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Résumé : Effets radiatifs et d’électrodynamique quantique dans l’interaction
laser-matière relativiste

Les futures installations laser multi-pétawatts, tel le projet Apollon (France) permettront
d’atteindre des intensités sur cible dépassant 1022 W/cm2. Dans de telles conditions, l’
interaction laser-matière met en jeu des processus plasmas ultra-relativistes couplés à
des mécanismes radiatifs et d’électrodynamique quantique (QED). La plupart des études
théoriques sur ce sujet ont porté sur l’émission synchrotron et la production de paires
électron-positron par le processus de Breit-Wheeler, tous deux induits par un champ laser
intense et censés dominer l’interaction à des intensités > 1022 W/cm2. À de plus faibles
intensités (. 1021 W/cm2), l’émission de photons et la création de paires procèdent essen-
tiellement du Bremsstrahlung et des processus de Bethe-Heitler/Trident, tous déclenchés
sous l’action du champ Coulombien atomique. Cette thèse vise précisément à étudier ces
processus à l’aide du code particle-in-cell (PIC) calder conçu au CEA/DAM.

Notre première étude permet d’étendre les capacités de simulation du code PIC calder
à l’ensemble des mécanismes mentionnés ci-dessus. Nous nous intéressons ensuite à la
compétition entre le Bremsstrahlung et l’émission synchrotron dans des feuilles de cuivre
irradiées par un laser femtoseconde d’intensité 1022 W/cm2. Finalement, nous explorons
le potentiel de cibles composées de nano-fils pour augmenter le rayonnement synchrotron.

Mots-clés : interaction laser-matière, plasma, électrodynamique quantique, Particle-
In-Cell, Compton, Breit-Wheeler, Bremsstrahlung, Bethe-Heitler, nano-fils, Apollon.

Abstract: Radiative and quantum electrodynamic effects in relativistic
laser-matter interaction

Forthcoming multi-petawatt laser systems, such as the French Apollon, are expected to
deliver on-target laser intensities exceeding 1022 W/cm2. A novel regime of laser-matter
interaction will ensue, where ultra-relativistic plasma effects are coupled with copious
generation of high-energy photons and electron-positron pairs. In recent years, most the-
oretical studies performed in this field have focused on the impact of synchrotron photon
emission and Breit-Wheeler pair generation, both directly induced by an intense laser
field and believed to be dominant at intensities > 1022 W/cm2. At the lower intensities
(. 1021 W/cm2) currently attainable, by contrast, photon and pair production mainly orig-
inate from, respectively, Bremsstrahlung and Bethe-Heitler/Trident processes, all triggered
by atomic Coulomb fields. The purpose of this PhD is precisely to study those processes
using the particle-in-cell calder code developed at CEA/DAM.

Our first study extends the simulation capabilities of calder to the whole range of
photon and positron generation mechanisms aforementioned. We then address the com-
petition between Bremsstrahlung and synchrotron emission from copper foils irradiated
at 1022 W/cm2. Finally, we investigate the potential of nanowire-array targets to enhance
the synchrotron yield of a 1022 W/cm2 femtosecond laser pulse.

keywords: laser-matter interaction, plasma, quantum electrodynamics, Particle-In-
Cell, Compton, Breit-Wheeler, Bremsstrahlung, Bethe-Heitler, nanowires, Apollon.
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Introduction 13
Scientific context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Plasmas physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Concise history of lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
State of the art and forthcoming laser facilities . . . . . . . . . . . . . . . . 14
Radiative and Quantum Electrodynamics (QED) processes . . . . . . . . . 15

Goal and plan of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I Theory and implementation of radiative and QED processes 19

1 Particle-in-cell method 21
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2 Interpolation steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3 Resolution of Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1 Explicit method from K. Yee . . . . . . . . . . . . . . . . . . . . . . 24
1.3.2 Improved resolution of Maxwell’s equations . . . . . . . . . . . . . . 26

1.4 Resolution of particles’ motion . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5 Non-conservation of charge during interpolation . . . . . . . . . . . . . . . . 28
1.6 Photon transport for PIC codes . . . . . . . . . . . . . . . . . . . . . . . . 29

1.6.1 Radiative transport equation in the PIC framework . . . . . . . . . 30
1.6.2 Monte Carlo scheme for elastic and inelastic processes . . . . . . . . 31

2 Processes induced in an electromagnetic field 35
2.1 Radiation of photons by nonlinear inverse Compton scattering . . . . . . . 35

2.1.1 Physical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.2 Continuous radiation loss . . . . . . . . . . . . . . . . . . . . . . . . 41
2.1.3 Implementation of the continuous model . . . . . . . . . . . . . . . . 42
2.1.4 Implementation of the discontinuous model . . . . . . . . . . . . . . 43

2.2 Pair creation by the nonlinear Breit-Wheeler process . . . . . . . . . . . . . 44
2.2.1 Physical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.2 Monte Carlo implementation in the PIC code calder . . . . . . . . 46

2.3 Pair creation by the electromagnetic Trident process . . . . . . . . . . . . . 46

3 Processes induced in a Coulomb atomic field 49
3.1 Elastic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 Nanbu’s theory for Debye’s screening . . . . . . . . . . . . . . . . . . 51

5



CONTENTS

3.1.2 Description of bound electron screening . . . . . . . . . . . . . . . . 53
3.1.3 Monte Carlo implementation . . . . . . . . . . . . . . . . . . . . . . 57
3.1.4 Numerical tests with arbitrary ionized atoms . . . . . . . . . . . . . 58

3.2 Impact ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.1 Model for impact ionization . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.2 Monte Carlo implementation . . . . . . . . . . . . . . . . . . . . . . 61
3.2.3 Calculation of the electron collisional stopping power . . . . . . . . 62

3.3 Bremsstrahlung emission of photons . . . . . . . . . . . . . . . . . . . . . . 63
3.3.1 Cross-sections accounting for free and bound electron screening . . 63
3.3.2 Implementation of Bremsstrahlung emission . . . . . . . . . . . . . 72
3.3.3 Validation of the simulated electron radiative stopping power . . . . 74

3.4 Bethe-Heitler pair creation . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4.1 Cross-sections accounting for free and bound electron screening . . . 75
3.4.2 Implementation of the Bethe-Heitler pair creation . . . . . . . . . . 76

3.5 Coulomb-Trident pair creation . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5.1 Non-screened cross-sections . . . . . . . . . . . . . . . . . . . . . . . 78
3.5.2 Implementation of the Coulomb-Trident pair creation . . . . . . . . 81

3.6 Application to fast electron relaxation in a solid target . . . . . . . . . . . 82
3.6.1 Theoretical 0D model on positron creation . . . . . . . . . . . . . . 82
3.6.2 Self-consistent Particle-In-Cell simulations . . . . . . . . . . . . . . . 86

II Radiative processes induced by laser solid interaction 91

4 High-energy radiation in ultra-relativistic laser-solid interactions 93
4.1 Fundamentals of relativistic laser-plasma interaction . . . . . . . . . . . . . 95

4.1.1 Dynamics of a single electron in an intense electromagnetic field . . 95
4.1.2 Relativistic self-induced transparency . . . . . . . . . . . . . . . . . 96
4.1.3 Fast electron generation in undercritical plasmas . . . . . . . . . . . 98
4.1.4 Fast electron generation in overcritical plasmas . . . . . . . . . . . . 99
4.1.5 Ion acceleration in overcritical plasmas . . . . . . . . . . . . . . . . . 102

4.2 Laser-induced synchrotron radiation in uniform plasmas of varying density 107
4.2.1 Synchrotron emission in relativistically undercritical plasmas . . . . 108
4.2.2 Synchrotron emission in overcritical plasmas . . . . . . . . . . . . . 113
4.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3 Competition between Bremsstrahlung and Synchrotron radiation in foils of
varying thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.3.1 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.3.2 Target thickness dependence of the radiation yield . . . . . . . . . . 121
4.3.3 Influence of the target dynamics on the radiation processes . . . . . 122
4.3.4 Opaque targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.3.5 Target thickness dependence of the radiation spectra . . . . . . . . . 134
4.3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5 Improving the synchrotron process efficiency with nanowire arrays 139
5.1 Preliminary investigation of electron heating . . . . . . . . . . . . . . . . . 141

5.1.1 2D PIC simulation setup . . . . . . . . . . . . . . . . . . . . . . . . 141
5.1.2 Evidence of different electron heating mechanisms with nanowires . 142
5.1.3 Dependence of electron heating on the nanowire parameters . . . . 146

5.2 Identification of the main synchrotron radiation regimes . . . . . . . . . . . 148

6



CONTENTS

5.3 Variations of the synchrotron yield with the nanowire parameters . . . . . . 153
5.3.1 Variation of the interwire spacing: from forward to backward di-

rected radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.3.2 Variation of the wire width: from RESE to SDE, through TOEE . . 155
5.3.3 Changing the ion mass and the laser intensity . . . . . . . . . . . . 158
5.3.4 Comparison with uniform-density targets . . . . . . . . . . . . . . . 160

5.4 Extension to more realistic setups . . . . . . . . . . . . . . . . . . . . . . . . 162
5.4.1 Radiation enhancement by a reflective substrate . . . . . . . . . . . 162
5.4.2 Effect of a finite focal spot and an oblique incidence angle . . . . . 164

5.5 Ion acceleration in nanowire arrays . . . . . . . . . . . . . . . . . . . . . . 166
5.5.1 Numerical setup and optimized regime for flat targets . . . . . . . . 167
5.5.2 Substrate length dependence of ion acceleration . . . . . . . . . . . 172
5.5.3 Nanowire length dependence of ion acceleration . . . . . . . . . . . 176
5.5.4 Comparison of nanowire-foil and foam-foil targets . . . . . . . . . . . 177

Conclusions and perspectives 183
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Appendices 187

A Laser normalisation 189

B Screening angle in the limit of weak and strong ionization 191
B.1 Particular case of a single exponential potential . . . . . . . . . . . . . . . . 191
B.2 Generalisation to a double exponential potential . . . . . . . . . . . . . . . 192

C List of communications 195
C.1 First author articles in peer-reviewed journals . . . . . . . . . . . . . . . . . 195
C.2 Oral presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
C.3 Poster presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7



CONTENTS

8



Résumé français

Contexte scientifique

Les futures installations laser multi-pétawatts, tels les projets Apollon (France) et Extreme
Light Infrastructure (République Tchèque, Hongrie, Roumanie), permettront d’atteindre
des intensités sur cible dépassant 1022 W/cm2. Dans de telles conditions, l’interaction
laser-matière met en jeu des processus plasmas ultra-relativistes couplés à des mécanismes
radiatifs et d’électrodynamique quantique (QED). Ce nouveau régime d’interaction laisse
présager de nombreuses applications transdisciplinaires en recherche fondamentale et ap-
pliquée, incluant le développement de sources compactes et ultra-intenses de particules
énergétiques, la reproduction de phénomènes astrophysiques relativistes ou des tests expéri-
mentaux de divers aspects de la QED.

La plupart des études théoriques sur ce sujet ont porté sur l’impact de l’émission
synchrotron et de la production de paires électron-positron par le processus de Breit-
Wheeler, tous deux induits par le champ laser et censés dominer l’interaction à des inten-
sités > 1022W/cm2 (voir Fig. 6). À de plus faibles intensités (. 1021W/cm2), l’émission
de photons et la création de paires procèdent essentiellement du Bremsstrahlung et des
processus de Bethe-Heitler/Trident, tous déclenchés sous l’action du champ coulombien
atomique. La transition entre ces différents régimes a toutefois été peu explorée, notam-
ment au moyen de simulations cinétiques intégrées. Cette thèse vise précisément à étudier
les processus mentionnés ci-dessus dans divers scénarios d’interaction laser-plasma rela-
tiviste. Ce travail a été réalisé à l’aide du code particle-in-cell (PIC) calder conçu au
CEA/DAM, qui, au début de ce travail, modélisait déjà les mécanismes synchrotron et
Breit-Wheeler.

Figure 1: Processus radiatif de Compton inverse nonlinéaire (ou synchrotron) et création
de paire électron-positron (e−e+) par effet Breit-Wheeler nonlinéaire. Ces deux effets sont
induits dans un champ de forte amplitude.
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Résumé français

Processus induits dans un champ coulombien atomique

La première étude a pour but d’étendre les capacités de simulation du code PIC aux
mécanismes induits dans un champ coulombien. Plusieurs processus sont étudiés dans
le cadre de cette thèse : les déflections angulaires élastiques, la génération de photons
par Bremsstrahlung et de positrons par Bethe-Heitler/Trident. Ils sont schématiquement
représentés sur la Fig. 2.

Figure 2: L’interaction d’un laser intense avec la matière génère des électrons rapides, qui
peuvent subir divers processus induits lors de leur interaction avec un champ coulombien
atomique.

Dans le Chap. 3, les sections efficaces des processus Bremsstrahlung (émission de pho-
tons) et Bethe-Heitler (création de paires électron-positron) sont dérivées par des méthodes
classiques afin de tenir compte des variations de l’écrantage électronique selon le degré
d’ionisation du milieu traversé par les électrons et les photons. L’implémentation des
déflections angulaires est revue par des arguments heuristiques afin de prendre en compte
ces effets d’écrantage lors des déflections electron-ion. De nouveaux modules associés à
la création de photon et de paires ont été implémenté dans le code PIC calder et celui
traitant des déflections angulaires a été mis à jour. Forte de ces implémentations, la partie
Monte Carlo du code peut désormais reproduire le pouvoir d’arrêt d’électrons dans les
solides, sur une large gamme d’énergies allant de 10 keV à 1 GeV.

Après cette étape de validation, nous avons mené une étude numérique de la génération
de positrons par Bremsstrahlung / Bethe-Heitler et Trident lors du transport d’électrons
relativistes dans une cible de cuivre. Comparées à un modèle théorique, nos simula-
tions mettent en lumière l’impact des transferts d’énergie entre électrons et ions (via
l’accélération de ceux-ci) sur la création de paires dans des cibles fines (5− 15µm). Pour
les cibles les plus fines (5µm), l’énergie perdue par les électrons au profit des ions de-
vient non-négligeable et limite alors la production de positrons. Le modèle théorique
0D auquel sont confrontés nos résultats (Myatt et al., 2009) ne propose pas cette vision
auto-consistante de l’accélération d’ions et surestime donc la création de positrons.
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Résumé français

Rayonnement de haute énergie dans l’interaction laser-matière relativiste

Nous nous intéressons ensuite à la compétition entre deux processus permettant de générer
des photons de haute énergie lors de l’interaction laser-matière relativiste : le Bremsstrah-
lung et l’émission synchrotron. L’objectif consiste à caractériser leur efficacité relative,
ainsi que leur propriétés spectrales, dans des feuilles de cuivre irradiées par un laser fem-
toseconde d’intensité 1022 W/cm2. Cette étude est motivée par le manque de résultats

Figure 3: Compétition entre les processus de Bremsstrahlung et d’émission synchrotron
lors de l’interaction laser-matière. L’intensité du laser varie de 1018 à 1024 W/cm2.

théoriques sur le sujet et l’anticipation des expériences sur les futures installations lasers.
Le Bremsstrahlung est bien caractérisé et observé régulièrement de façon expérimentale

pour l’ interaction laser-solide, notamment pour des matériaux de Z élevés et d’épaisseur
de l’ordre de quelques mm. Il permet de générer des photons dont l’énergie est de l’ordre
de quelques dizaines de MeV pour des intensités laser de l’ordre de 1020−21 W/cm2.
L’obtention de telles énergies photoniques via l’émission synchrotron stimulée par laser
n’a été que très peu observée (Poder et al., 2018; Cole et al., 2018), et uniquement
lors de l’interaction laser-faisceau d’électron et non lors de l’interaction laser-solide. A
l’aide de codes numériques particle-in-cell, largement exploités pour simuler l’interaction
laser-matière relativiste, l’ influence de l’intensité laser (Pandit and Sentoku, 2012) et du
matériau (Wan et al., 2017) sur la compétition entre les deux processus radiatifs ont été
mis en évidence. Il n’existe cependant pas de résultat clair sur l’impact d’une variation
de l’épaisseur du matériau irradié par le laser. Nous étudions précisément cette question
dans le Chap. 4.

Nous introduisons d’abord les bases de l’interaction laser-matière ultra-relativiste, en
présentant les concepts de transparence induite, de génération d’électrons rapides et d’accé-
lération d’ions. Nous abordons ensuite un problème simplifié, constitué de l’interaction
d’un laser uniforme avec un plasma de densité uniforme (soit transparent soit opaque au
laser). Un des points notables est que dans le cas d’un plasma transparent, nous mettons
en évidence le processus plasma qui est à l’origine de l’émission synchrotron. Celui-ci
se démarque notamment du résultat plus partiel et simplifié précédemment avancé par
Brady et al. (2012). Enfin, nous examinons le scénario plus réaliste de l’interaction d’un
laser court (femtoseconde) avec une feuille de cuivre dont l’épaisseur varie de ∼ 10 nm à ∼
10µm. La production de photons s’avère maximale dans des cibles de quelques dizaines de
nanomètres devenant transparentes, par effet relativiste et expansion ultra-rapide, durant
l’impulsion laser, et est alors imputable à l’émission synchrotron. Le Bremsstrahlung gagne
en importance avec l’épaisseur de la cible, jusqu’à prendre le pas sur l’émission synchrotron
au-delà de 2µm. Les propriétés spectrales des deux mécanismes sont analysées en détail
et corrélées à l’évolution ultra-rapide de la cible.
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Résumé français

Améliorer l’efficacité de l’émission synchrotron avec des réseaux de nanofils

Finalement, nous explorons le potentiel de cibles composées de nano-fils pour augmenter le
rayonnement synchrotron produit lors de l’interaction laser-matière. L’objectif est de met-
tre en avant un potentiel schéma expérimental pour la première observation expérimentale
du rayonnement synchrotron déclenché par interaction laser-solide relativiste.

Ce type de structure est déjà employée lors d’expériences d’interaction laser-matière
relativiste comme illustré sur la Fig. 4 (Jiang et al., 2016). Cette nanostructure a été
irradiée par un laser d’intensité 1021 W/cm2 afin d’accélérer des électrons à des énergies
relativistes ∼ 15 MeV. A des intensités plus modérées (I = 1017 − 1020 W/cm2) des

Figure 4: Exemple d’un réseau de nano-fils fabriqué pour une expérience d’interaction
laser-matière relativiste (image de Jiang et al. (2016)).

expériences d’accélération d’ion (Khaghani et al., 2017), de radiographie X (Samsonova
et al., 2017), ou de génération de hautes densités d’énergies (Purvis et al., 2013) ont déjà
été réalisées à l’aide de réseaux de nano-fils.

Au cours du Chap. 5, nous envisageons le potentiel des réseaux de nano-fils dans le
cadre des expériences de court et long terme, lors desquelles les intensités laser seront
de l’ordre de I = 1021-1023 W/cm2. Nous mettons en valeur plusieurs mécanismes de
génération d’électrons rapides qui dépendent des paramètres du réseau tels que l’espacement
des fils, leur diamètre ou leur matériau. Plusieurs régimes de rayonnement synchrotron
sont mis en évidence selon ces mêmes grandeurs et en fonction du temps. Une étude
paramétrique met en exergue la géométrie la plus efficace, s’illustrant, pour une intensité
de 1022 W/cm2, par un taux de conversion radiatif de 10%. Cette configuration conduit
à une détente rapide des nano-fils, produisant un plasma quasi uniforme et transparent
à l’essentiel de l’impulsion laser. En outre, nous montrons que si des cibles uniformes
de faible densité reproduisent les performances optimales des nano-fils pour des den-
sités moyennes ≤ 5× 1022 /cm3, ceux-ci assurent un rayonnement élevé pour des densités
supérieures à 5 × 1022 /cm3. La robustesse de ce résultat est confirmée par la simulation
d’un profil laser réaliste, présentant un profil transverse Gaussien et un angle d’incidence
de 30◦. Enfin, nous proposons une étude préliminaire d’accélération de protons lors de
l’interaction d’un laser avec des nano-fils. Après un rappel des mécanismes d’accélération
pour des cibles planes, celle-ci s’illustre par une mise en valeur de l’impact d’une variation
de l’épaisseur du substrat et de la longueur des fils sur l’énergie maximale des protons.
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Scientific context

Plasmas physics

Plasma is the prevailing state of matter in the universe, exceeding in proportion the three
other well-known solid, liquid and gaseous states. It is formed when matter is heated or
compressed enough to ionize atoms, providing a bath of charged particles which dynamics
is ruled by electromagnetic interactions. Stars are the first plasma one can think of. The
core temperature of our sun is estimated to be 1.5 keV and is maintained by the continuous
fusion of hydrogen isotopes. Other types of plasmas can be found in the magnetosphere
surrounding the planet (at a few Earth radius altitude) or in the ionosphere (between
60 and 1000 km of altitude). On a daily basis, partially ionized plasmas are employed in
discharge lamps to provide lights of different wavelengths (e.g. neon lamps).

Concise history of lasers

Lasers find many applications in our day to day life. For instance we routinely use them
while we print documents, watch a movie, listen to music or as we scan barcodes at the
supermarket. To emphasize their generalisation in our lives, one may think of the beauty
sector where salons offer laser-assisted permanent hair or tattoo removal. However the
main applications of lasers are industry or medicine. In industry they are operated to
weld or cut materials. In the medical field they are daily employed for eye surgery, to
treat some skin diseases, to fasten wound healing and even for periodontic disorders. One
of their most striking features is their ability to estimate distances with an unprecedented
accuracy, providing efficient tools for metrology.

Lasers consist in a powerful monochromatic light source. They rely on the fundamental
mechanism of stimulated emission. During this process an excited atomic electron loses
some energy as a result of its interaction with a photon of specific wavelength. The energy
loss is radiated as a new photon which phase, wavelength and direction are identical to the
initial photon. This process is maintained long enough in a gain medium located between
two mirrors. The radiation emitted is therefore confined, amplified and eventually released,
forming a laser beam. As an example, one of the first experimental realisation based on
this principle was done almost 60 years ago by Maiman (1960). It consisted in a flash lamp
providing photons of particular wavelength 5500Å, illuminating a 1 cm ruby cristal coated
with two layers of silver. The output light consisted in a bi-chromatic laser of wavelengths
6929Å and 6943Å.

Further improvements were suggested over time to increase the energy and the power
available in the laser beam. Only the most relevant are reported and briefly recalled
in chronological order. The first one is the introduction by Hellwarth (1961) of switchs
that can modify the quality factor Q of the amplification, known as Q-switchs. With
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this process, a Pockels cell lowers the amplification during a certain time and enables to
accumulate photons which are all suddenly delivered, bringing the possibility to generate
short and pulsed laser beams. The second enhancement that can be noticed is mode
locking as demonstrated by Mocker and Collins (1965). It permits to add the amplitude
of all waves of the cavity (i.e. to get photons in phase) and therefore to both amplify and
shorten the duration of the laser beam. This may be done, in particular, by changing the
cavity length and be coupling with Q-switchs.

One of the most significant evolution for intense lasers is Chirped Pulse Amplification
(CPA) brought by Strickland and Mourou (1985), recently awarded by a Nobel Prize (The
Nobel Prize in Physics, 2018). It is directly inspired from radar technology and is of par-
ticular interest to increase the intensity of a laser beam. Indeed the amplification in laser
cavities is limited to a higher threshold over which adverse processes are induced. The
principle of this technology relies on the following steps: the beam is temporally stretched,
then amplified by several orders of magnitude, and is finally compressed back. The am-
plification exploits a serie of gratings or optical components which have the property to
disperse light depending of its wavelength. The growth of the laser intensity thanks to
the developement of CPA is substantial since it raised by five or six orders of magnitudes
since 1985 (see Fig. 5). The final step toward achieving higher intensities is the Optical
Parametric CPA (OPCPA). The process takes advantage of non-linear optical crystals
which turn an input wave into two output waves that are phase-matched. Under the right
conditions, the amplification is simplified as fewer passes are needed that the usual CPA
technique. It is currently implemented at state-of-the-art laser facilities around the world
indicating seemingly good prospects to improve available laser intensities. Some of those
projects are recalled in the following subsection.

State of the art and forthcoming laser facilities

In the frame of this PhD, we are particularly interested in laser systems capable to deliver
high powers (& 1 PW). In practice, such lasers are based on the CPA technology, with
either Titanium Sapphire or Neodymium gain medium. They can also be formed using
the OPCPA technique and cristals with non-linear optical properties (DKDP crystals).
Laser systems reaching a power of 1 PW or higher are usually divided into two groups:
high-energy and high power lasers.

The first group is made of lasers delivering 0.5 to 10 kJ in 0.5 to 10 ps. They are usually
coupled to ns-TW-class lasers and employed for heating or backlighting in experiments
related to Inertial Confinement Fusion (ICF). One can first think of the ARC laser which
is exploited with the 192 NIF beams (1.8 MJ), and the PETAL laser, dedicated to realize
diagnostics of experiments at the LMJ facility. Some of the beams of the VULCAN and
ORION lasers can supply 0.5 kJ in 0.5 ps. One can also cite the OMEGA-EP and LFEX
lasers (Azechi et al., 2009) who can both deliver 1 kJ in 1 ps. After the energy of those
lasers is temporally compressed and spatially focused, it reaches on-target peak-intensities
in the range 1018−20 W/cm2.

The second group is made of lasers delivering less energy (20 to 40 J) but in a much
shorter time (20 to 40 fs). To name a few, there is the VEGA laser (30 J delivered in
30 fs), the BELLA laser (40 J delivered in 30 fs), the CoRels/GIST project (83 J delivered
in 19.4 fs) (Sung et al., 2017), and the CAEP project (91.1 J delivered in 18.6 fs) (Zeng
et al., 2017). The current record of 4.9 PW is hold by this latter Chinese laboratory. The
maximum intensity reached, after spatial focussing of those lasers can be of the order of
1021 W/cm2 and may reach 1022 W/cm2 in short and mid-term experiments.

In the long term (' 5 years), lasers reaching the 10 PW level are planned in different
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Figure 5: Evolution of the laser intensity available in laboratory since 1960. Image from
(Mourou et al., 2006).

countries. Such power can be delivered by diminishing the laser duration to a few laser
cycles, e.g. in France with the APOLLON laser aiming to deliver ' 150 J in ' 15 fs. Two
laser systems with similar characteristics will also be developped and coherently added up
in the framework of the ELI-NP project in Romania, enabling to reach a power as high
as 20 PW power. In the United Kingdom an upgrade of the VULCAN laser is expected
to deliver ' 400 J of energy in ' 20 fs, providing a single pulse of 20 PW. In order
to manufacture a 10 PW laser system, it is also possible to rise the pulse energy. For
example, the ELI-BL project, under developement in Czech Republic, proposes to employ
a pulse of ' 130 fs duration along with 1.3 kJ of energy. In the longer term (' 5−20 years),
the 100 PW level is expected to be reached by combining several 10 PW laser beams with
the second step of the ELI-BL project or with the XCELS projects hosted in Russia.

Radiative and Quantum Electrodynamics (QED) processes

The recent advances achieved in terms of peak laser intensity in a growing number of
laboratories has motivated theoretical and numerical studies involving laser intensities
≥ 1022 W/cm2. In particular, the production of γ-rays by the laser-induced synchrotron
emission process and the electron-positron (e−e+) pair creation by the Breit-Wheeler
process were shown to have a strong interplay with collective plasma processes. These two
mechanisms are presented in Fig. 6. The synchrotron-like mechanism occurs for relativistic
electrons which are accelerated by the strong laser field and therefore radiates high-energy
photons (Fig. 6(a)). The Breit-Wheeler process is induced by the decay of γ-rays into
e−e+ pairs as they travel in the strong laser field provided their energy is higher than
twice the electron rest-mass energy (Fig. 6(b)). As these two processes are mediated
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by the strong electromagnetic field of the laser pulse, they saturate on the pulse duration
time-scale. Their numerical simulation is therefore computationally affordable for state-of-
the-art super computers. Fig. 6(c) represents the electromagnetic Trident process during
which an electron-positron pair is directly emitted by a relativistic electron. This latter
process is less studied than the Breit-Wheeler mechanism in the literature as it is of lower
efficiency. Among applications one can think of the study of quantum radiation reaction
on laser-driven electrons (Blackburn et al., 2014; Ji et al., 2014b; Wang et al., 2015b; Cole
et al., 2018; Poder et al., 2018), the massive production of electron-positron pairs through
the Breit-Wheeler process (Bell and Kirk, 2008; Nerush et al., 2011; Ridgers et al., 2012;
Ji et al., 2014c; Zhu et al., 2016; Grismayer et al., 2017; Jirka et al., 2017), relativistic
laboratory astrophysics (Liang, 2013; Chen et al., 2015; Lobet et al., 2015) and radiation
pressure ion acceleration (Naumova et al., 2009; Bulanov et al., 2010; Tamburini et al.,
2012).

Figure 6: Nonlinear Inverse Compton (or synchrotron-like) radiative process, nonlinear
Breit-Wheeler and electromagnetic Trident electron-positron (e−e+) pair creation mecha-
nisms. All are mediated by a high amplitude field.

In practice, laser systems operate with on-target intensities of the order of 1019 -
1021 W/cm2. The major radiative process for this range of intensities is the Bremss-
trahlung and the main e−e+ pair production mechanisms are the Bethe-Heitler and the
Coulomb Trident. Contrary to synchrotron, Breit-Wheeler and electromagnetic Trident,
they are mediated by the Coulomb field of atoms (see Fig. 7). A significant number of
experiments involving the emission of γ-rays by the Bremsstrahlung process were con-
ducted. Potential applications range from radiography of ultra-fast phenomena (Kmetec
et al., 1992; Schnürer et al., 1995; Perry et al., 1999; Cowan et al., 2000; Santala et al., 2000;
Ledingham et al., 2000; Glinec et al., 2005; Galy et al., 2007; Chen et al., 2009; Westover
et al., 2010; Compant La Fontaine et al., 2012; Courtois et al., 2013) to the generation
of e−e+ jets as the γ-rays interacts with heavy ions (Cowan et al., 1999; Gahn et al.,
2000; Chen et al., 2009). The reproduction of laboratory-scaled astrophysical scenarios
has motivated the experimental realisation of quasi-neutral e−e+ jets of record density
(1016 /cm3) employing mm-sized high-Z targets. The Bethe-Heitler process can be trig-
gered either by direct irradiation of the material sample (Chen et al., 2009, 2010; Chen
et al., 2015; Liang et al., 2015), or by wakefield-driven electron beams originating from a
laser-irradiated gas jet (Sarri et al., 2013, 2015; Xu et al., 2016). The quasi-neutrality of
the e−e+ plasma produced is ensured by the second method, while the ratio of positrons
to electrons is only 50% with the first one.

Goal and plan of the thesis

The main goal of this PhD consists in studying laser-matter interaction in the multi-
PW regime which will involve the radiative and QED processes mentioned above. The
simulation code employed is the Particle-In-Cell (PIC) code calder developped at CEA
which was recently updated with modules accounting for the processes induced in a strong
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Figure 7: Bremsstrahlung radiative process, Bethe-Heitler and Coulomb Trident electron-
positron (e−e+) pair creation mechanism. All are mediated by a Coulomb atomic field.

electromagnetic field (Lobet, 2015) (see Fig. 6). This work is presented through five
chapters which are summarized below.

The first chapter of this manuscript is a state of the art of PIC codes. It recalls the
essential numerical methods exploited in Particle-In-Cell codes and provides insights on
the key steps of its time loop. Extensions of the PIC method, enabling to describe radiative
and QED effects are also put forward.

The second chapter is a state of the art of the emission processes that can be triggered
in a strong electromagnetic field. The modeling of the synchrotron and Breit-Wheeler
processes is illustrated and their implementation in the PIC framework is recalled. In
particular, the differences arising between the classical and quantum formula accounting
for the synchrotron emission rate are underlined.

The third chapter aims to extend the simulation capabilities of PIC codes to all photon
and positron generation mechanisms induced during relativistic laser-plasma interactions.
Several processes triggered in an atomic Coulomb field are presented: elastic scattering,
impact ionization, Bremsstrahlung, Bethe-Heitler as well as Coulomb Trident (direct emis-
sion of an e−e+ pair by a relativistic electron). For each mechanism, we give theoretical
cross-sections and then describe their implementation in the PIC code calder. The cross-
sections of elastic scattering, Bremsstrahlung and Bethe-Heitler are determined by taking
into account the effects of electronic shielding in an arbitrarily ionized plasma. After val-
idation on test cases, an analysis of the generation of photons and positrons during the
transport of relativistic electrons in a thin copper foil is proposed. The legitimacy of these
simulations is confirmed by a comparison with a theoretical model.

The fourth chapter focuses on the competition between Bremsstrahlung and syn-
chrotron emission during relativistic laser-solid interaction. It is motivated by the lack of
theoretical results concerning the competition between Bremsstrahlung and synchrotron
radiation. Firstly, basics of relativistic laser-plasma interaction are recalled, especially fast
electron generation and ion acceleration mechanisms. Secondly, the synchrotron process
is characterized in a simple scenario where a laser interacts with uniform density plasmas
of various densities. Thirdly, Bremsstrahlung and synchrotron prevailing regimes are in-
ferred from 1D and 2D PIC simulations. In particular, it is demonstrated that the two
processes can be of comparable efficiency for a thin foil (one micron) of average atomic
number (Z = 29) stimulated by a laser of 1022 W/cm2 intensity.

The fifth chapter is devoted to the interaction of an intense laser with nanowires. The
aim is to understand how the effectiveness of synchrotron radiation can be altered, or even
amplified, by the unique properties of such a plasma. A parametric study is conducted
using PIC simulations. It highlights an optimal nanowire array geometry, allowing to
convert up to 10% (resp. 6%) of the laser energy into photons with an energy greater than
10 keV (resp. 1 MeV) for an average plasma density ne,av/nc ' 15 − 20. A comparison
of the synchrotron efficiency between nanowires and plasmas of uniform sub-solid density
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is also proposed. Its outcome is that for low average densities (ne/nc ≤ 50nc) both
kind of targets are equally efficient, whereas for higher average densities (ne/nc ≥ 50nc),
nanowires are better. The high radiation yield of 10% achieved is confirmed by simulations
in a more realistic scenario where the laser has a finite focal spot of 10µm FWHM and a
moderate incidence angle of 30◦. The perspective to accelerate protons from a nanowire
array is also considered in the last part of this chapter. PIC simulations were run in order
to understand how the nanowire array structure can alter the classical ion acceleration
mechanisms known for solid thin foils.
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Theory and implementation of
radiative and QED processes
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Chapter 1

Particle-in-cell method

1.1 Introduction

A Particle-In-Cell code coherently simulates the evolution of a distribution of charged
particles. It solves first principle equations that are presented below. The particles are
differentiated depending on their species, denoted by α. Each species of particle is charac-
terized by its distribution function denoted by fα (x,p, t), which depends on 7 variables: 3
in space, 3 in momentum space and time. In the particle-in-cell method, charged particles
are represented by a shape factor and their dynamic is accounted for by the Klimontovich
equation

∂

∂t
fα + v.

∂

∂x
fα + qαe (E + v ×B) .

∂

∂p
fα = 0 . (1.1)

The fields E, B are the electric and magnetic fields induced by interactions between par-
ticles. Collisions take place on a small scale length (the Fermi length LF ) and imposes a
thin discretization, which is not computationally affordable. For this reason, the spatial
step is set to a Debye length (LD), the characteritic length above which collective plasma
effects take place. The fields can be self-generated or come from an external source (a laser
for example). In addition, one assumes that the plasma is dominated by kinetic effects
rather than Coulomb interactions, which requires a high number of particles in a Debye
sphere. If one denotes n the plasma density this condition reads nL3

D � 1. Collisional
effects are usually added as an extension under the form of a Monte Carlo module.

The evolution of charged particles generates fluctuations in the electromagnetic fields
which are consistently described by Maxwell’s equations

∇.E =
ρ

ε0
∇.B = 0 (1.2)

∂B

∂t
= −∇×E

∂E

∂t
= c2 (∇×B− µ0j) (1.3)

where ρ denotes the charge and j the current in the plasma. They are defined by ρ (x, t) =∑
α qα

∫
fα (x,p, t) dp and j (x, t) =

∑
α qα

∫
vfα (x,p, t) dp. In practice, the number of

particles in a plasma of interest (� 109) is too high given the performance of modern
supercomputers. It is possible to rewrite the Klimontovich equation by substituting (x,p)

21



Chapter 1. Particle-in-cell method

by (X,Y) such as

dX

dt
=

Y

m
√

1− Y2

m2c2

(1.4)

dY

dt
= qα (E + v ×B) (1.5)

The Klimontovich equation can be written as

∂fα
∂t

+
dX

dt
.
∂fα
∂X

+
dY

dt
.
∂fα
∂Y

= 0 → d

dt

[
fα (X (t) ,Y (t) , t)

]
= 0 (1.6)

One can note that fα is conserved along the curves (X (t) ,Y (t)). PIC codes animate a
reduced number of particles, known as macro-particles, according to equations (1.4) and
(1.5) self-consistently with the field evolution provided by Maxwell’s equations (1.2)-(1.3).
Each of those macro-particles represent a group of real particles.

The code solves those equations every time steps following the loop represented in
Fig. 1.1. Five steps are identified and refered by letters. They will all be presented in
the following sections. We will first describe the interpolation stage in section 1.2 (steps
a and c) and then move on to the resolution of Maxwell’s equations (step b) in Sec. 1.3.
The motion of particles will be treated in Sec. 1.4 (step d). We will finally recall different
methods employed in the literature to implement collisional and radiative processes in
Sec. 1.6 (step e).

Figure 1.1: Time loop of a Particle-In-Cell code.

1.2 Interpolation steps

In the time loop of a PIC code, two steps require to interpolate data from the particles’
position to the mesh points and vice versa. In order to solve Maxwell’s equation, one
first needs to interpolate the currents known at the particles’ position to the mesh points
(current assignation). Secondly, the Lorentz force experienced by a particle is obtained by
the interpolation of the E and B fields from the mesh points to the particle’s position.

Let us introduce some notations (see Fig. 1.2(a)), the coordinate of the i-th particle is
denoted xi and the coordinate of the j-th mesh point by Xj. The charge and current at
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the mesh points are determined from the Np particles present in the simulation

ρ (Xj) =
∑
α

Np∑
i=1

qαS (Xj − xi) (1.7)

j (Xj) =
∑
α

Np∑
i=1

qαviS (Xj − xi) (1.8)

The function S introduced is a shape function that will be presented below. We first
provide the interpolation step required to determine the force acting on each particles.
This consists in projecting the fields from the Nm mesh points, located at coordinate Xj,
to the particle’s position xi

E (xi) =

Nm∑
j=1

E (Xj)S (Xj − xi) (1.9)

B (xi) =

Nm∑
j=1

B (Xj)S (Xj − xi) (1.10)

Figure 1.2: (a) Notations for a 1D domain, xi denotes a particle’s coordinate and Xj a
mesh point coordinate (taken from Birdsall and Langdon (1991)); (b) shape functions of
order 0, 1 and 2 plotted from formula (1.11).

Those interpolations mostly depend on the choice of the shape function S. We denote
H (x) the Heaviside function defined as H (x) = 1 ∀x ≥ 0 and ξ = x/∆x. The shape
functions, in one dimension, are defined for all ξ ∈ R and for all n ∈ N by

S0 (ξ) = H

(
ξ +

1

2

)
H

(
ξ − 1

2

)
Sn (ξ) =

(
S0 ∗ S0 ∗ · · · ∗ S0

)︸ ︷︷ ︸
×(n+1)

(ξ) (1.11)

23



Chapter 1. Particle-in-cell method

Their expressions for n = 0, 1 and 2 are

S0 (ξ) =

{
1 if − 1

2 ≤ ξ ≤
1
2

0 otherwise

S1 (ξ) =


ξ + 1 if − 1 ≤ ξ ≤ 0
1− ξ if 0 ≤ ξ ≤ 1
0 otherwise

S2 (ξ) =


3
4 − |ξ|

2 if |ξ| ≤ 1
2

1
2

(
3
2 − |ξ|

)2
if 1

2 ≤ ξ ≤
3
2

0 otherwise

We plot them in Fig. 1.2(b). Those functions respect the charge conservation condition∫ L
−L S

n (x) = 1 with (−L,L) the set of definition of the function Sn. In two dimensions,

this shape function (S2d) is obtained with the tensor product of one dimensional shape
functions

S2d (x, y) = S (x)⊗ S (y)

S2d (Xi − xn, Yj − yn) = S (Xi − xn)S (Yj − yn)

It is required to consistently employ the same shape function for all interpolations to
prevent the rise of an undesirable numerical force (Birdsall and Langdon (1991)). One can
see that a shape function of order 0 has a sharp edge, leading to abrupt discontinuities
and numerical noise during simulations. For this reason, high order interpolation factors
are introduced and enable to get rid of the discontinuity observed for order 0. In PIC
simulations shape functions of order 2, 3 and 4 are commonly employed.

1.3 Resolution of Maxwell’s equations

1.3.1 Explicit method from K. Yee

We report here the method developped by Yee (1966) to solve Maxwell’s equations. It
proved to be robust and is now employed in many PIC codes.

Let us consider a cell of the grid in a three dimensional simulation domain as repre-
sented by Fig. 1.3. The spatial steps along x, y and z are denoted by ∆x, ∆y and ∆z,
the time step is denoted by ∆t. The Finite Difference Time Domain (FDTD) scheme is
derived such as the spatial partial derivatives of the E and B fields are of first order and
centered. The evolution of the magnetic and electric fields is then solved every half time
steps according to (

∂B

∂t

)n
= − (∇×E)n (1.12)(

∂E

∂t

)n+ 1
2

= c2 (∇×B− µ0j)
n+ 1

2 (1.13)

Fig. 1.3 shows a mesh cell and the points of the grid where quantities are evaluated.
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Figure 1.3: Discretization of E and B on a 3D grid cell. The components of the B field are
evaluated at the center of the cell’s side and the components of the E field are evaluated
at the center of the cell’s edge.

The discretized form of Eq. (1.12) projected in three dimentions is
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The discretized form of Eq. (1.13) projected in three dimentions reads
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As the derivatives are centered, the scheme is characterized by a precision of order 2. A sta-
bility analysis can be lead in the limit of a plane wave: (E,B) (x, t) = (E0,B0) exp [i (k.x− ωt)].
The Courant Friedrichs Lewy (CFL) condition ensuring the convergence of the scheme
reads

(c∆t)2

(
1

∆x2
+

1

∆y2
+

1

∆z2

)
≤ 1 (1.17)

Moreover, this scheme ensures that the discretized form of ∇.∇×A and ∇×∇φ vanishies
for all A and φ. This result can be employed in equations (1.12) and (1.13) where taking
the divergence in each terms leads to

∇Bn+1/2 −∇Bn−1/2

∆t
= 0 (1.18)

ρn+1 − ρn

∆t
+∇jn+1/2 = 0 (1.19)

Assuming that the divergence of B is 0 at the first time step, formula (1.18) ensures
it remains conserved for all time steps. Formula (1.19) shows Maxwell-Gauss equation
is respected as long as the continuity equation is fulfilled (Esirkepov (2001); Barthelmé
(2005)).

1.3.2 Improved resolution of Maxwell’s equations

The method of Yee (1966) presents one main limit. It appears for example in the numerical
dispersion relation for a plane electromagnetic wave which is obtained by injecting the
discretized form of (E,B) (x, t) = (E0,B0) exp [i (k.x− ωt)] in the discretized equations
of the Yee scheme(

sinω∆t/2

c∆t

)2

=

(
sin kx∆x/2

∆x

)2

+

(
sin ky∆y/2

∆y

)2

+

(
sin kz∆z/2

∆z

)2

(1.20)

This numerical dispersion relation for a plane wave in vacuum is not the one physically
expected, except along diagonal directions (such as |kx| = |ky| = |kz|). It therefore
introduces non-physical waves propagating with a phase velocity vφ < c. As particles
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propagate with a velocity v such as vφ ≤ v ≤ c Cherenkov radiation is emitted. We
recall that this type of radiation takes place when a particle propagates faster than the
phase velocity of light in a dielectric media. Three solutions exist in the literature to
limit this numerical Cherenkov effect. Pukhov (1999) and Lehe et al. (2013) introduced
coefficients on derivatives in the Yee scheme to cancel the dispersion along the propagation
direction of an electron beam accelerated by a high intensity laser pulse in a low density
plasma. This was done in order to reduce the unphysical growth of the beam emittance.
Implicit methods were also developped by Zagorodnov et al. (2003), Drouin (2009) and
effectively reduce the dispersion of the Yee scheme. The spectral method suggests to
completely cancel numerical dispersion by a resolution of the Maxwell’s equations in the
Fourier domain (Gonoskov (2013)). All these schemes have a lower dispersion than the
Yee method presented above, but demand more computational resources.

1.4 Resolution of particles’ motion

The motion of particles is described by the relativistic Newton equation and is solved by
the common method first reported by Boris et al. (1972). The Boris scheme is a leap frog
scheme solving

dx

dt
= v

dp

dt
= qα (E + v ×B) (1.21)

where α denotes a given species. It can be expressed under the following form (Boris et al.
(1972))

xn+1 = xn + ∆tvn+1/2 (1.22)

pn+1/2 = mγn+1/2vn+1/2 (1.23)

pn+1/2 − pn−1/2

∆t
= qα

(
En +

1

c

pn+1/2 + pn−1/2

2γnmα
×Bn

)
(1.24)

In Eq. (1.22), the position of particles is updated every integer time steps (n) from the
velocity at half time steps (n ± 1/2) by a first order Euler method. In Eq. (1.24), the
momentum of particles are taken at half time step (n±1/2) and are updated by a centered
first order method. Even if the expression of pn+1/2 as a function of pn−1/2 looks implicit,
it is positively explicit and can be, for example, derived by introducing two intermediate
momenta p± and the normalized B field b = qα∆tBn/2m

p− = pn−1/2 + ∆t
qEn

2mα
(1.25)

p+ =
2

1 + b2

 −b2y − b2z bz + bxby −by + bxbz
−bz + bxby −b2x − b2z bx + bybz
by + bxbz −bx + bybz −b2x − b2y

p− (1.26)

pn+1/2 = p+ + ∆t
qEn

2mα
(1.27)

The decomposition contains three steps. During the first step, the particle is accelerated
by the electric field as shown in Eq. (1.25). The second step involves only the normalized
magnetic field b and consists in a rotation (see Eq. (1.26)). The particle is accelerated
during the third step as seen from Eq. (1.27). This scheme remains simple but has proven
its effectiveness and is widely adopted in state-of-the-art PIC codes.
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1.5 Non-conservation of charge during interpolation

The scheme presented in Sec. 1.2 has one major limit. Indeed, the interpolation from the
particles to the mesh points performed in formula (1.7) invalidates the expected charge
conservation, leading to ∇j + ∂ρ/∂t 6= 0. As a result, the E field does not fulfill the
Maxwell-Gauss equation which raised an issue about the numerical scheme of PIC codes.
Several solutions were suggested, starting with Boris et al. (1972) to conserve the charge.

Boris et al. (1972) bring a correction to the E field such that it respects Maxwell-Gauss
equation. This corrected field is denoted by Ecor and can be determined provided one can
find an adequate potential φ defined by

Ecor = E−∇φ (1.28)

∆φ = ∇E− ρ

ε0
(1.29)

According to the definition of φ, ∇Ecor = ρ/ε0. This correction requires to solve an
additional equation involving a Laplace operator (Eq. (1.29)). This is computationally
expensive and another method was suggested by Esirkepov (2001).

The work of Esirkepov (2001) is of particular interest since it provides a general for-
malism to conserve the charge whatever the order of the shape function S and the dimen-
sionality of the simulation domain (1, 2, 3). It is a result derived from former works valid
in certain limits and obtained by Villasenor and Buneman (1992). He seeked for a current
assignation method that ensures that the following discretized equation is verified

∇j +
∂ρ

∂t
= 0 (1.30)

To this purpose, he introduced the density decomposition vector W = (Wx,Wy,Wz)
defined at time n+ 1/2 by
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The charge conservation expressed in Eq. (1.30) can be recast in terms of the density
decomposition vector

(Wx)
n+ 1

2
i,j,k + (Wy)

n+ 1
2

i,j,k + (Wz)
n+ 1

2
i,j,k = Si,j,k

(
xn+1, yn+1, zn+1

)
− Si,j,k (xn, yn, zn) (1.34)

where Si,j,k (x, y, z) = S (Xi − x, Yj − y, Zk − z), (Xi, Yj , Zk) is the position of the mesh
cell (i, j, k), (xn, yn, zn) the particle’s position at time n and

(
xn+1, yn+1, zn+1

)
the par-

ticle’s position at time n + 1. Let us first simplify the notations by dropping the in-

dexes: (Wx,y,z)
n+ 1

2
i,j,k ≡ Wx,y,z, Si,j,k ≡ S and by dropping the upperscripts: (xn, yn, zn) ≡

(x, y, z) and
(
xn+1, yn+1, zn+1

)
≡ (x+ δx, y + δy, z + δz). Let us introduce the follow-

ing eight shape functions (one for each summit of the 3D cell) (fi)1≤i≤8 defined for all
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(x, y, z, δx, δy, δz) ∈ R6 by

f1 (x, y, z, δx, δy, δz) = S (x, y, z) ; f2 (x, y, z, δx, δy, δz) = S (x+ δx, y + δy, z + δz)

f3 (x, y, z, δx, δy, δz) = S (x+ δx, y, z) ; f4 (x, y, z, δx, δy, δz) = S (x, y + δy, z)

f5 (x, y, z, δx, δy, δz) = S (x, y, z + δz) ; f6 (x, y, z, δx, δy, δz) = S (x+ δx, y + δy, z)

f7 (x, y, z, δx, δy, δz) = S (x+ δx, y, z + δz) ; f8 (x, y, z, δx, δy, δz) = S (x, y + δy, z + δz)

Assuming the following four hypothesis:

1. Wx, Wy and Wz are linear combinations of the shape functions (fi)1≤i≤8

2. The sum of the three components of the vector W verifies the charge conservation
equation

Wx +Wy +Wz = f2 − f1

3. If one of the shifts is zero, then the corresponding component of W is also zero

δx = 0→Wx = 0 , δy = 0→Wy = 0 and δz = 0→Wz = 0

4. If ∀ (x, y) ∈ R2 S (x, y, z) = S (y, x, z) and δx = δy then Wx = Wy. The same
property is assumed for invariance with respect to permutations of pairs (x, z) and
(y, z).

Boris et al. (1972) build a linear system of equations that provides a unique solution for
the vector W as a function of the shape functions (fi)1≤i≤8. The closed-form solution of
W is

Wx =
1

3

(
f2 + f3 − f1 − f8

)
+

1

6

(
f6 + f7 − f4 − f5

)
Wy =

1

3

(
f2 + f8 − f5 − f7

)
+

1

6

(
f4 + f6 − f1 − f3

)
Wz =

1

3

(
f2 + f5 − f1 − f6

)
+

1

6

(
f7 + f8 − f3 − f4

)
1.6 Photon transport for PIC codes

The PIC method self-consistently describes the physics of a collisionless plasma and the
propagation of electromagnetic fields but lacks a lot of processes. In particular, they do
not account for any kind of processes involving individual photons that can be created by
the plasma such as Bremsstrahlung emission, photo-ionization, K-α emission, Compton
effect, atomic transitions, etc. The basic PIC loop presented in Fig. 1.1 relies on the
hypothesis of a fully ionized plasma. As such, it does not put forward any description
of bound electrons and therefore of all the atomic physics taking place in a plasma. In
this section we review the two ways existing to model those effects. Firstly, we report
the method developped by Sentoku et al. (2014) and Royle et al. (2017) in the PIC code
PICLS. It enables to analyse the interplay of plasma physics and photon transport by
coupling a PIC code and a radiative transport code. Secondly, we examine the second
method which consists in a Monte Carlo implementation of the missing effects. The latter
method is more commonly employed in PIC codes and represents one of the bases of this
PhD work. While an extensive analysis of this approach will be provided in Chap. 2 and
Chap. 3 we only give its keys aspects to understand it in this section.
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1.6.1 Radiative transport equation in the PIC framework

The photon transport equation can be rigourously derived based on the conservation of
the energy through a volume element in a time interval (Mihalas, 1978). Another method
to derive this equation is also reported by (Mihalas, 1978). It starts from the Boltzman
equation

∂f

∂t
+ v.

∂

∂x
f + F .

∂

∂p
f =

(
Df

Dt

)
coll

(1.35)

and adapts it to photons. Let us first introduce the specific intensity of radiation at
position r, travelling in direction n, with frequency ν at a time t. It is defined such that
the amount of energy dE transported by radiation of frequencies (ν, ν + ∆ν) across an
element of area dS into a solid angle dΩ in a time interval dt is

dE = I (r,n, ν, t) dS cos θdΩ dν dt (1.36)

Without relativistic effects, the force F ≡ 0 and the photon propagates on a straight line
v = cn and its frequency remains the same. We introduce a photon distribution function
defined from the specific intensity as I (r,n, ν, t) = chν f (r,n, ν, t), where h is Planck’s
constant. The equivalent of ’collisions’ for photons, contained in the right hand side term
in Eq. (1.35), is interaction with the plasma volume, coming from its emissivity (µe) and
opacity (µo). With those elements, one can suggest the following equation for the specific
intensity

1

chν

(
∂I

∂t
+ cn.∇I

)
=

1

hν
(µe − µoI) (1.37)

One can mention that this formula assumes that at position r and time t the plasma volume
is at the local thermodynamic equilibrium. This enables to locally define a temperature
T and a density n on which the coefficients µe and µo depend.

At every time steps and in every mesh cells, the transport equation is solved for a large
range of frequencies ν and all angles Ω. The frequencies ν are discretized inhomogeneously
in order to catch the narrow bound-bound atomic transitions of interest. The angle Ω is
discretized in the upper hemisphere and assumed to be symetric in the lower one. The
numerical resolution is performed with a constrained interpolation profile (CIP) technique
from Yabe et al. (1991). This work puts forward a general solver for hyperbolic equations
of the same form as Eq. (1.37). The numerical scheme is an explicit finite difference
method that interpolates the solution as a third order polynomial within the mesh cells.

In practice, the numerical resolution of Eq. (1.37) at every time step (∆tPIC), in every
cells (∆xPIC), for all frequencies and all angles requires too much computational time.
For this reason, a larger spatial grid (∆xrad > ∆xPIC) is employed for the resolution of
the radiation transport equation as well as a larger time step (∆trad > ∆tPIC). However,
the new time and spatial steps must be small enough to describe all the gradients present
in the problem. As an example, Royle et al. (2017) employs ∆xrad ' 5∆xPIC and ∆trad '
5∆tPIC and successfully reproduces an experiment where an X-ray Free Electron Laser
(XFEL) heats a solid-density aluminium foil.

The interplay between the PIC and radiation transport part of the code is illus-
trated in Fig. 1.4. Once the PIC code time loop is performed, the local density and
local temperature of the bulk electrons is determined in every cells. Those variables are
employed to determine the local emissivity and opacity of the plasma. Equation (1.37)
is then solved for every frequency νi and angle Ωj which provides the specific intensity
Iij (∆xrad,Ωj , νi,∆trad). The related energy transfered from bound to free bulk electrons
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Figure 1.4: Coupling of a radiation transport code and the Particle-In-Cell code PICLS
(image from Royle et al. (2017)).

is then deduced by integrating on all frequencies νi and angles Ωj

dEij =
1

c

∫ ∫
∂Iij
∂t

dΩ dν (1.38)

If the energy transfer is negative (dEij < 0), the free bulk electrons are uniformly heated,
whereas if it is positive (dEij > 0) they are uniformly cooled. The determination of the
emissivity and opacity coefficients is a key point of this scheme, as they are supposed to
account for the energy transfers of the whole range of lacking physical effects. Ideally
they depend on the local density and temperature of the plasma µe = µe (ni, Te, hν) and
µo = µo (ni, Te, hν). In practice, they are pre-tabulated from the FLYCHK collisional
radiative code assuming a cold material (Chung et al. (2005)).

The prior knowledge of the opacity and emissivity coefficients in arbitrary conditions
of temperature and density is a constraint that can be overcome by describing the un-
derlying processes by a Monte Carlo approach, as suggested by Royle et al. (2017). We
explain the principle of this method in the next subsection and will detail the modeling,
implementation and validation steps for various processes in Chap. 2 and Chap. 3.

1.6.2 Monte Carlo scheme for elastic and inelastic processes

The frame of this method is very general and can be applied to any process for which
cross-sections are known. This method was first added in a PIC code by Takizuka and
Abe (1977), enriched by Nanbu (1997); Sentoku and Kemp (2008) and Pérez et al. (2012).
It consists in the addition of a Monte Carlo module inside the time loop of the PIC code.
It is called before ending the time step, as indicated in fig. 1.1. The different steps of the
Monte Carlo code are illustrated in Fig. 1.5.

In this scheme, macro-particles are paired at every time steps and in every cells. The
scattering or energy loss/gain of macro-particles is determined from cross-sections that
are sampled with the inversion of the cumulative distribution function which is an usual
Monte Carlo sampling method. We introduce the term ’macro-collision’ which denotes
a simulated event between two macro-particles. The Monte Carlo scheme is based on
assumptions which are the following. Firstly, events are cumulated on one PIC time step
(∆t), as their typical time-scale is much lower compared to ∆t. Secondly, the interaction
conditions are provided by the local properties inside each cell (temperature 〈T 〉 and
density 〈n〉 are spatially averaged in the cell) and also depend on the two interacting
particles momenta p1 and p2. The heart of the method relies in the random pairing of
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Figure 1.5: Macro-particle pairing Monte Carlo scheme. Events are treated in every cells
at every time steps.

particles which is detailed in the next paragraph.
Macro-particles of similar or different species are paired randomly. For macro-collisions

within a same species, macro-particles are simply paired with their neighbour. Let us now
consider two species α and β within a cell with Nα and Nβ macro-particles. We assume
without loss of generality that Nα > Nβ. The goal is to randomly form max (Nα, Nβ) = Nα

pairs to perform the macro-collisions. Each macro-particle of species α is selected once,
whereas some macro-particles of species β are selected several times (see below). In order
to fairly and representatively select macro-particles from species β, Takizuka and Abe
(1977) introduces two sub-groups of macro-particle pairs. They are abstract concepts,
but ensure to not introduce any bias in the selection process. We introduce (i, ε) defined
by Nα/Nβ = i + ε with i ∈ N and ε ∈ (0, 1). A first group is made of (i+ 1) εNβ

macro-particles of specie α and εNβ macro-particles of specie β. We emphasize that
εNβ = Nα − iNβ ∈ N. In this group, each macro-particle of specie β is paired i+ 1 times
with a macro-particle of specie α. A second group is made of i (1− ε)Nβ macro-particles
of specie α and (1− ε)Nβ macro-particles of specie β. In this group, each macro-particle
of specie β is paired i times with a macro-particle of specie α. We exemplify the grouping
of macro-particles with an example in Fig. 1.6 in the simple case where the two species
are electrons (Ne− = 9) and ions (Ni = 4).

Figure 1.6: Example of macro-particle pairing in a mesh cell for Ne− = 9 and Ni = 4.
Two groups are formed and max(Ne− , Ni) = 9 macro-collisions are computed.

Once macro-particles are paired, relevant cross-sections can be sampled depending
on the conditions in the cell (density, temperature, ionization degree of atoms) as well
as the relative velocity of two macro-particles. In order to provide a practical example
of how a radiative process can be implemented within this framework, we introduce the
Bremsstrahlung process in Fig. 1.7, during which a relativistic electron experiencing an
atomic Coulomb field is accelerated and radiates a fraction of its energy. The indexes 1
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Figure 1.7: Generation of a macro-photon via the Bremsstrahlung process from a randomly
sampled pair of macro-particles

and 2 denote a macro-electron and a macro-ion randomly selected according to the method
illustrated in Figs. 1.5 and 1.6. The energy of the macro-photon created is determined
from the cross-section of the Bremsstrahlung process which is extensively discussed in
Chap. 3. This macro-photon is then introduced in the Particle-In-Cell code time loop and
the energy of the incident electron, (γ1 − 1)mc2, is subsequently decreased.

This short introduction of the Monte Carlo module will be completed in Chap. 2
and Chap. 3 as it requires to introduce proper modeling for each process. This Monte
Carlo macro-particle pairing scheme is computationally demanding but is implemented in
a growing number of PIC codes such as calder, picls and smilei. Other PIC codes such
as epoch and vlpl include a simpler, yet computationally less demanding, version of this
Monte Carlo algorithm.

Conclusion

Overall, the main steps of a Particle-In-Cell code are recalled in this chapter. After
presenting how field propagation and particle motion are resolved, we put forward two
methods to include additional physical processes of interest. The first one (coupling of
PIC and photon transport codes) is less developped than the second one (Monte Carlo)
which is widely used in state of the art PIC codes, including calder, developped at CEA.
It embodies one of the major points of this PhD work and is presented in Chap. 3. Before
dealing with this issue, Chap. 2 first focuses on another radiative process of interest in the
context of future multi-PW facilities which is laser-driven synchrotron emission.
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Chapter 2

Processes induced in an
electromagnetic field

As a relativistic electron experiences the strong field associated with a high laser inten-
sity (≥ 1022 W/cm2) it can radiate a high number of photons through nonlinear inverse
Compton scattering. This basic process is anticipated to have a strong back-reaction on
the electron trajectory and offers new opportunities to develop ultra-fast energetic particle
sources. Among potential applications are the impact of this radiative mechanism on the
radiation pressure ion acceleration (Naumova et al., 2009; Bulanov et al., 2010; Tamburini
et al., 2012) and the study of quantum radiation reaction on laser-driven electrons (Black-
burn et al., 2014; Ji et al., 2014b; Wang et al., 2015b; Cole et al., 2018; Poder et al., 2018).
The copious number of γ-rays produced can, when interacting with the strong laser field,
decay into electron-positron pairs through the Breit-Wheeler process (Bell and Kirk, 2008;
Nerush et al., 2011; Ridgers et al., 2012; Ji et al., 2014c; Zhu et al., 2016; Grismayer et al.,
2017; Jirka et al., 2017). The electron-positron plasmas thus formed, characterized by a
unique symmetry between positively and negatively charged particles, can be employed to
reproduce laboratory-scaled astrophysics scenarios (Liang, 2013; Chen et al., 2015; Lobet
et al., 2015).

The first section of this chapter presents the modelisation of the nonlinear inverse
Compton scattering. The key hypotheses will be formulated and the resulting photon
emission rates illustrated. The purpose is to implement an ad-hoc photon emission rate
within the Particle-In-Cell framework. This goal is part of a general effort carried by
several groups with state of the art Particle-In-Cell codes (Kirk et al., 2009; Nerush et al.,
2011; Blackburn et al., 2014; Ji et al., 2014b; Wallin et al., 2015; Vranic et al., 2016).
In a second section, we briefly introduce two pair generation processes induced by an
intense electromagnetic field which are sparsely adressed in the frame of this PhD: the
mutli-photon Breit-Wheeler and the electromagnetic Trident.

2.1 Radiation of photons by nonlinear inverse Compton scat-
tering

In this section, we firstly introduce the modeling of the nonlinear inverse Compton scat-
tering and secondly describe its implementation in the Particle-In-Cell code calder.
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2.1.1 Physical model

As a relativistic electron travels in an electromagnetic wave, it can be accelerated and
can therefore radiate a fraction of its energy (Blumenthal and Gould, 1970). This process,
known as nonlinear inverse Compton scattering, only depends on the quantum nonlinearity
parameter (Ritus, 1985)

χe =
e~
m3c3

|Fµνpν | (2.1)

where e denotes the electron charge, m its mass, c the light velocity and ~ the reduced
Planck constant. pν denotes the electron four-momentum and Fµν the electromagnetic
field tensor

F =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By
−Ey/c Bz 0 −Bx
−Ez/c −By Bx 0

 (2.2)

For an electron, the quantum parameter reads

χe =
γe
ES

√
− (β.E)2 + (E + v ×B)2 (2.3)

One can project the E field on the direction parallel (E‖) and perpendicular (E⊥) to the
electron velocity vector, which leads, in the limit of a relativistic electron (γ2

e � 1), to

χe =
γe
ES

√
E2
‖

γ2
e

+ (E⊥ + v ×B)2 ' γe
ES
|E⊥ + v ×B| (2.4)

where ES is the Schwinger field defined as ES = m2c3/e~ = 1.3 × 1018 V/m (Schwinger,
1951). This parameter represents the field amplitude in the electron rest-frame. In the
particular case of a single electron of velocity ve ‖ x, with x the propagation direction of a
plane wave of the form A = AL sin [ω0 (x− t/c)] y, the electron quantum parameter reads

χe = γe
ω0AL
ES

cos (ω0t)×
{

(1− |ve| /c) if ve = + |ve|x
(1 + |ve| /c) if ve = − |ve|x

(2.5)

In the first case displayed in Eq. (2.5), the electron and the wave are propagating in
the same direction such that the quantum parameter χe reaches a minimum. In the
second case, the electron and the wave are propagating in opposite directions such that
the quantum parameter χe is maximized. This latter geometry is beneficial to enhance
the radiation of an electron and will be refered to as counter-propagating geometry in this
PhD work.

Similarly, the significance of quantum effects on a photon travelling in a strong external
electromagnetic field is only accounted by the quantum nonlinearity parameter

χγ =
e~2

m3c3
|Fµνkν | =

γγ
ES
|E⊥ + v ×B| (2.6)

where ~kν is the photon four-momentum, and γγ is the normalized photon energy γγ =
~ω/mc2. One can deduce the following relation, valid for relativistic electrons or as E‖ ' 0

χeγγ ' χγγe (2.7)
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The derivation of the photon production rate of an electron propagating in an arbi-
trary electromagnetic field is too complex. However, it can be simplified, provided two
assumptions are formulated.

1. The external field is uniform and quasistatic.

2. The external field is weak compared to the Schwinger field ES = 1.3× 1018 V/m.

For the first approximation, the coherence time of the emission process (tcoh) is assumed
to be much smaller than the electromagnetic wave period 2π/ω0. The coherence time is
defined as the time required for the electron to be deflected by an angle 1/γe and is defined,
in the classical regime, as

tcoh =
rL
γec

=
mβe
eBL

(2.8)

where βe = ve/c and rL is the Larmor radius of the electron. In the quantum regime, the
same expression remains valid for the coherence time. The first approximation therefore
implies

m

eBL
� 2π

ω0
→ eBL

mω0
= aL � 1 (2.9)

where the parameter aL defines the normalized field amplitude of the external electromag-
netic wave. The incoherent nature of the emission also requires that the distance between
electrons is larger than the radiation wavelength. Let us assume a density ne of electrons,

this condition can be recast as n
−1/3
e ≥ 2πc/ω. In a solid density plasma (ne = 1030 /m3),

incoherent emission will be limited to photons energies ≥ 10 keV and for undercritical
plasmas (ne = 1024 /m3) to photons energies ≥ 100 eV.

The second approximation is necessary as in an arbitrary electromagnetic field, the
rate of photon emission depends on two other parameters

f =
∣∣E2 −B2

∣∣ /E2
S and g = |E.B| /E2

S (2.10)

Assuming f � 1, g � 1 and χe � max (f, g) enables though to reduce the dependence of
the emission rate only on the quantum parameter χe (Kirk et al., 2009)

Under the assumptions of weak, static and uniform field, the rate of photon emission
is expressed as (Reiss (1962), Nikishov and Ritus (1964))

d2NCs

dtdγγ
(γe, γγ) =

Pcl
γγmc2

S (γe, γγ) (2.11)

where Pcl is the classical radiated power defined as

Pcl =
2

3

αfmc
2

τc
χ2
e (2.12)

where αf = e2/(4πε0~c) is the fine structure constant and τc = ~/mc2 the Compton time.
The function S is defined by

S (γe, γγ) = −
√

3

2π

γγ
γ2
eχ

2
e

[∫ +∞

2y
K1/3 (s) ds− (2 + 3χγy)K2/3 (2y)

]
(2.13)

where y = γγ/[3χe(γe − γγ)] and Kν are modified Bessel functions of order ν. Another
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expression is suggested by Erber (1966)

S (γe, γγ) =
1

2π2

γ2
γ

γ3
eχ

3
e

3∑
i=1

mi (x) Ji (y) (2.14)

where x = γγ/γe and

m1 = 1 + (1− x)−2 m2 (x) = 2 (1− x)−1 m3 (x) = x2 (1− x)2 (2.15)

J1 (y) =
1

3y2

∫ ∞
y

u[
(u/y)2/3 − 1

]1/2
K2

2/3 (u) du (2.16)

J2 (y) =
1

3y

∫ ∞
y

(
u

y

)1/3 [
(u/y)2/3 − 1

]1/2
K2

1/3 (u) du (2.17)

J3 (y) =
1

3y2

∫ ∞
y

u[
(u/y)2/3 − 1

]1/2
K2

1/3 (u) du (2.18)

The total emission rate (dNCs/dt) is simply obtained after an integration of Eq. (2.11) on
γγ

dNCs

dt
=

∫ γe−1

0

Pcl
γγmc2

S (γe, γγ) dγγ (2.19)

The total radiated power (PCs) is deduced from the photon emission rate

PCs =

∫ γe−1

0

dPCs
dγγ

dγγ (2.20)

=

∫ γe−1

0
γγmc

2d
2NCs

dtdγγ
dγγ (2.21)

= Pcl

∫ γe−1

0
S (γe, γγ) dγγ (2.22)

In the classical regime (χe � 1), the function S has a simpler expression (Blumenthal and
Gould (1970))

S (ω) =
ω

ωcr

∫
ω/ωcr

K5/3 (t) dt (2.23)

where ω/ωcr represents the frequency limit of the spectrum defined by τCωcr = 3γeχe/(2+
3χe).

The number of photons radiated by the synchrotron process d2N/dtdγγ with the quan-
tum formula (Eq. (2.13)) or with the classical formula (Eq. (2.23)) are illustrated in
Fig. 2.1(a) for different values of the electron quantum parameter χe = 0.01, χe = 0.1
and χe = 1. We assumed that a single electron is travelling in a uniform external mag-
netic field of normalized amplitude eB/mω = 100. One can note that the number of
low energy photons (γγ/(γe − 1) ≤ 10−2) emitted decreases as the quantum parameter
rises. However, as χe goes from 10−2 to 1, the proportion of photons with an energy
γγ/(γe − 1) ' 1 increases. The total rate of emission, integrated on the photon energy,
is represented in Fig. 2.1(b). One can see a good agreement between the quantum and
classical formulas for low electron quantum parameters (χe ≤ 0.03). However there is
a significant discrepancy for χe ≥ 0.1, clearly showing the validity range of the classi-
cal formula. Even if the number d2N/dtdγγ of low-energy photons diverges (as γγ → 0)
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Figure 2.1: (a) d2N/dtdγγ : number of photons emitted per time unit and photon energy
unit illustrated for χe = 0.01, 0.1 and 1 (see Eq. (2.11)) (b) dN/dt: total number of
photons emitted per time unit as a function of the electron quantum parameter χe (see
Eq. (2.19)). Solid lines represent the quantum formula and dashed lines the classical one.

Figure 2.2: (a) dP/dγγ : power radiated per photon energy unit illustrated for χe = 0.01,
0.1 and 1 (b) P : total power emitted as a function of the electron quantum parameter χe.
Solid lines represent the quantum formula and dashed lines the classical one.

the radiated power, defined as dP/dγγ = γγmc
2d2N/dtdγγ , converges. We plotted the

radiated power in Figs. 2.2(a-b) from its expression (Eqs. (2.20)-(2.22)). The difference
between the classical and quantum formula is clearer in Fig. 2.2(a). We also see that the
classical formula predicts the emission of photons with an energy higher than the electron
kinetic one for a quantum parameter χe = 1. The radiated power peaks at low photon
energies for low χe: γγ/(γe − 1) ' 0.005 for χe = 0.01 but at higher photon energies for
higher χe: γγ/(γe−1) ' 0.2 for χe = 1. The total power, integrated on the photon energy,
is displayed in Fig. 2.2(b) and the over-estimation characterizing the classical formula is
even more visible on this figure.

The formula of the photon emission rate, expressed in Eqs. (2.11)-(2.13), depends on
four parameters (γe, γγ , χe, χγ). It can be rewritten in order to only depend on the two
parameters (χe, χγ) (Kirk et al., 2009)

F (χe, χγ) = −2

3

χγ
χ2
e

[∫ +∞

2y
K1/3 (s) ds− (2 + 3χγy)K2/3 (2y)

]
(2.24)

=
2χ2

γ

3
√

3πχ4
e

3∑
i=1

mi (x) Ji (y) (2.25)
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where y = χγ/ [3χe (χe − χγ)] (see Eq. 2.7). As a consequence, the expression of the
emission rate can be written as

d2NCs

dtdχγ
(χe, χγ) =

3
√

3

4π

Pcl
γγmc2

F (χe, χγ)

χ2
e

(2.26)

The differential radiated power can be deduced as

dPCs
dχγ

(χe, χγ) =

√
3

2π
αf
mc2

τC
F (χe, χγ) (2.27)

The total radiated power is obtained after the integration of Eq (2.27) on χγ

PCs = Pclg (χe) (2.28)

where

g (χe) =
3
√

3

4πχ2
e

∫ χe

0
F (χe, χγ) dχγ (2.29)

'
[
1 + 4.8 (1 + χe) log (1 + 1.7χe) + 2.44χ2

e

]−2/3
(2.30)

In the classical regime (χe � 1), the function F (χe, χγ) can be deduced from the relation
ω/ωcr = 2χγ/(3χ

2
e) and Eq. (2.23).

F (χe, χγ) =
2χγ
3χ2

e

∫ ∞
2χγ

3χ2e

K5/3 (t) dt (2.31)

Figure 2.3: Evolution of the normalized radiated power (F (χe, χγ)) (a) in the classical
regime and (b) in the quantum regime (see Eq. (2.27))

Fig. 2.3 illustrates the normalized radiated power dP/dχγ (χe, χγ) as a function of the
electron (χe) and photon (χγ) quantum parameters. The first thing that can be noticed is
in Fig. 2.3(a). In the limit χe ' 1, the classical formula predicts photons with a quantum
parameter higher than the electron quantum parameter (χγ/χe > 1) which is equivalent
to photon energies higher than the electron kinetic energy since χγ/χe ' γγ/γe. It is
therefore required to employ the formula derived in the quantum regime in order to not
introduce this unphysical behavior. One can observe indeed that this error is corrected
by the quantum formula in Fig. 2.3(b). The second feature of this radiated power is the
location of the spectra peak. In the classical limit, the radiated power peaks for relatively
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Figure 2.4: Evolution of the normalized radiated power (F (χe, χγ)) for different values
of the electron quantum parameter χe = 10−2, 10−1 and 1. In the quantum regime, the
function is represented either by the dots (Eq. (2.24)) or by the solid lines (Eq. (2.25)).
In the classical regime, it is represented by the dashed curves (Eq. (2.31))

low values of χγ/χe, e.g. 5×10−3 for χe = 10−2. In the quantum regime, the spectra peak is
located near χγ/χe ' 0.2. This particularity is depicted in Fig. 2.4 where we represent the
normalized power for three different values of the electron quantum parameter χe = 10−2,
10−1 and 1. Using the relation χγ/χe ' γγ/γe (valid for relativistic electrons), this means
than in the classical regime, most photons have a low energy compared to the electrons
whereas in the quantum one it is of the order of the electron kinetic energy.

2.1.2 Continuous radiation loss

The radiation emitted by an electron during its acceleration in a strong field affects its
trajectory via a force known as the radiative friction force or radiation reaction. Ob-
taining the corrected motion equation accounting for this force is a problem tackled by
Lorentz (1916) and latter by Abraham and Föppl (1918) and Dirac (1938). The equation
accounting for this back reaction of radiation on the electron trajectory is usually named
after those three authors and refered to as Lorentz-Abraham-Dirac (LAD) equation. This
equation is plagued by non-physical behavior, as the non-respect of the principle of inertia
(Spohn, 2000). In the frame of this PhD, we are interested by the corrected form from
Sokolov et al. (2009) of the LAD equation

dpµ

dτ
= fµL + fµrad (2.32)

dxµ

dτ
=
pµ

m
+ τ0

PCs
Pcl

fµL
m

(2.33)

where fµL = e
mF

µ
ν pν is the Lorentz force four-vector and fµrad = Ipµ

mc2
is the radiation friction

force four-vector. τ is the proper time defined as γ = dt/dτ in the comoving Lorentz frame

and τ0 = 2
3

e2

4πε0mc3
. The power radiated (PCs) is already defined in Eq.(2.28) as the product

of the classical radiated power Pcl = 2αfmc
2χ2

e/3τc and a quantum correction term g (χe)
defined in Eq. (2.30).
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2.1.3 Implementation of the continuous model

In order to implement the system of Eqs. (2.32)-(2.33) in a PIC code, Sokolov et al. (2009)
rewrote it in terms of three-vectors

dp

dt
= fL + eδv ×B − γ2

c2
v (δv.fL) (2.34)

dx

dt
= v + δv (2.35)

where fL and δv are defined by

fL = e (E + v ×B) (2.36)

δv =
τ0

m

fL −
[
(v.fL) /c2

]
v

1 + τ0 (v.fL) /mc2
(2.37)

and the classical radiated power Pcl = γ2 (δv.fL). In the numerical scheme by Sokolov
et al. (2009), the terms accounting for the radiation reaction, eδv×B and γ2v (δv.fL) /c2,
are evaluated at the n−th time step by

fnL =
e

m
(En + vn ×Bn) (2.38)

δvn =
τ0

m

fnL −
[
(vn.fnL) /c2

]
vn

1 + τ0

(
vn.fnL

)
/mc2

(2.39)

The usual particle pusher (see Sec. 1.4) is first activated and provides a momentum p̃n+1/2,
that does not yet account for radiation loss. The radiation reaction term is added after the
classical particle pusher and enables to update the particles’ momentum, now accounting
for radiation reaction

pn+1/2 = p̃n+1/2 + ∆t
[
eδvn ×Bn − γn2vn (δvn.fnL) /c2

]
(2.40)

The particle’s velocity vn+1/2 and position xn+1 are then updated

vn+1/2 =
pn+1/2

m

√
1 +

(
pn+1/2

mc

)2
(2.41)

xn+1 = xn + ∆tvn+1/2 + δvn (2.42)

In the PIC code calder, a simplified version of this algorithm is employed. It is assumed
that the term eδv ×B in Eq. (2.34) is small enough to be neglected. This assumption is
checked by Lobet (2015) for the interaction of a single electron with a counter-propagating
circularly polarized electromagnetic pulse. The remaining term γ2v (δv.fL) /c2 = Pradv/c

2

is evaluated from the expression derived in the quantum regime (Eq. 2.28). This simplifica-
tion enables to have a smooth transition when we couple the continuous and discontinuous
descriptions in Sec. 2.1.4. To summarize, firstly the electron quantum parameter is calcu-
lated

χn =
γn

ES

√(
En
‖ /γ

n
)2

+
(
En
⊥ + vn ×Bn

)2
(2.43)

42



Chapter 2. Processes induced in an electromagnetic field

Secondly, the radiation reaction is determined

fnrad = −Pclg (χn) vn

c2
(2.44)

Thirdly, the electron velocity (vn+1/2) is updated after the calculation by the classical
particle pusher (ṽn+1/2)

vn+1/2 = ṽn+1/2 −
∆tfnrad
mγn+1/2

(2.45)

2.1.4 Implementation of the discontinuous model

When a relativistic electron travels through a strong field such that its quantum parameter
χe ' 1, the photon spectra significantly changes compared to the case χe � 1 as shown
in Sec 2.1.1. Those photons have an energy comparable to the electron kinetic energy and
the recoil induced by each emission event must be accounted individually since it induces
discontinuities of the electron trajectory. In practice, this is done with a Monte Carlo
module that is added in the time loop of the PIC code. The implementation done in the
code calder is similar to the one done by Duclous et al. (2011) and was done by Lobet
et al. (2016). It follows the efforts carried out by other research groups such as Kirk et al.
(2009); Nerush et al. (2011); Blackburn et al. (2014); Ji et al. (2014b); Wallin et al. (2015)
and Vranic et al. (2016).

The emission of photons is described by an optical depth, denoted by τe. It is initially
set to zero and grows according to Eq. (2.46) which relies on the emission rate in Eq. (2.11),
rewritten as a function of the quantum parameter only

dτe
dt

=

∫ χe

0

d2NCs

dχγdt
dχγ (2.46)

A final optical depth τ fe = − log (1− ξ) is sampled from a random number in the interval

ξ ∈ (0, 1). In order to avoid numerical approximation issues when τ fe → 0, it is necessary
to set a lower limit for it (10−100 in the code). When this final optical depth is reached,
a photon is emitted, the macro-particle’s optical depth is set to zero and the process can
start again. Once a photon is emitted, its quantum parameter is sampled by the classical
method of cumulative distribution function inversion. From a random number in the
interval ξ′ ∈ (0, 1), the photon quantum parameter χγ is obtained by solving

ξ′ =

∫ χγ
0 F

(
χe, χ

′
γ

)
dχ′γ∫ χe

0 F
(
χe, χ′γ

)
dχ′γ

(2.47)

where the expression of F (χe, χγ) comes from Eq. (2.24). The photon energy is deduced
as γγ = γeχγ/χe (see Eq. 2.7, valid for relativistic electrons). The new macro-photon
is initialized at the same position as the electron and with the same statistical weight.
It is emitted parallel to the electron propagation direction. The electron momentum
after emission (pf ) is then deduced from its value before emission (pi) and the photon
momentum: pf = pi − ~k with ~k = γγmcpi/|pi|. This algorithm enables momentum
conservation but does not ensure energy conservation. The error done can be evaluated
as δE = (γ2

f − (γi − γγ)2)1/2 ' (γγ/γi)
1/2 for a relativistic electron (γi � 1).

This sampling method favors the emission of low-energy photons which weakly impact
the simulation outcome, especially the production of electron-positron pairs. For this
reason, the energy carried by photons with a low quantum parameter can be neglected.
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In the PIC code calder, this lower limit χminγ is determined such that the energy carried
by them is lower than ε = 10−9

∫ χminγ

0 F (χe, χγ) dχγ∫ χe
0 F (χe, χγ) dχγ

≤ ε (2.48)

The Monte Carlo time step is based on the duration of an emission event (τem) evaluated
as

dτe
dt

(χe) '
τ fe
τem

(2.49)

It can be lower than the PIC code time step, which implies to do subcycling. The increased
number of events is computationaly demanding but enables to treat them all.

The continuous and discontinuous photon emission can be coupled as suggested by
Duclous et al. (2011). One can define a quantum parameter threshold χth above (resp.
below) which photons are emitted by the discontinuous (resp. continuous) model. In
practice this limit is set to χth = 10−3 in the PIC code calder. The function F is
tabulated in advance as its calculation during the simulation is too time consuming.

2.2 Pair creation by the nonlinear Breit-Wheeler process

We now move on to the modeling and implementation of the Breit-Wheeler electron-
positron pair generation process, believed to prevail for ultra-relativistic laser intensities
≥ 1023 W/cm2. A brief paragraph is also devoted to the electromagnetic Trident electron-
positron pair generation but it is not implemented in the Particle-In-Cell code calder.
It is worth to mention that this latter process is induced by an electromagnetic field and
is therefore different from the Coulomb Trident implemented in Chap. 3.

2.2.1 Physical Model

The nonlinear Breit-Wheeler process (γ + nω → e− + e+) is also known as multi-photon
Breit-Wheeler (Breit and Wheeler, 1934). It involves the decay of an energetic photon
in an electron-positron pair as it travels in a strong electromagnetic field. The formalism
required to derive emission rates accounting for this process are similar to the one presented
for the nonlinear inverse Compton in Sec. 2.1. The importance of quantum effects affecting
a photon depends on its quantum parameter χγ already defined in Eq. 2.6

χγ =
γγ
ES
|E⊥ + v ×B| (2.50)

Similarly to the modeling presented for the nonlinear inverse Compton scattering, it is
required to formulate two hypothesis. Firstly, the external field triggering pair production
is assumed to be quasistatic and uniform, impliying that its normalized amplitude aL � 1.
Secondly, aL is supposed to be negligible compared to the normalized Schwinger field
eEs/mω0c ' 4 × 105. For a hard photon of quantum parameter χγ , the rate of emission
of positrons with a quantum parameter χe+ is given by Reiss (1962) or by Erber (1966)
as

d2NnBW

dχe+dt
=

1

π
√

3

αfmc
2

~γγχγ

{∫ +∞

x

√
sK1/3

(
2s3/2/3

)
ds−

[(
2− χγx3/2

)
K2/3

(
2x3/2/3

)]}
(2.51)
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where x = (χγ/χe+χe−)2/3 and χe± denotes the quantum parameters of the created
positron and electron. One can note that this expression is symmetric in χe+ and χe− .
The relation χγ = χe+ + χe− enables to express the emission rate as a function of only
one quantum parameter (χe+ or χe−). The integration on χe+ of the differential emission
rate in Eq. (2.51) provides the total emission rate of electron-positron pairs (Ritus, 1985)

dNnBW

dt
=

∫ χmax
e+

χmin
e+

d2NnBW

dχe+dt
dχe+ (2.52)

=
αfmc

2

~
χγ
γγ
TnBW (γγ , χγ) (2.53)

where the function χγ → TnBW (χγ) is defined by

TnBW (γγ , χγ) =
1

π
√

3

1

χ2
γ

∫ χmax
e+

χmin
e+

∫ +∞

x

√
sK1/3

(
2s3/2/3

)
ds

−
[(

2− χγx3/2
)
K2/3

(
2x3/2/3

)]
dχe+ (2.54)

where Kν denotes modified Bessel functions of order ν. χmine+ = χγ/γγ denotes the mini-
mum quantum parameter of the positron (achieved for γe+ → 1) and its maximum quan-
tum parameter is χmaxe+ = χγ(1− 1/γγ) (achieved for γe− → 1). An alternative expression
of TnBW is provided by Erber (1966)

TnBW (χγ) =
0.16

χγ
K2

1/3

(
4

3χγ

)
(2.55)

These functions are plotted in Fig. 2.5(a,b) assuming a uniform external field of normalized
amplitude eBL/mω0 = 100. The first striking feature of the emission rate in Fig. 2.5(a)
is its symmetry with respect to χe+/χγ = 0.5. The second thing to note is the position
of the emission rate peak. It is located on the symmetry axis for χγ ≤ 1 and close to the
two bounds of the spectra for χγ ≥ 1. The two formulas provided either by Erber (1966)

Figure 2.5: (a) Rate of positron emission as a function of the photon (χγ) and the positron
(χe+) quantum parameters (Eq. (2.51)); (b) Rate of emission integrated on χe+ as ex-
pressed in Eq. (2.51) (dots) and in Eq. (2.55) (solid curve). The external field is assumed
to be uniform and of normalized amplitude aL = 100.

and by Ritus (1985) are represented in Fig. 2.5(b). They agree very well on the interval
χγ ∈ (10−1, 103). The emission rate rises significantly for χγ ≤ 1, reaches a maximum for
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χγ = 10 and decreases slowly for χγ ≥ 10.

2.2.2 Monte Carlo implementation in the PIC code calder

The implementation of the nonlinear Breit-Wheeler process in the PIC code calder was
performed by Lobet et al. (2016). Photons are treated as usual macro-particles and their
quantum parameter is updated through a shape factor every time steps.

Following the same technique used for the emission of photons by nonlinear inverse
Compton scattering and presented in Sec 2.1.4, the pair generation is associated with an
optical depth τγ . It is initially set to zero and then grows according to the rate of emission
recalled in the former subsection

dτγ
dt

= TnBW (χγ) (2.56)

Once it reaches a final optical depth τ fγ = − log(1 − ξ) sampled from a random number
ξ ∈ (0, 1) a pair is created and the photon is suppressed. The positron quantum parameter
χe+ is determined by the common technique of cumulative distribution function inversion.
From a random number ξ′ ∈ (0, 1), χe+ is obtained by solving

ξ′ =

(∫ χe+

χmin
e+

d2NnBW

dχ′
e+
dt

dχ′e+

)/(∫ χmax
e+

χmin
e+

d2NnBW

dχ′
e+
dt

dχ′e+

)
(2.57)

The electron quantum parameter is deduced with the relation χe− = χγ − χe+ . The new
elecron and the new positron are initialized at the same position as the photon, with the
same statistical weight. Their energy is deduced by the relation γe± = γγχe±/χγ . They

are assumed to have the same propagation direction as the photon pe± =
√
γ2
e± − 1k/|k|.

The Monte Carlo time step is based on the duration of an emission event (τem) evaluated
as

dτγ
dt

(χγ) ' τ fγ
τem

(2.58)

It is usually smaller than the PIC code time step and therefore requires to do subcycling,
in order to describe all pair creation events. As for the implementation of the synchrotron
emission, the function T is also pre-tabulated before the simulation to spare computational
time.

2.3 Pair creation by the electromagnetic Trident process

Relativitic electrons travelling in a strong field can directly emit an electron positron pair
by the electromagnetic Trident process. It is a second order process since it involves an
intermediary virtual photon. The total emission rate is provided by Erber (1966)

dNT

dt
(χe) = 0.32α2

f

2mc2

~
aL
ES

Ω (χe) (2.59)
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where Ω (χe) is defined by

Ω (χe) =

∫ +∞

0
u−2W

(
u

χe

)
K2

1/3

(
4

3u

)
du (2.60)

W (x) = xK0 (x)K1 (x)− x2

2

[
K2

1 (x)−K2
0 (x)

]
(2.61)

where Kν are modified Bessel functions of order ν. The function χe → Ω (χe) has a simpler
expression in the limit χe � 1 and χe � 1 (Erber, 1966)

Ω (χe) =

{
π5/2

16 (3χe)
1/4 exp

[
−8 (3χe)

−1/2
]

if χe � 1

π2

2 lnχe if χe � 1
(2.62)

Fig. 2.6 displays the number of pairs created per time unit as a function of the incident

Figure 2.6: dN/dt: number of electron positron pairs created by the electromagnetic
trident process as a function of the incident electron quantum parameter. The blue line
illustrates Eq. (2.59) and the two others illustrate Eq. (2.62).

electron quantum parameter. It is assumed that the external field is uniform and of nor-
malized amplitude eBL/mω0 = 100. Fig. 2.6 evidences that the formula (2.62) suggested
in the limit χe � 1 is a very good approximation to the more general formula (∀χe) in
Eq. (2.59). In the limit χe � 1, the rate of emission rises slowly (∝ logχe), such that
it becomes negligible compared to the Breit-Wheeler (Lobet (2015)). This process is not
implemented in the PIC code calder.

Conclusions

This chapter is dedicated to the modeling of radiative and QED processes induced in an
electromagnetic field of strong amplitude and their implementation in the Particle-In-Cell
code calder. Firstly, we deal with nonlinear inverse Compton scattering. We present
the classical and quantum formula accounting for the photon emission rate and how they
are introduced within the Particle-In-Cell framework. Secondly, we recall the theoretical
formalism to include the Breit-Wheeler electron-positron pair generation mechanism.

As a perspective, it is worth to mention recent initiatives to question the key hypoth-
esis formulated in the modeling of the aforementioned processes (Di Piazza et al., 2018;
Ilderton et al., 2018; Aleksandrov et al., 2018). This assumption is formulated in Sec. 2.1.1
and is also known as Local Constant Field Approximation (LCFA). The goal of these stud-
ies is to improve the simulation capabilities of numerical codes employed to understand
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experiments involving relativistic laser-plasma interaction.
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Processes induced in a Coulomb
atomic field

Figure 3.1: Processes triggered by the interaction of particles with a Coulomb atomic field.

The Particle-In-Cell (PIC) method has become the most widely used technique for sim-
ulating plasma physics (Birdsall and Langdon, 1991). Since it is based on first principle
equations (Klimontovich and Maxwell), it can be employed in a variety of contexts. From
an academical point of view, it embodies the ideal tool to consider different kind of plasma
instabilities. From a practical point of view, it enables to interpret and plan ahead laser-
plasma experiments involving the building of large and expensive infrastructures. Such
experiments are related to applied research domains such as inertial confinement fusion
(Lindl, 1995) and plasma-based particle accelerators (Esarey et al., 1996). The continuous
advances in laser intensity enable to tackle other topics such as the laboratory reproduc-
tion of astrophysical scenarios (Blandford and McKee, 1977), quantum electrodynamics,
nuclear and particle physics (Di Piazza et al., 2012).

The PIC approach, however, is computationally expensive such that the spatial res-
olution usually employed is a Debye length and does not allow to take into account
binary Coulomb collisions between charged particles, let alone the generation of high-
energy photons and positrons expected in high-Z materials driven at relativistic intensities(
≥ 1018 Wcm−2

)
. To cope with this issue it was suggested by Takizuka and Abe (1977)

to implement those effects in PIC codes via a Monte Carlo macro-particle pairing scheme.
Even though it requires further developments, e.g. to address relativistic plasmas or non-
equally weighted macro-particles, it enables an accurate self-consistent description of the
Coulomb collisions and photon/positron generation processes arising in laser-plasma in-
teractions. The principle of this method is general and can introduced at the end of
Chap.2. It be applied to any process provided it can be adequately modeled within the
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PIC framework. Several enhancements of this Monte Carlo pairing scheme are proposed
in the literature (Nanbu, 1997; Nanbu and Yonemura, 1998; Sentoku and Kemp, 2008;
Peano et al., 2009; Pérez et al., 2012).

This chapter will deal with the numerical modeling of those processes (see Fig. 3.1)
induced in a Coulomb atomic field and their implementation in the PIC code calder.
One section is devoted to each mechanism. We are interested in elastic scattering between
charged particles (Sec. 3.1), electron-ion impact ionization (Sec. 3.2), the Bremsstrahlung
process where electrons generate photons (Sec. 3.3) which may decay into electron-positron
(e−e+) pairs by the Bethe-Heitler process (Sec. 3.4) and the Coulomb Trident process
involving the direct emission of an (e−e+) pair by an electron (Sec. 3.5). Sec. 3.6 is
devoted to the competition of the two pair creation mechanisms in a solid target.
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3.1 Elastic scattering

Collisions are taken into account by a Monte Carlo module inserted in a PIC code (see
Sec. 1.6.2 for a general introduction). They are modeled as random events following
a theoretical cross-section. Their sampling takes place every time steps in every mesh
cell and involves a pair of macro-particles (electrons, ions or photons). It is considered
representative of the desired distribution if one employs a large number of macro-particles.
The model of Nanbu (1997) introduced hereafter describes the basic elastic scattering
between two macro-particles which are assumed to be located in a given mesh cell at some
time step.

3.1.1 Nanbu’s theory for Debye’s screening

Let us start by the definition of some notations denoting two macro-particles experiencing
a simple scattering. The four momentum vector of the first (resp. second) particle is
indexed with 1 (resp. 2) as precised in Tab. 3.1. The variables without exponent are those
for the laboratory frame (K) whereas those with a ∗ exponent denote the same variables
in the center-of-mass frame (K∗). The same variables after the scattering are denoted
with a index f whereas we leave no index before the scattering. The macro-particles’ mass

Reference Laboratory Center-of-mass
frame (K) (K∗)

incident first particle (p1, γ1/c) (p∗1, γ
∗
1/c)

deflected first particle (p1f , γ1f/c)
(
p∗1f , γ

∗
1f/c

)
incident second particle (p2, γ2/c) (p∗2, γ

∗
2/c)

deflected second particle (p2f , γ2f/c)
(
p∗2f , γ

∗
2f/c

)
polar-azimuthal angles (θ, φ) (θ∗, φ∗)

multiple scattering angle χ χ∗

Table 3.1: Notations for variables in the laboratory and center-of-mass frame

m1 and m2 are arbitrary, as well as their momenta p1 and p2 and charges q1 and q2. The
azimutal and polar angles after a simple scattering are denoted by θ∗ and φ∗. The multiple
scattering angle is χ∗ defined by cosχ∗ = p∗1.p

∗
1f/ |p∗1|

2. The calculations are performed in
the center-of-mass frame as it reduces the calculations. Indeed, both macro-particles have
opposite initial momentum p∗1 = −p∗2 and final momentum p∗1f = −p∗2f . The velocity of
the frame (K∗) is defined as

vC =
p1 + p2

m1γ1 +m2γ2
(3.1)

With a Lorentz transform, one can deduce the four momentum of the first macro-particle
in the center-of-mass frame (K∗) (and therefore the second by the symmetry mentioned
previously)

p∗1 = p1 +

[
γC − 1

v2
C

(vC .v1)− γC
]
m1γ1vC γ∗1 =

(
1− vC .v1/c

2
)
γCγ1 (3.2)

Usually the time and spatial steps of a PIC code are too large to account for every
simple scattering events. Based on the previous work of Nanbu (1997); Nanbu and Yone-
mura (1998) the model implemented accounts for the multiple scattering over one spatial
and time step. In this work a probability density function of the multiple scattering angle
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is fitted from Monte Carlo simulations of N successive and independent scatterings in a
plasma. Let χ∗ denote the scattering angle in the frame (K∗) this fitted function is defined
as

f (χ∗) =
A

4π sinhA
exp (A cosχ∗) (3.3)

The variable A is the solution of equation cothA − A−1 = exp (−s12). The factor s12 is
related to the mean-squarred scattering angle 〈θ∗2〉 by the relation s12 = N〈θ∗2〉/2. The
function f is therefore a function of a unique parameter, s12 which is deduced from two
equalities (3.4) and (3.5). The first one (3.4) comes from the adiabatic invariant σvrelγ1γ2

(Landau and Lifshitz, 1975). It provides the number of collisions N during a time step ∆t

N = σ∗v∗rel
γ∗1γ

∗
2

γ1γ2
n2∆t (3.4)

The variable vrel = |v1 − v2| is a scalar that defines the relative velocity between the two
macro-particles. The second equation that enables to derive the parameter s12 comes from
the relativistic scattering cross section σ∗ in the center-of-mass frame. It is taken from
the work of Frankel et al. (1979) and follows a distribution denoted dσ∗/dΩ∗ defined in
the limit of small scattering angles θ � 1

dσ∗

dΩ∗
=

(
2q1q2

4πε0

1 + v∗1v
∗
2/c

2

p∗1v
∗
rel

)2
1

θ∗4
(3.5)

Ω∗ denotes the solid angle after a simple scattering. This expression is integrated from
θmin to θmax = 2 rad. We then deduce that 〈θ∗2〉 ∝ ln (2/θmin) ≡ ln (Λ). The minimum
scattering angle θmin is associated with the inverse of the maximum impact parameter,
LD the Debye length, accounting for a Debye screening prevailing in an ionized plasma.
For this reason we switch the notation θmin to θD. The expression for s12 is obtained from
the integration of (3.5) and substition of (3.4) in the expression of s12 = N〈θ∗2〉/2

s12 =
n2∆t ln Λ (q1q2)2

4πε20

v∗relγ
∗
1γ
∗
2

γ1γ2

(
1 + v∗1v

∗
2/c

2

p∗1v
∗
rel

)2

(3.6)

It can be simplified and expressed only as a function of the initial parameters of the
problem in the laboratory frame. Knowing the expression of p∗1 and γ∗1 which are defined
by (3.2), γ∗2 =

(
1− vCv2/c

2
)
γCγ2 and the center-of-mass velocity is given by (3.1) one can

derive the following expression for the parameter s12 controlling the multiple scattering
function defined in (3.3)

s12 =
n2∆t ln Λ (q1q2)2

4πε20c
4m1γ1m2γ2

γCp
∗
1

m1γ1 +m2γ2

(
1 + c2m1γ

∗
1m2γ

∗
2

p∗21

)2

(3.7)

In this model of Nanbu (1997), screening effects appear in the Coulomb logarithm
(ln Λ) in Eq. (3.7). This term is heuristically calculated according to the method adopted
by Lee and More (1984)

ln Λ = max

[
2,

1

2
ln

(
1 +

b2max
b2min

)]
(3.8)

where bmin and bmax are the lower and upper impact parameter cutoffs. The maximum
impact parameter is taken equal to the Debye length bmax = LD. The minimum impact
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parameter bmin is obtained by the relation bmin = max (~/2p∗, b0) with b0 the impact
parameter for a 2 rad scattering

b0 =
q1q2

4πε0c2

γC
m1γ1 +m2γ2

(
m1γ

∗
1m2γ

∗
2

p∗21

c2 + 1

)2

(3.9)

The maximum value 2 is fixed in order to fit numerical results (for more details see Lee
and More (1984)). The Debye length LD is calculated every time steps in every cells and
takes into account all species L−2

D =
∑

α 4πnαq
2
α/Tα.

Once the Coulomb logarithm and s12 are determined, one can sample the multiple
angle of scattering χ∗. This is done by inverting the cumulative distribution function
associated with the probability density function f (χ∗) defined in (3.3). The azimuthal
angle φ∗ is sampled randomly in (0, 2π) and the momentum of the deflected macro-particles
is deduced from a rotation as shown by Sentoku and Kemp (2008)

p∗1f = −p∗2f =


p∗1xp

∗
1z

p∗1⊥
−p∗1yp

∗
1

p∗1⊥
p∗1x

p∗1yp
∗
1z

p∗1⊥

p∗1xp
∗
1

p∗1⊥
p∗1y

−p∗1⊥ 0 p∗1z


sinχ∗ cosφ∗

sinχ∗ sinφ∗

cosχ∗

 (3.10)

A Lorentz transform back to the laboratory frame provides the deflected momentum of
the first macro-particle (and the second by symmetry)

p1f = p∗1f +

[
γC − 1

v2
C

(
vC .p

∗
1f

)
+m1γ

∗
1γC

]
vC (3.11)

The model of Nanbu (1997) generally describes the multiple scattering between a pair
of charged macro-particles over a typical time step of a PIC simulation, given the plasma
state of a mesh cell. This process is induced in a Coulomb atomic field which is assumed
to be screened by a Debye potential. We will see in the next subsection that a different
potential can be employed, especially one taking into account the screening of bound
electrons.

3.1.2 Description of bound electron screening

The existing model of binary Coulomb collisions implemented in calder only describes
charged particles interactions and, in particular, elastic interactions between free electrons
and ionized atoms. This is easily seen by considering the parameter s12 presented in
formula (3.7). Now it is well-known that neutral atoms can cause elastic scattering of
electrons. To include this effect in a simple manner within the framework of Pérez et al.
(2012) we recall that in formula (3.7) q1 and q2 represent the effective charges of the
interacting particles while the Coulomb logarithm involves the screening angle of the
Coulomb potential ln (2/θmin).

For a macro-collision between an electron and an atom, the parameter s12 cancels as
it is proportional to the product of the macro-particles charges (s12 ∝ q1q2 = 0). The
multiple scattering distribution becomes

f (χ∗) ' exp [− (1− cosχ∗) /s12] /s12 as s12 → 0 (3.12)

Since s12 → 0, the function f is cancelled for all χ∗, except for three blow up points
(χ∗ = 0, π, 2π). Numerically speaking, macro-particles are thus not deflected when they
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are paired with neutral atoms and this raises a major issue.
There are therefore two refinements to operate in order to increase the range of validity

of Nanbu (1997)’s model to arbitrary ionized atoms. The first one is to adapt the numerical
scheme and overcome the inexistent (and unphysical) scattering of particles when they are
paired with neutral atoms. This can be quickly addressed by avoiding the cancellation
of the parameter s12 and of the scattering distribution. We suggest to modify the charge
q2 of an ion in this formula: we simply replace it by the nucleus charge Z. With this
refinement the scattering by a neutral atom is now taken into account but the information
on the ion charge Z∗ is lost. We will see however that it can be recovered in the next
paragraph.

The second refinement consists in suggesting a consistent model accounting for bound
electron screening. In Nanbu’s model, screening effects only appear in the Coulomb loga-
rithm ln Λ expressed in Eq. (3.8) in the form of a maximum impact parameter bmax equal
to the Debye length LD and proportional to the inverse of the Debye screening angle θD
(bmax ∝ θ−1

D ). In order to get a screening angle consistently accounting for an arbitrary
ionization degree, we refer to the work of Molière (1947) (written in German). He devel-
opped a mathematical theory on the multiple scattering of electrons by atoms which was
later rephrased by Bethe (1953) (written in English).

Firstly, we describe how Molière determines a screening angle in the limit of electron
scattering on a nucleus (he uses a Thomas-Fermi potential). Secondly we suggest to extend
his result to a mixed Thomas-Fermi-Debye potential expressed as (Nardi and Zinamon,
1978)

VTFD =
Ze

4πε0r

[(
1− Z∗

Z

)
exp

(
− r

LTF

)
+
Z∗

Z
exp

(
− r

LD

)]
(3.13)

The parameters LTF and LD respectively denote the Thomas-Fermi and Debye lengths.
In the limit of a neutral solid, this potential is reduced to the usual Thomas-Fermi one
whereas in the limit of a fully ionized plasma, it is equivalent to the classical Debye one.
For an arbitrary degree of ionization the potential VTFD is an interpolation between both
limits, depending on the ionization rate Z∗/Z. While this expression is purely heuristic, it
enables to have a continuous description between the screened potential of a neutral and
fully ionized atom.

Molière’s theory for simple scattering

Let us first introduce notations. We are now working in the ion-rest frame where all
variables are denoted with a ′ as shown in Table 3.2. In order to keep consistent notations
with the formalism of Nanbu, the electron variables are denoted by a subscript 1 and
the ion variables are denoted by a subscript 2. The azimutal and polar angles after a
simple scattering are denoted by θ′ and φ

′
. The multiple scattering angle (χ

′
) is defined

by cosχ′ = p′1.p
′
1f/ |p′1|

2. We denote by k′i and k′d the incident and deflected wave vectors.
The screened differential scattering cross section derived in the first Born approximation
for an arbitrary potential V reads (Molière, 1947)

σ
(
θ′
)

=
(m1e

2π~2

)2
∣∣∣∣∫ e−i(k

′
d−k

′
i).rV (r) dr

∣∣∣∣2 (3.14)

Let us consider the case of a Thomas-Fermi potential defined by

VTF (r) =
Ze

4πε0r
e−r/LTF (3.15)
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Reference Laboratory Ion-rest
frame (K) (K ′)

incident first particle (p1, γ1/c) (p′1, γ
′
1/c)

deflected first particle (p1f , γ1f/c)
(
p′1f , γ

′
1f/c

)
incident second particle (p2, γ2/c) (p′2, γ

′
2/c)

deflected second particle (p2f , γ2f/c)
(
p′2f , γ

′
2f/c

)
polar-azimuthal angles (θ, φ) (θ′, φ′)

multiple scattering angle χ χ′

Table 3.2: Notations for variables in the laboratory and center-of-mass frame

The screened differential scattering cross section can be obtained from Eq. (3.14) and has
the following closed-form for the Thomas-Fermi potential

σTF
(
θ′
)

= σRu
(
θ′
)
Krel

(
θ′
)
Kscr,TF

(
θ′
)

(3.16)

with σRu the Rutherford scattering cross-section, Kscr,TF and Krel are respectively screen-
ing and relativistic factors introduced by Zeitler and Olsen (1964) defined by

σRu
(
θ′
)

=
4Z2e4

4πε0m2
1v
′4
1

1(
4 sin2 θ′

2

)2 , Krel

(
θ′
)

= 1− β′21 sin2 θ
′

2

Kscr,TF

(
θ′
)

=

(
4 sin2 θ′

2

)2

(
4 sin2 θ′

2 + θ
′2
TF

)2 (3.17)

The angle θ′TF = ~/ (p′1LTF ) is defined as the Thomas-Fermi screening angle. It can also
be defined from a first order partial wave expansion (Molière, 1947)

ln θ′TF = −1

2
− lim
θ′TF→∞

{∫ θ′TF

0

Kscr,TF (θ′)

θ′
dθ′ − ln θ′TF

}
(3.18)

where the dependence of the term Kscr,TF on the potential VTF is provided by the formula

Kscr,TF

(
θ′
)

=
(kθ′)4

4α2
f

∣∣∣∣∫ ∞
0

J0

(
kθ′r

) [
eiΦ(r) − 1

]2
∣∣∣∣2 (3.19)

Φ (r) = − 2

~v′1

∫ ∞
r

VTF (ρ)

(ρ2 − r2)1/2
ρ dρ (3.20)

where k = ~/p′1 and J0 is a notation for the first kind Bessel function of order 0.
Having in mind the method used by Molière to define a screening angle θ′TF from a given

potential VTF , we are eager to reproduce the calculations with the mixed Thomas-Fermi-
Debye potential VTFD = (1 − q)VTF + qVD with q = Z∗/Z and VD the Debye potential.
This was already done by Gremillet (2001). In the limit of small angle scatterings, the
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screening factor reads

Kscr,TFD

(
θ′
)

=
(
1− q2

) θ
′4(

θ′2 + θ
′2
TF

)2 + q2 θ
′4(

θ′2 + θ
′2
D

)2
+ 2q (1− q) θ

′4(
θ′2 + θ

′2
TF

) (
θ′2 + θ

′2
D

) (3.21)

The screening angle θ′TFD is derived employing formula (3.18) and provides (Gremillet,
2001)

θ′TFD = θ
′ξTF
TF θ

′ξD
D with

 ξTF = (1− q)2 − 2q (1− q) /
(
θ
′2
TF /θ

′2
D − 1

)
ξD = q2 + 2q (1− q) /

(
1− θ′2TF /θ

′2
D

) (3.22)

From the theory of Molière we have a screening angle θ′TFD accounting for a mixed
Thomas-Fermi-Debye potential and therefore arbitrary ionized plasmas and solids. We
choose to employ this screening angle θ′TFD to improve the screening description in the
theory of Nanbu. We replace in the Coulomb logarithm (formula (3.8)) the Debye screen-
ing angle θD by the Thomas-Fermi-Debye one θTFD.

Molière’s theory for multiple scattering

The contribution of Molière is not limited to simple scatterings. He also built a theory
describing multiple scattering of an electron beam in a solid. His work is a good benchmark
for PIC simulated scattering in solids. Since we already introduced Molière’s formalism,
we present the main formulas he provides to describe multiple scattering in a solid. We
are still working in the ion-rest frame where variables are marked with a ′ superscript.
The initial distribution of electrons is assumed to be mono-energetic forming a Dirac delta
function f (χ′, 0) = δ (χ′) and obeys the transport equation for a cylindrical beam.

∂f (χ′, s′)

∂s′
= −n′if

(
χ′, s′

) ∫
σ
(
θ′
)

2πθ′ dθ′ + n′i

∫
f
(
χ′ − θ′, s′

)
σ
(
θ′
)
dθ′ (3.23)

The goal is to determine the probability f (χ′, s′) that after a distance s′, an electron is
deflected by an angle χ′. The variable s′ (without index) is the distance travelled by a
particle of the beam and should not be confused with the parameter s12 introduced in the
frame of Nanbu’s framework. The result is derived in the limit of weak scatterings and
irrespective of the cross-section expression. The full calculation was rephrased by Bethe
(1953) and involves Bessel transforms. The analytical derivation is valid for a number of
collisions ranging from ∼ 5 to ∼ 20. It is expressed as an expansion that reads

fM
(
χ′, s′

)
χ′dχ′ = Θ′dΘ′

(
f (0)

(
Θ′
)

+
1

B
f (1)

(
Θ′
)

+
1

B2
f (2)

(
Θ′
)

+ . . .

)
(3.24)

fn
(
Θ′
)

=
1

n!

∫ ∞
0

uJ0

(
uΘ′

)
exp

(
−u

2

4

)[
u2

4
ln
u2

4

]n
du ∀n ≥ 0

Several parameters are introduced during the derivation. J0 denotes a Bessel function
of the first kind and of order 0. Θ′ is a reduced angle defined by Θ′ = B−1/2χ′/θ′c
where B is the implicit solution of equation B − lnB = b with b a parameter defined as
b = ln (1− 2C + θ′c/θ

′
M ). C is the Euler constant, θ′M the Molière screening angle obtained

after numerical integration of Eq. (3.18) for Molière’s potential. θ′c is defined such that
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the probability of one scattering event at a higher angle is equal to 1. The momentum of
the incident particle, its velocity and Lorentz factor have the usual notation p′, β′ and γ′

and the expression of θ′M and θ′c are

θ
′2
M =

~2

(1.13p′LTF )2

(
1.13 + 3.76α2

)
θ
′2
c =

4πis
′Z (Z + 1) e4

m2c4β′4γ′2
(3.25)

In practice we limit the expansion of (3.24) to the first terms f0, f1 and f2. Indeed Bethe
(1953) demonstrated that this approximation is enough to keep an accurate result in all
cases (below 1%). For n = 0 the distribution f0 is a Gaussian function with a variance
θ
′2
c B. The n− th term of the sum, which is B−nfn, appears as a correction of decreasing

significance as n increases.
The theoretical framework to implement and benchmark multiple scattering in a PIC

code was presented in this subsection. The underlying modeling stands out from former
results. Indeed, it provides a consistent way to describe screening effects from both free and
bound electrons through the use of a mixed Thomas-Fermi-Debye potential. The theory
of Molière for multiple scattering summarised here will be employed as a benchmark with
PIC-simulated scattering of electron beams in Sec. 3.1.4. Before this, we report in the
next subsection (3.1.3) how to perform the numerical implementation of those scattering
events in a PIC code.

3.1.3 Monte Carlo implementation

Figure 3.2: Monte Carlo pairing of macro-particles with different numerical weight.

The Monte Carlo module is called every time steps in every cells to compute the
scattering of particles, pair by pair. In practice, macro-particles with different numerical
weight can be paired and a sampling issue appears as stated first by Nanbu and Yonemura
(1998). Let us introduce some notations from Pérez et al. (2012) and consider N1 and N2

macro-particles from species 1 and 2 within a mesh cell. Each macro-particle is indexed
by i and its individual weight is denoted by Wi1 for specie 1 or Wi2 for specie 2. N12 =
max (N1, N2) denotes the total number of pairs as described by Nanbu and Yonemura
(1998). The weight is defined as the number of real particles represented by a macro-
particle. From this definition, we deduce the local number densities for the two species:
n1 =

∑N1
i=1Wi1 and n2 =

∑N2
i=1Wi2. The problem is illustrated in Fig. 3.2. For the

sake of clarity, we consider two macro-particles with simple numerical weights (3 and 5),
meaning they respectively represent 3 and 5 real particles. Physically speaking, there are
three scattering events during this time step ∆t. If one does not specify anything, the
Monte Carlo module scatters both macro-particles. As a consequence it scatters 5 real
particles of the second specie instead of 3 during the time step ∆t. This over-estimation
is compensated by a simple refinement. For each macro-particle of the pair, a scattering
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probability is introduced to compensate for the weight difference

Pi1 =
Wi2

max (Wi1,Wi2)
Pi2 =

Wi1

max (Wi1,Wi2)
(3.26)

In the simplified case in Fig. 3.2, those probabilities are respectively Pi1 = 1 and Pi2 =
3/5. The addition of a probability changes the average time step of the macro-particles
δti1 = Pi1∆t and δti2 = Pi2∆t. The average time step for macro-particle number 1 is

∆t1 =

∑N12
i=1 Wi1δti1∑N1
i=1Wi1

= ∆t1
n12

n1
with n12 =

N12∑
i=1

min (Wi1,Wi2) (3.27)

Symmetrically we get the average time step for macro-particle number 2: ∆t2 = ∆t2n12/n2.
Since we want to conserve energy and momentum on a large number of collisions, we im-
pose ∆t1 = ∆t2 = ∆t, the simulation time step. This modification restores symmetry
between the two species 1 and 2 having different numerical weights. This can be seen in
the new expression of the parameter s12 characterising the multiple scattering distribution.
We have s12 = s12 (∆t1) = s21 (∆t2) with

s12 =
n1n2

n12

∆t ln Λ (q1q2)2

4πε20c
4m1γ1m2γ2

γCp
∗
1

m1γ1 +m2γ2

(
1 + c2m1γ

∗
1m2γ

∗
2

p∗21

)2

(3.28)

All the elements to numerically implement multiple scattering in a PIC code were
presented. They rely on a Monte Carlo algorithm added in the time loop of the PIC
code. This module samples the cross-sections every time steps in every cells. It ensures,
on average, to remain representative of the initial distribution even with macro-particles
of different numerical weight.

3.1.4 Numerical tests with arbitrary ionized atoms

In this subsection, we are eager to illustrate the new models and implementations brought
in the PIC code calder. Firstly we compare the scattering of electrons in a solid according
to the model of Nanbu and the theory of Moliere and find a resonable agreement. Secondly
we study the influence of the plasma ionization state on particle scattering. To this
purpose, we depict the scattering of electrons in plasmas with varying ionization rates and
point out the relative influence of bound and free electron screening.

We compute the angle distribution of a mono-energetic electron beam (100 keV) prop-
agating in copper of density 8.96 g.cm−3 in Fig. 3.3. The PIC simulations (blue curves)
are compared to the multiple scattering theory of Molière (green curves plotted from for-
mula (3.24)) and a Monte Carlo sampling of the angle-differential cross-section including
Molière’s screening (red histogram based on Eq. (3.21)). We recall that we are working
in the ion-rest frame and that all quantities are denoted by a ′. In the PIC simulations
we propagate a mono-energetic electron beam along the x axis over a distance s′ = 0.5, 1
and 26µm and report its angle-resolved distribution. According to the theory of Molière,
this corresponds to N ′c = 10.1, 20.2 and 505 collisions for the incident electrons. We
observe that the PIC simulations tend to agree with the Monte Carlo sampling only for
a large number of collisions. The difference observed for small number of collisions be-
tween Nanbu’s model and Molière’s theory comes from their different validity domains.
We illustrate those validity domains in Fig. 3.4. Nanbu determined the multiple scattering
distribution for a number of collisions N ′c = 100 → 3000, which is much higher than for
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Figure 3.3: Angle distribution for a 100 keV electron beam in copper (Z = 29) with density
ρ = 8.96 g/cm3 after (a) 10.01 (b) 20.2 and (c) 505 collisions. Comparison of the multiple
scattering model of Nanbu (blue curves), of Molière (green curves) and the Monte Carlo
sampling of Molière’s formula for simple scattering (red histograms)

Molière (N ′c = 5→ 20).

Figure 3.4: (a) Angle-distribution predicted by the theory of Molière with its range of
validity (5 ≤ N ′c ≤ 20) (b) Fit employed in the PIC code (solid lines), based on Monte
Carlo simulations (circles) and first determined by Nanbu (1997). In his formalism N
denotes the number of collisions and χN the multiple angle of scattering after N collisions
during a time step ∆t.

We benchmarked the multiple scattering of an electron beam in a solid by comparing
numerical PIC simulations with the theory of Molière. We are now eager to study the
electron beam scattering in partially ionized plasmas. This illustrates the role of the
screening angle θTFD we introduced in Sec. 3.1.2 to account for a consistent description
of the free and bound electrons in the model of Nanbu.

The influence of the ionization degree is illustrated in Fig. 3.5. A mono-energetic
(100 keV) electron beam propagates in copper of solid density (8.96 g.cm−3). We choose
rather short distances of propagation (s = 0.25 → 1µm) to remain in the validity range
of Molière’s multiple scattering theory. The number of collisions is defined by N ′c =
nis
∫

2π sin θ′σ′ dθ. In Fig. 3.5 it is determined for Z∗ = 0. The different ionization degrees
selected Z∗ = 0, 10, 20 and 29 are chosen such that the screening angle of the mixed
Thomas-Fermi-Debye potential varies significantly: θTFD = 3, 2, 1 and 0.4 × 10−8 rad.
This corresponds to a screening length increasing from 21 to 140 pm. This raise of the
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potential scale length allows collisions with a higher impact parameter to take place and
we therefore observe that the scattering of the beam is more effective for a same distance
travelled.

Figure 3.5: Angle distribution for a 100 keV electron beam in copper (Z = 29) with density
ρ = 8.96 g/cm3 after (a) 5.05 (b) 10.1 and (c) 20.2 collisions. The degree of ionization
is gradually raised Z∗ = 0, 10, 20 and 29 and consequently modifies the screening angle
θTFD defined in formula (3.22).

Conclusion This section summarises the theory, implementation and provides numerical
tests to assess the validity of elastic scattering in a PIC code. The theory relies on the
work of Nanbu (1997). It is based on an adequate multiple scattering distribution that is
sampled by a Monte Carlo module added in the PIC code time loop. We benchmarked it
with the theory of Molière on a test scenario of electron beam scattering into a solid. We
also demonstrated that the scattering of an electron beam in a partially ionized plasma
rises with its ionization degree. This is inferred with PIC simulations where we introduced
screening effects in the Monte Carlo module sampling the scattering events. More precisely
we employed the theory of Molière to get a consistent description of screening effects and
introduced it in the PIC code calder.

3.2 Impact ionization

3.2.1 Model for impact ionization

The electron-ion impact ionization cross-sections for an atom of number Z are functions of
all the atomic orbitals. The energy transfers are quantified through binding energies which
depend on the ionization degree Z∗ and all the orbital levels k ∈ (1, Z − Z∗). We denote
BZ∗
Z (k) the binding energy of the k−th orbital. The values of B0

Z (k) are determined by
Bearden and Burr (1967); Vaughan (1986) as well as BZ∗

Z (Z − Z∗) (Carlson et al., 1970).
The others can be obtained employing the following relation

BZ∗
Z (k) = BZ∗

Z (Z − Z∗)−B0
Z (Z − Z∗) +B0

Z (k) (3.29)

We denote W the secondary electron energy, the energy-differential cross-section of the
secondary electron generated given a binding energy BZ∗

Z (k) = Bk during impact ioniza-
tion is dσk/dW . It depends on the incident electron energy E, the occupation num-
ber Nk, the mean kinetic energy Uk. We introduce the following normalisation and
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notations: ε = E/Bk, w = W/Bk, ε
′ = E/

(
mc2

)
, b′ = Bk/

(
mc2

)
, u′ = Uk/

(
mc2

)
,

βε = 1− (1 + ε′)−2, βb = 1− (1 + b′)−2 and βu = 1− (1 + u′)−2. The cross-section is given
by Kim et al. (2000)

dσk
dw

= σ0
k

[
A3f3 (w) + f2 (w) +

2A2

ε− 1
−A1f1 (w)

]
(3.30)

with

σ0
k = 2πr2

eN/
[
b′
(
β2
ε + β2

b + β2
u

)]
fn (w) = (w + 1)−n + (ε− w)−n

A1 =
1

1 + ε

1 + 2ε′

(1 + ε′/2)2 A2 =
ε− 1

2

b
′2

(1 + ε′/2)2 A3 = ln

(
β2
ε

1− β2
ε

)
− β2

ε − ln
(
2b′
)

The analytical integration of Eq. (3.30) leads to the total cross-section for the orbital
number k

σk =

∫ (ε−1)/2

0

dσk
dw

dw = σ0
k

[
A3

2

(
1− 1

ε2

)
+ 1− 1

ε
+A2 −A1 ln ε

]
(3.31)

The average energy transfered to the secondary electron can also be evaluated from
Eq. (3.30)

〈wk〉 =
1

σk

∫ (ε−1)/2

0
w
dσk
dw

dw =
σ0
k

σk

{
A3

2

(ε− 1)2

ε (ε+ 1)
+ 2 ln

(
ε+ 1

2

)

− ln ε+A2
ε− 1

4
−A1

[
ln ε− (ε+ 1) ln

(
ε+ 1

2

)]}

Physically speaking the evaluation of the phenomena requires to sample the cross-section
of all atomic orbitals k. Numerically speaking it is time consuming and we choose to
simplify things before the implementation. We sum the ionization cross-section over all
orbitals to get only one total cross-section of impact ionization for Z and Z∗ given: σ =∑

k σk. Similarly for the secondary electron energy, we sum it on all atomic obitals w =∑
k〈wk〉Bkσk/σ. The energy loss by the incident electron is calculated through the same

approximation as ε =
∑

k (〈wk〉+ 1)Bkσk/σ.

3.2.2 Monte Carlo implementation

Having in mind the assumptions formulated to model electron-ion impact ionization, we
now report how the implementation is made. The scattering algorithm described in Sec. 3.1
can be adapted to implement impact ionization in a PIC code.

Before the calculation starts, the total cross-section σ, the energy of the secondary
electron w and the energy loss of the incident electron ε are tabulated for all ionization
degrees Z∗ of all species present in the simulation and for various incident electron energies
E. Each time step in every cells, electron-ion pairs of macro-particles are formed in
a similar way than for elastic scattering. A probability for impact ionization (Pio) is
determined from the ionization frequency νi = |vrel|neσ where vrel is the relative velocity
between the electron and ion and ne the electron density in the cell

Pio = 1− exp
(
− |vrel|neσ∆t

)
(3.32)
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The probability is sampled with a random variable of uniform distribution on the interval
(0, 1) denoted by U . If Pio < U a secondary electron with energy w is generated, the
incident electron energy loses an energy ε and the ion charge is raised. When both macro-
particles have a different numerical weight, the probability is modified as in Eq. (3.26)

Pio = 1− exp

(
−vrel

neni
nei

σ∆t

)
(3.33)

the variable nei has the same meaning than previously and is defined by nei =
∑

min (We,Wi).
In the code, we take into account this additional probability in the following way. If
We ≥ Wi, the incident electron loses the energy ε with a probability Wi/We. The ion
charge is always incremented and a secondary electron is generated. If We < Wi, the in-
cident electron loses energy with a probability 1, the ionization occurs with a probability
We/Wi and is followed by the ionization degree increment and the creation of a secondary
electron.

We described the implementation of impact ionization in a PIC code. It is based on
the same algorithm than for multiple scattering and includes the same management of
arbitrary weighted macro-particles. There are however two major differences. Firstly,
the ionization cross-sections are provided in the ion-rest frame and not the center-of-mass
frame. Secondly, we now employ tabulated data to evaluate impact ionization probability
and the energy transfers.

3.2.3 Calculation of the electron collisional stopping power

The validation of the impact ionization module has already been done by Pérez et al.
(2012). He selected a simple scenario where a monoenergetic electron beam propagates
in a medium triggering impact ionization. The ionization rate as well as the secondary
electron density were successfully compared to theoretical expectations. The collisional
stopping power of those electrons in Aluminum is also simulated and a good agreement is
found with the ESTAR database from the National Institute of Standards and Technology
(NIST).

Those results are promising but the implementation of impact ionization presents one
limit. For the sake of simplicity and to save computational time, the impact ionization is
carried out in the same reference frame as for multiple scattering, which is the center-of-
mass (c.o.m.) frame of the two macro-particles. This represents an approximation since
the impact ionization cross-sections are given in the ion-rest frame. An assumption is thus
made which is most of the time true: both frames are alike since ions are much heavier
than electrons. We questioned this hypothesis by comparing the collisional stopping power
calculated in the c.o.m. and the ion-rest frames. One may expect that as electrons have
a greater energy and as the ions get lighter, the discrepancy between the two calculations
will grow. We quantified the relative difference between the collisional stopping power
calculated in those two frames and present it in Fig 3.6 for incident electron energies E =
10 keV → 1 GeV. The relative difference does grow with the electron energy and as the
ion atomic number decreases and eventually reaches 20 % for 1 GeV electrons propagating
in carbon. This great gap emphasizes the need to take into account those different frames
in the Monte Carlo module. Our description therefore stands out of usual PIC codes and
provides a unique degree of precision on the underlying physics of those phenomena.

Conclusion In this section we described the model, the implementation and the nu-
merical validation of the electron-ion impact ionization in the PIC code calder. The
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Figure 3.6: Relative error between the collisional stopping power determined in the c.o.m.
and the ion-rest frames. Incident electron energies vary in the range T1 = 10 keV→ 1 GeV
and several ion species are considered: carbon, aluminum and copper

model is based on the cross-section of Kim et al. (2000). It is implemented with the same
algorithm than multiple scattering and adapted to enable secondary electron generation.
The validation was already done but we evidenced and quantified its limit in the case of
energetic electrons impacting light ions.

3.3 Bremsstrahlung emission of photons

3.3.1 Cross-sections accounting for free and bound electron screening

In this subsection, we derive analytical cross-sections for the Bremsstrahlung process that
take into account Thomas-Fermi and Debye-type screening effects in a unified fashion
depending on the plasma parameters. For this purpose, we will follow the prescriptions
of Koch and Motz (1959); Motz et al. (1969) for the various electron energy ranges under
consideration. The calculations are done in the ion-rest frame where variables are denoted
by ′ according to the convention defined in Sec. 3.1.2. For the sake of simplicity, we drop
this notation for this whole section.

Simple atomic potential model

The Coulomb interaction between a high-energy electron and an ion’s nucleus is modified
by the screening due to bound and/or free electrons, depending on the ionization state of
the medium. For neutral atoms of atomic number Z, the Coulomb potential around the
nuclear charge can be assumed of the Yukawa type:

VTF(r) =
Ze

4πε0r
exp (−r/LTF) (3.34)

LTF = 4πε0
~2

me2
Z−1/3 (3.35)

where the Thomas-Fermi length, LTF, accounts for the shielding by the bound electrons.
We have introduced ε0 the permittivity of free space, me the electron mass and e the
elementary charge and ~ ≡ h/2π the Planck constant. More precise multi-exponential fits
of the Thomas-Fermi potential could be used (Molière, 1947), but we will limit ourselves
to the above simple approximation. While LTF applies, in principle, to an isolated neutral
atom (where charge neutrality is fulfilled at infinity), we assume that it also holds in a
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cold neutral medium, where charge neutrality is fulfilled at the ion-sphere radius (March,
1957).

In a highly ionized plasma, the Coulomb potential can be modeled in a similar form:

VD(r) =
Ze

4πε0r
exp (−r/LD) (3.36)

LD =

√
ε0kBT

e2niZ∗ (Z∗ + 1)
(3.37)

where LD is the Debye length that describes the screening by the free electrons and plasma
ions, Z∗ is the ionization degree, kB is the Boltzmann constant and ni is the ion density.
We have supposed a globally neutral plasma (ne = Z∗ni) and equal electron and ion
temperatures (Te = Ti = T ). To address coupled plasma regimes, we impose a lower
bound on LD, equal to the interatomic distance: ri = (3/4πni)

1/3 (Lee and More, 1984).
In practice, the ionization degree is evaluated using a numerical fit to the Thomas-Fermi
model for a finite-radius atom (More, 1985).

In the general case of a partially ionized plasma, following Nardi and Zinamon (1978);
Nardi et al. (2007); Rozsnyai (1979), we assume for simplicity that the Coulomb potential
can be described as a weighted sum of the above Thomas-Fermi and Debye screened
potentials:

VTFD (r) =

(
1− Z∗

Z

)
VTF (r) +

Z∗

Z
VD (r) . (3.38)

In a cold neutral medium (Z∗ → 0), we have VTFD → VTF, whereas, in a fully ionized
plasma, VTFD → VD, as expected. Also, VTFD → Ze/4πε0r when r → 0 as it should.
More accurate screening models could be used (Das et al., 2016) but at the expense of
analytical simplicity.

Screening effects

Let us consider an electron of total energy γ1 (normalized to mec
2) and absolute momen-

tum p1/mc =
√
γ2

1 − 1, both measured in the ion rest frame. After emitting a photon of
energy k = ~ω/mec

2 in the screened atomic field, the electron’s normalized energy and
momentum become γ2 = γ1 − k and p2/mc =

√
γ2

2 − 1, respectively. For given electron
and ion parameters, the importance of screening effects on the Bremsstrahlung process
can be assessed by comparing the maximum impact parameter, rmax = ~/ (p1 − p2 − kmc)
with the Thomas-Fermi or Debye screening length (Koch and Motz, 1959). If rmax is much
smaller than LTF or LD, then the corresponding screening process can be neglected. Fig-
ure 3.7 plots rmax as a function of the normalized electron kinetic energy, γ1−1, for various
relative photon energies k/(γ1 − 1) ∈ (0.1, 0.5, 0.9). Overlaid are plots of LTF and LD in
an almost solid-density (∼ 8× 1021 cm−3) Cu plasma of temperature equal to 10 keV and
100 keV. The Thomas-Fermi shielding due to bound electrons is expected to have sizeable
effects for both low and very high electron energies, which are enhanced with decreas-
ing photon energy. For the quasi-solid plasma density chosen, the Debye length becomes
larger than the interatomic distance ri for plasma temperatures higher than 12 keV. As
a consequence the Debye screening due to free electrons is predicted to be stronger as
the photon energy decreases. It is expected to be pronouced for low (1 keV) and high
(100 MeV) energy electrons but to remain weak for intermediate electrons (1 MeV).
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Figure 3.7: Maximum impact parameter rmax (solid black curves) vs normalized electron
energy for photon energies ∈ (0.1, 0.5, 0.9) × (γ1 − 1). Debye screening lengths (dashed
blue lines) are plotted for a Cu plasma of temperatures equal to 10 and 100 keV. The
Thomas-Fermi screening length is plotted as a red line.

In the following paragraphs, cross-section formulas will be derived based on both
Thomas-Fermi and Debye-type shieldings. As to our knowledge there is no general analyt-
ical Bremss-trahlung cross section for electron energies varying from the keV to the GeV
ranges, we will draw upon the results of Koch and Motz (1959), and make use of three
distinct formulas, respectively valid for (i) non-relativistic (1 < γ1 ≤ 2); (ii) moderately
relativistic (2 ≤ γ1 ≤ 100) and (iii) ultra-relativistic (γ1 > 100) electron energies.

Non-relativistic regime

The nonrelativistic (NR) electron (1 < γ1 ≤ 2) Bremsstrahlung cross section, differential
in the photon energy, reads in the Born approximation (Heitler, 1954)

dσNR

dk
=

64π4r2
eαf

3kp2
1

∫ δp+

δp−

∣∣∣ṼTFD (u)
∣∣∣2 u3 du (3.39)

where αf = e2/(4πε0~c) denotes the fine structure constant, re = e2/(4πε0mec
2) is the

classical electron radius, and δp+ = p1 + p2 and δp− = p1 − p2 are, respectively, the max-
imum and minimum momentum transfers in the collision. Moreover, we have introduced
ṼTFD the Fourier transform of the screened atomic potential VTFD

V̄TFD (u) =
1

(2π)3

∫
Ω
VTFD (r) exp (iu · r) d3r (3.40)

After substituting Eqs. (3.38) and (3.40) into Eq. (3.39), one obtains

dσNR

dk
=

16r2
eZ

2αf
3kp2

1

[g (δp+, δp−, ζF, LF) + g (δp+, δp−, ζD, LD) + Γc] (3.41)

where we have introduced the function g

g (δp+, δp−, ζ, l) =
ζ2

2

[
ln

(
δp2

+l
2 + 1

δp2
−l

2 + 1

)
+

1

δp2
+l

2 + 1
− 1

δp2
−l

2 + 1

]
(3.42)
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and the coupling term Γc

Γc =
ζFζD

L2
D − L2

F

[
L2

F ln

(
δp2
−L

2
D + 1

δp2
+L

2
D + 1

)
+ L2

D ln

(
δp2

+L
2
F + 1

δp2
−L

2
F + 1

)]
(3.43)

We introduced the effective Thomas-Fermi charge ζTF = 1−Z∗/Z and the effective Debye
charge ζD = Z∗/Z which identifies with the ionization degree. The lengths l, LF and LD
are normalized by the classical electron radius re.

As is well known (Elwert, 1939), the accuracy of the Born approximation can be
improved in the nonrelativistic regime by applying the Elwert multiplicative factor to
Eq. (3.41), in the limit Zα (1/β2 − 1/β1)� 1

fE =
β1

β2

1− exp (−2πZαf/β1)

1− exp (−2πZαf/β2)
. (3.44)

Figure 3.8 displays the Elwert-corrected cross section kdσNR/dk (red curve) as a func-
tion of the normalized photon energy k/(γ1 − 1) for a 1 and 100 keV electron interacting
with neutral Cu atoms (where the Debye shielding vanishes). On the same graph are plot-
ted the reference tabulated data of Seltzer and Berger (1986), kdσSB/dk (black curve),
and the nonscreened cross section for a point Coulomb potential (formula 3BN in Koch
and Motz (1959)), kdσ3BN/dk (light blue curve). The difference between kdσSB/dk and
kdσ3BN/dk highlights the need to take into account screening effects in the full photon
energy range. Furthermore, we observe that our analytical formula satisfactorily repro-
duces Seltzer and Berger’s data. We have checked, in the energy ranges 1 < γ1 ≤ 2 the
relative error, averaged over 0 < k/(γ1 − 1) ≤ 1, between kdσNR/dk and the tabulated
data kdσSB/dk. It rises up to ∼ 80% for 1 keV electrons, then decreases as low as ∼ 8%
for 50 keV electrons and rises again to 27 % for 500 keV electrons. For higher Z material
of interest like gold, this difference rises since the validity of the Born approximation is
even worst than for copper (2πZ/137β1 � 1).

Figure 3.8: Nonrelativistic Bremsstrahlung cross section (kdσ/dk) vs photon energy (k =
~ω/mc2) normalized by the electron kinetic energy (γ1 − 1) for a 1 keV and a 100 keV
electron interacting with neutral Cu atoms. Comparison of the Elwert-corrected analytical
formula (σNR, red curve), Seltzer and Berger (1986)’s data (σSB, black curve) and the
nonscreened formula 3BN from Koch and Motz (1959) (σ3BN, blue curve).

Figure 3.9 quantifies the effect of the Debye shielding on kdσNR/dk as a function
of the target ionization. In practice, this ionization degree is evaluated from the plasma
temperature, density and atomic number using a numerical fit to the Thomas-Fermi model
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Figure 3.9: Nonrelativistic Bremsstrahlung cross section (kdσ/dk) vs photon energy (k =
~ω/mc2) normalized by the electron kinetic energy (γ1 − 1) for a 1 keV and a 100 keV
electron in a solid-density Cu plasma of temperature ranging from T = 0 to 10 keV.

for a finite-radius atom (More, 1985). The electron kinetic energy is still set to 1 and
100 keV, while the temperature of the solid-density Cu target is varied in the range 0 ≤
T ≤ 10 keV. One can notice that we observe the behavior expected from the analysis of
Figure 3.7. While all curves tend to coincide at large photon energies, the cross section
at low photon energies (k/(γ1 − 1) . 0.1) rises (up to ∼ 60% for k → 0) with the
target temperature. The screening effects are all the more pronounced that the plasma
temperature rises for a fixed incoming electron energy. Moreover we note a decrease of the
Debye screening influence as the electron energy rises from 1 keV to 100 keV. However,
the thermal dependence of the total radiative stopping power remains modest: a mere
4% increase is found when the plasma temperature is raised from 0 to 10 keV. The slight
discontinuity seen in Fig. 3.9(b) for a 100 keV incident electron marks the limit of the
Elwert factor application (Zαf (1/β2 − 1/β1) � 1). We took an upper value of 10−2 for
this condition.

Moderately relativistic regime

For moderately relativistic electrons (2 ≤ γ1 ≤ 100), the energy-differential Bremsstrah-
lung cross section is given by Bethe and Mott (1934); Koch and Motz (1959) and is valid
for arbitrary screening

dσR

dk
=

4Z2r2
eαf
k

{[
1 +

(
γ1 − k
γ1

)2
]

[I1 (δ) + 1]− 2

3

γ1 − k
γ1

[
I2 (δ) +

5

6

]}
(3.45)

where k = ~ω/mc2 denotes the normalized photon energy and the terms I1 and I2 account
for screening effects

I1(δ) =

∫ 1

δ

du

u3
(u− δ)2 [1− Fe(u)]2 (3.46)

I2(δ) =

∫ 1

δ

du

u4

[
u3 − 6δ2u ln(u/δ) + 3δ2u− 4δ3

]
× [1− Fe(u)]2 (3.47)

The argument δ = k/2γ1(γ1−k) approximately quantifies the minimum momentum trans-
fer to the atom in the limit γ1, γ2 � 1. The above functions involve the electron form
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factor
Fe(u) = 1− u2Ṽ (u) (3.48)

For a simple single-exponential potential, V (r) = (q/4πε0r) exp(−r/l), I1 and I2 have the
following closed-form expression

I1 = q2

[
lδ (arctan δl − arctan l)− l2

2

(1− δ)2

1 + l2
+

1

2
ln

(
1 + l2

1 + (lδ)2

)]
(3.49)

I2 =
q2

2

[
4l3δ3 (arctan δl − arctan l) +

(
1 + 3l2δ2

)
ln

(
1 + l2

1 + l2δ2

)
+

64δ2

1 + l2
ln δ +

l2 (δ − 1)
(
δ + 1− 4l2δ2

)
1 + l2

]
(3.50)

where we recall that lengths l are normalized by re. However, for the more general potential
V (r) = VTFD(r), no exact analytical solution can be found for I2 contrary to I1. Drawing
upon the work by Tsai (1974), an approximate analytical expression can be derived by
matching the asymptotic expressions of Eq. (3.45) obtained in the limit δ → 0 using
the double-exponential potential VTFD(r) and a single-exponential potential (hereafter
referred to as the “reduced potential”), VR(r). To this goal, we make use of the asymptotic
expression

I = lim
δ→0

I1 = lim
δ→0

I2 =

∫ 1

0
u3

(
1− Fe (u)

u2

)2

du (3.51)

This integral can be analytically evaluated for VTFD. Let ITFD denote its solution

ITFD =
ζ2

TF

2

(
1 + L2

TF

)
ln
(
1 + L2

TF

)
− L2

TF

1 + L2
TF

+
ζ2

D

2

(
1 + L2

D

)
ln
(
1 + L2

D

)
− L2

D

1 + L2
D

+
ζTFζD

[
L2

D ln
(
1 + L2
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)
− L2

TF ln
(
1 + L2

D

)]
L2

D − L2
TF

(3.52)

For the reduced potential VR(r) = (qR/4πε0r) exp (−r/LR), where qR = Ze and LR is the
sought-for reduced screening length, the solution of the above integral is

IR =
q2

R

2

(
1 + L2

R

)
ln
(
1 + L2

R

)
1 + L2

R

(3.53)

The asymptotic equality limδ→0 dσTFD/dk = limδ→0 dσR/dk implies limδ→0 ITFD = limδ→0 IR,
which defines the equation solved by LR. Setting a = 2ITFD/q

2
R and x = L2

R, this equation
can be recast

a (x+ 1) = (x+ 1) ln (x+ 1)− x (3.54)

The solution involves the Lambert W -function

LR ≡
√
x =

{
exp

[
W
(
−e−1−2a

)
+ 1 + 2a

]
− 1
}1/2

(3.55)

As the coefficient a is positive, W varies over the interval [−1/e, 0], so that LR is well
defined. Combining Eqs. (3.55) with Eqs. (3.45) and (3.53) gives a closed-form analytical
expression for the cross section dσR/dk.

In Fig. 3.10, we represent the screened Bremsstrahlung cross section using the Thomas-
Fermi-Debye potential obtained by numerical integration (kdσTFD/dk, red triangles) and
the Reduced potential determined by an analytical derivation (kdσR/dk, plain red curve).
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In this limit case of a cold unionized plasma Z∗ = 0, both formulations are equal since the
Debye screening vanishes. The cross section for a 5 and 40 MeV kinetic electron energy
incident on neutral Cu atoms is considered. Overall good agreement is also found with
the reference data of Seltzer and Berger (1986) (kdσSB/dk, black curve), except near
k/(γ1 − 1) = 1, where a factor of ∼ 2 discrepancy is observed. Comparison with the
nonscreened relativistic formula 3BN cross section (kdσ3BN/dk, blue curve) shows that
electron shielding is mostly influent at low and very high relative photon energies. In the
relativistic regime (2 < γ1 ≤ 100), the relative error, averaged over 0 < k/ (γ1 − 1) < 1,
between kdσR/dk and the tabulated data kdσSB/dk is ∼ 40% for 1 MeV electrons and
then steadily decreases to ∼ 10% for 50 MeV electrons.

Figure 3.10: Moderately relativistic Bremsstrahlung cross section (kdσ/dk) vs photon
energy (k = ~ω/mc2) normalized by the electron kinetic energy (γ1 − 1) for a 5 and a
40 MeV electron interacting with neutral Cu atoms. Comparison of the numerically com-
puted cross section using the Thomas-Fermi-Debye potential (kdσTFD/dk, red triangles),
the reduced analytical formula (kdσR/dk, red curve), Seltzer and Berger (1986)’s data
(kdσSB/dk, black curve) and the nonscreened 3BN formula from Koch and Motz (1959)
(kdσ3BN/dk, light blue curve).

Figure 3.11: Moderately relativistic Bremsstrahlung cross section (kdσ/dk) vs photon
energy (k = ~ω/mc2) normalized by the electron kinetic energy (γ1 − 1) for a 5 MeV and
a 40 MeV electron in a solid-density Cu plasma of temperature ranging from T = 0 to
10 keV. Comparison of the numerically computed cross section using the Thomas-Fermi-
Debye potential (kdσTFD/dk, dashed lines) with the reduced analytical formula (kdσR/dk,
solid lines).

The dependence of the Bremsstrahlung cross section upon the plasma temperature
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is illustrated in Fig. 3.11. The incident electron energies are of 5 and 40 MeV and the
Cu plasma temperature varies in the range 0 ≤ T ≤ 10 keV. The cross section derived
analytically from the Reduced potential (solid lines, kdσR/dk) closely reproduces the cross
section numerically integrated from the Thomas Fermi Debye potential (dashed lines,
kdσTFD/dk) in the limit δ → 0 as expected and shows little differences for any δ. As
in the nonrelativistic regime illustrated in Fig. 3.9, the Debye screening proves mainly
significant at low electron-to-photon energy transfers. Even if it leads to a ∼ 50 % increase
in the cross section for k/ (γ1 − 1)→ 0 as the plasma temperature rises from 0 to 10 keV,
this only corresponds to a 10 % increase of the radiative stopping power. Overall, in the
relativistic regime (2 ≤ γ1 ≤ 100), we remark that screening effects slightly rises with the
incident electron energy.

Ultra-relativistic regime

For ultrarelativistic electron energies (γ1 > 100), the accuracy of the Born-approximation
formula (3.45) is improved by adding the Coulomb correction term fC (Z) (Koch and
Motz, 1959)

dσR
dk

=
4Z2r2

eαf
k

{[
1 +

(
γ1 − k
γ1

)2
]

[I1 (δ) + 1− fC(Z)]

− 2

3

γ1 − k
γ1

[
I2 (δ) +

5

6
− fC(Z)

]}
(3.56)

where k = ~ω/mc2 denotes the normalized photon energy. Introducing ζ the Riemann
function, the correction factor is defined by Koch and Motz (1959)

fC (Z) =
α2
fZ

2

1 + α2
fZ

2

∞∑
n=0

(
−α2

fZ
2
)n

[ζ (2n+ 1)− 1] (3.57)

In practice, keeping the first four terms is sufficient for an accurate computation of fC

even for high Z values.
In the case of a 100 and a 500 MeV incident electron interacting with neutral Cu atoms,

Fig. 3.12 compares the Bremsstrahlung cross section, kdσ/dk, computed numerically with
the Thomas-Fermi-Debye potential (kdσTFD/dk, red triangles) with the analytical expres-
sion obtained using the reduced potential (kdσR/dk, plain red curve). The two curves fit
since in the limit of cold unionized plasma they are both based on the sole Thomas-Fermi
screening. Also plotted are the data from Seltzer and Berger (1986) (kdσSB/dk, black
curve) and, to highlight the importance of shielding effects, the nonscreened formula 3BN
from Koch and Motz (1959) (kdσ3BN/dk, light blue curve). The analytic cross section is
in good agreement with kdσSB/dk, while kdσ3BN/dk overestimates the latter by a factor
> 1.5 at photon energies k/(γ1 − 1) < 0.1. In the ultra-relativistic regime (γ1 ≥ 100),
the relative error, averaged on 0 < k/ (γ1 − 1) < 1, between our analytical cross-section
(kdσR/dk) and the tabulated data from Seltzer and Berger (kdσSB/dk) is ∼ 10 % for
60 MeV electrons and decreases to reach a plateau of 2 % for electron energies lying in the
range 0.5→ 10 GeV.

Still for a 100 or 500 MeV incident electron, the thermal variations of the Bremss-
trahlung cross section are illustrated in Fig. 3.13 when raising the temperature of the solid-
density Cu target from 0 to 10 keV. As in the moderately relativistic case, the analytic
cross section based on the reduced potential (kdσR/dk) closely matches the numerically
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Figure 3.12: Ultra-relativistic Bremsstrahlung cross section (kdσ/dk) vs photon energy
(k = ~ω/mc2) normalized by the electron kinetic energy (γ1− 1) for a 100 and a 500 MeV
electron interacting with neutral Cu atoms. Comparison of the numerically computed
Coulomb-corrected cross section using the Thomas-Fermi-Debye potential (kdσTFD/dk,
red triangles), the reduced analytical formula (kdσR/dk, red curve), Seltzer and Berger
(1986)’s data (kdσSB/dk, black curve) and the nonscreened formula 3BN from Koch and
Motz (1959) (kdσ3BN/dk, light blue curve).

Figure 3.13: Ultra-relativistic Bremsstrahlung cross section (kdσ/dk) vs photon energy
(k = ~ω/mc2) normalized by the electron kinetic energy (γ1 − 1) for 100 and 500 MeV
electron in a solid-density Cu plasma of temperature ranging from T = 0 to 10 keV. Com-
parison of the numerically computed Coulomb-corrected cross section using the Thomas-
Fermi-Debye potential (kdσTFD/dk, dashed curves) with the reduced analytical formula
(kdσR/dk, solid curves).

evaluated cross section (kdσTFD/dk) as δ → 0 and shows little discrepancies for any δ.
Compared to the moderately relativistic regime where the Debye screening only affects
low energy photons (k/ (γ1 − 1) ≤ 20 %), it now significantly modifies the cross section
for a larger range of photon energies up to k/ (γ1 − 1) ≤ 70 %. This has sizeable effects
on the radiative stopping power since it increases of 30 % as the plasma temperature rises
from 0 to 10 keV in the ultra-relativistic regime.

We presented a systematic derivation of the energy-differential Bremsstrahlung cross-
section accounting for bound and free electron screening in a large range of incident electron
energies. We compared quantitatively this model to the unscreened description in Koch
and Motz (1959) and the reference data of Seltzer and Berger (1986). The Debye potential
prevailing in a fully ionized plasma tends to rise the Bremsstrahlung cross-section for low
electron to photon energy transfers, especially for incident electron energies below 1 keV
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and above 1 GeV.

3.3.2 Implementation of Bremsstrahlung emission

Minimum cutoff for photon energy

The Bremsstrahlung cross-section dσ/dk diverges as k → 0 since dσ/dk ' 1/k. When the
cross-section is numerically evaluated, the interval of photon emission must be reduced
from (0, 1) to (10−n, 1) , n ≥ 1 in order to avoid the singularity. We therefore neglect all
the energy radiated in the range (0, 10−n). We suggest to define n large enough such that
this total becomes negligible compared to the energy radiated in the range (10−n, 1). The
criterion reads (∫ 10−n

0
k
dσ

dk
dk

)
≤ ε

(∫ 1

0
k
dσ

dk
dk

)
(3.58)

We choose n = 7 which ensure that the value of ε is ≤ 10−5.

Tabulation for ab initio Particle-In-Cell simulations

In practice we enable the PIC code user to choose between the sole Thomas-Fermi and the
Thomas-Fermi-Debye screened cross-sections. They are tabulated before the simulation
starts as follows.

For a sole Thomas-Fermi screening, we have one table per atomic number Z. The
electron kinetic energy T1 is discretized between 1 eV and 10 GeV, with a logarithmic step
and 104 points. The normalized photon energy k/ (γ1 − 1) is discretized between 10−7

and 1, with a logarithmic step and 102 points. This adds up to 106 32-bit reals stored per
atomic number (thus, per file).

For a Thomas-Fermi-Debye screening, we have one table per ionization degree (thus 30
files for copper). In each of those files, the electron kinetic energy T1 is discretized between
1 eV and 10 GeV, with a logarithmic step and 102 points, the photon energy k/ (γ1 − 1) is
discretized between 10−7 and 1, with a logarithmic step and 102 points. The Debye length
LD is discretized between the atomic radius ra (= 135 pm for copper) and ∼ 1 mm, with a
logarithmic step and 102 points. The upper value correspond to the most extreme case we
could expect to occur in a simulation of a plasma with a density 10−6nc and a temperature
of 10 GeV. Those files also contains 106 32-bit reals. The tables are composed of 32-bit
reals in order to remain consistent with the PIC code calder. However, we emphasize
the need to compute the tables with 64-bit reals. Indeed some calculations fall below the
32-bit real limit (10−8) and this leads to abberations as shown in Fig. 3.14. We plotted the
differential cross-section for a 5 MeV incident electron on a fully ionized carbon (Z∗ = 6)
and a Debye length LD = 0.5 mm. As one can see, the cross-section becomes negative and
the cumulative distribution function, becomes higher than 1. This effect is enhanced as
the Debye length rises and depends, of course, on the way each computer system/compiler
rounds operations.

Whatever the model, the interpolation in the tables is very simple. Let x denotes the
sampled value and (xi)1≤i≤n the table discretization. x is a general notation denoting
either the incident electron energy, the photon energy or the Debye length. Let us assume
that the value x falls in the interval (xi0 , xi0+1). We simply choose xi0 as the interpolation
of x. When a value falls out the table range it is taken equal to the nearest point (x1 or
xn).
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Figure 3.14: (a) Bremsstrahlung energy differential cross-section (kdσ/dk) vs photon en-
ergy (k = ~ω/mc2) normalized by the electron kinetic energy (γ1 − 1) computed from
Eq. (3.45) and (b) corresponding cumulative distribution functions tabulated in the PIC
code. The calculations performed with 32 bits reals (labeled resDPR.dat) are represented
by the red curves and with 64-bit reals (labeled resQPR.dat) by the green curves.

Exact simulation of photon number and spectra

We now illustrate the numerical validation of the Bremsstrahlung module. A test scenario
is employed in order to compare the output with a theoretical result. In practice, we enable
the user to choose between two models of screening for the Bremsstrahlung cross-sections.
The first one is the simple Thomas-Fermi screening, validated in Fig. 3.15 and the second
one is the Thomas-Fermi-Debye one, validated in Fig. 3.16.

Figure 3.15: Validation of the Bremsstrahlung module for arbitrarily weighted macro-
particles and the Thomas-Fermi screening model. (a) Number and (b) energy-resolved
spectra of photons generated by 40 MeV electrons incident on neutral copper atoms. The
theoretical result is represented with black lines. Three different weight ratios are employed
Wi/We = 2, 1 and 1/2.

We performed 1D simulations with periodic conditions along the x axis. Only the
Monte Carlo module is activated, the electromagnetic solver is turned off. The macro-
collisions are treated in the ion-rest frame. We consider the propagation of a monoenergetic
electron beam with an energy of 40 MeV, density ne/nc = 1 and length l = 10c/ω0 through
a solid copper target of density ni/nc = 80. Given the simple system we investigate, the
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Figure 3.16: Validation of the Bremsstrahlung module for the Thomas-Fermi-Debye
screening model. (a) Number and (b) energy-resolved spectra of photons generated by
40 MeV electrons incident on neutral copper atoms (blue curves) and fully ionized copper
(green curves). The theoretical result is represented with black lines.

theoretical number of photons is provided by the following formula

dNγ

dt
= nel × σBrnivrel (3.59)

where nel is the number of electrons, and σBrnivrel the frequency of photon emission for
one electron. The expected photon spectra is obtained from the derivation of Eq. (3.59)
against k the photon energy.

In Fig. 3.15(a) we check the management of arbitrarily weighted macro-particles for
the Bremsstrahlung module. The number of macro-ions is varied and the number of
macro-electrons is kept constant. This implies different numerical weights for the macro-
particles which are handled with the method described in Sec. 3.1.3. For three different
ratios of macro-particle weights (Wi/We = 2, 1 and 1/2) we obtain the exact same num-
ber of macro-photons as expected. This number matches the theoretical expectation of
Eq. (3.59). The energy-resolved photon spectra obtained for the three simlations is dis-
played in Fig. 3.15(b). They all fit perfectly together and with the theory. The photon
energy is normalized by the incident electron kinetic energy γ1− 1 and varies between the
minimum bound mentioned above 10−7 × (γ1 − 1) and (γ1 − 1).

The Thomas-Fermi-Debye screening model is validated in Fig. 3.16. We compare the
photon production for the same monoenergetic electron beam (40 MeV, ne/nc = 1 and
length l = 10c/ω0) propagating either through a neutral copper target (blue curves) or a
fully ionized one (green curves). The theoretical result is well reproduced by the simula-
tions. We can also visualize the influence of the ionization degree on the Bremsstrahlung
production of photons. As stated previously in Sec. 3.3, the Debye screening prevails for
highly ionized material and increases the photon number and overall radiated energy.

The validation of the Bremsstrahlung module was done for the two screening models
available to the PIC code user. The output of this module (photon number and their
energy-resolved spectra) are illustrated on a test-case.

3.3.3 Validation of the simulated electron radiative stopping power

Benefiting from the possibility to couple within the same simulation particle scattering,
impact ionization and Bremsstrahlung radiation, one can now simulate the electron stop-
ping power into solids. In this subsection, we successfully confront the PIC-simulated
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collisional, radiative and total stopping power to the ESTAR database of the NIST.
Simulations of electrons propagating through solid copper and experiencing either im-

pact ionization or Bremsstrahlung losses were run. With this kind of computation we can
measure both the collisional and the radiative stopping powers. The total stopping power
is obtained by adding both. The electron energy is assumed to decrease linearly with time.
Let us consider a one dimensional infinite neutral copper target with temperature T = 0
and density ni = 60nc. The electron beam is monoenergetic with T1 = 10 keV → 1 GeV
denoting the kinetic energy at time t = 0. The density of the beam is n1 = nc. On
a numerical point of view, particle scattering is treated in the center-of-mass frame and
impact ionization and Bremsstrahlung are computed in the ion-rest frame.

Figure 3.17: Stopping power in copper for incident electrons with energies T1 ∈
(10 keV, 1 GeV). The formula from the NIST is represented by the solid line and the
Monte Carlo calder simulations by the dots.

Fig 3.17 displays the comparison between simulations and the theoretical formula from
the NIST. The radiative stopping power is accurately reproduced whatever the incident
electron energy. The collisional stopping power is very close to the NIST database for T1 =
10 keV → 1 MeV and a slight difference rises above T1 = 1 MeV. This slight discrepancy
comes from the density effect. It represents the influence of the fields generated as the
electron propagates faster in the material.

The impact ionization and the Bremsstrahlung modules implemented in calder accu-
rately reproduce the collisional and radiative stopping powers as predicted by the ESTAR
database from the NIST. This agreement was checked for copper and in a large range of
incident electron energies (10 keV→ 1 GeV).

3.4 Bethe-Heitler pair creation

We now move on to the Bethe-Heitler process which accounts for the decay of γ-rays,
potentially emitted by the Bremsstrahlung process, into electron-positron pairs.

3.4.1 Cross-sections accounting for free and bound electron screening

The cross-section of pair production by a photon of normalized energy (k = ~ω/mc2 � 1)
differential in the positron normalized energy (γ+ = E+/mc

2) is given (in the ion-rest
frame) by Formula 3D-1003 of Motz et al. (1969)

dσBH

dγ+
=

4Z2r2
e

137

dk

k3

{(
γ2

+ + γ2
−
)

[I1(δ) + 1] +
2

3
γ+γ−

[
I2(δ) +

5

6

]}
(3.60)
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where δ = k/(2γ+γ−). This formula assumes large electron and positron energies (γ+, γ− �
1) and negligible nucleus recoil. It turns out to be very similar to the Bremsstrahlung cross-
section, Eq. (3.45), and, in particular, involves the same screening functions I1,2 defined
by Eq. (3.46) and (3.47).

As for the Bremsstrahlung, one can study the screening effects on the Bethe-Heitler
energy cross section (see Fig. 3.18). Different photon energies, 100 MeV and 1 GeV, and
several plasma temperatures, T = 0, 0.1, 0.5, 1. and 10 keV, are considered. The curves
have a symmetry axis for 2γ+ = k. The lower and upper thresholds for the positron
Lorentz factor are respectively 1 and k − 1. The cross-section has a flat shape centered
on 2γ+ = k. The Debye screening effects become more significant as the incident photon
energy rises from 100 MeV to 1 GeV. Indeed the gap between the cross section in a
cold plasma (0 keV) and in a hot plasma (10 keV) is less than 10 % for incident photon
energies ~ω ≤ 100 MeV and monotonously increases to sizeable differences up to 50 % for
~ω = 1 GeV. In a practical context of laser-solid interaction, Debye screening effects have
a weak impact since photon energies barely reach 100 MeV. In the context of electron
beams accelerated by Laser Wakefield Acceleration, which energy can reach ∼ 1, 2 GeV,
interacting with high Z targets this may have a noticeable impact. Such experiments were
conducted recently
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Figure 3.18: Bethe Heitler cross section (dσ/dγ+) for 100 MeV and 1 GeV incident photons
in a solid-density Cu plasma of temperature ranging from T = 0 to 10 keV. k denotes the
normalized photon energy k = ~ω/mc2 Comparison of the numerically computed cross
section using the Thomas-Fermi-Debye potential (dσTFD/dγ+, dashed curves) with the
reduced analytical formula (dσR/dγ+, solid curves).

We extended the work done for the Bremsstrahlung process in order to derive energy-
differential cross-sections for the Bethe-Heitler pair creation. They account for weak and
strong ionization degree of the atom and therefore stands out of usual descriptions limited
to neutral atoms. In a highly ionized plasma, the Debye screening has a larger spatial
extent than the Thomas-Fermi one. This allows collisions with a higher impact parameter
and therefore increases the Bethe-Heitler cross-section.

3.4.2 Implementation of the Bethe-Heitler pair creation

Tabulation for ab initio Particle-In-Cell simulations

As for the Bremsstrahlung module, the user can choose between the simple Thomas-Fermi
or the mixed Thomas-Fermi-Debye screening model fro the cross-sections. We briefly
report the choices made to build the tables that are sampled in the PIC code.

76



Chapter 3. Processes induced in a Coulomb atomic field

For the simple Thomas-Fermi screening model, we have one table per atomic number.
The incident photon energy is tabulated in the range ~ω ∈

(
2mc2, 10 GeV

)
with a loga-

rithmic step and 104 points. The positron energy is sampled in 102 points in the range(
mc2, ~ω −mc2

)
with a linear step. This adds up to 106 32-bit reals per table.

For the mixed Thomas-Fermi-Debye screening model, we have one file per ionization
degree. For each of them, the incident photon energy is tabulated in the range ~ω ∈(
2mc2, 10 GeV

)
with a logarithmic step and 102 points. The positron energy is sampled

in 102 points in the range
(
mc2, ~ω −mc2

)
with a linear step. The Debye length LD

is discretized between the atomic radius ra (= 135 pm for copper) and ' 1 mm, with a
logarithmic step and 102 points. This adds up to 106 32-bit reals per table.

Since the Bethe-Heitler cross-sections are very similar to the Bremsstrahlung ones, the
same numerical issue as in Sec. 3.3.2 is observed. It requires the same solution which is
the use of 64-bit reals. Whatever the model, the interpolation in the tables is very simple
and exactly the same that for the Bremsstrahlung tables (see Sec. 3.3.2).

Exact simulation of positron number and spectra

The implementation of this module is very similar to the Bremsstrahlung one. It is still
based on the same Monte Carlo macro-particle pairing scheme described in Sec. 3.1. We
consider a 1D mono-energetic (~ω = 1 GeV) photon beam (nγ/nc = 1 and length l =
10c/ω0) propagating in solid copper. In this simple scenario, the number of positron can
be easily derived

dNe+

dt
= nel × σBHnivrel (3.61)

The energy-resolved spectra of the positrons is obtained by derivation of Eq. (3.61) against

Figure 3.19: Validation of the Bethe-Heitler module for arbitrarily weighted macro-
particles and the Thomas-Fermi screening model. (a) Number and (b) energy-resolved
spectra of positrons generated by 1 GeV photons incident on neutral copper atoms. The
theoretical result is represented with black lines. Three different weight ratios are em-
ployed Wi/We = 2, 1 and 1/2

γe+ . We illustrate in Fig. 3.19 the validation of the Bethe-Heitler module in the PIC code
for the Thomas-Fermi screening model and in Fig. 3.20 the Thomas-Fermi-Debye model.
In Fig. 3.19 we show that arbitrarily weighted macro-particles are handled carefully. To
this purpose, we change the initial numerical weight of the macro-ions by increasing their
initial number per cell. We observe a rigourous reproduction of the theoretical number
(Fig. 3.19(a)) and energy-resolved spectra (Fig. 3.19(b)) of positrons, whatever the ion-
to-electron numerical weight ratio (Wi/We = 2, 1 and 1/2). This result is obtained for
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Figure 3.20: Validation of the Bethe-Heitler module for the Thomas-Fermi-Debye screening
model. (a) Number and (b) energy-resolved spectra of positrons generated by 1 GeV
photons incident on neutral copper atoms (blue curves) and fully ionized copper (green
curves). The theoretical result is represented with black lines

the Thomas-Fermi screened cross-sections of the Bethe-Heitler process. For the Thomas-
Fermi-Debye screened cross-sections (Fig. 3.20), we propagate the photon beam in neutral
copper (blue curves) and fully ionized copper (green curves). We observe once again the
reproduction of the expected number of positron and of their energy-resolved spectra re-
spectively in Fig. 3.20(a) and (b). The number of positrons significantly increases between
the case of weak (Z∗ = 0) and strong ionization (Z∗ = Z). This tendency is also observed
for the Bremsstrahlung process (see Sec. 3.3.2) and has the same physical origin. It comes
from the larger scale length of the Debye potential, prevailing in a plasma, compared to
the Thomas-Fermi potential, prevailing in a solid. This enables higher impact parameter
events to occur and therefore increases the cross-section.

We provided the evidence that we can handle arbitrary weighted macro-particles and
reproduce the number and energy-resolved spectra of positrons generated by the Bethe-
Heitler process in the PIC code calder. Overall the modeling of this process is very
similar to the Bremsstrahlung.

3.5 Coulomb-Trident pair creation

We now consider the Coulomb Trident process, during which a relativistic electron directly
radiates an electron-positron pair, without any intermediary photon.

3.5.1 Non-screened cross-sections

Let us first introduce some notations. The Coulomb Trident process involves an incident
electron of energy E1 creating an electron positron pair of energy Ep that can be expressed
as a function of the new electron (E−) and positron (E+) energies: Ep = E− + E+. The
initial electron of energy E1 has a final energy E1f = E1−Ep. E denotes the total energy of
a particle whereas the notation T , adopted in previous sections, denotes its kinetic energy.
In order to sample this process in the Monte Carlo module of a PIC code, we provide
the total cross-section (σCT ), the pair-energy differential cross-section (dσCT /dEp) and
the pair-and-positron-energy differential cross-section (d2σCT /dEpdE−) of the Coulomb-
Trident process. As there are less theoretical results on this process (Murota et al., 1956)
than for the Bethe-Heitler, we do not take into account any screening of the cross-sections.
In the following of this subsection, all cross-sections are unscreened.
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The total cross-section, valid in the range
(
2mc2, 100 MeV

)
, was obtained by Gryaznykh

et al. (1998)

σCT = 5.22Z2 ln3

(
2.30 + T0(MeV)

3.52

)
× 10−34 m2 (3.62)

This formula is a fit between two theoretical formulas. The first one is valid near the
threshold of pair production and comes from Baier and Katkov (2008)

(σCT )E1'2mc2 =
7Z2r2

eα
2

2304

(
E1 − 2mc2

)3
(mc2)3 (3.63)

The second one (Landau and Lifshitz, 1975) is valid at high incident electron energies

(σCT )E1�mc2 =
28πZ2r2

eα
2

27
ln3
(
mc2

)
(3.64)

This total cross-section is plotted in Fig. 3.21 for different atomic numbers (Z = 13, 29, 47

Figure 3.21: Total Coulomb-Trident cross-section for different Z numbers, plotted from
formula (3.62)

and 79) and incident electron energies E1 ∈
(
2mc2, 100 MeV

)
. It is worth to mention that

this formula is believed to overestimate the positron production by a factor of ' 4 as
recently stated by Embréus et al. (2018).

We determine the pair energy differential cross-section dσCT /dEp with an approach
similar to Vodopiyanov et al. (2015). An interpolation is performed between two cases
which are p+, p− � mec and p+, p− � mec. The formulas involved were first derived by
Bhabha (1935) (formulas 30 and 34)(

dσCT
dEp

)
p+,p−�mc

=
(Zreαf )2

32

[
log γ2

1 −
161

60
+ C + Cr + Cz

]
E3
p

(mc2)4 (3.65)(
dσCT
dEp

)
p+,p−�mc

=
56

9π
(Zreαf )2 ln

(
C1Ep
mc2

)
ln

(
C2mc

2γ1

Ep

)
1

Ep
(3.66)

k and kp are constants of order 1, the coefficients C,Cr and Cz only depend on the incident
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electron Lorentz factor γ1. Let x = 1/γ1 the coefficients are

C1 = C2 = 1 (3.67)

C = 4
x2

1− x2
log

1

x2
− 4

3
x2 +

1

6
x4

Cz = 3
x2

1− x2

(
1− x2

1− x2
log

1

x2

)
− 13

5
x2 +

7

4
x4 − 9

10
x6 +

1

5
x8

Cr = −3

2

x2

1− x2

(
1− x2

1− x2
log

1

x2

)
+

4

5
x2 − 1

8
x4 − 1

20
x6 +

1

40
x8

In order to account for any momentum p−, p+ of the electron-positron pair, we take the
harmonic mean of formulas (3.65) and (3.66) following the idea of Vodopiyanov et al.
(2015)

dσCT
dEp

=

(
dσCT
dEp

)
p+,p−�mc

×
(
dσCT
dEp

)
p+,p−�mc(

dσCT
dEp

)
p+,p−�mc

+
(
dσCT
dEp

)
p+,p−�mc

(3.68)

This cross-section is illustrated for electrons incident on copper in Fig. 3.22. Their energies
are respectively E1 = 5, 20 and 100 MeV.

Figure 3.22: Pair-energy differential cross-section of the Coulomb-Trident process for dif-
ferent incident electron energies E1 = 5, 20 and 100 MeV in copper. The curves are plotted
from formula (3.68).

The double energy-differential cross section is also taken directly from Bhabha (1935)
(formula 32). It is derived in the limit E1 � E+, E− � mc2 and reads

d2σCT
dE−dE+

=
8

π
(Zreαf )2 E

2
+ + E2

− + 2E−E+/3

(E− + E+)4 log

[
C1E−E+

(E− + E+)mc2

]
log

[
C2E1

(E− + E+)

]
(3.69)

This cross-section is plotted in Fig. 3.23 for an incident electron energy of 40 MeV and
pair energies equal to 28 and 35 MeV. For a given pair energy, we note that the double-
differential cross-section is symmetrical with respect to the axis 2E+ = Ep.

We recalled the Coulomb-Trident differential and total cross-sections from Bhabha
(1935) and Gryaznykh et al. (1998). They are derived in the approximation of an un-
screened nucleus field. Further improvements may be done to take into account for a
simple-exponential screened potential as done by Murota et al. (1956).
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Figure 3.23: Double-differential cross-section of the Coulomb-Trident process for an inci-
dent electron energy E1 = 40 MeV and pair energies of 28 and 35 MeV in copper. The
curves are plotted from formula (3.69).

3.5.2 Implementation of the Coulomb-Trident pair creation

Tabulation for ab initio Particle-In-Cell simulations

The simulation of the Coulomb Trident electron-positron pair creation requires two tables
per atomic number Z. The first one contains the pair-energy differential cross-section
dσCT /dEp and the second one the double-differential cross-section d2σCT /dE−dEp.

For the first table, the incident electron energy varies in the range
(
2mc2, 100 MeV

)
with a linear step and 102 points. The pair energy is sampled in 102 points in the range(
2mc2, E1 −mc2

)
with a linear step. Once the pair energy Ep is sampled from the first

table, the second table is used to sample the electron energy E−. The positron energy is
then deduced by E+ = Ep−E−. For this, we tabulate the double-differential cross-section
for pair energy in the range

(
2mc2, 100 MeV

)
with a linear step and 102 points. The

energy of the created electron is sampled in the range
(
mc2, Ep −mc2

)
with a linear step

and 102 points.
The interpolation is done as for the Bremsstrahlung and Bethe-Heitler tables (see

Secs. 3.3.2 and 3.4.2). There is no need to increase the number of points in the table since
it is limited to a small range of incident electron energies.

Exact simulation of positron number and spectra

We now validate the implementation of the Coulomb Trident pair production in the PIC
code calder. We consider a simple scenario with a 1D, monoenergetic (40 MeV) electron
beam (density ne/nc = 1) of length l = 10c/ω0 propagating in copper of solid density
ni/nc = 80. We employ periodic boundary conditions along the x axis. The field solver in
switched off and only the Monte Carlo module is activated. In this simple problem, the
rate of positron emission over time is simply modeled by the product of the pair-production
frequency for one electron ∼ σCTnivrel, multiplied by the total number of electrons nel

dNe+

dt
= σCTnivrel × nel (3.70)

The energy-resolved spectra of the pairs created is obtained by the derivation of Eq. (3.70)
against Ep. We first check the handling or arbitrary weighted macro-particles in Figure
3.24. One can see that for different initial macro-particles numerical weight, the number of
positrons created remains unchanged and agrees perfectly with the theoretical result from
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Figure 3.24: Number of positrons created by the Coulomb-Trident process for 40 MeV
electrons incident on copper. Three simulations were done with varying initial statistical
weights for macro-ions and macro-electrons Wi/We = 2, 1 and 1/2. The theoretical result
is plotted as a black line from Eq. (3.70).

Figure 3.25

Eq. (3.70). We also confirm that the pair-energy differential cross-section is well-sampled
in Fig. 3.25. We illustrate the good agreement with the theory for two different incident
electron energies E1 = 20 and 70 MeV.

In this section, we validated the electron-positron pair creation via the Coulomb-
Trident process in the PIC code calder. It is done in two steps. Firstly we evidenced
that we can reproduce the expected rate of pair creation for arbitrarily weighted macro-
particles. Secondly we showed pair-energy resolved energy spectra matching the cross-
section given in the literature (Bhabha, 1935).

3.6 Application to fast electron relaxation in a solid target

3.6.1 Theoretical 0D model on positron creation

This model from Myatt et al. (2009) was published with the main goal of optimising the
laser-driven pair production on the OMEGA EP laser system (Waxer et al., 2005). This
model was found to be consistent with the experimental results of Chen et al. (2015).

In this model, the indirect (Bremsstrahlung + Bethe-Heitler) and the direct (Trident)
pair creation processes are both treated. The main result we are interested in is the
comparison between the two processes efficiency. The starting point of the model simplifies
the reality. It describes the relaxation of a relativistic electron distribution in a solid target.
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They are assumed to be heated by an energetic laser (' 1kJ) and generate photons and
electron-positron pairs. In the following on this subsection, we recall how the number of
pairs can be evaluated thanks to the formalism developped by Myatt et al. (2009).

The calculation of the positron yield through the Bethe-Heitler process requires to
first evaluate the Bremsstrahlung spectra of photons. In the article of Myatt et al. (2009)
this is done by taking the energy-differential Bremsstrahlung cross-section from Seltzer
and Berger (1986). However we will employ the expression we implemented in the PIC
code calder presented in Sec. 3.3.1. The number of photons with energy between k and
k + dk, denoted by Nγ (k) dk, can be expressed as a function of the energy-differential
Bremsstrahlung cross-section denoted by dσBr/dk. It is assumed that an electron of
kinetic energy T1 is continuously slowed down at a pace given by the stopping power
denoted dT1/ds (Berger et al., 1984)

Nγ (k) dk =

∫ ∞
0

dT1 f1 (T1)

∫ T1

0
dT ni

dσBr
dk

(T, k)

∣∣∣∣dTds
∣∣∣∣−1

(3.71)

where k = ~ω/mc2 is the normalized photon energy. The total energy contained into
photons is denoted by εγ,0 and the total energy contained into photons above the 2mc2

pair generation threshold is denoted by εγ,2mc2 . It is deduced by multiplying (3.71) by the
photon energy k and integrating over k. After invertion of the integral signs, one obtains

εγ,0 =

∫ ∞
0

dT1 f1 (T1)T1η0 (T1)

εγ,2mc2 =

∫ ∞
2mc2

dT1 f1 (T1)T1η2mc2 (T1)

with η0 (resp. η2mc2) denoting the radiation yield for all photons (resp. above 2mc2) as
defined by the ICRU report by Berger et al. (1984)

η0 (T1) =
ni
T1

∫ T1

0
dT

∣∣∣∣dTds
∣∣∣∣−1 ∫ T

0
dk k

dσBr
dk

(T, k) (3.72)

η2mc2 (T1) =
ni
T1

∫ T1

2mc2
dT

∣∣∣∣dTds
∣∣∣∣−1 ∫ T

2mc2
dk k

dσBr
dk

(T, k) (3.73)

An example is illustrated in Fig 3.26. We took the case of an electron of kinetic energy
T1 experiencing Bremsstrahlung losses in gold. The Bremsstrahlung yield of photons is a
rising function of the incident electron energy T1. At low electron energies T1 ≤ 5 MeV the
relative difference between the two yields (for all photons or ∀~ω ≥ 1.022 MeV) remains
significant (≥ 20%). For higher electron energies, both are very similar. This illustrates
that most of the photons are likely to produce pairs in the latter case.

Once the photon spectra is calculated with formula (3.71) one can estimate the num-
ber of positrons emitted by the Bethe-Heitler process. Two main physical issues are taken
into account while deriving this number. The first deals with the effective photon propa-
gation depth as it propagates through the target. The attenuation of a photon of energy
k can be taken into account with an attenuation coefficient of the form µ (k) = niσtot.
The cross-section σtot accounts for the main processes that may alter the photon trans-
port such as coherent and incoherent Compton scattering, photoelectric absorption, pho-
tonuclear absorption in addition to pair creation. It was measured for all Z = 1, 100
k = 1 MeV, 100 GeV and tabulated by Hubbell et al. (1980). The second effect emerges
as photons only cross the target once and therefore have a limited propagation length in
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Figure 3.26: Bremsstrahlung energy yield of an electron propagating in gold as a function
of its kinetic energy T1 , for all photons (η0) and above the 2mc2 threshold (η2mc2). The
curves represent formula (3.72) and (3.73).

the material, contrary to electrons which are assumed to experience refluxing and lose
all their energy in the target. The longitudinal (d) and transverse (r) dimensions of the
target as well as the solid angle Ω of the photon emission are introduced. The following
effective propagation depth (in g/cm2) denoted by 〈ρL〉Ω takes into account both effects
mentioned above and is defined by

〈ρL〉Ω =
1

4π

∫
dΩ

ρd

2 |cos θ|
C

(
µ (k) d

|cos θ|

)
(3.74)

This coefficient is homogeneous to g/cm2. It can be interpreted as the average of the
product of the density ρ times L, the distance travelled by the photon. It is approx-
imated and averaged assuming a homogeneous and isotropic repartition of photons in
the target. It depends on the photon emission angle θ, the target length d and the lin-
ear attenuation coefficient µ (k) for a photon of energy k. The function C is defined as
C (w) = 2 [exp (−w)− (1− w)] /w2. This correction coefficient ranges from unity (w → 0)
to 2 |cos θ| /µ (k) d for large w. We simplify the notation µ (k) = µ and change the variable
x = |cos θ|, this integral can then be expressed as

〈ρL〉Ω = ρd

∫ 1

0
dx min

{
1

2x
C

(
µd

x

)
,
r

d

}
(3.75)

The effect of the finite transverse size of the target r is taken into account by the minimum
in Eq. (3.75). It is set to 1 mm. The above integral has the closed-form solution

〈ρL〉Ω =
1

2

ρ

µ

[
1 +

(
1− 1

µd

)(
1− e−µd

)
− µdEi (−µd)

]
− x∗

2

ρ

µ

[
1 +

(
1− x∗

µd

)(
1− e−µd/x∗

)
− µd

x∗
Ei

(
−µd
x∗

)]
(3.76)

+ x∗ρr

where Ei (x) =
∫∞
−x dt e

−t/t and x∗ the solution of equation x∗
(
1− e−µd/x∗

)
/ (µd) = 1−µ.

Once this coefficient is fully explicit, the following expression for the number of Bethe-
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Heitler positrons of energy between E+ and E+ + dE+ can be obtained

N+,BH (E+) dE+ =
ni
ρ

∫ ∞
0

dkNγ (k)
dσBH
dE+

(k,E+) 〈ρL〉Ω (3.77)

where dσBH/dE+ is the Bethe-Heitler energy-differential cross-section. The total positron
yield via the Bethe-Heitler process is

Y+,BH =
NA

A

∫ ∞
2mc2

dE+N (E+) (3.78)

where NA denotes the Avogadro constant and A the atomic weight. Interchanging the
integral signs enables to get an expression depending only on the total Bethe-Heitler cross
section, rather than the energy-differential one

Y+,BH =
ni
ρ

∫ ∞
0

dkNγ (k)σBH (k) 〈ρL〉Ω (3.79)

We recall that the dependence with respect to the target length and width is contained
in the effective photon propagation depth 〈ρL〉Ω as expressed in formula (3.76). In the
model of Myatt et al. (2009) the total Bethe-Heitler cross-section as well as the linear
mass attenuation coefficient µ (k) are interpolated directly from the tables of Hubbell
et al. (1980). In our case we keep the attenuation coefficient from Hubbell et al. (1980)
but employ the cross-sections implemented in calder (see Sec. 3.4).

Figure 3.27: Positron yield as a function of fast electron average kinetic energy 〈T1〉 (MeV)
in gold. The abbreviation BH stands for the Bethe-Heitler process and CT for the Coulomb
Trident mechanism. The yields of positrons are determined via the formulas (3.79) and
(3.80).

The result is represented in Fig 3.27 for thin (1µm) and thicker (100µm) gold targets.
The number of positrons is given as a function of the energy contained in the fast electron
distribution. We chose an exponential electron distribution f1 (T1) = exp (−T1/〈T1〉) /T1

as it propagates in a gold target (Z = 79). The number of positrons created by the Bethe-
Heitler process rises as a fuction of the target thickness and the fast electron distribution
temperature. For a kJ class laser it is expected to reach values of 1011 or 1012.

The Coulomb-Trident pair yield is more straightforward to derive. Let us consider any
electron distribution given by f1 (T1) propagating in a uniform target and experiencing
only collisional and radiative losses. We denote by Y+,CT the Coulomb Trident yield. The
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number of positrons emitted by this one-step process is

Y+,CT =

∫ ∞
2mc2

dT1 f1 (T1)

∫ T1

2mc2
dT niσCT (T )

∣∣∣∣dTds
∣∣∣∣−1

(3.80)

where σCT (T ) is the Coulomb-Trident total cross-section from Gryaznykh et al. (1998).
The expression (3.80) is straightforward to implement and illustrated in Fig 3.27 where
the abbreviation CT stands for Coulomb Trident and BH stands for Bethe-Heitler. In this
model the direct pair production (by Coulomb-Trident) does not depend on the target
longitudinal dimension. In order to derive the analytical expression (3.80) for Y+,CT , the
model assumes that all electrons remain in the target (whatever its thickness) until their
energy goes below the 2mc2 pair generation threshold.

We note that above a threshold of 10µm the Bethe-Heitler (indirect) pair production
dominates the Coulomb-Trident (direct) one in gold. For thinner targets (' 1µm) the
direct pair production prevails and leads to the generation of more positrons than the
indirect mechanism. This behavior can be explained as for very thin targets, photons do
not travel in enough matter to efficiently decay into an electron-positron pair, thus reducing
the efficiency of the Bethe-Heitler process. With Fig. 3.27 this threshold is observed for a
10µm target.

In this subsection, we recalled the theoretical model from Myatt et al. (2009) which
provides convenient formulas to calculate the number of positrons generated during the
relaxation of a fast electron distribution in a solid gold target. Both processes are taken
into account (Bethe-Heitler and Coulomb-Trident) and their efficiency is compared. It is
found that in practical laser-target experiments involving kJ-class lasers the Bethe-Heitler
process prevails if the target thickness is higher than 10µm and the Coulomb-Trident
dominates for thinner targets (thickness lower than 10µm).

3.6.2 Self-consistent Particle-In-Cell simulations

Figure 3.28: 1D PIC setup: relaxation of an initially localized fast electron distribution
(colormap) in a 15µm copper target. The copper density is represented by the blue
curve and is uniform (nCu/nc = 80) and the thin (6.25 nm) contaminant proton layer is
illustrated by the red curve, at the rear side of the target.

We now compare the above model to self-consistent PIC-simulations describing plasma
effects along with particle scattering, impact ionization, radiative and pair generation pro-
cesses. As an application we compute the positron yield produced by a hot electron
population in a solid Cu target of varying thickness (5µm ≤ l ≤ 15µm). Their energy is
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Figure 3.29: Spatio-temporal evolution (x, t) of the density (normalized to nc = 1.1 ×
1021 cm−3) of (a) fast electrons from the initial Maxwell-Jüttner distribution and (b)
Bremsstrahlung photons. For both electrons and photons, low energy cutoff of 1 MeV
is applied. The target thickness is 15µm and the initial average kinetic energy of electrons
is 〈T1〉 = 10 MeV.

distributed according to a relativistic isotropic Maxwell-Jüttner distribution of tempera-
ture Tg

fθ (T1) dT1 =
exp

[
−
√

1 + T 2
1 /θ
]

θK2 (1/θ)
T 2

1 dT1 with θ =
kBTg
mc2

(3.81)

K2 denotes the first kind Bessel function of order 2. The average kinetic energy is denoted
by 〈T1〉 =

∫
Tfθ (T ) dT . For θ � 1, 〈T1〉 → 3θ/2 and for θ � 1, 〈T1〉 → 3θ. The PIC

simulation setup is depicted by Fig. 3.28. The x − px electron distribution is plotted on
the colormap and its integral is normalized to 1. The initial electron density is ne/nc = 1
and it is initially contained in a 320 nm layer located at the front side of the target. The
copper target has an initial uniform density profile with nCu/nc = 80 (blue curve). We
also model a thin (6.25 nm) contaminant proton layer at the rear side of the target with
density nH/nc = 60 (red curve).

In order to confront PIC simulations with the model of Myatt et al. (2009), we need
to calculate a steady-state number of pairs which is typically reached after several ps for
the thin targets at stake in this study. Those durations are quite large and can only be
simulated in a simplified 1Dx×3Dv geometry. Depending on target thickness, we observed
that 1 to 2.5 million iterations are needed to capture the steady-state number of positrons
generated by the Bethe-Heitler and Coulomb-Trident processes. We chosed to decrease
the spatial step down to λ0/420 in order to reduce numerical heating (λ0 = 1µm). As an
example we noted a very low (3%) relative error on the energy balance at final time for
a 5µm target and a fast electron distribution with a 5 MeV average kinetic energy. The
simulation domain counts 120.000 cells (↔ 286µm long). This enables to catch the full
dynamic of the rear side TNSA expansion of the contaminant layer. The plasma center
is initially located at abscissa xω0/c = 500 (↔ 80µm). The multiple scattering, impact
ionization, Bremsstrahlung, Bethe-Heitler and Coulomb-Trident modules are activated.
We treat those processes in the appropriate frame (c.o.m. frame or ion-rest frame) since
we demonstrated it can lead to significant errors (see Sec. 3.2.3). The Bremsstrahlung,
Bethe-Heitler and Coulomb-Trident processes are only simulated for the copper ions and
are neglected for the thin contaminant proton layer.

The space-time evolutions of the electron, photon, proton, copper and positron den-
sities are displayed in Fig. 3.29(a-b), Fig. 3.30(a-b) and Fig. 3.31(a-b) in the case 〈T1〉 =
10 MeV and l = 15µm. In Fig. 3.29(a) electrons are seen to expand towards vacuum from
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Figure 3.30: Spatio-temporal evolution (x, t) of the density (normalized to nc = 1.1 ×
1021 cm−3) of (a) rear side protons (b) copper ions. No energy selection is applied, contrary
to Fig 3.29. The target thickness is 15µm and the initial average kinetic energy of electrons
is 〈T1〉 = 10 MeV.

Figure 3.31: Spatio-temporal evolution (x, t) of the density (normalized to nc = 1.1 ×
1021 cm−3) of (a) the Bethe-Heitler and (b) the Coulomb-Trident positrons. No energy
selection is applied, contrary to Fig 3.29. The target thickness is 15µm and the initial
average kinetic energy of electrons is 〈T1〉 = 10 MeV.

both sides of the target. The expansion in the x > 0 direction (rear side) occurs faster
due to the lighter protons. The proton and copper expansion are respectively displayed
in Fig. 3.30(a) and (b). Protons located in the thin contaminant layer overall absorb a
significant fraction of the initial hot electron energy (30% after 12.2 ps ↔ 23000ω−1

0 ) as
witnessed on the red curve in Fig. 3.32 (it is analyzed and interpreted below).

The Coulomb Trident process saturates at ω0t ' 104 ↔ 5.3 ps and the Bethe-Heitler
at ω0t ' 2.3×104 ↔ 12.2 ps. Both positron densities in Fig. 3.31(a-b) exhibit four distinct
structures. The first one comes from positrons generated early (ω0t ≤ 3000) forming a
jet-structure and leaving the simulation domain before instant ω0t ' 3× 103. The second
one is accompanied by fast electrons and both species form a bunch moving at a speed
of ' 0.06c. Those positrons are generated at early times (ω0t ≤ 6 × 103) by the hot
electrons and then leave the target, overlapping with the expanding protons as seen in
Fig. 3.30(a). The third and highest peak of emission is located at the core of the copper
target (450 ≤ xω0/c ≤ 550). The density of positrons remains higher in this area as they
have a perpendicular momentum. Indeed, because of the 1D geometry, photons created
with a near grazing birth angle (θ → 90◦) will remain a time l/ (c cos θ)→∞ in the target.
The fourth and last structure is located at the front side of the target and is backward-
directed. Thanks to Figs 3.30(b) we note that it follows the copper ion expansion with a
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Figure 3.32: Evolution of the electron to proton conversion efficiency for three target
thicknesses: 5, 10, 15µm. The electrons are initially distributed according to a relativistic
Maxwell-Juttner law of average kinetic energy 〈T1〉.

speed of ' 0.02c. A discontinuity in the velocity of this electron-positron jet is observed
at late times ω0t ' 2× 104. It is probably a numerical effect due to the energetic copper
macro-particles leaving the simulation domain at this time (see Fig. 3.30(b)).

Figure 3.33: (a) Generation of positrons by Bethe-Heitler and (b) by Coulomb Trident
mechanisms as a function of target thickness and fast electron average kinetic energy. The
1Dx × 3Dv PIC simulations are represented by dashed lines and the Monte Carlo 0D
model of Myatt et al. (2009) by solid lines.

We now compare in Fig 3.33 the steady-state number of positrons emitted by the
Coulomb-Trident and Bethe-Heitler processes as a function of the target thickness (5 −
15µm) and the electron average kinetic energy (〈T1〉 = 3 − 10 MeV). The first thing
to be noticed is that the PIC simulations reproduce the trend of the theoretical model.
Indeed both indicate that the higher the electron temperature or the target thickness,
the higher the number of positrons. However the theoretical model overestimates this
number of positrons. There is a noticeable gap that grows as the target gets thinner:
the relative difference for the Bethe-Heitler process is 44 % in a 15µm target and 68 %
in a 5µm one. This overestimation of the theoretical model comes from its assumption
on electrons that cannot accelerate ions via the TNSA mechanism. In Fig 3.32 we de-
pict the evolution of the conversion efficiency of hot-electron energy into protons for the
three target thicknesses. Unidimensional PIC simulations does not properly describe the
hot-electron dilution during the plasma expansion (thus over-estimating the hot-electron
density), resulting in rather high values (30− 35 %). However they demonstrate why the
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gap between the PIC simulations and the theoretical model increases for thinner targets.
All the energy lost by electrons to the benefit of the ions is not available for pair produc-
tion anymore. The theoretical model ignores this particular phenomenon as described in
the former subsection.

In this section we compared the efficiency of the direct (Coulomb Trident) and indi-
rect (Bethe-Heitler) electron-positron pair production. To this purpose, we confronted
the theoretical 0D model of Myatt et al. (2009) to self-consistent 1D PIC simulations.
The comparison emphasizes the over-estimation of the positron number in the model. It
comes from the neglect of one particular plasma process which is the target normal sheath
acceleration.

Conclusions

The Particle-In-Cell code calder now accounts for various processes such as multiple
scattering, impact ionization, Bremsstrahlung radiation of photons, Bethe-Heitler and
Coulomb-Trident electron-positron pair creation. They are modeled by a macro-particle
pairing scheme included in a Monte Carlo module called every time step of a PIC simu-
lation. We emphasize the improvements done in order to give a coherent description of
the screened potential mediating all those effects. Indeed we introduced models account-
ing for both the low and high ionization limits for scattering, Bremsstrahlung emission
and Bethe-Heitler pair production. Overall we observed that in the limit of high ioniza-
tion, the efficiency of those effects are enhanced compared to the limit of low ionization.
This comes from the larger screening length of the Debye potential used to describe the
potential screening in a plasma compared to the Fermi potential in a neutral medium.
The numerical implementation was validated through comparisons with theoretical mod-
els. We compared the numerical simulations to the multiple deflection theory of Molière
(1947), to the NIST stopping-power database and to a theoretical model on pair creation
from Myatt et al. (2009).
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Radiative processes induced by
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Chapter 4

High-energy radiation in
ultra-relativistic laser-solid
interactions

During the interaction of an intense laser pulse (I0 ≥ 1018 Wcm−2) with an initially solid
material sample, a significant fraction of the laser energy (from a few % to ∼ 50 %)
is converted into fast electrons, accelerated up to relativistic energies (Wilks et al., 1992;
Lefebvre and Bonnaud, 1997; Davies, 2009; Kemp et al., 2014). While propagating through
the dense inner region of the illuminated target (or through a secondary convertor target),
those electrons can radiate part of their kinetic energy, either directly through Bremss-
trahlung (Kmetec et al., 1992; Gahn et al., 1998; Perry et al., 1999; Hatchett et al., 2000;
Edwards et al., 2002; Galy et al., 2007; Compant La Fontaine et al., 2012), or indirectly
through radiative relaxation of excited atomic states (Yasuike et al., 2001; Stephens et al.,
2004; Sefkow et al., 2011). The former process leads to continuous broadband photon
spectra that extend up to the maximum fast electron energy, whereas the latter one yields
discrete spectra determined by atomic line transitions. Both types of fast electron-induced
radiation can serve for high-resolution flash radiography of dense objects (Glinec et al.,
2005; Ravasio et al., 2008; Park et al., 2008; Brambrink et al., 2009; Westover et al., 2010;
Courtois et al., 2011; Jarrott et al., 2014; Antonelli et al., 2017), absorption spectroscopy
of heated plasmas (Audebert et al., 2005; Lecherbourg et al., 2007), or characterization
of the fast-electron distribution (Pisani et al., 2000; Santala et al., 2000; Martinolli et al.,
2006; Chen et al., 2009; Meadowcroft and Edwards, 2012; Zulick et al., 2013). In addition,
laser-driven high-energy Bremsstrahlung photon sources have been exploited to trigger
photonuclear reactions (Cowan et al., 2000; Ledingham et al., 2003; Schwoerer et al.,
2003; Wang et al., 2017), as well as to generate unprecedented dense electron-positron
pair beams through the Bethe-Heitler process in high-Z thick targets (Liang et al., 1998;
Gahn et al., 2000; Chen et al., 2009; Sarri et al., 2015; Williams et al., 2016).

At the extreme laser intensities (I0 & 1022 Wcm−2) mainly addressed in this thesis,
copious emission of energetic photons can also originate from direct laser-electron interac-
tion, that is, through nonlinear inverse Compton scattering of the laser light by relativistic
electrons (Zhidkov et al., 2002; Koga, 2004). In the strong-field limit (aL � 1) where the
quasi-stationary field approximation holds, this mechanism is analogous to synchrotron
emission (Erber, 1966; Kirk et al., 2009; Di Piazza et al., 2012), and hence can also be me-
diated by the intense quasistatic fields possibly induced during the laser-plasma interaction
(Stark et al., 2016) or even by the fields generated during the interaction of high-density
e−e+ and e−e− beam (Del Gaudio et al., 2018). The first all-optical generation of γ-ray
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photons (with ∼ 0.1 − 10 MeV energies) through nonlinear inverse Compton scattering
was achieved by making collide a relativistic (> 100 MeV) electron beam issued from a
plasma wakefield accelerator with a moderately relativistic (I ∼ 1019 Wcm−2) femtosecond
laser pulse (Phuoc et al., 2012; Sarri et al., 2014). Such conditions, however, led to a low
quantum nonlinearity parameter (χe . 0.01) so that the radiation negligently affected the
electron dynamics. Only recently, by means of more intense lasers (I0 ∼ 4× 1020 Wcm−2)
and higher-energy (∼ 2 GeV) wakefield-driven electron beams, have the first measurements
of inverse Compton scattering in the radiation reaction regime (χe & 0.2) been carried
out, providing evidence for substantial (up to ∼ 30 %) radiation-induced electron energy
losses (Cole et al., 2018; Poder et al., 2018).

Although of major interest for maximizing the χe parameter at fixed laser intensity
(Blackburn et al., 2014; Vranic et al., 2014; Ridgers et al., 2017), and thus testing models
for quantum radiation reaction (Sokolov et al., 2009; Bulanov et al., 2011; Mackenroth
et al., 2013; Di Piazza et al., 2018) under well-controlled conditions, the above laser-
electron-beam collision scenarios do not allow a significant fraction of the laser pulse energy
to be converted into synchrotron photons. With a peak laser intensity of 1022 W/cm2, sig-
nificant (& 1 %) radiation conversion efficiency, the laser pulse must rather interact with
dense and/or extended enough plasma targets (Brady et al., 2014; Nerush et al., 2014;
Wang et al., 2015a; Chang et al., 2017). In this context, it is important to determine the
interaction conditions leading to synchrotron emission prevailing over Bremsstrahlung, and
therefore the scaling of the two competing radiation processes with the target parameters.
This problem has as yet only been touched upon, mainly because there are still very few
PIC codes including modules for synchrotron and Bremsstrahlung radiations (Pandit and
Sentoku, 2012; Ward and Sircombe, 2014). Notably, Pandit and Sentoku (2012) found that
synchrotron emission dominates in 5µm thick Cu targets irradiated at intensities exceed-
ing ∼ 1022 Wcm−2. More recently, Wan et al. (2017) showed dominance of synchrotron
emission at I0 ≥ 1021 Wcm−2 (resp. ≥ 1022 Wcm−2) in 1µm thick Al (resp. Au) targets.
Yet, none of these studies examined the influence of the target thickness on the radiation.
Vyskočil et al. (2018) looked into the variations of the Bremsstrahlung spectrum from
solid foils of various materials driven in the 3× 1021 − 1023 Wcm−2 intensity range; their
investigation, however, was restricted to micrometric thicknesses and, while apparently
included in their simulations, synchrotron emission was not commented upon. These pre-
vious works motivate us to further examine the synchrotron/Bremsstrahlung competition
as a function of the ultrafast target dynamics, which will be the main objective of this
chapter. To this purpose, we will consider the case of a short-pulse (τ0 = 50 fs) laser of
not-so-extreme intensity (I0 = 1022 Wcm−2), relevant to ELI-class facilities during their
first years of operation (Le Garrec et al., 2014; Balabanski et al., 2017).

This chapter will be structured as follows. Firstly, we will recall the basic processes
involved in relativistic laser-solid interaction, from relativistic self-induced transparency to
fast electron generation and ion acceleration. Secondly, we will present a series of somewhat
idealized PIC simulations serving to characterize the synchrotron emission from plasmas
of different density and thickness. Finally, we will perform integrated simulations, run
both in 1D and 2D geometries, of the laser-induced high-energy radiation in Cu targets
of thicknesses ranging from a few tens of nm to a few µm. The Bremsstrahlung and
synchrotron radiation properties will be analyzed in detail, and shown to strongly depend
on the transparency/opacity of the target.

94



Chapter 4. High-energy radiation in ultra-relativistic laser-solid interactions

4.1 Fundamentals of relativistic laser-plasma interaction

In this section, we briefly present the major phenomena underpinning the interaction of
an ultra-intense laser wave with a plasma. Our purpose is to acquaint the reader with
the basic mechanisms and scaling laws at stake in the following PIC simulation study.
Starting from the motion of a single electron in vacuum, we recall the concept of relativistic
self-induced transparency in classically opaque (overcritical) plasmas, and describe how
electron acceleration operates in undercritical and overcritical plasmas. Finally, we present
the main mechanisms of ion acceleration in overcritical plasmas. As will be shown in the
following sections, ion acceleration in targets driven at ultrahigh intensities may occur fast
enough to alter the dynamics of the radiating electrons. For a more comprehensive review,
the reader is referred to dedicated textbooks (Gibbon, 2005; Mulser and Bauer, 2010).

4.1.1 Dynamics of a single electron in an intense electromagnetic field

Let us first consider an electron interacting in vacuum with an electromagnetic (EM)
planar wave of vector potential A(x, t), propagating at c along the x-axis. The electron
motion is described by the following equations:

dpx
dt

= − e2

2meγ

∂|A|2

∂x
, (4.1)

p⊥ = eA , (4.2)

dγ

dt
=

e2

2meγ

∂|A|2

∂t
, (4.3)

where γ =
√

1 + |p|2 is the electron Lorentz factor. The right-hand side of Eq. (4.1)
represents the ponderomotive force Fp exerted by the laser wave. For a linearly polarized
(LP) wave (A = Ay), Fp contains a dc component (associated with the slowly-varying
wave envelope) and a fast-oscillating (at multiples of the second wave harmonic, 2ω0) com-
ponent. For a circularly polarized (CP) wave, by contrast, the high-frequency component
vanishes. Equation (4.2) expresses the conservation of the transverse canonical momen-
tum P⊥ = p⊥ − eA. Exploiting the fact that, for a propagating EM wave, A(x, t) only
depends on the phase ξ = t − x/c, one readily obtains the well-known relations (Landau
and Lifshitz, 1975)

γ − px/mec = γ0 − px0 , (4.4)

p⊥ = a + p⊥0 , (4.5)

where γ0 and p0 are, respectively, the electron’s initial Lorentz factor and momentum,
and a = eA/mec denotes the normalized vector potential. A practical expression of the
latter is

a ≈ 0.85× 10−9λ0

√
I , (4.6)

as a function of the laser’s intensity I (in Wcm−2) and wavelength λ0 = 2πc/ω0 (in µm).
For an electron initially at rest (γ0 = 1, p = 0), one obtains

px/mec = γ − 1 = a2/2 , (4.7)

p⊥/mec = a , (4.8)
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It follows that for a > 1, or equivalently Iλ2
0 & 1018 Wcm−2µm2, the electron is accelerated

to relativistic energies, preferentially in the forward direction (p⊥/px = 2/a� 1). Because
its velocity remains lower than the velocity of light, however, it is gradually slipping relative
to the wavefront (at a velocity c− px/meγ ≈ 2c/a2), which tends to limit its acceleration.
This dephasing is further increased in a plasma where the wave phase velocity exceeds the
velocity of light, causing the longitudinal electron momentum to scale as px ∝ a instead
of px ∝ a2 (Robinson et al., 2015).

Equations (4.7) and (4.8) predict that the electron will return to rest when being
overtaken by the laser pulse. This behavior results from the idealized assumption of a
propagating planar wave. In realistic settings, however, the laser has a typical transverse
width of a few µm, allowing the electron to escape transversely with a finite energy gain.
An approximate generalized expression for the dc component of the 3D ponderomotive
force is (Bauer et al., 1995; Quesnel and Mora, 1998)

Fp = − e2

2me〈γ〉
∇〈|A2|〉 , (4.9)

where 〈γ〉 =
√

1 + 〈p〉2/(mec)2 + e2〈|A2|〉/(mec)2 and 〈. . . 〉 denotes an average over the
laser period. Yet, even in a multidimensional geometry, there remains the issue of injecting
the electron near the laser peak in order to maximize its acceleration prior to dephasing
or transverse expulsion from the strong-field region. A possibility (Yu et al., 1998) is
to make the EM wave reflect off an overcritical (opaque) plasma: some of the electrons
accelerated at the dense plasma boundary (or in the dilute plasma possibly formed in
front of it) can be injected into the reflected wave and further accelerated up to px/mec =
[1 + |a2| − (γ0 − px0)2]/[2(γ0 − px0)] ≈ γ0a

2 (assuming 1 � γ0 � a2 and p⊥0 = 0).
Such vacuum laser acceleration has been achieved experimentally only recently (Thévenet
et al., 2015). Note, though, that for relatively long laser pulses, the electron motion may
be altered by the (quasi) standing wave formed by the overlapping incident and reflected
waves. In this configuration, the notion of a dc ponderomotive force breaks down, and
efficient stochastic heating of the electrons can be triggered (Bauer et al., 1995; Sheng
et al., 2002; Bourdier et al., 2005).

4.1.2 Relativistic self-induced transparency

Let us now consider the propagation of an intense EM wave in a uniform, infinitely long,
cold plasma. The electron fluid motion then obeys the general equation (Sudan, 1993)

∂

∂t
(p− eA) = ∇(eφ−mec

2γ) , (4.10)

where φ is the electrostatic potential due to charge separation induced by the EM wave.
In the right-hand side of the above equation, the −∇(mec

2γ) term corresponds to the
ponderomotive force acting on the electron fluid. Assuming immobile ions, the above
relation combined with Maxwell’s equations yields a dispersion relation for the EM wave
of the form (Barr et al., 2000)

ω2
0 = k2

0c
2 +

ω2
p

〈γ〉
, (4.11)

where ωp =
√
ne0e2/meε0 is the electron plasma frequency, ne0 is the unperturbed electron

density, and 〈γ〉 = 〈
√

1 + |p|2/(mec)2〉 is the laser-cycle averaged Lorentz factor of the
oscillating electrons. In a 1D geometry, conservation of the transverse electron canonical
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momentum implies γ =
√

1 + p2
x/(mec)2 + |a|2. For uniform CP plane waves, |a2| = a2

L

is a constant, yielding the exact expression 〈γ〉 =
√

1 + a2
L. Since ∇γ = 0, the electron

motion is then purely transverse (px = 0) and no charge separation builds up (φ = 0). For
LP plane waves, γ presents both a dc component and an anharmonic oscillation, and hence
these waves are generally coupled to longitudinal oscillations. Assuming p⊥ = eA � px,

one has the approximate expression 〈γ〉 ≈
√

1 + a2
L/2. According to Eq. (4.11), however,

both polarizations allow the plasma to become transparent to the EM wave (i.e. k2
0 > 0)

when its vector potential is high enough that ω2
0 > ω2

p/〈γ〉 is fulfilled. Introducing the
nonrelativistic critical density nc = ε0meω

2
0/e

2 and the relativistically corrected critical
density ncr = 〈γ〉nc, this condition can be recast as ne < ncr. It follows that laser
propagation is enabled in the density range nc < ne < ncr, contrary to what is expected
from linear theory. This mechanism is referred to as relativistic self-induced transparency
(RSIT) (Kaw and Dawson, 1970; Lefebvre and Bonnaud, 1995).

The above criterion should be considered as a rough estimate of the effective threshold
in realistic settings since it neglects plasma and laser inhomogeneities as well as kinetic
effects. The former are inevitable when a laser wave impinges onto a sharp-interface
plasma, and prove to be particularly important for circular polarization. This is caused
by the associated weak electron heating (due to the slowly-varying γ), which favors the
ponderomotively induced compression of the electron plasma boundary, thus opposing the
relativistic decrease in the plasma frequency. This problem was analytically solved by
Cattani et al. (2000) in the cold-fluid limit, yielding the following condition for the onset
of RSIT:

aL > ath =

{
2ne0 (ne0 − 1) if ne0/nc < 3/2

ne0
(
1 + a2

B

) (√
1 + a2

B − 1
)
− a4

B if ne0/nc ≥ 3/2
(4.12)

with a2
B = ne0[9

8n0− 1 + 3
2( 9

16n
2
e0−ne0 + 1)1/2] being the electromagnetic field strength at

the compressed electron plasma boundary. The above threshold was confirmed through
1D PIC simulations by Eremin et al. (2010), who interpreted the onset of transparency
as the consequence of the periodic escape of some energized electrons into vacuum. As a
consequence, the radiative pressure can exceed the electrostatic one, thus allowing the laser
to gradually move into the plasma. Siminos et al. (2012) further showed that those electron
‘leaks’ are enhanced for shorter laser rise time, resulting in RSIT at field strengths much
below the cold-fluid threshold (4.12). Yet it was subsequently found (Siminos et al., 2017)
that this kinetic effect is mitigated when allowing the ions to respond to the electrostatic
field set up at the compressed plasma boundary. The ion motion, which sets in over a time-
scale of the order of ω−1

0 and is enhanced at large charge-to-mass ratios, tends to prevent
the heated electrons from escaping into vacuum; electron compression is thus maintained at
the irradiated side, and so the target may remain opaque beyond the theoretical threshold
(4.12). For LP pulses, the strong electron heating at the plasma boundary tends to
weaken the surface electron compression so that the effective RSIT threshold approaches
the prediction of (4.11) (Lefebvre and Bonnaud, 1995).

A complementary study of RSIT was performed by Weng et al. (2012a), who inferred
from PIC simulations an approximate formula for ncr, valid in smooth density profiles

97



Chapter 4. High-energy radiation in ultra-relativistic laser-solid interactions

with fixed ion background, and in a broad parameter range (10 ≤ aL ≤ 200):

ncr/nc =
(
1 + 0.48a2

L

)1/2
for CP pulses, in the limit ne0/nc ≤ 0.5

√
1 + a2

L , (4.13)

ncr/nc =
(
1 + 0.79a2

L

)1/2
for LP pulses, in the limit ne0/nc ≤ 0.8

√
1 + a2

L . (4.14)

In addition, these authors obtained a simple expression for the propagation velocity of the
laser front in a transparent plasma:

vf/c = exp(−np/ncr) (1− ne0/ncr)1/2 , (4.15)

where np = 2ne0 and np = 4ne0 for LP and CP waves, respectively. This formula, which
accurately matches simulation results, is weakly sensitive to the laser rise time since the
pulse rapidly develops a steep gradient at its front (of length scale � λ0) due to electron
compression (measured by np, enhanced for a CP wave). This and the associated laser
reflection lead to an effective laser propagation velocity that can be much lower than the
relativistic group velocity vg/c = (1− ne0/ncr)1/2.

4.1.3 Fast electron generation in undercritical plasmas

Plasma wave induced acceleration

As previously mentioned, phase slippage due to superluminal EM wave propagation in a
plasma (ω0/k0 > c) is not favorable to efficient electron acceleration via direct interaction
in the laser field (Robinson et al., 2015). Yet, under appropriate conditions, however, an
undercritical plasma is capable of converting the strong transverse laser field into a large
longitudinal electrostatic field, associated with an electron wave of phase velocity equating
the laser’s group velocity, vp = vg < c, and of typical wavelength λp ≈ 2πc/ωp � λ0

(Tajima and Dawson, 1979). The maximum energy attainable by an electron trapped in
such a wave is (in 1D geometry) γmax ≈ 2γ2

p(eEp/meωpc)
2, where γp = (1 − v2

p/c
2)−1/2

and eEp/meωpc > 1 is the normalized amplitude of the nonlinear plasma wave (Esarey
et al., 2009). In a 1D cold plasma, Ep is bounded by the relativistic wave breaking field
(Teychenné et al., 1993), Ewb ≈

√
2γpmeωpc/e, so that γmax ≤ 4γ3

p . This maximum
energy is gained when the electron has traveled a dephasing length Ld = mec

2γmax/eEp ≈
(γ2
p/π)(eEp/meωpc)λp.

Two main regimes of plasma wave generation arise in tenuous plasmas driven by intense
lasers depending on whether the pulse length (L) is smaller or larger than the plasma
wavelength. For L . λp, the plasma wave (or wake) is driven resonantly by ponderomotive
force of the laser in its rising and descending ramps. This corresponds to the standard
regime of laser wakefield acceleration (Tajima and Dawson, 1979), extensively studied and
largely improved in past decades (Esarey et al., 1996; Malka et al., 2002; Faure et al.,
2004; Geddes et al., 2004; Mangles et al., 2004; Leemans et al., 2006; Joshi, 2007; Esarey
et al., 2009; Pak et al., 2010; Lundh et al., 2011; Thaury et al., 2015). Currently, the
most actively explored configuration is when the focused laser intensity is high enough
to expel all the electrons from the vicinity of the laser axis. In this 3D blow-out regime
(Pukhov and Meyer-ter-Vehn, 2002; Lu et al., 2007), a fraction of the plasma electrons can
be self-trapped in the plasma wave and accelerated up to GeV-range energies (Leemans
et al., 2014).

In the opposite limit, L � λp, the plasma wave can be generated through a variant
of the near-forward stimulated Raman instability, namely the self-modulation instability
(Antonsen and Mora, 1992). By producing plasma density modulations that are alter-
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natively focusing and defocusing, this instability causes the laser pulse to fragment into
a train of ∼ λp long pulses. Since this mechanism usually operates in plasmas denser
(> 0.01nc) than for the standard wakefield acceleration, electron dephasing occurs faster,
allowing the trapped electrons to phase mix in the separatrix and to develop broad electron
energy spectra (Modena et al., 1995).

The number of trapped electrons in the fast plasma wave rises with increasing plasma
wave amplitude and decreasing plasma wave phase velocity (Esarey et al., 2009). Besides,
their interaction with the untrapped bulk electrons induces a wakefield out of phase with
that excited by the laser pulse. For an intense laser pulse propagating in a ‘dense’ yet trans-
parent plasma, this secondary wakefield can disrupt the laser-induced one, a phenomenon
known as beam loading (Lu et al., 2007). This scenario was further examined numerically
in Debayle et al. (2017) in the parameter range 5 ≤ aL ≤ 100 and 0.1 ≤ ne0 ≤ 2nc.
Efficient thermalization of the plasma electrons was observed due to a two-stream-type
interaction between the accelerated electron beam and the plasma electrons backward-
accelerated at the laser head. In particular, thermal energies exceeding the ponderomotive

scaling (〈γ〉 ∼
√

1 + a2
L/2) was evidenced at laser field strengths aL ∼ 50–100 and plasma

densities ∼ 0.1–0.2nc.

Direct laser acceleration

The transverse ponderomotive force of an intense laser propagating in an undercritical
plasma causes radial expulsion of the plasma electrons. When L � λp, a positively
charged channel is formed inside the laser pulse, resulting in a radial electrostatic field
(evolving on the ion time scale). Moreover, an azimuthal magnetic field is induced by the
accelerated electrons current. Both these quasistatic fields vary linearly with the radius,
causing a relativistic electron of energy γ to oscillate transversely at the so-called betatron
frequency ωβ ≈ ωp/

√
2γ. Efficient acceleration can occur when the betatron oscillation

frequency equates the laser frequency experienced by the electron, ωβ ≈ ω0 − vxk0. This
condition means that each transverse oscillation corresponds to the electron’s slipping
exactly by one period in the laser wave (of wave phase velocity ω0/k0 > c). The electron
can thus be continually accelerated until detuning occurs due to the relativistic decrease
in ωβ at high energy. This mechanism is called Direct laser acceleration (DLA), although
it involves a combination of laser and quasistatic fields. It was first evidenced in PIC
simulations (Pukhov et al., 1999), predicting quasi-thermal electron distributions with
effective temperature Th ≈ 1.5× 10−9aL MeV. It was observed experimentally in ∼ 0.1nc
plasmas (Gahn et al., 1999) and, more recently, in microwire arrays (Jiang et al., 2016)
and near-critical plasmas (Bin et al., 2018).

4.1.4 Fast electron generation in overcritical plasmas

The generation of fast electrons in overcritical targets driven at relativistic laser intensities
was first studied numerically by Wilks et al. (1992), showing Boltzmann-like energy spec-

tra obeying the ponderomotive scaling Th ∼ mec
2
√

1 + a2
L/2. This problem has since been

the subject of many theoretical investigations which revealed a wealth of competing accel-
eration processes, depending on the laser and plasma parameters (Gibbon, 1994; Lefebvre
and Bonnaud, 1997; Mulser et al., 2008; Kemp et al., 2009; Mishra et al., 2009; Baeva
et al., 2011; Paradkar et al., 2011; Kemp et al., 2014; Sheng et al., 2015; Sorokovikova
et al., 2016). In particular, for a laser pulse with a finite prepulse or a duration sufficient
to allow for significant ion expansion, an extended undercritical plasma can form in front
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of the dense plasma region, in which some of the aforementioned acceleration mechanisms
can arise. In the following, however, we will focus on the direct interaction of an ultrain-
tense, short-pulse laser wave with a steep-gradient opaque plasma, as it will be the scenario
mainly addressed in the subsequent PIC simulations.

Vacuum heating

Compared to undercritical plasmas, a specific feature of overcritical plasmas (of density
ne � ncr) is to cause significant reflection of the incoming laser wave. The superimposition
of the incoming and reflected waves yields the following standing wave in front of the
plasma (x < 0),

a = 2aL cos (ω0t) sin (ω0x/c) , (4.16)

eEy
meω0c

= 2aL sin (ω0t) sin (ω0x/c) , (4.17)

eBz
meω0

= 2aL cos (ω0t) cos (ω0x/c) , (4.18)

where perfect reflection is assumed for simplicity. All fields vanish in the plasma (x > 0),
i.e., we neglect the finite size of the skin layer (∼ c/ωp � λ0), where the laser field decays
exponentially, as well as the electron-depleted layer induced by the laser ponderomotive
force (Sanz et al., 2012). The above relations express the well-known result that the laser
electric field is zero at the surface of a perfect conductor, whereas the laser magnetic
field is locally maximized, up to twice its vacuum value ∝ 2aL. The dynamics of test
plasma electrons injected with a finite momentum p0 into this standing wave (including
the skin layer) was investigated by Bauer and Mulser (2007). In the 1D geometry under
consideration, the electron motion is ruled by Eq. (4.1), which can be recast as

dpx
dt

= mecω0
a2
L

γ

{
sin (2ω0x/c) [1− cos (2ω0t)] if x < 0
0 if x > 0

(4.19)

where γ =
√

1 + (px/mec)2 + a2 and assuming p⊥0 = 0. It was found that low-energy
electrons (with initial longitudinal velocity |vx/c| .

√
aLnc/ne0) are ponderomotively

reflected in the skin layer. Their non-adiabatic interaction with the evanescent oscillating
laser field gives rise to the so-called skin-depth heating, related to the j × B heating
mechanism of Kruer and Estabrook (1985). Most notably, the largest energy gain occurs
in vacuum, provided the electron is fast enough to overcome the ponderomotive potential
barrier at the plasma boundary, and approaches the Ey antinode at x = −λ0/4. The
electron can thus be efficiently accelerated, before being rotated back into the plasma by
the magnetic field. Such vacuum heating lasts about half a laser period, resulting in the
injection of high-energy electron jets into the plasma at twice the laser frequency. When
the initial longitudinal electron momentum is such that |px| & mecaL, the electron can
move beyond the first Ey maximum, and thus interacts stochastically with the standing
wave over an extended duration. This mechanism, though, becomes significant only for
relatively long interactions (Kemp et al., 2014).

The vacuum heating induced at laser intensities > 1020 Wcm−2 was further examined
by May et al. (2011). They showed that in order to experience the Ey antinode in its
maximum phase, the electron (moving at ∼ c) must leave the plasma at a time when the
surface Bz field is still significant (albeit decreasing in absolute value). If the electron has
a low transverse momentum, it will be rotated over a Larmor radius rL ∼ p/(aLmeω0)�
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λ0/4, and will gain little energy. If, by contrast, it has a large transverse momentum,
then it can be deflected normal to the surface, and make a ‘large’ excursion in vacuum.
After being accelerated by Ey (with a transverse momentum gain δpy ' 2mecaL), it is
rotated back to the plasma by Bz, whose sign has reversed meanwhile, with a longitudinal
momentum px . δpy ' 2mecaL.

To illustrate this mechanism, we have performed a 2D PIC simulation under conditions
similar to those in May et al. (2011). We have considered a LP laser wave with a flat
temporal profile of field strength aL = 10, reached after a rise time of two laser cycles.
The overcritical plasma has a sharp interface, an initial density of 100nc and an initial
temperature of 75 keV. Figs. 4.1(a-d) evidence this mechanism with a zoom on the electron
phase space 4.2 fs after the pulse maximum has hit the target. The accelerated bunches of
electrons can be seen in Fig. 4.1(a) and (c) in the x − px phase space of electrons. They
have a 2ω0 spacing, similarly to what is observed in the ponderomotive heating. One
note, however, that this heating takes place in the vacuum in front of the plasma (vacuum
heating Bauer and Mulser (2007)) and not in the plasma, contrary to the ponderomotive
heating. Another difference with the ponderomotive heating is that we assumed that
the fields are perfectly reflected on the surface whereas for ponderomotive heating, it is
evanescent in the plasma skin depth. The two instants selected to depict this mechanism
show its dynamic. At time t = 4.2 fs, the electric field Ey on the plasma surface is high
whereas the magnetic field Bz is rather weak. In this first phase, electrons are accelerated
by Ey and weakly deflected by Bz, as observed in their px − py phase space displayed in
Fig. 4.1(b). At time t = 4.2+0.5 fs the Bz field is now higher contrary to the Ey field which
amplitude decreased. Electrons are therefore strongly deflected by Bz and experience a
weak acceleration by Ey such that they are directed from the vacuum back toward the
plasma surface, as seen in the px − py phase space displayed in Fig. 4.1(d).

Figure 4.1: Top row: illustration at time t = 4.2 fs of the electron phase space (a) (x, px)
and (b) (px, py). Bottom row: illustration at time t = 4.2 + 0.5 fs of the electron phase
space (c) (x, px) and (d) (px, py). The y-averaged magnetic and electric fields forming
the standing wave are superimposed (resp. blue and green curves). The laser amplitude
is aL = 10, the plasma has an initial thermal distribution of 75 keV and its density is
ne0/nc = 100.
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Electron preheating and injection

The above vacuum heating requires some level of electron preheating for efficient injection
into the standing wave. It also requires non-exact conservation of the transverse canon-
ical momentum; otherwise the electrons would keep their initial (low) thermal p⊥0, and
vacuum heating would be greatly weakened at high field strengths.

Among the possible preheating mechanisms are the aforementioned skin layer (or J×B)
heating (Kruer and Estabrook, 1985; Bauer and Mulser, 2007) or, more importantly, the
laser-driven 2ω0 oscillation of the plasma electron boundary. This piston-type motion
results from the interplay of the oscillating laser ponderomotive force and the charge-
separation longitudinal electric field (Gonoskov et al., 2011; Sanz et al., 2012). At laser
intensities high enough that the oscillation amplitude of the plasma boundary is of the or-
der of the plasma skin depth, the electrostatic field is capable of injecting electron bunches
into the standing wave with longitudinal momenta well in excess of the thermal level. Fur-
ther plasma heating can proceed through wave breaking in the skin layer and multi-stream
instabilities between the vacuum-accelerated jets and the plasma return current (Debayle
et al., 2013; Kemp and Divol, 2016).

The interaction geometry ceases to be transversely invariant as soon as a focused laser
wave is considered. The transverse intensity gradient induces a curvature of the plasma
electron boundary; as a result, the laser electric field develops a component normal to the
boundary, which can directly pull the surface electrons into the vacuum (Brunel, 1987).
More importanty, a variety of processes, ranging from the electron Weibel filamentation
instability (Adam et al., 2006) to the Rayleigh-Taylor instability (Eliasson, 2015) and the
oscillating two-stream instability (Wan et al., 2016), can rapidly (over a few laser periods)
trigger short-scale (& 1µm) transverse modulations of the plasma surface. Not only does
this ‘rippling’ of the plasma surface greatly affect, through strong quasistatic electric
and magnetic fields, the trajectories of the accelerated electrons–thus accounting for the
effective large divergence of the hot electron distribution (Adam et al., 2006; Debayle et al.,
2010)–, it also results in a strong isotropic heating (up to 10-100s of keV) of the bulk plasma
(May et al., 2011; Kemp et al., 2014), thus providing the desired hot reservoir for further
acceleration in vacuum. Note that the target surface can also get rapidly modulated under
the action of a CP pulse, hence enhancing the subsequent electron heating, in a manner
essentially independent of the laser polarization (Kemp et al., 2014).

4.1.5 Ion acceleration in overcritical plasmas

The laser acceleration of high-energy electrons naturally gives rise to charge separation
fields at the target boundaries. For not-so-intense (. 1020 Wcm−2), relatively long du-
ration (∼ 1 ps) laser pulses, the strongest electrostatic fields are generally produced at
the target backside following the fast electrons’ breakout into vacuum. By contrast, for
ultraintense (> 1020 Wcm−2), short pulse (. 100 fs) lasers, the electrostatic field pondero-
motively induced at the irradiated side is the dominant one. Both fields lead to acceleration
of the local ions, the efficiency of which depends on the fields’ distribution and duration as
well as on the target geometry. The properties of the main ion acceleration mechanisms,
based on either the fast-electron-induced sheath field or the laser ponderomotive force, are
presented in the following section. More thorough reviews can be found in Daido et al.
(2012) and Macchi et al. (2013).
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Target Normal Sheath Acceleration

The high-energy electrons generated by intense laser pulses in dense targets can propagate
over large distances (> 100µm) compared to the usual µm (or less) scale target thickness.
When breaking out through the target boundaries, they induce a charge separation field,
normal to the surface and of typical strength Ex ≈ Th/eλDh ≈

√
Thnh/ε0 (where Th ∼

mec
2aL is the typical temperature of the fast electrons, λDh =

√
ε0Th/e2nh is their Debye

length and nh their density). This sheath field reflects the fast electrons over a distance
∼ λDh, causing them to recirculate across the target. Importantly, it is capable of ionizing
the surface ions (if located on the non-illuminated backside) and accelerating them to
MeV-range energies, a process known as target normal sheath acceleration (TNSA) (Wilks
et al., 2001). Due to their high Z/A ratio, the protons (initially contained in the target
bulk or in the form of contaminants on the target surfaces) react fastest to the sheath field
and acquire the highest velocities.

TNSA can be modeled similarly to the expansion of a hot plasma. This classical
problem is usually formulated using standard fluid equations for the ions (of mass mi

and charge Z), and assuming that fast electrons obey a Boltzmann distribution (Gurevich
et al., 1966):

nh = nh0 exp (eΦ/Th) , (4.20)

ε0
∂2Φ

∂x2
= e (ne − Zni) , (4.21)(

∂

∂t
+ vi

∂

∂x

)
ni = −ni

∂vi
∂x

, (4.22)(
∂

∂t
+ vi

∂

∂x

)
vi = −Ze

mi

∂Φ

∂x
. (4.23)

For simplicity, we have considered that the system comprises a single (hot) electron
species, whereas in most situations only a limited fraction of the plasma electrons are
laser-accelerated, so that the contribution of the thermal bulk electrons should also be
taken into account (Diaw and Mora, 2011; Diaw and Mora, 2012; Lécz et al., 2013). If
one assumes that quasineutrality (nh ≈ Zni) holds everywhere, the following self-similar
solution can be derived:

nh ≈ Zni = nh0 exp (−x/cst− 1) , (4.24)

vi = cs + x/t , (4.25)

Ess = −∂Φ/∂x = Th/ecst , (4.26)

with cs =
√
ZTh/mi denoting the ion sound velocity. This solution is represented in

Fig. 4.2.
Yet, the quasineutrality approximation at the heart of the self-similar solution breaks

down around the ion front where the density gradient scale-length (∼ cst) becomes shorter
than the Debye length. This problem was tackled by Mora (2003) who numerically solved
the equations of motion for the ions, coupled with the nonlinear Poisson equation (4.21)
assuming isothermal electrons. He found that the electric field presents a local maximum
at the ion front, which is well described by the best-fitting formula

Ex =
2(Thnh/ε0)1/2

[2e1 + (ωpit)2]1/2
, (4.27)
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Figure 4.2: Ion density and velocity profiles as predicted by the self-similar solution of
Eqs. (4.20)-(4.23). The plasma initially extends in the x < 0 half-space. The locations
of the rarefaction wave (x = −cst) and of the ion front (x = xf ) are indicated. Note
that the latter, where quasineutrality is not fulfilled, is not properly described by the self-
similar solution (Mora, 2003). Due to quasineutrality, the self-similar electric field (Ess)
is uniform in the region −cst ≤ x ≤ xf (t).

resulting into the following ion front velocity

vf,is = 2cs ln

[
ωpit/

√
2e1 +

√
1 + (ωpit)2/2e1

]
. (4.28)

The nonphysical logarithmic divergence of vf,is stems from a number of assumptions,
including that (i) of a 1D geometry, valid insofar as the ion front displacement is shorter
than the transverse width of the electric field distribution (Brantov et al., 2015), and
(ii) that of a constant electron temperature (despite the continuous energy transfer from
the electrons to the ions). The latter hypothesis involves either an idealized semi-infinite
plasma or, in a more realistic scenario, that, after laser extinction, the rarefaction wave
launched inward at the sound velocity has not swept through the entire target thickness (l).
This implies an acceleration time tacc . l/2cs; later on, the electrons start cooling down
adiabatically, with Th ∼ t−2 (resp. t−1) in the relativistic (resp. ultrarelativistic) case.
The problem of 1D TNSA in a finite size target has been addressed in Mora (2005) (and
in Grismayer et al. (2008) using a more elaborate kinetic description for the electrons).
The main difference with the isothermal expansion regime is that, due to the bounded
electron energy, the ion front velocity saturates at the approximate value

vf,ad = 2cs ln (0.32l/λDh + 4.2) , (4.29)

where the sound velocity cs and Debye length λDh are now determined by the initial
electron temperature Th0 and density nh0. This formula also applies in the case of two
(hot and cold) electron plasma species. Acceleration models interpolating between the
isothermal and adiabatic regimes and including a simple description of multidimensional
effects have been recently proposed in Brantov et al. (2015) and Ferri et al. (2018).

It should be remarked that both Eqs. (4.28) and (4.29) predict a Th scaling of the
maximum proton energy. Assuming that the hot electron distribution obeys the pondero-

motive law, one expects a ∼ I1/2
0 dependence of the maximum proton energy, as observed

experimentally (Fuchs et al., 2006; Robson et al., 2007). Note also that TNSA generates
broad ion energy spectra, typically exponentially decaying (Macchi et al., 2013). Finally,
as shown in Mishra et al. (2018), TNSA can be maximized in targets that turn transparent
(as a result of TNSA in the rising phase of the laser) near the laser peak: the electrons are
then volumetrically re-heated, thus enhancing the sheath field and the final ion energies.
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Radiative pressure acceleration

At the ultrahigh laser intensities considered in this work, ion acceleration can also, and
often preferentially, take place in the charge separation layer ponderomotively induced
at the target front side. Although this so-called radiation pressure acceleration (RPA)
works best for CP pulses at given laser intensity (Macchi et al., 2005; Robinson et al.,
2008; Klimo et al., 2008), as the associated weak electron pressure does not oppose the
radiation pressure (this holds before the target surface becomes rippled and differences in
laser polarization level off), it also operates with LP pulses, in which case it can dominate
TNSA at ultrahigh intensities (Esirkepov et al., 2006) and/or nanometric targets (Qiao
et al., 2012; Kim et al., 2013).

Figure 4.3: Schematic of RPA before ion motion. The ion density (green), electron density
(blue), longitudinal electric field (red) and absolute value of the laser’s potential vector are
plotted at the initial stage. The origin O corresponds to the initial ion boundary, while
labels A and B indicate the boundaries of compressed electron layer

Figure 4.3 shows a sketch of the plasma density and field profiles at the target front
side leading to RPA at the target front side (Macchi et al., 2005). At normal incidence the
laser’s ponderomotive force pushes the surface electrons to form a thin compressed layer
of thickness close to the skin layer ls = c/ωp (segment AB), leaving behind an ion layer
(segment OA) of thickness li, embedded in a linearly increasing longitudinal electrostatic
field Ex = Ex0x/li. The thickness li can be estimated assuming quasi-equilibrium between
the radiation pressure, Prad = 2I0/c (provided the laser reflection R ∼ 1), and the electro-
static pressure Pelec = ε0E

2
x0/2 = (ene0li)

2/2ε0, and hence li ' 2(ε0I0/c)
1/2/en0 ∝ aL/ne0.

Here complete electron depletion is considered in the ion layer, which is well verified for
CP pulses, but less so for LP pulses due to hot electrons escaping into vacuum. Since, to
first approximation, the electrostatic field is constant over each ion trajectory, the density
of this front layer progressively drop, forming a dilute ‘tail’ of trailing ions. For LP pulses,
hot electrons flowing from the dense plasma into this region will further trigger TNSA
towards vacuum (Macchi et al., 2005).

By contrast, the ions located in the compressed electron layer (AB) see a linearly
decreasing electrostatic field, which accelerates them so that they all reach point B a the
same time t = (2mils/ZEx0)1/2, with a mean velocity (Macchi et al., 2005)

vp = (ZeEx0ls/2mi)
1/2 ≈ (ZI0/mine0c)

1/2 . (4.30)

There follows an ion bunch injected at twice the above velocity into the inner plasma
region, through which, thanks to charge neutralization by the ambient electrons, it subse-
quently propagates ballistically. This process repeats itself as long as the laser irradiation

105



Chapter 4. High-energy radiation in ultra-relativistic laser-solid interactions

is maintained, resulting, on average, in a pistonlike push of the plasma boundary at the
constant velocity vp ∝ aL(Z/mine0)1/2.

The above microscopic picture (Macchi et al., 2005) can be given a simple macroscopic
description by expressing the balance between the radiation pressure and the particle
momentum flux in the rest frame of the laser piston (Wilks et al., 1992). In a general
relativistic framework (Robinson et al., 2009), this condition reads

2I ′0/c =
1− βp
1 + βp

I0 = 2cβp
(
n′ip
′
i + n′ep

′
e

)
= 2ρc2β2

pγ
2
p , (4.31)

where primed quantities are measured in the piston frame of normalized velocity βp = vp/c
and Lorentz factor γp. The second expression above represents the relativistically Doppler-
shifted radiation pressure. The expression of the particle momentum flux on the right-hand
side assumes charge neutrality in the unperturbed upstream plasma (n′e = Zn′i = Zγpni),
and we have introduced the mass density ρ = mini. The piston velocity can be readily
solved as (Robinson et al., 2009)

βp =
B

1 +B
, (4.32)

with B =
√
I0/ρc3 = aL

√
α (nc/ni) (me/mi) (α = 1/2 or 1 depending on the linear or

circular polarisation of the laser). In the nonrelativistic regime, one recovers the above
relation (4.30). The ions specularly reflected off the piston reach the maximum velocity

βi =
2βp

1 + β2
p

, (4.33)

corresponding to a kinetic energy

εi = mic
2

(
1 + β2

p

1− β2
p

− 1

)
= mic

2 2B2

1 + 2B
. (4.34)

The nonrelativistic RPA mechanism is therefore characterized by a ∝ I0/ni scaling of
the ion energy, which makes it possibly more efficient than TNSA (∝

√
I0) provided the

target density is sufficiently low (yet still overcritical) and the electron thermal pressure
is superseded by the radiation pressure. For CP pulses, RPA leads to peaked ion energy
spectra, which are strongly broadened when using LP pulses due to TNSA effects and
laser-induced oscillations of the piston (Schlegel et al., 2009). At ultrahigh laser inten-
sities, electron cooling around the target front due to synchrotron-type radiation tends
to decrease the dispersion of the ion spectrum but also its maximum energy (Tamburini
et al., 2010). Finally, it should be noted that, in a multidimensional geometry and for a
finite laser spot, the laser-driven piston acquires a curvature due to the transverse intensity
gradient, leading to hole boring (HB) of the surface ions. As a result, the notions of HB
and RPA are often employed interchangeably.

Light sail acceleration

If the target subject to RPA is thin enough that the laser piston reaches its backside before
the end of the laser pulse (i.e., vpτ0 > l), then the target as a whole gets accelerated in the
so-called light sail acceleration (LSA) regime (Esirkepov et al., 2004; Robinson et al., 2008;
Macchi et al., 2009). In the case of LP pulses, this process implies that the piston overtakes
the backside ions expanding through TNSA, i.e., vp > vf,is(l/vp), where vf,is is given by
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Eq. (4.28) (Qiao et al., 2012). For typical values I0 ≈ 1022 Wcm−2 and ne0 = 100–1000nc,
this necessitates target foils of a few 10 nm thick.

In the LSA regime, the equation of motion of the coherently accelerated target ions
obeys the following equation Marx (1966)

d

dt
(γiβi) =

2

σc2
I (t− xi/c)

1− βi
1 + βi

, (4.35)

d

dt
xi = βic , (4.36)

where σ = minil is the areal mass density. The right-hand side term in Eq. (4.35) is the
force deriving from the EM radiative pressure. An analytical solution can be derived for
a constant intensity profile I(x, t) = I0 (Simmons and McInnes, 1993), which presents the
following limiting expressions:

γi (t) ≈
{

1 + 4(Ωt)2 if Ωt� 1

(3Ωt/4)1/3 if Ωt� 1
(4.37)

where Ω = 2I0/σc
2. Therefore, contrary to RPA, the ion energy increases with time in the

LSA regime. This feature renders this mechanism very appealing provided the integrity
of the target is maintained until the laser peak, which implies stringent conditions on the
laser temporal contrast. In addition, the electron density should be sufficiently high to
ensure opacity (Vshivkov et al., 1998):

ne0
nc

l

λ0
& aL/π , (4.38)

This criterion is easily understood by realizing that, in order to reflect the incoming
light, the maximum transverse electric field that can be induced by the relativistic target
electrons (∝ ne0l) should exceed the laser field strength (∝ aL). A number of simulation
studies (Esirkepov et al., 2006; Macchi et al., 2009; Brantov et al., 2015) suggest that the
condition (ne0l)/(ncλ0) ≈ aL/π is optimal in terms of ion acceleration, although, in the
case of LP pulses, it may then proceed through a mix of LSA and TNSA, rather than
through pure LSA. Furthermore, LSA is susceptible to fast-growing, Rayleigh-Taylor-like
corrugation instabilities that may destroy the foil and precipitate the onset of relativistic
transparency (Yan et al., 2008; Eliasson, 2015). Using a sharp-rise laser pulse can help
stabilize the foil acceleration (Pegoraro and Bulanov, 2007). Recent efforts in modeling
and improving LSA have been reviewed in Macchi (2014) and Macchi et al. (2017).

4.2 Laser-induced synchrotron radiation in uniform plasmas
of varying density

In this section, we report on a series of 2D calder PIC simulations of synchrotron ra-
diation from uniform plasmas driven at ultrahigh laser intensity. Our main purpose is
to identify distinct, density-dependent regimes of synchrotron emission, in light of which
the integrated synchrotron/Bremsstrahlung simulations of Sec. 4.3 will be analyzed. Our
results will also be confronted to previously published studies (Ridgers et al., 2012; Brady
et al., 2012, 2014; Chang et al., 2017).

The laser pulse is modeled as an EM plane wave of peak intensity I0 = 1022 Wcm−2

(aL = 85) and wavelength λ0 = 1µm, propagating in the +x direction and linearly
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Section Plasma density Plasma length Temporal profile of the plane wave

l =∞µm 2-cycles linear rise + infinite-plateau
Sec. 4.2.1 ne/nc = 16 l =∞µm Gaussian with a 30 fs FWHM

(3 simulations) l = 1µm Gaussian with a 30 fs FWHM

l =∞µm 2-cycles linear rise + infinite-plateau
Sec. 4.2.2 ne/nc = 40 l =∞µm Gaussian with a 30 fs FWHM

(3 simulations) l = 1µm Gaussian with a 30 fs FWHM

l =∞µm 2-cycles linear rise + infinite-plateau
Sec. 4.2.2 ne/nc = 100 l =∞µm Gaussian with a 30 fs FWHM

(3 simulations) l = 1µm Gaussian with a 30 fs FWHM

Table 4.1: List of parameters changed in the simulations performed in this section. All
other parameters are detailed in the text

polarized along the y axis. Unless otherwise stated, it has a constant temporal profile,
preceded by a two-cycle-long (6.6 fs) linear ramp. The irradiated plasma is made of fully
ionized carbon ions and electrons of uniform density varying in the range 17 ≤ ne0 ≤ 100nc.
The steep-gradient front plasma boundary is located at x = 16µm. The time at which the
laser peak hits the target boundary is taken to be the time origin t = 0. The simulations
are run over a time scale (t ' 100 − 200 fs) too short for the laser to reach the rear
plasma boundary, so that the target can be considered as semi-infinite. The 2D domain
comprises 4800× 400 cells, with mesh size ∆x = ∆y = λ0/60 and time step ∆t = 0.6∆x.
Each cell initially contains 10 particle per plasma species. Modules describing (classical
and quantum) synchrotron radiation and Coulomb collisions are activated. Boundary
conditions for both fields and particles are taken to be absorbing in the x direction and
periodic in the y direction.

Since we run 2D simulations, all quantities describing the spectral properties of the
photons are obtained per unit length of the third dimension z (m) but are normalized
per µm of transverse direction. This choice is convenient since the usual focal spots of
such lasers have a few microns length. For example in Fig. 4.4(a), the ordinate axis is
in J/fs but corresponds to J/fs/µm of transverse direction. Similarly in Fig. 4.4(b), the
ordinate axis is in J/MeV/rad but corresponds to J/MeV/rad/µm of transverse direction.
In Fig. 4.6(b), the ordinate axis is in J/rad but corresponds to J/rad/µm. The same
rule applies for all figures representing spectral properties of the photons in the following
sections of this chapter.

4.2.1 Synchrotron emission in relativistically undercritical plasmas

Let us first address the case of a relativistically undercritical plasma of density ne0 = 17nc
(i.e., ne0/aLnc = 0.2). The temporal evolution of the total radiated power is plotted in
Fig. 4.4(a). The overall trend is that of an approximately linear increase with time, as
expected from the increasing plasma area covered by the laser wave (see below). Also
visible are fluctuations of typical time scale ∼ 5 − 10 fs. The associated angle-energy
spectrum of the radiated energy is displayed in Fig. 4.4(b). The photon energy distribution
is characterized by a quasiplateau extending up to a few MeV energies and cutoff energies
of ∼ 100 MeV. The photon angular distribution is broad and mainly concentrated in the
backward direction (θγ > π/2), but a weaker local maximum (about twice lower than the
backward maximum) is also visible in the forward direction (θγ ≈ 0.3).

In order to shed light on the emission mechanism, we superimpose in Figs. 4.5(a,b)
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Figure 4.4: Simulation with a semi-infinite, ne0 = 17nc density plasma and a uniform
laser wave. (a) Time history of the total radiated power; (b) Angle-energy spectrum of
the radiated energy.

the x− px (a) and x− py (b) electron phase spaces (integrated along y) and a lineout of
the radiated power density (Pγ) at t = 36 fs. Moreover, we plot in Fig. 4.5(c) lineouts of
the transverse electric field (Ey), of the longitudinal electrostatic field (〈Ex〉) and of the
electron (ne) charge density. The emission is seen to take place over the whole irradiated
plasma region, in which the electrons have been accelerated to ultrarelativistic (both
longitudinal and transverse) momenta. The x−px phase space exhibits the usual forward-
moving, high-energy (up to px/mec ≈ 500) electron jets spatially modulated at λ0/2,
but also a denser, electron return current accelerated at |px|/mec ≈ 100 − 200. Those
counterstreaming electrons are first pushed forward in the rising edge of the laser before
getting pulled back by the charge separation field, as observed in Debayle et al. (2017).
The laser front moves at a velocity vf/c ∼ 0.47; This value is consistent, yet smaller than
formula (4.15), probably as a result of mobile ions that favor electron compression (up to
ne ∼ 40nc) at the laser head. Transverse electron momenta as high as |py/mec| ≈ 300
are observed in Fig. 4.5(b), which may seem surprising since one expects |py| ≤ aL for an
EM planar wave. In the present case, however, the EM profile is subject to transverse
modulations (not shown), leading to local field maxima |Bz| ≈ 120meω0/e, so that the
transverse canonical momentum is no longer conserved.

Interestingly, the return-current px profile presents anharmonic oscillations at λmod ≈
1.5λ0, resulting in strong density modulations (ne & 30nc) inside the laser pulse. The
related maxima in |px|, when coinciding with Ey extrema, yield peaks in the radiated
power density, which correspond to the ∼ 5 fs time scale fluctuations seen in Fig. 4.4(a)
around t = 36 fs. This is expected as those high-energy counterstreaming electrons are
those optimizing the quantum parameter χe = γ(1 − vx/c)a~ω0/mec

2 ≈ 2γa~ω0/mec
2

(for purely counterstreaming electrons), resulting in a backward-directed radiated power
Prad = (2/3)α(mec

2)2χ2
e/~ ≈ (8/3)(reω0/c)ω0mec

2(γa)2, with re being the classical elec-
tron radius, and assuming negligible quantum corrections Kirk et al. (2009). The large py
momenta of the counterstreaming electrons account for the extended emission lobe seen
in Fig. 4.4(b). This emission scenario, hinging on the electrons injected back into the
EM wave at the laser front, was first investigated by Brady et al. (2012, 2014), where
it was termed re-injected electron synchrotron emission (RESE), and found to yield the
largest radiation yield at I0 & 1022 Wcm−2. The overall description provided in those
works is consistent with our results, except regarding the quantitative estimate of the
radiation burst time scale. This time was interpreted as that needed for the compressed
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Figure 4.5: Simulation with a semi-infinite, ne0 = 17nc density plasma and a uniform laser
wave. (a) x − px and (b) x − py electron phase spaces integrated in the y direction. A
lineout at y = 0 of the radiation power density Pγ is overlaid in black. (c) Lineouts at
y = 0 of the Ey electric field (blue), of the laser cycle-averaged Ex electric field (green),
of the electron density ne (purple) and of the radiated power density Pγ (black). The
vertical dashed line locates the front plasma boundary. (d) px − py electron distribution
integrated over the whole box. All quantities are recorded at t = 36 fs after the on-target
laser peak. Pγ is plotted in arbitrary units in the three figures.

electrons at the laser front to build up an electrostatic field (Ex ≈ ene0ct/ε0) exceed-
ing the v × B ∝ aL force, thus reflecting them toward the laser source. This reason-
ing yields a ‘breakdown time’, τbd = aL(nc/ne0)ω−1

0 . Under the present conditions we
have cτbd ≈ 0.8µm, significantly smaller than the observed spacing of the Pγ bursts in
Fig. 4.4(a). Rather, we propose the following simple explanation for the modulations af-
fecting the px < 0 hot electrons. Let us consider their motion in the rest frame of the
laser front, in which the Doppler-shifted laser frequency is ω′0 = ω0

√
(1− vf/c)/(1 + vf/c)

(assuming k0 ≈ ω0/c). The electrons impinging on the laser front from the unperturbed
plasma experience the 2ω′0-oscillating component of the ponderomotive force while being
successively slowed down and injected downstream at vx ≈ −c. As a result, a current
modulation is induced with wavenumber k′mod = −2ω′0/c. In the laboratory frame, this
wavenumber becomes kmod = −2γf (1 − vf/c)ω′0/c = −2[(1 − vf/c)/(1 + vf/c)]ω0/c, cor-
responding to a wavelength

λmod = [(1 + vf/c)/(1− vf/c)]λ0/2 . (4.39)

In the present case, where vf/c = 0.47, one expects λmod ≈ 1.4µm, in good agreement
with the simulation.

The observation that the radiation is mainly backward directed and emitted as bursts
throughout the irradiated region allows for a rough estimate of the total radiation yield:

ηγ = ξ
Pγnh<vf t

I0
=

16

3

e2

4πmec2
ξ
(ω0

c

)2 nh<
nc
〈γ〉2vf t , (4.40)
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Figure 4.6: Simulations with a ne0 = 17nc density plasma and a τ0 = 30 fs Gaussian laser
pulse. (a) Time history of the radiated power; (b) angular distribution of the radiated
energy. The blue (resp. green) curves correspond to a semi-infinite (resp. 1µm thick)
plasma.

where we have introduced nh< the density of the px < 0 hot electrons, and ξ the ratio of
the burst length to its spacing λ. Further assuming a mean electron energy 〈γ〉 ≈ aL gives

ηγ ≈ κξ
ω0

c

nh<
nc

a2
Lvf t , (4.41)

with κ = (16/3)(e2/mec
2)(ω0/c) = 9.44 × 10−8. Taking vf ≈ 0.5c, nh< = ne0/2 and

ξ = 0.1 leads to ηγ ≈ 0.08 at t = 150 fs. This value is consistent, yet about half lower
than the PIC-predicted value ηγ ≈ 0.17. This difference is attributed to uncertainties in
the estimation of 〈γ〉2 and to nonnegligible radiation from the high-energy px electrons
interacting with the light reflected off the laser front.

We have repeated the same simulation with a Gaussian laser pulse of FWHM duration
τ0 = 30 fs, impinging onto either a semi-infinite or 1µm thick C6+ plasma of electron
density ne0 = 17nc. The results obtained are displayed in Figs. 4.6-4.8.

Figure 4.7: Simulations with a ne0 = 17nc density plasma and a 30 fs laser pulse. Time
history of the angle-resolved spectrum of the synchrotron radiated energy for (a) a semi-
infinite plasma and (b) a 1µm thick plasma.

The case of a semi-infinite plasma yields a radiation spectrum consistent with that
observed at early times with a constant laser drive. The radiated power at the pulse
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Figure 4.8: Simulation with a 1µm thick, ne0 = 17nc density plasma and a 30 fs Gaussian
laser pulse. (a) x− px and (b) x− py electron phase spaces integrated in the y direction.
A lineout at y = 0 of the radiation power density Pγ is overlaid in black. (c) Lineouts at
y = 0 of the Ey electric field (blue), of the laser cycle-averaged Ex electric field (green), of
the electron density ne (purple) and of the radiated power density Pγ (black). The vertical
dashed lines locates the plasma boundaries. All quantities are recorded at t = 24 fs after
the on-target laser peak. Pγ is plotted in arbitrary units in the three figures.

maximum [Fig. 4.6(a)] is close to that measured at t ≈ 30 fs in Fig. 4.4(a), and the
angular spectrum similarly features a dominant, backward-directed broad emission lobe,
alongside a narrower and weaker forward-directed component [Fig. 4.6(b)]. The radiated
power, however, happens to rapidly drop after t ≈ 40 fs, as also evidenced by the time
evolution of the angle-resolved power spectrum [Fig. 4.7(a)]. One can see that, at late times
(t & 50 fs), the angular spectrum develops a single maximum in the transverse direction
(θγ ≈ π/2). This behavior is ascribed to the energy depletion of the laser pulse as it
propagates through the plasma, which leads to near-transparency interaction conditions
and enhances transverse emission (see below).

When considering a plasma of thickness l = 1µm, the radiated power is reduced by a
factor of ∼ 6.5. Such a drop is consistent with the scaling expected by substituting l for
vf t into Eq. (4.41), vfτ0/l ≈ 5. The main difference with the previous cases concerns the
angular distribution, which presents a much narrower emission lobe centered at θγ = π [see
Figs. 4.6(b) and 4.7(b)]. The reason for this is the rapid expansion of the heated plasma:
Figure 4.8(c) shows that, by t = 24 fs, the electron distribution is already extending over
a length > 10µm. Besides, λ0/2-periodic density modulations are driven by the laser
ponderomotive force, yielding density peaks where the ponderomotive force vanishes, i.e.,
where ∂xA ∼ Bz = 0. The radiation is localized in the ∼ 5µm-long denser plasma
region, of average density ne ∼ 1 − 5nc. The radiated power density shows a regular
pattern with a periodicity of λ0/2. The radiation peaks are correlated with the maxima
of |Ey| (or, equivalently |Bz| as, due to very weak laser reflection, the approximation of
an EM propagating wave applies). To a larger extent than in the previous simulations,
the emission is caused by the high-energy px < 0 electrons refluxing across the expanding
plasma, for which χe ∼ 2γ|Ey|. The higher-energy px > 0 electrons hardly contribute to
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Figure 4.9: Simulation with a semi-infinite ne0 = 40nc density plasma and a uniform
laser wave. (a) Time history of the total synchrotron radiated power; (b) Angle-energy
spectrum of the synchrotron radiated energy.

the radiation because there is no significant laser reflection; this explains the vanishing
forward directed spectrum in 4.7(b).

4.2.2 Synchrotron emission in overcritical plasmas

Figure 4.10: Simulation with a semi-infinite, ne0 = 40nc density plasma and a uniform
laser wave. (a) x− px and (b) x− py electron phase spaces integrated in the y direction.
A lineout at y = 0 of the radiation power density Pγ is overlaid in black. (c) Lineouts at
y = 0 of the Ey electric field (blue), of the laser cycle-averaged Ex electric field (green), of
the electron density ne (purple) and of the radiated power density Pγ (black). The vertical
dashed lines locates the plasma boundaries. All quantities are recorded at t = 36 fs after
the on-target laser peak. Pγ is plotted in arbitrary units in the three figures.

We now address the photon emission in plasmas close or beyond the RSIT threshold.
As a first illustration, we consider a semi-infinite plasma of near-critical density ne0 = 40nc
(ne0/aLnc = 0.5). Figure 4.9(a) shows that the total radiated power increases with time
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Figure 4.11: Simulations with a ne0 = 40nc density plasma and a τ0 = 30 fs Gaussian laser
pulse. (a) Time history of the synchrotron radiated power; (b) angular distribution of the
synchrotron radiated energy. The blue (resp. green) curves correspond to a semi-infinite
(resp. 1µm thick) plasma.

at essentially the same rate as for ne0 = 17nc [Fig. 4.4(a)]. The photon energy spectrum
remains relatively flat both in energy (up to a few MeV) and angle, yet now features a
broad angular maximum around θγ ∼ 1 [4.9(b)]. This emission regime corresponds to
the so-called transverse oscillating electron emission (TOEE) identified in Chang et al.
(2017). It should be remarked that this study considered a 2µm laser focal spot and only
reported on photon number spectra, which turn out to be more transversely directed than
the present energy spectra. This radiative behavior can be understood from the electron
phase spaces and field-density profiles displayed in Figs. 4.10(a)-(c) at t = 36 fs. The laser
front is then located at x ≈ 19µm, which corresponds to an effective propagation speed
vf/c ≈ 0.15. This value closely matches the laser piston velocity (4.32), suggesting that the
interaction has transitioned to a RPA-type regime. Figure 4.10(c), however, shows that
the laser piston remains largely porous to hot electrons, as clearly seen by the relatively
dense (ne . 30 − 40nc) electron population standing on the left of the compressed layer
(ne ≈ 100nc). This interaction regime corresponds to the incomplete HB identified in
Weng et al. (2012b) (neglecting radiation). The latter electron population experiences the
highest EM field, and presents a transverse momentum spread somewhat exceeding the
longitudinal one [compare Figs. 4.10(a) and (b)]. The λmod ≈ 0.8µm wavelength of the
px < 0 electron modulations is consistent with formula (4.39). The radiated power density
peaks just in front of the laser piston, where the oscillating electrons attain the largest
py momenta. The observed marginally forward emission points to the slightly dominant
interaction of the px > 0 electrons with the reflected light.

We now examine the changes brought about by employing a 30 fs duration pulse or
a 1µm thick plasma. As in the previous undercritical case, the radiated power curve
essentially follows the temporal profile of the pulse and is reduced (albeit less than at
ne0 = 17nc) when using a 1µm thick plasma. Also, while the semi-infinite plasma leads
to a broad angular spectrum [Fig. 4.12(a)], the thin plasma foil produces a more narrow,
backward (θγ ≈ π) emission lobe [Figs. 4.11(b) and 4.12(b)]. Again, this stems from the
rapid drop in the electron plasma density, allowing the laser pulse to shine through the
plasma slab [Fig. 4.13(c)]. This breakout results both from front-side RPA and back-
side TNSA, both processes being characterized by typical (laser piston or ion acoustic)
velocities vp ≈ cs ≈ 0.15c, leading to the onset of RSIT at t ≈ l/2vp ≈ 10 fs. Synchrotron
emission is then predominantly due to recirculating (at px ≈ −100mec) electrons in the
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Figure 4.12: Simulations with a ne0 = 40nc density plasma and a 30 fs laser pulse. Time
history of the angle-resolved spectrum of the synchrotron radiated energy for (a) a semi-
infinite plasma and (b) a 1µm thick plasma.

Figure 4.13: Simulation with a 1µm thick, ne0 = 40nc density plasma and a 30 fs Gaussian
laser pulse. (a) x− px and (b) x− py electron phase spaces integrated in the y direction.
A lineout at y = 0 of the radiation power density is overlaid in black. (c) Lineouts at
y = 0 of the Ey electric field (blue), of the laser cycle-averaged Ex electric field (green), of
the electron density ne (blue) and of the radiated power density Pγ (black). The vertical
dashed lines locates the plasma boundaries. All quantities are recorded at t = 11 fs after
the on-target laser peak. Pγ is plotted in arbitrary units in the three figures.

central part (ne ≈ 10− 30nc) of the volumetrically heated plasma. The resulting radiated
power density therefore still exhibits λ0/2-spaced modulations, correlated with the Ey (or
Bz) extrema of the incoming EM wave.

We now consider a plasma of electron density ne0/nc = 100 (i.e. ne/aLnc = 1.2).
Figure 4.14(a) shows that the total radiated power increases about linearly with time
while oscillating at 2ω0. As before, these oscillations are caused by the periodic expulsion
of energetic electrons from the (compressed) plasma boundary of electrons into the laser
field. At early times, the laser-electron interaction is ruled by vacuum heating, as described
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in Sec. 4.1.4. The electron phase spaces of Figs. 4.15(a,b,d) capture the instant (t = 4 fs)
when the electrons accelerated by the Ey component of the standing wave set up in vacuum
have acquired their maximum transverse momenta, and are being rotated by the Bz field
toward the plasma [as clearly seen in (d)]. The peak radiated power density is located just
in front of the steep plasma boundary [Fig. 4.15(c)], where Bz is at its highest and the
accelerated electrons are characterized by py ≈ 150mec � px & 0, leading to marginally
forward emission. The distorted Ey and Bz field profiles in vacuum are due to high-order
harmonic generation from the oscillating plasma surface (Gonoskov et al., 2011). Also, note
that the fluid model for synchrotron emission presented in Serebryakov et al. (2015) under
the present ne/aLnc ≈ 1 conditions assumes coherent motion of the compressed electron
layer, and so misses the essentially kinetic character of the electron vacuum heating.

Figure 4.14: Simulation with a semi-infinite, ne0 = 100nc density plasma and a uniform
laser wave. (a) Time history of the synchrotron radiated power; (b) angular distribution
of the synchrotron radiated energy.

At a later time (t = 36 fs), as the plasma temperature has strongly increased and
the plasma boundary (accelerated through RPA) has developed a longer scale-length den-
sity profile, the 2ω0 structuring of the high-energy electron phase space is still observed
[Figs. 4.16(a,b)]. The radiation, mainly due to px > 0 electrons, occurs in an enlarged
(' 0.3λ0 thick) region that encompasses part of the skin layer and the moderate-density
(ne ≈ 10nc) underdense plasma formed in front of it. The time-increasing length of the
effectively emitting plasma accounts for the observed linear rise in the radiated power
[Fig. 4.14(a)]. The overall emission is mainly contained in a broad forward cone extending
to backward angles [Fig. 4.14(b)].

Figures 4.17(a,b) and 4.18(a,b) display the time evolution of the radiated power and
of the angular radiation spectrum, obtained for a 30 fs laser pulse interacting with a semi-
infinite or 1µm thick plasma of 100nc density. In contrast to the previously discussed
undercritical or near-critical plasmas, the use of a thin plasma slab now leads to an in-
creased radiated energy. In addition, the associated angular spectrum shows two forward
and backward maxima, about symmetric relative to the transverse direction. The elec-
tron phase space and field profiles around the emission peak (t = 11 fs) are plotted in
Figs. 4.19(a)-(c). Contrary to the ne0 = 40nc plasma which, by then, has turned transpar-
ent to the laser light, the target here remains essentially opaque, resulting in a ∼ 200nc
peak density at the boundary of its compressed skin layer (x ≈ 17µm). The emission
therefore takes place in the ∼ 5 − 100nc density plasma shelf preceding the laser-driven
piston, where the quasi-standing EM wave is established. There it is caused, with similar
efficiencies, both by the forward- and backward-moving energetic electrons which, due to
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Figure 4.15: Simulation with a semi-infinite, ne0 = 100nc density plasma and a uniform
laser wave. a) x − px and (b) x − py electron phase spaces integrated in the y direction.
A lineout at y = 0 of the radiation power density Pγ is overlaid in black. (c) Lineouts at
y = 0 of the Ey electric field (blue), of the laser cycle-averaged Ex electric field (green),
of the electron density ne (purple) and of the radiated power density Pγ (black). The
vertical dashed lines locates the plasma boundaries. (d) px − py electron distribution. All
quantities are recorded at t = 4 fs after the on-target laser peak. Pγ is plotted in arbitrary
units in the three figures.

Figure 4.16: Same as Fig. 4.15 but at t = 36 fs after the on-target laser peak.

electrostatic confinement, recirculate across the expanding target. Owing to nonexistent
hot-electron recirculation (and hence to a reduced electron kinetic pressure), the case of
a semi-infinite plasma leads to a steeper-gradient, denser plasma boundary (ne ≈ 400nc,
not shown), inside which the electrons are driven to lower energies (|px|/mec . 250 vs.
|px|/mec . 400). Synchrotron emission is then maximized at forward angles [Figs. 4.17(b)
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Figure 4.17: Simulations with a ne0 = 100nc density plasma and a τ0 = 30 fs Gaussian laser
pulse. (a) Time history of the radiated power; (b) angular distribution of the radiated
energy. The blue (resp. green) curves correspond to a semi-infinite (resp. 1µm thick)
plasma.

and 4.18(a)].

Figure 4.18: Simulations with a ne0 = 100nc density plasma and a 30 fs laser pulse. Time
history of the angle-resolved spectrum of the synchrotron radiated energy for (a) a semi-
infinite plasma and (b) a 1µm thick plasma.

4.2.3 Conclusions

Our 2D PIC simulations, run at a laser intensity I0 = 1022 Wcm−2, have shown the ex-
istence of distinct synchrotron emission regimes depending on the density, and therefore
the transparency or opacity, of the irradiated plasma. Our results complement and refine
several previously published studies (Ridgers et al., 2012; Brady et al., 2014; Chang et al.,
2017). At relativistically undercritical density (ne0 = 17nc), the emission is mainly caused
by energetic electrons counterstreaming against the laser wave. Those electrons are in-
jected at high energies toward the laser source across the laser front, in a time-modulated
way due to relativistic Doppler effects. As a result, backward-directed radiation bursts
are produced throughout the whole laser-filled volume. While forward emission is also
significant in semi-infinite plasmas due to nonnegligible reflected light (interacting with
forward-moving electrons), it almost completely vanishes in rapidly expanding, 1µm thick
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Figure 4.19: Simulation with a 1µm thick, ne0 = 100nc density plasma and a 30 fs Gaussian
laser pulse. (a) x− px and (b) x− py electron phase spaces integrated in the y direction.
A lineout at y = 0 of the radiation power density Pγ is overlaid in black. (c) Lineouts at
y = 0 of the Ey electric field (blue), of the laser cycle-averaged Ex electric field (green), of
the electron density ne (blue) and of the radiated power density Pγ (black). The vertical
dashed lines locates the plasma boundaries. All quantities are recorded at t = 11 fs after
the on-target laser peak. Pγ is plotted in arbitrary units in the three figures.

targets. At overcritical density (ne0 = 100nc), the emission initially occurs in the narrow
vacuum region where the electrons are energized, and, at later times, in a more extended
region encompassing the skin layer and a fraction of the expanding pre-plasma. In semi-
infinite targets, the radiation is dominated by electrons being rotated back to the target,
and thus exhibits a broad maximum at forward angles (around θγ ≈ 1). In 1µm targets,
the radiation is enhanced with two forward and backward lobes owing to recirculating
electrons. In plasmas just above the opacity threshold (ne0 = 40nc), the emission is more
isotropic, although still maximized in the forward direction. If the target is thin enough to
become transparent to the laser pulse, the emission shifts to the purely backward direction.
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4.3 Competition between Bremsstrahlung and Synchrotron
radiation in foils of varying thickness

We now address the relative contributions of Bremsstrahlung and synchrotron emission to
the total high-energy radiation from a laser-driven thin solid foil. In contrast to the few
previous studies on this subject (Pandit and Sentoku, 2012; Wan et al., 2017; Vyskočil
et al., 2018), which focused on the laser intensity dependence of those two processes, we
will consider fixed laser parameters (namely, a laser intensity of 1022 Wcm−2 and a pulse
duration of 50 fs) and a single target material (Cu), and will investigate, through 1D
and 2D simulations, the influence of the target thickness, varied from a few nm to a few
µm. We will show that both 1D and 2D simulations predict a ∼ 2µm threshold thickness
between the synchrotron- and Bremsstrahlung-ruled regimes, but also that 1D simulations
inaccurately describe the radiation spectrum and efficiency at larger thicknesses.

4.3.1 Numerical setup

All simulations reported below consider a laser pulse propagating in the +x direction,
linearly polarized along y, with a wavelength λ0 = 1µm and a maximum intensity I0 =
1022 Wcm−2. It has a Gaussian temporal profile of 50 fs FWHM and, in 2D simulations,
a Gaussian transverse profile of w0 = 5µm FWHM. The target consists of a solid-density
copper plasma slab initialized with 200 eV temperature, Z∗ = 25 ionization rate and
ne0 = 2000nc electron density. Its front and rear sides are coated with 3.2 nm thick
hydrogen layers of nH = 50nc atomic density, which model the hydrogen-rich surface
contaminants usually responsible for proton beam generation in laser experiments (Macchi
et al., 2013). Note that the presence of a thin hydrogen layer on the target front side implies
an ultra-high intensity contrast (Ceccotti et al., 2007).

Dimension Plasma length

1Dx×3Dv l = 10, 13, 16, 32, 51 nm and l = 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 1, 2, 5, 10µm

2Dx×3Dv l = 16, 32, 51 nm and l = 0.1, 0.5, 1, 5µm

Table 4.2: Summary of the parametric scan performed in this section, for 1D and 2D
simulations. All other parameters are detailed in the text

The 1D domain has a length Lx = 127µm and a spatial step ∆x = 0.8 nm (for target
thicknesses 10 ≤ l ≤ 100 nm) or ∆x = 1.6 nm (for 0.1 < l ≤ 10µm). Each 1D cell contains
between 300 and 1000 particles per cell for each species. Simulations are run over 450 fs
(resp. 900 fs) after the on-target pulse peak for target thicknesses 10 ≤ l ≤ 100 nm (resp.
100 < l ≤ 10µm). Such durations are sufficient to capture the synchrotron emission (which
mainly takes place over the pulse duration) and the beginning of the Bremsstrahlung
saturation in the thickest targets.

In 2D, the domain dimensions are Lx × Ly = 127 × 40µm2 with a mesh size ∆x =
∆y = 3.2 nm (marginally resolving the plasma skin depth c/ωp = 3.2 nm). The number of
particles per cell and species is varied from 2000 to 1000 for l ∈ (16, 32, 51) nm, and from
40 to 10 for l ∈ (0.5, 1, 5)µm. The simulations are run over durations ranging from 270 fs
(l = 16 nm) to ≈ 800 fs (l = 5µm).

In addition to Bremsstrahlung and synchrotron emission, all simulations self-consistently
describe elastic Coulomb collisions, as well as impact and field induced ionization. Absorb-
ing boundary conditions for particles and fields are employed in both x and y directions.
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Figure 4.20: Radiation conversion efficiency through synchrotron emission (red triangles)
and Bremsstrahlung (light blue triangles) as a function of target thickness. Solid (resp.
dashed) curves represent 2D (resp. 1D) simulation results.

4.3.2 Target thickness dependence of the radiation yield

The energy conversion efficiencies of Bremsstrahlung (red) and synchrotron emission (light
blue) are plotted in Fig. 4.20 as a function of the target thickness. The synchrotron yield
(into > 10 keV photons) initially grows from ηγ ≈ 8× 10−3 at l = 10 nm to a maximum of
∼ 0.015 in 2D (resp. ∼ 0.01 in 1D) at l = 32 nm. Actually, in 1D, the synchrotron yield is
unchanged between l = 17 nm and l = 32 nm. At larger thicknesses, it rapidly drops away
in 1D (down to ηγ ≈ 2 × 10−3 at l = 200 nm and ηγ ≤ 4 × 10−5 at l ≥ 1µm) but more
slowly in 2D (ηγ = 2× 10−3 at l = 5µm).

By contrast, the Bremsstrahlung curve exhibits a steady rise with thicker targets: from
ηγ ≈ 2 × 10−7 at = 10 nm to ∼ 2 × 10−3 at l = 10µm in 1D, and from ηγ ≈ 2 × 10−6 at
= 17 nm to ∼ 0.01 at l = 5µm in 2D. These variations obey a power-law dependence, ηb ∝
l1.8 in 1D (in the 10 ≤ l ≤ 100 nm range) ηb ∝ l1.5 in 2D (in the 17 nm ≤ l ≤ 5µm range)
and . Overall, though, the 1D Bremsstrahlung values underestimate the 2D values by a
factor of a few, and this discrepancy tends to increase with l & 0.5µm (this trend, however,
may result from simulation times too short compared to the hot-electron relaxation time).
In spite of these differences at large l, the two simulation geometries lead to comparable
threshold thicknesses (lth) above which Bremsstrahlung is the dominant radiation process,
namely, lth ≈ 1− 2µm in 2D and lth . 1µm in 1D.

Figure 4.21: Laser absorption (blue triangles) and transmission (green triangles) rates
as a function of target thickness. Solid (resp. dashed) curves represent 2D (resp. 1D)
simulation results.
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It is interesting to confront those results to the variations of the laser reflection and
transmission rates, displayed in Fig. 4.21. The laser absorption attains a maximum value
η ≈ 0.33 (resp. 0.38) at l = 32 nm (resp. 50 nm) in 1D (resp. 2D), close to the synchrotron-
optimizing thickness. Similarly to synchrotron emission, the 1D and 2D absorption curves
greatly differ at larger thicknesses: While 1D simulations predict a fast decrease (down
to η ≈ 0.05 at l = 400 nm), 2D simulations show a modest drop (from ∼ 0.38 to ∼ 0.28)
in the range 50 ≤ l ≤ 500 nm), followed by quasi-saturation. Such variations of the laser
absorption between 1D and 2D simulations are ascribed to transverse modulations of the
laser-irradiated surface, resulting in laser interaction at non-strictly normal incidence and
increased degrees of freedom due to non-conserved transverse canonical momentum (Adam
et al., 2006; Kemp et al., 2014; Kemp and Divol, 2016; Wan et al., 2016). In parallel, as
expected, the transmission rate exhibits a continuous decreasing trend, more pronounced
in 1D where it drops from T ≈ 0.48 at l = 17 nm down to T < 0.01 at l = 32 nm. In 2D,
it remains significant (T ≈ 0.2) at l = 32 nm, and essentially vanishes at l = 500 nm. The
comparison of Fig. 4.20 with Fig. 4.21 reveals that strong synchrotron efficiency requires
both strong laser absorption and significant laser transmission, the only exception being
the 32-nm-thick 1D foil that optimizes the synchrotron yield while lying just above the
opacity threshold. Such conditions are also known to optimize ion acceleration in thin
target foils (d’Humières et al., 2005; Esirkepov et al., 2006; Brantov et al., 2015).

In the following, we will examine a few cases in order to illustrate distinct target and
radiation dynamics, and will pinpoint, when relevant, major differences between 1D and
2D simulations.

4.3.3 Influence of the target dynamics on the radiation processes

Transparent and near-transparent targets

Let us first consider a 16 nm target thickness, which is close to the theoretical transparency
threshold (neglecting ion motion), l ≈ (λL/π)aL(nc/ne0) ≈ 12 nm [Eq. (4.38)]. The spatio-
temporal evolution of the foil predicted by a 1D simulation is shown in Figs. 4.22(a,b). It
can be seen that the target is expanding while being accelerated forward in the rising edge
of the laser, and becomes transparent near the pulse peak (t = 0). The temporal evolution
of the total particle and photon energies is displayed in Fig. 4.23. The fraction (∼ 20%) of
absorbed laser energy mainly goes into Cu ions, whose kinetic energy exceeds that of the
electrons as early as t ≈ −30 fs. The electron kinetic energy reaches its maximum around
the laser peak (t = 0) and slowly decreases at later times (by a factor ∼ 8 over ∼ 300 fs),
mainly to the benefit of ions.

The initial interaction phase (before transparency) is illustrated in Figs. 4.24(a,b) at
t = −15 fs. The electrons have then been accelerated to |px/mec| ∼ 100 ∼ aL and are
streaming back and forth over a spatial extent ∼ 1µm, inducing a quasistatic sheath
field 〈Ex〉 ≈ 20mec/ω0. This field causes outward acceleration of the front and back-side
protons, which have already fully detached from the Cu ions [Fig. 4.24(b)]. The latter
have also started expanding, yet most of them are is still confined within a high-density
(Z∗nCu = 1000nc, i.e., about half their initial density) spike, in which the electrons attain
a similar peak density. At this instant, the incoming laser field strength is a ∼ 50, too
low to trigger transparency. Synchrotron emission then mainly occurs in the foot of the
density spike, where 10 ≤ ne ≤ 100nc. From Fig. 4.22(c), this early-time emission has a
broad angular distribution, with a moderate maximum at backward angles.

The onset of transparency is illustrated in Fig. 4.25 at t = +3 fs. The peak electron
and Cu charge densities have dropped to ne ≈ 100nc and Z∗nCu ≈ 200nc, mostly as a
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Figure 4.22: 1D simulation of a l = 16 nm target. (a) Space-time evolution of the ion
density and Ey field. (b) Space-time evolution of the synchrotron radiated power density.
Time evolutions of the angle-resolved (c) synchrotron and (d) Bremsstrahlung energy
spectra.

Figure 4.23: 1D simulation of a l = 16 nm target. (a) Time evolution of the total kinetic
and photon energies normalized to the total injected laser energy, (b) Time evolution of
the radiated power.

result of plasma expansion toward the laser source. This density decrease is lower than

that expected from 1D target expansion, nCu(t) ≈ nCu(0)l0/
√
l20 + c2

sht
2 (Dorozhkina and

Semenov, 1998), where l0 is the initial target thickness and csh ≈
√
ZaL/mCu ≈ 0.14c

is the sound velocity. Between t = −15 fs and t = +3 fs, this formula predicts a density
drop by a factor ∼ 26 instead of the measured value ∼ 5. We attribute this difference
to the laser-induced compression of the Cu ions during their light-sail-type acceleration
(which stops once the target turns fully transparent), as seen in Fig. 4.22. Despite being
overcritical (ne/nc > aL), the electron density spike is thin enough (l < (1/π)aLnc/ne) to
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Figure 4.24: 1D simulation of a l = 16 nm target. (a) x − px electron phase. (b) Spatial
profiles of the particle charge densities, Ey and 〈Ex〉 fields and synchrotron radiated power
density. All quantities are recorded at t = −15 fs.

Figure 4.25: 1D simulation of a l = 16 nm target. (a) e − px electron phase. (b) Spatial
profiles of the particle charge densities, Ey and 〈Ex〉 fields and synchrotron radiated power
density. All quantities are recorded at t = +3 fs.

enable laser transmission: the laser front has then moved ∼ 1µm from the density spike.
Synchrotron emission, which is at its highest [see Figs. 4.22(c) and 4.23(b)], takes place
in the relativistically undercritical front-side region (10 . ne/nc . aL), which contains
most of the target electrons, with peak emissivities occurring around ne ≈ 10− 20nc. As
the maximum electron density (and therefore the laser reflectivity) further decreases, the
synchrotron spectrum is increasingly backward directed [Fig. 4.22(c)], in agreement with
the results of Sec. 4.2.1.

Figure 4.23(b) shows that the Bremsstrahlung areal power density culminates slightly
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prior to the laser peak, and that its time scale is somewhat longer than that of synchrotron
emission, yet still comparable with the laser duration. Figure 4.22(d) reveals that its
angular distribution significantly evolves in time: in the rising phase of the laser, it is
peaked along the longitudinal axis (around θγ ≈ 0 and θγ ≈ π), while after the laser
peak it is mainly concentrated at forward oblique angles (0.5 . θγ . 1.5). This behavior
can be easily understood from the following expression of the Bremsstrahlung areal power
density, valid in the ultrarelativistic limit and neglecting electron screening (Quigg, 1968),

dEb,h
dt

= 12αr2
eZ

2mec
3l〈nCu〉〈nh〉〈γ〉 [log (2〈γ〉) + 0.92] , (4.42)

where l denotes the time-dependent width of the bulk copper plasma, with mean electron
density 〈ne〉, mean ion density 〈nCu〉, and mean electron energy 〈γ〉. Note that the mean
energy of Bremsstrahlung photons is 〈~ω〉 ≈ mec

2〈γ〉/3 (Dermer and Menon, 2009). At
early times, the Cu density spike (from which most of the Bremsstrahlung power origi-
nates) is opaque to the laser field. Therefore, due to the 1D geometry, the electron py
momenta locally vanish, and Bremsstrahlung photons are emitted (in both directions)
along the laser propagation axis. Once the target turns transparent, the laser field ex-
tends over the whole plasma profile; hence, the electrons acquire comparable longitudinal
and transverse momenta, px/mec ∼ py/mec ∼ aL, and emit Bremsstrahlung photons at
oblique angles.

Furthermore, since the areal density nCul is approximately constant, the Bremsstrah-
lung areal power density should vary as dEb,h/dt ∼ 〈nh〉〈γ〉(t). Introducing Eh the total
hot electron energy leads to dEb/dt ∼ Eh(t)/l(t). This scaling is consistent with the decay
rate of dEb/dt over the time span 0 ≤ t ≤ 100 fs [Fig. 4.23(b)]. Indeed, the bulk Cu
plasma then expands by a factor ∼ 50, while, owing to energy transfer to ions, the total
electron energy drops by a factor ∼ 3 [Fig. 4.23(a)], so that dEb,h/dt should decay by a
factor ∼ 150, close to the observed value (∼ 100).

We now address the dynamics of a 32-nm-thick target as described by a 1D simulation.
Figures 4.26-4.28 display the same quantities as before. The main difference with the
l = 16 nm case is that the foil remains opaque to the laser field [Fig. 4.26(a)]. As before,
the Cu ions carry away most of the absorbed laser energy [Fig. 4.23(a)]. A close-up of the
irradiated plasma at t = +3 fs is provided in Figs. 4.28. The x− px electron phase space
shows the standard electrostatically confined distribution, modulated at 2ω0 and with
maximum momenta |px| ∼ 100mec. The electrons are recirculating across the compressed
(Z∗nCu ≈ 4000nc) Cu bulk layer, in which their density peaks at ‘only’ ne ≈ 200nc (due to
their Debye length being much larger than the Cu layer width). The laser is prevented from
shining through, which results in light-sail acceleration of the bulk target [Fig. 4.26(a)],
up to a mean velocity vx ≈ 0.4c consistent with Eq. (4.37).

As for the l = 16 nm foil before transparency, synchrotron emission occurs in the ex-
panding plasma (5 . ne . 100nc) at the foot of the compressed layer [see also Fig. 4.26(b)].
This plasma ramp contains about one half of the plasma electrons, which explains why
the synchrotron efficiency is roughly equal to that obtained at l = 16 nm (since in that
case, following transparency, all plasma electrons eventually contribute to the emission).
However, due to the enhanced laser reflectivity, the px > 0 and px < 0 electrons contribute
similarly to the spectrum, which thus presents two broad angular maxima around θγ ≈ 0.5
and γγ ≈ 2.5.

Figure 4.27(b) shows an approximate four-fold increase in the peak Bremsstrahlung
power compared to l = 16 nm. This enhancement is consistent with Eq. (4.42), taking
account of both twice larger thickness and mean electron density [as a consequence of
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Figure 4.26: 1D simulation of a l = 32 nm target. (a) Space-time evolution of the ion
density and Ey field. (b) Space-time evolution of the synchrotron radiated power den-
sity. Time evolution of the angle-resolved (c) synchrotron and (d) Bremsstrahlung energy
spectra.

Figure 4.27: 1D simulation of a l = 32 nm target. (a) Time evolution of the total kinetic
and photon energies normalized to the total injected laser energy. (b) Time evolution of
the synchrotron and Bremsstrahlung radiated powers.

slower target decompression, compare Figs. 4.22(a) and 4.26(a)]. Despite reaching higher
absolute values, the Bremsstrahlung radiated power exhibits a similar decay rate than
with l = 16 nm. Since the Cu plasma remains opaque during the Bremsstrahlung time
scale, the transverse momenta of the radiating electrons vanish, leading to peaked forward
and backward emission lobes [Fig. 4.26(d)]. Those lobes are superimposed on a rather
uniform radiation background due to the isotropized lower-energy electron population.

We now present the results of the 2D simulation run with l = 32 nm. It was noted
in Sec. 4.3.2 that, although they give comparable synchrotron efficiencies and laser ab-
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Figure 4.28: 1D simulation of a l = 32 nm target. (a) x − px electron phase. (b) Spatial
profiles of the particle charge densities, Ey and 〈Ex〉 fields and synchrotron radiated power
density. All quantities are recorded at t = +3 fs.

sorption rates, the 1D and 2D simulations at l = 32 nm strongly differ in predicting the
transparency or opacity of the target. Indeed, the 2D simulation reveals that the target be-
comes transparent near the pulse maximum, as shown in Figs. 4.29(a-c) and Fig. 4.30(b),
all recorded at t = +24 fs (just after the time of peak synchrotron emission). Fast-growing
Rayleigh-Taylor-like surface modulations with spatial scale ∼ λ0 [Fig. 4.30(b)] have en-
hanced the electron heating by breaking the translational invariance along y, and dis-
rupted the 1D balance between the radiation and particle momentum fluxes. As a result,
the laser absorption into electron kinetic energy is increased by a factor of ∼ 3 [compare
Figs. 4.32(a) and 4.27(a)], and the Cu plasma, initially accelerated through LSA, is bored
through by the laser pulse. The on-axis particle density profiles plotted in Fig. 4.30(b)
indicate that the heated foil has evolved, through TNSA, into a ∼ 3µm thick plasma of
maximum density Z∗nCu ∼ 20. While quasineutrality is well fulfilled in the decompressed
bulk Cu plasma, it obviously no longer holds beyond its expanding boundaries, notably
around the detached proton layers (at x ≈ 21.5µm and x ≈ 29µm). Synchrotron emission
is concentrated in the laser-filled bulk plasma turned undercritical, in the density range
3 . ne/nc . 20 [see Figs. 4.29(d) and 4.30(b)].

The evolution of the target at a later time (t = +63 fs) is depicted in Figs. 4.31(a-
d). Most of the laser pulse has then broken out of the Cu plasma, whose density has
further dropped to Z∗nCu ≈ 5nc and which extends over ∼ 10µm. Figure 4.32 shows
that, by then, the Cu kinetic energy has overtaken the electron kinetic energy. The ten-
fold decrease in electron density has led to a comparable drop in the synchrotron radiated
power density [Fig. 4.32(b)], in agreement with the expected scaling [Eq. (4.41)].

The time-resolved synchrotron energy spectrum, which is nearly isotropic in the laser’s
rising edge, increases in intensity and becomes mainly backward directed after the laser
peak, i.e., once the target turns transparent [Fig. 4.33(a)]. This behavior is confirmed by
the integrated synchrotron energy-angle spectrum [Fig. 4.34(a)], which presents a broad
maximum at backward angles. This emission is more backward directed than in 1D
geometry: this is due to lower effective electron densities that favor emission from electrons
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Figure 4.29: 2D simulation of a l = 32 nm target. (a) Magnetic field Bz. (b) Ion density
nCu. (c) Electron density ne. (d) Synchrotron radiated power density Pγ . All quantities
are recorded near the time of peak synchrotron emission, t = +24 fs.

Figure 4.30: 2D simulation of a l = 32 nm target. (a) x − px and (b) x − py electron
phase spaces. (c) Spatial profiles of the particle charge densities, Ey and 〈Ex〉 fields and
synchrotron radiated power density. All quantities are recorded at t = +24 fs.

counterstreaming against the incident laser wave [Sec. 4.2.1].
Similarly to the synchrotron emission, the Bremsstrahlung radiated power culminates

at the laser peak [Figs. 4.32(b)], yet decays away over a longer time scale (∼ 50 fs vs. ∼ 15 fs
for synchrotron). This time scale also turns out to be longer than in 1D [Fig. 4.27(b)],
as a result of a slower electron cooling and remaining dense Cu regions off axis. The
Bremsstrahlung radiation is initially emitted preferentially in the x > 0 and x < 0 di-
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Figure 4.31: 2D simulation of a l = 32 nm target. (a) Magnetic field Bz. (b) Ion density
nCu. (c) Electron density ne. (d) Synchrotron radiated power density Pγ . All quantities
are recorded at t = +63 fs.

Figure 4.32: 2D simulation of a l = 32 nm target. (a) Time evolution of the total kinetic
and photon energies normalized to the total injected laser energy. (b) Time evolution of
the synchrotron and Bremsstrahlung radiated powers.

rections, and turns increasingly isotropic after the laser peak [Fig. 4.34(b)]. The quasi-
isotropy of the resulting time-integrated energy-angle spectrum [4.34(b)] contrasts with
the longitudinal emission observed in 1D. The reasons for this are two-fold: (i) While
the relativistic electrons accelerated by the laser in the transparent regime have typical
momenta |px| & |py| � mec [Fig. 4.30(a)], they lose more rapidly px momentum through
driving the ion expansion; (ii) Electrons moving at oblique angles travel across dense Cu
regions, and hence their Bremsstrahlung radiated power is enhanced.

4.3.4 Opaque targets

As a first illustration of radiation in the opaque regime, Figs. 4.35-4.36 depict the 1D
dynamics of a 0.5µm thick target. During the laser irradiation, both RPA and TNSA
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Figure 4.33: 2D simulation of a l = 32 nm target. Time evolution of the angle-resolved
(a) synchrotron and (b) Bremsstrahlung energy spectra.

Figure 4.34: 2D simulation of a l = 32 nm target. Time-integrated (a) synchrotron and
(b) Bremsstrahlung energy-angle spectra.

operate at the front and rear target sides, respectively [Fig. 4.35(a)]. The compression of
the target front side associated with RPA is clearly seen in Fig. 4.36(b) at t = +14 fs, giving
rise to maximum electron and Cu densities as high as ne ≈ Z∗nCu ≈ 9×103nc (i.e., about
4 times their initial value). At this instant, the front-side proton layer, which has been
accelerated as a whole through RPA, is crossing the backside of the Cu foil, while the
TNSA-accelerated rear-side protons are located about 1µm further away. Synchrotron
emission takes place in front of the compressed plasma boundary, where electrons are
accelerated and/or reflected by the laser field. The resulting synchrotron spectrum shows
two broad, forward and backward (slightly dominant) directed emission lobes.

As for l = 32 nm (and further shown below for l = 5µm), the longitudinally peaked
Bremsstrahlung spectrum [Fig. 4.35(d)] is an artefact of the reduced 1D geometry. A
physically meaningful feature, however, is the significant isotropic background that is
radiated from the start of the simulation. This signal is due to thermal electrons, and it
can be approximated by the formula (Gould, 1980)

dEb,th
dt

=

(
32

3

)√
2

π
αr2

eZ
2mec

3l0nCu0ne0

√
Te0
mec2

, (4.43)

where the subscript ‘0’ denotes initial values.
Finally, we describe the case of a 5µm thick target, simulated in 2D geometry. Its

dynamics, displayed in Figs. 4.37-4.44, shows the same qualitative behavior as for l =
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Figure 4.35: 1D simulation of a l = 0.5µm target. (a) Space-time evolution of the ion
density and Ey field. (b) Space-time evolution of the synchrotron radiated power den-
sity. Time evolution of the angle-resolved (c) synchrotron and (d) Bremsstrahlung energy
spectra.

0.5µm. Most of the Cu ions located at the illuminated front side are pushed forward,
while a fraction of them is expanding toward vacuum, as a consequence of escaping high-
energy electrons [Figs. 4.38(a,b)]. Plasma expansion is faster at the rear side, where
the hot-electron kinetic pressure is not counteracted by radiation pressure. A noticeable
difference with thinner targets, which all lead to a rapidly dominant contribution of the
Cu ions’ kinetic energy to the total laser absorption, is that, up to t = 250 fs, most of
the absorbed laser energy is still carried by electrons [Fig. 4.41(a)]. This is caused by the
slower TNSA-type expansion of the target, which essentially remains at solid density over
the full simulation time.

Synchrotron photons are mainly radiated just in front of the compressed plasma bound-
ary,where 10 . ne/nc . 100 [see Figs. 4.37(d) and 4.38(d)]. Due to electromagnetic field
fluctuations, synchrotron emission also arises inside the target bulk, yet with a two orders
of magnitude lower power density [Figs. 4.38(d)]. The total synchrotron emission peaks
at t ≈ 10 fs, at which time it is mainly forward directed (θγ ≈ 0.5− 1) [Fig. 4.42(a)]. The
backward spectral component abruptly rises by t ≈ 20 fs, i.e., after a two-way transit time
of the energetic electrons generated in the laser’s rising edge. The time-integrated syn-
chrotron spectrum is mainly concentrated at forward angles, with a secondary maximum
in the backward direction [4.43(a)].

Similarly to the l = 0.5µm target, the Bremsstrahlung spectrum shows a significant
signal prior to the interaction, due to thermal electrons in the initially warm Cu layer
[Fig. 4.42(b)]. The Bremsstrahlung power increases suddenly during the pulse rise and
essentially saturates after the pulse maximum. In such a thick target, the simulation time
(∼ 250 fs) is clearly too short for a quantitative evaluation of the total Bremsstrahlung
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Figure 4.36: 1D simulation of a l = 0.5µm target. (a) x− px electron phase. (b) Spatial
profiles of the particle charge densities, Ey and 〈Ex〉 fields and synchrotron radiated power
density. All quantities are recorded at the time of peak synchrotron emission, t = +14 fs

yield. As time passes, the Bremsstrahlung spectrum develops a more and more isotropic
angular distribution. This behavior stems from the growing average isotropy of the electron
distribution. To illustrate this, we plot in Fig. 4.44 the (spatially averaged) longitudinal
(Tx) and transverse (Ty) electron temperatures as a function of time. For each quantity,
we distinguish between those (‘bulk’) electrons initially contained in the pre-ionized Cu25+

layer and those (‘fast’) issued from the surface hydrogen layers and subsequent ionization
of the Cu ions. As these electron groups are not defined according to their mean energy
(or level of thermalization), they do not exactly correspond to the usual co-called thermal
(‘cold’) and suprathermal (‘hot’) electron populations. Notably, the ‘fast’ population
involves surface electrons directly laser-accelerated to high energies, but also relatively
cold secondary electrons from the inner Cu plasma, and so its temperature should greatly
understimate that of the suprathermal electrons. Despite this caveat, we expect that
Fig. 4.44 provides a qualitative picture of the electron relaxation dynamics. It can be seen
that, for both electron groups, the longitudinal temperature grows initially the fastest.
As expected, Tx,fast peaks (at ∼ 2 MeV) at the laser maximum, after which it steadily
decreases down to ∼ 0.7 MeV at t = 250 fs. Meanwhile, Ty,fast, which is about twice lower
at the laser maximum, goes on rising up to t ≈ 70 fs at which time it overtakes Tx,fast,
and essentially stagnates later on. At the final time, the anisotropy remains quite weak
(Ty,fast/Tx,fast− 1 ≈ 0.4). This behavior is mainly attributed to preferentially longitudinal
momentum losses to the expanding ions. It is more pronounced for the higher-energy
electron fraction, as evidenced by the x− px and x− py electron phase spaces at t = +7 fs
[Figs. 4.39(a,b)] and t = 250 fs [Figs. 4.40(a,b)]. It is clearly seen that the ultrarelativistic
electrons (p/mec & 50), initially characterized by px > |py|, develop a strong anisotropy
along the transverse direction. For the ‘bulk’ electrons, Tx and Ty culminate at t ≈ 25 fs
and t ≈ 70 fs, respectively. Due to collisional scattering off Cu ions, isotropization is
reached at t ≈ 90 fs, and is maintained during the subsequent cooling of the bulk electrons.

As a result, the time-integrated Bremsstrahlung energy-angle spectrum plotted in
Fig. 4.43(b) shows a nearly isotropic shape, up to photon energies ∼ 1 MeV. By contrast,
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Figure 4.37: 2D simulation of a l = 5µm target. (a) Magnetic field Bz. (b) Ion density
nCu. (c) Electron density ne. (d) Synchrotron radiated power density Pγ . All quantities
are recorded at t = +7 fs.

Figure 4.38: Same as in Fig. 4.37 but at t = +33 fs.

the higher-energy photons, which are emitted by ultrarelativistic electrons (recalling that
〈~ω〉 ≈ mec

2γ/3), during the first ∼ 50 fs [Fig. 4.42(b)], appear to be collimated in the
longitudinal (forward and backward) directions. Yet they carry only a very weak fraction
(. 1 %) of the total Bremsstrahlung energy. The late-time transverse anisotropy of the
ultrarelativistic electrons [Fig. 4.40(a,b)] does not lead to a measurable signal because of
their much reduced density fraction.
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Figure 4.39: 2D simulation of a l = 5µm target. (a) x − px and (b) x − py electron
phase spaces. (c) Spatial profiles of the particle charge densities, Ey field and synchrotron
radiated power density. All quantities are recorded at t = +7 fs.

Figure 4.40: 2D simulation of a l = 5µm target. (a) x − px and (b) x − py electron
phase spaces. (c) Spatial profiles of the particle charge densities, Ey field and synchrotron
radiated power density. All quantities are recorded at t = +250 fs.

4.3.5 Target thickness dependence of the radiation spectra

The radiation spectral properties predicted by our 2D simulations are summarized in
Figs. 4.45(a,b) and Figs. 4.46(a,b), which gather the energy and angular spectra charac-
terizing the synchrotron the Bremsstrahlung radiations, respectively. Those graphs further
illustrate the trends discussed above.

The synchrotron energy spectra [Fig. 4.45(a)] confirm that the maximum yield is
achieved at l = 32 nm, and is almost reproduced at l = 51 nm. While the highest photon
cutoff energies (∼ 40 MeV) are observed at these optimal thicknesses, the cutoff energies
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Figure 4.41: 2D simulation of a l = 5µm target.(a) Time evolution of the total kinetic
and photon energies normalized to the total injected laser energy. (b) Time evolution of
the synchrotron and Bremsstrahlung radiated powers.

Figure 4.42: 2D simulation of a l = 5µm target. Time evolution of the angle-resolved (a)
synchrotron and (b) Bremsstrahlung energy spectra.

Figure 4.43: 2D simulation of a l = 5µm target. Time-integrated (a) synchrotron and (b)
Bremsstrahlung energy-angle spectra.

produced in either thinner (16 nm) or thicker (0.5 − 5µm) foils are only half lower. Fig-
ure 4.45(b) clearly evidences a transition betwwen two distinct angular patterns when the
target is made thicker: (i) A dominantly backward/transverse emission at l = 16− 51 nm,
with an oblique forward lobe emerging at larger l; (ii) A mainly oblique forward emission
at l = 0.5−5µm, with a weaker backward lobe, due to refluxing electrons and diminishing
at larger l.
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Figure 4.44: 2D simulation of a l = 5µm target. Time evolution of the longitudinal (Tx)
and transverse (Ty) temperatures. We distinguish between the (‘bulk’) electrons initially
contained in the pre-ionized Cu25+ layer and the (‘fast’) electrons originating from the
surface hydrogen layers and subsequent ionization of the Cu ions.

Figure 4.45: Variations of the synchrotron radiation with the target thickness l. (a)
Energy-resolved and (b) angle-resolved radiated energy spectra (for > 10 keV photon en-
ergies). Each color represents a different value of l. All plotted quantities are integrated in
time and over the simulation domain. Angles in (b) are defined as θγ = arccos(kγ,x/kγ) ∈
(0, π), and the resulting angular distributions are symmetrized with respect to θγ = 0. For
better visibility, a ×2 factor is applied to the l = 0.5, 1 and 5µm curves.

The energy spectra displayed in Fig. 4.46(a) evidence the growing trend of the Bremss-
trahlung yield with l. The angular distributions are computed in Fig. 4.46(b,c) for two
photon groups. The radiation emitted into ~ω ≥ 10 keV photons is isotropic (or close to
isotropic) at all thicknesses, except for l = 51 nm, where it is maximized in the forward
direction. This is due to rapidly isotropized high-energy electrons in nanometric foils, and
to the dominant contribution of low- or medium-energy electrons in micrometric foils. By
contrast, the radiation emitted by highly relativistic electrons at ~ω ≥ 5 MeV energies is
increasingly directed along the longitudinal direction at larger thickness. This is explained
by the fact that those electrons can recirculate a few times across the solid target (hence
the forward and backward lobes visible at l = 5µm) before losing longitudinal momentum
through ion expansion (slowed down at large l) or collisions.
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Figure 4.46: Variations of the Bremsstrahlung radiation with the target thickness l. (a)
Energy-resolved and (b,c) angle-resolved radiated energy spectra. The angular spectra
are shown for photon energies ~ω ≥ 10 keV in (b) and ~ω ≥ 5 MeV in (c). Each color
represents a different value of l. All plotted quantities are integrated in time and over
the simulation domain. For better visibility, a ×300 (resp. ×50) factor is applied to the
l = 16, 32 and 51 nm curves in (b) [resp. (c)].

4.3.6 Conclusions

To conclude, by means of self-consistent 1D and 2D PIC simulations, we have investigated
the Bremsstrahlung and synchrotron emissions driven by a 1022 Wcm−2 intensity, 50 fs
laser pulse focused onto solid copper foils, with thicknesses ranging from a few 10 nm to a
few µm. We have examined in great detail the dynamics and spectral properties of both
radiation processes, and correlated them with the ultrafast evolution of the energized
target electrons and ions. We have found that the synchrotron efficiency is maximized
in ∼ 30 − 50 nm thick foils which, owing to relativistic and expansion effects, transition
from being opaque to transparent during the laser pulse. In this interaction regime, the
synchrotron emission takes place throughout the expanding bulk plasma, and is domi-
nated by ultrarelativistic electrons counterpropagating against the incoming wave. The
rapid drop in plasma densities then leads to very weak Bremsstrahlung radiation. As the
target is made thicker and opaque to the laser pulse, both hot-electron generation and
synchrotron emission get localized around the target front side. The synchrotron spec-
trum is then mainly forward directed, yet may also feature a backward lobe mainly due
to electron refluxing during the laser irradiation. As the target expands more slowly with
larger thickness, the energized electrons experience higher average densities, which enables
efficient Bremsstrahlung over longer time scales. While most of the Bremsstrahung en-
ergy into ≥ 10 keV photons is radiated isotropically due to the prevailing contribution of
relatively low-energy isotropized electrons, its high-energy (≥ 5 MeV) fraction is emitted
within increasingly collimated forward and backward lobes.
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Chapter 5

Improving the synchrotron process
efficiency with nanowire arrays

Introduction

Figure 5.1: γ-ray generation from a
nanowire array irradiated by an intense
laser as simulated by the PIC code
calder.

The interaction of an intense laser field with a plasma is known to generate a pop-
ulation of relativistic electrons that can radiate their energy through several mecha-
nisms, as explained in the introduction of Chap. 4. For next generation laser systems
(I ≥ 1022 W/cm2) electrons are expected to radiate their energy mostly through the syn-
chrotron process (Zhidkov et al., 2002; Kirk et al., 2009; Ji et al., 2014b; Grismayer et al.,
2016; Lobet et al., 2017) rather than the Bremsstrahlung or the radiative relaxation of
excited atomic states.

The ultra-short and bright photon sources generated via the laser-induced synchrotron
process can be employed for various purposes. The first one is the basic study of the
radiation friction force on the electron dynamic in the quantum regime (Blackburn et al.,
2014; Ji et al., 2014b; Wang et al., 2015b; Niel et al., 2018). This force is induced by the
radiation emitted by a relativistic electron and is experimentally accessible in the collision
of a relativistic electron beam and an intense laser pulse. While this experimental scheme
has been exploited in previous years to generate hard x-rays and even γ-rays (Phuoc
et al., 2012; Chen et al., 2013; Powers et al., 2014; Sarri et al., 2014; Yu et al., 2016;
Yan et al., 2017), a clear evidence of radiation reaction in the quantum regime was only
recently put forward (Poder et al., 2018; Cole et al., 2018). A second application lies
in the anticipation of future experiments involving multi-petawatt lasers. Indeed, the
radiative loss suffered by electrons can significantly alter their dynamic and subsequently
the relativistic transparency threshold of a plasma (Zhang et al., 2015) or ion acceleration
via the Radiative Pressure Acceleration mechanism (Naumova et al., 2009; Bulanov et al.,
2010; Tamburini et al., 2012). The third application of γ-rays produced by the synchrotron
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process is related to the creation of electron-positron pairs (Bell and Kirk, 2008; Nerush
et al., 2011; Ridgers et al., 2012; Ji et al., 2014c; Zhu et al., 2016; Grismayer et al.,
2017; Jirka et al., 2017). Such electron-positron jets, clouds or plasmas are present in
various scenarios of astrophysical interest. For example, relativistic shocks and magnetic
reconnection in active galaxy nuclei or pulsar wind nebulae are held responsible for the
generation of nonthermal particles and radiation (Liang, 2013; Lobet et al., 2015; Kagan
et al., 2016).

While the range of applications of laser-driven synchrotron sources is wide, only few
experiments were successfully conducted to date (Poder et al., 2018; Cole et al., 2018).
There is a critical need to gather more data by improving the synchrotron process efficiency,
i.e. the fraction of laser energy converted into high-energy photons. With uniform plasmas,
several radiation regimes have been identified depending on the laser intensity and plasma
density. Above the relativistic critical density, an electromagnetic standing wave is formed
at the laser-irradiated target front. The resulting synchrotron radiation is referred to
as skin depth emission (SDE) regime (Ridgers et al., 2012) and is mainly emitted in a
forward-directed cone, yet remains relatively weak (with a . 1% conversion efficiency at
laser intensities I ∼ 1022 W/cm2). In relativistically near-critical or undercritical plasmas,
the radiation is predominantly emitted in the transversally oscillating electron emission
(TOEE) regime (Chang et al., 2017) or in the reinjected electron synchrotron emission
(RESE) regime (Brady et al., 2012). The radiation yield has been found to be maximized
in the RESE regime, with a ∼ 1% conversion efficiency predicted at I ∼ 1022 W/cm2 and
45% at I ∼ 7 × 1023 W/cm2 (Brady et al., 2014). Strategies to enhance the synchrotron
emission or improve its properties have been proposed, taking advantage of preplasmas
(Nakamura et al., 2012), plasma channels (Stark et al., 2016; Huang et al., 2017), or
structured targets such as gratings (Pan et al., 2015), cone targets (Zhu et al., 2015; Liu
et al., 2016; Zhu et al., 2016), clusters (Iwata et al., 2016), micro- plasma waveguides (Yi
et al., 2016), or nanowire arrays (Andreev and Platonov, 2016; Lecz and Andreev, 2017;
Wang et al., 2018). The purpose of this chapter is to further explore the potential of the
latter target type for high-energy synchrotron radiation.

In past years nanowire arrays have been used in several experiments and can be man-
ufactured by an increasing number of laboratories. Because of ther particular geometry,
nanowire arrays enable a volumetric interaction and strongly increase the absorption of
moderately relativistic (I ∼ 1017 − 1019 Wcm−2) short-pulse lasers into fast electrons.
As a result, the temperature of the electrons as well as their number is increased and
drives bright Bremsstrahlung or X-ray line emission (Zhao et al., 2010; Ovchinnikov et al.,
2011; Mondal et al., 2011; Ivanov et al., 2017), enhances ion acceleration by the Target
Normal Sheath Acceleration (Khaghani et al., 2017; Bin et al., 2018), triggers fusion re-
actions (Curtis et al., 2018) and, above all, enable a volumetric heating (∼ 1− 10 keV) of
∼ 1023 cm−3 density plasmas (Purvis et al., 2013; Bargsten et al., 2017; Hollinger et al.,
2017; Samsonova et al., 2017). The presence of surface return currents also allows for
the generation of magneto-static fields which enable long-distance collimated transport of
fast electrons (Ji et al., 2010; Chatterjee et al., 2012; Tian et al., 2014). This interesting
property of nanowire arrays is of interest in the context of fast ignition (Tabak et al.,
1994).

Along with the aforementioned experimental works, a number of PIC simulation stud-
ies have examined the dependencies of the laser absorption and fast-electron generation
on the nanowire array parameters (Cao et al., 2010b,a; Yi et al., 2016; Lecz and Andreev,
2017; Cristoforetti et al., 2017). These works suggest that the laser absorption can reach
values as high as 90% at I ∼ 1019-1020 W/cm2 and interwire spacings in the ∼ 0.1-1µm
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range. The possibility of triggering betatron electron acceleration in the superimposed
laser and quasistatic fields around the wires has also been demonstrated under specific
conditions, e.g. a 1019 W/cm2 laser pulse irradiating 60 nm diameter wires (Andreev and
Platonov, 2016; Lecz and Andreev, 2017). These trends, revealed at relatively moderate
laser intensities, make nanowire arrays promising setups for developing ultraintense syn-
chrotron sources at extreme laser intensities (I > 1022 W/cm2). Another argument in
their favor is that the strong magnetostatic fields they give rise to (Kaymak et al., 2016)
may, if sustained long enough, significantly enhance the synchrotron emission compared to
that induced by the sole laser field. A similar scenario of synchrotron radiation boosted by
quasistatic fields has been numerically evidenced in a plasma channel (Stark et al., 2016).

In this chapter we are eager to study the behavior of nanowire arrays for the forthcom-
ing ultra-intense laser intensities (I ' 1021−23 W.cm−2) that are expected to boost the
synchrotron emission. In Sec. 5.1 we investigate the electron heating mechanisms under
such conditions, thus extending the previous studies conducted at lower intensities (Jiang
et al., 2016; Cristoforetti et al., 2017). Section 5.2 illustrates the main plasma processes
fostering the synchrotron photon emission in laser nanowire interaction. In Sec. 5.3, we
perform a parametric scan by varying the target’s characteristics and we analyse the syn-
chrotron emission in light of the processes previously identified. In addition, we compare
the performance of nanowire targets with that of uniform plasma of varying density. In
Sec. 5.4, we show that placing a solid foil at the backside of the nanowire array can notably
increase the photon source efficiency. We also address the changes brought by a finite laser
spot size and an oblique incidence angle. Finally preliminary results on ion acceleration
with nanowire arrays are presented in Sec. 5.5.

5.1 Preliminary investigation of electron heating

In this Section, we show that the electron heating proceeds through various stages during
the interaction of an ultraintense laser pulse with a nanowire array. This is done in light
of a reference 2D PIC simulation parameterized as follows.

5.1.1 2D PIC simulation setup

Figure 5.2: Schematic of the reference simulation setup.

The laser pulse is modeled as a planar electromagnetic wave, propagating along the
x axis, linearly polarized along the y direction and with a central wavelength λ0 = 1µm.
It has a Gaussian temporal profile with a FWHM duration of 30 fs and a peak intensity
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I = 1022 Wcm−2 (corresponding to a dimensionless field strength aL = 85). As depicted
in Fig. 5.2, the target consists of a periodic array of solid-density carbon nanowires. The
carbon atoms, of atomic number Z = 6, and mass number A = 12, are initially unionized
with an atomic density nC = 80nc (nc ' 1.1 × 1021 cm−3 is the nonrelativistic critical
density). The wires have a length L = 10µm, a width (diameter in 3D) d = 0.3µm
and the interwire spacing is D = 2.25µm. The wire width is equal to that considered
by Kaymak et al. (2016), where it was shown to give rise to strong quasistatic fields at
I = 5×1021 Wcm−2 (for circular polarization). The absence of a substrate at the backside
of the wires, which could absorb and reflect the laser pulse, allows us to isolate the effects
induced by the sole wires. The simulation domain has dimensions Lx×Ly = 30µm×9µm,
with a spatial resolution ∆x = ∆y = λ0/210. The temporal resolution is ∆t = τ0/314
(where τ0 = λ0/c = 3.3 fs is the optical cycle) and the simulation is run over 25 000∆t.
The boundary conditions are taken to be absorbing along x and periodic along y for both
fields and particles, and 50 macro-particles per cell and per species are used. The peak of
the laser pulse hits the tips of the wires at time t = 0.

Section I (W/cm2) Z inter-spacing D thickness d length L

Sec. 5.3.1 1022 6 0→ 9µm 300 nm 10µm

Sec. 5.3.2 1022 6 1µm 15 nm→ 1µm 10µm

Sec. 5.3.3 1022 6, 29, 79 1µm 36 nm 10µm

Sec. 5.3.3 1021 → 1023 6 1µm 100 and 300 nm 10µm

Table 5.1: Overview of the parametric scan performed in Sec. 5.1 (hot electron generation)
and Sec. 5.3 (photon generation). All other parameters are detailed in those sections.

This illustrative simulation, as every other performed in this study, takes into account
Coulomb binary collisions between charged particle species, field and impact ionization
and synchrotron radiation. The synchrotron module implemented in calder by Lobet
et al. (2016) combines a continuous radiation reaction model by Sokolov et al. (2009) for
electrons with a low quantum parameter (χe ≤ 10−3) and a stochastic quantum description
by Duclous et al. (2011) for electrons with a higher quantum parameter (χe ≥ 10−3). We
recall that the electron quantum parameter, which determines the radiation characteristics,
is defined as χe = γ[(E⊥ + v × B)2 + E2

‖/γ
2]1/2/ES ' γ|E⊥ + v × B|/ES , where v

is the electron velocity, γ its Lorentz factor, B is the magnetic field, E‖ is the electric
field component parallel to v, E⊥ the electric field component normal to v, and ES =
m2
ec

3/~e = 1.3 × 1018 Vm−1 is the Schwinger field. The chosen threshold value between
the classical and quantum regimes (χe = 10−3) is quite arbitrary, yet ensures that the
quantum regime is accurately described. Bremsstrahlung emission, pair production from
Breit-Wheeler and Bethe-Heitler processes are not simulated for the moment. Since we
are not interested in pair creation and in order to reduce the computational load, the
radiated photons are not advanced on the simulation grid (but their energy and emission
angle are recorded).

5.1.2 Evidence of different electron heating mechanisms with nanowires

In this subsection we show three different electron heating/acceleration mechanisms one
can identify during laser nanowire-array interaction. We emphasize that electron heating
can be achieved by the ponderomotive force of the laser or take place in the Relativistically
Self-Induced Transparency (RSIT) regime and even through Direct Laser Acceleration
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Figure 5.3: (a) Laser field distribution (Bz/B0, red/blue colorbar); (b) Lorentz factor
at time t = 13 fs. The copper wires (ne/nc = 480) are characterized by a spacing of
D = 1µm, a width of d = 300 nm and a length of L = 10µm. The laser peak intensity is
1022 W/cm2 (aL = 85).

Figure 5.4: Energy-resolved electron spectra for wires expanding to a relativistically over-
critical plasma and blocking the laser propagation. The copper wires (ne/nc = 480) are
characterized by a spacing of D = 1µm, a width of d = 300 nm and a length of L = 10µm
(average density nav/nc ' 144). The laser peak intensity is 1022 W/cm2 (aL = 85).

(DLA) if the nanowire array geometry is well-chosen.
The first case we study is exemplified in Fig. 5.2, except we use a wire spacing D =

1µm. The wire width is d = 300 nm and their length is L = 10µm. The laser pulse front
can propagate between the wires and accelerate electrons from the wire’s edges. This
tends to rise the electron density between the wires. We estimate from field reflection and
plasma density levels that the electron density between the wires becomes relativistically
overcritical to the laser field for t ≥ −10 fs (before the pulse peak on target). Most of
electron heating takes place after this time and is illustrated in Fig. 5.3(a), 13 fs after the
arrival of the pulse peak on the nanowires. One can see that the laser pulse (of normalized
intensity aL = 85) is indeed reflected at the beginning of the wires, located at abscissa
x = 10µm. Parallel to this in Fig. 5.3(b), we represent the Lorentz factor of electrons
above 25 MeV. Electron heating takes place in the preplasma formed in front of the wires
(between abscissa 5 and 10µm) and in the plasma skin depth (at an abscissa of 10µm).
Electron bunches accelerated forward by the ponderomotive force can propagate between
the wires and one can note their trace between abscissa 10 and 15µm. They are not very
visible since their length is comparable to the diagnostic resolution along x axis (3 mesh
cells along x axis). The energy-resolved spectra of electrons at time t = 13 fs displayed in
Fig. 5.4 is best-fitted with a Maxwellian distribution of temperature 49 MeV. This value
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Figure 5.5: (a) Laser field distribution (Bz/B0, red/blue colorbar); (b) Lorentz factor at
time t = 13 fs. The copper wires (ne/nc = 480) are characterized by a spacing of D = 1µm,
a width of d = 36 nm and a length of L = 10µm (average density nav/nc ' 17). The laser
peak intensity is 1022 W/cm2 (aL = 85).

Figure 5.6: Energy-resolved electron spectra for wires expanding on the laser pulse time
scale to a relativistically undercritical plasma of average density nav/nc ' 17. The copper
wires (ne/nc = 480) are characterized by a spacing of D = 1µm, a width of d = 36 nm
and a length of L = 10µm. The laser peak intensity is 1022 W/cm2 (aL = 85).

falls within the range provided by the scaling of Wilks et al. (1992): (
√

1 + a2
L− 1)mc2 =

43 MeV and the one from Haines et al. (2009): (
√

1 +
√

2a2
L − 1)mc2 = 51 MeV. Those

scalings are derived for lower laser intensities and overcritical planar targets but they still
provide a good estimate in our case. This comes from the fact that most of the laser pulse
interacts with a relativistically overcritical plasma generated by the early expansion of the
wire’s.

The second electron heating regime observed takes place for thin wires. We now
consider wires with a width d = 36 nm and keep the spacing D = 1µm and the length
L = 10µm. The electron density in the wires is still ne/nc = 480, such that the average
density of electrons is relativistically undercritical (nav/aLnc ' 0.2). In this particular
regime of thin wires, all electrons are removed from the wires by the laser pulse front
ramp and form a plasma layer of modulated density of average value nav/nc ' 17. Since
this density is below the relativistic transparency threshold, the laser pulse can propagate
as seen in Fig. 5.5(a) where we represent the laser field distribution. One can note that
at time t = 13 fs it has propagated 5µm deep in the plasma which is initially located
between abscissa 10 and 20µm. This regime is significantly different from the previous
one. Indeed the strong field heats the whole plasma volume (see Fig. 5.5(b)) instead of
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Figure 5.7: (a) Laser field distribution (Bz/B0, red/blue colorbar); (b) Laser-cycle aver-
aged 〈Bz〉/B0 field at time t = 13 fs. The copper wires (ne/nc = 480) are characterized
by a spacing of D = 4.5µm, a width of d = 300 nm and a length of L = 10µm. The laser
peak intensity is 1022 W/cm2 (aL = 85).

Figure 5.8: (a) Laser-cycle averaged 〈Ey〉/E0 field and (b) Lorentz factor at time t = 13 fs.
The copper wires (ne/nc = 480) are characterized by a spacing of D = 4.5µm, a width of
d = 300 nm and a length of L = 10µm. The laser peak intensity is 1022 W/cm2 (aL = 85).

just a preplasma and the skin depth. The fraction of electrons with a high energy is
therefore higher in the transparency case than in the opacity one as seen by comparing
Figs. 5.4 and 5.6. This energy-resolved electron spectra in the RSIT regime attests that
the electron temperature is 55 MeV, which is not significantly higher than in the opacity
regime (49 MeV) given the uncertainty related to the fitting procedure. The cutoff value
of electron energy corroborates the idea of a better acceleration in the RSIT regime that
in the opacity one since it is 15% higher (' 220→ 260 MeV).

The third process identified is Direct Laser Acceleration (DLA). To observe this, we
consider a nanowire array with a large spacing D = 4.5µm a wire width d = 300 nm and
a length L = 10µm. For this configuration, they are only two nanowires in the simulation
domain and the laser pulse (wavelength λ0 = 1µm) can propagate between them. We
first describe the electron acceleration and then explain why it can be interpreted as DLA.
The laser propagation is illustrated in Fig. 5.7(a) at time t = 13 fs. The pulse is deflected
because of the wires expansion but it is mainly transmitted. Electrons are transversally
accelerated by the Ey component of the laser field and re-directed in the +x direction
by its Bz component. They are therefore injected in the laser pulse with a velocity close
to c and in the same direction as the laser pulse. They are extracted from the thin
layer of the wire’s edge that experiences the laser field. This particular localization of
the electron depletion generates a return current localized in the wires’ edge, generating
a quasistatic magnetic field 〈Bz〉 observed in Fig. 5.7(b). The amplitude of this field is
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Figure 5.9: Energy-resolved electron spectra showing a super-ponderomotive population of
electrons. The copper wires (ne/nc = 480) are characterized by a spacing of D = 4.5µm,
a width of d = 300 nm and a length of L = 10µm (average density nav/nc ' 32). The
laser peak intensity is 1022 W/cm2.

obtained by averaging the magnetic field over a laser period and is comparable to the
laser field amplitude 〈Bz〉/B0aL ' 0.6. This strong quasistatic field surrounds the wires
and tends to pinch them as seen between abscissa 10 and 15µm. The charge separation
created by the sudden electron extraction from the wires edges also generates a strong
electrostatic field 〈Ey〉 observed in Fig. 5.8(a). Its amplitude is lower than the 〈Bz〉 field
but reaches a significant fraction of the laser field amplitude 〈Ey〉/aL ' 0.3.

Having this picture of the electron acceleration in the case of a large interspacing
one can draw a parallel with DLA. The basic idea consists in dropping an electron in
a laser pulse and continuously accelerates it, which we observe in our simulations. This
acceleration is efficient only if the electron can keep an adequate phase with the laser pulse.
Keeping this phase-match condition on a long distance requires to inject electrons with a
velocity close to c and to maintain their velocity parallel to the laser pulse propagation
direction. In order to achieve this, some solutions have been suggested. In the specific
case of a plasma channel (Arefiev et al., 2012), the transverse electrostatic field is shown to
limit the electron dephasing and to generate superponderomotive electrons. In our case,
we observe such transverse electrostatic fields as well as magnetostatic fields in Fig. 5.7(b)
and Fig. 5.8(a). However, the wires are quite short and therefore limit the propagation
distance of electrons. A first evidence of the presence of DLA is illustrated in Fig. 5.8(b).
Most energetic electrons (γe ≥ 400) overlap with the laser field as expected in the DLA
mechanism (see Fig. 5.7(a)). Another strong evidence of the presence of DLA comes from
the super-ponderomotive electron population observed in the energy-resolved spectra in
Fig. 5.9. They reach a temperature of 109 MeV and cutoff energies of 320 MeV. This
temperature is the double of the ponderomotive scaling (' 50 MeV) and this high energy
electron exceeds by 50% the one reached in the opaque regime.

5.1.3 Dependence of electron heating on the nanowire parameters

We detailed three mechanisms of electron heating/acceleration for three particular nanowire
array geometries. We now adopt a more general perspective and report which one pre-
vails depending on the wire parameters. To this purpose, the variations of 〈γe〉 with the
nanowire parameters are shown in Figs. 5.10 and 5.11. For each simulation, we report the
average kinetic energy of fast electrons (> 0.511 MeV) when it reaches its maximum, close
to time t ' 0 fs.
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Figure 5.10: Scalings of the fast electron (> 511 keV) average energy as a function of (a)
nanowire spacing; (b) nanowire width. For each panel the nanowire array parameters are
detailed in the text.

We start from the reference setup presented in Fig. 5.2 and first vary the nanowire
spacing D in the range D = 0.5 − 9µm [Fig. 5.10 (a)]. We observe a clear correlation
between the rise of the average electron energy and of the wires’ spacing. The reason is that
for a large spacing, electrons can be stuck in phase with the laser field and be continuously
accelerated in a DLA regime as shown previously in Sec. 5.1.2. This phenomenon is
quite robust since the average kinetic energy remains around ' 40 MeV as long as the
wires’ spacing is above 2.25µm. This value does not match the one seen in Fig. 5.9 since
we include lower electron energies in the average switching from an interval γe ≥ 2 to
120 < γe < 400. This acceleration process prevails provided that the transverse spacing
between the wires is large enough (≥ 2µm in this case) as observed in Fig. 5.10(a).
In the laser intensity range 1018 − 1021 Wcm−2, it was shown that increasing the wire
spacing enables the electrons to reach higher energies (Jiang et al., 2016; Lecz and Andreev,
2017; Cristoforetti et al., 2017)). Our results partially corroborate this behavior at I =
1022 Wcm−2: the mean energy of the electrons above 511 keV is found to increase from
〈Ee〉 = mec

2〈γ〉 ' 5 MeV at D = 0 to 〈Ee〉 ' 15 MeV at D = 2.25µm. At larger spacings,
2.25 ≤ D ≤ 9µm, the mean hot-electron energy is found to saturate at 〈Ee〉 ' 20 MeV. We
recall that those values are lower than the ponderomotive scaling ' 40 MeV evidenced by
Wilks et al. (1992) since we consider not only the most energetic electrons (Ee > 50 MeV)
but also moderately relativistic ones (Ee > 0.511 MeV) which are more numerous. Rising
the threshold to 50 MeV, one finds 〈Ee〉 ' 120 MeV for D ≥ 2.25µm.

We fix the spacing at D = 1µm and vary the nanowire’s width d in the range d =
15 − 500 nm. As we will see in Sec. 5.3 this choice maximizes the synchrotron efficiency.
The average kinetic energy of electrons is reported in Fig. 5.10 (b) and attests for a clear
increase as the wires get thinner. We already identified previously in Sec. 5.1.2 that for
thin wires (d = 36 nm, nav/nc = 17) the laser can propagate in the RSIT regime and
lead to a volumetric heating. This mechanism was shown to be more efficient than for
thicker wires (d = 300 nm, nav/nc = 144) where the plasma expands to a relativistically
overcritical density level and leads to a less efficient ponderomotive surface heating.

We now keep the spacing D = 1µm and fix the wires’ width to d = 36 nm. This
geometry will be observed to maximize the synchrotron efficiency in Sec. 5.3. We then
change the ion mass from carbon (ni = 80nc) to copper (ni = 80nc) and gold (ni = 60nc)
and measure the average kinetic energy of electrons in Fig. 5.11 (a). In all cases the target
atoms are almost completely ionized: the mean ionization degree attains Z∗ ' 6 in C,
Z∗ ' 29 in Cu and Z∗ ' 70 in Au. This implies a strong rise of the expanded electron
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Figure 5.11: Scalings of the fast electron (> 511 keV) average energy as a function of (a)
ion mass; (b) laser intensity. For each panel the nanowire array parameters are detailed
in the text.

density ne,av = 15 → 200nc when one rises the atomic number Z = 6 → 79. Therefore,
regarding the laser interaction, we observe a transition between RSIT for carbon to a highly
overcritical plasma for gold. In the RSIT regime, the electron heating takes place in the
whole plasma volume, which explains the rather high average kinetic energy (' 50 MeV).
In the overdense plasma the heating by the ponderomotive force is confined into the
plasma skin-depth and preplasma, consequently leading to lower average kinetic energies
(' 15 MeV).

We are finally interested in the scaling of the average electron energy as a function of
laser intensity. We consider wires with a spacing D = 1µm, a length L = 10µm and a
width d = 100 or 300 nm. The variations of the mean hot-electron energy 〈Ee〉 (counting all
electrons above 0.511 MeV) as a function of the laser intensity is highlighted in Fig. 5.11(b)
for the wire widths d = 100 nm (green triangles) and d = 300 nm (blue circles). Both
curves are consistent with an approximate scaling 〈Ee〉 ∝ I0.5−0.6, quite close to the fit
〈Ee〉 ∝ I0.4, reported at lower intensities (1018 ≤ I ≤ 3 × 1020 Wcm−2) by Cao et al.
(2010a). The fact that 〈Ee〉 roughly obeys the well-known ponderomotive law of Wilks
et al. (1992) for d = 300 nm can be understood since, the expanded plasma (nav/nc = 144)
becomes overcritical over the whole range of laser intensity 1021 ≤ I ≤ 1023 W/cm2. For
d = 100 nm one should take the scaling with caution since it only relies on three points.
For I = 1023 W/cm2 we observe a significant laser transmission whereas for I = 1021

and 1022 W/cm2 it is negligible and the laser mainly interacts with an overcritical density
plasma. This regime of opacity can once again explain why the scaling obtained is so close
to the ponderomotive one.

5.2 Identification of the main synchrotron radiation regimes

This section focuses on the plasma processes underpinning the synchrotron photon gen-
eration. The simulation setup is the one presented in Sec. 5.1.1, that is, wires are spaced
by a period of D = 2.25µm, their width is d = 300 nm, their length is L = 10µm and are
composed of carbon ions at solid density ni = 80nc.

We recall that since we run 2D simulations, all quantities describing the spectral prop-
erties of the photons are obtained per unit length of the third dimension z (m) but are
normalized per µm of transverse direction. This choice is convenient since the usual focal
spots of such lasers have a few microns length. For example in Fig. 5.16(a), the ordi-
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Figure 5.12: Maps of the magnetic field Bz (normalized to B0 = meω0/e ' 1.1 × 104 T)
at three different times: (a) t = 8 fs (during plasma filling of the interstices), (b) t = 40 fs
(after the left-hand side of the plasma-filled interstices have become opaque to the laser)
and (c) t = 167 fs (final simulation time). The peak of the laser pulse hits the wire tips
at t = 0. Panel (c) displays the magnetostatic field, 〈Bz〉, averaged over an optical cycle.
The black rectangles plot the initial location of the wires.

Figure 5.13: Maps of the electron density ne (normalized to the nonrelativistic critical
density nc ' 1.1× 1021 cm−3) at (a) t = 8 fs and (b) t = 40 fs. Panel (c) displays the ion
density ni at t = 167 fs (final simulation time).

nate axis is in W/rad but corresponds to W/rad/µm of transverse direction. Similarly in
Fig. 5.16(b), the ordinate axis is in J/MeV but corresponds to J/MeV/µm of transverse
direction. The same rule applies for all figures representing spectral properties of the
photons in the following sections of this chapter.

Figures 5.12(a-c) display maps of the magnetic field (Bz) at three successive times,
visualizing the penetration of the laser wave through the interwire gaps and the genera-
tion of quasistatic fields. The magnetic field is normalized to B0 = meω0/e = 1.1× 104 T
(where me is the electron mass, e is the elementary charge, and ω0 is the laser angu-
lar frequency). The expansion dynamics of the wires is illustrated by the electron and
ion density maps shown in Figs. 5.13(a-c). At the beginning of the interaction, the elec-
trons are pulled over a ∼ 1µm distance from the wire surface by the Ey component of
the laser field, and accelerated in the forward direction by its Bz component. As a re-
sult, the interwire gaps are filled with a population of energized electrons bunched at
the laser wavelength λ0. Figure 5.13(a) is recorded shortly after the on-target laser peak
(t = +8 fs), at which time the electron density in the interstices near the tips of the
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Figure 5.14: Maps of the radiated power density, Pγ , at three different times: (a) t = 8 fs
(during plasma filling of the vacuum gaps), (b) t = 40 fs (after the left-hand side of
the plasma-filled interstices have become opaque to the laser) and (c) t = 167 fs (final
simulation time).

wires is of ∼ 50nc, i.e., approaches the relativistic critical density ncr ' aLnc (see also
Sec. 5.3.4). Figure 5.12(a) shows that, up to this time, the interstices have remained
(partially) transparent to the laser wave. The hot-electron current flowing in the inter-
stices induces a magnetostatic field that is screened inside the wires by a return current
carried by bulk electrons (of density ne ' ZnC = 480nc). The amplitude of this field can
be estimated by noting that the laser-accelerated electrons are initially extracted from a
layer of thickness δacc ' aL(nc/ne)c/ω0 ' 30 nm (assuming immobile ions and a balance
between the transverse laser and space-charge fields). These electrons generate a magne-
tostatic field of normalized strength 〈Bz〉/B0 ' 〈vx/c〉(ne/nc)δaccω0/c ' aL〈vx/c〉, with
〈vx〉 ' c the mean longitudinal fast-electron velocity. One therefore expects the strength
of the self-induced magnetostatic field to be comparable with that of the laser field, in
agreement with the maximum value 〈Bz〉 ' 0.7aL measured at the laser peak. At laser
intensities (resp. wire width) high (resp. small) enough that δacc & d/4, the number of
electrons remaining inside the wires becomes lower than those expelled by the laser, so
that current balance between the forward-moving hot electrons and the backward-moving
core electrons can no longer be maintained in the vicinity of a wire, as noted previously
by Kaymak et al. (2016). In the planar-wave case under consideration, this leads to 〈Bz〉
dropping with decreasing d . 4δacc, from 〈Bz〉/B0 ' (ne/nc)dω0/4c down to zero in the
fully depleted regime (d . 2δacc).

Kaymak et al. (2016) reported that the magnetostatic field setup around the wires
tends to deflect inwards the bulk electrons, resulting in the pinching of the wire cores. This
transverse magnetic compression occurs early in time, as shown in Fig. 5.13(a) where one
can note a contraction of the wires compared to their initial position (solid black lines).
Simultaneously, the space-charge sheath field 〈Ey〉/B0c ' (ne/nc)δaccω0/c transversely
accelerates the ions from the outer wire regions, and hence an increasingly dense plasma
progressively fills up the interwire gaps. At t = +40 fs, the bulk electrons have expanded
enough to form in the wire interstices a relativistically overcritical plasma (ne ≥ ncr)
opaque to the laser light [Fig. 5.13(b)]. This causes the splitting of the laser pulse into
a transmitted part and a reflected one, as seen in Fig. 5.12(b). The density modulations
at the vacuum/plasma interface arising from the incomplete homogenization of the wires
account for the reflection interference pattern seen in front of the target. Given the
relatively large interwire spacing considered here, the laser transmission across the target
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is significant (' 13 %). Figure 5.13 shows that, by t = +167 fs (about 85 fs after the
laser pulse has exited the simulation domain), the nanostructure has been completely
homogenized, the ion density then tending to the average density nid/D = 11nc.

Figure 5.15: Maps of the electron quantum parameter, χe, at three different times: (a)
t = 8 fs, (b) t = 40 fs and (c) t = 167 fs (final simulation time).

Figure 5.12(c) plots the quasistatic magnetic field 〈Bz〉, averaged over an optical cycle,
at t = 167 fs. It demonstrates the relatively slow decay of the magnetostatic modulations
sustained by the homogenized target electrons. At this instant, these modulations have a
strength 〈Bz〉 ' 15B0 ' 0.18aL, which remains an appreciable fraction of the laser field
strengh, and a typical length LB ∼ 0.5µm. Electrons are considered to be magnetized
when their Larmor radius Rω0/c = βeγeB0/Bz becomes smaller than LB. This criterion
leads to magnetization of electrons with up to ∼ 25 MeV energies, and therefore of the
vast majority of the plasma electrons, of mean energy 〈γ〉mec

2 ' 12 MeV.
Let us now examine the synchrotron emission that takes place during and after the

laser-nanowire interaction. To provide insight into the radiative processes, we plot the spa-
tial distribution of the averaged (over the local electron distribution) radiated power den-
sity in Figs. 5.14(a-c) and of the averaged electron quantum parameter, χe in Figs. 5.15(a-
c), at the same times as in Figs. 5.12(a-c). We remind that the power radiated by a
single electron can be expressed as P = (2/3)αfmec

2χ2
eg(χe)/τC , with τC = ~/mec

2 the
Compton time, αf the fine structure constant, and g(χe) a quantum correction first intro-
duced by Kirk et al. (2009). The scaling P ∝ χ2

e is a good approximation in the classical
regime (χe . 0.05). These maps will help analyze the time evolution of the angle-resolved
radiated power and the photon energy spectra (integrated over different time intervals)
plotted in Figs. 5.16(a,b). The angle θγ denotes the angle of the photon momentum kγ
relative to the laser axis (x), i.e., θγ = arccos(kγ,x/kγ) ∈ (0, π).

Figure 5.16(a) indicates that the emission initially occurs in the laser direction (θγ =
0) with an increasingly broad angular distribution. As expected, the emission strongly
increases at the laser peak, and is at its brightest in the time period 5 . t . 20 fs.
Figure 5.16(b) shows that the spectrum radiated from the start of the interaction up
to t = +25 fs extends to ~ωmax ' 60 MeV, and makes up ∼ 40 % of the total radiated
energy. The radiated power is then contained in a forward cone of ∼ 45◦ half angle and
is modulated at twice the laser frequency. This oscillation is typical of the synchrotron
radiation from a relativistically overdense plasma layer in the SDE regime described by
Ridgers et al. (2012). Consistently, Fig. 5.14(a), recorded at t = +8 fs, shows that the
emission then mainly occurs at the front side of the plasma (with electron density ne '
10 − 50nc) filling the wire gaps, where relatively high values χe ' 5 × 10−2 − 10−1 are
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Figure 5.16: (a) Time evolution of the angle-resolved radiated power and (b) photon energy
spectra integrated from the start of the interation up to three different times: t = +25 fs
(red curve), +60 fs (green curve) and +167 fs (blue curve). Angles in (a) are defined as
θγ = arccos(kγ,x/kγ) ∈ (0, π).

found. Deeper into the array (15 ≤ x ≤ 20µm), the more dilute, λ0-periodic electron
bunches that move along the laser wave present a weaker quantum parameter, χe < 10−2

(due to compensating electric and magnetic forces), and hence weakly radiate. Note,
however, the relatively bright synchrotron spots at the right-hand tips of the wires, where
quasistatic fields deflect the electrons at an angle to the laser direction, hence increasing
their quantum parameter and radiation efficiency (see below).

Figure 5.16(a) reveals that a secondary emission burst occurs in the time interval
25 . t . 60 fs, when the transmitted laser pulse travels across the target backside. In
contrast to the first emission burst, this emission takes place in the backward direction
(θγ ' π). It originates from the interaction of the transmitted part of the laser pulse
with the fast electrons reflected at the target backside by the space-charge field. Such a
counterpropagating geometry maximizes the quantum parameter χe ' 2γE⊥/ES (where
E⊥ is the laser electric field). This mechanism is supported by Fig. 5.14(b), which shows
a volumetric emission between (and near the backside of) the wires, where χe values of
∼ 10−2 are reached [Fig. 5.15(b)]. About 45 % of the synchrotron yield is radiated during
this stage (with maximum photon energies ∼ 60 MeV, similar to those in the primary
stage). Of course, this phenomenon will be altered in the presence of a substrate coated
at the target backside (see Sec. 5.4). We note that relatively high χe values (∼ 10−2) are
also reached in the dilute plasma formed in front of the target, yet the electron density,
ne ' 0.1nc [Fig 5.13(b)] is there too low to yield significant emission.

Following the laser irradiation (t & 60 fs), the radiated power strongly drops, yet,
in similar fashion to the work of Stark et al. (2016), the remaining magnetostatic fields
can sustain additional radiation [Fig. 5.16(a)]. Figure 5.15(c) thus indicates that, at
t = +167 fs, χe attains values ∼ 10−3 in the magnetic modulations. The weaker power
radiated at such low χe values [Fig. 5.14(c)] is partially compensated for by the longer
duration of this emission stage, which makes up ∼ 15 % of the total yield in the time period
60 . t . 167 fs [Fig. 5.16(b)]. Since the magnetostatic fields build up early in the laser
irradiation, their contribution is a priori not limited to the final times of the simulation.
Yet their effect is initially mitigated by the transverse electrostatic field (〈Ey〉) around
the wires, which tends to weaken the quantum parameter; as the wires radially expand
and mix [Fig. 5.13(c)], however, 〈Ey〉 diminishes and becomes small compared to 〈Bz〉,
so that χe ' 〈γ〉〈Bz〉c/ES . At t = 167 fs, we have 〈Bz〉 ' 15B0 and a mean electron
energy 〈γe〉 ' 23 in the expanded plasma, which implies χe ' 8 × 10−4, consistent with
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Figure 5.17: Variations of the synchrotron emission with the interwire spacing D: (a)
energy spectra, (b) angle-resolved radiated energy and (c) time-resolved radiated power
(and normalized to the total laser energy EL). Each color represents a different value
of D (in µm units) as indicated in the legend of panel (a). Angles in (b) are defined as
θγ = arccos(kγ,x/kγ) ∈ (0, π) and the resulting angular distribution is symmetrized with
respect to θγ = 0. All plotted quantities are integrated over the simulation domain.

Fig. 5.15(c).
Our reference simulation has allowed us to pinpoint important processes affecting the

synchrotron radiation in the interaction of a 1022 Wcm−2 femtosecond laser pulse with a
nanowire array of micron-scale interspacing. We will now examine the dependencies of
the emission on the wire and laser parameters.

5.3 Variations of the synchrotron yield with the nanowire
parameters

In the following, we explore the dependency of the angle-energy spectra of the synchrotron
radiation on the nanowire spacing (D), width (d) and material (Z), as well as on the laser
intensity (I). Except for the varied parameter, the numerical setup is identical to that
presented in Sec. 5.1.1. Our parametric scan will encompass various regimes of synchrotron
radiation, which will be interpreted in light of the processes revealed in the reference case
of Sec. 5.2 and previous simulation works by Cao et al. (2010b); Brady et al. (2012);
Andreev and Platonov (2016) and Lecz and Andreev (2017).

5.3.1 Variation of the interwire spacing: from forward to backward di-
rected radiation

In our simulations, the interwire spacing has been varied over the set of values D ∈ [0,
0.5, 1, 2.25, 3, 4.5, 9]µm. Note that D = 0µm corresponds to a planar target. The chosen
values exactly divide the transverse size of the domain (Ly = 9µm) so as to keep the
periodic condition valid. The other target parameters are set to d = 0.3µm, L = 10µm,
Z = 6 and the laser intensity is I = 1022 Wcm−2.

The energy-resolved photon spectra recorded for various interwire spacings are plotted
in Fig. 5.17(a). We see that the cutoff photon energy weakly varies for 1 ≤ D ≤ 4.5µm,
where it reaches a maximum value ~ωmax ' 50 MeV, approximately twice that found
at uniform density (' 23 MeV). Figure 5.17(b), which displays the angle-resolved enery
spectra, shows a transition from a mainly forward-directed emission at D ≤ 1µm to an
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Figure 5.18: Variations with the interwire spacing (D) of the total absorbed laser energy
fraction (ηtot, blue circles) and radiation conversion efficiency (ηγ , green triangles). The
radiation conversion efficiency is computed for two photon energy thresholds: ~ω ≥ 10 keV
(green solid) and ~ω ≥ 1 MeV (green dashed). All quantities are integrated over the
simulation duration.

increasingly backward-directed emission at larger spacings. The two lobes of emission
found at D ≥ 2.25µm around the directions θγ ' 45◦ and θ ' 180◦ originate from the
same mechanisms discussed in Sec. 5.2. In particular, we emphasize that the backward
emission follows from the electrons refluxing in the −x direction and colliding head-on with
the transmitted part of the laser pulse. This results in a secondary backward-directed
γ-ray burst after the primary (and weaker) forward-directed burst. This is evidenced
in Fig. 5.17(c) where is plotted the time evolution of the radiated power: the curve at
D = 4.5µm presents two distinct emission peaks, the second, brighter one taking place at
t ' 40 fs, i.e., as the laser pulse exits the target.

At narrower spacings (D ≤ 1µm), the interstices fill up with opaque plasma increas-
ingly early before the laser pulse maximum. Looking at the increase in the instantaneous
laser reflectivity, we find that the transparency-opacity transition occurs at τf ' −8 fs for
D = 0.5µm and τf ' 3 fs for D = 1µm. The energy fraction and mean intensity of the
transmitted light then diminishes with decreasing D, which greatly weakens the aforemen-
tioned backward emission mechanism. At D = 2.25µm, about 13 % of the laser energy
is transmitted, and this fraction becomes negligible for D ≤ 1µm. The time history of
the radiated power at D = 1µm, plotted in Fig. 5.17(c), thus presents a single maximum,
ocurring at t ' 10 fs, just after the overdense plasma filling of the vacuum gaps. The
primary radiation burst observed at D = 4.5µm occurs approximately at the same time:
both signals exhibit a 2ω0 modulation, characteristic of SDE in an overcritical plasma as
outlined by Brady et al. (2013). The photons are then emitted in a large forward cone, as
seen in the upper part of Fig. 5.17(b).

As pointed out in the introduction, the interest for nanowire targets as potentially ef-
ficient radiation sources arose from their well-established capability in yielding high laser
absorption fractions. Since the latter usually translate in large numbers of energetic elec-
trons, it is tempting to predict that the laser absorption and radiation yield are correlated.
To check this scenario, we plot in Fig. 5.18 the variations of the total absorbed laser energy
fraction (ηtot, defined as the energy absorbed by all the particle and photon species, nor-
malized to the laser energy) and the laser-to-photon energy conversion efficiency (ηγ) with
the interwire spacing. To discriminate between the contributions of the ‘low’ and ‘high’
energy photons in the radiation yield, the green solid and dashed ηγ curves are computed
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applying lower-energy cutoffs ~ω = 10 keV and 1 MeV, respectively. We note that the
laser absorption rises from ∼ 35 % at uniform solid density to ∼ 70 % at D = 2.25µm,
with a plateau above ∼ 60 % in the range 1 ≤ D ≤ 3µm. While the ηtot and ηγ curves
look similar, a few quantitative differences are discernible. Both ηγ curves starting from
very low values (∼ 0.2 % for ~ω ≥ 10 keV and ∼ 0.1 % for ~ω ≥ 1 MeV) at uniform solid
density, they present a steeper rise at low D values (≤ 1µm) than ηtot. Also, ηγ attains its
maximum (∼ 3 %, for ~ω ≥ 10 keV) at D = 1µm, lower than the value optimizing ηγ . For
~ω ≥ 1 MeV, we find ηγ ' 1 % in a broader range of interwire spacings, 1 ≤ D ≤ 4.5µm,
with a weakly pronounced optimum at D = 3µm.

The overall evolution of the total laser absorption, as depicted in Fig. 5.18, is consistent
with the results obtained by Cao et al. (2010b) at lower laser intensity (I = 5×1019 W/cm2)
and in the sub-micron range 0.24 ≤ D ≤ 0.8µm (with d = 0.16µm). In our work, by
considering larger interwire spacings, we allow greater fractions of the laser light to be
transmitted through the target, thus enabling the secondary radiation burst at the target
backside discussed above.

To summarize, we have identified two distinct regimes of synchrotron radiation by
varying the interwire spacing. For narrowly spaced wires (D ≤ 1µm), the vacuum gaps
rapidly fill up with overdense plasma before the on-target laser peak, causing the emission
to be concentrated at the target front and be mainly forward directed, similarly to what
occurs in a uniform overdense plasma. At larger interwire spacings (D ≥ 2.25µm), this
mechanism is progressively superseded by an additional emission taking place at the target
backside, which results from the interaction of the transmitted laser light with the refluxing
fast electrons. This backward-directed emission is distinct from the RESE mechanism
highlighted by Brady et al. (2012) (see Sec. 4.2), which occurs at the moving laser front in
relativistically underdense plasmas. To achieve the dilute plasma conditions required by
the latter mechanism during the laser pulse, the wire width must be reduced, as is done
in the next Section.

5.3.2 Variation of the wire width: from RESE to SDE, through TOEE

We now set the interwire spacing to the value maximizing the radiation efficiency, D =
1µm, and vary the wire width in the set of values d ∈ (15, 36, 50, 100, 300, 500, 1000) nm.
Note that the value d = 1µm corresponds to a uniform solid-density target. The resulting
energy-angle photon spectra and radiation dynamics are displayed in Fig. 5.19(a-c).

For d . δacc ' 30 nm, most of the electrons are expelled from the wires by the laser
field, hence leading to fast (i.e, before ion expansion) homogenization of the plasma profile
at the average density nav = ned/D. For d = 15 nm, one has nav ' 7nc, which falls into
the regime of relativistic self-induced transparency (RSIT). Brady et al. (2012) have shown
that such plasma conditions favor the RESE process: the electrons, pushed by the pondero-
motive force at the laser front, are periodically reinjected back into the laser wave by the
charge separation field. Their momentum (∼ aLmec) then forms an angle of ∼ π with the
laser wavevector, which maximizes the quantum parameter χe ∼ 2a2

LcB0/ES ∼ 5×10−6a2
L

and the subsequent synchrotron radiation in the backward direction. Figure 5.19(b) con-
firms this prediction, showing that practically all the radiation is then directed backwards.
In Fig. 5.19(c), we observe a temporal modulation of the radiated power at a period of
∼ 15 fs, of the same order as the theoretical estimate τRESE = aL/(neω0) ' 7 fs derived for
RESE in uniform plasmas by Brady et al. (2012). This period is significantly larger than
that of the 2ω0 oscillations arising in the SDE regime (see the curve with d = 500 nm,
corresponding to nav = 240nc).

As discussed below [see Fig. 5.25(a) in Sec. 5.3.4], we have checked the occurrence of
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Figure 5.19: Variations of the synchrotron emission with the wire width d: (a) energy spec-
tra, (b) angle-resolved radiated energy and (c) time-resolved radiated power (normalized to
the total laser energy EL). Each color represents a different value of d (in nm units) as indi-
cated in the legend of panel (a). Angles in (b) are defined as θγ = arccos(kγ,x/kγ) ∈ (0, π)
and the resulting angular distribution is then symmetrized with respect to θγ = 0. All
plotted quantities are integrated over the simulation domain.

Figure 5.20: Electron x− px (green colormap) and x− py (red colormap) phase spaces at
t = +40 fs. The nanowire-array parameters are d = 100 nm, D = 1µm and L = 10µm,
giving rise to transversally oscillating electron synchrotron emission (TOEE).

RSIT by measuring the effective propagation velocity of the laser front in the homogenized
plasma, in similar fashion to Weng et al. (2012b). RSIT is found to occur for d . 50 −
100 nm, thus leading to significant laser transmission across the plasma. For wire widths &
100 nm, the homogenized plasma becomes opaque to the laser light, which then propagates
at a much reduced speed through hole boring (HB).

The synchrotron spectra of Fig. 5.19(a) show that the maximum photon energy weakly
varies (~ωmax ' 50−70 MeV), and in a non-monotonic way, for 15 ≤ d ≤ 300 nm. The most
notable variation occurs when the wire width is increased from d = 300 nm to d = 500 nm,
leading to ~ωmax decreasing from ∼ 50 MeV to ∼ 20 MeV. More interestingly, it is found
that the mean photon energy is maximized in the RSIT regime: for d = 15 nm, we obtain
〈~ω〉 ' 0.45 MeV, much higher than for d ≥ 300 nm, which leads to a relativistically
overdense homogenized plasma (nav = 144nc) and 〈~ω〉 ' 0.14 MeV.

The case of d = 100 nm, close to the RSIT/HB threshold, yields the highest maxi-
mum photon energies [Fig. 5.19(a)] but also, and more significantly, to a radiated energy
concentrated in the transverse direction, θγ = π/2 [Fig. 5.19(b)]. This particular radi-
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Figure 5.21: Variations with the wire width (d) of the total absorbed laser energy fraction
(ηtot, blue circles) and radiation conversion efficiency (ηγ , green triangles). The radiation
conversion efficiency is computed for two photon energy thresholds: ~ω ≥ 10 keV (green
solid) and ~ω ≥ 1 MeV (green dashed). All quantities are integrated over the whole
simulation duration.

ation pattern corresponds to the TOEE regime evidenced by Chang et al. (2017). In
this mechanism, an approximate balance is established between the laser ponderomotive
force and the charge-separation field at the irradiated plasma front. This causes the elec-
trons to predominantly oscillate in the transverse plane, thus inducing a mainly transverse
synchrotron emission. This particular electron dynamics stands out in Fig. 5.20, which
superimposes the x−px (green colormap) and x−py (red colormap) electron phase spaces
at t = +40 fs. Around the front side of the target where most of the radiation is emitted,
the electron distribution is clearly more extended in the transverse direction than in the
longitudinal direction.

As the wire width is decreased (resp. increased) from d ' 100 nm, the radiation
pattern is shifted to the backward (resp. forward) direction, characteristic of the RESE
(resp. SDE) mechanism.

Figure 5.21 displays the wire-width dependence of the total laser absorption (ηtot) and
radiation conversion efficiencies (ηγ) into > 10 keV and > 1 MeV energy photons. The laser
absorption rises from ηtot ∼ 30 % at d = 15 nm to a maximum of ∼ 80 % at d = 50−100 nm,
before dropping to ∼ 35 % in the uniform-density case (d = 1µm). While the increase in
ηtot at low wire widths is accompanied by similar rises in the ηγ curves, the latter attain
their maxima (at d ' 36− 50 nm) slightly before ηtot. A peak value of ηγ ∼ 10.4 % (resp.
6.1 %) for ~ω ≥ 10 keV (resp. > 1 MeV) is obtained at d = 50 nm (resp. d = 36 nm).
Moreover, the two ηγ curves show a faster decrease at large d than ηtot. To quantify this,
let us compare the cases of d = 36 nm and d = 300 nm: although both widths give rise to
similar absorption fractions (η ' 70 %), the photon yield at d = 36 nm is ∼ 3 times larger
than at d = 300 nm. This marked difference follows from the distinct plasmas produced by
the electron-depleted exploding wires: at d = 36 nm, a relativistically undercritical plasma
(nav = 17nc) forms, which triggers a RESE-type mechanism more efficient than SDE that
arises in the overcritical plasma (nav = 144nc) generated at d = 300 nm. Finally, we note
that at d = 15 nm, a sizable fraction (∼ 70 %) of the laser energy is transmitted across the
array, which mechanically reduces the radiated energy fraction.
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Figure 5.22: Wire-material dependence of the (a) energy-resolved and (b) angle-resolved
radiated energy. The blue, green and red curves correspond, respectively, to C, Cu and
Au wires. The top (resp. bottom) half of panel (b) is associated with a photon energy
threshold of 10 keV (resp. 1 MeV). All spectra are integrated over the simulation duration.
Angles in (b) are defined as θγ = arccos(kγ,x/kγ) ∈ (0, π), and the resulting angular
distribution is symmetrized with respect to θγ = 0.

5.3.3 Changing the ion mass and the laser intensity

We now demonstrate that modifying other key parameters of the interaction such as
the wire material or the laser intensity can also enable switching between the previously
discussed radiation mechanisms. To this goal, we first replace, in the most efficient con-
figuration for γ-ray production (D = 1µm, d = 36 nm), the neutral carbon atoms (Z = 6)
by either copper ions (Z = 29) with a 5+ initial ionization degree and a solid density
nCu = 80nc, or gold ions (Z = 79) with a 14+ initial ionization degree and a solid density
nAu = 55nc. Second, we vary the laser intensity in the range I = 1021 − 1023 Wcm−2 for
two values of the wire widths: d = 100 nm and d = 300 nm.

The energy-resolved radiated energy displayed in Fig. 5.22(a) indicates that the average
photon energy is decreased by the use of copper (0.27 MeV) and gold (0.14 MeV) compared
to carbon (0.41 MeV). The radiation efficiency above 10 keV also drops with increasing
atomic number (from ∼ 10.1 % in carbon to 4.6 % in copper and 2.9 % in gold), in spite
of a slightly enhanced laser absorption in copper and gold (ηtot ∼ 80 %) than in carbon
(∼ 70 %, see Fig. 5.21). In light of our previous results, the reason for this difference
is that the homogenized electron density (nav = 17nc) in the carbon wires lies in the
RSIT regime, prone to RESE. In contrast, the copper (resp. gold) wires produce a higher-
density plasma, nav = 80nc (resp. nav = 3000nc), opaque to the laser field, which favours
TOEE (resp. SDE). This transition from RESE to SDE through TOEE is supported
by the angular radiation patterns shown in Fig. 5.22(b): both for the 10 keV and 1 MeV
photon energy thresholds, we clearly see that the emission evolves from a mainly backward
radiation in the carbon target to a predominatly transverse radiation in copper and to a
forward directed radiation in gold.

In the gold case, we observe ionization rates up to Z∗ = 70 at the laser-target interface,
consistent with the work of Bargsten et al. (2017) where a similar setup is numerically
considered (yet without describing synchrotron emission). Also, the synchrotron photon
yield above 1 MeV (∼ 1.9 %) is about 60 % of the yield above 10 keV, similarly to the
carbon and copper targets. Although this performance is not optimal due to too dense
a homogenized plasma, it can be put in perspective with the record ∼ 20 % conversion
efficiency into > 1 keV photons which has been recently reported using gold nanowires
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Figure 5.23: Laser-intensity dependence of (a) the energy-resolved and (b) angle-resolved
radiated energy (above 10 keV). Each color stands for a particular value of I as indicated
in the legend. The solid (resp. dashed) curves correspond to a wire width d = 300 nm
(resp. 100 nm). The interwire spacing is set to D = 1µm. Angles in (b) are defined as
θγ = arccos(kγ,x/kγ) ∈ (0, π), and the resulting angular distribution is symmetrized with
respect to θγ = 0.

driven by a 4× 1019 Wcm−2, 55 fs laser pulse by Hollinger et al. (2017). Rather than syn-
chrotron emission, X-ray radiation in this experiment is caused by atomic physics processes
(atomic line emissions, photorecombination and Bremsstrahlung). Another difference with
our study is that, due to lower laser intensity, and hence slower nanowire expansion, the
highest X-ray yield is found for significantly smaller interspacings (∼ 0.1µm). The mea-
sured X-ray yield, however, rapidly drops with increasing photon energies (below 1 % for
~ω > 6 keV). These results should stimulate further theoretical work on the radiation effi-
ciencies of atomic physics and synchrotron processes as functions of the laser and nanowire
parameters.

We now return to carbon nanowires and examine the photon distributions produced in
the laser intensity range 1021 ≤ I ≤ 1023 Wcm−2. Figure 5.23(a) reveals that the photon
generation at I = 1021 Wcm−2 occurs with the same efficiency for the two chosen values
of the wire width, d = 100 nm (dashed lines ηγ ' 0.09 %) and d = 300 nm (solid lines
ηγ ' 0.08 %). The case of d = 300 nm, however, leads to higher maximum (~ωmax =
1.4 → 1.8 MeV) and average (〈~ω〉 = 32 → 42 keV) photon energies. At higher intensity
(I ≥ 1022 Wcm−2), by contrast, the average photon energy is much larger at d = 100 nm
than at d = 300 nm (400 keV vs. 140 keV). This stems from the fact that the expanded
plasma then becomes relativistically transparent, whereas it remains opaque at d = 300 nm
(even at I = 1023 Wcm−2). Furthermore, the fraction of laser energy converted into
≥ 10 keV photons is always higher at d = 100 nm whatever the laser intensity in the
studied range.

In Fig. 5.23(b), it is seen that the emission cone angle increases with increasing
laser intensity. While at d = 300 nm the radiation remains forward-directed up to I =
1023 Wcm−2, at d = 100 nm it is forward directed at I = 1021 Wcm−2, becomes concen-
trated in the transverse direction at I = 1022 Wcm−2, and is mainly confined within angles
≥ π/2 at I = 1023 Wcm−2. Once again we stress that this evolution from SDE to RESE
results from the onset of RSIT at high enough laser intensity. In the latter case, the radi-
ation is mostly carried by γ-ray photons: the radiation conversion efficiency above 1 MeV
indeed reaches ∼ 43 %, hardly lower than the ∼ 47 % conversion fraction in ≥ 10 keV
photons.
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Figure 5.24: Radiation conversion efficiency into > 10 keV photons as a function of the
laser intensity. The green triangles (resp. blue circles) correspond to a wire width d =
100 nm (resp. 300 nm). The interwire spacing is set to D = 1µm.

In Fig. 5.24 is plotted the radiation conversion efficiency (counting all photons above
10 keV) as a function of the laser intensity. The results can be approximately fitted to
ηγ ∝ I1.3−1.4. This scaling happens to fall in between the one found by Brady et al. (2012)
at undercritical densities in the RESE regime, ηγ ∝ I, and the one observed by Ji et al.
(2014a) at overcritical densities in the SDE regime, ηγ ∝ I3/2. This behavior could be
expected since both radiation regimes can arise in our broad intensity range. Regarding
the radiation efficiency, these two mechanisms mainly differ in the typical number of
radiating electrons (Ne). In the underdense plasma, this number is proportional to the
areal density crossed by the laser, Ne ∝ ne; in an overdense plasma, this number scales
as the areal density of the compressed electron layer at the target front, Ne ∝ I1/2. Since
ηγ ∝ Neχ

2
e/I and χe ∝ 〈γe〉I1/2, we can employ the scaling fitted from simulations (see

Sec. 5.1.3) stating that 〈γe〉 ∝ I1/2 we thus expect χe ∝ I and therefore ηγ ∝ I for RESE
and ηγ ∝ I3/2 for SDE. For more details on this derivation, the reader is refered to Sec. 4.2.

5.3.4 Comparison with uniform-density targets

The dominant radiation processes that we have highlighted in nanowire arrays appear sim-
ilar to those identified in previous simulation studies considering uniform plasmas. This
is so because, under the present ultra-high-intensity interaction conditions, the nanostruc-
ture is largely smoothed out during the laser pulse, so that a large part of it experiences
a significantly homogenized plasma. One may then question the advantage, regarding
synchrotron radiation, of using nanowire arrays compared to uniform plasmas at sub-solid
densities. To answer this question, we have conducted a set of simulations considering
a 10µm-thick carbon layer of uniform (free electron) density varying from Zni = 7nc to
480nc (solid density). This density range corresponds to that achieved in fully homoge-
nized nanowire arrays (nav = ZnCd/D) when increasing the wire width from d = 15 nm
to 1µm at fixed spacing D = 1µm. The laser intensity is set to I = 1022 Wcm−2.

First, we examine the transition between plasma transparency (RSIT) and opacity
(HB), which appears critical in determining the properties of the synchrotron emission.
To properly identify the regime of laser-plasma interaction, we have tracked the position
of the laser front in the target, xf (t), defined such that a (xf (t), t) = maxx a(x, t)/2,
with a(x, t) being the y-averaged dimensionless laser field. This definition is similar to
that used by Weng et al. (2012b) except that, due to our short pulse duration, we use
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Figure 5.25: Comparison between carbon nanowire arrays (green triangles) and uniform-
density targets (blue circles): (a) propagation velocity of the laser front; (b) total laser
absorption (solid lines) and transmission (dashed lines); (c) radiative conversion efficiencies
into > 10 keV (solid lines) and > 1 MeV photons (dashed lines). Results from nanowire-
array (resp. uniform-density) targets are plotted as functions of the wire width d (resp. the
average electron density nav). In (a), the black solid and dashed lines plot the theoretical
front velocities vRSIT and vHB, respectively (see text). In (b) and (c), all quantities are
integrated over the simulation duration.

maxx a(x, t)/2 instead of aL/2 as is relevant to a semi-infinite pulse. For each simulation,
vf is evaluated from a linear regression fit of xf (t). Figure 5.25(a) plots vf as a function
of the wire width (d) in the nanowire-array case, and of the electron density (ne ≡ nav)
in the uniform-plasma case. Both target types lead to a similarly decreasing curve for
vf , which drops from vf/c ' 0.7 at nav = 7nc down to vf/c ' 0.2 at nav = 32nc. This
parameter range corresponds to RSIT, and we have further checked that, as expected in
this regime, the laser wave then overlaps with the plasma electrons and ions (Siminos et al.,
2017). Nanowire arrays tend to yield slightly faster laser propagation, which is ascribed
to inhomogeneity effects. For completeness, we have plotted (as a black solid line) the
front velocity estimated by Weng et al. (2012b) in a simpler setting (1D geometry, semi-
infinite pulse, no synchrotron losses), vRSIT /c ' exp(−2nav/ncr)

√
1− nav/ncr, where

ncr ' 0.89aLnc in the ultrarelativistic regime. Despite the short duration and time-
varying intensity of our laser pulse, correct agreement is found between vf and vRSIT
up to nav ' 48nc (or d ' 100 nm), where the transition from RSIT to HB occurs, also
corresponding to the transition threshold between RESE and SDE [see Figs. 5.19(b) and
5.20]. At higher nav or d, the front velocity approximately matches the theoretical HB
velocity, recalled in Robinson et al. (2008), (black dashed line), vHB/c ' Π/(1+Π), where
Π =

√
IZ/Amenavc3 (see Sec. 4.1.5).

In Fig. 5.25(b) are plotted the absorbed and transmitted laser energy fractions as
functions of the wire width (d) in the nanowire-array case, and of the plasma density
(ne ≡ nav) in the uniform-target case. Similarly, Fig. 5.25(c) plots, for both target types,
the variations with nav and d of the conversion efficiencies into > 10 keV and > 1 MeV
photons. In uniform targets, the laser absorption strongly increases (from ηtot ∼ 35 %
to ∼ 75 %) with increasing density in the range 7 ≤ nav ≤ 24nc. Similar variations
are found in nanowire arrays with same equivalent density (i.e., 15 ≤ d ≤ 50 nm), with
the differences, however, that ηtot is a bit smaller (∼ 30 %) at nav = 7nc, but larger
(∼ 80 %) at nav = 24nc. In this parameter range, the interaction takes place in the RSIT
regime in both targets and the transmitted laser fraction is always a bit larger in nanowire
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Figure 5.26: Normalized density (nγ/nc) of the high-energy (> 1 MeV) photons (a) before
(t = +13 fs) and (b) after the reflection (t = +56 fs) of the laser pulse off the copper foil
at the target backside. The initial target shape is shown in dark red.

arrays, reaching ∼ 70 % at nav = 7nc and ∼ 10 % at nav = 24nc). The most pronounced
difference between the two target types arises at larger nav or d: while the laser absorption
in uniform targets abruptly drops beyond nav = 24nc, (down to ηtot ' 45 % at nav = 64nc,
and ηtot ' 35 % at solid density), it stays at a high level (& 70 %) up to nav = 144nc (i.e.,
d = 300 nm).

The general trends observed for the laser absorption also hold for the synchrotron
radiation. While uniform targets yield slightly better radiation efficiencies at nav = 7nc
(ηγ ' 6 % vs. ∼ 4.5 %, for ~ω > 10 keV), both setups give very similar maximum efficien-
cies, ηγ ' 10 % (resp. ∼ 6 %) for ~ω > 10 keV (resp. > 1 MeV) in the range nav = 17−24nc
(i.e., d = 36 − 50 nm). The robustness of the laser absorption enhancement in nanowire
arrays of relatively large density (nav/nc ≥ 50) is accompanied by a similar robustness
of the radiation efficiency, which remains relatively high, ηγ > 3 % (resp. > 1 %) for
~ω > 10 keV (resp. > 1 MeV) up to nav = 240nc (d = 500 nm). By contrast, the radiation
yield from uniform targets decreases rapidly after its maximum: ηγ drops by a factor ∼ 2.5
when nav is increased from 24nc to 32nc, and falls below 3 % for nav ≥ 64nc.

If we restrict our analysis to the forward radiation (θγ ≤ 30◦), we find that the highest
yield into > 1 MeV photons (ηγ ' 0.4 %) is provided by a nanowire array of width d =
36 nm, yet with little variation (< 10 %) in the 36 ≤ d ≤ 100 nm range. Also, the highest
yield into > 10 keV photons is observed for d = 300 nm (ηγ ' 0.7 %), with < 10 % variation
in the 36 ≤ d ≤ 300 nm range.

5.4 Extension to more realistic setups

5.4.1 Radiation enhancement by a reflective substrate

We now investigate whether a more realistic setup, whereby the nanowire array is coated
on a solid-density substrate, may substantially improve the synchrotron process. The
rationale for this is that, for the parameters (carbon wires with D = 1µm and d =
36 − 100 nm) previously found to yield the highest radiation efficiencies (ηγ ≥ 8 %), a
sizable fraction of the laser energy (e.g., ∼ 25 % at d = 36 nm) shines through the target
via RSIT. Making this transmitted light reflect off a plasma mirror so as to interact with
the hot electrons filling the nanowire array could sustain the synchrotron emission, and
hence increase its efficiency.
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Figure 5.27: Energy-angle spectrum of the radiated energy for (a) the optimized nanowire
array (d = 36 nm, D = 1µm) without substrate, (b) the optimized nanowire array target
with substrate, and (c) the optimized (and density-equivalent) uniform plasma (ne =
16nc). Angles are defined by θγ = arccos (kγ,x/kγ) ∈ (0, π). All spectra are integrated
over the simulation duration.

To test this scenario, we have performed a simulation in which a 1µm-thick copper foil
is placed at the backside of a carbon wire array with D = 1µm, d = 36 nm and L = 10µm.
The Cu ions are initialized with 5+ charge state and a density nCu = 80nc. As before,
collisional and field ionizations are described. The laser pulse maximum (1022 Wcm−2)
strikes the Cu foil at tr = +33 fs. For this simulation only, the γ-ray photons (~ω ≥ 1 MeV)
are advanced (ballistically) on the simulation domain. The evolution of their density is
depicted in Figs. 5.26(a,b). At t = +13 fs < tr [Fig. 5.26(a)], the wires have rapidly
expanded (in the leading edge of the laser) to form a relativistically underdense plasma
(ne ' 17nc), in which synchrotron emission occurs volumetrically mainly through RESE,
as analyzed in Sec. 5.3.2. At t = +56 fs > tr [Fig. 5.26(b)], high-density (∼ 10nc) photon
bunches are seen to radiate from the target backside.

The resulting time-integrated energy-angle radiation spectrum is displayed in Fig. 5.27(b),
and compared with that obtained from the sole nanowire array [Fig. 5.27(a)]. Comparison
of the two spectra reveals the generation of two distinct photon groups. The first one
originates from the interaction with the expanded wires, and is broadly distributed in the
backward direction (θγ = 2− 3 rad) with mean energies ∼ 0.4 MeV (resp. ∼ 2.5 MeV) for
~ω > 10 keV (resp. > 1 MeV). The second one follows the reflection of the laser head
off the foil, and its interaction with the electrons still accelerated in the laser tail. As
already stressed, the quantum parameter is maximized for the forward-moving electrons
that stream against the reflected pulse. Consequently, in this emission stage the radiated
energy is mainly, but not entirely, forward-directed, as seen by comparing Figs. 5.27(a)
and (b). This secondary emission stage increases the integrated radiation efficiency to
∼ 13 % (vs. ∼ 10 % without substrate, for ~ω > 10 keV). Closer analysis reveals that out
of the ∼ 26 % of laser energy hitting the Cu foil, approximately 13 % is further gained by
electrons and ions, 3 % is converted into photons, and 10 % escapes through the target
front side.

Finally, we show in Fig. 5.27(c) the energy-angle spectrum recorded from the opti-
mized uniform-density target (ne = 16nc), giving a radiation efficiency ηγ ∼ 11 % into
> 10 keV photons. It corroborates our previous findings that optimized nanowire arrays
and uniform targets of same average density yield similar photon distributions. Notable
differences, however, are visible: the backward-emission cone angle is slightly narrower,
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Figure 5.28: Variations of the synchrotron emission with the laser spot size (w) and
incidence angle (θ0): (a) energy spectra, (b) angle-resolved radiated energy and (c) time-
resolved radiated power (normalized to the total laser energy EL). Each color represents
a different case as indicated in the legend of panel (a). w =∞ corresponds to the planar
wave case. Angles in (b) are defined as θγ = arctan(kγ,y/kγ,x) ∈ (0, 2π). The red arrow
indicates the θ0 = 30◦ incidence angle. All plotted quantities are integrated over the
simulation domain.

and is complemented by a distinct, albeit weaker, forward emission around θγ ∼ π/4 rad.
While the optimized nanowire array with substrate yields the highest radiation conver-

sion efficiency, ηγ = 13% (for ~ω > 10 keV), its performance falls by an order of magnitude,
as does that of the two other types, if we consider only photon energies > 1 MeV and for-
ward emission angles ≤ 30◦ (as would be relevant for, e.g., creating electron-positron
pairs in a thicker high-Z substrate): one then obtains ηγ ∼ 1.2 % with a substrate and
ηγ ' 0.9 % from the uniform target.

5.4.2 Effect of a finite focal spot and an oblique incidence angle

All the results of the previous sections correspond to a planar laser wave normally incident
on a nanowire array. One may wonder whether they still hold in the more realistic case
of a focused, possibly obliquely incident, laser beam. The variations of the synchrotron
yield with the laser incidence angle have been recently investigated by Serebryakov and
Nerush (2016), but this study considered planar targets irradiated at a very high laser
intensity (1.3 × 1023 Wcm−2). The strongest emission was found for an incidence angle
θ0 ' 30 % and an electron density nav ' 100nc. Our goal here is not to extend this
detailed study to the case of nanowire arrays but, rather, to examine briefly how the
use of an obliquely incident, focused laser pulse may alter the properties of the emission
compared to the optimal planar-wave configuration. To this end, we have run additional
simulations in which the 1022 Wcm−2, 30 fs laser pulse has an 8th-order hyper-Gaussian
transverse profile of FWHM w = 10µm, and impinges onto the target at an angle θ0 = 0◦

or 30◦. The choice of a hyper-Gaussian transverse profile aims at minimizing intensity
gradient effects, thus easing comparison with the planar-wave results. The laser electric
field is in the xy plane (p polarization). The target consists of the highest-yield nanowire
setup (d = 36 nm, D = 1µm, L = 10µm with a Cu substrate) as previously identified.

The changes induced by the laser’s finite focal spot size and oblique incidence angle
on the synchrotron radiation are displayed in Figs. 5.28(a-c). Since the problem is no
longer symmetric relative to the x-axis, the photon emission angles are now defined as
θγ = arctan (kγ,y/kγ,x) ∈ (0, 2π). A striking result [Fig. 5.28(a)] is that a 10µm laser
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Figure 5.29: Propagation of an obliquely incident, focused laser pulse (I = 1022 W/cm2)
with w = 10µm and θ0 = 30◦: magnetic field (Bz/B0, red-blue colormap) and electron
density (ne/nc, green colomarp) at t = 83 fs after the on-target laser peak.

focal spot leads to a 10-fold increase in the cutoff photon energy, which attains ~ωmax '
150− 180 MeV (weakly dependent on θ0) compared to ~ωmax ' 16 MeV for a plane wave.
The mean photon energies are also increased, albeit to a lower extent, from 〈~ω〉 ' 2.5 MeV
(above 1 MeV) for a plane wave to 〈~ω〉 ' 3.5 MeV in the focused case.

These enhanced photon energies stem for the relativistic self-focusing undergone by
the finite-spot laser pulse in the homogenized plasma, as observed and exploited by Bin
et al. (2015). This phenomenon is illustrated in Fig. 5.29, which displays the maps of the
magnetic field and electron density in the θ0 = 30◦ case at t = 83 fs after the on-target
laser peak. We see that the laser beam has self-focused to a ∼ 2µm spot where it reaches a
maximum field strength of Bz/B0 ' 100, consistent with the ∼ 75 % absorption it has then
experienced. At final simulation time, almost ∼ 85 % of the laser energy is absorbed. The
laser self-focusing significantly affects the electron energy spectra, as shown in Fig. 5.30 at
t = 83 fs. While the electron energy spectra produced by the focused beams show similar
temperatures (T ' 65 MeV, such that dNe/dEe ∝ exp(−Ee/T )) to the planar wave case
up to Ee ' 140 MeV, they present additional hotter, high-energy tails, extending up to
Ee ' 400 MeV.

Figure 5.30: Variations of the electron energy spectra dNe/dEe with the laser spot size
(w) and incidence angle (θ0). The best-fitting temperature T = 65 MeV is computed in
the 40 ≤ Ee ≤ 140 MeV range.

As a result, the angle-resolved photon spectra obtained with the focused beams show
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notable differences with the planar-wave case [Fig 5.28(b)]. At θ0 = 0◦, the backward
emission is reduced while the forward radiation is enhanced and emitted into smaller-
angle emission lobes (θγ ' ±20◦). As for the planar wave, the time-resolved radiated
power presents two successive maxima corresponding to the laser interaction with the
homogenized nanowires and the substrate [Fig. 5.28(c)]. The overall conversion efficiency is
found to be slightly lower than that observed using a planar wave (ηγ ∼ 10.2 % vs. ∼ 13 %),
with a larger fraction emitted in the forward (θγ < 90◦) direction (∼ 49 % vs. ∼ 42 %).
At θ0 = 30◦, the backward emission is also lowered (though less than at θ0 = 0◦), yet the
main difference concerns the forward emission, peaked at angles θγ ' 0◦ and θγ ' 67◦.
Another difference is the much reduced second maximum in the time-resolved radiated
power. This follows from the longer penetration length, and hence increased absorption
of the obliquely propagating laser pulse across the nanowires, which therefore interacts
at a lower intensity with the substrate. This weakened secondary radiation, however, is
compensated for by a strengthened radiation throughout the nanowires, thus leading to a
total radiation efficiency (∼ 10.3 %) equal to that obtained at normal incidence.

Overall, those results show that the salient radiation properties evidenced in the planar-
wave case are significantly, but not strongly, affected by using a few nanowires wide focal
spot and a moderately oblique incidence angle.

5.5 Ion acceleration in nanowire arrays

Figure 5.31: Numerical setup for ion acceleration study. The laser has a peak intensity
I = 1022 W/cm2, a 30 fs FWHM duration, a 5µm FWHM focal spot. The figure is plotted
at time t = −33 fs and zooms in on the sub-domain (x, y) ∈ (13, 27)µm × (−7, 7)µm in
order to distinguish the thin CH2 target of length l = 200 nm and density ne/nc = 200.

As mentioned in the introduction of this chapter, ion acceleration in nanostructured
targets has already been investigated experimentally and numerically. Studies with foam-
attached targets were conducted by Passoni et al. (2014) and Prencipe et al. (2016) (in
the intensity range I = 1016−20 W/cm−2), with micro-pillars by Khaghani et al. (2017)
(I = 1017−18 W/cm−2), with carbon-nanotube foams attached to micron-size-substrate
(Bin et al., 2015) and even to nano-size-substrates (Bin et al., 2018) at intensities of
approximately I ' 2 × 1020 W/cm−2. Those works are conducted in various irradiation
conditions and therefore do not provide a clear evidence for an optimum ion acceleration
regime. The record proton energies obtained from relatively long (600 fs) high-intensity
(1.5×1020 W/cm2) pulses interacting with structured target can reach ' 70 MeV (Gaillard
et al., 2011).
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With flat foils, there is a concensus on the fact that proton acceleration is maximized
for thin foils, (tens of nm) for a short (25 fs) and moderately intense laser pulse (I '
1019 W/cm2) (Loch et al., 2016). For higher laser intensity, I ' 3 × 1020 W/cm2, the
best performance obtained so far is ' 100 MeV (Higginson et al., 2018). Using structured
targets at higher laser intensity I = 1022 W/cm2 may improve the proton acceleration
compared to the optimum nanometric flat foils. For this reason, we investigate the proton
acceleration induced by an intense (1022 W/cm2) laser pulse interacting with nanowire
arrays.

Firstly, we recall the results obtained for flat foils where optimum acceleration condi-
tions have already been identified by Esirkepov et al. (2006) and Brantov et al. (2015).
Secondly, we investigate how ion acceleration changes by varying the substrate length or
the nanowire length. We finally initiate a comparison with uniform foams and illustrate
on an example that differences can arise even with equivalent nanowire arrays which have
the same length and average density.

As we are limited to a 2D geometry that is well-known to over-estimates the ion
acceleration due to an unexact treatment of electron dilution and spatial decay of space
charge fields, we will not directly focus on the peak performances of ion acceleration.
Instead we will underline its relative variations with the problem’s parameters. In this
section we are particularly interested in the evolution of the maximum proton energy
(EH+).

5.5.1 Numerical setup and optimized regime for flat targets

In what follows, the laser pulse is modeled as a focused electromagnetic wave with a Gaus-
sian transverse profile of 5µm FWHM, propagating along the x axis, linearly polarized
along the y direction and with a central wavelength λ0 = 1µm. The laser pulse has a
Gaussian temporal profile with a 30 fs FWHM and a peak intensity I = 1022 Wcm−2 (cor-
responding to a dimensionless field amplitude aL = 85). The foil is made of solid density
(ne/nc = 200) fully ionized CH2 and has a thickness denoted by l which is l = 200 nm. The
2D simulation domain has dimensions Lx×Ly = 80µm× 80µm, with a spatial resolution
∆x = ∆y = λ0/140. The temporal resolution is ∆t = τ0/250 (where τ0 = λ0/c = 3.3 fs
is the optical cycle) and the simulation is run over 30 000∆t. The boundary conditions
are taken to be absorbing along x and y for both fields and particles. We use 250 to 100
macro-particles per cell per species for the substrate, depending on its length which varies
from 100 to 400 nm. The total number of macro-particles per species is 9× 107. The peak
of the laser pulse hits the substrate at time t = 0. This setup is illustrated in Fig. 5.31.

CH2 thin foil

Sec. 5.5.1 length l = 100→ 400 nm

Table 5.2: Overview of the parametric scan performed in Sec. 5.5.1. The length l of a CH2

thin foil is varied with all other parameters fixed and detailed in the text.

Using 2D and 3D simulations, an optimum regime of ion acceleration in thin foils has
already been identified by Esirkepov et al. (2006) and Brantov et al. (2015). For a laser
pulse of maximum field strength aL and a target of initial electron density ne0, the optimal
target thickness is found to be

lopt ' 0.5aL
nc
ne0

λ0 (5.1)

This condition is similar to that derived by Vshivkov et al. (1998), yielding strong laser
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nanowire array (Z = 6) substrate (CH2)

inter-spacing D thickness d length L length l

Sec. 5.5.2 1µm 36 nm 10µm 100→ 300 nm

Sec. 5.5.3 1µm 36 nm 0→ 10µm 200 nm

Table 5.3: Overview of the parametric scan performed in Sec. 5.5.2 and Sec. 5.5.3. The
main parameters of the wire array and substrate are summarised and the other parameters
are detailed in the text.

transmission across a thin foil. While a significant laser transmission ensures a volumetric
heating of the target electrons, which favors ion acceleration, the optimum condition may
be given a more meaningful interpretation. To this purpose, let us consider a thin foil of
initial electron density ne0. Let us now assume that the target electrons are volumetrically
heated to a mean energy 〈γe〉 ' aL, and subsequently expand to a cloud of typical length
equal to their Debye length LDω0/c = (〈γe〉nc/ne)1/2. Here ne is the typical density of the
hot electron cloud. Charge conservation implies initially ne0l = neLD. Volumetric heating
of the target involves laser transmission ne ≤ aLnc, so that lopt ≤ aL(nc/ne0)(c/ω0) as
expected. Setting l = lopt ensures both volumetric heating and a maximal electrostatic
field seen by the target ions, this field is given by Ex = ene0l/2ε0. In Eq. (5.1) the
coefficient 0.5 best fits the 3D PIC simulations of Brantov et al. (2015) for CH2 targets
and aL = 1 → 100. For our parameters (aL = 85, ne = 200), which lie in this range
(except for the 2D geometry), the predicted optimum thickness is

lopt = 210 nm (5.2)

Figure 5.32: Proton energy spectra from the interaction of a 1022 W/cm2, 30 fs laser pulse
with flat CH2 foils of increasing length (l = 100, 200 and 300 nm). The spectra are reported
at the final time t = 240 fs.

We report the proton energy spectra as a function of the substrate length (l = 100, 200,
300 and 400 nm) in Fig.5.32. We observe that the optimum thickness found numerically
(200 nm) is in fair agreement with the expected estimate (210 nm) provided by formula
(5.2). The highest energy protons (' 500 MeV) are still gaining energy at time t = 240 fs,
when they are leaving the simulation domain. One should consider their maximum energy
carefully for two reasons. Firstly, because the 2D geometry overestimates the electron
density and heating in the polarization plane and the subsequent ion acceleration, as
underlined by Stark et al. (2017). Secondly, because 3D effects will prevail at some point
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and strongly mitigate ion acceleration so that carrying the 2D simulation further becomes
unphysical (Prencipe et al., 2016). A criterion employed by Brantov et al. (2015) is to
state that 3D effects prevail as the ions have been accelerated on a distance approximately
equal to the laser focal spot.

The mechanism at the origin of such a high ion acceleration has been identified. We
present in Figs. 5.33(a,b) and in Figs. 5.34(a,b) the ion acceleration mechanism before the
on-target pulse peak (t ≤ 0 fs). We then detail the effect of laser transmission (taking
place for t ≥ 3.5 fs) on this mechanism in Figs. 5.35(a,b) and Figs. 5.36(a,b).

Figure 5.33: x − px phase space of H+ (red colorbar) and C6+ (green colorbar) with the
longitudinal accelerating electrostatic field 〈Ex〉/E0 on axis (y = 0, black curve) and the
electron density on axis (y = 0, blue curve) at times (a) t = −26 fs and (b) t = 0 fs. The
flat CH2 foil has a thickness l = 200 nm and its initial position is marked by the dotted
lines. The peak laser intensity is 1022 W/cm2 (aL = 85).

The laser has a 30 fs FWHM so that at time t = −26 fs represented in Fig. 5.33(a)
the laser intensity is ' 1020 W/cm2. In Figs. 5.33(a,b) the 2D colormaps represent x− px
phase spaces of protons (red colorbar) and carbon ions (green colorbar) at times t = −26
and 0 fs. The electron density ne/nc and longitudinal electrostatic field 〈Ex〉/E0 are taken
on the laser axis (y = 0), superimposed and re-scaled by an adequate factor so that they
share their y axis with px/mic. We see in those figures that the electrons located in
the plasma skin depth (abscissa x = 20.05µm) are compressed and form an overdense
layer (ne/nc = 0.06 × 8447 ' 507). The ions therefore see a charge separation field
(〈Ex〉/E0 = 0.1 × 0.69 ' 6.9) and are accelerated in a RPA regime with momentum
px/mHc = 0.05 for protons and px/mCc = 0.035 for carbon ions (see Sec. 4.1.5 for a clear
explanation of RPA mechanism). The fast electrons generated at the rear side of the target
(abscissa x = 20.25µm) also create a charge separation field (〈Ex〉/E0 = 0.05× 69 ' 3.5)
accelerating protons (px/mHc = 0.022) and carbon ions (px/mCc = 0.012) through the
TNSA mechanism (see Sec. 4.1.5 for details about this process). The ions pushed at the
front of the target catch up with the ions accelerated at the back at time t = 0 fs (see
Fig. 5.33(b)). The two fields previously observed are now merged and reach a strength
〈Ex〉/E0 = 0.7× 31 ' 22, one quarter of the laser field strength. The two populations of
ions accelerated via TNSA an RPA both benefit from this merged field structure. Since
both RPA and TNSA driven protons catched up, the target is moving as a whole in
a Light Sail Acceleration (LSA) regime (see Sec. 4.1.5 for an introduction to LSA). It is
characterized in Fig. 5.34(a,b). One can see in Fig. 5.34(a) that the laser is pushing forward
a thin layer of electrons which has an overcritical density (ne/nc ' 130). Fig. 5.34(b)
evidences the motion of the whole target with the carbon and hydrogen density. During
this LSA phase, starting at t ' 0 fs, protons reach longitudinal momentum px/mHc = 0.35
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and carbon ions px/mCc = 0.21 (see Fig. 5.33(b)). This dynamic transition from mixed
RPA-TNSA to LSA was already reported by Qiao et al. (2012).

Figure 5.34: (a) Laser field distribution (Bz/B0, red/blue colorbar) and electron density
ne/nc (rainbow colorbar); (b) Proton density (red colorbar) and copper density (green
colorbar). Both pictures are taken at the pulse peak on target t = 0 fs. The flat CH2 foil
has an initial thickness l = 200 nm. The peak laser intensity is 1022 W/cm2 (aL = 85).

Figure 5.35: (a) Laser field distribution (Bz/B0, red/blue colorbar) and electron density
ne/nc (rainbow colorbar); (b) Energy density of electrons Eene (MeV/cm3). Both images
are represented at time t = 26 fs. The CH2 foil has an initial thickness l = 200 nm. The
peak laser intensity is 1022 W/cm2 (aL = 85).

For a time t = 3.5 ± 3.5 fs, the electron density bump seen in Figs. 5.34(a) decreases
below the transparency threshold. The laser is then transmitted. A few laser cycles after
this (t = 26 fs), we clearly observe this transparency in Fig. 5.35(a) where the laser field
and the electron density are both represented. The laser transmission gives rise to an
efficient electron heating as noted on the electron energy density in Fig. 5.35(b). This
additional electron heating amplifies the accelerating field 〈Ex〉 which reaches a maximum
〈Ex〉 ' 10E0 at time t = 26 fs (see Fig. 5.36(a)). We can see the effect of this accelerating
field on the protons and carbon ions in their x − px phase space plotted in Fig. 5.36(b).
They overlap with the strong 〈Ex〉 ' 10E0 field and subsequently reach high longitudinal
momentum px/mHc = 0.6 and px/mCc = 0.4. At final simulation time (t = 240 fs) their
respective longitudinal momentum are px/mHc = 1.15 and px/mCc = 0.49.

We evidenced two mechanisms enhancing ion acceleration during the interaction of
an intense laser with a thin foil. Firstly, the RPA-driven ions coming from the target
front can benefit from the TNSA-driven accelerating field if they catch up with TNSA-
driven ions at the rear side of the foil, conducting to a LSA regime. Secondly, the onset
of RSIT leads to an efficient volumetric heating of target electrons which can in return
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Figure 5.36: (a) Longitudinal electrostatic field 〈Ex〉/E0 at time t = 26 fs; (b) x − px
phase space of H+ (red colorbar) and C6+ (green colorbar) with the longitudinal static
electric field 〈Ex〉/E0 on axis (y = 0, black curve) and the electron density on axis (y = 0,
blue curve). Both images are represented at time t = 26 fs. The CH2 foil has a thickness
l = 200 nm and its initial position is marked by the dotted lines.

transfer their energy to ions via the longitudinal electrostatic field. Understanding in
details how the relative effectivness of those two processes evolve with the target thickness
is challenging. We provide one reason why it can be maximized for l = 200 nm in Fig. 5.37.
We plot the evolution of the maximum ion energy and add the estimated time for the laser
transparency to take place with errorbars. In particular for l = 200 nm the transparency
occurs at the pulse peak on target, thus maximizing the coupling between the laser energy
and the hot electrons boosting proton acceleration. The catch-up dynamic between RPA
and TNSA-driven ions is more complex to evaluate because of the spatial extend of the
proton bunches. One can emphasize that for the optimum case (l = 200 nm) it takes place
relatively close (' one laser cycle) to the laser transparency.

Figure 5.37: Evolution of the maximum proton energy as a function of the foil thickness
varying from l = 100 to 400 nm. The laser peak intensity (1022 W/cm2) arrival on target
is set to t = 0 fs. The estimated tranparency time is showed with an horizontal error bar.

There are other possible explanations in the literature to explain this ion acceleration
enhancement due to the laser transmission through the target plasma. Yin et al. (2006)
suggested that the difference between the drift velocities of the fast electrons and ions
triggers a relativistic Buneman instability that induces an efficient energy transfer from
electrons to ions. On the experimental side, Higginson et al. (2018) evidenced that ions
accelerated by the RPA mechanism catch up with the ones accelerated by the TNSA to
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form a single bunch. We do observe that behavior in Fig. 5.36(b) for protons. However
this study ignores the interplay with the carbon ions and we note in Fig. 5.36(b) that they
modify substantially the accelerating field 〈Ex〉 that presents several oscillations. Heavy
ions were demonstrated to play a substantial role on proton acceleration by Bulanov
et al. (2008). Indeed they modify the charge separation field which accelerates the proton
accelaration. An additional argument confirms the feedback between the two ion species
as we note in Fig. 5.36(b) that they overlap.

Overall we recalled and characterized the best case scenario for ion acceleration from
a flat foil. We will now examine the potential benefit of adding a nanowire array onto a
nanometric foil.

5.5.2 Substrate length dependence of ion acceleration

Figure 5.38: (a) Energy-resolved proton spectra at t = 240 fs; (b) evolution of maximum
proton energy for the optimum flat foil (l = 200 nm) and with wires attached to this foil
(+10µm wires). The nanowires’ width, interspacing and length are set to d = 36 nm ,
D = 1µm and L = 10µm. The laser peak intensity (1022 W/cm2) arrival on the flat CH2

foil (or the wires) is set to t = 0 fs. The estimated tranparency times are showed with
horizontal error bars.

We have demonstrated in Sec. 5.3.4 that a nanowire array target can be very beneficial
to laser absorption which can be as high as ' 80% in 10µm long nanowire-array of
optimized width and interspacing. Since this enhancement mainly originates from an
improved coupling with the wires’ electrons, it is tempting to examine whether it could
favor the acceleration of protons from a thin foil attached to the nanowire array.

To investigate this problem, we consider the setup that maximizes the laser absorption:
it is composed of carbon wires, measuring L = 10µm, with a diameter d = 36 nm and with
a spacing D = 1µm (Section 5.3.4). We attach it to a flat CH2 substrate of length l =
200 nm that is known to maximize proton acceleration from Section 5.5.1. In simulations
with nanowire arrays, the time t = 0 fs denotes the arrival time of the pulse peak at the
wires entrance, and not on the substrate.

Fig. 5.38(a) compares the proton energy spectra obtained with or without the nanowire-
array. We see that the maximum proton energy is dramatically reduced from' 500 MeV to
' 280 MeV. In the optimum thin foil case, efficient proton acceleration proceeds through
both the interplay of RPA and TNSA (i.e., the frontside protons driven by the laser piston
overtake the TNSA backside protons, hence taking advantage of the hot electron induced
sheath field) and the onset of RSIT at the laser peak, which further heats the electrons
and sustains the sheath field.
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The generation of hot electrons (≥ 25 MeV) mainly occurs in the nanowire region:
their total number (8× 1011) is largely increased compared to the isolated foil (2× 1011),
but their density around the backside of the substrate is reduced (nh ' nav ' 17nc vs
nh ' 120nc). A significant number of hot electrons is also produced during the laser-
substrate interaction, but due to the then reduced laser energy, this process is less efficient
than in the isolated foil, and those electron rapidly mix with the electrons originating from
the nanowires.

Figure 5.39: (a) Laser field distribution (Bz/B0, red/blue colorbar) and proton density
nH/nc (red colorbar) before the pulse peak hits the substrate at time t = 35 fs; (b) Weak
RPA observed from x−px phase space of H+ (red colorbar) and C6+ (green colorbar) with
the longitudinal static electric field 〈Ex〉/E0 on axis (y = 0, black curve) and the electron
density on axis (y = 0, blue curve) at time t = 53 fs. The nanowires’ width, interspacing
and length are set to d = 36 nm , D = 1µm and L = 10µm, the CH2 substrate has a
thickness l = 200 nm.

The RPA driven by the partially absorbed laser pulse is weakened, there is indeed
50% of absorption in the wires before the pulse arrival on the substrate. It starts as
the laser hits the substrate for t = 53 fs and is illustrated in Fig. 5.39(b). We clearly
see a compression of the electrons ne/nc ' 80 associated with a strong accelerating field
〈Ex〉/E0 ' 30, approximately one third of the laser field amplitude. The RPA is strong
enough to allow the protons from the foil’s front side to catch up with those expanding
in the backside TNSA field (at t ' 170 fs). While reproducing the hybrid RPA/TNSA
process found to be optimum in the isolated foil, the nanowire-array target is less efficient
because both mechanisms are then weakened. The ’poor’ performance of RPA is expected
because vHB ∝ aL; that of TNSA is also anticipated. Indeed fast electrons from the wires
(β ' 1) propagate faster than the laser (' 0.5c) and pre-heat the substrate, leading to its
premature expansion. We observe this premature expansion of protons in Fig. 5.39(a) and
recall that it mitigates TNSA acceleration since the measured rear-side proton density scale
length ' 1.6c/ω0 is comparable to the electrons Debye length λdh ' 2.2c/ω0. The proton
expansion seen in front of the substrate is driven by the neutralizing return currents of
electrons localized in the edges of the wires. The acceleration dynamic of the foil’s protons
is plotted in Fig. 5.38(b) with or without the nanowire array. As expected, the protons are
accelerated more rapidly at early times in the simple foil case. One can observe a steeper
slope of the curve representing the evolution of the maximum proton energy between times
t ' 60 and 100 fs with wires. It is attributed to the plasma transparency (signaled with the
horizontal errorbar). The transmitted fraction of the laser is therefore superimposed with
the electrons forming the TNSA accelerating field and heats them, which subsequently rises
the accelerating field, since 〈Ex〉/E0 ∝

√
nhγh/nc. This behavior was already evidenced
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Figure 5.40: Electron energy density (neγe/nc), ion density (ni/nc), electrostatic field
(〈Ex〉/E0), laser field (Bz/B0) on axis (y = 0) at time t = 106 fs (a) for the opti-
mum (200 nm-long) flat foil made of CH2 (b) with 10µm-long wires attached to it. The
nanowires’ width and interspacing are set to d = 36 nm and D = 1µm.

for the optimum flat foil (l = 200 nm, see Figs. 5.35 and 5.36). There are, however, two
major differences during this phase of acceleration which explain why it remains more
efficient with the simple foil than with the nanowire array. Firstly, the nanowires absorb
a significant fraction of the laser energy (50%) such that the transmitted laser field is
much lower than for the simple flat foil as seen in Fig. 5.40(a,b) on the light blue curves.
As a consequence the potential energy transfer between electrons and ions is mitigated
with the nanowire array compared to the flat foil. Secondly, protons acquire a higher
longitudinal momentum with the flat foil than with the nanowire array. The result is
that their dephasing length with the transmitted laser field is longer and that they take
advantage of it on a longer time.

In the nanowire case, the late-time (t ≥ 150 fs) acceleration seems to proceed at a
faster rate: acω0 = 1.3×10−4 vs acω0 = 8.0×10−5 for the flat foil. At the final simulation
time (t = 240 fs after the on-target peak) maximum proton energy is still about half
that obtained with the simple foil. One could argue that the proton acceleration in the
nanowire-foil target is handicaped by too short simulation time; the proton front, however,
has then moved a distance of 25 − 30µm, higher than the transverse size of the sheath
field, and so we expect that, in a realistic 3D geometry, the sheath field would decay faster
than in the present 2D simulations, and hence, it does not seem physically meaningful to
increase their duration.

We now compare ion acceleration for increasing substrate length from l = 100 to
300 nm. To this purpose, we report the proton dynamics in Figs. 5.41(a,b). The instant
when the substrate becomes transparent to the laser field is reported in Fig. 5.41(b) by an
horizontal error bar. For a substrate of length l = 100 nm, the substrate electron density,
initially at a level of ne/nc = 200, falls close to the RSIT threshold (ne/nc ' 75) before
the pulse arrival on the substrate as illustrated in Fig. 5.42(a). The substrate electron
density decrease is driven by its early heating driven by fast electrons generated in the
wires and by return currents localized on the edges of the wires. Those currents tend to
neutralize the charge separation field induced by the interaction of the intense laser with
the wires. The peak of the laser pulse shines through the substrate without driving RPA
(see Fig. 5.42(b)). As the substrate length is l = 200 nm, the exploded foil is still opaque
(see the phase space in Fig. 5.43(a)) thus giving rise to RPA (see Fig. 5.43(b)), albeit
with reduced efficiency due to partially depleted laser pulse. RSIT occurs in the laser
down-ramp; by then the RPA driven protons are moving faster than the TNSA-driven
ones (see Fig. 5.43(b)). The extra electron heating associated with RSIT takes place in
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Figure 5.41: (a) Energy-resolved proton spectra at t = 240 fs; (b) evolution of maximum
proton energy for susbtrates of varying length (l = 100, 200, and 300 nm), the nanowires’
width, interspacing and length are set to d = 36 nm , D = 1µm and L = 10µm. The laser
peak intensity (1022 W/cm2) arrival on the flat CH2 foil (or the wires) is set to t = 0 fs.
The estimated tranparency times are showed with horizontal error bars.

a plasma profile with a larger length scale than the isolated foil case, which mitigates
its beneficial effect (the RPA protons are lagging behind the outermost TNSA protons).
For a substrate length l = 300 nm the premature expansion of the substrate, which is
less pronounced than for a substrate length l = 200 nm as seen in Fig. 5.44(a), decreases

the efficiency of RPA since the hole boring velocity scales as ∝ n
−1/2
i . The proton phase

spaces in Fig. 5.43(b) and in Fig. 5.44(b) show longitudinal momentum px/mHc ' 0.5 for
the 300 nm-thick substrate while it peaks at px/mHc ' 0.6 for the 200 nm-thick one. In
addition, the beneficial effect of transparency does not take place at all for the 300 nm-thick
substrate as it remains opaque as seen in Figs. 5.44(b).

Figure 5.42: x−px phase space of protons (red colorbar) and carbon ions (green colorbar),
on-axis density of electrons initially in the wires (blue curve) and initially in the substrate
(purple curve) (a) at time t = 35 fs (before pulse arrival on substrate) and (b) at time
t = 77 fs (after laser transparency). The nanowires’ width, interspacing and length are set
to d = 36 nm, D = 1µm and L = 10µm, the CH2 substrate has a thickness l = 100 nm.
The laser peak intensity (1022 W/cm2) arrival on the wires is set at time t = 0 fs.
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Figure 5.43: x−px phase space of protons (red colorbar) and carbon ions (green colorbar),
on-axis density of electrons initially in the wires (blue curve) and initially in the substrate
(purple curve) (a) at time t = 35 fs (before pulse arrival on substrate) and (b) at time
t = 77 fs (after laser transparency). The nanowires’ width, interspacing and length are set
to d = 36 nm, D = 1µm and L = 10µm, the CH2 substrate has a thickness l = 200 nm.
The laser peak intensity (1022 W/cm2) arrival on the wires is set at time t = 0 fs

Figure 5.44: x−px phase space of protons (red colorbar) and carbon ions (green colorbar),
on-axis density of electrons initially in the wires (blue curve) and initially in the substrate
(purple curve) (a) at time t = 35 fs (before pulse arrival on substrate) and (b) at time
t = 77 fs (the substrate remains overcritical). The nanowires’ width, interspacing and
length are set to d = 36 nm, D = 1µm and L = 10µm, the CH2 substrate has a thickness
l = 300 nm. The laser peak intensity (1022 W/cm2) arrival on the wires is set at time
t = 0 fs

5.5.3 Nanowire length dependence of ion acceleration

We now address the variations of proton acceleration with the nanowire’s length. The
CH2 substrate is the one optimizing the proton cutoff energy (' 500 MeV) in the abscence
of nanowires.

The proton energy spectra obtained for L = 1, 3, 5 and 10µm are plotted in Fig. 5.45(a)
with the optimum flat foil case for reference (equivalent to L = 0µm). The L = 10µm
setup, considered previously, is clearly not the optimum one. The maximum proton energy
(Emax

H+ ' 500 MeV) is recorded for L = 3µm and associated with a spectra very close to the
flat foil case. Surprisingly, the L = 3µm configuration appears to be a local optimum as
the L = 1 and 5µm cases show slightly reduced performances: (Emax

H+ ' 460 MeV) in both
cases, with similar spectra except very near the energy cutoff. In the range 0 ≤ L ≤ 5µm
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the proton cutoff energy varies less than 10%. The weak dependence of the proton spectra

Figure 5.45: (a) Energy-resolved proton spectra at t = 240 fs; (b) evolution of maximum
proton energy for nanowire arrays targets of varying length (L = 1, 3, 5 and 10µm), the
nanowires’ width and interspacing are set to d = 36 nm and D = 1µm. The laser peak
intensity (1022 W/cm2) arrival on the flat CH2 foil (or the wires) is set to t = 0 fs. The
estimated tranparency times are showed with horizontal error bars.

in the range 0 ≤ L ≤ 5µm suggests that, despite variations in each of the acceleration
process (RPA, TNSA, more or less boosted by the laser transparency), the efficiency of
their combination is essentially unchanged. In the optimum case L = 3µm we underline
that the transparency occurs at a time t ' 15 fs (see the errorbar in Fig. 5.45(b)). To
understand how the previously identified mechanisms operate with shorter wires (L =
3µm), we illustrate in Figs. 5.46(a,b) the proton phase space before (t = 3 fs) and after
(t = 30 fs) transparency. We superimpose this phase space with the laser field distribution
on axis (Bz/B0), the accelerating field on axis (〈Ex〉/E0) and the electron density on
axis (ne/nc). Contrary to the 10µm-long wire case, the laser still carries enough energy
to strongly accelerate protons by the RPA mechanism (see Fig. 5.46(a) illustrating the
interaction before transparency at t = 3 fs). A few laser cycles after transparency takes
place (at time t = 30 fs), the RPA-driven protons are seen to catch-up with the TNSA
protons and thus benefit form the TNSA accelerating field. While transparency occurs
before the two ion populations catch-up with the optimal nanowire-array target, it takes
place after for the optimal flat foil case.

From Fig. 5.47, illustrating the wire’s length dependence of the laser transmission
through the nanowire array target, one can understand that employing short wires (0 ≤
L ≤ 5µm) is a good mean to observe a significant transparency. The ability for the
laser to go through the expanded substrate has a beneficial effect on electron heating and
therefore on proton acceleration (see Section 5.5.1). Increasing the wire’s length up to
L = 5µm enhances the laser absorption into hot electron and subsequently maintains an
efficient proton acceleration (see Section 5.5.2). However, if the wire’s length is too high
(L = 10µm), the transmission rate drops to ' 5%, mitigating its positive impact. In
addition, the laser depletion in the wires decreases the efficiency of the RPA and TNSA
processes, leading to dramatically reduced peak proton energies from ' 500 MeV (for
L ≤ 5µm) to ' 280 MeV (for L ≤ 10µm).

5.5.4 Comparison of nanowire-foil and foam-foil targets

In Sec. 5.3.4, it was shown that nanowire and uniform targets of same average density
nav/nc ≤ 50 (i.e. d ≤ 100 nm with a spacing D = 1µm) behave similarly in terms of
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Figure 5.46: x − px phase space of H+ (red colorbar) and C6+ (green colorbar) with the
longitudinal static electric field 〈Ex〉/E0 on axis (y = 0, black curve), the electron density
on axis (y = 0, blue curve) and the laser field distribution on axis (y = 0, purple curve) at
time (a) t = 3 fs and (b) t = 30 fs. The nanowires’ width, interspacing and length are set
to d = 36 nm , D = 1µm and L = 3µm, the CH2 substrate has a thickness l = 200 nm.

Figure 5.47: Fraction of absorbed, reflected, transmitted laser energy and maximum proton
energy as a function of the wires’ length 0 ≤ L ≤ 10µm. The nanowires’ width and
interspacing are set to d = 36 nm and D = 1µm. The laser peak intensity is 1022 W/cm2.
The proton energy is reported at the final time t = 240 fs.

laser absorption, electron energization and synchrotron emission. Here, we will shown
that, despite such similarites, those two target types can exhibit significant differences in
proton acceleration.

To illustrate this, we consider the optimum 200 nm CH2 flat foil, which we attach
either to a carbon nanowire array with a wire’s length L = 10µm, a spacing D = 1µm,
a width d = 36 nm and an electron density of ne/nc = 480 in the wires (→ nav/nc = 17)
or to a carbon foam with the same length L = 10µm and same average electron density
nav/nc = 17 (total electron density at full ionization).

The proton spectra obtained 240 fs after the on-target laser peak from the simple
foil, the nanowire-foil and the foam-foil targets are displayed in Fig. 5.48. The foam-foil
target yields a proton cutoff energy much larger than the nanowire-foil target (' 460 vs
' 280 MeV) and only slightly less than the optimum flat foil ' 500 MeV. The much better
performance of the foam-attached foil is not intuitive since the two plasmas formed in front
of the foil share the same average electron density (nav/nc = 17) and dimensions (length
L = 10µm), yielding similar absorption rates (' 80%). Looking more closely at the laser
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Figure 5.48: (a) Energy-resolved proton spectra at t = 240 fs; (b) evolution of maximum
proton energy for nanowire-foil and foam-foil targets. The nanowires and the foam have
the same average density (nav/nc = 17) and the same length (L = 10µm). The laser peak
intensity (1022 W/cm2) arrival on the foam (or the wires) is set to t = 0 fs. The estimated
tranparency times are showed with horizontal error bars.

Figure 5.49: (a) Strong laser autofocusing with a uniform foam (b) Much weaker aut-
ofocusing with a nanowire array. The density and field amplitude are reported at time
t = 35 fs. Both nanostructures have the same average density (nav/nc = 17) and the same
length (L = 10µm).

dynamics, we observe that the process of self-focusing significantly differs between the two
cases. This is illustrated in Fig. 5.49(a,b) which plots the Bz field distribution at t = 35 fs
(i.e. just before the laser pulse hits the substrate) in the foam (a) and nanowire (b) targets.
In the foam case, the head of the laser pulse has focused to a ' 2µm (FWHM) spot where
local intensity reaches I ' 2.5× 1022 W/cm2 (aL = 135). By contrast, when propagating
through the exploding nanowires, the laser head fragments into several filaments due
to transverse density modulations, and hence does not shrink down to a single bright
spot. Its transverse profile has an approximate 4µm width, with ' 2.2 × 1022 W/cm2

local intensity maxima (aL = 125). The enhancement of the laser intensity amplitude
and of its transverse uniformity in the foam-foil target strenghten the RPA in the CH2

susbtrate, as shown in the x − px ion phase spaces (overlaid with the Ex accelerating
field) in Fig. 5.50(a,b). We illustrate the proton and carbon phase spaces for the foam-foil
target at times t = 66 and 106 fs, in order to directly compare them to the wire-foil case
(see Fig. 5.40). At time t = 66 fs, RPA-driven protons from the foam-foil target have
a much higher longitudinal momentum (px/mHc ' 0.83) than from the wire-foil target
(px/mHc ' 0.51). Moreover, they have already catch-up with the TNSA-accelerated
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protons at the rear side of the substrate, and can therefore take advantage of the TNSA
accelerating field. As we already emphasized, laser transparency can additionally improve
proton acceleration. This boost process is enhanced if at transparency time, protons
already have a higher velocity. Indeed, they can take advantage of the transmitted laser
energy on a longer time via the electrons propagating with them.

Figure 5.50: x − px phase space of H+ (red colorbar) and C6+ (green colorbar) with the
longitudinal static electric field 〈Ex〉/E0 on axis (y = 0, black curve), the electron density
on axis (y = 0, blue curve) and the laser field distribution on axis (y = 0, purple curve)
at time (a) t = 66 fs and (b) t = 106 fs. The foam’s average density is ne/nc = 17 and its
length is L = 10µm, the CH2 substrate has a thickness l = 200 nm.

For the nanowire-foil target we mentioned the detrimental impact of the premature
expansion of the susbtrate protons. For a foam-foil target, this effect is significantly
weaker. We checked it by representing the proton density before the pulse peak hit the
substrate in the nanowire-foil and foam-foil cases in Fig. 5.51(a,b). A zoom is performed in
order to distinguish the incoming laser pulse (Red/Blue colormap) and the proton density
(Red colormap). The rear-side of the substrate is more expanded with wires than foam
(' 2µm vs ' 1µm). For the wire-foil target, we also witness a saw-tooth-like periodic
acceleration pattern in front of the susbtrate. It comes from the charge separation field
driven by the neutralizing return current of electrons localized in the wires’edges which
spacing D = 1µm, explains the periodicity observed.

Figure 5.51: Laser field distribution (Bz/B0, red/blue colorbar) and proton density nH/nc
(red colorbar) before the pulse peak hits the substrate at time t = 35 fs. A zoom is
performed in the area 16 ≤ x ≤ 24µm −4 ≤ y ≤ 4µm. (a) foam-foil target and (b)
wire-foil target.

We have examined the benefit of adding nanowire array onto a nanometric CH2 foil for
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enhancing the laser-driven proton acceleration. First, we have identified the target thick-
ness optimizing the cutoff proton energy for a simple flat foil. Our findings corroborates
that of Esirkepov et al. (2006) and Brantov et al. (2015), namely lopt ' 0.5aLλ0nc/ne0.
This optimum thickness gives rise to an efficient coupling of RPA and TNSA, followed
by a short LSA regime, further enhanced by the onset of RSIT at the laser peak. In the
presence of a 10µm-long nanowire array, the hot electrons generated by the laser ramp in
the nanowires cause the foil to expand early in time. Also, the propagation velocity of the
laser peak is slower in the near-critical (nav/nc = 17) plasma formed due to the ultra-fast
expansion of the wires’ expansion. When hitting the substrate, the laser pulse has suf-
fered significant depletion through the nanowires, and so drives a less efficient RPA. The
enhancement of the TNSA field at the target’s rear is also weakened due to its premature
expansion. Overall the net effect is to reduce by a factor 2 the maximum proton energy
attained ' 250 fs after the pulse peak. Such mitigation of the proton acceleration efficiency
can be overcome by using shorter wires. This limit the time-of-flight difference between
the pre-heating fast electrons and the laser pulse at the foil’s front side, while ensuring
an enhanced laser absorption through the nanowires. We have found that is the range
0 ≤ L ≤ 5µm the proton acceleration is optimized and weakly varies Emax

H+ ' 500 MeV.
This value should be considered an upper limit due to the 3D effects bound to arise when
the proton have moved a distance comparable to the transverse size of the accelerating
electric field.

Finally we have briefly compared the proton acceleration achieved in non-uniform
nanowire-foil (with a length L = 10µm) and a uniform foam-foil target of same average
density and dimensions. We have shown that the foam-foil target favors the relativistic
laser self-focusing but also limits the level of pre-heating fast electrons, thus improving
the resulting proton acceleration. This study should be extended to a broader parameter
range in order to conclude about the relative performance of the two target types.
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Conclusions

We conducted a comprehensive work on the interaction of an intense and short laser pulse
with nanowire arrays in this chapter. We successively identified the main generation mech-
anisms of energetic particles (electrons, photons and protons) depending on the nanowire
array geometry and compared them more or less extensively to uniform flat targets.

In a first part we showed that Direct Laser Acceleration can take place for wires with
a large spacing. As soon as the electron density in the nanowires’ interspacing raises, the
laser interacts with an expanded plasma. This gives rise to an electron heating that is
typical of the Relativistic Self Induced Transparency (RSIT) or opacity regimes, depending
on the expanded plasma density and transverse modulations.

Nanowire arrays were shown to be efficient photon sources that can convert up to
' 10% (resp. 6%) of the laser energy into energy photons higher than 10 keV (resp.
1 MeV). This peak performance is comparable to the one obtained for uniform foams of
equivalent density and takes place for average densities nav/nc ' 20 for a laser pulse of top
intensity I = 1022 W.cm−2 and short duration (30 fs). We evidenced that the emission is
more robust with the nanowire array than the uniform foams since it remains at a higher
level for large average densities nav/nc ≥ 50.

We finally focused our attention on proton acceleration in such nanowire-array tar-
gets, still irradiated by a short (30 fs) and intense laser (I = 1022 W.cm−2). Through
2D PIC simulations we found an optimum regime by studying the different acceleration
mechanisms as a function of the substrate and wires’ length. The maximum proton en-
ergy (' 500 MeV) inferred with nanowire arrays are demonstrated to be at the same level
than an optimized flat foil. On these aspects they do not embody a promising way to
significantly enhance proton acceleration. Overall this last study is not complete and may
be carried on as a future perspective.
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Conclusions

This PhD work is centered on the generation of high-energy photon and positron arising
during relativistic laser plasma interactions. It leads to the implementation and validation
of new modules in the PIC code calder developped at CEA and to several investigations
summarized below. The first goal of this PhD is to provide self-consistent and coherent
simulations tools to prepare the physics of the next generation PW and multi-PW laser
systems.

In Chap. 1, we recall the numerical scheme employed to simulate laser plasma inter-
actions: the particle-in-cell method. It is based on the Maxwell-Klimontovich equations
and the main steps of the time loop are detailed: the charge and current assignation,
the resolution of Maxwell’s equations, the interpolation of fields at the particles’ position
and the resolution of particle motion. In addition, we highlight that this kind of code
lacks some physical effects such as elastic deflections, the emission of high energy photons
(by Bremsstrahlung or by synchrotron) and of electron-positron pairs. The latter cannot
be described by the large discretization of PIC codes and must be accounted for by new
modules. While the essence of this new implementation is provided at the end of Chap. 1,
a comprehensive study of processes induced in an electromagnetic (resp. Coulomb) field
is provided in Chap. 2 (resp. in Chap. 3).

Processes induced in an electromagnetic field are described in Chap. 2. As we will
only tackle the synchrotron emission in the frame of this PhD, it is put forward compared
to the Breit-Wheeler and electromagnetic Trident pair generation. We explain how the
synchrotron process is modeled and provide its emission rate in the classical and quantum
regimes. Its implementation in both regimes, either by adding a term in the motion
equation or by performing a Monte-Carlo sampling, is detailled. The modeling of the Breit-
Wheeler mechanism is then given. Overall its implementation is similar to the synchrotron
process. While the electromagnetic Trident process is illustrated, its implementation is
not reported in this PhD. There are indeed less theoretical works on this process.

The results presented in Chap. 3 aim to enrich the simulation capabilities of PIC codes
to relevant Coulomb-mediated processes. We successively examine major mechanisms
induced in an atomic Coulomb field during relativistic laser-plasma interaction. These
include elastic scattering, impact ionization, the generation of photons by Bremsstrahlung
and of electron-positron pairs by Bethe-Heitler/Trident. We emphasize that only the three
latter processes were implemented in the frame of this PhD and that the two first were
already treated (Pérez et al., 2012). For two of these processes (Bremsstrahlung and Bethe-
Heitler), we derived cross-sections accounting for electron shielding in both the low and
high ionization limit of the atom. This specific impact of electron screening is also tackled,
introducing a heuristic model, for electron-ion elastic scattering. After systematically
checking the accuracy of each updated or newly implemented Coulomb-mediated processes
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in the PIC code calder, we consider the classical problem of fast electron relaxation in a
thin copper foil (5−15µm). The goal is to understand the competition between the direct
(Coulomb Trident) and indirect (Bethe-Heitler) production of positrons. While our self-
consistent simulations reproduce qualitatively a 0D model (Myatt et al., 2009), they also
highlight that energy transfers from electrons to ions, via the acceleration of the latter,
can limit the generation of photons and pairs.

Chapter 4 considers laser-plasma interaction in the context of short and mid term
experiments where laser intensities may reach the unprecedented level of 1022 W/cm2.
This is motivated by the observation that the relative importance of Bremsstrahlung and
synchrotron emission is poorly known for this regime of laser intensities. Few previous
works investigated the competition between the two radiative processes, evidencing the
impact of laser intensity (Pandit and Sentoku, 2012) or the target material (Wan et al.,
2017). We progressively introduce key concepts to grasp the issues at stake during the
interaction of such short (tens of fs) and intense lasers with a solid foil. In particular,
the notions of relativistic transparency, fast electron generation and ion acceleration are
summarized. We then illustrate and analyze how synchrotron emission proceeds in a basic
scenario of laser plasma interaction. Among the detailed analysis done for different plasma
densities, we bring forward an enhanced comprehension of how emission operates for near-
critical plasmas (ne/nc ' 15− 20) which are known to maximize the synchrotron process
efficiency (Brady et al., 2012, 2014). We also point out the impact of the target breakout by
the laser on the spectral signature of photons. Having in mind this background, we consider
synchrotron emission from thin solid density copper foils irradiated by a short (50 fs) and
intense laser (I = 1022 W/cm2). While those measuring tens of nm rapidly expand, giving
rise to relativistic transparency and subsequently maximize the synchrotron emission, the
Bremsstrahlung prevails for larger thicknesses (> 2µm). The spectral features of both
processes are analysed and related to the target expansion dynamic.

Chapter 5 explores the possibility to generate better synchrotron photon sources by
employing nanowire arrays. While they present unique properties already experienced for
more accessible laser intensities (I ≤ 1021 W/cm2), we are eager to investigate whether
they can be extended for 1021 ≤ I ≤ 1023 W/cm2. Overall nanowires were shown to bring
almost complete laser absorption as their inter-wire gaps enable a volumetric interaction
with the laser, contrary to a solid flat foil where it remains on its surface (Purvis et al.,
2013). We begin by illustrating fast electron generation in nanowire arrays, depending
on their geometry. We then exemplify the spectral evolution of the photon emission on a
test case. In light of this example, the synchrotron process is analyzed for a broad range
of parameters. For I = 1022 W/cm2, the optimum nanowire array geometry enables to
convert up to 10% of the laser energy into X-rays (≥ 10 keV) and 6% into γ-rays (≥ 1 MeV).
It consists in thin carbon wires expanding in the laser front, such that the main part of
the laser interacts with an almost homogenized relativistically undercritical plasma of
density ne/nc ' 15−20. A comparison between the performances achieved with nanowire
arrays and equivalent uniform density plasmas is carried. It sorts out that for average
densities ne/nc below 50, both types of targets bring similar results whereas for higher
average densities (ne/nc ≥ 50) nanowires are better. The high level of photon production
in nanowire arrays is successfully generalized to a more realistic scenario involving a finite
focal spot and an oblique incidence angle of the laser. The potential of nanowire arrays is
also examined regarding proton acceleration. Even though we show that nanowire arrays
generate protons as energetic as optimized flat foils, the range of parameters explored in
this prospective work remains limited and to be completed.
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Perspectives

The first perspective one can think of is to further extend the capacity of PIC codes. From
a physical point of view, it can be worth to add more processes describing atomic physics
with Auger electrons or K-α emission and photon transport such as photo-ionization and
Compton effect (Del Gaudio et al., 2017). This can be done with the Monte-Carlo macro-
particle pairing scheme already implemented in the PIC code calder. It is however
necessary to extend the existing algorithm to account for the presence of bound states of
atoms. Such phenomenons are usefull to understand the interaction of X-ray Free-Electron
Lasers (XFEL) with solid material samples for applications related to high-energy density
plasmas. Such states of matter are present in the interior of stars and planets of our solar
system (Chabrier, 2009) and are also of interest for inertial confinement fusion (Atzeni
and Meyer-ter-Vehn, 2004). A recent study suggests another way to tackle this problem
by coupling a PIC and a photon transport code (Royle et al., 2017). The latter accounts
for energy transfers via emissivity and opacity coefficients determined from the PIC code
output. From a numerical point of vue, the addition of several new modules implies a
growing number of macro-particles and increases significantly the simulation time. The
best way to limit the inflation of secondary particles is to merge them (Vranic et al.,
2015). The main difficulty with this kind of algorithm is to conserve quantities such as
the statistical weight, momentum and energy of macro-particles.

During this PhD thesis, we compare two processes that lead to the generation of high
energy photons: the synchrotron and the Bremsstrahlung. We put forward the impact of
the plasma length on their relative efficiency. Other laser-plasma parameters, such as the
laser duration, the target profile or composition, are however expected to alter this result.
It is worth to address such issue in the context of laser-solid interaction in short and mid
term experiments. It may also be interesting to extend this comparison to pair creation
processes with the Bethe-Heitler, the Breit-Wheeler, electromagnetic and Coulomb Tri-
dent. While it is known that the Bethe-Heitler and Coulomb Trident prevail for laser
intensities ≤ 1021 W/cm2 it is also expected that the Breit-Wheeler and electromagnetic
Trident will prevail for a laser intensity of 1022 − 1023 W/cm2. Regarding our results in
Chap. 4, it can be expected that for plasmas thick enough, the Bethe-Heitler dominates
the Breit-Wheeler process, even at high laser intensities. The influence of other laser
plasma parameter remains unexplored yet and this opens up the opportunity to tackle an
issue barely addressed in the literature. Indeed the comparison between electromagnetic
and Coulomb induced processes requires to model, implement and valid them all. Another
difficulty lies in the growing computational time of such simulations. Only a few codes
can claim to adress such issues which is the case of the code calder developped at CEA,
now accounting for all these mechanisms (except the electromagnetic Trident). The main
motivation to compare all the pair production effects comes from the growing interest of
several groups to bring forward the first experimental evidence of a pair generation pro-
cess known as two photon (or linear) Breit-Wheeler process (Pike et al., 2014; Ribeyre
et al., 2016; Yu et al., 2018). As it produces less pairs than the Bethe-Heitler and Trident
processes in such experiments, its detection remains a challenge to be faced, calling for a
clear understanding of the relative effectiveness of all those mechanisms.

Given the efforts carried out to put forward an efficient γ-ray source, it is of interest
to employ it to generate an efficient electron-positron pair source using, for example, a
high-Z mm-thick converter target. This would, however, require more ressources since
it is necessary to couple PIC and particle transport codes. Those efforts are worth to
pursue as they contribute to a global growing interest for the experimental realisation of
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electron-positron plasmas carried by, among others, Liang et al. (2015); Chen et al. (2015);
Sarri et al. (2015). The first step is to produce gamma-rays via the synchrotron emission
during the interaction of an intense laser with a foam or nanostructured target. As already
proven via Particle-In-Cell numerical simulations, gamma-ray synchrotron sources induced
by those plasmas can present a high conversion efficiency into a forward (±45◦) cone
angle (Brady et al., 2014): 1% for a 1022 W/cm2 laser interacting either with a uniform
relativistically undercritical plasma (∼ 2×1022 /cm3) or with an optimized nanowire array
(Martinez et al., 2018). The rather high angular and energy spread which characterizes
the photons produced can be reduced by employing a preformed plasma channel. In this
particular context, up to 10% of a 5× 1022 W/cm2 laser can be converted into a directed
γ-ray burst (Stark et al., 2016). Once γ-rays are produced, they can be converted into
e−e+ pairs using a high-Z (gold or tantalum) target. The thickness of this converter target
can be varied in order to achieve quasi-neutral e−e+ beams or plasmas, as done previously
by Liang et al. (2015). The expected optimum length is a few mm. One of the main issues
is to assess whether the e−e+ cloud formed has the right density and dimensions to be
considered as a plasma, i.e. its spatial extent must be higher than the relativistic skin
depth of the pair cloud.

The best γ-ray source identified with nanowires for a laser intensity of 1022 W/cm2

presents a spectrum extending to ∼ 100 MeV energies. This opens up the possibility to
create neutron sources driven by photo-nuclear reactions. Such reactions are already em-
ployed to diagnose the high-energy tail of Bremsstrahlung photons in experiments with
~ω ≥ 10 MeV for 63Cu (γ, n) 62Cu and ~ω ≥ 19 MeV for 12C (γ, n) 11C (Courtois et al.,
2009). A recent experiment, based on copper activation, lead to the generation of ∼ 109

neutrons per shot (Pomerantz et al., 2014). Another promising way to generate neutrons
comes from the interaction of laser-accelerated ion beams with, for example, beryllium
targets (Roth et al., 2013) which provides more neutrons, up to ∼ 1010 n/sr. Potential
applications of neutron sources range from material testing for fusion reasearch (Perkins
et al., 2000), fast neutron radiography (Loveman et al., 1995) or the treatment of can-
cer (Gray and Read, 1943). The implementation within a PIC code of photo-nuclear
reactions was done recently for carbon and berylium (Nakamura and Hayakawa, 2015).
Overall, there are very few works suggesting to generate neutrons via photo-nuclear re-
actions compared to nuclear reactions such as 7Li (d, n) 8Be. This adds an interesting
perspective to this PhD work which may take part in the global effort to drive efficient
and compact neutron sources using relativistic laser-plasma interactions.
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Appendix A

Laser normalisation

Variable Value (λ0 = 1µm)

Density nc 1.11× 1027 /m3

Velocity c 3.00× 108 m/s
Distance c/w0 1.59× 10−7 m

Time w−1
0 5.31× 10−16 s

Mass me 9.11× 10−31 kg
Impulsion mec 2.73× 10−22 kg.m/s

Energy mec
2 8.20× 10−14 J

Current density ncec 5.34× 1016 A/m2

Magnetic field B0 = meω0/e 1.07× 104 T
Electric field E0 = meω0c/e 3.21× 1012 V/m
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Screening angle in the limit of
weak and strong ionization

We present the calculation of an integral denoted by Iαβ and defined as

Iαβ =

∫ π

0

sinθ (1− cosθ)(
4 sin2 θ

2 + θ2
α

) (
4 sin2 θ

2 + θ2
β

) dθ (B.1)

In this expression θα and θβ are fixed parameters on which the value of the integral
Iαβ depends. It is involved in the determination of an adequate description of screening
effects in angular deflections detailed in chapter 4. The first step is to do the substitution
u = sin (θ/2) which provides a simpler expression without trigonometric functions

Iαβ =

∫ 1

0

8u3(
4u2 + θ2

α

) (
4u2 + θ2

β

) du (B.2)

Firstly we treat the particular case where α = β. Physically speaking, it corresponds
to a Fermi or a Debye screening which have an exponential form. Then we generalise the
calculation to the case α 6= β which matches the case of the mixed Fermi-Debye potential
which is the sum of two exponentials.

B.1 Particular case of a single exponential potential

In the case α = β calculations are much simpler and they enable to have a good intuition
for the generalisation to the other case α 6= β. We are willing to determine the closed
form of expression

Iαα =

∫ 1

0

8u3(
4u2 + θ2

α

)2 du (B.3)

We do the substitution v = 2u/θα and obtain

2Iαα =

∫ 2/θα

0

v3

(1 + v2)2 dv (B.4)

The key to integrate this expression is to decompose v3 as = v
(
1 + v2

)
−v which leads

to a simplification
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2Iαα =

∫ 2/θα

0

v�����(
1 + v2

)
(1 + v2)�2

dv −
∫ 2/θα

0

v

(1 + v2)2 dv (B.5)

The remaining terms are straightforward to integrate and provide

Iαα =
1

4

{
ln
(
4 + θ2

α

)
+
θ

2
α

4 + θ2
α

− 1− 2 lnθ2
α

}
(B.6)

Equation (B.6) represents the closed form of the initial integral we are willing to derive
and defined in equation (B.3). In the physical scenario of interest the variable θα is a
screening angle which is small with typically θα � 1. A limited developement of equation
(B.2) for θα � 1 provides a much simpler expression for the integral Iαα

Iαα =
1

2
lnθ−1

α +O (1) (B.7)

B.2 Generalisation to a double exponential potential

We would like now to generalize the former calculation and derive the closed-form of the
following integral

Iαβ =

∫ 1

0

8u3(
4u2 + θ2

α

) (
4u2 + θ2

β

) du (B.8)

The key step is to get rid of the product in the denominator of the expression we want
to integrate in equation (B.8). From the result in the case α = β we are able to integrate

an expression of the form u3/
(
4u2 + θ2

α

)2
. For this reason we look for a decomposition

of the denominator involving this type of expression. More precisely we look for four
variables denoted by A, B, C and D as follows

8u3(
4u2 + θ2

α

) (
4u2 + θ2

β

) =
Au3 +Bu(
4u2 + θ2

α

)2 +
Cu3 +Du(
4u2 + θ2

β

)2 (B.9)

The resolution of equation (B.9) for A, B, C and D leads to a system of 4 equations
with 4 unknown that can be written under the following form

16 0 16 0
8θ2

β 16 8θ2
α 16

θ
4
β 8θ2

β θ
4
α 8θ2

α

0 θ
4
β 0 θ

4
α



A
B
C
D

 =


128

32
(
θ

2
α + θ2

β

)
8θ2

αθ
2
β

0

 (B.10)

and resolved provided the determinant of the matrix is not null ↔ θ2
α 6= θ2

β. As the
parameters θα and θβ are both positive, it is equivalent to θα 6= θβ. We have already
treated the particular case where θα = θβ above and can therefore go on with the case
θα 6= θβ without loss of generality. The resolution is done by classical means and leads to

A
B
C
D

 =
2

θ
2
α − θ2

β


4θ2

α

θ
4
α

−4θ2
β

−θ4
β

 (B.11)

Having now the expression of the parameters A, B, C and D, we can integrate the right
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hand side of equation (B.9). Let us detail the method for the first term of the right hand
side of equation (B.9). The second term will be integrated following the same method.
As we substitute the expression of the coefficient B = θ2

αA/4 in the first term of the right
hand side of equation (B.9) we obtain a simplification

∀u ∈ (0, 1)
Au3 +Bu(
4u2 + θ2

α

)2 =
A

4

u������(
4u2 + θ2

α

)
(
4u2 + θ2

α

)�2 =
A

4

u

4u2 + θ2
α

(B.12)

which is now straightforward to integrate. The calculation provides the following result∫ 1

0

Au3 +Bu(
4u2 + θ2

α

)2 =
1

4

θ
2
α(

θ
2
α − θ2

β

) ln

[(
1 +

4

θ
2
α

)]
(B.13)

The method to integrate the second term of the right hand side off equation (B.9) is
strictly the same. We direclty report the sum of the two expressions and obtain the final
expression of the integral Iαβ which is

Iαβ =
1

4

1

θ
2
α − θ2

β

{
θ

2
α

[
ln
(
4 + θ2

α

)
− 2 lnθα

]
− θ2

β

[
ln
(
4 + θ2

β

)
− 2 lnθβ

]}
(B.14)

Equation (B.14) represents the closed form of the initial integral we are willing to
derive and defined in equation (B.1). In the physical scenario of interest the variables
θα and θβ are screening angles which are small with typically θα, θβ � 1. A limited
developement of equation (B.14) for θα, θβ � 1 provides the following expression for the
integral Iαβ

Iαβ =
1

2
ln

[
θ

1

(θ2β/θ2α−1)
α θ

1

(θ2α/θ2β−1)
β

]
+O (1) (B.15)
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List of communications

C.1 First author articles in peer-reviewed journals

B. Martinez, M. Lobet, E. d’Humières, L. Gremillet Synchrotron emission from nanowire-
array targets irradiated by intense laser pulses, Plasma Physics and Controlled Fusion 60,
074009 (2018).

B. Martinez, E. d’Humières, L. Gremillet High-Energy Radiation and Pair Produc-
tion by Coulomb Processes in Particle-in-Cell Simulations, to be submitted to Physics of
Plasmas.

C.2 Oral presentations

B. Martinez, E. d’Humières, and L. Gremillet Radiative effects in the interaction of an
intense laser with flat and nanowire-array targets, University of Chalmers, Gteborg (2018)
(invited oral).

B. Martinez, E. d’Humières, and L. Gremillet Radiative and QED effects in relativistic
laser plasma interaction, seminar at CEA, Bruyères-le-Châtel (2018) (oral).

B. Martinez, E. d’Humières, and L. Gremillet Radiative and QED effects in relativistic
laser plasma interaction, seminar at LULI Laboratory, Palaiseau (2018) (oral).

L. Gremillet, B. Martinez, M. Lobet, and E. d’Humières, High-energy radiation sources
from nano-structured and thin targets irradiated by ultraintense lasers, 27th Annual Inter-
national Laser Physics Workshop (LPHYS’18), Nottingham (2018) (invited oral).

B. Martinez, E. d’Humières, and L. Gremillet Synchrotron emission from nanowire-
array targets irradiated by ultraintense laser pulses, 45th EPS Conference on Plasma
Physics, Prague (2018) (poster).

L. Gremillet, B. Martinez, M. Lobet, and E. d’Humières, High-energy radiation sources
from structured and thin targets irradiated by ultraintense lasers, 12th International Con-
ference on High Energy Density Laboratory Astrophysics (HEDLA), Kurashiki (2018)
(invited oral).

B. Martinez, M. Lobet, E. d’Humières, and L. Gremillet, Synchrotron sources from
nanowire-array targets irradiated by intense lasers, 15è Congrès Plasmas de la Société
Française de Physique, Bordeaux (2018) (oral).

B. Martinez, M. Lobet, E. d’Humières, and L. Gremillet. Synchrotron sources from
nanowire-array targets irradiated by intense lasers, 8th Conference on Plasma Physics by
Lasers and Application, Messina (2017) (oral).

B. Martinez, M. Lobet, E. d’Humières, and L. Gremillet, High-energy radiation and
pair production in particle-in-cell simulations, National Terawatt Facility, Reno (2016)
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(invited seminar).

C.3 Poster presentations

L. Gremillet. B. Martinez, and E. d’Humières, Synchrotron radiation from nanowire tar-
gets irradiated by intense lasers, 2nd Conference on Extremely High Intensity Laser Physics
(ExHILP), Lisbon (2017).

B. Martinez, L. Gremillet and E. d’Humières, Synchrotron emission from nanowire-
array targets irradiated by ultraintense laser pulses, Summer School Atoms and plasmas
in super-intense laser fields, Erice (2017).

B. Martinez, E. d’Humières, and L. Gremillet, Synchrotron emission from nanowire-
array targets irradiated by ultraintense laser pulses, Winter School :Matter in extreme
conditions, Modane (2017).

B. Martinez, E. d’Humières, and L. Gremillet, Synchrotron emission from nanowire-
array targets irradiated by ultraintense laser pulses, 8è Forum ILP, Aussois (2017).

B. Martinez, M. Lobet, E. d’Humières, and L. Gremillet, High-energy radiation and
pair production in particle-in-cell simulations, PHARE kickoff meeting, Paris (2016).

B. Martinez, M. Lobet, E. d’Humières, and L. Gremillet, High-energy radiation and
pair production in particle-in-cell simulations, 43rd EPS Conference on Plasma Physics,
Leuven (2016).

B. Martinez, M. Lobet, E. d’Humières, and L. Gremillet, High-energy radiation and
pair production in particle-in-cell simulations, 14è Congrès Plasmas de la Société Française
de Physique Nancy (2016).
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Grismayer, T., M. Vranic, J. L. Martins, R. A. Fonseca, and L. O. Silva, Phys. Plasmas
23, 056706 (2016).

203

http://dx.doi.org/10.1038/nature02963
http://dx.doi.org/10.1063/1.5026391
http://dx.doi.org/ 10.1103/PhysRevA.20.2120
http://dx.doi.org/10.1038/nphys199
http://dx.doi.org/10.1063/1.122855
http://dx.doi.org/10.1063/1.1319526
http://dx.doi.org/10.1103/PhysRevLett.83.4772
http://dx.doi.org/10.1063/1.3575624
http://dx.doi.org/10.1063/1.3575624
http://dx.doi.org/10.1088/1367-2630/9/2/023
http://dx.doi.org/10.1038/nature02900
http://dx.doi.org/10.1103/PhysRevLett.73.664
http://dx.doi.org/ 10.1103/PhysRevLett.94.025003
https://www.diva-portal.org/smash/get/diva2:681092/FULLTEXT02.pdf
http://dx.doi.org/10.1103/PhysRevE.84.046403
http://dx.doi.org/10.1086/158068
http://dx.doi.org/10.1038/152053a0
http://dx.doi.org/ 10.1103/PhysRevE.77.066407
http://dx.doi.org/ 10.1063/1.4950841


BIBLIOGRAPHY

Grismayer, T., M. Vranic, J. L. Martins, R. A. Fonseca, and L. O. Silva, Phys. Rev. E
95, 023210 (2017).

Gryaznykh, D. A., Y. Z. Kandiev, and V. A. Lykov, JETP Lett. 67 (4), 257 (1998).
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ter Vehn, Phys. Rev. Lett. 88, 055004 (2002).

Sheng, Z.-M., S.-M. Weng, L.-L. Yu, W.-M. Wang, Y.-Q. Cui, M. Chen, and J. Zhang,
Chinese Physics B 24 (1), 015201 (2015).

Siminos, E., M. Grech, S. Skupin, T. Schlegel, and V. T. Tikhonchuk, Phys. Rev. E 86,
056404 (2012).

Siminos, E., M. Grech, B. S. Wettervik, and T. Fülöp, New J. Physics 19 (12), 123042
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Résumé : Effets radiatifs et d’électrodynamique quantique dans l’interaction
laser-matière relativiste

Les futures installations laser multi-pétawatts, tel le projet Apollon (France) permettront
d’atteindre des intensités sur cible dépassant 1022 W/cm2. Dans de telles conditions, l’
interaction laser-matière met en jeu des processus plasmas ultra-relativistes couplés à
des mécanismes radiatifs et d’électrodynamique quantique (QED). La plupart des études
théoriques sur ce sujet ont porté sur l’émission synchrotron et la production de paires
électron-positron par le processus de Breit-Wheeler, tous deux induits par un champ laser
intense et censés dominer l’interaction à des intensités > 1022 W/cm2. À de plus faibles
intensités (. 1021 W/cm2), l’émission de photons et la création de paires procèdent essen-
tiellement du Bremsstrahlung et des processus de Bethe-Heitler/Trident, tous déclenchés
sous l’action du champ Coulombien atomique. Cette thèse vise précisément à étudier ces
processus à l’aide du code particle-in-cell (PIC) calder conçu au CEA/DAM.

Notre première étude permet d’étendre les capacités de simulation du code PIC calder
à l’ensemble des mécanismes mentionnés ci-dessus. Nous nous intéressons ensuite à la
compétition entre le Bremsstrahlung et l’émission synchrotron dans des feuilles de cuivre
irradiées par un laser femtoseconde d’intensité 1022 W/cm2. Finalement, nous explorons
le potentiel de cibles composées de nano-fils pour augmenter le rayonnement synchrotron.

Mots-clés : interaction laser-matière, plasma, électrodynamique quantique, Particle-
In-Cell, Compton, Breit-Wheeler, Bremsstrahlung, Bethe-Heitler, nano-fils, Apollon.

Abstract: Radiative and quantum electrodynamic effects in relativistic
laser-matter interaction

Forthcoming multi-petawatt laser systems, such as the French Apollon, are expected to
deliver on-target laser intensities exceeding 1022 W/cm2. A novel regime of laser-matter
interaction will ensue, where ultra-relativistic plasma effects are coupled with copious
generation of high-energy photons and electron-positron pairs. In recent years, most the-
oretical studies performed in this field have focused on the impact of synchrotron photon
emission and Breit-Wheeler pair generation, both directly induced by an intense laser
field and believed to be dominant at intensities > 1022 W/cm2. At the lower intensities
(. 1021 W/cm2) currently attainable, by contrast, photon and pair production mainly orig-
inate from, respectively, Bremsstrahlung and Bethe-Heitler/Trident processes, all triggered
by atomic Coulomb fields. The purpose of this PhD is precisely to study those processes
using the particle-in-cell calder code developed at CEA/DAM.

Our first study extends the simulation capabilities of calder to the whole range of
photon and positron generation mechanisms aforementioned. We then address the com-
petition between Bremsstrahlung and synchrotron emission from copper foils irradiated
at 1022 W/cm2. Finally, we investigate the potential of nanowire-array targets to enhance
the synchrotron yield of a 1022 W/cm2 femtosecond laser pulse.

keywords: laser-matter interaction, plasma, quantum electrodynamics, Particle-In-
Cell, Compton, Breit-Wheeler, Bremsstrahlung, Bethe-Heitler, nanowires, Apollon.
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