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OUTLINE OF THE WORK

Interfacial science is a branch of physical chemistry which has attracted a never ceasing 

interest  ever  since  its  foundations  have  been  established.  In  our  days  interfacial  processes  are 

intriguing for  scientists  working in  a  variety of  fields  of  fundamental  and applied physics  and 

chemistry. The spectrum of these fields ranges from environmental research to nanoscience. One of 

the leading directions of interfacial science nowadays is the question of obtaining atomistic scale 

data directly about the interface. Computer simulations are known to be able to provide such data 

and thus they may complement highly developed surface sensitive experimental methods.

The  present  PhD thesis  is  aimed at  demonstrating the ability of  computer  simulations, 

namely molecular  dynamics  and Monte  Carlo techniques,  to  model  interfacial  phenomena.  My 

work is comprised of two major subjects. One of them is the atomistic scale examination of solid 

interfaces relevant in atmospheric chemistry, whereas the other targets the investigation of liquid 

surfaces.

In  my  work  concerning  solid  surfaces  I  have  applied  grand  canonical  Monte  Carlo 

simulations to reconstruct the adsorption isotherm of acetaldehyde on ice at a temperature which is 

relevant for the upper troposphere. I have also investigated the adsorption of certain bifunctional 

volatile organic compounds, namely hydroxyacetone and oxalic acid on ice, by means of molecular 

dynamics simulation. Finally I have applied the MD method to study the phase behavior of aqueous 

organic aerosols in the tropospherically relevant (p,T) range. In all of these studies I have attempted 

to compare my results with relevant experimental data in order to justify the validity of the models 

and the applicability of the technique used.

My work concerning liquid interfaces includes first of all the examination of the competitive 

adsorption  of  polymers  and  surfactants  on  the  free  surface  of  water  by  means  of  molecular 

dynamics simulations. In this study, special attention has been paid to the correct intrinsic treatment 

of the interface in order to get an atomistic scale insight to the structure and dynamics of the mixed 

adsorption layer and subsequently to be able to describe the underlying thermodynamic features 

which invoke the observed competition. The other study concerning liquid interfaces targeted the 

characterization of the transfer of ions through liquid-liquid interfaces by using the potential of 

mean force method to calculate the free energy profile. The main direction of this work has been the 

development of a method to reconstruct the free energy profile of ions or small molecules with 

respect to the real dynamically changing intrinsic interface, in order to get a more detailed view on 

the process of ion transfer. 

5



Chapter 1.

Introduction

In  the everyday interpretation a macroscopic interface is a  very simple two-dimensional 

object separating two immiscible or partially miscible phases, at least one of which is condensed. It 

is  difficult  to  imagine that  such a simple object  as  a  two-dimensional plane may be intriguing 

enough  to  facilitate  the  birth  and  to  support the  flourishing  of  an  entire  discipline,  interfacial 

science. The fact that the physical chemistry of colloids and interfaces has been, since the end of the 

19th century  subject  to  an  ever  increasing  interest  suggests  that  indeed  its  structure,  and 

consequently the mechanism and thermodynamics of interfacial processes are more elaborate than 

what can be anticipated from the simplicity of the two-dimensional plane model, which to some 

might imply that the interface is merely a geometrical object. 

The geometrical approach is invalid even from a macroscopic point of view, as evidently an 

interface of two phases of different chemical compositions can only be described in terms of the 

two phases  it  separates.  The  two-dimensional  nature  can  be  justified  if  we use  a  macroscopic 

approach, however if we increase the resolution through which the interface is examined to the 

atomistic scale, we will find that it is in fact a three-dimensional object. Namely, the interface can 

be defined as the three-dimensional region separating two phases,  α and β, within which physico-

chemical properties change from the bulk value characteristic of phase  α to that of phase β. This 

definition implies that the interface is at least a monomolecular layer, but in certain systems it may 

spread from several molecular layers of phase  α to several of phase  β. The characteristics of this 

thin, most commonly monomolecular layer differ from those of the bulk phases. The reason for this 

difference can be explained if we examine the simplified model of the interface of a condensed 

phase is illustrated in Figure 1.1.
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Looking at this figure, we may perform the following thought experiment. First of all, we pick a 

sphere  randomly  from the  bulk  phase  and  count  its  interacting  neighbors.  Supposing  that  the 

interaction energy between two neighboring spheres is  ε,  we can state that the average binding 

energy ( Ebind
bulk

) of molecule in the bulk phase is

 

Ebind
bulk��bulk � ,                                                      (1.1)

where �bulk  denotes the number of interacting neighbors in the bulk phase. Repeating our thought 

experiment with an interfacial molecule will result in obtaining a similar expression for the average 

binding energy of an interfacial molecule ( Ebind
surf

) with a number of interacting neighbors being 

�surf��bulk . Consequently, the value of binding energy of an interfacial molecule will be:

Ebind
surf��surf ��Ebind

bulk

.                                                         (1.2)

The difference between  Ebind
surf

 and  Ebind
bulk

 is usually defined as the interfacial excess energy. The 

existence of this excess energy which is responsible for several interface related phenomena, such 

as  surface  tension,  the  alteration  of  the  pressure  over  curved  surfaces,  adsorption  and  surface 

activity, that is the enhancement of the concentration of a species in a mixture and the subsequent 

depletion of the others relative to their concentrations observed in the bulk phase. 
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Figure 1.1 Illustration of the origin of interfacial excess energy. 
Black lines connecting two molecules symbolize interaction between neighboring molecules
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Systematic investigation of interface-related problems dates back to as early as the 1870s. 

The  birth  of  interfacial  science  can  be  attributed  to  the  pioneering  work  of  Gibbs1 who,  by 

developing  a  to  our  days  valid  thermodynamic  background  for  several  physico-chemical 

phenomena, including interfacial processes, put down the foundations of an entirely new discipline. 

During the last century, this new discipline, interfacial science, has grown out to be one of most 

important elements of understanding numerous different physico-chemical processes in the fields of 

atmospheric chemistry, colloid chemistry and nanoscience. 

Experimental methods allowing the selective investigation of interfaces have gone through a 

rapid  and  dynamic  development  during  the  past  decades.  Nowadays  several  highly developed 

experimental techniques are at hand to examine the properties of surfaces. Images of the interface 

can be routinely taken by techniques such as transmission electron microscopy2, scanning tunneling 

microscopy3,4 or atomic force microscopy5. The chemical composition of interfacial layers may be 

measured by X-ray photoelectron spectroscopy (ESCA) 6, a multielement method which is able to 

provide  lateral  and  depth  concentration  profiles  of  most  of  the  common  chemical  elements 

composing our systems of interest. On the other hand, sum frequency generation (SFG) and second 

harmonic  generation  (SHG)7 techniques  are  also  useful  tools  to  study solid  or  fluid  interfaces. 

Besides  instantaneous  images  and  composition  profiles,  adsorption  at  interfaces  is  also  of 

outstanding importance. Several experimental techniques, such as Fourier Transformation Infrared 

spectroscopy8,  allow us to reconstruct  adsorption isotherms measured on solid surfaces.  On the 

other hand, surface tension measurements performed for instance by methods like the Wilhelmy 

plate9 or  the  hanging  drop  experiment10,  can  be  effectively  applied  to  obtain  surface  excess 

concentrations of liquid mixtures. Measuring contact angles can also provide us with information 

about the geometrical and thermodynamic inhomogeneities of the surface in question 11.

With the development of the speed and efficacy of computers, simulations have emerged 

gradually to be one of the most important complementary techniques to experimental science as 

well  as  to  purely  theoretical  methods.  One  of  the  biggest  advantages  of  computer  simulation 

techniques is that they enable us to see our systems of interest at an atomistic resolution. Besides 

this, they make it possible to model conditions that are experimentally difficult or even impossible 

to achieve.  We may for  example reach very low or  very high temperature and pressure values 

without facing any difficulty creating and controlling the conditions, which can be useful when one 

wishes to model for instance physico-chemical processes of the upper layers of the atmosphere. On 

the other hand,  information about extremely dilute solutions that  are experimentally difficult  to 

study are also readily available from simulations.

The above mentioned advantages enabled me to apply Monte Carlo and molecular dynamics 
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simulations  to model  physico-chemical  processes related to  interfacial  phenomena.  My work is 

comprised of two main topics, namely the study of solid and liquid interfaces. The first one is the 

adsorption of small molecules on atmospherically relevant solid surfaces, such as the free surface of 

ice  or  of  organic  and  binary  water/organic  aerosols.  The  second  is  the  examination  of  fluid 

interfaces from various aspects. The latter includes the investigation of adsorption and competitive 

adsorption of polymers and surfactants on the free surface of water. Besides this, I have also applied 

molecular dynamics simulations to develop a new intrinsic approach to calculate the free energy 

profiles  describing  the  thermodynamic  background  of  transfer  small  molecules  through  fluid 

interfaces. 

My  thesis  is  organized  as  follows.  In  the  next  chapter,  I  collect  and  describe  all  the 

computational methods applied during my work, including the description of the newly developed 

protocol to calculate the intrinsic free energy profile of transfer of small molecules through various 

interfaces. In Chapter 3. I give an overview on solid interfaces, I introduce atmospherically relevant 

problems  related  to  adsorption  at  solid  surfaces.  Then  I  summarize  the  major  steps  of  the 

development in the field of computer simulations that allowed us to use them as tools to model solid 

surfaces of the atmosphere and finally I present the results of my studies concerning this subject. In 

Chapter  4,  I  address  the  question  of  fluid  interfaces.  First  of  all,  I  summarize  the  basic 

characteristics of fluid interfaces, and give examples of some intriguing interfacial phenomena, then 

I describe the advances of computational methods in the treatment of fluid interfaces and finally I 

introduce the results obtained during my work related to this subject. Finally, in Chapter 5, all  my 

results are summarized and some perspectives are listed.
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Chapter 2.

Computational methods

2.1. The place of computer simulations in scientific research

Scientific  research  historically  relies  mainly  on  experimental  techniques.  However, 

investigating physico-chemical  processes  in  details  may require  the application of  a  theoretical 

approach as well. If we wish to use a purely theoretical method, we are obliged to apply simplifying 

conditions for the mathematical apparatus as well as for the model system. Simulations on the other 

hand  may  be  performed  on  an  appropriately  chosen  model  system  without  any  simplifying 

conditions  which  implies  that  they  provide  exact  results  valid  for  the  model  system.  Thus 

simulation techniques can be considered as computer assisted experiments performed on the model 

system. The above three ways of approach in scientific research are, nevertheless, inseparable and 

incomplete  without  each  other.  Model  systems  are  needed  for  both  theoretical  methods  and 

simulations.  The  applicability  and  the  validity  of  a  model  system  may  only  be  assessed  by 

comparing theoretical and simulation results with the corresponding experimental values. Thus if 

we compare our simulation results with the relevant experimental data, we may check the validity 

of the model, whereas comparing the simulation and theoretical data obtained for the same model 

system can be regarded as the test of the theoretical approximation.

2.2 Comparison of the Monte Carlo and molecular dynamics methods

Any computer simulation technique relies on the basic idea of statistical physics that it is 

possible to calculate macroscopic properties of a  system as an average over all the microstates 

belonging to the macroscopic state in question. It is obviously impossible to sample the entire phase 

space, that is to have a sample configuration of each of the microstates belonging to a macroscopic 
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state, as it would require calculating and storing an enormous amount of data. However, computer 

simulations are handy tools to produce a statistically relevant sample ensemble, on which time or 

ensemble averaging can be performed, depending on the simulation method, to obtain macroscopic 

properties.

The ergodic hypothesis guarantees that, for a system in equilibrium, the above mentioned 

time and ensemble averages over a set of microstates are equivalent.

�M �t�lim
� 	


1
��0

�
M �
q �t � , 
p�t ��dt��M �
q , 
p� f �
q , 
p�d 
q d 
p��M ��  ,             (2.1)

where 
p�t�  and  
q �t � denote the momenta and the spatial coordinates of the particles constituting 

the system, M � 
p ,
q�  is the value of the quantity in a given ���
p�t� ,
q�t ��  microstate of the 

phase space, whereas <M>t and <M>Γ denotes the time and the ensemble average of quantity  M 

over the set of microstates, respectively, finally, f �
p ,
q�  is the probability density function of the 

microstates, while t stands for the time and τ denotes the duration of observation. The equality of 

time and ensemble averages ensured by the validity of this hypothesis for systems in equilibrium 

guarantees the equivalence of Monte Carlo (MC) and molecular dynamics (MD) simulation for 

calculating equilibrium properties of our systems.12 

These  two  methods  differ  in  their  way  of  generating  a  statistically  relevant  set  of 

microstates. In molecular dynamics the microstates are created by solving the Newtonian equations 

of motion in each step of the simulation for each particle of the system. The new configurations are 

then obtained simply by moving the atoms according to the forces acting on them. MD is thus a 

deterministic method, which means that the initial state unambiguously determines the entire set of 

microstates which the system goes through. This in turn means that MD simulations may be used 

for  calculating  time  dependent,  dynamic  properties  as  well  as  equilibrium  thermodynamic 

quantities. In Monte Carlo simulations sample configurations are generated stochastically, and are 

accepted  or  rejected  according  to  a  conveniently  chosen  acceptance  criterion.  Thus  in  an  MC 

simulation the initial configuration cannot determine a priori the entire set of microstates that will 

compose the sample. Consequently, it is impossible to calculate time dependent properties by MC 

simulations, however for quantities that depend only on the spatial coordinates the average value 

obtained from MC and MD simulations should be similar within statistical error. Both MD and MC 

methods have been used during my PhD studies, thus they are described in detail in section 2.5. and 

2.6, after introducing the most important technical issues related to both of them.
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2.3 The calculation of the energy in simulations 

One of the most important question in performing simulations is how to obtain the energy of 

the microstates constituting our sample. As it has been seen in the previous section, in classical 

simulations  a  microscopic  state  is  specified  as  the  function  of  atomistic  and  molecular  spatial 

coordinates  and  momenta  of  the  particles  building  it  up.  The  kinetic  energy  term  of  system 

consisting of N particles can be expressed simply in the following way, in cases where it is relevant:

K��
i�1

N

�
�

pi�
2

2mi ,                                                           (2.2)

where  mi is the molecular mass of the  ieth molecule and  α is the index which denotes the three 

Descartes coordinates of the molecular momentum p of molecule i. As is seen, the kinetic energy of 

the entire system can be given in an exact form as the sum of the molecular kinetic energy terms. 

However, the expression of the potential energy (V) is far from being as simple since the value of 

potential energy is determined mostly by the nature of intermolecular interactions. It follows from 

the previous statement, that  in a system containing  N particles the potential energy term of the 

Hamiltonian can  be written as  the  sum of  the single molecule terms,  pair  interaction energies, 

triplets, quadruplets, etc.12:

  

V��
i

v1�qi���
i
�
j�i

v2�qi ,q j���
i
�
j�i
�

k� j�i

v3�qi , q j , qk��. . .
,                 (2.3)

where qi  are the spatial coordinates of the atoms, and the i, j and k indexes run over the atoms of 

the system. The first term expresses the effect of an external field on the individual atoms, the 

second denotes pair interactions, whereas the following terms of the summation describe higher 

order intermolecular interactions. It has been proven that higher than third order terms give a very 

small, but not negligible part of the total potential energy, whereas third order terms are already 

significant in condensed phases. For instance it has been shown by Doran and Zucker that three-

body interactions constitute as large as 10% of lattice energy in solid argon13. Despite the size of 

triplet interactions, potential energy terms are usually taken into account up to second order terms, 

whereas three-body (and higher order) interactions are partially accounted for by an effective pair 

potential.  Within the framework of  the above described approach we may express the potential 
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energy as follows:

V��
i

v1�r i���
i
�
j�i

v2
eff �rij�

  ,                                            (2.4)

where ri are the spatial coodirnates and rij = |ri-rj|. Thus the potential is formally divided into two 

main contributions, the effect of an external field (v1) and an effective pair potential ( v2
eff �rij� ). 

Various different effective pair potential types have been developed in the literature.12  The 

simplest one among them is the so called hard sphere potential, which creates no interaction beyond 

a certain cutoff distance and a constant infinite repulsion for atom-atom distances smaller than the 

above mentioned cutoff. Square-well or triangle well potentials are also used for describing pair 

interactions in a simple way. For distances larger than a cutoff distance they behave similarly to the 

hard sphere potential, however within the cutoff distance they describe the interaction as a simple 

mathematical  function  of  the  separation  between  the  interacting  atoms.  The most  widely used 

potential  type  in  classical  numerical  simulations  is  the  so  called  Lennard-Jones  potential.  The 

Lennard-Jones potential consists of a repulsive term decreasing as a function of the site-site distance 

r  by 1/r12 , and an attractive term decreasing as a function of 1/r6.:

V LJ �r ��4��� �
r
�

12

���
r
�

6

�
 .                                                     (2.5)

As is seen from Equation 2.5, there are two adjustable parameters in a Lennard-Jones type potential. 

σ represents the „radius” of the particle, while �  describes the energy or strength of its interactions. 

Another widely used potential type is the so called Buckingham potential, in which the attractive 

term is described by an exponentially decaying function, while the repulsion is similar to what has 

been seen for the Lennard-Jones type of effective pair potential.

In  simple systems the dispersion contribution to  the interaction between two interacting 

particles A and B, can be described as the combination of the Lennard-Jones parameters of the 

particles in question either by the Lorentz-Berthelot rule14 or by the rule of geometric means.12  The 

above mentioned two combination rules are shown in Equation 2.6 a and b, respectively:

                                                        
�AB���A�B �AB�

�A��B

2                              (2.6 a)
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�AB���A�B �AB���A�B .                               (2.6 b)

Additionally, if the system consists of charged particles, electrostatic interactions have to be 

taken into account as well. These interactions most often are expressed by the Coulomb potentials, 

which can be written as follows:

V C�
1

4� �0

qA qB

r ,                                                         (2.7)

where ε0 is the permittivity of vacuum whereas qA and qB are the partial charges of atoms A and B.

2.4 Technical issues of performing simulations

Any computer simulation begins with preparing an initial configuration of the system of 

interest.  An  initial  configuration  can  be  obtained  by placing  the  desired  number  of  molecules 

somehow (for instance, randomly or in a crystal-like structure) into the simulation box. However, 

initial configurations obtained in one of the above-mentioned ways may correspond to energies too 

high  for  the  simulation  program  to  deal  with  or  may  slow  down  the  equilibration  process 

considerably and the probability of encountering such a problem is significantly higher for systems 

of higher complexity. This error may be avoided by starting from a pre-equilibrated configuration or 

by preparing the initial configuration in a way that it already resembles its anticipated equilibrium 

structure. 

In the first phase of the simulation the energy of the system decreases monotonically and all 

other parameters describing the given statistical mechanical ensemble show a tendentious change. 

This phase of the simulation is called equilibration. After a certain number of steps the tendency 

disappears for even the slowest changing one among the monitored variables, and the values start to 

fluctuate around their average value. In this latter production stage configurations are saved for 

creating a statistically relevant model of the equilibrium statistical mechanical ensemble.

The  capacity  of  today’s  computers  allows  us  to  simulate  systems  consisting  of  104-105 

molecules at a relatively low computational cost. However such a system is still many orders of 

magnitude smaller than what can be examined by regular experimental setups. Thus, as opposed to 

real systems, in a simulated model up to 15% of the molecules are found at the interface which may 

cause systematic errors due to the occurrence of the extraordinarily strong unphysical interfacial 

phenomena. The simplest way to overcome this problem is to surround the system with an infinite 

number of its own images translated along the box edges in all directions, that is to apply periodic 
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boundary conditions.12 It allows us to increase the system size practically to infinity without raising 

the computational cost noticeably. Such periodic boundary conditions can only be applied if the 

shape of the simulation box allows us to fill the space with its translated images without any gaps or 

overlaps, and their use results in the fact that if a particle leaves the basic simulation box in one 

direction in one step, its periodic image enters on the opposite side. Periodic boundary conditions 

are illustrated in Figure 2.1. 

Figure 2.1 Illustration of the periodic boundary conditions. The green square in the middle of the figure 
represents the basic box, the black copies are the periodic boundary images, whereas arrows show the movement of the 
periodic images of molecules traversing the box edge and the dashed circle symbolizes the maximum cutoff length (L/2)  

within which explicit treatment of intermolecular interactions is physically meaningful.

It follows from the periodic boundary conditions that, in case of a cubic simulation box of 

length L it is only reasonable to calculate distance dependent properties of a given molecule within 

sphere of radius  L/2, since at larger distances the molecules may be present together with one or 

more  of  its  periodic  images.  (Figure  2.1.)  This  would  give  rise  to  artificial  interactions  and 

translational  symmetry  and,  subsequently,  to  unphysical  results.  However,  simply  cutting  the 

distance dependent properties is problematic when calculating pair interaction energies. Dispersion 

terms tend quickly to zero with the increasing distance, however, electrostatic interactions give a 

considerable contribution to the potential even at higher distances, thus it needs to be accounted for 

by long-range corrections, such as the Ewald summation 15, the Particle Mesh Ewald method (PME) 
16 or the reaction field correction (RFC).17  

2.5 Monte Carlo simulations

Any computational technique which applies stochastic sampling to obtain an approximate 

solution to mathematical problems belongs to the family of Monte Carlo methods. Its basic idea 

makes Monte Carlo methods highly suitable for solving multidimensional integrals,  thus it  is  a 

technique  widely  used  in  physics  for  modeling  statistical  mechanical  ensembles.  In  statistical 

mechanical  simulations the phase space has to be sampled according to the probability density 
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function f �
p ,
q�  over the ν microstates, which can be written in the following form:

f �
q , 
p��
exp ���F ��
q , 
p��

�
�

exp���F ��
q , 
p��
,                                                   (2.8)

where F �
p ,
q�  is an energy-like potential function of the spatial coordinates and the generalized 

momenta whose actual form depends on the thermodynamic boundary conditions, or in other words 

the gender of the modeled ensemble, and β=1/kBT, where T is the thermodynamic temperature and 

kB is the Boltzmann constant). The denominator of the right side of the expression is the so called 

canonical partition function Q of the system:

Q��
�

exp ���F ��
q , 
p��
.                                                  (2.9)

According to equation 2.9 the partition function Q is given in an exact form as a sum over all the 

microstates. In the semiclassical approximation, which is usually used in classical simulations, Q is 

expressed in an integral form which has to be corrected for two basic defects of the approach. First 

of all, as the permutation of the particles does not increase the number of microstates we have to 

divide the partition function by 1/N! to account for the indistinguishable nature of particles. On the 

other hand quantum states are also indistinguishable in such a small unit volume of the phase space, 

thus one has to account for them too, which can be done by reducing the number of microstates by a 

factor of h3N, where h is Planck's constant. After adjusting these corrections, Q will be approximated 

by the following expression:

                      
Q� 1

N ! h3N� d 
q d 
pexp ���F v�
p ,
q��
                                     (2.10)

Thus performing the necessary algebraic operations the following expression will be yielded for the 

probability density function:

f �
q , 
p��
1

N ! h3N

exp ���F ��
q , 
p��
Q .                              (2.11)
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2.5.1 Calculating macroscopic mean quantities from Monte Carlo simulations

The mean value of a general macroscopic quantity  M  can be calculated as the ensemble 

average of the values of M over the microstates:

�M �� 1
N !�dq dp M �
q , 
p � f �
q , 
p�

 ,                                         (2.12)

where M �
q , 
p�  is the value of the M quantity in the microstate characterized by a given value of 


p  and 
q , and angle brackets denote ensemble averaging. Since solely the position-dependent part 

of  the  phase  space  can  be  sampled  by regular  Monte  Carlo  techniques,  it  is  only possible  to 

calculate  macroscopic  values  of  quantities  which  depend  only  on  the  spatial  coordinates.  The 

momentum dependent parts can, on the other hand be separated and integrated out from equation 

2.12.  Thus  after  substituting  Eq.  2.11  into  the  expression  and  performing  the  possible 

simplifications, eventually we obtain the following formula for the mean value of M:

�M ��
� dq M �
q �exp��� F �

q�
q ��

�dq exp��� F �
q �
q �� ,                                            (2.13)

where the  q in superscript denotes the part of the energy like functional that depends solely on 

spatial coordinates. This equation is what makes it possible thus to approximate macroscopic values 

of position-dependent quantities based on a set  of configurations collected during the course of 

Monte Carlo simulations of statistical mechanical ensembles.

2.5.2 The question of sampling

According to equation 2.13, the expectation value of M can be approximated if we know its 

microscopic value in a statistically relevant number of discrete points of the configuration space, 

supposing that the value of the potential-like quantity F �
q �
q�  is also known for these points. In this 

case the integral of equation 2.13 is transformed into a finite sum to yield the following expression 

for the mean value of M:

�M ��
�i S

M �qi�exp ���F �
q �qi��

�i S
exp���F �

q �qi�� ,                                         (2.14)
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where index  i runs over the discrete set  of points (atomic configurations or microstates) of the 

configuration space S constituting our sample. Even though calculating the value of M according to 

this approximation does not require the knowledge of the entire configuration space, the number of 

microstates  in  which  M(qi)  and  F �
q �qi�  are  needed  to  be  known  in  order  to  give  a  good 

approximate  to  the  real  macroscopic  value  of  M is  still  far  too  high  to  be  obtained  during  a 

simulation  of  reasonable  length.  This  problem  can  be  simplified  by  considering  the  fact  that 

probability of the realization of a microstate decreases exponentially with the value of  F �
q �qi� , 

thus  microstates  corresponding  to  very  high  F �
q �qi�  values  give  a  small  contribution  to  the 

ensemble average whereas „low energy” configurations contribute to it significantly.18 Thus if we 

introduce a weight factor  wi to achieve that microstates characterized by a relatively low value of 

F �
q �qi�  are chosen with a relatively larger frequency in our sample,  we can decrease the time 

demand and the computational  cost  of our  calculations  significantly.  On the other  hand such a 

weighted method distorts the randomness of the sampling, which can be recovered by correcting the 

mean value of M in the following way:

�M ��
�i S

M �qi�
exp ���F �

q �qi��
wi

�i S

exp���F �
q �qi��

wi .                                     (2.15)

If the simulation is performed on the canonical (N,V,T) ensemble, in which case the position-

dependent part of the potential-like function is the potential energy U(qi) of the system, the weight 

factor is usually chosen to be the Boltzmann factor:

wi�qi��exp ���U �qi�� .                                                  (2.16)

Substituting  the  Boltzmann  factor  to  Equation  2.15.  yields  a  simplified  expression  for  the 

expectation value of M:

�M ��
�
i�1

n

M i�qi�

n ,                                                 (2.17)
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where n is the number of configurations (microstates) in the sample. 

The above described Metropolis-sampling is carried out in the following way. Initially a 

random  change  is  made  in  the  starting  configuration.  Then  the  potential  energy  of  the  new 

configuration obtained as the result of the change is calculated. Steps leading to the decrease of the 

potential energy are always accepted. On the other hand, steps which increase the potential energy 

of the system are accepted with a probability of exp���!U �  and are rejected with a probability 

of exp�1��!U � , where !U  is the difference between the potential energy of the current and 

the  previous  configuration.  In  practice,  the  acceptance  of  a  step  is  decided  by  comparing 

exp���!U �  to random number  ξ whose value varies between 0 and 1.  If  the value of  ξ is 

smaller than or equal to exp���!U �  then the step is accepted, otherwise the attempted step is 

rejected. Thus probability of acceptance (Pacc) can be given as :

Pacc�min �1, exp���!U �� .                                                    (2.18)

It has been demonstrated by Metropolis and coworkers that a simulation performed this way models 

the real probability density function properly. In the following sub section the application of the 

Metropolis sampling for performing Grand Canonical Monte Carlo simulations is described.

2.5.3 Grand canonical Monte Carlo simulations

In the grand canonical Monte Carlo method, which has been developed independently by 

Norman and Filinov19 and Adams20,21, the μ chemical potential, the volume and the temperature of 

the  system are  kept  fixed,  while  the  number  of  molecules  may vary.  On  the  grand  canonical 

ensemble the condition of equilibrium is the minimum of the grand potential Ω

"�A�N #�� pV ,                                                             (2.19)

where A is the Helmholtz free energy of the system, N stands for the number of particles, μ is the 

chemical  potential  while  p and  V are  the pressure and volume of  the system respectively.  The 

expectation value of an arbitrary macroscopic quantity can be written in the following form:
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�M ��
�
N�1


 1

N ! h3N� d 
q d 
p M �
q , 
p�exp ���N #�E �
q , 
p ���

$  ,              (2.20)

where  E �
q , 
p�  is the energy of the system and  the notation  Ξ stands for the grand canonical 

partition function:

$��
N�1


 1

N !h3N�d 
q d 
pexp ���N #�E �
q , 
p ���
.                              (2.21)

Differently  from the  regular  canonical  simulations,  in  the  grand  canonical  Monte  Carlo 

method configurations have to be saved from many phase spaces characterized by different number 

of particles. This means that coefficients depending on the number of particles do not cancel out 

after separating and integrating the momenta dependent part of the potential. Thus after introducing 

the concept of the thermal de Broglie wavelength:

%�� h2�
2�m                                                              (2.22)

and changing to the conventionally used scaled coordinates s:

s�
q V 1 &3
,                                                                 (2.23)

the following expression for the expectation value of M will be obtained:

�M ��
�
N�1




� ds M �s� V N

N !%3N
exp ���N #�U �s���

�
N�1




� ds V N

N !%3N exp���N #�U �s���
.                            (2.24)

The weight factor used for Metropolis sampling on the grand canonical ensemble takes to following 

form:

wi�s , N ��exp�N ln� V

%3
��ln�N !����U �s��N #��

.                           (2.25)

In GCMC simulations the acceptance ratio can thus be expressed as:
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Pacc�min �1, exp�!�N ln� V

%3
��ln�N !����U �s��N #����

.                  (2.26)

This expression is reduced to the canonical acceptance ratio for particle displacement steps. On the 

other hand, for insertion and deletion steps it takes the form of 

Pacc�min �1, exp� ln� V

%3
��ln�N�1����!U �s��#���

                          (2.27 a)

and 

Pacc�min �1, exp��ln� V

%3
��ln�N ����!U �s��#���

                          (2.27 b)

respectively, provided that deletion or insertion of only one molecule is attempted in every step. The 

basic algorithm may be accelerated by searching for cavities of a radius larger than a conveniently 

chosen cutoff value and attempting insertion first in that cavity22,23. 

For  our  adsorption studies  we have used the reformulation of the basic  GCMC method 

suggested by Adams.12 According to this approach the chemical potential is given as the sum of an 

ideal gas and an excess contribution.

#�#id�#ex�#ex�kT �ln �N �# ,V ,T�ln� %
3

V
���kTB�kTln�%

3

V
�

,              (2.28)

where  B is  a  simplified notation for  the sum of  the excess  chemical  potential  and the average 

number of molecules, and it can be conveniently expressed from equation 2.28 as :

B� #
kT
�ln�%

3

V
�

.                                                   (2.29)

It should be noted that according to equation 2.29 performing GCMC simulations at constant B, V 

and T are equivalent to constant μ, V, T simulations at the corresponding value of μ.

2.6 Molecular dynamics simulation

21



In  molecular  dynamics  sample  configurations  are  created  by  solving  the  Newtonian 

equations of motion for each step of a simulation for a system consisting of  N particles, whose 

interactions are given by a potential V. The equations of motion are usually expressed according to 

the Lagrangian formalism: 

d
dt
��'L�
q , 
p�&' 
p���' L�
q , 
p�&' 
q���0

,                                        (2.30)

where L�
q , 
p�  is the so called Lagrange function of the system, that depends on the generalized 

spatial coordinates 
q  and the generalized momenta 
p  of the particles constituting the system. In 

another formulation the Lagrange function can be written as the sum of the potential and kinetic 

energy terms.

L�
q , 
p��K�V ,                                                 (2.31)

where K is the kinetic energy of the system, expressed as it has been shown in equation 2.2 and V 

denotes the potential energy, which, as it has been already discussed in section 2.4., consists of the 

effect of an external field on the individual molecules, the pair interactions, three-body and higher 

order terms. It has also been stated in section 2.4. that this potential may be approximated as the 

sum of the one-particle term, an effective pair potential and a Coulomb term, which accounts for the 

electrostatic interactions.

Substituting the above-mentioned  kinetic  and  potential  energy expressions  into  equation 

2.31 and performing the derivations allow us to obtain the following expression, well-known from 

classical mechanics, for the Fi forces acting on the individual particles:

F i�mi (ri ,                                                         (2.32)

where  ri is the position vector of the  ieth particle expressed in the Cartesian frame of coordinates. 

During the course of  a  molecular  dynamics  simulation we may obtain the new coordinates  by 

solving 3N of this second order differential equation in every time step. Alternatively 6N of the 

following joint differential equation, which can be derived from equation 2.32, may be solved:
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)ri�
pi

mi

)pi�Fi

                                        (2.33)

Several  algorithms,  based  on  both  of  the  above  described  pathways  have  been  developed  for 

performing molecular dynamics simulations. One of the most well-known among them is probably 

the Verlet algorithm24, which is based on equation 2.32. This algorithm is used also by the program 

package applied for our molecular dynamics simulations,  thus this method will be described in 

details hereinafter. As the first step of the calculation, position vectors are written as their Taylor 

expansion according to time:

ri �t�! t ��ri �t ��! t )ri�t��
�! t �2

2 !
(ri�t ��

�! t �3

3 !
*r i�t ��...

  

ri �t�! t ��ri �t ��! t )ri�t��
�! t �2

2!
(ri�t ��

�! t �3

3!
*r i�t ��...

                          (2.34)

By adding the above two equations we get:

ri �t�! t ��ri �t�! t ��2 )ri�t ��! t2 (ri�t ��...                               (2.35)

from where  ri �t�! t�  may be expressed. After neglecting higher than second order terms and 

expressing  the  second  order  derivatives  according  to  equation  2.34.,  we  obtain  the  following 

expression for ri �t�! t�  :

ri �t�! t ���ri�t�! t ��2 ri�t��
�! t �2

m
�
i+ j

F ij�t �
,                        (2.36)

where Fij is the force exerted on particle i by particle j. The vi velocity of particle i can be calculated 

as the time derivative of its position vector, and thus it can be expressed in the form:

vi� )ri�
1

2! t
� ri�t�! t��ri�t�! t ��

.                                   (2.37)

All things considered, according to the Verlet algorithm the spatial coordinates of the individual 

particles in the following time step of the simulation, that is at the time (t+Δt), may be calculated 
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from their current spatial coordinates, ri and instantaneous value of their acceleration, expressed as

ai�t ���
i+ j

F ij

mi  .                                                             (2.38)

Calculating other properties may however necessitate the knowledge of the vi velocity vector of the 

particles constituting the system as well.

2.7. The importance of intrinsic surface analysis

An interface, especially if it  separates two fluid phases from one another has a complex 

microscopic  structure.  In  an  atomistic  resolution  an  interface  is  by  no  means  planar  and  its 

composition and geometry vary in time. Thus if one wishes to  investigate the interfaces of two 

fluid  phases  their  study should  always  begin  either  by  determining  the  covering  surface  by a 

conveniently chosen mathematical function or by finding the list of the molecules building it up for 

each sample configuration. (The origin of the complexity of fluid interfaces and methodological 

development  in this field is discussed in Chapter 4.1.1 and 4.1.2. in details)

2.7.1 The ITIM method

The ITIM (Identification of the Truly Interfacial Molecules) method25 has been proven to be 

one of the most suitable methods for routine analysis of the interface as it is a good compromise 

between computational cost and accuracy. This method has been developed previously in our group. 

Its concept is simple, the interface is mapped by dropping a probe sphere of radius Rp along a set of 

test lines parallel to the normal vector of the macroscopic plane of the interface. If a molecule is hit 

by the probe sphere, it is considered interfacial. It  should be noted here that in this analysis the 

atoms building up our system of interest are represented as spheres whose radius is equal to the 

atomistic Lennard-Jones σ parameter. If this algorithm is performed along a set of testlines covering 

the entire surface of the basic simulation box, we get the full list of interfacial molecules. Moreover 

repeating the analysis n times on the system provides us with the list of molecules constituting the 

second, third,  nth molecular layer, which makes it possible to examine the depth profile of several 

properties of the interface, and it eventually enables us to draw consequences about the depth to 

which interfacial surplus properties can exert their effect.

Obviously  the  ITIM  method  (as  any  other  methods  aimed  at  determining  the  intrinsic 

surface) contains an inherent free parameter, which is the radius of the probe sphere Rp. The choice 

of Rp is crucial in detecting the real interface properly, as if it is chosen to be too big it will not be 

able to detect all the surface molecules as it will be excluded from well smaller than its size, on the 
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other hand if it chosen to be too small. It has been shown that there exists an optimal Rp, for which 

the list of interfacial molecules will be determined with a highest possible accuracy, and this value, 

as it could be anticipated from the nature of the free parameter, is in the order of magnitude of the 

atomic radii of the molecules of our system of interest.

2.7.2 Properties of the intrinsic interface

Knowing the full list of interfacial molecules allows us to calculate several structural and 

dynamic  properties  of  the  intrinsic  surface,  such  as  the  composition  of  the  surface  layer,  the 

roughness of the surface or the dynamics of exchange between the interface and the bulk, and of 

interfacial  molecules,  such  as  their  orientational  preferences  or  the  possibility  of  their  lateral 

aggregation. Calculating the molecular composition of the surface layer knowing the full list of 

interfacial molecules to get information about the surface activity of our components is a trivial 

task,  however  acquiring  any  of  the  other  above  mentioned  examples  of  interfacial  properties 

necessitates performing non-trivial data processing and analyzes. 

2.7.2.1 Collective properties of the surface

The roughness of an interface is directly related to its interfacial tension. Since the origin of 

the surface roughness is indeed a periodic perturbation of the original interface (see Chapter 4.1.1), 

it can be fully described by the joint analysis of an amplitude (a) and frequency-like parameter (ξ) 

on the analogy of waves. These parameters can be obtained by fitting the 


d� a , l
a�, l                                                            (2.39)

function to a curve obtained as result of plotting the normal distance 
d between two points of the 

interface as a function of the distance between them in the plane of the interface (l). 

Another interesting question in studying the entire interface is its dynamic behavior. If the 

sample  configurations  have  been  obtained  from MD simulations,  the  dynamic  changes  of  the 

interface may also be calculated from the results of the ITIM analysis. Interfacial dynamics are 

described by the L(t) and L0(t) continuous and intermittent survival probabilities of the components 

of  our  system  of  interest.  The  L(t)  survival  probability  can  be  determined  by  calculating  the 

probability that if a molecule is at the surface at a time t0 it will be found at the surface also at the 
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time (t0+t). While the L0(t) function is obtained by a similar algorithm, with the exception, that in 

this case the molecule may leave the surface for a while, given that it returns within a number of 

configurations it will still be considered as interfacial. (Note that neither are the  L(t) curves fully 

continuous, their intermittence time is the time interval separating two configurations). Repeating 

the above described procedures for a set of  t values covering the time span of the simulation and 

fitting exponentially decaying functions:

L �t ��exp��t & � �                          L0�t ��exp��t & �0�                              (2.40)

to the  L(t) or the  L0(t) curve will give the continuous and the intermittent survival probability or 

residence time (τ,τ0) of the molecules at the surface.

2.7.2.2 Characterization of the interfacial molecules

The orientation of the molecules situated at the surface may also be calculated given the full 

list  of  interfacial  molecules.  Describing the orientational  distribution in case of rigid molecules 

leads us to the problem of calculating a bivariate joint distribution function. The polar coordinates 

θ,φ of the normal vector X of the interface in a molecule fixed Cartesian frame have been proven to 

be good choice for determining the orientational distribution of the interfacial molecules. It should 

be noted that as θ is the angle of two spatial vectors whereas angle φ is enclosed by two vectors in 

the plane, the bivariate joint distribution of cosθ and φ will be uniform only if the orientation of the 

molecules is independent from the direction of the surface normal vector.

On the other hand, the question of possible lateral  aggregation can also be conveniently 

studied given that we have information about the coordinates of all the molecules constituting the 

interfacial layer. The most convenient method to detect  the self-aggregation of molecules at the 

interfaces  is  based  on  the  two  dimensional  Voronoi  tessellation  of  the  surface.26 In  a  two-

dimensional assembly of seeds the Voronoi polygon (VP) of a given seed is the locus of points 

which are closer to this seed than to any other one.27 Therefore, the VPs of a (planar) system fill the 

plane without gaps and overlaps. If the seeds represent molecules at the surface, the VP of a given 

molecule can be assigned to the excluded surface area belonging to this molecule. Conversely, the 

reciprocal VP area measures the local  surface density around this particle.  If  the molecules are 

uniformly distributed at the surface,  the distribution of their VP area follows a Gaussian shape. 

However, if their distribution is such that the lateral density shows large fluctuations, the VP area 

distribution exhibits a long, exponentially decaying tail at  large area values.28 Considering these 
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facts, the following strategy can be used to detect, for instance, self-aggregation of the adsorbed 

molecules  at  solid  or  fluid  surfaces.  We calculate the two dimensional  VP area distribution by 

considering only one of the components of the system, disregarding the other. If this component is 

uniformly distributed, the resulting VP area distribution must be of Gaussian shape. However, if 

they form large self-aggregates, the removal of the molecules of the other component from the 

system will lead to the appearance of empty areas, and consequently the VP area distribution will 

show an exponentially decaying tail  at  larger  areas.  This effect  is  usually stronger if  the major 

component of the system is disregarded, as in this case larger spaces are left unoccupied. The VP 

area distributions of these sets of points have been calculated by the algorithm of Ruocco, Sampoli 

and Vallauri.29  

2.8 Calculation of the free energy and of free energy profiles from simulations

The characteristic function of the canonical ensemble is the Helmholtz free energy whose 

value dictates the direction of spontaneous processes and the stability of the individual states. The 

Helmholtz free energy A is the function of the canonical partition function Q:

A��k BT lnQ .                                                           (2.41)

As a consequence of its definition, the Helmholtz free energy cannot be calculated directly from the 

simulations  as  a  time or  ensemble  average  since  it  would require  the  knowledge  of  the  entire 

partition function Q which is computationally impossible to achieve. 

Several methods have been described in the literature to overcome this problem, most of 

which use the trick of calculating the actual free energy difference between two well-defined points 

of the phase space, which only requires the sampling of the part of the phase space which differs 

significantly in case of the initial and the final states:

!a
b A-Ab�Aa ,                                                        (2.42)

where Aa is the free energy of state a whereas Ab is that of state b. The easiest way to obtain the free 

energy difference  between  two physically distinguishable  states  is  to  calculate  the  ratio  of  the 

number of configurations Na and Nb in state a and that in state b. Knowing this ratio the free energy 

difference of the two states will be simply expressed as30:
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�
.                                               (2.43)

This method yields a good approximate of the free energy difference only if both states appear in 

the sample a statistically relevant number of times. If it is not the case, we may use integration 31 or 

perturbation methods 32 to obtain the free energy difference in question. These techniques imply a 

coupling parameter in the Hamiltonian which connects the initial and the final states. Integration 

methods express the free energy difference as the integral of the work required to go from the initial 

to the final state with respect to the coupling parameter λ:

!.a

.b��
.a

.b

� 'U �.�
' . �

.
d .

,                                                    (2.44)

where U(λ) is the coupling parameter dependent energy of the system. Perturbation methods on the 

other hand express the path along the coupling parameter by small differential changes in its value.

The above described techniques are useful if we want to calculate a single free energy value, 

for example the free energy of solvation of a certain solute in a given solvent. In a number of cases, 

however, knowing the entire free energy profile along a reaction coordinate R describes a process 

more exactly than a single relative free energy value. The reaction coordinate R is often chosen as 

an N dimensional hypersurface which is a subspace of the total configuration space, in other words 

R= R(r1,r2,...,rN), where ri are the spatial coordinates of the particles in the system. The free energy as 

a function of the reaction coordinate R can be given by the following equation:

A�R���k B T ln P �R��C ,                                                 (2.45)

where C is an additive constant and P(R) is the probability of finding our system at given point of 

the reaction coordinate. The task to be performed in order to obtain the free energy profile is to 

determine the value of  P(R). This can be done in theory by counting directly the number states 

along the reaction coordinate from an unbiased simulation, however in this method only relatively 

low-energy configurations can be properly sampled, whereas high-energy ones will be represented 

poorly in the trajectory. Thus direct counting will not be suitable for instance for calculating the free 

energy profile of a particle along a path which goes from a phase in which it  is  soluble to an 

opposite phase in which it is not. A widely used solution to overcome the problem of poor sampling 
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is  to  do biased simulations  to increase the number of  configurations which lie  on the reaction 

coordinate.  In  umbrella  sampling33,  for  example,  an additive bias  potential  is  introduced to  the 

Hamiltonian. It is also possible to obtain the free energy profile by doing a set of simulations in 

which the system is forced to stay on the hyperspace described by  R.34 A variety of this  latter 

method, which I have used during my work, is called the potential of mean force (PMF) and is 

described in details in the following section. 

Before going into the details of the PMF method it should be noted that in the recent years 

several non-equilibrium methods, such as steered molecular dynamics35 or metadynamics36, together 

with equilibrium methods which use accelerated sampling techniques like parallel tempering37 have 

been developed to facilitate fast and effective free energy calculations.

2.8.1 The potential of mean force (PMF) method

The original concept of the potential of mean force has been established by Kirkwood in as 

early as 1935.38 According to his definition, in a system consisting of N particles the PMF can be 

defined strictly as the potential that gives the average force over all the possible configurations of 

particles (n+1), (n+2),...,N acting on a particle i, with the constraint that particles 1,2,...,n are kept 

fixed

                
�! j/

�n��
� dqn�1 ...d q N exp���U �
q����0U �
q��

� dqn�1 ...d qN exp ���U �
q ��
-�FC � j�1,2 , .... ,n

,    (2.46)

where �0 j/
�n�

 is the ensemble average of the force (FC) exerted on the jth particle by all N-n non-

fixed particles, and therefore  /
�n�

is the Potential of Mean Force (PMF). In most of its applied 

varieties n =2 that is the distance of two particles are kept fixed. 

This  concept  allows  us  to  estimate  free  energy  profiles  from  a  (constraining)  force 

depending on a  reaction coordinate,  exerted on the system to  force it  to  stay on the subspace 

determined by  R.  In  the framework of our simulations,  the derivative of the free energy (A)  is 

calculated as the average of the constraining force:

d A�R�
dR

���FC �R��
,                                                    (2.47)

where brackets denote ensemble averaging over each constrained simulation. Integrating Equation 
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2.47 along the reaction coordinate R yields the following expression for the free energy difference 

of state a and b, both of them lying on the reaction coordinate:

!Ra

Rb

A���Ra

Rb

dR �F C�R�� .                                                (2.48)

It can be easily demonstrated that calculating the free energy along a set of different values of the 

RC reaction coordinate chosen to model a physically meaningful pathway enables us to obtain the 

free energy profile of the process described by this particular set of  R. In practice, the R reaction 

coordinate is usually chosen as a fixed distance between two points of the system. 

This method is traditionally applied to reconstruct the free energy profile of the transfer of a 

single  penetrant  across  a  liquid/liquid  interface  along  a  one  dimensional  path  parallel  to  the 

interface normal axis in the following way. A number of simulations with the penetrant located at 

different positions along the interface normal axis is performed on the canonical (N,V,T) ensemble, 

with  a  constraining  force  (FC)  fixing  its  distance  from the  center  of  mass  of  the  system.  The 

magnitude of  the projection of the force to the reaction coordinate is recorded in every time step of 

each of these simulations, yielding a set of FC(t) values for every value of the R reaction coordinate. 

This way, for each position of the ion along  R the time average of the force,  <FC(R)>t,  can be 

obtained  by  simply  averaging  the  force  over  all  the  steps.  Finally,  the  free  energy  profile  is 

calculated  by  integrating  the  time  average  of  the  forces  according  to  equation  2.48,  and  is 

conventionally  interpreted  with  respect  to  the  macroscopic  plane  of  the  interface,  namely  by 

anchoring the origin  of the obtained free energy profile  (i.e.:  the point  where the value of  the 

reaction coordinate is equal to zero) to the position of the Gibbs dividing surface.

2.8.2 The intrinsic potential of mean force method

2.8.2.1 The importance of the intrinsic treatment of the interface in free energy calculations

Knowing that an interface of two fluid phases is neither flat nor invariant in time, it can be 

assumed that the classical way to reconstruct the free energy profile characterizing the transfer of a 

particle  from  one  phase  to  another  is  burdened  with  systematic  error  of  unknown  magnitude 

originating from identifying the interface with its macroscopic plane. Having the intrinsic surface 

itself determined, the profile of any physical quantity can, in principle, be calculated relative to this 

surface. In theory it is also possible to reconstruct the free energy profile relative to the intrinsic 

interface, however, to the best of our knowledge, such intrinsic analysis has never been published. A 

part of my PhD studies has been dedicated thus to developing such a method.

30



The basic difficulty of the question lies in the fact that the calculation of the free energy 

profile is by itself a computationally demanding task. In reconstructing the intrinsic free energy 

profile,  however,  this  already  considerable  computational  cost  is  further  increased  by  the 

requirement of determining the intrinsic surface for – in principle – every sampled configuration. 

Our method is based on the idea that such calculations do not require the determination of the entire 

intrinsic surface, just a small portion of this surface that lies right behind the penetrant. When using 

the ITIM method it means that instead of checking the full set of test lines in the entire basic box 

only a few of them, located at the close vicinity of the penetrant has to be investigated. 

2.8.2.2 A protocol to calculate the intrinsic free energy profile

Our method is built up of four main consecutive steps. First of all, the set of constrained 

simulation is carried out such that the reaction coordinate R is chosen to transfer the penetrant along 

a one dimensional  path parallel  to the interface normal axis from phase  A to phase  B,  and the 

constraining force is collected. Then the ITIM analysis is carried for each saved configuration of 

every simulation. The ITIM analysis and subsequent determination of the intrinsic instantaneous 

distance between the ion and the interface provides us with an intrinsic ion-interface distance as a 

function of time (xi(t)) for a given configuration for which the corresponding constraining force 

FC(t) has been recorded at for every sampled configuration. From these data one can readily obtain 

the constraining force as a function of the intrinsic distance (FC (xi)) simply by merging the intrinsic 

xi(t) function obtained during the course of the ITIM analysis with the FC(t) function. For the sake 

of a mathematically correct treatment, the original simulation box is then divided into slabs parallel 

with the macroscopic plane of the interface, whose width is equal to the displacement effectuated 

between  two  consecutive  constrained  force  runs.  Each  {FC(xi),xi}  pair  is  then  assigned  to  the 

corresponding the slab according to the value of xi and the forces belonging to one slab are averaged 

within each separate slab to obtain <FC(xi)>slab. The cumulative integral of the slab averages of the 

intrinsic forces <FC(xi)>slab   as a function of the average slab position, i.e.: the x coordinate of the 

midpoint of the slab, is then calculated to give the intrinsic free energy profile of transfer.

2.8.2.3 Technical questions of the intrinsic PMF method

2.8.2.3.1 The speed of the ITIM algorithm

The ITIM analysis, even though one of the fastest among the similar methods, has turned out 

to be computationally too costly to analyze a greater number of trajectories simultaneously on a 
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reasonable time scale. Thus, prior to applying it for free energy profile calculations the algorithm 

had to be simplified to reduce the computational cost. The basic idea that enabled us to reduce the 

above mentioned cost of the original ITIM algorithm substantially when calculating the intrinsic 

profile of one single penetrant is the following. Since it is only the exact distance of the penetrant 

from the intrinsic surface that has to be determined, it is sufficient to know the position of this 

surface at one particular point of the YZ plane (i.e.: the macroscopic plane of the interface), namely 

where the penetrant is also located. Therefore, here we modified the original ITIM algorithm as 

follows. Differently from the original idea of using a uniformly distributed fine grid of test lines 

across the entire YZ plane, for the purpose of reconstructing the intrinsic PMF we use only a few 

crucial test lines, located in the vicinity of the penetrant, to map solely the relevant section of the 

intrinsic surface. The position of these crucial testlines is determined on the fly, during the ITIM 

analysis based on their lateral distance (i.e. the distance in the YZ plane of the simulation box) from 

the position of the ion, and it is refreshed for every analyzed frame. Those test lines whose lateral 

distance from the center of mass of the penetrant is smaller than or equal to N×dgrid are considered as 

crucial  testlines,  whereas all the other test lines are disregarded from the analysis. Here  N is  a 

conveniently chosen small integer, leading to the use of N2 crucial testlines around the ion, and dgrid 

is the spacing of the grid lines, the optimal spacing of which is discussed in detail by Jorge et.al. 39 

Performing the ITIM analysis along only the set of crucial testlines results in the list of the few 

(practically 5-10) truly interfacial molecules whose distance in the YZ plane is the shortest from the 

YZ position of the ion

2.8.2.3.2 Methods to determine the distance of a point from the intrinsic surface

Knowing  the  position  of  the  penetrant  and  the  molecules  of  the  instantaneous  intrinsic 

interface which lie laterally in the vicinity of the penetrant allows us to reconstruct the intrinsic free 

energy profile, as several mathematically well-established methods are at hand to calculate the real 

intrinsic distance between the penetrant and the interface along the surface normal axis. The two 

most accurate of these methods, namely Voronoi method and triangular interpolation, have been 

tested. In the Voronoi method, the intrinsic distance in the normal direction is defined as the normal 

distance of  the center  of  mass of  the penetrant  and the  molecule whose  lateral  distance  is  the 

smallest  from  the  ion,  that  is  the  molecule  whose  two  dimensional  Voronoi  cell  contains  the 

projection of the penetrant in the XY plane.40 Triangular interpolation, on the other hand takes into 

account the three closest interfacial molecules, which are situated in a way that the YZ projection of 

the penetrant falls into the area of the triangle. The intrinsic distance along the interface normal in 
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this  case  is  calculated  as  the  distance  of  the  center  of  mass  of  the  penetrant  from  the  plane 

determined by this triangle.   All things considered, while in the Voronoi method the corrugated 

surface is approximated by the Voronoi cell of the interfacial molecules, the triangular interpolation 

uses small triangles to create a mathematically manageable covering surface. A comparison of the 

two methods is shown in Fig. 2.1. 

Figure 2.1. Comparison of the concept of the Voronoi method (left panel) and the triangular interpolation 
(right panel), green spheres represent the penetrant while blue spheres are the interfacial molecules, the 

intrinsic distance is indicated in red and the interface normal vector points in  this case, differently in the X 
direction.

2.8.2.3.3 The problem of the hydration shell

When  calculating  the  intrinsic  free  energy  profile  of  transfer  by  the  above  described 

procedure one has to be aware of the experimentally proven fact that the first hydration shell is 

usually co-extracted with the penetrant as it moves towards the organic phase. It has to be taken into 

account that the water molecules constituting the hydration shell can be considered as part of the 

intrinsic interface only if the shell is still attached by hydrogen bonds to the bulk aqueous phase. In 

cases when the hydration shell of the penetrant is already detached from the interface, that is when 

the penetrant has already penetrated deep enough into the bulk organic phase, the consideration of 

these molecules among the interfacial ones leads to a severe theoretical error in the calculation. 

Practically, the ITIM method is certain to find these molecules to be the closest interfacial ones, 

thus the penetrant will seemingly never leave the interfacial region. This, in other words, means that 
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the ion’s behavior in the bulk organic phase will never be correctly sampled. To avoid this kind of 

theoretical error, we have to disregard molecules of the hydration shell from the analysis in cases 

when they form separate  body which is  not  connected to the hydrogen bonded network of  the 

aqueous phase. However, one has to consider how to differentiate between the above mentioned two 

cases. A trivial approach to this question might be to introduce a cutoff position along the X axis, 

beyond which we disregard the water  molecules from the analysis.  This cutoff  distance can be 

conveniently chosen by simply looking at the total mass density profiles of the bulk aqueous and the 

bulk organic phase and taking the position of the Gibbs dividing surface with an additional safety 

zone width.  However,  if  the penetrant  is  situated very close  to  the  interface,  the attachment  – 

detachment process might be reversible. More precisely, in some configurations the penetrant might 

be surrounded by a separate hydration shell on the organic side of the interface, and, due to the 

fluctuations of the surface, this shell maybe reattached to the aqueous phase to form a water finger, 

which means that the penetrant can re-enter the aqueous phase and the hydration shell will again 

contribute to the interface. An example of the above phenomena observed during our studies is 

shown in figure 2.2.

Figure 2.2.  Instantaneous snapshots of two consecutive sample configurations taken from one of our 
simulations. The snapshot on the right (taken in the earlier step) shows a separate hydration shell, which 

however in the next sampled configuration (right panel) is reattached to the interface.

Obviously,  by using a uniform cutoff beyond which we disregard the hydration shell molecules 

from our analysis, we neglect these situations. However our approach will be more accurate if we 

take the above described process into account. 

The solution to circumvent the systematic error caused by neglecting the occurrence of the 

above mentioned phenomena is to perform a cluster size analysis on each of the configurations. 

This method which has been already described in 41 proved to be a feasible way of deciding if the 

hydration shell is separated from the aqueous phase or forms a part of it. The cluster analysis is 

carried out as follows. First, the molecules constituting the hydration shell have to be identified by a 
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neighbor searching algorithm which selects the water neighbors of the penetrant by comparing their 

c.o.m. – c.o.m. distance to the abscissa value of the first minimum observed in the corresponding 

radial distribution function. Those water molecules whose distance from the penetrant is shorter 

than the above mentioned value are selected as members of the hydration shell and are further 

analyzed to find the largest water cluster to which they belong. If any of the molecules constituting 

the hydration shell belongs to a water cluster which consists of a larger number of molecules then 

three times the ion’s average hydration number in the bulk aqueous phase, then the hydration shell 

is  considered as  part  of  the  interface.  Otherwise it  is  treated as a  separate  droplet,  and is  thus 

disregarded  from further  analysis.  We should also note  here  that,  for  the  sake  of  reducing  the 

computational cost of the otherwise quite costly neighbor-searching method, finding the first water 

molecule belonging to both the hydration shell and the bulk aqueous phase stops algorithm.
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Chapter 3

Solid interfaces

3.1 Properties of solid surfaces, adsorption

An ideal  solid surface is  considered to be an atomistically flat  monolayer  of a  constant 

surface area consisting of particles whose orientation is fixed, having only vibrational degrees of 

freedom, and whose exchange with molecules of the bulk phase is hindered. Nevertheless, solid 

surfaces are usually far from being ideal, even crystal surfaces can be „contaminated” by several 

inhomogeneities,  both  geometrical  and  energetic.  These  inhomogeneities  together  with  the 

generally valid fact that a solid surface cannot minimize its surface excess energy by contracting 

itself to a minimal area explain that most solid surfaces are relatively good adsorbents, since the 

only way to minimize the excess energy of a solid surface is to trap molecules (adsorbates) from the 

opposite phase. It has been proven experimentally that under certain conditions adsorption of such 

inert compounds as N2 or noble gases occurs on surfaces to minimize their surface excess Gibbs 

free energy.42,43

Adsorption  occurs  if  the  change in  the  Gibbs free  energy accompanying  the  process  is 

negative:

! free
ads G�! free

ads H�T ! free
ads S�0 ,                                                (3.1)

where G is the Gibbs free energy of the adsorbed (ads) and the non-adsorbed (free) system, H is the 
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enthalpy, S is the entropy and T is the thermodynamic temperature. Adsorption at solid surfaces is, 

by nature, accompanied by the decrease in entropy because adsorbed molecules have fewer degrees 

of freedom than molecules in the gas phase, thus ΔS will always be negative which means that the 

decrease  in  the  enthalpy should  overcompensate  this  effect  in  order  for  adsorption  to  happen. 

Consequently, all factors which minimize the effect of the decrease in the entropic contribution, 

such as low temperature for instance, or those which maximize the effect of the enthalpic term, for 

example the increased reactivity of the free solid surface, facilitate adsorption processes. 

On a general scheme adsorption at a solid surface can be described as the sequence of a 

number of steps. The first one among them is the transport of the adsorbate to the surface, which 

can happen by diffusion in the simplest case in the lack of convective transport. Then the adsorbed 

molecule  gets  into  contact  with  the solid  surface,  after  which possible  structural  and chemical 

rearrangements of both the adsorbent and the adsorbate may take place. These rearrangements can 

be followed by desorption in case of physisorption (a reversible process which does not involve the 

breakage of a chemical bond neither in the adsorbent nor in the adsorbate). In case of chemisorption 

the breakage of chemical  bonds and formation of new ones as a  result  of the contact  with the 

adsorbent happens and the adsorption process is considered irreversible. Under certain conditions 

surface induced conformational changes of the adsorbed molecules may also be observed. It should 

be  noted  that  the  possible  porosity  of  the  adsorbent  further  elaborates  the  general  adsorption 

scheme, as in such cases adsorbates have to penetrate into the pores by diffusion. It happens for 

instance if the adsorbate is zeolite a material widely used in a separation science and catalysis.  44 

Figure  3.1  shows the general  schemes  of  adsorption  from a  fluid  phase  at  a  non-porous  solid 

surface. 

Figure 3.1. General adsorption schemes at solid surfaces. a) shows the case of simple reversible 
physisorption, b) shows the case of chemisorption, whereas c) illustrates the case when conformational  

changes are induced in the adsorbate as result of the interaction with the surface.
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Measuring  or  calculating  isotherms  is  the  most  straightforward  way of  the  quantitative 

investigation of adsorption processes. Adsorption isotherms can be constructed by recording the 

amount of adsorbate per unit area of the adsorbent expressed as a function of its amount in the fluid 

phase in contact with the solid surface. It  is a commonly used technique to construct adsorption 

isotherms by simply measuring the amount of the adsorbate in the fluid phase before and after 

bringing it  to contact  with the adsorbent  surface.  The adsorbed amount is  then obtained as the 

difference between the above-mentioned two quantities and plotted against the original amount of 

adsorbate in the gas phase.  The shape of the isotherms is  determined largely by mechanism of 

adsorption  and  can  thus  yield  valuable  information  about  the  details  of  the  process.  Several 

theoretical  models  exist  for  the  mathematical  description  of  adsorption  isotherms.  The  most 

common  among  them  is  the  so  called  Langmuir  model.45 The  Langmuir  model  is  valid  for 

physisorption at atomistically flat surfaces whose interaction sites are equivalent, with the condition 

that  no lateral  interactions  are formed between the molecules  in the adsorption layer,  which is 

strictly monomolecular. In such cases the adsorbed amount, can be expressed as:

                                                             
1��&�m�

bp
1�bp ,                                                  (3.2)

where Θ is the surface coverage, that is the ratio of the actual adsorbed amount (Γ) and the amount 

needed for a complete monolayer coverage (Γm), p is the concentration in the fluid phase (expressed 

as partial pressure if the adsorbate is in the gas phase) and b is the so called sorption constant which 

is proportional to the ratio of the rates constant of adsorption (ka) and that of desorption (kd):

                                      
b�

k a

k d exp��Ea &RT � ,                                                  (3.3)

Ea and R being the activation energy and the universal gas constant, respectively.  Other adsorption 

models describe more complicated schemes, for example the B.E.T (Brunauer – Emmett – Teller) 

isotherm46 accounts for the formation of more than one adsorbed layers whereas the Freundlich47 

and the Temkin48 isotherms describe surface inhomogeneities and adsorbate-adsorbate interactions, 

respectively. 

We have already mentioned that during the course of adsorption conformational changes are 

often  induced  in  the  adsorbate,  especially  if  organic  molecules  are  concerned.  Their  adsorbed 

geometry  is  usually  markedly  different  from  the  gas  phase  equilibrium  structure,  due  to  the 
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presence of interactions with the adsorbent surface, as well as to the lateral interactions  between the 

adsorbed molecules in case of a non-Langmuir-like behavior. Surface sensitive measurements, such 

as  FTIR  are  capable  of  determining these  conformational  changes  as  well  as  the  orientational 

preferences of the adsorbed layers by comparing the spectra of molecules bonded to the surfaces 

with that of the free molecules. However, such measurements are always burdened with noise, and 

their accuracy is limited by the precision and the resolution of the instrument. Computer simulations 

on the other hand can provide us directly with atomistic-scale information about the structure of the 

adsorbed layer as well as the conformational changes occurring due to vicinity of the surface and 

the neighboring adsorbates for the model system. Moreover,  GCMC simulations are suitable for 

calculating entire isotherms. 

3.2 The importance of ice surfaces in environmental chemistry

Solid interfaces are known to participate in several processes in environmental chemistry. 

Ice surfaces, in particular, play an outstandingly significant role in promoting chemical reactions in 

the atmosphere. Their importance has been discovered together with the discovery of the Antarctic 

ozone hole, and since then interactions of trace gases with ice surfaces in the Earth’s atmosphere 

have been attracting an ever growing interest. If we look at the different layers of the atmosphere, 

we will find that ice surfaces are abundant at every altitude. The structure of the atmosphere is 

illustrated in Figure 3.2.

Figure 3.2 Illustration of the layers of the atmosphere together with their characteristic amplitude a 
temperature values.211

39



Stratospheric ice particles are mostly parts of PSCs (polar stratospheric clouds) and they are known 

to catalyze the transformation of non-reactive reservoir species of chlorine, e.g.: CFCs which have a 

mean-lifetime long enough to cross the boundary between the troposphere and the stratosphere, to 

their active form responsible for the formation of the ozone hole above the polar areas. Ice surfaces 

present in the icy clouds of the upper troposphere (UT) are also of great importance since they can 

scavenge volatile organic compounds (VOCs), nitrous oxides (NOx) or CO. In their bound form, 

VOCs can be readily oxidized to yield HOx  radicals, while the latter two types of species undergo 

photochemical  oxidation  by  the  sunlight.  These  radicals  are  important  sinks  of  ozone  in  the 

troposphere. It should also be noted that ice as a main component of the snowpack at the ground 

level has a similar effect  on the VOCs and NOx species emitted from anthropogenic or natural 

sources.  However the photochemical  reaction of  these compounds,  eventually leading to  ozone 

formation at the boundary layer, that is the layer of the atmosphere which is closest to the Earth's 

crust, is a harmful process, since ozone at this lowest part of the troposphere is known to act as 

GHG and has also severe health hazards.

The first step of the photochemical reactions leading to the formation of ozone is necessarily 

the adsorption of the precursors on ice invoking such changes in the structure of the molecules that 

increase  their  reactivity.  Thus  the  investigation  of  adsorption  phenomena at  ice  surfaces  under 

atmospheric  conditions  at  an  atomistic  resolution  may  deepen  our  knowledge  about  crucial 

questions of atmospheric chemistry.  A large number of studies have been devoted to investigating 

the  adsorption  of  nitrated  and  halogenated  species  on  ice. Much  less  attention  has  been  paid 

however to small molecular VOCs which, as it has been seen previously, are yet important factors 

in the chemistry of the atmosphere.

3.3 The role of clouds in atmospheric chemistry

As it has been seen, ice surfaces affect the chemistry of the atmosphere as catalysts speeding 

up  reactions  which  in  the  gas  phase  would  be  too  slow  to  proceed  at  a  perceivable  rate.  A 

considerable fraction of the total surface of atmospheric ice is present in clouds of the stratosphere 

and the troposphere. It is a well-known fact that the so called Polar Stratospheric Clouds (PSCs) are 

formed under very dry conditions during polar winters solely above the arctic regions. They have 

two basic types, type I PSCs contain water and nitric acid hydrates, or alternatively they can be 

ternary mixtures of water, nitric acid and sulfuric acid, type II PSCs on the other hand consist of 

pure water ice. Type II PSCs are iridescent and responsible for the nacreous colors of the polar light. 

Tropospheric clouds on the other hand may have various forms and may consist either of small 
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water droplets or of ice grains. They are usually categorized by their shape. Layered clouds are 

called stratos, bulky thick water clouds belong to the cumulus group, whereas cirrus clouds look 

like greyish-white  translucent threads crossing the sky. Cirrus clouds in the UT are usually icy 

clouds which cover on average 25% of the surface of the Earth. Their importance lies in their net 

heating effect which is due to the fact that these thin and translucent networks of ice nuclei absorb a 

considerable percentage of the outgoing infrared radiations of the Earth while they reflect only a 

negligible fraction of the incoming IR rays of the sun. A cirrus cloud with an average thickness of 

100 m absorbs  on average 50% of the outgoing IR radiation,  while  it  reflects  only 9% of  the 

incoming rays, and thus heats up the surface it cover by as much as 10 °C49  which suggests that 

these kind of clouds can probably be considered as significant contributors to global warming.

3.3.1 Aerosol particles as cloud condensation nuclei

Aerosol particle are small aggregates of molecules suspended in the atmosphere whose size 

ranges between a few nanometers and 100  μm. They can be composed of organic or inorganic 

compounds,  however  their  composition  depends  on  the  way  of  production.  In  general,  the 

predominant chemical components of air particulate matter are sulfates, nitrates and ammonium 

salts,  sea  salt,  mineral  dust,  black  carbon  and  organic  compounds,  whose  relative  abundance 

depends on, e.g., location, time, and meteorological conditions.  50 Due to their colloidal size they 

alter the light scattering properties of the atmosphere which results in an overall cooling effect. On 

the  other  hand,  organic  aerosols  in  particular  have  a  tendency to  trap  water  molecules  by the 

reactive groups of their surface, promoting the formation of binary aerosol particles, which are, in 

turn known as ice  (IN) or  cloud condensation nuclei  (CCN).  This  latter  statement  implies  that 

binary aerosols have an indirect heating effect on the atmosphere, due to the fact that cirrus clouds 

are formed usually by heterogeneous nucleation of such particles and, as it has been described in the 

previous  section,  they  are  known  to  increase  the  IR  absorbance  of  the  tropospheric  region 

significantly. 

Investigating the interactions of water molecules with organic aerosols is thus another field of 

major interest in atmospheric chemistry.  51 Organic aerosols are most  commonly formed by the 

aggregation of VOCs, which are emitted into the atmosphere on a daily basis in vast amounts from 

both natural sources and anthropogenic activities.  52 In the previous paragraph we have seen that 

these aerosols play a central role not only in air pollution but also in climate evolution, due to their 

impact on light scattering and their potential to act as cloud condensation (CCN) or ice nuclei (IN). 

Moreover  they affect  the number,  the concentration,  and the  size of  cloud droplets and induce 
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changes their lifetimes,  and in their precipitation rates.  Due to their potential  impact on Earth's 

atmosphere, a thorough understanding of the structure and the phase transitions of neat and binary 

aqueous aerosols  under  atmospheric  conditions is  strongly needed,  especially when they are in 

contact with water molecules.

3.4 The development of computer simulations as tools to model solid/fluid interface

Modeling any of the above mentioned phenomena related to solid/fluid interfaces requires 

the accurate treatment of the interactions between the solid and the fluid phase.  The history of 

computer simulations of solid/fluid interfaces originates in the very early years of appearance of 

computer simulations in physical sciences, and the development in this field has been going on ever 

since. In this early age of simulations, due to the limited computational and storage capacity, the 

atomistic  treatment  both  of  the  phases  in  MD or  MC simulations  would  have  been  extremely 

demanding. Thus, development in this field followed two main directions:  i, the use of enhanced 

potential models to describe the solid and/or the fluid phase; and ii, proposing alternative methods 

capable of modeling interface related phenomena besides Monte Carlo and molecular dynamics.

In  the  first  studies  the  solid  interface  was  represented  by  a  rigid  non-interacting  wall. 

Henderson and van Swol53, for instance performed a series of simulations in which the fluid phase 

was described by either hard sphere or square-well potentials whereas the wall was treated as a rigid 

body. Although considered as pioneering work at that time, their studies were not able to describe 

such interfacial phenomena as wetting or adsorption. The simplest setup capable of describing such 

processes uses square-well or hard-sphere potentials for both the wall and the fluid phase. Another 

work  of  Henderson  and  van  Swol  showed  that  these  potentials  performed  sufficiently  well  in 

simulating wetting transitions.54 The same question was successfully addressed by Sikkenk et. al. 

who studied  the  interaction  of  a  Lennard-Jones  fluid  against  a  Lennard-Jones  type  of  wall  by 

molecular dynamics simulations.55 The surface tension and contact angle results obtained for this 

model system were already surprisingly accurate for the time, however the increasing need to study 

more realistic systems encouraged the spread of atomistic models. Lennard-Jones type of fluids 

were soon replaced by molecular  fluids,  for  instance  explicit  models  of  water.  Heinzinger  and 

Spohr, for example,  reported a study about the interaction of an aqueous Li+ solution, aimed at 

describing its  interactions with  a  Lennard-Jones  type of  wall,  where the water  molecules  were 

modeled by the ST2 water potential.56 Metal walls were also investigated extensively already in the 

1980s, which obviously required the atomistic treatment of the solid phase.57

Concerning the second, methodological direction of development in this field, it has to be 
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emphasized that historically integral equation methods represented the state of the art  technique to 

simulate  interactions  between  fluids  and  hard  walls  by using  the  Ornstein-Zernike  equations.58 

However well they worked for describing gas/solid interactions in general, they failed to reproduce 

the wetting of the solid surface by a liquid properly.59 The second technique to mention is density 

functional theory, which has been successfully applied to reconstruct crystal/fluid interactions and 

the subsequent melting of the crystalline surface. 60

Despite of the variety of techniques and models in early simulations, atomistic-scale Monte 

Carlo  and  molecular  dynamics  simulations  have  become  doubtlessly  the  most  popular  among 

methods to simulate solid/fluid interactions, due to the wide range of their applicability for various 

problems, their accuracy and their relatively simple theoretical background. Indeed, the increased 

computational capacity of today's computers allows us to use highly developed equilibrium or even 

non-equilibrium simulations to model interfacial  phenomena on the atomistic scale. Equilibrium 

molecular dynamics simulations are usually applied to investigate the dynamics of adsorption and 

desorption  processes  on  various  types  of  solid  surfaces,  for  instance  graphite,  metals  or  silica 

surfaces61,62,63,64,65, on porous materials such as zeolites66,67 frameworks (MOFs) which are promising 

new type of molecular sieves.68,69 Grand canonical Monte Carlo methods, on the other hand, have 

replaced 2D simulation techniques in the beginning of the 1990s in modelling adsorption and have 

become  one  of  the  most  widely used  techniques  to  calculate  adsorption  isotherms  on  various 

atomistic  solid  surfaces.  Recently  attempts  have  been  made  to  adapt  the  GCMC  method  for 

modeling  competitive  adsorption  which  is  of  equally  great  interest  from  both  industrial  and 

environmental point of view.

3.5 The  interaction  of  volatile  organic  hydrocarbons  and  water  under  tropospheric 

conditions – an overview on the literature

We  have  already  seen  that  VOCs  are  indeed  among  the  key  factors  in  heterogeneous 

reactions occurring in the atmosphere, and as such the detailed description of their interaction with 

ice is of exceptional importance,  however,  until  the end of the 20th century the molecular level 

description of the corresponding mechanisms represented a largely unexplored field. During the last 

decade, a number of experimental70,71,72,73,74,75,76,77,78,79 and theoretical80,81,82,83,84,85,86,87,88,89,90,91,92,93 studies 

have been devoted to the characterization of the interactions between small organic molecules and 

ice. More specifically, coated-wall flow tube and Knudsen cell experiments have been performed to 

characterize the uptake  of different volatile organic compounds (VOCs), including aldehydes and 

alcohols, carboxylic acids and ketones by ice. These studies have shown that VOCs are reversibly 
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adsorbed on ice, having adsorption enthalpies ranging between -70 kJ/mol and –50 kJ/mol, with the 

exception of formaldehyde for which it  was not possible to accurately determine the adsorption 

enthalpy which is thus supposed to be quite small.

Experiments have been complemented by theoretical calculations performed at a molecular 

level to deal with such fundamental questions as the energetics of the interaction between VOCs 

and ice, their preferred location and orientation at the surface, and, the possibility of the emergence 

of competition between hydrogen-bonds with ice and lateral ones formed between adsorbed species. 

Ab initio calculations have been devoted to the characterization of the adsorption properties of, 

among others, acetone and formic acid on ice.81,84 However, these quantum studies focused on the 

determination  of  adsorption  geometries  and  energies  at  0  K  and,  as  a  consequence,  the 

transferability of the corresponding results to tropospheric temperatures has remained questionable. 

Classical MD and GCMC methods, on the other hand, may allow a more realistic modelling of the 

VOC-ice  interactions  provided  that  the  classical  potential  model  on  which  they  are  based  is 

sufficiently accurate. MD simulations have thus been used to characterize the adsorption and in 

certain  cases  diffusion  behavior  of  acetic  acid83,  acetone89,91,  formaldehyde80,85,  methanol,  and 

ethanol on ice, the adsorption of phenanthrene on snow94,  the diffusion of formaldehyde in bulk 

ice85. On the other hand, a series of GCMC studies have been performed  to simulate the adsorption 

isotherms of methanol, formaldehyde, formic acid86, acetone92, and benzaldehyde93 molecules on ice 

at tropospheric conditions. The simulated isotherms showed a remarkable agreement with available 

experimental measurements demonstrating that classical simulations are accurate and useful tools 

for  studying  interactions  between  VOCs and  ice  at  tropospheric  temperatures.  Moreover,  these 

simulations  evidenced  the  influence  of  hydrogen  bond  formation  on  the  resulting  adsorption 

characteristics and emphasized the strong dependence of the adsorption properties on the functional 

chemical group of the VOC considered.

Little attention has been paid from the theoretical  point of view on the other hand to the 

investigation  of  the  behavior  of  organic  molecules  having  more  than  one  functional  groups  in 

connection with ice surfaces under tropospheric conditions. Even if such species are significant 

representatives  of  volatile  organic compounds,  being present  in the atmosphere  in  considerable 

amounts, as far as we know, there is still  a lack of works dealing with them.95,96  However the 

molecules containing more than one organic functionality,  such as oxalic acid,  hydroxyacetone, 

glyoxal or glycolaldehyde, certainly interact with ice surfaces in a different way than simple organic 

species do. Dicarboxylic acids are probably the most prominent group of complex small molecules 

in the atmosphere. Indeed, they represent about ~30-50 % of its total organic particulate matter, and 

oxalic acid (C2H2O4) comprises 37-69 % of the total amount of dicarboxylic acids. 97,98 This acid is, 
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in particular, involved in the photochemical production of hydrogen peroxide which is responsible 

for the oxidation of many tropospheric species.99 Concerning its interactions with ice, experimental 

studies of the adsorption and the thermally induced desorption of the mixed adsorption layer of this 

molecule  and water  by means of  Fourier  transformation IR  spectrometry has  shown that  upon 

heating the system at any possible initial arrangement (i.e.: if oxalic acid is the lower phase, or if a 

homogeneously mixed adsorption layer is used, moreover also if the oxalic acid is the top layer 

covering initially the surface of ice) the departure towards the vapor phase of water molecules takes 

place  prior  to  to  that  of  oxalic  acids.100 This  interesting  experimental  finding,  among  others, 

indicates the importance of an atomistic-scale characterization of the heterogeneous chemistry of 

this  molecule  at  the  surface  of  ice,  which  question  is  still  not  completely  understood. 

Hydroxyacetone containing a carbonyl and a hydroxil functional group, on the other hand, can be 

considered  as  another  important  and  relatively  abundant  model  compound  in  studying  the 

adsorption of small molecules on ice. The major source of hydroxyacetone in the atmosphere is the 

oxidation of methacrolein which yields 42 % of its total amount.101,102 Once produced, this hydroxyl 

carbonyl compound has a potentially large atmospheric impact since it initiates the formation of 

HOx radicals in the UT which, as we have seen, are known to increase the oxidizing capacity of the 

atmosphere and therefore to influence the ozone budget. 103 

 Another significant feature of bifunctional organic species, especially dicarboxylic acids is 

their ability – due to their free hydroxyl and carboxylic groups – to aggregate, giving rise to the 

formation of organic aerosol, which may,  as it has been already seen, act as cloud condensation 

nuclei. Thus, besides the in depth investigation of the adsorption of small molecules on ice under 

tropospheric conditions, another prominent question is the modeling of the condensation of these 

clouds, whose characteristics vary greatly with the altitude at which they are formed and situated. 

However, while the potential of organic aerosols to act as CCN for water clouds is well-established, 

little is known about their influence on icy clouds in the upper troposphere. Due to their potential impact 

on Earth's atmosphere, a thorough understanding of the phase transitions of aerosols under atmospheric 

conditions is strongly needed, especially when they are in contact with water molecules. Experimental 

studies focusing on the phase transition of such aerosols and their binary mixtures with water have been 

carried  out  by  Braban  et  al.124 Their  investigations  addressed  two  main  phase  transitions,  namely 

deliquescence, which is the uptake of water by the dry aerosol particle, and efflorescence, the opposite 

process, i.e., the loss of water from mixtures to form a  solid phase. According to their measurement, 

oxalic  acid  aerosols  proved to  be particularly difficult  to be examined by experimental  techniques. 

Another,  very  recent  measurement  performed  by  Schill  and  Tolbert120 aimed  at  characterizing  the 

relation between the hydrophylicity of the organic compound, described as the O:C ratio and the cloud 
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condensation potency of its aerosol  phase has,  on the other hand,  shed light  on the fact  that  cloud 

condensation  potency  increases  as  a  linear  function  of  the  O:C  ratio.  (The  above  mentioned  two 

experiments are discussed in more and cited in Chapter 3.6.3 in comparison with the results of our 

simulations)

3.6 Results of modelling solid surfaces

3.6.1 GCMC simulation of the adsorption of acetaldehyde on ice [1]

3.6.1.1 Introduction

This  work  comprises  of  grand  canonical  Monte  Carlo  simulations  of  the  adsorption 

acetaldehyde on ice particles under conditions which are characteristic of the troposphere.

A growing number of experimental and theoretical studies have been recently devoted to the 

characterization of the interactions between aldehydes of  different  carbon chain length and ice. 

Acetaldehyde is a relatively abundant representative of this group of molecules in the UT (between 

30 and 100 pptv) and its atmospheric fate is of great interest, thus its uptake on ice has been recently 

re-investigated at tropospheric temperatures, using coated wall flow tube experiments between 203 

and 253 K.104 These studies revealed that the adsorption of acetaldehyde on ice is totally reversible, 

with measured values of the adsorption enthalpy falling between  41.6 ± 2.3 kJ/mol (at 223 K) and 

-36.4 ± 2.0 kJ/mol (at 203 K). 

Our GCMC simulations are aimed at investigating the applicability of the Langmuir model 

for  the  adsorption  of  this  molecule  on  ice  under  tropospheric  conditions.  The  question  of  the 

structure  of  the  adsorbed  layer  together  with  the  orientation  of  the  individual  acetaldehyde 

molecules within the layer are also addressed.

3.6.1.2 Computational details

Adsorption of acetaldehyde on Ih ice has been modeled by grand canonical Monte Carlo 

simulations at 200 K. The X, Y and Z edges of the rectangular basic simulation box have been set to 

100.0 Å,  35.926 Å,  and  38.891 Å,  respectively,  axis  X being  perpendicular  to  the  ice  surface. 

Standard  periodic  boundary  conditions  have  been  applied.  2880  water  molecules,  arranged  in 

18 molecular layers of proton-disordered Ih ice have been placed in the middle of the simulation box 

along the X axis. The number of the acetaldehyde molecules has been left to fluctuate by fixing their 

chemical  potential.  To determine the full  adsorption isotherm a set  of  20 simulations has  been 

performed, in which the chemical potential of acetaldehyde, μ, has been increased gradually from 

-47.1 to -30.2 kJ/mol. 
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Water molecules have been described by the rigid, five-site TIP5P model.105 Acetaldehyde 

parameters have been taken from the Transferable Potential for Phase Equilibria (TraPPE) force 

field.  106 According to this force field, the CH3 and CH groups have been treated as united atoms. 

The interaction parameters of the potential models used in this study are summarized in Appendix A 

Table 1. All interactions have been truncated to zero beyond the molecule-based cut-off distance of 

12.5 Å, and no long-range correction has been applied for the electrostatic interactions.

The simulations have been performed using the MMC open source Monte Carlo code.107 

Particle  displacement  and particle  insertion/deletion steps  followed each other  in  an alternating 

order. In a particle displacement attempt a randomly chosen molecule has been translated randomly 

by no more than 0.25 Å and rotated randomly around a randomly chosen space-fixed axis by no 

more than 15o. Water and acetaldehyde molecules have been chosen for particle displacement steps 

with  50%-50%  probabilities.  In  a  particle  insertion/deletion  step  either  a  randomly  chosen 

acetaldehyde molecule has been attempted to be removed from the system, or a new acetaldehyde 

molecule has been attempted to be added to the it. Particle insertion and deletion attempts have been 

made with  equal probabilities, using the cavity biased scheme of Mezei, i.e., particles have only 

been attempted to be inserted into empty cavities of the radius of at least 2.5 Å. Suitable cavities 

have been searched for along a 100 × 100 × 100 grid.  Equilibration lasted for  108 Monte Carlo 

steps, after which, in the production stage, the number of acetaldehyde molecules has been recorded 

and  averaged  over  2 × 108 sample configurations.  Finally,  at  selected chemical  potential  values 

(corresponding to significantly different surface coverages) 2500 sample configurations separated 

by 2 × 105 Monte Carlo steps have been saved for structural and energetic analysis. 

3.6.1.3  Results

3.6.1.3.1 Adsorption isotherms

The adsorption isotherm obtained from our GCMC simulations is shown in Figure 3.3., from 

which it  is  clearly visible that  the number of adsorbed molecules increases with the increasing 

chemical potential up to the point of condensation. The large slope of the increase observed at low 

μ values  gradually  decreases  at  higher  chemical  potentials  and  no  plateau  of  the  isotherm is 

observed before the point of condensation. The sudden jump in the isotherm at  μ = -34.2 kJ/mol 

corresponds to the point of condensation, where the vapor and liquid phases of acetaldehyde have 

the same chemical potential. Above this value the simulation box contains liquid acetaldehyde.
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Figure 3.3 a) Average number of acetaldehyde molecules in the basic simulation box as a function of their  
chemical potential. b) Adsorption isotherm of acetaldehyde on ice, obtained from our simulation (circles),  

together with the Langmuir fit to these data (solid line). The arrows indicate the systems used in the detailed 
analyzes. 

It is more convenient to look at the isotherm expressed in terms of the surface coverage as a 

function of relative pressure Γ(prel), where prel = p/p0 relative pressure is calculated as the ratio of the 

actual pressure of the system and that of the saturated vapor (Figure 3.3.b). The values of Γ and prel 

can simply be obtained as 
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The factor of 2 in the denominator of Eq. 3.3 reflects the fact that, due to the periodic boundary 

conditions, the basic simulation box contains two ice surfaces, whereas μ0 in Eq. 3.4 is the chemical 

potential value corresponding to the point of condensation. Obviously, the conversion of the <N>(μ) 

isotherm to the  Γ(prel) form can only be done up to the point of condensation. The shape of the 

isotherm obtained as a result of the conversion is well described by the Langmuir formalism. The 

Langmuir character of the isotherm suggests that the saturated adsorption layer is monomolecular, 

and that  lateral  interactions  between the adsorbed acetaldehyde molecules  are do not  affect  the 

mechanism of adsorption. 
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3.6.1.3.2 Characterization of the Adsorption Layer 

The molecular level details of the structure of the adsorption layer have been analyzed based 

on  2500 sampled  configurations  collected  in  systems  characterized  by three  different  chemical 

potential values, namely,  -41.2,  -37.8, and  -34.4 kJ/mol, which, from now on, are referred to as 

systems I, II and III, respectively. 

Figure 3.4 Instantaneous equilibrium snapshot of systems I (top), II (middle) and III (bottom), as taken out 
from the simulations, shown both in side (left) and top views (right). Water molecules are shown by blue 

sticks, acetaldehyde molecules are shown by balls and sticks. The O and C atoms of the acetaldehyde 
molecules are shown by gray and red colors, respectively, H atoms are omitted from the figure for clarity.
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System I corresponds to the linearly rising part of the Langmuir-like isotherm, where due to low 

surface coverage adsorbed molecules are isolated from each other. System II represents to the part 

of the isotherm where it turns from a linear rise to a nearly constant section. At this  μ value  the 

adsorption layer is not yet saturated, however, most adsorption sites are already occupied, thus the 

adsorption of the acetaldehyde molecules is no longer independent from each other. Finally, system 

III  is  located  at  the  nearly  constant  part  of  the  Γ(prel)  isotherm corresponding  to  the  saturated 

monolayer. Equilibrium snapshots of systems I-III are shown in Figure 3.4 both from top and side 

views.

Density Profiles. The density profiles of the acetaldehyde O atoms and CH3 groups along the 

interface normal axis X are presented in Figure 3.5 for each of the analyzed systems. All the profiles 

shown are symmetrized over the two interfaces present in the basic box. All profiles have turned out 

to be unimodal and, apparently, the increasing coverage of acetaldehyde on the ice surface only 

leads to the increase of the heights of the peaks leaving their position along the interface normal 

axis  completely unaffected.  The  observed unimodal  character  of  the  peaks  even  at  the  highest 

chemical potential values indicates, in accordance with the Langmuir-like behavior of the isotherm, 

that the saturated adsorption layer is still monomolecular. 

32 34 36 38 40
0.00

0.01

0.02

0.03

 

 

ρ
 /

Å
-3

X/Å

 system I, O atoms
 system I, CH

3
 groups

 system II, O atoms
 system II, CH

3
 groups

 system III, O atoms
 system III, CH

3
 groups

 ice (water O atoms)

Figure 3.5 Number density profile of the O atom (filled symbols, blue) and CH3 group (open symbols, red) of 
the acetaldehyde molecules in systems I (squares), II (circles) and III (triangles), as obtained from the 

simulations. For reference, the outer tail of the number density profile of the water O atoms in system I is  
also shown (dashed line). All profiles shown are symmetrized over the two surfaces present in the basic 

simulation box

The lack of the peak position shift, on the other hand, suggests that no substantial change in the 
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orientation of the adsorbed molecules occurs upon saturation. It is also seen that the density peak of 

the O atoms is located about 1 Å closer to the ice surface in every case than that of the CH3 groups, 

which means that the adsorbed acetaldehyde molecules prefer, on average, to point towards the ice 

surface by the O atom, and away from it by the CH3 group. However, the relatively small peak-to-

peak distance of the O and CH3 density profiles being considerably smaller than the intramolecular 

distance of the O atom and the CH3 group of 2.4 Å in the gas phase equilibrium geometry suggests 

that the majority of the adsorbed molecules are probably tilted from the surface normal axis rather 

than pointing straight towards the ice phase by the O atom. 

Energetic  Background  of  the  Adsorption.  In  order  to  get  an  insight  into  the  energetic 

background of the adsorption, we have calculated the distribution of the binding energy Ub of the 

adsorbed acetaldehyde molecules (that is the energy of their interaction with the rest of the system) 

in systems I-III. In addition, the w
bU  and the lat

bU  contributions to the total binding energy, coming 

from the interaction with the water molecules of the ice phase and from the lateral interaction with 

the other acetaldehyde molecules, respectively, have also been extracted. The )( w
bUP  and )( lat

bUP  

distributions obtained in systems I-III are shown in Figure 3.6.

Figure 3.6 Distribution of the binding energy of an adsorbed acetaldehyde molecule (i.e., the energy of  
interaction between the adsorbed molecule and the rest of the system, bottom panel), and that of its  

contributions coming from the interaction with the other adsorbed molecules (middle panel) and with the ice 
phase (top panel). Solid lines: system I, dashed lines: system II, dotted lines: system III.
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At  low surface  coverage  the  )( w
bUP  distribution has  a  single  peak  around  -35 kJ/mol. 

Considering the fact that the energy of a hydrogen bond is roughly -20 – -25 kJ/mol, respectively, 

which indicates that the adsorbed acetaldehyde molecules form one hydrogen bond with the water 

molecules of the ice surface. The mean value of the distribution is -34.1 kJ/mol, which can serve as 

an estimate for the heat of adsorption at infinitely low coverage. Upon saturation, the peak of the 

)( w
bUP  distribution gradually shifts  to  higher  energies,  being positioned at  about  -29 and  -23 

kJ/mol  in  systems II  and III,  respectively;  which  indicates  the gradual  increase of  competition 

between the adsorbed molecules. Despite of the presence of competitive interactions, apart from a 

small fraction of the adsorbed molecules contributing to the small peak of  )( w
bUP  near zero in 

system III, the adsorbed acetaldehyde molecules form one hydrogen bond with surface waters even 

at high coverages. 

The )( lat
bUP  distribution exhibits a large peak at zero in system I, reflecting the fact that at 

this low coverage the adsorbed molecules are typically well separated from each other. However, 

this distribution shows two clear shoulders at the negative energy side of the main peak, one at 

around  -10 kJ/mol,  and  another  around  -20 kJ/mol.  These  peaks  correspond  to  acetaldehyde 

molecules having one and two near neighbors, whose relative orientation has to be such that it is 

favored by dipolar forces (e.g., head-to-tail or antiparallel dipole-dipole alignments). In systems II 

and III the  )( lat
bUP  the peak appears around  -14 kJ/mol and  -22 kJ/mol, respectively, indicating 

that upon saturation an increasing fraction of the adsorbed molecules has two such neighbors, and in 

the saturated adsorption layer this becomes the most common arrangement.

The distribution of  the total  binding energy,  P(Ub),  is  unimodal  in  every case,  the peak 

position  being  shifted  to  lower  energies  upon  saturation  from about  -38 kJ/mol  in  system I  to 

-42 kJ/mol (system II) and -48 kJ/mol (system III). This result confirms that the increasing lateral 

interaction overcompensates the slight weakening of the acetaldehyde – ice interaction, occurring 

due to the increasing competition of the molecules upon saturation. 

Orientation of the Adsorbed Molecules. The analysis of the density profiles and binding 

energy distributions has already led to several conclusions about the orientation of the acetaldehyde 

molecules  in  the  adsorbed  layer.  However  to  investigate  the  orientational  preferences  of  the 

acetaldehyde  molecules  in  the  adsorbed  layer,  their  orientational  map  have  been  calculated 

according to the protocol described in Chapter 2.7.2.2.
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Figure 3.7 Definition of the local Cartesian frame fixed to an acetaldehyde molecule in order to describe 
their surface orientation. X is the surface normal vector pointing away from the ice phase, ϑ and φ are its  
polar coordinates in this molecule-fixed local frame. (top left) Illustration of the acetaldehyde orientations 

corresponding to the peak region of the maps. The plane of the molecule gets increasingly tilted upon 
moving along the peak region from lower to higher cosϑ values. (top right) Orientational map of the 

adsorbed acetaldehyde molecules in systems I (left) II (middle) and III (right). Lighter colors indicate higher 
probabilities (bottom panels).

In this specific case the local Cartesian frame used for orientational analysis has been defined in the 

following way. The origin coincides with the C atom of the aldehyde group, axis x points along the 

C=O double bond from the C to the O atom, axis z is perpendicular to the plane formed by the CH3 

group and C=O bond of the molecule, and axis  y, being perpendicular to the above two axes, is 

oriented in such a way that the y coordinate of the CH3 group is negative. The definition of this local 

frame  along  with  that  of  the  polar  angles  ϑ and  φ is  illustrated  in  Figure  3.7   together  with 

P(cosϑ,φ) orientational maps of the adsorbed acetaldehyde molecules obtained for systems I-III.  

The preferred orientations of the acetaldehyde molecules seem to depend only slightly on 

the surface coverage. The distribution obtained for system I exhibits a rather elongated peak around 

the φ value of 250°, extending from cosϑ = 0 to about cosϑ = 0.6, corresponding to the ϑ range of 

about 50o ≤ ϑ ≤ 90o. According to this definition of the local Cartesian frame, ϑ is simply the angle 

formed by the plane of the adsorbed molecule with the plane of the ice surface, thus this finding 

suggests  that  acetaldehyde  molecules  adopt  orientations  ranging  from  tilted  by  about  50o to 
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perpendicular relative to the surface plane. The observed preferences of the acetaldehyde molecule 

is also illustrated in Fig. 3.7. Contrary to ϑ, angle φ is very strongly restrained to a narrow interval 

around 250° for acetaldehyde molecules in the adsorption layer. This finding indicates that the CH3 

group is located as far from the ice surface as possible within the constraint of the tilt angle of the 

molecular plane, ϑ. In the particular case of ϑ = 90o (at cosϑ = 0) this means that the C-CH3 bond 

points straight away from the ice surface. It is also seen that upon saturation of the adsorption layer 

the peak of the P(cosϑ,φ) orientational map becomes less elongated along the cosϑ axis, extending 

to  cosϑ values  of  about  0.4  and  0.2  in  systems  II  and  III,  respectively.  The shrinkage  of  the 

cosϑ range suggests that as the adsorption layer gets increasingly crowded the adsorbed molecules 

adopt,  on  average,  less  tilted  orientations,  and  in  the  saturated  monolayer  the  perpendicular 

orientation becomes clearly the preferred one. This is in accordance with the fact that, due to their 

increasing competition, the adsorbed molecules should occupy, on average,  smaller surface area 

upon saturation. 

To understand the physical background of the observed orientational preferences it should be 

noted  that  surface  water  molecules  of  Ih ice  have  four  preferred  orientations.  In  one  of  these 

orientations an O-H bond stays perpendicular to the surface pointing by its H atom to the vapor 

phase, whilst in other preferred orientations at least one of the O-H bonds points flatly to the vapor 

phase, declining from the surface plane by about 20o. As is illustrated in Figure 3.8, the adsorbed 

Figure 3.8 Possible hydrogen bonds between a water molecule located at the ice surface and an adsorbed 
acetaldehyde molecule aligned in one of its preferred orientations: a) acetaldehyde molecule aligned 

perpendicular to the ice surface, b) acetaldehyde tilted relative to the ice surface. Possible alignments of the 
neighboring acetaldehyde molecules are also illustrated: c) acetaldehyde molecules in head-to-tail type 
dipole arrangement, d) acetaldehyde molecules in antiparallel-like dipole arrangement. X is the surface 

normal vector pointing away from the ice phase.
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acetaldehyde molecules that align perpendicular to the surface can accept a hydrogen bond from the 

former, while those being tilted by 50o relative to the ice surface can accept one from the latter type 

of water molecule. Finally, considering the observed orientational preferences, the favored dipole-

dipole  arrangement  of  two  neighboring  acetaldehyde  molecules,  seen  from the  lateral  binding 

energy distributions, can be realized either by the two molecules being located behind each other, 

pointing by their C=O bond to the same direction (head-to-tail-like arrangement), or by them being 

located next to each other, pointing by their C=O bonds to the opposite directions (antiparallel-like 

arrangement).  Both of  these  possible near  neighbor arrangements  of  the adsorbed acetaldehyde 

molecules are also illustrated in Figure 3.8.

3.6.1.4 Comparison of the simulation results with experimental studies

FTIR spectra  of  ice exposed  to  increasing amount  of  acetaldehyde together  with  to  the 

spectrum of solid acetaldehyde has been analyzed in comparison with our results concerning the 

energetics of adsorption and orientation of acetaldehyde molecules at the surface of ice. The shift of 

stretching mode of  dangling OH groups of  water  is  a  clear  indication of  the formation of  one 

hydrogen bond between the dangling hydrogen of  water  and acetaldehyde,  which finding is  in 

accordance  with  our  results  concerning  energy  distributions.  The  analysis  of  the  spectrum  of 

acetaldehyde on the other hand has led to the conclusion ( by examining the �C=O band) that 

acetaldehyde is  attached to the surface by its  carbonyl  group,  which again is  in agreement the 

results  of  simulations.  Further  analysis  of  the  acetaldehyde  spectrum  on  the  other  hand  has 

evidenced the formation of a solid layer of acetaldehyde molecules similar to the separate solid 

phase. However,  whereas in the separatele solid individual molecules are found to connected by C-

H – O hydrogen bonds, the red shift of the corresponding peak of the ice-acetaldehyde spectrum 

suggests that at ice surface lateral interactions are restricted to dipole-dipole and dispersion forces, 

being in accordance with the fact that our adsorption isotherm can be well fitted by a Langmuir-

isotherm.  The adsorption enthalpy (�Hads) estimated from the IR spectrum has also been found to 

agree with our estimation based on the energy distributions of system I.212

It  can  be  concluded  that  simulation  of  the  acetaldehyde/ice  system  yielded  results 

concerning  both  the  mechanism  and  the  energetics  of  adsorption,  and  the  orientation  of  the 

molecules in the adsorbed layer which are in excellent agreement with the corresponding FTIR 

measurements, which are accurate and widespread methods to study adsorption on solid surfaces.
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3.6.2 MD simulations of the adsorption of oxalic acid and hydroxyacetone on ice [2,3]

3.6.2.1 Introduction

This study is aimed at describing the structural and dynamic behavior of the adsorbed layer 

of more complex organic compounds, such as oxalic acid and hydroxyacetone at the surface of ice 

under conditions that mimic the upper troposphere, by simulations. Due to the fact that this field is, 

to  best  of  our  knowledge,  relatively  unexplored,  besides  analyzing  simulation  results  special 

attention has been paid to exploring the range of validity and limitations of the potential  models by 

comparing our findings with experimental results.

We have performed molecular dynamics simulations to get insight into the atomistic scale 

structural and dynamic properties of the adsorption of oxalic acid on ice at different temperatures 

and for different amount of adsorbed molecules. In particular, we have characterized the energy 

distribution and surface orientation of the adsorbed oxalic acid molecules. We have also focused on 

the  possible  conformational  changes  of  the  oxalic  acid  molecules  upon  adsorption,  and  we 

examined  the  possibility  of  lateral  aggregation.  These  analyses  have  been  aimed  primarily  at 

proving the applicability of computer simulations to study the interactions of bifunctional organic 

molecules with ice under tropospheric conditions, by attempting to use our results to explain the 

experimental finding about the anomaly of thermal desoprtion of water molecules from under the 

oxalic acid adsorption layer. Upon finding that MD simulations are able to explain such elaborate 

interactions, we have performed simulations of the adsorption of hydroxyacetone on ice.

3.6.2.2 Computational details

Molecular dynamics simulations of oxalic acid and hydroxyacetone molecules deposited on 

ice  at  infinitely low and  at  finite  coverages  have been performed using the GROMACS 3.3.2. 

program package. 109 Calculations have been carried out on the canonical (N,V,T) ensemble at three 

different  temperature values,  namely at  200 K, 220 K and 240 K.  These values  are proven to 

correspond to conditions at different heights of the troposphere. The temperature of the systems has 

been controlled by means of the weak coupling algorithm of Berendsen et. al. 110 

 Water molecules constituting the ice slab have been fully rigid while in case of oxalic acid 

and hydroxyacetone bond angle and torsional flexibility has been allowed. The geometry of water 

molecules has been kept unchanged using the SETTLE  111 algorithm, whereas chemical bonds of 

oxalic acid and hydroxyacetone have been maintained at constant value by means of the LINCS112 

algorithm. The potential  energy of the systems investigated have been calculated as the sum of 
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atom-atom pairwise interaction energies between the interacting species consisting of dispersion 

and Coulombic contributions. The Lennard – Jones σ, and ε parameters of the corresponding atom 

pairs have been obtained from the  σ and  ε values of the individual molecules according to the 

Lorentz  –  Berthelot  rule.14 The  Lennard-Jones  interactions  have  been  neglected  for  atom pairs 

positioned at distances greater than an interaction site-based cutoff of  Rc=9 Å, while the long-range 

part  of  electrostatic  interactions  has  been  accounted  for  by  the  Particle  Mesh  Ewald  (PME) 

method.16

In the case of the oxalic acid/ice systems two interaction potential models were used for 

water molecules, namely the TIP5P105 and the TIP4P/2005 113, for comparison. The Ih ice slab used 

in  the  simulations  had  the  same  dimensions  as  the  one  used  for  modeling  the  adsorption  of 

acetaldehyde (chapter 3.6.1), that is it consisted of 18 layers built up of 2880 water molecules, with 

interfacial plane being the basal surface. Based on the preliminary results obtained for oxalic acid-

water interaction and knowing that TIP5P reproduces the melting point of hexagonal ice sufficiently 

well, hydroxyacetone/ice systems have only been simulated using a TIP5P ice slab. Partial charges 

and the initial geometry of the oxalic acid molecules have been taken from ab initio calculations 114 

while the Lennard-Jones  σ and ε parameters were obtained form the OPLS 115 force field. On the 

other hand, hydroxyacetone molecules have been modeled simply by the OPLS potential115, in the 

lack of an existing well-established model to describe these molecules.

The choice of the initial geometries is crucial in the case of these molecules which are both 

characterized by an internal torsional degree of freedom around their C-C single bond. In case of 

oxalic acid choosing the initial geometry has been a straight forward task.  Ab initio calculations 
116,117,118 have  shown  that  in  vacuum an  individual  oxalic  acid  molecule  can  have  six  different 

conformers stabilized by intramolecular H-bonds whose relative stability ranges between a few to 

tens of kJ/mol. The most stable among these corresponds to the formation of two five-membered 

rings  involving  the  C=O  groups  and  their  vicinal  OH  groups  (see  Fig.  3.9).  At  tropospheric 

temperature, the energy of thermal motion (kBT) is considerably lower than the potential energy 

barrier corresponding to transforming this conformer into any of the others. This allowed us to use 

uniquely  the  most  stable  conformer  to  describe  the  geometry  of  this  molecule  in  the  initial 

configurations  of  our  simulations.  The  case  of  hydroxyacetone  has  turned  out  to  be  more 

complicated than what has been seen for oxalic acid. To the best of our knowledge no outstandingly 

stable conformation hydroxyacetone has been reported in the literature, moreover ab initio studies 
119 have shown that  about  sixteen rotamers  of  this molecule characterised by roughly the same 

stability exist. In the lack of stable geometry we have decided to choose an all trans conformer as 
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an initial geometry. The (initial) molecular geometries of the oxalic acid molecule are given in Fig. 

3.9, whereas potential parameters of water, oxalic acid and hydroxyacetone are listed in Table 1 of 

Appendix  A.

Figure 3.9 Initial geometry of the oxalic acid (a) as modeled in the present MD simulations. Example of the 
other stable geometry of oxalic acid (b) as taken from ab initio calculations of Mohajeri and Shakerin [!118]

 All simulations have been performed as follows. The systems were created by placing a 

number  of  oxalic  acid  or  hydroxyacetone  molecules  near  each  of  the  two pre-equilibrated  ice 

surfaces  in  the  simulation box.  At  infinite  coverage  this  number  has  been  one,  while  at  finite 

coverage  52,  corresponding roughly to  a  monolayer,   has  been  placed  near  the surface.  These 

systems have been equilibrated for 5 ns with a timestep of 1 fs, on the canonical ensemble which 

has  been followed by a  production run  of  5  ns  under  the same conditions  during which 5000 

configurations separated by a 10 ps long trajectory have been saved for analysis.

3.6.2.3 Results concerning oxalic acid

3.6.2.3.1 Adsorbed geometries

Intramolecular  H-bonds The  most  stable  gas  phase  conformations  of  oxalic  acid   are 

stabilized by either five- or four-member ring structures (see Fig. 3.9), created by intramolecular 

hydrogen bonding of the hydroxil H (HOH) atom to one of the carbonyl O atoms (OCO). Thus forming 

these bonds requires  a  relatively short  OCO-HOH  distance.  According to  ab initio calculations  of 

Mohajeri  et.  al.118 the equilibrium value of  this distance for  vicinal  OCO-HOH   pairs  in the five-

member  rings  (dO…H = 2.1 Å)  is  found  to  be  slightly  shorter  than  for  geminal  pairs  in  the 

corresponding four-member ring structure (dO…H = 2.3 Å),  as  shown in Fig.  3.9 a and b.  The 

distribution of these distances have been calculated for the simulated trajectories to find that they 

increase by on average  1.3 Å when an oxalic  acid molecule  is  adsorbed at  the surface  of  ice, 

independently from the choice of water model and of temperature. The average distances have been 

approximated  by  the  peak  position  of  the  Gaussians  fitted  to  the  corresponding  distribution 

functions. From this increase, it may be anticipated that in the vicinity of other H-bonding partners 

(such as a water molecule of the ice surface or another carboxylic acid) the geometry of the oxalic 
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acid molecules undergo conformational changes (e.g., rotation of the OH groups) which increase 

the  possibility  of  forming  intermolecular  hydrogen  bonds  even  at  the  expense  of  loosing  the 

aforementioned prominently stable ring structures and changing the O=C-C=O dihedral angle.

The  distribution  of  the  C-C torsional  angle To  further  investigate  the  geometry  of  the 

adsorbed oxalic acid molecules we have calculated the distribution of the O=C-C=O dihedral angle 

at the ice surface. The obtained distributions are shown in Figure 3.10 together with examples of the

Figure 3.10  Dihedral angle distribution around the C-C- bond for the oxalic acid molecules adsorbed at the 
surface of hexagonal ice at three different temperatures and finite coverage. We also illustrate some oxalic  

acid geometries found in snapshots of the simulations, below the corresponding torsional angle values.

three preferred torsional states found in the adsorption layer. It is clearly visible that irrespective of 

the simulation temperature,  the cosine distribution of the O=C-C=O dihedral angle shows three 

major peaks. The first one at cosγ ~ 1 corresponds to the “cis” conformation, in which the torsion 

angle is close to 0°, the second one at cosγ ~ 0 describes a conformation in which the O=C-C=O 

dihedral angle is roughly 90°, i.e., when, the two carboxyl groups are perpendicular to each other, 

while the third one at cosγ ~ -1 corresponds to the “trans” conformation of the two C=O bonds. The 
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presence of these peaks in the dihedral angle distribution indicates that different geometries (mainly 

"cis" and "trans" structures) appear in the presence of lateral interactions either with neighboring 

oxalic acid or with water molecules. It should be noted here that the dihedral angle distributions 

given in Fig. 3.10 do not contain information on the orientation of the hydroxyl group with respect 

to the  C—C bond of the oxalic acid molecule. However, looking at the equilibrium snapshots at 

various temperatures reveals that OH groups can point either inwards or out of the plane of the 

corresponding COO- group, as illustrated by the examples in Fig. 3.10. These rotations of the OH 

groups  facilitate  the  formation  of  hydrogen  bonds  with  neighboring  water  and  oxalic  acid 

molecules. Indeed, by considering that the stable ring structures are stabilized by a maximum of two 

H-bonds for a single molecule in the gas phase, the driving force of such conformational changes in 

the adsorbed phase might be, in the vicinity of other H-bonding partners, the opportunity of further 

decreasing the energy of the entire system by forming more than two intermolecular H-bonds, even 

at the expense of the increase of the conformational energy of the individual molecule. However, it 

should be mentioned that the flexibility of the C-OH bonds involved in these OH group rotations is 

certainly very sensitive to the internal potential used in the simulations. Nevertheless, changes in the 

internal conformation of oxalic acid molecules upon adsorption on ice at finite coverages are clearly 

evidenced.

Energy distributions In order to get a deeper insight into the energetic changes that occur 

during and as a result of the adsorption process, as well as to shed light on the background of the 

observed conformational changes, we have calculated the distribution of the binding energy of an 

oxalic acid molecule with the other oxalic acids ( U b
l

) in the finite concentration range as well as 

that  with  ice  phase  ( U b
w

)  both  at  finite  and  at  infinitely  low  coverage  for  all  of  simulated 

temperatures.  Figure  3.11  a  shows the oxalic  acid-water  ( U b
w

)  binding energy distribution for 

infinitely low surface coverage, while figure 3.11 b shows the oxalic acid-water ( U b
w

) and oxalic 

acid-oxalic acid ( U b
l

) binding energy distributions obtained for systems characterized by finite 

surface coverage. 

Looking at the  U b
w

 curve we can conclude that the binding energy distribution of oxalic 

acid and water molecules in the infinitely low coverage case has a peak between -160 and -150 kJ 

mol-1. Only a very slight shift towards more negative energies can be observed in the position of 

the peak for the higher temperatures. Assuming that the average energy of a single hydrogen bond is 
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roughly -25 kJ mol-1, the position of these peaks indicate that in the limiting case of infinitely low 

surface coverage the adsorbed oxalic acid molecule can form as much as six hydrogen bonds with 

the  surrounding  water  molecules.  At  finite  surface  coverage  the  system  shows  a  much  more 

complex behavior and a stronger temperature dependence. As is seen from figure 3.11.b, at lower 

temperatures  the P( U b
w

)  curve exhibits  a  peak around  -50 kJ  mol-1,  which corresponds to  the 

formation of two H-bonds with water molecules. However, when increasing the temperature this 

peak  is  shifted  to  about  -25 kJ  mol-1,  suggesting  that  at  higher  temperatures  the  oxalic  acid 

molecules tend, on average, to form only one hydrogen bond with the ice surface. 

Figure 3.11 Energy distributions of oxalic acid molecules adsorbed at the ice surface for different 
temperatures (a) at infinitely low surface coverage and (b) finite surface coverage.

Looking at the temperature dependence of the P( U b
l

) distributions additional information can be 

obtained about the intermolecular interactions in the adsorption layer. At the lowest temperature 

three  well  distinguished  peaks  are  visible  at  -25 kJmol-1,  -75 kJ  mol-1,  -125 kJ  mol-1, 

corresponding to the formation of one, three and five hydrogen bonds with oxalic acid molecules, 

respectively. (Note that this latter peak also exhibits a shoulder extending down to -150 kJ mol-1, 

indicating that some oxalic acid molecules are even tied to their neighbours by six H-bonds). At the 

lowest temperature the intensity of the first and the second peak (i.e., at  -25 kJ mol-1 and -75 kJ 

mol-1) is considerably higher than that of the third. With the increasing temperature, however, the 

intensity  of  these  peaks  decreases  while  that  of  the  third  one  (at  -125 kJ  mol-1)  increases 
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significantly.  This  latter  peak  also  broadens  and  shifts  to  lower  energy  values,  indicating  a 

strengthening  of  the  lateral  interactions  between  oxalic  acid  molecules  as  the  temperature  is 

increased.

These findings suggest  that  upon increasing the temperature the  oxalic  acid–oxalic  acid 

interactions  become  more  favorable.  In  other  words,  at  higher  temperatures  the  oxalic  acid 

molecules tend to be connected to like partners rather than to water molecules. This effect might be 

similar to the phenomenon of temperature induced demixing, which is observable in mixtures of 

hydrogen bonding liquids whose phase diagrams exhibit a closed-loop behavior, and which can be 

related to the effect of orientational entropy changes of the system. From a more practical point of 

view, this change in the interaction profiles may be due to the clustering of the adsorbed oxalic acid 

molecules at the ice surface.

3.6.2.3.2 Surface aggregation and thermal desorption

Surface  aggregation The  problem  whether  at  finite  surface  coverages  the  adsorbed 

molecules are distributed more or less uniformly, forming a stable monolayer at the surface of ice or 

tend to aggregate and leave other parts of the surface unoccupied is of fundamental interest in the 

molecular level understanding of experimental results claiming the temperature induced departure 

of water molecules through the oxalic acid adsorption layer.100 In spite of the interest in the self-

association behavior  of  adsorbates  at  the ice surface,  due to  the lack of  sensitive experimental 

techniques little is known about the degree of self-association of these molecules. In this study we 

used the technique described in chapter 2.7, aimed at detecting surface aggregation by means of  2D 

Voronoi analysis. The obtained VP area distributions of oxalic acid molecules, disregarding waters 

are shown in Figure 3.12. Oxalic acids were represented in this analysis by the midpoint of their C–

C bond. Due to the fact that oxalic acid molecules are the major component of the system, the VP 

area distributions are close to the Gaussian shape, having only a slight exponentially decaying tail, 

which, becomes more pronounced with increasing temperature. The  exponential decay of these 

tails,  which is  visible as  a  linearly decaying part  if  the   P(A)  distribution  is  represented  on a 

logarithmic scale (inset of Fig 3.12), is a clear proof of temperature-induced self-aggregation. 

62



Figure 3.12 Voronoi Polygon area distribution P(A) issued from the Voronoi analysis of the oxalic acid 
layer adsorbed on ice at finite surface coverage. The inset shows the same curve on a logarithm scale.

The position of the peak in the P(A) distribution shows the typical VP area of a molecule in a lateral 

self-aggregate. In our systems this value has turned out to be about 22 Å2 at 200 K, and has been 

found to increase with the increasing temperature up to 27 Å2 at 240 K. On the other hand, the VP 

area distribution extends to about 55-60 Å2 at every simulation temperature. These results evidence 

temperature  induced  aggregation  and  the  consequent  increase  of  uncovered  areas  between  the 

aggregates  at  higher  temperatures  compared  to  what  has  been  observed  at  low  temperatures. 

Experimental evidence implies that it is water that starts leaving the surface when the temperature is 

increased.  The fact  that  oxalic acid molecules tend to form aggregates  on the ice surface,  thus 

leaving small ducts for waters through which they may leave the surface without breaking the stable 

structure of the adsorption layer might be closely related to the aforementioned experimental fact.

Thermal desorption The easiest and perhaps the most plausible way to examine the thermally 

induced changes of the adsorption layer, such as desorption of water or mixing of the two phases is 

to analyze the distribution of the different molecules along the interface normal axis X. In order to 

address this question, we have calculated the number density profiles of the water and oxalic acid 

molecules along the interface normal axis X. Figure 3.13 shows the obtained density profiles of the 

simulated systems at different temperatures. 
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Figure 3.13 Number density profile (solid line) of the adsorbed oxalic acid molecules at different  
temperatures and finite coverage corresponding to roughly one oxalic acid monolayer at the surface of ice.  
The number density profile of the surface water molecules is also indicated (dash-dotted line). The insets  
show the number density profiles for the whole system taking into account that all the profiles shown are 

averaged over the two surfaces that are present in the basic simulation box.

The position of the water molecules (dashed lines) are represented by their O atoms, while 

oxalic acid molecules (solid lines) by one of their C atoms. The main panels of Figure 3.13 show 

the  density  distributions  at  the  three  simulated  temperatures,  enlarged  in  such  a  way that  the 

adsorption layer is well observable, while on the insets the density profile of the entire system along 

the interface normal axis  X can be seen. The insets show that  structure of the bulk ice is  well 

preserved during the simulations at each temperature, thus, excluding melting of the ice phase even 

at the highest temperature. Density profiles of oxalic acid molecules show that the adsorption layer 

is characterized by a single peak close to the ice surface (at about 33-34 Å), at every simulated 

temperature. This suggests that within the simulated temperature range significant desorption of the 

oxalic acid molecules does not take place. Nevertheless, a slight but pronounced broadening of the 

adsorption layer can be observed at higher temperatures. At 200 K (bottom panel) the width of the 

density peak is about 2 Å, at 220 K (middle panel) it is roughly 3 Å, while at 240 K (top panel) it is 
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already 4.5 Å wide. This increasing broadening cannot be fully attributed to the increasing thermal 

motion  at  higher  temperatures  and,   since  these  aggregates  are  certainly  thicker  than  a 

monomolecular layer, it implies the idea of the formation of oxalic acid aggregates already invoked 

on the basis of the Voronoi analysis and on the interpretation of the energy distribution functions 

(Figs. 3.11 and 3.12). Moreover, the increasing extent of this peak down to lower X values indicates 

a partial solvation of the oxalic acid molecules when the temperature is increased in the simulations. 

A much more significant change can be observed on the water density profiles. Thus, at 200 K the 

water  density  decreases  smoothly within  the  region  of  the  adsorption  layer,  while  at  220 K a 

conspicuous shoulder appears at that region. This may correspond to the fact that at this temperature 

some water molecules penetrate already into the ducts between the oxalic acid aggregates.  This 

feature becomes even more pronounced when the temperature is further increased, and a long tail of 

the water density profile, corresponding to water molecules leaving the ice surface is seen at large X 

values.  To  characterize  this  desorption-like  process  in  a  more  quantitative  way  we  have  also 

calculated the average percentage of water molecules located at positions corresponding to those of 

the oxalic acid molecules in the adsorption layer for the three different temperatures considered. 

The width of the adsorption layer has been estimated by the width of the density profile of the 

oxalic acid molecules at each temperature.  At  T = 200 and 220 K a negligibly small  number of 

water molecules (0.7 and 0.8 %, respectively) is found to be in the  X range corresponding to the 

location of the oxalic acid molecules, indicating that the two phases are indeed well separated at 

these low temperatures. This number, however, significantly increases at  T = 240 K (being 2.2 %, 

corresponding to about 30 water molecules at  each surface of  the ice slab),  indicating that  the 

desorption process is already started at this temperature.

3.6.2.3.3 Comparison of the simulations with experiments

We  are  aware  of  the  fact  that  the  results  of  the  present  MD  simulations  cannot  be 

quantitatively compared with those obtained in experiments performed on ice systems deposited on 

a polycrystalline Cu surface and in a ultrahigh vacuum chamber, due to the remarkably different 

conditions used in the experiments.100 However, the analyses performed here may explain what has 

been  observed  in  these  experiments,  namely that  the  behavior  of  the oxalic  acid/ice  system is 

governed by the oxalic acid–oxalic acid interactions rather than by the interactions of the oxalic 

acid molecules with the ice surface. On the other hand, our results can, at least for the model system 

in use, explain the results of the above mentioned experiment, namely that water molecules can 

depart from under the adsorption layer of oxalic acid, by pointing out that the temperature-induced 

aggregation of  the organic  particles  is  accompanied  by the formation  of  empty patches  on the 
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surface, through which water molecules can leave without breaking stable structure of the layer. 

Further  in  a  more general  way,  the details  of  the investigations  performed by using molecular 

dynamics simulations  show that  the adsorption of large organic molecules  on ice is  a  complex 

phenomenon, characterized by a strong competition not only between H-bonding with ice and with 

neighboring partners, but also between internal and external hydrogen bond formation, leading to 

possible deformation of the adsorbed molecules.  Finally,  it  should be mentioned that  additional 

simulations performed at 200, 220 and 240 K with a different potential model (the TIP4P/2005 

model of ice) lead to very similar results, giving us confidence in the present conclusions.

3.6.2.4.  Results concerning hydroxyacetone

3.6.2.4.1 Properties of the adsorption layer

Energy distributions Similarly to  the case of oxalic acid,  the distribution of  the binding 

energy of a hydroxyacetone molecule with all the other hydroxyacetones at finite concentration as 

well as the interaction energy with the water molecules constituting the ice phase both at finite and 

infinitely low coverages have been calculated. 

Figure 3.14 Binding energy distributions of hydroxyacetone molecules adsorbed at the ice surface for 
different temperatures and at finite surface coverage.

Irrespective  of  the  simulation  temperature,  the   U b
w

distributions  in  the  infinitely  low 

coverage case exhibit a single broad peak around -80 kJ mol-1. Assuming that the average energy of 

a single hydrogen bond is roughly -25 kJ mol-1, the position of this peak indicates that at infinitely 

low surface coverage the adsorbed hydroxyacetone molecule can form, on average, three H-bonds 
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with the surrounding water molecules. At finite coverage, the hydroxyacetone-water binding energy 

is also characterized by a single broad peak (Figure 3.14) whose peak is however shifted to the 

higher  values,  being thus  centered around –70 kJ mol-1,  still  corresponding to the formation of 

approximately three  H-bonds  with  water  molecules.  No significant  shift  of  this  peak  has  been 

observed upon increasing the temperature. 

Hydroxyacetone-hydroxyacetone  energy  distributions  are  also  characterized  by  a  single 

broad peak positioned around -90 kJ mol-1,  at each simulated temperature.  This means that one 

hydroxyacetone  molecule  forms,  on  average,  between  three  and  four  H-bonds  with  other 

hydroxyacetone molecules. It should be noted, however, that this single broad peak also exhibits a 

shoulder extending up to -50 kJ mol-1, indicating that some hydroxyacetone molecules are rather 

tied to their neighbors by only two H-bonds. The number of these weakly tied molecules seems to 

increase with the temperature, a feature which might be due to a larger disorder in the adsorbed 

layer when the temperature is higher. 

 

3.6.2.4.2 Evaluation of the potential model

Naturally the results of these MD simulations are strongly dependent on the model chosen to 

calculate the hydroxyacetone/water interactions. The comparison with the experimental values of 

the adsorption enthalpy shows that  the potential  model used here (which is,  to the best  of  our 

knowledge, the only one available in the literature) certainly overestimates the hydroxyacetone/ice 

interaction by about 20 %, which is admittedly a poor agreement. In addition, the experimental 

values were obtained on the basis of the Langmuir analysis which disregards lateral interactions 

within  the  adsorbed  layer.  This  assumption  is  certainly  not  fully  valid  here  because  the 

hydroxyacetone layer is characterized by large lateral interactions between neighboring molecules 

(Fig. 3.13), and this should be also taken into account when comparing the calculated and measured 

values. Nevertheless, the results of this MD study can by no means be considered as sufficiently 

accurate and should be regarded as  a maximum semi-quantitative description of  the adsorption 

behavior. Due to weakness of the model used for these simulations, it would have been meaningless 

to perform such detailed analysis of the structural and orientational characteristics of the molecules 

in the adsorbed layer as in case of the oxalic acid/ice system. It should be noted that such a detailed 

study  must  have  been  preceded  by  extensive  work  on  the  development  of  a  valid  model  for 

hydroxyacetone which would go definitely beyond the scope of my PhD thesis. 
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3.6.3 Molecular dynamics modeling of aerosols and their phase behavior [4,5]

3.6.3.1 Introduction

One of the main goals of this work is to investigate the size distribution and the structure of 

aerosol particles formed by dicarboxylic acids of different carbon chain length, namely oxalic and 

malonic acid. The other main interest of this study is to shed light on the complexity of the phase 

behavior  of  binary  aqueous  aerosols  of  these  compounds,  with  special  interest  in  the 

tropospherically relevant part of the phase diagram. The applicability of atomistic simulations in 

studying aerosols is also demonstrated by this study.

Hydrogen bonding binary mixtures in general are known to exhibit closed-loop phase diagram in 

the liquid phase. In an initially mixed, barostated system, upon the increase of temperature demixing 

will occur at the lower critical temperature of mixing. This phenomenon is due to the increase in the 

orientational entropy connected to the breakage of hydrogen bonds between different kinds of molecules 

and formation of bonds between like molecules. Naturally, above the upper critical temperature, due to 

the increasing energy of thermal motion, the molecules will have enough energy to overcome the free 

energy barrier of mixing. Little is known, however, about the existence of such behaviour among binary 

mixtures in the aerosol phase. There have been a number studies addressing the question of the phase 

behavior and the existence of special phases in aerosol systems yet we are unaware of a systematic 

investigation of the atmospherically relevant part of the (p,T) phase diagram of binary mixtures of water 

and  aerosol  forming dicarboxylic  acids,  which  might  be  due  to  the  fact  that  it  is  inconvenient  or 

experimentally impossible to record a phase diagram of such mixtures. 

We have performed molecular dynamics simulations to model the structure of oxalic acid 

aggregates  and  to  analyze  the  phase  behavior  of  the  binary  oxalic  acid/water  aerosols  under 

atmospherically relevant conditions. To complete this study, we have repeated simulations with the 

larger malonic acid molecule aimed at characterizin the effect of one additional CH2 group on water 

adsorption. This approach can be related to the recent experimental work of Schill and Tolbert  120 

who tried to provide simple parametrizations of organic ice nucleation efficacy by using the O:C 

ratio as a proxy for characterizing the organic aerosol hydrophilicity. We have also investigated the 

thermodynamic  background  of  the  phase  behavior.  The  results  concerning  the  phase  behavior 

together with the structural and energetic characteristics are interpreted in comparison between the 

two types of acids/water binary aerosols to get a deeper insight into the possible relation between 

the carbon atom number (or the O:C) ratio and the aerosol’s ability to act as a cloud condensation 

nucleus.
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3.6.3.2 Computational details

Molecular dynamics simulations of the formation and stability of oxalic and malonic acid 

aerosols  together  with  the  adsorption  of  water  on  the  aerosol  particles  at  three  different 

compositions, corresponding to 0, 55% (65% for oxalic acid), and 85 mole % water concentration 

have been performed using the GROMACS simulation program package.109 Simulations of the neat 

oxalic and malonic acid aerosols have been carried out on the canonical (N,V,T) ensemble at 200 K. 

The  adsorption  of  water  on  the  aerosol  particles  has  been  modelled  at  the  isothermal-isobaric 

ensemble at six different, atmospherically relevant pressure values ranging between 0.01 and 1 bar, 

and  temperatures  between  100  and  250 K.  The  temperature  and  pressure  of  the  systems  were 

controlled by means of the weak coupling algorithm of Berendsen et al. 110 In the case of malonic 

acid,  for three randomly chosen temperature-pressure pairs calculations have been repeated using 

Nosé-Hoover thermostat 121,122 and the Parrinello-Rahman barostat123 to examine the possible effect 

of the choice of temperature and pressure coupling algorithms on the results. The results obtained 

with the different coupling methods have turned out to be in good agreement with each other. All 

simulations were performed using a time step of 1 fs.

Water molecules have been described by the TIP5P105 model. Malonic acid molecules were 

modelled by the OPLS potential115, whereas oxalic acid molecules were described by exactly the 

same geometry and potential parameters as the ones used for simulating its adsorption on ice. Water 

molecules were fully rigid, while bond angle and torsional flexibilities were allowed for the oxalic 

and malonic acid molecules. The geometry of water, and bond lengths in the case of oxalic and 

malonic  acid  molecules  were  kept  fixed  by means  of  the  SETTLE111and  LINCS112 algorithms, 

respectively. The potential energy of the systems has been calculated exactly in the same manner as 

for the adsorption of oxalic acid and hydroxyacetone on ice, with the exact same cutoff scheme 

applied  to account for the long range electrostatic interactions by the PME method.16 For the sake 

of a more clear analysis we have repeated some of the simulations of the malonic acid/water binary 

aerosols without periodic boundary conditions, to ensure that the obtained results are meaningful 

and  do  not  originate  from  any  possible  artefact  resulting  from  translational  periodicity,  more 

precisely from an  unphysical  confinement  of  water  molecules  between  periodic  images  of  the 

aerosol particles. 

To create the oxalic and the malonic acid aerosol we have placed a nucleus consisting of five 

molecules in the middle of a cubic simulation box having an edge length of 54.5 Å, to serve as a 

nucleation  core,  around  which  120  more  acid  molecules  were  placed  randomly.  These  initial 

systems have been equilibrated by a 1 ns long simulation on the (N,V,T) ensemble at 200 K. Once a 
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stable aerosols have been formed, equilibration runs of 5 ns, performed under the same conditions 

have been launched. Simulations have been repeated with a system of double density for both acids, 

consisting of  240 randomly placed  oxalic  molecules  around the nucleation grains  to  check the 

dependence of the formed aerosols on the initial density of the system. The largest stable aggregates 

found for each type of acid (consisting of 58 molecules in case of oxalic acid and of 212 in the case 

of malonic acid) have been taken as a model of an aerosol particle for our further studies devoted to 

the  investigation  of  adsorption  of  water  on  oxalic  and  malonic  acid  nuclei.  From  the  stable 

dicarboxylic acid aerosols the binary systems have been prepared as follows. The stabilized oxalic 

and malonic acid aggregates have been placed in the middle of an empty cubic simulation box 

having the edge length of 70 Å. For modelling the different water concentrations, in the case of 

oxalic acid 100 and 300, whereas for malonic acid 300 and 1500 water molecules have been placed 

randomly in two-two identical copies of the basic box. Each system has been equilibrated primarily 

on the canonical (N,V,T) ensemble for 4 ns at a temperature as low as 100 K. The pre-equilibrated 

systems have then been further equilibrated for 1 ns on the isothermal-isobaric (N,p,T) ensemble at 

6-6 different,  atmospherically relevant  temperature  and pressure values,  namely 100,  150,  175, 

200 , 225 and 250 K, and 0.01, 0.05, 0.1, 0.25, 0.5 and 1 bar, respectively. Each of these simulations 

has been followed by a 1 ns long production run performed under the same conditions during which 

1000 equilibrium configurations, separated by 1 ps long trajectories each have been saved for the 

analyses.  A total  number  of  36  simulations  has  thus  been  performed  to  reconstruct  the  phase 

behavior  of  the binary oxalic  acid/water  system and the same number of  simulations  has  been 

carried out to provide us with detailed information about the malonic acid/water binary aerosols. 

Common points in the analysis In  such binary mixtures, the structural characteristics are 

well visible by looking at equilibrium snapshots, or as a more quantitative approach they might be 

investigated by means of detailed cluster analysis. Binding energy distributions on the other hand, 

are useful tools to provide us with information about the hydrogen bonded network of the aerosol. 

We  have  thus  calculated  the  P(n)  distribution  of  the  size  of  acid  clusters  disregarding  water 

molecules,  that  of  the  water  clusters  without  the  acid  molecules,  and  also  the  cluster  size 

distributions taking both components into account for all the possible pressure and temperature 

pairs at both compositions. During the course of this analysis two malonic or oxalic acid molecules 

were considered to be hydrogen bonded if the distance from any of their hydrogens to any of the 

hydroxylic or carboxylic oxygen atoms of the other malonic or oxalic acid molecule was smaller 

than a cut-off distance of  2.45 Å or 3.5 Å  respectively. The distance between the carboxylic and 

hydroxyl  oxygen atoms had to be smaller  than a cut-off  value of 4.6 Å and the hydroxyl  O - 

hydroxyl O distance had to be smaller than a cut-off of 3.5 Å. A water and a malonic or oxalic acid 
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molecule have been considered to be connected by hydrogen bonds if the H(acid) – O(water) and 

the hydroxyl O(acid) – O(water) cut-off distances turned out to be smaller than the cut-off of 2.65. 

In the same way, two water molecules were considered to be hydrogen-bonded neighbors if the 

distance between their oxygen atoms did not exceed the value of 3.3 Å, while the smallest of the 

possible oxygen-hydrogen distances were also smaller than 2.45 Å. The cut-off values listed above 

were  obtained  as  the  abscissa  value  of  the  first  minima  of  the  corresponding  pair  correlation 

functions. Moreover, to get a deeper insight in the energetic changes that occur during and as a 

result of the phase transitions, and furthermore, to shed light on the energetic reasons underlying the 

changes in the characteristics of the different parts of the phase diagram, we have calculated the 

distributions of the binding energy between a water molecule and all the other waters ( P �U w
b � ) 

and between a malonic or oxalic acid molecule and all the water molecules ( P �U ac
b � ). 

3.6.3.3 Results concerning oxalic acid

3.6.3.3.1 Characterization of the pure aerosol

The  simulated  pure  aerosol  phase  of  oxalic  acid  molecules  has  been  proven  to  be 

polydisperse,  with  a  size  distribution  of  stable  particles  ranging from trimers  and  tetramers  to 

particles  consisting of  50-60 molecules.  This  size distribution is  apparently independent  of  the 

original density of the system, as roughly the same distribution of particles have been obtained after 

doubling the initial density of molecules around the nucleation grain. It has, on the other hand, been 

found to depend largely on the temperature. At temperatures higher than 225 K only formation of 

small  oligomers,  consisting of  3  -10 molecules  occurs,  probably due to  the  increasing thermal 

motion, which acts against the formation of bigger clusters.  As already mentioned above, a big 

aggregate (stable at 200 K) of 58 oxalic acid molecules has been chosen as a model of an aerosol 

particle for our further studies devoted to the investigation of water adsorption on oxalic acid nuclei.

3.6.3.3.2 Phase diagrams of the the oxalic acid/water binary system

The phase diagrams have been calculated at two water concentrations which have shown 

markedly different  behaviour  according to  the  measurements  of  Braban et  al.,  124  which  have 

proven to be relevant for atmospheric studies. At 65 mole %, the concentration of water has not yet 
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been high enough to fully hydrate the molecules of the oxalic acid aggregate. For this composition, 

the formation of oxalic acid dihydrates as well as efflorescence have a low probability. On the other 

hand, at  a relative composition of 85 mole % both efflorescence and dihydrate formation could 

occur  with  a  higher  probability.  Figure  3.15  a  shows  the  phase  diagrams  obtained  from  our 

simulations, at the two different compositions.

Figure 3.15 a) (p,T) phase diagram of the water/oxalic acid binary aerosol at 65 mole% of water content  
(left panel) and at 85mole% of water content (right panel).b)Equilibrium snapshots of the four different 

phases observed in our simulations. 

System of 65 mole % water content At this composition, the phase diagram exhibits three 

distinguished phase transitions. The first type of phase, observed below 175 K for  pressures higher 

than 0.2 bar and below 150 K for very low pressures, comprises of one big oxalic acid grain with 

water  molecules  adsorbed on its  the surface  as  seen  in  the  top left  panel  of  Fig.  3.15.  b.  The 

presence  of  this single aggregate is  also evidenced  by the single  peak of  the total  cluster  size 
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distributions  calculated  by  taking  both  waters  and  oxalic  acids  into  account,  whose  position 

corresponds to the total number of particles in the system. Total cluster size distributions together 

with  those  calculated  disregarding water  and  oxalic  acid  molecules,  respectively are  shown  in 

Figure 3.16. a and b for the two examined water concentrations. Cluster size distributions of oxalic 

acids (Fig. 3.16. a middle panel) analyzed together with the equilibrium snapshots confirm that in 

this temperature and pressure range the system consists of one oxalic acid particle, whose average 

size is independent from the exact value of the temperature and the pressure and is equal to the total 

number of oxalic acid molecules in the system. On the other hand, size distribution of the water 

clusters (Fig. 3.16. a top panel) shows that the vast majority of the adsorbed water molecules are not 

present as monomers; instead, they tend to form small clusters whose size ranges between 5 and 20 

molecules. 

Figure 3.16. Cluster size distribution as observed at a) 65 and b) at 85 mole% of water content. Top panels  
show the cluster size distribution of water molecules disregarding oxalic acids, middle panels show that of 
oxalic acid clusters without taking waters into consideration, whereas the distribution of the total cluster  

size (including both species) is presented in the bottom panels.

This finding evidences that water molecules form small three-dimensional clusters attached to the 
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oxalic acid aggregate rather than a monolayer at the surface of the oxalic acid grain. Moreover, 

taking a closer look at the equilibrium snapshots, we may conclude that the shape of the aerosol is 

distorted by the increasing temperature quite significantly. Namely, at very low temperatures the 

aerosol is nearly spherical, whereas at 150 K it already becomes rather elongated, having a rod-like 

structure. Regardless of the shape of the oxalic acid aggregate, water adsorption occurs preferably 

on the convex parts of the surface of the particle (as seen from the snapshots). This latter effect 

might originate from the fact that at the convex parts of the surface the possible electron donating 

functionalities,  i.e.,  the hydroxylic  and  the carboxylic  oxygen atoms lie  further  away from the 

electron acceptor H atoms of the hydroxyl groups of other molecules, and hence oxalic acid - oxalic 

acid hydrogen bonding has steric hindrance. This effect is further enhanced by the fact that small 

water  oligomers  are simply excluded from the concave curvatures  because of  their  size.  These 

conclusions are supported by the analysis of the energy distributions, shown in Fig. 3.17.a 

Figure 3.17 Binding energy distribution of oxalic acid molecules to waters (top panels) and water molecules  
to other waters bottom panels, at a) 65 and b) 85 mole% water concentrations.

Indeed,  at  low temperatures,  the  distribution  of  the  oxalic  acid  -  water  binding  energy 

P �U oxa�wat
b � exhibits a large peak in the range between -40 and -10 kJ/mol, and two much smaller 

peaks between -120 and -80, and between -150 and -130 kJ/mol, respectively. The first one may be 

related to the vast majority of oxalic acid molecules which are not directly tied to water molecules, 
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whereas, the two peaks at lower energies correspond to oxalic acid molecules that form more than 

three hydrogen bonds with adsorbed water clusters, assuming, as usual, that the average energy of a 

single hydrogen bond is roughly between  -25 and  -20 kJ/mol. In the same way, P �U w
b � exhibits 

three peaks around -25, -50, and -75 kJ/mol, corresponding to the formation of one, two, and three 

hydrogen bonds between neighboring water molecules, respectively, thus supporting our previous 

conclusions on the formation of three dimensional water clusters. 

Upon increasing the temperature the system undergoes a phase transition (Fig. 3.15 a) to 

form rather small mixed droplets of oxalic acid and water (see the snapshot given in Fig. 3.15 b). 

However, this kind of phase transition, i.e., the disintegration of the aerosol particle with the water 

molecules  adsorbed on its  surface into smaller  binary water/oxalic  acid droplets  has  only been 

observed at pressures higher than 0.25 bar. Indeed, in the low pressure region, ranging from 0.01 to 

0.25 bar we have found a transition zone, in which small aerosol particles are visible but mixing 

does not occur yet, instead, water clusters are adsorbed at the surface of the smaller oxalic acid 

aggregates. This region has been found at temperature values ranging between 150 and 200 K. Due 

to the limited size of the simulated system, we cannot undoubtedly assign this behaviour to the 

formation of a new phase. Thus, this transition is marked by a dashed line in Figure 3.15 a. Above 

200 K, regardless of the value of pressure, the formation of smaller mixed droplets was observed. 

The cluster size distributions of the total systems exhibit not only peaks at smaller values of n (Fig. 

3.16.a, bottom), but also a larger number of peaks than that observed for the low temperature case. 

This visible increase in the polydispersity of the system, together with the subsequent decrease in 

the average cluster size serves as a clear indication for the disintegration of the aerosol into smaller 

droplets. However, the exact structural properties of these droplets, i.e., whether they are mixed or 

they form smaller biphasic aerosol particles remain still questionable. By examining the cluster size 

distributions calculated with the exclusion of waters (Fig. 3.16.a, middle) and of oxalic acids (Fig. 

3.16.a, top), we can conclude that the size distribution of the oxalic acid clusters follows the same 

pattern as that of the total cluster size, i.e., the number of peaks increases and the size of the clusters 

decreases with increasing temperature, whereas at high temperatures water molecules exist almost 

exclusively in the monomer form. This is confirmed by the progressive disappearance of the high 

energy peak in P �U ac
b �   (Fig. 3.17.a, top) which indicates that the number of oxalic acid molecules 

not being in direct contact with water molecules is considerably smaller than in the demixed phase, 

due to the smaller size of the oxalic acid aggregates in the high temperature phase. Similarly, in the 

distributions of the water-water binding energy P �U w
b �  , the low energy peak around -75 kJ/mol 
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progressively disappears when the temperature increases (Fig.  3.17.a,  bottom), while a  growing 

peak is observed around zero, corresponding to the increasing number of water monomers in the 

system.

System of  85 mole  % water  content At  this  considerably higher  value of  relative water 

content, a markedly different phase behavior has been observed (Fig. 3.15 a, right panel). This is 

already evident from simple visual analysis of the equilibrium snapshots taken from the simulations. 

The first significant difference found is that, in this case, pressure has none the slightest effect on 

the phase transition zones. Increasing the temperature has, on the other hand, led to the appearance 

of three different phases in the phase diagram between 100 and 250 K. In  the low temperature 

range, a phase very similar to what has been seen in the case of 65 mole % system has been found 

(called previously as "demixing phase"). Even the temperature-induced change in the shape of the 

oxalic acid aggregate has been found to be similar to that observed for the low water content case. 

However, it has to be noted that for this system the disintegration of the stable aggregate of oxalic 

acid with water clusters adsorbed on its surface has occurred at a higher temperature. The cluster 

size  distribution  in  this  demixing  phase  has  shown almost  the  same  characteristics  as  seen  at 

65 mole % water content. The only rather obvious difference between to two concentrations is that 

in the case of higher water content the water clusters are also larger (see the top of Fig. 3.16.b). In 

the high concentration case, adsorbed water clusters may consist of up to 110 water molecules. 

As it has been already mentioned, mixing of the oxalic acid molecules and the waters takes 

place above 175 K, resulting in the formation of a liquid-like mixed phase, consisting of one big 

cluster, resembling a simple binary liquid mixture of these two compounds (see the snapshot in Fig. 

3.15 b). This transition is evidenced by the distribution of the cluster size in this region. Indeed, the 

distribution of the total  cluster  size in this  case exhibits  one single peak (Fig.  3.16.b,  bottom), 

corresponding to the formation of a single big aggregate containing all the oxalic acid and water 

molecules. On the other hand, the size distribution of the oxalic acid clusters exhibits a broad peak 

at around n = 55 besides the rather intense peak of the monomers. Similarly, the size distribution of 

the water clusters has a peak at  n = 1, followed by several, rather broad peaks around the cluster 

sizes of about 30, 80 and 140. The average number of hydrogen bonded water neighbors of a water 

molecule turned out to be two, based on energetic analysis. This finding suggests that, as a result of 

mixing,  the  initially  densely  packed  oxalic  acid  aerosol  has  a  less  dense  structure  thus  water 

molecules can penetrate into the voids of the oxalic acid network. Further, besides the oxalic acid 

clusters water aggregates surrounding oxalic acid monomers also occur in the system. This structure 

resembles the structure of liquid mixture of two compounds of self-associating ability, such as the 
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aqueous solution of oxalic acid at low temperatures. The phenomenon of liquid-like mixing is also 

indicated by the considerable shrinkage of the box edges, and hence the volume of the system, 

giving rise to the formation of a  liquid phase consisting of a mixture of water and oxalic acid 

molecules. It should be emphasized that this behavior is only seen here in the case of the system of 

higher (i.e., 85 mole %) water content, whereas in the system of lower water content the box edge 

length turned out to be insensitive to the thermodynamic conditions. 

Another peculiarity of this system is that above the temperature value of 225 K one more 

phase transition takes place, manifesting in the formation of small, demixed aerosol particles, whose 

structure differs significantly from the demixing phase observed at low temperatures. First of all, 

according to the total cluster size distributions, the particles have a considerably smaller average 

size here than in the demixed phase at lower temperatures. Namely, in contrast to the single peak at 

the n value corresponding to the total system size at 150 K, here the total cluster size distribution 

exhibits two peaks, one at around  n = 150 and another one around  n = 200 (Fig. 3.15.b, bottom). 

More importantly, the structure of the aerosol particle also shows considerable differences from that 

at low temperature, as in this high temperature demixed phase the individual oxalic acids molecules 

are seen to be adsorbed on the surface of water clusters (see the corresponding snapshot in Fig. 

3.15). Clearly, careful examination of the snapshots rules out the possibility of the formation of big 

liquid-like oxalic acid clusters. This finding is supported by the cluster size distribution of the water 

and oxalic acid molecules, which indicate the presence of small, liquid-like water droplets in the 

simulation box, and that in this high temperature demixed phase oxalic acid molecules exist solely 

in  monomer  form.  This  conclusion is  confirmed by the  distribution of  the  oxalic  acid  -  water 

binding  energy P �U ac
b � ,  the  broad  peak  of  which  at  around  -150 kJ/mol  evidences  strong 

interactions between oxalic acid and water molecules (Fig. 3.17.b, top). 

3.6.3.4  Results concerning malonic acid

3.6.3.4.1 Characterization of the pure aerosol

Simulation of the pure aerosol phase of malonic acid molecules resulted in the formation of 

one  big spherical  particle  whose  size  depended  on the  initial  density  and  a  few monomers  in 

equilibrium with the big cluster. This result differs greatly from what had been observed previously 

for oxalic acid. In the case of the neat malonic acid aerosol the equilibrium cluster size depends on 

the  initial  concentration  whereas  for  oxalic  acid  the  size  distribution  in  the  observed 
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atmospherically  relevant  density  range  has  been  found  to  be  concentration  independent.  More 

importantly,  a much bigger average aerosol size has been observed in the case of malonic acid 

molecules. For the smaller average initial density, equilibrium cluster size has turned out to be about 

100  molecules  whereas  for  the  larger  initial  concentration  the  aerosol  in  equilibrium with  the 

remaining  monomers  and  dimers  consisted  of,  on  average,  210  malonic  acid  molecules.  The 

characteristic size of the aerosol particles and subsequently the number of nuclei formed at the same 

initial  density may be an important factor in the efficacy of the aerosols as cloud condensation 

nuclei. We speculate that the formation of a number of smaller clusters is more advantageous from 

the point of view of cloud condensation than that of a bigger aggregate whose overall surface area is 

smaller. This suggestion is in agreement with the finding of Schiller and Tolbert stating that the 

higher the O:C ratio the more effective the aerosol as a cloud condensation nucleus. However, this 

question may be further elaborated by a comparative investigation of the atomistic structure and the 

energetic characteristics of oxalic acid-water and malonic acid/water binary aerosols.

3.6.3.4.2 Phase diagram of the malonic acid/water binary mixture

The phase diagram of malonic acid water mixtures has turned out to be much simpler than 

what had been observed previously for the oxalic acid/water mixtures. First of all, unlike for the 

oxalic acid- water systems, we have observed no dependence of the (p,T) phase diagram on the 

water concentration, at least in the range covered by our simulations. The (p,T)  phase diagram of 

malonic acid/water mixtures consists of two phases and pressure, just like in case of oxalic acid, has 

turned out to be an largely irrelevant variable concerning its effect over phase transitions. The phase 

Figure 3.18. The phase diagram of the malonic acid/water aerosol as obtained for the system 
containing 300 water molecules (a), equilibrium snapshots illustrating the characteristic features of the two 
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phases (b).
diagram of the malonic acid/water system as obtained for the lower water concentration together 

with the equilibrium snapshots of the different phases are shown in Figure 3.18.

At low temperatures malonic acid forms one single big aggregate on which water molecules 

are adsorbed in the form of small clusters, while for temperature values above 150 K we see a 

mixing of the two phases in a manner which does not involve the breakage of the original big 

aggregate. Comparing the equilibrium snapshots of oxalic acid aggregates ((Fig 3.15 b) and that of 

malonic acid (Figure 3.18. b), it is clear that we may identify the demixing phase of the malonic 

acid/water systems with the low temperature demixed phase observed for oxalic acid/water systems, 

whereas  the  mixed  phase  is  apparently  similar  to  liquid-like  mixing  observed  at  high  water 

concentration at intermediate temperatures. Cluster size distributions calculated at four temperatures 

values for both of the malonic acid/water systems are shown in Figure 3.19. Total cluster sizes are 

seen  in  the  top  panel,  whereas  the  middle  and  the  bottom panels  contain  size  distributions  of 

malonic acid molecules  disregarding waters,  and  that  of  water  molecules  disregarding malonic 

acids,  respectively.  It  is  evident  from  the  total  cluster  size  distributions,  i.e.:  the  distribution 

calculated involving both water and malonic acid molecules, that regardless of the temperature no 

dissociation of the binary aggregate happens. It can be observed in the top panels Fig. 3.19 for both 

concentrations that the average size of the binary aggregate varies only slightly with temperature 

and the peak is definitely broader for higher temperature values but apart from this change, which 

may be  attributed  to  thermal  motion,  no  significant  difference  and  even  more  importantly  no 

appearance of any peak in the region of small aggregation numbers is visible. Taking a closer look 

at the malonic acid cluster size distributions calculated disregarding water molecules we can draw 

the conclusion that the initial size of the malonic acid aggregate remains also practically intact when 

temperature is increased. Here the decrease of the mean value of cluster size is observable at higher 

temperatures  and subsequently the appearance of  some monomers  and dimers  is  visible in  the 

snapshots, however the number of these is statistically irrelevant as they do not appear in the cluster 

size distribution as peaks at small values of nmal. It can thus be concluded that the qualitative picture 

suggested by the equilibrium snapshots, stating that  in case of malonic acid/water mixtures the 

initial aggregate does not dissociate at higher temperatures, is supported by the total cluster size 

distribution as well as the size distribution of malonic acids.
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Figure 3.19. Cluster size distributions of malonic acid water binary aerosols for 55% (a) and for  
85% water content (b) at 4 different temperature values 100 (black line), 150 (red line), 200 (green line) and 
250 K (blue line). Top panels show the total cluster size distributions including both malonic acid and water  
molecules, middle panels display the malonic acid cluster size distributions disregarding water molecules,  

finally water cluster size distributions can be seen on the bottom panels.

Analyzing the size of water clusters in the binary systems may provide us with more detailed 

information about the structure of the adsorbed layer and may also give at least qualitative picture 

about the mechanism of mixing. At lower temperatures, for the lower concentration a multi peak 

distribution consisting of peaks of similar intensity with average abscissa values ranging between 

nwat = 5 and nwat =30 can be observed. This finding implies that adsorption happens in a way that 

water clusters are trapped on the surface of the malonic acid aggregate at low temperatures. At 

higher temperatures the peaks characterised by larger mean abscissa values gradually disappear, and 

in the mixed phase water clusters containing on average three-five molecules are the predominant. 

Such small aggregates of water can more easily penetrate into the voids in the malonic acid aerosol. 

Thus  the  following  mixing  scheme  can  be  suggested.  At  higher  temperatures  water  clusters 

consisting  originally  of  20-30  molecules  break  up  into  smaller  ones.  At  the  same  time  more 

intensive thermal motion of the malonic acid molecules initiates the formation of relatively big 

voids and voids within the core of the aggregate, causing it to expand in diameter, allowing the 

small water clusters to penetrate into the core of the aggregate and fill the voids. We should note 
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here that at the higher water concentration the tendency described above is partially washed away 

by the fact that water molecules in that case are present in a sufficient amount to form a percolating 

network. This network is originally situated around the malonic acid core at low temperature values. 

On the other hand, similarly to what has been observed for the lower concentration system, we can 

also see the appearance of quite high-intensity peaks at small aggregation number values suggesting 

that it is possible to imagine a mixing mechanism similar to what has been described for the low 

concentration case, which would be in accordance with the fact that malonic acid and total cluster 

size distributions behave very similarly for both examined cases. It should also be remembered that 

the mixing mechanism suggested simply by looking at the distribution of cluster sizes is highly 

speculative, and one has to investigate the energetic background to get a justification, and to form 

an  at  least  semi-quantitative  but  still  far  from  exact,  picture  of  the  processes  underlying  the 

occurring phase transitions. 

Distributions of  the average binding energy for  all  the  possible molecule pairs for  each 

concentration are shown in Figure 3.20. Top panels show the average binding energy distribution of 

Figure 3.20. Binding energy distributions of malonic acid water binary aerosols for 55% (a) and for 
85% water content (b) at 4 different temperature values 100 (black line), 150 (red line), 200 (green  
line) and 250 K (blue line). Top panels show the average binding energy of one water molecule with 

all other waters, middle panels show the same binding energy distributions between water and 
malonic acid molecules, whereas bottom panels display the average binding energy distribution of  

one malonic acid molecule with all other molecules of the same gender.
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water molecules, the middle panels display the distribution of the mixed binding energies, whereas 

on the bottom panels the distribution of the average binding energy of one malonic acid molecule 

with all the other molecules of the same kind is seen. First of all we should note that, just like in the 

case of cluster size distributions, binding energies are not affected significantly by the concentration 

of water in the system, thus it is sufficient to analyse results obtained for one of the systems in 

details. Looking first at the water-water binding energy distributions, we can see four peaks at every 

temperature. The four peaks are situated roughly at Ub = -125, -75, -25 and 0 kJ/mol, corresponding 

to  arrangements  in  which one  water  molecule forms 5,  3,  1  and 0 hydrogen-bonds  with other 

waters.The peak at 0 kJ/mol comes obviously from the fact that most water molecules are too far 

from each other to be bonded. The relative intensity of these peaks varies greatly upon increasing 

the temperature. Namely lower energy peaks corresponding to the formation of a larger number of 

water-water hydrogen-bonds gradually loose intensity and eventually are withdrawn into a shoulder 

at  the highest  temperature.  This  suggests that  the breakage of  hydrogen-bonds formed between 

water molecules is a favoured process at higher temperatures. The same tendency is observed for 

the malonic acid-malonic acid binding energy distributions, with the exception that in this case we 

obtain a very broad distribution which appears to be unimodal. At low temperature the peak is 

found at -200 kJ/mol. It corresponds to the case when one malonic acid forms hydrogen-bonds with 

eight  other  malonic  acids.  With  increasing  the  temperature  this  peak  is  shifted  towards  higher 

energy values. In the mixed phase the maximum of the distribution corresponds to -100 kJ/mol. 

This  value  suggests  that  in  the  mixed  phase  malonic  acid  molecules  loose  about  half  of  their 

hydrogen-bonds  towards  other  malonic  acids.  The  loss  of  any  kind  of  hydrogen-bond  is  an 

energetically unfavourable process, which is compensated by the subsequent formation of others at 

high  temperature.  This  finding  is  evidenced  by  examining  the  temperature  dependence  of  the 

malonic acid-water binding energy distributions. It is visible on the middle panel of Fig 3.20. that at 

low temperature mixed hydrogen-bonds, although present to some extent, are less likely to form, 

whereas  the abscissa values  of  the peaks of  this  distribution are shifted towards  more negative 

values at higher temperature, suggesting that the probability of the formation of mixed hydrogen-

bonds is more likely at higher temperatures. This finding is in good agreement with the observed 

mixing at temperature values higher than 150 K.

3.6.3.5 The thermodynamic background of the phase behavior

 As the phase behaviour of any system in the isothermal-isobaric ensemble is driven by the 

effort  of  the particular  system to minimize the value of  the characteristic  thermodynamic  state 
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function, namely the Gibbs free energy, whose formula is the following:

pVTSUG +−=  , (3.5)

where  G is  the  Gibbs  free  energy  of  the  system,  U stands  for  the  internal  energy,  T is  the 

temperature,  S is  the  entropy,  while  p and  V stand  for  the  pressure  and  volume,  respectively. 

According to this equation, the Gibbs free energy can be minimized by maximizing the entropy 

and/or minimizing the volume and internal energy.

It  is  well  known that  in  binary mixtures  of  hydrogen  bonded  liquids  the  total  entropy 

comprises of two major terms:

orcomptot SSS += ,             (3.6)

where Scomp is the compositional entropy term, and Sor is the so-called orientational entropy.125 The 

Scomp term is naturally maximised during the course of mixing, while the orientational entropy (Sor) 

maximized if the system is demixed, since the number of possible orientations of the intermolecular 

hydrogen bonds is higher in the biphasic than in the mixed system. This pattern is further elaborated 

if, instead of a liquid, an aerosol phase is concerned, since the entropy of such a system can also be 

changed  by  changing  the  size  of  the  aerosol.  Namely,  the  entropy  of  a  polydisperse  system 

consisting of smaller aggregates is suspected to be somewhat higher than that of a single particle 

consisting of the same number of molecules. Thus, in the case of an aerosol phase, the expression 

for the entropy has the form of

disporcomptot SSSS ++= , (3.7)

where Sdisp denotes the entropy term connected to the polidispersity of the system. 

From the simulations performed in this work, it is impossible to calculate the Gibbs free 

energy or its entropic contribution directly. However, if we check the tendency and magnitude of 

the change of the  U+pV term, which is readily accessible from the simulation, we may have an 

indication of the importance of the entropic contribution as a possible driving force of the phase 

transitions. Namely, if the  U+pV sum shows no tendentious change with pressure or temperature, 

and still a phase transition is observable, it can be concluded that entropy is the main driving force 

of the phase transition. We have thus calculated the U+pV term for all of our systems of interest. 
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Comparing  these  values  it  becomes  obvious  that  pressure  has  practically  no  effect  on  this 

contribution. The increase of the temperature, on the other hand, leads to a slight (i.e., in the order 

of kBT), yet visible increase of the U+pV term of the Gibbs free energy for both molecules at both 

compositions.  However,  the  increase of  this  term  does  not  account  for  the  observed  phase 

behaviour, since phase transitions are driven by the decrease in the Gibbs free energy. Therefore, we 

can draw the conclusion that the main driving force of the observed phase transitions must be the 

entropic contribution. Selected values of the U and pV terms as well as their sums obtained for the 

oxalic acid-water model  system are collected in Appendix B, Table 1. 

The effect of temperature As a general pattern, we may conclude that in the low temperature 

range the  TS  term has relatively small impact on the Gibbs free energy of the aerosol particles, 

while the U+pV term is found to be slightly lower here than at higher temperatures. However, upon 

increasing the temperature the Gibbs free energy can be more and more efficiently tuned by changes 

in the entropic contribution. These facts may account for the finding that at low temperature a single 

big  aggregate  with  water  clusters  adsorbed  on  its  surface  represents  the  stable  phase  at  both 

compositions for both acids. It also explains that above a certain temperature mixing occurs, even if 

the structure of the resulting mixed phase differs qualitatively due to the effect of composition. In a 

two component mixed binary system the Scomp term of the total entropy is necessarily higher than in 

a biphasic system characterized otherwise by the same set of intensive variables. On the other hand, 

by the formation of smaller droplets (as is seen in the case of the system of low water content for 

oxalic acid) the Sdisp term can also be increased. It should be noted that the formation of a mixed 

liquid phase instead of the small mixed aerosols occurs in the case of higher water content or in case 

of larger carbon atom number, probably as a composition or chain length dependent effect which 

overcompensates the change in the dispersion term of the entropy. The effect of the composition 

and the carbon chain length on the phase behaviour of the system investigated is discussed in detail 

in the following sub-sections. 

The effect of pressure As is seen on the phase diagrams of both compositions for both type of 

aerosols,  the  effect  of  pressure can be  considered as  being almost  totally negligible.  The only 

exception is seen in the low water content case of oxalic acid/water binary mixtures, where the 

mixing of the two components follows a slightly different mechanism at low than at high pressures. 

Namely, at low pressures the temperature induced disintegration of the big aerosol particles occurs 

at slightly lower temperatures, and it visibly precedes mixing of the two components.
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The  effect  of  composition The  change  in  the  composition  has  a  marked  effect  on  the 

energetic and pV contributions to the Gibbs free energy for both systems. As is clear from the data 

listed  in  Table 1  of  Appendix B the internal  energy of  the systems of  higher  water  content  is 

considerably lower than that of the system consisting of fewer water molecules at each temperature-

pressure pair. However, since the tendencies in the change of temperature and pressure are similar 

for both concentrations, this difference cannot account for the observed qualitatively different phase 

behaviour. On the other hand, oxalic acid - water binary aerosols have a specific characteristic, 

namely that above a certain water content they undergo a process called deliquescence, which is the 

uptake of water to form an outstandingly stable oxalic acid dihydrate (i.e., an aggregate consisting 

of one oxalic acid and two water molecules). The difference between the two systems considered 

here in this respect is that at the lower water concentration case one single mixed droplet built up by 

oxalic acid molecules hydrated by two water molecules cannot be formed with finite probability, 

whereas in the case of the higher water concentration the formation of such a droplet is possible. 

This difference may account for the fact that the temperature induced mixing occurs differently at 

the different compositions considered. On the other hand, for malonic acid/water systems, the effect 

of composition remains invisible in the phase behaviour observed in our studies, which is probably 

due to the overcompensating effect of one or more of the entropic terms.

The effect of the O:C ratio As it has been seen, the phase behavior of malonic acid/water 

mixtures differs greatly from what has been observed previously for oxalic acid/water mixtures 

under exactly the same conditions which, knowing that these molecules are consecutive elements of 

the homologous series of dicarboxylic acids, is a surprising finding. The molecules differ only in the 

fact that in malonic acid the two carboxylic groups are separated by a methylene group, thus this 

methylene group must be the reason for the differences observed in the phase behavior of the two 

mixtures.  In  the case of  oxalic  acid/water  mixtures  we have  argued that  the phase  behavior  is 

governed by entropic factors, since the U-pV term of the Gibbs free energy was found to show no 

tendentious change from one phase to another. The same holds for malonic acid/water mixtures. As 

it has been stated in the previous section about the thermodynamic background underlying the phase 

behaviour  of  binary  aerosols,  the  entropic  contribution  (Stot)  to  the  Gibbs  free  energy can  be, 

theoretically, expressed as the sum of three main types of contributions,  Scomp,  Sor and  Sdisp, where 

subscripts denote the total entropy, its compositional, orientational and dispersion contribution. The 

compositional  term  increases  upon  mixing  regardless  of  the  chemical  nature  of  molecules 

constituting the binary system, thus this contribution should not be affected by the change in the 

carbon atom number. Dispersion always increases the entropy of any system, thus the formation of 
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small dispersed mixed clusters in case of oxalic acid can be attributed to a favorable change in this 

contribution.  On the other  hand,  in  the case of  malonic acid/water  mixtures  this  term remains 

practically intact when crossing the phase boundary, since no dissociation of the aggregate can be 

observed.  This  results  in  a  loss  of  entropy compared  to  the case  of  oxalic  acid/water  systems. 

However, the big aggregate of malonic acid is stable in both mixed and demixed phase, and its 

stability may be attributed to the decreased steric repulsion between the two carboxylic group, the 

increased flexibility of the malonic acid molecule compared to the oxalic acid, and the subsequent 

increase in the orientational degrees of freedom, due to the presence of the extra methylene group 

which separates the two carboxylic functional groups. All things considered the loss of orientational 

entropy due to the relative rigidness of the oxalic acid structure is compensated by increasing the 

dispersion term by the formation of small aggregates. 

Considering the fact that a set of several small aerosol particles, due to their larger total 

surface  area,  serve  probably  as  better  nuclei  for  water  adsorption  and  subsequently  cloud 

condensation than one single big aggregate, we may conclude that our studies are in agreement with 

experimental results stating that aerosols characterised by a higher O:C ratio have a great potential 

as  cloud  condensation  nuclei.  We are  aware  that  the  detailed  study of  this  question  has  to  be 

accompanied by an intrinsic analysis of the surface of the aerosols, which, however, due to their ill-

defined geometrical structure, goes beyond the scope of a PhD thesis, and is part of the plans for 

future studies.

3.7       Summary 

The behavior of two different types of solid surfaces, namely ice and organic aerosols, both 

of which are highly important in environmental issues such as air pollution and climate evolution 

has been studied by means of Monte Carlo and molecular dynamics simulations. We have turned 

our attention primarily to the interaction of these surfaces with other components of the atmosphere 

under conditions characteristic of the troposphere.

The GCMC study of the adsorption of acetaldehyde (in agreement with experiments) on ice 

revealed that  the adsorption of acetaldehyde on ice follows the Langmuir behavior in the entire 

pressure range of the existence of vapor phase acetaldehyde. Correspondingly, the adsorption layer 

is found to be monomolecular up to the point of condensation. Acetaldehyde molecules are attached 

to the ice surface by one single hydrogen bond, formed typically with the dangling H atoms of the 

surface water molecules. They prefer to align preferentially perpendicular to the ice surface, or they 

may adopt tilted alignments with a tilt angle (relative to the ice surface plane) larger than 50o. Upon 
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saturation of the adsorption layer the range of this tilt angle gets narrower, and the preference of the 

acetaldehyde molecule for the perpendicular alignment becomes stronger. Further, it is found that 

the CH3 group strongly prefers to point as straight away from the ice surface as possible within the 

constraint  set  by  the  alignment  of  the  molecular  plane.  The  analysis  of  the  binding  energy 

distribution as well as that of its ice and lateral contributions revealed that at high surface coverages 

lateral  interactions  contribute  to  the  total  binding  energy  comparably  with  the  ice-adsorbate 

interaction.  Lateral  attraction  originates  from  the  dipolar  interaction  of  the  neighboring 

acetaldehyde molecules,  the  dipole vectors  of  which  thus  adopt  head-to-tail  or  antiparallel-like 

relative arrangements. The heat of adsorption at infinitely low surface coverage (i.e., the binding 

energy of a single acetaldehyde molecule by the ice phase) turned out to be -36 ± 2 kJ/mol from the 

experiment, in a clear accordance with the simulation result of -34.1 kJ/mol. Considering that this 

value is  about 20% lower than what  was previously obtained for  formaldehyde,15 and also the 

relative abundance of acetaldehyde in the upper troposphere, the present study clearly stresses the 

possible atmospheric importance of the adsorption of acetaldehyde molecules on ice grains.

Molecular dynamics studies of the adsorption of oxalic acid on hexagonal ice at different 

temperatures at very low and at finite surface coverages, the latter being close to one monolayer of 

oxalic acid molecules allowed us to draw the following conclusions. Firstly, although the oxalic 

acid–water interaction is very strong at infinitely small coverage due to the possible formation of a 

large number of hydrogen bonds between the adsorbed oxalic acid and the surface water molecules, 

the results of the simulations at finite coverage show the predominant role played by the oxalic 

acid–oxalic  acid lateral  interactions  in  the  adsorption/desorption process.  These interactions  are 

even stronger than the water-water and water-oxalic acid interactions, in agreement with what was 

inferred  from the experimental  results.  Secondly,  when increasing the  temperature these strong 

lateral interactions favor the formation of oxalic acid aggregates at the ice surface, preventing oxalic 

acid desorption. Instead, the holes formed within the oxalic acid layer allows the departure of water 

molecules before the desorption of oxalic acid, again in accordance with experimental observations. 

Indeed, water molecules can escape quite easily from the ice surface through the ducts created 

within the adsorbed layer by the oxalic acid aggregation. This suggests that the balance between 

water/ice,  water/VOC  and  VOC/VOC  interactions  is  crucial  question  from  the  point  of  view 

atmospheric processes. MD simulations of hydroxyacetone have yielded merely qualitative results 

concerning the adsorption and have shown the strong need to develop a potential model to describe 

the interactions of this molecule with water. 

Molecular dynamics studies of  oxalic acid/water and malonic acid/water binary aerosols 

aimed  at  reconstructing  the  tropospherically  relevant  part  of  their  phase  diagram  and  at 
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understanding the process of water nucleation induced by organic aerosols in the troposphere have 

allowed us to draw the following conclusions. In the case of oxalic acid, we have found that the 

equilibrium  size  of  neat  aggregate  was  rather  small  (consisting  of  about  60  molecules),  and 

independent of the initial density of the system. For malonic acids on the other hand we found a 

correlation  between  the  equilibrium  cluster  size  and  the  initial  density  of  molecules  in  the 

simulation box, namely at double density, double-sized clusters have been formed. On the other 

hand the equilibrium cluster size has been (at any initial density) considerably higher than in the 

case of oxalic acid aggregates. Analyzing the phase transitions of the binary aerosols of these two 

species with water has shown the following results.  Water concentration has  affected the phase 

behavior of the oxalic acid/water binary mixtures rather strongly, whereas this factor has turned out 

to be uninfluential in the case of malonic acid/water aerosols. Temperature seems to have been the 

parameter governing the phase behavior of these binary mixtures, whereas the effect of pressure has 

been found to be marginal in both cases, which finding suggests that the phase transitions are driven 

by the entropic (TΔS) term to the Gibbs free energy, and is thus in accordance with the fact that 

changes in the U+pV term of the Gibbs free energy would not favor the observed phase transition. 

The striking difference between the behavior of the two types of aggregates, consisting of otherwise 

rather similar molecules, as cloud condensation nuclei can be attributed also to entropic reasons. 

Namely, oxalic acid aggregates may increase their total entropy efficiently by forming rather small 

dispersed  particles,  which  is  energetically  clearly  unfavorable,  due  to  the  breakage  of  several 

hydrogen  bonds  accompanying  the  process,  whereas  the  increased  flexibility  of  malonic  acid 

molecules  facilitates  the  increase  of  entropy  solely  through  increasing  the  number  of  possible 

conformations within one single aggregate. If we consider that the total surface area of several small 

aggregates is considerably larger than one single big particle, and that their affinity to scavenge 

other  molecules  is  thus  considerably  higher,  we  may  conclude  that  this  above  finding  is  in 

accordance with the experimental study stating that O:C ratio characterising the organic compound 

is in direct correlation with its cloud condensation potency. 
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Chapter 4

Fluid interfaces
4.1 General features of fluid interfaces

Liquid/liquid  and  liquid/gas  interfaces  are  of  paramount  importance  in several  fields  of 

applied  chemistry,  such  as  separation  science.126 Besides  their  crucial  role  in  the  field  of 

applications, fluid interfaces have been in the foreground of fundamental research as well. Their 

most  important  and  probably most  peculiar  characteristic  is  the  formation  of  thermal  capillary 

waves,127 Capillary waves, in general, are defined as waves propagating at phase boundaries, whose 

dynamic behavior is governed by surface tension or gravity depending on the wavelength. Capillary 

waves are visible even macroscopically if a raindrop falls into a pond or we simply remove the cork 

from the washbasin and let the water flow. A capillary wave of an atomistic interface is different 

from macroscopic waves in the sense that the perturbation leading to its formation is more often a 

thermal than a mechanical fluctuation. On the atomistic scale gravity can be neglected, thus the 

effect of thermal motion and surface tension are responsible for the formation and propagation of 

microscopic capillary waves. According to the capillary wave theory, the area of the distortion of 

the initial intrinsic surface caused by the thermal motion is proportional to the energy of the wave 

and the constant of proportionality is the surface tension. The distortion of the surface by these 

waves plays a significant role in defining the equilibrium structure and dynamic behavior of the 

interface.

Liquid/gas and liquid/liquid interfaces are similar to solid interfaces in the sense that their 
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behavior is governed, besides the above mentioned capillary waves, by the effort to reduce the 

interfacial excess of the Gibbs free energy. The difference between solid and fluid interfaces in that 

sense  is  that  unlike solid  surfaces,  interfaces  of  two fluid phases  may minimize the  interfacial 

excess properties by minimizing their surface area, not only by means adsorption. Adsorption at 

fluid interfaces,  though obeys similar physico-chemical  rules,  is  a phenomenologically different 

process than what has been observed for solid interfaces. As it has been described in the previous 

chapter, adsorption at solid interfaces happens strictly when molecules of the opposite (fluid) phase 

get trapped by free adsorption sites of the surface increasing the number of interacting neighbors of 

that particular site, and thus reducing the interfacial excess Gibbs free energy of the solid surface. 

On the contrary to  solid surfaces,  the increased molecular mobility in a  fluid phase allows the 

relatively rapid exchange of molecules between the bulk fluid phase and its surface. This may result 

in  the  enhancement  of  the  concentration  of  one  of  the  compounds  of  a  liquid  mixture  at  the 

interface, and its subsequent depletion in the bulk phase. The process of the formation of such an 

interfacial region enriched in one or more of the components of a mixture is called adsorption in the 

case of  liquid interfaces.  It  is  obvious that  this kind of adsorption does  not  necessarily reduce 

interfacial excess by increasing the number of interacting neighbors of a surface molecule. The way 

by which the reduction of the excess free enthalpy is eventually achieved depends greatly on the 

structural  and  chemical  peculiarities  of  the  surface  active  species,  i.e.:  the  one  which  resides 

preferentially at the interface. 

4.1.1 Examples of surface active species

There are several compounds of different chemical nature which may act as surface active 

components in liquid mixtures. Take the case aqueous solutions. The spectrum of possible surface 

active solutes ranges from small organic molecules, through surfactants and polymers to simple and 

composite ions, each of them having a different mechanism and thermodynamic driving force of the 

adsorption, and each of them forming an adsorption layer which differs greatly in its structural and 

dynamic characteristics. It should be noted that surface activity of these molecules can be either 

positive, if their concentration is enhanced in the vicinity of the interface, or negative in which case 

of  region  of  depleted  concentration  will  be  found  in  the  interfacial  region.  The  possibility  of 

competitive  adsorption  on  the  other  hand  further  elaborates  the  scope  of  properties  to  be 

investigated. In the following sections I describe some examples of surface active species and I shed 

light on the peculiarities of competitive adsorption in the case of polymers and surfactants.
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4.1.1.1 Surfactants

The most well-known among surface active molecules are undoubtedly surfactants who are, 

in  general,  ionic  or  non-ionic  molecules  with  amphifilic  structure,  built  up  in  general  of  a 

hydrophilic headgroup, which may be anionic (SO4
2-), cationic (-CH2-NMe3

+)or neutral (-C2H4O- 

oligomers), and a hydrocarbon chain of variable length, which plays the role of the hydrophobic 

part. In their aqueous solutions they tend to adsorb at the interface with such an orientation that 

minimizes the interaction of the latter with water molecules, which results in the formation of a self-

organized layer of surfactants at the interface in equilibrium with molecules and micelles dissolved 

in the bulk phase. This phenomenon is well-known since the early years of colloid chemistry, and it 

has been described several times, for instance by Kunjappu et. al. in 1989,128 at that time without 

seeing the system in an atomistic resolution, by in situ experimental investigation of the aqueous 

solutions of several surfactants.

The  main  thermodynamic  driving  force  of  surfactant  adsorption  at  the  interface  of  its 

aqueous solution lies, besides the obvious electrostatic and dispersion terms, in the occurrence of 

the  so  called  hydrophobic  interactions.  In  spite  of  the  misleading  nomenclature,  hydrophobic 

interactions are not the interactions which appear between two hydrocarbon chains. Instead, the key 

process  of  such  interactions  is  the  formation  of  locally  frozen  water  domains  along  the  long 

hydrocarbon chains in their aqueous solution, which leads obviously to the loss of entropy. When 

these hydrocarbon chains are expelled from the aqueous phase, the „melting” of these domains and 

the subsequent recovery of the hydrogen-bonded network of water causes a considerable change in 

the Gibbs free energy of the system. Even if the thermodynamic behavior could be fully explained 

by looking at data about the heat of adsorption, characterizing the molecular level structure of the 

adsorption layer certainly necessitates a high-resolution approach. Questions like the possibility of 

the lateral aggregation of the surfactants at the interfaces, or the dependence of their orientation on 

the  surface  coverage  as  well  as  their  lateral  diffusion  at  the  surface  are  readily  accessible  via 

computer  simulations,  and  their  better  understanding  can  facilitate  the  development  of  more 

accurate adsorption models and may verify the concepts of existing theories, which in turn can be of 

use in planning industrial procedures.
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Figure 4.1. Schematic illustration of a linear polymer adsorbed at the interface of two immiscible fluid 
phases. An example of train segments, anchoring the molecule to the surface is highlighted by yellow 

whereas one of the loops is shown with a green highlight.

This simple model has been first  described by Jenkel and Rumbach in  1951129 on the basis of 

analyzing the adsorbed amount of polymers per unit area.

Upon further investigation of polymer adsorption by experiments several  questions arose 

concerning the mechanism of the adsorption. Consequently, quantitative description of the surface 

layer,  containing at least some segments of the adsorbed polymer, at the air/water interface has 

grown out to be a subject of continuous experimental and theoretical investigations. One of the most 

intensively used methods to study adsorption of polymers are surface tension measurements. The 

results of such studies have been traditionally interpreted in terms of the Gibbs equation describing 

the relationship between the surface excess concentration of th  ieth compound  Γi and the surface 

tension (γ) in terms of the bulk concentration (Ci)
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However,  several  fundamental  problems  are  related  to  this  widely  used  practice.  First  of  all, 

polymers are usually polydisperse, thus their aqueous solutions contain molecules of different chain 

length,  and  the  proper  use  of  the  Gibbs  equation  would  require  the  exact  knowledge  of  the 

composition of the system.130 Another important drawback is the lack of detailed knowledge about 

the  concentration  dependence  of  the  polymer  activity  coefficients  in  the  bulk  phase,  which  is 

problematic in the semidilute regime, where experimental evidence shows a significant additional 

surface tension reduction, which implies that the activity coefficient is a complex function of the 

bulk concentration. 131,132,133,134,135 Even in the less complicated case of dilute polymer solutions with 

fairly narrow size distribution of the components, some anomalies of the adsorption behavior were 

reported for a variety of systems. 136,137,138 

4.1.1.3 Competitive adsorption of polymers and surfactants at liquid interfaces

In  the  majority  of  industrial  applications  polymers  do  not  appear  as  simple  aqueous 

solutions.  Mixtures  of  polymers  and  surfactants  are  more  common  as  main  ingredients  in  the 

different products of the paint, pharmaceutical as  well as home and personal care industry.  The 

efficacy of such products depends strongly on the surface properties of these components. On the 

other  hand,  mixed  surface  layers  of  amphiphils  and  macromolecules  are  also  important  model 

systems of fundamental research in colloid chemistry and nanoscience. The combined practical and 

fundamental  interest  explains the motivation behind the intensive research done in the last  two 

decades targeting such systems.139,140,141

The interaction between ionic surfactants and neutral, flexible polymers in the bulk phase of 

their solution is generally described as a cooperative process, during which micelle-like aggregates 

of  the  surfactant,  wrapped  around  by  the  polymer142,143 are  formed  at  the  critical  aggregation 

concentration (cac).144,145 Interestingly, this classical physical picture of the bulk interaction between 

neutral  polymers  and ionic surfactants  is  historically based on the  interpretation of  the surface 

tension  isotherms  of  poly(ethylene  oxides)  (PEO)  of  different  size  in  the  presence  of  sodium 

dodecyle  sulfate  (SDS).  In  the  pioneering  work  of  Jones142,  it  was  assumed  that  the  polymer 

adsorption is negligible, and hence the shape of the surface tension isotherms reflects solely the 

features of the bulk phase interactions. Namely, as the total surfactant concentration exceeds the 
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cac, the bound amount of surfactant increases rapidly, and this is accompanied by a slow increase of 

the  equilibrium  surfactant  activity,  while  above  the  critical  micellar  concentration  (cmc)  the 

isotherm becomes practically constant. Since the publication of this classical  work a number of 

studies devoted to this problem have been carried out including the measurement of surface tension 

isotherms.130,146,147,148, Rather  similar  surface tension isotherms were observed  in  a  great  deal  of 

polymer/surfactant  mixtures,  regardless  of  the  variety  of  the  surface  activity  of  the  polymers 

involved  in  these  studies  with  or  without  the  surfactant.134,135,149,150,151 Therefore,  in  order  to 

rigorously correlate the bulk binding characteristics of the surfactant with the results of the surface 

tension measurements the classical assumption of the negligible extent of adsorbed polymer needs 

to be modified.

Several neutron reflection studies have been devoted to the investigation of the surface layer 

of aqueous mixtures of neutral polymers and surfactants having surface tension isotherms of the 

classical  shape  with  two  breakpoints,  since  this  method  combined  with  selective  isotope 

substitutions  is  capable  of  determining  the  composition  of  the  surface  layer.  In  these  studies, 

depending on the systems,  either displacement (e.g.,  in the case of  PEO/SDS and PEO/lithium 

dodecyle  sulfate152,153) or  enhanced  adsorption  of  the  polymer  (e.g.,  for  poly(vinyl 

pyrrolidine)/SDS)132,137 was observed below the cac. It  was also evidenced that in some systems 

there must be some adsorbed polymer even when the surfactant activity is close to the cmc. These 

controversial results suggest that the full understanding of the surface tension behavior of a specific 

polymer-surfactant system requires the simultaneous and independent investigation of the surface 

compositions and bulk phase interactions, which is, however, far from being a trivial task with the 

usual experimental techniques.

4.1.1.4 Surface activity of ions

Small  molecular  non-amphiphilic  ions  may also  perform surface  active  behavior  at  the 

interface  of  their  aqueous  solutions,  although  data  obtained  from  classical  surface  tension 

measurements suggests that the interfacial tension increases upon addition of inorganic salts to their 

aqueous solutions.154,155,156,157,158 The first explanation of this phenomenon by Onsager and Samaras 
159 was based on describing the ion as a simple point charge and the interface as a sharp and flat 

discontinuity between two continuous media of remarkably different dielectric permittivity. In the 

framework of this theory, the repulsion of ions from the interface is expected as a result of the force 

exerted on them by the image charge formed in the opposite phase.160 This pioneering theory has 

been  further  developed  by  the  addition  of  surface  effects  to  the  original 
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model.161,162,163,164,165,166,167,168,169 However,  all  the presently existing versions  of  the original  theory 

predict the monotonically decreasing distribution of the ions upon approaching the interface along 

the surface normal axis, and eventually claim the existence of an ion free region situated right at the 

surface. Surface sensitive spectroscopy (SFG and SHG) measurements170,171,172,173,174,175 disproved the 

general  validity  of  the  above  described  theory  by  detecting  the  enhancement  of  the  ion 

concentration at the surface region for certain ions. These findings seemingly contradict the results 

of surface tension measurements,  but  considering the fact  that  these novel methods are able to 

detect  solely  the  outermost  surface  layer  of  the  systems  while  the  classical  surface  tension 

measurements naturally involve the entire system, this contradiction is far from being sharp and 

evident. Thus an attempt to resolve these seeming contradictions could be made by such simulating 

the behavior of ions right at the fluid interface.

4.1.2 The dilemma of fluid interfaces – determining the intrinsic surface

The above-mentioned examples of open questions concerning fluid interfaces  justify the 

need  for  the  development  of  methods  aimed  at  the  separation  of  the  interfacial  layer  and  its 

treatment as an individual „phase”, which is of crucial importance if one wants to study any of the 

above described phenomena. Computer simulations can be easily tuned for such tasks, as in any 

case they record the position of molecules, thus providing a piece of information that enables us to 

separate the interface from the rest of the surface, at least in theory.

In  practice,  one  of  the  greatest  dilemmas  of  scientists  involved  in  investigating  fluid 

interfaces is how to determine exactly the surface itself.  Until very recently, the most commonly 

used method has been to define the interface as the region where the density of the phase changes 

from 90% to 10% of its bulk phase value. This approach is acceptable from the macroscopic point 

of view, however, with the recent rapid development of surface sensitive experimental methods and 

complementary computer simulation techniques, an increasing demand has been emerging for a 

more  precise  determination of  the  interfacial  layer.  Besides  this,  the density profile  method to 

determine the interface is burdened by a serious systematic error of unknown magnitude which is 

due to the fact that thermal capillary waves, described in section 4.1, corrugate the surface on the 

atomistic scale. As a result of these capillary waves, the interface is molecularly rugged and the 

amplitude of the corrugations can be so large that some interfacial molecules may be identified as 

part  of  the  bulk  phase  according  to  the  above  described  definition.  On  the  other  hand,  some 

molecules, which are part of the bulk phase (i. e.: are surrounded completely by molecules of the 

same phase) may be found in the zone where the density changes between 90% and 10% of the bulk 
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phase value, and thus they will be regarded as interfacial. 

This systematic error can be in principle corrected in atomistic simulations either by giving a 

functional form to the intrinsic covering surface176,177 or by determining the full list of interfacial 

molecules. No matter how easy this task may seem knowing the exact spatial coordinates of every 

atom of  a  simulated  system,  it  is  in  reality  far  from being trivial.  Several  methods  have  been 

described in the literature to determine the intrinsic interface between fluid phases. The first attempt 

to select  the interfacial  molecules  was made by Stillinger  who stated that  interfacial  molecules 

differ from bulk phase ones in the sense that they are in direct contact with a percolating volume of 

empty space.178 This approach, though theoretically correct, was never routinely used due to the 

enormous computational demand of its algorithm. More than 20 years after Stillinger's theory had 

come to light, Chacón and Tarazona developed their so called Intrinsic Sampling Method which 

attempts at  finding the covering surface that  goes through at a set  of  pivot sites whose area is 

minimal. 179 They treat the surface as a smooth mathematical function, express it as the sum of its 

Fourier components, and minimize the normal component of its distance from the pivot sites in a 

conveniently chosen form to yield the real covering surface. This method determines the intrinsic 

surface in a self-consistent way. It had originally been developed for liquid/vapor interfaces and 

later extended for liquid/liquid interfaces as well. Another approach is the grid-based method of 

Jorge and Cordeiro,180 who define the interface by dividing the simulation box by a fine rectangular 

grid  whose  resolution  is  larger  than  the  average  wavelength  of  the  thermal  capillary  waves 

corrugating the surface parallel to the interface normal axis. In each of these grids they determine 

the position of the interface, and put the individual grids together to reconstruct the entire intrinsic 

surface. A different method was developed in our research group, which is based on probing the 

interface by spheres of a given radius which are moved along a set  of  gridlines parallel  to the 

interface normal axis.25 This method is described in details in section 2.7 since it has been used and 

further developed during my PhD studies, thus here I refrain from describing its principles. On the 

other hand it should be noted that a similar method was developed by Chandler and coworkers 181 

for mapping the surface of proteins, that relies on moving the probe sphere along the interface.  The 

advantage of this latter method is that it does not require the interface to be flat. Chowdhardy and 

Ladanyi introduced a completely different approach for identifying the interfaces.182 Their Surface 

Layer  Identification  method is  based  on the  idea  that  interfacial  molecules  are  necessarily the 

closest to an opposite molecule. In practice they search over all possible pairs of the two opposing 

phases to find those molecules of the analyzed phase which are closest to any of the sites of the 

opposite phase.  This method, unlike the ones described above, is seemingly free from any free 

tuning parameter, however it is connected to the presence of a condensed opposite phase.  
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The accuracy and computational  cost  of the above mentioned methods varies on a large 

scale. They have been thoroughly tested recently by Jorge39,183 who compared their efficacy to the 

self-consisted method of Chacón and Tarazona. The results of these studies showed that the best 

compromise between computational  demand and accuracy is  the ITIM method which has been 

developed in our group. Nevertheless, the most important message of the comparative study is the 

necessity of using any of these methods when it comes to treating fluid interfaces.

4.2. Results concerning fluid interfaces

4.2.1 Competitive adsorption of polymers and surfactants at the free interface of water[6,7]

4.2.1.1 Introduction

This work is aimed at the investigation of the composition, the structure and the dynamics of 

poly(ethylene oxide) (PEO) chains adsorbed at the surface of their aqueous solutions in the absence 

and in the presence of an increasing amount of sodium dodecyle sulfate (SDS). The main goal of 

our studies have been to characterize the adsorption of the pure polymer, and to shed light on the 

thermodynamic reasons underlying the frequently observed competition of PEO and SDS molecules 

for adsorption sites at the aqueous interface, by detailed analysis of the mechanism by which the 

highly surface active polymer is  displaced from the water surface in the presence of increasing 

amount of the surfactant.

PEO chains of various lengths have been simulated in a number of times in several different 

environments, such as the bulk phase of its aqueous solution184,185,186,187,188 and melt,189 inside190 and at 

the surface of its crystalline phase191 as well as at the free surface of liquid water.192 Further, the 

adsorption layer of SDS193,194,195,196 has also been simulated in a number of times both at the free 

water surface and at the liquid-liquid interface between water and various apolar liquids. However, 

in spite of  the wealth of such studies,  we are only aware of one single publication concerning 

computer simulation investigation of the mixed PEO-SDS system in the bulk phase of their aqueous 

solution,197whereas, to the best of our knowledge, the mixed adsorption layer of PEO and SDS has 

never been investigated yet by means of computer simulation methods. 

We have investigated the state of PEO molecule adsorbed at the free water surface by means 

of molecular dynamics simulations. The results are interpreted in terms of the novel Identification 

of the Truly Interfacial  Molecules (ITIM) method,25 modified to treat  the interfaces of polymer 

solutions. To characterize the macroscopic structure of the interface the distribution of the polymer 
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segments  along the macroscopic normal  of  the interface has  been calculated.  In  order  to get  a 

deeper insight into the properties of the adsorption layer at the molecular level, structural, dynamic 

and energetic properties of the polymer segments have been evaluated both in the two bulk phases 

and at the interface. For this purpose, their partition between the bulk liquid phase, the interfacial 

region and the vapor phase has been determined. The conformational state of the polymer has been 

characterized by the chain end-to-end distance. This investigation has been completed by analyzing 

the  mean  residence  time and  the  binding  energy  of  the  polymer  segments  in  the  above  three 

different  parts  of  the  system.  Upon finding an  apparently  well-functioning model  for  the  PEO 

molecule, which was a task of crucial importance concerning the success of the studies, and upon 

checking the validity of this model through the above mentioned calculations, we have extended 

this study by adding an increasing amount of SDS to the system to investigate the competitive 

adsorption of the neutral polymer chain and ionic surfactant molecules at the free water surface. The 

trajectories resulting from the simulations have also been interpreted here in terms of the modified 

version of the ITIM method.25

4.2.1.2 Computational details

Molecular dynamics simulations  Molecular dynamics simulations of the mixed PEO/SDS 

adsorption layer of seven different surface coverages of the surfactant, (ΓSDS = 0, 1, 2, 3, 4, 5 and 

6 μmol/m2), at the free water surface have been performed on the canonical (N,V,T) ensemble at 

T = 298 K. The systems contained 2798 water molecules, two identical PEO chains, consisting of 

50 (-CH2-O-CH2-) monomer units  and two chain terminal  -CH3 groups (bearing zero charge to 

provide the electroneutrality of the polymer), 0, 12, 24, 36, 48, 60 and 72 DS- molecules, and the 

same number of Na+ counterions. The X, Y and Z edges of the rectangular basic simulation box were 

290.0 Å, 31.4 Å and 31.4 Å long, respectively,  X being the axis perpendicular to the macroscopic 

plane of the interface. The simulations have been performed using the GROMACS 3.3.2. program 

package.109The equations of motion have been integrated in time steps of 1 fs. The temperature of 

the system was kept constant by means of the weak coupling algorithm of Berendsen et al. The 

bond lengths of the PEO chains and DS- ions have been kept fixed using the LINCS algorithm112 

whereas the geometry of the water molecules has been kept unchanged by means of the SETTLE 

method.111

The total energy of the systems has been calculated according to generally used protocol 

described in Chapter 3.3 for the simulation of oxalic acid/ice interactions. All interactions  have 

been truncated to zero beyond the molecule (or monomer unit) based center-center cut-off distance 
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of 9 Å. Lennard-Jones interactions have been neglected beyond this cut-off distance, whereas the 

long range part of the Coulomb term was accounted for by using the Particle Mesh Ewald (PME) 

method.16 The intramolecular  energy term included contributions from bond angle bending and 

torsional rotation of both the PEO chains and DS- ions. 

Water  molecules  have  been  described  by the  rigid,  three  site  SPC model,  198 while  the 

potential parameters of the Na+ and DS- ions have been taken from the GROMOS force field.199,200 

For the alkyl  chains of the surfactant  and for the PEO molecule both bond angle bending and 

torsional flexibility have been allowed. The torsional potential of the alkyl chains of the DS- ions 

has been described by the Ryckaert-Bellemans potential  function.201 The PEO chains have been 

described by the potential model proposed by Shang, Wang and Larson.197 This model is also based 

on  the  GROMOS force  field,  with  the  modifications  that  the  C12  (repulsion)  Lennard  Jones 

parameter of the O atoms (C12 being equal to 4εσ12) is scaled down by a factor of 0.55, and the 

Coulomb repulsion of two such oxygens in 1-4 position is scaled down by a factor of 0.65. These 

scaling factors were optimized to reproduce the experimental  hydration enthalpy as well as the 

trans/gauche ratio of the PEO segments also in systems consisting SDS. The CH3 and CH2 groups of 

the  PEO chains  as  well  as  of  the  DS- ions  were  treated  as  united  atoms.  The  intermolecular 

interaction  parameters  of  the  water,  PEO  and  SDS  molecules  used  in  the  simulations  are 

summarized in Appendix A, Table 2, converted to the corresponding σ, ε values. 

The initial coordinates of the PEO chains have been created by the following algorithm. 

First, ten segments have been attached to each other in a completely stretched conformation. Then 

the  energy of  this  system has  been  minimized  by the  steepest  descent  method  and  have  been 

equilibrated for 50 ps on the isothermal-isobaric (N,p,T) ensemble at p = 1 bar and T = 298 K. In the 

next step another chain of 10 stretched segments has been attached to the free (CH2-) end of the 

equilibrated chain and the energy minimization and (N,p,T) ensemble simulation runs have been 

performed on the elongated chain. This process has been repeated until a pre-equilibrated chain 

consisting of 50 (-CH2-O-CH2-) monomer units was obtained. Then two identical pre-equilibrated 

chains have been placed in the vicinity of the two pre-equilibrated liquid/vapor interfaces, of an 

aqueous system built up by 1598 water molecules. This system has been equilibrated for 20 ns to 

obtain a stable adsorption layer of the polymer. The dodecyle sulfate adsorption layer has then been 

created separately from a layer consisting of 36 DS- ions in an ordered arrangement. This number of 

the DS- ions corresponds to the highest surface coverage considered. Lower coverages have been 

created by randomly removing sufficient number of DS- ions after thorough equilibration of the 

original layer. Two equilibrated layers, consisting of the adequate number of DS- ions have then 

been placed to the close vicinity of both surfaces of the water/PEO system, and simultaneously an 

99



equal number of Na+ counterions has been inserted randomly into the bulk liquid phase to retain 

electroneutrality. In this way, the number of SDS molecules was always equal at the two surfaces in 

the basic box. These systems have been further equilibrated for 5 - 8 ns, followed by a 7 ns long 

production run, during which 3500 sample configurations, separated by 2 ps long trajectories each 

have been saved for the analyses.

ITIM analyses In  this  study we have used a  modified  version of  the ITIM method25 to 

identify the water molecules and PEO monomer units that are located right at the surface of the 

aqueous phase. It should be noted that the layer of the adsorbed DS- ions was always regarded as 

part of the opposite, apolar phase. Indeed in cases of low surface coverage the hydrocarbon chains 

of  these  ions  indeed  always  penetrated  to  the  vapor  phase,  whereas  in  cases  of  high  surface 

coverages they formed an apolar layer, locally very similar to a liquid hydrocarbon phase, right 

beyond the aqueous surface. Thus, hereinafter we simply refer to the vapor phase of the systems 

consisting of various amounts of hydrocarbon chains as the apolar phase. 

Slight  alteration  of  the  ITIM analysis  has  been  necessary due  to  the  following  reason. 

Although the water penetration to the apolar phase has always been found to be negligible, we have 

observed the formation of short PEO loops in the vapor phase, even in the absence of a hydrocarbon 

region. The monomer units forming such loops can stop the probe sphere, and hence they can easily 

be misidentified as interfacial rather than apolar phase units, thus truly interfacial water molecules 

or PEO monomer units located beneath these apolar phase loops may be shielded from the probe 

sphere causing systematic error. To avoid this error and to distinguish between the PEO monomer 

units being in the aqueous phase, right at the interface, and in the apolar phase we have used the 

following  procedure.  First,  the  list  of  the  PEO monomer  units  that  are  in  the  apolar  phase  is 

determined. These monomer units are identified by the lack of their close water neighbors. A water 

molecule is regarded as being close to a PEO monomer unit in this respect if the distance of their O 

atoms is smaller than 3.1 Å, i.e., the first minimum position of the corresponding radial distribution 

function. The PEO monomer units identified this way are considered as parts of the apolar phase 

and are disregarded from the analysis. After the selection of such monomer units interfacial water 

molecules and PEO segments are determined, i.e.: the ITIM analysis is carried out regarding only 

the non-apolar phase PEO segments and water molecules. Following the identification of the truly 

interfacial  water  molecules  and  PEO  monomer  units  the  remaining  PEO  segments  and  water 

molecules are regarded finally as being in the bulk liquid phase.

In the ITIM analyses a probe sphere of the radius of 2.0 Å has been used, in accordance 

with the simple notion that  reasonable results  can only be expected if  the probe sphere size is 

comparable  with  the  size  of  the  atoms constituting  the  phase  of  interest.  In  order  to  obtain  a 
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sufficiently fine resolution of mapping the interface, thus we have used a set of test lines spaced 

equally  in  a  64 × 64  grid  along  the  macroscopic  plane  of  the  interface.  Residues  have  been 

represented by their Lennard-Jones  σ  parameters (When performing the ITIM analyzes the two 

surfaces of the aqueous phase present in the basic simulation box were treated separately, and the 

obtained results were averaged not only over the 3500 sample configurations per system, but also 

over these two surfaces per sample configuration. 

4.2.1.3 Results

4.2.1.3.1 The distribution of the components along the surface normal axis

Density profiles The mass density profiles along the macroscopic interface normal axis X of 

the seven systems simulated are shown in Figure 4.2, whereas the number density profiles of the 

water and PEO oxygen atoms, the SDS S atoms and chain terminal CH3 groups as well as of the 

Na+ counterions  are  shown  in  Figure  4.3  as  obtained  in  the  systems  containing  0,  2,  4  and 

6 μmol/m2 SDS at the surface of the aqueous phase.

Figure 4.2 Mass density profiles of the systems containing 0 (thick solid line), 1 (squares), 2 (circles), 3 (up 
triangles), 4 (down triangles), 5 (diamonds), and 6 μmol/m2 (stars) SDS at the surface of the aqueous phase. 
All profiles shown are averaged over the two interfaces present in the basic simulation box. The inset shows 

the profiles in the interfacial region on a magnified scale.

As is seen, the mass density profile of the SDS free system is rather similar to that of liquid 

water; it changes smoothly from the value characteristic of the liquid phase to zero. The 90-10% 

width of this profile, i.e., the distance range within which the density drops from 90% to 10% of the 

bulk liquid phase value is about 4.5 Å. However, upon adding SDS to the system the drop of the 

mass density profile at the interface becomes considerably less sharp, the region of intermediate 

densities between the two phases becomes much broader than in the lack of SDS. Thus, the 90-10% 
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width of the profiles corresponding to the systems of 1 and 2 μmol/m2 SDS content are already 9 

and 13 Å, respectively. This broadening of the intermediate density region reflects the appearance 

of the SDS adsorption layer, which is characterized by a lower density than the aqueous phase. 

Further increase of the SDS surface density leads to the development and broadening of a shoulder 

of the mass density profile around  X = 55 Å (see the inset  of Fig.  4.2).  The first  traces of  this 

shoulder are already apparent in the profile of the 3 μmol/m2 SDS system, whereas in the 5 and 

6 μmol/m2 SDS systems a well-developed shoulder is seen with mean density of 0.3 g/cm3. The 

appearance  of  this  shoulder  reflects  broadening of  the adsorbed  SDS layer,  presumably due to 

changes in the orientation (i.e., from parallel to perpendicular alignment relative to the interface) of 

the adsorbed molecules. 

More detailed information on the structure of the mixed PEO/SDS adsorption layer can be 

obtained from the number density profiles  of the different  atoms.  In  the lack of SDS the PEO 

molecule is adsorbed at the water surface by a minority,  i.e.,  about 20% of its  monomer units, 

whereas a large part of the polymer chain forms relatively long bulk liquid phase loops. 

Figure 4.3. Number density profiles of water O atoms (solid lines), PEO O atoms (full circles), SDS chain 
terminal CH3 groups (open circles), SDS S atoms (open triangles) and Na+ counterions (asterisks) as  

obtained at 0 (top panel), 2 (second panel), 4 (third panel) and 6 μmol/m2 (bottom panel) SDS at the surface 
of the aqueous phase. Profiles are averaged over the two interfaces present in the basic simulation box. The 
scale on the left refers to the water O atom density, and that on the right to the PEO and SDS atom densities.
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Correspondingly,  the main PEO density peak is  located beneath the interface,  and only a small 

shoulder of this peak is exhibited in the X region of intermediate water densities. Fig 4.3 shows that 

in the presence of even a relatively small amount of SDS at the water surface the PEO molecule 

behaves in a completely different way. In the presence of a small amount of SDS the majority of 

PEO segments is located at the surface of the aqueous phase (second panel of Fig. 4.3). This finding 

stresses  that  the low affinity of  the PEO monomer units  to the surface in the absence of  SDS 

molecules cannot be explained by the saturation of the water surface by the polymer segments, as in 

the  presence  of  SDS  molecules  the  overall  surface  coverage  is  naturally  higher  than  in  their 

absence, still a much larger number of PEO monomer units are accommodated at the surface in the 

presence of a few SDS molecules. Further increase of the SDS surface density, however, leads to a 

competition between  the SDS molecules  and PEO monomer units  for  the  surface positions,  as 

reflected in the re-appearance of a bulk phase PEO density peak (third panel of Fig. 4.3). Finally, 

upon saturation of the adsorption layer by SDS molecules the majority of the PEO monomer units 

are departed from the water surface due to this competition (bottom panel of Fig. 4.3). 

Finally, it should be noted that SDS molecules practically do not enter the bulk phase of the 

solution, even at the highest surface concentration considered. Thus, the bulk phase concentration of 

SDS, calculated in the 40 Å wide slab in the middle of the liquid phase, where the concentration of 

both the DS- and Na+ ions is already constant, resulted in always below 0.006 μM, which is well 

below the experimental value of  the critical aggregation concentration (cac), falling between 0.9 

and 1.3 μM depending on the molecular weight of PEO. 202 Thus, in accordance with experimental 

data, 203 the complete squeezing out of PEO from the surface by SDS occurs also well below the cac 

in the present simulations.

Partitioning of the PEO segments among the three regions of the system Having identified 

the truly interfacial PEO segments allows us to calculate percentage of the segments in the three 

different regions of the system. The dependence of the amount of PEO monomer units adsorbed at 

the surface on the SDS surface density is also seen from the partitioning of the PEO monomer units 

between the interface and the two bulk phases. The percentages of PEO segments in the different 

regions of the system at the different SDS concentrations is collected in Appendix B, Table 2.

In the SDS free system 73% of the PEO monomer units are found to be in the bulk aqueous 

phase, and only 26% of them is located right at the interface. However, even in the presence of 

1 μmol/m2 SDS at the water surface more than 80% of the PEO monomer units are found in surface 

positions,  and the percentage of the bulk aqueous phase monomer units drops below 15%. The 

increase of the SDS surface density up to 4 μmol/m2 leads to small changes in the partitioning of the 
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PEO  segments.  A slight  decrease  in  the  percentage  of  interfacial  monomer  units  due  to  the 

increasing  occupation  of  the  surface  sites  by  SDS  molecules  is  evidenced.  However,  up  to 

3 μmol/m2 SDS surface density the PEO monomer units departing from the interface enter rather 

the  apolar  than  the  aqueous  phase.  Further  increase  of  the  SDS  surface  density  leads  to  the 

occupation  of  the  vast  majority  of  the  surface  positions  by  adsorbed  SDS  molecules,  whom 

eventually squeeze out the PEO monomer units from the surface in a step by step manner. From 

5 μmol/m2 SDS surface density the vast majority of the PEO monomer units are again located in the 

bulk aqueous phase. 

Thermodynamic  driving  force  of  the  partition In  the  SDS-free  system,  where  the  vast 

majority of the monomer units are located inside the bulk liquid phase;  and only 17% of them 

anchor the entire polymer to the surface, the observed partitioning of the polymer segments is a 

result of an interplay between entropic and energetic effects. Since the monomers in the vapor phase 

have no close contact neighbors, and the energy of their interactions with the rest of the system is 

expected to be relatively small in magnitude, the presence of the vapor phase polymer loops is 

clearly an entropic effect. (It should be noted that, as we have already seen, the traditional model of 

polymer adsorption usually disregards the presence of vapor phase loops (see Fig. 4.1), and assumes 

that the polymer segments are partitioned solely between the bulk liquid phase and the interface. 

The results of this study stress that this approach might be refined in this respect.) The presence of 

the weakly polar (-CH2-O-CH2-) monomer units at the boundary between the liquid and vapor phase 

is energetically clearly preferable to that of the highly polar, hydrogen-bonding water molecules, 

which is reflected also in the fact that the surface tension of the SDS-free system has turned out to 

be only 51.3 mN/m, i.e., almost the third of the value of 120.3 mN/m obtained for neat SPC water. 

Thus,  the observed small  percentage  of  polymer segments  at  the  interface can be  attributed  to 

entropic  effects.  Indeed,  the  presence  of  consecutive  PEO  segments  at  the  interface  seriously 

restricts  their  conformational degrees  of freedom, while there is  no such restriction in the bulk 

liquid phase.  Thus,  while the intermolecular energy term favors  that  PEO segments  stay at  the 

interface (since, due to their weaker interactions with their neighbors they lose considerably less 

interaction energy by being at the interface than the water molecules), the conformational entropy 

of the PEO chain effectively prevents more consecutive monomer units from being simultaneously 

at the interface. The presence of SDS at the surface modifies the interplay of the above two factors 

substantially. The charged headgroup of the DS- ions as well as the Na+ counterions can strongly 

interact with the charge distribution of the PEO monomer units, giving rise to the internal energy 

decrease accompanying the adsorption of the segments. On the other hand, the apolar hydrocarbon 
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chains of the SDS molecules can provide an environment of high conformational degree of freedom 

for the PEO chains at the interface.

Figure 4.4. Instantaneous equilibrium snapshots of parts of the interface of the systems containing 2 (top)  
and 3 μmol/m2 (bottom) SDS at the surface of the aqueous phase, illustrating the formation of PEO/SDS 

complexes at the interface. Encircled are such apolar cushions formed by PEO/SDS surface complexes. The  
PEO chains and SDS O, C, and S atoms are marked by purple, red, gray, and yellow colors, respectively.

 In other words, similarly to the bulk phase solution, the neutral PEO chains and the DS- ions can 

form stable polymer/surfactant complexes also at the interface, which provides an additional driving 

force for the adsorption of the polymer segments, and also for their increasing penetration of the to 

the apolar region of the SDS hydrocarbon chains. Such PEO/SDS surface complexes are illustrated 

in Figure 4.4, showing instantaneous equilibrium snapshots of part of the interface as taken from the 

simulations of the 2 and 3 μmol/m2 SDS systems. The possible formation of PEO/SDS surface 

complexes is, however, limited to the SDS surface density range up to which the adsorbed SDS 

molecules leave enough unoccupied surface area for the adsorption of the PEO segments. At higher 

SDS surface concentrations, on the other hand, no such synergistic effect in the adsorption of the 

two components can be observed; instead, a real competition between the PEO monomer units and 

SDS molecules  occurs  for the available surface positions.  In  this competition the more surface 

active SDS molecules win, and the PEO segments are displaced from the surface. The obtained 

results also suggest that the complete departure of the entire PEO molecules from the surface occurs 

in a monomer unit-by-monomer unit manner, i.e., when all of its monomer units are squeezed out 

from the surface by the SDS molecules then the entire PEO molecule is departed from the surface. 

The  observed  dependence  of  the  PEO adsorption  on  the  SDS  surface  density  is  illustrated  in 

Figure 4.5, showing instantaneous equilibrium snapshots of one of the two interfaces in the systems 

containing 2, 4 and 6 μmol/m2 SDS at the surface. 
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Figure 4.5. Instantaneous equilibrium snapshot of the interface of the systems containing 2 (top), 4 (middle)  
and 6 μmol/m2 (bottom) SDS at the surface of the aqueous phase, as taken  from the simulations. Colors are 

used in the same manner as in Fig.4.4.

4.2.1.3.2 Structural and orientational properties of the adsorbed layer

End group distances In order to characterize the overall structure of the PEO chains in the 

different  systems  we  have  calculated  the  distance  of  their  two  terminal  CH3 groups,  D.  The 

distribution of  D in  the different  systems is  shown in Figure 4.6,  whereas  its  mean values are 

summarized  in  Appendix  B  Table  3.  The  average  end-to-end  distance  of  the  PEO  chains  is 

considerably larger in the presence of SDS even at the lowest surface concentration considered than 

in the absence of adsorbed SDS molecules, while above this surface concentration no clear trend of 

<D> with the SDS surface density can be observed. Further, the observed mean end group distance 

values are in every case considerably smaller than both the value of 35 Å predicted by the Flory 

theory in bulk liquid water, and the value of 33.1 Å obtained by simulating the same, 50 monomer 

units long PEO chain in bulk liquid water. 
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Figure 4.6. Distribution of the distance D of the two terminal CH3 groups of the PEO chains in the 
seven systems simulated. The lines and symbols corresponding to the different systems are the same as in  
Figure 1. The results corresponding to the systems containing 1, 2, 3, 4, 5, and 6 μmol/m2 SDS at the surface  
of the aqueous phase are shifted by 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3 units upwards along the vertical axis  
for clarity.

These findings indicate i) that the interfacial binding restricts the conformational flexibility 

of  the  polymer  chain;  and  ii) that  the  SDS  molecules  adsorbed  at  the  interface  provide  an 

environment of greater conformational flexibility, and hence larger conformational entropy for the 

adsorbed PEO segments than the SDS free water surface. These results are in accordance with our 

previous  observations,  and  confirm  our  conclusion  that  the  enhanced  adsorption  of  the  PEO 

monomer units in the presence of SDS can largely be attributed to the larger conformational entropy 

of the polymer chains at the interface in the presence than in the absence of SDS molecules. 

Roughness  of  the  Aqueous  Surface. The  )(ld  roughness  curves  of  the  seven  different 

systems  simulated  are  shown  in  Figure  4.7,  whereas  the  ξ and  a roughness  parameters  are 

summarized in Table 3 of Appendix B. As is seen, the increase of the SDS surface density clearly 

leads to the increasing roughness of the water surface both in terms of frequency and amplitude. 

This increasing corrugation of  the aqueous surface can be explained by the decreasing surface 

tension, γ, of the system. Indeed, the surface tension values, collected also in Table 3 of Appendix 

B, decrease continuously with increasing SDS surface density. This finding indicates that the SDS 

molecules  are more surface active than PEO, and explains the dominance of the former in the 

competition for surface positions in crowded mixed adsorption layers, which ultimately leads to the 
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displacement of the entire PEO chains from the surface at high enough SDS surface densities. It 

should also be noted that the PEO molecule itself is also highly surface active, as seen from the fact 

that the surface tension of the SDS free system, i.e., 51.3 mN/m is already substantially lower than 

that of neat SPC water of 120.3 mN/m.

Figure 4.7. Average normal distance of two surface points (i.e., their distance along the interface normal  
axis X) as a function of their lateral distance (i.e., their distance in the plane YZ of the interface) in the seven  
systems simulated. The inset shows the correlation between surface tension and the amplitude parameter of  

surface roughness.
The decrease  of  the surface tension makes the free  energy cost  of  increasing the  water 

surface area through corrugation smaller, and thus leads to the observed increasing roughness of the 

water surface. The clear correlation between the surface tension of the system, γ, and the amplitude 

of its molecularly rough surface, a, is illustrated in the inset of Fig. 4.7. It should finally be noted 

that the increase of the surface roughness, i.e., the increase of the area of the intrinsic surface of the 

aqueous phase enables more SDS molecules and PEO monomer units to be accommodated at the 

surface, and hence extends the SDS surface density range in which no substantial squeezing out of 

the PEO monomer units from the surface occurs. 

Structure of the SDS Adsorption Layer. The density distributions of the S atoms and chain 

terminal CH3 groups of the DS- ions as well as that of the Na+ counterions along the macroscopic 

surface normal axis  X are also included in Fig. 4.3. As is seen, in accordance with our previous 

observations,  the  DS- ions  are  located  almost  exclusively at  the  water  surface;  no  perceivable 

penetration of these ions into the bulk of the aqueous phase is observed even at the highest SDS 

surface density considered. The density peak of the CH3 groups is located considerably, by 8 -15 Å 

farther from the aqueous phase than that of the S atoms, reflecting the overall outward orientation of 
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the DS- chains. The distance between the peak positions of these density distributions, δSC (see Table 

3 of Appendix B) provides us with information about the average orientation of the DS- ions at the 

surface.  Thus,  the continuous increase of  δSC with increasing SDS surface density indicates the 

gradual turn of the DS- ions from tilted to perpendicular orientation relative to the macroscopic 

plane of the interface. The density distributions of the Na+ counterions follows that of the S atoms 

(being the centers of the negatively charged sulfate groups of the DS- ions), although, due to the 

diffuse nature of the Na+ counterion layer, it always extends noticeably deeper into the bulk aqueous 

phase than that of the S atoms. 

Figure 4.8. a) Cosine distribution of the angle α, formed by the macroscopic interface normal vector,  
pointing from the aqueous to the apolar phase, X, and the vector pointing along the DS- chain from its S  

atom to the terminal CH3 group; and b) distribution of the distance of the S atom and CH3 group of the DS- 

ions, dSC, in the six SDS containing systems simulated.

To investigate the structure of the adsorbed layer of the DS- ions in more detail we have also 

calculated the cosine distribution of the angle α, formed by the macroscopic surface normal vector 

pointing from the aqueous to the apolar phase, X, and the vector pointing along the DS- chain from 

its S atom to the chain terminal CH3 group. The distribution of the distance of the S atom and CH3 

group of the individual DS- ions, dSC, has also been calculated. The P(cosα) and P(dSC) distributions 

are shown in Figure 4.8 as obtained in the different SDS containing systems simulated. The P(dSC) 

distributions  obtained  in  the  different  systems  are  rather  similar  to  each  other,  indicating  that 

changes in the SDS surface density leave the conformation of the DS- ions practically unaffected. It 

is  also seen that  the DS- ions prefer  to adopt  rather  elongated conformations.  Thus,  the  P(dSC) 

distributions have their main peak around 14 Å, followed by a shoulder at about 16 Å in the systems 

of high SDS surface densities. This shoulder corresponds to the DS- ions of all-trans conformation, 

whereas the main, broad peak of the  P(dSC) distributions is given by DS- ions having one  gauche 

aligned dihedral. The few DS- ions having more than one dihedrals in gauche alignment contribute 

to the long tail of this peak at low distances. 

Unlike their conformation, the orientation of the DS- chains depends strongly on the SDS 
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surface density. Thus, in the 1 μmol/m2 system the  P(cosα) distribution is rather broad, covering 

almost the entire cosα range from 0 to 1, and has its peak around the cosα value of 0.6. In this 

system the  orientation  of  the  DS- ions  is  rather  disordered,  and  the  most  probable  orientation 

corresponds to the tilt angle of about 55o relative to the surface normal axis. The orientational order 

of the DS- ions is still rather weak in the 2 μmol/m2 system, as the obtained P(cosα) distribution is 

still quite broad, however, in this system the most probable orientation is already perpendicular to 

the  macroscopic  plane  of  the  interface.  This  perpendicular  orientation  becomes  then  strongly 

preferred in the systems of higher SDS surface densities, which are characterized by rather strongly 

ordered SDS adsorption layers. Thus, in these systems about 20% and 50% of the DS- ions have a 

tilt angle smaller than 15o and 30o, respectively, relative to the macroscopic surface normal axis. The 

increasing preference of the DS- ions to adopt orientations perpendicular to the macroscopic plane 

of the interface with their increasing surface density had been observed previously in adsorption 

layer of various non-ionic surfactants, and can be explained by the decreasing surface area available 

for the individual molecules.

4.2.1.3.3 Adsorption dynamics

Survival probabilities In order to investigate the dynamics of the process of interfacial water 

molecules and PEO monomer units leaving the interface and entering one of the bulk phases we 

have calculated the survival  probability  L(t)  of  these species at  the interface.  The  L(t) survival 

probabilities of the interfacial water molecules and PEO monomer units are shown in Figure 4.9 as 

calculated in the simulated systems. As is seen, PEO monomer units stay, in general, considerably 

longer at the interface than water molecules. This difference can be explained by the hindrance of 

mobility of the PEO monomer units due to the constraints imposed by the chemical links to their 

neighboring segments along the polymer chain. It is also seen that, in general, the presence of SDS 

at the surface slows down the dynamics of exchange of the water molecules and PEO monomer 

units between the interface and the bulk phases.
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Figure 4.9. Survival probability of the water molecules (top) and PEO monomer units (bottom) in the 
surface layer of the seven systems simulated. The insets illustrate, on the example of the SDS free system,  

that the water survival probability data (full circles, upper inset) can be fitted by a single exponential  
function (dashed line, upper inset), whilst the survival probability of the PEO monomer units (full circles,  
lower inset) cannot be fitted by such an exponential (dashed line, lower inset), only by the sum of two such  

exponential functions (solid line, lower inset).

To describe this process in a more quantitative manner we have fitted the exponentially 

decaying function exp(-t/τ) to the obtained L(t) data, just in order to find that while the interfacial 

survival probabilities of the water molecules can be well fitted by a single exponential function, the 

fitting of that of the PEO monomer units requires the use of the sum of at least two such exponential 

functions (see the insets of Fig. 4.9). This interesting feature implies that whereas a water molecule 

leaves the interface following first order kinetics with the mean residence time value of  τ,  PEO 

monomer units can depart from the interface in two different ways, both of described by first order 

kinetics,  having the respective characteristic times of  τ1 and  τ2.  These two ways of leaving the 

interface can be identified as departing towards the bulk aqueous and to the bulk apolar phase, 

respectively.  (Since  water  molecules  have  never  been  found  to  enter  the  apolar  phase  in  our 

simulations,  they can only leave  the interface in  one  way,  towards  the bulk aqueous phase,  in 

accordance with the observed fact that the water survival probability function can always be fitted 

by one single exponential.) 

The  τ (water)  as  well  as  the  τ1 and  τ2 (PEO)  residence  times  corresponding  to  these 
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processes  are  summarized in  Appendix  B Table 3.  Assuming that  the dominant  process  of  the 

interfacial PEO monomer units is always the departure towards the aqueous rather than to the apolar 

phase the  τ1 and  τ2 values are associated with these processes, respectively. The appearance of a 

small amount of SDS at the surface facilitates the exchange of the PEO monomer units between the 

interface and the apolar phase. This result supports our previous finding about the increase of the 

conformational entropy of the PEO chains in the presence of SDS as well as on the formation of 

stable interfacial  polymer/surfactant complexes between the PEO chain and DS- ions.  However, 

with  further  increasing  SDS  surface  density  the  apolar  adsorption  layer  becomes  increasingly 

crowded by the DS- ions, which leads to a considerable slowdown of this exchange process, as 

penetration of the PEO monomer units into this layer becomes increasingly difficult. 

It is also seen that the presence of SDS at the surface slows down the exchange processes 

between the interface and the bulk aqueous phase, and this effect is considerably more pronounced 

for the PEO monomer units than for water. The SDS induced hindrance of mobility of these polar 

species can, at least partly be explained by their strong electrostatic interaction with the ionic sulfate 

group of the DS- ions and with the Na+ counterions in the interfacial region. In the case of the PEO 

monomer units the slowdown of this exchange process is also related to their increased affinity to 

the interface due to the increasing conformational flexibility of the PEO chain in the presence of 

SDS, as discussed in detail in the previous sub-sections.

4.2.1.3.4 Energetic results

To shed light on the energetic background of the observed dependence of the adsorption of 

PEO at the water surface on the SDS surface density, we have calculated the distribution of the 

interaction energy (Ub) of the PEO monomer units located in the three different regions with the rest 

of the system for each simulated system. (It should be noted that, apart from the energy of the two 

chemical  bonds  linking  the  given  monomer  unit  to  its  neighbors  in  the  polymer  chain,  this 

interaction energy is simply the binding energy of the given monomer unit, i.e., the energy that is 

required to move this unit at infinite distance from the system.) In addition to the interaction energy 

of the given PEO monomer unit with the rest of the system we have also calculated the distribution 

of its contributions coming from the interactions with the water molecules,  wat
bU , and from that 

with the other  solutes (i.e.,  other  PEO segments,  DS- ions  and Na+ counterions)  present  in  the 

system,  sol
bU .  Since  we  are  interested  here  in  the  effect  of  the  non-bonding  interactions,  the 
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contribution of the neighboring (i.e., chemically linked) PEO monomer units to  Ub and  sol
bU  are 

disregarded in this analysis.

The  P(Ub),  P( wat
bU ) and  P( sol

bU ) distributions of the PEO segments being in the aqueous 

phase, at the interface and in the apolar phase are shown in Figure 4.10 as obtained at 0, 2, 4 and 

6 μmol/m2 SDS surface densities. As is seen, in the SDS free system the solute contribution to Ub is 

relatively small both in the aqueous phase and at the interface. The P( sol
bU ) distribution has  a peak 

around  -10 kJ/mol  in  every case,  whereas  the  P( wat
bU )  distributions  exhibit  their  peak  around 

-30 – -40 kJ/mol, which extends down to -50 – -60 kJ/mol in the aqueous phase and at the interface, 

indicating that the PEO monomer units form one or two hydrogen bonds with the neighboring water 

molecules in both of these regions. In the apolar phase the  P( wat
bU ) distribution exhibits a sharp 

peak around zero, reflecting the fact that in this region the PEO monomer units do not have close 

water neighbors.

Figure 4.10. Distribution of the total interaction energy of the PEO monomer units with the rest of the 
system (bottom panels) as well as of its contributions coming from the interaction with the water molecules  

(middle panels) and with the SDS molecules and other PEO units (top panels) in the bulk aqueous phase 
(dotted lines), at the interface (dashed lines) and in the apolar phase (solid lines) of the systems containing 

(a) 0, (b) 2, (c) 4, and (d) 6 μmol/m2 SDS at the surface of the aqueous phase.

The P( wat
bU ) distributions do not change considerably upon addition of SDS to the system, 

the only effect of the presence of SDS on these distributions is that in the case of the interfacial 

PEO monomer units a peak evolves around zero with increasing SDS surface density, and becomes 

the dominant feature of the  P( wat
bU ) distribution at  ΓSDS = 4 μmol/m2. The evolution of this peak 

reflects the fact that when the adsorption layer gets increasingly crowded with SDS molecules an 
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increasing fraction of the interfacial PEO monomer units loses contact with the water molecules. 

Contrary to  P( wat
bU ), the distribution of the solute contribution  P( sol

bU ) shows a marked 

dependence on the SDS surface density. Namely, the peak of this distributions gets visible broader 

upon the addition of  SDS molecules,  while  its  peak position remains practically intact,  around 

-10 kJ/mol. This effect is particularly pronounced in the aqueous phase and at the interface, and can 

be  explained  by the  strong  electrostatic  interaction  of  the  polar  PEO monomer  units  with  the 

charged sulfate group of the DS- ions as well as with the Na+ counterions. Further, the mean value 

of the distribution corresponding to the interfacial PEO monomer units decreases only moderately 

with increasing SDS surface density, being -11.1, -16.8, -23.4 and -31.9 kJ/mol in the systems of 0, 

2,  4  and 6 μmol/m2 SDS surface  densities,  respectively.  This  decrease  of  the  mean interaction 

energy of an interfacial PEO monomer unit with the other solute molecules has the same origin as 

the increase of the average interaction energy of these monomer units with water, namely that in a 

more crowded adsorption layer an interfacial PEO monomer unit has more Na+ and DS- neighbors. 

Further, these two effects largely compensate each other, thus the total gain of the mean interaction 

energy  is  always  below  10 kJ/mol.  This  result  clearly  confirms  our  previous  finding,  already 

supported  by  structural  and  dynamical  results  that  the  enhanced  surface  affinity  of  the  PEO 

monomer units in the presence of SDS at moderate surface densities can only partly be explained by 

the decrease of the internal energy of the system due to the strong electrostatic interaction between 

these  polar  monomer  units  and  the  charged  groups  of  SDS,  and  thus  the  main  reason  of  this 

enhanced surface affinity should be the increase of the conformational entropy of the PEO chains in 

the environment provided by the adsorbed layer of SDS molecules. 

4.2.1.4 Summary

The atomistic scale treatment of the polymers and polymer-surfactant mixtures at the surface 

of their aqueous phase has allowed us to draw conclusions concerning  the mechanism of adsorption 

and the underlying thermodynamic driving forces.

The study of the neat PEO adsorption layer at the water surface has showed that adsorption 

in this case is determined by two main competitive processes. The first of these processes, namely 

the solvation of the segments is driven by the conformational entropy change. In other words, the 

larger  the  number  of  hydrated  monomer  units  is,  the  larger  the  number  of  the  possible 

conformations will be. The other process is the adsorption of the surface active monomer segments 

at the interface, which decreases the interfacial excess energy. According to the already existing 
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models of polymer adsorption, these two driving forces lead to the distribution of the monomer 

segments  between  the  interface  and  the  bulk  liquid  phase,  which  corresponds  to  an  optimal 

combination of these two driving processes. Our simulations have shed light on the fact that such an 

optimal combination leads to the attachment of the polymer to the interface by very short segments, 

whereas the majority of monomer units is arranged in loops in the bulk phase. So far our results 

correspond to the classical picture, however we have also found a slight but noticeable extent of 

penetration of the monomer units into the vapor phase, which has never been included in any of the 

existing models. Obviously, this is again an energetically unfavorable situation for the individual 

monomer units, but it leads to an increase in the conformational entropy. Further, it has to be also 

mentioned that only about 1% of the monomer units  are,  on average,  in the vapor phase,  their 

lifetime in there is rather short (being, on average, 3.1 ps), and these vapor phase loops, being very 

short remain relatively close to the water surface and thus can partially maintain their interactions 

with water molecules.

The results  obtained for  the mixed adsorpion layer  reveal  that  the squeezing out  of  the 

surface active polymer from the interface by increasing the amount of the surfactant occurs by a 

rather complex mechanism. Even if we could see that PEO in the absence of SDS is anchored to the 

surface  by  20-25%  of  its  monomer  units,  this  behavior  is  by no  means  related  to  a  possible 

saturation of the interface, as the presence of a small amount of SDS brings almost the entire PEO 

molecule to the surface, as in this case about 80% of the PEO monomer units are located right at the 

boundary of the aqueous and apolar phases. This synergistic effect of SDS on the PEO adsorption 

can be explained by the interplay of the electrostatic attraction between the charged groups of SDS 

and the charge distribution of the moderately polar PEO monomer units,  and by the increasing 

conformational flexibility,  and hence the increase of the conformational entropy of the polymer 

chains in the presence of SDS. From these two factors we have found the second one to be more 

important. This view is supported by the findings that the average end-to-end distance of the PEO 

chains is noticeably larger, which means it is closer to the equilibrium bulk solution phase value 

corresponding to the maximum conformational entropy, in the presence than in the absence of SDS. 

On the other hand, the mean interfacial residence time of the PEO monomer units increases much 

more than that of the water molecules upon adding SDS to the system; and the addition of SDS to 

the system leads only to a small decrease of the average interaction energy of the interfacial PEO 

monomer units. Further, effective attraction of the PEO chains to the surface by the SDS molecules 

through  the  increase  of  their  conformational  entropy  implies  the  formation  of  similar 

polymer/surfactant complexes in the mixed adsorption layers of moderate SDS content than what 

are well known to exist in the bulk phase of their solution. However, further increase of the SDS 
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surface density gives rise to the competition of the SDS molecules and PEO monomer units for the 

surface  positions,  and  at  large  SDS  surface  densities  the  more  surface  active  SDS  gradually 

squeezes  out  the  PEO  molecules  from  the  surface.  This  squeezing  out  occurs  in  a  monomer 

unit-by-monomer unit manner, i.e., when the last monomer unit of a PEO molecule is replaced by a 

DS- ion at the surface the entire PEO molecule is departed from the surface to the bulk phase of the 

solution.

            The results of this study stress the complex nature of polymer/surfactant interactions even at 

the surface of  their  solution, and point  out  the important  role of  the interplay of  energetic  and 

entropic terms in determining the actual behavior of these important and complicated systems. 

4.2.2 Calculation  of  the  free  energy profile  of  ions  through the  water/1,2-dichloroethane 

interface [8,9]

4.2.2.1 Introduction

The main goal of this study is to test the novel method we have proposed for calculating the 

free energy profile of ions with respect to the real intrinsic interface. Moreover we present the free 

energy profile of the transfer of the thiocyanate ion through the water/1,2-dichloroethane interface 

in order to shed light on the affinity of this ions to the surface, and thus to get a deeper insight to the 

molecular reasons underlying the surface activity of ions. The question of the co-extraction of the 

hydration shell  and the possible orientational  changes induced in the ion by the vicinity of the 

interface are also addressed. 

The method we have proposed is to the best of our knowledge the first computationally 

feasible way of calculating the solvation free energy profile of a single penetrant particle across 

fluid interfaces with respect to the real instantaneous intrinsic interface. This new protocol, which 

has  been described in  details  in  Chapter  2.8.2.  has  been and applied for  the calculation of  the 

intrinsic  solvation  free  energy  profile  of  a  Cl- ion  across  the  water/1,2-dichloroethane  (DCE) 

liquid/liquid interface. The choice of this system has been dictated by the fact that it is a frequently 

studied model in the literature, similar investigations targeting the non-intrinsic free energy profile 

have been reported previously several times,  204,205,206 and hence the obtained intrinsic free energy 

profile can readily be compared to the global, non-intrinsic one. 

Prior to the development of the new method the free energy profile of the penetration of the 

SCN- ion has also been calculated by the classical way of reconstructing the free energy profile 
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from constrained force simulations. The choice of thiocyanate ion was dictated by the importance of 

this  ion  is  outstanding in  various  fields  of  chemistry.  It  plays  a  considerable  role  in  essential 

biochemical processes, such as the biosynthesis of hypothiocyanite, the lack of which is proven to 

cause cystic fibrosis.207 On the other hand, detailed studies of this ion by means of electrochemical 

experimental  techniques  (cronoamperometry  as  well  as  cyclic  voltammetry)  dates  back  to  the 

middle of the last century.208 Since that time this ion has attracted an ever increasing interest. Thus, 

the understanding of the structural and the thermodynamic changes that accompany the transfer of 

the SCN- ion through a water/organic phase boundary is undoubtedly of crucial interest.

4.2.2.2 Computational details

Molecular  dynamics  simulations  of  the  water/DCE  liquid/liquid  interfacial  system 

containing one  single thiocyanate  (SCN-)  or  chloride  (Cl-)  ion  at  different  positions  have  been 

performed on the canonical (N,V,T) ensemble at 298 K using the GROMACS simulation program 

package.109  The lengths of the X,  Y and Z edges of the rectangular basic simulation box (X being 

perpendicular to the macroscopic plane of the interface) have been 104, 50 and 50 Å respectively, 

and the system consisted of 4000 water and 1014 DCE molecules.

Water  molecules  have  been  described  by  the  TIP4P model,209 whereas  standard  OPLS 

potential parameters63 have been used for the SCN- and the Cl- ion and for the DCE molecule115. The 

fractional  charges  corresponding  to  the  DCE  molecule  have  been  taken  from  the  work  of 

Benjamin.210 All  bond lengths  and bond angles  have  been  kept  fixed  in  the simulations,  while 

torsional rotation of the DCE molecule around its C-C bond has been allowed. The CH2 groups of 

the DCE molecules have been treated as united atoms. The total potential energy of the systems has 

been assumed to be the sum of the pair interaction energies of all molecule pairs. The interaction 

energy  of  two  molecules  has  been  calculated  as  the  sum of  the  Lennard-Jones  and  Coulomb 

interactions.  The  Lennard-Jones  distance  and  energy parameters  (σ and  ε,  respectively)  of  the 

interacting atoms have been combined according to the Lorentz-Berthelot rule.14 The Lennard-Jones 

parameters as well as the fractional  charges,  q,  of the different interaction sites are collected in 

Appendix A, Table 2. Bond lengths and bond angles of the water molecules; and those of the DCE 

molecules  and SCN- ion have been  kept  unchanged  by means of  the  SETTLE111  and LINCS112 

algorithms, respectively. All interactions have been truncated to zero beyond the center-center cut-

off distance of 9.0 Å. The long range part of the electrostatic interactions has been accounted for 

using the particle mesh Ewald (PME) method16 with a real space cutoff of 9.0 Å, a mesh grid of 

1.2 Å  and  a  spline  order  of  4.  Analytical  tail  correction  has  been  applied.  To  maintain 
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electroneutrality of the system simulated, a uniform positive charge distribution compensating the 

net charge of the SCN- or the Cl- ion has been added beyond the cut-off sphere of the charged 

particle, and its effect  has also been accounted for by means of the PME method.16 To test the 

appropriateness  of the cut-off value of 9.0 Å used here,  we have repeated six simulations  with 

different  positions  of  the  SCN- ion,  corresponding  to  different  regions  of  the  system,  using  a 

considerably  larger  interaction  cut-off  value,  i.e.,  12.0 Å,  but,  besides  the  statistical  noise,  no 

difference between the runs performed with different cut-off values has been observed.

To obtain the sample configurations on which our intrinsic and non-intrinsic analyzes were 

to be performed, we have used the widespread Constraint Force algorithm. Practically, we have 

carried out a series of molecular dynamics simulations on the canonical (N,V,T) ensemble with the 

ions fixed at different positions, separated from each other by 1Å along the interface normal axis X 

of the water/1,2-DCE system, which has  been previously equilibrated without  the ions.  With a 

series of these simulations we have modeled the transfer of the ion from the bulk aqueous phase to 

the organic phase in quasi-equilibrium steps. The force required to keep the position of the ions 

unchanged  with  respect  to  the  global  coordinate  frame  defined  by  the  basic  vectors  of  the 

simulation box  has been recorded in  each single step of  every simulation.  After proper energy 

minimization of the starting configuration created by displacing the Cl- or the SCN- ion by 0.1 nm in 

the  X direction from its final position in the previous run, the system has been equilibrated for 

100 ps with the constraining force exerted on the ion. After equilibration, an additional 500 ps long 

production  run  has  been  carried  out,  during  which  the  magnitude  of  the  X component  of  the 

constraining  force,  FX(t),  has  been  recorded  as  a  function  of  time  for  every  time  step. 

Simultaneously, equilibrium sample configurations, separated by 5 ps long trajectories from each 

other, have been saved for the intrinsic analysis. For the non-intrinsic analysis the forces have been 

averaged over time and integrated to yield the potential of mean force, whereas the novel intrinsic 

analysis was performed as described in Chapter 2.8.2.

4.2.2.3 Results concerning the thiocyanate ion

4.2.2.3.1 Non-intrinsic free energy profile

The solvation free energy profile of the SCN- ion obtained from the simulations is shown in 

Figure 4.11. Error bars have been estimated by the method of block averages. For reference, the 

mass  density  profile  of  water  and  DCE are  also  indicated.  The  shape  of  the  obtained  profile 

indicates that the energetic changes accompanying the transfer of the SCN- ion from the aqueous to 
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the organic phase follow a complex scheme. 

Figure 4.11. Solvation free energy profile of the SCN- ion across the water/DCE interface (top 
panel). Error bars estimated by the method of block averages are also shown. For reference, the mass 
density profiles of the water (open circles) and DCE molecules (filled circles), obtained in the ion free 

system60 are also shown (bottom panel). The dashed vertical lines show the division of the system into six  
separate regions (see the text). The inset shows the local minimum of the free energy profile at the 

subsurface water region on a magnified scale

Thus, on approaching the interface from the bulk aqueous phase a slight increase of the free 

energy, culminating in a local maximum is seen. Since the solvation free energy of the SCN- ion 

inside a bulk liquid phase has to be position independent, this slight increase, typically seen in free 

energy profile calculations of ions, is clearly an artifact, related to the presence of two phases of 

markedly different dielectric constant under periodic boundary conditions. If the ion is embedded in 

one  of  the  bulk  phases,  it  experiences  being  in  a  slit  of  different  dielectric  constant  than  the 

environment  behind  the  slit.  The  presence  of  the  two  dielectric  boundaries  results  in  a  (non-

physical) net force on the ion, which decreases upon approaching the middle of the phase, and 

vanishes  only in  the middle of  the phase,  i.e.,  at  equal  distance from the  two boundaries.  The 

presence of this artificial force results in the slight, albeit noticeable, non-physical decrease of the 

free energy profile in the bulk aqueous phase.
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More importantly, the free energy profile shows a small but clear minimum in the subsurface 

region of water, around the X value of 15 Å. The ITIM analysis performed the aqueous and the DCE 

phase on the ion free system has revealed that this slight local minimum is located roughly at the 

position of the fourth molecular layer of water. Interestingly, the furthermost point to which the 

DCE molecules can penetrate into the aqueous phase coincides with the outer end of the region 

where the free energy minimum is observed. This suggests that, presumably due to the presence of 

the organic molecules, the region where the two phases are in direct contact with each other is a 

thermodynamically less favorable environment for the SCN- ion than the subsurface water layer. 

The minimum in the  free  energy profile  indicates  enhanced  ion concentration just  beneath the 

interface, slightly pushed back from there to the bulk aqueous phase by the presence of the opposite 

phase. Similar behavior has been observed both experimentally and by computer simulations for the 

free  surface  of  several  ionic  solutions,  with  the  difference  that  in  these  cases  the  enhanced 

concentration region was located right at the interface. 

The  minimum in  the  subsurface  water  layer  is  followed  by  a  strictly  monotonically 

increasing part of the free energy profile, reflecting the fact that the SCN- ion stays preferentially in 

the aqueous rather than in the organic phase. The free energy range covered by this increase (i.e., 

the solvation free energy difference of the SCN- ion between the two phases) is found to be roughly 

70 kJ/mol. The interfacial increase of the profile is followed by another plateau in the subsurface 

region of the DCE phase. According to ITIM analysis results of the ion-free system, the position of 

this  plateau region again coincides roughly with that  of  the fourth molecular layer  beneath the 

surface. Finally, the profile shows a slightly increasing part in the bulk DCE phase, the slope of this 

increase  being noticeably smaller  than  that  in  the  bulk  aqueous  phase,  in  accordance  with the 

considerably lower polarity of DCE relative to water. 

It should finally be noted that the plateau region of the profile in the subsurface DCE phase, 

contrary to that in water, is located clearly beyond the point up to which the molecules of the other 

phase can penetrate in the absence of an ion. The region of the steep free energy increase at the 

interface ranges beyond the point of noticeable water density further into the bulk organic phase, 

where finally it reaches its plateau. This behavior can be explained by the possible formation of a 

water finger around the SCN- ion upon penetrating the organic phase, and by the co-extraction of at 

least  a part of the ion's  first hydration shell. This well-known phenomenon, observed also in a 

number of studies has, to our knowledge, scarcely been quantified by theoretical methods.
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4.2.2.3.2 Properties of the SCN- ion in different environments.

To characterize the hydration and orientation of the SCN- ion in different environments we 

have divided the system into six separate regions according to the behavior of the obtained free 

energy profile. The division of the system into these six separate regions is shown in the bottom 

panel of Figure 4.11. 

Hydration Properties. To investigate the hydration of the SCN- ion we have calculated the 

pair correlation functions of all the three atoms constituting the ion with the water oxygen atoms in 

six  distinguished  positions  representative  of  the  six  separate  regions  of  the  system.  The  g(r) 

functions obtained in the two bulk and interfacial  regions are shown in  Figure 4.12. (The pair 

correlation functions obtained in the two subsurface regions did not differ considerably from those 

in the respective bulk regions, thus they are omitted from the figure.) As is seen, the obtained ion-

water g(r) functions preserve their main features observed in the bulk aqueous phase, irrespective of 

which region the ion is situated in. In particular, the height and position of the first peak seems to be 

insensitive to the region where the ion is located in every case. This finding suggests that the SCN- 

ion indeed retains at least its first hydration shell upon entering to the DCE phase.

Having calculated the area under the first peak for each g(r) function we can obtain a rough, 

semi-quantitative estimate of the hydration number of the SCN- ion, Nhyd, by simply adding up the 

partial  hydration  numbers  nhyd of  the  S,  the  C  and  the  N  atoms,  the  latter  simply  being  the 

coordination number of the water oxygens around the given atom up to the first minimum position 

of the corresponding g(r) function. (We are aware of the fact that possible overlaps of the atomic 

hydration shells  may introduce  some error  in  this  calculation,  however,  it  seems reasonable  to 

assume that the magnitude of this error is roughly the same in every case.) The hydration numbers 

calculated this way in the different regions of the system as well as the contributions of the S, C and 

N atoms to Nhyd are collected in Appendix B, Table 4. This table indicates that at the vicinity of the 

interface, regardless of which side of it the ion is situated, the total hydration number decreases by 

about 10-15% relative to the value obtained in the bulk aqueous phase, however, it gradually retains 

this value as the ion approaches the bulk DCE phase. Examining the atomic contributions in detail it 

is seen that in every region at least half of the first shell water molecules are located around the 

central carbon atom. Upon approaching the interfacial  regions we encounter the decrease of all 

atomic  contributions,  however,  some  differences  can  be  observed  concerning  the  extent  of 

dehydration, as seen from Table 4 of Appendix B Thus, the dehydration of the C and S atoms occurs 

simultaneously. After a smooth decrease, both atomic hydration numbers assume a minimal value in 

the interfacial region of the organic phase. The interfacial dehydration of the N atom is, however, 
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somewhat different in the sense that, even if its hydration number is minimal in the same region, 

dehydration is not continuous, moreover, a maximum of it is seen right at the aqueous side of the 

interface. This slight rearrangement of the hydration shell at the interface suggests that the vicinity 

of  the  interface  (and  that  of  a  phase  of  markedly different  polarity)  probably has  an effect  of 

enforcing a preferential orientation on the SCN- ion.

Figure 4.12. Partial pair correlation functions of the S (solid lines), C (dashed lines) and N atom (dash-dot-
dotted lines) of the SCN- ion and the water oxygens, as obtained in the bulk water (top panel), interfacial  
water (second panel), interfacial DCE (third panel), and bulk DCE (bottom panel) regions of the system.

Orientation of the penetrant ion To further investigate this point  we have calculated the 

cosine distribution of the angle γ, formed by the vector pointing along the SCN- ion from its S to N 

atom and the interface normal vector pointing from the organic to the aqueous phase, X, in the six 

separate regions of the system. The obtained cosine distributions together with a chart illustrating 

the definition of the angle γ are shown in Figure 4.13. 
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Figure 4.13. Chart illustrating the definition of the angle γ characterizing the interfacial orientation of the 
SCN- ion (left); and cosine distribution of the angle γ as obtained in the six different regions of the system 

(right). The results corresponding to the bulk water (solid line), subsurface water (dashed line), interfacial  
water (dotted line), interfacial DCE (dash-dotted line), subsurface DCE (dash-dot-dotted line), and bulk 

DCE (short dashed line) regions of the system are shifted by 0.5, 0.4, 0.3, 0.2, 0.1 and 0 units, respectively,  
for clarity.

As is expected, no clear orientational preference of the ion is seen in any of the two bulk 

liquid phases.  Upon approaching the DCE phase the SCN- ion adopts  a  preferred alignment  in 

which it points with the N atom to the organic and with the S atom to the aqueous phase. In the 

subsurface water region this preferred orientation is rather strongly tilted, it declines from the plane 

of the interface by only about 10o. However, as the ion gets closer to the DCE phase its preferred 

orientation becomes gradually less tilted, and eventually in the subsurface DCE region it becomes 

perpendicular to the interface, as seen from the gradual shift of the peak of the P(cosγ) distribution 

down to  -1. Obviously, this orientational preference is not preserved when the ion penetrates into 

the bulk region of the DCE phase.

Figure 4.14 Instantaneous snapshots illustrating the interfacial orientation of the SCN- ion and the co-
extraction of its first hydration shell upon entering to the organic phase. Water molecules are shown by grey 

color; the S, C and N atoms of the SCN- ion are represented by a yellow, light blue and dark blue sphere,  
respectively. DCE molecules are omitted from the figure for clarity
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The observed orientational preferences are related to the considerably larger size of the S than of the 

N atom. Namely, when the SCN- ion is located at the boundary of the two phases the free energy 

cost of bringing the first hydration shell water molecules of the small N atom to the organic side of 

the interface is clearly smaller than that of the large S atom. Further, the gradual decrease of the tilt 

angle of the preferred orientation is also related to the fact that the water molecules hydrating the 

large S atom remain at the aqueous side of the interface until the entire ion (together with its first 

hydration  shell)  is  completely immersed  in  the  DCE phase.  The above interfacial  orientational 

preferences of the SCN- ion as well as the observed co-extraction of its first hydration shell are 

illustrated in Figure 4.14, showing two instantaneous snapshots taken out from the simulations in 

which the position of the SCN- ion was fixed close to the boundary of the two phases.

4.2.2.4 Results concerning the Cl- ion

4.2.2.4.1 Non-intrinsic free energy profiles

According to the non-intrinsic solvation free energy profile obtained from our simulations, 

the free energy difference between the bulk aqueous and the bulk organic phase is about 55 kJ/mol 

(12 kcal/mol). This value agrees sufficiently well with the results of previous computational studies. 

The profile corresponding to the water/DCE trajectory is  shown in Fig.  4.15. together with the 

global mass density profiles of the aqueous and the organic phase, and those of the first three ITIM 

layers of both phases, as obtained for the ion-free case. The complete solvation free energy profile 

describing the transfer of the ion from the aqueous to the organic phase, interpreted thus in terms of 

the density profile of the system, provides us with more detailed information about the mechanism 

of the transfer. As is seen in Figure 4.15, the free energy profile of the transfer of a chloride ion 

from the aqueous to the organic phase can be divided into three main regions; namely, a more or 

less constant part in the bulk aqueous phase (region I.) a smoothly increasing part beginning in the 

subsurface region of the aqueous phase (region II.) which eventually turns smoothly into a plateau 

in the subsurface and bulk regions of the organic phase (region I). Region I., where the free energy 

profile takes values around zero, corresponds to the ion being dissolved in the bulk aqueous phase, 

where the opposite phase is far enough to have a negligible effect on the forces acting on the ion. 

We should note here that, as opposed to the free energy profile obtained previously for the 

transfer of thiocyanate (SCN-) ion through the same interface no significant drift of the free energy 

is  observed in this region.  The reason why in case of the chloride ion this effect  is  practically 

invisible in the non-intrinsic profile lies probably in the fact  that  the electric field of this non-
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polarizable model of a small spherical charged particle has a spherical symmetry and obviously the 

ion rotates freely in its  cavity,  thus the effect  of being situated between two different dielectric 

boundaries is averaged out. Region II., that is the smoothly and monotonically increasing part of the 

profile begins in the subsurface region of the aqueous phase, spans through the interfacial regions of 

both the aqueous and the organic phases and ends in the subsurface region of the organic phase. The 

increase in the free energy is due to the more and more repulsive forces that the ion experiences 

upon approaching the interface, which is related to the actual insolubility of the chloride ion in 

DCE. This part  of the profile  turns  smoothly,  without exhibiting any kind of  extrema, into the 

plateau of region III,  where the average free energy value of 55 kJ/mol corresponds to the free 

energy of solvation of the hydrated ion in 1,2-dichloroethane. 

Figure 4.15 Non-intrinsic free energy profile of the Cl- ion through the water/1,2-DCE interface (bottom 
panel). For reference the mass density profiles of the ion-free water and DCE molecules in the entire system 

and the first three-three ITIM layers are also shown (top panel)

4.2.2.4.2 Intrinsic free energy profiles

Comparison of the intrinsic and non-intrinsic profiles We have reconstructed the intrinsic 

free  energy  profile  of  the  chloride  ion  through  the  water/1,2-dichloroethane  interface  by  each 

possible combination of the sub-procedures described in the previous section. Regardless of the 

applied methods, we have found significant differences in the smoothness of the intrinsic and non-

intrinsic curves. As it has been discussed in the previous section, the non-intrinsic profile increases 
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strictly monotonically in  the  interfacial  region and reaches  a  plateau corresponding to  the free 

energy of  solvation  in  the  bulk  organic  phase,  while  both  of  the  intrinsic  curves  exhibit  clear 

extrema, moreover even in the region of monotonic increase abrupt changes of the steepness occur, 

and a under-sampled interval is also observed. On the other hand, the intrinsic free energy profiles 

obtained by the Voronoi analysis and the triangular interpolation are very similar to each other, 

although the curve obtained by the Voronoi analysis is apparently shifted along the interface normal 

axis  X by  about  3  Å. This  effect  may  result  from  the  difference  between  the  two  methods 

concerning the mathematical treatment of the interface. In the sense of computational cost, as seen 

in Table 5 of Appendix B, the two methods have been found to be similar, i.e.: the time needed to 

analyze one single frame is not significantly different. 

Since cluster analysis combined with triangular interpolation has been proven to be the most 

reliable and accurate combination among the sub-procedures tested, in this section we analyze the 

profile  obtained as  a  result  of  the above mentioned pathway.  The intrinsic  free energy profiles 

calculated by the triangular interpolation method, using cluster analysis to eliminate the possibility 

of  misidentifying  hydration  shell  water  molecules  as  parts  of  the  interface  when  they  form a 

separate droplet in the organic phase are shown in  Figure 4.16 a. In Figure 4.16 b the intrinsic 

density profile of the ion free water/DCE interface calculated with respect to the intrinsic surface of 

the aqueous phase can be seen. 

Figure 4.16 a) Intrinsic free energy profile of the Cl- ion through the water/DCE interface calculated by the 
triangular interpolation method, using the cluster analysis to differentiate cases where the hydration shell is  

part of the interface from those where it forms a separate cluster in the organic phase. On the X axis the 
intrinsic distance of the ion from the interface of the aqueous phase is shown, negative values mean that the 
ion is on the aqueous side of the interface whereas positive x values correspond to the ion being situated on 
the organic side of the interface. b) Intrinsic number density profile of the aqueous and the organic phase of  

the ion-free system, calculated with respect to the interface of the aqueous phase.
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Direct matching of the points on the free energy curve to those on the density profile is in theory 

impossible as the presence of the chloride ion alters the structure of the interface relative to which 

the density profile has been calculated. However, interpreting the free energy curve in terms of the 

density profile of the system is a natural way of understanding the energetic background of the 

transfer process and is, with some constraints, possible in the framework of this study. Comparison 

can be made if the ion is positioned such that the interface of the ion free system is similar to that 

obtained in the presence of the ion. ITIM analysis of the interface of the aqueous phase at several 

different,  randomly chosen  ion  positions  have  been  performed.  The  roughness  of  the  intrinsic 

interface has been analyzed as seen in Chapter 2.7.2.1. Namely, the amplitude and the frequency-

like parameters which can describe the surface roughness accurately if examined together have been 

investigated to justify the validity interval for such a comparison. Our analyzes have shown that the 

comparison  of  the  density  profile  with  the  intrinsic  free  energy profile  is  feasible,  that  is  the 

interface of the aqueous phase in the presence of the ion is similar to that of the ion free system, 

until  the  formation  of  a  water  finger  brought  about  by  the  ion  crossing  the  interface,  which 

manifests as a sharp increase in the amplitude of the surface roughness, begins. 

 It should also be noted here that the zero abscissa value of the intrinsic free energy profile 

does not coincide with that of the non-intrinsic one. In the non-intrinsic case we have used the 

center of mass of the aqueous phase as the origin, whereas for interpreting the intrinsic profile this 

choice  would  have  been  physically  meaningless.  In  the  intrinsic  case  the  zero  abscissa  value 

corresponds to an arrangement in which the distance of the ion from the real, fluctuating interface, 

more precisely the closest point of the interface, is exactly zero. Negative X values mean that the 

ion is at the aqueous side of the interface whereas positive values of the abscissa correspond to the 

ion being situated on the organic side. The free energy difference between the two bulk phases 

calculated from the intrinsic  profile  has  turned out  to  be  55 kJ/mol  (12  kcal/mol),  which is  in 

sufficiently good agreement with that obtained in the non-intrinsic case. This observation shows 

that the bulk phase interactions are not affected significantly by the instantaneous fluctuations of the 

interface brought about by the capillary wave effect. 

However,  upon  approaching  the  interfacial  region  the  effect  of  the  above  mentioned 

fluctuations becomes clearly visible in the intrinsic profile. Differences between the intrinsic and 

the non-intrinsic profiles are seen already at relatively large intrinsic distances. The first observable 

feature on the intrinsic free energy profile is the slight but clear minimum seen at  X=-15 Å. This 

region (W1) on the curve may correspond to the maximum on the intrinsic density profile of the 

aqueous phase which is also marked as W1 in Figure 4.16 b for the sake of clarity. Similarly to what 

has been observed in the case of the SCN- ion, the minimum in the free energy profile and the 
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subsequent enhancement of the ion's concentration below the interface is due to the presence of an 

opposite phase. As the enhancement of the concentration of certain ions directly at the interface has 

been observed experimentally at the free water surface, we may conclude that finding a similar free 

energy minimum (and an enhanced concentration region) below the interface can be attributed to 

the fact that the organic molecules can, to a certain extent, penetrate into the aqueous phase and 

push the enhancement zone back towards the bulk organic phase by developing energetically less 

favorable interactions with the ion. Thus the minimum on the free energy profile will appear in a 

region where DCE molecules cannot enter. According to the density profiles of the aqueous and the 

DCE phase  the  innermost  point  where  DCE molecules  are  still  present  in  the  aqueous  phase 

coincides roughly with a local minimum of the density of water molecules.  However,  the local 

decrease in water density means energetically less favorable circumstances for the ion, thus the free 

energy minimum appears slightly below this point, where a local maximum is seen in the density 

profile. 

At  somewhat  smaller  intrinsic  distance  values  we encounter  a  steeply increasing region 

(W2) in the free energy profile. The width of this steeply increasing part is roughly 1.4 Å which is 

equal to the width of the region in the intrinsic density profile also labeled W2, where the profile 

descends from the local maximum to a local minimum. This region is characterized by a slight 

decrease in the hydration number of the Cl- ion compared to the value obtained in the bulk aqueous 

phase,  as  indicated in Fig.  4.16.  At  even  smaller  intrinsic  distances  (region  W3),  the interplay 

between the increasing water density and the increasing number of DCE molecules in the aqueous 

phase results in conditions that induce the monotonic increase in the free energy of the ion as it 

approaches the interface. 

Unlike the non-intrinsic profile, the intrinsic one exhibits a clear maximum of 67 kJ/mol at 

an intrinsic distance value of 4.5 Å (point D1.), that is, very close to the interface but already on the 

organic side. The appearance of this maximum can be attributed to the fact described in several 

studies that as the ion crosses the interface it pulls out a water finger with itself being situated on the 

top of it. This kind of arrangement maximizes the number of dichloroethane molecules which are in 

direct contact with the Cl- ion and, in turn, it creates an energetically unfavorable environment. In 

other  words,  the  shading  effect  of  the  hydration  shell  water  molecules  surrounding  the  ion  is 

reduced in such cases. Our assumption about the physical significance of the appearance of the 

above-mentioned maximum is well supported by the fact that the hydration number of the Cl- ion at 

positions corresponding to intrinsic distances in this region has turned out to be considerably (by 

15%)  smaller  than  that  observed  in  any  of  the  bulk  phases.  The  ratio  of  hydration  numbers 

calculated as the area under the first peak of the corresponding radial distribution functions of the 
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ion and the oxygen atom of the water molecules at different ion positions are shown in Figure 4.17. 

evidencing our finding.  It  follows from the origin of  the global  maximum in the intrinsic  free 

energy  profile,  that  in  this  region  direct  matching  with  the  intrinsic  density  curve  is  already 

meaningless, since the presence of the ion disturbs the interface to such an extent by forming this 

water finger that meaningful comparison would require recalculation the intrinsic density profile 

curve  for  both  water  and  DCE  “on  the  fly”  for  each  analyzed  frame,  which  is  however 

computationally quite costly and at the same time unnecessary, as this part of the profile can be 

interpreted independently from the density of the system.

Figure 4.17 Ratio of Hydration Numbers in the 6 different regions obtained from the

 Ow-Cl radial distribution functions at different positions of the ion relative to the interface.

 

This maximum is followed by a roughly 7  Å wide under-sampled region on the profile, 

ranging from  9 to 16 Å (D2.) Under-sampling in the framework of our intrinsic approach suggests 

that  no  configuration  characterized  by  such  intrinsic  distance  values  between  the  ion  and  the 

interface occurs during the course of the simulation. Knowing that the coordinates of the ion are 

fixed in the simulations, and are translated by 0.1 nm between two consecutive constraint force 

runs,  the  presence  of  the  under-sampled  region  can  be  attributed  to  a  sudden  movement  or 

relaxation of the interface after the release of the ion and its hydration shell. In other words, the lack 

of points in this region suggests that the relaxation of the interface is not a smooth continuous 

process. More precisely, as the slab width used during the reconstruction of the intrinsic free energy 

profile is chosen to be equal to the magnitude the displacement between two consecutive runs, a 

smooth gradual relaxation of the interface would prevent the formation of empty slabs. Thus, the 

interface is suspected to retreat rapidly to its original position, on the time scale of the step between 
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two analyzed frames that is of 5 ps, to its original position. The driving force of this process may be 

the considerable energy gain connected to the recovery of the total two dimensional percolating 

network of  the interface after the breakage of  the ion's  hydration shell.  This  dynamic property 

cannot be anticipated from the non-intrinsic profile, calculated from the time average of the forces 

acting on the  ion,  in which this region seems to be continuous.  However,  considering that  the 

breakage of the hydration shell happens in a way that right after the final detachment the hydrated 

ion will be situated quite far away from the interface, physically meaningful sampling of the above 

mentioned region  should be  actually impossible.  Thus the  continuity in  this  region  of  the  free 

energy profile might be considered as an artifact due to the time averaging used in the non-intrinsic 

analysis. 

Finally,  the curve exhibits  a  steeply decreasing part  which follows the above mentioned 

under-sampled region, after which the free energy reaches a plateau (D3) which corresponds to the 

similar average value of the free energy of solvation of a chloride ion in 1,2-dichloroethane to what 

has been seen in the non-intrinsic profile. This latter finding supports the idea that  the intrinsic 

treatment of the interface does not have a significant effect on the average value of the calculated 

free energy of solvation.

4.2.2.5 Summary and evaluation of the new intrinsic method

In  this  work  we have  presented  detailed  calculations  for  determining the  solvation  free 

energy profile of a SCN-  and a Cl-  ion across the water/DCE liquid/liquid interface. Our results 

concerning the SCN- ion have shown that the free energy cost of transferring the ion from the bulk 

aqueous to the bulk DCE phase is about 70 kJ/mol. A local free energy minimum has been observed 

in the subsurface water  region,  just  beyond the point  up to  which DCE can penetrate  into the 

aqueous  phase  along  the  molecularly  rugged  interface.  The  presence  of  this  free  energy  well 

indicates the ability of the SCN- ion for being adsorbed at the close vicinity of the interface. It has 

also been seen that  the SCN- ion enters into the organic phase along with the water molecules 

constituting its first hydration shell. This fact also leads to the preference of such orientations at the 

interface in which the bulky S atom remains at the aqueous side of the interface, whilst the smaller 

N atom, together with its smaller first hydration shell penetrates to DCE. 

            The findings listed above emphasize that the shape of the free energy profile of ions through 

fluid interfaces is strongly dictated by the nature, more precisely the molecular level structure of the 

interface. We have thus developed a new method based on the ITIM analysis of the interface to 

reconstruct the free energy profile of small molecular penetrants across fluid interfaces. During the 
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course of method development we have faced three major difficulties, (i) the computational cost of 

the ITIM analysis had  to be reduced considerably to make it applicable for a large number of 

calculations, as our method relies inherently on knowing the list of interfacial molecules in every 

sample configuration. (ii) Existing methods to calculate the intrinsic distance between a surface and 

a point, namely the Voronoi method and the triangular interpolation, had to be tested in terms of 

computational cost. (iii) Finally, the most severe difficulty we had to face was to develop a correct 

treatment of the water molecules constituting the first hydration shell of the ion that are known to be 

coextracted to aqueous phase. 

The  cost  of  the  ITIM analysis  could  eventually  be  successfully  reduced  by,  instead  of 

mapping the entire interface, choosing small set of test lines which lie laterally close to the ion, and 

thus only mapping a small portion of the surface. Nevertheless we should note here that the cost of 

the ITIM analysis, even after speeding up the algorithm is comparable to that of the time demand of 

the simulation. Thus here further development should be effectuated. Among two basic methods to 

determine the distance between a point  and the portion of the intrinsic  interface no substantial 

differences have been found it terms of efficacy and computational cost, thus it has been agreed, 

that triangular interpolation, whose accuracy has been proven to be higher should be used in the 

analysis. The question of the hydration shell could be most successfully addressed by performing 

cluster  analysis  on  the  set  of  water  molecules  which  form  the  hydration  shell,  for  each 

configuration, prior to the ITIM analysis, in the computationally most effective way possible. More 

precisely, this analysis by simply checking the size of the smallest cluster these water molecules 

belong to and decide if for any of them it exceeds a multiple of the average hydration number, as it 

is a clear indication of the hydration shell being part of the interface. In this case thus the hydration 

shell water molecules are included in the surface analysis, otherwise they are disregarded. We are 

aware of the fact that computational cost of the intrinsic treatment of the surface in such questions is 

high, however the information obtainable from an intrinsic free energy profile is definitely much 

more detailed than what could be yielded by the traditional non-intrinsic treatment.

The  features  of  the  intrinsic  free  energy  profile  as  obtained  from  constrained  force 

simulations has turned out to be significantly more detailed than the corresponding non-intrinsic 

one. The two most important differences between the intrinsic and non intrinsic free energy profiles, 

i.e.: the presence of a pronounced maximum and the appearance of an under-sampled region right 

beyond the maximum, can be attributed partly to the fact that the presence of the ion in the close 

proximity  of  the  interface  further  enhances  its  corrugations  due  to  the  change  of  electrostatic 

interactions,  partly to that the ion, naturally tries to minimize its interactions with the repulsive 
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environment of the organic phase by co-extracting its hydration shell.  Indeed, with the intrinsic 

treatment of the free energy profile we have been able prove in statistically relevant way the fact 

that, as it has been seen a number of times from the analysis of snapshots of constrained force 

simulations, when the ion pulls its hydration shell out of the aqueous phase towards the boundary of 

the two phases, it is situated in the tip of the water finger. This characteristic can be assigned to the 

appearance of a pronounced maximum in the profile. More clearly this maximum is exhibited due 

to the fact that in the above mentioned arrangement the ion experiences a maximal repulsive force 

since its direct contact with DCE molecules is maximized by such a structure. Note that in any other 

region along the reaction coordinate, even in the organic phase, the ion's repulsive interactions are 

shielded by the presence of at least the water molecules constituting the first hydration shell. On the 

other hand, the observed under-sampled region following the maximum, another feature which is 

averaged  out  by the  non-intrinsic  treatment,  could be  attributed  to  the  fact  that  after  the  final 

breakaway of the ion from the aqueous phase, it is repelled from the interface thus leaving a number 

of points along the intrinsic reaction coordinate (the intrinsic distance from the interface) unvisited. 

All things considered, the above-mentioned features, which are in turn all washed away by 

the use of the Gibbs dividing surface as a reference for interpreting the free energy profile obtained 

from constrained force simulations, are indeed important in understanding the detailed mechanism 

of ion transfer along various interfaces. Thus, the use of the intrinsic treatment of the interface, even 

at the expense of the increase in computational effort, is highly important.
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Chapter 5

Conclusions and perspectives
In this dissertation I have presented my work aimed mainly at  the demonstration of the 

ability of classical atomistic  computer simulations (namely Monte Carlo and molecular dynamics 

methods) to model various non-trivial processes and phenomena related to both solid and liquid 

interfaces, such as adsorption and competitive adsorption.

Classical  computer  simulations  are  nowadays  commonly  used  and  easily  available 

techniques  to  investigate  several  physico-chemical  phenomena.  One  of  the  main  advantages 

connected to the use of computer simulations is that, besides the possibility to reconstruct mean 

macroscopic values of thermodynamic quantities by either ensemble or time averaging over the 

trajectories obtained during the simulation, they can directly provide a picture of our system of 

interest in an atomistic resolution without the necessity of using an expensive experimental setup 

even under conditions which are experimentally not trivial to achieve. On the other hand, molecular 

dynamics in particular, can also yield dynamic information by the analysis of the trajectories saved 

during the course of the simulations. Thus we can conclude that computer simulation tools may be 

used as instantaneous imaging techniques (analogous to highly developed microscopy techniques 

such as STM or AFM), as methods to obtain thermodynamic quantities and finally for analyzing 

dynamic properties. Nevertheless, it should be always kept in mind, that since the application of 

classical computer simulations inherently requires the use of a simplified model of the real system 

of interest, the obtained data can only be meaningfully interpreted within the framework of the 

validity of the model. The validity of the model, on the other hand, can be conveniently justified by 

comparison of the data obtained from the simulation for the model system with experimental data 
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obtained for the corresponding real system. Thus to be able to meaningfully interpret the results of 

my simulations  I  have  attempted  to  compare  the  data  obtained  from each  of  my studies  with 

existing experimental findings whenever it was possible.

My  work  on  solid  interfaces  is  comprised  of  three  main  topics,  each  related  to 

environmentally important phenomena connected to questions of air pollution and climate evolution 

occurring  in  the  troposphere,  that  is  the  region  of  the  atmosphere   following  the  lowermost 

boundary layer. The first among these studies is the grand canonical Monte Carlo simulation of the 

adsorption of acetaldehyde on the surface of ice under tropospheric conditions (i.e.: at 200 K). The 

grand canonical Monte Carlo technique made it possible to reconstruct the adsorption isotherm by 

directly monitoring  the  number  of  inserted  acetaldehyde molecules  in  the  simulation  box  as  a 

function of the chemical potential of the system. The obtained isotherms could be well fitted with 

the Langmuir model of adsorption, suggesting that the adsorbed layer is monomolecular and lateral 

interactions between acetaldehyde molecules adsorbed at the ice surface were negligibly small. The 

analysis  of  the  molecular  level  structure  of  the  adsorbed  layer  has  shown  that  acetaldehyde 

molecules  are  most  commonly connected  to  the  surface  by one  single  hydrogen-bond  formed 

between their carbonyl group and a dangling H of the ice surface, thus turning their C=O group 

towards the surface, and pointing outwards with the methyl group, this outward orientation can be 

parallel to the interface (in the extreme case of very high surface coverage) but can also turn in a 

direction which is slightly tilted with respect to the interface normal axis, in order to maximize 

dipole-dipole attraction between the molecules  of the adsorbed layer.  Our findings have agreed 

sufficiently well with those of FTIR studies. 

The second topic connected to solid surfaces has been the molecular dynamics study of the 

adsorption bifunctional organic compounds (which are important factors in the chemistry of the 

troposphere) on ice under the conditions relevant in the troposphere. The main importance of this 

work lies in the fact that, to the best of our knowledge, this study was the first to investigate the 

applicability of MD simulations for describing the energetics and dynamics of interactions between 

ice  surfaces  and  bifunctional  molecules.  As model  compounds  we have  chosen  two molecules 

which are present in relatively high amounts in the upper region of the troposphere, namely oxalic 

acid and hydroxyacetone. The results obtained for oxalic acid have shown that, i) this molecule is 

adsorbed readily on the surface of ice by the formation of a number of hydrogen bonds, even at the 

expense of loosing its outstandingly stable gas phase structure; ii) the molecules in the adsorption 

layer are not evenly distributed and upon increasing the temperature, the stable adsorption layer is 

characterized by an increasing extent of lateral aggregation of the oxalic acid molecules, and the 

subsequent formation of uncovered patches on the ice surface;  iii) due to the formation of these 
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uncovered patches, which can eventually serve as ducts for water molecules to leave the surface, the 

increase of the temperature causes the departure of water molecules from the ice phase rather than 

that of oxalic acid molecules from the stable adsorbed layer. The results of our simulations have 

been found to be in agreement with, and could qualitatively explain the experimental adsorption and 

thermally induced desorption studies of the oxalic acid/ice system evidencing that the desorption of 

water molecules takes place at lower temperature than that of oxalic acids even if the upper layer is 

built up of the latter species. Results obtained for the hydroxyacetone/ice system, on the other hand, 

were burdened by severe weaknesses of the, to the best of our knowledge, single existing model of 

the molecule.

The third question of large atmospheric interest that I have addressed is the computational 

modeling of  the phase behavior  of  binary water/organic aerosols  known as  cloud condensation 

nuclei. Here we have proposed a simulation protocol, based on the molecular dynamics method, to 

reconstruct the phase diagram of binary aerosols on ice. The model compounds used in this work 

were oxalic acid/water and malonic acid/water systems, the latter added to shed light on the effect 

of the carbon chain length on the aerosol's efficacy  as a cloud condensation nucleus. The question 

of the effect of humidity has been also addressed by performing the simulations at two different 

water contents, corresponding to cases when i) the stable hydrate formation is hindered by the low 

water concentration and when  ii) the amount of water exceeds the concentration needed for the 

formation of a dihydrate in the case of oxalic and a hexahydrate in the case of malonic acid. The 

results of this study have revealed the fact that the average size of the pure organic aerosol particle 

depends strongly on the molecular size.  Namely the larger the molecule the bigger the average 

aggregation number. Secondly, the phase behavior of the corresponding binary aerosols has been 

found to be markedly different for the two organic compounds. The details of phase diagram of the 

oxalic acid/water systems have been found to depend strongly on the concentration. Nevertheless, at 

each composition the stable phase at low temperatures has been represented by one big organic 

aggregate with the water molecules adsorbed on its surface whose disintegration could be observed 

at the highest examined temperatures to form small oligomeric droplets. In the case of malonic acid, 

on the other hand, the phase behavior has been found to be independent of the water concentration 

in the examined range and, more importantly, no disintegration of the original large aggregate could 

be observed. Thermodynamic analysis of the results suggests that the phase diagram is governed 

largely by entropic  factors.  The comparison of  our  findings with  recent  experiments  about  the 

relation between the O:C ratio and the cloud condensation potency of the aerosol implies that the 

disintegration of  the particles into small  droplets can be connected to the increased efficacy of 

oxalic acid/water binary aerosols as cloud condensation nuclei.
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My work on liquid interfaces can be divided into two main topics. The first among them is 

the investigation of the competitive adsorption of poly(ethylene-oxide) and sodium dodecyle sulfate 

at  the free  interface  of  water,  whereas  the  second is  the  study of  the transfer  of  ions  through 

liquid/liquid interfaces by means of the potential of mean force method. The latter one includes the 

development of a new, intrinsic surface analysis based method to reconstruct the free energy profile 

from constrained simulations.

The study of  the competitive  adsorption of  PEO and SDS at  the water  surface  can be, 

besides  its  significance  in  fundamental  science,  important  for  industrial  applications,  since  the 

complexes of these two molecules are present in several products of chemical industry. We have 

performed  molecular  dynamics  simulations  and  ITIM  analyses  of  the  free  interface  of  the 

water/PEO system at different  SDS concentrations to reveal  the details  and the thermodynamic 

background of the mechanism by which the PEO segments are eventually displaced by the DS- ions 

at the surface. Here we have found that the mechanism of competition is indeed complex, and the 

displacement happens in a segment by segment manner. In the absence of SDS the PEO molecules 

have been found to be anchored to the surface only by a few segments, whereas the rest of segments 

are arranged in long loops towards the bulk liquid phase and short but perceivable loops towards the 

vapor phase. At small SDS surface concentrations almost the entire PEO molecule has been found 

at the interface,  and only a considerably high amount of SDS has led to its departure.  Another 

important finding of this study has been the fact that PEO segments can form loops towards the 

apolar phase (vapor or in the presence of a SDS a hydrocarbon region) as well as towards the bulk 

aqueous phase, which had never been included so far in any of the models of polymer adsorption. 

Finally the possibility of  the formation of  polymer-surfactant  complexes which are well-known 

structures of the  aqueous phase has also been observed at the interface in our simulations.

The other main topic of my studies concerning fluid interfaces has been the reconstruction 

of  the  free  energy  profile  of  different  ions  (thiocyanate  and  chloride)  across  the  liquid/liquid 

interface of water and 1,2-dichloroethane from constrained force simulations. This work included 

the development of a method to calculate the free energy profile with respect to the real intrinsic 

interface. The results of the intrinsic analysis of our test system (water/DCE/Cl-) has revealed that 

the intrinsic free energy profile provides a considerably more detailed view on the mechanism of 

transfer than the corresponding non-intrinsic one. Indeed, the fact that in the non intrinsic treatment 

the profile is usually anchored to the Gibbs-dividing surface instead of the instantaneous intrinsic 

interface, has been found to wash away features of the profile which correspond to such important 

details of the mechanism of transfer as the structure of the water finger pulled by the ion when 

crossing the interface or the manner by which the first hydration shell coextracted with the ion 
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finally breaks away from the bulk aqueous phase. Information about these can be obtained only by 

the intrinsic approach. Thus, even if the computational cost of such analysis if somewhat higher 

than that of the non-intrinsic one, our results suggest that it is recommended adopt the intrinsic 

treatment in order to obtain a more detailed picture of the mechanism of transfer.

My work has shed light on the wide range of applicability of computer simulations in the 

field of modeling interfacial  processes.  Obviously there are several  unexplored areas which are 

currently subject of investigations in our group. Concerning solid surfaces, the development has 

taken a direction to model the competitive incorporation of small molecules such as CO or noble 

gases into clathrate hydrates which, are of great interest for the community of astrophysicists. We 

have started recently to adapt grand canonical Monte Carlo simulations, used so far for modeling 

the competitive adsorption of small molecules on zeolites, to be able to perform that kind the above-

mentioned analysis. 

In the field of fluid interfaces the two main directions of development are the following. 

First of all investigations of the structure and dynamics of the adsorption layer of several ionic and 

non-ionic surfactants is going on currently. The main target of this work is to investigate the lateral 

diffusion  of  surfactants  at  the  interface.  On  the  other  hand,  we  have  also  started  recently  to 

characterize the depth to which a surfactants can penetrate into the subsurface layers by means of a 

modification of  the ITIM analysis.  Both of these studies  are aimed at  developing the currently 

existing theoretical models of surfactant adsorption at fluid interfaces. Secondly our new method to 

reconstruct free energy profile with respect to the intrinsic interface is also going on. Currently we 

are testing the ability of our method to describe the transfer of complex ions (SCN-) and of neutral 

molecules such as methane and other small organic compounds.
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APPENDIX A. 
 

TABLE 1: Interaction Parameters of the Models Used in Chapter 3. 

Molecule Interaction site σ / Å ε / kJmol-1 q/e 

TIP5P water 
O 3.120 0.669 0.000 

H 0.000 0.000 0.241 

La 0.000 0.000 –0.241 

TIP4P/2005 water 
O 3.158 0.775 0.000 

H 0.000 0.000 0.5564 

L 0.000 0.000 -1.11280 

 

Acetaldehyde 

CH3 3.75 0.813 -0.043 

CH 3.72 0.448 0.525 

O 3.05 0.656 -0.482 

Oxalic acid 

C 3.75 0.439 0.700 

O(C=O) 2.96 0.879 -0.450 

O(OH) 3.07 0.711 -0.685 

H 0.000 0.000 0.435 

 

 

Hydroxyacetone 

 

 

 

CH3 3.75 0.866 0.000 

CH2 3.91 0.494 0.265 

HOH 0.00 0.000 0.435 

C 3.71 0.439 0.470 

OOH 2.96 0.711 -0.700 

OC=O 3.15 0.787 -0.470 

CH3 3.75 0.866 0.000 

 

Malonic acid 

C 3.75 0.439 0.557 

OC=O 2.96 0.878 -0.450 

OOH 3.070 0.711 -0.685 

HOH 0.000 0.000 0.435 

CH2 3.80 0.494 0.285 
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TABLE 2: Interaction Parameters of the Models Used in Chapter 4 

Molecule Interaction site σ / Å ε/kJmol-1 q/e 

 

SPC water Ow 3.166 0.649 -0.820 

 

H 0.000 0.000 0.410  

 

PEO 

CH3 3.74 0.866 0.000  

CH2 4.07 0.410 0.250  

O 2.97 0.815 -0.500  

SDS 

 

 

 

CH3 3.90 0.732 0.000 

 

CH2 3.90 0.495 0.000 

 

-O- 3.00 0.716 -0.459 

 

=O 3.17 0.784 -0.654 

 

S 2.42 1.043 1.284 

 

Na+ 2.58 0.743 -1.000  

TIP4P water 

 

Ow 3.166 0.649 0.000 

Hw 0.000 0.000 0.520 

 

La 0.000 0.000 -1.040 

 

SCN- 

S 3.550 1.046 -0.750 

C 3.750 0.439 0.490 

N 3.250 0.711 -0.740 

Cl-  Cl-        

DCE CH2 3.800 0.494 0.227 

Cl 3.400 1.255 -0.227 
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APPENDIX B 

 

TABLE 1. The enthalpic contribution to the Gibbs free energy of the oxalic acid/water binary 

aerosol system at selected p,T pairs, at 65 water % mole concentrations 

 

 0.1 bar 0.5 bar 1.0 bar 

65 mol% 

U/ 

kJ/mol 

pV/ 

kJ/mol U+pV 

U/ 

kJ/mol 

pV/ 

kJ/mol U+pV 

U/ 

kJ/mol 

pV/ 

kJ/mol U+pV 

100 K -6.130 -0.247 -5.883 -6.087 -0.249 -5.838 -6.026 -0.262 -5.764

175 K -5.623 -0.159 -5.464 -5.647 -0.148 -5.499 -5.684 -0.118 -5.566

200 K -5.689 -0.089 -5.600 -5.602 -0.095 -5.507 -5.616 -0.093 -5.523

250 K -4.827 -0.016 -0.811 -4.723 -0.024 -0.699 -4.687 -0.041 -4.646
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TABLE 2: Partition of the PEO monomer units between the three different regions of the 

systems simulated  

  Percentage of the PEO monomer units 

SDS surface density aqueous phase interface apolar phase 

0 μmol/m2 73 26 1 

1 μmol/m2 14 83 3 

2 μmol/m2 13 82 5 

3 μmol/m2 12 77 11 

4 μmol/m2 18 70 12 

5 μmol/m2 77 20 3 

6 μmol/m2 81 18 1 

TABLE 3: Properties of the seven systems simulated 

        
surface roughness 

parameters 
  residence times (ps) 

ΓSDS 

(μmol/m2) 
NSDS δSC (Å) γ (mN/m) a (Å) ξ <D> (Å) 

τ  

water 

τ1 

PEO 

τ2 

PEO 

0 0 - 51.3 3.01 0.56 19.5 5.31 56.9 6.12 

1 12 7.5 40.9 3.39 0.72 23.9 4.09 98.6 0.89 

2 24 9.1 27.2 4.31 0.89 24.5 5.23 171.1 2.94 

3 36 11.7 23.0 5.72 1.05 21.4 6.79 145.2 5.08 

4 48 12.3 15.3 11.4 1.12 23.5 8.87 152.1 4.97 

5 60 13.3 14.3 9.79 1.07 23.6 17.08 167.9 8.31 

6 72 14.1 14.8 13.6 1.15 25.5 17.87 205.3 8.08 
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TABLE 3: Partial First Shell Hydration Numbers Corresponding to the Different Atoms of 

the SCN- Ion, nhyd, and Molecular Hydration Numbers, Nhyd, Obtained as the Sum of the 

Contributions of the S and N Atoms 

Ion Position Atom pairs nhyd Nhyd 

Bulk water 
Ow - S 2.3 

3.9 Ow - C 4.3 

Ow - N 1.6 

Subsurface water 
Ow - S 2.3 

4.3 Ow - C 3.9 

Ow - N 2.0 

Interface water 
Ow - S 1.9 

3.8 Ow - C 3.3 

Ow - N 1.9 

Interface DCE 
Ow - S 1.8 

3.5 Ow - C 3.0 

Ow - N 1.7 

Subsurface DCE 
Ow - S 2.0 

3.8 Ow - C 3.1 

Ow - N 1.8 

Bulk DCE 
Ow - S 2.2 

4.2 Ow - C 4.0 

Ow - N 2.0 
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TABLE 5. The computational cost of the sub-procedures of the calculation of the intrinsic free 

energy expressed as a percentage of the total time demand of the analysis of 1 configuration 

 

Step Approximate Time demand/ 
 %total time /conf 

Simulation 28 

Cluster analysis  26 

ITIM analysis 42 

Triangular interpolation 1 

Voronoi method 1 

Force -position pairing  1 

Reslabbing and integration 1 

 



RESUME

Ce travail a pour objectif de montrer la capacité des simulations numériques à modéliser les 
phénomènes aux interfaces solides et liquides. Dans le travail sur les interfaces solides, la 
méthode GCMC a été utilisée pour simuler l’isotherme d’adsorption de l’acétaldéhyde sur la 
glace dans les conditions de la haute troposphère, puis l’adsorption de composés organiques 
bi-fonctionnalisés sur la glace a été caractérisée par dynamique moléculaire avec pour objectif 
d’interpréter des résultats expérimentaux de la littérature. Une partie de ce travail a été 
consacrée à la simulation du diagramme de phase (p,T) d’aérosols organiques (acide oxalique 
et malonique) dans les conditions troposphériques afin d’étudier la capacité de ces aérosols à 
jouer le rôle de noyaux de condensation pour les particules de glace. Le travail sur les 
interfaces liquides a concerné tout d’abord l’adsorption compétitive de polymères et de 
surfactants à la surface de l’eau. Il s’appuie sur une description très précise, par simulation, de 
la structure et de la dynamique de la surface des systèmes considérés. La deuxième partie des 
travaux sur les interfaces liquides s’est intéressée à la caractérisation du transfert d’ions à 
travers une interface liquide/liquide par le biais du calcul des variations de l’énergie libre du 
système au cours du transfert. Afin d’obtenir une description très rigoureuse des détails des 
processus mis en jeu, une méthode spécifique a été développée dans cette thèse pour calculer 
le profil d’énergie libre en tenant compte directement du caractère très dynamique de 
l’interface.
 

SUMMARY

This work aims to demonstrate the ability of numerical simulations to model solid and liquid
interfaces. In the work on the solid interfaces, the GCMC method was used to simulate the 
adsorption isotherm of acetaldehyde on ice under the conditions of the upper troposphere and 
the molecular dynamics method was used to characterize the adsorption of difunctionalized
organic compounds on ice, aiming at interpreting experimental results. Part of this work was 
devoted to the simulation of the phase diagram (p, T) of organic aerosols (oxalic acid and 
malonic) in tropospheric conditions to study the ability of aerosols to act as condensation 
nuclei for ice particles. The work on liquid interfaces concerned firstly the competitive 
adsorption of polymers and surfactants at the water surface. It is based on a very precise 
description, by numerical simulation, of the structure and dynamics of the surface of the 
considered systems. The second part of the work on liquid interfaces has focused on the 
characterization of ion transfer across a liquid/liquid interface through the calculations of the 
free energy variations of the system during the transfer. To obtain a rigorous description of 
the details of the corresponding processes, a specific method was developed in this thesis to 
calculate the free energy profile while taking into account the dynamics of the interface.


