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Abstract

We study automorphisms of irreducible holomorphic symplectic (IHS) mani-
folds of K3[n]-type, i.e. manifolds which are deformation equivalent to the Hilbert
scheme of n points on a K3 surface, for some n ≥ 2. In recent years many clas-
sical theorems, concerning the classification of non-symplectic automorphisms of
K3 surfaces, have been extended to IHS fourfolds of K3[2]-type. Our aim is to
investigate whether it is possible to further generalize these results to the case of
manifolds of K3[n]-type for any n ≥ 3.

In the first part of the thesis we describe the automorphism group of the Hilbert
scheme of n points on a generic projective K3 surface, i.e. a K3 surface whose
Picard lattice is generated by a single ample line bundle. We show that, if it is not
trivial, the automorphism group is generated by a non-symplectic involution, whose
existence depends on some arithmetic conditions involving the number of points
n and the polarization of the surface. Alongside this numerical characterization,
we also determine necessary and sufficient conditions on the Picard lattice of the
Hilbert scheme for the existence of the involution.

In the second part of the thesis we study non-symplectic automorphisms of
prime order on IHS manifolds of K3[n]-type. We investigate the properties of the
invariant lattice and its orthogonal complement inside the second cohomology lat-
tice of the manifold, providing a classification of their isometry classes. We then
approach the problem of constructing examples (or at least proving the existence)
of manifolds of K3[n]-type with a non-symplectic automorphism inducing on coho-
mology each specific action in our classification. In the case of involutions, and of
automorphisms of odd prime order for n = 3, 4, we are able to realize all possible
cases. In order to do so, we present a new non-symplectic automorphism of order
three on a ten-dimensional family of Lehn–Lehn–Sorger–van Straten eightfolds of
K3[4]-type. Finally, for 2 ≤ n ≤ 5 we describe deformation families of large dimen-
sions of manifolds of K3[n]-type equipped with a non-symplectic involution and the
moduli spaces which parametrize them.

i





Acknowledgements

I am deeply grateful to my two thesis advisors, Alessandra Sarti and Bert van
Geemen, for their constant support and guidance throughout my PhD years. I will
treasure their many mathematical, professional and personal teachings, as I take
my next steps in the academic world.

Heartfelt thanks go to Chiara Camere, Andrea Cattaneo and Robert Laterveer,
with whom I had (and still have) the pleasure of collaborating, for sharing their
knowledge with me during uncountable stimulating discussions. Alongside them, I
am also grateful to Samuel Boissière, Emanuele Macr̀ı and to all the people who
showed interest in my work, providing me with precious insights and ideas for new
possible lines of research.

I express my gratitude to the Dipartimento di Matematica “F. Enriques” of
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Introduction

The study of automorphisms of K3 surfaces has been a very active research
field for decades. By means of the global Torelli theorem proved by Pjateckĭı-Šapiro
and Šafarevič [89], it is possible to reconstruct automorphisms of a K3 surface Σ
from Hodge isometries of H2(Σ,Z) which preserve the Kähler cone. This link,
together with seminal works by Nikulin [81], [80] and Mukai [79], provided the
instruments to investigate finite groups of automorphisms on K3’s, by adopting
a lattice-theoretical approach. In recent years, the interest in automorphisms has
extended from K3 surfaces to manifolds which generalize them in higher dimen-
sion, namely irreducible holomorphic symplectic (IHS) varieties. These manifolds
still have a lattice strucutre on their second cohomology group with integer coeffi-
cients (provided by the Beauville–Bogomolov–Fujiki quadratic form); however, in
contrast with K3 surfaces, the isomorphism class of higher-dimensional IHS man-
ifolds cannot be recovered from the integral Hodge decomposition of this lattice
(the first counter-example was exhibited by Debarre [37]). Nevertheless, results
by Huybrechts, Markman and Verbitsky (see [52], [71], [100]) provide a (weaker)
analogous of the global Torelli theorem for irreducible holomorphic symplectic man-
ifolds: this allows us to investigate automorphisms of IHS manifolds with methods
similar to the ones which proved to be effective in the case of K3 surfaces, studying
their action on the second cohomology lattice.

A great number of results are now known for automorphisms of prime order
on IHS fourfolds which are deformations of Hilbert schemes of two points on a
K3 surface (so-called manifolds of K3[2]-type). The symplectic case (i.e. automor-
phisms which preserve the symplectic form of the manifold) is covered by Camere
[27] for involutions and by Mongardi [73] for automorphisms of odd prime orders;
moreover, a classification of finite groups of symplectic automorphisms on fourfolds
of K3[2]-type is provided by Höhn and Mason [48]. The fixed locus of these auto-
morphisms is also well-understood: it consists of isolated points, K3 surfaces and
abelian surfaces. In turn, a systematic study of non-symplectic automorphisms was
started by Beauville [12], with the case of involutions, and has later seen many
relevant contributions, such as the work of Boissière, Nieper-Wisskirchen and Sarti
[21], which was instrumental to obtain a complete classification of the action of
these automorphisms on cohomology (see [17], [16], [96]). Explicit constructions
of automorphisms of prime order realizing all possible actions in this classification
have been exhibited throughout the years, with the exception of the (unique) au-
tomorphism of order 23 whose existence is proved in [16]. In particular, it is worth
mentioning the work by Boissière [15] on natural automorphisms, the geometric
constructions on Fano varieties of lines on cubic fourfolds by Boissière, Camere and
Sarti [17] and the study of induced automorphisms on moduli spaces of stable ob-
jects on K3 surfaces by Mongardi and Wandel [78], and by Camere, G. Kapustka,
M. Kapustka and Mongardi [31] in the twisted case, as well as the involution of
double EPW sextics constructed by O’Grady [87], [86].

Far less is known about automorphisms of manifolds of K3[n]-type when n ≥ 3.
Several classification results on symplectic automorphisms are contained in [73],

vii



viii INTRODUCTION

[76] and, in a recent paper, Kamenova, Mongardi and Oblomkov [61] studied the
fixed locus of symplectic involutions. Moreover, in his PhD thesis Rapagnetta [90]
exhibited an interesting (birational) symplectic automorphism of order two of a
manifold of K3[3]-type, which plays a role in describing O’Grady’s 6-dimensional
IHS example (see [77]).

In the thesis we focus on non-symplectic automorphisms of manifolds of K3[n]-
type. The core of the manuscript can be divided into three parts (corresponding to
Chapters 3, 4 and 5), dealing with distinct – yet closely related – problems.

In Chapter 1 and Chapter 2 we provide the reader with an overview of the
fundamental results in the theory of lattices and of IHS manifolds respectively,
which are instrumental for the study of automorphisms.

The aim of Chapter 3 is to describe the group Aut(Σ[n]) of biholomorphic
automorphisms of the Hilbert scheme of n points on a generic projective K3 surface
Σ, i.e. a K3 surface such that Pic(Σ) = ZH, for an ample line bundle H. It is
known that, if H2 = 2t for an integer t ≥ 1, then the K3 surface Σ has no non-
trivial automorphisms if t ≥ 2; instead, if t = 1, Σ is isomorphic to a double cover
of P2 ramified along a smooth sextic curve, therefore it is endowed with a covering
involution (which is the only automorphism of Σ, besides the identity). In the case
n = 2, the group Aut(Σ[2]) has been computed in [20] by Boissière, An. Cattaneo,
Nieper-Wisskirchen and Sarti, who show that it is either trivial or generated by a
non-symplectic involution. We prove that these are still the only two possibilities
when n ≥ 3. In particular, if t = 1 the group Aut(Σ[n]) is generated by the natural
involution induced by the covering automorphism of Σ. For t ≥ 2, there are no
natural involutions on Σ[n] and we provide necessary and sufficient conditions to
distinguish between the two possible cases Aut(Σ[n]) = {id} and Aut(Σ[n]) ∼= Z/2Z.
We first give a divisorial characterization, in Proposition 3.4.1 and Proposition
3.4.3, obtained by using the global Torelli theorem for IHS manifolds of K3[n]-type:
there is a (non-natural, non-symplectic) involution on Σ[n] if and only if there
exists a primitive ample class ν ∈ NS(Σ[n]) with ν2 = 2, or with ν2 = 2(n − 1)
and divisibility n − 1 in H2(Σ[n],Z) (i.e. the ideal

{
(ν, l) | l ∈ H2(Σ[n],Z)

}
⊂ Z is

generated by n−1). In addition to this, in Theorem 3.5.4 we also determine purely
numerical necessary and sufficient conditions for the existence of an involution on
Σ[n]. This can be achieved by using the descriptions of Bayer and Macr̀ı [7] for the
movable and nef cones of Σ[n], and by studying how an automorphism of the Hilbert
scheme acts on these cones. As an application of the numerical characterization,
for any n ≥ 2 we show how to construct an infinite sequence of values tn,k ≥ 2n−2

such that, if Σ is a K3 surface with Pic(Σ) = ZH, H2 = 2tn,k, then Σ[n] admits

an involution, whose action on H2(Σ[n],Z) is the opposite of the reflection with
respect to a class ν ∈ NS(Σ[n]) of square two (see Proposition 3.5.7). The results
of this chapter have been the object of the paper [33].

In the last two chapters of the thesis we shift from Hilbert schemes of K3
surfaces to the more general setting of manifolds of K3[n]-type, with the aim of
classifying non-symplectic automorphisms of prime order. If X is deformation
equivalent to the Hilbert scheme of n points on a K3 surface, an automorphism
σ ∈ Aut(X) is uniquely determined by its pull-back σ∗ ∈ O(H2(X,Z)). In turn,
it is possible to describe σ∗ by means of the invariant lattice T = H2(X,Z)σ∗

={
v ∈ H2(X,Z) : σ∗(v) = v

}
and its orthogonal complement S = T⊥ ⊂ H2(X,Z).

In the case of non-symplectic automorphisms of prime order on fourfolds of K3[2]-
type, Boissière, Camere and Sarti determine in [17] all possible isometry classes
for the lattices T and S. In particular, they notice that the classification is funda-
mentally richer for p = 2, rather than for p odd. For n ≥ 3, many additional cases
appear whenever p divides 2(n − 1): this suggests that involutions deserve to be
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discussed separately, since 2 divides 2(n−1) for all n ≥ 2. Thus, in the second part
of the thesis we focus on non-symplectic automorphisms of manifolds of K3[n]-type,
distinguishing between involutions and automorphisms of prime order p ≥ 3.

InChapter 4 we study non-symplectic automorphisms of odd prime order. We
first investigate the properties of the pairs of lattices (T, S). The isometry classes
of the two lattices depend on three numerical invariants of the automorphism: its

order p and two integers m, a such that rk(S) = (p− 1)m and H2(X,Z)
T⊕S

∼=
(

Z
pZ

)⊕a
.

We say that a triple (p,m, a), with p prime, is admissible for a certain n ≥ 2 if there
exists two primitive orthogonal sublattices T, S of the abstract lattice H2(X,Z), for
any manifold X of K3[n]-type, with the above properties and satisfying some ad-
ditional necessary conditions to be the invariant and the co-invariant lattices of an
automorphism of order p on a manifold of K3[n]-type. Using classical results in lat-
tice theory, mainly by Nikulin [81], we can determine a list of all admissible triples
(p,m, a) for each value of n. Our first main result, which is purely lattice-theoretic,
concerns the classification of pairs (T, S) corresponding to a given admissible triple
(Theorem 4.1.12). Moreover, for n = 3 and n = 4 (which are the cases of most
immediate interest) we provide in Section 4.1.4 and Appendix A the complete list
of admissible triples (p,m, a) and of the corresponding (unique) pairs of lattices
(T, S).

We then construct examples of non-symplectic automorphisms of odd prime
order. For manifolds of K3[2]-type, in [17] the authors prove that natural automor-
phisms of Hilbert schemes of points realize all but a few admissible pairs (T, S);
the residual cases (except for the aforementioned automorphism of order 23) are
constructed as automorphisms of Fano varieties of lines on cubic fourfolds. For
n ≥ 3, it is necessary to expand our pool of tools. Induced automorphisms on mod-
uli spaces of (possibly twisted) sheaves on K3 surfaces, studied in [78] and [31],
directly generalize natural automorphisms and allow us to realize many new pairs
(T, S). In Section 4.3 we show, specifically, how to apply these constructions when
n = 3, 4: we find that all admissible pairs of lattices (T, S) with rk(T ) ≥ 2 can be
realized by natural or (possibly twisted) induced automorphisms. Admissible pairs
(T, S) where T has rank one require special attention. There are only four distinct
triples (p,m, a) which determine pairs of lattices (T, S) with rk(T ) = 1: two for
p = 3 and two for p = 23. However, for a fixed n at most two of them are admissible
(no more than one for each value of p ∈ {3, 23}). We study these four cases in detail
in Proposition 4.1.15, providing the corresponding isometry classes of the lattices
T, S: even though they never correspond to natural or induced non-symplectic au-
tomorphisms, the global Torelli theorem for IHS manifolds guarantees that there
exist automorphisms which realize each of them (see Proposition 4.2.4). In specific
cases, it is possible to provide a geometric construction of the automorphism. In
Section 4.4 we focus on one of these pairs of lattices (T, S) with T ∼= ⟨2⟩, for n = 4,
and we show that it is realized by a non-symplectic automorphism of order three
on a ten-dimensional family of Lehn–Lehn–Sorger–van Straten eightfolds, obtained
from an automorphism of the underlying family of cyclic cubic fourfolds. This is
the first known geometric construction of a non-induced, non-symplectic automor-
phism of odd order on a manifold of K3[4]-type. Moreover, thanks to it we are able
to complete the list of examples of automorphisms of odd prime order p ̸= 23 which
realize all admissible pairs (T, S) for n = 3, 4. This part of the thesis has been the
product of a collaboration with Chiara Camere ([29]).

Finally, Chapter 5 is devoted to non-symplectic involutions. In [60], Joumaah
studied moduli spaces of manifoldsX ofK3[n]-type with non-symplectic involutions
i : X → X, providing also a classification for the invariant lattice T = H2(X,Z)i∗ .
This classification, however, is not entirely correct: we begin by rectifying the
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mistakes, providing a description of the possible signatures and discriminant forms
for T and S in Section 5.1. As a lattice, H2(X,Z) is isometric to Ln := U⊕3 ⊕
E⊕2

8 ⊕⟨−2(n−1)⟩, therefore we can fix an isometry η : H2(X,Z) → L and consider
T and S as sublattices of Ln. In Proposition 5.2.1 we show that, for any choice of
a pair of primitive orthogonal sublattices T, S ⊂ Ln satisfying our classification, it
is possible to extend idT ⊕(− idS) to a well-defined isometry of Ln, which in turn
can be lifted, by the global Torelli theorem, to a non-symplectic involution i of a

suitable manifold X of K3[n]-type, such that H2(X,Z)i∗ ∼= T ,
(
H2(X,Z)i∗

)⊥ ∼= S
(Proposition 5.2.3). We then use Joumaah’s results on moduli spaces to study
deformation families of large dimensions of manifolds of K3[n]-type equipped with
a non-symplectic involution. The period domain, for manifolds X of this type, is
contained in P(S ⊗C) ⊂ P(Ln ⊗C), where S is the co-invariant lattice of i (whose
isometry class, as for T , is a deformation invariant). Therefore, the moduli spaces
of maximal dimension correspond to minimal invariant lattices (i.e. lattices which
do not primitively contain any other lattice T in our classification). For this reason,
in Section 5.3.1 we determine explicitly all possible isometry classes of pairs (T, S)
with rk(T ) = 1, 2, in order to identify, at least for n ≤ 5, the maximal deformation
families of dimension d ≥ 19 (Theorem 5.3.10). The results contained in this last
chapter are part of a joint work with Chiara Camere and Andrea Cattaneo ([30]).



CHAPTER 1

Lattice theory

In this chapter we present a (selective) overview of the theory of lattices and
of finite quadratic forms, recalling the fundamental definitions and results which
we will use throughout the thesis. Our main reference for these topics will be the
seminal paper [81] by Nikulin, but we will also draw from several other classical
sources, such as [36], [102], [62] and [26].

1.1. Definitions and examples

Definition 1.1.1. A lattice L is a free abelian group endowed with a symmet-
ric, non-degenerate bilinear form (·, ·) : L× L→ Z.

The rank of the lattice L is rk(L) = r ∈ N if L ∼= Z⊕r as groups. The
bilinear form (·, ·) on L can be represented, after choosing a Z-basis {e1, . . . , er} for
the lattice, by its Gram matrix GL = (gi,j) ∈ Matr(Z), where gi,j := (ei, ej); in
particular, GL is symmetric.

The signature of the lattice L is the signature of the bilinear form on Rr rep-
resented by the matrix GL, i.e. the signature of the R-linear extension of (·, ·) to
L ⊗Z R. Assuming sign(L) = (l(+), l(−)), we have l(+) + l(−) = rk(L), since the
bilinear form is non-degenerate. The lattice L is said to be positive definite (re-
spectively, negative definite) if l(−) = 0 (respectively, l(+) = 0); it is said to be
indefinite if l(+), l(−) ̸= 0. Finally, L is hyperbolic if l(+) = 1.

The divisibility div(l) of an element l ∈ L is the positive generator of the ideal

{(l,m) | m ∈ L} ⊂ Z.
The lattice L is even if the associated quadratic form is even on all elements of L,
i.e. (l, l) ∈ 2Z for all l ∈ L. If t is a non-zero integer, L(t) denotes the lattice of
rank r = rk(L) and whose bilinear form is the one of L multiplied by t. If L,L′

are two lattices, their orthogonal direct sum is denoted by L⊕ L′: it is the lattice
of rank rk(L) + rk(L′) on the free abelian group L⊕ L′ such that, if l1, l2 ∈ L and
l′1, l

′
2 ∈ L′, then (l1 + l′1, l2 + l′2) := (l1, l2) + (l′1, l

′
2).

If L is a lattice, a sublattice T of L is a subgroup T ⊂ L with the property that
the restriction of the bilinear form of L to T is still non-degenerate. For T ⊂ L a
sublattice, we define

T⊥ := {l ∈ L | (l, t) = 0 ∀t ∈ T} .
It is easy to check that T⊥ is a sublattice of L, called the orthogonal sublattice of T .
In particular, the sublattice T ⊕ T⊥ ⊂ L has maximal rank, i.e. rk(T ) + rk(T⊥) =
rk(L).

A sublattice T ⊂ L is called primitive if the quotient L/T is a free abelian
group. The orthogonal complement T⊥ of any sublattice T ⊂ L is primitive;

moreover,
(
T⊥)⊥ ⊃ T is the primitive sublattice of L generated by T (also called

the saturation of T in L).
If L,L′ are two lattices, a morphism of lattices ϕ : L → L′ is a morphism of

abelian groups such that (l1, l2) = (ϕ(l1), ϕ(l2)) for all l1, l2 ∈ L. Since the bilinear
form of any lattice is assumed to be non-degenerate, all morphisms of lattices are

1



2 1. LATTICE THEORY

injective. An isometry is a bijective morphism of lattices; we denote by O(L) the
group of isometries of a lattice L to itself. If two lattices L,L′ are isometric, we
write L ∼= L′. We will often use the term embedding to refer to a morphism of
lattices which is not necessarily surjective. An embedding i : L ↪→ L′ is primitive
if the image i(L) ⊂ L′ is a primitive sublattice.

The dual lattice of L is L∨ := HomZ(L,Z), which admits the following equiva-
lent description:

(1) L∨ = {u ∈ L⊗Q : (u, v) ∈ Z ∀v ∈ L} .
Clearly, L is a subgroup of L∨. Notice that, with respect to a basis {ei}i of L

and the dual basis {e∗i := (ei, ·)}i of L∨, the matrix which represents the inclusion
L ↪→ L∨ is simply the Gram matrix of L with respect to {ei}i. Since L ⊂ L∨

is a subgroup of maximal rank, the quotient AL := L∨/L is a finite group, called
the discriminant group of L. We denote by discr(L) the order of the discriminant
group AL, i.e. the index of L ⊂ L∨, which coincides with |det(GL)| for any Gram
matrix GL representing the bilinear form of L with respect to a basis of the lattice.
Moreover, the length l(AL) is defined as the minimal number of generators of AL.

If AL = {0}, the lattice L is said to be unimodular. If instead AL ∼=
(

Z
pZ

)⊕k
for

a prime number p and a non-negative integer k, then the lattice L is said to be
p-elementary ; in this case, l(AL) = k.

Notice that the dual lattice L∨ is not actually a lattice (it is not endowed with
an integer-valued bilinear form), however – using the representation (1) – we can
extend the bilinear form of L by Q-linearity to (·, ·) : L∨ × L∨ → Q. In particular,
if we consider elements x1, x2 ∈ L∨ and l1, l2 ∈ L, we have:

(2) (x1 + l1, x2 + l2) = (x1, x2) + (x1, l2) + (l1, x2) + (l1, l2) ≡ (x1, x2) (mod Z).
We recall the following definition.

Definition 1.1.2. A finite bilinear form is a symmetric bilinear form b : A ×
A → Q/Z, where A is a finite abelian group. A finite quadratic form is a map
q : A→ Q/2Z such that:

(i) q(ka) = k2q(a) for all k ∈ Z and a ∈ A;
(ii) q(a+ a′)− q(a)− q(a′) = 2b(a, a′) in Q/2Z, where b : A× A → Q/Z is a

finite bilinear form (called the bilinear form associated to q).

A finite quadratic form q : A→ Q/2Z is said to be non-degenerate if the associated
finite bilinear form b is non-degenerate, and by using b we define the orthogonal
complement H⊥ ⊂ A for any subgroup H ⊂ A. The isometry group O(A) is the
group of isomorphisms of A which preserve the finite quadratic form q.

Looking at the expression (2), if L is a lattice the bilinear form (with rational
values) on L∨ descends to a well-defined finite bilinear form (·, ·) : AL×AL → Q/Z.
In the case where the lattice L is even, we can associate to this bilinear form on
AL a finite quadratic form qL, defined as

qL : AL → Q/2Z, qL(x+ L) := (x, x) (mod 2Z).
If AL is a finite direct sum of cyclic subgroups Ai, we write qL =

⨁
iAi(αi) if

the discriminant form qL takes value αi ∈ Q/2Z on a generator of the summand
Ai. Notice that, for any two lattices L,L′, there exists a canonical isomorphism
AL⊕L′ ∼= AL⊕AL′ , which is an isometry with respect to the finite quadratic forms
qL⊕L′ and qL ⊕ qL′ .

We recall the following result concerning finite quadratic forms.

Proposition 1.1.3. Let q be a finite quadratic form on an abelian group A and
H ⊂ A a subgroup.
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(i) q = ⊕pqp, where, for a prime integer p, qp is the restriction of q to the
Sylow p-subgroup Ap ⊂ A.

(ii) If q is non-degenerate, then |A| = |H||H⊥|. Moreover, if the restriction
q|H is non-degenerate, then A = H ⊕H⊥ and q = q|H ⊕ q|H⊥ .

Proof. See [81, Proposition 1.2.1] and [81, Proposition 1.2.2]. �

We now provide a list of examples of lattices which we will use throughout the
thesis, with the associated discriminant groups.

Example 1.1.4.

• If k is a non-zero integer, we denote by ⟨k⟩ the rank one lattice L = Ze,
with quadratic form (e, e) = k. It is positive definite if k > 0, negative
definite if k < 0. The equivalence class of e

k ∈ L ⊗ Q modulo L is a

generator of AL ∼= Z
|k|Z , with qL

(
e
k + L

)
= 1

k .

• The lattice U is the unimodular, hyperbolic lattice of rank two defined by

the matrix

(
0 1
1 0

)
.

• To each of the simply laced Dynkin diagrams Ah, Di, Ek, with h ≥ 1, i ≥ 4
and k ∈ {6, 7, 8}, we can associate a negative definite lattice of the same
name. The generators of the lattice correspond bijectively to the vertices
in the diagram: they are all set to have square −2. The product of two
generators is 1 if the corresponding vertices in the diagram are connected
by an edge, 0 otherwise. For example, we have:

A2 =

(
−2 1
1 −2

)
; E8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

1 −2 1 1
1 −2 0
1 0 −2 1

1 −2 1
1 −2 1

1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

• For p prime, p ≡ 1 (mod 4), let

Hp :=

(
(p− 1)/2 1

1 −2

)
.

It is a hyperbolic p-elementary lattice with AHp
∼= Z

pZ .

• For p prime, p ≡ 3 (mod 4), let

Kp :=

(
−(p+ 1)/2 1

1 −2

)
.

It is a negative definite p-elementary lattice with AKp
∼= Z

pZ . In particular,

K3 = A2.

Remark 1.1.5. For any prime number p, we can define p-adic lattices and finite
quadratic forms by replacing Z with the ring of p-adic integers Zp (and Q with the
field of p-adic numbers Qp) in the definitions that we have already given. Notice, in
particular, that finite p-adic quadratic forms can be identified with finite quadratic
forms A → Q/2Z, where the group A is a finite abelian p-group (see [81, Section
1.7]).

1.2. Classification of discriminant forms

Let L,L′ be two even lattices. We say that they have isomorphic discriminant
forms (and we write qL ∼= qL′) if there exists a group isomorphism ρ : AL → AL′
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such that qL(x) = qL′(ρ(x)) ∈ Q/2Z for all x ∈ AL. By [81, Theorem 1.3.1], L, L′

have isomorphic discriminant forms if and only if there exist unimodular lattices V ,
V ′ such that L⊕ V ∼= L′ ⊕ V ′. Moreover, by [81, Theorem 1.1.1(a)] the signature
(v(+), v(−)) of an unimodular lattice V satisfies v(+) − v(−) ≡ 0 (mod 8). Hence,
the following definition is well-posed.

Definition 1.2.1. The signature modulo 8 of a finite quadratic form q is

sign(q) := l(+) − l(−) (mod 8)

where (l(+), l(−)) is the signature of an even lattice L such that qL = q.

We adopt the notation of [26]. Let p be an odd prime; we define two finite
quadratic forms on Z

pαZ (α ≥ 1): they are denoted by wϵp,α, with ϵ ∈ {−1,+1}.
The quadratic form w+1

p,α has generator value q(1) = a
pα (mod 2Z), where a is the

smallest positive even number which is a quadratic residue modulo p. Instead, for
w−1
p,α we have q(1) = a

pα , with a the smallest positive even number that is not a

quadratic residue modulo p.
For p = 2, we also define finite quadratic forms wϵ2,α on Z

2αZ (α ≥ 1), where now
we consider ϵ ∈ {±1,±5}. In particular, the quadratic form wϵ2,α has q(1) = ϵ

2α .
We introduce two additional finite quadratic forms uα, vα, which are both defined
on the group Z

2αZ ⊕ Z
2αZ (α ≥ 1). Their associated finite bilinear forms are given by

the matrices

uα =

⎛⎝ 0 1
2α

1
2α 0

⎞⎠ , vα =

⎛⎝ 1
2α−1

1
2α

1
2α

1
2α−1

⎞⎠ .

The collection of finite quadratic forms
{
wϵp,α, uα, vα

}
, for p prime and α ≥ 1,

is fundamental in the following sense.

Theorem 1.2.2.

(i) The semigroup of non-degenerate, p-adic finite quadratic forms is gener-
ated by

{
w±1
p,α

}
α≥1

if p is odd, and by
{
w±1

2,α, w
±5
2,α, uα, vα

}
α≥1

if p = 2.

(ii) Any non-degenerate finite quadratic form q is isomorphic to an orthogonal
direct sum of the forms wϵp,α, uα, vα.

Proof. See [81, Theorem 1.8.1]. �

We point out that the representation of a finite quadratic form q as direct sum
of the forms wϵp,α, uα, vα may not be unique: there are several isomorphism relations
between these forms (see [81, Proposition 1.8.2]). For instance, if p is odd we have

w+1
p,α ⊕ w+1

p,α
∼= w−1

p,α ⊕ w−1
p,α, while w

ϵ
2,α ⊕ wϵ

′

2,α
∼= w5ϵ

2,α ⊕ w5ϵ′

2,α for all ϵ, ϵ′ ∈ {±1}.
As a consequence of Theorem 1.2.2, if p is an odd prime any non-degenerate

quadratic form on
(

Z
pZ

)⊕k
, k ≥ 1, is isomorphic to a direct sum of forms of type

w+1
p,1 and w

−1
p,1, with w

+1
p,1⊕w

+1
p,1

∼= w−1
p,1⊕w

−1
p,1. This means that, if S is a p-elementary

lattice with discriminant group of length k, the form qS on AS can only be of two
types, up to isometries:

qS =

{(
w+1
p,1

)⊕k(
w+1
p,1

)⊕k−1 ⊕ w−1
p,1.

Remark 1.2.3. The signatures (mod 8) of the discriminant forms wϵp,α are

listed in [81, Proposition 1.11.2]. For p odd we have sign(w+1
p,1) ≡ 1 − p (mod 8)

and sign(w−1
p,1) ≡ 5 − p (mod 8). Therefore, if S is p-elementary and sign(S) =
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(s(+), s(−)), the quadratic form on the discriminant group AS =
(

Z
pZ

)⊕k
is

(3) qS =

{(
w+1
p,1

)⊕k
if s(+) − s(−) ≡ k(1− p) (mod 8);(

w+1
p,1

)⊕k−1 ⊕ w−1
p,1 if s(+) − s(−) ≡ k(1− p) + 4 (mod 8).

This means that the quadratic form of a p-elementary lattice (p ̸= 2) is uniquely
determined by its signature and its length (see [92, §1] for additional details).

Example 1.2.4. The discriminant group of the lattice A2 is Z/3Z and its
signature is (0, 2), therefore its discriminant form is w+1

3,1. The lattice E6 is also

negative definite and 3-elementary, with l(E6) = 1, but its signature modulo 8 is
now +2, therefore its discriminant form is w−1

3,1. The lattice U(3) realizes instead

the form w+1
3,1 ⊕ w−1

3,1, being 3-elementary of length 2 and signature (1, 1).

If S is a 2-elementary lattice, with AS ∼=
( Z
2Z
)⊕k

, then qS can be represented as

a direct sum of quadratic forms w±1
2,1, u1, v1. The fundamental isomorphism relations

between these four finite quadratic forms are the following:

u1 ⊕ u1 ∼= v1 ⊕ v1;

u1 ⊕ wϵ2,1
∼= wϵ2,1 ⊕ wϵ2,1 ⊕ w−ϵ

2,1;

v1 ⊕ wϵ2,1
∼= w−ϵ

2,1 ⊕ w−ϵ
2,1 ⊕ w−ϵ

2,1.

Notice that w1
2,1 (respectively, w−1

2,1) is the discriminant form of the even lattice

⟨2⟩ (respectively, ⟨−2⟩); u1 is the discriminant form of U(2), while v1 is realized
by the lattice D4. This allows us to easily compute the signatures modulo 8 of the
four quadratic forms, which are:

q sign(q) (mod 8)
w1

2,1 1

w−1
2,1 −1
u1 0
v1 4

We see that, in contrast to the case p odd, the quadratic form of a 2-elementary
lattice is not determined by its signature and length: for instance, the quadratic
forms u1 and w+1

2,1⊕w
−1
2,1 both have signature zero and length two, but they are not

isomorphic.

1.3. Existence and uniqueness

A fundamental invariant, in the theory of lattices, is given by the genus.

Definition 1.3.1. Two lattices L,L′ belong to the same genus if sign(L) =
sign(L′) and their p-adic completions L⊗Zp, L′⊗Zp are isomorphic (as Zp-lattices)
for all prime integers p.

Two lattices L,L′ belong to the same genus if and only if L⊕ U ∼= L′ ⊕ U , or
equivalently if and only if they have the same signature and discriminant quadratic
form:

Theorem 1.3.2. The genus of an even lattice L is determined by the triple
(l(+), l(−), qL), where (l(+), l(−)) is the signature of the lattice and qL is its discrim-
inant quadratic form.

Proof. See [81, Corollary 1.9.4]. �
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Each genus contains only finitely-many isomorphism classes of lattices. It is an
interesting problem to determine whether there exists an even lattice with given
signature and quadratic form, and, if so, whether it is unique, up to isometries.
The main results which we will need, regarding uniqueness of an indefinite lattice
in its genus, are the following.

Theorem 1.3.3. Let L be an even lattice with discriminant quadratic form qL
and signature (l(+), l(−)), with l(+) ≥ 1 and l(−) ≥ 1. Up to isometries, L is the
unique lattice with invariants (l(+), l(−), qL) in all of the following cases:

(i) l(+) + l(−) ≥ l(AL) + 2;
(ii) l(+) + l(−) ≥ 3 and discr(L) ≤ 127;
(iii) l(+) + l(−) ≥ 3 and L is p-elementary, with p odd;
(iv) L is 2-elementary.

Proof. The statement combines [81, Corollary 1.13.3], [36, Chapter 15, Corol-
lary 22], [17, Theorem 2.2] and [39, Theorem 1.5.2]. �

Theorem 1.3.4. If the genus of an indefinite lattice L, with rk(L) = n and

discr(L) = d, contains more than one isometry class, then 4[
n
2 ]d is divisible by k(

n
2)

for a non-square natural number k ≡ 0, 1 (mod 4).

Proof. See [36, Chapter 15, Theorem 21]. �

In [81, Corollary 1.13.4]) it is shown that, if L is an even lattice of invariants
(l(+), l(−), qL), then the genus defined by the triple (l(+)+1, l(−)+1, qL) only contains
(up to isometries) the lattice L⊕U , while instead L⊕E8 is the unique lattice with
invariants (l(+), l(−)+8, qL). These properties are used in the proof of the following
splitting theorem, which we will frequently apply.

Theorem 1.3.5. Let L be an even lattice with sign(L) = (l(+), l(−)).

(i) If l(+) ≥ 1, l(−) ≥ 1 and l(+)+ l(−) ≥ 3+ l(AL), then L = L′⊕U for some
even lattice L′ such that sign(L′) = (l(+) − 1, l(−) − 1) and qL′ = qL.

(ii) If l(+) ≥ 1, l(−) ≥ 8 and l(+) + l(−) ≥ 9 + l(AL), then L = L′ ⊕ E8 for
some even lattice L′ such that sign(L′) = (l(+), l(−) − 8) and qL′ = qL.

Proof. See [81, Corollary 1.13.5]. �

We now turn our attention to criteria for the existence of a lattice in a genus.
We first need to recall the following result on the existence (and uniqueness) of
p-adic lattices of maximal length.

Theorem 1.3.6. Let p be a prime and qp a quadratic form on a finite, abelian
p-group Ap. Then there exists a p-adic lattice K(qp) of rank l(Ap) and discriminant
form isomorphic to qp. The p-adic lattice K(qp) is unique (up to isometries) unless

p = 2 and there exists a finite quadratic form q′2 such that q2 ∼= w±1
2,1 ⊕ q′2.

Proof. See [81, Theorem 1.9.1]. �

The following theorem, due to Nikulin, provides necessary and sufficient con-
ditions for the existence of an even lattice with given signature and discriminant
form.

Theorem 1.3.7. Let q be a quadratic form on a finite abelian group A. There
exists an even lattice with invariants (l(+), l(−), q) if and only if the following con-
ditions are satisfied:

(i) l(+) ≥ 0, l(−) ≥ 0 and l(+) + l(−) ≥ l(A);
(ii) l(+) − l(−) ≡ sign(q) (mod 8);
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(iii) (−1)l(−) |A| ≡ discr(K(qp)) (mod
(
Z∗
p

)2
) for all odd prime integers p such

that l(+) + l(−) = l(Ap);

(iv) |A| ≡ ±discr(K(q2)) (mod (Z∗
2)

2
) if l(+) + l(−) = l(A2) and q2 is not of

the form w±1
2,1 ⊕ q′2 for any finite quadratic form q′2.

Proof. See [81, Theorem 1.10.1]. �

We point out that it is not necessary to check the two local conditions (iii) and
(iv) if we are interested in proving the existence of a lattice L with rk(L) > l(AL):
in this case, Theorem 1.3.7 can be formulated as follows.

Theorem 1.3.8. Let q be a quadratic form on a finite abelian group A. There
exists an even lattice with invariants (l(+), l(−), q) assuming that the following con-
ditions are satisfied:

(i) l(+) ≥ 0, l(−) ≥ 0 and l(+) + l(−) > l(A);
(ii) l(+) − l(−) ≡ sign(q) (mod 8).

Proof. See [81, Corollary 1.10.2]. �

In the case of p-elementary lattices, with p odd, we already saw in Section 1.2
that the discriminant form of the lattice is uniquely determined (up to isometries)
by its signature and length. This means that the genus of a p-elementary lattice L,
with p ̸= 2, depends only on the invariants (l(+), l(−), l(AL)).

Theorem 1.3.9. Let p be an odd prime. There exists an even hyperbolic lattice
L with rk(L) = r ≥ 1 and l(AL) = a ≥ 0 if and only if the following conditions are
satisfied: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a ≤ r;
r ≡ 0 (mod 2);
if a ≡ 0 (mod 2), then r ≡ 2 (mod 4);
if a ≡ 1 (mod 2), then p ≡ (−1)

r
2−1 (mod 4);

if r ̸≡ 2 (mod 8), then r > a > 0.

Proof. See [92, §1]. �

For 2-elementary lattices, as we remarked in Section 1.2, signature and length
are not enough to determine the discriminant form. We need to introduce an
additional invariant.

Definition 1.3.10. Let q be a quadratic form on a finite abelian group A. We
define:

δ(q) =

{
0 if q(x) ∈ Z/2Z for all x ∈ A;

1 otherwise.

If L is an even lattice, we set δ(L) := δ(qL).

With respect to the four fundamental finite quadratic forms w±1
2,1, u1, v1 defined

in Section 1.2, which constitute the building blocks for any 2-elementary discrimi-
nant form, we have:

q δ(q)
w1

2,1 1

w−1
2,1 1
u1 0
v1 0

Theorem 1.3.11. An even indefinite 2-elementary lattice L with signature
(l(+), l(−)) is uniquely determined by the invariants (l(+), l(−), l(AL), δ(L)), up to
isometries. There exists an even 2-elementary lattice L with sign(L) = (l(+), l(−)),
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l(AL) = a ≥ 0 and δ(L) = δ ∈ {0, 1} if and only if l(+) ≥ 0, l(−) ≥ 0 and the
following conditions are satisfied:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a ≤ l(+) + l(−);
l(+) + l(−) ≡ a (mod 2);
if δ = 0, then l(+) − l(−) ≡ 0 (mod 4);
if a = 0, then δ = 0 and l(+) − l(−) ≡ 0 (mod 8);
if a = 1, then l(+) − l(−) ≡ 1 (mod 8);
if a = 2 and l(+) − l(−) ≡ 4 (mod 8), then δ = 0;
if δ = 0 and l(+) + l(−) = a, then l(+) − l(−) ≡ 0 (mod 8).

Proof. See [39, Theorem 1.5.2]. �

1.4. Orthogonal sublattices and primitive embeddings

If T ⊂ L is a sublattice of maximal rank, we have the following sequence of
inclusions:

T ↪→ L ↪→ L∨ ↪→ T∨

such that the composition is just the canonical inclusion of T in its dual T∨. Fix
a basis {ti}i of T and a basis {ei}i of L, and denote by GT (respectively, GL) the
Gram matrix of the lattice T (respectively, L) with respect to the chosen basis. If
W is the matrix which represents the inclusion T ↪→ L, then the transposed matrix
W t represents L∨ ↪→ T∨, therefore we conclude GT = W tGLW . The determinant
of W coincides with the index [L : T ], while the determinants of GT and GL are
the discriminants of T and L respectively, therefore

[L : T ]2 =
discr(T )

discr(L)
=

|AT |
|AL|

.

In a more general setting, if T ⊂ L is a primitive sublattice of any rank, then
T ⊕ T⊥ ⊂ L has maximal rank, which implies

(4) [L : (T ⊕ T⊥)]2 =
discr(T ⊕ T⊥)

discr(L)
=

|AT | |AT⊥ |
|AL|

.

Notice that, by the sequence of inclusions

T ⊕ T∨ ↪→ L ↪→ L∨ ↪→
(
T ⊕ T⊥)∨ ∼= T∨ ⊕

(
T⊥)∨

the quotient L/(T ⊕ T⊥) is isomorphic to a subgroup M ⊂ AT ⊕ AT⊥ which is
isotropic (i.e. (qT ⊕ qT⊥)|M = 0), thus M ⊂M⊥ and M⊥/M ∼= AL. In particular,

the equality (4) implies that |AT | |AT⊥ | = |AL| |M |2. The projections

pT : AT ⊕AT⊥ → AT , pT⊥ : AT ⊕AT⊥ → AT⊥

are such that M ∼=MT := pT (M) and M ∼=MT⊥ := pT⊥(M) as groups. Moreover,
the composition

(5) γ := pT⊥ ◦ (pT )−1|MT
:MT →MT⊥

is an anti-isometry, i.e. an isomorphism of groups such that qT (x) = −qT⊥(γ(x))
for all x ∈MT .

Lemma 1.4.1. Let L be an unimodular lattice and T ⊂ L a primitive sublattice.
Then, as groups:

AT ∼= AT⊥ ∼=
L

T ⊕ T⊥ .

Proof. Since |AL| = 1, we have |M |2 = |AT | |AT⊥ | by (4), hence MT = AT
and MT⊥ = AT⊥ . The projections pT |M : M → AT and pT⊥ |M : M → AT⊥ are
therefore isomorphisms of groups. �
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A lattice isometry ϕ : L → L′ induces in a natural way a group isomorphism
ϕ : AL → AL′ such that qL(x + L) = qL′(ϕ(x + L)) for all x ∈ L∨. This isom-

etry of finite quadratic forms is defined as ϕ(x + L) :=
(
ϕ−1

)∨
(x) + L′, where(

ϕ−1
)∨

: L∨ → (L′)
∨

is the transposed morphism of ϕ−1. In particular, for any
lattice L we obtain a canonical homomorphism O(L) → O(AL), ϕ ↦→ ϕ.

Proposition 1.4.2. Let L be an indefinite lattice, with rk(L) ≥ l(AL) + 2.
Then the homomorphism O(L) → O(AL), ϕ ↦→ ϕ is surjective.

Proof. See [39, Proposition 1.4.7]. �

When studying primitive embeddings L ↪→ L′, we can usually consider as
equivalent two embeddings whose images correspond to each other via an isometry
of L′.

Definition 1.4.3. Two primitive embeddings i : L ↪→ L′, j : L ↪→ L′′ define
isomorphic primitive sublattices if there exists an isometry ϕ : L′ → L′′ such that
ϕ(i(L)) = j(L).

The following fundamental result, proved by Nikulin in [81, Proposition 1.15.1],
provides a practical description of primitive embeddings.

Theorem 1.4.4. Let S be an even lattice of signature (s(+), s(−)) and discrimi-
nant form qS. For an even lattice L of invariants (l(+), l(−), qL) unique in its genus
(up to isometries), primitive embeddings i : S ↪→ L are determined by quintuples
Θi := (HS , HL, γ, T, γT ) such that:

• HS is a subgroup of AS, HL is a subgroup of AL and γ : HS → HL is an
isomorphism qS |HS ∼= qL|HL ;

• T is a lattice of signature (l(+) − s(+), l(−) − s(−)) and discriminant form

qT = ((−qS)⊕ qL)|Γ⊥/Γ, where Γ ⊂ AS ⊕AL is the graph of γ and Γ⊥ is
its orthogonal complement in AS ⊕ AL with respect to the finite bilinear
form associated to (−qS)⊕ qL;

• γT ∈ O(AT ).

The lattice T is isomorphic to the orthogonal complement of i(S) in L. More-
over, two quintuples Θ and Θ′ define isomorphic primitive sublattices if and only if
µ(HS) = H ′

S for some µ ∈ O(S) and there exist φ ∈ O(AL), ν : T → T ′ isometries
such that γ′ ◦ µ = φ ◦ γ and ν ◦ γT = γ′T ′ ◦ ν.

Notice in particular that Theorem 1.4.4 allows us to determine the discriminant
forms of all possible orthogonal complements T ⊂ L of the image of a primitive
embedding S ↪→ L. We will use this result throughout the thesis. In the case where
L is unimodular, Theorem 1.4.4 admits a simpler formulation.

Corollary 1.4.5. Let S be an even lattice of signature (s(+), s(−)) and dis-
criminant form qS, and L an even unimodular lattice of signature (l(+), l(−)) unique
in its genus (up to isometries). There exists a primitive embedding i : S ↪→ L if
and only if there exists an even lattice T of signature (l(+) − s(+), l(−) − s(−)) and
discriminant form qT = −qS. For a given lattice T with these properties, each
primitive embedding i : S ↪→ L with i(S)⊥ ∼= T is determined by an isomorphism
γ : AS → AT such that qT ◦ γ = −qS.

Proof. See [81, Proposition 1.6.1]. �

Example 1.4.6. In order to exemplify how Theorem 1.4.4 is applied, we classify
primitive embeddings of S = U(2) inside the lattice L := U⊕3⊕E⊕2

8 ⊕⟨−2(n−1)⟩,
which is unique in its genus (up to isometries) by Theorem 1.3.3. As we saw in

Section 1.2, AS ∼=
( Z
2Z
)⊕2

with discriminant form qS = u1, while AL ∼= Z
2(n−1)Z
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and qL takes value − 1
2(n−1) on the generator e of the discriminant group. As a

consequence, HL ⊂ AL can only be 0 or the subgroup of order two generated by
(n− 1)e.

• If HL = 0, then HS = 0 and Γ = {(0, 0)} ⊂ AS ⊕ AL. In this case,
the orthogonal complement S inside L is a lattice of signature (2, 19)
and discriminant form −qS ⊕ qL. By Theorem 1.3.3, there is only one
isometry class of lattices T with these properties, and a representative is
T = U ⊕ U(2) ⊕ E⊕2

8 ⊕ ⟨−2(n − 1)⟩. Notice that a primitive embedding
S ↪→ L with such an orthogonal complement can be realized as follows.
Let {e1, e2}, {f1, f2} be the bases of two distinct summands U of L: we
then map the first generator of S = U(2) to e1 + f1, and the second
generator to e2 + f2.

• If HL = ⟨(n − 1)e⟩, then HS = ⟨s⟩, where s ∈ AS is an element of order
two such that qS(s) ≡ qL((n− 1)e) = −n−1

2 (mod 2): in particular, such
an element exists if and only if n is odd. Let ϵ1, ϵ2 be the generators of
AS ; then, if n ≡ 1 (mod 4) we can either choose s = ϵ1 or s = ϵ2, while
we need to take s = ϵ1 + ϵ2 if n ≡ 3 (mod 4). Here Γ = ⟨(s, (n − 1)e)⟩
and we compute that the quadratic form on Γ⊥/Γ is isomorphic to qL.
As a consequence, the orthogonal complement of S in L is isometric to
T = U⊕2 ⊕ E⊕2

8 ⊕ ⟨−2(n − 1)⟩ (see Theorem 1.3.3). We can realize this
embedding in the following way. Let {e1, e2} be a basis for a summand U
of L and g the generator of the summand ⟨−2(n− 1)⟩. Let t = n−1

2 ∈ N;
we then map the first generator of S = U(2) to 2e1 + te2 + g, and the
second generator to e2.

As a consequence of Theorem 1.4.4 we also get a characterization for the ex-
istence of an isometry Φ ∈ O(L) which extends an isometry φ ∈ O(T ), where
T ⊂ L is a primitive sublattice. Recall from (5) the definition of the anti-isometry
γ = pT⊥ ◦ (pT )−1|MT

:MT →MT⊥ .

Proposition 1.4.7. Let L be an even lattice, T ⊂ L a primitive sublattice and
φ ∈ O(T ). There exists an isometry Φ ∈ O(L) such that Φ|T = φ if and only if
there exists ψ ∈ O(T⊥) such that ψ ◦ γ = γ ◦ φ.

Proof. See [81, Corollary 1.5.2]. �

In particular, for any isometry ψ ∈ O(T⊥) as in the statement there exists
Φ ∈ O(L) which extends φ⊕ ψ ∈ O(T ⊕ T⊥).



CHAPTER 2

Irreducible holomorphic symplectic manifolds

2.1. General facts and examples

Definition 2.1.1. An irreducible holomorphic symplectic (IHS) manifold is a
compact Kähler manifold X which is simply connected and such that H0(X,Ω2

X) =
CωX , where ωX is an everywhere non-degenerate holomorphic two-form.

The holomorphic form ωX is referred to as the symplectic form of X. We recall,
in the following remark, the main properties of irreducible holomorphic symplectic
manifolds (for more details, see for instance [49]).

Remark 2.1.2.

(i) Since ωX induces a symplectic form on the tangent space TxX, for all
points x ∈ X, the complex dimension of X is even.

(ii) If dimX = 2n, then χ(X,OX) = n + 1, because for k ∈ {0, . . . , 2n} we
have

H0(X,ΩkX) =

{
Cωk/2X if k ≡ 0 (mod 2);

0 if k ≡ 1 (mod 2).

(iii) Since ωnX generatesH0(X,Ω2n
X ) = H0(X,KX) and it is nowhere vanishing,

it provides a trivialization of the canonical bundle, therefore KX
∼= OX .

(iv) The two-form ωX defines an alternating homomorphism TX → Ω1
X , which

is bijective since ωX is everywhere non-degenerate. As a consequence,
TX ∼= Ω1

X and thus H1(TX) ∼= H1,1(X).
(v) Since X is simply connected, we have H1(X,Z) = 0 and therefore (by the

universal coefficient theorem) the second cohomology group with integer
coefficients H2(X,Z) has no torsion.

From the triviality of the canonical bundle, IHS manifolds have vanishing first
Chern class: they actually constitute one of the three building blocks of compact
Kähler manifolds Z such that c1(Z)R = 0, as explained by the following theorem.

Theorem 2.1.3. (Beauville–Bogomolov decomposition) Let Z be a compact
Kähler manifold with c1(Z)R = 0. Then there exists a finite étale covering Z ′

of Z with

Z ′ ∼= T ×
⨆
i

Vi ×
⨆
j

Xj

where T is a complex torus, Vi are Calabi-Yau manifolds and Xj are IHS manifolds.

Proof. See [10, Théorème 2]. �

Let X be an irreducible holomorphic symplectic manifold: since KX
∼= OX , the

deformations of X are unobstructed by the Bogomolov–Tian–Todorov theorem (see
[97]). This implies that there exists a universal deformation X → Def(X) of the
manifold X, with Def(X) smooth of dimension h1(X,TX) = h1,1(X) = b2(X)− 2.

Theorem 2.1.4. Let X → I be a smooth and proper morphism of complex
manifolds and assume that the fiber X0 over a point 0 ∈ I is irreducible holomorphic
symplectic. Then, if a fiber Xt is Kähler, it is an IHS manifold.

11
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Proof. See [10, Proposition 9]. �

In particular, small deformations of irreducible holomorphic symplectic mani-
folds are again IHS, by combining Theorem 2.1.4 with [65, Theorem 15].

We now present some examples of IHS manifolds. First, we recall the definition
of a K3 surface.

Definition 2.1.5. A K3 surface is a compact complex smooth surface Σ such
that KΣ

∼= OΣ and H1(Σ,OΣ) = 0.

We point out that any K3 surface is Kähler, even if this property is not explic-
itly requested in the definition (see [95]). All irreducible holomorphic symplectic
manifolds of dimension two are K3 surfaces, and we can therefore state that IHS
manifolds provide a generalization of K3 surfaces in higher dimensions. Notice that
abelian surfaces (i.e. algebraic complex two-dimensional tori) are endowed with a
non-degenerate holomorphic 2-form and therefore they are holomorphic symplectic
surfaces, however they are not IHS because they are not simply connected.

Example 2.1.6. Hilbert schemes of points on a K3 surface.
Let Σ be a K3 surface and n ≥ 1 an integer. We will denote by Σ[n] the Hilbert
scheme of n points on Σ, that is the Douady space parametrizing zero-dimensional
subschemes (Z,OZ) of the surface Σ of length n (i.e. dimC OZ = n). Notice that
Σ[n] is, in general, just a complex space, but it is a scheme (even projective) if the
K3 surface Σ is projective (see [10, §6]). The Hilbert scheme Σ[n] also arises as
a minimal resolution of singularities of the n-th symmetric product Σ(n), via the
Hilbert–Chow morphism

ρ : Σ[n] → Σ(n)

[(Z,OZ)] ↦→
∑
p∈Σ

l(OZ,p)p

where l(OZ,p) is the length of OZ,p, which is zero outside the (finite) set of points
p in the support of Z. It was proved by Fogarty that ρ is a resolution of the
singularities of Σ(n) and that Σ[n] is smooth; it is also Kähler because Σ is Kähler
(see [99]). In [10], Beauville showed that Σ[n] is an irreducible symplectic manifold
of dimension 2n, whose symplectic form is derived from the one of the underlying
K3 surface. This result had already been obtained by Fujiki in the case n = 2,
where the geometric description of the Hilbert scheme is particularly simple. Any
irreducible holomorphic symplectic manifold which is deformation equivalent to
Σ[n], for some K3 surface Σ, is called a manifold of K3[n]-type.

Example 2.1.7. Generalized Kummer manifolds.
Let A be a complex two-dimensional torus and n ≥ 1 an integer. The Hilbert
scheme A[n+1] is holomorphic symplectic, but it is not IHS since it is not simply
connected. We consider the summation morphism

s : A[n+1] → A

[(Z,OZ)] ↦→
∑
p∈A

l(OZ,p)p

and we defineKn(A) := s−1(0), where 0 ∈ A is the zero-point of the torus. The fiber
Kn(A) is now an IHS manifold of dimension 2n, as proved by Beauville in [10],
and we refer to these varieties as generalized Kummer manifolds. In particular,
K1(A) is the Kummer K3 surface of the torus A, which is isomorphic to the blow-
up of the quotient A/ {± id}. Irreducible holomorphic symplectic manifolds which
are deformations of a generalized Kummer manifold are called IHS manifolds of
Kummer-type.
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Hilbert schemes of points on a K3 surface and generalized Kummer manifolds
provide two distinct ways to construct irreducible holomorphic symplectic mani-
folds in all even complex dimensions. Up to deformation, these are actually the
only known examples of IHS manifolds, except in dimension six and in dimension
ten, where we have two constructions (due to O’Grady) of irreducible holomor-
phic symplectic manifolds which are neither of K3[n]-type, nor of Kummer-type.
For more details on the two families of O’Grady manifolds, which are obtained as
desingularizations of some moduli spaces of sheaves on K3 surfaces and on abelian
surfaces, we refer the reader to [84] and [85].

To conclude this section, we recall a geometrical construction of a manifold of
K3[2]-type, which we will need in Chapter 4.

Example 2.1.8. The Fano variety of lines on a cubic fourfold.
Let Y ⊂ P5 be a smooth cubic fourfold. The Fano variety of lines F (Y ) is the
variety parametrizing lines contained in Y : it is again a smooth, projective manifold
of dimension four (see [6, Theorem 8]). Beauville and Donagi proved in [13] that, if
Y is a Pfaffian cubic fourfold, then F (Y ) is isomorphic to the Hilbert scheme Σ[2],
for Σ ⊂ P8 a K3 surface of degree 14. As a consequence, for any cubic hypersurface
Y ⊂ P5 the Fano variety of lines F (Y ) is an irreducible holomorphic symplectic
manifold of K3[2]-type.

2.2. Cohomology of IHS manifolds

One of the main properties of IHS manifolds is that their second cohomology
group with integer coefficients (which, as we have already seen, is torsion-free) can
be equipped with a non-degenerate symmetric bilinear form, which generalizes the
intersection product on H2(Σ,Z) for a K3 surface Σ.

Let X be an irreducible holomorphic symplectic manifold of dimension 2n and
let ω be a symplectic form on X satisfying

∫
X
(ω∧ω)n = 1. We define the following

quadratic form on the elements α ∈ H2(X,C):

q̃(α) :=
n

2

∫
X

(ω ∧ω)n−1 ∧α2 +(1−n)

(∫
X

ωn−1 ∧ ωn ∧ α
)(∫

X

ωn ∧ ωn−1 ∧ α
)
.

With respect to the Hodge decomposition

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X)

for any α ∈ H2(X,C) we can write α = aω + ξ + bω, with ξ ∈ H1,1(X). Then, we
have

q̃(α) = ab+
n

2

∫
X

(ω ∧ ω)n−1 ∧ ξ2.

In particular, H1,1(X) is orthogonal to H2,0(X)⊕H0,2(X), with respect to the
bilinear form associated to q̃.

Theorem 2.2.1. Let X be an IHS manifold of dimension 2n. There exists a
positive constant cX ∈ R such that, for all α ∈ H2(X,C):∫

X

α2n = cX q̃(α)
n.

Furthermore, the quadratic form q̃ can be renormalized to a quadratic form q which
is non-degenerate, primitive and integral on H2(X,Z).

Proof. See [42, Theorem 4.7]. �

The (unique) renormalized quadratic form q mentioned in the theorem is such
that, for any α ∈ H2(X,Z): ∫

X

α2n = cq(α)n
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where c ∈ Q+ is called the Fujiki constant of the manifold X.

Example 2.2.2. For manifolds of K3[n]-type, the Fujiki constant is c = (2n)!
n!2n

(computed by Beauville in [10]).

The integral quadratic form q on H2(X,Z) is called the Beauville–Bogomolov–
Fujiki quadratic form of the irreducible holomorphic symplectic manifold X. The
cohomology group H2(X,Z) is therefore endowed with a lattice structure, whose
signature is (3, b2(X)− 3) by [10, Théorème 5]. Moreover, from the definition of q̃
we deduce

q̃(ω) = 0, q̃(ω + ω) > 0.

Remark 2.2.3. When using the Beauville–Bogomolov–Fujiki quadratic form
q on H2(X,Z), for an IHS manifold X, we will often write x2 in place of q(x), to
denote the value of q on an element x ∈ H2(X,Z). We will instead use the brackets
(·, ·) to refer to the bilinear form associated to q.

We emphasize that the Fujiki constant and the Beauville–Bogomolov–Fujiki
quadratic form are birational invariants and deformation invariants. As a conse-
quence, for any IHS manifold X ′ which is deformation equivalent to X we have a
lattice isometry H2(X ′,Z) ∼= H2(X,Z). Also notice that the Néron–Severi group
NS(X) := H2(X,Z)∩H1,1(X) is a sublattice of H2(X,Z), which can be identified
with:

NS(X) = H2(X,Z) ∩ ω⊥

because H1,1(X) is orthogonal to H2,0(X)⊕H0,2(X) inside H2(X,C).

Example 2.2.4. Let Σ be a K3 surface. Then, the pairing associated to
the Beauville–Bogomolov–Fujiki quadratic form is just the intersection form on
H2(X,Z). As a lattice, H2(Σ,Z) is unimodular and we have an isometry:(

H2(Σ,Z), q
) ∼= LK3 := U⊕3 ⊕ E⊕2

8 .

For any n ≥ 2, there exists a natural inclusion (see [10, Proposition 6])

i : H2(Σ,Z) ↪→ H2(Σ[n],Z)

such that

H2(Σ[n],Z) = i
(
H2(Σ,Z)

)
⊕ Zδ

where 2δ is the class of the exceptional divisor E of the Hilbert–Chow morphism
ρ : Σ[n] → Σ(n) (in particular, E is the locus in Σ[n] which parametrizes non-reduced
zero-dimensional subschemes of length n). By restricting to algebraic classes, we
also have

NS(Σ[n]) = i (NS(Σ))⊕ Zδ.
The class δ is such that q(δ) = −2(n− 1), thus, for any manifold X of K3[n]-type,
we have (

H2(X,Z), q
) ∼= Ln := U⊕3 ⊕ E⊕2

8 ⊕ ⟨−2(n− 1)⟩.
In particular, b2(X) = rk(Ln) = 23 and sign(Ln) = (3, 20).

Using the Beauville–Bogomolov–Fujiki quadratic form, one can obtain the Eu-
ler characteristic of any divisor D ∈ H2(X,Z) (see [50, Example 23.19]):

χ(X,D) =

(
q(D)/2 + n+ 1

n

)
.

Example 2.2.5. For the sake of completeness, we recall the isometry classes
and Fujiki constants of the Beauville–Bogomolov–Fujiki lattices for the other known
deformation types of IHS manifolds (see [91]).
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• Let X be an IHS manifold deformation equivalent to a 2n-dimensional
generalized Kummer variety Kn(A). Then(

H2(X,Z), q
) ∼= U⊕3 ⊕ ⟨−2(n+ 1)⟩

and the Fujiki constant is c = (2n)!
n!2n (n+ 1). In particular, b2(X) = 7.

• Let X be an IHS manifold deformation equivalent to a O’Grady sixfold.
Then (

H2(X,Z), q
) ∼= U⊕3 ⊕ ⟨−2⟩⊕2

and the Fujiki constant is c = 60. In particular, b2(X) = 8.
• Let X be an IHS manifold deformation equivalent to a O’Grady tenfold.
Then (

H2(X,Z), q
) ∼= U⊕3 ⊕ E⊕2

8 ⊕A2

and the Fujiki constant is c = 945. In particular, b2(X) = 24.

Notice that it is possible to distinguish between the different deformation types just
by looking at the rank of H2(X,Z) (i.e. the second Betti number).

As in the case of K3 surfaces, there exists a projectivity criterion for all IHS
manifolds, which employs the Beauville–Bogomolov–Fujiki quadratic form.

Theorem 2.2.6. Let X be an irreducible holomorphic symplectic manifold.
Then X is projective if and only if there exists l ∈ H1,1(X) ∩H2(X,Z) such that
q(l) > 0.

Proof. See [50, Proposition 26.13]. �

Equivalently, the projectivity criterion states that an IHS manifold X is pro-
jective if and only if the Néron–Severi sublattice NS(X) ⊂ H2(X,Z) is hyperbolic.

Having introduced the Beauville–Bogomolov–Fujiki lattice, we can present an
additional construction of irreducible holomorphic symplectic manifolds of K3[n]-
type.

Example 2.2.7. Moduli spaces of sheaves on K3 surfaces.
Let (Σ, α) be a twisted K3 surface, where α ∈ Br(Σ) := H2 (Σ,O∗

Σ)tor is a Brauer
class. By [98, §2], if α has order k then it can be identified with a surjective
homomorphism α : Tr(Σ) → Z/kZ, where Tr(Σ) := NS(Σ)⊥ ⊂ H2(Σ,Z) is the
transcendental lattice of the surface. A B-field lift of α is a class B ∈ H2(Σ,Q)
(which can be determined via the exponential sequence) such that kB ∈ H2(Σ,Z)
and α(v) = (kB, v) for all v ∈ Tr(Σ) (see [54, §3]). Notice that B is defined only
up to an element in H2(Σ,Z) + 1

k NS(Σ).

The full cohomology H∗(Σ,Z) = H0(Σ,Z) ⊕ H2(Σ,Z) ⊕ H4(Σ,Z) admits a
lattice structure, with pairing (r,H, s) · (r′, H ′, s′) = H · H ′ − rs′ − r′s. As a
lattice, H∗(Σ,Z) is isometric to the Mukai lattice Λ24 = U⊕4 ⊕ E⊕2

8 . A Mukai
vector v = (r,H, s) is positive if H ∈ Pic(Σ) and either r > 0, or r = 0 and
H ̸= 0 effective, or r = H = 0 and s > 0. Starting from a positive vector
v = (r,H, s) ∈ H∗(Σ,Z) and a B-field lift B of α we can define the twisted Mukai

vector vB := (r,H + rB, s+B ·H + rB
2

2 ). Then, if vB is primitive, for a suitable
choice of a polarization D of Σ the coarse moduli space MvB (Σ, α) of α-twisted
Gieseker D-stable sheaves with Mukai vector vB is a projective irreducible holo-

morphic symplectic manifold of K3[n]-type, with n =
v2B
2 +1. Moreover, we have a

canonical isomorphism of lattices θ : v⊥B → H2(MvB (Σ, α),Z) (see [8], [103]). For
the sake of readability, we do not specify the ample divisor D in the notation for
MvB (Σ, α), even though the construction depends on it: we will always assume
that a choice of a polarization (generic with respect to the Mukai vector vB , in the
sense of [103, Definition 3.5]) has been made.
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In the case α = 0, the setting gets simplified. Let v ∈ H∗(Σ,Z) be a primitive,
positive Mukai vector; then Mv(Σ, 0) is isomorphic to the moduli space Mτ (v) of
τ -stable objects of Mukai vector v, for τ ∈ Stab(Σ) a v-generic Bridgeland stability
condition on the derived category Db(Σ) (see [25] for details). In particular, the
Hilbert scheme Σ[n] can be seen as a moduli space of stable rank one sheaves on
Σ, i.e. Σ[n] ∼=Mτ (vn) for vn := (1, 0, 1− n) ∈ Λ24 and τ vn-generic inside a specific
euclidean open subset of Stab(Σ).

2.3. Moduli spaces and Torelli theorems

Let X be an irreducible holomorphic symplectic manifold whose second coho-
mology lattice H2(X,Z) is isometric to a lattice L.

Definition 2.3.1. Amarking ofX is a choice of an isometry η : H2(X,Z) → L.
The pair (X, η) is called a marked irreducible holomorphic symplectic manifold. We
say that two marked IHS manifolds (X, η) and (X ′, η′) are isomorphic if there exists
a biregular (i.e. biholomorphic) isomorphism f : X → X ′ such that η′ = η ◦ f∗.

We can quotient the set of marked IHS manifolds (X, η) of a given deformation
type, with H2(X,Z) ∼= L, by the isomorphism relation, thus obtaining

ML :=
{
(X, η) | η : H2(X,Z) → L marking

}
/ ∼= .

The set ML can actually be endowed with a structure of compact complex
space: in order to show this, we need to introduce a period map.

Definition 2.3.2. Let X be an irreducible holomorphic symplectic manifold
and η : H2(X,Z) → L a marking. The period domain ΩL is the complex space

ΩL := {κ ∈ P(L⊗ C) | (κ, κ) = 0, (κ, κ) > 0} .

As we have already remarked, the symplectic form ω ∈ H2,0(X) satisfies, by
definition of the Beauville–Bogomolov–Fujiki quadratic form, the two properties
(ω, ω) = 0 and (ω, ω) > 0. This implies that the choice of a marking η of X
determines a point P(X, η) := η(H2,0(X)) = η(Cω) in the period domain ΩL.

Let p : X → I be a flat deformation of the IHS manifold X = p−1(0). By
Ehresmann’s theorem (see [64, Theorem 2.4]), if η : H2(X,Z) → L is a marking of
X, then there exists an open neighbourhood J ⊂ I of the point 0 and a family of
markings Ft : H

2(Xt,Z) → L over J such that F0 = η. Then, we define the map
P : J → ΩL as

P(t) = Ft(H
2,0(Xt)).

When considering the universal deformation X → Def(X), the map P : Def(X) →
ΩL is called the (local) period map.

Theorem 2.3.3 (Local Torelli theorem). Let (X, η) be a marked irreducible
holomorphic symplectic manifold. The period map

P : Def(X) → ΩL

is a local isomorphism.

Proof. See [10, Théorème 5]. �

By means of this local isomorphism, the universal deformations can be used as
local charts for ML, which therefore is a compact non-Hausdorff complex space of
dimension h1,1(X) = b2(X)− 2. More specifically, by [52, Proposition 4.3], for any
marked pair (X, η) there exists a holomorphic embedding Def(X) ↪→ ML, identi-
fying Def(X) with an open neighbourhood of the point (X, η) ∈ ML. The maps
P : Def(X) → ΩL can then be glued together, yielding a period map P : ML → ΩL
which is a local isomorphism by the local Torelli theorem.
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Theorem 2.3.4. Let M0
L be a connected component of the moduli space ML.

Then the restriction of the period map P0 : M0
L → ΩL is surjective.

Proof. See [49, Theorem 8.1]. �

In dimension two, the classical Torelli theorem states that twoK3 surfaces Σ,Σ′

are isomorphic if and only if there exists an effective Hodge isometry H2(Σ,Z) →
H2(Σ′,Z). In the case of IHS manifolds, the same statement does not hold (see
[37] for a counterexample); however, a weaker version of the global Torelli has been
proved, as a result of work by Huybrechts, Markman and Verbitsky.

Theorem 2.3.5 (Global Torelli theorem). Let M0
L be a connected component

of the moduli space ML. For each ω ∈ ΩL, the fiber P−1
0 (ω) consists of pairwise

inseparable points. If (X, η) and (X ′, η′) are inseparable points of M0
L, then X,X

′

are bimeromorphic.

Proof. See [71, Theorem 2.2]. �

The global Torelli theorem also admits a lattice-theoretic formulation: in order
to present it, we first need to introduce the concept of monodromy operator.

Definition 2.3.6. Let X,Y be holomorphic symplectic manifolds. A lattice
isometry f : H2(X,Z) → H2(Y, Z) is a parallel transport operator if there exists
a smooth and proper family π : X → B and a continuous path γ : [0, 1] → B
such that X ∼= Xγ(0), Y ∼= Xγ(1) and f is induced by parallel transport in the local

system R2π∗Z along γ.
A parallel transport operator f : H2(X,Z) → H2(X,Z) is called a monodromy

operator of X.

We denote by Mon2(X) ⊂ O(H2(X,Z)) the subgroup of monodromy operators,
which is of finite index (see [71, Lemma 7.5]). In particular, two marked pairs
(X, η), (X ′, η′) belong to the same connected component of ML if and only if
η′◦η−1 is a parallel transport operator. As a consequence, the number of connected
components of ML is π0(ML) =

[
O(H2(X,Z)) : Mon2(X)

]
.

If X is an IHS manifold and η : H2(X,Z) → L is a marking, we can define

Mon2(L) :=
{
η ◦ ψ ◦ η−1 | ψ ∈ Mon2(X)

}
⊂ O(L).

The group Mon2(L) ⊂ O(L), whose elements are still called monodromy op-
erators, is the same for any choice of a marked pair (X, η) in a connected com-
ponent M0

L ⊂ ML, but could a priori depend on M0
L. However, if the subgroup

Mon2(X) ⊂ O(H2(X,Z)) is normal, then Mon2(L) is independent on the choice of
the connected component (see [71, Remark 7.6]).

Example 2.3.7. Let Σ be a K3 surface. We denote by O+(H2(Σ,Z)) the sub-
group of O(H2(Σ,Z)) of orientation preserving isometries: it is a normal subgroup
of index two. Then, Mon2(Σ) = O+(H2(Σ,Z)) (see [23, Theorem A]), therefore
the moduli space MLK3

of marked K3 surfaces has two connected components,
which correspond to each other via the map (Σ, η) ↦→ (Σ,−η).

Let X be an IHS manifold of K3[n]-type. In [70], Markman proved that
Mon2(X) ⊂ O(H2(X,Z)) is a normal subgroup and provided several equivalent
characterizations of monodromy operators on X, which we now recall.

Proposition 2.3.8. Let X be an irreducible holomorphic symplectic manifold
of K3[n]-type. An isometry ψ ∈ O(H2(X,Z)) is a monodromoy operator if and only
if ψ is orientation preserving and it induces the action ψ = ± id ∈ O(AH2(X,Z)).
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In particular, the index of Mon2(X) as a subgroup of O+(H2(X,Z)) is 2r−1,
where r = ρ(n − 1) is the number of distinct prime divisors of n − 1. As a conse-
quence, if n = 2 or n−1 is a prime power, then Mon2(X) = O+(H2(X,Z)), exactly
as for K3 surfaces.

Let u ∈ H2(X,Z) be an element with (u, u) ̸= 0; we denote by Ru the reflection
of H2(X,Q) with respect to u, i.e.

Ru(w) := w − 2
(u,w)

(u, u)
u.

Remark 2.3.9. For an even lattice L we define the real spinor norm

snLR : O(L⊗ R) → R∗/ (R∗)
2 ∼= {±1} , snLR(γ) =

(
−u

2
1

2

)
. . .

(
−u

2
r

2

)
where γ = Ru1

◦. . .◦Rur as a product of reflections with respect to vectors ui ∈ L⊗R
(in particular, by Cartan–Dieudonné theorem, r ≤ rk(L)). Then, an isometry
ψ ∈ O(L) is orientation preserving if and only if its real spinor norm is +1.

Notice that, if (u, u) = ±2, the reflection Ru restricts to an integral isometry
Ru ∈ O(H2(X,Z)) . We define

ρu =

{
Ru if (u, u) < 0;

−Ru if (u, u) > 0.

Proposition 2.3.10. Let X be a manifold of K3[n]-type. Then the group
Mon2(X) is generated by the isometries ρu, for all u ∈ H2(X,Z) with (u, u) = ±2.

We can now state the Hodge-theoretic form of the global Torelli theorem.

Theorem 2.3.11. Let X,Y be irreducible holomorphic symplectic manifolds. If
there exists a parallel transport operator ψ : H2(X,Z) → H2(Y,Z) which is also a
Hodge isometry, then X and Y are bimeromorphic. If, moreover, ψ maps a Kähler
class to a Kähler class, then there exists a biregular isomorphism f : Y → X such
that f∗ = ψ.

Proof. See [71, Theorem 1.3]. �

In the following, we will denote by Mon2Hdg(X) ⊂ Mon2(X) the subgroup of
monodromy operators which preserve the Hodge decomposition.

2.4. Kähler cone and cones of divisors

For an IHS manifold X, the Beauville–Bogomolov–Fujiki quadratic form allows
us to define several cones of interest, contained in H1,1(X,R), or in its intersection
with H2(X,Z). In this section we investigate their structure.

Definition 2.4.1. Let X be an irreducible holomorphic symplectic manifold.
The positive cone CX is the connected component of

{
x ∈ H1,1(X,R) | (x, x) > 0

}
which contains the cone of Kähler classes KX .

Recall that, in the case of K3 surfaces, the Kähler cone coincides with the set
of real (1, 1)-classes which have positive intersection with all rational curves on the
surface. Boucksom, answering a question by Huybrechts, generalized this result for
any IHS manifold X (see [24, Théorème 1.2]), where we have:

KX =

{
α ∈ CX |

∫
C

α > 0 for all rational curves C ⊂ X

}
.
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Definition 2.4.2. Let X be an irreducible holomorphic symplectic manifold.
A prime divisor is an irreducible reduced effective divisor. A prime divisor E ⊂ X
is exceptional if (E,E) < 0. The fundamental exceptional chamber of X is the cone:

FEX = {x ∈ CX | (x,E) > 0 for all prime exceptional divisors E ⊂ X} .

By [71, Proposition 5.6], FEX is also the cone of classes x ∈ CX such that
(x,D) > 0 for any non-zero uniruled divisor D ⊂ X.

Of course, for a K3 surface Σ prime exceptional divisors are just rational curves
C ⊂ Σ, and FEΣ = KΣ. For IHS manifolds X of higher dimensions, the Kähler
cone is, in general, strictly contained in FEX : it is actually a chamber, with respect
to a suitable decomposition of FEX , which we now present.

Definition 2.4.3. Let X be an irreducible holomorphic symplectic manifold.
The birational Kähler cone BKX of X is the union of the cones f∗KX′ , for all
birational models f : X 99K X ′.

As a consequence of the following proposition, we have BKX ⊂ FEX .

Proposition 2.4.4. Let X,Y be irreducible holomorphic symplectic manifolds
and g : H2(X,Z) → H2(Y,Z) a parallel transport operator, which is also a Hodge
isometry. There exists a birational map f : Y 99K X such that g = f∗ if and only
if g(FEX) ⊂ FEY .

Proof. See [71, Corollary 5.7]. �

By [71, Proposition 5.6], we also have the inclusion FEX ⊂ BKX ; as a conse-
quence, FEX = BKX .

The positive cone CX is invariant under the action of Mon2Hdg(X), and we can
consider the following chambers in it.

Definition 2.4.5. Let X be an irreducible holomorphic symplectic manifold.

(i) An exceptional chamber of CX is a subset of the form g(FEX), for an
isometry g ∈ Mon2Hdg(X).

(ii) A Kähler-type chamber of CX is a subset of the form g(f∗(KY )), for an
isometry g ∈ Mon2Hdg(X) and a birational map f : X 99K Y .

We now assume that X is projective. The group of Hodge monodromies
Mon2Hdg(X) acts transitively on the set of exceptional chambers, as proven in [71,
Theorem 6.18]. Moreover, each exceptional chamber (and, in particular, FEX) is
the interior of a fundamental domain for the action of the normal subgroup

WExc = ⟨RE | E ⊂ X prime exceptional divisor⟩ ⊂ Mon2Hdg(X)

where, as in the previous section, RE denotes the reflection ofH2(X,Z) with respect
to the class E (if E is a prime exceptional divisor, RE ∈ Mon2Hdg(X) by [71,

Proposition 6.2]). Let Mon2Bir(X) ⊂ Mon2Hdg(X) be the subset of monodromy
operators f∗ for all birational maps f : X 99K X. Then, by Proposition 2.4.4,
Mon2Bir(X) ⊂ Mon2Hdg(X) is the stabilizer of the fundamental exceptional chamber.
Moreover, the following equality holds (see [71, Theorem 6.18]):

Mon2Hdg(X) =WExc oMon2Bir(X).

We now focus on Kähler-type chambers, which are the Mon2Hdg(X)-translates
of the Kähler cone KX . As a consequence of Theorem 2.3.11, distinct Kähler-type
chambers are disjoint, while the closures of two adjacent chambers intersect along
a wall (since BKX = FEX).
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Definition 2.4.6. An element s ∈ H1,1(X,Q) with (s, s) < 0 is a monodromy
birationally minimal (MBM) class if there exists a birational map f : X 99K Y and
a Hodge monodromy operator g ∈ Mon2Hdg(X) such that g(s)⊥ supports a face of
f∗KY .

Monodromy birationally minimal classes were introduced and studied by Amerik
and Verbitsky ([2], [3]), who showed that they behave well under deformation: if
s ∈ H1,1(X) ∩H2(X,Z) is an integral MBM class and (X ′, s′) is a deformation of
(X, s) such that s′ is still of type (1, 1), then s′ is MBM (see [3, Theorem 2.16]).
Moreover, MBM classes determine the walls which separate the Kähler-type cham-
bers in the positive cone of an IHS manifold.

Theorem 2.4.7. Let X be an irreducible holomorphic symplectic manifold. The
connected components of

CX \
⋃

s MBM

s⊥

are the Kähler-type chambers of X.

Proof. See [2, Theorem 6.2]. �

All the cones we have introduced so far live inside H1,1(X,R); we now want
to study their intersections with the integral cohomology H2(X,Z). Recall that
the Néron–Severi lattice is defined as NS(X) = H1,1(X) ∩ H2(X,Z) and, since
H1(X,OX) = 0, the first Chern class c1 : Pic(X) → H2(X,Z) provides an isomor-
phism Pic(X) ∼= NS(X).

Definition 2.4.8. A line bundle L ∈ Pic(X) is called movable if the codimen-
sion of the base locus of the linear system |L| is at least two. The movable cone
Mov(X) ⊂ NS(X)R := NS(X)⊗ R is the cone generated by the classes of movable
line bundles.

Proposition 2.4.9. Let X be a projective irreducible holomorphic symplectic
manifold. The interior of the movable cone coincides with FEX ∩ NS(X)R. The
group WExc acts faithfully on CX ∩NS(X)R and there is a bijective correspondence
between the set of exceptional chambers of X and the set of chambers of CX∩NS(X)R
with respect to the action of WExc. In particular, Mov(X) ⊂ CX is a fundamental
domain for the action of WExc on CX ∩NS(X)R.

Proof. See [71, Lemma 6.22]. �

If X is projective, the ample cone AX (i.e. the cone in NS(X)R generated by
ample classes) is contained inside Mov(X); more specifically, AX = KX ∩NS(X)R.
The nef cone Nef(X) ⊂ NS(X)R is the closure of the ample cone. Proposition 2.4.4,
together with the global Torelli theorem (Theorem 2.3.11), provides the following
statement.

Proposition 2.4.10. Let X,Y be irreducible holomorphic symplectic mani-
folds. A birational map f : X 99K Y induces a Hodge isometry f∗ : H2(Y,Z) →
H2(X,Z) such that f∗(Mov(Y )) = Mov(X). Moreover, if X,Y are projective and
f∗(Nef(Y )) intersects AX , then f is a biregular isomorphism and f∗(Nef(Y )) =
Nef(X).

The decomposition of the positive cone CX ⊂ H1,1(X,R) into exceptional and
Kähler-type chambers can be adapted to the integral cohomology. In order to do
so, we need to define wall-divisors.

Definition 2.4.11. A wall-divisor is a primitive class D ∈ NS(X) with D2 < 0
and such that g(D⊥) ∩ BKX = ∅ for all g ∈ Mon2Hdg(X).
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Notice that, for any MBM class s ∈ H1,1(X,Q), a suitable rational multiple
of s is a wall-divisor. Thus, the movable cone Mov(X) is one of the connected
components of

(CX ∩NS(X)R) \
⋃

E∈PEx

E⊥

where PEx is the set of prime exceptional divisors, while the ample cone AX is one
of the connected components of

(CX ∩NS(X)R) \
⋃

δ∈∆(X)

δ⊥

where ∆(X) is the set of wall-divisors.
As we already stated, wall-divisors are preserved under smooth deformations if

their Hodge type does not change; in particular, we have the following result.

Theorem 2.4.12. Let (X, η), (Y, µ) be marked irreducible holomorphic sym-
plectic manifolds in the same connected component M0

L of the moduli space ML.
If D ∈ NS(X) is a wall-divisor of X and (µ−1 ◦ η)(D) ∈ NS(Y ), then (µ−1 ◦ η)(D)
is a wall-divisor of Y .

Proof. See [75, Theorem 1.3]. �

In [7], Bayer and Macr̀ı gave a numerical characterization of wall-divisors for
moduli spaces of sheaves on a projective K3 surface. By applying Theorem 2.4.12,
their numerical description can be extended to all manifolds of K3[n]-type: this
was done explicitly by Mongardi for n = 2, 3, 4 (see [75]). We now explain in more
detail the results of Bayer and Macr̀ı, focusing on the case of Hilbert schemes of
points on a K3 surface, since we will need them in the next chapter.

For a K3 surface Σ, the Mukai lattice H∗(Σ,Z) ∼= U⊕4 ⊕ E⊕2
8 carries a

weight-two Hodge structure, whose (1, 1)-part is H∗
alg(Σ,Z) := H0(Σ,Z)⊕NS(Σ)⊕

H4(Σ,Z). For any n ≥ 2, the vector vn = (1, 0, 1 − n) belongs to H∗
alg(Σ,Z).

The isomorphism θ−1 : H2(Σ[n],Z) → v⊥n ⊂ H∗(Σ,Z), which was introduced
in Example 2.2.7, can be realized by mapping H2(Σ[n],Z) ∼= H2(Σ,Z) ⊕ Zδ to
v⊥n = H2(Σ,Z)⊕ Z(−1, 0, 1− n) inside the Mukai lattice. In particular, it satisfies
θ(v⊥n ∩H∗

alg(Σ,Z)) = NS(Σ[n]).

Theorem 2.4.13. Let Σ be a K3 surface and X = Σ[n], for n ≥ 2. The movable
cone Mov(X) is one of the open chambers of the decomposition of CX ∩ NS(X)R
whose walls are the linear subspaces θ(v⊥n ∩ a⊥) for a ∈ H∗

alg(Σ,Z) such that

(i) a2 = −2, (vn, a) = 0, or
(ii) a2 = 0, (vn, a) = 1, or
(iii) a2 = 0, (vn, a) = 2.

Proof. See [7, Theorem 12.3]. �

Theorem 2.4.14. Let Σ be a K3 surface and X = Σ[n], for n ≥ 2. The ample
cone AX is one of the open chambers of the decomposition of CX ∩NS(X)R whose
walls are the linear subspaces θ(v⊥n ∩ a⊥) for a ∈ H∗

alg(Σ,Z) with a2 ≥ −2 and

0 ≤ (vn, a) ≤ n− 1.

Proof. See [7, Theorem 12.1]. �

In particular, by studying the walls of Theorem 2.4.14 contained in Mov(Σ[n])
one can, in principle, determine all wall-divisors of Σ[n].
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Remark 2.4.15. The additional walls that need to be considered in the decom-
position of Theorem 2.4.14, with respect to the ones already appearing in Theorem
2.4.13, are the walls which separate the Kähler-type chambers in FEΣ[n]∩NS(Σ[n])R.
They are of the form θ(v⊥n ∩ a⊥), where we can restrict to consider a ∈ H∗

alg(Σ,Z)
such that:

(i) a2 = −2, 1 ≤ (vn, a) ≤ n− 1, or
(ii) a2 = 0, 3 ≤ (vn, a) ≤ n− 1, or
(iii) 2 ≤ a2 < n−1

2 and 2a2 + 1 ≤ (vn, a) ≤ n− 1.

These bounds for a2 and (vn, a) are a consequence of the fact that the rank two
sublattice ⟨a, vn⟩ ⊂ H∗(Σ[n],Z) needs to be hyperbolic, in order to define a wall
θ(v⊥n ∩ a⊥) which intersects the positive cone (see [7, Theorem 5.7]).

2.5. Automorphisms

Let X be an irreducible holomorphic symplectic manifold. We denote by
Aut(X) the group of biholomorphic automorphisms of X and by Bir(X) the group
of birational automorphisms. Clearly, Aut(X) ⊂ Bir(X), and in the case of K3
surfaces the two groups coincide (K3 surfaces have trivial canonical divisor, hence
they are minimal surfaces by [11, Proposition II.3]).

Theorem 2.5.1. Let X be an irreducible holomorphic symplectic manifold
which, together with a marking η : H2(X,Z) → L, defines a general point in a
connected component of ML. Then, Aut(X) = Bir(X).

Proof. See [49, Proposition 9.2]. �

For all compact complex manifolds we have

dim(Aut(X)) = h0(TX)

and therefore, if X is IHS, dim(Aut(X)) = h1,0(X) = 0, meaning that Aut(X) is a
discrete group. We also know, by [22, Theorem 2], that the group Bir(X) is finitely
generated, if X is projective. We define the following homomorphism:

λ : Bir(X) → O(H2(X,Z))
f ↦→ f∗

where f∗ : H2(X,Z) → H2(X,Z) is the pull-back of f , which preserves the
Beauville–Bogomolov–Fujiki quadratic form. The morphism λ satisfies the follow-
ing properties (see [49, Proposition 9.1]):

(i) λ(Bir(X)) = Mon2Bir(X) ⊂ Mon2Hdg(X);

(ii) λ(Aut(X)) =
{
g ∈ Mon2Hdg(X) | g(KX) ∩ KX ̸= ∅

}
;

(iii) λ−1(λ(Aut(X))) = Aut(X);
(iv) ker(λ) ⊂ Aut(X) is finite.

Notice that properties (ii) and (iii) summarize the Hodge-theoretic global
Torelli theorem (Theorem 2.3.11).

By results of Hassett and Tschinkel, the kernel of the homomorphism λ is
invariant under smooth deformations of the manifold X (see [46, Theorem 2.1]),
and it has been computed for all known deformation types of IHS manifolds.

Theorem 2.5.2. Let X be a manifold of K3[n]-type. Then, ker(λ) = {idX}.

Proof. See [9, Proposition 10] and [74, Lemma 1.2]. �

The theorem implies that, for manifolds of K3[n]-type, any automorphism is
completely determined by its action on the second cohomology lattice.

In addition to the action on H2(X,Z), another important property of an au-
tomorphism f ∈ Aut(X) is its action on H0(X,Ω2

X), i.e. on the symplectic form
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ω of the IHS manifold X. Since f∗ is a Hodge isometry, we have f∗(ω) = ξω, for
ξ ∈ C∗; moreover, if f is of finite order m, then ξm = 1.

Definition 2.5.3. An automorphism f ∈ Aut(X) is symplectic if f∗(ω) = ω;
otherwise, f is called non-symplectic.

By [9, Proposition 6], if there exists a non-symplectic f ∈ Aut(X), then the IHS
manifold X is projective. Moreover, if f∗(ω) = ξω, with ξ a root of unity of order
m, then ϕ(m) ≤ b2(X)− rk(NS(X)) (where ϕ denotes Euler’s totient function).

Definition 2.5.4. Let f ∈ Aut(X) be an automorphism of finite order of an
IHS manifold X. The invariant lattice of f is

Tf = H2(X,Z)f
∗
=
{
u ∈ H2(X,Z) | f∗(u) = u

}
and the co-invariant lattice of f is

Sf =
(
H2(X,Z)f

∗
)⊥

⊂ H2(X,Z).

Both Tf and Sf are primitive sublattices of H2(X,Z), since they can be ex-
pressed as kernels of group homomorphisms: in particular, if m ∈ N is the order of
f , we have

(6) Tf = ker(f∗ − id), Sf = ker(id+f∗ + . . .+ (f∗)m−1).

We recall that the transcendental lattice of an irreducible holomorphic sym-
plectic manifold X is the primitive sublattice Tr(X) = NS(X)⊥ ⊂ H2(X,Z). The
following proposition explains the relative positions of the lattices Tf , Sf with re-
spect to NS(X), Tr(X).

Proposition 2.5.5. Let X be an irreducible holomorphic symplectic manifold
and f ∈ Aut(X).

(i) If f is symplectic, then Tr(X) ⊂ Tf , Sf ⊂ NS(X) and Sf is negative
definite.

(ii) If f is non-symplectic, then Tf ⊂ NS(X), Tr(X) ⊂ Sf and Tf is hyper-
bolic.

Proof. We discuss the two cases separately.

(i) If x ∈ Sf , by the description (6) we have
∑m−1
i=0 (f∗)i(x) = 0, assuming

that m is the order of the automorphism f . If H2,0(X) is generated by
the symplectic form ω, we have:

0 =

(
m−1∑
i=0

(f∗)i(x), ω

)
=

m−1∑
i=0

(
(f∗)i(x), ω

)
= m(x, ω)

where we used the fact that f∗ is an isometry of H2(X,Z) and f∗ω = ω.
Therefore, (x, ω) = 0, hence Sf ⊂ NS(X) = H2(X,Z) ∩ ω⊥; by passing
to the orthogonal complements, we also deduce Tr(X) ⊂ Tf . Notice that
Tf ⊗C ⊂ H2(X,C) contains the three-dimensional space Cω ⊕Cω ⊕Cβ,
where β :=

∑m−1
i=0 (f∗)i(α) ̸= 0 for a Kähler class α ∈ KX : this implies

that the signature of Tf is (3, rk(Tf )−3), because H2(X,Z) has signature
(3, b2(X)− 3). Hence, Sf is negative definite.

(ii) If f is non-symplectic, for any x ∈ Tf we have (x, ω) = (x, ξω), where
ξ ∈ C∗ is the root of unity such that f∗ω = ξω. Therefore, (x, ω) = 0,
which gives the inclusions Tf ⊂ NS(X), Tr(X) ⊂ Sf . As we already
remarked, the existence of a non-symplectic automorphism implies that
X is projective, hence NS(X) is hyperbolic by Theorem 2.2.6. Since the
positive class β, defined in the symplectic case, is still contained in Tf⊗C,
we conclude that Tf ⊂ NS(X) is also hyperbolic. �
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In our work, we will be mainly interested in non-symplectic automorphisms.
For results on symplectic automorphisms of IHS manifolds, with special regard to
manifolds of K3[n]-type, we refer the reader to [27] and [76].

Example 2.5.6. Natural automorphisms.
Let Σ be a (smooth) K3 surface. An automorphism f ∈ Aut(Σ) induces an au-
tomorphism f [n] on the Hilbert scheme Σ[n], by setting f [n](Z) = f(Z) for any
zero-dimensional subscheme Z ⊂ Σ of length n. Such an automorphism f [n] is
said to be natural. In Example 2.2.4, we recalled the existence of an embed-
ding i : H2(Σ,Z) ↪→ H2(Σ[n],Z) such that H2(Σ[n],Z) = i

(
H2(Σ,Z)

)
⊕ Zδ,

where 2δ is the class of the exceptional divisor E of the Hilbert–Chow morphism
ρ : Σ[n] → Σ(n). As observed in [22, §3], the natural automorphism f [n] acts as f∗

on the summand i(H2(Σ[n],Z)), while
(
f [n]

)∗
(δ) = δ, because f [n] leaves the ex-

ceptional divisor E globally invariant (if Z ⊂ Σ is a non-reduced subscheme, f(Z)
is still non-reduced). This property actually characterizes natural automorphisms.

Theorem 2.5.7. Let Σ be a K3 surface and n ≥ 2. An automorphism g ∈
Aut(Σ[n]) is natural if and only if it leaves globally invariant the exceptional divisor
E ⊂ Σ[n].

Proof. See [22, Theorem 1]. �

Since (f [n])∗ = (f∗, id) on H2(Σ,Z) = i
(
H2(Σ,Z)

)
⊕ Zδ, if Tf , Sf ⊂ H2(Σ,Z)

are the invariant and co-invariant lattices of f ∈ Aut(Σ), the following equalities
hold:

(7) Tf [n] = i(Tf )⊕ Zδ ∼= Tf ⊕ ⟨−2(n− 1)⟩; Sf [n] = i(Sf ) ∼= Sf .

By [10, Proposition 6], the embedding i : H2(Σ,Z) ↪→ H2(Σ[n],Z) is the
restriction of an injective morphism ι : H2(Σ,C) ↪→ H2(Σ[n],C) which is compatible
with the Hodge decomposition and such that H2(Σ[n],C) = ι(H2(Σ,C)) ⊕ C[E].
As a consequence, if f ∈ Aut(Σ) is a symplectic automorphism, then f [n] also
acts symplectically on Σ[n]. In fact, if ω ∈ H2,0(Σ) then ι(ω) ∈ H2,0(Σ[n]) and(
f [n]

)∗
(ι(ω)) = ι (f∗(ω)). Analogously, if f is non-symplectic then f [n] is non-

symplectic too.

Example 2.5.8. Beauville’s non-natural involutions.
By Riemann–Roch, a projective K3 surface Σ of degree 2n ≥ 4 admits an em-
bedding in the projective space Pn+1. A general point Z ∈ Σ[n] corresponds to n
distinct points on Σ; the linear subspace ⟨Z⟩ ⊂ Pn+1 intersects the surface Σ along
n more points, which determine another element Z ′ ∈ Σ[n]. Therefore, we obtain
the following birational involution of the Hilbert scheme Σ[n]:

jn : Σ[n] 99K Σ[n]

Z ↦→ Z ′.

In the case n = 2, we are considering a quartic surface Σ ⊂ P3: a generic pair of
points p, q ∈ Σ defines a line pq which cuts out two additional points on Σ, thus
providing the birational involution j2 ∈ Bir(Σ[2]). As proved by Beauville in [9,
§6], j2 is actually biregular if Σ does not contain any lines; on the other hand, for
n ≥ 3 the involution jn never belongs to Aut(Σ[n]).

Notice that the automorphism j2 ∈ Aut(Σ[2]) does not leave the exceptional
divisor E ⊂ Σ[2] invariant, since we can find distinct points p, q on the quartic
surface Σ such that (pq ∩ Σ) \ {p, q} is supported on one point, hence j2 is not
natural.



CHAPTER 3

Automorphisms of Hilbert schemes of points on a
generic projective K3 surface

In this chapter, which collects the results of the paper [33], we study the group
Aut(Σ[n]) for a generic projective K3 surface Σ and any n ≥ 2. Our aim is to
generalize the following result, due to Boissière, An. Cattaneo, Nieper-Wisskirchen
and Sarti (see [20, Theorem 1.1]), which completely solves the case n = 2.

Theorem 3.0.1. Let Σ be an algebraic K3 surface such that Pic(Σ) = ZH,
with H2 = 2t, t ≥ 1. Then Σ[2] admits a non-trivial automorphism if and only if
one of the following equivalent conditions is satisfied:

(i) t is not a square, the equation X2−4tY 2 = 5 has no integer solutions and
the equation X2 − tY 2 = −1 has integer solutions;

(ii) there exists an ample class D ∈ NS(Σ[2]) such that D2 = 2.

If so, the class D is unique and Aut(Σ[2]) is generated by a non-symplectic involu-
tion, whose action on H2(Σ[2],Z) is the reflection in the span of D.

3.1. Preliminaries

3.1.1. Pell’s equations. A quick overview of the basic theory of Pell’s equa-
tions can be found in [20, §2.1]. In this section we fix the notation and recall the
properties that we will need for our purposes.

Definition 3.1.1. A (generalized) Pell’s equation is a diophantine equation in
two unknowns X,Y of the form

X2 − rY 2 = m

for r ∈ N and m ∈ Z.
A solution (X,Y ) ∈ Z2 of the equation is called positive if X > 0, Y > 0. If integer
solutions exist, the minimal solution is the positive solution with minimal X.

Remark 3.1.2. If m > 0 (respectively, m < 0), the minimal solution of Pell’s
equation X2 − rY 2 = m is also the solution which minimizes (respectively, maxi-

mizes) the slope Y
X =

√
1
r −

m
rX2 .

Clearly, for any r ∈ N there exist solutions for Pell’s equation X2 − rY 2 = 1;
in particular, if r is a square the only solutions are (±1, 0). In the case where r is
the product of two non trivial integers and m = 1, we have the following result.

Lemma 3.1.3. Let s, q ∈ N, with q ̸= 1. If the equation sX2−qY 2 = −1 admits
integer solutions, let (a, b) be the positive one with minimal X. Then the minimal
solution of Pell’s equation X2 − sqY 2 = 1 is (2sa2 + 1, 2ab).

Proof. A more general statement can be found in [38, Lemma A.2]. For the
case s = 1 see also [20, Lemma 2.1]. �

25
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The solutions of X2 − rY 2 = m can be divided into equivalence classes. Two
solutions (x, y) and (x′, y′) are equivalent if there exists a solution (z, w) of Pell’s
equation X2 − rY 2 = 1 such that

(8)

{
x′ = zx+ rwy

y′ = wx+ zy

(for more details, see [34, Chapter XXXIII, §18]). We define the fundamental
solution in an equivalence class to be the solution with smallest non-negative Y ,
if it is unique. If instead there are two solutions with this property in the same
equivalence class, they are of the form (X,Y ), (−X,Y ), with X > 0: in this case
we consider (X,Y ) to be the fundamental solution. By applying (8) recursively, all
solutions in an equivalence class can be reconstructed from the fundamental one,
after computing the minimal solution of X2 − rY 2 = 1.

Remark 3.1.4. Ifm > 0, let (X,Y ) be a fundamental solution ofX2−rY 2 = m
and (z, w) the minimal solution of X2 − rY 2 = 1. Then, either (X,Y ) or (−X,Y )
belongs to the closed interval on the hyperbola X2 − rY 2 = m delimited by the
points (

√
m, 0) and (

√
m(z + 1)/2,

√
m(z − 1)/(2r)). Notice, moreover, that all

solutions (x, y) contained in this interval are such that 0 ≤ y
x <

w
z .

3.1.2. Movable and nef cones of Σ[n]. We consider an algebraic K3 surface
Σ with Pic(Σ) = ZH, where we assume that H is an ample class with H2 = 2t,
t ≥ 1. Let Σ[n] be the Hilbert scheme of n points on Σ. The ample class H on

Σ induces a line bundle H̃ on Σ[n], whose first Chern class we denote by h. Then
we can take {h,−δ} as a basis for the Néron-Severi lattice NS(Σ[n]) ⊂ H2(Σ[n],Z),
where 2δ is the class of the exceptional divisor of the Hilbert–Chow morphism
Σ[n] → Σ(n) (see Example 2.2.4).

Recall from Example 2.2.7 and Section 2.4 that Σ[n] is isomorphic to the moduli
space Mτ (vn), where vn = (1, 0, 1−n) ∈ H∗(Σ,Z) and τ is a vn-generic Bridgeland
stability condition. In particular, we have an isomorphism

θ−1 : H2(Σ[n],Z) −→ v⊥n ⊂ H∗(Σ,Z)

such that θ(v⊥n ∩ H∗
alg(Σ,Z)) = NS(Σ[n]). If Pic(Σ) = ZH, the basis {h,−δ} of

NS(Σ[n]) is realized as

h = θ(0,−H, 0), −δ = θ(1, 0, n− 1)

where (with an abuse of notation) we still denote by H the first Chern class of the
generator of Pic(Σ).

We saw in Section 2.4 that the walls between Kähler-type chambers in the
positive cone CΣ[n] ∩NS(Σ[n])R are linear subspaces of the form θ(v⊥n ∩ a⊥), where
a ∈ H∗

alg(Σ,Z) are elements with prescribed values for a2 and (vn, a) (see Theorem

2.4.13 and Theorem 2.4.14). The following lemma provides a description of alge-
braic classes a ∈ H∗

alg(Σ,Z) with given square and pairing with vn = (1, 0, 1− n).

Lemma 3.1.5. Let Σ be an algebraic K3 surface with Pic(Σ) = ZH, H2 = 2t,
t ≥ 1. An element a ∈ H∗

alg(Σ,Z) has a2 = 2ρ and (vn, a) = α, with ρ, α ∈ Z, if
and only if it is of the form

a =

(
X + α

2(n− 1)
,−Y H, X − α

2

)
or a = −

(
X − α

2(n− 1)
,−Y H, X + α

2

)
where (X,Y ) is a solution of Pell’s equation X2 − 4t(n − 1)Y 2 = α2 − 4ρ(n − 1)
such that X ≥ 0 and 2(n− 1) | (X + α) or 2(n− 1) | (X − α) respectively.
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Proof. Let a = (r, cH, s) ∈ H∗
alg(Σ,Z) = H0(Σ,Z)⊕NS(Σ)⊕H4(Σ,Z), with

r, c, s ∈ Z. Since a2 = 2(tc2−rs) and (vn, a) = r(n−1)−s, we want to characterize
the triples (r, c, s) ∈ Z3 such that

(9)

{
tc2 − rs = ρ

r(n− 1)− s = α.

Let (r, c, s) ∈ Z3 be a solution of (9). If 2r(n− 1) ≥ α, then

X = 2r(n− 1)− α ≥ 0, Y = −c

satisfy X2 − 4t(n− 1)Y 2 = α2 − 4ρ(n− 1) and 2(n− 1) divides X + α. If instead
2r(n− 1) < α, then

X = −2r(n− 1) + α > 0, Y = c

satisfy X2 − 4t(n− 1)Y 2 = α2 − 4ρ(n− 1) and 2(n− 1) divides X − α.
Conversely, let (X,Y ) be a solution of Pell’s equation X2 − 4t(n − 1)Y 2 =

α2 − 4ρ(n− 1), with X ≥ 0 and such that 2(n− 1) divides either X + α or X − α.
In the first case, we define

r =
X + α

2(n− 1)
, c = −Y, s = r(n− 1)− α =

X − α

2

while in the second case we set

r = − X − α

2(n− 1)
, c = Y, s = r(n− 1)− α = −X + α

2
.

Then, one can easily check that (r, c, s) ∈ Z3 is a solution of (9). �

In the case of Hilbert schemes Σ[n] with rk(NS(Σ[n])) = 2, both the ample cone
and the movable cone inside NS(Σ[n])R are delimited by two extremal rays.

Theorem 3.1.6. Let Σ be an algebraic K3 surface with Pic(Σ) = ZH, H2 = 2t
and n ≥ 2.

(i) If t(n− 1) = c2, for c ∈ N, then Mov(Σ[n]) = ⟨h, (n− 1)h− cδ⟩.
(ii) If t(n − 1) is not a square and the equation (n − 1)X2 − tY 2 = 1 has

integer solutions, let (z, w) be the positive solution with minimal z. Then

Mov(Σ[n]) = ⟨h, (n− 1)zh− twδ⟩.
(iii) If t(n−1) is not a square and (n−1)X2−tY 2 = 1 has no integer solutions,

then Mov(Σ[n]) = ⟨h, zh − twδ⟩ where (z, w) is the minimal solution of
Pell’s equation X2 − t(n− 1)Y 2 = 1 such that z ≡ ±1 (mod n− 1).

Proof. See [7, Proposition 13.1]. �

In all three cases of the theorem, the extremal ray of Mov(Σ[n]) generated

by h is also one of the two walls delimiting Nef(Σ[n]). If Nef(Σ[n]) ̸= Mov(Σ[n]),
the second wall of the nef cone coincides with the wall with minimal slope, inside
Mov(Σ[n]), among those listed in Remark 2.4.15 (in [7], these are referred to as
flopping walls).

3.2. Ample classes and isometries of NS(Σ[n])

In this section we investigate the group of isometries O(NS(Σ[n])). We adopt a
similar approach to the one used by the authors of [20] for the case n = 2, in order
to extend their results.



28 3. AUTOMORPHISMS OF HILBERT SCHEMES OF POINTS ON K3 SURFACES

Definition 3.2.1. Let Σ be a smooth complex surface and k a non-negative
integer. A line bundle L ∈ Pic(Σ) is k-very ample if the restriction H0(Σ, L) →
H0(Σ, L⊗OZ) is surjective for any zero-dimensional subscheme (Z,OZ) of length
h0(OZ) ≤ k + 1.

We recall the following geometric interpretation of k-very ampleness. For any
subscheme (Z,OZ) we have the inclusion H0(Σ, L ⊗ IZ) ↪→ H0(Σ, L), which al-
lows us to define a rational map γ : Σ[k] 99K Grass(k,H0(Σ, L)). Then, γ is an
embedding if and only if L is k-very ample ([32, Main Theorem]).

Proposition 3.2.2. Let Σ be a K3 surface, L a big and nef line bundle on Σ
and k ≥ 0 an integer. Then L is k-very ample if and only if L2 ≥ 4k and there
exist no effective divisors D such that:

(a) 2D2
(i)

≤ L ·D ≤ D2 + k + 1
(ii)

≤ 2k + 2;
(b) (i) is an equality if and only if L ∼ 2D and L2 ≤ 4k + 4;
(c) (ii) is an equality if and only if L ∼ 2D and L2 = 4k + 4.

Proof. See [63, Theorem 1.1]. �

Proposition 3.2.3. Let Σ be an algebraic K3 surface with Pic(Σ) = ZH,
H2 = 2t, t ≥ 1. The class ah− δ ∈ NS(Σ[n]) is ample if a ≥ n+ 2. In particular,
inside NS(Σ[n])R, the ample cone AΣ[n] is contained in {xh− yδ | x > 0, y > 0}.

Proof. If L = aH ∈ Pic(Σ) is n-very ample, then the element ah − δ ∈
NS(Σ[n]) is ample, because it is the first Chern class of the line bundle γ∗(OG(1)),
where we consider the embedding γ : Σ[n] → G := Grass(n,H0(Σ, L)) obtained
from L (see [14, Construction 2]). We now use Knutsen’s characterization of n-very
ample line bundles (Proposition 3.2.2). We have L2 ≥ 4n if and only if ta2 ≥ 2n. If
D = dH is effective (d > 0), we can reformulate condition (a) of Proposition 3.2.2
as

4td2
(i)

≤ 2tad ≤ 2td2 + n+ 1
(ii)

≤ 2n+ 2.

It is easy to see that, if a ≥ n + 2, there are no values d satisfying all these
inequalities, while instead the condition L2 ≥ 4n holds.

Thus, for all a ≥ n + 2 the line bundle L = aH is n-very ample and ah − δ ∈
AΣ[n] . Moreover, the two classes h,−δ ∈ NS(Σ[n]) are not ample, therefore we
conclude AΣ[n] ⊂ {xh− yδ | x > 0, y > 0}, because AΣ[n] is a convex cone. �

We are now interested in describing the isometries of the Néron-Severi lattice
of Σ[n]. With respect to the basis {h,−δ}, the bilinear form on NS(Σ[n]) satisfies
(h, h) = 2t, (−δ,−δ) = −2(n − 1), (h,−δ) = 0. Thus, in coordinates, an isometry
φ ∈ O(NS(Σ[n])) is represented by a matrix of the form

M =

(
A B
C D

)
with A,B,C,D integers such that:

(i) detM = ±1, i.e. AD −BC = ±1;
(ii) (Ah− Cδ,Ah− Cδ) = 2t , i.e. (n− 1)C2 = t(A2 − 1);
(iii) (Bh−Dδ,Bh−Dδ) = −2(n− 1), i.e. (n− 1) (D2 − 1) = tB2;
(iv) (Ah− Cδ,Bh−Dδ) = 0, i.e. (n− 1)CD = tAB.

From this list of conditions, we find two alternative forms for M :(
A B
C A

)
or

(
A B
−C −A

)
, with (n− 1)C = tB and (n− 1)A2 − tB2 = n− 1.
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Matrices of the first form have determinant +1, while those of the second form

have determinant −1. Moreover, for M =

(
A B
−C −A

)
we have M2 = I2 (from

the relations between A,B,C), meaning that the isometry described by M is an
involution.

Notice that we can write O(NS(Σ[n])) ∼= N o ⟨s⟩, where N is the normal
subgroup of isometries of the first form:

N :=

{(
A B
C A

)
| A,B,C ∈ Z, (n− 1)C = tB, (n− 1)A2 − tB2 = n− 1

}
while s is the order two matrix s :=

(
1 0
0 −1

)
∈ O(NS(Σ[n])).

An automorphism f ∈ Aut(Σ[n]) induces, by pull-back, an isometry f∗ of the
lattice H2(Σ[n],Z), such that f∗|NS(Σ[n]) ∈ O(NS(Σ[n])). As proved for the case

n = 2 in [20, Proposition 4.3], there is a link between such isometries and the
ample cone of Σ[n].

Proposition 3.2.4. Let Σ be an algebraic K3 surface with Pic(Σ) = ZH,
H2 = 2t, t ≥ 1. The isometry of NS(Σ[n]) induced by f ∈ Aut(Σ[n]) is either the
identity or the involution given, with respect to the basis {h,−δ}, by the matrix(

A B
−C −A

)
, with (n− 1)C = tB, (n− 1)A2 − tB2 = n− 1, A > 0, B < 0

and with A,B defining the ample cone of Σ[n]:

AΣ[n] = {xh− yδ | y > 0, (n− 1)Ay < −tBx} .

Proof. The isometry φ induced by f on the Néron-Severi group of Σ[n] can
only be of the two forms described previously in this section. We look at them
separately.

• φ =

(
A B
C A

)
with (n− 1)C = tB and (n− 1)A2 − tB2 = n− 1.

Assume φ ̸= ± id, i.e. B ̸= 0. Notice that φ, which is the restriction
to NS(Σ[n]) of f∗ ∈ Mon2Hdg(Σ

[n]), maps ample classes to ample classes
(see Proposition 2.4.10). Then, as a consequence of Proposition 3.2.3,
φ(a, 1) = (aA + B, aC + A) ∈ AΣ[n] for any a ≥ n + 2. Moreover, we
have AΣ[n] ⊂ {xh− yδ | x > 0, y > 0}, again by Proposition 3.2.3, so we
deduce A > 0, C > 0 (therefore also B > 0). Instead, since h is not an
ample class, φ(1, 0) = (A,C) /∈ AΣ[n] , which means that (in the plane
NS(Σ[n])R):

AΣ[n] ⊂
{
xh− yδ | y > 0, Ay <

tB

n− 1
x

}
.

Now, the class φ(n+ 2, 1) = ((n+ 2)A+B, (n+ 2)C +A) needs to be in
the ample cone, but it does not satisfy the inequality Ay < tB

n−1x (because

of the property (n− 1)A2 − tB2 = n− 1 > 0), so we get a contradiction:
φ cannot be of this form, unless φ = id (we have to exclude φ = − id,
because it does not preserve the ample cone).

• φ =

(
A B
−C −A

)
with (n− 1)C = tB and (n− 1)A2 − tB2 = n− 1.

We proceed as in the previous case: the classes φ(a, 1) = (aA+B,−aC−A)
are ample for any a ≥ n+2, so A > 0 and C < 0 (thus also B < 0; notice
that we cannot have C = 0, otherwise φ(a, 1) would not be in the ample
cone, for any positive a). In particular, all the rays through the classes
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φ(a, 1), for a ≥ n+ 2, are contained in the ample cone AΣ[n] . Passing to
the limit a→ +∞, the ray through (A,−C) must be in the closure of the
cone, so

AΣ[n] ⊃ F :=

{
xh− yδ | y > 0, Ay < − tB

n− 1
x

}
.

To conclude, we observe that φ(1, 0) = (A,−C) /∈ AΣ[n] , because h is not
ample, so we also have AΣ[n] ⊂ F . �

3.3. The automorphism group of Σ[n]

The aim of this section is to classify the group structure of Aut(Σ[n]) and to
determine some preliminary numerical conditions for the existence of a non-trivial
automorphism.

We recall that, if Σ is a projective K3 surface with Pic(Σ) = ZH, H2 = 2t,
the automorphism group Aut(Σ) is trivial if t ≥ 2. Instead, if t = 1 there exists a
double covering Σ → P2, which is ramified over a smooth curve of degree six, and
Aut(Σ) = {id, ι}, where ι is the (non-symplectic) covering involution (see [93, §5]
and [53, Corollary 15.2.12]). Proposition 3.2.4 allows us to provide a result on the
order of the automorphism group Aut(Σ[n]).

Proposition 3.3.1. Let Σ be an algebraic K3 surface with Pic(Σ) = ZH,
H2 = 2t. If t ≥ 2, the automorphism group Aut(Σ[n]) is either trivial or isomorphic
to Z/2Z, generated by a non-natural, non-symplectic involution.

Proof. The map λ : Aut(Σ[n]) → O(H2(Σ[n],Z)), sending an automorphism
of Σ[n] to its action on the second cohomology lattice, is injective by Theorem 2.5.2.
Instead, if we only consider Ψ : Aut(Σ[n]) → O(NS(Σ[n])), f ↦→ f∗|NS(Σ[n]), its

kernel is the set of natural automorphisms (generalization of [20, Lemma 2.4], using
Theorem 2.5.7). Under the hypothesis t ≥ 2, the identity is the only automorphism
of Σ, therefore Aut(Σ[n]) is in one-to-one correspondence with the image of Ψ, which
is either trivial or generated by an isometry of order two, by Proposition 3.2.4.
If Aut(Σ[n]) contains an involution f , then it is non-natural and non-symplectic:

in fact, if it were symplectic the co-invariant lattice Sf =
(
H2(Σ[n],Z)f∗)⊥ ⊂

H2(Σ[n],Z) would be contained in NS(Σ[n]) and it would be of rank eight (see
Proposition 2.5.5 and [76, Corollary 5.1]), while here rk(NS(Σ[n])) = 2. �

Remark 3.3.2. If t = 1, the map Ψ is no longer injective: ker(Ψ) =
{
id, ι[n]

}
,

where ι[n] is the natural (non-symplectic) automorphism of order two induced
by the covering involution ι ∈ Aut(Σ). Nevertheless, any automorphism f ∈
Aut(Σ[n]) \ ker(Ψ) is a non-natural, non-symplectic involution and the quotient
Aut(Σ[n])/ ker(Ψ) is either trivial or isomorphic to Z/2Z, following the proof of
Proposition 3.3.1.

Let now f ∈ Aut(Σ[n]) be a non-natural automorphism (that is, if t ≥ 2,
any non-trivial automorphism). As we showed in Proposition 3.2.4, f induces an
isometry of NS(Σ[n]) of the form

(10) φ =

(
A B
−C −A

)
, (n− 1)C = tB, (n− 1)A2 − tB2 = n− 1

with coefficients A > 0, B < 0, C < 0 uniquely determined by the ample cone AΣ[n] .
One can check that this isometry is the reflection of the Néron-Severi lattice in

the line spanned by the class of coordinates (−B,A− 1). As it was done in [20] for
the case n = 2, we denote by (b, a) the primitive generator of this line: in particular,
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(b, a) := 1
d (−B,A−1), with d = gcd(−B,A−1). By computing explicitly the matrix

of the reflection whose fixed line is ⟨(b, a)⟩, we find the relations

(11) A =
tb2 + (n− 1)a2

tb2 − (n− 1)a2
, B = − 2ab(n− 1)

tb2 − (n− 1)a2
.

Since f is a non-symplectic involution, the invariant lattice Tf = H2(Σ[n],Z)f∗

is contained in NS(Σ[n]) by Proposition 2.5.5. Thus, Tf is the lattice of rank one

generated by (b, a). Moreover, the transcendental lattice Tr(Σ[n]) is contained in
Sf = T⊥

f , hence f∗|Tr(Σ[n]) = − id, because the non-natural involution f∗ acts as

− id on Sf = ker(id+f∗) (see Section 2.5).

Lemma 3.3.3. Let φ be the isometry of NS(Σ[n]) of the form (10) induced by a
non-natural automorphism f ∈ Aut(Σ[n]) and let bh−aδ be the primitive generator
of the invariant lattice Tf ⊂ NS(Σ[n]). Then:

(i) tb2 − (n− 1)a2 divides b;
(ii) there exists an even negative integer β such that B = (n− 1)β.

Proof. The isometry f∗ ∈ O(H2(Σ[n],Z)) has restrictions f∗|NS(Σ[n]) = φ and

f∗|Tr(Σ[n]) = − idTr(Σ[n]). As we saw in Example 2.2.4, the following isometry of
lattices holds:

H2(Σ[n],Z) ∼= Ln = U⊕3 ⊕ E⊕2
8 ⊕ ⟨−2(n− 1)⟩.

We embed NS(Σ[n]) = Zh⊕Z(−δ) inside Ln by mapping h to e1+te2 (where {e1, e2}
is a basis for the first summand U) and −δ to the generator g of the component
⟨−2(n−1)⟩. We take {e1 + te2, e2, g} as a basis for the lattice U⊕⟨−2(n−1)⟩, which
contains NS(Σ[n]) as a sublattice of rank two. Notice that w := e1 − te2 belongs to
the transcendental lattice, therefore f∗(w) = −w. By writing w = (e1 + te2)− 2te2
we compute:

2tf∗(e2) = (A+ 1)(e1 + te2)− 2te2 − Cg

which can also be written, using relations (11), as

f∗(e2) =
b2

tb2 − a2(n− 1)
(e1 + te2)− e2 +

ab

tb2 − a2(n− 1)
g.

Since the coefficients of this expression need to be integers, tb2−(n−1)a2 divides
gcd(b2, ab) = b. Also notice that, due to the condition (n − 1)A2 − tB2 = n − 1,
we have: d(tb2 − a2(n− 1)) = 2a(n− 1). Therefore, since ab

tb2−a2(n−1) is integer, by

multiplying both numerator and denominator by d we deduce that 2(n− 1) divides
B = −db < 0. �

Using Lemma 3.3.3, we can determine the group Aut(Σ[n]) in some cases where
we have a simple description of the nef cone of Σ[n].

Proposition 3.3.4. Let Σ be an algebraic K3 surface with Pic(Σ) = ZH,
H2 = 2t, t ≥ 1. If n ≥ t+3

2 , all automorphisms of Σ[n] are natural.

Proof. Let f ∈ Aut(Σ[n]) be a non-natural automorphism. Its action on
NS(Σ[n]) is non-trivial, therefore it is an isometry of the form (10), by Proposition
3.2.4. In particular, Nef(Σ[n]) is generated over R+ by h and (n − 1)Ah + tBδ.
However, if n ≥ t+3

2 we also have the description of the nef cone given in [8,

Proposition 10.3]: it is generated by h and h− 2t
t+nδ. Thus, we need the two classes

(n− 1)Ah+ tBδ and h− 2t
t+nδ to be proportional, i.e.

(n− 1)A

t+ n
= − tB

2t
.
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By using relations (11), this becomes tb2 + (n− 1)a2 = (t+ n)ab, therefore

tb2 − (n− 1)a2 = (t+ n)ab− 2(n− 1)a2 = a((t+ n)b− 2(n− 1)a).

As we proved in Lemma 3.3.3, tb2 − (n − 1)a2 divides b. However, from the
last expression for tb2 − (n − 1)a2, this implies a | b, so necessarily a = 1, since
gcd(a, b) = 1 by definition (also, a and b are both positive).

Therefore, b is an integer solution of the equation:

tb2 − (t+ n)b+ n− 1 = 0.

Assuming n ≥ 2, a simple computation shows that this equation admits an
integer solution only if n is odd and n + 1 = 2t: in this case, b = 2. However, if
that is the case we have tb2 − (n − 1)a2 = 2t + 2, which does not divide b = 2 for
any t ≥ 1, thus we get a contradiction. �

Notice that the condition n ≥ t+3
2 is satisfied by all values n ≥ 2 when t = 1,

therefore the case t = 1 is now completely resolved. If instead t ≥ 2, we already
know from Proposition 3.3.1 that there are no non-trivial natural automorphisms
on Σ[n].

Corollary 3.3.5. Let Σ be an algebraic K3 surface with Pic(Σ) = ZH,
H2 = 2t and let n ≥ 2.

• If t = 1, then Aut(Σ[n]) =
{
id, ι[n]

}
, where ι[n] is the natural involution

induced by the covering involution ι ∈ Aut(Σ).
• If 2 ≤ t ≤ 2n− 3, then Aut(Σ[n]) = {id}.

From now on, we will assume t ≥ 2. In Proposition 3.3.1 and Lemma 3.3.3 we
proved that the isometry φ ∈ O(NS(Σ[n])) induced by a non-trivial automorphism
of Σ[n] is of the form (10) with B = (n− 1)β and β < 0 even. We therefore rewrite
the matrix of φ and the conditions on its coefficients in the following way:

(12) φ =

(
A (n− 1)β

−tβ −A

)
, with A2 − t(n− 1)β2 = 1, A > 0, β < 0 even

and with AΣ[n] = {xh− yδ | y > 0, Ay < −tβx}. We will return to numerical con-
ditions for the existence of an automorphism on Σ[n] in Section 3.5.

3.4. Invariant polarizations

In this section we study the properties of the generator of the invariant lattice
of a non-natural involution on Σ[n] and, vice versa, we show that the existence
of an ample divisor in NS(Σ[n]) with such properties guarantees that Aut(Σ[n]) is
non-trivial.

Recall that the divisibility of an element l in a lattice L is the positive generator
of the ideal (l, L) ⊂ Z. For the remaining of the chapter, the notation div(x) will
always refer to the divisibility in the lattice H2(Σ[n],Z) ∼= Ln, even if the element
x is stated to belong to a proper sublattice of H2(Σ[n],Z), such as NS(Σ[n]).

Proposition 3.4.1. Let Σ be an algebraic K3 surface with Pic(Σ) = ZH,
H2 = 2t, t ≥ 2 and f ∈ Aut(Σ[n]) an involution. Let ν be the primitive generator
of the rank one invariant lattice Tf ⊂ H2(Σ[n],Z). Then one of the following holds:

• f∗ acts as − id on the discriminant group of H2(Σ[n],Z) and (ν, ν) = 2;
• −1 is a quadratic residue modulo n− 1, f∗ acts as id on the discriminant
group of H2(Σ[n],Z), (ν, ν) = 2(n− 1) and div(ν) = n− 1.

Proof. The generator ν of Tf coincides with the ample class bh−aδ ∈ NS(Σ[n])
defined in Section 3.3. We recall that f∗|NS(Σ[n]) is the reflection fixing the line ⟨ν⟩,
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while f∗ acts as − id on Tr(Σ[n]), therefore f∗ can also be regarded as the opposite
of the reflection of H2(Σ[n],Z) defined by ν, i.e.

(13) f∗ = −Rν : H2(Σ[n],Z) → H2(Σ[n],Z), m ↦→ 2
(m, ν)

(ν, ν)
ν −m.

Moreover, f∗ is a monodromy operator, therefore by Proposition 2.3.8 we have

f∗ ∈ Õ+(Ln) :=
{
ψ ∈ O+(Ln) | ψ = ± id

}
where O+(Ln) ⊂ O(Ln) is the subgroup of orientation-preserving isometries and ψ
denotes the isometry of the discriminant group ALn induced by ψ (see Section 1.4).

The elements l ∈ Ln such that Rl = id or (−Rl) = id were studied in [44,
Proposition 3.1], [44, Proposition 3.2] respectively. By applying these results, and
observing that ν has square (ν, ν) = 2(tb2 − (n − 1)a2) > 0, we can conclude the
following:

(i) if f∗ = − id, then (ν, ν) = 2;
(ii) if f∗ = id, then (ν, ν) = 2(n− 1) and div(ν) = n− 1 or div(ν) = 2(n− 1).

We deduce that the square of the generator of the invariant lattice Tf can only
be 2 or 2(n − 1). The existence of a primitive element l ∈ Ln with given square
and divisibility depends on whether some arithmetic conditions are satisfied: this
is proved in [45, Proposition 3.6], where an explicit description of the lattice l⊥ is
also provided. Using this result we find out that case (ii) is admissible only if −1 is
a quadratic residue modulo n− 1 and the divisibility of ν is n− 1. This concludes
the proof. �

Remark 3.4.2. By Proposition 3.4.1, the square of ν = bh− aδ can be deter-
mined by looking at the action of f∗ on ALn . A generator for ALn

∼= A⟨−2(n−1)⟩
is given by the equivalence class, in the quotient L∨

n/Ln, of − δ
2(n−1) ∈ Ln ⊗ Q,

because −δ is the generator of the summand ⟨−2(n− 1)⟩ in Ln, via the embedding
NS(Σ[n]) ↪→ Ln presented in the proof of Lemma 3.3.3. Thus, since f∗|NS(Σ[n]) = φ

has the form (12), we obtain:

f∗
(
− δ

2(n− 1)

)
=

1

2(n− 1)
((n− 1)βh−A(−δ)) ≡ − A

2(n− 1)
(−δ) (mod Ln)

where we used the fact that β is even, by Lemma 3.3.3. On the other hand, we
know that f∗ acts as ± id on ALn , being a monodromy operator, hence either A+1
or A − 1 is divisible by 2(n − 1). In particular, if 2(n − 1) divides A − 1, then
f∗ = − id and ν has square 2; instead, if 2(n− 1) divides A+1 then f∗ = + id and
ν has square 2(n− 1). Notice that 2(n− 1) can divide both A− 1 and A+ 1 only
for n = 2: in this case, − id = + id on AL2

∼= Z/2Z and ν has square 2 = 2(n− 1),
as already stated in Theorem 3.0.1.

By Proposition 3.4.1, if t ≥ 2 and Aut(Σ[n]) ̸= {id} there exists a primitive
ample class ν ∈ NS(Σ[n]) with (ν, ν) = 2 or (ν, ν) = 2(n − 1), div(ν) = n − 1. We
now show that the converse holds for any manifold of K3[n]-type.

Proposition 3.4.3. Let X be an irreducible holomorphic symplectic manifold
deformation equivalent to the Hilbert scheme of n points on a K3 surface, n ≥ 2.
Then X admits a non-symplectic involution if there exists a primitive ample class
ν ∈ NS(X) with either

• (ν, ν) = 2, or
• (ν, ν) = 2(n− 1) and div(ν) = n− 1.

Proof. Let γ := −Rν ∈ O(H2(X,Q)) be the opposite of the reflection defined
by ν, as in (13). If ν is an element as in the statement, γ defines an integral isometry
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γ ∈ O(H2(X,Z)). Moreover, γ induces ± id on the discriminant group of H2(X,Z)
by [44, Proposition 3.1, Proposition 3.2] and it belongs to O+(H2(X,Z)) because
γ = −Rν with (ν, ν) > 0 (see [71, §9]). This implies that γ is a monodromy
operator by Proposition 2.3.8. Let ωX be the everywhere non-degenerate closed
two-form on X which generates H2,0(X). After extending γ to H2(X,C) by C-
linearity, γ(ωX) = −ωX , since ωX belongs to NS(X)⊥, thus γ is an isomorphism
of integral Hodge structures. Moreover, γ preserves the Kähler cone of X, because
it fixes the ample class ν: by Theorem 2.3.11 we can conclude that there exists an
automorphism f ∈ Aut(X) whose action on H2(X,Z) is γ. In particular, f is a
non-symplectic involution, since the map λ : Aut(X) → O(H2(X,Z)) is injective
and γ(ωX) = −ωX . �

Remark 3.4.4. If Σ is a K3 surface with Picard number one and X = Σ[n],
the non-symplectic involution f ∈ Aut(X) constructed in the proof of Proposition
3.4.3 is non-natural, since its action on NS(Σ[n]) is non-trivial. As a consequence,
using also Proposition 3.4.1, the existence of a primitive ample class with square
2, or with square 2(n− 1) and divisibility n− 1, is equivalent to the existence of a
non-symplectic, non-natural involution.

3.5. Numerical conditions

In this last section of the chapter we apply the divisorial results of Section 3.4
to provide a completely numerical characterization for the existence of a non-trivial
automorphism on Σ[n].

Proposition 3.5.1. Let Σ be an algebraic K3 surface with Pic(Σ) = ZH,
H2 = 2t, t ≥ 2. If Aut(Σ[n]) ̸= {id}, then t(n − 1) is not a square and, if n ̸= 2,
the equation (n − 1)X2 − tY 2 = 1 has no integer solutions. The minimal solution
(z, w) of Pell’s equation X2 − t(n − 1)Y 2 = 1 with z ≡ ±1 (mod n − 1) satisfies
w ≡ 0 (mod 2) and z ≡ ±1 (mod 2(n− 1)). Moreover,

Nef(Σ[n]) = Mov(Σ[n]) = ⟨h, zh− twδ⟩.
The automorphism group of Σ[n] is generated by a non-natural, non-symplectic
involution whose action on NS(Σ[n]) = Zh⊕ Z(−δ) is given by the matrix(

z −(n− 1)w
tw −z

)
.

Proof. If the automorphism group is non-trivial, by Proposition 3.3.1 it is
generated by a non-natural, non-symplectic involution whose action on NS(Σ[n])
is of the form (12). In particular, the pair (A, β) is a solution of Pell’s equation
X2 − t(n − 1)Y 2 = 1 with β ̸= 0: as a consequence, t(n − 1) cannot be a square
(as we remarked in Section 3.1.1). Moreover, since the action of the involution on
NS(Σ[n]) is non-trivial, it needs to exchange the two extremal rays of Mov(Σ[n]),
which therefore need to be of the same type with respect to the classification of
walls of Theorem 2.4.13. The extremal ray generated by h corresponds to a wall
θ(v⊥n ∩ a⊥) with a ∈ H∗

alg(Σ,Z) isotropic such that (vn, a) = 1: in [7, Theorem 5.7]
it is referred to as a wall of Hilbert–Chow type, since the corresponding divisorial
contraction is the Hilbert–Chow morphism Σ[n] → Σ(n). Thus, the second wall of
Mov(Σ[n]) needs to be of this type too. This happens if and only if Mov(Σ[n]) is as
in case (iii) of Theorem 3.1.6, where in particular (by Lemma 3.1.5) we need to ask
that the minimal solution (z, w) of X2 − t(n− 1)Y 2 = 1 with z ≡ ±1 (mod n− 1)
is such that w is even and z ≡ ±1 (mod 2(n− 1)). If so, Mov(Σ[n]) is the interior
of the cone spanned by h and zh− twδ (Theorem 3.1.6).

We know that AΣ[n] = {xh− yδ | y > 0, Ay < −tβx}, with β < 0 even and
A > 0, therefore the two extremal rays of the nef cone are generated by h and
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Ah− t(−β)δ. Moreover, either A+ 1 or A− 1 is divisible by 2(n− 1) by Remark

3.4.2, meaning A ≡ ±1 (mod (n−1)). Since Nef(Σ[n]) ⊂ Mov(Σ[n]), the minimality

of the slope w
z implies A = z, β = −w, thus Nef(Σ[n]) = Mov(Σ[n]). �

Remark 3.5.2. If n = 2, the equality Nef(Σ[n]) = Mov(Σ[n]) when the auto-
morphism group is non-trivial can be easily deduced from Theorem 3.0.1 and [7,
Lemma 13.3]. In general, for any n, the equality also follows from the fact that the
non-trivial action on NS(Σ[n]) of a biregular involution needs to exchange the two
extremal rays of both Mov(Σ[n]) and Nef(Σ[n]) (see Proposition 2.4.10). Since the
two cones share one of the extremal rays (the wall spanned by h), they share the
other one too.

In order to convert the divisorial results of Section 3.4 into purely numerical
conditions, we will need the following lemma.

Lemma 3.5.3. Let Σ be an algebraic K3 surface with Pic(Σ) = ZH, H2 = 2t,
t ≥ 1. A primitive element ν ∈ NS(Σ[n]) has (ν, ν) = 2(n− 1) and div(ν) = n− 1
if and only if it is of the form ν = (n− 1)Y h−Xδ, for a solution (X,Y ) of Pell’s
equation X2 − t(n− 1)Y 2 = −1.

Proof. Assume that there exists ν = yh− xδ ∈ NS(Σ[n]) as in the statement:
since (ν, ν) = −2((n − 1)x2 − ty2) = 2(n − 1), we deduce that (x, y) is an integer
solution of (n − 1)X2 − tY 2 = −(n − 1). The canonical embedding of NS(Σ[n])
inside H2(Σ[n],Z) ∼= U⊕3⊕E⊕2

8 ⊕⟨−2(n−1)⟩ (see the proof of Lemma 3.3.3) maps
ν to y(e1 + te2) + xg, where {e1, e2} is a basis for one of the summands U and g
generates ⟨−2(n−1)⟩. Notice that, with respect to the bilinear form on H2(Σ[n],Z),
we have (ν, e2) = y, therefore y is a multiple of div(ν) = n − 1. We conclude that
(x, y

n−1 ) is an integer solution of X2 − t(n− 1)Y 2 = −1.

Conversely, assume that X2− t(n−1)Y 2 = −1 admits integer solutions and let
(X,Y ) be one of them. We set ν := (n − 1)Y h −Xδ ∈ NS(Σ[n]): it is a primitive
class of square 2(n− 1). Via the usual embedding NS(Σ[n]) ↪→ H2(Σ[n],Z), which
maps ν to (n− 1)Y (e1 + te2) +Xg, we can easily compute the ideal{

(ν,m) | m ∈ H2(Σ[n],Z)
}
= {(n− 1)(Y p− 2Xq) | p, q ∈ Z} ⊂ Z.

From this description it is clear that (n−1) | div(ν). Moreover, since div(ν) | (ν, ν),
we conclude that div(ν) = n− 1 if Y is odd, while div(ν) = 2(n− 1) if Y is even.
However, there are no solutions (X,Y ) of X2− t(n−1)Y 2 = −1 with Y even, since
−1 is not a quadratic residue modulo 4, thus div(ν) = n− 1. �

We can now state and prove our main result.

Theorem 3.5.4. Let Σ be an algebraic K3 surface with Pic(Σ) = ZH, H2 =
2t, t ≥ 2 and n ≥ 2. Let (z, w) be the minimal solution of Pell’s equation
X2 − t(n− 1)Y 2 = 1 with z ≡ ±1 (mod n− 1). The Hilbert scheme Σ[n] admits a
(non-symplectic, non-natural) involution if and only if

(i) t(n− 1) is not a square;
(ii) if n ̸= 2, the equation (n− 1)X2 − tY 2 = 1 has no integer solutions;
(iii) for all integers ρ, α as follows:

(a) ρ = −1 and 1 ≤ α ≤ n− 1, or
(b) ρ = 0 and 3 ≤ α ≤ n− 1, or

(c) 1 ≤ ρ < n−1
4 and max

{
4ρ+ 1,

⌈
2
√
ρ(n− 1)

⌉}
≤ α ≤ n− 1

if Pell’s equation

X2 − 4t(n− 1)Y 2 = α2 − 4ρ(n− 1)
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is solvable, the minimal solution (X,Y ) with X ≡ ±α (mod 2(n − 1))
satisfies Y

X ≥ w
2z ;

(iv) there exist integer solutions either for the equation (n− 1)X2 − tY 2 = −1
or for the equation X2 − t(n− 1)Y 2 = −1.

Proof. By Proposition 3.5.1, if there exists a non-trivial automorphism on Σ[n]

then t(n−1) is not a square and, if n ≥ 3, the equation (n−1)X2− tY 2 = 1 has no

integer solutions. Moreover, Nef(Σ[n]) = Mov(Σ[n]) = ⟨h, zh − twδ⟩. The equality

Nef(Σ[n]) = Mov(Σ[n]) implies that there are no flopping walls inside Mov(Σ[n]). In
Section 3.1.2 we recalled the description of the elements a ∈ H∗

alg(Σ,Z) such that

θ(v⊥n ∩ a⊥) is a flopping wall. By Lemma 3.1.5, the existence of a similar algebraic
Mukai vector a corresponds to the existence of an integer solution (X,Y ) with
X ≡ ±α (mod 2(n−1)) to one of Pell’s equationsX2−4t(n−1)Y 2 = α2−4ρ(n−1),
where the possible values of a2 = 2ρ and (vn, a) = α are listed in Remark 2.4.15. In
particular, a solution (X,Y ) for one of these equations yields the wall generated by
Xh− 2tY δ: this wall lies in the movable cone if and only if X,Y > 0 and Y

X < w
2z .

By Remark 3.1.2, we can restrict to consider the equations where the RHS term
α2 − 4ρ(n − 1) is positive. In fact, since w is even by Proposition 3.5.1, the pair
(z, w2 ) is the minimal solution of X2 − 4t(n− 1)Y 2 = 1, therefore

w

2z
=

√
1

4t(n− 1)
− 1

4t(n− 1)z2

is strictly inferior to Y
X =

√
1

4t(n−1) −
m

4t(n−1)X2 for all solutions (X,Y ) of Pell’s

equation X2 − 4t(n− 1)Y 2 = m, if m ≤ 0. We also notice that, for each equation
with α2 − 4ρ(n − 1) > 0, it is sufficient to check whether the wall defined by the
minimal solution (with X ≡ ±α modulo 2(n − 1)) lies inside the movable cone,
since the other walls corresponding to positive solutions of the same equation will
all have greater slopes (Remark 3.1.2).

Finally, if Σ[n] admits an involution then, by Proposition 3.4.1, there exists
a primitive element ν ∈ NS(Σ[n]) with either (ν, ν) = 2 or (ν, ν) = 2(n − 1) and
div(ν) = n− 1. If we write ν = bh− aδ, we have (ν, ν) = −2((n− 1)a2 − tb2).

• If (ν, ν) = 2, then (a, b) is an integer solution of (n− 1)X2 − tY 2 = −1.
• If (ν, ν) = 2(n − 1) and div(ν) = n − 1, then by Lemma 3.5.3 (a, b

n−1 ) is

an integer solution of X2 − t(n− 1)Y 2 = −1.

We now want to show that the numerical conditions in the statement are suf-
ficient to prove the existence of a non-trivial automorphism on Σ[n]. By Theorem
3.1.6, from hypotheses (i) and (ii) we deduce that the closure of the movable cone

of Σ[n] is Mov(Σ[n]) = ⟨h, zh − twδ⟩, with (z, w) as in the statement. Moreover,
as we explained in the first part of the proof, hypothesis (iii) guarantees that all
classes in the movable cone are ample, i.e.

(⋆) AΣ[n] = Mov(Σ[n]) = {xh− yδ | y > 0, zy < twx} .

• If (n−1)X2− tY 2 = −1 admits integer solutions, let (a, b) be the positive
solution with minimal X. By Lemma 3.1.3 the minimal solution of Pell’s
equationX2−t(n−1)Y 2 = 1 is (Z,W ) =

(
2(n− 1)a2 + 1, 2ab

)
. Notice, in

particular, that Z ≡ 1 (mod n− 1), therefore (z, w) = (Z,W ). Moreover,
w = 2ab is even and z ≡ 1 (mod 2(n − 1)): this implies, as explained in
the proof of Proposition 3.5.1, that both the extremal rays of the movable
cone correspond to divisorial contractions of Hilbert–Chow type. We now
set ν := bh − aδ ∈ NS(Σ[n]), which is a primitive class of square 2. In
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particular ν is ample, using (⋆), because a > 0 and

za− twb = a(2(n− 1)a2 + 1− 2tb2) = −a < 0.

• If instead there are integer solutions for X2 − t(n− 1)Y 2 = −1, let (a, b)
be again the minimal one. By Lemma 3.1.3 the minimal solution of Pell’s
equation X2 − t(n − 1)Y 2 = 1 is (Z,W ) = (2a2 + 1, 2ab). Here Z ≡ −1
(mod n− 1), since a2 = t(n− 1)b2 − 1, therefore (z, w) = (Z,W ) with w
even and z ≡ −1 (mod 2(n − 1)). Let ν := (n − 1)bh − aδ ∈ NS(Σ[n]):
by Lemma 3.5.3 it is a primitive class of square 2(n − 1) and divisibility
n− 1. Moreover ν is ample, using the description (⋆), because a > 0 and

za− tw(n− 1)b = a(2a2 + 1− 2t(n− 1)b2) = −a < 0.

Therefore, if one of the two equations in hypothesis (iv) admits integer so-
lutions, we can construct a primitive ample class ν with either (ν, ν) = 2 or
(ν, ν) = 2(n − 1) and div(ν) = n − 1. We conclude, by Proposition 3.4.3 and
Remark 3.4.4, that the Hilbert scheme Σ[n] admits a non-symplectic, non-natural
involution, which acts on H2(Σ[n],Z) as −Rν . �

Remark 3.5.5. In the proof of Theorem 3.5.4 we showed that, if condition (iv)
holds, then the solution (z, w) of X2 − t(n− 1)Y 2 = 1 appearing in the statement
is the minimal solution of the equation and z ≡ ±1 (mod 2(n− 1)). Using formula
(8) we deduce that all solutions of Pell’s equation X2 − 4t(n − 1)Y 2 = 1 have
X ≡ ±1 (mod 2(n − 1)), since (z, w2 ) is the minimal solution. As a consequence,
applying again (8), the congruence class modulo 2(n − 1) of X is constant (up to
sign) for all solutions (X,Y ) of X2 − 4t(n − 1)Y 2 = α2 − 4ρ(n − 1) in the same
equivalence class (see Section 3.1.1). Therefore, if there exist solutions (X,Y ) of
X2 − 4t(n − 1)Y 2 = α2 − 4ρ(n − 1) with X ≡ ±α (mod 2(n − 1)), there is also a
fundamental solution with this property. Moreover, by Remark 3.1.4, the minimal
solution (X,Y ) of this type has slope Y

X strictly inferior to w
2z . In order to verify

if hypothesis (iii) of Theorem 3.5.4 holds, it is therefore sufficient to check that
4t(n−1)Y 2+α2−4ρ(n−1) is not the square of an integer X ≡ ±α (mod 2(n−1))

for all integers Y such that 1 ≤ Y ≤
√

(z−1)(α2−4ρ(n−1))
8t(n−1) and ρ, α as in the statement

of the theorem.

Remark 3.5.6. For n = 2, Theorem 3.5.4 coincides with part (i) of Theorem
3.0.1. In fact, the only equation that needs to be considered in condition (iii) of
Theorem 3.5.4 is X2 − 4tY 2 = 5, corresponding to ρ = −1, α = 1. If there ex-
ist integer solutions (X,Y ) for this equation, they all have X odd, i.e. X ≡ ±α
(mod 2(n − 1)), and the minimal solution satisfies Y

X < w
2z (Remark 3.1.4). Con-

dition (iii) of Theorem 3.5.4 is therefore equivalent to asking that Pell’s equation
X2 − 4tY 2 = 5 has no solutions, as requested in Theorem 3.0.1.

As an application of Theorem 3.5.4, we prove that for any n ≥ 2 there exist
infinitely many values of t such that Σ[n] admits a non-symplectic involution f with
Tf ∼= ⟨2⟩. In order to do so, we consider a specific sequence of integers {tn,k}k∈N
and we show that all these tn,k’s are admissible if k is sufficiently large.

Proposition 3.5.7. Let Σ be an algebraic K3 surface with Pic(Σ) = ZH,
H2 = 2t and assume t = (n−1)k2+1 for k, n positive integers, n ≥ 2. If k ≥ n+3

2 ,

there exists a non-symplectic involution f ∈ Aut(Σ[n]) with Tf ∼= ⟨2⟩.

Proof. We need to verify that the four conditions of Theorem 3.5.4 are satis-
fied. If t = (n− 1)k2 +1, for k ∈ N, it is easy to check that t(n− 1) is not a square
and that (X,Y ) = (k, 1) is a solution of Pell’s equation (n− 1)X2 − tY 2 = −1.
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Moreover, if n ≥ 3 the equation (n−1)X2−tY 2 = 1 has no integer solutions. In
fact, if the equation was solvable we would be able to find solutions of Pell’s equation
X2 − t(n− 1)Y 2 = n− 1 with X ≡ 0 (mod n− 1). Since t(n− 1) > (n− 1)2, the
primitive solutions of this new equation are among the convergents of the continued
fraction expansion of

√
t(n− 1) (see for instance [34, Chapter XXXIII, §16]), which

is √
t(n− 1) =

[
k(n− 1); 2k, 2k(n− 1)

]
.

The evaluation of X2 − t(n − 1)Y 2 on the convergents (X,Y ) of
√
t(n− 1)

is periodic with the same period of the continued fraction, i.e. two, and it has
alternately values −n + 1 and 1. As a consequence, X2 − t(n − 1)Y 2 = n − 1 has
solutions only if n − 1 = h2, with h ∈ N, and in this case the only fundamental
solution is (h, 0). Knowing the convergents of

√
t(n− 1) we can determine the

minimal solution of X2 − t(n − 1)Y 2 = 1, which is (z, w) = (2k2(n − 1) + 1, 2k).
Since z ≡ 1 (mod n− 1), we conclude (using formula (8)) that all solutions (X,Y )
of X2− t(n−1)Y 2 = n−1 have X ≡ h (mod n−1): in particular, this congruence
class is never zero, because h2 = n− 1 with n ≥ 3.

It remains to check whether condition (iii) of Theorem 3.5.4 holds. Assuming
k ≥ n+3

2 , we have 4t(n−1) > (α2−4ρ(n−1))2 for all α, ρ as in the statement of the

theorem (notice that α2− 4ρ(n− 1) can be at most (n− 1)2+4(n− 1)). As before,
from this condition we deduce that the solutions ofX2−4t(n−1)Y 2 = α2−4ρ(n−1)
are encoded in the convergents of the continued fraction of√

4t(n− 1) =
[
2k(n− 1); k, 4k(n− 1)

]
.

The quadratic form X2−4t(n−1)Y 2 takes values −4(n−1) and 1, respectively,
on the first two convergents. As a consequence, if Pell’s equationX2−4t(n−1)Y 2 =
α2−4ρ(n−1) is solvable, then α2−4ρ(n−1) = h2 for some h ∈ N and the minimal
solution is (X,Y ) = (hz, hw2 ), with (z, w2 ) the minimal solution of Pell’s equation

X2 − 4t(n − 1)Y 2 = 1. Since Y
X = w

2z , if the solution (X,Y ) defines a wall in the

positive cone of Σ[n], this wall does not intersect the interior of the movable cone.
Hence, condition (iii) is satisfied. �

To conclude, we provide a list of the first values of t such that there exists a
non-natural automorphism f ∈ Aut(Σ[n]), for 2 ≤ n ≤ 12 (more details on the case
n = 2 can be found in [20]). By Corollary 3.3.5 we have t ≥ 2n− 2. In particular,
if −1 is a quadratic residue modulo n− 1 we know, by Proposition 3.4.1, that the
generator of the invariant lattice Tf can either have square 2 or 2(n− 1): for these
values of n we determine the smallest t in each of the two cases.

n first t s.t.
Tf ∼= ⟨2⟩

first t s.t.
Tf ∼= ⟨2(n− 1)⟩

2 2
3 19 13
4 19 /
5 37 /
6 46 34
7 55 /
8 64 /
9 73 /
10 82 /
11 91 73
12 100 /
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For n = 3, in [47, Example 14] Hassett and Tschinkel proved the existence of
a non-natural automorphism f ∈ Aut(Σ[3]) with Tf ∼= ⟨2⟩ when Σ is a K3 surface
with Pic(Σ) = ZH, H2 = 114 (i.e. t = 57). However, as shown in the table above,
this is not the smallest t for which a similar automorphism exists on Σ[3].

We notice an interesting pattern in the second column of the table: except
for n = 2 and n = 4, the first value of t such that there exists an automorphism
f ∈ Aut(Σ[n]) with invariant lattice Tf ∼= ⟨2⟩ is always of the form t = 9n− 8. In
particular, this is one of the values of t considered in Proposition 3.5.7, correspond-
ing to k = 3. We conjecture that this value of t is admissible for all n ≥ 3. If so, the
lower bound on k provided in Proposition 3.5.7 for the existence of the non-natural
involution might be significantly improved. By Theorem 3.5.4, this is equivalent to
proving the following number theoretical conjecture.

Conjecture 3.5.8. For all integers n ≥ 3:

• the equation (n− 1)X2 − (9n− 8)Y 2 = 1 has no integer solutions;
• Pell’s equation X2 − 4(9n− 8)(n− 1)Y 2 = α2 − 4ρ(n− 1) has no positive

solutions with X ≡ ±α (mod 2(n − 1)) and Y
X < 3

18n−17 , for all integers
ρ, α as follows:
(1) ρ = −1 and 1 ≤ α ≤ n− 1, or
(2) ρ = 0 and 3 ≤ α ≤ n− 1, or

(3) 1 ≤ ρ < n−1
4 and max

{
4ρ+ 1,

⌈
2
√
ρ(n− 1)

⌉}
≤ α ≤ n− 1.





CHAPTER 4

Non-symplectic automorphisms of odd prime
order on manifolds of K3[n]-type

The aim of this chapter is to classify non-symplectic automorphisms of odd
prime order on irreducible holomorphic symplectic manifolds which are deforma-
tions of Hilbert schemes of any number n of points onK3 surfaces, extending results
already known for n = 2 (see [17]). In order to do so, we study the properties of the
invariant lattice of the automorphism (and its orthogonal complement) inside the
second cohomology lattice of the manifold. We also explain how to construct auto-
morphisms with specific actions on cohomology and, for n = 4, we present a geomet-
ric construction of non-symplectic automorphisms on the Lehn–Lehn–Sorger–van
Straten eightfold, which come from automorphisms of the underlying cubic fourfold.
These results, which appear in the paper [29], are the product of a collaboration
with Chiara Camere.

4.1. Monodromies induced by automorphisms of odd prime order

In this section we explain how to classify, for any n, the isometry classes of the
invariant and co-invariant lattices by use of numerical parameters related to their
signatures and lengths. This classification is explicitly discussed for n = 3, 4 in
Section 4.1.4. Moreover, in Section 4.1.3 we study in greater depth the cases where
the invariant lattice has rank one.

4.1.1. Discriminant groups of invariant and co-invariant sublattices.
Let X be a manifold of K3[n]-type with an action of a finite group G = ⟨σ⟩, where
σ is a non-symplectic automorphism of prime order p ≥ 3. In particular, p can
be at most 23, since this is the rank of the lattice H2(X,Z) (see Example 2.2.4).
Following the notation of Section 2.5, we will denote by T = Tσ = H2(X,Z)σ∗

the
invariant sublattice of H2(X,Z) and by S = Sσ = T⊥ ⊂ H2(X,Z) the co-invariant
lattice.

Remark 4.1.1. After choosing a marking

η : H2(X,Z) → Ln = U⊕3 ⊕ E⊕2
8 ⊕ ⟨−2(n− 1)⟩

the invariant and co-invariant lattices of an automorphism ofX can also be regarded
as primitive sublattices T, S ⊂ Ln. We point out that a different marking η′ will
produce a pair of sublattices (T ′, S′) of Ln which is isomorphic to (T, S) in the
sense of Definition 1.4.3. For this reason, we are interested in classifying the pairs
(T, S) only up to isomorphisms of primitive sublattices in Ln.

We collect in the next proposition several results proved by Boissière–Nieper-
Wißkirchen–Sarti [21] and Tari [96] (recall also Proposition 2.5.5).

Proposition 4.1.2. Let X be a manifold of K3[n]-type and G = ⟨σ⟩ a group
of prime order p acting non-symplectically on X. Then:

• there exists a positive integer m := mG(X) such that rk(S) = (p− 1)m;
• S has signature (2, (p− 1)m− 2) and T has signature (1, 22− (p− 1)m);

41
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• H2(X,Z)
T⊕S is a p-torsion group, i.e. H2(X,Z)

T⊕S
∼=
(

Z
pZ

)⊕a
for some non-

negative integer a := aG(X);
• a ≤ m.

As we explained in Section 1.4, if we consider T and S as primitive sublattices
of Ln, there exists an isotropic subgroup M ⊂ AT ⊕ AS such that M⊥/M ∼= ALn .
Denoting by pT and pS the two projections from AT⊕AS to AT and AS respectively,
their restrictions toM are injective: the isomorphic images areMT := pT (M) ⊂ AT
and MS := pS(M) ⊂ AS . Since the discriminant groups are finite, we conclude
pa | discr(T ), pa | discr(S). Moreover, qT |MT

∼= −qS |MS
, because of the anti-

isometry γ = pS ◦ (pT )−1|MT
:MT →MS .

Lemma 4.1.3. Let σ be a non-symplectic automorphism of prime order p ≥ 3
of a manifold of K3[n]-type and let ψ = σ∗ ∈ Mon2(Ln). Then:

(i) the action of ψ on M⊥ ⊂ AT ⊕AS is trivial;

(ii) the co-invariant lattice S =
(
(Ln)

ψ
)⊥

is p-elementary.

Proof.

(i) The isometry ψ acts trivially on ALn
∼= M⊥/M , from Proposition 2.3.8

and because ψp = id with p odd (therefore ψ cannot induce − id on
ALn). This implies that, for any element (x, y) ∈ M⊥ ⊂ AT ⊕ AS , we
have ψ(x, y) − (x, y) ∈ M , where ψ ∈ O(ALn) is the isometry induced
by ψ. Moreover, ψ acts trivially on the discriminant group AT (because
ψ|T = idT ), thus ψ(x, y)− (x, y) = (0, ψ(y)− y) (the natural inclusions of
AT and AS in AT⊕S ∼= AT ⊕AS are ψ-equivariant). Since M is the graph
in AT ⊕AS of the anti-isometry γ :MT →MS , we deduce that ψ(y) = y
for any y ∈ pS(M

⊥). This means that the action of ψ is trivial on M⊥,
not only on the quotient M⊥/M .

(ii) For any n ≥ 2, the lattice Ln admits a natural primitive embedding
inside the Mukai lattice Λ24 = U⊕4 ⊕ E⊕2

8 (see [71, Corollary 9.5]). As
we remarked in the previous point of the proof, the action of ψ on the
discriminant group ALn is trivial: this allows us to extend ψ to an isometry
ρ ∈ O(Λ24) such that ρ|Ln⊥ = id, by Proposition 1.4.7. The lattice Λ24

is unimodular, therefore both the invariant lattice Tρ = (Λ24)
ρ ⊂ Λ24 and

the co-invariant Sρ = (Tρ)
⊥ ⊂ Λ24 are p-elementary (see for instance [96,

Lemme 2.10]). Since Ln
⊥ ⊂ Tρ, passing to the orthogonal complements

we have Sρ ⊂ Ln, and therefore S = Sρ is p-elementary. �

For fixed values of n ≥ 2 and p ≥ 3 prime, we write 2(n − 1) = pαβ with α, β
integers, α ≥ 0 and (p, β) = 1. Then ALn

∼= Z
2(n−1)Z

∼= Z
pαZ ⊕ Z

βZ is an orthogonal

splitting (see Proposition 1.1.3): in particular, we now show that there exists a
subgroup of AT isomorphic to the summand Z

βZ .

Lemma 4.1.4. Let (AT )p and (AS)p be the Sylow p-subgroups of AT and AS
respectively. Then

AT = (AT )p ⊕
Z
βZ

, AS = (AS)p.

Moreover, |AT | = paβt and |AS | = pas for some positive integers t, s such that
ts = pα.

Proof. Since ALn
∼=M⊥/M and |M | = pa, we deduce

⏐⏐M⊥
⏐⏐ = pa+αβ. More-

over, (p, β) = 1, thus there exists a unique subgroup N ⊂ M⊥ of order β, such
that the restriction to N of the projection M⊥ → M⊥/M is injective. Using the
fact that there is also a unique subgroup of order β inside ALn , we conclude that
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N is isomorphic to the component Z
βZ of ALn . By Lemma 4.1.3, the action of the

automorphism σ on N ⊂ M⊥ is trivial and any element of pS(N) is of p-torsion:
we are lead to conclude pS(N) = 0, because (p, β) = 1. Thus, N is contained in
AT .

Since MT ⊂ (AT )p, MS ⊂ (AS)p we can write |AT | = paβt and |AS | = pas,
with t, s positive integers. From

[Ln : (T ⊕ S)]
2
=

|AT | |AS |
|ALn |

(see Section 1.4) we get ts = pα. The two integers t, s are therefore powers of p
with non-negative exponents. �

We are now ready to describe the structures of the two discriminant groups AT
and AS .

Proposition 4.1.5. Let X be a manifold of K3[n]-type and G = ⟨σ⟩ a group
of odd prime order p acting non-symplectically on X. Then one of the following
cases holds:

(i) AS =MS
∼=
(

Z
pZ

)⊕a
, AT ∼=MT ⊕ALn

∼=
(

Z
pZ

)⊕a
⊕ Z

pαZ ⊕ Z
βZ ;

(ii) α = 1, a = 0, AS ∼= Z
pZ , AT

∼= Z
βZ ;

(iii) α ≥ 1, a ≥ 1, AS ∼=
(

Z
pZ

)⊕a+1

, AT ∼=
(

Z
pZ

)⊕a−1

⊕ Z
pαZ ⊕ Z

βZ .

Proof. If a = 0, the group M is trivial and ALn
∼= AT ⊕AS . By Lemma 4.1.4

we deduce that there are only two possibilities: AS = 0, AT ∼= ALn or AS ∼= Z
pαZ ,

AT ∼= Z
βZ . The second case, though, is admissible only for α = 1, because we know

that S is p-elementary by Lemma 4.1.3.
From now on we will assume a ≥ 1. Let us first consider the case α = 0: this

implies β = 2(n−1), t = s = 1. Then, by using Lemma 4.1.4 we conclude AS =MS

and AT =MT ⊕ Z
βZ

∼=MT ⊕ALn .

If α = 1 we have 2(n− 1) = pβ and ts = p. There are two possibilities:

• t = p, s = 1. In this case, AS = MS
∼=
(

Z
pZ

)⊕a
, therefore qS |MS

= qS

is non-degenerate and the same holds for qT |MT
, since qT |MT

∼= −qS |MS
.

Then, by Proposition 1.1.3 we can write AT = MT ⊕M⊥
T , which implies

(AT )p ∼=
(

Z
pZ

)⊕a+1

and therefore AT ∼=MT ⊕ALn .

• t = 1, s = p. Now AT = MT ⊕ Z
βZ , since (AT )p = MT . Hence qT |MT

is non-degenerate, which again implies that also qS |MS
is non-degenerate,

i.e. AS =MS⊕M⊥
S . We are lead to conclude AS =MS⊕ Z

pZ
∼=
(

Z
pZ

)⊕a+1

.

Therefore, if α = 1 (and a ≥ 1) both cases (i), (iii) appearing in the statement are
admissible.

Now assume α ≥ 2. Set H := (AT )p ⊕ AS ⊂ AT ⊕ AS and let H[p] ⊂ H be

the p-torsion subgroup. Since M⊥/M ∼= ALn
∼= Z

pαZ ⊕ Z
βZ , there exists an element

x ∈ H of order at least pα: the quotient ⟨x⟩/(⟨x⟩ ∩ H[p]) has then order at least
pα−1, which shows that [H : H[p]] ≥ pα−1. On the other hand, [H : H[p]] ≤ pα:
in fact, |H[p]| ≥ p2a, because MT ⊕MS ⊂ H[p], and |H| = pat · pas = p2a+α (by
Lemma 4.1.4). We conclude that the index [H : H[p]] is either pα or pα−1.

If [H : H[p]] = pα, then H[p] =MT ⊕MS . By construction H = Hp, therefore:

(14) H ∼=
2a+α⨁
i=1

(
Z
piZ

)⊕mi
, H[p] ∼=

2a+α⨁
i=1

(
Z
pZ

)⊕mi
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for suitable integers mi ≥ 0 such that
∑
i imi = 2a+α and

∑
imi = 2a. Thus, the

coefficients mi must satisfy α =
∑
i(i− 1)mi. Furthermore, since we know that H

contains an element of order at least pα, there exists j ≥ α such that mj ≥ 1. This
leaves us with two possibilities for the choice of the coefficients mi.

• H ∼=
(

Z
pZ

)⊕2a−1

⊕ Z
pα+1Z . Then, we have either AS ∼=

(
Z
pZ

)⊕a−1

⊕ Z
pα+1Z ,

(AT )p =MT or AS = MS , (AT )p
∼=
(

Z
pZ

)⊕a−1

⊕ Z
pα+1Z . Both cases are

not admissible: by Proposition 1.1.3 (as we remarked discussing α = 1)
we would need to be able to write, respectively, AS = MS ⊕ M⊥

S and
AT =MT ⊕M⊥

T , but now this is not possible.

• H ∼=
(

Z
pZ

)⊕2a−2

⊕ Z
p2Z ⊕ Z

pαZ . Disregarding the cases where AS =MS or

(AT )p =MT (which can be excluded as in the previous point) we are left
with two alternatives:

– (AT )p
∼=
(

Z
pZ

)⊕a−1

⊕ Z
pαZ , AS

∼=
(

Z
pZ

)⊕a−1

⊕ Z
p2Z ;

– (AT )p
∼=
(

Z
pZ

)⊕a−1

⊕ Z
p2Z , AS

∼=
(

Z
pZ

)⊕a−1

⊕ Z
pαZ .

In both cases, though, the lattice S is not p-elementary, contradicting
Lemma 4.1.3.

We conclude that [H : H[p]] = pα−1. We can again write H and H[p] as in
(14), where now

∑
i imi = 2a+α,

∑
imi = 2a+1 and as before there exists j ≥ α

such that mj ≥ 1. We then deduce H ∼=
(

Z
pZ

)⊕2a

⊕ Z
pαZ , which gives rise to four

possible conclusions:

• (AT )p
∼=
(

Z
pZ

)⊕a
⊕ Z

pαZ , AS
∼=
(

Z
pZ

)⊕a
, meaning AT ∼= MT ⊕ ALn and

AS =MS ;

• (AT )p
∼=
(

Z
pZ

)⊕a−1

⊕ Z
pαZ , AS

∼=
(

Z
pZ

)⊕a+1

;

• (AT )p
∼=
(

Z
pZ

)⊕a
, AS ∼=

(
Z
pZ

)⊕a
⊕ Z

pαZ ;

• (AT )p
∼=
(

Z
pZ

)⊕a+1

, AS ∼=
(

Z
pZ

)⊕a−1

⊕ Z
pαZ .

The last two cases are excluded because S is p-elementary by Lemma 4.1.3. �

Remark 4.1.6. We can make some additional remarks on the structures of the
discriminant groups AT , AS after recalling the following result.

Theorem 4.1.7. Let M be a lattice and ψ ∈ O(M) of prime order p ̸= 2. Then

pm discr(Sψ) is a square in Z, where m =
rk(Sψ)
p−1 .

Proof. See [96, Théorème 2.23]. �

Let X be a manifold of K3[n]-type and ψ ∈ Mon2(Ln) the isometry induced
on Ln by an automorphism σ ∈ Aut(X) of prime order p ≥ 3. From Proposition
4.1.5 we know that discr(S) = |AS | is either pa or pa+1. In particular:

• if p - 2(n− 1) (i.e. α = 0), the groups AT , AS are as in Proposition 4.1.5,
case (i), therefore a and m must be of same parity by Theorem 4.1.7.

• If p | 2(n− 1) (i.e. α ≥ 1), a and m are not required to have same parity:
the structures of AT and AS are the ones given in Proposition 4.1.5 case
(i) if a and m have same parity, the ones of cases (ii) or (iii) if a and m
have different parity.
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4.1.2. Admissible triples. We are now interested in studying primitive em-
beddings of lattices T, S ↪→ Ln satisfying Proposition 4.1.2 and Proposition 4.1.5,
assuming p ≥ 3. For the purposes of this work, we restrict to α ≤ 1: notice that,
since 2(n − 1) = pαβ, the first instance with α ≥ 2 occurs for n = 10, i.e. on
manifolds of complex dimension 20.

Our main result is Theorem 4.1.12, in which we show that, under suitable
hypotheses, given the values (p,m, a) defined in Proposition 4.1.2 the isometry
classes of T and S are uniquely determined. To do so we first need to provide a
characterization of primitive embeddings S ↪→ Ln for lattices S as above (Lemma
4.1.8 and Proposition 4.1.9). Finally, in Proposition 4.1.14 we describe all possible
structures, up to isometries, for the discriminant quadratic forms qS and qT .

We recall that, by Proposition 4.1.2, the lattice S has signature (2, (p− 1)m− 2)

and it is p-elementary by Lemma 4.1.3, with discriminant group AS =
(

Z
pZ

)⊕k
,

where k is the length of AS . Then (see Remark 1.2.3) there are only two non-
isometric possible forms qS , the ones in (3).

Since Ln = U⊕3⊕E⊕2
8 ⊕⟨−2(n−1)⟩, the quadratic form qLn on ALn = Z

2(n−1)Z
is such that qLn(1) = − 1

2(n−1) ∈ Q/2Z. If we write 2(n−1) = pαβ, with (p, β) = 1,

then a trivial computation shows:

qLn =
Z

2(n− 1)Z

(
− 1

2(n− 1)

)
∼=

Z
pαZ

(
− β

pα

)
⊕ Z
βZ

(
−p

α

β

)
.

In Section 1.2 we defined the two non-isomorphic finite quadratic forms ω±1
p,α

on Z
pαZ . Denoting by qα,β the quadratic form Z

βZ

(
−pα

β

)
, we conclude:

(15) qLn =

⎧⎨⎩w
+1
p,α ⊕ qα,β if

(
−β
p

)
= +1

w−1
p,α ⊕ qα,β if

(
−β
p

)
= −1

where the parentheses denote the Legendre symbol.

Lemma 4.1.8. Let S be an even lattice with discriminant group AS =
(

Z
pZ

)⊕k
of genus (2, (p− 1)m− 2, qS). Let Ln = U⊕3 ⊕E⊕2

8 ⊕ ⟨−2(n− 1)⟩ and let e ∈ ALn

be the generator of the component Z
pαZ of ALn

∼= Z
pαZ

(
− β
pα

)
⊕ Z

βZ

(
−pα

β

)
. Then:

(i) If α = 0, primitive embeddings of S in Ln compatible with Proposi-
tion 4.1.5 are determined by pairs (T, γT ), with T a lattice of signature
(1, 22− (p− 1)m), qT = (−qS)⊕qLn and γT ∈ O(AT ). Two pairs (T, γT )
and (T ′, γ′T ′) determine isomorphic sublattices in Ln if and only if there
exists an isometry ν : T → T ′ such that ν ◦ γT = γ′T ′ ◦ ν.

(ii) If α = 1, primitive embeddings S ↪→ Ln compatible with Proposition 4.1.5
are determined by triples (x, T, γT ), with T of signature (1, 22− (p− 1)m),
γT ∈ O(AT ) and either:
(a) x = 0, qT = (−qS)⊕ qLn , or

(b) x ∈ AS [p] with qS(x) = −β
p (mod 2Z) and Γ⊥/Γ ∼=

(
Z
pZ

)⊕k−1

⊕ Z
βZ ,

where Γ ⊂ AS ⊕ ALn is the subgroup generated by (x, e) and Γ⊥

is its orthogonal complement with respect to the form (−qS) ⊕ qLn ;
moreover, qT = ((−qS)⊕ qLn)|Γ⊥/Γ.

Two triples (x, T, γT ) and (x′, T ′, γ′T ′) determine isomorphic sublattices in
Ln if and only if there exists µ ∈ O(S) and an isometry ν : T → T ′, such
that µ(x) = x′ and ν ◦ γT = γ′T ′ ◦ ν.
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Proof. Each primitive embedding i : S ↪→ Ln is determined by a quintuple
Θi = (HS , HLn , γ, T, γT ) as in Theorem 1.4.4, since Ln is unique in its genus (up
to isometries) by Theorem 1.3.3. Recalling that T is the orthogonal complement
of i(S) in Ln, we ask sign(T ) = (1, 22− (p− 1)m). We will discuss separately the
cases α = 0 and α = 1.

(i) α = 0. Since p and β are coprime, the only possibility is: HS = {0},
HLn = {0} and γ = id. The embedding S ↪→ Ln is therefore determined
by the pair (T, γT ). In particular, we have Γ = {(0, 0)}, Γ⊥ = AS ⊕ALn ,
thus AT = AS ⊕ ALn and qT = (−qS) ⊕ qLn . This is coherent with case
(i) of Proposition 4.1.5.

(ii) α = 1. We have again the case HS = {0} , HLn = {0}, γ = id (which
means that S and T are as in case (i) of Proposition 4.1.5, hence l(AT ) =
k+1). This case corresponds to the triples where x = 0 and it is described
as for α = 0. Alternatively, provided that there exists an element x ∈ AS
of order p such that qS(x) = qLn(e), with e as in the statement, we can also
take HS = ⟨x⟩, HLn = ⟨e⟩, γ : x ↦→ e. Notice that such an element x does

not exist only if k = 0 or if qS = wξp,1, qLn = w−ξ
p,1⊕q1,β , with ξ ∈ {±1}: in

all other cases, using the isomorphism w+1
p,1 ⊕ w+1

p,1
∼= w−1

p,1 ⊕ w−1
p,1, we can

write the form qS as in (3), where at least one of the direct summands
is of the same type of the wϵp,1 appearing in qLn (the component corre-
sponding to the subgroup HLn). In this setting, the graph Γ of γ is the
subgroup of AS ⊕ ALn generated by (x, e). In particular, since Γ ∼= Z

pZ ,

the quotient Γ⊥/Γ cannot be isomorphic to AS ⊕ALn , which implies that
we are not in case (i) of Proposition 4.1.5. Nevertheless, if α = 1 and
k ≥ 1 the structures of the discriminant groups can also be as in cases
(ii) or (iii), where l(AT ) = max{1, k − 1}: the embedding is admissi-

ble if Γ⊥/Γ ∼=
(

Z
pZ

)⊕k−1

⊕ Z
βZ and, if so, the quadratic form on AT is

qT = ((−qS)⊕ qLn)|Γ⊥/Γ.

Finally, for both values of α the stated results about isomorphic sublattices
follow directly from Theorem 1.4.4. �

Lemma 4.1.8 allows us to list all possible primitive embeddings i : S ↪→ Ln
satisfying Proposition 4.1.5 for a given lattice S. We now prove that, adding some
extra hypotheses, the number of distinct isometry classes for i(S)⊥ is actually very
limited.

Proposition 4.1.9. Let S and Ln be as in Lemma 4.1.8, with α ≤ 1 and
k ≤ 21− α− (p− 1)m.

(i) If α = 0 or k = 0, or if α = 1 and qS = wξp,1, qLn = w−ξ
p,1 ⊕ q1,β for

ξ ∈ {±1}, all primitive embeddings of S in Ln compatible with Propo-
sition 4.1.5 define isomorphic sublattices. In particular, the orthogonal
complement T is uniquely determined by the genus of S.

(ii) Otherwise, provided that the natural homomorphism O(S) → O(AS) is
surjective, there are at most two distinct isomorphism classes for the or-
thogonal complement T of the image of a compatible embedding S ↪→ Ln,
one with l(AT ) = k + 1 and one with l(AT ) = max{1, k − 1}.

Proof. If α = 0 or k = 0, or if α = 1 and qS = wξp,1, qLn = w−ξ
p,1 ⊕ q1,β

for ξ ∈ {±1}, by Lemma 4.1.8 a (compatible) primitive embedding of S in Ln is
characterized by a pair (T, γT ), with T a lattice of signature (1, 22 − (p − 1)m),
qT = (−qS) ⊕ qLn and γT ∈ O(AT ). In this case, then, l(AT ) = max{1, k + α},
because (p, β) = 1. If such an indefinite lattice T exists and if l(AT ) ≤ rk(T ) − 2
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(i.e. if k ≤ 21 − α − (p − 1)m), then T is uniquely determined, up to isometries,
by Theorem 1.3.3. This assumption also guarantees that the natural morphism
O(T ) → O(AT ) is surjective (Proposition 1.4.2), therefore different choices of γT
give isomorphic primitive sublattices S in Ln.

Assume now that we are not in one of the cases of point (i) (in particular,
let α = 1 and k ≥ 1); moreover, suppose that O(S) → O(AS) is surjective and
k ≤ 20− (p− 1)m. A compatible embedding i : S ↪→ Ln is determined by a triple
(x, T, γT ) as in Lemma 4.1.8. We make a distinction:

• Triples (0, T, γT ) correspond to embeddings where qT = (−qS) ⊕ qLn , so
l(AT ) = k+1. Then, as before, from the assumption k ≤ 20− (p− 1)m it
follows that all these embeddings define isomorphic sublattices in Ln and
that T is uniquely determined.

• If x ̸= 0, the triple (x, T, γT ) was obtained, in the proof of Lemma
4.1.8, from a quintuple Θi = (HS , HLn , γ, T, γT ), with HS = ⟨x⟩ ⊂ AS ,
HLn = ⟨e⟩ ⊂ ALn . If we now consider a different quintuple Θi′ , with
H ′
S = ⟨x′⟩ and x′ ̸= 0, the embeddings i, i′ will define isomorphic sublat-

tices of Ln. This follows from Lemma 4.1.8 and Theorem 1.4.4, because,
under our assumptions, two different subgroupsHS , H

′
S ⊂ AS as above are

conjugated by an automorphism of S. In fact, the restrictions qS |HS and

qS |H′
S
are non-degenerate and isomorphic, since they both are Z

pZ

(
−β
p

)
,

hence, by Proposition 1.1.3 and the classification of p-elementary forms,
also the forms on H⊥

S and (H ′
S)

⊥ will coincide. This implies that there
exists an automorphism of AS which exchanges HS and H ′

S : by the sur-
jectivity of O(S) → O(AS), this automorphism is induced by an auto-
morphism of S. We conclude that the isometry class of S as a primitive
sublattice of Ln does not depend on the choice of x ̸= 0, nor of T, γT , since
k ≤ 20−(p−1)m and here l(AT ) = max{1, k−1}, so l(AT ) ≤ rk(T )−2. �

Adopting the terminology used in [17], we provide the following definition.

Definition 4.1.10. Let (p,m, a) be a triple of integers, with 3 ≤ p ≤ 23 prime,
m ≥ 1, (p − 1)m ≤ 22 and 0 ≤ a ≤ min {m, 23− (p− 1)m}. The triple is said to
be admissible, for a given integer n ≥ 2, if there exist two orthogonal sublattices
T, S ⊂ Ln = U⊕3 ⊕ E⊕2

8 ⊕ ⟨−2(n − 1)⟩ such that: sign(T ) = (1, 22 − (p − 1)m),

sign(S) = (2, (p − 1)m − 2), Ln
T⊕S

∼=
(

Z
pZ

)⊕a
and the discriminant groups AT and

AS are as in Proposition 4.1.5.

Remark 4.1.11. The condition Ln
T⊕S

∼=
(

Z
pZ

)⊕a
implies that all admissible

triples of the form (p,m, 0) will define orthogonal sublattices T, S ⊂ Ln such that
Ln = T ⊕ S.

We can now rephrase Proposition 4.1.9 in the following way, taking into account
the uniqueness of S too.

Theorem 4.1.12. Let 2(n − 1) = pαβ, with (p, β) = 1 and α ≤ 1. If (p,m, a)
is an admissible triple, there exists a unique even p-elementary lattice S as in
Definition 4.1.10, up to isometries. Its primitive embedding in Ln and its orthogonal
complement T ⊂ Ln are uniquely determined (up to isometries of Ln) by (p,m, a),
if l(AT ) ≤ 21− (p− 1)m.

Proof. By Proposition 4.1.5 and Remark 4.1.6 the discriminant group AS is(
Z
pZ

)⊕a
if m and a have same parity, otherwise AS ∼=

(
Z
pZ

)⊕a+1

. Moreover, since

the triple (p,m, a) fixes the signature of S, it also fixes the quadratic form on AS ,
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as we explained in Remark 1.2.3. Thus, if rk(S) ≥ 3 the lattice S is unique, up to
isometries of S, by Theorem 1.3.3. The same is shown to hold also for the remaining
cases, i.e. the triples (3, 1, 0) and (3, 1, 1), where S is positive definite of rank two:
by [36, Table 15.1], we have S ∼= A2(−1).

For any co-invariant lattice S corresponding to an admissible triple (p,m, a),
we now show that the homomorphism O(S) → O(AS) is surjective. By Definition
4.1.10 we have sign(S) = (2, (p − 1)m − 2), hence the two triples (3, 1, 0) and
(3, 1, 1) are the only ones where S is not indefinite: for them, the surjectivity of
O(S) → O(AS) follows from [81, Remark 1.14.6], because S ∼= A2(−1). For all
other admissible triples, S is indefinite and by Proposition 1.4.2 we only need to
show that rk(S) ≥ l(AS) + 2. As recalled in the first part of the proof, the length
of AS is either a or a+ 1, thus we want to prove that rk(S) ≥ a+ 3. We have

rk(S) = (p− 1)m ≥ 2m ≥ 2a

because p ≥ 3 and a ≤ m. Hence, if a ≥ 3 the condition rk(S) ≥ a+ 3 is satisfied
for any m. If instead a ≤ 2 (i.e. a+ 3 ≤ 5) the inequality holds for all m ≥ 3. The
only triples left are the ones with m ∈ {1, 2} and a ∈ {0, 1, 2}. For all these triples,
(p− 1)m ≥ a+ 3 whenever p ≥ 5, therefore we only need to check the triples with
p = 3. We already discussed the two admissible triples with p = 3, m = 1, where
S ∼= A2(−1). Instead, if m = 2 then rk(S) = (p − 1)m = 4 ≥ a + 3 for a = 0, 1.
Finally, the triple (3, 2, 2) defines a 3-elementary lattice S with sign(S) = (2, 2) and
l(AS) = 2, since m and a have same parity, hence rk(S) ≥ l(AS) + 2.

The statement now follows from Remark 4.1.6 and Proposition 4.1.9, under the
assumption l(AT ) ≤ 21− (p− 1)m. �

Remark 4.1.13. If both triples (p,m, a), (p,m, a + 1) are admissible, with m
and a of different parity, then they determine the same lattice S, up to isometries.
As a matter of fact, in both cases the signature of S is (2, (p − 1)m − 2) and,

by Remark 4.1.6, its discriminant group is
(

Z
pZ

)⊕a+1

. Notice, however, that the

invariant lattices T corresponding to the two triples are non-isometric.

To conclude this subsection, we use our results to list all possible quadratic
forms qS , qT , up to isometries, on the discriminant groups AS , AT : by Lemma 4.1.8,
we will need to discuss separately the cases α = 0 and α = 1 and to distinguish on
whether −β is a quadratic residue modulo p. This classification of quadratic forms
is needed for listing admissible pairs of lattices (T, S) for specific values of n and p.

Proposition 4.1.14. Let 2(n − 1) = pαβ, with (p, β) = 1 and α ≤ 1. Let
(p,m, a) be an admissible triple and T, S lattices corresponding to it. Then one of
the following holds:

(i) qT = (−qS)⊕ qLn , with qS =
(
w+1
p,1

)⊕a
or qS =

(
w+1
p,1

)⊕a−1 ⊕ w−1
p,1;

(ii) α = 1, −β is a quadratic residue modulo p and

(a) qS =
(
w+1
p,1

)⊕a+1
, qT =

(
−w+1

p,1

)⊕a ⊕ q1,β, or

(b) a ≥ 1, qS =
(
w+1
p,1

)⊕a ⊕ w−1
p,1, qT =

(
−w+1

p,1

)⊕a−1 ⊕ (−w−1
p,1)⊕ q1,β.

(iii) α = 1, −β is not a quadratic residue modulo p and

(a) a ≥ 1, qS =
(
w+1
p,1

)⊕a+1
, qT =

(
−w+1

p,1

)⊕a−1 ⊕ (−w−1
p,1)⊕ q1,β, or

(b) qS =
(
w+1
p,1

)⊕a ⊕ w−1
p,1, qT =

(
−w+1

p,1

)⊕a ⊕ q1,β.

Proof. As explained in the proof of Lemma 4.1.8, case (i) corresponds to
embeddings S ↪→ Ln determined by quintuples (HS , HLn , γ, T, γT ) with HS = 0,
HLn = 0. Moreover, the quadratic form qS is as in (3), with k = l(AS) = a
by Proposition 4.1.5. This is the only possibility when α = 0. If instead α = 1,
there may also be compatible embeddings S ↪→ Ln corresponding to quintuples with



4.1. MONODROMIES INDUCED BY AUTOMORPHISMS OF ODD PRIME ORDER 49

HS ̸= 0 (see again Lemma 4.1.8): in this case, by the surjectivity of O(S) → O(AS)
(see Theorem 4.1.12), as we showed in the proof of Proposition 4.1.9 the subgroup
HS can be regarded, up to changing the generators of AS , as one of the direct
summands in the representation (3) of the quadratic form qS . On the discriminant
group of the orthogonal complement T ⊂ Ln, the quadratic form is then qT =
((−qS)⊕qLn)|Γ⊥/Γ, with qLn as in (15) and qS as in (3), where now k = l(AS) = a+1
by Proposition 4.1.5.

Let’s assume that −β is a quadratic residue modulo p, so that qLn = w+1
p,1⊕q1,β ,

and suppose qS =
(
w+1
p,1

)⊕a+1
. Adopting the same notation used in the previous

proofs, let x ∈ AS be the generator of the subgroup corresponding to one of the
summands w+1

p,1 in qS and e be the generator of Z/pZ ⊂ ALn . Then HS = ⟨x⟩,
HLn = ⟨e⟩, γ : x ↦→ e and the graph of γ is Γ = ⟨(x, e)⟩ ⊂ AS ⊕ ALn . A
direct computation shows that, with respect to the quadratic form (−qS)⊕ qLn on
AS ⊕ALn , the orthogonal of Γ is

Γ⊥ =
(
H⊥
S ⊕H⊥

Ln

)
+ Γ.

This implies that the quadratic form qT ∼= ((−qS) ⊕ qLn)|Γ⊥/Γ is isometric to

the restriction of (−qS)⊕ qLn to H⊥
S ⊕H⊥

Ln
, therefore qT =

(
−w+1

p,1

)⊕a ⊕ q1,β .

If instead qS =
(
w+1
p,1

)⊕a ⊕ w−1
p,1, we need to ask a ≥ 1, otherwise it is not

possible to find subgroups HS ⊂ AS and HLn ⊂ ALn such that qS |HS ∼= qLn |HLn .
As in the previous case, we can assume HS = ⟨x⟩, HLn = ⟨e⟩, γ : x ↦→ e with
x ∈ AS generator of one of the components w+1

p,1 in qS and e ∈ ALn generator

of the summand w+1
p,1 of qLn . Since Γ, Γ⊥ are the same as above, the form qT

still arises as the restriction of (−qS) ⊕ qLn to H⊥
S ⊕ H⊥

Ln
, and therefore qT =(

−w+1
p,1

)⊕a−1 ⊕ (−w−1
p,1)⊕ q1,β .

The two cases where qLn = w−1
p,1 ⊕ q1,β (i.e. −β is not a quadratic residue

modulo p) can be discussed in an analogous way. �

4.1.3. A special case: rk(T ) = 1. In this subsection we focus on the cases
where the invariant lattice T has rank one, which correspond to maximal dimen-
sional families of manifolds of K3[n]-type equipped with a non-symplectic automor-
phism. Since T has rank one, rk(S) = (p − 1)m = 22: for p odd, this can only
happen if p = 3,m = 11 or p = 23,m = 1. As before, we write 2(n − 1) = pαβ,
with (p, β) = 1.

If α = 0, then a must be odd, because it needs to be of the same parity as

m (Remark 4.1.6); in particular, a ≥ 1. Moreover AT ∼=
(

Z
pZ

)⊕a
⊕ Z

pαZ ⊕ Z
βZ , by

Proposition 4.1.5: since rk(T ) = 1, then necessarily α = 0, a = 1. We conclude
T ∼= ⟨2p(n− 1)⟩ (α = 0 means that p and β = 2(n− 1) are coprime).

If instead α ≥ 1, there are a priori two possibilities:

• a odd. Then AT ∼=
(

Z
pZ

)⊕a
⊕ Z

pαZ ⊕ Z
βZ with α ≥ 1 and a ≥ 1. As a

consequence l(AT ) ≥ 2, so T cannot have rank one.
• a even. By the classification provided in Proposition 4.1.5, T cannot be

of rank one if a > 0. Hence α = 1, a = 0, T ∼= ⟨β⟩ = ⟨ 2(n−1)
p ⟩.

Moreover, we need to impose conditions on the orthogonal lattice S, using
again Proposition 4.1.5. Since rk(T ) = 1, we can also use [45, Proposition 3.6] to
determine the existence and the structure of such primitive sublattices T, S ⊂ Ln.
We do it separately for the two possible cases we found.

• α = 0, a = 1, T = ⟨h⟩, with h ∈ Ln primitive of square h2 = 2p(n− 1).

By [45, Proposition 3.6], the orthogonal lattice S has discriminant 4p(n−1)2

f2 ,
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where f is the divisibility of h in Ln. By Proposition 4.1.5 we know that
AS ∼= Z

pZ , therefore discr(S) = p and we need f = 2(n− 1). By applying

again [45, Proposition 3.6], we can conclude that such a T exists if and
only if −p is a quadratic residue modulo 4(n− 1).

• α = 1, a = 0, T = ⟨h⟩, with h ∈ Ln primitive of square h2 = 2(n−1)
p .

We have AS ∼= Z
pZ , by Proposition 4.1.5, and p = discr(S) = 4(n−1)2

pf2 , so

f = 2(n−1)
p . Here p2 - 4(n − 1), so p is invertible modulo 4(n−1)

p , hence

by [45, Proposition 3.6] such a T exists if and only if −p is a quadratic

residue modulo 4(n−1)
p .

We summarize these results as follows.

Proposition 4.1.15. Let p ≥ 3 be a prime and 2(n−1) = pαβ with (p, β) = 1.
A triple (p,m, a), with (p − 1)m = 22, is admissible if and only if α ∈ {0, 1},
a = 1− α and −p is a quadratic residue modulo 4(n−1)

pα .

If this happens, then one of the following holds:

(i) α = 0, p = 3,m = 11, a = 1, T ∼= ⟨6(n− 1)⟩, S ∼= U⊕2 ⊕ E⊕2
8 ⊕A2;

(ii) α = 1, p = 3,m = 11, a = 0, T ∼= ⟨β⟩ = ⟨ 2(n−1)
3 ⟩, S ∼= U⊕2 ⊕ E⊕2

8 ⊕A2;

(iii) α = 0, p = 23,m = 1, a = 1, T ∼= ⟨46(n− 1)⟩, S ∼= U⊕2 ⊕ E⊕2
8 ⊕K23;

(iv) α = 1, p = 23,m = 1, a = 0, T ∼= ⟨β⟩ = ⟨ 2(n−1)
23 ⟩, S ∼= U⊕2 ⊕ E⊕2

8 ⊕K23.

Proof. The explicit description of the lattice S in the four cases is obtained
by combining [45, Proposition 3.6] (where S is represented as U⊕2 ⊕ E⊕2

8 ⊕ B for
a negative definite even lattice B of rank 2 depending on p, n, f) with the results
on lattice isomorphisms of Theorem 1.3.5 and Theorem 1.3.9, which guarantee the
uniqueness, up to isometries, of p-elementary lattices of signature (2, 20) and length
one, when p = 3 or p = 23. The lattice K23 was defined in Example 1.1.4. �

From Proposition 4.1.15 it follows, for instance, that the triple (3, 11, 1) is
admissible for n = 2, as already observed in [17], because −3 is a quadratic residue
modulo 4: in this case we have T ∼= ⟨6⟩. Similarly, (3, 11, 0) is admissible when
n = 4 (here α = 1 and, again, −3 is a quadratic residue modulo 4), with T ∼= ⟨2⟩.
Instead, (3, 11, 1) is not admissible when n = 3, because −3 is not a quadratic
residue modulo 8.

The triple (23, 1, 1) was already found to be admissible for n = 2 in [16] (where
the authors also gave the isomorphism classes of T, S). By our proposition, this
triple is admissible for n = 3, 4 too, since −23 ≡ 1 both modulo 8 and modulo 12.
Finally, the smallest value of n such that (23, 1, 0) is admissible is n = 24, since
2(n− 1) = 46 = 23 · 2 and −23 is a quadratic residue modulo 4.

4.1.4. Admissible triples for n = 3, 4. In this section we provide a complete
classification of admissible triples (p,m, a) for n = 3, 4. In both cases, for any odd
prime number p we have α ≤ 1, therefore Theorem 4.1.12 allows us to exhibit the
lattices T, S (up to isometries) for each triple. This classification of the two lattices
is achieved by direct computation for all possible triples (p,m, a), checking for each
of them if lattices T, S as in Definition 4.1.10 exist or not. To do so, we apply
Theorem 1.3.7, which provides necessary and sufficient conditions for the existence
of an even lattice with given signature and discriminant form.

Manifolds of K3[3]-type.

• For p = 23 there is only one admissible triple, namely (23, 1, 1), as we
already observed in Section 4.1.3: the isometry classes of S and T are
given in Proposition 4.1.15, case (iii).
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• For all primes 5 ≤ p ≤ 19, the admissible triples and the lattices S are the
ones listed for n = 2 in the tables of [17, Appendix A], while the lattices
T can be obtained from the corresponding ones in the tables by switching
⟨−2⟩ with ⟨−4⟩ in their description, since L3 = U⊕3⊕E⊕2

8 ⊕⟨−4⟩. Notice
that, with respect to [17, Table 5], by Remark 4.1.6 we can now say that
the triple (13, 1, 0) is not admissible, neither for n = 2 nor for n = 3: in
fact, for these values of n we have α = 0 for all possible primes p, hence
m and a need to have the same parity.

Example: (p,m, a) = (5, 5, 3). This triple is not admissible for n = 2
and it is checked to be still not admissible for n = 3. In fact, for these
values of p,m, a the lattice S would be isomorphic to U(5) ⊕ E⊕2

8 ⊕ H5

(by Proposition 4.1.5 and Theorem 1.3.3), whose discriminant group is

AS ∼= AU(5) ⊕ AH5
∼= Z

5Z
(
2
5

)⊕3
(recall the definition of the lattice H5

from Example 1.1.4). As we pointed out at the beginning of Section 4.1.2,
AL3

∼= Z
4Z
(
− 1

4

)
, therefore if S admitted an embedding in L3 the qua-

dratic form on T would be qT = Z
5Z
(
8
5

)⊕3 ⊕ Z
4Z
(
− 1

4

)
by Lemma 4.1.8

and sign(T ) = (1, 2). By Theorem 1.3.7, a lattice T with these in-
variants exists only if its 5-adic completion T5 := T ⊗ Z5 is such that
|AT | ≡ discr(K) mod (Z∗

5)
2
, where K is the unique 5-adic lattice of rank

l(AT5
) and discriminant form qT5

(see Theorem 1.3.6). In our case, since

AT5
∼= (AT )5

∼= Z
5Z
(
8
5

)⊕3
, using Theorem 1.2.2 we compute K = ⟨5 · 18 ⟩

⊕3,

where 1
8 ∈ Z∗

5. As a consequence, |AT | = 4 · 53 and discr(K) =
(
5
8

)3
:

these two values do not satisfy the relation |AT | ≡ discr(K) mod (Z∗
5)

2
,

because 211 /∈ (Z∗
5)

2
. We conclude that a lattice T with such signature

and quadratic form does not exist.
• For p = 3, Table 1 in Appendix A lists all admissible triples, with the
corresponding isomorphism classes for T, S: as for larger primes, we can
find many similarities with the analogous table for n = 2 ([17, Table 1]).
However, there are also some significant differences.

– As we observed in Section 4.1.3, there are no admissible triples with
m = 11.

– The triple (3, 9, 5) is now admissible: here S = U(3)⊕2 ⊕ E6 ⊕ E8,

while sign(T ) = (1, 4) and qT = −qS⊕qL3
∼= Z

3Z
(
4
3

)⊕5⊕ Z
4Z
(
− 1

4

)
. The

existence of a lattice T with these invariants is proved by applying
Theorem 1.3.7 and there is a unique isometry class in the genus of T
by Theorem 1.3.4. In particular, we can take T = U(3) ⊕ Ω, where
Ω is the even lattice of rank three whose bilinear form is defined by
the matrix

Ω =

⎛⎝−6 0 −3
0 −6 9
−3 9 −18

⎞⎠ .

We have sign(Ω) = (0, 3) and qΩ = Z
3Z
(
4
3

)⊕2 ⊕ Z
3Z
(
2
3

)
⊕ Z

4Z
(
− 1

4

)
,

therefore qU(3)⊕Ω
∼= −qS ⊕ qL3

(using [81, Proposition 1.8.2]).
– An additional new admissible triple is (p,m, a) = (3, 8, 6): here we

compute S = U(3)⊕2 ⊕ E⊕2
6 , therefore sign(T ) = (t(+), t(−)) = (1, 6)

and qT = Z
3Z
(
4
3

)⊕6 ⊕ Z
4Z
(
− 1

4

)
. In this case, the strict inequality

t(+) + t(−) > l(AT ) holds: since moreover t(+)−t(−) ≡ sign(qT ) (mod
8), such a lattice T exists by Theorem 1.3.8 and again it is unique
(up to isometries) by Theorem 1.3.4. A representative of this genus
is T = U(3)⊕A2 ⊕ Ω.
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Manifolds of K3[4]-type.

• For p = 23 we have that (23, 1, 1) is the only admissible triple (see Section
4.1.3): the isomorphism classes of T, S were obtained in Proposition 4.1.15.

• For primes 5 ≤ p ≤ 19, again the lattices T, S and all admissible triples
are the ones listed in the tables of [17, Appendix A] (apart from (13, 1, 0),
which is not admissible), up to replacing the ⟨−2⟩ summand with a ⟨−6⟩
summand in T .

• The last prime we need to consider is p = 3. This is the first case we en-
counter where an odd p divides 2(n−1): in particular, 2(n− 1) = 6 = 3αβ
with α = 1 and β = 2. Since we have α = 1, by Lemma 4.1.8 and Propo-
sition 4.1.9 we know that we can expect to have many more admissible
triples than the ones we found for p = 3 and n = 2, 3: in fact, the
same lattice S might be embedded in L4 in two non-isomorphic ways.
Table 2 (Appendix A) contains the list of all admissible triples and of
the corresponding isomorphism classes for the lattices T, S. In particular,
the triple (3, 11, 0) is admissible thanks to Proposition 4.1.15; some other
triples, such as (3, 8, 6) and (3, 8, 7), are excluded again by use of Theorem
1.3.7.

4.2. Existence of automorphisms

The classification of admissible lattices T, S presented in Section 4.1 does not
tell us which cases can be realized by actual automorphisms. In this section we
provide several tools to construct non-symplectic automorphisms of odd prime order
on manifolds of K3[n]-type, which are valid for any n ≥ 2. In particular, we are
interested in two types of manifolds: Hilbert schemes of points on K3 surfaces and
moduli spaces of (possibly twisted) sheaves on K3’s. Moreover, in Section 4.2.3
we show that the existence of automorphisms which realize admissible pairs (T, S)
where T has rank one can always be proved using the global Torelli theorem for
IHS manifolds.

4.2.1. Natural automorphisms. Let Σ be a K3 surface. As we saw in
Section 2.5.6, an automorphism ϕ ∈ Aut(Σ) induces a natural automorphism ϕ[n]

on the Hilbert scheme Σ[n], which maps a zero-dimensional subscheme ξ ⊂ Σ of
length n to its schematic image ϕ(ξ). In particular, if Tϕ, Sϕ ⊂ H2(Σ,Z) ∼= LK3

are the invariant and co-invariant lattices of ϕ, we have

Tϕ[n]
∼= Tϕ ⊕ ⟨−2(n− 1)⟩, Sϕ[n]

∼= Sϕ.

We conclude that all admissible triples (p,m, a) where T ∼= TK3 ⊕ ⟨−2(n− 1)⟩
and S ∼= SK3, with TK3, SK3 the invariant lattice and its orthogonal complement
for the action of a non-symplectic automorphism on a K3 surface, are realized
by natural automorphisms. All isomorphism classes of the pairs (TK3, SK3) can
be found in [4] (order p = 3) and [5] (prime order 5 ≤ p ≤ 19), therefore it is
immediate to check, for any n, which admissible cases have a natural realization.

In the tables of Appendix A we mark with the symbol ♣ the triples realized by
natural automorphisms. For n = 4 (Table 2), it may not always be immediate to
recognize the lattices TK3 of [4, Table 2] as direct summands in the lattices T we
provide, since we often choose different representatives in the same isomorphism
classes. In particular, we recall the following isometries: U ⊕E6⊕A2

∼= U(3)⊕E8;
U ⊕ A⊕3

2
∼= U(3) ⊕ E6;U(3) ⊕ A⊕3

2
∼= U ⊕ E∨

6 (3) (they can all be proved using
Theorem 1.3.3). The reason why we adopt different genus representatives for these
lattices will become clear in Section 4.3.1 (Lemma 4.3.1).
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4.2.2. Induced automorphisms. A direct generalization of the notion of
natural automorphisms is given by induced automorphisms, which were first intro-
duced and studied in [88], [78] and later extended to the case of twistedK3 surfaces
in [31]. Recall the theory of moduli spaces of twisted sheaves on K3 surfaces, which
we presented in Example 2.2.7. Let (Σ, α) be a twisted K3 surface and ϕ be an
automorphism of Σ: the Brauer class α is invariant with respect to ϕ if and only if
α ◦ ϕ∗|Tr(Σ) = α.

Proposition 4.2.1. Let (Σ, α) be a twisted K3 surface, ϕ an automorphism of
Σ, v a positive Mukai vector and B a B-field lift of α such that vB is primitive. If vB
and α are ϕ-invariant, then ϕ induces (via pullback of sheaves) an automorphism
ϕ̂ of MvB (Σ, α).

Proof. See [78, Proposition 1.32] and [31, §3]. �

The automorphisms ϕ̂ arising in this way are called twisted induced (or just
induced in the non-twisted case, i.e. if α = 0). As an application of the twisted
version of the global Torelli theorem for K3 surfaces (see [51, Corollary 5.4]), it
is possible to characterize twisted induced automorphisms by studying their action
on the Mukai lattice.

Proposition 4.2.2. Let σ be an automorphism of finite order on a manifold
X of K3[n]-type acting trivially on ALn . Then σ admits a realization as a twisted
induced automorphism on a suitable moduli space MvB (Σ, α) if and only if the
invariant lattice of the extension of σ to the Mukai lattice contains primitively a
copy of U(d), for some multiple d of the order of the Brauer class α.

Proof. See [31, Theorem 3.4]. �

Let v = (r,H, s) be a positive Mukai vector. If B ∈ H2(Σ,Q) is a B-field
lift of α such that vB is primitive, then the transcendental lattice of the moduli
spaceMvB (Σ, α) is isomorphic to ker(α) ⊂ Tr(Σ), which (if α ̸= 0) is a sublattice of
index equal to the order of α. By [103, §3], Pic(MvB (Σ, α))

∼= v⊥B ∩ Pic(Σ, α) inside
H∗(Σ,Z), where Pic(Σ, α) ∼= Pic(Σ)⊕ U if α = 0, otherwise Pic(Σ, α) is generated
by Pic(Σ) and the vectors (0, 0, 1), (k, kB, 0) by [69, Lemma 3.1], assuming the
order of α is k.

If α = 0, thenMv(Σ, 0) is isomorphic to the moduli spaceMτ (v) of τ -stable ob-
jects of Mukai vector v, for some primitive positive Mukai vector v and τ ∈ Stab(Σ)
a v-generic Bridgeland stability condition. By our previous discussion, the tran-
scendental lattice of Mτ (v) coincides with Tr(Σ), while its Picard lattice is isomor-
phic to v⊥ ∩ (Pic(Σ)⊕ U). In particular, the summand U in Pic(Σ) ⊕ U is just
H0(Σ,Z) ⊕H4(Σ,Z), which is the orthogonal complement of H2(Σ,Z) ∼= LK3 in-
side H∗(Σ,Z) ∼= Λ24. Since LK3 is unimodular, the action of ϕ ∈ Aut(Σ) on LK3

extends to an action on Λ24 which is trivial on (LK3)
⊥ (by Proposition 1.4.7). Let

TK3, SK3 ⊂ LK3 and T̂ , Ŝ ⊂ Λ24 be the invariant and co-invariant lattices of these

two actions: by what we stated, T̂ = TK3 ⊕ U and Ŝ = SK3. The induced auto-
morphism ϕ̂ acts on H2(Mτ (v),Z) ∼= Ln = U⊕3 ⊕E⊕2

8 ⊕ ⟨−2(n− 1)⟩: its invariant
lattice is T ∼=

(
v⊥
)ϕ

= T̂ ∩ v⊥ (see [78, Lemma 1.34]). We rephrase the results of
[78, §2,3] as follows.

Proposition 4.2.3. Let (p,m, a) be an admissible triple for a certain n ≥ 2,
with (T, S) the corresponding pair of lattices; consider the canonical primitive em-

beddings S ↪→ Ln ↪→ Λ24 and define T̂ := S⊥ ⊂ Λ24. Then the triple (p,m, a) is

realized by an induced automorphism if T̂ ∼= U⊕TK3, S ∼= SK3, with (TK3, SK3) the
invariant lattice and its orthogonal complement for the action of a non-symplectic
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automorphism on a K3 surface, and there exists a primitive vector v ∈ T̂ of square

2(n− 1) such that T ∼= v⊥ ∩ T̂ .

In particular, all natural automorphisms can be considered as induced, since
⟨−2(n− 1)⟩ is the orthogonal in U of an element of square 2(n− 1).

In Section 4.3 we will apply the theory of induced (and twisted induced) au-
tomorphisms to construct geometric realizations of several admissible triples for
manifolds of type K3[3] and K3[4].

4.2.3. Existence for rk(T ) = 1. The global Torelli theorem (Theorem 2.3.11)
can be applied to prove the existence of automorphisms of manifolds of K3[n]-type
realizing the pairs of lattices (T, S) classified in Proposition 4.1.15, i.e. for rk(T ) = 1.

Proposition 4.2.4. Let (p,m, a) be an admissible triple as in Proposition
4.1.15, for a certain n ≥ 2, and let T, S be the lattices associated to it. There
exists a manifold X of K3[n]-type and a non-symplectic automorphism f ∈ Aut(X)
of order p such that Tf ∼= T and Sf ∼= S.

Proof. We discuss separately the four possible cases classified in Proposition
4.1.15, keeping the same numbering.

Case (ii): (3, 11, 0). Here we have 2(n− 1) = 3β, with (3, β) = 1; the invariant
and co-invariant lattices are T = ⟨β⟩ and S = U⊕2⊕E⊕2

8 ⊕A2, which by Proposition
4.1.15 can be seen as orthogonal sublattices of Ln = U⊕3 ⊕E⊕2

8 ⊕⟨−2(n− 1)⟩. We
first construct a monodromy of the lattice Ln having invariant lattice T and co-
invariant lattice S. The triple has a = 0, therefore Ln = T ⊕S (see Remark 4.1.11):
an isometry φ ∈ O(Ln) can then be represented as φ = γ ⊕ ψ, with γ ∈ O(T ) and
ψ ∈ O(S). Moreover, since we want φ to be of order 3 with invariant lattice T , we
will need γ = idT and ψ of order 3 with no non-zero fixed points.

By [4, Theorem 3.3], there exist a K3 surface Σ and a non-symplectic auto-
morphism ϕ ∈ Aut(Σ) of order 3 with invariant lattice TK3 = U and co-invariant
SK3 = U⊕2 ⊕ E⊕2

8 . Thus, the natural automorphism ϕ[n] on the Hilbert scheme

Σ[n] will have invariant lattice T ′ = U ⊕ ⟨−2(n − 1)⟩ and co-invariant lattice
S′ = SK3 = U⊕2 ⊕ E⊕2

8 . Notice that T ′ ⊕ S′ = Ln, meaning that the triple

(3, 10, 0) is realized by a natural automorphism for all n ≥ 2. Moreover, since ϕ[n]

has odd order, it induces a monodromy of Ln which acts as + id on the discrimi-
nant ALn

∼= AT ′ ⊕ AS′ (Proposition 2.3.8). The restriction of this monodromy to
S′ is therefore an isometry µ ∈ O(S′) of order 3, with no non-zero fixed vectors,

such that µ = idAS′ and snS
′

R (µ) = 1 (recall the definition of real spinor norm from
Remark 2.3.9). On our original lattice S = S′ ⊕ A2 we now consider the isometry
ψ = µ⊕ ρ0, where ρ0 acts on A2 =

(
Ze1 ⊕ Ze2,

(−2 1
1 −2

))
as

ρ0(e1) = e2, ρ0(e2) = −e1 − e2.

It is easy to check that ρ0 is an isometry of order 3 without non-zero fixed points,
inducing the identity on the discriminant group AA2 (this isometry was also used

in [40, §6.6]). Notice that, since A2 is negative definite, snA2

R (ρ0) = 1. We can then
conclude that ψ = µ⊕ρ0 is an isometry of S of order 3 with no non-zero fixed points,
which induces the identity on the discriminant group. Moreover, since ψ is defined
as an orthogonal sum, snSR(ψ) = snS

′

R (µ) · snA2

R (ρ0) = 1 (the reflections appearing in
the factorisation of ψR are the extensions to S ⊗ R of the ones which factorise µR
and (ρ0)R as transformations of the orthogonal subspaces S′ ⊗R, A2 ⊗R ⊂ S⊗R).
By the same reasoning, snLnR (φ) = snLnR (idT ⊕ψ) = snSR(ψ) = 1. Thus, φ is a
monodromy operator, thanks to Proposition 2.3.8, with invariant lattice T and
co-invariant S. By generalizing [17, Proposition 5.3], there exists a manifold X
of K3[n]-type and a marking η : H2(X,Z) → Ln such that η(NS(X)) = T . The
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monodromy φ is a Hodge isometry, since it preserves H2,0(X) = CωX (because
NS(X) = ω⊥

X ∩H2(X,Z)). Moreover, since rk(T ) = 1, φ fixes a Kähler class (the
generator of η(NS(X)) = T ). The Hodge-theoretic global Torelli theorem (Theorem
2.3.11) allows us to conclude that there exists an automorphism f ∈ Aut(X) such
that η ◦ f∗ ◦ η−1 = φ.

Case (i): (3, 11, 1). In this case, T = ⟨6(n−1)⟩ and S = U⊕2⊕E⊕2
8 ⊕A2. Now

T ⊕ S is a proper sublattice of Ln, because a = 1; however, we can still consider
the isometry φ = idT ⊕ψ ∈ O(T ⊕ S) defined above. Since ψ = idAS , the isometry
φ can be extended to Φ ∈ O(Ln) by Proposition 1.4.7. As recalled in Section 4.1.1,
ALn

∼=M⊥/M , withM,M⊥ subgroups of AT ⊕AS , meaning that Φ = idALn , since

φ = id ∈ O(AT⊕S). Moreover, we also have snLnR (Φ) = snT⊕S
R (φ) = snSR(ψ) = 1

(see for instance the proof of [28, Proposition 3.5]). Thus, Φ ∈ Mon2(Ln), and it
still has invariant lattice T and co-invariant lattice S. We can now apply Theorem
2.3.11 in the same way as before to conclude that, also in this case, there exists an
automorphism of a suitable manifold of K3[n]-type inducing Φ.

Cases (iii), (iv): (23, 1, 0) and (23, 1, 1). These two cases can be realized by
generalizing [16], where the authors proved the existence of an automorphism of
order 23 on a manifold of K3[2]-type, having invariant lattice T ∼= ⟨46⟩ and co-
invariant lattice S ∼= U⊕2 ⊕ E⊕2

8 ⊕K23. In Proposition 4.1.15 we showed that, if
a triple (p,m, a) with p = 23 is admissible, then m = 1 and a ∈ {0, 1}; moreover,
in this case the two orthogonal sublattices of Ln are S = U⊕2 ⊕ E⊕2

8 ⊕ K23 and

either T = ⟨46(n − 1)⟩ if a = 1 (as we have for n = 2), or T = ⟨ 2(n−1)
23 ⟩ if a = 0.

We notice in particular that S does not depend on n and in [16, Proposition 5.3] it
was proved that such lattice admits an isometry ψ of order 23 inducing the identity
on AS . Thus, idT ⊕ψ ∈ O(T ⊕ S) can be extended to an isometry φ ∈ O(Ln) such
that φ = id ∈ O(ALn) (if a = 0 we have Ln = T ⊕ S, so idT ⊕ψ is already an
isometry of Ln with this property; otherwise, if a = 1, we apply again Proposition
1.4.7). Following the same proof of [16, Theorem 6.1], there exists an automorphism
realizing the triple. We point out that, while for n = 2 the monodromies of Ln are
just the isometries preserving the positive cone, for higher values of n the isometry
also needs to induce ± id on ALn (see Proposition 2.3.8). This, however, is not a
problem since we know that φ = id ∈ O(ALn). �

We remarked in Section 4.1.3 that the triple (3, 11, 0) is admissible for n = 4,
therefore we can now conclude that it is realized by an automorphism: we mark
this case with the symbol ⋆ in the corresponding table of Appendix A. We will see
an explicit geometric realization of it in Section 4.4.1.

4.3. Induced automorphisms for n = 3, 4, p = 3

The new admissible triples (3,m, a) that appear passing from n = 2 to n = 3
and, more significantly, to n = 4 (see Section 4.1.4 and Appendix A) cannot be
realized by natural automorphisms. However, in this section we will show that all of
them but one admit a realization using (possibly twisted) induced automorphisms,
which were discussed in Section 4.2.2.

4.3.1. Induced automorphisms for n = 4. Let T, S be the lattices associ-
ated to an admissible triple (3,m, a) for n = 4 such that S = SK3, where SK3 is the
co-invariant lattice of a non-symplectic automorphism ϕ of order 3 on a K3 surface

Σ (see [4] for a complete classification of these lattices). Let T̂ be the orthogonal

complement of S in the Mukai lattice Λ24: since S = SK3, we have T̂ ∼= TK3 ⊕ U ,
with TK3 the invariant lattice of ϕ. Then the following result holds.
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Lemma 4.3.1. If TK3
∼= U(3) ⊕W , for some even lattice W , and T ∼= U ⊕

W ⊕⟨−6⟩, then the triple (3,m, a) is realized by an automorphism induced by ϕ on
a suitable moduli space Mτ (v) of dimension eight.

Proof. If TK3
∼= U(3)⊕W , then T̂ ∼= U ⊕U(3)⊕W is the invariant lattice of

the extended action of ϕ to Λ24. Let v be a primitive Mukai vector of square six in

the component U(3) of T̂ : then v⊥ ∩ T̂ ∼= U ⊕W ⊕ ⟨−6⟩. Proposition 4.2.3 allows
us to conclude. �

Remark 4.3.2. Lemma 4.3.1 holds not only for n = 4, but for any n such
that n ≡ 1 (mod 3), since this is the condition which guarantees the existence of a
primitive element of square 2(n− 1) in the lattice U(3).

Theorem 4.3.3. For n = 4, all admissible triples (3,m, a) ̸= (3, 11, 0), (3, 10, 3),
(3, 9, 4), (3, 8, 5) admit a geometric realization via non-twisted induced automor-
phisms.

Proof. Except for the four cases excluded in the statement, the only admissi-
ble triples in Table 2 of Appendix A which cannot be realized by a natural automor-
phism and do not satisfy the hypotheses of Lemma 4.3.1 are (3, 8, 1), (3, 7, 0), (3, 4, 1)
and (3, 3, 0).

Consider the triple (3, 8, 1). Here we have S = U⊕2⊕E⊕2
6 and T = ⟨2⟩⊕E6. By

[4, Theorem 3.3] there exists a K3 surface Σ and a non-symplectic automorphism
of order three ϕ ∈ Aut(Σ) with SK3 = S and TK3 = U⊕A⊕2

2 : in order to show that
the triple (3, 8, 1) is realized by an automorphism induced by ϕ we need to prove

the existence of a primitive Mukai vector v ∈ T̂ = U⊕2 ⊕ A⊕2
2 of square six and

orthogonal complement v⊥ ∩ T̂ isometric to T (see Proposition 4.2.3). We describe

primitive embeddings ⟨6⟩ ↪→ T̂ using Theorem 1.4.4, since T̂ is unique in its genus
(up to isometries) by Theorem 1.3.3. The discriminant groups of the two lattices

⟨6⟩ and T̂ are:

A⟨6⟩ = ⟨s⟩ ∼=
Z
6Z

(
1

6

)
, AT̂ = ⟨t1, t2⟩ ∼=

Z
3Z

(
4

3

)
⊕ Z

3Z

(
4

3

)
.

We consider the isometric subgroups H := ⟨2s⟩ ⊂ A⟨6⟩ and H ′ := ⟨t1 + t2⟩ ⊂ AT̂ .
Let γ : H → H ′ be the isomorphism sending the generator of H to the generator
of H ′ (both these elements have order three and quadratic form 2

3 mod 2Z). The
graph of γ is the subgroup Γ = ⟨2s+ t1 + t2⟩ ⊂ A⟨6⟩(−1)⊕ AT̂ and its orthogonal

complement is Γ⊥ = ⟨s+ t1, s+ t2⟩. Passing to the quotient Γ⊥/Γ, the class of the
element s+ t2 becomes the opposite of the class of s+ t1, meaning that

Γ⊥

Γ
= ⟨[s+ t1]⟩ ∼=

Z
6Z

(
7

6

)
.

This quotient coincides with the discriminant group of T = ⟨2⟩ ⊕ E6: by The-

orem 1.4.4, this implies that there exists a primitive embedding ⟨6⟩ ↪→ T̂ with
orthogonal complement T , thus the triple (3, 8, 1) has an induced realization by
Proposition 4.2.3. Moreover, this computation guarantees that the triple (3, 4, 1) is
also realized by an induced automorphism, since in this case both T = ⟨2⟩⊕E6⊕E8

and TK3 = U⊕A⊕2
2 ⊕E8 differ from the ones of (3, 8, 1) only for an additional copy

of the unimodular lattice E8.
With a similar approach it is possible to show that the admissible triples

(3, 7, 0) and (3, 3, 0) are realized by induced automorphisms too: here T = ⟨2⟩⊕E8,
TK3 = U ⊕ E6 and T = ⟨2⟩ ⊕ E⊕2

8 , TK3 = U ⊕ E6 ⊕ E8 respectively. �

All the cases which can be realized by non-natural, non-twisted induced auto-
morphisms are marked with the symbol ♮ in Table 2 of Appendix A.
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4.3.2. Twisted induced automorphisms for n = 3, 4. Both for n = 3
and n = 4, in Section 4.1.4 we have found admissible triples for p = 3 where the
lattice S is different from all possible co-invariant lattices SK3 of non-symplectic
automorphisms of order three on K3 surfaces, classified in [4]. Thus, we cannot
realize these cases in a natural way, nor using induced automorphisms on moduli
spaces of ordinary sheaves on K3’s (Proposition 4.2.3). However, we prove that
(excluding (3, 11, 0) for n = 4, which will be discussed in Section 4.4.1) they all
admit a geometric realization using twisted induced automorphisms.

We are interested in the following triples (p,m, a): (3, 9, 5) and (3, 8, 6) for
n = 3; (3, 10, 3), (3, 9, 4), (3, 8, 5) for n = 4. For each of these cases, let T, S be the
corresponding lattices in Table 1 (n = 3) or Table 2 (n = 4) of Appendix A. Notice
that S is always of the form S = U(3)⊕2 ⊕W , where W is one of the lattices E⊕2

8 ,
E6 ⊕ E8, E

⊕2
6 .

Let Σ be aK3 surface with transcendental lattice Tr(Σ) = SK3
∼= U⊕U(3)⊕W ,

where SK3 is the co-invariant lattice of a non-symplectic automorphism ϕ ∈ Aut(Σ)
of order three: the existence of (Σ, ϕ) is guaranteed, in all cases, by [4, Theorem
3.3] and [4, Table 2]. This K3 surface has Pic(Σ) = TK3

∼= U(3)⊕M , for an even
lattice M which is either 0, A2, A

⊕2
2 .

Proposition 4.3.4. Let S and (Σ, ϕ) be as above. Then there exists a ϕ-
invariant Brauer class α ∈ Br(Σ)[3] whose kernel in Tr(Σ) is isomorphic to S.

Proof. As we recalled in Section 4.2.2, a Brauer class α ∈ Br(Σ) of order three
corresponds to a surjective homomorphism α : Tr(Σ) → Z/3Z, which is ϕ-invariant
if and only if α ◦ ϕ∗|Tr(Σ) = α.

We consider α := (e1,−) : Tr(Σ) → Z/3Z, where {e1, e2} is a basis for the
summand U in Tr(Σ) ∼= U ⊕ U(3) ⊕ W . The kernel of this homomorphism is
ker(α) = K ⊕ U(3) ⊕W , with K = {v ∈ U | (e1, v) ≡ 0 (mod 3Z)}. In particular
K = ⟨e1, 3e2⟩ ∼= U(3), thus ker(α) ∼= S.

We now want to check that α ◦ ϕ∗|Tr(Σ) = α. By [4, Examples 1.1], recalling
that W is a direct sum of copies of E6 and E8, the action of the automorphism ϕ
on Tr(Σ) ∼= U ⊕ U(3)⊕W can be expressed as

ϕ∗|Tr(Σ) = π ⊕ ρ

where ρ is a suitable isometry of order three of W with no non-zero fixed points
and π is the isometry of U ⊕ U(3) which, with respect to a basis {e1, e2, f1, f2}, is
given by:

e1 ↦→ e1 − f1, e2 ↦→ −2e2 − f2,

f1 ↦→ −2f1 + 3e1, f2 ↦→ f2 + 3e2.

We have (e1, π(ei)) ≡ (e1, ei) (mod 3Z) and (e1, π(fi)) ≡ (e1, fi) ≡ 0 (mod 3Z), for
i = 1, 2, therefore the Brauer class α is invariant with respect to ϕ. �

Theorem 4.3.5. The admissible triples (p,m, a) = (3, 9, 5), (3, 8, 6) for n = 3
and (p,m, a) = (3, 10, 3), (3, 9, 4), (3, 8, 5) for n = 4 admit a geometric realization
using twisted induced automorphisms.

Proof. Fix a triple (p,m, a) as in the statement, let T, S be the invariant
and co-invariant lattices associated to it and Σ, ϕ, α as in Proposition 4.3.4. We
want to construct a moduli space Mv(Σ, α) having T as Picard lattice and S as
transcendental lattice, and on which ϕ induces an automorphism.

We are considering α of the form (e1,−) : Tr(Σ) → Z/3Z, where e1 is a
generator of U inside Tr(Σ) ∼= U ⊕ U(3)⊕W . As a consequence, recalling Section
4.2.2, the element B = e1

3 ∈ Tr(Σ)⊗ 1
3Z ⊂ H2(X,Q) is a B-field lift of α, with the

properties B2 = 0 and B · L = 0 for any L ∈ Pic(Σ).
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Assume first that (p,m, a) is one of the three admissible triples for n = 4. We
already remarked that Pic(Σ) = TK3

∼= U(3) ⊕M : this means that we can find
a primitive divisor H in the summand U(3) of Pic(Σ) with H2 = 6. Moreover,
up to taking its opposite we can assume that H is effective (by Riemann–Roch).
Let v = (0, H, 0) ∈ H∗(Σ,Z) be the primitive positive Mukai vector defined by
H, and B = e1

3 the selected B-field lift of α: by the properties of B, the twisted
Mukai vector vB (defined in Example 2.2.7) coincides with v, and therefore it has
square six and it is invariant with respect to ϕ. By the previous discussion, ϕ in-
duces a non-symplectic automorphism of order three on the moduli space of twisted
sheaves Mv(Σ, α), which is a manifold of K3[4]-type. The transcendental lattice of
Mv(Σ, α) is ker(α) ∼= S (Proposition 4.3.4), while its Picard group is isomorphic
to the intersection v⊥B ∩ ⟨Pic(Σ), (0, 0, 1), (3, 3B, 0)⟩. Since 3B = e1 ∈ Tr(Σ), the
lattice generated by (0, 0, 1) and (3, 3B, 0) is orthogonal to Pic(Σ); moreover, it is
isomorphic to U(3), by the fact that B2 = 0. Thus

Pic (Mv(Σ, α)) ∼=
(
H⊥ ∩ Pic(Σ)

)
⊕ U(3) ∼= ⟨−6⟩ ⊕M ⊕ U(3)

which is exactly the lattice T corresponding to (p,m, a) (see Table 2 of Appendix
A).

Consider now the case where (p,m, a) is one of the admissible triples (3, 9, 5),
(3, 8, 6) for n = 3. In this case Pic(Σ) ∼= U(3) ⊕ A2 ⊕M ′, therefore, if {e1, e2} is
a basis for U(3) and {δ1, δ2} a basis for A2, we can take the primitive element of

square four H̃ = e1 + e2 + δ1 ∈ Pic(Σ). Let H be the effective divisor between

H̃ and −H̃. As before, v = vB = (0, H, 0) is a primitive positive Mukai vector
invariant with respect to ϕ. Then ϕ induces an automorphism on Mv(Σ, α), which
is a manifold of K3[3]-type with transcendental lattice ker(α) ∼= S and

Pic(Mv(Σ, α)) ∼= v⊥B ∩ ⟨Pic(Σ), (0, 0, 1), (3, 3B, 0)⟩ ∼= (H⊥ ∩ Pic(Σ))⊕ U(3).

It can be shown that the orthogonal complement of e1 + e2 + δ1 in U(3) ⊕ A2 is
isomorphic to the lattice Ω defined in Section 4.1.4, thus Pic(Mv(Σ, α)) ∼= Ω ⊕
M ′ ⊕U(3), which is the lattice T corresponding to the triple (p,m, a) in Table 1 of
Appendix A.

To conclude the proof, we need to show that the automorphism induced by ϕ on
Mv(Σ, α) leaves the whole Picard lattice invariant. Both for n = 3 and n = 4, the
direct summand U(3) in Pic (Mv(Σ, α)) is the lattice ⟨(0, 0, 1), (3, 3B, 0)⟩. Notice
that ϕ acts as the identity onH4(Σ,Z), therefore (0, 0, 1) is fixed. Moreover, it maps
(3, 3B, 0) to (3, 3ϕ∗(B), 0), but these two classes coincide in H2(Mv(Σ, α),Z) since
they correspond to each other via the Hodge isometry (equivariant with respect to
the action of ϕ)

exp(ϕ∗(B)−B) : H̃(Σ, B,Z) → H̃(Σ, ϕ∗(B),Z)

between the two Hodge structures of Σ defined by the B-field lifts B,ϕ∗(B) of α
(see [54, §2] and [31, Remark 2.4]; here we use B2 = ϕ∗(B)2 = 0). Since ϕ∗ also
fixes Pic(Σ), we get the result. �

In Table 1 and Table 2 of Appendix A we use the symbol ♦ to mark the five
admissible triples which can be realized only via twisted induced automorphisms.

4.4. Automorphisms of the LLSvS eightfold

Let Y ⊂ P5 be a smooth cubic fourfold which does not contain a plane and
M3(Y ) = Hilbgtc(Y ) the irreducible component of Hilb3n+1(Y ) containing twisted
cubic curves on Y . The manifold M3(Y ) is smooth, projective of dimension ten
and it is called the Hilbert scheme of generalized twisted cubics on Y . In [67],
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Lehn, Lehn, Sorger and van Straten proved that there exist an irreducible holo-
morphic symplectic manifold ZY of dimension eight, a closed Lagrangian embed-
ding j : Y ↪→ ZY and a morphism u : M3(Y ) → ZY which factorizes as Φ ◦ a,
where a : M3(Y ) → Z ′

Y is a P2-bundle to an eight-dimensional manifold Z ′
Y and

Φ : Z ′
Y → ZY is the contraction of an extremal divisor D ⊂ Z ′

Y to the image
j(Y ) ⊂ ZY . Moreover, by work of Addington and Lehn ([1]) ZY is a manifold of
K3[4]-type.

We recall some details about the construction. For all curves C ∈ M3(Y ) the
linear span ⟨C⟩ ⊂ P5 is a P3. In particular, C lies on the cubic surface SC = Y ∩⟨C⟩,
which is integral since Y does not contain any plane. A point p ∈ D ⊂ Z ′

Y is defined
by the datum (y,P(W )), with y ∈ Y and P(W ) ⊂ P5 a three-dimensional linear
subspace through y contained in the tangent space TyY (here and in the following
W ∈ Grass(C6, 4)). The curves of M3(Y ) parametrized by this datum are non-
Cohen–Macaulay: an element C in the fiber a−1(p) is a singular cubic curve C0

cut out on Y by a plane through y contained in P(W ) ⊂ TyY , together with an
embedded point in y. The contraction Φ|D : D → j(Y ) sends p = (y,P(W )) to
j(y).

Instead, a point p ∈ Z ′
Y \D corresponds to the choice of the following data:

• a three-dimensional linear subspace P(W ) ⊂ P5;
• a linear determinantal representation for the surface S = P(W )∩Y , i.e. the
orbit [A] of a 3×3-matrix A with coefficients in W ∗ such that det(A) = 0
is an equation for S in P(W ), where the orbit is taken with respect to the
action of (GL3 ×GL3) /∆, ∆ := {(tI3, tI3) | t ∈ C \ {0}} (see [67, §3]).

Then, any curve C in the fiber a−1(p) lies on S and is arithmetically-Cohen–
Macaulay. The generators of the homogeneous ideal IC/S are the three minors
of a 3 × 2-matrix A0, whose columns are independent linear combinations of the
columns of A. The morphism Φ maps Z ′

Y \D isomorphically to ZY \ j(Y ).
As showed in [41, §3] (see also [17, §6.2]), one can construct non-symplectic

automorphisms of the Fano variety of lines F (Y ) (which is a manifold of K3[2]-
type, see Example 2.1.8) starting from automorphisms of the cubic fourfold Y .
It is therefore natural to ask whether a similar approach can be used to produce
automorphisms on ZY : the answer is positive, we will show how to do so and how
to choose Y in order to construct a non-symplectic automorphism on ZY realizing
the admissible triple (3, 11, 0) for n = 4.

By [72], automorphisms of a cubic hypersurface Y ⊂ P5 are restrictions of linear
automorphisms of P5. The list of all automorphisms of prime order on smooth cubic
fourfolds was provided in [43, Theorem 3.8].

Lemma 4.4.1. Let Y ⊂ P5 be a smooth cubic fourfold not containing a plane
and σ ∈ PGL(6) be an automorphism such that σ(Y ) = Y . Then, σ induces an
automorphism σ̌ of M3(Y ) such that a(σ̌(C)) = a(σ̌(C ′)) if a(C) = a(C ′).

Proof. We begin by looking at curves in the fibers of a over D ⊂ Z ′
Y . Let

p ∈ D be a point corresponding to (y,P(W )), and C1, C2 ∈ a−1(p): as explained
above, each Ci consists of a plane cubic curve C0

i , singular in y, together with an
embedded point at y. In particular, C0

i = πi ∩ Y , with π1, π2 two-dimensional
subspaces inside P(W ) tangent to Y in y. Then, σ(C0

i ) are again plane cubic
curves, cut out on Y by two planes through σ(y) inside σ (P(W )) ⊂ Tσ(y)Y . Let

σ̌(Ci) be σ(C
0
i ), with the unique non-reduced structure at σ(y): then σ̌(C1), σ̌(C2)

are elements of M3(Y ) in the fiber a−1(p′), with p′ defined by (σ(y), σ (P(W ))).
Consider now a point p ∈ Z ′

Y \D, corresponding to P(W ) ⊂ P5 and the orbit
of a 3 × 3-matrix A = (wi,j), with wi,j ∈ W ∗. Denote P(W ′) := σ (P(W )) and let
S be the integral cubic surface P(W ) ∩ Y , which is the vanishing locus in P(W ) of
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g := det(A) ∈ S3W ∗. Then, the surface σ(S) ⊂ P(W ′) is the vanishing locus of
g◦σ−1, which is the determinant of the matrix σ∗A :=

(
wi,j ◦ σ−1

)
with coefficients

in (W ′)
∗
.

Two elements C1, C2 ∈ a−1(p) are aCM cubic curves on S. The generators of
ICi/S are given by the three minors of a 3 × 2-matrix Ai whose two columns are
in the span of the columns of A. Then, σ(C1), σ(C2) are aCM curves on σ(S): by
pullback, the generators of Iσ(Ci)/σ(S) are the minors of σ∗Ai, whose columns are
again linear combinations of the columns of σ∗A. Thus, σ̌(Ci) := σ(Ci) ∈ M3(Y ),
for i = 1, 2, belongs to the fiber of a over the point defined by P(W ′) and [σ∗A]. �

As a consequence of Lemma 4.4.1, there exists an automorphism σ′ of the
manifold Z ′

Y such that σ′ ◦ a = a ◦ σ̌. Moreover, from the previous proof, σ′ leaves
the divisor D invariant. Since Φ : Z ′

Y → ZY is a contraction of D, σ′ descends to
an automorphism σ̃ ∈ Aut(ZY ) (see for instance [68, Lemma 3.2]).

By [101, Proposition 4.8], there exists a dominant rational map of degree six

ψ : F (Y )× F (Y ) 99K ZY

such that

(16) ψ∗(ωZY ) = pr∗1(ωF (Y ))− pr∗2(ωF (Y ))

where ωF (Y ) and ωZY are the symplectic forms on F (Y ) and ZY respectively.
The rational map ψ is defined as follows. Let (l, l′) ∈ F (Y ) × F (Y ) be a generic
element, so that the span ⟨l, l′⟩ is a P3, and let x be a point on l. The plane
⟨x, l′⟩ intersects the cubic fourfold Y along the union of the line l′ and a conic Q
passing through x. Then C := l ∪x Q is a rational cubic curve contained in Y . We
set ψ(l, l′) := u(C) ∈ ZY , which is well-defined since all reducible cubic curves C
arising from different choices of the point x ∈ l belong to the same fiber of u.

Lemma 4.4.2. Let Y ⊂ P5 be a smooth cubic fourfold not containing a plane,
σ ∈ PGL(6) such that σ(Y ) = Y and σ̃ ∈ Aut(ZY ) the automorphism induced by σ
on ZY . Then ψ (σ(l), σ(l′)) = σ̃ (ψ(l, l′)).

Proof. As we recalled, ψ(l, l′) = u(C) with C = l∪xQ, x ∈ l and Y ∩⟨x, l′⟩ =
l′ ∪Q; moreover, σ̃ (ψ(l, l′)) = u (σ̌(C)) by Lemma 4.4.1. In turn, ψ (σ(l), σ(l′)) =
u(C ′), where C ′ = σ(l) ∪σ(x) Q′ and Y ∩ ⟨σ(x), σ(l′)⟩ = σ(l′) ∪ Q′. However,
the intersection Y ∩ ⟨σ(x), σ(l′)⟩ coincides with σ (Y ∩ ⟨x, l′⟩). As a consequence,
Q′ = σ(Q) and so C ′ = σ̌(C). �

Thanks to this equivariance of the map ψ and the relation (16) we deduce that,
if σ̃ ̸= id and σ acts non-symplectically on F (Y ), then σ̃ is also non-symplectic and
of the same order of σ.

Proposition 4.4.3. Let Y ⊂ P5 be a smooth cubic fourfold not containing a
plane. The transcendental lattices of F (Y ) and ZY have the same rank.

Proof. Let Γψ ⊂ F (Y )× F (Y )× ZY be the closure of the graph of the map
ψ : F (Y ) × F (Y ) 99K ZY and let V be a desingularization of Γψ. We consider
the projections πF : V → F (Y ) × F (Y ), πZ : V → ZY which arise from the
inclusion Γψ ⊂ F (Y )×F (Y )×ZY . Let TrC(F (Y )) ⊂ H2(F (Y ),C) and TrC(ZY ) ⊂
H2(ZY ,C) be the complexifications of the transcendental lattices of F (Y ) and ZY
respectively. If we define T := (πF )∗ (π

∗
Z (TrC(ZY ))), using the relation (16) we

deduce:

T ⊂ TrC(F (Y ))⊕ TrC(F (Y )) ⊂ H2(F (Y )× F (Y ),C).
In particular, by the fact that ψ∗(ωZY ) ∈ T and the transcendental is the minimal
Hodge substructure (in the second cohomology) containing holomorphic two-forms,
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(pri)∗(T ) = TrC(F (Y )) for i = 1 or i = 2. This implies that the ranks of Tr(ZY )
and Tr(F (Y )) coincide. �

4.4.1. The case of cyclic cubic fourfolds. Let σ ∈ PGL(6) be the following
automorphism of order three:

(17) σ(x0 : . . . : x5) = (x0 : . . . : x4 : ξx5)

with ξ = e
2πi
3 . We consider the ten-dimensional family C of smooth hypersurfaces

Y ⊂ P5 of equations
Y : x35 + F3(x0, . . . , x4) = 0

with F3 an homogeneous polynomial of degree three. Cubic fourfolds Y ∈ C are
called cyclic: they arise as triple coverings of P4 ramified along the smooth cubic
threefold of equation F3 = 0. Any Y ∈ C is invariant with respect to σ, thus
σ|Y ∈ Aut(Y ).

Remark 4.4.4. In [17, Example 6.4] it was proved that σ induces a non-
symplectic automorphism of order three on the Fano variety of lines F (Y ), whose
invariant lattice is T ′ ∼= ⟨6⟩. This allows us to deduce that a very general Y in the
family C does not contain any plane. In fact, if there existed a plane π ⊂ Y , it
would define an algebraic class in H2,2(Y ). In particular, the second Néron–Severi
group NS2(Y ) = H4(Y,Z) ∩H2,2(Y ) would contain ⟨H2, π⟩, where H is an ample
line bundle on Y , thus rk(NS2(Y )) ≥ 2 (references in [69]). By applying the Abel–
Jacobi map H2,2(Y ) → H1,1(F (Y )) (see [13]), the Picard group of F (Y ) would
also have at least rank two, while we know that Pic(F (Y )) ∼= T ′, for a very general
choice of Y .

We can then construct the manifold ZY , for Y very general in the family C,
and consider σ̃ ∈ Aut(ZY ): by our remarks at the end of the previous subsection,
it is a non-symplectic automorphism of order three. We obtain the following result
as a corollary of Proposition 4.4.3.

Corollary 4.4.5. Let Y be a cubic fourfold in the family C not containing a
plane and σ̃ ∈ Aut(ZY ) the automorphism induced by σ ∈ Aut(Y ) of the form (17).
Then, the invariant lattice of σ̃ is T ∼= ⟨2⟩.

Proof. As explained in Remark 4.4.4, the very general cubic fourfold Y ∈ C
is such that F (Y ) has transcendental lattice of rank 22. This, together with Propo-
sition 4.4.3, allows us to conclude that the invariant lattice of σ̃ has the same rank
of the invariant lattice of the automorphism induced by σ on F (Y ), namely one.
Therefore, by Proposition 4.1.15, T ∼= ⟨2⟩. �

At the end of this section we will present a more geometric proof of Corollary
4.4.5, using Theorem 4.4.8. In order to do so, we first need to study the fixed locus
of the automorphism σ̃.

Let H ⊂ Fix(σ) be the hyperplane {x5 = 0} ⊂ P5. The intersection YH :=
Y ∩ H is the smooth cubic threefold defined by F3(x0, . . . , x4) = 0 inside H. We
denote by ZH the image via the map u :M3(Y ) → ZY of the set of twisted cubics
contained in YH : in [94, Proposition 2.9] the authors prove that ZH is a Lagrangian
subvariety of Z.

Lemma 4.4.6. Let Y be a cubic fourfold in the family C not containing a plane.
Then ZH is contained in the fixed locus of σ̃ and any fixed point in j(Y ) belongs to
ZH .

Proof. Let j(y) be a point in the image of the embedding j : Y ↪→ ZY such
that σ̃(j(y)) = j(y). In the proof of Lemma 4.4.1 we showed that σ̌ ∈ Aut(M3(Y ))
maps the fiber of u : M3(Y ) → ZY over the point j(y) to the fiber over j(σ(y)).
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Therefore, since σ̃ ◦ u = u ◦ σ̌, we need σ(y) = y, i.e. y ∈ YH . We conclude
Fix(σ̃)∩j(Y ) = j(YH). Clearly, sinceH ⊂ Fix(σ), we have ZH ⊂ Fix(σ̃). Moreover,
ZH ∩ j(Y ) ∼= YH (see [94, §3]), thus ZH ∩ j(Y ) = j(YH). �

Proposition 4.4.7. For Y in the family C not containing a plane, the fixed
locus of the automorphism σ̃ is ZH .

Proof. By Lemma 4.4.6, we need to prove that there are no fixed points
outside ZH , i.e. points p ∈ ZY \ j(Y ) fixed by σ̃ such that the curves in the
fiber u−1(p) are not contained in H. Notice that a point p of this type corre-
sponds to (P(W ), [A]), with σ(P(W )) = P(W ) but σ|P(W ) ̸= id. A vector space

W ∈ Grass(C6, 4) is σ-invariant if and only if it can be written as W = W1 ⊕Wξ,
where we set Wt := {w ∈W | σ(w) = tw}. The condition σ|P(W ) ̸= id implies

Wξ ̸= 0, therefore Wξ is the whole one-dimensional eigenspace of C6 with respect
to the eigenvalue ξ of σ, whileW1 is a three-dimensional subspace of the eigenspace
of C6 where σ acts as the identity. Let y0, y1, y2 ∈ W ∗ be the dual elements of a
basis of W1. Then, we can take y0, y1, y2, x5 as coordinates on P(W ), so that the
action of σ on it is σ(y0 : y1 : y2 : x5) = (y0 : y1 : y2 : ξx5).

We showed in the proof of Lemma 4.4.1 that, for a point p as above, we have
σ̃(p) = (P(W ), [σ∗A]). Therefore, p is fixed if and only if the matrices A and σ∗A
define the same P2 of generalized aCM twisted cubics on the surface S = P(W )∩Y ,
whose equation in P(W ) is of the form g := x35 + f(y0, y1, y2) = 0, where f is the
restriction of F3 to P(W1). Fix a curve C in the fiber u−1(p): its equations in P(W )
are given by the three minors of a 3× 2-matrix A0 with linear entries in W ∗. The
matrix A0, up to a change of basis, can only be of eight different types, listed in
[67, §1]. Since the curve C lies on S, the polynomial g defining the surface belongs
to IC/S , i.e. it is a combination of the minors of A0 (see [67, §3.1]). We recall that
A is a linear determinantal representation of the surface S therefore, without loss
of generality, it is of the form

A =
(
A0

∗∗∗
)

where the last column is uniquely determined by g (up to a combination of the
columns of A0). By [67, §3.1], the matrices A, σ∗A define the same P2 of cubics on
S if and only if the columns of σ∗A0 belong to the span of the columns of A.

Assume A0 is of the most general form, i.e. the form A(1) =

(
w0 w1 w2

w1 w2 w3

)t
of [67, §1], where w0, . . . , w3 are suitable coordinates for P(W ): in this case C is a
smooth twisted cubic curve.

Let M := (ai,j | bi)i=0,1,2,3
j=0,1,2

∈ GL4(C) be the matrix defining the change of

coordinates from {wi}3i=0 to {y0, y1, y2, x5}. Then

A =

⎛⎜⎜⎜⎝
∑2
j=0 a0,jyj + b0x5

∑2
j=0 a1,jyj + b1x5

∑2
j=0 c0,jyj + d0x5∑2

j=0 a1,jyj + b1x5
∑2
j=0 a2,jyj + b2x5

∑2
j=0 c1,jyj + d1x5∑2

j=0 a2,jyj + b2x5
∑2
j=0 a3,jyj + b3x5

∑2
j=0 c2,jyj + d2x5

⎞⎟⎟⎟⎠
where the parameters ci,j and di are determined by g. Once we apply the auto-
morphism we get:

σ∗A =

⎛⎜⎜⎜⎝
∑2
j=0 a0,jyj + ξ2b0x5

∑2
j=0 a1,jyj + ξ2b1x5

∑2
j=0 c0,jyj + ξ2d0x5∑2

j=0 a1,jyj + ξ2b1x5
∑2
j=0 a2,jyj + ξ2b2x5

∑2
j=0 c1,jyj + ξ2d1x5∑2

j=0 a2,jyj + ξ2b2x5
∑2
j=0 a3,jyj + ξ2b3x5

∑2
j=0 c2,jyj + ξ2d2x5

⎞⎟⎟⎟⎠
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where the first two columns form the matrix σ∗A0, whose minors define the curve
σ(C) ⊂ S.

The first column of σ∗A0 is a C-linear combination of the columns of A if and
only if the following linear system of 12 equations admits a solution (h, k, t) ∈ C3:

(18)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0,j = ha0,j + ka1,j + tc0,j for j = 0, 1, 2

a1,j = ha1,j + ka2,j + tc1,j for j = 0, 1, 2

a2,j = ha2,j + ka3,j + tc2,j for j = 0, 1, 2

ξ2b0 = hb0 + kb1 + td0

ξ2b1 = hb1 + kb2 + td1

ξ2b2 = hb2 + kb3 + td2

Notice that the system made of the last three equations always admits a unique
solution, namely (h, k, t) = (ξ2, 0, 0). In fact, the determinant of its matrix of
coefficients is different from zero, because it coincides with the coefficient of x35 in
the expression of the determinant of A (and σ∗A), which needs to be a (non-zero)
scalar multiple of g. Now, the triple (h, k, t) = (ξ2, 0, 0) is a solution for the whole
system (18) only if a0,j = a1,j = a2,j = 0 ∀j = 0, 1, 2, which is not possible since
the matrix M needs to be invertible. We conclude that the columns of σ∗A0 can
never be combinations of the columns of A if A0 is of the form A(1). The remaining
cases, i.e. A0 of the forms A(2), . . . , A(8) of [67, §1], can be discussed in an entirely
similar way. �

Let us fix a cubic fourfold Y ∈ C not containing a plane and choose a marking
η0 : H2(ZY ,Z) → L4 = U⊕3⊕E⊕2

8 ⊕⟨−6⟩. We define ρ := η0 ◦ (σ̃)
∗ ◦ η−1

0 ∈ O(L4).

Following [19] and [18], a (ρ, ⟨2⟩)-polarization of an IHS manifoldX ofK3[4]-type is
given by a marking η : H2(X,Z) → L4 and an automorphism g ∈ Aut(X) of order
three such that g|H2,0(X) = ξ id and η◦g∗ = ρ◦η (in particular, the invariant lattice
of g is isometric to ⟨2⟩, by Corollary 4.4.5). We consider the following equivalence
relation: two (ρ, ⟨2⟩)-polarized eightfolds (X, η, g), (X ′, η′, g′) are equivalent if there
exists an isomorphism f : X → X ′ such that η′ = η ◦ f∗ and g′ = f ◦ g ◦ f−1. Let

Mρ,ξ
⟨2⟩ be the set of equivalence classes of (ρ, ⟨2⟩)-polarized manifolds of K3[4]-type

and U ⊂ Mρ,ξ
⟨2⟩ the subset which parametrizes manifolds (ZY , η, σ̃), with Y cyclic

cubic fourfold not containing a plane and σ as in (17).
For any smooth cubic threefold J ⊂ P4, we denote by Y (J ) the cubic fourfold

which arises as triple covering of P4 ramified along J . Using Proposition 4.4.7 we
can prove the following result.

Theorem 4.4.8. Let J ,J ′ be smooth cubic threefolds such that Y (J ), Y (J ′)
do not contain a plane. If (ZY (J ), η, σ̃), (ZY (J ′), η

′, σ̃′) are equivalent as (ρ, ⟨2⟩)-
polarized manifolds, then J ∼= J ′. In particular, U ⊂ Mρ,ξ

⟨2⟩ has dimension ten.

Proof. Consider (ZY , η, σ̃) ∈ U and let ZH ⊂ ZY be the fixed locus of σ̃:
by [94, Theorem 3.3] and [55, §6.3], ZH also arises as resolution of the unique
singular point of the theta divisor in the intermediate Jacobian J(YH) of the cubic
threefold YH . This implies that ZH is a variety of maximal Albanese dimension
and Alb(ZH) ∼= J(YH) (see for instance [59, §1] and references therein). By the
Torelli theorem for cubic threefolds ([35, Theorem 13.11]), we conclude that the
eightfold ZY and the action of the automorphism σ̃ uniquely determine the threefold
J = YH up to isomorphisms. The moduli space Csm

3 of smooth cubic threefolds
is ten-dimensional and, for J ∈ Csm

3 very general, the cubic fourfold Y (J ) does

not contain a plane (see Remark 4.4.4). Since Mρ,ξ
⟨2⟩ is ten-dimensional too by [19,

Corollary 6.5], ten is also the dimension of the subset U ⊂ Mρ,ξ
⟨2⟩. �
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Theorem 4.4.8 allows us to provide the following alternative proof of Corollary
4.4.5. The automorphism σ̃ corresponds to an admissible triple (3,m, a), where
m − 1 coincides with the dimension of the moduli space U by [17, §4]. Since the
dimension of U is ten, we can use Proposition 4.1.15 to deduce m = 11, a = 0.
Hence the invariant lattice of σ̃ is T ∼= ⟨2⟩.



CHAPTER 5

Non-symplectic involutions on manifolds of
K3[n]-type

This chapter presents the classification of non-symplectic involutions of mani-
folds of K3[n]-type, thus generalizing to all even dimensions the classification which
is already known for n = 1 by foundational work of Nikulin [82] on K3 surfaces
and for n = 2 by work of Beauville [12] and of Boissière, Camere and Sarti [17].
The core of the classification result contained in this chapter comes from Joumaah’s
PhD thesis [60]; on the other hand, the main result in loc. cit. is not entirely cor-
rect, so one of our goals is to prove a revised version of it, in order to obtain the
correct classification of non symplectic involutions in Proposition 5.1.5.

The prime p = 2 is somewhat different with respect to odd primes, that were
considered in the previous chapter, because for n ≥ 2 it always divides 2(n − 1),
which is the discriminant of the Beauville–Bogomolov–Fujiki lattice Ln = U⊕3 ⊕
E⊕2

8 ⊕ ⟨−2(n − 1)⟩. This divisibility, as already observed in Section 4.1 for odd
primes, allows for a richer classification.

The results of this chapter have been obtained in collaboration with Chiara
Camere and Andrea Cattaneo and appear in the paper [30].

5.1. Involutions of the lattice Ln

5.1.1. Invariant and co-invariant lattices. Let (X, i) be a pair consisting
of an IHS manifold X of K3[n]-type and a non-symplectic involution i ∈ Aut(X).

By [71, Corollary 9.5], we have a primitive embedding H2(X,Z) ∼= Ln ↪→ Λ,
where Λ := Λ24 = U⊕4 ⊕E⊕2

8 is the Mukai lattice. We now fix n ≥ 2 and we write
L := Ln for the sake of simplicity. We denote by L⊥ the orthogonal complement
of L inside Λ. As a consequence of Corollary 1.4.5 we have

(19) AL⊥ ∼=
Z

2(n− 1)Z

(
1

2(n− 1)

)
.

Since L⊥ ⊂ Λ has rank one, we deduce that L⊥ ∼= ⟨2(n− 1)⟩.
After choosing a marking η : H2(X,Z) → L, we can consider the action

i∗ ∈ O(L). By Proposition 2.3.8, i∗ satisfies the following properties: it has spin
norm equal to 1 (equivalently, it is orientation preserving) and it induces ± id on

the discriminant group AL. This means that ±i∗ ∈ Õ(L), where for any lattice

N we define the stable orthogonal group Õ(N) = {g ∈ O(N) | g = id ∈ O(AN )}
(as in the previous chapters, g denotes the isometry of AN induced by g). Let

ψ = ±i∗ be such that ψ ∈ Õ(L). We now show that one between the invari-
ant and the co-invariant lattice of i∗ is 2-elementary. Recall from Section 2.5 (see
in particular (6)) that the co-invariant lattice of the involution i∗ coincides with
ker(id+i∗) ⊂ H2(X,Z) and therefore it is equal to the invariant lattice of −i∗,
which we denote by H2(X,Z)−i∗ .

Proposition 5.1.1. Let X be a manifold of K3[n]-type and i ∈ Aut(X) be a
non-symplectic involution. Then one of the following holds:

65
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(i) i∗ acts as id on the discriminant group of H2(X,Z) and H2(X,Z)−i∗ is
2-elementary;

(ii) i∗ acts as − id on the discriminant group of H2(X,Z) and H2(X,Z)i∗ is
2-elementary.

Proof. Consider ψ ∈ Õ(L) as above: in both cases we want to show that the
invariant lattice of −ψ is 2-elementary. By Proposition 1.4.7, we can extend ψ to

an isometry τ ∈ Õ(Λ) such that τ |L⊥ = idL⊥ and with the following properties:

• Lψ ⊂ Λτ ;
• L−ψ ⊂ Λ−τ ;
• L⊥ ⊂ Λτ .

As a consequence, Lψ ⊕ L⊥ ⊂ Λτ is a finite index sublattice and moreover,
inside Λ:

Λ−τ = (Λτ )⊥ ⊂ (Lψ ⊕ L⊥)⊥ = (Lψ)⊥ ∩ L ⊂ L.

Hence L−ψ = Λ−τ . The invariant and co-invariant lattices of an involution of an
even unimodular lattice are 2-elementary by [44, Lemma 3.5]: this concludes the
proof. �

With the same notation used above, we remark the following facts.

Lemma 5.1.2.

(i) The lattice Lψ is primitively embedded in Λτ .
(ii) The lattice L⊥ is primitively embedded in Λτ .
(iii) The lattices Lψ and L⊥ are the orthogonal complement of each other in

Λτ .

Proof.

(i) As Lψ ⊂ L and L ⊂ Λ are primitive, we deduce that Lψ ⊂ Λ is primitive.
The claim follows then from the inclusion Lψ ⊂ Λτ .

(ii) This follows from the fact that L⊥ ⊂ Λ is primitive and L⊥ ⊂ Λτ ⊂ Λ.
(iii) Since (Lψ, L⊥) = 0, we deduce that L⊥ ⊂ (Lψ)⊥Λτ . Moreover, both L⊥

and (Lψ)⊥Λτ are primitive sublattices of Λτ : since they have the same
rank, they must coincide. �

Lemma 5.1.3. Let X be a manifold of K3[n]-type and i ∈ Aut(X) be a non-
symplectic involution. If (X, i) is deformation equivalent to (Σ[n], ϕ[n]), for a K3

surface Σ and ϕ ∈ Aut(Σ), then i∗ ∈ Õ(H2(X,Z)).

Proof. As shown in [17, §4], the isomorphism classes of the invariant and co-
invariant lattices of a non-symplectic automorphism are deformation invariant. For
the pair (Σ[n], ϕ[n]), the action of the natural involution on the exceptional divisor
of the Hilbert–Chow morphism is trivial by Theorem 2.5.7. Let δ ∈ H2(Σ[n],Z) be
the class whose double is the exceptional divisor. From i∗(2δ) = 2δ we get that the
image of L+ 1

2(n−1)δ ∈ AL is L+ 1
2(n−1)δ, hence the action of i∗ on AL is trivial. �

Corollary 5.1.4. Let X be a manifold of K3[n]-type and i ∈ Aut(X) be a
non-symplectic involution. If (X, i) is deformation equivalent to (Σ[n], ϕ[n]), for
a K3 surface Σ and ϕ ∈ Aut(Σ), then the co-invariant lattice H2(X,Z)−i∗ is 2-
elementary.

5.1.2. Discriminant groups. We explain in this section the inaccuracies in
the proof of [60, Proposition 5.1.1] and provide the necessary corrections. Adopting
our notation, which differs from the one used by Joumaah, let X be a manifold of
K3[n]-type with a non-symplectic involution i ∈ Aut(X). Let T = Li

∗
, S = L−i∗

be, respectively, the invariant and co-invariant lattices of the involution. The aim of



5.1. INVOLUTIONS OF THE LATTICE Ln 67

[60, Proposition 5.1.1] is to classify the discriminant groups AT , AS . In order to do
so, Joumaah considers the isotropic subgroup M ⊂ AT ⊕ AS , which is isomorphic
to L

T⊕S
∼=
( Z
2Z
)a

for some a ≥ 0, and its projections MT := pT (M) ⊂ AT , MS :=

pS(M) ⊂ AS . In particular, M ∼=MT
∼=MS as groups, M

⊥

M
∼= AL and we have an

anti-isometry γ := pS ◦ p−1
T :MT →MS (see Section 1.4; we defined γ in (5)).

The following proposition provides the complete classification for the discrimi-
nant groups AT , AS .

Proposition 5.1.5. Let X be a manifold of K3[n]-type, for n ≥ 2, and let
α ≥ 1 and β odd such that 2(n − 1) = 2αβ. Let G ⊂ Aut(X) be a group of order
2 acting non-symplectically on X. Denote by T, S ⊂ L := Ln, respectively, the
invariant and co-invariant sublattices for the action of G, with L

T⊕S
∼=
( Z
2Z
)a

for
some a ≥ 0. Then one of the following cases holds:

(i) AT ∼=
( Z
2Z
)⊕a ⊕ Z

2(n−1)Z , AS
∼=
( Z
2Z
)⊕a

or vice versa;

(ii) a ≥ 1, AT ∼=
( Z
2Z
)⊕a−1 ⊕ Z

2(n−1)Z , AS
∼=
( Z
2Z
)⊕a+1

or vice versa;

(iii) α = 1, a = 0, AT ∼= Z
βZ , AS

∼= Z
2Z or vice versa.

Proof. Let i be the non-symplectic involution generating the group G and, as

before, let ψ = ±i∗ be the isometry such that ψ ∈ Õ(L), i.e. ψ = id ∈ O(AL). Let
T, S be the invariant and co-invariant lattices of i∗, as in the statement. If ψ = i∗,
then T = Lψ, S = L−ψ; if instead ψ = −i∗, then T = L−ψ, S = Lψ. As we showed
in Proposition 5.1.1, the lattice L−ψ is 2-elementary, therefore AL−ψ coincides with
its Sylow 2-subgroup (it actually coincides with its 2-torsion part). Moreover, by
using the same arguments of Lemma 4.1.4, we have ALψ = (ALψ )2 ⊕ Z

βZ . It is

now easy to check that the discriminant groups of the lattices Lψ, L−ψ satisfy the
same classification presented in Proposition 4.1.5 for automorphisms of odd prime
order. �

Remark 5.1.6. Assume that i∗ ∈ Õ(L), so that ψ = i∗. As in the proof of
Proposition 4.1.5, let H := (AT )2 ⊕AS ⊂ AT ⊕AS and denote by H[2] ⊂ H the
subgroup of elements of order 2 in H. If α > 1, Joumaah correctly highlighted in

his proof that the index [H : H[2]] needs to be 2α−1 and therefore H ∼=
( Z
2Z
)2a ⊕

Z
2αZ . However, contrary to what he stated, this does not necessarily imply that

H = MT ⊕MS ⊕ Z
2αZ , from which he inferred AT ∼= MT ⊕ AL, AS = MS as the

only possibility for the discriminant groups. Indeed, we exhibit two lattices T, S
which are the invariant and co-invariant lattices of a non-symplectic involution of
a manifold of K3[3]-type and whose discriminant groups are in contrast with [60,
Proposition 5.1.1].

For n = 3 we have 2(n − 1) = 4, meaning α = 2, β = 1. In [56] the authors
described a 20-dimensional family of manifolds of K3[3]-type, called double EPW
cubes, with polarization of degree four and divisibility two (see [56, Proposition
5.3]), whose members are always endowed with a non-symplectic involution i. As
a consequence, the invariant lattice of i is T ∼= ⟨4⟩ and the co-invariant lattice is
S ∼= U⊕2 ⊕ E⊕2

8 ⊕ ⟨−2⟩⊕2. In particular, the discriminant groups are

AT = ⟨t⟩ ∼=
Z
4Z

(
1

4

)
, AS = ⟨s1, s2⟩ ∼=

Z
2Z

(
−1

2

)
⊕ Z

2Z

(
−1

2

)
.

In this case H = AT ⊕AS , since β = 1. Moreover

16 = |AT ⊕AS | = [L : T ⊕ S]
2 |AL| = 22a · 4

therefore a = 1. Looking at the discriminant quadratic forms on AT and AS , the
only possible choice for the subgroups of order two MT ⊂ AT and MS ⊂ AS , with
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MT
∼=MS(−1), is the following:

MT = ⟨2t⟩ ⊂ AT , MS = ⟨s1 + s2⟩ ⊂ AS

which implies M = ⟨2t + s1 + s2⟩ ⊂ AT ⊕ AS . One can check, by computing

M⊥ ⊂ AT ⊕AS , that
M⊥

M
∼= AL ∼= Z

4Z
(
− 1

4

)
.

This is therefore a case where α = 2 > 1 and [H : H[2]] = 2 = 2α−1. However,
it is not possible to write H = AT ⊕AS as H =MT ⊕MS ⊕ Z

2αZ and it is not true
that AT ∼=MT ⊕AL, AS =MS .

Remark 5.1.7. In the case of manifolds of K3[2]-type, it was proved in [17,
Lemma 8.1] (extending results from [21, §6]) that the discriminant groups can

only be AS ∼=
( Z
2Z
)⊕a

, AT ∼=
( Z
2Z
)⊕a+1

or vice versa. This is coherent with the
classification of Proposition 5.1.5 (if n = 2 we have 2(n−1) = 2, hence α = β = 1).

5.2. Existence of involutions

In this section we show that the lattice-theoretic conditions of Proposition 5.1.1
are actually sufficient to give rise to a geometric realization. First, we prove that
every 2-elementary sublattice of L = Ln is the invariant (or co-invariant) lattice of
some involution of L, and finally that we can generically lift this abstract involution
to an involution of a manifold of K3[n]-type.

Proposition 5.2.1. Let S be an even 2-elementary lattice, primitively em-
bedded into an even lattice N . Then idS⊥ ⊕(− idS) (respectively, (− idS⊥) ⊕ idS)

extends to an isometry ρ ∈ Õ(N) (respectively, −ρ ∈ Õ(N)).

Proof. By [81, Theorem 1.1.2], we can primitively embed N into an even
unimodular lattice V of high enough rank. We fix such a primitive embedding and
consider the orthogonal complements N⊥V and S⊥V of N and S inside V . Obvi-
ously, V is an overlattice of S ⊕ S⊥V . We want to show that α := idS⊥V ⊕(− idS)
extends to V . A completely analogous proof will show that also (− idS⊥V ) ⊕ idS
extends, as in the statement. Let MV

∼= V/(S ⊕ S⊥V ) be the isotropy subgroup of
AS ⊕AS⊥V and let pS , pS⊥V be the two projections to AS and AS⊥V :

MV = V/(S ⊕ S⊥V )

p
S⊥V

↓↓

pS

→→

⊂ AS ⊕AS⊥V

MS⊥V ⊂ AS⊥V MS ⊂ AS .

Since V is unimodular, we have MS⊥V = AS⊥V and MS = AS by Lemma 1.4.1.
As before, let γ : AS⊥V → AS be the anti-isometry given by pS ◦ (pS⊥V )

−1. By
Proposition 1.4.7, the existence of an extension of α to V is equivalent to the
commutativity of the diagram

AS⊥V

γ →→

id
S⊥V
↓↓

AS

−idS
↓↓

AS⊥V

γ →→ AS .

This diagram is commutative because −γ = γ, since S is 2-elementary, hence we
get the extension α̃ ∈ O(V ) of α to V .

As S⊥N ⊕N⊥V ⊂ S⊥V , we deduce that N⊥V is invariant for the action of α̃.
Let ρ be the restriction α̃|N . Since ρ ⊕ idN⊥V extends to α̃ ∈ O(V ), we have a
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commutative diagram

AN
π →→

ρ

↓↓

AN⊥V

id
N⊥V
↓↓

AN
π →→ AN⊥V

where π := pN⊥V ◦ (pN )−1. Hence ρ = idAN , i.e. ρ ∈ Õ(N). �

Remark 5.2.2. This is in some sense a converse of [44, Lemma 3.5]. See also
[39, Proposition 1.5.1].

We now come to the second part of the section. First, we recall some results
on lattice-polarized manifolds of K3[n]-type.

Let T be a hyperbolic lattice which admits a primitive embedding j : T ↪→ L,
with rk(T ) ≤ 20. We identify T with the sublattice j(T ) ⊂ L and we denote by S
its orthogonal complement in L. Following [60, §4.1], we say that T is admissible
if it is the invariant lattice of a monodromy operator ρ ∈ Mon2(L) of order two.
In particular, T and S are as in Proposition 5.1.5, therefore one of them is 2-
elementary. This implies, by Proposition 5.2.1, that ρ is the unique extension of
idT ⊕(− idS) to L.

Let X be a manifold of K3[n]-type and i ∈ Aut(X) be a non symplectic invo-
lution acting on it. Joumaah says that the pair (X, i) is of type T if it admits a
(ρ, T )-polarization, i.e. a marking η : H2(X,Z) → L such that η ◦ i∗ = ρ ◦ η (see
Section 4.4.1). If (X, i) and (X ′, i′) are two pairs of type T , they are said to be
isomorphic if there exists an isomorphism f : X → X ′ such that i′ = f ◦ i ◦ f−1.
The monodromy operators f∗ ∈ Mon2(L) induced by these isomorphisms of pairs
are the isometries contained in

Mon2(L, T ) :=
{
g ∈ Mon2(L) | g ◦ ρ = ρ ◦ g

}
=
{
g ∈ Mon2(L) | g(T ) = T

}
.

In particular, for any g ∈ Mon2(L, T ) we have that g|T ∈ O(T ) and g|S ∈ O(S).
We can then define the following subgroups:

ΓT :=
{
g|T | g ∈ Mon2(L, T )

}
⊂ O(T ), ΓS :=

{
g|S | g ∈ Mon2(L, T )

}
⊂ O(S).

Notice that local deformations of a pair (X, i) of type T are parametrized by
H1,1(X)i

∗
(more details on this are provided in [12, Theorem 2] and [17, §4]).

Inside the moduli space ML defined in Section 2.3, let MT,ρ be the subspace of

(ρ, T )-polarized marked manifolds (X, η) ∈ ML (notice that MT,ρ = Mρ,−1
T , using

the notation of Section 4.4.1). Since the symplectic form ωX generating H2,0(X) is
orthogonal to the Néron–Severi group (which contains T ), for any (X, η) ∈ MT,ρ

the period point η(H2,0(X)) belongs to

ΩS := {κ ∈ P(S ⊗ C) | (κ, κ) = 0, (κ, κ) > 0} = ΩL ∩ P(S ⊗ C).

Moreover, by [60, Proposition 4.6.7], the period map (see Section 2.3) restricts
to a holomorphic surjective morphism

P : MT,ρ −→ Ω0
S := ΩS \

⋃
δ∈∆(S)

(δ⊥ ∩ ΩS),

where ∆(S) is the set of wall divisors (i.e. primitive integral MBM classes) contained
in S. This restriction is equivariant with respect to the action of Mon2(L, T ), hence
we also obtain a surjection

P : MT,ρ/Mon2(L, T ) −→ Ω0
S/ΓS .
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Proposition 5.2.3. Let ρ ∈ O(L) be an involution whose invariant lattice T

is hyperbolic with rk(T ) ≤ 20. Assume also that ±ρ ∈ Õ(L). Then there exists a
marked manifold (X, η) of K3[n]-type with an involution i such that η ◦ i∗ = ρ ◦ η.

Proof. Let S ⊂ L be the co-invariant lattice of ρ, i.e. the orthogonal comple-
ment of T . By [17, Proposition 5.3], the very general point ω ∈ ΩS is the image
under the period map of a T -polarized marked manifolds of K3[n]-type (X, η) with
NS(X) = η−1(T ). We can then consider α := η−1 ◦ ρ ◦ η ∈ O(H2(X,Z)), which is
an involution, and we observe that:

(i) α induces a Hodge isometry on H2(X,C), since the point η(H2,0(X)) is
invariant for the action of ρ on ΩS ;

(ii) α is effective, because the equality NS(X) = η−1(T ) = η−1(Lρ) implies
that there is an α-fixed Kähler (even ample) class on X;

(iii) ±ρ ∈ Õ(L).

Hence, α is a monodromy operator by Proposition 2.3.10 and, by Theorem 2.3.11,
there exists i ∈ Aut(X) such that i∗ = α. Since the map Aut(X) → O(H2(X,Z))
is injective for manifolds of K3[n]-type (see Theorem 2.5.2), this automorphism i
is both unique and an involution. It is then straightforward to check that η ◦ i∗ =
ρ ◦ η. �

5.3. Geography in small dimensions

The aim of this section is to make some remarks on which families of large
dimensions one can expect from the results of the previous section. We first classify
the admissible invariant lattices of rank one and two, and then we describe the
geography of the cases for manifolds of K3[n]-type, n ≤ 5. We conclude by recalling
known examples of non-symplectic involutions and by presenting some new ones.

5.3.1. Invariant sublattices of rank one and two. Let T, S be the in-
variant and co-invariant lattices of a non-symplectic involution of a manifold of
K3[n]-type. As we saw in Proposition 5.1.1, either S or T is 2-elementary, depend-
ing on the action of the involution on the discriminant group of L (which is id or
− id respectively). Assume that S is 2-elementary and consider it embedded in
the Mukai lattice Λ (the case where T is 2-elementary is similar). Starting from
the signature of S⊥Λ , we can use Theorem 1.3.11 to deduce the possible isometry
classes for S⊥Λ . As observed in Lemma 5.1.2, we have that T is the orthogonal
complement in S⊥Λ of L⊥: since we know this last explicitly (see (19)), we can use
Theorem 1.4.4 to classify all primitive embeddings L⊥ ↪→ S⊥Λ and to compute, in
each case, the discriminant group of the orthogonal complement, i.e. AT .

5.3.1.1. Invariant sublattice of rank one. In this subsection we prove the follow-
ing proposition, which describes the pairs T and S that can occur when rk(T ) = 1.

Proposition 5.3.1. Let X be a manifold of K3[n]-type for some n ≥ 2, and let
i be a non-symplectic involution. Assume that the invariant lattice T ⊂ H2(X,Z)
has rank one, then one of the following holds:

(i) if i∗ acts as id on AH2(X,Z), then −1 is a quadratic residue modulo n− 1
and

T ∼= ⟨2(n− 1)⟩, S ∼= U⊕2 ⊕ E⊕2
8 ⊕ ⟨−2⟩ ⊕ ⟨−2⟩;

(ii) if i∗ acts as − id on AH2(X,Z), then T ∼= ⟨2⟩ and
(a) either S ∼= U⊕2 ⊕ E⊕2

8 ⊕ ⟨−2(n− 1)⟩ ⊕ ⟨−2⟩;
(b) or n ≡ 0 (mod 4) and

S ∼= U⊕2 ⊕ E⊕2
8 ⊕

(
−n

2 n− 1
n− 1 −2(n− 1)

)
.
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Proof. This result generalizes Proposition 3.4.1, which holds for non-natural
involutions of Hilbert schemes of points on a generic projective K3 surface.

We deal first with the case where T, S are the invariant and co-invariant lattices
of an involution whose action on the discriminant AL is the identity. This means
that S is 2-elementary and that T⊕L⊥ ⊂ S⊥Λ . Since both T and L⊥ have signature
(1, 0), we deduce that S⊥Λ has signature (2, 0). By [36, Table 15.1], there is only
one possible choice for S⊥Λ , which embeds in Λ in a unique way by [81, Theorem
1.1.2]: this is enough to claim that there is only one possible choice for S, up to
isometries, which explicitly is

S = U⊕2 ⊕ E⊕2
8 ⊕ ⟨−2⟩ ⊕ ⟨−2⟩, S⊥Λ = ⟨2⟩ ⊕ ⟨2⟩.

We have then to look at how L⊥ ∼= ⟨2(n − 1)⟩ embeds primitively in S⊥Λ . A pair
(x, y) gives the coordinates of a primitive vector in S⊥Λ = ⟨2⟩⊕⟨2⟩ of square 2(n−1)
if and only if gcd(x, y) = 1 and x2 + y2 = n− 1. Moreover, the isometry group of
S⊥Λ acts on these coordinates either by permutation or by exchanging sign. The
orthogonal complement of L⊥ in S⊥Λ , which is T , is then a lattice isometric to
⟨2(n− 1)⟩, generated by (−y, x). Notice that there exist two coprime integers x, y
such that x2 + y2 = n− 1 if and only if −1 is a quadratic residue modulo n− 1 (to
see this, combine [58, Proposition 5.1.1] and [83, Theorem 3.20]).

We now consider the case where the action of i∗ on AL is − id. We have that
T is 2-elementary of signature (1, 0), hence T ∼= ⟨2⟩. It follows that T embeds in a
unique way in the Mukai lattice, with orthogonal complement

T⊥Λ ∼= U⊕3 ⊕ E⊕2
8 ⊕ ⟨−2⟩.

We now want to describe the different embeddings of L⊥ ∼= ⟨2(n − 1)⟩ in T⊥Λ .
Since T⊥Λ is unique in its genus up to isometries (see Theorem 1.3.3), by Theorem
1.4.4 we have only two possibilities: they correspond to the two possible choices
of a subgroup of AT⊥Λ

∼= Z/2Z. Choosing the trivial subgroup, we see that the
orthogonal complement of L⊥ in T⊥Λ , i.e. S, has discriminant group

AS =
Z

2(n− 1)Z

(
− 1

2(n− 1)

)
⊕ Z

2Z

(
−1

2

)
,

and signature (2, 20). By Theorem 1.3.3, there exists only one lattice with these
invariants, up to isometries, which is

S = U⊕2 ⊕ E⊕2
8 ⊕ ⟨−2(n− 1)⟩ ⊕ ⟨−2⟩.

The last possibility corresponds to the choice of the whole AT⊥Λ , but in this
case we must have n ≡ 0 (mod 4). This leads us to

AS =
Z

(n− 1)Z

(
− n

2(n− 1)

)
,

where S has again signature (2, 20). By the same argument as above, there exists
only one isometry class of lattices in this genus. A representative, which can be
computed by applying [45, Proposition 3.6], is

S = U⊕2 ⊕ E⊕2
8 ⊕

(
−n

2 n− 1
n− 1 −2(n− 1)

)
. �

Remark 5.3.2. The three cases of Proposition 5.3.1 can be distinguished also
by looking at the generator t ∈ H2(X,Z) of the invariant lattice T . In fact, by [45,
Proposition 3.6], we have that:

• in case (1), t has square 2(n− 1) and divisibility n− 1;
• in case (2a), t has square 2 and divisibility 1;
• in case (2b), t has square 2 and divisibility 2.
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Recall from Proposition 3.4.3 that, by the global Torelli theorem for IHS manifolds,
the existence of a primitive ample class t ∈ NS(X) with one of these three combina-
tions of square and divisibility is sufficient to prove the existence of a non-symplectic
involution on X, whose invariant lattice is T = ⟨t⟩.

5.3.1.2. Invariant sublattice of rank two. The aim of this subsection is to pro-
vide some results for rk(T ) = 2. In particular, we describe the discriminant groups
of the invariant and co-invariant lattices in complete generality, but we address the
problem of their realization and uniqueness only for n ≤ 5.

Assume that rk(T ) = 2, so that the signature of T is (1, 1). We first consider
the case where the induced action on AL is the identity, hence S is a 2-elementary
lattice of signature (2, 19) and S⊥Λ is 2-elementary of signature (2, 1). It follows
from [81, Theorem 1.1.2] that S⊥Λ has a unique embedding in the Mukai lattice,
up to isometries. By Theorem 1.3.11 we have then two possibilities:

S⊥Λ = U ⊕ ⟨2⟩ or S⊥Λ = U(2)⊕ ⟨2⟩

which are both unique in their genera (up to isometries) by Theorem 1.3.3. We
start with S⊥Λ = U⊕⟨2⟩, and look for a primitive embedding of L⊥ = ⟨2(n−1)⟩ in
S⊥Λ . By Theorem 1.4.4 we need to consider pairs of isomorphic subgroups in AL⊥

and AS⊥Λ = Z
2Z
(
1
2

)
. In particular, for the choice of the trivial subgroup we have

AT =
Z

2(n− 1)Z

(
− 1

2(n− 1)

)
⊕ Z

2Z

(
1

2

)
.

A possible realization for this lattice T is given by T = ⟨−2(n− 1)⟩ ⊕ ⟨2⟩; if n ≤ 5,
this is the only isometry class in the genus by Theorem 1.3.3.

The other possibility is to consider the subgroup of AL⊥ generated by the class
of n− 1: in order for it to have the same discriminant form of AS⊥Λ we need n ≡ 2
(mod 4), and in this case we have

AT =
Z

(n− 1)Z

(
n− 2

2(n− 1)

)
.

A lattice T with this discriminant form and signature (1, 1) is the following:

T =

(
−2h k
k 2

)
where we write n − 1 = k2 + 4h, with k, h non-negative integers and k maximal.
This is the only isometry class in the genus of T if n ≤ 17, by Theorem 1.3.3. For
n = 2, this lattice is isometric to U .

If instead we consider S⊥Λ = U(2)⊕⟨2⟩, then we have more possibilities because
there are more subgroups inside its discriminant group, which is

AS⊥Λ =

(
Z
2Z

)⊕3

, with quadratic form qS⊥Λ =

⎛⎝0 1
2 0

1
2 0 0
0 0 1

2

⎞⎠ .

It is easy to see that we can discard the choice corresponding to the trivial subgroup,
as it gives rise to a lattice T of length 4, hence the only relevant subgroups of AS⊥Λ

are those of order two. Up to isomorphism, we have the two following possibilities.

(i) The subgroup is ⟨(0, 0, 1)⟩ ⊂ AS⊥Λ with q((0, 0, 1)) = 1/2. This case can
occur only if n ≡ 2 (mod 4), and gives

AT =
Z

2(n− 1)Z
⊕ Z

2Z
, with quadratic form qT =

( n−2
2(n−1)

1
2

1
2 0

)
.
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For n = 2, the lattice U(2) realizes this genus; for n = 6, we can consider

the lattice whose bilinear form is given by the matrix

(
2 4
4 −2

)
.

(ii) The subgroup is ⟨v⟩ ∼= Z/2Z ⊂ AS⊥Λ , for an element v ̸= (0, 0, 1) such
that q(v) = (n− 1)/2. This case gives

AT =
Z

2(n− 1)Z

(
− 1

2(n− 1)

)
⊕ Z

2Z

(
1

2

)
.

A possible realization for this lattice is given by T = ⟨−2(n− 1)⟩ ⊕ ⟨2⟩; if
n ≤ 5, this is the only isometry class in the genus by Theorem 1.3.3.

For n ≤ 5, we summarize these results as follows.

Proposition 5.3.3. Let X be a manifold of K3[n]-type for 2 ≤ n ≤ 5, and let
i be a non-symplectic involution. Assume that the invariant lattice T ⊂ H2(X,Z)
has rank two and that i∗ acts as id on AH2(X,Z), then one of the following holds:

(i) T ∼= ⟨2⟩ ⊕ ⟨−2(n− 1)⟩ and S ∼= U⊕2 ⊕ E⊕2
8 ⊕ ⟨−2⟩;

(ii) T ∼= ⟨2⟩ ⊕ ⟨−2(n− 1)⟩ and S ∼= U ⊕ U(2)⊕ E⊕2
8 ⊕ ⟨−2⟩;

(iii) n = 2, T ∼= U and S ∼= U⊕2 ⊕ E⊕2
8 ⊕ ⟨−2⟩;

(iv) n = 2, T ∼= U(2) and S ∼= U ⊕ U(2)⊕ E⊕2
8 ⊕ ⟨−2⟩.

We assume now that the action on the discriminant group is − id. In this case,
T is 2-elementary of signature (1, 1), so T⊥Λ is also 2-elementary and its signature
is (3, 19). This implies that S (which is a sublattice of T⊥Λ) has signature (2, 19).
By Theorem 1.3.11, there exist only three 2-elementary lattices of signature (1, 1),
namely U , U(2) and ⟨2⟩ ⊕ ⟨−2⟩. Every such lattice, by Theorem 1.4.4, embeds in
the Mukai lattice in a unique way, hence the orthogonal complement is uniquely
determined too. We analyse the three cases separately: in each of them, there is
only one isometry class in the genus of S by Theorem 1.3.3.

Assume first that T = U . This implies that T⊥Λ ∼= U⊕3 ⊕ E⊕2
8 , which is

unimodular. So L⊥ ∼= ⟨2(n− 1)⟩ embeds in an essentially unique way in T⊥Λ and
its orthogonal complement, i.e. S, is

S = U⊕2 ⊕ E⊕2
8 ⊕ ⟨−2(n− 1)⟩.

Assume now that T = U(2). Then T⊥Λ = U(2)⊕U⊕2 ⊕E⊕2
8 has discriminant

group

AT⊥Λ =
Z
2Z

⊕ Z
2Z
, with quadratic form qT⊥Λ =

(
0 1

2
1
2 0

)
.

As before, we look at the cyclic subgroups of AT⊥Λ : a direct computation gives rise
to two different cases (see also Example 1.4.6).

(i) If we choose the trivial subgroup we have AS = Z
2(n−1)Z ⊕ Z

2Z ⊕ Z
2Z , with

quadratic form

qS =

⎛⎝− 1
2(n−1) 0 0

0 0 1
2

0 1
2 0

⎞⎠ .

We conclude

S = U ⊕ U(2)⊕ E⊕2
8 ⊕ ⟨−2(n− 1)⟩.

(ii) If n ≡ 1, 3 (mod 4), we can choose a subgroup of order two and we have

AS =
Z

2(n− 1)Z

(
− 1

2(n− 1)

)
,

which corresponds to

S = U⊕2 ⊕ E⊕2
8 ⊕ ⟨−2(n− 1)⟩.
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Assume finally that T = ⟨2⟩ ⊕ ⟨−2⟩. Then T⊥Λ = U⊕2 ⊕ E⊕2
8 ⊕ ⟨2⟩ ⊕ ⟨−2⟩,

whose discriminant group is

AT⊥Λ =
Z
2Z

(
1

2

)
⊕ Z

2Z

(
−1

2

)
.

The same kind of computations yield three cases:

(i) The discriminant group is

AS =
Z

2(n− 1)Z

(
− 1

2(n− 1)

)
⊕ Z

2Z

(
1

2

)
⊕ Z

2Z

(
−1

2

)
,

which corresponds to

S = U ⊕ E⊕2
8 ⊕ ⟨2⟩ ⊕ ⟨−2⟩ ⊕ ⟨−2(n− 1)⟩.

(ii) If n ≡ 0, 2 (mod 4) we can have

AS =
Z

2(n− 1)Z

(
− 1

2(n− 1)

)
,

which is realized by

S = U⊕2 ⊕ E⊕2
8 ⊕ ⟨−2(n− 1)⟩.

(iii) If n ≡ 1 (mod 4) we can have

AS =
Z

2(n− 1)Z

(
n− 2

2(n− 1)

)
.

For n = 5, a representative of the unique isometry class in this genus is

S = U ⊕ E2
8 ⊕

⎛⎝−2 1 0
1 −2 1
0 1 2

⎞⎠ .

The next proposition summarizes all possible pairs of lattices T, S correspond-
ing to involutions whose action on the discriminant group AL is − id, for n ≤ 5.

Proposition 5.3.4. Let X be a manifold of K3[n]-type for 2 ≤ n ≤ 5, and let
i be a non-symplectic involution. Assume that the invariant lattice T ⊂ H2(X,Z)
has rank two and that i∗ acts as − id on AH2(X,Z), then one of the following holds:

(i) T ∼= U and S ∼= U⊕2 ⊕ E⊕2
8 ⊕ ⟨−2(n− 1)⟩;

(ii) T ∼= U(2) and S ∼= U ⊕ U(2)⊕ E⊕2
8 ⊕ ⟨−2(n− 1)⟩;

(iii) T ∼= ⟨2⟩ ⊕ ⟨−2⟩ and S ∼= U ⊕ E⊕2
8 ⊕ ⟨2⟩ ⊕ ⟨−2⟩ ⊕ ⟨−2(n− 1)⟩;

(iv) n ∈ {3, 5}, T ∼= U(2) and S ∼= U⊕2 ⊕ E⊕2
8 ⊕ ⟨−2(n− 1)⟩;

(v) n ∈ {2, 4}, T ∼= ⟨2⟩ ⊕ ⟨−2⟩ and S ∼= U⊕2 ⊕ E⊕2
8 ⊕ ⟨−2(n− 1)⟩;

(vi) n = 5, T ∼= ⟨2⟩ ⊕ ⟨−2⟩ and S ∼= U ⊕ E2
8 ⊕

⎛⎝−2 1 0
1 −2 1
0 1 2

⎞⎠ .

Remark 5.3.5. For n = 2, the isometries id and − id of AL ∼= Z/2Z coincide,
hence Proposition 5.3.3 and Proposition 5.3.4 give the same classification (to check
this, recall that U(2)⊕ ⟨−2⟩ ∼= ⟨2⟩ ⊕ ⟨−2⟩ ⊕ ⟨−2⟩ by Theorem 1.3.11).

5.3.2. Deformation types for families of large dimensions. The lattice
computations of Section 5.3.1.1 and Section 5.3.1.2 allow us to determine all moduli
spaces MT,ρ, for T an admissible invariant sublattice of rank one or two inside
L (recall the definitions from Section 5.2). By construction, the moduli spaces
MT,ρ arise as subspaces of the complex space ML, which parametrizes marked

IHS manifolds of K3[n]-type (see Section 2.3). The following fact was remarked in
[5, Theorem 9.5] for K3 surfaces, and it can be easily generalized to manifolds of
K3[n]-type.
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Lemma 5.3.6. Let T ′, T ′′ ⊂ L be the invariant lattices of two monodromy op-
erators ρ′, ρ′′ ∈ Mon2(L), respectively, and let S′ = (T ′)⊥, S′′ = (T ′′)⊥ be their
orthogonal complements in L. The moduli space MT ′,ρ′ is in the closure of MT ′′,ρ′′

if and only if S′ ⊂ S′′ and (ρ′′)|S′ = (ρ′)|S′ .

Remark 5.3.7. In our setting we can slightly improve the result of Lemma
5.3.6. In fact, as observed in Section 5.2, the orthogonal sublattices T, S ⊂ L
determine the involution ρ ∈ Mon2(L) as the unique extension of idT ⊕(− idS) to
L. So, if we assume that S′ ⊂ S′′, then

(ρ′′)|S′ = (− idS′′)|S′ = − idS′ = (ρ′)|S′ .

In the case of involutions we can then say that MT ′,ρ′ is in the closure of MT ′′,ρ′′

if and only if S′ ⊂ S′′.

In this sense, the moduli spaces MT,ρ of maximal dimension (where maximal-
ity is with respect to this notion) correspond to minimal (with respect to inclusion)
admissible sublattices T ⊂ L. This is the reason why, in the previous section, we
investigated in detail admissible invariant lattices of low rank. Any of these ad-
missible lattices T will give rise to at least one (but there could be more a priori,
depending on the number of connected components of the moduli space) projective
family of dimension 21− rk(T ), whose generic member has a non-symplectic invo-
lution with invariant lattice T . We are now interested in computing the number of
irreducible components for some of these moduli spaces.

We adopt the notation of [60, Chapter 4]. Let T ⊂ L be an admissible sublat-
tice, i.e. the (hyperbolic) invariant lattice of an involution ρ ∈ Mon2(L), and let CT
be one of the two connected components of the cone {x ∈ T ⊗ R | (x, x) > 0}. The
definition of Kähler-type chamber that was given in Section 2.4 can be adapted as
follows. The Kähler-type chambers of T are the connected components of

CT \
⋃

δ∈∆(T )

δ⊥

where ∆(T ) is the set of wall divisors in T . As before, let ΓT be the image of the
restriction map Mon2(L, T ) → O(T ): the subgroup ΓT ⊂ O(T ) has finite index
and it conjugates invariant wall-divisors, therefore it also acts on the set KT(T )
of Kähler-type chambers of T (see [60, §4.7]). In [60, Theorem 4.8.11], Joumaah
proved that the quotient KT(T )/ΓT is in one-to-one correspondence with the set
of distinct deformation types of marked manifolds (X, η) ∈ MT,ρ.

Proposition 5.3.8. Let T ∼= U(2) be a primitive sublattice of L = U⊕3 ⊕
E⊕2

8 ⊕⟨−2(n−1)⟩ with orthogonal complement S ∼= U ⊕U(2)⊕E⊕2
8 ⊕⟨−2(n−1)⟩.

Let ρ1 ∈ Mon2(L) be the involution which extends idT ⊕(− idS). Then, for any
n ≥ 2 there is a single deformation type of marked manifolds of K3[n]-type (X, η) ∈
MT,ρ1 .

Proof. As we recalled above, the number of deformation types of (ρ1, T )-
polarized marked manifolds ofK3[n]-type is equal to the number of orbits of Kähler-
type chambers of T , with respect to the action of the subgroup ΓT ⊂ O(T ). For
T ∼= U(2) as in the statement, an element δ ∈ T of coordinates (a, b) with respect
to a basis has square 4ab and divisibility in L equal to gcd(a, b) (see Example 1.4.6).
In particular, the divisibility can only be one if δ is primitive. However, a direct
computation using Theorem 2.4.14 shows that, if δ is a wall-divisor with div(δ) = 1,
then δ2 = −2 (see [75, Remark 2.5]). We conclude that there are no wall-divisors
δ ∈ T , since T ∼= U(2) contains no elements of square −2. �
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As we showed in Example 1.4.6 and in Subsection 5.3.1.2, when n is odd there
is a second way to embed the lattice U(2) in L, which is not isometric to the one
studied in Proposition 5.3.8.

Proposition 5.3.9. For n odd, let T ∼= U(2) be a primitive sublattice of L =
U⊕3⊕E⊕2

8 ⊕⟨−2(n−1)⟩ with orthogonal complement S ∼= U⊕2⊕E⊕2
8 ⊕⟨−2(n−1)⟩.

Let ρ2 ∈ Mon2(L) be the involution which extends idT ⊕(− idS). Then, if n = 5
there are three distinct deformation types of marked manifolds (X, η) ∈ MT,ρ2 .

Proof. As in the proof of Proposition 5.3.8, we need to study the Kähler-
type chambers of T and therefore determine whether the lattice contains any wall-
divisors. Up to isometries, the embedding U(2) ↪→ L in the statement can be
realized as explained in Example 1.4.6. Let t = n−1

2 ∈ N and consider the map

j : U(2) ↪→ L = U⊕3 ⊕ E⊕2
8 ⊕ ⟨−2(n− 1)⟩, (a, b) ↦→ 2ae1 + (at+ b)e2 + ag

where {e1, e2} is a basis for one of the summands U of L and g is a generator of
⟨−2(n − 1)⟩. We then have j(U(2))⊥ ∼= U⊕2 ⊕ E⊕2

8 ⊕ ⟨−2(n − 1)⟩, as requested.
In particular, if n = 5 (i.e. t = 2) one can show that the divisibility in L of
(a, b) ∈ T = j(U(2)) is gcd(2a, b), hence, if the element is primitive, it can only be
one or two. We compute explicitly all possible pairs (δ2,div(δ)) for wall-divisors
δ ∈ L5 = U⊕3⊕E⊕2

8 ⊕⟨−8⟩. This is an application of Theorem 2.4.14 and Theorem
2.4.12, which gives the following results:

δ2 div(δ)

−2 1
−8 2
−8 4
−8 8
−16 2
−40 4
−72 8
−136 8
−200 8

Since for any δ ∈ T we have δ2 ∈ 4Z, the only possible pairs (δ2,div(δ)) for
wall-divisors δ ∈ T are (δ2,div(δ)) = (−8, 2), (−16, 2). Each of the two admissible
pairs (δ2,div(δ)) yields a single wall-divisor δ ∈ T , whose orthogonal complement
δ⊥ intersects the positive cone of T in its interior. We therefore have two (distinct)
walls, which cut out three Kähler-type chambers in CT . These three chambers
correspond to three distinct orbits, with respect to the action of the group ΓT on
KT(T ). This is due to the fact that an isometry γ ∈ ΓT permutes the walls of the
chambers, which in our case are generated by primitive vectors having all different
squares. �

By Proposition 5.3.1, there are two distinct (ρ, T )-polarizations with T ∼= ⟨2⟩.
In the following, we will denote them by (ρa, ⟨2⟩) and (ρb, ⟨2⟩), where the orthogonal
complement S of the admissible sublattice T ⊂ L is as in case (iia) and (iib),
respectively, of the proposition. In particular, for all n ≥ 2 the moduli space
M⟨2⟩,ρa is non-empty, while M⟨2⟩,ρb = ∅ if n ̸≡ 0 (mod 4). Instead, again by
Proposition 5.3.1, there is only one (ρ, T )-polarization with T ∼= ⟨2(n − 1)⟩: we
denote by M⟨2(n−1)⟩,ρ the corresponding moduli space, which is non-empty if and
only if −1 is a quadratic residue modulo n− 1. Finally, for T ∼= U(2), we have the
two polarizations (ρ1, U(2)), (ρ2, U(2)) which we studied in Proposition 5.3.8 and
Proposition 5.3.9, respectively.
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Theorem 5.3.10. Let (X, η) be a marked manifold of K3[n]-type for 2 ≤ n ≤ 5,
and let i ∈ Aut(X) be a non-symplectic involution such that the pair (X, i) deforms
in a family of dimension ≥ 19. Then (X, η) belongs to the closure of one of the
following moduli spaces.

n = 2: M⟨2⟩,ρa or MU(2),ρ1 ;
n = 3: M⟨2⟩,ρa , M⟨4⟩,ρ or MU(2),ρ1 ;
n = 4: M⟨2⟩,ρa , M⟨2⟩,ρb or MU(2),ρ1 ;
n = 5: M⟨2⟩,ρa , MU(2),ρ1 or MU(2),ρ2 .

All these moduli spaces are irreducible with the exception of MU(2),ρ2 for n = 5,
which has three distinct irreducible components.

Proof. Since (X, i) deforms in a family of dimension at least 19, it is a pair
of type T , for some admissible lattice T with rk(T ) ≤ 2. At the level of period
domains, the list in the statement is an easy consequence of Lemma 5.3.6 and of
Propositions 5.3.1, 5.3.3 and 5.3.4. Moreover, the period map is generically injective
when restricted to manifolds polarized with a lattice of rank one, and the same is
true in the case of U(2) by Proposition 5.3.8 and by [60, Corollary 4.9.6], with the
exception of n = 5 and MU(2),ρ2 as explained in Proposition 5.3.9. �

5.3.3. Examples. Even when we limit ourselves to dimensions smaller than
ten, we observe that we lack the description of most of the projective families listed
in Theorem 5.3.10. Indeed, while for n = 2 both families have been described,
respectively in [87] and [57], for n ≥ 3 the family of (⟨2⟩, ρa)-polarized manifolds of
K3[n]-type is still unknown. In fact, when n ≥ 3 the only explicit examples which
have been found are for n = 3, T ∼= ⟨4⟩ (see [56] and Section 5.1.2) and n = 4,
T ∼= ⟨2⟩ with polarization ρb (involution of the Lehn–Lehn–Sorger–van Straten
eightfold; see for instance [66]), in addition to the involutions of Hilbert schemes
of points on generic K3 surfaces which we constructed in Chapter 3.

We conclude by observing that all families of dimension 19 can in fact be
realized as families of moduli spaces of stable twisted sheaves on a K3 surface (see
Example 2.2.7).

Proposition 5.3.11. For n ≥ 2, let (X, η) be a very general element in the
moduli space MU(2),ρ1 of Proposition 5.3.8, such that η(NS(X)) ∼= U(2). Then, the
manifold X is isomorphic to a moduli space of twisted sheaves on a very general
projective ⟨2(n− 1)⟩-polarized K3 surface.

Proof. Let Σ be a generic projective K3 surface of degree 2(n − 1), i.e.
Pic(Σ) = ZL with L = OΣ(H) for an effective, ample divisor H with H2 = 2(n−1).
Let {e1, e2} generate one of the summands U in Tr(Σ) ∼= U⊕2⊕E⊕2

8 ⊕⟨−2(n−1)⟩,
and consider the Brauer class of order two:

α : Tr(Σ) → Z/2Z, v ↦→ (e1, v).

Clearly, B = e1
2 ∈ H2(Σ,Q) is a B-field lift of α such that B2 = 0 and B ·H = 0,

since 2B ∈ Tr(Σ). Consider the primitive positive Mukai vector v = (0, H, 0): then

vB = (0, H,B ·H) = v

and the moduli space MvB (Σ, α) is a manifold of K3[n]-type with

Tr(MvB (Σ, α))
∼= ker(α) ∼= U ⊕ U(2)⊕ E⊕2

8 ⊕ ⟨−2(n− 1)⟩.
Moreover, Pic(Σ, α) = ⟨(0, H, 0), (0, 0, 1), (2, 2B, 0)⟩ ∼= ⟨2⟩ ⊕ U(2), thus

Pic(MvB (Σ, α))
∼= v⊥B ∩ Pic(Σ, α) ∼= ⟨(0, 0, 1), (2, e1, 0)⟩ ∼= U(2).

Hence, the moduli space Y = MvB (Σ, α) constructed above has Pic(Y ) ∼= T ,
Tr(Y ) ∼= S for the lattices T, S of Proposition 5.3.8. By the same proposition we
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know that the moduli space MU(2),ρ1 is irreducible. For (X, η) ∈ MU(2),ρ1 very
general we also have Pic(X) ∼= T and Tr(X) ∼= S (via the marking η). Hence, the
statement follows from the generic injectivity of the period map for U(2)-polarized
manifolds of K3[n]-type (see [60, Corollary 4.9.6]). �

Remark 5.3.12. For (X, η) ∈ MU(2),ρ1 , let i ∈ Aut(X) be the non-symplectic
involution such that η ◦ i∗ = ρ1 ◦ η. Even though, for (X, η) very general, the
manifold X is isomorphic to Y = MvB (Σ, α) as in the previous proposition, if
n ≥ 3 we cannot realize the automorphism i as a twisted induced involution on Y
(in the sense of Section 4.2.2), since the group of automorphisms of the K3 surface
Σ is trivial (see [93, §5]).

Proposition 5.3.13. For n = 5, let MU(2),ρ2 be the moduli space of Proposi-

tion 5.3.9. There exists an irreducible component M0 ⊂ MU(2),ρ2 such that, for

the very general element (X, η) ∈ M0 with η(NS(X)) ∼= U(2), the manifold X
is isomorphic to a moduli space Y of twisted sheaves on a very general projective
⟨2⟩-polarized K3 surface. Moreover, the non-symplectic involution i ∈ Aut(X) such
that η ◦ i∗ = ρ2 ◦ η is realized by a twisted induced automorphism on Y .

Proof. Let Σ be the double cover of P2 branched along a smooth sextic curve.
In particular, Pic(Σ) ∼= ⟨2⟩ and Tr(Σ) ∼= U⊕2 ⊕E⊕2

8 ⊕ ⟨−2⟩. If we denote by g the
generator of the summand ⟨−2⟩ inside Tr(Σ), then the (non-primitive) index two
sublattice U⊕2E⊕2

8 ⊕ ⟨2g⟩ ⊂ Tr(Σ) is isometric to S = U⊕2 ⊕E⊕
8 ⊕ ⟨−8⟩. Let α be

the following Brauer class of order two:

α : Tr(Σ) → Z/2Z, λ+mg ↦→ m

where λ ∈ U⊕2 ⊕ E⊕2
8 and m ∈ Z. Clearly, ker(α) = U⊕2E⊕2

8 ⊕ ⟨2g⟩ ∼= S.
Let {e1, e2} generate a summand U inside H2(Σ,Z) ∼= U⊕3 ⊕ E⊕2

8 . We can as-
sume that e1 + e2 is the generator of Pic(Σ) and therefore g = e1 − e2. No-
tice that the rational class B = e2

2 ∈ H2(Σ,Q) is a B-field lift for α, since
α(x) = (e2, x) ∈ Z/2Z for all x ∈ Tr(Σ). Consider the (non-primitive) positive
Mukai vector v = (0, 2(e1 + e2), 0) ∈ H∗(Σ,Z). When twisting v with respect to
the B-field lift B, we obtain vB = (0, 2(e1 + e2), 1), which is now primitive of
square 8. Hence, the moduli space MvB (Σ, α) is a manifold of K3[5]-type with
transcendental lattice isomorphic to S. Moreover

Pic(Σ, α) = ⟨(0, e1 + e2, 0), (0, 0, 1), (2, e2, 0)⟩
thus

Pic(MvB (Σ, α))
∼= v⊥B ∩ Pic(Σ, α) ∼= ⟨(0, 0, 1), (2, e2, 0)⟩ ∼= U(2).

Since Σ is a double cover of the plane, it is equipped with a non-symplectic invo-
lution ι, which acts as id on H0(Σ,Z) ⊕ Pic(Σ) ⊕H4(Σ,Z) and as − id on Tr(Σ).
This implies that both the Brauer class α : Tr(Σ) → Z/2Z and the twisted Mukai
vector vB = (0, 2(e1 + e2), 1) are ι-invariant. Then, as we recalled in Section 4.2.2,
the moduli space Y =MvB (Σ, α) comes with a (non-symplectic) induced involution
ι̃. In particular, the invariant lattice of ι̃ is the whole Pic(MvB (Σ, α)), since ι acts
trivially on ⟨(0, 0, 1), (2, e2, 0)⟩ by [31, Remark 2.4] (the two classes (2, e2, 0) and
(2, ι∗(e2), 0) = (2, e1, 0) coincide in H2(MvB (Σ, α),Z)). As in Proposition 5.3.11,
the statement follows from the generic injectivity of the period map, after recalling
that MU(2),ρ2 has three irreducible components by Proposition 5.3.9. �



APPENDIX A

Invariant and co-invariant lattices for n = 3, 4, p = 3

The two tables in the following pages list all admissible triples (p,m, a) (see
Definition 4.1.10) and the corresponding isometry classes for the invariant and co-
invariant lattices T, S ⊂ Ln ∼= H2(X,Z) of non-symplectic automorphisms of order
p = 3 on manifolds X of K3[n]-type, for n = 3, 4. This classification is discussed in
Section 4.1.4.

The symbol ♣ denotes the cases which can be realized by natural automor-
phisms (see Section 4.2.1). The cases marked by ♮ (respectively, ♦) correspond to
admissible triples that admit a realization via induced automorphisms on moduli
spaces of ordinary (respectively, twisted) sheaves on K3 surfaces (see Section 4.3).
Finally, the admissible triple (3, 11, 0) for n = 4 is realized by the automorphism
constructed in Section 4.4.1 on a ten-dimensional family of Lehn–Lehn–Sorger–van
Straten eightfolds (see also Section 4.2.3).
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p m a S T

♣ 3 10 0 U⊕2 ⊕ E⊕2
8 U ⊕ ⟨−4⟩

♣ 3 10 2 U ⊕ U(3)⊕ E⊕2
8 U(3)⊕ ⟨−4⟩

♣ 3 9 1 U⊕2 ⊕ E6 ⊕ E8 U ⊕A2 ⊕ ⟨−4⟩
♣ 3 9 3 U ⊕ U(3)⊕ E6 ⊕ E8 U(3)⊕A2 ⊕ ⟨−4⟩
♦ 3 9 5 U(3)⊕2 ⊕ E6 ⊕ E8 U(3)⊕ Ω

♣ 3 8 2 U⊕2 ⊕ E⊕2
6 U ⊕A⊕2

2 ⊕ ⟨−4⟩
♣ 3 8 4 U ⊕ U(3)⊕ E⊕2

6 U(3)⊕A⊕2
2 ⊕ ⟨−4⟩

♦ 3 8 6 U(3)⊕2 ⊕ E⊕2
6 U(3)⊕A2 ⊕ Ω

♣ 3 7 1 U⊕2 ⊕A2 ⊕ E8 U ⊕ E6 ⊕ ⟨−4⟩
♣ 3 7 3 U ⊕ U(3)⊕A2 ⊕ E8 U ⊕A⊕3

2 ⊕ ⟨−4⟩
♣ 3 7 5 U⊕2 ⊕A⊕5

2 U(3)⊕A⊕3
2 ⊕ ⟨−4⟩

♣ 3 7 7 U ⊕ U(3)⊕A⊕5
2 U(3)⊕ E∨

6 (3)⊕ ⟨−4⟩
♣ 3 6 0 U⊕2 ⊕ E8 U ⊕ E8 ⊕ ⟨−4⟩
♣ 3 6 2 U ⊕ U(3)⊕ E8 U ⊕ E6 ⊕A2 ⊕ ⟨−4⟩
♣ 3 6 4 U⊕2 ⊕A⊕4

2 U ⊕A⊕4
2 ⊕ ⟨−4⟩

♣ 3 6 6 U ⊕ U(3)⊕A⊕4
2 U(3)⊕A⊕4

2 ⊕ ⟨−4⟩
♣ 3 5 1 U⊕2 ⊕ E6 U ⊕ E8 ⊕A2 ⊕ ⟨−4⟩
♣ 3 5 3 U ⊕ U(3)⊕ E6 U ⊕A⊕2

2 ⊕ E6 ⊕ ⟨−4⟩
♣ 3 5 5 U ⊕ U(3)⊕A⊕3

2 U ⊕A⊕5
2 ⊕ ⟨−4⟩

♣ 3 4 2 U⊕2 ⊕A⊕2
2 U ⊕ E⊕2

6 ⊕ ⟨−4⟩
♣ 3 4 4 U ⊕ U(3)⊕A⊕2

2 U ⊕ E6 ⊕A⊕3
2 ⊕ ⟨−4⟩

♣ 3 3 1 U⊕2 ⊕A2 U ⊕ E6 ⊕ E8 ⊕ ⟨−4⟩
♣ 3 3 3 U ⊕ U(3)⊕A2 U ⊕ E⊕2

6 ⊕A2 ⊕ ⟨−4⟩
♣ 3 2 0 U⊕2 U ⊕ E⊕2

8 ⊕ ⟨−4⟩
♣ 3 2 2 U ⊕ U(3) U ⊕ E6 ⊕ E8 ⊕A2 ⊕ ⟨−4⟩
♣ 3 1 1 A2(−1) U ⊕ E⊕2

8 ⊕A2 ⊕ ⟨−4⟩

Table 1. n = 3. See Section 4.1.4 for the definition of the lattice Ω.
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p m a S T

⋆ 3 11 0 U⊕2 ⊕ E⊕2
8 ⊕A2 ⟨2⟩

♣ 3 10 0 U⊕2 ⊕ E⊕2
8 U ⊕ ⟨−6⟩

♮ 3 10 1 U ⊕ U(3)⊕ E⊕2
8 U ⊕ ⟨−6⟩

♣ 3 10 2 U ⊕ U(3)⊕ E⊕2
8 U(3)⊕ ⟨−6⟩

♦ 3 10 3 U(3)⊕2 ⊕ E⊕2
8 U(3)⊕ ⟨−6⟩

♣ 3 9 1 U⊕2 ⊕ E6 ⊕ E8 U ⊕A2 ⊕ ⟨−6⟩
♮ 3 9 2 U ⊕ U(3)⊕ E6 ⊕ E8 U ⊕A2 ⊕ ⟨−6⟩
♣ 3 9 3 U ⊕ U(3)⊕ E6 ⊕ E8 U(3)⊕A2 ⊕ ⟨−6⟩
♦ 3 9 4 U(3)⊕2 ⊕ E6 ⊕ E8 U(3)⊕A2 ⊕ ⟨−6⟩
♮ 3 8 1 U⊕2 ⊕ E⊕2

6 ⟨2⟩ ⊕ E6

♣ 3 8 2 U⊕2 ⊕ E⊕2
6 U ⊕A⊕2

2 ⊕ ⟨−6⟩
♮ 3 8 3 U ⊕ U(3)⊕ E⊕2

6 U ⊕A⊕2
2 ⊕ ⟨−6⟩

♣ 3 8 4 U ⊕ U(3)⊕ E⊕2
6 U(3)⊕A⊕2

2 ⊕ ⟨−6⟩
♦ 3 8 5 U(3)⊕2 ⊕ E⊕2

6 U(3)⊕A⊕2
2 ⊕ ⟨−6⟩

♮ 3 7 0 U⊕2 ⊕A2 ⊕ E8 ⟨2⟩ ⊕ E8

♣ 3 7 1 U⊕2 ⊕A2 ⊕ E8 U ⊕ E6 ⊕ ⟨−6⟩
♮ 3 7 2 U ⊕ U(3)⊕A2 ⊕ E8 U ⊕ E6 ⊕ ⟨−6⟩
♣ 3 7 3 U ⊕ U(3)⊕A2 ⊕ E8 U(3)⊕ E6 ⊕ ⟨−6⟩
♮ 3 7 4 U⊕2 ⊕A⊕5

2 U ⊕A⊕3
2 ⊕ ⟨−6⟩

♣ 3 7 5 U⊕2 ⊕A⊕5
2 U(3)⊕A⊕3

2 ⊕ ⟨−6⟩
♮ 3 7 6 U ⊕ U(3)⊕A⊕5

2 U ⊕ E∨
6 (3)⊕ ⟨−6⟩

♣ 3 7 7 U ⊕ U(3)⊕A⊕5
2 U(3)⊕ E∨

6 (3)⊕ ⟨−6⟩
♣ 3 6 0 U⊕2 ⊕ E8 U ⊕ E8 ⊕ ⟨−6⟩
♮ 3 6 1 U ⊕ U(3)⊕ E8 U ⊕ E8 ⊕ ⟨−6⟩
♣ 3 6 2 U ⊕ U(3)⊕ E8 U(3)⊕ E8 ⊕ ⟨−6⟩
♮ 3 6 3 U⊕2 ⊕A⊕4

2 U ⊕ E6 ⊕A2 ⊕ ⟨−6⟩
♣ 3 6 4 U⊕2 ⊕A⊕4

2 U(3)⊕ E6 ⊕A2 ⊕ ⟨−6⟩
♮ 3 6 5 U ⊕ U(3)⊕A⊕4

2 U ⊕A⊕4
2 ⊕ ⟨−6⟩

♣ 3 6 6 U ⊕ U(3)⊕A⊕4
2 U(3)⊕A⊕4

2 ⊕ ⟨−6⟩
♣ 3 5 1 U⊕2 ⊕ E6 U ⊕ E8 ⊕A2 ⊕ ⟨−6⟩
♮ 3 5 2 U ⊕ U(3)⊕ E6 U ⊕ E8 ⊕A2 ⊕ ⟨−6⟩
♣ 3 5 3 U ⊕ U(3)⊕ E6 U(3)⊕ E8 ⊕A2 ⊕ ⟨−6⟩
♮ 3 5 4 U ⊕ U(3)⊕A⊕3

2 U ⊕ E6 ⊕A⊕2
2 ⊕ ⟨−6⟩

♣ 3 5 5 U ⊕ U(3)⊕A⊕3
2 U(3)⊕ E6 ⊕A⊕2

2 ⊕ ⟨−6⟩
♮ 3 4 1 U⊕2 ⊕A⊕2

2 ⟨2⟩ ⊕ E6 ⊕ E8

♣ 3 4 2 U⊕2 ⊕A⊕2
2 U ⊕A⊕2

2 ⊕ E8 ⊕ ⟨−6⟩
♮ 3 4 3 U ⊕ U(3)⊕A⊕2

2 U ⊕ E⊕2
6 ⊕ ⟨−6⟩

♣ 3 4 4 U ⊕ U(3)⊕A⊕2
2 U(3)⊕ E⊕2

6 ⊕ ⟨−6⟩
♮ 3 3 0 U⊕2 ⊕A2 ⟨2⟩ ⊕ E⊕2

8

♣ 3 3 1 U⊕2 ⊕A2 U ⊕ E6 ⊕ E8 ⊕ ⟨−6⟩
♮ 3 3 2 U ⊕ U(3)⊕A2 U ⊕ E6 ⊕ E8 ⊕ ⟨−6⟩
♣ 3 3 3 U ⊕ U(3)⊕A2 U(3)⊕ E6 ⊕ E8 ⊕ ⟨−6⟩
♣ 3 2 0 U⊕2 U ⊕ E⊕2

8 ⊕ ⟨−6⟩
♮ 3 2 1 U ⊕ U(3) U ⊕ E⊕2

8 ⊕ ⟨−6⟩
♣ 3 2 2 U ⊕ U(3) U(3)⊕ E⊕2

8 ⊕ ⟨−6⟩
♣ 3 1 1 A2(−1) U ⊕ E⊕2

8 ⊕A2 ⊕ ⟨−6⟩

Table 2. n = 4.
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37. O. Debarre, Un contre-exemple au théorème de Torelli pour les variétés symplectiques
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