
HAL Id: tel-02078912
https://theses.hal.science/tel-02078912v1

Submitted on 25 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enriching the internet control-plane for improved traffic
engineering
Chi Dung Phung

To cite this version:
Chi Dung Phung. Enriching the internet control-plane for improved traffic engineering. Networking
and Internet Architecture [cs.NI]. Sorbonne Université, 2018. English. �NNT : 2018SORUS017�. �tel-
02078912�

https://theses.hal.science/tel-02078912v1
https://hal.archives-ouvertes.fr

LABORATOIRE D’INFORMATIQUE DE PARIS 6

ENRICHING THE INTERNET CONTROL-PLANE FOR
IMPROVED TRAFFIC ENGINEERING

Advisor:
Dr. Stefano SECCI

Doctoral Dissertation of:
Chi Dung PHUNG

2018

Thèse

Présentée pour obtenir le grand de docteur de la Sorbonne Université

Spécialité: Informatique

Chi Dung PHUNG

AMELIORATION DU PLAN DE CONTRÔLE D’INTERNET AVEC
DE NOUVELLES SOLUTIONS D’INGENIERIE DE TRAFIC

Soutenue le 30 mars 2018 devant le jury composé de :

Rapporteurs: Dr. Mathieu BOUET Thales Communications & Security.
Prof. Guillaume URVOY-KELLER Université de Nice Sophia Antipolis.

Examinateurs: Prof. Nadia BOUKHATEM Télécom ParisTech.
Prof. Dominique GAITI Université de technologie de Troyes.
Dr. Luigi IANNONE Télécom ParisTech.
Prof. Guy PUJOLLE Sorbonne Université.
Dr. Damien SAUCEZ Inria.

Invité: Mohamed BOUCADAIR Orange.

Directeur de thèse: Dr. Stefano SECCI Sorbonne Université.

LABORATOIRE D’INFORMATIQUE DE PARIS 6

ENRICHING THE INTERNET CONTROL-PLANE FOR
IMPROVED TRAFFIC ENGINEERING

Author: Chi Dung PHUNG.

Defended on March 30, 2018, in front of the committee composed of:

Referees: Dr. Mathieu BOUET Thales Communications & Security.
Prof. Guillaume URVOY-KELLER Université de Nice Sophia Antipolis.

Examiners: Prof. Nadia BOUKHATEM Télécom ParisTech.
Prof. Dominique GAITI Université de technologie de Troyes.
Dr. Luigi IANNONE Télécom ParisTech.
Prof. Guy PUJOLLE Sorbonne Université.
Dr. Damien SAUCEZ Inria.

Invited: Mohamed BOUCADAIR Orange.

Advisor: Dr. Stefano SECCI Sorbonne Université.

I

To my father and my family!

Abstract

One of the major challenges in the evolution of the Internet architecture is the defini-

tion of a protocol architecture that allows to solve the following major issues in Internet

routing and traffic forwarding capabilities: (i) keeping a routing state that is manageable

with current and forthcoming computing infrastructure – i.e., with few millions of states;

(ii) offering a scalable pull architecture in support of data-plane programmability; (iii)

offering a scalable forwarding plane able to be regularly optimized with only active flows

information; (iv) offering locator/identifier separation for advanced IP mobility; (v) is

incrementally deployable; (vi) can enhance the support of over-the-top services.

The Locator/Identifier Separation Protocol (LISP) has been identified as one of the

rising protocols in this respect. In its current status, it supports the above mentioned

requirements at a level that is acceptable for basic networking environments. However, it

shows too limited capacities when it comes to take into consideration fault resiliency and

capability to react fast to network state updates. These shortcomings can be compensated

by enhancing the control-plane architecture, and the routing algorithms therein. In this

dissertation, we propose new protocol features and experiment novel control-plane primi-

tives, as well as hybrid distributed-centralized routing state dissemination algorithms, to

scale with different network conditions.

We first design and build own open source LISP data-plane and control plane node,

comparing it with other implementations, showing how our implementation can scale for

large networks and reach performances suitable for real deployments. We present how our

implementation served to operate all network nodes (data-plane and control-plane nodes)

of a large scale experimentation testbed, the LISP-Lab testbed.

Then we propose a novel LISP-based solution for VM live migrations across geograph-

ically separated datacenters over wide area IP networks. Experimenting it at large scale,

we show that with our approach we can easily reach sub-second downtimes upon Internet-

wide migration, even for very distant clients.

Moreover, we investigate cross-layer network optimization protocols, in particular in

relation with the Multipath Transport Control Protocol (MPTCP) to which LISP can

III

IV

deliver path diversity in support of bandwidth increase, confidentiality support and con-

nection reliability, also using LISP traffic engineering network overlays. Despite we could

benefit from only few overlay network nodes, we could experimentally evaluate our pro-

posals showing the positive impact by using our solution, the negative impact of long

round-trip times on some MPTCP subflows, and the strong correlation between the dif-

ferential round-trip time among subflows and the throughput performance.

Finally, we worked on a framework to improve LISP operation at the Internet scale, by

facilitating cooperation between LISP Mapping Systems and introducing more automation

in the LISP connectivity service delivery procedure. We believe such optimization could

raise awareness among the service providers’ community, yielding new business opportu-

nities related to LISP mapping services and the enforcement of advanced inter-domain

traffic engineering policies for the sake of better quality of service guarantees.

Résumé en Langue Française

L’un des défis majeurs de l’évolution de l’architecture Internet est la définition d’une ar-

chitecture protocolaire permettant d’améliorer le routage, et en particulier (i) conserver

un système de routage gérable avec les technologies actuelles et futures - c’est-à-dire,

avec quelques millions d’états ; (ii) offrir une architecture apte à faciliter la programma-

bilité du plan de transfert ; (iii) proposer un système de routage évolutif pouvant être

régulièrement optimisé avec uniquement les informations sur les flux actifs ; (iv) fournir

une séparation entre localisateurs et identificateurs pour la mobilité IP avancée ; (v) fa-

ciliter un déploiement incrémental ; (vi) mieux servir les services applicatifs ”over-the-top”.

Le protocole LISP (Locator/Identifier Separation Protocol) a été identifié comme l’un

des protocoles émergents à ce égard. Dans son état actuel, il répond très bien aux besoins

susmentionnés. Cependant, il subit des limitations lorsqu’il s’agit de prendre en compte

la résilience et la capacité à réagir rapidement aux mises à jour de l’état du réseau. Ces

inconvénients peuvent être compensés en améliorant l’architecture du plan de contrôle et

ses algorithmes de routage. Dans cette thèse, nous proposons un nouvelle architectures

réseau-système et expérimentons de nouvelles primitives de plan de contrôle, ainsi que

d’algorithmes de diffusion des états, en testant son passage à l’échelle avec différentes

conditions de réseau.

Nous concevons et construisons d’abord un nœud de plan de données et de plan de

contrôle LISP open source. Nous le comparons avec d’autres implémentations en montrant

que notre implémentation atteint des performances adaptées aux vrais déploiements. Nous

montrons comment notre implémentation a permis la mise en oeuvre d’une plateforme

d’experimentation à grande échelle, la plate-forme LISP-Lab, en opération aussi bien les

fonctions de plan de transfert que les fonctions de plan de contrôle.

En suite, nous proposons une nouvelle solution pour les migrations à chaud de machines

virtuelles à travers des centres de données géographiquement répartis sur des réseaux IP

étendus. Des tests dans un testbed réel connecté nativement à Internet montrent qu’avec

notre approche, nous pouvons facilement atteindre des temps d’arrêt inférieurs à la seconde

lors de la migration sur une grande échelle, même pour des clients très distants.

V

VI

En outre, nous avons étudié des protocoles d’optimisation de réseau multicouche,

en particulier en relation avec le protocole MPTCP (Multipath Transport Control Pro-

tocol), auquel LISP peut offrir une diversité de chemins pour l’agrégation de bande

passante, ainsi qu’une plus grande confidentialité et fiabilité des connexions. Bien que

nous ne puissions bénéficier que de quelques nœuds de réseau superposés, nous avons pu

évaluer expérimentalement nos propositions en montrant l’impact positif de notre solution,

l’impact négatif des longs temps d’aller-rétour sur certains sous-flux MPTCP, et la forte

corrélation entre le temps d’aller-rétour différentiel et le débit.

Enfin, nous avons travaillé sur une refonte du plan de contrôle de LISP afin d’améliorer

son fonctionnement du à l’échelle d’Internet, en facilitant la coopération entre le ssystèmes

de mapping LISP et en introduisant plus d’automatisation dans la procédure de fourni-

ture de services de connectivité LISP. Nous croyons qu’une telle optimisation pourrait

sensibiliser la communauté des fournisseurs de services, générant de nouvelles opportu-

nités commerciales liées aux services de cartographie LISP et l’application de politiques

d’ingénierie de trafic interdomaines avancées dans le but d’obtenir de meilleures garanties

de qualité de service.

Contents

Abstract III

Résumé en Langue Française V

Table of contents VII

List of Figures XI

List of Tables XIII

Acronyms XV

1 Introduction 1

2 Routing node design and experimentation 5

2.1 LISP introduction . 5

2.1.1 Data-plane . 10

2.1.2 Control-plane . 11

2.2 LISP implementations . 14

2.2.1 Cisco IOS . 14

2.2.2 OpenLISP . 14

2.2.3 LISPMob . 15

2.2.4 PyLISP . 15

2.2.5 Other implementations . 15

2.3 Enhancement of the OpenLISP data-plane 16

2.4 Control plane implementation and evaluation 17

2.4.1 Control-plane system architecture 17

2.4.2 Control-plane modules . 18

2.4.3 Running the control plane . 20

2.4.4 Evaluation . 22

VII

VIII CONTENTS

2.4.5 Perspectives . 26

2.5 LISP experimental platforms . 26

2.5.1 LISP4.net platform . 27

2.5.2 LISP-Lab platform . 28

3 Large-Scale Virtual Machine Migrations with LISP 31

3.1 Introduction . 31

3.2 Background . 33

3.2.1 Live VM migration and IP mobility 33

3.2.2 Layer 2 over Layer 3 overlay tunneling solutions 34

3.2.3 Triangular routing solutions vs LISP rerouting 35

3.2.4 Existing LISP-based mobility management solutions 37

3.3 Proposed LISP-based VM migration solution 38

3.3.1 Change priority message format . 39

3.3.2 VM migration process . 40

3.3.3 Implementation aspects . 42

3.4 Testbed evaluation . 44

3.5 Conclusion . 53

4 Enhancing MPTCP with LISP traffic engineering extensions 55

4.1 Introduction . 55

4.2 LISP traffic engineering . 58

4.3 Explicit locator path binding modes . 59

4.3.1 Destination-based stateful ELP binding 60

4.3.2 Source-based stateless ELP binding 62

4.4 A-MPTCP overlay provisioning steps . 62

4.4.1 Destination-based stateful ELP binding 63

4.4.2 Source-based stateless ELP binding 64

4.5 Overlay network design . 66

4.5.1 State of the art . 66

4.5.2 Link-disjoint-differential-delay routing problem (LD3R) 67

4.6 Experimental results . 68

4.6.1 Implementation details . 69

4.6.2 Network testbed . 69

4.6.3 Tests characterization . 74

4.6.4 Throughput results . 75

4.7 Conclusion . 77

CONTENTS IX

5 Improving the Inter Domain Management of Locator/ID Separation

Protocol (LISP) Networks 79

5.1 Introduction . 79

5.2 Challenges of LISP operation at the Internet scale 80

5.3 A framework for improving LISP operation at large scale 81

5.3.1 An interconnect framework for a global Mapping System 81

5.3.2 Functional blocks for inter-domain LISP operation 82

5.4 Mapping system discovery . 84

5.4.1 A new LISP BGP community attribute 84

5.4.2 A new interior gateway protocol feature 85

5.5 Negotiation, interconnect and invocation . 87

5.5.1 Negotiation cycle . 87

5.5.2 Novel control plane primitives . 88

5.6 Experimental results . 89

5.7 Perspectives . 91

6 Conclusions 93

Software contributions 95

Publications 97

References 99

List of Figures

2.1 An example of LISP communications between two LISP sites. 10

2.2 LISP DDT mapping system workflow . 12

2.3 LISP DDT example . 13

2.4 System-level OpenLISP control plane multi-thread architecture. 21

2.5 Control plane processing latency as a function of the number of LISP sites. 23

2.6 Insight on the mapping database radix tree structure. 24

2.7 Average number of received. 25

2.8 LISP4.net network, 2018. Source: lisp4.net. 27

2.9 LISP-Lab partners locations. 28

2.10 LISP-Lab platform IP topology. 29

3.1 Triangular routing vs LISP rerouting. 36

3.2 CHANGE PRIORITY message format. 39

3.3 Example of CP signaling exchange during a VM migration. 42

3.4 Testbed network scope. 44

3.5 Bandwidth during migration with SMR and CP approaches. 45

3.6 Total migration duration (boxplot statistics). 46

3.7 Migration duration and downtime composition. 46

3.8 Average measured RTT during migrations. 47

3.9 Boxplot statistics of lost packets for the three LISP sites (INRIA, VNU,

UFRJ). 48

3.10 Boxplot statistics of downtime the three LISP sites (INRIA, VNU, UFRJ). 49

3.11 Boxplot statistics of offset for the three LISP sites (INRIA, VNU, UFRJ). . 50

3.12 Boxplot statistics of mapping convergence for the three LISP sites (INRIA,

VNU, UFRJ). 51

3.13 Average measured RTT during migrations. 52

4.1 A 2-subflow A-MPTCP scenario. 57

XI

XII LIST OF FIGURES

4.2 Two LISP Canonical Address Format (LCAF) control-plane header types. . 61

4.3 A-MPTCP stateful provisioning steps. 63

4.4 A-MPTCP stateless provisioning steps. 64

4.5 Packet loss rate for different number of ELPs, in stateless and statefull modes. 71

4.6 Correlation scatter of throughput vs differential RTT. 72

4.7 Average RTT cumulative distribution functions for the different ELPs and

sources. 73

4.8 Throughput performance for different number of ELPs, in stateless and

statefull modes. 75

4.9 ELPs contribution to the MPTCP connection throughput. 76

5.1 MS Interconnect Example. 81

5.2 Functional Blocks for Inter-Domain LISP Operation. 82

5.3 Discovering MS Components with OSPF. 86

5.4 CPNP-based negotiation cycle and new LISP primitives used for the inter-

connection and invocation phases. 87

5.5 Mapping resolution latency results over the LISP-LAB testbed. 90

List of Tables

2.1 Namespace related characteristics of the architectures [5]. 9

2.2 Deployment related characteristics of the reviewed architectures [5]. 9

XIII

Acronyms

ALT Alternative LISP Topology.

AMPTCP Augmented MPTCP.

APNIC Asia Pacific Network Information Center.

AS Autonomous System.

BGP Border Gateway Protocol.

CDF Cumulative Distribution Functions.

CP CHANGE PRIORITY.

CPNP Connectivity Provisioning Negotiation Protocol.

DDT Delegated Database Tree.

DFZ Default-Free Zone.

DNS Domain Name Service.

EID Endpoint IDentifier.

ETR Egress Tunnel Router.

FIFO First In First Out.

HA Home Agents.

IaaS Infrastructure as a Service.

IETF Internet Engineering Task Force.

ITR Ingress Tunnel Router.

LCAF LISP Canonical Address Format.

LISP Locator/Identifier Separation Protocol.

XV

XVI Acronyms

LISP-MN LISP Mobile Node.

LISP-TE LISP Traffic Engineering.

LSA Link State Advertisements.

MIB Mapping Information Base.

MIP Mobile IP.

MPTCP Multipath TCP.

MR Map Resolver.

MS Map Server.

MSFD Mapping Service Function Discovery.

NTP Network Time Protocol.

NVGRE Network Virtualization using Generic Routing Encapsulation.

OOR Open Overlay Router.

OS Operating System.

OSPF Open Shortest Path First.

PETR Proxy Egress Tunnel Router.

PID Path Identifier.

PITR Proxy Ingress Tunnel Router.

PQO Provision Quotation Order.

PxTR PITR/PETR.

RLOC Routing LOCators.

RTR Re-Encapsulating Tunneling Router.

RTT round-trip-time.

SMR Solicit-Map-Request.

STT Stateless Transport Tunneling.

TCP Transmission Control Protocol.

TLV Type-Length-Value.

TRILL TRansparent Interconnection of a Lot of Links.

VM Virtual Machines.

Acronyms XVII

VXLAN Virtual eXtensible LAN.

xTR ITR/ETR.

Chapter 1

Introduction

One of the major challenges in the evolution of the Internet architecture is the definition of

a protocol architecture that allows to solve the following major issues in Internet routing

and traffic forwarding:

1. Keeping a routing state that is manageable with current and forthcoming computing

infrastructure – i.e., few millions of states. The aforementioned growth has evolved

exponentially for many years [1]: there were approximately 10,000 IPv4 routes in

1994 and there are now (end 2017) more than 690,000 of such routes . Likewise, there

were a few hundreds of IPv6 routes before 2004 and there are more than 44,000 IPv6

routes as of December 2017 [2, 1];

2. Offering a scalable pull architecture in support of data-plane programmability [3],

i.e., an architecture that having to manage a higher complexity due to broader

routing context information, relieves to a pull solution instead than a push solution

to let the network control-plane scale;

3. Offering a scalable forwarding plane able to be regularly optimized with only active

flows information [4], i.e., that can adapt the forwarding behavior to the detection

of new flows and the expiry of old flows;

4. Offering locator/identifier separation for advanced IP mobility, i.e., able to offering

the necessary abstraction to distinguish end-point identifiers from routing locators;

5. Is incrementally deployable, i.e., can be integrated in existing network infrastructures

with minor upgrades;

6. Can better support over-the-top services, i.e., can give to edge networks additional

features for the routing of their flows across the Internet.

1

2

Among the various proposals that have been discussed over the years to improve In-

ternet traffic forwarding efficiency, those that consist in separating the information that

is specific to the location where a terminal is connected to the Internet (“where”) from

the information that is specific to the identity of the terminal (“who”) have attracted a

growing interest within the Internet community.

It is generally admitted that the ability to separate the “where” from the “who”

allows to get rid of a highly polluting single addressing space, thereby reducing the size

of the tables maintained by Internet routers. Multiple Identifier/Locator split addressing

protocols were discussed in the last two decades, as documented in [5]. Among them, the

Locator/ID Separation Protocol (LISP) is a protocol that differentiates from most of the

other approaches in that it does not imply any modification of terminal devices. Also,

LISP has been the subject of an important standardization effort for several years [6].

In its current status, LISP supports the above mentioned requirements at a level that

is acceptable for basic networking environments. However, it shows too limited capacities

when it comes to take into consideration fault resiliency and capability to react fast to

network state updates [7]. These shortcomings can be compensated by enhancing the

control-plane architecture, and the routing algorithms therein. In this dissertation, we

propose new protocol features and experimenting novel control-plane primitives, as well

as hybrid distributed-centralized routing state dissemination algorithms, to scale with

different network conditions.

The remainder of this dissertation is as follows:

• Chapter 2 presents the design and implementation aspect of our open source LISP

data-plane and control plane node, comparing it with other implementations, show-

ing that our implementation is scalable enough for large networks and reaches per-

formances suitable for real deployments. We then describe the LISP-Lab experimen-

tation platform that was built solely relying on it.

• Chapter 3 presents a novel LISP-based solution we proposed for live virtual machine

migration across geographically distant datacenters over wide area IP networks. We

tested it experimentally at large scale, showing that with our approach we can easily

reach sub-second downtimes upon Internet-wide migration, even for very distant

clients.

• Chapter 4 describes a cross-layer network optimization protocol proposal that ad-

dresses the enhancement of the Multipath Transport Control Protocol (MPTCP) to

which LISP can deliver path diversity in support of bandwidth increase, confiden-

tiality support and connection reliability, also using LISP traffic engineering network

3

overlays. Despite we could benefit from only few overlay network nodes, we could

experimentally evaluate our proposals showing the positive impact by using our so-

lution, the negative impact of long Round-Trip Times (RTTs) on some MPTCP

subflows, and the strong correlation between the differential RTT among subflows

and the throughput performance.

• Chapter 5 proposes a framework to improve LISP cooperation at the Internet scale,

by facilitating cooperation between LISP Mapping Systems and introducing more

automation in the LISP connectivity service delivery procedure.

• Chapter 6 concludes the dissertations and opens up new perspectives.

Chapter 2

Routing node design and

experimentation

In this chapter, after an introduction about the LISP protocol, we introduce the LISP

experimentation facilities we built and leveraged on for our research. More precisely, we

detail data-plane and control-plane design aspects, document the system performance,

and describe the testbed that was built and used in our experimentations.

2.1 LISP introduction

The Internet is suffering from scalability concerns, mainly due to the BGP routing in-

frastructure, and provides limited support to new advanced services [10]. As discussed in

Internet Architecture Board’s October 2006 Routing and Addressing Workshop [10, 11],

a way to improve Internet scalability is separating the IP space into locator and identifier

spaces, often referred to as the “Loc/ID split”. Since the IAB workshop, several proposals

based on this concept has been published or improved. The [5] splits these solutions into 3

groups, depending on where the new solution is applied. We summarize here what exposed

in detail in [5]:

• Host-based core-edge separation: the new solution requires changes to both the client

and server side behaviors.

HIP - Host Identity Protocol [12]: it introduces a Host Identity (HI) name

space, based on a public key security infrastructure, and a new related layer (the

Host Identity Layer) between the Transport and Network Layers. The hosts are

identified by HI instead of IP addresses. To get mapping between an HI and the IP

The contents of this chapter are presented in [8, 9].

5

6 2.1. LISP INTRODUCTION

address, HIP can use several ways like a new DNS Resource Record or a distributed

hash table.

LIN6 - Location Independent Addressing for IPv6 [13]: it is a protocol support-

ing multihoming and mobility in IPv6. Similarly to HIP, LIN6 also adds a new layer

between the Transport and Network Layers, but instead of dividing the network

addresses into two separate namespaces as in HIP, it is based on an “embedded”

addressing model: the LIN6 generalized ID (the identifier of the node used in the

transport and upper layers) and the LIN6 address (used in network layer) are 128

bits in length and share the same common lower 64 bits (LIN6 ID).

MAT - Mobile IP with Address Translation [14]: it uses two addresses for a

mobile node: the “Home Address” to specify a node’s identity, and, the “Mobile

Address” for the network layer. Similar HIT, MAT also divided network layer into

two sublayers: a “MAT sublayer” that performs address translation, and a “Delivery

sublayer” that delivers packets according to the translated destination address. For

the mapping resolving, MAT uses DNS like LIN6.

FARA - Forwarding directive, Association and Rendezvous Architecture [15]:

it uses an Association Id (Aid) to identify a communication between two hosts. To

set up the Aid, the source host looks up for a ”Forward Directive (FD)” of the

destination host by querying the so-called FARA directory service, which resembles

DNS.

MILSA - Mobility and Multihoming Supporting Identifier-Locator Split Archi-

tecture [16]: it introduces a new HUI Mapping Sublayer at the network layer to

perform the mapping between identifiers and locators. The end host registers their

mapping with the responsible Realm Zone Bridging Servers (RZBS) and sends map

request to its RZBS which then follows the resolution hierarchy until a mapping is

found.

SHIM6 - Level 3 Multihoming Shim Protocol for IPv6 [17]: it adds a new

sublayer within the network layer (called the SHIM6 layer). SHIM6 creates a context

between two communicating parties with a 4-way handshake with a set of available

addresses for the nodes. One of these addresses is used as Upper Layer Identifier,

useful for session identification, while all the other available addresses are used as

locators.

Six/One [18]: it has a similar concept than SHIM6. However, what makes it

different from SHIM6, is the fact that all the host addresses differ only in their 64

lower order bits.

2.1. LISP INTRODUCTION 7

ILNP - Identifier Locator Network Protocol [19]: it introduces two new terms,

“Node Identifier (NID)”, which is the unique name of a node, and the Locator, which

is topologically tied and used for routing and packet forwarding. Applications use

FQDNs instead of using the identifier directly. The mapping from an FQDN to a

set of Identifiers and Locators is for each host stored in new DNS resource records.

Packets contain the source and destination in the form of a pair Identifier-Locator.

These pairs are encoded in IPv4 and IPv6 packet headers in different ways.

• Gateway-based solutions: they require changing both the end-hosts and the middle-

boxes.

TRIAD - Translating Relaying Internet Architecture [20]: it was proposed to

solve the problem of IPv4 address depletion in the NATted Internet without the

painful transition to IPv6. Internet is viewed as a hierarchical set of interconnected

realms and the firewall or border router is extended to act as TRIAD relay agent

between realms. TRIAD advocates the use of DNS names to identify each end-host

uniquely from different contexts.

IPNL - Internet Protocol Next Layer [21]: it is a NAT-extended Internet pro-

tocol architecture designed to scalably solve the address depletion problem of IPv4

like TRIAD. The architecture requires changing both hosts and NAT boxes.

I3 - Internet Indirection Infrastructure [22]: when a sender has some data to

send, it sends out a pair (“id”, “data”), where “id” is the logical address of the

destination and “data” is the actual payload it wishes to send. The Chord lookup

protocol [23] is used for creating an overlay of I3 servers which are responsible for

handling the rendezvous and forwarding between senders and receivers.

4+4 [24]: A 4+4 extended address is formed by concatenating a 32-bit public

address with a 32-bit private address. They are also called “level 1” and “level 2”

addresses. Hosts use DNS to check which level of address is needed to use for its

outer/inner packet. The gateway swaps between the level 1 and level 2 address.

This approach has its own drawbacks which include failure of end-to-end security

mechanisms, a significant overhead involved with assigning a FQDN to each host

and having two entries in the DNS system, thus, requiring two lookups.

NodeID - Node Identity Internetworking Architecture [25]: it builds on HIP to

provide identity based overlay routing for hosts to discover their mutual, routable

IP addresses. Thus, NodeID avoids the use of a special DNS Resource Record or a

HIP proxy for determining the address corresponding to a Host Identity.

NUTSS [26]: it introduces two types of middleboxes: policy-boxes, which

8 2.1. LISP INTRODUCTION

handle policy decisions (firewall-like entities), and forwarding middleboxes, such as

NATs, which forward traffic and perform address/port translation. Each network

has at least one P-box, which is connected to a P-box at a higher hierarchical level

and a host registers itself through a hierarchy of P-boxes.

HRA - Hierarchical Routing Architecture [27]: HRA has two levels of mapping

similarly to HIP. When an end-host A wishes to communicate with another end-host

B, it firstly obtains the locator and the Locator Domains (LD) ID information of

destination host B from a distributed hash table before initializing a communication.

Upon obtaining the LD ID and locator information, A fills in the destination IP

address with the destination host locator of B, if the LD ID obtained is the same as

its own. Otherwise, it fills the destination IP address in the IP header with that of

its LD Border Routers (LDBR) locator. In such a scenario, the LDBR of A rewrites

the source IP address with its own locator, and the destination IP address with the

LDBR address matching the LD ID of B.

Mobile IP [28, 29]: MobileIP defines Home Address acts as the identifier and

a Care-of Address as the locator. In contrast to many other approaches, both the

identifiers and the locators in Mobile IP are routable addresses. It is not a solution

for multihomed networks and causes problems in site renumbering [30]. Mobile IP

requires additional infrastructure elements called Home Agents.

• Network-based core-edge separation: these solutions are realized at the middle boxes

(e.g., at edge-routers) without changing the end-point behavior.

GSE - Global, Site, and End-system address elements [31]: it is an alternate

IPv6 architecture. The proposed IPv6 address contains a 6-Byte “Routing Goop

(RG)”, a 2-Byte “Site Topology Partition (STP)” and an 8-Byte “End System Des-

ignator (ESD)”. When creating a packet, the source host fills the destination address

with a 128-bit IPv6 address that it receives from a DNS lookup for the destination.

This address includes the RG of the destination as provided in the DNS response.

The packet leaves the site through one of the border routers, which modifies the

source RG to be used for the packets on the return path of this communication

session.

LISP - Locator/ID Separation Protocol [6], which we describe in details in the

following.

Tables 2.1 and 2.2 summarizes and draws a complete comparison between the above

protocols in terms of namespace related characteristics and deployment strategies.

2.1. LISP INTRODUCTION 9

Architecture IPv4 IPv6 Multihoming Mobility Site renumbering Internet transparency Disjoint Structured

HIP
√ √ √ √ √ √ √

LIN6
√ √ √ √ √

MAT
√ √ √ √

FARA
√ √ √ √

MILSA
√ √ √ √ √ √

SHIM6
√ √ √

Six/One
√ √ √ √ √

ILNP
√ √ √ √ √ √

TRIAD
√ √ √ √

IPNL
√ √ √ √ √ √

i3
√ √ √ √ √ √

4+4
√ √ √ √ √ √

NodeID
√ √ √ √ √ √

NUTSS
√ √ √ √ √ √ √ √

HRA
√ √ √ √ √ √

Mobile IP
√ √ √ √

GSE
√ √ √ √ √

LISP
√ √ √ √ √ √ √ √

Table 2.1: Namespace related characteristics of the architectures [5].

Architecture Data-plane Deployment Legacy apps Infrastructure changes
operation

HIP Rewrite, Tunnel Host-based
√

New FQDN record per host (optional)
LIN6 Rewrite Host-based Mapping Agents for nodes, FQDN/MA
MAT Rewrite Host-based

√
IMS for nodes with DNS entry for each IMS

FARA Rewrite Host-based FARA directory service (fDS)
MILSA Rewrite Host-based DNS like names for every node, RZBS servers
SHIM6 Rewrite Host-based IPv6 Options
Six/One Rewrite Host-based Changes to edge network routers (Optional)
ILNP Rewrite Host-based

√
FQDN/node, ARP modied for ILNPv4

TRIAD Rewrite Gateway-based
√

FQDN/Node, WRAP supporting Relay Agents
IPNL Rewrite, Tunnel Gateway-based

√
DNS name for every node, upgraded Routers

i3 Rewrite Gateway-based
√

i3 servers
4+4 Rewrite Gateway-based

√
DNS name for every node, upgraded NATs

NodeID Rewrite Gateway-based
√

NodeID Routers for routing in static core
NUTSS Rewrite Gateway-based

√
P-boxes and M-boxes

HRA Rewrite Gateway-based LDBRs, IPv6 ext. headers, new IPv4 payload, FQDN/host
Mobile IP Tunnel Gateway-based

√
Home Agents

GSE Rewrite Network-based Two-faced DNS
LISP Tunnel Network-based

√
Tunnel Routers

Table 2.2: Deployment related characteristics of the reviewed architectures [5].

10 2.1. LISP INTRODUCTION

Figure 2.1: An example of LISP communications between two LISP sites.

The Locator/Identifier Separation Protocol (LISP) [6] was architected to introduce a

two-level routing infrastructure on top of the current BGP+IP architecture, mapping an

endpoint identifier (EID) to one or several routing locators (RLOCs). RLOCs remain

globally routable, while EIDs become provider-independent and only routable in the local

domain. The resulting hierarchical routing architecture opens the way to benefits ranging

from BGP routing table size reduction and efficient traffic engineering, up to seamless

IP mobility. Moreover, LISP enables a large set of applications and use cases such as

virtual machine mobility management, layer 2 and layer 3 virtual private networks, intra-

autonomous system (AS) traffic engineering, and stub AS traffic engineering.

Since April 2009, the LISP IETF Working Group has completed a first set of Exper-

imental Requests for Comments (RFCs) describing the Locator/ID Separation Protocol.

By the end of 2017, 17 RFCs documents and 35 Internet-Drafts documents were published.

We explain in the following LISP in detail especially the aspects that are required to

position and understand our contributions.

2.1.1 Data-plane

More technically, LISP uses a map-and-encap approach, where a mapping (i.e., a corre-

spondence between an EID-Prefix and its RLOCs) is first retrieved and used to encapsulate

the packet in a LISP-specific header that uses only RLOCs as addresses. Such a map-

and-encap operation in LISP is performed using a distributed mapping database for the

2.1. LISP INTRODUCTION 11

first packet of a new destination EID; then the mapping is cached locally for all subse-

quent packets. The LISP control plane is based on signaling protocols necessary to handle

EID-to-RLOC registrations and resolutions, dynamically populating mapping caches at

LISP network nodes. Since several RLOCs can be registered for the same EID, priority

and weight metrics are associated with each RLOC in order to decide which one to use

(highest priority) or how to do loadbalancing (proportionally to the weights if priorities

are equal) [32].

In practice, when a host sends a packet to another host at another LISP site, it sends

a native IP packet with the EID of the targeted host as the destination IP address; the

ingress tunnel router (ITR), maps EID to RLOCs, appends a LISP header and an external

IP/UDP header with the ITR as source node, and, as the destination address, an RLOC

selected from the mapping of the destination EID. The egress tunnel router (ETR) that

owns the destination RLOC strips the outer header (i.e., decapsulates) and sends the

native packet to the destination EID.

For example, in Fig. 2.1 the traffic from host 1.1.1.1 to host 2.2.2.2 is encapsulated by

the ITR toward one of the RLOCs (the one with the highest priority, i.e., RLOC3), which

acts as the ETR and decapsulates the packet before forwarding it to its final destination.

On the way back to 1.1.1.1, RLOC4’s xTR queries the mapping system and gets two

RLOCs with equal priorities, hence performing load-balance as suggested by the weight

metric.

2.1.2 Control-plane

In LISP, data-plane and control-plane are quite clearly separated. The advantage of creat-

ing network control functions disjoint from the data plane is the possibility of programming

the control plane independent of the forwarding logic, and thus to implement advanced

and personalized functionalities, as done in [33] for instance, for virtual machine mobility

management. This approach is ex-ante in line with the later developed software defined

networking paradigm [34].

12 2.1. LISP INTRODUCTION

Figure 2.2: LISP mapping system workflow: (a) mapping retrieval; (b) mapping registra-
tion.

For scalability reasons, ITRs learn mappings on-demand via the so-called mapping

system. The mapping system is composed of the mapping database system and the map-

server interface [35]. The mapping system workflow is summarized in Fig. 2.2. On one

hand, the mapping database system constitutes the infrastructure that stores mappings

on the global scale, potentially using complex distributed algorithms [35, 36, 37]. On the

other hand, the map-server interface hides this complexity via two network elements, the

map resolver (MR) and map server (MS), deployed at the edge of the mapping database

system, which LISP sites contact to retrieve and register mappings. More precisely, when

an ITR is willing to obtain a mapping for a given EID, it sends a Map-Request message

to an MR.

The MR is connected to the mapping database system and implements the lookup

logic in order to determine at which LISP site the Map-Request must be delivered (to

any of its ETRs), and delivers it. The ETR receiving the query returns the mapping

directly to the requesting ITR with a Map-Reply message. It is worth noting that the

ETR of a LISP site is not directly involved in the mapping database system but is instead

connected to an MS. The ETR sends a Map-Register message to that MS, which later

ensures that the mapping is registered in the mapping database system. Optionally, the

MS can acknowledge the registration with a Map-Notify message.

2.1. LISP INTRODUCTION 13

Figure 2.3: A representation of LISP DDT protocol signaling.

Several mapping database systems have been proposed, and in particular LISP-ALT [36]

and LISP-DDT [37]). While the former relies on the BGP protocol to build a mapping

distribution architecture, in LISP-DDT the MR discovers where to send the Map-Request

by iteratively sending Map-Requests and receiving Map-Referral messages via the hierar-

chical LISP-DDT infrastructure, similarly to DNS [37]. Fig. 2.3 depicts a DDT mapping

system where (i) an ETR sends Map-Register messages to a statically configured MS;

(ii) DDT nodes have static pointers to their authoritative node for more specific resolu-

tion, with the MS as leaf; (iii) the MR queried by a ITR has a static pointer to a DDT

root. More precisely, the process to resolve an EID to RLOC entry can be summarized as

follows:

• the ITR sends a Map-Request message to its configured MR (for example asking for

a mapping for the EID 1.1.1.1);

• the MR relays the Map-Request message to its configured DDT root;

• the DDT root sends back a Map-Referral message to MR, providing so the list of

authoritative DDT Node for more specific resolutions;

14 2.2. LISP IMPLEMENTATIONS

• the MR chooses one of the DDT nodes to send the Map-Request message to, and

then receives a new list of authoritative DDT node for more specific resolutions.

This process is repeated until the Map-Request message reaches the MS to which

the ETR registers the EID prefix to which the EID belongs.

• the MS send back a Map-Referral message (including an acknowledgement) to the

MR and forwards the Map-Request message to an authoritative ETR (or directly

sends back a Map-Reply message if the ETR sets a proxy bit in the Map-Register

message to allow for proxied replies).

• the ETR (or the MS in case of proxied reply) sends a Map-Reply message with the

requested mapping information to the ITR.

2.2 LISP implementations

In this section, we synthetically review existing and publicly known LISP implementations,

both commercial and open source ones.

2.2.1 Cisco IOS

Cisco has been the major driver for LISP standardization and experimentation since its

inception. Both LISP data-plane and control-plane functions are supported and available

across a wide range of Cisco router and switch operating systems. Cisco continues to

introduce new LISP features and functions to provide within the network expect in the

data-center network environment.

The current LISP implementation in Cisco nodes include the standard LISP features, as

well as some proprietary features that are partially documented related to virtual machine

mobility management [38]. Nevertheless, the current implementation does not include all

the features we needed for this thesis, such as LISP traffic engineering and canonical

address format features, as elaborated in the following chapters.

2.2.2 OpenLISP

OpenLISP [39] is an open source implementation of the LISP data plane in a FreeBSD

environment.

The standard core LISP data-plane functions are patched to the FreeBSD kernel and

a socket is introduced to allow communication with the control plane in the user space.

[39] shows that the cost of running LISP in terms of forwarding latency is acceptable and

the impact on end-to-end flows is minimal.

2.2. LISP IMPLEMENTATIONS 15

Very partial control-plane features are present, essentially limited to map-request and

map-reply message processing. Hence as a standalone node, an OpenLISP node is not

able to handle all control plane signaling within a LISP network, and is able to deploy

only the xTR behavior.

2.2.3 LISPMob

LISPMob is a multi-platform implementation of the LISP mobile node (LISP-MN) vari-

ant [40] intended for mobile devices (e.g., smartphones); in LISP-MN, mobile nodes are

full-fledged xTRs relying on a lightweight version of the control plane. LISPMob is imple-

mented in the user space and compatible with Linux and Android. Even though LISP-

Mob is intended for mobile devices, it does not preclude its usage on routers; however,

the limited control plane functionalities and its user space implementation would make it

innapropriate for large-scale operational networks.

Since 2016, the project is renamed to OOR [41] (Open Overlay Router) to full sup-

porting LISP function in SDN/NFV environments. The control-plane extent is however

still limited.

2.2.4 PyLISP

PyLISP [42] is a Python implementation of LISP. This library provides basic data-plane

and control-plane functions for the xTR behavior, and some command line tools to perform

actions like asking a map resolver for a mapping and directly querying a DDT node.

Although it was planned to add other LISP behaviors such as MS, MR or DDT node, in

fact, these parts have never been released for PyLISP. Nonetheless, it is a good training

tool for a beginner, as it is simple to install and to run in the user space.

2.2.5 Other implementations

Among the above mentioned implementations, three are open source: OpenLISP, LISP-

Mob, and PyLISP. The Cisco implementation is quite well documented but only in terms

of user interface.

In addition, we resume in the following additional implementations that have either a

limited scope, or are only marginally documented.

• AVM GmbH announced in 2012 that they support LISP in firmware for their

FRITZ!Box-devices in FRITZ!OS 6.00 (a residential broadband access device), and

also supported in later versions. It is unfortunately not well documented.

16 2.3. ENHANCEMENT OF THE OPENLISP DATA-PLANE

• OpenDayLight (ODL) [43] is an SDN controller that offers, since 2013, LISP as one

of its SouthBound Interface (SBI) protocols under the so-called LISP Flow Mapping

Service. This service provides Map-Server and Map-Resolver behaviors, for data

plane nodes, as well as to ODL applications. Mapping data can go beyond basic EID-

to-RLOC entries, and can include a variety of routing policies and traffic engineering

metrics. ODL applications and services can use a northbound interface to define

specific mappings and policies in the LISP Mapping Service.

• Open Network Operating System (ONOS) [44] is another SDN controller that also

introduces LISP as one of its southbound protocols, since 2017. All basic LISP

features are offered in the current version. At the time being, LISP mapping entries

do not exploit distributed core primitives that historically differentiate ONOS from

ODL. Performance tests were recently run against the LISP SBI [45], leading to

important improvement making the SBI more scalable for large networks.

• OpenVSwitch (OVS) [46] is a software switch that, since 2013, supports LISP as one

of its layer 3 tunneling protocols. OVS code is mostly contributed by Cisco. The

implementation requires the use of static LISP tunnel endpoints, and LISP routing

rules are not implemented as standard switching rules; they are instead implemented

by means of ad-hoc tunneling interfaces.

• LISPERS.net [47] is a closed source software of LISP developed by Dino Farinacci.

It supports all the LISP behaviors, and offers GUI management interface as well.

Unfortunately, it is not well documented and runs at user space.

2.3 Enhancement of the OpenLISP data-plane

Among the open source implementations, the single one being well documented and sci-

entifically evaluated, while allowing for high-performance networking is the OpenLISP

implementation. Hence we selected OpenLISP as starting implementation for our experi-

mental research activity.

In order to make OpenLISP data-plane usable to build a fully-fledge LISP network,

we extended it to add the following standard features:

• LISP Proxy Ingress Tunnel Router (Proxy-ITR): used to provide connectivity be-

tween sites which use LISP EIDs and those which do not. They act as gateways

between those parts of the Internet which are not using LISP (the legacy Internet)

A given Proxy-ITR advertises one or more highly aggregated EID prefixes into the

public Internet and acts as the ITR for traffic received from the public Internet.

2.4. CONTROL PLANE IMPLEMENTATION AND EVALUATION 17

• LISP Proxy Egress Tunnel Router (Proxy-ETR): Proxy-ETRs provide a LISP (Routable

or Non-Routable EID) site’s ITRs the ability to send packets to non-LISP sites in

cases where unencapsulated packets (the default mechanism) would fail to be de-

livered. Proxy-ETRs function by having an ITR encapsulate all non-LISP destined

traffic to a pre-configured Proxy-ETR.

• Re-Encapsulating Tunneling Router (RTR): An RTR acts like an ETR to remove a

LISP header, then acts as an ITR to prepend a new LISP header. This is known as

Re-encapsulating Tunneling. Doing this allows a packet to be re-routed by the RTR

without adding the overhead of additional tunnel headers.

Specific features were also added to the data-plane node, in the frame of the solutions

presented in the next chapters where these features are described.

2.4 Control plane implementation and evaluation

Although OpenLISP supports both data-plane and control-plane functions, as a standalone

node, an OpenLISP node is not able to handle all control plane signaling within a LISP

network. Only map-request and map-reply message processing was made available in

OpenLISP.

In order to cope with such limitations, we worked on a complete control plane im-

plementation, with the goal to integrate it with the OpenLISP node, while keeping the

data and control plane parts independent of each other for performance and modularity

reasons, as detailed hereafter.

In the following, we detail the resulting control plane architecture, and related imple-

mentation aspects, before describing a performance evaluation we run against some of the

implementations described in the previous section.

2.4.1 Control-plane system architecture

We describe the design of our control plane implementation, issued under a BSD licence.

Given that the main role of the LISP control plane is the management of EID-to-RLOC

mappings with the mapping system, in the following we first focus on the design of the

mapping database, and then we detail the different modules.

The heart of the OpenLISP control plane is the EID-to-RLOC mapping database,

synthetically referred to as map-table in the following. Each map-entry of the map-table

consists of an EID prefix with a list of RLOCs, each RLOC associated with a structure

that contains the RLOC address and related attributes (i.e., priority and weight). The

18 2.4. CONTROL PLANE IMPLEMENTATION AND EVALUATION

three network elements involved in the control plane, ETR, MS, and MR, serve different

purposes; hence, they implement their own map-table logic, as detailed hereafter.

ETR’s map-entries correspond to the mappings for the different EID prefixes of the

LISP site it serves and should register via an MS. Each such map-entry must have at least

one RLOC address.

Map-Servers maintain EID prefix registrations for the LISP sites they serve and for

EID prefixes not assigned yet. Therefore, we distinguish the following two map-entry

types:

• Registered map-entries are built on Map-Register messages received from ETRs and

are associated with meta-information about the registering site (e.g., cryptographic

keys authorized to register mappings, contact addresses). The MS can use these

entries to directly reply to Map-Request messages on behalf of ETRs if commissioned

to do so.

• Negative map-entries are used to define range of IP prefixes that belong to the EID

space but do not require LISP encapsulation. Requests for such prefixes generate

negative map-replies.

Map-Resolvers maintain a map-table to speed up mapping resolution, and we distin-

guish the next two types of entries:

• Negative map-entries are similar to an MS’s negative map-entries. An MR hence

immediately sends a negative Map-Reply for not yet assigned EID prefixes.

• Referral map-entries contain the addresses of other DDT nodes (MRs) that are

supposed to provide more specific LISP-DDT mappings (i.e., have a longer EID prefix

match). Even though they are logically separated, map-tables are implemented

within a compact radix tree data structure instance optimized for fast IP prefix

lookup [48]. Actually, as our implementation is dual-stack, we maintain two radix

tree instances, one for IPv4 EIDs and the other for IPv6 EIDs.

2.4.2 Control-plane modules

Our control plane implementation includes the essential features to operate a multi-site

LISP network, including all the LISP-DDT logic and complete support of both IPv4 and

IPv6. In order to operate the control plane independent of the data plane, it is divided

into independent modules with different functionalities (Fig. 2.2).

As depicted in Fig. 2.2, the control plane receives the messages from a dedicated queue,

which gets them in turn from the kernel’s UDP socket queue. The control plane is based on

2.4. CONTROL PLANE IMPLEMENTATION AND EVALUATION 19

one general orchestration processes (i.e., control) and three specialized processes that im-

plement MR, MS, and xTR network element logics. The treatment of mapping-resolution

related and registration-related messages within these processes is isolated thanks to the

use of threads. Each process is composed of several modules, as described in the following.

The xTR process includes the following three modules:

• MAP-REGISTER module: Implemented at the ETR interface; it sends periodic

information (each 60s, as recommended in [6]) about map-entry registration to at

least one MS. Note that ETRs are authenticated by an MS using their preconfigured

shared key.

In order to support mapping system multitenancy, going beyond the current stan-

dards, the module allows specifying different keys for different MSs to allow an xTR

to join LISP networks managed by independent MS stakeholders.

• MAP-REPLY module: Implemented at the ETR interface, it receives and processes

Map-Requests coming from the ITR or MSs. According to the standard, Map-

Requests must be encapsulated (Encapsulated Control Message, ECM) Map-Request

when sent to MRs, but are sent natively to ETRs. Our implementation supports

these two modes with any combination of IPv4/IPv6 encapsulation. Upon reception

of a Map-Request, an ETR replies with the corresponding Map-Reply.

• PLANE-INTERWORKING module: This module allows the control plane to inter-

act with the data plane and hence to form a full-fledged OpenLISP xTR. In order

to perform data plane functions, the OpenLISP data plane maintains a mapping

information base (MIB) consisting of the LISP cache (storing short lived mappings

in an on-demand fashion) and LISP database. OpenLISP also provides a low-level

abstraction called Mapping Socket to add or remove mappings from the MIB locally

on the machine (e.g., by means of a daemon or using the command line). This in-

terworking module uses the control plane to maintain the database interacting with

the data plane through the Mapping Socket [39].

The MS process includes the following two modules:

• MAP-REGISTER module: Implemented at the MS interface, it receives Map-Register

messages from ETRs and updates the MS map-table accordingly. The MS verifies

the authenticity of the Map-Register messages and ensures that their EID-prefixes

belong to the LISP sites of which it is in charge.

In normal operations, mappings of given sites are stable with time. However, the

specification requires periodically re-registering mappings. Therefore, to improve

20 2.4. CONTROL PLANE IMPLEMENTATION AND EVALUATION

performance, our control plane hashes the Map-Register message to check whether

the mapping has changed since the last registration, complete registration being

done only upon a mapping update. If the ETR asks for a notification, a Map-Notify

message is sent back to the ETR.

• MAP-REQUEST module: Upon Map-Request reception, the module has a choice

between two actions, depending on the map-table entry that corresponds to the

EID in the Map-Request. If the EID corresponds to the EID prefix of a registered

map-entry, the MS sends a Map-Reply back or forwards the Map-Request to one

of the RLOCs in the map-entry, depending on the value of the proxy bit in the

Map-Register message. If, instead, the EID corresponds to a site managed by the

MS but has no active registration, a negative Map-Reply is sent back.

The Map-Resolver process contains the following two modules:

• MAP-REQUEST module: It accepts and processes Map-Requests from xTRs. For

DDT signaling, the Map-Request follows the map-referral chain until it reaches an

MS or an ETR, or the number of referral nodes it passed through exceeds the max-

imum allowed number. To speed up performance, the MR caches map-referral mes-

sages in its map-table so that it can reuse it for further Map-Requests covered by

the EID prefix.

• MAP-REFERRAL module: It accepts the LISP-DDT Map-Requests to which it

replies with a map-referral message. We provide in the control plane package a

sample configuration that can be used to set up a DDT root [37].

Finally, the control process aims to orchestrate other processes. It is in charge of

receiving control plane messages from the LISP network and dispatching them to the

appropriate control plane process. A first-in first-out (FIFO) queue is used to absorb

demand burstiness and catch messages coming from the UDP socket kernel queue. This

process also populates the map-table, used by control plane processes, according to the

device configuration file.

2.4.3 Running the control plane

The OpenLISP control plane process listens on the UDP 4342 LISP control port. It runs

in the user space to allow easier programmability of its features, while the OpenLISP data

plane runs in the kernel to give higher performance to data plane functions. Even though

our control plane is designed for a FreeBSD environment, it can be adapted to Linux.

2.4. CONTROL PLANE IMPLEMENTATION AND EVALUATION 21

Figure 2.4: System-level OpenLISP control plane multi-thread architecture.

As depicted in Fig. 2.4, the control plane program handles three types of resident

threads besides the main thread: one thread runs the control process, one thread is dedi-

cated to mapping registrations, and the other threads are dedicated to Map-Request/Referral

processing (resolution threads). The main thread accepts LISP control plane packets com-

ing from the kernel socket queue and pushes them to a FIFO control plane queue in the

user space based on a dynamic list. For load balancing, the control thread can dynamically

create several resolution threads up to a maximum number, which is also left as a tunable

parameter for the user via configuration files. The choice of using several pre-instantiated

threads to process control plane messages and create a packet queue for the control plane

fed by the kernel socket queue is dictated by scalability and robustness against attacks. It

is worth noting that using multiple cores could create moderate processing time variances

due to the dynamic thread-core binding operating system (OS) operations.

Finally, it is worth mentioning that a command line interface is also provided to allow

an operator to interact with the control plane. More details on the configuration are

provided in the documentation files of the software release.

22 2.4. CONTROL PLANE IMPLEMENTATION AND EVALUATION

2.4.4 Evaluation

We evaluated the performance of our LISP control plane by stressing an OpenLISP node

running on a physical machine with a 2.67 GHz dual-core CPU and 2 Gbytes RAM. The

evaluation focuses on the OpenLISP node system performance itself, independent of the

LISP Beta Network topology. We do not account for packets not handled by the control

plane due to drops in the network. Indeed, since LISP uses UDP to deliver both data

plane and control plane messages, some of them may be dropped and definitely lost by

intermediate nodes in an operational context, and the sender eventually retransmits the

packet after timeout. Therefore, the number of messages the control plane can handle

depends on the provisioning of the kernel’s UDP queue size, but also on the frequency

with which the control plane program picks up packets from a kernel’s queue and how

fast it processes the messages. In order to avoid modifying the system configuration, we

added in our control plane, more specifically in the control thread, a FIFO queue that is

overprovisioned so that the kernel’s queue occupancy remains as small as possible. In the

tests we used a control plane queue size of 100,000 packets; we tested the feasibility using

smaller sizes (1000, 500, and 100), with no visible effects on performance, as well as with

very high rates (more than 4000 packets/s).

In the following we evaluate the control plane processing latency. For the MS, it

corresponds to the time taken to check the validity of the Map-Register message, update

the mapping into the mapping system, and send back Map-Notify messages when needed.

When generating the Map-Register messages in the tests, around 5 percent are randomly

set to require a Map-Notify. For the MR, the processing latency corresponds to the

mapping lookup time and the time to send the Map-Reply back. Fig. 2.5 displays the

processing latency for both MS and MR as a function of the number of connected LISP

sites (i.e., the number of different mappings).

To carry out our measurements, we use a LISP site composed of two xTRs and one

MS/MR node. xTRs send traffic at the maximum rate over a 100 Mb/s link with the

MS/MR, stressing the control plane with almost 3000 packets/s in the control plane input

queue. For the sake of realism, we fed the EID-to-RLOC database IPv4 prefixes of the

DANTE public routing table, fragmenting /16 prefixes into /24 prefixes: thus, we obtain

a mapping database of more than 260,000 different EID prefixes. Randomly picking up

EID prefixes from the database, we construct s sites, each site having from 1 to e EID

prefixes (e.g., for multihoming TE or IP mobility management). We vary s from 200 to

2000 (roughly from one to 10 times the number of sites currently connected to the LISP

Beta Network), with a step of 100 sites; e takes a random value between 1 and 100, so

as to also include LISP sites intensively performing multihoming traffic engineering and

2.4. CONTROL PLANE IMPLEMENTATION AND EVALUATION 23

Figure 2.5: Control plane processing latency as a function of the number of LISP sites.

IP/prefix mobility across RLOCs. It is worth noting that the number of RLOCs only

directly affects the memory size used to store the radix tree without affecting the height

(or depth) of the tree so it does not affect the time to search in the tree. Once this setting

is loaded in the MS/MR node, one of the xTR is used to send map-register messages for

all sites to the MS, while the other xTR to send Map-Request messages to the MR. To

prevent time-dependent artifacts, control plane mes-sages are sent sequentially in about

20 different spaced test periods, with 20 messages sent per period on average. To avoid

biases, the two signaling flows have not been sent concurrently.

Fig. 2.5, showing both average and 99 percent confidence intervals of the obtained

results, leads to two main conclusions. First, the processing time increases only by a

limited amount, roughly 10 percent, while increasing the number of registered LISP sites

from 200 to 2000, for both MS and MR. This result suggests that the logic implemented

for the lookup represents a light portion of the overall processing load. We verified and

the processing latency slightly decreases at certain steps with respect to the previous

step because the second core started being used by the operating system. The relatively

remarkable variance is likely the symptom of CPU differently assigning threads to cores

at different executions.

Furthermore, under such severe load conditions, the Map-Server processing latency

stays at very acceptable values (around 700 µs) for the provided computing power, and is

about 30 times higher than the Map-Resolver latency; this is essentially due to the very

24 2.4. CONTROL PLANE IMPLEMENTATION AND EVALUATION

high number of sites and prefixes to register, the fact that first, Map-Register messages

need to be authenticated via HMAC, and then the mapping database possibly may need

to be updated (hence roughly a quadratic time complexity). Map-Reply and Map-Notify

messages that are close in size and written with a linear complexity have a similar light

impact on the processing latency of MR and MS, respectively.

Figure 2.6: Insight on the mapping database radix tree structure.

The processing latency performance also depends on the dispersion of the EID-prefix

in the mapping database, which, as already mentioned, is built using a radix tree [48].

Fig. 2.6 reports the average radix tree depth, the maximum tree depth, the total number

of nodes, and the average number of EID prefixes in the mapping database (obviously, the

same for the MR and MS cases; the confidence intervals are not visible). It is worth noting

that the number of tree nodes is slightly higher than the total number of EID prefixes

because of the necessary addition of branching nodes in the radix tree. Fig. 2.7 shows that

when the number of registered LISP sites increases, the radix tree depth does not increase

significantly, despite the fact that the total number of nodes (directly affecting the size of

memory used to store and manage the mapping database) increases exponentially. This

explains why the number of LISP sites, as shown in Fig. 2.6, only marginally affects the

processing latency.

Our evaluation shows that our control plane implementation is scalable and offers the

level of performance needed for operational deployment suffering from very high loads.

Moreover, the overhead due to LISP encapsulation is proven to be negligible with the

OpenLISP data plane implementation [39]. These results and our efforts to be in confor-

2.4. CONTROL PLANE IMPLEMENTATION AND EVALUATION 25

Figure 2.7: Average number of received.

mance with the standards position the combination of the OpenLISP data plane and our

control plane implementation as a viable and efficient alternative to closed-source vendor-

specific implementations. The proof is that one DDT root using our implementation is

already integrated in the official LISP Beta Network control plane.

We compare the LISPMob, Cisco, enhanced OpenLISP and PyLISP implementations,

which are the single ones available to us.

Fig. 2.7 compares the LISP implementations (for the FritzBox there is no public com-

plete information to date); all respect the reference RFC [6] and are hence interoperable.

The OpenLISP and Cisco IOS implementations are the most complete. Morever, to the

best of our knowledge, OpenLISP is the only one supporting LISP traffic engineering

(LISP-TE) [49] and map versioning, as well as the only open source implementation sup-

porting Proxy-ITR/ETR features.

We quantitatively compared these implementations by measuring their reliability when

replying to Map-Request messages. Fig. 2.7 gives the scatter plot of the Map-Request

rate vs. the Map-Reply rate for an increasing Map-Request rate. Ideally, the Map-

Reply rate should be equal to the Map-Request rate, but because of processing time

and buffer limitations, some requests are eventually dropped. OpenLISP, LISPMob, and

PyLISP were executed in the same single-core node of 2.67 GHz and 1 GB of RAM. We

ran the Cisco implementation of a multi-core carrier grade router, the 3900 one, since

26 2.5. LISP EXPERIMENTAL PLATFORMS

tested lower-grade Cisco routers did stop the LISP control plane when approaching a few

thousand Map-Requests per second. Results between the open source implementation and

the Cisco implementations are therefore not directly comparable, but are reported for the

sake of clarity. The Cisco one consequently appears as the most robust implementation,

dropping about 10 percent of the control plane messages, only starting at around 4000

messages/s. Among the open source implementations, OpenLISP slightly outperforms

LISPMob for low and mid-range rates, despite the additional features to manage, but has

similar performance at higher rates. PyLISP in its current implementation is not very

scalable and shows very poor performance already at 500 Map-Requests/s. Overall, these

results show that the more mature implementations are those with a longer history.

2.4.5 Perspectives

Thanks to our development effort, an OpenLISP node can today run as the single fully

featured open source LISP implementation.

Our performance evaluation combined with the data plane performance evaluation in

[33] shows that our implementation is scalable enough for large networks and reaches per-

formances suitable for real deployments. Our implementation is currently mature enough

to be deployed in operational networks, and is actually used to interconnect at least seven

LISP sites to the worldwide LISP Beta Network testbed and to the LISP-Lab testbeds,

correctly handling both data plane and control plane operations. Moreover, we have just

integrated an OpenLISP DDT root server into the current worldwide LISP DDT hierar-

chy. We are currently enhancing the traffic engineering features to support various working

modes concurrently, and we plan to add security features, integrating the related upcoming

Internet Engineering Task Force (IETF) specification on the matter. We recently ported

the control plane to the Linux environment; another important milestone already planned

is to port the data plane to Linux as well, and the whole Open-LISP node to other BSD

flavors (e.g., OpenBSD and Net-BSD).

2.5 LISP experimental platforms

We describe in the following two open LISP platforms. One managed by Cisco, and one by

the ANR LISP-LAB project coordinated by Université Pierre et Marie Curie - Sorbonne

Université. I strongly contributed to the construction, integration and management of the

LISP-LAB platform.

2.5. LISP EXPERIMENTAL PLATFORMS 27

2.5.1 LISP4.net platform

Figure 2.8: LISP4.net network, 2018. Source: lisp4.net.

The LISP Beta Network is a multi-company multi-vendor effort to run experiments with

LISP. It is build using multiple Map-Servers, Map-Resolvers, Proxy Routers and xTRs.

Participants host one or more of these components. Involvement can range from hosting

full-blown mapping services to being an end user and just enjoy the various advantages of

LISP.

The testbed also manages IP address spaces for the EID block, and is able to distribute

EID sub-blocks to users. These IP prefixes are originated by AS3943. Although there is no

official statistics, based on the public list, as of January 2018, there are 510 organizations

and individuals registered and connected to the testbed. A representation of the platform

architecture is given in Fig. 2.8.

The LISP.net use the LISP-DDT as the mapping signaling protocol. The LISP Beta

Network control-plane is essentially based only of Cisco routers, except for the LISP-Lab

nodes. At this time, there are three DDT roots, one in the US and two other ones in

Europe. One of them is maintained by LISP-Lab using our OpenLISP control-plane.

28 2.5. LISP EXPERIMENTAL PLATFORMS

2.5.2 LISP-Lab platform

The LISP-Lab platform was created as an experimental research project funded by the

French national research agency. It aims at building an open platform, based on the LISP

architecture, providing the environment to perform high-quality research and support the

design, development, and thorough assessment of new services and use-cases. The range

of technical tasks planned in the LISP-Lab project, from cloud networking, to access tech-

nology, through inter-domain connectivity, traffic engineering, and mapping management,

has a larger scope than the LISP beta network, boosting innovation beyond the LISP

technology itself.

The geographical scope of the platform is depicted in Figure 2.9 and the IP configura-

tion and network interconnection simplified in Figure 2.10.

Figure 2.9: LISP-Lab partners locations.

2.5. LISP EXPERIMENTAL PLATFORMS 29

Figure 2.10: LISP-Lab platform IP topology.

The LISP-Lab platform is multi-party in its very nature, being the collaborative result

of a first class consortium composed of academic institutions (Université Pierre et Marie

Curie - Sorbonne Université, Télécom ParisTech), public interest groups (RENATER, Re-

zopole) and industrial partners (Border6, AlphaLink, NonStopSystems, Orange, Ucopia).

The LISP-Lab project aims at becoming the main actor in driving future evolution of the

LISP standardization, with a strong impact on the networking industry and the Internet

ecosystem at large.

Although LISP4.net provide a free LISP testbed, they limit on the capacity to test

new proposal in the mapping system because almost all main LISP network nodes (except

xTRs) use Cisco devices, with closed source code. Moreover, each organization which

joins the LISP4.net has to use the EID-prefix which is assigned by the testbed, limiting

the scope of possible experimentations.

By deploying a new testbed based on open source nodes, LISP-lab allows testing new

proposals that are not locked to a proprietary implementation. Besides, the LISP-lab

DDT root being also deployed in the LISP4.net, it allows the interconnection between two

platforms while guaranteeing each organization to use own IP addressing space.

Fig. 2.10 illustrates the main topology of LISP-lab. The three main sites are the LIP6

30 2.5. LISP EXPERIMENTAL PLATFORMS

laboratory of Université Pierre et Marie Curie - Sorbonne Université, Télécom ParisTech,

and RENATER. The interconnect between the main site is provided over RENATER

with a layer-3 VPN mesh with links of 1 Gbps. For load balancing and the stability of the

system, the mapping system is deployed in the three sites, each site includes at least one

MS and one MR. For communication with non-LISP networks, we deployed two PxTRs,

one beyond RENATER and Rezopole, and one beyond the Alphalink network.

Chapter 3

Large-Scale Virtual Machine

Migrations with LISP

Nowadays, the rapid growth of Cloud computing services is stressing the network commu-

nication infrastructure in terms of resiliency and programmability. This evolution reveals

missing blocks of the current Internet Protocol architecture, in particular in terms of vir-

tual machine mobility management for addressing and locator-identifier mapping. In this

chapter, we propose some changes to the Locator/Identifier Separation Protocol (LISP)

to cope with this gap. We define novel control-plane functions and evaluate them exhaus-

tively in the worldwide public LISP testbed, involving five LISP sites distant from a few

hundred kilometers to many thousands kilometers.

3.1 Introduction

As a matter of fact, network virtualization has revolutionized datacenter networking. Once

solely based on physical server and mainframe interconnections, Cloud datacenters increas-

ingly deploy virtualization servers that host, send and receive virtual machines (VMs), to

and from local and distant locations. This evolution raises many networking issues in

terms of address continuity and traffic routing. When and how should VMs maintain (or

use) the same (or multiple) Ethernet and/or IP addresses upon migration, have been and

still are open research questions in Cloud networking. Similar challenges appear with the

emergence of advanced services such as Infrastructure as a Service (IaaS) [52], often re-

quiring multiple VMs physically located at different sites to communicate with each other

as well as with its users, which keep communicating while moving across datacenters [53].

The contents of this chapter are presented in [33, 50, 51]. My contribution included both the protocol
solution design and its implementation in strong coordination with P. Raad.

31

32 3.1. INTRODUCTION

In virtualization nodes, the hypervisor is a software-level abstraction module essential

to concurrently manage several VMs on a physical machine. VM migration is a service

included in most hypervisors to move VMs from one physical machine to another, com-

monly within a datacenter. Migrations are executed for several reasons, ranging from fault

management, energy consumption minimization, and quality-of-service improvement. In

legacy Cloud networks, VM location was bound to a single facility, due to storage area

network and addressing constraints. Eventually, thanks to novel protocols and high-speed

low-latency networks, storage networks can span metropolitan and wide area networks,

and VM locations can span the whole Internet over very long distances.

Multiple solutions are being tested to make VMs’ location volatile [54, 55, 56]. The

main trend is to allow transparent VM migrations by developing advanced functionalities

at the hypervisor level [54]. In terms of addressing, the main problem lies in the possibility

of scaling from public Clouds and intra-provider Clouds to private and hybrid Clouds, i.e.,

seamlessly migrating a virtual server with a global IP across the Internet and wide area IP

networks. Multiple solutions exist to handle addressing issues, ranging from simple ones

with centralized ad-hoc address mapping using MAC-in-MAC or IP-in-IP encapsulation, or

a mix of both of them, to more advanced ones with a distributed control-plane supporting

VM mobility and location management. Several commercial (non-standard) solutions

extend (virtual) local area networks across wide area networks, such as [55] and [56]

handling differently layer-2 and layer-3 inter-working.

Among the standards to handle VM mobility and addressing issues, we can mention

recent efforts to define a distributed control-plane in TRILL (Transparent Interconnection

of a Lot of Links) architecture [57] to manage a directory that pilots layer-2 encapsula-

tion. However, maintaining layer-2 long-distance connectivity is often economically pro-

hibitive, a too high barrier for small emerging Cloud service providers, and not scalable

enough when the customers are mostly Internet users (i.e., not privately interconnected

customers). At the IP layer, the addressing continuity can be guaranteed using ad-hoc

VM turntables as suggested in [58], or Mobile IP as proposed in [59], which however can

increment propagation and transmission delays due to triangular routing: the traffic has

to pass through the VM original network, before being encapsulated and sent to the new

VM location.

More recently, the Location/Identifier Separation Protocol (LISP) [6], mainly pro-

posed to solve Internet routing scalability and traffic engineering issues, is now considered

for VM mobility and has already attracted the attention for some commercial solutions

[38]. In order to efficiently handle locator-identifier mappings, LISP offers a distributed

control-plane, decoupled from the data-plane. An advantage of LISP is that it can avoid

3.2. BACKGROUND 33

triangular routing, with encapsulations performed at the first LISP capable IP node. Nev-

ertheless, based on current standards and literature, there are missing functionalities to

guarantee low VM migration downtimes with LISP. Moreover, those experiments cannot

be reproduced in absence of open source solutions.

The contribution of this chapter is the definition and the evaluation of novel LISP

functionalities to obtain high performance in large-scale live VM migration. We provide

all the elements to reproduce the results, including reference to an open source implemen-

tation of our proposition. Our solution is based on the definition of LISP control-plane

messages to fast update EID-locator mappings, hence overcoming the long latency of ba-

sic LISP mechanisms. We validate and evaluate our solution using the worldwide LISP

Beta Network and LISP-Lab nodes, piloting five LISP sites in four countries worldwide.

The chapter is organized as follows. Section 3.2 briefly presents the background. Section

3.3 describes our protocol extension proposition. Section 3.4 reports experimental results.

Section 3.5 concludes the chapter and discusses future works.

3.2 Background

In this section we describe the state of the art live VM migration networking.

3.2.1 Live VM migration and IP mobility

Live VM migration is a feature introduced in recent hypervisors; it allows moving a running

VM between two (physical) host containers without disconnecting the client or application.

For most of the hypervisors, live migration is limited to situations in which source and

destination hosts look like connected to the same local area network. The main reason

is that the machine being migrated needs to keep the same routing view of the network

(e.g., gateway, IP subnet) before and after the migration. Alternatively, in some legacy

solutions, upon migration the VM changes its IP address, e.g., via the DHCP, to avoid the

additional complexity needed to ensure that the origin IP address is not already used in

the destination network, and to transfer the routing table; VM’s IP readdressing implies,

however, long convergence and loss of too many packets.

In order to perform Internet-wide migrations with IP continuity, authors in [59] and [60]

propose an IP mobility solution. The logic is implemented in the hypervisor, interacting

with the VM before and after its migration to update IP addresses in the VM routing table.

While [59] succeeds in bringing lower service downtime compared to [60], the hypervisor

has to alter the VM configuration to support the IP mobility feature, which leads to

scalability concerns. Moreover, as the authors state, the performance of their solution is

34 3.2. BACKGROUND

expected to worsen in large-scale global live migrations, because of the online signaling

nature of the proposition and many-way signaling latencies.

Authors in [61] propose to adapt the Mobile IP (MIP) protocol [62] to pilot Internet-

scale VM migrations, implementing it in the hypervisor. Their solution, called HyperMIP,

is invoked whenever a VM is created, destroyed or migrated; as in MIP, it involves Home

Agents (HA) to keep the connection alive. Whenever a VM changes a location, a tunnel

is established between the HA and the source hypervisor to keep the client connected to

the VM. The destination hypervisor then destroys the tunnel when the VM registers its

new IP address to the HA. However, HyperMIP still introduces an important signaling

overhead due to HA tunnel establishment.

Alternatively, to minimize signaling latencies, authors in [58] propose to use an ex-

ternal agent to orchestrate the migration from the beginning to the end, by proactively

establishing circuits between the involved containers (source and destination hypervisors)

offline, so as to rapidly switch the traffic upon migration, then redirecting the client-VM

traffic via dynamic reconfiguration of IP tunnels. They achieve a near second network

downtime while migrating machines across wide area networks, with a maximum network

downtime around 3.8 seconds. Despite being a more secure approach, with respect to

[59], [60] and [61] their solution involves lower-layer technologies, hence can be excessively

costly.

3.2.2 Layer 2 over Layer 3 overlay tunneling solutions

The above described solutions tackle large-scale VM live migration using Layer 3 tunneling

([59], [60] and [61]), or Layer 3-Layer 1 interaction [58]. More recently, at the IETF,

attention has been given to Layer 2 over Layer 3 (L2o3), Ethernet over IP, virtual network

overlay solutions, so as to avoid IP reconfiguration to the VM, and service continuity

upon migration of VMs across virtualization servers. Virtual eXtensible LAN (VXLAN)

[63], Stateless Transport Tunneling (STT) [64], and Network Virtualization using Generic

Routing Encapsulation (NVGRE) [65], are recent propositions, already implemented by

many commercial stakeholders (e.g., Microsoft, VMWare) and open source virtual switches

(e.g., OpenVSwitch), worth being discussed hereafter.

VXLAN [63] is a stateless L2o3 logic that extends the Layer 2 communication domain

over IP networks, extending a VLAN broadcast domain thanks to MAC-to-IP encapsula-

tion between hypervisors, even if communicating VMs and endpoints are in different IP

segments. Basically, when a VM wants to communicate with another VM on a different

host, a ‘tunnel endpoint’ implemented in the hypervisor receives the frame, verifies that

the target VM is on the same VXLAN segment via standard signaling, and then appends

3.2. BACKGROUND 35

an IP address corresponding to the destination tunnel endpoint, and a VXLAN header.

Upon reception, the destination tunnel endpoint verifies the packet, decapsulates it and

forwards it to the VM target. Therefore, thanks to the VLAN broadcast domain exten-

sion, a VM belonging to a VXLAN segment can migrate to a VXLAN endpoint in another

IP segment, and its traffic is consequently encapsulated by the source VXLAN endpoint

toward the destination VXLAN endpoint.

Functionally, NVGRE [65] is a similar L2o3 tunneling solution, with a different header

(VXLAN uses a UDP shim header to easily pass through middle-boxes, while NVGRE

does not hence limiting its scope to a single administrative network), and with no speci-

fied control-plane to distribute MAC-to-IP mappings (in VXLAN, multicast mechanisms

do allow resolving these mappings). Encapsulating Ethernet traffic over IP allows a bet-

ter bottleneck management thanks to various IP traffic engineering and load-balancing

mechanisms. Both VXLAN and NVGRE, however, do not allow typical Ethernet network

interface controllers to perform TCP offloading (intermediate fragmentation done by the

hardware to boost performances). This is instead allowed by Stateless Transport Tunnel-

ing [64] (STT), another stateless L2o3 tunneling protocol, which uses a fake TCP header

inside the IP header to allow interface-level TCP optimizations. From a VM mobility

and traffic routing perspective, it offers the same encapsulation path than VXLAN and

NVGRE, but as NVGRE it has difficulties to pass through Internet middle-boxes and its

deployment is also limited to a single administrative domain such as a DC network.

All these technologies (VXLAN, NVGRE, STT) share as reference use-cases intra-DC

and inter-DC communications, i.e., between VMs hosted in different virtualization servers

potentially in different IP subnets. Therefore, they are not readily applicable to the Cloud

access communication usecase, involving an IP user and a VM-based IP server, mainly

targeted by our LISP proposition. The user endpoint is typically not a virtualization

server and is not connected to the same DC fabric than the server, and can potentially be

everywhere in the Internet.

3.2.3 Triangular routing solutions vs LISP rerouting

From the IP routing perspective of an Internet client accessing a server running in a VM,

the legacy approaches can be considered as triangular routing (or indirect forwarding)

solutions - the traffic has to reach the VM source network and/or container before being

encapsulated and sent to the new VM location. Triangular routing solutions typically

offer higher client-server path latency, than LISP-enabled direct rerouting. A higher path

latency implies a higher transfer time, namely for TCP-based connections given that the

round-trip-time (RTT) has an impact on TCP acknowledgments reception. Therefore, as

36 3.2. BACKGROUND

Figure 3.1: Triangular routing vs LISP rerouting.

far as the LISP tunneling node is implemented closer to the source endpoint than the tri-

angular routing re-encapsulating node, a LISP-based Cloud network certainly outperforms

triangular routing solutions in terms of transfer time.

As depicted in Fig. 3.1, the rerouting logic of the above described solutions can be

either implemented at the hypervisor level, or at the IP border level (e.g., DC or rack

border) at a Mobile IP or similar agent. With LISP, client traffic can be redirected to the

new location at the first LISP network ingress point, which can potentially be the client

terminal itself (if a solution such as LISP mobile node is used [40]), a client’s network

provider router, any intermediate router between the client and the VM source DC, or (at

last) the VM source DC’s egress router if the standard IP path is taken by client traffic and

the VM’s prefix is announced by DC nodes. In all cases (but the latter that is topologically

identical) the path latency offered by LISP is better than the path latency reachable with

a non-LISP method alone. In common situations, triangular routing solutions alone add

the source DC - destination DC latency to application connections, hence leading to longer

forwarding latency, and transfer time, for Cloud access communications.

It is worth stressing that LISP is orthogonal to the existence of emerging hypervisor-

level L2o3 triangular routing solution such as VXLAN, NVGRE or STT: LISP reroutes

Cloud access user traffic while hypervisor-level mechanisms reroute VM-to-VM commu-

nications. It is worth noting that the LISP enhancement we propose in the following to

support VM migration is independent of the existence of such inter-VM virtual network

3.2. BACKGROUND 37

overlay mechanisms. Their integration with our LISP-based Cloud access solution could

bring advantages in terms of transfer time only for inter-VM communications.

As compared to legacy IP-level triangular routing solution, with our proposition de-

scribed in the next sections, we can obtain service downtime between 150 and 200 ms,

depending on the signaling scope. With respect to the alternative methods at the state of

the art described in 3.2.1, we can assess that:

• with HyperMIP [66], authors experienced 2 to 4 s of downtime, which is many times

more than our approach;

• similarly in [60] Mobile IPv6 signaling is used to detect VM location change, reaching

a minimum overhead around 2500 ms, linearly increasing with the network delay,

hence significantly higher than our approach;

• authors in [58] went a step further implementing pro-active circuit provisioning,

reaching an application downtime varying between 800 and 1600 ms, which is more

than 4 times higher than with our approach.

3.2.4 Existing LISP-based mobility management solutions

In a LISP network, the VM can keep the same IP. Two mechanisms at the state of the art

can perform this operation. One is a host-based LISP implementation called LISPmob [40]:

the host implements a tiny xTR with basic LISP functions, using the network-assigned

IP(s) as RLOC(s) and registering mapping updates for its EID with the mapping servers.

Essentially conceived for mobile equipment, LISPmob could also be installed in the VM;

there would be, however, a problem with most current hypervisors that impose the VM

external address to be in the same subnet before and upon migration, which practically

limits the LISPmob usability only to situations where source and destination networks

are either LISP sites themselves, or layer-2 over wide area network (WAN) solutions. In

the first case, a double encapsulation is needed, which could increase mapping latency,

overhead and create MTU issues. There may also be scalability issues with a high number

of VMs.

Another method to handle VM mobility via LISP is actually implemented in some

Cisco products, only partially documented in [38]. The xTR automatically changes the

mapping upon reception of outgoing data-plane traffic from an EID that has been reg-

istered as mobile node. The solution has an attracting light impact on IP operations,

yet it seems to be weak against EID spoofing, and it seems not to have authentication

mechanisms. Moreover, in order to guarantee fast mapping convergence, it seems that

38 3.3. PROPOSED LISP-BASED VM MIGRATION SOLUTION

additional logic would need to be implemented in the VM or in the hypervisor to allow

sending outgoing artificial data traffic even if no real outgoing traffic exists.

3.3 Proposed LISP-based VM migration solution

We propose a novel solution to support WAN VM live migration exploiting the LISP

protocol. We implemented our solution in the open source OpenLISP control-plane im-

plementation [8] [67], which complements the OpenLISP data-plane [68].

As described above, a live migration technique should be able to move a VM keeping

its unique EID, from its actual DC to a new DC maintaining all VM connections alive.

As a preliminary step, the source and destination DCs have to share the same internal

subnet, i.e., the VM unique EID should be routable beyond its RLOC, wherever it is. LISP

supports a large number of locators, and does not set constraints on RLOC addressing

– i.e., the RLOCs can take an IP address belonging not simply to different subnets, but

also to different Autonomous System networks. The current VM location can be selected

leveraging on RLOC metrics. We introduce two main enhancements:

• a new LISP control-plane message to speed up RLOC priority update;

• a migration process allowing hypervisor-xTR coordination for mapping system up-

date.

Our solution involves the following network nodes: the source VM container and the

destination VM container, both managed by an hypervisor, the VM being migrated from

one to the other, LISP border routers at the source DC and at the destination DC, the

Cloud user accessing the VM.

In the following, we present the novel LISP control-plane message we introduce for

communications between the involved LISP nodes, then we describe the VM migration

process, and finally we discuss implementation aspects.

3.3. PROPOSED LISP-BASED VM MIGRATION SOLUTION 39

Figure 3.2: CHANGE PRIORITY message format.

3.3.1 Change priority message format

We introduce a new type of LISP control-plane message we call CHANGE PRIORITY

(CP).

As depicted in Fig. 3.2, we use a new control-plane type field value equal to 5, and

use two bits to define message sub-types to be managed by both xTR and VM containers’

hypervisors:

• H (Hypervisor) bit: this bit is set to 1 when the message is sent by the destination

hypervisor (the hypervisor that receives the VM), indicating to the xTR that it has

just received a new EID. With the H bit set, the record count should be set to 0 and

the REC field is empty;

• C (Update Cache) bit: this bit is set to 1 when an xTR wants to update the mapping

cache of another xTR. With the C bit set, the record count is set to the number of

locators and the REC field contains the RLOC information to rapidly update the

receiver mapping cache.

The other fields have the same format and function as for the MAP-REGISTER message

fields [6], i.e., with EID and RLOC fields, a nonce field used to guarantee session controls,

40 3.3. PROPOSED LISP-BASED VM MIGRATION SOLUTION

and HMAC authentication fields useful to secure the communication (with the important

feature that the authentication key used for CP messages can be different than the key

used by MAP-REGISTER, provided that the xTR is able to handle different keys as

provided in [8] [67]).

3.3.2 VM migration process

The LISP mapping system has to be updated whenever the VM changes its location.

Before the migration process starts, the xTRs register the VM’s EID as a single /32 prefix

or as a part of larger EID (sub-)prefix. The involved devices communicate with each

other to atomically update the priority attribute of the EID-to-RLOC mapping database

entries. The following steps describe the LISP-based VM migration process we propose

and demonstrate.

1. The migration is initialized by the hypervisor hosting the VM; once the migration

process ends, the destination hypervisor (the container that receives the VM) sends

a CP message to its xTR (also called destination xTR) with the H bit set to 1, and

the VM’s EID in the EID-prefix field.

2. Upon reception, the destination xTR authenticates the message, performs an EID-

to-RLOC lookup and sets the highest priority to its own locators in the mapping

database with a MAP-REGISTER message. Then, it sends a CP message, with H

and C bits set to 0, to update the mapping database of the xTR that was managing

the EID before the migration (also called source xTR).

3. Before the VM changes its location, the source xTR keeps a trace file of all the

RLOCs that have recently requested it (we call them client xTRs), i.e., that have

the VM RLOCs in their mapping cache.

4. When the source xTR receives the CP message from the destination xTR, it au-

thenticates it and updates the priorities for the matching EID-prefix entry in its

database.

5. In order to redirect the client traffic, there are two different client-redirection possibil-

ities, whether the client xTR is a standard router not supporting CP signaling (e.g.,

a Cisco router implementing the standard LISP control-plane [6]), or an advanced

router including the CP logic (e.g., an OpenLISP router with the control-plane [8]

[67]).

• For the first case, the source xTR sends a SMR to standard client xTRs, which

3.3. PROPOSED LISP-BASED VM MIGRATION SOLUTION 41

triggers mapping update as of [6] (MAP-REQUEST to the MR and/or to the

RLOCs, followed by a MAP-REPLY to the xTR).

• For the second case, in order to more rapidly redirect the traffic to the VM’s new

location (destination xTR), the source xTR sends a CP message with C bit set

to 1 directly to all the client xTRs, which will therefore process it immediately

(avoiding at least one client xTR-MR round-trip-time).

6. Upon EID mapping update, the client xTRs update their mapping cache and start

redirecting the traffic to the VM’s new routing locator(s).

All in all, updating the mapping database of the nodes involved in a VM migration

requires two compulsory message exchanges (one message that notifies the destination

DC about the migration process and another one that is used to notify the source DC),

and optionally a number of additional messages equal to the number of clients that are

communicating with the VM to inform the xTR clients’ about the updates. Considering

only the location update messages for the LISP mapping system does not make our solution

heavier than triangular routing solution (e.g., Mobile IP). Additional signaling messages

are generated with respect to triangular routing solutions if VM clients’s mapping updates

are considered. The limited increase of control messages is indeed counterbalanced by more

significant benefits, in terms of resiliency and convergence, of our solution with respect to

triangular routing ones.

It is worth noting that our solution fully relies on control-plane features. It is our

methodology choice to avoid mixing data-plane and control-plane functions (for example

proposing a specific usage of Map-Versioning or Locator Status Bit field in the data-plane

[69]). The main advantage of creating network control functions disjoint from the data-

plane is the possibility to program the control-plane independently of the forwarding logic,

hence to implement advanced and personalized functionalities. This separation respects

the current design trend in networking called Software Defined Networking [70]. Thanks

to that, new functionalities can be added rapidly to the OpenLISP control-plane and allow

rapid deployment even using pre-existing basic data-plane elements.

42 3.3. PROPOSED LISP-BASED VM MIGRATION SOLUTION

3.3.3 Implementation aspects

Algorithm 1 Algorithm 1 CP processing.

Ensure: authenticity of CP message and extract EID from EID-prefix field
if H bit is set to 1 then

set own locators’ priority to 1
send CP to xTR group with H bit and C bit set to 0
register mapping to Map Server.

end if
if H bit and C bit are both set to 0 then

set own locators’ priority to 255
set locators’ priority in RLOC field to 1
send CP with C bit set to 1 to all locators that have requested the VM’s EID
stop registering for EID

end if
if C bit is set to 1 then

update mapping cache according to the received message
end if

Figure 3.3: Example of CP signaling exchange during a VM migration.

The proposed solution has been implemented using opensource software (i.e., Open-

LISP [8] [67]), and its implementation involves both the hypervisor and the xTR sides.

3.3. PROPOSED LISP-BASED VM MIGRATION SOLUTION 43

1. On the hypervisor: we integrated a new function that interacts with LIBVIRT (a

management kit handling multiple VMs in the KVM hypervisor) [71] to trigger CP

message generation. When a live migration starts, the hypervisor creates a “paused”

instance of the VM on the destination host. Meanwhile, LIBVIRT monitors the

migration phase from the start to the end. If the migration is successfully completed,

LIBVIRT checks if the VM is running on the target host and, if yes, it sends a CP

message to its xTR on the UDP LISP control port 4342. The VM EID is included

in the EID-prefix field.

2. On the xTR: we implemented the Algorithm 1 function in the OpenLISP control-

plane [8]. While the OpenLISP data-plane logic runs in the kernel of a FreeBSD

machine, the control-plane runs in the user space. The control-plane has a new fea-

ture to capture control-plane message type 5 and the logic to handle CP signaling5.

3. A signaling example: upon receiving a client request, or as triggered by a consolida-

tion engine, a VM needs to be migrated to another public DC. As in the Fig. 3.3

example, VM Container 2 starts migrating VM from DC2 to DC1 while the Client

is still connected. When the migration reaches the so called stop-and-copy phase

(i.e., the phase dedicated to transfer the “dirty pages”, which are pages updated

too frequently to be transferred while the VM runs [72]), the VM stops and begins

transferring its last memory pages. Meanwhile, the Client loses the connection, but

keeps directing the traffic to DC2.

The hypervisor on VM Container 1 detects that VM is now successfully running,

indicating the end of the migration. Then the VM Container 1 announces that the

VM has changed its location by sending to xTR 1 a CP message with the H bit set.

Upon reception, xTR 1 sends a CP with H bit and C bit set to 0 to notify xTR 2

about the new location of VM: xTR 1 updates the priorities for VM’s EID entry in

its database.

When xTR 2 receives the CP message, it matches the EID-prefix to the entries

within its mapping database, and modifies the priorities accordingly, then it stops

registering VM’s EID. As mentioned in Section 3.3.2, xTR 2 keeps a trace file of all

the locators that recently requested the VM’s EID. In this example, only one client

is communicating with VM, so xTR 2 sends a CP message with C-bit set to the

Client’s xTR.

Finally, the Client’s xTR receives the CP message, maps VM’s EID, and updates its

cache, then starts redirecting Client’s traffic to VM’s new location (DC1).

44 3.4. TESTBED EVALUATION

3.4 Testbed evaluation

We performed live migrations of a FreeBSD 9.0 VM, with one core and 512 MB RAM

(corresponding to a typical service VM like a lightweight web server), via the LISP-Lab

plateform, from UROMA1 (Rome) to LIP6 (Paris), using KVM [73] as hypervisor. Please

note that the size of the VM has no direct impact on live migration downtime for a given

service type; different services may have a more or less intensive usage of memory pages,

so that the stop-and-copy phase duration may have a more or less important impact on

the downtime.

Figure 3.4: Testbed network scope.

Fig. 3.4 gives a representation of the testbed topology. As distributed storage solu-

tion, we deployed a Network File System shared storage between source and destination

host containers. Hence, only RAM and CPU states are to be transferred during the live

migration. The VM containers are Ubuntu 12.04 servers, dual core, with 2048 RAM and

using KVM and Libvirt 0.9.8.

We measured node reachability by 20 ms spaced pings from different clients: distant

ones at VNU (Hanoi, Vietnam), UFRJ (Rio de Janeiro, Brazil) LISP sites, and a close

one at the INRIA (Sophia Antipolis, France) LISP site. It is important to mention that:

• the clocks on all LISP sites were synchronized to the same Network Time Protocol

(NTP) stratum [74], so that a same VM migration can be monitored concurrently

at the different client sites;

3.4. TESTBED EVALUATION 45

Figure 3.5: Bandwidth during migration with SMR and CP approaches.

• all LISP sites’ xTRs register to a same MS/MR located in Denmark (www.lisp4.net),

hence avoiding the DDT latency in the mapping convergence.

The latter is a possibility left to the datacenter manager, depending on the quality

of the DDT architecture the Cloud provider could choose to which MS/MR to connect

both the client and the Cloud networks. In our experimentations, we chose so also to get

around some of the instabilities on the Asian (APNIC) MS/MR.

We performed hundreds of migrations from the UROMA1 site to the LIP6 site, over

a period of three months at different times of the day, with two migrations per hour, to

obtain a statistical population representative enough to capture the bandwidth, latency

and routing variations of the Internet paths. We measured the experienced bandwidth;

we report its experimental distribution in Fig. 3.5, where we can see that most of the

migrations experienced between 50 and 60 Mbps.

We used the two possible inter-xTR mapping update modes with the proposed control-

plane enhancement: SMRs to simulate standard client xTRs, and CP to encompass the

case with enhanced xTRs at client LISP sites. Given the Internet wideness of the testbed,

both the bottleneck bandwidth and RTTs were floating, depending by the time and day,

hence we did a statistical evaluation as described hereafter. The average measured RTTs

between each site during the migration are reported in Fig. 3.8; having both close and far

clients’ sites allows us to precisely assess the migration performance.

In order to experimentally assess the relationship between different time components

and network situations, we measured the following different parameters:

• number of lost packets for each client (i.e., the number of ICMP messages that are

46 3.4. TESTBED EVALUATION

Figure 3.6: Total migration duration (boxplot statistics).

Figure 3.7: Migration duration and downtime composition.

lost on each client during migration);

• mapping convergence time for each client: the time between the transmission of CP

by the hypervisor and the mapping cache update on each client.

• downtime perceived by each client: the time during which the client could not com-

municate with the VM;

• total migration duration;

• inter-container bandwidth during migration;

• offset for each client: the difference between the clocks on each client and the NTP

server;

• RTT between the VM and the clients.

For the sake of completeness, we report in Fig. 3.6 statistics about the total migra-

tion duration. It has a median around 11.75 s for both signaling modes. It includes the

downtime introduced by the hypervisor (stop-and-copy phase), not including the mapping

convergence downtime component. As depicted in Fig. 3.7 and as of previous arguments,

it is worth underlining that one should expect that the overall downtime is greater or

3.4. TESTBED EVALUATION 47

equal than the downtime introduced by the hypervisor (the stop-and-copy phase duration

to transfer the dirty pages as already mentioned6) plus the mapping convergence time.

Therefore, the mapping convergence time reflects our protocol overhead, which is differ-

ently affected by the RTT between LISP sites (Fig. 3.8) depending on the client xTR

support of CP signaling.

Figure 3.8: Average measured RTT during migrations.

In order to characterize absolute service downtimes suffered by clients, Fig. 3.9 - 3.12

reports the boxplots (minimum, 1st quartile, median with the 95% confidence interval,

3rd quartile, maximum, outliers) of the obtained number of lost packets, offset, downtime,

and mapping convergence time. We measured the results with the two possible modes for

inter-xTR mapping update, using SMR signaling and using CP signaling.

Using SMR signaling: as explained in Section 3.3.2, as of LISP standard control-plane,

the SMR message is sent by an xTR to another to solicit mapping update for a given

EID. Upon reception of a SMR, the target xTR sends a MAP-REQUEST to mapping

system, followed by a MAP-REPLY. The overall SMR signaling time should therefore be

lower bounded by one and a half the RTT between the two xTRs, which impacts the

mapping convergence time and hence the service downtime. As of our experimentations,

we obtained a median downtime of about 320 ms for the INRIA client, 1.2s for VNU (Fig.

3.9 - 3.12). This large gap between the downtimes of close and distant clients can be

explained not only by the distance that separates each client from the VM, impacting the

propagation delay (see Fig. 3.8 I), but also by the fact that the Map Resolver is closer to

INRIA than to VNU and UFRJ, as mentioned in Section 3.4. We find this gap also in the

number of lost ICMP packets, two to three times higher for distant clients than for close

ones (Fig. 3.9 - 3.12).

Using CP signaling: as explained in Section 3.3.2, using CP signaling the mapping con-

vergence time can be decreased of at least one RTT between xTRs, with an authenticated

oneway message that directly updates xTR cache upon reception. For the INRIA client,

we obtain a median downtime of 260 ms gaining a few dozens of ms, whereas we could

48 3.4. TESTBED EVALUATION

(a) INRIA

(b) VNU

(c) UFRJ

Figure 3.9: Boxplot statistics of lost packets for the three LISP sites (INRIA, VNU, UFRJ).

3.4. TESTBED EVALUATION 49

(a) INRIA

(b) VNU

(c) UFRJ

Figure 3.10: Boxplot statistics of downtime the three LISP sites (INRIA, VNU, UFRJ).

50 3.4. TESTBED EVALUATION

(a) INRIA

(b) VNU

(c) UFRJ

Figure 3.11: Boxplot statistics of offset for the three LISP sites (INRIA, VNU, UFRJ).

3.4. TESTBED EVALUATION 51

(a) INRIA

(b) VNU

(c) UFRJ

Figure 3.12: Boxplot statistics of mapping convergence for the three LISP sites (INRIA,
VNU, UFRJ).

52 3.4. TESTBED EVALUATION

gain 200 ms for VNU and 400 ms for UFRJ. Moreover, we notice that the number of lost

ICMP packets for distant clients has exponentially decreased. This important decrease is

due to the fact that xTRs have no longer to pass via the Map Resolver to update their

mapping cache. Finally, Fig. 3.12 show that the mapping convergence time component

of the downtime decreases with CP signaling for all cases. While it is roughly between

one-third and one-half the downtime with SMR signaling, it falls to between one-sixth

and one-third with CP signaling, and this ratio is higher for distant clients. This implies

that the hypervisor downtime (stop-and-copy phase) is less sensible to the RTT than the

mapping convergence is (likely, the last page transfer profits from an already established

TCP connection with an already performed three-way handshake).

(a) (b)

(c) (d)

(e) (f)

Figure 3.13: Average measured RTT during migrations.

3.5. CONCLUSION 53

It is worth noticing that these measurements may suffer from a small error due to

clock synchronization. As mentioned above, the xTRs have synchronized clocks over the

same NTP stratum. The median of the offsets is represented in Fig. 3.11. While it is

negligible for close clients, it is of a few dozens of ms for distant clients, however less than

the 5% of the downtime. A more precise insight on the simulation parameters is given

by the cumulative distribution functions (CDFs) in Fig. 3.13. The RTT CDFs show us

that, from an Internet path perspective, VNU appears as more distant than UFRJ from

the VMs, with a similar RTT gap before and after the migration. With respect to the

downtime, the relative gap between VNU and UFRJ clients with CP and SMR is similar.

In terms of mapping convergence time, the VNU-UFRJ gap changes significantly, the

reason is likely due to the RTT amplification with SMR.

3.5 Conclusion

In this chapter, we propose a novel LISP-based solution for VM live migrations across

geographically separated datacenters over wide area IP networks. We tested it via the

global LISP testbed. We can summarize our major contributions as follows:

• we defined and implemented a new type of LISP control-plane message to update

VM location upon migration, with the interaction between hypervisors and LISP

routers;

• we performed extensive (hundreds) Internet-wide migrations between LISP sites

(LIP6 in Paris, UROMA1 in Rome) via the LISP testbed, including the case of

clients close to source and destination containers (INRIA - Sophia Antipolis), and

the case of distant clients (VNU - Hanoi, UFRJ - Rio de Janeiro);

• by exhaustive statistical analysis on measured relevant parameters and analytical

discussions, we characterized the related functionalities is publicly available, see [8]

[67]. Part of the CP signaling logic was implemented into LIBVIRT.

• relationship between the service downtime, the mapping convergence time and the

RTT; we showed that with our approach we can easily reach sub-second downtimes

upon Internet-wide migration, even for very distant clients.

It is worth mentioning that the technology described in this chapter was used in a

further work exploring how to trigger virtual machine mobility based on user mobility,

described in [75].

Chapter 4

Enhancing MPTCP with LISP

traffic engineering extensions

In this chapter we describe further extensions to the LISP architecture we propose to sup-

port Multipath Transmission Control Protocol (MPTCP) communications over multiple

paths. In particular, we describe how to leverage on LISP traffic engineering and further

extensions for enhancing MPTCP communications.

4.1 Introduction

The Internet relies heavily on two protocols - the Internet Protocol (IP) and the Transmis-

sion Control Protocol (TCP). In the network layer, IP provides an unreliable datagram

service trying to ensure that any host can exchange packets with any other host. In

transport layer, TCP provides a reliable byte-stream service on top of IP. Indeed, even

if TCP and IP are separate protocols, the separation between them is not complete. To

differentiate the individual data stream among incoming packets, a receiving end host de-

multiplexes the packets based on source and destination IP addresses, port numbers, and

protocol identifiers. This implies that a TCP connection is bound to the IP addresses used

on the client and the server at connection-establishment time. TCP connections cannot

move from one IP address to another. When a host changes the active interface, it obtains

a new IP address. All existing TCP connections must be torn down and new connections

must be created.

The MPTCP protocol architecture allows packets of the same TCP connection to

be sent via different paths to an MPTCP-capable destination. The MPTCP paths are

called subflows and are defined by pairs of source and destination IP addresses or ports.

The contents of this chapter are presented in [76].

55

56 4.1. INTRODUCTION

MPTCP uses the same signaling as the one used for initiating a normal TCP connection,

but the SYN, SYN/ACK, and ACK packets also carry the MP CAPABLE header option,

and the connection initialization is the one corresponding to the first subflow. Additional

subflows also begin in the same way as when initiating a normal TCP connection, but

the SYN, SYN/ACK, and ACK packets carry the MP JOIN header option. The subflows

are terminated similarly to a regular TCP connection with a four-way FIN handshake,

while the MPTCP connection is terminated by a connection-level FIN with a DATA FIN

signaled in the Data Sequence Signal (DSN) option.

MPTCP adoption is expected to explode in the next few years, as it is readily available

in many mobile devices (e.g., in Apple iOS 7 and OSX 10.10,and for the Linux kernel).

Even if multi-homed endpoint situations are certainly becoming a reality for mobile de-

vices (where a portable device typically has multiple interfaces like 3/4G, WiFi, etc) and

servers (that can be equipped with several high-speed interfaces), the de-facto strongly

dominant network interconnection configuration today uses a single network interface by

an application connection for both outgoing and incoming traffic forwarding at a given

time. Indeed, the potential of MPTCP may get unexploited because, even if multiple

subflows can be created by modifying the source port numbers while keeping the same

pair of IP interfaces, their routing in the wide-area Internet segment is subject to non

deterministic bottlenecks.

Passing from multipath communications within a local area network to communications

across the wide area network, bottleneck is commonly experienced in the Internet segment

(typically because of traffic shaping and node/link congestion). Moreover, load balancing

at the autonomous system (AS) level is typically not done today, as investigated in [77].

One of the reasons is that such extensions in the Border Gateway Protocol (BGP) failed

to be standardized [78], even if a few vendors and open source implementations support

it (e.g., [79]). Even if Multipath BGP had to be massively deployed, it would not to

guarantee deterministic end-to-end multipath forwarding for MPTCP subflows. In order

to compensate for such BGP shortcomings, building network overlays appear as a viable

solution as shown in [66]

Recently, for cases where at least one of the two endpoints belongs to a multihomed

network registered to a Locator/Identifier Separation Protocol (LISP) [6] network, authors

in [80][81] investigate the opportunity of building a network overlay exploiting LISP border

routers as multipath forwarding nodes for MPTCP subflows - the solution was named the

Augmented MPTCP (A-MPTCP). The idea is to exploit endpoint network loose path

diversity information, i.e., the IP routing locators (RLOCs), to balance different subflows

over different loose paths that have chances of not sharing a bottleneck in the wide area

4.1. INTRODUCTION 57

Figure 4.1: A 2-subflow A-MPTCP scenario.

network. The proposed method in [80, 81] relies on a custom signaling between an MPTCP

endpoint and the LISP mapping system to obtain RLOC information, used to compute the

number of MPTCP subflows to which different edge-to-edge paths can be deterministically

stitched playing on the 5-tuple identifier, assuming the hashing load-balancing logic at

LISP routers is known by the MPTCP endpoint. While representing a novel promising

approach, the proposal in [80, 81] has three main limitations in many IP operations: (i)

deterministically knowing the correct hashing function at LISP routers may be impossible;

(ii) modifying the MPTCP endpoint kernel as proposed may be unpractical; (iii) the loose

edge-to-edge LISP-enabled paths may not systematically lead to a throughput increase

due to subflow delay differences.

We overcome these drawbacks by proposing to exploit Traffic Engineering (TE) features

we propose to add to the LISP architecture [49, 82], without the need to modify the

MPTCP implementation at end-points. As depicted in Fig. 4.1, our proposal consists of

building a LISP-TE network overlay that, combined with subflow state management and

route selection functions, can transparently offer deterministic multipath forwarding to

MPTCP connections, especially to large (elephant) flows. Transparently here means that

MPTCP endpoints can keep working in their ‘greedy’ mode (opening as many subflows as

set or needed) and that the overlay does not need any support from the underlay networks

between LISP routers. Our proposal was implemented using open source nodes and the

code is made available in github.com/lip6-lisp.

In the following, Section 4.2 presents LISP-TE extensions. In Section 4.3, we describe

different modes to guaranteeing deterministic forwarding of MPTCP subflows. In Sec-

tion 4.2, we specify the provisioning steps. In Section 4.6 we report experimental results.

Section 4.7 concludes the chapter.

58 4.2. LISP TRAFFIC ENGINEERING

4.2 LISP traffic engineering

When two LISP networks exchange traffic, a source endpoint identifier (EID) in a site

sends a packet to a destination EID in the other LISP site. Packets are encapsulated

by an ingress tunnel router (ITR) toward the decapsulating egress tunnel router (ETR).

The path from the ITR to the ETR is determined by the underlying routing protocol and

metrics it uses to select a shortest path (typically BGP and interior gateway protocols).

The ITR creates an IP-(UDP-LISP-)IP tunnel to ETR so that all the packets between the

EIDs are encapsulated and sent via the tunnel.

The LISP Mapping System [35] defines a control-plane based on two main interfaces:

• Map-Resolver (MR): accepts map-requests from ITRs and allows resolving the

EID-to-RLOC mapping using a distributed mapping database;

• Map-Server (MS): learns authoritative EID-to-RLOC mappings from ETR via Map-

Register messages and publishes them in the mapping database.

The LISP Delegated Database Tree (LISP-DDT) is a hierarchical, distributed database

protocol, which embodies the delegation of authority to provide mappings from LISP EIDs

to RLOCs, forwarding map-request across Map-Resolvers and Map-Servers.

The xTR (i.e., ITR/ETR) functionality is present in source and destination LISP

routers [6]. For packets from source to destination, source xTR acts as ITR and destination

xTR acts as ETR; for reverse traffic their role is reversed, i.e., destination xTR acts as

ITR and source xTR acts as ETR.

In LISP Traffic Engineering (LISP-TE) extensions to the basic LISP mode are spec-

ified to allow using a loose path between ITR and ETR by introducing intermediate re-

encapsulating tunneling routers (RTRs) [49]. There are several reasons why these features

can be interesting. For instance:

• There may not be sufficient capacity or degraded performance provided by the net-

works over a given subpath.

• There may be a policy set to avoid a particular subpath.

• There may be specific network functions (e.g., monitoring, traffic inspection nodes)

or even a chain of network functions performed along one or many subpaths.

The ability to pilot RTRs allows us to explicitly manage subpaths between RTRs.

This makes the ITR-ETR direct path, from a basic LISP perspective, a composition of

subpaths between ITR, RTRs, and ETR. This somehow is a form of Internet-scale segment

routing; indeed there is recently also interest to use LISP-TE for segment routing [83]:

4.3. EXPLICIT LOCATOR PATH BINDING MODES 59

segment routing combines source routing and tunneling to steer traffic through the transit

network. In LISP-TE, the ETR can register multiple Explicit Locator Paths (ELPs) each

identifying a path as a chain of RLOCs from source to destination. An RTR is a router

that acts as both an ETR, by decapsulating packets where the destination address in the

‘outer’ IP header is one of its own RLOCs, and an ITR, by making a decision where to

encapsulate the packet based on the next locator in the ELP towards the ETR.

In addition to the set of EID prefixes to register, the map-register message includes

one or more RLOCs to be used by the MS when forwarding map-requests received

through the mapping system. An ETR may request that the MS answers map-requests

on its behalf by setting the “proxy map-reply” flag (P-bit) in the Map-Register mes-

sage.

In a LISP-TE context, building a LISP-TE overlay for A-MPTCP communications

between two endpoints, say a source endpoint and a destination endpoint, shall be done

in such a way that:

1. The destination xTRs register a set of ELPs on a per-EID-prefix basis (e.g., based

on local information on the path states and traffic statistics);

2. The mapping system replies to map-requests coming from clients with one or many

ELPs to use as loose forwarding inter-domain paths;

3. Different subflows from the source to the destination are forwarded over different

ELPs, at least on the most unloaded direction, so that intermediate RTRs determin-

istically guarantee no bottleneck.

As far as communications are asymmetric, using A-MPTCP in a single direction can

be sufficient. Otherwise, its implementation in both directions shall be decorrelated from

each other, especially because Internet routing is often not symmetric. Different modes

are conceivable to implement the above three steps. To ensure a deterministic binding of

subflows to ELP, and hence ensure high performance, states have to be maintained at the

LISP network nodes. Implementing the subflow forwarding can imply only control-plane

operations, and also data-plane operations. The control on the overlay usage can be left

to the destination, to the source, or inter-domain controllers, as elaborated in the next

sections.

4.3 Explicit locator path binding modes

We propose two possible ELP binding modes for MPTCP communications, describing

protocol-level features needed. The specific signaling is later detailed in Section 4.4.

60 4.3. EXPLICIT LOCATOR PATH BINDING MODES

When the source EID sends a packet to the destination EID, source ITR sends a map-

request message to the map resolver to get the ETR RLOC. When there are multiple

ELPs defined leading to the destination ETR, that ETR may be reachable by different

paths. The map-reply is sent by the destination ETR supposing map-reply proxying

is not enabled. The mapping of ELP to subflows can be decided either at the destination

ETR before replying with a single ELP or at the source ITR. Such a decision needs to be

taken for each new subflow upon the detection of the MPTCP connection at the source

xTR. Hence we have two modes of ELP-to-subflow binding operation described hereafter.

4.3.1 Destination-based stateful ELP binding

In this mode of operation, the destination ETR, upon receiving the map-request trig-

gered by the detection of a new MPTCP subflow at the source ITR, sends one single ELP

to the source so that the source associates that ELP with the subflow. When the source

sends another requests upon the detection of an additional subflow, it sends a different

ELP from the list of ELPs it has. In order to allow the ETR differentiate among different

subflows, the source ITR first and the RTRs then must send the flow information in the

map-request. This is possible by sending map-request with the LISP Canonical Ad-

dress Format (LCAF) [82] message type 4 (see Fig. 4.2a) transporting four fields: source

EID, destination EID, source TCP port and destination TCP port. The fifth field of the

5-tuple is protocol identifier and in this case it is TCP. In the reference single-homed end-

point situation, a TCP subflow is then identified based on source port because the other

fields are equal for all subflows.

4.3. EXPLICIT LOCATOR PATH BINDING MODES 61

(a) LCAF type 4

(b) LCAF type 10

Figure 4.2: Two LISP Canonical Address Format (LCAF) control-plane header types.

This mode is therefore stateful in the sense that the LISP network nodes serving the

destination (ITRs, RTRs and the ETRs) need to maintain a subflow-to-ELP association

table. Therefore, the best ELP selection algorithm runs on the destination ETR for each

subsequent subflow-related map-request. When intermediate RTRs (situated between

source ITR and destination ETR) send the request, the ETR must first do a local lookup

and see if the subflow is already associated with an ELP. Since the binding should be

triggered by the source ITR, requests from RTR should be dropped if the sub-flow indicated

in the map request from that RTR is not already associated to any ELP. The benefits

in keeping the state of all sub-flows of all incoming connection at the destination ETR

and RTR level derive from a better system control by the destination network. The

main drawback is scalability, as an important processing load is on the stateful nodes, in

particular the RTRs that could be used by multiple destination networks.

62 4.4. A-MPTCP OVERLAY PROVISIONING STEPS

4.3.2 Source-based stateless ELP binding

An alternative is to let the LISP nodes serving the destination network stay stateless.

This is possible by letting the destination ETR send the complete list of all ELPs along

with their priorities to the source ITR and intermediate RTRs. Source ITR and RTRs

can therefore send a standard non-LCAF map-request upon detection of a new subflow.

The response is encapsulated using LCAF type 10 (see Fig. 4.2b) containing all the ELPs.

The source ITR then selects the best path from the set of ELPs and associates each

subflow with different ELP; the best ELP selection algorithm is later described. In this

mode, the destination ETR and the RTRs do not need to keep any state about sub-flows

associations to ELPs. This makes it a more scalable solution in [81]). However, the

destination network does not have any control over sub-flow forwarding. There is still

a missing brick: intermediate RTRs still need to identify the ELP associated to a given

subflow. In absence of alternative techniques to uniquely identify the best ELP, we propose

two light-way alternative methods:

1. Path Identifier (PID): the source ITR uses a field in the LISP data plane shim header

(the flag field or the instance-ID field) to code an ELP identifier corresponding to

the binding, that is a consecutive number of the ELP in the LCAF-10 map-reply.

In a convergent state, this order is later maintained also in the replies to RTRs.

The mechanism would be altered if the set of registered ELPs changes during the

transmission, which can be considered a rare event during a single connection.

2. ELP Link-Disjointness (ELD): in case ELPs do not share any RTR-to-RTR link,then

identifying the path in the data-plane is not necessary. Upon receiving the LCAF-10

map-reply, the RTR can recognize the ELP based on the previous RTR address

included in the outer header source address field. This implicit ELP recognition

avoids therefore extra-work at the source ITR, yet it requires the destination to

register link-disjoint ELP, which could be a best practice as it is a win-win option,

if the RTR topology is sufficiently rich.

4.4 A-MPTCP overlay provisioning steps

We specify in the following the A-MPTCP overlay provisioning steps for the two binding

modes.

4.4. A-MPTCP OVERLAY PROVISIONING STEPS 63

4.4.1 Destination-based stateful ELP binding

Figure 4.3: A-MPTCP stateful provisioning steps.

Fig. 4.3 depicts an example configuration to describe the provisioning steps for the stateful

case. They are as follows:

1. The destination xTR registers ELPs using map-register messages with no map-

reply proxying.

2. The source endpoint opens a MPTCP session with the destination endpoint.

3. The source xTR catches the mptcp-capable option and identifies the first MPTCP

subflow in a local table with the hash of the 4-tuple source-destination EID IPs and

TCP ports (the ELP column is empty at this stage), plus a local MPTCP subflow

session identifier.

4. The source xTR sends a map-request with LCAF type 4 (Fig. 4.2a), transporting

the 4-tuple source-dest TCP ports and EID IPs, which reaches the destination xTR.

5. The destination xTR selects the best ELP from its set based on the local TE policy

(the candidate ELP set should be precomputed for the sake of scalability) and binds

it with the subflow. It stores in a local subflow table the subflow’s 4-tuple, a local

MPTCP session ID (created for the first subflow), and the ELP bound to it.

6. The destination xTR replies to the received encapsulated map-request using a

map-reply with LCAF type 10 (Fig. 4.2b) containing the selected ELP.

7. The source xTR processes the map-reply, adds the content to the local mapping

cache, binds the ELP to the subflow in the local table, and encapsulates accordingly.

64 4.4. A-MPTCP OVERLAY PROVISIONING STEPS

8. Afterwards, upon reception of the first encapsulated packet(s), intermediate RTRs

first send a map-request to the destination ETR as in step 4, which replies with

a LCAF type 10 map-reply as in step 6, acting then as in step 7. Depending

on single-layer or multi-layer path signaling mode, they may either encapsulate the

packet and send it to the ELP next hop or send another map request for the next

hop, get the intra-domain ELP for next hop and then send the packet to the first

entry in the ELP.

9. The source xTRs catches each additional subflow for each MPTCP flow, based on

variation of source port only and MPTCP syn+mp-join options, update the subflow

table and send for each new subflow a map-request as in point 4 - 8.

10. When source and destination xTRs catch the termination of a subflow (based on

MPTCP option FIN) or a subflow is timeout, they clean the entry from the subflow

table.

4.4.2 Source-based stateless ELP binding

Figure 4.4: A-MPTCP stateless provisioning steps.

Fig. 4.4 depicts an example configuration to describe the provisioning steps for the stateless

case. They are as follows:

1. The destination xTR registers ELPs using map-register messages with LCAF type

10. Destination xTR can set the proxy bit indifferently either map-reply proxy or

no proxy.

4.4. A-MPTCP OVERLAY PROVISIONING STEPS 65

2. The source endpoint opens a MPTCP session with the destination endpoint.

3. The source xTR catches the MPTCP-CAPABLE option and identifies the MPTCP

session in a local table with a hash of the 4-tuple source-destination TCP ports and

EID IPs, plus a local identifier.

4. The source xTR sends a standard non-LCAF map-request through the mapping

system.

5. The destination xTR (if no proxy reply option) or the Map-Server/Map-Resolver

(if proxy reply option) replies to the received encapsulated map-request using a

map-reply with LCAF type 10 containing all the ELPs (Fig. 4.4 shows a map-

reply from destination xTR, for the case when destination xTR registers with no

map-reply proxy).

6. The source xTR processes the map-reply, adds all ELPs to the local mapping cache,

finds the best ELP based on the local TE policy, binds an ELP to the subflow, and

encapsulates accordingly to the ELP to the next RTR hop (the path identifier, PID,

may be included in the LISP data header as specified in Section 4.3.2).

7. Afterwards, upon reception of the first encapsulated packet(s), intermediate RTRs

first send a map-request as in step 4, and receive a LCAF type 10 map-reply as

in step 5, acting then as in step 6. As in the stateful case, they may or not work

under multi-layer path signaling mode. To identify the next-hop RTRs can either

use the PID in the LISP data header, or identify itself in the ELP under the ELD

assumption, as explained in Section 4.3.2.

8. The source xTR catches each additional MPTCP subflow, based on variation of

source port only and MPTCP SYN+MP-JOIN options, updates the subflow table

and binds the second (best) ELP to it.

9. As in the step 10 of the stateful mode, when source and destination xTRs catch the

termination of a subflow (based on MPTCP option FIN) or a subflow is timeout,

they clean the subflow entry from the subflow table.

It is worth mentioning that the local TE path selection policies mentioned in step

6 above and in step 5 of the stateful provisioning step need to be carefully drafted so

as to grant marginal improvement to ELP-to-subflow binding with respect to the stan-

dard/previous situation. As one of the main factors affecting transport protocol perfor-

mance is the Round Trip Time (RTT), there is the need to collect RTT information in

the overlay network topology composed of xTRs and RTRs. This can be natively done in

66 4.5. OVERLAY NETWORK DESIGN

a LISP network by enabling the so-called ‘RLOC probing’functionality [6] that by piggy-

backing map-request messages is able to collect RTT information. Once collected, this

information can be used for the TE path selection policy run over the weighted overlay

network graph.

4.5 Overlay network design

The TE path selection policy is a routing problem that requires finding an efficient set of

ELPs for a given ITR/ETR pair with constraints specific to the A-MPTCP scenario.

The most important parameter when transmitting data of a same MPTCP connection

over different subflows, each experiencing an RTT independent of the other subflows, is

not the overall RTT, but rather the differential RTT between subflows. Indeed, a too

high difference between subflow RTTs may make some subflows useless (discarded by

the local MPTCP scheduling algorithm), and may also cause the head-of-line blocking

issue due to packet disordering at the destination endpoint buffer (i.e., the source can no

longer transmit packets if the destination has not yet acknowledged previously transmitted

packets; this is typically caused by out-of-order packets due to different experienced RTTs)

[84].

In the A-MPTCP context, the ELP set computation corresponds to a LISP-TE overlay

network design problem. The ETR should compute a set of ELPs based on a representative

set of ITRs, which should then be used as default set of ELPs to register with the mapping

system. Then, in the stateful case, the ELP set is filtered based on the ITR sending the

map-request, and ELPs are sequentially bound to subflows, which needs ELPs to be

sorted (based on a reference estimated number of paths per connection).

In the stateless case instead, the ITR receives the full overlay graph (i.e., ELP set) and

has to locally extract the ELPs from it. Both cases share the same reference link-disjoint-

differential-delay routing problem.

In the following, we present the state of the art on multipath provisioning aiming at

differential delay aware routing algorithms, along with the problem’s formal definition and

our adopted heuristic.

4.5.1 State of the art

Multipath provisioning has been extensively studied to increase resiliency of both transport

[85] and wireless networks [86], and to cope with the requirements of high bandwidth

applications [87], and for congestion control [88].

When data is routed through multiple disjoint paths, the delay incurred by each phys-

4.5. OVERLAY NETWORK DESIGN 67

ically disjoint path may differ. Such delay difference is commonly called differential delay

(DD). DD imposes buffering requirements at destination to accomplish data reordering.

DD routing was first studied in [89, 90, 91] for Ethernet over optical transport archi-

tectures. Minimizing DD when including a new path into a group of paths was modeled

as a two sided constraint paths problem and it was demonstrated to be NP-complete [89];

hence, a heuristic based on a modified link weight k-shortest path was proposed. The

authors of [90] demonstrated that the DD routing is NP-hard and that it is as hard as the

longest path problem; they present heuristics based on the flow maximization over a pre-

computed set of paths known to satisfy the DD constraints. Cumulative differential aware

routing was proposed in [91] to accurately model the memory requirement constraint, by

considering the amount of flow on each subpath. However, none of those works considered

path disjointness.

To the best of our knowledge [92, 93] are the first works that presented a reliable mul-

tipath (disjoint paths) provisioning model with DD constraints, which is also an NP-hard

problem. In [92] the specific problem is to provision a connection with requirements on

bandwidth, reliability as well as minimum and maximum delay. They proposed a pseudo-

polynomial time solution, and a fully polynomial time approximation using a restricted

maximum flow formulation over a transformed graph. Due to the complexity of the formu-

lations, a heuristic based on a max flow algorithm followed by a simple differential delay

constraint check was proposed. The problem studied in [93] is to provide reliability and

reduce backup path bandwidth, by computing the maximum cardinality set of disjoint

paths that meet a DD Constraint (DDC). Authors of [93] presented a heuristic to max-

imize the cardinality of paths set that meets a DDC. This heuristic builds an auxiliary

graph using only the merge nodes of k-link-disjoint paths between source and destination,

then compute all possible permutations of those paths.

4.5.2 Link-disjoint-differential-delay routing problem (LD3R)

The network is represented as a directed graph G(V,E,D) where V is the set of nodes,

E is the set of directed links and D represents the one-way delay experienced on each

link. It is important to notice that the routing problem does not account for volume of

flow allocation on each subpath, as this will be let to MPTCP congestion control. Thus

we can consider unit capacity links to preserve link-disjointness. A connection request

R(s, t,DDC), where s, t is the ITR/ETR pair and DDC is the differential delay constraint.

Our objective for the source-destination based approach (for one MPTCP connection) is

to find the maximal set of link-disjoint paths that meet the DDC and low total cost.

68 4.6. EXPERIMENTAL RESULTS

Complexity

An instance of this problem will be to find at least two disjoint paths with equal delay.

The problem of finding two paths with equal delay was proven to be harder than the

Longest Path Problem [90]. Therefore the LD3R problem is NP-hard.

Heuristic

Due to the NP-hardness of the LD3R problem, we present a modified version of the SPLIT-

DDCKDP algorithm [93] in Alg. 2. Additional details about such an optimization problem

can be found at [94].

Algorithm 2 k-disjoint ELP permutation.

INPUT: Directed graph G(V,E,D), a demand of MPTCP connection between the pair
s, t and the maximal DDC.
PROBLEM: Find P , the set of k-link-disjoint paths from s to t, subject to differential
delay of paths is ≤ DDC.
Find the initial set P using extension of Bhandari’s algorithm [95] to find k-link-disjoint
paths from s to t.
if k < 2 then

use the shortest path.
else

Find set of merge nodes (MN) appearing on two or more paths of P .
Generate G′ as a directed multigraph of MN nodes. Every path in G connecting two
MNs becomes a directed edge in G with delay equal to the original path delay.
Generate P with all simple paths from s to t in G′.
Generate all maximal subsets of P ′ that are link-disjoint.
For each subset, calculate which meets the DDC.
Select the subset of maximum cardinality. If more than one such subset, choose the
set with minimum total distance.

end if

4.6 Experimental results

The proposed framework was implemented and tested through large-scale experiments, as

described in the following.

We preferred running tests using real routing and end-point nodes rather than simula-

tors because the complexity of the MPTCP+LISP-TE combined network system is such

that using discrete-time event simulators would risk to introduce too much determinism

with the risk of low credibility.

4.6. EXPERIMENTAL RESULTS 69

4.6.1 Implementation details

For running experimental tests, we extended the OpenLISP control-plane [8]) and data-

plane implementations adding: (i) LCAF 4 and LCAF 10 processing at the control-plane

level; (ii) stateful and stateless functions, with the corresponding subflow table manage-

ment functions; (iii) an enhanced RLOC probing behavior for collecting RTT measure-

ments between overlay network nodes.

We centralized the collection of RLOC probing results at both ETR and ITR level

to support the ELP search on the overlay network graph weighted with RTT probing

information. Then, we used as k-shortest path algorithm the one described in Alg. 2,

to select ELPs with least differential RTT, with the goal to minimize the occurrence of

head-of-line blocking when buffering packets.

The resulting versions v0.3 and v4.0 of the OpenLISP data-plane and control-plane

software nodes including these extensions are released with a BSD license (see github.

com/lip6-lisp).

4.6.2 Network testbed

We built an overlay network of RTRs over the LISP-Lab project testbed (lisplab.lip6.

fr), interconnected to the global LISP network with the OpenLISP DDT root named

‘lambda’ (see ddt-root.org). For the tests, we set as destination the LISP-Lab site

of Univ. of Missouri-Kansas City (UMKC), Kansas-City, USA, and used three different

source LISP-Lab sites: the LIP6, Paris, France, Rezopole, in Lyon, France, and NSS, in

east Paris, France, ones. Each source site deploys one xTR, one RTR and own EID prefix.

To complete the overlay network, we use the following additional sites: Inria, in Sophia

Antipolis, France, VNU, in Hanoi, Vietnam, POLIMI, in Milan, Italy, each running an

RTR. All the nodes, xTRs, RTRs and EIDs run as virtual machines with a number of

cores varying from 1 to 4, from 2 to 2.6 Ghz, and live memory from 1 to 4 GB. EIDs

implemented the version 0.90 of the open source MPTCP Linux kernel implementation

(multipath-tcp.org).

We run 30 transfers for each mode (stateless and stateful), lasting 120 seconds each,

using the iperf tool, for each source-destination pair, distributed on a period of two days.

For each transfer, we first setup the nodes in the topology, and then use the RLOC probing

between all nodes to collect RTTs between each pair of the node (used to calculate the

ELP set for both source and destination xTRs). After deploying the computed ELP set

to source and destination xTR, we start the transfer. As the overlay topology RTT were

quite stable during the experiments, we got a fixed set of ELPs as follows:

70 4.6. EXPERIMENTAL RESULTS

• the LIP6-UMKC communications, ELP1 was via LIP6-UMKC, ELP2 via Rezopole-

UMKC, ELP3 via NSS-UMKC, and ELP4 via VNU-UMKC;

• for NSS-UMKC communications, ELP1 was via NSS-UMKC, ELP2 via Rezopole-

UMKC, ELP3 via LIP6-UMKC, and ELP4 via VNU-UMKC;

• for Rezopole-UMKC communications, ELP1 was via Rezopole-UMKC, ELP2 via

LIP6-UMKC, ELP3 via NSS-UMKC, and ELP4 via VNU-UMKC.

In the following, SLX and SFX indicates the stateless and stateful tests, respectively,

run with a number of X ELPs. SD stands for standard transmission, that is using basic

LISP-MPTCP communications with LISP-TE stitching as in [96, 81] with two subflows.

SDY , SLXY and SFXY indicates the Y th subflow used in SD, SL and SF modes, respec-

tively.

4.6. EXPERIMENTAL RESULTS 71

(a) LIP6 source

(b) NSS source

(c) Rezopole source

Figure 4.5: Packet loss rate for different number of ELPs, in stateless and statefull modes.

72 4.6. EXPERIMENTAL RESULTS

(a) LIP6 source

(b) NSS source

(c) Rezopole source

Figure 4.6: Correlation scatter of throughput vs differential RTT.

4.6. EXPERIMENTAL RESULTS 73

(a) LIP6 source

(b) NSS source

(c) Rezopole source

Figure 4.7: Average RTT cumulative distribution functions for the different ELPs and
sources.

74 4.6. EXPERIMENTAL RESULTS

4.6.3 Tests characterization

Let us characterize first the tests, in order to better understand the throughput results.

Fig. 4.5 gives the experienced packet loss, at the subflow level, for the various modes

with a number of subflows ranging from 2 to 4. The SD mode suffered an important packet

loss during the experiments. Among the sources, the NSS one suffered more, essentially

because we suspect the employed datacenter run shaping policies at the top-of-rack level.

Fig. 4.6 gives three scatter plots, one for each source, correlating the throughput to the

differential RTT (the minimum RTT difference among subflows) for all the tests. We can

observe the strong positive correlation between the two factors, with highest throughput

reached for least differential RTTs.

Fig. 4.7 completes the picture with the distribution of the RTT (average among the

RTTs of the single subflows) for the different ELPs. The fourth ELP for all sources suffers

from a much higher RTT, hence one can expect its addition can generate head-of-line

blocking. For the NSS source, ELP3 has a slightly higher RTT than the others. The

remaining ELPs have a differential RTT quite low.

4.6. EXPERIMENTAL RESULTS 75

4.6.4 Throughput results

(a) LIP6 source

(b) NSS source

(c) Rezopole source

Figure 4.8: Throughput performance for different number of ELPs, in stateless and state-
full modes.

76 4.6. EXPERIMENTAL RESULTS

(a) LIP6 source

(b) NSS source

(c) Rezopole source

Figure 4.9: ELPs contribution to the MPTCP connection throughput.

4.7. CONCLUSION 77

Fig. 4.8 reports the achieved performance in terms of throughput for the different source-

destination pairs, under the stateful and stateless modes, with the number of ELPs ranging

from 1 to 4. We can notice that there is practically no improvement with the NSS source:

this is likely the result of the many retransmissions due to the observed higher packet loss

rates, likely due to shaping in the source network. For the other two sources, the gain

ranges from 10% to 25% with two paths, hence without adding paths with respect to SD,

just bypassing the default routes by using the network overlay. Adding a third ELP leads

marginal gains only for the LIP6 source. Adding the fourth ELP, with high RTT, does

decrease the throughput as expected, likely because of head-of-line blocking. Finally, an

important observation is that there is no better mode in terms of throughput performance

between stateless and statefull modes.

With a deeper look to the subflow contribution to the throughput, shown in Fig. 4.9,

also in perspective with the ELP RTTs qualified in Fig. 4.7, we can observe that the

fourth ELP does indeed bring a very low, in practice null contribution, besides causing

likely buffering issues. Then, we can see the impact of the scheduler, which load mostly

one subflow (the least RTT one), this subflow often being the first one (because we can see

there can be a very low difference between the RTTs of ELP1 and ELP2 for all sources).

We identify in the scheduler an important potential of further bandwidth aggregation, as

other ELPs with very close RTT to the least RTT one could be used more with another

type of scheduler. Unfortunately, such an advanced scheduler is still not designed and

implemented as of our knowledge.

4.7 Conclusion

We described in this chapter a novel overlay network protocol architecture based on

MPTCP and LISP-TE protocols, with some extensions in particular to the overlay routers

state management. Despite we could benefit from only few overlay network nodes, we could

experimentally evaluate our proposals showing the positive impact by using our overlay

network, the negative impact of long RTTs on some MPTCP subflows, and the strong cor-

relation between the differential RTT among subflows and the throughput performance.

Different directions of further investigations are open. First, we believe our approach,

making use of an incrementally deployable protocol such as LISP, can be a viable one for

building an overlay network across network domains such as via internet exchange points

or software-defined network domains. Second, the major limitation to the achievable

throughput gain being represented by the MPTCP scheduler, we plan to design a new

scheduler able to better aggregate bandwidth on multiple subflows with different RTT

performance. As introducing an advanced scheduler may be too difficult to do at the

78 4.7. CONCLUSION

device level, and as devices may not even be MPTCP capable, one promising direction is

to integrate it into MPTCP proxies using frameworks such as the one described in [97].

Chapter 5

Improving the Inter Domain

Management of Locator/ID

Separation Protocol (LISP)

Networks

In this chapter, we propose a framework to improve LISP operations at the Internet scale,

by facilitating cooperation between the LISP Mapping Systems and introducing more

automation in the LISP connectivity service delivery procedure.

5.1 Introduction

The large majority of the Identifier/Locator split protocols need a Mapping System that

maintains mappings between the Identifier and the Locator information, and provides

resolution services accordingly [99]. Several LISP mapping database systems have been

proposed, but the Delegated Database Tree (LISP-DDT) [37] is the one currently de-

ployed by operational implementations. LISP-DDT proposes a hierarchical resolution

model like the DNS (Domain Name Service) system. Such hierarchical structure may

affect resolution times, besides raising political concerns due to potential country-centric

management, where the mastering of root DNS servers can influence the quality of the

resolution service at the Internet scale. In LISP-DDT, when a mapping resolution request

is issued, it is relayed from a resolver node to another one, passing through a DDT, un-

The contents of this chapter are presented in [98] and are the result of a collaboration with M. Boucadair
and C. Jacquenet from Orange, who defined the main specification I marginally enhanced for its imple-
mentation. A tutorial and technical demonstration video is available at http://www.lisp-lab.org/msx.

79

80 5.2. CHALLENGES OF LISP OPERATION AT THE INTERNET SCALE

til it reaches an authoritative server. Alternative proposals were discussed, such as ALT

(Alternative LISP Topology), which however mandates a parallel node-disjoint separa-

tion for the control-plane, with distinct BGP (Border Gateway Protocol) routers. The

proposal discussed in this article aims at improving resolution services of LISP network-

ing infrastructures deployed at the scale of the Internet. Such approach is also meant to

facilitate the deployment of LISP in the Internet. It provides new services that take ad-

vantage of LISP in inter-domain deployment scenarios without requiring the participation

of all LISP-enabled domains. Moreover, the optimization of resolution services relies upon

a decentralized, peer-to-peer interconnect of independently-operated Mapping Systems,

because of the issues raised by a centralized and global Mapping System. This chapter

presents a framework for improving LISP operation at the scale of the Internet, based upon

new mechanisms to (1) dynamically discover and select remote LISP Mapping Systems,

(2) negotiate and then establish interconnect agreements with such Mapping Systems, and

(3) optimize LISP connectivity service operation by means of new LISP primitives.

5.2 Challenges of LISP operation at the Internet scale

The deployment of LISP networks at the scale of the Internet raises several issues that may

affect the overall quality of a LISP connectivity service. Various LISP players (network

operators, service providers, etc.) are likely to deploy and operate different LISP Mapping

Systems [7]. Indeed, many proposals were investigated for the past few years, includ-

ing mobile core networks [4], software-defined networks [100], and prefix de-aggregation

control practices [101], leading to independent Mapping Systems that may benefit from

interconnecting with each other.

Furthermore, Multiple Mapping Systems will coexist for other reasons, e.g., to avoid

country-centric governance, allow for various technologies to implement the mapping ser-

vice, take advantage of new business opportunities encourage service innovation, etc. The

lack of clear policies for the management and operation of the LISP Mapping Systems

may encourage such practices.

Moreover, because the LISP Mapping System may provide service differentiation op-

portunities, IP access and transit providers may be tempted to operate a (local) Mapping

System. Mapping Service Providers may offer advanced services to their customers such

as the maintenance of local caches, or the update of ITR mapping entries that match some

criteria requested by a leaf LISP network. MS providers may also ensure that mapping

resolution requests are redirected to the closest Map-Resolvers, whereas the structuring

of the mapping resolution service is meant to optimize resolution times, avoid the loss of

the first packet, etc.

5.3. A FRAMEWORK FOR IMPROVING LISP OPERATION AT LARGE SCALE 81

Figure 5.1: MS Interconnect Example.

As represented in Fig. 5.1, a LISP Mapping System may handle one or multiple prefixes

that belong to one or multiple Autonomous Systems (ASes). Distinct flavours of Mapping

Systems may be deployed; each may rely upon specific technology. As such, a clear

interface to ease interconnection between these realms is needed.

A hierarchy in the Mapping System organization for business, governance, control,

and regulatory purposes, in particular, is likely. In such contexts, a Mapping System may

maintain (a portion of) a global mapping table. An efficient and scalable LISP deployment

within an inter-domain context for traffic engineering purposes heavily relies upon the

availability of an inter-domain Mapping System that spans several domains. From this

perspective, the success of a global LISP adoption and deployment will mainly depend

on how LISP-enabled domains will graft to existing Mapping Systems that can guarantee

a global reachability scope. To minimize the risk of a fragmented Mapping System that

would jeopardize the overall efficiency of an inter-domain LISP routing system, there is a

need to encourage and facilitate the coordination of participating Mapping Systems.

5.3 A framework for improving LISP operation at large

scale

5.3.1 An interconnect framework for a global Mapping System

In order to extend the reachability of LISP EIDs beyond the boundaries of a single Map-

ping System, we aim at proposing a framework that does not require to change xTR

behaviour such that an xTR would query multiple Mapping Systems concurrently (i.e.,

82 5.3. A FRAMEWORK FOR IMPROVING LISP OPERATION AT LARGE SCALE

configured with multiple mapping servers of independent Mapping Systems). These Map-

ping Systems need to interconnect to extend the reachability scope and avoid pressure

on PxTR devices. Also, various Mapping Systems encourage the enforcement of policies

that aim at optimizing LISP forwarding: for example, policies that consist in avoiding the

solicitation of specific domains or regions (e.g., for security reasons).

It is essential to encourage the deployment and the operation of a global Mapping

System at the scale of the Internet instead of a fragmented Mapping System.

Fig. 5.1 depicts an example of LISP Mapping interconnect: while domains 1 and 2 use

Mapping System 1, domain 4 uses Mapping System 2. Mapping Systems 1 and 2 are inde-

pendent, meaning that the LISP traffic exchanged between node N1 and node N2 should

use the PxTR. By interconnecting both Mapping Systems, communications between N1

and N2 can be natively LISP-forwarded without invoking any PxTR. Moreover, optimiz-

ing such LISP interconnection can also reduce the resolution time compared to the use of

a centralized, hierarchical Mapping System such as LISP-DDT.

Figure 5.2: Functional Blocks for Inter-Domain LISP Operation.

5.3.2 Functional blocks for inter-domain LISP operation

The settlement of LISP Mapping System interconnects is decomposed into several func-

tional blocks, as represented in Fig. 5.2:

• Discovery and Advertisement: Discover and Advertise LISP Mapping Systems

that are willing to interconnect as well as those that are ready to service leaf LISP

networks. A leaf LISP-enabled network may subscribe to the mapping service pro-

5.3. A FRAMEWORK FOR IMPROVING LISP OPERATION AT LARGE SCALE 83

vided by one or several Mapping Service Providers. In Fig. 5.2, Mapping System 2

advertises its reachability information to Mapping System 1.

• Negotiation: We identify the mapping negotiation as a viable approach to support

the scalability of Internet routing in general, and LISP mapping domain interoper-

ability in particular [102]. The goal of the Negotiation block is to negotiate intercon-

nection agreements with remote Mapping Service Providers. The same mechanism

can be used by a leaf LISP network to subscribe to one or multiple Mapping Sys-

tems. Subscribing to multiple Mapping Systems is meant to enhance the robustness

of the connectivity service. The contribution of each player involved in the provision-

ing and the operation of a LISP-based connectivity forwarding service needs to be

rationalized so that clear interfaces are defined and adequate mechanisms for trou-

bleshooting, diagnosis and repair purposes can be easily implemented and adopted.

The inability of identifying what is at the origin of the degradation of a LISP con-

nectivity service is seen as one of the hurdles that are likely to jeopardize LISP

deployments at the scale of the Internet. The interconnection agreement can be

unidirectional or bi-directional. Dedicated technical clauses may be included in the

interconnect agreements to specify whether advanced primitives (such as bulk map-

ping transfer or record notifications) are supported. Also, the agreement specifies

how requests are rate-limited.

• Mapping System Interconnect: Implements interconnect agreements with re-

mote Mapping Systems to facilitate the exchange of mapping records between Map-

ping Systems. The entries of the mapping tables (or a part thereof) are exchanged

between these Mapping Systems so that Map-Request messages can be processed as

close to the LISP leaf networks as possible.

• Service Invocation: Invoke a peer Mapping System for mapping records resolution,

in particular. Other services can be offered by the Mapping System, e.g., assist the

forwarding of the first packet before a mapping entry is available in the xTR cache.

Also, the Mapping System can be engineered so that a LISP mapping request can be

serviced by a Map-Resolver that is close to the end-user. This approach reduces delays

related to the processing of the “first packet”, which can be quite high with the legacy

LISP control plane. We propose two solutions to resolve this issue. The first solution

consists in allowing the Mapping System to help forwarding packets that do not match

an existing mapping record. The second solution is that the xTR prepares in advance the

required mappings so that neither delay nor loss is experienced when receiving the first

packet.

84 5.4. MAPPING SYSTEM DISCOVERY

This framework advocates for a global Mapping System to be maintained locally. To

that extent, we present hereafter new LISP primitives to allow for bulk retrieval of map-

pings and subscription to notifications when a predefined set of filters are hit.

5.4 Mapping system discovery

We present in the following sub-sections routing protocol extensions to dynamically ad-

vertise and discover Mapping Systems within and beyond a network domain.

5.4.1 A new LISP BGP community attribute

Because the design and operation of a consistent LISP Mapping System are critical for

the adoption of the protocol at large scale, means to dynamically discover other Mapping

Systems that are open to cooperate in inter-domain LISP deployment scenarios are re-

quired. A LISP domain may need to discover available Mapping Systems so that it can

rely upon those Mapping Systems to extend the reachability scope.

We propose to support the discovery of LISP Mapping Systems that are deployed in

distinct administrative domains with a specific Border Gateway Protocol (BGP) com-

munity attribute [103]. The detailed format of the new BGP community is described in

[104]. An advantage of adopting a BGP community attribute is that Mapping System

interconnection functions can be integrated in standard BGP decision-process filters; on

the other hand, a disadvantage is that a current practice is to filter out all the unknown

BGP community attributes. Standardising this BGP Extended Communities will help

this announcement to be safely propagated.

This BGP Extended Communities attribute is used to inform other domains about

the support of the mapping service. EID that can be serviced with LISP will be tagged

accordingly. Note that an EID can be serviced by multiple Mapping Systems. Remote

LISP Mapping Systems will rely upon that BGP-based advertising capability to discover

the existence and the status of other Mapping Systems.

Once a Mapping System is discovered, a local Mapping System can solicit the remote

Mapping System to enter negotiation discussions for the establishment of an intercon-

nection agreement with that remote Mapping System. The contact IP address provided

as part of the BGP Extended Communities attribute will be used to contact a remote

Mapping System to request for further LISP-related capabilities, possibly negotiate an in-

terconnection agreement and, consequently, extend the scope of the networks that can be

serviced using LISP. Also, leaf LISP-aware networks can rely upon the information carried

in the BGP Extended Communities attribute to discover Mapping Systems that may be

5.4. MAPPING SYSTEM DISCOVERY 85

solicited to invoke their mapping service. Subscription cycles may then be considered.

5.4.2 A new interior gateway protocol feature

This section focuses on extensions to link-state routing protocols for the discovery and

advertisement of LISP Mapping Service functions, especially the Map-Resolver and Map-

Server LISP components within a domain. For example, such approach can use an exten-

sion of the Open Shortest Path First (OSPF) protocol. Such discovery allows for automatic

operations of LISP networks.

Mapping Service reachability information is announced into the domain by a router

that embeds a Mapping Service Function instance, or which has been instructed (by means

of specific configuration tasks, for example) to advertise such information on behalf of a

third party Mapping Service Function.

The proposed mechanism may be used to advertise and learn Mapping Service Func-

tions that are available in the same administrative domain than xTRs. It can also be used

to dynamically advertise related reachability information that is learned using other means

when the Mapping Service Functions and xTRs do not belong to the same administrative

entity.

To do so, a new Type-Length-Value (TLV)-encoded attribute, named the Mapping

Service Function Discovery (MSFD) TLV, is defined. This attribute is carried in an OSPF

Router Information Link State Advertisements (LSA). More details on the TLV attribute

can be found in [105].

The location of each Mapping Service Function is then flooded into the routing domain,

as represented in Fig. 5.3 (considering the case the LSA is AS-scoped).

The xTR routers deployed within the OSPF domain must listen to the flooding mes-

sages sent by active Mapping Service Function instances.

The information to be announced by means of the MSFD TLV carried in the LSA

during the LISP Mapping Service Function Discovery procedure includes (but is not nec-

essarily limited to):

• Mapping Service Function type: Indicates whether the MSF acts as Map-

Resolver, Map-Server, or both.

• Mapping Service Function Service locator(s): Includes one or several IP ad-

dresses. This information lists the set of locators that unambiguously indicate where

the Mapping Service Function can be reached. The locator information must be in-

cluded in the Mapping Service Function Discovery messages.

• Mapping Service Function unavailability timer: Indicates the time when the

86 5.4. MAPPING SYSTEM DISCOVERY

Figure 5.3: Discovering MS Components with OSPF.

Mapping Service Function will be unavailable. This parameter can be used for

planned maintenance operations, for instance. This parameter does not provide any

indication about when the Mapping Service Function instance will be available again.

• Mapping Service Function reboot timer: Operational teams often proceed

with a reboot of the devices deployed in the network, within the context of major

software upgrade campaigns, for example. This timer is used to indicate that a

Mapping Service Function will be unavailable during the reboot of the device that

supports the function. Unlike the previous timer, this timer is used to indicate that

the Mapping Service Function will be available immediately after the completion of

the reboot of the device that supports this function.

• Mapping Service Function Diagnosis: Indicates whether this Mapping Service

Function instance supports a diagnostic mechanism.

• Mapping Service Status: Provides information about the status of the mapping

database. In particular, it indicates whether the database is empty, synchronized

with other MS servers located in the same OSPF domain, etc.

• Mapping Service Function Status: Indicates the status of the Mapping Service

5.5. NEGOTIATION, INTERCONNECT AND INVOCATION 87

Figure 5.4: CPNP-based negotiation cycle and new LISP primitives used for the intercon-
nection and invocation phases.

Function Instance (Enabled, Disabled).

All but the first two information items are optional and may therefore be included

in the Mapping Service Function Discovery messages. Additional capabilities such as the

support of mapping bulk retrieval or notifications may also be advertised.

5.5 Negotiation, interconnect and invocation

This section presents the proposed control plane extensions to support the negotiation,

interconnection and invocation of functional blocks, as illustrated by Fig. 5.4.

5.5.1 Negotiation cycle

The proposal is to conduct the interMapping System negotiation cycle by means of CPNP

(Connectivity Provisioning Negotiation Protocol) [106]. CPNP is meant to dynamically

exchange and negotiate the connectivity provisioning parameters between two LISP Map-

ping Systems. CPNP is used as a tool to introduce automation in the negotiation proce-

dure, thereby fostering the overall mapping service delivery process. CPNP can be used to

88 5.5. NEGOTIATION, INTERCONNECT AND INVOCATION

negotiate the parameters to connect two Mapping Systems or subscribe to services offered

by a given Mapping System. For security reasons, an authentication session can be made

before the negotiation begins. With CPNP, each agreement can be identified by a local

identifier (the CUSTOMER AGREEMENT IDENTIFIER) assigned by a local Mapping

System but also with a unique identifier (the PROVIDER AGREEMENT IDENTIFIER)

assigned by a peer Mapping System.

CPNP accommodates both technical and business-related requirements. Indeed, it

supports various negotiation modes, including administrative validation operations. In

particular, CPNP adopts a Quotation Order/Offer/Answer model where: (1) the Client

specifies its requirements via a Provision Quotation Order (PQO), (2) the Server makes

an offer to either address the requirements of the PQO or suggests a counter-proposal that

partially addresses the requirements of the PQO or declines the PQO, then (3) the Client

either accepts or declines the offer. Fig. 5.4 shows typical CPNP negotiation cycles.

The PROVIDER AGREEMENT IDENTIFIER that is returned during the negotia-

tion phase may be included in service invocation messages to ease correlating requests

within a negotiation context (e.g., CPNP context). Particularly, the integration of the

PROVIDER AGREEMENT IDENTIFIER in a Map-Request or a Map-Reply requires

some modification to the message formats.

5.5.2 Novel control plane primitives

New LISP control plane primitives are defined to support the subscription and intercon-

nection to Mapping Services, let alone their serviceability:

• Map-Subscribe/Map-Subscribe-Ack messages are exchanged between Mapping Ser-

vices, possibly including a number of mapping filters that the Mapping Service could

support to trigger notifications to maintain the entries of the mapping database; the

mapping “filter” is a novel feature of the proposed control plane primitives. A filter

is used to transport any useful information, like flow and AS identifiers, for instance.

• Map-Bulk-Request/Map-Bulk-Reply messages are used to bypass the limitation of

current LISP control plane primitives as far as the dissemination of mapping in-

formation is concerned. They allow to query multiple EID-prefixes with a single

mapping request message by exploiting the mapping filter. In practice, the whole

mapping database can be retrieved by exchanging one Map-Bulk-Request and as

many Map-Bulk-Reply.

• Map-Solicit-Request messages are used, in the proposed framework, to enhance the

robustness of LISP networks during such ITR failure events. While recovering from

5.6. EXPERIMENTAL RESULTS 89

a failure, an ITR sends a Map-Solicit-Request to discovery other ITRs in the same

routing domain. Upon receipt of the Map-Solicit-Request, another ITR replies with

a Map-Solicit-Response message. With this process, the ITR has a list of peer ITRs,

thanks to this Map-Bulk-Request/Reply signaling that runs between local xTRs to

retrieve a copy of their mapping caches.

These features are detailed in [107, 108, 109]. It is worth mentioning that these novel

control-plane primitives are not meant to replace existing basic LISP control plane prim-

itives. Rather, they are meant to extend the LISP control plane behaviour in order to

make LISP meeting the network management expectations of Internet Services and Net-

work Providers more easily.

5.6 Experimental results

We implemented the Mapping System interconnect scheme described in the previous sec-

tions and evaluated it within the LISP-LAB experimental platform. This platform which

runs its own mapping system, is connected to the ‘LISP4.net’ mapping system via DDT.

We extended the LIP6-LISP OpenLISP control plane to support the new xTR features as

well as and the relevant MS interfaces [8]. Moreover, the Quagga router implementation

was extended to include the new TLVs in both BGP and OSPF daemons . Fig. 5.5 reports

the time required to retrieve a mapping entry from the Mapping System in three scenarios:

• Proposed framework: the inter-domain mapping system framework as discussed in

this chapter.

• Local network DDT root, i.e., the LISP-LAB DDT root, which is also the ‘LISP4.net’

DDT lambda root , located in LIP6, Paris.

• ‘LISP4.net’ DDT omega root, which is located in Barcelona.

About seven hundred mapping resolutions (i.e., Map-Requests followed by Map-Replies)

were executed for each case during three days. The proposed framework uses two LISP

sites, one in LIP6 facility, Paris, France, and another one in the LyonIX facility, Lyon,

France. We also deployed three MRs located in LIP6; while the first one utilizes our pro-

posed framework using a dedicated MS in LyonIX for handling mapping resolutions, the

two others run the DDT protocol with the lambda DDT root located in the same LIP6

network for one MR, and with the omega DDT located in Barcelona for the other MR3.

The ETR located in Lyon registers the same EID-prefix on the dedicated MS in Lyon,

and on another standard MS in Lyon linked to the DDT roots.

90 5.6. EXPERIMENTAL RESULTS

For each measurement, the ITR in the LIP6 site sends the same Map-Request to the

three MRs; we recorded the time when the Map-Request leaves the ITR, and the time

when the Map-Reply message from the MS is received by the MR, hence computing the

mapping resolution latency. Besides all MRs are put in the same LIP6 subnet, also the two

MSs are put in the same subnet. Therefore, the difference in mapping resolution latency

only depends on the time when the Map-Request leaves the MR, and the time when that

Map-Request message is received by the MS.

Figure 5.5: Mapping resolution latency results over the LISP-LAB testbed.

The results in Fig. 5.5 are in boxplot format, showing the three quantiles (collapsed

in a single line using the logarithmic scale) and the minimum and maximum values. The

results show that our framework can dramatically reduce the mapping resolution time,

even compared to the resolution service provided by the local DDT root. An in-depth

presentation of these experiments are further explained in a video tutorial .

5.7. PERSPECTIVES 91

5.7 Perspectives

LISP is a promising protocol to improve the forwarding of Internet traffic while mastering

the growth of routing tables. Yet, LISP failed to be massively adopted so far, partly

because of the operation of its Mapping System that may undesirably delay forwarding

decisions at the cost of jeopardizing the performance of the LISP connectivity service.

This chapter discussed a framework to improve LISP operation at the Internet scale, by

facilitating cooperation between LISP Mapping Systems and introducing more automation

in the LISP connectivity service delivery procedure.

We believe such optimization could raise awareness among the service providers’ com-

munity, yielding new business opportunities such as the monetization of LISP mapping

services and the enforcement of advanced, service-inferred, inter-domain traffic engineering

policies for the sake of better and strict QoS guarantees.

Chapter 6

Conclusions

The design and implementation of LISP control-plane extensions as well as novel LISP

data-plane functions in support of Internet routing needs allowed us to conduct the ex-

perimental studies documented in this thesis. By means of empirical evaluations of our

proposal, we could stress advantages as well as limitations of the LISP architecture, high-

lighting space of further applied networking research in the field. During our work, we

attempted at performing reproducible research and at targeting integration of our propos-

als in realistic prototypes, making them scalable enough for large networks and trying to

reach performances suitable for real deployments.

The novel LISP-based solution in support of live VM migrations across geographically

separated datacenters over wide area IP networks showed that with our approach we can

easily reach sub-second downtimes upon Internet-wide migration, even for very distant

clients. These activities were also run in the frame of the NU@GE investissement d’avenir

and FUI RAVIR projects, thanks to which our technology was transferred to Non Stop

System, a SME that was active in the area of infrastructure-as-a-service provisioning.

About our work on cross-layer network optimization protocols, despite we could benefit

from only a few overlay network nodes, we could experimentally evaluate our proposals

showing the positive impact by using our overlay network, the negative impact of long

RTTs on some MPTCP subflows, and the strong correlation between the differential RTT

among subflows and the throughput performance. We are working toward the definition of

advanced scheduling and buffer management techniques, on the line of the work described

in [110], as well as the design of an advanced MPTCP scheduler taking into consideration

subflow delays. These activities were lead in the frame of the LISP-LAB and European

Institute of Technology (EIT) Digital and ICT-Labs projects. They have also recently

lead to a collaboration with 21net, an SME active in the area of bandwidth aggregation

for trains. We believe the proposed framework, leveraging on LCAF LISP-TE features, is

93

94

a more viable way than currently considered OpenFlow-based networks for inter-domain

SDN operations, because of the partially distributed logic in forwarding rule configuration.

Finally, the third contribution, about the novel LISP mapping system interconnection

architecture, was formulated in tight synergy with Orange labs. It is currently under

discussion at the IETF. We believe such solutions could raise awareness among the ser-

vice providers’ community, yielding new business opportunities related to LISP mapping

services and the enforcement of advanced inter-domain traffic engineering policies for the

sake of better and strict QoS guarantees.

We traced in the corresponding chapters important perspectives for further research.

It is worth mentioning the need for a tighter integration of LISP primitives in cloud

stack and hypervisors for virtual machine mobility management, the possibility to define

advanced MPTCP scheduler to cope with the large RTT variations one can experience at

the Internet LISP scale, and the integration of mapping system interconnection primitives

into provider network management systems, such as SDN systems.

In this respect, another activity recently started is the enhancement of the integration

of LISP in ONOS [44]. This is expected to open many new possibilities of experimental

research, namely in the field of multi-domain distributed network control.

Software contributions

We list in the following the open source code contributions developed and used for this

thesis.

• LIP6-LISP data-plane - enhanced OpenLISP data-plane implementation, running in

the kernel of the FreeBSD Operating System, including additional behaviors (PxTR,

RTR) and the advanced features described in Chapter 4: https://github.com/

lip6-lisp/data-plane.

• LIP6-LISP Control Plane - open source implementation of the LISP Control Plane,

including advanced features described in Chapters 3-5: https://github.com/lip6-lisp/

control-plane.

• Quagga-ext - an extended version of open source network routing software Quagga,

to include the new TLVs in both BGP and OSPF daemons described in Chapter 5:

https://github.com/lip6-lisp/quagga-ext

• ONOS LISP South Bound Interface (SBI) - Open source implementation of LISP as

a southbound plugin for the ONOS controller, including the MS and MR behaviors:

https://wiki.onosproject.org/display/ONOS/LISP+Subsystem+Support.

95

Publications

International journal with peer review

1. D. Phung Chi, S. Secci, D. Saucez, and L. Iannone. “The OpenLISP control-plane

architecture”. In: IEEE Network Magazine 38 (2 2014), pp. 34–40

2. P. Raad, S. Secci, D. Phung Chi, A. Cianfrani, P. Gallard, and G. Pujolle.

“Achieving Sub-Second Downtimes in Large-Scale Virtual Machine Live Migrations

with LISP”. in: IEEE Trans. Network and Service Managent 11.2 (2014), pp. 133–

143

International conferences with peer review

3. D. Phung Chi, M. Coudron, and S. Secci. “Internet Acceleration with LISP Traffic

Engineering and Multipath TCP”. in: Proc. of 21st Conference on Innovation in

Clouds, Internet and Networks (ICIN 2018) (February 2018)

4. D. Nguyen Ho Dac, D. Phung Chi, S. Secci, B. Felix, and M. Nogueira. “Can

MPTCP Secure Internet Communications from Man-in-the-Middle Attacks?” In:

Proc. of 13th International Conference on Network and Service Management (CNSM

2017) (November 2017)

5. P. Raad, S. Secci, D. Phung Chi, and P. Gallard. “PACAO: Protocol Architecture

for Cloud Access Optimization”. In: 1st IEEE Conference on Network Softwariza-

tion (NETSOFT). Apr. 2015, pp. 13–17

6. Y. Benchaib, S. Secci, and D. Phung Chi. “Transparent Cloud Access Perfor-

mance Augmentation via an MPTCP-LISP Connection Proxy”. In: Proc. of 2015

ACM/IEEE Symposium on Architectures for Networking and Communications Sys-

tems (ANCS 2015) (2015), pp. 201–201

97

98

7. P. Raad, G. Colombo, D. Phung Chi, S.Secci A. Cianfrani, P. Gallard, and G.

Pujolle. “Achieving sub-second downtimes in Internet virtual machine live migra-

tions with LISP”. in: Proc. IEEE/IFIP Int. Symposium on Integrated Network

Management (2013)

8. D. Phung Chi, S. Secci, G. Pujolle, and P. Radd P. Gallard. “An Open Control-

Plane Implementation for LISP networks”. In: Proc. of 2012 International Confer-

ence on Network Infrastructure and Digital Content (IC-NIDC) (September 2012)

9. P. Raad, G. Colombo, D. Phung Chi, S. Secci A. Cianfrani, P. Gallard, and G.

Pujolle. “Demonstrating LISP-based Virtual Machine Mobility for Cloud Networks”.

In: IEEE 1st International Conference on Cloud Networking (CloudNet2012) (2012),

pp. 200–202

Submitted

10. M. Boucadair, C. Jacquenet, D. Phung Chi, and S. Secci. “Improving the Inter Do-

main Management of Locator/ID Separation Protocol (LISP) Networks”. In: IEEE

Communications Magazine - Network and Service Management Series (submitted)

(2018)

References

[1] G. Huston. “Analyzing the Internet’s BGP routing table”. In: The Internet Protocol

Journal 4.1 (2001), pp. 2–15.

[2] CIDR report. Online. url: http://cidr-report.org.

[3] H. Kim and N. Feamster. “Improving network management with software defined

networking”. In: IEEE Communications Magazine 51.2 (Feb. 2013), pp. 114–119.

[4] M. Portoles-Comeras et al. “An evolutionary path for the evolved packet system”.

In: IEEE Communications Magazine 53.7 (2015), pp. 184–191.

[5] M. Komua, M. Sethia, and N. Beijara. “A survey of identifier–locator split address-

ing architectures”. In: Computer Science Review 17 (2015), pp. 25–42.

[6] D. Farinacci et al. The Locator/ID Separation Protocol (LISP). RFC 6830. IETF

technical report. Jan. 2013.

[7] T. Jeong et al. “Experience on the Development of LISP-enabled Services: an ISP

Perspective”. In: 1st IEEE Conference on Network Softwarization (NETSOFT).

Apr. 2015, pp. 1–9.

[8] D. Phung Chi et al. “The OpenLISP control-plane architecture”. In: IEEE Network

Magazine 38 (2 2014), pp. 34–40.

[9] D. Phung Chi et al. “An Open Control-Plane Implementation for LISP networks”.

In: Proc. of 2012 International Conference on Network Infrastructure and Digital

Content (IC-NIDC) (September 2012).

[10] D. Meyer, L. Zhang, and K. Fall. Report from the IAB Workshop on Routing and

Addressing. RFC 4984. IETF technical report. Sept. 2007.

[11] T. Li and Ed. Recommendation for a Routing Architecture. RFC 6115. IETF tech-

nical report. Feb. 2011.

[12] R. Moskowitz and P. Nikander. Host Identity Protocol (HIP) architecture. RFC

4423. IETF technical report. 2006.

99

100 REFERENCES

[13] F. Teraoka, M. Ishiyama, and M. Kunishi. LIN6: A Solution to Multihoming and

Mobility in IPv6. Internet draft. IETF technical report. 2003.

[14] R. Inayat et al. “MAT: An end-to-end mobile communication architecture with

seamless IP handoff support for the next generation Internet”. In: Web and Com-

munication Technologies and Internet-Related Social 2713 (2003).

[15] D. Clark et al. “FARA: Reorganizing the addressing architecture”. In: ACM SIG-

COMM Workshop on Future Directions in Network Architecture (2003).

[16] J. Pan et al. “MILSA: A mobility and multihoming supporting identi er locator

split architecture for naming in the next generation Internet”. In: Global Telecom-

munications Conference (2008).

[17] E. Nordmark and M. Bagnulo. Shim6: Level 3 multihoming shim protocol for IPv6.

RFC - Proposed Standard 5533. IETF technical report. 2009.

[18] C. Vogt. Six/One: A Solution for Routing and Addressing in IPv6. Internet-Draft.

IETF technical report. 2009.

[19] R. Atkinson and S. Bhatti. Identifier-Locator Network Protocol (ILNP) Architec-

tural Description. Request for Comments 6740. IETF technical report. 2012.

[20] D.R. Cheriton and M. Gritter. TRIAD: A scalable deployable NAT-based Internet

architecture. Tech. rep. 2000.

[21] P. Francis and R. Gummadi. “IPNL: A NAT-extended Internet architecture”. In:

ACM SIGCOMM Computer Communications (2001).

[22] I. Stoica et al. “Internet indirection infrastructure”. In: ACM SIGCOMM Computer

Communications (2002).

[23] I. Stoica et al. “Chord: A scalable peer-to-peer lookup service for Internet applica-

tions”. In: ACM SIGCOMM Computer Communications (2001).

[24] Z. Turanyi et al. “4 + 4: An architecture for evolving the Internet address space back

toward transparency”. In: ACM SIGCOMM Computer Communications (2003).

[25] B. Ahlgren et al. “A node identity internetworking architecture”. In: Proceedings

of 25th IEEE International Conference on Computer Communications, INFOCO

(2006).

[26] S. Guha and P.P. Francis. “An end-middle-end approach to connection establish-

ment”. In: Proceedings of SIGCOMM (2007).

[27] X. Xu and D. Guo. “Hierarchical Routing Architecture (HRA)”. In: Next Genera-

tion Internet Networks NGI, IEEE (2008).

REFERENCES 101

[28] C. Perkins. IP mobility support for IPv4, revised. Request for Comments 5944.

IETF technical report. 2010.

[29] C. Perkins, D. Johnson, and J. Arkko. Mobility support in IPv6. Request for Com-

ments 6275. IETF technical report. 2011.

[30] B. Carpenter, R. Atkinson, and H. Flinck. Renumbering still needs work. Internet-

Draft 5887. Informational. 2010.

[31] M.O’Dell. GSE—AnalternateaddressingarchitectureforIPv6. Internet-Draft. IETF

technical report. 1997.

[32] S. Secci, K. Liub, and B. Jabbari. “Efficient Inter-Domain Traffic Engineering

with Transit-Edge Hierarchical Routing”. In: Computer Networks 57.4 (Mar. 2013),

pp. 976–989.

[33] P. Raad et al. “Achieving Sub-Second Downtimes in Large-Scale Virtual Machine

Live Migrations with LISP”. In: IEEE Trans. Network and Service Managent 11.2

(2014), pp. 133–143.

[34] “Software Defined Networking: The New Norm for Networks”. In: ONF White

Paper (2012).

[35] V. Fuller and D. Farinacci. Locator/ID Separation Protocol (LISP) Map-Server

Interface. RFC 6833. IETF technical report. Jan. 2013.

[36] V. Fuller et al. Locator/ID Separation Protocol Alternative Logical Topology (LISP+ALT).

RFC 6836. IETF technical report. Jan. 2013.

[37] V. Fuller et al. Locator/ID Separation Protocol Delegated Database Tree (LISP-

DDT). RFC 8111. IETF technical report. May 2017.

[38] Cisco. “Locator ID Separation Protocol (LISP) VM mobility solution”. In: Cisco

Systems, Inc., Tech. Rep. Document ID:1477005247794150 (2011 updated 2014).

[39] L. Iannone, D. Saucez, and O. Bonaventure. “Implementing the Locator/ID Sep-

aration Protocol: Design and Experience”. In: Computer Networks 55 (4 2011),

pp. 948–958.

[40] D. Farinacci et al. LISP Mobile Node. Tech. rep. draft-ietf-lisp-mn-01. IETF tech-

nical report. 2017.

[41] Open Overlay Route. Online. url: https://www.openoverlayrouter.org.

[42] PyLISP open source. Online. url: https://github.com/steffann/pylisp.

[43] OpenDaylight. Online. url: https://www.opendaylight.org.

[44] ONOS project. Online. url: https://onosproject.org.

102 REFERENCES

[45] ONOS security & performance analysis brigade. Online. url: https://wiki.

onosproject.org/pages/viewpage.action?pageId=12422167.

[46] Open VSwitch. Online. url: http://openvswitch.org.

[47] LISPERS website. Online. url: LISPERS.net.

[48] G. Wright and W. Stevens. RTCP/IP Illustrated Volume 2 The Implementation.

Professional Computing Series. Addison-Wesley.

[49] D. Farinacci, P. Lahiri, and M. Kowal. “LISP Traffic Engineering Use-Cases”. In:

draft-farinacci-lisp-te-07. IETF technical report (2014).

[50] P. Raad et al. “Achieving sub-second downtimes in Internet virtual machine live mi-

grations with LISP”. In: Proc. IEEE/IFIP Int. Symposium on Integrated Network

Management (2013).

[51] P. Raad et al. “Demonstrating LISP-based Virtual Machine Mobility for Cloud

Networks”. In: IEEE 1st International Conference on Cloud Networking (Cloud-

Net2012) (2012), pp. 200–202.

[52] S. Bhardwaj, L. Jain, and S. Jain. “Cloud computing: a study of infrastructure as

a service (IAAS)”. In: Int. J. Engineering and Inf. Technol. 2 (2010), pp. 60–63.

[53] Q. Duan, Y. Yan, and A.V. Vasilakos. “A survey on service-oriented network virtu-

alization toward convergence of networking and cloud computing”. In: IEEE Trans.

Network and Service Management 9 (4 2012), pp. 373–392.

[54] M. Nelson et al. “Fast transparent migration for virtual machines”. In: Proc.

USENIX Annual Technical Conference (2005).

[55] S. Setty. “vMotion architecture, performance, and best practices in VMware vSphere

5”. In: VMware, Inc., Tech. Rep. (2011).

[56] Cisco. “Cisco overlay transport virtualization technology introduction and deploy-

ment considerations”. In: Cisco Systems, Inc., Tech. Rep. (2012).

[57] L. Dunbar et al. Directory Assistance Problem and High-Level Design Proposal.

RFC 7067. IETF technical report. Nov. 2013.

[58] F. Travostino et al. “Seamless live migration of virtual machines over the MAN/WAN”.

In: Future Generation Computer Systems 22 (2006), pp. 901–907.

[59] F. Travostino et al. “A performance improvement method for the global live mi-

gration of virtual machine with IP mobility”. In: Proc. ICMU (2010).

REFERENCES 103

[60] E. Harney et al. “The efficacy of live virtual machine migrations over the internet”.

In: Proc. Int. Workshop on Virtualization Technology in Distributed Computing

(2007), p. 8.

[61] Q. Li et al. “Hypermip: hypervisor controlled mobile IP for virtual machine live

migration across networks”. In: Proc. IEEE High Assurance Systems Engineering

Symposium (2008), pp. 80–88.

[62] C. Perkins. IP Mobility Support for IPv4. RFC 3344. IETF technical report. Aug.

2002.

[63] T. Sridhar and al. “VxL AN: a framework for overlaying virtualized layer 2 networks

over layer 3 networks”. In: draft-mahalingam-dutt-dcops-vxlan-04. IETF technical

report (2013).

[64] E.B. Davie and J. Gross. “Stateless transport tunneling protocol for network vir-

tualization (STT)”. In: draft-davie-stt-04. IETF technical report (2013).

[65] M.S. et al. “NVGRE: Network Virtualization using Generic Routing Encapsula-

tion”. In: draft-sridharan-virtualization-nvgre-03. IETF technical report (2013).

[66] D. Andersen et al. “Resilient Overlay Networks”. In: ACM SIGCOMM Computer

Communication Review 32 (2002), pp. 1–66.

[67] OpenLISP control plane. Online. url: http://github/lip6- lisp/control-

plane.

[68] L. Iannone et al. “OpenLISP: an open source implementation of the Locator/ID

Separation Protocol”. In: ACM SIGCOMM, demo paper (2009).

[69] L. Iannone et al. Locator/ID Separation Protocol (LISP) Map-Versioning. RFC

6834. IETF technical report. 2013.

[70] “Software defined networking: the new norm for networks”. In: white paper,ONF

(2012).

[71] Libvirt: the virtualization API. Online. url: http://libvirt.org/.

[72] C. Clark et al. “Live migration of virtual machines”. In: Proc. Conference on Net-

worked Systems Design & Implementation 2 (2005), pp. 273–286.

[73] A. Kivity et al. “KVM: the Linux virtual machine monitor”. In: Proc. Linux Sym-

posium 1 (2007), pp. 225–230.

[74] D. Mills. “Internet time synchronization: the network time protocol”. In: IEEE

Trans. Commun 39 (1991), pp. 1482–1493.

104 REFERENCES

[75] P. Raad et al. “PACAO: Protocol Architecture for Cloud Access Optimization”. In:

1st IEEE Conference on Network Softwarization (NETSOFT). Apr. 2015, pp. 13–

17.

[76] D. Phung Chi, M. Coudron, and S. Secci. “Internet Acceleration with LISP Traffic

Engineering and Multipath TCP”. In: Proc. of 21st Conference on Innovation in

Clouds, Internet and Networks (ICIN 2018) (February 2018).

[77] E. Elena, J.L. Rougier, and S. Secci. “Characterisation of AS-level Path Deviations

and Multipath in Internet Routing”. In: Proc. of NGI 2010 (2010).

[78] A. Lange. “Issues in Revising BGP-4”. In: draft-ietf-idr-bgp-issues-06. IETF tech-

nical report (2012).

[79] “Configuring BGP to Select Multiple BGP Paths”. In: JUNOS document ().

[80] M. Coudron, S. Secci, and G. Pujolle. “Augmented Multipath TCP Communica-

tions”. In: Proc. of IEEE ICNP (2013).

[81] M. Coudron et al. “Cross-layer Cooperation to Boost Multipath TCP Performance

in Cloud Networks”. In: Proc. of IEEE CLOUDNET (2013).

[82] D. Farinacci, D. Meyer, and J. Snijders. “LISP Canonical Address Format (LCAF)”.

In: draft-ietf-lisp-lcaf-05. IETF technical report (2014).

[83] F. Brockners et al. “LISP Extensions for Segment Routing”. In: draft-brockners-

lisp-sr-01. IETF technical report (2014).

[84] N. McKeown et al. “Achieving 100% throughput in an input-queued switch”. In:

IEEE Transactions on Communications 47 (8 1999), pp. 1260–1267.

[85] S. Rai et al. “Reliable multipath provisioning for high-capacity backbone mesh

networks”. In: IEEE/ACM Trans. on Networking 15 (4 2007), pp. 803–812.

[86] S.J. Lee and M. Gerla. “Split multipath routing with maximally disjoint paths in

ad hoc networks”. In: Proc. of IEEE ICC (2001).

[87] J. Chen, S.H. Chan, and V. O. Li. “Multipath routing for video delivery over

bandwidth-limited networks”. In: IEEE J. on Selected Areas in Communications

22 (10 2004), pp. 1920–1932.

[88] F. Paganini and E. Mallada. “A Unified Approach to Congestion Control and Node-

Based Multipath Routing”. In: IEEE/ACM Trans. on Networking 17 (5 2009),

pp. 1413–1426.

[89] S.S. Ahuja, T. Korkmaz, and M. Krunz. “Minimizing the differential delay for

virtually concatenated Ethernet over SONET systems”. In: Proc. of ICCCN (2004).

REFERENCES 105

[90] A. Srivastava et al. “Differential delay aware routing for Ethernet over SONETSDH”.

In: Proc. of IEEE INFOCOM (2005).

[91] A. Srivastava. “Flow aware differential delay routing for next-generation Ethernet

over SONETSDH”. In: Proc. of IEEE ICC (2006).

[92] W. Zhang et al. “Reliable adaptive multipath provisioning with bandwidth and

differential delay constraints”. In: Proc. of IEEE INFOCOM (2010).

[93] H. Sheng, C. U. Martel, and B. Mukherjee. “Survivable Multipath Provisioning

With Differential Delay Constraint in Telecom Mesh Networks”. In: IEEE/ACM

Trans. on Networking 19 (3 2011), pp. 657–669.

[94] R. Alvizu et al. “Differential delay constrained multipath routing for SDN and

optical networks”. In: Electronic Notes in Discrete Mathematics 52 (2016), pp. 277–

284.

[95] R. Bhandari. Survivable networks: algorithms for diverse routing. Springer, 1999.

[96] M. Coudron, S. Secci, and G. Pujolle. “Augmented Multipath TCP Communica-

tions”. In: Proc. of IEEE ICNP 2013 (2013).

[97] M. Boucadair et al. “Extensions for Network-Assisted MPTCP Deployment Mod-

els”. In: draft-boucadair-mptcp-plain-mode-10. IETF technical report (March 2017).

[98] M. Boucadair et al. “Improving the Inter Domain Management of Locator/ID Sepa-

ration Protocol (LISP) Networks”. In: IEEE Communications Magazine - Network

and Service Management Series (submitted) (2018).

[99] M. Hoefling, M. Menth, and M. Hartmann. “A Survey of Mapping Systems for

Locator/Identifier Split Internet Routing”. In: IEEE Communications Surveys &

Tutorials 15 (4 2013).

[100] A. Rodriguez-Natal et al. “LISP: a southbound SDN protocol?” In: IEEE Commu-

nications Magazine 53 (7 2015), pp. 201–207.

[101] M. Yannuzzi et al. “Managing interdomain traffic in Latin America: a new perspec-

tive based on LISP”. In: IEEE Communications Magazine 47 (7 2009), pp. 40–48.

[102] R. Sambasivan et al. “Bootstrapping evolvability for inter-domain routing”. In:

Proc. of the 14th ACM Workshop on Hot Topics in Networks. 2015.

[103] S. Sangli, D. Tappan, and Y. Rekhter. BGP Extended Communities Attribute. RFC

4360. IETF technical report. 2006.

[104] M. Boucadair and C. Jacquenet. “LISP Mapping Service Discovery at Large”. In:

draft-boucadair-lisp-idr-ms-discovery-01 (2016).

106 REFERENCES

[105] M. Boucadair and C. Jacquenet. “LISP Mapping Service Functions Discovery (LMSFD)

using OSPF”. In: draft-boucadair-lisp-function-discovery-02 (2016).

[106] M. Boucadair et al. “Connectivity Provisioning Negotiation Protocol (CPNP)”. In:

draft-boucadair-connectivity-provisioning-protocol-12. IETF technical report (2016).

[107] M. Boucadair and C. Jacquenet. “Improving Mapping Services in LISP Networks,

draft-boucadair-lisp-subscribe-02”. In: draft-boucadair-lisp-subscribe-02 (2015).

[108] M. Boucadair and C. Jacquenet. “LISP Mapping Bulk Retrieval, draft-boucadair-

lisp-bulk-01”. In: LISP Mapping Bulk Retrieval, draft-boucadair-lisp-bulk-01 (2016).

[109] M. Boucadair and C. Jacquenet. “Improving ITR Resiliency in Locator/ID Sepa-

ration Protocol (LISP) Networks”. In: draft-boucadair-lisp-itr-failure-01 (2015).

[110] M. Coudron, D. Nguyen Ho Dac, and S. Secci. “Enhancing Buffer Dimensioning

for Multipath TCP”. In: International Conference on the Network of the Future

(2016).

[111] D. Nguyen Ho Dac et al. “Can MPTCP Secure Internet Communications from Man-

in-the-Middle Attacks?” In: Proc. of 13th International Conference on Network and

Service Management (CNSM 2017) (November 2017).

[112] Y. Benchaib, S. Secci, and D. Phung Chi. “Transparent Cloud Access Perfor-

mance Augmentation via an MPTCP-LISP Connection Proxy”. In: Proc. of 2015

ACM/IEEE Symposium on Architectures for Networking and Communications Sys-

tems (ANCS 2015) (2015), pp. 201–201.

