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Abstract

In this thesis, we study the level sets smooth Gaussian fields, or random smooth functions.
Several directions are explored, some linked to spectral theory, some to statistical mechanics.
The first object of focus is a family of Gaussian fields on compact Riemannian manifolds defined
as linear combinations of eigenfunctions of the Laplacian with independent Gaussian weights.
In special cases, this family specializes to the band-limited ensemble which has received a lot
of attention in recent years, but also to the cut-off Gaussian Free Field, which is the projection
of the Gaussian Free Field on the first eigenspaces of the Laplacian. We study the covariance
function of these fields, the expected number of connected components of their zero set, and,
in the case of the cut-off Gaussian Free Field, derive a precise large deviation estimate on the
event that the field is positive on a fixed set when the energy cut-off tends to infinity.

Next, we study percolation of excursion sets of stationary fields on the plane using techniques
from Bernoulli precolation. We first derive a mixing bound for the topology of nodal sets of
planar Gaussian fields. Then, we prove a sharp phase transition result for the Bargmann-Fock
random field.

Résumé

Dans cette these, on étudie les lignes de niveaux de champs gaussiens lisses, ou fonctions
aléatoires lisses. Plusieures directions sont explorées, certaines en lien avec la géométrie spec-
trale, d’autres avec la mécanique statistique.

On s’intéresse d’abord a une famille de champs gaussiens sur des variétés Riemannienne com-
pactes définis comme des combinaisons linéaires de fonctions propres du Laplacien avec des
poids Gaussiens indépendants. Dans des cas particuliers, cette famille donne I’ensemble a bande
limitée qui a beaucoup été étudié ces dernieres années, mais aussi le Champ Libre Gaussien
coupé en fréquence, qui es la projection du Champ Libre Gaussien sur les premiers espaces
propres du Laplacien. On étudie la fonction de covariance de ces champs, le nombre moyen de
composantes connexes de leur lieu d’annulation, et, dans le cas du Champ Libre Gaussien coupé
en fréquence, on obtient une estimation précise de grandes déviations pour la probabilité que le
champ soit positif sur un ensemble fixe lorsque le seuil de coupure en énergie tend vers l'infini.
Puis, on étudie la percolation des sur-niveaux de champs stationnaires sur le plan en utilisant
des techniques de percolation de Bernoulli. On démontre d’abord une estimation de mélange
pour la topologie des lignes de niveaux de champs gaussiens planaires. Puis, on démontre un
résultat de transition de phase soudaine pour le champ de Bargmann-Fock.

Keywords: Gaussian fields, Random topology, Spectral asymptotics, Percolation, Gaussian
Free Field
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Chapter 1

Introduction

This thesis is about the topology of level sets and excursion sets of smooth Gaussian
fields. It contains results about some local quantities, such as the number of connected
components of a given level set, but also global quantities, such as the existence of
unbounded connected components. When asked to define a Gaussian field, a probabilist
is likely to answer that it is a random process (¢;).cx over some space X such that for

any zi,...,z; € X, the law of (¢g,,..., ¢, ) is Gaussian. But one can also think of a
smooth Gaussian field as a random smooth function f on a manifold X such that for any
points x1, ..., z, € X, the random vector (f(x1),..., f(xx)) has a Gaussian distribution.

The level sets of f are just the sets Ay = f~1(s) for a given s € R, while the excursion
sets are just the Dy = f~1([s, +oc[). If f is such that for each z, the vector (f(x),d.f)
is non-degenerate, then, for each s € R, the level set N, will be a.s. smooth and D, will
be a closed subset with smooth boundary As. One can study these random shapes from
many different angles.



Figure 1.1: Here, in dark blue is a detail the graph of a random function on the flat
torus (more precisely, it is the cut-off Gaussian Free Field, defined in Subsection m
below). The graph is superimposed with a flat translucent light blue surface at level
0. The region Dy is where the graph is above the blue surface while Aj is the interface
between Dy and the region where the graph is below the blue surface. What is the
typical number of connected components of Dy? How curved is the interface Ny? What
is the typical maximum height of Dy?

A word about the format:

This thesis is organized as follows. The present chapter contains a general introduction
to the topic with a compilation of previous results. Once the stage is set, we present
each of the results we obtained with a proof sketch. Sections containing new results are
indicated by the symbol { in the title. The following chapters of the manuscript are
reproductions of preprints and articles in which the results are stated more formally and
fully proved. Here is a more detailed summary of the introduction, for readers that are
familiar with the subject matter:



Figure 1.2: Taking a step back and flattening the graph a little bit, the large connected
components start to stand out. How likely is it that such connected components exist?
Are there large areas untouched by Ny?

e In Section [[.1] we define Gaussian fields first as a random linear form on a Hilbert
space and second using the Kolmogorov extension theorem. Then, we define the
covariance function and the spectral measure for stationary fields. Finally, we
present the conditioning formula, Bulinskaya’s lemma and the Kac-Rice formula.

e In Section[I.2] we discuss the results we obtained concerning random sums of eigen-
functions of the Laplacian and the Gaussian Free Field. We start with some spec-
tral theory prerequisites. Then, we define band-limited random functions, random
spherical harmonics and random monochromatic waves. We also introduce some
new models, called cut-off fractional Gaussian fields. Next, we give a panorama of
classical techniques used to study the topology of nodal sets of smooth Gaussian
fields. This is followed by a presentation of the Gaussian Free Field (or GFF).
Indeed, it is the limit of a particular cut-off fractional Gaussian field, which we call
the cut-off Gaussian Free Field (or CGFF). We then present some results concern-
ing these objects. First, we compute the main term in the asymptotic expansion of
the covariance function of cut-off fractional Gaussian fields when the cut-off tends
to infinity using a result from [Hor68|. Second, there is an application to the study
of the topology of the nodal set of these fields using a result from [NS16] and ideas
from [GW17] and [GW16D]. Third, there is a large deviation result concerning the
nodal set of the CGFF in the spirit of [BDGOI]. Lastly, there is a lower bound on
the density of connected components of the monochromatic random wave obtained
in collaboration with Maxime Ingremeau.
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Figure 1.3: Changing the height of the threshold will shift the interface and maybe even
modify its topology. Here, the dark blue region represents the sub-level set {f < —1},
the light turquoise region represents the super-level set {f > 1}. In this picture, it
seems like the connectivity properties are governed mostly by the remaining, pale yellow
region, {—1 < f < 1}.

e In Section [1.3] we discuss percolation of excursion sets of Gaussian fields. We
start with a discussion of Bernoulli percolation with some emphasis on influences,
the KKL theorem and the Harris-Kesten theorem. We then define percolation for
Gaussian fields and present previous results. Finally, we discuss previous strategies
to obtain decorrelation inequalities for Gaussian fields. The results presented are
the fruit of joint work with Hugo Vanneuville. The first is a decorrelation inequality
for crossing and component counting events for planar Gaussian fields. Using this
inequality, we generalize the RSW estimate from [BG17a] and [BMIS8] and we prove
a lower concentration result about the number of connected components of the zero
set around its expectation in the setting of [NS16]. The second result is a phase
transition result concerning the excursion sets of the Bargmann-Fock field. We
prove that a.s. for any p > 0, the set {f > —p} has a unique unbounded connected
component, while for p < 0 it a.s. has only bounded connected components.
We also prove that for p > 0, the left-right crossing probability for the rectangle
[0,2R] x [0, R] converges to one exponentially fast in R as R — +o0.

10



1.1 Generalities on Gaussian fields

This section is a brief introduction to Gaussian fields. We start by defining Gaussian
fields as stochastic processes and present their characterization in terms of the covariance
function. Next, we introduce the reproducing kernel Hilbert space associated to a random
field. This provides an alternate construction of Gaussian fields that allows us to define
generalized Gaussian fields. Our main reference for these two first subsections is [Jan97].
Next we focus on stationary Gaussian fields and discuss spectral measures. We finish off
by presenting three classical tools used when studying smooth Gaussian fields.

1.1.1 Gaussian fields, covariance functions and Hilbert spaces

A centered Gaussian field over a smooth manifold M and defined on a probability
space (2, F,P) is a measurable mapping f : Q x M — R (where M and R are equipped
with their respective Borel o-algebras) (z,w) — f,(x) such that for each x1, ..., 2, € M,
the random variable (f(x1),..., f(zx)) is centered and Gaussian. From now on, unless
otherwise stated, all the Gaussian fields we consider will be centered. Any Gaussian
field defines a random measurable functionE] x+— f(x). If f is a Gaussian field such that
the corresponding random function is a.s. continuous, then it is entirely determined by
its finite-dimensional marginals. We will (somewhat incorrectly) say in this case that f
is a.s. continuous (and use similar terminology for other degrees of regularity). But
finite dimensional Gaussian vectors are entirely determined by their covariance matrices.
Thus, for any a.s. continuous Gaussian field f, the law of f is entirely determined by
the function (z,y) — E[f(z)f(y)]. This function is such that, for each z1,...,z, € M,
the matrix (K (x;,x;))i<ij<k is symmetric non-negative. It is called the covariance
function (or just the covariance) of the field f. Conversely, we can reconstruct the field
from its covariance, and the regularity of the field can be (partly) deduced from the
regularity of its covariance:

Theorem 1.1.1 (Kolmogorov’s theorem, see Appendix A of [NS16]). Let f be a Gaus-
stan field defined on a smooth manifold M with covariance K. Let k € N and assume
that the derivatives of K up to order k4 1 in each variable are well defined and contin-
uou. Then, f is almost surely of class C*. Conversely, if f is almost surely of class
C*, then the derivatives of K up to order k in each variable exist and are continuous.
Moreover, for any differential operators P and Q of order at most k acting on M,

E[Pf(z)Qf(y)] = (P®Q)K(z,y).

Let us illustrate these constructions with an example.

Tt is a random variable if we equip the space of measurable mappings M — R with the o-algebra
generated by cylinder sets.

2The regularity assumptions are not optimal in the present statement or in [NS16] but they are
sufficient for our purposes.
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Example. Let (a)ren and (by)reqo,...ny be independent with law N(0,1). Then, the
following random trigonometric polynomial

fn(t) = ag + V2 (Z ay, cos(kt) + by, sin(k:t))
k=1

defines an a.s. C°° Gaussian field and its covariance K,, that maps any (s,t) € St x St
to

E[fm(s)fm(t)] =142 (Z cos(ks) cos(kt) + sin(ks) sin(kt)

k=0

) sin(3@2m+1)(s — 1)) |

B sin (%(s —t))

1t is the unique a.s. continuous Gaussian field with covariance function K,,. By Theorem
1.1.1, we have

d

sin 1 m
Bl 0501 = (185 ) Kttt = =T

for parity reasons. In particular, for each t € S, f,,(t) is independent from f! (t).

1.1.2 Reproducing kernel Hilbert spaces and generalized Gaussian
fields

Let f be an a.s. continuous Gaussian field on a smooth manifold M. Consider the space
of linear combinations of the random variables f(z) for x € M. This is a subspace of
L?(Q, F,P) and we can equip it with the L? scalar product. Let H C L?(Q, F,P) be its
closure with respect to the topology induced by the scalar product. Since L? limits of
centered Gaussian random variables are also centered Gaussian, H contains only centered
Gaussian random variables. Each element { € H defines a function he : M — R
as follows. For each v € M, he = E[{f(x)]. The space I'(H) of functions h¢ for
£ € H is called the reproducing kernel Hilbert space for f. By pushing forward
the L?(Q, F,P) scalar product via the map & — he, we obtain a Hilbert space structure
(D(H),(:,-)) on I'(H). Note that for each x € M, K(z,) = hy(,) so K(x,-) € H and
for each he € I'(H), (h, K(x,-)) = E[{f(x)] = he(x). In particular, evaluation mappings
are continuous linear functionals on I'(H). Conversely, given (T, (-,-)r) a Hilbert space
of functions on M on which the evaluation mappings h +— h(z) for all x € M are
continuous, there exists a unique symmetric map K : M x M — R such that for each
(x1,...,7x) € R, the matrix (K (z;, ;) )1<4,j<k is non-negative definite, such that for each
x €M, K(z,-) €T and for each h € T, (K(x,-),h)r = h(x) (see Appendix F of [Jan97]
for more details). The map K is called the reproducing kernel of T'. Consider (¢y)xen
a Hilbert basis for I'. Then, for each z € M and each k € N, (K (z,),¢¥x)r = ¢¥r(z). In
particular, Y, .y ¥r(2)? = (K(z,-), K (z,-))r = K(z,2) < 00 so

K(z,-) = tr(x) .

keN

12



Moreover, if (&)ken is a sequence of independent random variables with law A/(0,1)
defined on a probability space (2, F,P), then, for each x € M, the sum

Fl@) = Gbn(x)

keN

converges in L? to a centered Gaussian with variance K(x,z). More generally, the
function f = >,y &k¥r defines a Gaussian field on M with covariance K, and with
reproducing kernel Hilbert space I' (see Chapter 8 of [Jan97] for more details). We call
f the Gaussian field associated to T'.

Remark 1.1.2. A useful feature of the reproducing kernel Hilbert space perspective is
that for any orthogonal decomposition I'y @ I'y of I', there exists a Hilbert basis of I
that can be split into Hilbert bases of I'y and I's. Consequently, the series defining f
can be split as an independent sum f; + fo where for i € {1,2}, f; is a Gaussian field
associated to I';.

Example. The reproducing kernel Hilbert space for the random trigonometric polyno-
mial fin(t) = ao + V2 (31, ax cos(kt) + by sin(kt)) from Ezvample is the space of
real trigonometric polynomials of degree at most m equipped with the following scalar

product:
2

1
(P.Q) = 5= | POHQWL.
T Jo
We can split f,, into the sum of even and odd parts. Since sines and cosines are L*-
orthogonal, these two parts are independent and we get a decomposition of f,, into two
indepedent components

fm(t) = +

ap + \@Z ay, cos(kt)
k=1

V2 i b sin(k:t)]
k=1

as in Remark[1.1.2.

Now, given any h € T', the series Y, .y (¢, h) converges in L?(T') so the random variable

> &k, )

keN

converges in L?(£2, F,P) to a Gaussian random variable. Its variance is (h, h)r. With a
slight abuse of notation, we denote this random variable by (f, h) and see f as a random
(unbounded) linear form on H. In particular, if C2°(M) C H, we can see f as a random
” distribution”ﬂ on M. It is easy to see that the map h — (f, h) defines an isometry from
I into L%(, F,P). Its image is a space of Gaussian random variables H, and it entirely
determines f since for each = € M, it contains (f, K(x,-)) = f(z). This allows us to
generalize the definition of Gaussian field to the case where I" is small enough for the

3In general, it may not be a weakly continuous linear form on C2°(M).
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evaluation mappings to be continuous. Indeed, we can define a generalized Gaussian
field associated to I' to be an isometry from I to a close subspace H C L%(€Q, F,P) made
up of Gaussian random variables. The isometry condition implies that two generalized
Gaussian fields associated to I' will have the same law so we will sometimes speak of
"the (generalized) Gaussian field associated to I'” to refer to any such Gaussian field.

Example. Let U C R" be a bounded open subset with smooth boundary. By the Poincaré
inequality, the bilinear form (u,v) — [, VuVv defines a scalar product on CZ°(U). Let
H}(U) be the completion of C2°(U) in the induced topology. If n > 2, the elements in
H&(U) need not be well defined pointwise as functions on U. The generalized Gaussian
field on H}(U) is called the Gaussian Free Field on H}(U). For each u € C(U), (f,u)
is a centered Gaussian random variable with variance HVuHQLQ(U). The Gaussian Free
Field will be discussed in more detail in Subsection |1.2.4].

1.1.3 Stationary fields and the spectral measure

A Gaussian field f defined on R" is called stationary if for any v € R", f(- + v) has
the same law as f. Stationary fields arise naturally from geometry if the scalar product
defining the Gaussian field is translation invariant. It is also natural to study such fields
in statistical mechanics where one is concerned with large scale properties of a stationary
field. This usually involves a scaling parameter which is only meaningful if the typical
variation length of the field is the same everywhere. If f is stationary and v € R", for
any z,y € R", K(x +v,y+v) = K(z,y). Thus, K is really a function of the diﬂ"erenceﬁ
y — x. That is, there exists a function x : R” — R such that K(z,y) = k(y — ).
When dealing with stationary fields we will usually use the term covariance function
to denote x instead of K. Bochner’s theorem provides a straightforward characterization
of covariance functions x among real valued functions of R™:

Theorem 1.1.3 (Bochner’s theorem, Theorem 2.1.3 of [CI13]). A continuous function
k on R™ is a covariance function of a Gaussian field on R™ if and only if it is the Fourier
transform of a finite symmetric (non-negative) measure p. That is,

k(@) = plz) = (%1)“ . /R i),

It is usually much easier to check whether p is a finite symmetric measure than whether
Kk is a covariance. Let p be a finite (non-negative) symmetric measure on R"™. Then, the

Fourier transform of p is a covariance function and thus determines a Gaussian field f.
Moreover, p is entirely determined by f. We call p the spectral measure of f.

Remark 1.1.4. Bochner’s theorem has an analog on compact abelian groups which is
easy to prove. As an example, let f be a stationary Gaussian field on S with covariance
k. Then, Bochner’s theorem just says that the Fourier modes of f must be independent.

4The argument of Example holds for any such covariance function. In particular, for any
stationary C' Gaussian field f, for any 2 € R™, f(x) is independent of d, f.
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Let us check that this is indeed the case. For each n € Z, let cn(f) = &= fo% e f£(0)do.
Fix n,m € Z. Then,

E|: A — L oo nf—imep
oD = gz [ | €m0 — g)andg
Replacing ¢ by 7 = ¢ — 6, we get

1 2w 1 2m )

o o /1(7)% ; el =mO=ImT 94 — ¢ (K) O -

In particular, ¢, (k) > 0 and the Fourier modes of f are independent Gaussians whose
variances are the Fourier modes of k.

The spectral measure is useful to decompose the field into independent sums as in the
Hilbert space decomposition in Remark Indeed consider some decomposition p =
p1 + p2 of p into a sum of two positive symmetric measures on R™. Then, if fi; and fo
are independent Gaussian fields with spectral measures p; and p2 respectively, f1 + fo
has the same law as f.

1.1.4 Basic properties of smooth Gaussian fields

In this subsection we present three basic tools often used when studying smooth Gaussian
fields.

e Conditioning;:
Conditioning a random field with respect to its value at a point often leaves a field
with an unknown law which makes it hard to handle. Gaussian fields have the
advantage of behaving well under conditioning.

Lemma 1.1.5 (see Proposition 1.2 of [AWQ9]). Let (£,() = (&1,--+,éN,C1y -+ Cr)

be a Gaussian vector with mean (p,v) = (1, ..., UN,V1,--.,Vp) and covariance
= (gll 212> where X171 18 the covariance of & and Yoo that of (. Assume that
21 2422

Y99 is non-degenerate. Then, the law of € conditioned on ( is that of a Gaussian
field with covariance
Y11 — 212855 B

and mean
(4 $12555 (¢ — V).

In particular, the covariance is deterministic. Moreover, given the explicit de-
pendence on ¢ in the mean, for each bounded continuous function ¢ : RV — R,
E [p(&) | ¢] will depend continuously on ¢ and so will be defined pointwise as a func-
tion in ¢. Thus, for each ¢y € RM we can consider the mean of (£) conditionally
on ¢ = (p and denote it by E [¢(&) | ¢ = (p]. This result extends naturally to Gaus-
sian fields thanks to Kolmogorov’s extension theorem (Theorem 1.1 of [AW09)]).
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One can condition a smooth Gaussian field f, not only with respect to a finite set
of values, but also to values of its derivatives at fixed points, provided what one is
conditioning against forms a non-degenerate Gaussian vector. For example, if f is
a (centered) Gaussian field on R™ with covariance K such that 0; f(0) has positive
variance, then f conditioned on 0; f(0) = 0 is still a (centered) Gaussian field with
covariance

~ B (id® 01) K (z,0) (01 ®1id) K(0,y)
K(l‘,y)—K(CL‘,y)— (61@61)}((0,0) .

Probabilistic transversality:

Intuitively, in a generic situation, two smooth planar curves should intersect on
a locally finite set of points, and two curves in R3 should not intersect at all.
Similarly, two surfaces in R® should not intersect in a generic situation. Transver-
sality theory (see Chapter 4 of [GGT73]) provides a powerful interpretation of this
intuition in terms of dense subsets for the C'*° topology in spaces of mappings.
However, it seems also natural that in the case of a Gaussian field, whose graph
is a random smooth manifold, this intuition should find some interpretation in
terms of almost sure events. This is indeed the case, and one can deal with most
situations of this kind using the following lemma:

Lemma 1.1.6 (see Lemma 11.2.10 of [AT07]). Let T C X be a compact subset
of a smooth manifold X. Assume that T has Hausdorff dimension n and let f :
X — R be a smooth Gaussian field, a.s. C'. Assume that for any v € X, the
covariance matriz of the Gaussian vector f(x) is non-degenerate. Then, for each

y e R"™ as, y ¢ f(T).

As an example, let f : R — R be a stationary Gaussian field that is a.s. C? and
assume that f(0) and f/(0) both have unit variance. Then, g = (f, f') is a.s. C*
and the covariance of g(z) is Iz so Lemma applies and for any £ € N a.s.
g does not vanish on [k, k + 1]. Consequently f has a.s. no critical points on R
with critical value 0. Applying the same reassoning in local charts and in higher
dimension yields:

Lemma 1.1.7 (Bulinskaya’s lemma). Let f be a real valued a.s. C? Gaussian
field on a smooth manifold M. Assume that for each x € M, the covariance of the
Gaussian vector (f(x),dyf) is non-degenerate. Then, a.s., 0 is a regular value of
f. In particular, f~1(0) is smooth.

Of course, there is nothing special about the level set 0. The lemma is just as true
for other level sets.

The Kac-Rice formula(s):
Consider f a Gaussian field on R™ and for each t € R, set D; = {z € R" : f(x) >
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t}. Fix U € R™ a bounded open subset. What can we say about the volume of
D, NU? Firstly, for each k € N, k > 1,

Vol (Dt N U)k = /k ]l[f(xl)zt} cee ]l[f(xk)zt]dxl ‘e da:k . (1.1.1)
U

Taking expectations, by Fubini’s theorem,

E [Vol(DmU)ﬂ :/ Plf(z1) > t,..., flag) >t das ... doy.
Uk

The integrand now depends explicitely on the finite dimensional marginals of f so

it is more tractable than the whole set D;NU itself. In particular, if f is stationary

and f(0) has unit variance,

E[Vol (D, N U)] = (1 — &(t)) Vol(U)

where ®(t) = % t+°o e=%"/2ds. While higher moments are less explicit, the inte-
gral expression gives some information in various asymptotic regimes like ¢ > 1,
Vol(U) > 1 or k > 1. But what about the set f~!(¢)? This set is more tricky
to study since it is a hypersurface so its size should be measured in terms of the
(n—1)-dimensional Hausdorff measure #"~!. However, Equation can be re-
placed by the co-area formula (see for instance Theorem 13.4.2 of [BZ8§]). Taking

expectations leads to the following Lemmas:

Lemma 1.1.8 (The Kac-Rice formula, see for instance Theorem 6.8 of [AW09]).
Let f be an a.s. C* Gaussian field on R™ such that for each v € R", K(z,x) > 0.
Let U C R™ a bounded open subset. Then,

+2
67 2K (z,x)

B[ (e U+ f) = )] = [ Blldas] | ) =1 e

where | - | denotes the Fuclidean norm.

The |d, f| term is a Jacobian coming from the coarea formula (see Theorem 13.4.2
of [BZ88]) and the Gaussian term with the denominator is just the density of f(x)
at t. The Kac-Rice formula admits many generalizations: to higher moments,
where, as in the toy model D; N U, the integral becomes a multiple integral, to
higher dimensions and codimensions were f is vector valued and one considers sets
of the form f(x) € A where A has a certain Hausdorff dimension, to integrals
against a measure absolutely continuous with respect to the Lebesgue measure
and to manifolds (using partitions of unity). An important example is counting
the number of critical points of f. This is just H° ({z : d,f = 0}) and admits a
corresponding Kac-Rice formula (see [Nic15]). We will not provide more general
statements here but Lemma [1.1.8| can be thought of as a token for a wide array of
similar formulas for computing integral quantities depending on the level sets of f.
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1.2 Random sums of eigenfunctions and the Gaussian
Free Field

In this section, we will present the results from Chapters and 4] which correspond
to [Rivi8b], [Rivi8a] and [Riv17| respectively.

Just as a stationary field on R™ is determined by its spectral measure, one can define a
Gaussian field on a compact Riemannian manifold by specifying its distribution along
different eigenmodes of the manifold, that is, the joint law of its L? scalar products
against the different eigenfunctions of the Laplacian. By Bochner’s theorem, the Fourier
modes of a field on the circle must be independent for it to be stationary (see Remark
. The natural analog, here would be to require that coefficients in the eigenmode
decomposition of the field to be independent gaussian, in which case the field is de-
termined by the sequence of their variances. The behavior these fields could reflect
interesting properties of Laplace eigenfunctions and eigenvalues. We will start with a
brief discussion of Laplace eigenfunctions and eigenvalues (see Subsection. We will
then present several examples families of Gaussian fields defined by taking random linear
combinations of Laplace eigenfunctions in various ways (see Subsection . Next, we
will discuss a few classical arguments used when studying the topology of the level sets
of these fields (see Subsection [[.2.3] One particular family of Gaussian fields defined
here behaves like the Gaussian Free Field which shows up in statistical mechanics. The
following subsection (Subsection will be a short introduction to the the Gaussian
Free Field. We will provide some motivation, define several variants of the Gaussian
Free Field and state some results that inspired the work described here. Lastly, in Sub-
sections [1.2.5] [1.2.6] [T.2.7] and [T.2.8, we will present the author’s contributions to this
topic.

1.2.1 Spectral theory of elliptic operators

Let (M, u) be a closed manifold of dimension n equipped with a smooth positive density
w1 and a differential operator A of positive order m acting on M. Thus, in any local
chart U, there exists a family (aa)qend aj<m Of smooth functions on U such that for
each u € C°(U) and each z € U,

Au(x) = ) aa(z)(—i0) u() .

laj<m

Assume that A is elliptic in the sense that its principal symbol o 4(x,§) = szm aq(x)€E%,
defined for (z,£) € T*U ~ U x R™ takes positive values as long as £ # 0, and that A is

symmetric on L?(M, u). For example, if M = R” and A = A = -9 — .- — 2 is the
Laplace operator, then, oa(z,£) = [¢|? = &2 + -+ + £2. We could also take for example
A=0t+...0f =202 + -+ — 202, in which case o4(z,£) = & + -+ + &L The fol-

lowing classical result is a combination of the spectral theorem for compact self-adjoint
operators, of the compact Sobolev embeddings and of elliptic regularity:
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Theorem 1.2.1. There exists an unbmounded, non-decreasing sequence (A)g>o of real
numbers, and a sequence (Yi)g>0 of smooth functions on M such that

e The sequence (Vy)r>o0 is a Hilbert basis in L*(M, ).

e For each k > 0, Ay = Mpop. That is, the i, are eigenfunctions of A with
etgenvalue \.

The chief example is the following: if g is a Riemannian metric on M, p = |dVy]| is
the corresponding volume density and A = A the Laplace operator (with the convention
A = —div (V-)), then the theorem applies. In this particular case, the distribution of the
(A&)k>0 and the geometric properties of the (¢)r>0 are of great importance to physics
and mathematics since they appear naturally in the wave equation, the heat equation
and the Schrodinger equation. On the one hand, their behavior is constrained by the
eigenvalue equation they satisfy, which leads to some universal results, and on the other
hand, their appearance in these physical equations intertwines them with the geometry
of (M,g) in mysterious ways. Here are a few emblematic results that illustrate these
principles.

e The equation Ay = A\ satisfied by 1, implies that the nodal set Z, = wk_l((])
of ¢y is a smooth hypersurface up to a set of zero (n — 1)-Hausdorff measure.
Courant’s nodal domain theorem restricts the topology of M \ Zj, (and therefore

of Zk)

Theorem 1.2.2 (Courant, see Chapter 6, paragraph 6 of [CH89|). For each k € N,
the complement of Zy, has at most k + 1 connected components.

The estimate is sharp (up to a constant factor) and there are examples of sequences
of eigenfunctions for which M\ Zj has a bounded number of connected components
(see for instance [Ste25], [Lew77] or [EJNOT]).

e Yau’s conjecture concerns the order of growth in A, of H"1(Z}).

Conjecture 1.2.3 (Yau, Problem 74 of [Yau82]). For each Riemannian manifold
(M, g) there exist two constants C1 = C1(M,g) > 0 and Cy = C3(M,g) < 400
depending only on the area of M such that for each k € N,

CiN? <HY(Z) < Con?

So far, the conjecture has been confirmed in the case of real analytic manifolds
[DES8S|, the lower bound has been established [Logl8a] and the best known upper
bound is [Log18b].

e Hormander’s local Weyl law is an assertion about the Schwartz kernel of the L?
spectral projector onto the space spanned by the v for which A\; belong to some
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prescribed interval. It actually holds in the general case when A is an elliptic op-
erator as described above. More precisely, for L € R, let Er(z,y) be the Schwartz
kernel of the L?(M,u) orthogonal projector onto the space Vi spanned by the
eigenfunctions 1, for which A\; < L, also known as the spectral function of A.
In other words, Er, : M x M — R is characterized by the property that, for each
u € C°(M, ), the following integral is well defined

/ Er(, y)uly)du(y)
M

and is equal to the L?-orthogonal projection of u onto the space V7, spanned by the
1y, such that A\, < L. By definition, the sequence (Er)1>0 completely characterizes
the eigenfunctions and eigenvalues of the Laplacian. This orthogonal projector was
studied by Hormander in [H6r68], with later refinements by many authors (see
[Vas84, Xu04, [GW1T]). In particular, we have the following result:

Theorem 1.2.4 (Hérmanderﬂ, Theorem 5.1 of [Hor68]). Consider local coordi-
nates in M such that p agrees with the Lebesgue measure in these coordinates. Let
o4 be the principal symbol of A in these coordinates. Then, for each compact set
Q CR", a,f € N" and each R € [0,+o0[ we have, uniformly for w € Q, |h| < R
and L > 1,

1 )
0% E, <w7w+ Lfn/mh> _ L<n+|a|+|5|>/mw / - (i€)*(—i)Pe 1) g
o4(w,§)<1

10 <L(n+\a|+|m—1>/m) .

In particular, the map h — L~™™E (w,w + L_"/mh) converges as L — +00,
uniformly for w € Q, in the C*>°-topology of the ball {h € R™ : |h| < R}, to the

function
1

—i<h7§)d§
e .
(2m)" /U'A(wvf)gl

Moreover, considering different measure preserving local charts for each variable of
Eyp, for each compact subset W of M x M\ {(xz,z) : x € M} and each o, B € N",
uniformly for (z,y) € W,

0° ® 0°Ep(z,y) = O (L<n+la\+|ﬁ|—1>/m) ,

In the case of the Laplacian, under some dynamical assumptions on the geodesic
flow of (M, g), the O may be replaced by a o so we can recover the leading term for
Er, — E;__ ;172 which is the Schwartz kernel for the orthogonal projector onto the

®The actual statement given by Hérmander and used in the proof describes the function Er, on a
macroscopic neighborhood of the diagonal, though the full statement involves a couple of long definitions
so we do not make it here.
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space generated by eigenfunctions )y such that Ay €|L — cLY/?, L]. This was done
originally in [Saf88] on the diagonal, and recently completed in [CHI15] [CH15] (see
Theorem 1 of [CH15]).

The quantum ergodicity principle asserts that when the geodesic flow of (M, g)
is ergodic, eigenvalues should equidistribute in the following sense.

Theorem 1.2.5 (Quantum ergodicity, [Shn74], [Zel87], [Col85]). Assume that the
geodesic flow of (M, g) is ergodic. Then, there exists a sequence (k;)en of density
omﬂ such that for each U C M open subset,

Vol, (U)
=400 VOlg(M) ’

/ [, () 21V, | (M)
U

More generally, for any self-adjoint pseudo-differential operator P of order 0 on
M, with principal symbol op € C*°(T*M),

_ Jsenrop(z, €)dpc(z,€)
s Wi (@) P (2) AV () —— Joony A (.€)

where dug is the Liouville measure on the unit cotangent bundleﬂ S*M.

One might wonder whether one could take k; = [ for each [. This phenomenon
is called quantum unique ergodicity. As it turns out, there are a few counterex-
amples, but Rudnick and Sarnak have conjectured that it holds whenever (M, g)
has negative sectional curvature (here are a few results in that direction (see for
instance [Lin06],[Ana08] and [AKN09])).

Quantum ergodicity asserts that on a manifold (M, g) with a ”chaotic” geodesic
flow, most high frequency eingenvalues should equidistribute. In [Ber77], Berry
conjectured that their fluctuations should be Gaussian, and more precisely, that
they should locally behave like monochromatic random waves (which we will define
in the next section). This statement is somewhat enigmatic since eigenfunctions
at a given frequency are deterministic. Recently, Ingremeau suggested a possible
interpretation in [Ing17]. In any case, this conjecture has motivated a lot of research
concerning monochromatic random waves and smooth Gaussian fields in general.

1.2.2 Some Gaussian fields related to the Laplacian

Starting from Laplace eigenfunctions, one can define various Gaussian fields, whose
covariances functions have a certain spectral interpretation. Here are some examples of
such fields.

SWe say that a sequence (ng)ren has density one i

Card{keN : np <N}
i . 1.
T—+o00

"The Liouville measure is just the product of the measure |dVg| on the manifold with the hypersurface
measure on the fibers of S*M. It is invariant by the geodesic flow (see Proposition 5.3.6 of [KH95])
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e Monochromatic random waves:
As will be apparent later, this model is archetypical of what ”choosing a random
eigenfunction with eigenvalue A on a compact manifold” should be like locally at
scale A™1/2. Let p be the uniform probability measure on the unit sphere in R™.
The random monochromatic wave is a Gaussian field f with spectral measure p.
Thus, for each z,y € R",

EU@IW]= [ ).

Since for cach w € S™ 1, Ay (eie=vw@)) = ¢ile=vw) R[(Af(z) — f(2))*] = 0 so as.,
we have Af = f. Thus, f is a random (generalized) Laplace eigenfunction in R™.

¢ Random spherical harmonics:

To actually choose a random fixed frequency eigenfunction on a compact manifold,
Laplace eigenvalues must have some multiplicity (otherwise the function will be
deterministic up to a constant factor). The following model is among the simplest
to have this property. On M = S? with the standard metric, the eigenvalues of
the Laplacian are of the form [(l + 1) where | € N. The eigenspace E; associated
to I(I + 1) has dimension 2[ + 1. Equip E; with the L? scalar product on S?. A
random spherical harmonic is a random function f; in E; chosen with the standard
Gaussian measure and normalized so that its value at any point has unit variance.
The covariance function for random spherical harmonics is defined as follows. For
each lS€2 N, let P, = ﬁdd—)él(x2 — 1)! be the I-th Legendre polynomial. Given
X,y € )

Elfi(2) fily)] = Pi({z,y))

where (-, -) is the Euclidean scalar product. Another way of building f; is to take
(Y m)m an L?-orthonormal basis of S? and (&.m) a family of independent centered
Gaussians with unit variance and to set

1
fi T Em &.mYi,

e Band-limited random function:
This time, take (M™, 1) a closed manifold with a smooth positive density p and A
an elliptic differential operator of order m, symmetric with respect to the L2(M, )
scalar product. In general, eigenfunctions will be simple so it does not make
sense to take a random eigenfunction. Instead, we can look at random sums of
eigenfunctions with eigenvalues in a given interval. More precisely, given I C R an
interval with a finite upper bound, let V; be the linear span of the eigenfunctions
1 of A such that A\ € I. Then, this space is finite dimensional. To define a
band limited-random function f; endow it with the L? scalar product on (M, 1)
one can choose a function at random in V; with the standard Gaussian measure.
As before, a standard way of building f7 is as a linear combination of the elements
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of an orthonormal basis of V;. Here, we can take ({x)x a sequence of independent
centered Gaussians with unit variance and set

fr=">" &b

A€l

In particular, for each x,y € M,

Elfr () fiw)] =Y vu(@)nly) = er(@,y)

A€l

where ey is the Schwartz kernel for the L2-orthogonal projector onto V;. For
I =] — o0, L] with L — o0, €]—o0,z] = £, which was described in Theorem m

Recall that Theorem implies that the covariance function Fy, of f)_., 1) con-
verges as L — +oo in C™ at scale L~Y™ around any point w € Q to an explicit
function after renormalization, at a rate uniform in w. This means that the field
(Lin/me]—oqL] (w+ Lfl/m:v))m (read in the same charts as Ep), will converge in
C*°, at a rate uniform in w € €2 to a smooth field on R" with covariance

1 .
l<(13—y7.£>
T,1) > n/ e dg .
e 2m)" Joa(we)<1

We can also choose other kinds of intervals by taking advantage of the above
theorem. For instance, for each t € [0, 1] and each L > 0 f};1, 1) will have covariance
eyr,r) = Fr — Eir, which satisfies

1

e w+L_1/m:c,w+L_1/m _ / ei<x_y7§>d Ln/m+0 L(n—l)/m .
hL’M( y> (27‘-)” t<oa(w,£)<1 5 < >

Cut-off fractional Gaussian fields:

In the previous example, the reproducing kernel Hilbert space of the function
fl—oo,r) 18 the space VI, generated by eigenfunctions vy such that A\ < L and
equipped with the L?(M, ) scalar product (see Subsection[1.1.2)). Let (€2, F,P) be
the probability space on which it is defined. For each u € L?(M, ), ((fl—oo,L]> W) L2) LeR
is a sequence of Gaussian random variables that converges in L? as L — 400
to a centered Gaussian random variable with variance [|ul|3,. Thus, the map
u = (fj—co,r]> u) 2 from L*(M, p) into L*(€2, F,P) converges weakly as L — +00
to an isometry. This isometry is an instance of the generalized Gaussian field as-
sociated to L?(M, ), also known as the L? white noise on M. Thus, fl—oo,] 18 @
smooth approximation of the L? white noise on M. But the white noise is part of a
natural family of Gaussian fields indexed by s € R, which are just the generalized
Gaussian fields associated to the Sobolev spaces H*(M) or H§(M) (the subscript
0 stands for zero-mean on each connected component). The regularity of these
Gaussian fields depends on the value of s (see |CI13]). We will now extend the
previous construction to define smooth approximations of the fields on H§(M).

23



The case H®(M) is similar but the construction is slightly less natural. For each
s € R and each L > 0, set

for= > %@/}k

0<A\, <L 'k

whose covariance is
1
Ki(z,y)= ) o Ve@)vr(y)-

o< <L 'k
We call this the cut-off fractional Gaussian field because of the eigenvalue cut-off
A < L and the possibly fractional exponent —s/2; so the field f typically converges
in fractional Sobolev spaces. It is also a reference to the fields studied in [CIL3].
The results of this section pertain to cut-off fractional Gaussian fields.

e Monochromatic waves on compact manifolds:
Consider the setting of Theorem where A is the Laplacian. As mentioned
above, under some dynamical assumptions on the geodesic flow, the O in the
remainder term in the asymptotics of £ may be replaced by a o. Using this
estimate, in [CHI5, [CH18], Canzani and Hanin study the field

f[L—cL1/2,L} = Z Erthr

L—LY/2<)\,<L

for some fixed ¢ > 0. This is in a sense as close as we can get to choosing a random
fixed frequency Laplace eigenfunction on a general compact manifold. They prove
in particular that, in measure preserving local charts

1

L]_i)rfoo ,d-n)/2g |:f[L—cL1/2,L] (L_1/2x> f[L—cLl/Q,L] (L_1/2y>} _ R /Sn_1 €i<x—y,w>dp(w)

where dp is the surface area measure on the sphere. In other words, as L goes to
infinity, the field L(l_”)/zlf[Lchl/z’L] (L_l/Q-) converges in law to a monochromatic
random wave.

1.2.3 Topology of nodal sets of Gaussian fields

The study of roots of random polynomials dates back to the work of Kac [Kac43]. As
the subject developed, people started studying the nodal set of multivariate polynomials
and general random fields. The books [AW09] and [AT(7] are a testimony of the many
developments in the topic. Over the past twenty years, however, many new ideas coming
from geometry and analysis have changed the field (see for example [SZ99], [NS09],
[GW1I], [GW16al], [GW16D], [NS16]). In this subsection, we will review some of the
techniques used to describe the topology of the zero set of Gaussian fields. Throughout
the discussion, we will consider f a smooth centered Gaussian field with covariance K on
a closed Riemannian manifold (M, ¢g) of dimension n, and will occasionally assume that
f is non-degenerate in various ways. The symbol Z; will denote the nodal set f ~1(0) of
f and Bo(Zy) will denote the number of connected components of Zy.
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e The first tool is the Kac-Rice formula mentioned earlier (see Lemma .
This formula has many variants which give integral expressions for expectations of
critical point or zero set densities of f. Here is an application first used in [Nic15].
First of all, by Lemma m, if for each x € M, the Gaussian vector (f(z),d,f) is
non-degenerate, Zy is a.s. smooth. Let Crit(f) be the set of critical points of f.
Then, it follows from either Theorem 2.2 of [Nic15|] or from Theorem 6.8 of [AW09]
applied in local charts that

Ewdemﬂﬂﬂ=/;EWkﬂﬂdﬂﬂ!%Jzohmﬂmu%(@-

Here, 74, ¢ is the density of d,f in (T:M,g;'). The importance of this formula
comes from Morse theory. Indeed, since f is Morse, the number of connected
components of Z; is no greater than the number of critical points = of f such that
f(z) > 0. But by symmetry, the expected number of positive critical points is half
the expected number of critical points. In particular,

Bln(Z) < 5 [ EIQet@()] | dof =002, 0ldVyl@).  (121)

Note that while the left-hand side is a topological quantity, the right-hand side is
an integral quantity. One only needs to know the law of the two-jet of f at each
point. The conditional expectation can then be explicitely computed in terms of
derivatives the covariance K at (z,z) (see Lemmal[l.1.5) and the expected absolute
value of the determinant of a n x n Gaussian random matrix. Using this argument,
in [Nic15], Nicolaescu proves the following theorem:

Theorem 1.2.6 (Theorem 1.1 of [Nic15]). Let (M, g) a closed Riemannian man-
ifold of dimension n > 1. For each L > 0 fr, be the band-limited random function
on (M, g) associated to the Laplacian A (as defined in Subsection acting on
L*(M,|dV,|) and associated to the frequency interval [0,L]. Then, there exists a
constant 0 < C,, < 400 depending only on n such that as L — 400,

E [Card(Crit(fr,))] ~ CnVoly(M)L™?.

In particular,

limsup L™"%E [8y(Zy, )] < C,Voly(M).
L—+4o00

This approach has many variants. For instance, one can instead fix p: M — R a
Morse function and compute the expected number of critical points of given index
of pz ; using another version of the Kac-Rice formula. Using the Morse inequalities,
this calculation gives upper bounds on the Betti numbers of Z as well as an integral
formula for the expected Euler characteristic of Z;. This technique was introduced
in [GW17]. If one is interested specifically in the Euler characteristic, one can use
the Gauss-Bonnet theorem to express the Euler characteristic as an integral over
Zr, and apply the Kac-Rice formula to this integral. This was used in [Let16al.
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e While critical points are useful to provide upper bounds on the topological complex-
ity of Zy, they cannot possibly provide lower bounds. Indeed, one could imagine
that Zy is an extremely corrugated connected hypersurface of M. This would pro-
duce many critical points and make the absolute curvature explode while leaving
the topology unchanged. To produce lower bounds, the main technique used so
far is the barrier method, which is more ”"hands-on”. More precisely, one fixes
an open domain D C M and finds a way to decompose f as an independent sum

f=E&h+Jo (1.2.2)

where £ is Gaussian, h is deterministic and vanishes transversally along some hy-
persurface ¥ C D and fp is a smooth Gaussian field. Given this data, if fy is
C'-small and € is large enough, then, f will vanish along a hypersurface isotopic
to X in D. This gives lower bounds for the probability that f has a topologically in-
teresting zero set in D. In particular, if D1, ..., D; are disjoint open domains of M
on which one has managed to implement this method, then, for each i € {1,...,k},
one obtains a; > 0 such that P[Z; has a connected component inside D;] > a;, so
that:

k
El5(Z)] 2 Y a;.
=1

Of course it is not always possible to obtain a decomposition such as . As-
sume that the measure of f gives mass to some function space V' where one can
find h € V with the required properties. Then, the orthogonal decomposition
principle described in Remark yields the desired decomposition. This ap-
proach was popularized by [NS09] and later used in [GW14], [LL15], [GW16b] and
[SW16] among other places. For instance, using this method, in [GWI16b|, Gayet
and Welschinger prove the following result:

Theorem 1.2.7 ([GW16b]). Let (M, 1) be a closed manifold with a smooth positive
density and let A be an elliptic pseudo-differential operator of order m >0 on M.
Let g be an auziliary Riemannian metric on M such that |dV,y| = p. Let (fr)r>o0
be the sequence of band-limited functions associated to A on (M, ) on the intervals
[0, L] for L > 0. Then, for each compact hypersurface ¥ of R™ there exist constants
c=c(X,A,M)>0and0< R=R(X,A, M) < +o0 such that for all large enough
values of L, for allx € M, the probability that there exists a connected component of
Zy, diffeomorphic to ¥ included inside the geodesic ball of radius L~Y™R centered
at x is at least c. In particular,

lim nf L™Y™E [By(Zy,)] > 0.

—+00

Note that when A = A, m = 2 so Theorems [[.2.6] and [1.2.7] together prove that
for the model of E[Bo(Zy,)] = L%, A variant of this approach, already
implicitely present in [GW1G6b], is the spectral measure decomposition. If one

26



can approximate f in local charts by a stationary field f , then one can use the
decomposition described in Subsection to construct an expression close to
(1.2.2)) (see for instance [NS16] or [FENTT]) .

The last approach we will mention is the method of local averages. It is partic-
ularly useful to prove concentration results around the mean for topological and
metric properties of the zero set of sequences of Gaussian fields such as those pre-
sented in Subsection [1.2.2] It was first used in [NS09] and later in [NSI6] and
[SW16] . This approach proceeds in two steps. To begin with, one has to prove
that there are not too many large connected components. This is done using the
Kac-Rice formula: let R > 0 be smaller than the cut-locus of M and cover M with
© (R™"Voly(M)) geodesic balls of radius R. Any connected component of diame-
ter larger than 2R must intersect one of the spheres binding these balls and thus
create a connected component of the zero set of f restricted to this sphere. We
can then apply to obtain an upper bound for the number of such connected
components. To understand why this upper bound could be useful, let us assume
that f typically oscillates at scale 0 < % < 1, so that, uniformly for z € M, in
orthonormal coordinates around z, for each ¢ € N and each multiindex a € N,
Var (9;0%f(x)) < r=2 Var(9*f(x)). Then, the right hand side of will be of
order R"~1 x Voly,(M)R™™ x 17" = Voly(M)r"~1/R. Indeed, the total surface of
the R-spheres is of order R"~! x Voly(M)R™" and the integrand is a quotient of a
homogeneous polynomial of degree n — 1 in the second derivatives of the field by a
homogeneous function of degree (n —1)/2 in the covariance of the first derivatives
of the field. Leaving aside the possibility of cancellation in these integrals, as well
as the effect of the conditioning, the integrand should be of order 1/r"~!in r. On
the other hand, the barrier method tells us that the total number of connected
components should be of order 7—™. Thus, if we choose R so that 7r1="/R < r~",
or equivalently R > r, then the number of components of diameter larger than R
will be a negligible fraction of the total number of components. This allows one
to estimate By(Z¢) by the integral of a local quantity: Let So(Z¢, R) be the num-
ber of connected components of Zy of diameter at most R. We have established
that for R > r, this was a good approximation of 5y(Z¢). Also, for each x € M,
let 55(Z¢,R,s) be the number of connected components of diameter at most R
included inside the ball of radius s centered at x. Then, for each € > 0,

/ E[ﬂg(zvav R)]
v Volg(B(z, R))

|dVy|(z) .

(1.2.3)
Many of the models presented in Subsection have the property that they vary
at a natural small scale » and that when blown up to that scale, they converge
to a universal model. In that setting, (1.2.3) already suggests that E [5y(Z¢)] will
be equivalent to some universal constant times Volg(M) x r™. In [NSI16], Nazarov
and Sodin go one step further. Indeed, in the limit, most examples from Subsec-
tion [1.2.2]| actually converge to stationary fields. In that setting, using ergodicity
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arguments, they show that 8y(Z) converges in L'. More precisely, they prove the
following theorem.

Theorem 1.2.8 (Theorem 1.1 of [NS16]). Let f be a stationary Gaussian field on
R™ with spectral measure p. Assume that p satisfies the following conditions:

— The measure p has finite fourth moments:

/ €4 p(€) < +oo.
Rn

— The measure p has no atoms.

— The measure p is not supported on a linear hyperplane.

Under these three conditions, there exists a constant v = v(p) > 0 such that, a.s.
and in L', as R — +oo0,

Ng ~ v x Vol [B(0, R)] . (1.2.4)

Moreover, assume there exists a finite, compactly supported Hermitian measure p
with spt(p) C spt(p) and a bounded domain D C R? such that F(mw)ap < 0 and
F(u)(xo) > 0 for some xog € D. Then v > 0.

From this theorem, using the local average method, they prove in a general setting
of parametric ensembles (f ) with stationary local limits such as those presented
in Subsection that 8y(Zy,) asymptotically concentrates around its mean in
the L' sense.

1.2.4 The Gaussian Free Field

In some exceptional situations, the fractional Gaussian field converges in the sense of
distributions to the Gaussian Free Field (or GFF). In these cases, some of the properties
of the GFF are shared by the fractional Gaussian field. The Gaussian Free Field appears
naturally when trying to model a random interface between two fluids unaffected by any
exterior forces. The idea is to see this interface as the graph of a function f : U — R,
where U is some bounded open subset of R" with smooth boundary. The Gaussian
Free Field should be a random system with Hamiltonian H(f) = [, |Vaf|*dz. The

corresponding Gibbs measure should therefore be proportional to e~ H( )df where df
should be some kind of Lebesgue measure on the space of functions. This of course
is badly defined, but can be interpreted as follows. First, notice that he Hamiltonian
is a non-negative quadratic functional. Restricted to C2°(U) it is actually positive so
f can be thought of as a random distribution on U such that for each u € C*(U),
(Vf,Vu) is centered Gaussian with variance H(u). More formally, a version of the
Gaussian Free Field (a.k.a the GFF) on U with Dirichlet boundary conditions is (as
in Example , a probability space (€2, F,P), a subspace H C L?(Q, F,P) containing
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only centered Gaussian random variables, and an isometry H}(U) — H, where H}(U) is
the closure of C2°(U) with respect to the scalar product (u,v) = [;;(Vu, Vo). The same
construction works on a closed connectedlﬂ Riemannian manifold (M, g) replacing C2°(U)
by the space C3°(M) of smooth functions with zero mean on M. More concretely, if
(Ak)k and (¢g)r>0 are the eigenvalues and eigenfunctions of the Laplacian on (M, g) (as
in Subsection , then, by Stoke’s formula (and given our sign convention for A), for
each k,l e N, k,1 > 0,

/M (A 20, VA 20 ) v = 2202 /M B AV |

— (/)12 /M ATAA

= Okt -

Thus, the family ()\,;1/2@Z1k),\k>0 forms a Hilbert basis for H}(M). In particular, if (&)
is a sequence of i.i.d. N(0,1) random variables, the following series converges a.s. in the
space of distributions to the Gaussian Free Field:

€k
> et
>\k>0 Ak
The covariance function of the GFF, while a priori not well defined as a function, can be
defined as a distribution, acting on C°(U x U). Consider the case where U C R™ is an
open bounded subset with smooth boundary (the case of a closed manifold is of course

very similar). Then, the covariance of the GFF should be some symmetric distribution
G € D'(U x U) such for each uy,uz € C°(U),

| [ e vy = E((f)f.0)
Taking u; and ug of the form u; = Av; for some v1,ve € C°(U), by definition of f,

E[(f, Avi)(f, Ava)] = (v1, Avg)

SO

/U/UG(:U’y)Avl(x)AW(y)dxdy:/Ul(LU)sz(x)da:.

U

By Stoke’s formula, applied along the integral in y to the left-hand side, we get AG(x,-) =
0. Therefore, G is the Green function of the Laplace operator on U. This function has
explicit expressions for different shapes of U but its degree of regularity depends only
on the dimension (see for instance (5.10) of [Joh50]):

8The definition works as well for non-connected manifolds but we must impose that functions have
zero mean on each connected component. Moreover, the full theory can be recovered by taking indepen-
dent GFF's on each connected component of the manifold.
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e In dimension one, G is continuous.

e In dimension n > 3, the Green function is singular on the diagonal and G(z,y) =<
|z —y[>~™ as |z — y| — 0.

e In dimension two,
G(z,y) = —log(|z — y|) + Qu(z,y) (1.2.5)

where Qp is the unique symmetric function on U x U, harmonic in each variable,
which coincides with log(|x — y|) whenever, x € OU or y € OU. Furthermore, if
® : U — U’ is a conformal isomorphism and Gy and Gy are the Green’s functions
on U and U’, then, we have (see [Ber15]):

Gu (2(-),®(-)) = Gur -

We say that the GFF is conformally invariant in dimension two. We will not
dwell any further on this matter since it is not related to the contents of this thesis
but more information can be found in [Arul5] and [Sepl7].

Of course, since the initial motivation was to model a random interface via the graph
of f, having f be a distribution is hardly satisfying. To deal with this issue, one can
regularize f. Here are three possible regularizations:

e The Discrete Gaussian Free Field or (DGFF): In this solution, one discretizes
space. Take U C R™ an open bounded subset with smooth boundary. For each
N > 0, let Uy = NUNZ" In general, the DGFF is well defined on finite
regular graphs with different boundary conditions. Here, we will focus on Z" with
Dirichlet boundary conditions associated to Upy. Hence, in this discussion, for
each N > 0, DGFF on Uy with Dirichlet boundary conditions will be a random
element ¢y in the space of functions RZ" that vanish outside of Uy, i.e, a real
valued function on the vertices of Z™ that vanishes outside of Uy. On the graph
Z™ there is a discrete Laplacian A, defined as Au(z) =3, ;-4 u(z) —u(y) (here
|z — y| is the Euclidean distance between x and y) from which one can define the
Hamiltonian Hy(¢n) = %ZveUe on(z)Apn(z) by analogy with the continuous
Hamiltonaian H(f) = [,;|[Vf|* = [, fAf. Since the space of functions on Uy is
finite dimensional (recall that U is bounded), the Gibbs measure e N (®N)dgy is
well defined. This solution is well known, and has the advantage that it retains
many of the algebraic properties of the GFF. It is indeed a regularization since,
by a Riemman sum argument, one can show that the measure ), i, ¢n(v)dy/n
converges weakly to f in distribution when N — +oo (up to a multiplicative
constant).

e The Smoothed Gaussian Free Field or (SGFF): As its name suggests, this
solution amounts to taking a sequence of smooth (or at least somewhat regular)
kernels I.(x,y) such that the operator Lu — [, I.(-,y)u(y)|dVy|(y) converges to
the identity as € — 0 and setting f. = I.f. This solution, while less common, has
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been used in the case of circle averages of the GFF (see [Werl4]) or in the case of
a smooth convolution kernel to study Liouville Quantum Gravity (see for instance
[BerlT]). It has the advantage that its is naturally coupled with the GFF and is
defined over the same base space. However, it loses most algebraic properties of
the GFF.

e The Cut-off Gaussian Free Field or (CGFF): The idea here is to take the
series representation of the GFF defined above and to truncate it so as to obtain
a smooth function. That is, we approximate the GFF by a sequence (f1)r~o of
smooth fields defined as
3
fo="Y —=tx.
0< <L Ak
While mentioned in a couple of surveys ([Sch07] and [Zell3]), to our knowledge
there are no results concerning this random field prior to this thesis. It is a par-

ticular case of the fractional Gaussian fields introduced in Subsection for
s=1.

Here is not the place to present a full panorama of the results concerning the Gaussian
Free Field. We will just mention three different research topics where a lot of progress
has been made in the past ten years:

e Starting with Schramm and Sheffield’s papers [SS09], [SS13], on the two dimen-
sional GFF and DGFF, people have been studying level sets of the Gaussian Free
Field. Schramm and Sheffield considered the field on simply connected proper sub-
domains of C with boundary conditions in which they cut the boundary into two
arcs where the field must take values +\ and —\ respectively. This forces the field
to have an interface separating these two level sets. In [SS09], they prove that, for
an adequate choice of A, the discrete level lines converge in law to a certain explicit
process called SLE(4). In [SS13|] they give an indirect definition of the continuum
level line (which is not obvious since the field is a distribution) that has the law
of SLE(4) by construction. These papers have lead to a systematic study of level
lines of the (continuum) GFF by Aru, Sepilveda, Werner, Holden, Lupu, Miller
and many others.

e Let f be the Gaussian Free Field with Dirichlet boundary conditions on a simply
connected bounded domain D C C with smooth boundary and take v > 0. Let
dz? be the Euclidean metric on D. Liouville Quantum Gravity (or LQG) on Q is,
formally, the square Q equipped with the metric tensor €7/ dz2. The associated area
measure can be defined by a renormalization procedure (see for instance [RV10]
and [DS11]). It is linked both to the Brownian map and to the KPZ formula (see
[Gar13] and the references therein for more details). In recent years, a lot of effort
has been put in better understanding the links between the GFF and Liouville
Quantum Gravity (see for instance [DMS14], [DKV16] and [KRV17]).
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e There is also an independent genealogy of works, starting from [BDGOI] and
[Dav06] among others, culminating in works like [BDZ16] and [BL1§|, that aim
to describe the behavior of the maximum of the DGFF on a discrete box and the
process of the points where it takes its extremal values, as well as the probability
that it does not vanish on a box (see Subsection for more details). These
results are quite robust and seem, at their core, to be related to log-correlated
Gaussian fields (as suggested for instance by [DRZ17]).

Let us consider By = [~ N, N]?NZ? a discrete box seen as a graph. Let ¢ be the DGFF
on By. Then, in [BDGOI], Bolthausen, Deuschel and Giacomin, prove the following
theorem:

Theorem 1.2.9. Let Q CJ0,1[2 an compact subset with smooth boundary. For each
NeN, N>1 setQn ::QH%ZQ. Then, as N — +00,

PVz € Qn, ¢n(z) > 0] =exp <—78rcap[o,1]2(9)(1 +o0(1))In (N)2>

where .
copjo(@) = int { JIVul3 s w e C2(0.1), w1}

This theorem is later used by the authors to study the field ¢ conditioned on staying
positive on a given domain €2. In order to prove Theorm they prove the following
estimate on the supremum of the DGFF:

Theorem 1.2.10. Let 2 CJ0,1[* be a compact subset. Let (¢n)n be the DGFF on
U =]0,1]2.

e For each n > 0, there exists § = d6(n) > 0 such that for all large enough values of
N,

P [néz]iVX(bN > \/EIH(N)-FUID(N)] <N,

o For each n > 0 there exists ¢ = c¢(n,§2) > 0 such that
8 2
P |maxéy < 1/ In(N) — nIn(N)| < exp (—c(ln(N)) ) .
Qn ™

The variance of ¢x(x) for a fixed x is of order In(N) and the supremum of N? inde-
pendent Gaussians with unit variance is of order y/In(N) so the upper bound In(N) =
VIn(N) x y/In(N) is not surprising and indeed follows from a union bound. The lower
bound is trickier because the field has non-trivial correlations at large distances. The
proof uses the spatial Markov property of the DGFF. Theorem has been followed
in the past eighteen years by a sequence of steps leading up to a description of the law
of the maximum coupled with the set at which it is attained (see [BDZ16] and [BLIS]).
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1.2.5 Computing the covariance function for cut-off fractional
Gaussian fields f

The results presented here correspond to those of Chapter@ which corresponds to [Rivl8b).

As explained in Section to handle a Gaussian field, one should start by looking
at its covariance function. In this section, we describe the asymptotic behavior of the
covariance function of cut-off fractional Gaussian fields when the cut-off threshold goes to
infinity. The guiding example is that of the CGFF on a closed manifold (see Subsection
, which converges to the GFF. Since the GFF behaves qualitatively differently in
dimension two and since this dimension is the first one for which the Green’s function is
not continuous, it should also appear in the following calculations. Actually in general,
this ’critical dimension’ coincides with the order of the operator. More precisely, let
(M, p), A, (Yr)k>0 and (Ag)r>0 be as in Theorem m Take (&k)r>0 a sequence of
independent centered Gaussians with unit variance and for each s € R, L > 0,

far= > %wk.

0<A,L<L Mk
Then, the covariance function K} for f, 1 has the following asymptotic:

Theorem 1.2.11 (Theorems 1.1 and 1.2 of [RivI8b] or Theorems and|2.1.2). Write

both Kj and o4, the principal symbol of A, in measure preserving local coordinates.

1. Assume that s < n/m. Fiz a compact subset 2 of the local chart and R €0, +00].
For any w € Q and z,y € R™ such that |z|,|y| < R, for L > 0 large enough, let
Kme(x,y) = LS_"/sz (w + L Ymy w+ L‘l/my). Then, for each o, 5 € N,

fel 8 s _ 1 i(x—y,&) (ig)ﬂt(_ig)ﬁ —-1/m n
(a ®0 )KmL(:c,y) & /U o g O (L In(L) )

wheren =1 if s = (n+|a|+|B|—1)/m and 0 otherwise, where |a| = a1+ -+ oy,
and where £* = £ ... 8. The estimate is uniform in w € Q and z,y € R”

such that |x|,|ly| < R. Moreover, for each € > 0, uniformly for x,y € Q such that
|z —y| > €, and for each L >0,

(aa Q aﬂ) K3 (z,y) =0 <L(n+\a|+|5\*5*1)/m ln(L)”) )

2. Assume now that s = n/m. Then the same result holds as long as («, ) # 0.
Moreover, there exists a smooth positive valued function g4 on M x M such that,
uniformly in (x,y) € M x M,

K (2,5) = gae,y) [m (2/7) =1y (L1"]z = y1)] + 0(1).
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Here, Iny(t) := max{ln(t),0}. The function ga is defined as follows. For each
x €, let St =oa(x,-) (1) and let dw the area measure on S:. Then,

1 xl / mdw +/ mdw
@m)r " 2\ Js; [Owoalz,w)| - Jss [Ouoaly,w)| |

Finally, there exists a bounded symmetric function @ : £ x Q — R such that for
any k > 1, L>1 and x,y € Q such that |x — y| > kL~1/m

K3 (z,y) = —ga(z,y) In (jz — y|) + Q(z,y) + O (H—l/k)

uniformly in x,y € Q, Kk > 1 and L > 1, where k =1 forn =1 and k = m for
n > 2.

In particular, more generally, the behavior changes when s = n/m. When s < n/m,
the result is analogous to the case s = 0 described in Theorem that is, the kernel
converges in C™ at spatial scale L~'/™ when rescaled by L5~"/™. In this case, the high
eigenvalues seem to predominate, which would explain the L~* factor in the growth order
of Kj. On the other hand, for s = n/m, the kernel exhibits macroscopic correlations
with a logarithmic singularity near the diagonal, smoothed at scale L™Y/™. For example,
in the case of the Laplacian, on a compact surface, we have

e for s < —1, in measure preserving local charts, as L — 400,

1 .
li 5 1Ks 12 712, = / ile=y.8) |e| =54
lim (w+ 720w+ L71%) g o eI

and the convergence is locally uniform in w and is in the C* sense. Notice that
since s < —1, the integrand is L' at 0 so it is well defined.

e for s = —1, the covariance function has a logarithmic singularity around the diag-
onal, smoothed at scale L=Y2. In other words, if fr is the CGFF in dimension 2,
for each x,y € Q,

ELfu(@) 1) = Ki(@.9) = 5=t [(L72) = Iy (L4202 = )| +001)

This is not surprising since in this case, K7 converges in distribution to the Green
function on M, which has a logarithmic singularity on the diagonal exactly in
dimension n = 2.

Proof sketch for Theorem[1.2.11
The proof of Theorem [1.2.11] is based on the following observation. If one considers
K1(z,y) as a distribution in L, then

LK1 (z,y) ZA Ve (@)Y (y)or=r, = L~ Zwk (Y)0r=r, = L 0L K] (2,y).
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But K9 is just the spectral function Ej, which was computed by Hérmander in [H6r68].
The ideas will be clearer if we forget about the derivatives and focus instead on estimating
K7 itself. As a first try, one might plug Hormander’s asymptotic in the identity 0r K7 =
L™%0p F, and one would get the right polynomial order of growth, but this would be
cheating since the asymptotic with respect to L and the derivative with respect to L
need not commute, and this brash approximation would thus miss the logarithmic term
in the case s = n/m. To make this rigorous, Kj must be expressed as a function of EJ,
without the derivative, for instance by integrating by parts along the L variable:

L
K; =L °Ep + s/ A TIEAN 4 0(1). (1.2.6)
1

The order of growth of Ey as described in [Hor68] (see also Theorem |1.2.4)) is of A™/™
near the diagonal. In particular, on the diagonal Ep(z,z) = C4L™™ 4+ O (L"/mfl)
where C'4 > 0 is a positive constant. Thus,

L
KZ(JU,J/‘) = CA (Ln/m—s + S/ )\n/m—s—ld)\> +0 (Ln/m—s—l) ]
0

When s < n/m, we have K7 (z,z) < L"/™=s whereas when s = n/m, the integral grows
logarithmically so K7 (z,x) < In(L), just as announced in Theorem To prove
the case s < n/m of Theorem 1.2.11|7 we need to extend this calculation to a L~1/™-
neighborhood of the diagonal. Theorem w works up to distance L~/™ so for the
case s < n/m, the above calculation works well, with the added (technical) difficulty of
integrating over converging functions. For the case s = n/m, more work is needed since
the statement is macroscopic in scale. First of all, recall that Hormander’s theorem from
[Hor6g| is stated up to macroscopic scale, though the description is not canonical and
not entirely explicit. For simplicity, we will assume that we have the following expression
for E'1, up to macroscopic scale:

1 .
— ’L<{E*y7£>

This is a good toy model since o4 is m-homogenous so applying the change of variables
¢ = L~Y™¢ and assuming that y = L=/™7 we obtain

1 A
Ep(z,z+ L_l/mT) - (2m)m / (z,0)<1 el(T?Qd( i
A(@,0)<

just as in Theorem Let us see what happens if one replaces E, in (|1.2.6)) by the
expression (1.2.7). The L™*Ey, is O(1) since s = n/m. On the other hand, the integral

term looks like .
/ sATS ! / Y gedn .
1 0<oa(x,6)<A

In particular, since o 4 is homogeneous in £ and given the shape of the integration domain,
it seems natural at this point to introduce the change of variables £ = r{ where r > 0
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and o4(x,() = 1. This change of variables reduces the problem to the study of integrals
of the form:
/ eir(T,C) dC
S

where 7 is a unit vector and r > 1. The order of decay of this integral depends on the
singularities of the function & — (7, &) restricted to S}, = {( € Ty M : oa(z,{) =1} If
o(x,&) = [£|™ then the stationary phase formulaﬂ applies. The general case is trickier,
but fortunately we can appeal to the rich theory of oscillatory integrals (see [AGV12]).

1.2.6 Counting connected components of nodal sets of fractional
Gaussian fields

The results presented here correspond to those of C’hapter@ which corresponds to [Rivi8d].

In this subsection, we will explain how to apply Theorem [I.2.11]to the problem of count-
ing the connected components of the zero set of the fields f; r, for a fixed s < n/m in the
limit L — +o0. This problem, motivated by Courant’s nodal domain theorem (Theorem
, was solved for random spherical harmonics in [NS09| in the sense that they gave
a leading term asymptotic for the expectation of nodal the number of nodal domains
and proved its exponential concentration in probability around this leading term. After
this paper various generalizations were provided in [GWT1], [Nic15], [GW14], [GW16D],
[GW16a], [GW1T], [NS16] and [SW16]. In this section, we will be taking a closer look
at [NS16]. Indeed, the assumptions made in [NS16] were axiomatic and covered in par-
ticular, the case of band limited random functions, fo 1. It follows easily from Theorem
that their theorem also applies to fs 1, for s < n/m. However, for s = n/m, other
ideas are necessary. We will start by explaining the context [NS16] work in, state their
result and explain how it applies to the fields we are studying. The results in Chapter
only concern the case where M is a closed Riemannian manifold and A is the associated
Laplacian so we will do so here as well, though is likely that the results apply in to the
general case.

Heuristics:

Before we state the precise results and explain the proof strategy, we will guess what
the answer should be using a heuristic argument. Let Z; be the number of connected
components of [ i(()) The first part of Theorem says that for s < n/2, the

field converges to a local non-trivial limit at scale L~!/2. Therefore, Z; could have a
connected components inside a small ball of radius L~!/2 but not too many. Since we
can fit about L™/?Vol(M) such balls in M, the number of connected components of Z,
should be of order L™?Vol(M).

On the other hand, the second point of Theorem says that for s = n/2, fs 1 varies
at scale L™1/2 but has values that fluctuate logarithmically. These variations create

regions with a low density in connected components in Z;. More precisely, for f, 1, to

9See for instance Section 1.2 of [Dui%6].
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Figure 1.4: Here is a detail of the plot of the sign of a band-limited random function on

1/2 i3 quite apparent in the rate of oscillation of

1/2.

the torus. The local variation scale L~
the interface and it seems to intersect any disk of radius 100 x L~

have a chance to vanish in a small ball B(x, L='/2), first f, z(z) must be O(1). Since it
is a Gaussian of logarithmic variance, the probability of having a connected component
inside a small ball should be of order 1/4/In(L). Thus, the total number of connected
components of Z;, should be of order L™?/,/In(L).

The case s < n/2:

To begin with, in the case of stationary fields on R™, Theorem (Theorem 1 of
[NS16]) says that, under some mild assumptions on the spectral measure p, the number
of connected components of the zero set of the Gaussian field inside a ball B(0, R)
concentrates around aR"™ as R — 400, for some constant a € [0, +oo[. Moreover, they
provide a concrete criterion to prove that a > 0. This is condition (p4) of their Theorem
1 (which is Theorem in the present document). As explained in Subsection m
to prove this result, they first discard large connected components by controlling the
number of intersections of the zero set with large balls, which can be measured via an
integral formula, and then see the total number of small components as an average over
connected components inside smaller balls. This averaging perspective allows them to
apply an ergodic theorem to reach their conclusion. But of course, the fields fy 1, are not
defined on R™. However, Theorem shows that, asymptotically, at a microscopic
scale, band-limited random functions behave like a stationary Gaussian field. More
precisely, consider measure preserving coordinates on a compact subset 2 C M. For
each w € Q and L > 0 let g, 1 = L_1/4f07L (w + L_1/2-). Then, according to Theorem
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Figure 1.5: Here is part of the plot of the sign of the toral CGFF. The local varia-

tion scale L™/ is still present. However, the macroscopic correlations create almost

monochromatic islands with few nodal components.

274 as L — +oo,

E [9w,.()gw,L(y)] = Ko(z —y)

uniformly in w for the topology of uniform convergence of derivatives of any order on
compact subsets with respect to x and y, and where kg is the Fourier transform of the
uniform measure on the unit ball. In other words, g, converges uniformly in w in law
to a stationary field on R"™. The condition (p4) follows from Majer’s criterion, given
Appendix C2 of [NS16]. This is the property that Nazarov and Sodin use to extend
their results to families of Gaussian fields on manifolds in Theorem 3 of [NS16]. But this
property is shared by the fields f; ; for s < n/2. Indeed, Theorem shows that, if
we set gu.sr = L~ Y4 for (w+ L_l/z-), then,

E [gw,s,L($)gw,s,L (y)] — Ks (-77 - y)

where ; is the Fourier transform of the measure [£| 721 ¢2<1)dé. Again, condition (p4)
is satisfied by Majer’s criterion mentioned above and the other conditions of [NS16]’s
Theorem 3 follow directly from the estimates of Theorem [1.2.11} In summary, Theorem
contains enough information to apply the general Theorem 3 of [NS16] and obtain:

Theorem 1.2.12 (Theorem 1.1 of [RivI8D|] or Theorem [3.1.1)). Let (M, g) be a Rieman-
nian manifold of dimension n > 0, fir s < n/2 and let (fs1)r>0 be the cut-off fractional
Gaussian field associated to the Laplacian with parameter s. For each L > 0, let Ny, be
the number of connected components of fs_ i(O) Then, there exists a constant vy, s > 0
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depending only on the dimension n and on the parameter s such that L~™2Ny, converges
in L' to Un,s. In other words,

Ny,
E |: ﬁ — Vn73V01g(M)’:| m 0.

The case s =n/2:

In this case, the field fs; behaves quite differently. Indeed, while for s < n/2, the field
had non-trivial stationary local limits at scale L~"/2 and decorrelated at macroscopic
scale, in the present case, s = n/2, the field becomes asymptotically trivial at scale L2
and retains some correlations at the macroscopic scale. Therefore, Nazarov and Sodin’s
theorem has no hope of working. On the other hand, one can try to adapt the Kac-
Rice approach and the barrier method approach presented in Subsection [1.2.3] Recall
that under a simple non-degeneracy assumption, the zero set is known to be smooth as
stated in Lemma [I.1.7} Using Theorem it is easy to check that f, j, satisfies the
non-degeneracy assumptions needed to apply the Kac-Rice critical point upper bound

(see (1.2.1)):
BN < [ Bt fo)] | dofus = 01, O)ldVil o).

Applying Lemma [I.1.5] the integrand can be expressed in terms of derivatives of the
covariance of fsr at (x,x) which can then be estimated using Theorem The
resulting estimate is of order L™/2. The logarithmic factor does not appear! In order
to be more precise, one must apply a variation of this argument introduced by Gayet
and Welschinger in [GW17]. Instead of looking at critical points of fs one can fix
a function p € C*°(M) with isolated critical points (p could for instance be a Morse
function) and look at its restriction to Zy,. Since Zy, is a smooth submanifold of M, each
of its connected components C is a smooth closed boundary so p|¢ has a critical point.
Therefore, N, is no greater than C,(p), the number of critical points of p; 7, . While this
is a slightly more complicated quantity than the number of critical points of f; 1, it also
has an integral expression as a function of p and the covariance. Using this formula, one
can conclude that there exists C' = C (M) < 400 such that

E[N| <C L 1.2
[Nz] < m (1.2.8)

which is the upper bound heuristically predicted. The reason why this method works
better than just counting critical points is that according to Theorem the deriva-
tives of the field vary at scale L~1/2 so, by just counting critical points, one will not
detect the logarithmic factor that only appears in the values of the field. On the other
hand, here we are really restricting p to the zero level set of fs 1 which is why we see the
logarithmic term appear. A powerful method to show lower bounds on the number of
connected components of Zy, is the barrier method presented in Subsection Recall
that in this method, the goal is to fix a domain, say a small ball B(x,r) in M, and
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to prove lower bounds for the probability that Z; has a connected component inside
B(z,r). In the barrier method, this is typically done by decomposing the field into a
"nice term” and an indepenent fluctuation (see (1.2.2)). Here, that argument is too
crude to work as is. Indeed, as explained in the heuristic argument, for field to vanish on
a ball of size L=/2 around a point z, with good enough probability then, fs,(x) must
be bounded in L, which is quite rare since its variance blows up. In order to counter
this effect, we condition on f, (x) for fs1(z) € [-1,0[. Since fs 1, is Gaussian, its con-
ditional law is explicit and still Gaussian. We want to study the probability that it stays
positive on the sphere 0B (:B,L*U 2). However, given a Gaussian field, it is not clear
in general whether it can stay positive on a given set. To prove this, we use the FKG
inequality. More precisely, to prove the lower bound, instead of B(x,Lfl/ 2) consider
Bz, LY 2p) for some p > 0. If p > 0 is large enough, the conditioned field is positively
correlated on OB(x, L~/2p) and essentially constant on L~1/2 sized hulls on this sphere.
Thus, it stays positive on each hull. If By,..., By is a covering of the sphere by such
hulls, in fact, for a good choice of parameters, for each 7 € {1,..., N}, on the event
fu(x) €)0,-1],

Plfsps;, > 0| fso(z)] > 1/3.

We would like to estimate the probability that f,; stays positive on all the balls B;
at once. To do so, we use the FKG inequality (see Pitt, [Pit82b] or Theorem [1.3.7)),
according to which, the positive correlation of fs, LIOB(z,L-1/2p) implies that, on the event

fs,L(x) 6}07 _1]7

N

P[fs,L|(9BL(x7L*1/2p) ‘ fS,L(O)] Z H]P)[fS,LlBJ > 0 | fS,L(x)] 2 3_N > 0.
7j=1

Taking expectations over fs(z) shows that Z; has a connected component inside
B(z, L~'/2p) with probability > a(ln(L))*l/2 for some a > 0. Summing over such
small balls proves that

Ln/2

In(L)

E[NL] >c
for some ¢ = ¢(M) > 0. To sum up, by reasoning as described above, one can prove:

Theorem 1.2.13 (Theorem 1.2 of [RivI8a] or Theorem [3.1.2)). Let (M, g) be a closed
Riemannian manifold of dimension n > 0, let (fs 1) be the cut-off fractional Gaussian
field assoticated to (M, g) with parameter s = n/2. Let N be the number of connected
components of fs_Ll(O) Then, there exist two constants 0 < ¢ < C' < 400 that depend
only on n such that for each L > 1 large enough,

n/2 n/2
L cmvg <o
In(L) In(L)

c
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1.2.7 Concentration of the maximum and hole probability for the
CGFF 7

Here we present results from C’hapter which corresponds to [Riv17].

For each L > 0, let f7, be the cut-off GFF on a closed surface ¥, introduced in Subsection
By Theorem [1.2.11] in measure preserving local charts, the covariance G, of f,
satisfies

Gl y) = % [in (VL) . (VEIz — )] + 0)
and for all a, 8 € N2, (o, B) # (0,0), (8“ ® 8ﬁ> Gr(z,y) =0 (L) .

In particular, the CGFF has logarithmic correlations and has a natural variation scale
of 1/v/L. We will therefore express this estimate and the following results in terms of
V'L instead of L. From these covariance estimates, one can prove the following analog

of Theorem [[.2.101

Theorem 1.2.14 (Theorem 4 of [Riv17] or Theorem4.1.4)). Let (X, g) be a closed surface
with a Riemannian metric g. Let (fr)r>o0 be the CGFF on (X,g). Let Q@ C X be a
compact subset.

e For each n > 0 there exists § = d6(n) > 0 such that for all large enough values of L,
P [mgx\fﬂ > \/iln <\E> +nln <\E>] < \E_d
T
e For each n > 0 there exists c = c¢(n, Q) > 0 such that

P lmgx\fL\ < \/zln (VL) =nm (VL)| < exp <—cln (ﬁf) .

Intuition behind Theorem [1.2.17}

In Theorem the upper bound follows by a union bound over the all the sites of
the space of definition. The only real property that is used is that the values of the field
at each site have Gaussian tails. To adapt this argument, one can cover X with ﬁ—balls

and, using a Sobolev inequality with the derivative estimates mentioned above, prove
that for each such ball B, E [supp, |fr]] = O <\/1H(\/Z)>. By the Borell Tsirelson-

Ibragimov-Sudakov inequality (see Theorem 2.1.1 of [AT07]), the centered maximum of
the field on By has Gaussian tails. The result then follows as before by union bound.
The lower bound in Theorem [1.2.10]is trickier since it uses the Markov property, which
is not available for the CGFF. Instead, one can restrict the field to a well chosen small
lattice and use Slepian’s lemma (Corollary 2.2 of [AW09]) to show that the supremum
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discretized CGFF stochastically dominates the supremum of the DGFF for N ~ VL.
This approach is inspired by the proof of Lemma 2.8 of [DRZ17].

Theorem is leads to the proof of a version of Theorem for the CGFF.

Theorem 1.2.15 (Theorem 1 of [Riv17] or Theorem[4.1.1). Let (X, g) be a closed surface
with a Riemannian metric g. Let (fr)r>0 be the CGFF on (X,g9). Let Q@ C X be a
compact subset with smooth boundary. Then, as L — +o0,

Plf > 0o0n Q] =exp <—72Tcapz(Q)(1 +0(1)) In (\fL)Q>

where

1
capy, () = inf {2HVUH%Q cueCfP(Y),ulg > 1} .

Proof sketch for Theorem
While the proof of Theorem follows that of Theorem [1.2.10]quite closely, the proof

of Theorem [1.2.15]is only loosely inspired by that of Theorem It is split into two
parts, one for the upper bound and one for the lower bound. For the lower bound, it is
enough to find an explicit event that implies that f; > 0 and that is easy to estimate.
Let us consider for instance the following event. First, let u be a function in the support
of the law of fr, such that u > 1 on €2 and u has zero mean. This is possible for L > 0
large enough. Then, one can decompose f7 as an independent sum

U -

fL gHqu%ﬂ + /L

where £ ~ N (0,1) and fL is a smooth Gaussian field as suggested in Remark and
Subsection (more precisely, fL is the Gaussian field associated to the orthogonal of
u in the Hilbert space associated to fr.). Then, as long as £ > ||Vu/|7, supy fr, fr must
stay positive on Q. It is easy to see that the supremum of f;, is dominated by that of fy,
so one can use Theorem [1.2.14] to control its behavior and obtain the lower bound. To
prove the upper bound for the case of the DGFF, the authors of [BDGO1] partition the
square into small boxes and rely on the Markov property to deduce that the extremes
of the field in separate boxes are essentially independent. We will first explain how to
obtain this independence without the Markov property. Recall that f7 is defined as a
sum with random independent coefficients:

&k
fr = —— .
0<%:<L V Ak

This sum can be split into two independent parts

fo=> \f’wa > wk

0< A\, <L9 Lo<\ <L
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for some small parameter § > 0. Then, the first part is just f;s so its extremes will be
of size O ((5 In (\E)) and it will vary at scale L=%/2. On the other hand, one can show

that the second part, fr, — frs, decorrelates at macroscopic distances, and that, seen at
scale L=%2 it behaves essentially like a CGFF with parameter L'=9. The idea is then
to show that the first sum is negligible and to use the independence in the second sum.
We call Ay, the event that fr,q > 0 and we consider the following dichotomy, depending
on parameters 6 > 0, 7 > 0 and K €]0, +oo[ that we will fix later:

1. The field f;s takes values below (\/g — 77> In (\/f) on a subset of 2 of size at

least % .

2. The subset &1, C Q of points where f;s takes values above <\/g — 77) In <\E> is
large enough: Vol (2\ &) < LTK/Q

In the first situation, one can imagine that there are roughly K boxes of radius L=%/2 on
which f;s takes values below <\/% — n) In (\/f) (at this scale, f;s typically has fluctu-

ations of size O(1)). On each of these boxes, fr, — frs behaves like a CGFF of parameter
L'79 50 by the lower bound in Theorem [1.2.14} there exists a > 0 (independent of §, n, K

and L) so that it will take values below —\/g (1-26)In (\/f) except on an event of prob-

2
ability exp (—aln (\/f) ) Here, if we take 6 < 1/2, the fact that f;, — f;s takes values

smaller than —\/% (1-20)In (ﬁ) on this box implies that f;, takes negative values on

this box so fr, ¢ Ar. Using the fact that fr — f;s decorrelates at macroscopic distances,
we can treat each of these rare events as independent. Thus, on the first alternative,

2
fr ¢ Ar except on an event of probability at most exp <—aK In (\/f) > We then take

2
K > 1 so that P[AL] > exp <—aK In (ﬁ) > Once we have chosen § depending on

n and K to reach this conclusion, we can discard this alternative and move on to the
second one. In this case, the (Gaussian) random variable X7, := [, u(z)frs(x)|dVy|(z)
will be greater than \/g(l —n) (Jou)In (\E) — 2K || frsul|ooL™%%. An estimate similar

to the upper bound in Theorem |1.2.14] allows us ensure that || frsul/eo L %2 = o(1) (as
L — +00) outside of a negligible event so it can be ignored. Now the variance of X7,
converges to oqa(u) = [ [q Gz, y)u(z)u(y)|dVy|(x)|dVy(y)| so by standard Gaussian

tail estimates, as L — 400,
1 /2 Jou? 2
~ 21—ty ( L) .
> 2\/;( n)ag(u) n (VL

In <IP’ [XL > \/3(1—77) (/Qu> In (VL)

It is an exercise in spectral theory to prove that

fQu2 . 00 —
sup{aﬂ(u) cu € C®(X), ulg > O} = capy(Q)
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which yields the upper bound announced in Theorem [1.2.15

1.2.8 Estimating the Bogomolny-Schmit constant for monochromatic
random waves f

The result presented here is that of Chapter@ which corresponds to [IR18]. It is the
result of a collaboration with Maxime Ingremeau.

The number of nodal domains of Laplace eigenfunctions is bounded from above by
Courant’s nodal domain theorem (Theorem presented above). However, no de-
terministic lower bounds are known in full generality. In [Zell6], following the works
referenced therein, Zelditch provides logarithmic lower bounds for the number of nodal
domains on certain negatively curved surfaces. The proof relies on a result by Hezari
and Riviere [HR16] that uses a quantum ergodicity type argument. This suggests that
on manifolds whose geodesic flow is ”chaotic” in some sense, one should have lower
bounds for the nodal set of Laplace eigenfunctions. As explained in Subsection [I.2.1]
monochromatic random waves (defined in Subsection are of special interest for
this question because of Berry’s conjecture. In particular, whenever Berry’s conjecture
holds, information on the nodal set of monochromatic random waves provides informa-
tion of high-frequency eigenfunctions of the Laplacian when the geodesic flow is chaotic.
In [Ing17], Ingremeau gives a precise interpretation for Berry’s conjecture that would im-
ply lower bounds for the number of nodal domains in quantum chaotic eigenfunctions.
This interpretation was inspired by results by Bourgain [Boul4] as well as Buckley and
Wigman, [BW16b]. Bourgain proves this version of Berry’s conjecture holds for a density
one sequence of toral eigenfunctions (although the flow is not chaotic in that setting).
As an application, Bourgain provides a lower bound for the number of nodal domains
of the eigenfunctions on this sequence (see see Theorem 2 of [Bould]). More precisely,
he applies Theorem (from [NS16]) to the monochromatic random wave model. Ac-
cording to this theorem, there exists a constant vpg €]0,+oco[ such that if Ng is the
number of nodal domains of a monochromatic random wave that are contained in the
disk of radius R > 0 centered at 0, then, almost surely,

vB
Ny ~ 2BS « 7R,
47

The "BS” stands for Bogomolny and Schmit, who introduced this constant in [BS02].
However, the proof of this result is not constructive so it gives no information about
the value of vgg. Knowing Bourgain’s result and Ingremeau’s interpretation of Berry’s
conjecture, it would be interesting to estimate the constant vpg. In [BS02], Bogomolny
and Schmit predicted that vpg &~ 0.0624 using an analogy with bond percolation. Nu-
merical experiments later showed that vpg ~ 0.0589 (see [Nasll], [Konl2] and [BK13]),
correcting the predicted value by a few digits. As for rigorous estimates, first, there
is Pleijel’s result optimizing Courant’s theorem for bounded open subsets of R? (see
[Ple56]). It yields the upper bound vpg < % ~ 0.692 (where jo is the first zero of the

zeroth Bessel function of the first kind). More recently [Nic15|, Nicolaescu proves that
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vps < ﬁ ~ 0.288 by counting the expected number of critical points of random spher-

ical harmonics with a Kac-Rice formula (Theorem 2.2 of [NicI5] or (L.2.1)), analogous
to Lemma A possible variation of this result could be, as in [GW1T], to fix a
Morse function p : S — R and count the number of local maxima of P|f-1(0) Where
f is a random spherical harmonic of high degree. In any case, Nicolaescu’s bound is
already only off by a factor of 4, which is not so bad. In comparison, before [IR1§], the
best rigorous lower bound was of order 107319, It was due to Nastasescu, who followed
Nazarov and Sodin’s argument in [NS09| and retraced the constants used at every step.
In [IR18], we improved this result and proved that:

Theorem 1.2.16 ([IRI§] or Theorem [5.1.1]).

vps > 1.39 x 1072,

Proof sketch for Theorem

The proof goes roughly as follows. First, we estimate the probability that a monochro-
matic random wave f does not vanish on a circle of radius » > 0. We do this by first
conditioning on the value of f at the center of the circle and then applying the Kac-Rice
formula (see Lemma to f on the circle itself. Tuning the parameters gives a lower
bound on this probability that is not too small. Finally, if f does not vanish on the
circle of radius r centered at x and if r is between the first two zeros of the zeroth Bessel
function of the first kind, then it is easy to see (using some basic properties of Laplace
eigenfunctions on the plane) that the nodal domain containing x must be included in
the disk bounded by said circle. Estimating the expected size of the set of points x with
this property then leads to a lower bound for vgg.

1.2.9 Further directions

To conclude Section[I.2] here are a few open questions relating to what has been discussed
so far.

e Since [BDGOI], the maximum of the DGFF and the set of points where it takes
extremal values have been studied in great detail (see [Dav06], [BDZ11], [BZ12],
[Dini3], [BDZ16], [BL16b], [BL16a], [BLI4] and [BL1S§]). It has been studied in
the context of the maximum of log-correlated Gaussian fields in general (see for
instance [Acol4], [Madl5] and [DRZ17]). The CGFF has the same scaling limit
as the DGFF and is also log-correlated by Theorem [1.2.11] so it seems quite likely
that most of these results could be adapted to it. Theorem is the first step
in this program. The main obstacle is the absence of the spatial Markov property
of the DGFF, though it could perhaps be replaced by the decomposition described
in Subsection [[.2.7]

e Though the previous question seems promising, it is quite likely that the answer
will be the same as for the DGFF. Something that has not been studied at all
for the DGFF (since there is no clear analog for it) is the component counting
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Figure 1.6: Here the values above 0.30 times the maximum of the CGFF are highlighted
in turquoise. According to (who studies the DGFF), the Hausdorff dimension

of the set {fr > nln (\/f)} should in some sense vary with 7.

process for the CGFF. Roughly speaking, it should be a process that associates
to as subset A of the domain of the CGFF fr, the number Np(A) = "(ng, A)”
of connected components of the zero set of fr contained inside A. This is not
really a measure but is could be approximated by a measure supported on the set
{fr = 0} giving mass one to each connected component (as was done in [NSI16]).
Unlike the case of stationary Gaussian fields for which, as was shown in [NS16],
the component counting process equidistributes, the macroscopic fluctuations of
the field could cause variations in the density of connected components (see Figure
so the scaling limit could be non-trivial.

e In Subsection we restricted our attention to the parameters s < n/2, where
the field had non-trivial stationary local limits, and s = n/2, where the field was
log-correlated. However, for s > n/2 there are still interesting questions to look at.
For instance, if s < n/2 + 1, the field converges in C° but not in C* so its zero set
will probably be fractal but not equidistributed. Indeed, away from the zero set
of the limit, the field f; will, for large enough values of L, have the same sign as
this limit. This will prevent the nodal set from being equidistributed. Moreover,
since the limit is not C', its zero set will probably be rough, which will make the
(smooth) nodal set of f; very long and curvy, which will likely produce lots of
small nodal components. This means that these processes will have non-trivial
scaling limits. Though part of them will probably depend on the geometry (like
the overall distribution of the zero set), the fluctuations could still be universal.
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e Hole probabilities and large deviation results for the size of the zero set have been
studied in many contexts since [BDGOI|] (see [STO05], [NS09], [SZZ0g|, [Nisii],
[GW11], [Nis12], [BNPS18], [FEN17] and [FFNI7]). It could be interesting to
see if similar results could be obtained for the cut-off fractional Gaussian fields
introduced in Subsection [1.2.2] For the CGFF, Theorem adapts the result
of BDGO1]. In this case, the rate function for large deviations contains a capacity
intimately related to the geometry of the field. Perhaps something similar happens
for other models as well.

e This problem dates back to [Sch07] (problem 24). The CGFF is an example of
a smooth field that converges in distribution to the DGFF. In [SS09], Schramm
and Sheffield considered a DGFF on a simply connected domain with boundary
conditions +X\ and —\ on the two halves of the boundary (for A > 0). They
showed that for a good choice of A the zero-level line separating the +A and —A
parts converges in law to SLE(4) as the mesh size goes to 0. One could ask the same
question of a smooth approximation of the GFF with similar boundary conditions.
More formally, consider for instance f7, the CGFF on a simply connected bounded
domain D C C with smooth boundary dD and two marked points a,b € dD. Let
v+ and v_ be the two arcs of D joining a and b and let h be the unique harmonic
function on D with boundary conditions +X on 74 and —A on y_ (where A > 0
must be chosen with care). Then, f 4 h is positive on 74 and negative on y_ and
smooth inside D so there exists a curve vz, on which f7 + h vanishes, and that goes
from a to b. Then, as L — +o0, 71, should converge in law to SLE(4).

e It could be interesting to see if one could prove results about deterministic functions
using results concerning random functions. Berry’s conjecture (see [Ber77]) is
an example of such a possible result (see Subsection . Along these lines,
in [BW16b], Buckley and Wigman prove lower bounds for the number of nodal
components for a density one subsequence of toral eigenfunctions. While proving
Berry’s conjecture itself seems very difficult, maybe even a weaker result, such as
a lower bound on the entropy of the local measures of a fixed eigenfunction could
give new information about the nodal set of eigenfunctions on chaotic manifolds.

1.3 Percolation of Gaussian fields

This section concerns results from Chapters|[6and [7] which are the fruit of a collaboration
with Hugo Vanneuville (see [RVI7a] and [RV17b]). The overarching principle of this
project is to adapt Bernoulli percolation, which is traditionally defined on a lattice (or
more generally on a graph) to the context of Gaussian fields. We will therefore start with
some generalities on Bernoulli percolation in Subsections [1.3.1}, [1.3.2] and [1.3.3] This is
followed by a discussion of decorrelation inequalities for Gaussian vectors in Subsection
In Subsections [1.3.6] and [1.3.7] we present the results from Chapters [6] and
Finally, Subsection [1.3.8| contains a list of questions we think would be interesting to
look at in the future.

47



1.3.1 Bernoulli percolation

Bernoulli percolation is a sprawling topic with classical textbooks such as [Gri99] and
[BROGD]. It can be defined in many different settings. In this short account, planar
Bernoulli percolation will simply be a random i.i.d. coloring of the edges of Z? in
black or white. More precisely, let E be the set of edges of the graph Z2. For each
p € [0,1], Bernoulli percolation is a random element of = {—1,+1}¥ chosen with the
probability measure P, = Ber(p)®® where Ber(p) = pd; + (1 —p)d_; is the Bernoulli law
of parameter p (hence the name). Elements w = (we)eep of  are called percolation
configurations. An edge ¢ € F is open in w or black if w, = +1 and closed or
white otherwise. Research in Bernoulli percolation consists in the study of the large
scale connectivity properties of a random percolation configuration chosen with law P,,.
Possibly the most classical theorem in Bernoulli percolation is Kesten’s theorem:

Theorem 1.3.1 (Kesten’s theorem, [Kes80|). Consider planar Bernoulli percolation on
72 with parameter p € [0,1]. If p > 1/2, then, a.s., there ewists exactly one infinite
connected component made of black edges. On the other hand, if p < 1/2, then a.s.,
there exists no such unbounded component.

Kesten’s theorem comes with a companion result that follows from one of its proofs,
which is

Theorem 1.3.2 (Exponential decay, [Kes80]). Consider planar Bernoulli percolation on
72 with parameter p > 1/2. Then, for each p > 0, there exists c = c(p, p) > 0 such that
for each R > 0, the probability that there exists a continuous black path in [0, pR] x [0, R]
joining {0} x [0, R] and {pR} x [0, R] is at least 1 — e °E,

Such continuous paths are called left to right black crossings, lengthwise black
crossings or just black crossings of the rectangle [0, pR] x [0, R] when there is no
possible ambiguity.

The goal of Chapter [7] will be to adapt Theorems and to the case of Gaussian
fields. In the following subsection we outline a proof of these results using differen-
tial inequalities. We will need three facts that are considered elementary in Bernoulli
percolation:

e The Fortuyn-Kasteleyn-Ginibre or FKG inequality (see [Gri99] or [BROG6D]): By
comparing open edges one can define a partial order on configurations. That is,
for any two configurations w and @ we write w < @ if any open edge in w is also
open in @. Then, one can study events that are increasing for this order. That
is A is increasing if w < @ and w € A together imply w € A. In other words, A is
stable by the operation of opening edges in a configuration. The FKG inequality
says that increasing events are positively correlated. In other words, if A and B
are increasing events,

P,[AN B] > B,[A]P,[B]. (1.3.1)
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The main examples of increasing events we will encounter are the existence of black
crossings of rectangles (as in Theorem . These events are increasing because
if there is a black crossing of a given rectangle in w, turning some white edges black
in w cannot affect this crossing.

e Let O(p) be the probability that there exists a black path connecting 0 to infin-
ity in Bernoulli percolation with parameter p. Then, we claim that the function
O(p) is non-decreasing. Indeed, one can couple Bernoulli percolation configura-
tions of all parameters as the super-level sets of a family (U.).cr of independent
uniform random variables in [0,1]. In other words, for each p € [0,1] the family
(L{y7.>1—p))eck has law Pp. On the other hand, any realization of (U.)ccr makes
the corresponding coupling increasing: if p < p’ are two possible parameters and
e is open at parameter p, it must be open at parameter p’. More generally, if A is
an increasing event, P,[A] is a non-decreasing function of p.

e The graph Z? is self-dual. This means that its dual graph, (ZQ)* is just Z?
shifted by the vector (1/v/2,1/v/2). The edges of Z? and edges of its dual are
naturally in bijection: each edge e intersects exactly one dual edge e* and vice versa.
Given a percolation configuration w on Z?2, one can define a dual percolation
configuration w* on (Zz)* by wi+ = —we. If w is chosen with parameter p, w* is
also a random Bernoulli percolation configuration with parameter 1 —p. With this
in mind, one can already predict that the parameter p = 1/2 will play a special
role.

We will also need a crucial result that describes the situation in the case p = 1/2.

Theorem 1.3.3 (The Russo, Seymour-Welsh theorem, or RSW theorem, see Lemma
4 of Chapter 3 of [BRO6b] or Theorem 11.70 and Equation (11.72) of [Gri99]). Consider
planar Bernoulli percolation with parameter p = 1/2. For each p > 0 there exists
¢ = c(p) €]0,1/2] such that for each R > 0, the probability that there exists a continuous
left to right black crossing of [0, pR] x [0, R] is bounded between ¢ and 1 — c.

Using the FKG inequality (1.3.1]) and the symmetries of the lattice Z?2 it is easy to deduce
the following corollary from Theorem [1.3.3

Corollary 1.3.4. There exist § > 0 and C < 400 such that for each R > 0, the
probability that there exists a black path connecting 0 to a vertex x such that |x| > R in

planar Bernoulli percolation with parameter p = 1/2 is at most CRO.

In particular #(p) = 0 for each p < 1/2, which implies that a.s. there is no infinite
connected component for the same parameters.

This leaves the case p > 1/2 which is the real content of Kesten’s theorem.
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1.3.2 Interlude on boolean functions, influences and the KKL
theorem

Bernoulli percolation concerns events measurable with respect to a finite or countable
number of independent Bernoulli random variables. In particular, finitely supported
events, are just functions f : {—1,1}* — {0,1} for some finite set A, where {—1,1}" is
seen as a measured space with the product probability measure that is Bernoulli along
each factor with the same parameter p € [0,1]. This remark may seem trivial but it
places the topic in a wider context: that of Boolean functions. The proof of Theo-
rem [1.3.1] presented in Subsection hinges on a couple of ideas from the analysis of
Boolean functions. To place these ideas in their proper context, a short discussion of
Boolean functions is in order. The main reference will be [GS14].

Fix N € N and let Hy = {—1,1}". For each p € [0, 1], denote by E, and P, the proba-
bility and expectation of a random element on Hpy whose coordinates are independent
Bernoulli random variables of parameter p. A boolean function is just a function
f:Hn — {0,1}. The hypercube Hy is also equipped with the partial order defined by
comparing each coordinate. That is, w! < w? when for each i € {1,..., N}, w} <w?. A
boolean function f is called increasingiﬂ if w! < w? implies f(w!) < f(w?). One can
couple all the laws (Pp)pe[o,l} together by modelling each coordinate as an independent
copy of 1y>1_p where U is uniform in [0, 1]. This coupling shows that for any increasing
function f, the map p — Ep[f] is non-decreasing. Theorem is a phase transition
result. It implies that, if f : Hy — {0,1} is a crossing event for a 2R X R rectangle
(with N < R? sites), then the function

p= Ep{f]

looks more and more like a step function as N — +oo. As we shall see in Section [1.3.3
this is an illustration of the following general principle from boolean analysis.

If f: Hy — {0,1} is an increasing function that does not depend disproportionately on
any coordinate, then the function p — E,[f] will look more and more like a step
function as N — +oo.

This principle will be cristallized in Theorem below. We first need to introduce
the terms used in its statement. Given f a boolean function and i € {1,...,n}, the i-th
partial derivative 0;f of f is defined as follows: Let w € Hy. Let wi be w with the
ith coordinate is replaced by +1 and let w’ be defined similarly with the ith coordinate
replaced by —1. Then,

0if(w) = f(wh) — flwh) € {=1,0,+1}.

10Given the definition, one might think that non-decreasing would be a more accurate name. However,
since boolean functions are bound to be very much non-injective, none of them are actually increasing,.
With this in mind, it seems sensible to choose the shorter term without the double negative.
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This measures the variation of f as one switches the coordinate ¢ from —1 to 1. The
partial derivatives taken together define the gradient of f, Vf : Hy — {—1,0,+1}.
For g € [1,+oc], and p € [0, 1], the L? norm of a function f will just be

1fllg =By [1F19]Y/9 = Py[f = 1]M/9.

Also, the ¢ norm of the gradient of f will be

N 1/q
IV fllg = (ZEpnaifm) :
=1

Aswith f, for eachi € {1,..., N}, E,[|9; f|7] is just the probability that f(w’ ) is different
from f(w®). This quantity is called the influence of i on f and denote it by I7(f). By
definition,

ID(f) =Ep [|0:f]] (1.3.2)
and |Vl = 323, I7(f).
Following a qualitative result by Russo [Rus82] and a more quantitative version by Kahn,

Kalai and Linial [KKL88], in [BKK'92|, Bourgain, Kahn, Kalai and Katznelson proved
the following result:

Theorem 1.3.5 (|[BKK'92|). Fiz N € N and p € [0,1]. There exists an absolute
constant ¢ > 0 such that for any boolean function f on Hy,

N
SOI(f) > eBy[f = UB[f = 0]log ( L ) .
=1

maxlSiSN If(f)
In particular, ¢ is independent of both N and p.

Now, if f does not depend disproportionately on any coordinate, and if this this remains
true for parameters close to p, then the influences must be O(1/N) on most of this
interval. But if they are indeed of order O(1/N), then Theorem implies

Pplf =1Py[f =01 = O <10g1N)> < 1.

This means that E,[f] must be close to either zero or one. But f is increasing so, if E,[f]
is close to 0 or 1 for most p € [0,1], the map p — E,[f] must look like a step function.

1.3.3 Proof of Theorem the case p > 1/2
In this subsection, we provide a proof of Theorem due to Kesten.

Consider the assembly of homothetic rectangles of Figure Assuming the result of
Theorem because of the symmetries of the Z? lattice and by the Borel-Cantelli
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Lemma, it is almost certain that all but a finite number of these rectangles admit length-
wise black crossings. But these crossings must therefore intersect and form an infinite
black path. To prove that it is unique, we consider a second construction, also made
up of homothetic rectangles, in Figure In this construction, rectangles can be par-
titioned in groups of four. Moreover, simultaneous crossings of the four rectangles in
a given group implies the existence of a black loop inside the annulus formed by these
rectangles, separating 0 from infinity. As before, Theorem [1.3.2] implies that in this
construction, all but a finite number of rectangles are crossed. If C; and Cy are two un-
bounded black clusters, they must intersect all of the large enough annuli formed by the
rectangles. In particular, they will intersect a common black loop, which will connect
them together. Thus C; = Ca, so we have shown that the unbounded black cluster is
a.s. unique. This completes the proof of Theorem The rest of this section will
therefore be devoted to the proof of Theorem [1.3.2

-\

Figure 1.7: A detail from a sequence of homothetic two by one rectangles. Each rectangle
is exactly large enough that one can fit the previous largest one perpendicularly inside
it. Crossings of all these rectangles are shown in blue.

Fix p €]1/2,1] and for k € N, let a;, be the probability that a rectangle [0, 2+1] x [0, 2¥]
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Figure 1.8: A detail from a sequence of homothetic two by one rectangles. Here, the
rectangles are assembled in groups of four forming a kind of frame. This frame is then
rescaled an infinite number of times. Crossings of all these rectangles are shown in blue.

does not admit a lengthwise black crossing. The absence of a lengthwise black crossing of
this rectangle implies the existence of a white crossing from [0, 2¥+1] x {0} to [0, 2¥+1] x
{2*}. Consider the following assembly of rectangles, shown in Figure

e The left rectangles are [—2F, 0] x [0, 251], [—2F%,0] x [-2F~1, 0], [-2F~1, 0] x [0, 2F],
[—2F71 0] x [—2F1 2871] and [—2F71,0] x [—2%,0].

e The right rectangles are five rectangles symmetric to the five left rectangles with
respect to the reflexion along the {0} x R axis.

e The large rectangle is the rectangle [—2F~1, 2F=1] x [—2F, 2F].

The large rectangle is isometric to the rectangle [0, 25%1] x [0, 2¥] while the left and right
rectangles are isometric to [0,2%] x [0,2¥71]. Let us call a widthwise crossing of any
(non-square) rectangle a continuous path inside this rectangle, joining the two longest
sides among its four sides. With this terminology, in the assemblage just described,
any path that induces a widthwise crossing of the large rectangle must also induce a
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widthwise crossing of a left rectangle as well as a widthwise crossing of a right rectangle
(see Figure [1.9). In particular, since the left rectangles are independent from the right
rectangles, by union bound, for each k£ € N,

apy1 < 2503 . (1.3.3)

This induction formula is very powerful since if for some kg € N, ag, < 1/25, then there
exists ¢ > 0 such that a; < exp (—02’“) which yields the conclusion of Theorem m
at least for the subsequence R = 2* and p = 2. Using the FKG inequality, it is easy to
construct yet another gluing scheme that extends this result to any other value p > 0.
Moreover, it turns out that the sequence (2¥); has sufficient density in ]0, +oo] to fill
the gaps and recover the result for all R. We will leave aside this part of the proof and
focus instead on finding ko such that ay, < 1/25.

Let Cross(R) be the event that there is a lengthwise black crossing of the rectangle
[0,2R] x [0, R]. In order to find k¢ such that ay, < 1/25, we will prove the following,
stronger estimate. For each p > 1/2,

P, [Cross(R)] P 1. (1.3.4)

Since there are a finite number of sites involved in the event Cross(R), the probability
of this event depends polynomially in p. In particular, it is differentiable in p. Equation
(1.3.4) will follow from the following estimate:

Claim 1.3.6. Let Fr(p) = Pp[Cross(R)|. Then, there exists a positive sequence (Mpg) g0
such that:

o [I'p satisfies the following differential inequality:

Vp >1/2, Fhr(p) > Fr(p)(1 — Fr(p)) Mg (1.3.5)

o The sequence (Mg)r diverges to +00 when R — +o00.

Indeed, since Cross(R) is an increasing event, F is non-decreasing so, by Theoremm
there exists ¢ > 0 such that Fr(p) > Fr(1/2) > ¢ > 0. Next, by (1.3.5) for any p > 1/2:

P

log (1 — Fr(p)) — log (1 - Fr(1/2)) < / . jq log (1 — Fr(g)) dg < —cMp(p—1/2).

Since Mg R4> +00, this implies that for any p > 1/2, Fr(p) — 1 as R — +oc.
—+00

To establish Claim we will use the ideas of Subsection [1.3.2l Recall that, given
a function f : {-1,1}* — {0,1}, and an edge e € A the influence of ¢ on f is the
probability I.(f) that the state of w, matters in deciding the value of f. More precisely,
given w € {—1,4+1}* a percolation configuration, we say that e is pivotal for f in w if
changing the only value of w, changes the value of f. Then,

IZ(f) := P,le is pivotal for f].

e
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In Subsection [1.3.2] we also expressed influences in terms of partial derivatives of f:
IZ(f) = Ep[|0.f]]. For any event A C Q depending only on a finite set of edges A, 14
can be seen as a function {—1,1}* — {0,1}. In this case, the notation IZ(A) is often
used in place of IZ(1 4). By a simple chain rule calculation, one can check that for any

Boolean function f,
- B

e€EA
If f is increasing, then the partial derivatives are all non-negative so they can be replaced
by their absolute value:
=> I’f (1.3.6)

ecA
This is known as Russo’s formula (see Section 2.4 of [Gri99]). But by Theorem [1.3.F]

there exists an absolute constant ¢ > 0 such that for any finite set of edges A and any
f : {_1’+1}A - {Oa 1}7

D IP(f) = cPylf(w) = 1By[f(w) = 0]log (1) : (1.3.7)

ecA maXeeA Ig(f)

Taking f = Lcyoss(r)], and combining Equations (1.3.6) and ( we get

1
maXecAp Ig(CTOSS(R)) >

where Ag is the set of edges intersecting the rectangle [0,2R] x [0, R]. To establish the
inequality announced in Claim we just need to show that maxeen,, IZ(Cross(R))
tends to 0 when R — +o0 uniformly in p > 1/2. Recall that for each edge e, IF (Cross(R))
is the probability that changing the value of w, changes the answer to the question of
whether or not w € Cross(R). For this to be the case, there must be a white path
connecting the two longest sides of the rectangle, that is interrupted when w, = 1 and
that is completed when w, = —1. In particular, one of the extremities x of w, must be
connected by a white path at distance at least R/2, as shown in Figure

By stationarity and duality, the fact that x is connected by a white path to a vertex at
distance at least R/2 has the same as the probability that 0 is connected by a black path
to a vertex at distance at least R/2, for Bernoulli percolation with parameter ¢ =1 — p.
But for all p > 1/2, ¢ < 1/2. In particular, if Arm(R) is the event that 0 is to connected
to a vertex y with |y| > R, then, for each edge e, each p > 1/2 and each R > 0,

I2(Cross(R)) < P1_,[Arm(R)] < Py o[Arm(R)] . (1.3.8)

Fiy(p) > cFr(p)(1 — Fr(p))log (

The second inequality is true because Arm(R) is an increasing event. Let Mp =
—log (Py j5[Arm(R)]). Then, for each R > 0 and each p € [1/2,1],

Fr(p) > cFr(p)(1 — Fr(p)) Mg .

But by Corollary[1.3.4] Mg blows up as R — +oco which proves Claim and concludes
the proof of Theorem [1.3.1
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1.3.4 What is percolation for Gaussian fields and why is it
significant?

Let f be a continuous Gaussian field on R%. For each p € R, let D, = {z € R?
f(z) > —p}. This defines a random coloring of R? where the set D, is black while its
complement is white.

One can ask whether there is an unbounded black connected component, or maybe an
unbounded connected component of N, = {z € R?* : f(z) = —p} the level set of f
of height p, that would correspond to percolation interfaces between black and white
regions. To make the analogy with percolation more plausible, we impose once and for
all some conditions on f:

e The field f should be stationary (See[1.1.3). This was used almost everywhere in
the proof of Kesten’s theorem and without this restriction, there is no control on
how f could behave at infinity.

e The field f should be symmetric by rotation by some angle in |0, 7[ and by reflexion
through the horizontal axis. This is useful to rotate and flip rectangles in gluing
schemes.

e The field f should be a.s. C'. This helps avoid wild behavior at a local scale and
replaces the discreteness of the space Z2.

There is a fourth condition which is crucial for any percolation techniques to apply but
might not be necessary for the results to be true, which is positive correlation. Indeed, in
the proof of Kesten’s theorem, the gluing constructions all relied on the FKG inequality.
In the case of Gaussian fields, this inequality applies exactly when the covariance is
non-negative:

Theorem 1.3.7 (Pitt, [Pit82b]). Let X = (Xi,...,X,) be a Gaussian vector with
covariance ¥ = (X;j)1<ij<n. A set A CR"™ is said to be increasing if for any x € A and
y € R™ such that x1 < y1,...,%Tn < Yn, we have y € A. Then, the following assertions
are equivalent:

e Foranyi,je{l,...,n}, £;; >0.
e For any increasing Borel subsets A, B C R",

P[X € AN B] > P[X € AJP|X € B].

By standard differential geometry techniques, continuous crossing events may be ap-
proximated by discrete crossing events which depend only on a finite number of sites so
the FKG inequality applies to them as well.
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Finally, the independence of distinct sites in Bernoulli percolation is usually replaced by
a decay of the covariance function, which we will discuss in detail in the next section.

If f satisfies the three basic assumptions and if its covariance function is non-negative
and decays fast enough, at large scales, it should behave like Bernoulli percolation. This
means that Theorems [1.3.3] [1.3.1] and [1.3.2], but also hopefully finer results such as arm
exponents and the scaling limit for percolation interfaces (see Werner’s lecture notes
[Wer09]) should hold for the random coloring D,. Percolation questions for Gaussian
fields have been studied since the eighties (see [MS83al, [MS83b|, [MS86], [Ale96] and
[Gar04]). Alexander obtained the following result in the nineties:

Theorem 1.3.8 (Theorem 2.2 of [Ale96]). Assume that for each x € R?, k(z) > 0, that
fis a.s. C', and that it is ergodic with respect to translations. Assume that for each

p € R, f has a.s. no critical points at level p. Then, a.s. all the connected components
of Dy are bounded.

though the methods used were very soft and general. There was no hope of obtaining such
precise quantitative results as Theorem|[1.3.2] say. The first concrete step in this direction
is an analog of Theorem due to Beffara and Gayet, with a later improvement by
Beliaev and Muirhead [BM18]:

Theorem 1.3.9 (Theorem 4.9, [BG17a] (see also Theorem 1.7 [BM18])). Let f be a sta-
tionary Gaussian field on R?, invariant by 5 rotations and reflection along the horizontal
axis, whose covariance function k is non-negative, C% at the origin and non-degenerate
in the sense that the matriz (9;0;k(0)),<; ;<o is non-degenerate. Assume finally that

for all x € R?, k(z) < Cla|™ for some a > 16 and some C < +oo independent of
x. Consider the random coloring of the plane by D, defined above. Then, there exists
¢ = c(k) €]0,1[ such that for each R > 0, the probability that there exists a black path in
[0,2R] x [0, R] joining {0} x [0, R] and {2R} x [0, R] is at least ¢ and at most 1 — c.

We have stated the theorem with the assumptions of [BMI18] since, leaving regularity
considerations aside, their assumptions are weaker than in [BG17al, where it was as-
sumed that a > 144 4 128logg/4(3/2). This theorem opened the way for other possible
bridges from Gaussian fields into the realm of Bernoulli percolation. Results in this
direction could be interesting for percolation theory since many results that are conjec-
tured to be universal, are proven only for certain lattice models. In the framework of
universality phenomena, it seems relevant to aks which results hold for Gaussian field
percolation. There is also the Bogomolny-Schmit conjecture. In [BS02], the authors
suggested the following:

Conjecture 1.3.10 (Bogomolny-Schmit, [BS02|]). The nodal lines of a planar random
monochromatic wave in R? behave like planar Bernoulli percolation.

This conjecture is surprising and seems very challenging because the covariance k of
planar random monochromatic waves is the zeroth Bessel function of the first kind
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Jo(z) = % f027r eicos(lzlg. In particular, it takes negative values and decays very slowly:

at speed |x|*1/ 2. Therefore, the techniques introduced by Beffara and Gayet do not apply
to it. The significance of the conjecture comes from Berry’s conjecture (see [Ber77]),
according to which, random monchromatic waves should be linked to eigenfunctions of
manifolds with chaotic geodesic flow. So far, there have been no results comparable
to Theorem with weak enough assumptions to hold for random monochromatic
waves, and even if there were, gluing constructions are impossible without FKG. To our
knowledge, the only result holding without the FKG inequality is [?], which holds for
perturbations of fields that satisfy FKG.

1.3.5 Decorrelation inequalities for Gaussian fields

The induction formula on crossing probabilities in the proof of Kesten’s theorem
(Theorem used the fact that the restrictions of w to disjoint sets of edges are
independent. This is obviously false for Gaussian fields, but one can hope for approx-
imate independence in some sense if the covariance K decays at large distance. This
question has some subtleties since, for instance, if f is an a.s. analytic Gaussian field
on R, then the law of f restricted to [0, 1] determines f on all of R. In particular, f
on [0,1] and f on [t,t + 1] cannot be asymptotically independent for ¢ — +o00. In this
subsection we present a few ways to express asymptotic independence for Gaussian fields.

Let B; and By be two balls in R? with diameter R and at distance R. In what sense are
JfiB, and f|p, asymptotically independent when R — +o00?

e A first solution is to consider € > 0 and to replace B; by B = B; N (eZ)?* for
i € {1,2}. The field f should then be replaced by f¢ = f\(aZ)Z' If one is studying
events that are well approximated by events measurable with respect to f¢, then
one can focus on showing that the vectors (f*())zep: and (f*(x))zep; are asymp-
totically independent as R — 4o00. In [Pit82al, Piterbarg proved a result about
decorrelations of signs of Gaussian vectors. Unkowning of this, in [BG17a], Beffara
and Gayet proved a result of a similar nature that was later optimized by Beliaev
and Muirhead in [BMI18]. Still, the best bound turns out to be Piterbarg’s. When
applied to the Gaussian vectors (f°(z))zep: and (f°())zeps, his result implies
that if Ay (resp. A2) is measurable with respect to the signs of (f*(7))zep: (resp.

(f(z))zeBs), then
IP[A; N Ag] — P[A]P[As]| < CRY%*n(R)

where 7(R) = supj, > [k(z)|. In particular, there is a tension between having to
take a very fine mesh to have a good approximation of f by f¢ and preserving the
independence between A; and As. In any case, for the error to be negligible, even
with a very large ¢ < 1, we would need n(R) < R™%.

e To say something about events in the continuum, one should take ¢ = ¢(R) going
to 0 when R — +oo. In [BGI7al, Beffara and Gayet proved a comparison result
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between the topology of discretized and continuous nodal lines. This was later
improved in [BM18] where Beliaev and Muirhead showed that, in some sense,
topological events for the nodal set are faithfullly discretized as long as e(R) =
O(R™'79) for some § > 0. In particular, circuit and crossing events inside the two
boxes B; and Bsy decorrelate as long as

n(R) < CR™%7°
for some 6 > 0.

e A second solution is to find a coupling of f with two fields fi; on By and f; on Bs
such that f; and f; are independent and f|p, is close to f; in the C* topology for
some k € N, for ¢ € {1,2}. This was done in a specific case in [NSV07] (see also
Theorem 3.2 of [BG17b| for a variation of this idea in the discrete setting). During
the elaboration of this manuscript, this method was also implemented to obtain
a quasi-independence result in the continuum for monotonic events (see [MV1§]).
Using this method, in [MV18], the authors show the following estimate. Consider
f a smooth Gaussian R™ with covariance of the form s = q * ¢ where ¢ € L*(R")
is of class C! and satisfies, for each a € N" with |a| < 1 and for each x € R™,
0 < 9%(x) < C|z|=? for some C = C(q) < +oc and some 3 = B(q) > 0. Then,
under some additional non-degeneracy and regularity assumptions on ¢, the field
f satisfies the following quasi-independence estimate. Let ()1 and @2 be two cubes
of sidelength R > 0 and at mutual distance at least R. Let A; and As be two
increasing eventﬂ such that A; (resp. Ag) depends only on fio, (resp. fg,)-
Then, for each § > 0, there exist C' = C’(¢,d) < 400 and Ry = Rp(q,d) < 400
such that, if R > Ry, we have

|]P>[A1 N AQ] — P[Al]]P)[AQH < C/R27'B+6.

This estimate, while stronger than the one presented in Subsection m (see The-
orem , relies crucially the montonicity assumption ¢ > 0 which is absent.
Whether this assumption can be weakened is as of yet unclear and will probably
be the subject of further investigation.

The variety of approaches suggests there is room for improvement, especially if one is
interested in specific kinds of events. In the following subsection, we present a new
decorrelation result, inspired by Piterbarg’s estimate.

1.3.6 Decorrelation for crossings of smooth Gaussian fields §

Here we present results from Chapter [0, which were found in collaboration with Hugo

Vanneuville (see [RVI7d)]).

HThat is, events A such that if f € A and h is positive valued, then f + h € A.
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We will be working in the setting of Subsection and using the notations f, A, and
D,, introduced therein. Let us choose p € R and consider the black and white coloring
of the plane defined by D,. Let Q; and Qs be two translates of the box [0,2] x [0, 1]
at distance 1 from each other. For each R > 0, and for i € {1,2} let Cross;(R) be the
event that there exists a continuous black path inside RQ; connecting the left and right
sides of RQ;. Then, we show that, as long as n(R) := supj, > |s(2)] < 1/2,

|P [Cross; (R) N Crossy(R)] — P [Cross; (R)] P [Crossa (R)]| < CR*n(R) (1.3.9)

where C' < +o0o depends only on k. In particular, the two crossing events are asymp-
totically independent as R — +o0 as long as 7(R) = o(R™%). This is therefore a kind
of continuous analog of Piterbarg’s estimate from Subsection The result is weaker
than that of [MV18] but works in a significantly wider setting since there is no positivity
assumption on the covariance square root (see Subsection for more details). Equa-
tion actually works in a somewhat more general setup, which we now introduce.
Consider k1, ko € N and let (&)19S Ky, D€ @ collection of either rectangles of the form
[a,b] x [c,d] for some a < b and ¢ < d or annuli of the form x + [—a,a]?\] — b, b[* for
some a > b. A left-right crossing of a rectangle [a,b] x [c,d] above (resp. below) level
—p is a continuous black (resp. white) path inside this rectangle, connecting [a, b] x {c}
and [a,b] x {d}. A circuit in an annulus x + [—a, a]?\] — b, b[?> above (resp. below) level
—p is a black (resp. white) jordan curve v : St — x + [—a,a]?\] — b, b[? that separates
x+] — b,b[? from infinity. Finally, in addition to these kinds of events, our result also
applies to component counting events at level —p inside the &;, which are events
measurable with respect to the number of connected components of N, contained inside
&;. We will use the following notation:

k k1+k k k
K= Uiilgi; Ko = Ujlz—zli—lgj; Ci = Ui;ﬁ&-; Ci = Ujlzlaé’j .

We prove the following theorem:

Theorem 1.3.11 (Theorem 1.12 of [RVITa] or Theorem [6.1.12)). Assume that f is
stationary with covariance k of class C® and that for each pairwise distinct x1,. ..,z €
R2, the vector (f(x1),..., f(xx)) is non-degenerate. Assume that f is normalized so that
k(0) = 1. There exist C = C(k) < +00 and d = d(k) < +oo such that the following
holds. Fiz p € R. Let n = supex, yek, |K(x —y)|. Let A (resp. B) be an event
generated by crossing and circuit events above or below level —p as well as component
counting events at level —p in the & fori e {1,...,ki} (resp. i € {ki+1,... k1 +ka}).
If K1 and Ko are at distance at least d, then:

2
10772(1 + |10\)4€*p2 H (Area(KC;) + Length(C;) + ki) .
- i=1

IP[AN B] — P[A]P[B]| <

The proof of this result relies on a general quasi-independence formula for finite dimen-
sional Gaussian vectors originally established by Piterbarg (in [Pit82al) and inspired by
the Slepian inequality (see [Sle62]). In [RV1Ta], we formulate Piterbarg’s formula in a
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new way. To explain this formulation, we will start with the following definition, which
should be reminiscent of the definition of pivotal sites introduced in Subsection for
Bernoulli percolation:

Definition 1.3.12. Let X = (X;)i1<i<n be a Gaussian vector. Fix p € R. Let A C RV
be an event measurable with respect to the signs of X; + p for i € {1,...,N}. Let
r € RV and i € {1,...,N}. We say that i is pivotal for A at z if, by changing only
the i-th coordinate of x, one can find points y, z € RY such that y € A and z ¢ A. We
denote by Piv;(A) the set of x € RY at which i is pivotal for A.

Let k,1 € N and consider a centered Gaussian vector (X,Y) € R¥ x R! with covariance

<§11 glz>. Let Y be an independent copy of Y. Also, fix p € R and consider A C R*
21 2422

belong to the boolean algebra generated by the half-spaces {x;+p > 0} fori € {1,...,k}
and B C R! be generated by the halfspaces {y; +p > 0} for j € {1,...,1}. Piterbarg’s
quasi-independence formula is a comparison inequality between P[X € ANY € B| and
P[X € AJP]Y € BJ. It follows from an interpolation argument. More precisely, for each
t€[0,1], let Z; = (X1, Y:) = (X, V1Y + /1 —1Y). Then, the covariance of Z; is

<211 t212>

t391 Yoo )

In particular, P[Z; € A x B]=P[X € A, Y € B] while
P[Zyc Ax Bj=P[X € A, Y € B] =P[X € A|P[Y € B].

In other words, P[Z; € A x B] interpolates between the two quantities we want to
compare. Let 7 = sup;; [¥12(ij)|. The quasi-independence formula is the following:

Proposition 1.3.13. There exists C' < 400 such that

IP[Z, € Ax B] —P|Zy € Ax B

e ZZ/ [X; € Piv;(A), Y; € Pivj(B) | X;; =Y, = —p|dt.

2771 =1 j—1

In particular, if n < 1/2, there exists C' < 400 such that the right hand side is no greater
than

Cn x kx1xsupP[X; € Pivy(A4), Y; € Pivj(B) | Xy, =Y, = —p] . (1.3.10)
i7j7t
Proof sketch for Theorem |1.3.11
Let us sketch the proof of Theorem [1.3.11| starting from Proposition [1.3.13] To simplify
the presentation, we will assume that k1 = ko = 1 that & and & are rectangles of area

= R? for some R > 1 and that A and B are crossing events. We will focus on the
case p = 0. Let us discretize both rectangles at scale ¢ > 0 and obtain £} and &5 finite
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e-nets covering the two rectangles. Then, k,I < (R/¢)?. Let A° and B° are discrete
approximations of the events A and B that depend only on the signs of X = fe- and
Y = f & respectively. Then, bounding the probabilities in((1.3.10) by 1, we get

IP[X € A%, Y € B*] - P[X € A°|P[Y € B°]| < CnR*™*

which is the result by Piterbarg mentioned in Subsection The key novelty is that
by interpreting the pivotal events geometrically, we are able to control the probabilites
to cancel the e * term. To explain this interpretation, We will fix i € £ and j € £ and

study
supP [X; € Piv;(A%), Y; € Pivj(B®) | Xy =Y;; =0] .
t

We will take the liberty of assuming that ¢ (resp. j) lies in the interior of £ (resp. &5).
For the boundary case the proof is analogous.

Now, A is a discretized crossing event. In particular, it depends only on the topology
of the discretized nodal set. Therefore, x € Piv;(A%) implieﬁ that the discrete field =
has a "discrete saddle point” at ¢. Since our field X is a discretization of f, we interpret
X; € Piv;(A) as implying that f has an e-saddle point near i. On the other hand, the
probability is taken conditioned on f(i) = 0. Given z € R? and & > 0, the Kac-Rice
formula shows that

E[Card{w € D(z,¢) : dyf =0}| f(z) =0] < £2.

We can of course play the same game with intersections of pivotal events in two disjoint
boxes: these imply e-saddle points at two fixed points in different boxes. In particular,

supP[X; € Piv;(A%), Y, € Pivj(B°) | X4 =Y, =0] = 0(54).
t

Since this is a first moment bound, no quasi-independence estimates are necessary. Plug-
ging this estimate into (1.3.10]), we get, for each ¢ > 0,

IP[X € A°, Y € B*] —P[X € A°|P[Y € B°]| < C xn x (R/e)* x e x e = CnR*.

Notice that while the left-hand side depends on ¢, the right-hand side does not. Theorem
1.3.11] follows by letting & — 0.

We applied Theorem [1.3.11] to two problems: First we use the decorrelation estimate
for crossing events to improve the Russo-Seymour-Welsh theorem (Theorem [1.3.9) for
Gaussian fields obtained by Gayet and Beffara in [BG17a] (see also [BM18]).

Theorem 1.3.14 (Theorem 1.1 of [RV17a] or Theorem |6.1.1)). The conclusion of The-
orem[1.3.9 holds for any o > 4.

12When studying crossing events, pivotality will actually imply the existence of an arm connecting
the site i to a point at large distance, as in Subsection [1.3.3} but this is very specific to crossing events.
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The second application is related to Nazarov and Sodin’s result: Theorem [1.2.8/ on the
concentration of the number of connected components of the nodal set of a smooth
stationary Gaussian field. In this theorem, they take a Gaussian field f on R™ and study
the behavior of Ng, the number of connected components of f~!(0) contained B(0, R)
in the ball of radius R > 0 centered at 0. They prove that under certain non-degeneracy
and regularity assumptions on the field R~"Ng converges in L' and a.s. as R — +00 to
a positive constant v € R. However, their theorem says nothing concerning the speed of
convergence. We apply Theorem to a (partial) large deviation bound on Ng. We
prove the following result:

Theorem 1.3.15 (Theorem 1.4 of [RV17a] or Theorem [6.1.2). Let f be a Gaussian
field on R? with covariance k satisfying the assumptions of Theorem . Assume also
that there exists a > 4 and C < +oo such that for each x € R?, |k(z)| < Clz|~2.
Let v = limg_y o R72E[Ng]. Then, for each ¢ > 0 and § €]0,a — 4] there exists
Co = Cy(e,d,k) < +00 such that for each R > 0,

P[Ng < (v—¢)R? < CoRA—o+0

Moreover, if for some ¢ > 0, for each x € R?, |r(x)| < Cexp(—c|z|?), then, for each
e > 0, there exist C; = Ci(k,e) < +00 and ¢1 = c1(k,€) > 0 such that for each R > 0,

P[Ng < (v— e)R2] < Cpexp(—cR) .

Note that this is only a lower concentration result. General upper concentration seems
much more difficult to obtain and might be actually much slower than the lower con-
centration. We highlight the case of the covariance decaying as exp(—ci|z|?) because
it corresponds to the Bargmann-Fock field, which we will discuss in Subsection [1.3.7]
Upper and lower concentration results do exist in some specific cases. See for instance

[NS09] and [GW11].

1.3.7 A sharp threshold result for the Bargmann-Fock percolation f

The results of this Subsection correspond to those presented in Chapter[]. The author
worked on these questions with Hugo Vanneuwville (see [RV17b]).

In Subsectionwe stated Kesten’s theorem (Theorem for Bernoulli percolation.
This theorem says that for Bernoulli edge percolation on Z?2, at parameter p < 1/2 there
is a.s. no unbounded open cluster, while at parameter p > 1/2 there is a.s. a unique
unbounded open cluster. This theorem was followed by a second one, according to which
rectangle crossing probabilities converge to one exponentially fast in the scale parameter,
as long as p > 1/2 (see Theorem [1.3.2)). In [RVI7b], we aimed to prove an analogue of
Theorems [1.3.1] and [T.3.2] for Gaussian field percolation. The prototypical field we had
in mind was the Bargmann-Fock field. This is the smooth stationary Gaussian field on
R? whose spectral measure is proportional to the Gaussian:

pl€) = 5 oxp (1€ de.
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Thus, the covariance of the field is x(z) = exp (—5|z|?). Just as the random monochro-
matic wave introduced in Subsection has a natural interpretation as a local limit
for random spherical harmonics as well as band-limited functions on chaotic manifolds
(see [CH15]), the Bargmann-Fock field has a natural interpretation as the local limit for
random real homogeneous polynomials of high degree. We refer the reader to [BG17a]
for more details. Moreover, the Bargmann-Fock field has two very useful properties:

e Its covariance k decays very fast. In particular, by Theorem crossings
of R-scale rectangles at distance y/3log(R), are asymptotically independent as
R — 400 (though the decay is so fast that one could instead use the previous
estimates described in Subsection and obtain comparable results).

e For each * € R?, we have x(z) > 0 so by Theorem m it satisfies the FKG
inequality, at least for increasing events depending on a finite number of sites, or
those that can be approximated by increasing events depending on a finite number
of sites.

These two properties imply in particular that Theorem holds from the Bargmann-
Fock field. Using this fact as well as the properties themselves, we obtained the two
following theorems. The first is an analog of Theorem [1.3.2

Theorem 1.3.16 (Theorem 1.8 of [RV17bh] or Theorem [7.1.8). Let f be the Bargmann-
Fock field, let p € R and consider the random coloring of the plane defined by the ex-
cursion sets Dy. For each p > 0 and p €]0,+00] there exists ¢ = c(p,p) > 0 such that

for each R > 0 the probability that there is a lenghtwise black crossing of the rectangle
[0, pR] x [0, R] is at least 1 — e~°F.

Theorem had a partial analog for Gaussian fields, due to Alexander (see Theorem
1.3.8). We obtained the missing half of this analog for the Bargmann-Fock field:

Theorem 1.3.17 (Theorem 2.2 of [Ale96], Theorem 1.3 of [RV17b] or Theorem [7.1.3)).
Let f be the Bargmann-Fock field, let p € R and consider the random coloring of the
plane defined by the excursion sets Dy. Then, if p <0, a.s. there is no unbounded black
component. On the other hand, if p > 0, a.s. there is an unbounded black component.

While our approach was fairly general, there was one crucial point where we used more
specific properties of the field. As a result, most of the proof works in a very general
setting but the final result is stated for the Bargmann-Fock field.

For the proof of Theorems[1.3.16]and [1.3.17], we followed the strategy outlined in Subsec-
tion for the analogous theorems in Bernoulli percolation. At each step, we had to
develop analogous tools for Gaussian field percolation. To begin with, since we still have
FKG and since the Bargmann-Fock model is rotation invariant (indeed,  is radial), both
rectangle gluing constructions (Figures and still work and show that Theorem
implies Theorem Therefore, we may focus on the proof of Theorem
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Proof sketch for Theorem
In Subsection the next step was to establish the recursive formula (|1.3.3)) to boot-

strap crossing estimates. In this step of the proof, independence is crucial so Theorem

1.3.11] will help for the adaptation. But for Theorem [1.3.11] to work, in Figure we
need to separate the left and right halfes of the picture a little bit. This means that

the size of the rectangles at each step cannot be exactly 2¥. They have to be somewhat
larger, but not too much if we want to get actual exponential decay. We fix rg > 0 and
define the sequence of scales recursively as

Tk+1 = 27"k + \/ﬁ

Here, the fast decay of x gives us some leeway so the choice ,/r} is somewhat arbitrary.
In any case, this recursive relation implies first that r, > 27y, which in turn implies
that r1 < (2 + 2_k/2r61/2)rk, from which one can prove that r, < C2* for some
C = C(rg) < +o0. All in all, this definition implies that for each k € N,

kg <rp < C2Frg. (1.3.11)
We now consider the following assembly rectangles (see Figure |1.12)):

e On the left, there are seven r;-scale rectangles: [—ry —/Tk/2, —/Tk/2] X [=27}, 0],
[—T’k—\/ﬁ/Q, _\/7Tk/2] X [_Tka Tk}v [_Tk_m/2v —\/ﬁ/Q] x [07 2rk]7 [_Tk_\/ﬁ/z _\/7716/2} X
[1,37%], [=27% — /Tk/2, —/Tk/2] X [=7%, 0], [=21% — \/Tk/2, —/Tk/2] x [0,7%] and
[—2’!”k - \/E/Q, —\/’I”»k/2] X [’I"k,Q’l“k].

e There are seven other rectangles on the right, symmetric to the seven rectangles
on the left by the reflection along the {0} x R axis.

e There is one large rectangle [—744+1/2,7k41/2] X [—(3/2)rk, —(3/2)r% + 27k41]

By Theorem[I.3.11] crossings of rectangles on the left half are independent from crossings
of rectangles on the right half up to an error of order O(e "#/3). Let aj denote the
probability of the absence of a lengthwise crossing of a rp x 2r; rectangle. Reasoning as
in Subsection [1.3.3] one establishes the recurrence relation

Vk €N, a1 < 49a; +exp (—r1/3) . (1.3.12)

By considering by, = max{ag,exp (—rr/6)} it is easy to deduce from Equations ((1.3.11)
and (1.3.12)) that, if ag is small enough, then there will exist Cy = Cy(ag,r9) < +00 and
co = co(ap,ro) > 0 such that for each k € N,

ap < Coexp (—cory) -

Since the sequence (1) grows at most geometrically, this relation quickly leads to the
conclusion of Theorem Thus, we have reduced the proof to finding an initial scale
ro > 0 so that the probability of a lengthwise black crossing of a 2ry X ro rectangle is
very close to 1. Let CrossP(R) be the event that there is a lengthwise black crossing of
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the rectangle [0, 2R] x [0, R]. Just as for Bernoulli percolation, it is now enough to prove
the following relation:

Vp > 0, limsupP [Cross”(R)] = 1. (1.3.13)

R—+o00

In order to follow the same strategy as for Bernoulli percolation, we look some kind of
analog of Russo’s formula . In particular, we need to define an adequate notion of
influence. We start by restricting the field to a fine grid €7 and considering a discretized
versiorﬁ of D,. This is helpful because discrete crossing events depend only on a finite
number of values of the field. We will denote by X® = (X7, ..., X§) the field f restricted
to the sites of the fine mesh inside the rectangle whose crossings we are studying. Recall
that Russo’s formula involved influences Ig of coordinates 7 on boolean functions on
the discrete hypercube at some level ¢ € [0,1] (see ([.3.2)). For any A C {—1,+1}"
and each coordinate i € {1,..., N}, the influence I”(A) can be seen as the size of the
projection of the boundary of A along the coordinate i. The natural analogy for this
interpretation goes as follows. Take U C RY with piecewise smooth boundary U, and
let v be the outward normal unit vector to U defined on QU except for a set of zero
N — 1 dimensional Hausdorff measure. Then, for each ¢ € {1,..., N}, the influence of
ton U is

J(U) = /8U ws(@)| a1 (). (1.3.14)

Here dH™~! is the (N — 1)-dimensional Hausdorff measure. We stress that this is a
notion of influence different from the one one the hypercube. Given A ¢ {—1,+1}" an
increasing subset and p € R, we denote by Ay the event that (sgn(X; +p)), € A and
set JJ'(A) := Ji(Ay). We prove the following formula, valid for all p € R:

—IP’ [A3] = Z JP(A (1.3.15)

This formula is actually valid for any non-degenerate Gaussian probability measure on
RV,

Equation ([1.3.15)) seems like a satisfactory analogy for ([1.3.6), but how far does this
analogy go? Is there a corresponding Theorem for Gaussian vectors? In [KMS12],
Keller, Mossel and Sen prove the following theorem:

Theorem 1.3.18 ([KMS12]). There exists a constant ¢ > 0 such that for any N € N,
the following holds. Let X be a centered Gaussian vector in RN with covariance Idy.
Then, for any event U C RY which is either monotonic or semz’—algebmiﬁ

Z x P[U] x P[-U] .
\/ — log
13More precisely, we work with site percolation on the face centered square lattice where each site is
colored in black if and only if if belongs to Dy, see [RV17b| for more details.

! This means that it belongs to the Boolean algebra generated by sets of the form P~ ([a, +oo[) for
some a € R and P € R[T1,...,Tn].
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In [KMS12], the assumptions on U are weaker and the influences are defined in a different
way but we prove that, for monotonic or semi-algebraic sets U, the definition given in
[KMS12] coincides with. A more serious problem is that in the present context,
the covariance Gaussian vector X°¢ is very different from the identity. Indeed, since f
is a.s. smooth and X¢ was obtained by discretizing f at scale e, one can expect two
neighboring values X7 and X7 to have covariance E[XF X5] =1— O(g?). Moreover, since
k never vanishes, neither does its discretization K., which is the covariance of X. To
solve this issue, we adapt Theorem to general centered Gaussian vectors:

Theorem 1.3.19 (Theorem 2.19 of [RV1T7al]). There exists a constant ¢ > 0 such that
for any N € N, the following holds. Let X be a centered Gaussian vector in RN with
non-degenerate covariance K. Let K be the symmetric matriz square root of K. Then,
for any event U C RN which is either monotonic or semi-algebraic,

N

> Ji(U) = el VEIILy, x PIU) x P[-U] x max ¢ ~10g (IVE lloop i (V)
i=1
Here || - ||oo,0p 5 the operator norm associated to the I°° norm on RY.

The drawback that appears from correlations takes the form of ||[v/K || op. More pre-
cisely, we want to avoid the possibility that this norm is too big. This is the point where
the argument is specific to the Bargmann-Fock model. Let K¢ be the restriction of the
covariance (z,y) — k(x — y) of the Bargmann-Fock field to a fine grid e7. Then we
prove that

IVE|lco,0p = O (ilog (i)) . (1.3.16)

We postpone the explanation of this estimate till the end of the present discussion. The
final ingredient in the proof of Theorem [I.3.1]is to compare the influences of the crossing
event to arm event probabilities (see Equation, which we know decay polynomially.
To do this, we have to reinterpret the geometric influences as pivotal events of
some kind. We actually relate our new influences to the pivotal events from Definition
More precisely, we prove that for any A € {—1,+1}" and p € R,

1 2
e 2Var(xH) P

V27 Var(X?)

Here the conditioning is present because for the coordinate i to influence A, we must
have X7 = —p. Let R > 0, number the sites of €7 contained inside of [0, 2R] x [0, R] from
1 to N and let A = Cross.(R) C {—1,+1}" be the event that if we color the +1 sites in
black and the —1 sites in white, there is a black lengthwise crossing of the rectangle. For
each p € R, Crossl(R) := Ay is then the discrete analog of Cross?(R). Then, Equation

JP(A) = P[X° € Pivi(A) | XF = —p] (1.3.17)
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(1.3.15)), Theorem [1.3.19] Equation ((1.3.16) and Equation (|1.3.17)) strongly suggest that

d
—P D >
a [Cross?(R)] >

ce
| log(e)]

P[CrossE(R)|P[~Cross?(R)] max \/

log C log C) Jf(cmssa(R))> ’ . (1.3.18)

The reason why Equation , does not follow directly from the results mentioned
above is that the operator norm was computed on the whole grid €7 while here we are
considering just the portion of the grid contained inside the rectangle. We go from one
to the other by a Gaussian approximation argument.

In any case we will use as follows. The hope is that either the derivative
probability or the probability itself of CrossE(R) blows up as R — +oo uniformly for
p > 0. The parameter ¢ will shrink to 0 at a rate well chosen with respect to R that is
fast enough for the discrete crossing to faithfully approximate a continuous crossing but
slow enough so that the factor élog (%) does not cause the right-hand side to converge
to 0. The factor P[-CrossZ(R)] is at least 1/2 because p > 0 and we are looking at a
lengthwise rectangle crossing. Finally, using Equation , following the proof of
Corollary we show that there exist C' < 400 and v > 0 such that for all p > 0,
R>0ande>0:
J?(Cross.(R)) < CR™7.

This reduces (|1.3.18|) to

1 d ce
—P[CrossE(R)] > —— /|1 | R=)].
To make either P[Cross?(R)] or its derivative blow up, we just have to choose ¢(R) large
enough for the right-hand side to blow up. For instance, if we could choose £(R) =
log(R)/?~% for some ¢ > 0 we would be done. On the other hand, e(R) = R~® would
make the estimate trivial. Here we face a final difficulty because the discretization
schemes presented in [BG17a] and [BMI§| need ¢ to decrease polynomially in R to work.
Here, we take advantage of the fact that we are working in the supercritical regime: We
compare continuous crossings above level —p to discrete crossings above level —p/2. In
particular, we show that, for € = (R) = log(R)Y**? for some § > 0, as R — o0,

P[Crossp(R)] = P[Cross, 5 (R)] + o(1).
This shows in particular that, for each p > 0, there exists ¢ = ¢(p) > 0 such that for
each R > 1,

P[Cross,(R)] > 1 — exp(—clog!/"(R))

which implies Equation ((1.3.13)).

68



We finish off with a discussion of . First off, notice that K¢ is a symmetric
positive definite map Z? x Z? — R invariant by translations. That is, there exists an
even function x° : Z? — R such that K¢(n,m) = k%(n — m) for all n,m € Z%. To
compute v K¢ it is enough to find a symmetric map 7° : Z2 — R solving the equation

n°xnT =K. (1.3.19)

1

To solve this equation, we consider functions 7¢ and ¢ on ¢ ~!T? whose Fourier series

are n° and x° respectively. Then, (1.3.19) becomes
ﬂEQ = KE.

To find an amenable expression for the right-hand side, one can use Poisson’s inversion
formula and the fact that the Gaussian function is invariant by the Fourier transform.
Rather than detailing this calculation to extract estimate , let us consider the
case where K¢ is an infinite direct product of square matrices of size e 72 x ¢ =2 (assuming
that =2 € N) whose coefficients are all equal to 1. This models the fact that on an e-grid,
each point is at distance O(1) to < =2 other points and that since the Gaussian decays
very fast, sites at larger distances are almost independent from each other. Let M. be
one such matrix. Then, it is easy to see that Mf = ¢ 2M, so that VK¢ = eK¢. Now,
each row of K¢ has 2 terms so that || K¢||s0.0p = £ 2. Consequently, ||vK¢||oo0p = 1,
thus yielding the correct polynomial order of growth in .

1.3.8 Further directions

Theorems [1.3.11] and [1.3.17| leave many questions unanswered and leads to other ques-
tions in percolation of Gaussian field. Here we comp