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Unité de Recherche :
Femto-ST UMR CNRS

Soutenue publiquement le 05 Novembre 2018 devant le Jury composé de :
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General Introduction

The control of nonlinear physical systems in the presence of unknown external disturbances

and parametric uncertainties is a hot topic of the modern control theory. Among different

robust controls, the Sliding Mode/Higher Order Sliding Mode Control (SMC/HOSMC) is

one of the effective techniques that handles such systems [71]. Indeed, it has proven its

high efficiency due to its insensitivity to the disturbances/uncertainties and its ability to

guarantee the finite-time convergence. The basic idea of this technique consists in applying

discontinuous control on a system which ensures convergence of the output function (sliding

variable) in a finite time to a manifold of the state-space, called the sliding manifold [74].

It has been shown in [71, 28, 66], that if the control forces the system states to remain

on the sliding manifold, then their dynamics are only defined by the manifold, no longer

influenced by parametric uncertainties and external disturbances in the system itself.

The implementation of SMC/HOSMC algorithms require the information of the upper

bound of disturbances or the upper bound of their derivatives. In many cases, and specially

in practical systems, these bounds are not constant and frequently they are unknown.

Furthermore, in order to implement the SMC/HOSMC, the information about the states

should be available. A well-known solution for this problem is to use the SMC algorithms

to design observers that can estimate the unavailable states and/or disturbances. There

again, observers and differentiators design needs the information of the upper bound of

disturbances or their derivatives.

On the other hand, the SMC suffers from chattering ; the phenomenon of finite fre-

quency, finite-amplitude oscillations in the output which appear because the high-frequency

switching excites unmodeled dynamics of the closed loop system [68]. HOSMC approaches

provide chattering reduction by artificially increasing the input-output relative degree, and,

consequently, are able to provide continuous control signals [28]. Nevertheless, HOSMC
1



2 GENERAL INTRODUCTION

algorithms include all ”signum” function frequently multiplied by a gain that depends on

bounds of uncertainties or bounds of their derivatives, and thus chattering is not totally

deleted even by increasing the relative degree.

In some practical applications, the upper limits of disturbances or their derivatives are

often difficult to calculate, or even impossible in some cases. Thus, during the control

design, conservative and overestimated upper limits are used to guarantee sliding mode.

As a result, this conservatism implies an overestimation of the control gain which could

increase the chattering associated with unmodeled dynamics.

This problematic has motivated the researchers to develop Adaptive Sliding Mode and

Higher Order Sliding Mode Controllers (ASMCs/AHOSMCs). The general goal of these

techniques is to ensure a dynamical adaptation of the control gain in order to be as small

as possible whereas sufficient to counteract the uncertainties/disturbances and ensures

a sliding mode or a real sliding mode [58]. These techniques do not require knowledge

of all or part of upper bounds of disturbances or their derivatives, while guaranteeing

the convergence of the sliding variable to zero (or its neighborhood) and avoiding the

overestimation of the gains.

Different ASMCs/AHOSMCs have been recently developed [70, 25, 24, 54, 7, 67, 53,

58, 64, 65]. In [70], an adaptive strategy, which is based on the concept of equivalent

control [71], has been proposed to design ASMC/AHOSMC algorithms. This approach

consists in increasing the gain to enforce the Sliding Mode (SM) to be reached. Then,

when the SM is achieved, the equivalent control value is used in the adaptive scheme,

allowing the gain to decrease to its minimal value while preserving the sliding mode (SM).

However, this approach assumes that the disturbances are smooth and requires the knowl-

edge of the minimum and the maximum allowed values of the adaptive gain. Following

the concept of equivalent control, a dual-layer adaptive approach has been presented to

design ASMC/AHOSMC algorithms in [25, 24]. This approach can ensure that the SM is

maintained as well as the adaptive gain is as small as possible to mitigate chattering effect.

Theoretically, this approach does not require any information of the disturbances or their

derivatives. However, in practice, in order to design the low-pass filter to estimate the

equivalent control, the filter constant should be chosen less than the inverse of the upper

bound of the disturbances first derivatives (in the case of ASMC) or second derivatives

(in the case of AHOSMC). This means that some information about the bounds of the

disturbances or their derivatives are needed. Furthermore, to implement this strategy, the

disturbances should be smooth. Another adaptive approach, which is also based on the
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concept of equivalent control has been proposed to design ASMC algorithm in [54]. This

approach employs a monotonically increasing gain to force the SM to be achieved. After

that, the equivalent control can be used as an estimation of the disturbance. The advan-

tages of this strategy are its simplicity and the possibility to be implemented in the case of

non smooth disturbances. This adaptation does not theoretically require any information

of the disturbances. However, as mentioned earlier, in practice the filter constant should

be chosen less than the inverse of the upper bound of disturbances first derivatives. In

[7, 67] an adaptive strategy based on the usage of discrete time criterion to verify the

appearance of a real-sliding motion [71] has been developed to design ASMC/AHOSMC

algorithms. In order to implement this strategy, a SM indicator which is based on the

detection of real SM is introduced. The idea is to increase the control gain until the indi-

cator reveals that the SM is reached. Then, the adaptive gain starts to decrease until the

sliding mode indicator becomes negative. At this moment, the adaptive gain is increased

in one impulse to ensure the achievement of SM immediately. Then, the gain decrease

will take place until the SM is once more lost. This strategy can ensure the finite time

convergence of the sliding variable (in the case of ASMC) and its derivative (in case of

AHOSMC) to some neighborhoods of zero. However, it assumes that the disturbances are

smooth and requires the knowledge of the boundaries of the disturbances’s logarithmic

derivatives. Moreover, when the gain reaches its minimum, it immediately jumps to its

maximum value when the real SM is violated, even in the case when the change in the

disturbances amplitudes is small. This adaptation mechanism can be very stressful for

electromechanical systems. In [53], an adaptation of HOSMC algorithms has been pre-

sented. This adaptation consists in increasing the gain until the moment when the SM is

reached, then the gain is fixed at this value, providing the convergence in a finite time of

the sliding variable and its derivative to zero. The main advantage of this adaptation is

that it does not require any information on the bound of disturbances or their derivatives.

However, the adaptive gain in this strategy is overestimated. To overcome this problem,

an approach based on increasing and decreasing the gain has been developed in [58, 64, 65]

for ASMC/AHOSMC algorithms. This approach ensures the finite-time convergence of

the sliding variable (in the case of ASMC) and its derivative (in case of AHOSMC) to

some neighborhoods of zero. However, the sizes of these neighborhoods depend on the

unknown upper bound of the disturbances or their derivatives.

This thesis deals with the development of novel strategies to adapt sliding mode and higher

order sliding mode controllers and differentiators which display the following features:
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• The sliding variable in case of ASMC/AHOSMC converges in a finite time to zero or

to a predefined neighborhood of zero, independently of upper bounds of disturbances

and their derivatives, and cannot exceed it.

• The sliding variable derivatives in the case of AHOSMC converge in a finite time to

zero or to some neighborhoods of zero.

• The gains provided by proposed strategies are not overestimated.

• The proposed strategies do not theoretically require knowledge of all upper bounds

of disturbances and their derivatives.

The first contribution of this thesis is the design of an adaptive strategy that can en-

sure the convergence of the sliding variable to a predefined neighborhood of zero without

requiring any information of the disturbance or its derivative and without overestimating

the adaptive gain. This adaptive strategy is then declined for the design of the first or-

der, second order and integral sliding mode controllers, and for the Levant’s differentiator.

The second contribution of the thesis is the development of two adaptive strategies for

discontinuous higher order sliding mode control. The proposed two algorithms can pro-

vide the achievement of n-order sliding mode despite disturbances with unknown upper

bounds or with unknown upper bounds of their derivatives. Finally, in order to show the

effectiveness of the proposed algorithms, they are successfully applied through simulations

to control the wind energy conversion system and the linear induction motor system for

cogeneration.

Organization and contributions of the thesis

Chapter 1 introduces a non-exhaustive overview of adaptive strategies to design adaptive

sliding mode and higher order sliding mode controllers proposed in the scientific literature

along with their advantages and disadvantages.

In Chapter 2, two adaptive techniques called barrier functions are presented. The main

feature of these functions is that they tend to infinity when their arguments come close to

some predefined limits. Based on this attractive feature, a new adaptive strategy for first

order SMC is developed. The proposed adaptive algorithm can be applied to a class of first

order disturbed systems whose disturbance is bounded with an unknown boundary. It can
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ensure the convergence of the sliding variable and maintain it in a predefined neighborhood

of zero independent of the upper bound of the disturbance, without overestimating the

control gain. Then, this adaptive strategy is applied to adapt the gain of a Discontinuous

Integral Sliding Mode Controller (DISMC). This adaptation allows such controller to be

implemented to a class of arbitrary order disturbed systems with unknown bounded dis-

turbance. It can ensure that the auxiliary variable belongs to a predefined neighborhood

of zero starting from the initial time moment. The properties of both proposed adaptive

algorithms are demonstrated through simulation examples.

Chapter 3 presents an adaptive version of Super-Twisting Controller (STC) for disturbed

first order system where the disturbance is Lipschitz with unknown Lispchitz constant.

The adaptation law is based on the barrier strategy introduced in the previous chapter.

Unlike other adaptive versions of STC, the proposed one can ensure the convergence of the

sliding variable and maintain it in a predefined neighborhood of zero independent of the

upper bound of the disturbance derivative, without overestimating the control gain and

without requiring neither the upper bound of the disturbance derivative nor the use of the

low-pass filter. Then, based on the barrier strategy, an adaptive version of a Continuous

Integral Sliding mode controller (CISMC) is proposed. This algorithm ensures that the

auxiliary variable belongs to a predefined neighborhood of zero starting from the initial

time moment. Moreover, it allows to avoid the reaching phase, and guarantees that the

adaptive gain is not overestimated. The properties of both proposed adaptive algorithms

are demonstrated through simulation examples.

In Chapter 4 the barrier function is used to adapt Levant’s Differentiator (LD). This

adaptation is useful for the case when the upper bound of second derivative of base signal

exists but it is unknown. Thanks to its feature, from the initial time moment it can be

guaranteed that the error of estimation of the signal belongs to a predefined vicinity of

zero. Moreover, the proposed adaptive strategy can ensure the convergence of LD to some

vicinity of the first derivative. Then, a comparison between different adaptation strategies

of LD to estimate the first derivative is drawn. Without noise, it is shown that the pro-

posed adaptive strategy is in competition with the known strategies of adaptation. In the

presence of noise, the main advantage of the proposed adaptive strategy is that it could

indicate when LD does not converge. On the other hand, the other existing strategies for

LD adaptation [64, 53] could converge to the sum of the derivatives of the base and noise
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signals and it is impossible to identify it.

Chapter 5 proposes two different adaptive Discontinuous HOSMC (DHOSMC) strate-

gies. These controllers are based on the adaptation of homogeneous DHOSMC strategies

proposed in [22]. The first strategy consists in growing the gain until the sliding mode is

achieved and it can be applied in the case of bounded disturbances with unknown upper

bound. While the second strategy comprises a novel dual layer adaptation and can be

applied in the case of Lipschitz disturbance with unknown Lipschitz constant.

To the best of our knowledge, the proposed adaptive DHOSMCs are the first that ensure

the finite time convergence of the states to zero without requiring any information about

the disturbances.

Chapter 6 addressees the active and reactive power control of a Wind-Energy Conver-

sion System (WECS). Due to the high complexity of wind-energy conversion system which

comes from the nonlinear system dynamics and parameter uncertainties, adaptive SMCs

are required for this system. Then, in this chapter the adaptive first order SMC and STC

are applied. These adaptive controllers can extract the maximum power and achieve the

reference reactive power with predefined errors, independent of the upper bound of the

disturbance/uncertainties and their derivatives. Performances of proposed controllers ap-

plied to WECS have been demonstrated and compared through simulations.

Chapter 7 focuses on the control of linear induction motor used in cogeneration system.

For linear induction motor, the control objective can be summarized as driving the actual

speed and flux to their desired values. Since the flux dynamics and the speed dynamics

can be considered as disturbed double integrator systems where the upper bound of the

disturbances and their derivatives are unknown, the adaptive SMCs are required for this

system. Hence, the adaptive versions of DISMC, CISMC and the adaptive DHOSMCs are

applied. Moreover, their performances are compared.

In the end, some concluding remarks and perspectives on expansion of the work are pre-

sented in the chapter Conclusion and perspectives.
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Chapter 1

State-of-Art on adaptive sliding mode

control

Nonlinear dynamic physical systems suffer from parametric uncertainty and are difficult

to characterize. Parametric uncertainty arises from varying operating conditions and ex-

ternal disturbances that affect the physical characteristics of systems. The variation limits

or the bounds of this uncertainty might be known or unknown. This needs to be con-

sidered during control design so that the controller counteracts the effect of variations

and guarantees desired performances under different operating conditions. Sliding Mode

and Higher Order Sliding Mode control (SMC/HOSMC) [71] is a well-known method for

control of nonlinear systems, renowned for its insensitivity to parametric uncertainty and

external disturbances. This technique is based on applying discontinuous control on a

system which ensures a convergence of the output function (sliding variable) in a finite

time to a manifold of the state-space, called the sliding manifold [74].

The implementation of SMC/HOSMC algorithms requires the information of the upper

bound of the disturbances or the upper bound of their derivatives. For instance, the

implementation of the Super-Twisting Control (STC) requires the knowledge of the upper

bound of disturbances derivatives. In many cases, these bounds are not constant and,

moreover, frequently they are unknown.

On the other hand, the SMC suffers from chattering ; the phenomenon of finite-

frequency, finite-amplitude oscillations in the output which appear because the high-

frequency switching excites unmodeled dynamics of the closed loop system [68]. HOSMC is

an effective method for chattering attenuation [28]. Indeed HOSM controllers [63] provide
9
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chattering attenuation across artificially increasing the input-output relative degree, and,

consequently, are able to produce continuous control signals. However, SMC/HOSMC al-

gorithms contain ”signum” multiplied by a control gain that depends on the upper bound

of disturbances or their derivatives, and therefore chattering is not totally eliminated even

in the case where HOSMC algorithms are used.

During the last decade several control strategies have been published on adaptive

sliding mode and higher order sliding mode control (ASMC/AHOSM). The objective of

these strategies is to adapt the gains of controllers in such a way that the sliding mode

(or the real sliding mode [45]) is achieved in a finite time with non-overestimation of

control gains, while eliminating or decreasing the required information of the bounds of

the disturbances and their derivatives.

In this chapter a descriptive, non-exhaustive overview of ASMC/AHOSMC strategies

proposed in the scientific literature is presented. This chapter is organized as follows: we

first recall definitions of an ideal and a real sliding mode. Then, non-exhaustive adaptive

strategies to design adaptive ASMCs/AHOSMCs are presented along with their advantages

and disadvantages.

1.1 Preliminaries

Consider the perturbed chain of integrators of order n

ẋ1(t ) = x2(t )

...
...

...

ẋn(t ) = u(t )+δ(t ),

s(t ) = x1(t ),

(1.1)

with x = [x1, . . . , xn]T ∈ X ⊂ Rn is the state vector (X is a bounded subset of Rn), u ∈ R is

the control input, δ(t ) is an unknown disturbance, and s(t ) is a measured smooth output-

feedback function, named sliding variable. The control task is to make s(t ), vanish in a

finite time and to keep it at zero afterwards.

System (1.1) has a relative degree n with respect to s(t ). It means [37] that for the first

time the control explicitly appears in the nth total time derivative of s, i.e.

s(n)(t ) = u(t )+δ(t ). (1.2)
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The assumptions on the disturbance δ(t ) will depend on each adaptive algorithm, therefore

they will be presented in each section. Before describing each adaptive algorithm, the

definitions of an ideal and a real sliding mode are given.

Definition 1.1.1. [63] Consider system (1.1) with the sliding variable s(t ). Then, if

1. the successive time derivatives s, ṡ, · · · , s(n−1) are continuous functions;

2. the set {
x ∈X |s = ṡ = ·· · = s(n−1) = 0

}
(1.3)

is a nonempty integral set;

3. the Filippov set of admissible velocities at the n-sliding points (1.3) contains more

than one vector;

the motion on the set (1.3) is said to exist in an ideal nth-order sliding mode (n-OSM).

The set (1.3) is called the n-OSM set.

Definition 1.1.2. [45] Consider system (1.1) and the sliding variable s(t ). Assume that

the successive time derivatives s, ṡ, · · · , s(n−1) are continuous functions. The manifold

defined as (τ being the sampling period of the control law){
x| |s| ≤µ0τ

n , · · · , |s(n−1)| ≤µn−1τ
}

(1.4)

with µi ≥ 0 (with 0 ≤ i ≤ n−1), is called a real n-OSM set, which is nonempty and is locally

an integral set in the Fillipov sense. The motion on this manifold is called a real n-OSM

with respect to the sliding variable s(t ).

1.2 Utkin’s adaptation

This adaptation is based on the concept of equivalent control [71]. It consists in increasing

the gain to enforce SM to be reached. Then, when the SM is achieved, the equivalent

control value is used in the adaptive scheme, allowing the gain to decrease to its minimal

value while preserving the SM. Hence, it reduces the amplitude of the chattering. This

adaptation has been applied to adapt FOSMC and STC [70] as will be shown in the next

subsections.
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1.2.1 FOSMC based on Utkin’s adaptation

Consider the sliding variable dynamic (1.2) with n = 1 under the assumption that the

disturbance satisfies |δ(t )| < δmax and |δ̇(t )| < M , where δmax and M are finite and known.

The Utkin’s adaptive FOSMC takes the following form

u =−K (t )si g n(s), (1.5)

where

K̇ (t ) = ρK (t )si g n(ζ(t ))−N [K (t )−K +]++N [µ−K (t )]+, (1.6)

with

[z]+ :=
1 i f z ≥ 0

0 i f z < 0
, N > ρK +, K + > δmax , ρ > 0. (1.7)

and

ζ(t ) = |[si g n(s(t ))]eq |−α, α ∈ (0,1). (1.8)

The function [si g n(s(t ))]eq is the average value (equivalent control) of the discontinuous

signal si g n(s(t )) which can be obtained by the following low-pass filter

d

d t
[si g n(s(t ))]eq = 1

τ

(
si g n(s(t ))− [si g n(s(t ))]eq

)
, (1.9)

with τ> 0 is the filter time constant.

The objective here is to first achieve ideal 1-OSM. Then to decrease |[si g n(s(t ))]eq |
until it becomes close to 1. This leads to maintaining ideal 1-OSM as well as decreasing

the amplitude of K (t ) (i.e. amplitude of chattering). However, even this adaptation

can maintain ideal 1-OSM, it can be only applied in the case when the bounds of the

disturbance and its derivative are known.

1.2.2 Application of Utkin’s adaptation to STC

Consider the sliding variable dynamic in (1.2) with n = 1 and under the assumption that

the disturbance satisfies |δ̈(t )| < M∗ where M∗ is finite and it is known. The Utkin’s

adaptive STC is defined as u(t ) =−ᾱ|s| 1
2 si g n(s)+u2(t )

u̇2 =−K (t )si g n(s),
(1.10)



1.3. EDWARDS & SHTESSEL’S ADAPTATION 13

with ᾱ> 0 is chosen sufficiently large, and

K̇ (t ) =
γ0k(t )si g n(ζ(t ))−N [K (t )−K +]++N [µ−K (t )]+ if 0 <µ≤ K (t ) ≤ K +,

0 otherwise,
(1.11)

where γ0 > M∗/µ, µ> 0 is a preselected minimal value of K (t ) and K + is a sufficient value

for enforcing SM.

The objective of this adaptation is to minimize the magnitude of the discontinuous

input K (t )si g n(s) while providing ideal 2-OSM. Although, it can achieve this objective,

this adaptation requires the knowledge of the minimum and maximum allowed values of

the adaptive gain.

1.3 Edwards & Shtessel’s adaptation

Inspired by Utkin’s adaptation, this strategy has been developed in order to overcome the

requirement of information about the disturbance bounds. As Utkin’s idea, this strategy

uses the concept of equivalent control in the adaptation process. Moreover, it is based on

a dual layer adaptive structure which can ensure that the SM is maintained as well as the

adaptive gain is as small as possible to mitigate chattering effect.

The application of this adaptation to design FOSMC and STC and continuous HOSMC

[25, 24] are studied in the following subsections.

1.3.1 Application to FOSMC

Consider the sliding mode Eq. (1.2) with n = 1 and with the disturbance δ(t ) which satisfies

|δ(t )| < δmax and |δ̇(t )| < M , where δmax and M are finite. The control law is defined as

u(t ) =−(K (t )+ν)si g n(s), (1.12)

where ν is a small positive constant and K (t ) is the adaptive control gain. Before defining

explicitly the dynamic of K (t ), it is assumed that there exists a finite time t f > 0, such

that ∀t > t f the following inequality holds

||ūeq (t )−ueq (t )|| < ε1|ueq (t )|+ε0, (1.13)

where ||.|| represents the Euclidean norm, 1 > ε1 > 0, ε0 > 0 are scalars, ueq (t ) is the so-

called equivalent control obtained during the sliding motion (i.e. when s = ṡ = 0) and given



14 CHAPTER 1. STATE-OF-ART ON ADAPTIVE SLIDING MODE CONTROL

by ueq (t ) = −δ(t ), and ūeq (t ) is the approximation in a real-time by low-pass filtering of

the switching signal u(t ) and it satisfies

˙̄ueq (t ) = 1

τ

(
− (K (t )+ν)si g n(s)− ūeq (t )

)
, (1.14)

with τ> 0 is the filter time constant.

Under this assumption, the adaptive gain dynamic K (t ) is given by

K̇ (t ) =−ρ(t )si g n(ζ(t )), (1.15)

where

ρ(t ) = r0 + r (t ), (1.16)

with r0 is a fixed positive scalar, r (t ) follows a differential equation that will be defined

later (in accordance with the assumption on M), and ζ(t ) is described by

ζ(t ) = K (t )− 1

α
|ūeq (t )|−ε, (1.17)

where 0 <α< 1 and ε> 0 are design scalars to ensure that ūeq (t ) satisfies

1

α
|ūeq (t )|+ε/2 > |ueq (t )|. (1.18)

Now, in order to define r (t ), two cases will be considered: firstly the case when M is known,

and secondly when it is unknown.

1.3.1.1 Case when the bound M is known

In this case, r (t ) is computed through

ṙ (t ) = γ|ζ(t )|+ r0
p
γsi g n(e(t )), (1.19)

where γ> 0 is a design scalar and e(t ) satisfies

e(t ) = q
M

α
− r (t ), (1.20)

with q > 1 is chosen to ensure that
d

d t
|(ūeq (t ))| < qM .

This dual layer adaptive scheme (1.15)-(1.19) forces ζ(t ) = 0 in finite time. Consequently,

it ensures the achievement of ideal 1-OSM (i.e. s = 0), since ζ(t ) = 0 yields

K (t ) = 1

α
|ūeq (t )|+ε> |ueq (t )| = |δ(t )|, (1.21)

which is exactly the condition necessary to maintain 1-OSM. However, in this case it is

supposed that M is known and only δmax is unknown.
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1.3.1.2 Case when the bound M is unknown

In this case, it is assumed that both δmax and M are unknown. The dynamics of r (t ) is

defined now as

ṙ (t ) =
γ|ζ(t )| if |ζ(t )| > ζ0

0 otherwise,
(1.22)

where ζ0 is a design scalar.

This dual layer adaptive scheme given by (1.15)-(1.27) also ensures the achievement

in finite time of ideal 1-OSM. However, in both cases, the disturbance should be smooth.

Moreover, the filter time constant used in the estimation of ueq should be chosen much

less than the inverse of the upper bound of the first derivative of the disturbance. This

latter is unknown.

1.3.2 Application to STC (Adaptation of one gain)

Consider once again the sliding mode Eq. (1.2) with n = 1, but now under the assumption

that |δ̇(t )| ≤ M where M > 0 and |δ̈(t )| < M∗. The control law is given by

u(t ) =−λ|s|1/2si g n(s)+u2(t ),

u̇2(t ) =−K (t )si g n(s),
(1.23)

where λ > 0 is chosen sufficiently large, and K (t ) is to be adapted. Suppose that φ(t ) =
u2(t )+ δ(t ) and ω(t ) = K (t )si g n(s), then the dynamic of the first order system can be

expressed as ṡ(t ) =−λ|s| 1
2 (t )si g n(s)+φ(t ),

φ̇(t ) =−ω(t )+ δ̇(t ).
(1.24)

Here, the equivalent control ωeq (t ) is obtained when ideal 2-OSM is achieved (i.e. s =φ= 0)

and given by ωeq (t ) = δ̇(t ). Moreover, as in the previous subsection, ω̄eq (t ) is available by

low-pass filtering w(t ) and satisfies similar bounds with respect to ωeq (t ) as in (1.18).

Again, in order to define r (t ), two cases will be considered: first the case when the bound

M∗ is known, and second when the bound M∗ is unknown.

1.3.2.1 Case when the bound M∗ is known

In this case, the dual layer scheme is given by (1.15)-(1.16)-(1.19) where

ζ(t ) = k(t )− 1

α
|w̄eq (t )|−ε, (1.25)
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with 0 <α< 1, ε> 0 is a small real number, and

e(t ) = q̄M∗/α− r (t ), (1.26)

where q̄ > 1 represents a user defined gain.

This dual-layer scheme for STC provides in finite time an ideal 2-OSM.

1.3.2.2 Case when the bound M∗ is unknown

In this case, the dual layer scheme is defined in (1.15)-(1.16) where

ṙ (t ) =
γ|ζ(t )| if |ζ(t )| > ζ0

0 otherwise,
(1.27)

with γ and ζ0 are positive scalars, and ζ(t ) satisfies (1.25). This dual-layer scheme for STC

also provides in finite time an ideal 2-OSM.

It is important to note that in both cases, the dual layer scheme is applied to adapt one

gain of STC while the other gain λ is supposed to be sufficiently large (i.e. overestimated).

Therefore, this adaptation can increase the amplitude of chattering.

1.3.3 Application to STC (Adaptation of both gains)

To deal with the above problem (i.e. adaptation of one gain), the same dual layer strategy

has been employed to adapt both gains of STC instead of only one gain. The system in

Eq. (1.2) is considered with n = 1, under the assumption that |δ̇(t )| ≤ M where M > 0 and

|δ̈(t )| < M∗. The STC structure is now modified and a new additional time varying gain

is introduced within as follows

u(t ) =−λ(t )si g n(s(t ))|s(t )|1/2 +u2(t )− s(t )K̇ (t )/K (t )

u̇2(t ) =−β(t )si g n(s(t )),
(1.28)

where

λ(t ) =
√

K (t )λ0, β(t ) = K (t )β0, (1.29)

with λ0 and β0 > 1 are fixed positive scalars and K (t ) > 0 is the adaptive gain. Now K (t )

follows (1.15)-(1.16) with

ṙ (t ) = γ|ζ(t )|, (1.30)

where γ is positive scalar, and ζ(t ) satisfies (1.25).
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This algorithm ensures in finite time that K (t ) > |δ̇(t )|, which leads the achievement of

ideal 2-OSM. However, it requires that the two following constraints are satisfied |δ̇(t )| ≤ M

and |δ̈(t )| < M∗. Moreover, in the application, the filter constant should be chosen less than

the inverse of the upper bound of the second derivative of the disturbance.

1.3.4 Continuous HOSMC based on Edwards & Shtessel’s adaptation

Now consider the sliding mode Eq. (1.2) with n > 2 and with the disturbance δ(t ) satisfies

the assumptions that |δ̇(t )| ≤ M where M > 0 and |δ̈(t )| < M∗. The control law is now

chosen as a combination of two terms

u =−un(t )−uσ(t ), (1.31)

where

un(.) = γ1|s|α1 si g n(s)...+γn |s(n−1)|αn si g n(s(n−1)), (1.32)

and

uσ(t ) =λ|σ| 1
2 (t )si g n(σ)+

ˆ t

0
K (τ)si g n(σ(τ))dτ, (1.33)

where σ(t ) is the auxiliary variable defined as

σ(t ) = s(n−1)(t )−
ˆ t

0
un(τ)dτ, (1.34)

Proposition 1.3.1. [10] Consider system (1.2) under the assumption that δ(t ) = 0. If

the scalars γ1, γ2, ..., γn are chosen such that the polynomial pn +γn pn−1 + ...+γ2p +γ1 is

Hurwitz and the scalars α1, α2, ..., αn are chosen recursively as

αi−1 = αiαi+1

2αi+1 −αi
, i = 2, ...,n (1.35)

with αn+1 = 1 and αn = ᾱ. Then, there exists an εb ∈ (0,1) such that for every ᾱ ∈ (1−εb ,1),

the continuous controller un(t ) (1.32) drives in finite time s, ṡ, ..., sn to the origin.

If uσ(t ) is chosen according to (1.23), and un(t ) follows proposition 1.3.1, then he pro-

posed combination (1.31) provides in a finite time the convergence of s, ṡ, ..., sn → 0

(i.e. ideal n-OSM) despite the presence of disturbance with unknown bounded derivatives

|δ̇(t )| ≤ M and |δ̈(t )| < M∗. Therefore, it is called adaptive continuous HOSMC.

As mentioned before, the main drawback of this adaptation is that the filter constant

should be chosen less than the inverse of the upper bound of the disturbance second

derivative. This means that some information about the bounds of the disturbance are

needed.
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1.4 Oliveira & Hsu’s adaptation

Utkin’s adaptation and Edwards & Shtessel’s adaptation assume that the disturbance is

smooth. To overcome this constraint, Oliveira and co-authors [54] proposed adaptive law

which employs a monotonically increasing gain to force the SM to be achieved. After that,

the equivalent control can be used as an estimation of the disturbance. This adaptation has

been only applied to design adaptive FOSMC [54]. In what follows, we will the principles

of this method.

1.4.1 Application to FOSMC

Consider the sliding variable dynamic in (1.2) with n = 1 and suppose that the disturbance

satisfies |δ(t )| ≤ δmax , where δmax > 0 is unknown. The Oliveira & Hsu’s adaptive FOSMC

is given by

u =−K (t )si g n(s), (1.36)

where

K̇ (t ) =−λ f K (t )+ c f (|uav |+ζ), K (0) ≥ 0, (1.37)

with ζ> 0 is a constant which guaranties a desired minimum control level, λ f and c f are

two constants satisfying the inequalities

c f >λ f > 0, (1.38)

and uav is the average control, obtained by low-pass filter

τu̇av =−uav +ueq , (1.39)

where τ> 0 is the filter time constant, and ueq =−K (t )si g n(s).

This algorithm ensures the finite time convergence of s to zero (i.e. 1-OSM). However,

as mentioned before, to be able to estimate ueq , the filter constant should be chosen much

less than the inverse of the upper bound of the first derivative of disturbance.

1.5 Bartolini, Levant, Plestan’s adaptation

This adaptation is based on the usage of discrete time criterion to verify the appearance

of a real-sliding motion [71]. Hence, a SM indicator which is based on the detection of

the real SM is introduced. The idea is to increase the control gain until the indicator
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reveals that the SM is reached. Then, the adaptive gain starts to decrease until the sliding

mode indicator becomes negative. At this moment, the adaptive gain is increased in one

impulse to ensure the achievement of SM immediately. Then, the gain decrease will take

place until the SM is once more lost.

In what follows the application of this adaptation to FOSMC and Twisting Control (TC)

[7, 67] are presented.

1.5.1 Application to FOSMC

Consider the sliding variable dynamic in (1.2) with n = 1 and suppose that there exist

some positive constant δd , δdm , δm that satisfy the following inequalities

|δ̇/δ| ≤ δd with |δ(t )| ≥ δm , |δ̇(t )/δ(t )| ≤ δdm with |δ(t )| ≤ δm . (1.40)

Only δd is supposed to be known. Note that in this case the disturbance can be unbounded.

The control is given in the following form

u =−K (t )si g n(s), (1.41)

where the adaptation law is

K̇ =


−αλK if K > Km ,

−αλm if Kmm < K ≤ Km , K (0) ≥ Kmm ,

λm if K ≤ Kmm ,

(1.42)

with α(t ) is the indicator, (λ, λm) are positive adaptation parameters, and (Km , Kmm) are

constants satisfying

Km ≥ Kmm > 0. (1.43)

Now, the indicator α(t ) for the detection of a real 1-OSM will be designed. Let τ > 0 is

the sampling period, Nt is a natural number, µ > 0, and t ∈ [ti , ti+1). Then the indicator

α(t ) is given by

α(t ) =
1 if ∀t j ∈ [t −Ntτ, t ] : |s(t j )| ≤µK (t j )τ,

−1 if ∃t j ∈ [t −Ntτ, t ] : |s(t j )| >µK (t j )τ,
(1.44)

where t j are the sampling instants, t0 = 0. The real 1-OSM indicator is considered satisfied

if α= 1, i.e. |s(t j )| ≤ µK (t j )τ. This inequality is designed since the accuracy of the sliding

variable provided by FOSMC is proportional to τ.
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In addition, an instant increment is implemented at each sampling instant ti if the 1-OSM

indicator is violated

K (ti ) =
qK (ti −0) if α(ti−1) = 1 & α(ti ) =−1,

K (ti −0) if α(ti−1) 6= 1 or α(ti ) 6= −1.
(1.45)

with q > 1 is constant.

If λ> δd , this algorithm ensures in a finite time a real 1-OSM (i.e. |s| ≤ ητK (t ) with η> 0).

The presented strategy assumes that the disturbance is smooth and requires the knowl-

edge of the boundary of the disturbance’s logarithmic derivative. Moreover, after the

adaptive gain attains its minimal value, the gain has to jump to its maximum value when

a real 1-OSM is violated, even in the case when the change in the disturbance amplitude

is small. This mechanism can be very stressful for electromechanical systems.

1.5.2 Application to TC

Now, consider the sliding variable dynamic in (1.2) with n = 2 and suppose the same above

assumption (1.40) for the disturbance. The control law is chosen as

u =−K (t )(si g n(s)+βsi g n(ṡ)), 0.5 <β< 1, (1.46)

where β is a constant control parameter, and K (t ) is the adaptive gain. Here, the adaptive

gain and the instant increment are chosen as in (1.42)-(1.45) with the constants Km , Kmm ,

q which satisfy

Km ≥ Kmm > 0, q > 1+β
1−β , (1.47)

and the indicator is designed to detect real a 2-OSM instead of real a 1-OSM. Hence,

α(t ) =
1 if ∀t j ∈ [t −Ntτ, t ] : |s(t j )| ≤µK (t j )τ2,

−1 if ∃t j ∈ [t −Ntτ, t ] : |s(t j )| >µK (t j )τ2,
(1.48)

where t j are the sampling instants. The real 2-OSM indicator is considered satisfied

if α = 1, i.e. |s(t j )| ≤ µK (t j )τ2. Once again, this inequality is designed given that the

accuracy of the sliding variable provided by TC is proportional to τ2.

If λ > δd , this algorithm ensures in a finite time a real 2-OSM (i.e. |s| ≤ η1τ
2K (t ), |ṡ| ≤

η2τK (t ) with η1 > 0, η2 > 0).

However, as in the adaptation of FOSMC, it is assumed that the disturbance is smooth

and requires the knowledge of the boundary of the disturbance’s logarithmic derivative.

Furthermore, the mechanism of jumping can be damaging for electromechanical systems.
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1.6 Moreno’s adaptation

This adaptation consists in increasing the gain until the moment when the SM is reached.

Then the gain is fixed at this value, ensuring an ideal SM for some interval of time. When

the disturbance grows, the SM can be lost, therefore the gain increases to reach it again.

Note that this adaptation is inspired by [36], in which it has been applied to adapt the

gain of FOSMC.

The application of this adaptation to STC and TC [53] are given in the following subsec-

tions.

1.6.1 Application to STC

Consider the sliding mode dynamic in (1.2) with n = 1 under the assumption that the

disturbance satisfies |δ(t )| ≤ δmax where δmax > 0 is unknown. The structure of Moreno’s

adaptive STC is given as u(t ) =−h1K (t )|s| 1
2 si g n(s)+u2(t )

u̇2(t ) =−h2K 2(t )si g n(s),
(1.49)

where h1 = 1.5, h2 = 1.1 and the adaptive gain K (t ) is computed through

K̇ (t ) =

k̄, if |s| > ε
0, if |s| ≤ ε,

, K (0) > 0, (1.50)

with k̄ and ε are positive constants to be selected.

This algorithm ensures the convergence of s and ṡ in finite time to zero, i.e. achievement

of ideal 2-OSM. However, the adaptive gain K (t ) can only increase, which leads to the

overestimation of the control gain resulting in a larger amplitude of chattering.

1.6.2 Application to TC

In this subsection, consider the sliding mode dynamic in (1.2) with n = 2 and under the

same assumption as in the previous subsection, i.e. the disturbance satisfies |δ(t )| ≤ δmax

where δmax > 0 is unknown. The Moreno’s adaptive TC is described by

u(t ) =−K (t )(si g n(s)+0.5si g n(ṡ)), (1.51)
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where the adaptive gain k(t ) is obtained through

K̇ (t ) =

k̄, if ||s, ṡ|| > ε
0, if ||s, ṡ|| ≤ ε

, K (0) > 0, (1.52)

with k̄ and ε are positive constants to be selected.

This algorithm drives s and ṡ in a finite time to zero and provides ideal 2-OSM.

However, as in Moreno’s adaptive STC, this interesting behavior comes at the cost of gain

overestimation, resulting in a high level of chattering.

1.7 Shtessel & Plestan’s adaptation

To overcome the problem of gain overestimation, this adaptation has been developed. In-

deed, this adaptation allows the gain to increase and decrease. The idea of this adaptation

is to increase the control gain until the SM is reached. Then, the gain starts to decrease.

This decrease will be reversed as soon as the SM is lost.

The application of this adaptation to FOSMC, STC and TC [58, 64, 65] are given in the

following subsections.

1.7.1 Application to FOSMC

Consider the sliding mode dynamic in (1.2) with n = 1 and under the assumption that the

disturbance satisfies |δ(t )| ≤ δmax where δmax > 0 is unknown. The Shtessel & Plestan’s

adaptive FOSMC is given by

u =−K (t )si g n(s), (1.53)

where the gain K (t ) satisfies the following dynamic

K̇ =
 K̄ |s|si g n(|s|−ε) , K >µ

0 , K ≤µ
(1.54)

where K̄ , ε and µ are positive constants to be selected.

This controller ensures the finite-time convergence of the sliding variable s to some

neighborhood of zero (i.e. real 1-OSM) without big overestimation of the gain. The main

drawback of this approach is that the size of the above mentioned neighborhood depends

on the unknown upper bound of disturbance, i.e. it is unknown apriori.
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1.7.2 Application to STC

In this application, consider the sliding mode dynamic in (1.2) with n = 1 and under the

assumption that the disturbance satisfies |δ̇(t )| ≤ M where M > 0 is unknown. The Shtessel

& Plestan’s adaptive STC is written as
u(t ) =−α(t )|s| 1

2 si g n(s)+u2(t ),

u̇2(t ) =−β(t )

2
si g n(s),

(1.55)

with β= 2µα, and the adaptive gain α is obtained through

α̇=

w1

√
γ1

2
si g n(|s|−ε), if α>αm

ν, if α≤αm

(1.56)

where µ, w1, γ1, ε, αm , and ν are positive constants to be selected.

This controller can guarantee the convergence in finite time of s and ṡ to some neigh-

borhood of zero, i.e. there exists a finite time t f > 0, such that ∀t ≥ t f , |s| ≤ η1 and |s| ≤ η2,

where η1 ≥ ε, η2 ≥ 0. However, as in Shtessel & Plestan’s adaptive FOSMC, the sizes of

η1 and η2 depend on the unknown upper bound of disturbance derivative, i.e. they are

unknown apriori.

1.7.3 Application to TC

In this application, consider the sliding mode dynamic in (1.2) with n = 2 and under the

assumption that the disturbance satisfies |δ(t )| ≤ δmax where δmax > 0 is unknown. This

adaptive TC takes the following form

u =−K (t )
(
si g n(s)+0.5si g n(ṡ)

)
, (1.57)

where K (t ) is the adaptive gain. Before describing its dynamic, it is assumed that there

exist

1. A sufficiently large apriori known parameter K ∗ > 0 so that K ∗−2ε0 > 2M .

2. A parameter γ1 that satisfies the condition

1

4
≤ γ1 <

ε2
0

maxs,ṡ,Ω(2αs2 +|s|ṡ2)+∆γ1

, K ≤ K ∗−ε0

where ε0 > 0 is selected accordingly, Ω ⊂ R2 is a compact set for which the interior

contains the origin, and ∆γ1 is a regularization term.
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Under these two assumptions, the adaptive gain K (t )

K̇ =



w1p
2γ1

1
γ1

− 2αs2+|s|ṡ2

(K ∗−K )3

si g n(V0(s, ṡ)−ε), if K > Kmin

χ, if K ≤ Kmin

(1.58)

with

V0(s, ṡ) = K 2s2 +γ|s| 3
2 si g n(s)ṡ +K |s|ṡ2 + 1

4
ṡ4 (1.59)

where w1, ε, χ, Kmin, ∆γ1 are positive constants to be selected, and |γ| ∈ (0,2α
3
2
min).

The controller aims to ensure the finite time convergence of V0(s, ṡ) to the domain

V0(s, ṡ) ≤ ε, i.e. the convergence of s and ṡ to some neighborhoods of zero. Although it can

achieve this aim, this adaptation has two main drawbacks. On one hand it assumes the

knowledge of maximal actuator capacity K ∗, and on the other hand the sizes of the above

mentioned neighborhoods depend on the unknown upper bound of disturbance, i.e. they

are unknown apriori.

1.8 Summary

In this chapter, an overview of ASMC/AHOSMC algorithms were presented. Their ad-

vantages and disadvantages were discussed.

The first family of adaptation is based on the usage of the equivalent control value as an

estimation of the disturbance. To realize this strategy a low-pass filtered approximation of

the equivalent control were proposed. However, during the realization, the filter constant

should be chosen much less than the inverse of the upper bound of the first or the second

derivative of the disturbance. This means that some information about the bounds of the

disturbance are needed.

The second family of adaptation is based on the usage of discrete time criterion to verify

the appearance of real-sliding motion. The idea of this strategy is to increase the control

gain until the indicator reveals that the SM is reached. Then, the adaptive gain starts

to decrease until the sliding mode indicator becomes negative. This approach ensures the

finite time achievement of real SM. However, it assumes that the disturbance is smooth

and requires the knowledge of the boundary of the disturbance logarithmic derivative.

Moreover, after the adaptive gain attains its minimal value, the gain has to jump to

its maximum value when the SM is violated, even in the case when the change in the
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disturbance amplitude is small. This mechanism can be very stressful for electromechanical

systems.

The third family of adaptation consists in increasing the gain until the moment when

the SM is reached, and then the gain is fixed at this value, ensuring an ideal SM for some

interval of time. When the disturbance grows, the SM can be lost, therefore the gain

increases to reach it again. However, the control gain in this strategy is overestimated and

one cannot be sure that the SM will not be lost in the future.

To overcome this problem, a strategy based on increasing and decreasing the gain has

been developed. This approach ensures the finite-time convergence of the sliding variable

to some neighborhood of zero without big overestimation of the gain. The main drawback

of this approach is that the size of the above-mentioned neighborhood and the time of

convergence depend on the unknown upper bound of disturbance, i.e. they are unknown

apriori and one can never be sure that SM will never be lost for bigger values of time.





Chapter 2

Design of Adaptive FOSMC and DISMC

2.1 Introduction

For systems with matching disturbances, the sliding mode control has proven its high

efficiency [71]. Indeed, it provides a closed-loop insensitivity to these disturbances and

guarantees the finite-time convergence. In the case of systems with relative degree one

affected by bounded disturbance, the First Order Sliding Mode Controllers (FOSMCs)

can be applied. They can guarantee the convergence of the sliding variable to the origin

in a finite-time by using a discontinuous control signal.

One the other hand, for systems with arbitrary relative degree affected by bounded

disturbance, the FOSMC can be implemented in combination with a nominal control.

Such combination is called Integral Sliding Mode Control (ISMC). Note that ISMC is a

special kind of sliding mode control with two main properties:

• It ensures robustification of predesigned nominal control keeping its dimension.

• It does not have a reaching phase, i.e. it allows robustification starting from the

initial time moment.

The traditional ISMC ensures the compensation of the disturbance from the initial

time moment by using the FOSMC, i.e. a discontinuous control. Hence, it is called a

Discontinuous ISMC (DISMC) [69, 42]. Due to the discontinuity of the overall controller

for systems with fast actuators, it could provide big undesired chattering effect [11, 57].
27
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To implement the FOSMC, the knowledge of the upper bound of disturbance is re-

quired. In practice, this bound is not constant and, moreover, frequently it is unknown.

This means that the gains of the FOSMCs are overestimated. This is a main obstacle

in the FOSMCs implementation leading to the growth of the undesired chattering [11].

Note that this obstacle also affects the DISMC since the FOSMC is a part of the overall

control structure. So the interesting problem for the FOSMC and the DISMC consists in

developing an adaptive strategy which can adjust the control gains, this means reduce the

chattering effect.

The different known adaptive strategies for FOSMC and their drawbacks have already

been presented in chapter 1. Recall that in [58], an adaptive FOSMC strategy has been

developed. This strategy can ensure the finite time convergence of the sliding variable to

some neighborhood of zero without big overestimation of the gain. The main drawback

of this approach is that the size of the above-mentioned neighborhood depends on the

unknown upper bound of disturbance, i.e. it is unknown apriori. In order to overcome

this drawback, a novel adaptive strategy for FOSMC will be introduced.

The first contribution of this chapter consists in presenting a new adaptive strategy for

FOSMC. This adaptive strategy can achieve the convergence of the sliding variable and

maintain it in a predefined neighborhood of zero, with a control gain that is not overesti-

mated, and without using any information about the upper bound of the disturbance or

its derivative, nor the use of the low pass filter. To achieve the convergence, the adaptive

strategy proposes the use of increasing gain strategy. Once the convergence is reached,

and in order to maintain the sliding variable in a predefined neighborhood of zero, the

proposed adaptive strategy applies the Barrier Functions (BFs). In this current chapter,

two different classes of BFs are used: the positive semi-definite BF and the positive definite

BF.

The second contribution of this chapter is the application of this adaptive strategy

to design adaptive DISMC. The resulting controller ensures that the auxiliary variable

belongs to a prescribed vicinity of zero starting from the initial time moment despite

disturbances with unknown upper bound.
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2.2 Barrier Function-Based adaptive FOSMC

2.2.1 Problem Formulation

Consider the first order system

ṡ(t ) = u(t )+δ(t ), (2.1)

where s(t ) ∈ R is the sliding variable, u(t ) is the FOSMC and δ(t ) is a disturbance. Here

δ(t ) is bounded function with unknown bound, i.e. |δ(t )| ≤ δmax . The bound δmax > 0

exists but is not known.

In this context, the gain of the FOSMC is to be adapted in accordance with the adaptive

strategy defined later. The idea behind the proposed adaptive strategy is to first increase

the adaptive gain until the sliding variable reaches a small neighborhood of zero
ε

2
at time

t̄ by using a constant derivative gain as in [58]. Secondly, for t > t̄ , the adaptive gain

switches to a BF that can maintain the sliding variable in the predefined neighborhood of

zero |s(t )| < ε.

2.2.2 Preliminaries

2.2.2.1 Barrier Functions (BFs)

Definition 2.2.1. Let us suppose that some ε > 0 is given and fixed, the BF can be

defined as an even continuous function Kb : x ∈ ]−ε,ε[ → Kb(x) ∈ [b,∞[ strictly increasing

on [0,ε[ .

• lim
|x|→ε

Kb(x) =+∞.

• Kb(x) has a unique minimum at zero and Kb(0) = b ≥ 0.

In this work, the following two different classes of BFs are considered;

• Positive definite BFs (PBFs): Kpb(x) = εF̄

ε−|x| , i.e. Kpb(0) = F̄ > 0.

• Positive Semi-definite BFs (PSBFs): Kpsb(x) = |x|
ε−|x| , i.e. Kpsb(0) = 0.

The PBF Kpb(x) and the PSBF Kpsb(x) are illustrated in Fig. 2.1.
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0

• -

(a) Kpb (x)

0
• -

(b) Kpsb (x)

Figure 2.1. Schematic illustrations of Kpb(x) and Kpsb(x).

2.2.3 Main results

The following theorem is true for both possible FOSMC gains design: using KB (s(t )) =
Kpb(s(t )) and KB (s(t )) = Kpsb(s(t )).

Theorem 2.2.2. Consider system (2.1) with bounded disturbance δ(t ) with the controller

u(t ) =−K (t , s(t ))si g n(s(t )), (2.2)

and with the adaptive control gain K (t , s)

K (t , s(t )) =

Ka(t ), K̇a(t ) = K̄ |s(t )|, if 0 < t ≤ t̄

KB (s(t )), if t > t̄
(2.3)

where K̄ to be arbitrary positive constant.

Then, for any s(0) and ε> 0, there exists t̄ the smallest root of equation |s(t )| ≤ ε

2
such

that for all t ≥ t̄ , the inequality |s(t )| < ε holds.

The proof of Theorem 2.2.2 is given in appendix A.

Remark 2.2.3. Note that this strategy allows the adaptive gain to increase and decrease

based on the current value of the sliding variable. When the sliding variable is going to zero,

the adaptive gain decreases until the value which allows to compensate the disturbance.
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On the other hand, when the disturbance grows and the control gain is less than the

absolute value of disturbance, the sliding variable grows and the control gain can grow if it

is necessary until the level ensuring that the system solution will never leave the ε vicinity

of zero.

Remark 2.2.4. Theoretically, the apriori knowledge of actuator capacity P is not re-

quired, but it should be supposed that the actuator is able to compensate the disturbance.

However, in practice, an actuator is used and its capacity P is known. In this case for

discrete implementation of the proposed algorithm, the sampling step τ should be chosen

as τ<< ε/P. Otherwise, the attractive feature of the BF will be lost, and the sliding variable

will leave the predefined neighborhood of zero.

The behavior of each barrier function PBF and PSBF, and the achievement of real or

ideal SM in a finite time, together with the continuity or discontinuity of the control signal

are discussed in the subsections 2.2.3.1 and 2.2.3.2.

2.2.3.1 Adaptation with PBF

Consider the adaptation with PBF. In this case, Kpb(s(t )) has a lower bound F̄ when

s(t ) = 0. Therefore, when |δ(t )| < F̄ the adaptive gain is overestimated. In this case, this

strategy provides an ideal 1-OSM. In order to attenuate this overestimation, F̄ can be

chosen small enough. The usage of PBF when the bound of the disturbance is less than

F̄ will provide a discontinuous control signal leading to the chattering whose amplitude is

proportional to the choice of F̄ .

2.2.3.2 Adaptation with PSBF

Consider now the adaptation with PSBF. In this case, Kpsb(s(t )) tends to zero when

s(t ) → 0. Hence, Kpsb(s(t )) has the same behavior as
|s(t )|
ε

in the neighborhood of zero, i.e.

|s(t )|
ε

<< 1 → Kpsb(s(t )) = |s(t )|
ε−|s(t )| ≈

|s(t )|
ε

.

This means that if δ(t ) and s(t ) tend monotonically to zero, consequently the adaptive

gain Kpsb(s(t )) will go to zero. The discontinuity of the control signal can appear only once

at time t̄ , when the adaptive gain switches to PSBF. It is necessary to note that starting

from time t̄ , the control signal becomes continuous.
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2.2.4 Simulation results

Two cases are considered carrying out simulations in order to show two main advantages

of the proposed adaptive strategy over the adaptive algorithm presented in [58].

Table 2.1: Parameter values of the PBF, PSBF and APS for adaptive FOSMCs

PBF PSBF APS

Parameter values
K̄ = 1000, ε= 0.02,
F̄ = 0.1, Ka(0) = 10

K̄ = 1000, ε= 0.02,
Ka(0) = 10

K̄ = 1000, ε= 0.02,
µ= 0.1 , K (0) = 10

For the barrier strategy, the adaptive gain is given by (2.3) with KB (s(t )) once defined

as PBF and then as PSBF. In contrast, for the adaptive algorithm in [58], referred to as

(APS), the adaptive gain is computed through

K̇ (t ) =

K̄ |s(t )|si g n(|s(t )|−ε), if K >µ
µ, if K ≤µ

(2.4)

where K̄ , ε and µ are positive constants to be selected.

Consider the first order system (2.1) with the initial value as s(0) = 0.04. Table 2.1

contains the parameter values of PBF, PSBF and APS, where the parameter ε is selected

as ε= 0.02, while all the others are set according to [58]. The attention will be focused on

the behavior of each adaptation for t > t̄ , since starting from this moment the adaptive

gain switches to the BFs.

2.2.4.1 Case of increasing disturbance amplitude

In this subsection, the disturbance is given by

δ(t ) =


0.3si n(t ), if t ≤ 100 s

1.4si n(t ), if 100 s < t ≤ 200 s

6.2si n(t ), if t > 200 s.

This means that the disturbance amplitude is δmax = 0.3 for t ≤ 100 s, δmax = 1.4 for

100 < t ≤ 200 s, and δmax = 6.2 for t > 200 s (see Fig. 2.2(a)). The zoomed-in plots of the

sliding variable s(t ) with PBF, PSBF and APS are depicted in Figs. 2.2(b)-2.2(c)-2.2(d).

It can be noticed in Figs. 2.2(b)-2.2(c) that for both barrier functions PBF and PSBF,

the sliding variable does not exceed the predefined neighborhood of zero ε= 0.02. On the

other hand, it can be seen in Fig. 2.2(d) that the size of the neighborhood of zero to which
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converges s(t ) with APS is changing together with the amplitude of disturbance δmax (for

t ≤ 100 s, |s(t )| ≤ 0.024, for 100 < t ≤ 200 s, |s(t )| < 0.029, and for t > 200 s |s(t )| ≤ 0.031).

Therefore, it cannot be predefined. Also, it is worth noting that when the amplitude of

disturbance suddenly increases to a big value, the sliding variable will also jump to a big

value (t = 200 s, |s(t )| > 0.04).
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Figure 2.2. a) Disturbance δ(t ), and the zoomed-in plot of s(t ) with: b) PBF, c) PSBF, d) APS

2.2.4.2 Case of monotonically decreasing disturbance

The following monotonically decreasing disturbance is considered (Fig. 2.3(a))

δ(t ) = 8.2

t +1
+0.002.

Figs. 2.3(b)-2.3(c)-2.3(d) show the behavior of the control signal u(t ) with PBF, PSBF

and APS. For t > 83 s the amplitude of the disturbance becomes less than F̄ =µ= 0.1 (see

Fig. 2.3(a)). That is why starting for this moment, the chattering will appear for both

PBF and APS with the amplitude equal to 0.1 (see Figs. 2.3(b)-2.3(d)). On the other

hand, the control signal for PSBF is continuous and will go to zero without chattering (see

Fig. 2.3(c)).
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Figure 2.3. a) Disturbance δ(t ), and the control u(t ) with: b) PBF, c) PSBF, d) APS

2.3 Barrier Function-Based Adaptive DISMC

2.3.1 Preliminaries

Consider the following system

ẋ(t ) = Ax +B(u +δ(t )), (2.5)

where x ∈ Rn×1 is the state, A ∈ Rn×n is the system matrix, B ∈ Rn×1 is the input matrix,

u ∈R is the control input and δ(t ) ∈R is the disturbance.

The control input for system (2.5) is a combination of two parts

u = un +uSMC , (2.6)

where un is a nominal control and uSMC is an ISMC. The nominal control un is designed

to ensure a desired performance for system (2.5) assuming δ(t ) = 0, and the ISMC uSMC is

designed to guarantee the compensation of the disturbance δ(t ), starting from the initial

time moment t = 0 s.

The auxiliary variable for system (2.5) is defined as

s =G
[

x(t )−x(0)−
ˆ t

0
(Ax +Bun)dτ

]
, (2.7)
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where G ∈ R1×n is a projection matrix and x(0) is the initial condition. The main specific

feature of the following auxiliary variable is that s(0) = 0. From (2.7), the dynamic of the

auxiliary variable can be expressed as

ṡ =G
[

Ax +B(u +δ(t ))− Ax −Bun

]
=G

[
Ax +B(un +uSMC +δ(t ))− Ax −Bun

]
=GB

[
uSMC +δ(t )

]
,

(2.8)

Following [15], it is reasonable to choose G = B+, i.e. GB = 1. Then, (2.8) becomes

ṡ = uSMC +δ(t ) (2.9)

In the case of DISMC, and when the disturbance is bounded with unknown upper bound

δmax , system (2.9) is exactly equivalent to the first order disturbed system (2.1) described

in the problem formulation. It should be noted here that s(0) = 0, which was not the case

in the initial problem formulation in section 2.2.

In this context, uSMC is to be adapted in accordance with the adaptive strategy defined

in section 2.2.3. The objective of this adaptation is to ensure that the auxiliary variable

belongs to a prescribed vicinity of zero from the initial time moment, i.e. for all t ≥ 0, |s| < ε.
In the following subsections, two situations will be considered: in the first one, the

adaptive gain is chosen as PBF. In the second situation, the gain is chosen as PSFB.

2.3.2 Adaptation with PBF

Proposition 2.3.1. Consider system (2.9) with the disturbance δ(t ) satisfies δ(t ) ≤ δmax

where δmax exists and it is unknown. Then, for any ε> 0 and for all t ≥ 0, the inequality

|s(t )| < ε holds via the adaptive DISMC (2.2) with the adaptive control gain

K (s(t )) = Kpb(s(t )) = εF̄

ε−|s(t )| . (2.10)

Furthermore, an ideal 1-OSM, i.e. s(t ) = 0 is achieved if F̄ > |δ(t )|.

Proof. The above proposition is a particular case of theorem 2.2.2, where the PBF is

used to adapt the gain of DISMC from the initial time moment. That is due to the specific

feature of ISMC for which the auxiliary variable satisfies s(0) = 0.
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2.3.3 Adaptation with PSBF

Proposition 2.3.2. Consider system (2.9) with the disturbance δ(t ) satisfies δ(t ) ≤ δmax

where δmax exists and it is unknown. Then, for any ε> 0 and for all t ≥ 0, the inequality

|s(t )| < ε holds via the adaptive DISMC (2.2) with the adaptive control gain

K (s(t )) = Kpsb(s(t )) = |s(t )|
ε−|s(t )| . (2.11)

Furthermore, the ISMC is continuous for any value of δ(t ).

Proof. Similar to the proof of Proposition. 2.3.1.

Remark 2.3.3. Note that although the discontinuous structure of ISMC in (2.2), it

was shown in subsection 2.2.3.2 that in the case of adaptation with PSBF, it provides a

continuous control signal. That is due to the reason that the PSBF is equal to zero at the

origin.

Remark 2.3.4. Remark 2.3.3 motivates the usage of PSBF to adapt the control gain

of DISMC instead of PBF. Indeed, the discontinuous control is replaced by continuous

one with less control effort, as well as, it maintains the auxiliary variable in a prescribed

vicinity of zero from the initial time moment.

2.3.4 An example

A second order system with matched disturbance is considered as a simple example∗ to

illustrate the performance of the barrier algorithms-based adaptive DISMC and to compare

it with the results obtained through APS 2.4.

The second order disturbed system is given byẋ1(t ) = x2(t ),

ẋ2(t ) = u(t )+d(t ) ,
(2.12)

with initial conditions chosen as x1(0) = 2, x2(0) = 1. The disturbance is selected as δ(t ) =
5si n(2t )+2cos(5t ). The nominal control in (2.6) is designed according to [55], in which

a continuous controller for the nominal system (i.e. δ(t ) = 0) has been proposed. This

controller can drive x1 and x2 to zero in a finite time. Hence,

un =−k1|x1|
1
3 si g n(x1)−k2|x2|

1
2 si g n(x2) (2.13)

∗Indeed, the second order disturbed system is a special case of system (2.5). However, it can be
generalized for arbitrary order system.
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where k1 = 15 and k2 = 7. The auxiliary variable is defined as s = x2(t )−x2(0)−
ˆ t

0
undτ.

The parameter value ε of the three algorithms, PBF, PSBF and APS, is selected as

ε= 0.01, the parameter F̄ of PBF is taken as F̄ = 0.6, and finally, the parameter values of

APS are set as follows: K̄ = 10000, µ= 0.1.
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Figure 2.4. Adaptive DISMC based on PBF

Fig. 2.4 illustrates the simulation results of the adaptive DISMC based on PBF.

Fig. 2.4(a) shows that the auxiliary variable s(t ) is maintained in the prescribed vicin-

ity of zero ε= 0.01 from the initial time moment. It can be observed in Fig. 2.4(b) that the

overall control is discontinuous when F̄ > |δ(t )|, i.e. when K (s(t )) = F̄ (see Fig. 2.4(d) and

the zoomed-in plots in Fig. 2.4(b)). Moreover, it is seen in Fig. 2.4(d) that the adaptive

gain K (s(t )) can increase and decrease. The convergence of the state to a vicinity of the

origin is depicted in Fig. 2.4(c).

Next, the simulation results of the adaptive DISMC based on PSBF are shown in

Fig. 2.5. Fig. 2.5(a) confirms that the auxiliary variable s(t ) belongs to the prescribed

vicinity of zero ε= 0.01 from the initial time moment. The continuity of the overall control

can be observed in Fig. 2.5(b). The convergence of the states to a vicinity of the origin

is illustrated in Fig. 2.5(c) and the increasing and decreasing of the adaptive gain can be

shown in Fig. 2.5(d).
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Figure 2.5. Adaptive DISMC based on PSBF
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Figure 2.6. Adaptive DISMC based on APS

Finally, the simulations results of the adaptive discontinuous ISMC based on APS are

depicted in Fig. 2.6. It can be noticed in Fig. 2.6(a) that the auxiliary variable cannot

be maintained in the prescribed vicinity of zero. Moreover, it will jump to a big value at
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the initial time moment (for t = 0.01 s, s(t ) > 0.025). Then, the discontinuity of the overall

control can be observed in Fig. 2.6(b). And finally, the convergence of the states to some

vicinity of origin can be seen in Fig. 2.6(c), while the increasing and decreasing of the

adaptive gain can be observed in Fig. 2.6(d).

2.4 Summary

For first order systems affected by bounded disturbance with unknown boundary, a new

barrier function-based adaptive FOSMC is presented. The proposed algorithm can ensure

the convergence of the sliding variable and maintain it in a predefined neighborhood of

zero, independent of the upper bound of the disturbance, and without overestimating the

control gain. In order to highlight the properties of this strategy, two different classes of

BFs have been studied.

For systems with arbitrary relative degree affected by bounded disturbance, the DISMC

was recalled and the barrier adaptive strategy was applied to adapt it. It was shown that

the proposed algorithm ensures that the auxiliary variable belongs to a prescribed vicinity

of zero starting from the initial time moment despite disturbance with unknown upper

bound. Again, the two classes of BFs have been used. It results that this algorithm has

two main advantages: it does not require the knowledge of the upper bound of disturbance,

and does not overestimate the control gain.

To sum up, in this chapter, adaptive FOSMC and DISMC for first and arbitrary

order disturbed systems whose disturbances are bounded with unknown boundary have

been introduced. In the next chapter, perturbed systems with Lipschitz disturbances

with unknown Lipschitz constants will be considered. For this class of systems, the barrier

strategy will be used to design a new adaptive super-twisting controller and a new adaptive

continuous integral sliding mode controller.





Chapter 3

Design of Adaptive STC and CISMC

3.1 Introduction

In the previous chapter, an adaptive FOSMC and an adaptive DISMC have been designed

for perturbed first order and arbitrary order systems where the disturbances are bounded

with unknown boundary. The motivation of current chapter is to design new adaptive

SMCs which can deal with Lipschitz disturbances with unknown Lipschitz constants.

For systems with fast actuators, and with relative degree one affected by Lipschitz’s

disturbance, the Super-Twisting Controller (STC) is one of the most popular strategies

to be used [43, 52, 57]. It allows the achievement of second order sliding mode (2-OSM)

in finite-time by using a continuous control signal. Moreover, the other benefit of STC

compared to FOSMC is that it offers chattering attenuation due to the continuity of the

control signal.

In contrast, for systems with arbitrary relative degree affected by Lipschitz’s distur-

bance, the Continuous ISMC (CISMC) has proved its effectiveness [32]. This controller

is a combination of STC and a nominal controller. Nevertheless, the weakness of this

controller is that the robustness is ensured only after convergence of the STC [17].

To implement the STC, the upper bound of the disturbance’s derivative should be

known. In practice, this bound is not constant and it is unknown. In this case, the fixed

gain of the STC is set to be overestimated, which causes high level of chattering [11].

This problem is an exciting challenge for the CISMC as well, due to the reason that the
41
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STC is a part of the overall control structure. For that reason, it is very important to

design an adaptive strategy to adapt the control gains of STC and CISMC guaranteeing

the reduction of the chattering effect.

The best known adaptive strategies for STC and their drawbacks have already been

presented in chapter 1. In order to overcome the drawback of the strategy proposed in

[64], that is the convergence of the sliding variable to an unknown neighborhood of zero,

the barrier adaptive strategy proposed in the previous chapter will be used to design a

new adaptive STC.

This chapter consists of two main parts: the first part will be devoted to the design of

the barrier function based-adaptive STC. We will show that this new controller has the

following advantages:

• The sliding variable converges in a finite time to a predefined neighborhood of zero,

independently of the bound of the disturbance derivative, and cannot exceed it.

• The gain provided by the proposed strategy is not overestimated, as it can only

achieve the convergence of the sliding variable to a predefined neighborhood of zero.

• The proposed strategy does not theoretically require neither the upper bound of the

disturbance derivative nor the use of the low-pass filter.

The second part of this chapter will be dedicated to the design of adaptive CISMC

based on the concept of the barrier function. Similar to the barrier function based-adaptive

DISMC presented in the previous chapter, this strategy ensures that the auxiliary variable

belongs to a prescribed vicinity of zero starting from the initial time moment despite

disturbance with unknown upper bound of its derivative. Moreover, this strategy allows

to avoid the reaching phase, and guarantees that the adaptive gain is not overestimated.

3.2 Barrier Function-Based adaptive STC

3.2.1 Problem formulation

Consider the first order system described by

ṡ(t ) = ust (t )+δ(t ), (3.1)
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where s(t ) ∈ R is the sliding variable, δ(t ) is a the disturbance and ust (t ) ∈ R is the STC.

The disturbance δ(t ) is a Lipschitz function with unknown Lipschitz constant so that

|δ̇(t )| ≤ M . The bound M exists but is not known.

In the presence of Lipschitz disturbance, the standard STC [43] given by

ust (t ) =−k1|s(t )| 1
2 si g n(s(t ))+u2(t ),

u̇2(t ) =−k2si g n(s(t )),
(3.2)

drives both s(t ) and ṡ(t ) to zero in a finite time, i.e. it provides a 2-OSM if the control

gains k1 and k2 are designed as k1 = 1.5
p

M and k2 = 1.1M . However, the implementation

of this standard STC requires the information of the upper bound M .

In this work, the following adaptive version of the STC is considered [53]

ust (t ) =−h1L(t , s)|s(t )| 1
2 si g n(s(t ))+u2(t ),

u̇2(t ) =−h2L2(t , s)si g n(s(t )),
(3.3)

where the constant gains are set to h1 = 1.5, h2 = 1.1 and the adaptive gain L(t , s) is to

be defined based on an adaptive strategy which will be presented latter on. Suppose that

φ(t ) = u2(t )+δ(t ), then the dynamic of the first order system can be expressed as

ṡ(t ) =−h1L(t , s)|s| 1
2 (t )si g n(s(t ))+φ(t ),

φ̇(t ) =−h2L2(t , s)si g n(s(t ))+ δ̇(t ).
(3.4)

The objective is to adapt the gain L(t , s) ensuring that the sliding variable belongs to

a predefined neighborhood of zero |s(t )| < ε, as well as its derivative converges to some

neighborhood of zero |ṡ(t )| < ν. Note that this objective is fulfilled by choosing the control

gain as BF. Hence, due to the reason that the application of BF requires that the sliding

variable belongs to some predefined domain, an adaptive strategy based on increasing the

gain [53], and an indicator are firstly introduced. The indicator is designed by introducing

a time t1, where t1 is the smallest root of equation |s(t )| ≤ ε

2
. The idea is to increase the

adaptive gain based on the strategy presented in [53] until the indicator reveals that the

sliding variable enters in the predefined neighborhood of zero |s(t )| ≤ ε

2
. Then, the adaptive

gain switches to the BF. Note that from the time instant t1, the sliding variable belongs

to the predefined neighborhood of zero |s(t )| < ε.
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3.2.2 Main results

The following theorem is true for both possible STC gains design: using LB (s(t )) = Lpb(s(t )) =
Kpb(s(t )) and LB (s(t )) = Lpsb(s(t )) = Kpsb(s(t )).

Theorem 3.2.1. Consider system (3.4) with Lipschitz disturbance δ(t ) and with the

adaptive control gain L(t , s)

L(t , s) =

La(t ), L̇a(t ) = L1, if 0 < t ≤ t1

LB (s(t )) if t1 < t ,
(3.5)

where L1 is to be arbitrary positive constant.

Then for any s(0) and ε > 0, there exist ν(M) > 0, t1 the smallest root of equation

|s(t )| ≤ ε

2
, and T ≥ t1 such that for all t ≥ t1, the inequality |s(t )| < ε holds and for all t ≥ T ,

|ṡ(t )| ≤ ν(M).

The proof of Theorem 3.2.1 is given in appendix B.

3.2.2.1 Adaptation with PBF

Consider the adaptation with PBF. In this case, L2
pb(s(t )) has a lower bound F̄ 2. Suppose

that |δ̇(t )| < F̄ 2, then the adaptive gain is overestimated, and the adaptive STC provides an

ideal 2-OSM. Hence, the parameter F̄ needs to be small enough in order to attenuate this

overestimation. Although the parameter F̄ can be chosen arbitrarily small, the adaptation

with PBF will provide an ideal 2-OSM with overestimating gain when |δ̇(t )| < F̄ 2.

3.2.2.2 Adaptation with PSBF

Consider now the adaptation with PSBF. Here, L2
psb(s(t )) tends to zero when s(t ) → 0.

This means that if δ̇(t ) and s(t ) tend monotonically to zero, consequently the adaptive

gain L2
psb(s(t )) will go to zero.

Note that there is a benefit in using this adaptation which can ensure that the sliding

variable will remain in |s(t )| < ε with the smallest amplitude of the adaptive gain rather

than the adaptation with PBF which does not allow the adaptive gain to decrease below

F̄ .
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Table 3.1: Parameter values of the PBF, PSBF and AST for adaptive STCs

PBF PSBF AST

Parameter values
L1 = 12, ε= 0.001,
F̄ = 0.095

L1 = 12, ε= 0.001,
µ= 1, w1 = 200, γ1 = 2,
ε= 0.001, ν=αm = 0.01

3.2.3 Simulation results

The performance of the aforementioned barrier strategy is compared with the results

obtained through the adaptive STC presented in [64].

In [64], the adaptive ST controller, referred as (AST), is implemented as
ust (t ) =−α(t )|s(t )| 1

2 si g n(s(t ))+u2(t ),

u̇2(t ) =−β(t )

2
si g n(s(t )),

(3.6)

with β= 2µα, and the adaptive gain α is obtained through

α̇=

w1

√
γ1

2
si g n(|s(t )|−ε), if α>αm

ν, if α≤αm

(3.7)

where µ, w1, γ1, ε, αm , and ν are positive constants to be selected.

In the following subsections, two cases are carried out: the first one deals with an

increasing disturbance derivative, and the second one considers a monotonically decreasing

disturbance derivative. In the simulations, s(0) = 0.4 and Table 3.1 contains the parameter

values of PBF, PSBF and AST, where the parameter ε is set as ε = 0.001, while all the

others are tuned according to [64].

3.2.3.1 Case of increasing disturbance derivative

The disturbance derivative is given by (Fig. 3.1(a))

δ̇(t ) =


0.5si n(3t ), if t ≤ 5 s, M = 0.5,

10si n(3t ), if 5 s < t ≤ 10 s, M = 10,

20si n(3t ), if t > 10 s, M = 20.

(3.8)

The zoomed-in plots of the sliding variable s(t ) with PBF, PSBF and AST are compared

in Figs. 3.1(b)-3.1(c)-3.1(d). In Figs. 3.1(b)-3.1(c) it can be observed that for both barrier

functions PBF and PSBF, the sliding variable does not exceed the predefined neighborhood

of zero ε = 0.001. On the other hand, it can be noticed in Fig. 3.1(d) that the size of
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the neighborhood of zero to which converges s(t ) with AST is changing together with the

amplitude of disturbance derivative M (for t ≤ 5 s, |s(t )| ≤ 0.015, for 5 < t ≤ 10 s, |s(t )| < 0.06,

and for t > 10 s, |s(t )| ≤ 0.13). Therefore, it cannot be predefined. Moreover, it can be

very large when the amplitude of disturbance derivative is large (for t > 10 s, M = 20 and

|s(t )| ≤ 0.13 = 130ε).
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Figure 3.1. a) Disturbance δ(t ), and the zoomed-in plot of the sliding variable s(t ) with: b) PBF,
c) PSBF, d) AST

3.2.3.2 Case of monotonically decreasing disturbance derivative

Consider now the following monotonically decreasing disturbance derivative defined as

(Fig. 3.2(a))

δ̇(t ) = 0.012

t +1
+0.0025.

The zoomed-in plots of the adaptive gain with PBF, PSBF and AST are depicted

in Figs. 3.2(b)-3.2(c)-3.2(d). For t > 0.6 s the amplitude of the disturbance derivative

becomes less than 0.01, where 1.1F̄ 2 = αm = 0.01 (see Fig. 3.2(a)). That is why starting

from this moment, the adaptive gains for both PBF and AST will be overestimated and

cannot decrease below 0.095 and 0.01, respectively (see Figs. 3.2(b)-3.2(d)). On the other

hand, the adaptive gain for PSBF is decreasing and will go to zero (see Fig. 3.2(c)).
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The zoomed-in plots of the sliding variable s(t ) with PBF, PSBF and AST are il-

lustrated in Figs. 3.3(a)-3.3(b)-3.3(c). The chattering appears for both PBF and AST

withs amplitude 0.4× 10−11 and 3× 10−10, respectively (see Figs. 3.3(a)-3.3(c)). On the

other hand, it can be noticed that the sliding variable with PSBF will go to zero without

chattering (see Fig. 3.3(b)).

3.3 Barrier Function-Based adaptive CISMC

3.3.1 Preliminaries

In the case of CISMC [16], the STC is applied instead of FOSMC in the auxiliary variable

dynamic (2.9). This controller has two main limitations: first, the Lipschitz constant M of

the disturbance δ(t ) is supposed to be known. Second, the implementation of the standard

STC requires a finite time to reach s(t ) = 0, that is, there exists a T > 0 such that for all

t > T , s(t ) = 0 [17].

In what will follow, we will propose a new barrier function based-adaptive CISMC

which overcomes these two disadvantages. Thus, the proposed approach allows to enforce

the sliding variable to a prescribed vicinity of zero starting from the initial time moment

under the assumption of Lipschitz disturbance with unknown Lipschitz constant M . As

in the previous section two adaptive functions will be considered: first, the case when the

adaptive gain is chosen as PBF, and second the case when it is chosen as PSBF.

3.3.2 Adaptation with PBF

Proposition 3.3.1. Consider system (2.9) with Lipschitz disturbance whose Lipschitz

constant M is unknown. Then, for any ε> 0 and for all t ≥ 0, the inequality |s(t )| < ε holds

via the adaptive CISMC (3.3) with the adaptive control gain

L(s(t )) = Kpb(s(t )) = εF̄

ε−|s(t )| . (3.9)

Furthermore, an ideal 2-OSM, i.e. s(t ) = ṡ(t ) = 0 is guaranteed if F̄ 2 > |δ̇(t )|.

Proof. The above proposition is a particular case of theorem 3.2.1, where the PBF is

used to adapt the gain of CISMC from the initial time moment. That is due to the specific

feature of ISMC for which the auxiliary variable satisfies s(0) = 0.
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Remark 3.3.2. In the case when |δ̇(t )| < F̄ 2, this adaptation will provide an ideal 2-OSM

with overestimated adaptive gain (since the L(t (s)) cannot decrease below F̄ ). Hence, the

parameter F̄ needs to be small enough in order to attenuate this overestimation.

3.3.3 Adaptation with PSBF

Proposition 3.3.3. Consider system (2.9) with Lipschtiz disturbance whose Lipschitz

constant M is unknown. Then, for any ε> 0 and for all t ≥ 0, the inequality |s(t )| < ε holds

via the adaptive CISMC (3.3) with the adaptive control gain

L(s(t )) = Kpsb(s(t )) = |s(t )|
ε−|s(t )| . (3.10)

Proof. Similar to the proof of Proposition. 3.3.1.

Remark 3.3.4. As mentioned in section 3.2.2.2, there is a benefit in using this adap-

tation which can ensure that the auxiliary variable belongs to |s(t )| < ε with the smallest

amplitude of the adaptive gain rather than the adaptation with PBF which does not allow

the adaptive gain to decrease below F̄ .

3.3.4 An example

The second order system given in (2.12) is used again to verify the performance of the

barrier algorithms-based adaptive CISMC. Their performances are also compared to those

of AST (3.6)-(3.7).

The overall control is designed based on (2.6), where un is given in (2.13) and uSMC is

the adaptive CISMC. The parameter values of both BFs are the same as in subsection 2.3.4,

and for AST the parameter values are set as follows: w1 = 200, ν=αm = 0.1, µ= 1, γ1 = 2,

ε= 0.01.

Figs.3.4-3.5-3.6 illustrate the simulation results of the adaptive CISMC based on PBF,

PSBF and AST respectively. Figs.3.4(a)-3.5(a) demonstrate that the auxiliary variable

s(t ) is maintained in the prescribed vicinity of zero ε= 0.01 from the initial time moment.

On the other hand, the auxiliary variable for AST cannot be maintained in the prescribed

vicinity of zero (see Fig. 3.6(a)). Moreover, it will jump to a big value at the initial time

moment (for t = 0.05 s, s(t ) > 0.08). Next, it can be observed in Figs.3.4(b)-3.5(b)-3.6(b)

that the overall control is continuous. Then, the convergence of the states to some vicinity

of the origin is depicted in Figs.3.4(c)-3.5(c)-3.6(c). And finally, the evolution of the
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adaptive gain can be shown in Figs.3.4(d)-3.5(d)-3.6(d). Note that, from Fig. 3.4(d), it

can be observed that the adaptive gain cannot decrease below F̄ = 0.6 (see Remark.3.3.4).
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Figure 3.6. Adaptive CISMC based on AST

3.4 Summary

In this chapter, a barrier function-based adaptive STC for first order disturbed systems

whose disturbance derivative is bounded with unknown boundary was proposed. This

strategy ensures the convergence of the sliding variable and prevents its violation outside

a predefined neighborhood of zero. Furthermore, the adaptive gain in this strategy is not

overestimated.

Then, based on the same adaptive strategy, an adaptation of CISMC was proposed.

The barrier strategy allows the CISMC to be implemented to a class of arbitrary order

disturbed systems whose disturbance derivative bound is unknown. It was shown that

the proposed algorithm ensures that the auxiliary variable belongs to a prescribed vicinity

of zero starting from the initial time moment despite disturbance with unknown upper

bound of its derivative. Moreover, there is no reaching phase, and the adaptive gain is not

overestimated.

In the next chapter, the barrier function adaptation will be used to adapt Levant’s

differentiator. This adaptation is useful for the case when the upper bound of second

derivative of base signal exists but it is unknown.





Chapter 4

Design of Adaptive LD

4.1 Introduction

The Super-Twisting algorithm is a very popular strategy for robust exact differentiation of

a signal which has Lipschitz derivative. In this situation, this algorithm is called Levant’s

robust exact differentiator [44]. It is one of the most popular online differentiators. Recall

that differentiators are important and widely incorporated into control design such as PID

regulators, the construction of observers [6, 8] and the fault detection problems [27, 21].

Motivated by adaptive STC proposed in the previous chapter, this chapter develops an

adaptive version of this Levant’s Differentiator (LD) for the case when the upper bound

of second derivative of base signal exists but it is unknown.

The LD has been proven that it is efficient theoretically and practically if the constant

gains are chosen according to the upper bound of the second derivative of the base signal.

Theoretically, this means in the ideal case, i.e. in the absence of noise, this differentiator

ensures the finite-time exact estimation of the first derivative of the base signal. Practically,

in the presence of noise, this differentiator ensures the finite-time convergence to the

vicinity of the first derivative of the base signal whose size depends on the upper bound

of the second derivative of the base signal and on the square root of the amplitude of the

noise. The overestimation of the aforementioned upper bound causes a big error in the

estimation of the first derivative.
53
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In this chapter, the barrier function, used in chapter 2 and chapter 3, is applied to

adapt the gains of LD. Such a function has the property to tend to infinity when its

arguments come close to some predefined limits. Based on this attractive property, a new

strategy to adapt the gains of LD is built up here.

This proposed barrier scheme guarantees that the size of the vicinity of the estimation

of the signal belongs to a predefined vicinity of zero starting from the initial condition.

Furthermore, it ensures a fast convergence of LD to some vicinity of the derivative of the

base signal. However, the size of this vicinity depends on the upper bound of the second

derivative of the base signal, which is unknown.

We will also draw in this chapter a comparison between different adaptation strate-

gies of LD [64, 53] to estimate the first derivative. Without noise, it is shown that the

proposed adaptive strategy is in competition with the known strategies of adaptation. In

the presence of noise, the main advantage of the proposed adaptive strategy is that it

could indicate when LD does not converge. However, the other existing strategies for LD

adaptation could converge to the sum of the derivatives of the base and noise signals and

it is impossible to identify it.

4.2 Problem Formulation

Let the input signal σ0(t ) to be differentiated online. This signal has a Lipschitz derivative

defined in [0,∞[, i.e. for all t ∈ [0,∞[ max(|σ̈0(t )|) ≤ M , but M is unknown. The standard

LD [44] is defined as ė1(t ) =−h1|e1(t )| 1
2 si g n(e1(t ))+e2(t ),

ė2(t ) =−h2si g n(e1(t ))− σ̈0(t ),
(4.1)

where e1(t ) = z1(t )−σ0(t ), e2(t ) = z2(t )− σ̇0(t ) are the differentiator errors, z1(t ), z2(t ) ∈ R
are the states, h1, h2 are the constant gains, and |e1(t )| is the absolute value of e1(t ). The

main specific feature of system (4.1) is that e1(0) can be considered as e1(0) = 0, due to that

it is supposed that the signal σ0(t ) can be measured exactly. By choosing h1 = 1.5
p

M and

h2 = 1.1M , this LD can provide theoretically the exact value of the first derivative of the

signal in a finite time; that is, there exists a T > 0 such that for all t > T , e1(t ) = e2(t ) = 0

holds, which leads to z1(t ) =σ0(t ) and z2(t ) = σ̇0(t ) [44]. However, the implementation of

this standard LD requires the information of the upper bound M . In this chapter, we

assume that M is unknown.
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The goal of this chapter is to propose a Barrier Adaptive LD (BALD) ensuring that

the estimation error of the signal belongs to a predefined vicinity, as well as LD converges

to some vicinity of the first derivative of the base signal.

In this chapter, we will use the following form of the adaptive LD [53]ė1(t ) =−k1L(e1(t ))|e1(t )| 1
2 si g n(e1(t ))+e2(t ),

ė2(t ) =−k2L2(e1(t ))si g n(e1(t ))− σ̈0(t ),
(4.2)

where k1 = 1.5, k2 = 1.1 are constants, and L(e1(t )) is the barrier adaptive gain.

4.3 Barrier Function based-adaptive LD

Theorem 4.3.1. Consider the adaptive form of LD (4.2) with bounded second derivative

of the signal and with the adaptive gain L(e1(t )) given by

L(e1(t )) = Lb(e1(t )) = L̄ε

ε−|e1(t )| , (4.3)

where L̄, and ε are positive constants. Then, for any ε > 0 and M > 0, there exist δ1 =
δ1(M) > 0 and t̄ (M ,e2(0)) such that for e1(0) = 0 and any e2(0), for all t ≥ 0, the inequality

|e1(t )| = |z1(t )−σ0(t )| < ε holds and for all t ≥ t̄ , |e2(t )| = |z2(t )− σ̇0(t )| ≤ δ1(M).

Remark 4.3.2. Fig. 4.1 illustrates the errors e1(t ), e2(t ) and the evolution of the adaptive

gain provided by BALD for the case when σ0(t ) = si n(5t ) and for different values of e2(0).

In Fig. 4.1(a), it is confirmed that the inequality |e1(t )| < ε= 10−3 holds for t ≥ 0. Moreover,

from the zoomed-in plot of Fig. 4.1(b), it can be noticed that the time period t̄ for which

the inequality |e2(t )| = |z2(t )− σ̇0(t )| ≤ δ1 holds increases when the value of e2(0) grows.

Hence, t̄ depends on e2(0). This specific behavior of e1(t ) and e2(t ) is due to the increase

in the barrier adaptive gain depicted in Fig. 4.1(c). Indeed, it is shown in the zoomed-in

plot that L2(e1(t )) increases when the value of e2(0) grows in order to maintain the error

e1(t ) in the predefined vicinity and force e2(t ) toward some unknown vicinity. Note that

BALD can ensure fast convergence but at the cost of overestimating the adaptive gain (for

t = 1×10−4 s and e2(0) = 20, L2(e1(t )) = 6×104). This feature will be dangerous in the case

of the presence of noise due to that the error e1(t ) could go outside the predefined vicinity.

Remark 4.3.3. In order to demonstrate the statement of Theorem. 4.3.1, we apply

BALD to estimate the derivative of the signal σ0(t ) = si n(w t ) with different values of w,

which leads to different values of M . Fig. 4.2 shows the system trajectories in the phase
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plane (e1(t ), e2(t )) for the different values of w. It can be seen that the error e1(t ) remains

inside the predefined vicinity |e1(t )| < ε= 10−3. We can observe that the size of e2(t ) grows

when the value of w increases. Hence, the error e2(t ) depends on M .
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Remark 4.3.4. It is noted that the smallest value of the adaptive gain is L̄. In a special

case, when M ≤ L̄2, an exact estimation of the signal and its derivative is achieved, i.e

z1(t ) =σ0(t ), z2(t ) = σ̇0(t ). In this case, the barrier adaptive LD coincides with the standard

LD with the fixed gains (see Fig. 2.1).

4.4 Simulation results

In this section, we will compare the performance of the aforementioned barrier algorithm

with the results obtained through the two other adaptive algorithms, which are presented

in [64] and [53].

The adaptive algorithm in [64] is proposed to adapt the Super-Twisting controller

gains. It can be used to adapt LD parameters. This algorithm can drive LD to some

vicinity of the first derivative of the signal. In this case, the Shtessel’s Adaptive LD

(SALD) is implemented as
ė1(t ) =−α(t )|e1(t )| 1

2 si g n(e1(t ))+e2(t ),

ė2(t ) =−β(t )

2
si g n(e1(t ))− σ̈0(t ),

(4.4)

with β= 2εα, and the adaptive gain α is obtained through

α̇=


w1(

γ1

2
)

1
2 si g n(|e1(t )|−µ), if α>αm

ν, if α≤αm

(4.5)

where w1, γ1, µ, αm , and ν are positive constants to be selected.

The second algorithm we will use for comparison is introduced in [53]. This algorithm

can ensure theoretically exact finite-time estimation of the first derivative of the signal. In

this case, the structure of the Negrete & Moreno’s Adaptive LD (NMALD) is proposed asė1(t ) =−k1γ(t )|e1(t )| 1
2 si g n(e1(t ))+e2(t ),

ė2(t ) =−k2γ
2(t )si g n(e1(t ))− σ̈0(t ),

(4.6)

with k1 = 1.5, k2 = 1.1. For some υ > 0 and ε0 > 0, the adaptive gain γ(t ) is computed

through

γ̇(t ) =

υ, if |e1(t )| > ε0

0, if |e1(t )| ≤ ε0

(4.7)
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Table 4.1: Parameter values of BALD, SALD and NMALD

BALD SALD NMALD

Parameter values
L̄ = 2.2,
ε= 0.001

ε= 1, µ= 0.001, γ1 = 2,
ν= 0.01, w1 = 100, αm = 0.01

ε0 = 0.001,
υ= 30

The objective is to estimate the first derivative of the signal σ0(t ) with the following

second derivative

σ̈0(t ) =


10si n(7t )+2.3si g n(cos(5t )), if t ≤ 5 s, M = 12.3

120si n(7t )+2.3si g n(cos(5t )), if 5 s < t ≤ 10 s, M = 122.3

2si n(7t )+2.3si g n(cos(5t )), if t > 10 s, M = 4.3

(4.8)
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Figure 4.3. Simulation results of BALD

The initial values of the estimation errors for all adaptive LDs are chosen as e1(0) = 0,

e2(0) = 1. The parameter values of BALD, SALD, and NMALD are given in Table 4.1.

Fig. 4.3 illustrates the simulation results of BALD. Fig. 4.3(a) shows that the error

e1(t ) is maintained in the predefined vicinity of zero ε= 10−3. It can be seen in Fig. 4.3(b)

that the error e2(t ) is driven to some vicinity of zero and the size of this vicinity depends
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on M . Fig. 4.3(c) confirms that L2(e1(t )) follows the second derivative of the signal. More-

over, it is indicated that for t > 10 s, L2(e1(t )) = L̄2 since M = 4.3 is smaller than L̄2 = 4.4

(see Remark 4.3.4). Note that the zoomed-in plots in Figs. 4.3(b)-4.3(c) illustrate a fast

convergence of the error e2(t ) due to the increase of the adaptive gain (see Remark 4.3.2).

The simulation results of BALD and SALD are depicted in Fig. 4.4. It can be noticed

in Fig. 4.4(a) that for both algorithms the error e1(t ) is maintained in some vicinity of zero,

but Fig. 4.4(b) shows that the error e1(t ) in BALD does not exceed the predefined vicinity

of zero with the size ε= 10−3. On the other hand, it can be seen that the size of vicinity

of zero, to which converges e1(t ) in SALD, depends on M . The error e2(t ) is depicted in

Fig. 4.4(c). It can be concluded that in both of them, the error e2(t ) is driven to some

vicinity of zero depending on M. However, the convergence of the error e2(t ) in BALD is

faster than that one in SALD as revealed in the zoomed-in plot in Fig. 4.4(c). It is also

shown that the error e2(t ) in BALD is less than that one in SALD. Finally, Fig. 4.4(d)

illustrates the adaptive gain evolution. It can be noticed that both adaptive gains can

increase and decrease following the second derivative of the signal.
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Figure 4.4. Simulation results of BALD and SALD
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Figure 4.5. Simulation results of BALD and NMALD

The simulation results of BALD and NMALD are compared in Fig. 4.5. It can be

observed in Figs. 4.5(a)-4.5(b) that the error e1(t ) in BALD can never exceed the predefined

vicinity of zero, however, in NMALD, the convergence of the error e1(t ) to zero in finite

time can be ensured. The error e2(t ) is illustrated in Figs. 4.5(c)-4.5(d). It can be seen

in the zoomed-in plot that the error e2(t ) in BALD converges faster than that one in

NMALD. Moreover, it can be noticed in Fig. 4.5(d), which is a zoomed-in version of

Fig. 4.5(c), that the chattering in BALD is smaller than that one in NMALD for t > 10 s.

The overestimation of the adaptive gain in NMALD can be observed in Fig. 4.5(e).
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In conclusion, the simulation results illustrate the fact that our proposed BALD can

compete with other adaptive strategies for LD, such as SALD and NMALD, which implies

the effectiveness of our proposed barrier strategy.

4.5 Adaptive LDs in the presence of noise

Consider the case of noisy signal. Suppose we measure the signal σ(t ) consisting of a base

signal σ0(t ) and a deterministic non-vanishing noise η(t ), such that ∀t ≥ 0 |η(t )| ≤ ηmax ,

i.e.

σ(t ) =σ0(t )+η(t ). (4.9)

Two cases are considered carrying out simulations in order to show qualitative behavior

of the proposed algorithm to estimate σ̇0(t ) in the presence of noise.
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Figure 4.6. Simulation results for the case when ηmax << ε

4.5.1 Case when ηmax << ε
Consider the example when the base signal is σ0(t ) = si n(t ), and the noise η(t ) is imple-

mented using a normally distributed random signal with maximum amplitude ηmax = 0.01.
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The parameter ε of BALD is selected as ε= 0.1. In SALD and NMALD, the parameters

µ and ε0 are set based on the amplitude of the noise, i.e. µ = ε0 = 0.1. In Figs. 4.6(a)-

4.6(b)-4.6(c) it can be observed that ż1(t ) in the three adaptive LDs comprises essentially

the derivative of base signal and some high-frequency noise. Note that ż1(t ) in NMALD

is more affected by the noise than the other ones. Indeed, the adaptive gain in NMALD

cannot decrease, while for BALD and SALD the adaptive gains can decrease as shown in

Fig. 4.6(d).
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Figure 4.7. Simulation results for the case when ηmax > ε

4.5.2 Case when ηmax > ε
This section is provided to illustrate a counter-example showing that for ηmax > ε the

proposed barrier strategy indicates that LD does not converge. Moreover, ż1(t ) in SALD

and NMALD converge to the sum of the derivatives of the base signal and the noise.

Therefore, we need to consider a noisy signal with known derivative. We consider the

simplest example, when the base signal is σ0(t ) = 0, and the noise is η(t ) = 0.01si n(100t ).

Hence,

σ̇(t ) = σ̇0(t )+ η̇(t ) = η̇(t ) = cos(100t ). (4.10)
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The three adaptive LDs are implemented now with ε=µ= ε0 = 0.001 < ηmax = 0.01. It can

be seen in the zoomed-in plot in Fig. 4.7(a) that for t > 0.001 s, the error e1(t ) in BALD

cannot be maintained in the predefined vicinity of zero. Therefore, it indicates that it does

not converge. In Figs. 4.7(b)-4.7(c), it can be observed that ż1(t ) in SALD and NMALD

converge to the derivative of the noise as ż1 = σ̇(t ) = η̇(t ). It can be noticed in Fig. 4.7(d)

that the adaptive gains in SALD and NMALD are growing to the value for which ż1(t )

converge to the derivative of the noise.

4.5.3 Discussion

The simulation results show that none of the existing strategies of adaptation for LD can

ensure its convergence for the case when the upper bound of the second derivative of the

base signal exists but it is unknown. This is due to the reason that LD loses its filtration

property in this case.

If the noise is small enough and the estimation error of measured variable still belongs

to the predefined vicinity, it can be expected that the estimation provided by LD based

on barrier strategy belongs to some vicinity of the derivative of the base signal. On the

other hand, if the noise is big enough and the estimation error of the measured variable

leaves the predefined vicinity of measured signal, the barrier strategy could indicate that

BALD does not converge. In the case of SALD and NMALD, it is much more difficult to

identify if LD converge to the derivative of the base signal or to the sum of derivatives of

the base signal and the noise. Since in both of them, the gains grow to the level in which

LD converge to some vicinity of the derivative of the noisy signal.

4.6 Summary

In this chapter, a barrier strategy is proposed to adapt the gain of LD for the case when

the upper bound of the second derivative of the base signal exists but it is unknown. The

vicinity size of the base signal estimation error does not depend on the upper bound of the

second derivative. The proposed strategy ensures a fast convergence of the differentiator

to some vicinity of the derivative of the base signal. However, the size of this vicinity

depends on the unknown upper bound of the second derivative.

The barrier adaptive LD has two main advantages: it ensures fast convergence and

could indicate that LD does not converge in the case of the noisy signal.
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Moreover, the discussion made in section 4.5 has shown that none of the existing

strategies of adaptation for LD can ensure its convergence for the case when the upper

bound of the second derivative of the base signal exists but is unknown.

In the next chapter, two adaptive strategies for discontinuous HOSMC algorithms will

be presented. These two strategies allow the discontinuous HOSMC to be implemented

in the case of arbitrary chain of integrators system affected by disturbance with unknown

upper bound or disturbance with unknown upper bound of its derivative.



Chapter 5

Design of adaptive DHOSMC

5.1 Introduction

In the case of a perturbed chain of integrators system of length n affected by disturbance

with unknown upper bound or disturbance with unknown upper bound of its derivative,

the adaptive DISMC and the adaptive CISMC presented in chapter 2 and chapter 3 can

be applied. They can maintain the auxiliary variable in a predefined vicinity of zero. How-

ever, the main drawback of these approaches is that they cannot ensure the convergence of

the system states to predefined vicinities of zero. This means that the sizes of vicinities to

which converge the states are unknown. To overcome this problem, discontinuous higher

order sliding mode controllers can be used. Indeed, it allows the convergence in a finite

time of the system states to zero. However, it requires the knowledge of the bound of the

disturbance. Therefore, this chapter deals with the adaptation of the discontinuous higher

order sliding mode control. It proposes novel algorithms that can ensure the finite time

convergence of the states to zero without requiring any information about the disturbances.

Higher Order sliding mode controls (HOSMCs) [63] have been introduced to overcome

two main obstacles:

• The restriction that the control needs to appear explicitly in the first derivative of

the sliding variable [71].

• The undesired chattering effect [71].
65
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Indeed (HOSMCs) can be designed for systems with arbitrary relative degree n, and can

provide the finite time convergence of the sliding variable and its (n−1) derivatives to zero,

i.e. achievement of n-th Order Sliding Mode (n-OSM). Unfortunately, the Discontinuous

HOSMC (DHOSMC) [42, 22, 19] has the following disadvantages:

(i) Provides discontinuous control signal, i.e. suffers from chattering.

(ii) Requires the disturbance to be bounded with known upper bound.

(iii) Cannot be applied in the case when the disturbance is Lipschitz and not bounded.

Problem (i) can be bypassed by artificially increasing the input-output relative degree,

and, consequently, HOSMCs are able to provide continuous control signals [28]. Neverthe-

less, HOSMC algorithms include all ”signum” function frequently multiplied by a gain that

depends on bounds of uncertainties or bounds of their derivatives, and thus chattering is

not totally deleted even by increasing the relative degree.

On the other hand, to implement existing DHOSMCs, the upper bound of the distur-

bance is required. However, this upper bound is usually not constant and it is unknown.

In this case, the gains of DHOSMC are set to be overestimated. This causes the increase

of chattering [11]. Note that adaptive strategies which deal with the problem (ii) still lack.

Moreover, the case when the disturbance is Lipschitz and not bounded (iii) remains an

open problem for DHOSMC.

The main contribution of this chapter is the proposal of two adaptive DHOSMC strate-

gies that overcome requirements (ii) and (iii) and ensure the achievement in a finite time of

n-th OSM. These controllers are based on the adaptation of the homogeneous DHOSMC

proposed in [22]. The first strategy deals with the problem (ii), and it consists in growing

the gain of DHOSMC until the sliding mode is achieved. Notice that this strategy has

been applied to adapt different sliding mode controllers [53, 58, 51]. To implement the

DHOSMC in the case when the disturbance is Lipschitz and not bounded (iii), a novel

dual layer adaptive strategy which adjusts the gain is proposed. This strategy employs the

growing gain-based adaptive DHOSMC in conjunction with barrier function-based adap-

tive STC presented in chapter 3. Effectiveness of the two adaptive DHOSMC is illustrated

through simulations in different disturbances conditions. Moreover, their performance is

compared in the case when the disturbance is bounded and Lipschitz.
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5.2 Problem Formulation

Consider the following arbitrary order system

s(n)(t ) = u(t )+δ(t ), (5.1)

where n is the relative degree, s(t ) is the sliding variable, u(t ) is the control input and

δ(t ) is the disturbance. Here, δ(t ) can be a bounded function with unknown upper bound

δmax , or Lipschitz function with unknown Lipschitz constant M .

The objective in this chapter is to drive in a finite time the sliding variable s(t ) and

its (n −1) derivatives to zero, i.e. achievement of n-OSM. One of the DHOSMC that can

fulfil this objective in the case of bounded disturbance with known upper bound has been

recently proposed in [22]. This result is summarized in the following theorem:

Theorem 5.2.1. [22] Let deg s = r0 = τn, with r0 is a positive weight, and τ is the minus

system homogeneity degree. Let deg s(i ) = ri , deg s(n) = 0,

deg s(i ) = ri = r0 − iτ= (n − i )τ, i = 0, ..., n. (5.2)

and consider system (5.1) with bounded disturbance δ(t ). If the controller u(t ) is given by

u =−αsi g nϕn−1(s, ṡ, ..., s(n−1)) (5.3)

with

ϕn−1 = bs(n−1)e a
rn−1 + β̃n−2bs(n−2)e a

rn−2

+ ...+ β̃1bṡe a
r1 + β̃0bse a

r0 ,
(5.4)

where a > 0, and the coefficients β̃0, ..., β̃n−2 satisfy

β̃i =βi βi+1 ... βn−2, i = 0, ..., n −2 (5.5)

with β0, ..., βn−2 > 0 are chosen sufficiently large in the index order. Then, for any upper

bound of disturbance δmax , there exists a sufficiently large α for which the controller in

(5.3) provides finite time achievement of n-OSM.

In [22], the control gain α depends on the upper bound δmax and it is tuned by

simulation. However, in the case when the upper bound δmax is unknown this controller is

ineffective. To overcome this limitation, a new growing gain adaptive strategy is proposed

in this chapter and will be presented later.
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On the other hand, in the case when the disturbance δ(t ) is Lipschitz and not bounded,

nor the conventional DHOSMC neither its proposed adaptive version mentioned above can

be applied directly. In order to deal with this case, the control u(t ) will be designed as

a combination of two controls: Adaptive Super Twisting control (ASTC) and DHOSMC,

based on a novel dual layer strategy. The idea is to firstly apply a barrier function-based

ASTC to reconstruct the disturbance with a bounded reconstruction error. Then, the

growing gain adaptation of DHOSMC is designed to compensate this bounded recon-

struction error and ensures thus the achievement of the ideal n-OSM. In what follows,

the proposed growing gain adaptation of DHOSMC and the dual layer-based adaptive

DHOSMC are presented in detail.

5.3 Growing gain based-adaptive DHOSMC

Theorem 5.3.1. Consider system (5.1) with disturbance δ(t ) which is bounded with

unknown upper bound δmax . Using controller (5.3) with the constant a, the coefficients

β̃0, ..., β̃n−2 are chosen according to Theorem 5.2.1, and the adaptive control gain satisfies

α̇(t ) =

ᾱ, if ||s̄(t )|| > 0

0, if ||s̄(t )|| = 0
(5.6)

with s̄ = [s, ṡ, ..., sn]T , α(0) and ᾱ are positive constants to be selected. Then, this adaptive

DHOSMC provides in a finite time an ideal n-OSM.

Proof. Let w1 = s, w2 = ṡ, ...., wn = s(n−1). Denote ~wi = (w1, ..., wi ), i = 1, ..., n. With

these variables, system (5.1) is given by

ẇ1 = w2, ẇ2 = w3, ..., ẇn = u(t )+δ(t ). (5.7)

Consider the following Lyapunov function [22]

Vi (~wi ) =Vi−1(~wi−1)+Wi (~wi ),

Wi (~wi ) =
ziˆ

w∗
i

⌊
bλe

a
ri−1 −bw∗

i e
a

ri−1

⌉γ
dλ.

(5.8)

with ρ ≥ a, w∗
1 = 0, w∗

i =−βri−1/a
i−2 bξi eri−1/a , ξi = bs(i−1)e

a
ri−1 −bw∗

i e
a

ri−1 , γ= 2ρ− ri−1 +τ
a

.
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The time derivative of Vn(~wn) can be derived as

V̇n(~wn) = ∂Vn

∂w1
w2 + ...+ ∂Vn

∂wn
(u(t )+δ(t )) ,

= ∂Vn

∂w1
w2 + ...+ ∂Vn

∂wn
u0︸ ︷︷ ︸

V̇0(~wn )

+ ∂Vn

∂wn
(u(t )−u0 +δ(t )) , (5.9)

with u0 =−α0si g nϕn−1 is the DHOSMC proposed in [22]. From [22], it follows that

V̇0(~wn) ≤−cV Γ
n , (5.10)

where Γ= 2ρ

2ρ+τ ∈ (0,1). This implies that

V̇n(~wn) ≤−cV Γ
n + ∂Vn

∂wn
(u(t )−u0 +δ(t )) . (5.11)

Next, from (5.8)
∂Vn

∂wn
can be written as

∂Vn

∂wn
=

⌊
bwne

a
rn−1 −bw∗

ne
a

rn−1

⌉γ
. (5.12)

In view of (5.4), it can be shown that

ϕn−1 = bwne
a

rn−1 −bw∗
ne

a
rn−1 , (5.13)

which yields
∂Vn

∂wn
= bϕn−1eγ. (5.14)

Then

V̇n(~wn) ≤−cV Γ
n

+bϕn−1eγ
(
(−α(t )+α0)si g nϕn−1 +δ(t )

)
≤−cV Γ

n −|ϕn−1|γ(α(t )−α0 −δmax ).

(5.15)

The first term on the right-hand side of (5.15) is negative-definite. The second term

is also negative when α(t ) > α+δmax . Since the adaptive gain α(t ) is growing, and the

disturbance δ(t ) is bounded, it follows that there exists a constant α∗ =α0+δmax such that

V̇ (~wn) is negative-definite for every disturbance if α(t ) > α∗. Therefore, when α(t ) > α∗,

V̇n(~wn) satisfies

V̇n(~wn) ≤−cV Γ
n , (5.16)

this leads Vn(~wn) = 0 after a finite time. As a result, the states of the system (5.7) converge

to the origin, moreover, α(t ) stops growing (see the adaptive law (5.6)). Theorem 5.3.1 is

proven.■



70 CHAPTER 5. DESIGN OF ADAPTIVE DHOSMC

0 2 4 6 8 10 12 14 16
−1

−0.5

0

0.5

1

time(s)

s̄

 

 

s1
s2
s3

(a)

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

time (s)

α
(t
)

(b)

Figure 5.1. System (5.17) in close loop with growing gain-based adaptive DHOSMC (5.18) with
disturbance (5.19).

5.3.1 An example

The system in (5.1) is simulated with relative degree (n = 3) with respect to (w.r.t) control

input, i.e.

ṡ1 = s2, ṡ2 = s3, ṡ3 = u +δ(t ), (5.17)

Following [22], an adaptive DHOSMC for such system is given by

u =−α(t )sign(s3
3 +bs2e

3
2 + s1), (5.18)

where the adaptive gain α(t ) is computed through (5.6) with α(0) = 0.4, ᾱ = 5. In the

simulations, the initial conditions are selected as s̄(0) = [0.1, 0.1, 0.3]T , and the disturbance

is chosen as

δ(t ) = 2|t −5| 1
2 −5cos(2t ). (5.19)

Fig. 5.1 shows the simulation results of system (5.17) with disturbance (5.19) using the

growing gain-based adaptive DHOSMC. It can be seen that the states s1, s2, s3 of system

(5.17) converge to the origin in finite-time, the adaptive gain α(t ) increases and then

remains constant, since it has attained a value that can compensate the disturbance.

According to [22], the adaptive DHOSMC (5.18) provides the following accuracy for

the states w.r.t sampling step τ

|s1| ≤λ1τ
3, |s2| ≤λ2τ

2, |s3| ≤λ3τ, (5.20)

where λi are positive constants. By simulations shown in Fig. 5.2 with Euler method and

τ= 10−5s, constants λi are determined as λ1 = 4000, λ2 = 150, and λ3 = 20. These constants

have been confirmed by the simulations with τ= 10−6s also shown in Fig. 5.2.
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Figure 5.2. Accuracy provided by growing gain-based adaptive DHOSMC (5.18) for system (5.17)
in close loop with disturbance (5.19).

5.4 Dual layer-based adaptive DHOSMC

The above controller is not applicable in the case when the disturbance is Lipschitz and

not bounded. In order to deal with this case, a Dual layer-based adaptive DHOSMC is

proposed in this section.

Consider once again the system in (5.1) where the disturbance δ(t ) is Lipschitz. The

controller u(t ) is now chosen as a combination of two parts

u = uAD HOSMC +uAST C , (5.21)

where uAD HOSMC is the adaptive DHOSMC defined in the previous section and uASTC is

the adaptive STC defined in chapter 3 (3.3).

An auxiliary variable for system (5.1) is defined as

σ(t ) = s(n−1)(t )− s(n−1)(0)−
ˆ t

0
uAD HOSMC (τ)dτ, (5.22)

where s(n−1)(0) is the initial condition. The main specific feature of the following auxiliary

variable is that σ(0) = 0. From (5.1), the dynamic of the auxiliary variable can be expressed

as

σ̇= s(n)(t )−uAD HOSMC

= uAST C +δ(t ).
(5.23)
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Theorem 5.4.1. Consider system (5.23) with disturbance δ(t ) which is Lipschitz with

unknown Lipschitz constant M . Then, for any ε > 0 and for all t ≥ 0, the inequality

|σ(t )| < ε holds. And for all t ≥ t1, with t1 is the reaching phase, it holds that |σ̇(t )| <∆(ε, M)

via uAST C (3.3) with the adaptive control gain

L(σ(t )) = εF̄

ε−|σ(t )| , (5.24)

where F̄ is positive constant to be selected. Furthermore, an ideal 2-OSM, i.e. σ(t ) = σ̇(t ) =
0 is guaranteed if F̄ 2 > M .

Proof. The above theorem is a particular case of theorem 3.2.1, where the PBF is used

to adapt the gain of STC from the initial time moment.

Remark 5.4.2. Note that if the initial value of disturbance is equal to zero, the reaching

phase t1 = 0 [17]. Otherwise, to make this reaching phase small, ε should be chosen small

enough.

Remark 5.4.3. For t ≥ t1, the ASTC can maintain |σ̇(t )| ≤∆(ε, M), i.e.

−∆(ε, M) ≤ uASTC +δ(t ) ≤∆(ε, M), ∀t ≥ t1. (5.25)

This means that the proposed ASTC cannot exactly reconstruct the disturbance δ(t ). How-

ever, it can provide an upper bound ∆(ε, M) of its reconstruction error.

Now, having satisfied (5.25), and from (5.1) and (5.21), s(n)(t ) can be derived as

uAD HSOMC −∆(ε, M) ≤ s(n)(t )

≤ uAD HSOMC +∆(ε, M), ∀t ≥ t1.
(5.26)

Therefore, the role of the control part uAD HSOMC becomes to compensate the unknown

upper bound of the reconstruction error ∆(ε, M).

Theorem 5.4.4. The controller given in (5.21), with uAD HOSMC that satisfies Theo-

rem 5.3.1 and uAST C that satisfies Theorem 5.4.1, is a dual layer-based adaptive DHOSMC

for system (5.1). It provides the finite time convergence of the states to zero despite the

presence of Lipschitz disturbance δ(t ) with unknown Lipschitz constant M .

Proof. According to Theorem 5.4.1, the barrier function-based ASTC can ensure that

|uAST C +δ(t )| ≤ ∆(ε, M) after a finite time t1. Once t1 has been attained, the growing

gain-based adaptive DHOSMC can drive the states to zero, since the conditions of Theo-

rem 5.3.1, which is the boundaries of the disturbance, is satisfied.
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Figure 5.3. System (5.17) in close loop with growing gain-based adaptive DHOSMC (5.18) with
disturbance (5.27).

5.4.1 An example

The third order disturbed system given in (5.17) is used again, but now under the following

distubance

δ(t ) = 5t +4cos(2t ), (5.27)

which is Lipschitz and not bounded. The two proposed strategies to adapt the DHOSMC

are tested in this subsection. For the dual layer-based adaptive DHOSMC, the control u(t )

is designed based on (5.21), where uAD HOSMC is given in (5.18). The parameter values

for the growing gain-based adaptive DHOSMC used in both strategies are the same as in

subsection 5.3.1, and for the ASTC the parameter values are set as follows: ε= 0.01, F̄ = 1.

Fig. 5.3 shows the simulation results of system (5.17) with disturbance (5.27) using

the growing gain-based adaptive DHOSMC. It can be noticed that the states s1, s2, s3 of

system (5.17) will not converge to the origin, moreover, the adaptive gain α(t ) will not

stop growing. This is due to the reason that the disturbance (5.27) is not bounded in this

case.

The simulation results of the dual layer based-adaptive DHOSMC applied to system

(5.17) with disturbance (5.27) are depicted in Fig. 5.4. It can be confirmed that the states

s1, s2, s3 of system (5.17) converge to the origin in a finite time. The adaptive gain α(t )

grows and reaches a constant value, and the reconstruction error of the disturbance is

bounded by an upper bound ∆(ε, M) = 0.05.

The accuracy provided by the dual layer based-adaptive DHOSMC can be shown in

Fig. 5.5. It satisfies (5.20), with the constants λi are determined for τ= 10−5s as λ1 = 500,

λ2 = 30, λ3 = 20 and have been verified with τ= 10−6s.
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Figure 5.4. System (5.17) in close loop with dual layer-based adaptive DHOSMC (5.21) with
disturbance (5.27).
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Figure 5.6. Case of increasing disturbance amplitude: left box: α(t ) with (5.18), right box: α(t )
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5.5 Comparison of both proposed adaptive strategies

Again, consider system in (5.1) with the disturbance δ(t ) is supposed to be Lipschitz and

bounded. In order to show which adaptive strategy has a better performance in the sense

that it can provide a lower amplitude of the adaptive gain α(t ), which means less chattering

effect, two cases will be considered.

5.5.1 Case of increasing disturbance amplitude

Consider the example when the disturbance is given by

δ(t ) =


2cos(2t ), if t ≤ 6 s,

18cos(
1

4.5
t ), if t > 6 s.

(5.28)

It is clear that in this case δmax increases, and M is constant. The initial values are set

as s̄(0) = [0.1, 0, 0]T , and the parameter values for both controllers are the same as in

subsection 5.4.1. In Fig. 5.6 it can be observed that α(t ) with the growing gain strategy

increases along with the increase of δmax . On the other hand, α(t ) with the dual layer-

strategy remains constant and is not affected by δmax . Indeed, α(t ) with this latter strategy

depends only on M , which does not change in this case. It can be noted that for this class

of disturbance the dual layer strategy provides less amplitude of α(t ), which leads to less

chattering.
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5.5.2 Case of increasing disturbance frequency

Now, the disturbance is given by

δ(t ) =

1.5cos(80t ), if t ≤ 12 s,

1.5cos(300t ), if t > 12 s.
(5.29)

This means that δmax is constant, and only M increases. In the following simulations, the

initial values are selected as s̄(0) = [0.1, 0, 0]T . The parameter values of ASTC are set as

ε = 0.02, F̄ = 1, and for the growing gain-based adaptive DHOSMC, they are selected as

ᾱ(t ) = 0.2, α(0) = 0.3. It can be seen in the zoomed-in plots in Fig. 5.7 that α(t ) with the

growing gain strategy is not affected by the change of M . However, α(t ) with the dual

layer strategy increases along with the increase of M . Moreover, it can be noticed that

the amplitude of α(t ) with the dual layer strategy is bigger than the one with the growing

gain strategy. Therefore, it can be concluded that in this case, the growing gain strategy

provides less amplitude of chattering.

5.6 Summary

This chapter proposes two different adaptive strategies for discontinuous higher order

sliding mode controllers. These two controllers ensure the finite time convergence of the

sliding variable and its (n−1) derivatives to zero without requiring any information about

the disturbances. The first strategy consists in growing the gain until the sliding mode is

achieved and it can be applied in the case of bounded disturbances with unknown upper
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bound. While the second strategy is based on a novel dual layer adaptation and can be

applied in the case of Lipschitz disturbance with unknown Lipschitz constant.

In addition, a comparison between these two strategies has been discussed in the case of

Lipschitz bounded disturbance. If the disturbance amplitude is increasing, the dual layer

strategy has better performance in the sense of less amplitude of chattering. On the other

hand, if the disturbance frequency is increasing, the growing gain strategy performs better.

This chapter concludes theoretical and methodological developments of novel adaptive

sliding mode controllers and differentiator proposed in this thesis. In the next two chap-

ters, different controllers that have been developed will be tested and their performances

illustrated on two types of energy conversion systems. These two systems are nonlinear,

uncertain and disturbed. Moreover their output present different relative degrees. The

first one has a relative degree equal to one, while the other one has a relative degree

equal to two. Hence, in chapter 6, the active and reactive power control of a wind-energy

conversion system will be considered. Then, in chapter 7, the control of linear induction

motor used in cogeneration system will be addressed.





Chapter 6

Application to Wind Energy Conversion

System

Wind energy has been regarded as an environmentally friendly alternative energy source

which has attracted much attention [77]. The attention is growing quickly due to different

reasons. In the last two decades, wind energy is taking the most important position in the

development of renewable energy due to its many benefits, such as cost effectiveness, sim-

ple structure and efficiency [14]. With the remarkable growth in the technology of Wind

Energy Conversion System (WECS), several works have been focused on improving the

performance of the wind turbine, reducing its cost, increasing its lifetime, and investigating

the advanced control strategies that improve its efficiency, taking into consideration the

characteristics of WECS. However, the WECS is considered as an uncertain and complex

system. The complexity comes from the nonlinear system dynamic, parameter uncertain-

ties, external perturbations, and random nature of wind speed. Its electrical dynamic is

usually described by two nonlinear systems with relative degree one affected by unknown

uncertainties/disturbance.

This chapter discusses the adaptive control of active and reactive power of WECS

using the new control strategies developed in this thesis for systems with relative degree

equal to one. Recall that, in chapter 2 and chapter 3, two types of adaptive SMCs have

been presented for such systems.
79
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6.1 State-of-the-Art and contributions

When WECS is working on the partial load zone of operation (described in section 6.2)

the following two main objectives should be fully assured [33],[9],[30]:

• Regulate the active power to track the maximum power point obtained by the Max-

imum Power Point Tracking (MPPT) controller.

• Control the reactive power to track the reference reactive power.

It has been shown that linear controllers, which are widely used in various control

applications, are not robust for uncertain systems [62]. In fact, the main drawback of such

type of controllers is that their coefficients should be tuned depending on the generator

parameters, which are just partially known, and external disturbances.

For systems with uncertainties, the SMC has proven its high efficiency [71]. Indeed,

one of the most famous controllers used to control WECS is the classical FOSMC [38].

However, the main obstacle of FOSMC is chattering. To attenuate this phenomenon,

the STC has been introduced. This controller is one of the most popular controls for

disturbed systems with relative degree one, and with Lipschitz’s disturbances [43]. Hence,

many STCs have been used to control WECS [12, 48, 31].

In the above publications, and in order to implement the FOSMC or STC, the upper

bound of the disturbance or its derivative were assumed to be known. In practical systems,

and specially in WECS, these bounds are unknown. In this case, the control gains of

FOSMC and STC are set to be overestimated.

To overcome this difficulty, this chapter proposes the application of the barrier function-

based adaptive FOSMC (BAFOSMC) and STC (BASTC), presented in chapter 2 and

chapter 3, to control WECS. These two adaptive controllers ensure the convergence in

a finite time of the sliding variables to given neighborhoods of zero. The size of these

neighborhoods does not depend on the disturbance. Moreover, they do not require neither

the upper bound of disturbance nor the upper bound of its derivative. Indeed, they only

require information about the sliding variables.

Hence, the main contributions of this chapter are the following:

• BAFOSMC and BASTC are applied to control the WECS in order to extract the

maximum power obtained by MPPT controller and to achieve the reference reac-

tive power with predefined errors, independent of the upper bound of the distur-

bance/uncertainties and their derivatives.
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• The proposed controllers are proved to be appropriate choices to control the WECS

due to their robustness when applied for nonlinear uncertain systems, where the

bounds of the disturbance/uncertainties and their derivatives are unknown.

• The proposed controllers ensure the non overestimation of the adaptive gains.

• Finally, we have compared both proposed adaptive controllers with other adaptive

ones [58, 64] to control WECS illustrating the positive features of our proposed

barrier strategy.

Generator

Power Converters

Gearbox
and

shaft

Machine side
converter

Grid side
converter

DC

GridTurbine
blades

Figure 6.1. Wind energy conversion system

6.2 WECS modeling

The famous WECS based Doubly Fed Induction Generator (DFIG) is considered in this

chapter. The basic configuration of the WECS is shown in Fig. 6.1. It consists of a

wind turbine, a gearbox, a DFIG and a bidirectional converter. In particular, the DFIG

converts the power from mechanical into electrical form. Its stator is directly connected to

the grid, while the rotor is connected to the same grid through a bidirectional converter.

This system can operate at variable speed, but generates electrical power at the frequency

and voltage fixed by the grid. The DFIG can work on two different modes, sub- and

super-synchronous speed. In the sub-synchronous mode, the grid provides power to the

rotor, whereas in the super-synchronous mode the rotor and the stator deliver power to

the grid.

Fig. 6.2 illustrates the different zones of operation of the WECS. The partial load zone

of operation starts from vcut−i n until vr ated . Note that, in this chapter our focus is on this
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zone, in which one of the control objectives is to extract the maximum active power. On

the other hand, the second zone of operation starts above vr ated and is not considered in

this chapter.

Figure 6.2. Power in the different wind turbine operation zones

To model the wind turbine, the mechanical power, which is directly extracted from it,

is a multiplication of the available wind power by the power coefficient Cp [13]

Pa = 0.5πρr 2Cp (λ,β)V 3, (6.1)

where V is the wind speed, r is the turbine radius, and ρ is the air density.

The wind turbine can only convert a percentage of the extracted wind power. This

percentage is represented by Cp which can be expressed by the following nonlinear equation

[59]

Cp (λ,β) = c1(
c2

λ
− c3β− c4)e

−c3
λ + c6λ, (6.2)

where β is the pitch angle, c1 to c6 are constants parameters, and the tip speed ratio

λ = ωr mr

GV
, in which G is the gearbox ratio and ωr m is the mechanical rotation speed of

the generator.

6.2.1 Modeling of the DFIG

The electrical dynamics of the induction machine model is described by the four-set of

nonlinear differential equation system consisting of the stator, rotor and flux components

in the d −q frame. [56] 

ψ̇sd =−Rs ir d +ωLψsq + vsd ,

ψ̇sq =−Rs isq −ωLψsd + vsq ,

ψ̇r d =−Rr ir d + (ωL −pωr m)ψr q + vr d ,

ψ̇r q =−Rr ir q − (ωL −pωr m)ψr d + vr q .

(6.3)
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The stator and rotor flux components are given by

ψsd = Ls isd +Lmir d ,

ψsq = Ls isq +Lmir q ,

ψr d = Lr ir d +Lmisd ,

ψr q = Lr ir q +Lmisq ,

(6.4)

where the subscripts d and q refer to the direct components and quadrature components

respectively, and subscripts s and r to the stator and rotor; isd and isq are stator currents;

ir d and ir q are rotor currents; ψsd and ψsq are stator flux linkages; ψr d and ψr q are

rotor flux linkages; Ls and Lr are the stator and rotor inductance and Lm is the mutual

inductance; Rs and Rr are stator and rotor resistances, wL is the frequency of the grid,

and p is the number of the pole pairs.

The mechanical dynamics of the rotating parts can be described by the following

differential equation

ω̇r m = 1

J
(τt −τe ), (6.5)

where J is the inertia of the whole rotating parts, τt is the torque produced by the wind on

the blades, and τe is the electrical resistant torque of the generator. The different torques

in equation (6.5) are given by

τe = 3

2
pLm

(
isq ir d − isd ir q

)
, (6.6)

τt = 1

G
0.5πρr 3Ct (λ)V 2, (6.7)

where Ct (λ) is the torque coefficient of the turbine, given by Ct (λ) = Cp (λ)

λ
.

In order to obtain a reduced-order model for the WECS, the d-axis should be aligned

with the stator flux vector, which will lead to the achievement of the separation of active

and reactive power, the stator flux is to be assumed constant and the stator resistance

must be neglected [29].

With these considerations, part of the state variables of the WECS are now chosen

to be the rotor currents describing the electrical dynamics, and the other part is chosen

to be the motor speed allowing to describe the mechanical dynamics [29], [72]. The state

equations of the WECS system is then expressed by
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i̇r d = −LsRr

L2
eq

ir d + (wL −pωr m)ir q+ Ls

L2
eq

vr d ,

i̇r q = −(
LmVL

wLL2
eq

+ ir d )(wL −pωr m)− LsRr

L2
eq

ir q+ Ls

L2
eq

vr q ,

ω̇r m = 1

J
(τt (V ,ωr m)− 3LmVL p

2Ls wL
ir q ),

(6.8)

where the equivalent inductance L2
eq = Lr Ls −L2

m , and VL is the grid line voltage. One

can determine the stator currents from the rotor currents based on the following two

expressions

isq =−Lm

Ls
ir q , isd = VL

wLLs
− Lm

Ls
ir d . (6.9)

The stator reactive power injected by the system into the grid can be written as [29], [72]

Qs = 3

2
VL(−Lm

Ls
ir d + VL

Ls wL
). (6.10)

6.2.2 MPPT control objective

The objective of the MPPT is to extract the maximum power from the available wind

power [34]. To achieve the MPPT control objective, it is needed to determine the optimal

tip-speed ratio λopt related to the maximum point Cp max. Fig. 6.3 illustrates the char-

acteristics Cp (λ,β). The maximum value of Cp , that is Cp max = 0.4953 , is achieved for

λopt = 7.5. The maximum torque can be expressed as

τopt (ωr m) = ρπr 5 Cp maxω
2
r m

2λ3
optG3

= koptω
2
r m , (6.11)

with kopt = ρπr 5 Cp max

2G3λ3
opt

.
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6.3 Control objective and SMC design

6.3.1 Control objective

The proposal in this chapter is to focus on presenting two novel strategies to control WECS

when it is operating on the partial load zone. In this zone, the first control objective is to

extract the maximum power from the wind. And the other aim is to regulate the stator

reactive power to track the external reference reactive power, therefore compensate the

reactive power needs of the grid.

These objectives are fulfilled by applying the two proposed adaptive SMCs, BAFOSMC

and BASTC, which can achieve the following properties for the system:

• Get a predefined error in a finite time in terms of active torque τe tracking the desired

maximum torque τopt obtained from the MPPT controller, even if the bounds of

disturbance/uncertainties and their derivatives are unknown.

|τopt −τe | < ετ, (6.12)

where ετ is apriori predefined constant.

• Get a predefined error in a finite time in terms of reactive power Qs tracking the

desired reference reactive power Qr e f , even if the bounds of disturbance/uncertainties

and their derivatives are unknown.

|Qr e f −Qs | < εQ , (6.13)

where εQ is apriori predefined constant.

6.3.2 Sliding variable design

The sliding variables for the active torque and the reactive power are designed as [29], [72]

sτ = τopt −τe = τopt (ωr m)− 3

2

LmVL

Ls wL
ir q , (6.14)

sQ =Qr e f −Qs =Qr e f +
3

2
VL(

Lm

Ls
ir d − VL

Ls wL
). (6.15)

Note that the variable τopt is obtained from the MPPT controller through (6.11).
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Taking the first order derivative of the sliding variables sτ and sQ , we obtain

ṡτ = 1

J
(τt −τopt + sτ)τ̇opt + Rr Ls

Le
(τopt − sτ)

+p(1− p

wL
ωr m)(sQ −Qr e f +

3Lr V 2
L

2wLLe
)

−3pLmVs

2Le ws
vr q︸ ︷︷ ︸

u1

=G1(s, wr m , t )+u1,

(6.16)

ṡQ = w2
L

p
(1− p

wL
ωr m)(τopt − sτ)− 3Rr V 2

L

2wLLe
− Rr Ls

Le
(sQ −Qr e f )

+Q̇r e f +
3LmVL

2Le
vr d︸ ︷︷ ︸

u2

=G2(s, wr m , t )+u2,
(6.17)

ẇr m = 1

J

(
τt −τopt + sτ

)
=G3(s, wr m , t ), (6.18)

where τ̇opt is the partial derivative of τopt with respect to ωr m . In view of (6.11), it can

be expressed as

τ̇opt = 2koptωr m . (6.19)

Then, the system dynamics can be written as follows

ṡτ = g1(sτ,Q ,ωr m , t )+ ĝ1(sτ,Q ,ωr m , t )︸ ︷︷ ︸
G1(s,ωr m ,t )

+u1, (6.20)

ṡQ = g2(sτ,Q ,ωr m , t )+ ĝ2(sτ,Q ,ωr m , t )︸ ︷︷ ︸
G2(s,ωr m ,t )

+u2, (6.21)

ω̇r m = g3(s,ωr m , t )+ ĝ3(sτ,Q ,ωr m , t )︸ ︷︷ ︸
G3(s,ωr m ,t )

, (6.22)

where g are the nominal or unperturbed models and their expressions can be computed

from G (6.16)-(6.17)-(6.18) using the nominal values for all the parameters. On the other

hand, ĝ present the uncertainties in the parameters and external disturbances, and their

expressions are computed after calculating the variations of parameters with respect to

their nominal values.
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6.3.3 Controller design

The control inputs are chosen to be the combination of two parts

ui = ueqi + ûi , i = 1,2 (6.23)

with ueqi are the equivalent control for system (6.20)-(6.21), and ûi are designed using

the proposed adaptive SMCs. Note that the expressions of ueqi are computed from the

undisturbed system (6.20)-(6.21), i.e. ĝ = 0. They are obtained by solving u in the

algebraic equations ṡ = 0 with s = 0.

The functions ĝi are supposed to be bounded and Lipshitz. Moreover, the bounds of

these functions and their derivatives are unknown. In [29], two different STCs with variable

gains have been designed for the two controllers û1 and û2, where the finite time stablility

of system (6.20)-(6.21) and the achievement of the 2-OSM for both sliding variables have

been proved using Lyapunov function. Also, following [29], the system’s zero dynamics,

given in equation (6.22), has been proved to be stable when sliding mode is established in

the load zone of operation. In other words, the torque produced by the wind τe converges

to the optimal maximum torque τopt = koptωr m , i.e, the rotational speed converges to the

optimal point ωr m = λoptG

r
V .

In this work, it is proposed to use two adaptive SMCs that do not require any infor-

mation about the bounds of the disturbances and their derivatives, which is not the case

in [29], in which a thorough analysis was necessary in order to estimate the upper bound

of the disturbances derivatives.

As a result, in order to achieve the control objectives, the problem can be formulated

as applying the two adaptive SMCs, BAFOSMC and BASTC, for the two terms û1 and

û2 to control WECS.

In the following section, the application of both barrier adaptive SMCs, along with the

comparison with other adaptive strategies are presented through simulations.

6.4 Simulation results

The model of WECS has been designed using MATLAB/Simulink. The parameters of the

WECS are detailed in Appendix. C.A. The wind speed model is produced by a test function

(see Fig. 6.4(a)) and several references reactive power will be used in the simulations, in

order to consider a variety of situations (see Fig. 6.4(b)). Moreover, variation in the rotor

resistance Rr , will be taken into account (see Fig. 6.4(c)).
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Figure 6.4. a) Wind speed profile V , b) Reference reative power Qr e f , c) Temporal evolution of
the rotor resistance Rr

Now, two situations will be considered: first the situation when the control terms û1

and û2 are chosen as adaptive FOSMC, and second when they are chosen as adaptive

STC.

6.4.1 Adaptive FOSMCs

In order to illustrate the positive features of the proposed BAFOSMC, the two BFs are

tested (i.e. PBF and PSBF), and their performances are compared with the results ob-

tained using the adaptive FOSMC presented in [58], referred to as APS.

For the BAFOSMC, the two controls û1 and û2, related to the active power and the

reactive power respectively, are designed according to theorem. 2.2.2. In contrast, for the

APS, the two controls are designed according to (2.2)-(2.4). Appendix. C.B contains the

parameter values of the two controllers with the two adaptive strategies.

The simulation results of adaptive FOSMCs based on PBF, PSBF and APS are de-

picted in Figs. 6.5-6.6-6.7. It can be noticed in Figs. 6.5(a)-6.6(a)-6.7(a), that for these

three adaptive strategies the tracking of the desired maximum torque τopt is efficient, which

leads the achievement of the first control objective. On the other hand, Figs. 6.5(b)-6.6(b)

show that the sliding variable sτ with PBF and PSBF does not exceed the predefined
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Figure 6.5. Adaptive FOSMC with PBF a) Active torque and the maximum active torque, b)
Sliding variable sτ, c) Stator reactive power and its reference, d) Sliding variable sQ , e) Control
term û1, f) Control term û2

vicinity of zero ετ = 5. But, it can be seen in Fig. 6.7(b) that the size of vicinity to which

converges sτ with APS exceeds ετ = 5. The fulfillment of the second control objective can

be shown in Figs. 6.5(c)-6.6(c)-6.7(c), where the stator reactive power and the external

reference Qr e f are drawn together. Moreover, in Figs. 6.5(d)-6.6(d)-6.7(d), it can be seen

that the sliding variable sQ with PBF and PSBF does not exceed the predefined vicinity

of zero εQ = 20, which is not the case with APS, in which the sliding variable cannot be

maintained in the predefined vicinity of zero. It can be concluded that both PBF and

PSBF, are more efficient than the APS regarding the retention of the sliding variables in

predefined vicinities of zero. Finally, Figs. 6.5(e)-6.6(e)-6.5(f)-6.6(f)-6.7(e)-6.7(f) present

the two control terms û1 and û2 with the three adaptive strategies. It can be noticed
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that only the control signals with PSBF are continuous after the switching time. On the

other hand, the control signals obtained with PBF and APS contain a discontinuity. It

is important to highlight the continuity of control signals with PSBF after the switching

time even in the case of FOSMC (see subsection 2.2.3.2).
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Figure 6.6. Adaptive FOSMC with PSBF a) Active torque and the maximum active torque, b)
Sliding variable sτ, c) Stator reactive power and its reference, d) Sliding variable sQ , e) Control
term û1, f) Control term û2
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Figure 6.7. Adaptive FOSMC with APS a) Active torque and the maximum active torque, b)
Sliding variable sτ, c) Stator reactive power and its reference, d) Sliding variable sQ , e) Control
term û1, f) Control term û2

6.4.2 Adaptive STCs

This section is provided to illustrate the situation when the two control terms are imple-

mented using BASTC based on BFs with its both variants (PBF and PSBF), and their

performances are compared with the results obtained using the adaptive STC presented

in [64], referred to as AST.

For the BASTC, the two control terms are designed according to theorem 3.2.1, while

for the AST, the two control terms follow (3.6)-(3.7). The parameter values of these two

adaptive STC strategies are given in Appendix. C.C

The simulation results of adaptive STCs based on PBF, PSBF and AST are compared

in Figs. 6.8-6.9-6.10. It can be observed in Figs. 6.8(a)-6.9(a)-6.10(a)-6.8(c)-6.9(c)-6.10(c),
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that both control objectives are fulfilled with efficient tracking performance. One the

other hand, it can be seen in Figs. 6.8(b)-6.9(b)-6.8(d)-6.9(d), that the sliding variables

sτ, sQ with PBF and PSBF do not exceed the predefined vicinities of zero ετ = 5, εQ = 20.

However, it can be seen in Figs. 6.10(b)-6.10(d) that the sizes of vicinities, to which

converge sτ, sQ with AST exceed ετ = 5, εQ = 20. Again, it can be concluded that PBF

and PSBF have a better performance than AST regarding forcing the sliding variables

to remain in predefined vicinities of zero. Finally, Figs. 6.8(e)-6.9(e)-6.10(e)-6.8(f)-6.9(f)-

6.10(f) present the evolution of the two control terms û1 and û2 with the three adaptive

strategies. It can be noticed that the control signals with these three adaptive strategies

are continuous and smooth.

0 20 40 60 80 100
−500

0

500

1000

τ

time(s)

 

 

τopt
τe

(a)

0 20 40 60 80 100
−10

−5

0

5

10
s
τ

time(s)

(b)

0 20 40 60 80 100
−500

0

500

1000

Q

time(s)

 

 

Qref

Qs

(c)

0 20 40 60 80 100

−20

0

20

s
Q

time(s)

(d)

0 20 40 60 80 100
−400

−200

0

200

û
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Figure 6.8. Adaptive STC with PBF a) Active torque and the maximum active torque, b) Sliding
variable sτ, c) Stator reactive power and its reference, d) Sliding variable sQ , e) Control term û1,
f) Control term û2
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Figure 6.9. Adaptive STC with PSBF a) Active torque and the maximum active torque, b)
Sliding variable sτ, c) Stator reactive power and its reference, d) Sliding variable sQ , e) Control
term û1, f) Control term û2
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Figure 6.10. Adaptive STC with AST a) Active torque and the maximum active torque, b)
Sliding variable sτ, c) Stator reactive power and its reference, d) Sliding variable sQ , e) Control
term û1, f) Control term û2

6.5 Summary

This chapter proposes the design of the two barrier function-based adaptive SMCs in

order to control WECS. The specific feature of WECS is that its electrical model can be

described as two first order nonlinear systems with unknown uncertainties. Therefore,

such controllers successfully deal with the control of WECS where the upper bounds of

the uncertainties and their derivatives are unknown. The proposed controllers are used

to extract the maximum power and the achievement of the reference reactive power with

predefined errors, regardless of the upper bounds of uncertainties and their derivatives.

Simulation results have shown the positive features of the proposed barrier function-based

adaptive SMCs, especially compared to other adaptive SMCs.



Chapter 7

Application to Linear induction Motor

System

Nowadays energy conversion from mechanical energy to electrical energy is made with ro-

tating machines, particularly with AC induction motors or synchronous generators. How-

ever this implies that the mechanical power would be supplied by a torque and an angular

speed, which is not always the case for some generation supplies. For example some Stirling

motors, which are in essence heat engines operating by cyclic compression and expansion

of the working fluid, at different temperature levels produce a net conversion of heat energy

to mechanical work with a translational movement. Another example regards some ma-

rine energy sources using the wave movement, or finally the so called air-borne kites which

supply translational movement of cables from their 8-like wind-based movement at high

height. The use of a linear induction motor as a generator appears then to be more natural

and convenient than the rotating machine and entails the elimination of gearboxes, with

resulting increase of efficiency, decrease of size, better reliability and robustness and reduc-

tion of prize. Scientific literature about Linear Induction Motor (LIM) is huge [49, 47, 35].

The feature of LIMs to develop a direct linear motion without any gearbox for the motion

transformation (from rotating to linear) has been the key issue for their study [18, 46]. The

counterpart of this potential advantage is the increase of complexity of the machine model,

which presents the so-called end effects and border effects. These, which are due to the

absence of a cylindrical symmetry in the inductor structure with respect to the rotating
95
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machine, both in the longitudinal and in the transversal direction, result in difficulties in

obtaining good dynamic performance.

This chapter is dedicated to the control of LIM system, which can be summarized as

driving the actual speed and flux to their desired values. Since the flux dynamics and the

speed dynamics can be considered as two disturbed double integrator systems, moreover,

since the upper bound of the disturbances and their derivatives are unknown, the control

strategies proposed in chapter 2, chapter 3 and chapter 5 for such systems can be applied.

7.1 State-of-the-Art and contributions

To describe the phenomenon of end effects in LIM system, Ducan [23] first introduced

space-vector equivalent T-model for LIM and gave the flux equation and voltage equation.

After that, the state space equation of LIM was proposed in [61]. It is known that if the

system’s model is more close to the real system, the designed controller and observer will

be more efficient. Due to its obvious advantage, the dynamic end effect model of LIM has

been widely researched in recent years.

Considering dynamic end effects, several control techniques have been applied into

LIM, such as field oriented control [39, 60], combined vector and direct thrust control [40].

However, the dynamic response of these controllers is not very quick. To deal with this

problem, Pucci [4] proposed input-output Feedback Linearization (FL) control technique to

improve the dynamic response performance. FL method is an extension control technique

from Rotary Induction Motor (RIM) to LIM, and it needs a lot of transformations to design

the final controllers, which greatly increases the difficulty of calculations. In practice,

LIM’s parameters will be affected by some physical factors (temperature, humidity, etc

. . . ) and their actual values will sustain little variations [73]. Unfortunately, to guarantee

great control performance, all these designed controllers need exact information of LIM

parameters and they are not robust when there exist parameter variations or system

uncertainty. To solve this problem, an efficient robust and adaptive control is needed.

Sliding mode control theory is one of the most efficient tools for industrial applications

when there occur heavy uncertainty conditions [68, 26]. Such controller can theoretically

exactly compensate a matched uncertainties by keeping some properly chosen sliding vari-

ables at zero. For systems with relative degree greater than one affected by disturbance,

different approaches based on SMC can be used. One approach is to use the ISMC, while

another one is based on the usage of HOSMC. If the bounds of parametric uncertainties
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and disturbance in the system are known, then fixed-gain of ISMC/HOSMC can be de-

signed with relative ease. However, this is usually difficult in practical cases, and specially

in LIM, as the estimation of uncertainties bounds requires rigorous experimentation in

worst case conditions. In these cases, adaptive-gains or adaptive controllers provide a

successful means of controlling the system through dynamically adapting gains.

In this chapter, based on Indirect Rotor Field Oriented Control (IRFOC) strategy

[75, 5], the model of the LIM system is written as two disturbed double integrator systems.

Then, two adaptive SMCs: barrier function-based adaptive ISMC (BAISMC) and adaptive

DHOSMC (ADHOSMC), presented in chapter 2, chapter 3 and chapter 5, are applied

to drive the LIM speed and flux to their desired values. Such adaptive SMCs are able

to achieve flux tracking and speed tracking, despite of disturbance/uncertainties with

unknown upper bound and with unknown upper bound of their derivatives.

Hence, the main contributions of this chapter are the following:

• Novel BAISMC and ADHOSMC are applied to control the LIM system in order to

achieve speed tracking and flux tracking.

• The proposed controllers are proved to be appropriate choices to control the LIM

system due to their robustness when the bounds of the disturbance/uncertainties

and their derivatives are unknown.

• These controls do not require any information about the disturbances/uncertainties.

• Finally, simulation results validated the performance of the proposed adaptive SMCs.

7.2 IRFOC STRATEGY OF LIM

This section is divided into two parts. First, the state space equation of LIM is presented

in the well-known (α, β) stationary reference frame. Secondly, the IRFOC strategy is

applied and the new state space equation of LIM is given in the (d , q) rotary reference

frame.

7.2.1 LIM’s State Space Equation

Considering dynamic end effects, the LIM’s space-vector dynamic model can be expressed

in the inductor part flux reference frame (α, β) as follows [61, 76]

i̇sα =−γisα+βαψrα+βpπ

h
vψrβ+

ūsα

δ
, (7.1)
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i̇sβ =−γisβ+βαψrβ−β
pπ

h
vψrα+

ūsβ

δ
, (7.2)

ψ̇rα =−ηψrα+ςisα− pπ

h
vψrβ, (7.3)

ψ̇rβ =−ηψrβ+ςisβ+
pπ

h
vψrα, (7.4)

v̇ =µ(isβψrα− isαψrβ)− D

M
v − TL

M
, (7.5)

where v is the LIM speed, ūsα and ūsβ are the stator voltages, isα and isβ are the stator

currents, ψrα and ψrβ are the rotor fluxes, TL is the load torque, p is the number of pole

pairs, and M is the motor mass. The variables γ, α, β, δ, ς, η, µ are expressed as follows

γ= 1

σ̂L̂s

[
Rs + R̂r (1− L̂m

L̂r
)+ L̂m

L̂r
(

L̂m

T̂r
− R̂r )

]
,

α= (
1

T̂r
− R̂r

L̂m
), β= L̂m

σ̂L̂s L̂r
, δ= L̂s

(
1− L̂2

m

L̂r L̂s

)
,

ς= (
L̂m

T̂r
− R̂r ), η= 1

T̂r
, µ= 3pπL̂m

2MhL̂r
,

with the parameters Q, f (Q), R̂r , L̂m , L̂s , L̂r , T̂r , σ̂ are

Q = τmRr

(Lm +Lσr )v
, f (Q) = 1−e−Q

Q
, R̂r = Rr f (Q),

L̂m = Lm[1− f (Q)], L̂s = Lσs + L̂m , L̂r = Lσr + L̂m ,

T̂r = Lσr +Lm(1− f (Q))

Rr +Rr f (Q)
= L̂r

Rr + R̂r
, σ̂= 1− L̂2

m

L̂s L̂r
,

7.2.2 IRFOC Strategy

The relationship between isα, isβ, ψrα, ψrβ, ūsα, ūsβ and isd , isq , ψr d , ψr q , ūsd , ūsq can

be expressed by Park’s transformation matrix [50] as follows isd

isq

=
 cosρ sinρ

−sinρ cosρ

 isα

isβ

 (7.6)

 ψr d

ψr q

=
 cosρ sinρ

−sinρ cosρ

 ψrα

ψrβ

 (7.7)

 ūsd

ūsq

=
 cosρ sinρ

−sinρ cosρ

 ūsα

ūsβ

 (7.8)
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where ρ is the induced-part flux angle and ρ̇ = ωmr = pπ

h
v + (

L̂m

T̂r
− R̂r )

isq

ψr
; ωmr is the

induced-part flux vector rotational speed.

By applying the IRFOC strategy proposed in [75, 5] (ψr q = 0 and ψr d =ψr ), the state

space equation of flux can be expressed by

ψ̇r = ςisd −ηψr . (7.9)

With the Park’s transformation, LIM’s model can be rewritten in the inductor part flux

reference frame (d ,q) as follows

i̇ sd =−γisd + pπ

h
visq +ς

i 2
sq

ψr
+αβψr + ūsd

δ
, (7.10)

i̇ sq =−γisq − pπ

h
visd −ς

isd isq

ψr
−β

pπ

h
vψr +

ūsq

δ
, (7.11)

ψ̇r = ςisd −ηψr , (7.12)

ρ̇ = pπ

h
v +ς

isq

ψr
, (7.13)

v̇ =µψr isq − D

M
v − 1

M
TL , (7.14)

The related parameters γ, α, β, δ, ς, η, µ are functions that depend on the speed of

the LIM, and their waveforms are shown in Fig. 7.1 for speed range between 0 and 10m/s

.
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Figure 7.1. Waveforms of γ, α, β, δ, ς, η, µ when LIM speed v varies
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7.3 Control objective and SMC design

7.3.1 Control Objective

Recall that in LIM system, there exist two control objectives [1]:

• Regulate the actual flux to track the desired flux.

• Drive the actual motor speed to the desired motor speed.

Let us define two new state variables for the flux eψ1, eψ2 as follows

eψ1 =ψr −ψr,r e f , (7.15)

eψ2 = ψ̇r − ψ̇r,r e f , (7.16)

where ψr and ψr,r e f are the actual flux and desired flux, respectively.

Similarly, two new state variables for the speed ev1, ev2 are defined as follows

ev1 = v − vr e f , (7.17)

ev2 = v̇ − v̇r e f , (7.18)

where v and vr e f are the actual motor speed and desired motor speed, respectively.

The control objectives can be expressed now as designing the control inputs ūsd , ūsq

that drive eψ1, eψ2 and ev1, ev2 to zero or to a small domain near to zero, even if in the

case when the bounds of the disturbance/uncertainties and their derivatives are unknown.

In the following subsections, the dynamics of the flux model and the speed model are

presented.

7.3.2 Flux Loop Control Design

Substitute equation (7.10) and equation (7.12) into equations (7.15-7.16), we obtain [3]

ėψ1 = eψ2,

ėψ2 = f1 + g1ūsd ,
(7.19)

where g1 is supposed to be known and is given as follows

g1 = ς

δ
=

( L̂m

T̂r
− R̂r )

L̂s

(
1− L̂2

m

L̂r L̂s

) , (7.20)
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and the flux total disturbance f1 is expressed by

f1 =−q1ψr +η2ψr −ςηisd +q2isd −γςisd +ςpπ

h
visq

+ς2
i 2

sq

ψr
+αβςψr − ψ̈r,r e f , (7.21)

where q1 and q2 are obtained from [2] as follows

q1 =
Rr L̂r +Rr Lm

(
1+ f (Q)

)
L̂2

r

Tr a

τm

(
1−

(
1+ τm

Tr v

)
e−

τm
Tr v

)
,

q2 =Rr

(
Lm

L̂2
r

(
1+ f 2(Q)

)+1−2
Lm f (Q)

L̂r

)
Tr a

τm

(
1−

(
1+ τm

Tr v

)
e−

τm
Tr v

)
,

(7.22)

and Tr = Lr

Rr
. Let us define ūsd = 1

g1
usd , then system (7.19) can be written as follows

ėψ1 = eψ2,

ėψ2 = f1 +usd ,
(7.23)

System (7.23) is a disturbed double integrators system. Furthermore, the disturbance f1

is unknown bounded, and its derivative is also unknown bounded. For such system, the

interest of our proposed BAISMC and the ADHOSMC appear. Indeed, they do not require

any information about the disturbance, moreover, they can guarantee the convergence of

eψ1, eψ2 to zero or to a small vicinity of zero. This means, they can achieve the flux

tracking objective.

7.3.3 Speed Loop Control Design

Similarly, Substitute equation (7.11) and equation (7.13) into equations (7.17-7.18), we

get [3]

ėv1 = ev2,

ėv2 = f2 + g2ūsq ,
(7.24)

where g2 is supposed to be known and is given as follows

g2 = µψr

δ
= 3pπL̂m

2MhL̂r
.

L̂rψr

L̂r L̂s − L̂2
m

, (7.25)
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and the speed total disturbance f2 is described by

f2 =q3ψr isq +µ(
ςisd −ηψr

)
isq − D

M
a − v̈r e f

+µψr

(
−γisq − pπ

h
visd −ς isd isq

ψr
−βpπ

h
vψr

)
, (7.26)

with q3 is given by

q3 = 3

2
h
π

p

1

M

(
−Lσr Lm

L̂2
r

Tr a

τm

(
1−

(
1+ τm

Tr v

)
e−

τm
Tr v

))
, (7.27)

Let us define ūsq = 1

g2
usq , then system (7.24) can be written as follows

ėv1 = ev2,

ėv2 = f2 +usq ,
(7.28)

Again, following the previous subsection and in order to achieve the speed tracking, the

control input usq can be designed according to BAISMC or ADHOSMC.

Remark 7.3.1. The parameters q1, q2, q3 are functions of the LIM speed v and speed’s

derivative v̇ = a, and are shown in Fig. 7.2.

7.4 Simulation Results

The LIM system taking into consideration the dynamic end effects, has been developed

in Matlab/Simulink software. The solver option type is fixed step, the solver is ode1

(Euler) and the fixed step size is 10−5s. The nominal parameters of LIM are given in

Appendix. D.A. In order to better reflect the performance of the designed adaptive SMCs,

we assume that the load torque disturbance is bounded and Lipschitz, and its boundaries

are unknown (see Fig. 7.3).
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40
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time(s)

Figure 7.3. Time history of load torque disturbance

Now, two situations will be considered: first the situation when the control terms usd

and usq are chosen as BAISMC, and second when they are chosen as ADHOSMC.
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Figure 7.2. Surfaces of q1, q2, q3 when the LIM speed varies between 0 and 10m/s and the
acceleration varies between 0 and 10m/s

7.4.1 Results with BAISMC

In order to illustrate the positive features of the proposed BAISMC, the two ISMCs are

tested (i.e. DISMC and CISMC). Moreover, the BF is chosen as PBF for both cases.

For the proposed BAISMC, the two controls usd , usq related to the actual flux and

the actual speed respectively, are designed according to (2.6), i.e.

usd = un,sd +uSMC ,sd , (7.29)

usq = un,sq +uSMC ,sq , (7.30)

where un,sd , un,sq are given by [55, 19]

un,sd =−15|eψ1|
1
3 si g n(eψ1)−7|eψ2|

1
2 si g n(eψ2), (7.31)

un,sq =−15|ev1|
1
3 si g n(ev1)−7|ev2|

1
2 si g n(ev2), (7.32)

and uSMC ,sd , uSMC ,sq follow proposition 2.3.1 in the case of DISMC, while in the case of

CISMC, they follow proposition 3.3.1. Appendix. D.B contains the parameter values of

the two controllers for both cases.
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Figure 7.4. Adaptive DISMC with PBF a) Actual speed and the desired speed, b) State variables
ev1, ev2, c) Actual flux and the desired flux, d) Sliding variable eψ1, eψ2, e) Control term usd , f)
Control term usq , g) Auxiliary variable sv , h) Auxiliary variable sψ

The simulation results of adaptive DISMC and CISMC with PBF are illustrated in

Figs. 7.4-7.5. It can be seen in Figs. 7.4(a)-7.5(a), that these two BAISMCs can ensure

efficient tracking of the desired speed. Moreover, it can be shown in Figs. 7.4(b)-7.5(b),

that they can guarantee the convergence of the estimated speed error to zero.
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Figure 7.5. Adaptive CISMC with PBF a) Actual speed and the desired speed, b) State variables
ev1, ev2, c) Actual flux and the desired flux, d) Sliding variable eψ1, eψ2, e) Control term usd , f)
Control term usq , g) Auxiliary variable sv , h) Auxiliary variable sψ

The tracking of the desired flux using these two BAISMCs can be observed in Figs. 7.4(c)-

7.5(c). Furthermore, the accuracy of this tracking can be demonstrated in Figs. 7.4(d)-

7.5(d). Figs. 7.4(e)-7.5(e)-7.4(f)-7.5(f) present the two control terms usd and usq with

these two BAISMCs. It can be noticed that only CISMCs are continuous. On the other
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hand, DISMCs contain discontinuity.

It can be concluded that adaptive CISMC, is more efficient than adaptive DISMC re-

garding continuity of the control signals. It is worth noting that the two auxiliary variables

sv and sψ obtained using these BAISMCs are maintained in the predefined vicinity of zero

εv = εψ = 10 (see. Figs. 7.4(g)-7.5(g)-7.4(h)-7.5(h)).

7.4.2 Results with ADHOSMC

This section is provided to illustrate the situation when the two control terms are im-

plemented using the ADHOSMC. For this, the two strategies proposed in chapter 5, i.e.

growing gain-based ADHOSMC and dual layer-based ADHOSMC, are applied.

For the growing gain based-adaptive DHOSMC, the two control terms are designed

according to theorem 5.3.1, while for the dual layer-based adaptive DHOSMC, the two

control terms follow theorem 5.4.4. Moreover, for both controllers the ideal adaptive gain

(5.6) defined in both theorems should be modified to a more practical one [53]

α̇(t ) =

ᾱ, if ||σ̄(t )|| > ε∗

0, if ||σ̄(t )|| ≤ ε∗
(7.33)

where ε∗ is small positive constant to be selected. The parameter values of these two

ADHOSMCs are given in Appendix. D.C

The simulation results of growing gain-based ADHOSMC and dual layer-based AD-

HOSMC are presented in Figs. 7.6-7.7. It can be noticed in Figs. 7.6(a)-7.6(b)-7.7(a)-

7.7(b), that the accuracy of the speed tracking is better when the dual layer-based AD-

HOSMC is applied. The accuracy of the flux tracking using these two strategies are com-

parable (see. Figs. 7.6(c)-7.6(d)-7.7(c)-7.7(d)). It is clear that the control signals provided

by these two strategies are discontinuous (see. Figs. 7.6(e)-7.7(e)-7.6(f)-7.7(f)). Finally, it

can be shown that the adaptive gain αv obtained from dual layer-based ADHOSMC is less

than that one obtained from growing gain-based ADHOSMC. While, the adaptive gain

αψ obtained from these two strategies is almost the same. It can be concluded that dual

layer-based ADHOSMC is more efficient than growing gain-based ADHOSMC regarding

accuracy in the speed tracking and less amplitude of the adaptive gain αv .
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7.5 Summary

This chapter deals with the speed and flux tracking control of LIM system. Combined

with indirect field oriented control strategy, the LIM’s dynamics model are expressed as

two subsystems: flux model and speed model. These two models can be viewed as two dis-

turbed double integrator systems. Moreover, the bounds of the disturbances are unknown

and the bounds of their derivatives are also unknown. Therefore, the novel BAISMC and

ADHOSMC are appropriate choices to control such system. Indeed, they can ensure the

convergence of the speed and the flux to their desired values. The simulation results show

the performance of these two SMCs, moreover, they demonstrate that BAISMC is better

than ADHOSMC regarding the continuity of the control signal.





Conclusion and Perspectives

Overview

In this thesis, several adaptive sliding mode and higher order sliding mode algorithms

have been developed for disturbed systems whose disturbances and/or their derivatives

are bounded with unknown boundaries. These algorithms are based on a new concept of

adaptation that we called here Barrier Function. They ensure the following features:

• The sliding variable in case of ASMC/AHOSMC converges in a finite time to zero or

to a predefined neighborhood of zero, independently of upper bounds of disturbances

and their derivatives, and cannot exceed it.

• The sliding variable derivatives in the case of AHOSMC converge in a finite time to

zero or to some neighborhoods of zero.

• The gains are not overestimated.

• The knowledge of the upper bounds of disturbances and their derivatives is not

necessary.

In chapter 1, a descriptive, non-exhaustive overview of adaptive ASMCs/AHOSMCs

proposed in the scientific literature is presented and their advantages and disadvantages

are discussed.

In chapter 2, the concept of barrier adaptive strategy has been presented. The idea

of this strategy is to apply a monotonically increasing gain in order to ensure the conver-

gence of the sliding variable to some predefined neighborhood of zero. Once the sliding

variable attains this value, the adaptive gain switches to the barrier function. This strat-

egy does not require any information of the disturbance and avoids the overestimation
111
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of the adaptive gain. Based on this strategy, adaptive FOSMC and DISMC have been

developed. For the adaptive FOSMC, it can be applied in the case of first order disturbed

systems. Moreover, it can ensure the convergence of the sliding variable and maintain it

in a predefined neighborhood of zero independent of the upper bound of the disturbance.

For the adaptive DISMC, it can be applied for systems with arbitrary relative degree, and

can maintain the auxiliary variable in a predefined neighborhood of zero starting from the

initial time moment.

In chapter 3, the design of adaptive barriers functions for first and arbitrary order

systems affected by Lipschitz disturbances with unknown Lipschitz constants has been

studied. For first order systems, an adaptive STC which can ensure the convergence of

the sliding variable and prevents its violation outside a predefined neighborhood of zero

has been presented. On the other hand, for arbitrary order systems, an adaptive CISMC

has been proposed. The important feature of this adaptive CISMC is that it maintains

the auxiliary variable in a predefined neighborhood of zero starting from the initial time

moment.

In chapter 4 the adaptation of LD using the barrier strategy has been presented.

The discussion made in section 4.5 has shown that none of the existing strategies of

adaptation for LD can ensure its convergence in the case when the upper bound of the

second derivative of the base signal exists but is unknown. This is due to the reason that

LD loses its filtration property in this case.

In chapter 5, the design of adaptive DHOSMCs for perturbed chain of integrators with

different classes of disturbances has been studied. For the case of bounded disturbances

with unknown upper bounds, the growing gain based-adaptive DHOSMC has been pro-

posed. On the other hand, for the case of Lipschitz disturbances with Lipschitz constants,

the dual layer-based adaptive DHOSMC has been designed. In addition, the comparison

made in section 5.5 for the case of Lipschitz bounded disturbance has shown that if the dis-

turbance amplitude is increasing, the dual layer strategy has better performance regarding

amplitude of chattering. On the other hand, if the disturbance frequency is increasing,

the growing gain strategy performs better.

chapter 6 and chapter 7 presented the applications of these new adaptive SMC/HOSMC

algorithms for the control of two types of energy conversion systems. In chapter 6 the

control of the active and the reactive power for the wind energy conversion system have

been considered. One important feature of this system is that it has a relative degree equal

to one. The adaptive FOSMC controller and STC controller have been designed to reach
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the control objective. Moreover, their performances have been illustrated and compared

through simulations.

In chapter 7, the speed and flux tracking for a linear induction motor have been con-

sidered. Combined with indirect field oriented control strategy, the linear induction motor

dynamic model is expressed as two second order subsystems: flux subsystem and speed

subsystem. These two dynamics have been considered as two disturbed double integra-

tors. Then, the adaptive ISMCs and DHOSMCs have been applied in order to ensure the

desired tracking. Moreover, their performances have been shown through simulations.

Future Research

There are many remained directions in which the research can be explored and improved.

These include:

• The results of chapter 6 and chapter 7 have been validated only by simulation. The

experimental validation phase on two test benches for the WECS and the LIM will

be the subject of a future work to validate our techniques on real systems.

• An important direction is to study the design of adaptive continuous twisting algo-

rithm for second order perturbed systems using barrier strategy. It should be noted

that a first work on the adaptation of this algorithm has been proposed recently in

[51]. However, this adaptive strategy allows only the gain to increase in order to

achieve the convergence.

• It will be interesting to develop an adaptive version for the higher order super-

twisting controller proposed in [41]. Note that adaptive strategies to deal with such

controllers still lack.

• In future works it may be interesting to study the barrier function-based adaptive

SMCs/HOSMCs in the context of discrete systems. This would allow a better quan-

tification of the predefined area of the convergence as well as the accuracy which are

related to the sampling step.
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term û2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 6.8. Adaptive STC with PBF a) Active torque and the maximum active

torque, b) Sliding variable sτ, c) Stator reactive power and its refer-

ence, d) Sliding variable sQ , e) Control term û1, f) Control term û2
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Appendices

A Proof of theorem 2.2.2.

Proof.

According to [58] the system solution will reach
ε

2
in finite time.

Denote t = t̄ the smallest root of equation |s(t )| ≤ ε

2
, and consider the Lyapunov candi-

date function containing both the sliding variable and the adaptive gain dynamics

V
(
s(t ),KB (s(t ))

)
= 1

2
s2(t )+ 1

2

(
KB (s(t ))−KB (0)

)2
.

A.A Adaptation with PBF

Consider the case when KB (s(t )) = Kpb(s(t )). It is shown that if |s(t̄ )| > s1 where

s1 =


ε(1− F̄

δmax
), if F̄ < δmax

0, if F̄ ≥ δmax

(34)

then PBF ensures that |s(t )| ≤ s1 in a finite time period τ1. Furthermore, it is proven that

for all t ≥ t̄ +τ1, the sliding variable will remain inside |s(t )| ≤ s1 < ε. Note that τ1 = 0 if

|s(t̄ )| ≤ s1.

Lemma A.1. Given the sliding variable dynamics (2.1) controlled by (2.2) and (2.3)

with KB (s(t )) = Kpb(s(t )). Then, for all t ≥ t̄ , and for all |s(t )| > s1, the time derivative of

the Lyapunov function satisfies the following inequality

V̇
(
s(t ),Kpb(s(t ))

)
≤−β1V

1
2

(
s(t ),Kpb(s(t ))

)
, with β1 > 0.

Which yields a finite time convergence to the domain |s(t )| ≤ s1.
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Proof. The time derivative of V
(
s(t ),KB (s(t ))

)
is given as follows

V̇ = sδ− sKB (s)si g n(s)+ (KB (s)−KB (0))K̇B (s)

≤ δmax |s|−KB (s)|s|+ (KB (s)−KB (0))K̇B (s),
(35)

since KB (s(t )) = Kpb(s(t )), one gets

V̇ ≤− (−δmax +Kpb(s))︸ ︷︷ ︸
βs

|s|

− εF̄

(ε−|s(t )|)2︸ ︷︷ ︸
ζ>0

(−δmax +Kpb(s))︸ ︷︷ ︸
βs

|Kpb(s)− F̄ |

= −βs |s|−ζβs |Kpb(s)− F̄ |.

(36)

• Suppose that F̄ < δmax , and consider the case when |s(t )| > s1. Then, taking into

account that Kpb(s(t )) is an increasing function on [0,ε[, it yields Kpb(s(t )) > Kpb(s1) =
δmax . This leads to βs > 0. Therefore

V̇ ≤−βs |s|−ζβs |Kpb(s)− F̄ |

= −βs
p

2
( |s|p

2
+ζ |Kpb(s)− F̄ |p

2

)
≤−βs

p
2min{1,ζ}

( |s|p
2
+ |Kpb(s)− F̄ |p

2

)
≤−β1V

1
2 , with β1 =βs

p
2min{1,ζ}.

(37)

• Suppose that F̄ ≥ δmax and |s(t )| > s1 = 0. Thus, βs > 0 since Kpb(s(t )) > Kpb(0) = F̄ ≥
δmax (see Eq. 36). It yields that V̇ ≤−β1V

1
2 .

Therefore, finite time convergence to the domain |s(t )| ≤ s1 is ensured, and the reaching

time τ1 can be estimated as

τ1 ≤
2
(
−V

(
s1,Kpb(s1)

) 1
2 +V

(
s(t̄ ),Kpb(s(t̄ ))

) 1
2
)

β1
.

Now, the case when t ≥ t̄ +τ1, and |s(t )| < s1 is studied. In this case, V̇ would be sign

indefinite (see Eq. 36), and s(t ) can go toward s1. Please note that at the time instant

when |s(t )| reaches s1, V̇ ≤ 0 since βs = 0, and V would be constant or decreasing. This

means that for all t ≥ t̄ +τ1, |s(t )| ≤ s1.

Finally, as |s(t̄ )| ≤ ε

2
, it becomes evident that for all t ≥ t̄ the inequality |s(t )| < ε holds.
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A.B Adaptation with PSBF

Consider now the case when KB (s(t )) = Kpsb(s(t )). Following the same proof and replacing

Lemma. A.1 by the following Lemma. A.2, it is easy to demonstrate that if |s(t̄ )| > s2 where

s2 = ε(
δmax

δmax +1
). (38)

then PSBF ensures that |s(t )| ≤ s2 in a finite time period τ2. Moreover, for all t ≥ t̄ +τ2

the sliding variable will remain inside |s(t )| ≤ s2 < ε. Note that τ2 = 0 if |s(t̄ )| ≤ s2.

Lemma A.2. Given the sliding variable dynamics (2.1) controlled by (2.2) and (2.3)

with KB (s(t )) = Kpsb(s(t )). Then, for all t ≥ t̄ , and for all |s(t )| > s2, the time derivative of

the Lyapunov function satisfies the following inequality

V̇
(
s(t ),Kpsb(s(t ))

)
≤−β2V

1
2

(
s(t ),Kpsb(s(t ))

)
, with β2 > 0.

Which yields a finite time convergence to the domain |s(t )| ≤ s2.

Proof.

Taking into account that KB (s(t )) = Kpsb(s(t )), the upper bound of Eq. 35 can be derived

as

V̇ ≤− (−δmax +Kpsb(s))︸ ︷︷ ︸
βs

|s|

− ε

(ε−|s(t )|)2︸ ︷︷ ︸
ζ>0

(−δmax +Kpsb(s))︸ ︷︷ ︸
βs

|Kpsb(s)|

= −βs |s|−ζβs |Kpsb(s)|.

(39)

Consider the case when |s(t )| > s2. Then, Kpsb(s(t )) > Kpsb(s2) = δmax . This leads to βs > 0.

Therefore

V̇ ≤−βs |s|−ζβs |Kpsb(s)|

= −βs
p

2
( |s|p

2
+ζ |Kpsb(s)|p

2

)
≤−βs

p
2min{1,ζ}

( |s|p
2
+ |Kpsb(s)|p

2

)
≤−β2V

1
2 , with β2 =βs

p
2min{1,ζ}.

(40)
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Therefore, finite time convergence to the domain |s(t )| ≤ s2 is ensured, and the reaching

time τ2 can be estimated as

τ2 ≤
2
(
−V

(
s2,Kpsb(s2)

) 1
2 +V

(
s(t̄ ),Kpsb(s(t̄ ))

) 1
2
)

β2
.

Theorem. 2.2.2 is proven.

B Proof of Theorem 3.2.1.

Proof. The proof will be done in two steps.

First step: In this step, it is shown that the equation |s(t )| ≤ ε

2
has at least one root.

Suppose that |s(0)| > ε

2
, then from (3.5), the adaptive gain is given by L̇a(t ) = L1.

Consider the following change of variables

ξ1 = s(t )

L2
a(t )

, ξ2 = φ(t )

L2
a(t )

. (41)

In theses variables, system (3.4) can be described as follows


ξ̇1 =−h1|ξ1|

1
2 si g n(ξ1)+ξ2 −2

L̇a(t )

La(t )
ξ1,

ξ̇2 =−h2si g n(ξ1)+ δ̇(t )

L2
a(t )

−2
L̇a

La(t )
ξ2.

(42)

Consider the quadratic Lyapunov function candidate proposed in [53]

V0(ζ) = ζᵀPζ , ζᵀ = [|ξ1|
1
2 si g n(ξ1),ξ2], (43)

where P is a constant symmetric and positive-definite matrix.

The time derivative of ζ(t ) can be given as follows

ζ̇(t ) = 1

2|ξ1| 1
2

Hζ+ L̇a(t )

La(t )
Nζ+ W (t )

L2
a(t )

, (44)

where

H =
 −h1 1

−2h2 0

 , N =
−1 0

0 −2

 , W (t ) =
 0

δ̇(t )

 . (45)

Thus, the time derivative of V0 along the trajectories of (42) can be written as
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V̇0 =− 1

2|ξ1| 1
2

ζᵀQζ− L̇a(t )

La(t )
ζᵀRζ+ 2

L2
a(t )

W (t )Pζ, (46)

where

HᵀP +PH =−Q, (47)

NᵀP +P N =−R. (48)

According to [53], there exist a symmetric and positive-definite matrix P in the Lyapunov

function (43) such that Q and R are positive definite.

Finally, similar to [53], the following upper bound of V̇0 can be obtained

V̇0 ≤−α1V
1
2

0 +2α3
M

L2
a(t )

V
1
2

0 − L̇a(t )

La(t )
α2V0, (49)

where

α1 = λmin(Q)

2
p

p11λmax(P )
, α2 = λmin(R)

λmax(P )
, α3 = λmax(P )√

λmin(P )
, (50)

with λmin(.), λmax(.) the minimal and maximal eigenvalue of the corresponding matrix

respectively, and p11 is the first component of matrix P .

The first term on the right-hand side of (49) is negative-definite. Then, taking into

account that the adaptive gain La(t ) is growing, it follows that the second term will decrease

and become smaller than the first one in finite time. In addition, the third term will also

decrease.

In conclusion, it is clear that V0 will decrease as soon as the adaptive gain La(t ) is big

enough to compensate the disturbance derivative. When V̇0 becomes negative-definite, V0

will converge to zero in finite time. Therefore, the equation |s(t )| ≤ ε

2
has at least one root.

Denote t = t1 the smallest root of this equation.

Second step: In this step, the proof of the adaptation with BFs is given. In order to

do it, the following quadratic Lyapunov candidate function is considered

V
(
z,LB (s(t ))

)
=V1(z)+ 1

2
(LB (s(t ))−LB (0))2, (51)

where

V1(z) = zᵀP1z, (52)

with P1 is a symmetric and positive definite matrix and

z =
[

z1 z2

]ᵀ = [
|s| 1

2 si g n(s) φ
]ᵀ

. (53)
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B.A Adaptation with PBF

Proposition B.1. If |s(t1)| > s̄1 with s̄1 = max{s1, s2}, where

s1 =


ε(1− F̄

Θ
), Θ=

( 4M 2

h2
1(2h2 − 1

4 h2
1)

)( 1
4 )

, if F̄ <Θ

0, if F̄ ≥Θ,

(54)

and

s2 =
(−h1εF̄ +

(
(h1εF̄ )2 +4ε|φ|2

) 1
2

2|φ|
)2

, (55)

then PBF ensures that |s(t )| ≤ s̄1 in a finite time period τ1. Moreover, it is proven that for

all t ≥ T with T = t1 +τ1, the inequalities |s(t )| ≤ µ1 and |ṡ(t )| ≤ ν(M) hold with s̄1 < µ1 < ε.

Note that τ1 = 0 is |s(t1)| ≤ s̄1.

Remark B.2. In order to prove the existence of a value µ1 such that s̄1 < µ1 < ε, it is

necessary to show that s̄1 < ε. From (54), it is clear that s1 < ε. Moreover, based in the

inequality a2 +b2 < (a +b)2 for a > 0 and b > 0, it follows that

(h1εF̄ )2 + (2ε
1
2 |φ|)2 < (h1εF̄ +2ε

1
2 |φ|)2. (56)

Using the previous inequality, the upper bound of (55) becomes

s2 <
(−h1εF̄ +

(
(h1εF̄ +2ε

1
2 |φ|)2

) 1
2

2

)2

=
(−h1εF̄ + (h1εF̄ +2ε

1
2 |φ|)

2|φ|
)2

= (
2ε

1
2 |φ|

2|φ| )2 = ε.

(57)

Therefore, the existence of µ1 is proved.

Proof. Firstly, the time derivative of V1(z) is studied. In order to do this, system (3.4)

is described with the new state vector z
ż1 = 1

2|z1|
(
−h1LB z1 + z2

)
ż2 = 1

2|z1|
(
−2h2L2

B z1

)
+ δ̇(t ).

(58)

It is possible to write (58) asż1

ż2

= 1

2|z1|

 −h1LB 1

−2h2L2
B 0

z +
0

1

ξ
=⇒

ż = 1

2|z1|
(Az +Bξ),

(59)
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where

A =
 −h1LB 1

−2h2L2
B 0

 , B =
0

1

 , ξ= 2|z1|δ̇(t ). (60)

Taking into account that |z1| ≤ ||z||, we can write |ξ| ≤ 2M ||z||. According to [20], the

selection of the adaptive gain that can provide the negative definiteness of V̇1(z) is to be

determined from the following Linear Matrix Inequality (LMI)AᵀP1 +P1 A+4M 2CᵀC +%I P1B

BᵀP1 −1

≤ 0, (61)

where C =
[

1 0
]
, P1 = Pᵀ

1 > 0 is the solution of this LMI and for some % > 0. Using the

classical circle criterium the LMI (61) will be satisfied if and only if the Nyquist diagram

of the transfer function G(s) =C (sI −A)−1B is contained in the circle centered in the origin

and with radius 1
2M , that is, if and only if

max
w

|G( j w)| < 1

2M
. (62)

Note that

G(s) = 1

s2 +h1LB s +2h2L2
B

,

|G( j w)|2 = 1

(2h2L2
B −w2)2 + (h1LB w)2

.
(63)

From the derivative, and the second derivative of |G( j w)|2 it can be deduced that

max
w

|G( j w)|2=


1

(2h2L2
B )2 if 2h2L2

B< 1
2 (h1LB )2

1
(h1LB )2(2h2L2

B − 1
4 (h1LB )2)

if 2h2L2
B> 1

2 (h1LB )2.

The second set of the adaptive gain is only important due to the reason that 2h2L2
B >

1

2
(h1LB )2. Then, based on that, if

(h1LB )2
(
2h2L2

B − 1

4
(h1LB )2

)
> 4M 2, (64)

it leads to

V̇1 ≤ 1

2|z1|

z

ξ

ᵀAᵀP1 +P1 A+4M 2CᵀC P1B

BᵀP1 −1

z

ξ


≤− 1

2|z1|
%||z||2

≤−r V
1
2

1 , with r = %λ
1
2
mi n{P1}

2λmax {P1}
.

(65)
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Next, the time derivative of the Lyapunov function V
(
z,LB (s)

)
in (51) is computed:

V̇ = V̇1 +
(
LB (s)−LB (0)

)
L̇B (s). (66)

Since LB (s) = Lpb(s), it implies that

V̇ ≤ V̇1 − εF̄

(ε−|s|)2︸ ︷︷ ︸
ζ1>0

βs1|Lpb(s)− F̄ |.
(67)

with

βs1 =
(
−|φ|+h1Lpb(s)|s| 1

2

)
= 1

ε−|s|︸ ︷︷ ︸
η

(
h1εF̄ |s| 1

2 −|φ|ε+|s||φ|
)
. (68)

Case 1 Suppose that t ≥ t1 and |s(t )| > s̄1. Then from (54)-(55), it follows that

Lpb(s) >Θ, (69)

and

|s(t )| > s2. (70)

Inequality (69) ensures that (64) holds. Moreover, taking into account that η > 0 (since

|s(t1)| < ε), and s2 is the positive root of (68), thus, (70) ensures that βs1 > 0. Finally, the

upper bound of V̇ can be written as

V̇ ≤−r V
1
2

1 −ζ1βs1|Lpb(s)− F̄ |

= −r V
1
2

1 −
p

2ζ1βs1
|Lpb(s)− F̄ |p

2

≤−β1V
1
2 , with β1 = min{r,

p
2ζ1βs1}.

(71)

Therefore, the finite time convergence to the domain |s(t )| ≤ s̄1 is guaranteed, and the

reaching time τ1 can be estimated by τ1 ≤ τr 1 ≤ 2V (t1)
1
2

β1
(τr 1 is obtained by assuming that

s̄1 = 0).

Case 2 Suppose that t ≥ T and |s(t )| < s̄1. In this case, V̇ would be sign indefinite, and

|s(t )| may become larger than s̄1. Note that at the time instant when |s(t )| reaches µ1,

V̇ ≤−β1V
1
2 (Case 1 holds) so that |s(t )| reaches the domain |s(t )| ≤ s̄1 in finite time, and

so on.
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This means that PBF ensures the convergence of the sliding variable to |s(t )| ≤ s̄1 in

finite time, then the sliding variable can leave this domain for a finite time, moreover,

the specific property of this adaptation is that the sliding variable cannot leave the larger

domain |s(t )| ≤µ1, with s̄1 <µ1 < ε.
Inside the domain |s(t )| ≤ s̄1, the upper bound of |ṡ(t )| can be estimated as follows

|ṡ(t )| ≤ h1Lpb(s̄1)|s̄1|
1
2

+
(
h2L2

pb(s̄1)+M
)(

t2 −T
)
+|φ(t2)| = ν̄1,

(72)

where t2 is the time instant when s(t ) leaves the domain |s(t )| ≤ s̄1. When |s(t )| becomes

s̄1 < |s(t )| ≤µ1 then

|ṡ(t )| ≤ h1Lpb(µ1)|µ1|
1
2

+
(
h2L2

pb(µ1)+M
)
(t3 − t2)+|φ(t3)| = ν̌1,

(73)

where t3 is the time instant when s(t ) enters the domain |s(t )| ≤ s̄1. Combining the condi-

tions (72)-(73), it follows that

|ṡ(t )| ≤ max{ν̄1, ν̌1} = ν. (74)

Finally, PBF can ensure the convergence of the sliding variable and its derivative to the

following domain

W1 = {s(t ), ṡ(t ) : |s(t )| ≤µ1, |ṡ(t )| ≤ ν(M), s̄1 <µ1 < ε} (75)

and since µ1 < ε, this means that the domain to which converges |s(t )| is predefined.

Adaptation with PBF is proven.

B.B Adaptation with PSBF

Proposition B.3. If |s(t1)| > s̄2 with s̄2 = max{s3, s4}, where

s3 = ε(
Θ

1+Θ ), Θ=
( 4M 2

h2
1(2h2 − 1

4 h2
1)

)( 1
4 )

, (76)

and

s4 =
(−1+

(
1+4ε|φ|2

) 1
2

2|φ|
)2

, (77)

then PSBF ensures that |s(t )| ≤ s̄2 in a finite time period τ2. Moreover, it is proven that for

all t ≥ T with T = t1 +τ2, the inequalities |s(t )| ≤ µ2 and |ṡ(t )| ≤ ν(M) hold with s̄2 < µ2 < ε.

Note that τ2 = 0 is |s(t1)| ≤ s̄2.
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Remark B.4. Similar to Remark. B.2, it can be proved that there exist µ2 such that

s̄2 <µ2 < ε.

Proof. Taking into account that LB (s) = Lpsb(s), the upper bound of (67) can be derived

as

V̇ ≤ V̇1 − ε

(ε−|s|)2︸ ︷︷ ︸
ζ2>0

βs2|Lpsb(s)|.
(78)

with

βs2 =
(
−|φ|+h1Lpsb(s)|s| 1

2

)
= 1

ε−|s(t )|︸ ︷︷ ︸
η

(h1|s(t )| 3
2 −|φ(t )|ε+|φ(t )||s(t )|). (79)

Case 1 Suppose that t ≥ t1 and |s(t )| > s2. Then in accordance with (76)-(77) the following

two inequalities hold

Lpsb(s) >Θ, (80)

and

|s(t )| > s4. (81)

Inequality (80) ensures that (64) holds, and taking into account that η> 0 (since |s(t1)| < ε),
βs2 can be rewritten as

βs2 ≥ 1

ε−|s(t )| (−|s(t )| 1
2 −|φ(t )|ε+|φ(t )||s(t )|). (82)

Please note that s4 is the positive root of (82). Thus, from inequality (81), it follows that

βs2 > 0. Finally, the upper bound of (78) can be expressed as

V̇ ≤−r V
1
2

1 −ζ2βs2|Lpsb(s)|

= −r V
1
2

1 −p
2ζ2βs2

|Lpsb(s)|p
2

≤−β2V
1
2 , with β2 = min{r,

p
2ζ2βs2}.

(83)

Therefore, the finite time convergence to the domain |s(t )| ≤ s̄1 is ensured, and the reaching

time τ2 can be estimated by τ2 ≤ τr 2 ≤ 2V (t1)
1
2

β2
(τr 2 is obtained by assuming that s̄2 = 0).

Case 2 Similar to the proof of B.A (Case 2), it can be shown that the sliding variable can
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leave the domain |s(t )| ≤ s̄2, to the larger domain |s(t )| ≤µ2 < ε.
Then, for |s(t )| ≤ s̄2, the value of |ṡ(t )| can be estimated as

ν̄2 = h1Lpsb(s̄2)|s̄2|
1
2 +

(
h2L2

psb(s̄2)+M
)(

t2 −T
)
+|φ(t2)|. (84)

where t2 is the time instant when s(t ) leaves the domain |s(t )| ≤ s̄2. When |s(t )| becomes

s̄2 < |s(t )| ≤µ2 then

ν̌2 = h1Lpsb(µ2)|µ2|
1
2 +

(
h2L2

psb(µ1)+M
)
(t3 − t2)+|φ(t3)|. (85)

where t3 is the time instant when s(t ) enters the domain |s(t )| ≤ s̄2. Hence,

|ṡ(t )| ≤ max{ν̄2, ν̌2} = ν. (86)

In conclusion, PSBF can ensure the convergence of the trajectories to the following domain

W2 = {s(t ), ṡ(t ) : |s(t )| ≤µ1, |ṡ(t )| ≤ ν(M), s̄2 <µ2 < ε} (87)

and since µ2 < ε, the domain to which converges |s(t )| is predefined. Adaptation with

PSBF is proven.

Theorem. 3.2.1 is proven.

C Parameter values considered in chapter 6

C.A Nominal parameters of WECS

Pr ated = 60K W ; wL = 2π60r ad/s; VL = 220V ;

Ls = 223.1mH ; Lr = 229.3mH ; Lm = 216.9mH ;

Rs = 2990mΩ; Rr = 1524mΩ; p = 2;

λopt = 7.5; r = 5.3m; G = 25;

J = 3.662K g m2; ρ = 1.22422K g /m3; c1 = 9.5946;

c2 = 12; c3 = c6 = 0; c4 = 1;

c5 = 20; Cpmax = 0.4.

C.B Parameter values of the two adaptive FOSMCs based on PBF,

PSBF and APS

Parameters values of the two adaptive FOSMCs based on:
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• PBF: ετ = 5, εQ = 20, K̄τ = K̄Q = 15, F̄τ = F̄Q = 15 .

• PSBF: ετ = 5, εQ = 20, K̄τ = K̄Q = 15.

• APS: ετ = 5, εQ = 20, K̄τ = K̄Q = 1000, µτ =µQ = 15.

C.C Parameter values of the two adaptive STCs based on PBF, PSBF

and APS

Parameters values of the two adaptive STCs based on:

• PBF: ετ = 5, εQ = 20, L̄1,τ = L̄1,Q = 15, F̄τ = F̄Q = 2 .

• PSBF: ετ = 5, εQ = 20, L̄1,τ = L̄1,Q = 15.

• AST: ετ = 5, εQ = 20, µτ = µQ = 1, w1,τ = w1,Q = 200, γ1,τ = γ1,Q = 2, ντ = νQ = αm,τ =
αm,Q = 2.

D Parameter values considered in chapter 7

D.A Nominal parameters of LIM

Table .1: parameters of LIM

Inductor resistance Rs [Ω] 11

Induced-part resistance Rr [Ω] 32.57

Inductor inductances Ls [H] 0.6376

3-phase magnetizing inductance Lm [H] 0.5175

Primary mass M [Kg] 20

Viscous friction D [m/s] 20

Pole-pairs p 3

Inductor length τm [m] 1.5

Pole pitch h [m] 0.1

D.B Parameter values of the two BAISMCs

Parameters values of the two BAISMCs:

• DISMC based on PBF: εv = 10, εψ = 10, F̄v = F̄ψ = 6.
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• CISMC based on PBF: εv = 10, εψ = 10, F̄v = F̄ψ = 1.

D.C Parameter values of the two adaptive DHOSMCs based on growing

gain strategy and dual layer strategy

Parameters values of the two adaptive DHOSMCs based on:

• Growing gain strategy: ᾱv = 50, ᾱψ = 50, αv (0) = 5, αψ(0) = 5, ε∗v = 0.1, ε∗ψ = 0.2.

• Dual layer strategy: ᾱv = 50, ᾱψ = 50, αv (0) = 5, αψ(0) = 5, ε∗v = 0.1, ε∗ψ = 0.2, εv = 10,

εψ = 10, F̄v = F̄ψ = 1.



Résumé :

Cette thèse porte sur le développement de nouvelles stratégies de commande et d’observation adaptatives par Modes Glissants (MG) et
par Modes Glissants d’Ordres Supérieurs (MGOS). En effet, la mise en œuvre des commandes par MG et MGOS classiques nécessite
la connaissance des limites supérieures des perturbations ou de leurs dérivées, souvent inconnues. Le premier apport de cette thèse est
la synthèse d’une stratégie d’adaptation permettant d’assurer la convergence de la variable de glissement vers un voisinage prédéfini
de zéro sans nécessiter d’informations sur les perturbations ou leurs dérivées et sans surestimation du gain. Cette stratégie est ensuite
déclinée pour concevoir : deux commandes par MG d’ordre 1 et 2, une commande par mode glissant intégral, ainsi qu’une version
du différenciateur de Levant. La deuxième contribution de la thèse est la mise au point de deux commandes adaptatives par MGOS
discontinues. Ces deux algorithmes assurent un mode glissant d’ordre n en s’affranchissant de la connaissance de la limite supérieure
de la perturbation et de sa dérivée. Enfin, afin de montrer l’efficacité des algorithmes proposés, ils sont appliqués avec succès à travers
des simulations pour la commande d’un système de conversion de l’énergie éolienne et la commande d’un moteur à induction linéaire
pour la cogénération.

Mots clés : Mode glissant, modes glissant d’ordre supérieur, super-twisting adaptataif, fonction barrière de Lyapunov, systèmes de

conversion de l’énergie.

Abstract:

This thesis deals with the development of novel strategies to adapt higher order sliding mode controllers and observers. The
implementation of classics first order and higher order sliding mode controllers requires the knowledge of the upper bound of the
disturbance or its derivative, which are often not known. The first contribution of this thesis is the design of an adaptive strategy that can
ensure the convergence of the sliding variable to a predefined neighborhood of zero without requiring any information of the disturbance or
its derivative and without overestimating the adaptive gain. This adaptive strategy is then declined for the design of the first order, second
order and integral sliding mode controllers, and for the Levant’s differentiator. The second contribution of the thesis is the development of
two adaptive strategies for discontinuous higher order sliding mode control. The proposed two algorithms can provide the achievement
of n-order sliding mode despite disturbances with unknown upper bounds or with unknown upper bounds of their derivatives. Finally, in
order to show the effectiveness of the proposed algorithms, they are successfully applied through simulations to control the wind energy
conversion system and the linear induction motor system for cogeneration.

Keywords: adaptive sliding mode, adaptive super-twisting, adaptive higher order sliding mode, Barrier Lyapunov Function, energy
conversion system.
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