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Abstract 

 

Recent advances in clinical care have resulted in an increasing number of patients who survive 

severe brain injury, however, many of these patients initially show a complete absence of 

arousal and awareness of one self and their surroundings. From this initial state of unarousable 

unresponsiveness, defined as coma, patients can fully regain consciousness or evolve into other 

(chronic) disorders of consciousness. The aim of the present thesis was to characterize the 

functional and structural neural correlates of acute consciousness abolition (i.e. coma) and 

identify early neural signatures of long-term neurological recovery. To do so, we studied 

severely brain-injured patients, recruited in the acute stage of coma, using resting-state 

functional and structural MRI. 

We have conducted our analysis at a three-fold level: i) global level, in exploring brain’s 

residual ability to segregate and integrate information across several high-order resting-state 

functional networks (RSNs) (i.e. default-mode network, executive control network and salience 

network), known to be involved in self-related processing and potentially critical for 

consciousness emergence; ii) regional level, in investigating resting-state functional 

interactions between the hub nodes of high-order RSNs, with a primary focus on posteromedial 

cortex (PMC) and the medial prefrontal cortex (mPFC) inter-connectivity; iii) multi-modal 

level, in exploring the association between the PMC-mPFC functional disruption and 

corresponding gray and white matter (i.e. cingulum) structural damage.  

The global-level analysis indicated a significant topological reorganization of high-order 

resting-state networks in the acute stage of coma. This reorganization, assessed using graph 

theory, was reflected in dedifferentiated and less resilient patients’ functional brain networks, 

accompanied with a loss of long-range fronto-parietal connections. On a regional level, we 

found a complex pattern of voxel-wise decrease and increase in resting-state functional 

connection density between the posteromedial cortex and the medial prefrontal cortex. These 

connection density patterns seemed to permit outcome prediction in patients, assessed three 

months post-coma. Furthermore, the multi-modal analysis demonstrated a significant 

association between the antero-posterior functional connectivity and structural integrity 

between/within these two regions. 

In conclusion, our results imply significant heterogeneity in both functional and structural brain 

integrity in coma patients irrespectively of their apparent behavioral homogeneity. Regarding 
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functional connectivity at rest, patients’ brains appear to be radically reorganized at both global 

and regional level, with some of these patterns seeming to be related to neurological recovery. 

As such, these findings hold a significant promise towards the application of neuroimaging in 

early outcome prediction and could inspire novel personalized therapeutic approaches aiming 

to promote the re-emergence of consciousness and long-term neurological recovery. 

 

Key words: coma, brain-injury, neuroimaging, resting-state functional connectivity, structural 
integrity, graph theory, prognosis.  
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Résumé 

 

Les progrès récents dans les soins cliniques ont entraîné un nombre croissant de patients qui 

survivent à une lésion cérébrale grave, cependant, beaucoup de ces patients montrent 

initialement une absence totale d'éveil et de conscience de soi et de leur environnement. À partir 

de cet état initial, défini comme un coma, les patients peuvent reprendre complètement 

conscience ou évoluer vers d'autres états plus chroniques d’altération de cette capacité 

cognitive. 

L’objectif de cette thèse était de caractériser les corrélats neuronaux fonctionnels et structurels 

de l'abolition de la conscience dans le coma induit par une lésion cérébrale sévère et d'identifier 

les signatures neuronales précoces de la récupération neurologique à long-terme. Pour atteindre 

ce but, nous avons étudié des patients cérébrolésés, recrutés au stade aigu du coma, à l'aide de 

l'IRM fonctionnelle au repos et IRM structurale. 

Nous avons mené notre analyse à trois niveaux: i) niveau global, en explorant la capacité 

résiduelle du cerveau à ségréger et à intégrer l'information à travers plusieurs réseaux 

fonctionnels au repos (RFR) d'ordre élevé (i.e. le réseau du mode par défaut, réseau de contrôle 

exécutif, réseau de saillance) connus pour être impliqués dans l’émergence de la notion de soi; 

ii) au niveau régional, en étudiant les interactions fonctionnelles à l'état de repos entre les nœuds 

centraux des RFR (cortex postéromédial (CPM) et le cortex préfrontal médian (CPFM)); iii) 

selon une approche multimodale, en explorant l'association entre la perturbation fonctionnelle 

du CPM-CPFM et les lésions structurelles. L'analyse au niveau global a indiqué une 

réorganisation topologique significative des réseaux d'état de repos d'ordre élevé dans le stade 

aigu du coma. Cette réorganisation mise en évidence par l’analyse des graphes, semble associée 

à une importante dédifférenciation et à une réduction de la résilience des réseaux fonctionnels 

au repos d'ordre élevé. Une perte de connexions fronto-pariétales à longue distance a été aussi 

observée.  

Au niveau régional, nous avons caractérisé un schéma complexe de diminution et 

d'augmentation de la densité de connexion fonctionnelle à l'état de repos entre le CPM et CPFM. 

L’importance de ces anomalies de densité de connexion, semble liée à la récupération des patients 

dans le coma, à trois mois après l’agression cérébrale initiale. En outre, l'analyse IRM 

multimodale a permis de monter une association significative entre la connectivité fonctionnelle 

et l'intégrité structurelle entre/dans ces deux régions. 
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En conclusion, en ce qui concerne la connectivité fonctionnelle au repos, le cerveau des patients 

semble être radicalement réorganisé au niveau global et régional, et certaines de ces anomalies 

semblent liées à la récupération neurologique. En tant que tels, ces résultats représentent une 

promesse importante pour l'application de la neuroimagerie multimodale dans la prédiction 

précoce des résultats cliniques et pourraient inspirer de nouvelles approches thérapeutiques 

personnalisées visant à promouvoir la réémergence thérapeutique de la conscience à partir du 

coma.  

 

Mots clés : coma, lésion cérébrale, neuroimagerie, connectivité fonctionnelle au repos, 

intégrité structurelle, théorie des graphes, pronostic. 
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General introduction 
 

Recent advances in clinical care have resulted in an increasing number of patients who survive 

severe brain injury (i.e. trauma, cardiac arrest, stroke etc.). Unfortunately, many of these 

patients initially show complete absence of arousal and awareness of one self and their 

surroundings. From this initial state of unarousable unresponsiveness, defined as coma, patients 

can fully regain consciousness or evolve into other disorders of consciousness such as the 

unresponsive wakefulness syndrome (UWS) and the minimally conscious state (MCS).  

Currently, there are no objective and reliable acute-stage prognostic markers that can help 

predict the evolution of disorders of consciousness. Estimating the likelihood of recovery in 

acutely comatose patients is very difficult due to behavioral non-responsiveness, differences in 

nature of brain injury (i.e. traumatic versus anoxic brain injury) and potential confounding 

factors such as medication and metabolic disturbance. More importantly, it has been implied 

that the lack of a complete understanding of neural characteristics of acute stage coma and 

reliable prognostic markers significantly contributes to practice variation in the withdrawal of 

life-sustaining therapy, which can be considered as soon as few days after the initial coma-

inducing brain injury.  

On a more positive note, recent advances in neuro-technologies implied that structural (e.g. 

diffusion MRI) and functional (resting-state; rs-fMRI) neuroimaging strategies, hold a 

significant promise in the detection of residual neural and cognitive processes indicative of 

consciousness, independently of behavioral responsiveness of patients.  

Following this lead, we decided to focus our analysis on the intrinsic brain “activity” in the 

form of functional connectivity and structural integrity of brain-injured patients in the acute 

stage of coma. Therefore, the aim of the present thesis was to characterize the neural correlates 

of acute consciousness abolition (i.e. coma) and identify early neural signatures of neurological 

recovery. To do so, we longitudinally studied severe brain-injured patients using multimodal 

MRI methodology and standardized behavioral assessment. 

My education background includes a MA in Psychology from the Faculty of Philosophy, 

University of Novi Sad (Serbia), and a MSc in Neuropsychology and Clinical Neurosciences 

from the Faculty of Medicine Purpan, University of Toulouse III – Paul Sabatier.  

I have joined the already ongoing ACI-COMA project soon after I have finished my master’s 

degree in Toulouse. I have never worked with neuroimaging data before, so this thesis was 

challenging for me in the beginning, with all its difficulties related to data acquisition (and 
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processing) in the population of severely brain-injured patients in coma. Nevertheless, I very 

much appreciated the cross-domain collaboration with all its advantages and difficulties, as I 

worked alongside researchers with different backgrounds and clinicians who assured the safe 

and successful inclusion of our patients. I strongly believe that this research-clinic collaborative 

effort was an integral part in the evolution of the ACI-COMA project. 

 

 

Outline 
 

In chapter I we describe the behavioral profile of disorders of consciousness (DOC), various 

theories of consciousness, and available behavioral and neuroimaging paradigms used for the 

diagnostic and prognostic assessment of brain-injured patients with impairments in 

consciousness.  

In chapter II we review previous neuroimaging studies, upon which our research draws. This 

section is divided into three sub-chapters, describing resting-state functional connectivity, 

structural integrity and structure-function association in chronic and acute stages (i.e. coma) of 

disorders of consciousness. In this chapter, we attempted to organize previous research based 

on its contribution to the domains of diagnostics, prognostics or pathology mechanisms related 

to different etiologies (i.e. traumatic and anoxic brain injury) in DOC.  

In chapter III, we briefly describe the research design of the ACI-COMA project which served 

as the basis for this thesis.  

In chapter IV, we present the results that we have achieved to date. This section is subdivided 

into three main sections, each describing a specific study conducted within the scope of this 

thesis.  

The first study focuses on the voxel-wise resting-state functional connectivity (FC) between 

two regions of interest (i.e. posteromedial cortex and the medial prefrontal cortex), previously 

described to have a critical role in conscious processing. We also attempt to relate the identified 

FC changes in the acute stage of DOC – coma - to the neurological outcome registered three 

months after the initial inclusion.  

In the second study we investigate the resting-state FC on a more global level, by applying the 

graph theoretical methods to analyze the topological organization of several high-order resting-

state networks (i.e. DMN, SN, ECN), known to have an important role in high-level cognitive 
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functions including consciousness. This study was conducted in collaboration with Sophie 

Achard from the GIPSA-lab (CNRS) in Grenoble, France.  

Finally, in the third study, we explore the association between the functional disruption and 

underlying structural damage, encompassing the regions of interest included in the first study.  

In the chapter V, we review the contributions of the thesis and list possible directions of future 

research.  
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1 Chapter I – Conceptual framework 
 

1.1 Theories of consciousness: neural networks and brain complexity 
 

1.1.1  Connectionists models 
 

The last few decades have given a myriad of philosophical and scientific theories attempting to 

account for the origin and nature of consciousness (Cavanna & Nani, 2014). Crucially, these 

theoretical frameworks have provided several concepts that could be empirically tested in 

physiology and pathological conditions.  

The Global Neuronal Workspace (GNW) model was inspired by the theory of Baars (1988), 

which states that consciousness is represented within a global workspace, a widespread 

architecture of neuronal networks with the capacity to coordinate and integrate information 

between a set of specialized brain sites – processors. The main idea behind the GNW is that 

conscious access, depends on global information availability encompassing selection, 

amplification, sustainability and global broadcasting of salient information between brain-wide 

processors.  

From the neuronal architecture standpoint, this theory proposes two main computational brain 

spaces (Dehaene, Changeux, & Naccache, 2011): 1) a processing network which refers to a set 

of functionally specialized, automatic, and non-conscious processors (i.e. visual, auditive, 

verbal modules) with highly specific local or medium range connection which “encapsulate” 

information relevant to the function of a given processor; 2) global neuronal workspace 

consisting of a subset of distributed cortical pyramidal neurons with long-range excitatory 

axons (i.e. particularly dense in prefrontal, cingulate, parietal cortices) interconnecting multiple 

specialized processors (Figure 1.1.1). 

It is worth noting that GNW neurons are widely distributed, so there is no single brain center 

where the conscious information is stored and broadcasted but rather a conscious synthesis 

achieved when multiple brain processor “converge to a coherent metastable state” (Dehaene et 

al., 2011). Nevertheless, empirical data suggest that the global ignition related to conscious 

experience is supposedly linked to the fronto-parietal network, and the state of activation of 

GNW neurons is assumed to be globally regulated by vigilance signals from the ascending 

reticular activating system which is involved in regulating the sleep-week cycle.  
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Figure 1.1.1. Schema of the global neuronal workspace (GNW) model.  
The GNW model proposes that associative perceptual, motor, attention, memory and value areas interconnect to 
form a higher level unified space where information is broadly shared and broadcasted back to lower-level 
processors. Reproduced from Dehaene et al. (1998). 

 

In 1998, Tononi and Edelman proposed an alternative model. The dynamic core hypothesis 

based on the assumption that consciousness experience is at once differentiated (i.e. isolation 

of one specific content out of a vast number of potential internal representations) and integrated 

(i.e. unified conscious representation, where whole carries more information than each part 

alone). In 2004, Tononi proposed the Integrated Information Theory of consciousness (IIT) 

which has been continuously developed over the last decade. IIT does not hypotheses about 

specific neural correlates underlying the conscious experience but it attempts to “explain the 

essential phenomenal properties of experience, or axioms, and infers postulates about the 

characteristics that are required of its physical substrate (PSC)”, described below (Tononi, Boly, 

Massimini, & Koch, 2016): 

The first axiom of IIT states that experience exists intrinsically and that it is independent of the 

external observer. The corresponding postulate states that the PSC must also exist intrinsically 
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and that it must have a cause-effect power on itself. A minimal system composed of two 

interconnected neurons can satisfy the criteria, because it can make a difference to itself through 

its reciprocal connections.  

The axiom of composition states that consciousness is structured, being composed of several 

phenomenal distinctions which exist within it. For example, within an experience I can 

distinguish an olive tree, a rose flower, green grass and many other sub-elements constituting a 

hypothetical “garden” scene. The corresponding postulate implies that elements that constitute 

the PSC must also have a cause-effect power upon PSC, either alone (first-order mechanism) 

or in various combinations (high-order mechanism).  

The axiom of information states that conscious experience is specific, being composed of a set 

of phenomenal distinctions (qualia), thereby differing from other possible experiences 

(differentiation). For example, in a “garden” scene, a content of my conscious experience might 

be composed of me seeing a rose flower (in opposed to not seeing it) which is red (in contrary 

to not being red). The corresponding postulate states the PCS must specify a cause-effect 

structure, a specific set of cause-effect repertoires, differing it from all other possible structure.  

The axiom of integration states that each conscious experience is unified and irreducible to non-

interdependent sub-sets of phenomenal distinctions. For example, my visual experience of the 

garden can’t be subdivided into independent experience of the left and right sides of the visual 

field. The corresponding postulate implies that cause–effect structure specified by the PSC must 

also be unitary and intrinsically irreducible to non-interdependent sub-systems (Φ>0). The 

irreducibility of a conceptual structure is measured as integrated information - Φ, the minimum 

distance between an intact and a partitioned cause–effect structure.  

Finally, the axiom of exclusion states that an experience is definite in its content and spatio-

temporal grain, implying that its phenomenal content and duration are definite. For example, I 

do not perceive the garden with more flowers than there are, nor do I perceive it in grey if it has 

colorful flowers. The corresponding postulate states that the cause-effect structure specified by 

the PCS must also be definite, with definite set of elements with definite spatio-temporal grain, 

maximally irreducible intrinsically (Φmax), called a conceptual structure, made of maximally 

irreducible cause-effect repertoires (concepts). 

Thus, the physical substrate of consciousness is called a complex and it is consisted of a set of 

elements in a state that satisfies all the postulates. According to IIT, the quality (content) of 

consciousness corresponds to the form of the conceptual structural and the quantity of 

consciousness refers to its irreducibility Φmax. 
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Although both theories put an emphasis on (global) integration of information, there are some 

important differences between the GNW and the IIT theory. 

Perhaps the most notable one is that the GNW implies underlying neuronal structure (“ignition” 

of fronto-parietal workspace neurons), while IIT starts from experience itself, rather than from 

a specific brain area or network. A comparative example between the two theories is given in 

an article of Tononi and colleagues (2016) (Figure 1.1.2).  

In GNW, information which is relayed through sensory pathways remains unconscious until it 

enters the global workspace and is broadcasted to specialized processors (Figure 2– upper 

panel). In IIT, the information content of consciousness is specified intrinsically (by the system 

for the system, rater then extrinsically) and is a conceptual structure – “a form in a cause-effect 

space specified by the elements of the PSC” (Tononi et al., 2016; Figure 1.1.2– lower panel). 

Thus, in IIT neurons shape the overall form of the conceptual structure specified by the PSC, 

in oppose to processing, encoding or broadcasting an information as in GNW. In addition, 

GNW defines consciousness as all-or-none phenomenon, while IIT implies that it is graded, 

that it increases in accordance to a system’s repertoire of available states.  

Further, the association between the complexity (widespread and differentiated) of brain 

network activity and the state of consciousness (Koch et al., 2016) has been demonstrated in 

natural, pharmacological and pathological alterations of consciousness using coupled 

transcranial magnetic stimulation and EEG recordings (Casali et al., 2013; Casarotto et al., 

2016), and dynamics of spontaneous activity measured using fMRI (Barttfeld et al., 2015; 

Hudetz et al., 2015; Tagliazucchi, et al., 2016). Moreover, the cerebral cortex is ideally suited 

for integrating information, due to a coexistence of functional specialization in form of multiple 

brain sub-networks (fronto-parietal) and hub-node integration (i.e. hub regions; PCC), often 

disrupted in brain injury and disorders in consciousness as we will see in the following chapters. 
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Figure 1.1.2. Seeing a face: Global Neuronal Workspace Theory (GNWT) vs. IIT. 
The experience of seeing a face is contrasted with seeing visual noise following presentation of a degraded image. 
The top panel is a schematic rendition according to GNWT, the bottom panel according to IIT. In both panels a 
‘face’ neuron in the fusiform gyrus turns from high firing (red) to burst firing (yellow) when the face is seen. (Top 
panel) In GNWT, a “piece” of information becomes conscious if it is broadcast (blue radio waves) to a broad 
neural audience. (Bottom panel) In IIT, when the “face” neuron within the PSC turns to burst firing it changes 
the form of the conceptual structure. Stars linked to the PSC by black dotted lines highlight a small subset of these 
concepts, and a blue line between ‘face’ and ‘woman’ indicates a relation. Here, the information content of 
consciousness is specified intrinsically (by the system for the system itself). Reproduced from Tononi et al. (2016). 

 

1.1.2  Neural correlates of consciousness  
 
The neural correlates of consciousness (NCC) are defined as the “minimum neuronal mech-

anisms jointly sufficient for any one specific conscious percept” (Koch, Massimini, Boly, & 

Tononi, 2016). The NCC can be further interpreted in two ways, depending if we refer to a 

specific content (i.e. transitive word use) of consciousness or the overall state (i.e. intransitive 

word use) of consciousness (Koch et al., 2016). 

The content-specific NCC are the neural mechanisms which determine a phenomenal 

distinction within an experience (e.g. conscious experience of observing a rose flower in the 
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garden). The full NCC, are the neural substrates supporting conscious experience in its entirety, 

irrespective of a specific content. 

The full NCC is usually investigated through such state-based comparisons, by contrasting 

brain activity when consciousness is present, as in healthy subjects or recovered patients, with 

brain activity in UWS or coma patients, in anesthesia or dreamless sleep. It is important to note, 

that during such states of complete consciousness abolition induced by brain injury, alterations 

in conscious processing occur alongside damage to multiple cognitive functions (and brain 

regions), frequently yielding confounding results in terms of consciousness-related neural 

correlates. Nevertheless, the clinical models have been proved to be indispensable in the 

ongoing “quest” for neural substrates of conscious processing, as we will see in the following 

chapter.  

 

1.1.3  Clinical models of consciousness  
 
The clinical definition of consciousness (e.g. as a physiopathological state) comprises two 

major components (Posner, Plum, & Saper, 2007): i) the arousal (the level of consciousness) 

implying behavioral alternation of sleep and wakefulness and the ii) awareness (content of 

consciousness) referring to conscious perception which includes collective thoughts and 

feelings of a given individual (Laureys, Owen, & Schiff, 2004; Laureys, 2005; Soddu et al., 

2011). Awareness can further be subdivided into awareness of the external world (e.g., sensory 

perception of the environment) and of self that is the internal world (e.g., mind-wandering, 

mental imagery, inner speech). At a clinical level, the wakefulness or level of arousal is inferred 

by a prolonged period of spontaneous eye opening, while awareness is assessed by evaluating 

the command following and by observing non-reflex contingent behavior (i.e. eye tracking, 

oriented movement to pain) toward specific environmental stimuli (Demertzi, Sitt, & Sarasso, 

2017). 

At a neuroanatomical level, the level of arousal (and in particular of sleep-wake cycles) is 

controlled by the subcortical arousal systems in the brainstem, midbrain, and thalamus 

(Demertzi et al., 2017; Lin, 2000; Schiff, 2008). Awareness is thought to be supported by the 

functional integrity of the cerebral cortex and its subcortical connections, although its 

supporting neural correlates still need to be elucidated (Demertzi et al., 2017).  
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1.1.3.1 Acquired disorders of consciousness 
 
Consciousness is not an all-or-none phenomenon but lies on a continuum of states, and it can 

range from normal consciousness where arousal and awareness level are high, to disorders of 

consciousness (DOC) where arousal can be present, while awareness is absent or fluctuating 

(Figure 1.1.3). 
 

 

Figure 1.1.3. Interaction between arousal and awareness in different states of (un)consciousness. 
REM, rapid eye movement; EMCS, emergence from a minimally conscious state; MCS+, minimally conscious 
state plus; MCS-, minimally conscious state minus; VS/UWS, vegetative state/unresponsive wakefulness syndrome; 
LIS, locked-in syndrome. Reproduced from Heine, Demertzi, Laureys, & Gosseries (2015). 

 

We will briefly define the different states of consciousness such as coma, unresponsive 

wakefulness syndrome (UWS; previously known as vegetative state) and minimally conscious 

state (MCS), and the main causes of pathological impairment in consciousness such as 

traumatic and anoxic brain injury. We will also describe the locked-in syndrome (LIS), which 

is not a disorder of consciousness but is commonly misdiagnosed as a DOC.  
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1.1.3.1.1  Brain injury (BI) leading to DOC  
 
The main etiologies of coma, and thus disorders of consciousness, are traumatic brain injury 

(e.g. motor vehicle accident, falling) and non-traumatic BI, such stroke, or anoxia (e.g., cardiac 

arrest). We will focus on two etiologies, traumatic and anoxic BI, as these were the main 

underlying causes of coma in our patients.   

Anoxia refers to a complete reduction of oxygen supply or utilization, which is a direct 

result of reduced oxygen supply, reduced ambient oxygen pO2, low hemoglobin or impaired 

tissue utilization following poisoning of the mitochondrial cytochrome enzymes (Howard et al., 

2012). Hypoxia is a milder form where there is available oxygen but at reduced levels for a 

period of time. Many anoxic comatose (i.e. post cardiac arrest) patients die or survive with 

severe disability after a prolonged stay in the intensive care unit (ICU) associated with 

important cost burden. Brain damage occurring after anoxia is related to diffuse and severe 

structural damage encompassing brain swelling, cortical laminar necrosis, basal ganglia 

necrosis, and delayed white matter degeneration and atrophy (Howard et al., 2012; Weiss, 

Galanaud, Carpentier, Naccache, & Puybasset, 2007). Gray matter seems to have greater 

vulnerability to anoxia/hypoxia in comparison to white matter, especially in brain regions that 

show high basal metabolic levels (Howard et al., 2012; Nolan et al., 2010).  

Traumatic brain injury (TBI) occurs by the impact of an external force, with leading 

causes being falling and motor vehicle accidents (Sharp, Scott & Leech, 2014). TBI can be 

classified based on severity, ranging from mild trauma to severe brain injury resulting in 

prolonged coma or death. The primary injury can cause both focal and diffuse effects depending 

on the mechanism of brain injury (i.e. direct contact and acceleration–deceleration) (Sharp et 

al., 2014).  

Focal injuries include skull fractures, hematomas, while diffuse injuries involve damage to 

long-distance white matter connections via diffuse axonal injury (DAI) and blood vessel 

damage via diffuse vascular injury (Mckee & Daneshvar, 2015; Sharp et al., 2014). Studies 

show that severe TBI with poor outcome and impaired consciousness, have diffuse damage to 

cortical, subcortical white matter and thalamic nuclei (Adams, Graham, & Jennett, 2000; Sharp 

et al., 2014).  

Anoxic brain injury has been associated with high mortality rate in non-traumatic coma 

(Horsting, Franken, Meulenbelt, van Klei, & de Lange, 2015; Posner et al., 2007), and worse 

functional outcome following rehabilitation in comparison to traumatic brain injury (Cullen, 

Park, & Bayley, 2008; Cullen, Crescini, & Bayley, 2009; Cullen & Weisz, 2010). Also, 
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outcome (and prognostic markers) in disorders of consciousness has been shown to vary 

depending on etiology. Thus, brain injury mechanisms need to be taken into account during 

clinical management, diagnosis and prognosis of DOC patients.  

 

1.1.3.1.2  Coma 
 
Recent advances in clinical care have resulted in an increasing number of patients who survive 

severe brain injury such as trauma, cardiac arrest, stroke, infection or metabolic disruption. 

However, many of these patients initially show complete absence of arousal and awareness of 

one self and their surroundings (Laureys, 2005). This state of unarousable unresponsiveness, in 

which patients never open their eyes even if intensively stimulated, is defined as coma. 

Autonomic functions, such as breathing and thermoregulation, are reduced, which often 

requires respiratory assistance. Nevertheless, coma needs to be distinguished from brain death 

(Wijdicks, 2001) resulting from irreversible brainstem damage. In this case neuroimaging 

shows “hollow skull phenomenon”, indicative of the permanent loss of neuronal function in the 

whole brain (Laureys, 2005). In general, coma persists from 2-4 weeks. From this initial state 

patients can fully regain consciousness or evolve into other disorders of consciousness such as 

the unresponsive wakefulness syndrome (UWS) and minimally conscious states (MCS) (Figure 

1.1.4). 

 

 

 
Figure 1.1.4. Different conditions that may follow acute brain injury. 
The unresponsive wakefulness syndrome (UWS) was previously defined as the vegetative state. Reproduced from 
Gosseries et al. (2011). 
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1.1.3.1.3  Unresponsive wakefulness syndrome (UWS) 
 
Unresponsive wakefulness syndrome, a revised name proposed as a more appropriate 

alternative to “vegetative state”, refers to patients who show intermittent wakefulness 

(manifested as eyes-open/eyes-closed periods) but have no awareness of self or the external 

world (Laureys et al., 2010). Patients exhibit reflexive motor activity (i.e. grinding, swallowing, 

crying, smiling) devoid of any voluntary interaction with the environment and unrelated to the 

(emotional) context (Heine et al., 2015). Hypothalamic and brainstem autonomic functions are 

generally preserved, with variably preserved cranial nerve and spinal reflexes, allowing survival 

and prolonged medical care (Demertzi, 2017). This state can be persistent but can also transient 

towards minimally conscious state or recovery (The Multi-Society Task Force on PVS, 1994). 

When there is no recovery after 12 months after traumatic brain injury and 3 months after anoxic 

brain injury, the state can be declared permanent and withdrawal of hydration and nutrition may 

be discussed (Laureys et al., 2000, 2004), however, this point is a matter of debate. Some cases 

of late recovery have been described in the literature (Estraneo et al., 2010), but there are 

currently no prognostic biomarkers which could highlight potential recovery during the early 

stages when withdrawal of therapy is considered. 
 
 
1.1.3.1.4  Minimally conscious state (MCS) 
 
The minimally conscious state describes patients who regain fluctuating but reproducible non-

reflexive purposeful behavior such command following, visual pursuit or sustained fixation, 

intelligible verbalization, emotional or motor responses relevant to the environment stimuli 

(Demertzi et al., 2017; Giacino et al., 2002).  

A new subcategorization of the MCS into MCS+ (plus) and MCS- (minus) has been recently 

proposed based on the complexity of patients’ behaviors (Bruno et al., 2011a). MCS+ refers to 

patients showing non reflexive voluntary responses such as command following, intelligible 

verbalization, and/or nonfunctional communication, while MCS- defines low-level behavioral 

responses such as visual pursuit or localization of noxious stimulation.  

Patients are considered to have emerged from MCS (EMCS) when they show reliable and 

consistent demonstration of functional interactive communication (i.e. accurate yes/no 

responses to basic situational orientation questions) and/or functional object use (i.e. use of at 

least two different objects on two consecutive evaluations) (Giacino et al., 2002). EMCS 
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patients are no longer considered to suffer from DOC, however, they often have severe 

disability, and might continue to need full-time care. The MCS may be transitory, chronic or 

permanent, just like UWS. Interestingly, late recoveries have been noted, with one patient 

regaining reliable expressive language after 19 years in MCS (Voss et al., 2006). Importantly, 

the high rate of misdiagnosis in DOC has significant implication for prognosis, as it has been 

shown that MCS patients have significantly greater potential for recovery in comparison to 

UWS patients (Faugeras et al., 2017; Giacino & Kalmar, 1997; Hirschberg and Giacino, 2011; 

Luauté et al., 2010). 

 

1.1.3.1.5  Locked-in syndrome (LIS) 
 
This syndrome is not considered as a disorder of consciousness, but can be easily mistaken as 

a DOC due to patients’ loss of voluntary motor control and thus the ability to effectively 

communicate with the environment (Heine et al., 2015; Laureys, 2005). However, these patients 

are awake and aware, with no loss of cognitive function, in most cases. The most common cause 

of the LIS is ventral brainstem stroke. The primary mode of interaction is eye movements and 

blinking, however, recent advances in brain-computer interfaces (BCI) are of great help in 

providing more direct and spontaneous means of communication (Chaudhary, Xia, Silvoni, 

Cohen, & Birbaumer, 2017).  
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Figure 1.1.5. Diagnostic criteria for DOC.  
Reproduced from Heine et al. (2015). 

 

1.2 Behavioral assessment of consciousness 
 
There are multiple standardized behavioral scales (Bruno et al., 2011b; Seel et al., 2010) 

routinely used in the clinical assessment of consciousness in brain injured patients. Among 

them, we will describe the scales used in our study (which are also routinely used in clinical 

practice). 

1.2.1  Behavior Rating Scales 
 

1.2.1.1 Glasgow Coma Scale (GCS) 
 
GCS (Teasdale & Jennett, 1974; Teasdale et al., 2014) is simple and short scale, used mainly 

in intensive care settings. The GCS has three subscales that measure eye opening, verbal and 

motor responses. Each of the scales can be communicated separately or summed to create a 

total score. Each level of response is assigned a number—the worse the response, the lower the 

number. The total score varies between 3 and 15. In acute stages, brain damage is described as 
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severe if the score is less than or equal to 8, moderate if the score is between 9 and 12, and mild 

if the score is between 13 and 15. However, there have been some concerns with the GCS. The 

verbal response is impossible to assess in the case of intubation or tracheotomy, and the eye 

opening may not be sufficient to assess brainstem function (Laureys, Majerus, & Moonen, 

2002). 

 

1.2.1.2 The Full Outline of Unresponsiveness (FOUR) 
 
FOUR has been proposed as a replacement to the GCS as it can detect subtler neurological 

changes (Wijdicks, Bamlet, Maramattom, Manno, & McClelland, 2005). It consists of four 

subscales (eye, motor, brainstem, and respiration), and each subscale has a maximal score of 4. 

The scale has been translated and validated in French language (Bruno et al., 2011b). FOUR is 

suitable for differentiating between VS and MCS, because it assesses visual pursuit, and can 

diagnose LIS and brain death.  

 

1.2.1.3  The Coma Recovery Scale-Revised (CRS-R) 
 
CRS-R is a recently developed clinical scale (Giacino, Kalmar, & Whyte, 2004), currently 

considered the most reliable and sensitive test for differential diagnosis of DOC (Seel et al., 

2010). 

The CRS consists of 25 hierarchically arranged items that comprise 6 subscales addressing 

auditory, visual, motor, oromotor, communication, and arousal processes. The lowest item on 

each subscale represents reflexive activity, whereas the highest items represent cognitively 

mediated behaviors (Giacino et al., 2004). CRS has been shown to have acceptable standardized 

administration and scoring, excellent content validity and test-retest reliability, and good 

internal consistency and inter-rater reliability (Giacino, Fins, Laureys, & Schiff, 2014; Seel et 

al., 2010). The scale has been translated and validated in French language (Schnakers et al., 

2008). However, repeated CRS-R testing is advisable to minimize the risk of misclassification 

(Cortese et al., 2015), with one study suggesting at least 5 assessments within a short time 

interval (e.g., 2 weeks) to reduce the risk of misdiagnosis (Wannez, Heine, Thonnard, 

Gosseries, & Laureys, 2017). 
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1.2.2  The challenges of diagnosis and prognosis in DOC  
 

1.2.2.1 Limitations of behavioral-based diagnosis 
 
Diagnostic accuracy is critical in this field, in regard to appropriate everyday medical 

management (e.g. pain medication) and the decision of withdrawal of life-sustaining care 

(Turgeon et al., 2011). In addition, it could be expected that more accurate diagnosis holds the 

promise for personalized medicine, including individually-targeted therapeutic 

pharmacological (e.g. amantadine, zolpidem; Gosseries, Zasler, & Laureys, 2014) and/or 

nonpharmacological (e.g., deep brain stimulation, transcranial direct current stimulation) 

(Schiff et al., 2007; Thibaut et al., 2014, 2015, 2017; Cavaliere et al., 2016)  

Diagnostic accuracy depends on multiple factors associated with the environment, examiner 

and/or patient. Differential diagnosis requires repeated standardized assessment by well-

experienced and trained medical staff. Nonetheless, voluntary and reflexive behavior could be 

difficult to distinguish, as motor responses can be very small, quickly exhaustible and 

inconsistent, potentially leading to diagnostic error (Schnakers, Majerus, & Laureys, 2004). 

Environmental factors, such as paralytic and sedative medication, can significantly constrain 

voluntary behavioral responses, inducing bias in the diagnostic process. Furthermore, 

fluctuation in level arousal, fatigue, pain, severe central and peripheral damage leading to 

sensory deficits (e.g., cortical blindness/deafness), motor impairment (e.g., paralysis) or 

cognitive deficits (e.g., aphasia, apraxia, agnosia), (Bodien & Giacino, 2016) also pose a major 

problem in administrating and accurately interpreting the results of current clinical tests focused 

on overt patient behavior. 

These problems are highlighted in studies that show that around 40% of patients diagnosed as 

UWS have some conscious awareness (Schnakers et al., 2009; van Erp, et al., 2015). LIS 

patients can also easily be mistaken as unconscious (Bruno et al., 2011a).  

 

1.2.2.2 Limitations of behavioral-based prognosis 
 
It must be stressed that prognostic markers for accurate long-term DOC patients’ assessment of 

recovery do not exist or are extremely limited (Haenggi, Z’Graggen, & Wiest, 2014; Weijer et 

al., 2016). Estimating the likelihood of recovery in acutely comatose patients is extremely 

difficult, due to behavioral non-responsiveness, differences in nature of brain injury (i.e. 

traumatic vs. anoxic BI) and potential confounding factors such as medication and metabolic 

disturbance. Also, patient outcome after severe brain injury is highly variable (Sharp et al., 
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2014), especially in traumatic brain injury, as some patients regain independence, while others 

have serious cognitive deficit and are unable to function without personal care assistance.  

The prediction accuracy of current prognostic markers used in the clinical setting (for brief see 

Weijer et al., 2016) remains generally low, and is defined according to a binary outcome 

(survival vs. death) without any distinction between different DOC categories or the degree of 

functional impairment at long-term. More importantly, the lack of objective and reliable 

prognostic markers might significantly contribute to practice variation in the withdrawal of life-

sustaining therapy. This was highlighted in a study of Turgeon and colleagues (2011), including 

720 patients with severe traumatic brain injury in six level I trauma centers. The authors found 

a mortality rate of 32%, with 70% of death attributable to withdrawal of life-sustaining therapy, 

with half occurring within the first 72 h of injury. In addition, the hospital mortality rates 

differed substantially, ranging from 10.8% to 44.1%, partially due to physicians’ different 

perceptions of long-term prognosis (Turgeon et al., 2011). 

 

Therefore, the importance of conducting coma-related research is two-fold: a) fundamental - 

coma presents a unique model for the research of neural correlates of consciousness; and b) 

clinical - there is an urgent need for acute-stage markers serving the purpose of diagnosis (e.g. 

brain’s residual capacity for conscious processing), monitoring (e.g. changes of brain 

function/structure), and prognosis (e.g. identifying patients with a potential for recovery). Once 

these markers are identified, they can be applied in the development and application of novel 

personalized treatments aiming to restore consciousness and neurocognitive function.  

 

1.3 Neuroimaging and conscious processing: (re)framing paradigms 
 
The increasingly powerful neuroimaging technologies have been leading to a significant 

paradigm shift and have helped surpass some limitations posed by behavioral testing (Laureys 

& Schiff, 2012). Functional neuroimaging strategies (i.e. fMRI, EEG) have enabled the 

detection of convert awareness in patients previously thought to be in unresponsive wakefulness 

syndrome (i.e. fMRI-based active paradigms) (Peterson, Cruse, Naci, Weijer, & Owen, 2015; 

Monti et al., 2010) and permitted “non-communicative” and locked-in patients to communicate 

their though and interact with the environment through willfully modulated brain activity (i.e. 

EEG paradigms; Luauté et al., 2015).  

However, due to the complexity of disorders of consciousness, as described earlier, patients 

may not be able to participate (via brain activity or motor/behavior responsiveness) in 
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neuroimaging-based tasks, and could therefore be wrongfully identified as unconscious despite 

preserved capacity for conscious processing. Thus, an alternative approach has been proposed 

to active paradigms, in the form of resting-state functional and structural neuroimaging 

strategies, which serve to detect residual neural and cognitive processes indicative of 

consciousness, independently of behavioral responsiveness of patients. These advanced 

(resting-state) neuroimaging techniques hold significant promise in providing diagnostic and 

prognostic information for DOC patients, however, much work is needed before they can be 

used in clinical setting. The following chapters will provide more detail on the MRI basics, 

current state and methodological advancement in the application of neuroimaging in DOC 

assessment.  

 
 

1.3.1  Magnetic Resonance Imaging   
 
Neuroimaging includes the use of various techniques to either directly or indirectly image the 

structure or function of the brain. Magnetic Resonance Imaging (MRI) was developed in late 

1970s, by researchers including Peter Mansfield and Paul Lauterbur, and is widely used today 

to image the brain both in health and disease. MRI is non-invasive imaging technique that uses 

magnetic fields, radio waves, and field gradients to generate images of internal organs, without 

exposure to ionizing radiation.  
 

1.3.1.1 Acquisition methods 
 
The MRI scanner consists of a large, powerful magnet placed in a horizontal tube in which the 

patients enters. The strength of a magnet in an MRI system is rated using a unit of measure 

known as a tesla (T), which can range from 0.5T to 7T, with most today’s scanners working at 

3T. MRI is based on the magnetization properties of hydrogen nuclei (protons), mainly 

contained in water molecules. These protons are randomly spinning, or precessing, on their 

axis, around their individual magnetic fields. When the patient enters the MRI scanner a very 

strong magnetic field (B0) is applied to align the proton spins in the direction of the field (z 

direction). Next, a radio frequency (RF) pulse that is specific only to hydrogen (Larmour 

frequency) is applied, perturbing the alignment (or magnetization) of protons. The protons 

absorb the energy from the variable field and flip their spins into the xy plane, a process called 

excitation. When the RF pulse is turned off, the protons gradually return to their normal spin 

(equilibrium) releasing the energy absorbed from the RF pulses, creating a signal that is picked 
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up by the coils placed in the MRI tube. This process is called relaxation and occurs in different 

rates depending on the tissue type. There are two different relaxation times - T1 and T2. T1 is 

the time constant which determines the rate at which excited protons return to equilibrium, that 

is align with the external magnetic field in the z direction (longitudinal relaxation). T2 is the 

time constant which determines the rate at which excited protons reach equilibrium or go out 

of phase with each other in the xy plane (transverse magnetization) (external factors such as 

magnetic field inhomogeneity can increase the T2, as captured in T2*).   

By varying several MRI sequence parameters, images can be acquired with varying contrast 

between different brain tissues. Some of the adjustable parameters are the: repetition time (TR) 

- time between successive pulse sequences - and echo time (TE) - time between the RF pulse 

and the sampling of the echo signal. T1-weighted images are produced by short TE and TR 

times. Tissues with short T1 appear bright on the image because they regain most of their 

longitudinal magnetization during the TR interval (such as white matter (WM)) and produce a 

stronger MR signal. Tissues that seem much darker on the image, therefore have longer 

longitudinal relaxation times (such as cerebro-spinal fluid (CSF)). T2-weighted images are 

produced using longer TE and TR. Therefore, tissue, such as WM, with a short T2 will appear 

dark on T2-weighted images, while CSF will appear bright on T2-weighted images.  

 

1.3.2 Diffusion weighted imaging (DWI) 
 
DWI is a variant of conventional MRI sensitive to diffusion of water protons. This technique is 

based on the molecular diffusion, or Brownian motion, referring to thermally driven random 

motion of water molecules (Soares, Marques, Alves, & Sousa, 2013; Hagmann et al., 2006). 

This movement is described by the diffusion coefficient, which also depends on the properties 

of the liquid, such as viscosity, molecular size and temperature. In an unrestricted environment, 

such as glass of water, the motion is completely random and only limited by the boundaries of 

the glass. However, biological tissue is a highly heterogeneous media, in which the random 

movement of molecules is impeded by compartmental boundaries and other molecular 

obstacles and thus restricted in various directions. The combination of these factors, produces 

measured signal changes that reflect the apparent diffusion coefficient (ADC) or mean 

diffusivity (MD) which can significantly differ from the diffusion coefficient of the unrestricted 

liquid (like in the glass of water).  

DWI images are acquired by applying a diffusion sensitizing gradient that increases the strength 

of magnetic field evenly in one direction. The gradients are applied across large number of 
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different directions (minimum 6) to ensure a robust estimation of diffusion. For each direction, 

the first gradient pulse dephases the magnetization, and the second pulse rephases the 

magnetization. For stationary molecules, the second gradient will refocus the protons perfectly, 

resulting in maximally coherent magnetization and sampling of a high MRI signal. In case of a 

diffusion in the direction of applied gradient, the second gradient will cause a random phase 

shift resulting in an attenuation of the MRI signal. Thus the WM fiber tracts parallel to the 

gradient direction will appear dark on the DWI images in that direction (O’Donnell & Westin, 

2011; Mori, & Zhang, 2006).   

Diffusion tensor imaging is an extension of DWI which refers to a specific modelling of data, 

allowing the inference of directional dependencies of the diffusion signal, resulting in a 3D 

representation of the water molecule movement. The spatial dependence of the diffusion is 

characterized by a 3x3 matrix, called the diffusion tensor, that describes the diffusion along 

some combination of the 3 different spatial direction (x,y,z), assuming that the displacement 

distribution is Gaussian. The diffusion tensor is usually represented by an ellipsoid, where the 

axes represent three principal diffusion directions (eigenvectors – v1, v2, v3) and the 

corresponding diffusion magnitude (eigenvalues - λ1, λ2, λ3). Eigenvalues are ordered 

λ1>λ2>λ3, with an anisotropic diffusion (restricted diffusion) characterized by λ1≥λ2≥λ3 and 

isotropic diffusion by λ1~λ2~λ3 (Figure 1.3.1). 

 

 

Figure 1.3.1. Three diffusion ellipsoids represent the diffusion profile of 3 different structures. 
The axes represent the x- (left-right, red), y- (posterior-anterior, green), and z-(inferior-superior, blue) directions. 
(A) Isotropic diffusion ellipsoid, representing a region of cerebral spinal fluid. (B) Anisotropic diffusion ellipsoid, 
representing a white matter tract parallel to the y-axis (superior longitudinal fasciculus). (C) Anisotropic diffusion 
ellipsoid, representing a white matter tract parallel to the x-axis (corpus callosum. Reproduced from Feldman, 
Yeatman, Lee, Barde, & Gaman-Bean (2010).  

 

The degree to which diffusion is directionally dependent can be expressed as the fractional 

anisotropy (FA), a parameter which is calculated comparing each eigenvalue with the mean of 

all the eigenvalues as in the following equation:  
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The values of FA range from 0 (isotropic) to 1 (anisotropic). In the brain white matter, diffusion 

is anisotropic as it greater along the axis of the axons and not across. Thus, DTI also allows 

fiber tracking that is reconstruction of major white matter tracts in the brain, which are made 

up of densely packed myelinated axons (high values of FA). One of these major tracts is the 

cingulum which nestles in the WM of the cingulate gyrus and will be mentioned in following 

chapters (Figure 1.3.2).  

 

 

Figure 1.3.2. Major white matter structures of the human brain. 
ACR, anterior corona radiata; ALIC, anterior limb of internal capsule; ATR, anterior thalamic radiation; CC, 
corpus callosum; CG, cingulum; CPT, corticopontine tract; CST, corticospinal tract; EC, external capsule; 
Fmajor, forceps major; Fminor, forceps minor; FX, fornix; GCC, genu corporis callosi; ILF, inferior longitudinal 
fasciculus; PLIC, posterior limb of internal capsule; PTR, posterior thalamic radiation; RLIC, retrolentricular 
part of internal capsule; SCC, splenium corporis callosi; SFO, superior fronto-occipital fasciculus; SLF, superior 
longitudinal fasciculus; SS, sagittal striatum; ST, stria terminalis; TAP, tapetum. Reproduced from Toga, 
Thompson, Mori, Amunts, & Zilles. (2006).  

 

Other measures can be calculated such as mean diffusivity (λ1+λ2+λ3)/3), axial (longitudinal) 

diffusivity (λ1) that is the rate of diffusion in the direction that is parallel to the white matter, 

and radial diffusivity (λ2+λ3)/2) or perpendicular diffusivity to white matter.  

More importantly, DWI/DTI is a sensitive (but non-specific) marker of neuropathology and 

microstructural architecture. The combination of described measures has received growing 

popularity in clinical diagnosis and characterization of various pathological process such as 

acute ischemic lesions (decrease in MD, increase in FA), inflammation and edema (increase in 

MD, decrease in FA), and demyelination/dysmyelination (increase MD, decrease FA, increase 

RD) (Alexander, Lee, Lazar, & Field, 2007).  
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1.3.3 Functional MRI (fMRI) 
 
Functional magnetic resonance imaging (fMRI) measures the spontaneous (resting-state) or 

stimulus-driven fluctuation in the blood oxygenation level-dependent (BOLD) signal. The idea 

that changes in blood oxygenation could drive measurable signal changes in brain MR images 

was introduced by Ogawa and colleagues in 1990.  

In brief, fMRI is based on the principle that an increase in neural activity in a brain region 

stimulates an increase in a local blood flow needed for a higher supply of oxygen and glucose. 

Consequently, there is a change in blood flow that exceeds the demand in the adjacent 

capillaries, resulting in an increase in the balance of the oxygenated arterial blood to 

deoxygenated venous blood (Gore, 2003). This phenomenon is called the hemodynamic 

response (Figure 1.3.3).  

Oxygenated and deoxygenated hemoglobin present different magnetic attributes, therefore, the 

higher concentration of oxyhemoglobin in the venous compartment (and decreased 

deoxyhemoglobin) changes the paramagnetic properties of the tissue which can be detected 

during a T2* acquisition. An increase in blood oxygen concentration at capillary level will 

locally reduce magnetic field inhomogeneities leading to increased T2*-weighted signal. 
 

 
Figure 1.3.3. A. Schematic illustration of the origins of the BOLD effect in fMRI. B. Illustration of the typical 
BOLD hemodynamic response function. 
Figure A reproduced from Gore (2003). Figure B reproduced from Siero et al. (2013). 
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1.3.4 Resting-state fMRI (rs-fMRI) 
 
RS-fMRI investigates synchronous activations between regions that are spatially distinct, 

without applying a task or a controlled stimulus (Lee, Smyser & Shimony, 2013). Rs-fMRI 

focuses on spontaneous low frequency fluctuations (<0.1 Hz) in the BOLD signal (Van Dijk et 

al., 2010). Relative to task-based fMRI, it requires minimal patient compliance, it can be 

acquired under anesthesia and it is well suited for difficult clinical populations such as 

Alzheimer’s disease or DOC patients (Fox & Greicius, 2010; Orringer, Vago, & Golbycole, 

2012; Lee et al., 2013). Recently, there have been some advances in the application of rs-fMRI 

in prediction of individual differences (Calhoun, Lawrie, Mourao-Miranda, & Stephan, 2017; 

Dubois & Adolphs, 2016), which hold significant promise in obtaining diagnostic and 

prognostic information in a single subject, especially important in heterogeneous groups, such 

as the population of traumatic brain injury patients.  

 

1.3.4.1  Rs-fMRI analysis methods  
 
After image preprocessing steps, a number of methods can be applied in the analysis of the rs-

fMRI data, each with its own inherent advantages and disadvantages.  

The two main approaches to analyzing rs-fMRI are the: a) model-driven and b) the data-driven 

analysis (Cole, Smith, & Beckmann, 2010).  

The first approach consists (Poldrack, 2007) of the a priori selection of a voxel, cluster or atlas 

region, from which to extract time series (i.e. BOLD signal) data which is then used to calculate 

whole-brain, seed-based, or voxel-wise functional connectivity maps of co-variance with the 

seed region (Cole et al., 2010). 

The seed-based approach was used in the study of Biswal and colleagues (1995) in which the 

low-frequency coherent, spontaneous BOLD fluctuations were identified bilaterally in the 

somatomotor cortical regions, suggesting, for the first time, the functional importance of the 

resting-state activity. However, as described, this approach is hypothesis-driven, requiring a 

priori selection of ROIs based on the assumption of a functional dependency.  

In contrast, the data-driven approach such as the independent component analysis (ICA) serves 

to estimate the component maps of maximal spatial independence (from each other) without 

the need for a prior selection of brain regions (Beckmann, DeLuca, Devlin, & Smith, 2005).  

Importantly, the application of seed-based and ICA analysis led to the identification of several 

resting-state networks (RSNs) representing spatially distant but functionally connected regions, 
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comparable to known sensory and cognitive processing systems shown to be activated during 

different task-based fMRI studies (Heine et al., 2012; Rosazza, & Minati, 2011).  

Another, distinct but interesting alternative to seed-based and ICA analysis is the graph theory 

analysis which formulates the resting-state networks as a collections of nodes connected by 

edges (i.e. links) (Lee et al., 2013). This approach is not so widely used as the previous ones, 

but is rapidly gaining interest in the neuroimaging community. The graph analysis is an 

advanced mathematical approach which consists of several steps of analysis, and will be 

explained in more detail in the following chapters.  

 

1.3.5  Network-based analytical approach: graph theory 
 

1.3.5.1 Graph definitions  
 
Brain’s anatomical and functional organization can be approached from the perspective of 

complex networks, which has led to a growing interest in the application of graph theoretical 

methods in the neuroscientific community (Bullmore & Sporns, 2009; Bullmore & Basset, 

2011). Graph theory is a mathematical study of complex systems/networks that is graphs. 

Within this framework a complex system (brain) is formalized as a mathematical object 

consisting of a set of vertices (ex. neurons, brain regions, electrodes) and edges that is pairwise 

relationships between those vertices (ex. synaptic connections, interregional pathways, 

functional dependencies) (i.e. G = (V, E)). Using these two components, nodes and edges, graph 

topology can be quantitatively described by a wide variety of measures organized according to 

their ability to characterize large (whole network), intermediate (sub-networks) or small (nodes) 

topological scales (Fallani et al., 2014). Two nodes are adjacent if they are connected with an 

edge, and two adjacent nodes are called neighbors. A self-loop is an edge that connect a node 

to itself, and it is usually not present in simple graphs. A cycle is a path of edges and nodes 

where a node is reachable from itself. Graphs can be unweighted (i.e. binary), representing 

networks in which edges are either present or absent, or weighted – when each link has an 

assigned weight (numerical value). Graphs are directed when edges have a direction 

association with them, and undirected when links are symmetrical. A signed graph is a graph 

in which each edge has a positive or negative sign.  
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Figure 1.3.4. An example of a a) binary graph, b) self-loop, c) weighted graph, d) directed graph, e) signed 
graph and a f) fully connected graph. 

 

A fully connected graph contains nodes that are connected with at least one edge. To generate 

a complete or fully connected graph, the minimum spanning tree (MST) can be applied 

(Alexander-Bloch et al., 2010; Prim, 1957). MST or minimum weight spanning tree consist of 

connecting all nodes, without any cycles and with minimum possible total edge weight (in 

weighted networks). The maximum number of edges are removed iteratively from a fully 

connected graph until all the nodes remain connected. In a graph with N nodes, the MST has 

N-1 edges. A graph can have many minimum spanning trees. 

Graph theory offers many more concepts that will not be explored in detail, for further 

information please refer to a book written by Fornito, Zalesky & Bullmore (2016). In the second 

study (Chapter IV) we define our graphs as fully-connected, loop-less, undirected, unsigned 

(absolute) and unweighted.  

 

1.3.5.2 Graph representation 
 
Every graph is associated with an adjacency matrix – square matrix in which the elements 

indicate whether pairs of nodes are adjacent or not in the graph. In an undirected 

binary/unweighted graphs, the adjacency matrix is a symmetric (0, 1) - matrix with zeroes on 

its diagonal (no self-loops) (Figure 1.3.5).   
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Figure 1.3.5.  A simple binary graph and its representation by an adjacency matrix. 

 

1.3.5.3 Graph analysis  
 
The analysis of graphs entails several processing steps that need to be applied to each subject 

individually (Figure 1.3.6). The most important step for valid results is the accurate definition of 

nodes (Fornito, 2010; Fornito, Zalesky, & Breakspear, 2013; Hayasaka & Laurienti, 2010; 

Zalesky et al., 2010) and edges (Meskaldji et al., 2013; van Wijk, Stam & Daffertshofer, 2010), 

as these are the building blocks of any network and have a large impact on the extracted graph 

metrics (Stanley et al., 2013; Fornito et al., 2016). 

In voxel-based modalities, such as fMRI, there are several ways to define brain nodes, mostly 

depending on the spatial scale (single voxels versus cluster of voxels) and the choice of how to 

combine voxels (anatomical, data-driven or hybrid parcellation) (Fornito et al., 2016). The most 

common approach in rs-fMRI is the choice of brain regions that are considered functionally 

homogeneous, as shown in task-evoked (i.e. cognitive task) or resting–state spontaneous 

synchronous activity (i.e. RSNs identified with ICA). Undirected functional links are mostly 

commonly defined using the Pearson correlation coefficient between the BOLD time courses 

extracted from different ROIs. However, the obtained functional adjacency matrix is always 

fully connected (except the diagonal/self-connections) and most probably contains weak and 

potentially spurious connections that could significantly influence the network topology. 

Therefore, the matrix needs to be thresholded before the graph metrics are calculated. To do 

this, we can apply a fixed cut-off value or threshold, τ, to the connectivity matrix in order to 

determine which connections should be retained. In the case of functional matrices, we could 
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set a value of the correlation coefficient to r=0.2, deciding to keep only the connection that have 

a higher value then r. This approach is useful in separating signal from noise, however, it usually 

results in a different in number of connections retained for each subject, rendering inter-

individually comparison difficult. Another approach that addresses this problem is the 

connection density (cost) threshold. The cost (k) represent the ratio between the actual number 

of edges and the total number of possible edges in the graph. In the case of undirected graphs, 

the number of possible edges is divided by 2. The corresponding formula is:  

 

𝑘 =
𝐸

𝑁(𝑁−1)/2
, 

 

where E is the actual number of edges and N the number of nodes in the network (N-1 is the 

number of off-diagonal elements). 

After applying the threshold, the remaining elements can be binarized (0, 1 matrix). Binary 

functional matrices assure the analysis of topological patterns of connection between nodes 

without the influence of variation in their weights (Fornito et al., 2016). Filtered and binarized 

matrices can then be used to calculate graph metrics.  

 

 
Figure 1.3.6. The processing pipeline for functional graph analysis. 

Reproduced from Fallani et al. (2014). 
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1.3.5.4 Graph metrics 
 
Graph theory offers a multitude of measures that can be used to explore relationships between 

nodes in brain networks. We will describe only the ones that we used in our second study. The 

metrics and corresponding formulas are integrated in the R-based libraries: brainwaver 

(http://cran.rproject.org/web/packages/brainwaver/index.html2) and igraph 

(http://cran.rproject.org/web/packages/brainwaver/index.html2http://cran.rproject.org/web/pac

kages/igraph/index.html). For additional metrics and formulas, please see Rubinov & Sporns 

(2010). 

 

1) The most basic property of a node i is the degree (ki) that is the number of its adjacent 

edges that connect it to rest of the nodes in the graph. It is defined as: 

 

 
 where aij is the connection status between i and j, and N is the set of all nodes in the network.  

 

2) Minimum path length (distance) is the minimum number of edges that must be traversed 

to go from one node to another. It is a basic measure of integration within a network. It is 

calculated as:   

 
where gi↔j is the shortest path (geodesic) between i and j (lij = ∞ for all disconnected pairs i, 
j). 
  
3) The global efficiency (E) is also a metric for efficiency of integrative information transfer 

across the network (Latora & Marchiori, 2001). This measure is inversely related to the 

harmonic mean of the shortest path length (Watts & Strogatz, 1998), but is adapted to 

disconnected graphs. It is computed as: 

 

 

http://cran.rproject.org/web/packages/brainwaver/index.html2
http://cran.rproject.org/web/packages/brainwaver/index.html2http:/cran.rproject.org/web/packages/igraph/index.html
http://cran.rproject.org/web/packages/brainwaver/index.html2http:/cran.rproject.org/web/packages/igraph/index.html
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4) Clustering coefficient is a measure of the degree to which nodes in a graph tend to cluster 

together (Watts & Strogatz, 1998). It’s a basic measure of segregation within a network. It is 

calculated as: 

 
 

where ti is the number of triangles around a node i, (Ci = 0 for ki < 2). 

 

5) The local efficiency measures the integration capacity between immediate neighbors of a 

given node (Latora & Marchiori, 2001). This metric also reflects the network resilience by 

indicating how efficiently neighbors of a given node communicate when this node is disrupted. 

It is defined as: 

 
 
Where, Gi is the sub-graph of G (graph) obtained from a set of nodes which are nearest 

neighbors (directly connected) of node i. NGi is the number of nodes in Gi.  

 

 

 
Figure 1.3.7. A graphical example of global and local metrics. 
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Figure 1.3.8.  Table of the most basic global and local metrics and associated interpretation. 

 

1.3.5.5 Small-word topology 
 
Watts and Strogatz (1998) introduced a generative model for graphs which provided first 

evidence that neural networks have small-world (SW) properties. SW networks have high levels 

of clustering, like lattice (regular) networks, combined with low average path length, much like 

in random networks (Figure 1.3.9). The association of these two characteristics seems to provide 

a substrate for simultaneous segregation and integration at minimal wiring-cost (Fornito et al., 

2016).    

Since the Watts-Strogatz model, multiple studies have suggested that brain networks are small-

world, representing functionally associated clusters with high density of local connections and 

few long-range connections between segregated areas supported by the integrative properties 

of highly connected hub nodes (Bullmore & Sporns, 2009; Collin et al., 2014).  

These brain hub nodes can be defined using a range of topological measures (van den Heuvel 

& Hulshoff Pol, 2010; van den Heuvel & Sporns, 2013). Accordingly, the combination of 

different metrics, such as degree and betweenness centrality can distinguish nodes that are 

highly connected and have a particularly high influence on network-wide process (Fornito et 

al., 2016).  
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Figure 1.3.9. Graphical representation of different types of networks. 
The healthy human brain has a SW organization, which consists of dense local connections (i.e. as in regular 
networks), short path lengths (i.e. as in random networks) and the presence of highly connected hubs (i.e. as in 
scale free networks). Thus, the human brain is also a hierarchical, modular network. Reproduced from Stam 
(2014).  

 

Interestingly, several disorders, such as Alzheimer’s disease and schizophrenia, have been 

associated with either more regular or random topology (Bassett & Bullmore, 2009; Bassett, 

Nelson, Mueller, Camchong, & Lim, 2012; Liu et al., 2008; Stam, 2014) in comparison to 

healthy controls who had preserved SW organization. Additionally, severe brain-injury has 

been shown to have a high impact on individual nodes - hubs - highly connected, central brain 

nodes, essential for regulating and maintaining the delicate balance between segregation and 

integration essential for efficient brain functioning (Fornito, Zalesky & Breakspear, 2015; 

Seeley et al., 2009).  

 
 

1.4 The restless brain: resting-state functional brain networks (RSNs) in 
healthy subjects  

 
 
1.4.1 Functional differentiation 
 
The human brain is composed of a large number of regions that differ in their task and function 

but communicate with each other through dynamic interactions forming brain networks that 
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underlie complex cognitive processes. Thus, the human cerebral cortex seems to have attributes 

that promote modularity (differentiation) and efficient brain-wide communication (integration) 

(van den Heuvel & Sporns, 2013). 

As previously described, rs-fMRI studies have identified multiple RSNs comprised of spatially 

remote but functionally connected regions underlying specialized cognitive processing. The 

RSNs consistently reported across studies include: the default mode network (DMN), visual 

networks, auditory and sensorimotor network, bilateral executive control and the salience 

network (Figure 1.4.1; Damoiseaux et al., 2006; Heine et al., 2012; Laird et al., 2011; Rosazza, 

& Minati, 2011; Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012; Smith et al., 2009). 

 

 

Figure 1.4.1. Multiple cerebral networks that can be identified with ICA applied on rs-fMRI. 
Data acquired in healthy controls. Reproduced from Heine et al. (2012). 

 

DMN has been studied extensively, and is the network that received the most attention in 

clinical and research setting (Hannawi, Lindquist, Caffo, Sair, & Stevens, 2015; Heine et al., 

2012; Rosazza, & Minati, 2011). It consists of midline precuneus/posterior cingulate, lateral 

parietal cortex/angular gyrus and mesial prefrontal/anterior cingulate cortex. DMN was initially 
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identified in PET studies, which showed less activation in the corresponding regions during 

demanding cognitive tasks compared to resting-state condition (Mazoyer et al., 2001; Raichle 

et al., 2001). Since then, fMRI studies have consistently found synchronous activation in these 

regions (van den Heuvel & Hulshoff Pol, 2010; Lee et al., 2013), and structural MRI studies 

have indicated underlying anatomical connections (Figure 1.4.2; Greicius, Supekar, Menon, & 

Dougherty, 2009; van den Heuvel et al., 2009). Activity in the DMN has been related to self-

related and internally directed cognition (Andrews-Hanna, Smallwood, & Spreng, 2014; 

Raichle, 2015), such as stimulus-independent (spontaneous) cognition and mind-wandering 

(Fox et al., 2015), autobiographical memory (Buckner, Andrews-Hanna, & Schacter, 2008) and 

social cognition (Andrews-Hanna & Spreng, 2015). 

Multimodal rs-fMRI/DTI studies suggest that the DMN inter-regional resting-state functional 

connectivity is facilitated through the cingulum bundle (Wang, Dai, Gong, Zhou, & He, 2014), 

principally connecting the PCC/PreCu and the mPFC (Figley, Bhullar, Courtney, & Figley, 

2015; Greicius, Supekar, Menon, & Dougherty, 2009; Van Den Heuvel, Mandl, Kahn, & 

Hulshoff Pol, 2009; Honey et al., 2009; Khalsa, Mayhew, Chechlacz, Bagary, & Bagshaw, 

2014). Moreover, the microstructural organization (i.e. FA) of this white matter tract has been 

directly related to the level of functional connectivity between these two regions (van den 

Heuvel, Mandl, Luigjes, & Hulshoff Pol, 2008). In fact, structural-functional coupling seems 

to be highest in the regions of the DMN, especially in the posteromedial region (Collin et al., 

2014; Horn, Ostwald, Reisert, & Blankenburg, 2014; Segall et al., 2012), in comparison to other 

brain areas.  
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Figure 1.4.2. Functional connectivity reflects structural connectivity in the DMN. 
DTI fiber tractography in a single subject demonstrates the cingulum bundle (blue tracts) connecting the PCC to 
the mPFC. Reproduced from Greicius et al. (2009). 

 

The executive control network (ECN) is mainly identifiable in the medial and superior frontal 

gyrus, anterior cingulate and super parietal cortex. It has been related to externally-directed 

cognition, working memory, decision-making in goal directed behavior (Menon & Udin, 2010), 

with left ECN being more involved in language processing, and the right ECN in perceptual, 

somesthetic, and nociception processing (Smith et al., 2009; Laird et al., 2011). The salience 

network (SN), anchored in the anterior insula and dorsal anterior cingulate cortex is implicated 

in transient detection of salient stimuli, initiation of attentional control and allocation of 

cognitive resources towards salient stimuli (Uddin, 2014; Menon & Uddin, 2010; Menon, 

2015). 

During cognitively demanding tasks, executive control network usually shows an increase in 

activation, whereas DMN shows a decrease, resulting in negative (anticorrelation) relationship 

between these two networks (Greicius, Krasnow, Reiss, & Menon, 2003; Greicius & Menon, 

2004). Some research even suggests that the SN mediates this ‘switching’ between the 

activation of the DMN and of the ECN to guide appropriate responses to salient stimuli (Uddin, 

2014; Menon & Uddin, 2010). 
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1.4.2 Functional integration 
 
The human brain sub-networks do not work in isolation but are interconnected and coordinated 

through a set of brain regions capable of cross-modal complex responses (Tomasi & Volkow, 

2011; Wu et al., 2011) serving to distribute and converge specialized information (van den 

Heuvel & Sporns, 2013). These highly central hub regions maintain long-distance anatomical 

and functional connections and are metabolically costly, but essential for efficient brain 

function and cognition (Collin et al., 2014). Also, these regions seem to be more densely 

interconnected, forming a brain core or rich club (van den Heuvel & Sporns, 2011) serving as 

the backbone for functional integration across the brain.  

Structural and functional “connector” hub regions have been mainly identified in parietal and 

frontal cortical regions, with some of them spatially overlapping with midline DMN nodes, 

suggesting its central role in the overall brain network structure (van den Heuvel & Sporns, 

2013).  

More specifically, the PCC/PreCu complex is frequently identified as a key hub node at DMN 

and whole brain level, with high correspondence between rs-fMRI and DTI fiber-tracking 

studies (Hagmann et al., 2008; Horn, Ostwald, Reisert, & Blankenburg, 2014; Van Oort, van 

Cappellen van Walsum, & Norris, 2014). The importance of posteromedial cortex in the overall 

brain network interaction was also demonstrated in a lesion stimulation study, where lesions 

along the cortical midline caused large and widely distributed changes in functional 

connectivity, in opposed to lesions of primary sensory or motor regions whose effects remained 

more localized (Alstott, Breakspear, Hagmann, Cammoun, & Sporns, 2009).  

 

1.4.2.1  Key hubs for consciousness emergence: PMC-PCC/PreCu complex 
 

The posteromedial cortex (PMC) has been recently termed as a posterior “hot zone” zone and 

a good candidate for both full and content-specific NCC (Koch et al., 2016; Tononi et al., 2016). 

This architectonically discrete region, has been recognized as a critical site integrating an 

important range of multimodal information (Dehaene & Changeux, 2011). This highly dynamic 

functional core seems to participate in multiple transitional connectivity networks seemingly 

playing a critical role in internally/externally directed high-level cognition (Cavanna & 

Trimble, 2006; Leech & Sharp, 2014). Converging data from physiological, pharmacological 

(Heine et al., 2012; Siclari et al., 2017) and pathological models (Hannawi et al., 2015), suggest 

the implication of PMC and its long-range functional connections in conscious processing.  
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Interestingly, a growing body of literature on animal and human studies, suggests a significant 

heterogeneity in cytoarchitectonic (Vogt & Laureys, 2005; Vogt, Vogt, & Laureys, 2006), 

structural (Parvizi, Van Hoesen, Buckwalter, & Damasio, 2006; Zhang et al., 2014) and 

functional connectivity maps characterizing different sub-region of the PMC (Bzdok et al., 

2015; Zhang and Li, 2013). Recent studies highlighted that the “metastable” functional 

connectivity detected in this region follows a complex ventral/dorsal and anterior/posterior 

gradient, partially overlapped across anatomically defined sub-regions (i.e. precuneus (PreCu) 

and posterior cingulate cortex (PCC)) (Bzdok et al., 2015; Cauda et al., 2010; Margulies et al., 

2009; Zhang & Li., 2012).  

On the other hand, findings in human and non-human primates also suggest functional unity 

within the PMC given the strong local interconnections among its components and their shared 

connections with other neural structures (Cauda et al., 2010; Parvizi et al., 2006).  

In healthy subjects, most rs-fMRI studies suggest a subdivision of PMC on dorsal and ventral 

portions, the dorsal corresponding to the PreCu and further divided into anterior, central and 

posterior subareas (Cauda et al., 2010; Margulies et al., 2009). A rs-fMRI study with 225 

healthy individuals showed three functional subdivisions of the PreCu, the dorsal-anterior, 

dorsal-posterior, and the ventral PreCu shown to connect to other regions of the DMN (Figure 

1.4.3; Zhang & Li, 2012). Multiple studies also indicate that the anterior and posterior portions 

of the PreCu are differentially associated with several cognitive functions such as visuo-

spatially guided behavior, mental imagery and episodic memory retrieval (Cavanna & Trimble, 

2006). 
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Figure 1.4.3. A summary of functional connectivity of different sub-areas of the precuneus. 
Connectivity of the dorsal-anterior (DA, red), dorsal-posterior (DP, green), and ventral (V, yellow) precuneus, 
with blue indicating connectivity with all three regions. Positive and negative connectivities are each indicated by 
solid and dashed line. Reproduced from Zhang & Li (2012).  

 

The ventral PMC most often corresponds to the PCC (Cauda et al., 2010; Margulies et al., 2009) 

and is further segregated into dorsal (dPCC) and ventral portions (vPCC) (Vogt et al., 2006; Yu 

et al., 2011; Zhang & Li, 2012). Recent study (Cha, Gibson, & Lee, 2017) suggested that PCC 

could be separated into two sub-regions (i.e. dPCC and vPCC) based on global functional 

connectivity, or four sub-regions based on local functional connections and hierarchical 

clustering. As the PreCu, the PCC also shows a complex pattern of connectivity with other 

intrinsic networks (Leech & Sharp, 2014; Figure 1.4.4), with the ventral PCC showing strong 

functional connectivity with the DMN, and the dorsal PCC exhibiting a more transitional 

connectivity, linking and coordinating the activity across multiple resting state networks such 

as the frontoparietal control network, dorsal attentional network, sensorimotor and salience 

network (Leech, Braga, & Sharp, 2012).  
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Figure 1.4.4. Illustration of the proposed theoretical account of the PCC, combining the three dimensions of 
(i) arousal; (ii) internal/external focus; and (iii) breadth of attentional focus. 
Solid arrows signify increased functional connectivity, broken arrows greater anticorrelation. Red areas within 
the PCC signify relatively increased neural activity, blue areas relatively decreased activity. DAN = dorsal 
attention network, FPCN = frontoparietal control network. Reproduced from Leech & Sharp (2014). 

 
 
Interestingly, the potential consciousness-related role of the dPCC was recently supported by 

the study of Herbet and colleagues (2014, 2015) who applied cortical and white matter electrical 

stimulations throughout the surgical procedure of patients with slow growing tumor situated in 

the PMC. It was concluded that the transient breakdown of the posterior cingulate cortex, 

particularly dorsal PCC, and its underlying anatomical connectivity in both hemispheres, 

impacts conscious information processing (i.e. inducing a dream-like state, confusion and 

behavioral unresponsiveness). 

Thus, all of these functional PMC sub-regions have been differentially associated with several 

intrinsic brain networks and consequently have been implicated in a variety of cognitive 

functions (Cavanna & Trimble, 2006; Leech & Sharp, 2014). Nevertheless, it must be noted 

that the DOC neuroimaging literature traditionally explored PMC as a homogenous structure 

and failed to describe such a functional segregation in pathological conditions (Norton et al., 

2012; Silva et al., 2010; Vanhaudenhuyse et al., 2010).  
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2 Chapter II – State of the art 
 

 

2.1 Resting-state functional connectivity in acquired disorders of 
consciousness 

 

2.1.1  DOC neuroimaging-based diagnosis 
 
Rs-fMRI studies with DOC patients most frequently indicate a decrease in activity and 

connectivity within the midline and subcortical regions associated with the default mode 

network (Table 2.1.1; Hannawi et al., 2015; Heine et al., 2012). Importantly, the magnitude of 

reduction in DMN functional connectivity (FC) seems related to the degree of consciousness 

impairment, with a greatest decrease in coma and UWS compared to MCS (Demertzi et al., 

2015; Rosazza et al., 2016; Roquet et al., 2016; Soddu et al., 2011, 2012; Vanhaudenhuyse et 

al., 2010).  

Reduced functional connectivity within other RSNs has also been associated with the loss of 

consciousness. These include the left and right executive control, frontoparietal, auditory, 

attention and salience networks (Demertzi et al., 2014, 2015; Qin et al., 2015; Ovadia-Caro et 

al., 2012; Kirsch et al., 2017; Roquet et al., 2016; Soddu et al., 2016; Tsai et al., 2014). It has 

recently been implied that the FC within the salience network (supragenual anterior cingulate 

cortex, left anterior insula) correlates with the current level of consciousness (UWS vs. MCS), 

whereas DMN (PCC, left lateral parietal cortex) connectivity predicts recovery of 

consciousness (Qin et al., 2015). 

Additionally, several fMRI studies with passive speech processing tasks, suggested that patients 

with higher consciousness levels and better recovery have a larger response in the language-

related brain network coupled with a deactivation in the DMN (Crone et al. 2011; Tomaiuolo 

et al., 2016; Wang et al., 2015).  

There results imply that interactions within a single RSN cannot be regarded independently 

from the functional dynamics in other networks. Accordingly, a recent study has shown that 

UWS and MCS patients don’t only have a decrease in positive correlation within the DMN, but 

also in negative correlation between the external (task-positive) network and DMN, which 

seems to reappear in EMCS patients (di Perri et al., 2016). The importance of network 
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interaction and balance between positive and negative connectivity within RSNs was also 

demonstrated in the study of Amico and colleagues (2017). They showed that patients with 

lower levels of consciousness and higher functional disability exhibit a reduction in positive 

visual-sensory motor connectivity and a decrease in DMN-FPN negative connectivity (Amico 

et al., 2017). 

In addition to hypoconnectivity, pathological hyperconnectivity in UWS and coma patients has 

been found in regions involved in externally directed cognition (di Perri et al., 2016; He et al., 

2014a; Wu et al., 2015). Hyperconnectivity may be related to compensatory brain plasticity 

processes (di Perri et al., 2014; Fornito, Zalesky, & Breakspear, 2015; Hillary et al., 2015), 

however, the significance of pathology-related increase in functional connectivity is still under 

debate (Hillary et al., 2015). In addition, cross-hemispheric integration of information seems to 

play an important role, as some studies implied a loss of inter-hemispheric connections in 

extrinsic and DMN networks in DOC patients, irrespective of the etiology (Amico et al., 2017; 

Ovadia-Caro et al., 2012; Zhang et al., 2017). 

Finally, the study of Achard and colleagues (2012), has been the first and only rs-fMRI study 

to investigate the global and local network topology in the acute DOC patients. Their findings 

showed conserved global network properties (e.g. efficiency, clustering, small-worldness, 

modularity), but a radical reorganization of high degree or highly efficient hub nodes. Cortical 

regions (i.e. fusiform gyrus and precuneus) that were hubs in controls were non-hubs in 

comatose patients, and non-hub regions (i.e. angular gyrus) in controls displayed hub-like 

properties in patients (Figure 2.1.1). These findings suggested that whole-brain global properties 

may be homeostatically conserved under severe brain injury, and that consciousness likely 

depends on the anatomical location of hub nodes in human brain networks.  
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Figure 2.1.1. Hub disruption of functional networks in comatose patients. 
The mean degree of each node in the healthy volunteer group (healthy (x axis)) is plotted versus the difference 
between groups in mean degree of each node (coma−healthy (y axis)). Reproduced from Achard et al. (2012). 

 

 

 

 

  



 

Table 2.1.1. Resting-state functional connectivity in DOC. 
Author Method Type of DOC Etiology Delay 

injury(DOC)/imag
ing (Mean±SD) 

Findings 

Cauda et al. (2009) ICA 3 UWS 2 TBI; 1 
mixed 

20 months Dysfunctional DMN, reduced right-hemisphere connectivity. 

Vanhaudenhuyse 
et al. (2010) 

ICA 5 coma; 4 UWS; 
4 MCS; 1 LIS 
 

2 TBI; 1 
anoxia; 
11 other 

159.8±473.8 days Reduced DMN connectivity in proportion to severity of 
consciousness impairment. PreCu connectivity stronger in 
MCS in comparison to UWS and coma. 

Achard et al. 
(2012) 

Seed; 
Graph 
theory 

17 DOC 12 anoxia; 5 
other 

3 – 32 days No significant abnormality of global metrics, but radical 
reorganization of hub nodes and abnormal variability in 
modular structure between comatose patients. 

Ovadia-Caro et al. 
(2012) 

Seed 1 BI; 2 coma; 2 
VS; 2 MCS; 1 
LIS 

1 TBI; 2 
anoxia; 
5 other  

207±542 days; 
coma: 13-14 days 

Reduced inter-hemispheric extrinsic network connectivity in 
subjects with impaired versus intact consciousness.   

Soddu et al. (2012) ICA 8 UWS; 1 MCS; 
2 LIS 
 

5 TBI; 3 
anoxia; 3 other 

349.8±462.1 days;  Fewer connections in the DMN regions in UWS in 
comparison to controls and LIS; Intact right lateralized DMN 
connectivity in MCS.  

He et al. (2014) ICA; 
ALFF 

9 UWS; 3 MCS 4 TBI; 3 
anoxia; 5 other 

2 – 7 months ICA – diminished activity in the DMN, mainly in the MPFC. 
ALFF – decrease in PCC/PreCu, ACC, parahippocampal 
areas (DMN); increase in the insula, lingual gyrus and 
paracentral gyri (external network).  
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Crone et al. (2014) Seed; 
Graph 
theory 

34 UWS; 25 
MCS 

10 TBI; 6 
anoxia; 5 
SAH; 3 mixed; 
6 hemorrhage; 
13 CPR; 16 
other 

7 - 9900 days Reduced modularity in DOC compared to healthy controls. 
Reduced degree in the medial FR regions and bilateral 
thalamus. Increased degree in left superior and inferior FR 
gyrus. Reduced CC in PCC and right insular cortex. LE of 
the PMC (PreCu) differed between the UWS and MCS 
patients. CC in the right middle FR gyrus and the FR pole 
correlated with the CRS-R score. 

Huang et al. (2014) Voxel-
wise; 
Seed 

6 UWS; 5 MCS 6 TBI; 5 non-
TBI 

 90±42.4 days FCS and ALFF decreased in ACC, MPFC and PCC. 

Tsai et al. (2014) ICA; 
ReHo; 
ALFF 

3 coma patients; 
12 not classified 

7 ischemic 
stroke; 8 
hemorrhagic 
stroke 

Within 24h Lower ALFF and ReHo in PCC and PreCu, respectively. 
Decrease in DMN FCS, correlated with level of 
consciousness. Lower FCS in executive and attention 
networks.  

Liu et al. (2014) Graph 
theory 

5 UWS;  8 
healthy controls 
undergoing 
propofol 
anesthesia 

2 TBI; 3 other 42 - 66 days Scale-free distributions of node size and node degree were 
present across wakefulness, propofol sedation, and recovery, 
despite FC changes. In UWS, the scale-free distribution of 
node degree was absent, suggesting absent self-organizing 
processes underlying adaptive reconfiguration of functional 
interaction. 

He et al. (2015) ICA and 
Seed 

7 UWS ; 2 
MCS  

2 TBI; 2 
anoxia; 5 other 

3 – 7 months Decrease in FCS between the mediodorsal thalamus and 
DMN regions, predominantly in mPFC and PCC/PreCu. 
 

Demertzi et al. 
(2014) 

ICA 5 Coma ; 24 VS; 
24 MCS 

17 TBI; 11 
anoxia; 30 
other; Coma -  
4 CVA; 1 TBI  

816.8±1783 days; 
coma: 5-38 days 

More neuronal components in RSNs in healthy compared to 
UWS and coma patients. 
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Demertzi et al. 
(2015) 

ICA 6 Coma; 19 
UWS; 26 MCS 

Coma – 2 TBI; 
3 SAH; 1 
Stroke 

2 - 7814 days; 
coma: 2 -38 days 

Reduced to absent connectivity in six RSNs (DMN, FPN, 
SAL, AUD, SM, VIS) in coma patients. 

DiPerri et al. 
(2016) 

Seed 21 UWS; 24 
MCS; 13 EMCS 
 

29 TBI; 14 
anoxia; 7 
mixed; 8 other 

1-312 months Lower positive DMN connectivity in DOC compared to 
controls. Negative DMN connectivity present only in healthy 
and EMCS. UWS and MCS showed pathological between-
network positive connectivity.  

Roquet et al. (2016) ICA 12 UWS; 5 LIS 
 

2 TBI; 9 
anoxia; 1 
ischemia; 5 
other 

3-180 days Number of RSNs, total RSNs and high-level cognitive RSNs 
differentiated controls and LIS from UWS. DMN had the 
highest accuracy, FPN had maximum specificity but more 
limited sensitivity.  

Amico et al. (2017) connICA  2 coma; 17 
UWS; 21 MCS; 
13 EMCS; 4 
LIS 

28 TBI; 29 
non-TBI 

>28 days Decrease in positive visual- sensorimotor network 
connectivity and DMN-FPN negative connectivity, 
associated with lower levels of consciousness. 

Kirsch et al. (2017) Seed 6 UWS; 2 MCS 2 TBI; 6 other 23–693 days Decreased FC in DMN, salience, left and right ECN, 
auditory, sensorimotor RSNs. Lower connectivity between 
thalamus and RSNs. 

ACC – anterior cingulate cortex; ALFF - amplitude of low-frequency fluctuation; AUD – auditory network; CC – clustering coefficient; CPL – characteristic path length; CPR 
- cardiopulmonary resuscitation; CVA – cardiovascular accident; DMN – default mode network; FCS – functional connectivity strength; FPN – frontoparietal network; FR – 
frontal;  HBI – hypoxic-ischemic brain injury; LE – local efficiency; PC – participation coefficient; ReHo - regional voxel homogeneity; SAH - subarachnoid hemorrhage; SAL 
– salience network; SM – sensorimotor network; TPJ – temporoparietal junction; VIS – visual network. 
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The potential consciousness-related hub nodes have been identified in a recent coordinate-based 

meta-analysis (13 studies: 272 patients, 259 healthy controls), which pointed to the medial 

dorsal thalamus (mDor) and the PCC/PreCu complex as most frequently affected in DOC 

(Hannawi et al., 2015), with the FC of the latter correlating with the magnitude of impairment 

of consciousness (Soddu et al., 2012; Vanhaudenhuyse et al., 2010). Other regions with 

disrupted functional connectivity included the left cingulate gyrus, medial temporal lobe, 

middle frontal lobe, and bilateral medial dorsal nuclei of the thalamus. In fact, all DOC patients 

showed a disruption in the cingulate gyrus, whereas UWS patients showed impairment in 

bilateral mDor thalamus compared with the right mDor thalamus in MCS. In a separate study, 

He and colleagues (2015) found a significant reduction in DOC in the functional connectivity 

between the mDor thalamus and the regions within the DMN, including PCC/PreCu and mPFC, 

illustrating the potential role of cortico-thalamic circuits in conscious processing. In addition, 

fMRI studies imply low frequency fluctuations (ALFF) or regional voxel homogeneity (ReHo) 

(He et al., 2014; Tsai et al., 2014; Huang et al., 2014) in the PreCu/PCC complex, suggesting 

low activity in these sub-regions. This is supported by PET studies showing a significant 

reduction in DMN-PCC/PreCu metabolism, related to clinical severity (Kim, Kim, An, & Im, 

2010; Silva et al., 2010; Thibaut et al., 2012).  
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Anticorrelation in rs-fMRI 

 

Although there has been an overwhelming number of studies investigating resting-state functional 

connectivity, negative correlation or anticorrelation has frequently been ignored or not assessed 

properly. This is partially due to some studies showing that these anticorrelation can be artificially 

induced by conventional fMRI preprocessing methods like global signal regression (Murphy et al., 

2009; Weissenbacher et al., 2009). Other studies emphasized greater between-subject variability, 

higher temporal fluctuations (dynamic changes) and a weaker connectivity strength of negative in 

comparison to positive correlations, therefore making them harder to interpret (Chang & Glover, 

2010; Cole et al., 2010).  

Chai and colleagues (2012) compared the two preprocessing methods, the global signal regression 

and the component base noise reduction method (CompCor, Behzadi et al., 2007) and showed robust 

anticorrelation between the default and task-positive network regions independently of the choice 

of the preprocessing method. Specificity of negative correlations was equal or higher under the 

CompCor method, and the sensitivity and the specificity of positive correlations detection was better 

when combining this method with band-pass filtering and the movement parameter regression (Chai 

et al., 2012).  

Furthermore, anticorrelation between individual brain hubs and resting state networks has 

consistently been reported in healthy subjects with and without global signal regression (Chang & 

Glover, 2009; Fox et al., 2009; Fox & Greicius, 2010; Fransson, 2005; Gopinath et al., 2015; Liu et 

al., 2015; Parente et al., 2017; Uddin et al., 2009) and it has been shown to increase with age (Chai 

et al., 2014). These findings suggest a potential biological origin of negative correlations, as further 

implicated in studies showing anticorrelated electrophysiological fluctuations (Keller et al., 2013; 

Popa et al., 2009) and structural connections between regions shown to be functionally 

anticorrelated (Fox et al., 2009; Honey et al., 2009; Skudlarski et al, 2008). 

 A recent study suggested (Chen et al., 2017) that the inconsistency regarding DMN anticorrelation 

across different studies, might be due to differences in seed-coordinates used in the analysis, in 

addition to differences in preprocessing steps. The same authors showed that the ventral branch of 

the DMN (vDMN) yielded significantly weaker anticorrelations in opposed to the dorsal branch of 

the DMN (dDMN). 

Nevertheless, there is an ongoing debate on the qualitative interpretation of these anticorrelations 

as there has not yet been a consensus on their exact significance in the whole-brain organization. 
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2.1.2  Prognostic value of resting-state functional connectivity in DOC 
 
The association between functional neuroimaging data and outcome in disorders of 

consciousness was assessed in a small number of studies (Table 2.1.2) (Table 2.1.3). 

Studies with chronic DOC implied a relatively preserved DMN connectivity in patients who 

recovered as opposed to patients who remained in UWS (Rosazza et al., 2016; Kondziella et 

al., 2017), with an emphasis on PCC/PreCu connectivity (Qin et al., 2015; Wu et al., 2015).  

In another graph theoretical project, a group of recovered patients exhibited significantly 

increased connectivity degree in the mPFC, as compared to patients who had not recovered 

consciousness 3 months after the initial MRI scan (Liu et al., 2017), suggesting a potential 

beneficial compensatory role of functional hyperconnectivity. 

To our knowledge, there have only been four rs-fMRI studies aiming to assess the prognostic 

value of FC changes in the acute stage of DOC (i.e. coma) (Table 2.1.3).   

Two of these studies indicated preserved DMN connectivity (Norton et al., 2012), with a greater 

PCC/PreCu connectivity strength in anoxic BI patients who eventually regained consciousness 

as opposed to those who did not (Koenig et al., 2014). Another study, including anoxic and TBI 

patients, concluded that comatose patients who went to recover had a stronger connection 

between the PCC-centered seed (not the PreCu-centered seed) and the mPFC as opposed to 

patients who had an unfavorable outcome (Silva et al., 2015; Figure 2.1.2).  

Finally, the most recent study, including cardiac arrest coma patients, showed higher within-

DMN connectivity and greater anticorrelation between the salience network (SN) and DMN, 

and SN and the executive control network in patients with a 1-year favorable outcome compared 

to patients who did not regain consciousness (Sair et al., 2017).  
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Table 2.1.2. Prognostic value of resting-state FC in chronic DOC patients.  

Author Method Type of DOC Etiology Delay 
injury/imaging 
(Mean±SD) 

Delay 
inclusion/
outcome 

Outcome 
assessment 

Reported 
outcome 

Findings 

Qin et al. 
(2015) 

Seed 56 UWS; 29 
MCS; 48 BI  
 

109 TBI; 
24 non-TBI 

UWS – 96d; 
MCS – 119d; BI  
-149 days 

3 months GOS 23 emerged from UWS 
(UWS-E; GOS >3); 30 
remained in UWS 
(UWS-R; GOS ≤3). 

Higher PCC-left lateral parietal 
cortex FCS in UWS-E in 
comparison to UWS-R.  

Wu et al. 
(2015) 

Voxel  14 coma; 18 
UWS; 27 MCS; 
40 BI with 
communicative 
abilities  

82 TBI; 17 
non-TBI 

coma –38.6d; 
UWS – 85.6d; 
MCS – 80.1d; 
BI - 104.1 days 

3 month GOS GOS in subgroups: BI 
(4.3±0.9); MCS 
(3.0±0.8); UWS 
(2.4±0.6); coma 
(2.6±0.8) 

Higher FCS in DMN and 
SN/ECN during baseline predicts 
better recovery; FCS in 
PCC/PreCu predicts whether 
UWS/VS and coma patients 
would regain consciousness 
(accuracy 81.25%). 

Rosazza et 
al. (2016) 

Seed; 
ICA 

72 UWS; 36 
MCS; 11 severe 
disability 

36 TBI; 42 
anoxia; 41 
vascular 

26 months (2–
252 months)  

12 - 24 
months 

CRS-R 2 UWS patients evolved 
to MCS 

Preserved DMN connectivity in 
2 UWS patients who evolved to 
MCS. 

Kondziella 
et al. 
(2017) 

Seed 2 Coma; 1  
UWS; 3 MCS-; 1 
MCS+ 

1 TBI; 
6 non-TBI 

5 – 25 days 3 months mRS  1 death; 1 UWS; 1 
MCS+; and 4 conscious 
states  
 

All patients with preserved DMN 
regained consciousness (MCS + 
or better) at follow-up. 

Liu et al. 
(2017) 

Seed 17 UWS; 17 MCS 
 

MCS: 11 
TBI, 2 
anoxia, 4 
CH; UWS: 
12 TBI, 3 
anoxia, 2 
CH 

 72.4±52.2 days 3 months  GOS 11 recovered 
consciousness; 18 non-
recovered; 5 withdrawn 

Enhanced mPFC connectivity 
against weakened PCC/PreCu 
and lateral parieto-temporal 
cortices, found in MCS but not 
in UWS. Increased mPFC 
connectivity significantly 
associated with recovery. 

BI – brain injury; CH -  cerebral hemorrhage; CRS-R – Coma Recovery Scale – Revised; DMN – default mode network; ECN - executive control network; FCS – functional 
connectivity strength; GOS – Glasgow Outcome Scale; MRS - Modified Rankin Scale; SN – salience network. 
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Table 2.1.3. Prognostic value of resting-state FC in coma patients. 

Author Method Number of 
patients 

Etiology Delay 
injury/ima
ging 

Delay 
inclusion/
outcome 
(M±SD) 

Outcome 
assessment 

Reported 
outcome 

Findings 

Norton et 
al. (2012) 

ICA 13 coma 13 CA ~ 1 week 3 months GOS 2 Good (GOS -5); 
11 Bad (GOS -1) 

DMN not observed in those who remained 
unconscious. 

Koenig et 
al. (2014) 

ICA 17 coma 17 CPA 4 – 7 days 36.3±41.7 
days 

CPC 8 Good (CPC 1-
2); 9 Bad (CPC 3-
5) 

Higher FCS in the PCC and PreCu in 
patients with good outcome. 

Silva et al. 
(2015) 

Seed 27 coma 14 TBI; 
13 anoxia 

3 – 9 days 3 months CRS-R 12 UWS; 11 
MCS;  4 REC 

Higher FCS between PCC (not PreCu) and 
mPFC in patients with good outcome. 

Sair et al. 
(2017) 

 46 coma 46 CA 12.6±5.6 
days 

12 
months 

CPC 11 Good (CPC 1-
2); 35 Bad (CPC 
3-5) 

Higher within-DMN connectivity and 
greater anticorrelation between SN and 
DMN and between SN and ECN, in FO 
compared with UFO patients. 

CA – cardiac arrest; CPA – cardiopulmonary arrest; CPC - Cerebral Performance Category; CRS-R – Coma Recovery Scale – Revised; DMN – default-mode network; ECN 
– executive control network; FO – favorable outcome; GOS - Glasgow Outcome Scale; SN – salience network; UFO – unfavorable outcome. 
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Figure 2.1.2. Predictive role of PCC-mPFC coupling measured during coma state and neurologic outcome. 
Reproduced from Silva et al. (2015). 

 

 

2.1.3  Resting-state FC-related signatures of brain injury mechanisms 
 
Most of the functional connectivity studies performed the analysis without considering the 

differences in DOC etiology (traumatic, anoxic or vascular brain injury) (Hannawi et al., 2015). 

Some studies included patients with the same etiology (Koenig et al., 2014; Norton et al., 2012) 

or used it as a nuisance variable in their analysis (Amico et al., 2017), in order to control for 

possible confounding effects of pathology-related mechanisms. In a recent multimodal study 

with structural MRI, FDG-PET and rs-fMRI data, the level of DMN integrity had comparable 

diagnostic power of impairment in consciousness irrespective of etiology (Rosazza et al., 2016). 

Nevertheless, the diagnostic value of rs-fMRI was consistently highest for anoxic, followed by 

traumatic, and then by vascular etiology. Silva and colleagues (2015) showed the prognostic 

value of PCC-centered functional connectivity in both TBI and anoxic BI patient groups, 

implying the involvement of the posteromedial cortex in conscious processing irrespectively of 

coma etiology.   
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2.2 Structural network integrity in coma, UWS and MCS 
 

2.2.1  Diagnosis and patient’s stratification 
 

Findings from fMRI studies are supported with evidence of structural disconnections 

within/between midline cortical (Annen et al., 2016; Fernández-Espejo et al., 2012; Lant et al., 

2016) and thalamo-cortical networks (Weng et al., 2017; Zheng et al., 2017), associated with 

the degree of impairment of consciousness (Di Perri et al., 2016; Fernández-Espejo et al., 2012; 

Lant, Gonzalez-Lara, Owen, & Fernández-Espejo, 2016) (Table 2.2.1). 

Voxel based morphometry studies indicate widespread structural damage to cortical (i.e. lateral 

hemispheres, midline structures) and subcortical areas (i.e. brainstem, thalami, cerebellum) (Di 

Perri et al., 2016), with more injury to the bilateral PCC/PreCu and vmPFC in non-traumatic 

UWS compared to non-traumatic MCS (Guldenmund et al., 2016).  

A recent DTI study, explored the structural integrity of fiber tracts connecting the nodes of the 

mesocircuit and the DMN in patients with DOC (Lant et al., 2016). There findings suggested 

extensive damage to the PreCu/PCC-related connections, but relatively spared subcortico-

subcortical connections (Figure 20). According to authors, the preservation of the striato-

pallidal connections and the disconnection between the PreCu and these two regions may 

indicate the role of the PreCu in the dysregulation in the mesocircuit system1 and more generally 

in the disrupted functional brain network dynamics in DOC patients. 

 

 

 

                                                           
1 Anterior forebrain mesocircuit” hypothesis (Schiff, 2010, Giacino et al., 2014) suggests that a loss of excitatory 
output from the central thalamus to diffuse cortical areas has a causative role in the disorders of consciousness. 
Such circuit dysfunction is thought to be caused by the loss of the inhibitory striatal output to the globus pallidus 
(interna) resulting in pallidal disinhibition and subsequent excessive inhibition of the thalamus. 
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Figure 2.2.2.2.1. Individual tract analysis comparing FA values between DOC patients and healthy controls. 
HC: healthy control, FMC: frontal medial cortex, DLPFC: dorsolateral prefrontal cortex, Stri: striatum, GP: 
globus pallidus, Tha: thalamus, TPJ: temporoparietal junction, PCu: precuneus, L: left hemisphere, R: right 
hemisphere. PCu–FMC tract is considered midline. Reproduced from Lant et al. (2016).  
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Table 2.2.1. Structural changes in DOC. 

Reference Method Type of 
DOC 

Etiology Delay 
injury(DOC)/imag
ing (M±SD) 

Findings 

Coma      
van der 
Eerden et al. 
(2014) 

DTI/Seed-
based 

89 coma 
patients 

40 TBI ; 49 CA 5–57 days Aberrant AD and RD in TBI and CA patients compared to controls in 
almost all of the explored ROIs (i.e. brainstem, CP, CC). AD in 
cerebral hemispheres lower in CA than in TBI in 6/12 ROIs. Higher 
RD in TBI in 8/12 ROIs (i.e. IC, SS, SLF, EC, CR). Diffusivity values 
were symmetrically distributed in CA, but not in TBI. 

Chronic 
DOC 

     

Newcombe 
et al. (2010) 

DTI/Seed-
based 
analysis; 
whole-brain 
tractography; 
task fMRI 

12 UWS 
 

7 TBI; 5 HBI 105-1518 days FA significantly decreased and ADC increased in all patients compared 
with controls, in whole-brain WM, anterior and posterior CC. Higher 
ADC in whole-brain GM and thalamic ROIs. Increased ADC in 
brainstem regions (dorsal and ventral midbrain and pons) only in TBI. 
CRS-R positively correlated to central WM and negatively correlated 
to central ADC in all patients, irrespective of etiology.   

Fernández-
Espejo et al. 
(2012) 

DTI/ROI-
based fiber 
tracking 

19 UWS; 
27 MCS; 
6 EMCS 

32 TBI; 21 non-
TBI 

1–191 days Decrease in FA in the WM pathway connecting the PCC/PreCu with 
the thalamus, in DOC vs. controls. FA in this pathway and other 
posterior WM connections (PCC/PreCu–TPJ; TPJ–thalami) correlated 
with the level of consciousness. 

Yao et al. 
(2015) 

DTI (TBSS); 
rs-fMRI 

11 DAI 
patients 
with  
DOC 

11 TBI 2 - 11 days Lower FA in genu of the CC, right EC and SCR, left SCP and PTR. 
Significant positive correlation between FA in left PTR and SCP, and 
GCS.  

Guldenmund 
et al. (2016) 

Structural 
MRI - VBM 

16 UWS; 
45 MCS 

26 TBI; 12 
anoxia; 15 
CVA; 4 mixed; 
4 other 

5 – 3342 days TBI related to more injury in the brainstem, midbrain, thalamus, 
hypothalamus, basal forebrain, cerebellum, and posterior CC, in 
comparison to non-TBI. Bilateral PCC/PreCu and vmPFC more injured 
in non-TBI UWS compared to MCS. Left cerebral cortex more 
damaged in MCS- in comparison to MCS+. 
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Di Perri et al. 
(2016) 

FDG-PET; 
rs-fMRI; 
structural 
MRI-VBM 

21 UWS; 
24 MCS; 
13 EMCS 
 

29 TBI; 14 
anoxia; 7 mixed; 
8 other 

1 - 312 months Consciousness-dependent increase in GM volume in almost the whole 
of lateral hemispheres, in the midline structures, including thalami and 
the cerebellum.  

Lant et al. 
(2016) 

DTI/ROI-
based 
probabilistic 
tractography; 

4 UWS; 3 
MCS; 1 
EMCS 

3 TBI; 5 HBI 3523±2914 days Lower FA in bilateral subcortico-cortical fiber tracts in DOC patients, 
in all tracts involving the PreCu, right hemisphere thalamus–FMC, 
bilateral DLPFC–FMC, left DLPFC–TPJ, and left striatum–DLPFC. 
Higher FA in left striatum–globus tract. Significant correlation 
between FA in left subcortico-cortical, bilateral cortico-cortical fiber 
tracts and CRS-R scores. 

Weng et al. 
(2017) 

DTI/ROI-
based 
probabilistic 
tractography; 
Graph 
theory/NBS 

6 UWS; 7 
MCS 

4 TBI; 7 HBI 3 – 40 weeks Reduced connectivity between the BG, thalamus, and frontal cortex; 
Reduced FA and increased RD in WM of the DOC patients -  
decreased FA in the bilateral anterior and posterior limbs of the IC and 
the bilateral superior, anterior, and posterior CR; Decreased nodal 
efficiency in BG and left amygdala. Decreased degree in the BG, left 
frontal, temporal, parietal, and occipital cortex. Nodal degree in the 
right angular gyrus negatively correlated with the CRS-R score. 

Zheng et al. 
(2017) 

DTI/ROI-
based 
probabilistic 
tractography 

10 UWS; 
7 MCS-; 
8 MCS+ 

17 TBI; 8 non-
TBI 

3 - 30 months UWS patients had reduced WM connectivity in thalamocortical 
circuits (frontal, temporal, sensorimotor), as compared to MCS+, but 
more pulvinar-occipital connections when compared to MCS-. MCS- 
had less thalamo-premotor and thalamo-temporal connectivity than 
MCS+. Thalamo-cortical tracts (frontal, parietal, temporal) had 100% 
accuracy in DOC group discrimination.   

M – mean; SD – standard deviation; BG – basal ganglia; HBI- hypoxic ischemic BI; NBS – network-based statistics; AD – axial diffusivity; RD – radial diffusivity; MD – 
mean diffusivity; ADC – apparent diffusion coefficient; FA – fractional anisotropy; TBSS - Tract-Based Spatial Statistics; GM – gray matter; WM – white matter; CC – 
corpus callosum; EC - external capsule; SCR - superior corona radiate; SCP - superior cerebellar peduncle; PTR - posterior thalamic radiation; IC – internal capsule; EC – 
external capsule, CR – corona radiate; SLF- superior longitudinal fasciculus, BG – basal ganglia; DLPFC– dorsolateral prefrontal cortex; FMC – frontal medial cortex; TPJ - 
temporo-parietal junction; IP – inferoparietal.  
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2.2.2  DOC patient’s neuroprognostication 
 
Despite the growing number of studies and some recent advances in structural MRI, we are still 

lacking a complete understanding of structural substrates of loss and recovery of consciousness.  

The first study that raised the possibility of DTI being able to detect axonal regrowth and 

neuronal plasticity potentially underlying late recovery, was the one of Voss and colleagues 

(2006). Their case-report described a patient who recovered reliable expressive language after 

19 years in MCS. This remarkable improvement was coupled with a notable increase in resting 

metabolism and anisotropy within the midline cerebral (medial parietal, occipital) white matter. 

One recent study implied an increase in radial diffusivity in the left superior cerebellar peduncle 

and a decrease in fractional anisotropy in the right sagittal stratum in coma and UWS patients 

who did not regain consciousness at a 3-month follow up (Wu et al., 2016).  

However, not many studies have explored the prognostic value of structural integrity in DOC 

patients, and none have focused on the prognostic value of DMN structural connectivity (Table 

2.2.2). Some research did include coma patients, but the analyses were primarily focused on 

predicting a dichotomized outcome (favorable neurological recovery vs. unfavorable outcome 

or death) without distinguishing different DOC diagnostic categories (UWS vs. MCS+/- vs. 

REC), with some patients exhibiting impairment in consciousness and others having normal 

consciousness levels with some neurocognitive difficulties. 

Nevertheless, the present chapter will briefly describe the existing structural-diffusion MRI 

studies in coma patients, as some show promising results in terms of prognostics and better 

understanding of brain injury mechanisms in DOC patients (Table 2.2.3).  

In recent years, there have been some interesting studies assessing whether the patterns of DWI 

abnormalities and quantitative regional apparent diffusion coefficient (ADC) values may have 

prognostic value in post cardiac arrest coma patients (Cavaliere et al., 2015; Greer & Wu, 2017; 

Stevens & Hannawi, 2016). Regional low diffusion values have been found in cortical (i.e. 

parietal and occipital cortex) and subcortical regions (i.e. thalamus and basal ganglia) in patients 

with poor outcome (Choi et al., 2010; Hirsch et al., 2014; Ryoo et al., 2015; Youn et al., 2015). 

In one study, the structural integrity in major WM tracts (i.e. internal capsule, corpus callosum) 

had higher predictive power in comparison to GM diffusivity coefficient in relation to 1-year 

functional outcome in cardiac arrest patients (Luyt et al., 2012). Finally, multiple studies have 

indicated a significant association between a baseline disruption in selected WM tracts (i.e. 

corpus callosum, cerebral peduncle, corona radiate, internal capsule, inferior longitudinal 
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fasciculus) and worse functional outcome at 1 year after traumatic brain injury (Dinkel et al., 

2014; Galanaud et al., 2012; Perlbarg et al., 2009; Sidaros et al., 2008).  

 

 

2.2.3  Structural MRI and brain injury mechanisms 
 
A recent ROI-based DTI study showed significant white matter abnormalities in coma patients 

with anoxic and traumatic brain injury (van der Eerden et al., 2014). Cardiac arrest patients had 

changes consistent with primary axonal damage (decrease in AD) related to energy depletion 

from anoxic ischemia, and potential secondary myelin damage (increase in RD). Conversely, 

structural damage in TBI was most consistent with primary myelin damage, related to 

mechanical forces exerted on the brain in trauma, and axonal damage, caused either directly by 

trauma or secondary ischemic damage. The distribution of damage was also different between 

the etiologies, with anoxic injury mainly affecting the cerebral hemispheres (i.e. sagittal strata, 

superior longitudinal fasciculus, internal capsule, external capsule, corona radiate), and TBI 

mostly present in the left hemisphere and central brain (i.e. brainstem, cerebral peduncles, 

corpus callosum) structures. However, another study found broadly similar DTI abnormalities 

(diffuse reduction of FA) in the cerebral hemispheres in both TBI and ischemic hypoxic brain 

injury in UWS patients at minimum 3 months post-injury (Newcombe et al., 2010). 

Nonetheless, TBI patients had greater damage in brainstem regions (dorsal and ventral midbrain 

and pons), as indicated by an increase in the apparent diffusion coefficient. These results 

suggest that the damage in the lower brainstem (and cerebral peduncles), found in the acute 

stages (van der Eerden et al., 2014), may persist through chronic stages of DOC (Newcombe et 

al., 2010). This was also suggested in a recent VBM study (Guldenmund et al., 2016), which 

showed a significant association between time spent in DOC and widespread structural brain 

injury, with TBI related to more injury in the brainstem, midbrain, thalamus, hypothalamus, 

basal forebrain, cerebellum, and posterior corpus callosum, compared to non-traumatic cases. 
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Table 2.2.2. Prognostic value of structural changes in chronic DOC. 

Author Method Type of 
DOC 

Etiology Delay 
injury/im
aging 

Delay 
inclusion/
outcome 

Outcome 
assessment 

Reported 
outcome 

Findings 

Voss et 
al. 
(2006) 

DTI/Seed-
based; PET 

2 MCS 2 TBI 6 and 19 
years 

18 
months 

Motor, 
oculomotor, 
language, 
verbal fluency 

Neurological 
improvement in 
one patient 

Increased FA within midline cerebral 
(medial parietal, occipital) WM was 
correlated with improvement in 
motor function and an increase in 
PET resting metabolism in one MCS 
patient (19y). 

Wu et 
al. 
(2016) 

DTI/Seed-
based 

8 Coma; 8 
UWS; 14 
MCS;  

Coma - 8 TBI; 
UWS - 6 TBI, 
2 non-TBI; 
MCS - 13 TBI, 
1 non-TBI 

10-182 
days 

3 months GOS 8 regained 
consciousness 
(GOS > 2); 8 did 
not regain 
consciousness  

Increased RD of left superior CP and 
decreased FA of right SS in patients 
who did not regain consciousness. 
 

CP- cerebellar peduncle; FA – fractional anisotropy; GOS – Glasgow Outcome Scale; RD – radial diffusivity; SS – sagittal stratum; WM – white mater. 
 
 

 

Table 2.2.3. Prognostic value of structural changes in coma. 

Author Method Type of 
DOC 

Etiolo
gy 

Delay 
injury/ima
ging 
(M±SD) 

Delay 
inclusio
n/outco
me 

Outcome 
assessment 

Reported 
outcome 

Findings 

Perlbarg 
et al. 
(2009) 

DTI/Voxel-
based; 
TBSS 

30 patients; 
24 with 
GCS ≤ 8;  

TBI 23 days (5–
53 days) 

1 year GOS 15 FO (GOS>3); 
15 UFO (GOS≤3) 

Decreased FA in ILF, CP, posterior limb of 
the IC, and posterior CC in UFO compared 
to FO group. 

Luyt et al. 
(2012) 

DTI/ROI-
based 

57 coma 
patients 

CA Median=11 
(7–17) days 

1 year GOS-E 8 FO (GOS-E ≥5); 
49 UFO (GOS-E 
≤4) 

The prognostic model based on FA values 
in selected WM tracts (20 ROIs) predicts 
accurately UFO (94% sensitivity, 100% 
specificity). 
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Galanaud 
et al. 
(2012) 

DTI/ROI-
based 

105 severe 
TBI 
patients 
who 
remained in 
coma ≥7 
days 

TBI 21 ± 9 days 1 year GOS-E 65 FO (GOS-E ≥5); 
40 UFO (GOS-E 
≤4) of which: 21 D, 
5 with UWS, 14 
MCS 

A composite DTI score increased the 
accuracy of outcome prediction compared 
with available clinical/radiographic 
prognostic score. 

Silva et 
al. (2017) 

Structural 
MRI/ROI-
based 

126 coma 
patients; 
additional 
testing 
sample of 
18 coma 
patients 

CA 16 ± 8 days 1 year GOS-E 37 survivors; FO: 
GOS-E ≥5; UFO: 
GOS-E ≤4)  
 

Decrease of cortical thickness in the frontal 
cortex and the volume in the thalamus, 
putamen, and pallidum in patients with 
UFO. Significant discriminative power of 
volume changes in frontal cortex, posterior 
cingulate cortex, thalamus, putamen, 
pallidum, caudate, hippocampus, and brain 
stem.  

FA – fractional anisotropy; FO – favorable outcome; GOS-E - Glasgow Outcome Scale Extended; TBSS - Tract-Based Spatial Statistics; UFO – unfavorable outcome. 
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2.3 Neural structure-function relationship in DOC – multimodal 
neuroimaging studies 

 

Little is known about how structural integrity allows the emergence of functional connectivity 

in brain-injured patients, as not many multimodal studies have attempted to directly investigate 

this function-structure relationship in disorders of consciousness (Table 2.3.1). Bruno and 

colleagues (2011c) showed a highly asymmetrical pattern in FDG-PET and fMRI in two 

patients, with mostly left lateralized changes, which were complemented with DTI results.  

Another study indicated a decline in regional metabolism and WM integrity in the DMN, but 

preserved function–structure relationship within most regions from this network in DOC, which 

was even stronger in the thalamus (i.e. thalamo-inferoparietal tract) of those who emerged from 

the MCS (Annen et al., 2016). The structural integrity of PreCu/PCC-thalamic pathway, as well 

as that of those connecting the posterior areas of the network, was previously found to be higher 

in EMCS patients in opposed to MCS and UWS patients (Fernández-Espejo, et al., 2012).  

The implication that abnormal brain function may be the consequence to white matter injury, 

was also demonstrated in a study showing positive correlation between the dysfunction in the 

postcentral gyrus and structural damage of the left posterior thalamic radiation tract (Yao et al., 

2015).  

Finally, a recent study found an association between the decrease in effective functional 

connectivity and global white matter damage in brain-injured patients, and this structure-

function relationship was proposed as a potential mechanisms preventing the emergence of 

consciousness in chronic DOC (Bodart et al., 2017).  
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Table 2.3.1. Multimodal studies – structure-function association in DOC. 

Author Method Type of DOC Etiology Delay 
injury(DOC)/imaging 

Findings 

Bruno et al. 
(2011c) 

DTI (whole-brain 
tractography); 
resting-state 
FDG-PET, fMRI, 
and EEG 

Case report with 1 
UWS and 1 MCS 
patient 

2 TBI 6 months and 3 months Residual right-lateralized hemispheric function 
on FDG-PET, fMRI, and EEG measurements. 
Reduction in the number of identified WM tracts 
in the left hemisphere for UWS patient and a 
much more symmetrical image for MCS patient. 

Yao et al. 
(2015) 

DTI (TBSS); rs-
fMRI 

11 DAI patients 
with DOC 

11 TBI 2 - 11 days ALFF of the amygdala and postcentral gyrus 
correlated with FA of the right EC and left PTR, 
respectively.  

Annen et 
al. (2016) 

FDG-PET; MRI-
DWI 

7 UWS; 12 MCS; 6 
EMCS 
 

12 TBI; 11 anoxia; 
1 mixed; 1 
infection 

31 - 2424 days FA and metabolic function (standardized 
metabolic rates) significantly diminished in 
DMN, in DOC compared with controls. Sig. 
association between functional metabolism of 
IP, PreCu, and frontal regions and structural 
integrity of the frontal-IP, PreCu-IP, thalamo-IP, 
and thalamo-frontal tracts. Stronger relationship 
between thalamo-IP tract and thalamic 
metabolism in EMCS compared with DOC.  

Di Perri et 
al. (2016) 

FDG-PET; rs-
fMRI; structural 
MRI-VBM 

21 UWS; 24 MCS; 
13 EMCS 
 

29 TBI; 14 anoxia; 
7 mixed; 8 other 

1 - 312 months Significant positive correlation between the 
positive DMN connectivity in the PCC/PreCu, 
and the brain metabolism. Significant negative 
correlation between negative DMN connectivity 
in the PCC/PreCu and the brain metabolism. 
Only UWS patients had decreased metabolism 
coupled with pathological between-network 
hyperconnectivity.  
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Bodart et 
al. (2017) 

DWI (whole brain 
FA); TMS/EEG 

9 UWS; 11 MCS; 2 
EMCS; 2 LIS 

12 TBI; 10 non-
TBI; 2 mixed 

5 -1371 weeks Negative correlation between structural integrity 
(i.e. global FA) and effective functional 
connectivity. Global FA could predict 56% of 
PCI variance in the patients' group.  
 

ALFF - amplitude of low-frequency fluctuation; DAI - diffuse axonal injury; EC – external capsule; FA – fractional anisotropy; IP – inferoparietal; PCI -  perturbational 
complexity index - a transcranial magnetic stimulation (TMS) derived marker of effective connectivity; PTR - posterior thalamic radiation; TBSS - Tract-Based Spatial Statistics.
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2.4 Summary of neuroimaging findings  
 
The review of neuroimaging studies demonstrated functional and structural disruption in DOC 

patients most consistently observed within (and between) high-order resting-state networks (i.e. 

DMN, SN, ECN), mainly encompassing midline cortical brain regions (i.e. PMC, mPFC) and 

their corresponding white matter connections (i.e. corpus callosum, cingulum).  

These findings were observed across a range of DOC etiologies and imaging modalities with 

more severe alterations in coma and UWS as opposed to MCS patients.  

A few studies that investigated the relationship between neuroimaging data and patients’ 

prognosis showed reduced functional connectivity in the DMN and PCC/PreCu, and damaged 

structural integrity in some of the major white matter tracts (i.e. corpus callosum, cerebral 

peduncle), in coma patients with poor outcome. The importance of cortical hub nodes ensuring 

efficient global brain functioning was also highlighted in a few graph theoretical studies. 

Several multimodal neuroimaging studies indicated the potential role of the structure-function 

relationship in the emergence of consciousness, however, further research is required in order 

to better understand this association in the context of disorders of consciousness.   

Nonetheless, there haven’t been many cases with acquired data in early stages of coma, which 

is urgently needed in order to find reliable markers serving to predict coma emergence and 

potential for long-term recovery. Early identification of patients who have a high chance of 

recovery is important, to avoid withdrawal of life sustaining treatment and ensure the 

administration of pharmacologic and non-pharmacological therapies aimed at restoring 

consciousness. Also, better understanding of etiology differences may prove to be essential in 

early prediction and understanding of patient’s outcomes, as the identification of etiology-

related factors may ameliorate the predictive value of consciousness-related markers, and help 

guide more effective therapy adapted to individual patient needs.  

In summary, the reviewed results imply great potential in clinical application of (multimodal) 

neuroimaging data in early prediction of long-term outcome in coma and chronic DOC patients 

and in increasing our knowledge about the neural correlates of consciousness.  
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3 Chapter III – The ACI-COMA project  
 
 

3.1 ACI-COMA 
 
This thesis is based on the data acquired for the ACI-COMA project. This project was approved 

by the ethics committee of the University Hospital of Toulouse, France (“Comite Consultatif 

pour la Protection des Personnes,” CHU Toulouse, ID-RCB: 2012-A00009-34). Written 

informed consent was obtained directly from the healthy volunteers and from the legal surrogate 

of the patients. Clinical trials identifier: NCT01620957. Funding has been obtained from the 

University Teaching Hospital of Toulouse and the French Society of Intensive Care.  

 

3.1.1  Project design 
 

This is an observational, longitudinal and multicenter project. It consisted of two neuroimaging 

sessions (Figure 3.1.1) both executed during coma (≤30 days after the brain-injury). The goal of 

this repeated acquisition was to explore potential functional or structural brain connectivity 

changes independent of behavioral amelioration/worsening, which could potentially serve as a 

valid prognostic marker of neurological recovery.  

 

 

Figure 3.1.1. ACI-COMA project design. 

 

The initial evaluation was done as soon as possible after clinical stabilization of patients, but to 

avoid confounding effects of anesthesia and hypothermia (Kirsch et al., 2017), patients 

underwent MRI scanning at least 2 days (4 +/- 2 days) after complete withdrawal of sedation 

and under normothermic condition. 

 

Behavioral assessment. The level of consciousness was assessed at admission to hospital and 

on the day of the MRI scanning using Glasgow Coma Scale (GCS) (Teasdale & Jennett, 1974). 
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and Full Outline of Unresponsiveness (FOUR) (Wijdicks et al., 2005). The outcome 

(neurological recovery) was assessed 3-months post coma using the Coma Recovery Scale-

Revised (CRS-R) (Schnakers et al., 2008). The standardized clinical examination was 

performed by raters blinded to neuroimaging data. The behavioral tests were translated and 

validated in French language.  

 

Neuroimaging. This is a multimodal neuroimaging project. The MRI machine used for the 

acquisition of data was MRI 3T Philips ACHIEVA scanner. Functional and structural imaging 

sequences and their order of acquisition are presented in Figure 3.1.2.  

The instructions for the rs-fMRI were: “Close your eyes, try to move as little as possible and 

let your thoughts run freely“. The passive-movement task consisted of the passive movement 

of the wrist extension between 0° and 30° from the right hand index finger with a frequency of 

1 Hz. The total duration of the MRI exam was around 60 minutes.  

 

 

Figure 3.1.2. The MRI sequences. 

 

3.1.2  MRI data acquisition parameters 
 

T1 

A high-resolution structural image was acquired for each subject using three-dimensional MRI 

sequences with following parameters: 170 contiguous slices; TR=8.1 ms, TE = 3.7 ms, FOV= 

220x232x170mm, flip angle = 8°, resolution= 1mm3 isovoxel.  

 

Rs-fMRI 

In all participants, 11 min resting state fMRI was obtained. Two hundred and fifty multislice 

T2*- weighted images were retrieved with a gradient echo-planar sequence using axial slice 

orientation: 37 slices; voxel size: 2 x 2 x 3.5 mm; TR = 2,600 ms; TE = 30 ms; flip angle = 90°; 

FOV = 240 mm. 
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DTI 

DTI data was collected using a gradient echo planar imaging sequence with the following 

parameters: 32 gradient orientations, TE=76ms, TR=12000ms, flip angle= 90°, FOV = 

230x188x143, image matrix = 152 x 124, slice thickness = 1.5mm, and b value=1000 s/mm2.  

 

3.1.3  The recruited participants  
 

The patients were recruited (Table 3.1.1) at 4 Intensive Critical Care Units affiliated with the 

University Teaching Hospital (CHU de Toulouse, France) in Toulouse. The inclusion of 

patients started in the early 2013 and finished in August 2016.  

 

Table 3.1.1. Criteria for patient recruitment. 

Criteria of inclusion Criteria of exclusion 

 Men or woman between 18 and 80 years; 

 Diagnosis of coma (GCS at the admission to 

hospital < 8, with motor responses < 6; FOUR 

score < 10);  

 Etiology - traumatic or anoxic BI; 

 Acute stage – first 30 days after initial BI; 

 Informed consent from the legal surrogate of 

the patients; 

 Interruption of administration of any sedative 

or hypnotic agent from >24h 

(propofol/ketamine/clonidine/morphine) or > 

72h (benzodiazepines). The administration of 

non-morphine analgesic drugs is compatible 

with inclusion (i.e. absence of sedative effect). 

 History of neurological or psychiatric 

illness; 

 Subject not affiliated to a social security 

scheme; 

 Subject under legal protection; 

 Pregnant or nursing women; 

 Subjects with pacemakers or metallic and 

other electrically conductive medical 

devices may interfere with the magnetic 

field of the MRI; 

 Subjects susceptible to attacks of 

claustrophobia. 

 

To this day, we have included 58 comatose patients in total.  We have also included 34 healthy 

subjects serving as controls. Demographic and clinical characteristics of all the subjects are 

reported in Table 3.1.2 
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Table 3.1.2. Demographic and clinical characteristics of participants. 

 Patients (N=58) Controls (N=34) 

Age Mean=49y (18-81y); STD=18y Mean=50y (22-74y); STD=20y 
Sex 39M; 19F 13M; 21F 
Etiology Traumatic 19  

 
/ 

Anoxic 35 
Mixed (TBI + Anoxic) 4 

Outcome Death 11  
 
 
/ 

UWS/Vegetative state 22 
Minimally conscious 
state 

18 

Recovery 7 
Sessions Session 1 N = 58 / 

Session 2 N = 19 
 

 

3.1.4 Main goals and objectives 
 

This thesis is centered on the analysis of intrinsic brain “activity” in the form of functional 

connectivity and structural brain integrity of brain-injured patients in the acute stage of coma. 

The aim of the present thesis is to characterize the neural correlates of acute consciousness 

abolition (i.e. coma) and identify early neural signatures of neurological recovery. To do so, we 

longitudinally studied severe brain-injured patients using multimodal MRI methodology and 

standardized behavioral assessment. 

The outcome of this project will hopefully contribute to: (i) a development of reliable 

multimodal neuroimaging battery of tests serving to improve severely brain injured patient’s 

early diagnosis and prognosis (ii) the assessment of the impact of novel pharmacological and 

non-pharmacological therapeutic interventions in future studies. 
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4 Chapter IV – Methods and Results 
 

4.1 Neural signature of coma revealed by posteromedial cortex connection 
density analysis 

 
Based on the article: “Neural signature of coma revealed by posteromedial cortex connection 

density analysis”. Malagurski. B, Péran, P., Sarton, B., Riu, B., Gonzalez, L.,…Silva, S. 

(2017). NeuroImage: Clinical, 15, 315–324. (Paper I) 

 

 

4.1.1 Scientific justification 
 

Converging data from physiological, pharmacological (Heine et al., 2012) and pathological 

models (Hannawi et al., 2015), suggest the implication of the posteromedial cortex (PMC) and 

its long-range functional connections in conscious processing. Patients with disorders of 

consciousness consistently demonstrate a reduced activity (He et al., 2014; Silva et al., 2010; 

Tsai et al., 2014) and/or diminished connectivity between this posterior brain structure and other 

cortical hubs (Hannawi et al., 2015; Vanhaudenhuyse et al., 2010; Qin et al., 2015; Wu et al., 

2015), in particular the medial prefrontal cortex (mPFC) (Lant et al., 2016; Silva et al., 2015). 

As we have seen in the chapter titled: “Key hubs for consciousness emergence: PMC-

PCC/PreCu complex”, the posteromedial cortex (PMC) is considered as a heteromodal cortical 

region, as its sub-regions have been differentially functionally associated with several intrinsic 

brain networks and consequently have been implicated in a variety of cognitive processes 

(Cavanna & Trimble, 2006; Leech & Sharp, 2014).  

Nevertheless, the DOC neuroimaging literature traditionally explored PMC as a homogenous 

structure and failed to describe such a functional segregation in pathological conditions (Norton 

et al., 2012; Silva et al., 2010; Vanhaudenhuyse et al., 2010). This important issue is probably 

due to (anatomical) seed-based approaches that are currently used in this setting to evaluate the 

functional connectivity among non-parcelled brain regions, by using correlation analyses of 

spontaneous fluctuations of brain activity in resting state conditions (Hannawi et al., 2015).  
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4.1.2 Objectives and hypotheses 
 

We suggest that a better understanding of intrinsic PMC functional topology (Silva et al., 2015) 

could significantly expand our understanding of how this cortical hub contributes to the 

generation and the maintenance of conscious awareness and might considerably improve DOC 

patient's clinical management. To explore this, we used a recently developed voxel-based 

unbiased approach that does not rely on a priori selection of the seed regions, named functional 

connectivity density (CD) (Tomasi & Volkow, 2010). This voxel-based method, accurately 

enables the identification of functional connectivity hubs and permits to specifically investigate 

within brain regions parcellation, in both healthy and pathological conditions. Thus, we aimed 

to investigated the functional impact of acute brain injures responsible of coma at the level of 

PMC and intended to study in this setting: (i) the specific interactions of the PMC anatomical 

(PCC and PreCu) or functional (ventral/dorsal gradient) sub-regions, with a distant cortical hub 

(medial prefrontal cortex; mPFC) in resting state conditions (ii) a complete assessment of the 

whole range of increase/decrease of both positive/negative, i.e. corresponding to 

positive/negative correlation, connection patterns that could theoretically be detected by this 

approach, (iii) the impact of injury mechanisms (i.e. traumatic or anoxic), on brain functional 

connectivity patterns (iv) the prognostic value of functional connection density data for 

neurological recovery. 

 
 
 
4.1.3 Materials and methods 
 
 
4.1.3.1 Participants 
 
We compared 27 patients, 15 with traumatic and 12 with anoxic brain injury, who met the 

clinical definition of coma (Glasgow Coma Scale score (Teasdale & Jennett, 1974) at the 

admission to hospital< 8, with motor responses< 6; age range: 19–70 years) to 14 approximately 

age-matched healthy controls (age range: 22–37 years). Patients underwent rs-fMRI scanning 

at least 2 days (4 ± 2days) after complete withdrawal of sedation and under normothermic 

condition. Standardized clinical examination was performed on the day of the scanning using 

the Glasgow Coma Scale and the Full Outline of Unresponsiveness (Wijdicks et al., 2005) and 

3 months later using Coma Recovery Scale-Revised (Schnakers et al., 2008).  
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4.1.3.2 Pre-processing 
 
The rs-fMRI data was preprocessed using SPM 8 (http://www.fil.ion.ucl.ac.uk/spm/) and 

CONN toolbox ver. 13f (http://www.nitrc.org/projects/conn) (Whitfield-Gabrieli & Nieto-

Castanon, 2012). In order to reduce the motion effects on our data, we only included subjects 

characterized by motion parameters smaller than 3 mm translation and 3° rotation. First, the 

echo-planar images were realigned (motion corrected), slice-time corrected and normalized to 

the Montreal Neurological Institute echo-planar imaging template. Second, non-neuronal 

sources of noise were estimated and removed using the anatomical CompCor method 

(aCompCor) integrated in the CONN toolbox. Principal components of the signals from the 

white matter and the CSF voxels, alongside the motion parameters estimated during 

realignment were removed with regression. Finally, a temporal band-pass filter was applied to 

the residual blood oxygen level–dependent (BOLD) time course in order to obtain a low-

frequency range of interest (0.008-0.09 Hz). 

 

 

4.1.3.3 Region of interest selection 
 
Using a home-made MATLAB (MATLAB and Statistics Toolbox Release 2011a, The 

MathWorks Inc., Natick, Massachusetts, United States) script, the BOLD time series was 

extracted from voxels in two main regions of interest (ROI), the Posterior Medial Cortex (PMC) 

and the Medial Prefrontal Cortex (mPFC), defined by the Automated Anatomical Labeling atlas 

(Tzourio-Mazoyer et al., 2002) (voxel size 2× 2× 2 mm). The PMC (size = 12,862 voxels) 

consisted of the Precuneus L/R (size = 11,222 voxels) and the Posterior Cingulate Cortex L/R 

(size =1640 voxels), and the mPFC (size = 13,389 voxels) comprised the Frontal Superior 

Medial L/R (size =8373 voxels) and the Anterior Cingulate Cortex L/R (5016 voxels). As 

preliminary step, T2* mean images were used the extract the mean value of voxels in the PMC 

region, and a two-sample t-test was performed to compare values between the control and the 

patient group. Additionally, to investigate if the potential changes in connection density are 

specific to the PMC-mPFC interactions, we have also included the bilateral Calcarine L/R (size 

= 7134 voxels; part of the primary visual cortex) as a control region, currently not considered 

to be relevant for conscious awareness. 
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4.1.3.4 Voxel-based connection density 
 
The data analysis pipeline is presented in Figure 4.1.1. Pearson correlation coefficients were 

computed between the BOLD time course of all the possible pairs of voxels from PMC and 

mPFC. Correlation coefficients were then normalized using Fisher's r-to-z transformation. A 

subject-specific threshold of p<0.05 was applied to each correlation coefficient in order to retain 

only a subset of connections with higher in further analysis. We labelled the obtained 

connections as positive and negative depending on the sign of the obtained z coefficients and 

we treated them separately. Importantly, to avoid the artificial induction of negative correlations 

(anticorrelations) by the global signal regression (Murphy et al., 2009; Weissenbacher et al., 

2009) we adopted the CompCor method in the preprocessing step, which has been reported as 

a reliable approach for the exploration of both positive and negative correlations (Chai et al., 

2012, 2014). The resulting z coefficients were binarized and then summed to obtain the density 

of connections between every voxel belonging to PMC and every voxel within the mPFC. These 

would represent the number of significant positive and negative connections from PMC to 

mPFC. The number of significant connections obtained for a single PMC voxel was then used 

to compute a Z-score for every voxel in the patient group using the mean (M) and the standard 

deviation (SD) of the healthy control group. This will represent the significant deviation of each 

voxel from the corresponding control. Thus, the number of PMC voxels with a Z-score higher 

or equal to 2 SD or less or equal to −2 SD (for positive and negative connections) were counted 

for each patient individually and further used to investigate the changes (significant deviations) 

in functional connectivity between the PMC to the mPFC. The same analysis was repeated for 

the control pathway (i.e. representing the connections between the bilateral calcarine and the 

mPFC). Furthermore, in order to facilitate the discussion of our results (Fig. 1), a significant 

decrease (Patients < Controls, Z-score≤−2) in connection densities is designated as “hypo” 

connection density or hypo-CDP and hypo-CDN, for positive and negative correlation based 

connection densities, respectively. The opposite - increase in connection densities (Patients > 

Controls, Z-score ≥ 2) is denoted by “hyper” connection density e.g. hyper-CDP and hyper-

CDN for positive and negative correlation based connections, respectively. Lastly, to allow an 

easier description of our findings and to test our hypothesis on the differences in functional 

connectivity changes between the PreCu and PCC, we present the results from these two ROIs 

separately. 
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Figure 4.1.1. Overview of the data analysis pipeline. 
1) First, the rs-fMRI data was pre-processed using SPM8 and CONN13f, respectively. 2) Using a home-made MATLAB script, 
the BOLD time series was extracted from voxels in two main regions of interest then used in 3) calculation of Pearson 
correlation coefficients between the BOLD time course of all the possible pairs of voxels from PMC and mPFC. Then, a subject-
specific threshold of p ≤ 0.05 was applied to include only the significant connections in further analysis. 4) The obtained 
significant connections were split on positive and negative (based on the sign of the normalized z coefficients), binarized and 
used to 5) obtain the density of connection between PMC and mPFC voxels. 6) A Z-score was calculated for each single PMC 
voxel as explained in the figure. 7) Voxels with a significant Z score were summed and characterized as hypo/hyper-CDP and 
hypo/hyper- CDN as presented in the figure. 

 
 
 

4.1.3.5 Spatial homogeneity 
 
In addition to the individual results, we were interested in the spatial similarity (overlap) of 

these changes between patients within groups (intra-group) and between different coma 

etiology groups (inter-group). This allowed us to investigate if these changes were spatially 

scattered thus highly heterogeneous between subjects or if they were organized in functional 

clusters shared among multiple participants within/between the two etiology groups. The intra-

group spatial congruity of single voxel Z-score results was explored at two thresholds: a 

criterion of 33% and 67% was used to define the total number of disconnected voxels spatially 

shared between 1/3 and 2/3 of the patient group, respectively. This was explored in the group 

with all the patients and with two coma etiology groups separately. To explore the inter-group 

similarity, we have calculated the Jaccard similarity coefficient (index) to further test the spatial 

overlap in connectivity changes between these two groups. The Jaccard index (JI) is defined as 

the intersection divided by the union of the number of voxels representing significant changes 
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in PMC-mPFC connection density in given groups. The values of JI range from 0 (0%), 

indicating no overlap, to 1 (100%) suggesting full spatial overlap. 

 

4.1.3.6 Statistical analysis 
 
We have conducted the Mann-Whitney U test to investigate the differences in PMC-to-mPFC 

connection density changes between the PreCu and PCC. The same test was used to compare 

the changes in functional connectivity between our two coma etiology groups – traumatic and 

anoxic brain injury patients. This analysis was also repeated for the control pathways. The 

resulting p values were corrected for multiple comparison using a false discovery rate at the 

level of p = 0.05. We have also calculated the effect size for the Mann-Whitney U test by 

dividing the z value (test statistic) by the square root of N (sample size). This is analogous to 

Cohen's d for parametric group testing. Spearman's correlation analysis was performed to 

explore the link between the number of PMC voxels with significant changes in connection 

density and the CRS-R score. The same correlation analysis was done to test the association 

between the connection density changes in the control pathway - Calcarine-mPFC - and the 

CRS-R score. The resulting p values were corrected for multiple comparison using a false 

discovery rate. Additionally, in order to explore the non-linear association between the outcome 

and the significant changes in PMC-mPFC connection density, and thus the predictive value of 

these changes in relation to recovery, we have conducted the binary/logistic regression analysis. 

Patients were divided into two outcome groups (based on the CRS-R score): good outcome - 

comprising patients who had recovered or progressed to minimally conscious state (MCS) (N 

= 12); and the bad outcome – incorporating patients with unresponsive wakefulness 

syndrome/vegetative state (UWS/VS) (N = 15). This analysis was not done separately for the 

two etiologies due to small sample size. All of the above mentioned analyses were performed 

using the IBM SPSS (IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM 

Corp.) statistical package. 
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4.1.4 Results 
 

4.1.4.1 Induced functional topological changes in the PMC 
 

4.1.4.1.1 Anatomical sub-regions — precuneus and posterior cingulate cortex 
 
In Figure 4.1.2 we report the induced changes in functional connectivity of the entire PMC and 

the differences between its anatomical sub-regions, the PreCu and PCC, between the patient 

and the control group. The changes in connection density are presented as the percentage of 

voxels more or less connected within a given region/sub-region in order to take into account 

the differences in size (total number of voxels) of different ROIs.  

The PCC exhibited significantly more voxels with hypo-CDP (U = 202, p = .004; r=0.38; Figure 

4.1.2 – subpanel A-1) in comparison to PreCu, which is in accordance to previous research. The 

PreCu showed a tendency toward a higher number of voxels with hyper-CDP (Figure 4.1.2 - 

subpanel A-2) in comparison to PCC, but these results were not statistically significant (p= 

.074). There were no statistically significant differences in the number of hyper-CDN and hypo-

CDN voxels between these two sub-regions, after the multiple comparisons correction (fdr 

corrected p=.005) (Figure 4.1.2- subpanel A-3). 
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Figure 4.1.2. Differences in changes in connection density between PreCu and PCC and between traumatic 
and anoxic brain injury. 
Panel A) PCC showed significantly more hypo-CDP (subpanel 1) in comparison with the PreCu. Panel B) Traumatic BI 
patients had more hyper-CDP (sub-panel 2) within the PCC and hyper-CDN voxels in both PreCu and PCC (sub-panel 4) in 
comparison to anoxic BI patients; Boxplots represent medians with interquartile range and whiskers signify minimum and 
maximum values (excluding the outliers) (*p < 0.05, (**p < 0.005, ns: non-significant). 

 

4.1.4.1.2 Functional sub-regions — ventral/dorsal segregation of the PMC 
 

In order to investigate the spatial architecture of the observed changes in the density of 

connections, in Figure 4.1.3 we report the spatial topography of the obtained connections. This 

figure represents the group-wise changes in functional connectedness. The individual spatial 

topography maps of these changes (with etiology and prognostic information) are presented in 

the supplementary Figure 6.3.1 and Figure 6.3.2. It can be noted that: (i) the ventral PCC and the 

ventral PreCu form a functional cluster of hypo-CDP voxels (Figure 4.1.3 A), (ii) the hyper-CDP 

voxels are primarily located in the dorsal PreCu and dorsal PCC, alongside a portion of the 

ventral PCC (Figure 4.1.3 B), (ii) the hyper-CDN voxels are widespread (suggesting high inter-
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individual variability) and cover large portions of both PMC sub-regions (Figure 4.1.3. D), 

including almost the entire PCC, (iv) finally, the hypo-CDN PMC voxels are barely present and 

are mostly found in the posterior ventral PreCu (Figure 4.1.3. C). There is a significant spatial 

overlap between voxels with hypo-CDP and hyper-CDN, equivalent to almost the total number 

of hypo-CDP voxels (see Table 1.) in the entire patient group. However, this overlap is not 

homogeneous between patients and is characterized by important inter-individual differences, 

as demonstrated in the supplementary Table 6.3.1. Individual patient results – the total number of 

hypo/hyper-CDP and hypo/hyper-CDN voxels for PMC (Panel A), PreCu (Panel B) and PCC (Panel B). 

 
 

 
 
Figure 4.1.3. Spatial maps of changes in PMC-to-mPFC connection density in the patient group. 
Patients seem to show significant hypo-CDP changes in the ventral portions of both PreCu and PCC (panel A). Hyper-CDP 
voxels are more specific to the dorsal sub regions of the PreCu and PCC, and slightly border on the ventral PCC (panel B). 
Hypo-CDN changes are barely noticeable (panel C), and hyper-CDN voxels seem wide-spread and highly heterogeneous 
between patients (panel D). Individual results of patients are summed and presented in a single image; Purple and blue outlines 
reflect the borders of the anatomical PreCu and PCC respectively. Gradient bars (%) reflect the percentage of patients sharing 
the same voxel with a sig. Z-score (hypo/hyper CDP/CDN) at given anatomical location (spatial homogeneity). 

 

4.1.4.2 Control pathways — Calcarine-mPFC 
 
The changes in the control pathway connection density are fully presented in the supplementary 

Figure 6.3.3. Differences in Calcarine-mPFC connection density changes between traumatic and anoxic 

brain injury. The results showed only a small percentage of Calcarine hypo-CDP voxels in 

patients, representing reduced connectivity between this region and the mPFC (Mdn=0.04%, 

range 0-0.7%). The same result was found for the hypo-CDN voxels (Mdn=0, range 0-0.2%). 

In contrary to these result, hyper-CDN (Mdn=22%, range 0.08-63) and hyper CDP (Mdn=4%, 

range 0.04-22%) voxels were present in this control pathway.  
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4.1.4.3 Impact of brain injury mechanisms 
 

4.1.4.3.1 PMC-mPFC connection density changes 
 

The impact of the patients' etiology on the observed changes is reported in Figure 4.1.2 – 

subpanel B. The group-level statistical analysis showed significant differences between the two 

etiologies in the percentage of PMC voxels with hyper-CDN (U = 32, p= .004; r=.55).  

There were no significant differences in hypo-CDP (U= 63, p = .200 r= .25), hyper-CDP (U= 

49, p = .045 r= .39) and hypo-CDN voxels (U= 66, p= .249; r= .23).  

These significantly higher percentage of PMC hyper-CDN voxels, was present in both PreCu 

(U =32, p= .004; r=.55) and PCC (U = 33.5, p = .005; r=.53) sub-regions, in TBI in comparison 

to the anoxic BI patient group (Figure 4.1.2 – subpanel B-4). Additionally, the results showed a 

higher percentage of hyper-CDP voxels in the PCC sub-region (but not in the PreCu) in the TBI 

group (U = 27, p = .001; r=.59) (Figure 4.1.2 - subpanel B-2).  

 

4.1.4.3.2 Connection density changes in control pathways 
 
We wanted to test if the hyper-CDP and hyper-CDN voxels, found in the control pathways, 

were more specific to one of the etiologies. The group-level statistical analysis showed a 

significantly higher percentage of Calcarine-mPFC hyper-CDP (U =37, p = .009; r =.5), and 

hyper-CDN voxels (U = 33, p = .004; r= .54) voxels in traumatic in comparison to anoxic brain 

injury patients (Supplementary Figure 6.3.3 and Figure 6.3.4). 

 

4.1.4.4 Spatial homogeneity 
 
The intra-group spatial similarity in voxels with changes in connection density are presented in 

Table 4.4.1.1. The hypo-CDN voxels were not included in the analysis, because there were no 

significant differences between the control and patient group. The results are reported without 

a threshold and with the threshold of 33% and 67% of patients having the same voxel changes. 

First, there seemed to be a lower spatial congruity in the entire group of patients, as opposed to 

the groups of same etiology. Second, in comparison with traumatic patients, anoxic brain injury 

patients seem to have a slightly higher spatial homogeneity in PMC voxels with hypo-CDP. 

Third, TBI patients showed a higher intra-group similarity in hyper-CDP and hyper-CDN in 

comparison to anoxic patients.  
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The Jaccard index showed a similarity of 65% for hypo-CDP, 46% for hyper-CDP, and 47% 

for hyper-CDN spatial maps between traumatic and anoxic BI patients. The similarity between 

the spatial maps of anoxic BI and the spatial maps of all patients (including TBI) was 69% for 

hypo-CDP, 57% for hyper-CDP, and 49% for hyper-CDN voxel results. Finally, the comparison 

between the TBI and the group of all patients, suggested a similarity of 96% for hypo-CDP, 

89% for hyper- CDP and 98% for hyper-CDN spatial maps. These results, along the spatial 

homogeneity results within different sub-groups, indicates that the results are more spatially 

heterogeneous and more widely distributed in the TBI group in comparison to the anoxic 

groups, further confirming differences in the pathological processes. 

The spatial homogeneity differences between separate etiologies are visually presented in Figure 

4.1.4. 

 
 

 
Table 4.4.1.1.1. Spatial homogeneity of changes in PMC connection density in the patient group. 
Threshold – at least 33% or 67% of subjects spatially share the same voxel with sig. Z-score. The percentages present the 
proportion of voxels with significant Z-score out of the total number of voxels in PMC spatially shared between patients. 

 

 

 
Figure 4.1.4. Intra-group spatial homogeneity differences between the traumatic and anoxic brain injury 
patients (threshold 33%). 
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Anoxic BI patients show a higher intra-group similarity in hypo-CDP in comparison to TBI patients, while TBI patients show 
a higher spatial congruity in hyper-CDN voxels. Purple and blue outlines reflect the borders of the anatomical PreCu and 
PCC respectively. Gradient bars (%) reflect the percentage of patients sharing the same voxel with a sig. Z-score (hypo/hyper 
CDP/CDN) at given anatomical location. The minimum spatial homogeneity is set to at least 33% of patients in a given group. 

 

4.1.4.5 Prognostic value 
 

4.1.4.5.1 Spearman correlation analysis with PMC-mPFC voxels 
 
The number of PMC voxels with hypo-CDP showed a significant negative association with the 

CRS-R score assessed 3 months after the coma onset (rs= −.72, p = .00002), indicating that if a 

patient had a higher number PMC voxels with hypo-CDP he was less likely to recover (Figure 

4.1.5.). We did not find a significant correlation between hyper-CDP (rs= .29, p =.14) and hyper-

CDN (rs= −.35, p = .07) voxels and the CRS-R score for the entire patient group.  

At the etiology level, it is worth noting that in the traumatic brain injury group, we found a 

highly significant link between number of hypo-CDP voxels (rs= −.80, p= .0004) and the CRS-

R score (Figure 4.1.5 A).  

Interestingly, a highly statistically relevant association was found between the number of hyper-

CDN voxels and the CRS-R score (rs= −.86, p= .00005). Therefore, TBI patients with a high 

number of hypo-CDP and hyper-CDN PMC voxels had less chance for recovery 3 months after 

the initial fMRI scan (Figure 4.1.5 B). Additionally, given the significant spatial overlap between 

voxels with hypo-CDP and hyper-CDP voxels, and the significance of these voxels in relation 

to the neurological recovery in TBI patients, we performed the same analysis on overlapping 

voxels. The results showed the same highly significant negative association between the 

number of spatially overlapping hypo-CDP and hyper-CDN voxels and the 3-month outcome 

(rs= −.73, p =.002; Figure 4.1.5 C). 

The analysis in the anoxic group did not show a significant association between the CRS-R 

score and the hyper-CDP (rs= .43, p =.16), hyper-CDN (rs= .20, p = .54) nor the hypo-CDP 

voxels (rs= −.38, p = .22). However, this result should be interpreted in caution due to small 

sample size of anoxic BI patients.  
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Figure 4.1.5. The prognostic value of changes in PMC-to-mPFC connection density. 
Panel A) There was a sig. negative link between the number of PMC voxels with hypo-CDP and the patient outcome (rs= 
−0.72; p =0.00002); Panel B) TBI patients showed a significant negative association between the number of voxels with hypo-
CDP (rs =−0.80; p =0.0004; panel A), hyper-CDN and the CRS-R score (rs =−0.86; p =0.00005); Panel C) In TBI patients, 
there was highly significant negative association between the number of spatially overlapped hypo-CDP and hyper-CDN voxels 
and the 3-month outcome (rs = −0.73, p =0.002; Fig. 6.C). The x axis represents the 3-month CRS-R score, the y axis represents 
the number of voxels with changes in connection density. 

 

4.1.4.5.2 Spearman correlation analysis with the control pathway voxels 
 
The Spearman correlation analysis did not show any significant association between the CRS-

R score assessed 3 months after the coma onset and any of the number of voxels with significant 

connection density changes in the Calcarine-mPFC control pathways. This was true for the 

entire group of patients, and for the anoxic and traumatic BI groups separately. 

 

4.1.4.5.3 Logistic regression analysis with PMC-mPFC voxels 
 
A logistic regression analysis was conducted to ascertain the effects of the number of hypo-

CDP, hyper-CDN and hyper-CDP PMC voxels on the likelihood that the patients had a good 

outcome (recovery and MCS) or bad outcome (UWS/VS). Due to significant collinearity 

between the hyper-CDP and hyper-NCD (r =−.91), two models were tested, the first including 

hypo-CDP and hyper-CDP and the second hypo-CDP and hyper-CDN as independent/predictor 

variables. The first model was significant (chi square = 10.204, p = .006 with df= 2), however 
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the number of hyper-CDP voxels did not significantly contribute to the prediction (Wald, p= 

.296). Thus, we decided to keep the second model, where both predictors had a significant effect 

on the outcome. The full model against the constant only model was statistically significant, 

suggesting that the predictors as a set reliably distinguished between patients with good and bad 

outcome (chi square =16.701, p < .001 with df= 2). The model explained 62% (Nagelkerke's 

R2) of the variance in outcome, and correctly classified 78% of cases (sensitivity – 80%; 

specificity – 75%) (Supplementary Figure 6.3.5). The Wald criterion demonstrated that both 

variables, hypo-CDP (p = .02) and hyper-CDN (p= .044) had a weak but significant contribution 

to prediction. Increase in both predictors was associated with decreased likelihood of good 

outcome. Accordingly, Exp (B) indicates that the for every extra unit (number of voxels) of 

hypo-CDP and hyper-NCD, the odds of recovery decrease by a factor of 0.988 and 0.999, 

respectively, all other factor being equal. 
 
 

4.1.5 Discussion 
 

Our findings demonstrate that a comparative analysis of voxel-wise connection density 

disruptions between the PMC and the mPFC, might constitute a reliable and fine-grained study 

approach, permitting to accurately address the brain functional network changes, which are 

critically related to consciousness abolition during coma. Crucially, built upon statistical 

analysis at a single subject level - a necessary condition to make reliable inferences in individual 

patients - this voxel-wise connection density approach, enabled the description of a novel 

PMC/mPFC dysconnectional taxonomy, permitting the identification of specific markers 

related to brain injury mechanism and useful for neuroprognostication. The current study, 

confirms and expands previous finding through seed-based analysis method (Silva et al., 2015), 

and permits: (i) a precise topological description of the PMC sub-regions (ventral PreCu and 

the PCC) which seems implicated in the consciousness impairment observed in this setting, (ii) 

identification of useful and accurate neuroimaging biomarker for prognostication in this setting, 

as the number of PMC voxels with hypo-CDP to mPFC, had significant predictive value in 

relation to patients neurological outcome assessed 3 months after the coma onset in the current 

study. It is worth noting that such adaptive changes, characterized by a reduction of CDP, were 

barely observed in the control pathway (Calcarine/mPFC). Crucially, the number of voxels with 

any significant connection density changes within this control pathway, was not correlated with 

patient's neurological outcome. These points strongly support the critical role of PMC/mPFC 
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functional connections in consciousness emergence, and consolidate the specific use of 

PMC/mPFC functional connectivity to predict coma patient's neurological outcome. Our data 

strongly support the concept of a significant structural and functional PMC heterogeneity, 

which could be implicated in the “tuning” of the whole-brain metastable status (Hellyer, Scott, 

Shanahan, Sharp, & Leech, 2015). Furthermore, our results are in line with the hypothesis of a 

dysfunctional mesocircuit (Schiff, 2010) in DOC patients, build upon anterior and posterior 

critical disruption of neural communication. For example, tract-tracing studies conducted in 

non-human primates (Vogt & Laureys, 2005) and diffusion tensor tractography in humans 

(Hagmann et al., 2008) have clearly identified structural connections between dorsal PCC to 

the mPFC along the cingulum bundle (Greicius et al., 2009). Interestingly, structural injuries 

within this tract have been described as related to neurological outcome of severely brain 

injured patients (Fernández-Espejo et al., 2012). Furthermore, our findings suggest a higher 

prevalence of hypo-CDP voxels in comatose patients, specifically located in the ventral 

subdivision of both the PCC and the PreCu. This result seems compatible with the findings of 

the rs-fMRI study of Silva and colleagues (2015), suggesting stronger functional connectivity 

between PCC-centred seed and the mPFC in patient who eventually recovered. However, our 

voxel-wise connection density method further elucidated the importance of the total number of 

PMC voxels in prediction of patient's outcome and allowed us to explore the intra-regional 

topological changes in connectivity which is not possible in seed based analysis. Additionally, 

previous resting-state fMRI (Bzdok et al., 2015; Cauda et al., 2010; Margulies et al., 2009; Vogt 

et al., 2006; Zhang & Li, 2012), and DTI studies (Zhang et al., 2014) indicate that both these 

PMC sub-regions are densely connected to other brain regions that participate to DMN network 

and appears to be implicated in internally directed cognition (i.e. self-referential information 

processing, social cognition, mind-wandering, episodic memory retrieval) (Andrews-Hanna et 

al., 2010; Cavanna & Trimble, 2006; Fox et al., 2015; Leech & Sharp, 2014). In contrast with 

this hypo-CDP restricted to ventral parts of PreCu/PCC, we demonstrated that dorsal PreCu and 

anterior dorsal (and a part of ventral) PCC, encompasses specific voxels with hyper-CDP in 

coma patients. These dorsal PMC structures are known to support and connect to other regions 

involved in externally directed cognitive processes (Margulies et al., 2009; Zhang & Li, 2012) 

such as spatially-guided behaviour, visual/motor mental imagery (Cavanna & Trimble, 2006), 

control of attentional focus (Leech & Sharp, 2014) and high-level sensorimotor functions 

(Balestrini et al., 2015; Herbet et al., 2015). Overall, the observed rostro-caudal functional 

segregation between increase and decrease of CDP, seems in line with the hypothesis of the 

central role played by an imbalance between internal and external awareness systems in the 
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genesis of consciousness disorders (Demertzi, Soddu, & Laureys, 2013; Di Perri et al., 2014; 

He et al., 2014). Actually, as described in chronic DOC patients (He et al., 2014), this imbalance 

could reflect overcompensation in the external network due to the loss of input from internal 

self-networks. Additionally, we sought for functional signatures of the brain injury mechanisms 

that were responsible of coma. Regarding, the hypo-CDP voxels, our findings indicate that 

within the PMC, hypo-CDP voxels were slightly more pronounced in anoxic patients (although 

not statistically significant), probably representing a neural underpinning of the overall worse 

prognosis of this group (Horsting et al., 2015; Koenig et al., 2014). Furthermore, in line with 

recent studies, suggesting that hyperconnectivity patterns are a common network response to 

traumatic brain injury (Bharath et al., 2015; Hillary et al., 2014, 2015; Stevens et al., 2012) we 

observed that hyper-CDP (in the PCC subregion) and hyper-CDN voxels were more frequently 

detected in the traumatic group. This was true for the PMC-mPFC connectivity patterns, but 

also for the control pathway, representing connections between the Calcarine and the mPFC. 

We hypothesize that the higher prevalence of hyperconnectivity patterns in this group could be 

the consequence of compensatory brain plastic processes (Di Perri et al., 2014) possibly 

reflecting resilient connections massively disrupted, but not totally interrupted by traumatic 

brain injury (i.e. diffuse axonal injury). These resilient connections might have engaged residual 

critical neural resources, otherwise normally distributed through efficient brain network 

connections, here disrupted by brain injury, resulting in impaired conscious processing (Hillary 

et al., 2015). Furthermore, these brain network signature of acute brain injury mechanisms was 

confirmed by spatial homogeneity analysis (thresholding and Jaccard index), which indicated 

higher spatial similarity of identified changes in voxel connection density between subjects with 

same etiologies in comparison to the whole patient group. However, despite higher intra-group 

similarity, these changes seemed more spatially scatted in the TBI patients group in comparison 

to anoxic patients, which is in accordance with the heterogeneity of brain lesion found in this 

group of patients. Finally, it is worth noting, that we specifically observed in the traumatic brain 

injury group, that the loss long-range connection density of positive correlations (hypo-CDP) 

between the PMC and the mPFC, was balanced with a spatially overlapping increase of negative 

coactivation (hyper-CDN). The total amount of the later was associated to patient recovery and 

could depict maladaptive brain plasticity processes. We hypothesize that this potentially 

compensatory increase of negative connection density may indicate some aberrant inhibitory 

processes or competitive mechanisms of information processing (Fox et al., 2009, 2012; Gee et 

al., 2011; Gopinath et al., 2015; Liu et al., 2015), resulting in the breakdown of more efficient 

network organization (i.e. PMC hypo-CDP). This is further supported by the unfavorable 
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outcome of our patients with a higher number of overlapping PMC voxels with decreased 

positive connections but yet increased negative connections with mPFC. Interestingly, the same 

hyper-CDP and hyper-CDN patterns in the control pathways were not associated with the 

outcome in TBI patients. This result indicates that despite of the more global pattern of these 

changes, the increase of negative connection density seems maladaptive only when present in 

regions critical to conscious processing.  

There are several limitations in this study. First the number of patients is relatively small 

and our results need to be validated in larger cohorts. Second, we performed a study of density 

of connections between each PMC voxel and all of the mPFC voxels, aiming to explore in 

detail, the topology and the functional characteristics of the connections established from PMC 

which was assumed homogeneous. Therefore, future studies should also address the functional 

segregation and heterogeneity within mPFC in this setting. In future studies, brain damage in 

the form of lesions in traumatic brain injury should be assessed in the pre-processing step, as 

though not properly treated lesions can potentially give rise to artificially induced connectivity. 

In summary, a complex pattern of decreased and increased connections was observed, and the 

topography of these changes, seemed to be in agreement with the hypothesis of network 

imbalance between internal/external processing systems, within PMC during acquired disorders 

of consciousness. We report a significant link between the PMC (ventral parts of both the PCC 

and PreCu) and the mPFC functional connectivity and patient recovery. Actually, the number 

of PMC voxels with hypo-CDP showed a significant negative association with the CRSR score 

and a “negative” predictive value in relation to good outcome assessed 3 months after the coma 

onset, notwithstanding etiology. Additionally, traumatic brain injury specifically appeared to 

be associated with a greater prevalence of hyperconnected positively and negatively correlated 

voxels, and the total amount of latter, was inversely associated with patient neurological 

outcome. This point might reflect a maladaptive plasticity mechanism through a resilient 

functional network and an inefficient redistribution of remaining resources and pave the way 

for innovative prognosis and therapeutics methods in this challenging setting. 
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4.2 Topological reorganization of high-order resting state networks in 
coma 

 
 
 

4.2.1  Scientific justification 
 

Brain network graphs have small-world characteristics representing functionally 

associated clusters with high density of local connections (modules; i.e. resting-state networks) 

and few long-range connections between segregated areas supported by the integrative 

properties of highly connected hub nodes (Bullmore & Sporns, 2009; van den Heuvel & Sporns, 

2013). In fact, connectionist theories of consciousness suggest that the brain complexity, 

reflected in the balance between the local (i.e. segregation) and global (i.e. integration) 

information processing, (i.e. hubs), may be crucial to generate and maintain conscious 

experience (Dehaene & Changeux, 2011; Tononi et al., 2016). Nevertheless, there have only 

been a few graph theoretical studies in patients with DOC (rs-fMRI - Achard et al., 2012; Crone 

et al., 2014; Liu et al., 2014; Liu et al. 2017), (EEG - Beudel, et al., 2014; Chennu et al., 2014, 

2017), (DTI – Weng et al., 2017), and none of them have fully explored the potential 

contribution of such mathematical methods to specifically address the relationship between 

coma and the whole set of complex topological disturbances (see Table 2.1.1, Table 2.2.1. and 

Table 6.2.1 for review). 

To our knowledge, the study of Achard and colleagues (2012) has been the first and only rs-

fMRI study to investigate the global and local network topology in the acute-stage DOC 

patients. In this study, the authors have shown conserved global network properties, but a severe 

reorganization of high degree or highly efficient “hub” nodes in patient group. 

 

 

4.2.2 Objectives and hypotheses 
 

We aimed to characterize during this extreme condition of acquired consciousness abolition 

(i.e. coma), brain’s residual ability to segregate and integrate information at a threefold level: 

(i) a whole-brain analysis, aiming to identify global neural correlates of coma (ii) a network 

level build upon multiple RSNs analysis, to enable the characterization of brain injury impact 

over predefined RSNs, knowns to be involved in self-related processing and potentially critical 

for consciousness emergence (Demertzi et al., 2014, 2015; Di Perri et al., 2016; Heine et al., 
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2012; Kirsch et al., 2017; Ovadia-Caro et al., 2012; Qin et al., 2015; Roquet et al., 2016; Sair 

et al., 2017): the dorsal default mode network (dDMN), ventral default mode network (vDMN), 

salience network (SAL), posterior salience network (P.SAL), right executive control network 

(RECN) and the left executive control network (LECN).; (iii) and at a nodal level, with a special 

focus on network hubs reorganization (Achard et al., 2012). 

In line with network-level theoretical frameworks (Dehaene & Changeux, 2011; Dehaene and 

Naccache, 2001; Tononi & Koch, 2008; Tononi et al. 2016), we hypothesize that the complete 

loss of consciousness that is observed during coma is related to the massive breakdown of whole 

brain functional connectivity. Despite the behavioral homogeneity which is associated to coma 

state, and underpinning patient’s considerable neurological outcome heterogeneity, we expect 

to identify among patients a large repertoire of local and global information processing 

impairments, spanning from well-preserved to almost completely dissolute (i.e. randomized) 

networks, and generating less efficient and costlier functional brain configurations than small-

word arrangement (Fornito et al., 2015; Stam, 2014). At a nodal level, we speculate to identify 

a significant functional impairment in highly connected hubs (van den Heuvel & Sporns, 2013) 

which have been described as involved in brain metastable dynamic (Leech & Sharp, 2014) and 

conscious processing (Hannawi et al., 2015). Finally, we assume that the reorganization in coma 

patients’ brain network topology will be associated with lower resilience to targeted attack on 

network hubs.  

 

4.2.3 Methods  
 

4.2.3.1 Participants 
 
We compared rs-fMRI data of 25 patients with anoxic brain injury, who met the clinical 

definition of coma (Glasgow Coma Scale score (53) at the admission to hospital < 8, with motor 

responses < 6; Mean=51y; STD=18y; age range=18-80y; 12M) to 25 age-matched healthy 

controls (Mean= 44y; STD=20y; age range=22-74y; 10M). Standardized clinical examination 

was performed on the day of the scanning using the Glasgow Coma Scale and the Full Outline 

of Unresponsiveness (Wijdicks et al., 2005).  
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4.2.3.2 Data preprocessing 
 
Functional data were preprocessed using Statistical Parametric Mapping (version SPM 12; 

http://www.fil.ion.ucl.ac.uk/spm/). The fMRI images were realigned (motion corrected), slice-

time corrected, coregistered to each subject’s T1-weighted image and normalized to standard 

stereotaxic anatomical Montreal Neurological Institute (MNI) space. The images were not 

smoothed in order to minimize the spillage of the signal of the neighboring ROIs. 

T1-weighted images were segmented to compute grey matter, white matter and cerebro-spinal 

fluid images. Rs-fMRI data was further analyzed using the CONN toolbox (v.16a; 

http://www.nitrc.org/projects/conn) (Whitfield-Gabrieli & Nieto-Castanon, 2012). In order to 

reduce the motion effects on our data, we only included subjects characterized by motion 

parameters smaller than 3 mm translation and 3° rotation. We have also performed ART outlier 

detection & scrubbing, as an additional preprocessing step to identify rapid scan-wise 

movement (global-signal scan-to-scan Z-value = 3, and a composite subject-motion signal mm-

value = 0.5mm). In addition, using the independent sample t-test we found no significant 

differences between the patient (M = 0.130; SD = 0.10) and the control group (M = 0.132; SD 

= 0.06) in estimated composite movement parameters (t(24) = -0.076, p = .94).  

We originally included 28 patients, from which three patients were excluded, one due to 

excessive movement (≥3 mm) and two due to preprocessing failure (ex. normalization failure). 

Non-neuronal sources of noise were estimated and removed using the CompCor method 

(Behzadi et al., 2007) integrated in the CONN toolbox. Principal components of the signals 

from the white matter and the CSF voxels (using normalized T1 segmented masks), alongside 

the motion parameters (estimated during realignment) and between-scan motion outliers (ART 

toolbox), were removed with regression. Finally, a temporal band-pass filter was applied to the 

residual blood oxygen level–dependent (BOLD) time course in order to obtain a low-frequency 

range of 0.01 to 0.1 Hz. 

 

4.2.3.3 Network construction  
 
To perform our graph theoretical analysis, we needed to construct a graph for the resting-state 

sessions of each of our subjects. Within this framework a brain graph consists of set of nodes 

that is brain regions, and edges represented by pairwise relationships between these nodes. 

Brain nodes were defined using a functional atlas representing temporally coherent functional 

networks generated using resting-state independent component analysis in an independent 

study with healthy controls (Shirer et al., 2012). We have used the expanded “Willard” atlas 
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(Richiardi et al., 2015) with more grey matter coverage but significantly overlapping with the 

original functional atlas published in the article of Shirer and colleagues (2012). The final nodes 

included in our analysis were 6 mm radius spheres defined around the center of mass 

coordinates of original “Willard” atlas regions. This was done in order to ensure the same 

number of voxels within each of the nodes, as this was not the case with the original functional 

atlas. 

We have specifically studied six networks, given their consistent replication in other studies 

and established importance in relation to disorders of consciousness. These networks consisted 

of 82 nodes in total, reflecting the - dorsal default mode network (dDMN; 21 nodes), ventral 

default mode network (vDMN; 13 nodes), salience network (SAL; 12 nodes), posterior salience 

network (P.SAL; 13 nodes); right executive control network (RECN; 13 nodes) and the left 

executive control network (LECN; 10 nodes). To facilitate the presentation of results, the MNI 

center-mass coordinates of each of these nodes were used to identify the corresponding 

anatomical regions of the AAL atlas (Tzourio-Mazoyer et al., 2002). These were further used 

in the visualization (BrainNet; http://www.nitrc.org/projects/bnv/) (Xia, Wang, & He, 2013) 

and interpretation of our results. The full detailed list of brain nodes used in our study can be 

found in Supp. Table 6.3.2. 

Graph edges were constructed by computing Pearson correlation coefficients between the 

average BOLD signal of all the nodes of these predefined functional networks. This resulted in 

82x82 connectivity matrix for each of the subjects in each of the groups. 

 

4.2.3.4 Graph theory analysis 
 

4.2.3.4.1 Threshold selection 
 
Thresholding is necessary to reduce the influence of weak and potentially spurious connections 

that could significantly influence the network topology. Importantly, to keep the graph fully 

connected, we extracted the minimum spanning tree (MST) for each subject, based on the 

correlation matrix with absolute weights. The remaining values of the correlation matrices were 

thresholded using subject-dependent connection density thresholds to obtain the same number 

of edges for each subject thus allowing us to compare groups with each other. Thus, the 

remaining top 5-50% of the strongest (absolute) connections, with an increment of 5%, were 

added to the MST from the MST-extracted connectivity matrix resulting in 10 binary undirected  

adjacency matrices per subject in each group. 
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4.2.3.4.2 Randomness 
 
Lower levels of overall functional connectivity have been associated with higher degree of 

randomness in the individual proportionally thresholded (i.e. connection density) brain graphs. 

Edges with low functional strength have a higher probability of being spurious and often lead 

to differences in clustering and global efficiency not necessarily reflecting real changes in 

network organization but artificially induced differences due to low overall functional 

connectivity (van den Heuvel et al., 2017). In our study, the results of global metrics (global 

efficiency and clustering) across multiple thresholds, with the initial group of patients (N=25), 

indicated whole brain network randomization in coma patients compared to controls (Supp. 

Figure 6.3.6 - subpanels A and B). Nonetheless, the global metric results seemed highly variable 

within the group of patients. This “randomness” of network topology was further explored using 

the hub disruption index (HDI) (Achard et al., 2012) calculated using the global efficiency (GE-

HDI) estimated for each node individually (Supp. Figure 6.3.6 - subpanel D; Supp. Figure 6.3.7). 

The GE-HDI enabled the characterization of three sub-group of patients (Supp. Figure 6.3.6 - 

subpanel D), with one group showing significant global network reorganization indicative of a 

randomization process (HDI < -0.8). The same sub-group of patients showed increased global 

efficiency suggesting subtle randomization (Supp. Figure 6.3.6 subpanel C). These results were 

supported with low values of functional connectivity in “random patients”, who had lower 

density (<10%) of strong functional connections (Pearson’s r>.2; Supp. Table 6.3.3), not 

sufficient to comparatively explore the network topology between groups (i.e. random 

configuration). Therefore, to allow meaningful interpretation of patients’ global and local 

network topology that is not related to randomness but to node related topological changes, we 

decided to calculate the graph measures excluding patients (N=9) showing evidence of 

randomization (HDI< -0.8 and/or low functional connectivity (density <10%); Supp. Table 

6.3.3), leaving a total of 16 patients for further analysis. The boxplot of pairwise functional 

connections (Pearson’s r) in remaining patients (in comparison to controls) can be seen in Supp. 

Figure 6.3.8. 

 

4.2.3.4.3 Network metrics 
 
The network analysis was done in R (v.3.3.2; The R Project for Statistical Computing; 

http://www.R-project.org/) using the Brainwaver and iGraph package freely downloadable at 
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http://cran.r-project.org. The more detailed description of the applied graph metrics is provided 

in Chapter I of this thesis.  

Following global metrics were calculated: clustering and global efficiency. The clustering 

(global average local efficiency – see description below) is a topological measure of segregated 

information transfer. The global efficiency (GE) is a metric for efficiency of integrative 

information transfer across the network. This measure is inversely related to the characteristic 

path length (average shortest path between nodes) but is adapted to fragmented that is 

disconnected graphs.  

To explore the local/nodal network metrics we employed the degree and the local efficiency. 

Each of these measures describe different aspects of topological node centrality permitting the 

identification of nodes that have the highest influence on network-wide processes. The degree 

represents the number of links connected to the node, assuming that nodes with many 

connections have a higher influence on the network in comparison to low-degree nodes. The 

local efficiency measures the integration capacity between immediate neighbors of a given 

node. This metric also reflects the network resilience by indicating how efficiently neighbors 

of a given node communicate when this node is disrupted.  

 

4.2.3.4.4 Network reorganization mechanism 
 
We introduce a novel methodological approach which we labeled as the edge probability map. 

This measures presents the difference between groups in connections between specific nodes 

in a given network. Individual subject correlation matrices were thresholded using the 

connection density threshold to obtain binary undirected graphs. The individual connection 

density matrices were then summed for the patient and the control group separately, in order to 

obtain the number of subjects that had a significant connection between a given pair of nodes. 

These values were then normalized to a percentage of subjects having a specific connection 

within this network and subtracted between groups to obtain the difference in the percentage of 

subjects having a connection between particular nodes. This was done to identify specific 

disconnections driving the increase or decrease of node degree in the patient group.  

To detect network reorganization in comatose patients we have also computed the hub 

disruption index (HDI) for nodal measures (Achard et al., 2012). To calculate HDI for a given 

metric, for example the degree, we subtract the healthy group mean degree from the degree of 

the corresponding node in an individual subject, and plot this individual difference against the 

healthy group mean. The slope of a straight line fitted to a given plot is referred to as hub 

http://cran.r-project.org/
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disruption index. A negative HDI close to -1, indicates a severe network reorganization, 

meaning that nodes with highest degree (i.e. hubness) in controls show greatest reduction in 

patients, whereas the nodes with lowest nodal degree in controls show the greatest increase in 

patients.  

 

4.2.3.4.5 Network resilience to random failure and targeted attack 
 
To assess the resilience of the brain network we simulated the attacks on the network by 

removing nodes (and its connections) in rank order of decreasing degree (targeted attack) or in 

random order (random failure), repeating the process until the percentage of deleted nodes was 

100%. After each deletion, we re-estimated the clustering and the global efficiency in order to 

explore the global impact of the simulated lesion on the brain network.  

 

4.2.3.5  Statistical analysis 
 
Global and nodal statistics (and functional connectivity) were compared between groups with 

t-tests or permutation (100.000 iterations) using the package lmPerm implemented in R (v.3.3.2; 

The R Project for Statistical Computing; http://www.R-project.org/). To control the multiple 

comparisons for each nodal metric, the significance level of p-values was adjusted to 1/N 

(p=.012), where N represent the number of nodes included in the analysis. The results were 

visualized with the BrainNet Viewer (Xia et al., 2013).  

 

 

4.2.4 Results 
 

4.2.4.1 Global network topology 
 
In comparison to controls, patients showed a decrease in clustering across multiple thresholds, 

as seen in Figure 4.2.1. (at cost 15%, permutation test p<.0001). However, there were no 

statistically significant difference in the global efficiency between the two groups (permutation 

test p=.198). These results seem to imply a loss of balance between segregation and integrative 

properties of the brain network and may reflect loss of specialized information processing and 

dedifferentiation within high-order resting state network included in our analysis.  
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Figure 4.2.1.Global topology in controls and patients. 
A) Global efficiency (GE) in controls and patients in comparison to regular and random networks, at multiple connection 
density thresholds (5-50%, increment 5%). B) Clustering in controls and patients in comparison to regular and random 
networks, at multiple connection density thresholds (5-50%, increment 5%). 

 

4.2.4.2 Disruption of hub rank order 
 
This hub disruption index summarizes the pattern of network reorganization, in subtracting the 

healthy group mean value from the value of the corresponding node in coma patients, and 

plotting this individual difference against the healthy group mean. The slope of a straight line 

fitted to a given plot is referred to as hub disruption index (Achard et al., 2012). A negative 

HDI close to -1, indicates a severe network reorganization, meaning that nodes with highest 

nodal efficiency (i.e. hubness) in controls show greatest reduction in patients, whereas the nodes 

with lowest nodal efficiency in controls show the greatest increase in patients. The hub 

disruption index calculated with the global (nodal) efficiency (permutation p<.0001) and local 

efficiency (permutation p<.001) implied significant brain network reorganization within the 
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patient group (Figure 4.2.2). Further, HDI calculated using the degree implied the same 

significant brain network reorganization within the patient group in comparison to control group 

(Figure 3A), and we found evidence of a critical reorganization of high degree nodes (i.e. hubs). 

Namely, cortical regions that were hubs of healthy brain networks seemed to become non-hubs 

of comatose brain networks and vice versa. However, there seemed to be significant 

heterogeneity within the coma patient group (Figure 4.2.3. - subpanel B), with some individuals 

showing severe reorganization at global level, while others having similar values to healthy 

subjects. 

 

 

Figure 4.2.2. Brain node reorganization - the difference between groups in the HDI of global (nodal) efficiency 
and local efficiency. 
Boxplots represent medians with interquartile range and whiskers signify minimum and maximum values 
(excluding outliers); ** p< .001, *** p<.0001 
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Figure 4.2.3. Local network topology. 
A) Hub disruption of functional networks in comatose patients. The mean degree of each node in the healthy control group 
(x axis) is plotted against the difference between the groups in mean degree of each node (y axis). Normal hub nodes with high 
degree in the healthy group have a reduction in degree in the comatose group (i.e. dDMN.Cingulum_Post_L_R), whereas the 
healthy non-hub nodes have an increase of degree in patients (i.e. dDMN.Cingulum_Ant_L_2).  B) Hub disruption index for 
each of the subjects in the control and the patient group.  The HDI calculated using the degree is significantly different 
between the groups. The boxplot represents medians with interquartile range and whiskers signify minimum and maximum 
values (*** p< .0001). C) Brain representation of nodes that demonstrated significant between-group difference in nodal 
degree; P>C – significantly higher in patients; P<C –significantly lower in patients.  

 

4.2.4.3 Local network topology 
 

4.2.4.3.1 Node degree 
 
In accordance to hub disruption index estimated using the degree (Figure 4.2.3 – subpanel A), 

Figure 4.2.3 (subpanel C) shows multiple regions that significantly differ between the patients 

and the control group at nodal level (15% threshold; see Supp. Figure 6.3.9. for other thresholds). 
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Overall, we can see a major disruption in brain node centrality in the patient group reflected in 

a combination of decrease and increase of node degree, suggesting specific regional changes in 

brain network organization as seen in the HDI results. The decrease of nodal degree 

encompassed the posterior cingulate gyrus (dDMN), the right middle frontal gyrus (vDMN) 

and the left crus (I and II) of cerebellar hemisphere (RECN). In contrast, the increase of nodal 

degree was shown in the anterior cingulate gyrus (dDMN), the left posterior thalamus (P.SAL) 

and a sub-region of the left crus I of cerebellar hemisphere (P.SAL).  

 

4.2.4.3.2 Edge probability map 
 
To identify specific disconnections driving the increase or decrease of node degree in the patient 

group we calculated the edge probability map (Figure 4.2.4 – subpanel A). This measures 

presents the difference in the percentage of coma patients and healthy subjects having a specific 

between-node pairwise connection in a given network (Figure 4.2.4 - subpanel B).  
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Figure 4.2.4. A) The analysis pipeline for the edge probability map. 
Individual thresholded binarized adjacency matrices were summed in each subject group in order to obtain the 
proportion of subjects with a specific connection between a given pair of nodes. These values were then subtracted 
between groups in order to obtain the difference in the percentage of subjects having a particular pairwise node 
connection. B) Edge probability map. X and Y axes present the nodes in a given network and the color scale 
reflects the difference between the percentage of patient and healthy control subjects having a particular pairwise 
connection. The blue color (negative values) reflects a lower percentage of patients than healthy subjects with a 
specific connection, while the red color shows the opposite. The map was thresholded to reflect at least 33% of 
more/less patients having a given between-node connection in comparison to controls.  
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The posterior cingulate cortex (dDMN) seemed primarily disconnected to other regions from 

the predefined dDMN network, such as different sub-regions of the frontal and anterior 

cingulate cortex, with the most prominent disconnections with the superior medial frontal 

cortex and the precuneus. In addition, the posterior cingulate showed inter-network 

disconnections, such as lower connectivity with the left angular gyrus and the inferior parietal 

cortex, originally integrated in the LECN. Further, vDMN’s right middle frontal gyrus (vDMN) 

was primarily disconnected to the sub-areas of the right precuneus and superior frontal cortex, 

implying mostly intra-hemispheric disruption in connectivity. Interestingly, all of these changes 

reflected some local but mostly long-range disconnections between posterior parietal and 

frontal regions. The sub-regions of the RECN’s crus of the cerebellar area showed intra-network 

disconnections, with most other RECN regions, prominently the right medial orbitofrontal 

cortex, angular gyrus, inferior parietal lobule and other sub-regions of the cerebellum crus. 

Increases in between-node connections found in the patient group were predominantly 

characterized by wide-spread mostly weak (in small percentage of patients) augmentation in 

connections, as present for the left posterior thalamus (P.SAL) and the cerebellum crus I 

(LECN). An increase in degree was more visible for dDMN’s anterior cingulate cortex, with its 

two sub-regions showing different profiles of increase in connectivity – the left sub-portion 

with the left supplementary motor area (SAL), and the more medial sub-region with the left 

middle frontal gyrus (LECN) and the supramarginal gyrus (P.SAL).  

 

4.2.4.4 Resilience 
 
To assess brain network’s robustness after acute brain injury, we explored both the local 

efficiency (i.e. measure the integration capacity between immediate neighbors of a given node) 

across the whole set of high-order resting state network included in our analysis, and the impact 

of simulated random/targeted networks attacks, aiming to have additional insights on the 

topological role played by brain hubs within the rearranged residual brain networks. 

 

4.2.4.4.1 Local efficiency 
 
The local efficiency indicates how efficiently neighbors of a given node communicate when 

this node is disrupted. Figure 4.2.5. shows a dramatic decrease in local efficiency, in wide range 

of nodes in patients, supporting the results of reduction in global clustering. This decrease was 

primarily seen in the precuneus, posterior cingulate, angular gyrus, cerebellum crus and the 
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frontal mid regions. Interestingly, these regions showed mutual disconnections (Figure 4.2.4 – 

subpanel B) probably underlying the lower clustering and resilience seen at global level. 

 

Figure 4.2.5. Brain regions with a significantly lower local efficiency in patients in comparison to controls. 
The regions with lower local efficiency are predominantly localized in the posterior regions of the brain in coma 
patients.  

 

4.2.4.4.2 Node attack 
 
To further assess the resilience of the brain network in coma patients we simulated the attacks 

on the network by removing nodes (and its connections) in rank order of decreasing degree 

(targeted attack) or in random order (random failure). 

Figure 4.2.6. shows the clustering as a function of results of targeted node attack (subpanel A) 

or random failure (subpanel C). For example, under targeted attack after removal of 25% of 

nodes, the clustering decreased by 44% (median values) in controls and 64% in patients 

(permutation p<.000), indicating reduced resilience in individuals in coma. Further, we can 

observe that under random failure, there wasn’t a large difference in resilience between the 

control and the patient group, with a decrease in clustering by 27% and 29% from the baseline, 

in the control and the patient group, respectively (permutation p=.007). 

In contrary to these results, the global efficiency showed similar decrease in both groups (Figure 

4.2.6), under targeted attack (subpanel B) and random failure (subpanel D). In other words, after 

targeted removal of 25% of the nodes, the GE was reduced by 57% and 54% (p=.54), while 

under random failure the global efficiency was decreased by 45% and 44% (p=.145), in controls 

and patients, respectively. 
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Figure 4.2.6. Network resilience. Network resilience to targeted attack (A and B) and random failure (C and D) 
in controls and patients. 
The curves represent the clustering or global efficiency (y axis) as a function of number of nodes attacked (x axis). 
Under targeted attack, the clustering decreased more rapidly in patients in comparison to controls, indicating 
reduced resilience in individuals in coma. The global efficiency declined in a similar way after sequential removal 
of high-degree nodes in both groups.  
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4.2.5 Discussion 
 
Our findings significantly contribute to the growing evidence of the involvement of specific 

high-order RSNs networks, and their critical regions, in the mechanisms during abolition of 

consciousness. We observed among comatose patients a large repertoire of information 

processing disturbances, at several levels: (i) whole brain impairments, encompassing gradual 

disruption in topological clustering with the most severe changes implying a loss of functional 

degeneracy (ii) significant disruption of hubs rank order across local networks metrics, 

suggesting a critical reorganization of high degree nodes, with cortical regions that were hubs 

of healthy brain networks becoming non-hubs of comatose brain networks and vice versa, (iii) 

regularly observed specific coma-related within and between high-order RSN disconnections, 

encompassing both losses and increases of long-range connections between connector hubs, 

that might be related to functional dedifferentiation and adaptive compensation processes, 

respectively (Fornito et al., 2015), (iv) a reduction in network resilience in coma patients as 

simulated damage to reorganized high-degree nodes resulted in rapid network fragmentation. 

The graph theoretical analysis of rs-fMRI data in the patient group, implied less efficient local 

information integration and functional ‘closeness’ between neighboring nodes across the entire 

high-order RSN connectome. It must be stressed that reduced clustering and modularity were 

shown in previous studies on chronic DOC patients (Chennu et al., 2014; Crone et al., 2014), 

but have not been yet reported in the pathological setting of acute brain injured patients. In 

contrary to current results, a previous rs-fMRI study did not find significant changes in the 

global measure of functional connectivity or network topology in the acute stage of brain 

injured patients (Achard et al., 2012). This discrepancy may be explained by the differences in 

patient’s neurological severity, brain injury etiologies, and network definitions, because we 

deliberately focused on nodes integrated in high-order RSNs considered to be implicated in 

consciousness-related processes (Giacino et al., 2014). The preservation of global efficiency in 

coma patients may be due to the homeostatic conservation of this topological property even 

under severe clinical conditions such as anoxic brain injury (Achard et al., 2012). However, in 

our case, it could be indicative of random distribution of information that is nor specialized nor 

integrative due to impairment in local specialized neural processing, present in our coma 

patients. Altogether, these results suggest a loss of small-world organization in patients, which 

normally ensures a balance between specialized/segregated and long-range integrated 

information processing (Achard, Salvador, Whitcher, Sucklig, & Bullmore, 2006; Bullmore & 

Sporns, 2012). These results support the hypothesis that conscious processing depends on brain 
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complexity, implying a fine-tuned balance between these two global topological properties 

(Casali et al., 2013; Chennu et al., 2017; Tononi & Koch, 2008, 2015).  

At the nodal level, we found strong evidence of node centrality disruption in non-random 

comatose patients in comparison to the control group. The most significant decrease in 

centrality (i.e. degree and local efficiency) was found in the posterior cingulate of the dDMN, 

left cerebellum crus of RECN and frontal mid region of the vDMN network. Interestingly, the 

changes in nodal degree reflected some local but mostly long-range disconnections between 

posterior parietal and frontal hub regions, some of them related to changes in inter-modular 

connectivity (i.e. connector hub) as shown for the dorsal posterior cingulate of the dDMN. 

Previous functional connectivity studies in DOC patients, have suggested significant changes 

along high-order midline posterior parietal (encompassing the precuneus and the posterior 

cingulate cortex) and frontal regions in this setting (Achard et al., 2012; Chennu et al., 2017; 

Crone et al., 2014; Hannawi et al., 2015; Silva et al., 2015). In the current study, the most 

dramatic changes were reflected in the decrease in local efficiency in the midline posterior 

parietal cortex, related to a diminished integration between neighboring nodes, and 

consequently lower resiliency and efficiency in parallel information transfer of the network. It 

must be stressed that a multimodal function, underpinned by a ‘rich club organization’ of the 

posterior parietal cortex has been recently suggested (Alstott et al., 2009; van den Heuvel & 

Sporns, 2011; Wang et al., 2014), and its role in human attentional focus and ‘tuning’ of whole-

brain metastability (Leech & Sharp, 2014), made of this brain region a strong candidate of the 

‘minimally sufficient and jointly necessary’ (Crick & Koch, 2003) hubs that could constitute 

the neural correlate of consciousness. Our data fit well in current theoretical frameworks of 

conscious processing including the Global Neuronal Workspace (GNW), model according to 

which conscious access occurs when initially segregated specialized information processing 

(i.e. clustering) is made globally available to multiple brain systems through a network of 

neurons with long-range axons situated along the frontal and parietal brain regions (Dehaene & 

Changeux, 2011). 

Otherwise, we found robust evidence of non-hub sub-regions of the RECN’s cerebellum crus 

intra-network disconnections. We hypothesize that this circuit-selective significant reduction 

of cerebellum centrality could be linked to diaschisis phenomena caused by a reduced excitatory 

drive from the damaged cortex, to which cerebellum is densely connected (Herculano-Houzel, 

2012) and could represent in the context of global brain severe injury, a potential useful 

biomarker of diffuse cortico-cortical and cortico-thalamic widespread functional disruption. 

From a cognitive point of view, this massive cerebellar disconnection seems in line with recent 
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studies which highlighted the cognitive role of this brain structure in consciousness related 

processes as attention, working memory and self-reference tasks (Buckner, 2013; Sokolov, 

Miall, & Ivry, 2017). 

We concomitantly observed increases in between-node connections in the patient group, 

primarily characterized by wide-spread mostly weak augmentation in connections. Further 

analysis indicated that the regions with increased degree in patients tended to be the least central 

nodes in the healthy controls, implying potential compensatory brain plastic processes, reflected 

through reallocation of critical residual neural resources to otherwise not so central nodes (Di 

Perri et al. 2014; Hillary et al., 2015; Liu et al., 2017). Brain regions depicting this pathological 

pattern were mainly located within the salience network, which is known to be implicated in 

homeostatic/visceral perception (Uddin, 2014) and seems to be responsible of the critical switch 

between DMN and ECN throughout higher order-cognitive processes (Bonnelle et al., 2012; 

Menon, 2015). The functional significance of this pathological increase of connectivity remains 

an important topic for further investigation (Di Perri et al., 2016; Hillary et al., 2015). 

Finally, we found evidence of decreased resilience in anoxic comatose patient’s brain 

connectome reflected in a rapid deterioration of global clustering across high-order RSNs 

caused by a simulated high-degree node “lesioning”. Nevertheless, the global efficiency of 

comatose patient’s brain networks proved to be as resilient as those in healthy control 

individuals, during random and targeted deletion of nodes. Altogether, these results might imply 

that the coma patient’s hub node reorganization may have prevented the loss of global 

integrative properties but did in fact lead to dedifferentiated non-specialized functional 

processing related to lower networks resilience and potential diffusion of network failure. In 

fact, strong local inter-connectivity within the modules (i.e. RSNs) is known to be closely tied 

to functional degeneracy which reflects the brain’s capacity for resilience and recovery after 

injury, and seems supported by high-degree nodes embedded locally (provincial hubs) and 

bridge nodes serving to connect otherwise segregated processes (connector hubs), facilitating 

the recruitment of alternative subsystems (Fornito et al., 2015).  

This study has several limitations. A recent publication (van den Heuvel et al., 2017) has 

implied some short-comings in applying proportional thresholding in patient-control 

comparison studies in which groups show differences in overall strength of functional 

connectivity. We have taken some measures of precaution in order to diminish this difference 

between our groups, however, comatose patients usually have lower global functional 

connectivity in contrary to healthy controls, which could induce or artificially inflate the 

between-group topological differences. Thus, further studies should explore different methods 
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of edge selection, such as weighted thresholding or the unique inclusion of statistically 

significant links in network construction. Different functional atlases could be used to explore 

the brain topology in coma patients and it would be interesting to see if differently constructed 

brain networks result in contrasting or comparable results with a similar clinical message. Our 

team is currently testing different approaches of network construction in order to define a graph-

based method which could be applied to coma patients without dramatic exclusion of subjects.  

Additionally, further research needs to include more patients with accurate long-term 

longitudinal follow-up, encompassing repeated behavioral and fMRI assessment because 

topological organization could significantly change over the course of time (Castellanos et al., 

2011; Nakamura, Hillary, & Biswal, 2009). Comatose patients with different etiologies, such 

as traumatic brain injury, should be also studied aiming to identify potential etiology-related 

pathology mechanisms.  
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4.3 The PMC-mPFC structure-function association in coma – an 
exploratory study 

 

 

4.3.1 Scientific justification 
 

A growing body of literature exists on the severe impairment in resting-state functional 

connectivity and white and gray matter structural damage within the midline cortical regions, 

primarily integrated in the default-mode network (DMN), in DOC patient (Table 2.2.1). 

However, most of these studies have been conducted independently, without direct 

investigation of the structure-function relationship in chronic DOC or acute stage coma patients 

(Table 2.3.1). It is important to note, that the microstructural integrity of the white matter 

connections between the posteromedial and medial prefrontal regions has been related to level 

of functional connectivity between these two regions in healthy subjects (van den Heuvel et al., 

2008; Wang et al., 2014). Further, an association between the loss of structural integrity in the 

DMN key nodes including their white matter connections, and the corresponding functional 

connectivity, has been has been found in cognitively impaired TBI patients (Bonnelle et al., 

2011; Palacios et al., 2013; Sharp et al., 2011) and older healthy subjects (Vidal-Piñeiro et al., 

2014). A recent study has indeed demonstrated a significant structure-function correlation in 

chronic DOC patients, with an increase in global structural damage (i.e. FA in whole brain 

white matter) related to a reduction in effective connectivity (Bodart et al., 2017). Nevertheless, 

the structural-functional connectivity relationship has not yet been demonstrated in the brain-

injured population in the acute stage of coma.  

The present study is a preliminary exploratory study. The previous couple of years spent in 

analyzing functional connectivity data have resulted in multiple questions regarding the 

relationship between structural damage and functional dysfunctions in coma patients. This 

project was executed in the end of my third year, and is not as elaborated as the previous two 

ones due to time constraints. Nevertheless, the preliminary results presented in this thesis have 

led to other projects which are currently being executed by our team.  

 

 

 

 



117 
 

4.3.2 Objectives and hypotheses 
 

The main objective of this study was to investigate the structural integrity, and the structure-

function relationship of the PMC (posteromedial) and mPFC (medial prefrontal cortex) sub-

regions and their corresponding white matter connections. We expected to find significant 

structural injury paralleled with a loss of functional connectivity in all comatose patients, 

irrespective of etiology. However, we hypothesized that the anoxic brain injury patients would 

primarily show cortical gray matter damage, while TBI patients would mostly exhibit a loss of 

white matter microstructure within the tract connecting the PMC and mPFC sub-regions.  

 

4.3.3 Methods 
 

4.3.3.1 Participants 
 
From the total number (N = 35) of recruited anoxic BI patients, 6 patients were excluded from 

this study, 1 due to excessive movement (≥3 mm), 3 due to preprocessing failure (e.g. 

normalization failure due to ventricular enlargement) and 2 because of low quality (i.e. 

artefacts) of the acquired images. From the total TBI comatose patients (N=20), 6 patients were 

excluded, 2 due to excessive movement and 4 due to severe focal brain damage mostly localized 

in the frontal lobe and thus significantly overlapping with our regions of interest.  

Therefore, the final group of patients comprised 29 anoxic (Mean= 51y; STD= 18y; age range= 

18-81y) BI injury, and 14 TBI (Mean= 43y; STD= 19y; age range= 18-76y) comatose patients. 

Thirty four age-matched healthy controls were also included in the analysis (Mean= 50y; STD= 

20y; age range= 22-74y). 

 

4.3.3.2 ROI selection 
 
Our cortical gray matter ROIs were selected using the “Willard” functional atlas (Richiardi et 

al., 2015). This atlas has more gray matter (GM) coverage but significantly overlaps with the 

original functional atlas published in the article of Shirer and colleagues (2012). More 

specifically, we chose the three sub-regions of the PMC, and 11 sub-regions of the frontal cortex 

(i.e. mPFC and anterior cingulate) integrated in the dDMN network, as these were the regions 

that were most consistently shown to be altered in our comatose patients (and DOC patients in 
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other studies). The analysis was done using each of these sub-regions separately, and using the 

total mean values, averaged separately for the PMC and the mPFC region.  

The white matter ROI was taken from the atlas published by Figley and colleagues (2015), 

which is based on an fMRI guided DTI tractography between PMC and mPFC nodes of the 

dDMN network integrated in the functional atlas published by Shirer and colleagues (2012). 

Their analysis resulted in a group probability map, more conservative than the raw connection 

counts, because it reflected the requirement of at least 25% of all subjects having overlapping 

streamlines (between these two nodes) that are in exactly the same spatial location (in order to 

eliminate biologically spurious or unlikely tracts). We avoided additional conservative 

thresholding, due to the inclusion of acquired brain injury patients in which spatial 

normalization is not always as successful as in healthy controls. The original WM ROI was 

separated into left and right ROIs, to compare the groups in total and lateralized WM changes. 

As it may be seen in Figure 1, the WM tract largely overlaps with the cingulum bundle, so for 

now on, we will refer to this ROI as the cingulum.  

 

 

Figure 4.3.4.3.1. Gray matter and white matter ROIs included in our analysis. 
The sub-regions are delineated using different colors without any specific significance attached to color nuances.  

 

4.3.3.3 Image processing 
 

4.3.3.3.1 Structural MRI 
 
Gray matter morphometry 

 

Morphometry is the study of the size and the shape of the brain, and is based on standard MRI 

sequences, such as T1-weighted images (Greve, 2011). There are several metrics that one can 
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use to test a morphometry-related hypothesis such as gray matter volume, white matter volume 

or cortical thickness (Greve, 2011). We will specifically focus on voxel-based morphometry 

(VBM), which enables the investigation of voxel-wise differences in the local grey matter 

volume/topography without priori information about the location of these possible differences 

(Good et al., 2001). 

Image processing was performed using FSL v5 (www.fmrib.ox.ac.uk/fsl/) and an in-house 

developed software in Matlab (version 6.5, The MathWorks), with procedures similar to those 

described previously (Cherubini, Péran, Caltagirone, Sabatini, & Spalletta, 2009; Péran et al., 

2009, 2010). 

Voxel-based morphometry was performed using the implemented FSL tool FSL-VBM v1.1 

(Douaud et al., 2007), an optimized VBM protocol (Good et al., 2001). Briefly, all the T1 

images where first brain extracted then segmented into images of gray matter (GM), white 

matter (WM), and cerebro-spinal fluid (CSF). GM images where then non-linearly registered 

(Andersson, Jenkinson, & Smith, 2007) to the gray matter ICBM-152 template, concatenated 

and averaged. The resulting image was then flipped along the x-axis and both images where 

averaged again creating the first GM template. Second, GM images of all participants where 

non-linearly registered to this study specific template, and using the same final steps, a second 

"non-linear" GM template was generated. This "non-linear" template was finally used to 

register all the GM images. Then, the registered images of all subjects were multiplied by the 

Jacobian of the warp field in order to introduce a compensation (or "modulation") correction 

for local expansion or contraction, due to the non-linear component of the spatial 

transformation. The corrected registered images were then concatenated and smoothed by a 

Gaussian kernel (sigma = 4mm) to reduce registration imperfections and increase the signal-to-

noise ratio. Thus, gray density (GD) images were calculated for each participant.  

 

Diffusion tensor imaging  

 

The preprocessing of the diffusion tensor images was accomplished with FSL implemented tool 

FDT (FMRIB's Diffusion Toolbox; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT). The diffusion 

tensor images were first corrected for distortions caused by eddy currents using the b = 0 volume 

as reference. A diffusion tensor model was fit at each voxel and two diffusion parameters were 

extracted, fractional anisotropy (FA) and mean diffusivity (MD), to build two parametric maps. 

The FA maps were then registered to brain-extracted whole-brain volumes from T1-weighted 

images using a full affine (correlation ratio cost function) alignment with nearest-neighbor 
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resampling. The calculated transformation matrix was then applied to the MD maps with 

identical resampling options. The final results were obtained in calculating the average FA and 

MD values in the GM and WM regions of interest, described in the previous section. 

 

4.3.3.3.2 Resting-state functional MRI 
 
As in previous studies, functional data were preprocessed using Statistical Parametric Mapping 

(version SPM 12; http://www.fil.ion.ucl.ac.uk/spm/). The fMRI images were realigned (motion 

corrected), slice-time corrected, coregistered to each subject’s T1-weighted image and 

normalized to standard stereotaxic anatomical Montreal Neurological Institute (MNI) space 

(ref). The images were not smoothed in order to minimize the spillage of the signal of the 

neighboring ROIs. T1-weighted images were segmented to compute gray matter, white matter 

and cerebro-spinal fluid images.  

Rs-fMRI data was further analyzed using the CONN toolbox (v.16a; 

http://www.nitrc.org/projects/conn; Whitfield-Gabrieli & Nieto-Castanon, 2012). In order to 

reduce the motion effects on our data, we only included subjects characterized by motion 

parameters smaller than 3 mm translation and 3° rotation. We have also performed ART outlier 

detection & scrubbing, as an additional preprocessing step to identify rapid scan-wise 

movement (global-signal scan-to-scan Z-value=5, and a composite subject-motion signal mm-

value = 0.9mm). Non-neuronal sources of noise were estimated and removed using the 

CompCor method (Behzadi et al., 2007) integrated in the CONN toolbox. Principal components 

of the signals from the white matter and the CSF voxels (using normalized T1 segmented 

masks), alongside the motion parameters (estimated during realignment) and between-scan 

motion outliers (ART toolbox), were removed with regression. Finally, a temporal band-pass 

filter was applied to the residual blood oxygen level–dependent (BOLD) time course in order 

to obtain a low-frequency range of 0.01 to 0.1 Hz. 

 

4.3.3.4 Statistical analysis 
 
The Mann-Whitney U test was conducted to investigate the differences in functional 

connectivity (i.e. Pearson’s r) and structural integrity (i.e. VBM - gray matter density, MD, FA) 

between the coma patient group and the healthy control group. The same test was used to 

compare the two etiology groups – the anoxic BI and TBI patient sub-groups.  
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Spearman’s correlation analysis was performed to explore the link between the structural 

integrity and functional connectivity in the total patient group, and two separate etiology 

groups. All of the above mentioned analyses were performed using the IBM SPSS (IBM SPSS 

Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.) statistical package. 
 

4.3.4 Results 
 

4.3.4.1 Structural damage and etiology-related differences in patients 
 

Regional results 

The mean diffusivity of the cingulum was significantly higher in the patient group in 

comparison to the control group (U = 455, p = .005; Figure 4.3.4.3.2).  

Further analysis showed that this increase of diffusivity was more present in the TBI group in 

comparison to the control (U= 64, p< .0001) and anoxic BI (U= 116, p= .024) subjects. 

Moreover, the loss of structural integrity, primarily seen in TBI patients, seemed to be 

lateralized with more damage in the right cingulum, indicated by an increase of MD and 

decrease of FA in this white matter tract (Figure 4.3.4.3.3.). The anoxic patient group showed a 

significant increase in gray matter VBM values in the PMC region, in comparison to controls 

(U= 315, p= .014) and traumatic BI patients (U= 120, p= .031) (Figure 4.3.4.3.2). 

 

 

Figure 4.3.4.3.2. Group differences in structural metrics of averaged ROIs. 
The red line presents the mean values of a given metric. The * indicates p<.05, ** p<.01, *** p<.005, **** 
p<.001. The MD values were multiplied by 10.000 for visualization purposes.  
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Figure 4.3.4.3.3. Group differences in DTI metrics of the left and right cingulum. 
The red line presents the mean values of a given metric. The * indicates p<.05, ** p<.01, *** p<.005, **** 
p<.001. The MD values were multiplied by 10.000 for visualization purposes. 

 

Sub-regional results 

The apparent increase in the PMC grey matter density seen in anoxic BI in comparison to 

controls and TBI patients, was principally located within the PMC 01 and PMC 02 sub-regions. 

The remaining sub-region of the PMC exhibited an increase in FA only in anoxic patients 

(Figure 4.3.4.3.4.).  

Elevated FA and diminished MD were also shown in several sub-regions of the mPFC in both 

anoxic and TBI patient groups (Figure 4.3.4.3.4.). However, the increase of the VBM values 

seemed to be specific to the posteromedial cortex in anoxic brain injury.  
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Figure 4.3.4.3.4. Group differences in structural metrics of PMC and mPFC sub-regions. 
The red line presents the mean values of a given metric. The * indicates p<.05, ** p<.01, *** p<.005. The brain 
image illustrates the anatomical location of center-coordinate spheres of ROIs presented in boxplots. The MD 
values were multiplied by 10.000 for visualization purposes. 

 

4.3.4.2 Functional disconnections in the patient group 
 
Figure 4.3.4.3.5. shows the group comparison in mean PMC-mPFC functional connectivity. The 

FC strength was significantly lower in all patients (U= 89, p< .0001), and in the anoxic (U= 29, 

p< .0001) and TBI (U= 60, p< .0001) patient group, separately. These results are compatible 

with the findings from earlier studies presented in this thesis.  
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Figure 4.3.4.3.5. Group differences in mean functional connectivity between the entire PMC and the mPFC 
region. The red line presents the mean values of a given metric. The **** indicates p<0.001. 

 
 
In addition, the FC strength was significantly lower between all PMC and mPFC sub-regions 

(p < .001), except between the mPFC08 and the three sub-regions of the PMC, and the mPFC10 

and PMC01 and PMC02. The visual illustration of the strength of FC between individual sub-

regions can be seen in Figure 4.3.4.3.6. The direct comparison between the two patient sub-

groups did not show any significant differences in the FC strength. 

 

 

Figure 4.3.4.3.6. Functional connectivity between each of the PMC and mPFC sub-regions in patient and 
control groups. The figure shows a significant reduction in fronto-parietal connections in all patients. The color 
scale shows the functional connectivity strength, ranging from lowest to highest.  
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4.3.4.3 Structure-function association in the patient group 
 
The structure-function relationship was investigated using the average values of the entire ROIs 

in order to ensure the readability of the results.  

In the group with all patients (Figure 4.3.4.3.7.), there was a significant positive correlation 

between the MD of the PMC (r= .433, p= .004) and mPFC (r= .315, p= .040), and the PMC-

mPFC functional connectivity. A negative association was indicated between the average 

posteromedial VBM value and the PMC-mPFC functional connectivity (r= -.352, p= .021). We 

did not find a significant relationship between the antero-posterior FC and the MD (r= .215, p= 

.167), FA (r= -.023, p= .884) or VBM values (r= -.180, p= .247) of the cingulum.  

There was a significant relationship between the mean diffusivity of the right cingulum and the 

functional connectivity (r=.367, p=.015), however, the visual inspection of results (Figure 

4.3.4.3.7., panel D), indicated that these findings were probably influenced by notable inter-

individual variability and outliers. This claim was supported by the lack of significant 

associations between the MD of the cingulum and the mPFC-PMC FC in the etiology sub-

groups.  

In the anoxic BI group, a significant negative association was found for the VBM values of the 

PMC (r= -.504, p= .005) and the mPFC-PMC FC. Our findings also indicated a positive 

association between the MD of the entire PMC (r= .521, p= .004), mPFC (r= .404, p= .030), 

and the antero-posterior functional connectivity.  

There were no significant structure-functional associations in the TBI group, which could be 

due to small number of patients with traumatic brain injury (N= 14). 
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Figure 4.3.4.3.7. Structure-function association in anoxic and traumatic brain injury comatose patients. 
The figure presents the mean diffusivity (A) of the PMC and the mPFC (B), the VBM values of the PMC (C) and 
the MD of the right cingulum (D), plotted against the average PMC-mPFC functional connectivity. The MD values 
were multiplied by 10.000 for visualization purposes. 

 

 

4.3.5 Discussion 
 

4.3.5.1.1 Structural injury and etiology-related pathological mechanisms 
 

In this study, we provide evidence for structural damage in acute stage comatose patients, 

located in the white matter tract connecting the posteromedial cortex (PMC) and the medial 

prefrontal cortex, mainly overlapping with the cingulum bundle. An increase in mean 

diffusivity of the cingulum was present in all patients, and could be indicative of early stage 

WM inflammation (Alexander et al., 2007). However, an augmentation in MD was significantly 

more pronounced in traumatic in comparison to anoxic brain injury (Newcombe et al., 2010; 

Van der Eerden et al., 2014), and it was paralleled with a reduction in fractional anisotropy, 

suggesting extensive demyelination and widespread axonal loss. Damage to WM integrity is 

very common in TBI, due to diffuse axonal injury effects on long-distance WM tracts, such as 
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the cingulum bundle and the corpus callosum (Bonnelle et al., 2011; Palacios et al., 2013; Sharp 

et al., 2014). 

Moreover, the right portion of the cingulum bundle seemed significantly more damaged, 

suggesting lateralization. This is contrary to some previous studies with DOC patients, 

indicating left-lateralized grey and white matter atrophy, with higher disruption associated with 

longer time spent in DOC and discriminative between MCS- and MCS + (Bruno et al., 2011c; 

Guldenmund et al., 2016; van der Eerden et al., 2014). 

In opposed to TBI patients, the anoxic BI group showed predominantly cortical damage (Van 

der Eerden et al., 2014), as suggested by higher values of VBM in the posteromedial cortex, 

usually interpreted as an augmentation in gray matter density. However, this in fact may not be 

indicative of an increase in gray matter volume but possibly of cortical laminar necrosis (i.e. 

cell death involving cortical layers III and IV, visible in the acute stage, at around 2 weeks post 

anoxia/ischemia) causing high-signal-intensity features on T1 images, thus resulting in higher 

VBM values (Choi et al., 2010; Howard et al., 2012; Siskas, Lefkopoulos, Ioannidis, Charitandi, 

Dimitriadis, 2003; Weiss et al., 2007). Further, our findings suggest that gray matter has greater 

vulnerability to hypoxia when compared with white matter, particularly in brain regions 

showing high basal metabolic levels, such as the posteromedial cortex (Howard et al., 2012; 

Nolan et al., 2010). Also, posterior and anterior cerebral arteries intersect in the medial parietal 

lobe thus rendering it particularly susceptible to hypoxic/anoxic ischemic injury.  

In accordance, diffusion restriction abnormalities (Choi et al., 2010; Hirsch et al., 2014; Ryoo 

et al., 2015; Youn et al., 2015) and loss of cortical thickness (Silva et al., 2017) in the medial 

posterior cortex have been found in early stages in cardiac arrest comatose patients, with initial 

cortical atrophy associated with poor outcome.  

Studies with chronic DOC patients (i.e. on average >2y) with mixed etiologies, suggest 

widespread decrease in gray matter density (assessed with VBM), in particular in the inferior 

parietal lobe, including the bilateral PMC, the medial and superior frontal lobe and the cingulum 

(Guldenmund et al., 2016; Juengling, Kassubek, Huppertz, Krause, & Els, 2005). Guldenmund 

and colleagues (2016) found an association between structural damage and time spent in DOC, 

and the extent of structural damage that was higher in non-traumatic UWS as compared to 

MCS, especially in the PMC and ventromedial prefrontal cortex. Therefore, it would be 

interesting to conduct a longitudinal VBM study with anoxic BI patients, to explore if this initial 

apparent increase in gray matter density evolves and if these changes are linked to current or 

future clinical and functional status. Follow-up studies with traumatic brain injury would be 

equally interesting, as Wallerian degeneration can lead to late complications such as secondary 
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neuroinflammation and neurodegeneration distal to the initial focal injury (Sharp et al., 2014; 

Warner et al., 2010).  

In contrary to the changes seen in the posteromedial cortex, there seemed to be a complex 

pattern of decrease/increase of all structural parameters in the medial prefrontal cortex, not 

specifically discriminative between the two etiology groups. These results may be due to higher 

heterogeneity in frontal structural damage in coma patients, especially in TBI subjects, and is 

therefore difficult to interpret in the light of current results.  Nevertheless, the most common 

pattern of structural changes seemed to be a restriction in diffusion (increase in FA) which could 

be a consequence of acute (ischemic, traumatic) lesions in our coma patients.  

 

4.3.5.1.2 PMC-mPFC structure-function relationship 
 

The functional connectivity was significantly lower for almost all pairwise links included in the 

analysis, indicating a complete dissolution of PCC-mPFC FC, as frequently shown in disorders 

of consciousness (Hannawi et al., 2015; Norton et al.; Koenig et al., 2014; Silva et al., 2015). 

There results suggest that changes in PMC-mPFC function may be directly related to the 

abolition of consciousness, while structural changes depend more on etiology that is differences 

in pathology mechanisms associated with various brain injuries.   

Our findings implied that a restriction in PMC and mPFC gray matter diffusivity and abnormal 

PMC gray matter intensity interfere with efficient postero-anterior functional communication, 

indicating that both structural and functional integrity need to be preserved for consciousness 

to emerge. This is in accordance with studies showing correlation between mPFC-PMC 

connectivity and GM integrity (Segall et al., 2012), with posterior midline GM atrophy 

associated with reduced DMN functional connectivity (Vidal-Piñeiro et al., 2014).  

Surprisingly, our findings did not imply codependence between the structural integrity of the 

cingulum and resting-state FC, as usually shown in healthy subjects (Figley et al., 2015; 

Greicius et al. 2009; van den Heuvel et al., 2009; Honey et al., 2009; Khalsa et al., 2014) and 

patients with chronic DOC (Bodart et al., 2017).  

However, our anoxic brain injury patients did not have extensive damage of the cingulum, 

which could have been the underlying cause of the absence of a significant structure-function 

relationship.  

Further, previous studies have identified paralleled DMN structure-function disruption in 

traumatic brain injury, also associated with worse cognitive functioning (Bonnelle et al., 2011; 
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Palacios et al., 2013; Sharp et al., 2014), which is in contrast to our findings. Nevertheless, it 

must be noted that we did not include a large sample of traumatic brain injury patients in our 

study, which may have led to insufficient power to detect small but important effects.  

4.3.5.1.3 Conclusions 
 
To our knowledge, this is the first study to explore brain structure-function relationship in coma 

patients using multimodal neuroimaging. Our findings implied a significant loss of structural 

integrity in acute comatose patients, with primarily white matter injury (i.e. cingulum) in TBI, 

and posteromedial gray matter damage in the anoxic BI group. A major reduction in the 

functional connectivity between PMC and mPFC was shown for all patients, irrespective of 

etiology. Furthermore, significant function-structure correlations found in comatose patients 

suggested that both structural and functional integrity need to be preserved for consciousness 

to emerge. 

Given that we found a decrease in the WM mean diffusivity in all patients, further studies should 

calculate the axial (AD) and radial (RD) diffusivity, in complement to MD, to explore potential 

etiology differences in the pathological mechanisms related to structural damage 

(demyelination – increase in RD vs. primary axonal damage – decrease in AD).  

Future multimodal longitudinal studies with such an integrative approach should investigate the 

evolution of the function-structure relationship and its relevance for long-term outcome 

prediction. Further studies should conduct voxel-wise structural and functional analysis, as we 

have shown some sub-regional differences within our functionally defined PMC and mPFC 

ROIs. A recent meta-analysis showed that hub nodes of the structural (and functional) 

connectome are much more likely to be pathologically lesioned by a wide-range of brain 

disorders in comparison to non-hub regions (Crossley et al., 2014). Therefore, it would be 

interesting to explore the relationship between densely functionally connected voxels 

(identified in healthy subjects) and the corresponding gray matter volume (i.e. VBM). Also, the 

WM microstructure should be investigated in more detail, with either voxel-wise or multiple-

ROI analysis along the antero-posterior tract in order to precisely locate the damage reflected 

in our findings.  

Finally, it would be of interest to include more regions from the dDMN and other resting-state 

networks, such as the salience and executive control network, and their corresponding WM 

connections, to investigate if these changes and their structure-functional association are 

specific to or expand beyond the default mode network. 
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4.3.5.1.4 Limitations  
 

This study has several limitations. We did not find significant structure-functional associations 

when conducting separate analysis with TBI patients, which could be due to small number of 

patients with traumatic brain injury (N=14) included in our study. The insufficient number of 

patients was partially influenced by subject exclusion due to focal lesions overlapping with 

regions of interest, and segmentation failure. The p-values were not corrected for multiple 

comparisons, as this was a preliminary study conducted for exploratory purposes, however, all 

p-values are fully reported and open to interpretation. Finally, more advanced analysis should 

be done (e.g. regression analysis) to fully explore the causal relationship between the structure 

and function.   
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5 Chapter V - General discussion and future perspectives 
 

 

The overall findings of this thesis suggest a major disruption of functional connectivity and 

significant topological reorganization in high-order resting state networks in the acute stage of 

coma. Severe functional disconnections were particularly pronounced in the posteromedial 

cortex, a functionally heterogeneous brain region, primarily associated with the default mode 

network. More specifically, the ventral portions of the precuneus and the posterior cingulate 

cortex were hypoconnected with other regions from the DMN (Study 2), most consistently with 

the mPFC, irrespective of coma etiology (Study 1). In contrast, the dorsal PCC appeared to be 

implicated in global brain dynamics, as suggested by a significant reduction in centrality and 

inter-modular connectivity in this region (Study 2). These findings are in line with research 

showing strong intra-modular coupling between the ventral PCC/PreCu and other DMN 

regions, in opposed to a more transitional connectivity found in the dorsal PCC, serving to 

integrate and coordinate the activity across multiple (resting-state) networks.  

The functional organization in coma patients appeared to be dedifferentiated, as highlighted in 

a complex pattern of decrease and increase of brain region connectivity and centrality pertaining 

to high-level resting-state networks. The “hyper-connectivity/-centrality” (Study 1 and 2) could 

be a consequence of compensatory brain plastic processes possibly reflecting resilient 

connections engaging residual critical neural resources, otherwise normally distributed through 

efficient brain network connections, here disrupted by brain injury, resulting in impaired 

conscious processing.  

The global “randomization” and the fronto-parietal disconnections, implied in this thesis (Study 

2), suit connectionist theories of consciousness (presented in the introduction) which accentuate 

the importance of complexity that is simultaneous differentiation and integration of brain 

function in the emergence of consciousness. 

Further, in the healthy brain long-range connections between segregated areas are supported by 

the integrative properties of highly connected hub nodes, most commonly identified in the 

posteromedial and prefrontal brain regions (in healthy subjects). These regions were 

individually disrupted (i.e. structural damage) and mutually disconnected (i.e. functional 

connectivity) in our coma patients. Interestingly, the long-range antero-posterior functional 

disconnection was demonstrated in all of the studies in this thesis (and is compatible with 
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previous research), irrespective of the applied methodology. These findings are very 

encouraging given that the reproducibility of results, despite differences between 

methodological approaches, is the first step towards the development of clinically applicable 

diagnostic/prognostic markers.  

In fact, higher functional connectivity between the ventral PCC and PreCu and the medial 

frontal regions was significantly related to better neurological recovery, registered 90 days after 

the initial inclusion of patients, aiming towards potential clinical applicability of neuroimaging 

in prognosis. 

Furthermore, the long-range PMC-mPFC functional disconnection was coupled with 

significant structural damage in the corresponding gray matter and white matter connections 

(Study 3), implying that damaged structural integrity is linked to disruption in brain function. 

Nevertheless, the directionality of this relationship will have to be investigated in further 

studies, in order to determine if structural brain injury directly leads to functional 

disconnections. In addition, this analysis should be extended to voxel-wise analysis, necessary 

to fully explore the structural/functional differentiation of brain damage association with DOC. 

Future studies should also explore if the structural and functional disruption found in these 

metabolically expensive and topologically central regions (i.e. PMC) is related to greater 

vulnerability, or symptomatology which arises once the damage propagates to these highly 

connected hub nodes. Nonetheless, the identification of either of these mechanisms (i.e. 

vulnerability and symptomatology) could lead to network-based treatments which aim to 

restore normal wide-brain functioning through remediation of specific brain hubs. 

Finally, it is important to note that a better understanding of etiology differences may prove to 

be essential in early prediction and understanding of patient’s outcomes, as we have shown 

some significant functional and structural differences between traumatic and anoxic brain 

injury. This was reflected in a higher prevalence of hyperconnected voxels and white matter 

structural damage in TBI in opposed to more notable functional disconnection and 

posteromedial gray matter injury in anoxic BI. 

The combination of behavioral clinical assessment with complementary measures derived from 

brain structure (i.e. DWI/DTI; gray matter volume), brain metabolism (i.e. PET; markers of 

neuroinflamation) and functional connectivity (i.e. fMRI, EEG), may further increase the 

accuracy of prognosis prediction in the acute stage. Also, multimodal studies in a research 

setting could help us better understand the interaction between brain changes observed on 

different levels, and establish if one modality could be used as a proxy for another in patients 

who are incompatible for some type of neuroimaging due to a critical clinical state, extensive 
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brain damage or metallic implants. In fact, our team is currently working on a multimodal 

neuroimaging protocol which will hopefully lead to new insights regarding consciousness 

abolition and recovery.  

However, the multimodal approach leads to an ever increasing volume and complexity of 

acquired data, imposing new challenges associated with “big data”. 

The graph theoretical methodology is well suited for analyzing and integrating results in this 

context, although, there are still some methodological barriers that need to be overcome in order 

to fully exploit the possibilities of this approach. For example, traumatic brain injury is 

associated with heterogeneous brain damage which interferes with node definition, which needs 

to be exact for each of the subjects included in the graph analysis. Thus, the selection of nodes 

of interest is not straightforward in TBI, especially when there is a significant spatial overlap 

with a focal lesion. This was one of the main reasons why we did not include this sub-population 

of coma patients in our second study. Furthermore, it would be interesting to do the analysis 

using weighted correlation matrices, as both weak and strong functional connections can give 

valuable insight into the pathological mechanisms in coma. Also, graph metrics could be 

calculated separately for positive and negative functional connections, in order to specifically 

explore the inter-network anticorrelations, which are particularly interesting in the context of 

RSNs and disorders of consciousness. The continuing collaboration with the “graph theory” 

team in Grenoble will surely lead to fruitful research and some more interesting results.  

Future research should be longitudinal, with repeated MRI scanning, during the acute stage of 

coma and recovery, in order pinpoint the brain mechanisms related to emergence of conscious 

awareness. This was initially planned for the original study protocol, however, this idea couldn’t 

be executed to high mortality rate of patients and logistical difficulties associated with 

prolonged care for patients with disorders of consciousness.  

In fact, one of the most important lessons this thesis project has taught me is how to balance the 

methodological rigor and the clinical practicability, keeping in mind the best interest of patients 

and yet trying to find the right research approach to deliver reliable and timely results.   

Finally, the behavioral assessment (CRS-R) of neurological outcome should be repeated 

multiple times within a short time interval, as the validity of testing results significantly impacts 

our ability to find reliable neuroimaging biomarkers. Even though standardized behavioral 

testing is considered today as the gold-standard for the diagnosis of disorders of consciousness, 

it poses many limits (as discussed in the introduction), and should be combined with brain 

imaging data in order to more reliably probe the residual capacity for conscious processing.  
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Diagnostic and prognostic errors carry particular moral risks in the case of disorders of 

consciousness and can have important implications for medical decision-making, such as the 

choice of therapy, concern for family members and the decision to withhold/withdraw life-

sustaining treatment.  

The main contribution of this thesis in the context of previous research is evidence for: a) a 

complex pattern of functional disconnection within the PMC (hypo- vs. hyper-connectivity; 

correlation vs. anticorrelation); ii) significant reorganization in high-order resting-state 

networks reflective of dedifferentiation and reduced brain complexity; iii) etiology-related 

differences in functional/structural brain damage in the acute stage of coma; iv) significant 

association between structural damage and functional disconnection; v) and predictive value of 

PMC functional disconnections in relation to 3-month neurological outcome.  

In conclusion, the analysis of resting-state functional connectivity and structural integrity in the 

acute stage of coma implies significant heterogeneity in brain function and structure of coma 

patients irrespectively of their apparent behavioral homogeneity. As such, these findings hold 

significant promise towards development of neuroimaging markers for prognostication and 

early identification of patients who would benefit from novel therapies (i.e. pharmacological, 

brain stimulation) aiming to restore and promote adaptive cerebral plasticity leading to eventual 

reemergence of consciousness and neurological recovery.   
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6 Appendices 
 

6.1 Paper I 
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6.2 Appendices for Chapter I
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Table 6.2.1. EEG studies with the graph theoretical approach 

Author Modality Type of 
DOC 

Etiolog
y 

Delay 
injury/im
aging 

Delay 
inclusion/
outcome 

Outcome 
assessment 

Reported 
outcome 

Findings 

Coma         
Beudel et 
al. (2014) 

19-channel 
EEG 

56 coma  56 CA ≤ 5 days 6 months  CPC 27 patients died 
(CPC=5); 19 normal 
(CPC=1), 8 mild 
(CPC=2), 1 modest 
(CPC=3), 1 severe 
(CPC=4) cerebral 
dysfunction. 

Survivors showed significantly more 
nodes and connections, higher CPL, 
lower CC and SWI then non-
survivors. 

Chronic  
DOC 

        

Chennu et 
al. (2014) 

High-density 
resting-state 
EEG 

13 UWS; 19 
MCS 

 

23 TBI; 
9 anoxia 

3 - 154 
months 

/ /  Reduced CC, and PC (less hubs), 
increased CPL, and lacking long-
distance connections, in the alpha 
band in DOC compared to healthy 
controls. Patients had higher CC and 
PC in delta and theta bands. More 
modular structure similarity between 
patients in delta and theta bands in 
opposed to the alpha band in 
controls. Metrics of alpha network 
efficiency correlated with the degree 
of behavioral awareness. 

Chennu et 
al. (2017) 

High-density 
EEG, PET 

23 UWS; 17 
MCS -; 49 
MCS+; 11 
EMCS; 4 
LIS 

51 TBI ; 
53 Non-
TBI; 

9 - 7387 
days 

1 year GOS-E 39 positive outcome; 
22 negative outcome 

Positive outcome patients had 
diminished delta-band connectivity 
in central and parietal areas, and 
higher modularity and CC in delta 
networks. 

CPC - Cerebral performance category; GOS-E – Glasgow Outcome Scale Extended; CA – cardiac arrest; CC – clustering coefficient; CPL – characteristic path length; PC – 
participation coefficient; LE – local efficiency; SWI – small-world index. 
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6.3 Appendices for Chapter IV 
 
 

 
 

Figure 6.3.1. Individual traumatic brain injury patients’ connection density spatial maps. 
The spatial maps are presented separately for each patient. The changes in connection density are presented 
separately for hypo-CDP, hyper-CDP and hyper-CDN and the two anatomical PMC sub-regions – PreCu and 
PCC. The patients’ outcome is marked beneath the patients’ code – REC – Recovery, MCS – Minimally conscious 
state; VS/UWS – Vegetative state/Unresponsive wakefulness syndrome.  
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Figure 6.3.2. Individual anoxic brain injury patients’ connection density spatial maps. 
The spatial maps are presented separately for each patient. The changes in connection density are presented 
separately for hypo-CDP, hyper-CDP and hyper-CDN and the two anatomical PMC sub-regions – PreCu and 
PCC. The patients’ outcome is marked beneath the patients’ code – REC – Recovery, MCS – Minimally conscious 
state; VS/UWS – Vegetative state/Unresponsive wakefulness syndrome. 
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Figure 6.3.3. Differences in Calcarine-mPFC connection density changes between traumatic and anoxic brain 
injury. 
TBI patients showed significantly more Calcarine-mPFC hyper-CDP (sub-panel 2) and hyper-CDN voxels (sub-
panel 4) in comparison with the anoxic BI patients. Boxplots represent medians with interquartile range and 
whiskers signify minimum and maximum values (excluding the outliers) (*p < .05, (**p < .005, ns: nonsignificant).  

 
 

 

Figure 6.3.4. Connection density changes in the Calcarine-mPFC control pathway (threshold 33%). 
TBI patients show more widespread changes and a higher spatial congruity in hyper-CDN and hyper-CDP voxels 
in comparison to anoxic BI. Gradient bars (%) reflects the percentage of patients sharing the same voxel with a 
sig. Z-score (hyper CDP/CDN) at given anatomical location within the Calcarine. The minimum spatial 
homogeneity is set to at least 33% of patients in a given group. 
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Sensitivity Specificity Successfully 
classified 

PPV NPV AUC 95% CI Std. error 

80% 75% 77.8% 80% 75% 0.906 0.795-1.00 0.056 
 

Figure 6.3.5. Logistic regression model.  
The graph presents true positive (sensitivity) on the vertical axis and true negative (1-specificity) on the horizontal 
axis. The area under the ROC curve (AUC) ranges from 0.5 to 1.00 with larger values indicative of a better fit. 
The area under the curve is 0.906 with 95% confidence interval (0.795-1.00). Also, the AUC is significantly 
different from 0.5 (50/50 chance) with p-value=0.000 suggesting that the logistic regression classifies the group 
significantly better than by chance. PPV – positive predictive value; NPV – negative predictive value; AUC – area 
under the curve; CI – confidence interval; Std. error – standard error.  

 
 

Table 6.3.1. Individual patient results – the total number of hypo/hyper-CDP and hypo/hyper-CDN voxels for 
PMC (Panel A), PreCu (Panel B) and PCC (Panel B). 
The overlapping hypo-CDP and hyper-CDN voxels are presented only for PMC (Panel A). Number of voxels per 
region: PMC - 12862 voxels, PreCu - 11222 voxels, PCC - 1640 voxels. Abbreviations: TBI – traumatic brain 
injury, ANOXIC – anoxic brain injury; N – number of voxels with significant Z-score. REC – Recovery, MCS – 
Minimally conscious state; VS/UWS – Vegetative state/Unresponsive wakefulness syndrome.  

 
A) Individual patient results - PMC results 

Patient Etiology CRS-R 
score 

Outcome Hypo-CDP 
voxels (N) 

Hypo-CDN 
voxels (N) 

Hyper-CDP 
voxels (N) 

Hyper-CDN 
Voxels (N) 

Hypo-CDP 
/Hyper-CDN 
overlap (N) 

Patient 1 TBI 4 VS 504.00 6.00 1150.00 5716.00 489 
Patient 2 TBI 9 VS 11.00 .00 2689.00 5620.00 11 
Patient 3 TBI 20 REC 57.00 2.00 146.00 354.00 25 
Patient 4 TBI 8 VS 530.00 7.00 413.00 2343.00 464 
Patient 5 TBI 15 MCS 30.00 10.00 653.00 505.00 7 
Patient 6 TBI 16 MCS 39.00 8.00 824.00 1052.00 20 
Patient 7 TBI 8 VS 180.00 11.00 575.00 1843.00 65 
Patient 8 TBI 22 REC 49.00 40.00 1508.00 958.00 29 
Patient 9 TBI 7 VS 215.00 4.00 961.00 2212.00 182 

Patient 10 TBI 14 MCS 76.00 28.00 3727.00 1980.00 66 
Patient 11 TBI 6 VS 316.00 .00 414.00 1604.00 148 
Patient 12 TBI 5 VS 632.00 5.00 360.00 4948.00 545 
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Patient 13 TBI 14 MCS 175.00 1.00 825.00 1221.00 17 
Patient 14 TBI 23 REC 23.00 22.00 866.00 244.00 8 
Patient 15 TBI 13 MCS 91.00 22.00 653.00 1507.00 12 
Patient 16 Anoxic 6 VS 476.00 1.00 12.00 72.00 22 
Patient 17 Anoxic 14 MCS 403.00 2.00 319.00 1184.00 190 
Patient 18 Anoxic 18 MCS 13.00 24.00 1586.00 643.00 7 
Patient 19 Anoxic 8 VS 273.00 3.00 106.00 159.00 40 
Patient 20 Anoxic 7 VS 351.00 4.00 62.00 222.00 78 
Patient 21 Anoxic 9 MCS 308.00 4.00 382.00 246.00 47 
Patient 22 Anoxic 10 MCS 263.00 5.00 838.00 1917.00 133 
Patient 23 Anoxic 6 VS 249.00 1.00 1305.00 2483.00 202 
Patient 24 Anoxic 21 REC 5.00 45.00 1279.00 221.00 3 
Patient 25 Anoxic 12 MCS 271.00 .00 111.00 437.00 52 
Patient 26 Anoxic 9 VS 525.00 1.00 1.00 43.00 25 
Patient 27 Anoxic 12 MCS 410.00 7.00 96.00 232.00 72 

 
 

B) Individual patient results - Precuneus results 
Patient Etiology CRS-R 

score 
Outcome Hypo-CDP 

voxels (N) 
Hypo-CDN 
voxels (N) 

Hyper-CDP 
voxels (N) 

Hyper-CDN 
voxels (N) 

Patient 1 TBI 4 VS 357.00 6.00 1040.00 4507.00 
Patient 2 TBI 9 VS 9.00 .00 2460.00 4571.00 
Patient 3 TBI 20 REC 42.00 1.00 127.00 244.00 
Patient 4 TBI 8 VS 353.00 3.00 321.00 1816.00 
Patient 5 TBI 15 MCS 24.00 9.00 625.00 415.00 
Patient 6 TBI 16 MCS 38.00 4.00 764.00 901.00 
Patient 7 TBI 8 VS 128.00 9.00 532.00 1268.00 
Patient 8 TBI 22 REC 42.00 33.00 1447.00 801.00 
Patient 9 TBI 7 VS 123.00 4.00 849.00 1523.00 

Patient 10 TBI 14 MCS 50.00 22.00 3374.00 1514.00 
Patient 11 TBI 6 VS 215.00 .00 393.00 993.00 
Patient 12 TBI 5 VS 409.00 5.00 306.00 3949.00 
Patient 13 TBI 14 MCS 110.00 1.00 763.00 908.00 
Patient 14 TBI 23 REC 15.00 22.00 806.00 206.00 
Patient 15 TBI 13 MCS 68.00 21.00 561.00 1206.00 
Patient 16 Anoxic 6 VS 307.00 1.00 10.00 47.00 
Patient 17 Anoxic 14 MCS 275.00 2.00 307.00 896.00 
Patient 18 Anoxic 18 MCS 12.00 20.00 1396.00 553.00 
Patient 19 Anoxic 8 VS 165.00 3.00 105.00 86.00 
Patient 20 Anoxic 7 VS 228.00 4.00 56.00 99.00 
Patient 21 Anoxic 9 MCS 201.00 4.00 374.00 150.00 
Patient 22 Anoxic 10 MCS 185.00 5.00 799.00 1580.00 
Patient 23 Anoxic 6 VS 152.00 1.00 1296.00 1821.00 
Patient 24 Anoxic 21 REC 3.00 34.00 1182.00 189.00 
Patient 25 Anoxic 12 MCS 194.00 .00 102.00 332.00 
Patient 26 Anoxic 9 VS 342.00 1.00 1.00 20.00 
Patient 27 Anoxic 12 MCS 278.00 7.00 91.00 193.00 

 
C) Individual patient results - PCC results 

Patient Etiology CRS-R 
score 

Outcome Hypo-CDP 
voxels (N) 

Hypo-CDN 
voxels (N) 

Hyper-CDP 
voxels (N) 

Hyper-CDN 
voxels (N) 

Patient 1 TBI 4 VS 147.00 .00 110.00 1209.00 



152 
 

Patient 2 TBI 9 VS 2.00 .00 229.00 1049.00 
Patient 3 TBI 20 REC 15.00 1.00 19.00 110.00 
Patient 4 TBI 8 VS 177.00 4.00 92.00 527.00 
Patient 5 TBI 15 MCS 6.00 1.00 28.00 90.00 
Patient 6 TBI 16 MCS 1.00 4.00 60.00 151.00 
Patient 7 TBI 8 VS 52.00 2.00 43.00 575.00 
Patient 8 TBI 22 REC 7.00 7.00 61.00 157.00 
Patient 9 TBI 7 VS 92.00 .00 112.00 689.00 
Patient 10 TBI 14 MCS 26.00 6.00 353.00 466.00 
Patient 11 TBI 6 VS 101.00 .00 21.00 611.00 
Patient 12 TBI 5 VS 223.00 .00 54.00 999.00 
Patient 13 TBI 14 MCS 65.00 .00 62.00 313.00 
Patient 14 TBI 23 REC 8.00 .00 60.00 38.00 
Patient 15 TBI 13 MCS 23.00 1.00 92.00 301.00 
Patient 16 Anoxic 6 VS 169.00 .00 2.00 25.00 
Patient 17 Anoxic 14 MCS 128.00 .00 12.00 288.00 
Patient 18 Anoxic 18 MCS 1.00 4.00 190.00 90.00 
Patient 19 Anoxic 8 VS 108.00 .00 1.00 73.00 
Patient 20 Anoxic 7 VS 123.00 .00 6.00 123.00 
Patient 21 Anoxic 9 MCS 107.00 .00 8.00 96.00 
Patient 22 Anoxic 10 MCS 78.00 .00 39.00 337.00 
Patient 23 Anoxic 6 VS 97.00 .00 9.00 662.00 
Patient 24 Anoxic 21 REC 2.00 11.00 97.00 32.00 
Patient 25 Anoxic 12 MCS 77.00 .00 9.00 105.00 
Patient 26 Anoxic 9 VS 183.00 .00 .00 23.00 
Patient 27 Anoxic 12 MCS 132.00 .00 5.00 39.00 
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Figure 6.3.6. Global topology in controls and patients – evidence of randomization. 
A) Global efficiency (GE) in controls and patients in comparison to regular and random networks, at multiple 
connection density thresholds (5-50%, increment 5%). B) Clustering in controls and patients in comparison to 
regular and random networks, at multiple connection density thresholds (5-50%, increment 5%). C) GE in controls 
and patients in comparison to random networks at the 15% connection density threshold. A sub-group of patients 
seems to have a GE more similar to random networks than to other subjects. D) Hub disruption index (HDI) 
calculated using GE (axis x) differentiates three sub-groups of patients (15% cost). Patients with a HDI GE smaller 
than -0.8 have also show a high GE (axis y) present in random networks. 
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Figure 6.3.7. Global efficiency (axis y) and HDI GE (axis x) at multiple thresholds (10-20%). 
Hub disruption index (HDI) calculated using GE (axis x) differentiates three sub-groups of patients at all 
thresholds. The sub-group of patients most similar to random networks has a HDI GE lower than ~-0.8, at all 
three connection density thresholds.  
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Figure 6.3.8. Functional connectivity (Pearson’s r) over all pairs of nodes, in controls and patients. 
Boxplots represent medians with interquartile range and whiskers signify minimum and maximum values 
(excluding outliers). 

 

 

Table 6.3.2. MNI center-mass coordinates of each of the nodes used in the analysis. 
The AAL atlas was used to define the anatomical names of nodes. 

MNI Coordinates RSN_region AAL_atlas_region 
-18 40 38 dDMN_1 Frontal_Sup_L 
0 54 18 dDMN_2 Frontal_Sup_Medial_L_R 
-4 46 16 dDMN_3 Cingulum_Ant_L 
-6 52 32 dDMN_4 Frontal_Sup_Medial_L 
-2 42 4 dDMN_5 Cingulum_Ant_L_2 
-6 60 2 dDMN_6 Frontal_Sup_Medial_L_2 
2 46 -2 dDMN_7 Frontal_Med_Orb_R 
0 36 16 dDMN_8 Cingulum_Ant_L_R 
-14 58 18 dDMN_9 Frontal_Sup_L_2 
-4 40 12 dDMN_10 Cingulum_Ant_L_3 
-2 54 -10 dDMN_11 Frontal_Med_Orb_L 
-48 -70 32 dDMN_12 Angular_L 
18 36 46 dDMN_13 Frontal_Sup_R 
-2 -58 22 dDMN_14 PreCuneus_L_R  
2 -60 32 dDMN_15 PreCu_L_R_2 
-2 -46 30 dDMN_16 Cingulum_Post_L_R  
0 -18 34 dDMN_17 Cingulum_Mid_L_R 
50 -64 30 dDMN_18 Angular_R 
-2 -10 2 dDMN_19 Thalamus_L_R 
-24 -30 -14 dDMN_20 ParaHippocampal_L 
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26 -24 -18 dDMN_21 ParaHippocampal_R 
-14 -60 14 vDMN_1 Calcarine_L 
-26 8 52 vDMN_2 Frontal_Mid_L 
-30 -40 -16 vDMN_3 Fusiform_L 
-38 -82 30 vDMN_4 Occipital_Mid_L 
12 -54 10 vDMN_5 Precuneus_R/Lingual_R 
0 -50 52 vDMN_6 PreCuneus_L_R  
8 -62 56 vDMN_7 PreCuneus_R 
-10 -68 54 vDMN_8 PreCuneus_L 
2 -58 44 vDMN_9 PreCuneus_R_2 
24 30 36 vDMN_10 Frontal_Mid_R 
22 14 48 vDMN_11 Frontal_Mid_R_2 
28 -36 -20 vDMN_12 Fusiform_R 
42 -74 28 vDMN_13 Occipital_Mid_R 
38 18 48 RECN_1 Frontal_Mid_R 
44 28 28 RECN_2 Frontal_Inf_Tri_R 
26 26 48 RECN_3 Frontal_Sup_R 
34 30 40 RECN_4 Frontal_Mid_R_2 
36 52 0 RECN_5 Frontal_Mid_Orb_R 
48 -60 40 RECN_6 Angular_R 
38 -62 52 RECN_7 Angular_R_2 
48 -46 46 RECN_8 Parietal_Inf_R 
4 36 44 RECN_9 Frontal_Sup_Medial_R 
-42 -68 -42 RECN_10 Cerebelum_Crus2_L 
-32 -74 -48 RECN_11 Cerebelum_Crus2_L_2 
-30 -70 -34 RECN_12 Cerebelum_Crus1_L 
-14 -86 -32 RECN_13 Cerebelum_Crus2_L_3 
-8 32 40 LECN_1 Frontal_Sup_Medial_L 
-42 18 42 LECN_2 Frontal_Mid_L 
-24 20 54 LECN_3 Frontal_Sup_L 
-32 28 44 LECN_4 Frontal_Mid_L_2 
-42 44 -4 LECN_5 Frontal_Inf_Orb_L 
-44 -66 40 LECN_6 Angular_L 
-48 -52 48 LECN_7 Parietal_Inf_L 
-34 -70 48 LECN_8 Parietal Inf_L_2 
-60 -44 -14 LECN_9 Temporal_Inf_L  
34 -70 -44 LECN_10 Cerebelum_Crus2_R 
-32 44 20 SAL_1 Frontal_Mid_L 
-42 12 -4 SAL_2 Insula_L 
-8 10 62 SAL_3 Supp_Motor_Area_L 
-2 26 30 SAL_4 Cingulum_Ant_L 
-2 2 62 SAL_5 Supp_Motor_Area_L_2 
-2 20 46 SAL_6 Supp_Motor_Area_L_3 
-2 12 44 SAL_7 Cingulum_Mid_L 
12 8 62 SAL_8 Supp_Motor_Area_R 
26 44 26 SAL_9 Frontal_Mid_R 
40 14 -2 SAL_10 Insula_R 
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-36 -56 -34 SAL_11 Cerebelum_Crus1_L 
34 -60 -32 SAL_12 Cerebelum_Crus1_R 
-40 34 28 P.SAL_1 Frontal_Inf_Tri_L/Frontal_Mid_L 
-60 -34 36 P.SAL_2 SupraMarginal_L 
-58 -44 36 P.SAL_3 SupraMarginal_L_2 
-8 -54 60 P.SAL_4 Precuneus_L 
12 -30 44 P.SAL_5 Cingulum_Mid_R 
26 -44 70 P.SAL_6 Postcentral_R  
14 -54 66 P.SAL_7 Parietal_Sup_R 
58 -30 34 P.SAL_8 SupraMarginal_R 
58 -40 36 P.SAL_9 SupraMarginal_R_2 
-14 -24 4 P.SAL_10 Thalamus_L_post 
-34 -44 -38 P.SAL_11 Cerebelum_Crus1_L  
-38 -16 -6 P.SAL_12 Insula_L_post 
38 -8 -10 P.SAL_13 Insula_R_post 

 
 

Table 6.3.3. Exclusion criteria. 
Nine patients were excluded due to HDI global efficiency < -0.8 or/and low functional connectivity. The 
functional connection density was calculated by setting a threshold of the correlation coefficients 
(Pearson’s r) > 0.2 and calculating the density of remaining connections within each of the individual 
matrices. All patients with a connection density <10% were excluded from further analysis.  

Patients Functional_connection_density HDI_Global_efficiency Randomness 
Subject_001 0.08 -0.88 random 
Subject_002 0.10 -0.75 non-random 
Subject_003 0.35 -0.05 non-random 
Subject_004 0.11 -0.53 non-random 
Subject_005 0.12 -0.64 non-random 
Subject_006 0.09 -0.83 random 
Subject_007 .17 -0.57 non-random 
Subject_008 0.14 -0.63 non-random 
Subject_009 0.11 -0.56 non-random 
Subject_010 0.13 -0.82 random 
Subject_011 0.24 -0.88 random 
Subject_012 0.28 -0.56 non-random 
Subject_013 0.05 -0.85 random 
Subject_014 0.06 -0.96 random 
Subject_015 0.44 -0.55 non-random 
Subject_016 0.34 -0.07 non-random 
Subject_017 0.23 -0.03 non-random 
Subject_018 0.30 -0.22 non-random 
Subject_019 0.06 -0.91 random 
Subject_020 0.08 -0.95 random 
Subject_021 0.04 -0.86 random 
Subject_022 0.17 -0.46 non-random 
Subject_023 0.13 -0.65 non-random 
Subject_024 0.25 -0.20 non-random 
Subject_025 0.18 -0.01 non-random 
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Figure 6.3.9. Nodal topology in non-random patients at different connection density thresholds. 
The figures show nodal metric results found to be significantly different between patients and controls – degree 
and local efficiency. P>C – Values found to be significantly higher in patients in comparison to controls; P<C – 
values found to be significantly lower in patients versus controls. 
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