
HAL Id: tel-02078372
https://theses.hal.science/tel-02078372

Submitted on 25 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Based Testing for IoT Systems : Methods and
tools

Abbas Ahmad

To cite this version:
Abbas Ahmad. Model-Based Testing for IoT Systems : Methods and tools. Automatic Control
Engineering. Université Bourgogne Franche-Comté, 2018. English. �NNT : 2018UBFCD008�. �tel-
02078372�

https://theses.hal.science/tel-02078372
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE L’ETABLISSEMENT UNIVERSITE BOURGOGNE FRANCHE-COMTE

PREPAREE A EASY GLOBAL MARKET

Ecole doctorale n°37

SCIENCES PHYSIQUES POUR L'INGENIEUR ET MICROTECHNIQUES (SPIM)

Doctorat d’Informatique

Par

Abbas AHMAD

Model-Based Testing for IoT Systems - Methods and Tools

Thèse présentée et soutenue à Besançon, le 01/06/2018

Composition du Jury :

Bruno LEGEARD PR1 Université Bourgogne - Franche-Comté Directeur de thèse

César VIHO Professeur Université de Rennes 1 Rapporteur

BOUQUET FABRICE Professeur Université Bourgogne - Franche-Comté CoDirecteur de thèse

Franck LE GALL Docteur Easy Global Market CoDirecteur de thèse

Antonio SKARMETA Professeur UNIVERSITY OF MURCIA Examinateur

Laurent PHILIPPE Professeur Université Bourgogne - Franche-Comté Président du jury

Hacene FOUCHAL Professeur Université de Reims Champagne-Ardenne Rapporteur

Elizabeta FOURNERET Ingénieur de Recherche Smartesting Solutions & Services Examinateur

ACKNOWLEDGEMENTS

Õ
�
æ

k�

��QË
�
@ 	á

�

�
Ô

�
g��QË

�
@ é�

��
<Ë

�
@ Õ

�
æ
�
��.�

Firstly, I would like to express my sincere gratitude to my Ph.D director Prof. Bruno
LEGEARD, my co-Director Prof. Fabrice BOUQUET and COO at Easy Global Market
Dr. Franck LE-GALL for the continuous support of my Ph.D study and related research,
for their patience, motivation, and immense knowledge. Their guidance helped me at all
times of this thesis. I could not have imagined having better advisor’s and mentors for my
Ph.D study.

I would like to specially thank Dr.Elizabeta FOURNERET, Dr.Alexandre VERNOTTE and
Dr. Fabien PEUREUX for their insightful comments, continuous support and advice’s
leading me to widen my research from various perspectives and improving the quality of
this thesis.

My sincere thanks also goes to all the Easy Global Market team who provided me with
excellent research and moral conditions in order to complete my thesis, for the stimulating
discussions and for the sleepless nights we were working together before deadlines, and
for all the fun we have had in the last three years. Without their precious support it would
not be possible to conduct this research.

Last but not the least, I would like to thank my family: my parents, brothers and sister for
supporting unconditionally throughout this thesis and my life in general. My achievements
are shared with them.

This thesis is dedicated to my parents.
Mama, your patience, endless love, support, encouragement and sacrifice will remain my
inspiration throughout my life.
Baba, I may have more height than you, but I can never have so much contributions and
sacrifices that you have for me.

Thank you from the bottom of my heart.

v

TABLE OF CONTENTS

I Thesis presentation 1

1 Overview of Thesis Research 3

1.1 The Internet of Things Era . 4

1.2 Model-Based Testing for IoT Systems: Motivation & Research scope . . . 4

1.3 Contribution of the Thesis . 7

1.4 Thesis outline . 9

2 Context 11

2.1 IoT Systems . 11

2.2 Explored IoT Systems . 12

2.2.1 FIWARE . 12

2.2.2 oneM2M . 14

2.3 Model-Based Testing (MBT) . 17

3 Research challenges 21

3.1 Testing for standardized IoT platforms . 21

3.1.1 Testing the conformance of one component 22

3.1.2 Testing for Integration . 22

3.1.2.1 Integration testing of pair components 23

3.1.2.2 Integration testing of multi-components 24

3.2 Security Testing of IoT systems . 24

3.2.1 Vulnerability testing . 25

3.2.2 End-to-End security testing . 25

3.3 Robustness Testing for IoT Systems . 26

3.3.1 Robustness testing for one component 26

3.3.2 Robustness testing for large scale IoT system 27

4 State Of The Art 29

4.1 IoT testing . 30

4.1.1 Conformance Testing . 30

vii

viii TABLE OF CONTENTS

4.1.2 Security Testing . 31

4.1.3 Robustness Testing . 32

4.2 Model-Based Testing for IoT . 33

4.3 Languages and Tools for Testing . 35

4.3.1 TTCN-3 . 35

4.3.1.1 TTCN-3 Language history 35

4.3.1.2 Language specifics . 36

4.3.2 CertifyIt . 39

4.3.3 MBeeTle . 39

5 Contribution Summary 43

5.1 Methods for MBT of IoT systems . 43

5.1.1 MBT behavioral modeling for standardized IoT platforms 44

5.1.2 Pattern-driven and model-based security testing 44

5.1.3 Behavioral fuzzing for IoT systems 45

5.2 Tooling . 47

5.2.1 Around CertifyIt . 47

5.2.2 MBTAAS: Integrated Framework . 48

II Technical contributions 49

6 MBT behavioral modeling for standardized IoT platforms 51

6.1 MBT Behavioral Model Process . 52

6.2 Test Objectives . 53

6.3 MBT Behavioral Test Generation . 55

7 Pattern-driven and model-based security testing 61

7.1 Expressing Test scenarios From Test Patterns 61

7.2 Test Generation . 63

7.3 Using TP for MBS Functional and Vulnerability Testing 65

8 Model Based-Testing As A Service 69

8.1 Architecture . 69

8.2 MBTAAS main services . 70

8.2.1 Customization Service . 70

8.2.2 Publication service . 71

TABLE OF CONTENTS ix

8.2.3 Execution service . 72

8.2.4 Reporting service . 73

8.3 Approach synthesis . 73

9 Behavioral fuzzing for IoT systems 75

9.1 MBT specificities for the IoT behavioral fuzzing testing 75

9.2 MBT Model . 76

9.3 Test generation . 77

9.4 Behavioral fuzzing approach synthesis . 79

III Experimentations 81

10 Experiments 83

10.1 Guideline for Experimentation’s . 84

10.1.1 MBT for IoT systems . 84

10.1.2 Model-based security testing for IoT 84

10.1.3 MBT for large scale IoT systems . 85

10.2 FIWARE Testing Process using MBT . 85

10.2.1 MBT Model . 85

10.2.2 Test case generation . 87

10.2.3 Test case reification & execution . 89

10.2.4 Experimentation synthesis . 89

10.3 oneM2M Testing Process using MBT . 91

10.3.1 Requirements and Test Purposes 91

10.3.2 Model-Based Testing modelisation 92

10.3.3 Generating TTCN-3 tests . 93

10.3.4 Execution and Reporting . 94

10.4 Access Control Policies (ACP) testing in oneM2M IoT standard 96

10.5 ARMOUR Large scale end-to-end security 97

10.5.1 MBT Model . 99

10.5.2 Test case generation . 102

10.5.3 Test case reification . 103

10.5.4 Test case execution . 104

10.5.5 Experimentation & Results . 105

10.6 ARMOUR Behavioral Fuzzing . 106

x TABLE OF CONTENTS

10.6.1 Synergies between ARMOUR experiment 5 & 6 106

10.6.2 MBT Model . 107

10.7 Test generation . 108

10.8 Experimentation results summary . 110

10.8.1 MBT behavioral modeling . 110

10.8.2 Pattern-driven and model-based security testing analysis 110

10.8.3 Behavioral fuzzing results . 111

11 Conclusion and future work 113

11.1 Summary . 113

11.2 Future work . 115

IV Appendix 127

A ARMOUR Security Vulnerabilities tables 129

B Example of single TTCN-3 fuzzing Test case with 20 steps 137

I
THESIS PRESENTATION

1

1
OVERVIEW OF THESIS RESEARCH

Contents
1.1 The Internet of Things Era . 4

1.2 Model-Based Testing for IoT Systems: Motivation & Research
scope . 4

1.3 Contribution of the Thesis . 7

1.4 Thesis outline . 9

This PhD is a Conventions Industrielles de Formation par la Recherche (CIFRE) thesis. It
was conducted within the Département Informatique des Système Complexes (DISC) of
the Institut Femto-ST1 of the Université de Franche-Comté (Besançon - France) and Easy
Global Market2 (EGM) company (Sophia-Antipolis - France), between 2015 and 2018. A
CIFRE thesis aims to strengthen the exchanges between public research laboratories
and socio-economic circles, encouraging the employment of doctors in companies and
contributing to the process of innovation of companies in France. This is the vocation of
the CIFRE, financed by the National Association of Research and Technology3 (ANRT).
The ANRT brings together public and private research stakeholder by funding the thesis
where a contract of collaboration is established between the company and the laboratory
specifying the conditions of conduct of the research and the ownership clauses of the
results obtained by the doctoral student.

Based in Sophia-Antipolis - France, first science and technology park in Europe, EGM
is strongly active in the major technology clusters, innovation networks and is a pioneer
in IoT systems deployment, testing and validation. Easy Global Market SAS provides
solutions and services to develop market confidence in technologies making the global
market “easy” for companies looking for globalisation. EGM developed experience and
core competences in validation, interoperability, certification and label programmes, work-
ing with state of the art tools and validation approaches such as TTCN-3, Verification and
Validation (V&V), Model Based Testing (MBT) techniques. EGM is also member of key
clusters, standard bodies and alliances such as ETSI [59] and oneM2M [37], AIOTI [57],
french Mov’eo [64], SCS cluster [65]. . . This thesis fits in EGMs ambition towards holding
state of the art innovation and on studying solutions to the key challenges of the emerging
IoT adoption.

1http://www.femto-st.fr/ [Last visited October 2017]
2http://www.eglobalmark.com [Last visited October 2017]
3http://www.anrt.asso.fr/fr [Last visited October 2017]

3

4 CHAPTER 1. OVERVIEW OF THESIS RESEARCH

1.1 THE INTERNET OF THINGS ERA

It has been over a decade since the term Internet of Things (IoT) was first introduced to
the public. Making its way to the spotlight, it has now become mainstream. Prudently,
leading companies are adopting the term vigorously into their most advanced products
and services [32]. It is in vogue and reflects state-of-the-art. However, as the term is
widely used, its interpretations become more diverse. Some would call any connected
device an IoT solution, while others will only refer to big data analytics as the IoT aspect
of a product.

The IoT is already changing how the industry operates at almost every level of their
business and in their interactions with clients and personnel. Gartner Group estimates an
increase up to 21 billion connected things by 2020. By then, the number of IoT devices in
use will surpass the number of smartphones, tablets and PCs combined. This represents
a major opportunity for companies since the most valuable IoT applications will almost
certainly be used by enterprises [55].

The traditional way, where discrete products were developed behind the doors of R&D
labs has been superseded by a much more dynamic and open approach to innovation.
Every industry, no matter how traditional — agriculture, automotive, aviation, energy — is
being overturned by the addition of sensors, internet connectivity, and software. Manufac-
turers often already have the supply chain in place, the brand recognition and a reputation
in their respective marketplaces. However, this doesn’t mean that suddenly connecting
everything up to the Internet and tying customers to new services is easy.

Success in this environment will depend on more than just creating better digital-enabled
products. We are in an era where it is possible to collect data from everywhere in our
environment, infrastructures, businesses and even ourselves. This massive amount of
information is creating a new ecosystem of opportunities for the industry around its stor-
age, analysis and accessibility. The IoT is becoming the next technological revolution
that we will all participate in one way or another. We are all headed toward a future when
practically everything will be connected and available to us. The Internet of Things is here
to stay.

Building confidence in IoT by responding to its key challenges, foregrounds the motivation
of the thesis. The next session states the thesis research objectives and questions that
comes along.

1.2 MODEL-BASED TESTING FOR IOT SYSTEMS: MOTIVATION &
RESEARCH SCOPE

The Internet of Things inter-connects people, objects and complex systems. While this is
as vast as it sounds, spanning all industries, enterprises, and consumers - testing IoT de-
vices, which range from refrigerators that automatically place orders to the supermarket
to self-driving cars, will be one of the biggest challenges encountered by the device man-
ufacturers and integrators in the coming years. Their real use case environment: service
based and large scale deployments - poses scalability issues in ensuring quality over
time. At its most basic level, the Internet of Things is all about connecting various devices
and sensors to the Internet. Device-to-device communication represents two or more

1.2. MODEL-BASED TESTING FOR IOT SYSTEMS: MOTIVATION & RESEARCH SCOPE 5

devices that directly connect and communicate between one another. Device-to-cloud
communication involves an IoT device connecting directly to an Internet cloud service
like an application service provider to exchange data and control message traffic. The
Device-to-Gateway model is where IoT devices connect to an intermediary device to ac-
cess a cloud service. One of the challenges facing the IoT is the enablement of seamless
interoperability between each connection. The massive scale of recent Distributed De-
nial of Service (DDoS) attacks (October 2016) on DYN’s servers [49] that brought down
many popular online services in the US, gives us just a glimpse of what is possible when
security is not ensured. When attackers can leverage up to 100,000 unsecured IoT
devices as malicious endpoints, some effort in security testing is unarguably required.

Model-Based Testing (MBT) is a software testing approach in which both test cases and
expected results are automatically derived from an abstract model of the System Un-
der Test (SUT). More precisely, MBT techniques derive abstract test cases from an MBT
model, which formalizes the behavioral aspects of the SUT in the context of its environ-
ment and at a given level of abstraction. The test cases generated from such models
allow the validation of the functional aspects of the system by comparing back-to-back
the results observed on it with those specified by the MBT model. MBT is usually per-
formed to automate functional black-box testing. It is a widely-used approach that has
gained much interest in recent years, from academic as well as from industrial domains.

The purpose of this thesis is to investigate solutions to the challenges carried by the fast
adoption of IoT systems and the need to ensure user’s and data security and privacy. In a
first step, it implies to evaluate how relevant is the application of MBT in the IoT framework,
to calculate its effectiveness in error detection over existing methods. To be adopted by
the industry, MBT has to prove its capability of providing significant advantages in tackling
the key challenges in verification and validation of the IoT systems. This translates in the
following research questions (RQ).

RQ 1: TO WHAT EXTENT MBT MODELING CAN REPRESENT THE BEHAVIOUR OF AN IOT
SYSTEM ?

Two core concepts of Model Based-Testing, namely abstraction and automation, are to-
gether the best solution to the key challenges of the IoT. Abstraction facilitates the speci-
fication and design of complex IoT systems through the activity of modeling. Connected
IoT devices rely on fast communication. Consequently, network status can have a sig-
nificant effect on device performance. Smart devices often experience problems with
network infrastructure, such as overburdened Wi-Fi channels, unreliable network hard-
ware, and slow or inconsistent Internet connections. The IoT devices and applications
must be tested across these different conditions to ensure that they respond correctly
without losing data. The determination of the modeling scope and its feasibility is impor-
tant as it gives an insight to what can be tested within the targeted infrastructure. Can
an MBT model represent a standard in order to validate its conformance ? Determining if
representing the behavioral aspects of an IoT system through a MBT model is enough to
validate its conformance is one of the research question tackled by this thesis. Further-
more, the research objective leads towards an other question on how can an MBT model
can be reused to test security and robustness. Can an MBT model used for conformance
validation be used for security testing ? Evaluating the feasibility and cost of this approach
is tackled in this thesis.

6 CHAPTER 1. OVERVIEW OF THESIS RESEARCH

RQ 2: HOW EFFECTIVE IS AN MBT MODEL IN REPRESENTING THE BEHAVIOURAL AS-
PECTS OF AN IOT SYSTEM ?

Determining the percentage of specifications covered by the model and ensuring a high
coverage is a measure to MBT adoption for IoT systems testing. As stated in the previous
paragraph, one of the core concepts of Model Based-Testing is automation. Automation
in MBT is not only present at the execution level. We find automation at test case gen-
eration level. Through the automation and traceability process of MBT test cases
generation, can we evaluate the effective behavioral coverage of the intended IoT
system targeted ? Unprecedented levels of systems understanding can be achieved
through MBT, and we further investigate the research questions that have been risen by
this research objective.

RQ 3: HOW CAN MBT IMPROVE IOT TESTING WHILE REDUCING ITS COST ?

Currently, the verification & validation process for the IoT having no systematic or au-
tomatic process is often outsourced to reduce costs as testing is a difficult and time-
consuming activity [6]. All these factors affect the quality of current products. Indeed, it is
not possible to test everything because the quantity of test cases to be applied could be
potentially infinite for the majority of modern systems. The difficulty of testing lies in the
selection of relevant test cases for each phase of validation. It also lies in the absence of
a true reflection of test optimization guided by the maintenance of the final quality while
minimizing costs. How can MBT improve IoT testing while reducing its cost ? Each
IoT device has its own hardware and relies on software to drive it. Application software
will also integrate with the IoT devices, issuing commands to the device and analysing
data gathered by the device. Connecting ”things” as devices requires one to overcome a
set of problems arising in the different layers of the communication model. Using device
data or responding to a device’s requests requires an IoT deployment to interact with a
heterogeneous and distributed environment. Indeed, devices are most likely to be running
several protocols (such as HTTP, MQTT, COAP), through multiple wireless technologies.
Devices have many particularities and it is not feasible to provide a testing solution where
one size fits all. Some devices are resource constrained and cannot use full standard
protocol stacks because they cannot transmit information too frequently due to battery
drainage; they are not always reachable due to the wireless connection based on low
duty-cycles, their communication protocols are IoT-specific, lack an integrated approach,
and use different data encoding languages. A global IoT platform deployment is difficult to
foresee as a direct result of these limitations. Developers face complex scenarios where
merging the information is a real challenge.

RQ 4: DOES AN MBT APPROACH PROVIDE ENOUGH AUTOMATION AND QUALITY FOR IOT
SECURITY CERTIFICATION ?

Securing an entire ”classical” infrastructure is a challenge in itself, but the IoT demands
an even larger security approach to keep endpoints and networks protected against more
sophisticated cyber-crime techniques and tools, such as sniffer attacks, DoS attacks,
compromised-key attacks, password-based attacks, and man-in-the-middle (MITM) at-
tacks. Furthermore, security certification is needed to ensure that a product satisfies the

1.3. CONTRIBUTION OF THE THESIS 7

required security requirements, which can be both proprietary requirements (i.e., defined
by a company for their specific products) and market requirements (i.e., defined in pro-
curement specifications or market standards). The main interrogations is in exploring how
MBT can be applied to increase security and user’s trust in IoT systems.

The next section gives an overview of the contribution of the thesis, where we provide
some answers on the risen research questions.

1.3 CONTRIBUTION OF THE THESIS

This thesis provides the following contributions:

• C1: Model-Based Testing for IoT standard conformance

• C2: Model-Based Testing As A Service

• C3: Model-Based Testing for IoT security testing

The IoT has a bull’s-eye on its back, and it is easy to see why: With no central IoT
standards and no real oversight over development, the nearly five billion smart devices
Gartner estimates will be in use by the end of 2017 are an enticing target for hackers.
IoT standards talks began in early 2013, but by that point it might have already been too
late. The tech industry is not one to sit idle while standards are developed. Too many
technological battles are won or lost before standards are ever close to being adopted. As
is often the case when standards talks gets started, various alliances have been formed.
By 2014, a handful of these standards were maturing, and today a few have even begun
certifying products. That said, just about everyone agrees that we are still a long way
from a universal IoT standard, and in fact few hold out hope that a single standard will
ever become dominant in the way standards like Wi-Fi and DVD have. Nevertheless,
an IoT standard success depends on its degree of trust. Thus, testing is an essential,
but time and resource consuming activity in the IoT development process. Generating a
short, but effective test suite usually needs a lot of manual work and expert knowledge.
In a model-based process, among other subtasks, test construction and test execution
can be partially automated. It is this automation process that we wanted to introduce
to the IoT testing world. The thesis shows how behavioral modeling of an IoT standard
can be used to validate the standard compliance implementations (C1) . The process of
developing a standard is typically facilitated by a Standards Development Organization
(SDO), which adheres to fair and equitable processes that ensure the highest quality out-
puts and reinforce the market relevance of standards. SDOs, such as IEEE, IEC, ISO,
and others, offer time-tested platforms, rules, governance, methodologies and even facili-
tation services that objectively address the standards development lifecycle, and facilitate
the development, distribution and maintenance of standards. We introduce MBT behav-
ioral modeling for IoT standardized IoT platforms by defining a modeling process and all
the steps following a practical Model-Based Testing approach (see Section 4 for further
details). The thesis contributed to the automation of model test generation and test exe-
cution for standard implementations. The MBT method reveals itself to be a catalyst for
a standard adoption with long and expensive task of traditional testing are minimized and
made accessible. Furthermore, we investigated on how reusable the new approach is
when dealing with testing security of IoT systems. We reveal how we can, starting from

8 CHAPTER 1. OVERVIEW OF THESIS RESEARCH

a behavioral model, use MBT tools to enhance it for security testing: a behavioral model
is modified in a relatively short amount of time in order to be fit for security testing. The
integration of pattern-driven and model-based security testing to MBT behavioral testing
is a novelty in the security testing domain as well as it lowers the efforts required for en-
suring not only the standard compliance of an IoT system but its security as well. The
thesis takes a logical lead into testing robustness and security features with innovative
model based Behavioral fuzzing. Behavioral fuzzing gives an extensive amount of depth
in the testing process of a product, and shows how the reusability of a behavioral model
can be used to deeply test robustness aspect of the IoT system. We introduced in the
same principles for security testing the behavioral testing for IoT systems. We provide
answers on how a behavioural model that is adapted to security testing, can be used
for behavioral fuzzing. We introduce the term MBT behavioural security fuzzing and the
ground breaking advances made in the field as applied to a real use case in IoT large
scale security testing.

By nature IoT services are presented and offered as services to its end user. Internet of
Things-as-a-Service (IoTaaS) is one of the latest iterations in the ”as-a-Service” model
that has become so common in today’s commoditized IT world. But there is some debate
over how well IoT can translate into a service. That is partly because the term itself is
not always used in the same way across the technology ecosystem or in the commercial
world. If IoT is considered to be simply the edge devices that are deployed to sense infor-
mation, that’s a very limited definition. Some technologists claim that IoT really describes
sensors, the process by which they communicate information to the network, the cloud
layer itself, and the various tools that are used to analyze the data once it is collected.
We investigated in a new way of providing IoT testing for test engineers that are as close
as possible to the reality of the IoT nature: ”as-a-Service”. Model Based Testing As A
Service (MBTAAS)(C2) is the result of our combined will of making IoT testing as user
friendly as it can be and real life look alike testing experiment. The new state of the art
technique is presented in section 8 and it shows the benefits of MBTAAS by providing
simplicity to IoT conformance and security testers.

All of the approaches mentioned above are validated in European H2020 projects. The
thesis contributions are as a matter of fact responding to industrial needs that come with
the rapidly growing IoT industry needs. Chapter 10 gives more details on how the re-
search is applied in order to respond to the challenges faced when testing IoT platforms
with the explanations and discussion over different experiments.

The initial results where obtained in the context of the FP7 FIWARE [51] European (EU)
commission funded project. The goal of the FIWARE project is to advance the global
competitiveness of the EU economy by introducing an innovative IoT infrastructure for
cost-effective creation and delivery of services, providing high quality of service (QoS)
and security guarantees. FIWARE has a community of over 1,000 start-ups and is being
adopted in over 80 cities mainly in Europe, but also around the world. Ensuring the inter-
operability to such a large number of companies using the FIWARE standard is primordial
to its successful adoption. We depict in further details the architecture of FIWARE in sec-
tion 2.2.1. FIWARE was an ongoing project facing testing problems when we decided to
introduce MBT to its community. The introduction required to adapt the existing FIWARE
testing process. It has also served as a starting point in order to investigate if MBT was
indeed suitable for IoT systems. The work contributed in the FIWARE project validated
the MBT approach for modeling IoT systems.

1.4. THESIS OUTLINE 9

The work on mbt security testing and behavioural fuzzing is made in the Horizon 2020
ARMOUR project. The ARMOUR project aims to provide duly tested, bench-marked
and certified security and trust technological solutions for IoT and especially for large
scale IoT deployments. Suitable duly tested solutions are needed to cope with security,
privacy and safety in the large scale IoT deployments, because uncertainty is intrinsic
in IoT Systems due to novel interactions of embedded systems, networking equipment,
smart sensors, cloud infrastructures, and humans. Unfortunately, considering market
pressure, security and privacy issues are not considered as a main goal and are usually
not properly addressed. A clear evidence of this fact is the Mirai IoT Botnet [63], which
infected tens of millions of vulnerable IoT devices that were used in a DDOS Attack.
This attack affected major websites including Amazon, Spotify, and Twitter. Motivated
by this kind of attacks, the thesis contribution is to go one step further, and to propose
an integrated approach allowing not only the certification of IoT devices already in the
market, but also to improve the devices’ certification level in an after market fashion.
In the certification process proposed in ARMOUR [48], the security functional behavior
is tested using test cases derived automatically using a model-based approach (C3).
The work accomplished in ARMOUR allowed to investigate on the reusability of previous
conformance models for security testing on a first step using the FIWARE standard. We
then investigated the reusability of the research on other standard such as oneM2M [37].
The purpose and goal of oneM2M is to develop technical specifications which address
the need for a common machine to machine (M2M) Service Layer that can be readily
embedded within various hardware and software, and relied upon to connect the myriad
of devices in the field with M2M application servers worldwide.

The next section presents the thesis outline.

1.4 THESIS OUTLINE

This thesis dissertation is organized into three parts as follows.

Part I (I Thesis presentation) presents the thesis, and is composed of five chapters:
Chapter 1 introduces the overview of the thesis research. As we explain why nowadays
we are entering in the IoT era, we state our research scope over three research
objectives and introduce the contributions of the thesis.
Chapter 2 defines the context of the thesis and the motivation that led to this thesis in
exploring the needs for IoT Testing, we also introduce the explored IoT systems and
define the fundamental Model-Basel Testing process.
Chapter 3 presents the research challenges in testing for standardized IoT platforms,
security testing of IoT systems and robustness testing for IoT systems. We explore
the specificities in testing with the different processes for one component and for
multi-component systems.
Chapter 4 defines the state of the art in IoT testing for IoT systems. We present solutions
in conformance testing for standards, security testing and robustness testing. We also
present the related work on MBT for IoT and the tools that we used to apply our own
MBT methodology for ioT systems testing.
Chapter 5 describes in more details the contributions of the thesis previously introduced
in section 1.3 .

10 CHAPTER 1. OVERVIEW OF THESIS RESEARCH

The second part (II Technical contribution) present in details all the technical contribu-
tions of the thesis, it is composed of four chapters:
Chapter 6 presents the MBT behavioural modeling for standardized IoT platform con-
tribution, this chapter defines the vocabulary and methodology for test generation, test
implementation and test execution.
Chapter 7 presents the pattern-driven and model-based security testing contribution,
where we explore the specific aspects of model-based security testing and the method-
ology behind the introduction of test purposes into the fundamental MBT process for
security testing.
Chapter 8 presents the Model-Based Testing As A Service (MBTAAS) contribution. We
show in details how MBTAAS brings MBT to IoT systems testing.
Chapter 9 presents the behavioral fuzzing for IoT systems contribution, where we see
the details and specificities of its MBT model and test generation process.

The third and last part of this thesis (III Experimentation and synthesis) presents the
experiments and synthesis, it is composed of two chapters:
Chapter 10 gives a guideline for our experimentation’s, raised questions give an insight
on how our experiment validates our technical contributions
Chapter 11 concludes the thesis with a synthesis and exploration of future work.

Apendix A defines a series of ARMOUR Security vulnerability tables.

Apendix B presents a behavioral fuzzing TTCN-3 test case example.

2
CONTEXT

Contents
2.1 IoT Systems . 11
2.2 Explored IoT Systems . 12

2.2.1 FIWARE . 12
2.2.2 oneM2M . 14

2.3 Model-Based Testing (MBT) . 17

This chapters provides the context of the thesis. An introductory explanation of the com-
position of an IoT System is given in order to fully understand its different layers. We then
introduce two standardized IoT systems explored throughout the thesis and we finish with
a detailed explanation of the Model-Based Testing (MBT) process.

2.1 IOT SYSTEMS

The Internet of Things refers to the networking of physical objects [60] through the use of
embedded sensors, actuators, and other devices that can collect or transmit information
about objects. Examples in the consumer market include smart watches, fitness bands,
and home-security systems. There are four major layers in an IoT system, as illustrated
in Figure 2.1.

Figure 2.1: IoT layers

The sensor layer uses and produces data. Thus, the IoT devices, at this layer, can behave
differently whether their purpose is to generate data (a data producer), or to use produced

11

12 CHAPTER 2. CONTEXT

data (a data consumers). For example, a Complex Event Processing (CEP) application
is a data consumer application within the application layer. Its purpose is to read input
data and produce output data depending on a defined rule. An example of a rule defined
in a CEP application: if the data of two temperature sensors in the same room exceeds a
certain value, then an alert is triggered. The produced data is in this case the generated
alert.

The service connectivity and network layers, are represented by the sensors, actuators,
tags (which include Radio Frequency ID s (RFID) and barcodes), and other types of data
producers/consumers. At the gateway and network layer, wide area networks, mobile
communication networks, Wi-Fi, Ethernet, gateway control, etc. are considered. Then,
in the management service layer, device modelling configuration and management is a
major focus. Data-flow management and security control need to be provided at the
management service layer. Finally, the overall application layer is where the applications
dedicated to energy, environment, healthcare, transportation, supply chain, retail, people
tracking, surveillance, and many other endless applications are located.

The different layers of the IoT bring a new level of complexity to performance monitoring
and conformance testing in terms of scalability, interoperability, and security. Testers must
adapt to new platforms and techniques to ensure that they can address the challenges of
testing IoT devices and applications to deliver the best experience to the end user. With
large numbers of devices involved when talking about the IoT and the mass of different
devices that the IoT introduces, each with different protocols, brings along all the perks of
a heterogeneous environment: scalability issues and interoperability. With many different
devices and the amount of generated data in the IoT infrastructure, it is difficult to keep
track of the privacy and confidentiality of the produced data. Security is a major challenge
for the success of the IoT adoption.

We introduce in the next section the explored IoT systems that allowed us to respond to
the research questions and obtain our research objectives.

2.2 EXPLORED IOT SYSTEMS

In this thesis, we explored the previously introduced IoT systems: FIWARE and oneM2M.
A detailed description of their infrastructure and standard is explained.

2.2.1 FIWARE

FIWARE provides an enhanced Open Stack-based cloud environment including a rich
set of open standard Application Programming Interfaces (APIs) that make it easier to
connect to the heterogeneous IoTs, process and analyse Big Data and real-time me-
dia or incorporate advanced features for user’s interaction. The FIWARE platform eases
the development of smart applications in multiple vertical sectors. The specifications of
these APIs are public and royalty-free. Besides, an open source reference implemen-
tation ”Generic Enabler implementation” (GEi) of each of the FIWARE components is
publicly available so that multiple FIWARE providers can emerge faster in the market with
a low-cost proposition. Generic Enablers offer a number of general-purpose functions
and provide high-level APIs in:

2.2. EXPLORED IOT SYSTEMS 13

• Cloud Hosting

• Data/Context Management

• Internet of Things Services Enablement

• Applications, Services and Data Delivery

• Security of data

• Interface to Networks and Devices (I2ND)

• Advanced Web-based User Interface

Figure 2.2: Schematic depiction of the FIWARE platform with all major chapters

IoT systems are spread in two different domains: Gateway and Backend. While IoT
Gateway GEs provide inter-networking and protocol conversion functionalities between
devices and the IoT Backend GEs, the IoT Backend GEs provide management function-
alities for the devices and IoT domain-specific support for the applications. Figure 2.3
exposes the FIWARE architecture that deals with all these specific elements, which re-
main a challenge when testing them in a real situation. More specifically, the figure illus-
trates a connector (IoT Agent) solving the issues of heterogeneous environments where
devices with different protocols are translated into a common data format: Next Gener-
ation Services Interface (NGSI). While several enablers are improving the capacities of
the platform to manage stored information (security tools, advanced data store models,
historical retrieval of information, linkage to third party applications. . .), a core component
known as Context Broker allows for the gathering and managing of context information
between data producers and data consumers at large scale.

14 CHAPTER 2. CONTEXT

Figure 2.3: FIWARE IoT Platform Architecture

FIWARE has defined its own standard starting from the Open Mobile Alliance NGSI-9/10
standard [17] in order to make the development of future internet applications easier and
interoperable. This standard is used as part of general-purpose platform functions avail-
able through APIs, each being implemented on the platform, noted as Generic Enabler
Implementation(GEi). The FIWARE version of the OMA NGSI-9/10 interfaces are REST-
ful APIs. RESTful systems communicate over the Hypertext Transfer Protocol (HTTP)
with the same HTTP verbs (GET, POST, PUT, DELETE, etc.), which web browsers use
to retrieve web pages and to send data to remote servers. Their purpose is to exchange
information about the availability of context information. The three main interaction types
for the NGSI-9 are:

• one-time queries for discovering hosts where certain context information is available

• subscriptions for context availability information updates (and corresponding notifi-
cations)

• registration of context information, i.e. announcements that certain context informa-
tion is available (invoked by context providers)

The three main interaction types for the NGSI-10 are:

• one-time queries for context information

• subscriptions for context information updates (and the corresponding notifications)

• unsolicited updates (invoked by context providers)

It is often assumed that the GEi’s are correctly implemented and are used or are part
of services provided by FIWARE, non-compliance to FIWARE specifications may lead
to a number of dysfunctional interoperability issues. To ensure the interoperability, GEs
should be thoroughly tested to assess their compliance to these specifications.

2.2.2 ONEM2M

2.2. EXPLORED IOT SYSTEMS 15

Figure 2.4: oneM2M logo

The Internet of Things revolves around increased
machine-to-machine communication; it’s built on cloud
computing and networks of data-gathering sensors. But a
machine is an instrument, it’s a tool, it’s something that’s
physically doing something. When we talk about making
machines ”smart”, we are not referring strictly to M2M.
We are talking about sensors. All the information gath-
ered by all the sensors in the world isn’t worth very much
if there isn’t an infrastructure in place to analyse it in real
time.

Usually, the infrastructure is vendor-specific thing and every manufacturer develops its
own infrastructure that connects the IoT in between, the sensors to the cloud, and then
to the end user. But when all the manufacturers produce their own infrastructures that
can be used only with their devices, the IoT sector becomes chaos where only vendor or
vendor-friendly devices work on one type of infrastructure. This is where the oneM2M[37]
standard wants to put pressure and unify the existing infrastructure into one standard that
can be used by everyone.

oneM2M is the global standards initiative for Machine to Machine Communications and
the Internet of Things. It was formed in 2012 and consists of eight of the world’s
pre-eminent standards development organizations, notably: ARIB (Japan), ATIS (USA),
CCSA (China), ETSI (Europe), TIA (USA), TSDSI (India), TTA (Korea) and TTC (Japan).
These partners collaborate with industry fora or consortia and over 200 member orga-
nizations (and one of them is EGM) to produce and maintain globally applicable techni-
cal specifications for a common M2M/IoT Service Layer, which provides functions that
M2M applications across different industry segments commonly need and are exposed
via APIs. The service layer is developing into a critical component of future IoT architec-
tures.

As shown in figure 2.5, the oneM2M standard employs a simple horizontal platform archi-
tecture that fits within a three layer model comprising applications, services and networks.

Figure 2.5: oneM2M Architecture

On the top layer, Application Entities (AEs) reside within individual device and sensor
applications. They provide a standardized interface to manage and interact with appli-
cations. Common Services Entities (CSEs) play a similar role in the service layer which
resides between the application layer (where data processing occurs) and the in the net-
work layer (where communications hardware resides). The network layer ensures that

16 CHAPTER 2. CONTEXT

devices and sensors and applications are able to function in a network-agnostic manner.

This horizontal platform strategy is critical in two aspects. Firstly, it aims to create
economies of scale by encouraging application re-use and a competitive ecosystem for
developers and suppliers. Secondly, it enables economies of scope by encouraging plat-
forms that are applicable across a broad range of vertical-market use-cases. One of
the features of this architecture is to connect information producers and information con-
sumers in a secure manner regardless of underlying transport technologies. This relies
on a configurable policy manager to define which applications and users can access
which devices and sensors. oneM2M specifications provide a framework to support a
wide range of applications and services such as smart cities, smart grid, connected car,
home automation, public safety, and health.

The management organization of oneM2M organisation is quite complex, consisting of
a Steering Committee, Technical Plenary and multiple Working Groups. The Steering
Committee has overall responsibility for providing strategic direction and management to
oneM2M, and it is composed of all partners and members of oneM2M. The Technical
Plenary has total responsibility for the oneM2M technical activities. It is also responsible
for the organization of the technical work and it can autonomously create sub groups.
The plenary is composed of all partners and members too, but only the members have
right to vote.

There are 6 Working Groups inside oneM2M: REQ, ARC, PRO, SEC, MAS and TST. The
REQ working group works on identifying and documenting use cases and requirements.
ARC develops and specifies an architecture for an M2M system. The working group PRO
specifies the protocols, APIs and message formats used in oneM2M. The security and
privacy requirements are specified by the working group SEC. The working group MAS,
Management, Abstraction and Semantics deals with the management of M2M entities
and functions. The last group, TST, defines the test requirements for the oneM2M system
and develops sets of specifications for conformance and interoperability testing. The work
that we realised during this thesis was related to the group TST, where the generated
TTCN-3 tests were used.

Figure 2.6: oneM2M defined work process

The usual work flow inside the TST group is described in the figure 2.6. The working
group uses the requirements defined by other working groups to produce Test Purposes
(TPs). The notion of TPs is explained in section 10.3.1. Those TPs are used as basis to
write TTCN-3 tests, which are compiled with at least two different compilers and executed.
The work on TPs is shared between the participants of TST group, and for the TTCN-3
tests, a Task Force (TF) is created. The TF is composed of 4 working group members:
ETSI, KETI, Fraunhofer Group and EGM, where we represented EGM. The generation of
TTCN-3 test cases is inside this group, where we introduced the usage of Model Based-
Testing approach to generate test cases instead of writing code manually.

2.3. MODEL-BASED TESTING (MBT) 17

2.3 MODEL-BASED TESTING (MBT)

Models are described in many ways, depending on the discipline. They can be described
by use of diagrams, tables, text, or other kinds of notations. They might be expressed
in a mathematical formalism or informally, where the meaning is derived by convention.
Although computing equipment and software plays an important role for the application of
modeling in science and engineering, modeling is not as ubiquitous in software engineer-
ing as it is in other engineering disciplines. However, formal methods is one discipline
where modeling has been applied in the areas of safety- and security-critical software
systems. Test phases are the last stages of system development. They are therefore
strongly constrained by delivery periods. In general, they are subject to all of the delays
accumulated during the overall project. Currently, test phases still correspond to 30% or
even to 50% of the total cost of system development and thus represent an important
point for possible improvements.

We present hereafter a technology which is more and more used in industry to avoid
bugs, to improve quality and reduce costs: Model-Based Testing (MBT). MBT is the auto-
matic generation of software test procedures, using models of system requirements and
behavior. Although this type of testing requires more up-front effort in building the model,
it offers substantial advantages over traditional software testing methods:

• Rules are specified once.

• Project maintenance is lower. There is no need to write new tests for each new
feature. Once we have a model it is easier to generate and re-generate test cases
than it is with hand-coded test cases.

• Design is fluid. When a new feature is added, a new action is added to the model to
run in combination with existing actions. A simple change can automatically ripple
through the entire suite of test cases.

• Design more and code less.

• High coverage. Tests continue to find bugs, not just regressions due to changes in
the code path or dependencies.

• Model authoring is independent of implementation and actual testing so that these
activities can be carried out by different members of a team concurrently.

Model-Based Testing - Importance:

• Unit testing won’t be sufficient to check the functionalities

• To ensure that the system is behaving in the same sequence of actions.

• Model-based testing techniques are adopted as an integrated part of the testing
process.

• Commercial tools are developed to support model-based testing.

Model-Based Testing (MBT) is considered to be a lightweight formal method to validate
software systems. It is formal because it works out of a formal (that is, machine-readable)

18 CHAPTER 2. CONTEXT

specification (or model) of the software system one intends to test (usually called the
implementation or System Under Test, SUT). It is lightweight because, contrary to other
formal methods, MBT does not aim at mathematically proving that the implementation
matches the specifications under all possible circumstances. What MBT does is to sys-
tematically generate from the model a collection of tests (a ”test suite”) that, when run
against the SUT, will provide sufficient confidence that it behaves as the model predicted
it would. The difference between lightweight and heavyweight formal methods is basically
about sufficient confidence vs. complete certainty. Now, the price to pay for absolute cer-
tainty is not low, which results in heavyweight formal methods being very hard (sometimes
prohibitively hard) to apply to real-life projects. MBT on the other hand scales much better
and has been used to test life-size systems in large scale projects [9].

The fundamental MBT process [9] includes activities such as test planning and controls,
test analysis and design (which includes MBT modeling, choosing suitable test selection
criteria), test generation, test implementation and execution [41].

Test
repository

Test
generation

Publication

Test Objectives

MBT
model

1

3
Test Script

SUT

Test results
(pass/fail)

Execution
4

2

Test
selection
criteria

2

Adaptor
+ Env.

Specifications

Spec writers

Test Architects

Developers

Test Architects

5

Figure 2.7: Fundamental MBT Process

Figure 2.7 illustrates the fundamental MBT process. The test analyst takes requirements
and defines tests objectives as input to model the System Under Test (SUT) (step ¬). This
MBT model contains static and dynamic views of the system. Hence, to benefit as much
as possible from the MBT technology, we consider an automated process, where the
test model is sent as an input to the test generator that automatically produces abstract
test cases and a coverage matrix, relating the tests to the covered model elements or
according to another test selection criteria (step ­). These tests are further exported,
automatically (step ®), in a test repository to which test scripts can be associated. The
automated test scripts in combination with an adaptation layer link each step from the
abstract test to a concrete command of the SUT and automate the test execution (step ¯).
In addition, after the test execution, tests results and metrics are collected (step °) and
feedback is sent to the user.

From one MBT model various test selection criteria can be applied, as shown in Figure 2.7
and used by our chosen MBT tool CertifyIT that is introduced in section 4.3.2. For our
study we used coverage-based test selection criteria. This approach considers a subset
of Unified Modeling Language (UML) to develop MBT models, composed from two types
of diagrams for the structural modeling:

• Class diagrams

• Object diagrams

2.3. MODEL-BASED TESTING (MBT) 19

Each type has a separate role in the test generation process. The class diagram de-
scribes the system’s structure, namely the set of classes that represents the static view
of the system:

• Its entities, with their attributes

• Operations that model the API of the SUT

• Observations that serve as oracles (for instance an observation returns the current
state of the user’s connection to a web site)

Next, this static view, given by the class diagram, is instantiated by an object diagram.
The object diagrams provides the initial state of the system and also all objects that
will be used in the test input data as parameters for the operations in the generated
tests. Finally, the dynamic view of the system or its behaviors are described by Objective
Constraint Language (OCL) constraints written as pre/postcondition in operations in a
class of a class diagram. The test generation engine sees these behavior objects as
test targets. The operations can have several behaviors, identified by the presence of
the conditional operator if-then-else. The precondition is the union of the operation’s
precondition and the conditions of a path that is necessary to traverse for reaching the
behavior’s postcondition. The postcondition corresponds to the behavior described by the
action in the ”then” or ”else” clause of the conditional operator. Finally, each behavior is
identified by a set of tags (as initially defined in the Test Objective Charter(TOC)), which
refers to a requirement covered by the behavior. For each requirement, two types of tags
exists:

• @REQ - a high-level requirement

• @AIM - the refinement of a high-level requirement

Here is a simple example of OCL containing the two types of tags:

−−−@REQ:ESTABLISHES SECURE CONNECTION
i f p Encryp t ion key = ENCRYPTION KEY : : KEY then

−−−@AIM:SECURE CONNECTION ESTABLISHED
s e l f . secure connect ion = t rue

else
−−−@AIM:SECURE CONNECTION FAILED
t r ue

endif and
s e l f . s n i f f e r . message in tercept ion ()

This example show a high level requirement ”ESTABLISHES SECURE CONNECTION”
which is self explanatory as it is expressing the requirement of establishing a secure
connection of a device onto an IoT platform. The refinement of the high level requirement
are the following @AIM tags which describe the different status tested for the fulfillment of
the requirement ”SECURE CONNECTION ESTABLISHED” or its error state ”SECURE -
CONNECTION FAILED”.

Both tags are followed by an identifier. Finally, one major advantage of the coverage-
based test selection criteria approach is the possibility to automatically deduce the test
oracle . A specific type of operations, called observations, define the test oracles. The

20 CHAPTER 2. CONTEXT

tester with these special operations can define the system points or variables to observe,
for instance a function return code. Thus, based on these observations, the test oracle is
automatically generated for each test step.

There is two main approaches to Model-Based Testing: online and offline. Offline MBT
is as presented in Figure 10.7. Offline MBT means generation a finite set of test in order
to execute those later. This allows automatic test execution in third party test execution
platform.

On the other hand, online MBT test case generation and execution are in motion, each
new test step generated takes into consideration the result of the previous one. Online
MBT is suited to test non deterministic systems and enables an infinite test suite execu-
tion. The main difference is that we do not have a test repository and the execution of a
step is executed right after its creation.

The next section presents the research challenges of the thesis.

3
RESEARCH CHALLENGES

Contents
3.1 Testing for standardized IoT platforms 21

3.1.1 Testing the conformance of one component 22
3.1.2 Testing for Integration . 22

3.2 Security Testing of IoT systems . 24
3.2.1 Vulnerability testing . 25
3.2.2 End-to-End security testing . 25

3.3 Robustness Testing for IoT Systems 26
3.3.1 Robustness testing for one component 26
3.3.2 Robustness testing for large scale IoT system 27

The main work we want to tackle is to validate IoT systems. The complexity of the system
is marked by its composition of several elements with many interactions (as presented
in previous section). In order to bring trust and validation in the IoT there must be a
friendly approach to testing things in IoT systems, thus keeping low testing costs and
providing a higher accessibility by the means of easy to use testing tools. In the several
approaches to depict the IoT some standards are defined. We can use it to realize the
validation of the system. So, in complementary of the functional and security aspects, we
can also validate the conformance of the system’s elements in regards of this standards.
In the next sections, we detail the research challenges associated with several aspects of
validation.

3.1 TESTING FOR STANDARDIZED IOT PLATFORMS

The IoT is a jungle where major electronic actors (as Apple, Google, Microsoft...) can
propose proprietary format and consortium try to share their format. In regards of those
shared formats, some standards are defined. We are speaking about testing for stan-
dardized IoT platforms and not IoT systems because as much as we would like to have
a whole IoT system standardized, reality begs to differs. IoT platforms are in most cases
standardized and we will focus on two of them. An IoT system is composed of many
object interacting together, and each object has the possibility to implement a different
standard. They communicate with each other by means of interworking proxy in the case
of oneM2M and IoT Agent in the case of FIWARE. We will describe those process in
more details in their respective sections further. As much as we would like to test the

21

22 CHAPTER 3. RESEARCH CHALLENGES

standardization of an IoT systems, the reallity is that we have to test the standardization
of all IoT platforms that combined end up building the IoT system. During this PhD, we
worked on two standard: oneM2M and FIWARE. The validation process is to validate
individually each component and then validate the integration of the components. The
process is repeated until the system is totally integrated. We present in the next section
the challenges associated with this process.

3.1.1 TESTING THE CONFORMANCE OF ONE COMPONENT

The IoT is a growing trend in the software industry. With a combination of software and
hardware/sensor devices, both individuals and enterprise consumers want to be able to
monitor, activate and control their devices from the comfort of their homes and offices.
This is feasible through the advancements of embedded systems into the Internet of
Things (IoT). The quality and performance of such systems still require the improvement
of existing testing methods to ensure quality while taking into consideration speed and
scalability. Embedded systems have been around for decades now, while the IoT is still
in its initial phase. The difference between the two is that embedded systems are self-
contained and isolated, while IoT are in permanent communication with the server and
with each other. Such a degree of integration and interoperability poses significant prob-
lems regarding testing due to differences in protocols. There are no generally accepted
standards when it comes to IoT, and this impacts security and large-scale adoption. Both
established organizations such as the IEEE and other alliances or even independent com-
panies have designed attempts to define a single standard with no success. The huge
number of sensors deployed annually (about 35 Billion in 2016 alone) means that if 99%
of the sensor work as intended, 350 million will either fail or report inaccurate data. Con-
ceptualize the waste a smart city would experience if 1% of its traffic, parking, smoke and
hazardous chemical sensors either failed or delivered wrong information.

Conformance testing is a functional test that verifies whether the behaviour satisfy de-
fined requirements.The requirements or criteria for conformance must be specified in the
standard or specification, usually in a conformance clause or conformance statement.
Some standards have subsequent standards for the test methodology and assertions to
be tested. If the criteria or requirements for conformance are not specified there can be
no conformance testing [68]. With any standards or specification project, eventually the
discussion turns to ”how will we know if an application/device conforms to our standard
or specification?” Thus begins the discussion on conformance testing. Although this type
of testing has been done for a long time there is still usually some confusion about what
is involved. There are many types of conformance testing like performance, security and
robustness. We consider here the functional and interoperability aspects of tests. The
other types will be then presented in their specific sections.

3.1.2 TESTING FOR INTEGRATION

Traditional testing methods take time, which is no longer a viable option. The entire de-
velopment process needs to be agile, detecting problems as early as possible. The new
slogan is ”test early, test often” and the result is continuous integration, which is even
more important in an IoT environment. Sensors, communication channels, protocols,
software-hardware interactions, and configurations determine an unprecedented magni-

3.1. TESTING FOR STANDARDIZED IOT PLATFORMS 23

tude of complexity. As far as it goes for the cost in component testing methods for IoT,
traditional methods are not pro-efficient. This is why a more automated approach is nec-
essary.

Before integration testing, it is required to test each component individually. Once all the
components have been tested in isolation, they are combined (i.e. integrated) and the
next phase of the testing process is to validate their correct interaction, hence integration
testing. The meaning of Integration testing is quite straightforward- Integrate/combine
the unit tested module one by one and test the behaviour as a combined unit. Integra-
tion testing checks the interactions between the combination of behaviours, and validate
whether the requirements are implemented correctly or not. Here we should understand
that Integration testing does not happen at the end of the cycle, rather it is conducted
simultaneously with the development. In most cases, all the modules are not actually
available for testing and this is where the challenge lies, testing something which does
not exist.

What is the purpose of integrating Integration testing in the testing strategy?

• In the real world, when applications are developed, the process is broken down into
smaller modules and individual developers are assigned one module. The logic
being implemented may vary significantly from one developer to another, so it be-
comes important to check its integrity e.g., it renders the correct output in accor-
dance to the standards.

• The structure of data changes when it travels from one module to another. Some
values are appended or removed along the way, which may causes issues in the
subsequent modules.

• Modules also interact with multiple third party tools or APIs which also need to be
tested, typically to make sure that the data accepted by that API / tool is correct and
that the generated output is also as expected.

• A very common problem in testing – Frequently requirements change often. Devel-
opers often deploy changes without prior validation through unit testing. Integration
testing becomes important at that time to ensure that each component has been
fully unit tested as the two approaches are complementary.

The next sessions present the challenges encountered when testing integration respec-
tively between two components and between all the components covering a specific stan-
dard.

3.1.2.1 INTEGRATION TESTING OF PAIR COMPONENTS

By nature IoT systems are not designed to be built upon one atomic solution that en-
velops all of the components required for a proper execution. An IoT system is divided
into many components that interact together to bring alive the system. Let us take the
example of a temperature sensor whose purpose is to send measured values each time
the temperature changes. The sensor communicates the measured value to an IoT plat-
form through a local gateway. The gateway is the middle node that receives the sensor
value in his own protocol and then send the data in a standardized manner to the IoT plat-
form. Making sure that each component of the system is working individually is a matter

24 CHAPTER 3. RESEARCH CHALLENGES

of conformance testing covered in the previous section. Interactions between the com-
ponents (gateway-platform) require the ability for each part to be able to communicate
together. The communication must be understood by both sides so it has to be standard-
ized. Standards describe interfaces that each component need to implement in order to
communicate with the rest of the system.

3.1.2.2 INTEGRATION TESTING OF MULTI-COMPONENTS

The previous section covers the topic of a standalone component and pair wise compo-
nents. As these methods can surely reveal some errors, they do not cover all the default
that can occur during a real life deployment. As a matter of fact, real life IoT systems are
rarely limited to the integration of one or two components. At the worst case scenario a
full application integrates more then half a dozen of components that are communicating
with each other to fulfill their purpose, e.g., transmit a sensed value, standardizing data,
storing data for big data or even displaying the sensed data on a screen in real time. The
advantages of starting with pair components testing is that we already have the tools in
orders to start the integration testing of multi-components. The same model is reusable
for test generation and execution. The principle differences are the interpretation of the
results. In a multi-component environment are large scale IoT deployments for a smart
city, the results are not proof of default in one component in particular but in the integra-
tion of the whole system and pin pointing where an error has occurred can sometimes be
difficult. MBT has strong traceability capabilities, and the challenge is to see how it can
make the correction less costly and give a fast view on the requirement that is making a
test fail.

3.2 SECURITY TESTING OF IOT SYSTEMS

Manufacturers of every kind of electronic or electrical devices are rushing to add features
which require connection to the internet. In their rush to market these companies many
of which have no prior experience with networked devices are bound to overlook the
complications of hardware and software security design and construction in the haste
to get the newest function working at the lowest cost. For a start, there is no graphical
user interface (GUI) to test IoT instances. Consumers of parts of an IoT system may be
non-human and wireless connections create more attack vectors, therefore more security
challenges. To tackle these challenges, testers of IoT need to have a better understanding
of basic electronics and network systems. The GUI is no longer king; APIs (Application
Programming Interfaces) are becoming the de facto standard for connecting IoT modules,
thus, for better or worse, API testing is becoming a must-have skill for the average tester.
Security and penetration testing have to become part of the testing regime. The biggest
concerns related to IoT are security and privacy. Without properly defined standards,
hackers can hijack the devices linked to a network – many of which owner have paid for
– and transform them into listening or monitoring tools. Moreover, since an IoT device
consists of several layers and operates at a low network level, general Internet security
rules designed for apps and browsers are not enough. Security must be tested after every
update in a continuous approach.

3.2. SECURITY TESTING OF IOT SYSTEMS 25

3.2.1 VULNERABILITY TESTING

As a critical tool for information security management, a vulnerability testing campaign
can spot weaknesses in an IoT platform’s security defenses before an attacker can ex-
ploit them. Hackers are constantly innovating their methods as they look for new ways
to breach defenses. A regular vulnerability testing campaign can help uncovering and
addressing security flaws and improving the cyber security strategy of a deployment to
limit the breaches. But a vulnerability testing campaign is only as good as the security
experts who design and execute it. An effective vulnerability testing campaign requires
proven methodologies created by security professionals with extensive knowledge of the
latest threats and technology available to mitigate them. This process provides guidelines
for the development of countermeasures to prevent a genuine attack.

3.2.2 END-TO-END SECURITY TESTING

End-to-end security is used successfully today, for example, in online banking applica-
tions. Correct and complete end-to-end security in the growing IoT is required to ensure
data privacy, integrity, etc. Introducing MBT to this problem may raise certain questions
on the feasibility of the models being generic enough to withstand the wide range of IoT
applications. It is impossible to provide an exhaustive list of all application domains of
the IoT. The IoT components involved in a solution have in most common cases, a wide
range of different components, such as Hardware (devices, sensors, actuators . . .), soft-
ware and network protocols. Security on their endpoints (client-server, or client-client for
peer-to-peer) is an absolute requirement for secure communications. Such a solution
contains the following components:

• Identity: This component encompasses the known and verifiable entity identities on
both ends.

• Protocols (for example, TLS): Protocols are used to dynamically negotiate the ses-
sion keys, and to provide the required security functions (for example, encryption
and integrity verification) for a connection. Protocols use cryptographic algorithms
used to implement these functions.

• Cryptographic algorithms (for example, Advanced Encryption Standard [AES] and
Secure Hash Algorithm [SHA-1]): These algorithms use the previously mentioned
session keys to protect the data in transit, for example, through encryption or in-
tegrity checks.

• Secure implementation: The endpoint (client or server) that runs one of the afore-
mentioned protocols must be free of bugs that could compromise security.

• Secure operations: Users and operators must understand the security mechanisms,
and how to manage exceptions. For example, web browsers warn about invalid
server certificates, but users can override the warning and still make the connection.
This concern is a non-technical one, but is of critical concern today.

In addition, for full end-to-end security, all these components should be seen globally
to ensure their security. For instance, in networks with end-to-end security, both ends

26 CHAPTER 3. RESEARCH CHALLENGES

can typically (depending on the protocols and algorithms used) rely on the fact that their
communication is not visible to anyone else, and that no one else can modify the data in
transit.

In the next section we talk about the research challenges of robustness testing for IoT
Systems.

3.3 ROBUSTNESS TESTING FOR IOT SYSTEMS

The term ”robust” is synonymous with strength. So robustness testing consists of as-
sessing the quality of an IoT system deployment. It is the process of verifying whether
system components perform well under stress conditions or not. Robustness testing has
also been used to describe the process of verifying the robustness (i.e. correctness) of
test cases in a test process. ANSI and IEEE have defined robustness as the degree to
which a system or component can function correctly in the presence of invalid inputs or
stressful environmental conditions. Robustness testing is carried out in those steps: a
combination of valid and invalid inputs is passed to the system component, the behavior
of the system checked and how it reacts over long testing traces. Hence a system is
tested and validated under different conditions.

This section explains how the objective of robustness testing for IoT systems differs when
doing Robustness testing for one component or for multi-components also know as large
scale deployment. We explore how the challenges differs when taking different point of
views (one component/multi component) in the IoT system.

3.3.1 ROBUSTNESS TESTING FOR ONE COMPONENT

When speaking about robustness testing for one component in IoT services, the point of
view is very important. If we take the example of robustness testing of an IoT platform in
the IoT system, robustness testing may be compared to a platform having a high number
of devices that are sending data. The test objectives in this case are to analyze how the
platform reacts in stress conditions and if it is put in an unexpected error state. When
taking a device point of view, the same problems are faced. By nature, IoT platforms and
gateways are more robust having larger infrastructures. IoT devices like energy harvest-
ing temperature sensor are harder to test in a effective way with robustness testing. All
devices are not eligible to robustness testing as this method requires being able to send a
command to the device and therefore it is limited to actuators or sensing device that can
be interrogated about their data. In some cases this challenge can be lifted with the imple-
mentation of a upper tester module that comes along the device for testing purposes only.
The upper tester allows a tester to put a device into testing mode and gives him access
to stimulate it, for example asking a temperature sensor to send its data. Upper tester
are still uncommon, and a relatively low number of device manufacturer are implementing
them.

Knowing that, it is much easier to execute a robustness testing campaign on a single
device as it would imply low effort in developing the upper tester. The next step is using
robustness testing in a large scale point of view.

3.3. ROBUSTNESS TESTING FOR IOT SYSTEMS 27

3.3.2 ROBUSTNESS TESTING FOR LARGE SCALE IOT SYSTEM

When speaking about large scale robustness testing in IoT system, one must first con-
sider defining the term large scale. Indeed, the test objectives are widely different when
considering a smart-city with millions of devices or a smart home with a few dozen of
sensing devices. Either way, large scale can be seen as an IoT deployment involving up
to about hundreds devices. The limit is mainly testing hardware dependent. As a matter
of fact, large scale tests are not different than the single component tests. The challenge
is on running in parallel hundreds of instances of the same test case over an IoT de-
ployment. The success of robustness testing a large scale IoT system depends on the
infrastructure, large amount of data are transmitted into the infrastructure and an even
larger amount of data needs to be collected. The testing equipment also need to be fit to
analyze testing results and give a final verdict on the test result in real time.

The next chapter presents the state of the art of IoT testing, Model-Based Testing and the
tools available that where used as is or augmented in order to respond to our research
challenges.

4
STATE OF THE ART

Contents
4.1 IoT testing . 30

4.1.1 Conformance Testing . 30

4.1.2 Security Testing . 31

4.1.3 Robustness Testing . 32

4.2 Model-Based Testing for IoT . 33
4.3 Languages and Tools for Testing . 35

4.3.1 TTCN-3 . 35

4.3.2 CertifyIt . 39

4.3.3 MBeeTle . 39

In this section, we review work related to our proposed approach in the area of MBT
for Internet of things systems, more specifically mobile and cloud testing, and MBT as a
service. MBT has been extensively studied in the literature [25], however, the majority of
existing approaches in connexion to the IoT domain are mostly designed for mobile appli-
cation. For instance, authors in [22] propose a state machine models of Graphical User
Interface (GUI) approach for testing Android applications. Another instance in [43], say
that one of the main domains to use this approach is web-based applications. But such
test sequences are very low-level and fragile, so it is desirable to have higher-level ap-
proaches to generating the test sequences, which is an area where MBT can contribute.
Other work concentrates on vulnerability testing of mobile applications based on mod-
els, for instance authors in [29] propose an MBT approach to generate automatically test
cases using vulnerability patterns, that target specifically the Android Intent Messaging
mechanism.

In addition, a recent survey by Incki et al. [23] reports on the work done on testing in
the cloud, including mobile, cloud applications and infrastructures, testing the migration
of applications in the cloud. They report a categorization of the literature on cloud testing
based on several elements among which: test level and type, as well as contribution in
terms of test execution, generation and testing framework. They report that testing as a
service for the interoperability for cloud infrastructures today still remains a challenge. Au-
thors in [15] propose a MBT approach based on graph modeling for system and functional
testing in cloud computing. Hence, contrary to these approaches that refer to testing ap-
proaches of the different layers of the cloud (Software as a service, Platform as a service
and Infrastructure as a service), our approach proposes MBT as a service for compliance
and security testing of IoT systems, were the cloud is one element of it.

29

30 CHAPTER 4. STATE OF THE ART

Testing services provided to cloud consumers as well as cloud providers are generally
called Testing as Service (TaaS) [19]. Previous work on testing as a service, to the best
of our knowledge, specifically relates to web services and cloud computing. Zech et al.
in [26] propose a model-based approach using risk analysis to generate test cases to
ensure the security of a Cloud computing environment when outsourcing IT langscapes.
More recently Zech et al. [38] proposed a model-based approach to evaluate the security
of the cloud environment by means of negative testing based on the Telling Test Stories
Framework. MBT provides the benefit of being implementation independent. In this thesis
we propose MBT as service to the Internet of Things, thus making the test cases available
for any platform implementation of the specification. Our model-based test generation
takes into account risk analysis elements and security requirements and it is an extension
of this module of our Model-Based Testing for IoT systems.

4.1 IOT TESTING

This section addresses the panel of existing MBT approaches with a view on the IoT
systems. The MBT can be offline, whereby the test cases are generated in a repository
for future execution or online, whereby the test cases are automatically generated and
executed [44]. In this chapter, we discuss both: offline MBT techniques with respect to
functional and security testing and online MBT techniques. Nevertheless, recent studies
show that current MBT approaches, although they can be suitable for testing the IoT
systems, need to be adapted [42].

4.1.1 CONFORMANCE TESTING

Standards are a well-known methods used to increase the user’s confidence and trust
in a product. MBT approaches supporting conformance testing to standards have been
applied to different domains, such as electronic transactions and notably for Common
Criteria (CC) certifications, for instance, on the Global Platform (GP). Authors in [42]
propose a testing framework for IoT services, which has been evaluated on IoT test bed,
for test design using behavioural modelling, based on state machines and test execution
in TTCN-3. In addition, IoT Behavioral models (IoTBM) represent a chosen explicit model,
describing the service logic, used protocols, and interfaces as well as the interactions with
the connected services. IBM reports as well on the application of MBT for compliance to
standards based on the IBM tool suite (Rhapsody and Jazz) [47].

Conformance test suites increase the probability that software products are conform to
their specification. Correct implementation and utilization of standards lead to portability
and interoperability. Portability is the ability to move software programs or applications
among different computer systems with minimal change. Interoperability is defined as
the capability of two or more systems to exchange and use information. Although con-
formance testing is not a guarantee for interoperability, it is an essential step towards it.
Conformance testing provides software developers and users with assurance and confi-
dence that the conforming product behaves as expected, performs functions in a known
manner, or possesses a prescribed interface or format.

In order to test that a specification is faithfully adhered to, one must carefully examine the
specification and compare the implementation’s result against the syntax and semantics

4.1. IOT TESTING 31

contained in the specification. Oftentimes, errors or ambiguities in the specification are
discovered. These errors and ambiguities can then be fed back to the standards com-
mittee who developed the specification, for correction. For software developers, using
conformance test suites early-on in the development process can help improve the qual-
ity of their implementations by identifying areas in which they conform as well as those
areas in which they do not.

4.1.2 SECURITY TESTING

Mode-Based Security Testing (MBST) is a Dynamic Application Security Testing (DAST)
approach consisting of dynamically checking the security of the systems’s security
requirements [69]. Furthermore, MBST has recently gained relative importance in
academia as well as in the industry, as it allows for systematic and efficient specifica-
tion and documentation of security test objectives, security test cases and test suites,
and automated or semi-automated test generation [24]. Existing work in MBST focuses
mainly on functional security and vulnerability testing. Functional security testing aims
at ensuring the correct implementation of the security requirements. Vulnerability testing
is based on risk assessment analysis, aiming to discover potential vulnerabilities. Au-
thors in [44] discuss extensively the existing approaches on both aspects of MBST. Exist-
ing approaches address various domains, such as electronic transactions, cryptographic
components, but not directly the IoT domain.

A security certification is needed to ensure that a product satisfies the required security
requirements, which can be both proprietary requirements (i.e., defined by a company
for their specific products) and market requirements (i.e., defined in procurement spec-
ifications or market standards). The process for certification of a product is generally
summarized in four phases [45]:

1. Application. A company submits a product for evaluation to obtain certification.

2. An evaluation is performed to obtain certification. The evaluation can be done in
three ways:

• It can be conducted internally to support self-certification.

• It can be performed by a testing company, who legally belongs to the product
company.

• It can be a third-party certification where the company asks a third-party com-
pany to perform the evaluation of its product.

3. In the case of an internal company or a third-party company evaluation, the evalua-
tion company provides a decision on the evaluation.

4. Surveillance. This is a periodic check on the product to ensure that the certification
is still valid or it requires a new certification.

In the market requirements case, the requirements are also defined to support security
interoperability. For example, to ensure that two products are able to mutually authenti-
cate or to exchange secure messages. Security certifications are needed to ensure that
products are secure against specific security attacks or that they have specific security
properties, such as:

32 CHAPTER 4. STATE OF THE ART

• Authentication: Data sender and receiver can always be verified.

• Resistance to replay attacks: Intermediate nodes can store a data packet and
replay it at a later stage. Thus, mechanisms are needed to detect duplicate or
replayed messages.

• Resistance to dictionary attacks: An intermediate node can store some data
packets and decipher them by performing a dictionary attack if the key used to
cipher them is a dictionary word.

• Resistance to DoS attacks: Several nodes can access the server at the same
time to collapse it. For this reason, the server must have DoS protection or a fast
recovery after this attack.

• Integrity: Received data are not tampered with during transmission; if this does not
happen, then any change can be detected.

• Confidentiality: Transmitted data can be read only by the communication end-
points.

• Resistance to MITM attacks: The attacker secretly relays and possibly alters the
communications.

• Authorization: Services should be accessible to users who have the right to access
them.

• Availability: The communication endpoints can always be reached and cannot be
made inaccessible.

• Fault tolerance: The overall service can be delivered even when a number of
atomic services are faulty.

• Anonymization: If proper countermeasures are not taken, even users employing
pseudonyms could be tracked by their network locator.

Nevertheless, in the IoT domain, initiatives exists for security certification, such as the
Alliance for IoT Innovation (AIOTI) [57] through its standardization and policy working
groups that complement the existing certifications, such as the Common Criteria (CC).
However, enabling technologies that help to formally address the specific testing chal-
lenges and that enable the IoT certification today are lacking [39].

4.1.3 ROBUSTNESS TESTING

Online techniques can indeed address the uncertain behavior of IoT systems, but lack
in application and maturity for the IoT domain, as current techniques mostly address a
testbed set-up for execution in a real-life environment, without dealing with the test cases
conception.

Several online tools exist in the MBT literature. For instance, UPPAAL for Testing Real-
time systems Online (UPPAAL TRON) [7] supports the generation of test cases from
models and their online execution on the SUT.

4.2. MODEL-BASED TESTING FOR IOT 33

Authors in [35] express the system and its properties as Boolean equations, and then
used an equation library to check the equations on-the fly. A model-checker is used on a
model with faults produces counter examples, seen as negative abstract test cases.

Shieferdecker et al. designed a mutation-based fuzzing approach that uses fuzzing op-
erators on scenario models specified by sequence diagrams. A set of fuzzing operators
mutate the diagrams resulting in an invalid sequence. Shieferdecker et al. use on-line
behavioral fuzzing which generates tests at run-time [30].

4.2 MODEL-BASED TESTING FOR IOT

The key challenges in testing for scalability, interoperability, and security of the IoT have
proven to be problematic when trying to resolve them with traditional testing methods,
which is a strong roadblock for wide adoption of this innovative technology. This section
aims to describe how the MBT has addressed this problem though IoT testing.

MBT designates any type of “testing based on or involving models” [41]. Models rep-
resent the SUT, its environment, or the test itself, which directly supports test analysis,
planning, control, implementation, execution, and reporting activities. According to the
World Quality Report 2016 [40], the future testing technologies require agile development
operations for more intelligence-led testing to meet speed, quality, and cost imperatives.
Hence, MBT, as a promising solution, aims to formalize and automate as many activities
related to testing as possible and thereby increase both the efficiency and effectiveness
of testing. Following the progress of Model-Based Engineering [1] technologies, MBT
has increasingly attracted research attention. Many MBT tools are developed to support
the practice and utilization of MBT approaches in real cases. They provide functions
that cover three MBT aspects i.e., generation of test cases, generation of test data, and
generation of test scripts [9], and are used to conduct different types of testing, such as
functional, performance, and usability testing [31].

Nevertheless, functions of MBT tools vary largely from one to another. Users with-
out prior knowledge struggle to choose appropriate tools corresponding to their testing
needs among the wide list. MBT tools require input in terms of different models (e.g.,
UML, PetriNet, BPMN, etc.) and focus on different MBT aspects with different genera-
tion strategies for data, test cases, and test scripts. Moreover, most of the existing MBT
tools support mainly automatic test case generation rather than test data generation and
test script generation due to two reasons: first, test case generation requires complicated
strategies involving various test selection criteria from MBT models, and the generation
results highly reply on the selected criteria and strategies; second, test case generation
brings many more testing benefits, as the main efforts spent on traditional testing lie in
manual preparation of test cases. To provide users with a common understanding and
systematic comparison, this chapter reviews the identified set of MBT tools, focusing on
the test case generation aspect. MBT tools have been previously reported and compared
in several surveys: the first report is presented in [5] in 2002 to illustrate the basic princi-
ples of test case generation and relevant tools; a later comparison is made in [46] from
perspectives of modeling, test case generation, and tool extensibility; since more and
more MBT tools rely on state-based models, the review in [18] illustrates the state-based
MBT tools following criteria of test coverage, automation level, and test construction. The
most recent work [36] presents an overview of MBT tools focusing on requirement-based

34 CHAPTER 4. STATE OF THE ART

designs and also illustrates an example by use of the representative tools. Due to the
increasing popularity of MBT, existing MBT tools have rapidly evolved and new available
tools have emerged every year and MBT as a Service (MBTaaS) is one of these tools.

MBT is an application of model-based design for generating test cases and executing
them against the SUT for testing purpose. The MBT process can be generally divided
into five steps [25]

• Step 1: Model Design. In the first step, users create MBT models from require-
ment/system specifications. The specification defines the testing requirements or
the aspects to test of the SUT (e.g., functions, behaviors, and performances). The
created MBT models usually represent high-level abstractions of the SUT and are
described by formal languages or notations (e.g., UML, PetriNet, and BMPN). The
formats of the MBT models depend on the characteristics of the SUT (e.g., function-
driven or data-driven system, deterministic or stochastic system) and the required
input formats of the MBT tools.

• Step 2: Test Cases Generation. In the second step, abstract test cases from
the MBT models are generated automatically, based on test selection criteria. Test
selection criteria guide the generation process by indicating the interesting points to
be tested, such as certain functions of the SUT or coverage of the MBT model (e.g.,
state coverage, transition coverage, and data flow coverage). Applying different
criteria to the same MBT model will generate different sets of test cases, that could
be complementary. Abstract test cases without implementation details of the SUT
are generated from the MBT models.

Figure 4.1: The MBT Workflow

• Step 3: Concretization of the Test Cases. In the third step, abstract test cases
(produced in step 2) are concretized into executable test cases with the help of map-
pings between the abstraction in the MBT models and the system implementation
details. Executable test cases contain low-level implementation details and can be
directly executed on the SUT.

• Step 4: Execution of the Test Cases. The executable test cases are executed
on the SUT either manually or within an automated test execution environment.
To automate the test execution, system adapters are required to provide channels

4.3. LANGUAGES AND TOOLS FOR TESTING 35

connecting the SUT with the test execution environment. During the execution, the
SUT is respectively stimulated by inputs from each test case, and the reactions of
the SUT (e.g., output and performance information) are collected to assign a test
verdict. For each test case, a test verdict is assigned indicating if a test passes or
fails (or is inconclusive).

• Step 5: Results Analysis. At the end of the execution, testing results are reported
to the users. For non-satisfactory test verdicts, the MBT process records traces
to associate elements from specifications to the MBT models and then to the test
cases, which are used to retrieve the possible defects.

4.3 LANGUAGES AND TOOLS FOR TESTING

This section revolves around the tools and main testing languages used in the rest of this
thesis. We will present the main test execution language, the main modeling tool used for
test case generation and the tool used for behavioral fuzzing testing.

4.3.1 TTCN-3

Figure 4.2: TTCN-3 logo.

The Testing and Test Control Notation version 3 (TTCN-
3) is an standardized language designed for testing and
certification. It is developed and maintained by the Euro-
pean Telecommunication Standardization Institute (ETSI)
and also is adopted by the International Telecommunica-
tion Union - Telecommunication Standardization Sector
(ITU-T).

TTCN-3 is a widely used language, well established in the
telecommunication, automotive and medical domains, with intentions to expand to the
banking sector. For example, TTCN-3 is the language of choice of the third Generation
Partnership Program (3GPP) [56] for all their test suites, including the prestigious test
suite for Long Term Evolution (LTE)/4G terminals. The WiMax Forum used TTCN-3 for
certifying the conformance of terminals and the interoperability of terminals and network
elements. Also, ETSI is using it in all of its projects, including electronic passport and Next
Generation Networks (NGNs). The success of the language can be noticed in the annual
international TTCN-3 User Conference, where the future development of the language is
discussed[20].

As TTCN-3 is a key test language to this thesis and its specificities are extremely impor-
tant to understand, in this section we will start with a brief of the language’s history and
continue with its characteristics, its similarities and differences from other programming
languages.

4.3.1.1 TTCN-3 LANGUAGE HISTORY

The work on the Tree and Tabular Combined Notation (TTCN) first started in 1983 in the
International Organization for Standardization (ISO) and was published in 1992, after 9

36 CHAPTER 4. STATE OF THE ART

years of development. It was first developed as an international standard as part 3 of
the ISO 9646 Methodology and Framework for Conformance Testing. This first version of
TTCN had some interesting characteristics that contributed to its wide acceptance, as its
tabular notation and its verdict system.

The second version addressed some design faults of the first version, like the difficulty to
describe the concurrent behaviours in the tests. This was soon recognized and in the new
version was added the parallelism and the concepts of modules to increase re-usability.
This extended TTCN was named TTCN version 2 (TTCN-2) in ISO and in ITU-T in 1998.
After the release, there were reported some defects in TTCN-2. The experts working on
ETSI projects found and corrected them. The release of this revised version of TTCN-2
was published in ETSI technical report TR 101 666. But because ISO did not publish
this version of TTCN, it became known as TTCN-2++. This version of the language
was designed for conformance protocol testing (used for OSI-based protocol testing), but
was not appropriate for other testing paradigms like interoperability, robustness, system,
regression and load. Also, there was no language support for API/platform testing.

In the meantime, ISO transferred the responsibility for the TTCN standard to ETSI. Hav-
ing these limitations in mind, ETSI created the Special Task Force (STF) 133 and 156
and started working on a new version of TTCN in 1998 and completed it in October 2000.
Among the other things, this new version had entirely new name, so since then, TTCN
means ”Testing and Test Control Notation” instead of ”Tree and Tabular Combined Nota-
tion”.

There are a lot of changes in this version: The tabular notation is replaced by a usual
programming language-like notation. This greatly improves the language because the
new version has a well-defined syntax, static semantic and precise execution algorithm.
The old tabular presentation format is not anymore preserved in a legacy form (the last
versions of the documents describing tabular and graphical presentation formats are from
February 2007). The language now supports dynamic concurrent testing configurations,
operations for synchronous and asynchronous communications, ability to specify encod-
ing information and other attributes, data and signature templates with powerful matching
mechanisms, type and value parametrization, assignment and handling of test verdict,
test suite parameterization and test case selection mechanisms[4], making it a language
of choice for testing purposes.

4.3.1.2 LANGUAGE SPECIFICS

The last version of TTCN-3 has introduced a wide range of changes to the language, min-
imizing the efforts needed by a user, already familiar with other programming languages,
to learn and use TTCN-3.

A TTCN-3 test suite consists of one or more modules. A module is identified by a name
and may contain type, port and component declarations and definitions, templates, func-
tions, test cases and control part for executing test cases. The control part can be seen
as the main function in other programming languages as C or Java.

All code must be inside a module. A module can import definitions (types, templates,
ports, components, functions, testcases and altsteps) from other modules and use them
in its own definitions or control parts. Also, using the visibility flags public, friend and
private we can manage the visibility of an element. Public is the visibility by default. We

4.3. LANGUAGES AND TOOLS FOR TESTING 37

can see an element ”friend” when two modules in-between are declared as ”friends and
the private elements aren’t visible outside the module. Inside a module, we can group
certain elements with the definition of a group. The group is visible by default, but the
members of the group follow their visibility parameters inside of the group. For example,
when a private element is declared inside of a group that contains two other elements,
the two public elements in the group are visible, but not the third element with ”private”
scope.

Compared to the ”traditional” programming languages, TTCN-3 has much larger range
of data types. This way, TTCN-3 allows creating a close correspondence between the
data types in the SUT and the testbed. The standard data types that we can find in other
programming languages are also present (integer, float, boolean, (universal) charstring).
There are some data types that are unique to TTCN-3 that allows managing the test case
result verdicttype and reflect its usage as a test scripting language with a protocol testing
background (bitstring, hexstring, octetstring). Every user-defined type is a subtype of
an already defined type because it restricts the range of the root type. In order to call
two types compatible one with the other, they have to share the same root type. There
is one special type, called anytype, which is an union of all the types that are visible in
the module. Anytype is always defined in each module and is a different type for each
module. The name for each variant of the anytype is the name of the type of that variant.

Because TTCN-3 is a statically typed language, each entity is declared along with its
type. A variable has its type to describe which values can be stored inside, a function has
its types to describe the structure of the parameters and the return value, and a port has
its types to describe which values can be sent and received thorough the port.

Test cases produced by TTCN-3 is abstract, because it does not know how or where to
send the content, it only knows that it has to send it. This is where the TTCN-3 Control
Interface (TCI) and the TTCN-3 Runtime Interface (TRI) get into the process. The TCI
is composed of Test Management (TM) module, Test Logging (TL) module, Coding and
Decoding (CD/CoDec) module and Component Handling (CH) module. The TRI is Sys-
tem Adapter (SA) and Platform Adapter (PA) modules, as shown on the figure 4.3. All of
these modules are already provided by most TTCN-3 tools, except the CoDec and the SA
modules. The first is needed to convert TTCN-3 structures to a binary, text, XML, JSON
or some other serializable format, and the latter is needed in order to communicate with
the SUT, because it implements the protocols that specify how the converted data from
the codec can be sent or received from the SUT (for example convert the structure to a
HTTP request or response, if the protocol used is HTTP).

TTCN-3 is a language constructed for protocol testing. In order to make sure that the
messages sent and received in the communication with the SUT are correct, we need to
validate the data inside. This is made possible with a language structure called template
that is closely related to the data type. In a template, for example, we can specify the
values needed to be sent to the SUT. But the real benefit of the templates comes when we
use them for checking the received value. Instead of checking for one concrete value, we
can specify multiple values, intervals, or simply check if that data structure is received (for
example, a HTTP request) without verifying its content. This check is made by a powerful
matching mechanism that works on per-field basis. If there is at least one field that does
not match the value with the template, the result is failed. To allow more flexibility, the
templates can be parameterized like a function. In the parameters one can specify the
parameters (or even other templates) to be used as reference values in the template.

38 CHAPTER 4. STATE OF THE ART

SA: System adapter

Test system user

SUT: System Under Test

TM: Test Management TL: Test Logging

SA: System Adapter PA: Platform Adapter

TCI

TRI

TE: TTCN-3 Executable
(Compiled)

CH:
Component

Handling

CD:
Codec

Figure 4.3: TTCN-3 architecture

Also, there is a possibility to derive a template from another using the keyword ”modifies”
and specify only the fields to verify that are different from the source template.

The TTCN-3 functions are virtually the same as the functions in other languages. We can
specify the function’s name, its input parameters and return type/value. The parameters
are configurable in a way that we can set the dataflow for each one and there are three
possibilities: in, out or inout. The in parameter, activated by default, is used as any normal
parameter that has to pass values from the function’s caller. The out and inout parameters
are the inverse of in, passing the parameter by reference. We write into the parameter
variable and the last value at the end of the function will be transferred back to the caller.

A test case is the main structure in TTCN-3. Its syntax is the same as a function, with
the only difference that here after the parameters we have to specify which component
the test case is running on, with the clause ”runs on”. Inside we assign a verdict (pass,
inconc, fail) depending on the state of the test case. An example of a test case is provided
in the Annex.

Alternatives (alt) are structures used inside a function or test case. When we use oper-
ations like timeout or receive, because these are blocking operations, the execution will
not proceed before a matching message is received or the timer has expired. The alt
statement allows several blocking statements to be regrouped, and the first blocking op-
eration that will finish its execution will unblock the whole group and the test or function
can continue with the execution.

Timers are defined using the timer keyword at any place where variable definitions are
permitted. They measure time in seconds, but their resolution is platform dependent.

4.3. LANGUAGES AND TOOLS FOR TESTING 39

Timers are useful in the communication phase of a test case combined with an alternative,
to ”fire” a time-out when there is no response from the SUT after a certain time.

In order to specify how the test system will communicate with the SUT, in TTCN-3 one
use the notion of ports and components. A TTCN-3 port is specified with the type of
messages it can send and receive. In an implementation of a port, there can be practical
limits of the number of messages a port can hold in its queue. The behaviour of a test
case is executed in one or more test components composed from one or more ports
that describe its interface. Every port in the component has its own message queue to
store received messages. The component can have its own state with local variables,
constants and timers.

TTCN-3 is a language that is created with the idea of testing. A maturity proof for the
language is that it’s developed and used extensively in the international standardisation
bodies like ITU-T and ETSI for nearly all new standards produced by them. It contains
all the features needed to write and execute a lot of test types and can be used to test
the SUT from different perspectives in the same time. A number of research projects and
initiatives are exploring different areas of application but it still remains to be seen to what
extent industry and ETSI will see a need and use it for such an extension.

4.3.2 CERTIFYIT

CertifyIt [53] is a modeling tool proposed by Smartesting Solution & Services [66]. The
CertifyIt tool supports the modeling of application behaviour as well as business pro-
cesses and rules to control the automatic generation and maintenance of test cases.
Traceability is managed automatically and the produced test cases are published and
maintained in the form of manual tests or automatic scripts composed of keywords to be
implemented. CertifyIt helps to industrialize and optimizes test process: the test model
makes it possible to master the functional complexity and to generate the most effective
tests by ensuring the traceability links. It is also the single point of maintenance facilitating
the update of test cases when specifications change. The various publications modules
accelerate the production of reporting documents, for example for security assessments.
The tool comes with many optional modules that are used in this thesis in order to take
full advantages of it. Here are a couple of used optional modules :

• Test Purpose: The ”Test Purpose” module provides a dedicated language that en-
ables the representation of test patterns and generate tests that are variations of
it.

• MBeeTle is a module dedicated to automated exploratory testing for robustness pur-
poses; more precisely, MbeeTle implements intelligent exploratory testing because
exploration is guided by the test model. This will be further detailed in section 4.3.3.

CertifyIt is a test generation tool and the target is to execute them.

4.3.3 MBEETLE

Behavioral fuzzing aims at verifying the robustness of the systems to ensure that they will
not enter in an unpredictable state where the system is vulnerable and for instance that

40 CHAPTER 4. STATE OF THE ART

confidential information might be disclosed. Current research results on fuzzing show
that it is very effective in finding security vulnerabilities, due to its stochastic nature, nev-
ertheless results are dependent on the initial systems configuration. The approach is
complementary to other MBT testing approaches and can reveal unexpected behaviors
due to its random nature.

In Figure 4.4 we depict the behavioral fuzzing process, using the approach on-the fly [3].
It is based on the same MBT models [9] used for security, functional and vulnerability
testing; it generates test cases using behavioral fuzzing, implemented in the tool that is
presented hereafter: MBeeTle. MBeeTle is based on the CertifyIt technology [13] and its
fundamentals: Graphical User Interface (GUI), heuristics and algorithms. Contrary to the
previous two approaches where the test case generation aims to cover a standard or the
security test objectives produced from the test purposes, MBeeTle generates test cases
to cover the test objectives based on the expected behavior of the system. The tool relies
on the principle of rapidly generating as high as possible many fuzzed tests with a high
number of steps in each period using a weighted random algorithm that can be configured
with different strategies. It explores the system states on different uncommon contexts,
which may potentially put the system into a vulnerable state. Then the vulnerable state
might be exploited to disclose confidential information. The generated tests are valid
with respect to the constraints in the MBT model. Thus, the produced test cases are
syntactically correct with respect to the systems inputs.

Figure 4.4: MBeeTle - Behavioral Fuzzing Process

In addition, as illustrated in Figure 4.4, the fuzzing process is defined as follows: the tool’s
algorithm produces a test step, which could be either exported for later execution (offline
testing) either simultaneously executed on the system under test (online testing). In the
case of online test execution, if no discrepancy is detected between the expected and the
actual result, the tool generates another step. This generation process stops when the
stop conditions are reached. The test generation algorithms are weighted-random. They
have several parameters which allow to configure different heuristics with respect to the
testing strategy token in the project. For instance, the parameters that can be configured
are: the number of test cases, the length (number of test steps) of the test case, the time
spent for searching the next steps, coverage of test objectives (REQs/AIMs) etc, allowing
a large panel of parameters to impact its effectiveness and efficiency. Based on the
parameters used to pre-configure the test generation with MBeeTle, the tool chooses its
next step and stops the generation when the stop conditions are reached or if a user stops
the generation manually. A test step is generated randomly by choosing the available
states possibly leading to an error from a given context of the system (for instance, start

4.3. LANGUAGES AND TOOLS FOR TESTING 41

exploring the systems behavior when administrator operations are called from normal
user connection). At each test step, the tool based on the model calculates the expected
state of the system. Then, based on this expected state and the chosen heuristics and
algorithm, it chooses the next step. The generation of the test case stops either if the
pre-configured conditions are reached or if a discrepancy between the expected and the
actual result is detected.

The next section presents with more details the contributions of the thesis previously
introduced in Section 1.3.

5
CONTRIBUTION SUMMARY

Contents
5.1 Methods for MBT of IoT systems . 43

5.1.1 MBT behavioral modeling for standardized IoT platforms 44

5.1.2 Pattern-driven and model-based security testing 44

5.1.3 Behavioral fuzzing for IoT systems 45

5.2 Tooling . 47

5.2.1 Around CertifyIt . 47

5.2.2 MBTAAS: Integrated Framework 48

In this chapter we talk about the contributions of the thesis. Starting with the methods for
Model-Based Testing of IoT systems where we discuss how to apply MBT on the different
points expressed in section 1.3 of the introduction. We also see the contribution tool
wise, how we used existing tools that are introduced in the state of the art and what are
the modifications and the specificities that we applied in order to respond to our research
challenges.

5.1 METHODS FOR MBT OF IOT SYSTEMS

The implementation process of IoT involves the sum of all activities of handling, process-
ing and storing the data collected from sensors. This aggregation increases the value
of data by increasing the scale, scope, and frequency of data available for analysis. But
aggregation can only be achieved through the use of various standards depending on the
IoT application in use.

There are two types of standards relevant for the aggregation process; technology stan-
dards (including network protocols, communication protocols, and data-aggregation stan-
dards) and regulatory standards (related to security and privacy of data, among other is-
sues). Challenges facing the adoption of standards within IoT are: standards for handling
unstructured data, security and privacy issues in addition to regulatory standards for data
markets.

43

44 CHAPTER 5. CONTRIBUTION SUMMARY

5.1.1 MBT BEHAVIORAL MODELING FOR STANDARDIZED IOT PLATFORMS

FIWARE uses the Open Mobile Alliance (OMA) NGSI-9/10 standardized RESTful inter-
faces [21]. This standardized interface is evolving in parallel with the IoT technology, to
be able to take into consideration its novelties. For instance, the OMA released the NGSI
interfaces - version 1 (NGSI v1) and FIWARE is aiming to contribute to the standard to re-
lease NGSI v2. Thus, it needs to be easy to perform regression testing when the standard
evolves. MBT offers a relatively safe, effective, and systematic way to create regression
test suites and new test suites to cover new functionalities, based on models [34].

In addition, RESTful systems communicate over the Hypertext Transfer Protocol (HTTP)
with the same HTTP verbs (GET, POST, PUT, DELETE, etc.) that web browsers use to
retrieve web pages and to send data to remote servers. Their purpose is to exchange
information about the availability of contextual information.

In our context of testing the implementation of the data handling GE, we are interested
in applying conformance testing on NGSI-9/10. Moreover, although it is often assumed
that GEs are correctly implemented and are used by or are part of the services provided
by FIWARE, non-compliance to the FIWARE specifications may lead to several dysfunc-
tional interoperability issues. To ensure the interoperability, the GEs should be thoroughly
tested to assess their compliance to these specifications. Model-Based Testing (MBT) is
considered to be a lightweight formal method to validate software systems. It is formal
because it works of formal (that is, machine-readable) specifications (or models) of the
software SUT (usually called the implementation or just SUT). It is lightweight because,
contrary to other formal methods, such as B and Z notation, MBT does not aim at math-
ematically proving that the implementation matches the specifications, under all possible
circumstances, by refinement process from model to code. In MBT, the model is an ab-
straction of the SUT and represents the tested perimeter based on the specifications,
which is not necessarily the entire system. As such, it allows to systematically generate
from the model a collection of tests (a ”test suite”) that, when run against the SUT, will
provide sufficient confidence that the system behaves accordingly to the specification.
Testing follows the paradigm of not proving the absence of errors, but showing their pres-
ence [2]. MBT, on the other hand, scales much better and has been used to test life-size
systems in very large projects [9].

In FIWARE, we show that MBT conformance model is a representation of the standard.
Model includes all the behaviours of the NGSI-v1 and generates the complete suite of test
cases that are needed to test for implementation compliance to that standard. Changing
an MBT model designed for conformance testing implies that the standard has changed.

5.1.2 PATTERN-DRIVEN AND MODEL-BASED SECURITY TESTING

The notion of test pattern is widely known and it is an effective and an efficient possibility
to capitalize the knowledge on testing solutions addressing vulnerabilities testing [8]. A
security test pattern is defined as a solution to describe the testing procedure for each
vulnerability. oneM2M IoT vulnerabilities where identified and enhanced to target a wider
range of IoT systems in the H2020 ARMOUR project (Appendix A) as part of the thesis
research work. Vulnerability testing (pattern driven) aims to identify and discover potential
vulnerabilities based on risk and threat analysis. Security test patterns are used to derive
accurate test cases focused on the security threats formalized by the targeted test pattern.

5.1. METHODS FOR MBT OF IOT SYSTEMS 45

We propose a security framework based on risk and threat analysis that defines a list
of potential vulnerabilities shown in Appendix A for the different IoT layers. Figure 5.1
illustrates the methodology applied for the definition of generalized security test patterns
® and towards the conception of security test cases ¯. Each vulnerability ­ is associated
to a test pattern. To assign a test patterns to a vulnerability, a set of test procedures have
been conceived for verifying the system resistance to the vulnerabilities. Based on these
test procedures specific for our experiments ¬ that are introduced in chapter 10, we have
created a library of test patterns generalized to the four IoT layers (Figure 2.1).

Vulnerability
Patterns

Security Test
Patterns

Security Test
Repository

Test Procedure
definition per EXP1

2

3

4

Figure 5.1: Security Test Patterns definition methodology

Security test patterns define test procedures for verifying security threats of IoT systems,
representatives of different IoT levels, thus facilitating the reuse of known test solutions
to typical threats in such systems. Table 5.1 presents the test patterns and gives an
overview of the vulnerabilities that they cover. With the vulnerabilities and test patterns
defined, a set of test cases is generated for test execution.

The first step after vulnerability and test pattern identification is to build a model repre-
senting the behavior of the System Under Test (SUT). The model takes as input a set of
security test patterns in order to generate security tests in TTCN-3 format. Next, the tests
are compiled and produces an Abstract Test Suite (ATS) in TTCN-3 format to be compiled
and executed. In the scope of the thesis, TITAN [67] test case execution tool was used.
The goal of the testing process is to execute the MBT-generated tests on the SUT.

5.1.3 BEHAVIORAL FUZZING FOR IOT SYSTEMS

Behavioral fuzzing provides many diverse types of valid and invalid input to software to
make it enter an unpredictable state or disclose confidential information. It works by au-
tomatically generating input values and feeding them to the software. Fuzzing can use
different input sources. The developer running the tests can supply a long- or short-list
of input values or can write a script that generates the input values. Also, fuzz testing
software can generate input values randomly or from a specification; this is known as

46 CHAPTER 5. CONTRIBUTION SUMMARY

Table 5.1: Vulnerabilities overview

Test Pattern Test Pattern Name Related
ID Vulnerabilities

TP ID1
Resistance to an unauthorized access,
modification or deletion of keys V1, V2, V3, V4, V5

TP ID2 Resistance to the discovery of sensitive data V6
TP ID3 Resistance to software messaging eavesdropping V7
TP ID4 Resistance to alteration of requests V8
TP ID5 Resistance to replay of requests V9
TP ID6 Run unauthorized software V10

TP ID7
Identifying security needs depending on the
M2M operational context awareness V12

TP ID8
Resistance to eaves dropping
and man in the middle V13

TP ID9
Resistance to transfer of keys
via of the security element V14

TP ID10 Resistance to Injection Attacks V16

TP ID11
Detection of flaws in the authentication
and in the session management V17

TP ID12 Detection of architectural security flaws V18

TP ID13
Detection of insecure encryption
and storage of information V19

generation fuzzing. Traditionally, fuzzing is used and the results show that it is very effec-
tive at finding security vulnerabilities, but because of its inherently stochastic nature, the
results can be highly dependent on the initial configuration of the fuzzing system.

”Practical Model-Based Testing: A tools approach” [9], defines Model-Based Testing as
follows: We define model-based testing as the automation of the design of black-box
tests. The difference from the usual black-box testing is that rather than manually writing
tests based on the requirements documentation, we instead create a model of the ex-
pected SUT behavior, which captures some of the requirements. Then the model based
testing tools are used to automatically generate tests from that model.

Figure 5.2 describes the online generation methodology.

MBT	Model	
Online	test	
genera1on	

Adapta1on	
Layer	

System	
Under	Test	

Test	Step	
Test	Step	
Execu1on	

Test	Step	
Result	Observa1on	

Test	Step	
Result	

Figure 5.2: Online behavioral fuzzing generation methodology

To communicate with the SUT in its own language and protocol, the online test generator
sends its generated test steps to an adaptation layer that will translate the tests into
executable steps. The result of each action taken on the SUT is traced back to the
generator to decide if it should continue the test generation by exploring the model or to
interrupt the process depending on the status of the last step result. MBeeTle also offers

5.2. TOOLING 47

offline behavioral fuzzing test generation service that we opted to use and the process is
further described in figure 5.3.

MBT Model
Offline test
generation

Adaptation
Layer

System
Under Test

Test Step
Test Step
Execution

Test Step
Result Observation

Test Step
Result

Test
Repository

Figure 5.3: Offline behavioral fuzzing generation methodology

After creating the model we generate an offline behavioral fuzzing test repository contain-
ing long test traces and ready to be executed against the SUT. We explore in more details
this process in chapter 9.

5.2 TOOLING

For any testing program to be successful it must meet the specific goals of the confor-
mity assessment program. Usually a conformity assessment program must be efficient,
effective and repeatable. Efficient enough to minimize costs of testing by testing faster.
Effective test tools must be optimized to maximize automation and minimize human inter-
vention. A repeatable conformity assessment is primordial in many practical situations,
where there is no time or resources to repeat measurements more than just a few times.
Critical areas need to be identified for testing. Other areas that are not critical and require
less testing also need to be identified. It is too expensive to ”just test everything.”

Testing procedures and procedures for processing test results need to be automated
where possible. The testing program must be effective. It must test the critical areas
required by the specification or standard to meet the requirements. It must provide the
desired level of assurance for its customer base. To meet international guidelines test re-
sults must be repeatable and reproducible. Repeatable results mean that different testers,
following the same procedures and test methodology, should be able to get the same re-
sults on the same platform. Some testing programs require reproducibility, that different
testers, following the same procedures and test methodology, should be able to repeat
the results on different platforms. This section shows how our tools enable to respect
those requirements.

The next section proposes to give an overview around the test generation and execution
tools.

5.2.1 AROUND CERTIFYIT

The MBT process as we described it previously is obtained with the help of the Smartest-
ing CertifyIt tool. In a first step, a tester takes into consideration all the requirement from
the specification in order to create the model of the System Under Test (SUT). This model
is defined by a combination of a subset of precise UML and OCL [12]. Then the model

48 CHAPTER 5. CONTRIBUTION SUMMARY

is given to the CertifyIt test generation tool who will automatically generate the tests case
repository. The test case generator emphasizes on covering all the test objectives [16].

The CertifyIt tool provides an API that enables its users to customize its usage through
the use of plugins. We explore two different types of plugins. The first type of plugin is the
CertifyIt publisher. The publisher enables generated tests to be exported into targeted
executable scripts for test execution and result analysis. The CertifyIt tool has default
publishers embedded (HTML, JUnit, XML. . .). The CertifyIt publisher are modules that
can be developed and added to the tool. A CertifyIt publisher API is given to testers for
custom publisher implementation. We developed in this thesis a SoapUI and a TTCN-3
publisher for our test executions. More details on this are given in the Chapter 7.

The second type of plugins enable to drive the test generation. We use CertifyIT test pur-
pose module to drive our test generation in the case of pattern-driven and model-based
security testing. We explore in details the usage of this module in section 7. We also
use as described previously, the MBeetle module for behavioral fuzzing test generation.
In parallel of test generation, a requirement matrix between each test generated and its
requirement is created thus enabling the traceability of each test case and giving a global
report on specification coverage.

5.2.2 MBTAAS: INTEGRATED FRAMEWORK

The Internet of Things (IoT) market has quickly evolved and new ways of delivering IoT
solutions for service providers have to be designed. IoT as a service is an easy to con-
sume solution with remastered design that offers a multitude of solutions over traditional
IoT services:

• Offer new IoT connectivity services to support rapidly growing IoT data and appli-
cation needs

• Service large geographic areas (no deployment effort for the user)

• Create added value through automation, monitoring and analytics

• Ensure secure and high quality edge-to-cloud computing environments

Microsoft says that IoT as a service ”has a history of simplifying complicated technologies
and bringing them to the masses [62]. Model-Based Testing As A Service (MBTAAS) is a
new integrated framework where we bring testing solutions for IoT systems in the same
way new IoT services are being proposed. Our solution has the ambition to assist IoT
system developers with the deployment of Internet of Things (IoT) tests without the need
for in-house expertise. All the details of MBTAAS framework are detailed in further in
Section 8.

The next chapter is the first chapter of the second part of this thesis. We provide detailed
contributions of the thesis.

II
TECHNICAL CONTRIBUTIONS

49

6
MBT BEHAVIORAL MODELING FOR

STANDARDIZED IOT PLATFORMS

Contents
6.1 MBT Behavioral Model Process . 52
6.2 Test Objectives . 53
6.3 MBT Behavioral Test Generation . 55

This chapter defines the vocabulary and methodology for test generation, test implemen-
tation and test execution. Test generation includes automated activities for deriving
test-relevant artefacts such as test cases, test data, test oracle and test code. Test
implementation describes the steps to be performed for transforming test cases, often
described in an abstract form, into test suites executed onto the SUT. This requires, in
particular, the development of adaptation layers between the test system (the Tester) and
the System Under Test. Test Execution is about configuring, executing in the targeted
environment and reporting test results of experiments. Results can be stored and ex-
ploited in contexts such as labeling and certification.

To execute a test, 2 parts are needed:

1. The System Under Test (SUT), which is the part one want to test and seen as a
black box

2. The Tester (human or an automated service or process) that executes tests by
interacting with the SUT

In an IoT deployment, the SUT usually consists of the following three types of nodes:

1. Server nodes (SN): most often referred to as Server. It provides advanced services
and is most of the time located in the cloud

2. Client nodes (EN for End Node): these include in particular all sensors and ac-
tuators deployed. These can be associated with more or less communicating and
computing capabilities but are in general rather constraints. These could also be
applications such as mobile one.

3. Middle nodes (MN): this includes all gateways, router, etc. used

Nodes can have different roles as they can be exclusively or both at the same time:

51

52CHAPTER 6. MBT BEHAVIORAL MODELING FOR STANDARDIZED IOT PLATFORMS

• Requestor: they initiate the connection by sending a request

• Responder: they respond to a request

These roles are immutable as nodes can play both. However, for sake of simplicity, we
make the following assumption in the remaining of this thesis:

• Server nodes are responders

• Client nodes are requestors

• Middle Nodes can play both roles

Two test configurations can be identified: server side testing and client side testing. The
server side testing proposes test as a service and is detailed in chapter 8.

6.1 MBT BEHAVIORAL MODEL PROCESS

A test is a procedure for verifying a system. It examines an hypothesis based on three
elements: the input data, the object to test, and the expected answer. The object to
be tested is called the SUT, while the expected answer is called the test oracle. It is
by comparing the oracle with the actual result of the system that can be established a
test verdict: pass, inconclusive or fail [16]. The testing activity is multi-dimensional. It
is based on three classification criteria that defines the tests that we will be performed:
accessibility, the type of test and the level of detail. Accessibility defines if one has access
to the SUT code or not (black box or white box). The type of test defines what are the
tests intended to test: functional to verify the operation of an application, robustness to
check the robustness of the application against failures. The level of detail qualifies the
granularity that we wish: unitary to test just pieces of code, integration to test the good
functioning of an application within other applications. Conformance tests or validation
tests are intended to test if an application respects expected specifications.

Model-based testing allows from the modeling of the system under test to automatically
generate tests. A model is an abstract representation of a system. Based on this model,
one are able to generate test cases in the form of test suites. Once the test cases are
executed, it is possible to compare automatically the actual behavior of the system with
its expected behavior (as described in the system’s model). The detailed technique of
MBT for IoT is described in Section 4.2. MBT also avoids poorly designed test cases and
improves the quality of the test process. On the other hand, it requires a certain amount
of efforts for putting in place the necessary tools and new skills for users, since modeling,
although derived from UML, is not straitforward and requires a learning curve [9].

A model can be described with different languages, provided that the test generation
engine understand it. The model is described directly from the test objectives to limit as
much as possible having a model too important and model elements that will not be used.

The process of behavioral modeling to test conformance and interoperability has only
one major difference from the traditional MBT process. This difference is represented in
Figure 6.1.

In traditional MBT, a behavioral model is built upon a list of requirement as show in Fig-
ure 4.1. The model represents the requirements of the SUT and therefore, any change in

6.2. TEST OBJECTIVES 53

Test Design

Generated TestsMBT ModelTest analyst

Test Design

Generated TestsMBT Model
Test

analyst

Standard Requirements
Test

analyst

Traditional MBT Process

Standardized IoT system MBT Process

Requirements

Figure 6.1: Traditional vs Standardized MBT Process

the implementation must be reflected in the model. This is true in agile working environ-
ments where requirements may rapidly evolve over different sprints in development cycle.
On the other hand, a behavioral model for a standardized IoT platform takes the require-
ments of the specific standard to be tested. The model represents the standard itself and
any evolution of the standard has to be reflected by the test analysts in the requirements
then the model in order to keep coherence in the generated tests. The model validates
any SUT for its conformance to the standard it represents and is not tied in any way to
the SUT implementation.

6.2 TEST OBJECTIVES

In an MBT approach, it is a good practice to define the perimeter and from it, identify the
test objectives to be covered. In this way, the test objectives delimit the model subject and
focus. Espr4FastData is a FIWARE Data Handling Generic Enabler (GE) that addresses
the need to process data in real time. Frequently implemented features include filtering,
aggregating and merging real-time data from different sources. Thanks to Complex Event
Processing (CEP), it is easy for applications to only subscribe to value-added data which
is relevant to them. CEP technology is sometimes also referred to as event stream anal-
ysis, or real time event correlation. Figure 6.2 shows in general the event processing of
Espr4FastData, it aggregates multi incoming events and produce a lower number of event
as a result of its processing depending on its configured rules.

Espr4FastData is NGSI9/10 compliant, this means that all of it implementations, called
Generic Enabler implementation (GEi) are supposed to be NGSI9/10 compliant. We say
”supposed” on purpose as the compliance of an implementation needs to be tested before
validating it. The validation process start with studying the tests objectives.

Table 6.1 shows an excerpt of Espr4FastData test objectives. In the test objectives and
for each function of the generic enabler, we define a set of test objectives. Each test
objective is composed of a high level requirement, which is the function name denoted

54CHAPTER 6. MBT BEHAVIORAL MODELING FOR STANDARDIZED IOT PLATFORMS

Event

Event
Event
Event
Event

Espr4FastData Event

Rules

Figure 6.2: Complex Event Processing Espr4FastData

as @REQ, and its refinement, which is an expected behavior of the function, denoted as
@AIM. In our excerpt we represented the requirements ”RESET GE” and ”REGISTER -
CONTEXT”. Each requirement are thoroughly described in the test objective and the
requirement refinement (#AIM) act as test oracles to be achieved.

Table 6.1: Exerpt of Espr4FastData Test Objectives

@REQ Requirement description #AIM
RESET GE This operation completely de-

stroy the CEP threads, the CEP
data, and all the application level
data. It can be used whether
the application is running or not.
It leaves the application clean
and ready to start. EXAMPLE :
http://localhost/EspR4FastData-3.
3.3/admin/espr4fastdata (queried
with HTTP Delete method)

Success Error
In-
valid
URL

Success
and is
EMPTY

REGISTER -
CONTEXT

This operation registers a NGSI
context within EspR4FastData.
This makes an input event type and
related entities to be known from
an EspR4FastData perspective.
An event is characterized by the
involved entities (eg: Van1, Van2,
Plane), its type, and properties that
related to the type. For an event
to be processed, it is mandatory
to be ”known” by the application.
Otherwise it would be rejected.

Success Error
In-
valid
URL

Context Al-
ready exist

In addition, the MBT model is based on these test objectives, by linking each require-
ment/behavior in the function with the corresponding @REQ and @AIM, thus ensuring
the bi-directional traceability between the requirements and the generated tests. Sec-
tion 10.2 describes the real case study of developing a MBT behavioral model and test
execution over the Espr4FastData GEi.

http://localhost/EspR4FastData-3.3.3/admin/espr4fastdata
http://localhost/EspR4FastData-3.3.3/admin/espr4fastdata

6.3. MBT BEHAVIORAL TEST GENERATION 55

6.3 MBT BEHAVIORAL TEST GENERATION

The test generation goal is to automatically generate test cases. There are different
notions of test cases. There are the general notions of a test case, of abstract and
concrete test cases. A test case is a sequence of input stimuli to be fed into a system
and expected behavior of the system. A test case can exist at many different levels of
abstraction. The most important distinction is among abstract and concrete test cases.
An abstract test case consists of abstract information about the sequence of input and
output. The missing information is often concrete parameter values or function names.
Abstract test cases are the first step in test case creation. They are used to get an idea of
the test case structure or to get information about satisfied coverage criteria. For concrete
test cases, the missing information is added. A concrete test case is an abstract test case
plus all the concrete information that is missing to execute the test case. Concrete test
cases comprise the complete test information and can be executed on the SUT. A test
suite is a set of test cases. An oracle is an artifact that comprises the knowledge about
the expected behavior of the SUT. Each test case must have some oracle information to
compare observed and expected SUT behavior. Without it, no test is able to detect a
failure. Typical oracles are user expectations, comparable products, past versions of the
same program (e.g. regression testing), given standards or test specifications.

As explained previously, models are written in Unified Modeling Language (UML). UML
is a standardized general-purpose modeling language. UML includes a set of graphic
notation techniques to create visual models of that can describe very complicated behav-
ior of the system. It is a standardized, graphical ”modeling language” for communicating
software design. It allows implementation-independent specification of:

• user/system interactions (required behaviors)

• partitioning of responsibility

• integration with larger or existing systems

• data flow and dependency

• operation orderings (algorithms)

• concurrent operations

UML is a fusion of ideas from several precursor modeling languages and it is developed
according to the needs to help develop efficient, effective and correct designs, particularly
Object Oriented designs. And also to communicate clearly with project stakeholders (con-
cerned parties: developers, customers, etc). There are different types of UML diagram,
each with slightly different syntax rules:

• Use Cases diagrams. Use case diagrams are usually referred to as behavior dia-
grams used to describe a set of actions (use cases) that some system or systems
(subject) should or can perform in collaboration with one or more external users of
the system (actors).

• Class diagrams. A class diagram is a type of static structure diagram that de-
scribes the structure of a system by showing the system’s classes, their attributes,
operations (or methods), and the relationships among objects.

56CHAPTER 6. MBT BEHAVIORAL MODELING FOR STANDARDIZED IOT PLATFORMS

• Sequence diagrams. A sequence diagram shows object interactions arranged in
time sequences. It depicts the objects and classes involved in the scenario and
the sequence of messages exchanged between the objects needed to carry out the
functionality of the scenario.

• State diagrams. A state diagram describe the behavior of systems. State diagrams
require that the system described is composed of a finite number of states; some-
times, this is indeed the case, while at other times this is a reasonable abstraction.

• Activity diagrams. An activity diagram describes the dynamic aspects of the sys-
tem, it is basically a flowchart to represent the flow from one activity to another
activity. The activity can be described as an operation of the system. The control
flow is drawn from one operation to another.

• Deployment diagrams. Deployment diagram is a structure diagram which shows
architecture of the system as deployment (distribution) of software artifacts to de-
ployment targets. Artifacts represent concrete elements in the physical world that
are the result of a development process.

In this thesis we focus in a first step on class diagrams. Class diagrams are motivated
by Object-Oriented design and programming (OOD, OOP). A class diagram partitions the
system into areas of responsibility (classes), and shows ”associations” (dependencies)
between them. Attributes (data), operations (methods), constraints (OCL), part-of (navi-
gability) and type-of (inheritance) relationships, access, and cardinality (1 to many) may
all be noted. Class diagrams are relevant at three distinct levels, or perspectives:

1. Conceptual: the diagram represents the concepts in the project domain. That is, it
is a partitioning of the relevant roles and responsibilities in the domain.

2. Specification: shows interfaces between components in the software. Interfaces
are independent of implementation.

3. Implementation: shows classes that correspond directly to computer code (often
Java or C++ classes). Serves as a blueprint for an actual realization of the software
in code.

Figure 6.3 represent the different notations of a class diagram that are approached now.
A class diagram is a viewpoint of the static structure of a system and a model can contain
many class diagrams. A class diagrams contain: packages, classes, interfaces, and
relationships.

Relationship of a class diagram my contain the following: Association, aggregation, de-
pendency, realize, and inheritance. Each end of an association or aggregation contains a
multiplicity indicator that indicates the number of objects participating in the relationship.
Figure 10.1 showcases a class diagram for Espr4fastData example.

UML is a language, with a (reasonably) rigorous syntax and accepted semantics. Thus
one have to be careful that the meaning of our diagrams is what we intended. However,
the semantics of UML are less well-defined than a programming language (where the
semantics are defined by the compiler). Thus there is some flexibility to use UML in your
own way, but one must be consistent in modelling and make it accessible. And for that,
UML has also notations such as Business Process Model Notation (BPMN).

6.3. MBT BEHAVIORAL TEST GENERATION 57

Package
Name

Class Name

Interface Name
<<Interface>>

Association Aggregation Dependency

Inheritance Realize

Zero or more0..*

One or more1..*

Zero or one0..1

Specified range2..7

Exactly one
1

Class Notation

Relationship
Notation

Multiplicity
Indicators
Notation

Attribute: type

Operation(arg list): return type

Abstract operation

Figure 6.3: Class Diagram Notations

A standard BPMN provides businesses with the capability of understanding their inter-
nal business procedures in a graphical notation and gives organizations the ability to
communicate and optimize these procedures in a standard manner. The Object Manage-
ment Group (OMG), a non-profit technology standards consortium, governs and main-
tains BPMN. The language is not owned by any commercial enterprise. BPMN was
originally a modeling notation that was meant to give all stakeholders, from high-level de-
cision makers to technical staff, a standardized language for diagrams. With the release
of newer versions however, BPMN became about models and notation. The difference is
that instead of just standardized models, there is a standardized XML schema that can
map between software tools. At this time, more than 80 tools support BPMN including
the Smartesting CertifyIt tool.

Elements in a business process model in BPMN are kept to a minimum. This is to keep
the look and feel of the diagram as consistent as possible. There are two types of el-
ements: descriptive and analytic. Descriptive elements were developed for business
analysts to model processes as documentation, and analytic elements were developed
for technical staff to model executable processes within the software.

The five basic categories of elements are:

1. Flow objects: These define the behavior of business processes. They include:

• Events: what happens during a process. There are three main ones: Start,
Intermediate, and End. An event is also what is happening during a process.

• Tasks: work performed in a process. Also known as activities.

• Gateways: these determine the sequence flow path in a process. Gateways
have internal markers to show how the flow is controlled. These are decision
points in a process. For example, if a condition is true then processing contin-
ues one way and if false, another way.

58CHAPTER 6. MBT BEHAVIORAL MODELING FOR STANDARDIZED IOT PLATFORMS

2. Data: information about the activities is called out with these elements. Data is
either provided or stored for the activity. These include: data objects, data inputs,
data outputs and data stores.

3. Connecting objects: these connect the flow objects together. They include:

• Sequence flows: this element shows the order that activities are performed.

• Message flows: this displays the messages and the order of flow between
participants.

• Associations: this element is used to link information and artifacts (see below).

• Data associations - These have an arrowhead to indicate direction of flow in
an association.

4. Swimlanes: broken down into pools and lanes, a swimlane in BPMN is an element
that shows where the responsibility for the process lies. These pools may represent
the participant. Lanes break apart the pool as a partition of responsibility, showing
the location of activities. Lanes can also be used for other purposes, like to delineate
phases (first phase, second phase, etc.). In other words, a pool is a container for a
single process, and a lane is a way to classify the activity within it.

5. Artifacts: these are used to give extra detail about the process. The two standard-
ized artifacts are:

1. Groups: This is a hatched box around a group of elements to designate visually
that they are somehow related. This does not affect sequence flows.

2. Text Annotations: Extra text, attached with an association, that gives additional
information. Also known as a comment.

S
w

im
la

ne Data input

Register
Context

Gateway End EventStart Event

"Context Already
exist"

"Success"

Connecting object

Figure 6.4: BPMN model example

Figure 6.4 shows an example of a BPMN model where we take into consideration the
requirement ”REGISTER CONTEXT” of Table 6.1. We represented on the model the
different structures that where presented previously. The model depicts a start event
connected to a task ”Register Context”. This task is then connected to a gateway flow
object directing the path to take in case of ”success” or error ”Context already exist”.

This test generation method is used further in the large scale end to end experiment in
section 10.5.

6.3. MBT BEHAVIORAL TEST GENERATION 59

The next section introduces the specifities of pattern-driven and model-based security
testing. We will also see how we can evolve from an behavioral model for conformance
testing to security testing by introducing test purposes to the model conception in MBT.

7
PATTERN-DRIVEN AND MODEL-BASED

SECURITY TESTING

Contents
7.1 Expressing Test scenarios From Test Patterns 61

7.2 Test Generation . 63

7.3 Using TP for MBS Functional and Vulnerability Testing 65

Security, confidentiality and trust are critical elements of the IoT landscape where inad-
equacy of these is a barrier to the deployment of IoT systems and to broad adoption of
IoT technologies. Some of the more frightening vulnerabilities found on IoT devices have
brought IoT security into the daylight of issues that need to be addressed quickly. In mid
2015, researchers found critical vulnerabilities in a wide range of IoT baby monitors [58],
which could be used by hackers to carry out a number of unwanted activities, including
spying on live feeds and authorizing other users to remotely access to the monitor. The
article quotes: ”Internet of Things security still isn’t ready for prime time.” and states ”The
internet of insecure things”. In another development, it is demonstrated that connected
cars can be compromised [61] as well, and hackers can carry out dangerous malicious
activities, including taking control of the entertainment system, unlocking the doors or
even shutting down the car mid highway. Authors is [27] proposes to use a trusted Third
Party, tasked with assuring specific security characteristics within a cloud environment.
The solution presents a horizontal level of service, available to all implicated entities, that
realizes a security mesh, within which essential trust is maintained. We propose in this
section to address IoT systems security issues with MBT and test purposes.

7.1 EXPRESSING TEST SCENARIOS FROM TEST PATTERNS

A test purpose in Test Purpose Language (hereafter denoted as TPLan) [11] is a stan-
dardized and structured notation developed by ETSI for concise and unambiguous de-
scription of what is to be tested rather than how the testing is performed. It is an ab-
stract test scenario derived from one or more requirements, defining the steps needed
to be tested if the SUT respects the corresponding requirement. More concretely, it is a
structured natural language that defines a minimal set of keywords for use in the TPLan
combined natural language or even graphical representations. Although it is minimal, it is
generic and if there is a need, the user can define his own extensions to the notation spe-

61

62 CHAPTER 7. PATTERN-DRIVEN AND MODEL-BASED SECURITY TESTING

cific to his application’s domain. Usually, in its simplest form, it consists of few headers,
like ”TP id”, ”Summary”, ”REQ ref.” and other details specified by the user. Then, its main
part is composed of three parts: precondition, stimuli and response. They are defined in
three different sections that start with ”with . . . ” – for the preamble and ”ensure that . . . ”
for the test body. The test body is composed of two parts: ”when . . . ” – for the main part
of the test (the stimuli), and ”then . . . ” – for the response of the stimuli. The post condition
usually is omitted because its function is to revert the test case to the initial conditions,
before the test case. Inside the brackets, in prosaic form are described all conditions
and information needed for the TPLan. TPLan which helps to write test scenarios in a
consistent way brings considerable benefits, for instance:

• it removes possibilities for free interpretation of the test procedure

• brings easy differentiation of the precondition, the stimuli and the response

• it is a basis for a representation in the test tools

In the standardisation process of oneM2M, the Test Working Group adopted the use of
TPLan for their test scenarios, but with minor modifications. Namely, the sections ”when”
and ”then” are extended with the notation of the data flow, from which to which entity the
data is transferred. Also, the test scenario is put in a table, so every block and every
header is separated in a different cell. This eases the visual representation for the users.
The postamble is not defined neither in ETSI TPLan nor in oneM2M TPLans because
in the majority of test cases, it should simply revert the system to its initial state, which
means to delete added elements and the modified variables to be reverted back to their
initial values.

Figure 7.1: TPLan example

An example of TPLan, taken from oneM2M document ”oneM2M-TS-0018 Test Suite
Structure and Test Purposes”, is given in Figure 7.1. From the example, we can un-
derstand what is the goal of this TPLan, from which requirements it is derived, and the

7.2. TEST GENERATION 63

test details: in which state should the SUT be in order to execute the test, the content of
the test body and the correct response in order the test to pass. We have to note that in
those figures we changed some of the header fields used by oneM2M to adapt them to
the security testing context. For example, instead of using Requirement reference, as it
is described in oneM2M, we changed the field to refer to the Test Pattern from which it is
derived. Unlike the initial Test Patterns, these are augmented with a communication dia-
gram and more details on how the test should be rolled out. The Test Pattern describes
communication between Sensor and a Firmware Manager: The sensor requests a new
firmware from the Firmware Manager and verifies the signature of the received firmware.
If the signature is valid, the firmware will be installed, and will be rejected otherwise. In
order to facilitate and unify the experiments in this thesis, we propose using the TPLan
as described here for all TPLans examples we have to define. Compared to the initial
test pattern, it is clearer and more concise, the entities and the communication between
are well defined. Hence, TPLans help to disambiguate the testing intentions, thus they
cannot be used for automated test generations. Based on this property of the TPLans, we
propose to use the TPLan’s knowledge for generation of executable scripts. On the one
hand, communication with the domain experts familiar with TPLan is made possible, and
on the other hand, scripts are ready for automated execution. In the next section we de-
scribe the MBT approach and how we express formally the TPLans towards a generation
of executable scripts.

7.2 TEST GENERATION

M2M existing standards as well as emerging standards, such as oneM2M, put extreme
importance into the definition of security requirements related to security functions in ad-
dition to functional requirements. Moreover, our experience in testing and analysis of IoT
systems, showed that the IoT system’s Security and Trust will depend on the resistance
of the system with respect to:

• misuses of the security functions

• security threats and vulnerabilities

• intensive interactions with other users/systems

We have identified four IoT segments that cover different aspects of IoT security testing:
Availability, Security, Privacy and Integrity. Based on the work performed and the testing
needs of each segment, we have identified a set of security requirements and vulnerabili-
ties that must be fulfiled by the developed systems. In order to validate them with respect
to the set of requirements, we have identified three test strategies:

Security Functional testing (compliance with agreed standards/specification): aims to
verify that system behavior complies with the targeted specification, which enables to de-
tect possible security misuses and that the security functions are implemented correctly.

Vulnerability testing (pattern driven): aims to identify and discover potential vulnerabili-
ties based on risk and threat analysis. Security test patterns are used as a starting point,
which enable to derive accurate test cases focused on the security threats formalized by
the targeted test pattern.

64 CHAPTER 7. PATTERN-DRIVEN AND MODEL-BASED SECURITY TESTING

Security robustness testing (behavioral fuzzing): compute invalid message sequences
by generating (weighted) random test steps. It enables to tackle the unexpected behavior
regarding the security of large and heterogeneous IoT systems.

These test strategies may by applied in combination or individually.

Model-Based Testing (MBT) approaches have shown their benefits and usefulness for
systematic compliance testing of systems that undergo specific standards that define the
functional and security requirements of the system.

We propose a tailored MBT automated approach based on standards and specifications
that combines the above-mentioned three test strategies built upon the existing CertifyIt
technology [10] and TTCN-3 for test execution on the system under test (SUT) into one
MBT IoT Security Testing Framework. On the one hand, the CertifyIt technology has
already proven its usfulness for standard compliance. Thus, building the IoT security
testing approaches upon CertifyIt will allow to get the benefits of a proven technology for
conformance testing and introducing and improving it in the domain of IoT security. On
the other hand, Testing and Test Control Notation version 3 (TTCN-3) is a test scripting
language widely known in the telecomunication sector. It is used by the third Genera-
tion Partnership Project (3GPP) for interoperability and certification testing, including the
prestigious test suite for Long Term Evolution (LTE)/4G terminals. Also, the European
Telecommunication Standards Institute (ETSI), the language’s maintainer, is using it in all
of its projects and standards’ initiatives, like oneM2M.

We have identified three possible levels of automation: the IoT security MBT approach
with automated test conception and execution based on TPLan tests and TTCN-3 scripts,
manual TPLan and TTCN-3 conception and their automated execution on the SUT and
finally in-house approaches for testing.

automated
execution

Security Functional
& Vulnerability
Testing

Security
MBT models

IoT system
(device / platform etc.)

Behavioral
Fuzz
TestingVulnerability

patterns

Standards

tailored automated MBT
approach

in-house approach

manual test
conception

Keeping overall traceability

Security tests
TTCN-3

TPLan

Figure 7.2: MBT Security Testing Framework

As, illsutrated in Figure 7.2, the MBT approach, relies on MBT models, which repre-
sent the structural and the behavioral part of the system. The structure of the system
is modeled by UML class diagrams, while the systems behavior is expressed in Object

7.3. USING TP FOR MBS FUNCTIONAL AND VULNERABILITY TESTING 65

Constraint Language (OCL) pre- and postconditions. Functional tests are obtained by ap-
plying a structural coverage of the OCL code describing the operations of the SUT (func-
tional requirements). This approach in the context of security testing is complemented
by dynamic test selection criteria called Test Purposes that make it possible to generate
additional tests that would not be produced by a structural test selection criteria, for in-
stance misuse of the system (Model-Based Security Functional Testing) and vulnerability
tests, trying to bypass existing security mechanisms (Model-Based Vulnerability Testing).
These two approaches generate a set of test cases that is stored into a database and
then executed on the system; To the difference of them, robustness testing in our context,
based on the same model, will generate randomly a test steps based on the same MBT
model by exercising different and unsual corner cases on the system in a highly intensive
way, thus potentially activating an unexpected behavior in the system. More on this sub-
ject in section 9. In the following section we will describe in more details the IoT security
testing approaches using pattern-driven and MBT security testing technology.

7.3 USING TEST PURPOSES FOR MODEL-BASED SECURITY

FUNCTIONAL AND VULNERABILITY TESTING

Within the scope of this thesis we proposed a Model-Based Testing process for security
testing in IoT systems using the MBT tool CertifyIt from Smartesting and its extension
Test Purpose Language [28].

The CertifyIt tool accepts as input an MBT model, represented by a class diagram, to
model the structure of the system under test, and an MBT behavioural modelling lan-
guage, such as simplified OCL expressions. Based on predefined testing requirements,
different test selection criteria could be applied to guide the test generation. The Test Pur-
pose Language is a test selection criterion that captures the test procedure expressed in
the security test patterns (defined in Section 5.1.2). The Test Purpose Language has
shown its expression power for vulnerability testing of web applications [33]. The experi-
mentations (Section 10), for instance, on security IoT platforms, will further help to assess
its effectiveness and capacity to cover the security test patterns.

Figure 7.3 describes the proposed MBT process for an standardized IoT platform security
testing. We are using oneM2M IoT standard in this section to discuss the process. The
proposed process starts from the security framework and the library of general vulnera-
bilities for the four IoT segments.

Based on the database of vulnerabilities (appendix A) and the oneM2M standard’s secu-
rity documents, oneM2M security test purposes are defined. These test purposes play
the role of test patterns. In a second step based on the CertifyIt technology an MBT
model for oneM2M is created and the oneM2M security Test Purposes are implemented
in the Smartesting Test Purpose Language to drive the test case generation. In order to
obtain executable test cases, the generated abstract test cases needs to be published
in an executable format, for instance HTTP requests or in a form of TTCN-3 test cases,
as it is the formats retained by oneM2M standard organization. Based on the CertifyIt
technology it is possible then to create documents in different formats (Word, PDF. . .) for
audits purposes.

To illustrate the proof of concept, consider for instance the Injection vulnerability (V16) and
its corresponding the test pattern TP ID 10 from Table 5.1. The test purposes created

66 CHAPTER 7. PATTERN-DRIVEN AND MODEL-BASED SECURITY TESTING

IoT Platform
Security Specifications

Security Test
Suites

MBT Model
implementing

Test Purposes

Security
Test Purposes

MBT
engineers

Abstract test cases

CertifyIt
tool

&

Documentation

Keeping overall traceability

Publishing

Generation

Security Test
Patterns

Standardized IoT Platform

Figure 7.3: Model-Based Security Testing Process for standardized IoT platform

with CertifyIt will represent the various types of Injection (SQL, LDAP, XPATH etc) and
their subtypes.

Figure 7.4: Test Pattern Formalisation with Smartesting CertifyIt for TP ID 10

In Figure 7.4, the ”for each” structure allows iterating over each element, and produces
the corresponding test cases. The test purpose language is easy to understand and
yet a very powerful tool in test generation. Each literal (Keyword in CertifyIt tool) from
a type of vulnerability is refined into a list of literals that are looped upon in order to
have a full coverage of the vulnerability. The test pattern in Figure 7.4 describes the
usage of a SQL injection type enumerated as ”ErrorBased”, ”BooleanBased”, ”NONE”,
”Stacked”, ”TimeBased” and ”Union” in combination of an operation (OP) to produce an
SQL injection test. The test generation engine will produce one test case for each sub-
type. For instance, for the considered types and sub-types of Injection we generate 85
test cases, as depicted in Figure 7.5.

7.3. USING TP FOR MBS FUNCTIONAL AND VULNERABILITY TESTING 67

Figure 7.5: Test Purpose ID 10 test cases generated by CertifyIt

Figure 7.5 shows the outcome of the test generation using a test purpose. The test
purpose allowing to cover more traces while keeping tracability of the requirement over
a test case is a major advantage over manual testing where human error (forgetting a
combination for example) in test writing often occurs.

The benefits of this technical contribution are twofold. In a first step it offers general
guidelines for testing any element of the four IoT layers. On second hand, the customiza-
tion of the patterns gives specific guidelines on how to prevent or address the testing
procedure specifically for each segment. In addition, the work also gave a proof of con-
cept for test case conception within next experiments, which goal is security compliance
for IoT systems. In IoT platform testing we proposed a formalization of the test patterns
into the Smartesting Test Purpose Language, a machine readable formal language for
test case generation. Its textual representation is easy to read and map to the test pat-
terns. Finally,we will further work on the formalization of the test patterns and possibly
the evolution of the security test patterns into usage for security behavioral fuzzing.

We have seen how we used MBT for conformance and security testing in IoT systems.
The next section introduces the details of Model-Based Testing As A Service (MBTAAS)
and how the two approaches are fit to be proposed in a ”As A Service” environment.

8
MODEL BASED-TESTING AS A

SERVICE

Contents
8.1 Architecture . 69
8.2 MBTAAS main services . 70

8.2.1 Customization Service . 70
8.2.2 Publication service . 71
8.2.3 Execution service . 72
8.2.4 Reporting service . 73

8.3 Approach synthesis . 73

The last decade was dedicated to people who communicate with each other via social
life applications such as Facebook, skype, Twitter. The next decade is for Machine to
Machine (M2M) communication with devices in automobiles, planes, homes, smart cities.
Internet of thing as a service is the key for IoT to become a reality and improve the quality
of our daily lives. IoT platforms offer themselves as services to applications users and
machines. The question of conformance testing and security validation of IoT platforms
can be tackled with the same ”as a service” approach. This section presents the general
architecture of our Model Based Testing As A Service (MBTAAS). We then present in
more details, how each service works individually in order to publish, execute and present
the tests/results.

8.1 ARCHITECTURE

An overview of the general architecture can be found in figure 8.1. In this figure we find
the four main steps of the MBT approach (MBT modeling, test generation, test implemen-
tation and execution).

However, in contrast with classical MBT process, MBTAAS implements several web-
services, which communicate with each other in order to realize testing steps. A web-
service uses web technology such as HTTP for machine-to-machine communication,
more specifically for transferring machine readable file formats such as XML 1 and
JSON 2.

1https://www.w3.org/XML/
2http://www.json.org

69

70 CHAPTER 8. MODEL BASED-TESTING AS A SERVICE

WEB FRONT-END (WFE)

Personal test reports Dashboard
HTML reports with results
Test Configuration :
 - Custom test data
 - Tests selection
 - …

Specifica(ons,
Test%Design%

MBT,Models,
+,OCL,

Test,Plan,doc,
(HTML), MBT,Tests,

Test,Analyst,

Generate,tests,

SUT

EGM_TAAS((
Backend(TestExec(

EGM_TAAS(
Repor7ng(Server(

Test,results,

Test,data,

Database

,
,

EGM_TAAS,,
(XML),

,

EGM_TAAS,
WFE,Publisher,

Custom,Test,
Configura(on,layer,

,
,

Mapping.proper(es,

,

,
,

SMA,
(XML),

,

2- Get test results

1- execute tests

2- Send results

1

2

3

4

5

Figure 8.1: MBTAAS architecture

In addition to the classical MBT process, the central piece of the architecture is the
database service ° that is used by all the other services. We will see its involvement
as we describe each service individually. Nevertheless, the database service can be
separated from all the other services, it can be running in the cloud where it is accessible.
The database stores important information such as test data (input data for test execution)
and test results. The entry point of the system is the web-front end service (customization
service). This service takes a user input to customize a testing session and it communi-
cates it to a Publication service ®. The purpose of the publisher service is to gather
the MBT results file and user custom data in order to produce a customized test descrip-
tion file (EGM TAAS file). This file is then sent to an Execution service ¯ which takes
in charge the execution of the customized tests. It stimulates the SUT with input data
in order to get response as SUT output data. The execution service then finally builds
a result response and sends it to a last service, the Reporting service. The reporting
service is configured to feed the database service with the test results. These test results
are used by the web-front end service in order to submit them to the end-user.

8.2 MBTAAS MAIN SERVICES

The MBTAAS architecture is taken to a modular level in order to respond to the hetero-
geneity of an IoT platform. In the following subsections, a detailed description of each
services composing the MBTAAS architecture is provided.

8.2.1 CUSTOMIZATION SERVICE

In order to provide a user friendly testing as a service environment, we created a graphical
web-front end service to configure and launch test campaigns. The customization service
is a web site where identified users have a private dashboard. The service offers a pre-
configured test environment. The user input can be reduced to the minimum, that is:
defining an SUT endpoint (URL). User specific test customization offers a wide range
of adjustments to the test campaign. The web-service enables:

8.2. MBTAAS MAIN SERVICES 71

• Test selection: from the proposed test cases, a user can choose to execute only a
part of them.

• Test Data: pre-configured data are used for the tests. The user is able to add his
own specific test data to the database and choose it for a test. It is a test per test
configurable feature.

• Reporting: by default the reporting service will store the result report in the web-
front end service database (more details on this in Sec. 8.2.4). The default be-
haviour can be changed to fit the user needs for example, having the results in an
other database,tool,etc.

After completion of the test configuration and having the launch tests button pressed,
a configuration file is constructed. The configuration file as can be seen in Fig. 8.2:
Configuration File excerpt, defines a set of {key = value}. This file is constructed with
default values that can be overwritten with user defined values.

Figure 8.2: Configuration File excerpt

The configuration file is one of three components that the publisher service needs to
generate the test campaign. The next section describes the publication process in more
details.

8.2.2 PUBLICATION SERVICE

The publisher service, as it name states, publishes the abstract tests generated from
the model into concrete test description file. It requires three different inputs (Fig. 8.1
step ­) for completion of its task: the model, the configuration file and test data. The
model provides test suites containing abstract tests. The concretization of abstract tests
is made with the help of the database and configuration file. For example, the abstract
value ENDPOINT URL taken from the model, is collected from the configuration file and
PAYLOAD TYPE parameter is gathered from the database service °.

General'informa,on'

Test'Suite'
'

1'

1..*'

Test'Cases'

Test'Steps'

1..*'

1..*'

Figure 8.3: Published file parts

The concrete test description file is for our use case,
an XML file that instantiates the abstract tests. The
test description file has two main parts, general in-
formations and at least one test suite (Fig. 8.3). A
test suite is composed by one or more test cases

72 CHAPTER 8. MODEL BASED-TESTING AS A SERVICE

and a test case itself is composed of one or more
test steps. This hierarchy respects the IEEE 829-
2008, Standard for Software and System Test Documentation.

The general information part of the file is useful to execute the tests (Sec. 8.2.3) and
report the results. Here are some of the most important parameters that can be found in
that part:

• owner: used for traceability purposes. It allows to know who is the detainer of the
test in order to present it in his personal cloud dashboard.

• sut endpoint: the hostname/ip address of the System Under Test. This address
should be reachable from the execution service point of view.

• location: the hostname/ip address of the reporting service (Sec. 8.2.4).

The test suites contain all useful test information. In our case, for FIWARE, the appli-
cations are HTTP-based RESTful applications. The mandatory informations required to
succeed a RESTful query are: the URL (SUT endpoint) and the HTTP method (GET,
POST, PUT, DELETE). The Test suite and test cases purpose is the ordering and naming
of the test but the test information and test data are stored in the test steps. Each test
step have its own configuration. Once the file published, it is sent to the execution service
in order to execute the tests.

8.2.3 EXECUTION SERVICE

The execution service is the functional core of the MBTAAS architecture. The execution
service will run the test and collect results depending on the configuration of the received
test description file. FIWARE RESTful interface tests are executed with the REST ex-
ecution module. Each test is run against the SUT and a result report (Listing 8.1) is
constructed on test step completion. The result report contains information on date-time
of execution, time spent executing the step and some other test specific values. The ”end-
point” represent the URL value and validity of where the step should be run. An invalid
endpoint would allow to skip the type check on the endpoint value and thus allowing to
gather an execution error. The response of each step is validated within the ”assertion -
list” tags (test oracle). It validates each assertion depending on the assertion type and
values with the response received.

Listing 8.1 – Test step result report
<t e s t s t e p name= ” UpdateEnt i ty1 ”>

<execut ionResu l ts>
<t imestamp>{TIMESTAMP}< / t imestamp>

<executionTimeMs>22< / executionTimeMs>
< / execut ionResu l ts>
<endpoint>

<value>{ IP} : {PORT} / upContext< / value>
< i s i n v a l i d>f a l s e< / i s i n v a l i d>

< / endpoint>
<method>POST< / method>
<headers>{HEADERS}< / headers>
<payload>{PAYLOAD}< / payload>
<a s s e r t i o n l i s t>

<asse r t i on>
<type>JSON< / type>
<key>code< / key>

<value>404< / value>
<r e s u l t>f a l s e< / r e s u l t>

< / asse r t i on>
< / a s s e r t i o n l i s t>
<r e s u l t>f a l s e< / r e s u l t>
<response>{

” errorCode ” : {
” code ” : ” 400 ” ,
” reasonPhrase ” : ”Bad Request ” ,
” d e t a i l s ” : ”JSON Parse Er ro r ”

8.3. APPROACH SYNTHESIS 73

}
}

< / response>
< / t e s t s t e p>

Figure 8.4 shows an excerpt of the execution service log. In order to execute one test
step, the endpoint (URL) must be validated. Then a REST request is created and exe-
cuted. A response is expected for the assertions to be evaluated. At the end, an overall
test result is computed. The overall assertion evaluation algorithm is as simple as: ”All
test assertions have to be true”, that implies if one assertion is false, the step is marked
as failed.

Figure 8.4: Execution snapshot

Once the execution service has finished all test steps, their results are gathered within
one file, we call this file Test Results, and it is sent to the reporting service.

8.2.4 REPORTING SERVICE

After executing the test, a file containing the test description alongside their results are
sent to and received by the reporting service. The reporting service configuration is made
in the web front-end service. The configuration is passed with the test configuration file
where the publisher service re-transcribes that information to the file sent to the execution
service. The execution service then includes the reporting configuration in the report file
where it is used in the reporting service once it receives it. By default the reporting
service will save the results in the database service °. For our use case, the database
is implemented as a MySQL database. This database is afterwards used by the web
front-end service to present the test results to the user.

8.3 APPROACH SYNTHESIS

We presented an MBT approach with a service oriented solution. We believe that this
approach can be generally applied on a wide range of IoT systems testing. Within the
FIWARE context, the created MBT model, NGSI compliant, that can be reused for testing
any range of enablers respecting that specification. New developments focus on the test
configuration layer which is made in the front-end service, in order to make the tests com-
patible with the System Under Test. Furthermore, one of our concerns was to provide the

74 CHAPTER 8. MODEL BASED-TESTING AS A SERVICE

IoT platform tests to the community in the easiest way possible, including the possibility
to choose the version of standard compliance only by model selection. This is done with
the service oriented approach, providing to all involved stakeholders (not only testers) the
capacity to test their IoT system remotely. The MBTAAS approach is suitable for testing
both approaches introduced previously: behavioral (Chapter 6) and Security (Chapter 7)
testing. Using a behavioral model in an MBTAAS approach, the proposed tests result will
reflect on the conformance of the SUT to the standard represented by the model. On
the other hand, and with the same principles, if a security model is used in combination
of test purposes, the result with reflect the level of resistance of the SUT over the tested
vulnerabilities. MBTAAS is a test synchronization element, a proxy for test execution. It
brings the transition from modelling and test generation to test execution directly without
worrying about test adaptation for test execution. As a matter of fact, with standard IoT
platforms and standarized IoT systems, the standard describes an interface that all im-
plementation are required to develop. This enables to have a common adaptation layer
to test all systems under tests implementing a modelized standard.

That being said, the drawbacks of this approach are observed when approaching imma-
ture IoT systems or implementation that are still under development. Those systems are
often developed internally and are not deployed on an accessible internet environment
to the public. The MBTAAS approach rely on its SUT being available through a public IP
address in order to reach it and execute the tests. This approach show that it is somewhat
not so straightforward in testing less mature systems but it is more adapted to deployed
IoT systems that require constant validation over it’s lifetime. The need of validation can
be a result of system patching after deployment or the implementation of new security
features after a zero day attack.

The next session presents the behavioral fuzzing for IoT systems and its capabilities to
detect errors that cannot be detected with the behavioral and security MBT approaches.

9
BEHAVIORAL FUZZING FOR IOT

SYSTEMS

Contents
9.1 MBT specificities for the IoT behavioral fuzzing testing 75
9.2 MBT Model . 76
9.3 Test generation . 77
9.4 Behavioral fuzzing approach synthesis 79

The MBT for the IoT behavioral fuzzing testing model is based on the same MBT models
used for security functional and vulnerability testing; it generates test cases using behav-
ioral fuzzing. Contrary to the previous two approaches where the test case generation
aims to cover the test objectives produced from the test purposes, the MBeeTle fuzzing
tool generates weighted random test cases to cover the test objectives based on the ex-
pected behavior of the system. The tool relies on the principle to rapidly generate as
high as possible many fuzzed tests with a substantial number of steps in each period
using a weighted random algorithm. The generated tests are valid with respect to the
constraints in the MBT model. Thus, contrary to most fuzzers, the produced test cases
on the one hand are syntactically correct with respect to the systems inputs. On the other
hand, since it uses a weighted random algorithm and measures the coverage of the be-
haviors, it avoids duplication of the generated tests, which makes the test evaluation and
assessment easier. This section introduces in a first place the MBT specifities for the
IoT behavioral fuzzing testing and show how the model is designed to obtain test case
generation and execution.

9.1 MBT SPECIFICITIES FOR THE IOT BEHAVIORAL FUZZING TEST-
ING

The rapidity of MBT behavioral fuzzing is an asset for the methodology and contrary to
classical functional testing approach, it explores the system states in various uncommon
contexts and potentially placing the system into a failed state. Figure 9.1 depicts at a
high level the test generation algorithm. Each step covers a test objective, which corre-
sponds to one behavior of the system identified in the model in the OCL expression in an
operation with specific pre-existing tags @REQ/@AIM (illustrated in the figure). A step is
generated by randomly choosing the available states possibly leading to an error from a

75

76 CHAPTER 9. BEHAVIORAL FUZZING FOR IOT SYSTEMS

given context of the system (for instance, start exploring the systems behavior when ad-
ministrator operations are called from normal user connection). More specifically, a test
step is selected only if it activates a new behavior (tag), otherwise the algorithm continues
the exploration to conceive a test step that activates a new tag. The test generation stops
either when the test generation time allocated to the generation engine has elapsed or by
fulfilling the user conditions (for instance, all tags in the model are covered, or a stop is
signaled).

Figure 9.1: Behavioral Fuzzing Test Step Selection

Moreover, MBT fuzzing is a complementary approach to functional and security (func-
tional and vulnerability) testing, offering multi-fold benefits:

• it activates behaviors in uncommon contexts that potentially lead to system failures,
unknown by domain experts.

• it rapidly generates tests, and since the algorithms are random, they are extremely
quick and feedback to the user is sent rapidly (hundreds of tests in a few minutes).

• it re-uses the same MBT model used for functional and security testing.

• it re-uses the same adaptation layer, thus no extra effort is needed for executing the
test cases.

Nevertheless, the random algorithms lack power in constructing complex contexts of the
system, which is bypassed using existing valid test sequences produced using functional
and security testing, as a preamble of the test case. Thus, it lowers its impact on the
quality of the test cases.

9.2 MBT MODEL

With the same principles as pattern-driven and model-based security testing, the behav-
ioral fuzzing for IoT systems testing in the scope of the thesis was realized using Model-
Based Testing for test case generation and TTCN-3 for test case execution. TTCN-3 in
its core architecture is a language that has a high level of abstraction that needs to be
concretized by means of adaptation when compiling it or with the help of configuration
files during execution with module parameter definition. These two layers of abstraction
found in the MBT fuzzing and TTCN-3 execution, poses a problem for executing online

9.3. TEST GENERATION 77

behavioral fuzzing. Indeed, MBT models define behavioral aspect of a System Under
Test (SUT) by using equivalence classes. An equivalent class in MBT modeling is for
example when representing a person’s age we give the literals ”Minor”, ”Major” and ”Se-
nior”. Those literals have then to be specified when executing the test, taking real value
from a test data database. As explained previously, TTCN-3 also contains an abstraction
layer where our example would be represented as the parameter: ”Age”. It is only on
execution that this abstraction is concretized. The adaptation of real time generated test
steps in an online manner is time consuming and does not fit the purpose of behavioral
fuzzing testing on real time IoT systems. We propose the most effective way in using the
offline test generation service offered by MBeeTle (Behavioral Fuzzing tool). In this way,
the adaptation layers created when applying the previous approach on Model-Based Se-
curity and Vulnerability Testing are reused, without requiring extra effort. The behavioral
fuzzing approach is depicted in Figure 9.2, which consists of generating the test cases
and their storage into a test repository, before their execution on the system under test.

Model
(UML/OCL)

Model

MBeeTle
Generation Setup

Security
Test Purposes

Generation

Test Cases
repository

Documentation

Security Test
Suites

Keeping overall traceability

Figure 9.2: MBT Fuzzing with TTCN3

MBeeTle takes the same model used for security testing, it then generates test case
repository using its algorithms and heuristics. This allows the generation of large-scale
security tests, and minimize cost of MBT fuzzing with the reuse of previous MBT behav-
ioral and security models.

9.3 TEST GENERATION

In MBeeTle behavioral fuzzing tool, different heuristics are available that could be
parametrized for test generation. The test generation for behavioral fuzzing takes into
account many parameters described later in this section. One of them is the test gener-
ation strategy, who is an heuristic on witch the behavioral fuzzing will base on for model
exploration in the test generation task. We have chosen two strategies to explore in this
thesis. The Coverage-based heuristic will choose a test step only if a new set of tags

78 CHAPTER 9. BEHAVIORAL FUZZING FOR IOT SYSTEMS

(REQ /AIM identifying a behavior of the system) is covered by the generated step. Its
goal is to increase the coverage of the tags by the tests. The required parameters for this
heuristic are identical to the list of parameter required for test generation and are detailed
in section 9.4. Defining the parameter for maximum time spent to search a new valid test
step is mandatory for this heuristic. When this condition is reached than the generation
engine accepts the next step, even though the coverage of the tags remains the same.

The heuristic Flower is based on the capability to recognize nominal and error cases
in the system under test. A nominal case is a state of the system activated by a normal
usage of the system. On the contrary, an error case corresponds to a state of the systems
compromised by an abnormal usage for instance, triggering an exception or an error
message. The ”Flower” heuristic is inspired from the representation of the test case in
the shape of a flower. A flower is hold by the ”steam of a flower” composed by several
nominal cases (defining the length of the steam) and ends with a flower ”corolla” with
”petals”, each petal being an error case. Thus, a test case produced within this behavioral
fuzzing algorithm is illustrated in Figure 9.3.

Figure 9.3: Behavioral fuzzing strategy - Flower

The Flower strategy defines a set of parameters to be taken into consideration:

• Nominal cases: definition of a list of tags identifying the nominal cases.

• Error cases: definition of a list of tags identifying the error cases.

• Steam length: number of nominal cases for a steam of the flower.

• Number of petals: number of successive error cases constructing the flower corolla

• Timeout for the steam: maximum time spent for searching a set of nominal cases
for constructing the steam. When this condition is reached the generated test step
is automatically accepted and the steam is generated.

• Timeout for the flower corolla: maximum time spent for searching the set of error
case constructing the corolla. When this condition is reached, the generated test
step is automatically accepted and the corolla is generated.

9.4. BEHAVIORAL FUZZING APPROACH SYNTHESIS 79

9.4 BEHAVIORAL FUZZING APPROACH SYNTHESIS

The behavioral fuzzing tool uses the following fields allowing to parameter the test gener-
ation and define the conditions of when it should stop generating them.

Figure 9.4: Behavioral fuzzing tool, test generation parameters

As shown in figure 9.4, here is the detailed list of parameter required for test generation:

• Number of generated test cases.

• Length of a test case (mandatory): the number of steps to be generated for each
step. In Flower heuristic, it is the sum of its nominal and error cases.

• Generation time: the maximum generation time. In Flower heuristic it is the sum
of its timeout for the steam and timeout for the flower corolla.

• Strategy: the test generation heuristic (i.e; Coverage-Based, Flower).

• Seed: a random seed is a number allowing to guide the random test step genera-
tion, thus for two generations having the same input elements the tool produces the
same output. This being extremely important to reproduce the test cases.

• Completion of the test: this parameter, if selected, allows to start the test gener-
ation with existing test scenarios, for instance already produced with the CertifyIt
approaches, for instance Test Purposes. Thus, MBeeTle completes each of the

80 CHAPTER 9. BEHAVIORAL FUZZING FOR IOT SYSTEMS

test cases according to the parametrized strategy. This allows to bypass classical
difficulties of random algorithms to reach complex behaviors in an IoT system.

The number of test cases and the maximum length allow to determine the test generation
stop conditions. If none of the conditions is reached than the test generation could be
stopped only manually, using the stop button available in the tool. Section 10.6 propose
a real use case visiting the implementation of the behavioral fuzzing methodology.

Powered by its powerful generation strategies, MBeeTle behavioral fuzzing tool, offers a
complementary approach to functional and security (functional and vulnerability) testing,
with multi-fold benefits :

• it activates behaviors in uncommon contexts that potentially lead to system failures,
unknown by domain experts.

• it rapidly generates tests, and since the algorithms are random, they are extremely
quick and feedback to the user is sent rapidly (hundreds of tests in a few minutes).

• it re-uses the same MBT model used for behavioral and security testing.

• it re-uses the same adaptation layer, thus no extra effort is needed for executing the
test cases.

The next part of the thesis explore the experimentation realized by restating the re-
searches question and gives a synthesis of the results obtained.

III
EXPERIMENTATIONS

81

10
EXPERIMENTS

Contents
10.1 Guideline for Experimentation’s . 84

10.1.1 MBT for IoT systems . 84

10.1.2 Model-based security testing for IoT 84

10.1.3 MBT for large scale IoT systems 85

10.2 FIWARE Testing Process using MBT 85

10.2.1 MBT Model . 85

10.2.2 Test case generation . 87

10.2.3 Test case reification & execution 89

10.2.4 Experimentation synthesis . 89

10.3 oneM2M Testing Process using MBT 91

10.3.1 Requirements and Test Purposes 91

10.3.2 Model-Based Testing modelisation 92

10.3.3 Generating TTCN-3 tests . 93

10.3.4 Execution and Reporting . 94

10.4 Access Control Policies (ACP) testing in oneM2M IoT standard . . . 96

10.5 ARMOUR Large scale end-to-end security 97

10.5.1 MBT Model . 99

10.5.2 Test case generation . 102

10.5.3 Test case reification . 103

10.5.4 Test case execution . 104

10.5.5 Experimentation & Results . 105

10.6 ARMOUR Behavioral Fuzzing . 106

10.6.1 Synergies between ARMOUR experiment 5 & 6 106

10.6.2 MBT Model . 107

10.7 Test generation . 108

10.8 Experimentation results summary . 110

10.8.1 MBT behavioral modeling . 110

10.8.2 Pattern-driven and model-based security testing analysis 110

10.8.3 Behavioral fuzzing results . 111

83

84 CHAPTER 10. EXPERIMENTS

This chapter describes the experiments of the thesis. We show case our real use-cases
of the different approaches expressed in the second part of the thesis on technical con-
tributions. We show how we applied MBT behavioral approach on a standardized IoT
platform, how we made usage of the pattern-driven and model-based security testing in
order to asses the security risks in a IoT platform and on a large scale IoT system. We
then show the first steps realized in the behavioral fuzzing approach.

10.1 GUIDELINE FOR EXPERIMENTATION’S

This section introduces the experimentation and synthesis part of the thesis. We discuss
the interrogations that lead us from theoretical work to experiments. Questions such as
why have we done those experiments and how they validate our research objectives.

10.1.1 MBT FOR IOT SYSTEMS

For most IoT system that hit the market, they are tested against their specification for vali-
dation. Hence, it is possible to find possible failures in a semi-automatic way without prior
modeling. The beginning point of the thesis was to asses how we can fully automatize
the test procedure and reduce cost of testing for better testing coverage and adoption.
Model-Based testing approach is based on building a behavioral model of the system un-
der test in order to test its validity over its specification. We decided to investigate if MBT
is a suitable solution in testing IoT system and started with exploring MBT behavioral
modeling for IoT platforms. In conformance testing, the goal is to gain knowledge about
the behaviour of a black-box system, by executing tests. We are interested in the syn-
thesis aspect of testing where we perform an analysis task, i.e. we check conformance
to a given model of the IoT platform. By means of a case study, we wanted to show how
effective this approach is. We carried out experiments in which we implemented differ-
ent models of two IoT standard implementations of FIWARE (section 10.2) and oneM2M
(section 10.3) widely used in the Internet of Things.

10.1.2 MODEL-BASED SECURITY TESTING FOR IOT

With more and more objects connected these days, it is time to investigate how they can
be secured in a efficient way. The biggest concern, is that the users of IoT devices will not
regard the security of the devices they are connecting. IoT will likely create unique and
in some cases complex security challenges. As machines become autonomous they are
able to interact with other machines and make decisions which impact upon the physical
world. The systems may have fail-safes built in, but these are coded by humans who are
fallible. Minimizing time to test without neglecting testing quality is primordial. From the
principle that we have validated an MBT approach for an IoT system we investigated on
how we can respond to the need of better security testing in the domain. A methodol-
ogy based on pattern-driven and model-based security testing emerged as we want to
demonstrate the flexibility of MBT in testing IoT systems in general. As a matter of fact,
we show in our experiments on the oneM2M standard (section 10.4) how a conformance

10.2. FIWARE TESTING PROCESS USING MBT 85

model, the same ones used in MBT for IoT systems, can be extended using test purposes
to become security models for validation.

10.1.3 MBT FOR LARGE SCALE IOT SYSTEMS

A botnet is a collection of internet-connected devices, which may include PCs, servers,
mobile devices and internet of things devices that are infected and controlled by a com-
mon type of malware. Users are often unaware of a botnet infecting their system. Pre-
venting botnet attacks has been complicated by the emergence of malware like Mirai [63],
which targets routers and internet of things devices that have weak or factory default
passwords, and which can be easily compromised. As botnet malware has become more
sophisticated, and communications have become decentralized (i.e, cloud), testing ef-
forts have shifted away from single component testing to other large scale approaches.
These approaches include identifying malware infections at the source devices, identify-
ing and replicating the large scale communication methods. We investigated on tools of
behavioral fuzzing enabling to test extensively IoT systems and provide security breaches
that are not detectable by the other approaches. We propose a case study (section 10.6)
using the CertifyIt MbeeTle module. We want to show that Behavioral Fuzzing for large
scale IoT can be achieved with minimal cost without compromising the quality of the test
by reusing already provided conformance/security model.

The next section presents the FIWARE use case realized to validate our MBT approach
for IoT Systems.

10.2 FIWARE TESTING PROCESS USING MBT

This approach considers a subset of the UML to develop the MBT models, composed of
two types of diagrams for the structural modelling: class diagrams and object diagrams,
and OCL to represent the system’s behavior. From one MBT model, various test selection
criteria can be applied, as shown in Figure 4.1. For FIWARE conformance testing, we
used the Smartesting MBT approach and its test generation tool - CertifyIt, which uses
the coverage-based test selection criteria.

Tested requirements are manually extracted from the specification in order to asses an
SUT conformance against the standard it implements. Each of the requirements is than
tagged into the model, which serves as a basis to maintain traceability to the specification.
Based on the specification information and tested requirements perimeter, the structure
of the system is represented in a class diagram, which is a static view of the system
limited to elements used for test generation.

10.2.1 MBT MODEL

The FIWARE class diagram (Fig. 10.1) is an abstraction of the IoT system:

• Its entities, with their attributes. The class Sut represents the system under test
where things can register to it. The Complex Event Processing statement Cep-

86 CHAPTER 10. EXPERIMENTS

Figure 10.1: Data handling GE class diagram

Statement can also be registered to the Sut and the Sut supports Subscription to
its registered things.

• Operations that model the API of the SUT. The operation names give a self-
explanation of their action, for example, the class registerContext enables a sensor
to register itself in the IoT platform.

• Points of observations that may serve as oracles are explained in the following para-
graphs (for instance, an observation returns the current state of the user’s connec-
tion to a website).

The class diagram, providing a static view of the SUT, is instantiated by an object diagram.
The object diagram provides the initial state of the system and also all objects that will be
used in the test input data as parameters for the operations in the generated tests.

It contains the input data based on the partition equivalence principle. The input data are
instances of the classes and they are represented in the form of objects, as introduced
previously. Each input data is identified by an enumeration, representing an equivalent
partition of data from which the test could be derived. For instance, from Figure 10.2,
to test the Espr4FastData API, we may consider an initial state of the system with a SUT
having nothing connected to it and some entities to be used for registering, creating the
CEP statements, subscriptions, etc.

Figure 10.2: Excerpt of the Data handling object diagram

Finally, the dynamic view of the system or its behaviors are described by the Object

10.2. FIWARE TESTING PROCESS USING MBT 87

Constraint Language (OCL) constraints written as pre/postconditions in the operations in
a class within a class diagram, as depicted in Fig 10.3. The test generation engine sees
these behavioral objects as test targets. The operations can have several behaviors,
identified by the presence of the conditional operator, if-then-else. The precondition is
the union of the operation’s precondition and the conditions of a path that is necessary to
traverse for reaching the behavior’s postcondition. The postcondition corresponds to the
behavior described by the action in the ”then” or ”else” clause of the conditional operator.

Figure 10.3: Object Constraint Language (OCL) example

A specific type of operation, called observation, defines the test oracle. The tester with
these special operations can define the system points or variables to observe, for in-
stance, a function returns a code. Thus, based on these observations, the test oracle is
automatically generated for each test step. The next section provides us an inside view
on the test case generation process.

10.2.2 TEST CASE GENERATION

Based on the chosen test selection criteria, CertifyIt extracts the test objectives into a test
suite, called with the CertifyIt terminology a smartsuite.

In our case study, two smartsuites named EspR4FastData GETestSuite and
UserTestScenarios were created (see Figure 10.4). The EspR4FastData GETestSuite
test suite indicates that the generation should be done for all defined test objectives
whereas for the UserTestScenarios SmartSuite, they are user-defined scenarios of tests
to define some very specific cases with the help of the MBT model. Based on the object
diagram and the OCL postcondition, the CertifyIt tool automatically extracts a set of test
targets, which is the tool comprehensible form of a test. The test targets are used to drive
the test generation. As discussed previously, each test has a set of tags associated with
it, which ensures the coverage and traceability to the specification. Figure 10.4 gives a
snapshot of a test in the CertifyIt tool. On the left side, the tool lists all generated tests
clustered per covered requirement. On the right side, the test case can be visualized
and for each step a test oracle is generated. As discussed, the tester with the obser-
vation manually defines the system points to observe when calling any function. Figure,

88 CHAPTER 10. EXPERIMENTS

checkResult observes the return code of each function with respect to the activated re-
quirement. In addition, on the bottom-right of the figure for each test case and test step,
it is possible to observe the test targets (set of tags).

Figure 10.4: CertifyIt test case view

In addition, Figure 10.5 illustrates the generated tests with CertifyIt, in exported HTML.
More specifically, the shown test covers the behavior that resets the GE implementation
using the resetGE function. As discussed previously, each test has a set of associated
tags for which it ensures the coverage. The export of this test, as illustrated in Figure 10.5,
in the rightmost column, maps to each step the covered requirements or more precisely
the test objective tagged by @REQ and @AIM in the model. The export, as shown in the
middle column of the figure, contains guidelines for test reification, giving directions on
how the abstract test case should be adapted into a concrete script, which is described
in the next section.

Figure 10.5: Implementation Abstract Test Case (HTML export)

Within the considered limits of the implementation, the tool extracted 26 ”test targets” and
generated 22 tests in around 10 s to cover the test targets. Each story in the CertifyIt
tool corresponds to one test target. However, one test covers one or more test targets.
Moreover, the tool’s engine generates fewer tests then test targets, because it uses the
”light merge” of test methods, which considers that one test covers one or more test
objectives (all test objectives that have been triggered by the test steps). For instance,

10.2. FIWARE TESTING PROCESS USING MBT 89

the test shown in Figure 10.4 covers two test objectives. The ”light merge” of the tests
shortly and on a high-level means that the generator will not produce separate tests for
the previously reached test targets.

The generated tests are abstract and to execute them on the SUT, they should be further
adapted. For our study, a SoapUI exporter was created, which publishes tests into SoapUI
XML projects using the SoapUI library.

10.2.3 TEST CASE REIFICATION & EXECUTION

In the used MBT approach, to execute tests on the system under test, the activity of
test cases reification, also named test case adaptation, is performed first; it consists of
creating an adaptation layer to fulfil the gap between the abstract test case generated
from the MBT model, the concrete interface, and the initial set of test data of the system
under test. As classically required for the test adaptation activities, exporting the Abstract
Test Cases (ATS) into executable scripts is the first step to perform, in this case, the
ATS are exported into XML files which can be imported and executed on the SoapUI. To
illustrate the test adaptation activities, let us consider the following simple test case given
in Figure 10.5:

sut.resetGE(INVALIDURL)

-> sut.checkErrorCode () = URL_ERROR

This test has one step that calls the function to reset the data with a URL set to ”IN-
VALIDURL”. CertifyIt automatically generates the test oracle, by using an observation
operation defined in the model, in our example, it is called ”checkErrorCode ”. For in-
stance, the expected result of the test is the error URL ERROR. Further, we created
a SoapUI exporter, which from the CertifyIt tool publishes the abstract test cases into
concrete SoapUI projects. These projects can be imported and executed on SoapUI.
Figure 10.6 shows an example of four executed test cases after importing the SoapUI
project. On the left side, the test cases are illustrated. On the right side, it is possible
to observe the test case execution status for each step. The green color on a test step
represents its successful execution status while the red color represents a failed test step.
On the top, a global test pass/fail result is summarized.

10.2.4 EXPERIMENTATION SYNTHESIS

In order to test the NGSI interfaces of FIWARE Generic Enablers implementations, as
described by the experimentation in section 10.2, we used a Model-Based Testing as
a service execution approach. Execution of each test case produces a result log that
were compiled into one testing report. As an illustration, the following XML code provide
execution result as obtained from the execution of test cases obtained from the NGSI9/10
model.

90 CHAPTER 10. EXPERIMENTS

<execut ion− r e s u l t s>
<t imestamp>2016−09−06T14:58:25 .654< / t imestamp>
<execut ion−t ime−ms>23401< / execut ion−t ime−ms>
<sui tesTotalNumber>1< / sui tesTotalNumber>
<casesTotalNumber>22< / casesTotalNumber>
<stepsTotalNumber>92< / stepsTotalNumber>
<testCasesResul ts>

<resu l tPass>18< / resu l tPass>
<r e s u l t F a i l e d>4< / r e s u l t F a i l e d>

< / testCasesResul ts>
<tes tS tepsResu l ts>

<resu l tPass>82< / resu l tPass>
<r e s u l t F a i l e d>10< / r e s u l t F a i l e d>

< / tes tS tepsResu l ts>
< / execut ion− r e s u l t s>

This shows that from the 22 generated test cases 18 passed whereas 4 failed. The
causes have been identified and illustrate the impacts of functional testing:

• Increase specification robustness: in several point, the specification (being under
development at time of test execution) is not clear enough, as it does not define the
errors to be generated on each NGSI operation

• Pinpoint implementation issue: in the above example, the tested implementation
was not respecting the specification in respect with specified MIME types required
in the FIWARE IoT standard

Figure 10.6: SoapUI Test case launch example with result status

10.3. ONEM2M TESTING PROCESS USING MBT 91

Next section introduce the same principles in MBT for conformance testing to the oneM2M
standard.

10.3 ONEM2M TESTING PROCESS USING MBT

This section presents the process that we used to validate oneM2M implementation using
the MBT approach. The approach normally used by oneM2M is to manually write Test
Purposes, which are used to write TTCN-3 abstract test cases. Later, these tests would
be verified by at least two different TTCN-3 tools (in order to check the TTCN-3 com-
pliance to standards) on different oneM2M implementations. This process is described
on figure 2.6. We altered the process by introducing MBT generated tests from the re-
quirements and Test Purposes, as shown on figure 10.7. We created a UML model that
expresses the requirements defined by oneM2M Working Groups, and added the Test
Purposes in order to guide the the test generation. These tests are generated by Cer-
tifyIt, a software for generating tests with MBT approach made by Smartesting. Then,
using the CertifyIt API, we created a publisher that publishes these abstract tests into
the TTCN-3 language. The publisher was modified to use the Abstract Test Suite (ATS)
created by ETSI, in order to keep the compatibility with the already produced test cases.
From this step to the end, the process remains the same as defined by oneM2M.

Figure 10.7: The altered work process

10.3.1 REQUIREMENTS AND TEST PURPOSES

The requirements describe how the system is structured internally and the internal and
external communication. Derived from one or more requirements, the Test Purpose (TP)
defines the steps needed to test if the SUT respects the corresponding requirement.

Requirement is a singular documented need that a particular product must be able to
perform. There are different types of requirements: Architecture requirements that ex-
plain what has to be done to integrate the system’s structure and behaviour. Business
requirements explain the needs of the organisation to be fulfilled by the system. A spe-
cial case of this requirement is the stakeholders requirement, that defines how the users
want to interact with the solution. There are also the functional and the quality-of-service
(non-functional) requirements: The first defines all the capabilities, behaviours and infor-
mations that the solution needs, and the second defines the constraints that the system
needs to support, like reliability, availability and maintainability. Every requirement should
address only one thing, fully stated with no missing information. It should express objec-
tive facts by using clear wording without technical jargon or acronyms and it should be
verifiable.

The TPs are concise and unambiguous description of what is to be tested rather than
how the testing is performed. They are described in a language called TPLan [11] that is

92 CHAPTER 10. EXPERIMENTS

developed as a standard by ETSI Technical Committee Methods for Testing and Specifi-
cation (TC-MTS). The development of Test Purposes inside the oneM2M project is shared
between the members of the Working Group TST.

The tests that we want to produce from the requirements and TPs are in the category
of black box conformance testing: black box because we don’t use the source code to
produce tests and conformance to verify that the SUT is conforming to the specifications
and requirements defined by the oneM2M Working Groups. In the time of writing this
thesis, there are 57 different TPs, or in total of 168 possible test cases (some TPs have
value variations and this way there are 4 or 6 different cases for the same TP).

10.3.2 MODEL-BASED TESTING MODELISATION

Model-Based Testing (MBT) [25] is a particular test technique which consist in creating a
behavioural model of the System Under Test (SUT) based on a list of functional require-
ments in order to generate a suite of test cases. The documents produced in the oneM2M
Working Groups specifying the functional requirements and the already prepared Test
Purposes in a specified format, are the basis for developing the MBT model.

The MBT model is different than normal development model. Depending on the types of
test that we want to produce, we create the model from different views. For example, if
we want to produce tests covering the operations and communications of one or more
components, we modelise them as different entities. If we want to generate conformance
tests, we need a model that represents the system as a whole and the environment that
surrounds it (data structures used for communication, other systems), not its internal
structure.

We first created a model that represents the two main parts of oneM2M: the AE (Appli-
cation Entity) and CSE (Common Services Entity) alongside the data structures that are
used by these two entities.

Figure 10.8: Model-Based Testing Class diagram

The diagram (Figure 10.8), depicts two main classes: IUT and AE. The SUT, in fact, is
the CSE that we intend to test. In our configuration, the AE will send requests to the CSE

10.3. ONEM2M TESTING PROCESS USING MBT 93

and the CSE will respond to the AE’s requests. All test cases will be based on the same
communication scheme. The underlying communication protocol (HTTP, CoAP, MQTT)
will be defined by the TTCN-3 test port, which is different for every TTCN-3 tool.

CertifyIt uses different technologies and criteria to control the test generation. It uses the
model structure as a criteria, the input data space (splitting the data space into equiv-
alence classes or using the Pairwise method to define couples of data) and uses the
described requirements as criteria to control the tests. Also, one can use the stochas-
tic criteria to drive the test generation. From the model and the specifications, the test
cases can be generated manually. But the benefits of MBT is in the automation of the
process. A test suite can be generated automatically by means of algorithms based on
different techniques: random generation, graph and metaheuristic search algorithms and
constraint resolution with symbolic execution.

10.3.3 GENERATING TTCN-3 TESTS

At the moment we successfully generate all possible tests in CertifyIt, we have to convert
(or, in the CertifyIt terminology - publish) them in a target language. The default publishers
in CertifyIt are XML, JUnit and HTML. The XML publisher is the base publisher that will
convert all test cases and other model data to a XML file that then can be used by other
publishers to generate tests in other formats. The publisher in JUnit generates tests that
can be executed in Java with a glue code i.e. a code that will be an adapter between the
SUT and the JUnit tests converting the abstract values into concrete ones. The HTML
publisher serves mostly as documentation because its output is simply a web page where
all steps for every test case are shown. A matrix between requirements and test cases
can be included in the document too.

Because we need our tests in TTCN-3 format, we have to use the Smartesting Certi-
fyIt API in order to create a custom publisher for our needs. Our situation is somewhat
unique: on one side we have the model and the generated tests; on the other we have the
Abstract Test Suite (ATS) written by ETSI that contains TTCN-3 test cases, templates and
components. They use already defined types by the XSD documents that are converted
to TTCN-3 types automatically. So, our publisher has to write TTCN-3 tests adapted to
the ATS. In a normal case, it’s the publisher that will generate the skeleton of the adapter.
That is the case, for example, with the JUnit publisher: every test case is generated in its
own file, and all the test cases (grouped in folders by test suite) share the same Adapter.
This adapter usually consists of more files, some for the operations needed by the tests
(construct a request, send a request or receive response) and some for data structures.
In our case, we need to make modifications to the publisher in order to adapt the model to
the ATS. We need to adapt the model’s operations and data types to the ATS operations
and data types. That means that the object-oriented nature of the MBT process should
be transformed to a procedural type of language. Also, TTCN-3 supports structures that
don’t exist in other programming languages. For example we need to decide when to use
the TTCN-3 send or receive function, or when and which templates to use. Usually, the
publisher takes all the informations from the model, that is, the model structure (types,
instances, operations, values) and the test cases. It uses that information to ”translate”
the test cases in the target language, TTCN-3. In this process, all structures remain with
their names as they are created in the model.

The test structure inside the CertifyIt publisher is organised like this: Inside a project (that

94 CHAPTER 10. EXPERIMENTS

is, the model), there is a collection of test suites (defined by the tester) and every one of
them contains generated test cases. A test case is ordered list of test steps, that basically
are the model’s operations. We have access to these elements from the Smartesting API
using a loop mechanism, for each test suite we create a separate file, inside which we
write the corresponding test cases. TTCN-3 needs a control structure, and it implies two
options: either write the control structure in each test suite file for the test cases inside
the suite, or make a separate file that imports all test suites and has a control structure
that executes all tests. In the loop of a test case, we have access to the test case meta
data, but also it is in this process we export the static parts, like the test case postamble.
The published tests cases have to use the created ATS, therefore, the publisher need
to be configured to use ATS types, functions and data.Two different methods are used:
hard-coding values and a mapping file. The mapping file is a clean solution because in
the event of changes, we don’t have to make changes inside the publisher in order to
produce TTCN-3 tests aligned with the existing ATS, but we don’t have the flexibility that
has the method of hard-coded values. Thus, we use the mapping files for values that
don’t change thorough all of the test cases, like port names and timer timeouts, type or
value conversion and renaming variables. The changes that has to be bound inside a
test case must be hard-coded. This, for example, is used to differentiate between the test
preamble and the test body (usually the last operation in a test case is the test body, and
all other operations are preambles) while the postamble is static. The difference between
the preamble and the test body is that in the body, being the main part of the test) we
manually prepare the data to be send and insert send/receive function calls directly in the
test case, instead of calling another function to do it. The send/receive part is one of the
instances where we had a lot of problems to synchronise the model data with the ATS.
Namely, the model uses descriptive names for status codes that we expect to be returned
from the SUT instead of numeric ones, for example, instead of using status code 4004,
we use ”NOT FOUND”. The descriptive names are used in order to avoid changing the
model if the oneM2M standard changes, because the meaning will be the same, but the
value can change. In the beginning, in the model there was only a subset of values used
for status code, so implementing the translation to their numeric value was simple in the
mapping file. But to avoid making a long ”dictionary” of names and values, we started
to search for alternative where to insert the data in the model so we don’t have to add it
manually in the mapping file. In the end, the solution was found: adding numeric values
in the description field for every text value in the status code (to clarify, the status code
was implemented as enumeration class in the model, see Figure 10.8).

Other changes to the publisher linking it closely to the model and ATS, as already men-
tioned, was separating the preamble from the test body. Every TP in the model was imple-
mented as few requests that are created and sent, and thorough the observer functions
we wait for the response. The ATS is implemented otherwise: the preamble is separated
in functions that contain at least one send/receive call, and the test body send/receive
calls are implemented directly in the test case. Because the test structure in the model
and the ATS is different, the publisher’s role is to find a way to transform the first type of
test to the other.

10.3.4 EXECUTION AND REPORTING

TTCN-3 is an abstract language and it does not manage communication with the SUT. In
order to do that, we need few things: A compiler/executor for TTCN-3 code and codec/-

10.3. ONEM2M TESTING PROCESS USING MBT 95

port implementation to communicate with the SUT. This is entirely compiler dependent
because the codec and the port are only declared in TTCN-3. Usually, all of the com-
pilers follow this procedure: compile TTCN-3 to a target language (TITAN1 uses C++,
TTWorkbench2 uses Java), then add the Codec and System Adapter (SA) written in the
target language. In the case of TITAN, the SA and the Codec are added as additional
C++ files that are compiled together, but in the TTWorkbench case, the SA and the Codec
use an API and compile separately from the tests and are added to the test executable
as plugins and executed.

In our case, we used the open source tool TITAN as platform to compile and execute
TTCN-3 tests. It’s based on Eclipse, and as of 2015 is a open source project supported
by the Eclipse Foundation and developed primarily by Ericsson. It has three major roles:

• The TTCN-3 design environment provides an efficient way to create the TTCN-3
test suites. It’s built on the Eclipse Platform and has editors that provide the usual
IDE features for TTCN-3 and the TITAN configuration file. Also, it allows generating
C++ code from TTCN-3 code and uses the built-in makefile generator to produce
GCC makes to build the C++ code to an executable.

• The compiler compiles the TTCN-3 ATS tests and the TITAN runtime to an exe-
cutable. Usually it needs a configuration file in order to be executed, because one
has to specify a lot of parameters, like IP address and port of the SUT. In this way
flexible execution scenarios can be created without re-building the ATS.

• TITAN runtime control, controls the execution of test cases in a distributed multi-
platform environment. This control part produces logs in different format thorough
its logging API, and the logging is done via plugins. Several logging mechanisms
may be activated at the same time. Logging can be configured by verbosity and by
event types. Logs can be written into files or be send to another process or via a
network connection to a 3rd party tool.

In a MBT scenario, the test cases generated from the model are necessarily abstract, as
the model itself does not contain low level information. Therefore the abstract test cases
has to be completed by a test harness, to become executable test cases. In order to send
and receive the data to and from the SUT we have to create the codec that will convert the
TTCN-3 structures to real data and send it through the specified port, be it the network,
or simple USB, serial port, radio signals, etc. oneM2M supports three different protocols,
HTTP, CoAP and MQTT, the TITAN SA supports all of them. TITAN’s developer, Ericsson,
has made SAs for every protocol, but it isn’t really useful to recompile every time when
the SUT is tested with HTTP, MQTT and CoAP, but more than that, every protocol should
support XML and JSON formatting. As a result, we have 6 different combinations. To
solve this problem, we created a oneM2M SA that unifies all of these together.

1https://projects.eclipse.org/projects/tools.titan
2http://www.spirent.com/Products/TTworkbench

96 CHAPTER 10. EXPERIMENTS

10.4 ACCESS CONTROL POLICIES (ACP) TESTING IN ONEM2M
IOT STANDARD

The Authorization function is responsible for authorizing services and data access to
authenticated entities according to provisioned Access Control Policies (ACPs) and as-
signed roles. Access control policy is defined as sets of conditions that define whether
entities are permitted access to a protected resource. The authorization function can
support different authorization mechanisms, such as Access Control List (ACL), Role
Based Access Control (RBAC), etc. The Authorization function could need to evaluate
multiple access control policies in an authorization process in order to get a finial ac-
cess control decision. oneM2M is the leading global standardisation body for Machine
to Machine (M2M) and the IoT. The purpose and goal of oneM2M is to develop techni-
cal specifications which address the need for a common M2M Service Layer that can
be readily embedded within various hardware and software, and relied upon to connect
the myriad of devices in the field with M2M application servers worldwide. The oneM2M
standard defines ACP for Application Entities resources operations such as create, up-
date, delete. . . Our test case uses a MBT model to represent the oneM2M standard and
generate test cases related to its ACP operations.

Figure 10.9: oneM2M standard MBT model

Figure 10.9 represents in class diagrams of a part of the oneM2M standard which is
significant for the Access Control Policy testing. An Application Entity (AE) in oneM2M
detains a set of privileges to its resources: ”AccessControlOperation” class. The ACP of
an AE purpose is to set the rules on the Operation (OP class) that it can perform on the
IoT platform. The Access Control Policies test generation from the MBT model are driven
by an embedded Test Purpose (TP). The following figure represent the TP definition. The
TP name: ”TP/oneM2M/CSE/DMR/CRE/BV/004” describes its nature, CSE: Common

10.5. ARMOUR LARGE SCALE END-TO-END SECURITY 97

Service Entity, DMR: Data Management Repository, CRE: CREate, BV: Behavior Value.

Figure 10.10: ACP Test Purpose definition

The Access Control Policy Test Purpose presented defines the behavior of an AE where
its creation rights are removed. In more details, the TP asks, for each resource type
defined in the ”RessourceTypes” list of integers to first create an AE and then update its
ACP in order to disable its rights to create new resources (second boolean to false in
the ”AE.SendACPUpdateRequest” function. Finally the AE is asked to create a resource.
Note that the TP also contains the assertion of the test. ”ACCESS DENIED” is the ex-
pected behavior in our case when an Application Entity tries to create a resource and has
no rights. Any other result confirms that the tested application has a security vulnerability.

In the MBT model, the TP is still at a higher level of abstraction. The next step after
TP definition is to generate concrete test cases for test execution. A test case is usually
composed of one or more test steps. For our selected TP, we have published it into HTML
format. This format is appropriated for manual testing. Our test case is composed of three
steps.

The test steps regroups the actions described in the TP definition. The resource type to
be created is specified for test concretization.

10.5 ARMOUR LARGE SCALE END-TO-END SECURITY

For a real use case, we use the steps taken by ARMOUR [48], the H2020 European
project. The project introduces different experiences to test the different components.
More specifically, each experience proposes individual security tests covering different
vulnerability patterns for one or more involved components. In ARMOUR, experience
1 (Exp1: Bootstrapping and group sharing procedures) covers the security algorithms
for encryption/decryption and protocols to secure communication. Experience 7 (Exp7:
Secure IoT platforms) covers the IoT data storage and retrieval in an IoT platform. Both

98 CHAPTER 10. EXPERIMENTS

Figure 10.11: ACP test steps

experiences can wisely be integrated together. Indeed, it makes sense to pair the secure
transfer and storage of data within an IoT platform, thus ensuring that the confidentiality
and integrity of the data is maintained from the moment it is produced by a device, until it
is read by a data consumer.

Figure 10.12: Large scale end-to-end security scenario

Figure 10.12 depicts the E2ES scenario which combines Exp1 & Exp7. The IoT platform
used in this particular scenario by Exp7 is the oneM2M standard implementation. Both

10.5. ARMOUR LARGE SCALE END-TO-END SECURITY 99

data consumers/producers retrieve keys from a credential manager (CM) and the IoT
platform role is to support the data storage/retrieval. However, a single security problem
in any of the components involved in this scenario can compromise the overall security.

One specificity of testing such a security scenario, MBT-wise, is that each experience has
its own MBT model and the E2ES MBT model is a combination of the Exp1 and Exp7
models.

Figure 10.13: End to End security MBT description

A wise integration of the experiments is made from each experience model. We call it an
integration model which is used by a Business Process Model Notation (BPMN) model to
generate the Abstract Test Cases as shown in Figure 10.13. The test cases then follow
the normal MBT procedure, that is, test generation and then publication. In this use case,
the published tests are written as TTCN-3 [54] executables for test automation and can
be exported as documentation for manual testing.

10.5.1 MBT MODEL

Each of the IoT systems are composed of producers, consumers, an IoT platform, and
eventually a security service, gateways and/or sniffer. The entities communicate through
message requests (of different types) and respond to messages through message re-
sponses. This generic model, which we call the IoT MBT Generic Model (Figure 10.14)
can be created automatically from the MBT tool (CertifyIt). This model can then be cus-
tomized with respect to the IoT system under test, for instance, choosing suitable names,
add different types of message exchanges, configure response status codes, test pat-
terns, delete unnecessary model elements, etc. . .

Specifically, oneM2M is a global organization that creates requirements, architecture, API
specifications, security solutions, and interoperability for Machine-to-Machine (M2M) and

100 CHAPTER 10. EXPERIMENTS

Figure 10.14: IoT MBT generic model

the IoT technologies. It was established through an alliance of standards organizations to
develop a single horizontal platform for the exchange and sharing of data among all appli-
cations and provides functions that M2M applications across different industry segments
commonly need.

In the same way that consumers want to ensure that their personal and usage data are
not misused, any number of stakeholders will also want to ensure that their data is pro-
tected and the services are securely delivered. Unlike the traditional internet, a typical
IoT system:

• Inputs information about our behaviors, thus it directly exposes our privacy.

• Outputs adaptations to our environment, thus it potentially affects our safety.

Security is a chain that is only as strong as its weakest link; hence, all stages of a de-
vice’s/service’s lifecycle need to be properly secured throughout its lifetime. In oneM2M,
there are three layers of protection for the communications:

• Security Association Establishment Framework (SAEF): Adjacent entities.

• End-to-End Security of Primitive (ESPrim): Originator to Hosting platform.

• End-to-End Security of Data (ESData): Data producer to data consumer.

We used in our use case, a oneM2M compliant platform (OM2M [52]) to test the end-to-
end security with the MBT approach introduced by figure 10.13, and as a security service,

10.5. ARMOUR LARGE SCALE END-TO-END SECURITY 101

Figure 10.15: Integration of the MBT model

we will be using a ”Credential Manager” (CM). The CM oversees establishing a secure
channel with the smart object to deliver the group key in a secure way. Figure 10.15
shows the modifications made to the generic MBT model to represent the wise integration
between Exp1 & Exp7.

Here is an enumeration of the behaviors emerging from the Exp1 & Exp7 integration and
that the model implements:

1. The smart object requests its group key to the CM.

2. The CM extracts the set of attributes of the entity from the request payload and it
generates the group key associated with such a set.

3. The CM sends to the smart object its group key.

4. The sniffer intercepts the messages exchanged between the smart object and the
CM and tries to read the group key.

The model also includes test oracles. For example: If the sniffer cannot read the group
key, the test will be satisfactory. Otherwise, the test will be unsatisfactory.

To drive the test generation, a BPMN model (Figure 10.16) is created.

The BPMN model drives the test generation by giving some guidelines to the MBT tool
for test coverage. The BPMN will ensure to test the business scenario required: test the
end-to-end security of the process from key retrieval to secure encrypted data in the IoT
platform.

Once all the MBT material described is in place, we proceed to the test case generation
step.

102 CHAPTER 10. EXPERIMENTS

Figure 10.16: BPMN model

10.5.2 TEST CASE GENERATION

Section 10.2.2 gave us some initial insight of the test case generation from the model
perspective. The generation process for MBT the IoT security uses the same principles
and we will extend the use case approach to the generation within the CertifyIt tool.
The BPMN model 10.16 allows one to generate one test case related to the end-to-end
security scenario. The generated test case is shown in figure 10.17. Figure 10.17 shows

Figure 10.17: Test case generation with the MBT tool

the test case details on its right-hand side. We recognize the steps introduced in the
BPMN model as:

1. The sensor sends a request to the CM asking for a KEY.

2. The CM receives the request.

3. The CM generates a KEY and sends it to the sensor.

10.5. ARMOUR LARGE SCALE END-TO-END SECURITY 103

4. The sensor receives the KEY.

5. The sensor encrypts its data with the received KEY.

6. The sensor sends the key to the oneM2M implementation.

7. The oneM2M implementation receives the encrypted value.

The generated test case is still an abstract test as the enumerated values taken from the
model are present. For example, the test oracle for the fourth test step is the ”KEY -
GENERATION SUCCESS” code. All enumerated values need to be adapted to obtain a
concrete executable test. The next section shows how this process is conducted.

10.5.3 TEST CASE REIFICATION

After successfully generating the tests, a conversion (or, in the CertifyIt terminology —
publish) into a target language is needed. The default publishers in CertifyIt are XML,
Junit, and HTML. The XML publisher is the base publisher that will convert all test cases
and other model data to an XML file that then can be used by other publishers to generate
tests in other formats. The publisher in JUnit generates tests that can be executed in Java
with a glue code, i.e., a code that will be an adapter between the SUT and the JUnit tests
converting the abstract values into concrete ones. The HTML publisher serves mainly for
documentation purposes because its output is simply a webpage where all steps for every
test case are shown. The TTCN-3 publisher works on the same principle: the TTCN-3
generated tests are joined with an adapter file where all types, templates, functions, and
components are defined. Then, we proceed to the next phase of test compilation. The
TTCN-3 example generated from the model is shown in Figure 10.18. It follows the same
structure as that generated from the model. The TTCN-3 tests start with the variables
declaration. Then, the static part of the preamble is used to configure the test component.
The second part of the preamble and the test body is derived from the abstract test case.
The send/receive instructions are part of the test body and are detected by the naming
convention that they are in fact templates, not functions. The messages used in the
receive part are taken from the ”observer” functions in the model.

Once the Abstract Test Suite (ATS) in the TTCN-3 format is obtained, executing it is the
next step. To achieve this, a compiler transforming the TTCN-3 code into an intermediate
language, like C++ or Java is needed. The TTCN-3 code is abstract in a sense that it
does not define the way to communicate with the SUT, or how the TTCN-3 structures will
be transformed into a real format. This is a task for the System Adapter (SA) and the
Codec. There are few commercial and non-commercial compilers that are available for
download from the official TTCN-3 webpage [54]. Usually, all the compilers follow this
procedure:

• Compile TTCN-3 to a target language (Titan uses C++, TTWorkbench uses Java).

• Add the Codec and SA written in the target language.

In the scope of this use case, we show the Titan test case execution tool as it is an
open-source project.

104 CHAPTER 10. EXPERIMENTS

Figure 10.18: TTCN-3 Abstract Test Suite example

10.5.4 TEST CASE EXECUTION

The goal of the testing process, as described in Figure 10.13 is to execute the MBT-
generated tests on the SUT.

Figure 10.19: Test execution

As described in Figure 10.19, after the publication of our tests in TTCN-3, we use the
Titan compiler to compile them to C/C++ code. To this code, we add the C/C++ code of
the SA and the Codec. Using a makefile generated by Titan, we can compile the complete
suite into a test executable. Its execution can be controlled by Titan via a configuration
file. At the end of the execution, we obtain a log of the execution, with a status for every
test case executed. The test cases results can be traced back to their test purposes and
test patterns.

10.5. ARMOUR LARGE SCALE END-TO-END SECURITY 105

Module parameters, abbreviated as modulepars, are a feature of TTCN-3 described in its
specification. They are similar to constants and are used to define the parameters of a test
suite. These parameters can be, for example, the address of the SUT, the timeout period,
or some details of the SUT that can be chosen depending on the SUT implementation.
These parameters also are called Protocol Implementation eXtra Information for Testing
(PIXIT). Titan can use these module parameters inside its configuration file to provide
configuration of the ATS without the need to recompile it. In the same file the user can
configure the SA, for example, if it uses a UDP test port, through which system port of
the test system it should send or receive the data.

TTCN-3 provides a whole structure inside a module to control the execution order of the
test cases. Inside the control part, the tester has full control over the execution. He can
create and start one or more components that can run the tests in parallel, and can use
conditions and loops to create an execution of the test suite that is closely adapted to the
needs of the SUT or the tester itself. Also, Titan widens this control by implementing a
higher-level of control inside the configuration file. Here, the user can specify, if there is
more than one module with control parts, which module will be first to execute, which will
be last, and the exact order of the test cases, etc.

Every TTCN-3 compiler has the right to implement its own method to store the test execu-
tion results in the form of a logging file. The Titan open-source compiler uses a proprietary
log format from Ericsson by default, but its logging interface is very rich and thus it is not
difficult to create new logging formats adapted to a user’s needs. The logging facility in
Titan can produce logs with various levels of details to manage different requirements for
the console log and log file. The logging parameters can be configured in Titan’s config-
uration file by setting the ConsoleMask and FileMask options, respectively, for the level
of information that should be shown on the console and saved in the log file. TTCN-3
has strict control of a test case status. The five different values for test statuses are:
”none”, ”pass”, ”inconc” (short of inconclusive), ”fail”, and ”error”. Every time a test case
is started, its status is automatically assigned to ”none”. The tester, through the test case,
can change it to ”pass”, ”inconc” or ”fail”, depending on the conditions that are defined in
the test case. To prevent a failed test becoming valid, when the test case is executing and
the status is set to ”fail”, it cannot be reverted to ”pass” or ”inconc”. The same is true for
”inconc”, it cannot revert to ”pass”. A special status is the ”error” status and it is reserved
for any runtime errors to distinguish them from SUT errors.

10.5.5 EXPERIMENTATION & RESULTS

To test the end-to-end security scenario efficiently, the need for a large-scale test frame-
work is a primordial factor as it emulates a real implementation of an IoT service. The
MBT Testing Framework for Large-Scale IoT Security Testing (Figure 10.20) consists of
7 modules from three tool suites: CertifyIt tool suite, Titan, and FIT IoT-LAB[50]. The FIT
IoT-LAB is part of the Future Internet of Things (FIT) that has received 5.8 million Euros in
funding from the French Equipex research grant program. FIT IoT offers the large-scale
testbed on which the test cases are executed. The test configuration is considered in the
modelling and the test execution environment in the FIT IoT-LAB by the test engineers.

After the MBT generated test cases and their publication in the TTCN-3 test scripts, they
are deployed in the FIT IoT-LAB ready to be executed by Titan. Titan will first compile, then
adapt, and finally execute the test cases on a SUT within the FIT IoT-LAB. Results of the

106 CHAPTER 10. EXPERIMENTS

Figure 10.20: MBT Testing Framework for Large-Scale IoT Security Testing

feasibility of the demonstrated approach have been achieved and the large-scale scenario
could be demonstrated through the ARMOUR experiments. We could test the complete
chain of events described in the BPMN scenario and record the messages exchanged in
the testbed through the use of its integrated sniffer. The sniffer revealed that substantial
portions of the messages exchanged (92%) where not ciphered. This result can further
be used to benchmark the security of an IoT deployment. Our experiments can safely
assess that the data transiting between the sensor and the IoT platform is ciphered. This
is far from optimal to conclude that the deployment is secure.

10.6 ARMOUR BEHAVIORAL FUZZING

The development and validation of ARMOUR Security Tool Suite, to test and evaluate
security on Internet of Things scenarios, is supported by the execution of several security
experiments defined and executed by ARMOUR consortium members. There is 7 experi-
ments defined in ARMOUR and we have already seen the synergies between experiment
1 and 7 in section 10.5. For this section, we will take a deeper look into the experiment 5
(EXP5) and experiment 6 (EXP6) of the ARMOUR project.

10.6.1 SYNERGIES BETWEEN ARMOUR EXPERIMENT 5 & 6

Experiment 5 - Trust aware wireless sensors networks routing, aims at evaluating the per-
formance of distributed trust-aware Wireless Sensor Network (WSN) Routing Protocol for
Low Power and Lossy Networks (RPL)-based solutions in real large-scale deployments,
under the presence of malicious nodes or under adverse conditions. Experiment 6 - Se-

10.6. ARMOUR BEHAVIORAL FUZZING 107

cure IoT Service Discovery deals with the execution of a set of experiments proving the
robustness and efficiency of secure service discovery achieved by a group-based solu-
tion combining Datagram Transport Layer Security (DTLS) over Constrained Application
Protocol (CoAP). These two experiments possess the following diverse characteristics
and requirements:

1. Experiment 5 deals with vulnerabilities and security attacks on networking (RPL)
layer, while experiment 6 is concerned with issues related to transport (DTLS) and
application (COAP) layer

2. Experiment 5 requires multi-hop routing, while this is not a mandatory condition in
experiment 6

3. Experiment 5 is implemented on TinyOS, while experiment 6 algorithms are devel-
oped in ContikiOS

4. Experiments 5 and 6 are addressing different vulnerabilities

Setting up a wireless sensors network and doing a secure service discovery on the net-
work is an example of use case synergy between the two experiments. In order to test the
synergies of the experiments a controller was implemented for their execution. The con-
trollers purpose is to execute the different experiment functionalities that are described
further in section 10.6.2. The specificities for execution of experiments 5 & 6 introduce
specific challenges:

• The conception of the MBT model, to be able to integrate the specific behaviour of
the controller for deploying a large-scale IoT system

• The conception of the test scripts; the format of the TTCN3 scripts and thus the
TTCN3 publisher

10.6.2 MBT MODEL

We illustrate in Figure 10.21 one part of the MBT Model formalizing the behaviour of the
Controller.

Figure 10.21: Excerpt of EXP 5 & 6 MBT model

The model represent two entities present in the joint experiment, a sniffer that interact with
a controller in order to intercept all communication emerging. The controller has a number

108 CHAPTER 10. EXPERIMENTS

of operation as depicted: ”updateFirmware”, ”generate traffic”, ”stop trafic”, ”check con-
nectivity”, ”service discovery”, ”establish secure connection” and ”check insecure con-
nection”. The operation names are self explanatory, for example ”updateFirmware” is
an operation that the controller will execute to update the firmware of a device in an IoT
deployment. It is possible to generate a traffic between the IoT nodes using the func-
tion ”generate traffic”, and we take a deeper look in the modelisation of this operation in
Figure 10.22, which represent the dynamic properties of the operation in the MBT model.

Figure 10.22: Operation ”generate traffic”

As illustrated, the operation will take into consideration in an abstract manner input pa-
rameters of execution and large-scale constraints, for a deployment on multiple nodes in
a test lab. The test lab that is used for this use-case is the same one used for the large
scale end-to-end security testing in section 10.5 (IoT-Lab).

10.7 TEST GENERATION

The test case generation process for the ARMOUR behavioral process is the same as
the previous security test case generation process involving test purposes. Figure 10.23
illustrates the Test Pattern ID 5 on Resistance to replay attacks, proposing the usage of
different keys when the security critical function of service discovery is called.

Figure 10.23: ARMOUR Experiment 5 & 6 TP ID 5 - Resistance to replay attacks

Figure 10.24 ARMOUR Experiment 5 & 6 CertifyIt Abstract Test Case illustrates the steps
generated for the test pattern ID 5. It is composed of 4 different steps with observations
enabling to make assertions on the steps (pass/fail).

The steps are composed of controller operation (”controller.updateFirmware”. . .) with
sniffer interaction for the observation purposes (”sniffer.message interception”. . .)

10.7. TEST GENERATION 109

Figure 10.24: ARMOUR Experiment 5 & 6 - CertifyIt Abstract Test Case

Figure 10.25 illustrates the GUI of the behavioral fuzzing tool used for test generation. On
the main panel, the left part sets the main inputs: the model, the test suite (as different test
objectives could be given to the tool), the test parameters, the strategy or heuristic, the
test publisher. The specific configurations for each heuristic and the publisher could be
configured on separate panels. On the right part, the coverage of the tags, the operations
and the generated tests could be monitored.

Figure 10.25: MBeeTle, MBT Fuzzing Tool

After test cases generation, the publication is made in TTCN3 for execution. Appendix B
shows the generated TTCN-3 corresponding to the test purpose.

The next section expresses the research result summary, where we discuss the lessons
learn of this thesis.

110 CHAPTER 10. EXPERIMENTS

10.8 EXPERIMENTATION RESULTS SUMMARY

In this thesis experimentation part, we have show how we use our three methodologies to
cover model-based testing for IoT systems. We will now make a summary of our technical
contribution based on the experimentation that where presented in order to asses the
strong and weak points of each methodology.

10.8.1 MBT BEHAVIORAL MODELING

The use case on FIWARE standard showed the feasibility of the MBT behavioral model-
ing solution for the IoT conformance testing and we could show the benefits of applying
the MBT approach in terms of improving the API’s interoperability, thus ensuring the con-
formance to the specifications. In terms of project planning, it takes 16 person-hours to
create a MBT model. More specifically, it takes 4 person-hours to model the static view
of the system (the class diagram) suitable for testing and 12 person-hours to model the
dynamic view of the system (to write the OCL postconditions). These metrics abstract the
domain knowledge from the FIWARE standards and the implementation of the specifica-
tion itself. If the MBT approach is integrated within the project, the testing teams already
possess this knowledge. In addition, the time spent to create the adaptation layer is linked
to the developers/testers experience and it is considered as negligible. One major advan-
tage in applying the MBT approach on the FIWARE data enabler implementation is that
the test repository remains stable, while the project requirements and specification may
evolve over time. Another advantage concerns the testing exhaustiveness. It is indeed
impossible to test any system exhaustively. Nevertheless, it is possible, as we did, to
generate a test suite that covers the test objectives in an automated and systematic way.
The CertifyIt tool further allows generating reports to justify the test objective coverage,
which can be easily used for auditing. This couple of examples shows the usefulness
of an automated and systematic use of an MBT approach on the IoT applications that
should comply to specific standards. On the other hand, this approach showed a lack of
flexibility when it comes to testing a system that is under development. In agile projects
for example, using the MBT behavioral modeling to test the conformance of a system un-
der development against a standard will raise false errors as not all the functionalities are
implemented. Other problems are observed in complex IoT systems regrouping compo-
nents that have more than one standard implemented. We can with this approach assess
the conformance of different parts of the system individually but the approach is not able
to assess on the interoperability of the system as a whole.

10.8.2 PATTERN-DRIVEN AND MODEL-BASED SECURITY TESTING ANALYSIS

The experiments concluded within ARMOUR have as one of the main objectives to define
an approach for benchmarking security & trust technologies for experimentation on large-
scale IoT deployments. In this respect, it is a major necessity to provide tools for the
IoT stakeholders to evaluate the level of preparedness of their system to the IoT security
threats. Several dimensions are to be considered including:

• Security attacks detection

• Defense against attacks and misbehavior

10.8. EXPERIMENTATION RESULTS SUMMARY 111

• Ability to use trusted sources and channels

• Levels of security & trust conformity, etc. . .

Additional benchmarks of reference secure & trusted IoT solutions are performed to es-
tablish a baseline ground-proof for the ARMOUR experiments but also to create a proper
benchmarking database of secure & trusted solutions appropriate for the large-scale IoT.
To define this methodology and the different dimensions to be considered for benchmark-
ing, ARMOUR will:

• Consider the methodology defined for generic test patterns and test models based
on the threats and vulnerability identified for the IoT

• Identify metrics per functional block (authentication, data security, etc. . .) to perform
various micro- and macro-benchmarking scenarios on the target deployments

• Collect metrics from the evaluation and then use the metrics to categorize them
(taxonomy) into different functional aspects, and based on this, provide a label ap-
proach to the security assessment.

Micro-benchmarks provide useful information to understand the performance of subsys-
tems associated with a smart object. Micro-benchmarks are useful to identify possible
performance bottlenecks at the architectural level and allow embedded hardware and
software engineers to compare and assess the various design trade-offs associated with
component level design. Macro-benchmarks provide statistics relating to a specific func-
tion at the application level and may consist of multiple component level elements working
together to perform an application layer task.

Pattern-driven and model-based security testing has showed its efficiency in terms of
reusability of conformance models, in addition with test purposes for security test case
generation. The automation of test case generation and the ability of adding new vulner-
abilities(Zero day attacks or new system functionalities) in the model, enables keeping
the security test updated faster thus providing constant thrust in the system. The com-
plication that face this approach are located on the test execution level. Security test
execution are strongly linked to the SUT. We have to first assess the vulnerabilities that
are specifically applicable to our SUT and then develop for each SUT an adaptation layer
in order to execute the test. Depending on the complexity of the system tested, the effort
in executing a security test campaign are proportional.

10.8.3 BEHAVIORAL FUZZING RESULTS

We have introduced the model-based methodology on implementing behavioral fuzzing
testing of IoT Systems. Our method is kept generic in a sense that indeed it requires a
custom Model (i.e., security Vulnerability knowledge of attacks and their enabling vulnera-
bilities). In addition, the security risk analysis and its generation of abstract test cases are
generic as well as its execution on different large scale testbeds. Our analysis, showed
that some changes are expected to be done with respect to the test scripts in the adap-
tation layer, requiring more robustness. For example, if the SUT was not designed to run
multiple requests over long period of time.

Our experience in using a Fuzzing approach based on models with a tool such as MBee-
Tle, showed several advantages, such as:

112 CHAPTER 10. EXPERIMENTS

• Minimal initial configuration is required to start a fuzzing campaign.

• Minimal supervision of the fuzzing campaign is required.

• Uniqueness determination is handled through an intelligent backtrace analysis.

• Automated test-case minimization reduces the effort required to analyze the results.

The approach is complementary to other MBT testing approaches and can reveal un-
expected behavior due to its random nature. We observe also that the IoT system, be-
cause it integrates complex and unexpected reactions, lacks observation points to test
the desired vulnerabilities. Thus, the experiment should allow artificially observations, for
instance through sniffers as one of the simplest. Further, the MBT Model used for fuzzing
should not be permissive and allow the generation of test steps that are not executable.
Otherwise the execution result of many tests will be false positive, which will increase the
effort required for analysis of the failed tests.

The next section is the last one of this thesis. It aims to conclude by giving a synthesis of
the work done and explore future work on IoT certification and benchmarking.

11
CONCLUSION AND FUTURE WORK

Contents
11.1 Summary . 113

11.2 Future work . 115

This last chapter makes a summary of the works presented in this thesis. We state our
feelings on MBT role in testing IoT and how it will continue to be as important as it is
now. We strongly believe that MBT is one of the new techniques that will need to be more
and more developed to handle verification and validation in the domain of IoT because
it introduces an ease of access to conformance, security and behavioral fuzzing testing.
We then conclude this thesis by having an overview of the future works related to IoT
systems certification. The idea is to push our testing approaches for IoT certification and
labeling.

11.1 SUMMARY

This thesis addresses the problematic of the validation of the Internet of Things (IoT).
More specifically, it provides answers that address the key challenges of scalability, in-
teroperability, and security of the IoT with real use cases. The solutions that we propose
have a common execution approach: Model Based Testing As A Service (MBTAAS). The
MBT used for the IoT conformance testing shows that the specificities in generating test
cases to validate the correct behavior of an SUT with respect to its standard lies in the
model creation. In this case, the model is a representation of the standard. Any test
executed on the SUT that fails could represent a gap between the specification and im-
plementation, or a compliance from the SUT towards the standard it is implementing.
The MBT used for the IoT security testing diverted from the traditional MBT setup with its
specific test case reification environment. Finally, we have a first view on the specificities
of an MBT for the IoT robustness testing approach. It illustrates how MBT fuzzing could
be applied to the IoT systems. The tooling we presented gives the possibility to re-use
already created model during the functional/security testing phase; thus, no additional
time is spent for modeling. This approach is considered as complimentary to security
or conformance testing, as we expect that the detected inconstancies will differ from the
others.

The standardization institutes and certification entities that make available tomorrow’s
standards have the process of testing as the highest importance. They provide standard

113

114 CHAPTER 11. CONCLUSION AND FUTURE WORK

implementers a set of test cases to assess the conformance, scalability, and security of
their products. Test cases traceability after execution is also a major factor as it is used
to benchmark the test results. With security threats constantly evolving, and to maintain
high confidence and trust, the proposed test cases must be continuously maintained.
This is where MBT finds its interest and added value. The traceability starts with the
specification, then the requirements, and finally to the test cases which are an embedded
feature to that of the classical MBT approach. The test case traceability provided by
MBT gives the possibility to implement test generation strategies which aim to cover a
maximum of the specification. The automated test generation is low time-consuming
comparing to hand written tests, and thus makes the maintenance of generated test cases
cheaper. MBT has major advantages in terms of test coverage, test maintenance, etc.
Those advantages are accelerating the adoption of MBT over time.

The MBT approach for test case generation and execution in the IoT domain is relatively
new. Nowadays, it is becoming more and more visible and accepted compared to a
couple of years ago. The approach was previously reserved for a smaller number of use
cases due to the high difficulty of taking in hand the modeling. Modeling requires highly-
skilled testers and the profession is not common in the software industry. Only highly
critical companies have the privilege of modeling their concepts to test them. The IoT
sector is reaching this critical level nowadays. Security intrusions are more sophisticated
than ever and occur more frequently then we realize. The need for quality assurance in
the field of the IoT testing is essential to accompany its growth. With MBT, the evolution
of the security threads is added into the model and they are by this process considered in
the test generation process. The process saves time when it is not started from scratch.
The models for conformance testing are reusable and adapted to security testing. Model-
Based Testing (MBT) shows its benefits in the medium to long term as it has a high
initial cost and it has been one of the strongest roadblocks for MBT adoption. The MBT
approach requires highly-skilled testers and it is complicated to change the daily habits
of testers in the field. It requires a significant time investment that most are not willing
to partake. One other roadblock for the MBT approach adoption is the complexity of the
existing tools. Nevertheless, MBT is still relatively new and we see more and more tools
emerging. However, these tools require a high degree of formation and skill for practical
usage. The test generation tools are complicated and the complexity of test generation
can take a significant amount of time (NP-complete problems). In the future, the MBT
approach requires significant evolution to survive and show a rise in its adoption. New
techniques have already been developed by tool makers, MBeeTle is one of the emerging
tools for behavioral fuzzing testing that responds to the need for a real-time analysis of
the test cases on the IoT deployments. This new tool allows for a loss of non-determinism
in a real-time system.

The technology for automated model-based test case generation has matured to the point
where the large-scale deployments of this technology are becoming commonplace. The
prerequisites for success, such as qualification of the test team, integrated tools chain
availability and methods are now identified, and a wide range of commercial and open-
source tools are available, as introduced in this thesis. Although MBT will not solve all
testing problems in the IoT systems domain, it is extremely useful and brings consider-
able progress within the state of the practice for functional software testing effectiveness,
increasing productivity, and improving functional coverage. Moreover, the MBT approach
has shown its importance in the IoT by introducing an ease of access to conformance,
security, and behavioral fuzzing testing. The technology is constantly evolving, making

11.2. FUTURE WORK 115

it tester friendly and considerably reducing the high initial cost that is typically the case.
Because of its easier accessibility for testers, as well as more fine-grained integration with
the large-scale IoT testbeds, MBT should expect a larger approval rate.

This thesis is emphasized with a strong practical approach trough a heavy investment
in experimentation. We had the chance to be involved in many European project that
required not only theoretical solutions for testing the IoT but also to provide concrete
working solution. A lot of resources where spent on experimentation in order to validate
proposed methodologies and solutions. More notably, after validating MBT capabilities
to test IoT standards with FIWARE, we worked on the oneM2M standard. With oneM2M
standard validation, we explored deeply its security features. This lead us to have a first
hand on developing a methodology and tools for the IoT security certification.

The next and last section, propose to explore the future work of this thesis taking into
consideration the lessons learned.

11.2 FUTURE WORK

Putting into perspective the work done in this thesis, we find two interesting path of conti-
nuity. The first path relates to the amelioration’s in the problematics faced with respect to
our experimentation’s. With behavioral modeling for conformance testing, our main chal-
lenge is faced during the execution phase. We propose a MBTAAS approach in order to
bring accessible tests to IoT system developers. This approach reveals to be less adapted
to IoT system that are not mature enough to be deployed and therefore tested in a ”as
a service” environment. Our approach lacks of flexibility to test systems that are in early
stage development. The solution resides in proposing testing solution in the develoment
environement of the IoT system. Even if that means losing the notion of ”as a service”
execution, the tests can be delivered to the users own test bed for later execution. This
raises many issues that have to be taken into consideration such as for example the need
of development of a system adapter for test execution and the delivery of a reporting tool
to asses the testing results and keep their traceability to ensure non regression.

The second path of continuity relates to the outcome of our pattern-driven and model-
based security testing approach. We investigate how to use the approach in cybersecu-
rity evaluation and certification. In the certification process, electronic products are eval-
uated against a set of requirements and using a process usually based on well-defined
standards like Common Criteria (CC). Cybersecurity certification can be a quite compre-
hensive process but it may have limitations, which must be taken in consideration. To
address the limitations of cybersecurity certification, this thesis explores complementary
approaches, which aim to support parts of the product lifecycle on the different phases
(e.g., IoT device): requirements collection, testing/security evaluation. The final objective
is to provide the security benchmarking and assurance that should include a measure of
our level of confidence in the tested IoT system. As an example of such a measure of
confidence used to evaluate the security of an IoT product or system, we mention the
Evaluation Assurance Level (EAL) from the Common Criteria (CC). The EAL is a discrete
numerical grade (from EAL1 through EAL7) assigned to the IoT product or system fol-
lowing the completion of a CC security evaluation, which is an international standard in
effect since 1999. These increasing levels of assurance reflect the fact that incremental
assurance requirements must be met to achieve CC certification. The intent of the higher

116 CHAPTER 11. CONCLUSION AND FUTURE WORK

assurance levels is a higher level of confidence that the systems security features have
been reliably implemented. The EAL level does not measure the security of the system; it
rather simply states at what level the system was tested. The EAL’s include the following:

• EAL 1 Functionally Tested

• EAL 2 Structurally Tested

• EAL 3 Methodically Tested and Checked

• EAL 4 Methodically Designed, Tested and Reviewed

• EAL 5 Semi-formally Designed and Tested

• EAL 6 Semi-formally Verified Design and Tested

• EAL 7 Formally Verified Design and Tested

Security certification is needed to ensure that a product satisfies the required security
requirements, which can be both proprietary requirements (i.e., defined by a company for
their specific products) and market requirements (i.e., defined in procurement specifica-
tions or market standards). In the market case, these requirements are also defined to
support security interoperability. For example, to ensure that two products are able to mu-
tually authenticate or to exchange secure messages. Security certification is needed to
ensure that products are secure against specific security attacks or that they have specific
security properties.

The process for certification of a product is generally summed up in four phases:

1. Application: A company applies a product for evaluation to obtain a certification.

2. An evaluation is performed to obtain certification. The evaluation can be mostly
done in three ways: a) the evaluation can be done internally to support self-
certification. b) The evaluation can be performed by a testing company, which is
legally belonging to the product company. c) It can be third party certification where
the company asks a third party company to perform the evaluation of its product.

3. Internal company or third party company evaluation: the evaluation company
provides a decision on the evaluation.

4. Surveillance. It is a periodic check on the product to ensure that the certification is
still valid or it requires a new certification.

As described in [14], the initial efforts to define a security testing and certification frame-
work for products originated in the defense domain. An obvious reason was that the
military systems are designed to operate in a hostile environment and must be protected
against security threats, which are more likely to appear than with those systems that be-
long to a commercial domain. That being said, with the development of IoT, new threats
have emerged and the consequences are far from benign. The huge scale some IoT sys-
tem, having so many devices interconnected can be convenient, if not tested and certified
before deployment. This is where we propose to set foot in our future works. Bringing the
adoption of MBT to support a formal definition of the tests and the security requirements
for IoT systems, which drives the certification. In addition, they can be used to support
harmonization of the tests for security certification.

BIBLIOGRAPHY

[1] Model-based engineering forum. http://modelbasedengineering.com/.

[2] DIJKSTRA, E. Ewd 249 Notes on Structured Programming: 2nd Ed. Technische
Hogeschool Eindhoven. Department of Mathematics, 1970.

[3] FERNANDEZ, J. C., JARD, C., JÉRON, T., AND VIHO, C. Using on-the-fly verifi-
cation techniques for the generation of test suites. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1996, pp. 348–359.

[4] ITU-T. The evolution of ttcn, 2001.

[5] HARTMAN, A. Model based test generation tools.

[6] SRIVASTAVA, A., AND THIAGARAJAN, J. Effectively prioritizing tests in devel-
opment environment. In Proceedings of the 2002 ACM SIGSOFT International
Symposium on Software Testing and Analysis (New York, NY, USA, 2002), ISSTA
’02, ACM, pp. 97–106.

[7] LARSEN, K., MIKUCIONIS, M., AND NIELSEN, B. Online testing of real-time sys-
tems using UPPAAL. In Formal Approaches to Testing of Software (Linz, Austria,
Sept. 2004), vol. 3395 of Lecture Notes in Computer Science, Springer, pp. 79–94.

[8] SCHUMACHER, M., FERNANDEZ, E., HYBERTSON, D., AND BUSCHMANN, F. Se-
curity Patterns: Integrating Security and Systems Engineering. John Wiley &
Sons, 2005.

[9] UTTING, M., AND LEGEARD, B. Practical Model-Based Testing - A tools ap-
proach. Morgan Kaufmann, San Francisco, CA, USA, 2006.

[10] BOUQUET, F., GRANDPIERRE, C., LEGEARD, B., PEUREUX, F., VACELET, N., AND

UTTING, M. A subset of precise uml for model-based testing. In Workshop on
Advances in Model Based Testing (2007).

[11] SCHULZ, S., WILES, A., AND RANDALL, S. Tplan - a notation for expressing test
purposes. In PTS (2007).

[12] UTTING, M., LEGEARD, B., BOUQUET, F., PEUREUX, F., GRANDPIERRE, C., AND

VACELET, N. A subset of precise uml for model-based testing. In A-MOST’07,
3rd int. Workshop on Advances in Model Based Testing (London, United Kingdom,
jul 2007), pp. 95–104.

[13] BOUQUET, F., GRANDPIERRE, C., LEGEARD, B., AND PEUREUX, F. A test gener-
ation solution to automate software testing. In Proceedings of the 3rd Interna-
tional Workshop on Automation of Software Test (New York, NY, USA, 2008), AST
’08, ACM, pp. 45–48.

117

http://modelbasedengineering.com/

118 BIBLIOGRAPHY

[14] ANDERSON, R., AND FULORIA, S. Certification and evaluation: A security eco-
nomics perspective. In 2009 IEEE Conference on Emerging Technologies Factory
Automation (Sept 2009), pp. 1–7.

[15] CHAN, W. K., MEI, L., AND ZHANG, Z. Modeling and testing of cloud applica-
tions. In 2009 IEEE Asia-Pacific Services Computing Conference (APSCC) (Dec
2009), pp. 111–118.

[16] LEGEARD, B., BOUQUET, F., AND PICKAERT, N. Industrialiser le test fonctionnel
(des exigences métier au référentiel de tests automatisés). Dunod, apr 2009.

[17] BAUER, M., KOVACS, E., SCHÜLKE, A., ITO, N., CRIMINISI, C., GOIX, L. W., AND

VALLA, M. The context api in the oma next generation service interface. In
2010 14th International Conference on Intelligence in Next Generation Networks
(Oct 2010), pp. 1–5.

[18] M. SHAFIQUE, Y. L. A systematic review of model based testing tool support.

[19] RIUNGU, L. M., TAIPALE, O., AND SMOLANDER, K. Research issues for software
testing in the cloud. In 2010 IEEE Second International Conference on Cloud
Computing Technology and Science (Nov 2010), pp. 557–564.

[20] WILLCOCK, C., DEISS, T., TOBIES, S., KEIL, S., ENGLER, F., SCHULZ, S., AND

WILES, A. An Introduction to TTCN-3. 2011.

[21] ALLIANCE, O. M. Ngsi context management.

[22] AMALFITANO, D., FASOLINO, A. R., TRAMONTANA, P., CARMINE, S. D., AND

MEMON, A. M. Using gui ripping for automated testing of android applications.
In 2012 Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering (Sept 2012), pp. 258–261.

[23] INÇKI, K., ARI, I., AND SÖZER, H. A survey of software testing in the cloud.
In 2012 IEEE Sixth International Conference on Software Security and Reliability
Companion (June 2012), pp. 18–23.

[24] SCHIEFERDECKER, I., GROSSMANN, J., AND SCHNEIDER, M. Model-based secu-
rity testing. In MBT (2012), pp. 1–12.

[25] UTTING, M., PRETSCHNER, A., AND LEGEARD, B. A taxonomy of model-based
testing approaches. Software Testing, Verification and Reliability 22, 5 (2012),
297–312.

[26] ZECH, P., FELDERER, M., AND BREU, R. Towards a model based security testing
approach of cloud computing environments. In 2012 IEEE Sixth International
Conference on Software Security and Reliability Companion (June 2012), pp. 47–
56.

[27] ZISSIS, D., AND LEKKAS, D. Addressing cloud computing security issues. Fu-
ture Generation Computer Systems 28, 3 (2012), 583 – 592.

[28] BOTELLA, J., BOUQUET, F., CAPURON, J. F., LEBEAU, F., LEGEARD, B., AND SCHA-
DLE, F. Model-based testing of cryptographic components – lessons learned
from experience. In 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation (March 2013), pp. 192–201.

BIBLIOGRAPHY 119

[29] SALVA, S., AND ZAFIMIHARISOA, S. R. Data vulnerability detection by security
testing for android applications. In 2013 Information Security for South Africa
(Aug 2013), pp. 1–8.

[30] SCHNEIDER, M., GROSSMANN, J., SCHIEFERDECKER, I., AND PIETSCHKER, A. On-
line model-based behavioral fuzzing. In 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation Workshops (March 2013), pp. 469–
475.

[31] A. SPILLNER, T. LINZ, H. S. Software testing foundations: a study guide for the
certified tester exam: foundation level, istqb compliant.

[32] BAUM, A. A link to the internet of things, iot made easy with simplelinkTM

wi-fi R© solutions. http://www.ti.com/lit/wp/swry009/swry009.pdf, 2014. Last visited:
April 2015.

[33] BOTELLA, J., LEGEARD, B., PEUREUX, F., AND VERNOTTE, A. Risk-based vul-
nerability testing using security test patterns. In Leveraging Applications of For-
mal Methods, Verification and Validation. Specialized Techniques and Applications
(Berlin, Heidelberg, 2014), T. Margaria and B. Steffen, Eds., Springer Berlin Heidel-
berg, pp. 337–352.

[34] FOURNERET, E., CANTENOT, J., BOUQUET, F., LEGEARD, B., AND BOTELLA, J.
SeTGaM: Generalized Technique for Regression Testing Based on UML/OCL
models. In 8th International Conference on Software Security and Reliability, SERE,
2014 (2014), pp. 147–156.

[35] KRIOUILE, A., AND SERWE, W. Using a formal model to improve verification of
a cache-coherent system-on-chip. In Tools and Algorithms for the Construction
and Analysis of Systems, C. Baier and C. Tinelli, Eds., vol. 9035 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2015, pp. 708–722.

[36] MARINESCU, R., SECELEANU, C., AND H. LE GUZEN, P. P. A Research Overview
of Tool-Supported Model-based Testing of Requirements-based Designs. El-
sevier, 2015.

[37] ONEM2M PARTNERS. onem2m, the interoperability enabler for the entire m2m
and iot ecosystem whitepaper, 2015.

[38] ZECH, P., KALB, P., FELDERER, M., AND BREU, R. Threatening the cloud: Secur-
ing services and data by continuous, model-driven negative security testing.
pp. 789–814.

[39] BALDINI, G., SKARMETA, A., FOURNERET, E., NEISSE, R., LEGEARD, B., AND

GALL, F. L. Security certification and labelling in internet of things. In 2016
IEEE 3rd World Forum on Internet of Things (WF-IoT) (2016), pp. 627–632.

[40] CAPGEMINI. World quality report 2016-17.

[41] KRAMER A., L. B. Model-based testing essentials - guide to the istqb certified
model-based tester: Foundation level.

[42] REETZ, E. S. Service Testing for the Internet of Things. PhD thesis, University
of Surrey, 2016.

http://www.ti.com/lit/wp/swry009/swry009.pdf

120 BIBLIOGRAPHY

[43] UTTING, M., LEGEARD, B., BOUQUET, F., FOURNERET, E., PEUREUX, F., AND VER-
NOTTE, A. Recent advances in model-based testing. Advances in Computers
101 (2016), 53–120.

[44] UTTING, M., LEGEARD, B., BOUQUET, F., FOURNERET, E., PEUREUX, F., AND VER-
NOTTE, A. Chapter two - recent advances in model-based testing. vol. 101 of
Advances in Computers. Elsevier, 2016, pp. 53 – 120.

[45] MEMON, A. Advances in Computers. No. v. 108 in Advances in Computers. Else-
vier Science, 2018.

[46] C.J. BUDNIK, R. SUBRAMANYAN, M. V. Peer-to-peer comparison of model-based
test.

[47] IBM. Model-based testing (mbt) at interconnect 2016? yes!

[48] Armour h2020 project. http://www.armour-project.eu/, Last visited: April 2017.

[49] Dyn ddos attack report. http://www.computerworld.com/article/3135434/
security/ddos-attack-on-dyn-came-from-100000-infected-devices.html, Last visited:
April 2017.

[50] Fit iot lab, large scale testbed. https://www.iot-Iab.info/, Last visited: April 2017.

[51] Fiware. https://www.fiware.org/, Last visited: April 2017.

[52] Om2m, onem2m standard implementation. http://www.eclipse.org/om2m/, Last
visited: April 2017.

[53] Smartesting certifyit. http://www.smartesting.com/en/certifyit/, Last visited: April
2017.

[54] The testing and test control notation version 3 (ttcn-3). http://www.ttcn-3.org/,
Last visited: April 2017.

[55] Iot usages in enterprises. https://www.computerworlduk.com/galleries/
cloud-computing/internet-of-things-best-business-enterprise-offerings-3626973/,
Last visited: February 2018.

[56] 3rd generation partnership project. http://www.3gpp.org/, Last visited: January
2018.

[57] Alliance for internet of things innovation (aioti). https://aioti.eu/, Last visited:
January 2018.

[58] Critical vulnerabilities in a wide range of iot baby mon-
itors. https://arstechnica.com/information-technology/2015/09/
9-baby-monitors-wide-open-to-hacks-that-expose-users-most-private-moments/,
Last visited: January 2018.

[59] European telecommunications standards institute (etsi). http://www.etsi.org/,
Last visited: January 2018.

[60] Gartner iot glossary. https://www.gartner.com/it-glossary/internet-of-things/, Last
visited: January 2018.

https://www.gartner.com/it-glossary/internet-of-things/
http://www.computerworld.com/article/3135434/security/
https://aioti.eu/
http://www.computerworld.com/article/3135434/security/
http://www.smartesting.com/en/certifyit/
http://www.3gpp.org/
https://www.fiware.org/
https://www.computerworlduk.com/galleries/cloud-computing/internet-of-things-best-business-enterprise-offerings-3626973/
http://www.armour-project.eu/
http://www.etsi.org/
https://www.computerworlduk.com/galleries/cloud-computing/internet-of-things-best-business-enterprise-offerings-3626973/
https://www.iot-Iab.info/
http://www.ttcn-3.org/
https://arstechnica.com/information-technology/2015/09/9-baby-monitors-wide-open-to-hacks-that-expose-users-most-private-moments/
http://www.eclipse.org/om2m/
https://arstechnica.com/information-technology/2015/09/9-baby-monitors-wide-open-to-hacks-that-expose-users-most-private-moments/

BIBLIOGRAPHY 121

[61] Internet-connected cars can be compromised. http://www.latimes.com/business/
autos/la-fi-hy-car-hacking-20150914-story.html, Last visited: January 2018.

[62] Microsoft on iot taas. http://www.zdnet.com/article/
microsoft-launches-iot-as-a-service-offering-for-enterprises/, Last visited: Jan-
uary 2018.

[63] The mirai botnet. https://krebsonsecurity.com/tag/mirai-botnet/, Last visited: Jan-
uary 2018.

[64] Mov’eo imagine mobility. http://pole-moveo.org/en/, Last visited: January 2018.

[65] Secured comunication solution cluster. http://en.pole-scs.org/, Last visited: Jan-
uary 2018.

[66] Smartesting solutions and services. http://www.smartesting.com/, Last visited:
January 2018.

[67] Titan, ttcn-3 tool. http://www.ttcn-3.org/index.php/tools/16-tools-noncom/
112-non-comm-titan, Last visited: January 2018.

[68] What is this thing called conformance ? https://www.nist.gov/itl/ssd/
information-systems-group/what-thing-called-conformance, Last visited: January
2018.

[69] SCHIEFERDECKER, I., GROSSMANN, J., AND RENNOCH, A. Model based security
testing Selected Considerations. Keynote at SECTEST at ICST 2011 [accessed:
Septmber 25, 2012].

http://www.smartesting.com/
https://www.nist.gov/itl/ssd/information-systems-group/what-thing-called-conformance
http://www.latimes.com/business/autos/la-fi-hy-car-hacking-20150914-story.html
http://www.ttcn-3.org/index.php/tools/16-tools-noncom/112-non-comm-titan
http://www.zdnet.com/article/microsoft-launches-iot-as-a-service-offering-for-enterprises/
http://pole-moveo.org/en/
https://krebsonsecurity.com/tag/mirai-botnet/
https://www.nist.gov/itl/ssd/information-systems-group/what-thing-called-conformance
http://www.ttcn-3.org/index.php/tools/16-tools-noncom/112-non-comm-titan
http://www.latimes.com/business/autos/la-fi-hy-car-hacking-20150914-story.html
http://www.zdnet.com/article/microsoft-launches-iot-as-a-service-offering-for-enterprises/
http://en.pole-scs.org/

LIST OF FIGURES

2.1 IoT layers . 11

2.2 Schematic depiction of the FIWARE platform with all major chapters 13

2.3 FIWARE IoT Platform Architecture . 14

2.4 oneM2M logo . 15

2.5 oneM2M Architecture . 15

2.6 oneM2M defined work process . 16

2.7 Fundamental MBT Process . 18

4.1 The MBT Workflow . 34

4.2 TTCN-3 logo. 35

4.3 TTCN-3 architecture . 38

4.4 MBeeTle - Behavioral Fuzzing Process . 40

5.1 Security Test Patterns definition methodology 45

5.2 Online behavioral fuzzing generation methodology 46

5.3 Offline behavioral fuzzing generation methodology 47

6.1 Traditional vs Standardized MBT Process 53

6.2 Complex Event Processing Espr4FastData 54

6.3 Class Diagram Notations . 57

6.4 BPMN model example . 58

7.1 TPLan example . 62

7.2 MBT Security Testing Framework . 64

7.3 Model-Based Security Testing Process for standardized IoT platform 66

7.4 Test Pattern Formalisation with Smartesting CertifyIt for TP ID 10 66

7.5 Test Purpose ID 10 test cases generated by CertifyIt 67

8.1 MBTAAS architecture . 70

8.2 Configuration File excerpt . 71

8.3 Published file parts . 71

123

124 LIST OF FIGURES

8.4 Execution snapshot . 73

9.1 Behavioral Fuzzing Test Step Selection . 76

9.2 MBT Fuzzing with TTCN3 . 77

9.3 Behavioral fuzzing strategy - Flower . 78

9.4 Behavioral fuzzing tool, test generation parameters 79

10.1 Data handling GE class diagram . 86

10.2 Excerpt of the Data handling object diagram 86

10.3 Object Constraint Language (OCL) example 87

10.4 CertifyIt test case view . 88

10.5 Implementation Abstract Test Case (HTML export) 88

10.6 SoapUI Test case launch example with result status 90

10.7 The altered work process . 91

10.8 Model-Based Testing Class diagram . 92

10.9 oneM2M standard MBT model . 96

10.10ACP Test Purpose definition . 97

10.11ACP test steps . 98

10.12Large scale end-to-end security scenario 98

10.13End to End security MBT description . 99

10.14IoT MBT generic model . 100

10.15Integration of the MBT model . 101

10.16BPMN model . 102

10.17Test case generation with the MBT tool . 102

10.18TTCN-3 Abstract Test Suite example . 104

10.19Test execution . 104

10.20MBT Testing Framework for Large-Scale IoT Security Testing 106

10.21Excerpt of EXP 5 & 6 MBT model . 107

10.22Operation ”generate traffic” . 108

10.23ARMOUR Experiment 5 & 6 TP ID 5 - Resistance to replay attacks 108

10.24ARMOUR Experiment 5 & 6 - CertifyIt Abstract Test Case 109

10.25MBeeTle, MBT Fuzzing Tool . 109

LIST OF TABLES

5.1 Vulnerabilities overview . 46

6.1 Exerpt of Espr4FastData Test Objectives . 54

125

IV
APPENDIX

127

A
ARMOUR SECURITY

VULNERABILITIES TABLES

129

Discovery of Long-Term Service-Layer Keys Stored in M2M
Devices or M2M Gateways

V1

Vulnerability pattern

summary

Long-term service-layer keys are discovered while they are stored in M2M Devices or M2M Gateways

and are copied.

Vulnerability pattern

description

Long-term service-layer keys are stored within the M2M Device or M2M Gateway. Those keys are

discovered and copied by unauthorized entities and used for illegitimate purposes. Discovery of stored

long term service-layer keys may be achieved e.g. by monitoring internal processes (e.g. by Differential

Power Analysis) or by reading the contents of memory of the M2M Device or M2M Gateway (by

hardware probing or by use of local management commands).

Applicable

systems/devices

/platforms

Devices and gateways

Timing of

introduction

Discovery of stored keys may be achieved by monitoring internal processes (e.g. by Differential Power

Analysis) or by reading the contents of memory.

Consequences Copying keys to impersonate devices, gateways or M2M infrastructure equipment (discovery), denial of

service attack (deletion) or allowing illegitimate operation (replacement)

Example -

Relationships V13

Deletion of Long-Term Service-Layer Keys stored in M2M
Devices or M2M Gateways

V2

Vulnerability

pattern summary

Long-term service-layer keys are deleted or deprecated while they are stored in M2M Devices or M2M

Gateways

Vulnerability

pattern

description

Long-term service-layer keys are deleted or deprecated. This may be achieved by use of management

commands (including impersonation of a system Manager) or by removal of the HSM if present and if

removable. This attack may be perpetrated against the key-storage functions of M2M Devices or M2M

Gateways.

Applicable

systems/devices

/platforms

Devices and gateways

Timing of

introduction

Deletion of stored keys may be achieved by use of management commands (including impersonation of a

system manager)

Consequences Copying keys to impersonate devices, gateways or M2M infrastructure equipment (discovery), denial of

service attack (deletion) or allowing illegitimate operation (replacement)

Example -

Relationships V13

Replacement of Long-Term Service-Layer Keys stored in
M2M Devices or M2M Gateways

V3

Vulnerability pattern

summary

Long-term service-layer keys are replaced while they are stored in M2M Devices or M2M Gateways

Vulnerability pattern

description

Long-term service-layer keys are replaced while they are stored in M2M Devices or M2M Gateways, in

order to modify its operation. The attack may be achieved by use of management commands

(including impersonation of a system manager) or by removal of the HSM if present and if removable.

This attack may be perpetrated against the key-storage functions of M2M Devices

Applicable

systems/devices

/platforms

Devices and gateways

Timing of introduction Replacement of stored keys may be achieved by use of management commands (including

impersonation of a system manager)

Consequences Copying keys to impersonate sensors, gateways or M2M infrastructure equipment (discovery), denial

of service attack (deletion) or allowing illegitimate operation (replacement)

Example -

Relationships V13

Discovery of Long-Term Service-Layer Keys stored in M2M
Infrastructure

V4

Vulnerability

pattern summary

Long-term service-layer keys are discovered while they are stored in the M2M infrastructure equipment

(e.g. equipment holding network CSE or security server) and are copied.

Vulnerability

pattern

description

Discovery may be achieved e.g. by the monitoring of internal processes, or by reading the contents of

memory locations. The methods of attack include remote hacking and illicit use of management or

maintenance interfaces.

Applicable

systems/devices

/platforms

Any component of the infrastructure (AAA server, Attribute Authority, Capability Manager, PDP and

Pub/Sub server)

Timing of

introduction

Replacement of stored keys may be achieved by use of management commands (including impersonation

of a system manager)

Consequences Copied keys may be used to impersonate M2M infrastructure equipment.

Example

Relationships V13

Deletion of Long-Term Service-Layer Keys stored in M2M
Infrastructure equipment

V5

Vulnerability pattern

summary

Long-term service-layer keys are deleted or deprecated while they are stored in the M2M infrastructure

equipment (e.g. equipment holding network CSE or security server).

Vulnerability pattern

description

Long-term service-layer keys may be deleted or deprecated by use of management commands

(including impersonation of a System Administrator).

Applicable

systems/devices

/platforms

Any component of the infrastructure (AAA server, Attribute Authority, Capability Manager, PDP and

Pub/Sub server)

Timing of

introduction

Replacement of stored keys may be achieved by use of management commands (including

impersonation of a system manager)

Consequences Deletion of keys in the infrastructure equipment prevents proper operation and may lead to denial of

service.

Example

Relationships V13

Discovery of sensitive Data in M2M Devices or M2M Gateways V6
Vulnerability

pattern summary

Sensitive data is discovered while used during the execution of sensitive functions in M2M Devices or

M2M Gateways and are copied.

Vulnerability

pattern description

Sensitive data such as long-term service-layer keys are used during the execution of sensitive function

within the M2M Device or M2M Gateway and exposed. Sensitive data is then copied by unauthorized

entities and used for illegitimate purposes.

Applicable

systems/devices

/platforms

Timing of

introduction

Consequences Copied sensitive data such as key material may be used to compromise M2M System security.

Example

Relationships

General Eavesdropping on M2M Service-Layer Messaging
between Entities

V7

Vulnerability

pattern summary

General Eavesdropping on M2M Service-Layer Messaging Between Entities

Vulnerability

pattern description

By eavesdropping on M2M Service Layer messages between components in the M2M Service Provider's

Domain, M2M Devices and M2M Gateways, confidential or private information may be discovered. This

excludes the use of eavesdropping to discover or infer the value of keys, which is covered elsewhere in

the present document.

Applicable

systems/devices

/platforms

Timing of

introduction

Consequences Effect on stakeholders(s): significant effect upon the M2M Service Provider if the users find out about the

loss of privacy and if it can be blamed on this attack

Example

Relationships

Alteration of M2M Service-Layer Messaging between Entities V8
Vulnerability

pattern summary

Alteration of M2M Service-Layer Messaging Between Entities

Vulnerability

pattern description

By altering M2M Service Layer messages between components in the M2M Service Provider's Domain,

M2M Devices and M2M Gateways, the attacker may deceive or defraud the M2M Service Provider or

other stakeholders.

Applicable

systems/devices

/platforms

Devices, gateways and any component of infrastructure (AAA server, Attribute Authority, Capability

Manager, PDP and Pub/Sub server)

Timing of

introduction

At any time of communication, the attacker may deceive or defraud the service provider or other

stakeholders by altering messages between devices

Consequences Effect on stakeholders(s): could cause a wide-scale attack against Devices or Gateway communications

Example A legitimate wireless communication module with unique id (e.g. MAC address) is used by attacker

Relationships

Replay of M2M Service-Layer Messaging between Entities V9
Vulnerability

pattern summary

Replay of M2M Service-Layer Messaging Between Entities

Vulnerability

pattern description

By repeating all or portions of previous M2M Service Layer messages between components in the M2M

Service Provider's Domain, M2M Devices and M2M Gateways, the attacker may deceive or defraud the

M2M Service Provider or other stakeholders.

Applicable

systems/devices

/platforms

Devices, gateways and any component of infrastructure (AAA server, Attribute Authority, Capability

Manager, PDP and Pub/Sub server)

Timing of

introduction

At any time of communication, the attacker may deceive or defraud the service provider or other

stakeholders by repeating all or portions of previous messages between devices

Consequences Effect on stakeholders(s): could cause a wide-scale attack against Devices or Gateway communications.

Example

Relationships

Unauthorized or corrupted Applications or Software in M2M
Devices/Gateways

V10

Vulnerability

pattern summary

Unauthorised or Corrupted Application and Service-Layer Software in M2M Devices/Gateways

Vulnerability

pattern description

This attack may be used to:

• commit fraud, e.g. by the incorrect reporting of energy consumption;

• cause a breach of privacy by obtaining and reporting confidential information to the attacker;

cause the disclosure of sensitive data such as cryptographic keys or other credentials;

• prevent operation of the affected M2M Devices/Gateways.

The attack may be perpetrated locally or by illicit use of remote management functions.

Applicable

systems/devices

/platforms

Devices and gateways

Timing of

introduction

The attack may be perpetrated locally or by illicit use of remote management functions

Consequences An attacker installs unauthorised M2M Service-layer software or modifies authorised software functions in

M2M Devices or M2M Gateways

Example

Relationships

M2M System Interdependencies Threats and cascading Impacts V11
Vulnerability

pattern summary

M2M System interdependencies threats and cascading impacts

Vulnerability

pattern description

While M2M endpoints and M2M Gateways might be dedicated to specific M2M Services, M2M Systems

as a whole will frequently share resources with a variety of other un-related systems and applications.

Applicable

systems/devices

/platforms

Timing of

introduction

Consequences Underlying systems and resources may impose many forms of interdependency with the M2M

Application, M2M Device / Gateway or M2M Infrastructure which is not apparent during period of normal

operation.

Example

Relationships

M2M Security Context Awareness V12
Vulnerability

pattern summary

Context-awareness

Vulnerability

pattern description

If the provided Security Level is sufficient and appropriate depends on the use case and the context of the

operation. Keeping the security level static for all use cases may lead to inefficient usage of resources (in

terms or processor, memory, network, operationally and financially).

Applicable

systems/devices

/platforms

Timing of

introduction

Consequences A lack of context awareness for M2M endpoints, gateways and applications may increase the risks

associated with resource exhaustion and under provisioning, triggering service impacts or outages.

Example

Relationships

Eaves Dropping/Man in the Middle Attack V13
Vulnerability

pattern summary

Eaves Dropping/Man In the Middle Attack

Vulnerability

pattern description

The primary difficulty lies in monitoring the proper network’s traffic while users are accessing the

vulnerable site.

Detecting basic flaws is easy. Just observe the site’s network traffic. More subtle flaws require inspecting

the design of the application and the server configuration. The attack exploits lack of security protection

while data is in transit, or vulnerabilities in the protocol that was chosen to protect the communication pipe

Applicable

systems/devices

/platforms

Devices, gateways and any component of infrastructure (AAA server, Attribute Authority, Capability

Manager, PDP and Pub/Sub server)

Timing of

introduction

The attack exploits lack of security protection while data is in transit, or vulnerabilities in the protocol that

was chosen to protect the communication pipe

Consequences Eaves Dropping/Man In the Middle Attack: keys and other sensitive information can be discovered by

eavesdropping on messages at the transport layer

Example

Relationships V1, V4

Transfer of keys via independent security element V14
Vulnerability pattern

summary

Transfer of keys via independent security element

Vulnerability pattern

description

The attack is carried out by an attacker who gains unauthorized possession of a set of viable keys and

credentials by removing them from a legitimate M2M Device. The attacker will then use the removed

keys and credentials in different, possibly unauthorized M2M Devices. The M2M Devices may attach to a

network and consume non M2M network services, in which the charge will be passed to a legitimate

M2M User. Additionally, a denial of service to the legitimate user may occur when the unauthorized M2M

Device is online, the unauthorized M2M Device may use legitimate M2M Services, though the cost is

passed on to the legitimate user.

Applicable

systems/devices

/platforms

Devices, Provisioning servers

Timing of

introduction

Devices can be subject to physical exploitation at any time

Consequences The attack is carried out by an attacker who gains unauthorized possession of a set of viable keys and

credentials by removing them from a legitimate M2M Device.

Example A legitimate wireless communication module with unique id (e.g. MAC address) is used by attacker

Relationships V19

Buffer Overflow V15
Vulnerability

pattern summary

Buffer Overflow

Vulnerability

pattern description

Buffers of data + ‘N’ are passed through an API where it is known that the API is designed to have length

constraints. The N bytes overflow into an area that was being utilized by other storage (heap overflow) or

precipitates the return address to be corrupt (stack overflow). Stack overflows are indicated by the return

code jumping to a random location, and as a consequence, incorrect code is executed and may change

local data (rights of code or a file)

Applicable

systems/devices

/platforms

Timing of

introduction

Consequences Buffers of data + ‘N’ are passed through an API where it is known that the API is designed to have length

constraints. The N bytes overflow into an area that was being utilized by other storage (heap overflow) or

precipitates the return address to be corrupt (stack overflow). Stack overflows are indicated by the return

code jumping to a random location, and as a consequence, incorrect code is executed and may change

local data (rights of code or a file)

Example

Relationships

Injection V16
Vulnerability

pattern summary

Injection

Vulnerability

pattern description

Attacker sends simple text-based attacks that exploit the syntax of the targeted interpreter. Almost any

source of data can be an injection vector, including internal sources. Injection flaws occur when an

application sends untrusted data to an interpreter. Injection flaws are very prevalent, particularly in legacy

code, often found in SQL queries, LDAP queries, XPath queries, OS commands, program arguments,

etc. Injection flaws are easy to discover when examining code, but more difficult via testing.

Applicable

systems/devices

/platforms

Timing of

introduction

Consequences Send inappropriate queries to the application-level server that will exploit vulnerabilities of the query

interpreter in order to gain un-authorized access.

Example

Relationships

Session Management and Broken Authentication V17
Vulnerability pattern

summary

Session Management and Broken Authentication

Vulnerability pattern

description

Consider anonymous external attackers, as well as users with their own accounts, who may attempt to

steal accounts from others. Also consider insiders wanting to disguise their actions. Exploitation spoof

this type is of average difficulty, Attacker uses leaks or flaws in the authentication or session

management functions (e.g., exposed accounts, passwords, session IDs) to impersonate users.

Applicable

systems/devices

/platforms

Devices and gateways

Timing of

introduction

The attacker uses leaks or flaws in the authentication or session management functions (e.g., exposed

accounts, passwords, session IDs) to impersonate users

Consequences Custom session and authentication schemes frequently have flaws in areas such as logout, password

management, timeouts, remember me, secret question and account update allowing the attacker to

impersonate other entity

Example

Relationships V18

Security Misconfiguration V18
Vulnerability pattern

summary

Security Misconfiguration

Vulnerability pattern

description

Consider anonymous external attackers as well as users with their own accounts that may attempt to

compromise the M2M System. Also consider insiders wanting to disguise their actions. Easy to exploit,

attacker accesses default accounts, unused pages, un-patched flaws, unprotected files and directories,

etc. to gain unauthorized access to or knowledge of the M2M System.

Applicable

systems/devices

/platforms

Devices, gateways and any component of infrastructure (AAA server, Attribute Authority, Capability
Manager, PDP and Pub/Sub server)

Timing of

introduction

The attacker decides to access default accounts, unused pages, unpatched flaws, unprotected files and

directories, etc.

Consequences Attacker accesses default accounts, unused pages, un-patched flaws, unprotected files and directories,

etc. to gain unauthorized access to or knowledge of the M2M System

Example

Relationships V17

Insecure Cryptographic Storage V19
Vulnerability pattern

summary

Insecure Cryptographic Storage

Vulnerability pattern

description

Attackers typically don’t break the cryptography. They break something else, such as find keys, get

cleartext copies of data, or access data via channels that automatically decrypt. The most common flaw

in this area is simply not encrypting data that deserves encryption. When encryption is employed, unsafe

key generation and storage, not rotating keys, and weak algorithm usage is common. Use of weak or

unsalted hashes to protect passwords is also common. External attackers have difficulty detecting such

flaws due to limited access. They usually must exploit something else first to gain the needed access.

Applicable

systems/devices

/platforms

Devices, gateways and any component of infrastructure (AAA server, Attribute Authority, Capability

Manager, PDP and Pub/Sub server)

Timing of

introduction

At any time of communication, the attacker decides to break something, such as find keys, get cleartext

copies of data, or access data via channels that automatically decrypt

Consequences The most common flaw in this area is simply not encrypting data that deserves encryption.

Example

Relationships

Invalid Input Data V20
Vulnerability

pattern summary

Invalid Input Data

Vulnerability

pattern description

Attackers can inject specific exploits, including buffer overflows, SQL injection attacks, and cross site

scripting code to gain control over vulnerable machines. An attacker may be able to impose a Denial of

Service, bypass authentication, access unintended functionality, execute remote code, steal data and

escalate privileges. While some input validation vulnerabilities may not allow exploitation for remote

access, they might still be exploited to cause a crash or a DoS attack.

Applicable

systems/devices

/platforms

Timing of

introduction

Consequences Input data validation is used to ensure that the content provided to an application does not grant an

attacker access to unintended functionality or privilege escalation

Example

Relationships

Cross Scripting V21
Vulnerability

pattern summary

Cross Scripting

Vulnerability

pattern description

Cross-site scripting takes advantage of Web servers that return dynamically generated Web pages or

allow users to post viewable content to execute arbitrary HTML and active content such as JavaScript,

ActiveX, and VBScript on a remote machine that is browsing the site within the context of a client-server

session

Applicable

systems/devices

/platforms

Timing of

introduction

Consequences Cross Scripting allows attackers to inject code into the Web pages generated by the vulnerable Web

application

Example

Relationships

B
EXAMPLE OF SINGLE TTCN-3

FUZZING TEST CASE WITH 20 STEPS

module F u z z i n g t e s t s u i t e {
impor t from ARMOUR Adapter HTTP a l l ;
impor t from ARMOUR PIXIT a l l ;
tes tcase ARMOUR message interception4fc780 () runs on ARMOURComponent {

f c f01Up () ;
g e n e r a t e t r a f f i c (PX EXPERIMENT ID , PX BORDER ROUTER, PX NODE NAME, PX NUM) ;
check connec t i v i t y (PX EXPERIMENT ID , PX BORDER ROUTER, PX NODE NAME) ;
check packet loss (PX EXPERIMENT ID , PX BORDER ROUTER, PX NODE NAME, PX NUM) ;
message in tercept ion () ;
es tab l i sh secu re connec t i on (PX EXPERIMENT ID , PX BORDER ROUTER,

PX NODE NAME, PX NUM, PX KEY) ;
message in tercept ion () ;
s t o p t r a f f i c () ;
message in tercept ion () ;
message in tercept ion () ;
se rv i ce d i scove ry (PX EXPERIMENT ID , PX BORDER ROUTER, PX NODE NAME,

PX NUM, PX KEY) ;
check secur i t y key (PX EXPERIMENT ID , PX BORDER ROUTER, PX NODE NAME,

PX NUM, PX KEY) ;
g e n e r a t e t r a f f i c (PX EXPERIMENT ID , PX BORDER ROUTER, PX NODE NAME, PX NUM) ;
check connec t i v i t y (PX EXPERIMENT ID , PX BORDER ROUTER, PX NODE NAME) ;
check packet loss (PX EXPERIMENT ID , PX BORDER ROUTER, PX NODE NAME, PX NUM) ;
s t o p t r a f f i c () ;
message in tercept ion () ;
se rv i ce d i scove ry (PX EXPERIMENT ID , PX BORDER ROUTER, PX NODE NAME, PX NUM,

PX KEY) ;
check secur i t y key (PX EXPERIMENT ID , PX BORDER ROUTER, PX NODE NAME, PX NUM,

PX KEY) ;
updateFirmware (PX EXPERIMENT ID , PX BORDER ROUTER, PX NODE NAME,

PX NUM MALICIUS) ;
message in tercept ion () ;
es tab l i sh secu re connec t i on (PX EXPERIMENT ID , PX BORDER ROUTER,

PX NODE NAME, PX NUM, PX KEY INVALID) ;
g e n e r a t e t r a f f i c (PX EXPERIMENT ID , PX BORDER ROUTER, PX NODE NAME, PX NUM) ;
check connec t i v i t y (PX EXPERIMENT ID , PX BORDER ROUTER, PX NODE NAME) ;
check packet loss (PX EXPERIMENT ID , PX BORDER ROUTER, PX NODE NAME, PX NUM) ;
s t o p t r a f f i c () ;
s t o p t r a f f i c () ;
g e n e r a t e t r a f f i c (PX EXPERIMENT ID , PX BORDER ROUTER, PX NODE NAME, PX NUM) ;
check connec t i v i t y (PX EXPERIMENT ID , PX BORDER ROUTER, PX NODE NAME) ;
check packet loss (PX EXPERIMENT ID , PX BORDER ROUTER, PX NODE NAME, PX NUM) ;
message in tercept ion () ;

}
}

137

Document generated with LATEX and:
the LATEX style for PhD Thesis created by S. Galland — http://www.multiagent.fr/ThesisStyle

the tex-upmethodology package suite — http://www.arakhne.org/tex-upmethodology/

http://www.arakhne.org/tex-upmethodology/
http://www.multiagent.fr/ThesisStyle

n École doctorale SPIM 1 rue Claude Goudimel F - 25030 Besançon cedex

n tél. +33 (0)3 81 66 66 02 n ed-spim@univ-fcomte.fr n www.ed-spim.univ-fcomte.fr

Abstract:

The Internet of Things (IoT) is nowadays globally a mean of innovation and transformation for many
companies. Applications extend to a large number of domains, such as smart cities, smart homes,
healthcare, etc. The Gartner Group estimates an increase up to 21 billion connected things by 2020.
The large span of ”things” introduces problematic aspects, such as conformance and interoperability
due to the heterogeneity of communication protocols and the lack of a globally-accepted standard.
The large span of usages introduces problems regarding secure deployments and scalability of the
network over large-scale infrastructures. This thesis deals with the problem of the validation of
the Internet of Things to meet the challenges of IoT systems. For that, we propose an approach
using the generation of tests from models (MBT). We have confronted this approach through multiple
experiments using real systems thanks to our participation in international projects. The important
effort which is needed to be placed on the testing aspects reminds every IoT system developer that
doing nothing is more expensive later on than doing it on the go.

Keywords: Internet of Things, Model-Based Testing, Test, Security, Conformity, Behavioral Fuzzing

Résumé :

L’internet des objets (IoT) est aujourd’hui un moyen d’innovation et de transformation pour de
nombreuses entreprises. Les applications s’étendent à un grand nombre de domaines, tels que
les villes intelligentes, les maisons intelligentes, la santé, etc. Le Groupe Gartner estime à 21
milliards le nombre d’objets connectés d’ici 2020. Le grand nombre d’objets connectés introduit des
problèmes, tels que la conformité et l’interopérabilité en raison de l’hétérogénéité des protocoles de
communication et de l’absence d’une norme mondialement acceptée. Le grand nombre d’utilisations
introduit des problèmes de déploiement sécurisé et d’évolution du réseau des IoT pour former des
infrastructures de grande taille. Cette thèse aborde la problématique de la validation de l’internet des
objets pour répondre aux défis des systèmes IoT. Pour cela, nous proposons une approche utilisant
la génération de tests à partir de modèles (MBT). Nous avons confronté cette approche à travers
de multiples expérimentations utilisant des systèmes réels grâce à notre participation à des projets
internationaux. L’effort important qui doit être fait sur les aspects du test rappelle à tout développeur
de système IoT que: ne rien faire est plus cher que de faire au fur et à mesure.

Mots-clés : Internet des Objets, Tests basés sur des modèles, Test, Conformité, Sécurité, Exploration com-
portementale

	I Thesis presentation
	1 Overview of Thesis Research
	1.1 The Internet of Things Era
	1.2 Model-Based Testing for IoT Systems: Motivation & Research scope
	1.3 Contribution of the Thesis
	1.4 Thesis outline

	2 Context
	2.1 IoT Systems
	2.2 Explored IoT Systems
	2.2.1 FIWARE
	2.2.2 oneM2M

	2.3 Model-Based Testing (MBT)

	3 Research challenges
	3.1 Testing for standardized IoT platforms
	3.1.1 Testing the conformance of one component
	3.1.2 Testing for Integration
	3.1.2.1 Integration testing of pair components
	3.1.2.2 Integration testing of multi-components

	3.2 Security Testing of IoT systems
	3.2.1 Vulnerability testing
	3.2.2 End-to-End security testing

	3.3 Robustness Testing for IoT Systems
	3.3.1 Robustness testing for one component
	3.3.2 Robustness testing for large scale IoT system

	4 State Of The Art
	4.1 IoT testing
	4.1.1 Conformance Testing
	4.1.2 Security Testing
	4.1.3 Robustness Testing

	4.2 Model-Based Testing for IoT
	4.3 Languages and Tools for Testing
	4.3.1 TTCN-3
	4.3.1.1 TTCN-3 Language history
	4.3.1.2 Language specifics

	4.3.2 CertifyIt
	4.3.3 MBeeTle

	5 Contribution Summary
	5.1 Methods for MBT of IoT systems
	5.1.1 MBT behavioral modeling for standardized IoT platforms
	5.1.2 Pattern-driven and model-based security testing
	5.1.3 Behavioral fuzzing for IoT systems

	5.2 Tooling
	5.2.1 Around CertifyIt
	5.2.2 MBTAAS: Integrated Framework

	II Technical contributions
	6 MBT behavioral modeling for standardized IoT platforms
	6.1 MBT Behavioral Model Process
	6.2 Test Objectives
	6.3 MBT Behavioral Test Generation

	7 Pattern-driven and model-based security testing
	7.1 Expressing Test scenarios From Test Patterns
	7.2 Test Generation
	7.3 Using TP for MBS Functional and Vulnerability Testing

	8 Model Based-Testing As A Service
	8.1 Architecture
	8.2 MBTAAS main services
	8.2.1 Customization Service
	8.2.2 Publication service
	8.2.3 Execution service
	8.2.4 Reporting service

	8.3 Approach synthesis

	9 Behavioral fuzzing for IoT systems
	9.1 MBT specificities for the IoT behavioral fuzzing testing
	9.2 MBT Model
	9.3 Test generation
	9.4 Behavioral fuzzing approach synthesis

	III Experimentations
	10 Experiments
	10.1 Guideline for Experimentation's
	10.1.1 MBT for IoT systems
	10.1.2 Model-based security testing for IoT
	10.1.3 MBT for large scale IoT systems

	10.2 FIWARE Testing Process using MBT
	10.2.1 MBT Model
	10.2.2 Test case generation
	10.2.3 Test case reification & execution
	10.2.4 Experimentation synthesis

	10.3 oneM2M Testing Process using MBT
	10.3.1 Requirements and Test Purposes
	10.3.2 Model-Based Testing modelisation
	10.3.3 Generating TTCN-3 tests
	10.3.4 Execution and Reporting

	10.4 Access Control Policies (ACP) testing in oneM2M IoT standard
	10.5 ARMOUR Large scale end-to-end security
	10.5.1 MBT Model
	10.5.2 Test case generation
	10.5.3 Test case reification
	10.5.4 Test case execution
	10.5.5 Experimentation & Results

	10.6 ARMOUR Behavioral Fuzzing
	10.6.1 Synergies between ARMOUR experiment 5 & 6
	10.6.2 MBT Model

	10.7 Test generation
	10.8 Experimentation results summary
	10.8.1 MBT behavioral modeling
	10.8.2 Pattern-driven and model-based security testing analysis
	10.8.3 Behavioral fuzzing results

	11 Conclusion and future work
	11.1 Summary
	11.2 Future work

	IV Appendix
	A ARMOUR Security Vulnerabilities tables
	B Example of single TTCN-3 fuzzing Test case with 20 steps

