based Classifiers

In order to test the performance of the proposed possibilistic approaches, we imple-

mented and tested the Possibilistic Rule-based Classifier (with the three versions)

under the JAVA language. For testing the PART algorithm, we used the WEKA

implementation of this algorithm [168] (within java language).

In addition to the well known advantages of oriented object technology, this last

has several qualities relative to our needs. Indeed, the integration of software com-

ponents in the applications developed in this environment is usually a simple action.

In one hand, the JBuilder environment has allowed to us to integrate a fundamental

WEKA component for our application (See Appendix A). In particular, the class for

data management which allows using and analyzing all data sets having an ”arff”

type and also the class PART() corresponding to the PART algorithm available in

the Weka software [168]. Once integrated, we could properly structure and adapt

theses classes in order to be extended to the fuzzy version of the PART algorithm

to response to the needs of our classifier. In the other hand, this environment allows

the development of a JAR package which can be easily integrated in any single-user

or other Web applications.

This section is divided into parts, we first present the characteristics of data sets

used to conduct experiments. Then we give experimental results for Possibilistic

Rule-based Classifiers as a fuzzy extensions for the PART algorithm.
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4.5.1 Data sets

The experimental study is based on several data sets taken from the U.C.I repository

of machine learning databases [131]. A brief description of these data sets is given in

Table 4.4. Since we have chosen to deal only with numerical attributes in this study,

all these data sets have numerical attribute values.

Table 4.4: Description of datasets

Database Data Attributes Classes
Iris 150 4 3
W. B. Cancer 699 8 2
Wine 178 13 3
Diabetes 768 7 2
Magic gamma telescope 1074 10 2
Transfusion 748 4 2
Satellite Image 1090 37 6
Segment 1500 20 7
Yeast 1484 9 10
Ecoli 336 8 8
Glass 214 10 7
Iosophere 351 35 2
Letter 3050 17 26
Block 5473 10 5
German 1000 25 2
Heart 270 14 2

For each data set, we used a 10-cross-validation to compare the accuracy of the

classifiers.

4.5.2 Classification results

This section provides experimental results of Possiblistic Rule based Classifiers [26].

Table 4.5 shows the classification performance obtained by the four proposed

classifiers for the 14 mentioned data sets. We also included the classification accuracy

of the PART as well as the FURIA algorithm (as presented in [97]) for a comparative

purpose. The number of induced rules is also given for the PRCs and FURIA [97].

In this experimental study, we have applied an aggregation based on the minimum

for the approach A and C and the product for approach B. In order to fix the best

ambiguity level used for the hybrid approach, we have tested different values for

this threshold (0, 0.1, ..., 0.9, 1) for each dataset and then choose the optimal value

(which maximizes accuracy). The best ambiguity level is 0.1 for almost all datasets.
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Table 4.5: Classification accuracies given as the mean and the standard deviation of
10 cross-validations and average number of rules

PRCA PRCB PRCC PRCB+A+C PART FURIA Rules(PRCs) Rules(FURIA)

Iris 96.67±4.47 96.0±4.42 96.67±4.47 96.0±4.42 94.67±4.99 94.76 3.1 4.4

Cancer 95.46±3.31 95.91±2.84 95.17±2.54 96.64±2.46 94.88±3.1 95.68 8.6 12.2

Wine 94.93±3.9 93.26±4.14 90.48±6.56 93.26±4.14 93.82±4.61 93.25 3.3 6.2

Diabetes 74.22±3.79 74.62±4.74 75.53±5.46 75.14±5.57 74.22±4.31 74.71 6.6 8.5

Magic 77.19±4.47 78.4±3.36 79.24±3.21 78.68±3.56 78.96±2.53 - 8.9 -

Transf. 77.15±5.4 77.95±5.23 78.09±5.33 78.09±5.33 77.69±5.71 - 3.4 -

Sat.Image 91.47±2.87 90.92±4.15 93.12±4.01 91.74±2.99 93.76±2.12 - 14.4 -

Segment 89.14±3.32 89.4±3.87 91.93±2.91 89.4±3.87 95.2±1.63 96.50 21.9 26.9

Yeast 53.64±3.04 56.54±2.57 60.51±3.77 56.54±2.57 54.5±4.3 - 127 -

Ecoli 80.1±5.11 78.63±5.96 73.18±6.53 79.8±6.0 81.53±4.14 83.12 12.3 13.8

Glass 69.18±7.26 70.13±8.1 62.64±8.3 70.13±8.1 69.68±7.97 68.22 13.6 11.3

Iosophere 88.03±4.92 89.75±3.87 90.31±3.44 90.31±3.44 89.45±4.45 89.59 6.8 8.3

German 74.4±3.44 74.0±3.58 74.0±3.32 74.6±3.5 71.6±3.04 - 73.4 -

Heart 79.26±8.32 79.63±7.64 81.48±5.74 79.63±8.49 77.78± 8.28 79.75 15.6 8.4

This means that the hybrid classifier outperforms the classifier B only if the conflict

between rules is very high.

By comparing the classification performance in Table 4.5 we note that:

• The PRCC is more accurate than PRCA and PRCB in nine of 14 data sets and

less accurate in the remaining data sets. However, PRCB seems to have the second

rank since it is more accurate than PRCA in 9 of 14 data sets.

• Results for the hybrid version shows that either it contributes to improve the

accuracy of the original classifier PRCB or at least keeps its performance. Indeed,

for 8 of 14 data sets the PRC(B+A+C) increases the accuracy of the PRCB and for

6 data sets the two classifiers have the same accuracy. This shows the efficiency of

the hybrid approach to separate conflicting rules and helps the PRCB to choose the

correct class.

• When the hybrid classifier is equivalent to the PRCB, this means that the ap-

proach B and A always predict the same class. Then, for this data set there is no

non-covering examples (the learned rule set covers all testing examples), or the ap-

proach C predicts the same class as the default class of approach B for non-covering

examples.

• Overall, the proposed possibilistic rule based classifiers (PRCA or PRCB or PRCC
or PRC(B+A+C)) significantly outperforms the PART classifier in 11 of 14 data sets,
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the highest increase is for the “Yeast”, “German” and “Heart”.

• If we compare the accuracy of the proposed classifiers to the FURIA, we can see

that the PRC outperforms FURIA in 7 of 9 tested data sets and is less accurate

in the two remaining data sets ”Segment” and ”Ecoli”. For these data sets (and

the Sat.Image), we also remark that our proposed classifiers are also less accurate

than PART algorithm. In fact, for data sets with a large number of classes, there

is a high risk of multiple classification mainly if the number of generated rules by

PART is also large (see rules for these datasets in Table 4.5). Besides, if training

instances are not equitably distributed over classes, this will cause the generation of

some rules that are very robust for classes with high coverage and other non robust

rules for classes with very low coverage. Considering that the proposed classifiers

use unordered rules, they will always favor robust rules and neglect others in the

multiple classification case, which causes classification error.

• Comparison in terms of the number of rules in Table 4.5 shows that the PRCs use

a reduced rule set with an average over all datasets equal to 10.2 against to 11.11

for the FURIA.

Finally, in order to measure the improvement significance of the PRC if compared

to the PART algorithm in terms of accuracy, we used the Wilcoxon Matched-Pairs

Signed-Ranks Test as proposed by Demsar [50]. It is a non-parametric alternative to

the paired t-test that enables us to compare two classifiers over multiple data sets.

Comparison results give a p− value <= 0, 03271 which show that the PRC(AorBorC)

is significantly better than the PART for all data sets.

These results prove that using unordered fuzzy rules is faithful and contributes

to improve the efficiency of a classical decision list [26].

Figure 4.4: Error frequency by class for the Ecoli data set

4.6 Conclusion

In this chapter we have proposed and validated the performance of a family of fuzzy

rule-based classifiers called PRCs which is an extension and a modification of the

PART algorithm. The PRCs differ from the PART algorithm mainly in three ways.
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Figure 4.5: Error frequency by class for the Block data set

In particular, this classifier uses fuzzy rules instead of crisp rules to give more flex-

ibility to rule decision boundaries. Moreover, it considers rules in an unordered

manner instead of decision lists at classification step. Finally, using fuzzy rules with

large supports enables us to cover all non covered examples without using a prefixed

default class.

We also propose a Hybrid Possibilistic Rule based Classifier which integrates

different fuzzification approaches to deal deal with different situations in the Possi-

bilistic Rule-based Reasoning.

Experimental results show the interest of Possibilistic Rule-based Classifiers. In

fact, the modifications added to the PART algorithm, mainly the use of unordered

and fuzzy rules instead of crisp and rule lists enables to the PRCs to significantly

outperforms the classical PART algorithm.
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Chapter 5

Possibilistic Classifiers for perfect
/imperfect numerical data

5.1 Introduction

Classification is a machine learning technique used to predict group membership for

data instances. It consists in searching for algorithms that produce general classifiers

from a set of training instances which constitutes the training phase. The resulting

classifier is then used to assign class labels to the testing instances described by a

set of predictor features. This process is usually called testing phase. Classification

tasks can be handled by mainly three classes of approaches: those based on empirical

risk minimization (decision trees [146], artificial neural networks [13]), approaches

based on maximum likelihood estimation (such as Bayesian networks [139], k-nearest

neighbors [43]), and the ones based on Kolmogorov complexity [160].

In this dissertation we are mainly interested in the second class of methods.

Given a new piece of data to classify, this family of approaches seeks to estimate the

plausibility of each class with respect to its description (built from the training set

of examples), and assigns the class having the highest plausibility value. There are

principally two methods: the k-Nearest Neighbors and the Naive Bayesian Classifiers

(NBC). The former, known as lazy learning methods, are based on the principle that

an instance will usually exist in the proximity of other instances having similar char-

acteristics. The latter (NBC type) assumes independence of variables (attributes) in

the context of classes in order to estimate the probability distribution on the classes

for a given observed data. NBCs are also known for their simplicity, efficiency and

small needs in terms of storage space. Moreover NBC perform well, even when

making the strong independence assumption which is almost always violated in real

datasets [54].

The objective of this work is to discuss the benefits and also the limits of Naive
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Bayesian Classifier and to test the feasibility of using other kinds of representation

for the distributions associated to attributes. This work focuses on the classification

of data with numerical attributes. Three alternatives are commonly considered

for handling numerical attributes in an NBC: i) using a discretization process for

continuous attributes and then applying a multinomial probability distribution. It

may lead to a loss of information [172] mainly when attributes are discretized in

many intervals. However, this method may be effective when the elicitation of the

density function turns to be difficult; ii) assuming normality of the distributions

for attributes and estimating the density function using Gaussian densities, or iii)

directly estimating densities in a non parametric way using kernel density functions.

The study of possibilistic classifiers is motivated by the good performance of

NBCs and their appropriateness for incomplete data in the first hand and by the

ability of possibility theory [70] to handle poor and imperfect data in the second

hand.

Imperfection in databases, including imprecision and uncertainty, is gaining more

and more attention since decision systems are not able to deal with such kind of in-

formation. Thus, it is required for a classification technique to be able to model

and deal with instance imperfections in order the induced model can be a real repre-

sentation of data. Several non-classical theories of uncertainty have been proposed

in order to deal with uncertain and imprecise data such as, evidence theory [156],

fuzzy set theory [173] and possibility theory [70] [63]. The latest is able to deal

with different kinds of uncertainty and is useful for representing partial knowledge

or incompleteness.

Possibility theory [70] [63] has been recently proposed as a counterpart of prob-

ability theory to deal with classification tasks in presence of uncertainty. There are

only few works that treat possibilistic classification [10] and most of existing näıve

possibilistic classifiers deal only with categorical attributes.

In this chapter, we will first introduce the basics for the Naive Possibilistic Clas-

sifiers (NPC) that are based on the possibilistic counterpart of the Bayesian formula

[71] and also propose the estimation of the possibility distributions for numerical

data.

In the second time, we also investigate the idea of integrating the possibilistic

classifiers with a Nearest Neighbors based Heuristic (NNH) in a hybrid manner in

order to improve their performances. Indeed, the hybrid classification allows the use

of the NNH as an alternative when the main classifier fails to distinguish between

classes, i.e. when several classes have very close plausibility estimates.

In the last part of this chapter, we study possibilistic classifiers applied to imperfect
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numerical data. The objective of this part is to extend possibilistic classifiers previ-

ously proposed for numerical data in order to cope with uncertainty in data sets (in

the training and testing sets).

The rest of the chapter is structured as follows: in the next section, we provide

a summary of related works on classification under imperfect data. In Section 3,

we give our motivation to the possibilistic classification task and we restate the

basic setting of this classification method. In Section 4, we study the two kinds of

elicitation methods for building possibility distributions: i) the first one is based on

a transformation method from probability to possibility, whereas ii) the second one

makes a direct, fuzzy histogram-based, or possibilistic interpretation of data, taking

advantage of the idea of proximity. Section 5 introduces the principle of the hybrid

classification. In Section 6, we extend possibilistic classifiers to handle imperfect

data: the first type concerns the processing of uncertain classes in the training

set, whereas the second one deals with uncertain attribute values in the testing set.

Uncertainty on attribute values is modeled by intervals.

5.2 Related Works

Some approaches have already proposed the use of a possibilistic data representa-

tion in classification methods based on decision trees, Bayesian-like, or case-based

approaches. A general discussion about the appropriateness of fuzzy set methods in

machine learning can be found in [99]. Most of the works in possibilistic classification

are motivated by the handling of imprecision and uncertainty about attribute values

or the classes. Some assume that there is a partial ignorance about class values. This

ignorance, modeled through possibility distributions, reflects the expert knowledge

about the possible class of the training instances.

In general, the approaches deal with discrete attribute values only and are not

appropriate for continuous attributes (and thus require a preliminary discretization

phase for handling continuous attribute values).

By contrast, the work reported here presents a new type of classification method

suitable for training data pervaded with uncertainty. It relies on a possibilistic rep-

resentation of the attribute values associated to a class, which offers more flexibility

than the classical probabilistic setting. Moreover, we focus on the handling of nu-

merical attributes. Such possibilistic model is then extended to support uncertainty

related to the class and attributes.

We now provide a brief survey of the literature on possibilistic classification. We

start with approaches based on decision trees, before a more detailed discussion on

Bayesian classifiers applied to possibilistic data.
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Denoeux and Zouhal [51] use possibility theory to model and deal with uncertain

labels in the training set. To do this, the authors assign a possibility degree to each

possible class label which reflects the possibility that the given instance belongs to

this class. Besides, Ben Amor et al. [3] have developed a qualitative approach based

on decision trees for classifying examples having uncertain attribute values. Uncer-

tainty on attribute values is represented by means of possibility distributions given

by an expert. In [103], possibilistic decision trees are induced from instances associ-

ated with categorical attributes and vaguely specified classes. Uncertainty, modeled

through possibility theory, concerns only the class attribute whereas other predic-

tive attributes are supposed to be certainly known. The authors developed three

approaches for possibilistic decision trees. The first one, using possibility distribu-

tions at each step of the tree construction, is based on a measure of non-specificity in

possibility theory in order to define an attribute selection measure. The two remain-

ing approaches make use of the notion of similarity between possibility distributions

for extending the C4.5 algorithm in order to support data uncertainty.

A naive Bayesian-like possibilistic classifier has been proposed by Borgelt et al.

[16] to deal with imprecise training sets. For this classifier, imprecision concerns only

attribute values of instances (the class attribute and the testing set are supposed to

be perfect). Given the class attribute, possibility distributions for attributes are

estimated from the computation of the maximum-based projection [18] over the set

of precise instances which contains both the target value of the considered attribute

and the class.

A naive possibilistic network classifier proposed by Haouari et al. [93], presents

a procedure that deals with training datasets with imperfect attributes and classes,

and a procedure for classifying unseen examples which may have imperfect attribute

values. This imperfection is modeled through a possibility distribution given by an

expert who expresses its partial ignorance, due to a lack of a priori knowledge. There

are some similarities between our proposed approach and the one by [93]. In partic-

ular, they are both based on the idea stating that an attribute value is all the more

possible if there is an example, in the training set, with the same attribute value in

the discrete case, or a very close attribute value in terms of similarity in the numeri-

cal case. However, the approach in [93] does not require any conditional distribution

over attributes to be defined in the certain case, whereas a preliminary requirement

in our approach, is to estimate such a possibility distribution for numerical data in

the certain case.

Benferhat and Tabia [10] propose an efficient algorithm for revising, using Jef-

frey’s rule, possibilistic knowledge encoded by a naive product-based possibilistic

network classifier on the basis of uncertain inputs. The main advantage of the pro-

posed algorithm is its capability to process the classification task in polynomial time

with respected to the number of attributes.
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In [143], the authors propose a new Bayesian classifier for uncertain categorical

or continuous data by integrating uncertainty in the Bayesian theorem and propose

a new parameter estimation method. An attempt to treat uncertainty in continuous

data is proposed in [144], where authors developed a classification algorithm able

to generate rules from uncertain continuous data. For the two works [144], [143],

uncertainty over continuous attribute values is represented by means of intervals.

This imprecision is handled by a regular probabilistic process.

Besides, some case-based classification techniques, which make use of possibility

theory and fuzzy sets, are also proposed in the literature. We can particularly men-

tion the possibilistic instance-based learning approach [98]. In this work, the author

proposes a possibilistic version of the classical instance-based learning paradigm using

similarity measures. Interestingly, this approach supports classification and function

approximation at the same time. Indeed, the method is based on a general possi-

bilistic extrapolation principle that amounts to state the more similar to a known

example the case to be classified is, the more plausible the case and the example

should belong to the same class. This idea is further refined in [98] by evaluating

this plausibility by means of an interval whose lower bound reflects the “guaranteed”

possibility of the class, and the upper bound the extent to which this class is not

impossible. In a more recent work [12], the authors develop a bipolar possibilistic

method for case-based learning and prediction.

This possibilistic instance-based learning approach may look similar to the proximity-

based classifiers proposed in [23]. However, there are differences, although both em-

phasize a possibilistic view of classification based on similarity. In [98] a conditional

possibility of a class given the case description is defined directly, taking into ac-

count all the attributes together. In the methods presented in [23], we rather start

by defining the plausibility of a particular attribute value for a given class (on a

similarity basis), and then apply a Bayesian-like machinery for obtaining the classi-

fication result. The fact that the similarity idea is applied to attributes one by one,

makes then necessary to resort to an independence assumption.

5.3 General setting of possibilistic classification

The idea of applying possibility theory to classification parallels the use of probabil-

ities in Bayesian classifiers (see Chapter 2 for a reminder). Probability distributions

used in NBCs are usually built by assuming that numerical attributes are normally

distributed around their mean. Even if a normal distribution is appropriate, identi-

fying it exactly from a sample of data is especially questionable when data are poor.

When normality assumption is violated, Gaussian kernels can be used for approxi-

mating any type of distributions. Then, it is required to assess many parameters, a
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task that may be not compatible with poor data. The problem of the precise estima-

tion of probability distributions for NBCs is important for the exact computation of

the probability distribution over the classes. However, due to the use of the product

for combining probability values (which are often small), the errors on probability

estimations may have a significant effect on the final estimation. This contrasts with

possibility distributions which are less sensitive to imprecise estimation for several

reasons. Indeed, a possibility distribution may be viewed as representing a family of

probability distributions corresponding to imprecise probabilities, which sound more

reasonable in case of poor data. Moreover, we no longer need to assume a particular

shape of probability distribution in this possibilistic approximation process.

As in the case of Bayesian classification, possibilistic classification is based on the

possibilistic version of the Bayes theorem. Given a new vector a = {a1, ..., aM} of M

observed variables A1, ..., AM and the set of classes C = {c1, ..., cC}, the classification

problem consists in estimating a possibility distribution on classes and in choosing

the class with the highest possibility for the vector a in this quantitative setting, i.e.:

Π(cj|a1, ..., aM) =
π(cj) ∗ π(a1, ..., aM |cj)

π(a1, ..., aM)
(5.1)

In formula (5.1), the quantitative component of possibilistic classification involves

prior possibility distribution relative to the class and the input vector. Note that the

term π(a1, ..., aM) is a normalization factor and it is the same over all class values.

In this work, we assume that there is no a priori knowledge about the input vector to

classify (thus π(a1, ..., aM) = 1)). Moreover, as in naive Bayesian classification, naive

possibilistic classification assumes that variables Ai are independent in the context

of classes [5].

Assuming attribute independence, the plausibility of each class for a given in-

stance is computed as:

π(cj|a1, ..., aM) = π(cj) ∗
M∏
i=1

π(ai|cj) (5.2)

where conditional possibilities π(ai|cj) in formula (5.2) represent to what extent ai
is a possible value for the attribute Ai in the presence of the class cj. As in the case

of the conditioning rule, ∗ may be chosen as the min or the product operator (min

corresponds to complete logical independence, while the use of the product makes

partially possible values jointly less possible). In a product-based setting, a given

instance is assigned to the most plausible class c∗:
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c∗ = argmax
cj

Π(cj) ∗
M∏
i=1

Π(ai|cj) (5.3)

Possibilistic classification is based on the assumption that there always exist

an observed attribute value in the training set which forces Π(ai|cj) = 1. This

assumption is called the postulate of observation relevance [71].

Moreover, it is worth noticing that formula (5.2) has a set-theoretical reading.

Namely, when the possibility distributions take only the values 0 and 1, the formula

(5.2) amounts to express that an instance may be possibly classified in cj inasmuch as

the attribute value of this instance are compatible with this class given the available

observations. Thus, possibilistic classification may be viewed as an intermediate

between Bayesian probabilistic classification and a purely set-based classifier (such

classifiers use as distributions the convex hull for each attribute of the data values

to identify classes, usually leading to too many multiple classifications).

5.4 Possibilistic distributions for perfect numeri-

cal data

In this section, we describe several methods for building possibility distributions from

data belonging to continuous domains. In the first part of this section, we consider

two families of approaches: the first one is based on a probability-possibility trans-

formation method [74], [58], [171]. The second one is based on a direct possibilistic

interpretation of data taking advantage of the idea of proximity. In the second part,

we study the ability of these possibilistic classifiers to detect ambiguity between near

classes and we propose a hybrid approach for this purpose. All these reflections give

us the intuition for other variants of approaches for building possibility distributions.

Following this line, we propose to compute possibility distributions as a family of

Gaussian probabilistic distributions.

For all the rest of this work, all attribute values ai’s are normalized as follows:

ain =
ai −min(ai)

max(ai)−min(ai)
, (5.4)

min and max are functions giving respectively the minimum and the maximum value

of the attribute ai over the training set. For the sake of simplicity we use in the rest

of the chapter only normalized attribute values, e.g., every attribute value ai refers

to the corresponding ain .
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5.4.1 Probability to possibility transformation based classi-
fiers

The transformation from probability to possibility distributions [58], which has been

extended to continuous universes, accounts for epistemic uncertainty. It yields the

most restrictive possibility distribution that is co-monotone with the probability

distribution and that provides an upper-bound on the probability of any event.

In this section, we propose two elicitation approaches [23] [24] based on the

probability to possibility transformation method, previously described in Section

1.5.1 page 36. We apply this transformation method to a Gaussian distribution,

which leads to two classifiers called Naive Possibilistic Classifier and the Flexible

Naive Possibilistic Classifier.

Gaussian density-based transformation: the Naive Possibilistic Classifier
(NPC)

Let consider the training set Tr composed of N instances involving M numerical

attributes. We have to find a possibility distribution over a training set which is the

most specific representation for the numerical data. If we apply equation (1.24) page

38 to our classification problem, π(ai|cj) can be estimated by: 1−P (Iai|cj) where Iai
is the confidence interval as previously presented. The main question is to estimate

such confidence interval for each attribute ai belonging to the class cj.

For the NPC, we assume that each attribute value ai is a random variable which is

normally distributed over the class cj. Thus for each class cj, a Gaussian distribution

gij = g(ai, µij, σij) should be given. For such Gaussian, µij is the mean of the variable

ai for the class cj and σij is its standard deviation for the same class.

If Iai is the confidence interval centred at µij, its probability P (Iai |cj) can be

estimated by:

P (Iai |cj) = 2 ∗G(ai, µij, σij)− 1. (5.5)

where G is a Gaussian cumulative distribution easily evaluated using the table of

the Standard Normal Distribution. We propose to estimate π(ai|cj) by 1−P (Iai |cj)
using the following formula:

π(ai|cj) = 1− (2 ∗G(ai, µij, σij)− 1) = 2 ∗ (1−G(ai, µij, σij)). (5.6)

Hence, in the training phase we should simply calculate the mean µij and the

standard deviation σij for each attribute ai of instances belonging the class cj.

121



CHAPTER 5. POSSIBILISTIC CLASSIFIERS FOR PERFECT /IMPERFECT NUMERICAL DATA

Example 5.1.

Let us consider the subset Tr of training data taken from the ”iris” data set [23]

in which 5 examples are given for each iris category as shown in Table 5.1.

Table 5.1: Original training set

Instance K SL SW PL PW Class
1 5.10 3.50 1.40 0.20 Set
2 4.90 3.00 1.40 0.30 Set
3 4.70 3.20 1.30 0.20 Set
4 4.60 3.10 1.50 0.50 Set
5 5.00 3.60 1.40 0.10 Set
6 5.60 3.20 4.70 1.40 Col
7 6.40 3.20 4.50 1.50 Col
8 6.90 3.10 4.90 1.50 Col
9 5.50 2.30 4.00 1.30 Col
10 6.50 2.80 4.60 1.50 Col
11 6.30 3.30 6.00 2.50 Gin
12 5.80 2.70 5.10 1.90 Gin
13 7.10 3.00 5.90 2.10 Gin
14 6.30 2.90 5.60 1.80 Gin
15 6.90 3.00 5.80 2.20 Gin

Min 4.6 2.30 1.30 0.20
Max 7.1 3.60 6.00 2.50

This example illustrates how to estimate a possibility distribution for classes given

a new instance to classify in the case of NPC. The calculus process of probability

measures, used in this chapter as a dual measure to possibilities, is also explained.

Attributes in the training set Tr are normalized so that every attribute value is in

[0,1] according to equation (5.4). The corresponding normalized training set is given

in Table 5.2. In this example (and in Example 5.2, 5.3 and 5.4 in the following

sections), we only consider the perfect case where each training instance is perfectly

classified in a particular class.

Table 5.3 presents the calculus results of the mean and standard deviation for

each attribute and class.

Given a new instance to classify (Table 5.4), we will show a detailed computa-

tion of conditional possibilities of only one attribute, namely SL. To estimate the

possibility of (SL = 0.63|Set) one should start by identifying the confidence interval

for this attribute value. Considering that 0.63 > 0.104 (0.104 is the mean of SL for

the class Set in Table 5.3), the confidence interval is I(SL = 0.63) = [−0.422, 0.63].

Let us compute the probability of this confidence interval using equation (5.5):
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Table 5.2: Training set with normalized attributes

Instance k SLn SWn PLn PWn Class
1 0.20 0.92 0.02 0.04 Set
2 0.12 0.54 0.02 0.08 Set
3 0.04 0.69 0.00 0.04 Set
4 0.00 0.62 0.04 0.17 Set
5 0.16 1.00 0.02 0.00 Set
6 0.40 0.69 0.72 0.54 Col
7 0.72 0.69 0.68 0.58 Col
8 0.92 0.62 0.77 0.58 Col
9 0.36 0.00 0.57 0.50 Col
10 0.76 0.38 0.70 0.58 Col
11 0.68 0.77 1.00 1.00 Gin
12 0.48 0.31 0.81 0.75 Gin
13 1.00 0.54 0.98 0.83 Gin
14 0.68 0.46 0.91 0.71 Gin
15 0.92 0.54 0.96 0.88 Gin

Table 5.3: The mean and standard deviation of different attributes

SL SW PL PW
Set µ 0.104 0.754 0.021 0.067

σ 0.083 0.20 0.02 0.06
Col µ 0.632 0.477 0.689 0.558

σ 0.242 0.295 0.072 0.037
Gin µ 0.752 0.523 0.932 0.833

σ 0.209 0.167 0.076 0.114

P (I(SL=0.63)|Set) = P (−0.422 < SL < 0.63) =
∫ 0.63

−0.422
g(SL, 0.104, 0.08)dSL

P (I(SL=0.63)|Set) = G(0.63−0.104
0.08

)−G(−0.422−0.104
0.08

) = 2 ∗G(0.526
0.08

)− 1

From the standard table of Normal distribution, we can evaluate this cumulative

Gaussian: G(6.575) = 1; so P (I(SL=0.63)|Set) = 1

Now we can easily derive possibility distribution as a transform of probabilities:

π(SL = 0.63|Set) = 1− P (I(0.63)|Set) = 1− 1 = 0

Similarly we compute the possibility distribution for remaining attributes SW,

PL and PW. Table 5.5 summarizes the calculus results of possibility distribution for

each attribute and each class.
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Table 5.4: Example of instance to classify

SL SW PL PW
Instance: a 0.63 0.79 0.9 0.81

Table 5.5: Possibility distribution of classes for the NPC

π(SL = 0.63|cj) π(SW = 0.79|cj) π(PL = 0.42|cj) π(PW = 0.81|cj) π(cj|a)
Set 0 0.855 0 0 0 (0)
Col 0.993 0.288 0.003 1.45 E-11 1.3E-14 (3.9E-13)
Gin 0.558 0.109 0.673 0.837 0.034(1)

The last step is to estimate posterior possibilities for each class given the instance

a to classify. In this example, we applied the product based setting to aggregate

conditional possibilities for attributes. An equivalent result can also be obtained

using the min based setting.

Π(Set|a) = Π(SL|Set) ∗ Π(SW |Set) ∗ Π(PL|Set) ∗ Π(PW |Set)

= 0 ∗ 0.85591 ∗ 0 ∗ 0 = 0

Π(Col|a) = 0.993 ∗ 0.288 ∗ 0.003 ∗ 1.45719E − 11 = 1.3E − 14

Π(Gin|a) = 0.558 ∗ 0.109 ∗ 0.673 ∗ 0.837 = 0.034

If we normalize these possibility distributions, we obtain:

c∗ = arg maxcj(0, 3.9E − 13,1)

So the instance a will be assigned to the class ”IrisV irginica”.

Kernel density-based transformation: the Flexible Naive Possibilistic Clas-
sifier(FNPC)

The FNPC is mainly based on the FNBC. For this classifier, the building procedure

is reduced to the calculation of the standard deviation σ. The FNPC is the same as

the NPC in all respects, except that it uses a different method for density estima-

tion. Instead of using a single Gaussian to estimate each continuous attribute, we

investigate kernel density estimation as in the FNBC.

It is proved in [107] that classifiers based on kernel estimation are more accurate
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than Gaussian based estimation to fit non-Gaussian densities. The idea of estima-

tion based on Gaussian kernels (see Section 2.8.2 page 58) may be adapted in the

possibilistic context in the spirit of formula (5.5). Haouari et al. in [93] have jus-

tified the use of the arithmetic mean function to estimate a possibility distribution

for an attribute given the class when dealing with (n individual possibilities over the

training set.

If we just consider that we have to combine possibility measures (forgetting how

they have been obtained) the natural way to do it is to use a weighted maximum

operator [64]. However our problem, as announced in [93], is closer to being an

estimation task than a fusion because training instances come from a single random

source and not from n independent sources of information. Besides, the authors show

that the arithmetic mean function satisfies the three necessary properties allowing

it to be an estimation function: idempotency, commutability and monotonicity (see

[93] for details).

π(ai|cj) =
1

Nj

Nj∑
k=1

π(ai, cjk). (5.7)

with:

π(ai, cjk) = 2 ∗ (1−G(ai, µik, σ)). (5.8)

where k ranges over the Nj instances of the training set in class cj and µik = aik.

Various rules are used in the statistical literature for setting the kernel width

σ. John and Langley [107] have proved that the Flexible Bayes classifier is strongly

consistent if the kernel density estimate satisfies the theorem of strong consistency

[53]. In this theorem, two necessary conditions for the width σ of the kernel density

estimate must be satisfied: i) σ → 0 as n→∞ and ii) nσ →∞ as n→∞.

In this section and for all distributions, the standard deviation is estimated by:

σ =
1√
N

(5.9)

Both σ estimators in formula (5.9) (and Formula 2.8 page 62) satisfy the two

conditions of strong consistency theorem. However, we empirically choose to use the

estimator in formula (5.9), due to its better performance in experimentations. It

may be due to the fact that the density estimated became increasingly local when

we consider all training instances (N) instead of considering only those belonging to

a specific class (Nj) when estimating σ. The intuition behind this choice is that this
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estimator will contribute to have non smoother (rough) kernel densities which may

help to reduce overlapping between classes. In fact, for smooth kernels, probabilities

for each class could be very close and don’t enable a clear distinction between classes

which lead to misclassification. We estimate that, if sufficient number of instances

is available for each class, small σ (large N) will contribute to increase accuracy. On

contrary, if there are few examples for a class, kernels may be too localized to this

class.

As will be seen, such a method contributes to improve the classification accuracy

on real datasets as it will be seen in the experimental section. This method exploits

a statistical view of the neighborhood, since an instance will have a high probability

value for a class as soon as its value for each attribute is close to the values of other

examples in the class. In the next section, the idea of closeness will be captured by

means of a fuzzy set.

Example 5.2.

Let us continue with the previous example in which we consider the same training

set and the same instance a to classify. In the following, we illustrate the calculus

process of possibility distributions for the FNPC. The standard deviation for this

classifier is: σ = 1/
√

15 = 0.258

For this classifier, in order to derive the final possibility distribution for each at-

tribute given the class, one should compute fifteen individual conditional possibilities

one for each instance k in the training set. Let us show a detailed computation of

conditional possibility of the attribute SL = 0.63 of only the first instance (k = 1).

As in Example 5.1, in order to estimate π(SL = 0.63|cj1 = Set), we start by

defining the confidence interval for this attribute value. So, we should consider the

attribute value SL = 0.20 of the first instance (column 1 of line 1 in Table 5.2) as a

mean for the first Gaussian kernel, i.e: µSL1 = 0.2. Since 0.63 > 0.2, the confidence

interval is: I(SL=0.63) = [−0.23, 0.63].

This enables computing conditional probabilities and by applying the transforma-

tion, we obtain conditional possibilities for this attribute given the class ’Set’ of the

first instance: P (ISL=0.63|Set) = P (−0.23 < SL < 0.63) =
∫ 0.63

−0.23
g(SL, 0.2, 0.258)dSL

P (ISL=0.63|Set) = G(0.63−0.2
0.258

)−G(−0.23−0.2
0.258

) = 2 ∗G( 0.43
0.258

)− 1

Since G(1.666) = 0.9515, P (I(SL=0.63)|Set) = 0.903

π(SL = 0.63|cj1 = Set) = 1− P (I(SL=0.63)|Set) = 1− 0.903 = 0.097

Table 5.6 show conditional possibility distributions of different attributes for each

instance k calculated in the same manner as for the attribute SL.
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Table 5.6: Individual possibility distribution for each kernel k

ak π(SL = 0.63|cjk) π(SW = 0.79|cjk) π(PL = 0.9|cjk) π(PW = 0.81|cjk)
1 0.097 0.606 0.0007 0.003
2 0.048 0.330 0.0007 0.005
3 0.022 0.705 0.0005 0.003
4 0.015 0.499 0.0009 0.013
5 0.069 0.416 0.0007 0.002
6 0.373 0.705 0.494 0.299
7 0.727 0.705 0.396 0.380
8 0.261 0.499 0.604 0.380
9 0.296 0.002 0.207 0.230
10 0.615 0.116 0.443 0.380
11 0.846 0.936 0.699 0.462
12 0.561 0.062 0.723 0.816
13 0.152 0.330 0.760 0.928
14 0.846 0.203 0.954 0.694
15 0.261 0.330 0.824 0.801

Conditional possibility distributions for each individual kernel k allow to deduce

the final possibilistic kernels of attribute SL for each class by applying the average

as follows using (5.7):

π(SL = 0.63|Set) = (0.097 + 0.048 + 0.022 + 0.015 + 0.069)/5 = 0.050

π(SL = 0.63|Col) = (0.373 + 0.727 + 0.261 + 0.296 + 0.615)/5 = 0.454

π(SL = 0.63|Gin) = (0.846 + 0.561 + 0.152 + 0.846 + 0.261)/15 = 0.533

Table 5.7 includes the calculus results of the final conditional possibility distri-

butions of the remaining attributes.

Table 5.7: Conditional possibility distribution of attributes for the FNPC

π(SL = 0.63|cj) π(SW = 0.79|cj) π(PL = 0.9|cj) π(PW = 0.81|cj) π(cj|a)
Set 0.050 0.511 0.0007 0.005 8.9 E-08 (7.6 E-07)
Col 0.454 0.405 0.429 0.333 0.0262 (0.226)
Gin 0.533 0.372 0.792 0.740 0.1162 (1)

Using the product operator, we estimate the posterior possibility distributions of

classes given the instance a:

Π(Set|a) = Π(SL|Set) ∗ Π(SW |Set) ∗ Π(PL|Set) ∗ Π(PW |Set)
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= 0.050 ∗ 0.511 ∗ 0.0007 ∗ 0.005 = 8.9E − 08

Π(Col|a) = 0.454 ∗ 0.406 ∗ 0.429 ∗ 0.334 = 0.0264

Π(Gin|a) = 0.533 ∗ 0.372 ∗ 0.792 ∗ 0.740 = 0.1164

Using normalization (last column in Table 5.7), c∗ = arg maxcj(7.6E−07, 0.226,1)

As in the case of the NPC (Example 5.1), the instance a will be assigned to the

class ”IrisV irginica”. However, we note that posterior possibility distributions of

classes π(cj|a) in the case of the FNPC, are more adjusted than those obtained in the

case of the NPC. This is can be explained by the fact that possibility distributions

for the FNPC are obtained using a deep data representation thorough examining

individual possibility distributions π(ai|cjk) calculated for each kernel k. For this

approach, estimating individual possibilities π(ai|cjk) for each kernel k and then

considering their averages enables producing more refined possibility distributions

which are a closer representation of data.

Computing individual possibilistic kernels have an additional complexity and time

consuming for the FNPC. This contributes to improve the efficiency of this classifier

if compared to the NPC when confronted to real databases as will be proved in the

experimentation chapter.

5.4.2 Approximate Equality-based Interpretations of Data

In this section we propose two other methods for building a possibility distribution

directly from a set of data, without computing a Gaussian probability distribution

first. This type of approach is well in agreement with the generalized set-like view

of possibility distributions, as previously pointed out. Indeed, a possibility can take

into account the similarity between an observed value of an attribute and other

observed values of the same attribute in the training examples. From a logical point

of view, one can assume that Π(ai|cj) = 1 as soon as the value ai has been observed

at least one time in association with the class cj. Conversely, if a value a′i has not

been observed in association with the class cj it does not necessarily mean that

Π(a′i|cj) = 0. In such case, we may consider that Π(a′i|cj) should all the closer to 1

as a′i is closer to an observed value ai. This non-frequentist idea was first suggested

in [68]. It is worth emphasizing that this is a purely local view of the building of

the distribution, which does not make any assumption on its shape. This type of

approach still makes an independent assumption of the attribute with respect to the

class.

In this framework, the two suggested classification methods use an approximate

equality relation between numerical values. Let d be the distance between the two
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values, this fuzzy relation, namely µE(d(x, y)) estimates to what extent x is close to

y as follows (in other words E is a fuzzy set with decreasing membership function

on [0, 1] with a bounded support and such that µE(0) = 1):

µE(d) = max(0,min(1,
α + β − d

β
)), α ≥ 0; β > 0. (5.10)

This relation is parameterized by α and β. The parameters α and β are respec-

tively fixed to 0 and 1 in (5.10) for simplicity, once d is normalized in [0, 1], for all

attributes. α = 0 means that we use a triangular membership function, while β = 1

means that µE(d) = 0 only for the most distant values of attributes. This closeness

relation is now used to build a fuzzy histogram from the data.

The Fuzzy Histogram Classifier (FuHC)

Namely, we use the fuzzy relation E to build a fuzzy histogram [161] for attribute

ai given a class cj, in the following way:

π(ai|cj) =
1

Nj

Nj∑
k=1

µE(d(ai, aik)), (5.11)

where Nj is the number of instances belonging to the class cj. The idea is here to

be more faithful to the way the data are distributed (rather than assuming a nor-

mal distribution), and to take advantage of the approximate equality for obtaining a

smooth distribution on the numerical domain, and may be supplying the scarcity of

data. In that respect, the parameters of the approximate equality relation, depend-

ing on their values, not only reflect the expression of a tolerance on values that are

not significantly different for a given attribute, but may also express a form of ex-

trapolation from the observed data. The distribution 5.11 can then be directly used

in the classification procedure. The algorithm based on this method will be named

Fuzzy Histogram Classifier (FuHC) in the following. This classifier is a generalized

case of a previously proposed classification method for continuous data [21]. In [21],

the authors exploited a reduced version of the proximity equality function defined in

formula (5.10) and they used a distance metric applied to non normalized attributes.

Example 5.3.

This example presents a detailed calculus of conditional and posterior possibility

distributions in the case of FuHC. For continuity reasons, we preserve the same

training set of Table 5.2 and also the same instance to classify (Table 5.4).
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Table 5.8 illustrates individual proximity measures between attribute values of the

instance a to classify and those of each training instance k. To guarantee a proximity

function with significant values, i.e. 0 < µE(d(x, y)) < 1, α and β are respectively

fixed to 0 and 1, once distance d was normalized in [0,1], for all attributes.

Table 5.8: Results of individual proximity measures

ak µ1k µ2k µ3k µ4k

= 1− | a1 − a1k | = 1− | a2 − a2k | = 1− | a3 − a3k | = 1− | a4 − a4k |
1 =1-|0.63-0.2| = 0.57 =1-|0.79-0.92|= 0.87 =1-|0.9-0.02| = 0.12 =1-|0.81-0.04| = 0.23
2 0,49 0,75 0,12 0,27
3 0,41 0,90 0,10 0,23
4 0,37 0,83 0,14 0,36
5 0,53 0,79 0,12 0,19
6 0,77 0,90 0,82 0,73
7 0,91 0,90 0,78 0,77
8 0,71 0,83 0,87 0,77
9 0,73 0,21 0,67 0,69
10 0,87 0,59 0,80 0,77
11 0,95 0,98 0,90 0,81
12 0,85 0,52 0,91 0,94
13 0,63 0,75 0,92 0,98
14 0,95 0,67 0,99 0,90
15 0,71 0,75 0,94 0,94

To estimate conditional possibility distribution for each attribute and each class

one can use the average of instance proximities belonging to that class given in Table

5.8. If we consider the first attribute SL, conditional possibility distribution for each

class is computed by:

Π(SL = 0.63|Set) = µ1(Set) =
∑5

k=1 µ1k/5

= (0.57 + 0.49 + 0.41 + 0, 37 + 0.53)/5 = 0.47

Π(SL = 0.63|Col) = µ1(Col) =
∑10

k=6 µ1k/5

= (0.77 + 0.91 + 0.71 + 0.73 + 0.87)/5 = 0.80

Π(SL = 0.63|Gin) = µ1(Gin) =
∑15

k=11 µ1k/5

= (0.95 + 0.85 + 0.63 + 0.95 + 0.71)/5 = 0.82

Table 5.9 includes the calculus results of conditional possibilities of each attribute

ai given the class cj.
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Table 5.9: Possibility distribution of each attribute given classes for the FuHC

π(SL = 0.63|cj) π(SW = 0.79|cj) π(PL = 0.9|cj) π(PW = 0.81|cj) π(cj|a)
Set 0.47 0.83 0.12 0.26 0.012 (0.024)
Col 0.80 0.69 0.79 0.75 0.327 (0.646)
Gin 0.82 0.73 0.93 0.91 0.506 (1)

Finally posterior possibility distribution of classes can be deduced using the prod-

uct operator:

Π(Set|a) = Π(a1|Set) ∗ Π(a2|Set) ∗ Π(a3|Set) ∗ Π(a4|Set)

= 0.47 ∗ 0.83 ∗ 0.12 ∗ 0.26 = 0.012

Π(Col|a) = Π(a1|Col) ∗ Π(a2|Col) ∗ Π(a3|Col) ∗ Π(a4|Col)

= 0.8 ∗ 0.69 ∗ 0.79 ∗ 0.75 = 0.327

Π(Gin|a) = Π(a1|Gin) ∗ Π(a2|Gin) ∗ Π(a3|Gin) ∗ Π(a4|Gin)

= 0.82 ∗ 0.73 ∗ 0.93 ∗ 0.91 = 0.506

Thus c∗= arg maxcj(0.027, 0.646,1)

So the class ′IrisV irginica′ will be assigned to the instance a since it is the most

plausible.

Nearest Neighbor-based Possibilistic Classifier (NNPC)

We propose a second approach, named Nearest Neighbor-based Possibilistic Classifier

(NNPC), which is based only on the analysis of the proximities between the attribute

values aik belonging to each class cj without counting them. The main idea of this

classifier is to search for the nearest neighbor attribute value aik for the attribute

value ai of the item to be classified, in the training set of each class. The approximate

equality function calculated between ai and its nearest neighbor aik is then used to

estimate the possibility distribution of the attribute value ai given a class cj as

follows:

π(ai|cj) =
Nj

max
k=1

µE(d(ai, aik)). (5.12)

In this approach, the closer an attribute value ai to other attribute values of
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instances belonging to a class cj, the greater the possibility to belong to the class

(w.r.t. the considered attribute). The expression (5.10 may be considered as a

genuine possibility distribution [162]. An attribute value having a possibility 0 means

that this value is not compatible with the associated class (it is the case when the

value is not close to any other observed value of the attribute for the class). If the

possibility is equal or close to 1, then the value is relevant for describing the class

(a value having a small distance to instances of a class is considered as a possible

candidate value in the representation of the class for a considered attribute).

Example 5.4.

Individual proximities given in Table 5.8 will be used here to estimate the con-

ditional possibility distributions for the NNPC as in the case of the FuHC; except

that in this case, we estimate the conditional possibility of each attribute ai given

the class cj by the maximum proximity among all proximities computed for each

training instance k belonging to this class. This means that for this classifier, we

only consider the attribute of the training instance with the highest proximity (the

nearest one) without considering any one other, whereas in the case of the FuHC by

taking the average, we are looking for all neighbors when estimating conditional dis-

tribution. Let us consider the attribute SL, the conditional possibility distribution

for each class is as follow:

Π(SL = 0.63|Set) = µ1(Set) = Max(0.57, 0.49, 0.41, 0.37, 0.53) = 0.57

Π(SL = 0.63|Col) = µ1(Col) = Max(0.77, 0.91, 0.71, 0.73, 0.87) = 0.91

Π(SL = 0.63|Gin) = µ1(Gin) = Max(0.95, 0.85, 0.63, 0.95, 0.71) = 0.95

Table 5.10 summarizes calculus results of conditional possibilities of each at-

tribute ai given classes.

Table 5.10: Possibility distribution of each attribute given classes for the NNPC

π(SL = 0.63|cj) π(SW = 0.79|cj) π(PL = 0.9|cj) π(PW = 0.81|cj) π(cj|a)
Set 0,57 0,90 0,14 0,36 0,026 (0,02)
Col 0,91 0,90 0,87 0,77 0,548 (0,608)
Gin 0,95 0,98 0,99 0,98 0,9 (1)

Thus we obtain the following posterior possibility measures :

Π(Set|a) = Π(a1|Set) ∗ Π(a2|Set) ∗ Π(a3|Set) ∗ Π(a4|Set)

= 0.57 ∗ 0.90 ∗ 0.14 ∗ 0.36 = 0.026
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Π(Col|a) = Π(a1|Col) ∗ Π(a2|Col) ∗ Π(a3|Col) ∗ Π(a4|Col)

= 0.91 ∗ 0.90 ∗ 0.87 ∗ 0.77 = 0.548

Π(Gin|a) = Π(a1|Gin) ∗ Π(a2|Gin) ∗ Π(a3|Gin) ∗ Π(a4|Gin)

= 0.95 ∗ 0.98 ∗ 0.99 ∗ 0.98 = 0.903

c∗= arg maxcj(0.028, 0.607,1)

We can see that the class ′IrisV irginica′ is always the class with the highest

possibility so it is the most relevant class to assign to the instance a. Although clas-

sification results are equivalent for the four classifiers given in Example 5.1, 5.2 ,5.3

and 5.4, the estimated possibility distribution of classes is different. In particular, we

note that Gaussian based Possibilistic classifiers distinguishes more between classes

when generating possibility distributions whereas the proximity based Possibilistic

classifiers produces possibility distributions that are more equitably distributed over

the interval [0,1] which may cause conflict between classes for some particular cases.

However, high distinction between classes in the case of probability based pos-

sibility distributions cannot usually be justified. In fact, combining Gaussian dis-

tributions, having very small values, with the product operator may reinforce this

”erroneous” distinction between classes. This conflicting problem will be discussed

in the next section.

5.4.3 Detecting ambiguities in possibilistic classifiers as a
basis for improvement

In some cases, classes may have very close plausibility estimates. In [23], we have

proposed a multiple classification approach to deal with such conflicting situations.

Instead of classifying a new instance in the most plausible class, the idea is to con-

sider more than one class at a time when the plausibility difference between the most

relevant classes is negligible. Experimental results for the multiple-classification ap-

proach showed that, for all data sets, classification accuracy of NPC and NNPC was

significantly increased in the case of multiple-classification by comparison with the

classical classification. Besides, the accuracy of NBC was not really increased by a

similar procedure because the probability rates were generally significantly different.

This is due to the use of product and division applied to numbers that are generally

small. On the basis of these preliminary results, one may expect that possibilistic

classifiers will have a better ability to detect confusion between classes than Bayesian

ones. In this section, we first discuss how to evaluate ambiguity in classifiers, and

how to compare possibilistic and Bayesian classifiers in terms of their ability to dis-

tinguish between classes. Then, we propose a method to improve the performance
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of possibilistic classifiers on the basis of the detected ambiguities.

Meaningfulness of ambiguity in possibilistic classification

The intuitive idea behind this study is to estimate to what extent classification error

is related to the ambiguity between close plausibility evaluations. In order to do

that, we first define the classification ambiguity for an instance a with respect to

classes as follows [24]:

AmbiguityDiff(a, c1, ..., cn) = 1− (Π(c1|a)− Π(c2|a)) (5.13)

where c1 and c2 are respectively the most and the second most relevant classes

for a.

As experimentally checked, such a difference-based ambiguity measure is not ap-

propriate for comparing probability values. Indeed, since these values are obtained

as products (and quotient) of usually small values, fixing a threshold that is in-

dependent from the data set is not possible in general. For this reason we use a

more appropriate ambiguity measure for Bayesian classifiers based on the ratio of

probability of the second most relevant class and the first most relevant class:

AmbiguityRatio(a, c1, ..., cn) =
P (c2|a)

P (c1|a))
(5.14)

The Hybrid Possibilistic Classification approach (HPC)

In classification problems, the main issue is to derive a model which is able to pre-

dict a unique class for any unseen example. Assigning a unique class to an example

in a justified way may become difficult when the available information provided by

the training examples is incomplete. This information may be incomplete in two

respects. First, the training provides only an incomplete sampling which may be

very scarce in some areas of the attribute space. Besides, the attribute vocabu-

lary may be insufficient for discerning between examples having close descriptions

but belonging to different classes. Regardless to the learning method, it may seem

debatable to overcome such lacks of information and still justifying a unique classi-

fication. However, another limitation of the discriminating power of classifier may

come from systematic independence assumption, as done naive Bayesian-like classi-

fiers (probabilistic or possibilistic). If we are able to detect when the classification

of an example may be problematic, this kind of limitation may be, at least partially,

overcome. The idea is to take advantage of the fact that Bayesian-like classifiers
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allows for an ambiguity analysis based on the plausibility degrees of belonging to a

class. Then, problematic classifications may be detected, and in this case, a second

algorithm (which does not make the independent assumption) can be applied for

breaking the ties.

Thus, we propose to exploit a Hybrid Possibilistic Classification (HPC) ap-

proach [24] which aims at improving the accuracy of each of the previously intro-

duced possibilistic classifiers. In this scope, we combine each proposed classifier with

a Nearest Neighbour Heuristic (NNH). The nearest neighbour based classification

is a local method that classifies an example on the basis of its similarity with the

training examples in its neighbourhood. In our context, NNH has two advantages:

i) its less sensitivity to the violation of the independence assumption, ii) due to the

local nature of NNH an additional computer time cost only occurs in case of ambi-

guity. We expect that this heuristic may help the Bayesian-like classifiers to choose

between classes whose plausibility are too close by preferring one on a nearest neigh-

bour basis, instead of just choosing the most plausible class, even if the plausibility

difference is not significant.

We consider that a classifier is in a failure state if the ambiguity (defined by 5.13

or 5.14) overcomes some fixed threshold ε. Note that, having a too liberal threshold

would amount to use only the NNH. The HPC is detailed in the following algorithm:

Algorithm 9 Hybrid Possibilistic Classification Algorithm (PC)

Select an instance ats to classify
Class(ats) ← ∅
Classify ats by PC
c1 ← Most plausible class
c2 ← Second most plausible class
if Ambiguity(ats, c1, c2) < ε then

Class(ats) ← c1

else
π(Instance1|ats)← NNH(ats, c1)
π(Instance2|ats)← NNH(ats, c2)
if π(Instance1|ats) > π(Instance2|ats) then

Class(ats) ← c1

else
Class(ats) ← c2

end if
end if
return Class(ats)

Given an instance ats to be classified, for each training instance atr labeled with

the class cj, the NNH estimates the possibility degrees π(atr|ats) as follows:
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Π(atr|ats) = Π(a1|atr) ∗ ... ∗ Π(aM |atr) (5.15)

With:

π(ai|atr) = µE(d(aits , aitr)) (5.16)

The * may be the minimum, or the product. We may also think of using the

leximin refinement of the minimum that amounts, when comparing two vectors of

evaluations, to first reorder them increasingly, and then to reduce the comparison

to a minimum-based evaluation of the subvectors made of the values where the two

reordered vectors are not (approximately) equal. The attribute aits (respectively

aitr) is the attribute of level i of the instance ats (respectively atr).

The nearest neighbour training instance to ats for the class cj is the instance

having the highest possibility among all instances atr belonging to the training set

labeled with cj.

a∗tr = argmax
atr

π(atr|ats) (5.17)

5.4.4 Computing possibility distribution as a family of Gaus-
sian distribution from a sample set of data

In this section, we propose a novel way to build a possibility distribution from a

set of data. Contrary to other probability to possibility based classifiers previously

presented in the beginning of this section, we suppose here that the data follows a

Gaussian distribution with unknown parameters. By taking into account the uncer-

tainty attached to the estimation of these parameters from a sample set, we propose

to build the possibility distribution that encodes all the Gaussian distributions that

may have generated the data with a chosen confidence level. Then, we extend this

approach to Gaussian kernels. The classifiers that we develop in this section are

considered as a variant of those previously proposed in [23] [24].

Confidence region of the normal distribution parameters

Suppose that we have n observations X1, X2, · · · Xn drawn from a normal distribu-

tion with unknown mean µ and unknown variance σ2. The 1− α confidence region

for the parameters of N (µ, σ2), contains a region in the two dimensional space of

µ and σ2 which has a probability of 1 − α to contain the true parameters value µ
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and σ2. Arnold and Shavelle in [7] have compared several methods for finding such

confidence regions. In their paper, they present the method that we describe below

and they call it the Mood’s method. The idea of Mood confidence region is to take

α1 and α2 such as 1 − α = (1 − α1)(1 − α2), where 1 − α is the confidence level

of the found region. Considering X = X1+···+Xn
n

and S =
√

1
n−1

∑n
i=1(Xi −X)2 re-

spectively as the mean and the standard deviation estimated on the sample set, the

confidence region R(n,X, S) is defined by:

R(n,X, S) = {(µ, σ2) :
n− 1

χ2
1−α2

2
,n−1

S2 ≤ σ2 ≤ n− 1

χ2
α2
2
,n−1

S2, (5.18)

X − Φ1−α1
2

σ√
n
≤ µ ≤ X + Φ1−α1

2

σ√
n
}. (5.19)

Where Φq and χq,k are respectively the qth quantile of the standard normal distri-

bution and the qth quantile of the chi square distribution with k degree of freedom.

The authors also provide a table that indicates the optimal combination of α1 and

α2 that gives the smallest possible region for a fixed confidence level 1−α and for a

fixed number of observations n.

By using the equations (5.18) and (5.19) we can find the mean and variance con-

fidence interval respectively [µmin, µmax],[σ
2
min, σ

2
max], associated with our confidence

region. Once we have found the confidence region, we define Θ as the family which

contains all the probability functions p in the confidence region i.e.

Θ = {p = N (µ, σ2)|(µ, σ2) ∈ R(n,X, S)}.

Possibility distribution for a family of Gaussian distribution

We have shown how to build a confidence region for the parameters of a normal dis-

tribution (for a simplification purpose, we always take 1−α = 0.95 for the regions in

the following). If the estimation of these parameters is a critical issue of a decision

process, it may be interesting to take into account the uncertainty around the pa-

rameters of the normal distribution that may have generated the data. In this scope,

we propose to construct the most specific possibility distribution that contains the

family Θ of Gaussian distributions that have mean and variance parameters in the

confidence region.

We name Λ = {π|π = Tr(p), p ∈ Θ} the set of possibility distribution obtained

by transforming each distribution in Θ (Tr(p) is the possibility transformation of

a probability distribution using Formula 1.23). Thus, the possibility distribution

defined by

π(n,X,S)(x) = sup{π(x)|π ∈ Λ}
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encodes all the family Θ. π(n,X,S) has the following definition:

π(n,X,S)(x) =


1 if x ∈ [µmin, µmax]
2 ∗G(x, µmin, σ

2
max) if x < µmin

2 ∗G(2 ∗ µmax − x, µmax, σ2
max) x > µmax

(5.20)

where µmin, µmax and σ2
max are respectively the lower and the upper bounds of the

mean confidence interval, and the upper bound of the variance confidence interval

associated to the confidence region found by (5.19) and (5.18). Moreover, G(x, µ, σ2)

is the cumulated distribution function of the N (µ, σ2). For a more detailed discus-

sion, see [6].

Figure 5.1 presents the distributions π(10,X,S) for the family of Gaussian distri-

bution (in gray) that are in the mood region obtained from a sample of 10 pieces of

data that follows the distribution N (0, 1).

Probability to possibility transformation-based classifiers

We apply the method presented above to Naive Bayesian classifiers, where the dis-

tributions are assumed to be normal, and then to its flexible extension FNBC (using

a combination of normal distributions). We shall call NPC-2 and FNPC-2 [20] the

possibilistic extensions of NBC and FNBC. In the possibilistic setting, we still as-

sume that the probability distributions we start with are normal (or a combination

of normal distributions), but we also encode the uncertainty around the estimations

of their parameters.

In order to build NPC-2, we need to compute three types of possibility degrees:

π(ci) the possibility of a class ci, π(ai) the possibility of the attribute value ai, and

π(ai|cj) the conditional possibility of ai knowing cj. These values are obtained as

follows:

� π(ci) is obtained by computing the probability-possibility transformation (us-

ing equation 1.22) of the prior probability distribution over the classes;

� π(ai) is obtained by computing (using equation 5.20) the possibility distribu-

tion π(N,Xi,Si)
that encodes the confidence region Ri(N,X i, Si) for the param-

eters of the normal distributions of Ai where N is the number of examples in

the database, X i is the means of the ai values and Si their standard deviation;

� π(ai|cj) is obtained by computing (using equation 5.20) the possibility distri-

bution π(Nj ,X(i,j),S(i,j))
that encodes the confidence region R(i,j)(Nj, X(i,j), S(i,j))

for the parameters of the normal distributions of Ai where Nj is the number of
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examples in the database that are associated to the class cj, X(i,j) is the means

of the ai values on this subset and S(i,j) their standard deviation.

The FNPC-2 is exactly the same as the NPC-2 in all respects, except that the

method used for density estimation on continuous attributes is different. Rather

than using a single Gaussian distribution for estimating each continuous attribute,

we use a kernel density estimation as in FNBC. Kernel estimation with Gaussian

kernels looks much the same except that the estimated density is averaged over a

large set of kernels. For the FNPC-2, we use the following expression:

π(ai|cj) =
1

Nj

Nj∑
k=1

π(Nj ,µik,σ)(ai) (5.21)

where ai is a value for the attribute Ai, k ranges over the Nj instances of the

training set in class cj and µik = aik (aik is the value of the attribute Ai for the k-th

example in the considered subset). For all distributions, the standard deviation is

estimated by

σ =
1√
N
.

5.5 Possibilistic distributions for imperfect numer-

ical data

In many domains, databases are supplied with various information sources which

may be neither fully reliable nor precise. That is why, available information is often

pervaded with uncertainty and imprecision. In particular for numerical data, many

factors contribute to make them imperfect, such as the variability of data, the use

of unreliable data transmission or outdated sources, or the measurement errors. For

instance, data provided by sensor networks such as temperature, pressure and rain

measurement may be uncertain or imprecise.

In the context of classification or diagnosis problems, attributes in the training

or testing sets may have uncertain numerical values. In practice, when classifying

unseen examples, only an interval for a numerical value may be given instead of a

precise value in some situations.

Imperfection can also affect categorical data and especially the training set la-

bels. In fact, the framework of supervised learning which assumes precision and full

certainty does not necessarily correspond to practical situations. The acquisition of

a large volume of certain and precise labeled data may be problematic in some real
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domains, for cost reasons or partial lack of knowledge on the problem to be solved.

It is often the case when the data are labeled by experts.

This kind of labeling work is thus often costly; moreover, an expert may need

to express uncertainty or imprecision in this task. Indeed the precise qualification

of a situation by an expert may be difficult (e.g., in medical diagnosis, or in law

application data).

Since classical classification techniques are inappropriate to deal with such im-

perfect data, two solutions are commonly considered: either ignoring such data by

regarding them as unknown or incomplete, or developing suitable tools for treating

them. In the first approach information is lost and this may lead to inaccurate clas-

sification models. On the contrary, if we adjust classification techniques in order to

be able to deal with imperfect data, the models produced will describe the concepts

more faithfully.

Various formalisms have been proposed to deal with imperfect data, in the dif-

ferent uncertainty settings. The development of solutions enabling the handling of

imprecise attribute values or uncertain classes has particularly interested some au-

thors during the last past years.

In this section, we extend possibilistic classifiers, proposed in [23] [24] and previ-

ously presented in Section 5.4, in order to handle uncertainty in data representation.

Before proposing solutions to deal with uncertainty in both training and testing

data sets, we state basis hypothesis concerning the structure of these data sets for

uncertain possibilistic classifiers .

5.5.1 Structure of uncertain training and testing data sets

Uncertainty pervades attribute values in the testing instances and classes in the

training instances. All uncertain possibilistic classifiers [25] [20], proposed in this

section, are based on the following hypotheses:

� All training instances are assumed to have perfect (certain and precise) at-

tribute values as in ”classical” possibilistic classifiers [23] [24]

� All testing instances have imprecise attribute values modeled by intervals.

� The class of any training instance is represented through a possibility distri-

bution over the class values thus reflecting uncertainty on the classification.

Let us consider a classification problem with 3 class labels (c1, c2 and c3) and a

standard training instance a with M certain and precise numerical attributes and

assigned to the class c1:
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a = (a1, a2, ..., aM , c1)

When an expert is unable to give an exact class label for some observed exam-

ple, he may represent his knowledge about the class associated with this example

by means of a possibility distribution over the different possible class labels. The

uncertain version of instance aU is then represented by:

aU = (a1, a2, ..., aM , πc1 , πc2 , πc3)

where πci is the possibility degree for the class ci that reflects the partial ignorance of

the expert. For instance, the distribution (1, 0.3, 0.7) expresses that the expert finds

the instance fully compatible with the first class, less compatible with the second

one and still less compatible with the third one. There are some other noticeable

particular cases that can also be represented as such an uncertainly classified in-

stance. Thus the distribution (1, 1, 0) represents pure imprecision over the first and

the second class labels which are fully plausible whereas the third class is impos-

sible. Besides, a distribution such as (1, 0, 0) coincides with an original, certainly

classified instance for which, here, only the first class is possible while the others are

completely rejected. Finally, the expert may also express his total ignorance about

the instance by choosing the distribution (1, 1, 1) according to which all class labels

are fully plausible.

Uncertainty in the testing set concerns attribute values and each test instance

may include certain or uncertain attribute values. Since we are only interested in

continuous data in this framework, the proposed model allows an expert to express his

imprecise knowledge by means of an interval restricting the attribute value. Thus, for

each imprecise attribute, the observed value is supposed to be the form of Ii = [Li, Ui]

where Li and Ui are respectively the lower and the upper bounds for the true attribute

value ai such that Li < ai < Ui.

For imprecise attribute values, the degree of ignorance about the real value is

related to the width of the interval for this attribute. For example, in the case of

an attribute with values in [0, 1], an interval such as [0.399, 0.401] is a rather precise

representation whereas the interval [0.1, 0.9] models an high ignorance. The total

ignorance is for the interval [0, 1].

5.5.2 Processing of uncertain classes in the training set

In this section instead of an exact class label, for each instance we assign a possibility

distribution on the different possible labels. Our problem is to estimate a possibility

distribution for each attribute ai given the class cj which can be the most specific

representation for uncertain numerical data [25]:

141



CHAPTER 5. POSSIBILISTIC CLASSIFIERS FOR PERFECT /IMPERFECT NUMERICAL DATA

π(ai|cj) =
π(ai, cj)

π(cj)
(5.22)

To combine possibility distributions over the training instances belonging to a

specific class, one can exploit the mean operator (Formula 5.7 or 5.11) as in the

perfect case. We extend the FNPC, FNPC-2 and FuHC as follows:

π(ai, cj) =
1

N

N∑
k=1

π(ai, cjk) =
1

N

N∑
k=1

π(ai|cjk) ∗ π(cjk) (5.23)

For the NNPC, the max operator is used instead of the mean:

π(ai, cj) =
N

max
k=1

π(ai, cjk) =
N

max
k=1

π(ai|cjk) ∗ π(cjk) (5.24)

Where π(cjk) represents the individual possibility of the class cj for each training

instance k.

We note that the proposed model, supporting uncertainty in the class labels, also

includes the certain case where π(cjk) is 1 for the true label and 0 otherwise.

For the NPC-2 [20], possibility distribution π(ai|cj) is obtained by computing

(using equation 5.20) the possibility distribution π(Nj ,X(i,j),S(i,j))
that encodes the

confidence region R(i,j)(Nj, X(i,j), S(i,j)) for the parameters of the normal distribu-

tions of Ai. Since the class is now pervaded with uncertainty, we will use weighted

sums for evaluating the values Nj, X(i,j) and S(i,j). Then we have:

Nj =
N∑
k=1

π(cjk),

X(i,j) =

∑N
k=1 π(cjk) ∗ aik

Nj

and

S(i,j) =

∑N
k=1 π(cjk) ∗ (aik −X(i,j))

2

Nj

.

Example 5.5.

Let us use a modified version of the training set Tr given in Table 5.2 page 123

to illustrate how to estimate conditional and posterior possibility distributions in

presence of uncertain classes in this training set. For simplicity, we choose to deal

only with the FuHC in this example. We have artificially included uncertainty to the

training set Tr in the following manner: we suppose that for each instance in Tr is
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Table 5.11: Uncertain Training set with normalized attributes

π(cj|aUk)
aUk SL SW PL PW Set Col Gin
1 0,20 0,92 0,02 0,04 1 0.40 0,85
2 0,12 0,54 0,02 0,08 1 1 0,61
3 0,04 0,69 0 0,04 1 0,09 0
4 0,00 0,62 0,04 0,17 1 0,32 0,8
5 0,16 1,00 0,02 0,00 1 0,86 0,46
6 0,40 0,69 0,72 0,52 0,87 1 0,6
7 0,72 0,69 0,68 0,57 0,2 1 0,95
8 0,92 0,62 0,77 0,57 0,59 1 1
9 0,36 0,00 0,57 0,48 0 1 0,21
10 0,76 0,38 0,70 0,57 0,74 1 0
11 0,68 0,77 1,00 1,00 0,58 0,43 1
12 0,48 0,31 0,81 0,74 0,11 0,12 1
13 1,00 0,54 0,98 0,83 0 0 1
14 0,68 0,46 0,91 0,70 0,76 1 1
15 0,92 0,54 0,96 0,87 0,62 0,02 1

π(cj) 0.63 0.62 0.7

given a possibility distribution over class values. The uncertain training set is given

in Table 5.11.

In this example, we still consider the same certain test instance given by Table

5.4. Conditional possibility distributions for uncertain training data are estimated

in the same manner as in the certain case (see Example 5.3 for the FuHC) except

that, in the uncertain case, we should consider the individual possibility of each class

for each instance since it is no longer 0/1.

Let us show a detailed computation of conditional possibilities for the first at-

tribute SL. We first start by estimating individual possibilities for each instance and

each class. Since each training instance is assigned with a degree of possibility, at

the same time, to the three possible class values (Set, Col and Gin), each of these

instances should be considered as a training instance for each class value when esti-

mating the priori conditional distribution for attributes. Thus for each attribute and

each class, one should compute 15 individual possibilities instead of 5 in the certain

case. So for the first instance, the following three possibilities are computed:

π(SL = 0.63, cj1 = Set) = π(SL = 0.63|cj1 = Set) ∗π(Set1) = (1−|0.63− 0.2|) ∗
1 = 0.57

π(SL = 0.63, cj1 = Col) = π(SL = 0.63|cj1 = Col)∗π(Col1) = (1−|0.63−0.2|)∗
0.4 = 0.23
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π(SL = 0.63, cj1 = Gin) = π(SL = 0.63|cj1 = Gin) ∗ π(Gin1) = (1 − |0.63 −
0.2|) ∗ 0.85 = 0.48

For the remaining instances and for other attributes, we should apply the same

process as we did for the first instance and the first attribute. Results of individual

possibility distribution for all attributes, instances and classes are given in Table

5.12.

Table 5.12: Results of individual possibility distribution of attributes for the FuHC

π(SL = 0.63, cjk) π(SW = 0.79, cjk) π(PL = 0.9, cjk) π(PW = 0.81, cjk)
aUk Set Col Gin Set Col Gin Set Col Gin Set Col Gin
1 0,57 0,23 0,48 0,87 0,35 0,74 0,30 0,12 0,26 0,39 0,16 0,33
2 0,49 0,49 0,30 0,75 0,75 0,46 0,22 0,22 0,13 0,31 0,31 0,19
3 0,41 0,04 0,00 0,90 0,08 0,00 0,14 0,01 0,00 0,23 0,02 0,00
4 0,37 0,12 0,30 0,83 0,26 0,66 0,10 0,03 0,08 0,19 0,06 0,15
5 0,53 0,46 0,24 0,79 0,68 0,36 0,26 0,22 0,12 0,35 0,30 0,16
6 0,67 0,77 0,46 0,79 0,90 0,54 0,44 0,50 0,30 0,51 0,59 0,35
7 0,18 0,91 0,86 0,18 0,90 0,86 0,16 0,82 0,78 0,18 0,91 0,86
8 0,42 0,71 0,71 0,49 0,83 0,83 0,58 0,98 0,98 0,53 0,89 0,89
9 0,00 0,73 0,15 0,00 0,21 0,04 0,00 0,46 0,10 0,00 0,55 0,12
10 0,64 0,87 0,00 0,44 0,59 0,00 0,64 0,86 0,00 0,70 0,95 0,00
11 0,55 0,41 0,95 0,57 0,42 0,98 0,45 0,34 0,78 0,50 0,37 0,87
12 0,09 0,10 0,85 0,06 0,06 0,52 0,06 0,07 0,58 0,07 0,08 0,67
13 0,00 0,00 0,63 0,00 0,00 0,75 0,00 0,00 0,90 0,00 0,00 0,81
14 0,72 0,95 0,95 0,51 0,67 0,67 0,59 0,78 0,78 0,66 0,87 0,87
15 0,44 0,01 0,71 0,46 0,01 0,75 0,61 0,02 0,98 0,55 0,02 0,89

Conditional possibility distribution are estimated by the averaged joined possi-

bilities divided by the possibility of each class as in Equation (5.22). For example,

π(SL = 0.63|Set) = (0.57 + 0.49 + 0.41 + ... + 0.44)/(15 ∗ 0.63) = 0.64. Table 5.13

gives the averaged conditional possibilities of each attribute ai given the class cj
computed over the fifteen instances.

Table 5.13: Averaged conditional possibility distribution of each attribute given
classes for the FuHC

π(SL = 0.63|cj) π(SW = 0.79|cj) π(PL = 0.9|cj) π(PW = 0.81|cj) π(cj|a)
Set 0.64 0.80 0.48 0.55 0.085(0.497)
Col 0.73 0.73 0.59 0.66 0.128 (0.748)
Gin 0.72 0.78 0.64 0.68 0.171 (1)
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Posterior possibility distributions of classes are computed as in the certain case

except that, in this case prior possibility of classes is no longer equal to 1:

Π(Set|a) = Π(Set) ∗
∏4

i=1 Π(ai|Set)

= 0.63 ∗ (0.64 ∗ 0.80 ∗ 0.48 ∗ 0.55) = 0.085

Π(Col|a) = Π(Col) ∗
∏4

i=1 Π(ai|Col)

= 0.62 ∗ (0.73 ∗ 0.73 ∗ 0.59 ∗ 0.66) = 0.128

Π(Gin|a) = Π(Gin) ∗
∏4

i=1 Π(ai|Gin)

= 0.7 ∗ (0.72 ∗ 0.78 ∗ 0.64 ∗ 0.68) = 0.171

Thus c∗= arg maxcj(0.497, 0.748,1)

So the class ′IrisV irginica′ will be assigned to the instance a.

5.5.3 Processing of imprecise attributes in the testing set

In the following we propose an algorithm for handling imprecision in attribute values

in the testing set. Let us consider a function F which estimates conditional possi-

bilities for attribute values in the perfect case. For each observed attribute value xi,

this function estimates π(ai|cj)(xi). Knowing that the observed value of an attribute

is no longer a fixed value in the domain of the attribute but rather an interval, the

problem returns to estimate π(ai|cj)(Ii).

In order to handle the evaluation of interval possibilities, we use the extension

principle [173] presented in Section 1.3.3 page 18. Let F be a real function such that

F : X → R,R being the set of real numbers. Let F (x) = u and let πF (u) be the

possibility for u. If we apply the extension principle to possibility distribution, the

possibility degree for u can be defined by:

πF (u) = sup{π(x)|F (x) = u}. (5.25)

Assume I1, ..., IM are uncertain observations for attributes a1, ..., aM . To estimate

the possibility distribution for an interval Ii, the equation (5.25) becomes:

π(Ii|cj) = sup{π(ai|cj), ai ∈ Ii} (5.26)

To define conditional possibilities for each uncertain observation Ii of the testing

instance, we consider the following algorithm:
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1. Search for all attribute values ai in the training set such that ai ∈ Ii

2. Compute the possibility of attribute values ai given the class cj by equation

5.22

3. Consider the highest possibility to estimate the possibility of Ii

Example 5.6.

Let us consider an uncertain version of the test instance given in Table 5.14.

This instance contains two certain (SL and PL) and two uncertain attributes (SW

and PW ). Uncertainty related to attributes is represented through an interval that

covers the true value of each attribute:

Table 5.14: Uncertain instance to classify

SL SW PL PW
Instance: aU 0.63 [0.6,0.81] 0.9 [0.72,0.86]

In this example, we are only interested to show the process of classifying uncertain

instances in the test set. For this reason and in order to simplify the calculus process,

we use the certain training set of Table 5.2 instead of that of Table 5.11. In the

following, we present the process of estimating conditional possibility distribution

for uncertain attributes (SW and PW ). Possibilities for certain attributes (SL and

PL) are computed as in Example 5.3 for the FuHC.

To classify the uncertain test instance, for each uncertain attribute (represented

by an interval) one should look for all attribute values in the training set that belongs

to this interval when estimating its conditional possibility distribution. So the first

step is to search for all these attribute values and then estimate the conditional

possibility distributions for each of them.

If we consider the uncertain attribute SW = [0.6, 0.81], attribute values in

the training set that are in this interval are {0.62, 0.69, 0.77} (see Table 5.2 page

123). Similarly, attribute values belonging to the interval PW = [0.72, 0.86] are

{0.74, 0.83}.

To estimate conditional possibility for each attribute value in each interval (i.e.

Π(SW = 0.62|cj), Π(SW = 0.69|cj), etc), one should follow the same process de-

scribed in Example 5.3 (for the FuHC) which returns to compute individual possi-

bility distributions for each training instance and then take the average to estimate

the final conditional distribution for each attribute.

Table 5.15 (respectively Table 5.16) gives the averaged conditional possibility

distribution for each attribute value SW (resp. PW ) belonging to each interval. For
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each class, the conditional possibility to be considered for intervals SW = [0.6, 0.81]

and PW=[0.72,0.86] corresponds to the maximum possibility over attribute values

in each interval.

Table 5.15: Conditional possibility distribution of each SW attribute value for the
FuHC

Π(SW |cj) SW=0.62 SW=0.69 SW= 0.77 Π(ISW=[0.6,0.81]|cj) =Max
Set 0.83 0.85 0.83 0.85
Col 0.80 0.79 0.71 0.80
Gin 0.84 0.80 0.75 0.84

Table 5.16: Conditional possibility distribution of each PW attribute value for the
FuHC

Π(PW |cj) PW=0.72 PW=0.85 Π(IPW=[0.72,0.86]|cj) = Max
Set 0.35 0.22 0.35
Col 0.84 0.71 0.84
Gin 0.88 0.91 0.91

Finally we can estimate posterior possibility distributions of classes given the

uncertain instance aU . In the following, bold values corresponds to conditional pos-

sibilities for uncertain attributes given in Tables 5.15 and 5.16 whereas non bold

values corresponds to certain ones taken from Table 5.9 (Example 5.3). From these

results, we can see that the uncertain test instance will be assigned to the third class:

Π(Set|aU) = Π(SL|Set) ∗ Π(ISW |Set) ∗ Π(PL|Set) ∗ Π(IPW |Set)

= 0.47 ∗ 0.85 ∗ 0.12 ∗ 0.35 = 0.016(0.027)

Π(Col|aU) = 0.8 ∗ 0.8 ∗ 0.79 ∗ 0.84 = 0.424(0.728)

Π(Gin|aU) = 0.82 ∗ 0.84 ∗ 0.93 ∗ 0.91 = 0.582 (1)

5.6 Conclusion

This work has investigated a possibilistic classification paradigm that may be viewed

as a counterpart of Bayesian classification and that applies to continuous attribute

domains. Then an important issue is the estimation of possibilistic distributions

from numerical data, without discretization. For this purpose, we have proposed

and tested the performance of two families of possibilistic classifiers: the first family
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called, Gaussian-based Possibilistic Classifiers, assumes normality assumption when

estimating possibilistic distributions. For this family of classifiers, we have used a

probability-possibility transformation method enabling us to derive a possibilistic

distribution from a probabilistic one. First, we have applied the transformation

method to move from a classical NBC to a NPC, which introduces some further

tolerance in the description of classes. Then, we have tested the feasibility of a

Flexible Naive Possibilistic Classifier, which is the possibilistic counterpart of the

Flexible Naive Bayesian Classifier. The FNPC estimates possibilistic distributions

in a non-parametric way by applying the transformation method to kernel densities

instead of Gaussian ones. The intuition behind this classifier is that kernel densities

are less sensible than Gaussian ones to normality violation.

In the same context, we have studied a second variant of probability-possibility

transform based classifiers. Here the possibility distributions that are used are sup-

posed to encode the family of Gaussian probabilistic distributions with unknown

parameters. First, we have applied the transformation method to move from a

classical NBC to NPC-2, which takes into account the confidence intervals of the

Gaussian distributions. Then, we have tested the feasibility of a Flexible Naive Pos-

sibilistic Classifier (FNPC-2), which is the possibilistic counterpart of the Flexible

Naive Bayesian Classifier.

The second family of possibilistic classifiers abandons the normality assumption

and has a direct representation of data. We have proposed two other classifiers named

Fuzzy Histogram Classifier and Nearest Neighbor-based Possibilistic Classifier in this

context. The two proposed classifiers exploit an idea of proximity between attribute

values in order to estimate possibility distributions. In the first classifier, we compute

an average proximity, whereas in the second one we analyze proximities between

attributes without counting them. The main advantage of this family of classifiers,

when compared to the first one, is their ability to derive possibilistic distributions

without the need of the normality assumption, which may lead to a more realistic

representation of data.

By studying possibilistic classifiers, we have noted that they have a higher ability

to detect ambiguity between classes than Bayesian classifiers. Namely the former

acknowledge the fact that it is difficult to classify some examples by assessing close

possibility degrees to competing classes, whereas the latter in the same situation

may give the illusion of discriminating between classes by assessing very different

probability degrees to them.

As an attempt to improve the performance of possibilistic classifiers, we have pro-

posed an hybrid classification method that is based on a Nearest Neighbor Heuristic

used for separating classes having close plausibility estimates. The Nearest Neighbor

Heuristic contributes to help the main classifier to converge to the correct class label

in case data information is insufficient for a more precise classification, rather than
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choosing between classes having very close plausibility estimates in a rather arbitrary

way.

The second interest of this chapter is to extend the proposed possibilistic clas-

sifiers for handling uncertainty and imprecision in input data sets. Two types of

uncertainty are considered: i) uncertainty related to class attribute in the training

set modeled through possibility distributions over class labels and ii) uncertainty

related to attribute values in the testing set represented through intervals for con-

tinuous data. For the first type of uncertainty, we have adapted the possibilistic

classification model suitable for the certain case, to support uncertainty in class la-

bels. We have also showed that the adjusted model is suitable for the perfect as well

as the imperfect case.

We have also proposed an algorithm based on the extension principle to deal with

uncertainty in the attribute values. This algorithm seeks to estimate possibility dis-

tributions for an uncertain attribute (interval) by looking for possibility distributions

of each attribute in the training set belonging to this interval.
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Figure 5.1: An example of the possibility distribution for the family Θ, with a
confidence level of 0.95 and a dataset with n=10.
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Chapter 6

Experimenting Possibilistic
Classifiers for perfect/imperfect
data

6.1 Introduction

In order to analyze the performance of possibilistic classifiers, either in the perfect or

imperfect case, we implemented and tested all these classifiers as will be presented

in the Appendix. This will allow us to conduct several experimental studies to show

their advantages and also limits if compared to other Bayesian classifiers.

To test these possibilistic classifiers we use the same data sets used for experi-

menting Possibilistic rule-based classifiers in Chapter 4. The characteristics of these

data sets are given in Table 4.4.

This chapter is organized as follows. In the next section we provide a exhaustive

study for possibilistic classifiers when data sets are assumed to be perfect. This is

an important step before dealing with imperfection because we aim to show to what

extend possibilistic classifiers are efficient in the classification task. This section is

divided in two parts: in the first one, we discuss classification results of possibilistic

classifiers and compare them to Bayesian classifiers for all data sets. In the light of

the results of this preliminary study, we carry out further experiments on extended

versions of possibilistic classifiers in particular those based on computing possibility

distributions as a family of Gaussian probability distributions. Section 3 includes

results for possibilistic classifiers when we deal with imperfect data sets. In this

section, we first give the way for artificially creating imperfect data sets. We also

propose two classification accuracy measures usually used in such case. In the last

part of this section we report results for the two types of uncertainty concerning

classes and attributes and we provide a deep analysis for these results.
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6.2 Experiments of possibilistic classifiers for the

perfect numerical data

This section provides experimental results for the possibilistic classifiers that have

been previously introduced when data is assumed to be perfect. In order to eval-

uate the accuracy of each classifier, we have used the standard Percent of Correct

Classification(PCC) defined by Equation 2.9.

This experimental study is divided in two parts. First, we give a preliminary

study of possibilistic classifiers for classifying numerical data. This study will enable

us to experiment further extensions of these classifiers in the second part which leads

to a significant improvement of the efficiency of possibilistic classifiers.

6.2.1 Preliminary study of Possibilistic Classifiers

In this subsection, we first evaluate possibilistic classifiers NPC, FNPC, FuHC and

NNPC and compare our results to those of probabilistic ones, namely NBC and

FNBC [107]. This comparative study is carried out through paired t-tests. Second,

we compare the capabilities of possibilistic and probabilistic classifiers for detect-

ing examples that are ambiguous with respect to classification. Third, we test the

ability of the hybrid-classification method for improving the performance of the pos-

sibilistic classifiers. We use the signed-ranks test to measure the significance of this

improvement.

Results and discussion for the Possibilistic Classifiers

We use the product in the aggregation step for all possibilistic classifiers, except

for the NNPC where we use the minimum because it provides better results for

the ambiguity study and it has been shown in [23] that the three versions (product,

minimum, and a leximin-based refinement of minimum) have a competitive efficiency

in this case. For the FuHC and NNPC, α and β are respectively fixed to 0 and 1 in

equation 5.10 page 129 for simplicity, once d is normalized in [0, 1], for all attributes.

Table 6.1 shows the classification results obtained with NPC, NBC, FNPC,

FNBC, FuHC and NNPC for the fifteen mentioned datasets. We also present those of

the leximin based-NNH considered here as an independent classifier. By comparing

the classification results of the first six classifiers we can notice that:

• For the two classifiers NPC and NBC, which assume that the attribute values

are normally distributed, we remark that NPC is more accurate than NBC on

four databases (Yeast, Ecoli, Glass and Heart) and less accurate on the remaining

152



CHAPTER 6. EXPERIMENTING POSSIBILISTIC CLASSIFIERS FOR PERFECT/IMPERFECT DATA

Table 6.1: Experimental results given as the mean and the standard deviation of 10
cross-validations

NPC NBC FNPC FNBC FuHC NNPC NNH

Iris 95.33±6.0
(4)

95.33±6.0
(4)

96.0±5.33
(2)

95.33±5.21
(4)

94.66±4.0
(6)

90.66±4.42
(7)

96.0±4.42
(2)

Cancer 95.03±2.26
(6)

96.34±0.97
(3)

97.37±1.82
(2)

97.65±1.76
(1)

96.05±1.96
(5)

93.41±2.49
(7)

96.06±1.82
(4)

Wine 94.37±5.56
(4)

97.15±2.86
(1)

96.6±3.73
(2.5)

96.67±5.67
(2.5)

93.26±4.14
(5.5)

92.64±5.12
(7)

93.26±5.98
(5.5)

Diabetes 69.01±3.99
(5)

74.34±4.44
(3)

74.36±4.57
(1)

74.35±3.38
(2)

73.44±5.31
(4)

67.96±6.05
(7)

67.97±5.73
(6)

Magic 59.24±7.09
(7)

66.02±5.37
(5)

73.37±2.96
(2)

72.8±3.29
(3)

68.34±6.69
(4)

64.80±2.41
(6)

74.21±4.51
(1)

Transfusion 61.67±6.6
(7)

72.6±4.56
(3)

67.43±7.43
(6)

70.09±7.68
(4)

72.76±7.19
(2)

76.50±5.94
(1)

68.73±5.61
(5)

Sat. Image 88.26±2.62
(6)

90.55±2.46
(4)

92.02±2.81
(3)

90.0±4.39
(5)

86.88±3.67
(7)

93.58±1.88
(2)

93.95±2.6
(1)

Segment 71.47±4.15
(7)

80.73±2.16
(6)

90.73±1.8
(2.5)

88.27±3.19
(4)

81.07±3.51
(5)

90.73
(2.5)±2.15

95.07±1.61
(1)

Yeast 49.67±4.87
(5)

48.65±4.42
(6)

52.02±5.05
(4)

55.93±3.36
(1)

53.36±4.57
(2)

43.06±2.53
(7)

52.16±3.47
(3)

Ecoli 83.37±4.46
(2)

82.53±5.32
(3)

83.55±9.4
(1)

79.02±10.0
(6)

77.7±13.31
(7)

80.65±6.98
(4)

79.39±9.22
(5)

Glass 49.18±11.8
(5)

33.74±9.0
(7)

58.46±9.59
(3)

53.42±16.0
(4)

39.26±13.9
(6)

65.84±9.70
(2)

67.93±7.65
(1)

Iosophere 58.4±10.95
(7)

69.23±7.85
(6)

91.75±4.11
(1)

90.88±4.0
(3)

79.77±9.6
(5)

91.45±4.24
(2)

88.33±3.87
(4)

Letter 60.42±3.24
(5)

63.28±2.13
(3)

72.3±2.87
(2)

61.61±1.97
(4)

50.36±2.33
(6)

35.47±3.2
(7)

82.56±1.92
(1)

German 66.4±3.97
(7)

68.5±3.29
(5)

71.8±4.21
(1)

70.0±4.96
(2)

69.1±2.88
(4)

69.8±5.47
(3)

66.6±3.26
(6)

Heart 84.08±8.77
(1)

83.7±6.87
(2)

83.33±9.55
(3)

82.96±7.8
(4)

81.11±8.19
(5)

58.89±7.49
(7)

71.11±8.73
(6)

Average Rank 5.2 4.06 2.4 3.3 4.9 4.7 3.4

databases except Iris where the two classifiers have the same accuracy.

• A normality test (test of Shapiro-Wilk) done on these databases (Yeast, Ecoli,

Glass and Heart) show that they contain attributes that are not normally distributed.

We may suppose that applying a Probability-Possibility transformation on the NBC

(which leads to NPC) enables the classifier to be less sensitive to normality violation.

As suggested in Section 5.3 page 118, one may also think that when normality

assumption is not supported by the data, especially for datasets with a high number

of attributes, the NBC reinforces the error rate (by the use of multiplication), making

the NPC more efficient in this case.

• As previously observed in [107], FNBC is overall better than classical NBC. In

fact, FNBC is more accurate than the NBC in seven of the 15 datasets and less

accurate in five datasets and not significantly different in three cases (Iris, Diabetes

and Satellite Image).
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• For the four classifiers using Gaussian distributions (NPC, NBC, FNPC and

FNBC), classification results of the FNPC are better than other classifiers for all

datasets except in the case of ”Transfusion” and ”Yeast” databases where FNPC

performs worse than others.

• If we compare results for the two flexible classifiers (FNPC and FNBC), we

note that the FNPC performs better with the highest accuracy for the majority of

datasets. For this classifier, the greatest increase in accuracy compared to the FNBC

has occurred for databases ”Glass”, ”Ecoli”, ”Satellite image”, ”Segment” and ”Let-

ter” (Table 6.1). In Table 4.4, we note that the attributes for these databases range

from 8 to 37, and the number of classes from 6 to 26. So the FNPC is significantly

more efficient than FNBC (and also than NPC and NBC) for datasets with a high

number of attributes and classes.

• Experiments of the second family made of the approximate equality-based clas-

sifiers (FuHC, NNPC and NNH) show that they have a competitive efficiency with

respect to other possibilistic classifiers for the majority of databases. Besides, we

note that the leximin-based NNH, not only outperforms the FuHC and also the

NNPC, but also all other classifiers for 5 datasets (Magic, Satellite Image, Segment,

Glass and Letter). Table 4.4 shows that these datasets have a higher number of at-

tributes, classes and instances. Thus, the leximin-based NNH seems to be the most

efficient classifier for datasets with high dimensionality. Indeed, in contrast with the

product-based evaluation, the leximin evaluation is not very sensitive to the dimen-

sion of the attributes universe and then the methods based on this evaluation may

be expected to be more robust.

The average ranks given between parentheses in Table 6.1 confirm what we have

already noted above. On average, the FNPC ranks the first (with rank 2.4) while

the FNBC and the NNH ranks the second (respectively 3.3 and 3.4).

For the validation of these results, we compare the behaviour of the possibilistic

classifiers by means of a paired t-test. It is a parametric test that checks if the

difference between the results of two classifiers over various data sets is significant

enough [50]. If the null hypothesis (the two compared classifiers have the same

accuracy) is rejected, this means that there are statistically significant differences

between the two classifiers. We recall that the p-value measures the importance of

this difference. The lower the p-value with respect to a threshold (usually 0.05), the

more significant the difference between the classifiers.

Figure 6.1 shows the results of the paired t-test between the FNPC and all the

other classifiers, whereas Figure 6.2 shows results between the NNH and all other

classifiers. We choose to compare the two best ranked possibilistic classifiers with

others for a deeper comparison. In Figure 6.1 (respectively Figure 6.2) and for all
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comparisons, dots above the abscissa axes reflect data sets for which the FNPC (re-

spectively the NNH) is significantly better than the compared classifier. Dots under

the abscissa axes reflect data sets for which the FNPC (or the NNH) is significantly

worse than the second classifier. For the datasets where the two classifiers have an

equivalent accuracy (p − value > 0.05), dots are on the abscissa axes. The data

sets in these comparisons are considered in the same order as in Table 4.4 page 110

(Except that we ignored the data set ”Block” for this experiment).

Figure 6.1: Results of the paired t-test between the FNPC and other classifiers

Figure 6.2: Results of the paired t-test between the NNH and other classifiers

Results of the paired t-test shows that the proposed FNPC significantly outper-

forms the FuHC, NPC, NBC, and the NNPC in terms of the number of data sets

where the FNPC has a significantly better accuracy than the compared classifier.

We can also see in Figure 6.1 that the FNPC is slightly more accurate than the

FNBC (because it is significantly more accurate than the latter in 2 data sets and
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less accurate in only one data set) and is equivalent in terms of accuracy to the

NNH (it is significantly better in 3 data sets, worst in 3 others and equivalent in the

remaining data sets).

By comparing the NNH with the other classifiers, we observe similar results as

for the FNPC. In fact, the paired t-test in Figure 6.2 proves that the NNH is much

better than any other classifier except for the FNBC where the NNH is better on 4

datasets, worst on 3 datasets and equivalent on the remaining.

These results show that the FNPC and the NNH are the most efficient possibilistic

classifiers among the proposed ones, and they at least compete with the classical and

the Flexible Bayesian classifiers. Especially, they are slightly better for datasets with

a large number of attributes, classes and instances.

Results of the ambiguity study between near classes

As explained in Section 5.4.3, we are interested in a possible relationship between

classification ambiguity and classification errors in the case of possibilistic and Bayesian

classifiers.

For each classifier, we fix n levels (n = 5 in this experiment) of ambiguity using

n intervals having the same length that partition the interval [0, 1]. Then for each

ambiguity interval, we compute the number of correctly classified examples (CCE)

and the number of incorrectly classified ones (ICE) in the testing set. Experimental

results for the NNPC, NPC and the NBC are given respectively in Figure 6.3, Figure

6.4 and Figure 6.5. In each figure, we present the amount of ICE and CCE for each

classifier for datasets ”Segment” and ”Sat-Image” (part a. and c.). We also exhibit

the frequency of error calculated by the ratio: ICE/(CCE + ICE) for the two

datasets in part b and d in each figure. Figure 6.6 summaries results of the error

frequency comparison between the three studied classifiers.

We note that ambiguity levels (ALi in Figures 4, 5 and 6) represent the n intervals

of the possibility/probability difference between the most relevant classes ranging in

[0, 1] and they are chosen in a decreasing manner such that AL1 corresponds to

the highest ambiguity level whereas ALn corresponds to the lowest ambiguity level.

Results given in Figures 6.3, 6.4 and 6.5 for the CCE and the ICE are an averaged

number though the 10-cross-validations for the NNPC, NPC and NBC.

In Figures 6.3 and 6.4, we can see that the frequency of incorrectly classified

instances (part b. and d.) decreases when the ambiguity decreases. These figures

illustrate also that the highest frequency of incorrect classified instances corresponds

to the case of the first ambiguity level that reflects the highest ambiguity. We also

notice that, for the lowest ambiguity level (AL4 and AL5), possibilistic classifiers
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make almost no error (ICE ≈ 0 even if CCE is always relatively high). These results

are nearly the same for the two classifiers NNPC and NPC for almost all datasets.

Here we keep only the ”Segment” and ”Sat-Image” as an illustrative example.

From Figures 6.3 and 6.4 we can see that the higher the ambiguity, the greater the

error rate is and the lower the ambiguity is, the more the classifier is able to detect

the correct class. So we can say that there is a relationship between ambiguity and

classification accuracy for possibilistic classifiers. These results are clearly confirmed

by the results shown in Figure 6.6.

Figure 6.3: Results for the NNPC

However in Figure 6.5 (and also in Figure 6.6) corresponding to the case of NBC,

we note that the frequency of error has a non steady behavior. For the two data sets

”Segment” and ”Sat.Image”, instances are either classified with a high ambiguity

in AL1, or much discriminated in AL5. Moreover, the error rate for this classifier

seems to be greater for the lowest ambiguity level than that for the highest one. The

error frequency remains higher than 30% for the lowest ambiguity level. So, we can

say that in spite of the fact that the NBC distinguishes well between classes in AL5,

it makes more errors in classification. This means that the high distinction ability

between classes in this case has no particular meaning, and may be simply caused

by the exponential nature of Gaussian densities.

157



CHAPTER 6. EXPERIMENTING POSSIBILISTIC CLASSIFIERS FOR PERFECT/IMPERFECT DATA

Figure 6.4: Results for the NPC

These results support the intuition underlying the use of possibilistic classifiers.

In fact, this study shows that these classifiers are able to detect conflicts in case of

ambiguous classification, and to acknowledge difficulties in classifying a conflicting

instance. On the contrary, Bayesian Classifiers, due to the difficulty to have a faithful

and general measure of ambiguity, seem to have a lower capability for detecting such

conflicting situations.

Results of the Hybrid Possibilistic Classification

Table 6.2 includes experimental results for NPC, NBC, FuHC and NNPC in the case

of Hybrid Possibilistic Classification.

In this case, we use the Nearest Neighbor Heuristic to help classifying a new

instance (instead of only considering the main classifier), when classes have very

close plausibility evaluations, i.e., if the difference between their plausibility is less

than a fixed level. In our experimental study, this level is fixed to 0.1, (i.e. ambiguity

level greater than 0.9), for all classifiers. We choose a relatively high threshold in

order to show the effect of the hybrid classification for all possibilistic classifiers at

the same time. In fact, the FNPC distinguishes well between classes when compared
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Figure 6.5: Results for the NBC

to NPC or FuHC (the difference between class possibilities is relatively high) so with

a low threshold, the hybrid classification would not have any effect on the classical

FNPC.

We evaluate the effect of the hybrid classification and its ability to improve the

accuracy of possibilistic classifiers. For each classifier, we compare the classification

accuracy with or without applying the NNH. For example, in the case of the NPC,

we compare column 2 in Table 6.1 with column 2 in Table 6.2.

We are only interested here in knowing if the hybrid classification method im-

proves the initial classifier. For doing this, we use the Wilcoxon Matched-Pairs

Signed-Ranks Test as proposed by Demsar [50], since it allows for a direct compari-

son of the methods without resorting to an analysis of the results on each data set (as

done with the paired t-test). It is a non-parametric alternative to the paired t-test

that enables us to compare two classifiers (or two versions of the same classifier) over

multiple datasets. The Signed-Ranks Test ranks the differences in accuracy for each

dataset without regard to the sign of the difference and compares the ranks for the

positive and the negative differences.

Table 6.3 includes the p-values for the comparison of each classical possibilistic
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Figure 6.6: Error frequency for the three classifiers

classifier with its hybrid version where we combine this classifier with the NNH.

Results in Table 6.3 show that the hybrid classification contributes to significantly

improve the accuracy of the NPC, the FuHC and the NNPC (p − value < 0.05).

Although there is an improvement of accuracy in the case of the FNPC for some data

sets (”Transfusion”, ”Segment”, ”Yeast”, ”Glass”, and ”Letter”), this improvement

is not statistically significant for all data sets (p − value ≤ 0.1016). By comparing

the accuracy of the hybrid version of FNPC with the classical FNBC over the 15 data

sets, we note that the FNPC + NNH is better than the FNBC with a p − value ≤
0.00488 (instead of a p − value ≤ 0.05225 when comparing classical FNPC with

FNBC).

These results are not surprising since we have already seen in the first experi-

mental study that the NNH is better than the NPC, FuHC and the NNPC and it

is equivalent in terms of accuracy to the FNPC. So we can conclude that combin-

ing the NNH with possibilistic classifiers in the hybrid approach contributes only to

significantly improve the accuracy of classifiers with lower performance than that

of the NNH. However, the hybrid classification does not contribute to significantly

improve the performance of the FNPC because the NNH and the FNPC have almost

the same classification performance.

6.2.2 Results for the extended version of Possibilistic clas-
sifiers

As shown in the preliminary study, the probability to possibility transformation

based classifiers (NPC and FNPC) are promising and seem to be more efficient,

at the same time, than proximity based classifiers and Bayesian classifiers. This is

give us the intuition to more investigate this family of classifiers. For this purpose,

we first reevaluate these classifiers and Bayesian ones by taking into account prior

possibility (or probability) distribution over classes. Even for the perfect case in this
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Table 6.2: Experimental results for the Hybrid Possibilistic Classification

NPC+NNH FNPC+NNH FuHC+NNH NNPC+NNH NNH

Iris 96.67±4.47 96.67±6.15 96.66±3.34 96.0±6.11 96.0±4.42

Cancer 95.18±1.83 97.36±2.85 96.35±2.27 95.76±3.1 96.06±1.82

Wine 94.93±4.63 97.22±3.73 93.19±4.32 93.89±3.89 93.26±5.98

Diabetes 71.49±4.66 74.1±5.42 69.03±4.29 68.21±5.32 67.97±5.73

Magic 65.46±6.73 74.95±3.23 73.37±4.92 72.72±3.13 74.21±4.51

Transfusion 65.78±6.11 72.22±5.81 71.02±4.35 72.33±2.97 68.73±5.61

Sat. Image 88.53±4.94 92.57±2.48 92.48±1.35 95.05±1.55 93.95±2.6

Segment 75.67±3.02 92.93±2.31 91.73±1.91 95.6±2.09 95.07±1.61

Yeast 54.78±2.83 54.99±3.34 54.51±3.24 48.78±2.02 52.16±3.47

Ecoli 84.26±5.5 84.47±5.54 81.14±8.71 80.47±6.01 79.39±9.22

Glass 59.66±9.75 68.42±9.68 50.0±10.79 66.34±5.42 67.93±7.65

Iosophere 62.71±6.22 92.3±3.15 86.6±7.13 88.34±5.55 88.33±3.87

Letter 68.29±3.14 76.95±2.42 67.1±5.41 50.79±2.96 82.56±1.92

German 69.20±3.12 68.7±3.41 68.3±3.66 67.4±4.39 66.60±3.26

Heart 82.96±7.98 81.85±6.3 78.15±8.19 71.85±6.02 71.11±8.73

Table 6.3: Results for the Wilcoxon Matched-Pairs Signed-Ranks Test

NPC Versus FNPC Versus FuHC Versus NNPC Versus
(NPC + NNH) (FNPC + NNH) (FuHC + NNH) (NNPC + NNH)

p≤0.002441 p≤0.1016 p≤0.03271 p≤0.04187

experiment, we suppose here that prior possibility π(cj) is no longer equal to 1 in

equation 5.2 (as in the previous Section) but is rather obtained by computing the

probability-possibility transformation (using equation 1.22) of the prior probability

distribution over the classes. In the second time, we also experiment the extended

version of possibilistic classifiers namely the NPC-2 and FNPC-2 based on computing

possibility distribution as a family of Gaussian distribution.

Table 6.4 shows the classification performance obtained with the NPC, NPC-

2, NBC, FNPC, FNPC-2 and FNBC for the fifteen mentioned data sets (for the

remaining sections, we choose to experiment the ”Block” data set instead of the

”Letter”).

If we compare results in Table 6.4 when prior possibility of classes has been

considered for computing final distributions with initial results previously given in

Table 6.1, we can see that:

• The performance of possibilistic (NPC and FNPC) and Bayesian classifiers has
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Table 6.4: Experimental results for the extended version of Possibilistic Classifiers
given as the mean and the standard deviation of 10 cross-validations

NPC NPC-2 NBC FNPC FNPC-2 FNBC

Iris 94.66 ±4.99 95.33±4.99 95.33±4.27 96.0±4.42 96.0±4.42 95.33±6.0

Cancer 95.46±2.02 95.46±2.02 96.19±0.97 97.66±0.72 97.66±0.72 97.66±0.72

Wine 95.48±4.18 95.48±4.18 97.15±2.86 97.78±2.72 97.78±2.72 96.6±3.73

Diabetes 72.13±5.8 72.91±5.51 75.52±2.67 75.91±3.24 76.17±3.58 75.64±3.56

Magic 59.51±6.56 59.32±6.33 65.93±2.91 73.19±2.63 73.0±2.49 72.26±2.39

Transfusion 74.63±6.33 74.36±6.32 75.02±5.56 76.63±5.63 76.76±5.73 75.7±6.19

Sat. Image 90.46±3.98 90.46±3.98 90.83±3.58 92.02±1.79 91.28±3.16 90.55±3.15

Segment 74.13±3.26 74.46±3.44 80.87±2.37 91.0±2.48 91.13±2.73 88.6±3.48

Yeast 56.87±3.41 57.68±3.36 46.97±4.69 58.42±2.27 58.36±2.14 52.9±3.73

Ecoli 83.7±4.8 83.08±5.47 81.27±5.16 85.51±5.38 85.8±5.6 75.82±7.1

Glass 47.27±14.54 46.32±14.79 43.12±8.12 67.9±10.77 67.38±9.86 57.97±8.98

Iosophere 60.38±9.99 60.95±9.1 70.09±6.15 91.75±4.3 92.62±5.05 92.05±5.0

Block 88.29±1.4 88.49±1.86 89.66±3.22 93.33±0.98 93.51±1.07 90.21±2.14

German 73.1±2.98 73.2±2.99 73.0±2.97 75.6±3.07 75.7±2.93 70.0±4.22

Heart 84.08±4.98 84.45±4.32 83.34±5.56 83.34± 5.56 83.7±5.79 84.08±6.15

reported an increase in accuracy for the second version of these classifiers. Especially

for the NPC and FNPC, the improvement can be seen in 8 of the 15 data sets

and the greatest increase is in the data sets ”Transfusion”, ”Yeast”, ”Glass” and

”German” (For example the accuracy of the ”Glass” becomes 67.9 instead of 53.42

for the FNPC). Similar improvement is also noticed in the case of NBC and FNBC

in particular for the ”Transfusion” and ”Glass”. For these datasets we note that

classes are not equivalently covered by instances, i.e: there is one dominant class

highly covered and other classes weakly represented by examples. Thus we can say

that, considering prior possibilities of classes π(ci) 6= 1 obtained by a probability-

possibility transformation of the prior probability distribution, enables to have a

more realistic representation of data which contributes to this improvement.

If we compare the classification performance of the six classifiers in Table 6.4 we

note that:

• The NPC (the improved version) and the NPC-2 has very close results except for

the ”Yeast” (respectively ”Glass”) were the NPC-2 (Resp. NPC) is slightly better

than the NPC (resp. NPC-2). Results for the FNPC and FNPC-2 are also equivalent

except for the case of ”Sat.Imge” and ”Iosophere”. So the two families of Naive

possibilistic classifiers obtained from the two probability-possibility transformation

methods has close performances.

• As for the initial version of NPC, the NPC-2 is significantly more accurate than
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the NBC in data sets (”Yeast”, ”Ecoli”, ”Glass”, ”German” and ”Heart”) and less

accurate on the remaining databases except for the ”Iris” where the two classifiers

have the same accuracy.

• These results reinforce the idea previously mentioned when comparing the classi-

cal NPC and NBC [23]. In fact, the NBC seems to partially fail when classifying

instances in data sets with attributes that strongly violate the normality assumption

(a Shapiro-Wilk test done on these data sets prove the normality violation). This

can be explained by the fact that the NBC reinforces the error rate (by the use of

multiplication) especially for data sets with a high number of attributes

•We expect that, if the normality assumption is strongly confirmed for a given data

set, it is better to use a probability distribution for classification since it remains more

precise. In the other case, we may suppose that applying a Probability-Possibility

transformation on the NBC (which leads to NPC [23] or to NPC-2 [20]) enables the

classifier to be less sensitive to normality violation.

• The flexible possibilistic classifiers (FNPC and FNPC-2) significantly outperform

the FNBC for the majority of data sets. As observed before, the highest increase

in accuracy compared to the FNBC has occurred for databases ”Yeast”, ”Glass”,

”Ecoli”, ”Segment”, ”German” and ”Block” (Table 6.4) having hight number of

attributes and classes. We can conclude that the FNPC and FNPC-2 are significantly

more efficient than the FNBC (and also other classifiers) for data sets with a high

dimentionality.

• For the six classifiers, classification results of the two flexible possibilistic classifiers

(FNPC and FNPC-2) are largely better than other classifiers for all data sets except

in the case of ”Iris”, ”Cancer” and ”Heart” databases where the FNPC-2 (and also

FNPC) have almost the same accuracy as others.

6.3 Experiments of possibilistic classifiers for the

imperfect numerical data

This section provides experimental results of the uncertain versions of possibilistic

classifiers [25] [20]. Although uncertainty in databases is a important issue in machine

learning, there are no uncertain nor imprecise data sets which could be used for

testing algorithms dealing with such type of data. For this reason, we first give

here a heuristics to create uncertainty and imprecision in an artificial manner. In

the second part of this section we present the criteria suitable for evaluating the

classification accuracy of possibilistic classifiers in the imperfect case. Finally, we

give results for the imperfect case.
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6.3.1 Generation of imperfect data

Data sets described in Table 4.4 are initially perfect with certain and precise at-

tributes and classes. In order to evaluate possibilistic classifiers in the imperfect

case, we have artificially introduced imperfection in these data sets by transforming

the original precise and certain instances into imperfect ones.

Creating possibilistic labels: Uncertainty on the training set is created by re-

placing the certain class label of each instance by a possibility distribution over class

labels. To generate a possibility distribution, we suppose that we have two inde-

pendent experts and that they are, to some extent, unable to classify each training

instance in a certain manner. So we ask each expert to give a possibility distribution

over class labels reflecting his/her knowledge about this uncertain situation. Then

we apply an information fusion procedure [71] to produce the final possibility distri-

bution for each instance. Each expert may simply be a possibilistic classifier trained

on the perfect (certain and precise) data set. In this experiment we have used the

certain FNPC and the FuHC classifiers, as presented in Chapter 5, to simulate ex-

perts. For information fusion, we apply a disjunctive operator [71], as introduced

in Section 1.4.5 page 30, to create the final possibility distribution πatr :

∀ω ∈ Ω, π∨(ω) = ⊕i=1..nπi(ω) =
n

max
i=1

πi(ω) (6.1)

We prefer the disjunctive operator to the conjunctive one since the two classifiers

may disagree and we cannot be sure which one is more reliable. Moreover, possibilis-

tic distributions generated with this operator cover the imprecise case where more

than one class may have a possibility degree equal to 1. We create uncertain training

set by the following:

1. Train the FNPC and the FuHC using the original crisp training set.

2. Use the obtained possibilistic classifiers to predict the class labels. for each

training instance.

3. For each training instance atr, fuse the two possibility distributions obtained

from each classifier using a disjunctive operator.

4. Keep the attribute values of each instance in the training set unchanged and

replace the crisp class label by πatr .

Creating imprecise attributes: Attributes in the testing set are made uncertain

in the following way. In each testing instance, we convert each attribute value into

164



CHAPTER 6. EXPERIMENTING POSSIBILISTIC CLASSIFIERS FOR PERFECT/IMPERFECT DATA

an uncertain interval. For each attribute, we scan all of its value in the database

and get its minimum value Xmin and its maximum value Xmax. Then we replace

each attribute value by a generated interval I = [L, U] in order to create imprecision

on this attribute. If x is the perfect value of the current attribute, its lower bound

L(Resp. upper bound U) is calculated as follows: L = x − (x − Xmin) ∗ rand1

(resp. U = x + (Xmax − x) ∗ rand2), where rand1 and rand2 denote two random

numbers reflecting the uncertainty level AttrL on this attribute. AttrL is a level

which describes the larger of the interval and takes values in {0.25, 0.5, 0.75 or 1)}.
For each level AttrL, we generate an uncertain dataset UAttrL where rand1 and

rand2 range between 0 and AttrL. Hence, for each perfect testing set, we create

four uncertain datasets U0.25, U0.5, U0.75 and U1.

6.3.2 Classification accuracy measures

To measure the accuracy of possibilistic classifiers, we use two evaluation criteria:

� The percentage of Most Plausible Correct Classification (MPcc):

counts the percentage of instances whose all most plausible classes, predicted

by the possibilistic classifier, are exactly the same as their initial most plausible

classes given by the possibility distribution labeling each testing instance.

MPcc =
Number of exactly well classified instances

Total nbr classified instances
∗ 100 (6.2)

� The Information Affinity-based Criterion (AffC) [102][104]: is a degree

of affinity between the predicted and the real possibility distribution labeling

the testing instances

InfoAffC =

∑n
i=1Aff(πreali , πpredi )

Total nbr classified instances
(6.3)

Aff(π1, π2) = 1− d(π1, π2) + Inc(π1, π2)

2
(6.4)

where d(π1, π2) is the Manhattan distance between π1 and π2 and Inc(π1, π2) =

Inc(π1 ∧ π2) is the degree of inconsistency between π1 and π2 which ranges in

[0,1] and is calculated as follows:

Inc(π) = 1−max
ω∈Ω
{π(ω)}. (6.5)
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6.3.3 Results for the imperfect numerical data

This experimental study is divided in two parts. First, we evaluate the uncertain

possibilistic classifiers to handle uncertainty only in class attribute and we keep

attributes in the testing set perfect. Second, we test the accuracy of the proposed

classifiers when attributes in the testing set are uncertain whereas training set is kept

perfect. We choose to test each uncertainty type independently in order to check the

efficiency of possibilistic classifiers to deal with each situation.

1. Uncertainty type 1: Uncertain classes

Table 6.5: Experimental results for uncertain classes given as the mean and the
standard deviation of 10 cross-validations

FNPC FNPC-2 FuHC NNPC

MPcc AffC MPcc AffC MPcc AffC MPcc AffC

Iris 94.0±3.6 0.94±0.0 94.0±3.6 0.94±0.01 93.33±6.7 0.95±0.0 88.67±7.3 0.88±0.01

Cancer 96.19±1.8 0.98±0.0 96.19±1.8 0.98±0.0 95.31±2.0 0.99±0.01 42.05±13.4 0.79±0.01

Wine 92.64±6.2 0.94±0.01 92.64±6.2 0.94±0.01 92.08±5.2 0.95±0.0 87.08±8.6 0.8±0.01

Diabetes 76.72±6.6 0.96±0.0 76.85±6.4 0.96±0.0 54.41±6.7 0.95±0.0 58.6±5.7 0.95±0.0

Magic 74.4±3.7 0.93±0.0 74.4±3.7 0.93±0.0 61.27±10.0 0.94±0.01 66.2±4.7 0.92±0.01

Transfusion 84.1±4.1 0.98±0.0 83.57±4.2 0.98±0.0 62.46±6.4 0.98±0.0 51.89±5.3 0.98±0.0

SatImage 90.55±3.0 0.98±0.01 90.55±3.1 0.98±0.01 90.37±3.3 0.98±0.01 89.18±3.3 0.7±0.01

Segment 70.87±5.0 0.92±0.01 70.93±5.1 0.92±0.01 63.13±4.4 0.95±0.0 79.6±3.3 0.8±0.01

Yeast 58.08±3.6 0.96±0.0 58.28±3.6 0.96±0.0 20.15±3.8 0.93±0.01 22.1±2.8 0.9±0.0

Ecoli 80.65±8.1 0.93±0.01 80.36±8.2 0.93±0.01 65.1±13.8 0.91±0.01 78.0±6.4 0.88±0.01

Glass 53.93±13.6 0.92±0.02 52.54±13.3 0.92±0.02 35.99±13.0 0.9±0.08 44.46±14.6 0.83±0.02

Iosophere 78.34±6.9 0.94±0.02 78.63±6.9 0.94±0.02 75.2±9.1 0.93±0.02 76.34±7.9 0.85±0.02

Block 78.29±2.3 0.93±0.01 78.69±1.07 0.94±0.0 75.59±2.2 0.87±0.01 74.97±2.1 0.64±0.0

German 81.3±4.0 0.96±0.01 81.2±3.9 0.96±0.01 77.0±3.7 0.95±0.01 17.7±3.4 0.88±0.01

Heart 89.26±6.7 0.96±0.01 89.26±6.5 0.96±0.01 89.26±8.2 0.97±0.01 48.89±5.4 0.82±0.02

Table 6.5 shows the classification performance (MPcc and InfoAffC criterion)

obtained with the FNPC, FNPC-2, FuHC and NNPC for the fifteen uncertain data

sets [25] [20].

If we analyze results in Table 6.5, we note that:

• For the uncertain FNPC and FNPC-2, 5 of the 15 data sets have reported an

increase in accuracy if compared to the perfect case, 10 of the 15 data sets have

reported a decrease in accuracy (see Table 6.4 for comparison) but in 6 of the 10

the decrease is less than 5% and the highest decrease is for the ”Segment” which is

about 20% but the MPcc remains > 70%.
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• For the proximity based classifiers the decrease in accuracy is more considerable

and the highest one is reported for the ”Yeast” in the case of FuHC and ”Cancer”

and ”German” in the case of NNPC which is respectively about 30% (FuHC) and

50% (NNPC).

• From this table we note that the two flexible possibilistic classifiers have close

accuracy as in the perfect case. To compare their results to the two other proximity

based classifiers in terms of MPcc, we use the Wilcoxon Matched-Pairs Signed-Ranks

Test as proposed by Demsar [50]. Comparison results given in Table 6.6 show that

the FNPC (and also FNPC-2) is always significantly better (p− value < 0.05) than

the two proximity based classifiers for all data sets whereas the FuHC and NNPC

have competitive performance.

• As reported in the perfect case from these results we can say that, overall the

FNPC and FNPC-2 shows a high ability to detect the most plausible classes even for

uncertain data sets with high level of uncertainty (all training instances are assumed

to be uncertain). In this study, we have used a rigid MPcc criteria which considers

an instance as incorrectly classified if the difference between predicted and real full

plausible classes is at least equal to 1. Although this rigid criteria and even for 100%

uncertainty level, the two flexible possibilistic classifiers show a high ability to deal

with imperfect instances almost as good as with perfect ones (See Table 6.4).

• By analyzing the InfoAffC criteria we can see that the values are high for the

different classifiers and for almost all data sets. For all data sets, the InfoAffC is

> 0.9 for the FNPC, FNPC-2 and FuHc (except in the case of Block which is close

to 0.9) and > 0.7 for the NNPC. From these results, we can conclude that the

possibilistic classifiers are able to predict possibility distributions highly consistent

with the initial uncertain distributions.

• For the majority of data sets, the InfoAffC criteria confirms the results reported

by the MPcc. However we can see a significant divergence between the values of

InfoAffC and MPcc for some data sets and mainly for the NNPC (for example, for

the ”Yeast” the MPcc value is 22.1% and the AffC is 0.9). If compared to the perfect

case, the MPcc decrease is about 20% for the Yeast and 50% for the Cancer. Also for

the two flexible classifiers and for some data sets (”Segment”, ”Glass”, ”Iosophere”

and ”Block”) there is a significant decrease in MPcc, if compared to the perfect case

which is respectively about 20 %, 15%, 13% and 15% however the InfoAffC remains

higher than 0.9.

• This divergence means that for many testing instances, the possibilistic classi-

fier provides possibility degrees too close to the initial possibility distribution (high

InfoAffC) but the predicted and real full plausible classes are not exactly the same

(weak MPcc). So we can say that this decrease in accuracy for these data sets returns

to the rigid nature of the MPcc criteria which causes the absence of classification
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for many instances in the data set where the classifier provides more than one fully

plausible class which are not exactly the same as those given in the real distribution.

This is mainly the case for data sets with large number of classes.

• For the NNPC the decrease is more significantly observed since this latter, by

using the maximum operator in formula 5.12 page 131, looks only for one nearest

neighbor which makes conditionals possibilities on classes to tend to 1 for more than

one particular class. That’s why the NNPC confuses much between near classes and

causes a 0 classification percentage for many instances in the data set where the

classifier provides more than one fully plausible class whereas in the real distribution

the number of fully plausible classes is fewer.

• The results of the NNPC could be improved if we consider a more relaxed MPcc

criterion for which we allow to an instance to be classified with a particular percent-

age p ∈ [0, 1], for example p = 1/2 if only one full plausible class is in the initial

distribution among two full plausible classes detected by the classifier. By applying

this relaxed criterion, the MPcc for the ”Cancer” in the case of NNPC becomes

69.34% (instead of 42.05%).

Table 6.6: Results for the Wilcoxon Matched-Pairs Signed-Ranks Test

FNPC Versus FuHC FNPC Versus NNPC FuHC Versus NNPC
p ≤ 0, 005859 p ≤ 0.01855 p ≤ 0.8311

2. Uncertainty type 2: Imprecise attributes

Table 6.7 shows the MPcc and the InfoAffC results obtained with the four classifiers

for each imprecision level on attributes and for the fifteen mentioned data sets. C1,

C2, C3 and C4 in Table 6.7 are respectively the FNPC, the FNPC-2, the FuHC and

the NNPC. By comparing the classification performance we see that the accuracies

of the four algorithms decrease when the imprecision level of attributes increases

(when intervals are broader). Despite this decrease we note that [25] [20]:

• The FNPC, FNPC-2 and FuHC have reported relatively high performance if com-

pared to the perfect case. We can also note that the decrease in accuracy for the

FNPC and FNPC-2 is relatively stable and not acute.

• Despite the decrease in accuracy, we note that the ratio remains high in average

mainly for the three first classifiers. For instance, if we analyze the results relative

to the FNPC and FNPC-2, we remark that the MPcc remains higher than 60% for

the highest uncertainty level (U1)(the worst case) and this for all data sets except

the ”Yeast” and ”Glass” where the value is respectively about 32% and 43%.
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Table 6.7: Experimental results for uncertain attributes given as the mean and the
standard deviation of 10 cross-validations

U0.25 U0.5 U0.75 U1

MPcc AffC MPcc AffC MPcc AffC MPcc AffC

Iris C1 93.33±8.9 0.95±0.06 90.67±10.0 0.94±0.06 88.0±11.9 0.92±0.06 87.33±10.1 0.9±0.04

C2 93.33±8.9 0.95±0.05 90.67±10.0 0.94±0.06 88.0±11.9 0.92±0.05 86.67±9.4 0.9±0.04

C3 92.0±8.8 0.87±0.03 86.67±9.9 0.85±0.04 79.33±17.0 0.83±0.05 66.0±17.8 0.77±0.08

C4 88.0±5.8 0.77±0.01 82.0±10.3 0.77±0.01 77.33±11.6 0.76±0.01 62.67±10.4 0.73±0.03

Cancer C1 97.66±1.5 0.98±0.02 96.04±2.5 0.96±0.02 95.9±2.3 0.96±0.02 94.14±2.6 0.94±0.02

C2 97.66±1.5 0.98±0.02 96.04±2.5 0.96±0.02 95.9±2.3 0.96±0.02 94.28±2.6 0.94±0.02

C3 96.05±2.1 0.97±0.02 95.9±1.8 0.97±0.01 94.73±3.3 0.95±0.02 92.84±3.6 0.93±0.02

C4 31.19±4.7 0.78±0.01 29.43±5.8 0.77±0.0 25.63±5.1 0.76±0.0 23.14±5.4 0.76±0.0

Wine C1 96.6±3.7 0.98±0.02 94.93±3.9 0.96±0.02 91.6±4.4 0.94±0.02 87.08±5.0 0.91±0.04

C2 95.48±3.4 0.97±0.02 94.93±3.9 0.96±0.03 91.6±3.7 0.94±0.02 85.9±5.3 0.9±0.04

C3 93.05±8.0 0.9±0.02 90.9±6.9 0.88±0.02 86.18±11.0 0.84±0.05 71.74±24.0 0.77±0.11

C4 91.67±6.2 0.74±0.01 75.42±9.2 0.72±0.01 62.43±7.9 0.7±0.01 47.71±9.7 0.68±0.03

Diabetes C1 71.99±3.5 0.77±0.02 68.73±4.9 0.75±0.03 68.09±5.1 0.74±0.04 65.48±4.0 0.72±0.02

C2 73.17±3.6 0.77±0.02 69.52±4.5 0.75±0.03 68.35±4.8 0.74±0.04 66.0±4.2 0.72±0.02

C3 72.39±5.6 0.76±0.01 71.35±5.4 0.76±0.01 66.92±6.0 0.75±0.01 59.13±5.6 0.73±0.01

C4 39.47±6.4 0.75±0.0 39.88±9.1 0.75±0.0 37.68±8.9 0.75±0.0 35.86±8.1 0.75±0.0

Magic C1 71.41±5.0 0.77±0.03 72.34±3.3 0.78±0.02 75.32±5.0 0.79±0.02 70.86±3.9 0.76±0.02

C2 73.29±4.2 0.78±0.02 72.46±3.2 0.78±0.02 72.26±3.1 0.77±0.02 70.77±3.9 0.76±0.02

C3 67.14±6.2 0.75±0.02 66.3±5.7 0.74±0.02 65.2±7.5 0.73±0.03 60.91±6.2 0.71±0.02

C4 64.81±7.2 0.75±0.0 60.81±7.7 0.75±0.0 59.69±7.8 0.75±0.0 58.21±7.2 0.75±0.0

Transfusion C1 65.14±7.8 0.72±0.05 64.22±7.1 0.72±0.04 62.36±7.9 0.72±0.03 61.12±5.2 0.72±0.03

C2 65.41±7.9 0.73±0.04 63.82±7.1 0.73±0.04 63.02±7.5 0.72±0.03 60.86±5.4 0.72±0.03

C3 61.94±7.5 0.75±0.01 57.78±7.2 0.74±0.01 53.49±5.1 0.74±0.01 46.11±5.9 0.73±0.01

C4 6.86±5.5 0.75±0.0 9.26±5.1 0.75±0.0 6.72±5.1 0.75±0.0 6.32±5.8 0.75±0.0

Sat.Image C1 89.45±2.1 0.93±0.02 86.42±2.9 0.91±0.02 85.96±2.8 0.91±0.02 84.5±3.3 0.9±0.02

C2 89.27±2.1 0.93±0.01 86.15±3.2 0.91±0.02 85.78±2.6 0.91±0.02 84.4±3.5 0.9±0.02

C3 87.25±2.9 0.93±0.02 83.21±5.4 0.9±0.03 75.78±8.6 0.85±0.06 60.28±10.0 0.75±0.07

C4 91.1±2.0 0.68±0.0 87.25±3.1 0.67±0.01 80.55±2.4 0.66±0.01 75.23±3.1 0.66±0.0

Segment C1 87.8±2.3 0.93±0.01 83.07±3.5 0.91±0.02 77.67±3.4 0.89±0.02 73.6±4.0 0.86±0.02

C2 87.93±2.3 0.93±0.01 83.13±3.6 0.91±0.02 77.8±3.2 0.89±0.02 73.4±3.6 0.86±0.02

C3 77.33±2.6 0.88±0.01 73.0±3.9 0.86±0.01 65.4±5.0 0.83±0.02 51.2±2.9 0.75±0.02

C4 79.67±2.8 0.72±0.01 68.67±4.2 0.7±0.0 59.73±4.2 0.69±0.01 38.2±2.8 0.64±0.0

Yeast C1 53.37±2.7 0.79±0.02 49.53±4.6 0.77±0.01 40.44±3.1 0.74±0.02 30.73±3.0 0.7±0.01

C2 53.715±2.8 0.795±0.02 49.335±4.7 0.775±0.01 40.515±3.1 0.745±0.02 31.25±3.0 0.75±0.01
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C3 49.94±3.3 0.69±0.01 41.23±4.3 0.68±0.01 37.93±3.8 0.67±0.01 35.98±5.4 0.67±0.01

C4 8.49±2.5 0.63±0.0 6.74±1.7 0.62±0.01 4.92±1.4 0.62±0.0 3.78±1.6 0.62±0.0

Ecoli C1 81.86±5.2 0.91±0.03 77.74±9.2 0.9±0.04 70.28±10.8 0.86±0.04 63.06±6.7 0.83±0.02

C2 81.27±5.3 0.91±0.03 77.19±9.9 0.9±0.04 70.28±10.5 0.86±0.03 63.65±6.5 0.83±0.02

C3 77.45±8.2 0.82±0.02 69.14±7.3 0.79±0.01 61.0±7.9 0.77±0.01 53.82±7.2 0.75±0.02

C4 71.63±6.8 0.73±0.01 64.78±8.1 0.72±0.01 61.68±10.5 0.72±0.01 55.98±9.6 0.71±0.01

Glass C1 51.075±13.2 0.795±0.04 48.285±13.7 0.775±0.04 45.425±17.5 0.755±0.07 42.555±14.4 0.745±0.06

C2 49.65±13.0 0.78±0.04 45.53±15.4 0.77±0.05 42.15±18.7 0.75±0.07 41.08±14.7 0.74±0.06

C3 34.2±9.5 0.71±0.02 31.84±13.2 0.7±0.02 29.96±10.6 0.68±0.02 27.12±13.7 0.67±0.03

C43 52.81±11.6 0.64±0.02 50.43±7.5 0.64±0.01 45.26±9.0 0.64±0.02 47.62±13.5 0.63±0.02

Iosophere C1 92.3±2.2 0.92±0.02 90.59±3.2 0.91±0.03 90.31±4.3 0.91±0.04 86.9±5.6 0.88±0.05

C2 91.16±2.0 0.92±0.02 90.3±3.4 0.91±0.03 89.74±4.3 0.91±0.04 86.9±5.4 0.88±0.04

C3 79.2±6.4 0.81±0.06 77.77±6.9 0.8±0.06 75.79±7.0 0.77±0.06 74.93±7.4 0.76±0.07

C4 89.19±6.3 0.79±0.02 87.17±7.2 0.79±0.02 78.62±16.6 0.78±0.02 76.33±16.1 0.78±0.02

Block C1 89.53±0.7 0.93±0.01 87.1±1.4 0.91±0.01 82.77±1.9 0.88±0.01 75.72±2.4 0.84±0.01

C2 89.2±1.7 0.93±0.01 86.86±2.2 0.91±0.01 81.2±2.0 0.87±0.01 75.9±3.0 0.84±0.01

C3 88.42±2.0 0.79±0.01 88.36±2.0 0.78±0.01 88.96±2.4 0.78±0.01 88.58±2.4 0.78±0.01

C4 89.79±1.9 0.62±0.01 89.24±2.5 0.62±0.0 88.31±3.6 0.62±0.0 87.96±3.5 0.62±0.0

German C1 71.8±2.79 0.76±0.02 71.0±3.82 0.76±0.0 70.7±3. 0.75±0.02 67.7±4.65 0.74±0.02

C2 71.5±4.2 0.76±0.02 71.8±4.3 0.76±0.02 69.4±3.2 0.75±0.02 69.2±3.4 0.74±0.03

C3 69.0±4.1 0.75±0.03 69.4±3.5 0.75±0.02 69.5±4.2 0.75±0.03 69.3±5.0 0.75±0.03

C4 6.3±4.9 0.75±0.0 5.9±5.8 0.75±0.0 6.2±5.3 0.75±0.0 17.2±7.3 0.75±0.0

Heart C1 84.08±4.7 0.85±0.04 82.59±5.3 0.84±0.04 82.22±5.9 0.84±0.05 81.85±6.9 0.84±0.05

C2 84.08±4.7 0.85±0.04 81.85±5.8 0.84±0.04 81.85±6.5 0.84±0.05 81.48±7.0 0.84±0.05

C3 81.4811±3.9 0.84±0.03 81.11±4.7 0.84±0.03 80.0±6.7 0.83±0.03 79.63±4.5 0.83±0.04

C4 53.7±11.1 0.75±0.0 44.07±9.1 0.75±0.0 40.0±12.5 0.74±0.01 37.41±7.8 0.74±0.01

The low results reported for the these data sets are not related to the classifier

since the MPcc reported for the original certain version of these data sets is about

58% for the ”Yeast” and 67% for the ”Glass” for the certain FNPC.

• However the NNPC seems to find difficulties when classifying instances with impre-

cise attributes especially for data sets ”Cancer”, ”Transfusion”, ”Diabetes”, ”Yeast”

and ”German”. As reported in the uncertain case (Table 6.5), low accuracies are

related to the max operator, used in NNPC, combined with the rigid MPcc criterion.

• As in the uncertain case (Table 6.5), the accuracy of the FNPC (and also the

FNPC-2) is always (even slightly) better than other classifiers for all uncertainty

levels and all databases expect the case of ”Glass”, in which this classifier performs

worse than the NNPC.

• The values of the InfoAffC criterion reported for the different classifiers and for the

different data sets are relatively high. For 11 of the 15 data sets, this value remains

higher than 0.7, for all uncertainty levels and for the four classifiers and it is higher

than 0.6 for the remaining data sets. So, we can say that the predicted and initial

possibility distributions are relatively consistent.
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From results given in Tables 6.5 and 6.7, we conclude that FNPC and the FNPC-2

are more accurate that the two others and can be considered as good classifiers which

are well suitable to deal with perfect or imperfect continuous data and all types of

databases. However results of the proximity based classifiers could be improved if

i) we use a more appropriate MPcc criterion and ii) we refine theses approaches by

using a Nearest-Neighbor heuristic to separate indistinguishable classes [24].

6.4 Conclusion and discussion

Experimental results show the performance of possibilistic classifiers for handling

numerical input data.

While proximity based classifiers shows competitive efficiency compared to prob-

ability based possibilistic classifiers, they seem to confuse much between near classes

(especially the NNPC). Besides the NNH, viewed as an independent classifier, is

efficient in particular for classifying databases with high dimensionality. The hybrid

classification method exhibits a clear ability to improve the accuracy of possibilistic

classifiers, in particular those having a great confusion level between classes which

produce close plausibility estimates for classes, such as the NPC.

On the other hand considering priori distribution over classes in the case of ex-

tended versions of Gaussian-based Possibilistic classifiers (NPC, NPC-2, FNPC and

FNPC-2), contributes to significantly improve their accuracy mainly for data sets

with classes not equivalently covered. While Naive possibilistic classifiers (NPC and

NPC-2) are less sensible than NBC to normality violation, Flexible possibilistic clas-

sifiers (FNPC and FNPC-2) shows high classification accuracy and good ability to

deal with any type of data when compared to other classifiers in the same family.

To test possibilistic classifiers in the uncertain case, we have artificially introduced

imperfection in data sets from the UCI machine learning repository. Experimental

results show the performance of these classifiers to deal with imperfect as well as

perfect numerical data. Indeed, the FNPC and FNPC-2 show a high ability to

detect the full plausible class labels with possibility distributions very consistent with

initial distributions. Possibilistic classifiers exploiting proximity are competitive with

others, besides the NNPC has some difficulties to distinguish between near classes,

which decreases its performance although predicted possibilities distributions are

valuable.
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In the first part of this thesis, we have investigated the study of rule induction

algorithms and their efficiency in the classification task. The analysis of rule based

classifiers let us to show that they suffer from major drawbacks when classifying

test examples. Especially, the multiple classification problem occurs when many

rules cover an example and are labelled with different classes and the non-covering

problem when no rule covers the current example and it concerns the choice of the

default rule or class.

For the first problem, even if there exist one rule that correctly classifies the

example, we are in a misclassification case because, rules covering the example are

concurrent and there is no reasonable way to choose (or favour) the rule that correctly

classifies the example at the classification step. Using decision lists to deal with such

problem could be faithful for some case but it contributes to consider rules in non

symmetric way which favours some rules over others.

For the non covering case, most of existing rule based classifiers assigns an exam-

ple not covered by any rule to the largest class. The choice of the default class is done

at the induction time and is not dynamically updated thereafter at the deduction

time.

In this work we have proposed a family of Possibilistic Rule-based Classifiers

(PRCs) which is based on a Possibilistic Rule-based Reasoning to deal with the

two previously presented problems. The PRC is an extension and a modification of

the PART classifier basically founded on the sequential covering algorithm and the

decision tree principal. The PRC keeps the same rule learning step as the PART

and differs mainly in more than one sight. In particular, the PRC learns fuzzy rules

instead of crisp rules. Our intuition behind rule fuzzification is that it will help

the classifier to more distinguish between rule decision boundaries. To deal with

the multiple classification problem, we have proposed to consider weighted rules at

classification step in an unordered manner instead of rule lists which gives symmetric

chance to each rule to be used for classification. Finally for the non covering problem,

we intended to dynamically assign a default class for examples not covered by any

rule using fuzzy rules with large supports. Experiments of the PRCs on a variety of
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data sets show their ability to improve the accuracy of the classical PART algorithm.

In the second part of this thesis, we are interested to cope with uncertainty

in the classification of data with numerical attributes. Two common issues are

usually countered in this field: i) estimating the distribution associated to numerical

attributes which could be the closest representation of the real data and ii) modelling

and also handling uncertainty related to attributes and classes when estimating these

distributions.

To deal with numerical data, most of classification techniques use a discretization

process for continuous attributes and then apply a multinomial probability distri-

bution which leads generally to a loss of information. Other approaches estimate

densities in parametric way using Gaussian densities or non parametric way using

kernel density functions.

For a long time, Naive Bayesian Classifiers (NBC) has been largely used in a

variety of contexts to deal with numerical data. These classifiers, which rely on

independence hypotheses, together with a normality assumption to estimate densities

for numerical data, are known for their simplicity and their effectiveness.

However estimating densities, even under the normality assumption, may be prob-

lematic in case of poor data. Even if a normal distribution is appropriate, identifying

it exactly from a sample of data is especially questionable when data are poor. When

normality assumption is violated, Gaussian mixtures can be used for approximating

any type of distributions. Then, it is required to assess many parameters, a task

that may be not compatible with poor data. The problem of the precise estima-

tion of probability distributions for NBCs is important for the exact computation of

the probability distribution over the classes. Indeed, a possibility distribution may

be viewed as representing a family of probability distributions corresponding to im-

precise probabilities, which sound more reasonable in case of poor data. Moreover,

we no longer need to assume a particular shape of probability distribution in this

possibilistic approximation process.

Thus possibility distributions may provide a more faithful representation of these

data. Naive Possibilistic Classifiers (NPC), based on possibility theory, have been

recently proposed as a counterpart of Bayesian classifiers to deal with classification

task.

The study of possibilistic classifiers is motivated by the good performance of

NBCs and by the ability of possibility theory to handle poor data. In spite of the fact

that possibility distributions are useful for representing imperfect knowledge, there

have been only few works that use Naive Possibilistic Classifiers and most of existing

NPC deal only with categorical attributes. This thesis focuses on the estimation of

possibility distributions for continuous data. For this reason, we introduce Naive
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Possibilistic Classifiers (NPC) that are based on the possibilistic counterpart of the

Bayesian formula and the estimation of the possibility distributions. In this work we

have developed two kinds of possibilistic classifiers:

The first family called, Gaussian-based Possibilistic Classifiers, assumes normality

assumption when estimating possibilistic distributions. For this family of classifiers,

we have used two probability-possibility transformation methods enabling us to de-

rive a possibilistic distribution from a probabilistic one. The first method is a direct

transformation enabling to move from a classical NBC to a NPC, which introduces

some further tolerance in the description of classes. Then, we have tested the feasi-

bility of a Flexible Naive Possibilistic Classifier, which is the possibilistic counterpart

of the Flexible Naive Bayesian Classifier. The FNPC estimates possibilistic distri-

butions in a non-parametric way by applying the transformation method to kernel

densities instead of Gaussian ones.

Even if we assume that the data follows a Gaussian probabilistic distribution,

its parameters are estimated from a limited sample set, and are then necessarily

pervaded with imprecision. In the second transformation method, we consider the

possibility distribution that encodes all the Gaussian distributions for which the

parameters are in a chosen confidence interval. This allows us to generate two new

possibilistic classifiers in this family, namely the NPC-2 and the FNPC-2.

The second family of possibilistic classifiers abandons the normality assumption

and takes use of a proximity idea between data values in different ways, which pro-

vides a less constrained representation of them. We have proposed two other clas-

sifiers named Fuzzy Histogram Classifier and Nearest Neighbor-based Possibilistic

Classifier in this context. The two proposed classifiers exploit proximity between

attribute values in order to estimate possibility distributions. In the first classifier,

we compute an average proximity, whereas for the second one we analyze proximi-

ties between attributes without counting them. The main advantage of this family

of classifiers, when compared to the first one, is their ability to derive possibilistic

distributions without the need of a normality assumption, which may lead to a more

realistic representation of data.

We have showed that Possibilistic Classifiers have a better capability to detect

new instances for which the classification is ambiguous than Bayesian classifiers,

where probabilities may be poorly estimated and illusorily precise. In fact, due to

the use of the product for combining probability values (which are often small), the

errors on probability estimations may have a significant effect on the final estimation.

This contrasts with possibility distributions which are less sensitive to imprecise

estimation.

Moreover, we have shown that possibilistic classifiers have a higher ability to
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detect ambiguity between classes than Bayesian classifiers. Namely the former ac-

knowledge the fact that it is difficult to classify some examples by assessing close

possibility degrees to competing classes, whereas the latter in the same situation

may give the illusion of discriminating between classes by assessing very different

probability degrees to them.

In order to improve the performance of possibilistic classifiers, we have proposed a

hybrid Possibilistic Classification approach based on a Nearest Neighbour Heuristics

to improve the accuracy of the proposed possibilistic classifiers when the available

information is insufficient to choose between classes. The Nearest Neighbor Heuristic

contributes to help the main classifier to converge to the correct class label in case

data information is insufficient for a more precise classification, rather than choosing

between classes having very close plausibility estimates in a rather arbitrary way.

Another significant improvement in accuracy of Gaussian-based possibilistic clas-

sifiers is also noted when these latter takes into account priori distribution over

classes. The extended version using this modification contributes to significantly

improve the accuracy of NPC, FNPC, NPC-2, and FNPC-2 especially for data sets

with classes not equivalently covered.

The last main contribution in this thesis is the treatment of uncertainty when

classifying numerical data using possibility theory. It should be noted that most

of existing works on Naive Possibilistic Classifiers handle uncertainty only for the

discrete attributes and are not suitable for numerical attributes. There are some

approaches dealing with imperfection in numerical data which exploits probability

theory as a tool for this purpose and they cope only with uncertainty in the at-

tribute values without considering uncertainty on class labels. At the best of our

knowledge there is no complete work that takes use of possibility theory to cope with

imperfection on both attributes and classes in the case of numerical data.

Following this line here, we have intended to exploit Naive Possibilistic classifiers

already proposed as a counterpart to Bayesian classifiers to deal with classification

task in presence of uncertainty. For this reason, as a second contribution in this part,

we extend these classifiers in order to deal with uncertainty in data representation.

We consider two types of uncertainty: i) the uncertainty associated to the class in

the training set, which is modeled by a possibility distribution over class labels, and

ii) the imprecision pervading attribute values in the testing set represented under

the form of intervals for continuous data.

First, we have adapted the possibilistic classification model, previously proposed

for the certain case, in order to accommodate the uncertainty about class labels.

For this case, we have proposed to integrate individual possibility distributions on

classes in the calculus of conditional distributions of attributes.
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We have also proposed an algorithm based on the extension principle to deal with

uncertainty in attribute values. This algorithm seeks to estimate possibility distri-

butions for an uncertain attribute (interval) by looking for possibility distributions

of each attribute in the training set belonging to this interval.

In order to test and compare the efficiency of both Possibilistic Classifiers and

Possibilistic Rule-based Classifiers, we have implemented all the proposed approaches

within the JAVA language using Borland JBuilder environment (10.0.176.120). This

choice helps us to integrate available implementation for the PART algorithm from

WEKA toolbox. We have conducted several experimentations on a variety of data

sets in the perfect or imperfect case. Because of the lack of real imperfect data sets,

and in order to test the efficiency of possibilistic classifiers in the imperfect case, we

have artificially created imperfect version of each data set with uncertain classes and

attributes.

Possibilistic classifiers are compared to classical or flexible Bayesian classifiers on

a collection of benchmarks databases. The experiments reported show the interest

of possibilistic classifiers. In particular, flexible possibilistic classifiers perform well

for data agreeing with the normality assumption, while proximity-based possibilistic

classifiers outperform others in the other cases. The hybrid possibilistic classification

exhibits a good ability for improving accuracy.

On the other hand, results in the uncertain case show the interest of possibilistic

classifiers for handling uncertainty in data. In particular, the Gaussian-based possi-

bilistic classifiers show a high efficiency for dealing with imperfect data and turns to

be almost as good as when data are not pervaded with uncertainty.

There are still a few open problems and future lines of research steaming from

this study; regarding our proposed rule based classifier, we are planning to orient our

research to reinforce optimization of the rule learning step (in the PART algorithm)

before starting fuzzification in order to have a more optimized rule set. Second, we

are aiming to extend the proposed PRC to support uncertainty in data representation

when dealing with numerical data. In this context, the PRR is well suitable to handle

such type of data.

With regard to our possibilistic classifiers proposed for numerical data, it would

be faithful to seek for other possible representations of possibilistic distributions for

numerical data either by applying the probability to possibility transformation to

other non parametric densities or by looking for other kinds of proximity measures

between numerical data.

For the uncertainty management, it would be intersecting to cope with uncer-

tainty in attribute values both in training and testing set. Estimating conditional

distributions from training set including uncertain attributes and classes at the same

176



CONCLUSION

time seems to be a more complicated issue to be considered. In addition, in order to

really exploit the proposed possibilistic classifiers for uncertain data, it is important

to test possibilistic approaches on real uncertain data.

Since real data sets could contain both categorical and numerical attributes, it

will be faithful to help possibilistic classifiers to adapt them selves in presence of

discrete attributes in training or testing sets. We are thinking to generalize these

classifiers to consider both types of data (discrete and continuous).
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Appendix A: The PC/PRC
Toolbox

A.1 Introduction

In this appendix, we present the software denoted PC/PRC Toolbox that we have

developed under the JBuilder environment. In this toolbox, we have implemented

the four fuzzification approaches of the PART algorithm given in Chapter 4 as well

as the different possibilistic classifiers presented in Chapter 5. Principal interfaces

will be shown to illustrate how to use our toolbox.

A.2 What the PC/PRC Toolbox do?

The PC/PRC Toolbox enables the user either to use possibilistic rule based classifiers

or possibilistic classifiers for certain or uncertain numerical data. In particular, it

allows to:

- Train, test and use the standard PART algorithm [85].

- Train, test and use the three versions of Possibilistic Rule based Classifers

(PRCs) as an extension of the PART algorithm as well as its improved version

[26].

- Train, test and use Bayesian classifiers: the NBC and FNBC in the perfect

case [107].

- Train, test and use the six proposed possibilistic classifiers: the NPC, NPC-

2, FNPC, FNPC-2, FuHC and NNPC in the certain case [23] [24] where

all attributes and classes are certain or in the uncertain case [25] [20].

- Train, test and use the Nearest Neighbor Heuristic (NNH) alone or by

hybridizing with other possibilistic classifiers [24] .
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To test different possibilistic classifiers and compare their efficiency to other well-

known classifiers on standard data sets, we have integrated the source code of the

pre-processing class from the Weka software [168]. This class allows managing data

sets before starting classification. Some statistics on attributes are also given.

We have also integrated and adjusted the source code of the class PART from

the Weka software in order to test the PART algorithm. The pre-processing and the

PART classes are structured in order to response to the needs of our software.

A.3 Main Menu

In this menu (Figure A.7), the user should start by choosing the data set to use for

training and testing possibilistic classifiers by using the Data menu. After validating

this step, other menus are available:

� The Possibilistic Rule based Classifier menu, which allows choosing the

possibilistic version of the PART algorithm.

� The Bayesian Vs Possibilistic Classifier menu, which allows choosing a

possibilistic classifier.

Figure A.7: Possibilistic classification toolbox

A.4 Data Menu

The Data menu allows the user to access to the data management dialog box (see

Figure A.8), where he/she can open, edit, filter or save a data set file. Through this

interface the user can also modify attributes and classes in this data set.

In this dialog box the Open button allows to access to other data sets used for

experimenting the proposed classifiers as it can be shown in Figure A.9.
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Figure A.8: Data management Dialog

Figure A.9: Datasets used for classification

In our toolbox, we have maintained the same data format, ARFF used in Weka

software for coherence. This data format includes two independent parts:

� The head part includes the description of attributes (the name and the type)

and classes (the distinct values).

� The data part includes instances with their respective class values given after

”@Data”.

An example of an ARFF file is given in Figure A.10 and corresponds to the

original iris dataset before normalizing attributes.
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Figure A.10: The content of the original iris file

A.5 Possibilistic Rule based Classifier menu

The menu in Figure A.11 allows to the user training and testing the classical PART

algorithm as well as the four versions of Possibilistic Rule based Classifiers

applied to the data set previously chosen in the Data menu.

Figure A.11: Possibilistic rule based Classification Menu

A.5.1 Learning and evaluating the PART algorithm

When the user chooses the PART sub-menu, the program will train the PART algo-

rithm on the training set constructed from the original data set and then display the

generated rule set. The programm will then proceed to test this rule set on a testing

dataset using the 10-cross validation process and display the classification perfor-

mance of the classifier. Figure A.12 shows an example of a crisp rule set generated

by the PART algorithm for the iris data set.
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Figure A.12: The PART rule set and the ten-cross validation result for the iris data
set

A.5.2 Learning and evaluating the PRCs

1. After selecting the desired Possibilistic Rule based Classifier, the program will

first use the same training module of the PART algorithm to generate the crisp

rule set.

2. In the second step, the program will execute the Fuzzification Module which

enables to create a fuzzy version of the crisp rule set using Algorithm 6 of

Chapter 4. For this purpose the program will compute and display the lower

or upper Core and Support for each selector in each rule.

3. The last step consists to evaluate the chosen classifier on the testing dataset

using the ten-cross validation and finally display the classification performance.

Figure A.13 shows the fuzzy version of the crisp rule set generated using the

PRC-B and its classification performance.

Figure A.13: The Fuzzy rule set generated by the PRC-B and its ten-cross validation
result for the iris data set
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A.6 Bayesian Vs Possibilistic Classifier menu

This menu allows user to experiment Bayesian or Possibilistic classifiers described

in this thesis. Figure A.14 shows the Bayesian panel which includes the Naive

Bayesian classifier (NBC) and the Flexible Naive Bayesian Classifier (FNBC).

The Possibilistic Panel is illustrated through Figure A.15.

Figure A.14: Bayesian Classification Panel

A.6.1 Possibilistic Classification Panel

This dialog box allows experimenting Possibilistic Classifiers as well as the Nearest

Neighbor Heuristic. Before training and testing a classifier, the user is asked to

specify two principal classification parameters:

1. In the Hybridizing panel, one can choose to hybridize or not the current classi-

fier with the Nearest Neighbor Heuristic to improve its efficiency as introduced

in Section 5.4.3. Moreover this panel allows testing the NNH considered here as

an independent classifier by using the Nearest Neighbor Heuristic button.

2. In the Uncertainty panel the user is asked to choose the type of uncertainty

to deal with for the current classifier, especially uncertainty about classes or

attributes. When the user chooses the uncertain case (for classes or attributes),

he/she should generate the corresponding data using the Generate Uncer-

tain Data button before doing classification.

After fixing classification parameters, the user can test and use one of the six pro-

posed possibilistic classifiers, namely, the NPC, NPC-2, the FNPC, the FNPC-2,
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Figure A.15: Possibilistic Classification Panel

the FuHC or the NNPC. For the two proximity based possibilistic classifiers, two

supplementary parameters are asked to be fixed, alpha and beta which are necessary

to compute the proximity relation given in Equation 5.10.

The program will then start training and testing the selected classifier on the

current data set and then display results of the two evaluation criteria, MPcc and

AffC over the ten-cross validation as shown in Figure A.16.

Figure A.16: Results of the ten-cross validation for the FNPC applied to the iris
dataset

A.6.2 Uncertainty dialog box

When we choose to deal with uncertainty (using The Generate Uncertain Data But-

ton), the dialog box in Figure A.17 appears where the user is asked to choose the

uncertainty rate on attributes and/or classes before generating the uncertain data
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corresponding to that chosen in the Data Management dialog. Different uncer-

tainty rates are proposed (0, 0.25, 0.5, 0.75, 1) for each uncertainty type. In partic-

ular, the 0-rate corresponds the total certain version whereas 1-rate corresponds to

the case where all instances or attributes are assumed to be uncertain.

Figure A.17: Data management

As a result, an uncertain file version of the original data set is created. The

Figure A.18 and A.19 show respectively the content of uncertain iris training and

testing files. In the uncertain training file, uncertainty concerns the class where

each instance includes a possibility distribution on all possible class labels. In the

iris testing set, attributes are replaced by an interval to illustrate imprecision on

numerical values.

Figure A.18: The content of uncertain iris training file
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Figure A.19: The content of uncertain iris testing file

A.7 Conclusion

In this appendix we have presented our toolbox denoted PC/PRC Toolbox which

enables to train and test all possibilistic classification approaches proposed in this

thesis. We have illustrated some dialog boxes and menus in this user guide that

explain the principal roles of this toolbox. In particular, we have shown the format

of the input data as well as the format of the result displayed to the user for each

classifier.

The implemented toolbox, by its generic nature, can be tested on any other

numerical data set that conserves the ”ARFF” format and can be easily integrated

in any other application developed in this environment.

186



Bibliography

[1] D.W. Aha. Lazy Learning. Kluwer Academic Publishers, Dordrecht, 1997.

[2] A. Aijun and C. Nick. Rule quality measures improve the accuracy of rule

induction: An experimental approach. In Proceding of the International Sypo-

sium on Methodologies for Intelligent Systems, pages 119–129, 2000.

[3] N. Ben Amor, S. Benferhat, and Z. Elouedi. Qualitative classification and

evaluation in possibilistic decision trees. In Proceding of the IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE 2004), 1:653–657, 2004.

[4] N. Ben Amor, S. Benferhat, K. Mellouli, and S. Smaoui. Inférence dans les
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[141] A. Pérez, P. Larra naga, and I. Inza. Bayesian classifiers based on kernel

density estimation:flexible classifiers. International Journal of Approximate

Reasoning, 50:341–362, 2009.

[142] J. Prentzas and I. Hatzilygeroudis. Categorizing approaches combining rule-

based and case-based reasoning. Expert Systems, 24:97–122, 2007.

[143] B. Qin, Y. Xia, and F. Li. A bayesian classifier for uncertain data. In Proceding

of the 25th ACM Symposium on Applied Computing (SAC), pages 1010–1014,

2010.

[144] B. Qin, Y. Xia, S. Prabhakar, and Y. Tu. A rule-based classification algorithm

for uncertain data. In Proceding of the IEEE International Conference on Data

Engineering, 2009.

[145] J. R. Quinlan. C4.5: Programs for machine learning. Morgan Kaufmann, San

Fransisco USA, 1993.

[146] J.R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

[147] J.R. Quinlan. Learning logical definitions from relations. Machine Learning,

5(3):239–266, 1990.

197



BIBLIOGRAPHY

[148] J.R. Quinlan. Mdl and categorical theories. In Proceedings of International

Conference on Machine Learning, pages 464–470, 1995.

[149] J.R. Quinlan and R.M. Cameron-Jones. Foil : a midterm report. In Proceedings

of the European Conference on Machine Learning, pages 3–20, 1993.

[150] J.R. Quinlan and R.L. Rivest. Inferring decision trees using the minimum

description length principle. Information and Computation/information and

Control, 80:227–248, 1989.

[151] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal represen-

tations by error propagation. Parallel Distributed Processing: Explorations in

the Microstructure of Cognition, 1:318–362, 1986.

[152] M. Sahami. Learning limited dependence bayesian classifiers. In Proceding of

the 2nd International Conference on Knowledge Discovery and Data Mining,

pages 335–338, 1996.

[153] S. Sandri. La Combinaison de l’Information Incertaine et ses Aspects Algo-
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