
HAL Id: tel-02077480
https://theses.hal.science/tel-02077480

Submitted on 22 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-operator Temporal Decision Trees
Vera Shalaeva

To cite this version:
Vera Shalaeva. Multi-operator Temporal Decision Trees. Machine Learning [cs.LG]. Université Greno-
ble Alpes, 2018. English. �NNT : 2018GREAM069�. �tel-02077480�

https://theses.hal.science/tel-02077480
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Vera SHALAEVA

Thèse dirigée par Ahlame DOUZAL
et codirigée par Cécile AMBLARD

préparée au sein du Laboratoire d'Informatique de Grenoble
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Arbre de Décision Temporel Multi-opérateur

Multi-operator Temporal Decision Trees

Thèse soutenue publiquement le 30 novembre 2018,
devant le jury composé de :

Monsieur Pierre-François MARTEAU
Professeur, Université Bretagne Sud, Rapporteur
Monsieur Christophe MARSALA
Professeur, Sorbonne Université , Rapporteur
Monsieur Romain TAVENARD
Maître de Conférences, Université Rennes 2, Examinateur
Monsieur Massih-Reza AMINI
Professeur, Université Grenoble Alpes, Président
Madame Ahlame DOUZAL
Maître de Conférences, Université Grenoble Alpes, Directeur de thèse
Monsieur Gilles BISSON
Chargé de Recherche, CNRS, Co-directeur de thèse

2

Contents

1 Introduction 9
1.1 Introduction . 9

2 State-of-the-art 13
2.1 Introduction . 14
2.2 Interpretability, explainability and transparency in machine learning . 15
2.3 Time series data representation . 17

2.3.1 Preprocessing and discretization methods 18
2.3.2 Similarity-based methods . 20

2.3.2.1 Time series metrics. 20
2.3.2.2 Value based similarity measures 22
2.3.2.3 Shape-based similarity measures. 25
2.3.2.4 Value-shape-based similarity measures 26
2.3.2.5 Similarity function learning 28

2.3.3 Feature-based methods . 29
2.3.3.1 Statistical methods 30
2.3.3.2 Pattern-based methods 31
2.3.3.3 Segment-based methods 33

2.4 Time series learning algorithms . 35
2.4.1 Classical methods . 35
2.4.2 Ensemble methods . 38

2.5 On interpretability in TSC algorithms 41
2.6 Conclusion . 42

3 Mono-operator Temporal Decision Trees: TDT 45
3.1 Temporal Decision Trees (TDT) learning 46

3.1.1 Introduction . 46
3.1.2 Split operators . 47

i

3.1.3 Splitting evaluation criteria 53
3.2 Mono-TDT split node algorithms . 55

3.2.1 Hyperplane TDT with adaptive metric. 55
3.2.2 TDT with dichotomy search 59

3.3 Conclusion . 61

4 Multi-operator Temporal Decision Trees: MTDT 63
4.1 Multi-operator TDT . 64

4.1.1 Heuristic approach of recognizing patterns: HARP 64
4.1.2 On combination of mono-split TDT operators 67

4.2 Empirical study . 68
4.2.1 Experimental settings . 68
4.2.2 Results and Discussion . 69

4.3 Conclusion . 73

5 Local Search Temporal Decision Trees 83
5.1 Introduction . 84
5.2 Local Search Temporal Decision Trees for Euclidean Distance. 85

5.2.1 Local Search for Hyperplane Split Operator. 85
5.2.2 Local Search for Hypersphere split operator. 97

5.3 Algorithm generalization for non static distances. 102
5.4 Empirical study. 104

5.4.1 Triangle inequality violation test. 105
5.4.2 Local Search vs Full Search Temporal Decision Tree 105

5.5 Conclusion . 113

6 Weighted Temporal Decision Trees 115
6.1 Introduction . 116
6.2 Time series weighting algorithms . 117

6.2.1 Generative weighting algorithm: Between-Within discriminant
criterion . 117
6.2.1.1 Generic BW . 118
6.2.1.2 Class dependent BW 119

6.2.2 Generative weighting algorithm: MAP classifier 120
6.2.3 Weighting algorithm with Linear SVM 123

6.3 Application of weights to similarity computation 125
6.3.1 Euclidean dissimilarity . 125

ii

6.3.2 DTW dissimilarity . 126
6.3.3 (1− Cortπ) dissimilarity . 127

6.4 Empirical study . 127
6.4.1 Synthetic dataset . 129
6.4.2 Weighted Multi-operator Temporal Decision Trees. 130

6.5 Conclusion . 133

7 Publications 145

8 Conclusions and Future Directions 147
8.1 Conclusions . 147
8.2 Future Directions . 149

Bibliography 151

iii

iv

List of Figures

2.1 Example of three time series to illustrate different types of similarity. Time series

ts3 is more closer to a time series ts2 with respect to amplitude of values, while it

is more similar to ts1 with respect to shape. 22

3.1 Illustration of a partition’s geometry done by hyperplane (plot a)) and hypersphere

(plot b)) split operator. Each point schematically represents a time series. a). Two

bold points are split time series tsL and tsR that define hyperplane. Points on each

side of hyperplane constitute the left (gL) and the right (gR) sub-nodes respectively.

b). A node’s split is presented by a time series tsL and a distance threshold θ that

forms hypershere. Points inside the hypersphere are assigned to gL, points outside

the hypersphere to gR. 49
3.2 Example of employing hyperplane split operator in an internal node of the tree

built on ECG200 UCR dataset displayed by the graphical interface developed in

the IKATS project. Horizontal color bars indicate class labels and the value in

parenthesis is the number of time series the node contains of. 49
3.3 Example of employing hyperplane split operator in an internal node of the tree built

on CinCECGtorso UCR dataset displayed by the graphical interface developed in

the IKATS project. Horizontal color bars indicate class labels and the value in

parenthesis is the number of time series the node contains of. 51
3.4 Illustration of a partition’s geometry done by pattern split operator. Each point is a

time series representation through two extracted patterns p1 and p2. Each pattern

and its threshold divides data by orthogonal hyperplane. 53

4.1 Illustration of the case when class labels distribution is such that it can be easily

separated by split of a time series and the threshold (tsL, θ) (hypersphere split

operator) but not by a pair of time series (tsL, tsR). Each point represents a distance

between split time series and a time series from the training set. 68

v

4.2 Histogram represents the average number of nodes for trees obtained on 46 UCR

datasets by TDT and MTDT. The left plot: results on unit train/test data partition.

The right plot: results on 10 bootstrap cross-validation. Each bar corresponds to

employed split operators: hyperplane (H, Hb - the baseline algorithm, d stands for

dichotomy search), hypersphere (S), and patterns (P). 71
4.3 Histograms represents the average accuracy for trees obtained on 46 UCR datasets by

TDT and MTDT. The left plot: results on unit train/test data partition. The right

plot: results on 10 bootstrap cross-validation. Each bar corresponds to employed

split operators: hyperplane (H, Hb - the baseline algorithm, d stands for dichotomy

search), hypersphere (S), and patterns (P). 71
4.4 Learned tree on Car UCR dataset by MTDT algortihm with split operators config-

uration F(H) + F(S) + F(P). Each non-terminal node depicts the selected split

operator and the distribution of class labels highlighted by colors. A split time

series are rendered in the color of corresponding class label. Circles represents the

leaves, its color and the number in the middle indicates a class label. Visualization

displayed by the graphical interface developed in the IKATS project. 72

5.1 Illustration of change in data partition if a time series tsL from a split pair (tsL, tsR)

will be replaced by ts′L. Each point schematically represents a time series of the

training set. The value δ stands for the shift distance d(ts′L, tsL). 89
5.2 Illustration of possible changes in a partition when a split candidate (tsL) moves to its

neighbour (tsnn). Time series represented by a distance value d(tsL, ts) and depicted

as dots. Shape of each point denotes a time series class label. Two cases are shown:

a) the first, there are no swap possible; a margin µ is greater than u(tsgL) and l(tsgR);

b) the second, elements lying within the range [θ − d(tsL, tsnn); θ + d(tsL, tsnn)]

require computation of true distance value to update its sub-node assignment. . . 100
5.3 The values of input parameters of LSTDT with respect to training set size. Left

upper plot illustrates function of total number of distances TDist. Right upper

plot reveals the number of referenced time series r taken as a logarithmic function

(base 2) from the training set. Bottom graph shows change tendency of INDist

(Formula 5.6) and LSDist (Formula 5.26). 107

vi

5.4 Upper plot represents the percentage of internal nodes of trees obtained by LSTDT

with respect to FSTDT. Annotation of points corresponds to the number of internal

nodes across trees for 21 UCR dataset. Bottom plot shows results of accuracy

obtained for each level of local search. X-axis reveals different setups for input

parameter ps indicating local search level. RS stands for random search, FS stands

for full search. 112
5.5 Upper plot shows the percentage of computed distances obtained with respect to

total number distances in the case of use FSTDT. Bottom plot shows the percentage

of examined split candidates by LSTDT with respect to FSTDT. X-axis reveals

different setups for input parameter ps indicating local search level. RS stands for

random search, FS stands for full search. 113

6.1 Posterior class conditional distributions of class 1 and class 2 at timestamp t. Upper

plot illustrates the case where classes are totally separated, as a result a high weight

value has to be assigned to a timestamp t. Bottom plot represents the case where

classes are confused, shaded area on the left hand side from the point x1,2 is the

probability to missclassify examples of class 2, and on the right hand side of x1,2 is

the probability of misclassification error of class 1. 121
6.2 Time series of dataset Local-Disc divided by class labels. 134
6.3 Weights vectors computed via BW approach for Local-Disc dataset. Each line of

the figure corresponds to employed dissimilarity measure (l2,DTW, (1 − Cortπ))

and contains three plots, each of which render a time series and a weight vector of

class labels Begin, Middle and End respectively. 135
6.4 Weights vectors computed via BW-RVO approach for Local-Disc dataset. Each line

of the figure corresponds to employed dissimilarity measure (l2,DTW, (1− Cortπ))

and contains three plots, each of which render a time series and a weight vector of

class labels Begin, Middle and End respectively. 136
6.5 Weights vectors computed via SVC approach for Local-Disc dataset. Each line of

the figure corresponds to employed dissimilarity measure (l2,DTW, (1 − Cortπ))

and contains three plots, each of which render a time series and a weight vector of

class labels Begin, Middle and End respectively. 137
6.6 Weights vectors computed via SVC-loss approach for Local-Disc dataset. Each line

of the figure corresponds to employed dissimilarity measure (l2,DTW, (1− Cortπ))

and contains three plots, each of which render a time series and a weight vector of

class labels Begin, Middle and End respectively. 138

vii

6.7 Weights vectors computed via RSVC approach for Local-Disc dataset. Each line

of the figure corresponds to employed dissimilarity measure (l2,DTW, (1− Cortπ))

and contains three plots, each of which render a time series and a weight vector of

class labels Begin, Middle and End respectively. 139
6.8 Weights vectors computed via MAP approach for Local-Disc dataset. Each line

of the figure corresponds to employed dissimilarity measure (l2,DTW, (1− Cortπ))

and contains three plots, each of which render a time series and a weight vector of

class labels Begin, Middle and End respectively. 140
6.9 Classification decision tree for ArrowHead UCR dataset obtained by MTDT only

with TS training set of non weighted time series set. 141
6.10 Classification decision tree obtained by WMTDT for ArrowHead UCR dataset. The

SVC weighting approach was used. 142

viii

Table 1: List of frequently used notations

(TS,Y) , training set
TS = {ts1, . . . , tsN} , the set of N time series

Y ∈ {1, . . . , K} , the set of k classes
G , the set of nodes in a tree
gL , left node descending from a parent node g
gR , right node descending from a parent node g

TSL , set of time series assigned to gL
TSR , set of time series assigned to gR

NL, NR , the number of time series in nodes gL and gR
pL, pR , time series proportion into gL and gR with respect to N

{N1, . . . , NK} , the number of observations each class contains
{p1, . . . , pK} , the proportion of each class
|ts| = m , length of time series

t , timestamp of one observable time series value
vti , value of an observable time series tsi at a timestamp t
D , matrix of size N ×N of pairwise distances between time

series from a training set
d(tsi, tsj) , distance values between time series tsi and tsj computed

with similarity measure d
dti,r = {dt(i,r)}mt=1 , the set of distances between values of time series at given

timestamp t of tsr
tswr , r ∈ 1, . . . , N , weighted time series from a training set TS

wr , weight vector of a time series tsr
lp , p norm distance for time series comparison, p = 2 corre-

sponds to Euclidean distance
π = {π1, . . . , πs} , warping path of Dynamic Time Warping

p(x) , probability distribution
F(.) = {f} , split operator
{(p, ν)} , the set of patterns extracted from time series, p stands

for a pattern, ν is an attribute
l , lower bound
u , upper bound

1

2

Abstract

Rising interest in mining and analyzing time series data in many domains
motivates designing machine learning (ML) algorithms that are capable of
tackling such complex data. Except of the need in modification, improve-
ment, and creation of novel ML algorithms that initially works with static
data, criteria of its interpretability, accuracy and computational efficiency
have to be fulfilled. For a domain expert, it becomes crucial to extract
knowledge from data and appealing when a yielded model is transparent
and interpretable. So that, no preliminary knowledge of ML is required
to read and understand results. Indeed, an emphasized by many recent
works, it is more and more needed for domain experts to get a transparent
and interpretable model from the learning tool, thus allowing them to use
it, even if they have few knowledge about ML’s theories. Decision Tree is
an algorithm that focuses on providing interpretable and quite accurate
classification model.

More precisely, in this research, we address the problem of interpretable
time series classification by Decision Tree (DT) method. Firstly, we present
Temporal Decision Tree, which is the modification of classical DT algorithm.
The gist of this change is the definition of a node’s split. Secondly,
we propose an extension, called Multi-operator Temporal Decision Tree
(MTDT), of the modified algorithm for temporal data that is able to
capture different geometrical classes structures. The resulting algorithm
improves model readability while preserving the classification accuracy.

Furthermore, we explore two complementary issues: computational ef-
ficiency of the extended algorithm and its classification accuracy. We
suggest that the decreasing of the former is reachable using a Local Search
approach to built nodes. And preserving of the latter can be handled by
discovering and weighting discriminative time stamps of time series.

Résumé

Aujourd’hui, du fait de la multiplication du nombre des capteurs et, plus généralement,
de celle des données issues de dispositifs connectés, de nombreux domaines d’activité
s’intéressent à la classification automatique des séries temporelles. Au-delà de la
recherche théorique de nouveaux algorithmes d’apprentissage automatique capables de
traiter ces données complexes, il est important de fournir aux utilisateurs des méthodes
capables de construire efficacement des modèles prédictifs, mais aussi de se focaliser
sur l’explicabilité des modèles générés et la transparence des processus mis en oeuvre.

Ainsi, les utilisateurs qui n’ont pas forcément des connaissances en théorie d’apprentissage
peuvent prendre en main plus rapidement ces méthodes et surtout valider la qualité
des connaissances apprises vis à vis de leur domaine d’expertise.

Dans ce travail de doctorat, nous nous avons cherché à définir un arbre de décision
temporel ayant les caractéristiques suivantes:

• une bonne precision,

• des résultats interprétables,

• une complexité controlée.

Ceci nous a conduit à nous focaliser sur les trois aspects suivants: Premièrement,
nous avons cherché à definir des opérateurs de séparation adaptés aux series temporelles.
Puis nous avons introduit la notion d’arbre de décision temporel multi-opérateur
(MTDT) qui consiste à utiliser, en concurrence, plusieurs méthodes pour construire
chaque noeud. D’une part cela permet d’améliorer les capacités prédictives des arbres
en capturant les meilleures structures géométriques discriminantes pour chaque classe
et pour chaque niveau de l’arbre. D’autre part, grâce à cette approche on améliore
la lisibilité des modèles en réduisant significativement la taille des arbres qui sont
produits. Deuxièmement, nous avons cherché à réduire la complexité des algorithmes
en utilisant une recherche locale pour explorer les opérateurs de construction des
noeuds. Cette recherche s’appuie sur la définition de bornes dans les métriques
utilisées. Elle permet de réduire l’espace des candidats possibles lors de la recherche de
la "meilleure" séparation. Enfin, nous avons cherché à introduire la notion de parties

discriminantes locales d’une série temporelle. Chaque instant d’observation de la série
est alors pondéré par un poids correspondant au pouvoir discriminant de cet élément
de la série. Nous avons développé et comparé différentes méthodes automatiques
de pondération des sous-séquences des séries temporelles de manière à maximiser la
précision des arbres de décision produits.

6

Acknowledgements

First and foremost I would like to thank my advisors Gilles Bisson, Cécile
Amblard, and Ahlame Douzal for all their contributions of time and ideas.
During all these years you provided me assistance to carry this work and
inspired me in the challenging moments of procrastination.

This research could not have been completed without the financial support
of the IKATS project (an Innovative Toolkit for Analysing Time Series),
which was a Research and Development project funded by BPIfrance
in the frame of the french national PIA program. I am thankful not
only for providing the funding for this study, but also for giving me the
opportunity to attend summer schools, conferences and meet so many
interesting people.

Besides, I would also like to thank my committee members: Pierre-François
Marteau, Christophe Marsala, Roman Tavenard, and Massih-Reza Amini
for letting my defense be an enjoyable moment. I am grateful to the jury
members for their interesting questions and insightful comments.

I would like to thank all the members of AMA team who have been the
source of friendship and collaboration during my PhD studies. Immense
appreciation is given to my friends who were always willing to help me
and who kept a sense of humour when I had lost mine.

Lastly, I would like to thank my family and express my infinite indebtedness
to my parents Antonina Shalaeva and Aleksandr Shalaev for all their love,
encouragement, and support in all my pursuits.

Chapter 1

Introduction

1.1 Introduction

Nowadays, vast amount of data has been collecting almost in any domain of interest.
They can be static, that is to say, they represent real-world processes at fixed point
of time. Or data can be dynamic, if we consider it evolves through time axis, such
data can be represented by time series. More concretely, a time series represents an
ordered sequence of values, each one being obtained from a measurement at a specified
time point. We can observe these type of data in any field because they naturally
arise once we are interested in seeing and analyzing any object and its characteristics
over time. For example, in biology a time series can be any physiologic signal of a
patient, an economic indicator in finance, power consumption in energy, an average
temperature in meteorology, etc.

Time series analysis has been taking an important role in many disciplines as
economics, medecine, seismology and meteorology, industry, and recently human-
machine interfaces. Analysis is rather a general term that includes variety of tasks
such as prediction, classification, anomaly detection, patterns/motif discovery, etc. In
this research, we focus our interest on time series classification task that has attracted
enormous attention in the last two decades. It rises in broad range of application,
where a class object is represented by time series and the objective is to assign a class
label for a new unlabelled one. For example, in airplane tracking each time series can
represent some attribute of a plane’s landing process (speed, angle, etc) that states
about its quality. Then the goal is to assign a class label indicating quality of landing
to a new track. In gesture recognition each time series can represent a movement, and
the goal is to recognize which movement was made based on recorded signal. There
are many others examples: protein sequences classification [20], disease classification
based on recorded data from sensors, in web search distinguishing humans from web

9

search robots [23], classification of abnormal behaviour [49], traffic classification for
the applications associated with traffic flow [10].

As a consequence of such substantial interest there has been a dramatic increase
of interest in applying machine learning (ML) algorithms to this task. However,
most of conventional machine learning techniques work on static data and not allows
straightforward extension to temporal data. The main reason is that time series data
are not initially represented by an explicit set of features. As the result, a great
deal of research has gone to develop new algorithms that are capable of handling
time series data. Lots of them are becoming highly sophisticated, so that it becomes
very difficult for a domain expert to interpret results of model without knowledge
of machine learning and data mining. It implies restriction on usability of machine
learning algorithms in some domains.

This study lies in the scope of IKATS project (an Innovative Tool-Kit for Analysing
Time Series). The goal of which is providing an easy-to-use framework for the
comprehensive and exploratory analysis of large volumes of time series data. Withing
the tool, which is dedicated to a domain data scientist and build in the form of
open-source project [2], IKATS supports ML algorithm for clustering, classification
and patterns discovery in time series. In addition, it allows visualisation of data and
built models.

In this research, we aim to develop time series classification algorithm that will
possess properties of transparency and interpretability, while keeping decent results
of classification accuracy. By aiming these objectives, we target to have a machine
learning algorithm whose output model can be visualised and be easily used by a
domain expert.

We define time series classification as a problem of building a classifier from a
collection of labelled training time series set. When we have a classifier, its evaluating
can be done by answering following questions:

• how does it help us to understand the data and how can we interpret the results?

• what is the level of performance, how accurate results of the classification?

• how well an algorithm scales when data is growing?

Now, based on above-mentioned motivation for tackling the time series classifica-
tion problem, and estimation strategy of developed classifier, we aim to design the
machine learning algorithm that fullfills properties of interpretability, accuracy and
computational efficiency. Decision tree algorithm was selected as the most suitable

10

baseline. Tree classifier has a good accuracy for classification task. It is often selected
among other algorithms when it is important to build interpretable model [66]. De-
cision trees allow to a domain expert see the logic of classification decisions. Also,
it is easy to support this classifier by a visualisation tool showing the feedback of
classification results.

The outline of this manuscript is following:

• Chapter 2 presents state-of-the-art of research done on classification of time
series.

• Chapter 3 describes modified version of the Decision Trees algorithm that is able
to deal with time series data.

• Chapter 4 introduces our first contribution: Multi-operator Temporal Decision
Trees.

• Chapter 5 provides an approximated algorithm on Multi-operator Temporal
Decision Trees.

• Chapter 6 introduces techniques to enhance discriminative and explanatory
characteristics of time series by weighting important timestamps.

Each chapter about our research contribution is completed by empirical study and
results.

11

12

Chapter 2

State-of-the-art

Contents
2.1 Introduction . 14

2.2 Interpretability, explainability and transparency in ma-
chine learning . 15

2.3 Time series data representation 17

2.3.1 Preprocessing and discretization methods 18

2.3.2 Similarity-based methods 20

2.3.3 Feature-based methods . 29

2.4 Time series learning algorithms 35

2.4.1 Classical methods . 35

2.4.2 Ensemble methods . 38

2.5 On interpretability in TSC algorithms 41

2.6 Conclusion . 42

In this chapter we present the state-of-the-art of the most popular algorithms
that have been proposed for Time Series Classification (TSC) problem. In Section 2.2
we discuss the problem of interpretability in Machine Learning (ML) algorithms.
Then, in the Section 2.3 we present different techniques and methods on time series
representation. In forthcoming Section 2.4 we provide an overview on TSC algorithms
that were designed or modified to handle time series data. They employ one or another
time series representation for yield classification models and can be separated by two
categories: classical and ensemble ML methods. To this end, we come back to the
question about interpretability of ML algorithm, however in the scope of TSC task.

13

2.1 Introduction

Nontriviality of TSC task and its vast range of applications has attracted ML re-
searchers’ interest over recent years. However, many researchers from other disciplines,
such as statistics and engineering, have been approached resolving this problem earlier.
Hence, lots of work that has been done is rather applicative and does not provide
us with general algorithms and techniques. ML algorithms are not specified to the
particular application domain, but classical classification algorithms are not capable
of fitting complex data with time dependant structure. The undeniable importance of
a need in time series mining counting as well classification methods was risen in the
work of Keogh and Kasetty [42]. It is one of the first studies where the lack of methods
able to mine time series data was pointed out. In particular, for classification task the
main contributions had focused on developing new similarity measures for k-nearest
neighbour classifier [22, 83, 88]. Later on, lots of novel techniques were proposed.
In the survey done by Xing et al. [88] the classification methods were reviewed for
sequential data including time series. Esling and Agón [25] and Fu [29] provide an
overview of mining and classification algorithms for time series. Based on the current
state of TSC research, the algorithms developed to classify time series data can be
divided into following categories:

1. TSC methods that require to represent time series data by a set of explicit
features. Hence, these algorithms include an additional step to transform raw
time series data into an appropriate input. Depending on how the data is
represented, these algorithms fall into categories:

• Similarity-based algorithms, as the name suggests, use the notion of
similarity to make classification of an unlabelled example. That is to say,
similarity comparison between time series of each class should be performed
in order to assign a class label. A similarity measure has to be defined to
compare time series between each other. These algorithms are able to deal
with either whole time series or its subintervals. The classification quality
is extremely dependant on the choice of similarity measure.

• Pattern-based algorithms are focused on extraction of patterns from
time series. To do so, modification and transformation techniques are
applied to raw time series to find meaningful patterns. Discovered dictionary
of patterns is a representation of time series data. This can be fed as input
to any conventional ML classifier. As a consequence of data modification,

14

the algorithms in this category can lose the class discriminative information
and be less interpretable.

2. TSC end-to-end methods, which do not require any modification on input time
series data. This category includes deep neural network algorithms and, in
particular, Convolutional Neural Network (CNN). Basically, features extraction
is embedded in network learning process. These algorithms lie beyond the scope
of this research. Even though, we will not focus our attention on them, one can
find more details and additional references in the paper of Wang et al. [84].

TSC algorithms can be combined forming Ensemble TSC learning in order to boost
classification accuracy performance. Typically, the flip side of good accuracy is the
lack of interpretability. It becomes difficult or even sometimes impossible (especially
when the combination of classifier is of heterogeneous nature [6]) to analyze results of
model that have complex structure.

2.2 Interpretability, explainability and transparency
in machine learning

Before looking at the details of the TSC algorithms, we discuss the problem of
interpretable and comprehensible ML. This question is arised regardless of ML method
or application, it is rather a general problem. It also becomes absolutely crucial when
an end-user of model is non ML expert. If during a learning process an algorithm loses
a link between observed data and obtained outcomes, the trust and understanding
of a domain practitioner is lost too. Recently, many workshops on interpretability
in ML has been organised at the conferences such as NIPS, ICML, IJCAI, etc. This
emphasises not only the interest among the research community to this topic, but also
the need of studying this problem.

There are many notions that are usually employed in the literature about ML
methods to describe how a model works and what insights about the nature of the
problem we can get: interpretability, explainability and explanation, readability and
transparency of learning models. These terms are highly ambigious [57] and especially
it becomes challenging when we would like to formalize them as properties of ML
algorithms. Even though, there are lots of work in psychology and cognitive sciences
that discuss their definition and difference, there are much less work done in giving
strict definition of these terms when applied to ML algorithms. Miller [60] provides
general discussions about how to transfer these notions from philosophy and cognitive

15

sciences to artificial intelligence (AI) and ML. In the work of Lipton [57], the authors
narrow down the problem and attempt to define properties of interpretable ML
algorithms. They divide them into two categories: the first relates to transparency of
the built model, and the second determines the post-hoc explanations that the model
can provide.

Let us define what each of the above-mentioned terms means and how we can
apply them to an ML algorithm in order to improve their understanding for users.

• Readability. This term points to the representation of a model and addresses
the following two questions: What steps of a training process can be easily shown
to a user? Can a built model be visualized? Positive answers to these questions
give an evidence that the yielded model is structured. It can be explored by
a user in order to focus on relevant classification attributes. Decision trees of
reasonable size can be taken as a good example of readable model.

• Interpretability. The term of interpretability appeals to the idea of assessment
the degree to which a domain expert can understand how a model works and
how classification decisions are made. For example, in classification task we say
that a model is interpretable if steps of classification process made by obtained
model are clear for a user.

Lipton [57] in his work argued about the term ambiguity. He states that for each
new developed ML algorithm, one must define what sense of interpretability
it possesses. Though, in general we say that a model is interpretable, if it is
able to reveal the important information about data which a domain expert can
easily understand.

• Explainability and explanation. In cognitive sciences, these two terms refer
to a cause of a problem we are trying to solve [60]. The questions like What
happened and why? are of interest when humans are seeking for understanding.
An ML algorithm that is capable of giving explicit explanations to a user about
learning process and results can be considered as explainable. Certainly, most
ML algorithms with their innate complexity of techniques (transformations of
original data to other spaces, dimensionality reduction, etc) remain black-boxes
for a domain expert. Ribeiro et al. [71] proposed a technique to explain the
outcomes of any classifier to a user. Such approach is post-hoc explanations [57]
that gives practical information about the classification results. For example,
a model can be supported by visualisation of data and/or their representation.

16

Also, taken classification decisions can be annotated by provided additionally
text explanations. However, Miller [60] states that the difference between
interpretability and explainability is subtle and it is possible to equate these
notions.

• Transparency. This term rather refers to the properties of an ML system that
provides a model that aims to be readable, interpretable and explainable to its
users. Infusion of the notion of transparency as characterized property of an ML
algorithm is the goal of making a model more understandable.

Speaking about an ML system designed to be transparent for its end-user, we note
that it has to involve at least two modes: data preprocessing mode and ML algorithms
mode. Each of them can be described in more details as follows:

1. the first mode allows analyzing raw materials, i.e. non-processed data, to get
a conceptual understanding of their properties. The importance of this step
is clear. By using the knowledge about a field, a domain expert can make the
initial hypothesis about the intrinsic regularities the data contains. Then, by
looking at the dictionary of patterns, they receive the very first information
about discriminating time ranges in time series. And already at this stage, they
can correct the prior beliefs about the data.

2. the second mode allows exploring and understanding a model generated by ML
tools. The results reveal captured underlying insights from the data. A user
must interpret these recommendations about the data with respect to their own
knowledge and validate the different parts of the model. This allows an expert
to set up some feedback to change the data description or learning parameters.

These models can be served as the fundamental core of any ML system, though,
surely, can be extended.

In the forthcoming section we give an overview of the state-of-the-art of TSC
algorithms and at the end of the chapter we discuss again the interpretability problem,
but in the context of time series classification task.

2.3 Time series data representation

In order to modify classical ML algorithms or design a new one for TSC task, one
needs to define how to represent time series data. Due to the time component of time

17

series, which brings an additional level of complexity, there are many approaches and
techniques that have been proposed. Hereafter, we attempt to describe and summarize
them in the following three categories:

• preprocessing and discretization methods, which are aimed to compress data
and/or get rid of the noise they may contain;

• similarity-based methods, which represent time series as points in high-dimensional
space with defined distance between them;

• pattern-based methods, which target to transform time series data in order to
obtain their static description.

2.3.1 Preprocessing and discretization methods

Oftentimes, before applying any of data representation tecnhiques, time series has to
be preprocessed and/or discretized [25]. The aim of this process is to clean the raw
data and/or to find their compressed decomposition by basis functions.

Time series preprocessing. Preprocessing step is mostly needed to clean data
[61], for instance when raw time series contain missing values, and/or the scales of
values are different, and/or their disturbed by noise occurence. Missing values can
be handled by many techniques such as linear, spline or cubic interpolation. To have
time series values in the range between 0 and 1, the normalization techniques can be
applied, such as min-max or z-score normalization. The latter is particularly useful
when the data contains outlier values. Moving-average smoothing is the technique
allowing to remove noise that can occur in time series data. Sometimes it is required
to have time series of the same length, for example, Euclidean distance computation
between two time series. To obtain the same length resampling and down-sampling
can be done [25, 42].

Time series discretization. High-dimensionality of time series data is well known
problem [25, 29, 46]. The goal is to compress raw data in the meaningful way, i.e.,
minimizing loss of class discriminative information that original data contains. There
are methods that reduce data dimension by discretizing it into frequency domain, into
frequency and space, or into symbolic strings. Below, we overview briefly some widely
used techniques. More detailed description and other methods as well can be found in
[18, 25, 30, 61].

18

• Discrete Fourier Transfrom (DFT) decomposes time series by sequence of
frequencies represented by complex numbers [4], each of which is computed using
the following formula:

ft =
1√
m

m−1∑
n=1

vn exp (−2πj

m
tn), t ∈ 1, · · · ,m, (2.1)

where j =
√
−1 is imaginary unit. Typically, only the first few lowest frequencies

are kept and the rest are discarded. There exist the Fast Fourier Transform [26]
algorithm to compute DFT coefficients in O(m logm) time.

• Discrete Wavelet Transform (DWT) represents time series into multi-
resolutional way(frequency and space domain) [1]. Haar wavelets transform
is widely used to discretize time series providing a good approximation. From
computational point of view, it requires linear time O(m) with respect to the
length of time series. The Haar wavelet function is defined as follows:

ψ(t) =

1 0 < t < 0.5
−1 0.5 < t < 1

0 otherwise
(2.2)

with the scaling function φ(t) =

{
1 t ∈ (0, 1)
0 otherwise

• Piecewise Aggregate Approximation (PAA) decomposes time series into
predefined number of equal-length segments, each of which being replaced by the
average of values within the segment [46]. PAA representation of time series is a
competetive technique of two approaches described above. From computational
perspective it takes only linear time O(m).

• Singular Value Decomposition (SVD) was proposed to reduce dimension-
ality of time series by finding its principal components [47]. Each time series
ts ∈ TS is mapped to trajectory matrix composed by lagged vectors. It forms a
matrix TSl×(m−l+1) to which SVD is applied:

TS = U × S × V T , (2.3)

where U is a column orthonormal l × r matrix (r is the rank of TS), S is a
diagonal r × r matrix, and V T is a column-orthonormal matrix of size (m− l +

1)× r. This techniques is computationally more expensive, which amounts to
O(min(l2(m− l + 1), (m− l + 1)2l)).

19

• Symbolic Aggregate ApproXimation (SAX) discretize time series into
symbolic strings [53]. The transformation configured by two parameters: a
desired word size w and an alphabet size a. SAX produces a symbolic approxi-
mation of time series ts ∈ TS of lengthm by compressing it into a string of length
w, whose letters are taken from the alphabet a. The steps of transformations
are as follows:

1. Reduce dimensionality from m to w piecewise aggregate approximation
(PAA). All time series are z-score normalized. PAA divides a time series into
w segments and mean values of points within each segment are computed.
The sequence of these values forms PAA approximation of ts.

2. Discretize along amplitude axis with chosen alphabet a. A set of breakpoints
are computed to divide the normalized time series values distribution space
into the |a| equal-sized and -probable regions. Then, each of PAA values is
converted into a letter of an alphabet a using the lookup table.

3. Produce a symbolic word that represents time series.

The complexity of the algorithm is linear O(m) with respect to the length of
time series.

2.3.2 Similarity-based methods

Similarity-based TSC algorithms use a similarity function to measure the proximity
between a pair of time series. To measure how similar two time series are, we need
to define a similarity measure. The choice of similarity measure is very important to
produce high performance classification. Also in this section, we provide the definition
of metric and its properties. We review some time series similarity measures and
point out the time series characteristics that they are capable of capturing. Then, we
describe the classification algorithms that are based on these similarities or could be
modified to use them.

2.3.2.1 Time series metrics.

One property of any developed similarity measure is metricity. A distance d is called to
be a metric if it satisfies the following properties. Let x, y and z be three time-series.

• Reflexivity d(x, x) = 0

• Nonnegativity d(x, y) ≥ 0

20

• Symmetry d(x, y) = d(y, x)

• Triangle inequality d(y, z) ≤ d(x, y) + d(x, z)

Metricity allows the use of speed methods and techniques that have been designed to
facilitate nearest-neighbour search [38]. Time series similarity measures can include or
not an alignment of time stamps between two time series. If measurements are not
shifted along time dimension, we can speak about static alignment. That means each
observation vti of a time series tsi measured at time stamp t corresponds to observation
vtj of tsj, where i and j states for indicator of time series. If we cannot state this
and measurements are shifted along time axis, a dynamic alignment is required to
correctly measure the similarity.

Let tsi = {v1
i , . . . , v

m
i } and tsj = {v1

j , . . . , v
m′
j } be two times series of length m and

m′ respectively. To align two sequences, we construct an m-by-m′ matrix where each
entity of the matrix contains the distance (commonly l1 or l2) between two time series
values at given timestamp t.

A warping path π is an alignment between two time series tsi and tsj is defined
as a sequence of s pairs π = π1, . . . , πs. The lth element of a path πl = (t, t′)l is
a mapping, where t ∈ 1,m and t′ ∈ 1,m′ are indicators of tsi and tsj timestamps
respectively.

A valid warping path has to satisfy the following constraints:

• Boundary condition: π1 = (1, 1), πs = (m,m′). This condition states that a path
has to start and finish in diagonally opposite corner cells of the matrix.

• Monotonicity condition: πl+1 ∈ ((t+ 1), t′)l+1, (t, (t
′ + 1))l+1, ((t+ 1), (t′ + 1))l+1.

This ensures that timestamps in π are monotonically spaced in time.

• Step size condition: it requires unitary increments. Allowable steps in a path
are adjacent cells.

There exist many possible alignments between two times series that satisfies the above
conditions. The interest is to find an optimal path π∗ which minimizes the cumulative
distance value between two time series called warping cost. Distance measures that
define an alignment path π are called elastic due to their ability of matching two time
series points located at different timestamps.

We divide similarity measures into three groups depending on which attributes
they are able to capture: value-based, shape-based, and value-shape-based measures.
Figure 2.1 shows a graphical example of three time series that are similar with respect

21

ts1

ts2

ts3

Figure 2.1: Example of three time series to illustrate different types of similarity. Time series ts3 is
more closer to a time series ts2 with respect to amplitude of values, while it is more similar to ts1
with respect to shape.

to different domains. Time series ts3 is more closer to a time series ts2 with respect
to amplitude of values, while it is more similar to ts1 with respect to shape.

2.3.2.2 Value based similarity measures

Value-based measures focus on the difference of time series amplitudes at each time
stamp.

The lp distances. The lp distances are the simplest measures of similarities between
time series. Given two time series tsi and tsj of equal length m, the lp is defined as
the p normed sum of differences between corresponding values of each time-series:

lp(tsi, tsj) =
(m∑
t=1

|vti − vtj|p
) 1
p (2.4)

The case where the value p = 1 corresponds to the Manhattan distance. The
Euclidean distance is the lp norm with p = 2, which is the one of the most popular
norms for comparing time series [42]. However, Aggarwal et al. [3] has proved that
using distances with lower values of p is qualitatively better for high-dimensional
data. Thus, for comparing long time series one prefers using the lower value of p.
The accuracy performance of a classifier that employs this distance decreases with
increasing the value of norm parameter p. There are mainly two types of limitations
for this family of distances. lp distances are sensitive to time shifting, hence it requires
a static alignment of time series. Another bottleneck is that time series must have the
same length.

22

Dynamic Time Warping. In practice, oftentimes, time series do not line up in
time because of possible poor quality of their recording process. Another reason is that
events caracterizing the same class can occur at different time periods, hence, while
computing distance these events have to be aligned. To alleviate these problems, DTW
was introduced as an elastic measure that tolerates distortion in time dimension [11].
The DTW between two time-series tsi and tsj is defined as

DTW(tsi, tsj) = min
π

(s∑
l=1

|vi − vj|πl
)
. (2.5)

DTW aligns two time series and optimize a path by minimazing the distance through
an alignment. The DTW optimal path is computed using dynamic programming. The
optimal path π∗ and distance value can be found using dynamic programming as
follows:

d̃(t,t′) = d(t,t′) + min
(
d̃(t−1,t′−1), d̃(t−1,t′), d̃(t,t′−1)

)
,

where d̃(t,t′) indicates cumulative distance at time point (ti, tj). The cumulative distance
is augmented by the minimum of cumulative distances of the adjacent elements. DTW
distance is widely used when we need to cope with the problem of time shifting and
does not require time series to be of the same length [43].

Although DTW has been successfully used in many domains, due to its not limited
elasticity it sometime can output incorrect alignment. For example, a single time
stamp on one time series maps into a large timestamp subset of another time series
[44]. Even having a large lag between points that have to be aligned, it is unlikely to
shift very far from the diagonal of pairwise distance matrix. To improve performance
and to accelerate the computation, the constraints on a warping band have been used.
The classical approaches [39, 74] limit the warping band to a warping window of size
l, directly above and to the right of the diagonal. Ratanamahatana and Keogh [69]
proposed constraints based on the shape of warping path.

Weighted Dynamic Time Warping. DTW computes the distance by adding the
absolute difference of values along uniformly a warping path, i.e., regardless of the phase
difference of matched points. Jeong et al. [40] introduced the penalty-based DTW.
When searching an optimal alignment π∗, WDTW penalizes each value of distance
between points in the warping path with high phase difference by a multiplicative
weight w|t−t′|, where t and t′ are timestamps of time series tsi and tsj respectively.
A larger weight is imposed to mappings with a higher phase difference. Weights are

23

monotonically increasing for further points. The difference between two points vt and
vt′ is calculated as

δw(vti , v
t′

j) = ||w|t−t′|(vti − vt
′

j)||p. (2.6)

The distance between two time series is defined by minimizing an alignment path over
all possible paths

WDTW(tsi, tsj) = δw(vti , v
t′

j) + min(δw(v
(t−1)
i , v

(t′−1)
j), δw(v

(t−1)
i , vt

′

j), δw(vti , v
(t′−1)
j))

To assign weights, the authors proposed to use a modified logistic weights function.
Imposed weight is defined as

wt =
wmax

1 + exp(−λ(t− m
2

))
,

where t is a timestamp of a time series of length m, wmax is the chosen upper bound
of a weight parameter (set to 1 in the paper Jeong et al. [40]) and the constant
λ ∈ [0,+∞) controls the level of phase difference penalization.

Complexity-Invariant Distance. This distance was proposed by Batista et al. [8].
In the paper, they reviewed different types of time series attributes (called invariances)
that can be distorted during recording and ways how it can be mitigated. A new
type of invariance has been introduced in the paper, which is intuitively based on the
number of peaks, valleys and patterns. Basically, defined complexity in the paper tells
us how complex an object represented by a time series is. The complexity factor for
each time series can be computed as follows:

CF (ts) =
m∑
t=1

(vt+1 − vt)2 (2.7)

The idea behind the formula is to measure the length of a time series if it would
be stretched to the straight line. There are many other proposed variations on how
the complexity of time series can be measured. The authors proposed a variant of
complexity measure that is intuitive and has low computational cost.

Employment of computed complexity to a Euclidean distance computation is
straightforward and defined as

lCF2 (tsi, tsj) = CF (tsi, tsj)× l2 (2.8)

where the complexity factor between two time series is defined as

24

CF (tsi, tsj) =
max (CF (tsi)CF (tsj))

min (CF (tsi)CF (tsj)
(2.9)

It corrects a distance value between two time series by multiplying it by the
complexity factor. The authors of [8] empirically showed that in the same way it
also can be applied to DTW. Experimental results have shown positive impact on
classification accuracy because of its ability to correct similarity by avoiding matching
complex time series to a simpler one.

We finish the description of value-based measures with two empirical observations
on comparison of efficiency of Euclidean and DTW distances. Xi et al. [87] has shown
that on small datasets, elastic measures (DTW) are more efficient in terms of accuracy
than Euclidean distance. Whereas Ding et al. [21] empirically proved that on large
datasets euclidean distance is almost as accurate as elastic. These results can serve as
the guideline for a user which similarity function to select based on a dataset under
analysis.

2.3.2.3 Shape-based similarity measures.

When discriminativeness of time series belonging to different classes is defined by their
overall shapes rather than difference in amplitudes, the value-based metrics cannot
serve anymore as an efficient time series comparison method. Distance measures aiming
to capture changes in shape of time series, typically, include in their computation
differences between adjacent values of each time series. So, a simple method is to first
compute time series derivatives and, then, apply one of the value-based metrics. The
derivative shows what happens in the neighbourhood of a given timestamp t of an
observation ts ∈ TS.

Derivative Dynamic Time Warping. A derivative version of DTW was intro-
duced by Keogh and Pazzani [44]. The distance called as DDTW is able to alleviate
the problem of incorrect matching by considering local time series derivatives instead
of using raw data. It appears when a single time stamp on one series may map
into multiple timestamps of another series. The algorithm transforms time series by
computing first order differences. Given tsi = {v1

i , . . . , v
m
j } the modified version of a

time series is ˜tsi = {ṽi1, . . . , ṽin} where each value ṽit is computed as

ṽit =
((vti − v(t−1)

i) + (v
(t+1)
i − v(t−1)))/2

2
, 1 < t < m. (2.10)

25

This estimation of derivative takes into account three consecutive timestamps and
computes an average of the slope between vti and v

t−1
i and the slope between v(t−1)

i and
v

(t+1)
i . The similarity between two time series computed in the same way as standard
DTW. Using DDTW Luan et al. [58], Mokhtar et al. [62] showed good performance
in practical applications and more robust to ouliers. .

Cort. Chouakria and Amblard [16] proposed Cort distance to measure similarity
between time series capturing shape characteristics by computing the correlation of
its shape changing. Two time series are similar if the growth rate of its co-increasing
or co-decreasing behaviour is the same. Cort distance is defined as modification of
the Pearson correlation that keeps temporal order. Cort can be formulated as static
distance as well as elastic with a dynamic alignment path.

Cort(tsi, tsj) =

∑m
t=1(vt+1

i − vti)(v(t+1)
j − vtj)√∑

t(v
t+1
i − vti)2

√∑
t(v

(t+1)
j − vtj)2

. (2.11)

Cortπ(tsi, tsj) = min
π

(∑s
l=1(xy)πl√∑s

l=1 x
2
πl

√∑s
l1
y2
πl

)
, (2.12)

where πl = (t, t′)l, xπl = v
(t+1)
i − vt′i , yπl = v

(t+1)
j − vt′j . Equation 2.11 is applicable for

time series of the same length and without discord in time axis. Whereas, Equation 2.12
is able to compensate both problems with a dynamic alignment path. The value of
Cort belongs to [−1, 1], where values 1 and -1 indicate similar and opposite shape
between two time series respectively. The value of 0 means two time series are neither
similar nor opposite shape.

2.3.2.4 Value-shape-based similarity measures

In practice, we cannot expect that it is always sufficient to use just shape-based or value-
based metrics to compare time series. For example, for multiclass classification it can
be the case that one pair of classes is discriminated by difference in amplitude values,
while another distinct pair of classes is separable by time series shape behaviour.
However, employing only value- or only shape-based similarity function within a
classifier will not be capable of carring high performance classification. The value-
shape similarity measures were designed to consider values of time series and its general
shape. Oftentimes, to regulate intensity of each component for different datasets,
these distances are parametrized.

26

DTW-Cort. Introduced in Chouakria and Amblard [16], this similarity measure
aims to cover both amplitude and shape attributes.

DTW-Cortπ(tsi, tsj) = min
π

(2

(1 + exp (λ ∗ Cort))

s∑
l=1

|vi − vj|πl
)

(2.13)

The parameter λ ∈ [0, 6] modulates the importance of value (λ = 0) and shape (λ = 6)
components.

Distance based on derivative. The similarity function proposed by Górecki and
Luczak [32] is based on the mixture of value- and derivative-based distances. They
state that the measure is capable of tuning the derivative component for each dataset
during a model training. Computationally, the method does not have overhead upon
other elastic distance measure. The derivative-based distance measure (DD) is defined
as

DD(tsi, tsj) := α ∗ d(tsi, tsj) + β ∗ d(˜tsi, ˜tsj), (2.14)

where d is the base distance function. In Górecki and Luczak [32] they propose
using Euclidean as the most straightforward measure and DTW distances as the
most effective. The parameters α, β ∈ [0, 1] are chosen in the learning phase through
cross-validation technique. The time series ˜tsi, ˜tsj are first order derivatives of time
series tsi, tsj correspondingly. To estimate derivatives of a time series, the authors use
value difference of two consecutive time stamps defined as ṽti = vt+1

i −v(t)
i , i ∈ [1,m−1].

Though, they picked two points derivative formula, experiments include the results
with employment three point derivative formula. However, they did not concluded
that the final distance DD is sensitive to the choice of derivative formula. Note, that
in the formula it is possible to use combination of different functions for distance
computation between time series d(tsi, tsj) and between derivatives d(˜tsi, ˜tsj). The
extension of the distance for the second derivative was proposed in [33].

Time Warp Edit Distances. TWED is an elastic function of similarity proposed
by Marteau [59]. It satisfies metric properties in contrast to previously mentioned
time series similarity measures. The proximity between two time series is measured as
the minimum cost sequence of "edit operations" needed to transform one time series
into another. It controls stiffness along the time axis by a warping parameter λ > 0.
Unlike a warping window in DTW, which also limits an alignment by using timestamp

27

differences threshold, it enforces penalty on the distance between matched points.
Setting λ to∞ results to have the Euclidean distance, while fixing λ = 0 give us original
DTW distance with no stiffness at all. TWED uses elementary operations called
deltsi , deltsj ,match. While searching for an alignment, match operation corresponds to
the time axis direction with simultanious increment of timestamps t and t′ of time
series tsi and tsj by one step (t + 1 ← t′ + 1). Applying deltsi will increment only
t, accordingly, the new mapping will be (t + 1 ← t′) and for deltsj it is vice versa
(t← t′ + 1). Once a mapping is found, an accumulated distance is augmented by lp
with spatial and temporal penalties. Computation of TWED distance can be done
through dynamic programming [59].

Move-Split-Merge Metric. Move-Split-Merge Metric (MSM) proposed in [82] is
a distance that measures the cost of transformation of one time series into another.
MSM uses the set of basic operations that can transform any time series to any other
time series. It has three fundamental operations, which are employed to perform
a transformation: Move, Split and Merge. Move changes the values of a single
element, Split converts a single element into two consecutive elements, and Merge
joins two consecutive element into one. Each operation has an associated cost and
MSM distance between two time series tsi and tsj is defined as the cost of the cheapest
sequence of operations that transforms a time series tsi into a second one tsj. The
foremost motivation in formulating MSM is to satisfy a single distance measure using
a set of certain desirable properties: robustness to temporal misalignments, metricity,
quadratic time complexity, translation invariance and treating all values equally.

2.3.2.5 Similarity function learning

As we have seen, there are lots of measures that have been proposed to quantify
the similarity between pairs of time series. They capture different time series class
discriminative characteristics. Table 2.1 reveals their arrangement according measured
time series properties.

Selection of proper similarity measure is a fundamental issue. Moreover, in general
there is no such thing as ’best’ similarity measure, it directly depends on the data
nature and questions being posed. On one hand, lack of prior knowledge may lead to
an inappropriate measure for a given dataset. On other hand, even if we have some
prior knowledge about data attributes, which are important to discriminate classes,
employing only one of them may be uncapable of faithfully capturing all important
information that data contains.

28

Table 2.1: Similarity measures arranged by their categories and by the type of time
stamps alignment.

Alignment Value Shape Value-Shape
Static lp, CID Cort lp-Cort

Dynamic DTW, WDTW DD, Cortπ DTW-Cortπ, TWED, MSM

An alternative to mitigate the problem of the similarity measure selection is to
learn a combination of distances capturing different modalities presented in data. Do
et al. [22] proposed an algorithm of Multi-modal and Multi-scale Temporal Metric
Learning (M2TML). The learnt measure is a weighted combination of metrics that
capture amplitude, shape, and frequency charachteristics in the data (Multi-modal)
on different time intervals (Multi-Scale). Metric learning is done by SVM algorithm
in dissimilarity space where training time series have been transformed. Each point
in new representation space is a high dimensional vector, each entity is dissimilarity
between a pair of time series (tsi, tsj) given a dissimilarity measure, dIc , where c
denotes category of measure (amplitude, shape, frequency) and I ∈ [0,m] is a time
series segment. Hence, each time series tsi forms N − 1 points, where N is the size
of training set. The authors proposed to shorten the training set in a new space by
selecting only kα, α > 1, α ∈ N nearest points of the same class (yi = yj) and the
same number of nearest point of distinct class labels (yi 6= yj)). The parameter k
defines the number scaled by α of nearest neighbour points.

New meta metric dnew is computed by performing binary SVM in dissimilarity
space. To satisfy desirable metric properties of positivity, symmetry, reflexivity
and local order (dnew(tsi, tsj) < D(tsi, tsr),∀yi = yj, yi 6= yr) the authors suggest
using nonlinear combination of learnt solution with exponential term. To conduct
classification of new time series, the learnt distance is combined with 1-NN classifier.

The clear advantage of metric learning is the ability to automatically assign weights
to the top discriminative measures and its accuracy performance in comparison with
uni-model distances. The flip side of this approach is that one needs to define which
distances to include in the representation vector and how many segments of a time
series should be considered.

2.3.3 Feature-based methods

The second category of algorithms for TSC problem involves some preprocessing
steps of deriving robust representation for time series. In this section, we provide

29

an overview of the latest algorithms that discover explicit discriminatory features of
varying size time series intervals.

The goal of the transformation process is to generate a set of features minimazing
loss of discriminative information from the original data. Large number of high level
representations [31, 64, 72] have been proposed by the research community. Still, the
task of finding interpretable and discriminative patterns is complex, and by using
any transformation in a classfier, we increase the risk of loosing insightful connection
between data and classification results. An overview of different feature extraction
approaches have been done by Fulcher [30] and Daw et al. [18]. In this section, we
describe some widely used feature extraction methods which are categorized in three
groups: statistical, dictionary, and shapelets approaches. Most of them build upon
discretized time series by one of the method mentioned above.

2.3.3.1 Statistical methods

BOSS: Bag-Of-SFA-Symbols. One of feature-based TSC algorithms BOSS pro-
posed by Schäfer [78] which uses sliding window to form words over time series. BOSS
algorithm uses a Discrete Fourier Transform (DFT) to discretize time series into fre-
quency domain. The obtained segments are quantized along amplitude axis through a
technique called Multiple Coefficient Binning (MCB), rather than using fixed intervals.
MCB finds the disretizing break points as a preprocessing step by estimating the
distribution of the Fourier coefficients. Oftentimes, adjacent sliding window can have
the same Symbolic Fourier Approximation (SFA) words, thus only the first occurence
of a SFA word is counted to reduce words numerosity. Though, employing different
pattern extraction techniques, BOSS involves similar stages as BOP and SAX-VSM
algorithms. For each class, it computes tf -idf vector representation. Cosine similarity
metric with 1-NN classifier combination is used to assign a class label for a new time
series.

BOP, SAX-VSM, and BOSS can perform noise reduction and are efficient for long
time series. Similar to SAX-VSM, BOSS uses representation over classes instead of
time series. While outperforming in accuracy its rival methods (BOP and SAX-SVM)
it has the same limitation when it comes to conceptual understanding of classification
results.

TSBF: Time series Bag of Features. Time series Bag of Features (TSBF) is
another approach that represents time series through statistical features on intervals.
The algorithm was proposed by Baydogan et al. [9] and includes random intervals

30

step generation and the creation of statistical features representation. Over each
interval of time series, it calculates the mean, variance and slope. The start and end
point of the interval are also included as features in order to retain the possibility of
detecting temporal similarity. To this end, the new input set is a set of generated
subsequences and their features. Then, SVM classifier is applied to get a table of class
probability estimates for each subsequence. Next, for each time series the algorithm
builds a histogram of obtained estimates over each class. The resulting histograms
concatenated for all training time series form the feature space.

Although the algorithm is capable of capturing global and local characteristics of
time series by employing heterogeneous set of features, it evidently lacks interpretability.
For a domain expert as well as an ML expert, reconstructing a link between results of
classification and original data is challenging.

IF: Interval-based Features. Deng et al. [19] proposed statistical approach to
extract a set of interval features to capture temporal characteristics of time series. For
a time series ts = (v1, . . . , vm) and interval [tstart, tend] three summary statistics are
computed as follows:

fµ =

∑tend
i=tstart

vi

tend − tstart + 1
; (2.15)

fσ =

√∑tend
i=tstart

(vi − fµ)2

tend − tstart
; (2.16)

fβ = β, (2.17)

where β is the regression line slope of the time series segment between tstart and
tend. Each time series is represented by the set of these three values computed at each
interval.

2.3.3.2 Pattern-based methods

BOP: Bag-of-patterns. Lin et al. [54] proposed feature-based time series repre-
sentation based on SAX transformation. The bag-of-patterns approach first converts
a time series into a symbolic set of series, each of which is extracted from a time series
segment obtained by a sliding window (SAX step). Then, a numerical feature set is
collected via a frequency count of extracted words in a series.

Bag-of-patterns [54] is similar to an Information Retrieval (IR) “bag of words”
concept where each “bag” is represented by a set of symbolic strings (SAX words) that

31

a time series contains and its occurence frequency vector. These vectors are classified
with 1-NN classifier built with Euclidean distance or Cosine similarity applied to raw
frequencies or their tf*idf weighting. The BOP has several advantages: it has linear
complexity in terms of the number of time series, it is rotation-invariant. Representing
each time series as a bag of SAX words allows considering local and global structures
simultaneously.

SAX-VSM: SAX Vector Space Model. SAX-VSM algorithm proposed by Senin
and Malinchik [79] is a generalization BOP that forms word distributions over classes
rather than series and weights. Using a sliding window technique, each time series
of a training set is converted into bags of SAX words. All retrieved words placed
in unordered collection that is a representation of the original time series ts. Then,
instead of building N bag of words for each of the training series, the algorithm
builds a single bag of words for each of the classes, that effectively provides a compact
solution of K weight vectors, where K is the number of classes (typically K << N).
To achieve this, tf -idf weighting [75] is used.

To perform classification, two steps have to be done. First, unlabeled time series,
taken from a test set, are transformed into a SAX words frequency vector by the
same procedure and with the same parameters that were selected on the training
step. Second, cosine similarity is computed between the representative vector of a test
series and K tf -idf weight vectors and, then, the class with the maximum similarity
is assigned to a test time series.

Among feature based classifiers, SAX-SVM provides more interpretable insights
on multiclass classification since it builds weights over classes. Hence, each classified
time series is rather associated with an assigned class rather than with a time series
and its class from the training set.

SVM-DTW: DTW featured Support Vector Machines. Different approaches
have been proposed in [41], their algorithm uses DTW pairwise distances to obtain
the set of feature vectors and then incorporates them into SVM algorithm to classify
time series data. The idea is to use the strength of DTW distance [88] to find good
features of time series and then, employ the power of SVM algorithm to learn accurate
classifier. The authors emphasize that getting good accuracy comes with good time
series representation and strong classifier. Each time series is represented in terms
of its DTW distances from each training series, and each distance is considered as a
feature. In addition to features formed by DTW, the authors use Euclidean distance,

32

elasticity constrained DTW (DTW-p, where p states for penalty imposed on warping
path), SAX time series representation and their various combinations. Total number
of features is up to k(N − 1) for a dataset of size N , where k is the number of used
time series transformations.

2.3.3.3 Segment-based methods

Sometimes not all time series timestamps are informative, and class discriminative
information is conveyed by sub-intervals of the entire time series. Removing non-
informative part of time series can improve classification accuracy. Therefore, in this
case extraction of meaningful subsequences from raw time series becomes necessary.

LTP: Local Temporal Patterns. Geurts [31] proposed patterns extraction tech-
nique. Each pattern p represented by a segment of discretized time series and a
distance (Euclidean) value threshold. For each time series ts ∈ TS, we say that its
associated pattern p of length l is detected on a timestamp t′ if:

d(p, ts) =
1

|p|

∫ t′

t′−|p|
(p(t)− ts(t))2dt ≤ θ, (2.18)

where θ is a threshold of minimal allowed distance to the pattern p. The number
of split pattern candidates would be intractable if one consider the full training set.
In order to overcome this, a set of referenced time series for each distinct class is
subsampled.

Shapelets. Time Series Shapelets were proposed by Ye and Keogh [91]. They
introduced an algorithm that finds the time series snapshot called shapelets which can
represent a class. Shapelet is a class discriminative subsequence of time series. For
binary classification problem, shapelets can be used to separate the training data into
two parts according to a distance threshold. A distance value between a time series ts
from the training set and a shapelet t̃s, |t̃s| � m is computed as a distance between the
best matching location of |t̃s| in ts and |t̃s|. Once all pairwise distances are computed
for a given shapelet, they are sorted, and a threshold value which provides the best
data separation is defined as the optimal.

To find the set of shapeletes a brute force method is used. There are two major
parameters of the algorithm: the number of shapelets and their length. It generates
all subsequences from the time series training set. Each candidate from generated
set is evaluated on its ability to separate the data by optimizing information gain.

33

Since there is a large number of candidates, the brute force search has high runtime
complexity. To alleviate this, the authors proposed some techniques such as early
abandoning of distance computations and entropy pruning of the information gain.

LS: Logical Shapelets. Due to interpretability and good accuracy performance,
the research interest has increased and there are many studies that attempt to improve
and develop the original method. [63] proposed logical shapelets as generalization of
shapelets approach. The idea is to use conjunctions and disjunctions of shapelets
in order to improve impurity of the data partition. First, the top k shapelets are
extracted from time series. Second, they are combined by using either ∧ or ∨ logical
operations. To avoid overfitting, a single distance threshold is considered for all
shapelets in a combination.

In order to make a partition for a given pair of shapeletes, one need to make an
ordeline of pairwise distances. In fact, we have two distance vectors, one per shapelet
in the combined pair. Authors proposed the following tecnhique to define an unique
distance orderline: if conjunction was used then, the maximum of distances is taken;
if shapelets were combined by disjunction, then the minimum is considered.

While this approach is able to provide purer separation of data, it has a flaw in
data overfitting. It comes from the possibility to combine the number of shapelets
equal to the number of classes. To overcome this problem, a hard bound on the
cardinality of the set of shapelets is used in [63].

The crucial concern about shapelets use is that its discovery process is compu-
tationally expensive, namely O(N2m3), which brings limitations for large datasets.
To overcome this, Keogh and Rakthanmanon [45] proposed an extension of shapelet
based decision tree to speed up its finding process. By using SAX, the dictionary
of words is generated for each possible shapelet. By using random projection the
dimensionality of the SAX dictionary is reduced. Once the k-best SAX words are
selected they are mapped back to the original space of shapelets and used in the same
way as in Time Series Shapelets. The algorithm preserves comprehensibility of the
original algorithm while accelerates the training time. Random-based approaches to
accelerate shapelet discovery process was proposed in [70, 86].

Shapelets learning. Novel perpective on discovering shapelets was proposed by
Grabocka et al. [34] who formulated this task as an optimization of classification
objective function. The solution provides a near-optimal top-k shapelets and avoids
exhaustive search. The k shapelets are initialized through k-means clustering of all

34

candidates from a training data. The objective function for the optimization process
is a logistic loss function with a regularization term for each class. The algorithm
jointly learns the weights for the regression and the shapelets in a two-stage iterative
process to produce a final logistic regression model.

To summarize, shapelets are good in capturing the local properties of time series
and they are interpretable. Due to the requirement of input parameters, such as the
number of top shapelets, there is a risk of loosing the important information from
original data while it performs its search process.

2.4 Time series learning algorithms

With a representation of time series obtained by one of above mentioned methods,
different ML algorithm can be used to perform the classification task. In this section,
we provide the description of classical and ensemble method that were combined with
transformed input set of time series.

2.4.1 Classical methods

The k-NN, Decision Trees and Support Vector Machines (SVM) algorithms are widely
exploited for TSC in the conjunction with one or few similarity measures. Below, we
are briefly explain these techniques.

k-Nearest Neighbour (k-NN) Classifier. One of the most commonly used algo-
rithms in TSC task is the k-NN classifier [85, 90]. It is a simple, robust and accurate
classifier, which depends on very few parameters and requires no training [76].

Given a training set of labelled time series (TS,Y) and a new series tstest with
an unknown class, the objective is to predict a class for tstest. The algorithm finds k
most similar time series in TS to tstest according to pre-selected distance. Predicted
class y∗ ∈ Y is the modal class of the k nearest neighbours. To avoid ties, the number
of k is usually selected to be odd with respect to the number of classes. Nevertheless,
in cases where there is no majority, ties are split arbitraly.

This algorithm with one of the previously mentioned similarities has been shown
to be efficient to perform well in classification of time series. [53] embed SAX time
series representation with the defined distance on the symbolic space to 1-NN classifier.
Classification results are accurate, however, employing transformed time series worsen
the connection between original data and results.

35

Empirical studies have demonstrated that the choice of the parameter k = 1 is
quite efficient for time series classification. It has been shown the obtained accuracy
of 1-NN with DTW are difficult to beat [21, 55, 83, 87, 88]. However, it has two
shortcomings: high computational cost for DTW (O(Nm2)) distance and the high
variance.

Decision Trees. If providing comprehensible classification results is of interest,
Decision Trees are usually recommended. This method uses a top-down approach in
order to recursively build a tree. At each internal node, there is a split test evaluation
and each leaf node contains information about a class to be assigned to the new test
instance. While the classical Decision Trees introduced by Breiman et al. [14] performs
data partition based on nominal attributes of the input data, Temporal Decision Tree
[16, 89] were developed as a modification that allows tackling time series data as it is,
e.g., without extracting explicit statistical features. Input instances are split based on
similarity between time series or their segments.

There are two main approaches of modified versions of the Decision Tree algorithm.
One aims to handle the entire time series and another uses segments of time series as
input examples. The former keeps the link between the input data and output results.
The latter modifies data by extracting class discriminative segments of time series
and then compares them, using a similarity measure, with input instances in order to
define a split.

1. Whole time series. Yamada et al. [89] proposed the algorithm of learning
Time-Series Tree based on a similarity measure. Each internal node contains
reference series which exists in training data. Partitioning of input time series
into two descendant nodes is done by its similarity to reference series. Each time
series from the training set can be considered as a candidate to be a split series.
For a given measure of similarity, 1 its value between a split candidate and input
series is computed and a threshold that provides the best data separation is
defined. Assignment of series to child nodes is done by comparing the distance
between an input series and a split candidate with the threshold. The best
reference series is the one that splits data in the best possible way. In order to
evaluate the goodness of separation, gain ratio criterion was selected [67]. If
there are ties in the obtained gain for few time series, the algorithm choses a
series with the largest distance gap of the closest point to the threshold.

1the authors proposed to use DTW as a robust measure to the distortions along time axis

36

In addition, the authors [89] proposed a cluster-based split test to partition a node.
Two time series are then taken from the training set as split representatives.
Next, a distance value is measured between the split series and time series
that a node contains. The latter is associated with those to which it is closer
according to selected distance measure. A similar approach was proposed in [7].
While Euclidean and/or DTW similarity measures were used in previous works,
Chouakria and Amblard [16] elaborated cluster-based split test by introducing
adaptive similarity measure DTW-Cortπ. It enables one to capture different
discriminative attributes of time series and obtain a purer partition. Split based
on pair of original time series is quite interpretable since split decisions are
based on a visual percept of analogy. These algorithms are considered as the
baseline of the conducted research in the thesis; their detailed description will
be introduced in the following chapter.

2. Segments of time series. Decision Trees cannot only be built based on the
entire time series, but also on the segments extracted from time series. In
Section 2.3 we reviewed different methods of generating time series subsequences
from the training data. Output of each of them can be used as input for Decision
Trees. For example, shapelets within a decision tree are widely used to classify
time series [63, 91]. Geurts [31] proposed using time series segmental patterns
as training set to build a tree. The classifier built on time series segments shows
high classification accuracy, if class discriminative information are concentrated
in time series sub-interval and not in the entire time series. Also, using time
series segments allows preserving interpretability of the yielded models [91], [88],
[56].

Support vector machines (SVM). SVM classifier can be applied once time series
represented as a matrix of examples described by a set of features. For example,
BOP time series representation proposed by Senin and Malinchik [79] is fed to SVM
algorithm with polynomial kernel in order to learn a classification model.

There have been attempts to apply kernel SVM to perform classification. Kernel
functions can be viewed as the similarity between time series. Leslie et al. [51] proposed
k-spectrum kernel for protein classification and, later, an extended approach to deal
with mismatching of time series [52]. Applying SVM to time series classification
involves the question of how to define a kernel and how to speed up the computation of
kernel matrices. There have been several attempt to apply DTW directly as similarity
measure in a kernel-based classification model [35, 80]. However, obtained results are

37

inferior than 1-NN DTW. The problem is that DTW distance does not correspond
to a valid positive kernel. Thus, direct use of DTW leads to an indefinite kernel
matrix that neither corresponds to a loss minimization problem nor giving a convex
optimization problem. Kate [41] proposed to consider DTW pairwise distances as
a set of feature vectors. To learn a classification model, they use SVM algorithm
with polynomial kernel. The bottleneck of performing TSC task with SVM is that it
is hardly interpretable for a domain expert to gain knowledge besides classification
results.

2.4.2 Ensemble methods

Ensemble methods integrate various time series representations and classification
techniques. When the accuracy is the foremost goal and criterion for performance
evaluation of TSC algorithm, ensemble learning is an appropriate technique. An
ensemble of classifiers is a set of base classifiers whose individual decisions are combined
to classify new examples. One key concept in ensemble learning is diversity of
approaches, which enables one to capture different discriminative characteristics
of data [48]. This diversity can be achieved by employing different classification
algorithms. Often, different features are selected randomly to train each classifier.
Below, we will explain some popular ensemble methods in TSC.

Ensemble built on shapelet transformation. It has been shown that improved
classification accuracy can be achieved through simple ensemble schemes. The al-
gorithms described in previous section were grouped up to enpower accuracy of the
results. Bostrom and Bagnall [12] employ binary shapelet transformation in the
ensemble of 8 heterogeneous classifers that use probabilistic (k-NN, Naive Bayes,
Bayesian Network), tree based (C4.5 decision tree Quinlan [67], Random Forest [13],
Rotation Forest (10 trees) [73]) and kernel based models (SVM with linear and basis
function kernels [17]).

Another ensemble classification is Shapelet Transform and was proposed by [36].
The authors have proposed a shapelet transformation on a single run instead of using a
decision tree and search the best shapelet in a node. Then, a new dataset is represented
by an instance (a time series shapelet) and its attributes (distance values between a
shapelet and time series of the training set). In the procedure of shapelets learning
transformation, they are evaluated based on how well they discriminate just one class
and how they are balanced per class. The input is then feed to an ensemble classifier.

38

Hills et al. [36] proposed a shapelet transformation that separates the shapelet
discovery from training of the classifier by finding the top k shapelets on a single run.
Then, shapelet data is transformed to the alternative data space where each feature
represents the distance between a shapelet and each series from the training set. The
new feature set is an input for each classifier in the ensemble group.

Random Forest. TSC classifier based on a Random Forest ensemble method [13]
has been used to boost classification accuracy in TSC. Baydogan et al. [9] used the
representation of time series training set via class probability histograms to train
a model with a Random Forest classifier. In work of Deng et al. [19], the authors
proposed to employ a set of interval features to split data at each node of the learnt
tree. The interval features target to capture temporal characteristics of time series.
However, obtained set of features is large (O(m2)) for one time series of the length m.
To keep the time complexity with respect to time series length, random sampling is
used at each node [13]. In each split node, they generate two random samples, each of
which of size (O(

√
m)) over interval length and its starting position. This leads to

a reduced feature space size with respect to O(m). In the same paper, the authors
address the problem of how to get interpretable results, since a forest contains multiple
trees. To provide a good understanding on features distinguishing time series from
different classes, they proposed a tool called the temporal importance curve. For each
time point t of a time series the importance computed as the sum of entropy gain
over features used for splitting. If there is no split feature f(.)(tstart, tend) such that
t ∈ [tstart, tend], it has zero importance value. Importance is computed for each feature
type (one of the Equation 2.15,2.16,2.17) separately using the following equation:

f importance(.) (t) =
∑

t∈[ts,te],ν

Entropy(f(.)(tstart, tend), ν), (2.19)

where ν is a set of split nodes in time series forest. Evidently, due to the random
sampling over time interval, the results of importance curve are biased and in order
to tackle this issue the number of trees in a forest should be large. In the performed
experiments, the authors built 500 trees.

Ensemble of Elastic Distance Measures (EE). Lines and Bagnall [55] used
ensemble of recently proposed elastic measures (WDTD[40], TWED[59], MSE [82])
to incorporate them into heterogeneous elastic ensemble (EE). Driven by the fact
that there is no significant difference between the elastic distance measures in terms

39

of accuracy, the authors proposed to combine several elastic measures with simple
ensemble classifiers.

EE is a mixture of 11 elastic distance measures on the whole time series combined
with 1-NN classifier. The measures are Euclidean distance, DTW and derivative
DTW (DDTW) with full warping window, DTW and DDTW with warping path
constraints, whose size is defined through cross validation (DTW-CV and DDTW-CV),
weighted DTW and DDTW (WDTW, W-DDTW), Longest Common Subsequence
(LCSS), introduced in Hirschberg [37], ERP, TWED, MSM. The authors experimentally
show that none of individual distances combined with 1-NN classifiers significantly
outperforms DTW-CV.

Then, they introduce ensemble learning with 11 weighted 1-NN classifiers, the
class prediction is done by voting. They used 4 different schemes to weight each base
classifier, where a weight is obtained through cross validation. The experimental tests
showed that the improved classification accuracy of EE classifier is significantly better
than each of the component separately.

COTE: the collective of transformation based ensembles. The feature-based
algorithms are useful to yield accurate classification results, however, one can reinforce
them by employing ensemble learning models build upon homogeneous or heteroge-
neous transformations of time series. The former tranforms time series into class
discriminative features using a single approach and then embeds this representation to
a set of simple or complex classifiers. The latter uses a collection of different techniques
to obtain data transformation that is complete to capture a variety of characheristics
of original data. Then, in the same way, a batch of classifiers uses them as the input
set for the training set.

For the purpose of classification accuracy improvement, [6] proposes to form the
collective of ensemble classifiers built on different data transformations named as
COTE. Based on the previously studied ensembled schemes [5, 36, 55], the authors
state the need of creating heterogeneous ensemble classifiers, rather than employing
ensemble of weak classifier schemes.

The main motivation is to capture heterogenueous discriminatory features of
time series that can be found in different domains as values, shape, frequency or
complexity difference. A unique transformation of the data is not able to detect all
variety of features. The authors define a massive feature space through heterogeneous
data transformations including shapelets, auto-correlation and periodogram based

40

features. The batch of 8 heteregoneous classifiers forms the collective ensemble (k-
Nearest Neighbour, Naive Bayes, C4.5 decision tree [66], support vector machines
[17] with linear and quadratic basis function kernels, Random Forest [13] (100 trees),
Rotation Forest [73] (10 trees), Bayesian network. Since two elements are also ensemble
classifiers, COTE is called meta-classifier of time series data. An assignment of class
value to a new time series is done by weighted vote of each component in the collection.

The set of experiments conducted on 72 time series data datasets showed that
COTE is significantly more accurate than any classifier separatety. Based on the
achieved results, the authors state that while finding a good data representation is
crucial, employing unique data transformation in a classfier does not guarantee high
accuracy performance. One reason is that the complex data such as time series requires
having class discriminants in multiple representations. The second reason is that a set
of heterogeneous classifiers need to be applied to deal with redundant features.

In the conclusion of [6], it is pointed out that the interaction between different
classifiers, used transformations, and its impact on the results is the direction of
further research. Besides the improved classification accuracy, the method has some
drawbacks in results comprehensibility. Due to use of wide range of transformation
techniques and classifiers, the algorithm has high time complexity (O(N2m4)).

2.5 On interpretability in TSC algorithms

Time series data in their nature is way more complex than static data, therefore
it is more challenging to get insightful knowledge from them. As a consequence,
ability of TSC algorithms to provide comprehensible classification results becomes
extremely important. In addition to accuracy performance, for a practitioner in
any domain, understanding of complex class distinguishing patterns in time series
data is the most important objective. To make the process of data analysis all-
encompassing, it is crucial to provide the user a set of results alongside the information
why and where the model succeeded or failed. The significance of the question about
interpretability, explainability and readability in ML algorithms as significant as in
algorithms dedicated to time series classification. Here, we would like to narrow down
the problem of interpretability for TSC models and attempt to give more concrete
examples.

In TSC domain, there are studies that target yielding interpretable time series
classification models [16, 34, 53, 63, 77, 79, 89, 91]. Regardless of absence of the
rigorous definition of interpretability in TSC algorithms, the ability to preserve the

41

link with original time series data during the learning process is considered as one of
the grounded properties of an interpretable model. It becomes even more important
when a domain expert do not have knowledge about ML. In this case, the link with
raw time series will serve as a tool to analyze classification results. For example, we
say that Decision Tree model can be interpretable for non ML experts because it is
capable of rendering the logic of taken classification decisions. If a model missclassifies
a test example, then a user can track the path of prediction process in order to find
the explanation of getting this result.

Surely, even a classifier is naturally more interpretable, it will not be enough if
data representation is not. As we saw, there are lots of techniques for time series
representation that can be applied before we feed the data to a classifier. One one
hand we desire to extract non-trivial patterns from time series, that can explain what
the class discriminative attributes are. On the other hand, the chosen representation
should be comprehensible for a user in order for them to undertand the data.

Thus, we can see that the question of interpretability of a model is two level:

1. getting interpretable representation of time series

2. building interpretable TSC model.

2.6 Conclusion

As we have seen, there are lots of different ML algorithms proposed for TSC problem.
From a domain expert point of view, we can divide them on two big categories. One
category comprises more interpretable algorithms, but not always yields high accuracy.
However, the algorithms in the second category are in general more accurate, but
less interpretable. Ensemble learning models in either case improve accuracy, but
interpretability and comprehensibility of the results will drastically drop.

To summarize, many questions on the step of classification tool selection are risen
for a domain expert. Which method shoud be used by a practitioner who is keen to
obtain clear, comprehensible, and accurate classification results? The ideal method
would satisfy these criteria simultaneously. In this research, we attempt to design
TSC algorithm that yields a readable model with interpretable classification results.
We selected as the baseline algorithm, which we aim to develop, Temporal Decision
Trees [16], that is intrinsically interpretable and provide good classification results.
We will address the following aspects of the algorithm:

• reinforcing of interpretability power,

42

• preserving and improvement of classification accuracy,

• reducing training time complexity.

In the forthcoming chapter, we provide detailed description of the Decision Tree
algorithms capable of tackling time series data. We show few similarity- and pattern-
based approaches that have been proposed to modify classical Decision Tree method
for static data. We will discuss the limitations of it and directions for improvement
that we address in later chapters.

43

44

Chapter 3

Mono-operator Temporal Decision
Trees: TDT

Contents
3.1 Temporal Decision Trees (TDT) learning 46

3.1.1 Introduction . 46

3.1.2 Split operators . 47

3.1.3 Splitting evaluation criteria 53

3.2 Mono-TDT split node algorithms 55

3.2.1 Hyperplane TDT with adaptive metric. 55

3.2.2 TDT with dichotomy search 59

3.3 Conclusion . 61

The Decision Trees machine learning methods are generally recommended when
providing interpretable models and results are crucial. In terms of the classification
accuracy they are able to provide good results, even though they are not the most
competitive algorithms. Complexity of temporal data reinforces motivation of devel-
oping algorithms that bring up its conceptual understanding. This chapter describes
Temporal Decision Trees (TDT) algorithm that was designed for time series classifi-
cation task (TSC). Several authors [7, 16, 31, 89] proposed to modify the Decision
Trees algorithm for time series data. We dedicate this chapter to provide detailed
explanation of these algorithms on which we elaborate in this work and contribute
in forthcoming chapters. In the first section, we give detailed description of learning
TDT based on global properties of time series Balakrishnan and Madigan [7], Geurts
[31], Yamada et al. [89]. The second section introduces embedding of dichotomy search
into a tree to find the most discriminative time intervals Chouakria and Amblard [16].

45

3.1 Temporal Decision Trees (TDT) learning

3.1.1 Introduction

Before providing formalization of the classification problem, let us give the definition
of time series.

Definition. A time series ts = (v1, . . . , vm) is an ordered sequence of real values vt ∈
R, each value measured at specified time point t ∈ 1, ·,m. The set t = (t1, · · · , tm), t ∈
N is set of timestamps of ts, with the condition ti < tj whenever i < j.

Let (TS,Y) be a set of labelled time series, TS = {ts1, . . . , tsN}, where N is the
number of time series and a set of class labels Y = 1, . . . , J . Given an unlabeled time
series ts /∈ TS the classification task is to assign it to one of classes of a set Y. In
other words, the objective is to learn a classifier function that maps from the space of
time series to the space of class values.

Given training set of labelled time series (TS,Y) the goal is to build a classification
binary tree. Beginning from the root that contains all training data, the model is
obtained by recursively partitioning data at each internal node. A node without
children is called a leaf node. A class label to which the majority of time series in
a leaf node belong is associated with it. It is possible to have few leaves with the
same label. The binary partition involves evaluation of split candidates from training
set. Once tree is built, classification procedure is quite simple. A new test instance
is placed in the tree root, then it traverses through the tree by passing split tests in
internal nodes. It is classified by a class label attached to a leaf into which an instance
falls.

From now we introduce an additional terminology that we need for a tree. Let
G = {gR} ∪GI ∪GT be a set of tree’s nodes, denoted the root node as gR , GI ⊂ G

is a set of internal nodes, GT is a set of terminal (leaf) nodes. Any non-terminal node
gI has two descendant nodes gL and gR.

The whole process of decision tree construction involves defining three main points
that are :

1. Split node selection.

2. Decision to declare a node as terminal or to continue partitioning.

3. Class label assignment for each leaf node.

46

Last two stages remain the same as for classical decision trees. The second step is
quite simple, decision is done automaticaly if we build the tree until a node consist
time series of only one class. In other cases, a percentage threshold of a major class is
required to declare the node as a leaf.

The whole story about modification of the Decision Trees (DT) algorithm working
initially on static data to time series is in defining what is a split of a node and how
to find a “good” one which is able to separate data minimizing class impurity level.

3.1.2 Split operators

The crux of the problem with time series data is that they cannot be described
naturally by the set of explicit features as any static dataset. Two main approaches,
similarity-based and feature-based are used in classification to overcome this difficulty.
While the later one requires explicit local patterns extraction pre-processing step,
the former one classifies objects by its similarity. Both ways of tackling time series
can be incorporated into the DT algorithm, and define different nature of data split.
Whatever is a choice, we say that generated split candidates are homogeneous if each
of them provide a split which defines the same geometry of data partition.

Definition. A node split operator F(.) = {f} is defined as the set of homogenious
split candidates of a node.

Let us describe different proposals of split operators for TDT algorithm.

Hyperplane split operator.

Definition. F(H) = ((tsL, yL), (tsR, yR))d is a hyperplane similarity based split op-
erator defined by a pair of time series (tsL, tsR) from a training set TS belonging to
distinct classes yL 6= yR and a dissimilarity measure d to compare time series.

For any split candidate in F(H) the data is separated by using its similarity to
tsL and tsR. Each time series in a node that is closer to tsL according to selected
dissimilarity measure d (d(tsL, ts) ≤ d(tsR, ts)) falls into the left descendant node. In
the opposite case, it goes to the right descendant node. Assume that TSL is the set
of time series in gL, whereas TSR are time series in gR. Thus, we say that time series
in TSL is associated with tsL and those that are in TSR with a split time series tsR.
The best split pair (tsL, tsR) is the one providing the purest data partition according
to Gini impurity index. This way of partitioning resembles clustering [7, 16, 89] in
the sense that we have one representative of each group of separated data. On the

47

step of the model analysis and interpretation, one can make a detailed exploration of
split time series in order to get insights about data they are associated with. There
are two nice properties of this split operator which make it highly interpretable :

• a split of data is done by analogy with one of split time series;

• it allows to a user to inspect visually split time series, which are characterized
each divided subset of data.

The limitation of having distinct class labels of time series in a split candidate
is done for the purpose of clarity. In general case, we assume that the data within
one class is homogeneous, which means most of time series are highly similar to each
other. Therefore, generating split pair of time series belonging to the same class does
not guarantee to have good discriminative abilities. One can relax the assumption of
strong class homogeneity saying that one class can be composed by several sub-classes.
Then, by allowing generating pairs of time series with the same label we can enlarge
the set of split candidates. By doing this, we increase the probability to find the
discriminative split. However, without assessing if class homogeneous assumption
is hold or not, we impose additional computational requirement on split candidate
examination. In this research, we suppose that classes are homogeneous.

From geometrical point of view, a split by a pair of time series defines hyperplane
in time series space. Figure 3.1, a) illustrates a partition obtained for a time series
pair (tsL, tsR). Each point schematically represents a time series. Figure 3.2 shows
an illustration of a tree node with a split done by a pair of time series. On this
example, the hyperplane split is depicted by two time series of class “-1” and “1”. The
node contains 4 time series of class “-1” and 3 time series of class “1”. Class labels
are rendered visually by different colors. The split time series tsL has the class label
“-1” and tsR has the class label “1”. Each descendant branch of the node is marked
(obs_000 and obs_070) with the name of split time series in the training set. The
split is based on visual percept of analogy. Each split series is the representative of
descendant node which is associated to it.

The complexity of search for the best split pair in the space of all candidates is
quadratical (O(N2)) with respect to the number of time series in the training set
TS. While the complexity of each split candidate assessment is O(N). Hence, total
complexity of employing this split operator is O(N3).

48

tsL

gR

gL θ
tsR gR

gL

tsL

a) b)

Figure 3.1: Illustration of a partition’s geometry done by hyperplane (plot a)) and hypersphere
(plot b)) split operator. Each point schematically represents a time series. a). Two bold points are
split time series tsL and tsR that define hyperplane. Points on each side of hyperplane constitute the
left (gL) and the right (gR) sub-nodes respectively. b). A node’s split is presented by a time series
tsL and a distance threshold θ that forms hypershere. Points inside the hypersphere are assigned to
gL, points outside the hypersphere to gR.

Figure 3.2: Example of employing hyperplane split operator in an internal node of the tree built
on ECG200 UCR dataset displayed by the graphical interface developed in the IKATS project.
Horizontal color bars indicate class labels and the value in parenthesis is the number of time series
the node contains of.

49

Hypersphere split operator.

Definition. F(S) = ((tsL, yL), θ)d is a hypersphere similarity based split operator
defined by a time series from a training set TS and a dissimilarity measure d to
compare time series, θ is a distance threshold.

The operator is represented by one time series tsL and the distance threshold θ.
Each time series of the training set is considered as a split candidate [89]. Each time
series ts for which d(tsL, ts) ≤ θ holds falls into the left descendant node. Those time
series for which d(tsL, ts) > θ, i.e., dissimilar with tsL according to the threshold θ,
fall into the right descendant node. Evaluation of each split candidate involves the
step of finding the optimal distance threshold, which leads to the best data separation.
In order to find such threshold, all pairwise distances are computed between a split
time series and all the rest time series in the training set. Then, all of them are
sorted to obtain an orderline of distances. Each middle value between two contiguous
values of distances is a threshold candidate. We select the optimal distance threshold
by maximizing a Gini impurity gain on partitions obtained for each split threshold
candidate. Then, among all split candidates ((tsL, yL), θ)d, the one with the maximum
Gini gain is picked to make a node partition.

Geometry of this split type is shown on Figure 3.1,b), each point refers to a
time series. Once a threshold θ is found, it forms a hypersphere. Points inside the
hypersphere form the left descendant node, the right one contains all points that are
outside the hypersphere. Visualisation of the hypersphere split operator is shown on
the Figure 3.3. The node contains 2 time series of class “1”, 13 time series of class
“2”, 12 time series of class “3”, and 5 time series of class “4”. Class labels are rendered
visually by different colors. The split time series tsL has the class label “2”. The
value of the threshold θ is equal to 17.231, this value is marked on each descendant
branch. Similar to the hyperplane split operator, we are still based on visual concept
of similarity. Even though, if the notion of threshold here is more difficult to assess
for a user, due to the lack of referential.

Complexity of the best split candidate search is linear with respect to the number
of time series in the learning set, however for each split candidate tsL we need to
assess N − 1 threshold candidates θ in order to find the optimal one. Thus, the overall
complexity to find the best hypersphere split candidate in O(N2).

50

Figure 3.3: Example of employing hyperplane split operator in an internal node of the tree built
on CinCECGtorso UCR dataset displayed by the graphical interface developed in the IKATS project.
Horizontal color bars indicate class labels and the value in parenthesis is the number of time series
the node contains of.

Patterns split operator.

Definition. F(P) = (p, ν) is a feature based split operator defined by a pattern p
extracted from a time series from a training set TS. Its corresponding attribute variable
ν can be represented by numerical or categorical values.

In a pair (p, ν) the term p points on time series representation, and ν quantatively
or qualitatively describes this representation. Patterns can have different nature, i.e., it
can be class discriminative segment of time series, it might be some summary statistics
(mean, variance, etc) collected over set of time series belonging to the same class,
or even some transformation can be applied to obtain high level of representation.
An attribute ν can be represented by numerical values as well as categorical ones.
For example, a pattern p can stand for a time series representation in perceptually
important points - landmarks (method proposed in Perng et al. [65]). Its corresponding
attribute ν will be the set of important landmark points. Another example, a pattern
p stands for collected statistics over time series such as mean, and ν represents its
value [64].

Patterns discover techniques suppress a noise that original data can contain
reinforcing class distinguishing properties. At the same time, it may happen that we
get rid off some useful information to perform accurate classification. Even though, a
local pattern can be just a sub-interval of time series, if split is done by employing a

51

similarity measure, we equal it to the one of two operators defined above, depending
on the way of split candidate generating.

Before embedding patterns into TDT, one should include pre-processing step to
extract the set of patterns from the training data. There are immense variety of
methods to extract local patterns from time series data [18, 30]. Patterns can have a
high discriminative power leading to increase the classification accuracy, however they
are not often easily interpretable. Lots of transformations on the input data can be
used on the step of searching a patterns set.

Once the set of pattern is discovered, we can consider them as variables (as in
static data) described by numerical or categorical attributes. Then, data partitioning
can be done using standard Decision Trees algorithm. Let νts be a value of a pattern
p presented in a time series ts. The test questions at an internal node are defined for
any pattern p as follows:

• if ν is an attribute variable of categorical type, i.e., νts takes values in the finite
set of ν. Then, for any subset s of power set of ν, denoted as P(ν), the test
question has the form: does νts belong to a subset s?

νts ∈ s? (3.1)

In the case of positive answer, a time series goes to the left descendant node,
otherwise to the right descendant node.

• if ν ∈ R is an attribute variable of numerical type, the test question has the
form: is a value νts is less than a value θ?

νts ≤ θ? (3.2)

where θ is an optimal threshold value associated with a pattern p.

The training set TS is represented by the set of patterns, that are considered as
features. Hence, each time series ts can be represented as a point in |P|-dimensional
space, each (p, ν) is a coordinate axis. Once the best pattern p to make a split
in a node is found, input space is partitioned by a hyperplane that is orthogonal
to the coordinate axis p. The geometrical perspective on a partition is shown on
the Figure 3.4. In this simplified example, there are two patterns (p1, ν1), ν1 ∈ R
and (p2, ν2), ν2 ∈ R that represent time series input set in a node g. The values θ1

and θ2 are the optimal threshold values to make a partition for patterns p1 and p2

52

p1

p2

θ1

θ2

Figure 3.4: Illustration of a partition’s geometry done by pattern split operator. Each point is a
time series representation through two extracted patterns p1 and p2. Each pattern and its threshold
divides data by orthogonal hyperplane.

respectively. In given example, the best split will be represented by a pair (p2, ν2 = θ2),
its corresponding partition shown on the Figure 3.4 by solid black line.

Complexity of split candidates search space is linear to the number of extracted
patterns. However, the evaluation complexity of a partition for each split candidate
depends on the domain of its attribute variable ν. If it is numerical, i.e., measured by
real numbers, then the complexity is O(N2logN) for one split candidate (p, ν) and
becomes O(|P|N2logN) for a pattern-based operator with numerical attribute ν. If ν
is categorical, then the complexity depends on the cardinality of the set ν. For |ν| = q,
there are 2q−1 − 1 possible ways to make a binary partition, for each partition it costs
O(N) to assess its quality by Gini impurity index. There are different techniques
of encoding categorical feature to the numerical one, it lies beyond this work, and
hereafter, we employ patterns with numerical attributes.

In this research, we will focus mainly on the interpretable properties of an approach
to be used as one to discover the set of local patterns. In this chapter, we consider only
the general methodology of using patterns in TDT without refering to any particular
method. However, in forthcoming chapter, we introduce the novel heuristic approach
of pattern extraction that we employ in the developed framework. Then, we will
characterize this method by its complexity.

3.1.3 Splitting evaluation criteria

To make a binary split of data at each node, the tree algorithm generates a set of split
candidates. Next, fundamental question is how to select the “best” split on a node
such that class labels in descendant nodes are less mixed. The estimate of goodness of
each split candidate is based on an impurity function.

53

Definition. An impurity function is a function φ defined on the set of all K-tuples
of class label proportion {N1

N
, . . . , NK

N
} satisfying the following properties:

• φ is a symmetric function of {N1

N
, . . . , NK

N
}

• φ is a maximum only at the point (1
K
, . . . , 1

K
).

• φ amounts to its minimum only at the points (1, 0, . . . , 0), (0, 1, . . . , 0), (0, 0, . . . , 1)

Definition. The impurity measure i(g) of a node g ∈ G given an impurity function
φ is defined as follows:

i(g) = φ(p(1|g), p(2|g), . . . , p(K|g)),

where p(j|g) is the estimated posterior probability of class j.

We are interested to select the split candidate as a splitter that maximally decreases
impurity in descendant nodes. That is to say, class labels of time series within each
node become more and more class homogeneous. Hence, the goodness of a split
s(f, g), f ∈ F with proportion of the data pL = NL

N
in the left child node gL and

pR = NR

N
in the right child node gR can be formalized in general as:

∆i(s(f, g)) = i(g)− pL · i(gL)− pR · i(gR), (3.3)

Many impurity measures were proposed for selecting the best candidate. Two
splitting criteria are widely used in trees construction: Gini impurity index and
Entropy, which are defined as:

• Gini impurity index :

iGini(g) = 1−
K∑
j=1

p2
j (3.4)

• Entropy :

iEntropy(g) = 1−
K∑
j=1

pj log pj (3.5)

It is possible that few split candidates share the same quality of split, i.e., values
of optimized impurity criterion are equal. Typically, there are two ways to deal with
that, one is to simply pick “the best of the best” splitter arbitrarily. The other one is
to optimize an additional criterion such as, for example, the level of separability. For
similarity based split, operator separability is measured in terms of distance margin
between the n closest elements belonging to the left and right sub-nodes [92]. For
feature based split operator, separability is measured by twoing criterion [14].

54

• Separation Margin:

iGap(g) =
1

NL

∑
ts∈gL

d(tsL, ts)−
1

NR

∑
ts∈gR

d(tsR, ts), (3.6)

tsL = tsR in the case of use hypersphere split operator F(S). Note that in
defined criterion the average distance is taken over all points on the left sub-node
and the right sub-node, alternatively it can be replaced by k-nearest neigbour
time series to a decision boundary.

• Twoing :

iTwoing =
pLpR

4

(∑
j∈Y

[p(j|gL)− p(j|gR)]
)
, (3.7)

where p(j|gL) and p(j|gR) are proportions of class label j in nodes gL and gR
respectively.

In theory and in practice [68],[14], there is no intrinsic reason for preference of one
criterion over another. The misclassification rate of yielded trees is not much sensitive
to splitting criterion. Hence, we can rely on consistency of experimental results with
any choice of splitting criterion. Only for the purpose of computational efficiency, in
this research we selected to employ Gini impurity index in all experiments.

3.2 Mono-TDT split node algorithms

3.2.1 Hyperplane TDT with adaptive metric.

We have seen the methodology of tree “growing” in general case. Now, we focus
on the algorithm of Temporal Decision Trees ([16], [89], [7]) that employs one
of the abovementioned split operators. While all steps are remained as we have
described before, the main interest lies in a node’s split procedure. The discriminative
charateristics of time series at different levels of tree can vary from amplitude to
shape differences. By using an adaptive metric DTW-Cortπ introduced in [16] within
TDT, the algorithm is capable of changing a metric from one internal node to another.
This allows on the one side to capture alteration in discriminative properties, on
the other side, to understand underlying time series attributes that are important
for classification. As an alternative to DTW-Cortπ, the range of heterogeneous
metrics can be used encompassing those that are able to capture different time
series percularities. In the algorithms description, we fix the usage of DTW-Cortπ as
presented in Formula 2.13. The values of the parameter λ lies in the range [0, 6], as

55

Chouakria and Amblard [16] have shown that it suffices to work out all modularities
of this distance. In the experiments, that we present in the forthcoming chapter we
test as well an option with the metric range usage.

We list three algorithms of a node split based on hyperplane, hypersphere and
pattern split operators.

Hyperplane node split. Algorithm3.1 shows how to find the best hyperplane split
of the data TS belonging to a node g. With pre-defined metric DTW-Cortπ and split
operator F(H), it returns the best splitter f ∗H of a node g. First, all split candidates,
which are represented by a pair of time series with distinct class labels, are generated
(line 3). Then, for each value of amplitude-shape tuning parameter λ, each candidate
fH ∈ F(H) produces a binary partition of a node g based on distance comparison
(line 4 - 7). Time series satisfying the condition d(tsL, ts) <= d(tsR, ts) are sent to
the left descendant node, otherwise to the right descendant node. Once an assignment
of all TS ∈ g to gL and gR is done, Gini impurity gain is computed. A split candidate
with maximum value of gain, i.e., the one that induce the “purer" data partition, is
chosen as the best split of a node g.

Hypersphere node split. Given a node g split candidates of hypersphere split
operator is represented by a time series ts ∈ TS and a threshold. The search of the
best split of data is twofold. First, for each split candidate time series an optimal
separating distance threshold must be found. Then, among all split candidates, the
one leading to the purest data bipartion is selected. Algorithm3.2 shows how to
find the best hyperplane split of the data TS belonging to the node g. Each split
candidate f = (tsL, θ) produces a partition based on corresponding optimal threshold.
For each split candidate tsL, the best threshold is the value that maximize class labels
gomogeneity in the partition.

An optimal split threshold is one from the middle points between adjacent sorted
distance values (line 8-9) with the maximum impurity gain. The left descendant
node contains time series with a distance to split time series that is less than defined
threshold θ, while the right descendant node is composed of remained time series (line
12-13). The best split time series is the one that maximizes Gini impurity gain (line
16-18).

Pattern node split. A node split with a pattern split operator looks like to a split
done by features in the classical Decision Trees algorithm. In order to use the pattern

56

ALGORITHM 3.1: Algorithm of Adaptive Node Split with Hyperplane Split
Operator.
1 Function HyperplaneNodeSplit :

Input: (TS,Y) ∈ g; d = DTW-Cortπ ; // Set of labelled time series
in a node g ∈ G

Result: s∗(g, fH) :=
(
g∗L, g

∗
R, (ts

∗
L, ts

∗
R), λ∗

)
,∆iGini(s

∗(g, fH))

2 ∆iGini(s
∗(g, fH))←∞ ;

3 F(H)← {fH : ((tsi, yi), (tsj, yj));∀tsi, tsj ∈ TS; yi 6= yj};
4 foreach λ ∈ [0, 1, 2, 3, 4, 5, 6] do
5 foreach (fH = (tsL, tsR)) ∈ F(H) do
6 gL ← {ts : d(tsL, ts) <= d(tsR, ts)} ;
7 gR ← {ts : d(tsL, ts) > d(tsR, ts)} ;
8 iGini(gL), iGini(gR)← compute with Formula 3.4 ;
9 ∆iGini(s

∗(g, fH))← compute Gini gain with use of Formula 3.3 ;
10 if ∆iGini(s(g, fH)) > ∆iGini(s

∗(g, fH)) then
11 ∆iGini(s

∗(g, fH))← ∆iGini(s(g, fH)) ;
12 s∗(g, fH)← s(g, fH) ;
13 end if
14 end foreach
15 end foreach
16 end

split operator within TDT, one should include the step of feature extraction from time
series data 2. These features must capture some discriminative properties that underly
in training data. Variations of approaches Fulcher [30] can be used to get a dictionary
of patterns. At this step we describe the Algorithm3.3 of a node’s split assuming that
patterns were extracted a priori to this step (line 4). Then each pattern is represented
by a pair of (p, ν) where p is a pattern/feature that can be a segment of original time
series, symbolic representation, statistics collected over whole time series, etc. And a
value of ν is a characteristics of each pattern, for example, it can describe frequency
with which a pattern occurs in a class, etc. To make a bipartition by a pattern split
candidate (p, ν) the presence of a pattern p within each time series in a node should
be evaluated (typically, we already have this information once the process of patterns
extraction is done). A value ν works here as a threshold; time series contain a pattern
p with a value less than ν are assigned to the left sub-node, otherwise to the right
one (line 6-9). The goodness of each split is evaluated by Gini impurity index and the
pattern that provides the purest partition is selected as the best one (line 10-12).

2We use terms feature and pattern of time series interchangeably in this work.

57

ALGORITHM 3.2: Algorithm of Adaptive Node Split with Hypersphere Split
Operator.
1 Function HypersphereNodeSplit :

Input: (TS,Y) ∈ g; d = DTW-Cortπ ; // Set of labelled time series
in a node g ∈ G

Result: s∗(g, fS) :=
(
g∗L, g

∗
R, (ts

∗
L, θ

∗), λ∗
)
,∆iGini(s

∗(g, fS))

2 ∆iGini(s
∗(g, fS))←∞ ;

3 ~θ ← ∅ ;
4 F(S)← {fS : (tsi, ~θ),∀tsi ∈ TS};
5 foreach λ ∈ [0, 1, 2, 3, 4, 5, 6] do
6 foreach fS = (tsL, ~θ) ∈ F(S) do
7 ~d← sort distances d(tsL, ts) ;
8 ~θ ← {(di + di+1)/2, di ∈ ~d, i ∈ 1, . . . , N − 1} ;
9 foreach θ ∈ ~θ do

10 fS ← (tsL, θ) ;
11 gL ← {ts : d(tsL, ts) <= θ} ;
12 gR ← {ts : d(tsL, ts) > θ} ;
13 iGini(gL), iGini(gR)← compute with Formula 3.41 ;
14 ∆iGini(s(g, fS))← compute Gini gain with use of Formula 3.3 ;
15 if ∆iGini(s(g, fS)) > ∆iGini(s

∗(g, fS)) then
16 ∆iGini(s

∗(g, fS))← ∆iGini(s(g, fS)) ;
17 s∗(g, fS)← s(g, fS) ;
18 end if
19 end foreach
20 end foreach
21 end foreach
22 end

The complexity to build one node of a tree depends on an employed split operator.
The total complexity is O(λN2 × X). The term O(N2) comes from all pairwise
distance computations N(N−1)

2
∼ O(N2), and X is the complexity of a split operator,

which is equal to

1. O(N3) for hyperplane split operator F(H);

2. O(N2 logN) for hypersphere split operator F(S);

3. O(|P|N2 logN) for pattern-based split operator F(P).

58

ALGORITHM 3.3: Algorithm of Adaptive Node Split with Patterns Split
Operator.
1 Function PatternNodeSplit :

Input: (TS,Y) ∈ g, g ∈ G; set of time series features P
Result: s∗(g, fp) :=

(
g∗L, g

∗
R, (p

∗, ν∗), λ∗
)
,∆iGini(s

∗(g, fp))

2 ∆iGini(s
∗(g, fp))←∞ ;

3 F(P)← {fp : (p, ν), ∀p ∈ P};
4 foreach λ ∈ [0, 1, 2, 3, 4, 5, 6] do
5 foreach fp = (p, ν) ∈ F(P) do
6 gL ← {ts : νts <= θ} ; // νts is a value of pattern

associated with ts ∈ TS
7 gR ← {ts : νts > θ} ;
8 iGini(gL), iGini(gR)← compute with Formula 3.4 ;
9 ∆iGini(s(g, fp))← compute Gini gain with use of Formula 3.3 ;

10 if ∆iGini(s(g, fp)) > ∆iGini(s
∗(g, fp)) then

11 ∆iGini(s
∗(g, fp))← ∆iGini(s(g, fp)) ;

12 s∗(g, fp)← s(g, fp) ;
13 end if
14 end foreach
15 end foreach
16 end

3.2.2 TDT with dichotomy search

Whereas the whole time series retains the complete information about the original
data, one can ask if all observational values along time axis are uniformly discrimina-
tive. Clearly, it depends on a dataset. The positive answer would points on global
discriminative properties of a time series. Negative answers, however, means existence
of local subintervals that have more discriminative power than the whole time interval.
In the case of presence in time series local class distinguishing properties, its capturing
can improve both perfomance criteria of algorithm: accuracy and interpretability.
Increasing performance comes out from removing values from the distance compu-
tation that are actually noisy. By emphasizing a time series segment that has high
discriminative power rather showing uniformly distributed values along a whole time
axis, a domain expert can easily link this information with an undelying physical
process that was measured.

To find the most discriminative sub-interval of a split candidate, dichotomy search
for hyperplane split operator approach was proposed in the work of Chouakria and
Amblard [16]. In order to assess whether the subsequence of a time series is more dis-

59

criminative than the whole one, one can rely on Gini impurity index estimation. Given
the best split defined by a pair of the entire time series, by its consequently bisection,
we generate a new split candidate defined by a segment of time series. We can compute
impurity of the new partition to assess if Gini gain increases. Algorithm3.4 reveals a
node split process described previously, enriched by dichotomy search approach to find
the most discriminative subsequences. As input, it takes time series set TS ∈ g and
the best found split candidate ∆iGini(s

∗(g, fH)), I∗ = [1,m]) obtained on the whole
interval of time series. The algorithm divides a given interval I∗ into two parts (line
3 - 4), whose overlap proportion is defined by a parameter α ∈ [0, 1], and generates
two new input sets (TS,Y)IL and (TS,Y)IR comprising of left and right time series
sub-intervals accordingly (line 5 - 6). For each set, Algorithm3.4 returns the best
possible split s∗IL(g, fH) and s∗IR(g, fH) (line 7 - 8).

The algorithm checks whether at least one of the “optimal” splits obtained on the
sub-intervals IL and IR improves Gini gain. If it is not the case, it returns the best
split on the entire time interval (line 10). Otherwise, the algorithm continues recursive
dichotomous search on the most prominent sub-intervals (line 12 - 16).

Unless we do not have any prior information about the time interval where we can
probably find class discriminative segment, it is reasonable to fix parameter α = 0.6

[16]. Dichotomous search is completely heuristic and does not guarantee to find
optimal discriminative sub-interval. It highly depends on the choice of parameter α.
The drawback of the default choice is that it can shatter dicriminative segment on
two parts. Therefore yielded split will actually contain only one piece of important
information. As a consequence, the learned tree model will loose its interpretability
and classification performance.

Adding the option of dichotomy search for discriminative time sub-interval option
increases the complexity to O(log 1

α
(m)λN3), since the maximum number of recursive

calls HyperplaneDichoSplit algorithm3.4 is O(log 1
α

(m)) for each sub-interval. By using
hyperplane dichotomous mono-operator TDT the total computational complexity is
O(λN3 + 2 log 1

α
(m)λN3), that can be approximated by O(log 1

α
(m)λN3).

Surely, the same algorithm can be naturally extended for hypersphere split operator
and be employed in TDT. The complexity would be O(log 1

α
(m)λN2 logN).

60

ALGORITHM 3.4: Algorithm of Hyperplane Dichotomous Node Split in TDT.
1 Function HyperplaneDichoSplit :

Input: (TS,Y) ∈ g,∆iGini(s
∗(g, fH)), I∗, α

Result: s∗I∗(g, fH),∆iGini(s
∗
I∗(g, fH)), I∗

2 [a, b]← I∗ ;
3 IL = [a, a+ α(b− a)] ;
4 IR = [b− α(b− a), b] ;
5 (TS,Y)IL ← {tsi : {vti}, t ∈ IL} ;
6 (TS,Y)IR ← {tsi : {vti}, t ∈ IR} ;
7 s∗IL(g, fH),∆iGini(s

∗
IL

(g, fH))← HyperplaneNodeSplit
(
(TS,Y)IL

)
;

8 s∗IR(g, fH),∆iGini(s
∗
IR

(g, fH))← HyperplaneNodeSplit
(
(TS,Y)IR

)
;

9 if ∆iGini(s
∗(g, fH)) ≥ min[∆iGini(s

∗
IL

(g, fH)),∆iGini(s
∗
IR

(g, fH))] then
10 Return s∗(g, fH),∆iGini(s

∗(g, fH)), I∗ ;
11 else
12 if ∆iGini(s

∗
IL

(g, fH)) > ∆iGini(s
∗
IR

(g, fH)) then
13 HyperplaneDichoSplit

(
(TS,Y),∆iGini(s

∗
IL

(g, fH)), IL), α
)
;

14 end if
15 else
16 HyperplaneDichoSplit

(
(TS,Y),∆iGini(s

∗
IR

(g, fH)), IR), α
)
;

17 end if
18 end if
19 end if
20 end

3.3 Conclusion

We have seen how to learn Temporal Decision Trees on the time series dataset and
what kind of split operators can be employed to make a data partition in a node.
Although algorithms considered in Section 3.2 yield a model with decent interpretable
properties, it has few shortcomings. A split operator has to be fixed before we train
the model. It leads to testing goodness of partitions made by a set of homogeneous
split candidates. Each split operator is capable of capturing only one particular
geometrical data structure. Surely, we rarely can have any prior information about
class distributions before training process. Thus, oftentimes the prior choice of split
operator is made arbitrary or from the perspective of a split explainability. The latter
aim rather favors hyperplane split operator over others because a domain expert has
referential time series of training set for each subset of binary partition. The main flaw
of this method is that it does not reveal true information about the real structure of
the data, and if our choice of split operator does not coincide with the data properties,
we will get a deep tree that will be difficult to read and analyze. Therefore, the level

61

of results interpretability and model readability will drop significantly.
Taking into the consideration that the foremost objective is interpretable time

series classification and the requirements of the algorithm’s computational resources to
build a model, we do not rely on ensemble classification method such as random forest.
Even it is possible to build Random Forest model with Temporal Decision Trees.
Clearly, this limitation to build a single tree may lead to the issue of having lower
accuracy than if we would have employed ensemble methods. From this perspective,
the question is that can we get improved resultant accuracy on one learned tree? We
tackle this problem in the current research as well.

The next chapter is dedicated to the problem of interpretability and explainability
of yielded mono-operator TDT trees, we propose the solution that gives us an algorithm
with improved characteristics of model interpretability and readability.

62

Chapter 4

Multi-operator Temporal Decision
Trees: MTDT

Contents
4.1 Multi-operator TDT . 64

4.1.1 Heuristic approach of recognizing patterns: HARP 64

4.1.2 On combination of mono-split TDT operators 67

4.2 Empirical study . 68

4.2.1 Experimental settings . 68

4.2.2 Results and Discussion . 69

4.3 Conclusion . 73

Previously, we have considered time series classification by using mono-operator
Temporal Decision Tree (TDT). In this chapter, we will integrate several split operators
within one learned tree in the order to adaptively capture geometrical structure of data
class labels distribution within a node. We propose learning Multi-operator Temporal
Decision Tree (MTDT) that includes evaluation of a few split operator at each internal
node. In addition to similarity-based split operators, we add a feature-based operator
obtained by the algorithm we introduce in this chapter. It is called Heuristic Approach
of Recognizing Patterns (HARP). Then, we discuss advantages and shortcomings of
using each operator separately and in combination within one growing tree. To this
end, we provide the empirical study of impact of the multi-operator approach on
model readability, interpretability, and performance.

63

4.1 Multi-operator TDT

4.1.1 Heuristic approach of recognizing patterns: HARP

The interest of employing feature based split operator within TDT mainly comes from
the fact that it allows accuracy improvement and concise time series representation.
The latter one is appealing particulary in case of sparse signal data, for example, a
physical process can be measured during a long time period, where a class defining
event appears within a very short time interval. In such cases, first, using similarity
based techniques will blur a discriminative short time interval since a distance measure
sums up amplitude differences along the whole time series. Secondly, visual rendering
of the entire time series, which is sparse, to a domain expert does not facilitate its
analysis and does not contribute to interpretability of classification model.

To be able to face and process such data, in general classification framework one
should include in learning model the possibility of extraction of time series local
patterns and its exploitation. Within our main objective to design interpretable
framework of time series classification, we impose two main requirements on the
algorithm of pattern finding. The first one is an interpretability of extracted time
series patterns. Even though we use transformation technique on time series, we
should be able to not completely lose the connection with original data. The second
one is a computational time needed to find relevant patterns. This is extremely
important because we want to employ extracted patterns within TDT, which is
already a computationally costly algorithm, thus adding preprocessing option should
not be a deadweight on it.

Pursuing to fit abovementioned characteristics for time series pattern recognition
approach, we propose the heuristic algorithm of recognizing patterns called shortly
HARP, which we further employ in generalized version of TDT. It is a supervised
algorithm that uses the one-against-all method to learn distinctive patterns. Each
pattern is an existing segment of length q of a time series from a training set represented
by symbols from a given alphabet A. As an output of the algorithm, we get a set of
discovered patterns for each time series if any exists.

A pattern p is described by a set of its attributes {ν}. It includes following
measured statistical entities:

• Class frequency is the number of a pattern’s occurences within a corresponding
class.

64

• Position represented by three values that are the first, the last and the average
time position of a pattern within a time series.

• Gap is the minimum, maximum and average length of time difference between
two sequential occurrences of a pattern.

A pair of a pattern p and one of aboved attributes ν constitutes a split candidate
for a pattern split operator F(P).

The HARP algorithm is composed of three main stages:

1. Patterns generation. It is the initial step of the HARP algorithm to get a
bag of patterns set. In the forthcoming stages the most important patterns
for classification process will be kept. This stage includes two steps that are
discretization by amplitude and time axes. Borrowing an idea from SAX method
[53], we represent time series amplitude values by symbols of a given alphabet
A. The procedure of generating a set of all possible patterns is shown in
Algortithm4.2. It starts from generation of a bag of patterns for each time series
by consequently discretizing time axis by a sliding window q. Simultaneously, all
patterns are grouped up by class labels (line 5 - 9). Once all possible patterns
for given parameters are generated, the algorithm gets rid of ineffective patterns
by applying double filter on two parameters:

(a) coverage rate ecov within a class label

ecov =
n(p|k)

Nk

, (4.1)

where n(p|k) is the number of times a pattern p occurs in time series of
a given class k ∈ Y and Nk is the cardinality of time series belonging to
class k ∈ Y (line 15);

(b) purity which measures the ratio between the number of occurences of p
within class k and total number of occurences of p in the whole dataset
(line 15 - 16).

epur =
n(p|k)∑
k∈Y n(p|k)

. (4.2)

Eventually, only the class discriminative patterns that have coverage and purity
above fixed thresholds ηcov, ηpur (typically both greater than 90%) are kept for
the next processing step.

65

2. Patterns aggregation. At this stage, we aim to find more general patterns,
i.e., a combination of patterns with similar shape and coverage. Hereafter, we
use a heuristic searching approach: given a symbolic pattern {a1, a2 . . . }, ai ∈ A,
we do the generalization of each symbol ai. Consequently, by allowing changing
it on one level up and down of an alphabet A. For example, given an alphabet
A = {ABCDEF} and obtained pattern p = {BE}, the aggregated patterns to
check are

[AB]E, [BC]E, [AC]E,B[DE], B[EF], B[DF], [AB][DE], [AB][EF], [AB][DF],

[BC][DE], [BC][EF], [BC][DF], [AC][DE], [AC][EF], [AC][DF].

We fix all symbols except for one, which we generalize. In our example, we start
from B and aggregate it to [AB], [BC], and to wider possible range [AC]. Then,
the process is continued for all other symbols of a pattern. At the end, the
process is repeated with the previously generalized symbols. One should note
that meaning of [AC]E is the possibility that a time series have the following
patterns AE,BE, or CE. For a pattern of size |p|, the maximum number
of generalized candidates to check is 4|p| − 1. For all generated patterns, we
test their purity on the training set and if the values are greater or equal to a
threshold, we add a new generalized pattern to the set of patterns. Algorithm4.3
and Algorithm4.4 reveal the pseudocode of this stage.

3. Tailoring. This is the final step, the algorithm aims to choose a reduced subset
of the most representative patterns that covers the same amount of time series
as the full set. We use a greedy approach to successively look up and keep the
most strong patterns. Algorithm4.5 shows the steps of this technique to get
compact pattern set. It lists all time series that comprise at least one pattern
TSP from aggregated set obtained on the previous stage (line 2). Then, by
looping over patterns it selects the one p̂ that is contained in the most of time
series. The subset of time series covered by p̂ are subtracted from TSP (line 3 -
6). The procedure continues until we get an empty set of TSP.

The final set of tailored patterns are the feature based representation of the training
set of time series data. Now, this set can be used as a pattern split operator within
TDT. Each split candidate in a node is a pair that contains a pattern p and an
attribute ν taken from the set {ν} based on the collected statistics. The complexity
of a bag of patterns generating is O(Nm), the cost of the patterns aggregation is
O(m(4|p|)) and the tailoring step takes O(m2). Hence the HARP algorithm complexity
is O(m(N + 4|p|) +m2).

66

ALGORITHM 4.1: HARP algorithm.
1 Function HARP :

Input: (TS,Y), an alphabet a, a size of sliding window 1 ≤ q ≤ m− 1,
coverage and purity thresholds ηcov, ηpurity

Result: P := {(p, {ν})}
2 P← PatternsGenerator((TS,Y), a, q, ηcov, ηpurity) ; // getting bag of

patterns
3 Pagg ← PatternsAggregation(P, ηpurity) ; // getting extended set

with aggregated patterns
4 P← PatternsT iling((TS,Y);Pagg) ; // getting tailored pattern set
5 end

4.1.2 On combination of mono-split TDT operators

As we mentioned in previous chapter, a prior selection of a split operator imposes the
assumption of underlying data classes structure. However, without a prior knowledge
on how class labels at a given node are distributed, it is difficult to make the right
choice which split operator to employ. This problem results in large trees as the
algorithm with the pre-selected type of split operator attempts to approximate regions
that are not naturally separable by it. On the first part of the Figure 4.1, it is shown
an example of distribution of class labels on an orderline of distances between split
time series and a time series from the training set. On the second part, training time
series are represented by their labels as distance-coordinates to two time series tsL
and tsR. By choosing a hypersphere manner of a split represented by a time series
tsL and the threshold θ, we can end up with purer data partition than if a hyperplane
split operator would be chosen. To cope with such situations, we have found useful to
suggest examination set of all split operators instead of a priori fixing the particular
one.

We propose the evaluation of split candidates generated from the following set of
operators: hyperplane split operator F(H), hypersphere operator F(S), and feature-
based operator F(P). The last one is based on exploitation the HARP algorithm
introduced in Section 4.1.1. Since each pattern discovered by HARP is a segment of
real time series from the training set, we claim that using this designed feature based
approach is the most appropriate for approaching the goal of interpretable classification.

Algorithm4.6 introduces steps of a node split with generalized Multi-operator
Temporal Decision Tree. Here, among three types of split operators, the algorithm
selects the best one.

67

d(tsL, .)θ

d(tsL, .)

d(tsR, .)

d(ts L, .
) = d(ts R

, .)

Figure 4.1: Illustration of the case when class labels distribution is such that it can be easily
separated by split of a time series and the threshold (tsL, θ) (hypersphere split operator) but not by
a pair of time series (tsL, tsR). Each point represents a distance between split time series and a time
series from the training set.

Allowing examination of three heterogeneous split operators widen the range of
data geometrical properties that the algortihm is capable of capturing. At the same
time, we exclude some limitations in the learning process. By increasing the number of
split options we increase the complexity of the algorithm with respect to the number
of evaluated split candidates. However, assessment of all split candidates generated
from hyperplane and hypersphere split operators requires computation of only one
pairwise distance matrix. Therefore, MTDT has the same complexity as TDT with
respect to the number of distance computations. MTDT with patterns, hyperplane
and hypersphere split operators has the complexity O(λ log 1

α
(m)(|P|N logN +N3 +

N2 logN)), that is equal to O(λ log 1
α
(m)N3 logN).

4.2 Empirical study

4.2.1 Experimental settings

We carried a set of experiments to evaluate whether Multi-operator Temporal Decision
Trees (MTDT) improves output readability in the terms of size of trees when compared
with TDT while keeping the same accuracy. In our experiments we used 46 univariate
time series datasets provided by the UCR benchmark [15]. The datasets originate
from different sources and include transformed to time series images, measurements

68

from sensor data, spectrographs, and simulated datasets. We sorted all UCR datasets
by increasing order of complexity computed as the number of training time series
multiplyed by its length(O(Nm)) and selected top 46 datasets. Characteristics of
these datasets are revealed in Table 4.1.

The first series of the experiments have been done on the split of data on train
and test sets provided by UCR. The measured characteristics of learned trees are the
number of nodes and the classification accuracy. Then, to work out the sustainability
of obtained results (Table 4.4 and 4.5), we run 10 folds on each of dataset keeping the
first fold the same as UCR split on training and test sets. The rest 9 folds are obtained
by bootstrap method and kept the class labels distribution of the original UCR split.
We compare mono-operator TDT with different possible split operators, which are
hyperplane, hypersphere and patterns, with Multi-operator TDT. We compare our
results with the baseline algorithm Hyperplane TDT, proposed by Chouakria and
Amblard [16] with and without dichotomy search (Section 3.2.2), denoted in the tables
as Hb, Hd

b accordingly. We also kept the adaptive metric DTW-Cortπ (Section 2.3.2.4)
as was proposed in [16] with three possible values of the parameter λ. The value
λ = 0 corresponds to value-based distance DTW, λ = 6 to shape-based distance,
while the value λ = 3 takes into account both notions. As an alternative to adaptive
metric, we test Hyperplane TDT with the range of distance measures that are the lp
(Section 2.3.2.2) norm distance with p being 1 or 2, DTW, 1− Cortπ (Section 2.3.2.3),
and value-shape-based (1−Cortπ)∗DTW. The latest one is comparable to DTW-Cortπ

with λ = 3, and selected for the purpose of avoiding computation of the exponential
component. For MTDT, we examine the learned trees readability and accuracy
performance by adding hypersphere and pattern split operators to the hyperplane
operator.

4.2.2 Results and Discussion

Results on accuracy and the size of learned trees on the unique train and test split
are shown in Table 4.2 and Table 4.3. Summary of experimental results conducted
on 10 times resampled datasets are revealed in Table 4.4 and Table 4.5. Histograms
with summarized results over 46 datasets obtained by TDT and MTDT are shown
on Figure 4.2 and 4.3. In the resulting tables, the name of dataset is shown in bold
if HARP did not detect any patterns. Therefore, for these datasets results of the
experiment with use hyperplane and hypersphere split operator, H + S, are equals to
those obtained with three split operators H + S + P .

69

In the results comparison of mono-operator Hyperplane TDT with adaptive metrics
versus the range of metric, one should note that the average total number of non-
terminal nodes is reduced by 23,9% (1238 versus 941) on unit train/test split data.
Looking at the resampled results, we can see that the tendency of trees size reduction
is consistent. In the average, we improved on 24,9% (1233,9 versus 926,5). The main
difference between the adaptive similarity measure and the used range of distances is
inclusion of lp distance, which has a positive impact on trees readability for 41 out of
46 datasets. The baseline Hyperplane TDT with dichotomy search is more effective
and improves results in the both terms: accuracy and readability. However, it brings
significant increase in terms of computational complexity since for each sliced time
series interval we need to recompute a distance matrix, which has the complexity of
O
(

(αmN)2
)
.

We observe much higher decrease in trees size by adding a hypersphere split
operator: on 44,3% (690 over 1238) and on 43,3% (699,6 over 1233,9) for the unit train
test data split and resampled results respectively. This empirical evidence highlights
the importance to capture different underlying data structures. However, the average
accuracy is slightly decreased in compare with hyperplane TDT that employs the range
of similarity measures rather than the adaptive DTW-Cortπ (72,4% TDT(F(S)) and
73,6% TDT(F(H)) Table 4.3; 72,8% TDT(F(S)) and 73,6% TDT(F(H)) Table 4.5).

By using the combination of spherical and hyperplane split operators (F(H) +
F(S)), the total number of non-terminal nodes amount to the average value of 656,4
nodes, that is two times less than for baseline algorithm Hb with 1233,9. Additionaly,
we also see the improvement in terms of accuracy with the average 75,3% for F(H) +
F(S) over 73,1% for Hb. As a result of adding patterns extracted by HARP to MTDT
as a split operator, the total number of nodes drops to 529,2, i.e., MTDT built trees of
the size on 57,1% less than the baseline TDT (Hb). Clearly, this shows strong positive
influence on tree’s readability as well as on the algorithm classification performance
(76,8% for F(H) + F(S)+F(P)).

By visualizing constructed tree, a user is able to analyze the decision process
of data separation and interpret a class prediction of a new time series. Graphical
representation of each non-terminal node includes an interactive view on a selected
split operator allowing quick understanding of the most discriminating time series
or pattern. Figure 4.4 reveals the model of learned tree on “Car” UCR dataset by
MTDT algorithm. The tree is composed by 6 internal nodes:split tests of 3 nodes
are represented by hyperplane split operator and three others are represented by

70

0

7

14

21

28

11,2
14,115,0

20,519,7

26,9

Hb

Hd
b

H
S H + S

H + S + P

0

7

14

21

28

11,6
14,315,2

20,119,0

26,8

Hb

Hd
b

H
S H + S

H + S + P

Figure 4.2: Histogram represents the average number of nodes for trees obtained on 46 UCR
datasets by TDT and MTDT. The left plot: results on unit train/test data partition. The right
plot: results on 10 bootstrap cross-validation. Each bar corresponds to employed split operators:
hyperplane (H, Hb - the baseline algorithm, d stands for dichotomy search), hypersphere (S), and
patterns (P).

70,0

71,8

73,5

75,3

77,0

71,9

74,4

72,4

73,6
73

71,2

Hb

Hd
b

H
S

H + S

H + S + P

70,0

71,8

73,5

75,3

77,0
76,8

75,3

72,8
73,673,8

73,1

Hb
Hd

b H
S

H + S

H + S + P

Figure 4.3: Histograms represents the average accuracy for trees obtained on 46 UCR datasets by
TDT and MTDT. The left plot: results on unit train/test data partition. The right plot: results on
10 bootstrap cross-validation. Each bar corresponds to employed split operators: hyperplane (H, Hb -
the baseline algorithm, d stands for dichotomy search), hypersphere (S), and patterns (P).

71

Figure 4.4: Learned tree on Car UCR dataset by MTDT algortihm with split operators configuration
F(H) + F(S) + F(P). Each non-terminal node depicts the selected split operator and the distribution
of class labels highlighted by colors. A split time series are rendered in the color of corresponding
class label. Circles represents the leaves, its color and the number in the middle indicates a class
label. Visualization displayed by the graphical interface developed in the IKATS project.

72

hypersphere split. We can notice that 3 leaves contain a class label “4”. This ob-
servation points out that some time series within one class are less similar between
them, than with time series belonging to different classes. Though, majority of time
series of the class “4” (13 out of 17) lies in the same leave. Looking at the tree we
also can conclude that data has complex geometrical structure. Indeed, we see that
selected by learning the best split operators vary from one node to another. In average,
for these dataset we obtained the reduction of trees size by factor of 2 (14,5 over
6,6). While for this particular dataset the tree size yielded by the baseline algorithm
has the decent quantity of the number of nodes, doubtless it is easier to analyse
the concise model. Furthemore, such reduction is more significant for datasets on
which large trees were learned (“DistalPhalanxOutputAge”, “DistalPhalanxOutputCor-
rect”, “DistalPhalanxTW”, “InsectWingbeatSound”, “MiddlePhalanxOutlineAgeGroup”,
“MiddlePhalanxOutlineCorrect”, “MiddlePhalanxTW”).

4.3 Conclusion

In this chapter, we proposed a generalized algorithm to build the temporal decision tree
with multiple split operators. We have obtained a significant reduction of constructed
trees size. That confers compactness of our model making its analysis easier and its
visual representation better. MTDT is able to capture different geometrical structures
of the data class distribution. Besides, it makes split decisions by operators that
permit an intuitive explanation of a split and facilitates interpretability of classification
process. Similarity-based data separation allows an expert to understand the splitting
process at each node by inspecting selected split operator, all of which keeps the link
with original training set. It preserves a better connection between initial data and
learned model implying easy comprehension of new data classification and validation
of obtained results. Visualization of a model along with the interpretable learning
algorithm supports transparent framework contributing to a user’s understanding how
a classification results were obtained.

In forthcoming chapter, we address the problem of reducing the number of exami-
nated split candidates for hyperplane and hypersphere split operators. By pursuing
this direction, we aim to reduce computational complexity yet to preserving the same
level of interpretability and accuracy.

73

ALGORITHM 4.2: Algorithm of a pattern set generation.
1 Function PatternsGenerator :

Input: (TS,Y), an alphabet a, a size of sliding window 1 ≤ q ≤ m− 1,
coverage and purity thresholds ηcov, ηpur

Result: P := {(p, {ν})}
2 TSa ← {tsi : {sti : 1 ≤ t ≤ m}, i = 1, . . . , N, si ∈ a}// symbolic

representation of time series values
3 P← ∅ ; // set of patterns
4 H← {k : ∅} ; // dictionary of patterns for each class k ∈ Y
5 for (ts, k) ∈ (TSa,Y) do
6 for j ∈ (1,m− q) do
7 pja ← {st : j ≤ t ≤ j + q − 1} ;
8 P← {(pja, {ν})} ;
9 H[k]← (pja, {ν}) ;

10 end for
11 end for
12 // refinement of a pattern set
13 for (k ∈ Y) do
14 for p ∈ H[k] do
15 ecov(p)← compute with Formula 4.1 ;
16 if ecov(p) ≤ ηcov then
17 P← P\p ;
18 else
19 epur(p)← compute by Formula 4.2 ;
20 if epur(p) ≤ ηpur then
21 P← P\p ;
22 end if
23 end if
24 end for
25 end for
26 end

74

ALGORITHM 4.3: Algorithm of aggregation the set of patterns.
1 Function PatternsAggregation:

Input: P := {(p, {ν})}, a purity threshold ηpurity
Result: Pagg := {(p, {ν})}

2 // extended set with generalized patterns
3 Pagg ← P ;
4 P̃ ← GeneralizePattern(p) ;
5 for p̃ ∈ P̃ do
6 epur ← compute with Formula 4.2 ;
7 if epur ≤ ηpur then
8 P̃ ← P̃\p̃ ;
9 end if

10 Pagg ← p̃ ;
11 end for
12 end

ALGORITHM 4.4: Algorithm to get generalized patterns.
1 Function GeneralizePattern:

Input: a pattern p
Result: the set of generalized patterns P̃

2 P̃ ← p ;
3 foreach ai ∈ p do
4 a′ ← ai ↓ ; // one symbol down from ai in alphabet A
5 a′′ ← ai ↑ ; // one symbol up from ai in alphabet A

6 foreach p̃ ∈ P̃ do
7 P̃ ← p̃[i].insert([a′ai]) ;
8 P̃ ← p̃[i].insert([aia′′]) ;
9 P̃ ← p̃[i].insert([a′a′′]) ;

10 end foreach
11 P̃ ← P̃\p ;
12 end foreach
13 end

75

ALGORITHM 4.5: Algorithm of tailoring set of patterns to data
1 Function PatternsTailoring:

Input: P := {(p, {ν})}
Result: Pred := {(p, {ν})}

2 TSP ← {ts ∈ TS : ∃p ∈ ts,p ∈ P} ;
3 while TSP 6= ∅ do
4 p̂← argmax

p
{|TSp| : {TSp := {ts ∈ TS ∧ p ∈ ts}} ; // a pattern

covering the maximum number of time series
5 TSP ← TSP\TSp ;
6 Pred ← P\p ;
7 end while
8 end

ALGORITHM 4.6: Algorithm of MTDT Node Split.
1 Function MTDTNodeSplit :

Input: (TS,Y) ∈ g, g ∈ G; d = DTW-Cortπ
Result: s∗(g, f(·)) := (g∗L, g

∗
R, f

∗
(·), λ

∗),∆iGini(s(g, f(·)))

2 ∆iGini(s
∗(g, f(·)))←∞ ;

3 s∗(g, fH)← HyperplaneNodeSplit(TS,Y); ; // Algorithm 3.1
4 s∗(g, fS)← HypersphereNodeSplit(TS,Y); ; // Algorithm 3.2
5 s∗(g, fp)← PatternNodeSplit(TS,Y); ; // Algorithm 3.3
6 s∗(g, f(·))← argmax

f(.)

{∆iGini(s(g, f(.))), f(.) ∈ {fH , fS, fp}} ;

7 end

76

Table 4.1: Summary of datasets.
Datasets Train Test Length Nb classes Type

1 Adiac 390 391 176 37 image
2 ArrowHead 36 175 251 3 image
3 Beef 30 30 470 5 spectro
4 BeetleFly 20 20 512 2 image
5 BirdChicken 20 20 512 2 image
6 Car 60 60 577 4 sensor
7 CBF 30 900 128 3 simulated
8 CincECGtorso 40 1380 1639 4 sensor
9 DisPhOutAge 400 139 80 3 image
10 DisPhOutCor 600 276 80 2 image
11 DisPhTW 400 139 80 6 image
12 Earthquakes 322 139 512 2 sensor
13 ECG200 100 100 96 2 sensor
14 ECG5000 500 4500 140 5 sensor
15 ECGFiveDs 23 861 136 2 sensor
16 FaceFour 24 88 350 4 image
17 FacesUCR 200 2050 131 14 image
18 GunPoint 50 150 150 2 motion
19 Ham 109 105 431 2 spectro
20 Herring 64 64 512 2 image
21 InsectWngS 220 1980 256 11 sensor
22 ItalyPowDem 67 1029 24 2 sensor
23 Lightning2 60 61 637 2 sensor
24 Lightning7 70 73 319 7 sensor
25 MALLAT 55 2345 1024 8 simulated
26 Meat 60 60 448 3 spectro
27 MedicalImag 381 760 99 10 image
28 MidPhAge 400 154 80 3 image
29 MidPhCor 600 291 80 2 image
30 MidPhTW 399 154 80 6 image
31 MoteStrain 20 1252 84 2 sensor
32 OliveOil 30 30 570 4 sensor
33 ProxPhAge 400 205 80 3 image
34 ProxPhCor 600 291 80 2 image
35 ProxPhTW 400 205 80 6 image
36 ShapeletSim 20 180 500 2 simulated
37 SonyAIBO1 20 601 70 2 sensor
38 SwedishLeaf 500 625 128 15 image
39 SynControl 300 300 60 6 simulated
40 ToeSegm1 40 228 277 2 motion
41 ToeSegm2 36 130 343 2 motion
42 Trace 100 100 275 4 sensor
43 TwoLdECG 23 1139 82 2 sensor
44 Wine 57 54 234 2 spectro
45 Worms 181 77 900 5 motion
46 Worms2Class 181 77 900 2 motion

77

Table 4.2: The number of non-terminal nodes for 46 UCR datasets for mono-operator and Multi-
operator Temporal Decision Trees (TDT and MTDT). Split operators are hyperplane (H, Hb - the
baseline algorithm, d stands for dichotomy search), hypersphere (S), and patterns(P). Training and
models evaluation are done on unit train and test UCR split. For datasets shown in bold results for
H+S equals to H+S+P.

TDT MTDT
Datasets Hb Hdb H S H+S H+S+P
TOTAL 1238 904 941 690 648 516
AVERAGE 26.9 19.7 20.5 15.0 14.1 11.2
1 Adiac 145 122 102 83 78 78
2 ArrowHead 11 6 5 4 4 4
3 Beef 13 8 12 8 7 6
4 BeetleFly 6 3 3 2 2 2
5 BirdChicken 2 2 3 2 2 1
6 Car 10 8 7 10 6 6
7 CBF 2 2 2 3 2 2
8 CincECGtor 18 7 8 7 7 7
9 DistPhOutAge 29 19 26 15 15 8
10 DistPhCor 61 40 43 25 25 25
11 DistPhTW 36 30 30 22 22 9
12 Earthquakes 27 20 22 14 12 7
13 ECG200 17 7 8 7 6 5
14 ECG5000 44 26 29 20 19 19
15 ECGFiveDs 3 3 3 3 3 2
16 FaceFour 4 3 4 3 3 3
17 FacesUCR 20 28 24 24 23 12
18 GunPoint 6 3 3 4 3 2
19 Ham 17 15 21 13 12 12
20 Herring 20 12 21 10 8 8
21 InsectWngS 96 56 65 47 51 51
22 ItalyPowerDem 3 4 4 3 2 2
23 Lighting2 7 9 8 5 5 5
24 Lighting7 13 9 11 10 10 7
25 MALLAT 8 7 7 7 7 7
26 Meat 2 2 2 3 2 2
27 MedicalImag 88 72 84 59 56 56
28 MidPhAge 58 28 46 31 27 12
29 MidPhCor 67 48 34 26 23 23
30 MidPhTW 55 45 47 33 32 14
31 MoteStrain 2 1 4 2 2 2
32 OliveOil 5 4 3 3 3 3
33 ProxPhAge 63 49 48 28 30 20
34 ProxPhCor 99 62 61 42 40 14
35 ProxPhTW 45 28 36 21 21 10
36 ShapeletSim 2 2 3 2 3 1
37 SonyAIBO1 2 1 1 1 1 1
38 SwedishLeaf 55 47 44 38 33 33
39 SynControl 5 6 5 8 5 5
40 ToeSegm1 10 4 9 4 4 4
41 ToeSegm2 2 5 3 2 2 2
42 Trace 4 4 4 5 4 4
43 TwoLdECG 3 1 1 2 1 1
44 Wine 10 12 5 6 4 4
45 Worms 26 21 21 16 14 12
46 Worms2Class 17 13 9 7 7 6

78

Table 4.3: The classification accuracy (%) of trees for 46 UCR datasets for mono-operator and
Multi-operator Temporal Decision Tree (TDT and MTDT). The split operators are hyperplane (H,
Hb - the baseline algorithm, d stands for dichotomy search), hypersphere (S), and patterns (P). For
datasets shown in bold results for H+S equals to H+S+P. Training and models evaluation are done
on unit train and test UCR split.

TDT MTDT
Datasets Hb Hdb H S H+S H+S+P
AVERAGE 0.712 0.730 0.736 0.724 0.744 0.719
1 Adiac 0.49 0.45 0.54 0.60 0.64 0.64
2 ArrowHead 0.64 0.67 0.71 0.62 0.62 0.62
3 Beef 0.53 0.53 0.50 0.57 0.60 0.53
4 BeetleFly 0.65 0.65 0.85 0.75 0.95 0.90
5 BirdChicken 0.80 0.80 0.85 0.65 0.80 0.80
6 Car 0.57 0.57 0.65 0.65 0.67 0.70
7 CBF 0.98 0.94 0.95 0.91 0.95 0.96
8 CincECGtor 0.57 0.66 0.66 0.57 0.58 0.58
9 DistPhOutAge 0.73 0.72 0.78 0.78 0.77 0.65
10 DistPhOutCor 0.67 0.72 0.68 0.81 0.81 0.81
11 DistPhTW 0.68 0.68 0.76 0.72 0.73 0.74
12 Earthquakes 0.71 0.66 0.64 0.68 0.67 0.47
13 ECG200 0.75 0.76 0.82 0.77 0.77 0.80
14 ECG5000 0.90 0.90 0.91 0.92 0.93 0.93
15 ECGFiveDays 0.68 0.67 0.78 0.66 0.64 0.53
16 FaceFour 0.69 0.84 0.65 0.78 0.65 0.65
17 FacesUCR 0.76 0.74 0.76 0.71 0.75 0.54
18 GunPoint 0.86 0.86 0.94 0.87 0.81 0.73
19 Ham 0.60 0.67 0.65 0.63 0.61 0.61
20 Herring 0.56 0.55 0.44 0.59 0.52 0.52
21 InsectWngS 0.41 0.45 0.53 0.55 0.57 0.57
22 ItalyPowDem 0.93 0.87 0.97 0.93 0.97 0.95
23 Lighting2 0.77 0.87 0.69 0.70 0.70 0.70
24 Lighting7 0.67 0.55 0.62 0.56 0.63 0.51
25 MALLAT 0.80 0.86 0.96 0.80 0.88 0.88
26 Meat 0.83 0.95 0.92 0.70 0.92 0.85
27 MedicalImag 0.64 0.68 0.53 0.63 0.62 0.62
28 MidPhAge 0.71 0.62 0.71 0.72 0.72 0.57
29 MidPhCor 0.70 0.69 0.68 0.72 0.76 0.76
30 MidPhTW 0.61 0.51 0.57 0.57 0.58 0.61
31 MoteStrain 0.86 0.91 0.85 0.83 0.81 0.81
32 OliveOil 0.77 0.83 0.70 0.77 0.77 0.70
33 ProxPhAge 0.80 0.74 0.79 0.77 0.77 0.69
34 ProxPhCor 0.76 0.72 0.82 0.82 0.83 0.74
35 ProxPhTW 0.70 0.69 0.68 0.74 0.73 0.74
36 ShapeletSim 0.59 0.62 0.64 0.64 0.58 0.94
37 SonyAIBO1 0.76 0.85 0.82 0.71 0.71 0.82
38 SwedishLeaf 0.80 0.8 0.83 0.83 0.86 0.86
39 SynControl 0.96 0.96 0.94 0.94 0.96 0.96
40 ToeSegm1 0.72 0.75 0.73 0.78 0.80 0.60
41 ToeSegm2 0.74 0.82 0.65 0.82 0.82 0.82
42 Trace 0.97 0.99 0.98 0.99 0.98 0.99
43 TwoLdECG 0.90 0.96 0.94 0.81 0.94 0.93
44 Wine 0.50 0.85 0.76 0.69 0.78 0.78
45 Worms 0.38 0.45 0.38 0.37 0.42 0.38
46 Worms2Class 0.65 0.56 0.66 0.66 0.66 0.60

79

Table 4.4: The tree size in terms of the number non-terminal nodes for 46 UCR dataset for
mono-operator and Multi-operator Temporal Decision Tree (TDT and MTDT). The split operators
are hyperplane (H, Hb - the baseline algorithm, d stands for dichotomy search), hypersphere (S), and
patterns (P). For datasets shown in bold results for H+S equals to H+S+P. Training and models
evaluation is done on 10 bootstrap cross-validation.

TDT MTDT
Datasets Hb Hdb H S H+S H+S+P

Total 1233.9 874.4 926.5 699.6 656.4 529.2
Average 26.8 19.0 20.1 15.2 14.3 11.6

1 Adiac 144.3± 6.9 114.0± 6.2 92.8± 5.8 81.0± 4.5 76.7± 4.0 76.7± 4.0
2 ArrowHead 7.9± 2.1 5.6± 1.3 5.5± 1.0 4.9± 0.8 4.4± 0.7 4.1± 0.7
3 Beef 12.8± 2.3 9.5± 1.6 9.2± 1.6 9.0± 1.5 7.4± 1.1 7.6± 1.1
4 BeetleFly 4.3± 1.6 2.8± 0.9 2.6± 1.0 2.0± 0.6 2.0± 0.6 1.7± 0.5
5 BirdChicken 3.2± 1.0 2.3± 0.8 2.9± 0.8 2.7± 0.8 2.4± 0.7 1.5± 0.5
6 Car 14.5± 2.9 8.8± 1.3 10.1± 2.1 9.7± 1.5 7.8± 1.5 6.6± 1.4
7 CBF 2.1± 0.3 2.0± 0.0 2.1± 0.3 2.5± 0.7 2.0± 0.0 2.1± 0.3
8 CincECGtor 13.7± 2.4 5.9± 1.5 9.5± 1.9 7.5± 1.6 7.5± 1.3 7.5± 1.3
9 DistPhOutAge 26.3± 4.6 18.9± 3.8 21.2± 3.3 13.8± 1.3 13.0± 1.5 8.3± 1.6
10 DistPhOutCor 53.5± 4.6 33.5± 4.2 41.4± 2.5 23.1± 4.0 23.6± 3.2 14.1± 4.0
11 DistPhTW 37.2± 5.4 26.8± 3.2 28.5± 2.7 22.4± 1.4 20.9± 1.4 17.0± 3.8
12 Earthquakes 28.4± 5.1 20.1± 2.0 21.9± 2.5 14.0± 1.1 13.8± 1.9 10.0± 2.0
13 ECG200 14.0± 2.4 9.5± 2.3 10.8± 1.7 6.6± 1.2 6.5± 1.5 4.5± 1.0
14 ECG5000 38.0± 6.1 24.9± 4.7 27.8± 5.1 21.6± 3.3 19.9± 4.1 7.9± 4.0
15 ECGFiveDs 4.5± 1.6 2.3± 0.9 2.7± 0.9 3.0± 0.8 2.5± 0.8 2.5± 0.5
16 FaceFour 3.3± 0.5 3.1± 0.3 3.1± 0.3 3.2± 0.4 3.0± 0.0 3.0± 0.0
17 FacesUCR 27.5± 3.8 26.4± 2.5 29.3± 3.7 27.8± 3.1 24.4± 2.1 22.0± 3.9
18 GunPoint 4.1± 1.4 2.9± 0.9 3.4± 1.3 3.1± 0.7 2.6± 0.7 1.8± 0.9
19 Ham 21.0± 3.2 14.0± 2.4 17.5± 2.8 12.6± 1.1 11.3± 0.8 11.3± 0.8
20 Herring 18.3± 2.2 12.2± 2.6 12.5± 3.7 8.7± 0.6 8.8± 0.6 8.8± 0.6
21 InsectWngS 93.5± 4.2 56.0± 3.2 59.8± 4.4 48.9± 4.3 47.6± 2.7 47.6± 2.7
22 ItalyPowDem 3.1± 1.7 2.5± 1.2 1.9± 1.3 2.7± 0.9 1.4± 0.5 1.2± 0.4
23 Lighting2 8.5± 1.9 7.0± 1.5 8.2± 2.7 5.4± 1.2 5.3± 1.3 5.3± 1.3
24 Lighting7 12.5± 1.3 10.1± 1.6 12.1± 1.4 10.9± 0.8 10.3± 1.1 9.3± 1.4
25 MALLAT 7.5± 0.9 7.3± 0.5 7.2± 0.4 7.2± 0.4 7.2± 0.4 7.4± 0.5
26 Meat 3.5± 1.2 2.6± 0.9 2.0± 0.0 4.0± 0.8 2.0± 0.0 2.0± 0.0
27 MedicalImag 96.8± 8.4 69.5± 6.1 84.7± 7.4 59.5± 4.4 58.6± 2.6 47.3± 3.8
28 MidPhAge 41.4± 6.4 29.1± 2.4 31.1± 5.9 22.0± 3.4 21.2± 2.6 14.1± 2.9
29 MidPhCor 66.4± 7.4 41.3± 5.6 44.5± 6.1 29.4± 3.4 27.0± 3.0 27.0± 3.0
30 MiddPhTW 55.5± 4.4 42.6± 2.6 45.5± 3.0 34.5± 1.6 33.2± 1.5 25.8± 4.5
31 MoteStrain 1.6± 0.7 1.5± 0.5 1.7± 1.0 1.7± 0.6 1.5± 0.5 1.5± 0.5
32 OliveOil 5.6± 1.4 3.7± 0.8 4.8± 1.5 3.6± 0.7 3.6± 0.7 3.5± 0.5
33 ProxPhAge 75.0± 7.0 49.5± 4.9 52.5± 5.5 31.4± 3.7 31.1± 2.9 10.5± 3.5
34 ProxPhCor 93.3± 7.1 64.7± 6.4 68.5± 7.4 41.9± 3.9 40.5± 2.7 21.6± 3.7
35 ProxPhTW 46.6± 5.4 30.6± 4.1 33.5± 3.5 22.1± 2.1 21.1± 1.4 13.3± 2.1
36 ShapeletSim 3.3± 1.5 2.8± 0.8 3.4± 0.5 2.2± 0.4 2.4± 0.5 1.0± 0.0
37 SonyAIBO1 1.2± 0.4 1.0± 0.0 1.3± 0.6 1.3± 0.5 1.2± 0.4 1.0± 0.0
38 SwedishLeaf 57.4± 4.2 45.1± 5.1 42.5± 4.8 36.6± 3.1 32.0± 1.3 32.0± 1.3
39 SynControl 5.8± 0.9 5.6± 0.7 5.6± 0.7 8.5± 0.9 5.6± 0.7 5.0± 0.0
40 ToeSegm1 6.1± 2.4 4.3± 1.0 5.9± 1.8 3.4± 1.0 3.3± 1.0 3.2± 0.9
41 ToeSegm2 5.4± 1.9 4.1± 1.3 4.6± 2.0 3.2± 1.0 3.2± 1.0 3.2± 1.2
42 Trace 3.5± 0.5 3.5± 0.5 3.5± 0.5 4.2± 1.0 3.5± 0.5 3.1± 0.3
43 TwoLdECG 1.5± 1.0 1.3± 0.6 1.0± 0.0 2.1± 0.7 1.0± 0.0 1.0± 0.0
44 Wine 14.6± 2.5 10.5± 2.6 10.0± 2.6 7.5± 0.7 6.9± 1.4 6.9± 1.4
45 Worms 27.6± 2.9 20.3± 1.6 23.1± 2.3 17.5± 1.2 16.7± 1.4 14.5± 1.3
46 Worms2Class 18.0± 3.1 12.5± 1.4 12.7± 3.4 8.5± 1.1 8.5± 1.0 6.9± 1.7

80

Table 4.5: The classification accuracy (%) of trees obtained on the test set of 46 UCR datasets for
mono-operator and multi-operator temporal decision tree (TDT and MTDT). The split operators
are hyperplane (H, Hb - the baseline algorithm, d stands for dichotomy search), hypersphere (S),
and patterns (P). For highlighted dataset results for H+S equals to H+S+P. Training and models
evaluation is done on 10 bootstrap cross-validation.

TDT MTDT
Datasets Hb Hdb H S H+S H+S+P

Average 0.731 0.738 0.736 0.728 0.753 0.768

1 Adiac 0.47± 0.02 0.47± 0.02 0.53± 0.04 0.57± 0.02 0.58± 0.03 0.58± 0.03
2 ArrowHead 0.69± 0.04 0.69± 0.04 0.74± 0.05 0.65± 0.04 0.70± 0.06 0.73± 0.08
3 Beef 0.49± 0.10 0.53± 0.12 0.53± 0.07 0.48± 0.10 0.60± 0.10 0.56± 0.06
4 BeetleFly 0.68± 0.14 0.68± 0.13 0.73± 0.14 0.71± 0.12 0.71± 0.12 0.76± 0.06
5 BirdChicken 0.76± 0.10 0.79± 0.08 0.75± 0.10 0.70± 0.07 0.74± 0.11 0.83± 0.08
6 Car 0.65± 0.07 0.67± 0.06 0.64± 0.09 0.64± 0.04 0.68± 0.07 0.68± 0.07
7 CBF 0.94± 0.03 0.94± 0.02 0.92± 0.05 0.85± 0.04 0.91± 0.04 0.92± 0.02
8 CincECGtor 0.53± 0.05 0.70± 0.05 0.62± 0.04 0.62± 0.04 0.60± 0.07 0.60± 0.07
9 DistPhOutAge 0.74± 0.03 0.74± 0.02 0.75± 0.03 0.77± 0.02 0.77± 0.02 0.78± 0.05
10 DistPhOutCor 0.72± 0.03 0.73± 0.03 0.74± 0.02 0.77± 0.03 0.77± 0.02 0.81± 0.02
11 DistPhTW 0.70± 0.03 0.70± 0.03 0.71± 0.03 0.71± 0.02 0.72± 0.02 0.74± 0.02
12 Earthquakes 0.68± 0.04 0.68± 0.04 0.68± 0.04 0.68± 0.04 0.68± 0.03 0.71± 0.09
13 ECG200 0.76± 0.04 0.76± 0.04 0.78± 0.04 0.80± 0.03 0.82± 0.04 0.80± 0.04
14 ECG5000 0.89± 0.01 0.89± 0.01 0.90± 0.01 0.92± 0.01 0.92± 0.01 0.92± 0.01
15 ECGFiveDs 0.71± 0.04 0.79± 0.08 0.82± 0.06 0.64± 0.07 0.81± 0.08 0.75± 0.10
16 FaceFour 0.79± 0.06 0.79± 0.06 0.75± 0.08 0.69± 0.11 0.74± 0.10 0.81± 0.07
17 FacesUCR 0.76± 0.02 0.76± 0.02 0.74± 0.02 0.71± 0.03 0.74± 0.03 0.70± 0.07
18 GunPoint 0.91± 0.03 0.92± 0.03 0.87± 0.05 0.83± 0.06 0.85± 0.04 0.86± 0.06
19 Ham 0.68± 0.07 0.70± 0.05 0.69± 0.04 0.64± 0.05 0.73± 0.06 0.73± 0.06
20 Herring 0.61± 0.07 0.58± 0.05 0.54± 0.06 0.59± 0.04 0.61± 0.05 0.61± 0.05
21 InsectWngS 0.39± 0.01 0.47± 0.02 0.51± 0.02 0.52± 0.02 0.55± 0.02 0.55± 0.02
22 ItalyPowDem 0.90± 0.03 0.90± 0.03 0.95± 0.02 0.92± 0.02 0.95± 0.01 0.95± 0.02
23 Lighting2 0.76± 0.06 0.75± 0.09 0.73± 0.06 0.76± 0.03 0.74± 0.04 0.74± 0.04
24 Lighting7 0.68± 0.06 0.66± 0.06 0.62± 0.07 0.64± 0.09 0.62± 0.06 0.62± 0.06
25 MALLAT 0.87± 0.03 0.85± 0.06 0.90± 0.04 0.88± 0.04 0.90± 0.03 0.85± 0.04
26 Meat 0.94± 0.05 0.93± 0.04 0.96± 0.02 0.87± 0.07 0.96± 0.02 0.92± 0.05
27 MedicalImag 0.66± 0.02 0.65± 0.02 0.61± 0.04 0.65± 0.02 0.67± 0.03 0.64± 0.03
28 MidPhAge 0.65± 0.04 0.65± 0.03 0.65± 0.05 0.69± 0.03 0.69± 0.03 0.71± 0.06
29 MidPhCor 0.68± 0.03 0.68± 0.04 0.71± 0.02 0.73± 0.02 0.76± 0.03 0.76± 0.03
30 MiddPhTW 0.52± 0.04 0.53± 0.02 0.53± 0.02 0.56± 0.03 0.56± 0.04 0.59± 0.02
31 MoteStrain 0.85± 0.05 0.84± 0.05 0.85± 0.03 0.78± 0.10 0.84± 0.03 0.84± 0.03
32 OliveOil 0.81± 0.05 0.83± 0.07 0.77± 0.07 0.78± 0.10 0.81± 0.05 0.78± 0.07
33 ProxPhAge 0.75± 0.03 0.74± 0.02 0.76± 0.03 0.81± 0.03 0.80± 0.04 0.89± 0.06
34 ProxPhCor 0.78± 0.03 0.77± 0.03 0.80± 0.03 0.82± 0.03 0.82± 0.03 0.84± 0.04
35 ProxPhTW 0.69± 0.02 0.70± 0.03 0.70± 0.03 0.74± 0.03 0.75± 0.03 0.79± 0.04
36 ShapeletSim 0.63± 0.05 0.62± 0.04 0.57± 0.06 0.64± 0.07 0.58± 0.09 0.99± 0.02
37 SonyAIBO1 0.81± 0.07 0.83± 0.07 0.80± 0.04 0.85± 0.08 0.80± 0.06 0.80± 0.05
38 SwedishLeaf 0.81± 0.01 0.82± 0.02 0.82± 0.03 0.82± 0.02 0.84± 0.01 0.84± 0.01
39 SynControl 0.96± 0.01 0.96± 0.01 0.96± 0.01 0.95± 0.01 0.97± 0.01 0.94± 0.01
40 ToeSegm1 0.75± 0.03 0.73± 0.03 0.74± 0.04 0.78± 0.06 0.80± 0.05 0.79± 0.07
41 ToeSegm2 0.78± 0.06 0.76± 0.05 0.76± 0.07 0.73± 0.08 0.72± 0.10 0.75± 0.06
42 Trace 0.98± 0.02 0.97± 0.02 0.95± 0.02 0.96± 0.02 0.95± 0.02 0.96± 0.03
43 TwoLdECG 0.91± 0.03 0.91± 0.03 0.90± 0.06 0.77± 0.06 0.90± 0.05 0.93± 0.02
44 Wine 0.83± 0.13 0.80± 0.10 0.79± 0.07 0.76± 0.06 0.79± 0.07 0.79± 0.07
45 Worms 0.46± 0.05 0.47± 0.03 0.46± 0.05 0.49± 0.05 0.49± 0.05 0.48± 0.05
46 Worms2Class 0.62± 0.04 0.61± 0.05 0.62± 0.03 0.65± 0.03 0.66± 0.03 0.65± 0.04

81

82

Chapter 5

Local Search Temporal Decision Trees

.

Contents
5.1 Introduction . 84

5.2 Local Search Temporal Decision Trees for Euclidean Dis-
tance. 85

5.2.1 Local Search for Hyperplane Split Operator. 85

5.2.2 Local Search for Hypersphere split operator. 97

5.3 Algorithm generalization for non static distances. 102

5.4 Empirical study. 104

5.4.1 Triangle inequality violation test. 105

5.4.2 Local Search vs Full Search Temporal Decision Tree 105

5.5 Conclusion . 113

Examination of all split candidates in order to find the best one in terms of
ability to split the data is computationally costly. It requires all pairwise distance
computations between candidate series and all the other time series. The problem
appears when either the employed distance has high runtime complexity or the number
of split candidates grows rapidly. The latter is either due to increasing the size of
dataset or due to using different split operators. In this chapter, we propose a method
of approximated search on the space of split candidates called Local Search (LS). It
allows us to reduce both terms: the number of distance computations and the number
of split candidates. The Section 5.2 presents the Local Search strategy for Euclidean
distance. Section 5.3 extends the algorithm to non static distances. In Section 5.4, we
carry a set of experiments to show the effectiveness of local search speed up technique.
We empirically prove that our method yields models with approximately the same

83

performance as the full search. However, it requires less computational resources to
build the tree.

5.1 Introduction

In order to improve the efficiency of the method, we introduce Local Search algorithm.
At each node, only a subset of all possible candidates is examined on order to find the
best split candidate. The cardinality of this subset is determined by a user. Initial
subset of candidates is initialized randomly and then extended by including their
nearest neighbours.

The idea originates from the algorithm to accelerate k-means, proposed by Elkan
[24], by using the triangle inequality. It is based on the fact that most distance
calculations in a standard k-means are redundant. The majority of data points keeps
their assignment to the same closest center during the centroids update step. Following
the same logic, we make the assumption that if we exchange one split candidate by
another taken from its neighbourhood, the partition induced by the new split candidate
is similar to the partition done by the initial split candidate. However, this similar
partition will have different Gini impurity index. Clearly, the new obtained partition
can be better, with purer class distribution in the descendant nodes, or worse than
the initial one. In case of getting the positive change, we can continue exploration
of neighbour time series of previously examined split candidate, otherwise we stop.
The main advantage of doing this is that we save computational resources because
we do not completely explore space of split candidates completely, and thus we omit
computation of all distances.

In the forthcoming section, we provide detailed explanation of the Local Search
approach within Temporal Decision Tree algorithm (LSTDT). We introduce the
algorithm for hyperplane split operator, because the geometry of data split resembles
clustering. Each set of time series in descendant nodes is represented by a split
time series from a pair (tsL, tsR). Further, we elaborate LSTDT for hypersphere
split operator with some changes, since the geometry of split is different. The whole
algorithm is based on the triangle inequality, hence we have a constraint in our choice
of similarity measures. The majority of widely used time series dissimilarities do
not satisfy triangle inequality, and DTW is one of them. We start with Euclidean
dissimilarity measure employment in the algorithm, which satisfies all metric properties.
Then, we generalize the algorithm for two important dissimilarities, namely DTW and
(1 − Cortπ), by using their lower bounds that satisfy the property of weak triangle

84

inequality. Moreover, we suggest that it is up to the user to decide whenever they
want to employ a complete or an approximated search on the space of split candidates.
This provided by including into the algorithm parameters that depend on allocated
computational resources which allows tuning the level of local search.

5.2 Local Search Temporal Decision Trees for Eu-
clidean Distance.

In this section, we use the Euclidean distance to present the Local Search algorithm.
Generalization of results to other similarity measures will be presented in the next
section.

5.2.1 Local Search for Hyperplane Split Operator.

The idea of the Local Search Temporal Decision Tree algorithm (LSTDT) is to
obtain the approximated version of the Full Search Temporal Decision Tree algorithm
(FSTDT), which could be Mono-operator Temporal Decision Tree or Multi-operator
Temporal Decision Tree. By employing the triangle inequality and introducing a set of
lower and upper bounds on distances between split candidate series and time series in
a node, LSTDT can avoid unnecessary distance calculations. With minimum number
of additional distance computations, one can evaluate ’goodness’ of pairs that lie in
the neighbourhood of the initial split pair. The main advantage of this approach is
that it guarantees yielding the exact partition induced by the split candidate under
assessment. That is to say, the partition obtained using bounds is the same as the
one with real distance values.

Given a split candidate (tsL, tsR) ∈ F(H) and a time series ts, we are searching
for the best split pair (tsL, tsR) ∈ F(H), which maximizes the Gini impurity gain.
For each split candidate and a set of time series TS belonging to a node g, we obtain
its bipartition on two descendent nodes gL and gR. Each time series in TS is assigned
to its closest split series according to a dissimilarity measure d. Here, we consider d
to be Euclidean distance between two time series:

d(tsi, tsj) =
(m∑
t=1

(vti − vtj)2
) 1

2
.

Therefore, time series satisfying the condition d(tsL, ts) ≤ d(tsR, ts) are assigned to
the left node gL and others to the right one gR. We need to compute two distances
d(tsL, ts) and d(tsR, ts) for each time series ts in order to assign them to one of the

85

descendent nodes. However, by applying the triangle inequality one can eliminate
some distance computations.

Into LSTDT algorithm a set of split candidates, which will be examined, is
divided into two subsets: seed split and neighbour split candidates. The latter one is
created from the nearest neigbours of split candidates from the former one. Skipping
computation of real distance values by using triangle inequality can be done in two
different steps of split candidates assessment, which are

• time series assignment to the initial split pair (tsL, tsR) taken from seed list of
candidates;

• time series assignment a new split pair, which is created by moving the initial
split pair to its neighbour split candidate (ts′L, tsR) or (tsL, ts

′
R).

Below, we introduce upper and lower bounds on distances between time series and
explain how to make the data partition based on them.

Triangle inequality. Let ts, tsL, tsR be three time series and d is the Euclidean
distance, then the triangle inequality is defined as:

d(tsL, tsR) ≤ d(tsL, ts) + d(tsR, ts) (5.1)

This inequality allows us to build some bounds on d(tsL, ts) and d(tsR, ts), and to
make the partition, without calculating the exact distance value. From the following
corollaries proposed in [24] we can conclude how to get useful bounds. And, then, how
to employ triangle inequality to reduce the number of distance computations.

Corollary 5.2.1. Let ts, tsL, tsR ∈ TS×TS×TS are three time series taken from
the training set TS. If d(tsL, tsR) ≥ 2d(tsL, ts) then d(tsL, ts) ≤ d(tsR, ts).

Proof. We know that d(tsL, tsR) ≤ d(tsL, ts) + d(tsR, ts), that is equivalent to
d(tsL, tsR) − d(tsL, ts) ≤ d(tsR, ts). Putting the condition d(tsL, tsR) ≥ 2d(tsL, ts)

to the left hand part of the latest inequality, we have d(tsL, tsR) − d(tsL, ts) ≥
2d(tsL, ts)− d(tsL, ts) = d(tsL, ts). Hence d(tsL, ts) ≤ d(tsR, ts). �

86

Accelerated Initial partition. By Corollary 5.2.1 the condition

d(tsL, ts) ≤
1

2
d(tsL, tsR)

leads to d(tsL, ts) ≤ d(tsR, ts). Then, if d(tsL, ts) ≤ 1
2
d(tsL, tsR), we say that ts is

associated with tsL and assigned to gL without computing d(tsR, ts).
Suppose we have an upper bound utsL(ts) on the distance d(tsL, ts), such that

utsL(ts) ≥ d(tsL, ts). Corollary 5.2.1 says that we need to compute the distance
d(tsR, ts) only if

utsL(ts) ≥ 1

2
d(tsL, tsR). (5.2)

Application to a split candidate examination is straightforward. For any split
pair (tsL, tsR) ∈ F(H) compute d(tsL, ts) and check if inequality 5.2 holds, then skip
calculation of d(tsR, ts).

Corollary 5.2.2. Let ts, tsL, tsR ∈ TS×TS×TS are three time series taken from
the training set TS. Then, d(tsR, ts) ≥ max{0, d(tsL, ts)− d(tsL, tsR)}.

Proof. We have d(tsL, ts) ≤ d(tsR, ts) + d(tsL, tsR), so d(tsL, ts) − d(tsL, tsR) ≤
d(tsR, ts). And d(tsR, ts) ≥ 0 is always true. �

Accelerated exploration of a new neighbour split. Corollary 5.2.2 can be
employed to explore efficiently nearest neigbour pairs of a split candidate (tsL, tsR).
Let move tsL to its neighbour time series ts′L = argmin

ts
(d(tsL, ts)). The new split

candidate to assess is (ts′L, tsR). To figure out the data partition made by this new
split, for each ts we need to check either inequality d(ts′L, ts) < d(tsR, ts) holds or not.
Hence, we have to compute the distance value d(ts′L, ts). Instead, one can employ
bounds on the distance d(ts′L, ts) to induce the new partition g′L and gR.

Let us consider two cases:

1. Suppose that ts was associated with tsL and assigned to gL, and we have

• a valid upper bound utsL(ts) on the distance d(tsL, ts) : utsL(ts) ≥ d(tsL, ts),

• a valid lower bound ltsR(ts) on the distance d(tsR, ts) : ltsR(ts) ≤ d(tsR, ts).

Then, we update an upper bound

uts′L(ts) = d(tsL, ts) + d(ts′L, tsL), (5.3)

87

the lower bound ltsR(ts) will not change. If uts′L(ts) ≤ ltsR(ts), then d(ts′L, ts) ≤
uts′L(ts) ≤ ltsR(ts) ≤ d(tsR, ts). And a time series ts will be assigned to the node
g′L.

2. Suppose that ts was associated with tsR and assigned to gR, and we also have

• a valid upper bound utsR(ts) on the distance d(tsR, ts) : utsR(ts) ≥ d(tsR, ts),

• a valid lower bound ltsL(ts) on the distance d(tsL, ts) : ltsL(ts) ≤ d(tsL, ts).

Then, we can derive an upper and a lower bounds on the distance between ts
and a time series ts′L:

d(ts′L, ts) ≥ max{0, d(tsL, ts)− d(ts′L, tsL)} (5.4)

≥ max{0, ltsL(ts)− d(ts′L, tsL)} (5.5)

Thus, lts′L(ts) = max{0, ltsL(ts) − d(ts′L, tsL)}, upper bound utsR(ts) will not
change. If utsR(ts) ≤ lts′L(ts), then d(tsR, ts) ≤ utsR(ts) ≤ lts′L(ts) ≤ d(ts′L, ts).
And a time series ts will keep its assignment to the node gR.

One should note that for each time series an upper bound is a bound on the
distance to its closest split time series. While a lower bound is a bound on the distance
to its farthest split time series. If derived bounds are good approximators and the shift
distance d(ts′L, tsL) is small enough, then updated bounds are good approximators for
a distance d(ts′L, ts).

Knowing upper and lower bounds on distances d(tsL, ts) and d(tsR, ts) of the
initial split candidate (tsL, tsR), it is not necessary to work out their exact values
to make an assignment of ts to the correct descendant node. However, in practice,
to obtain bounds and maintain their update, it will be necessary to compute either
d(tsL, ts) or d(tsR, ts).

Figure 5.1 shows the change in data partition if a time series tsL from a split pair
(tsL, tsR) will be replaced by ts′L. Each point schematically represents a time series of
the training set. The value δ stands for the shift distance d(ts′L, tsL). Dashed lines
correspond to the split done by a pair (tsL, tsR). For points that lie inside the circle,
computation of the distance value d(tsR, ts) will be skipped, since for each of them
Condition 5.2 holds. A hyperplane drawn by solid line represents the data partition
for the new split pair (ts′L, tsR).

88

tsR

gR

gL ts′�L
tsL

δ

Figure 5.1: Illustration of change in data partition if a time series tsL from a split pair (tsL, tsR)
will be replaced by ts′L. Each point schematically represents a time series of the training set. The
value δ stands for the shift distance d(ts′L, tsL).

Local search algorithm. As we saw, by using derivations from triangle inequality,
one can apply them to assess partitions induced by hyperplane split candidates. By
reducing the number of distance computations on the step of the data partition by
initial split candidate as well as on the step of the partition update for neighbour split
candidate, we can save computational resources. We assume, that we can find a better
split quality candidate in the vicinity of the initial one. If this assumption holds, it
will allows to improve a node’s partition class purity and at the same time, we can
avoid exhaustive search over complete split candidate space. Actually, as we will see
in this section with empirical results it is the case, and we can obtain the tree of the
size almost the same as the one obtained by exhaustive search.

A node’s split in LSTDT is done in two stages, which are, first, initial split
candidates evaluation and, second, exploration of neigbour split pairs. The former is a
preliminary step to be able initialize the further exploration and guarantee to have
a valid partition. The latter is heuristical strategy of informed exploration search
for split candidates. In order to perform search, we need an evaluation function and
stopping criterion. Since we target to find the best possible data partition, the Gini
impurity gain seems an appropriate function to evaluate success of search process.
However, the next question is how far from the initial split candidate should we go?
Efficiency of the algorithm fundamentally depends on tightness of upper and lower
bounds. They are tight, when a new split candidate lies not far from the initial pair
of time series. The farther we move from the initial split candidate, the looser bounds

89

we have. It implies that, more distance computations have to be done. This is the
fundamental reason to generate a new split candidate that is only slightly different
from the previous one.

We introduce three input parameters given by a user:

1. r is the number of reference time series. The algorithm subsamples them from
TS to generate the initial split candidates (seeds);

2. LSDist is the maximum number of distance computations that a user allocates
to the local search procedure;

3. NN is the number of nearest neighbour split candidates for each seed to explore
.

We introduced the parameter NN to prevent spending all LSDist distances on
exploration of vicinity of only one seed pair. As alternative of NN , we may employ
Gini impurity index as the criterion to stop exploration,i.e., if a partition induced by a
neibour split candidate does not improve its impurity, the algorithm moves to another
seed. However, not having an instantaneous improvement of split quality in the first
movement does not necessarily indicate impossibility to reach it, for example, in the
second iteration. Therefore, by introducing and determining small reasonable value of
NN (can be fixed to 3 or 5 as typical choice in k-Nearest Neighbour) the algorithm
can explore vicinity of different split candidates.

We would like to emphasize that the total number of distance computations,
denoted as TDist in FSTDT can be factorized by two terms in LSTDT :

1. INDist is the number of distance computations between each seed pair and
the other time series of the dataset. It is the minimum number of distance
computations required to initialize search process.

2. LSDist is the number of additional distances to do the local search.

The value INDist depends on the number of time series r picked to initialize the
procedure of search and defined as:

INDist =
(2N − r − 1)

2
r. (5.6)

This value corresponds to the minimum number of distances required to examine
split quality of seed pairs generated from r time series. How many seeds r, represented
by time series of the training set, one should pick to initialize local search? To make a

90

partition in a node by using hyperplane split operator, the algorithm needs at least one
pair of time series. That is to say, the minimum number is equal to two, so rmin ≥ 2.
By setting the minimum value for initial number of seeds, we guarantee to have a
valid, however far from the optimal, data split in a node.

The choice of the r value is a trade-off between minimizing the cost of INDist
term and having a varied set of seeds for the local search procedure. On one hand, if
the number r is small, then INDist is small too, and we do not spend many distance
computations. However, we may pick seeds that lie close to each other, and as a
consequence, we will be able to explore just one particular region of split candidate
space. In this case, if split candidates, which provide purer data partition, are far
from initial and LSDist value is smal too, we have the risk to not reach them. On
the other hand, a large value of r increases chances to explore different regions of split
candidate space, but with the high cost of INDist term. If r = N , then we finish
up with the full search algorithm. Therefore, the value of r can be determined via a
slowly increasing function dependent on the number of input size N .

Complementary notations. Before giving the LSTDT description, let us intro-
duce some additional notations that we employ in this chapter. A split pair fH ∈ F(H)

is a pair of time series (tsL, tsR). Let an operator a(ts) returns the split time series
from a split pair fH ∈ F(H) belonging to the same node as a time series ts. And
ā(ts) is its complementary operator.

a(ts) =

{
tsL if ts ∈ gL
tsR if ts ∈ gR (5.7)

ā(ts) =

{
tsL if ts /∈ gL
tsR if ts /∈ gR (5.8)

To avoid confusion in notation, we will define a distance between left and right split
time series as d(f). We denote tsnn be a time series belonging to the neighbourhood
of tsL or tsR by which on of them will be replace to form new split candidate. The
operator δ(·) returns the distance value between any time series and tsnn if they belong
to the same sub-node, otherwise it returns value of zero.

δ(·) =

{
d(·, tsnn), if · = a(tsnn)

0, otherwise (5.9)

Note that δ(·) is only used for · = tsR or · = tsL.

91

Initial search. Algorithm5.1 gives the description of making an initial partition
of a node g ∈ G by a set of split candidates generated from referenced time series r.
The algorithm exploits triangle inequality properties to make a data partition and
minimizes the number of required distance computations. At lines 7-9, it introduces
the upper and lower bounds dedicated for each split candidate. Lines 11-22 reveal
the use of triangle inequality to avoid redundant distance computation while making
a data partition. For each generated split candidate, the algorithm evaluates level
of class distribution impurity in each descendant node (line 21-22). As a result, we
obtain a set of split candidates S with the following components:

• partition gL, gR,

• Gini impurity gain ∆iGini,

• upper bounds ua(ts),

• lower bounds la(ts), lā(ts)

Real pairwise distance values between each time series and its closest split series
are assigned as initial values of upper bounds. Lower bounds are bounds on the
distance from a time series to its farthest split series from a pair (tsL, tsR). Note,
that if we are able to skip a distance computation d(tsR, ts), which implies holding
d(tsL, ts) ≤ 1

2
d(tsL, tsR), lower bound value is equal to zero. Once a new neighbour

split candidate is examined, it will be considered as one which vicinity can explored

92

as well.
ALGORITHM 5.1: Algorithm of getting Initial Hyperplane split candidate
partition.
1 Function LSInitialPartition:

Input: (TS,Y) ∈ g; the number of time series to pick as seeds r; similarity
measure d

Result: S := {s(g, fH) := {gL, gR, (tsL, tsR),∆iGini, ua(ts), la(ts), lā(ts)}}
2 S ← ∅ ;
3 TSr ←randomly pick r time series from TS ;
4 F(H)seed ← {fH : ((tsi, yi), (tsj, yj)),∀tsi 6= tsj ∈ TSr ×TSr, yi 6= yj};
5 foreach fH ∈ F(H)seed do
6 gL, gR ← ∅ ;
7 ua(ts) ← {∅}N ;
8 // upper bound of distance to closest split series
9 la(ts)(ts)← {∅}N ;

10 lā(ts)(ts)← {∅}N ; // lower bounds on the distance to each of
split series

11 foreach ts ∈ TS do
12 gL ← gL ∪ {ts} ;
13 a(ts)← Formula 5.7 ;
14 d← d(a(ts), ts) ;
15 la(ts)(ts)← d ;
16 if d > 1

2
d(fH) then

17 ā(ts)← Formula 5.8 ;
18 lā(ts)(ts)← d(ā(ts), ts) ;
19 if lā(ts)(ts) < d then
20 gL ← gL\{ts} ;
21 gR ← gR ∪ ts ;
22 end if
23 end if
24 ua(ts)(ts)← d ;
25 end foreach
26 iGini(gL), iGini(gR)← compute with Formula 3.4 ;
27 ∆iGini(s(g, f))← compute Gini gain with use of Formula 3.3 ;
28 S ← S ∪ s(g, fH) ;
29 end foreach
30 end

Local search. Steps of the local search over split candidates are shown in
Algorithm5.2. Exploration of split candidate space continues while LSDist is greater
than zero (line 4). Local search algorithm includes three main blocks.

1. Defining nearest split candidates in vicinity of a seed pair. It starts with the
exploration of split pairs from seeds set S. A pair that maximizes Gini impurity

93

gain is selected to be the first one whose neighbourhood will be explored (line
2). At each iteration of update a seed pair by its neighbour, only one time series
in a split pair is replaced, either tsL or tsR. A time series tsnn is the one that
has minimum value of upper bound. Recall that for each time series ts, we have
an upper bound ua(ts)(ts) on the distance between ts and its closest series a(ts).
A series tsnn is the one that minimizes this upper bound, thus a split time series
a(tsnn) in a pair (tsL, tsR) will be replaced by tsnn.

For selected split seed s(g, fH), the algorithm gets NN nearest neighbours split
candidates (line 6-7). We change one time series in a split pair seed per iteration.
We sort upper bounds in ascending order and pick time series tsnn that has the
minimum value. We replace corresponding split time series by a new one and
update fH with tsnn.

2. Upper and lower bounds updates. With each update of a split fH by a new split
candidate fnn, the corresponding bounds of each time series ts has to be updated
by a value of shift distance δ(a(ts)) using Equation 5.9. Each upper bound value
is increased by shift distance δ(a(ts)), while s lower bound value is decreased by
the same value (line 10-12).

3. A partition update. It includes a preliminary step of estimation of the number
of distances that has to be computed in order to update a partition. This step
is required to prevent exploration of computationally greedy split candidates.
Skipping the assessment of such (fH)nn pairs works for purpose of saving com-
putational resources and allows exploration other split candidates. Also by
doing this, we guarantee that the number of allocated distance computations
will be enough to complete the partition’s update for a split candidate under
examination. We need to evaluate the number of time series that may change
its initial assignment to a sub-node, when a split seed fH moves to its neighbour
(fH)nn. We say that, a time series ts tends to change its previously assigned
sub-node if Conditions 5.10 and 5.11 are satisfied. Both of them depend on
updated bounds and the distance between split time series of the new split
candidate d((fH)nn).

ua(ts)(ts) ≥
1

2
d((fH)nn) (5.10)

ua(ts)(ts) ≥ l(ts, ā(ts)) (5.11)

94

Each potential swap of a time series can, at the maximum, lead to two distance
value computations. Thus, max (|TSswap|) = 2N , that is the upper estimate of
the number of computational resources the algorithm will spend to update a
partition. In fact, it is the worst case scenario when we compute all pairwise
distances between a split candidate and the other time series. In practice, the
value of real distance computations Dist ≤ 2N , because of the distance bounds
employment and examination only of the nearest neighbours of initial split
candidate. Heuristically, we choose to explore the split candidate (fH)nn once
the value |TSswap| is two times less than the number of resources LSDist (line
13). If the case, then the algorithm updates partition subsets gL and gR (line 14).
It can happen at some iteration that Dist ≥ LSDist (line 15 of Algorithm5.2
and line 17 of Algorithm5.4), however the maximum overtaken value is equal to
N , which is 2

N−1
% of all distance computations. It is a very small percentage,

especially for large datasets.

Each new examined split candidate fnn becomes also a seed split pair (line
17). For new obtained split partition, Gini gain is computed and if a new gain
value is higher than the best obtained so far, we make an update of the best
split candidate. Details of the partition update for a split fnn are given in
Algorithm5.3. For each time series ts in a node g, it verifies Conditions 5.10 and
5.11. In the case of violation, it computes required distances and exchange a
sub-node assignment if necessary (line 4 - 12, Algorithm5.3).

Due to heuristical origin of the local search procedure, it can be the case that the
algorithm get stuck in local maximum gain of Gini that has been already obtained
on the step of seeds set initialization. Another caveat can be when classes in a
dataset are highly homogeneous, that is to say, lots of split candidates have the same
discriminative ability. Local search process is initialized at each internal node of a
tree separately. The value of LSDist reduces proportionally to time series set size in
descendent nodes. All distances that are computed at each level of a tree are saved
during a tree training process. For small nodes (|TSg| � |TS|), it may be relevant to
switch from local search to the full search algorithm, if the number of non-computed

95

distances is less than allocated number of LSDist.
ALGORITHM 5.2: Exploration of neigbour split candidates F(H).
1 Function LSExploration-F(H):

Input: (TS,Y) ∈ g; similarity measure d; the number on nearest neigbours
NN ; allocated number of distances LSDist; seeds set S

Result: s(g, f ∗H) := {g∗L, g∗R, (ts∗L, ts∗R),∆i∗Gini, ua(ts), la(ts), lā(ts)}
2 s(g, f ∗H)← argmax

s(g,fH)∈S
(∆iGini(s(g, fH))) ;

3 while LSDist > 0 do
4 s(g, fH)← argmax

s(g,fH)∈S
(∆iGini(s(g, fH))) ;

5 S ← S\s(g, fH) ;
6 TSNN ← {ts : argmin

tsi∈TS,i=1:NN
{ua(tsi)(tsi)}} ;

7 F(H)NN ← {fH : (tsnn, tsR), if a(tsnn) = tsL , otherwise
(tsL, tsnn), tsnn ∈ TSNN} ;

8 foreach (fH)nn ∈ F(H)NN do
9 ua(ts) ← ua(ts) + δ(a(ts)) ;

10 la(ts) ← max((la(ts) − δ(a(ts))), 0) ;
11 lā(ts) ← max((lā(ts) − δ(ā(ts))), 0) ;
12 TSswap ← {ts : Cond 5.10 and Cond 5.11 hold} ;
13 if |TSswap|

2
≤ LSDist then

14 gL, gR, Dist← LSUpdatePartition-F(H)((TS,Y), d, s(g, (fH)nn) ;

15 LSDist← LSDist−Dist ;
16 iGini(gL), iGini(gR)← compute with Formula 3.4 ;
17 ∆iGini(s(g, (fH)nn))← compute Gini with Formula 3.3 ;
18 S ← S ∪ s(g, (fH)nn) ;
19 if ∆iGini(s(g, (fH)nn) > ∆iGini(s(g, f

∗
H)) then

20 s(g, f ∗H)← s(g, (fH)nn) ;
21 end if
22 end if
23 end foreach
24 end while
25 end

The complexity of exhaustive search for the best split candidate over all generated
candidates for hyperplane split operator is O(N3). The term O(N2) is the number
of time series pairs and the term O(N) is the complexity to evaluate the partition
induced by one split candidate. The full search also requires computation of complete
pairwise distance matrix of the size N ×N . By employing local search, we reduce the
number of split candidates to be assessed and the number of distance computations.
The exact values of both terms depends on the input parameters r and LSDist of the
LSTDT algorithm. The total number of computed distances in a node for LSTDT

96

ALGORITHM 5.3: Partition update for neigbour split candidates F(H).
1 Function LSUpdatePartition-F(H):

Input: (TS,Y) ∈ g; similarity measure d; s(g, (fH)nn)
Result: s(g, (fH)nn) := {gL, gR, (tsL, tsR),∆iGini, ua(ts), la(ts), lā(ts)}

2 foreach ts ∈ TS do
3 if Cond 5.10 and Cond 5.11 then
4 ua(ts)(ts)← d(a(ts), ts) ;
5 la(ts)(ts)← ua(ts)(ts) ;
6 if cond 5.10 and cond 5.11 then
7 lā(ts)(ts)← d(ā(ts), ts) ;
8 if lā(ts)(ts) ≤ ua(ts)(ts) then
9 ua(ts)(ts)← lā(ts)(ts) ;

10 a(ts)← ā(ts) ;
11 update gL, gR ;
12 end if
13 end if
14 end if
15 end foreach
16 end

is approximated by INDist+ LSDist. The exact number of distances the algorithm
needs to calculate for each new neighbour candidate can be approximated by value
|TSswap|

2
. Thus, we can approximate the total number of time series pairs, which LSTDT

will assess by |F(H)| ≈ O(r2 + 2LSDist
TSswap

). The complexity of Algorithm5.1 is O(r2N).
Algorithm5.2 iterates in the worst case LSDist. At each iteration, which corresponds
to exploration of the vicinity of one split candidate, the seed list is extended, while
kept sorted by neighbour candidates. The complexity of Local Search part of LSTDT
(Algorithm5.2) is O(LSDist logLSDist). However, in practice the algorithm does not
iterates LSDist times, because at each iteration this value decrements by Dist� 1.

5.2.2 Local Search for Hypersphere split operator.

Now, we would like to extend Local Search algorithm to be able to apply it to
candidates of hypersphere split operator. Like that, we could use both hyperplane and
hypersphere split operators simultaneously while training a tree model. A hypersphere
split operator is represented by a pair (tsL, θ), tsL ∈ TS, where tsL is associated
with the left sub-node, which constitutes a subset of those time series for which the
condition d(tsL, ts) ≤ θ holds.

Assume that we have a split candidate seed fS = (tsL, θ), tsL ∈ TS and we would

97

like to examine goodness of its neighbour candidate tsnn. The main question is how to
update the partition s(fS, g) induced by fS when fS moves to a neighbour split (fS)nn.
As before, for each iteration of a split candidate update, we need to figure out which
elements in a partition tend to change its assigned sub-node. Then, for each time
series with positive swap tendency, we compute a true distance value d(tsnn, ts) and
update the partition. The main difference with Local Search algorithm for hyperplane
split operator is that we do not have two representatives of a binary partition. Rather,
we have elements lying inside hypersphere with a radius θ, which are associated with
tsL, and the rest elements lying outside it. The threshold θ associated to an initial
split series tsL can, surely, be different for tnn. It means that we have to update it as
well. Therefore, a partition update for a new split candidate tsnn is two steps iterative
procedure:

1. Compute the number of swaps given θ.

2. Update θ given the number of swaps.

It is exactly as an expectation-maximization approach, where, firstly, we compute
the expected value of the number time series that can change their initial sub-node
assignment. And, secondly, we update θ by maximizing Gini impurity gain of updated
partition. We repeat these steps until it converges to the state where there is no
more possible swaps. If at some level of iterations, the number of swaps exceeds the
remained value of LSDist, the algorithms stops. As a consequence, the algorithm
does not ensure to find the optimal distance threshold θnn for tsnn.

To assess the initial number of swaps in a partition for a new split candidate given
a threshold θ, we need to derive bounds u(ts), l(ts) and a margin µ. An upper bound
u(ts) is a bound on the distance d(tsL, ts), ts ∈ gL, and l(ts) is a lower bound on
d(tsL, ts), ts /∈ gL. A margin µ is defined as follows:

µ =
|d(tsL, tsθ−)− d(tsL, tsθ+)|

2
, (5.12)

with
tsθ− = argmax

ts∈gL
d(tsL, ts)

tsθ+ = argmin
ts∈gR

d(tsL, ts)

If a shift distance d(tsL, tsnn) is less than µ value, it means that a partition made
by a split candidate (tsL, θ) will be the same as the partition made by (tsnn, θ). By

98

inspecting this simple condition we can get rid of split candidates with the same
goodness of Gini gain as for an initial candidate. For cases where this condition does
not hold, we employ upper and lower bounds.

For hypersphere split operator, we maintain only one value of lower bound since
we have only one center of assignment tsL. We employ the triangle inequality that
provides us with the update on the bounds for each ts as follows:

u(ts) = d(tsL, ts) + d(tsL, tsnn) (5.13)

l(ts) = max((d(tsL, ts)− d(tsL, tsnn)); 0) (5.14)

For time series that are assigned to the left sub-node, evaluation of swap is based
on the upper bound, and for those that lie into the right sub-node, on its lower bound.
Indeed, if u(ts) > θ for ts ∈ gL, then it means that a real distance value d(tsnn, ts)

can be greater than θ as well, hence, an assignment of ts may change to gR. When
ts ∈ gR and l(ts) < θ, ts can swap to gL, a sub-node, which will be associated with
tsnn. Figure 5.2 illustrates this situation for binary classification problem (on the figure
class labels are depicted by squares and circles). Each time series ts is represented
by a scalar: its distance d(tsL, ts) to the center of the hypersphere defined by tsL
with a radius θ. Points of time series that will not change their initial assignment
to descendent nodes when tsL moves to tsnn are depicted with filled circles/squares.
Equation below summarize conditions of swap:

swap(ts) = 1⇔
{
ts ∈ gL and u(ts) > θ
ts ∈ gR and l(ts) < θ

(5.15)

Once we proceed to update a partition for a neighbour split candidate tsnn, we
need to update a threshold θ. Distance values of all time series that could change
their initial sub-node assignment lie in the interval [θ − d(tsL, tsnn); θ + d(tsL, tsnn)].
Therefore, to update a threshold value, we have to compute the Gini gain for threshold
candidates, values of which lie within this interval. Note, that at this step we have
time series for which we have computed real distance values with tnn, the rest of them
have just an approximation by u and l. Due to this fact, when we update a threshold,
we have to check again if there are new time series that tend to swap with respect to
updated threshold θ′.

The description of local search for hypersphere split candidate is given in Algo-
rithm5.4. Initialization steps are the same as for hyperplane split operator (lines
2-7). Bounds updates are done according to the Formula 5.13 (lines 9-10). Steps of

99

a)

b) tsL → tsnn; ΔiGini(s(fH, g)) ≠ ΔiGini(s((fH)nn, g))

tsL → tsnn; ΔiGini(s(fH, g)) = ΔiGini(s((fH)nn, g))

θ
d(tsL, ts)

μ

𝔲(tsgL
) 𝔩(tsgR

)𝔩(tsgL
) 𝔲(tsgR

)

d(tsL, tsgR
)d(tsL, tsgL

)

d(tsL, tsnn)

θ
d(tsL, ts)

μ
d(tsL, tsnn)

d(tsL, tsgL
)

𝔲(tsgL
)𝔩(tsgL

)

Figure 5.2: Illustration of possible changes in a partition when a split candidate (tsL) moves to
its neighbour (tsnn). Time series represented by a distance value d(tsL, ts) and depicted as dots.
Shape of each point denotes a time series class label. Two cases are shown: a) the first, there are no
swap possible; a margin µ is greater than u(tsgL) and l(tsgR); b) the second, elements lying within
the range [θ − d(tsL, tsnn); θ + d(tsL, tsnn)] require computation of true distance value to update its
sub-node assignment.

100

expectation-maximization approach of a split update are shown in lines 13-26. The
algorithm returns the better split in the vicinity of seed split candidates if such exists.
ALGORITHM 5.4: Exploration of neigbour split candidates F(S).
1 Function LSExploration-F(S):

Input: (TS,Y) ∈ g; similarity measure d; the number on nearest neigbours
NN ; allocated number of distances LSDist; seeds set S

Result: s(g, f ∗S) := (g∗L, g
∗
R, (ts

∗, θ∗),∆i∗Gini, u, l)}
2 s(g, f ∗S)← argmax

s(g,f)∈S
(∆iGini(s(g, fS))) ;

3 while LSDist > 0 do
4 s(g, fS)← argmax

s(g,fS)∈S
(∆iGini(s(g, fS))) ;

5 S ← S\s(g, fS) ;
6 TSNN ← {ts : argmin

tsi∈TS,i=1:NN
{u(tsi)}} ;

7 F(S)NN ← {fS : (tsnn, θ), tsnn ∈ TSNN} ;
8 foreach (fS)nn ∈ F(S)NN do
9 u(ts)← u(ts) + d(tsL, tsnn) ;

10 l(ts)← max((d(tsL, ts)− d(tsL, tsnn)); 0) ;
11 TSswap ← ∅ ;
12 µ← compute with Formula 5.12 ;
13 while |TSswap| > 0 do
14 TSswap ← {ts : Cond. 5.15 holds} ;
15 if |TSswap| ≤ LSDist then
16 gL, gR, Dist←

LSUpdatePartition-F(S)((TS,Y), d, s(g, (fS)nn)) ;
17 LSDist← LSDist−Dist ;
18 update θ ;
19 iGini(gL), iGini(gR)← compute with Formula 3.4 ;
20 ∆iGini(s(g, (fS)nn))← compute Gini with Formula 3.3 ;
21 S ← s(g, (fS)nn) ;
22 if ∆iGini(s(g, (fS)nn)) > ∆iGini(s(g, f

∗)) then
23 s(g, f ∗)← s(g, (fS)nn) ;
24 end if
25 end if
26 else
27 break ;
28 end while
29 end foreach
30 end while
31 end

101

ALGORITHM 5.5: Algorithm of data partition update.
1 Function LSUpdatePartition-F(S):

Input: (TS,Y), d, s(g, (fS)nn)
Result: s(g, (fS)nn) := (gL, gR, (tsnn, θ),∆iGini, u, l)

2 foreach ts ∈ TS do
3 if Cond 5.15 then
4 u(ts)← d(a(ts), ts) ;
5 u(ts) = l(ts) ;
6 if u(ts) < θ and ts ∈ gR then
7 assign ts to gL ;
8 end if
9 if u(ts) > θ and ts ∈ gL then

10 assign ts to gR ;
11 end if
12 end if
13 end foreach
14 end

5.3 Algorithm generalization for non static distances.

Local search technique leverages the nice property of triangle inequality that Euclidean
distance possess. However, for time series classification, one of the most usable
dissimilarity measures is DTW, which is able to mitigate a problem of distortion along
the time axis. Therefore, it would be particularly useful to employ DTW within local
search. A primal advantage of this point would be the reduction of DTW distance
computations that has quadratic complexity with respect to time series length.

The fact that DTW does not satisfy the triangle inequality prevents us from using
it direcly in local search. However, it was proven [50] that DTW satisfies weak triangle
inequality. We recall the theorem and its proof below:

Theorem 5.3.1. (Weak Triangle Inequality for DTW) Given any time series
tsx, tsy, tsz ∈ TS of the same length m and 1 ≤ p ≤ ∞, we have

DTWp(tsx, tsy) +DTWp(tsy, tsz) ≥
DTWp(tsx, tsz)

min(2w + 1,m)1/p
(5.16)

where DTWp(tsx, tsy) is the lp dynamic time warping distance between tsx and tsy.
And w is DTW locality constraint on an alignment path π.

Now, we can modify Lemmas 5.2.1, and 5.2.2 to obtain upper and lower bounds
on DTW distance.

102

Corollary 5.3.1. Let tsx, tsy, tsz be any three time series in TS. If DTWp(tsy, tsz) ≥
2 min(2w + 1,m)1/pDTWp(tsy, tsx), then DTWp(tsz, tsx) ≥ DTWp(tsy, tsx).

Proof. From the Theorem5.3

DTWp(tsy, tsz)

min(2w + 1,m)1/p
≤ DTWp(tsy, tsx) +DTWp(tsz, tsx),

hence
DTWp(tsy, tsz)

min(2w + 1,m)1/p
−DTWp(tsy, tsx) ≤ DTWp(tsz, tsx).

Therefore, using the assumption of the corollary, the left side of inequality

DTWp(tsy, tsz)

min(2w + 1,m)1/p
−DTWp(tsy, tsx) ≥ 2DTWp(tsy, tsx)−DTWp(tsy, tsx) = DTWp(tsy, tsx).

Thus, DTWp(tsz, tsx) ≥ DTWp(tsy, tsx). �

Corollary 5.3.2. Let tsx, tsy, tsz be time series in TS. Then

DTWp(tsz, tsx) ≥ max{0, DTWp(tsy, tsx)

min(2w + 1,m)1/p
−DTWp(tsy, tsz)} (5.17)

.

Proof. From the Theorem5.3

DTWp(tsy, tsx)

min(2w + 1,m)1/p
≤ DTWp(tsz, tsx) +DTWp(tsy, tsz),

then
DTWp(tsz, tsx) ≥

DTWp(tsy, tsx)

min(2w + 1,m)1/p
−DTWp(tsy, tsz).

And DTWp(tsz, tsx) ≥ 0 is always true by definition of distance measure. �

In our case, we fix l2 norm (denote as DTW) and we do not impose constraints
on an alignment path, hence w =∞. Thus, the constant min(2w + 1,m)1/p will be
replaced by simple term of

√
m in the Equation 5.3.1. Then, the only thing that we

need to embed into DTW for local search algorithm is to introduce a way by which
the bounds are updated. We formulate it as follows:

ua(ts)(ts) =
√
m
(
ua(ts)(ts) + δ(a(ts))

)
(5.18)

la(ts)(ts) = max
(la(ts)(ts)√

m
− δ(a(ts)); 0

)
(5.19)

lā(ts)(ts) = max
(lā(ts)(ts)√

m
− δ(ā(ts)); 0

)
. (5.20)

103

The equations above are dedicated to hyperplane split operator. In the case of
hypersphere split operator we have:

u(ts) =
√
m (u(ts) + DTW(tsL, tsnn)) (5.21)

l(ts) = max
(l(ts)√

m
−DTW(tsL, tsnn); 0

)
(5.22)

By substituting formulas in lines 9 - 11 of the Algorithm5.2 by 5.18 - 5.20 and
formulas in lines 9 - 10 in the Algorithm5.4 by 5.21, 5.22, we obtain Local Search
node split with DTW distance.

On employing (1− Cortπ) dissimilarity. It would be highly desirable to include
a behavioural distance measure such as (1−Cortπ) into LSTDT. In this case, we can
have a complete approximated algorithm of FSTDT. By analogy with Theorem5.3 for
DTW, one can show that the weak triangle inequality holds for (1− Cortπ) distance.

2− Cortπ(tsx, tsy)− Cortπ(tsy, tsz) ≥
1− Cortπ(tsx, tsz)

min(2w + 1,m)1/p
(5.23)

To obtain bounds for distances with dynamic path alignment, we used weak triangle
inequality, which is loose. Therefore, the bound ua(ts) is not tight enough, and it
grows proportionally with the length of time series m. We can end up with the vacuous
bound for long time series.

5.4 Empirical study.

In the empirical study, we pursue to evaluate performance of LSTDT algorithm in
terms of the size of the tree and classification accuracy. We measure the size of yielded
trees in order to check if the approximated algorithm is able to output readable models.
We compare results of LSTDT with that of FSTDT. In all experiments we employ
hypersphere or/and hyperplane split operators. Since LSTDT is the approximated
version of FSTDT, we, surely, can not guarantee to have the same performance in
terms of classification accuracy. However, we advocate that LSTDT is able to find
a split pair that is good enough to yield a tree that is close in terms of number of
internal nodes and accuracy to the tree grown by full search procedure.

All results that we reveal below were obtained on univariate time series datasets
provided by the UCR benchmark [15]. The characteristics of dataset can be found in
the Table 4.1.

104

5.4.1 Triangle inequality violation test.

The first part of our experiments focuses on level of triangle inequality violations when
we employ DTW and (1− Cortπ). To assess, whether there are violations or not, we
generated all possible triples (tsx, tsy, tsz ∈ TS) for each dataset and for each triple,
the following value was worked out:

V (tsx, tsy, tsz) =
d(tsx, tsz)

(d(tsx, tsy) + d(tsz, tsy))
(5.24)

where d(·, ·) is either DTW or (1−Cortπ). We repeated this procedure to verify if
both distances satisfy weak triangle inequality. To do so, we used the relaxed version
of triangle inequality to compute a new value Vweak(tsx, tsy, tsz):

Vweak(tsx, tsy, tsz) =
d(tsx, tsz)√

m ∗ (d(tsx, tsy) + d(tsz, tsy))
(5.25)

Table 5.1 provides pivot results across 46 datasets. Actually, we can notice that
the level of triangle inequality violations for DTW is not high, only 0.4% from all
generated triples. However, the (1−Cortπ) dissimilarity measure has a more high level
of triangle inequality violations, that is 6.6% of total triples quantity. By emploing
the weak triangle inequality, we obtain positive result for both disimilarity measures,
which shows no violations across all triples generated on 46 UCR datasets.

Table 5.1: Statistics on the level of triangle inequality violations by DTW and (1−Cortπ) distances
on 46 UCR datasets.

Distance measure TOT # triples V Vweak V,% Vweak,%

DTW
126 811 644

476 592 0 0.4 0.0
(1− Cortπ) 8 334 245 0 6.6 0.0

5.4.2 Local Search vs Full Search Temporal Decision Tree

Experiments were designed in order to compare Local Search TDT and Full Search
TDT. Both models are built for different distances that are Euclidean, DTW and
(1− Cortπ). For each distance, results are obtained with hyperplane and hypersphere
split operators as well as their combination. We picked 21 out of 46 UCR datasets
for these experiments with the training set size between 100 and 600 time series. We
choose this range to have representative set of datasets, like that each of them is not
too small to be able to tune parameter LSDist. Since we also perform FSTDT for
each dataset, for the sake of keeping reasonable running time, we get rid of some large
datasets. There are three input parameters that we need to set in our experiments.

105

1. The number of referenced time series r that will form initial seeds for local
search exploration. We choose to set this value as a function of input set size,
r = log2N . It grows slowly with respect to the training set size. Hence, it will
prevent from taking too much initial time series r in large datasets.

2. The second input parameter is the number of allocated distances for local seach
LSDist. Since this parameter is defined at each internal node of a tree, it should
be reduced proportionally to the number of time series that a sub-node contains.
We set LSDist as a function that depends only on r and the number of time
series in a node g: |TSg| = N .

LSDist(r,N) = C × r × (r − 1)×
√
N, (5.26)

where C is a constant (we fixed it to be equal 6).

3. The third parameter is the number of nearest neighbours NN of each seed
candidate that we will explore. It is fixed to be equal 5 for all carried experiments.

Figure 5.3 shows how the number of total distance computations (TDist) grows
with respect to the training size if we would employ FSTDT (upper left graph). On the
upper right plot, we can see the number of reference time series r for different values of
the training set. Finally, the bottom plot of the figure shows the percentage of allocated
distance computations LSDist taken from TDist with respect to Formula 5.26. The
curve, marked as INDist, shows the percentage of distance computations that are
carried out to assess split candidates generated from initial time series r.

Tables 5.2 - 5.5 include obtained results summarized across 21 UCR datasets.
The number of internal nodes and accuracy are two key performance indicators for
comparison of LSTDT with FSTDT. At the same time, we are also interested in
measuring the total number of computed distances and examined split candidates by
the algorithm. It reveals how many computational resources can be saved. For each
split operator, results are presented by three columns: FS stands for FSTDT, LS
stands for LSTDT, and LS/FS is the ratio value of results obtained by LSTDT to
FSTDT results. Each resultant value represents accumulated value over each yielded
model for all 21 UCR datasets. For example, the number of split candidates is the
value collected from each internal node of a tree.

Regardless of employed dissimilarity measure and selected split operator, LSTDT
outputs tree models which are almost the same, in terms of accuracy and size, to
those that are obtained by FSTDT . However, the size of decision trees yielded with

106

Figure 5.3: The values of input parameters of LSTDT with respect to training set size. Left upper
plot illustrates function of total number of distances TDist. Right upper plot reveals the number of
referenced time series r taken as a logarithmic function (base 2) from the training set. Bottom graph
shows change tendency of INDist (Formula 5.6) and LSDist (Formula 5.26).

use of hypersphere split operator F(S) is less distinct (from the best size, obtained
by FSTDT) than for those with hyperplane split operator F(H). For example, trees
obtained by LSTDT with F(S) on l2 dissimilarity measure are bigger only by 1%.
Though, one can note the algorithm explores the half of the number of explored split
candidates (46%). While LSTDT with F(H) assessed only 6% of split candidates
and yielded trees that are bigger by 14%. Again, joining two spit operators shows
positive impact on the size of trees, the difference between models of FSTDT and
LSTDT is about 5% for all dissimilarity measures.

Performance results of LSTDT models in terms of accuracy are consistently good
and do not deteriorate for all experiments. And with less than 50% of all distance
computations, the LSTDT algorithm is capable of yielding trees of comparable
size with those that were obtained by full search. In addition, since LSTDT is
the approximated version of FSTDT , which do not compute all distances and do
not evaluate all split candidates, it yields models faster than FSTDT . Depending
on the dissimilarity measure the algorithm works faster than full search by factor
from 2 to 4. The smallest running time improvement was obtained for (1 − Cortπ)

dissimilarity measure. It can be explained by the fact that it takes almost 10% more
distance computations, which comes together with the fact that this dissimilarity

107

measure has higher level of triangles inequality violations than DTW. As a consequence,
Conditions 5.10 and 5.11 for F(H) or Condition 5.15 do not hold leading to computation
of the exact distance between pair of time series.

To this end, we run experiments of both FSTDT and LSTDT models with using
the complete range of dissimilarity measures and with assessment of split candidates
generated from both operators F(H) and F(S). Results are provided in the Table 5.5.
With 30% of computed distances and only 2% of explored split candidates, we got
comparable results with respect to FSTDT trees. The size of trees is bigger by 9.8%

and accuracy is less than 1%. These results were obtained 9× faster than for FSTDT.
Note, that we employed the same function for LSDist that does not depend on the
number of dissimilarity measures that the algorithm uses. That explains the fact of
observing less number of distance computations in this experiment than for those
obtained previously (Tables 5.2 - 5.4).

The LSTDT algorithm provides solution for yielding trees that are close to those
built by using exhaustive search over split candidates space at each internal node. At
the same time it allows skipping a large amount of distance computations and split
candidates assessment. As we observe in the results of local search we examine in total
|F(H) +F(S)| candidates that is much less than total number, i.e., |F(H) +F(S)| �
N2 +N . Practically, by assessing only 2% (Table 5.5) of total number split candidates,
we obtained consistent positive results with compare to the full search.

Table 5.2: Results of LSTDT algorithm on 21 UCR datasets with l2 dissimilarity measure.
F(S) F(H) F(H)&F(S)

FS LS LS/FS FS LS LS/FS FS LS LS/FS

Internal nodes 864 870 101% 1321 1512 114% 803 841 105%
Distances 915 261 382 158 42% 915 261 343 511 38% 915 261 383 582 42%
Split candidates 46 074 21 033 46% 1 308 914 84 206 6% 1 354 988 112 176 8%
Running time (s) 1397 313 22% 286 135 47% 1350 406 30%
Accuracy (%) 70.9 71.1 100% 69.2 69.2 100% 71.0 71.4 101%

Table 5.3: Results of LSTDT algorithm on 21 UCR datasets with DTW dissimilarity measure.
F(S) F(H) F(H)&F(S)

FS LS LS/FS FS LS LS/FS FS LS LS/FS

Internal nodes 794 803 101% 1256 1451 116% 745 777 104%
Distances 915 261 381 085 42% 915 261 333 068 36% 915 261 396 053 43%
Split candidates 42 415 16 930 40% 1 376 071 68 495 5% 1 702 014 103 463 6%
Running time (s) 1359 284 21% 359 128 36% 1770 438 25%
Accuracy (%) 70.3 71.5 102% 69.9 70.0 100% 71.0 71.9 101%

On tuning LSDist. In the previous experiments, we set the parameter LSDist
as a function depending on the number of referenced time series r and size of input
set. In this part of experiments, we modify the equation of LSDist by adding two

108

Table 5.4: Results of LSTDT algorithm on 21 UCR datasets with (1−Cortπ) dissimilarity measure.
F(S) F(H) F(H)&F(S)

FS LS LS/FS FS LS LS/FS FS LS LS/FS

Internal nodes 871 904 104% 1440 1660 115% 836 880 105%
Distances 915 261 457 327 50% 915 261 384 825 42% 915 261 466 024 51%
Split candidates 44 386 22 900 52% 1 441 314 107 520 7% 1 632 606 145 464 9%
Running time (s) 1635 815 50% 635 364 57% 1789 1023 57%
Accuracy (%) 68.4 67.1 98% 65.7 65.2 99% 69.0 67.8 98%

Table 5.5: Results of LSTDT algorithm on 21 UCR datasets with Euclidean, DTW and (1−Cortπ)
dissimilarity measure.

F(H)&F(S)
FS LS LS/FS

Internal nodes 584 641 110%
Distances 2 745 783 816 459 30%
Split candidates 5 228 118 104 135 2%
Running time (s) 6222 704 11%
Accuracy (%) 75.2 74.6 99%

new terms. The first term is the number of used dissimilarity measures |d|. Each
additional distance measure requires distance matrix computation. Each seed split
candidate (tsL, tsR) ∈ F(H) or (tsL, θ) ∈ F(S) is generated for each distance d, thus
we need to allocate resources to explore vicinity of a pair given a distance d. In our
experiments this term is equal to 3, because we use Euclidean, DTW, (1 − Cortπ)

measures. The second term is the percentage of local search ps ∈ [0%, 100%]. We
introduce this parameter for two reasons:

1. to get rid of the explicit parameter on the exact number of distance computations
LSDist and provide a user with a “friendly” parameter of search level over split
candidate space;

2. to tune LSDist by navigating level of local search between initial search and
full search. The former explores only split candidates generated from randomly
picked r time series, the latter evaluates all possible split candidates.

The new equation of LSDist is defined as follows:

LSDist(r,N, ps, |d|) =
1

2
× ps× (N − r)× (N − 1)× |d| (5.27)

When ps is equal to 0, the algorithm has to examine only split candidates generated
from r time series. As we mentioned, we pick them randomly at each node of a tree,
so this case corresponds to the Initial search (Algorithm5.1), denoted as INS. By
increasing ps, the value of LSDist, which local search algorithm can use to examine

109

new split candidates, grows as well. Note, that the full search corresponds to the value
ps a little bit less than 100%, since there are distances that have been already computed
(INDist) to assess split candidates in Initial search. The number of referenced series
r is the same as in the previous experiments, r = log2(N).

Table 5.6: Results of LSTDT algorithm for different values of the percentage parameter ps for
LSDist. Values in parenthesis show the corresponding ratio value of LSTDT with respect to
FSTDT . Dissimilarity measures are l2, DTW , and (1− Cortπ).

F(H)&F(S)
INS 5% 10% 20% 30% 50% FS

Internal nodes 806 (138%) 718 (123%) 680 (116%) 637 (109%) 642 (110%) 628 (108%) 584
Distances 258K (9%) 729K (27%) 1.08M (39%) 1.59M (58%) 1.85M (68%) 2.2M (81%) 2.7M
Split candidates 23K (0.4%) 32K (0.6%) 90K (1.7%) 303K (5.8%) 585K (11.2%) 925K (17.7%) 5.2M
Running time (s) 302 (5%) 837 (13%) 1422 (23%) 3017 (48%) 5517 (89%) 9084 (146%) 6222
Accuracy (%) 73.1 (97%) 74.8 (99%) 75.5 (100%) 75.1 (100%) 75.5 (100%) 75.0 (100%) 75.2

Results are presented in the Table 5.6. We fixed parameter ps to be in the set
{0%, 5%, 10%, 20%, 30%, 50%}. As it will be shown shortly, going beyond a certain
value of ps, the LSTDT algorithm becomes inneficient. The last column contains
results of trees built using exhaustive search over split candidates space (FS). Trees
models built with the Initial search has the least accuracy (73.1%) and the number of
internal nodes increases by 38% in comparison with the full search. By increasing the
value of LSDist, results tend to improve. Figure 5.4, illustrates how the performance
of yielded trees improves with increase of LSDist. We have significant nodes reduction
in comparison with only Initial search for LSDist with a parameter ps equals to 5%,
10%, and 20%. The nearly optimal results with respect to the full search are obtained
for the values ps = 20%. There is no significant improvement neither in terms of
accuracy nor in terms of trees size for the value of 30% ≤ ps ≤ 50%. However, the
number of computed distances increases drastically from 57.8% to 80.5%, and we
observe almost three times rise in the number of split candidates (from 5.8% to 17.7%).
This point can be seen in the Figure 5.5, where the percentage of computed distances
and examined split candidates are illustrated for each setup of ps.

In addition, we observe overhead of the running time for results corresponding to
ps = 50%. The algorithm works 1.5 times slower than the full search FSTDT . To
analyse the obtained results and understand the reasons we factorized running time
for each step of local search algorithm. Briefly, they are

1. Initial Search (Algorithm5.1);

2. Local search split candidates exploration (Algorithms 5.2 and 5.4)

110

Table 5.7: Running time (in seconds) of each step of LSTDT algorithm for different values of the
percentage parameter ps for LSDist. Dissimilarity measures are l2, DTW , and (1− Cortπ).

F(H)&F(S)
INS 5% 10% 20% 30% 50%

Initial Search 302 312 302 279 260 266
Local Search 525 1120 2738 5257 8817

Seed List Sorting 2 24 395 1335 2532
LS F(S) 415 802 1130 1196 1535
LS F(H) 108 295 1213 2726 4750

Total 302 837 1422 3017 5517 9084

(a) Selection of seed candidate which vicinity will be explored (line 2 in Algo-
rithms 5.2 and 5.4);

(b) Exploration of split candidate (fH or fS) from the vicinity of seed candidate.

Running time in seconds of each step is shown in Table 5.7. The complexity of
the first step is O(r2N). The value of r is fixed for all experiments We observe
small variations in the execution time; since for each experiment the trees structure
is different and, as the result, the number of input time series in a node will be
different. It leads to different values of INDist which, in turn, explains the running
time variations. If we set r = N , the algorithm will generate all split candidates from
reference time series, and the Initial search will correspond to the FSTDT .

The complexity of the second step is O(LSDist logLSDist). When we increase
ps, the value of LSDist increases too and it explores a search space of split candidate
which almost the same as that of the full search. The step of local search becomes
costly with increase of ps, because evaluation of one split candidate is O(logLSDist),
the value that is greater than N . Beyond a certain value of ps (20%) employing
LSDist becomes inneficient both in terms of running time and the model performance
improvement.

Level of search in terms of distance computation can be defined by the user. While
in this experimental part we employed the parameter ps to regulate local search level,
in general it would be recommended to use global parameter of search. The search
level Slev ∈ [smin%, 100%] is the percentage of allowed search in the split candidate
space, which the algorithm converts to the exact number of distance computations.
Therefore, the minimum values of search level smin actually depends on r and equals
to INDist

TDist
%. The value of LSDist is the number of remaining distances allocated for

search after INDist substraction (LSDist = TDist × Slev − INDist). By tuning

111

100

110

120

130

140
In

te
rn

al
 n

od
es

, %
806

718
680

637 642
628

584

IN
S

5% 10
%

30
%

50
% FS

70

71

72

73

74

75

76

A
cc

ur
ac

y,
 %

Figure 5.4: Upper plot represents the percentage of internal nodes of trees obtained by LSTDT
with respect to FSTDT. Annotation of points corresponds to the number of internal nodes across
trees for 21 UCR dataset. Bottom plot shows results of accuracy obtained for each level of local
search. X-axis reveals different setups for input parameter ps indicating local search level. RS stands
for random search, FS stands for full search.

parameter Slev, a user can navigate between LSTDT and FSTDT algorithms. Notice
that when Slev = smin%, we end up with a tree built with Initial Search step of
LSTDT, because the best split is found from a random subset of split candidates. In
that case, it means that no other exploration of split candidates will be done, yet a
classification model is guaranteed, possibly without an optimal partition in a node.

112

20

40

60

80

100

D
is

ta
nc

es
, %

IN
S

5% 10
%

30
%

50
% FS

0

20

40

60

80

100

S
pl

it
ca

nd
id

at
es

, %

Figure 5.5: Upper plot shows the percentage of computed distances obtained with respect to total
number distances in the case of use FSTDT. Bottom plot shows the percentage of examined split
candidates by LSTDT with respect to FSTDT. X-axis reveals different setups for input parameter
ps indicating local search level. RS stands for random search, FS stands for full search.

5.5 Conclusion

In this chapter, we developed approximated algorithm of Multi-operator Temporal
Decision Trees with use of hyperplane and hypersphere split operators, called Local
Search Temporal Decision Trees (LSTDT). By employing triangle inequality and
bounds on distances between time series, we proposed local search of a node split for
hyperplane split operator F(H) with use of Euclidean distance. Then, we extended
the algorithm for hypersphere split operator F(S). To this end, by using the weak
triangle inequality, we showed that the algorithm can be generalized for non static
time series dissimilarity measures, such as DTW and (1−Cortπ). Experimental results
show that it is possible to eliminate evaluation of the majority of split candidates,
while keeping yielded trees interpretable and accurate.

The proposed algorithm enables a user to maintain the level of search over space of
split candidates via an input parameter on the allowed distance computations LSDist.
It provides flexibility on training time of the model which depends on a domain
expert requirements. By setting LSDist to a small value, one can train quickly a tree
model in order to get the first classification results and start analyzing them. Then,
depending on the further needs, LSDist can be increased, and another more accurate
model can be yielded. However, with large values of LSDist, the algorithm becomes

113

inneficient and, in this case, it is more efficient to switch to the original Full Search
algorithm. In the next chapter, we address the problem of emphasizing discriminative
subinterval in split time series.

114

Chapter 6

Weighted Temporal Decision Trees

Contents
6.1 Introduction . 116

6.2 Time series weighting algorithms 117

6.2.1 Generative weighting algorithm: Between-Within discrimi-
nant criterion . 117

6.2.2 Generative weighting algorithm: MAP classifier 120

6.2.3 Weighting algorithm with Linear SVM 123

6.3 Application of weights to similarity computation 125

6.3.1 Euclidean dissimilarity . 125

6.3.2 DTW dissimilarity . 126

6.3.3 (1− Cortπ) dissimilarity . 127

6.4 Empirical study . 127

6.4.1 Synthetic dataset . 129

6.4.2 Weighted Multi-operator Temporal Decision Trees. 130

6.5 Conclusion . 133

Trees which are built by MTDT with hyperplane and hypersphere split operators
uses the entire time series. Best splits in a node are chosen by optimizing Gini class
homogeneity criterion. Assignment of time series to each sub-node is based on its
global similarity to a whole split time series. However, it can occur that some parts
of time series are more discriminative than others. Similarity computation that is
done on the entire time interval is not able to capture this information. In order to
emphasize class distinguishing local parts of time series, we propose to weight each
timestamp, according to its discriminative power.

In this chapter, we propose three different approaches to find a weight vector
for each time series from the training set, computation of each of them depends on

115

the employed dissimilarity measure. We show, how to compute a weights vector
using measures of different originality (static or dynamic, value or shape based). We
present how to embed a weight vector to time series similarity computation. Then, we
enrich input set of time series by its weighted version and feed it into Multioperator
Temporal Decision Trees. The algorithm is called Weighted Multioperator Temporal
Decision Trees (WMTDT). To this end, we provide empirical study of weights impact
on accuracy and interpretability of yielded models by WMTDT. We conclude this
chapter by discussing the results obtained by the proposed methods, explaining the
pros and the cons of different weighting approaches.

6.1 Introduction

There are several objectives of finding a weight vector for a time series, which are
reinforcing dicriminative features, improving the classification accuracy of a model and
providing a user with complementary information about underlying class distinguishing
patterns. The latter can be done by visual rendering of a time series weight vector,
that aims at facilitating data understanding.

In the literature, there are few works where the authors addressed the problem
of learning weights for time series. To the best of our knowledge, in [27, 28], several
time series weighting strategies are discussed based on the learnt multiple temporal
alignments for time series discrimination. In [93] , a locally weighting scheme is learned
to discriminate time series on their neighborhood and enhance kNN classifier, whereas
Soheily-Khah et al. [81] propose a generalized k-means-based clustering for temporal
data under weighted and kernel time warp measures.

Let (TS,Y) be the training set of labelled time series and tsr be a time series for
which we aim to find a weight vector. Assume that the length of tsr is m and its class

label is yr. A weight vector w is defined as w = {w1, . . . , wm} with
m∑
t=1

wt = 1 where

each entity wt ≥ 0 is a positive value at a given timestamp t ∈ 1,m.
Until generalization to dynamic dissimilarity measures DTW and (1− Cortπ), we

employ the Euclidean distance l2. From a pairwise distance computation between tsr
and time series from the training set, one can extract distance values at each timestamp
t ∈ 1,m. Let us consider for each timestamp t, the set {(dt(1,r), y1), . . . , (dt(N,r), yN)} ∈
(R × Y)N , where yi ∈ Y is a class label of a time series tsi ∈ TS and dti,r is the
distance between tsr and tsi. This set can be divided into K subsets, denoted as
Dt
k with k ∈ {1, . . . , K}, labeled according the label values Y. We consider that a

116

timestamp t has discriminative power if classes represented by values of time series
are well separated one from other. To rephrase, given a distance measure d and a
pair of classes j, k ∈ Y , j 6= k, we say that values of Dt

k are different from Dt
j. The

more they are different, the greater the importance of this timestamp, and it has to
be emphasized during a time series similarity computation. Therefore, we aim to
measure the level of classes separability in order to assign a weight to each timestamp t.
Then, by incorporating weights to a distance value computation, will allow capturing
discriminative local parts of time series.

In forthcoming sections, we address the problem of weight value computation
for each timestamp t of an observed time series. In Section 6.2 we introduce three
approaches to find a weight vector of a time series ts from TS. Section 6.3 provides
formalization of weighted distance measures to compute similarity between weighted
time series. In Section 6.4 we augment training set of time series by its weighted
version and use it within Multi-operator Temporal Decision Trees (MTDT).

6.2 Time series weighting algorithms

6.2.1 Generative weighting algorithm: Between-Within dis-
criminant criterion

Let pt(d|k) be the class-conditional density of pointwise distance values dt(i,r) of
elements Dt

k. The proposed algorithm of finding a weight vector is based on the
statistical assumption that class-conditional distribution law pt(d|k) follows Gaussian
law with parameters µtk, (σtk)2; N (µtk, (σ

t
k)

2). We can get unbiased estimation of these
parameters for each class k ∈ Y from the set Dt

k.
We can consider that for each timestamp t the class of label k is represented by the

scalar values {dt(i,r), yi = k}Nt
k
. Are these classes confused or well separated? The more

separated they are, the more discriminative power a timestamp t has, hence the higher
weights value must be assigned to it. In order to assign weights to timestamps, we use
ratio of between class variance to within class variance, which is commonly used to
quantify the separability of classes. Recall that at each timestamp t values dt(i,r) have
been divided into K classes Dt

k, following the label of timestamps. Each class contains
N t
k elements that can be described by its density law pt(d|k). We assume that this law

is Gaussian, with mean µtk = 1
Nk

∑
i:dti,r∈Dtk

dti,r and variance (σtk)
2 = 1

Nk

∑
i:dti,r∈Dtk

(dti,r−µtk)2.

117

6.2.1.1 Generic BW

In the following proposed formula for a weight computation, we focus on separability
between all classes at once. That is to say, a high weight value must be assigned to
a timestamp at which classes are maximally spread out. A weight value wt can be
computed as quotient:

wBW
t =

∑
k∈Y

Φt
k(µ

t
k − µt)2

∑
k∈Y

Φt
k(σ

t
k)

2
, (6.1)

where

Φt
k =

(N t
k)

1−λ∑
k∈Y

(N t
k)

1−λ
, λ ∈ [0, 1] (6.2)

with
J∑
k=1

Φt
k = 1 and µt =

∑
k∈Y

Φt
kµ

t
k is a weighted pooled mean of distance values

between a time series tsr and the rest of the training set TS at a timestamp t. A
constant λ in the class proportion parameter Φt

k is devoted to regularization of the
class importance. By fixing λ = 0, the importance of each class in the Equation 6.1
is defined by the proportion of examples Nt

k

Nt comprised in the training set at given
timestamp t. Note, that the number of distance values we use to compute a weight
t can vary at each timestamp and depends on the dissimilarity measure we employ
(static or dynamic), that is why the term Φt

k depends on t. The value of λ = 1 leads
to a uniform importance of each class in the computation of weights regardless of
the number examples, Φt

k = 1
|Y| . In case of highly unbalanced dataset, penalization

of the biggest class influence on a weight computation is possible by setting λ = 0.5.
A weight wt takes its maximum values when between classes variance is high, while
within variance is small, indicating class compactness, i.e., classes at timestamp t are
well separated from each other. Equation 6.1 can capture the case where classes are
diffused but separable. This approach is limited to the cases when noisy data lies
far away from a class centroid leading to the increase of the within class variance.
When some classes are represented by multimodal distribution, the estimation of its
mean and variance will be poor, and the approach will not be capable of measuring
separability correctly.

In the proposed formula of weight computation, we do not employ the information
about the class label of the time series tsr. A weight value represents a general level of

118

class separability. That is to say, it gives no information about which pair of classes are
separable or not in the multiclass scenario. For example, in a three-class classification
problem Y = {1, 2, 3} and timestamps t and (t+ q), q ∈ [1,m− t] can be weighted by
a similar value wt u w(t+q). Whereas at t, class 1 is well separated from others and at
(t+ q) class 2 is well separated from others. Classification of a new time series using
split, which contains a time series tsr, will use simultaneously wt and w(t+q), even if
they do not represent the same separability information. However, using weighted
split time series, where weights consistently represent separability of class 1 from
others (or class 1 and 2 from others), will orient the partition in a node as follows:
one sub-node will contain series of class 1 (or class 1 and 2), and the another node
series of other classes. Therefore, we are expecting to get purer node partition and, as
the result, better accuracy when a split contains weighted time series, where weight
values convey the same discriminative information.

6.2.1.2 Class dependent BW

To cope with the last mentioned problem of possible timestamps class separability
clashing in one weight vector, we propose a modification of the previously defined
formula. Picking a time series tsr and its class yr ∈ Y, we aim to compute the level
of separability of this class from others. This change in the initial formula preserves
consistency of information about which classes are discriminated across all timestamps.
Basically, a class label of a time series tsr works as a referenced one. We still measure
general level of class label separability, but with respect to yr. Each value wt of a weight
vector w reveals the cumulative level of separability of class yr from all the others. We
keep focus on aggregated discriminativeness of each class pair (yr, k), yr 6= k.

Taking into account these factors we modify and simplify the Equation 6.1 into its
referenced-versus-one class (RVO) variant, which allows preserving consistency along
timestamps of a weighted time series tswr . The formula to compute a weight value is
defined as follows:

wBW−RVO
t =

∑
k∈Y,k 6=yr

Φt
k

|µtyr − µtk|
σtyr + σtk

, (6.3)

Equation 6.3 computes accumulated level of separability of class yr from all other
classes k ∈ Y. Computational complexity of calculating the weight vector of BW
approach using Equation 6.1 and 6.3 is O(mN |Y|) for one time series, where m is the
length of time series. Equation 6.3 mitigates the problem when each weight value
could convey contradictory information about which classes are separable.

119

6.2.2 Generative weighting algorithm: MAP classifier

In the previously introduced approach, weights are computed from empirical data TS

and their values are not bounded above, i.e., wt ∈ (0,+∞). As the result, a weight
value measures absolute class separability at given timestamp t and it is difficult to
compare importance of different timestamps. That is to say, if wt � w′t, then at most
we can conclude that at a timestamp t′ classes are more separable than at timestamp t,
not being able to say to what extent. To overcome this problem, we propose the second
algorithm, which outputs a weight value lying in the range of (0, 1). Computational
logic is based on Maximum a Posteriori (MAP) classifier error. We keep the assumption
about Gaussianity over class distribution pt(d|k) ∼ N (µtk, (σ

2
k)
t), k ∈ Y. From the

data {(dt(1,r), y1), . . . , (dt(N,r), yN)}, we can estimate µtk and (σ2
k)
t for each class k ∈ Y.

Then, for each time series tsi ∈ TS, we have a prior probability pt(dt(i,r)|k) at a given
timestamp t to be assigned to one of a class k ∈ Y. Hence, the predicted value is
defined as:

ŷi = argmax
k

pt(k|dt(i,r)) = argmax
k

pt(k)pt(dt(i,r)|k). (6.4)

The higher the number of examples that is classified correctly (ŷi = yi), the
higher class separability level at a timestamp t is. Therefore, classification accuracy
rate at a given timestamp t can be considered as a weight value. We propose to
calculate the error rate of the MAP classifier method by computing the cumulative
probability of missclassification. A point dt(i,r) is correctly classified if its predicted
class ŷi (Equation 6.4) is the true class label of a time series tsi. The probability to
have a correct classifier is pt(ŷi = yi). More precisely, the probability to correctly
classify elements of a class k ∈ Y is pt(ŷ = k and y = k). It is exactly the value∫

z|ŷ=k

pt(k)pt(z|k)dz.

The probability to missclassify elements of class k is equal to

1−
∫
z|ŷ=k

pt(k)pt(z|k)dz.

While the probability of assigning elements of class k to class j is∫
z|ŷ=j

pt(k)pt(z|k)dz.

120

x1,2

E t
yr,+

<latexit sha1_base64="8oZJ3OUWhu6uXc5aPsVRWw893Fg=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiCEpJiqDLogguK9gHtDFMptN26OTBzEQIMQt/xY0LRdz6G+78GydtFlo9MHA4517umeNFnEllWV9GaWFxaXmlvFpZW9/Y3DK3d9oyjAWhLRLyUHQ9LClnAW0ppjjtRoJi3+O0400uc79zT4VkYXCrkog6Ph4FbMgIVlpyzb2+j9WYYJ5eZW6auOIEHWd3yjWrVs2aAv0ldkGqUKDpmp/9QUhinwaKcCxlz65HykmxUIxwmlX6saQRJhM8oj1NA+xT6aTT/Bk61MoADUOhX6DQVP25kWJfysT39GSeVs57ufif14vV8NxJWRDFigZkdmgYc6RClJeBBkxQoniiCSaC6ayIjLHAROnKKroEe/7Lf0m7XrOtmn1zWm1cFHWUYR8O4AhsOIMGXEMTWkDgAZ7gBV6NR+PZeDPeZ6Mlo9jZhV8wPr4BvOKV5g==</latexit><latexit sha1_base64="8oZJ3OUWhu6uXc5aPsVRWw893Fg=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiCEpJiqDLogguK9gHtDFMptN26OTBzEQIMQt/xY0LRdz6G+78GydtFlo9MHA4517umeNFnEllWV9GaWFxaXmlvFpZW9/Y3DK3d9oyjAWhLRLyUHQ9LClnAW0ppjjtRoJi3+O0400uc79zT4VkYXCrkog6Ph4FbMgIVlpyzb2+j9WYYJ5eZW6auOIEHWd3yjWrVs2aAv0ldkGqUKDpmp/9QUhinwaKcCxlz65HykmxUIxwmlX6saQRJhM8oj1NA+xT6aTT/Bk61MoADUOhX6DQVP25kWJfysT39GSeVs57ufif14vV8NxJWRDFigZkdmgYc6RClJeBBkxQoniiCSaC6ayIjLHAROnKKroEe/7Lf0m7XrOtmn1zWm1cFHWUYR8O4AhsOIMGXEMTWkDgAZ7gBV6NR+PZeDPeZ6Mlo9jZhV8wPr4BvOKV5g==</latexit><latexit sha1_base64="8oZJ3OUWhu6uXc5aPsVRWw893Fg=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiCEpJiqDLogguK9gHtDFMptN26OTBzEQIMQt/xY0LRdz6G+78GydtFlo9MHA4517umeNFnEllWV9GaWFxaXmlvFpZW9/Y3DK3d9oyjAWhLRLyUHQ9LClnAW0ppjjtRoJi3+O0400uc79zT4VkYXCrkog6Ph4FbMgIVlpyzb2+j9WYYJ5eZW6auOIEHWd3yjWrVs2aAv0ldkGqUKDpmp/9QUhinwaKcCxlz65HykmxUIxwmlX6saQRJhM8oj1NA+xT6aTT/Bk61MoADUOhX6DQVP25kWJfysT39GSeVs57ufif14vV8NxJWRDFigZkdmgYc6RClJeBBkxQoniiCSaC6ayIjLHAROnKKroEe/7Lf0m7XrOtmn1zWm1cFHWUYR8O4AhsOIMGXEMTWkDgAZ7gBV6NR+PZeDPeZ6Mlo9jZhV8wPr4BvOKV5g==</latexit><latexit sha1_base64="zOF3cN90w0v+1BNfDkwdbkTS4fU=">AAAB2XicbZBLSwMxFIXv1Fcdq9a1m2ARXJWZbnQpuHFZwT6gHUomc6cNzWSG5I5QSv+ACzci/i93/hvTx0JbDwQ+zknIvSculLQUBN9eZW//4PCoeuyf1PzTs/N6rWvz0gjsiFzlph9zi0pq7JAkhf3CIM9ihb14+rDMey9orMz1M80KjDI+1jKVgpOz2qN6I2gGK7FdCDfQgI1G9a9hkosyQ01CcWsHYaugaM4NSaFw4Q9LiwUXUz7GgUPNM7TRfDXmgl07J2FpbtzRxFbu7xdznlk7y2J3M+M0sdvZ0vwvG5SU3kVzqYuSUIv1R2mpGOVsuTNLpEFBauaACyPdrExMuOGCXDO+6yDc3ngXuq1mGDTDpwCqcAlXcAMh3MI9PEIbOiAggVd49ybem/ex7qribUq7gD/yPn8AOyqKOg==</latexit><latexit sha1_base64="n4FZCcv8uiIWI42URSYsIBmHjeA=">AAAB9HicbVBNS8NAFHzxs9aq0YMXL4tFEJSS9KJHQQSPFewHtDFstpt26WYTdjdCiDn4V7x4UMTf4s1/46btQVsHFoaZ93izEyScKe0439bK6tr6xmZlq7pd29nds/drHRWnktA2iXksewFWlDNB25ppTnuJpDgKOO0Gk+vS7z5SqVgs7nWWUC/CI8FCRrA2km8fDiKsxwTz/Kbw88yX5+iseNC+XXcazhRombhzUoc5Wr79NRjGJI2o0IRjpfpuM9FejqVmhNOiOkgVTTCZ4BHtGypwRJWXT/MX6MQoQxTG0jyh0VT9vZHjSKksCsxkmVYteqX4n9dPdXjp5UwkqaaCzA6FKUc6RmUZaMgkJZpnhmAimcmKyBhLTLSprGpKcBe/vEw6zYbrNNw7BypwBMdwCi5cwBXcQgvaQOAJXuAN3q1n69X6mNW1Ys17O4A/sD5/AEpQlHw=</latexit><latexit sha1_base64="n4FZCcv8uiIWI42URSYsIBmHjeA=">AAAB9HicbVBNS8NAFHzxs9aq0YMXL4tFEJSS9KJHQQSPFewHtDFstpt26WYTdjdCiDn4V7x4UMTf4s1/46btQVsHFoaZ93izEyScKe0439bK6tr6xmZlq7pd29nds/drHRWnktA2iXksewFWlDNB25ppTnuJpDgKOO0Gk+vS7z5SqVgs7nWWUC/CI8FCRrA2km8fDiKsxwTz/Kbw88yX5+iseNC+XXcazhRombhzUoc5Wr79NRjGJI2o0IRjpfpuM9FejqVmhNOiOkgVTTCZ4BHtGypwRJWXT/MX6MQoQxTG0jyh0VT9vZHjSKksCsxkmVYteqX4n9dPdXjp5UwkqaaCzA6FKUc6RmUZaMgkJZpnhmAimcmKyBhLTLSprGpKcBe/vEw6zYbrNNw7BypwBMdwCi5cwBXcQgvaQOAJXuAN3q1n69X6mNW1Ys17O4A/sD5/AEpQlHw=</latexit><latexit sha1_base64="QWTiLcWrVtd47hhqKFZBrm1rTrA=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiCEpJutFlUQSXFewD2hgm00k7dPJgZiKUmIW/4saFIm79DXf+jZM2C209MHA4517umePFnEllWd9GaWl5ZXWtvF7Z2Nza3jF399oySgShLRLxSHQ9LClnIW0ppjjtxoLiwOO0442vcr/zQIVkUXinJjF1AjwMmc8IVlpyzYN+gNWIYJ5eZ246ccUZOs3ulWtWrZo1BVokdkGqUKDpml/9QUSSgIaKcCxlz67HykmxUIxwmlX6iaQxJmM8pD1NQxxQ6aTT/Bk61soA+ZHQL1Roqv7eSHEg5STw9GSeVs57ufif10uUf+GkLIwTRUMyO+QnHKkI5WWgAROUKD7RBBPBdFZERlhgonRlFV2CPf/lRdKu12yrZt9a1cZlUUcZDuEITsCGc2jADTShBQQe4Rle4c14Ml6Md+NjNloyip19+APj8we7opXi</latexit><latexit sha1_base64="8oZJ3OUWhu6uXc5aPsVRWw893Fg=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiCEpJiqDLogguK9gHtDFMptN26OTBzEQIMQt/xY0LRdz6G+78GydtFlo9MHA4517umeNFnEllWV9GaWFxaXmlvFpZW9/Y3DK3d9oyjAWhLRLyUHQ9LClnAW0ppjjtRoJi3+O0400uc79zT4VkYXCrkog6Ph4FbMgIVlpyzb2+j9WYYJ5eZW6auOIEHWd3yjWrVs2aAv0ldkGqUKDpmp/9QUhinwaKcCxlz65HykmxUIxwmlX6saQRJhM8oj1NA+xT6aTT/Bk61MoADUOhX6DQVP25kWJfysT39GSeVs57ufif14vV8NxJWRDFigZkdmgYc6RClJeBBkxQoniiCSaC6ayIjLHAROnKKroEe/7Lf0m7XrOtmn1zWm1cFHWUYR8O4AhsOIMGXEMTWkDgAZ7gBV6NR+PZeDPeZ6Mlo9jZhV8wPr4BvOKV5g==</latexit><latexit sha1_base64="8oZJ3OUWhu6uXc5aPsVRWw893Fg=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiCEpJiqDLogguK9gHtDFMptN26OTBzEQIMQt/xY0LRdz6G+78GydtFlo9MHA4517umeNFnEllWV9GaWFxaXmlvFpZW9/Y3DK3d9oyjAWhLRLyUHQ9LClnAW0ppjjtRoJi3+O0400uc79zT4VkYXCrkog6Ph4FbMgIVlpyzb2+j9WYYJ5eZW6auOIEHWd3yjWrVs2aAv0ldkGqUKDpmp/9QUhinwaKcCxlz65HykmxUIxwmlX6saQRJhM8oj1NA+xT6aTT/Bk61MoADUOhX6DQVP25kWJfysT39GSeVs57ufif14vV8NxJWRDFigZkdmgYc6RClJeBBkxQoniiCSaC6ayIjLHAROnKKroEe/7Lf0m7XrOtmn1zWm1cFHWUYR8O4AhsOIMGXEMTWkDgAZ7gBV6NR+PZeDPeZ6Mlo9jZhV8wPr4BvOKV5g==</latexit><latexit sha1_base64="8oZJ3OUWhu6uXc5aPsVRWw893Fg=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiCEpJiqDLogguK9gHtDFMptN26OTBzEQIMQt/xY0LRdz6G+78GydtFlo9MHA4517umeNFnEllWV9GaWFxaXmlvFpZW9/Y3DK3d9oyjAWhLRLyUHQ9LClnAW0ppjjtRoJi3+O0400uc79zT4VkYXCrkog6Ph4FbMgIVlpyzb2+j9WYYJ5eZW6auOIEHWd3yjWrVs2aAv0ldkGqUKDpmp/9QUhinwaKcCxlz65HykmxUIxwmlX6saQRJhM8oj1NA+xT6aTT/Bk61MoADUOhX6DQVP25kWJfysT39GSeVs57ufif14vV8NxJWRDFigZkdmgYc6RClJeBBkxQoniiCSaC6ayIjLHAROnKKroEe/7Lf0m7XrOtmn1zWm1cFHWUYR8O4AhsOIMGXEMTWkDgAZ7gBV6NR+PZeDPeZ6Mlo9jZhV8wPr4BvOKV5g==</latexit><latexit sha1_base64="8oZJ3OUWhu6uXc5aPsVRWw893Fg=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiCEpJiqDLogguK9gHtDFMptN26OTBzEQIMQt/xY0LRdz6G+78GydtFlo9MHA4517umeNFnEllWV9GaWFxaXmlvFpZW9/Y3DK3d9oyjAWhLRLyUHQ9LClnAW0ppjjtRoJi3+O0400uc79zT4VkYXCrkog6Ph4FbMgIVlpyzb2+j9WYYJ5eZW6auOIEHWd3yjWrVs2aAv0ldkGqUKDpmp/9QUhinwaKcCxlz65HykmxUIxwmlX6saQRJhM8oj1NA+xT6aTT/Bk61MoADUOhX6DQVP25kWJfysT39GSeVs57ufif14vV8NxJWRDFigZkdmgYc6RClJeBBkxQoniiCSaC6ayIjLHAROnKKroEe/7Lf0m7XrOtmn1zWm1cFHWUYR8O4AhsOIMGXEMTWkDgAZ7gBV6NR+PZeDPeZ6Mlo9jZhV8wPr4BvOKV5g==</latexit><latexit sha1_base64="8oZJ3OUWhu6uXc5aPsVRWw893Fg=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiCEpJiqDLogguK9gHtDFMptN26OTBzEQIMQt/xY0LRdz6G+78GydtFlo9MHA4517umeNFnEllWV9GaWFxaXmlvFpZW9/Y3DK3d9oyjAWhLRLyUHQ9LClnAW0ppjjtRoJi3+O0400uc79zT4VkYXCrkog6Ph4FbMgIVlpyzb2+j9WYYJ5eZW6auOIEHWd3yjWrVs2aAv0ldkGqUKDpmp/9QUhinwaKcCxlz65HykmxUIxwmlX6saQRJhM8oj1NA+xT6aTT/Bk61MoADUOhX6DQVP25kWJfysT39GSeVs57ufif14vV8NxJWRDFigZkdmgYc6RClJeBBkxQoniiCSaC6ayIjLHAROnKKroEe/7Lf0m7XrOtmn1zWm1cFHWUYR8O4AhsOIMGXEMTWkDgAZ7gBV6NR+PZeDPeZ6Mlo9jZhV8wPr4BvOKV5g==</latexit><latexit sha1_base64="8oZJ3OUWhu6uXc5aPsVRWw893Fg=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiCEpJiqDLogguK9gHtDFMptN26OTBzEQIMQt/xY0LRdz6G+78GydtFlo9MHA4517umeNFnEllWV9GaWFxaXmlvFpZW9/Y3DK3d9oyjAWhLRLyUHQ9LClnAW0ppjjtRoJi3+O0400uc79zT4VkYXCrkog6Ph4FbMgIVlpyzb2+j9WYYJ5eZW6auOIEHWd3yjWrVs2aAv0ldkGqUKDpmp/9QUhinwaKcCxlz65HykmxUIxwmlX6saQRJhM8oj1NA+xT6aTT/Bk61MoADUOhX6DQVP25kWJfysT39GSeVs57ufif14vV8NxJWRDFigZkdmgYc6RClJeBBkxQoniiCSaC6ayIjLHAROnKKroEe/7Lf0m7XrOtmn1zWm1cFHWUYR8O4AhsOIMGXEMTWkDgAZ7gBV6NR+PZeDPeZ6Mlo9jZhV8wPr4BvOKV5g==</latexit>

E t
yr,�

<latexit sha1_base64="FryaBlK4UQ9lRNgODtWv3emhg88=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiuNCSFEGXRRFcVrAPaGOYTKft0MmDmYkQYhb+ihsXirj1N9z5N07aLLR6YOBwzr3cM8eLOJPKsr6M0sLi0vJKebWytr6xuWVu77RlGAtCWyTkoeh6WFLOAtpSTHHajQTFvsdpx5tc5n7nngrJwuBWJRF1fDwK2JARrLTkmnt9H6sxwTy9ytw0ccUxOsnulGtWrZo1BfpL7IJUoUDTNT/7g5DEPg0U4VjKnl2PlJNioRjhNKv0Y0kjTCZ4RHuaBtin0kmn+TN0qJUBGoZCv0ChqfpzI8W+lInv6ck8rZz3cvE/rxer4bmTsiCKFQ3I7NAw5kiFKC8DDZigRPFEE0wE01kRGWOBidKVVXQJ9vyX/5J2vWZbNfvmtNq4KOoowz4cwBHYcAYNuIYmtIDAAzzBC7waj8az8Wa8z0ZLRrGzC79gfHwDv/CV6A==</latexit><latexit sha1_base64="FryaBlK4UQ9lRNgODtWv3emhg88=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiuNCSFEGXRRFcVrAPaGOYTKft0MmDmYkQYhb+ihsXirj1N9z5N07aLLR6YOBwzr3cM8eLOJPKsr6M0sLi0vJKebWytr6xuWVu77RlGAtCWyTkoeh6WFLOAtpSTHHajQTFvsdpx5tc5n7nngrJwuBWJRF1fDwK2JARrLTkmnt9H6sxwTy9ytw0ccUxOsnulGtWrZo1BfpL7IJUoUDTNT/7g5DEPg0U4VjKnl2PlJNioRjhNKv0Y0kjTCZ4RHuaBtin0kmn+TN0qJUBGoZCv0ChqfpzI8W+lInv6ck8rZz3cvE/rxer4bmTsiCKFQ3I7NAw5kiFKC8DDZigRPFEE0wE01kRGWOBidKVVXQJ9vyX/5J2vWZbNfvmtNq4KOoowz4cwBHYcAYNuIYmtIDAAzzBC7waj8az8Wa8z0ZLRrGzC79gfHwDv/CV6A==</latexit><latexit sha1_base64="FryaBlK4UQ9lRNgODtWv3emhg88=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiuNCSFEGXRRFcVrAPaGOYTKft0MmDmYkQYhb+ihsXirj1N9z5N07aLLR6YOBwzr3cM8eLOJPKsr6M0sLi0vJKebWytr6xuWVu77RlGAtCWyTkoeh6WFLOAtpSTHHajQTFvsdpx5tc5n7nngrJwuBWJRF1fDwK2JARrLTkmnt9H6sxwTy9ytw0ccUxOsnulGtWrZo1BfpL7IJUoUDTNT/7g5DEPg0U4VjKnl2PlJNioRjhNKv0Y0kjTCZ4RHuaBtin0kmn+TN0qJUBGoZCv0ChqfpzI8W+lInv6ck8rZz3cvE/rxer4bmTsiCKFQ3I7NAw5kiFKC8DDZigRPFEE0wE01kRGWOBidKVVXQJ9vyX/5J2vWZbNfvmtNq4KOoowz4cwBHYcAYNuIYmtIDAAzzBC7waj8az8Wa8z0ZLRrGzC79gfHwDv/CV6A==</latexit><latexit sha1_base64="FryaBlK4UQ9lRNgODtWv3emhg88=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiuNCSFEGXRRFcVrAPaGOYTKft0MmDmYkQYhb+ihsXirj1N9z5N07aLLR6YOBwzr3cM8eLOJPKsr6M0sLi0vJKebWytr6xuWVu77RlGAtCWyTkoeh6WFLOAtpSTHHajQTFvsdpx5tc5n7nngrJwuBWJRF1fDwK2JARrLTkmnt9H6sxwTy9ytw0ccUxOsnulGtWrZo1BfpL7IJUoUDTNT/7g5DEPg0U4VjKnl2PlJNioRjhNKv0Y0kjTCZ4RHuaBtin0kmn+TN0qJUBGoZCv0ChqfpzI8W+lInv6ck8rZz3cvE/rxer4bmTsiCKFQ3I7NAw5kiFKC8DDZigRPFEE0wE01kRGWOBidKVVXQJ9vyX/5J2vWZbNfvmtNq4KOoowz4cwBHYcAYNuIYmtIDAAzzBC7waj8az8Wa8z0ZLRrGzC79gfHwDv/CV6A==</latexit>

pt(d|1)p(1)
<latexit sha1_base64="xgXKMSfQTqVkGn6nhtt5t4xdNTc=">AAAB83icbVBNTwIxEJ3FL8Qv1KOXRmICF7IlJnokevGIiYAJrKTb7UJDd7dpuyZk5W948aAxXv0z3vw3FtiDgi+Z5OW9mczM86Xg2rjut1NYW9/Y3Cpul3Z29/YPyodHHZ2kirI2TUSi7n2imeAxaxtuBLuXipHIF6zrj69nfveRKc2T+M5MJPMiMox5yCkxVurLB1MNnnBNVnFtUK64dXcOtEpwTiqQozUof/WDhKYRiw0VROsebkjjZUQZTgWblvqpZpLQMRmynqUxiZj2svnNU3RmlQCFibIVGzRXf09kJNJ6Evm2MyJmpJe9mfif10tNeOllPJapYTFdLApTgUyCZgGggCtGjZhYQqji9lZER0QRamxMJRsCXn55lXQadezW8e15pXmVx1GEEziFKmC4gCbcQAvaQEHCM7zCm5M6L86787FoLTj5zDH8gfP5A0+ykIo=</latexit><latexit sha1_base64="xgXKMSfQTqVkGn6nhtt5t4xdNTc=">AAAB83icbVBNTwIxEJ3FL8Qv1KOXRmICF7IlJnokevGIiYAJrKTb7UJDd7dpuyZk5W948aAxXv0z3vw3FtiDgi+Z5OW9mczM86Xg2rjut1NYW9/Y3Cpul3Z29/YPyodHHZ2kirI2TUSi7n2imeAxaxtuBLuXipHIF6zrj69nfveRKc2T+M5MJPMiMox5yCkxVurLB1MNnnBNVnFtUK64dXcOtEpwTiqQozUof/WDhKYRiw0VROsebkjjZUQZTgWblvqpZpLQMRmynqUxiZj2svnNU3RmlQCFibIVGzRXf09kJNJ6Evm2MyJmpJe9mfif10tNeOllPJapYTFdLApTgUyCZgGggCtGjZhYQqji9lZER0QRamxMJRsCXn55lXQadezW8e15pXmVx1GEEziFKmC4gCbcQAvaQEHCM7zCm5M6L86787FoLTj5zDH8gfP5A0+ykIo=</latexit><latexit sha1_base64="xgXKMSfQTqVkGn6nhtt5t4xdNTc=">AAAB83icbVBNTwIxEJ3FL8Qv1KOXRmICF7IlJnokevGIiYAJrKTb7UJDd7dpuyZk5W948aAxXv0z3vw3FtiDgi+Z5OW9mczM86Xg2rjut1NYW9/Y3Cpul3Z29/YPyodHHZ2kirI2TUSi7n2imeAxaxtuBLuXipHIF6zrj69nfveRKc2T+M5MJPMiMox5yCkxVurLB1MNnnBNVnFtUK64dXcOtEpwTiqQozUof/WDhKYRiw0VROsebkjjZUQZTgWblvqpZpLQMRmynqUxiZj2svnNU3RmlQCFibIVGzRXf09kJNJ6Evm2MyJmpJe9mfif10tNeOllPJapYTFdLApTgUyCZgGggCtGjZhYQqji9lZER0QRamxMJRsCXn55lXQadezW8e15pXmVx1GEEziFKmC4gCbcQAvaQEHCM7zCm5M6L86787FoLTj5zDH8gfP5A0+ykIo=</latexit><latexit sha1_base64="xgXKMSfQTqVkGn6nhtt5t4xdNTc=">AAAB83icbVBNTwIxEJ3FL8Qv1KOXRmICF7IlJnokevGIiYAJrKTb7UJDd7dpuyZk5W948aAxXv0z3vw3FtiDgi+Z5OW9mczM86Xg2rjut1NYW9/Y3Cpul3Z29/YPyodHHZ2kirI2TUSi7n2imeAxaxtuBLuXipHIF6zrj69nfveRKc2T+M5MJPMiMox5yCkxVurLB1MNnnBNVnFtUK64dXcOtEpwTiqQozUof/WDhKYRiw0VROsebkjjZUQZTgWblvqpZpLQMRmynqUxiZj2svnNU3RmlQCFibIVGzRXf09kJNJ6Evm2MyJmpJe9mfif10tNeOllPJapYTFdLApTgUyCZgGggCtGjZhYQqji9lZER0QRamxMJRsCXn55lXQadezW8e15pXmVx1GEEziFKmC4gCbcQAvaQEHCM7zCm5M6L86787FoLTj5zDH8gfP5A0+ykIo=</latexit>

pt(d|2)p(2)
<latexit sha1_base64="2y06n/nCAF7unX6WBfGo1yQUYpw=">AAAB83icbVBNTwIxEO3iF+IX6tFLIzGBC9klJnokevGIiYAJrKTb7UJDt9u0syZk5W948aAxXv0z3vw3FtiDgi+Z5OW9mczMC5TgBlz32ymsrW9sbhW3Szu7e/sH5cOjjklSTVmbJiLR9wExTHDJ2sBBsHulGYkDwbrB+Hrmdx+ZNjyRdzBRzI/JUPKIUwJW6qsHqIZPjZqqNmqDcsWtu3PgVeLlpIJytAblr36Y0DRmEqggxvS8hgI/Ixo4FWxa6qeGKULHZMh6lkoSM+Nn85un+MwqIY4SbUsCnqu/JzISGzOJA9sZExiZZW8m/uf1Uogu/YxLlQKTdLEoSgWGBM8CwCHXjIKYWEKo5vZWTEdEEwo2ppINwVt+eZV0GnXPrXu355XmVR5HEZ2gU1RFHrpATXSDWqiNKFLoGb2iNyd1Xpx352PRWnDymWP0B87nD1LAkIw=</latexit><latexit sha1_base64="2y06n/nCAF7unX6WBfGo1yQUYpw=">AAAB83icbVBNTwIxEO3iF+IX6tFLIzGBC9klJnokevGIiYAJrKTb7UJDt9u0syZk5W948aAxXv0z3vw3FtiDgi+Z5OW9mczMC5TgBlz32ymsrW9sbhW3Szu7e/sH5cOjjklSTVmbJiLR9wExTHDJ2sBBsHulGYkDwbrB+Hrmdx+ZNjyRdzBRzI/JUPKIUwJW6qsHqIZPjZqqNmqDcsWtu3PgVeLlpIJytAblr36Y0DRmEqggxvS8hgI/Ixo4FWxa6qeGKULHZMh6lkoSM+Nn85un+MwqIY4SbUsCnqu/JzISGzOJA9sZExiZZW8m/uf1Uogu/YxLlQKTdLEoSgWGBM8CwCHXjIKYWEKo5vZWTEdEEwo2ppINwVt+eZV0GnXPrXu355XmVR5HEZ2gU1RFHrpATXSDWqiNKFLoGb2iNyd1Xpx352PRWnDymWP0B87nD1LAkIw=</latexit><latexit sha1_base64="2y06n/nCAF7unX6WBfGo1yQUYpw=">AAAB83icbVBNTwIxEO3iF+IX6tFLIzGBC9klJnokevGIiYAJrKTb7UJDt9u0syZk5W948aAxXv0z3vw3FtiDgi+Z5OW9mczMC5TgBlz32ymsrW9sbhW3Szu7e/sH5cOjjklSTVmbJiLR9wExTHDJ2sBBsHulGYkDwbrB+Hrmdx+ZNjyRdzBRzI/JUPKIUwJW6qsHqIZPjZqqNmqDcsWtu3PgVeLlpIJytAblr36Y0DRmEqggxvS8hgI/Ixo4FWxa6qeGKULHZMh6lkoSM+Nn85un+MwqIY4SbUsCnqu/JzISGzOJA9sZExiZZW8m/uf1Uogu/YxLlQKTdLEoSgWGBM8CwCHXjIKYWEKo5vZWTEdEEwo2ppINwVt+eZV0GnXPrXu355XmVR5HEZ2gU1RFHrpATXSDWqiNKFLoGb2iNyd1Xpx352PRWnDymWP0B87nD1LAkIw=</latexit><latexit sha1_base64="2y06n/nCAF7unX6WBfGo1yQUYpw=">AAAB83icbVBNTwIxEO3iF+IX6tFLIzGBC9klJnokevGIiYAJrKTb7UJDt9u0syZk5W948aAxXv0z3vw3FtiDgi+Z5OW9mczMC5TgBlz32ymsrW9sbhW3Szu7e/sH5cOjjklSTVmbJiLR9wExTHDJ2sBBsHulGYkDwbrB+Hrmdx+ZNjyRdzBRzI/JUPKIUwJW6qsHqIZPjZqqNmqDcsWtu3PgVeLlpIJytAblr36Y0DRmEqggxvS8hgI/Ixo4FWxa6qeGKULHZMh6lkoSM+Nn85un+MwqIY4SbUsCnqu/JzISGzOJA9sZExiZZW8m/uf1Uogu/YxLlQKTdLEoSgWGBM8CwCHXjIKYWEKo5vZWTEdEEwo2ppINwVt+eZV0GnXPrXu355XmVR5HEZ2gU1RFHrpATXSDWqiNKFLoGb2iNyd1Xpx352PRWnDymWP0B87nD1LAkIw=</latexit>

Figure 6.1: Posterior class conditional distributions of class 1 and class 2 at timestamp t. Upper
plot illustrates the case where classes are totally separated, as a result a high weight value has to be
assigned to a timestamp t. Bottom plot represents the case where classes are confused, shaded area
on the left hand side from the point x1,2 is the probability to missclassify examples of class 2, and on
the right hand side of x1,2 is the probability of misclassification error of class 1.

We can write it as follows:

p(ŷ = j, y = k) =

∫
Rj

pt(k)pt(z|k)dz, (6.5)

where Rj is the region corresponding to assignment of values dt(·,r) to class j ∈ Y .
More formally:

Rj = {dti,r| argmax
k

pt(k)pt(dt(i,r)|k = j)} (6.6)

Figure 6.1 illustrates the example of mixture of two Gaussian class conditional
distributions for binary classification problem (Y = {1, 2}). On the upper plot,
posterior distributions of pt(1)pt(d|1) and pt(2)pt(d|2) do not overlap, signaling good
discriminativeness ability of a timestamp t. While the bottom graph shows the case
where class label distributions clash. Clearly, the higher level of intersection between
pt(1)pt(d|1) and pt(2)pt(d|2), the lower level of a timestamp separability.

We choose to take into account the class of a split time series tsr and to quantify
the discriminativeness level of a given timestamp t as MAP corrects classification rate
of the class yr with respect to other classes from Y . As shown in Figure 6.1, areas of
class-conditional posterior laws intersection will represent the error rate. The less level

121

of their overlap, the more separable classes at a given timestamp t are. Let pt(k) = Φt
k

(Equation 6.2) be a prior probability of class k. The weight computation involves the
following three steps:

1. research of intersection points between all posterior laws pt(k)pt(d|k);

2. calculation of the probability of assignment points of a class k 6= yr to class yr,
(ŷk = yr);

3. calculation of the probability of assignment points of a class yr to other classes
(ŷr = k).

Below, we show how to compute a weight value wt:

• Find all intersection points {xyr,k} for each k ∈ Y , yr 6= k between pt(d|yr) ∼
N (µtyr , (σ

2
yr)

t) and pt(d|k) ∼ N (µtk, (σ
2
k)
t. If (σ2

yr)
t 6= (σ2

k)
t, then there are

always two intersection points {x1
yr,k

, x2
yr,k
}, which are the roots of the quadratic

equation:

Ax2 +Bx+ C = 0

A =
1

σ2
k

− 1

σ2
yr

B = 2 ∗
(µyr
σ2
yr

− µk
σ2
k

)
C =

µ2
k

σ2
k

− µ2
yr

σ2
yr

+ log
σ2
k

σ2
yr

+ log
p2
yr

p2
k

(6.7)

• Sort the set of obtained {xiyr,k}k∈Yk , i ∈ [1, 2]. Let Rr be the set of intervals each
of which defined by the set of intersection points. All intervals are found, except
]−∞, xm] and [xM ,∞[, where xm and xM are the minimum and the maximum
values of {xiyr,k}k∈Yk , i ∈ [1, 2]. Each interval defines a region Rk̂ ∈ Rr, where k̂
is a dominated class in the interval defined as

k̂ = argmax
k∈Y

pt(d|k)pt(k) (6.8)

• Compute class conditional distributions overlap. It includes computation of
two terms, which are E tyr,+ and E tyr,−. The former is equal to the probability of
assigning elements of class k to the class yr 6= k, while the latter is equal to the
probability of assigning elements of the class yr to a class k̂ 6= yr. E tyr,+ can be

122

viewed as the probability with which points of any class distinct from yr are
attracted to it, whereas E tyr,− is the probability with which points of a class yr
are repulsed from its own class towards a class k̂. If class yr is well separated
from the others at estimated timestamp t, then both components E tyr,+ and E tyr,−
will get small values. Computation part is defined as follows:

Eyr,+ =
∑

k∈Y,k 6=yr

∫
z∈Ryr

pt(k)pt(z|k)

=
∑

k∈Y,k 6=yr
pt(k)

∫
z∈Ryr

pt(z|k)

=
∑

k∈Y,k 6=yr
pt(k)Fk(Ryr)

(6.9)

Eyr,− =
∑

k∈Y,k 6=yr

∫
z∈Rk

pt(yr)p
t(z|yr)

=
∑

k∈Y,k 6=yr
pt(yr)

∫
z∈Rk

pt(z|yr)

=
∑

k∈Y,k 6=yr
pt(yr)Fyr(Rk)

(6.10)

where Fyr(Rk) =
∫
z∈Rk p

t(z|yr) and Fk(Ryr) =
∫
z∈Ryr p

t(z|k).

• Compute a weight value wt by using the following equation:

wMAP
t = 1− (E tyr,+ + E tyr,−) (6.11)

A weight vector computation complexity of the MAP approach is O(mN |Y|2)

for a single time series.

6.2.3 Weighting algorithm with Linear SVM

Finally, we introduce the third algorithm of weight vector computation, where we
look at the problem slightly different than before. We do not impose the assumption
that the distance values of each class are drawn from Gaussian distribution. The idea
is to address the problem of time series weighting as feature selection problem and
to learn a weight vector w at once for the whole time series tsr. Each timestamp is
considered as a feature and each time series tsi 6= tsr is an observation. Hence, an
input of this learning problem is described by m features, each of which takes a value
dt(i,r), t ∈ 1, . . . ,m. By training a linear classifier, one can obtain a decision hyperplane

123

described by a set of parameters, where each parameter describes the importance of
each feature. Therefore, parameters of a learnt classifier can be taken as timestamps
weights. We limit ourselves to linear support vector classifier (SVC). Because of the
nature of split, we aim to do at a node of the decision tree.

Let us formalize the learning problem. For each pair of classes {yr, k} ∈ Y we
train a binary SVC classifier on the training set {(d(1,r), y1) . . . (d(l,r), yl)} ⊂ Rm ,
l = Nk +Nyr − 1. Recall that d(i,r) is a vector of {d(i,r)t}t=1,...,m. The aim is to find
the decision function:

f(di,r) = sign(〈β(yr,k),di,r〉+ β0) (6.12)

that separates classes yr and k in the best way. We can write this problem as a
convex optimization problem:

minimize
β(yr,k)∈Rm

1

2
||β(yr,k)||2 + C

l∑
i=1

ξi

subject to yi(β
T
(yr,k)di,r + β0) ≥ 1− ξi ξi ≥ 0, i = 1, . . . , l

(6.13)

The coefficients β(yr,k) from a trained classifier are taken as bases for timestamps
weights. The high value of a coefficient βt(yr,k) at a timestamp t indicates its power to
discriminate class yr and k. By training K − 1 classifier, we obtain K − 1 coefficient
vectors βt(yr,k). We propose to combine them to obtain the weight vector w of a time
series tsr. A value of weight wt at timestamp t is defined as the linear combination of
squared coefficients of each class k multiplied by its proportion Φk.

wSVC
t =

∑
k∈Y,k 6=yr

Φk(β
t
(yr,k))

2, (6.14)

where Φk defined in the same way as in the Equation 6.2.
In addition, we propose the second formula for this approach that takes the square

root of the obtained sum. It allows smoothing of highly weighted values. We will
check out how it affects results in practice in the section dedicated to the empirical
study.

wRSVC
t =

√ ∑
k∈Y,k 6=yw

Φk(β
t
(yr,k))

2, (6.15)

Computational complexity of a weight vector of one time series is quadratical
O(m|Y|N2) with respect to the number of input time series N .

124

6.3 Application of weights to similarity computation

In the previous section, we formalized how to compute a weight vector for a time
series tsr. In this section, we describe how to obtain sets of Dk

t , k ∈ Y and how to use
a weight vector w in a pairwise distance computation between two time series. We
consider three dissimilarity measures, which are Euclidean, DTW and (1 − Cortπ).
Defining this range of basic measures, we are able to take into account value and shape
characteristics of time series. Regardless of the distance, the property of symmetry
does not hold anymore, which means d(tswi , tsj) 6= d(tswj , tsi) since weight vectors
wi 6= wj.

As we mentioned before, weights depend on employed dissimilarity measure to
calculate values dt(i,r). When we compute a weight for static dissimilarity measure,
which implies that time series are aligned, only one value dt(i,r) corresponds to a
timestamp t of time series tsr. However, once we use dynamic measure of dissimilarity,
several values of dt(i,r) can be obtained at a timestamp t, each of which corresponds to
a timestamp t′, t ≤ t′ from an alignment path π of tsr with tsi. Below, we show how
to come up with the sets of distances Dk

t , k ∈ Y for each dissimilarity measure we use
in order to compute a weight vector w.

6.3.1 Euclidean dissimilarity

By using Euclidean distance to compute similarity between two time series, we aim to
capture amplitude value differences. From the formula that computes distance values
between a split time series tsr and a time series tsi from the training set

d(tsr, tsi) =
(m∑
t=1

(vtr − vti)2
) 1

2

We extract dt(i,r) = |vtr − vti | for a timestamp t we aim to weight. Thus, when
we speak about classes discriminativeness at a timestamp t we imply that they are
separable in terms of time series amplitude difference.

To compute a weighted distance d(tswr , tsi), we refer to a weight vector w associated
with a time series tsr and formalize it through the following equation:

l2(tswr , tsi) =
(m∑
t=1

wt(v
t
r − vti)2

) 1
2 (6.16)

125

6.3.2 DTW dissimilarity

The DTW between two time series tsr and tsi is defined by:

DTW(tsr, tsi) = min
π

(|π|∑
l=1

|vr − vi|πl
)
, (6.17)

where π is a warping path between two time series tsr and tsi, defined as a sequence
of |π| pairs. The lth element of a path πl = (t, t′)l indicates a mapping of a timestamp
t to a t′ of time series tsr and tsi respectively.

Defining set of distances for a weight computation. DTW is able to alleviate
distortion along time axis by finding an optimal alignment path π, leading to the case
when a timestamp t of one time series is mapped to multiple timestamps of another
time series. Then, we need to define how to take it into account in a representative
set of distances {(dt(1,r), y1), . . . , (d

t
(N,r), yN)} ∈ (R × Y)N for a weight computation.

We distinct two cases of modification of distances, each depends on the weight vector
computation algorithm we use.

If a given timestamp t of a time series tsr is mapped to a set of timestamps
{t′, (t′ + 1), . . . , (t′ + q)}, q ∈ N , t′ ≤ q ≤ |tsi| of a time series tsi, then

• in Equation 6.1, 6.3 (wBW
t), or Equation 6.11(wMAP

t) the distance scalar dt(i,r)
will be represented by the vector of q distance values

{d(t,t′)
(i,r) , d

(t,(t′+1))
(i,r) , . . . , d

(t,(t′+q))
(i,r) }

.

• in Equation 6.14 (wSVC
t) or 6.15 (wRSVC

t) we aggregate multimatched values to
one value. In these approaches we consider each timestamp t as a feature, hence
we have to end up with the same number for each tsi. The value dt(i,r) will be
represented by the sum of q distance values

dt(i,r) =

q∑
s=1

d
(t,(t′+q))
(i,r) . (6.18)

Weighted distance computation. The weighted version of DTW dissimilarity
measure between two time series (tsr, tsi) is defined as follows:

DTW(tswr , tsj) =

|π∗|∑
l=1

wπl |vr − vi|π∗l , (6.19)

126

where wπl is a weight value at timestamp t of a time series tsr corresponding to a
mapping πl = (t, t′)l. The optimal alignment path π∗ in the Equation 6.19 is the one
taken between non weighted time series, since we used it to compute weight values.

We use the optimal alignment path π∗ defined between non weighted time series.
Note that if a timestamp t is mapped to multiple timestamps, then for all such pairs
multiplication is done by the same value of weight wπl .

6.3.3 (1− Cortπ) dissimilarity

(1− Cortπ) dissimilarity measure was developed to capture shape attributes of time
series under comparison. Let us recall the version of the formula, proposed in [16]
that mitigates the problem of non aligned time series by finding an optimal path π∗.

1− Cortπ(tsr, tsi) = 1−min
π

(∑s
l=1(xy)πl√∑s

l=1 x
2
πl

√∑s
l=1 y

2
πl

)
, (6.20)

where πl = (t, t′)l, xπl = v
(t+1)
r − vtr, yπl = v

(t′+1)
i − vt′i , s = |π|.

By using (1−Cortπ) to compare time series, we measure time dependent correlation
of corresponding timestamps taking into account their simultaneous increasing or
decreasing behaviour. Hence, when we talk about class separability at a given
timestamp t the distances dt(i,r) is represented by a correlation term (xy)πl , πl =

(t, t′)l ∈ π∗.

Weighted distance computation The weighted version of (1−Cortπ) dissimilarity
between two time series tsr and tsi is formulated as follows:

Cortπ(tswr , tsi) =

∑s
l=1 wπl(xy)πl√∑s

l=1wπlx
2
t

√∑s
l=1 wπly

2
t

, (6.21)

In its weighted variant, we use the optimal path π∗ between non weighted time series,
and weight each local correlation through the path by wπl . This is done for the
consistency, since we computed a weight vector by using distance set derived from the
optimal alignment of 1− Cortπ.

6.4 Empirical study

In this section we perform experiments where we employ weighted time series in Multi-
operator Temporal Decision Trees (MTDT). We selected hyperplane (F(H)) and
hypersphere (F(S)) split operators, since for each of them, weighted split candidates

127

can be generated and assessed. We enlarge the training set TS by a set of weighted
time series TSw, which were obtained in the root of a tree. Given a node g, the
algorithm selects the best split candidate either with uniform weight vector (f(·) ∈ TS)
or with a learned weight vector (f(·) ∈ TSw), which identifies the discriminative time
series timestamps. The latter points out that a weighted split candidate is capable of
improving the data partition.

Since the right decision depends on the class structure of the dataset, which in turn
depends on the node position in the tree, the algorithm dynamically choose the best
option. It is done by assessment candidates generated from TS ∪TSw and selecting
one with the maximum Gini impurity gain.

As an alternative, input set TSg of each node g can be enriched by TSwg . However,
the farther we go down from the root, the smaller size TSg is. Therefore, the less
and less number of time series will be used to compute weights. As the consequence,
uninformative weight vectors can be obtained. Another negative impact is that the
risk of yielding overfitted models increases.

In this empirical study we do not employ Local Search Multi-operator Temporal
Decision Tree. Due to the fact that application of Local Search algorithm to the
weighted version of MTDT is not straightforward. The problem is how to update
weights, once we move a weighted time series to its neighbour one.

We perform set of experiments to study impact of weighting approach on classifica-
tion results. At first, we check out our approach on the synthetic dataset, the goal is
to show the distribution of weights along time series and empirically compare different
approaches. Then, we apply each weighting approach to obtain TSw set of weighted
time series for UCR datasets and we build a model by using Weighted Multi-operator
Temporal Decision Tree (WMTDT) with extended input set TS ∪TSw. We employ
only two split operators F(H) + F(S) within WMTDT, since pattern-based split
operator does not employ weighting. However, in general case all three split operators
can be used.

For all experiments, we fix l2,DTW, (1−Cortπ) dissimilarity measures. We employ
each of them to compute a weight vector using proposed approaches, that are BW,
BW-RVO, SVC, SVC-loss, RSVC, MAP. Each learned weight vector is normalized

in order to get
m∑
t=1

wt = 1 and make them comparable. We fix λ = 0.5 for BW and

BW-RVO to perform experiments. As regularization parameters for SVC and RSVC
we fixed the loss function to be l2 and C to be in the range (0.1, 1, 100). During
weighting process the best parameter C is defined through cross-validation. The

128

SVC-loss approach is the variant of SVC that takes the loss function as the parameter
(l1, l2) allowing its tuning through cross-validation.

6.4.1 Synthetic dataset

Local discrimination dataset: Local-Disc. Local-Disc is the synthetic dataset
which we use for the purpose to study weights behaviour of each methods described
above Chouakria and Amblard [16]. This dataset contains three class labels Begin,
Middle, and End, each reflects the local discriminative patterns. Time series of Begin
class labels are characterized by a small bell at the beggining of time series; the End
class label time series has a small bell at the end of time series; and time series of
Middle class label are similar in global behavior identified by a centered large bell.
Classes of this dataset can be more easily separated by capturing local discriminative
attributes rather then global. Since the objective of weighting is to highlight such
local patterns in a distance computation, their corresponding timestamps should have
high weight values. Figure 6.2 presents time series of the dataset, each plot represents
one of class labels.

In order to verify how weights contribute to capturing discriminative sub-intervals
in time series and then, how they improve classification performance we run 1NN

classification algorithm with time series weighted by all previously presented methods.
In addition, we carried out the experiment by assigning random weights to time series
(RND). Random weights are sampled from Gaussian distribution (µ = 0.8, σ = 0.01)
and assigned randomly to 5% of time series timestamps. If even with small proportion
of timestamps with randomly assigned weights will negatively affect on classification
accuracy, it means that similarity measures are sensitive to weighting. Results are
presented in the Table 6.1. Comparing results across distance measures we can notice
that the similarity measure (1− Cortπ) is tailored to this dataset. Surely, looking at
original dataset depicted on the Figure 6.2 one can see that, initially, time series are
not aligned. Hence, it needs a dissimilarity measure that is capable of dealing with it,
i.e., such as DTW or (1− Cortπ).

Since for this dataset the class discriminativeness is characterized by shape at-
tributes, the (1 − Cortπ) is the most appropriate dissimilarity measure. Without
application of weights (marked as Uniform in the resulting table), the 97% of classifi-
cation accuracy is obtained.

One can notice that dissimilarity measures are sensitive to weights assignment.
By random weights assignment (RND in the resulting table) performance drops
significantly for all types of distances. Comparing different approaches, we can remark

129

that SVC and RSVC provide more consistent results. It is explainable, since this
approach does not depends on the assumption about underlying distribution over class
labels. Weights obtained for each presented method and for each employed similarity
measure are depicted across time series of each class and shown on Figures 6.3-6.8.
Results of MAP approach is nearly uniformly distributed as we can see on Figure 6.8.
It explains obtained results (Table 6.1). Weight vectors obtained by SVC and RSVC
approaches are more tailored to the data and emphasize underlying class discriminative
patterns. And, as we expected, RSVC has more smoothed weights across time series.
However, it is difficult to say at this stage which of two version is better to use.

In this part of experiment, we saw that learned weights are able to identify local
patterns in time series. Together with an appropriate dissimilarity it helps to increase
the classification accuracy.

In the second part of these experiments we will build TSC tree model by Multi-
operator Temporal Decision Tree, where we include weighted version of time series
input set. We will apply each of the proposed approaches to compute time series
weight vectors in order to verify which of them has positive impact on interpretability
and accuracy of yielded models.

Table 6.1: Classification accuracy results of 1NN algorithm on Local-Disc dataset.

l2 DTW (1− Cortπ)

Uniform 54.5 77.7 97.0
BW 58.6 68.7 79.8
BW-RVO 52.5 76.8 94.9
SVC 50.5 83.8 98.0
SVC-loss 50.5 77.7 81.8
RSVC 52.5 86.9 98.0
MAP 51.5 77.7 94.9
RND 44.4 30.3 81.8

6.4.2 Weighted Multi-operator Temporal Decision Trees.

In the second part of the experiments we applied Multi-operator Temporal Decision
Tree on extended training set TS ∪TSw. Each time series in input set is represented
by its original values and the first order derivative. In this way, the value based
distances can capture shape time series attributes as well.

We admit that wide extension of the input set can lead to increase the chances of
having split candidates with the same separation ability. Hence, it becomes important

130

to set up preference on the choice of the best split among splits provided equal quality
of data partition. Due to this reason, we prefer to set up preferences for each input
parameter such as split operator, distance, weight, and variable. Our reasoning is
exclusively based on keeping the highest level of interpretability of yielded trees. We
prioritize hyperplane over hypersphere split operator because it provides the split in a
node, which is more comprehensible for a user.

Dissimilarity measures are arranged by increasing level of complexity. Though, the
algorithm assesses all generated split candidates, the measures with less computational
cost are prioritized in order to have classification results faster. Original time series
that input set includes are favored over its weighted version or its derivative. If there
are two split candidates, one comprises a weighted time series and another contains an
original time series, that induce the same node partition, the latter is kept to have the
simplest form for visualization. Furthermore, if there is no difference in the partition,
a weight vector does not provide interesting information to a user.

We set up the following priorities (a � b means that a favoured over b):

• Split operator: F(H) � F(S)

• Distance measures: l1 � l2 � DTW � (1− Cortπ)

• Weighting: ts � tsw

• Variable: ts � tsder

Tables 6.2 and 6.3 present obtained averaged results on 46 resampled UCR datasets.
Each experiment is carried on 5 bootstrap cross-validation. Averaged results are shown
in terms of the number of non-terminal nodes and classification accuracy. Bold
numbers indicate the best results. Maximum reduction of tree size is achieved by
employing BW-RVO and SVC-loss. Total averaged number of nodes are 556.6 and
543.9 respectively. Looking at the classification results for each dataset (Table 6.3),
we observe that models of Uniform MTDT shows the best results only for 9 datasets.
SVC-loss reaches the best results for 13 datasets, and for 10 out of 46 results are good
as results obtained by using other weighting approaches. The SVC and RSVC did
not prove to be competitive, as we can see in the resulting table. Both approaches
employ only l2 regularization, which, clearly, is not sufficient in general. Including
l1 regularization allows to obtain more sparse weights that can emphasize better
discriminative sub-interval. Lack of prior knowledge, which regularizer to use, suggests
that defining it as a parameter is the good practice.

131

Inclusion of weighted time series in the training set positively affects the model
readability by trees size reduction. In addition, when weighted time series split the
data in a node, a weight vector visual rendering improves the interpretability of the
model. However, we did not obtain impact on the model classification accuracy as we
expected. Weighted MTDT preserves the same level of accuracy as uniform MTDT.
The reason of obtaining such results can be that the diversity of split operators
and dissimilarity measures, we feed to the algorithm, is enough to capture class
discriminative information in the data. Hence, adding weighted time series do not
bring much extra information in order to be able to improve classification results. It
lead us to the open question do we have an abundant set of inputs and if the answer
is yes, how to select no redundant subset among them. Further, we propose it as one
of the future research direction.

Despite the fact, that classification accuracy did not change much, we have got
improvement in model readability and, hence, interpretability too. For example,
Figure 6.9 shows the decision tree model obtained on uniform version of the training
set. We obtained the tree with six internal nodes (including the root) and 7 leaves.
Time series of class label y = 2 falls into three leaves. And class labels y = 0, y = 1

can be assigned to a time series by two different ways of tree’s traversing. Figure 6.10
reveals the model obtained on enarged training set by weighted time series. Weight
vectors are computed by SVC approach. As we can see, the learned model comprises
only two internal nodes. Visualization of a weight vector for split time series in a node
can navigate a domain expert towards class distinguished subintervals. Therefore, it
facilitates understanding of classification process.

132

6.5 Conclusion

In this section, we introduced three different methods BW, MAP, and SVC to find
a weight vector for time series. Two of them BW, MAP are based on the statistical
assumption that the class conditional distribution of distance values is Gaussian. SVC
do not impose any assumption about distribution law and allows to learn the entire
vector at once. However, from the computational point of view this approach has
higher cost than others.

We made the comparison of weight vectors distribution obtained from different
approaches and dissimilarity measures. Weight values are highly dependent on used
dissimilarity measure for their computation. As we saw during experimental results,
if dissimilarity function is not tailored to the data, weights can be ill-positioned.
Oftentime, we do not know a priori which measure will be appropriate for a particular
dataset. As the way to tackle with this problem, we suggest using the range of them.
By using each of them, we learn weight vectors for time series in the training set.
Alternative solution can be to learn a similarity measure before building a tree. This
lies beyond this research, and we consider it as one of the axis for future research.

Once weight vectors are learnt, we add them to input set and build Weight Multi-
operator Temporal Decision Tree (WMTDT). During experiments we saw that models
yielded by WMTDT are more readable, i.e., contains less number of internal nodes.
However, we cannot claim the improvement of classification accuracy. By amplifying
the training set, the search space of possible split candidates becomes larger too.
Hence, the risk to have the set of split candidates in a node with the same separation
ability increases. Though, inducing the same data partition, favouring one to another
will affect both yielded tree model and classification results. Thus, the question
remaining for future investigation is how one can estimate this possible effect and
then, how to choose no abundant set of split options.

Empirical evidence that weighting is able to improve model readability and in-
terpretability. The latter one is achieved by providing a user with a model where
visualization of a split time series accompanied by its weight vector. If weights are not
uniform, rendering them in visualization mode can contribute to a user understanding
of classification process and results.

The next chapter contains conclusion on this work and describe possible future
directions of research.

133

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Begin

T

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Middle

T

0 20 40 60 80 100 120

−
10

0
−

50
0

50
10

0

End

T

Figure 6.2: Time series of dataset Local-Disc divided by class labels.

134

0

10

20

30

40

50

60

70

80

Begin

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Middle

0

10

20

30

40

50

60

70

80
End

time series

0

10

20

30

40

50

60

70

80

0.5

0.0

0.5

1.0

1.5

2.0

2.5

0

10

20

30

40

50

60

70

80

30 60 90 120
0

10

20

30

40

50

60

70

80

30 60 90 120

0.5

0.0

0.5

1.0

1.5

2.0

2.5

30 60 90 120
0

10

20

30

40

50

60

70

80

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14l2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14dtw

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14cort

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Time

tim
e

se
rie

s
va

lu
es

w
ei

gh
t v

al
ue

s

BW weights distribution

Figure 6.3: Weights vectors computed via BW approach for Local-Disc dataset. Each line of
the figure corresponds to employed dissimilarity measure (l2,DTW, (1− Cortπ)) and contains three
plots, each of which render a time series and a weight vector of class labels Begin, Middle and End
respectively.

135

0

10

20

30

40

50

60

70

80

Begin

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Middle

0

10

20

30

40

50

60

70

80
End

time series

0

10

20

30

40

50

60

70

80

0.5

0.0

0.5

1.0

1.5

2.0

2.5

0

10

20

30

40

50

60

70

80

30 60 90 120
0

10

20

30

40

50

60

70

80

30 60 90 120

0.5

0.0

0.5

1.0

1.5

2.0

2.5

30 60 90 120
0

10

20

30

40

50

60

70

80

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14l2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14dtw

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14cort

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Time

tim
e

se
rie

s
va

lu
es

w
ei

gh
t v

al
ue

s

BW-RVO weights distribution

Figure 6.4: Weights vectors computed via BW-RVO approach for Local-Disc dataset. Each line of
the figure corresponds to employed dissimilarity measure (l2,DTW, (1− Cortπ)) and contains three
plots, each of which render a time series and a weight vector of class labels Begin, Middle and End
respectively.

136

0

10

20

30

40

50

60

70

80

Begin

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Middle

0

10

20

30

40

50

60

70

80
End

time series

0

10

20

30

40

50

60

70

80

0.5

0.0

0.5

1.0

1.5

2.0

2.5

0

10

20

30

40

50

60

70

80

30 60 90 120
0

10

20

30

40

50

60

70

80

30 60 90 120

0.5

0.0

0.5

1.0

1.5

2.0

2.5

30 60 90 120
0

10

20

30

40

50

60

70

80

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14l2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14dtw

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14cort

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Time

tim
e

se
rie

s
va

lu
es

w
ei

gh
t v

al
ue

s

SVC weights distribution

Figure 6.5: Weights vectors computed via SVC approach for Local-Disc dataset. Each line of
the figure corresponds to employed dissimilarity measure (l2,DTW, (1− Cortπ)) and contains three
plots, each of which render a time series and a weight vector of class labels Begin, Middle and End
respectively.

137

0

10

20

30

40

50

60

70

80

Begin

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Middle

0

10

20

30

40

50

60

70

80
End

time series

0

10

20

30

40

50

60

70

80

0.5

0.0

0.5

1.0

1.5

2.0

2.5

0

10

20

30

40

50

60

70

80

30 60 90 120
0

10

20

30

40

50

60

70

80

30 60 90 120

0.5

0.0

0.5

1.0

1.5

2.0

2.5

30 60 90 120
0

10

20

30

40

50

60

70

80

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14l2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14dtw

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14cort

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Time

tim
e

se
rie

s
va

lu
es

w
ei

gh
t v

al
ue

s

SVC-loss weights distribution

Figure 6.6: Weights vectors computed via SVC-loss approach for Local-Disc dataset. Each line of
the figure corresponds to employed dissimilarity measure (l2,DTW, (1− Cortπ)) and contains three
plots, each of which render a time series and a weight vector of class labels Begin, Middle and End
respectively.

138

0

10

20

30

40

50

60

70

80

Begin

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Middle

0

10

20

30

40

50

60

70

80
End

time series

0

10

20

30

40

50

60

70

80

0.5

0.0

0.5

1.0

1.5

2.0

2.5

0

10

20

30

40

50

60

70

80

30 60 90 120
0

10

20

30

40

50

60

70

80

30 60 90 120

0.5

0.0

0.5

1.0

1.5

2.0

2.5

30 60 90 120
0

10

20

30

40

50

60

70

80

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14l2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14dtw

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14cort

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Time

tim
e

se
rie

s
va

lu
es

w
ei

gh
t v

al
ue

s

RSVC weights distribution

Figure 6.7: Weights vectors computed via RSVC approach for Local-Disc dataset. Each line of
the figure corresponds to employed dissimilarity measure (l2,DTW, (1− Cortπ)) and contains three
plots, each of which render a time series and a weight vector of class labels Begin, Middle and End
respectively.

139

0

10

20

30

40

50

60

70

80

Begin

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Middle

0

10

20

30

40

50

60

70

80
End

time series

0

10

20

30

40

50

60

70

80

0.5

0.0

0.5

1.0

1.5

2.0

2.5

0

10

20

30

40

50

60

70

80

30 60 90 120
0

10

20

30

40

50

60

70

80

30 60 90 120

0.5

0.0

0.5

1.0

1.5

2.0

2.5

30 60 90 120
0

10

20

30

40

50

60

70

80

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14l2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14dtw

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14cort

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Time

tim
e

se
rie

s
va

lu
es

w
ei

gh
t v

al
ue

s

MAP weights distribution

Figure 6.8: Weights vectors computed via MAP approach for Local-Disc dataset. Each line of
the figure corresponds to employed dissimilarity measure (l2,DTW, (1− Cortπ)) and contains three
plots, each of which render a time series and a weight vector of class labels Begin, Middle and End
respectively.

140

Figure 6.9: Classification decision tree for ArrowHead UCR dataset obtained by MTDT only with
TS training set of non weighted time series set.

141

Figure 6.10: Classification decision tree obtained by WMTDT for ArrowHead UCR dataset. The
SVC weighting approach was used.

142

Table 6.2: The number of non-terminal nodes of trees built on 46 UCR dataset with Weighted
Multioperator Temporal Decision Tree (WTDT).

U BW BW − RVO SVC SVC− loss RSVC MAP

Total 611.2 564.0 556.6 562.6 543.9 577.5 598.3
Average 13.29 12.26 12.10 12.23 11.82 12.55 13.01

1 Adiac 73.6± 5.8 72.6± 3.6 67.8± 2.3 64.0± 4.1 68.0± 3.7 70.0± 2.9 71.3± 5.3
2 ArrowHead 4.6± 0.9 4.2± 0.8 3.2± 0.4 2.8± 0.8 2.8± 0.8 4.2± 0.4 4.0± 0.7
3 Beef 7.2± 1.5 6.4± 1.1 6.6± 0.9 6.0± 1.2 5.6± 0.9 6.2± 0.8 6.6± 0.9
4 BeetleFly 1.6± 0.5 1.0± 0.0 1.6± 0.5 1.4± 0.5 1.2± 0.4 1.8± 0.4 1.8± 0.4
5 BirdChicken 1.2± 0.4 1.0± 0.0 1.2± 0.4 1.0± 0.0 1.0± 0.0 1.2± 0.4 1.4± 0.5
6 Car 7.0± 0.7 5.8± 1.1 5.0± 0.7 4.8± 0.8 6.6± 0.9 6.6± 0.5 6.4± 1.1
7 CBF 2.0± 0.0 2.0± 0.0 2.0± 0.0 2.0± 0.0 2.0± 0.0 2.0± 0.0 2.0± 0.0
8 CincECGtor 4.6± 0.5 3.0± 0.0 3.4± 0.5 4.2± 0.8 3.2± 0.4 4.8± 0.8 4.5± 0.7
9 DistPhOutAge 13.2± 2.4 11.0± 2.5 11.0± 2.2 11.4± 2.3 11.8± 1.6 11.8± 2.8 13.4± 1.1
10 DistPhOutCor 20.0± 3.2 18.2± 1.6 19.2± 2.9 19.0± 2.3 19.0± 2.1 19.0± 1.9 21.0± 2.7
11 DistPhTW 20.8± 1.9 19.6± 3.2 17.4± 1.8 20.4± 1.8 19.4± 3.0 20.4± 2.1 20.4± 1.9
12 Earthquakes 13.4± 1.8 10.8± 1.3 12.2± 1.1 11.4± 1.1 12.0± 1.2 11.8± 0.8 12.7± 1.6
13 ECG200 6.6± 1.3 6.6± 0.9 7.0± 1.6 6.0± 1.4 5.4± 0.9 6.2± 0.8 6.0± 1.6
14 ECG5000 16.2± 2.2 16.0± 1.9 15.4± 1.1 13.8± 1.6 11.8± 1.9 15.0± 1.9 15.8± 1.8
15 ECGFiveDs 2.2± 0.4 1.4± 0.5 2.0± 0.7 2.0± 0.7 2.2± 0.4 2.0± 0.0 2.2± 1.1
16 FaceFour 3.0± 0.0 3.0± 0.0 3.0± 0.0 3.0± 0.0 3.0± 0.0 3.0± 0.0 3.0± 0.0
17 FacesUCR 25.2± 2.2 23.6± 1.9 22.2± 1.3 25.4± 3.2 23.2± 1.1 25.0± 2.4 24.7± 2.3
18 GunPoint 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0
19 Ham 10.4± 1.5 9.2± 1.1 11.0± 0.7 9.8± 0.4 9.0± 0.7 10.4± 1.3 10.0± 1.4
20 Herring 7.6± 1.1 6.6± 0.5 6.8± 1.3 7.8± 1.5 6.0± 0.7 7.2± 1.1 7.4± 1.3
21 InsectWngS 45.4± 4.7 40.4± 1.8 39.4± 1.1 40.8± 3.3 39.0± 3.2 41.8± 3.8 47.4± 2.8
22 ItalyPowDem 1.2± 0.4 1.4± 0.5 1.6± 0.5 1.6± 0.5 1.2± 0.4 1.6± 0.5 2.0± 0.7
23 Lighting2 5.2± 0.8 4.6± 0.5 5.8± 0.8 4.6± 0.5 5.4± 0.5 5.4± 0.9 5.0± 0.7
24 Lighting7 10.6± 0.9 10.2± 1.3 9.0± 1.6 10.2± 1.5 10.2± 0.8 10.0± 1.2 8.8± 0.8
25 MALLAT 7.0± 0.0 7.0± 0.0 7.0± 0.0 7.4± 0.5 7.2± 0.4 7.2± 0.4 7.2± 0.4
26 Meat 2.2± 0.4 2.0± 0.0 2.0± 0.0 2.0± 0.0 2.0± 0.0 2.0± 0.0 2.0± 0.0
27 MedicalImag 57.8± 5.4 54.6± 2.5 51.2± 1.9 55.0± 3.7 51.6± 2.3 53.2± 4.8 53.6± 3.5
28 MidPhAge 21.4± 5.2 20.2± 3.1 19.2± 5.8 20.0± 2.8 18.2± 1.9 21.0± 2.4 22.2± 4.1
29 MidPhCor 22.0± 1.4 20.0± 2.2 21.0± 1.6 23.6± 2.7 20.8± 2.9 22.2± 4.0 23.4± 2.1
30 MiddPhTW 30.6± 3.4 29.2± 1.5 29.2± 1.9 31.2± 1.3 28.4± 1.5 29.4± 2.3 33.2± 1.3
31 MoteStrain 1.4± 0.5 1.0± 0.0 1.4± 0.5 1.2± 0.4 1.2± 0.4 1.0± 0.0 1.4± 0.5
32 OliveOil 3.8± 0.8 3.0± 0.0 3.0± 0.0 3.6± 0.9 3.4± 0.5 3.4± 0.5 3.2± 0.4
33 ProxPhAge 26.0± 3.5 25.2± 2.2 27.2± 4.3 25.2± 0.4 24.2± 1.9 25.6± 1.5 25.5± 2.3
34 ProxPhCor 36.6± 1.8 33.6± 1.1 33.8± 2.5 29.0± 1.9 29.2± 1.6 30.6± 2.9 33.6± 3.2
35 ProxPhTW 20.8± 1.9 18.6± 1.5 17.4± 1.1 19.6± 1.5 18.8± 1.9 19.0± 2.2 18.6± 0.9
36 ShapeletSim 1.6± 0.5 1.6± 0.5 1.6± 0.5 1.6± 0.5 1.4± 0.5 1.4± 0.5 1.6± 0.5
37 SonyAIBO1 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0
38 SwedishLeaf 30.4± 4.3 27.8± 1.5 27.8± 1.3 28.0± 1.9 29.4± 2.7 31.0± 2.3 30.0± 2.4
39 SynControl 5.2± 0.4 5.6± 0.5 5.6± 0.5 5.2± 0.4 5.2± 0.4 5.2± 0.4 5.2± 0.4
40 ToeSegm1 4.0± 0.7 2.8± 0.8 2.6± 0.9 3.0± 1.2 2.3± 1.5 3.3± 1.2 3.4± 1.5
41 ToeSegm2 3.2± 0.8 2.0± 0.0 2.0± 0.0 2.2± 0.4 1.8± 0.4 2.4± 0.5 2.2± 0.4
42 Trace 3.4± 0.5 3.0± 0.0 3.0± 0.0 3.0± 0.0 3.0± 0.0 3.0± 0.0 3.0± 0.0
43 TwoLdECG 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0
44 Wine 6.2± 1.3 5.0± 1.4 6.2± 1.9 5.6± 1.5 5.4± 0.9 5.2± 0.4 6.0± 1.2
45 Worms 14.2± 2.8 12.8± 2.6 12.6± 2.3 14.0± 1.9 11.4± 0.5 13.6± 1.7 13.8± 2.6
46 Worms2Class 7.6± 0.9 7.4± 1.5 6.0± 0.7 6.2± 1.3 6.8± 1.0 7.4± 0.9 8.4± 0.5

w/d/l 0/5/41 6/11/29 5/10/31 3/10/33 13/10/23 0/7/39 1/6/39

143

Table 6.3: Accuracy of trees built on 46 UCR dataset with Weighted Multioperator Temporal
Decision Tree (WTDT).

U BW BW − RVO SVC SVC− loss RSVC MAP

Average 0.759 0.753 0.757 0.755 0.756 0.754 0.756

1 Adiac 0.600± 0.02 0.615± 0.03 0.627± 0.04 0.627± 0.04 0.611± 0.03 0.612± 0.01 0.606± 0.02
2 ArrowHead 0.728± 0.06 0.723± 0.08 0.693± 0.08 0.752± 0.06 0.714± 0.05 0.690± 0.05 0.703± 0.04
3 Beef 0.560± 0.12 0.640± 0.09 0.547± 0.07 0.573± 0.10 0.613± 0.13 0.647± 0.07 0.620± 0.04
4 BeetleFly 0.730± 0.07 0.730± 0.04 0.780± 0.04 0.780± 0.08 0.720± 0.11 0.660± 0.16 0.680± 0.14
5 BirdChicken 0.900± 0.08 0.860± 0.10 0.840± 0.24 0.920± 0.07 0.970± 0.04 0.860± 0.11 0.910± 0.12
6 Car 0.693± 0.03 0.650± 0.03 0.797± 0.03 0.750± 0.02 0.767± 0.03 0.743± 0.05 0.693± 0.06
7 CBF 0.945± 0.01 0.883± 0.09 0.900± 0.06 0.912± 0.04 0.908± 0.04 0.900± 0.07 0.918± 0.04
8 CincECGtor 0.758± 0.07 0.837± 0.04 0.806± 0.06 0.744± 0.10 0.805± 0.06 0.695± 0.05 0.717± 0.08
9 DistPhOutAge 0.795± 0.02 0.771± 0.02 0.781± 0.02 0.784± 0.02 0.771± 0.03 0.785± 0.02 0.788± 0.03
10 DistPhOutCor 0.766± 0.03 0.777± 0.02 0.787± 0.02 0.759± 0.02 0.770± 0.01 0.766± 0.02 0.764± 0.02
11 DistPhTW 0.750± 0.02 0.735± 0.02 0.715± 0.02 0.705± 0.03 0.715± 0.02 0.717± 0.01 0.728± 0.01
12 Earthquakes 0.698± 0.03 0.709± 0.05 0.670± 0.02 0.706± 0.03 0.698± 0.03 0.686± 0.04 0.712± 0.02
13 ECG200 0.780± 0.04 0.802± 0.03 0.764± 0.02 0.812± 0.05 0.782± 0.04 0.808± 0.03 0.808± 0.02
14 ECG5000 0.923± 0.00 0.918± 0.01 0.918± 0.00 0.919± 0.01 0.918± 0.01 0.918± 0.01 0.920± 0.01
15 ECGFiveDs 0.826± 0.06 0.774± 0.03 0.762± 0.10 0.800± 0.05 0.792± 0.08 0.803± 0.05 0.853± 0.07
16 FaceFour 0.732± 0.08 0.757± 0.06 0.800± 0.05 0.773± 0.12 0.773± 0.04 0.775± 0.09 0.823± 0.07
17 FacesUCR 0.757± 0.03 0.747± 0.01 0.745± 0.02 0.738± 0.01 0.742± 0.03 0.747± 0.02 0.747± 0.02
18 GunPoint 0.977± 0.01 0.981± 0.01 0.965± 0.02 0.956± 0.07 0.965± 0.03 0.977± 0.01 0.972± 0.01
19 Ham 0.699± 0.03 0.714± 0.04 0.716± 0.07 0.644± 0.08 0.678± 0.05 0.669± 0.06 0.697± 0.05
20 Herring 0.622± 0.06 0.591± 0.06 0.600± 0.07 0.581± 0.09 0.641± 0.06 0.600± 0.04 0.544± 0.11
21 InsectWngS 0.542± 0.01 0.540± 0.01 0.541± 0.01 0.522± 0.02 0.524± 0.03 0.550± 0.02 0.523± 0.02
22 ItalyPowDem 0.957± 0.01 0.954± 0.02 0.952± 0.02 0.953± 0.01 0.961± 0.00 0.954± 0.01 0.957± 0.02
23 Lighting2 0.715± 0.06 0.754± 0.04 0.718± 0.07 0.738± 0.06 0.744± 0.05 0.721± 0.07 0.711± 0.05
24 Lighting7 0.641± 0.06 0.625± 0.05 0.600± 0.05 0.614± 0.07 0.622± 0.05 0.616± 0.05 0.611± 0.08
25 MALLAT 0.922± 0.01 0.910± 0.03 0.923± 0.02 0.925± 0.04 0.901± 0.04 0.916± 0.02 0.908± 0.04
26 Meat 0.957± 0.03 0.943± 0.03 0.963± 0.03 0.960± 0.04 0.963± 0.03 0.947± 0.04 0.967± 0.03
27 MedicalImag 0.658± 0.04 0.670± 0.02 0.663± 0.01 0.657± 0.03 0.677± 0.04 0.680± 0.01 0.657± 0.02
28 MidPhAge 0.678± 0.05 0.690± 0.04 0.700± 0.03 0.683± 0.03 0.717± 0.04 0.672± 0.03 0.685± 0.03
29 MidPhCor 0.762± 0.03 0.759± 0.02 0.768± 0.01 0.723± 0.06 0.747± 0.03 0.750± 0.01 0.740± 0.02
30 MiddPhTW 0.556± 0.02 0.547± 0.02 0.566± 0.03 0.555± 0.01 0.552± 0.02 0.545± 0.02 0.548± 0.04
31 MoteStrain 0.842± 0.02 0.844± 0.04 0.864± 0.01 0.849± 0.05 0.840± 0.06 0.849± 0.05 0.846± 0.04
32 OliveOil 0.760± 0.06 0.767± 0.08 0.820± 0.06 0.807± 0.06 0.760± 0.07 0.800± 0.07 0.840± 0.07
33 ProxPhAge 0.804± 0.02 0.809± 0.03 0.799± 0.01 0.779± 0.01 0.810± 0.03 0.783± 0.02 0.797± 0.02
34 ProxPhCor 0.840± 0.02 0.826± 0.04 0.837± 0.01 0.830± 0.02 0.833± 0.03 0.839± 0.02 0.838± 0.02
35 ProxPhTW 0.741± 0.03 0.774± 0.01 0.758± 0.01 0.751± 0.02 0.735± 0.03 0.744± 0.03 0.744± 0.04
36 ShapeletSim 0.704± 0.10 0.639± 0.10 0.730± 0.07 0.730± 0.06 0.680± 0.12 0.750± 0.05 0.733± 0.06
37 SonyAIBO1 0.817± 0.03 0.780± 0.12 0.806± 0.05 0.808± 0.07 0.735± 0.10 0.786± 0.10 0.827± 0.04
38 SwedishLeaf 0.855± 0.01 0.848± 0.02 0.852± 0.01 0.855± 0.02 0.853± 0.01 0.855± 0.01 0.850± 0.01
39 SynControl 0.965± 0.01 0.945± 0.03 0.963± 0.00 0.965± 0.01 0.961± 0.02 0.958± 0.01 0.970± 0.01
40 ToeSegm1 0.779± 0.08 0.760± 0.04 0.775± 0.06 0.739± 0.06 0.789± 0.04 0.784± 0.03 0.697± 0.06
41 ToeSegm2 0.798± 0.07 0.774± 0.08 0.725± 0.09 0.789± 0.04 0.797± 0.04 0.840± 0.01 0.763± 0.12
42 Trace 0.980± 0.01 0.978± 0.02 0.986± 0.01 0.988± 0.01 0.972± 0.01 0.974± 0.03 0.986± 0.01
43 TwoLdECG 0.804± 0.05 0.748± 0.07 0.763± 0.12 0.796± 0.07 0.767± 0.12 0.785± 0.04 0.789± 0.06
44 Wine 0.804± 0.05 0.748± 0.07 0.763± 0.12 0.796± 0.07 0.767± 0.12 0.785± 0.04 0.789± 0.06
45 Worms 0.555± 0.06 0.556± 0.05 0.537± 0.04 0.529± 0.04 0.511± 0.04 0.539± 0.05 0.524± 0.04
46 Worms2Class 0.673± 0.03 0.608± 0.08 0.678± 0.03 0.705± 0.05 0.662± 0.05 0.687± 0.03 0.669± 0.03

w/d/l 8/1/37 5/0/41 6/2/38 5/3/38 6/0/40 5/1/40 7/0/39

144

Chapter 7

Publications

1. Vera Shalaeva, Sami Alkhoury, Julien Marinescu, Cécile Amblard, Gilles Bisson.
Multi-operator Decision Trees for Explainable Time-Series Classification. IPMU,
2018

2. Vera Shalaeva, Sami Alkhoury, Julien Marinescu, Cécile Amblard, Gilles Bisson.
Arbres de décision multi-opérateurs pour la classification efficace et intelligible
de séries temporelles. CAp, 2018

3. Demo of IKATS visualization tool, 2018

145

http://ama.liglab.fr/~software/ikats/demo/

146

Chapter 8

Conclusions and Future Directions

8.1 Conclusions

Time series data is represented by ordered sequences of real values. Such data appears
in many domains, where an expert may need to analyze this data. In this research, we
focus on the problem of time series data classification (TSC). There are lots of Machine
Learning (ML) algorithms that are capable of working on time series data. However,
there are only a few of them which a domain practitioner without ML knowledge can
employ. Moreover, results of many methods designed for TSC are very difficult to
interpret, even though they provide high classification performance. Therefore, the
ML research community have been motivated to develop algorithms which are capable
of providing both accurate and interpretable results.

In this research, we as well explore the problem of interpretable time series
classification through the Temporal Decision Trees (TDT). We first investigated the
state-of-the-art studies on TSC models where one can see that classification trees
are generally recommended when it is important to yield an interptetable model.
In addition, the decision tree methods show good predictive performance. For an
expert from any domain, a classification model with such characteristics facilitates
understanding of the obtained results. At the same time, interpreting the output of
these techniques does not require prerequisites of ML knowledge. We aimed to reinforce
interpretable properties of the yielded tree models by employing several comprehensible
split operators. Readability of a model is another important characteristic that we
targeted to improve. In addition, we attemted to keep the same level of classification
accuracy.

To boost the capacity of interpretability and readability of the Temporal Decision
Trees, we proposed to employ different split operators in order to build a more
interpretable classification tree. Assessment of split candidates generated from split

147

operators of different nature allows capturing different underlying structures in the
data. To do that, we presented Multi-operator Temporal Decision Trees which build
models of significantly smaller size than Mono-operator Temporal Decision Trees.
The performance criteria we measured are the size of generated trees in terms of
the number of internal nodes and classification accuracy. We obtained readable
classification models which are in average two times smaller than those obtained by
Mono-operator TDT. As a result, these models can be easily visualized and a user
can efficiently analyze them.

The flip side of the proposed algorithm is the computational complexity to train the
model. The partition induced by each generated split candidate has to be estimated
in order to get the best possible split at each node of the tree. Hence, by enriching the
set of split candidates, the running time to learn the classification model is growing as
well. The total complexity of Multi-operator Temporal Decision Tree increases with
the respect to the number of split candidates to examine. The complexity with respect
to the distance computations does not change, however, it depends on the number
of used dissimilarity measures during the learning process. In this work, we chose
to employ three dissimilarity measures (l2, DTW, (1− Cortπ)), which are capable of
capturing value and shape time series attributes.

To deal with the training time complexity, we proposed an approximation algorithm,
called Local Search Temporal Decision Trees (LSTDT), which iteratively explores
split candidates starting with a random one and searching in its vicinity for the
better split. Using the triangle inequality and bounds on real pairwise distance values
allows skipping unnecessary distance computations. Exploiting these properties, the
proposed algorithm is capable of yielding similar results in terms of model size and
classification accuracy. The volume of search space is defined by a user via input
parameters, which control the number of distance computations the algorithm can
compute on the training step. With higher values of input parameters, the LSTDT
explores more and more split candidates, finally going towards to the complete search
space of split candidates. During experimental study, we observed that beyond a
certain level of search space the algorithm becomes computationally inneficient and
can be simply be switched to the original one.

Last part of the current work investigates the problem of finding local class
discriminative subsequences of time series. We suggest resolving this task by finding
a weight vector for each time series from the training set. Several techniques were
proposed to learn weight vectors, among which two, namely BW and SVC, show more
interesting properties. The former has an advantage of fast computation, but assumes

148

that distance values of each class are drawn from the Gaussian distribution. The latter
do not make any statistical assumption on the data; however, is computationally more
expensive. We observed positive results on the model readability, by obtaining trees
of compact size, keeping the same classification accuracy. Despite this fact, we can
conclude that employing weighted time series into the training set is able to improve
model’s interpretability and contribute to its explainability. On one hand, if a node of
yielded tree contains split annotated by a weight vector, it points out existence of local
class distinguishing sub-intervals. In this case, providing a user with the visualization
of a weight vector will facilitate the data analysis and can help to explain obtained
classification results. On the other hand, if a node split comprises time series with
uniform weight vector, a practitioner understands that discriminative information is
contained into the entire time series. In the next section, we describe some future
directions of research that we found to be interesting and useful to explore.

8.2 Future Directions

• Multi-operator Temporal Decision Trees examines a wide range of split candidates
generated from split operators of different nature. Two questions can be asked
here:

1. how many split candidates are sufficient to feed to such algorithms to learn
class discriminative concepts of the data?

2. how to select the best split candidate among a set of candidates, where
each of them induces the same data partition?

One possibillity to address the first question could be done by employing risk
bounds during the training process. The second one requires consideration some
additional criteria to evaluate split partition, the classification risk bounds can
be used as well.

• Hyperplane and hypersphere split operators can employ different dissimilarity
measures in order to capture value or shape attributes of time series. Since a
domain expert rarely has a prior knowledge about which dissimilarity function
to use, they either employ many of them (which leads to high computational
complexity) or risk to pick the suboptimal one. Hence, embedding metric learning
within building a tree node can be an interesting direction of the algorithm
improvement.

149

• We proposed approximated Local Search Temporal Decision Tree algorithm
which explores subset of split candidates at each internal node depending on
limits, provided by a user, on the number of distance computations. While it is
able to yield a model by taking the non-weighted time series data as input, it
cannot be applied when time series have weight vectors. The problem appears
on the step of exploration neighbour split candidates, when bounds on the real
distances have to be updated. Then, the point is how one can update weight
values for a new split candidate, which lies in vicinity of the initial one.

• The Multi-operator Temporal Decision Tree algorithm is computationally de-
manding algorithm. As a consequence, it does not scale when the datasets grow
in size both in terms of number of time series and their length. With rapid
increase of the former, the number of split candidates to evaluate increases too.
When the latter term grows, computation of dissimilarity measure becomes
costly. As an axis of future work, parallelization of the training process can be
considered.

• Trees models suffer from the high variance. In practice, Random Forest classifier
is commonly used to overcome this problem. Tree ensembles also have higher
classification accuracy than a single tree. However, the intepretability of such
models is very limited. When the number of built models grows, it becomes
difficult to visualize them. Also, for a domain expert, it is challenging to analyze
and efficiently aggregate classification results obtained from multiple models.
Hence, the interest of future research would be decreasing variance of a tree
model, and at the same time keeping its classification accuracy.

• In this research, we construct binary classification trees. It is assumed that the
data can be efficiently bi-partitioned, which, clearly, is not always true, especially
in multi-class classification problem. The data structure might change from a
node to node, hence producing a binary split can lead to yielding bigger, less
accurate and interpretable trees. It leads to the open question, how to built trees
with a multiway split in a node. Thus, we suggest exploration of this problem
as the one of prominent future directions in order to improve interpretability of
tree models.

150

Bibliography

[1] . Efficient time series matching by wavelets. In Proceedings of the 15th International
Conference on Data Engineering, ICDE ’99, pages 126–, Washington, DC, USA,
1999. IEEE Computer Society. ISBN 0-7695-0071-4. URL http://dl.acm.org/

citation.cfm?id=846218.847201.

[2] Innovative tool-kit for analysig time series. https://ikats.org, 2019.

[3] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the sur-
prising behavior of distance metrics in high dimensional spaces. In Jan Van
den Bussche and Victor Vianu, editors, Database Theory - ICDT 2001, 8th
International Conference, London, UK, January 4-6, 2001, Proceedings., vol-
ume 1973 of Lecture Notes in Computer Science, pages 420–434. Springer,
2001. ISBN 3-540-41456-8. doi: 10.1007/3-540-44503-X_27. URL https:

//doi.org/10.1007/3-540-44503-X_27.

[4] Rakesh Agrawal, Christos Faloutsos, and Arun N. Swami. Efficient similarity
search in sequence databases. In Proceedings of the 4th International Conference
on Foundations of Data Organization and Algorithms, FODO ’93, pages 69–84,
Berlin, Heidelberg, 1993. Springer-Verlag. ISBN 3-540-57301-1. URL http:

//dl.acm.org/citation.cfm?id=645415.652239.

[5] Anthony Bagnall, Luke M. Davis, Jon Hills, and Jason Lines. Transformation
based ensembles for time series classification. In Proceedings of the Twelfth
SIAM International Conference on Data Mining, Anaheim, California, USA,
April 26-28, 2012., pages 307–318. SIAM / Omnipress, 2012. ISBN 978-1-61197-
232-0. doi: 10.1137/1.9781611972825.27. URL https://doi.org/10.1137/1.

9781611972825.27.

[6] Anthony Bagnall, Jason Lines, Jon Hills, and Aaron Bostrom. Time-series
classification with COTE: the collective of transformation-based ensembles. In

151

http://dl.acm.org/citation.cfm?id=846218.847201
http://dl.acm.org/citation.cfm?id=846218.847201
https://doi.org/10.1007/3-540-44503-X_27
https://doi.org/10.1007/3-540-44503-X_27
http://dl.acm.org/citation.cfm?id=645415.652239
http://dl.acm.org/citation.cfm?id=645415.652239
https://doi.org/10.1137/1.9781611972825.27
https://doi.org/10.1137/1.9781611972825.27

32nd IEEE International Conference on Data Engineering, ICDE 2016, Helsinki,
Finland, May 16-20, 2016, 2016.

[7] Suhrid Balakrishnan and David Madigan. Decision trees for functional variables.
In Proceedings of the 6th IEEE International Conference on Data Mining (ICDM
2006), 18-22 December 2006, Hong Kong, China, pages 798–802. IEEE Computer
Society, 2006. ISBN 0-7695-2701-9. doi: 10.1109/ICDM.2006.49. URL https:

//doi.org/10.1109/ICDM.2006.49.

[8] Gustavo E. A. P. A. Batista, Eamonn J. Keogh, Oben Moses Tataw, and Vinícius
M. A. de Souza. CID: an efficient complexity-invariant distance for time series.
Data Min. Knowl. Discov., 28(3):634–669, 2014. doi: 10.1007/s10618-013-0312-3.
URL https://doi.org/10.1007/s10618-013-0312-3.

[9] Mustafa Gokce Baydogan, George C. Runger, and Eugene Tuv. A bag-of-
features framework to classify time series. IEEE Trans. Pattern Anal. Mach.
Intell., 35(11):2796–2802, 2013. doi: 10.1109/TPAMI.2013.72. URL https:

//doi.org/10.1109/TPAMI.2013.72.

[10] Laurent Bernaille, Renata Teixeira, Ismael Akodkenou, Augustin Soule, and Kavé
Salamatian. Traffic classification on the fly. Computer Communication Review,
36(2):23–26, 2006. doi: 10.1145/1129582.1129589. URL http://doi.acm.org/

10.1145/1129582.1129589.

[11] Donald J. Berndt and James Clifford. Using dynamic time warping to find
patterns in time series. In Knowledge Discovery in Databases: Papers from
the 1994 AAAI Workshop, Seattle, Washington, July 1994. Technical Report
WS-94-03, 1994.

[12] Aaron Bostrom and Anthony Bagnall. Binary shapelet transform for multiclass
time series classification. T. Large-Scale Data- and Knowledge-Centered Systems,
32:24–46, 2017. doi: 10.1007/978-3-662-55608-5_2. URL https://doi.org/10.

1007/978-3-662-55608-5_2.

[13] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. doi: 10.
1023/A:1010933404324. URL https://doi.org/10.1023/A:1010933404324.

[14] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth, 1984. ISBN 0-534-98053-8.

152

https://doi.org/10.1109/ICDM.2006.49
https://doi.org/10.1109/ICDM.2006.49
https://doi.org/10.1007/s10618-013-0312-3
https://doi.org/10.1109/TPAMI.2013.72
https://doi.org/10.1109/TPAMI.2013.72
http://doi.acm.org/10.1145/1129582.1129589
http://doi.acm.org/10.1145/1129582.1129589
https://doi.org/10.1007/978-3-662-55608-5_2
https://doi.org/10.1007/978-3-662-55608-5_2
https://doi.org/10.1023/A:1010933404324

[15] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall,
Abdullah Mueen, and Gustavo Batista. The ucr time series classification archive,
July 2015. www.cs.ucr.edu/~eamonn/time_series_data/.

[16] Ahlame Douzal Chouakria and Cécile Amblard. Classification trees for time
series. Pattern Recognition, 2012.

[17] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995. doi: 10.1007/BF00994018. URL https://doi.org/10.

1007/BF00994018.

[18] Stuart Daw, Charles Finney, and Eugene Tracy. A review of symbolic analysis of
experimental data. 74:915–930, 02 2003.

[19] Houtao Deng, George C. Runger, Eugene Tuv, and Vladimir Martyanov. A time
series forest for classification and feature extraction. Inf. Sci., 239:142–153, 2013.
doi: 10.1016/j.ins.2013.02.030. URL https://doi.org/10.1016/j.ins.2013.

02.030.

[20] Mukund Deshpande and George Karypis. Evaluation of techniques for classi-
fying biological sequences. In Proceedings of the 6th Pacific-Asia Conference
on Advances in Knowledge Discovery and Data Mining, PAKDD ’02, pages
417–431, London, UK, UK, 2002. Springer-Verlag. ISBN 3-540-43704-5. URL
http://dl.acm.org/citation.cfm?id=646420.693671.

[21] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn J.
Keogh. Querying and mining of time series data: experimental comparison of
representations and distance measures. PVLDB, 1(2):1542–1552, 2008. URL
http://www.vldb.org/pvldb/1/1454226.pdf.

[22] Cao-Tri Do, Ahlame Douzal-Chouakria, Sylvain Schneider Marié, Michèle Rom-
baut, and Saeed Varasteh. Multi-modal and multi-scale temporal metric learning
for a robust time series nearest neighbors classification. Information Sciences,
pages 418–419, 2017.

[23] Omer Duskin and Dror G. Feitelson. Distinguishing humans from robots in web
search logs: preliminary results using query rates and intervals. InWSCD@WSDM,
2009.

153

www.cs.ucr.edu/~eamonn/time_series_data/
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/j.ins.2013.02.030
https://doi.org/10.1016/j.ins.2013.02.030
http://dl.acm.org/citation.cfm?id=646420.693671
http://www.vldb.org/pvldb/1/1454226.pdf

[24] Charles Elkan. Using the triangle inequality to accelerate k-means. In Tom
Fawcett and Nina Mishra, editors, Machine Learning, Proceedings of the Twentieth
International Conference (ICML 2003), August 21-24, 2003, Washington, DC,
USA, pages 147–153. AAAI Press, 2003. ISBN 1-57735-189-4. URL http:

//www.aaai.org/Library/ICML/2003/icml03-022.php.

[25] Philippe Esling and Carlos Agón. Time-series data mining. ACM Comput. Surv.,
2012.

[26] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast sub-
sequence matching in time-series databases. In Richard T. Snodgrass and
Marianne Winslett, editors, Proceedings of the 1994 ACM SIGMOD Interna-
tional Conference on Management of Data, Minneapolis, Minnesota, May 24-27,
1994., pages 419–429. ACM Press, 1994. doi: 10.1145/191839.191925. URL
http://doi.acm.org/10.1145/191839.191925.

[27] Cedric Frambourg, Ahlame Douzal-Chouakria, and Eric Gaussier. Learning mul-
tiple temporal matching for time series classification. In International Symposium
on Intelligent Data Analysis, pages 198–209. Springer, 2013.

[28] Cédric Frambourg. Apprentissage d’appariements pour la discrimination de séries
temporelles. PhD thesis, 2013. URL http://www.theses.fr/2013GRENS025.
Thèse de doctorat dirigée par Demongeot, Jacques et Douzal-Chouakria, Ahlame
Modèles, méthodes et algorithmes en biologie, santé et environnement Grenoble
2013.

[29] Tak-chung Fu. A review on time series data mining. Eng. Appl. of AI, 24(1):
164–181, 2011. doi: 10.1016/j.engappai.2010.09.007. URL https://doi.org/10.

1016/j.engappai.2010.09.007.

[30] Ben D. Fulcher. Feature-based time-series analysis. CoRR, abs/1709.08055, 2017.
URL http://arxiv.org/abs/1709.08055.

[31] Pierre Geurts. Pattern extraction for time series classification. In Luc De Raedt
and Arno Siebes, editors, Principles of Data Mining and Knowledge Discovery,
5th European Conference, PKDD 2001, Freiburg, Germany, September 3-5, 2001,
Proceedings, volume 2168 of Lecture Notes in Computer Science, pages 115–127.
Springer, 2001. ISBN 3-540-42534-9. doi: 10.1007/3-540-44794-6_10. URL
https://doi.org/10.1007/3-540-44794-6_10.

154

http://www.aaai.org/Library/ICML/2003/icml03-022.php
http://www.aaai.org/Library/ICML/2003/icml03-022.php
http://doi.acm.org/10.1145/191839.191925
http://www.theses.fr/2013GRENS025
https://doi.org/10.1016/j.engappai.2010.09.007
https://doi.org/10.1016/j.engappai.2010.09.007
http://arxiv.org/abs/1709.08055
https://doi.org/10.1007/3-540-44794-6_10

[32] Tomasz Górecki and Maciej Luczak. Using derivatives in time series classification.
Data Min. Knowl. Discov., 26(2):310–331, 2013. doi: 10.1007/s10618-012-0251-4.
URL https://doi.org/10.1007/s10618-012-0251-4.

[33] Tomasz Górecki and Maciej Luczak. First and second derivatives in time se-
ries classification using DTW. Communications in Statistics - Simulation and
Computation, 43(9):2081–2092, 2014. doi: 10.1080/03610918.2013.775296. URL
https://doi.org/10.1080/03610918.2013.775296.

[34] Josif Grabocka, Nicolas Schilling, Martin Wistuba, and Lars Schmidt-Thieme.
Learning time-series shapelets. In The 20th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA
- August 24 - 27, 2014, 2014.

[35] Steinn Gudmundsson, Thomas Philip Runarsson, and Sven Sigurdsson. Support
vector machines and dynamic time warping for time series. In Proceedings of the
International Joint Conference on Neural Networks, IJCNN 2008, part of the
IEEE World Congress on Computational Intelligence, WCCI 2008, Hong Kong,
China, June 1-6, 2008, pages 2772–2776. IEEE, 2008. ISBN 978-1-4244-1820-
6. doi: 10.1109/IJCNN.2008.4634188. URL https://doi.org/10.1109/IJCNN.

2008.4634188.

[36] Jon Hills, Jason Lines, Edgaras Baranauskas, James Mapp, and Anthony Bagnall.
Classification of time series by shapelet transformation. Data Min. Knowl.
Discov., 28(4):851–881, 2014. doi: 10.1007/s10618-013-0322-1. URL https:

//doi.org/10.1007/s10618-013-0322-1.

[37] Daniel S. Hirschberg. Algorithms for the longest common subsequence problem.
J. ACM, 24(4):664–675, 1977. doi: 10.1145/322033.322044. URL http://doi.

acm.org/10.1145/322033.322044.

[38] Gísli R. Hjaltason and Hanan Samet. Index-driven similarity search in metric
spaces. ACM Trans. Database Syst., 28(4):517–580, 2003. doi: 10.1145/958942.
958948. URL http://doi.acm.org/10.1145/958942.958948.

[39] F. Itakura. Minimum prediction residual principle applied to speech recognition.
IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-32:67–72,
February 1975.

155

https://doi.org/10.1007/s10618-012-0251-4
https://doi.org/10.1080/03610918.2013.775296
https://doi.org/10.1109/IJCNN.2008.4634188
https://doi.org/10.1109/IJCNN.2008.4634188
https://doi.org/10.1007/s10618-013-0322-1
https://doi.org/10.1007/s10618-013-0322-1
http://doi.acm.org/10.1145/322033.322044
http://doi.acm.org/10.1145/322033.322044
http://doi.acm.org/10.1145/958942.958948

[40] Young-Seon Jeong, Myong K. Jeong, and Olufemi A. Omitaomu. Weighted
dynamic time warping for time series classification. Pattern Recognition, 44(9):
2231 – 2240, 2011. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.
2010.09.022. URL http://www.sciencedirect.com/science/article/pii/

S003132031000484X. Computer Analysis of Images and Patterns.

[41] Rohit J. Kate. Using dynamic time warping distances as features for improved
time series classification. Data Min. Knowl. Discov., 2016.

[42] Eamonn J. Keogh and Shruti Kasetty. On the need for time series data mining
benchmarks: A survey and empirical demonstration. Data Min. Knowl. Discov.,
7(4):349–371, 2003. doi: 10.1023/A:1024988512476. URL https://doi.org/10.

1023/A:1024988512476.

[43] Eamonn J. Keogh and Michael J. Pazzani. Scaling up dynamic time warping for
datamining applications. In Raghu Ramakrishnan, Salvatore J. Stolfo, Roberto J.
Bayardo, and Ismail Parsa, editors, Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data mining, Boston, MA,
USA, August 20-23, 2000, pages 285–289. ACM, 2000. ISBN 1-58113-233-6. doi:
10.1145/347090.347153. URL http://doi.acm.org/10.1145/347090.347153.

[44] Eamonn J. Keogh and Michael J. Pazzani. Derivative dynamic time warping. In
Vipin Kumar and Robert L. Grossman, editors, Proceedings of the First SIAM
International Conference on Data Mining, SDM 2001, Chicago, IL, USA, April
5-7, 2001, pages 1–11. SIAM, 2001. ISBN 978-0-89871-495-1. doi: 10.1137/1.
9781611972719.1. URL https://doi.org/10.1137/1.9781611972719.1.

[45] Eamonn J. Keogh and Thanawin Rakthanmanon. Fast shapelets: A scalable algo-
rithm for discovering time series shapelets. In Proceedings of the 13th SIAM Inter-
national Conference on Data Mining, May 2-4, 2013. Austin, Texas, USA., pages
668–676. SIAM, 2013. ISBN 978-1-61197-262-7. doi: 10.1137/1.9781611972832.74.
URL https://doi.org/10.1137/1.9781611972832.74.

[46] Eamonn J. Keogh, Kaushik Chakrabarti, Sharad Mehrotra, and Michael J.
Pazzani. Locally adaptive dimensionality reduction for indexing large time series
databases. In Sharad Mehrotra and Timos K. Sellis, editors, Proceedings of the
2001 ACM SIGMOD international conference on Management of data, Santa

156

http://www.sciencedirect.com/science/article/pii/S003132031000484X
http://www.sciencedirect.com/science/article/pii/S003132031000484X
https://doi.org/10.1023/A:1024988512476
https://doi.org/10.1023/A:1024988512476
http://doi.acm.org/10.1145/347090.347153
https://doi.org/10.1137/1.9781611972719.1
https://doi.org/10.1137/1.9781611972832.74

Barbara, CA, USA, May 21-24, 2001, pages 151–162. ACM, 2001. ISBN 1-
58113-332-4. doi: 10.1145/375663.375680. URL http://doi.acm.org/10.1145/

375663.375680.

[47] Flip Korn, H. V. Jagadish, and Christos Faloutsos. Efficiently supporting ad
hoc queries in large datasets of time sequences. SIGMOD Rec., 26(2):289–
300, June 1997. ISSN 0163-5808. doi: 10.1145/253262.253332. URL http:

//doi.acm.org/10.1145/253262.253332.

[48] Ludmila I. Kuncheva. Diversity in multiple classifier systems. Information Fusion,
6(1):3–4, 2005. doi: 10.1016/j.inffus.2004.04.009. URL https://doi.org/10.

1016/j.inffus.2004.04.009.

[49] Terran Lane and Carla E. Brodley. Temporal sequence learning and data reduction
for anomaly detection. In Proceedings of the 5th ACM Conference on Computer
and Communications Security, CCS ’98, pages 150–158, New York, NY, USA,
1998. ACM. ISBN 1-58113-007-4. doi: 10.1145/288090.288122. URL http:

//doi.acm.org/10.1145/288090.288122.

[50] Daniel Lemire. Faster retrieval with a two-pass dynamic-time-warping lower
bound. CoRR, abs/0811.3301, 2008. URL http://arxiv.org/abs/0811.3301.

[51] Christina S. Leslie, Eleazar Eskin, and William Stafford Noble. The spectrum
kernel: A string kernel for SVM protein classification. In Proceedings of the 7th
Pacific Symposium on Biocomputing, PSB 2002, Lihue, Hawaii, USA, January
3-7, 2002, pages 566–575, 2002. URL http://psb.stanford.edu/psb-online/

proceedings/psb02/leslie.pdf.

[52] Christina S. Leslie, Eleazar Eskin, Adiel Cohen, Jason Weston, and
William Stafford Noble. Mismatch string kernels for discriminative protein classifi-
cation. Bioinformatics, 20(4):467–476, 2004. doi: 10.1093/bioinformatics/btg431.
URL https://doi.org/10.1093/bioinformatics/btg431.

[53] Jessica Lin, Eamonn J. Keogh, Li Wei, and Stefano Lonardi. Experiencing SAX:
a novel symbolic representation of time series. Data Min. Knowl. Discov., 2007.

[54] Jessica Lin, Rohan Khade, and Yuan Li. Rotation-invariant similarity in time
series using bag-of-patterns representation. J. Intell. Inf. Syst., 39(2):287–315,
October 2012. ISSN 0925-9902. doi: 10.1007/s10844-012-0196-5. URL http:

//dx.doi.org/10.1007/s10844-012-0196-5.

157

http://doi.acm.org/10.1145/375663.375680
http://doi.acm.org/10.1145/375663.375680
http://doi.acm.org/10.1145/253262.253332
http://doi.acm.org/10.1145/253262.253332
https://doi.org/10.1016/j.inffus.2004.04.009
https://doi.org/10.1016/j.inffus.2004.04.009
http://doi.acm.org/10.1145/288090.288122
http://doi.acm.org/10.1145/288090.288122
http://arxiv.org/abs/0811.3301
http://psb.stanford.edu/psb-online/proceedings/psb02/leslie.pdf
http://psb.stanford.edu/psb-online/proceedings/psb02/leslie.pdf
https://doi.org/10.1093/bioinformatics/btg431
http://dx.doi.org/10.1007/s10844-012-0196-5
http://dx.doi.org/10.1007/s10844-012-0196-5

[55] Jason Lines and Anthony Bagnall. Time series classification with ensem-
bles of elastic distance measures. Data Min. Knowl. Discov., 29(3):565–592,
2015. doi: 10.1007/s10618-014-0361-2. URL https://doi.org/10.1007/

s10618-014-0361-2.

[56] Jason Lines, Luke M. Davis, Jon Hills, and Anthony Bagnall. A shapelet transform
for time series classification. In Qiang Yang, Deepak Agarwal, and Jian Pei, editors,
The 18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’12, Beijing, China, August 12-16, 2012, pages 289–297.
ACM, 2012. ISBN 978-1-4503-1462-6. doi: 10.1145/2339530.2339579. URL
http://doi.acm.org/10.1145/2339530.2339579.

[57] Zachary Chase Lipton. The mythos of model interpretability. CoRR, 2016.

[58] Fang-Jun Luan, Kai Li, and Si-Liang Ma. The algorithm of online handwritten
signature verification based on improved dtw. 10:81 – 86, 07 2010.

[59] Pierre-Francois Marteau. Time warp edit distance with stiffness adjustment for
time series matching. IEEE Trans. Pattern Anal. Mach. Intell., 31(2):306–318,
2009. doi: 10.1109/TPAMI.2008.76. URL https://doi.org/10.1109/TPAMI.

2008.76.

[60] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences.
CoRR, abs/1706.07269, 2017. URL http://arxiv.org/abs/1706.07269.

[61] Theophano Mitsa. Temporal Data Mining. Chapman & Hall/CRC, 1st edition,
2010. ISBN 1420089765, 9781420089769.

[62] Norrima Mokhtar, H Arof, and Masahiro Iwahashi. One dimensional image
processing for eye tracking using derivative dynamic time warping. 5:2947–2952,
01 2010.

[63] Abdullah Mueen, Eamonn J. Keogh, and Neal E. Young. Logical-shapelets: an
expressive primitive for time series classification. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Diego, CA, USA, August 21-24, 2011, 2011.

[64] Alex Nanopoulos, Rob Alcock, and Yannis Manolopoulos. Information processing
and technology. chapter Feature-based Classification of Time-series Data, pages
49–61. Nova Science Publishers, Inc., Commack, NY, USA, 2001. ISBN 1-59033-
116-8. URL http://dl.acm.org/citation.cfm?id=766914.766918.

158

https://doi.org/10.1007/s10618-014-0361-2
https://doi.org/10.1007/s10618-014-0361-2
http://doi.acm.org/10.1145/2339530.2339579
https://doi.org/10.1109/TPAMI.2008.76
https://doi.org/10.1109/TPAMI.2008.76
http://arxiv.org/abs/1706.07269
http://dl.acm.org/citation.cfm?id=766914.766918

[65] Chang-Shing Perng, Haixun Wang, Sylvia R. Zhang, and Douglas Stott Parker
Jr. Landmarks: a new model for similarity-based pattern querying in time series
databases. In ICDE, pages 33–42. IEEE Computer Society, 2000.

[66] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81–
106, 1986. doi: 10.1023/A:1022643204877. URL https://doi.org/10.1023/A:

1022643204877.

[67] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993. ISBN 1-55860-238-0.

[68] Laura Elena Raileanu and Kilian Stoffel. Theoretical comparison between the gini
index and information gain criteria. Annals of Mathematics and Artificial Intelli-
gence, 41(1):77–93, May 2004. ISSN 1573-7470. doi: 10.1023/B:AMAI.0000018580.
96245.c6. URL https://doi.org/10.1023/B:AMAI.0000018580.96245.c6.

[69] Chotirat (Ann) Ratanamahatana and Eamonn J. Keogh. Making time-series
classification more accurate using learned constraints. In Proceedings of the Fourth
SIAM International Conference on Data Mining, Lake Buena Vista, Florida,
USA, April 22-24, 2004, pages 11–22, 2004. doi: 10.1137/1.9781611972740.2.
URL https://doi.org/10.1137/1.9781611972740.2.

[70] Xavier Renard, Maria Rifqi, Walid Erray, and Marcin Detyniecki. Random-
shapelet: an algorithm for fast shapelet discovery. In Data Science and Advanced
Analytics (DSAA), 2015. 36678 2015. IEEE International Conference on, pages
1–10. IEEE, 2015.

[71] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust
you?": Explaining the predictions of any classifier. In Balaji Krishnapuram,
Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev
Rastogi, editors, Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August
13-17, 2016, pages 1135–1144. ACM, 2016. ISBN 978-1-4503-4232-2. doi: 10.
1145/2939672.2939778. URL http://doi.acm.org/10.1145/2939672.2939778.

[72] John F. Roddick, Kathleen Hornsby, and Myra Spiliopoulou. An updated bibliog-
raphy of temporal, spatial, and spatio-temporal data mining research. In John F.
Roddick and Kathleen Hornsby, editors, Temporal, Spatial, and Spatio-Temporal
Data Mining, First International Workshop TSDM 2000 Lyon, France, September

159

https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1023/B:AMAI.0000018580.96245.c6
https://doi.org/10.1137/1.9781611972740.2
http://doi.acm.org/10.1145/2939672.2939778

12, 2000, Revised Papers, volume 2007 of Lecture Notes in Computer Science,
pages 147–164. Springer, 2000. ISBN 3-540-41773-7. doi: 10.1007/3-540-45244-3_
12. URL https://doi.org/10.1007/3-540-45244-3_12.

[73] Juan José Rodríguez, Ludmila I. Kuncheva, and Carlos J. Alonso. Rotation
forest: A new classifier ensemble method. IEEE Trans. Pattern Anal. Mach.
Intell., 28(10):1619–1630, 2006. doi: 10.1109/TPAMI.2006.211. URL https:

//doi.org/10.1109/TPAMI.2006.211.

[74] H Sakoe and S Chiba. Dynamic programming algorithm optimization for spoken
word recognition. EEE Transaction on Acoustic Speech Signal Processing, 26(1):
43–49, 1978.

[75] Gerard Salton, A. Wong, and Chung-Shu Yang. A vector space model for
automatic indexing. Commun. ACM, 18(11):613–620, 1975. doi: 10.1145/361219.
361220. URL http://doi.acm.org/10.1145/361219.361220.

[76] Steven Salzberg. On comparing classifiers: Pitfalls to avoid and a recommended
approach. Data Min. Knowl. Discov., 1(3):317–328, 1997. doi: 10.1023/A:
1009752403260. URL https://doi.org/10.1023/A:1009752403260.

[77] Patrick Schäfer. The BOSS is concerned with time series classification in the
presence of noise. Data Min. Knowl. Discov., 29(6):1505–1530, 2015.

[78] Patrick Schäfer. Scalable time series classification. Data Min. Knowl. Discov., 30
(5):1273–1298, 2016. doi: 10.1007/s10618-015-0441-y. URL https://doi.org/

10.1007/s10618-015-0441-y.

[79] Pavel Senin and Sergey Malinchik. SAX-VSM: interpretable time series classi-
fication using SAX and vector space model. In 2013 IEEE 13th International
Conference on Data Mining, Dallas, TX, USA, December 7-10, 2013, 2013.

[80] Hiroshi Shimodaira, Ken-ichi Noma, Mitsuru Nakai, and Shigeki Sagayama. Dy-
namic time-alignment kernel in support vector machine. In Thomas G. Dietterich,
Suzanna Becker, and Zoubin Ghahramani, editors, Advances in Neural Infor-
mation Processing Systems 14 [Neural Information Processing Systems: Natural
and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia,
Canada], pages 921–928. MIT Press, 2001. URL http://papers.nips.cc/paper/

2131-dynamic-time-alignment-kernel-in-support-vector-machine.

160

https://doi.org/10.1007/3-540-45244-3_12
https://doi.org/10.1109/TPAMI.2006.211
https://doi.org/10.1109/TPAMI.2006.211
http://doi.acm.org/10.1145/361219.361220
https://doi.org/10.1023/A:1009752403260
https://doi.org/10.1007/s10618-015-0441-y
https://doi.org/10.1007/s10618-015-0441-y
http://papers.nips.cc/paper/2131-dynamic-time-alignment-kernel-in-support-vector-machine
http://papers.nips.cc/paper/2131-dynamic-time-alignment-kernel-in-support-vector-machine

[81] Saeid Soheily-Khah, Ahlame Douzal-Chouakria, and Eric Gaussier. Generalized
k-means-based clustering for temporal data under weighted and kernel time
warp. Pattern Recognition Letters, 75:63 – 69, 2016. ISSN 0167-8655. doi:
https://doi.org/10.1016/j.patrec.2016.03.007. URL http://www.sciencedirect.

com/science/article/pii/S0167865516000763.

[82] Alexandra Stefan, Vassilis Athitsos, and Gautam Das. The move-split-merge
metric for time series. IEEE Trans. Knowl. Data Eng., 25(6):1425–1438, 2013.
doi: 10.1109/TKDE.2012.88. URL https://doi.org/10.1109/TKDE.2012.88.

[83] Xiaoyue Wang, Hui Ding, Goce Trajcevski, Peter Scheuermann, and Eamonn J.
Keogh. Experimental comparison of representation methods and distance measures
for time series data. CoRR, abs/1012.2789, 2010. URL http://arxiv.org/abs/

1012.2789.

[84] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from
scratch with deep neural networks: A strong baseline. CoRR, abs/1611.06455,
2016.

[85] Kilian Q Weinberger, John Blitzer, and Lawrence K Saul. Distance metric
learning for large margin nearest neighbor classification. In Advances in neural
information processing systems, pages 1473–1480, 2006.

[86] Martin Wistuba, Josif Grabocka, and Lars Schmidt-Thieme. Ultra-fast shapelets
for time series classification. CoRR, abs/1503.05018, 2015.

[87] Xiaopeng Xi, Eamonn J. Keogh, Christian R. Shelton, Li Wei, and Chotirat Ann
Ratanamahatana. Fast time series classification using numerosity reduction. In
William W. Cohen and Andrew Moore, editors, Machine Learning, Proceedings
of the Twenty-Third International Conference (ICML 2006), Pittsburgh, Penn-
sylvania, USA, June 25-29, 2006, volume 148 of ACM International Conference
Proceeding Series, pages 1033–1040. ACM, 2006. ISBN 1-59593-383-2. doi: 10.
1145/1143844.1143974. URL http://doi.acm.org/10.1145/1143844.1143974.

[88] Zhengzheng Xing, Jian Pei, and Eamonn J. Keogh. A brief survey on sequence
classification. SIGKDD Explorations, 12(1):40–48, 2010. doi: 10.1145/1882471.
1882478. URL http://doi.acm.org/10.1145/1882471.1882478.

161

http://www.sciencedirect.com/science/article/pii/S0167865516000763
http://www.sciencedirect.com/science/article/pii/S0167865516000763
https://doi.org/10.1109/TKDE.2012.88
http://arxiv.org/abs/1012.2789
http://arxiv.org/abs/1012.2789
http://doi.acm.org/10.1145/1143844.1143974
http://doi.acm.org/10.1145/1882471.1882478

[89] Yuu Yamada, Einoshin Suzuki, Hideto Yokoi, and Katsuhiko Takabayashi.
Decision-tree induction from time-series data based on a standard-example split
test. In Machine Learning, Proceedings of the Twentieth International Conference
(ICML 2003), August 21-24, 2003, Washington, DC, USA, 2003.

[90] Kiyoung Yang and Cyrus Shahabi. An efficient k nearest neighbor search for
multivariate time series. Information and Computation, 205(1):65–98, 2007.

[91] Lexiang Ye and Eamonn J. Keogh. Time series shapelets: a new primitive for
data mining. In Proceedings of the 15th ACM SIGKDD, 2009.

[92] Jidong Yuan, Zhihai Wang, and Meng Han. A discriminative shapelets trans-
formation for time series classification. IJPRAI, 28(6), 2014. doi: 10.1142/
S0218001414500141. URL https://doi.org/10.1142/S0218001414500141.

[93] Jidong Yuan, Ahlame Douzal-Chouakria, Saeed Varasteh Yazdi, and Zhihai
Wang. A large margin time series nearest neighbour classification under locally
weighted time warps. Knowledge and Information Systems, Mar 2018. ISSN
0219-3116. doi: 10.1007/s10115-018-1184-z. URL https://doi.org/10.1007/

s10115-018-1184-z.

162

https://doi.org/10.1142/S0218001414500141
https://doi.org/10.1007/s10115-018-1184-z
https://doi.org/10.1007/s10115-018-1184-z

	Introduction
	Introduction

	State-of-the-art
	Introduction
	Interpretability, explainability and transparency in machine learning
	Time series data representation
	Preprocessing and discretization methods
	Similarity-based methods
	Time series metrics.
	Value based similarity measures
	Shape-based similarity measures.
	Value-shape-based similarity measures
	Similarity function learning

	Feature-based methods
	Statistical methods
	Pattern-based methods
	Segment-based methods

	Time series learning algorithms
	Classical methods
	Ensemble methods

	On interpretability in TSC algorithms
	Conclusion

	Mono-operator Temporal Decision Trees: TDT
	Temporal Decision Trees (TDT) learning
	Introduction
	Split operators
	Splitting evaluation criteria

	Mono-TDT split node algorithms
	Hyperplane TDT with adaptive metric.
	TDT with dichotomy search

	Conclusion

	Multi-operator Temporal Decision Trees: MTDT
	Multi-operator TDT
	Heuristic approach of recognizing patterns: HARP
	On combination of mono-split TDT operators

	Empirical study
	Experimental settings
	Results and Discussion

	Conclusion

	Local Search Temporal Decision Trees
	Introduction
	Local Search Temporal Decision Trees for Euclidean Distance.
	Local Search for Hyperplane Split Operator.
	Local Search for Hypersphere split operator.

	Algorithm generalization for non static distances.
	Empirical study.
	Triangle inequality violation test.
	Local Search vs Full Search Temporal Decision Tree

	Conclusion

	Weighted Temporal Decision Trees
	Introduction
	Time series weighting algorithms
	Generative weighting algorithm: Between-Within discriminant criterion
	Generic BW
	Class dependent BW

	Generative weighting algorithm: MAP classifier
	Weighting algorithm with Linear SVM

	Application of weights to similarity computation
	Euclidean dissimilarity
	DTW dissimilarity
	(1 - Cort) dissimilarity

	Empirical study
	Synthetic dataset
	Weighted Multi-operator Temporal Decision Trees.

	Conclusion

	Publications
	Conclusions and Future Directions
	Conclusions
	Future Directions

	Bibliography

