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Schémas volumes finis à mailles décalées pour la dynamique des gaz

Résumé : L'objectif de cette thèse est de développer un nouveau schéma numérique du type volumes finis pour la dynamique des gaz. Dans les articles [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF][START_REF] Berthelin | Multifluid flows : a kinetic approach[END_REF], F. Berthelin, T. Goudon et S. Minjeaud proposent de résoudre le système des équations d'Euler barotrope en dimension 1 d'espace, avec un schéma d'ordre 1 fonctionnant sur grilles décalées et dont la conception des flux est inspirée des schémas cinétiques. Nous proposons d'enrichir ce schéma afin qu'il puisse résoudre le système des équations d'Euler barotrope ou complet, en dimension 2 d'espace sur maillage cartésien ou non structuré, possiblement à l'ordre 2 et le cas échéant à bas nombres de Mach. Nous commencerons par développer une version 2d du schéma sur grilles cartésiennes (ou mac) à l'ordre 2 via une méthode de type muscl, d'abord pour les équations barotropes puis pour les équations complètes. Ces dernières demandent de traiter une équation d'énergie supplémentaire et l'un des problèmes -résoluest de trouver une définition discrète convenable de l'énergie totale telle qu'elle satisfasse une équation conservative locale. Dans un troisième chapitre nous étudierons le passage à la limite du compressible vers l'incompressible et nous verrons comment utiliser les atouts de notre schéma afin de le modifier et d'en faire un schéma Asymptotic Preserving pour des écoulements à bas nombres de Mach. Dans un quatrième temps nous proposerons une adaptation du schéma sur des maillages non structurés. Notre approche sera fortement inspirée des méthodes ddfv et pourra présenter des avantages dans les régimes à faibles nombres de Mach. Cette thèse se termine par un cinquième chapitre issu d'une collaboration lors du cemracs 2017, où le point de vue considéré n'est plus macroscopique mais microscopique. Nous commencerons par étudier un modèle micro/macro idéalisé auquel un processus stochastique a été ajouté puis nous tenterons d'en déduire un modèle à grande échelle pour un système fortement couplé, qui soit consistant avec la description micro/macro sous-jacente du problème physique.

Mots clefs : Dynamique des gaz -Equations d'Euler -Schéma volumes finis -Maillages décalés (mac et non structurés) -Bas nombre de Mach

Finite volume schemes on staggered grids for gas dynamics Abstract : The objective of this thesis is to develop a new numerical scheme of finite volume type for gas dynamics. In articles [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF][START_REF] Berthelin | Multifluid flows : a kinetic approach[END_REF], F. Berthelin, T. Goudon and S. Minjeaud propose to solve the barotropic Euler system in dimension 1 of space, with a first order scheme that works on staggered grids and of which fluxes are inspired by kinetic schemes. We propose to enhance this scheme so that it can solve the barotropic or complete Euler systems, in dimension 2 of space on Cartesian or unstructured grids, possibly at order 2 and at Low Mach numbers where appropriate. We begin with the development of a 2d version of the scheme on Cartesian (or mac) grids, at order 2 via a muscl type method, for the barotropic equations at first and then for the complete equations. The latter require to handle with an additional energy equation and one of the -solved-problems is to find a suitable discrete definition of the total energy such that it satisfies a local conservative equation. In a third chapter we study the transition from the compressible case to the incompressible limit and we shall see how to use the advantages of our initial scheme in order to make it an Asymptotic Preserving scheme at low Mach numbers. In a fourth chapter we propose an adaptation of the scheme on unstructured meshes. Our approach is strongly inspired by the ddfv methods and may have advantages in low-Mach regimes. This thesis ends with a fifth chapter issued from a collaboration during cemracs 2017, where the considered point of view is no longer macroscopic but microscopic. We begin by studying a simplified micro/macro model with an added stochastic process and then we attempt to deduce a large-scale model for a strongly coupled system which has to be consistent with the underlying micro / macro description of the physical problem.

Chapitre 0 Introduction En Français

L'objectif de cette thèse est de développer un schéma numérique qui poursuive le travail commencé par F. Berthelin, T. Goudon et S. Minjeaud dans [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF][START_REF] Berthelin | Multifluid flows : a kinetic approach[END_REF] pour résoudre le système des équations d'Euler, qu'il soit barotrope :

∂ t ρ + ∇ • (ρu) = 0, ∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇ (p(ρ)) = 0, (1) 
ou bien complet, avec une équation d'énergie supplémentaire :

           ∂ t ρ + ∇ • ρu = 0, ∂ t ρu + ∇ • ρu ⊗ u + ∇ p(ρ, E, u) = 0, ∂ t ρE + ∇ • ρEu + ∇ • pu = 0.
(

) 2 
Dans ces deux papiers seul le cas barotrope est abordé -par une méthode originale -en dimension 1 d'espace et avec un schéma à l'ordre 1. La première particularité de la méthode repose sur le choix du maillage. Contrairement à la majorité des schémas pré-existants pour Euler où le maillage est colocalisé, c'est à dire où les inconnues physiques simulées numériquement sont stockées aux mêmes points du maillage, notre schéma fonctionne sur grilles décalées : les variables scalaires (densité, pression, énergie interne) et vectorielles (vitesse) ne sont pas localisées sur les mêmes maillages. La raison principale de ce choix repose sur le cadre d'étude dans lequel s'inscrit cette thèse, celui de certains mélanges complexes de fluides dont la simulation implique l'étude d'une vitesse composite à divergence nulle et qui mène à des difficultés similaires à celles présentes dans le cadre de fluides évoluants à bas nombres de Mach. Plus précisément, nous développerons ici une étude préliminaire indispensable au futur développement d'un schéma permettant d'aborder les modèles de mélanges, dont les équations évolutives sont des variantes des équations d'Euler, voir [START_REF] Berthelin | Multifluid flows : a kinetic approach[END_REF]. Il s'agit donc de proposer un schéma sur grilles décalées, résolvant les équations d'Euler compressibles et capable de reproduire numériquement des contrastes de densité ainsi que des régions de transitions. En outre, dans l'idée d'une approche unifiée entre l'étude des fluides compressibles et incompressibles, le schéma doit supporter des régimes à bas nombres de Mach.

Ces mélanges complexes aussi appelés multifluides sont, d'un point de vue physique, composés d'une phase porteuse dense (un fluide gazeux ou liquide) et d'une phase particulaire (dite aussi granulaire) dispersée et faite de particules ou de bulles. Il est donc question de composés de deux phases qui interagissent entre elles ; telles que le mélange se comporte comme un fluide au niveau macroscopique. Les exemples sont nombreux : le lait qui est un mélange eau-lactose, les avalanches de neige poudreuse, les métaux en fusion qui contiennent des impuretés... Ces modèles ont de nombreuses applications telles que la théorie de la combustion (automobiles, pots catalytiques...), les lits fluidisés, les réacteurs à lits de boulets dans l'industrie du nucléaire, le biomédical ou encore l'agriculture avec l'usage de spray... D'autres applications sont possibles, dans les domaines de l'aérospatiale, de la balistique ou de la conception d'armes par exemple. Premiers pas vers la mise en place d'un schéma utilisable par le monde industriel, la montée en dimension et en ordre : le système (1) sera étudié au Chapitre 1 afin de développer une version 2d sur grille cartésienne et à l'ordre 2 du schéma proposé dans [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF]. Le système (2) quant à lui sera étudié aux Chapitres 2 et 4, sur maillages 2d cartésiens et généraux respectivement.

La seconde caractéristique de ce schéma repose sur le choix des flux dont la construction est inspirée des schémas cinétiques. Dans [START_REF] Coron | Numerical passage from kinetic to fluid equations[END_REF], F. Coron et B. Perthame rappellent que l'on peut numériquement passer d'une description cinétique à une description macroscopique de la mécanique des fluides, autrement dit aux équations d'Euler. Considérons le modèle de Bhatnagar, Gross et Krook (BGK) pour un gaz monoatomique, en dimension d d'espace, qui décrit le nombre de particules f (t, x, v)dxdv au temps t, dans un petit volume d'espace dx autour de la position x et ayant une vitesse v définie à dv près. Soit M f la maxwellienne locale

M f (t, x, v) = ρ(t, x) (2πT (t, x)) d/2 exp -|v -u(t, x)| 2 2T (t, x)
ayant mêmes moments d'ordre 0, 1 et 2 que la fonction f :

             ρ(t, x) = R d f (t, x, v)dv, ρu(t, x) = R d vf (t, x, v)dv, ρ(|u| 2 + dT )(t, x) = R d |v| 2 f (t, x, v)dv,
et soit le paramètre de relaxation τ f , le temps moyen de collision entre deux particules, alors

     ∂ t f + v • ∇ x f = 1 τ f (M f -f ) , f (0, x, v) = f 0 (x, v).
Pour f 0 0 donnée, le système ci-dessus admet une solution et lorsque le paramètre τ f tend vers 0, les quantités ρ, ρu et ρ |u| 2 2 + d 2 T sont supposées tendre vers la solution du système d'Euler complet (2) avec p = d 2 ρT , voir [START_REF] Perthame | Global existence to the BGK model of Boltzmann equation[END_REF][START_REF] Perthame | Weighted L ∞ Bounds and Uniqueness for the Boltzmann BGK Model[END_REF]. Notons que pour des gaz polyatomiques, et donc d'autres lois de pression, deux méthodes sont possibles : on peut considérer une densité de particules f (t, x, v, I) avec énergie interne I > 0 ou bien introduire une deuxième fonction de densité g(t, x, v) et décrire alors le gaz par un système cinétique couplé, comme expliqué dans [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. On trouvera dans [START_REF] Perthame | Second order Boltzmann schemes for compressible Euler equations in one and two space dimension[END_REF] une version des équations de Boltzmann pour traiter (2) avec une loi de pression p = (γ -1)ρe adaptée à un formalisme d'équations cinétiques couplées. On peut interpréter cette approche numérique comme une solution de transport-écroulement, voir [START_REF] Brenier | Une application de la symétrisation de Steiner aux équations hyperboliques : la méthode de transport et écroulement[END_REF] : considérons une fonction χ :

ω ∈ R -→ χ(ω) telle que R χ(ω)dω = 1, R ω 2 χ(ω)dω = 1, χ(-ω) = -χ(ω), et notons f 0 (x, v) = ρ(0, x) T (0, x) χ   v -u(0, x) T (0, x)   , g 0 (x, v) = 3 -γ 2(γ -1) ρ(0, x) T (0, x)χ   v -u(0, x) T (0, x)   .
Soit (f, g) solution sur un pas de temps δt du système

         ∂ t f + v • ∇f = 0, ∂ t g + v • ∇g = 0, f (0, x, v) = f 0 (x, v), g(0, x, v) = g 0 (x, v), (3) 
alors on définit (ρ, ρu, ρE) par

             ρ(t, x) = R d f (t, x, v)dv, ρu(t, x) = R d vf (t, x, v)dv, ρE(t, x) = R d |v| 2 f (t, x, v) + g(t, x, v) dv,
puis on remet à jour le couple (f 0 , g 0 ) et on réitère. Pour δt assez petit on espère que (ρ, ρu, ρE) approche la solution du système [START_REF] Aguillon | Problèmes d'interfaces et couplages singuliers dans les systèmes hyperboliques : analyse et analyse numérique[END_REF]. Le choix de la fontion χ joue un rôle important dans cette approche. En pratique on ne manipule qu'une version intégrée en v de (3) et on ne stoke que les données macroscopiques (ρ, u, E). Les flux numériques correspondants doivent être simples à calculer. Par ailleurs, il ressort qu'utiliser une fonction à support compact présente des avantages en termes de stabilité numérique. En s'inspirant de cette idée et de la stratégie de Kaniel pour la dynamique des gaz dans [START_REF] Kaniel | Approximation of the hydrodynamic equations by a transport process[END_REF], les auteurs de [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF] choisissent d'utiliser les vitesses caractéristiques du système pour définir le support de χ. Commençons par écrire le système (2) sous sa forme non conservative :

       ∂ t ρ + u • ∇ρ + ρ∇ • u = 0, ∂ t u + (u • ∇)u + ρ -1 ∇p = 0, ∂ t e + u • ∇e + ρ -1 p∇ • u = 0, où e = E -|u| 2
2 . Notant U = (ρ, u, e) t le vecteur des variables physiques, ce système peut se mettre sous la forme

∂ t U + A(U ) • U = 0 avec A(U ) =    u • ∇ ρ∇• 0 ρ -1 ∂p ∂ρ | e u • ∇ ρ -1 ∂p ∂e | ρ 0 ρ -1 p∇• u • ∇    .
Notant (ξ i ) i la base canonique de R d et u i = u • ξ i , les valeurs propres de cette matrice sont données par λ -(u i , c) = u i -c, u i et λ + (u i , c) = u i + c où c = (γ -1)γe est la vitesse du son. Cette vitesse du son c peut s'interpréter comme la manifestation de la propagation de la variation de pression alors que les quantités λ ± , appelées vitesses caractéristiques du système, s'interprètent comme les vitesses de propagation de l'information dans le système. Notons que le même travail peut être fait avec le système barotrope [START_REF] Abgrall | A high-order nonconservative approach for hyperbolic equations in fluid dynamics[END_REF], la définition des vitesses caractéristiques est formellement la même et ne diffère de celle d'Euler complet que par la définition de la vitesse du son qui est alors c = p (ρ).

Definition 0.0.1. L'équilibre de Kaniel M est une fonction à support compact, limité par les vitesses caractéristiques qui dépendent du système étudié à travers la vitesse du son c :

M(ρ, c, u, ξ) = ρ 2c 1 |ξ-u|≤c .
La construction des flux proposée dans [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF], basée sur l'équilibre de Kaniel, fait intervenir les vitesses caractéristiques de la façon suivante : Definition 0.0.2. (

F + (ρ, u) = ξ>0 ξM(ρ, c, u, ξ)dξ =        0 si u -c, ρ 4c λ + (u, c) 2 si |u| c, ρu si u c, (4) 
) 5 
On remarquera que la dépendance en c des flux F ± n'est pas notée afin d'alléger les notations, de fait la définition de c retenue dans chaque chapitre (et dépendante du système étudié) sera systématiquement rappelée.

Le schéma applique le principe de décentrement à partir de l'écriture

F ± = ξ≶0 ξMdξ
puisqu'on associe aux densités situées à gauche (respectivement à droite) de l'interface considérée, le flux défini avec la vitesse cinétique ξ positive (respectivement négative). La correction apportée par ces flux par rapport aux flux Upwind standards est montrée dans la figure Fig. 2 ci-dessous : la différence essentielle est que les flux Upwind, utilisés dans [START_REF] Herbin | Staggered schemes for all speed flows[END_REF][START_REF] Herbin | Consistent explicit staggered schemes for compressible flows ; part I : the barotropic Euler equations[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF] sont basés sur le signe de la vitesse matérielle alors que les flux (4) et [START_REF] Bardina | Improved subgrid scale models for Large Eddy Simulation[END_REF] sont basés sur le signe des vitesses caractéristiques du système et font donc notamment intervenir la vitesse du son. Comme expliqué dans [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF], cette construction induit une diffusion numérique qui prévient la formation d'oscillations dans les zones de faibles vitesses matérielles. Dans le formalisme des schémas cinétiques, définir les flux à l'aide d'une fonction à support compact, contrôlé par les vitesses caractéristiques comme dans la définition 0.0.2, plutôt qu'avec une maxwellienne peut être plus naturelle physiquement offre une écriture explicite des flux et joue un rôle crucial dans l'analyse de la stabilité des schémas, voir [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. En particulier, avec pour objectif les différentes études de stabilité qui seront effectuées par la suite, nous adopterons les notations suivantes :

[z] ± = 1 2 (|z| ± z) = max(0, ±z) ≥ 0, et remarquerons plusieurs propriétés satisfaites par les flux F ± :

• une propriété de symétrie :

F -(ρ, u) = -F + (ρ, -u), (6) 
• une propriété de consistance :

F + (ρ, u) + F -(ρ, u) = ρu, (7) 
• un lemme fondamental :

Lemma 0.0.3. Pour tout u ∈ R, pour tout ρ 0 et pour tout c 0, les flux F ± satisfont les inégalités suivantes :

0 F + (ρ, u) ρ[λ + (c, u)] + et -ρ[λ -(c, u)] -F -(ρ, u) 0. ( 8 
)
Les résultats démontrés pendant la thèse ont, peu ou prou, été intégralement laissés sous leur forme d'articles, de sorte que les Chapitres 1,2,3,4 et 5 peuvent se lire de manière indépendante. Ils proposent des stratégies numériques pour résoudre les équations d'Euler avec un schéma sur grilles décalées en utilisant les flux de la définition 0.0.2 et étendent le travail introduit dans [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF][START_REF] Berthelin | Multifluid flows : a kinetic approach[END_REF] dans les directions suivantes :

• Au Chapitre 1 : On développe une version 2d sur grille cartésienne -dite mac pour Marker And Cell, voir [START_REF] Harlow | Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[END_REF], et à l'ordre 2 via une méthode de type muscl (pour Monotonic Upwind Scheme for Conservation Laws, voir [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF][START_REF] Van Leer | Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[END_REF]) -du schéma proposé dans [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF] pour Euler barotrope. Afin de démontrer des résultats de stabilité et de consistance sur maillages irréguliers, l'introduction de τ -limiteurs sera nécessaire afin de pouvoir écrire les densités reconstruites ρ ± comme des combinaisons convexes des valeurs voisines de ρ. La condition de stabilité identifiée pour le second ordre est classique et fait intervenir les vitesses caractéristiques du système définies plus haut

δt δx j+ 1 2 λ -(ρ + j , u j ) - + λ + (ρ - j+1 , u j+1 ) + 1 2 .
On peut remarquer que pour assurer la préservation de la positivité de la densité initiale, la condition CFL à l'ordre 1 est deux fois moins restrictive que celle à l'ordre deux. On terminera ce chapitre par quelques simulations numériques en dimension 1 sur un cas test manufacturé et suffisamment régulier pour mettre en évidence la montée en ordre sur maillage régulier ou non ; et à en dimension deux à l'ordre 1 et 2 sur un cas test inspiré de [START_REF] Aguillon | Problèmes d'interfaces et couplages singuliers dans les systèmes hyperboliques : analyse et analyse numérique[END_REF] simulant la chute de trois colonnes de fluide dans un bassin carré.

• Au Chapitre 2 : Le but est de passer de la résolution des équations d'Euler barotrope à Euler complet, donc d'ajouter une équation sur l'énergie. La première difficulté consiste à trouver une définition convenable pour l'énergie totale discrète, qui fait intervenir deux quantités stockées sur des maillages différents. Tout comme R. Herbin, J.-C. Latché, et T.T. Nguyen dans leurs articles [START_REF] Herbin | Consistent explicit staggered schemes for compressible flows ; part I : the barotropic Euler equations[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF], une réécriture du système via l'équation d'énergie interne ∂ t (ρe) + ∇ • (ρeu) = -p∇ • u, permettra de résoudre le système et s'adaptera parfaitement à la méthode muscl mise en place dans le Chapitre 1. En outre, la définition retenue pour l'énergie totale satisfait une équation conservative locale. La seconde difficulté -résolue en définissant une énergie interne moyennée ad-hoc -repose sur le traitement des discontinuités de contact, caractérisées par la continuité de la vitesse et de la pression, où le fluide à gauche et celui à droite de la discontinuité ne se mélangent pas et où la séparation entre les deux se propage à la vitesse du fluide. Concernant la stabilité du schéma, la CFL garantissant la positivité de la densité est exactement la même que celle identifiée à l'ordre 1 dans [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF] et à l'ordre 2 dans le Chapitre 1 ; deux CFL supplémentaires sont nécessaires pour garantir la positivité de l'énergie interne, elles sont bien évidemment plus restrictives à l'ordre 2 qu'à l'ordre 1, et dépendent de la pression p = (γ -1)ρe à travers la constante adiabatique γ. On terminera ce chapitre en étudiant la consistance du schéma et en proposant enfin quelques simulations numériques en dimension 1 pour des problèmes de Riemann et en dimension 2 avec le cas test de la marche dans un tunnel.

• Au Chapitre 3 : On exploite une idée de J .Haack, S. Jin, et J.-G. Liu dans [START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations[END_REF] afin de pouvoir descendre à faible nombre de Mach dans le schéma mis en place pour résoudre Euler barotrope au Chapitre 1. Les difficultés qui apparaissent dans ce cadre, telles que des problèmes de raideur et de CFL, ont été soulevées par H. Guillard et ses collaborateurs dans [START_REF] Guillard | On the behavior of upwind schemes in the low Mach number limit. II : Godunov type schemes[END_REF][START_REF] Guillard | On the behavior of upwind schemes in the low Mach number limit[END_REF]. Les écoulements à bas nombre de Mach posent des difficultés qui rendent les simulations compliquées : la raideur du terme de pression implique des conditions de stabilité drastiques dans le cadre de schémas temporels explicites classiques et les schémas conservatifs volumes finis usuels sont sujets à une perte de précision qui peut rendre difficile la capture de la solution exacte. On retrouve dans ce chapitre un des arguments principaux ayant poussé à l'usage de grilles décalées : si l'étude des systèmes incompressibles sur grilles colocalisées amène un problème de découplage des termes pairs et impairs sur la pression, ce qui provoque des oscillations parasites, l'usage de grilles décalées en revanche affranchit le schéma de ce genre de difficultés et il n'est pas nécessaire de mettre en place des méthodes de correction de pression. Enfin, il est difficile de créer des schémas numériques qui préservent la limite asymptotique (passage du régime compressible à l'incompressible) sans pour autant impliquer un coût de calcul trop important dû à la CFL. Le but est donc de modifier le schéma initial afin de le rendre Asymptotic Preserving, tout en conservant ces propriétés initiales.

Definition 0.0.4. Asymptotic Preserving (ap) Method.

Une méthode est dite ap lorsqu'elle préserve au niveau discret le passage asymptotique d'un modèle à un autre. Plus précisément, si les pas d'espace et de temps δx et δt sont fixés, la méthode converge automatiquement vers une discrétisation stable du modèle limite lorsque le paramètre de petites échelles tend vers zéro.

On étudiera les propriétés de stabilité et consistance du schéma proposé ainsi que le comportement asymptotique de ce dernier dans la limite de faibles nombres de Mach. On présentera quelques résultats numériques sur le schéma ap étudié ainsi que sur le schéma limite obtenu, qui résout les équations incompressibles d'Euler.

• Au Chapitre 4 : Le but est de passer de la résolution des équations d'Euler complet sur maillages mac aux maillages non structurés. Suivant l'idée première de cette thèse d'une approche unifiée entre l'étude des fluides compressibles et incompressibles (qui demandent de traiter une contrainte de divergence nulle pour la vitesse), on adopte un point de vue proche des méthodes dites ddfv pour Discrete Duality Finite Volume. Les méthodes ddfv ont été proposées dans les années 2000 dans [START_REF] Domelevo | A finite volume method for the Laplace equation onalmost arbitrary two-dimensional grids[END_REF][START_REF] Hermeline | A finite volume method for the approximation of diffusion operators on distorted meshes[END_REF] pour approximer les équations de Laplace sur de nombreux types de maillages 2d, incluant des maillages non-conformes, et permettent en particulier de reproduire numériquement l'opérateur elliptique ∇ • (φ(∇u)) ; puis dans [START_REF] Boyer | Inf-Sup Stability of the Discrete Duality Finite Volume method for the 2D Stokes problem[END_REF][START_REF] Delcourte | Developpement de méthodes de volumes finis pour la mécanique des fluides[END_REF][START_REF] Krell | Stabilized DDFV schemes for Stokes problem with variable viscosity on general 2D meshes[END_REF] pour résoudre le problème de Stokes. Les équations d'Euler, hyperboliques, n'ont bien évidemment pas de tel opérateur mais comme nous l'avons vu au Chapitre 3, l'opérateur ∇ • u apparaît dans la limite de faibles nombres de Mach. En se basant sur le travail effectué par S. Krell et T. Goudon dans [START_REF] Goudon | A DDFV scheme for incompressible Navier-Stokes equations with variable density[END_REF] pour la résolution des équations de Navier-Stokes avec densité variable, qui ont elles aussi une contrainte de divergence nulle, on propose une résolution sur tout type de maillage. Les idées empruntées à ce modèle reposent sur le dédoublement des variables, puisque l'on va désormais stocker les vitesses à la fois sur les centres et les sommets des cellules. La densité et la pression seront quant à elles stockées aux arêtes des cellules. De fait, il devient nécessaire de créer des volumes autour de chacune de ses variables : en plus du maillage initial (en bleu), dont les cellules ceignent les vitesses aux centres, on crée un maillage dual (en rouge) pour les vitesses stockées aux sommets ainsi qu'un maillage diamant (en vert) pour les quantités scalaires stockées aux centres des arêtes. Dans la Fig. 3 on représente quelques mailles prises au centre d'un maillage ddfv, c'est à dire qu'on ne représente pas de cellules situées au bord du domaine et pour lesquelles les mailles duales et diamants sont quelque peu différentes. Enfin, l'un des points clefs de [START_REF] Goudon | A DDFV scheme for incompressible Navier-Stokes equations with variable density[END_REF] est la préservation des propriétés de conservation d'un maillage à l'autre ; ce résultat tient en la définition des flux moyennés qui apparaissent dans la résolution de l'équation du moment et nous nous en inspirons fortement afin de préserver ces résultats dans notre cadre. De même, la définition de l'opérateur divergence retenue ici sera calquée sur celle proposée dans [START_REF] Goudon | A DDFV scheme for incompressible Navier-Stokes equations with variable density[END_REF]. Tout comme au Chapitre 2 nous étudierons la stabilité du schéma, nous définirons une énergie totale discrète qui étend la définition introduite précédemment et dans le cadre un peu plus restrictif où les mailles primales et duales seraient uniquement composées de triangles et quadrangles, nous serons en mesure d'écrire une équation de conservation locale. Pour terminer nous proposerons d'une part quelques simulations numériques afin de comparer les résultats obtenus en cartésien et en non structurés et d'autre part de réaliser un cas test qui ne pourrait être réalisé sur le schéma mac proposé initialement.

• Au Chapitre 5 : On présente ici un travail indépendant effectué durant l'été 2017 dans le cadre du cemracs, voir [START_REF] Goudenège | Statistical and probabilistic modeling of cloud of particles strongly coupled with a turbulent fluid. Proceeding of the 2017 CEMRACS session[END_REF], en collaboration avec une équipe de mathématiciens et physiciens : L. Goudenège, A. Larat, M. Massot, D. Mercier et A. Vié. Cet échange entre physiciens et mathématiciens apporte une autre vision des multifluides : le point de vue considéré jusqu'à présent était macroscopique, mais quel langage et quelles visions doivent être adoptés dans le retour au microscopique ? Dans les cas physiques standards, l'évolution du fluide est décrite par un système déterministe -comme les équations d'Euler ou de Navier-Stokes -mais dans les cas où la phase dispersée et la phase porteuse sont fortement couplées le système des équations d'évolution n'est plus fermé à cause du terme d'échange entre les particules, [START_REF] Emre | Eulerian modeling of a polydisperse evaporating spray under realistic internal-combustion-engine conditions[END_REF][START_REF] Fox | On multiphase turbulence models for collisional fluid-particle flows[END_REF]. La plupart des modèles ne tiennent compte que de l'influence du fluide porteur sur la phase granulaire et négligent ces effets rétroactifs, ou au mieux les limitent à un certain équilibre entre les deux phases, [START_REF] Minier | Statistical descriptions of polydisperse turbulent two-phase flows[END_REF]. Dans le cas où l'on modélise un fluide turbulent fortement couplé avec un nuage de particules, des inexactitudes apparaissent, dûes à la fois au caractère chaotique du fluide et aux propriétés inhérentes des particules. La bonne façon de modéliser ce problème demande de faire des hypothèses consistantes sur le processus stochastique qui décrit la dynamique globale des deux phases. Et même si des avancés ont été faites dans ce sens, voir [START_REF] Gorokhovski | Lagrangian simulation of large and small inertial particles in a high reynolds number flow : Stochastic simulation of subgrid turbulence/particle interactions[END_REF], le problème est loin d'être résolu. Nous commencerons par étudier un modèle micro/macro idéalisé auquel un processus stochastique a été ajouté puis nous tenterons d'en déduire un modèle à grande échelle et ordre réduit (ie dont le coût de calcul est réduit) pour un système fortement couplé, qui soit consistent avec la description micro/macro sous-jacente du problème physique.

In English

The objective of this thesis is to develop a numerical scheme that continues the work begun by F. Berthelin, T. Goudon and S. Minjeaud in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF][START_REF] Berthelin | Multifluid flows : a kinetic approach[END_REF] to solve the system of Euler's equations, whether it is barotropic :

∂ t ρ + ∇ • (ρu) = 0, ∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇ (p(ρ)) = 0, (1) 
or full, with an additional energy equation :

           ∂ t ρ + ∇ • ρu = 0, ∂ t ρu + ∇ • ρu ⊗ u + ∇ p(ρ, E, u) = 0, ∂ t ρE + ∇ • ρEu + ∇ • pu = 0.
(

) 2 
These two papers only tackled the barotropic case -by an original method -in dimension 1 of space and with a first order scheme. The first feature of this scheme lies in the choice of the mesh. Unlike the majority of pre-existing schemes for Euler equations where the unknowns are colocalized, i. e. where the numerically simulated physical unknowns are stored at the same points of the mesh, our scheme works on staggered grids : the scalar variables (density, pressure, internal energy) and vectorial unknowns (velocity) are not localized on the same meshes. The main motivation for this choice comes from the simulation of certain complex mixtures flows which are modeled with equations where a divergence free velocity arises and which lead to difficulties similar to those arising in low Mach numbers flows. More precisely, we will develop here a preliminary study essential to the future conception of schemes dedicated to the models for mixtures, whose evolutionary equations are close to the Euler equations, see [START_REF] Berthelin | Multifluid flows : a kinetic approach[END_REF]. The purpose is to propose a scheme that works on staggered grids, solves the compressible Euler equations and is capable of numerically reproducing density contrasts as well as regions of transitions. Moreover, in the idea of a unified approach between the study of compressible and incompressible flows, the scheme must support low Mach numbers regimes.

From a physical point of view, these complex mixtures, also called multifluids, are composed of a dense carrier phase (a gas or a liquid fluid) and a particulate phase -also called granular -disperse and made of solid particles or bubbles. The two phases interact with each other, and eventually the mixture behaves as a fluid at the macroscopic level. There are many examples : milk is a water-lactose mixture, avalanches of powder snow, melted metals that contain impurities... These models have many applications such as the theory of combustion (automobiles, catalytic converter...), fluidized beds, pebble-bed reactors in the nuclear industry, biomedical or agriculture with the use of sprays... Other applications are possible, in the fields of aerospace, ballistics or weapons design, for example. First steps towards the implementation of a scheme able to address industrial simulations are concerned with the rise in space dimension and accuracy order : the barotropic system (1) will be studied in Chapter 1 to develop a 2d version on Cartesian grids and at order 2 of the scheme proposed in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF]. The full system (2) will be studied in Chapters 2 and 4, on Cartesian and general 2d meshes respectively.

The second feature of this scheme is based on the choice of numerical fluxes whose construction is inspired by kinetic schemes. In [START_REF] Coron | Numerical passage from kinetic to fluid equations[END_REF], F. Coron and B. Perthame show that we can numerically pass from a kinetic description to the macroscopic description of fluid mechanics, in other words to Euler's equations. Consider the Bhatnagar, Gross and Krook model (BGK) for a monoatomic gas, in dimension d of space, which describes the number of particles f (t, x, v)dxdv at time t, in a small volume of space dx around the position x and having a velocity v defined with a dv uncertainty. Let M f be the local Maxwellian

M f (t, x, v) = ρ(t, x) (2πT (t, x)) d/2 exp -|v -u(t, x)| 2 2T (t, x)
having the same moments of order 0, 1 and 2 as the function f :

             ρ(t, x) = R d f (t, x, v)dv, ρu(t, x) = R d vf (t, x, v)dv, ρ(|u| 2 + dT )(t, x) = R d |v| 2 f (t, x, v)dv,
and let τ f be the relaxation parameter, i.e. the average time between inter-particles collision events. Then, we have

     ∂ t f + v • ∇ x f = 1 τ f (M f -f ) , f (0, x, v) = f 0 (x, v).
For f 0 0 given, the system above admits a solution and when the parameter τ f goes to 0, the quantities ρ, ρu and ρ

|u| 2 2 + d 2
T are supposed to tend to the solution of the full Euler system (2) with p = d 2 ρT , see [START_REF] Perthame | Global existence to the BGK model of Boltzmann equation[END_REF][START_REF] Perthame | Weighted L ∞ Bounds and Uniqueness for the Boltzmann BGK Model[END_REF]. Note that for polyatomic gases, and therefore other pressure laws, two methods are possible : we can consider a particle density f (t, x, v, I) with internal energy I > 0 or introduce a second density function g(t, x, v) and then describe the gas by a coupled kinetic system, as explained in [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. A version of Boltzmann's equations will be found in [START_REF] Perthame | Second order Boltzmann schemes for compressible Euler equations in one and two space dimension[END_REF] to treat (2) with a pressure law p = (γ -1)ρe adapted to the formalism of coupled kinetic equations. This numerical approach can be interpreted as transport-collapse mechanism, see [START_REF] Brenier | Une application de la symétrisation de Steiner aux équations hyperboliques : la méthode de transport et écroulement[END_REF] :

let χ : ω ∈ R -→ χ(ω) be a function such that R χ(ω)dω = 1, R ω 2 χ(ω)dω = 1, χ(-ω) = -χ(ω),
and let us denote

f 0 (x, v) = ρ(0, x) T (0, x) χ   v -u(0, x) T (0, x)   , g 0 (x, v) = 3 -γ 2(γ -1) ρ(0, x) T (0, x)χ   v -u(0, x) T (0, x)   .
Let (f, g) be a solution -on a time step δt -of the following system

         ∂ t f + v • ∇f = 0, ∂ t g + v • ∇g = 0, f (0, x, v) = f 0 (x, v), g(0, x, v) = g 0 (x, v), (3) 
then, let us define (ρ, ρu, ρE) by

             ρ(t, x) = R d f (t, x, v)dv, ρu(t, x) = R d vf (t, x, v)dv, ρE(t, x) = R d |v| 2 f (t, x, v) + g(t, x, v) dv,
we finally update (f 0 , g 0 ) and we repeat the procedure. For δt small enough we expect that (ρ, ρu, ρE) converges to the solution of system (2). The choice of the function χ plays an important role in this approach. In practice we only manipulate an integrated version in the variable v of (3) and we only store the macroscopic data (ρ, u, E). The corresponding numerical fluxes must be simple to calculate. In addition, it appears that using a function with a compact support has advantages in terms of numerical stability. Taking inspiration from this idea and from Kaniel's strategy for gas dynamics in [START_REF] Kaniel | Approximation of the hydrodynamic equations by a transport process[END_REF], authors in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF] choose to use the characteristic speeds of the system to define the support of χ. Let us start by writing the system (2) in its non-conservative form

       ∂ t ρ + u • ∇ρ + ρ∇ • u = 0, ∂ t u + (u • ∇)u + ρ -1 ∇p = 0, ∂ t e + u • ∇e + ρ -1 p∇ • u = 0, where e = E -|u| 2
2 . Denoting U = (ρ, u, e) t the vector of physical variables, the system may be rewritten under the form

∂ t U + A(U ) • U = 0 where A(U ) =    u • ∇ ρ∇• 0 ρ -1 ∂p ∂ρ | e u • ∇ ρ -1 ∂p ∂e | ρ 0 ρ -1 p∇• u • ∇    . Denoting (ξ i ) i the canonic basis of R d and u i = u • ξ i , the eigenvalues of the matrix are λ -(u i , c) = u i -c, u i and λ + (u i , c) = u i + c
where c = (γ -1)γe is the sound speed. The sound speed c can be interpreted as the manifestation of the propagation of the variation of pressure whereas the quantities λ ± , called characteristic speeds of the system, are interpreted as the speeds of propagation of the information in the system. Note that the same work can be done with the barotropic system (1), the definition of the characteristic speeds is then formally the same and differs from the ones of the full Euler system only by the definition of the sound speed, thus given by c = p (ρ).

Definition 0.0.1. The Kaniel equilibrium M is a function with compact support, limited by the characteristic speeds which depends on the studied system through the sound speed c :

M(ρ, c, u, ξ) = ρ 2c 1 |ξ-u|≤c .
The flux construction proposed in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF], based on Kaniel's equilibrium, uses the characteristic speeds in the following way : Definition 0.0.2.

F + (ρ, u) = ξ>0 ξM(ρ, c, u, ξ)dξ =        0 if u -c, ρ 4c λ + (u, c) 2 if |u| c, ρu if u c, (4) 
and

F -(ρ, u) = ξ<0 ξM(ρ, c, u, ξ)dξ =        ρu if u -c, - ρ 4c λ -(u, c) 2 if |u| c, 0 if u c. ( 5 
)
We remark that the c-dependence is not denoted to reduce the notations ; in fact the definition of c used in each chapter (that depends on the studied system) will be systematically recalled.

The scheme applies the upwinding principle through the definition

F ± = ξ≶0 ξMdξ,
since we associate the densities on the left (respectively on the right) of the considered interface, to the flux defined with the positive (respectively negative) kinetic velocity ξ. The correction made by these fluxes compared to the standard Upwind fluxes is shown in Fig. 5 below : the essential difference is that Upwind fluxes, used in [START_REF] Herbin | Staggered schemes for all speed flows[END_REF][START_REF] Herbin | Consistent explicit staggered schemes for compressible flows ; part I : the barotropic Euler equations[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF], are based on the sign of the material velocity while the fluxes (4) and ( 5) are based on the sign of the characteristic speeds of the system and thus make use of the sound speed. As explained in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF], this construction induces a numerical diffusion which prevents the formation of spurious oscillations when the material velocity is low. In kinetic schemes' formalism, defining fluxes with a function with compact support, controlled by the characteristic speeds as in Definition 0.0.2, rather than with a Maxwellian which might look more natural physically, offers explicit writing of fluxes and plays a crucial role in the analysis of scheme stability, see [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. In particular, with the aim of the different stability studies that we will see later, we adopt the following notations

u c + -c + F + (ρ, u) Upwind F -(ρ, u) Upwind
[z] ± = 1 2 (|z| ± z) = max(0, ±z) ≥ 0,
and remark some properties satified by the F ± fluxes :

• a symmetry property :

F -(ρ, u) = -F + (ρ, -u), (6) 
• a consistency property :

F + (ρ, u) + F -(ρ, u) = ρu, (7) 
• a fundamental lemma :

Lemma 0.0.3. For all u ∈ R, for all ρ 0 and for all c 0, the fluxes F ± satisfy the following inequalities :

0 F + (ρ, u) ρ[λ + (c, u)] + and -ρ[λ -(c, u)] -F -(ρ, u) 0. ( 8 
)
The results demonstrated during the thesis have, more or less, been left in their article form, so that the Chapters 1, 2, 3, 4 and 5 may be read independently. They propose numerical strategies to solve the Euler equations with a scheme on staggered grids by using the fluxes in Definition 0.0.2 and extend the work introduced in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF][START_REF] Berthelin | Multifluid flows : a kinetic approach[END_REF] in the following directions :

• At Chapter 1 : We develop a 2d version on Cartesian grids -called mac for Marker And Cell, see [START_REF] Harlow | Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[END_REF] and at order 2 via a method of muscl type (for Monotonic Upwind Scheme for Conservation Laws, see [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF][START_REF] Van Leer | Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[END_REF]) -of the scheme proposed in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF] for barotropic Euler equations. In order to show stability and consistency results on irregular meshes, the introduction of τ -limiters is necessary when writing the reconstructed densities ρ ± as convex combinations of the neighboring values of ρ. The condition of stability identified for the second order scheme is standard and involves the characteristic speeds of the system defined above

δt δx j+ 1 2 λ -(ρ + j , u j ) - + λ + (ρ - j+1 , u j+1 ) + 1 2 .
We notice that to ensure the preservation of the positivity of the initial density, the CFL condition at the first order is twice less restrictive than at the second order. We will end this chapter by some numerical simulations in dimension 1 on a test case manufactured and sufficiently smooth to highlight the rise in order on regular or irregular meshes and in dimension 2 at order 1 and 2 on a test case inspired by [START_REF] Aguillon | Problèmes d'interfaces et couplages singuliers dans les systèmes hyperboliques : analyse et analyse numérique[END_REF] which simulate the fall of three columns of fluid in a square bassin.

• At Chapter 2 : The aim is to reach the resolution of the full Euler equations, inspired from the simulation of the barotropic system, thus adding an energy equation. The first difficulty consists in finding a suitable definition for the discrete total energy, which involves two quantities stored on different meshes. As R. Herbin, J.-C. Latché, and T.T. Nguyen in their articles [START_REF] Herbin | Consistent explicit staggered schemes for compressible flows ; part I : the barotropic Euler equations[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF], we find convenient to work with the equation for the internal energy

∂ t (ρe) + ∇ • (ρeu) = -p∇ • u.
This allows us to make use of constructions with the muscl method implemented in Chapter 1. In addition, the definition used for total energy satisfies a local conservative equation. The second difficulty, solved by defining an ad-hoc averaged internal energy, is based on the treatment of contact discontinuities, characterized by the continuity of velocity and pressure, where the fluid on the left and the one on the right of the discontinuity do not mix and where the separation between the two spreads at the fluid velocity. Concerning the stability of the scheme, the CFL guaranteeing the positivity of the density is exactly the same as the one identified at order 1 in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF] and at order 2 in Chapter 1 ; two additional CFLs are necessary to guarantee the positivity of the internal energy, they are obviously more restrictive at order 2 than at order 1, and depend on the pressure law p = (γ -1)ρe through the adiabatic constant γ. We will finish this chapter by studying the consistency of the scheme and finally by proposing some numerical simulations in dimension 1 for Riemann problems and in dimension 2 with the test case of the tunnel with a step.

• At Chapter 3 : We use an idea of J. Haack, S. Jin, and J.-G. Liu in [START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations[END_REF] in order to deal with low Mach number regimes with the scheme set up to solve the barotropic Euler equations in Chapter 1. The difficulties that arise in this context, such as problems of stiffness and CFL, were raised by H. Guillard and his collaborators in [START_REF] Guillard | On the behavior of upwind schemes in the low Mach number limit. II : Godunov type schemes[END_REF][START_REF] Guillard | On the behavior of upwind schemes in the low Mach number limit[END_REF]. Low-Mach flows pose difficulties that make simulations challenging : the stiffness of the pressure term implies drastic stability conditions within the framework of explicit temporal schemes, and conservative conventional finite volume schemes are subject to a loss of accuracy that can make it difficult to capture the exact solution. We find in this chapter one of the main arguments that led to the use of staggered grids : the study of incompressible systems on collocated grids leads to decoupling the even and odd terms on the pressure, which causes spurious oscillations. The use of staggered grids is a way to address such difficulties and it is not necessary to set up pressure correction methods. Finally, it is difficult to create numerical schemes that preserve the asymptotic limit (transition from the compressible regime to the incompressible) without implying a too high calculation cost due to the CFL. The goal is to modify the initial schema to make it Asymptotic Preserving, while retaining its initial properties.

Definition 0.0.4. Asymptotic Preserving (ap) Method.

A method is said to be ap when it preserves at the discrete level the asymptotic passage from a model to another. To be more specific, if the space and time steps δx ans δt are kept fixed, the method automatically transforms to a stable discretization of the limiting model when the small scale parameter tends to zero.

We will study the properties of stability and consistency of the proposed scheme as well as its asymptotic behavior in the limit of low Mach numbers. We will present some numerical results on the studied ap scheme and on the obtained limit scheme, which solves Euler's incompressible equations.

• At Chapter 4 : The goal is to go forward, from solving Euler equations on mac meshes to unstructured meshes. Following the initial idea of this thesis of a unified approach between the study of compressible and incompressible fluids (which require the treatment of a divergence free constraint for velocity), we adopt a point of view close to the so-called ddfv methods (for Discrete Duality Finite Volume). The ddfv methods were proposed in the 2000s in [START_REF] Domelevo | A finite volume method for the Laplace equation onalmost arbitrary two-dimensional grids[END_REF][START_REF] Hermeline | A finite volume method for the approximation of diffusion operators on distorted meshes[END_REF] to approximate the Laplace equations on many types of 2d meshes, including non-conformal meshes, and which allow to numerically reproduce the elliptic operators ∇ • (φ(∇u)). The method has been extended in [START_REF] Boyer | Inf-Sup Stability of the Discrete Duality Finite Volume method for the 2D Stokes problem[END_REF][START_REF] Delcourte | Developpement de méthodes de volumes finis pour la mécanique des fluides[END_REF][START_REF] Krell | Stabilized DDFV schemes for Stokes problem with variable viscosity on general 2D meshes[END_REF] to solve the Stokes problem. The Euler equations, hyperbolic, obviously do not involve such operators but as we saw in Chapter 3, the ∇ • u operator appears in the low Mach numbers limit. Based on the work done by S. Krell and T. Goudon in [START_REF] Goudon | A DDFV scheme for incompressible Navier-Stokes equations with variable density[END_REF] for the resolution of Navier-Stokes equations with variable density, which also have a divergence free constraint, a resolution is proposed on any type of mesh. The ideas borrowed from this model are based on the splitting of the variables, since we will now store the velocities on both the centers and the vertices of the cells. Density and pressure will be stored at the edges of the cells. In fact, it becomes necessary to create volumes around each of the variables : in addition to the initial mesh (in blue), whose cells surround velocities at centers, we equally consider a dual mesh (in red) for velocities stored at vertices and a diamond mesh (in green) for the scalar quantities stored at the centers of the edges. In Fig. 6 we represent some meshes taken in the interior of a ddfv mesh, that is to say that we do not represent cells located at the boundaries of the domain and for which the dual and diamond cells are somehow different.

Figure 6 -The three meshes used in the ddfv method.

Finally, one of the key points of [START_REF] Goudon | A DDFV scheme for incompressible Navier-Stokes equations with variable density[END_REF] is the preservation of conservation properties from one mesh to another ; this result is based on the definition of the averaged fluxes that appear in the resolution of the momentum equation and we heavily rely on them to preserve these results in our framework. Similarly, the definition of the divergence operator retained here is inspired from [START_REF] Goudon | A DDFV scheme for incompressible Navier-Stokes equations with variable density[END_REF]. Like in Chapter 2 we study the stability of the scheme, and we define a discrete total energy. In the specific case where both the primal and dual meshes are made only of triangles and quadrangles, we are able to write a local conservation equation for the total energy. Finally, we will propose some numerical simulations to compare the results obtained on Cartesian and unstructured meshes, on the one hand, and to realize a test case that could not be handled with the mac scheme initially proposed, on the other hand. • At Chapter 5 : We present here an independent work performed during the summer of 2017 as part of cemracs, see [START_REF] Goudenège | Statistical and probabilistic modeling of cloud of particles strongly coupled with a turbulent fluid. Proceeding of the 2017 CEMRACS session[END_REF], in collaboration with a team of mathematicians and physicists : L. Goudenège, A. Larat, M. Massot, D. Mercier and A. Vié. This exchange between physicists and mathematicians brings another vision of multifluids : the point of view considered until now was macroscopic, but what language and what visions should be adopted when coming back to the microscopic ? In standard physical cases, the evolution of the fluid is described by a deterministic system -like the Euler or Navier-Stokes equations -but in cases where the dispersed phase and the carrier phase are strongly coupled the system of evolution equations is no longer closed because of the exchange term between particles, [START_REF] Emre | Eulerian modeling of a polydisperse evaporating spray under realistic internal-combustion-engine conditions[END_REF][START_REF] Fox | On multiphase turbulence models for collisional fluid-particle flows[END_REF]. Most models only take into account the influence of the carrier fluid on the granular phase and neglect these retroactive effects, or at best limit them to a certain equilibrium between the two phases, [START_REF] Minier | Statistical descriptions of polydisperse turbulent two-phase flows[END_REF]. In the case of modeling a turbulent fluid strongly coupled with a cloud of particles, inaccuracies appear due both to the chaotic nature of the fluid and to the inherent properties of the particles. The correct way to model this problem requires making consistent assumptions about the stochastic process that describes the overall dynamics of the two phases. And even if progress have been made in this direction, [START_REF] Gorokhovski | Lagrangian simulation of large and small inertial particles in a high reynolds number flow : Stochastic simulation of subgrid turbulence/particle interactions[END_REF], the problem is far from being solved. We will begin by studying an idealistic micro/macro model with an added stochastic process and then we will attempt to deduce a large-scale and reduced-order model (i. e. whose computational cost is reduced) for a strongly coupled system which has to be consistent with the micro / macro description underlying the physical problem.

Chapitre 1

A MUSCL-scheme on staggered grids for the barotropic Euler system

We set up a 2d muscl version of the scheme introduced in [9] by F.Berthelin, T.Goudon and S.Minjeaud for solving the barotropic Euler equations. The scheme works on staggered grids, with numerical densities and velocities stored at dual locations, while the numerical fluxes are derived in the spirit of kinetic schemes. We identify stability conditions for the second order method. We illustrate the ability of the scheme to capture the structure of complex flows with 2d simulations on mac grids.

Introduction

This work is concerned with the numerical solution of the barotropic Euler system

∂ t ρ + ∇ • (ρu) = 0, ∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇ (p(ρ)) = 0. (1.1)
This model describes the evolution of a compressible fluid (in the absence of external forces).

The unknowns ρ and u stand respectively for the local density and velocity field of the fluid. They depend on the time and space variables, t 0 and x ∈ R N . The model assumes that the pressure p depends on the density ρ only. Here and below, we suppose that the pressure law ρ → p(ρ) belongs to C 2 ([0, ∞)) and satisfies

p(ρ) > 0, p (ρ) > 0, p (ρ) > 0, ∀ρ > 0.
For instance, these properties hold for the classical power-law p(ρ) = λρ γ with λ > 0 and γ > 1. We refer the reader to the classical treatises [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF][START_REF] Dafermos | Hyperbolic conserrvation laws in continuum physics[END_REF][START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF][START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF][START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF] for a thorough introduction to these equations and for a description of the numerical issues.

We are interested in numerical schemes for (1.1) defined on staggered grids. To be more specific, let us focus on the one-dimensional case where x lies in the slab [0, L] ⊂ R. To define the discrete unknowns, we proceed as follows, see Fig. 1.1 :

• we introduce a set of J + 1 points x 1 = 0 < x 2 < ... < x J < x J+1 = L in the computational domain ; we denote by C j+ 1 2 = [x j , x j+1 ], j ∈ 1, J , the cells defined by these points ;

• we denote by x j+ 1 2 = (x j + x j+1 )/2, j ∈ 1, J , the centers of the cells ; these points define the dual cells

C j = [x j-1 2 , x j+ 1 2 ], j ∈ 2, J ;
• we set the following notation for the mesh-sizes

δx j+ 1 2 = x j+1 -x j , j ∈ 1, J , and δx j = δx j-1 2 + δx j+ 1 2 2 , j ∈ 2, J ,
(with the specific definition for the end-cells :

δx 1 = 1 2 δx 3 2 and δx J+1 = 1 2 δx J+ 1 2
).

x 1 • u 1 x 3 2 | ρ 3 2 δx 1 x 2 • u 2 δx 3 2 ... ... x j-1 2 | ρ j-1 2 δx j x j • u j δx j+ 1 2 x j+ 1 2 | ρ j+ 1 2 x j+1 • u j+1 ... ... x J+1 • u J+1 Figure 1.1 -Staggered grid in dimension one.
We have in mind the derivation of Finite Volume schemes where the discrete densities ρ j+ 1 2 are thought of as approximation of the density ρ on the cells C j+ 1 2 and the discrete velocities u j are thought of as approximation of the velocity u on the cells C j . The time discretization is explicit and we use the convention that, with q the evaluation of a certain quantity at time t, q stands for its update at time t + δt, therefore the scheme has the general form The discrete mass equation

ρ j+ 1 2 -ρ j+ 1 2 δt + F j+1 -F j δx j+ 1 2 = 0, ∀j ∈ 1, J .
We denote ρ j the approximations of ρ at the internal edges of the primal mesh :

ρ j = δx j+ 1 2 ρ j+ 1 2 + δx j-1 2 ρ j-1 2 2δx j , ∀j ∈ 2, J .
The discrete mometum equation

ρ j u j -ρ j u j δt + G j+ 1 2 -G j-1 2 δx j + Π j+ 1 2 -Π j-1 2 δx j = 0, ∀j ∈ 2, J .
Of course, the scheme has to be completed by initial and boundary conditions. Usually, the system (1.1) is treated using a vector-valued unknown U = (ρ, u) stored on a colocalized grid. The use of staggered grids is less standard, with the motivation of having a unified approach with an incompressible code, see e.g. [START_REF] Van Der Heul | A conservative pressure-correction method for flow at all speeds[END_REF]118,[START_REF] Wenneker | A Mach-uniform unstructured staggered grid method[END_REF][START_REF] Wenneker | Conservation properties of a new unstructured staggered scheme[END_REF]. In particular, colocalized approaches may lead to instabilities in Low-Mach regimes, with spurious oscillations of the pressure due to an "odd-even decoupling", see [START_REF] Gastaldo | Staggered discretizations, pressure correction schemes and all speed barotropic flows[END_REF][START_REF] Herbin | Staggered schemes for all speed flows[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF][START_REF] Zaza | Contribution à la résolution numérique d'écoulements à tout nombre de Mach et au couplage fluide-poreux en vue de la[END_REF]. For the same reasons, the choice of a staggered discretization is motivated in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF][START_REF] Berthelin | Multifluid flows : a kinetic approach[END_REF] by further applications to the simulations of mixture flows where the models also involve a solenoidal constraint, see also [START_REF] Clarelli | Mathematical models for biofilms on the surface of monuments[END_REF][START_REF] Clarelli | A fluid dynamics model of the growth of phototrophic biofilms[END_REF][START_REF] Polizzi | Modeling and numerical simulations for fluid mechanics systems with constraints ; application to biology and road traffic[END_REF] and the references therein. Coupled with a projection approach, the staggered method makes the discretization of the mass conservation equations for all the species interacting in the mixture and the definition of the pressure field compatible. In contrast to the colocalized approach (with the noticeable exception of ausm schemes [START_REF] Liou | A new flux splitting scheme[END_REF][START_REF] Liou | A sequel to AUSM : AUSM+[END_REF]), a discretization of each physical variables, ρ and u separately, is natural on a staggered grid. In particular, the mass flux F j at the interface x j can use directly the material velocity u j . For instance, it looks tempting to define the flux F j based on the Upwinding principles according to the sign of u j , see [START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF] but this approach does not use the hyperbolic properties of the system (1.1) and requires extra-diffusion to reduce spurious oscillations that might appear, see [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF]Appendix B]. Instead, the flux designed in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF][START_REF] Berthelin | Multifluid flows : a kinetic approach[END_REF] makes full use of the characteristic speeds of the system (1.1), namely

λ ± (c, u) = u ± c(ρ), with c(ρ) = p (ρ) the sound speed.
As the sound speed c only depend on the density ρ, in what follows the characteristic speed λ ± (c, u) we be denoted λ ± (ρ, u).

As seen in the Introduction Chaper 0, the formula for the numerical flux in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF][START_REF] Berthelin | Multifluid flows : a kinetic approach[END_REF] comes from the integration of a certain equilibrium function over a "ghost" velocity variable, in the spirit of the kinetic schemes, see [START_REF] Coron | Numerical passage from kinetic to fluid equations[END_REF][START_REF] Deshpande | Kinetic theory based new upwind methods for inviscid compressible flows[END_REF][START_REF] Deshpande | On the Maxwellian distribution, symmetric form and entropy conservation for the Euler equations[END_REF][START_REF] Kaniel | Approximation of the hydrodynamic equations by a transport process[END_REF][START_REF] Perthame | Second order Boltzmann schemes for compressible Euler equations in one and two space dimension[END_REF][START_REF] Pullin | Direct simulation methods for compressible gas flow[END_REF]. The integration domain is delimited by the characteristic speeds in order to enforce the stability of the scheme, according to an idea that dates back to [START_REF] Kaniel | Approximation of the hydrodynamic equations by a transport process[END_REF]. Finally, the numerical mass flux in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF][START_REF] Berthelin | Multifluid flows : a kinetic approach[END_REF] is defined by the following formula

F j = F + (ρ j-1 2 , u j ) + F -(ρ j+ 1 2 , u j ), j ∈ 2, J ,
(and F 1 = 0 = F J+1 if the zero flux boundary condition is prescribed) with F ± defined by the defintion 0.0.2. The sound speed involved in the defintion of

F + (ρ j-1 2 , u j ) -respectively F -(ρ j+ 1 2 , u j ) -is taken equal to c(ρ j-1 2
), respectively c(ρ j+ 1 2 ). For the momentum flux, the pressure gradient at x j+ 1 2 is naturally centered by using the densities in the neighboring cells with

Π j+ 1 2 = p(ρ j+ 1 2 ),
while the convection flux is written by applying the upwinding principle, based on the "sign" of the mass fluxes F j and F j+1 , to the velocity field. We arrive at the following definition

G j+ 1 2 = u j 2 F + (ρ j-1 2 , u j ) + F + (ρ j+ 1 2 , u j+1 ) + u j+1 2 F -(ρ j+ 1 2 , u j ) + F -(ρ j+ 3 2 , u j+1 ) ,
and a convenient definition of the boundary terms. Due to [START_REF] Berger | Analysis of slope limiters on irregular grids[END_REF], namely F + (ρ, u)+F -(ρ, u) = ρu, it is clear that the momentum flux is also consistent.

The scheme has the following properties and abilities, at least in this simple 1d framework :

• stability analysis [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF] : up to a (quite standard) stability condition on the numerical parameters, the scheme preserves the positivity of the density, and it makes the total energy of the system decay,

• consistency analysis [START_REF] Berthelin | Consistency analysis of a 1D finite volume scheme for barotropic Euler models[END_REF] : the scheme satisfies a Lax-Wendroff type theorem,

• simulations : the scheme has the advantage of algorithmic simplicity (it does not require to solve Riemann problems and the definition of the flux (4)-( 5) is fully explicit ; despite its "kinetic" flavor, it does not require an additional integration procedure...), it performs well on the standard test cases of Riemann problems and it works for very general pressure laws, like with close-packing pressures, see [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF][START_REF] Berthelin | Multifluid flows : a kinetic approach[END_REF].

We wish to propose a second order extension of this scheme, by adapting the muscl principles [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[END_REF] to the staggered framework.

This work is organized as follows. We start by explaining in Section 1.2 the adaptation of the muscl procedure to the staggered scheme. As explained above, for the mass flux the velocity is already stored at the interface and we only need to reconstruct a suitable interface density. We combine the modified mass flux and a reconstruction of the velocity to define the momentum fluxes. We are able to identify the stability condition which ensures the preservation of the positivity of the density by the muscl scheme, and we justify that the construction reaches formally the second order accuracy. In Section 1.3, we briefly explain how to extend the 1d scheme to higher dimensions, when working with Cartesian grids. The staggered framework then naturally leads to a mac-like discretization, in the spirit of the pioneering work [START_REF] Harlow | Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[END_REF] for incompressible flows. Section 1.4 is devoted to numerical validations. We check numerically the gain of accuracy on explicit solutions and on 1d Riemann problems. Then we address 2d cases, like the simulation of falling columns by the Shallow Water system, as proposed in [START_REF] Aguillon | Problèmes d'interfaces et couplages singuliers dans les systèmes hyperboliques : analyse et analyse numérique[END_REF], and the forward facing step inspired from [START_REF] Woodward | The numerical simulation of two-dimensional fluid flow with strong shocks[END_REF].

A MUSCL-scheme on staggered grids

In this section we discuss how we adapt the muscl procedure to the staggered grids. Concerning the discretization of the mass flux, we keep unchanged the velocity defined at the interface x j and we shall replace the Upwind value ρ j± 1 

Definition of the scheme

We introduce a piecewise linear reconstruction of the density which is defined, on each cell C j+ 1 2 , j ∈ 1, J , by

ρj+ 1 2 (x) = ρ j+ 1 2 + s j+ 1 2 (x -x j+ 1 2 ), ∀x ∈ C j+ 1 2 .
The slope s j+ 1 2 ∈ R should be defined as an approximation of the density gradient in the cell C j+ 1 2 . It is thus set as a symmetric function of the two discrete derivatives computed using the values of the density on the neighboring cells,

s j+ 1 2 = Φ ρ j+ 1 2 -ρ j-1 2 δx j , ρ j+ 3 2 -ρ j+ 1 2 δx j+1 , ∀j ∈ 2, J -1 .
For j = 1 and j = J, the above formula should be modified according to the boundary conditions. Here, we simply take s3 2 = 0 and s J+ 1 2 = 0 (which makes the scheme degenerate to first order next to the boundaries). Note that generally, the mesh dependance δx j , δx j+1 is not taken into account and the slope s

j+ 1 2 is taken equal to s j+ 1 2 = Φ(ρ j+ 1 2 -ρ j-1 2 , ρ j+ 3 2 -ρ j+ 1 2
) which leads to the lack of second order on non regular meshes, as explained in [START_REF] Zeng | A general approach to enhance slope limiters in MUSCL schemes on nonuniform rectilinear grids[END_REF].

For stability reasons, in order to prevent the formation of over-and undershoots, the value of the reconstructed densities at an edge should not exceed the values of the density in the two neighboring cells and the slope s j+ 1 2 should vanish at extrema. These properties are classically ensured by the definition of the function Φ, the so-called limiter function. It is seen here as a function of two variables (a, b) but it is also customary to use instead a function Φ of the single variable a/b with the following equalities

Φ(a, b) = b Φ a b = a Φ b a = Φ(b, a),
where it is understood that the function Φ satisfies the symmetry property

Φ(r) r = Φ 1 r , ∀r = 0. (1.2)
On uniform grids, the geometric properties stated above are ensured when the limiter function lies in the well-known Sweby TVD region, see [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[END_REF][START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF] and Fig. 1.2" which is characterized by the three conditions

Φ(r) = 0 (a)
, ∀r 0, 0

(b) Φ(r), Φ(r) r 2 (c)
, ∀r 0. On non-uniform grids, the situation is more intricate as explained in [START_REF] Berger | Analysis of slope limiters on irregular grids[END_REF] : in condition (c) the upper bound 2 should be replaced by a quantity that depends on the mesh regularity. More precisely the limiter Φ must satisfy Φ(r) = 0, ∀r 0, 0 Φ(r), Φ(r) r τ, ∀r 0, (

where 1 < τ 2 is the mesh dependent number defined by

τ = min j∈ 2,J-1 2δx j δx j+ 1 2 ; 2δx j+1 δx j+ 1 2 .
Furthermore, in order to ensure that the scheme is second order in space (see Section 1.2.2 below), the limiter function r → Φ(r) should be a smooth function -with at least left and right derivatives at the point r = 1 -and satisfy Φ(1) = 1.

(1.4)

As discussed in Lemma 1.2.5 (in Section 1.2.2 below), if x → ρ(x) is a smooth function, the derivatives of which are bounded and remain bounded, then we get

s j+ 1 2 = ρ (x j+ 1 2 ) + O (δx) .
From classical limiters defined for uniform meshes, we can define τ -limiters that satisfy properties (1.2), (1.3) and (1.4), see [START_REF] Clain | L ∞ stability of the MUSCL methods[END_REF]. • The SuperBee limiter : Φ sb (r) = max [0, min (2r, 1) , min (r, 2)], bounded by 2, and the τ -Bee limiter : Φ τ -sb (r) = max [0, min (τ r, 1) , min (r, τ )].

A similar reconstruction is used for the velocity on the dual mesh. We set

u j (x) = u j + w j (x -x j ), ∀x ∈ C j , ∀j ∈ 1, J + 1 .
The slopes w j ∈ R are now defined by

w j = Φ   u j -u j-1 δx j-1 2 , u j+1 -u j δx j+ 1 2 
 , ∀j ∈ 2, J , and

w 1 = 0 = w J+1 .
As illustrated in Fig. 1.3, the affine reconstruction ρ of the density allows us to define the two values ρ - j = ρj-1 2 (x j ) and ρ + j = ρj+ 1 2 (x j ) at the interface x j ,

ρ - j = ρ j-1 2 + δx j-1 2 2 s j-1 2 , ∀j ∈ 2, J + 1 , ρ + j = ρ j+ 1 2 - δx j+ 1 2 2 s j+ 1 2 , ∀j ∈ 1, J .
In the same way, the affine reconstruction of the velocity u allows us to define u -

j+ 1 2 = u j (x j+ 1 2 ) and u + j+ 1 2 = u j+1 (x j+ 1 2 ) at the interfaces x j+ 1 2 , u - j+ 1 2 = u j + δx j+ 1 2 2 w j , ∀j ∈ 2, J , u + j+ 1 2 = u j+1 - δx j+ 1 2 2 w j+1 , ∀j ∈ 1, J -1 .
Here, we bear in mind that x j and x j+1 are not necessarily the mid-points of C j and C j+1 respectively ; this is the reason why the formula is not expressed by means of δx j+1 /2 and δx j /2.

j -2 j -1 j j + 1 j + 2 j -3 2 j -1 2 j + 1 2 j + 3 2 | ρ j-3 2 | ρ j-1 2 | ρ j+ 1 2 | ρ j+ 3 2 ρ + j-1 + ρ - j + ρ + j + ρ - j+1 + Figure 1.3 -Reconstruction of the densities.
Finally, we can now define the modified fluxes. We update the density by replacing the mass flux F j by the muscl-flux F M L j defined by

F M L j = F + (ρ - j , u j ) + F -(ρ + j , u j ), ∀j ∈ 2, J ,
(and

F M L 1 = 0 = F M L J+1
if the zero-flux condition is imposed). We naturally set

F M L,+ j = F + (ρ - j , u j ) and F M L,- j = F -(ρ + j , u j ).
The convection part of the momentum flux is given by

G M L j+ 1 2 = u - j+ 1 2 F M L,+ j + F M L,+ j+1 2 + u + j+ 1 2 F M L,- j + F M L,- j+1 2 , ∀j ∈ 2, J -1 . (1.5)
We set

G M L 3 2 = u + 3 2 2 F M L,- 2 and G M L J+ 1 2 = u - J+ 1 2 2 F M L,+ J
for the boundary values.

Remark 1.2.2. It is worth mentioning here the recent work by C. Berthon, Y. Coudière and V. Desveaux [START_REF] Berthon | Development of DDFV methods for the Euler equations[END_REF][START_REF] Berthon | Second-order MUSCL schemes based on dual mesh gradient reconstruction (DMGR)[END_REF] who develop a high order scheme on unstructured meshes for the Euler system by doubling the set of numerical unknowns : the conserved quantities U = (ρ, ρu) are stored on both the primal and the dual cells. This approach is very appealing in the multidimensional case since it provides naturally a way to define full gradients on the interface of the control volumes of an unstructured mesh. Note also that the definition of limiters on general unstructured meshes gives rise to challenging issues, see [START_REF] Clain | L ∞ stability of the MUSCL methods[END_REF][START_REF] Calgaro | L ∞ -stability of vertex-based MUSCL finite volume schemes on unstructured grids : simulation of incompressible flows with high density ratios[END_REF][START_REF] Calgaro | Positivity-preserving schemes for Euler equations : sharp and practical CFL conditions[END_REF] and the references therein. Here we are only concerned with the simpler situation of Cartesian grids and the scheme does not need to double all variables. Note also that in the present framework it is more adapted to work with the physical quantities ρ and u.

Stability and consistency analysis

Firstly, we exhibit a CFL-condition which ensures that the numerical density remains non-negative and, secondly, we investigate the consistency of the scheme, showing it can reach the second order accuracy for smooth solutions. We remind the reader the fundamental Lemma given in the introduction, that will be usefull in this Section : For all u ∈ R, for all ρ 0 and for all c 0, the fluxes F ± satisfy the following inequalities : 0 for all j ∈ 1, J . We assume the CFL-like condition

0 F + (ρ, u) ρ[λ + (c, u)] + and -ρ[λ -(c, u)] -F -(ρ, u) 0. ( 1 
δt δx j+ 1 2 λ -(ρ + j , u j ) - + λ + (ρ - j+1 , u j+1 ) + 1 2 , ∀j ∈ 1, J , (1.7)
at every time step. Then the scheme preserves the non-negativity of the density :

ρ j+ 1 2
0 for all j ∈ 1, J .

Proof. We assume that ρ j+ 1 2 0 holds for all j ∈ 1, J . Let us introduce the following quantities

α j = δx j+ 1 2 2δx j Φ   ρ j+ 3 2 -ρ j+ 1 2 δx j+1 δx j ρ j+ 1 2 -ρ j-1 2   ,
and

β j = δx j+ 1 2 2δx j+1 Φ   ρ j+ 1 2 -ρ j-1 2 δx j δx j+1 ρ j+ 3 2 -ρ j+ 1 2   .
Owing to property (1.3), we readily check that 0 α j 1 and 0 β j 1. Furthermore, the reconstructed densities can be equivalently recast as

ρ + j = (1 -α j )ρ j+ 1 2 + α j ρ j-1 2 and ρ - j+1 = (1 + α j )ρ j+ 1 2 -α j ρ j-1 2 , ( 1.8) 
or ρ + j = (1 + β j )ρ j+ 1 2 -β j ρ j+ 3 2 and ρ - j+1 = (1 -β j )ρ j+ 1 2 + β j ρ j+ 3 2 .
(1.9)

In particular, equalities (1.8) show that Reasoning now as in [9, Lemma 3.7], using the sign property of the flux functions ±F ± 0, we are led to the following estimate

ρ + j min ρ j-
ρj+ 1 2 ρ j+ 1 2 + δt δx j+ 1 2 F -(ρ + j , u j ) -F + (ρ - j+1 , u j+1 ) .
Owing to equation (1.6) and since ρ + j 0 and ρ - j+1 0, we obtain

ρ j+ 1 2 ρ j+ 1 2 - δt δx j+ 1 2 ρ + j λ -(ρ + j , u j ) - + ρ - j+1 λ + (ρ - j+1 , u j+1 ) + .
Next, bearing in mind that ρ

+ j 2ρ j+ 1 2 and ρ - j+1 2ρ j+ 1 2
, we find

ρ j+ 1 2 ρ j+ 1 2   1 - 2δt δx j+ 1 2 λ -(ρ + j , u j ) - + λ + (ρ - j+1 , u j+1 ) +   .
Since it is assumed that ρ j+ 1 2 0, the conclusion ρ j+ 1 2 0 is obtained as a consequence of (1.7).

Here, appears the reason why we need to work with the τ -limiters. Simply chosen a classical flux limiter, on a non-uniform mesh the reconstructed quantities ρ ± are not a convex combination of the values in the neighbouring cells and so the α ans β coefficients are not bounded by 1. Nonetheless, the consistency of the scheme does not need more hypothesis on the flux and is quite easy to proof, due to the form of the reconstructed densities and velocities. Thus, the first solution that came to our mind was to choose a limiter bounded by one, minmod for instance. This is rather drastic and the choice of well-known limiters satisfying such an hypothesis is more or less reduce to one... A second solution was to write the muscl method with a slope limiter instead of a flux limiter and modify the definition of the approximate derivative in a cell. Thus the definition of the reconstructed densities would have been also slightly modified, see [START_REF] Berger | Analysis of slope limiters on irregular grids[END_REF] : stability is then clear but the consistency is not simple any more. It thus appears that what we want is to keep the same formulation of the muscl procedure -so that the accuracy do not need any supplementary hypothesisbut to find a family of limiters that allow us to see the reconstructed quantities as convex combination of the neighbouring quantities. The solution came from the τ -limiters. Remark 1.2.4. It is worth pointing out that the CFL condition for the muscl scheme is twice more constrained than with the first order scheme in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF]Prop. 3.7]. This is due to the estimate ρ

+ j 2ρ j+ 1 2 and ρ - j+1 2ρ j+ 1 2 .
Next, we wish to investigate the consistency of the scheme, showing it can reach the second order accuracy for smooth solutions, and far away from extrema. To this end, we study (at a fixed time) the consistency of the mass and momentum fluxes. The time being fixed, we consider smooth functions ρ and u of the space variable x only (say of class C 1 with bounded and not vanishing derivatives). We set ρ j+ 1 2 = ρ(x j+ 1 2 ) and u j = u(x j ) and insert these quantities in the scheme instead of ρ j+ 1 2 and u j . We denote with an underline all the quantities (slopes, reconstructed densities and velocities, fluxes...) defined in this way from ρ j+ 1 2 and u j . The first observation, stated in Lemma 1.2.5, is that the reconstructed densities ρ ± j and velocities u ±

j+ 1 2
are second order approximations of ρ(x j ) and u(x j+ 1 2 ), respectively.

Lemma 1.2.5. The following equalities hold :

ρ + j = ρ(x j ) + O(δx 2 ), ∀j ∈ 1, J -1 , ρ - j = ρ(x j ) + O(δx 2 ), ∀j ∈ 2, J , (1.10) u + j+ 1 2 = u(x j+ 1 2 ) + O(δx 2 ), ∀j ∈ 1, J -1 , u - j+ 1 2 = u(x j+ 1 2 ) + O(δx 2 ), ∀j ∈ 2, J . (1.11)
Proof. We first prove that

s j+ 1 2 = ρ x j+ 1 2 + O δx . (1.12)
Indeed, we clearly have

ρ j+ 1 2 -ρ j-1 2 δx j = ρ x j+ 1 2 + O(δx), and 
ρ j+ 3 2 -ρ j+ 1 2 δx j+1 = ρ x j+ 1 2 + O(δx), so that ρ j+ 3 2 -ρ j+ 1 2 δx j+1 δx j ρ j+ 1 2 -ρ j-1 2 = 1 + O δx .
Since Φ(1) = 1 and r → Φ(r) admits left and right derivatives at the point r = 1 (cf. assumption (1.4)), we get

Φ ρ j+ 3 2 -ρ j+ 1 2 δx j+1 δx j ρ j+ 1 2 -ρ j-1 2 = 1 + O δx .
This last equality together with the definition of s j+ 1 2

s j+ 1 2 = ρ j+ 1 2 -ρ j-1 2 δx j Φ ρ j+ 3 2 -ρ j+ 1 2 δx j+1 δx j ρ j+ 1 2 -ρ j-1 2 ,
proves (1.12). Next, from (1.12) and the definition of ρ ± j we readily find, for all j ∈ 1, J ,

ρ - j+1 = ρ j+ 1 2 + δx j+ 1 2 2 ρ x j+ 1 2 + O δx 2 , ρ + j = ρ j+ 1 2 - δx j+ 1 2 2 ρ x j+ 1 2 + O δx 2 .
The conclusion is then obtained using the following identities, direct consequences of the Taylor-Young expansion,

ρ(x j+1 ) = ρ j+ 1 2 + δx j+ 1 2 2 ρ x j+ 1 2 + O δx 2 and ρ(x j ) = ρ j+ 1 2 - δx j+ 1 2 2 ρ x j+ 1 2 + O δx 2 .
The equalities for u ± j+ 1 2 can be proved by following the same lines.

With Lemma 1.2.5 at hand, we can now prove that the approximation of the fluxes can reach second order accuracy in space. Concerning the momentum flux, since the pressure is centered we focus on the convective part G M L j+ 1 2 . We can prove the following result. Proposition 1.2.6. The following equalities hold :

F M L j = ρ(x j )u(x j ) + O(δx 2 ).
(1.13)

G M L j+ 1 2 = ρ(x j+ 1 2 )u(x j+ 1 2 ) 2 + O(δx 2 ) (1.14)
Proof. By using [START_REF] Berger | Analysis of slope limiters on irregular grids[END_REF], namely F + (ρ, u) + F -(ρ, u) = ρu, we start by rewriting the mass flux as follows

F M L j = ρ + j + ρ - j 2 u j + F |•| ρ - j , u j -F |•| ρ + j , u j 2 ,
where the function

F |•| is defined by F |•| (ρ, u) = F + (ρ, u) -F -(ρ, u) 0.
Owing to (1.10), we readily find that

ρ + j + ρ - j 2 u j = ρ(x j )u j + O(δx 2 ). Furthermore, since the function (ρ, u) → F |•| (ρ, u) is of class C 1 (see [9, Lemma 3.3]), we have F |•| ρ ± j , u j = F |•| ρ(x j ), u j + O(δx 2
). Thus, we find

F |•| ρ - j , u j -F |•| ρ + j , u j 2 = O(δx 2 )
and (1.13) is proved. We turn to momentum flux. By using (1.11), and bearing in mind definition (1.5) of G M L j+ 1 2 , we first observe that

G M L j+ 1 2 = u x j+ 1 2 F M L,+ j + F M L,+ j+1 2 + F M L,- j + F M L,- j+1 2 + O(δx 2 ), = u x j+ 1 2 F M L j + F M L j+1 2 + O(δx 2 ).
We then use (1.13) to find

G M L j+ 1 2 = u x j+ 1 2 ρ(x j )u(x j ) + ρ(x j+1 )u(x j+1 ) 2 + O(δx 2 ).
The conclusion (1.14) is then obtained since we have

ρ(x j )u(x j ) + ρ(x j+1 )u(x j+1 ) 2 = ρ(x j+ 1 2 )u(x j+ 1 2 ) + O(δx 2 ).
The second order accuracy can equally be reached with respect to the time variable, by using the Runge-Kutta discretization (RK2) for approximating the time derivative. Note that this approach may lead to further restriction on the time step in order to preserve the positivity of the density.

Higher dimensions on MAC grids

As far as we restrict to Cartesian grids, our approach can be easily extended to higher dimensions, by using the principles of mac grids. Let us explain how it works in dimension two. The computational domain is the square

Ω = [a x , b x ] × [a y , b y ] ⊂ R 2 ,
and we thus aim at writing the scheme for the PDE system

∂ t    ρ ρu ρv    + ∂ x    ρu ρu 2 + p(ρ) ρuv    + ∂ y    ρv ρvu ρv 2 + p(ρ)    = 0.
We define the meshes as follows :

• The primal mesh is defined by the points

a x = x 1 < x 2 < ... < x i-1 < x i < x i+1 < ... < x M < x M +1 = b x ,
and a y = y 1 < y 2 < ... < y j-1 < y j < y j+1 < ... < y N < y N +1 = b y .

• Then we define the midpoints ] and [y j-1 2 , y j+ 1 2 ] respectively.

x i+ 1 2 = x i + x i+1 2 , ∀i ∈ 1, M ,
According to the pioneering approach for incompressible flows in [START_REF] Harlow | Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[END_REF], we store the discrete densities, the horizontal and the vertical velocities at different locations, see Fig. 1.4 :

• the density ρ is evaluated at the centers of the primal cells : we are dealing with the numerical unknowns ρ i+ 1 2 ,j+ 1 2 ,

• the horizontal velocity u is evaluated at the centers of the cells

[x i-1 2 , x i+ 1 2
] × [y j , y j+1 ] : the numerical unknowns thus reads u i,j+ 1 2 • the vertical velocity v is evaluated at the centers of the cells [x i , x i+1 ] × [y j-1 2 , y j+ 1 2 ] : the numerical unknowns thus reads v i+ 1 2 ,j . As in 1d, we need an approximation of ρ at the edges of the primal mesh, The first order scheme is a direct extension of the one proposed in [START_REF] Berthelin | Multifluid flows : a kinetic approach[END_REF] to the 2d framework.

ρ i,j+ 1 2 = δx i+ 1 2 ρ i+ 1 2 ,j+ 1 2 + δx i-1 2 ρ i-1 2 ,j+ 1 2 2δx i and ρ i+ 1 2 ,j = δy j+ 1 2 ρ i+ 1 2 ,j+ 1 2 + δy j-1 2 ρ i+ 1 2 ,j-1 2 2δy j . ρ i+ 1 2 ,j+ 1 2 u i+1,j+ 1 2 × u i,j+ 1 2 × v i+ 1 2 ,j+1 × v i+ 1 2 ,j × i i + 1 2 i + 1 j j + 1 2 j + 1
First, the discrete densities ρ i+ 1 2 ,j+ 1 2 , i ∈ 1, M , j ∈ 1, N , are updated using the following explicit scheme are defined, for each value of j ∈ 1, N , as the 1d fluxes, using the values of the horizontal velocity u i,j+ 1 2 to upwind the density in the horizontal direction

ρ i+ 1 2 ,j+ 1 2 -ρ i+ 1 2 ,j+ 1 2 δt + F x i+1,j+ 1 2 -F x i,j+ 1 2 δx i+ 1 2 + F y i+ 1 2 ,j+1 -F y i+ 1 2 ,j δy j+ 1 2 = 0.
F x i,j+ 1 2 = F x,+ i,j+ 1 2 + F x,- i,j+ 1 2 , ∀(i, j) ∈ 2, M × 1, N , with F x,+ i,j+ 1 2 = F + (ρ i-1 2 ,j+ 1 2 , u i,j+ 1 2 ) and F x,- i,j+ 1 2 = F -(ρ i+ 1 2 ,j+ 1 2 , u i,j+ 1 2
).

(1.15) Symmetrically, the mass fluxes F y i+ 1 2 ,j in the y direction are defined using the values of the vertical velocity v i+ 1 2 ,j to upwind the density in the vertical direction

F y i+ 1 2 ,j = F y,+ i+ 1 2 ,j + F y,- i+ 1 2 ,j , ∀(i, j) ∈ 1, M × 2, N , with F y,+ i+ 1 2 ,j = F + (ρ i+ 1 2 ,j-1 2 , v i+ 1 2 ,j ) and F y,- i+ 1 2 ,j = F -(ρ i+ 1 2 ,j+ 1 2 , v i+ 1 2 ,j ).
For boundary values, we use here zero fluxes : Next, the horizontal velocities u i,j+ 1 2 , i ∈ 2, M , j ∈ 1, N are updated with the following scheme

F x 1,j+ 1 2 = 0 = F x M +1,j+ 1 2 and F y i+ 1 2 ,1 = 0 = F y i+ 1 2 ,N +1 . ρ i+ 1 2 ,j+ 1 2 × F x i+1,j+ 1 2 F x i,j+ 1 2 F y i+ 1 2 ,j+1 F y i+ 1 2 ,j
ρ i,j+ 1 2 u i,j+ 1 2 -ρ i,j+ 1 2 u i,j+ 1 2 δt + G u,x i+ 1 2 ,j+ 1 2 -G u,x i-1 2 ,j+ 1 2 δx i + Π i+ 1 2 ,j+ 1 2 -Π i-1 2 ,j+ 1 2 δx i + G u,y i,j+1 -G u,y i,j δy j+ 1 2 = 0. (1.16)
We would define the fluxes G u,x i+ 1 2 ,j+ 1 2 , resp. G u,y i,j , by upwinding the horizontal momentum (ρu) i+ 1 2 ,j+ 1 2 , resp. (ρu) i,j , with respect to the value of the horizontal velocity u i+ 1 2 ,j+ 1 2 , resp. the vertical velocity v i,j . However, on staggered grids, none of these quantities are obviously defined. As in 1d, we have to bear in mind that, when discretizing the mass conservation equation, we already defined a discrete form of the horizontal, resp. vertical, mass flux based on an upwinding of the density (with respect to the horizontal, resp. vertical, velocity). Thus, the upwinding of horizontal momentum can be next obtained by upwinding the horizontal velocity with respect to the "positive" or "negative" part of the mass fluxes. However, horizontal, resp. vertical, mass fluxes are only defined at points (x i , y j+ 1 2 ), resp. (x i+ 1 2 , y j ). The first step is thus to define the "positive" and "negative" parts of the horizontal, resp. vertical, mass flux at points (x i+ 1 2 , y j+ 1 2 ), resp. (x i , y j ). This is done by taking the following mean values

F x,± i+ 1 2 ,j+ 1 2 = 1 2 F x,± i,j+ 1 2 + F x,± i+1,j+ 1 2 and F y,± i,j = δx i+ 1 2 F y,± i+ 1 2 ,j + δx i-1 2 F y,± i-1 2 ,j 2δx i .
Next, for each j ∈ 1, N , the momentum fluxes F u,x i+ 1 2 ,j+ 1 2 are defined, as in 1d, by

G u,x i+ 1 2 ,j+ 1 2 = u i,j+ 1 2 F x,+ i+ 1 2 ,j+ 1 2 + u i+1,j+ 1 2 F x,- i+ 1 2 ,j+ 1 2 , ∀i ∈ 2, M -1 . and Π i+ 1 2 ,j+ 1 2 = p(ρ i+ 1 2 ,j+ 1 2 ), ∀i ∈ 2, M -1 .
For boundary fluxes, as in 1d, we use slightly different definitions

G u,x 3 2 ,j+ 1 2 = u 2,j+ 1 2 2 F x,- 2,j+ 1 2
, and

G u,x M + 1 2 ,j+ 1 2 = u M,j+ 1 2 2 F x,+ M,j+ 1 2 .
The fluxes G u,y i,j , for any (i, j) ∈ 2, M × 2, N are defined by

G u,y i,j = u i,j-1 2 F y,+ i,j + u i,j+ 1 2 F y,- i,j .
For the boundary values, we set G u,y i,1 = 0 and G u,y i,N +1 = 0 for all j ∈ 2, N . Fig. 1.6 illustrate this construction by putting forward the mass fluxes used in the definition of the momentum flux G u,x i+ 1 2 ,j+ 1 2 and G u,y i,j .

Finally, symmetrically, the vertical velocity v i+ 1 2 ,j , i ∈ 1, M , j ∈ 2, N is updated with the following scheme

ρ i+ 1 2 ,j v i+ 1 2 ,j -ρ i+ 1 2 ,j v i+ 1 2 ,j δt + G v,x i+1,j -G v,x i,j δx i+ 1 2 + G v,y i+ 1 2 ,j+ 1 2 -G v,y i+ 1 2 ,j-1 2 δy j + Π i+ 1 2 ,j+ 1 2 -Π i+ 1 2 ,j-1 2 δy j = 0.
(1.17)

The momentum fluxes G v,x and G v,y are defined like G u,x and G u,y by inverting the roles played by u and v, by x and y, and by i and j. It can be shown that under a CFL condition -which can be readily deduced from the 1d statement -the positivity of ρ is preserved. Similarly, strengthened assumptions can be identified to guaranty that the decay of the global entropy under suitable stability constraints is still valid on mac meshes, see [START_REF] Berthelin | Consistency analysis of a 1D finite volume scheme for barotropic Euler models[END_REF].

u i,j+ 1 2 × F x i,j+ 1 2 F x i+1,j+ 1 2 G u,x i+ 1 2 ,j+ 1 2 (a) Flux G u,x i+ 1 2 ,j+ 1 2 F y i-1 2 ,j G u,y i,j F y i+ 1 2 ,j u i,j+ 1 2 × (b) Flux G u,y i,j
We now turn to explain how to extend the second order scheme to the 2d framework. We apply the 1d muscl method to the rows or the columns of the physical variables.

• To define the upgraded mass flux F x,M L we use a muscl reconstruction only on the columns of the density ρ :

F x,M L i,j+ 1 2 = F + (ρ - i,j+ 1 2 , u i,j+ 1 2 ) + F -(ρ + i,j+ 1 2 , u i,j+ 1 2
).

• To define the upgraded mass flux F ρ,y,M L we use a muscl reconstruction only on the rows of the density ρ.

With this new definition of the mass flux F x,M L and F y,M L we define the new convective part of the momentum flux G u,x,M L and G u,y,M L :

• To define the upgraded momentum flux G u,x,M L + p we use a muscl reconstruction only on the columns of the velocity u in the convection flux :

G u,x,M L i+ 1 2 ,j+ 1 2 = u - i+ 1 2 ,j+ 1 2 2 F x,M L,+ i+1,j+ 1 2 + F x,M L,+ i,j+ 1 2 + u + i+ 1 2 ,j+ 1 2 2 F x,M L,- i+1,j+ 1 2 + F x,M L,- i,j+ 1 2
• To define the upgraded mass flux G u,y,M L we use a muscl reconstruction only on the rows of the velocity u.

The stability and consistency analysis performed in 1d generalize directly to higher dimensions on mac meshes.

Numerical simulations 1.4.1 Accuracy study using a 1D manufactured solution

In order to numerically validate the abilities of the muscl-like approach, we compute the solutions of the 1d problem

∂ t ρ ρu + ∂ x ρu ρu 2 + p(ρ) = 0 f ,
where the force field (x, t) → f (x, t) is tailored so that the solution reads

     ρ(x, t) = ρ 0 (x)e t (x + e t (1 -x)) 2 , u(x, t) = x(1 -x).
In what follows we simply choose ρ 0 (x) = 1. The solution is smooth and we can expect a full benefit of the muscl approach. The computational domain is the slab [0, 1] and we perform the simulation for t ∈ [0, 0.5]. In the definition of the fluxes, we make use of the SuperBee flux limiter (see example 1.2.1 for the definition).

We first consider the case where the pressure is defined by the perfect gas state law : p(ρ) = ρ 2 . We give in Table 1.1 the L 2 -norm of the error between the discrete and exact solutions for several numbers J of grid points and δt = 10 -5 . The small value of the time step ensures that the stability condition is satisfied for all the considered grids. We use here the first order Euler scheme in time and compare the solution produced by the first order scheme of [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF] and the solution produced by the proposed muscl extension. We clearly observe the gain of accuracy with the muscl scheme. Moreover, it reaches the second order for both the density and the velocity, while, as expected, the scheme of [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF] approaches the solution at first order only.

First order scheme

Second order muscl scheme Density Velocity Density Velocity J Error Rate Error Rate Error Rate Error Rate 70 5.2e -3 -4.27e -3 -7.31e -5 -7.90e -5 -80 4.6e -3 0.96 3.77e -3 0.93 5.60e -5 2.00 6.17e -5 1.85 90 4.1e -3 0.97 3.38e -3 0.94 4.40e -5 2.05 4.93e -5 1.90 100 3.7e -3 0.97 3.06e -3 0.95 3.56e -5 2.01 4.01e -5 1.96 110 3.4e -3 0.97 2.79e -3 0.95 2.93e -5 2.04 3.36e -5 1.86 Table 1.1 -L 2 -norm of the error between approximate and exact solutions for different numbers of grid points. Computations done with δt = 10 -5 on uniform grids using the perfect gas state law.

It is also worth discussing the interest of replacing the Euler scheme by the RK2 method for the time discretization. Hence, for the given mesh size J = 800, and using the muscl version of the scheme for the space discretization, we make the time step vary δt ∈ {10 -4 ; 5× 10 -5 ; 2.5 × 10 -5 ; 1.25 × 10 -5 }. Results are displayed in Table 1.2 : we observe a convergence of order 1 with the Euler scheme, while with RK2 the error due to the time discretization is hidden by the error in space. There is a clear advantage in using the RK2 scheme. We next apply the method on non-uniform meshes for the same tailored solution. We build a sequence of non-uniform nested meshes as follows : we randomly pick J = 100 points that define the coarser non-uniform mesh (max δx j+ 1 2 / min δx j+ 1 2 = 4.18) ; then, we split each cell in its middle to obtain the next finer mesh -still non-uniform -with two times as many as grid points and so on. Table 1.3 shows the L 2 error norms for δt = 1e -6 and four nested meshes. The convergence rate is the same on uniform and non-uniform meshes, in agreement with Lemma 1.2.5.

First order scheme

Second We finally check the ability of the scheme in dealing with a more complex pressure law.

The tailored solution is still the same, but now we set p(ρ) = (γ-1) 2 4γ ρ ρ * -ρ γ . This is a particular case of the Van der Waals state law, it arises in the modeling of dusty gases for instance. We point out that this pressure law does not lead to any difficulty in the design of the scheme and its consistency properties apply equally well to this case. Tests are performed with γ = 0.6 and ρ * = 3. Note that admissible densities should remain in the domain 0 ≤ ρ < ρ * ; this issue is further discussed in Section 1.4.2 below. Table 1.4 shows the L 2 -error norms : for the smooth solution considered here, the convergence rate is still second order.

First order scheme

Second order muscl scheme Density Velocity Density Velocity J

Error Rate Error Rate Error Rate Error Rate 100 1.6e -3 -8.2e -4 -2.1e -4 -4.0e -5 -200 8.0e -4 0.99 4.2e -4 0.97 5.5e -5 1.94 1.0e -5 1.95 400 4.0e -4 0.98 2.1e -4 0.98 1.4e -5 1.98 2.5e -6 2.03 800 2.0e -4 0.99 1.1e -4 0.99 3.9e -6 1.83 8.0e -7 1.64 Table 1.4 -L 2 -norm of the error between approximate and exact solutions for different numbers of grid points. Computation done with δt = 5e -6 on uniform meshes using the Van der Waals state law.

Simulation of 1D Riemann problems

Perfect gases pressure law

We now study the behavior of the scheme with discontinuous solutions. We consider Riemann problems on a computational domain [a, b] : the initial data is piecewise constant with a jump located at x = 0 and we denote by (ρ l , u l ) and (ρ r , u r ) the left and right states for the density/velocity pair, respectively. The pressure law is defined by p(ρ) = (γ-1) 2 4γ ρ γ with γ = 1.6. The limiter we use is the MinMod one and the others data are given in Table 1.5. The corresponding Riemann solutions develop two rarefaction waves, two shocks and a rarefaction wave followed by a shock wave respectively. The results obtained at time T = 0.5 using the first order scheme and the muscl-RK one with J = 200 and δt = 1e not smooth and the consistency analysis does not apply. Nevertheless, we clearly see that using the muscl-like method provides more accurate results than the first order method. The convergence study of the different test cases is presented in Table 1.6 and we observe a first order convergence. Error Rate Error Rate 100 6.7e -3 -3.0e -3 -200 3.4e -3 0.97 1.5e -3 0.98 400 1.8e -3 0.97 7.8e -4 0.97 800 8.9e -4 0.98 3.9e -4 0.98 1600 4.5e -4 0.99 2.0e -2.3e -3 -200 3.2e -3 0.89 1.3e -3 0.89 400 1.7e -3 0.96 6.4e -4 0.96 800 8.3e -4 1.00 3.2e -4 1.00 1600 4.2e -4 1.00 1.6e -4 1.00 Table 1.6 -Riemann problems. L 1 -norm of the error at time T = 0.5 between approximate and exact solutions for different numbers of grid points. Computations done with the muscl-RK scheme with δt = 0.25 δx.

a b ρ l ρ r u l u r Test 1 -0.7 0.3 0.5 1 -0.5 -0.2 Test 2 -0.2 0.8 1 2 1 0.25 Test 3 -0.7 0.3 1 0.5 -0.5 -0.5 Table 1.

Van der Waals pressure law

As already said above, our method does not rely on the resolution of Riemann problems, and the numerical fluxes have a simple expression for very general pressure laws, while the scheme is entropy-decaying. For instance the scheme is still efficient for Van der Waals-like laws p(ρ) = (γ-1) 2 4γ ρ γ ρ * -ρ . Such a relation is intended to retain some packing effects that prevent the density to exceed the threshold ρ , see However the preservation of this constraint by the numerical unknown leads to a strengthened stability condition, see [START_REF] Berthelin | Multifluid flows : a kinetic approach[END_REF]Prop. 5]. For the muscl version of the scheme the stability condition takes the following form. Proposition 1.4.1 (Close-packing threshold). Suppose that the initial data satisfies ρ 0 j+ 1 2 ≤ ρ for all j ∈ 1, J and assume that the following CFL-like condition holds

δt δx j+ 1 2 λ + (ρ - j , u j ) + + λ -(ρ + j+1 , u j+1 ) - 1 2 1 - ρ j+ 1 2 ρ , ∀j ∈ 1, J .
Then ρ j+ 1

2

≤ ρ for all j ∈ 1, J and k ∈ R N .

Proof. We have

ρ j+ 1 2 = ρ j+ 1 2 + δt δx j+ 1 2 F -(ρ + j , u j ) -F + (ρ - j+1 , u j+1 ) + δt δx j+ 1 2 F + (ρ - j , u j ) -F -(ρ + j+1 , u j+1 ) ≤ ρ j+ 1 2 + δt δx j+ 1 2 F + (ρ - j , u j ) -F -(ρ + j+1 , u j+1 ) ≤ ρ j+ 1 2 + δt δx j+ 1 2 ρ - j λ + (ρ - j , u j ) + + ρ + j+1 λ -(ρ + j+1 , u j+1 ) - .
Let us assume ρ j+ 1 2 ≤ ρ for any j ; then ρ ± j ≤ 2ρ (see the proof of Proposition 1.2.3). Let us introduce

j+ 1 2 = 1 - ρ j+ 1 2 ρ .
We get

ρ j+ 1 2 ≤ ρ -ρ   j+ 1 2 - 2δt δx j+ 1 2 λ + (ρ - j , u j ) + + λ -(ρ + j+1 , u j+1 ) -   .
Finally, assuming

j+ 1 2 ≥ 2δt δx j+ 1 2 λ + (ρ - j , u j ) + + λ -(ρ + j+1 , u j+1 ) - we obtain ρ j+ 1 2
≤ ρ for any j.

As observed for the condition ensuring the positivity of the density, the CFL-like condition for the muscl scheme is twice more constrained than with the first order scheme. More important, this condition is much more demanding than the standard CFL condition since the right-hand side vanish when the discrete density become close to ρ . Numerical simulations confirm that such a strengthened condition is actually needed to prevent the density to exceed the threshold ρ when using the scheme proposed in this paper. To illustrate the difficulty, we go back to the numerical tests proposed in [START_REF] Berthelin | Multifluid flows : a kinetic approach[END_REF]Section 4.1]. We set γ = 2 and ρ = 1 and we perform 1d simulations of the Riemann problem defined by ρ l = ρ r = 1 3 and u l = u abs and u r = -u abs for different values of u abs ∈ {0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5} and different values of the time step δt. The larger the velocity u abs is, the closer to ρ the density ρ m in the intermediate state is. The simulations are performed up to the time T = 0.1 with J = 200 on the computational domain [-0.5, 0.5] with a discontinuity initially at x = 0. In Fig. 1.11 we show the solutions obtained with the different schemes : for the same numerical conditions δt and δx, the Lax-Friedrichs scheme produces much more numerical diffusion and the solution is poorly captured. In Fig. 1.12 we zoom on the left part of the density. For each values of u abs , we select the largest value of δt which yields an "admissible" result (in the sense that it remains oscillation-free at T = 0.1). In Fig. 1.13, we plot this selected δt as a function of 1 -ρm ρ : in a logarithm scale, we obtain a straight line with a slope close to 2, which is consistent with Proposition 1.4.1 since when ρ m becomes close to ρ , the characteristic speeds behave like 1 -ρm ρ -1

. Note, nevertheless, that the standard CFL is enough to preserve the bounds on the density when using a Godunov or a Lax-Friedrichs scheme. (This latter result uses crucially the convexity of the invariant domain of the PDE, see [17, Section 2.2.1 & Prop. 2.11], and it does not apply when the invariant regions are non-convex, see e.g. [START_REF] Chalons | Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling[END_REF].) However, the scheme based on the kinetic fluxes is far less diffusive than Lax-Friedrichs' method, so that it finally competes in terms of numerical effort for a given numerical accuracy.

Numerical simulations in 2D Falling water columns

We turn to 2d simulation, with a test-case inspired from [START_REF] Aguillon | Problèmes d'interfaces et couplages singuliers dans les systèmes hyperboliques : analyse et analyse numérique[END_REF]. We simulate three falling columns into a rectangular basin. The computational domain is the two-dimensional square [-1, 1] × [-1, 1]. We are using the dimensionless Shallow Water system which amounts to set p(ρ) = ρ 2 , without source terms. The PDE system is endowed with zero flux boundary conditions and the following initial data

     ρ(0, x, y) = 3 + 1 (x-0.5) 2 +(y-0.5) 2 <(0.15) 2 + 1 (x+0.5) 2 +(y+0.5) 2 <(0.15) 2 + 2 • 1 x 2 +y 2 <(0.2) 2 , u(0, x, y) = 0, v(0, x, y) = 0.
The simulation performed in [START_REF] Aguillon | Problèmes d'interfaces et couplages singuliers dans les systèmes hyperboliques : analyse et analyse numérique[END_REF] on a 512 × 512 Cartesian mesh is reproduced in Fig. 1.14 : it is based on the second order Nessayhu-Tadmor scheme [START_REF] Nessyahu | Non-oscillatory central differencing for hyperbolic conservation laws[END_REF], coupled to a specific reconstruction procedure which is intended to reduce the numerical diffusion and to capture shocks with an enhanced accuracy. The muscl scheme competes with such an approach, as it appears in Fig. 1.15 on the right (simulations have been performed with the MinMod limiter). Fig. 1.15 shows the advantages in using the muscl method compared to the first order scheme, which, for the same numerical parameters, loses the complex structures of the flow. In these simulations, the mesh is a 512 × 512 Cartesian mesh, the final time T = 1.035 and the time step is δt = 10 -4 . As already observed in [START_REF] Aguillon | Problèmes d'interfaces et couplages singuliers dans les systèmes hyperboliques : analyse et analyse numérique[END_REF], the simulation is quite sensitive to the time step : some oscillations might appear when δt is not small enough. For comparison purposes, we replot our result using an other color scale to compare it with the result in [START_REF] Llobell | High order CG schemes for KdV and Saint-Venant flows[END_REF] : the color bar is the same in Fig. 1.16 and Fig. 1.17. In this paper, a Spectral Element Method (SEM) is used and stablized with an entropy viscosity method (EVM), see [START_REF] Pasquetti | Stabilized spectral element approximation of the saint-venant system using the entropy viscosity technique[END_REF][START_REF] Pasquetti | Viscous stabilizations for high order approximations of saint-venant and boussinesq flows[END_REF] for more details ; and this test case is computed to show how the it allows to deal with the presence of dry-wet transitions and shocks. In Fig. 1.16, the left picture swhows the result we get using use a first order viscosity everywhere and a paramater that implies a O(h) diffusion term equivalent to the implicit one of the upwind scheme (ie (α, β) pairs (0.5, ∞) ) and the stabilization is strengthened in the right picture (ie (α, β) pairs (1, 3) ). The mesh is of size 100 × 100 and a polynomial approximation of degree 5 is used in each quadrangle, this yields to 255001 interpolation points in the domain whereas our scheme, used for Fig. 1.17, has 262144 degrees of freedom. In boths figures, the resulats are shown at final time T = 1.035 and δt = 10 -4 . Clearly, the result obtained with our first order scheme is smooth and closed to the one obtained with the SEM when adding a first order viscosity. The result obtained with the updated scheme -using the muscl procedure-recovers the correct solution (free of spurious oscillations) and is very closed to the one obtained with the EVM stabilization.

Forward facing step

This test case is inspired by the celebrated 2d Mach 3 wind tunnel with a step introduced in [START_REF] Woodward | The numerical simulation of two-dimensional fluid flow with strong shocks[END_REF]. The computational domain Ω is the L-shaped domain

Ω = Ω 0 \ Ω step , Ω 0 = [0, 3] × [0, 1], Ω step = [0.6, 3] × [0, 0.2].
The rectangle Ω 0 is discretized with a 30σ × 10σ uniform Cartesian grid (σ ∈ N * ). We take the step into account by removing the mesh points corresponding to the step Ω step at the right bottom part of the domain.

The equation of state of the fluid is p(ρ) = ρ and the initial data are given by ρ = 1 and u = (3, 0). On the top and bottom walls, we use reflection boundary conditions (ie zeros flux boundary conditions as described in the previous parts of the article). A Dirichlet boundary condition, ρ = 1 and u = (3, 0), makes the flow enter through the left boundary whereas a free boundary condition is used for the right section. The free boundary condition is implemented by assuming a priori that the outgoing flow is supersonic. The mass fluxes at the free boundary are thus defined using (1.15) but with an incoming part set to 0 ; that is, here, on the right boundary,

F x M +1,j+ 1 2 = F + (ρ M + 1 2 ,j+ 1 2 , u M +1,j+ 1 2 ).
The update of the velocity at the free boundary is performed using (1.16) and (1.17) which now involve momentum fluxes at the exterior the domain (here at the points (

x M + 3 2 , y j+ 1 2 )).
These ghost fluxes are defined using a constant extrapolation for the pressure and a linear extrapolation for the outgoing part of the mass fluxes ; that is here on the right boundary

x M + 3 2 , y j+ 1 2 (using a uniform mesh) u M +1,j+ 1 2 F x,+ M + 3 2 ,j+ 1 2 + p(ρ M + 1 2 ,j+ 1 2 ), with F x,+ M + 3 2 ,j+ 1 2 = 3 2 F x,+ M + 1 2 ,j+ 1 2 - 1 2 F x,+ M -1 2 ,j+ 1 2 .
Fig. 1.18 presents the results obtained with the first order scheme and the second order scheme (muscl-RK scheme) on a 900 × 300 grid (σ = 30) with time steps respectively defined by δt = 1/3000 and δt = 1/6000. We observe that the structures are sharper with the muscl scheme. Cutlines of the density along the lines y = 0.3 obtained using the second order scheme on different grids are plotted in Fig. 1.19. The results are in agreement with the literature [START_REF] Kheriji | Pressure correction staggered schemes for barotropic one-phase and two-phase flows[END_REF]. This work is concerned with the extension to the full Euler system of the scheme introduced in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF] for solving the barotropic Euler equations. This finite volume scheme is based on a staggered discretization and the numerical fluxes are defined in the spirit of kinetic schemes. The first difficulty consists in finding a suitable treatment of the energy equation while density and internal energy on the one hand, and velocity on the other hand, are naturally defined on dual locations. For this reason, we work on the equation for the internal energy, which thus needs a suitable treatment to handle correctly discontinuous solutions. The second difficulty relies on the treatment of contact discontinuities. We propose a first and a second-order version of the scheme, the latter being based on the muscl approach. We exhibit stability conditions that guaranty the positivity of the discrete densities and internal energies. Moreover, we can define discrete total energies which satisfy local conservation equations. We provide a set of numerical simulations to illustrate the behaviour of the scheme.

Introduction

This work is concerned with the simulation of the Euler system of gas dynamics

∂ t    ρ ρu ρE    + ∇ •    ρu ρ u 2 + p ρEu + pu    = 0. (2.1)
We start by restricting to the one-dimensional framework : the unknowns depend on the time and space variables (t, x) ∈ [0, ∞) × R. In (2.1), ρ, u, E and p stand for the mass density, the velocity, the total energy and the pressure respectively. The pressure is related to the independent unknowns (ρ, u, E) through an equation of state ; in what follows we set

E = u 2 /2 + e, p = (γ -1)ρe,
where γ > 1 is the adiabatic exponent. We wish to extend to (2.1) the scheme designed in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF] for the barotropic Euler equations. This scheme is characterized by the following two main features :

• first of all, it works on staggered grids, meaning that densities and velocities are stored on different grid points, • second of all, the fluxes are defined with a flavor of kinetic schemes [START_REF] Coron | Numerical passage from kinetic to fluid equations[END_REF][START_REF] Deshpande | Kinetic theory based new upwind methods for inviscid compressible flows[END_REF][START_REF] Deshpande | On the Maxwellian distribution, symmetric form and entropy conservation for the Euler equations[END_REF][START_REF] Kaniel | Approximation of the hydrodynamic equations by a transport process[END_REF][START_REF] Perthame | Second order Boltzmann schemes for compressible Euler equations in one and two space dimension[END_REF][START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. Consequently, the scheme differs in many aspects from standard approaches, for which we refer the reader e. g. to [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF][START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF]. In particular, due to the staggered discretization, the system is not treated "as a whole", but each equation are updated successively, which makes the numerical analysis completely different, see also [START_REF] Herbin | Staggered schemes for all speed flows[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF][START_REF] Therme | Schémas numériques pour la simulation de l'explosion[END_REF]. Next, the definition of the fluxes involves the characteristic speeds of the system, but, despite the "kinetic" motivation, their evaluation do not require to compute complicated integrals. They are defined by simple formula and they do not require additional computational cost. The scheme can be shown to preserve the positivity of the density and the entropy dissipation property under a suitable CFL condition [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF], it is thus consistent with the Euler system [START_REF] Berthelin | Consistency analysis of a 1D finite volume scheme for barotropic Euler models[END_REF]. The motivation of using staggered grids comes from the modeling of multifluid flows that involve additional constraints on the velocity fields [START_REF] Berthelin | Multifluid flows : a kinetic approach[END_REF] :dealing with colocalized unknowns might lead to numerical difficulties, and to the development of spurious instabilities, a difficulty which is well-known for low-Mach simulations, see [START_REF] Dellacherie | Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number[END_REF][START_REF] Dellacherie | The influence of cell geometry on the Godunov scheme applied to the linear wave equation[END_REF] and the references therein. A second-order version of the scheme, based on muscl reconstruction procedures [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[END_REF], has been introduced in Chapter 1, including a two-dimensional extension based on mac discretizations. When we turn to the full Euler system (2.1), the staggered approach induces a new difficulty since in the energy equation the total energy E involves quantities -the velocity and the internal energy -which are defined on different grids. To cope with this issue, it is tempting to work with the internal energy equation, namely

∂ t (ρe) + ∇ • (ρeu) = -p∇ • u, (2.2) 
instead of the evolution equation for ρE, since discrete densities, pressures, and internal energies are naturally stored at the same locations. Unfortunately, as it is well-known, this non conservative formulation is not equivalent to (2.1) when the solution presents discontinuities and schemes that use naively this formulation produce wrong solutions [START_REF] Hou | Why nonconservative schemes converge to wrong solutions : Error analysis[END_REF]. We refer the reader to [START_REF] Abgrall | A high-order nonconservative approach for hyperbolic equations in fluid dynamics[END_REF][START_REF] Karni | Multicomponent flow calculations by a consistent primitive algorithm[END_REF][START_REF] Karni | Hybrid multifluid algorithms[END_REF] for a thorough description of numerical difficulties and attempts to design a scheme that use the primitive variables (ρ, u, p) and non conservative formulations.

In what follows, we shall adapt the approach discussed in [START_REF] Herbin | Staggered schemes for all speed flows[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF] by plugging in the discrete version of (2.2) correction terms that account for the kinetic energy balance. The scheme introduced in [START_REF] Herbin | Staggered schemes for all speed flows[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF] can be shown : a) to be consistent with (a weak form of) the total energy equation as the space step δx goes to zero and b) to conserve the global discrete total energy. The purpose of the present work can be summarized as follows :

• to adapt the scheme of [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF] for dealing with (2.1),

• to analyse the properties of the scheme. In particular, we will discuss stability conditions so that the numerical densities and internal energies remain positive. Furthermore, we will establish local conservation relations satisfied by averaged total energies, which are thus strengthened version of the properties a) and b),

• to include reconstructed quantities in the definition of the fluxes, in the spirit of muscl schemes [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[END_REF], in order to improve the accuracy of the scheme. It leads to refine the analysis of the stability conditions.

The first order version of the scheme is introduced and analysed in Section 2.2. The muscl extension is presented in Section 2.3. Finally we provide a set of numerical simulations in Section 2.4.

A first order scheme on staggered grids

Let (x j ) j be a set of distincts points, that define a subdivision of the 1d computational domain with cells C j+ 1 2 = [x j , x j+1 ]. We denote the size of the cells by δx j+

1 2 = x j+1 -x j . The cell centers x j+ 1 2 = (x j + x j+1 )/2 define the dual mesh ; we set C j = [x j-1 2 , x j+ 1 2
] for the dual cells, with size δx j = (δx j-

1 2 + δx j+ 1 2 )/2. The discrete densities ρ j+ 1 2
and internal energies e j+ 1 2 are stored at the centers x j+ 1 2 whereas the velocities u j are located at the edges x j . We refer the reader to Fig. 2.1 for an illustration of this discretization. The time discretization is explicit and we use the convention that, with q the evaluation of a certain quantity at time t, q stands for its update at time t+δt. To update the numerical unknowns, we proceed as follows : is updated using the discrete mass balance equation

x 1 • u 1 x 3 2 | ρ 3 2 δx 1 x 2 • u 2 δx 3 2 ... ... x j-1 2 | ρ j-1 2 δx j x j • u j δx j+ 1 2 x j+ 1 2 | ρ j+ 1 2 x j+1 • u j+1 ... ... x J+1 • u J+1
ρ j+ 1 2 -ρ j+ 1 2 δt + F j+1 -F j δx j+ 1 2 = 0.
It corresponds to the discrete version of the mass conservation equation integrated over the domain [t, t + δt] × C j+ 1 2 . The definition of the mass fluxes relies on upwinding principles. They are defined by

F j = F + j + F - j where F + j = F + (ρ j-1 2 , u j ), F - j = F -(ρ j+ 1 2
, u j ). Note that we use the velocity u j stored at the interface x j , where we also define an averaged sound speed c(e j ) with e j = (e j- 1 2

+ e j+ 1 2 )/2.
The definition of the flux functions F ± is naturally given by the definition 0.0.2 introduced in the Introduction Chapter 0.

The velocity u j is then updated using the discrete momentum balance equation

ρ j u j -ρ j u j δt + G j+ 1 2 -G j-1 2 δx j + Π j+ 1 2 -Π j-1 2 δx j = 0. (2.
3)

The momentum flux G j+ 1 2 and the pressure Π j+ 1 2 are defined by

G j+ 1 2 = u j F + j+ 1 2 + u j+1 F - j+ 1 2 and Π j+ 1 2 = (γ -1)ρ j+ 1 2 e j+ 1 2
.

They correspond respectively to the discretization of the convection term and of the pressure gradient in the second equation in (2.1). The quantities ρ j and F ± and F ± j , F ± j+1 :

ρ j = δx j+ 1 2 ρ j+ 1 2 + δx j-1 2 ρ j-1 2 2δx j and F ± j+ 1 2 = F ± j+1 + F ± j 2 . (2.4)
It is remarkable that a conservation relation holds with these dual quantities

ρ j -ρ j + δt δx j (F j+ 1 2 -F j-1 2 ) = 0 (2.5)
where, of course,

F j+ 1 2 = F + j+ 1 2 + F - j+ 1 2 .
The internal energy e j+ 1 2 is updated using the following discrete equation

ρ j+ 1 2 e j+ 1 2 -ρ j+ 1 2 e j+ 1 2 δt + E j+1 -E j δx j+ 1 2 + Π j+ 1 2 u j+1 -u j δx j+ 1 2 = S j+ 1 2 . (2.6)
The left hand side corresponds to the discretization of (2.2), where the internal energy flux E j is given by

E j = e j-1 2 F + j + e j+ 1 2 F - j . (2.7)
This formula still corresponds to the upwinding principle associated to the transport of ρe with velocity u, according to the definition of the mass fluxes. Note that the discretization of the non conservative term p∂ x u uses the velocity field u, just updated in the previous step. Following [START_REF] Herbin | Staggered schemes for all speed flows[END_REF], the right hand side S j+ 1 2 is designed to account for the remainder term that appears in the discrete kinetic energy balance ; it does not vanish when δx goes to zero, precisely because it is intended to capture the correct behavior at discontinuities. To be more specific, the kinetic energy balance is obtained by multiplying (2.3) by u j . We find, see [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF][START_REF] Herbin | Staggered schemes for all speed flows[END_REF] :

1 2

ρ j u 2 j -ρ j u 2 j δt + K j+ 1 2 -K j-1 2 δx j + Π j+ 1 2 -Π j-1 2 δx j u j = -R j ,
where the kinetic energy flux is given by

K j+ 1 2 = u 2 j 2 F + j+ 1 2 + u 2 j+1 2 F - j+ 1 2 (2.8)
and the remainder reads

R j = 1 2δt ρ j (u j -u j ) 2 + 1 δx j (u j -u j-1 ) 2 2 F + j-1 2 - (u j+1 -u j ) 2 2 F - j+ 1 2 + 1 δx j (u j -u j )(u j -u j-1 )F + j-1 2 + 1 δx j (u j -u j )(u j+1 -u j )F - j+ 1 2 .
(2.9)

It motivates to define the source term for (2.6) as follows

S j+ 1 2 = δx j+1 R j+1 + δx j R j 2δx j+ 1 2 .
The scheme shares similarities with the 1d version of the scheme presented in [60, Section 4], see also [START_REF] Therme | Schémas numériques pour la simulation de l'explosion[END_REF]Chapter 2]. However, they differ by two points :

• firstly, the mass fluxes in [START_REF] Herbin | Staggered schemes for all speed flows[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF][START_REF] Therme | Schémas numériques pour la simulation de l'explosion[END_REF] are upwinded with respect to the material velocity (in other words, it corresponds to the choice F ± (ρ, u) = ±ρ[u] ± , obtained by using the degenerate equilibrium function M (ρ, c, u, ξ) = ρδ(ξ = u)). The mass flux based on Kaniel's equilibrium introduces a bit of numerical diffusion [9, Appendix B] which prevents the occurence of spurious oscillations when the material velocity vanishes, see [59, Section 6.1.1] and [START_REF] Therme | Schémas numériques pour la simulation de l'explosion[END_REF]Section 2.3.5] where an artificial viscosity is added to damp these oscillations.

• secondly, the organization of the time steppings are different : even if both schemes are explicit, the variables are not updated in the same order. We solve the discrete equations in the order ρ → u → e, as in [START_REF] Abgrall | A high-order nonconservative approach for hyperbolic equations in fluid dynamics[END_REF], whereas [START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF] proceeds according to ρ → e → u. In particular, here the corrective term S j+ 1

Stability conditions

We now turn to the study of the stability conditions which ensure the positivity of the density and the internal energy. We remind the reader the fundamental Lemma given in the introduction, that will be usefull in this Section : For all u ∈ R, for all ρ 0 and for all c 0, the fluxes F ± satisfy the following inequalities : 

0 F + (ρ, u) ρ[λ + (c, u)] + and -ρ[λ -(c, u)] -F -(ρ, u) 0. ( 2 
[u j+1 ] + + c(e j+ 3 2 ) + c(e j+ 1 2 ) √ 2 + [u j ] -+ c(e j+ 1 2 ) + c(e j-1 2 ) √ 2 1 γ , (2.11) δt δx j+ 1 2 c(e j+ 1 2 +k ) (γ -1) 2 √ 2 , ∀k ∈ {-1, 0, 1}, (2.12 
)

then e j+ 1 2 0 and ρ j+ 1 2 0.
Roughly speaking, the stability condition has the expected form of a constraint governed by the speed |u| + c(e). However, in contrast to what happened for the isentropic case [9, Proposition 3.7], we observe that the expression of the constraint involves additional factors depending on the adiabatic exponent γ. This has to be compared to [60, eq. ( 39)].

Proof. We assume that e j+ 1 2 0, ρ j+ 1 2 0 and that (2.11) and (2.12) holds for all j. We start by observing that [λ ± (e, u)]

± [u] ± + c(e), (2.13) √ 2 c(e j ) c(e j-1 2 ) + c(e j+ 1 2
).

(2.14)

Positivity of the density. As proved in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF], the positivity of ρ j+ 1 2 comes from the inequality

δt δx j+ 1 2 [λ + (e j+1 , u j+1 )] + + [λ -(e j , u j )] - 1.
It is directly implied by (2.11) since γ > 1 and (2.13) holds.

Positivity of the internal energy. We rewrite the terms (-1) i Π j+ 1 2 u j+i , i ∈ {0, 1}, which are involved in (2.6), by making the discrete time derivative (u j+i -u j+i ) appear. Then, we make use of the Young inequality as follows

(-1) i Π j+ 1 2 u j+i = (-1) i (γ -1) ρ j+ 1 2 e j+ 1 2 (u j+i -u j+i ) + ρ j+ 1 2 e j+ 1 2 u j+i -ρ j+ 1 2 c(e j+ 1 2 ) 2 √ 2γ (u j+i -u j+i ) 2 + (γ -1)e j+ 1 2 c(e j+ 1 2 ) √ 2 -(-1) i u j+i .
Next, we write ρ j+ 1 2 e j+ 1 2 T 0 + T 0 1 + T 1 1 where :

T 0 = ρ j+ 1 2 e j+ 1 2   1 - δt δx j+ 1 2 (γ -1) 2 c(e j+ 1 2 ) √ 2 -u j + u j+1   -δt E j+1 -E j δx j+ 1 2 , T i 1 = δt 2 δx j+i δx j+ 1 2 R j+i - δt δx j+ 1 2 c(e j+ 1 2 ) 2 √ 2γ ρ j+ 1 2 (u j+i -u j+i ) 2 .
In order to guarantee that e j+ 1 2 is non negative it is sufficient to ensure that these three terms are non negative. This holds under the assumptions (2.11) and (2.12).

Indeed, using the definition of the flux E j and owing to equation (2.10), we obtain

T 0 ρ j+ 1 2 e j+ 1 2   1 - δt δx j+ 1 2 (γ -1) [u j ] -+ c(e j+ 1 2 ) √ 2 + [u j+1 ] + + c(e j+ 1 2 ) √ 2   - δt δx j+ 1 2 ρ j+ 1 2 e j+ 1 2 [λ + (e j+1 , u j+1 )] + + [λ -(e j , u j )] -
where, due to (2.11), the right hand side is non negative by virtue of (2.13) and (2.14) .

Next, we turn to T i 1 . Using twice the Young inequality and bearing in mind the definition of ρ j , we observe that δt 2

δx j+i δx j+ 1 2 R j+i δx j+i 4δx j+ 1 2 (u j+i -u j+i ) 2 ρ j+i - δt δx j+i (F + j+i+ 1 2 -F - j+i-1 2
) .

Hence, we have

T i 1 δx j+i 4δx j+ 1 2 (u j+i -u j+i ) 2 ρ j+i - δt δx j+i (F + j+i+ 1 2 -F - j+i-1 2 ) - δt γ 2 √ 2 ρ j+ 1 2 c(e j+ 1 2 ) δx j+i .
Coming back to (2.4), we write

T i 1 (u j+i -u j+i ) 2 4δx j+ 1 2 T i,0 2 + T i,1 2
where, for k = 0, 1,

T i,k 2 = δx j+i+k-1 2 2 ρ j+i+k-1 2 -δt F + j+i+k -F - j+i+k-1 2 - δt γ 2 √ 2 ρ j+i+k-1 2 c(e j+ 1 2
).

Note that a non negative term has been added to obtain a symmetric formulation in the above inequality. Due to equation (2.10) and (2.11) we get

F + j+i+k -F - j+i+k-1 δx j+i+k-1 2 γδt ρ j+i+k-1 2 ,
and this allows us to write

T i,k 2 δx j+i+k-1 2 2γ ρ j+i+k-1 2   γ -1 - δt δx j+i+k-1 2 4 √ 2 c(e j+ 1 2 )   .
We conclude by observing that this term is non negative by virtue of (2.12).

Numerical diffusion, contact discontinuities

It is worth discussing the expression of the numerical diffusion produced by the scheme (see [9, Appendix B] for a similar discussion concerning the barotropic case). Let us introduce the following non negative quantity

C j =            -u j if u j -c(e j ), u 2 j + c(e j ) 2 4c(e j ) if |u j | < c(e j ),
u j if u j > c(e j ).
It is convenient to use following shorthand notations for averaged quantities

{q} j = q j-1 2 + q j+ 1 2 2 and {q} j+ 1 2 = q j + q j+1 2 .
Finally, we denote

F |•| = F + -F -,
which is a positive quantity. The mass and momentum fluxes can be cast as the sum of a centered term and a diffusion term

F j = {ρ} j u j - C j 2 ρ j+ 1 2 -ρ j-1 2 , G j+ 1 2 = {F} j+ 1 2 {u} j+ 1 2 - {F |•| } j+ 1 2 2 (u j+1 -u j ) .
Concerning the internal energy (2.7) and kinetic energy fluxes (2.8), they become :

E j = {ρe} j u j - C j 2 e j+ 1 2 ρ j+ 1 2 -e j-1 2 ρ j-1 2 , K j+ 1 2 = {F} j+ 1 2 { u 2 2 } j+ 1 2 - {F |•| } j+ 1 2 2 u 2 j+1 2 - u 2 j 2 .
As a by-product, it is remarkable that the scheme properly deals with 1d-contact discontinuities. Indeed, let us assume that the discrete velocity and pressure are constant in the neighborhood of x j+ 1 2 , which means that

u j-1 = u j = u j+1 = u j+2 = u and Π j-1 2 = Π j+ 1 2 = Π j+ 3 2 = Π holds.
Then the scheme guarantees that they remain constant in the neighborhood of this point at the next time : Π j+ 1 2 = Π and u j+1 = u = u j .

Conservation of total energy

As said in the introduction, it is far from clear that we can obtain a consistent approximation of the conservation equations (2.1) when the scheme is defined on the basis of the non conservative formulation (2.2). In order to analyze this issue, let us now introduce the averaged total energy at x j+ 1 2 and x j , defined by

E j+ 1 2 = e j+ 1 2 + 1 2 δx j ρ j u 2 j + δx j+1 ρ j+1 u 2 j+1 2δx j+ 1 2 ρ j+ 1 2
and

E j = u 2 j 2 + δx j+ 1 2 ρ j+ 1 2 e j+ 1 2 + δx j-1 2 ρ j-1 2 e j-1 2 2δx j ρ j .
We wish to obtain conservative equations for those quantities. To this end, we introduce the fluxes

T j = E j + K j+ 1 2 + K j-1 2 2 and T * j+ 1 2 = E j+1 + E j 2 + K j+ 1 2 - δx j+1 R j+1 -δx j R j 4
which use the quantities defined in (2.7), (2.8), (2.9).

We get the following consistent local balance equations for the total energy defined either on the primal mesh ρ j+ 1 2 E j+ 1 2 or the dual mesh ρ j E j :

ρ j+ 1 2 E j+ 1 2 -ρ j+ 1 2 E j+ 1 2 δt + T j+1 -T j δx j+ 1 2 + u j+1 {Π} j+1 -u j {Π} j δx j+ 1 2 = 0,
and

ρ j E j -ρ j E j δt + T * j+ 1 2 -T * j-1 2 δx j + Π j+ 1 2 {u} j+ 1 2 -Π j-1 2 {u} j-1 2 δx j = 0.

A MUSCL-scheme on staggered grids 2.3.1 Definition of the scheme

In this section we discuss how the muscl procedure can be adapted to the staggered framework. Concerning the discretization of the mass flux, we follow the procedure already introduced in the Chapter 1 in order to define the flux at the edge x j : we keep unchanged the velocity and the average internal energy which are both defined at the interface x j and we replace the Upwind value ρ j± . For the internal energy fluxes a first attempt would follow the same strategy by combining the upgraded mass fluxes F M L j with a muscl reconstructed internal energy e ± j . However, this approach produces a bad behaviour of the scheme when contact discontinuities occur, see [START_REF] Therme | Schémas numériques pour la simulation de l'explosion[END_REF] for further comments on this issue. Instead, we combine the upgraded mass fluxes F M L j with a muscl reconstruction of the internal energy defined from the ratio

(ρe) ± j ρ ± j
. Finally, we shall see that stability issues might require to strengthen the limitation procedure applied to define the reconstructed velocities u ± j+ 1 2 . Let us now define the scheme in more details. As what we have done previously, we introduce a piecewise linear reconstruction of the mass density ρ and of the density of internal energy ρ • e, defined, on each cell C j+ 1 2 , by

qj+ 1 2 (x) = q j+ 1 2 + s q j+ 1 2 (x -x j+ 1 2
), for any x ∈ C j+ 1 2 and with q = ρ or ρ • e.

(2.15)

The slope s q j+ 1 2 ∈ R is intended to be an approximation of the gradient of q on the cell C j+ 1 2 . It is obtained as a symmetric function of the two discrete derivatives computed using the values of q on the neighboring cells,

s q j+ 1 2 = Φ q j+ 1 2 -q j-1 2 δx j , q j+ 3 2 -q j+ 1 2 δx j+1 .
And a suitable adaptation of this formula needs to be introduced at the boundaries of the computational domain ; for instance we can simply make the scheme degenerate to first order next to the boundaries. The difference with Chapter 1 comes from the τ -limiter function Φ, for which we assume that for some > 0

τ = min j 2δx j δx j+ 1 2 ; 2δx j+1 δx j+ 1 2 ; 2 -. (2.16)
The role of this last restriction will appear in the stability analysis for proving the positivity of the internal energy. The one-dimensional analysis extends readily to higher dimension for Cartesian meshes when the discretization can be interpreted by means of the mac framework ; dealing with general meshes in higher dimension is much more intricate [START_REF] Berthon | Stability of the MUSCL schemes for the Euler equations[END_REF][START_REF] Berthon | Robustness of MUSCL schemes for 2D unstructured meshes[END_REF][START_REF] Clain | L ∞ stability of the MUSCL methods[END_REF][START_REF] Calgaro | Positivity-preserving schemes for Euler equations : sharp and practical CFL conditions[END_REF][START_REF] Perthame | On positivity preserving finite volume schemes for Euler equations[END_REF] and beyond the scope of the present paper. The affine reconstruction q of q in (2.15) allows us to define the two values q - j = qj-1 2 (x j ) and q + j = qj+ 1 2 (x j ) at the interface x j :

q - j = q j-1 2 + δx j-1 2 2 s q j-1 2 , q + j = q j+ 1 2 - δx j+ 1 2 2 s q j+ 1 2 ,
which will be used in the numerical fluxes. As discussed in 1.2.5 of Chapter 1, if x → q(x) is a smooth function, bounded with bounded derivatives, then we get

s q j+ 1 2 = q (x j+ 1 2 ) + O (δx) ,
which can be used to check that the scheme is formally second-order accurate.

The definition of the reconstruction for the velocity is slightly more involved. Indeed, the source term associated to the kinetic energy balance that appears in the internal energy equation induces further constraints in order to preserve the positivity of the internal energy, which might require to strengthen the limitation of the slope. Let us set

u j (x) = u j + w j (x -x j ), ∀x ∈ C j .
The slopes w j ∈ R are now defined by

w j = λ j Φ   u j -u j-1 δx j-1 2 , u j+1 -u j δx j+ 1 2   , 0 λ j 1.
(2.17)

Here λ j ∈ [0, 1] is a parameter that can be tuned so that the discrete internal energy remains positive, as discussed below. We bear in mind that λ j = 1 corresponds to the usual muscl reconstruction. The affine reconstruction u of the velocity u allows us to define, at the interfaces

x j+ 1 2 , u - j+ 1 2 = u j (x j+ 1 2
) and u +

j+ 1 2 = u j+1 (x j+ 1 2 ) : u - j+ 1 2 = u j + δx j+ 1 2 2 w j , u + j+ 1 2 = u j+1 - δx j+ 1 2 2 w j+1 .
(

Here, we bear in mind that x j and x j+1 are not necessarily the mid-points of C j and C j+1 respectively (see Fig. 2.1) ; this is the reason why the formula is not expressed by means of δx j+1 /2 and δx j /2.

Finally, we can now define the modified fluxes. We update the density by replacing the mass flux F j by the muscl-flux F M L j defined by

F M L j = F + (ρ - j , u j ) + F -(ρ + j , u j
), (with the corresponding adaptation at the boundary, for instance we set F M L = 0 at the endpoints of the computational domain if the zero-flux condition is imposed). We naturally set

F M L,+ j = F + (ρ - j , u j ) and F M L,- j = F -(ρ + j , u j ).
The convection part of the momentum flux is given by

G M L j+ 1 2 = u - j+ 1 2 F M L,+ j + F M L,+ j+1 2 + u + j+ 1 2 F M L,- j + F M L,- j+1 2 .
We set

G M L 3 2 = u + 3 2 2 F M L,- 2 and G M L J+ 1 2 = u - J+ 1 2 2 F M L,+ J
for the boundary values. The internal energy flux is given by

E M L j = (ρ • e) - j ρ - j F M L,+ j + (ρ • e) + j ρ + j F M L,- j .
We remind the reader that the muscl procedure is not applied directly to the internal energy but to the pressure : we evaluate (ρe) ± and then divide by ρ ± . This is motivated by the will to obtain a correct treatment of contact discontinuities. Since we wish to satisfy the criterion "if the pressure (and the velocity) is constant in the neigborhood of a point at a certain time, it will be kept constant at the following time", it is quite natural to work on the pressure and not the internal energy.

Stability analysis

We remind the reader the fundamental Lemma given in the introduction, that will be usefull in this Section : For all u ∈ R, for all ρ 0 and for all c 0, the fluxes F ± satisfy the following inequalities : 

0 F + (ρ, u) ρ[λ + (c, u)] + and -ρ[λ -(c, u)] -F -(ρ, u) 0. ( 2 
[u j+1 ] + + c(e j+ 3 2 ) + c(e j+ 1 2 ) √ 2 + [u j ] -+ c(e j+ 1 2 ) + c(e j-1 2 ) √ 2 1 γ + 2 , ( 2.20 
)

δt δx j+ 1 2 c(e j+ 1 2 +k ) γ -1 2 √ 2 • γ γ + 2 , ∀k ∈ {-1, 0, 1}. (2.21)
Then, we can find λ j ∈ [0, 1] such that e j+ 1 2 0 and ρ j+ 1 2 0.

Note that, in comparison to the first order scheme, see Proposition 2.2.1, the time step is more constrained by a factor 0 < γ γ+2 < 1. Proof. We assume that e j+ 1 2 0, ρ j+ 1 2 0 and that (2.20) and (2.21) holds for all j. We bear in mind inequalities (2.13) and (2.14). Then, we observe that

0 < ρ - j+1 , ρ + j < 2ρ j+ 1 2 and 0 < (ρe) - j+1 , (ρe) + j < 2ρ j+ 1 2 e j+ 1 2 . (2.22)
Positivity of the density. As shown in Chapter 1, the positivity of

ρ j+ 1 2 comes from the inequality δt δx j+ 1 2 [λ + (e j+1 , u j+1 )] + + [λ -(e j , u j )] - 1 2 .
Hence ρ j+ 1 2 0 is a direct consequence of (2.20), since γ > 1 and (2.13) holds.

In order to analyze the positivity of the internal energy, we go back to the evolution of the discrete kinetic energy, which now reads 1 2

ρ j u 2 j -ρ j u 2 j δt + K M L j+ 1 2 -K M L j-1 2 δx j + Π j+ 1 2 -Π j-1 2 δx j u j = -R M L j ,
where

K M L j+ 1 2 = |u - j+ 1 2 | 2 2 F M L,+ j+ 1 2 + |u + j+ 1 2 | 2 2 F M L,- j+ 1 2 .
The remainder term R M L j is given by

R M L j = R M L,1 j + R M L,2 j with R M L,1 j = 1 2δt ρ j (u j -u j ) 2 + 1 δx j   (u j -u - j-1 2 ) 2 2 F M L,+ j-1 2 - (u + j+ 1 2 -u j ) 2 2 F M L,- j+ 1 2   + 1 δx j (u j -u j ) (u j -u - j-1 2 )F M L,+ j-1 2 + (u + j+ 1 2 -u j )F M L,- j+ 1 2 , R M L,2 j = 1 δx j F M L,+ j+ 1 2 (u j -u - j+ 1 2 )   u j + u - j+ 1 2 2 -u j   - 1 δx j F M L,- j-1 2 (u + j-1 2 -u j )   u j - u j + u + j-1 2 2   .
Ii is worth noticing that if we do not apply the muscl procedure, R M L,1 j degenerate to R j and R M L,2 j = 0. The source term S M L j+ 1 2 is naturaly defined as

S M L j+ 1 2 = δx j+1 R M L j+1 + δx j R M L j 2δx j+ 1 2 .
Adding and substracting u j in the expression of R M L,2 j allows us to rewrite the remainder term as follows

δx j R M L j = δx j 2δt ρ j (u j -u j ) 2 + 1 2 (u j -u - j-1 2 ) 2 F M L,+ j-1 2 -(u + j+ 1 2 -u j ) 2 F M L,- j+ 1 2 -(u j -u - j+ 1 2 ) 2 F M L,+ j+ 1 2 + (u + j-1 2 -u j ) 2 F M L,- j-1 2 +(u j -u j ) (u j -u - j-1 2 )F M L,+ j-1 2 + (u + j+ 1 2 -u j )F M L,- j+ 1 2 -(u j -u - j+ 1 2 )F M L,+ j+ 1 2 -(u + j-1 2 -u j )F M L,- j-1 2 .
(2.23)

The end of the proof of Proposition 2.3.1 relies on the following claim.

Lemma 2.3.2. We can find λ j ∈ [0, 1] such that the following inequality holds :

δx j R M L j ≥ δx j 2δt (u j -u j ) 2 ρ j -3 δt δx j (F M L,+ j+ 1 2 -F M L,- j-1 2
) .

Positivity of the internal energy. T 0 + T 0 1 + T 1 1 where :

T 0 = ρ j+ 1 2 e j+ 1 2   1 - δt δx j+ 1 2 (γ -1) 2 c(e j+ 1 2 ) √ 2 -u j + u j+1   -δt E M L j+1 -E M L j δx j+ 1 2 , T i 1 = δt 2 δx j+i δx j+ 1 2 R M L j+i - δt δx j+ 1 2 c(e j+ 1 2 ) 2 √ 2γ ρ j+ 1 2 (u j+i -u j+i ) 2 .
Thus, to guarantee that e j+ 1 2 is non negative it is sufficient to ensure that these three terms are non negative. This holds under the assumptions (2.20) and (2.21).

Indeed, using the definition of the flux E M L j , owing to equation (2.19) and using (2.22), we obtain

T 0 ρ j+ 1 2 e j+ 1 2   1 - δt δx j+ 1 2 (γ -1) [u j ] -+ c(e j+ 1 2 ) √ 2 + [u j+1 ] + + c(e j+ 1 2 ) √ 2   -2 δt δx j+ 1 2 ρ j+ 1 2 e j+ 1 2 [λ + (e j+1 , u j+1 )] + + [λ -(e j , u j )] -
where, due to (2.20), the right hand side is non negative by virtue of (2.13) and (2.14).

Next, we turn to T i 1 . Owing to Lemma 2.3.2, we have δt 2

δx j δx j+ 1 2 R M L j ≥ δx j 4δx j+ 1 2 (u j -u j ) 2 ρ j -3 δt δx j (F M L,+ j+ 1 2 -F M L,- j-1 2
) .

Hence, we deduce

T i 1 δx j+i 4δx j+ 1 2 (u j+i -u j+i ) 2 ρ j+i -3 δt δx j+i (F M L,+ j+i+ 1 2 -F M L,- j+i-1 2 ) - δt γ 2 √ 2 ρ j+ 1 2 c(e j+ 1 2 ) δx j+i .
Coming back to (2.4), we write

T i 1 (u j+i -u j+i ) 2 4δx j+ 1 2 T i,0 2 + T i,1 2
where, for k = 0, 1,

T i,k 2 = δx j+i+k-1 2 2 ρ j+i+k-1 2 -3 F M L,+ j+i+k -F M L,- j+i+k-1 2 - δt γ 2 √ 2 ρ j+i+k-1 2 c(e j+ 1 2
).

Note that a non negative term has been added to obtain a symmetric formulation in the above inequality. Due to equation (2. [START_REF] Boyer | Inf-Sup Stability of the Discrete Duality Finite Volume method for the 2D Stokes problem[END_REF]) and (2.20), we get

F M L,+ j+i+k -F M L,- j+i+k-1 δx j+i+k-1 2 (γ + 2)δt ρ j+i+k-1 2 ,
and this allows us to write

T i,k 2 δx j+i+k-1 2 2 ρ j+i+k-1 2   1 - 3 γ + 2 - δt δx j+i+k-1 2 2 √ 2 γ c(e j+ 1 2 )   .
We conclude by observing that this term is non negative by virtue of (2.21).

Proof of Lemma 2.3.2. We go back to (2.23). For a given α j ≥ 0, that will be determined later on, we shall use the following Young inequalities

(u j -u j )(u j -u - j-1 2 )F M L,+ j-1 2 (u j -u j ) 2 2 (1 + α j )F M L,+ j-1 2 + (u j -u - j-1 2 ) 2 2(1 + α j ) F M L,+ j-1 2 and (u j -u j )(u + j+ 1 2 -u j )F M L,- j+ 1 2 - (u j -u j ) 2 2 (1 + α j )F M L,- j+ 1 2 - (u j -u + j+ 1 2 ) 2 2(1 + α j ) F M L,- j+ 1 2 .
Using (2.5), which still holds for the muscl version of the scheme, and the standard Young inequality for the last two terms in (2.23), we are led to

δx j R M L j δx j 2δt (u j -u j ) 2 ρ j - δt δx j F M L,+ j+ 1 2 -F M L,- j-1 2 -F M L,+ j-1 2 + F M L,- j+ 1 2 - δt δx j F M L,+ j+ 1 2 -F M L,- j-1 2 + (1 + α j )(F M L,+ j-1 2 -F M L,- j+ 1 2 ) + T j with T j = α j 2(1 + α j ) (u j -u - j-1 2 ) 2 F M L,+ j-1 2 -(u + j+ 1 2 -u j ) 2 F M L,- j+ 1 2 non negative contribution +(u + j-1 2 -u j ) 2 F M L,- j-1 2 -(u j -u - j+ 1 2 ) 2 F M L,+ j+ 1 2 .
non positive contribution

In this expression, we rewrite

(u j -u j ) 2 ... = (u j -u j ) 2 δx j δt ρ j -3 F M L,+ j+ 1 2 -F M L,- j-1 2 +(u j -u j ) 2 F M L,+ j+ 1 2 -F M L,- j-1 2 -α j (F M L,+ j-1 2 -F M L,- j+ 1 2
) .

The question thus reduces to show that

(u j -u j ) 2 2 F M L,+ j+ 1 2 -F M L,- j-1 2 -α j (F M L,+ j-1 2 -F M L,- j+ 1 2 ) + T j ≥ 0, (2.24) 
for a suitable choice of λ j and α j . Going back to (2.17) and (2.18), the non positive contribution to T j can be cast as

(u + j-1 2 -u j ) 2 F M L,- j-1 2 -(u j -u - j+ 1 2 ) 2 F M L,+ j+ 1 2 = λ j 4 Φ(a j-1 2 , a j+ 1 2 ) δx 2 j-1 2 F M L,- j-1 2 -δx 2 j+ 1 2 F M L,+ j+ 1 2
where we use the following shorthand notation for the discrete derivative

a j+ 1 2 = u j+1 -u j δx j+ 1 2 .
In order to analyze whether (2.24) is satisfied, we distinguish three situations : the good, the bad and the ugly cases.

The good case.

Let us denote u

(1) j the update of the velocity u j obtained by using λ j = 1, which means that we use the standard muscl reconstruction to define the interfaces fluxes. If (u

(1) j -u j ) 2 2 F M L,+ j+ 1 2 -F M L,- j-1 2 + 1 4 Φ(a j-1 2 , a j+ 1 2 ) δx 2 j-1 2 F M L,- j-1 2 -δx 2 j+ 1 2 F M L,+ j+ 1 2 = 1 2 (u (1) j -u j ) 2 - 1 2 Φ(a j-1 2 , a j+ 1 2 ) 2 δx 2 j+ 1 2 F M L,+ j+ 1 2 - 1 2 (u (1) j -u j ) 2 - 1 2 Φ(a j-1 2 , a j+ 1 2 ) 2 δx 2 j-1 2 F M L,- j-1 2 = 1 2   (u (1) j -u j ) 2 - |u j+1 -u j | 2 2 Φ a j-1 2 a j+ 1 2 2   F M L,+ j+ 1 2 - 1 2   (u (1) j -u j ) 2 - |u j -u j-1 | 2 2 Φ a j-1 2 a j+ 1 2 2   F M L,- j-1 2 ≥ 0, (2.25) 
then (2.24) is satisfied with

λ j = 1, α j = 0.
As matter of fact, we can slightly strengthen the condition by deciding λ j = 1, α j = 0 when 1

j -u j ) 2 - τ 2 2 |u j+1 -u j | 2 F M L,+ j+ 1 2 - 2 (u (1) 
j -u j ) 2 - τ 2 2 |u j -u j-1 | 2 ) F M L,- j-1 2 ≥ 0. 1 2 (u (1) 
The bad case. When the limiter is fully active, the scheme degenerates to first order and the analysis of Proposition 2.2.1 applies. Namely, when u j-1 = u j or u j = u j+1 , we have w j = 0 because Φ(a j-1 2 , a j+ 1 2 ) = 0. We can keep λ j = 1 and (2.24) is satisfied. The ugly case. We now consider the case where u j = u j+1 , u j = u j-1 and (2.25) is not satisfied. In this situation, we should pick λ j ∈ [0, 1) in order to satisfy (2.24) and to preserve the positivity of the internal energy. To this end, we need to introduce a few notations :

• U m j = min {(u j+1 -u j ) 2 , (u j -u j-1 ) 2 } = 0, • U M j = max {(u j+1 -u j ) 2 , (u j -u j-1 ) 2 } = 0, • 0 < Q j = 2 -τ √ 2τ 2 U m j U M j < 1 2 , • if F M L,+ j-1 2 -F M L,- j+ 1 2 = 0 and F M L,+ j+ 1 2 -F M L,- j-1 2 = 0 we define A j = F M L,+ j+ 1 2 -F M L,- j-1 2 F M L,+ j-1 2 -F M L,- j+ 1 2 > 0.
Otherwise, we simply set

A j = A -1 j = 0.
The left hand side in (2.24) is bounded from below by

(u j -u j ) 2 2 -λ 2 j τ 2 2 U M j F M L,+ j+ 1 2 -F M L,- j-1 2 -α j (u j -u j ) 2 2 - 2 -τ 2 2 U m j 2(1 + α j ) F M L,+ j-1 2 -F M L,- j+ 1 2 = (u j -u j ) 2 2 F M L,+ j+ 1 2 -F M L,- j-1 2 1 - α j A j + F M L,+ j-1 2 -F M L,- j+ 1 2 α j 2(1 + α j ) 2 -τ 2 2 U m j -λ 2 j τ 2 2 A j U M j .
In oder to keep non negative the contribution involving (u j -u j ) 2 , we should have

A j α j . (2.26)
Then, (2.24) is fulfilled provided

λ 2 j τ 2 2 U M j A j α j 2(1 + α j ) 2 -τ 2 2 U m j .
Thus, we set α j = λ j so that we are reduced to check that

λ j (1 + λ j ) 1 2 2 -τ τ 2 U m j U M j 1 A j .
We bear in mind that we seek λ j ∈ [0, 1), so that λ j (1 + λ j ) ≤ 2λ j . Therefore it suffices to impose

0 λ j Q j A j . (2.27)
Gathering (2.26) and (2.27) we finally set

λ j = Q j min A j , A -1 j .
Note that in such a case we have 0 λ j 1/2.

Remark 2.3.3. Assumption (2.16) on the limiter allows us to make use of positive values of λ j in cases where (2.25) is not satisfied, when > 0, the mesh being uniform or not.

For instance it works with the min-mod limiter which is a 1-limiter. Otherwise, if Φ is a 2-limiter (i. e. = 0 in (2.16)) with a uniform mesh, then λ j is either 1 (good case) or 0 (bad and ugly cases, where the scheme is always degraded to first order). In practice, it is quite rare in the simulations that the criterion that requires to reduce λ j is activated. Indeed, none the simulations that we are going to show in the last section of this chapter has needed this criterion. Besides, we point out that the scheme designed in [112, Chapter 2] adapts a muscl reconstruction on the density and on the internal energy fluxes only, the convection fluxes for the momentum equation remain the first order fluxes (that corresponds here to always set λ j = 0). Note also that the stability conditions in [START_REF] Therme | Schémas numériques pour la simulation de l'explosion[END_REF] are slightly different, precisely because the fluxes in this scheme are based on the material velocity only. However, it requires in certain circumstances (vanishing velocities, low Mach regimes) to introduce artificial diffusion.

Consistency of the scheme

Next, let us briefly check the consistency of the scheme, showing it can reach the second order accuracy for smooth solutions, and far away from extrema (since otherwise the limiter reduces the order of the approximation). To this end, we study (at a fixed time) the consistency of the fluxes. We remember that concerning the momentum flux, since the pressure is centered we focus on the convective part G M L j+ 1 2 and concerning the internal energy equation, since the divergence operator is centerd and at time t + δt, we focus on the internal energy flux only. The time being fixed, we consider smooth functions ρ, u and e of the space variable x only (say of class C 1 with bounded and not vanishing derivatives). We set

ρ j+ 1 2 = ρ(x j+ 1 2 ), u j = u(x j ) and e j+ 1 2 = e(x j+ 1 2
) and insert these quantities in the scheme instead of ρ j+ 1 2 , u j and e j+ 1 2 . We denote with an underline all the quantities (slopes, reconstructed variables, fluxes...) defined in this way from ρ j+ 1 2 , u j and ρe j+ 1

2

. The first observation made in 1.2.5 of Chapter 1, is that the reconstructed densities ρ ± j and velocities u ±

j+ 1 2
are second order approximations of ρ(x j ) and u(x j+ 1 2 ), respectively

ρ + j = ρ(x j ) + O(δx 2 ), ρ - j = ρ(x j ) + O(δx 2 ), u + j+ 1 2 = u(x j+ 1 2 ) + O(δx 2 ), u - j+ 1 2 = u(x j+ 1 2 ) + O(δx 2 ).
On the same token, we can prove that the reconstructed pressure ρe ± j is a second order approximation of ρe(x j ) :

ρe + j = ρe(x j ) + O(δx 2 ) and ρe - j = ρe(x j ) + O(δx 2 ).
Thus, we simply have

ρe + j ρ + j = e(x j ) + O(δx 2 ) and ρe - j ρ - j = e(x j ) + O(δx 2 ).
The second observation, see 1.2.6 of Chapter 1, is that the reconstructed fluxes F M L j and G M L j+ 1 2 are second order approximations of ρ(x j )u(x j ) and ρ(x j+ are second order approximations of ρ(x j )u(x j )e(x j ) and ρ(x

j+ 1 2 ) u(x j+ 1 2 ) 3

2

, respectively. The consistency analysis can be summarized in the follwing statement. Proposition 2.3.4. The muscl scheme that solves the full Euler system (2.1) is of order two in space.

Proof. As said ubove we have

E M L j = ρ(x j )u(x j )e(x j ) + O(δx 2 ), K M L j+ 1 2 = ρ(x j+ 1 2 ) u(x j+ 1 2 ) 3 2 + O(δx 2 ).
Finally the mass, momentum and total energy fluxes satisfy :

F M L j = ρ(x j )u(x j ) + O(δx 2 ), G M L j+ 1 2 = ρ(x j+ 1 2 )u(x j+ 1 2 ) 2 + O(δx 2 ), T M L j = ρ(x j-1 2 ) u(x j-1 2 ) 3 2 + ρ(x j+ 1 2 ) u(x j+ 1 2 ) 3 2 2 + ρ(x j )u(x j )e(x j ) + O(δx 2 ).

Numerical simulations 2.4.1 Accuracy study using a 1D manufactured solution

In order to numerically validate the abilities of the muscl-like approach, we compute the solutions of the 1d problem

∂ t    ρ ρu ρe    + ∂ x    ρu ρu 2 + p(ρ, e) ρeu    + p(ρ, e)∂ x    0 0 u    =    0 f g    ,
where the force fields (t, x) → f (t, x) and (t, x) → g(t, x) are tailored so that the solution reads

             ρ(t, x) = e t (x + e t (1 -x)) 2 , u(t, x) = x(1 -x), p(t, x) = (γ -1)e t (1 + x) 2 .
The solution is smooth and we can expect a full benefit of the muscl approach. The computational domain is the slab [0, 1] and we perform the simulation for t ∈ [0, 0.2] on uniform grids with γ = 1, 4. Table 2.1 gives the L 1 -norm of the error between the discrete and the exact solutions for several numbers J of grid points. For this test, we have δt = 10 -6 : the small value of the time step ensures that the stability condition is satisfied for all the considered grids. In fact, we have δt = O(δx 2 ) so that the error can be expected to be dominated by the spatial errors (we use the first order Euler scheme in time). We compare the solution produced by the first order scheme and the solution produced by the proposed muscl extension. We clearly observe the gain of accuracy with the muscl scheme. It reaches the second order for both the density, the velocity and the internal energy, while, as expected, the first order scheme approaches the solution at first order only.

First order scheme

Second order muscl scheme J Density Velocity Internal energy Density Velocity Internal energy 

Simulation of 1D Riemann problems

We perform the numerical resolutions of some Riemann problems inspired from the classical textbook [113, Section 4.3.3, Chapter 4, pages 129-131] on the computational domain [0, 1], see 2.2. All tests are with γ = 1.4. The simulations are performed 1000 grid points. The time step is given by δt 1 = δx/100 for the first order scheme and δt 2 = δt 1 2 for the muscl scheme. The initial data ρ, u, p are piecewise constant functions with a discontinuity located at x 0 = 0.5, according to the table below. The exact solution is in dotted lines and the numerical solutions are given with the solid blue lines for the SML-scheme and with the solid red lines for the ML-scheme. Both version of the scheme produce satisfactory results. As expected, the second order scheme has a reduced numerical diffusion and offers better approximations. Concerning Test #2, we remark that the results obtained for the physical variables ρ, p and u is quite satisfactory while the internal energy presents significative discrepancies. According to [113, Section 6.4, Chapter 6, pages 225-235], this test is indeed known to be particularly challenging for the internal energy e, and even Godunov's method fails on this problem (and the results in Fig. 2.2 to Fig. 2.6 are definitely better than what can be obtained with, say, the Lax-Friedrichs scheme). In [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF], a detailed description of the test cases is given and the performances of several standard numerical methods are commented. Be aware that from [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF]Chapter 5] to the end the Test 1 is not the same as in [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF]Chapter 4], and that Test 5 from [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF]Chapter 4] (which is also our Test #5) becomes Test 4 from [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF]Chapter 5] to the end. About the overshoot that may be seen in Test #5 and at a lower level in Test #1 and #3, Toro explains in [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF]Chapter 6] that is quite usual, and even unresolved in the case of Test #5. In [113, Section 8.5.5, Chapter 8, pages 282], more details are given about the spurious oscillations and diffusion that appears with most type of resolutions, whereas, similalry to the scheme of Liou and Steffen shown in this part, our scheme sharply solved the fast right shock but this implied the creation of an overshoot.

ρ l ρ r u l u r p l p r T Test 1 1 0.125 0 0 1 0.1 0.25 Test 2 1 1 -2 2 

Numerical simulations in 2D

This test case is the well-known 2d Mach 3 wind tunnel with a step, introduced in [START_REF] Woodward | The numerical simulation of two-dimensional fluid flow with strong shocks[END_REF]. The computational domain Ω is the L-shaped domain

Ω = Ω 0 \ Ω step , Ω 0 = [0, 3] × [0, 1], Ω step = [0.6, 3] × [0, 0.2].
The rectangle Ω 0 is discretized with a 30σ × 10σ uniform Cartesian grid (σ ∈ N * ). We take the step into account by removing the mesh points corresponding to the domain Ω step at the right bottom part of the domain. On this Cartesian mesh, we extend direction-wise the scheme, as in Chapter 1.

The equation of state of the fluid is p(ρ, e) = (γ -1)ρe where γ = 1.4, and the initial data are given by ρ = 1.4, u = (3, 0) and p = 1. On the top and bottom walls, we use reflection boundary conditions which means zero flux boundary conditions as described in the previous parts of the paper). A Dirichlet boundary condition, ρ = 1.4 and u = (3, 0), makes the flow enter through the left boundary whereas a free boundary condition is used for the right section. The free boundary condition is implemented by assuming a priori that the outgoing flow is supersonic. The mass fluxes at the free boundary are thus defined with an incoming part set to 0 ; that is, here, on the right boundary, we set

F x M +1,j+ 1 2 = F + (ρ M + 1 2 ,j+ 1 2 , u M +1,j+ 1 2 
).

The update of the velocity at the free boundary is performed by involving momentum fluxes at the exterior the domain (here at the points (x M + 3 2 , y j+ 1 2

)). These ghost fluxes are defined using a constant extrapolation for the pressure and a linear extrapolation for the outgoing part of the mass fluxes ; that is here on the right boundary

x M + 3 2 , y j+ 1 2 (using a uniform mesh) u M +1,j+ 1 2 F x,+ M + 3 2 ,j+ 1 2 + p(ρ M + 1 2 ,j+ 1 2 ), with F x,+ M + 3 2 ,j+ 1 2 = 3 2 F x,+ M + 1 2 ,j+ 1 2 - 1 2 F x,+ M -1 2 ,j+ 1 2 .
We present the results obtained with the first order scheme and the second order scheme on a 960 × 320 grid (σ = 32) with time steps respectively defined by δt = 1/100σ and δt = 1/400σ at time T = 4. We observe that the structures are sharper with the muscl scheme in Fig. 2.7 and cutlines of the density along the lines y = 0.3 obtained using the first and second order scheme are plotted in Fig. 2.8. 

Chapitre 3 An AP-scheme on staggered grids for the barotropic Euler system in low Mach regimes

We present a new scheme for the simulation of the barotropic Euler equation in low Mach regimes. The method uses two main ingredients. First, the system is treated with a suitable time splitting, directly inspired from [J. Haack, S. Jin, J.-G. Liu, Comm. Comput. Phys., 12 (2012) 955-980], that separates low and fast waves. Second, we adapt a numerical strategy where the discrete densities and velocities are stored on staggered grids, in the spirit of mac methods, and with numerical fluxes derived form the kinetic approach. We bring out the main properties of the scheme in terms of consistency, stability, and asymptotic behavior, and we present a series of numerical experiments to validate the method.

Introduction

This work is concerned with the numerical resolution of the barotropic Euler system, which describes the evolution of a compressible fluid, in low Mach regimes. The unknowns ρ and u stand respectively for the local density and velocity of the fluid. They both depend on the time and space variables, t 0 and x ∈ Ω ⊂ R N , where Ω is a bounded domain. Working with dimensionless quantities, the evolution of the fluid is governed by the PDE system

       ∂ t ρ + ∇ • ρu = 0, ∂ t ρu + ∇ • ρu ⊗ u + 1 2 ∇ p(ρ) = 0. (3.1)
Here and below, we suppose that the pressure law ρ → p(ρ) is the classical power-law p(ρ) = ρ γ with γ > 1. In (3.1), stands for the Mach number, that is the ratio of the typical velocity of the fluid to the typical sound speed

( 2 = |u ref | 2 c 2 ref = ρ ref |u ref | 2 γp ref ).
The system has to be completed with initial and boundary conditions (periodic or vanishing flux for instance).

Low Mach regimes

Euler equations and low Mach regimes

In order to understand the behavior for small 's, let us expand the solution as a power series Q = Q (0) + Q (1) + 2 Q (2) + ..., with Q = (ρ, p, u), and identify the terms that arise with the same order of magnitude with respect to in (3.1). At the leading order O (1/ 2 ) in the momentum equation, we obtain ∇p (0) = 0 from what we deduce p (0) (x, t) = p (0) (t) and consequently ρ (0) (x, t) = ρ (0) (t). Similarly, at order O (1/ ) we get ∇p (1) = 0, thus ρ (1) (x, t) = ρ (1) (t) depends only on the time variable too. Given this information, system (3.1) at order O (1) becomes

∂ t ρ (0) + ρ (0) ∇ • u (0) = 0, ∂ t (ρ (0) u (0) ) + ρ (0) ∇ • (u (0) ⊗ u (0) ) + ∇p (2) = 0. (3.2)
Integrating the mass equation in (3.2) over the domain Ω, yields

Ω ∂ t ρ (0) + ρ (0) ∇ • u (0) dx = |Ω|∂ t ρ (0) + ρ (0) Ω ∇ • u (0) dx = 0.
Applying the Green theorem leads to

∂ t ρ (0) = - 1 |Ω| ρ (0) ∂Ω u (0) • n dσ(x)
where n is the outward-pointing normal vector on ∂Ω and dσ(x) is the Lebesgue measure.

Let us restrict to the case of zero-flux boundary conditions, u • n ∂Ω = 0, or the case of periodic boundary conditions, so that in both cases we have ∂Ω u (0) • n dσ(x) = 0. It follows that ∂ t ρ (0) = 0. Going back to the mass conservation equation in (3.2) we arrive at

∇ • u (0) (x, t) = 0 and ρ (0) (x, t) = ρ (0) on Ω × [0, ∞).
The momentum equation in (3.2) can now be cast as

∂ t u (0) + ∇ • (u (0) ⊗ u (0) ) + 1 ρ (0) ∇p (2) = 0.
In this relation the pressure term p (2) can be seen as the Lagrange multiplier associated to the incompressibility constraint ∇ • u (0) = 0. Applying the divergence operator we are led to

∆p (2) = -ρ (0) ∇ • ∇ • (u (0) ⊗ u (0) ) . (3.3)
Finally, the mass equation in (3.1) at order O ( ) reads

∂ t ρ (1) + ρ (0) ∇ • u (1) = 0.
With a similar reasoning, we deduce that ρ (1) (x, t) = ρ (1) is constant in time and space and that ∇ • u (1) = 0. Definition 3.2.1. The initial data (ρ, u)(x, t = 0) for (3.1) is said to be well-prepared when ρ(x, t = 0) = ρ (0) + ρ (1) + O 2 (x) with ρ (0) , ρ (1) real constants,

u(x, t = 0) = u (0) (x) + O ( ) (x) with ∇ • u (0) = 0.
Therefore, as goes to 0, we expect that solutions (ρ, u) of (3.1) behave like

ρ(x, t) = ρ (0) + ρ (1) + O 2 (x, t), u(x, t) = u (0) (x) + O ( ) (x, t)
with u (0) solution of the Incompressible Euler system

∂ t u (0) + ∇ • (u (0) ⊗ u (0) ) + 1 ρ (0) ∇p (2) = 0, ∇ • u (0) = 0. (3.4)
Further details on the low Mach asymptotics can be found in A. Majda's book [START_REF] Majda | Compressible fluid flow and systems of conservation laws in several space variables[END_REF]. Rigorous justification dates back to [START_REF] Klainerman | Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids[END_REF][START_REF] Klainerman | Compressible and incompressible fluids[END_REF]. When the initial data are not well-prepared, initial layer might occur [START_REF] Ukai | The incompressible limit and the initial layer of the compressible Euler equation[END_REF]. We refer the interested reader to [START_REF] Alazard | A minicourse on the low Mach number limit[END_REF] for an up-to-date review detailing further results and indicating further relevant references on the analysis of the low Mach regimes.

Numerical issues of the low Mach regimes

There are several numerical issues that make the simulation of (3.1) challenging as becomes small :

• The stiffness of the pressure term induces severe stability conditions for standard timeexplicit schemes. Indeed, the characteristic speeds of the system behave like |u| ± 1 p (ρ) and thus become very large as → 0. It imposes to constrain the time step δt to be proportional to δx with δx the mesh size, which leads to non affordable computational costs.

• Moreover, the usual conservative finite-volume type schemes are also subject to a dramatic loss of accuracy when becomes small, so that it can be very difficult to capture the correct solution. This phenomena has been brought out in the seminal papers [START_REF] Guillard | On the behavior of upwind schemes in the low Mach number limit. II : Godunov type schemes[END_REF][START_REF] Guillard | On the behavior of upwind schemes in the low Mach number limit[END_REF] which explain how Godunov type schemes create spurious pressure waves that prevent the discrete solutions to be close to a discrete incompressible flow. This has been further analyzed in [START_REF] Dellacherie | Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number[END_REF][START_REF] Dellacherie | Étude et discrétisation de modèles cinétiques et de modèles fluides à bas nombre de Mach[END_REF][START_REF] Dellacherie | The influence of cell geometry on the Godunov scheme applied to the linear wave equation[END_REF]. It turns out that the loss of accuracy in fact highly depends on the geometry of the mesh. In particular UpWind schemes on Cartesian meshes (that we shall consider here) is inaccurate at low Mach numbers. These analysis have led to design suitable preconditionning techniques [START_REF] Guillard | On the behavior of upwind schemes in the low Mach number limit. II : Godunov type schemes[END_REF][START_REF] Guillard | On the behavior of upwind schemes in the low Mach number limit[END_REF][START_REF] Turkel | Preconditioned methods for solving the incompressible and low speed compressible equations[END_REF].

We are thus faced with the difficulty of designing numerical methods that preserve the asymptotic limit, without inducing too high computational costs. A possible avenue to cope with these difficulties is to try to develop "Asymptotic Preserving" methods, a term coined by S. Jin [START_REF] Jin | Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations[END_REF][START_REF] Jin | Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations : a review[END_REF]. and we check that well-prepared data do not produce spurious oscillations, according to the analysis of [START_REF] Dellacherie | Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number[END_REF][START_REF] Dellacherie | Étude et discrétisation de modèles cinétiques et de modèles fluides à bas nombre de Mach[END_REF][START_REF] Dellacherie | The influence of cell geometry on the Godunov scheme applied to the linear wave equation[END_REF]. Finally, we discuss a set of numerical experiments in Section 3.4.

Numerical resolution

Splitting of the compressible Euler system

The compressible system (3.1) is split with two scales : the fast acoustics wave scale and the slow convection scale that contains the underlying incompressible dynamics. Following [START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations[END_REF], we rewrite the system in the following way

   ∂ t ρ + α∇ • (ρu) + (1 -α)∇ • (ρu) = 0, ∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇ p(ρ)-a(t)ρ 2 + a(t) 2 ∇ρ = 0. (3.5)
The parameter 0 α < 1 is used in order to keep some momentum in the system for the fast dynamics, see (FD) below, which is necessary to enforce incompressibility. The splitting of the stiff pressure term also involves a new parameter a(t) > 0.

For the numerical resolution of (3.5) we adopt the following time-splitting strategy that make the two distinct scales appear. We start with the Slow Dynamics system, the hyperbolic system of conservation laws that reads

     ∂ t ρ + α∇ • (ρu) = 0, ∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇ p(ρ) -a(t)ρ 2 = 0. (SD)
Then, we consider the following Fast Dynamics system

   ∂ t ρ + (1 -α)∇ • (ρu) = 0 ∂ t (ρu) + a(t) 2 ∇ρ = 0 (FD)
Let us focus on the two-dimensional framework. Denoting u and v the components of the velocity field u = (u, v), the wave speeds of the (SD) in the horizontal (resp. vertical) direction are given by u (resp. v) and λ± (ρ, u) (resp. λ± (ρ, v)) where

λ± (ρ, ν) = ν ± c(ρ, ν) with c(ρ, ν) = (1 -α)ν 2 + α p (ρ) -a(t) 2 . ( 3.6) 
The wave speeds are real for all ν ∈ R and ρ > 0, and the system is thus hyperbolic, as soon as a(t) min But, with this choice, spurious oscillations are observed in some test cases for large values of . It appears in regions where the density is nearly uniform and the material velocity vanishes. Indeed, in these regions, the corresponding sound speed vanishes and the spurious oscillations are probably due to a lack of numerical diffusion in the Slow Dynamic part of the splitting. To overcome this difficulty, in these test cases (see Section 3.4.2), we set

a(t) = min x∈Ω p ρ(x, t) -ι(t) 2 > 0, (3.9) 
where ι(t) is a constant smaller than the minimum of p . In the numerical tests of Section 3.4.2, we simply choose ι(t) = 0 or ι(t) = 1 when additional numerical diffusion is needed for large .

The choice of the splitting parameter α might impact the stability of the scheme : [START_REF] Zakerzadeh | A note on the stability of implicit-explicit flux-splittings for stiff systems of hyperbolic conservation laws[END_REF] prove that, for a linearized version of the system when 0 < 1, chosing α ∈ (0, 1 2 ) ensures the stability (in a sense defined in [START_REF] Majda | Stable viscosity matrices for systems of conservation laws[END_REF], see also [START_REF] Schütz | Flux splitting for stiff equations : A notion on stability[END_REF][START_REF] Zakerzadeh | A note on the stability of implicit-explicit flux-splittings for stiff systems of hyperbolic conservation laws[END_REF]) of the above splitting when it is combined with a Rusanov-type numerical fluxes. In [START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations[END_REF], the numerical experiments are performed with α = 2 . As detailed below, we also find advantages in adopting this choice.

It leads to λ± (ρ, ν) = ν ± (1 -2 )ν 2 + p (ρ) -a(t).
and consequently since a(t) > 0, we have λ± (ρ, ν)

± 2 ν ± p (ρ) ± . ( 3.10) 
Whereas the wave speeds of the original system (3.1) behave like ν ± p (ρ)/ (as recalled in the introduction), we observe that the wave speeds of the system (SD) remain bounded when goes to 0 and thus ensures unconstrained CFL conditions with respect to (see Proposition 3.3.6).

Remark 3.3.1. As emphasized in [START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations[END_REF], the choice (3.8) ensures also that wave speeds of the system (SD) remain bounded when goes to 0 whatever the value of α. Indeed, if the initial conditions are well-prepared, we have

α 2 p (ρ) -min x∈Ω p ρ(x, t) = α ρ (2) (t, x) -min x∈Ω ρ (2) (t, x) p ρ (0) + O ( ) .
We now turn to the numerical resolution of those two systems. The characteristic speeds of the system (SD) are no longer stiff -in contrast to the wave speed of (3.1) -and it does not induce bad stability conditions. We shall make use of the space discretization set up in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF] for this system. The system (FD) is a simple linear hyperbolic system for the variable (ρ, q = ρu). However, it is not clear whether a direct resolution of the system can preserve the positivity of the density, a property which is absolutely crucial for the stability of the whole procedure, and for physical purposes. For this reason, we shall treat (FD) as a non linear system (for variables ρ and u) to be solved implicitely.

Time discretization and stability

From now on we use the following notation : given a quantity Q at the current time t we denote by Q its update at the next time t + δt. Let us detail the scheme by using the explicit Euler scheme for (SD) and the implicit Euler scheme for (FD), which can be summarized in the semi-discrete form :

         ρ * -ρ δt + α∇ • (ρu) = 0, ρ * u * -ρu δt + ∇ • (ρu ⊗ u) + ∇ p(ρ) -a(t)ρ 2 = 0,
and

       ρ -ρ * δt + (1 -α)∇ • (ρ u) = 0, ρ u -ρ * u * δt + a(t) 2 ∇ρ = 0. Remark 3.3.2.
In [START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations[END_REF], see also [START_REF] Noelle | A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics[END_REF], the time discretization is constructed to reach second order accuracy : the two-level Adams-Bashforth scheme is used for the explicit slow system and the Crank-Nicolson scheme is used for the fast implicit system. Of course, it is straightforward to adapt such a time-discretization, but the analysis would be much more involved.

The construction proposed in [START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations[END_REF] relies on the following stability statement for split systems, see [START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations[END_REF]Lemma 3.1].

Lemma 3.3.3. If both methods

U n+1 -U n δt + AU n = 0 and U n+1 -U n δt + BU n+1 = 0,
are L 2 -stable, then the following method is also L 2 -stable

U n+1 -U n δt + AU n + BU n+1 = 0 in the sense that U n L 2 ≤ e Cnδt U 0 L 2
holds for a certain positive constant C.

Note however that this is a rough notion of stability. It gives an intuition on the relevance of the splitting. However, as said in introduction, it turns out that certain fast-slow splittings, that might look physically relevant at first sight with formal stability conditions independent of , give rise in practice to numerical instabilities. This is where the interplay between time and space discretizations arises : the origin of these instabilities is due to the checkerboard pressure profiles, a well-known difficulty in incompressible computational fluid mechanics. Introducing stabilization terms in the scheme impacts the stability conditions and lead to restriction depending on again, see in particular [91, sp. Section 3.5, Theorem 4.1 and Remark 4.2].

Space discretization

The discretization strategy adopts the principles of the mac schemes [START_REF] Harlow | Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[END_REF], which are precisely suited to avoid the spurious modes in incompressible regimes. Indeed, we won't give all the details as the scheme is the same as the one in Chapter 1 in 2d for a Cartesian grid. We simply introduce an other notation h = max(max i δx i+1/2 , max j δy j+1/2 ), which is the size of the mesh.

We solve (SD) in order to produce an intermediate solution (ρ *

i+ 1 2 ,j+ 1 2 , u * i,j+ 1 2 , v * i+ 1
2 ,j ) with the following scheme

                                                         ρ * i+ 1 2 ,j+ 1 2 -ρ i+ 1 2 ,j+ 1 2 δt + α   F x i+1,j+ 1 2 -F x i,j+ 1 2 δx i+ 1 2 + F y i+ 1 2 ,j+1 -F y i+ 1 2 ,j δy j+ 1 2   = 0, ρ * i,j+ 1 2 u * i,j+ 1 2 -ρ i,j+ 1 2 u i,j+ 1 2 δt + G u,x i+ 1 2 ,j+ 1 2 -G u,x i-1 2 ,j+ 1 2 δx i + G u,y i,j+1 -G u,y i,j δy j+ 1 2 + Π i+ 1 2 ,j+ 1 2 -Π i-1 2 ,j+ 1 2 δx i = 0, ρ * i+ 1 2 ,j v * i+ 1 2 ,j -ρ i+ 1 2 ,j v i+ 1 2 ,j δt + G v,x i+1,j -G v,x i,j δx i+ 1 2 + G v,y i+ 1 2 ,j+ 1 2 -G v,y i+ 1 2 ,j-1 2 δy j + Π i+ 1 2 ,j+ 1 2 -Π i+ 1 2 ,j-1 2 δy j = 0,
(SDd) where we are going to define the numerical fluxes in these formulae.

The system (SD) differs from the usual Euler system. Nevertheless, we can readily adapt the scheme proposed in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF]. Bearing in mind that the sound speeds c(ρ, ν) defined in (3.6) now depends on ρ and ν a velocity component u or v, we get the definition of the fluxes F ± by using 0.0.2 introduced in the Introduction Chapter 0. Then, as in Chapter 1, we set

F x i,j+ 1 2 = F x,+ i,j+ 1 2 + F x,- i,j+ 1 2 and F y i+ 1 2 ,j = F y,+ i+ 1 2 ,j + F y,- i+ 1 2 ,j , with F x,+ i,j+ 1 2 = F + (ρ i-1 2 ,j+ 1 2 , u i,j+ 1 2 ) and F x,- i,j+ 1 2 = F -(ρ i+ 1 2 ,j+ 1 2 , u i,j+ 1 2 ), F y,+ i+ 1 2 ,j = F + (ρ i+ 1 2 ,j-1 2 , v i+ 1 2 ,j ) and F y,- i+ 1 2 ,j = F -(ρ i+ 1 2 ,j+ 1 2 , v i+ 1 2 ,j ).
The definition of the convection fluxes in the momentum equation is given by

G u,x i+ 1 2 ,j+ 1 2 = u i,j+ 1 2 F x,+ i+ 1 2 ,j+ 1 2 + u i+1,j+ 1 2 F x,- i+ 1 2 ,j+ 1 2 and G u,y i,j = u i,j-1 2 F y,+ i,j + u i,j+ 1 2 F y,- i,j
and a similar definition for G v,x i,j and G u,y i+ 1 2 ,j+ 1 2 . It uses the averaged mass fluxes

F x,± i+ 1 2 ,j+ 1 2 = 1 2 F x,± i,j+ 1 2 + F x,± i+1,j+ 1 2 and F y,± i,j = δx i+ 1 2 F y,± i+ 1 2 ,j + δx i-1 2 F y,± i-1 2 ,j 2δx i .
The discrete analog of the parameter a in (3.9) is the discrete quantity

a d = min i,j p (ρ i+ 1 2 ,j+ 1 2 ) -ι 2 , ( 3.11) 
and thus the pressure term Π i+ 1 2 ,j+ 1 

2

-which differs from the usual Euler case dealt with in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF] -is defined by

Π i+ 1 2 ,j+ 1 2 = p(ρ i+ 1 2 ,j+ 1 2 ) -a d ρ i+ 1 2 ,j+ 1 2 2
.

We now turn to the resolution of the system (FD) to find (ρ

i+ 1 2 ,j+ 1 2 , u i,j+ 1 2
, v i+ 1 2 ,j ), using the solution of (SDd) we have just obtained as initial data. Working on staggered grids offers us the possibility to use a centered scheme for the gradient of the pressure term, which is the key to overcome the difficulties recorded with methods on colocalised mesh, see [START_REF] Dellacherie | Étude et discrétisation de modèles cinétiques et de modèles fluides à bas nombre de Mach[END_REF][START_REF] Noelle | A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics[END_REF].

We set

                         ρ i+ 1 2 ,j+ 1 2 -ρ * i+ 1 2 ,j+ 1 2 δt + (1 -α)    F U p,x i+1,j+ 1 2 -F U p,x i,j+ 1 2 δx i+ 1 2 + F U p,y i+ 1 2 ,j+1 -F U p,y i+ 1 2 ,j δy j+ 1 2    = 0, ρ i,j+ 1 2 u i,j+ 1 2 -ρ * i,j+ 1 2 u * i,j+ 1 2 δt + a d 2 ρ i+ 1 2 ,j+ 1 2 -ρ i-1 2 ,j+ 1 2 δx i = 0, ρ i+ 1 2 ,j v i+ 1 2 ,j -ρ * i+ 1 2 ,j v * i+ 1 2 ,j δt + a d 2 ρ i+ 1 2 ,j+ 1 2 -ρ i+ 1 2 ,j-1 2 δy j = 0. (FDd)
The upwind fluxes F U p,x and F U p,y are obtained by applying the upwinding principle based on the sign of the velocity. Precisely, we use in (FDd) the following implicit fluxes 1 2 ,j ] -. In contrast to [START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations[END_REF], we are working here on staggered grids and the resolution does not involve the momentum as a numerical unknown but instead the velocity. Despite the fact that (FD) is a linear system for the conservative quantities (ρ, q = ρu), the corresponding discrete equation (FDd) becomes a nonlinear problem for the non-conservative variables. Accordingly, the update does not come from the resolution of a linear system, and, instead, we have to use a root-finding algorithm as the Newton-Raphson method. This is absolutely crucial in order to preserve the positivity of the density. Nevertheless, it is important to note that, even if the system looks fully implicit, the expressions for u i,j+1/2 and v i+1/2,j as a function of ρ i+1/2,j+1/2 can be readily obtained from the two last equations of (FDd) so that the system can be solved as a non linear scalar equation for ρ i+1/2,j+1/2 . This is a great importance to save computational cost.

F U p,x i,j+ 1 2 = ρ i-1 2 ,j+ 1 2 [u i,j+ 1 2 ] + -ρ i+ 1 2 ,j+ 1 2 [u i,j+ 1 2 ] - and F U p,y i+ 1 2 ,j = ρ i+ 1 2 ,j-1 2 [v i+ 1 2 ,j ] + -ρ i+ 1 2 ,j+ 1 2 [v i+
We wish now to show that the scheme performs well in low Mach regimes and exhibits the ap features. In order to bring out that the behavior of the continuous case is well reproduced, we introduce an ansatz of the discrete solution :

• ρ i+ 1 2 ,j+ 1 2 = ρ (0) i+ 1 2 ,j+ 1 2 + ρ (1) i+ 1 2 ,j+ 1 2 + 2 ρ (2) i+ 1 2 ,j+ 1 2 + ... • u i,j+ 1 2 = u (0) i,j+ 1 2 + u (1) i,j+ 1 2 + 2 u (2) i,j+ 1 2 + ... and v i+ 1 2 ,j = v (0) i+ 1 2 ,j + v (1) i+ 1 2 ,j + 2 v (2) i+ 1 2 ,j + ... • p i+ 1 2 ,j+ 1 2 = p (0) i+ 1 2 ,j+ 1 2 + p (1) i+ 1 2 ,j+ 1 2 + 2 p (2) i+ 1 2 ,j+ 1 2 + ...
The investigation of the asymptotic regime → 0 will make the following discrete operators appear. Definition 3.3.4. We define the discrete divergence operator ∇ d • of a vector u = (u, v) as

∇ d • u i+ 1 2 ,j+ 1 2 = u i+1,j+ 1 2 -u i,j+ 1 2 δx i+ 1 2 + v i+ 1 2 ,j+1 -v i+ 1 2 ,j δy j+ 1 2 ,
and the discrete Laplacian operator ∆ d of a scalar quantity p as

∆ d p i+ 1 2 ,j+ 1 2 = 1 δx i+ 1 2 p i+ 3 2 ,j+ 1 2 -p i+ 1 2 ,j+ 1 2 δx i+1 - p i+ 1 2 ,j+ 1 2 -p i-1 2 ,j+ 1 2 δx i + 1 δy j+ 1 2 p i+ 1 2 ,j+ 3 2 -p i+ 1 2 ,j+ 1 2 δy j+1 - p i+ 1 2 ,j+ 1 2 -p i+ 1 2 ,j-1 2 δy j .
Since the preparation of data is an important assumption for the analysis of the asymptotic behavior, it is convenient to introduce an equivalent definition at the discrete level. Definition 3.3.5. Discrete data (ρ, u = (u, v)) are said to be well-prepared if they satisfy, for all i, j, (1) + O( 2 ) with ρ (0) , ρ (1) real constants,

• ρ i+ 1 2 ,j+ 1 2 = ρ (0) + ρ
• ∇ d • u (0) i+1/2,j+1/2 = 0, and thus ∇ d • u i+1/2,j+1/2 = O ( ) .
This definition appeared in [START_REF] Dellacherie | Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number[END_REF][START_REF] Dellacherie | Étude et discrétisation de modèles cinétiques et de modèles fluides à bas nombre de Mach[END_REF][START_REF] Dellacherie | The influence of cell geometry on the Godunov scheme applied to the linear wave equation[END_REF] ; it plays a crucial role in the analysis of the sensitivity of numerical solvers to the grid geometry. In terms of stability let us give the following statement, which justifies that the scheme produces physically relevant quantities with a stability condition that does not degenerate when becomes small. Proposition 3.3.6. We set α = 2 . Suppose that the data (ρ, u) is well-prepared, in the sense of Definition 3.3.5 and such that ρ j+ 1 2 0 for all j. We assume the following CFL-like condition

δt δx i+ 1 2 u i,j+ 1 2 -p (ρ i+ 1 2 ,j+ 1 2 ) - + u i+1,j+ 1 2 + p (ρ i+ 1 2 ,j+ 1 2 ) + + δt δy j+ 1 2 v i+ 1 2 ,j -p (ρ i+ 1 2 ,j+ 1 2 ) - + v i+ 1 2 ,j+1 + p (ρ i+ 1 2 ,j+ 1 2 ) + 1 2 , (3.12)
then the scheme preserves the non-negativity of the density : ρ j+ 1 2 0 for all j.

Proof. We adapt readily the arguments in Chapter 1 to justify that (SDd) preserves positive densities, under the following CFL-like condition

δt δx i+ 1 2 λ -(ρ i+ 1 2 ,j+ 1 2 , u i,j+ 1 2 ) - + λ + (ρ i+ 1 2 ,j+ 1 2 , u i+1,j+ 1 2 ) + + δt δy j+ 1 2 λ -(ρ i+ 1 2 ,j+ 1 2 , v i+ 1 2 ,j ) - + λ + (ρ i+ 1 2 ,j+ 1 2 , v i+ 1 2 ,j+1 ) + 1.
Owing to (3.10) which holds since α = 2 , this condition is ensured when (3.12) is satisfied. Thus, it proves that ρ *

i+ 1 2 ,j+ 1 2
> 0 for all i, j. We turn to the resolution of the Fast Dynamics (FDd). Let us denote

C i+ 1 2 ,j+ 1 2 = [u i+1,j+ 1 2 ] + + [u i,j+ 1 2 ] - δx i+ 1 2 + [v i+ 1 2 ,j+1 ] + + [v i+ 1 2 ,j ] - δy j+ 1 2 0.
We can deduce from the mass equation in (FDd) that

ρ i+ 1 2 ,j+ 1 2 1 + δt(1 -α)C i+ 1 2 ,j+ 1 2 ≥ ρ * i+ 1 2 ,j+ 1 2 . Finally, ρ i+ 1 2 ,j+ 1 2 > 0 since ρ * i+ 1 2 ,j+ 1 2
> 0 when (1.7) holds. Thus we have shown that ρ i+ 1 2 ,j+ 1 2 > 0 at every time step under the CFL-like condition (1.7).

Low Mach regimes and AP-scheme

Let us suppose that the initial data of the system are well prepared in the sense of Definition 3.2.1. As said above, the solutions of the compressible Euler system (3.1) converge to a constant density and a velocity field solution of the Incompressible Euler system (3.4). Our purpose is now two-fold :

1) to show that our solver automatically becomes an incompressible solver for (3.4) in the low Mach number regime 0 < 1. It makes the ap character of the scheme precise. 2) to justify that the scheme preserves well prepared data, in the discrete sense given in Definition 3.3.5 below. This crucial property justifies that the proposed discretization does not produce spurious oscillations that can prevent to capture the correct solution in low Mach regimes, see [START_REF] Dellacherie | Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number[END_REF][START_REF] Dellacherie | Étude et discrétisation de modèles cinétiques et de modèles fluides à bas nombre de Mach[END_REF][START_REF] Dellacherie | The influence of cell geometry on the Godunov scheme applied to the linear wave equation[END_REF][START_REF] Guillard | On the behavior of upwind schemes in the low Mach number limit[END_REF][START_REF] Guillard | On the behavior of upwind schemes in the low Mach number limit. II : Godunov type schemes[END_REF][START_REF] Noelle | A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics[END_REF].

Let us suppose that the discrete solution is well-prepared in the sense of Definition 3.3.5 from time t = 0 up to time t > 0. We wish to show that the updated physical quantities still satisfy the conditions of Definition 3.3.5.

The first thing to notice is that the explicit pressure term drops out, as the modified explicit pressure has a simple expansion for small 's. Lemma 3.3.7. Let (ρ, u) be well-prepared. The modified pressure p(ρ)-a d ρ in (SDd) admits the expansion

p i+ 1 2 ,j+ 1 2 -a d ρ i+ 1 2 ,j+ 1 2 2 = C -2 2 + C -1 + C 0 + O ( )
where the coefficients C -2 , C -1 , C 0 do not depend on the considered cell.

Proof. Since the data is well-prepared, the pressure

p i+ 1 2 ,j+ 1 2 = p(ρ i+ 1 2 ,j+ 1 2
) expands as

p i+ 1 2 ,j+ 1 2 = p ρ (0) + ρ (1) p ρ (0) + 2   ρ (2) i+ 1 2 ,j+ 1 2 p ρ (0) + ρ (1) 2 2 p ρ (0)   + O 3 .
Hence we obtain

p i+ 1 2 ,j+ 1 2 -a d ρ i+ 1 2 ,j+ 1 2 2 = p ρ (0) -a (0) d ρ (0) 2 + ρ (1) p ρ (0) -a (0) d ρ (1) -a (1) d ρ (0) +   ρ (2) i+ 1 2 ,j+ 1 2 p ρ (0) + ρ (1) 2 2 p ρ (0) -a (0) d ρ (2) i+ 1 2 ,j+ 1 2 -a (1) d ρ (1) -a (2) d ρ (0)   + O ( ) An expansion of the coefficient a d = min i,j p (ρ i+ 1 2 ,j+ 1 2 ) -ι 2 : a (0) d = p ρ (0) , a (1) 
d = ρ (1) p ρ (0) , a

(2)

d = min i,j ρ (2) i+ 1 2 ,j+ 1 2 p ρ (0) + ρ (1) 2 2 p ρ (0) -ι,
leads to the conclusion with the following expressions of the constants

C -2 , C -1 , C 0 C 0 = - ρ (1) 2 2 p ρ (0) + ρ (0) p ρ (0) -min i,j ρ (2) i+ 1 2 ,j+ 1 2 ρ (0) p ρ (0) + ιρ (0) , C -1 = -ρ (0) ρ (1) p ρ (0) , C -2 = p ρ (0) -ρ (0) p ρ (0) .
As we did for the continuous system, we now insert the expansion in the scheme and identify terms arising with the same power of .

1) Owing to Lemma 3.3.7, we realize that the leading order scales as O 1 2 , and it leads to ρ

(0) i+ 1 2 ,j+ 1 2 -ρ (0) i-1 2 ,j+ 1 2 δx i = 0 and ρ (0) i+ 1 2 ,j+ 1 2 -ρ (0) i+ 1 2 ,j-1 2 δy j = 0.
From this, we deduce that, for all (i, j), ρ

(0) i-1 2 ,j+ 1 2 = ρ (0) i+ 1 2 ,j+ 1 2 = ρ (0) i+ 1 2 ,j-1 2
. In other words, at the discrete level the leading term in the updated density ρ (0) is constant in space.

2) At order O 1 , and using Lemma 3.3.7 again, we get

ρ (1) i+ 1 2 ,j+ 1 2 -ρ (1) i-1 2 ,j+ 1 2 δx i = 0 and ρ (1) i+ 1 2 ,j+ 1 2 -ρ (1) i+ 1 2 ,j-1 2 δy j = 0.
We deduce that, for all (i, j), ρ

(1) i-1 2 ,j+ 1 2 = ρ (1) i+ 1 2 ,j+ 1 2 = ρ (1) i+ 1 2 ,j-1 2
: at the discrete level ρ (1) is constant in space, too.

3) Let us now consider terms of order O (1). Since the data (ρ, u) is assumed to be wellprepared, by multiplying the mass equation by δx i+ 1 2 δy j+ 1 2 and summing over i and j (with periodic or wall boundary conditions and denoting by N, M the number of grid points in the horizontal and vertical direction, respectively), we get

M j=1 N i=1 δx i+ 1 2 δy j+ 1 2 ρ (0) -ρ (0) δt = 0.
We remind the reader that

M j=1 N i=1 δx i+ 1 2 δy j+ 1 2 = |Ω|. Therefore ρ (0) = ρ (0)
: the discrete density at leading order is constant in space and time. At the order O (1), the mass fluxes in (SDd) become

F x,(0) i,j+ 1 2 = F + (ρ (0) , u (0) i,j+ 1 2 ) + F -(ρ (0) , u (0) i,j+ 1 2 ) = ρ (0) u (0) i,j+ 1 2 , similarly F y,(0) i+ 1 2 ,j = ρ (0) v (0) i+ 1 2 ,j , F U p,x i,j+ 1 2 = ρ (0) u (0) i,j+ 1 2 and F U p,y i+ 1 2 ,j = ρ (0) v (0) i+ 1
2 ,j Going back to the discrete mass balance equation it becomes at the order O (1)

αρ (0) ∇ d • u (0) i+ 1 2 ,j+ 1 2 + (1 -α)ρ (0) ∇ d • u (0) i+ 1 2 ,j+ 1 2 = 0. Since ∇ d • u (0) i+ 1 2 ,j+ 1 2
vanishes for all (i, j), the update also satisfies ∇ d • u (0) = 0 and the second property in Definition 3.3.5 is preserved in the low Mach regime. Remark 3.3.8. When the initial data u(x, 0) = u init (x) satisfies ∇ • u init,(0) (x) = 0 at the continuous level, the simple evaluation on the grid

∇ d • u init,(0) i+ 1 2 ,j+ 1 2 = u init,(0) (x i+1 , y j+ 1 2 ) -u init,(0) (x i , y j+ 1 2 ) δx i+ 1 2 + v init,(0) (x i+ 1 2 , y j+1 ) -v init,(0) (x i+ 1 2 , y j ) δy j+ 1 2 92
is of order O(h). This consistency error can propagate, and the obtained discrete velocity field is not discrete-divergence-free. In particular, if the mesh does not resolve the small scale (δx ), the discrete initial data does not fulfil the criterion in Definition 3.3.5. This remark motivates to set

α = 2 .
This choice, which already appears in [START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations[END_REF], modifies the expansion above and the identification of the O(1) and O( 2 ) terms in the discrete mass balance equation. In particular, with this choice, the method automatically projects the velocity onto the space of discrete-divergence-free fields when → 0 : indeed, in this case, at the order O (1), the discrete mass balance equation becomes and sum for i, j and, since ρ (1) is a constant in space, we obtain that ρ (1) = ρ (1) . The first property in Definition 3.3.5 is satisfied in the low Mach regime. Remark 3.3.9. Using that ρ (k) = ρ (k) are constant for k ∈ {0, 1}, we can expand the mass flux

∇ d • u (0) i+ 1 2 ,j+ 1 2 = 0.
F x i,j+ 1 2 as F x i,j+ 1 2 = F + ρ (0) + ρ (1) , u (0) i,j+ 1 2 + u (1) i,j+ 1 2 + F -ρ (0) + ρ (1) , u (0) i,j+ 1 2 + u (1) i,j+ 1 2 + O( 2 ) = ρ (0) + ρ (1) u (0) i,j+ 1 2 + ρ (0) u (1) i,j+ 1 2 + O( 2 )
, so that we obtain the following expression

F x,(1) i,j+ 1 2 = ρ (1) u (0) i,j+ 1 2 + ρ (0) u (1) i,j+ 1 2 .
Similarly, we have

F y,(1) i+ 1 2 ,j = ρ (1) v (0) i+ 1 2 ,j + ρ (0) v (1) i+ 1 2 ,j , F U p,x,(1) i,j+ 1 2 = ρ (1) u (0) i,j+ 1 2 + ρ (0) u (1) i,j+ 1 2 , F U p,y,(1) i+ 1 2 ,j = ρ (1) v (0) i+ 1 2 ,j + ρ (0) v (1) i+ 1 2 ,j .
Thus, when α = 2 , the first order term O ( ) in the mass equation reads :

ρ (1) ∇ d • u (0) i+1/2,j+1/2 + ρ (0) ∇ d • u (1)
i+1/2,j+1/2 = 0.

Since, as said above in Remark 3.3.8, in this case we have ∇ d • u (0) = 0, we conclude that ∇ d • u (1) = 0, in analogy to the continuous case.

5) At the order O (1), using that ρ (0) and ρ (1) are constant, the momentum equation gives us :

ρ (0) u (0) i,j+ 1 2 -u (0) i,j+ 1 2 δt + G u,x,(0) i+ 1 2 ,j+ 1 2 -G u,x,(0) i-1 2 ,j+ 1 2 δx i + G u,y,(0) i,j+1 -G u,y,(0) i,j δy j+ 1 2 + p (2) i+ 1 2 ,j+ 1 2 -p (2) i-1 2 ,j+ 1 2 δx i = 0.
with a similar formula for the vertical component. We now turn to give a simple expression of the fluxes

G u,x,(0) i+ 1 2 ,j+ 1 2 and G u,y,(0) i,j
in the case where α = 2 . We first remark that in this case c(0

) (ρ, ν) = |ν (0) |.
Going back to the definition of F ± we thus observe that

F +,(0) (ρ, ν) = ρ (0) [ν (0) ] + and F -,(0) (ρ, ν) = -ρ (0) [ν (0) ] -.
Hence we get G u,x,(0) = ρ (0) G u,x and G u,y,(0) = ρ (0) G u,y with

G u,x i+ 1 2 ,j+ 1 2 = {u (0) } x i+ 1 2 ,j+ 1 2 • {u (0) } x i+ 1 2 ,j+ 1 2 -{|u (0) |} x i+ 1 2 ,j+ 1 2 • u (0) x i+ 1 2 ,j+ 1 2 (3.13) 
and

G u,y i,j = {δxv (0) } x i,j δx i • {u (0) } y i,j - {|δxv (0) |} x i,j δx i • u (0) y i,j , (3.14) 
where we have introduced the following notations for the average and the jump of a quantity Q, for k and l in N or N + 1 2 N,

{Q} x k,l = Q k-1 2 ,l + Q k+ 1 2 ,l 2 and {Q} y k,l = Q k,l-1 2 + Q k,l+ 1 2 2 , Q x k,l = Q k+ 1 2 ,l -Q k-1 2 ,l 2 and Q y k,l = Q k,l+ 1 2 -Q k,l-1 2 2 .
(3.15)

The fluxes G u,x i+ 1 2 ,j+ 1 2 (resp. G u,y i,j ) can be interpreted as fluxes in the horizontal (resp. vertical) direction of the advected quantity u (0) at velocity u (0) (resp. δxv (0) ). We obtain a similar expression of the fluxes for the second component of the velocity v :

G v,y i+ 1 2 ,j+ 1 2 = {v (0) } y i+ 1 2 ,j+ 1 2 • {v (0) } y i+ 1 2 ,j+ 1 2 -{|v (0) |} y i+ 1 2 ,j+ 1 2 • v (0) y i+ 1 2 ,j+ 1 2 (3.16) and G v,x i,j = {δyu (0) } y i,j δy j • {v (0) } x i,j - {|δyu (0) |} y i,j δy j • v (0) x i,j . (3.17)
Thus, we arrive at the following result Proposition 3.3.10. When setting α = 2 , formally, as tends to zero, the compressible Euler solver (SDd)-(FDd) behaves like the following scheme for solving the Incompressible Euler system (3.4) 

                                                   u (0) i,j+ 1 2 -u (0) i,j+ 1 2 δt + G u,x i+ 1 2 ,j+ 1 2 -G u,x i-1 2 ,j+ 1 2 δx i + G u,y i,j+1 -G ,u,y i,j δy j+ 1 2 + 1 ρ (0) p (2) i+ 1 2 ,j+ 1 2 -p (2) i-1 2 ,j+ 1 2 δx i = 0, v (0) i+ 1 2 ,j -v (0) i+ 1 2 ,j δt + G v,y i+ 1 2 ,j+ 1 2 -G v,y i+ 1 2 ,j-1 2 δy j + G v,x i+1,j -G ,v,x i,j δx i+ 1 2 + 1 ρ (0) p (2) i+ 1 2 ,j+ 1 2 -p (2) i+ 1 2 ,j-1 2 δy j = 0, ∇ d • u (0) i+ 1 2 ,j+ 1 2 = 0, ( 3 
G i+ 1 2 = {v} i+ 1 2 • {u} i+ 1 2 -{|v|} i+ 1 2 • u i+ 1 2 ,
which can be recasted as

G i+ 1 2 = 1 2          (v i + v i+1 )u i if v i > 0 and v i+1 > 0, (v i + v i+1 )u i+1 if v i < 0 and v i+1 < 0, v i+1 u i + v i u i+1 if v i < 0 < v i+1 , v i+1 u i+1 + v i u i if v i > 0 > v i+1 .
• In the specific linear case of solving the advection equation ∂ t u + ∂ x (vu) = 0 with v a constant, the scheme is exactly equal to the Upwind one.

• In the case of the Burgers equation

∂ t u+∂ x u 2 2
= 0, we chose v = u 2 and compare our scheme with the Lax-Friedrichs and the Upwind ones on the domain [0, 5] with periodic boundary conditions at final time T = 1. In Fig. 3.1 we plot the initial data on the left and the solution obtain with δx = 10 -3 and δt = 0.3δx for the initial data : This numerical experiments show that these fluxes do not produce non entropic shocks, in contrast to the Upwind scheme which is known to be non entropic since it captures wrong stationary shock solutions [79, Sections 13 & 14]. Depending on the final time, we may observed an overshoot phenomenom in compression regions but this is not a problem as we should bear in mind that the scheme is designed for incompressible equations.

u 0 (x) = -1 0 x 1 + 1 1<x 2 + (2.6 -0.8x)1 2 x 4.5 -1 4.5 x 5 .
In the limit scheme (3.18), the divergence free constraint on the velocity can also be written as an elliptic problem for the pressure which reads as follows :

∆ d p (2) i+ 1 2 ,j+ 1 2 = -ρ (0)   U i+1,j+ 1 2 -U i,j+ 1 2 δx i+ 1 2 + V i+ 1 2 ,j+1 -V i+ 1 2 ,j δy j+ 1 2   , ( 3.19) 
where U i,j+ 1 2 and V i+ 1 2 ,j are defined by

U i,j+ 1 2 = G u,x i+ 1 2 ,j+ 1 2 -G u,x i-1 2 ,j+ 1 2 δx i + G u,y i,j+1 -G u,y i,j δy j+ 1 2 , V i+ 1 2 ,j = G v,y i+ 1 2 ,j+ 1 2 -G v,y i+ 1 2 ,j-1 2 δy j + G v,x i+1,j -G v,x i,j δx i+ 1 2 .
(3.20)

Proof. In (3.18) we write the first line at (x i+1 , y j+ 1 2

) and (x i , y j+ 1

2

) and substract them ; we proceed similarly with the second line at (x i+ 1 2 , y j+1 ) and (x i+ 1 2 , y j ). Then, we sum up the two obtained equations to make appear

∇ d • u (0) i+ 1 2 ,j+ 1 2
and we ended up with

∇ d • u (0) i+ 1 2 ,j+ 1 2 -∇ d • u (0) i+ 1 2 ,j+ 1 2 δt + U i+1,j+ 1 2 -U i,j+ 1 2 δx i+ 1 2 + V i+ 1 2 ,j+1 -V i+ 1 2 ,j δy j+ 1 2 + 1 ρ (0) ∆ d p (2) i+ 1 2 ,j+ 1 2 = 0. Finally, using ∇ d • u (0) i+ 1 2 ,j+ 1 2 = 0 = ∇ d • u (0) i+ 1 2 ,j+ 1
Note that ∆ d is the standard 5-points discretization of the Laplace operator, in contrast to the operator that arises in the original scheme [56, eq. ( 28)] which decouples odd/even points of the discretization. This is a well-known drawback of colocalized methods which can lead to spurious oscillations due to the nontrivial checkboard modes that belong to the kernel of the operator. Using staggered grids avoids this difficulty ; it can be related to the mac discretization, which gets rid of these spurious modes [START_REF] Dellacherie | The influence of cell geometry on the Godunov scheme applied to the linear wave equation[END_REF]. Note that, as mentionned in Remark 3.3.8, the limit scheme (written here only in the case α = 2 ) automatically projects the initial velocity to discrete-divergence-free velocity fields. Actually, for the first time step the elliptic problem (3.19) should be written

∆ d p (2) i+ 1 2 ,j+ 1 2 = -ρ (0)   U i+1,j+ 1 2 -U i,j+ 1 2 δx i+ 1 2 + V i+ 1 2 ,j+1 -V i+ 1 2 ,j δy j+ 1 2   + ∇ d • u (0) i+ 1 2 ,j+ 1 2 δt , (3.21) 
which enforces ∇ d • u (0) = 0 as required in the limit scheme (3.18) even if ∇ d • u (0) = 0.

Remark 3.3.12. The scheme obtained in the limit → 0 can be interpreted as a projection algorithm (see e. g. the review [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF]) for solving (3.4). Indeed, reasoning with a semi-discrete viewpoint, it is equivalent to solve

     u -u δt + ∇ • u ⊗ u + 1 ρ ∇p = 0, ∇ • u = 0.
and to make the following two-step update : first, get rid of the solenoidal constraint and set

u -u δt + ∇ • u ⊗ u = 0
and, second, construct the solenoidal velocity field and the pressure by setting

u = u - δt ρ ∇p, ∇ • u = -δt∇ • ∇ • (u ⊗ u) = - δt ρ ∆p,
with the discrete Laplacian given in Definition 3.3.4 for the pressure. Indeed, the limit scheme can be reinterpreted in this fashion. This interpretation could be interesting when we consider the low Mach regime for the Navier-Stokes equations, with an implicit treatment of the viscous terms, instead of the inviscid equation, see [START_REF] Guillard | On the behavior of upwind schemes in the low Mach number limit. II : Godunov type schemes[END_REF]. At the fully discrete level, the limit scheme starts with

               u i,j+ 1 2 -u i,j+ 1 2 δt + G u,x i+ 1 2 ,j+ 1 2 -G u,x i-1 2 ,j+ 1 2 δx i + G u,y i,j+1 -G u,y i,j δy j+ 1 2 = 0, v i+ 1 2 ,j -v i+ 1 2 ,j δt + G v,y i+ 1 2 ,j+ 1 2 -G v,y i+ 1 2 ,j-1 2 δy j + G v,x i+1,j -G v,x i,j δx i+ 1 2 = 0,
where we predict the velocity without paying attention to the constraint. Then, we compute the pressure with

∆ d p (2) i+ 1 2 ,j+ 1 2 = ρ (0) ∇ d • u i+ 1 2 ,j+ 1 2 ,
and we finish by setting the velocity field

               u i,j+ 1 2 = u i,j+ 1 2 - δt ρ (0) p (2) i+ 1 2 ,j+ 1 2 -p (2) i-1 2 ,j+ 1 2 δx i , v i+ 1 2 ,j = v i+ 1 2 ,j - δt ρ (0) p (2) i+ 1 2 ,j+ 1 2 -p (2) i+ 1 2 ,j-1 2 δy j .

Numerical simulations

In this section we present some numerical test cases, in 1d and 2d, to illustrate the performances of the proposed scheme. In particular, we point out in the numerical experiments the stability and consistency issues.

Unless otherwise specified, we adopt in the numerical tests the definition (3.11) with ι = 0.

Simulation of 1D Riemann problems

We start with a simple 1D Riemann problem, issued from [START_REF] Dimarco | Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit[END_REF]. The solution is made of two moving rarefaction waves, a left and a right one, separated by a constant state. The pressure law is given by p(ρ) = ρ 2 and the initial conditions are

ρ (0) (x) = 1 + 2 if x < 0.5, 1 if x > 0.5, and 
u (0) (x) = 1 - if x < 0.5, 1 + if x > 0.5.
We compute the solution on the interval (0, 1) for three different values of ( , T ) where T is the final time. For each case, the number of grid points is N = 200 and the time step is defined by δt = βδx with β = 0.2, 0.1 or 0.01. We compare the results produced by the ap scheme described in this paper with the results given by the first order explicit scheme of [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF]. We first choose close to one and thus the Fast Dynamics part of the scheme does not play a significant role in the resolution. The results obtained with the two schemes are very close and all the values of β can be used. The results obtained with β = 0.2 are reported in Figure 3.2.

We then choose smaller and for β = 0.2 the fully explicit scheme returns a negative density (which means that the CFL condition for this scheme is violated and the time step should be reduced) whereas the ap scheme still returns a relevant result. A time step divided by 2 (that is β = 0.1) ensures the positivity of the density for both schemes. The results obtained with β = 0.2 (for the ap scheme) and β = 0.1 are reported in Figure 3.3.

Finally we choose close to zero and the explicit scheme returns a negative density for all β = 0.2, 0.1. We recover a relevant result with β = 0.01. The ap scheme provides a relevant results for all the values of β. The results obtained with β = 0.2, 0.1 (for the ap scheme) and β = 0.01 are reported in Figure 3.4.

This test confirms that the stability condition for the explicit method is sensitive to the value of the Mach number and it shows that the ap strategy allows us to keep significantly larger time steps. 

Numerical simulations in 2D

We discuss several test cases in 2d, all with periodic boundary conditions.

1) The traveling vortex test case is extracted from [START_REF] Kaiser | A new stable splitting for the isentropic Euler equations[END_REF]. The exact solution is known and a direct comparison is possible. We consider the domain [0, 1] × [0, 1]. The pressure law is given by p(ρ) = 1 2 ρ 2 and the initial density and velocity are given by ρ(x, y, 0) = 110 + 2 1.5 4π This problem reduces to a pure transport, the vortex is travelling at speed 0.6 in the horizontal direction : the exact solution is simply ρ(x, y, t) = ρ(x -0.6t, y, 0), u(x, y, t) = u(x -0.6t, y, 0).

For this test case, we observe in numerical simulations some spurious oscillations for large values of ( = 0.8 and = 0.5) when we set ι = 0 in definition (3.11) of the coefficient a d . We observe that setting ι = 1 is sufficient to eliminate these oscillations so that we adopt this definition for all the simulations performed for this test case. In Figures 3.5 To justify the ap character of the scheme, we study for different values of the Mach number the L 1 -norm between ρ and ρ (0) = 110 and the L 1 -norm of ∇ d •u, see Table 3.1.

The first column confirms that the density tends to be constant, equal to ρ (0) , when tends to zero, and the second column that the divergence of the velocity tends to zero when → 0. Table 3.1 -Test 1 (traveling vortex) at T = 0.01 for different on a 32 × 32 grid.

We then provide a convergence study in Fig 3 .8. For different Mach numbers, at time T = 0.01, we plot in logarithmic scales the discrete L 1 error norm between the exact solution and the discrete solution (the density at left and the first component of the velocity at right) as a function of the mesh size. We clearly observe a first order convergence. Similar results are obtained for the second component of the velocity.

2) We consider a 2d isentropic cylindrical explosion problem extracted from [START_REF] Dimarco | Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit[END_REF]. The computational domain is Ω = [-1, 1] × [-1, 1], discretized with a 50 × 50 grid. The pressure is given by p(ρ) = ρ and the initial density and velocity are given by ρ(x, y, 0) = 1 + 2 1 r(x,y) 1/4 , u(x, y, 0) = -xβ(x, y) r(x, y)ρ(x, y, 0) 1 r(x,y)>10 -15 , v(x, y, 0) = -yβ(x, y) r(x, y)ρ(x, y, 0)

1 r(x,y)>10 -15 ,
where r is the distance to the center of the domain, r(x, y) = √ x 2 + y 2 and β(x, y) = max{0, 1 -r(x, y)} × 1 -e -16r(x,y) 2 .

The initial density and velocity field are shown in Fig. 3.9. Like in [START_REF] Dimarco | Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit[END_REF] we display the numerical solution obtained at time t = 0.1, t = 0.25 and t = 0.5 for = 1 in Fig. 3.10 to Fig. 3.12. The simulation is performed on a 50 × 50 grid with a time step δt = 5 × 10 -4 . The results obtained for = 1 at time t = 0.1 and t = 0.5 are very close to the results obtained with a different AP-scheme in [START_REF] Dimarco | Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit[END_REF]. Note that, as confirmed by its authors, the result reported in [START_REF] Dimarco | Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit[END_REF] for t = 0.25 does not correspond to this simulation time. We warmly thanks the authors for taking the time to re-consider this test case and for many useful hints. We present in Fig. 3.13a the result obtained using the AP-scheme at t = 0.05 with = 10 -4 . We use again a 50 × 50 grid with a time step δt = 5 × 10 -4 . We can observe that this result obtained with the AP-scheme for a small value of is very close to the result obtained with the limit scheme (3.18) on a 100 × 100 grid (and a time step δt = 5 × 10 -4 ) which is presented in Fig. 3.13b. 4) We now turn to the resolution of the incompressible Euler system in order to check the validity of the limit scheme (3.18). We consider two test cases from [START_REF] Shu | A numerical resolution study of high order essentially nonoscillatory schemes applied to incompressible flow[END_REF]. The computational domain is Ω = [0, π]×[0, π]. The initial density is constant ρ(x, y, 0) = 1, and the pressure law given by p(ρ) = ρ 2 . For the first case, the initial data for the velocity reads u(x, y, 0) = -sin(x) cos(y) and v(x, y, 0) = cos(x) sin(y).

The exact solution is u(x, y, t) = -sin(x) cos(y)e -2cT Re and v(x, y, t) = cos(x) sin(y)e -2cT Re .

The exact vorticity and pressure are respectively equal to w(x, y, t) = -2 sin(x) sin(y)e -2cT Re and p(x, y, t) = 1 2 (cos(x) 2 + cos(y) 2 )e -4cT Re .

The coefficient c allows us to chose between solving the Euler system (c = 0) or the Navier-Stokes system (c = 1) with Re the Reynolds number :

∂ t u + ∇ • u ⊗ u) + ∇p = c Re ∆u.
When c = 0, we solve the equation by using the Euler code with a correction given by the exact right hand side : we compute ∆ d u exact since the exact solution is known. Note that in the case c = 0, the exact solution does not depend on the time t whereas in the case c = 0 we have a non-stationary solution. Figure 3.17 and Figure 3.18 show the results obtained at T = 2 with the limit scheme (3.18) for c = 0 using a 128 × 128 mesh and δt = 10 -3 . We define the discrete vorticity w by

w i,j = v i+ 1 2 ,j -v i-1 2 ,j δx i - u i,j+ 1 2 -u i,j-1 2 δy j ,
and in Table 3.2 we give the L 1 and L ∞ relative errors

err 1/∞ (q) = q exact -q 1/∞ q exact 1/∞
on the horizontal velocity u (the results for the vertical velocity v are similar) and for the vorticity w for c = 0 and c = 1 (with Re = 100) respectively, obtained on different meshes at T = 2 with δt = 10 -3 . In Table 3.3 we use the same data to solve the Euler system with the ap-scheme and it is obvious that, for the 16 × 16 grid or for the 32 × 32 grid, the ap-scheme has already converged to the incompressible solution for = 0.1. In Figure 3.19 we display the vorticity, with 60 equally spaced contours from -4.9 to 4.9 at t = 4 (left up), t = 6 (right up), t = 8 (left bottom) and t = 10 (right bottom). The exact solution is not known but we can compare with the results given in [START_REF] Shu | A numerical resolution study of high order essentially nonoscillatory schemes applied to incompressible flow[END_REF], based on computations with the ENO scheme on 64 × 64 and 128 × 128 grids. The simulation with the limit scheme (3.18) on a 128 × 128 grid produces results that are qualitatively very close to the one obtained with the ENO scheme on the 64 × 64 grid in [START_REF] Shu | A numerical resolution study of high order essentially nonoscillatory schemes applied to incompressible flow[END_REF]. The ENO scheme used in [START_REF] Shu | A numerical resolution study of high order essentially nonoscillatory schemes applied to incompressible flow[END_REF] is fourth-order accurate (in the L 1 sense), while our scheme is only first order accurate. Nevertheless, the vortices developed by the solution with smaller and smaller scales are well reproduced. 

c = 0 c = 1 Mesh err 1 (u) err 1 (w) err ∞ (u) err ∞ (w) err 1 (u) err 1 (w) err ∞ (u)

Chapitre 4 A scheme on unstructured grids for the full Euler system

This work is concerned with the extension on any type of mesh of the scheme introduced in Chapter 2, designed to solve the full Euler system on mac grids. This finite volume scheme is still based on a staggered discretization and the numerical fluxes are defined in the spirit of kinetic schemes. We bear in mind that storing numerical unknowns at different locations is motivated by possible extensions to problems involving incompressibility constraints (low Mach regimes, multifluid flows...). To this end, our approach is inspired from the Discrete Duality Finite Volume (ddfv) method, which has shown its efficiency for solving the Incompressible Navier-Stokes equations in [START_REF] Boyer | Inf-Sup Stability of the Discrete Duality Finite Volume method for the 2D Stokes problem[END_REF][START_REF] Delcourte | Developpement de méthodes de volumes finis pour la mécanique des fluides[END_REF][START_REF] Krell | Stabilized DDFV schemes for Stokes problem with variable viscosity on general 2D meshes[END_REF]. We exhibit stability conditions that guaranty the positivity of the discrete densities and internal energies. Moreover, up to some technical restrictions on the mesh, we can define a discrete total energy which satisfies a local conservation equation. We provide a set of numerical simulations to illustrate the behaviour of the scheme.

Introduction

This work is concerned with the simulation of the Euler system of gas dynamics

           ∂ t ρ + ∇ • ρu = 0, ∂ t ρu + ∇ • ρu ⊗ u + ∇p = 0, ∂ t ρE + ∇ • ρEu + ∇ • pu = 0. (4.1)
The unknowns depend on the time and space variables (t, x) ∈ [0, ∞) × Ω with Ω ⊂ R 2 , a regular and bounded domain. In (4.1), ρ, u, E and p stand for the mass density, the velocity field, the total energy and the pressure respectively. The pressure is related to the independent unknowns (ρ, u, E) through an equation of state that depends of the adiabatic exponent γ > 1 ; in what follows we set

E = u 2 2 + e and p = (γ -1)ρe,
where e is the internal energy.

As we have seen in Chapter 2, when we turn to the full Euler system (4.1), the staggered approach induces a new difficulty since in the energy equation the total energy E involves quantities -the velocity and the internal energy -which are naturally defined on different grids. To cope with this issue, it is tempting to work with the internal energy equation, namely

∂ t (ρe) + ∇ • (ρeu) = -p∇ • u,
instead of the evolution equation for ρE. Indeed, discrete densities, pressures and internal energies are naturally stored at the same locations, while the discrete velocities are stored on dual locations. However, it is well known that the equations for ρE and for ρe are no longer equivalent when the solutions present discontinuities, a typical feature of hyperbolic systems of conservations laws. We wish to adapt the approach discussed in Chapter 2 to a general polygonal mesh. Here, "staggered" means that the numerical unknowns are stored at different points of the mesh but they are many ways to do so. On Cartesian grids, such a strategy dates back to F.H. Harlow and J.E. Welch [START_REF] Harlow | Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[END_REF] for the Stokes system : the scalar variables (the pressure in their work) are stored at the cell centers of the control volumes, whereas the velocity are located at the cell faces. This is exactly the point of view adopted in Chapter 2 to design a scheme for the Euler equation on a mac grid. As said in the introduction, the underlying idea of this approach is to unify the study of compressible and incompressible flows : in the Cartesian framework, we have shown that our scheme for the barotropic Euler equations can be adapted to handle efficiently low Mach regimes. However, the scheme uses strongly the Cartesian geometry of the grid. Motivated by the treatment of incompressibility constraints and low Mach regimes, the adaptation we are going to discuss on unstructured grids is strongly inspired by the Discrete Duality Finite Volume (ddfv) method, as designed for the Incompressible Navier-Stokes equations.

The ddfv framework has been introduced in the 2000s in [START_REF] Domelevo | A finite volume method for the Laplace equation onalmost arbitrary two-dimensional grids[END_REF][START_REF] Hermeline | A finite volume method for the approximation of diffusion operators on distorted meshes[END_REF] to solve the Laplace equations on general 2d meshes, including non-conformal meshes, and, more generally, to numerically deal with elliptic operators ∇•(A∇u), x → A(x) being a matrix valued function. In the Finite Volume approach, one has to define numerical fluxes A∇u • n on the interfaces of the control volumes, and finding a relevant formula that uses only unknowns stored at the center of the control volumes is not possible without severe restrictions on the mesh geometry1 . The ddfv approach has been extended to the Stokes problem in [START_REF] Boyer | Inf-Sup Stability of the Discrete Duality Finite Volume method for the 2D Stokes problem[END_REF][START_REF] Delcourte | Developpement de méthodes de volumes finis pour la mécanique des fluides[END_REF][START_REF] Krell | Stabilized DDFV schemes for Stokes problem with variable viscosity on general 2D meshes[END_REF]. The main ideas of the ddfv method is to introduce additional unknowns so that full gradients can be reconstructed, and to mimic at the discrete level the duality formula involving differential operators we are used to for continuous quantities. The Euler systems does not involve any elliptic operator, and it only involves first order derivatives. Nevertheless, the staggered scheme we propose is strongly inspired by the ddfv approach designed in [START_REF] Goudon | A DDFV scheme for incompressible Navier-Stokes equations with variable density[END_REF] to solve the non homogeneous Navier-Stokes equations. The density variable incompressible Navier-Stokes system indeed couples a transport equation, for the density, a transport-diffusion equation, for the velocity, and a constraint that implicitely defines the pressure. We shall use ideas from [START_REF] Goudon | A DDFV scheme for incompressible Navier-Stokes equations with variable density[END_REF] that consists in duplicating variables, together with a suitable treatment of the convection terms in order to restore the consistency for the equations on the primal and the dual meshes. We do not address this issue here, but we expect this approach to be well-adapted to handle low Mach regimes on unstructured meshes. Moreover, the duplication of variables can also open perspectives to reconstruct gradients and to design a second-order version of the scheme, in the spirit of [START_REF] Berthon | Second-order MUSCL schemes based on dual mesh gradient reconstruction (DMGR)[END_REF] where a muscl scheme for the Euler equation is constructed based on ddfv principles.

To be more specific, in the approach we propose, the velocity is stored both at the center and the vertices of the primal mesh whereas the scalar quantities are stored at the edges. We refer the reader to Fig. 4.1 where the primal mesh appears in blue. This mesh defines the control volumes to study the velocity stored at the centers. However, the approximation of the variables stored at the vertices needs another mesh, the dual mesh that appears in red on Fig. 4.1. Finally, the pressure, stored at the edges, needs a third mesh : the diamond mesh (in green). The cornerstone of the construction relies on the definition of the discrete divergence operator for the velocity and the definition of the averaged mass fluxes needed for the convection terms of the momentum equation (2.3), which is directly inspired from [START_REF] Goudon | A DDFV scheme for incompressible Navier-Stokes equations with variable density[END_REF].

The discussion is organized as follows. In Section 4.2 we introduce in details the definition of the meshes, the numerical unknowns and the scheme. The presentation is free of constraints on the tessellation of the computational domain. We also investigate the stability issues, by means of positivity of the mass density and of the internal energy. We pay attention to the conservation of the total energy in Section 4.3. Again, the difficulty consists in finding a relevant definition by using suitable averages of quantities defined on different grids. This needs some technical restrictions on the geometry of the mesh. Section 4.4 validates the scheme by a series of numerical experiments. 

A scheme on unstructured staggered grids

This section is devoted to the presentation of the scheme and its main stability properties. We first describe in Section 4.2.1 the set notation and the construction of the mesh. The scheme is presented in details in Section 4.2.2 and finally, in Section 4.2.3 we prove that the scheme ensures the positivity of the density and the internal energy under CFL conditions. The conservation of the total energy will be discussed in the next Section.

From now on, we suppose that Ω is an open bounded polygonal domain of R 2 and its boundary is denoted ∂Ω.

Meshes and unknowns

Meshes As indicated in the introduction, the construction uses three meshes : the primal mesh, the dual mesh and the diamond mesh.

• The primal mesh M consists of disjoints, non-degenerate, convex polygons K called "primal cells". We associate to each K its center of gravity x K (see the blue cell in Fig. 4.3). The union of the primal cells covers the domain : Ω = K∈M K.

• The dual mesh M * ∪∂M * is made of cells built around vertices x K * of the primal mesh. We will distinguish the interior dual mesh M * , the vertices x K * of which do not belong to ∂Ω, and the boundary of the dual mesh ∂M * for which x K * ∈ ∂Ω. The interior dual mesh M * consists of cells K * , built around the vertex x K * / ∈ ∂Ω, by joining all the surrounding centers x K (see the red cell in Fig. 4.3). The boundary dual mesh ∂M * is the set of cells K * such that x K * ∈ ∂Ω and in this specific case, a dual cell is made by joining the centers of the cells that share the vertex x K * and the centers of the two boundary edges containing x K * (see Fig. A mesh is thus defined as a pair (T, D) where T = M ∪ M * ∪ ∂M * combines the primal mesh M and the dual mesh M * ∪ ∂M * and D stands for the diamond mesh. Contrarily to standard DDVF notation, we will not introduce here the notation ∂M which is usually the set of edges of the primal mesh M included in ∂Ω, considered as degenerated cells.
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2 -Meshes and notations on the boundary of Ω.

Boundaries We distinguish

• The zero-flux boundaries with nothing going out or going in at the interface between the domain and the outside,

• The outflow boundaries with no information coming from the outside of the domain,

• The Dirichlet boundaries where the variables are supposed to be known, equal to (ρ D , u D , e D ).

Notations

We refer the reader to Fig. 4.3 for all the following notations.

• We denote σ = K|L (respectively σ * = K * |L * ) the face separating two adjacent cells K and L (respectively K * and L * ) of the primal mesh (respectively dual mesh).

• We denote s = D σ,σ * |D σ ,σ * the face separating two diamond cells D σ,σ * and D σ ,σ * .

• For K ∈ M we denote D K = {D σ,σ * ∈ D, σ ∈ ∂K} and for K * ∈ M * ∪ ∂M * we denote D K * = {D σ,σ * ∈ D, σ * ∈ ∂K * }.
• The area of a cell X of M, M * ∪ ∂M * or D is denoted |X| and the length of an edge x of type σ, σ * or s is denoted |x|.

• For X a cell of M, M * ∪ ∂M * or D and for x ∈ ∂X, we define a unit vector n X,x normal to the face x of the cell X and pointing outwards :

n K,σ (with σ ∈ ∂K for K ∈ M), n K * ,σ * (with σ * ∈ ∂K * for K * ∈ M * ), and n σ,s (with s ∈ ∂D σ,σ * for D σ,σ * ∈ D). Note that n K,σ = -n L,σ , n K * ,σ * = -n L * ,σ * and n σ,s = -n σ ,s .
• In order to analyze the preservation of the non negativity of the density and the internal energy, we need to introduce a positive number reg (T) that measures the regularity of the mesh M. This constant satifies reg (T) > 1 by definition.

Definition 4.2.1. We denote • Velocity fields are stored at the centers and at the vertices of the cell of the primal mesh : u K is constant on the primal cell K ∈ M and u K * is constant on the dual cell

reg (T) = sup |D σ,σ * | |D σ,σ * ∩ X| , X ∈ M ∪ M * ∪ ∂M * , D σ,σ * ∈ D X ∩ D int ∪ |X| |D σ,σ * | , X ∈ M ∪ ∂M * , D σ,σ * ∈ D X ∩ D ext . σ = K |L σ = K | M σ * = K * | L * s = D σ , σ * ∩ D σ , σ * • x M • x K • x L • x N • x K * • x L * • x M * nK, σ n σ , s
K * ∈ M * ∪ ∂M * .
Observe that, in contrast to the Cartesian framework we store all the components of the velocity on the centers and vertices of the primal meshes. The Cartesian case is less demanding in terms of storage since the geometry allows us to store only the horizontal or the vertical component at a given location. It is finally convenient to introduce two further scalar quantities, related to the internal energy and the velocity, that are stored at the edges of the diamond mesh. For s = [x K , x K * ] an edge of D σ,σ * , we denote 

u σ,s := u K + u K * 2 • n σ,s . For σ = [x K * , x L * ]
u σ =        0 if σ is a zero-flux boundary, u K * + u L * 2 if σ is an outflow boundary, u D if σ is a Dirichlet boundary,
and

u σ := u σ • n K,σ .
Note that we have

u σ,s = -u σ ,s if s = D σ,σ * |D σ ,σ * .
Remark 4.2.3. Note that our discretisation technique differs from the staggered approach developed in [START_REF] Herbin | Staggered schemes for all speed flows[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF] : dealing with grids made of quadrilaterals in dimension 2, in [START_REF] Herbin | Staggered schemes for all speed flows[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF] densities and pressures are stored at the center of the control volumes and, using ideas reminiscent to Rannacher-Turek or Crouzeix-Ravart finite element methods, velocities are stored at the center of the faces of the mesh. The corresponding scheme can be shown to conserve globally the total energy, and stability/consistency properties are further discussed in [START_REF] Herbin | Staggered schemes for all speed flows[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF]. While the method differs by many aspects (discretization, definition of the numerical mass and momentum fluxes), the analysis of our scheme is based on manipulations close to the proofs of [START_REF] Herbin | Staggered schemes for all speed flows[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF].

Definition of the scheme

For further purposes, we remind the reader that the sound speed of equation (4.1) is c(e) = γ(γ -1)e, which only depends on the internal energy e. Thus, with u = (u, v) and ν denoting either u or v, the characteristic speeds of the system are given in each direction, by λ ± (e, ν) = ν ± c(e) and ν.

We start by defining the mass fluxes on the interfaces of the diamond cell. Using the sound speed c(e s ) and Definition 0.0.2 introduced in the Chapter 0, we define the mass flux F σ,s outgoing from the diamond cell D σ,σ * through the interface s = D σ,σ * |D σ ,σ * as

F σ,s = F + σ,s + F - σ,s with F + σ,s = F + (ρ σ,σ * , u σ,s , e s ) and F - σ,s = F -(ρ σ ,σ * , u σ,s , e s ).
The symmetry property (6) of the fonction F, namely F -(ρ, u) = -F + (ρ, -u) (see in the Chapter 0), implies that F σ,s = -F σ ,s and thus F σ,s is a conservative flux. Moreover we have the following two equalities :

F + σ,s = -F - σ ,s and F - σ,s = -F + σ ,s .
The discrete mass equation on a cell D σ,σ * ∈ D int is given by

ρ σ,σ * -ρ σ,σ * δt + 1 |D σ,σ * | s∈∂D σ,σ * |s|F σ,s = 0. (4.2)
For the diamond cell D σ,σ * ∈ D ext , we have to define the outgoing mass flux

F σ = F + σ +F - σ
through the boundary edge σ. Denoting K the primal cell whose σ is an edge, we adopt the following definition : 

• F + σ = 0 and F - σ = 0 for Zero-flux conditions. • F + σ = F + (ρ σ,σ * , u σ , e σ )
ρ σ,σ * -ρ σ,σ * δt + 1 |D σ,σ * | s∈∂D σ,σ * \∂Ω |s|F σ,s + |σ| |D σ,σ * | F σ = 0. (4.3)
With the motivation of writing a conservative equation for the momentum ρu, we introduce averaged densities on T. Definition 4.2.4. The averaged density on a cell K of the primal mesh is defined by

ρ K = D σ,σ * ∈D K |D σ,σ * ∩ K| |K| ρ σ,σ * for K ∈ M
and on a cell K * of the dual mesh, we set

ρ K * = D σ,σ * ∈D K * |D σ,σ * ∩ K * | |K * | ρ σ,σ * for K * ∈ M * ∪ ∂M * .
To these densities, we associate averaged mass fluxes F K,σ outgoing from a primal cell K and F K * ,σ * , F K * ,σ outgoing from a dual cell K * . We first consider interfaces σ and σ such that D σ,σ * ∈ D int . Following [START_REF] Goudon | A DDFV scheme for incompressible Navier-Stokes equations with variable density[END_REF], we set

F K,σ = F + K,σ + F - K,σ and F K * ,σ * = F + K * ,σ * + F - K * ,σ * with F ± K,σ = |D σ,σ * ∩ K| |D σ,σ * | s∈∂D σ,σ * s⊂L |s| |σ| F ± σ,s - |D σ,σ * ∩ L| |D σ,σ * | s∈∂D σ,σ * s⊂K |s| |σ| F ∓ σ,s , (4.4) 
F ± K * ,σ * = |D σ,σ * ∩ K * | |D σ,σ * | s∈∂D σ,σ * s⊂L * |s| |σ * | F ± σ,s - |D σ,σ * ∩ L * | |D σ,σ * | s∈∂D σ,σ * s⊂K * |s| |σ * | F ∓ σ,s . (4.5)
For interfaces σ and σ such that D σ,σ * ∈ D ext , we naturally set

F K,σ = F σ and F K * ,σ = F σ .
since F σ was previously defined as the flux outgoing through σ.

Moreover, denoting σ = [x K * , x L * ], we set F K * ,σ * = F + K * ,σ * + F - K * ,σ * with |σ * |F ± K * ,σ * = |D σ,σ * ∩ K * | |D σ,σ * | |s KL * |F ± σ,s KL * - |D σ,σ * ∩ L * | |D σ,σ * | |s KK * |F ∓ σ,s KK * + |D σ,σ * ∩ K * | 2|D σ,σ * | |σ|F ± σ - |D σ,σ * ∩ L * | 2|D σ,σ * | |σ|F ∓ σ .
What is crucial is the fact the fluxes satisfy the conservation property : with σ = K|L and

σ * = K * |L * , F K,σ = -F L,σ and F K * ,σ * = -F L * ,σ * .
More specificly we have

F ± K,σ = -F ∓ L,σ and F ± K * ,σ * = -F ∓ L * ,σ * . (4.6)
With this definition at hand, considering either the primal or the dual mesh, the averaged densities ρ K and ρ K * satisfy conservative equations, as observed in [START_REF] Goudon | A DDFV scheme for incompressible Navier-Stokes equations with variable density[END_REF] Proposition 4.2.5. The average densites ρ K , ρ K * satisfy the following conservative equations for any K ∈ M and any

K * ∈ M * ∪ ∂M * : |K| ρ K -ρ K δt + D σ,σ * ∈D K |σ|F K,σ = 0, |K * | ρ K * -ρ K * δt + D σ,σ * ∈D K * |σ * |F K * ,σ * . + D σ,σ * ∈D K * ∩Dext |σ| 2 F K * ,σ = 0.
Proof. Let us split the proof into two parts depending on the type of cell we consider. a) For K ∈ M, due to Definition 4.2.4 for ρ K and to equations (4.2), ( 4.3) we have on the one hand

|K| ρ K -ρ K δt = D σ,σ * ∈D K |D σ,σ * ∩ K| ρ σ,σ * -ρ σ,σ * δt = - D σ,σ * ∈D K ∩D int |D σ,σ * ∩ K| |D σ,σ * | s∈∂D σ,σ * |s|F σ,s - D σ,σ * ∈D K ∩Dext |D σ,σ * ∩ K| |D σ,σ * | |σ|F σ + s∈∂D σ,σ * \∂Ω |s|F σ,s . Since for D σ,σ * ∈ D K ∩ D ext we have |D σ,σ * ∩ K| = |D σ,σ * |, we find |K| ρ K -ρ K δt = - D σ,σ * ∈D K ∩D int |D σ,σ * ∩ K| |D σ,σ * | s∈∂D σ,σ * |s|F σ,s - D σ,σ * ∈D K ∩Dext |σ|F σ + s∈∂D σ,σ * \∂Ω |s|F σ,s . (4.7)
For σ = K|L, using the equality |D σ,σ * ∩ L| = |D σ,σ * | -|D σ,σ * ∩ K|, the flux F K,σ can be recast as

F K,σ = |D σ,σ * ∩ K| |D σ,σ * | s∈∂D σ,σ * |s| |σ| F σ,s - s∈∂D σ,σ * s⊂K |s| |σ| F σ,s ,
and thus

D σ,σ * ∈D K |σ|F K,σ = D σ,σ * ∈D K ∩Dext |σ|F K,σ + D σ,σ * ∈D K ∩D int |σ|F K,σ = D σ,σ * ∈D K ∩Dext |σ|F σ + D σ,σ * ∈D K ∩D int |D σ,σ * ∩ K| |D σ,σ * | s∈∂D σ,σ * |s|F σ,s - D σ,σ * ∈D K ∩D int s∈∂D σ,σ * s⊂K |s|F σ,s .
As the fluxes F σ,s are conservative, the last term of the right hand side can be written

D σ,σ * ∈D K ∩D int s∈∂D σ,σ * s⊂K |s|F σ,s = - D σ,σ * ∈D K ∩Dext s∈∂D σ,σ * \∂Ω |s|F σ,s ,
and thus

D σ,σ * ∈D K |σ|F K,σ = D σ,σ * ∈D K ∩Dext |σ|F σ + D σ,σ * ∈D K ∩D int |D σ,σ * ∩ K| |D σ,σ * | s∈∂D σ,σ * |s|F σ,s + D σ,σ * ∈D K ∩Dext s∈∂D σ,σ * \∂Ω |s|F σ,s
Inserting this result in (4.7) we obtain the first property stated in Proposition 4.2.5.

b) We now consider the case of K * ∈ M * ∪ ∂M * . As previously, on one hand, using Definition 4.2.4 for ρ K * and mass balance equations (4.2), (4.3), we find that

|K * | ρ K * -ρ K * δt = - D σ,σ * ∈D K * ∩D int |D σ,σ * ∩ K * | |D σ,σ * | s∈∂D σ,σ * |s|F σ,s - D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | |D σ,σ * | |σ|F σ + s∈∂D σ,σ * \∂Ω |s|F σ,s . (4.8)
On the other hand, using the definition of averaged fluxes F K * ,σ * and the conservativity of mass fluxes F σ,s as previously, we have

D σ,σ * ∈D K * ∩D int |σ * |F K * ,σ * = D σ,σ * ∈D K * ∩D int      |D σ,σ * ∩ K * | |D σ,σ * | s∈∂D σ,σ * |s|F σ,s - s∈∂D σ,σ * s⊂K * |s|F σ,s      = D σ,σ * ∈D K * ∩D int |D σ,σ * ∩ K * | |D σ,σ * | s∈∂D σ,σ * |s|F σ,s + D σ,σ * ∈D K * ∩Dext s∈∂D σ,σ * \∂Ω s⊂K * |s|F σ,s , (4.9 
) and

D σ,σ * ∈D K * ∩Dext |σ * |F K * ,σ * + |σ| 2 F K * ,σ = D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | |D σ,σ * | |s KL * |F σ,s KL * - |D σ,σ * ∩ L * | |D σ,σ * | |s KK * |F σ,s KK * + D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | -|D σ,σ * ∩ L * | 2|D σ,σ * | |σ|F σ + |σ| 2 F σ .
In this last equality, the first term of the right hand side can be recast as

D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | |D σ,σ * | |s KL * |F σ,s KL * - |D σ,σ * ∩ L * | |D σ,σ * | |s KK * |F σ,s KK * = D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | |D σ,σ * | s∈∂D σ,σ * \∂Ω s⊂L * |s|F σ,s - D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ L * | |D σ,σ * | s∈∂D σ,σ * \∂Ω s⊂K * |s|F σ,s ,
and the second one can be written

D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | -|D σ,σ * ∩ L * | 2|D σ,σ * | |σ|F σ + |σ| 2 F σ = D σ,σ * ∈D K * ∩Dext |σ| 2 F σ |D σ,σ * ∩ K * | -|D σ,σ * ∩ L * | |D σ,σ * | + 1 = D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | |D σ,σ * | |σ|F σ ,
so that we find

D σ,σ * ∈D K * ∩Dext |σ * |F K * ,σ * + |σ| 2 F K * ,σ = D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | |D σ,σ * | s∈∂D σ,σ * \∂Ω s⊂L * |s|F σ,s - D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ L * | |D σ,σ * | s∈∂D σ,σ * \∂Ω s⊂K * |s|F σ,s + D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | |D σ,σ * | |σ|F σ .
(4.10) Thus, combining (4.9) and (4.10), we get

D σ,σ * ∈D K * ∩D int |σ * |F K * ,σ * + D σ,σ * ∈D K * ∩Dext |σ * |F K * ,σ * + |σ| 2 F K * ,σ = D σ,σ * ∈D K * ∩D int |D σ,σ * ∩ K * | |D σ,σ * | s∈∂D σ,σ * |s|F σ,s + D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | |D σ,σ * | |σ|F σ + D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | |D σ,σ * | s∈∂D σ,σ * \∂Ω |s|F σ,s .
Inserting this result in (4.8) we obtain the second property stated in Proposition 4.2.5.

We now turn to the definition of the momentum fluxes G K,σ from primal cells and G K * ,σ * , G K * ,σ from dual cells. We first consider the case of interfaces σ ⊂ ∂Ω. In this case, we set

G K,σ = F + K,σ u K + F - K,σ u L and G K * ,σ * = F + K * ,σ * u K * + F - K * ,σ * u L * . (4.11)
Namely, for defining the momentum fluxes we use the mass fluxes F ± K,σ , F ± K * ,σ * given by (4.4) and (4.5), which are both conservative and consistent with the mass equation on the primal and the dual meshes, see [START_REF] Goudon | A DDFV scheme for incompressible Navier-Stokes equations with variable density[END_REF]. This is combined with the usual upwinding principles. We see that the momentum fluxes are conservative as a consequence of (4.6). For the boundary conditions, that is for σ ⊂ ∂Ω, we define :

G K,σ = F + σ u K + F - σ u σ and G K * ,σ = F + σ u K * + F - σ u σ .
Remark 4.2.6. Note that for fluxes G K,σ , the formula (4.11) is valid also for σ ⊂ ∂Ω if we use the convention u L = u σ in this case.

The momentum equation also requires to introduce a discrete pressure gradient : Definition 4.2.7. The discrete pressure gradient ∇ d p is defined on T by

(∇ d p) K = 1 |K| D σ,σ * ∈D K |σ|p σ,σ * n K,σ , for K ∈ M, (∇ d p) K * = 1 |K * | D σ,σ * ∈D K * |σ|p σ,σ * n K,σ , for K * ∈ M * , (∇ d p) K * = 1 |K * | D σ,σ * ∈D K * ∩D int |σ * |p σ,σ * n K * ,σ * + D σ,σ * ∈D K * ∩D int |σ| 2 p σ,σ * n K,σ , for K * ∈ ∂M * .
The discrete momentum equation is given for K ∈ T by

ρ K u K -ρ K u K δt + 1 |K| D σ,σ * ∈D K |σ|G K,σ + (∇ d p) K = 0, ρ K * u K * -ρ K * u K * δt + 1 |K * | D σ,σ * ∈D K * ∩D int |σ * |G K * ,σ * + 1 |K * | D σ,σ * ∈D K * ∩Dext |σ * |G K * ,σ * + |σ| 2 G K * ,σ + (∇ d p) K * = 0, (4.12) 
with ρ K and ρ K * given by Definition 4.2.4, fluxes defined in (4.11) and pressure gradients in Definition 4.2.7.

At the continuous level, considering smooth enough functions, the internal energy equation is deduced from the kinetic energy balance which is itself obtained by multiplying the momentum equation by u. At the discrete level, multiplying the discrete momentum equation by u K or u K * , whatever the considered mesh, introduces a remainder term that has to be taken into account to write the discrete internal energy equation [START_REF] Herbin | Staggered schemes for all speed flows[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF]. To this end, let us introduce kinetic fluxes K K,σ from primal cells and K K * ,σ * , K K * ,σ from dual cells. For σ ⊂ ∂Ω, we set

K K,σ = F + K,σ u K 2 2 + F - K,σ u L 2 2
, and

K K * ,σ * = F + K * ,σ * u K * 2 2 + F - K * ,σ * u L * 2 2 . (4.13)
These fluxes are conservative as a consequence of (4.6). For the boundary conditions, that is σ ⊂ ∂Ω, we set

K K,σ = F + σ u K 2 2 + F - σ u σ 2 2 and K K * ,σ = F + σ u K * 2 2 + F - σ u σ 2 2 .
Remark 4.2.8. Note that, as for momentum fluxes (see Remark 4.2.6) the formula (4.13) for fluxes K K,σ , is valid also for σ ⊂ ∂Ω if we use the convention u L = u σ in this case.

Definition 4.2.9. For K ∈ M we set

R K = ρ K 2δt u K -u K 2 + 1 |K| D σ,σ * ∈D K |σ|F - K,σ u K -u K 2 2 - u K -u L 2 2 ,
with the convention that u L = u σ when σ ⊂ ∂Ω.

For K * ∈ M * ∪ ∂M * we set R K * = ρ K * 2δt u K * -u K * 2 + 1 |K * | D σ,σ * ∈D K * |σ * |F - K * ,σ * u K * -u K * 2 2 - u K * -u L * 2 2 + 1 |K * | D σ,σ * ∈D K * ∩Dext |σ| 2 F - σ u K * -u K * 2 2 - u K * -u σ 2 2 , Lemma 4.2.10. The discrete kinetic equation is given for K ∈ M and K * ∈ M * ∪ ∂M * by ρ K u K 2 2 -ρ K u K 2 2 δt + 1 |K| D σ,σ * ∈D K |σ|K K,σ + (∇ d p) K • u K = -R K . (4.14) ρ K * u K * 2 2 -ρ K * u K * 2 2 δt + 1 |K * | D σ,σ * ∈D K * ∩D int |σ * |K K * ,σ * + 1 |K * | D σ,σ * ∈D K * ∩Dext |σ| 2 K K * ,σ + (∇ d p) K * • u K * = -R K * . ( 4.15) 
Proof. For X ∈ T, we multiply by u X the momentum equation (4.12) and use the averaged mass equation in Proposition (4.2.5).

a) Let K ∈ M.
In what follows, we use the convention that u L = u σ when the edge σ ⊂ ∂Ω ; so that the expressions (4.11) and (4.13) are valid also for σ ⊂ ∂Ω (see Remarks 4.2.6 and 4.2.8). The first step is to remark that

ρ K u K -ρ K u K δt • u K = 1 δt ρ K u K 2 2 -ρ K u K 2 2 + ρ K 2 u K -u K 2 - ρ K -ρ K δt u K 2 2 -u K • u K .
Thus using the average mass balance stated in Proposition (4.2.5) we get

ρ K u K -ρ K u K δt • u K = 1 δt ρ K u K 2 2 -ρ K u K 2 2 + ρ K 2 u K -u K 2 + 1 |K| σ∈∂K |σ|F K,σ u K 2 2 -u K • u K .
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Next, using the notation F |.| = F + -F -and bearing in mind that F = F + + F -, we get

G K,σ = F |.| K,σ + F K,σ 2 u K + F K,σ -F |.| K,σ 2 u L = F K,σ u K + u L 2 + F |.| K,σ u K -u L 2 .
Hence, the momentum equation multiplied by u K becomes

ρ K u K 2 2 -ρ K u K 2 2 δt + ρ K 2δt u K -u K 2 + (∇ d p) K • u K + 1 |K| σ∈∂K |σ|B K,σ = 0,
where

B K,σ = F K,σ u K 2 2 - u K -u L 2 • u K + F |.| K,σ u K -u L 2 • u K = F + K,σ u K 2 2 + F - K,σ u L 2 2 + F - K,σ u K 2 2 - u L 2 2 -(u K -u L ) • u K .
With definition (4.13) we are left with

B K,σ = K K,σ + F - K,σ u K -u K 2 2 - u K -u L 2 2 ,
and thus obtain (4.14).

b) For K * ∈ M * ∪ ∂M * , as previously, we first remark that

ρ K * u K * -ρ K * u K * δt • u K * = 1 δt ρ K * u K * 2 2 -ρ K * u K * 2 2 + ρ K * 2 u K * -u K * 2 - ρ K * -ρ K * δt u K * 2 2 -u K * • u K * .
Thus using the average mass balance stated in Proposition (4.2.5) we get

ρ K * u K * -ρ K * u K * δt • u K * = 1 δt ρ K * u K * 2 2 -ρ K * u K * 2 2 + ρ K * 2 u K * -u K * 2 + 1 |K * | D σ,σ * ∈D K * |σ * |F K * ,σ * u K * 2 2 -u K * • u K * + 1 |K * | D σ,σ * ∈D K * ∩Dext |σ| 2 F K * ,σ u K * 2 2 -u K * • u K * .
The momentum equation multiplied by u K * becomes

ρ K * u K * 2 2 -ρ K * u K * 2 2 δt + ρ K * 2δt u K * -u K * 2 + (∇ d p) K * • u K * + 1 |K * |   D σ,σ * ∈D K * |σ * |F K * ,σ * + D σ,σ * ∈D K * ∩Dext |σ| 2 F σ   u K * 2 2 -u K * • u K * + 1 |K * |   D σ,σ * ∈D K * |σ * |G K * ,σ * + D σ,σ * ∈D K * ∩Dext |σ| 2 G K * ,σ   • u K * = 0.
We obtain (4.15) by remarking that, as in the first part of the proof, we have for all

D σ,σ * ∈ D K * F K * ,σ * u K * 2 2 -u K * • u K * + G K * ,σ * • u K * = K K * ,σ * + F - K * ,σ * u K * -u K * 2 2 - u K * -u L * 2 2 .
and similarly, we also get for all

D σ,σ * ∈ D K * ∩ D ext that F σ u K * 2 2 -u K * • u K * + G K * ,σ • u K * = K K * ,σ + F - σ u K * -u K * 2 2 - u K * -u σ 2 2 .
We remind the reader that the kinetic energy equation does not have to be solved since we already know the velocity on the primal and dual meshes from the momentum equation. This computation only aims at defining the remainder terms R K and R K * that will be used in the equation for updating the internal energy. Before this, we need to introduce a discrete divergence operator. Definition 4.2.11. The discrete divergence operator on a cell D σ,σ * ∈ D is defined as

(∇ d • u) σ,σ * = 1 |D σ,σ * | s∈∂D σ,σ * |s|u σ,s , ∀D σ,σ * ∈ D int (∇ d • u) σ,σ * = 1 |D σ,σ * | s∈∂D σ,σ * \∂Ω |s|u σ,s + |σ| 2|D σ,σ * | u σ + u K * + u L * 2 • n K,σ , ∀D σ,σ * ∈ D ext
The following statement gives an equivalent formulation of the discrete divergence ; it will be useful to study the stability of the scheme. Lemma 4.2.12. The discrete divergence operator on a cell D σ,σ * ∈ D recasts as

(∇ d • u) σ,σ * = 1 2|D σ,σ * | (|σ| (u L -u K ) • n K,σ + |σ * | (u L * -u K * ) • n K * ,σ * ) , ∀D σ,σ * ∈ D int . (∇ d • u) σ,σ * = 1 2|D σ,σ * | (|σ| (u σ -u K ) • n K,σ + |σ * | (u L * -u K * ) • n K * ,σ * ) , ∀D σ,σ * ∈ D ext .
Proof. Let us first assume that D σ,σ * ∈ D int . Using the definition of u σ,s and of (∇ d • u) σ,σ * , we have

s∈∂D σ,σ * |s|u σ,s = u K 2 • (|s KK * |n σ,s KK * + |s KL * |n σ,s KL * ) + u K * 2 • (|s KK * |n σ,s KK * + |s LK * |n σ,s LK * ) + u L 2 • (|s LK * |n σ,s LK * + |s LL * |n σ,s LL * ) + u L * 2 • (|s KL * |n σ,s KL * + |s LL * |n σ,s LL * ) .
Consider a triangle ABC. For a given vertex X, we denote |x| the length of the edge x that does not contain X and n X stands for the outward unit vector, see Fig. 4.4. The following equality holds :

|a|n A + |b|n B + |c|n C = 0. A B C |a| |b| |c| n A n B n C Figure 4.4 -Triangle ABC It follows that s∈∂D σ,σ * |s|u σ,s = - u K 2 • |σ|n K,σ - u K * 2 • |σ * |n K * ,σ * - u L 2 • |σ|n L,σ - u L * 2 • |σ * |n L * ,σ * .
We conclude by using

-n L,σ = n K,σ and -n L * ,σ * = n K * ,σ * .
The proof for D σ,σ * ∈ D ext follows exactly the same lines and is left to the reader.

For the discretization of the internal energy equation, we define the following numerical fluxes, for all D σ,σ * ∈ D int and s

= D σ,σ * |D σ ,σ * ∈ ∂D σ,σ * , E σ,s = e σ,σ * F + σ,s + e σ ,σ * F - σ,s . (4.16)
We observe that the fluxes E σ,s are conservative by definition. For D σ,σ * ∈ D ext , we have to define the outgoing flux E σ through the primal egde σ ⊂ ∂D σ,σ * ∩ ∂Ω. We take

E σ = e σ,σ * F + σ + e σ F - σ 126
Finally, we also give the definition of a remainder term R σ,σ * on the diamond cell, which is based on the remainder term R K and R K * given in Definition 4.2.9,

R σ,σ * = |D σ,σ * ∩ K|R K + |D σ,σ * ∩ L|R L + |D σ,σ * ∩ K * |R K * + |D σ,σ * ∩ L * |R L * 2|D σ,σ * | , ( 4.17) 
with the convention that R L = 0 if D σ,σ * ∈ D ext . This definition comes from the derivation of the local conservation of the total energy that will be discussed in the forthcoming Section 4.3. The remainder R σ,σ * is defined so that it exactly balances the kinetic energy contributions that will appear when summing the internal energy equation and the kinetic energy equations.

The discrete internal energy equation is given by

ρ σ,σ * e σ,σ * -ρ σ,σ * e σ,σ * δt + 1 |D σ,σ * | s∈∂D σ,σ * |s|E σ,s + p σ,σ * (∇ d • u) σ,σ * = R σ,σ * , ∀D σ,σ * ∈ D int ρ σ,σ * e σ,σ * -ρ σ,σ * e σ,σ * δt + 1 |D σ,σ * | s∈∂D σ,σ * |s|E σ,s + |σ| |D σ,σ * | E σ + p σ,σ * (∇ d • u) σ,σ * = R σ,σ * , ∀D σ,σ * ∈ D ext (4.18)
where the flux E σ,s is defined by (4.16), ∇ d • u is given by Definition 4.2.11, and R σ,σ * by (4.17).

Stability analysis

We now turn to the stability analysis of the scheme. Firstly, we exhibit a CFL-condition which ensures that the numerical density remains non-negative. Secondly, in order to justify that the scheme preserves the non-negativity of the internal energy too, we exhibit a condition that insures that the remainder terms R K and R K * , and thus R σ,σ * , are kept positive.

We remind the reader the fundamental Lemma given in the introduction, that will be useful in this Section : For all u ∈ R, for all ρ 0 and for all c 0, the fluxes F ± satisfy the following inequalities :

0 F + (ρ, u) ρ[λ + (c, u)] + and -ρ[λ -(c, u)] -F -(ρ, u) 0. ( 4.19) 
Proposition 4.2.13. Let ρ σ,σ * 0. We assume that the following CFL-like conditions are satisfied

δt |D σ,σ * | s∈∂D σ,σ * |s|[λ + (e s , u σ,s )] + 1, ∀D σ,σ * ∈ D int δt |D σ,σ * | s∈∂D σ,σ * \∂Ω |s|[λ + (e s , u σ,s )] + + |σ|[λ + (e σ , u σ )] + 1, ∀D σ,σ * ∈ D ext . (4.20)
Then, the non negativity of the density ρ σ,σ * is preserved : ρ σ,σ * 0.

Proof. Let D σ,σ * ∈ D int . We go back to the mass conservation equation (4.2) and we make use of equation (4.19) and we are thus led to

ρ σ,σ * = ρ σ,σ * - δt |D σ,σ * | s∈∂D σ,σ * |s| F + (ρ σ,σ * , u σ,s ) + F -(ρ σ ,σ * , u σ,s ) ρ σ,σ * - δt |D σ,σ * | s∈∂D σ,σ * |s|F + (ρ σ,σ * , u σ,s ) ρ σ,σ * - δt |D σ,σ * | s∈∂D σ,σ * |s|ρ σ,σ * [λ + (e s , u σ,s )] + .
With ρ σ,σ * 0, the right hand side of this inequality remains non negative under the CFLlike condition (4.20). The proof for D σ,σ * ∈ D ext follows exactly the same lines and is left to the reader.

Remark 4.2.14. In order to compare the stability condition with the CFL condition obtained on mac grids, see [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF], we remind the reader that u σ,s = -u σ ,s so that the characteristic speeds of the system satisfy :

[λ + (e s , u σ,s )] + = [λ + (e s , -u σ ,s )] + = [-λ -(e s , u σ ,s )] + = [λ -(e s , u σ ,s )] -.
It allows us to rewrite the conditions (4.20) in a form similar to what has been obtained on Cartesian grids. For instance, the first one can be recasted as

δt |D σ,σ * |      s∈∂D σ,σ * s⊂K |s|[λ + (e s , u σ,s )] + + s∈∂D σ,σ * s⊂L |s|[λ -(e s , u σ ,s )] -      1.
We now turn to the remainder term R K . The fact that R K remains non-negative depends on the mesh-regularity coefficient reg (T), and the obtained condition is stronger than (4.20).

Proposition 4.2.15. Let us assume that the following CFL-like conditions are satisfied

δt |D σ,σ * | s∈∂D σ,σ * |s|[λ + (e s , u σ,s )] + 1 1 + reg (T) , ∀D σ,σ * ∈ D int , (4.21) δt |D σ,σ * | s∈∂D σ,σ * \∂Ω |s|[λ + (e s , u σ,s )] + + |σ|[λ + (e σ , u σ )] + 1 reg (T) , ∀D σ,σ * ∈ D ext , (4.22) δt |D σ,σ * | 1 + reg (T) |σ| 2 [λ + (e σ , u σ )] + + |σ| 2 reg (T) -1 ρ D ρ σ,σ * [λ + (e σ , u D )] - + reg (T) s∈∂D σ,σ * \∂Ω |s|[λ + (e s , u σ,s )] + 1, ∀D σ,σ * ∈ D ext . (4.23) Then, R K 0 ∀K ∈ M, R K * 0 ∀K * ∈ M * ∪ ∂M * and R σ,σ * 0 ∀D σ,σ * ∈ D.
Proof. Let us split the proof into two parts depending on the type of cell we consider. a) Let K ∈ M. By using the averaged mass equation in Proposition 4.2.5, the remainder term R K in Definition 4.2.9 can be rewritten as

R K = u K -u K 2 2δt   ρ K - δt |K| σ∈∂K |σ|F + K,σ   - 1 |K| σ∈∂K |σ|F - K,σ u K -u L 2 2 ,
where the last contribution is non negative since F - K,σ 0. Hence, we get

R K u K -u K 2 2δt A K where A K = ρ K - δt |K| σ∈∂K |σ|F + K,σ . (4.24)
Having A K 0 is thus enough to ensure R K 0. Going back to Definition 4.2.4 for ρ K and to (4.4) for F + K,σ , we modify the expression of A K , and we arrive at

A K = D σ,σ * ∈D K ∩Dext |D σ,σ * ∩ K| |K| ρ σ,σ * - δt |K| |σ|F + σ + D σ,σ * ∈D K ∩D int |D σ,σ * ∩ K| |K| ρ σ,σ * - δt |K| |D σ,σ * ∩ K| |D σ,σ * | s∈∂D σ,σ * s⊂L |s|F + σ,s + δt |K| |D σ,σ * ∩ L| |D σ,σ * | s∈∂D σ,σ * s⊂K |s|F - σ,s .
Adding and substracting

|D σ,σ * ∩ K| |D σ,σ * | s∈∂D σ,σ * s⊂K |s|F +
σ,s leads to :

A K = D σ,σ * ∈D K ∩Dext |D σ,σ * ∩ K| |K| ρ σ,σ * - δt |K| |σ|F + σ + D σ,σ * ∈D K ∩D int |D σ,σ * ∩ K| |K|   ρ σ,σ * - δt |D σ,σ * | s∈∂D σ,σ * |s|F + σ,s   + δt |K| D σ,σ * ∈D K ∩D int 1 |D σ,σ * | s∈∂D σ,σ * s⊂K |s| |D σ,σ * ∩ K|F + σ,s + |D σ,σ * ∩ L|F - σ,s .
Let us start by analysing the third sum. By using the equality

|D σ,σ * ∩ L| = |D σ,σ * | -|D σ,σ * ∩ 129 K|, we have D σ,σ * ∈D K ∩D int 1 |D σ,σ * | s∈∂D σ,σ * s⊂K |s| |D σ,σ * ∩ K|F + σ,s + |D σ,σ * ∩ L|F - σ,s = D σ,σ * ∈D K ∩D int 1 |D σ,σ * | s∈∂D σ,σ * s⊂K |s| |D σ,σ * ∩ K|F |•| σ,s + |D σ,σ * |F - σ,s .
Since the flux F σ,s is conservative, we get

D σ,σ * ∈D K ∩D int s∈∂D σ,σ * s⊂K |s|F σ,s = - D σ,σ * ∈D K ∩Dext s∈∂D σ,σ * \∂Ω |s|F σ,s ,
and thus

D σ,σ * ∈D K ∩D int s∈∂D σ,σ * s⊂K |s|F - σ,s = - D σ,σ * ∈D K ∩D int s∈∂D σ,σ * s⊂K |s|F + σ,s - D σ,σ * ∈D K ∩Dext s∈∂D σ,σ * \∂Ω |s|F σ,s .
Plugging this result in the definition of A K yields

A K = D σ,σ * ∈D K ∩Dext |D σ,σ * ∩ K| |K| ρ σ,σ * - δt |K| |σ|F + σ - δt |D σ,σ * | s∈∂D σ,σ * \∂Ω |s|F σ,s + D σ,σ * ∈D K ∩D int |D σ,σ * ∩ K| |K|   ρ σ,σ * - δt |D σ,σ * | s∈∂D σ,σ * |s|F + σ,s   + δt |K|      D σ,σ * ∈D K ∩D int |D σ,σ * ∩ K| |D σ,σ * | s∈∂D σ,σ * s⊂K |s|F |•| σ,s - D σ,σ * ∈D K ∩D int s∈∂D σ,σ * s⊂K |s|F + σ,s     
, which can be bounded from below as follows, since F |•| 0 and F F + , as

A K B ext K + B int K , with B ext K = D σ,σ * ∈D K ∩Dext |D σ,σ * ∩ K| |K| ρ σ,σ * - δt |K| |σ|F + σ - δt |D σ,σ * | s∈∂D σ,σ * \∂Ω |s|F + σ,s ,
and

B int K = D σ,σ * ∈D K ∩D int |D σ,σ * ∩ K| |K|   ρ σ,σ * - δt |D σ,σ * | s∈∂D σ,σ * |s|F + σ,s   - δt |K| D σ,σ * ∈D K ∩D int s∈∂D σ,σ * s⊂K |s|F + σ,s .
Substracting the non negative term

D σ,σ * ∈D K ∩D int s∈∂D σ,σ * s⊂L |s|F + σ,s to B int K , we get B int K D σ,σ * ∈D K ∩D int |D σ,σ * ∩ K| |K|   ρ σ,σ * - δt |D σ,σ * | s∈∂D σ,σ * |s|F + σ,s   - δt |K| D σ,σ * ∈D K ∩D int s∈∂D σ,σ * |s|F + σ,s D σ,σ * ∈D K ∩D int |D σ,σ * ∩ K| |K| ρ σ,σ *   1 - δt |D σ,σ * | 1 + |D σ,σ * | |D σ,σ * ∩ K| s∈∂D σ,σ * |s| F + σ,s ρ σ,σ *   .
By using equation (4.19) we end up with

B int K D σ,σ * ∈D K ∩D int |D σ,σ * ∩ K| |K| ρ σ,σ *   1 - δt |D σ,σ * | 1 + |D σ,σ * | |D σ,σ * ∩ K| s∈∂D σ,σ * |s|[λ + (e s , u σ,s )] +   . (4.25) Therefore B int K 0 holds when 1 δt |D σ,σ * | 1 + |D σ,σ * | |D σ,σ * ∩ K| s∈∂D σ,σ * |s|[λ + (e s , u σ,s )] + .
This inequality holds when (4.21) is fulfilled since reg (T)

|D σ,σ * | |D σ,σ * ∩ K| . b)
We now turn to the study of

B ext K . Since, for all D σ,σ * ∈ D K ∩D ext , |D σ,σ * ∩K| = |D σ,σ * |, we have B ext K = D σ,σ * ∈D K ∩Dext |D σ,σ * | |K| ρ σ,σ * 1 - δt |D σ,σ * | |σ| F + σ ρ σ,σ * - δt |D σ,σ * | |K| |D σ,σ * | s∈∂D σ,σ * \∂Ω |s| F + σ,s ρ σ,σ * D σ,σ * ∈D K ∩Dext |D σ,σ * | |K| ρ σ,σ * 1 - δt |D σ,σ * | |σ|[λ + (e σ , u σ )] + - δt |D σ,σ * | reg (T) s∈∂D σ,σ * \∂Ω |s|[λ + (e s , u σ,s )] + . Therefore B ext K 0 holds when 1 δt |D σ,σ * | |σ|[λ + (e σ , u σ )] + + reg (T) s∈∂D σ,σ * \∂Ω |s|[λ + (e s , u σ,s )] +
This inequality holds when (4.22) is fulfilled since reg (T) 1. Thus, R K 0, ∀K ∈ M.

We now turn to the study of R K * for K * ∈ M * ∪ ∂M * . The proof follows the same lines. By using the averaged mass equation in Proposition 4.2.5, the remainder term R K * in Definition 4.2.9 can be rewritten as

R K * = u K * -u K * 2 2δt ρ K * - δt |K * | D σ,σ * ∈D K * |σ * |F + K * ,σ * - δt |K * | D σ,σ * ∈D K * ∩Dext |σ| 2 F + σ - 1 |K * | D σ,σ * ∈D K * |σ * |F - K * ,σ * u K * -u L * 2 2 - 1 |K * | D σ,σ * ∈D K * ∩Dext |σ| 2 F - σ u K * -u σ 2 2 ,
where the two last contribution are non negative since F - K * ,σ * 0 and F - σ 0. Hence, we get

R K * u K * -u K * 2 2δt A K * , ( 4.26) 
where

A K * = ρ K * - δt |K * | D σ,σ * ∈D K * |σ * |F + K * ,σ * - δt |K * | D σ,σ * ∈D K * ∩Dext |σ| 2 F + σ .
Having A K * 0 is thus enough to ensure R K * 0. Going back to Definition 4.2.4 for ρ K * and to (4.5) for F + K * ,σ * , we modify the expression of A K * , and we arrive at

A K * = D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | |K * | ρ σ,σ * - δt |K * | |σ| 2 F + σ - δt |K * | |D σ,σ * ∩ K * | |D σ,σ * | |s KL * |F + σ,s KL * + δt |K * | |D σ,σ * ∩ L * | |D σ,σ * | |s KK * |F - σ,s KK * - δt |K * | |D σ,σ * ∩ K * | 2|D σ,σ * | |σ|F + σ + δt |K * | |D σ,σ * ∩ L * | 2|D σ,σ * | |σ|F - σ + D σ,σ * ∈D K * ∩D int |D σ,σ * ∩ K * | |K * | ρ σ,σ * - δt |K * | |D σ,σ * ∩ K * | |D σ,σ * | s∈∂D σ,σ * s⊂L * |s|F + σ,s + δt |K * | |D σ,σ * ∩ L * | |D σ,σ * | s∈∂D σ,σ * s⊂K * |s|F - σ,s .
Adding and substracting

|D σ,σ * ∩ K * | |D σ,σ * | s∈∂D σ,σ * s⊂K *
|s|F + σ,s leads to :

A K * = D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | |K * | ρ σ,σ * - δt |D σ,σ * | |σ| 2 1 + |D σ,σ * | |D σ,σ * ∩ K * | F + σ - |D σ,σ * ∩ L * | |D σ,σ * ∩ K * | F - σ + δt |K * | D σ,σ * ∈D K * ∩Dext - |D σ,σ * ∩ K * | |D σ,σ * | |s KL * |F + σ,s KL * + |D σ,σ * ∩ L * | |D σ,σ * | |s KK * |F - σ,s KK * + D σ,σ * ∈D K * ∩D int |D σ,σ * ∩ K * | |K * | ρ σ,σ * - δt |D σ,σ * | s∈∂D σ,σ * |s|F + σ,s + δt |K * | D σ,σ * ∈D K * ∩D int 1 |D σ,σ * | s∈∂D σ,σ * s⊂K * |s| |D σ,σ * ∩ K * |F + σ,s + |D σ,σ * ∩ L * |F - σ,s .
Let us start by analysing the fourth sum. Using equality

|D σ,σ * ∩ L * | = |D σ,σ * | -|D σ,σ * ∩ K * |, we have D σ,σ * ∈D K * ∩D int 1 |D σ,σ * | s∈∂D σ,σ * s⊂K * |s| |D σ,σ * ∩ K * |F + σ,s + |D σ,σ * ∩ L * |F - σ,s = D σ,σ * ∈D K * ∩D int 1 |D σ,σ * | s∈∂D σ,σ * s⊂K * |s| |D σ,σ * ∩ K * |F |•| σ,s + |D σ,σ * |F - σ,s .
Since the flux F σ,s is conservative, we get

D σ,σ * ∈D K * ∩D int s∈∂D σ,σ * s⊂K * |s|F σ,s = - D σ,σ * ∈D K * ∩Dext s∈∂D σ,σ * \∂Ω s⊂K * |s|F σ,s ,
and thus

D σ,σ * ∈D K * ∩D int s∈∂D σ,σ * s⊂K * |s|F - σ,s = - D σ,σ * ∈D K * ∩D int s∈∂D σ,σ * s⊂K * |s|F + σ,s - D σ,σ * ∈D K * ∩Dext s∈∂D σ,σ * \∂Ω s⊂K * |s|F σ,s .
133 Plugging this result in the definition of A K * yields

A K * = D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | |K * | ρ σ,σ * - δt |D σ,σ * | |σ| 2 1 + |D σ,σ * | |D σ,σ * ∩ K * | F + σ - |D σ,σ * ∩ L * | |D σ,σ * ∩ K * | F - σ - δt |K * | D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | |D σ,σ * | |s KL * |F + σ,s KL * + |D σ,σ * ∩ K * | |D σ,σ * | |s KK * |F - σ,s KK * +|s KK * |F + σ,s KK * + D σ,σ * ∈D K * ∩D int |D σ,σ * ∩ K * | |K * | ρ σ,σ * - δt |D σ,σ * | s∈∂D σ,σ * |s|F + σ,s + δt |K * | D σ,σ * ∈D K * ∩D int 1 |D σ,σ * | s∈∂D σ,σ * s⊂K * |s||D σ,σ * ∩ K * |F |•| σ,s - δt |K * | D σ,σ * ∈D K * ∩D int s∈∂D σ,σ * s⊂K * |s|F + σ,s .
which can be bounded from below as follows, since

F |•| 0 and F - σ,s KK * 0, A K * B ext K * + B int K * , with B ext K * = D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | |K * | ρ σ,σ * - δt |D σ,σ * | |σ| 2 1 + |D σ,σ * | |D σ,σ * ∩ K * | F + σ - |D σ,σ * ∩ L * | |D σ,σ * ∩ K * | F - σ - δt |K * | D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | |D σ,σ * | |s KL * |F + σ,s KL * + |s KK * |F + σ,s KK * and B int K * = D σ,σ * ∈D K * ∩D int |D σ,σ * ∩ K * | |K * | ρ σ,σ * - δt |D σ,σ * | s∈∂D σ,σ * |s|F + σ,s - δt |K * | D σ,σ * ∈D K * ∩D int s∈∂D σ,σ * s⊂K * |s|F + σ,s .
Substracting the non negative term δt

|K * | D σ,σ * ∈D K * ∩D int s∈∂D σ,σ * s⊂L * |s|F + σ,s to B int K * , we get B int K * D σ,σ * ∈D K * ∩D int |D σ,σ * ∩ K * | |K * | ρ σ,σ * - δt |D σ,σ * | s∈∂D σ,σ * |s|F + σ,s - δt |K * | D σ,σ * ∈D K * ∩D int s∈∂D σ,σ * |s|F + σ,s D σ,σ * ∈D K * ∩D int |D σ,σ * ∩ K * | |K * | ρ σ,σ *   1 - δt |D σ,σ * | 1 + |D σ,σ * | |D σ,σ * ∩ K * | s∈∂D σ,σ * |s| F + σ,s ρ σ,σ *   .
134 By using equation (4.19) we end up with

B int K * D σ,σ * ∈D K * ∩D int |D σ,σ * ∩ K * | |K * | ρ σ,σ *   1- δt |D σ,σ * | 1+ |D σ,σ * | |D σ,σ * ∩ K * | s∈∂D σ,σ * |s|[λ + (e s , u σ,s )] +   . Therefore B int K * 0 holds when 1 δt |D σ,σ * | 1 + |D σ,σ * | |D σ,σ * ∩ K * | s∈∂D σ,σ * |s|[λ + (e s , u σ,s )] + .
This inequality holds when (4.21) is fulfilled since reg (T)

|D σ,σ * | |D σ,σ * ∩ K * | .
We now turn to the study of

B ext K * . Since, for all D σ,σ * ∈ D K * ∩D ext , |D σ,σ * ∩K * | = |D σ,σ * |, we have B ext K * = D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | |K * | ρ σ,σ * - δt |D σ,σ * | |σ| 2 1 + |D σ,σ * | |D σ,σ * ∩ K * | F + σ - |D σ,σ * ∩ L * | |D σ,σ * ∩ K * | F - σ - δt |D σ,σ * | |s KL * |F + σ,s KL * + |D σ,σ * | |D σ,σ * ∩ K * | |s KK * |F + σ,s KK * D σ,σ * ∈D K * ∩Dext |D σ,σ * ∩ K * | |K * | ρ σ,σ * 1- δt |D σ,σ * | |σ| 2 1 + reg (T) F + σ ρ σ,σ * - 1 reg (T) -1 F - σ ρ σ,σ * - δt |D σ,σ * | reg (T) |s KL * | F + σ,s KL * ρ σ,σ * + |s KK * | F + σ,s KK * ρ σ,σ * . (4.27) Therefore B ext K 0 holds when 1 δt |D σ,σ * | 1 + reg (T) |σ| 2 [λ + (e σ , u σ )] + + |σ| 2 reg (T) -1 ρ D ρ σ,σ * [λ + (e σ , u D )] - + reg (T) s∈∂D σ,σ * \∂Ω |s|[λ + (e s , u σ,s )] +
This inequality holds when (4.23) is fulfilled. Thus, R K * 0. R D σ,σ * is non negative follows from the fact that R K , R L , R K * and R L * are all non negative.

We are now able to exhibit the CFL-like condition that ensures the non-negativity of the internal energy e σ,σ * . Proposition 4.2.16. Let e σ,σ * 0. We assume that (4.21), (4.22), (4.23) are fulfilled, and, moreover, that the following CFL-like conditions are satisfied on each diamond cell

D σ,σ * ∈ D : 1 γ δt |D σ,σ * | s∈∂D σ,σ * |s| |σ * | + |σ| √ 2|s| c(e σ,σ * ) + c(e s ) + [u σ,s ] + , ∀D σ,σ * ∈ D int (4.28) γ 1 + reg (T) δt |D σ,σ * | 1 + c(e σ,σ * )|σ| √ 2 reg (T) , ∀D σ,σ * ∈ D int (4.29) 1 γ δt |D σ,σ * |   s∈∂D σ,σ * |s| |σ * | + |σ| √ 2|s| c(e σ,σ * )+c(e s )+[u σ,s ] + +|σ|([u σ ] + + c(e σ ))   , ∀D σ,σ * ∈ D ext (4.30) γ 1+reg (T) δt |D σ,σ * | 1+ c(e σ,σ * )|σ| √ 2 reg (T)+ |σ|γ/2 1 -reg (T) 2 ρ D ρ σ,σ * [λ + (e σ , u D )] -, ∀D σ,σ * ∈ D ext (4.31)
Then the non negativity of the internal energy is preserved : we have e σ,σ * 0.

Proof. We start by observing that (4.21), (4.22) implies (4.20), so that ρ σ,σ * 0 if ρ σ,σ * 0. Next, we turn to the non negativity of e σ,σ * ; we follow the arguments in Chapter 2, Section 2.3.2. Let us write (∇ d • u) σ,σ * as in Lemma 4.2.12 and then apply the Young inequality for each four terms. For X ∈ M and i ∈ {0, 1} we write

(-1) i p σ,σ * u X n K,σ = (-1) i (γ -1) [ρ σ,σ * e σ,σ * (u X -u X ) • n K,σ + ρ σ,σ * e σ,σ * u X • n K,σ ] -ρ σ,σ * c(e σ,σ * ) 2 √ 2γ u X -u X 2 + (γ -1)e σ,σ * c(e σ,σ * ) √ 2 -(-1) i u X n K,σ , so that - δt|σ| 2|D σ,σ * | p σ,σ * (u L -u K )n K,σ - δt|σ| 2|D σ,σ * | ρ σ,σ * c(e σ,σ * ) 2 √ 2γ u K -u K 2 + u L -u L 2 - δt|σ| 2|D σ,σ * | (γ -1)ρ σ,σ * e σ,σ * 2c(e σ,σ * ) √ 2 + (u L -u K )n K,σ .
For X ∈ M * ∪ ∂M * and i ∈ {0, 1} we write

(-1) i p σ,σ * u X n K * ,σ * = (-1) i (γ -1) [ρ σ,σ * e σ,σ * (u X -u X ) • n K * ,σ * + ρ σ,σ * e σ,σ * u X • n K * ,σ * ] -ρ σ,σ * c(e σ,σ * ) 2 √ 2γ u X -u X 2 + (γ -1)e σ,σ * c(e σ,σ * ) √ 2 -(-1) i u X n K * ,σ * , so that - δt|σ * | 2|D σ,σ * | p σ,σ * (u L * -u K * )n K * ,σ * - δt|σ * | 2|D σ,σ * | ρ σ,σ * c(e σ,σ * ) 2 √ 2γ u K * -u K * 2 + u L * -u L * 2 - δt|σ * | 2|D σ,σ * | (γ -1)ρ σ,σ * e σ,σ * 2c(e σ,σ * ) √ 2 + (u L * -u K * )n K * ,σ * .
Let us split the proof into two, depending on the localisation of

D σ,σ * in D int or D ext . a) Suppose that D σ,σ * ∈ D int , we get ρ σ,σ * e σ,σ * T 0 + T K + T L + T K * + T L * with T 0 = ρ σ,σ * e σ,σ * -ρ σ,σ * e σ,σ * δt|σ| 2|D σ,σ * | (γ -1) 2c(e σ,σ * ) √ 2 + (u L -u K )n K,σ -ρ σ,σ * e σ,σ * δt|σ * | 2|D σ,σ * | (γ -1) 2c(e σ,σ * ) √ 2 + (u L * -u K * )n K * ,σ * - δt |D σ,σ * | s∈∂D σ,σ * |s|E σ,s ,
and for

X ∈ {K, L, K * , L * } T X = δt 2|D σ,σ * | |D σ,σ * ∩ X|R X - |σ| 2 √ 2γ ρ σ,σ * c(e σ,σ * ) u X -u X 2 .
In order to guaranty e σ,σ * 0 it is sufficient to ensure that these five terms are non negative. Using Lemma 4.2.12 on (∇ d • u) σ,σ * , T 0 becomes

T 0 = ρ σ,σ * e σ,σ *   1 - δt |D σ,σ * | (γ -1)   |σ * | + |σ| √ 2 c(e σ,σ * ) + s∈∂D σ,σ * |s|u σ,s     - δt |D σ,σ * | s∈∂D σ,σ * |s|E σ,s . Equation (4.19) yields E σ,s = e σ,σ * F + σ,s + e σ ,σ * F - σ ,s e σ,σ * F + σ,s ρ σ,σ * e σ,σ * [λ + (e s , u σ,s )]
+ and this allows us to bound T 0 from below as

T 0 ρ σ,σ * e σ,σ * 1 - δt |D σ,σ * | (γ -1)   |σ * | + |σ| √ 2 c(e σ,σ * ) + s∈∂D σ,σ * |s|u σ,s   - δt |D σ,σ * | s∈∂D σ,σ * |s|[λ + (e s , u σ,s )] + .
Finally, since u σ,s [u σ,s ] + and [λ + (e s , u σ,s )] + [u σ,s ] + + c(e s ), the fact that T 0 follows from

1 δt |D σ,σ * | (γ -1)   |σ * | + |σ| √ 2 c(e σ,σ * ) + s∈∂D σ,σ * |s|[u σ,s ] +   + δt |D σ,σ * | s∈∂D σ,σ * |s|([u σ,s ] + +c(e s )).
Gathering the [u σ,s ] + terms and using γ > 1 lead to the assumption (4.28). Next, we turn to the T X term. Owing to (4.24), we can write

T X u X -u X Going back to (4.25), we have A X σ ∈∂X |D σ ,σ * ∩X| |X| ρ σ ,σ * Q σ ,σ * where Q σ ,σ * =   1 - δt |D σ ,σ * | 1 + |D σ ,σ * | |D σ ,σ * ∩ X| s∈∂D σ ,σ * |s|[λ + (e s , u σ ,s )] +    . With (4.21), we get Q σ ,σ * 0 for each σ ∈ ∂X so that A X |D σ,σ * ∩X| |X| ρ σ,σ * Q σ,σ * and T X |D σ,σ * ∩ X| 2 4|D σ,σ * ||X| ρ σ,σ * u X -u X 2 Qσ,σ * , where Qσ,σ * = Q σ,σ * -c(e σ,σ * ) δt √ 2γ |σ||X| |D σ,σ * ∩ X| 2 .
That T X is non negative follows from Qσ,σ * 0 and we have

Qσ,σ * Q σ,σ * - δt |D σ,σ * | c(e σ,σ * )|σ|reg (T) √ 2γ |X| |D σ,σ * ∩ X| 1 - δt |D σ,σ * |   (1 + reg (T)) s∈∂D σ,σ * |s|[λ + (e s , u σ,s )] + + c(e σ,σ * )|σ|reg (T) √ 2γ |X| |D σ,σ * ∩ X|   . Substracting the non-negative term δt |D σ,σ * | (1 + reg (T)) |σ * | + |σ| √ 2
c(e σ,σ * ) on the right hand side and using (4.28) yield

Qσ,σ * 1 - δt |D σ,σ * | 1 + reg (T) γ + c(e σ,σ * )|σ|reg (T) √ 2γ |X| |D σ,σ * ∩ X| 1 - δt |D σ,σ * | 1 + reg (T) γ 1 + c(e σ,σ * )|σ| √ 2 |X| |D σ,σ * ∩ X| ,
which is thus non negative when (4.29) holds.

b) Suppose now that

D σ,σ * ∈ D ext , we get ρ σ,σ * e σ,σ * T 0 + T K + T L + T K * + T L * with T 0 = ρ σ,σ * e σ,σ * -ρ σ,σ * e σ,σ * δt|σ| 2|D σ,σ * | (γ -1) 2c(e σ,σ * ) √ 2 + (u L -u K )n K,σ -ρ σ,σ * e σ,σ * δt|σ * | 2|D σ,σ * | (γ -1) 2c(e σ,σ * ) √ 2 + (u L * -u K * )n K * ,σ * - δt |D σ,σ * | s∈∂D σ,σ * |s|E σ,s - δt |D σ,σ * | |σ|E σ , and for X ∈ {K, L, K * , L * } T X = δt 2|D σ,σ * | |D σ,σ * ∩ X|R X - |σ| 2 √ 2γ ρ σ,σ * c(e σ,σ * ) u X -u X 2 .
In order to guaranty e σ,σ * 0 it is sufficient to ensure that these five terms are non negative.

Using Lemma 4.2.12 on (∇ d • u) σ,σ * , T 0 becomes 

T 0 = ρ σ,σ * e σ,σ *   1 - δt |D σ,σ * | (γ -1)   |σ * | + |σ| √ 2 c(
T 0 ρ σ,σ * e σ,σ * 1 - δt |D σ,σ * | (γ -1)   |σ * | + |σ| √ 2 c(e σ,σ * ) + s∈∂D σ,σ * |s|u σ,s   - δt |D σ,σ * | s∈∂D σ,σ * |s|[λ + (e s , u σ,s )] + - δt |D σ,σ * | |σ|[λ + (e σ , u σ )] + .
Finally, since u σ,s [u σ,s ] + and [λ + (e s , u σ,s )] + [u σ,s ] + + c(e s ), the fact that T 0 follows from

1 δt |D σ,σ * | (γ -1)   |σ * | + |σ| √ 2 c(e σ,σ * ) + s∈∂D σ,σ * |s|[u σ,s ] +   + δt |D σ,σ * | s∈∂D σ,σ * |s|([u σ,s ] + + c(e s )) + δt |D σ,σ * | |σ|([u σ ] + + c(e σ )).
Gathering the [u σ,s ] + terms and using γ > 1 lead to the assumption (4.30). Next, we turn to the T X term : if X ∈ M we follow the same sketch as a) and we get T X 0 under assumption (4.29) ; we are thus left with the case of X * ∈ M * . Owing to (4.26), we can write

T X * u X * -u X * 2 4|D σ,σ * | |D σ,σ * ∩ X * |A X * -ρ σ,σ * c(e σ,σ * ) δt|σ| √ 2γ .
Going back to (4.27), we have

A X * D σ,σ * ∈D X * ∩Dext |D σ ,σ * ∩X * | |X * | ρ σ ,σ * Q σ ,σ * where Q σ ,σ * 1 - δt |D σ ,σ * | |σ | 2 1 + reg (T) F + σ ρ σ ,σ * - 1 1 -reg (T) F - σ ρ σ ,σ * - δt |D σ ,σ * | reg (T) |s XZ * | F + σ ,s XZ * ρ σ ,σ * + |s XX * | F + σ ,s XX * ρ σ ,σ * . With (4.23), we get Q σ ,σ * 0 for each σ * ∈ ∂X * so that A X * |D σ,σ * ∩X * | |X * | ρ σ,σ * Q σ,σ * and T X * |D σ,σ * ∩ X * | 2 4|D σ,σ * ||X * | ρ σ,σ * u X * -u X * 2 Qσ,σ * , where Qσ,σ * = Q σ,σ * -c(e σ,σ * ) δt √ 2γ |σ * ||X * | |D σ,σ * ∩ X * | 2 .
That T X * is non negative follows from Qσ,σ * 0 and we have

Qσ,σ * Q σ,σ * - δt |D σ,σ * | c(e σ,σ * )|σ * |reg (T) √ 2γ |X * | |D σ,σ * ∩ X * | which leads to Qσ,σ * 1 - δt |D σ,σ * |            |σ| 2 1 + reg (T) [λ + (e σ , u σ )] + + 1 1 -reg (T) ρ D ρ σ,σ * [λ + (e σ , u D )] - + reg (T) s∈∂D σ,σ * \∂Ω |s|[λ + (e s , u σ,s )] + + c(e σ,σ * )|σ * |reg (T) √ 2γ |X * | |D σ,σ * ∩ X * |            Substracting the non-negative term δt |D σ,σ * |   (1 + reg (T)) |σ * | + |σ| √ 2 c(e σ,σ * ) + |σ| 2 [λ + (e σ , u σ )] + + s∈∂D σ,σ * \∂Ω |s|[λ + (e s , u σ,s )] +  
on the right hand side and using (4.30) yield

Qσ,σ * 1 - δt |D σ,σ * |       |σ| 2 1 1 -reg (T) ρ D ρ σ,σ * [λ + (e σ , u D )] - + 1 + reg (T) γ 1 + c(e σ,σ * )|σ * | √ 2 |X * | |D σ,σ * ∩ X * |      
which is thus non negative when (4.31) holds.

Conservation of total energy

For technical reasons, the discussion in this Section restricts to primal meshes made of triangles and quadrangles (it is possible to mix up triangles and quandrangles), such that all the vertices are shared by four cells at most. Consequently, the dual cells are also made of triangles and quadrangles. Note that the case where a vertex is shared by one or two cells can happen only on the boundaries of the domain since the polygons of the tessellation are supposed to be convex (see Fig. 4.2). We remind the reader that the diamond mesh is always made of quadrangles, except on the boundaries where the diamond cells degenerate to triangles. 

Total energy balance

E kin σ,σ * = |D σ,σ * ∩K| ρ K u K 2 2 +|D σ,σ * ∩L| ρ L u L 2 2 +|D σ,σ * ∩K * | ρ K * u K * 2 2 +|D σ,σ * ∩L * | ρ L * u L * 2 2 2|D σ,σ * |ρ σ,
ρ σ,σ * E σ,σ * -ρ σ,σ * E σ,σ * δt + 1 |D σ,σ * | s∈∂D σ,σ * |s|T σ,s + 1 |D σ,σ * | s∈∂D σ,σ * |s|q σ,s = 0, where • T σ,s is a conservative total energy flux through the interface s of the diamond cell D σ,σ * , • 1 |D σ,σ * | s∈∂D σ,σ * |s|q σ,s is a conservative discrete version of ∇•(pu) on the diamond cell D σ,σ * .
In order to identify the corresponding fluxes, we shall make use of the following claim, the proof of which is postponed to Section 4.3.2. 

s K L * s K K * s L K * s LL * x K x K * x L x L * σ * σ
s∈∂D σ,σ * |s|K σ,s = |D σ,σ * ∩ K| 2|K| σ ∈∂K |σ |K K,σ + |D σ,σ * ∩ L| 2|L| σ ∈∂L |σ |K L,σ + |D σ,σ * ∩ K * | 2|K * | σ ∈∂K * |σ |K K * ,σ + |D σ,σ * ∩ L * | 2|L * | σ ∈∂L * |σ |K L * ,
K σ,s = 1 2|s| s (ω K + ω K * )n σ,s where s = s KK * .
With a convenient reorganization of the terms, we write s∈∂D σ,σ * |s|K σ,s as

1 2 s KK * ω K n σ,s KK * + s KL * ω K n σ,s KL * + 1 2 s LK * ω L n σ,s LK * + s LL * ω L n σ,s LL * + 1 2 s KK * ω K * n σ,s KK * + s LK * ω K * n σ,s LK * + 1 2 s KL * ω L * n σ,s KL * + s LL * ω L * n σ,s LL * .
Since the kinetic energy fluxes K K,σ and K K * ,σ * are conservative, we have

K K,σ + K L,σ = 0 and K K * ,σ * + K L * ,σ * = 0
and applying again (4.33) in Lemma 4.3.3, these two equalities recast as

1 2 σ ω K n K,σ + σ ω L n L,σ = 0 and 1 2 σ ω K * n K * ,σ * + σ ω L * n L * ,σ * = 0.
We add these expressions in the sum s∈∂D σ,σ * |s|K σ,s and we get

s∈∂D σ,σ * |s|K σ,s = 1 2 σ ω K n K,σ + s KK * ω K n σ,s KK * + s KL * ω K n σ,s KL * + 1 2 σ ω L n L,σ + s LK * ω L n σ,s LK * + s LL * ω L n σ,s LL * + 1 2 σ ω K * n K * ,σ * + s KK * ω K * n σ,s KK * + s LK * ω K * n σ,s LK * + 1 2 σ ω L * n L * ,σ * + s KL * ω L * n σ,s KL * + s LL * ω L * n σ,s LL * ,
and thus

s∈∂D σ,σ * |s|K σ,s = |D σ,σ * ∩ K| 2 ∇ • ω K + |D σ,σ * ∩ L| 2 ∇ • ω L + |D σ,σ * ∩ K * | 2 ∇ • ω K * + |D σ,σ * ∩ L * | 2 ∇ • ω L * .
Applying (4.32) in Lemma 4.3.3 shows that (4.34) is satisfied. Finally, we define a conservative flux of total energy T σ,s through the interface s of the diamond cell D σ,σ * by

T σ,s = K σ,s + E σ,s .
b) We now turn to the pressure term. There are four terms coming from the sum of the kinetic energy equations and the discrete version of p∇ • u, namely

|D σ,σ * ∩ K| 2 u K (∇ d p) K + |D σ,σ * ∩ L| 2 u L (∇ d p) L + |D σ,σ * ∩ K * | 2 u K * (∇ d p) K * + |D σ,σ * ∩ L * | 2 u L * (∇ d p) L * + |D σ,σ * |p σ,σ * (∇ d • u) σ,σ * . (4.35)
We wish to rewrite this sum as s∈∂D σ,σ * |s|q σ,s with q σ,s verifying the conservation property q σ,s = -q σ ,s where s = D σ,σ * |D σ ,σ * .

To this end, we apply Lemma 4.3.3 on each primal (resp. dual) cell K (resp. K * ) with

X K,σ = p σ,σ * u K • n K,σ (resp. X K * ,σ * = p σ,σ * u K * • n K * ,σ * ). It provides functions ω K (resp. ω K * )
that satisfy (4.32) and (4.33).

We newt define, for each s

= [x K , x K * ] ∈ ∂D σ,σ * , q σ,s = 1 2|s| s (ω K + ω K * )n σ,s where s = s KK * .
By construction, this quantity is conservative.

We are now going to check that the sum s∈∂D σ,σ * |s|q σ,s coincides with (4.35). With a convenient reorganization of the terms, we write s∈∂D σ,σ * |s|q σ,s as

1 2 s KK * ω K n σ,s KK * + s KL * ω K n σ,s KL * + 1 2 s LK * ω L n σ,s LK * + s LL * ω L n σ,s LL * + 1 2 s KK * ω K * n σ,s KK * + s LK * ω K * n σ,s LK * + 1 2 s KL * ω L * n σ,s KL * + s LL * ω L * n σ,s LL * .
We make use again of Lemma 4.3.3 to write

σ ω K = |σ|p σ,σ * u K n K,σ and σ * ω K * = |σ * |p σ,σ * u K * n K * ,σ * .
For X ∈ {K, L, K * , L * } we add 

σ,s = 1 2 σ ω K n K,σ + s KK * ω K n σ,s KK * + s KL * ω K n σ,s KL * + 1 2 σ ω L n L,σ + s LK * ω L n σ,s LK * + s LL * ω L n σ,s LL * + 1 2 σ ω K * n K * ,σ * + s KK * ω K * n σ,s KK * + s LK * ω K * n σ,s LK * + 1 2 σ ω L * n L * ,σ * + s KL * ω L * n σ,s KL * + s LL * ω L * n σ,s LL * - |σ| 2 p σ,σ * (u K • n K,σ + u L • n L,σ ) - |σ * | 2 p σ,σ * (u K * • n K * ,σ * + u L * • n L * ,σ * ).
s∈∂D σ,σ * |s|q σ,s = |D σ,σ * ∩ K| 2 ∇ • ω K + |D σ,σ * ∩ L| 2 ∇ • ω L + |D σ,σ * ∩ K * | 2 ∇ • ω K * + |D σ,σ * ∩ L * | 2 ∇ • ω L * + |D σ,σ * |p σ,σ * (∇ d • u) σ,
= |D σ,σ * ∩ K * | 2|K * | σ * ∈∂K * |σ * |q K * ,σ * + |D σ,σ * ∩ L * | 2|L * | σ * ∈∂L * |σ * |q L * ,σ * + |D σ,σ * |p σ,σ * (∇ d • u) σ,σ * .
Finally, coming back to the definition of q K,σ and next, to the Definition 4.2.7 of the discrete pressure gradient, we remark that for

X ∈ {K, L, K * , L * } 1 |X| σ ∈∂X |σ |q X,σ = 1 |X| σ ∈∂X |σ |p σ ,σ * u X n X,σ = u X • (∇ d p) X .
Therefore we can conclude that

s∈∂D σ,σ * |s|q σ,s = |D σ,σ * ∩ K| 2 u K • (∇ d p) K + |D σ,σ * ∩ L| 2 u L • (∇ d p) L + |D σ,σ * ∩ K * | 2 u K * • (∇ d p) K * + |D σ,σ * ∩ L * | 2 u L * • (∇ d p) L * + |D σ,σ * |p σ,σ * (∇ d • u) σ,σ * .

Proof of Lemma 4.3.3

This section is devoted to the proof of Lemma 4.3.3. We follow [START_REF] Goudon | A DDFV scheme for incompressible Navier-Stokes equations with variable density[END_REF] with some adaptations of the formalism for the scheme for the Euler system and we add a comment on the case of triangular cells. The result relies on the following statement. Lemma 4.3.4. For any cell K ∈ M ∪ M * and for all σ ∈ ∂K, we consider a given quantity X K,σ . There exist W σ,beg and W σ,end such that

W σ,beg + W σ,end 2 • n K,σ = X K,σ .
Proof. In [START_REF] Goudon | A DDFV scheme for incompressible Navier-Stokes equations with variable density[END_REF], this claim is justified on quadrangles, but, as discussed below, it can be extended on any type of cells (and we can thus expect to be able to generalize Lemma 4.3.3 on any cell geometries). Let us consider a convex polygon P with n edges. We denote P 1 , P 2 , ... P n its n vertices, and (x j , y j ) stands for the coordinates of P j . For P i and P j two consecutive points of P, we set a i,j b i,j = x j -x i y j -y i .

We introduce the unit normal vector n ij to the edge [P i , P j ] : We consider a certain quantity w i = (w x i , w y i ) ∈ R 2 stored at the vertices. We associate to such a quantity the vector

n ij = 1 √ a 2 i,j +b 2 i,j -b i,j a i,
W =      w 1 w 2 ... w n      ∈ R 2 × R n R 2n .
Let U be the square matrix

U = 1 2 0 0 1 2 .
We denote A ∈ M 2n,2n the non invertible matrix defined blockwise by

A =            U U 0 0 . . . 0 0 U U 0 . . . 0 . . . . . . . . . . . . . . . 0 . . . 0 U U 0 0 . . . 0 0 U U U 0 0 . . . 0 U           
.

For P i and P j two consecutive points of P, we set z i,j = w i +w j 2 ∈ R 2 and we introduce the vector

Z =         z 1,2 z 2,3 ... z n-1,n z n,1         = AW ∈ R 2n .
Finally, let N ∈ M n,2n be the matrix with n rows and 2n columns .

N =          n x 1,2 n y 1,2 0 
We consider the linear application Φ : R 2n -→ R n W -→ N AW and its transpose operator Φ : R n -→ R 2n q -→ A N q

We are going to show that Φ is injective. To this end let q ∈ R n such that Φ (q) = 0, that is to say

Φ      q 1 q 2 ... q n      = 1 2      q 1 n 1,2 + q n n n,1 q 1 n 1,2 + q 2 n 2,3 ... q n-1 n n-1,n + q n n n,1      = 0.
As P is a polygon with n edges, two consecutive edges [P i , P j ] and [P j , P k ] cannot be on the same line ; it follows that n i,j and n j,k are linearly independent. We deduce that q = 0, therefore Ker(Φ ) = {0} and Φ is injective. Consequently, Φ is surjective : for any F ∈ R n there exists W ∈ R 2n such that Φ(W) = F.

We turn to the proof of Lemma 4.3.3. >From now on we focus on the case where P is a triangle or a quadrangle. We are going to prove the existence of a piecewise P 1 function ω P such that ω P belongs to H 1 (P) and ∇ • ω P is constant. Proof. The arguments differ depending on the geometry of P.

1) Assume that P is a triangle, with vertices P 1 , P 2 , P 3 . Let φ 1 , φ 2 , φ 3 be the P 1 functions defined by φ i (P j ) = δ i,j . Namely, they are nothing but the composition with affine geometric transformations of the reference functions φ1 (x, ŷ) = 1 -xŷ, φ2 (x, ŷ) = ŷ and φ3 (x, ŷ) = x defined on P, the triangle with vertices (0, 0), (0, 1) and (1, 0). We simply set ω = 3 i=1 w i φ i . By definition, this function is P 1 on P, thus ω lies in H 1 (P) and ∇ • ω is constant. Moreover, it satisfies ω(P i ) = w i .

2) Assume that P is a quadrangle, with vertices P 1 , P 2 , P 3 , P 4 . We denote by P 0 the intersection of the diagonals [P 1 , P 3 ] and [P 2 , P 4 ], which defines a subdivision of P into four triangles, see Fig. 4.7. Let φ 0 , ..., φ 4 be the piecewise P 1 functions defined by φ i (P j ) = δ i,j . This is the usual P 1 Lagrange basis on P, defined by the points P 0 , ..., P 4 : the functions φ k 's are P 1 on each triangles Q i,j in Fig. 4.7, and moreover, for any piecewise P 1 function p, we have p = 4 i=0 p(P i )φ i . In particular, we have 1 = 4 i=0 φ i . As a warm-up, let us remind the reader a few basic facts about these functions. To this end, we refer to Fig. 4.8. We consider the four points P 0 , ..., P 4 , the coordinates of which are denoted (x j , y j ), j ∈ {1, ..., 4}. We are interested in the basis function φ 1 , which is P 1 on both triangles T and T and takes value 1 at P 1 , and vanishes on the other vertices. We thus have We are thus led to compute the following determinants

P 1 P 2 P 3 P 4 P 0 Q 1,2 Q 2,3 Q 3,4 Q 4,1
D = x 1 y 1 1 x 0 y 0 1 x 2 y 2 1
, and

D a = 1 y 1 1 0 y 0 1 0 y 2 1 , D b = x 1 1 1 x 0 0 1 x 2 0 1 , D c = x 1 y 1 1 x 0 y 0 0 x 2 y 2 0 . We arrive at a = D a D , b = D b D , c = D c D .
Note that D is nothing but twice the area of the triangle T . Consequently, the gradient of φ 1 in T is the constant vector given by

∇φ 1 (T ) = D a /D D b /D = 1 2|T | y 0 -y 2 x 2 -x 0 = 1 2|T | ( --→ P 0 P 2 ) ⊥ ,
which is therefore orthogonal to P 0 P 2 . This corresponds to the intuition : (x, y) → φ 1 (x, y) is non negative and it vanishes on the segment [P 0 , P 2 ] so that its gradient has no component along (P 0 P 2 ) and it points inward T . The same computation can be performed on the triangle T , for obtaining the triple (a , b , c ) and we get

∇φ 1 (T ) = 1 2|T | ( --→ P 4 P 0 ) ⊥ .
In the specific case we are interested in, the three points P 0 , P 2 , P 4 are aligned, and thus ∇φ 1 (T ) and ∇φ 1 (T ) are colinear. Moreover, the two triangles (P 1 , P 4 , P 0 ) and (P 1 , P 0 , P 2 ) share the same height h and we have 2|T | = h --→ P 2 P 0 and 2|T | = h --→ P 4 P 0 . Let u be the unit vector, orthogonal to the axis P 2 P 4 and pointing inward T (and T ). It follows that ∇φ 1 (T ) = u h = ∇φ 1 (T ). w i φ i (x, y), which is P 1 on each subdomain Q i,j (see Fig. 4.7). We assume that w 1 , ..., w 4 are given, and we seek w 0 such that ω belongs to H 1 (P) and ∇ • ω is constant on P. We write

ω = 4 i=1 w i φ i + w 0 1 - 4 i=1 φ i ,
and thus

∇ • ω = 4 i=1 w i • ∇φ i -w 0 • 4 i=1 ∇φ i .
This leads to four equations, one for each triangle Q j,k :

             (e Q 1,2 ) : ∇ • ω = w 1 • ∇φ 1 + w 2 • ∇φ 2 -w 0 • ∇(φ 1 + φ 2 ), (e Q 2,3 ) : ∇ • ω = w 2 • ∇φ 2 + w 3 • ∇φ 3 -w 0 • ∇(φ 2 + φ 3 ), (e Q 3,4 ) : ∇ • ω = w 3 • ∇φ 3 + w 4 • ∇φ 4 -w 0 • ∇(φ 3 + φ 4 ), (e Q 4,1 ) : ∇ • ω = w 4 • ∇φ 4 + w 1 • ∇φ 1 -w 0 • ∇(φ 4 + φ 1 ). (4.36)
We bear in mind that not only ∇φ i is constant over each of these triangles, but, furthermore, due to the specific geometric configuration, ∇φ 1 is the same in Q 1,2 and Q 4,1 , ∇φ 2 is the same in Q 1,2 and Q 2,3 , etc. We thus remark that (e

Q 1,2 ) -(e Q 2,3 ) + (e Q 3,4 ) -(e Q 4,1 ) = 0. Now, if ∇
• ω takes a single value over P, we have on the one hand (e Q 1,2 ) -(e Q 2,3 ) = 0 and on the other hand (e Q 2,3 ) -(e Q 3,4 ) = 0, that is, in other words,

w 1 • ∇φ 1 -w 3 • ∇φ 3 = w 0 • ∇(φ 1 -φ 3 ), w 2 • ∇φ 2 -w 4 • ∇φ 4 = w 0 • ∇(φ 2 -φ 4 ). (4.37)
This is a linear system of two equations for the components of w 0 and we are wondering whether or not it is invertible. We know that ∇φ 1 and ∇φ 3 are both colinear to [P 2 , P 4 ] but of opposite sign, so that ∇(φ 1 -φ 3 ) = 0. Similarly, ∇(φ 2 -φ 4 ) = 0 is colinear to [P 1 , P 3 ]. Therefore ∇(φ 1 -φ 3 ) and ∇(φ 2 -φ 4 ) are linearly independent which implies that the system (4.37) admits a unique solution. It determines w 0 . Eventually, we have found a piecewise P 1 function ω such that ω ∈ H 1 (P) and ∇ • ω is constant on P. Whether P be a triangle or a quadrangle, ω is H 1 over P and the Stokes formula applies

P ∇ • ω = [P i ,P j ] [P i ,P j ]
ωn i,j , and since ω is piecewise P 1 on P, we have

P ∇ • ω = [P i ,P j ] |P i P j |ω w i + w j 2 n i,j .
We conclude with Lemma 4.3.4.

Numerical simulations

In this Section we present some numerical test cases on unstructured grids and compare them to what we get with the mac scheme when possible. The unstructured primal mesh is a tessellation made of triangles, provided by GMSH, which leads to a dual mesh which cells are polygons of any type. We do not restrain ourselves anymore (up to the analysis in Section 4.3) to the specific case where cells are triangles or quadrangles only as it is not needed to solve (ρ, u, e) on T.

Consistency analysis with a 2D manufactured solution

In order to numerically validate the scheme, we compute the solution of the 2d problem

           ∂ t ρ + ∇ • ρu = 0, ∂ t ρu + ∇ • ρu ⊗ u + ∇p = f (ρ, e, u), ∂ t (ρe) + ∇ • (ρeu) + p∇ • u = 0,
where the force field (t, x) → f (t, x) is tailored so that the smooth solution reads .

                     ρ(t, x, y) = e -2
We perform the simulation for t ∈ [0, 0.2] with γ = 1, 4 on the circle of center (0, 0) and radius 2. The computational domain is split into the disc of center (0, 0) and radius 1.5, and an outer ring. The ring is always discretized with the same refined mesh. For the inner disc we use a series of tessellations made of triangles, provided by GMSH : the characteristic length used in GMSH (the quantity that determines the mesh size) varies between 1 and 0.03125 and is divided by 2 between each mesh. The outer ring is discretized with triangles, with the characteristic length kept equal to 0.03125. Table 4.1 gives the L 2 norm of the error between the discrete and the exact solutions for several numbers J of primal cells for the density, the internal energy and the first component of the velocity (the result are almost the same on the second component). For this test case, we have set δt = 10 -4 : the small value of the time step ensures that the stability condition is satisfied for all the considered grids. In Fig. 4.9 we show the resolution of the density and the internal energy and their exact solutions, on the finest mesh. the basin. The PDE system is endowed with zero flux boundary conditions and the following initial data

        
ρ(0, x, y) = 3 + 1 (x-0.5) 2 +(y-0.5) 2 <(0.15) 2 + 1 (x+0.5) 2 +(y+0.5) 2 <(0.15) 2 + 2 • 1 x 2 +y 2 <(0.2) 2 , e(0, x, y) = 1, u(0, x, y) = 0, v(0, x, y) = 0.

In Fig. 4.11 and 4.12, we show the density and the internal energy at time T = 1.035 with δt = 10 -4 . The mesh has 43400 primal cells made of triangles, which implies h = 0.024. The result is compared with the same simulation made on a Cartesian grid with the mac scheme presented in Chapter 2. On a 60 × 60 grids we have h = 0.024 and the results are close to the one we get on the unstructured grid with the same h. On a 208 × 208 grid we have almost the same amount of cells as in the unstructured simulation but h is really smaller and the results are more accurate. 3) The last test case, inspired from [START_REF] Marc | Entropy-based viscous regularization for the multi-dimensional Euler equations in low-Mach and transonic flows[END_REF], is a 2d subsonic flow in a channel with a circular arc bump. 

Introduction

Many applications involve the transport of a disperse phase (particles, droplets, bubbles) coupled with a fluid : spray combustion, fluidized beds, soot dynamics... In the standard case, the evolution of the carrier phase can be described by a deterministic system of equations such as the Navier-Stokes equations. However, in the strongly coupled case the evolution equations are unclosed due to the exchange term with the particles [START_REF] Fox | On multiphase turbulence models for collisional fluid-particle flows[END_REF][START_REF] Emre | Eulerian modeling of a polydisperse evaporating spray under realistic internal-combustion-engine conditions[END_REF]. Often, models proposed in the literature only consider the influence of the carrier fluid on the disperse phase and neglect its retroactive consequences, or, at best, limit it to a global balance between the two phases [START_REF] Minier | Statistical descriptions of polydisperse turbulent two-phase flows[END_REF]. In particular, these simplifying hypotheses allow to decouple the inaccuracies coming from the approximate resolution of each phase.

But, one of the main difficulties in the derivation of a consistent model for the strongly coupled evolution of a cloud of particles within a turbulent flow, is that inaccuracies arise both from the chaotic behavior of the fluid [START_REF] Pope | Turbulent flows[END_REF][START_REF] Zaichik | An eulerian approach for large eddy simulation of particle transport in turbulent flows[END_REF][START_REF]Stochastic PDEs in turbulence theory[END_REF], and from the initial properties of the particles, such as their starting positions and velocities. Therefore, the proper level of "modeling" consists in making consistant assumptions about the properties of the stochastic processes involved in the global dynamics of both phases. Even if some advances have been made in the field [START_REF] Gorokhovski | Lagrangian simulation of large and small inertial particles in a high reynolds number flow : Stochastic simulation of subgrid turbulence/particle interactions[END_REF], the problematic is far from being closed.

In order to better understand the coupling of the inaccuracies coming from both phases, to four spatial levels of modeling. Step-by-step, we then express some links between these levels, in order to better understand the influence of the small scales on the highest level of modeling. Here, one has to understand that this hierarchy of points of view is worth both for the carrier fluid and for the disperse phase. Simply, each of the passing to the limit between each levels does not occur at the same scale for the two phases. Although the carrier fluid is made of nanometric particles, while the dispersed particles seldom reach a micrometrical size, the description of each phase starts at the microscopic level (or molecular level). From there, one can reach reduced order large-scale models rather continuously, by first looking at an intermediate mesoscopic scale, dealing with the law on the presence of the microscopic phase (e.g. the Boltzmann equation), and then consider close-to-equilibrium regimes that we will call the macroscopic scale (e.g. Euler or Navier-Stokes equations). These four different levels of modeling are sketched level-by-level in the following items list :

• Microscopic : at the scale of atomes, molecules or particules. Generally speaking, one may say "at the scale of the indivisible". The medium is here modeled by a very large number of ODEs.

• Macroscopic : at the scale of the continuum. Fluids (liquid, gaz, spray,. . .) are now seen as a continuous medium. It is modeled by a system of PDEs.

• Mesoscopic : the transition from the micro to the macro scale necessitates an intermediate scale, called "mesoscopic", at which the medium is modeled a statistical manner. At this level, the fluid is modeled by the transport equation of a probability density function (PDF) of particles.

• Reduced-Order : despite all the complexity reduction already performed, the simulation of all the macroscopic scales (Direct Numerical Simulation, DNS) is far from being reachable. An additional order reduction is then performed by splitting the solution into a significant part φ and a residual φ : φ = φ + φ . In general, the residual is removed and its action on the resolved part is modeled by a chosen underlying random process.

Throughout this paper the term significant part is kept general on purpose : it could denote one of the numerous choice of decomposition of the macroscopic sought solution into a numerically resolved and an unresolved part, see subsection 5.2.2 for more details. To give an insight of historical context, the usual method is traditionally referred to as a Large Eddy Simulation (LES) of the particulate flow, which means that only the features of the flow at a scale greater than a characteristic cut-off size are computed. The smallest scales, called subscales, need to be modeled from the computed variables in both carrying and disperse phases. As proposed by Pope [START_REF] Pope | Self-conditioned fields for large-eddy simulations of turbulent flows[END_REF], we chose to place ourselves in a probabilistic formalism where the closure in performed by the definition of a probabilistic process for the residuals. This closure can be seen as a probabilistic mapping between the reduction of the non-linear terms of the solved macroscopic PDEs and the resolved variables, see subsection 5.2.2. As a consequence, defining a subscale model is equivalent to making a choice for this mapping. This is what we are looking for in this project.

An ideal model for the numerical simulation of a turbulent flow loaded with dispersed particles would be a global reduced-order model for both phases, where the residual part would have to be able to take into account the strong coupling between both phases (mass, momentum and energy are exchanged in a bidirectional manner and globally conserved). We think that the formalism introduced in [START_REF] Pope | Self-conditioned fields for large-eddy simulations of turbulent flows[END_REF], and rapidly sketched in the previous paragraph, is a good starting point. We also believe that the stochastic model of the unresolved fluctuations has a root at the microscopic level in both phases. This is the reason why we then start our exploratory study by considering an idealistic micro/micro modeling with additional stochastic processes on both phases, and then try to derive a global large-scale reduced-order model for the dynamics of the strongly coupled system, which remains reliable, accurate and consistant with the underlying micro/micro description of the physical system.

This paper is divided into four sections. In a first section, we give a statistical description at micro and mesoscale which are the beginning of all macroscopic descriptions, with a theorem in the infinite population limit. It explains the link between a system of a large number of ODEs at the microscopic level and a PDE on a Probability Density Function (PDF) of existence of the particles. In section two we describe in a very condensed manner the other levels of continuous description, while staying as consistant as possible. This leads us to a very general definition of turbulence and to the probabilistic framework for the modeling of the subscales in the context described by Pope [START_REF] Pope | Self-conditioned fields for large-eddy simulations of turbulent flows[END_REF]. In particular we explain the derivation of a reduced-order model for the disperse phase only, when the underlying carrying continuous gas field is supposed to be perfectly known and is not perturbed by the presence of the particles. Section three presents a numerical process intended to validate the reduced-order models possibly created within this micro/micro to reduced-order context, by looking at the statistics missed by the disperse field when the underlying gas velocity field has been reduced (for example filtered). In particular, we show that it seems hard to build a reduced-order turbulent model for the dynamics of a 1d spray, but that the situation improves with higher dimensionality. Finally, section four opens the discussion on the construction of a consistent model for two-way coupled systems. This section being preliminary, this will allow us to expose the perspectives of the current project and to conclude the paper.

Statistical description of the dynamics of a population : from micro-to meso-scale

This section describes the dynamics of a population at micro and mesoscale. This is the beginning of all work implying complex dynamics of turbulent particules-laden flows. This gathering represents a real team effort, especially in finding a common vocabulary between those of us more physics-oriented and those more used to the theory of probability and of stochastic processes. As already said in the previous paragraph, what is written here is valid for both carrying and disperse phases, only the passing to the limit do not occur at the same scales.

Microscopic scale

The studied domain X ⊂ R 3 is filled with a cloud of N identical spherical particles, moving into void or supported by a carrying gas. Assuming that the three degrees of freedom in rotation of each particle can be ignored, the dynamics of the system is described by the 6N parameters (velocity are in R 3 C C C := R 3 ) :

Z Z Z(t) = (X X X 1 (t), C C C 1 (t), . . . , X X X N (t), C C C N (t)) ∈ ζ N := X × R 3 C C C N , ( 5.1) 
or equally by the empirical measure or normalized counting measure :

µ N t [Z Z Z] = 1 N N i=1 δ X X X i (t) δ C C C i (t) .
If the set of particles is immersed within an external field G(t, X X X, C C C), interacts with itself following a collision kernel F (X X X, C C C) and each particle is possibly subject to an independent Brownian random process of intensity σ, the phase space (5.1) evolves with the following system of 6N ODEs :

     dX X X i = C C C i (t)dt, dC C C i = G (t, X X X i , C C C i ) dt + F * µ N t (X X X i , C C C i ) dt + √ 2σdW W W i (t), i = 1, . . . , N. (5.2) Then, given an initial condition Z Z Z 0 = (X X X 0 1 , C C C 0 1 , . . . , X X X 0 N , C C C 0 N
), which may be deterministic or stochastic, the empirical measure can be indexed by Z Z Z 0 :

µ N t [Z Z Z 0 ] = 1 N N i=1 δ X X X i (t,Z Z Z 0 ) δ C C C i (t,Z Z Z 0 ) , so that if V X X X × V C C C ⊂ ζ is a subset of phase space, n V X X X ×V C C C := N.µ N t [Z Z Z 0 ](V X X X × V C C C ) = N i=1 1 V X X X (X X X i (t, Z Z Z 0 ))1 V C C C (C C C i (t, Z Z Z 0 ))
is the number of particles from the configuration Z Z Z 0 at time t = 0, situated within V X X X and with a velocity belonging to V C C C at time t.

Mesoscopic scale

From now on, the configuration of each particle is denoted by z z z

i = (X X X i , C C C i ) ∈ X × R 3 C C C
, for all i = 1, . . . , N . The collision kernel F simulates the interaction between the particles and it thus seems fair to have F (-z z z) = -F (z z z), which implies F (0) = 0.

Let us consider that the particles are changeable at initial time, which means that their initial distribution µ N 0 ∈ R 2d is invariant by permutation of the N variables. This invariance therefore remains satisfied at any time t > 0 and in particular, the N particles must follow the same one-particle law in R 2d , denoted µ 

. First, if A is a borelian in R 2d , E[µ N t (A)] = E 1 N N i=1 δ z z z i (t) (A) = 1 N N i=1 P[z z z i (t) ∈ A] = P[z z z 1 (t) ∈ A] = µ (1) t (A).
Then, we recall Z Z Z(t) = (z z z 1 (t), ..., z z z N (t)), later simply noted Z Z Z t , and we introduce the following function

H(t, Z Z Z) =   c c c 1 , G(t, z z z 1 ) + 1 N N j=1 F (z z z 1 -z z z j ), • • • , c c c N , G(t, z z z N ) + 1 N N j=1 F (z z z N -z z z j )   ,
and the 2d × N diagonal matrix, denoted Σ, with zero (d times) and σ (d times), repeated N times along the diagonal. Thus, equation (5.2) can be rewritten

dZ Z Z(t) = H(t, Z Z Z(t))dt + √ 2ΣdW W W (t).
For any function Φ : (t, x x x) -→ Φ(t, x x x) such that t -→ Φ(t, .) ∈ C 1 and x x x -→ Φ(., x x x) ∈ C ∞ c , (5.3) the Itô's formula gives us :

Φ(t, Z Z Z t ) -Φ(0, Z Z Z 0 ) = σ 2 N i=1 T 0 ∆ c c c i Φ(s, Z Z Z s )ds + T 0 ∂ t Φ(s, Z Z Z s )ds, + N i=1 T 0 ∇ x x x i Φ(s, Z Z Z s ) • dZ Z Z s + N i=1 T 0 ∇ c c c i Φ(s, Z Z Z s ) • dZ Z Z s = σ 2 N i=1 T 0 ∆ c c c i Φ(s, Z Z Z s )ds + T 0 ∂ t Φ(s, Z Z Z s )ds + N i=1 T 0 ∇ x x x i Φ(s, Z Z Z s ) • H(s, Z Z Z s )ds + √ 2 N i=1 T 0 ∇ x x x i Φ(s, Z Z Z s ) • ΣdW W W s + N i=1 T 0 ∇ c c c i Φ(s, Z Z Z s ) • H(s, Z Z Z s )ds + √ 2 N i=1 T 0 ∇ c c c i Φ(s, Z Z Z s ) • ΣdW W W s , where [∇ x x x i Φ(s, Z Z Z s ) • ] and [∇ c c c i Φ(s, Z Z Z s )
• ] denote projection operators on the respective lines of x x x i and c c c i .

Taking the expectancy we get :

E[Φ(t, Z Z Z t ) -Φ(0, Z Z Z 0 )] = σ 2 N i=1 T 0 E[∆ c c c i Φ(s, Z Z Z s )]ds + T 0 E [∂ t Φ(s, Z Z Z s )] ds + N i=1 T 0 E [∇ x x x i Φ(s, Z Z Z s ) • H(s, Z Z Z s )] ds + N i=1 T 0 E [∇ c c c i Φ(s, Z Z Z s ) • H(s, Z Z Z s )] ds.
Next, we introduce the following linear form on the measures of R 2d , defined for any Φ such as in (5.3) :

µ (N ) t , Φ = T 0 E[Φ(t, Z Z Z t )]dt = T 0 R 2d Φ(t, z z z)dµ (N ) t (z z z)dt.
Here µ

(N ) t

is the N -joint law followed by the N particules : it is the law followed by Z Z Z t . Using this dual formulation, we can now extend the definition of the partial derivatives to the measures of R 2d , and we have :

T 0 E[∇ x x x i Φ(s, Z Z Z s ) • H(s, Z Z Z s )]ds = -c c c i • ∇ x x x i µ (N ) t , Φ , T 0 E[∇ c c c i Φ(s, Z Z Z s ) • H(s, Z Z Z s )]ds = -∇ c c c i •     G(., z z z i ) + 1 N N j=1 F (z z z i -z z z j )   µ (N ) t   , Φ , T 0 E[∆ c c c i Φ(s, Z Z Z s )]ds = ∆ c c c i µ (N ) t , Φ .
Since Φ does not have a compact support in time, integration by part requires to keep the boundary terms and the time partial derivative of µ N t defines as :

T 0 E [∂ t Φ(s, Z Z Z s )] ds = -∂ t µ N t , Φ + E[Φ(t, Z Z Z t ) -Φ(0, Z Z Z 0 )].
To sum up, thanks to the Itô's formula, we have obtained a weak form of the equation followed by the law µ

(N ) t of Z Z Z(t) : ∂ t µ (N ) t + N i=1 c c c i • ∇ x x x i µ (N ) t + N i=1 ∇ c c c i •     G(., z z z i ) + 1 N N j=1 F (z z z i -z z z j )   µ (N ) t   , Φ = σ 2 N i=1 ∆ c c c i µ (N ) t , Φ . (5.4)
So now, we have generalized the results given by Bolley in [START_REF] Bolley | Limite de champ moyen de systèmes de particules[END_REF] to a time dependent transport term G. However, equation (5.4) is a weak formulation of a PDE on the N -particles joint law, when what we are looking for is the equation ruling the one-particle law µ (1) t , which is the marginal of µ (N ) t for particle 1. By integrating Eq. (5.4) over all the particles but the first one, we get that, in the weak sense, µ

(1) t follows :

∂ t µ (1) t + c c c∇ x x x µ (1) t + ∇ c c c • G t µ (1) t + z z z 2 ∈R 2d F (z z z -z z z 2 )µ (2) t (z z z, z z z 2 ) = σ 2 ∆ c c c µ (1)
t .

(5.5)
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In this expression, µ

(2) t is the 2-particles joint probability. In order to close equation (5.5), we would like to express it as a function of µ (1) t .

To do so, we suppose that the initial data Z Z Z 0 are indistinguishable and all follow the same law f 0 on R 2d . Then, we introduce an intermediate law, as the solution for t > 0 and (x x x, c c c) ∈ R 2d , of the following equation with initial data f 0 :

∂ t f t + c c c • ∇ x x x f t + ∇ c c c • [(G + F * f t ) f t ] = σ 2 ∆ c c c f t ,
where F and G are now supposed to be Lipschitz functions with respect to the variable x x x ∈ R 2d and G is continuous in the time variable. Next, for i ∈ 1, . . . , N, let z z z i (t) be the solution of the following system with initial data z z z i (0) = z z z i (0) :

   dx x x i (t) = c c c i (t)dt, dc c c i (t) = G(t, z z z i (t))dt + F * f t (z z z i (t))dt + √ 2σdW W W i (t).
Then, the fictive particles z z z i evolve in the field F * f t generated by the distribution f t , while the z z z i particles evolve in the F * µ N t field, generated by the empirical measure µ N t . Itô's formula gives once more the PDE followed by z z z i in the weak sense, and we now wish to show that this measure converges to f t when the number N of particles tends to infinity.

We denote |(x x x, c c c)| = |x x x| 2 + |c c c| 2 and for p > 1 we define

P p (R 2d ) = µ borelian probabilistic measures on R 2d | R 2d |(x x x, c c c)| p dµ(x x x, c c c) < ∞ .
The Wasserstein distance of order p between two measures µ and μ of P p (R 2d ) is defined by

W p (µ, μ) = inf Z Z Z, Z Z Z p E |Z Z Z -Z Z Z| p ,
where Z Z Z and Z Z Z are stochastic variables of law µ and μ respectively. Then, following the lines of [START_REF] Bolley | Limite de champ moyen de systèmes de particules[END_REF], Theorem 5.1.1. we obtain the explicit convergence rates :

1) W 2 (µ (1) t , f t ) 2 E |z z z 1 (t) -z z z 1 (t)| 2 C N , 2) W 2 (µ (k) t , f ⊗k t ) 2 E |(z z z 1 (t), ..., z z z k (t)) -(z z z 1 (t), ..., z z z k (t))| 2 Ck N , 3) Let Φ be a Lipschitz function in the second variable, then E R 2d Φµ N t - R 2d Φf t C N ||Φ|| 2 1 .
In other words, this means that :

1) The one-particle law µ

(1) t converges to f t in the Wasserstein distance when N → ∞,

2) At the limit of an infinite number of particles, the chaos propagates in time ; the particles remain uncorrelated during the whole dynamics : µ

(k) t = f ⊗k t = f t ⊗ • • • ⊗ f t k times .
In particular, one recovers the famous molecular chaos assumption of Boltzmann :

µ (2) t = µ (1) t ⊗ µ (1)
t .

(5.6)

3) The weak convergence of the empirical measure µ N t to f t . Finally, equation (5.5) is now closed rigorously thanks to the molecular chaos propagation in the context of Lipschitz-regular interactions (external G or between particles F ), [START_REF] Villani | Limite de champ moyen[END_REF][START_REF] Bolley | Limite de champ moyen de systèmes de particules[END_REF]. However, when the interactions are less regular, which is the case for the Boltzmann equation (5.7) below, an increasing number of positive results let us think that equation (5.6) remains correct, [START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF][START_REF] Lanford | Time evolution of large classical systems[END_REF]. Nonetheless, no rigorous demonstration is nowadays available.

A population of particles in a turbulent fluid

In the previous section, a general kinetic equation has been derived for a population of "particles" (molecules, droplets, solid particles). As this point, one can be interested in deriving a two-way coupled system of kinetic equations for the carrying fluid and the particles. However, in [START_REF] Doisneau | Eulerian modeling and simulation of polydisperse moderately dense coalescing spray flows with nanometric-to-inertial droplets : application to Solid Rocket Motors[END_REF], it has been shown in the context of nano-particles that such a derivation cannot be performed. Instead, we use the classical strategy of first deriving macroscopic equations for the fluid, and then coupling them to the particle equations, either microscopic or mesoscopic. In the following, we first present the Euler and Navier-Stokes equations that can describe a carrying fluid, with an emphasis on the underlying assumptions at the kinetic level. In a context where dealing with the whole range of scales of the fluid is not accessible, we detail a general strategy for generating large-scale reduced-order models, and we show how it can be taken into account for the description of the particle dynamics at the microscopic level.

Classical theories for macroscopic equations for the fluid

In the context of gaz dynamics, in the limit of an infinite number of particles and when ignoring the stochastic subscale Brownian perturbations for the moment, equation (5.5) becomes the Boltzmann equation :

∂ t f + c c c • ∇ x x x f + ∇ c c c (F extf ) = 1 Kn Q(f, f ), (5.7) 
where Kn = λ L is the Knudsen number, ratio between the mean free path λ and a characteristic size of observation L, and where the quadratic collision operator Q writes :

Q(f, f * ) = R 3 c c c * S 2 n n n (f f * -f f * ) |(c c c -c c c * ) • n n n| σ(|c c c -c c c * | , n n n) dn n n dc c c * .
Remark 5.2.1. When considering a non self-interacting population of particles, its repartition function also follows an equation of the (5.7) type, where the Knudsen number is infinite : Kn = +∞.

Euler equations

For any PDF f , one can define its microscopic entropy by h = f log f . It can be understood as a local uncertainty rate. Then, the macroscopic entropy reads : H(t, x x x) = R 3 f (t, x x x, c c c) log f (t, x x x, c c c) dc c c, and one can show that when f is a solution of the Boltzmann equation (5.7), its macroscopic entropy decreases : dH dt ≤ 0. When the minimum H min is reached, log f must be a collision invariant and this implies that the velocity distribution f is a Maxwellian :

f eq (c c c) = exp a 0 + a 1 • c c c + a 2 |c c c 2 | 2 = f 0 exp - |c c c -u u u| 2 2β .
The Maxwellian distribution being perfectly defined by its three first moments

m k = R 3 c c c c c c k f (c c c)dc c c, k = 0, 1, 2,
the evolution of the Boltzmann equation (5.7) at isentropic thermodynamic equilibrium H = H min is given by the system of its three first moments, which closes into the Euler equations :

     ∂ t ρ + ∇ • (ρu u u) = 0, ∂ t (ρu u u) + ∇ • (ρu u u ⊗ u u u + pI) = 0, ∂ t (ρE) + ∇ • ((ρE + p)u u u) = 0.
(5.8)

Navier-Stokes-Fourier equations

In the previous paragraph, we have clearly stated that collisions occur everywhere at all time, or, to reformulate, that the Knudsen number remains null : Kn = 0. In reality, it is often very small but strictly positive. Then, we look at near equilibrium regimes by stating ε = Kn and looking for an expansion of f in ε : the Chapman-Enskog expansion. At first order, f = f 0 + εf 1 + •(ε), which, at orders 1/ε and 1, gives in (5.7) :

Q(f 0 , f 0 ) = 0 =⇒ f 0 = f eq and ∂ t f eq + c c c • ∂ x x x f eq = Q(f eq , f 1 ) + Q(f 1 , f eq ).
The latest equation is an integral equation in f 1 which might be completely solved. For a monoatomic gas of atoms of mass m and radius r, the three first moments of f verify the following Navier-Stokes equations [START_REF] Chapman | The mathematical theory of nonuniform gases[END_REF] :

     ∂ t ρ + ∇ • (ρu u u) = 0, ∂ t (ρu u u) + ∇ • (ρu u u ⊗ u u u + P) = 0, ∂ t (ρE) + ∇ • (ρEu u u + P • u u u + q q q) = 0, where      P = pI - µ 2 ∇u u u + ∇u u u t - 2 3 ∇ • u u uI , q q q = ε R 3 c c c m (c-u) 2 2 (c c c -u u u)f 1 dc c c = -λ∇T, (5.9 
) and µ and λ are respectively the viscosity and the thermal conductivity. However, a similar system of PDEs can be obtained by considering the conservative principles of mass, momentum and total energy, added with constitutive equations of the considered fluid, which provide heuristic laws of the viscosity µ and the thermal conductivity λ.

Large-scale reduced-order models

Properties of turbulence

Turbulence is a particular type of flows which can not be rigorously defined. The easiest way to define it is by using the metric of the Reynolds number : Re = u f,0 L 0 ν , where u f,0 is a characteristic speed of the fluid, L 0 is a characteristic length scale of the system and ν = µ ρ is the kinematic viscosity of the fluid. We will say that a fluid exhibits a turbulent behavior, when its Reynolds number is high. The limit Reynolds number depends on the considered experiment and on the operating condition. However, the flow is generally turbulent when Re >> 10 3 .

Turbulent flows share in common their chaotic behavior. For deterministic systems, there are multiple definitions of chaos, but in this context we choose to say that turbulent flows all are :

• highly sensitive to the initial conditions of the system. The present determines the future, but the approximate present does not approximately describe the future. For instance, we say that x 0 is a highly sensitive initial conditions, if for all L 0 > M > 0 and for all δ > 0, there exists another close initial data y 0 and an arbitrary time t > 0 such that |x 0 -y 0 | < δ and |x(t; x 0 ) -y(t; y 0 )| ≥ M.

• topologically transitive, in the sense that for every pair of non-empty open sets U ⊂ X and V ⊂ X, there is an arbitrary time t > 0 such that

{x(t; x 0 ) ∈ X : x 0 ∈ U } ∩ V = ∅.
From an experimental point of view, some observations have been made on turbulent fluid flows. The main ones are expressed by Kolmogorov [100, p.190].

• At sufficiently high Reynolds number, the small-scale turbulent motions are statistically isotropic. They follow a universal form that is uniquely determined by the viscosity ν and the energy dissipation ε. • The viscosity also defines a cut-off size η K , called the Kolmogorov scale, below which all the inertia of the flow is dissipated. • Between the characteristic length L 0 and η K , there is an intermediate range of scales, called the inertial range, where the statistics of motion have a universal form that is uniquely determined by the dissipation ε and is independent of the viscosity ν.

Through dimensional analysis, we get that within this range, the turbulent kinetic energy decreases as : E (|k|) ∝ |k| -5 3 , with k the wavenumber. large dimensional probability space, which requires a very large number of such succession of draws to hope for some meaningful statistics. On the contrary, solving for the evolution of the means of u f does not preserve the trajectories of the process, but it gives correct estimators and statistics on the general behavior of the gaseous velocity field.

Closures.

The obtained reduced-order system as in Eq. (5.10) is closed by making a calculable choice on F. Three strategies can be found in the literature for this choice, as depicted in [START_REF] Sagaut | Large eddy simulation for incompressible flows : an introduction[END_REF][START_REF] Pope | Turbulent flows[END_REF] :

• the functional approach : starting from the fact that the regularized version of the flow field will dissipate less energy than the real turbulent flow field does, the unresolved scales can be modeled in a first approximation by an additional diffusion process, consistently with the theory of turbulence described in paragraph 5.2.2 :

(u f • ∇) u f -(u u u f • ∇) u u u f ≈ -µ turb ∇ 2 u u u f .
Here, µ turb is an additional turbulent viscosity. In the case of filtering procedures, this viscosity depends on the filter size such that it vanishes for full-resolution [START_REF] Smagorinsky | General circulation experiments with the primitive equations : I. the basic experiment[END_REF][START_REF] Nicoud | Subgrid-scale stress modelling based on the square of the velocity gradient[END_REF].

As such models can depend on empirical constants, dynamic procedures were also proposed to get the better estimate of theses constants (see [START_REF] Germano | A dynamic subgrid-scale eddy viscosity model[END_REF]).

• The structural approach : instead of simply recovering a global property of the unresolved information, structural methods aim at capturing the SGS tensor structure (see [START_REF] Bardina | Improved subgrid scale models for Large Eddy Simulation[END_REF]).

• the "pragmatic" approach : starting from the idea that it is hard to distinguish unresolved scales effects from numerical dissipation, some authors propose to integrate effects of unresolved scales through the numerical schemes (see [START_REF] Grinstein | Recent progress on MILES for high Reynolds number flows[END_REF]).

Particles in turbulence

Reduced LES models

The fluid velocity at the location of the particle appears in the expression of the particle acceleration modeled by Stokes drag law :

dC C C i = u u u f (t, X X X i ) -C C C i τ p dt, (5.12) i ∈ [[1, N ]],
and τ p being a characteristic relaxation time of the particule toward the underlying velocity field. However, in every LES model existing up to now, only a regularized version of the fluid velocity is computed. Thus, a closure on the fluid velocity seen by the particle is required in order to provide a consistant LES model for the disperse phase. Ideally, this model has to be in agreement with the probability space of the random variable F seen by the inertial particles on the fluid flow.

Up to now, very similarly to the models developed for the fluid flow, the main strategies have been to compensate second order moments of the the particle density distributions by the adjunction of energy in the form of Wiener processes (see [START_REF] Bini | Particle acceleration in turbulent flows : A class of nonlinear stochastic models for intermittency[END_REF][START_REF] Fede | Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles[END_REF][START_REF] Minier | Pdf model based on langevin equation for polydispersed two-phase flows applied to a bluff-body gas-solid flow[END_REF][START_REF] Reeks | On the dispersion of small particles suspended in an isotropic turbulent fluid[END_REF][START_REF] Shotorban | A eulerian model for large-eddy simulation of concentration of particles with small stokes numbers[END_REF][START_REF] Shotorban | A stochastic model for particle motion in large-eddy simulation[END_REF]). In its general from, this can be represented by the stochastic differential equation (5.13) :

dZ Z Z t = µ t Z Z Z t dt + σ t dW W W t , ( 5.13) 
with W W W t a Wiener process, Z Z Z t the state vector of the particle, µ t the drift and σ t the diffusion coefficient. It is to be noted that in most models, the Wiener process only acts on one variable of the particle : either its position, or its velocity, or an other intermediate variable like the velocity seen by the particle. The next section shows that in the context of equation (5.13), where the closure has been chosen in the form of a Wiener process, the derivation of a mesoscopic equation for the disperse phase is not a major difficulty.

Consistency of modeling approaches with numerical cases

Sections 5.1 and 5.2 were mainly focused on providing a meaningful formalism for reduced multiphase flow simulations in agreement with mathematical consistency and physical literature. In this context, we conclude that an appropriate formalism to describe a fluid in a Large-scale reduced order in section 5.2.2 is the self-conditioned structure proposed by [START_REF] Pope | Self-conditioned fields for large-eddy simulations of turbulent flows[END_REF] and formalized Eq. (5.11). In a nutshell, the evolution of the large scale of the flow must be obtained as the expectation of all possible unresolved scales of the flow compatible with the resolved large scales.

Applying this formalism with the full resolution of Navier-Stokes is not easy because it is not straightforward to control large scales and unresolved scales separately. An interesting alternative that has been widely used in the literature is to rely on synthetic turbulence : by means of a summation of analytic modes, and under the constraint of specific spectral distribution and representation, one can expect to reproduce the main characteristics of the turbulence, even without verifying Navier-Stokes equations. In this section, we investigate the use of such analytic representation from 1d to 3d, and we show what is the minimal representation that can be envisaged.

Synthetic turbulence

The synthetic flow field has been designed in order to reproduce somehow the dynamics that could be expected from a self-conditioned LES flow field simulation ( [START_REF] Ijzermans | Segregation of particles in incompressible random flows : singularities, intermittency and random uncorrelated motion[END_REF][START_REF] Kraichnan | Diffusion by a random velocity field[END_REF]). It is represented by a sparse matrix of spectral modes (Eq. (5.14)) chosen according to the energy density given by Pope's spectrum in Eq. (5.15) (see [100, p.232]) with Eq. (5.16). (5.16)

u f (t, z) = N n=0 a n cos (ω n t + k n • z + ϕ n ) ( 5 
The amplitude of the modes is chosen according to the distribution |a n | ∼ N 0, 2u 2 0 N . Following [START_REF] Ijzermans | Segregation of particles in incompressible random flows : singularities, intermittency and random uncorrelated motion[END_REF], the spectral components of the energy spectrum are chosen in order to respect the numerical simulations performed in [START_REF] Hunt | Big whorls carry little whorls[END_REF], which show that it seems sensible to approximate E (|k| , ω) by :

E ω (|k|) = E (|k|) √ 2π (a |k| u 0 ) exp - ω 2 2 (a |k| u 0 ) 2 ,
(5.17)

with a ∈ [0.4, 0.51] depending on the wavenumber and the integral length scale (see [START_REF] Hunt | Big whorls carry little whorls[END_REF]).

For the numerical simulations, the random number generator chosen is ran2 presented in [START_REF] Press | Numerical recipes[END_REF]. The numerical values are chosen such that a = 0.5, u 0 = 1 m.s -1 and k 0 = 1 m -1 . The particle evolution is computed using Runge-Kutta scheme of order four.

The evolution of the particles on the fluid is computed by the linearised Stokes drag law in Eq. (5.12), with the expression of u f given in Eq. (5.14).

For numerical simplicity, we first start by performing one-dimensional simulations. In one dimension, a realization of the evolution of the particles submitted to a random fluid is given in Fig. 5.1. Although the initial positions of the particles are random and uniformly distributed on a segment, their trajectories seem very limited. They look more like oscillations around a mean drift rather than dispersion. Furthermore, when observing the evolution of the variance in a one-dimensional space for 10 4 particles, see Fig. 5.2a, we see that it seems bounded for this case and that it is highly dependent on the underlying fluid fluctuations.

This kind of behavior is not consistent with the properties of turbulence and the expected behavior of particles in a turbulent flow : we would rather expect a dispersion behavior similar to diffusion (see for instance [START_REF] Richardson | Atmospheric diffusion shown on a distance-neighbour graph[END_REF]). Since the stochastic models of the literature have a first order effect on the second order moments of the measure of the disperse phase, it is essential to work on a numerical setup which preserves the basic properties of turbulent flows for realizations of the second order moments of the measure of the disperse phase. Hence, it is of prime importance to understand why such a behavior is observed on the simple fluid model we have chosen if we want to use it for reproducing and understanding the dynamic of inertial particles on fluids described by Navier-Stokes kind of equations. 

Simplified one-dimensional case

As explained above, Fig. 5.1 enlightens an unexpected behavior in one dimensional case. Let us start by looking if it is possible to understand this behavior on a simplified case where the fluid is only represented by one sine. We have the particle evolution in Eq. (5.18) and the reduced evolution in Eq. (5.19). We will prove the following result :

Proposition 5.3.1. Particles under dynamics described in Eq. (5.18) will follow an increasing signal, incompatible with an expected diffusive behavior.

Proof. In order to prove this result, we can first study the system (5.19). This system is autonomous in dimension 2, so by the Poincaré-Bendixon theorem, only three cases are possible :

• The trajectories are unbounded,

• The trajectories converge to a point,

• The trajectories converge to a limit cycle.

Let us now try to characterize these behaviors more precisely. Finally we can suppose that for all trajectories, the speed C i ∈ [-C max , C max ] after some transitory time. In fact -with the same procedure-we can prove that

C i ∈ [ω -|a |, ω + |a |].
In this case, the drag term now depends on all particle history, i.e. G N t, X X X

i , C C C i , µ N 0 [Z Z Z] = u N f (t, X X X i , µ N t [Z Z Z]) -C i τ p .
Now, we are not in the context of Theorem 5.1.1 anymore. The open question is then to determine if it is possible to characterize a convergence of the particulate system towards a one-particle law :

∂ t f t + v • ∇ x f t + ∇ v • G lim f t = 0 ∂ t (u f ) + (u f • ∇) u f -ν∇ 2 u f = - 1 ρ f ∇p + m p G lim df t v
where G lim is the forcing of the gas velocity field for a large number of particles, i.e. when the particulate phase behaves as a continuum, and m p is the mass of each particle.

Example of the Burgers equation

To investigate if there is an Eulerian continuum limit to the two-way problem, we set up a simplified case that considers the 1d Burgers equation on the gas velocity u :

∂ t u + ∂ x u 2 2 = F p→g (t, x) ρ f
Giving a meaning to F p→g is not trivial (see [START_REF] Lagoutière | A simple 1D model of inviscid fluid-solid interaction[END_REF][START_REF] Aguillon | Riemann problem for a particle-fluid coupling[END_REF][START_REF] Domelevo | Limites visqueuses pour des systèmes de type fokkerplanck-burgers unidimensionnels[END_REF]). Here we will use the numerical cells as a regularization for the particle field. The equation is solved using a 1st order finite volume scheme.

Solution with homogeneous distribution of particles

First we study the asymptotic limit in which the particles are perfectly uniformly distributed at time t = 0 at the same velocity. The gas velocity also starts at a uniform velocity. In this limit the Eulerian continuum limit is valid and the particles can be represented by their eulerian equations. We then state that the forcing term in the kinetic equation is G lim = ug-v τp . Coupling gas phase and liquid phase equations, we get :

∂ t (m p n l ) + ∂ x (m p n l u l ) = 0 ∂ t (m p n l u l ) + ∂ x (m p n l u 2 l + P l ) = n l m p u -u l τ p ∂ t u + ∂ x u 2 2 = m p n l ρ f u l -u τ p
where m p is the (constant) mass of one particle, n l the number of particles per unit volume and P l the pressure of the dispersed phase. In the following we make the assumption of monokinetic disperse phase, i.e. P l = 0. The gas density ρ f is also assumed to be constant.

Starting from an homogeneous conditions, we can easily see that the solution will still be invariant by translation at any time and the problem to be solved reduces in the following ODE :

du l dt = u -u l τ p du dt = m p n l ρ f u l -u τ p
which solution is :

u l (t) = - 1 κ u 0 - κu 0 l + u 0 1 + κ e -1+κ τp t + κu 0 l + u 0 1 + κ u(t) = u 0 - κu 0 l + u 0 1 + κ e -1+κ
τp t + κu 0 l + u 0 1 + κ where κ = mpn l ρ f . The equilibrium solution is then :

u l (t → ∞) = u(t → ∞) = κu 0 l + u 0 1 + κ
As a consequence, if we want to study the impact of inhomogeneity of the particulate phase by changing the number of particles but keeping the same physical problem, we need to modify the particle mass m p accordingly, to keep κ m = κdx/L x = N p m p constant.

Particle-laden case with Lagrangian particles

Knowing the sought continuum limit of the particle system, we now investigate the impact of the number of particles, i.e. the impact of the statistical convergence of the randomlydrawn initial condition. We thus simulate the two-way coupled Burgers problem by changing the number of particles from 1 to a large number or particles. In Fig. 5.3a, we compare the time evolution of the gas velocity averaged over a large number of realizations of the initial conditions for different numbers of particles at fixed mass loading. We clearly see the convergence of the Lagrangian simulations towards the homogeneous solution, with a convergence rate of order 1 (see Fig. 5.3b). This convergence rate is not affected by the number of cells for numerical discretization and by the addition of physical diffusion in the Burgers equation. So even if we do not have a formal proof in the spirit of Theorem 5.1.1, we still have confidence in the existence of a convergence result, and thus of an Eulerian limit description.

Eulerian modeling

As examplified by the previous test case, the Eulerian representation is still possible for a large number of particles. If we do not have a large number of particles, let say less than one In Fig. 5.4, we look at the impact of the particle interspace l t = 1/N p on this effective time scale. We exhibit a linear trend for small l t , which would be helpful to devise closures in a two-way coupled system. The closure for this effective time scale can then be sought as : The previous example was just to show the impact of the droplet interspace on the solution, and a possible modeling strategy to account for some of the effects. We only focused on the source term, but additional fluxes can also be investigated as possible closures.

τ ef f p = τ p + αl t .

Interpreting existing Eulerian simulations.

Even if we clearly show here that the ensemble average on the particle phase leads to an ensemble-average on the gas phase, i.e. RANS-like statistics, many simulations can be found in the literature in a LES context, which obviously exhibits large scale unsteady behavior. Thus, the question is : what is solved in such simulations ? A possible and simple interpretation is not to consider this simulation as statistics but as a unique realization of the disperse phase represented in a Eulerian manner. This way, a unique realization of a gas phase will be considered. This turns out to be an Eulerian representation of the empirical measure, which is valid in the sense of the distributions :

∂ t µ N t + v • ∇ x µ N t + ∇ v • u g -v τ p µ N t = 0.
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 16 Figure 1.6 -Mass flux used in the definition of momentum fluxes.
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 5 Definition of the test case. Computational domain [a, b]. Left and right states for the density and velocity (jump located at x = 0).
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 171819 Figure 1.7 -Test 1. Density (at left) and velocity (at right) at time T = 0.5. Computation done with J = 200 and δt = 1e -3 .
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 110 Figure 1.10 -Intermediate volume fraction ρ m as a fonction of the velocity u.
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 111112 Figure 1.11 -Barotropic gas with Van der Waals law : comparison of the kinetic scheme (1st and 2nd order) with the Lax-Friedrichs scheme. Density and Velocity solutions for u abs = 2.
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 113 Figure 1.13 -Maximal admissible time step δt as a function of 1 -ρm ρ in blue ; the green line has a slope 1.94.
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 114 Figure 1.14 -Simulation of the Shallow Water system, by courtesy of N. Aguillon [2].
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 1 Figure 1.15 -Simulation of the Shallow Water system for δt = 10 -4 on a 512 × 512 grid : Results with the first order scheme (left) and with the muscl scheme (right)
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 116 Figure 1.16 -Visualizations of the height at the final time with the stabilized SEM method.
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 117 Figure 1.17 -Visualizations of the height at the final time with our first and second order schemes.
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 1181192 Figure 1.18 -Simulation of the 2d Mach 3 wind tunnel with a step : Density with the first order scheme (up) and with the muscl/RK scheme (down)
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 21 Figure 2.1 -Staggered grid in dimension one.
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 121 by a muscl reconstruction ρ ± j of the density. This defines the upgraded mass flux F M L j . For the momentum flux, since the discretization of the pressure is centered, we only need to modify the definition of the convection flux G M L j+ 1 We proceed as in Chapter 1 again : we combine the upgraded mass fluxes F M L j and F M L j+1 with a muscl reconstructed velocity u ± j+ at the interfaces x j+ 1 2
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 21 to 2.6, we represent at the final time T the density ρ j+1 2 and the velocity u j on the first line and the pressure p j+ 1 one the second line.
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 22 Figure 2.2 -Test 1 : the so-called Sod test problem, is a mild test : the solution consists in a left rarefaction, a contact discontinuity and a right shock.
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 23 Figure 2.3 -Test 2 : the so-called 123 problem, has a solution made of two strong rarefactions and a trivial stationary contact discontinuity.
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 24 Figure 2.4 -Test 3 : inspired from [123], has a solution made of left rarefaction, a contact discontinuity and a right shock.

Figure 2 . 5 -

 25 Figure 2.5 -Test 4 : has a solution made of a left shock, a contact discontinuity and a right rarefaction.
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 26 Figure 2.6 -Test 5 : corresponds to the collision of two strong shocks, we have a left facing shock, that travels very slowly to the right, a right travelling contact discontinuity and a right travelling shock wave.
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 27 Figure 2.7 -Simulation of the 2d Mach 3 wind tunnel with a step : Density with the first order scheme (up) and with the muscl scheme (down).
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 28 Figure 2.8 -Simulation of the 2d Mach 3 wind tunnel with a step : density cutlines at y = 0.3 for the first (blue) and second (red) order scheme.
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 183311 with the definitions (3.13), (3.14), (3.16), (3.17) for fluxes G. A few comment on the analogous 1d version of the G flux :
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 31 Figure 3.1 -Resolution of Burgers'equation with different schemes.
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 32 Figure 3.2 -1d Riemann problem, comparison between the ap scheme and an explicit scheme for ( , T ) = ( √ 0.99, 0.1) and δt = βδx.

Figure 3 . 3 -

 33 Figure 3.3 -1d Riemann problem, comparison between the ap scheme and an explicit scheme for ( , T ) = ( √ 0.1, 0.05) and δt = βδx.
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 34 Figure 3.4 -1d Riemann problem, comparison between the ap scheme and an explicit scheme for ( , T ) = ( √ 0.001, 0.007) and δt = βδx.
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  , 3.6 and 3.7 we show the density, the horizontal and vertical velocity respectively at initial time (left) and final time T = 0.5 (right) for = 0.8, δx = δy = 1/32 and δt = 5 × 10 -4 . The results are oscillations-free.
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 35 Figure 3.5 -Test 1 (traveling vortex), density at time t = 0 (at left) and t = 0.5 (at right).
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 362 Figure 3.6 -Test 1 (traveling vortex), horizontal velocity at time t = 0 (at left) and t = 0.5 (at right). At t=0.5, min i,j u i,j+ 1 2 = 0.52, max i,j u i,j+ 1 2 = 0.67.
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 37 Figure 3.7 -Test 1 (traveling vortex), vertical velocity at time t = 0 (at left) and t = 0.5 (at right). At t = 0.5, min i,j v i+1 2 ,j = -0.069, max i,j v i+ 1 2 ,j = 0.064.
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 38 Figure 3.8 -Test 1 (traveling vortex) L 1 error norm at T = 0.01 as a function of the mesh size for different values of .
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 39 Figure 3.9 -Test 2 (explosion problem), time t = 0 and = 1, velocity field (left) and density profile (middle and right).
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 310 Figure 3.10 -Test 2 (explosion problem), time t = 0.1 and = 1, velocity field (left) and density profile (middle and right).

Figure 3 . 11 -

 311 Figure 3.11 -Test 2 (explosion problem), time t = 0.25 and = 1, velocity field (left) and density profile (middle and right).
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 312 Figure 3.12 -Test 2 (explosion problem), time t = 0.5 and = 1, velocity field (left) and density profile (middle and right).
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 315 Figure 3.15 -Test 3, = 0.05, horizontal (left) and vertical velocity (right).
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 3 Figure 3.16 -Test 3, horizontal (left) and vertical velocity (right) using the limit scheme (3.18).
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 317 Figure 3.17 -Test 4, vorticity w for the Euler problem (c = 0) obtained with the Incompressible scheme at T = 2 on a 128 × 128 grid with δt = 10 -3 .
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 318 Figure 3.18 -Test 4, horizontal (left) and vertical (middle) velocity and pressure (right) for the Euler problem (c = 0) obtained with the Incompressible scheme at T = 2 on a 128 × 128 grid with δt = 10 -3 .
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 46810319 Figure 3.19 -Test 5, contour of the vorticity w at different times on a 128 × 128 grid with δt = 1e -3 using the limit scheme (3.18).
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 41 Figure 4.1 -Initial, dual and diamond meshes in the ddfv scheme.

  4.2). The union of the dual cells covers the domain : Ω = K * ∈M * ∪∂M * K * . • The diamond mesh D is made of quadrangular cells D σ,σ * whose diagonals are an edge σ of the primal mesh and an edge σ * of the dual mesh (see the green cell in Fig. 4.3). We distinguish the diamonds of the boundary D ext = {D σ,σ * ∈ D such that σ ∈ ∂Ω} and D int = D \ D ext . In the specific case where D σ,σ * ∈ D ext , the diamond cell D σ,σ * degenerates to a triangle (see Fig. 4.2). The union of the dual cells covers the domain : Ω = D σ,σ * ∈D D σ,σ * .
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 43 Figure 4.3 -Meshes and associated notations in the inside of Ω.
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 422 For s = D σ,σ * |D σ ,σ * , we denote e s := e σ,σ * + e σ ,σ * 2 .

  and F - σ = 0 for Outflow conditions. • F + σ = F + (ρ σ,σ * , u σ , e σ ) and F - σ = F -(ρ D , u σ , e σ ) for Dirichlet conditions. The discrete mass equation on a cell D σ,σ * ∈ D ext is given by

Definition 4 . 3 . 1 .

 431 We define a kinetic energy E kin σ,σ * , stored on the cell D σ,σ * ∈ D int , by the formula

Lemma 4 . 3 . 3 .Proof of Proposition 4 . 3 . 2 .

 433432 For any cell K ∈ M ∪ M * , for each edge σ of K, we consider a given fluxtype quantity X K,σ . There exists a function ω K , which is H 1 and piecewiseP 1 on K, such that ∇ • ω K = 1 |K| σ∈∂K |σ|X K,σ (4.32) and σ ω K n K,σ = |σ|X K,σ . (4.33) We remind the reader that each edges s of the diamond cell D σ,σ * is of the form s XZ * = [x X , x Z * ] with (X, Z * ) ∈ {(K, K * ), (L, K * ), (L, L * ), (K, L * )}, see Fig. 4.5.
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 45 Figure 4.5 -Diamond cell D σ,σ * .
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 46 Figure 4.6 -Polygon P of vertices P i , P j and normal vectors n i,j
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 47 Figure 4.7 -Case of a quadrangle P.

φ 1

 1 (x, y) = ax + by + c for (x, y) ∈ T , and φ 1 (x, y) = a x + b y + c for (x, y) ∈ T . The constants (a, b, c) are determined by solving the linear system ax 1 + by 1 + c = 1, ax 0 + by 0 + c = 0, ax 2 + by 2 + c = 0.
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 48 Figure 4.8 -Properties of the piecewise P 1 basis
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 411 Figure 4.11 -Test 2) : Simulation of the 2d three falling columns into a rectangular basin : Density with 50 contour lines on unstructured (left up) grids and mac meshes with 60 × 60 (right up) and 208 × 208 (middle down) cells.

Figure 4 .

 4 Figure 4.12 -Test 2) : Simulation of the 2d three falling columns into a rectangular basin : Internal energy with 50 contour lines on unstructured (left up) grids and mac meshes with 60 × 60 (right up) and 208 × 208 (middle down) cells.

, 0 . 1 γ p where we have defined m = 1 + γ-1 2 M 2

 01122 The fluid flows from left to right. Due to the geometry of the obstacle, the mac grid proposed in Chapter 2 is not appropriate. The computational domain Ω is the rectangle [0, 3]×[0, 1] with a circular arc bump of length 1 and thickness 0.1 located at the bottom, at a distance 1 from the inlet. We perform the simulation up to the final time T = 0.15 which insures that the solution does not evolve anymore in time. Here, we have set γ = 1.4 and the time step is δt = 10 -4 . Considering an ideal gas equation of state, the initial data are given by p = (γ -1)ρe = 101325 Pa and the temperature θ = 300 K . The initial internal energy is linked to the temperature by e = C V θ with the specific heat at constant volume C V = 717J • kg -1 • K -1 . Finally, to mimic a subsonic Mach number M = 0.7 we set u = On the top and bottom walls, we use reflection boundary conditions which means zero flux boundary conditions and on the left and right walls we use Dirichlet boundary conditions. At the entrance we set (ρ l , u l , e l , p l ) = m and at the exit we take the initial data (ρ r , u r , e r , p r ) = (ρ, u, e, p). In Fig.4.13 we show 50 lines of Iso-Mach, with Ma =

Figure 4 .

 4 Figure 4.13 -Test 3) : Simulation of the 2d subsonic flow in a channel with a circular arc bump flows from left to right (steady-state solution) : Iso-Mach in [86] (up) and on unstructured mesh (down).
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 1 t , which is what we are looking for in this subsection

Remark 5 . 2 . 2 .

 522 This last system can be obtained rigorously from the Boltzmann equation (5.7) in the restrictive context of monoatomic gases with µ =

Figure 5 . 1 -

 51 Figure 5.1 -Position X i in meters (m) of particles according to time in seconds (s) and colored by their number i ∈ [[0, 9]]. Time step of dt = 0.001s for particle time relaxation constant of τ p = 1s.
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Figure 5 . 2 -

 52 Figure 5.2 -Evolution of the variance in position of 10 4 particles of relaxation time constant of τ p = 1 s in different dimensionalities on one fluid flow realization according to time (s).

  i = C i dt, dC i = a sin (2π (ωt + kX i ) + ϕ) -C i τ p , i = 1, . . . , N. i = C i dt, dC i = a sin (2πX i ) + ω -C i τ p , i = 1, . . . , N.(5.[START_REF] Boyer | Inf-Sup Stability of the Discrete Duality Finite Volume method for the 2D Stokes problem[END_REF] 

  (a) Figure. (b) Zoom in.

Figure 5 . 4 -

 54 Figure 5.4 -1d Burgers problem. Evaluation of an effective relaxation time scale for the Eulerian modeling as a function of the droplet interspace..

  

  

  

  

Table 1 .

 1 2 -L 2 -norm of the error between approximate and exact solutions for different time steps. Computation done with J = 800 on uniform grids using the perfect gas state law.

		First order scheme		Second order RK scheme
		Density	Velocity	Density	Velocity
	δt	Error Rate Error Rate Error Rate Error Rate
	1e -4	8.5e -5	-	6.1e -5	-	9e -7	-	7e -7	-
	5e -5	4.2e -5 1.01 3.1e -5 0.99	9e -7	-	7e -7	-
	2.5e -5	2.1e -5 1.01 1.6e -5 0.98	9e -7	-	7e -7	-
	1.25e -5 1.0e -5 1.01 8.0e -6 0.97	9e -7	-	7e -7	-

  .8e -2 0.81 2.6e -3 1.18 400 8.0e -3 1.19 1.3e -3 0.94 800 4.7e -3 0.77 6.9e -4 0.96 1600 2.2e -3 1.11 3.8e -4 0.87

					Test 2
				Density	Velocity
			J	Error Rate Error Rate
			100 3.2e -2	-	5.8e -3	-
		-4 0.99	200 1Test 3
		Density		Velocity
	J	Error Rate Error Rate
	100 6.0e -3		

  .10) 

	Proposition 2.2.1. Assume that e j+ 1 2 conditions hold for all j	0, ρ j+ 1 2	0, for any j. If the following CFL-like
	δt		
	δx j+ 1 2		

  .[START_REF] Boyer | Inf-Sup Stability of the Discrete Duality Finite Volume method for the 2D Stokes problem[END_REF] 

	Proposition 2.3.1. Assume that e j+ 1 2 conditions hold for any j	0, ρ j+ 1 2	0 and that the following CFL-like
	δt		
	δx j+ 1 2		

Table 2 .

 2 1 -Error rate in L 1 -norm between approximate and exact solutions for different numbers of grid points.

	100	-	-	-	-	-	-
	200 0.850700 0.949060	0.992880	1.820381 1.874050	1.503473
	300 0.880656 0.964206	0.994994	1.821862 1.892868	1.619922
	400 0.896963 0.971184	0.995998	1.821327 1.910123	1.566806
	500 0.907691 0.975388	0.996509	1.808201 1.927109	1.593161
	600 0.914963 0.977970	0.996853	1.803942 1.943983	1.607096

Table 2 .

 2 2 -Definition of the test cases : left and right states.

	0.4	0.4	0.15

Table 3 .

 3 (u) err 1 (w) err ∞ (u) err ∞ (w) err 1 (u) err 1 (w) err ∞ (u) err ∞ (w) 3 -Test 4, relative error using the ap-scheme for different on a 16×16 and 32×32 grids.

	err ∞ (w)

5) The initial data of the last test case are given by u(x, y, 0) = tanh y -π 2 π/15 1 y π + tanh

  an edge of K such that σ ⊂ ∂Ω, we denote

	e σ =	e σ,σ

* if σ is a zero-flux or an outflow boundary, e D if σ is a Dirichlet boundary,

  e σ,σ * ) + e σ,σ * [λ + (e s , u σ,s )] + and E σ = e σ,σ * F + σ + e σ F - e σ,σ * [λ + (e σ , u σ )] + and this allows us to bound T 0 from below as

							
					|s|u σ,s		
					s∈∂D σ,σ *
	-	δt |D σ,σ * | s∈∂D σ,σ *	|s|E σ,s -	δt |D σ,σ * |	|σ|E σ .
	Equation (4.19) yields E σ,s = e σ,σ * F + σ,s + e σ ,σ * F -σ ,s ρ σ,σ σ e σ,σ * F + σ,s e σ,σ * F + σ ρ σ,σ

* *

  σ * and a total energy E σ,σ * , stored on the cell D σ,σ * ∈ D int , by the formulaE σ,σ * = e σ,σ * + E kin σ,σ * .We wish to write a local conservation equation for the total energy ρ σ,σ * E σ,σ * . The discrete total energy E σ,σ * satisfies the following conservative equation on D int :

	Proposition 4.3.2.

  σ . (4.34) Applying Lemma 4.3.3, on each primal (resp. dual) cell K(resp. K * ) with X K,σ = K K,σ (resp. X K * ,σ * = K K * ,σ * ) provides functions ω K (resp. ω K * ) that satisfy(4.32) and(4.33). We next define a conservative flux of kinetic energy for each s = [x K , x K * ] ∈ ∂D σ,σ * as follows

  1 2 σ ω X and substract |σ * | 2 p σ,σ * u K * n K * ,σ * in the above ex-

	pression and we get
	|s|q
	s∈∂D σ,σ *

  σ * .

	Applying (4.33) in Lemma 4.3.3 shows that			
	s∈∂D σ,σ *	|s|q σ,s =	|D σ,σ * ∩ K| 2|K|	σ ∈∂K	|σ |q K,σ +	|D σ,σ * ∩ L| 2|L|	σ ∈∂L	|σ |q L,σ

  Let i ∈ [[1, N ]]. Define C max = |a |+|ω|+1. Suppose that at time t * we have C i (t * ) > C max , then by continuity during a time δ we have C i (t * + t) ≥ C max for all t ∈ [0, δ]. Thus C max ≤ C i (t * + δ) = C i (t C max )τ p . Itproves that in finite time, the solution falls under C max . Then we have proved that for all trajectories, there exists a time t max where C i (t max ) < C max .Denote C min = -C max and use again the time t * with symmetric definition, we obtainC min ≥ C i (t (C min -C i (t *))τ p . It proves that in finite time, the solution rises above v min . Then we have proved that for all trajectories, there exists a time t min where C i (t min ) > C min .

		0	δ	-|a | -|ω| -C min τ p	ds
	≥ C i (t * ) +	δ τ p	
	and δ ≤			

* ) + δ 0 a sin (2πX i (t * + s)) + ω -C i (t * + s) τ p ds ≤ C i (t * ) + δ 0 |a | + |ω| -C max τ p ds ≤ C i (t * ) + δ |a | + |ω| -C max τ p or simply δ ≤ (C i (t * ) -* + δ) = C i (t * ) + δ 0 a sin (2πX i (t * + s)) + ω -C i (t * + s) τ p ds ≥ C i (t * ) +

does not need any time shift since the updated velocity u is known when solving (2.6).

gives the result.

if x K and x L stand for centers of adjacent control volumes, we only get an approximation of ∇u in the direction of [x K , x L ], while we need a full gradient.

4|D σ,σ * | |D σ,σ * ∩ X|A X -ρ σ,σ * c(e σ,σ * ) δt|σ| √ 2γ .
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Definition 3.2.2. Asymptotic Preserving (ap) Method.

A method is said to be ap when it preserves at the discrete level the asymptotic passage from a model to another. To be more specific, if the space and time steps δx ans δt are kept fixed, the method automatically transforms to a stable discretization of the limiting model when the small scale parameter tends to zero. Such methods are intended to be robust in the sense that the asymptotic regimes can be captured without resolving the small time and spatial scales. The efficiency of an ap scheme relies on careful time and space discretizations. Since we expect to make use of time step much larger than the one imposed by the standard CFL conditions, it is clear that a part of the system should be treated implicitly to overcome the stiffness. However, the numerical cost of the implicit solver should remain as reduced as possible. We can mention [START_REF] Degond | All speed scheme for the low Mach number limit of the isentropic Euler equations[END_REF][START_REF] Dimarco | Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit[END_REF][START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations[END_REF][START_REF] Klein | Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I. One-dimensional flow[END_REF][START_REF] Noelle | A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics[END_REF] for attempts in that direction.

A new numerical strategy

In this work, we wish to develop an ap procedure by following the ideas introduced by J. Haack, S. Jin and J.-G. Liu in [START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations[END_REF]. The stiff Euler system is split into two parts : a nonlinear and hyperbolic system of conservation laws that involves only waves propagating with O(1) speeds, and a linear system that contains the fast acoustic dynamics. The former equations are treated explicitely, the latter are treated implicitely. Next, in this framework, we propose a space discretization that relies on strategies introduced in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF] and that present the following originalities :

• we work on staggered grids, with densities (and thus pressures) and velocities stored on dual locations. This is not usual for hyperbolic conservation laws. However, this approach is well suited to avoid spurious oscillations in regimes close to incompressible : on Cartesian grids, we can expect to recover a final scheme based on the principles of mac schemes [START_REF] Harlow | Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[END_REF]. This approach is also developed, possibly with a different definition of numerical fluxes though, in e. g. [START_REF] Berthelin | Multifluid flows : a kinetic approach[END_REF][START_REF] Gastaldo | Staggered discretizations, pressure correction schemes and all speed barotropic flows[END_REF][START_REF] Herbin | Staggered schemes for all speed flows[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF][START_REF] Zaza | Contribution à la résolution numérique d'écoulements à tout nombre de Mach et au couplage fluide-poreux en vue de la[END_REF].

• the numerical fluxes are defined with an inspiration from kinetic schemes, see [START_REF] Coron | Numerical passage from kinetic to fluid equations[END_REF][START_REF] Deshpande | Kinetic theory based new upwind methods for inviscid compressible flows[END_REF] and the references therein. It provides simple formulae, which permits us to justify the positivity of the density and the entropy-stability [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic Euler models : entropy-stability analysis[END_REF].

Remark 3.2.3. We point out that the inspiration from the kinetic viewpoint has been recently used to develop new methods for solving the Incompressible Navier-Stokes system [START_REF] Bouchut | Second-order entropy satisfying BGK-FVS schemes for incompressible Navier-Stokes equations[END_REF], with interesting theoretical properties, in particular with respect to energy/entropy dissipation. Note however that, despite the derivation of this method relies on asymptotic analysis and the introduction of vanishing Mach numbers, it is not designed for performing well in low Mach regimes.

The paper is organized as follows. In Section 3.3.1 we describe the time-splitting of [START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations[END_REF]. In Section 3.3 we detail the construction of our scheme. Section 3.3.4 investigates the properties of the method : we show how the scheme becomes a (simple) incompressible solver as → 0 3) The third test case is extracted from [START_REF] Degond | All speed scheme for the low Mach number limit of the isentropic Euler equations[END_REF]. The computational domain is Ω = [0, 1] × [0, 1], discretized with a 64 × 64 grid. The final time is T = 1 and the time step is given by δt = 2.5 × 10 -2 . The pressure law is given by p(ρ) = ρ 2 and the initial data reads ρ = 1 + 2 sin 2 (2π(x + y)), q u = sin(2π(x -y)) + 2 sin(2π(x + y)) and u = q u ρ , q v = sin(2π(x -y)) + 2 cos(2π(x + y)) and v = q v ρ .

As in [START_REF] Degond | All speed scheme for the low Mach number limit of the isentropic Euler equations[END_REF], we compute the solution for = 0.8 and = 0.05. The result in [START_REF] Degond | All speed scheme for the low Mach number limit of the isentropic Euler equations[END_REF] is presented on a 20 × 20 grid ; we obtain a similar figure with a 12 × 12 grid, but it changes as the mesh is refined. With a 20 × 20 grid, the result given by the ap method is close to the one obtained with a 64 × 64 grid. Results for = 0.8 using a 64 × 64 grid are presented in Figure 3.14. The result obtained with = 0.05 are presented in Figure 3.15 for the ap-Scheme and in Figure 3.16 with the limit scheme (3.18). The density obtained with the ap-scheme is almost equal to the constant state ρ (0) = 1 : ρ-ρ (0) ∞ ∼ 10 -3 , the horizontal and vertical velocities have converged to the solution of the limit scheme. 

Numerical simulations in 2D

1) We use the scheme for the simulation of the 2d Mach 3 wind tunnel with a step (see Chapter 2, Section 2.4.3). The computational domain Ω is the L-shaped domain

We perform the simulation for t ∈ [0, 4] with γ = 1, 4 and δt = 10 

Statistical and probabilistic modeling of a cloud of particles coupled with a turbulent fluid

This chapter exposes a novel exploratory formalism, which end goal is the numerical simulation of the dynamics of a cloud of particles weakly or strongly coupled with a turbulent fluid. Given the large panel of expertise of the list of authors, the content of this paper scans a wide range of connex notions, from the physics of turbulence to the rigorous definition of stochastic processes. Our approach is to develop reduced-order models for the dynamics of both carrying and carried phases which remain consistant within this formalism, and to set up a numerical process to validate these models. The novelties of this paper lie in the gathering of a large panel of mathematical and physical definitions and results within a common framework and an agreed vocabulary (sections 5.1 and 5.2), and in some preliminary results and achievements within this context, section 5.3. While the first three sections have been simplified to the context of a gas field providing that the disperse phase only retrieves energy through drag, the fourth section opens this study to the more complex situation when the disperse phase interacts with the continuous phase as well, in an energy conservative manner. This will allow us to expose the perspectives of the project and to conclude.

Reduced description of turbulence

It is commonly admitted that the macroscopic Navier-Stokes equations contain the turbulence defined above, in the sense that these equations present solutions which have all the properties listed in paragraph 5.2.2. Nonetheless, in practice the domain size, denoted by |X|, and the dissipative cut-off scale η K , may be separated by many orders of magnitude. In this context, the Direct Numerical Simulation of the Navier-Stokes equations is rapidly unreachable, since the number of needed computational cells will be at least of the order of (η K /|X|) 3 , not speaking about the generally necessary high number of degrees of freedom per cell.

Therefore, while staying very generic, we consider a decomposition of the solution into a significant part and a residual : if φ is a quantity of interest, we consider its reduction φ on the space of significant data and thus write φ = φ + φ . This significant part could be an ensemble average, a filtering, a spatial or a temporal average or even a modal decomposition. The goal is always to reduce the size of the information needed to entirely represent the chosen significant part, hence the name reduced-order model. Now, the reduction operator • is applied directly on the macroscopic equations defined in Eq. (5.8)-(5.9). For example, when considering the incompressible version of the Navier-Stokes equation, assuming commutativity between all implied linear operators, one gets :

with u f the fluid velocity, ρ f its density (constant for incompressible fluids), ν its kinematic viscosity and p the pressure field.

The main difficulty now lies in the reduction of the non-linear terms. Indeed, nothing indicates that there exists an application giving (u f • ∇) u f as a function of u f . Thus, Eq. (5.10) is not meaningful in term of the significant unknown u f . To overcome this difficulty, the main idea is to define a more complex application which gives multiple possibilities to the relation between (u f • ∇) u f and u f . This is done by adding a hidden variable ω, which encodes all the complexity of (u f • ∇) u f inside an application F and a space of possibilities Ω in the following way

Of course, the definition of F strongly depends on the choice of the reduction operator • .

Next, an elegant way to move forward is now to define Ω as a probability space, see [START_REF] Pope | Self-conditioned fields for large-eddy simulations of turbulent flows[END_REF]. Then, two main techniques emerge :

• by drawing many particular ω, and thus giving a random modeling of the unknown term (u f • ∇) u f through F, compute many trajectories of the process u f ,

• considering the statistics or moments of the random variable F, and solve for the evolution of the moments of the random variable u f . The advantage of the first approach is to preserve the properties of a trajectory of the process u f , which is still the solution of a PDE. Thereby, the random variable u f lies in a Thus if ω > |a | then it proves that the speed stays strictly greater than ω -|a | > ε > 0, and thus the trajectories cannot be bounded. In order to prove that the particles will follow an increasing signal, we have to study the difference with this linear growing.

Denote

.

We can see that V i cannot converge to a constant V , because there is no solution to V = a sin(2πt( V + ω)) (except ω = V = 0). Since V i cannot converge to a constant while staying in a compact, it is non-monotonous. Denote T + a moment where dV i dt changes its sign (without loss of generality, suppose it changes from > 0 to < 0), i.e.

and in particular

Suppose a > 0 to simplify. The quantity

dt changes from > 0 to < 0, thus the second derivative is negative, so at a given time, there is a local maximum, and during a period [T + , T + + T ], V i is decreasing and we have also 2π(Y i (T + ) + ωT + ) ∈ [π/2, 3π/2] mod 2π. Or simply 2π(Y i (T

And since V i is decreasing, and Y i increasing unbounded, there is a moment where 2πY i (t) + 2πωt = 2kπ + π = 2πY i (T + ) + 2πωT + + π/2 -επ. At this moment, V i becomes negative and Y i becomes decreasing. Since V i is bounded, it will reach a minimum (since it cannot converges). Denote this time T -and we are in the symmetric case than previously.

We have proved that there exists two sequences (T n + ) n∈N and (T n -) n∈N such that

+ for all n ∈ N. We can bounded the time (T n --T n + ) above and below independently of n ∈ N roughly proving that the solution is close to a periodic one. Finally the solution X i is close to a increasing signal having periodic oscillation around its drift, which is incompatible with an expected diffusive behavior.

In this particular case of only one sine, we have performed a transformation which leads to an autonomous system, and hard conclusion with only a discrete set of final positions. With more exciting sines the behavior could be different. But -as it is represented in Fig. 5.2even with more exciting sines we do not obtain in 1d a dispersive behavior as expected. It makes a 1d model very dubious. But, dispersion of particles is greatly influenced by the dimensionality of the underlying space chosen. Although the dynamic in the one dimensional case is very different from the physic we aim at modeling, we expect that when dimensionality is increased, this behavior will change and be most likely similar to diffusion (see Fig. 5.2), as envisioned by the physic, and as described by the models currently in use in the literature. Let us check this assumption in the following section.

Higher dimensionality

It is possible to observe numerically that by increasing the dimensionality to more than one physical dimension (Figs. 5.2b and 5.2c), the second order moment of f t has a better behavior, i.e. it increases quite monotonously with time, and the particles do not seem to be overly constrained by the underlying fluid flow. The higher the dimensionality, the better the dispersion of the particles. Indeed, one observes in Fig. 5.2b that the dispersion of the particles appears to be much less influenced by the characteristics of the underlying fluid flow than in the 1d case (see Fig. 5.2a), and that the third dimensionality brings even more smoothness (see Fig. 5.2c). The change of behavior between 2d and 3d can also be partly understood by the addition of new topologies for the three-dimensional stationary points as described in [START_REF] Bec | Clustering and collisions of heavy particles in random smooth flows[END_REF].

Given these results, it seems relevant to keep on pursuing the simulation effort focusing on the three dimensional configuration.

Towards two-way coupled systems

The next step towards the modeling of particulate flows is to account for the impact of the disperse phase on the turbulent carrier phase, which has strong implications. Let us consider the empirical measure

and the following evolution equation

In a one-way coupled context the gas phase velocity at the particle location does only depend on the particle position itself and is independent of the others particles as they share the same gas phase. In this context, we satisfy the conditions of Theorem 5.1.

. We can thus state a theorem of convergence towards the law of the process. In a two-way coupled system, all particles affect the gas phase evolution such that the gas velocity is conditional to the full particle configuration. It can be parametrized by the empirical measure at time t = 0 : particle per cell, we still have to propose a closure for G lim . Moreover, having a statisticallyconverged NDF f requires to take statistics also on the gas phase velocity. We thus have a two-fold closure problem :

where < . > stands for the ensemble-average over particle realizations which clearly denotes a mean over the initial law of particles.

Here we clearly see that performing an Eulerian simulation sought as an ensemble-average simulation necessarily leads to an ensemble-average on the gas phase. Closing the whole system is a tough task outside of the scope of the present work.

Closing the equations.

Here we give some insight of possible closures. As results in Fig. 5.3 clearly shows similar trends but with a different time scale, we propose to investigate the possibility to close the problem using an adapted relaxation time scale τ ef f p :

.5 -1d Burgers problem. Ensemble-averaged gas velocity for different number of particles from 1 to 256, with the Lagrangian tracking (dashed lines) and the "empirical" Eulerian moment method (full lines to compare with the homogeneous limit (black).

Taking the moments of this equation and the gas equation, we get :

where n N l and u N l are zeroth and first order moments of the empirical measure, and P N l is its pressure. This system of equations is similar to the Eulerian continuum limit, but the difference lies in the initial and boundary conditions : while for the continuum limit, these inputs must be related to the law, here they must randomly drawn as in the case of the Lagrangian particles.

In the case of the 1d Burgers periodic problem, solving this system will not take advantage of the spatial invariance of the problem, and we thus have to solve the PDEs. In the following, we will consider a pressureless dynamics, i.e. P N l = 0, and we will use a second order scheme considering the high number density gradients to be resolved. In Fig. 5.5, we show the results of the gas phase statistics when using this "empirical" Eulerian moment method, demonstrating the ability of such representation to capture the right behavior.

At this point, it is worth to mention that existing LES two-way coupled simulations do not consider a random sampling of the initial/boundary conditions. Instead, they use statistically-converged inputs, leading to an incoherent modeling. It is possible to consider them as regularized simulations in the sense that the initial/boundary conditions has been smeared out enough to lose any random effect.