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Abstract

The goal of this thesis is to add to the efforts toward the long-sought
objective of secure and safe robots with predictable and a priori
known behavior. For the reasons given above, formal methods are
used to model and verify crucial properties, with a focus on the func-
tional level of robotic systems. The approach relies on automatic gen-
eration of formal models targeting several frameworks. For this, we
give operational semantics to a robotic framework, then several
mathematically proven translations are derived from such semantics.
These translations are then automatized so any robotic functional lay-
er specification can be translated automatically and promptly to vari-
ous frameworks/languages. Thus, we provide a mathematically cor-
rect mapping from functional components to verifiable models. The
obtained models are used to formulate and verify crucial properties on

real-world complex robotic and autonomous systems.

This thesis provides also a valuable feedback on the applicability of
formal frameworks on real-world, complex systems and experience-
based guidelines on the efficient use of formal-model automatic gen-
erators. In this context, efficiency relates to, for instance, how to use
the different model checking tools optimally depending on the proper-
ties to verify, what to do when the models do not scale with model
checking (e.g. the advantages and drawbacks of statistical model
checking and runtime verification and when to use the former or the
latter depending on the type of properties and the order of magnitude

of timing constraints).

Keywords: Robotics, computer science, software engineering, formal

methods, verification, real-time.



Résumeé

Les systémes robotiques et autonomes ne cessent d’évoluer et deviennent de
plus en plus impliqués dans les missions a colt considérable (e.g. exploration
de I'espace) et/ou dans les milieux humains (e.g. chirurgie, assistance
handicap). Cette implication remet en question les pratiques adoptées par les
développeurs et ingénieurs pour donner un certain degré de confiance a ces
systemes. En effet, les simulations et campagnes de tests ne sont plus
adaptées a la problématique de sireté et fiabilité des systemes robotiques et
autonomes compte tenu (i) du caractére sérieux des défaillances éventuelles
dans les contextes susmentionnés (un dommage a un robot trés colteux ou
plus dramatiqguement une atteinte aux vies humaines) et (ii) de la nature non
exhaustive de ces techniques (les tests et simulations peuvent toujours passer

a coté d'un scénario d’exécution catastrophique.

Les méthodes formelles, bien qu’elles offrent une solution mathématique
élégante aux problemes de slireté de fonctionnement et de fiabilité, peinent a
s'‘imposer, de leur c6té, dans le domaine de la robotique autonome. Cette
limitation devient encore plus visible au niveau fonctionnel des robots, i.e. les
composants logiciels interagissant directement avec les capteurs et les
actionneurs. Elle est due a plusieurs facteurs. D’abord, les composants
fonctionnels reflétent un degré de complexité conséquent, ce qui mene souvent
a une explosion combinatoire de I'espace d’états atteignables (comme
I’'exploration se veut exhaustive). Ce probleme force les spécialistes soit a se
limiter a des applications trés simples, soit a recourir a des abstractions qui
s’averent fréquemment exagérées, ce qui nuit a la véracité des résultats de la
vérification (e.g. l'oubli des contraintes temporelles, la non inclusion des
spécificités du hardware). En outre, les composants fonctionnels sont décrits a
travers des languages et frameworks informels (ROS, GenoM, etc.). Leurs
spécifications doivent alors étre traduites en des modeéles formels avant de
pouvoir y appliquer les méthodes formelles associées. Cette opération,
nommée formalisation, est souvent pénible, lente, et exposée a des erreurs vu

la complexité des comportements que représentent les composants



fonctionnels des robots. La formalisation fait face également a un autre
probléme également pesant, a savoir le manque de portabilité. Cela se résume
au fait que chaque traduction doit étre refaite dés qu’'un composant change ou
évolue, sans parler des nouvelles applications faites de nouveaux composants,
ce qui implique un investissement dans le temps aux limites de la rentabilité. A
noter que cette thése ne s’intéresse pas aux composants du haut niveau dits
“décisionnels” des systemes robotiques et autonomes. En effet, ces
composants sont souvent basés sur des modeéles bien définis, méme formels,
ce qui facilite leur connexion aux méthodes formelles. Le lecteur intéressé peut
trouver dans lalittéature de nombreuses contributions y étant pertinentes. Aux
limitations décrites précédemment, s’ajoute le probleme de l'indécidabilité vis-

a-vis les formalismes et les techniques de vérification.

Par example, les travaux comparant les Réseaux de Petri Temporels “a la,
Merlin” et les Automates Temporisés, deux formalismes phares de modélisation
des systemes concurrents, demeurent trop formels pour les communautés
autres que celle des méthodes formelles. Il existe néanmoins des travaux qui
présentent des techniques qui permettent de bénéficier des deux formalismes,
bien qu’elles ne soient (i) appliquées qu’a des exemples académiques
classiques, loin de la complexité des composants fonctionnels robotiques et
autonomes et (ii) restreintes aux classes des réseaux non-interprétés (pas de

possibilité d’avoir des données/variables partagées).

Nous proposons, dans ce travail de recherche, de connecter GenoM3, un
framework de développement et déploiement de composants fonctionnels
robotiques, a des langages formels et leurs outils de vérification respectifs.
Cette connexion se veut automatique pour pallier aux probléme de non
portabilité, décrit au paragraphe précédent. GenoM3 offre un mécanisme de
synthése automatique pour assurer l'indépendance des composants du
middleware. Nous exploitons ce mécanisme pour développer des templates en
mesure de traduire n’‘importe quelle spécification de GenoM3 en langages
formels. Ceci passe par une formalisation de GenoM3: une sémantique

formelle opérationnelle est donnée au langage. Une traduction a partir de cette



sémantique est réalisée vers des langages formels et prouvée correcte par
bisimulation. Nous comparons de différents langages cibles, formalismes et
techniques et tirerons les conclusions de cette comparaison. La modélisation se
veut aussi, et surtout, efficace. Un modele correct n’est pas forcément utile. En

effet, le passage a I’échelle est particulierement important.

Cette these porte donc sur I'applicabilité des méthodes formelles aux
composants fonctionnels des systémes robotiques et autonomes. Le but est
d'aller vers des robots autonomes plus slirs avec un comportement plus connu
et prévisible. Cela passe par la mise en place d'un mécanisme de génération
automatique de modeles formels a partir de modules fonctionnels de systemes
robotiques et autonomes. Ces modeles sont exploités pour vérifier des
propriétés qualitatives ou temps-réel, souvent critiques pour les systemes
robotiques et autonomes considérés. Parmi ces propriétés, on peut citer, a titre
d'exemple, I'ordonnancabilité des taches périodiques, la réactivité des taches
sporadiques, I'absence d’interblocages, la vivacité conditionnée (un évenement
toujours finit par suivre un autre), la vivacité conditionnée bornée (un
évenement toujours suit un autre dans un intervalle de temps borné),
I'accessibilité (des états “indésirables” ne sont jamais atteints), etc. Parmi les
défis majeurs freinant I'atteinte de tels objectifs, on cite notamment:

- Contrairement aux spécifications décisionnelles, les modules fonctionnels
sont décrits dans de langages informels. La formalisation est dure,
inévidente, et sujette a des erreurs compte tenu des comportements
atypiques qui peuvent se présenter a ce niveau. Cette formalisation est aussi
non réutilisable (besoin de re-formaliser pour chaque nouvelle application). I
existe une multitude de techniques de vérification et de formalismes
mathématiques pour la modélisation. Le choix n'est pas évident, chaque
formalisme et chaque technique présentant des avantages et des
inconvénients. La complexité des modules fonctionnels (nombre de
composants, mécanismes de communication et d'exécution, contraintes
temporelles, etc.) mene a des problémes sérieux de passage a I'échelle

(explosion de I'espace d'états atteignables).



Il existe une déconnexion importante entre les deux communautés (de
robotique et de vérification formelle). D'une part, les roboticiens n'ont ni la
connaissance ni les moyens (en terme de temps surtout mais aussi de
background) de s'investir dans les méthodes formelles, qui sortent de leur
domaine. D'autre part, les spécialistes des méthodes formelles restent loin
de s'attaquer a des problématiques si complexes faute de connaissances en
robotique. Cette thése tacle la totalité de ces problémes en proposant une
approche de traduction prouvée mathématiquement et automatisée de
GenoM vers:

Fiacre/TINA (model checking)

UPPAAL (model checking)

UPPAAL-SMC (statistical model checking)

BIP/RTD-Finder (SAT solving)

BIP/Engine (enforcement de propriétés en ligne)

La thése propose également une analyse du feedback expérimental afin de

guider les ingénieurs a exploiter ces méthodes et techniques de vérification

efficacement sur les modeles automatiquement générés.

Mots-clés: Robotique, informatique, méthodes formelles, vérification,

temps-réel
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Chapter 1

Introduction

The last few decades are characterized by a fast growth in hardware technology,
such as smart sensors and on-board electronics. As a result, the capabilities of robotic
and autonomous systems have increased, which motivated their deployment over a
large spectrum of domains. This large deployment often involves contact with humans
or critical missions (e.g. home assistants, rescue robots, deep space, self-driving cars,
cyber-physical systems). However, robotic and autonomous systems need a software
to fulfill their missions.

Software governs the evolutions of robotic and autonomous systems. It implements
sensory-motor functions and transforms the inner capabilities of the hardware elements
into tangible actions. This major role of software puts it at the heart of missions suc-
cess, but also makes it a major source of failures. This last statement is supported
by a number of incidents that maculate the actual deployment of software autonomy.
Among these, we cite the Uber self-driving car accident last March in Tempe, Arizona.
Elaine Herzberg, a 49-year-old pedestrian was fatally hit by an autonomous Volvo in
an incident widely covered by the media. Experts reports seem to agree on the fact
that the car sensors did actually detect the victim, but software decided not to swerve,
possibly considering the sensor feedback to be a false positive!. This is an example
that shows that envisaging a wider involvement of robotic and autonomous systems in
our daily life requires to achieve a higher level of trust in their software.

We point out that, at this level, we need to distinguish between (1) failure at the
specification level of sensory-motor functions and (2) failure of software. The former
(1) is due to the functions being faulty at the algorithmic/mathematical level, so even
if the software implements them correctly, the system would still fail with regard to
what we expect it to do. The latter (2) results from an erroneous implementation of
the sensory-motor functions, so even if the algorithmic specification is correct, the
system would still fail with regard to what such a specification entails. In this thesis,
we focus on the pure software failures (category (2)), even though diagnosing a failure
in this category may reveal an algorithmic aberrance (category 1). In the example
given above, it is hard to categorize the failure (decision not to swerve) exclusively in
category (1) or category (2), although the current investigation course seems to point
to the direction of a pure software failure. Indeed, the laser reflection was detected, but
the interpretation of it was “wrong” and the reactions were therefore unadapted, with
regard to the specification.

1https://www. theguardian. com/technology/2018/may/@8/ubers-self-driving-car-saw-the-
pedestrian-but-didnt-swerve-report
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The addressed problem at a glance In the current practice, robotic software trust-
worthiness relies on testing campaigns, best coding practices, and the choice of sound
architecture principles. While such methods are helpful, they unfortunately do not
provide guarantees on crucial properties such as schedulability of tasks, absence of
deadlocks, leads to (an event b always follows an event a in the future), and bounded
response (an event b always follows an event a within a bounded amount of time). Such
properties often reflect the requirements on the safety and predictability of the system.
For instance, a deadlock in a part of the system means that some execution scenario
ends up in a state where no further evolution is possible, in that part of the system.
Such a scenario is undesirable while an autonomous system is undergoing a critical or
dangerous mission, the success of which requires a correct coordination of all the soft-
ware pieces in the system. Another example is an autonomous system (e.g. a drone)
taking part in a hard real-time application, where all of its tasks need to finish pro-
cessing before a statically assigned deadline. Failing to satisfy this property, known as
schedulability, may induce e.g. an erroneous servoing that would lead a drone to crash,
and possibly injure humans. The bounded response is crucial in e.g. self-driving cars,
where we want to know that for all possible execution scenarios, the maximum time
difference between requesting a brake action and the actual braking is small enough
so the vehicle stops before colliding with an obstacle (which might be a pedestrian).
Verifying this type of properties is thus necessary to obtain a high level of trust in the
robotic software, yet the routinely employed methods fall short of giving the desired
answers. Indeed, scenario-based testing for instance, widely used in robotics, is non
exhaustive and thus cannot verify a property with a known level of certainty. Con-
sequently, the reliability of robotic software does not rise to the level found in many
regulated domains, such as the aeronautic or nuclear industries, where formal methods
are used to check the most vital parts of systems [Woodcock et al., 2009].

The question that arises is why formal methods are not systematically employed
to verify robotic software? There exist many reasons, emerging from the specificities
of the robotics domain, such as the unstructured nature of environments, compared
to other domains like aeronautics. But, more generally, to answer this question, we
need to differentiate the levels of robotic software, mostly viewed as functional (tightly
coupled with the sensors and actuators) and decisional (in charge of deliberative func-
tions). In contrast to most of the decisional ones, functional specifications are written in
informal languages. Thus, in order to apply formal methods to the functional level, we
need first to formalize its specifications. The formalization is hard, error-prone and non
automatic (it needs to be re-done from scratch for each new application). Additionally,
there is a large number of existing formalisms/tools that can be employed in modeling
and verification. The mutual advantages and drawbacks of such formalisms/tools de-
pend on the applications/properties to verify and cannot thus be known beforehand. In
practice, the high cost of modeling often limits the choice to only one formalism/tool,
which makes it impossible to know whether verification might be improved with other
formalisms/tools. Moreover, the complexity of the functional level (e.g. number of
components, timing constraints, communication mechanisms) often leads to scalability
issues. Overall, there is a visible gap between the robotic and formal methods com-
munities. On one hand, robotic programmers have neither the knowledge nor the time
to invest in applying formal methods to their applications. On the other hand, formal
methods specialists are often far from dealing with systems as complex as the robotic
ones.

12



Proposition The goal of this thesis is to add to the efforts toward the long-sought ob-
jective of secure and safe robots with predictable and a priori known behavior. For the
reasons given above, formal methods are used to model and verify crucial properties,
with a focus on the functional level of robotic systems. The approach relies on auto-
matic generation of formal models targeting several frameworks. For this, we give op-
erational semantics to a robotic framework, then several mathematically proven trans-
lations are derived from such semantics. These translations are then automatized so
any robotic functional layer specification can be translated automatically and promptly
to various frameworks/languages. Thus, we provide a mathematically correct mapping
from functional components to verifiable models. The obtained models are used to
formulate and verify crucial properties (see examples above) on real-world complex
robotic and autonomous systems.

This thesis provides also a valuable feedback on the applicability of formal frame-
works on real-world, complex systems and experience-based guidelines on the efficient
use of formal-model automatic generators. In this context, efficiency relates to, for in-
stance, how to use the different model checking tools optimally depending on the prop-
erties to verify, what to do when the models do not scale with model checking (e.g. the
advantages and drawbacks of statistical model checking and runtime verification and
when to use the former or the latter depending on the type of properties and the order
of magnitude of timing constraints).

Outline of the chapter The rest of this chapter is organized as follows. First, we
overview one of the popular hierarchical architectures in robotic software and review
the existing component-based frameworks for the functional level. This helps us to
argue in favor of the framework of our choice. Second, the robotic software reliability
problem is introduced. We give notable examples on software failures in real-world
robots and their direct influence on the deployability of those robots. Formal verifica-
tion is then overviewed at the decisional level and the difference of its applicability to
the different architectural levels is discussed. This motivates our choice to focus on the
functional level. Third, we overview the state of the art of formal verification of func-
tional components. We identify the main problems hindering a systematic verification
of functional components using formal methods. Finally, we present our contributions
as viable solutions to the identified problems and outline the plan of the thesis.

1.1 Software in robotics

Software engineers and developers work permanently on providing robust frame-
works to specify and execute robotic applications. These efforts are confronted with a
raising complexity of robotic and autonomous systems, which makes software devel-
opment, use and maintenance costly and challenging. Indeed, the simplest applications
nowadays involve several sensors/actuators and thousands of lines of code. Further-
more, autonomous systems are highly heterogeneous. Timing constraints, for instance,
differ greatly from a function to another both range-wise (from hundreds of nanosec-
onds to several seconds) and urgency-wise (e.g. hard or weakly hard real-time [Bernat
et al., 2001]).

In order to tackle this complexity efficiently, robotic software is often broken ac-
cording to the role of its parts and the degree of their autonomy and direct involvement
with the hardware. The first direction of dissociating these parts is hierarchical, sepa-
rating those that directly interact with sensors and actuators from the decision-making,

13



deliberative ones; such a separation produces levels, also known as layers. The second
direction consists in partitioning a layer into different reusable components according
to the functionalities they are in charge of.

1.1.1 Layers

Layering separates software pieces with a high level of autonomy from those that
process sensor inputs and send outputs to actuators. This hierarchical splitting produces
three layers [Gat and Bonnasso, 1998; Alami et al., 1998]:

Decisional layer In charge of high-level deliberative functions pertaining to decision
making. Such functions may be e.g. planning, acting and learning [Ingrand and Ghal-
lab, 2017] and usually require a certain knowledge of the system and its environment
with some abstract representation. The decisional layer outputs high-level plans result-
ing from applying its computations, often relying on heuristics, performed over some
data from a lower layer.

Functional layer Tightly coupled to the hardware in charge of perception and action,
that is sensors and actuators. It is in charge of control loops that deal with elementary
robot actions. It implements functions that manage such low-level actions, including
e.g. localization, vision and motion planning. The functional layer also feeds the higher
layers with inputs when deliberation is needed.

Executive layer Plays the role of a middleman between the highest layer, the deci-
sional, and the lowest one, the functional. It selects, according to the actions received
from the decisional layer, the operations to perform at the functional one, with proper
parameters and ordering. Subsequently, it returns reports on functions execution to
the decisional layer so the latter may properly supervise the plans and select the next
actions.

Note that despite its popularity, this is not the only hierarchical architecture that
we encounter in robotic systems. Indeed, the specificities of a given application might
influence the criteria according to which the system is layered. For instance, some ar-
chitectures rely on temporal characteristics as a layering principle, such that high-level
tasks operate at lower frequencies than low-level ones (example in [Albus, 1995]).
A broad view on robotic architectures may be found in [Kortenkamp and Simmons,
2008].

The three-layer architecture presented here does not draw any borders between
layers, which results in systems where one layer is dominant. Moreover, the loose def-
inition of the executive layer leaves blurry spots when trying to specify an autonomous
system as, often, the borders between it and the other layers are hard to localize (exam-
ple in [Knight et al., 2000]). Additionally, the executive layer presence prevents often
access to the functional layer by the decisional one, which may result in inconsisten-
cies. These problems led to the adoption of a more compact two-layer representation
where the executive layer is absorbed by one of the other layers or both (example
in [Volpe et al., 2001]). In this thesis, we focus on the functional layer as this will be
motivated in Sect. 1.2.
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1.1.2 Component-based software

Within each layer, software is still breakable into different units, called compo-
nents, following their functionality. In this section, we focus on the functional layer
component-based design as we overview a broad range of its existing frameworks. The
focus on the functional layer here pertains to the main goals and contributions of this
thesis (Sect. 1.5) and exposes the middleware dependency recurrent problem in robotics
(Sect. 1.1.2.2).

1.1.2.1 Motivation

Component-based design is particularly convenient for robotic systems, where soft-
ware, inherently complex, is required to be equally reusable (an overview is given be-
low). Typically, each functional component is in charge of a robotic functionality of
which it implements the algorithms. A robotic application is then built by combining
a number of components that communicate in order to fulfill the application require-
ments. Component-based design is therefore powerful due to the possibility to reuse
components for different applications and to implement the same component differ-
ently according to the application (e.g. same functionality but different algorithms),
which produces a broad range of systems resulting from existing components. This
compositionality is the spirit of widely used robotic frameworks, such as ROS [Quigley
et al., 2009] and Orocos [Bruyninckx, 2001]. In this thesis, it is important to rely on
a robotic framework that features reusability and compositionality. Indeed, in order to
make our work the most accessible to robotic engineers, we need to comply with the
current trends in robotics including component-based design. The use of a component-
based framework to specify the robotic applications is therefore important.

1.1.2.2 Middleware dependency

Robotic software components are highly dynamic. There are therefore preponder-
ant needs to handle their mutual interaction and their communication with the operating
system.This is done by the Middleware. In order to meet the components communi-
cation and synchronization rigorous requirements, robotic middleware evolve contin-
uously [Kramer and Scheutz, 2007; Elkady and Sobh, 2012]. This important role of
middleware makes it tightly coupled to the component-based framework, so it is con-
sidered often as a part of the latter. This is the case of ROS (respect. Orocos), pro-
viding a communication layer called ROS-Comm (respect. Orocos Real-Time Toolkit
RTT?). Due to the specificities of each middleware [Mohamed et al., 2008], it is rather
common among robotic programmers to design components for a particular implemen-
tation. One may even end up with components using different middleware within the
same application.

This foggy line between component-based software and middleware questions the
reusability of robotic components, which is the main advantage of component-based
design (Sect. 1.1.2.1). It is even argued in [Smart, 2007] that the current components-
middleware tight coupling practice in robotics constitutes a main speed bump in the
path of robotic research as “we spend our time reimplementing known algorithms and
techniques, rather than discovering new ones”. This problem is known as the middle-
ware dependency. In this thesis, it is important to use an approach that efficiently solves
this problem. Indeed, this will minimize the cost of verifying different implementations

2http://www.orocos.org/node/26
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of the components.

1.1.2.3 Overview of existing frameworks

Software and robotic engineers and researchers propose a various range of spec-
ification frameworks that are also solutions to the middleware dependency problem.
The common factor to the majority of these solutions is mainly attempting to dissoci-
ate component-based frameworks from middleware. In many cases, the propositions
consist in enhancing general-purpose software paradigms to increase their suitability
for robotic applications, including adding layers to enable their connection to the mid-
dleware. This explains the striking resemblance between a decent number of proposed
approaches (see examples below) and the widely used Unified Modeling Language
UML .

UML is a general-purpose graphical modeling language, popular among software
engineers especially in object-oriented programming [Coad and Nicola, 1993]. In its
latest stable release, UML 2.5 features an architectural design with connectors for a
natural communication between components [Clements et al., 2003], which apparently
suits the robotic software needs at the functional layer. Nevertheless, UML diagrams
are unable to capture a range of information, inherently important and growingly re-
quired in robotic applications, such as timing constraints and thread allocation [Brugali,
2015]. The literature is rich with efforts attempting to bridge the gap between UML and
the needs in robotic software, starting with the emergence of the UML profile Modeling
and Analysis of Real-Time Embedded Systems (MARTE) [Faugere et al., 2007; De-
mathieu et al., 2008]. Mainly, MARTE allows annotating architectural elements with
real-time features and is therefore suitable for timed analysis, hence the development
of automatic generators from MARTE to schedulability analysis tools in [Medina and
Cuesta, 2011]. However, MARTE models are still disconnected from a real-world de-
ployment, which explains why the robotic case studies using this UML extension are
fictive [Demathieu et al., 2008]. Robotic developers are discouraged to create practi-
cal implementations based on these frameworks, due to an insufficient flexibility for
specification, reuse and deployment of robotic components. This led to the introduc-
tion of other approaches that, while still heavily inspired by UML, are more specific to
robotics, which eases the implementations.

Among these approaches, we distinguish RobotML [Dhouib et al., 2012], a UML
profile specific to robotic applications. It provides a graphical environment for devel-
oping the robotic components, referred to as systems, with some automatic generators
to middleware (mainly Orocos-RTT). While a number of successfully deployed case
studies exist in the frame of the Proteus # project, RobotML provides no connection
with ROS-Comm, currently the middleware of the most used robotic framework.

Another equally mature approach is the model-driven SmartSoft [Schlegel et al.,
2009], where components may communicate through a limited set of patterns typi-
cally used in robotics (e.g. clients/server and publisher/subscriber). The toolchain
comprises a generator for platforms using the CORBA standard [Mowbray and Za-
havi, 1995]. Despite fully deployed applications (e.g. the collaborative robot butler
in [Dennis et al., 2016]), SmartSoft offers no bridging with middleware layers of pop-
ular robotic software (such as Orocos-RTT and ROS-Comm).

In contrast to techniques seemingly derived from existing general-purpose lan-

3http://www.uml.org
4Platform for RObotic modelling and Transformation for End-Users and Scientific communities project,
http://www.anr-proteus.fr
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guages, some solutions to middleware dependency rely on relatively novel suggestions,
either reinventing a toolchain from scratch or proposing a looser definition of compo-
nents. In [Jang et al., 2010], the Open Platform for Robotic Services OPRoS is pre-
sented. It is a hierarchical component-based framework where atomic components may
be composed into composite components that form the robotic application. The frame-
work has also an executer to run these components on a target platform. Once more,
no attention is given to bridging this framework to existing popular middleware, which
reduces the reusability of the components. Moreover, the potentiality of this bridg-
ing remains questionable due to the great complexity of the framework design, which
questions equally the usability of the framework by robotic engineers. For instance,
there are several types of communication ports (data, service, event) and several lay-
ers wrapped in the application (composer, executer), and the framework enforces some
scheduling choices at the design level.

A quite different approach is presented in [Adam et al., 2017]. Instead of devel-
oping the application in a precise manner, only its architecture is designed (the com-
ponents, as empty boxes, and their interactions). Then, a model-to-model M2M trans-
formation is performed to e.g. remove hierarchies. Finally, a model-to-target M2T
transformation is realized to obtain an “empty” executable model. The direct advan-
tage of this approach is the possibility to reuse components that are already developed
in the target (e.g. a ROS component for a given robot functionality) rather than wor-
rying about the component algorithms at the design level. This comes, however, at
the obvious expense of a higher cost induced by the two-layer transformation chain,
requiring different levels and kinds of knowledge.

The chosen component-based framework in this thesis is G®bM3 [Mallet et al.,
2010], due to its following advantageous characteristics. First, besides similarities with
UML 2.5 (e.g. components and the connection between ports), G¥oM3 is well suited
(and was developed) for robotic applications. For instance, it allows specifying peri-
odic and aperiodic behaviors and finite-state-machine services (Sect. 2.2.2, Sect. 2.2.3).
Second, it adopts a level of specification that is convenient for robotic programmers,
as it does not burden them with e.g. enforced schedulers. Third, learning G®oM3 is
time- and cost-efficient for robotic engineers, as only a basic knowledge in component-
based design and robotic software is required. Finally, and not to omit the main issue
overviewed in this section, G®bM3 specifications are independent from the implemen-
tation (the development of the component is decoupled from the middleware G*"oM3
currently supports, more in Sect. 2.3). It provides automatic generation to PocoLibs 3
and ROS-Comm middleware.

1.2 Reliability

1.2.1 Safety issues

The convenience of component-based design, coupled with a loose connection to
middleware (Sect. 1.1.2), is quite promising toward a large deployment of robotic ap-
plications in our daily life. However, an easy-to-reuse, easy-to-deploy software needs
also, more importantly, to be safe. Indeed, serious doubts arise on the safety of robotic
software, especially when involved in costly missions (e.g. space exploration) and di-
rect contact with humans (e.g. home and surgery assistants). These doubts are well
justified, as many studies confirm. For instance, the deployment of the museum guide

Shttps://git.openrobots.org/projects/pocolibs
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robot RoboX9 is assessed over a period of five months in [Tomatis et al., 2003]. Among
the over four thousand failures recorded, the overwhelming majority are software re-
lated (96%), including over two hundred deemed “critical”. Moreover, the failure of
robotic and autonomous systems is likely to have an impact that is less tolerated by the
humans than the failures of the humans themselves. For instance, while human-caused
road accidents are usually non-news, the injury of a human by a self-driving car makes
it easily to the headlines. This philosophical issue is debated in [Shalev-Shwartz et al.,
2017].

Still, the lack of assurance that characterizes robotic software today is not caused
by a lack of awareness in the community. Robotic components are systematically
tested, both on the field and by the intermediary of sophisticated simulators such as
Gazebo [Koenig and Howard, 2004] and Morse [Echeverria et al., 2011] (a study on
the ability of simulation to reveal bugs is given in [Sotiropoulos et al., 2017]). The
problem resides rather in the inability of testing methods to rise to the required level
of guarantees. The scenario-based conventional methods of testing may demonstrate a
severe inefficiency faced with the complexity of robotic and autonomous systems. For
instance, we find in [Pecheur, 2000] a noteworthy, practical example that exposes the
non adequacy of scenario-based testing to autonomous missions. It is the case of the
Remote Agent Experiment RAX [Nayak et al., 1999], where even a thorough, long-
term (over a year) test failed to detect software bugs beforehand. Indeed, RAX had
to be stopped only a few hours after assigning it the control of a NASA’s Deep Space
mission in 1999. This emergency measure was due to the occurrence of a dormant
deadlock scenario. The non exhaustive nature of testing prevented shedding the light
on this failure as the very scenario that led to the deadlock was never explored. The ur-
ban challenge organized by the Defence Advanced Research Projects Agency DARPA
provides another valuable example in 2007. It involves the autonomous vehicle Alice,
developed at the California Institute of Technology. Alice was a successful participant
of earlier versions of the challenge, e.g. in 2005 [Murray et al., 2005], and underwent a
strict set of tests using simulators (thousands of hours) and on the field (over 450km).
Unexpectedly, Alice was disqualified from the 2007 competition due to a serious soft-
ware bug related to the implementation of handling intersections when nearby objects
are detected, a scenario that never occurred during the testing campaigns [Kress-Gazit
et al., 2011]. These cases are merely examples among many that expose the non suit-
ability of scenario-based testing, either on the field or using simulators, for verifying
complex robotic and autonomous systems. This emphasizes the urgent need for more
accurate techniques, that are up to the challenge of a safer and larger involvement of
autonomous systems in various domains.

1.2.2 Formal verification, a promising alternative

These observations motivate the attempts, since a few decades, to support the
robotic software with more sophisticated, mathematically founded methods. That is, to
gradually replace scenario-based testing with formal validation and verification (V&V),
widely adopted in other domains such as aeronautics and nuclear industries [Bowen
and Stavridou, 1993; Andersen and Romanski, 2011]. Contrary to testing, formal
V&V uses mathematically based analysis methods, i.e. formal methods [Bjgrner and
Havelund, 2014] to assert whether a property is satisfied by a system. We distinguish
verification from validation as follows. Validation tries to answer the question “are
we doing the right thing?”, that is, whether the specification coincides with the func-
tional and non-functional requirements. Verification, on the other hand, checks the
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correctness of the implementation with regard to the specification in order to answer
the question “are we doing it (what we want to do) right?”. In this thesis, we focus on
formal verification as we verify the properties desired by the robotic programmer on
deployed systems.

Due to its mathematical foundation, formal verification provides an elegant and
sound solution. Among existing formal verification techniques, we briefly describe the
following (more in Chapt. 3):

* Model Checking [Clarke et al., 1999]: relies on automata-theoretic methods
to check the validity of properties expressed as temporal-logic formulae (e.g.
LTL [Vardi and Wolper, 1986] and CTL [Emerson and Srinivasan, 1988]) on
the model of a system. Model checking is automatic and exhaustive but can be
unfeasible because of the combinatory explosion when exploring all the possi-
ble states. Statistical Model Checking SMC [Legay et al., 2010] is sometimes
evoked to reduce the cost of model checking. Among SMC techniques, we men-
tion simulating the system for finitely many executions in order to evaluate the
properties with some probability.

* Deductive Verification: consists in deducing, from a specification of the sys-
tem, possibly annotated with e.g. pre- and post-conditions, a set of statements
to prove in order to check the validity of the system with regard to its specifica-
tion. The correctness of these statements is verified using e.g. classical theorem
proving [Green, 1981] or Hoare logic [Hoare, 1969]. Deductive techniques can
reason on infinite systems due to the power of induction but deriving the proof
requires both expertise and costly efforts, which makes them mainly suitable for
small programs rather than whole systems [Pecheur, 2000].

* Runtime Verification [Leucker and Schallhart, 2009]: the property is checked or
enforced at runtime. Runtime verification poses the problem of the scope of its
suitability. Indeed, it is quite hard to decide whether one can rely on a monitor at
runtime and how to deal with the property violation remains an open issue. The
enforcement of properties at runtime is a widely explored solution [Ligatti and
Reddy, 2010; Gabel and Su, 2010].

1.2.2.1 Formal verification at the decisional layer

At the decisional layer, the use of formal methods to reason about software be-
comes more and more common. Indeed, decisional-layer models are often formal.
For instance, most of the planning existing models (e.g. PDDL [McDermott et al.,
1998] and ANML [Smith et al., 2008]) are formally defined with complete semantics.
This alleviates the task of applying formal methods to decisional components as their
formalization, the most time-consuming and error-prone step in verification [Pecheur,
2000], is not needed. This simplification may be one of the reasons why we find a
large corpus of quality works in the literature that apply formal methods to the de-
cisional layer. Some examples of these works are given in the next paragraph. It is
however worth emphasizing that the learning functions are the exception to the conve-
nient connection between decisional components and formal methods. Indeed, despite
some verification works on mathematically well-founded models such as neural net-
works (see [Huang et al., 2017; Katz et al., 2017] for latest results), applying formal
methods to learning algorithms is still a major issue (e.g. formally specifying such
systems is an open challenge [Seshia et al., 2016]).

19



In [Hihnel et al., 1998], the authors propose GOLEX, a safe and robust executer/-
monitor for the formal acting language GOLOG [Levesque et al., 1997], based on the
situation calculus [McCarthy, 1968]. A real-world application shows the capabilities
of GOLEX to successfully monitor a mobile robot in unstructured environments. The
approach proves also to be efficient in other applications, such as a tour-guide in a
museum of Bonn given by the mobile robot RHINO. Bounded response properties are
enforced online in a coffee delivery application. If the time bound to serve the next
customer cannot be respected, GOLEX ignores the current sub-plan and produces a
new plan after it removes the next customer from the waiting list.

Symbolic model checking [Clarke et al., 1996] is used in [Cimatti et al., 2004]
to achieve Conformant Planning, that is finding a sequence of actions to achieve a
goal even in the presence of uncertainty and non-determinism. The formal model of
planning domains is encoded as Binary Decision Diagrams BDDs [Bryant, 1992] and
a Conformant Planning algorithm is consequently developed. The efficiency of the
approach is shown through experiments with a number of planning domains. One
particularity of this work is the fact that model checking is used as a reliable technique
for planning and not for mere verification, which is rendered possible thanks to the
formal nature of the underlying planning model.

The formal model of the temporal planner IxTeT [Abdeddaim et al., 2007] is trans-
lated into UPPAAL-TIGA [Behrmann et al., 2007] timed-game-automata-based mod-
els. The authors evoke the direct advantage of this translation, allowing the verification
of the obtained models with UPPAAL-TIGA.

In [Pecheur and Simmons, 2000], autonomous controllers based on
Livingstone [Williams and Nayak, 1996], a NASA model-based health monitoring
system, are considered. Livingstone specifications are automatically translated into
SMYV [Burch et al., 1992], a symbolic model checker. The translation is applied e.g. to
the Livingstone model for the In-Situ Propellant Production ISPP and important prop-
erties, such as recoverability from failures, are verified. Both SMV and Livingstone
relied on synchronous models, which reduced the difficulty of the translation into “the
discrepancies in variable naming conventions between the Lisp-like syntax of Living-
stone and the Pascal-like syntax of SMV” [Pecheur, 2000].

1.2.2.2 High-level abstractions

A popular domain for formal verification of high-level robotic software is the con-
troller synthesis. From high-level models of the robot and a set of desired properties,
both expressed in Linear-time Temporal Logic LTL, a high-level, reactive controller
that guarantees such properties is synthesized. This is the driving idea of e.g. [Kress-
Gazit et al., 2008; Raman et al., 2013].

There are also several works involving cooperating robots or human-robot interac-
tions. For instance, in [Stocker et al., 2012], a multi-agent model involving a robotic
assistant, a human carer, a person and an intelligent house is developed in Brahms [Sier-
huis and Clancey, 2002]. The models are translated to the SPIN model checker [Holz-
mann, 1997] and high-level properties such as the bounded response property “if the
person requests food then the robot will eventually deliver it within an hour” are veri-
fied.

Another example is given in [Gjondrekaj et al., 2012] where the high-level behavior
of three robots cooperating to transport an object to a goal zone is modeled in the formal
agent-based language KLAIM [De Nicola et al., 1998]. The probability of reaching the
goal without collision by one of the robots is then estimated.
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Other works abstract the robot behaviors to a its high-level model (the functional
layer is considered correct) in order to verify relevant properties in uncertain envi-
ronments. This is the case of e.g. [Aniculaesei et al., 2016] where the passive safety
property (that is, no collision occurs while the robot is moving [Macek et al., 2008]) is
verified using the state-of-the-art model checker UPPAAL (Sect. 3.4).

1.2.2.3 Issues at the functional layer

Contrary to most of the decisional and high-level specifications, functional com-
ponents are neither written in formal languages nor amenable to heavy abstractions.
Indeed, popular component-based frameworks nowadays such as ROS (Sect. 1.1.2) are
not defined formally. Furthermore, abstractions at this level may quickly lead to mod-
els that do not reflect the real behavior induced by the underlying components (e.g.
ignoring some timing constraints or interleavings). Therefore, the formalization, in-
evitable at this level, is particularly challenging and costly and the formalized models
are not guaranteed to scale. This explains the fact that the level of integration of formal
methods at the functional layer is severely behind the actual needs, as will be explained
in the next section.

1.3 Formal verification of functional components

In this section, we overview the state of the art of formal verification at the func-
tional layer. We categorize the contributions into three main verification approaches
and give examples in each category.

Deductive verification In [Tdubig et al., 2012], the authors report on their experi-
ences in verifying the implementation of a collision avoidance algorithm. Each func-
tion is annotated with pre- and post-conditions as well as a memory layout and a modi-
fication frame that limits the effects of the function on memory. Then, it is checked if
whenever a function is called such that the call satisfies the pre-conditions and mem-
ory layout, the function will terminate, and the state corresponding to the termination
satisfies the post-conditions and the modification frame. Important properties like the
correct implementation of the braking model are verified using a combination of pen-
and-paper and computer-aided (using ISABELLE/HOL [Nipkow et al., 2002]) proofs.
The work resulted in certification for use of the algorithm implementation up to SIL3
of IEC 61508-3. The approach requires a heavy human intervention and a very good
knowledge of the proof systems and the tools, not to mention the reverse engineering
of the algorithms as to properly write the pre-/post-conditions and proof systems.

The authors of [Kouskoulas et al., 2013] verify a control function of a surgical robot
using the KeYmaeraD theorem prover for differential-dynamic logic [Platzer, 2008].
The (safety) property of interest is that for all configurations, all possible uses of the
robot and at any time, “if the surgeon starts the tool at a safe place, the tool remains in
a safe place”. The dimensions of a “safe place” area are computed so that the patient is
not harmed when the tool is within that area. This property verifies thus that the “free
movement” of the surgeon hand happens always within a safe area, not in direct contact
with the patient. Counterexamples are generated and the function is proven thus unsafe.
A formally proven safe alternative is proposed. The major part of the work is manual
(e.g. modeling the system in differential-dynamic logic) and a profound knowledge of
both continuous models and proofs in differential logic is needed.
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The correctness of a mutual exclusion function over shared memory is analyzed
in [Kazanzides et al., 2012]. The function is implemented using the cisst software
package [Kapoor et al., 2006], a collection of component-based libraries for robotic
surgical systems, linked with ROS-Comm. The function considers a circular buffer
with an array of state vectors. The authors rely on the History for Local Rely/Guarantee
HLRG logic [Fu et al., 2010] to develop paper-and-pen inference rules that led to the
detection and fixing of a data corruption bug. The proofs are not automatized and the
function verified is very specific.

In [Meng et al., 2015], the correctness of ROSGen, a code generator for ROS com-
ponents, is verified. The proof assistant Coq [Huet et al., 1997] is used interactively
with the user to reason on the proof systems. The Data Delivery property, that is the
data sent by a sensor is correctly handled by the controller and delivered to the ac-
tuator(s), is also proven correct for any targeted platform. In order to guarantee the
correctness of ROSGen, a formal sub-version of ROS called ROS nodes is proposed,
but no proofs are given on its correctness with regards to ROS. Moreover, the approach
is hard to generalize and the verification of e.g. timed properties is unfeasible.

Overall, as said in the last section, deductive verification is costly and requires
considerable human intervention. Furthermore, robotic programmers do not have the
required knowledge and expertise to efficiently use theorem provers and proof assis-
tants. Also, the type of properties is restricted such that e.g. timed properties (like
bounded response) cannot be verified. This explains why the works applying theorem
proving to robotics are often done by formal methods experts and mostly focus on a
small piece of the specification (a function) rather than the system as a whole.

Model checking The synchronous language ESTEREL [Boussinot and de Simone,
1991] (see [Benveniste and Berry, 1991] for synchronous languages) is used in [Si-
mon et al., 2006] to verify important properties ranging from safety to liveness. The
Orccad environment [Simon et al., 1997] is used to build KeepStable, a set of stabil-
isation procedures of an underwater vehicle. Procedures are hierarchically built from
tasks, whose coordination is automatically translated into ESTEREL. The safety prop-
erty consists in a correct handling of exceptions, whereas liveness corresponds to a
procedure eventually reaching its goal. Other properties related to the conformance
between the procedure requirements and behavior are checked visually. The authors
invoke the threat of combinatory explosion for larger applications, which would render
the “visual” verification impossible. ESTEREL is used in other model-checking-based
verification works such as [Sowmya et al., 2002; Kim and Kang, 2005], where the
formalization is manual as robotic specifications are either translated by hand to, or
hard-coded in ESTEREL.

RoboChart [Miyazawa et al., 2016] is used in several verification efforts such
as [Miyazawa et al., 2017]. RoboChart models are automatically translated into Com-
municating Sequential Processes (CSP) [Roscoe, 2010] in order to verify behavioral
and timed properties using the FDR model checker [Gibson-Robinson et al., 2014].
RoboChart is, however, not a robotic framework (its models are not executable on
robotic platforms). That is, each robotic application, initially specified in a robotic
framework, needs to be modeled first in RoboChart before it can be translated into
CSP.

Model checking techniques are also applied to an Autonomous Underwater Vehicle
AUV in [Molnar and Veres, 2009]. A series of manual transformations is performed
to bridge the robotic specification with the multi-agent model checker MCMAS [Lo-
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muscio et al., 2009]. Collision-avoidance properties are checked. The approach is
tedious and requires many transformations which reduces its reproducibility and raises
the risks of errors.

The PRISM probabilistic model checker [Kwiatkowska et al., 2011] is used in [Hazim
et al., 2016] to verify bounded response properties. A case study involving a ground
autonomous vehicle is given, where PRISM estimates the probability of finding an ob-
ject by the vehicle in a bounded amount of time. Despite an attempt to formalize ROS
graphs, no operational semantics is given which makes the formalization both manual
and ad-hoc.

Another attempt to formalize ROS components is developed in [Halder et al., 2017]
where UPPAAL is used to verify buffer-related properties (no overflow). ROS compo-
nents are not formalized and only the message passing part (publisher/subscriber) is
modeled, manually. Furthermore, there is no attempt to verify bounded response prop-
erties, crucial and challenging in message-sending contexts (e.g. a message will be
always delivered within a known bounded amount of time).

In [Gobillot et al., 2014], specifications written in the Modeling Autonomous VE-
hicles framework MAUVE are verified. Although MAUVE is oriented toward schedu-
lability analysis®, the authors evoke the verification of behavioral properties with the
model checker TINA (Chapt. 3) after a translation into the RT-Fiacre formal language [Abid
and Dal Zilio, 2010]. No further details are given on the translation or the verification
results.

Globally, despite the fact that model checking is automatic, its application to robotics
is no less problematic than that of deductive verification. Indeed, the formalization of
robotic specifications, written in non-formal languages, is quite challenging and error
prone and needs a kind of knowledge that is often out of the competence scope of
robotic programmers. Furthermore, works on model checking in robotics suffer from
the state-space explosion problem (Sect. 1.2) and alternatives are rarely proposed.

Runtime verification The Java PathExplorer tool is presented in [Havelund and
Rosu, 2001]. It allows checking, at runtime, the system against temporal logic for-
mulae and classically undesired properties in concurrent execution such as deadlocks.
A case study with the NASA robot Rover K9 is presented. The developed monitors
are in Java while the logic engine (to check the properties) is in Maude [Clavel et al.,
2002], which causes a perceptible slowing down of the original programs by an order
of magnitude. Moreover, the approach is not generalized to component-based robotic
frameworks.

The Request and Resource Checker R2C is proposed in [Py and Ingrand, 2004a].
It is an execution controller plugged in the executive layer to prevent faulty behaviors.
The latter are described as deliberative commands that could lead to inconsistencies at
the functional layer. For this, R2C has a set of constraints against which it continu-
ously checks the global state of the system and prevents it from transiting into a faulty
state. R2C is successfully deployed on an All-Terrain Robotic Vehicle (ATRV) where
it correctly reacts to injected faults by rejecting services requests or terminating run-
ning services. It also helped to locate a bug at the decisional level. The approach is
solid and automated but does not support the enforcement of timed properties due to
the untimed (yet temporal) nature of its underlying formal model (e.g. consider a state
faulty if some function is waiting for resources for more than some amount of time).

BIP [Basu et al., 2011], a modeling and verification framework based on automata,

SHence its connection with the Orocos-RTT middleware.
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is used in the joint verification effort presented in [Abdellatif et al., 2012]. The func-
tional components, written in G®"oM (version 2), of an outdoor robot with two nav-
igation modes, are modeled in BIP. Safety constraints, such as “the robot must not
communicate and move at the same time” are automatically translated from logical
formulae into BIP then added to the model. The latter is run within the BIP-Engine
on DALA, an iRobot ATRYV, and the constraints are consequently enforced at runtime.
Due to the untimed nature of BIP and the lack of some time information (e.g. execution
times of code) back then, only periods are considered through logical ticks. Further-
more, it is not possible to verify the soundness of the translation from G®6M to BIP
due to the absence of operational semantics of the former.

In [Huang et al., 2014], the authors present ROSRY, a runtime verification environ-
ment for ROS-based robotic systems. A monitoring layer is added on top of the com-
ponents to intercept the different messages and commands. The generated monitors are
successfully implemented on a simulated LandShark military robot. The monitors re-
strict the execution to scenarios satisfying security and safety properties. The approach
is not generalized to other robotic frameworks. Furthermore, it is hard to verify the
generated monitors due to the absence of a formal model of the ROS components.

Performance Level Profiles PLPs are proposed in [Brafman et al., 2016] to describe
the components desired performance in a robotic application. The approach helped to
reveal a bug in the path planning component of a Compact Track Loader CTL. PLPs
are defined semi-formally and their development is quite costly. Indeed, only the gen-
eration of their objects is automatic, since the user needs to fill variable updaters and
condition validation functions. Additionally, there is no support for timed properties.
PLPs require also information, such as expected execution time and runtime distribu-
tion, the gathering of which is challenging and not covered by the contribution.

In sum, works on runtime verification (through monitoring or enforcement) in
robotics face generalizability issues and their automation is limited. Moreover, these
methods are usually complementary to offline verification (e.g. via model checking
and/or theorem proving) as it is often risky to deploy unverified components, even
when a monitoring layer is added.

1.4 Identifying the problems

Clearly, the application of formal verification to functional components remains an
open challenge. We try thus to define the major problems causing this, which helps us
draw the main axes of our contributions. All the works cited in Sect. 1.3 suffer of at
least one of these problems.

Feasibility and accuracy of formal modeling One inevitable step toward the formal
verification of functional components is their formal modeling. As shown throughout
this chapter, this phase is particularly difficult and error prone, which differentiates the
applicability of formal methods to the functional layer as opposed to the decisional
one, where specifications are already formal (Sect. 1.2). This is due, mainly, to the
fact that component-based frameworks in robotics are not formal (Sect. 1.1.2). This
makes the derived formal models also questionable, in terms of their correctness vis-
a-vis their robotic counterparts. We refer to this problem as Problem 1. The proposed
solution of using formal languages directly to encode robotic specifications (such as
ESTEREL in [Kim and Kang, 2005]) is not suitable for the robotic community, rather
familiar with robotics specific frameworks (Sect. 1.1.2). We need thus to strengthen
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these frameworks with clear semantics to facilitate the formal modeling of their speci-
fications.

Automation of formal modeling Another problem with formal modeling is the lack
of automation. That is, the modeling is often application dependent (one needs to go
through this tedious phase again for each new application). This problem, that we refer
to as Problem 2, is partially induced by the lack of semantics in robotic component-
based frameworks (Problem 1). We need an approach for a full automatization of
formal modeling of functional components.

Scalability The threat of combinatory explosion leads to heavy abstractions that of-
ten reduce the coverability of the formal model. For instance, the formal models in [De-
sai et al., 2017] represent only some execution scenarios from their underlying robotic
specifications, which made the authors undergo a tedious combination between model
checking and runtime verification. Other abstractions consist in ignoring timing con-
straints, which is no longer acceptable in today’s systems real-time requirements’. This
problem, referred to as Problem 3, restricts the majority of works to simple applications
that are often not deployed on real robots. We need to face the real complexity by ap-
plying formal methods to real-world robots, and propose formal solutions in case of
scalability issues.

Finding the right method/formalism/tool This is one of the major, yet less treated,
problems of formal verification of real-world systems. The multitude of available tool-
s/formalisms/techniques often overwhelm engineers, as most of their mutual advan-
tages and drawbacks depend on the applications/properties to verify and cannot thus be
known beforehand. For instance, one tool may perform better than another for a live-
ness property, while it is the other way around for a reachability property. The choice
of the most suitable formalism and associated verification technique is therefore not
obvious. The literature contains formal works that compare the expressiveness of some
formalisms, e.g. [Bérard et al., 2005; Berthomieu et al., 2006]. There is, however,
an important disconnection between such works and the real-world, complex applica-
tions proposed by the robotics community. This gap widens as formal methods are
out of a roboticist field of expertise. Some efforts propose general-rule translations be-
tween prominent formalisms, such as time Petri nets (Sect. 3.3.1) and timed automata
(Sect. 3.4.1) in [Berard et al., 2013]. These translations are however structural as they
do not support extensions with e.g. shared variables, crucial to the modeling conve-
nience of complex robotic systems and their connection to state-of-the-art verification
tools. This problem, that we refer to as Problem 4, is exacerbated by the fact that for
each formalism, various tools are proposed. Even when making their choice, prac-
titioners have to face the problem of opting for a tool almost blindly. Problem 4 is
further worsened by the lack of automation (Problem 2), since the high cost of mod-
eling limits the choice often to only one formalism/tool, which makes it impossible
to know whether verification might be improved with other formalisms/tools. Valu-
able examples on the painful experience of engineers exploring the use of verification
frameworks for embedded software are given in [Todorov et al., 2018]. Problem 4 may
have great consequences on both the feasability of the modeling (Problem 1) and scal-
ability of the models (Problem 3), and must be tackled by proposing clear guidelines

7We note that, seen at a “mission” level, time is not necessarily crucial as compared to fulfilling the
mission correctly. Still, it is at the functional level, on which we focus here.
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to robotic programmers based on real-world experiences. Overall, there is a large gap
between the robotics and formal methods communities, and further efforts are needed
to narrow it.

Obviously, this list of problems is not exhaustive, but represents the issues the work
of this thesis tries to overcome. Indeed, one may define other equally important chal-
lenges. For instance, popular approaches nowadays rely on compromises between exe-
cution time and quality of code (see examples for stereo vision algorithms in [Veksler,
2003; Yu et al., 2010]), which cannot be considered by models where timing con-
straints are known beforehand. Another example is guaranteeing the robustness of the
behavior, defined at the software level, vis-a-vis open environments, which cannot be
determined at the functional layer. Therefore, this kind of problems is out of the focus
of this thesis but the work presented here constitutes an important step toward solving
them.

1.5 Contributions

At this stage, we have presented some of the main formal verification efforts in
robotics. Our focus on the related work applying formal methods to the functional
level (Sect. 1.3) is justified, at the end of Sect. 1.2, by highlighting the difference with
the decisional layer in this regard. Analyzing the state of the art and current practice
helped us clearly define a set of problems with which formal verification of functional
components is confronted. In this section, we describe our contributions as proposed
remedies to the identified problems in a structured manner.

Contribution 1 We tackle Problem I by proposing formal semantics for G®"oM3,
our chosen robotic component-based framework for this thesis. Components have thus
formal definitions and their operational semantics is developed formally (Chapt. 4) in
a suitable formalism (Chapt. 3).

Contribution 2 We tackle Problem 2 by developing automatic generators (aka tem-
plates) to state-of-the-art formal languages and verification tools (Chapt. 5, Chapt. 6),
namely Fiacre/TINA (Sect. 3.3), UPPAAL (Sect. 3.4), UPPAAL-SMC (Sect. 3.5) and
BIP (Sect. 3.6). The output of these templates is proven faithful to their input as
G®oM3 components (Chapt. 5), such a proof being feasible thanks to Contribution
1. Contribution 2 allows thus the automatic generation of any G®"oM3 specification
into a number of formal targets with no effort from the robotic engineer.

Contribution 3 We tackle Problem 3 by (i) striving to avoid all non-realistic abstrac-
tions, e.g. all timing constraints are taken into account (Chapt. 5, Chapt. 6), including
code Worst Case Execution times and tasks periods and (ii) applying our approach to
real-world application, deployed on actual robots (Sect. 2.4). We propose templates for
formal statistical (UPPAAL-SMC) and runtime (BIP) models to cope with scalability
issues, when necessary.

Contribution4 We tackle Problem 4 by giving experience-based advices on when to
use which tool according to the properties to verify (Chapt. 7). We also assist robotic
programmers on which method to use (UPPAAL-SMC or BIP) when exhaustive meth-
ods do not scale.
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It is worth to point out that the focus on the functional layer does not reduce in any
case the importance of verifying the decisional layer components. On the contrary, it
contributes to the verification of a robotic system as a whole. For instance, the envi-
ronment in which a robotic system evolves needs to be taken into consideration, and
this is practically done at higher abstraction levels (Sect. 1.2.2.1, Sect.1.2.2.2). Conse-
quently, more general properties such as the success of a robotic “mission”, or the data
consistency in multi-robot collaboration, can be reasoned upon. Similarly, the results
of the verification in this thesis are to be complemented with those of verifying the al-
gorithms using e.g. theorem proving techniques, which is also out of the scope of this
thesis. Such verification will allow to conclude on properties equally important as the
ones presented in this thesis, such as the robustness of algorithms against disturbances
(e.g. sensor noise).

1.6 Outline

The remainder of this thesis is organized as follows:

* Robotic framework and case studies (Chapt. 2):
We present our chosen robotic framework G¢M3: the requirements leading to
its design, the implementation of its components and their behavior. We show
then two real-world case studies deployed using this framework.

* Semantics formalism and formal frameworks (Chapt. 3):
We present timed transition systems TTS, our chosen formalism for giving oper-
ational semantics to G®"oM3. We give the semantics of this formalism and exam-
ples on why it is suitable for formalizing G®M3 components. Then, we present
the frameworks targeted by our translations (Fiacre/TINA, UPPAAL, UPPAAL-
SMC and BIP) and their underlying formalisms (time Petri nets, timed automata
and some of their flavors).

¢ Formalization of G®"oM3 components (Chapt. 4):
G®M3 components are formalized as TTS systems. We develop the rules of
deducing the TTS from the specification of each of G®bMS3 entities within a
component. At the end of the chapter, we have an unambiguous operational
semantics of G®bM3 translatable to other formal targets.

* Correct translation of G®"oM3 semantics (Chapt. 5):
The semantics is translated to timed automata. We give general rules on how to
translate G®bM3 semantics to timed automata and outline the difficulties of the
process. We prove using bisimulation that the TTS semantics and their timed
automata translation are equivalent.

* Mapping to formal frameworks (Chapt. 6):
We use the TTS semantics and the timed automata translation to map G®oM3
components into the targeted frameworks in a generic way. We show an example
of the mapping using a real-world component. Finally, examples on the process
of automatizing the mapping are given.

* Verification results (Chapt. 7):
We automatically generate formal models for our real-world case studies. We
use the generated models to verify crucial properties. We show how the different
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models can be used complementarily and optimally according to the application,
the properties to verify, the size of the model and its timing constraints.

* Conclusion: We conclude by summarizing the advances to the state of the art
provided by this thesis and drawing the major axes of future work.
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Chapter 2

Ge€MoM3

2.1 Introduction

In this chapter, we present the G®"oM3 framework. We first introduce the different
architectural elements of a G®"oM3 component, the building unit of robotic applica-
tions specified and verified in this thesis. Then, we go through the automatic genera-
tion feature of G®"6M3, the template mechanism, and show how it is a key aspect for
developing a reproducible, automated approach to formally verify robotic applications.
Finally, we present the two real-world robotic specifications used as case studies in this
thesis, namely the quadcopter flight controller and the Osmosis terrestrial navigation
showcase.

2.2 Overview

G®oM3 [Mallet et al., 2010] is a tool to specify and implement robotic functional
components. The LAAS architecture [Ingrand et al., 2007] proposes a modular ap-
proach where each functional component acts as a “server’” in charge of a given func-
tionality. The latter may range from simple low-level driver control (e.g. the veloc-
ity control of the propellers of a drone, camera, etc) to more integrated computations
(e.g. Simultaneous Localization And Mapping (SLAM), Potential-Field navigation,
Rapidly-exploring Random Tree (RRT) motion planning, etc.).

2.2.1 Requirements

We consider that a typical component is a program which needs to handle and
manage the following aspects:

Inputs and Outputs : a component interacts with external clients and other compo-
nents. For the former, the control flow, it must handle requests from client(s) and
send back reports to the client which issued the request, to act on the result. For the
latter, the data flow, it must provide a mechanism to share data with other compo-
nents and read data from other components. Data flow and control flow are semanti-
cally different and correspond to two different ways a component can interact with,
respectively, other components and external clients.
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Algorithms : the core algorithms needed to implement the functionality the compo-
nent is in charge of must be appropriately organized within threads as to preserve
the reactivity of the component and the schedulability of the various possibly con-
current algorithms. A component may have just one service to provide, but most of
the time, there are a number of such services associated to the considered robotic
functionality. The way algorithms are specified and organized in a component is a
tradeoff. One can let the programmer organize their code with no design require-
ments or provide structure guidelines that must be followed. The latter case enables
automated verification of properties on the code, given that the set of guidelines
is well known. However, these organization rules must remain simple and easily
understandable for robotic programmers.

Data sharing : the various algorithms, possibly concurrent, running in the component,
may have to share data that represent the internal state of the component. These data
need to be handled correctly respecting e.g. mutual exclusion conditions.

2.2.2 Implementation

To achieve such requirements of a functional component, we propose to organize
each one along the structure shown in Fig. 2.1. The implementation choices will be
explained while presented.

Specifying components in G®oMS3 is the programmer’s design choice. Thus, there
are a number of considerations, depending on various factors such as hardware con-
straints and algorithms complexity, that they have to take into account. Here, we de-
scribe in more details the different elements of a G®"oM3 component, how they interact,
and how they are specified, in a generic manner. That is, the description given here is
not specific to any middleware or component.

To ease the comprehension of the different elements, a support example is given
in listing 2.1. It shows the dotgen (extension .gen) specification of a simple G®"oM3
component called DEMO developed for illustration purposes. DEMO is a simple one-
dimensional motion component of a mobile robot. Its main functionalities are to move
the mobile for a relative distance within the interval [—1, 1], to monitor its position, to
read its speed, and to change it. The elements in charge of these operations are given
within the description of the component constituents hereafter.

Control Task : A component always has a control task that manages the control flow
by processing requests and sending reports (from/to external clients). The control
task must be highly reactive and is only assigned quick computations. It also man-
ages interruption and activation of longer computations (see more in Sect. 2.2.3).
The control task is implicitly comprised within a component and the user does not
need to (and should not) specify it, hence its absence from listing 2.1.

Execution Task(s) : Aside from the control task, one may need one or more execu-
tion tasks, aperiodic or periodic, in charge of longer computations. The component
DEMO has one execution task called motion (periodic at 400 ms, lines 17-19).

Services : The core algorithms needed to implement the functionality of the compo-
nent are encapsulated within services. Each service is associated to a request (with
the same name). One may also define a permanent service (running without being
requested) attached to each execution task. In the DEMO component, services are
MoveDistance (move the mobile for a relative distance within [—1, 1], lines 34-45),
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Figure 2.1: A generic G®bM3 component.

Monitor (monitor the position, lines 46-53), GetSpeed (get the current speed, lines
26-27), SetSpeed (change the current speed, lines 22-25), Finish (stop moving, lines
29-32), and the permanent service of motion (initialization, line 19).

IDS : A local internal data structure is provided for all the services to share param-
eters, computed values or state variables of the component. It is appropriately ac-
cessed (i.e. with proper locking) by the services when they need to read or write one
or more of its fields (lines 4-7). For instance, the arguments of GetSpeed specify
that it reads the current speed from the IDS (line 26).

x99

Ports : They specify the shared data and the access direction to them (read “in” or
write “out”), the component needs or produces from/for other components. The
component DEMO provides one port that it writes (out mode, line 10).

Exceptions : One may specify exceptions, which can be returned by services to report
on execution errors (lines 13-14).
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/* ---- component declaration ---- %/
component demo {

/* ---- Data structures and IDS ---- %/
ids {

demo: :state state; /* Current state */
demo: :speed speedRef; /* Speed reference x/
double posRef;};

/* ports declaration: direction type name */
port out demo::state Mobile;

/* exception declaration */
exception TOO_FAR_AWAY {double overshoot;};
exception INVALID_SPEED;

/* execution tasks declaration */
task motion {

period 400 ms;
codel <start> InitDemoSDI(out ::ids, port out Mobile) yield ether;};

/* services declaration %/
/* atributes */
attribute SetSpeed(in speedRef :"Mobile speed”) {

doc "To change speed”;
validate controlSpeed (local in speedRef);
throw INVALID_SPEED;};

attribute GetSpeed(out speedRef = :"Mobile speed”) {

doc "To get current speed value";};

/* functions */
function Finish() {

doc "Stops motion and interrupts all motion requests”;
codel StopMotion();
interrupts MoveDistance;};

/* activities */
activity MoveDistance(in double distRef :"Distance in m") {

activity Monitor (in double monitor = @ :"Monitored absolute position in m”,

1

doc "Move of the given distance”;

validate controlDistance(in distRef, in state.position);

codel <start> mdStartEngine(in distRef, in state.position, out posRef)
yield exec, ether;

codel <exec> mdGotoPosition(in speedRef, in posRef, out state, port out

Mobile)

yield exec, end;

codel <end> mdStopEngine() yield ether wcet 1 ms;

codel <stop> mdStopEngine() yield ether;

interrupts MoveDistance;

task motion;

throw TOO_FAR_AWAY; };

out double position) {
doc "Monitor the passage on the given position”;
validate controlPosition (in monitor);
codel <start> monitor(in monitor, in ::ids) yield pause::start, end wcet 2 ms;
codel <end> monitorStop(in ::ids, out position) yield ether;
codel <stop> monitorStop(in ::ids, out position) yield ether;
task motion;
throw TOO_FAR_AWAY; };

Listing 2.1: Excerpt from the G®"oM3 specification of the DEMO component.
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2.2.3 Behavior

We go in more details and see how these different elements interact and how the
component internally runs.

Codels Code elements, or codels, are small chunks of C or C++ code (e.g. the codel
StopMotion in line 31 matchs a C function whose body is defined in a separate file).
When defined within activities, codels are associated with states in a finite-state ma-
chine (see activities and FSM below). For instance, the codel mdGotoPosition (line
39) is associated with the state exec (more details below).

Services Services hold the specifications of the algorithms handled by the compo-
nent. Services can take arguments (e.g. SetSpeed takes a SpeedRef, line 22), and return
values (e.g. GetSpeed outputs a SpeedRef, line 26). A service may have a validate
codel (e.g. Monitor, line 48). When the control task receives a service request, it runs
the service validate codel, if any, to check whether the service arguments are valid (it
reports an error to the client that requested it if they are not). A service may also specify
other services it interrupts (e.g. Finish interrupts MoveDistance, line 32). Aside from
control services (see below), a service may not run unless all the services it interrupts
are terminated. A service that is ready to run is called an activated service. There are
two types of services:

Control Services, are only for quick computations which should not delay the con-
trol task (that executes them). A control service may be an attribute (setter or getter of
fields of the IDS, e.g. GetSpeed), or a function (for quick and simple computations, e.g.
Finish . A G®M3 component offers four predefined functions, namely: Kill (stop the
component), Abort (interrupt an activity, see activities below), Connect Port to connect
a local in port to a distant out port and Connect Service to connect a service of another
component.

Activities, are executed by the execution task specified in their declaration (e.g. line
44, the activity MoveDistance is executed by the task motion). Activities are finite-
state machines, each state associated with a codel.

FSM define the behavior of the activity through states, codels and transitions. A
codel specifies the state it is associated to and the C or C++ function it will call, with
the arguments (taken from the activity arguments, the IDS and the ports of the compo-
nent) they need for their execution (e.g. mdGotoPosition is associated with the state
exec of MoveDistance, it reads the fields speedRef and posRef of the IDS and writes
the field state of the IDS and the port Mobile, line 39). A codel specifies also the
possible transitions subsequent to its execution (e.g. the execution mdStartEngine,
associated with the state start of MoveDistance, returns the state exec or the state
ether, line 38). The non-determinism is resolved at runtime when executing the codel,
which returns upon completion the next state to transit to. Taking a transition labeled
pause stops the execution of the activity until the next cycle of its execution task (see
execution tasks below), the activity is thus paused (e.g. if the execution of monitor
in activity Monitor returns pause: : start, Monitor is paused at state start until the
next cycle of the task motion). Each codel may specify a WCET, namely the worst
case execution time of the codel on a given platform (e.g. mdStopEngine, associated
with the state end of MoveDistance, has a WCET of 1 ms, line 41). More about how to
collect WCET in Sect. 2.3.2. Any activity FSM has the states start (entry point) and
ether (end point). When the latter is reached, the activity is terminated and reported
to the client. The state stop, if exists, is associated with the codel to execute when the
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Figure 2.2: FSM of MoveDistance (lines 34-45 of listing 2.1).

activity is interrupted (e.g. line 51). If an activity with no stop codel is interrupted,
it transits directly to ether. Fig. 2.2 is a visual illustration of the FSM behavior of
activity MoveDistance (WCETs are omitted).

The organisation of activities along FSMs may be seen wrongfully as an unneces-
sary burden for programmers. Indeed, nothing prevents the programmer to have one
start codel that does it all. Yet, breaking code along an FSM brings a number of ad-
vantages as it e.g. improves code execution interleaving and provides a finer model of
data sharing and code interlocking (several shorts computations using each a fragment
of resources brings a better concurrency level and allows shorter task periods than a
single long computation that uses all resources). Furthermore, FSMs are amenable to
translation into formal languages (Chapt. 4).

Control task The control task has a cyclic behavior that consists in managing the
requests and reports of the component, executing control services and activating and
interrupting activities. It runs the validate codels for services which specify one. If
there exist activities that are incompatible with the requested service, the control task
instructs the execution tasks in charge of such activities to interrupt them. If the request
is for a control service (attribute or function), the control task executes it immediately.
Otherwise, the requested activity is put on hold until all the incompatible instances
are correctly interrupted and terminated. The requested activity is then activated. The
control task instructs thus the execution task in charge of such activity to run it, and
sends an intermediate reply to the client to inform it that processing has started. Upon
completion of any service, the control task sends a final reply to the corresponding
client (service ended nominally, interrupted, or failed by throwing an exception).

Execution tasks Execution tasks are cyclic tasks that can be periodic or aperiodic
(e.g. the period of motion is 400 ms, line 18). With each cycle (triggered by a period
signal or event occurrence), the execution task runs, sequentially, its permanent activity
(if any) and all the instances of the activities it is in charge of, previously activated by
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the control task. The execution of an activated instance ends when the instance is
paused or terminated. In the former case, the instance will be resumed at the next
cycle.

Internal Data Structure The IDS stores data that represent the internal state of the
component, shared among tasks and services. For instance, the IDS of DEMO (lines
4-7) stores the current current position and current speed (in the field state), the speed
reference and the position reference of the mobile. Access to the IDS is mutually ex-
clusive. One can see that the proper specifications (enforced by G®"oM3) of the codel
arguments allows for a fine grain locking of the IDS and thus a high level of concur-
rency (only the needed field(s) by a codel are locked when it executes and simultaneous
readings are allowed).

Concurrency The control task and the executions task(s) are run as concurrent threads
on the hardware. That is, they are implemented as parallel tasks, with concurrent ac-
cess to the IDS fragments. Multi-core executions are thus supported. We note that
we do not, however, consider distributed applications, that is over networks of com-
puters. Indeed, actively researched phenomena related to distribution such as clock
drift [Giridhar and Kumar, 2006] and implications of CAP theorem [Brewer, 2012] are
out of the scope of this thesis. We thus focus on a fine-grain locking model that allows
parallel execution over a finite number of cores, but running on a single computer. This
is the case for both of our case studies (Sect. 2.4, more details about the quadcopter
hardware in Sect. 7.2.1.6).

Ports Data flow between components is made through ports (line 10). As seen above,
ports usage (in or out) is also declared in codels arguments (e.g. line 39). Consequently,
over a large set of components composing a robotic functional layer, we have a clear
model of which codels use a particular port. When formalized, this model will enable
verifying important properties such as not reading a port that has not been written at
least once before (Chapt. 7).

Note that, time-wise, operations other than executing codels/services (activities and
control services) are considered to take a negligible amount of time. For instance, the
algorithm of mutual exclusion is supposed to detect that a resource is free “as soon as”
it is available, that is, a negligible amount of time elapses between releasing a resource
by a codel and detecting such release by the system. This approximation is backed
up by the efficient implementations available today for such “atomic” operations as
opposed to time-consuming code at the services level.

Several components and communication Functional-layer components need to ex-
change data. In a sensor-based navigation application, for instance, the collaboration
of several components is indispensable (e.g. the information collected by a compo-
nent from a sensor is a necessary input for another component handling a controller).
G®oM3 offers ports in order to enable interaction between several components. If a
port P is declared out (respect. in) within a component C, any codel of C may be
entitled to write (respect. read) P. It is up to the programmer to decide which codels
have access to the port. The predefined control service Connect Port allows connecting
an in port of one component to an out port of another component. For instance, let C
be a component featuring an in port P of the same type as the port Mobile of DEMO
(line 10 of listing 2.1). Connecting P (component C) to Mobile (component DEMO),
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made through requesting Connect Port, allows the codels of C to read data written on
Mobile (by the codels of DEMO). More examples are given in Sect. 2.4.

Clients G®6M3 components are usually unable to evolve unless controlled by exter-
nal clients. Indeed, apart from permanent activities, services need to be requested in
order to be served by the component (see the semantics of the control task in Chapt. 4).
For instance, after being implemented and run, the component DEMO, whose specifi-
cation is shown in listing 2.1, does not execute any service. Indeed, the control task, in
charge of the component, needs to receive requests in order to run control services and
activate activities. For this, clients, which are external entities to the component, send
the requests for the services they want to run, together with the arguments, if any. For
example, the following line in a Tcl client requests the activity MoveDistance with the
argument 0.5, that is requests moving the mobile for 0.5m:

demo: :MoveDistance(@.5)

G®bMS3 components can be controlled by various types of clients such as C, Tcl,
and OpenPRS !. In each case, the libraries are automatically generated through tem-
plates (see next section).

2.3 Templates

2.3.1 Overview

GP®bMS3 specifications, i.e. dotgen files, do not enforce any specific implementa-
tion. Besides specifying the algorithms executed by the codels, one needs to generate
all the files for the implementation, that varies from a middleware to another, and still
must induce a behavior that agrees with the one presented in the last section. Further-
more, the interaction with the clients needs also to be made possible though generating
the necessary libraries. One may also want to generate additional files such as docu-
mentation and comments. The template mechanism [Mallet et al., 2010] aims initially
at generating, from dotgen specifications, the implementation, clients libraries, and
additional files as explained above.

The template mechanism workflow is summarized as follows. First, G®6MS3 parses
the dotgen files and, if they are syntactically correct, builds an internal representation of
the specified components in terms of Tcl structures. This representation is fed to the tcl
interpreter together with the template (which is a tcl program) to generate the wanted
files in the needed format, which may be seen as the template instance of the input
components (Fig. 2.3). Since the files may be of different extensions, templates support
generating unrestricted-format text files. This versatility of the mechanism enables the
possibility to write several useful templates beyond middleware implementations and
communication with various types of clients (Sect. 2.3.4).

2.3.2 Middleware and implementation

Specifying a G®"oM3 component is thus decoupled from the implementation. The
programmer specifies the component constituents (except the control task) as well as
the services and codels parameters (e.g. ports, IDS fields) and their read/write ac-
cess in the dotgen file. They also specify the algorithmic core of their codels without

Uhttps://git.openrobots.org/projects/openprs
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Figure 2.3: G®bMS3 templates (generic).

making any implementation-specific call (involving the implementation middleware).
Codels only depend on the objects passed as arguments, that are found in the dotgen
specification, i.e. in the IDS fields and/or ports and do not therefore depend on the im-
plementation environment. Similarly, activity codels can only return the next state in
the activity FSM or an exception, also found in the specification. Middleware templates
generate an implementation of the generic behavior of tasks and services in accordance
with the description given in Sect. 2.2.2 and Sect. 2.2.3. Moreover, they automatically
synthesize the glue code in charge of making calls to the middleware. This ensures
a complete independency from the implementation. Fig. 2.4 shows an overview of
G®"oM3 workflow for implementation independence (aka middleware independence).
Two main middleware templates are available for G®"oM3 components (for PocoLibs?
and ROS-Comm [Quigley et al., 2009]).

At the behavioral level, the middleware templates handle two different aspects of
the component implementation:

* The component: englobes the mechanisms of evolution of tasks and services
while properly implementing the mutual exclusion over shared memory and the
control flow with regards to external clients. This implementation must be in
accordance with the expected behavior as described in Sect. 2.2.3. Behaviorally,
middleware templates agree on this aspect (more details in Sect. 6.3). For the
control flow, both templates use mailbox mechanisms where the control task is
notified whenever a new request is received.

» The data flow: a specific part which deals with the communication between com-
ponents through ports. This part reflects the main divergence between the avail-
able middleware templates. Indeed, the Pocolibs template implements ports as
shared memory whereas the ROS-Comm one uses fopics. This means that ports
in Pocolibs need to be protected from simultaneous access from different codels,
which is not required in ROS-Comm. We still, because of real-time require-
ments, favor the Pocolibs implementation in this thesis as explained hereafter.

Pocolibs vs. ROS-Comm A ROS topic has one or more publishers and subscribers.
A publisher (respect. subscriber) writes (respect. reads) the topic. With the ROS-
Comm implementation, a publisher message is buffered then pushed into each sub-
scriber queue by an internal ROS thread, additional to those created for each G®"oM3

2https://git.openrobots.org/projects/pocolibs
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Figure 2.4: Generating a G®bM3 component for a middleware X

task in the application. Similarly, a ROS internal thread pulls the message for each
subscriber. This boils down to writing for each subscriber, which creates a load pro-
portional to the number of subscribers. On the other hand, each port in Pocolibs is a
data field properly protected to prevent simultaneous access. A codel that reads/writes
a port may thus do so whenever it is executed by its task in its own thread. Despite
delays in codel execution due to mutual exclusion over ports, the Pocolibs implemen-
tation is the better choice as (i) no additional threads are involved and (ii) the number of
readers/writers of a port has no side effect on jobs loads. This removes unpredictable
and uncontrollable behaviors and adds thus to the accuracy of the generated formal
models (Sect. 6.3). The ROS-Comm implementation is still more practical for dis-
tributed applications deployed over more than one platform, which is not the case for
our applications (Osmosis and quadcopter, Sect. 2.4).

WCET Middleware templates are enriched to provide runtime execution times for
each codel. The template synthesizes code which, when the application ends, outputs
for each codel the number of times it was executed and the minimum, the average
and the maximum execution time. For instance, below is the output for the codel
mdGotoPosition (activity MoveDistance of component DEMO, listing 2.1).

Demo: mdGotoPosition called: 2567 times, min: 0.0007, max: 0.015, average:
0.001

Specifying WCET is optional. The reason for this choice is that WCET is related to
the hardware, so the developer is not required to provide such information at the design
level. However, for verification purposes, WCET information are necessary to reason
on timed properties in highly complex concurrent applications. Programmers are there-
fore able to enrich their specifications with WCET information at a later stage of the
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The component <"[$component namel”> has <"[llength [$component tasks]]"> execution
task(s):
<’ foreach t [$component tasks] { ’>
Task <"[$t name]”> periodic at <"[$t period]”> s in charge of
<"[1llength [$t services]]"> activities:
<’foreach s [$t services] {’>
<"[$s name]"”>

Listing 2.2: A simple template code for illustration.

deployment process. A “cleaner’” possible alternative is to embed WCET information
in a separate file from the dotgen specification.

WCET computation is a hard research problem in reality [Wilhelm et al., 2008].
Still, the information provided here may be exploited in the future to develop more
precise models of WCET. So far, we gather these information on several runs and
estimate the WCET to be a larger value than the maximum execution time obtained for
each codel.

2.3.3 Client libraries

Besides the implementation of the component itself, also known as the server, by
the middleware templates, there is a template that synthesizes C' client libraries to
control the component. It can be implemented by both PocoLibs and ROS-Comm. The
interface of the library allows vital operations such as requesting services (see example
in Sect. 2.2.3) and reading data on ports. The interface supports also the display of
intermediate and final reports, as well as errors and exceptions.

The C client libraries provide also JSON where client interface is generic (not gen-
erated for each component). The code is dynamically loaded which allows controlling
any component generically. Services, ports and datatypes are described with JSON dic-
tionaries. OpenPRS clients use also the C libraries. The OpenPRS template generates
the necessary code to control any component(s) with OpenPRS, where the supervisor
is produced using Transgen3>.

2.3.4 Mechanism

A template accesses the Tcl internal representation produced by G*"oM3 (Fig. 2.3).
This representation contains all the component(s) information (e.g. tasks and their
periods, activities and their codels). Templates have no restriction on what they can
synthesize from internal representations produced by G®oM3. For instance, the tem-
plate code in listing 2.2 generates the output shown in listing 2.3 when called with the
component DEMO (listing 2.1). The interpreter outputs everything without change ex-
cept what is enclosed in markers <’ ’> that it evaluates in Tcl without output, and in
<” 7> that it evaluates and outputs the result. Output is written to a text file whose
extension is the programmer’s choice. This gives developers the freedom to write tem-
plates that output files in any desired language. More practical examples are given in
Sect. 6.4.

3https://www.openrobots.org/wiki/transgen3

39



The component demo has 1 execution task(s):
Task motion periodic at @.4 s in charge of 2 activities
MoveDistance
Monitor

Listing 2.3: Output of Listing 2.2 when called with DEMO (listing 2.1).

This powerful mechanism paves the way toward an automated modeling and veri-
fication of robotic applications specified in G®6M3. Indeed, since the template feature
comes with no output restrictions, one may, in theory, develop templates that produce
the equivalent formal models, in any given language, of any G®"oM3 specification. This
is the basis of the automatic translations from G®M3 to several formal frameworks
developed and used in this thesis.

2.4 Examples

There are several applications developed and deployed using G®"oM3, both aca-
demic (e.g. the RobNav navigation*) and involving industrial partners (e.g. the au-
tonomous driving in the SafeNav H2020 CPSE-Labs project’). Among these, we fo-
cus on two real-world (yet academic) applications to use as case studies in this thesis,
namely Osmosis © and quadcopter. These applications present a high level of com-
plexity with a broad range of timing requirements that varies from a few microseconds
(quadcopter) to hundreds of milliseconds (OSMOSIS). We introduce the components
of each application with fair details. In each figure (e.g. Fig. 2.7), each box corre-
sponds to a G®"oM3 component, and octagons are out ports written by the components
they are attached to and read by other components through an arrow (thus in ports are
abstracted). Inside each box, we list the execution tasks, their periods (if any), and
a partial list of the services provided by this component. The perm keyword refers
to permanent activities. As said in Sect. 2.2, designing G®"oM3 components is the
programmer’s choice, so these applications could have been built differently. This pre-
sentation aims thus at explaining the functionalities of the components in our design
rather than justifying the latter’s choices.

2.4.1 Osmosis

Osmosis is an H2020 CPSE-Labs project that aims at assessing safety in autonomous
and intelligent systems. The case study involves a robot equipped with a Laser Range
Finder LRF for laser-based potential field navigation. The application presented here
is inspired from experiments where the robot inspects lights on airport landing strips’.
The G"M3 specification of Osmosis includes 10 components® (Fig. 2.5) that are inte-
grated with the real Robotnik robot and work also in simulation using the Gazebo sim-
ulator. In the latter case, Gazebo replaces the lower level four components (Fig. 2.6)

4Speciﬁcationsavailableathttps://redmine.laas.fr/projects/robnav/repository

Shttp://www.cpse-labs.eu/experiment.php?id=c3_fr_safenav

6Open-Source Material fOr Safety assessment of Intelligent Systems https://osmosis.gitlab.io/

7See case study at http://138.100.58.3/web/marketplace/producto.html

8Specifications available at https://redmine.laas.fr/projects/osmosis (in the corresponding sub-
-projects).
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and provides odometric positions and laser ranges in ROS topics.

* LASERDRIVER is in charge of the LRF. It has a scan task (periodic at 100 ms)
in charge of the StartScan activity. The latter produces, on the port Laser, the
laser’s ranges in front of the robot. The port Laser is updated at every period
with new data from the sensor. This component is absent in the simulation.

¢ ROBOTDRIVER handles the communication between the G®"oMS3 ports, Odom-
etry and Cmd, and the Robotnik ROS topics. It has a genomTOros task (pe-
riod 40ms) that reads the speed on the Cmd port (SAFETYPILOT) and writes
publishes its content to a ROS topic for speed command. In parallel, the ros-
TOgenom task (aperiodic) subscribes to the ROS topic containing the current
odometric speed and writes it to the Odometry port. This component is absent
in simulation mode.

¢ IMUDRIVER handles the Inertial Measurement Unit IMU. It has one task Up-
date that reads periodically (at 100Hz) the IMU driver through its activity Mea-
sure. The position orientation, the angular velocity and the linear acceleration
together with their covariances, are written on the port IMU. This component is
absent in simulation.

* GPSDRIVER handles the Global Positioning System GPS. It has one task Up-
date that reads periodically (at 10Hz) the GPS driver through its activity Mea-
sure. It then writes the coordinates = (longitude), y (latitude) and z (altitude)
with covariances to the port GPS. This component is absent in simulation.

* POM implements an Unscented Kalman Filter UKF. It has two execution tasks:
(1) io reads Odometry, IMU and GPS measurements from their respective com-
ponents and inserts them together with their timestamps in a buffer (ii) filter ap-
plies a UKF to the buffered timestamped measurements to produce an estimated
state with new covariances. The UKF-estimated state gives the coordinates of
the robot together with the orientation, the linear velocity, the angular velocity
and the linear acceleration. This filtered state, that we refer to from now on as
the robot position is written to the port Pose. Both tasks are periodic at 10ms.

* NAVIGATION computes intermediary positions toward a goal position. It reads
Pose from POM and the file Nav Graph,which gives the navigation nodes on
the airfield, and produces the intermediary positions in Target. It has one task
navigate in charge of two activities GotoPosition and GotoNode. The former
takes the goal position as an argument and, given the current position from Pose,
updates Target with intermediary positions that it reads from Nav Graph. The
latter does a similar job but the position given as an argument has to correspond
to a node on the graph read from Nav Graph.

* POTENTIALFIELD performs a potential-field-based navigation. It has one task
plan (period 100ms) with one activity TrackTarget which applies the potential
field navigation algorithm. Given a goal in Target (from NAVIGATION) and
the robot position Pose (from POM), the distance to the goal position is com-
puted. Moreover, TrackTarget reads Scan (from LASERDRIVER) and computes
distances to obstacles from the laser ranges. Computed distances to goal position
and obstacles are used then to compute the attractive (to the goal) and repulsive
(from the obstacles) forces which are used to compute the velocity (angular and
linear) to reach the goal. Such velocity is written to the port PFCmd.
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» TELEOP is for manual navigation using a joystick. The joystick signal, consisting
in a direction and a speed (through a speed button) is stored on the port Joystick.
The task check, periodic at 100ms, has one activity Op that reads the signal
stored on Joystick and converts it into a velocity that it writes to Teleop Cmd.
This component is not available in simulation.

* SAFETYPILOT deals with obstacle avoidance and joystick commands. It has
one task pilot, periodic at 40ms. This component is fed with a velocity either
from potential field navigation (in PFCmd from POTENTIALFIELD) or from
joystick commands (in Teleop Cmd from TELEOP). In the first case, the ac-
tivity MergeAndAvoid computes distances to obstacles from Laser ranges (from
LASERDRIVER) to ensure a safe command, that it writes to Cmd, in case dy-
namic obstacles appear abruptly. In the second case, the velocity on Cmd Teleop
is directly copied to Cmd, ignoring that on PFCmd (from POTENTIALFIELD),
which guarantees prioritizing commands from the human operator.

* RWLSENSOR is the component that manages the RunWay Light sensor of the
robot. It has one task sense running at 5Hz. The activity CheckLight measures
a light intensity and stores the value in the port LightLvl then, using Pose (from
POM), updates the checked light level on Lights which contains an array of all
the lights where each is defined by its position and latest measured intensity.

In both modes, simulation and real robot, important properties that neither the spec-
ification nor the implementation can guarantee emerge. For instance, the failure to
update Laser by LASERDRIVER within a set time bound must be detected and an
emergency routine must be followed consequently. This is a practical example that
reflects the need of connecting robotics to formal methods, which is a main motivation
of this thesis. We recall that properties at the algorithmic level are not in the scope of
this thesis (Chapt. 1), as we focus on verification rather than validation. For instance,
our approach does not deal with problems such as the local minima in potential-field
navigation algorithms [Guerra et al., 2016] that cannot be analyzed in an automatic
manner.

2.4.2 Quadcopter

The quadcopter flying at LAAS runs 5 functional components® (Fig. 2.7). This
application is also available in simulation where the component MRSIM simulates the
the effect of the propeller velocity on the quadcopter, and produces the current propeller
velocity, IMU and GPS. In the following, we describe each of the components design
and functionality:

* MIKROKOPTER is the component in charge of the quadcopter low-level hard-
ware. The quadcopter is controlled by applying a velocity to each propeller, and
produces the current velocities, as well as its current IMU values. The compo-
nent has two execution tasks i) comm, aperiodic, in charge of polling, parsing
and storing data from the hardware (to get the current propellers velocity and
IMU) and ii) main, periodic at 1KHz, which reads the emd velocity port and
writes the two ports IMU and the propellers actual velocity.

9Specification available at https://git.openrobots.org/projects/telekyb3 (in the corresponding
sub-projects).
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OPTITRACK is the component handling the current position of the quadcopter as
perceived by our “OptiTrack” motion capture system. It has one execution task
publish that provides the current position of the quadcopter in the mocap pose
port. Its period is 4ms. This component is absent in simulation.
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Figure 2.7: The quadcopter functional level. Activities are in Italic font.

* POM is the same component POM in Osmosis (Sect. 2.4.1) but with less input
ports and with a higher frequency. It merges the mocap pose position produced
by OPTITRACK and the IMU from MIKROKOPTER and produces a UK-filtered
position in port state. Its two periodic execution tasks io and filter run at 1KHz.

* MANEUVER is the navigation component, it has two execution tasks exec and
plan both periodic at Sms. Given a position or waypoints to navigate to, it reads
the state and computes the intermediate positions to fly to that it copies to de-

sired state.

* NHFC (Near Hovering Flight Controller) is the core of the flight controller. Run-
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Figure 2.8: The quadcopter functional level (simulation).

ning one task main_nhfc at 1KHz, it reads the actual velocity port of the pro-
pellers, the current position in the state port of POM, and the desired posi-
tion (port desired state) of MANEUVER and produces the proper cmd veloc-
ity port containing the desired velocity of the propellers (which is then read by
MIKROKOPTER) to reach and hover near this position.

* MRSIM for simulation only. It simulates the hardware and provides data on pro-
pellers velocity and IMU, fed to MIKROKOPTER. It has a GPS port on which it
produces the simulated position, used by POM to produce state.
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In simulation, the filtered position in state (POM) is fed to the Morse visualizer.
The latter will therefore display the quadcopter simulated motion using the successive
poses provided by POM.

Note the high frequency at which most of the components perform. Indeed, flight
controllers are usually critical and their tasks need to evolve at a high periodicity rate.
To deploy such systems in human environments, it is very important to verify properties
that the sole specification cannot guarantee, no matter what the chosen middleware
and OS are. For instance, violating the period of any periodic task within the most
critical components MIKROKOPTER, NHFC and POM, might result in a catastrophic
behavior. Indeed, when we provoke period violations in e.g. filter (POM), using basic
temporary suspension functions such as sleep(), we may visualise a drone crash after
a few deadline misses on the simulator. The urge of formally verifying such crucial
properties consolidates the motivation of the work presented in this thesis.

2.5 Conclusion

We advocate in this chapter the use of G®bMS3 as our robotic framework of choice.
This is justified along the chapter through the presentation of G®6M3 model-based
approach, which makes it amenable to formalization, but also through its powerful
template mechanism that will enable a fully automatic connection with formal frame-
works. Also, the two real-world examples given at the end of the chapter, that are
currently deployed on real robots, show the maturity of the framework and give valu-
able insights on the type of crucial properties that roboticists are interested in and that
cannot be verified at the robotic programming level. This presentation exposes thus a
non negligible part of the motivation of this thesis. This consolidates the conclusions
drawn in Chapt. 1 on the urge of bridging robotic applications with formal methods
and the convenience of using G®MS3 to this end.
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Chapter 3

Semantics Formalism and
Formal Frameworks

3.1 Introduction

This work relies on building automatic generators from G®%M3 to several formal
languages and tools. This requires giving formal semantics to G®"oM3 and therefore
choosing a convenient formalism. In this chapter, we present our choice for formal-
izing G®oM3, that is a more general version of the Timed Transition Systems (TTS)
presented in [Henzinger et al., 1991]. We will also justify why we chose TTS over
other possible formalisms. We start by presenting formal definitions of TTS and their
semantics. We present then a graphical version of TTS “components” known as Timed
Transition Diagrams and show how TTS can be built from the composition of these
diagrams.

In a second part of this chapter, we introduce the formal languages/tools to which
G®oM3 specifications will be automatically translated. We briefly present their under-
lying formalisms and their modeling and verification features. Simple examples are
given through each section to clarify the formal and informal definitions. At the end
of each section, the choice of the formal framework is motivated with regard to our
verification needs.

3.2 Timed Transition Systems (TTS)

The chosen formalism is a variation of the Timed Transition Systems (TTS) pre-
sented in [Henzinger et al., 1991]. TTS provide a high level formalism suitable for
giving operational semantics that are both independent from the implementation and
understandable. There are several arguments that justify this choice and that will be
given at the end of this section.

One difference between our definition of TTS and the one proposed in [Henzinger
etal., 1991] is that we consider a dense-time model (durations and time constraints have
values in R>( with interval bounds in Q>¢Uoco) whereas the original presentation relies
on a discrete-time model (durations have values in N). We also accept more general
timing constraints, using time intervals with possibly left-open and right-open bounds.
This extension of TTS makes them closer to the time model used in Timed Automata
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and Time Petri Nets, which are two of the target formalisms used in this thesis. Finally,
we consider a much simpler composition mechanism, as we will show in the following
definitions.

3.2.1 Notations

We start this section by defining some notations that will be useful in the remainder
of this chapter. We use I to denote the set of well-formed (time) intervals over positive
reals, with rational lower bounds and rational or infinite upper bounds. An element %
of I can be of one of four types: (where a € Q>¢ and b can be either a rational number
or the infinity symbol, oo, meaning an infinite bound).

e [a,b] (with a < b),
* Ja,b] (with a < b),
« [a,b] (with @ < b),
* Ja,b[ (with a < b).

We say that |2 = a is the lower bound of the interval ¢ and 1% = b is its upper bound.
We also say that the interval [a, b] is punctual when a = b.

In the following, we will often use the notation  a, b 1 for time intervals, where
C and 7 are the left and right bounds of 7. Therefore we have C= [ for a closed interval
on the left and J= [ for an open (strict) interval on the right. Likewise we use ’]” for
an open interval on the left and closed interval on the right. By an abuse of notation,
we will also conflate bounds with comparison operators between reals. We say that
is the strict comparison operator < when the left bound is open (C"=]) and that [ is the
operator < when the bound is closed (C= [). Likewise, we say that 1 is the operator
< when the right bound is closed and < otherwise. With this choice of notation, an
interval ¢ =C a,b 1 is exactly the set of real values x € R>¢ such that a« C x and
x 3b.

For any date § in Q>( and interval ¢ € I, we denote ¢ — ¢ the time interval obtained
by shifting ¢ (to the left) by an amount of §. The operation is defined only if § < 14
(or if § < 74 and the right bound of 7 is closed), which we call the upper bound
condition. We consider four different cases depending on the “shape” of interval i.
Assume o' = max(0,a — ¢):

o ifi =[a,bland § < btheni—§ = [a’,b— §],
o ifi =]a,bjand § < btheni— ¢ =Ja—0,b— ] if § < aand [0, b — 0] otherwise,
o ifi=[a,bland 6 < btheni—d = [a’,b— d],
o ifi =|a,b[and 6 < btheni— 3§ =]a —0,b— d[if § < a and [0,b — [ otherwise

(With the convention that oo — § = c0).

3.2.2 Syntax of TTS
A Timed Transition System TTS is a tuple (U, S, so, 7, I) where:

* U is a finite set of variables. Each variable is implicitly typed. We use dom(u)
to denote the domain of variable u;
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» S is a set of states. Each state of S is an interpretation of variables in U, that is
a mapping from variables u € U to values in dom(u);

¢ s¢ is the initial state (so € S) that maps each variable to its initial value;

e 7 is a set of transitions. Each transition ¢ € 7 defines a partial mapping over
states in S, that is, for every ¢t € 7 and for every state s € S either: (a) there is a
unique successor state s’ € S such that s — s’ (we write succ(s, t) = {s'}); or
(b)tthere is no such successor suce(s, t) = @ (in which case we use the notation
s — 9);

e I : 7+ I maps each transition ¢ € 7 to a static (time) interval 1(t) € L

We denote succ(s,t) the set of successors of state s by a transition ¢ € 7. A
transition ¢ € 7 is said enabled at s if and only if s is a source state of ¢, that is s A
(or equivalently succ(s, t) # &). We denote £(s) the set of transitions enabled at s.

From our definition of TTS, the set succ(s,t) has cardinality at most one. This
allows us to simplify the presentation of the semantics (especially when defining the
notion of persistent transitions later in this section) without loosing any expressiveness
(a state s may still have many successors over transitions with different names).

3.2.3 Semantics of TTS

In a TTS (U, S, so, 7, I), each (enabled) transition is associated with a timing con-
straint, that is an interval I(¢{) =C a,b J€ 1. The semantics of time depends on the
dates at which the transition becomes enabled. Informally, if we are in state s since the
date A and if transition ¢ can occur, then we can “take” the transition starting at a date
A+]I(t) C dand no later than a date d’ 3 A +11(¢), unless t is disabled in between
by taking another transition.

The semantics of a TTS is therefore given over pairs (s, ¢) where s € S is a state
and ¢ : 7 — [ is a mapping from transitions to time intervals. Intuitively, if ¢ is enabled
at s, then ¢(t) contains the dates at which ¢ can be possibly taken in the future. Hence,
a transition ¢ can be taken (immediately) only when 0 is in ¢(¢). Likewise, a transition
t cannot remain enabled for more than its timespan, that is the value 1¢(t).

We use ¢ = § for the partial function that associates, at a state s, each transition
t € &(s) to the value ¢(t) — J (the interval ¢(t) shifted by ¢). This function is useful to
model the effect of time progress on the enabled transitions of a TTS. (Note that ¢ —~
is defined only when ¢(t) — ¢ is defined for all t € £(s), that is § satisfies the upper
bound condition for all ¢(t)).

Let ¢ be enabled at s with s — s'. We say that a transition k is persistent (with
k # t) if it is also enabled at s’. The transitions that are enabled at s’ and not at s
are called newly enabled. We define the predicates pers(s,t) and nenabl(s,t) that
describe, respectively, the sets of persistent and newly enabled transitions after ¢ is
taken from s. We see that if ¢ is still enabled in s’ then it is necessarily newly enabled.

pers(s, t) {ker|ke&(s)Ake (E)\{t})As §> s’}
nenabl(s,t) = {ker|k¢é(EG)\{tHhAke&(s)Ns— s}

With all these notations, we can define the semantics of a TTS as a Kripke structure
(arooted, state graph) such that:
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te&(s) 0 € ¢(t) shser
Vk e E(s') : ¢'(k) = o(k) if k € pers(s, t) and I(k) otherwise

(5,0) = (s, ¢)

(discrete)

0€Q>0 ¢ = defined
(5,0) > (5,0 = 6)

(continuous)

Table 3.1: Operational Semantics of TTS.

* states in the graph are pairs (s, ¢) where s € S is a state and ¢ is a map from
te&(s)tol,

* the initial state is (sg, ¢g) where ¢ is such that ¢o(t) = I(t) for each transition
t € £(so) (all transitions possible from sy are newly enabled),

* discrete transitions: from every reachable state (s, ¢) and every transition ¢ €
E(s), we have a (discrete) transition (s, ¢) BN (s',¢") when 0 € ¢(t) and
s — &'. In this case ¢’ is the unique mapping such that: ¢'(k) = ¢(k) for
all transitions k € pers(m, t) and ¢'(k) = I(k) otherwise,

* continuous transitions: for every delag/ 0 € Q@>¢ such that ¢ = ¢ is defined, we
have a (continuous) transition (s, ¢) — (s, ¢ = 9).

From this definition, we see that time progress does not change the set of enabled
transitions; but it may change the set of transitions that may be taken immediately (the
set of transitions such that 0 € ¢(t)). We can also see that the state graph of a TTS is
generally infinite. Indeed, in most cases, we can choose between an infinite number of
continuous transitions. This is, for instance, the case when there are no transitions in 7
enabled at s (in which case we can let time elapse by an unbounded amount).

We give, In Table 3.1, an alternate definition of the reduction relation using nota-
tions borrowed from structural operational semantics, where the relation — is defined
by a set of inference rules. We use this notation later in order to simplify the presenta-
tion of the semantics of G®"oM3.

In this work, we have chosen a strong time semantics, meaning that we must always
take an enabled transition from a state (s, ¢) if there is no delay 6 > 0 such that
¢ = 0 is defined (that is when time cannot elapse). Since a transition cannot become
disabled from a continuous transitions, it follows from this choice that a TTS cannot
have a “timelock”, that is a situation in which a system is blocked because every timing
constraints is indefinitely false.

3.2.4 Timed Transition Diagrams

In this section, we define a graphical notation for TTS (called Time Transition
Diagrams, or TTD for short) as well as a composition operation between TTD that is
also inspired from the work in [Henzinger et al., 1991]. Basically, we can see every
atomic TTD as a component and composition as a way to build more complex systems
through the synchronization and interactions of simpler systems. In this approach, the
composition of multiple TTD (viewed as components) results in a TTS (viewed as the
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system).

A timed transition diagram (TTD) P is a finite directed graph where each edge e
is labeled with: an interval I(e); a guard g.; and operations op.. Each TTD operates
on a finite set of variables, Y. We use V to denote the set of vertices of P and vy to
denote its unique initial vertex. In the remainder of this thesis, guards that are always
true, operations with no effect on variables and [0, oo intervals will not be represented.

As with TTS, we say that a state s of a TTD is a mapping from variables in Y to
values. We consider a distinguished variable, or control vertex, denoted 7, whose value
gives the “current vertex” of the TTD. Hence dom(7) = V and the initial value of 7 is
9.

Informally, a guard is a boolean expression over Y that defines when an edge can
be taken, whereas an operation is a sequence of instructions that can modify the values
stored in these variables (all the updates declared in an operation are processed atomi-
cally). We use the expression g(s) to denote the “truth” value of a guard g on the state
s. likewise, we use the notation s’ = op(s) when the results of op on Y from s agree
with the interpretation of Y at s’

We show in Fig. 3.1 a simple generic TTD example with two vertices, vy and vy,
and one edge e. The initial vertex, in this case vg, is denoted with an incoming edge
without source vertex.

9e
e e
op,
v, v

Figure 3.1: A generic TTD example

Given a TTD P, we can associate its meaning, [P], that is a TTS that describes the
semantics of P. The meaning of P is the TTS (U =Y U {n}, S, s¢, 7, I) such that:

» S is the set of states, where each state is an interpretation of the 7 and each
variable in Y.

* the initial state s is the mapping associating 7 to v (initially the control vertex
is at vg) and all the variables in Y to their default value,

* 7 is the set of edges of P and s — s’ if and only if there is an edge e in P from
v; to v; such that: s(m) = v; and s'(7) = v;; and g.(s) is true; and s = op,(s).

¢ The function I maps every edge e in P to the interval I (e).

3.2.5 Composition of TTDs

The parallel composition of a finite number of TTDs, P, ..., P,, over a set of
shared variables, Uy, results in a TTS denoted:

{&} llic1.n Pi']

A TTS also defines an initial valuation, ©, that gives the initial assignation of variables
in Uy to values.
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We assume that the edge (identifiers) of different components are always distinct: if
e is an edge in P; then it cannot be an edge in P; with i # j. We also assume that each
component (TTD) P; can have access to a set of local variables, denoted U, besides
the variables in U,. (We assume that U; N U, = @ and U; N U; = @ for all indexes
i,j € 1.n with ¢ £ 7). We also consider one distinguished control vertex, 7;, for each
component P;, whose role is to store the current vertex of the TTD. Hence the set of
variables declared in a TTS is:

U:Usu< U Ui>U( U {m}>

i€l.n i€l.n

Given the parallel composition {©}||ic1..n P; |, we can easily define a TTS with
the set of variables U that will give the “semantics of the system”. Assume that
(Uj, Si, 89, 7;, I) is the meaning of P; forall i € 1..n. Then the meaning of {O} |lic1..n, P ]
is the TTS (U, S, s¢, 7, I) such that:

* the set S lists all the possible interpretation of U,

* the initial state sy € S is the only interpretation such that so(x) = s?(z) if x
x € U; (in particular so(m;) = v}, for all i € 1..n, where v{, is the initial vertex
of the component P;); and so(z) = O(x) for all z € U,

* 7 is the union of all edges found in the components P;,..., P,, thatis 7 =
Uie1..n Ti- The result of taking transition e in the TTS boils down to taking e in
the corresponding component. Let s|;; denote the restriction of a state (mapping)
s to the variables in U. Then, if e connects v; to vy, in P; and Us,, C Uy is the
set of shared variables affected by op., we have s 5 ¢ e rif and only if
S|U;UU,,, > SIUZ'LJUSO,, € 7; and s'(x) = s(x) for all variables x € U \ (U; U

Usep)>

* the static time interval function I maps every transition e € 7 to the time interval
I;(e), where P; is the component containing the edge e.

The notion of a TTS defines a composition operator over TTDs and their composi-
tions. This is basically the same operation as the one in [Henzinger et al., 1991] with
the simplification that all the components must start in their initial state. That is we
only consider a “synchronous start” of TTDs.

3.2.6 Sequential behavior

The fact that TTS support the use of variables eases building several classes of
systems by simply composing TTDs. In this section, we show how to use TTS in
order to build a system from the “sequential composition” of components. Sequential
composition will be a useful operation when defining the behavior of execution tasks
in Chapter 4.

We only describe the construction for a specific example. Let us consider the par-
allel composition of the TTDs in Fig. 3.2. We assume that the set of shared variables
U, contains a variable I that will denote the “identity” of the only currently executing
component; that is dom(II) = { Py, P1, P>} with ©(II) = F.

The sequential composition of the three components is the TTS {©}]|lic0..2 P; |
where the guard of each edge in the TTD P; include the test I = P;. With this
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Po v, e =P,
[1,1]
m=P,

P2 VO = P2 V1
[0,1]
e =Py

Figure 3.2: TTDs of a sequential system

constraint, it is only possible to take a transition from the component whose identity is
the current value of II. Therefore, at most one component can execute at a time.

In this particular example, component P, plays the role of a scheduler that gives
the control randomly to either P; or P». Giving the control more than once to P; leads
a deadlock (no discrete transitions possible in the resulting TTS).

3.2.7 Suitability

We discuss the rationale for the choice of TTS for formalizing G®"oM3, as opposed
to e.g other formalisms based on clocks, such as Timed Automata (Sect. 3.4.1). There
are several arguments that favor such a choice among which we emphasize the follow-
ing.

Variables and compositionality: As seen in Chapter 2, G®"oM3 relies on a com-
positional approach where robotic applications contain several components communi-
cating together. Moreover, components themselves are built from entities that interact
in order to ensure a correct behavior with regards to the requirements. For instance,
the control task interacts with the execution tasks to instruct them on which activities
to run or interrupt (Sect. 2.2.2 and Sect. 2.2.3). The power of TTS through the compo-
sition of TTDs is very useful in such circumstances. Indeed, shared variables and the
parallel operator allow to ease the modeling of the complex asynchronous communica-
tion within and between G®M3 components (more in Chapt. 4). Also, the sequential
behavior within execution tasks can be conveniently modeled using shared variables
and parallel operators as seen in Sect. 3.2.6 (more in Chapt. 4).

Variables, guards and time intervals: The possibility to have guards over vari-
ables and to use time intervals makes TTDs suitable for modeling the entities of a
G®bMS3 component. For instance, one may, within a TTD model of an activity, con-
dition through the guards the execution of a codel by the availability of resources, and
use WCET as upper bounds (we give examples about this in Chapter 4).

Urgencies: many of the behaviors in G®"M3 are subject to global urgency con-
straints rather than local ones. For instance, executing a codel happens as soon as it has
secured the needed resources within the IDS, shared between all tasks. These aspects
are modeled easily in TTS as opposed to clock-based transition systems such as those
based on e.g. classical timed automata where urgencies can be expressed only locally
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using invariants. The confrontation between the two models in terms of expressing
urgencies is explained in details in Sect. 6.3.3.2 and Sect. 7.2.1.4.

The remaining sections in this chapter are devoted to a high-level description of the
other formalisms and tools used in this thesis.

3.3 Fiacre and TINA

We present in this section the formal language Fiacre and the model-checking
toolbox TINA, developed at LAAS-CNRS. Both Fiacre and TINA are freely available
with some introductory material at, respectively, http://www.laas.fr/fiacre and
http://www.laas.fr/tina. The model checkers and state abstractions available in
TINA can be used to explore and analyze Fiacre descriptions translated into extended
time Petri nets, introduced hereafter.

3.3.1 Time Petri Nets

Introduction Petri nets [Petri, 1962] are a prominent model for the analysis of con-
current, distributed and discrete-event systems (examples in [Ramamoorthy and Ho,
1980; Genc and Lafortune, 2003; Leveson and Stolzy, 1987]). There exist different
flavors of Petri nets extended with time to enable modeling and analyzing timed and
real-time systems. Time Petri nets [Merlin and Farber, 1976] is one of these extensions.
A time Petri net (TPN for short) enriches a Petri net with time intervals associated with
the transitions of the net and specifies thus the possible time delays between the last
enabledness of these transitions and their activation (or firing in Petri net terminology).

In a TPN, each transition ¢ is associated with a time interval I(¢) € I, in much the
same way a transition ¢ in a TTS has a timing constraint. We use the same notations
from Sect. 3.2, namely:

« [I(t) is the lower bound of interval I(¢), also called the earliest firing deadline
of t,

o 11(t) is the upper bound of I(¢) (it can be equal to co), also called the larest
firing deadline of t.

Firing a transition in a TPN is constrained by the same Strong Time Semantics
condition than the TTS defined in Sect. 3.2. Actually, we will encounter similar notions
of enabled, newly enabled and persistent transitions, but given in terms of Petri net
markings rather than TTS states.

More formally, a TPN N is a tuple (P, T, Pre, Post, mg, I) such that:

* (P, T, Pre, Post, mg) is a Petri net, with P the set of places, 7" the set of tran-
sitions, mg : P — N the initial marking, and Pre, Post : T — (P — N) the
precondition and postcondition functions,

* [ is the static interval function, that associates a time interval in I to every tran-
sitionin 7.

In the following, £(m) is the set of enabled transitions at marking m, that is the set
of transitions ¢ € T such that m > Pre(t) (we use the pointwise comparison between
functions). The shifting function ¢ — 6 and the partial function ¢ — 0 that associates,
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at a marking m, each transition ¢t € £(m) to the value ¢(t) — 0 are the same as defined
in Sect. 3.2.

At a marking m, we say that a transition k is persistent (with k # t) if it is also
enabled in the marking m — Pre(t), that is if m — Pre(t) > Pre(k). The transitions
that are enabled at m’ and not at m are called newly enabled. We define the pred-
icates pers(m,t) and nenabl(m, t) that describe, respectively, the sets of persistent
and newly enabled transitions after ¢ fires from m. We see that if ¢ is still enabled in
m/ then it is necessarily newly enabled.

pers(m,t) = {k € Em)\{t} | m — Pre(t) > Pre(k)}
nenabl(m,t) = {k € (T\E(m)) U {t} | m — Pre(t) + Post(t) > Pre(k)}

The semantics of a TPN is then given over marking-interval pairs (m, ¢) where
m is a marking and ¢ contains the dates at which each ¢ € £(m) can be fired in the
future. In particular, ¢ may be fired immediately if 0 € ¢(¢). The initial marking-
interval pair is (mo, ¢9) Where my is the initial marking and ¢o(t) = I(t) for each
enabled transition ¢ € £(mg). Starting from (mg, ¢g), only two types of transitions
are allowed:

discrete transition: (m, @) tetlm), (m/,¢") given that 0 € ¢(t), where m' =
m — Pre(t) + Post(t) and ¢’ is defined as follows: ¢'(k) = ¢(k) for all persistent
transition k € pers(m, t) and ¢' (k) = I(k) otherwise.

continuous transition: (m, @) 2, (m, ¢') given that 6 satisfies the upper bound
condition of ¢ — 6 for each t € E(m) (see Sect. 3.2), where ¢’ is defined over the
set of enabled transitions at m, £(m), as follows: V& € E(m) : ¢'(t) = H(t) - 6.
In particular, if no transition is enabled at m ,that is £(m) = &, then § may be any
arbitrary value in Q< which allows time to diverge unboundedly.

Example Figure 3.3 shows a TPN with three places and four transitions. The tran-
sition t;,;, is initially fireable and may fire at any moment in the future. Let 7 be the
value of the global time at the moment t;,,;, fires (if it does). Transitions ¢y and ; are
both enabled (pg is marked) but none is already fireable. When 7 evolves by one time
unit, ¢y becomes fireable as [.I(ty) = 1. If it is fired within the interval [7 + 1,7 + 2|,
po is unmarked, py is marked and both ¢y and ¢; are no longer enabled. However, if £,
is not fired and 7 evolves by one time unit further, ¢; becomes also fireable. Within the
interval [T 4 2, T + 3|, either ¢; or tg may fire. At T + 3, 11 (%) is reached and thus ¢
must fire or become disabled (that is either £y or t; must fire, which will disable both
of them).

Let 7/ be the value of the global time at the moment either ¢y or ¢; fires. Firing
to will enable t5 which must fire at exactly 7/ + 1. Firing t1, on the other hand, will
enable t3, which will fire in the interval [7/ + 3, 7" + 5].

These temporal constraints allow reasoning on timed properties of the net. For
instance, we may prove that the minimum (respect. maximum) amount of time pg is
marked continuously is 1 (respect. 3) time units. Similarly, the minimum (respect.
maximum) amount of time py remains unmarked (after being already marked) is 1
(respect. 5) time units.

Enriching TPN TPN can be conveniently enriched by a number of features enhanc-
ing their expressiveness like priorities, expressing that some transitions should be fa-
vored over others when fireable at the same instant or data-processing, consisting of
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Figure 3.3: Time Petri net example

synchronizing the evolution of the TPN with computations on a set of variables in some
programming notation. In this thesis, only the data-processing extension is needed. We
will refer from now on to TPN enriched with data as D-TPN.

3.3.2 Fiacre

Introduction Fiacre (for Format Intermédiaire pour les Architectures de Composants
Répartis Embarqués, Intermediate Format for the Architectures of Embedded Dis-
tributed Components in French) is a formal specification language for describing com-
positionally both the behavioral and timing aspects of embedded and distributed sys-
tems [Berthomieu et al., 2008]. Fiacre is based on communicating state machines with
a rich notion of transitions, i.e transitions might embed large sequences of code eas-
ing the model mapping from complex applications (e.g. a Fiacre single transition may
embed different control structures such as conditionals and loops). Timing aspects and
firing semantics in Fiacre are identical to the strong time semantics of TPN introduced
in Sect. 3.3.1. Fiacre specifications can be used as an input format for formal veri-
fication tools (mainly real-time model-checkers) as well as for simulation purposes.
Fiacre stems from several projects in different applicative domains like telecoms and
avionics [Berthomieu et al., 2014; Bourdil et al., 2014; Rangra and Gaudin, 2014].

Apart from its ability to model priorities and timing constraints (using a dense time
model), a distinctive feature of Fiacre is to include a rich set of datatypes: booleans,
integers and integer ranges, records, tagged unions, arrays and queues. The language
is statically typed, with depth subtyping to handle integer ranges. In terms of pro-
cess interactions, Fiacre supports both the classical paradigms of shared variables and
synchronous message passing a la process calculi. Finally, Fiacre provides functions,
native or imported.
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process example is
states s@, s1, s2

from s@
select

wait [1,3]; to s2

[] wait [2,2]; to si
end

from s1
wait [1,5];
to s0

from s2
wait [0,1];
to s0

Listing 3.1: A simple Fiacre process

Fiacre descriptions are made of processes and components, both parametrizable by
values, value locations (shared variables) and interaction labels (for communication or
synchronization)

Fiacre processes A process describes a sequential behavior; it specifies a set of con-
trol states and a set of transitions, each expressing a state change by a statement built
from deterministic constructs (assignments, conditionals, loops, and sequential com-
position), nondeterministic constructs (nondeterministic choice and assignments), in-
teraction statements and jump statements. Listing 3.1 shows an example of a simple
Fiacre process.

Line 2 defines the states of the Fiacre process. The first state is by default the initial one.
Transitions are described afterwards within blocks. Each block defines the possible
transitions from a given state. For instance, the very first block (lines 4 to 8) describes
the existence of two possible transitions (to state s2 and to state s1) from state s0. Non-
determinism is expressed via the statement select (lines 5 to 8) and timing using the
keyword wait preceding the time interval associated with each transition. A process
can be parameterized by variables and ports as shown in the sequel.

Components Components describe in a hierarchical manner the architecture of the
system as the parallel composition of process or component instances. Components
also specify the interactions between the constituting processes or components, and
possibly constrain these interactions with timing and/or priority requirements. The
next paragraphs detail the composition into components via examples.

Example: communication through shared variables Listings 3.2 and 3.3 show two
simple Fiacre processes sharing a variable x. x is of type 0..3 (an integer ranging from
0 to 3). The blocking statement on is used to express guards on transitions (e.g. line
5 of Listing 3.2). As long as the guard is false, the guarded transition is disabled. The
value of  is updated when firing transitions (e.g. line 7 of Listing 3.2).

Now listing 3.4 defines the Fiacre component that encapsulates procl and proc2
and allows them to communicate through x. It declares and initializes the shared vari-
ables (line 2) and defines the parallel composition of the processes (lines 4 to 7).
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process procl (&x: 0..3) is
states s0, si

from s@

on x=1;
wait [2,2];
X:=2;

to si

from s1

on x=3;
wait [0,1];
X:=0;

to s1

Listing 3.2: A simple Fiacre process procl

process proc2 (&x: 0..3) is
states s0, si

from s@

on x=0;
wait [0,0];
x:=1;

to s1

from s1

on x=2;
wait [0,1];
X:=3;

to s0

Listing 3.3: A simple Fiacre process proc2

component CMP is
var x: 0..3:= 0

par
procl (&x)
|| proc2 (&x)
end

Listing 3.4: Fiacre component encapsulating procl (listing 3.2) and proc2 (listing
3.3)

60



SO 00NN R WN -

—_

NN AW =

process syncl [R: sync] is
states s0, si

from s@
R;
to si

from s1
wait [0,1];
to s0

Listing 3.5: A simple Fiacre process syncl

process sync2 [R: sync] is
states s2

from s2
R;
to s2

Listing 3.6: A simple Fiacre process sync2

Example: communication through ports Listings 3.5 and 3.6 describe two pro-
cesses syncl and sync2 communicating through the port R. A port has a profile which
determines the type of messages that can be passed through it. The profile of R is sync
which is a pure synchronization profile, i.e no data flow is allowed through R. The line
5 of both listings is blocking: this means that, when communicating through R with
process syncl, the self-loop transition of process sync2 from s2 to s2 is not enabled
unless process syncl is in state sO.

Finally, listing 3.7 shows the component SYNCMP encapsulating syncl and sync2
and allowing them to interact through R. It defines R, its profile sync and a time inter-
val [1,1] (line 2). This means that the transitions synchronized over R are associated
with the interval [1, 1]. If the interval is not defined, it defaults to [0, oo[.

Verification Fiacre descriptions can be complemented by declarations of properties.
Atomic properties include the states of process instances, predicates on the values of
variables and Fiacre events (interactions). The Fiacre observables are boolean com-
binations of atomic properties. They can be combined to form property patterns in
the style of [Dwyer et al., 1999]. For checking real-time properties, these patterns are
enriched with time constraints [Abid et al., 2014]. For verification, the real-time pat-
terns are translated by the Fiacre compiler into LTL properties on the Fiacre description
instrumented with observers.

As an illustration, we present the timed property “source leadsto target within
[d1, d2]” and show how it is handled in Fiacre. This property asserts that along each
path some state obeying farget occurs within a delay in interval [d1, d2] after each
state obeying source, where source and target are some observables and [d1, d2] is a
time interval. This property is encoded using a Fiacre process (an observer) given in
listing 3.8; the process is automatically generated from the property formula (source
leadsto farget within [d1, d2]) and connected with the main Fiacre program through
two transition guards on the source and target observables. With this observer, the
property is to show that the state error of the observer is unreachable.
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component SYNCMP is
port R: sync in [1,1]

par * in // consider all interactions
sync1 [R]
|| sync2 [R]
end
Listing 3.7: Fiacre component encapsulating syncl (listing 3.5) and sync2
(listing3.6)

process LeadsToWithin is
states idle, start, watch, error
from idle
on source; to start
from start
wait [d1,d1]; to watch
from watch
select
on target; wait [0,0]; to idle
unless
wait JA,...[; to error /*x where A =d2—dl */
end

Listing 3.8: Fiacre process for the leadsto within property

3.3.3 TINA Toolbox

Introduction TINA [Berthomieu et al., 2004], the TIme Petri Net Analyzer, is a
toolbox for the analysis and verification of TPN and D-TPN possibly enriched with
priorities and stopwatches. TPN state spaces are infinite due to the dense nature of
time. To sidestep this problem, finite abstractions known as State Classes have been
defined since the 1980’s, see for instance [Berthomieu and Menasche, 1983]. The State
classes construction, known as the State Class Graph (SCG), is suitable for LTL model-
checking as it preserves markings and traces. A simple variation of the construction
(reducing classes by inclusion) only preserves markings and is typically coarser; it is
the method of choice for reachability analysis.

The TINA toolbox provides state space generators and offline model-checkers for
LTL and modal p-calculus. The generators can produce compressed representations
of SCGs into files. Some classes of properties can also be checked on the fly when
building SCGs. When a property is not satisfied, a counterexample is generated. A
counterexample can be turned into a timed trace and replayed in a simulator.

Verification of Fiacre models For their verification, Fiacre descriptions are trans-
lated into D-TPN by an optimized compiler. The latter, frac, performs syntax analysis
and type checking, then encodes the description into a D-TPN for TINA preserving its
semantics. The compilation process includes a model optimization pass that simpli-
fies redundant transitions, removes dead code and abstracts some variables, retaining
only those contributing to the state (unlike e.g. those only used as temporaries). This
optimization pass helps reduce the size of the SCG.

The frac compiler also translates the properties declared in the description into
properties in the format supported by the TINA model checkers. Verifications of Fiacre
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properties are then carried out exactly like verification of TINA models properties; in
case of failure, a timed scenario can be computed, corresponding to a Fiacre scenario.

3.3.4 Conclusion

Fiacre and TINA provide a modeling and verification workflow based on TPN and
their extensions. This makes Fiacre a natural choice as a target formal language for our
robotic specifications. Indeed, TPN are a prominent model for the modeling of con-
current and real-time systems and are expressive enough to model the aspects present
in such systems. For instance, it is quite simple to model urgencies using the fact that
firing intervals depend on the enabledness of the transitions. Furthermore, the different
optimized SCG constructions offered by TINA makes it suitable for verifying complex
real-time properties of robotic applications. In particular, in our examples, we will of-
ten use an optimized state class reduction approach, based on checking the inclusion
of classes, that can drastically reduce the size of the generated SCGs and provides an
efficient method for checking safety properties.

3.4 UPPAAL

UPPAAL [Behrmann et al., 2004] is a model checker based on Timed (Safety) Au-
tomata (Sect. 3.4.1) extended with data, user-defined functions and urgent channels.
An UPPAAL system is made of one or several processes, composed using the parallel
operator ||. To formulate properties, UPPAAL supports a query language (Sect. 3.4.3)
based on a fragment of the branching logic TCTL. It also features a graphical sim-
ulator where counterexamples may be replayed and analyzed. UPPAAL has been
developed in a close collaboration between the University of Uppsala (Sweden) and
the University of Aalborg (Denmark) and is available, together with its extensions on
http://www.uppaal.org. UPPAAL is widely used in verification of real-time sys-
tems and implements efficient optimization techniques such as minimal cost reachabil-
ity [Larsen et al., 2001] and symmetry reduction [Hendriks et al., 2004].

3.4.1 Timed Automata

Introduction Timed Automata is a theory for modeling and verification of timed
systems. In the original version of the theory [Alur and Dill, 1994], Timed Automata
extend finite-state Biichi automata with real-valued clocks. The behavior of such au-
tomata is therefore restricted by defining constraints on the clock variables and a set
of accepting states. A simpler version allowing local invariant conditions and known
as Timed Safety Automata is introduced in [Henzinger et al., 1994]. In this thesis, we
focus on Timed Safety Automata and refer to them as Timed Automata or TA for short.

Formally A timed automaton TA is a tuple
TA=(Lly,X,%,E,I) (3.1)
where:
¢ [ is a finite set of locations,

¢ [y € L is the initial location,
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¢ X is a finite set of continuous variables called clocks,

* Y = ¥, WX, is a finite set of actions partitioned into inputs (3J;) and outputs
(Xo),

* FE is a finite set of edges of the form (I, g, a, ¢, 1), where [ and I’ are locations,
g is a predicate on R, action label a € ¥, and ¢ is a binary relation on R,

o I assigns an invariant predicate I (1) to any location [.

Semantics The semantics of TA is defined over a Kripke structure, whose states are
pairs s = (I,v) € L x RX, with v |= I(l), and transitions defined as:

¢ delay transitions: (({,v) <, (I,v") with d € R>¢ and v’ = v + d), and

« discrete transitions: ((1,v) = (I’,v’) if there is an edge (I, g,a,Y,1’) such that
v = gandv’ = v[Y], where Y C X, and v[Y] is the valuation assigning 0 when
x € Y and v(z) otherwise).

Example Fig. 3.4 shows a simple TA with three locations [ (initial), /; and /5 and
a clock c. With locations [; and [, are associated the invariants (in purple) ¢ < 2 and
c < 1, respectively. This means that whenever /1 (respect. [o) is reached, it must be
left at most when the valuation of c is equal to 2 (respect. 1). The reset actions (in
blue) assign the valuation O to ¢ when the edges they are associated to are taken (edges
from [ to /; and from [; to l5). The guards (in green) must be satisfied when an edge
is taken.

The absence of an invariant on location [y makes taking its outgoing edge possible
no matter what the valuation of c is. Let 7 be the value of the global time at the moment
the outgoing edge of [y is taken. This means that /; is reached at 7 and must be left
within the interval |7, 7 + 2]. This interval is left-open because each outgoing edge of
l1 is guarded with the strict inequality ¢ > 0 (I; cannot be left at 7). Let 7/ be the value
of the global time at the moment the edge from [; to [5 is taken. Location I will be left
within |7/, 7/ 4 1] and the initial location is reached.

We may use these temporal constraints (invariants and guards) to assert timed prop-
erties of the automaton. For example, we may prove that the maximum amount of time
separating two successive visits of location [ is 3.

3.4.2 Extending TA

Urgencies TA urgencies may be expressed only locally through invariants. To deal
with urgencies expressed globally, e.g. involving different TA components, TA are ex-
tended with urgencies in [Bornot et al., 1998]. We refer to such formalism as Urgency
Timed Automata UTA. When an edge in a UTA is eager, that we note ¢ , it must be
taken (or disabled by taking another edge) as soon as enabled. That is, when an eager
edge is enabled, time is not allowed to progress until this very edge is taken or disabled.

Data variables To ease the modeling of real-world systems, often communicating
through shared variables, TA may be extended with data variables. In such a case,
guards and assignments, originally allowed only on clocks (equality/inequality for
guards and reset for assignments), become possible on variables as well. We refer
to this extension as DTA. UTA extended with data are referred to as DUTA.
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clock c

Figure 3.4: Timed automaton example

3.4.2.1 Composition of DUTA

The parallel composition of n DUTA is the system {Init}[ ||;c1..n A; ], where each
A; is a DUTA and Init defines the initial valuations of shared variables.

The semantics of a DUTA composition is thus given over a Kripke structure with
states of the form of pairs s = (I, v). The difference with the states given in the se-
mantics of a single (non-extended) TA in Sect. 3.4.1 is that now (i) [ stores the current
location for each DUTA A; and the valuation of each non-clock variable in the system,
(ii) v stores the valuation of all clocks in the composition (in each A4;) and v |= I; for

The transitions are then defined as in Sect. 3.4.1: discrete and delay. Here, the dis-
crete transitions may contain a set of ¢ transitions, such that an { transition corresponds
to an ¢ edge. When enabled, an { transition deactivates all delay transitions until it is
taken (or disabled by taking another concurrent discrete transition). A large example
over DUTA compositions in terms of G®6M3 applications is given in Sect. 5.3.

34.2.2 In UPPAAL

UPPAAL offers several extensions of TA to make modeling real-world timed sys-
tems easier and more practical. It supports DTA over booleans and integers and a
restricted class of UTA (see below). We refer to a (possibly extended) UPPAAL TA as
a process.

Broadcast channels Multiparty synchronizations are allowed in UPPAAL through
(non-blocking) broadcasts. A sender may synchronize with several receivers. A re-
ceiver that can synchronize in the current state of the system must synchronize. A
sender, on the other hand, that can synchoronize in the current state of the system does
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so with the maximum number of receives that can synchronize in the same state. If
the sender can synchronize in the current state where no receiver can synchronize, the
sender may still execute the sending action, i.e. broadcast is never blocking.

Urgent channels UPPAAL implements a restricted class of UTA, where urgencies
are allowed only over channels, on which timing constraints are forbidden. That is, one
may define an eager transition, involving the synchronization of at least two edges in
two different processes, but may not define an urgent edge. Moreover, time constraints
are not allowed on edges contributing to urgent channels. Despite such restrictions,
urgent channel allow implementing urgencies expressed globally, i.e. depending on the
behavior of more than one processes in the system.

Data and user functions Besides clocks, data variables are also allowed to take parts
in guards and actions. Supported data types are booleans and integers. User functions
are also supported in a C-like syntax with no support for pointers.

3.4.3 UPPAAL query language

UPPAAL features a query language to express the properties the user wants to
verify. The query language is based on a small fragment of the branching timed logic
TCTL with path and state formulae.

State formulae A state formula is any expression than can be evaluated to true or
false on a global state of the system. This may involve locations, clocks and data
variables, e.g. a == 2 where a is a global variable, p.z < 1 where z is a clock in
process p and p.ly where [ is a location of process p. The first formula evaluates to
true in all states of the system where a is equal to 2, the second for all states where the
valuation of x is inferior to 1, and the third for all states where the current location of

piS lo.

Path formulae Path formulae enable quantifying over traces of the system evolution.
Path formulae in UPPAAL use the operators (i) A (along all paths, inevitably), (ii) F
(there exists a path, possibly) and (iii) ~ (leads to, inevitably). In the following, we
give the five path formulae supported by UPPAAL (¢ and 1) are state formulae). Note
that nesting path formulae is not allowed in UPPAAL.

Al¢: ¢ holds in all states of the system.

e El¢: there exists a maximal path where ¢ is true in all states. The last two
formulae are suitable for safety properties.

e FE ¢ ¢: there exists a reachable state that satisfies ¢. This formula is suitable for
reachability properties.

e Ao ¢: ¢ is eventually satisfied.

* ¢ ~ 1): whenever ¢ is satisfied, the satisfaction of i) eventually follows. The
last two formulae are suitable for liveness properties.
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3.4.4 \Verification in UPPAAL

Models can be drawn in the graphical editor or encoded in the .xta format. List-
ing 3.9 shows how the TA in Fig. 3.4 is encoded in the .xfa format. This gives an
organized and clear view of the processes when models are too complex to be readable
in the graphical format. Therefore, the .xta is the format of choice in this thesis.

process example () {

clock c;

state 10, 11{x<2}, 12{x<1};
init 10;

trans 10 —11 {assign x:=0; },
11 —10 { guard x>0; 3},
11 —12 { guard x>0; assign x:=0; },
12 —10 { guard x>0; 3;

OO 00NN R W=

}
Listing 3.9: .xta encoding of the TA in Fig. 3.4

In the verifier, one can insert the properties using the allowed path formulae shown in
Sect. 3.4.3. The properties are verified on the fly and a counterexample is produced if
the property is violated. Counterexamples can be replayed in the graphical simulator
for diagnosis purposes.

3.4.5 Conclusion

UPPAAL is a state-of-the-art TA model checker that is well known for its user-
friendliness and performance. As Fiacre/TINA for TPN, UPPAAL is the model checker
of choice for TA. Besides their convenience for real-time and concurrent systems, TA
semantics enable a particular ease for modeling and verification of bounded response
properties thanks to the clocks. UPPAAL graphical interface allows visualizing the
models and especially analyzing counterexamples which eases diagnosis in case of
non satisfaction of properties of interest by the model.

3.5 UPPAAL-SMC

UPPAAL-SMC is an extension of UPPAAL based on stochastic timed automata
(see below). In addition to the classical TA models, UPPAAL-SMC supports modeling
and verifying systems the bevahior of which depend on stochastic and non-linear fea-
tures such as cyber-physical systems with complex dynamics and uncertainties. More-
over, UPPAAL-SMC is a tradeoff approach that does not require the exploration of the
whole state space and is thus a promising alternative for large models that do not scale
with regular UPPAAL. This comes however at the expense of precision as the truth
value of properties is no longer given with absolute certainty.

3.5.1 Stochastic Timed Automata

A stochastic timed automaton (STA) is a tuple
STA = (TA,p,7) (3.2)

where:
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e TA is a timed automaton (Def. 3.1),

* u is the set of all density delay functions js € L x R, which can be either
uniform or exponential distribution,

* 7 is the set of all output probability functions v, over the 3, output edges of the
automaton.

The delay density function z5 over delays in R>( for each state a is either uniform
or exponential distribution depending on the invariant of [ of the state s. Let F; de-
note the disjunction of guards such that (I, g,0,—,—) € E for some output 0. With
D(l,v) = sup{d € R>o : v+ d = I(l)} we denote the supremum delay (the least
of maximal delays), whereas with d({,v) = inf{d € R>¢ : v +d = E;} we de-
note the infimum delay (the greatest of minimal delays) before enabling an output. If
D(l,v) < oo then the delay density function y, for a given state s is a uniform distribu-
tion over the interval [d(I,v), D(I,v)], otherwise it is an exponential distribution with
arate P(I), given by the density function P(l).exp(—P(l).t) for t > 0 (0 otherwise)
where ¢ is the time relative to the output enabledness and ezp the exponential function.
For every state s, the output probability function s over ¥, is the uniform distribution
over the set {0 : (I,9,0,—,—) € E Av |= g} whenever the set is non empty. The
stochastic semantics of the distributions and the delay intervals defined by the classic
semantics of the underlying TA agree. It is thus easy to show that an STA semantics
is defined over a Kripke structure with discrete and continuous transitions (as it is the
case for TA semantics).

Example Fig. 3.5 shows an STA that extends the TA in Fig. 3.4. On invariant-free
locations (only [y here), exponential rates are provided (10 on [y, in purple). Note that,
given the density function, a larger exponential rate implies a higher (respect. lower)
probability to leave the location at smaller (respect. larger) time values, which justifies
the choice of large exponential rates in our case studies on invariant-free locations
(Sect. 7.2.2). We may also define discrete probabilities on the outgoing edges of a
given location. Here, the outgoing edges of {1 have the values 1/3 (from [; to lp) and
2/3 (from Iy to l3). This means that the probability to take the first (respect. second)
edge is 1/3 (respect. 2/3).

NSTA and UPPAAL-SMC Under the assumption of input-enabledness, disjointed-
ness of clock sets and output actions, a parallel composition of (composable) STA
defines a network of STA (NSTA), as follows: Al || A2 || ... || An. The states of
the NSTA are defined as a tuple s = (s1, ..., s,,), Where s; is a state of A; of the form
(1,v), where I € L7 and v € R’ . The probabilistic semantics of NSTA in UPPAAL-
SMC is based on the principle of independence between components, where different
automata synchronize based on standard broadcast channels. Each component decides
on its own (that is, based on a given delay density function and output probability func-
tion) how much to delay before outputting and what output to broadcast at that moment.
Therefore, only broadcast channels are allowed.

3.5.2 Verification in UPPAAL-SMC

Extension of the .xta format The .xfa format was extended to support probabilities
on edges and exponential rates on invariant-free locations. Listing 3.10 shows how the
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clock ¢

1/3

Figure 3.5: Stochastic extension of the TA in Fig. 3.4

STA in Fig. 3.5 is encoded in .xta for UPPAAL-SMC. In line 3, the exponential rate for
location [y is specified. Line 4 introduces a branchpoint from which probabilistic edges
emerge. That is, for each location sl that is a source of edges with probabilities with
target locations tly ... tl,,, we need one branch point s/_b such that non-deterministic
edges from sl to tly ... tl,, are replaced with:

e An edge from sl to sl_b, guarded with the common guard to non-deterministic
edges (line 8 in our example in listing 3.10),

* and non-deterministic edges from sl_b to tly ... tl, with the same operations and
probabilities of the replaced edges from sl to tly ... tl,, (lines 9-10 in our example
in listing 3.10).

The graphical UPPAAL-SMC model of listing 3.10 is shown in Fig. 3.6. Note how
UPPAAL-SMC abuses the term “probability” to denote the number of occurrences for
each edge, as it computes the probability automatically by dividing that number on the
sum of occurrences on all edges, which explains the values 1 and 2 in Fig. 3.6 (instead
of 1/3 and 2/3 in Fig. 3.5)

Query language UPPAAL-SMC uses a weighted extension of the MITL logic (WMITL)
[Bulychev et al., 2012]. It allows to express properties over runs and has the following
grammar:

¢ = s|=¢|0¢|o'U.. 0" (3.3)

where s is a state formula (Sect. 3.4.3), O (respect. U) is the next (respect. until)
operator and d a bound on the valuation of the clock . One may notice immediately
that “leads” to and bounded response properties cannot be expressed and thus cannot
be verified with UPPAAL-SMC.
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Figure 3.6: UPPAAL-SMC model of the STA in Fig. 3.5

1 process example () {

2 clock c;

3 state 10 {;10}, 11{x<2}, 12{x<1};
4 branchpoint 11_b

5 init 10;

6

7 trans 10 —11 {assign x:=0; },

8 11 —11_b {guard x>0; }

9 11_b —10 { probability 1; 3},
10 11_b —12 {assign x:=0; probability 2; 3},
11 12 —10 { guard x>0; };

12 3}

Listing 3.10: .xta encoding of the TA in Fig. 3.5
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Probabilistic verification UPPAAL-SMC uses simulation-based algorithms to give
and approximate answer to one of the following questions:

* Hypothesis testing: is the probability of satisfying ¢ within time x < d is greater
or equal to a certain threshold p? (Pr(Op...¢) > p), where Op is either O, or [J,

* Probability evaluation: what is the probability Pr(Op,..¢) for some NSTA?
e Probability comparison: is P(Op...¢1) > P(Op,.,¢2)?

3.5.3 Conclusion

The cost of SMC algorithms (e.g. time and memory consumption) is particularly
low compared to classical model-checking algorithms. SMC is thus a technique of
choice when models are too large to be handled by model checkers. In contrast, some
types of properties are not supported (e.g. bounded response) and the results of the
verification are given in terms of probabilities rather than boolean answers. SMC might
be seen then as a fair compromise between simulation and exhaustive verification.

3.6 BIP

BIP (Behavior, Interaction, Priority) is a component-based language for modeling,
executing and analyzing real-time systems developed at Verimag'. A system is repre-
sented by a set of components (behavior) that interact through connectors which define
weak and/or strong synchronizations (interaction). The conflicts between connectors
are possibly resolved using priorities. Complex systems can thus be built hierarchi-
cally using compound components, that encapsulate sub-systems made of components
constrained with connectors and priorities. In this thesis, we use the RT (Real-Time)
version of BIP that supports timing constraints over clocks and refer to it as simply BIP.
The underlying formalism of BIP is timed automata, already introduced in Sect. 3.4.1.

The building unit of a BIP model is the simplest type of components, i.e. with
no hierarchies, and is knows as an atom. An atom is a DUTA (urgencies and data
variables are allowed). Ports are used to interact with other atoms and are thus the
building blocks of connectors (similar to channels in UPPAAL). Connectors may be
rendezvous or broadcasts. Rendezvous are strong synchronizations (similar to hand-
shake synchronization channels in UPPAAL with the advantage of supporting multi-
party interactions). Broadcasts are weak synchronizations similar to broadcast chan-
nels in UPPAAL. Connectors may be exported to build other connectors hierarchically.
BIP supports the use of external data types and functions for simulation and execution
purposes.

Example Fig. 3.7 shows a simple example of three BIP components interacting through
connectors with priority rules. Each component has ports that label each edge (e.g. the
edge from location idle to location busy in component A is labeled with the port start).
The little red circle denote that the port is exported for strong synchronization (e.g. the
port sync of component B1). The black links are the connectors (e.g. sl is a rendezvous
connector that involves the ports syncl of A and sync of B1. The priority pr denotes
that the interactions through s1 have a higher priority than those possible through s2.
Note that, in contrast to UPPAAL, BIP offers no support for graphical representation.

BIP documentation and downloads are available at http: //www-verimag. imag. fr/BIP-Tools-93.html
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Figure 3.7: A BIP example (graphical)

In the textual description, we need first to define the ports and connectors types.
Here the ports are basic without data flow, hence the empty arguments (line 2). The de-
fine keyword is used to specify the possible interactions through the connector (broad-
cast or rendezvous, line 5). For instance, if c_sync2 was a broadcast connector type, p’
would be the way to define p as the sender:

/* port types */

port type Basic()

/* connector types */

connector type c_sync (Basic p, Basic q)

define p q

end

connector type c_sync2 (Basic p, Basic g, Basic r)
define p q r

end

Then, the atom types are defined. We show only the type a for component A. The
keyword provided (e.g. line 19) is for guards and reser (e.g. line 20) for resetting
clocks. After describing the behavior, invariants are defined (lines 34-35):

0NN R WN =

[ —y
W= O 0

/* atoms types */

atom type A()

clock ¢

port Basic restart()
export port Basic sync1()
export port Basic sync2()
export port Basic start()

state idle, busy, finish, skip
initial to idle

on start
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from idle to busy
reset c

on syncl

from busy to finish
provided c>0

reset ¢

on sync2

from busy to skip
provided c>1
reset c

on restart
from skip to idle

on sync2
from finish to idle
provided c>0

invariant inv1 at busy when (x <2)
invariant inv2 at finish when (x <1)
end

Finally, we build the compound (line 2) instantiating the components (lines 3-4) and the
connectors (lines 6 to 8) and defining the priorities (line 10). Note that the components
B1 and B2 have the same behavior and that they are instantiated from the same atom
declaration (line 4). The : % given after the name of the connectors s/ and s2 (line
10) denote all the possible interactions. Thus, the priority pr states that any possible
interaction through s/ have a higher priority than any possible interaction through s2.

/* compound definition %/

compound type example()

component a A()

component b B1(), B2()

/* connectors */

connector c_sync s1(Al.syncl, B1.sync)

connector c_sync s2(Al.sync2, B2.sync)

connector c_sync2 begin(Al.start, Bl.start, B2.start)
/* priorities */

priority pr sl:#>s2:%

Now if we analyze the behavior of this model, we may see that, for instance, there is no
reachable global state where the current location of A is busy and the current location
of BI (or B2) is idle. This is due to the rendezvous connector begin. More interestingly,
we may prove that the location skip of A is never reached because of the application of
priority pr.

3.6.1 RTD-Finder

RTD-Finder [Agtefdnoaei et al., 2014] is a deductive, compositional verification
tool that overapproximates the reachable state space using invariants. It aims to over-
come the state space explosion problem often encountered in complex real-time sys-
tems. RTD-Finder extends its untimed version D-Finder [Bensalem et al., 2009] with
the possibility to reason over time by considering history clocks in the generation of
the components local invariants. Only TA are supported by RTD-Finder (data variables
and urgencies are ignored by the tool).

The compositional verification spirit of RTD-Finder relies on deducing the proper-
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ties of a system from the properties of its individual components and their interactions.
The history clocks track the time elapsed since a given action has been last performed.
History clocks are formulated as constraints and are taken into account when comput-
ing the invariants of the components. This permits to, additionally, derive relations
between the clocks of different components. The invariants of the components are then
complemented with the interactions invariants, computed as in D-Finder, to obtain an
overapproximation of the reachable state space of the system.

RTD-Finder supports only safety properties, expressed as invariants themselves.
For instance, the safety property location skip of A is never reached from the example
in Fig 3.7 is expressed as follows: —A1.skip. The evaluation of a safety property is
conducted on the global invariant of the system using SAT solving techniques. For this
purpose, the latest version of RTD-Finder features an interface with the state-of-the-art
SMT solver Z3 [De Moura and Bjgrner, 2008].

3.6.2 The BIP Engine

The back-end compiler of BIP generates source code in C++ for execution pur-
poses. The engine ensures a correct execution of the generated source code following
the semantics of BIP. It computes execution sequences of the underlying model. In
general, an executable model is created by linking a C++ representation to the runtime
of the engine. The engine computes execution sequences with respect to the target plat-
form (concrete execution) or the host machine (simulation). In the first case, the engine
ensures the correct connection between the model and the hardware with respect to the
latter’s inputs/outputs and time constraints. In the second case, the engine interprets
time logically.

Since the underlying BIP models are formally specified and follow DUTA seman-
tics, and that the actual code of the real system can be executed by the engine, the
engine may replace the program of the real system. This may be any system that runs
C or C++ code. Using the engine makes it possible to (i) monitor the execution of the
system online with regard to e.g. its timing constraints and (ii) augment the model with
properties that the engine will enforce online. The BIP engine is thus the framework of
choice for runtime monitoring and verification. However, these advantages come at the
cost of relatively average performance that hinders using the engine for applications
running at high frequencies, such as the quadcopter.

3.6.3 Conclusion

The verification technique implemented in RTD-Finder, based on an overapproxi-
mation rather than an exact exploration of the reachable state space, makes it a valid
candidate for the verification of our models whenever they do not scale or induce a
high cost with model checking. In contrast, RTD-Finder supports only safety proper-
ties and handles neither urgencies nor data variables, which reduces, respectively, the
verification feasibility and the convenience of modeling.

The BIP engine offers an efficient environment for runtime monitoring and enforce-
ment of properties online. In particular, the latter is advantageous when the properties
of interest cannot be verified offline because e.g. they involve data that the offline
model, at its abstraction level, cannot capture. In addition, runtime enforcement of
properties does not require exploring the whole state space at once and is thus generally
scalable. In contrast, the complex computations that need to be performed continuously
by the BIP engine may have a non negligible side effect on the resource consumption
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in the robotic platform.

3.7 Conclusion

In this chapter, we introduced the formal frameworks that will be used for the au-
tomated modeling and verification of our robotic specifications. These frameworks use
different techniques and come with various features. We rely therefore on their re-
spective advantages to use them in an efficient and complementary manner in order to
respond to our verification needs. In sum, four major methods are available:

* Model checking: with UPPAAL and Fiacre/TINA. The respective strengths of
these tools (reduction-by-inclusion technique and automated observers for Fi-
acre/TINA, overall performance and user-friendly diagnosis for UPPAAL) offer
guidance on using them efficiently depending on the properties and the complex-
ity of the robotic application.

¢ Invariant-based verification: with RTD-Finder. The main advantage of this method
(theoretically more scalable than model checking) calls for experimenting RTD-
Finder with safety properties when models do not scale or entail significant cost
with model checking.

« Statistical model checking: with UPPAAL-SMC. The support for stochastic be-
havior motivates the extension of G®bM3 with probabilities over non-deterministic
transitions. Moreover, the low cost of SMC algorithms makes of UPPAAL-SMC
an alternative to consider when models scale with neither model checking nor
invariant-based verification.

* Runtime enforcement of properties: with the BIP-engine. The (online) partial
exploration of the state space allows a scalable enforcement of desired properties
online. Also, the fact that the engine runs the actual code on the robotic platform
makes it possible to express properties that depend on low-level data (absent in
the offline model).
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Chapter 4

Formalizing G€"oM3

4.1 Introduction

In this chapter, we propose a formalization of G®"M3 components. We first moti-
vate the need of such formalization and its feasibility. We give afterwards the formal
definitions of a simplified version of a G®"oM3 component where the most important
constituents and mechanisms are taken into account. Finally, we derive from these
definitions the operational semantics, given in TTS (Sect. 3.2), based on the behavior
described informally in Sect. 2.2.3.

4.2 Importance and feasibility

As seen in Chapt. 1, the absence of formal semantics in low-level robotic frame-
works is quite problematic. Indeed, it is mostly cumbersome and error-prone to try
to model robotic specifications, specified within informal frameworks such as ROS, in
formal languages and frameworks. Furthermore, computer science is a mathematically
founded discipline where, for instance, formal semantics is at the heart of program-
ming languages. Formal semantics gives a clear, unambiguous definition to the lan-
guage/software contrary to informal descriptions that might be interpreted differently
by different readers. In the case of robotics, such semantics would make it possible to
soundly translate robotic specifications into various formal frameworks. Indeed, since
the translated specifications obey some formal semantics, it is possible to construct a
proof of soundness between the semantics and the translation (Chapt. 5).

GeHMS is amenable to formalization due, mainly, to its model-based nature. In-
deed, the definition of the entities a G®bM3 component may have is clear and finite.
For instance, we know that each G®"oM3 component has one control task, and we know
how it evolves. We also know that a G®"oM3 component may have a finite number of
activities, and that each activity has a finite number of codels, and the evolution rules
of an activity within its execution task are well defined. Overall, there is a finite set of
rules on what the programmer may define (definitions) and how the component evolves
(operational semantics) in G®"oM3. This makes the formalization of G®"oM3 possible
by carefully mapping each entity and rule into TTS.

We give formal definitions and operational semantics of a lightweight version of
G®oM3. This version preserves the most important mechanisms including concur-
rency, mutual exclusion, activation and interruption of activities. Validate codels, con-
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trol services and aperiodic execution tasks are excluded. These choices permit giving
in-depth insights on semanticizing ambiguous, yet crucial, software aspects of G*"oM3
(such as interruptions). At the same time, the formalization is not overloaded with sim-
pler and clearer mechanisms such as the execution of control services. For simplicity,
we abuse notation to make the term codel refer, from now on, interchangeably to the
codel or the state it is associated to, and bears always the name of the state rather than
the function it calls upon execution.

4.3 Syntax and syntactical restrictions

Let Comp be a G®6M3 component. We define hierarchically the constituents of
Comp:

4.3.1 Activities
An activity A is a tuple
(ID4,Ca,Wa,Ta,T%)
where:
e IDj, is the unique activity name,

* (4 is aset of codels with at least two codels (the entry codel start4 and the final
codel ethery):
{starta, ethera} C Cg4.

An activity may also have a “stop codel”, stopa, that defines the code to be
executed when the activity is interrupted,

e Wy : Ca\{ethera} — Qs is a function that associates to every codel its
WCET (Sect. 2.2.3). We do not define a WCET for the codel ether, reserved for
termination only (there is no code attached to it),

e Ty is a set of transitions of the form ¢ — ¢’ where ¢ and ¢’ are codels in C' 4. We
denote such a transition by simply ¢ — (or — ¢’) when the identity of codel ¢
(or ¢’) is unimportant,

« TX C Ty is the set of pause transitions.

4.3.2 Execution task

An execution task E7T" is a tuple
(Per, A, Inc, V')
where:

» Ais the non-empty set of activities £'7’ is in charge of. We use the notation 1D 4
to refer to the set | e ID4 of all IDs of activities in A,

e Per € Qs is the period,
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e Inc is the incompatibility function that maps the ID of each activity in A4, say
ID 4, to the set of activities in .4 that are incompatible with A, that is the activities
that must be interrupted before A is launched. Therefore:

Inc : ID4 — P(ID.4), where P(.S) denotes the powerset (the set of all subsets)
of S,

¢ 1/ is a set of variables.

4.3.3 Control task

A control task C'T" is a specific task dedicated to the interaction between a compo-
nent and its surrounding. It is also responsible for “marking” an activity as ready for
execution or for interruption, and reports on the termination of activities. In G®6M3,
the user does not specify the control task whose behavior is defined implicitly. There-
fore, a control task is only defined at this level by a set of local variables that we call

V.

4.3.4 Component
A component Comp is a tuple (CT, E, V, i) where:
¢ (T is a control task,
¢ F is a set of execution tasks,
¢ V is a set of variables (shared between C'T and each ET in E).

o 1 : C+— P(C) is the mutual exclusion function, where C' is the union of all the
codels in all activities of all execution tasks in E. Informally, the set 1(c) lists the
set of codels that cannot simultaneously execute with c. In the remainder of this
document, codels ¢ such that p(c) = @ are referred to as thread safe. Otherwise
we say that c is non thread safe.

4.3.5 Application and well-formed specifications

An application, denoted App in the rest of the text, is simply a set of components.

We will only consider well-formed applications, that are defined by syntactic re-
strictions on the activities and execution tasks that they include.

First, we require that each codel in an activity A, excluding ether 4, must have at
least one successor in the relation defined by the set of transitions 7'4. More formally,
for any activity A and codel cin Cy4 \ {ether 4}, there must be a transition of the form
c—c inTy,withc € Cy.

Second, we require that a transition in 7’4 must not involve a stop codel as a target.
Indeed stop codels are reserved for interruptions. Similarly, it cannot involve an ether
codel as its source, since ether is reserved for termination. Also, an ether codel cannot
be the target of a pause transition because the latter is for suspension until the next
period, while the former is for termination.

All the previous requirements can be expressed more succinctly with the following
constraints:

Ve € Ca\{ethera}dc e Ch:c—c €Ta
Ve, € Ca:(c— ¢ € Ta) = (c# ethera AN # stopy)
Ve,d € Ca:(c—c € TY) = (¢ # ethera)
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Finally, ether codels are always thread safe (there is no code attached to them,
Sect. 4.3.1). Also, there must be no mutual exclusion between codels of activities that
belong to the same execution task. Indeed, any two activities A and B in the same
execution task are executed sequentially “by construction” (no activities in the same
task can run concurrently). Therefore we require that ;u(c) N Cp = pu(d) N Ca = @
forall cin C'4 and ¢’ in Cp.

4.4 Semantics of lightweight G*"oM3

The operational semantics of G®"oM3 entities is given in terms of TTDs that are
composed together to build components and applications. Then we can derive a no-
tion of reduction on G®6M3 by lifting the corresponding relation at the TTS level
(Sect. 3.2.3). As a consequence, we can define the behavior of G*"oM3 components
independently from the implementation (in accordance with the informal description
given in Sect. 2.2.3). In the next section, we refine the operational semantics by defin-
ing a more precise notion of actions.

Here, we need to distinguish between what the programmer specifies (which is re-
flected at the syntactical level, for instance in transitions between codels declared in
activities, Sect. 4.3), and what is implicitly specified, that is, enforced at execution to
produce the expected behavior, like for instance interruption transitions (to codel stop
if it exists). Indeed, the programmer does not specify transitions to the stop codel, if
it exists (Sect. 4.3.5), as such transitions are defined by default and automatically exe-
cuted when applicable (Sect. 2.2.3). We define the semantics of a G®"oM3 component
gradually through three levels:

* Mono-task component: the component contains only one execution task (no con-
trol task),

* Multi-task component: the component contains a finite number of execution
tasks (no control task),

* All-task component: the component contains a finite number of execution tasks
and a control task.

This layering will help us present the semantics progressively, in an understandable
way, but also select the right level according to the objective (presentation, translation,
proof) such as both readability and convenience are preserved (more in next section).

4.4.1 Level 1: mono-task component

This is the lowest level in complexity (and highest abstraction). In this context, the
component contains only one execution task, which means that all the codels are thread
safe (see the property of pi() in Sect. 4.3.5).

For the sake of simplicity, we stop referring to the names of edges in TTDs (Sect. 3.2.4).
That is, an edge e that connects vertex v to v, denoted also v 2 v’ in Sect. 3.2.4 will
be referred to, from now on, as simply v — v, v — (when the identity of v’ is un-
inmportant), or — v’ (when the identity of v is unimportant). This will alleviate the
notations but still permits to define edges uniquely through their source and target ver-
tices and the set they belong to as we will see hereafter. It will also ease loading edges
with actions in Sect. 5.3.
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Definition 1 Activities semantics.
The operational semantics of an activity (ID 4, Ca, Wa,Ta, Tf) (Sect. 4.3.1) is given
by a TTD (Sect.3.2.4) such that:

e Vertices V: each c € Cy is mapped to one vertex with the same name c € V.
The initial vertex v is ethery.

* Edges E are partitioned into a set of nominal edges, EV, and additional edges,
EA. Thatis E = EN U E4 where:

— Nominal edges: each transition ¢ — ¢ in T4 is mapped to an edge ¢ — ¢’
in EN. We distinguish three disjoint sets of nominal edges:
EN = EPUETUEX. ET is the (possibly empty) set of pause edges
that maps the set of pause transitions TT; ET is the (possibly empty) set
of termination edges of the form — ether and E* the (possibly empty) set
of the remaining (execution) edges.

— Additional edges: We distinguish two disjoint sets of additional edges:
EA = ES U E!. ES contains the additional edge for starting ether — start.
ET is the set of additional edges for interruption: (i) from vertex ¢ = ether
and (ii) from each vertex c such that there is an edge — c in E¥ to vertex
stopa if stopa € C4 (to vertex ethery otherwise).

e Time intervals I: I =)0, W(c)| for each edge in EY and I = [0, 0] for each
edge in B4,

Consequently, the set of nominal edges maps the transitions that the programmer spec-
ifies, while the set of additional edges reflects internal actions enforced by G*"oM3 to
handle starting and interruption of activities. The additional edges for interruption £/
ensure that an activity that is interrupted before starting or after a pause will execute
the interruption routine: transit to stop (if it exists) or terminate by transiting to ether
(otherwise).

Edges uniqueness For activities, due to the restrictions defined in Sect. 4.3.5, the
sets EN and E4 are necessarily disjoint, and thus all subsets of E and E4 are mu-
tually disjoint. Moreover, it is not possible to have two different edges with exactly the
same source and target codel, so specifying the source and target of an edge defines it
uniquely. The only exception is for codels c that are both the target of a pause transition
J—ce Tf ) and the source of a transition to ether (c — ether 4 € T'4) in an activity
that does not have a stop codel. In this case, we end up with two edges connecting c to
ether: one nominal for termination (in the set £7') and one additional for interruption
(in the set E1). Here, it is sufficient to mention also to which set the edge belongs to
define it uniquely. For TTDs of other entities excluding the control task (such as the
task manager, see below), edges are uniquely defined through their source and target
vertices. This remains true at level 2 and level 3 (next sections).

Example This example shows the definition of an activity A and its operational se-
mantics.
Syntactic definition (from Sect. 4.3.1)

o Cy = {starta, maina, ethery},

o Wa(starta) =1, Wa(maing) = 2,
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o Ty = {starty — maina, maina — ethera},
TV =0

Semantics We apply Definition 1 to A to get the TTD of A in Fig. 4.1. Note the edge
from ethera to ethery that represents interruption (absence of codel stop 4 here).

start, main,

ether,

Figure 4.1: Activity TTD example (mono-task context)

Definition 2 Execution task semantics.
The semantics of an execution task ET = (Per, A, Inc, V') is a TTS (parallel compo-
sition, Sect.3.2.5)

ET = {O}[Tim||Ex]

where © gives the initial values of the shared variables (given below) and Tim is the
timer.
Bz is a TTS (sequential composition, Sect.3.2.6)

{OMIIC || A)]

AcA

where M is the task manager and || A is the sequential composition (Sect.3.2.6) of
AcA
all activities A in A (Sect. 4.3.2).

The set of variables V contains: N, the set of names of activities to be executed
nominally, R, the set of names of activities to be interrupted (both N and R are defined
over ID 4, Sect. 4.3.2), sig, the period signal (boolean), and 11, the control passing
variable (of type ID 4 U M, the same idea as in Sect.3.2.6). The initial values are
O(N) = ©(R) = @, O(sig) = False, and O(IT) = M.

II is initialized to M to ensure that the manager has the control when the system starts
(the global control is held by the manager M at the initial state of the underlying TTS).
Both Tim and M are TTDs whose behavior is defined in the sequel.

Definition 3 Timer semantics.
The timer has one vertex and one edge. The latter is associated with the interval
[Per, Per] and the operation sig := true (Fig. 4.2).

Changing the value of sig to true corresponds to transmitting a signal asynchronously

to the manager (see below). The time interval [Per, Per] ensures that this signal is
transmitted at exactly each period (each Per time units).
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[Per, Per]
sig:= true
start

Figure 4.2: Timer TTD

Definition 4 Manager semantics.
The manager is a TTD with two vertices: wait and manage. The edges, guards, opera-
tions and time intervals are shown in Fig. 4.3.

The location wait denotes waiting for the next period signal and manage is to exe-
cute activities, if any. The union N U R defines the set of activities to execute through
their IDs. The operation IT := rand(N U R) gives the global control randomly to one
of the activities whose ID is in N U R (by assigning randomly an element from N U R
to II). The manager transits back to wait as soon as the set defined by this union is
empty.

Since O(N) = O(R) = @, no activity would ever be executed by the manager.
This is normal because fulfilling activities requests is the role of the control task that we
do not have at this level. The manager performs the operation rrand(N, R) to solve
this problem. It initializes randomly /N and R, over the set of IDs of the activities
ET is in charge of; while respecting the disjointness condition N N R = & and the
uniqueness condition (/D4 € SAIDp € S) = (A # B) with S is either N or
R. Note how the guard on the edge from wait to manage does not contain the clause

wait sig manage NuR#@ AT =M
[0, 0]
T .= rand(NuR)

sig:= false,
rrand(N,R)

0,0
NUR=@Arm=M

Figure 4.3: Manager TTD

II = M. This is indeed not necessary as we may easily prove that if the manager is
at vertex wait, then II = M (this kind of invariants will be useful when we prove the
soundness of our translation in the next section):

* First visit: O(II) = M,

» Subsequent visits: each subsequent visit results from taking the edge from man-
age to wait, which is itself guarded by II = M and does not modify II,

* Time progress: all operations that change II from M to something else are on
the edges whose source vertex is manage, which means that the value of II when
reaching wait, proven above to be M, will remain so as long as the current vertex
of manager is wait. Activities have also access to II but never change it to
something else than M (see below).
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Now we see how the TTD of an activity A given in Definition 1 is enriched with guards
and operations when involved in the execution task.

Definition 5 Activities semantics (enriched).

Each incoming edge to ether (each element of E™ if a codel stop exists, of ET U E!
otherwise) and each pause edge (each element of ET) is augmented with the oper-
ation 11 := M and the operation UP(ID, N, R) that removes ID from N or R,
whichever set it belongs to. Additional edges for interruption (E') are guarded with
II = ID A ID € R. The starting edge (the only element of E°) and each edge ¢ — in
EN such that there exists an edge — ¢ in E¥ are guarded with IT = ID A ID € N.

Let us illustrate with an example how this augmentation with guards and operations
coincides with the behavior given in Sect. 2.2.3. We consider the same activity A
(Fig. 4.1) and a second activity B defined as follows:

» Cp = {startg, maing, stopg, etherg},

e Wg(startg) = 1, Wg(maing) = 2, Wg(stopg) = 1,

o Tp = {startg — mainpg, maing — maing, stopg — etherg},
s TE = {mainp — maing}.

We apply Definition 5 to get the TTDs of A and B in Fig. 4.4 when evolving within
the execution task whose manager and timer are represented in Fig. 4.3 and Fig. 4.2
(Definition 4 and Definition 3), respectively. The non-determinism on whether to ex-
ecute nominally or interrupt at the beginning of the execution (from ether or wherever
the activity was paused) is resolved by finding to which set the activity ID belongs (e.g.
edges from mainp to stopp and from maing to maing). At the end of the execution,
either by taking a pause edge (e.g. edge from mainpg to maing) or reaching ether
(e.g. edge from mainy to ether,), the control is given back to the manager through
the operation Il := M. Together with such operation, the activity updates the set /N or
R by removing its I D from the set it belongs to through the operation UP(ID, N, R).
This is to denote that there is no further execution required for this activity in the cur-
rent cycle. Note that checking whether the activity has the control is necessary only on
starting and interrupting edges and when resuming after a pause (Definition 5) as we
may easily prove that when activating any of the remaining edges, II is always equal to
the activity ID.

Component At this level, the component is simply the execution task ET'. It is thus
derived from Definition 2.

4.4.2 Level 2: multi-task component

At this level, the component may contain several execution tasks, which means
that some codels may be non thread safe. Only the operational semantics of activities
change.

Definition 6 Activities semantics (level 2).

The operational semantics of an activity (ID o, Ca, Wa, Ta, TY) (Sect. 4.3.1) is given
by a TTD such that:
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1= Dg A IDGEN

Figure 4.4: Activities A and B in task ET (level 1)

o Vertices V: each ¢ € Cy s.t. p(c) # & (non thread safe) is mapped to two
vertices ¢ and Ceyec. Definition 1 applies otherwise.

o Edges E: partitioned into nominal edges EV and additional edges E*:

— Nominal edges E : partitioned into ET (pause edges), E™T (termination
edges) and E (execution edges). Each transition in TA\T% from a non-
thread-safe codel c to ¢ is mapped to an edge cepec — ¢’ in EX (in ET if
¢’ = ether). Each transition in Tf from a non-thread-safe codel c to ' is
mapped to an edge ceye. — ¢ in ET. For the remaining transitions in Ty,
Definition 1 applies to get their mapping in EV,

- Additional edges E*: partitioned into E' (interruption edges), E® (start-
ing edges) and EM (mutual exclusion edges). E™M is the set of edges
C = Cegec for all non-thread-safe codels c. Definition 1 applies to get
ES and E'.

e Time intervals: Definition 1 applies on all edges.

The manager and the timer remain unchanged (Definition 3 and Definition 4).
Now we see how the activities at this level are enriched when involved in ET'.

Definition 7 Activities semantics (enriched, level 2).

Definition 5 applies. Then, each additional edge ¢ — Cegee in EM is guarded with
Fr(¢)ANII = ID A ID € N if there exists an edge — c in E¥ (Fr(c) otherwise),
such that Fr(c) is true if and only if ¢, ... is not the current vertex of its activity (in the

exrec

global state of the underlying TTS) for all ¢ in u(c).
The guard Fr(c¢) is to ensure no two codels sharing some resources run simultaneously.

It is implementable through e.g. shared variables (see example in [Foughali et al.,
2016], section 6.1).
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Example Let us consider the same activities A and B from the previous level seman-
tics (Sect. 4.4.1). The behavior is the same, but some codels become non thread safe
due to the existence of other execution tasks:

* Activity A: The codel main becomes non thread safe (u(maina) # @).
¢ Activity B: The codel maing becomes non thread safe (1u(maing) # 2).

Applying Definition 6 then Definition 7 to A and B give the TTDs in Fig. 4.5.

A ° 02
main, mMain, e

Fr(main,)

startg malflg = ipg 4 IDgEN

A Fr(mainy)

Figure 4.5: Activities A and B in task ET (level 2)

Component At this level, the component is the TTS
Comp = [E]

where E =||;c;..n ET; is the parallel composition of all execution tasks in the com-
ponent Comp.

4.4.3 Level 3: all-task component

Definition 8 Control task semantics.

The semantics of a control task (Sect. 4.3.3) is given over the TTD in Fig. 4.6 where:
rec(ID) evaluates to true when an activity ID is received, Insert(ID, Wa) inserts the
received ID in the local variable (a set) Wa, and report is the operation of reporting
to external entities.

Requesting an activity, denoted by the guard rec(ID) (ID received), triggers an
urgent edge from the initial vertex idle to the vertex busy. The received activity name
is inserted in the set Wa, which is an initially empty local variable denoting the names
of the activities waiting for activation (it is the only element of V' given in Sect. 4.3.3).
Another possible edge with the same source and target vertices is triggered when an
activity finishes its execution (the guard will be formalized later). The edge from busy
to end includes the operations of e.g. interruption and activation, which will be given
later. The edge from end to idle corresponds to sending replies through the operation
report to external entities.
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Figure 4.6: Control task TTD

Definition 9 Component semantics.
a G®bMS3 component is a TTS

Comp = {O}[CT || E]

where CT is a control task, and E =||;c ;.. ET; is the TTS resulting from the parallel
composition of all the n execution tasks ET in component Comp (CT and E are the
operational counterparts of CT and E in Sect. 4.3.4), and © gives the initial values
of the shared variables (from V in Sect. 4.3.4). These shared variables are: Act the
set of activated activities, In the set of interrupted activities and F'i the set of finished
activities. O(Act) = O(In) = O(Fi) = @.

Act and In are modifiable only by CT that determines who is activated and who is
interrupted (read-only for F) and F% is modifiable by everyone (both activities and
control task need to update it).

Now, the execution tasks and control task diagrams will be enriched with operations
over shared variables to ensure a correct behavior within Comyp (with regard to that
given informally in Sect. 2.2.3). Within an execution task, the manager (Definition 4)
and the activities (Definition 7) will be enriched as follows:

Definition 10 Manager semantics (level 3).

On the edge from wait to manage (Definition 4), N and R are copied from Act and
In, respectively (instead of randomization). Only the names of the activities that this
execution task is in charge of (i.e. activities members of A, Sect. 4.3.3) are copied,
excluding those in Fi. That is, for task ET, the restricted copy of Act into N results in
the set N = {IDa|A € ANA € Act N A ¢ Fi} (and similarly when copying In into
R). We denote this operation by rcopy (restricted copy), see Fig. 4.7.

The restricted copy eliminates possible infinite execution scenarios (the execution
task makes the copy once, the activities activated afterwards will be processed at the
next period). Excluding the elements in F% when copying ensures that already termi-
nated activities will not be re-executed (unless requested again in the future).

Definition 11 Activities semantics (level 3)

The enriched TTD is obtained from Definition 7. Then, on each incoming edge to ether
(each element of ET if a codel stop exists, of ET U E! otherwise), a new operation
that inserts the activity ID in the set Fi is added.
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wait sig manage NuR # @

<> 0,0 N
— - 17 := rand(NuR)
sig:= false,

rcopy(Act,N), rcopy(In,R)

0.0

Figure 4.7: Manager TTD (level 3)

This new operation will notify the control task to act accordingly on the termination
of the activity (see below). Applying Definition 11 to activities A and B (Fig. 4.5)
gives the TTDs in Fig. 4.8.

A

main,, Mainy e

Fr(main N

Insert(ID,, Fi

Figure 4.8: Activities A and B in task ET (level 3)

Definition 12 Control task semantics (enriched).

The control task (Definition 8) is enriched as follows: the edge idle — busy (not
guarded with rec(ID)) is guarded with a non-emptiness condition on Fi (Fig. 4.9).
The edge busy — end is associated with the following operations (in this order):

* update Act and In by removing the IDs in Fi:
Act := Act\(Act N Fi) (and same for In)
We refer to this operation as U (),

e empty Fi,

* Activate and interrupt: move elements of Wa to Act if possible (and from Act
to In if necessary):
Vid € Wa:
if Inc(id) N (Act U In) = & then
Wa := Wa\{id} and Act := Act U{id} (activation)
else if Inc(id) N Act # & then
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In :=InU (Act N Inc(id)) and Act := Act\(Act N Inc(id)) (in-
terruption).
We refer to this operation as A_I().

Figure 4.9: Control task TTD (enriched)

The guard Fii # &, combined with the urgency interval [0, 0] (the edge idle — busy
not guarded with rec(ID)), allows the control task to update the sets Act and In as soon
as an activity ends. The operation U () on the edge busy — end ensures that this up-
date is correct by removing the ended activities from the sets of activities to be executed
(Act U In). The operation A_I () activates the waiting activities if possible. That is, for
each waiting activity A (in Wa), it checks if there is at least an activity incompatible
with it that is still not terminated (in Act U In). If it is the case, then A needs to wait
further (remains in Wa) and the incompatible activities with A that are not interrupted
(in Act) need to be moved to In. Otherwise, A is activated (moved from Wa to Act).
After these operations, the control task reports to the external entity that requested the
finished activities (if any, edge end — idle).

4.4.4 Application

A robotic specification written in G®"oM3 contains usually several components. We
give thus the definition of a robotic application in terms of operational semantics. We
can apply this at any level, which gives us different views of an application at different
levels of abstraction. Note that the data flow through ports is not specified at this level
as its mechanisms depend on the implementation [Foughali et al., 2018].

Definition 13 Application semantics.
An m-component specification is the TTS resulting from the parallel composition of all
components

app = [|lic1..m Comp;]

4.5 Conclusion

In this chapter, we formalize a lightweight version of G®6M3 in TTS. The for-
mal definitions give an unambiguous characterization of the most complex G*"oM3
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constituents, namely activities, execution and control tasks. We thus tackle the most
delicate mechanisms such as interruption and communication between tasks while ab-
stracting away less delicate aspects like the execution of control services. This makes
our semantics both understandable and extendable. Indeed, this semantics is amenable
to enriching with the discarded, less complex entities/aspects with a minimal effort.
We provide thus a sort of abstract syntax that, despite helping practitioners grasp the
notion of components and their ingredients, defines the attributes on which operational
semantics are built. That is, each abstract element in a tuple has an operational mean-
ing that helps define the behavior of the global system. The work on semanticizing
G®MS3 allowed to clarify several ambiguous notions such as the incompatibility be-
tween activities and the behavior of pause transitions. Additionally, it allowed, using
the full power of TTS, G®"oM3 to evolve from a single-threaded version, where tasks
executed sequentially using a global lock, to a multithreaded one where tasks run in
parallel following a fine-grain mutual exclusion model.

In contrast to the descriptions given in Sect.2.2.3, the operational semantics favors
unambiguity and gives a clear view on the behavior of G®bM3 components. Indeed,
the semantics given in this section in terms of TTDs composed in parallel would always
give the same TTS for the same G®oM3 specifications, while informal descriptions
might be interpreted in different ways. Also, besides the choice of TTS, only ele-
mentary operations over sets and booleans are used which abstracts away from more
tedious structures and complex operators and contributes thus to the comprehension of
the formalization. This will smooth translating the semantics to other formalisms and
proving the soundness of such translations as we will see in the next chapter.
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Chapter 5

Translation of G€"oM3
Semantics

5.1 Introduction

In this chapter, we translate the high-level semantics of lightweight G®6M3 (Chapt. 4)
to DUTA (Sect. 3.4.2). We then prove the correctness of the translation using bisim-
ulation. This argues in favor of the soundness of the approach but also the possibility
to reproduce similar proofs for the implementation-level mappings (Chapt. 6). It thus
paves the way to a generic mapping of G®bM3 components into the targeted formal
frameworks, namely Fiacre, UPPAAL and BIP.

5.2 'Translation to DUTA

DUTA use clocks which evolve monotonically with time and do not depend on
edges enabledness. It is thus important to translate while preserving a semantically
equivalent behavior under clocks. This equivalence will be proven using bisimula-
tion (Sect. 5.3). From the previous section, we easily notice that the main source of
complexity in G®bMS resides at the execution tasks level. Thus, for readability and
convenience, we restrict our translation to the first two levels of operational seman-
tics (Sect. 4.4.1 and Sect. 4.4.2). At these levels, we use the rrand(N, R) initial-
ization (Sect. 4.4.1) which covers all the possible evolutions of execution tasks as N
and R would contain at least all possible IDs if the control task was involved. That
is, the set of all the possible configurations of N and R resulting from the applica-
tion of rrand(N, R) is a superset of that resulting from applying the restricted copy
rcopy(N, R) (Sect. 4.4.3).

5.2.1 Mono-task component
The objective is now to define the DUTA equivalent to the TTS of ET (Sect. 4.4.1):

{O}Tim || M || (A!A 4)]

where Tim, M and A are, respectively, the DUTA translations of the timer, the man-
ager and each activity in .A. © will define the initial values of shared variables in the
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DUTA of ET that will have the same names as in in the TTS, i.e. N, R, II and sig.
We give hereafter the definitions of the elements of the DUTA of E'T.

Definition 14 Timer Tim (DUTA).
The DUTA translation of the timer is given by the following rules:

e clocks: The timer has one clock xt, whose initial valuation is zero,

* locations: The timer has one location start that maps the vertex start of its TTD
counterpart (Definition 3). It is associated with the invariant ©t < Per,

 edges: The timer has one edge from start to start that maps its TTD counterpart.
With this edge, a guard xt = Per and an operation that resets xt to zero are
associated. The sig := true operation is also associated with the same edge.

The invariant on location start is to enforce its unique outgoing edge to be taken
at Per time units at most. The guard on the latter (xt = Per) is to ensure taking it at
exactly each period, and the reset operation xt := 0 to recount the period from zero
each time. Consequently, the period signal through sig is sent periodically.

Fig. 5.1 shows the timer TTD given in Definition 3 and its DUTA counterpart,
resulting from applying Definition 14.

[Per, Per] clock xt
sig:= true
start start
t=0
xt < Per
(a) Timer TTD (b) Timer DUTA

Figure 5.1: Timer TTD to DUTA (Definition 14)

Definition 15 Manager M (DUTA).
The DUTA translation of the manager is given by the following rules:

¢ locations: The manager has two locations wait and manage that map their TTD
counterparts (Definition 4),

* edges: The manager has three edges that map their TTD counterpart. Guards
and operations are the same as in the TTD version. Now the urgency on each
TTD edge, ensured with [0, 0] intervals, is enforced by making each edge in the
DUTA counterpart eager.

Fig. 5.2 shows the manager TTD given in Definition 4 and its DUTA counterpart,
resulting from applying Definition 15.

We define now translation rules for activities. Due to the special pause statements,
one needs to be particularly careful with the translation of activities. For starts, let us
consider activity A with the restriction T) = @. We will clarify later with an example
why pause behaviors at this level are more delicate to translate to DUTA and propose
a solution as a general rule (see Definition 17 below).

Definition 16 Activities A (DUTA, restricted).
The DUTA translation of an activity A such that Tf = O is given by the following
rules:
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wait sig manage NuR#J AT =M wait manage

[0,0] sig NR#DAT=M
sig:= false, T := rand(NuR) sig:= false, .= rand(NuR)
rrand(N,R) rrand(N,R)

NR=G AT =M NURZZ AT =M
(a) Manager TTD (b) Manager DUTA

Figure 5.2: Manager TTD to DUTA (Definition 15)

e clocks: An activity A has one clock x 4, whose initial valuation is zero,

e locations: Each vertex in the underlying TTD (Definition 5) is mapped to a
location with the same name in the DUTA. Each location ¢ # ether is associated
with an invariant x5 < TI(c — ') with ¢ any vertex in the TTD s.t. ¢ — ¢
in E (11 of any outgoing edge of c is equal to W (c) of the underlying codel,
Definition 1'),

edges: (1) Each edge of the underlying TTD is mapped into an edge in the target
DUTA with the same source and target. (2) Urgency intervals [0, 0] are mapped
into { tags (eager edges). (3) Each outgoing edge of a location that is associated
with an invariant x4 < W (c) is guarded with x4 > 0. (4) Each incoming
edge to a location with an invariant x4 < W(c) is associated with the reset
operation over x 4. (5) Guards (respect. operations) associated with each edge
in the DUTA result from the conjunction (respect. sequencing) of guards (respect.
operations) of its TTD counterpart and the guards (respect. resets) of clocks as

defined in (3) and (4).

The invariants ensure that the execution of each codel takes between zero and W (¢)
units of time. For clock z, the guards z > 0 are to eliminate 0 as a possible execution
time and the reset operations are to ensure counting W (¢) starting at zero. Conse-
quently, each codel c is executed in a non-zero amount of time inferior or equal to its
WCET W (c¢).

As an example, Fig. 5.3 shows the TTD of activity A (Sect. 4.4.1, Fig. 4.4 left) and
its DUTA counterpart, resulting from applying Definition 16.

Let us now focus on activity B at the same level (Sect. 4.4.1, Fig. 4.4 right). We
note immediately that B violates the restriction in Definition 16 since
TP # @. The activity B is a good practical example to show why Definition 16 may
lead to incorrect translations in some cases due to the nature of clocks in DUTA.

Fig. 5.4 shows the TTD of activity B (Sect. 4.4.1, Fig. 4.4 right) and its DUTA
counterpart, resulting from applying Definition 16. This translation is incorrect. In-
deed, if B passes the control back to the manager after a pause transition (taking the
edge from maing to mainp in the DUTA in Fig. 5.4), the clock xp will continue
evolving monotonically and the DUTA will timelock after 2 time units unless it re-
sumes the control before then (all outgoing edges from location mainpg are disabled).
This problem is due in part to the fact that clocks evolve independently from edges
enabledness in DUTA (in contrast to TTDs where time intervals are relative to the date

IThis is true for all outgoing edges of ¢ here because no pause transition exists in the underlying activity,
and thus no interruption is possible from any ¢ # ether
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A A
clock x,

(a) TTD of Activity A task ET (level 1) (b) DUTA of Activity A in task ET (level 1)

Figure 5.3: Activities TTD to DUTA (activity A, level 1, Definition 16)

B T = IDg A IDg EN A x>0
1= 1Dg A IDGEN

(a) TTD of Activity B task ET (level 1)  (b) Incorrect DUTA of Activity B (level 1)

Figure 5.4: Incorrect TTD to DUTA translation (activity B, level 1, Definition 16)

their edge was last enabled). We propose thus a new generic translation that is valid for

all activities at this level without restrictions.

Definition 17 Activities A (DUTA, level 1).
The DUTA of an activity A is defined using the following translation rules:

e clocks: Same as in Definition 16,

o locations: Each vertex c of a codel c s.t. there exists — c in TT is mapped
to, besides the location c (Definition 16), another location Cqys.. The rules on
translating vertices in Definition 16 apply on the remaining vertices to obtain

the remaining locations,
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e edges: Obtained through two steps:

-(a) Each edge ¢ 2225 ¢’ in EF (Definition 1) is mapped to an edge ¢ 2az0.08,
in the DUTA, and an eager edge c! 924200 1 s added.

pause

- (b) Each interruption edge (in E') in the TTD from ¢ # ether to stop (respect.
to ether, Definition 1) is mapped to an edge from location cpqyse to stop (re-
spect. to ether)?. Then, Rule (1) of Definition 16 is applied on the remaining
edges of the TTD to obtain their counterpart in the DUTA. Finally, rules (2) to
(5) in Definition 16 are subsequently applied to all edges obtained at step (b).

These additional rules will allow time on clocks to evolve unboundedly at locations
Cpause> that is when the activity is paused. Resuming the activity nominally is then
equivalent to taking the eager edge c,..sc — ¢ and the clock will be reset at this very
edge to count the WCET of c starting from 0.

Now, applying Definition 17 to activity A will give exactly the same outcome as
when applying Definition 16 (Fig. 5.3). Let us apply Definition 17 to activity B for
which Definition 16 is not valid as shown in Fig. 5.4. The new translation is given in
Fig. 5.5. Here we know that mainp is reached only when B has the control and with a
prior clock reset, which eliminates the potential timelock seen in Fig. 5.4.

7= IDg A IDGEN

B
clock xg

T = IDg A IDgEN

startg

ai v °q

R ER
o

1= 1D, A ID.EX
5 ether,
0.0 B UPIDyNR),T=M <

(a) TTD of Activity B task ET (level 1) (b) DUTA of Activity B in task ET (level 1)

Figure 5.5: TTD to DUTA translation (activity B, level 1, Definition 17)

5.2.2 Multi-task component

The DUTA translation rules remain unchanged for the timer Tim’ and manager
M’. We extend now translation rules for activities to take into account non-thread-safe
codels.

Definition 18 Activities A’ (DUTA, level 2).
The DUTA of an activity A is defined using the following translation rules:

e clocks: Same as in Definition 16,

2To ensure interruption of a paused activity occurs as soon as the latter is resumed.
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¢ locations: Each vertex c in the underlying TTD (Definition 7) of a thread-safe
codel ¢ s.t. there exists — cin TT is mapped to, besides the location c, another
location cpqyse. Each remaining vertex in the underlying TTD (Definition 7) is
mapped to a location with the same name in the DUTA. Each location c that
maps a vertex c of a thread-safe codel ¢ # ether is associated with an invariant
x4 < tI(c — ) with ¢ any vertex in the TTD s.t. ¢ — ¢ in EN. The same
invariant rule is applied to each location ceyec,

* edges: Obtained through two steps:

- (a) Each edge ¢ 222 ¢/ in EP s.t. ¢ is thread safe is mapped to an edge

z4>0,0 . ,xA:=0 .
¢ HAZTOP o in the DUTA, and an eager edge c! DI o is added.

pause pause

- (b) Each interruption edge (in E') in the TTD from ¢ # ether to stop (respect.
to ether, Definition 1) is mapped to an edge from location cpqys. to stop (re-
spect. to ether)®. Then, Rule (1) of Definition 16 is applied on the remaining
edges of the TTD to obtain their counterpart in the DUTA. Finally, rules (2) to

(5) in Definition 16 are subsequently applied to all edges obtained at step (b).

We note immediately the resemblance between this translation and that given for level
1. Indeed, only thread-safe codels targeted by pause transitions induce a non-direct
mapping of vertices and edges, and this aspect is already covered at level I. For in-
stance, applying Definition 18 to activities A and B at level 2 (Sect. 4.4.2, Fig. 4.5)
gives the models in Fig. 5.6. Notice how, in the absence of thread-safe codels targeted
by pause transitions, the translation is rather a one-to-one mapping (besides clock-
related constraints).

5.3 Translation soundness

In this section, we use weak timed bisimulation (Definition 20 below) to prove
that our translation from TTS to DUTA is correct. To make the proof readable and the
definitions minimal, we restrict it at level 1. This choice is both convenient and repre-
sentative since it shows the most delicate aspect of the translation, related to thread-safe
codels targeted by pause transitions. Indeed, we saw in the previous section how, ex-
cept this aspect, the translation is rather straightforward.

5.3.1 Execution actions

To ease following the events within a G®bM3 execution task, we define a set of
possible actions. Each action represents a category of similar events that obey the same
guards and have similar side effects on global variables. This will also ease reasoning
on the soundness of the translation to DUTA. We first define the actions for the original
system (in TTS) then the translation (in DUTA).

Nominal execution Nominal edges E” are the ones explicitly specified in the G®oM3
specification (Sect. 4.3.1 and Definition 1). In order to partition these edges according
to the actions they pertain to, we need to have a similar precondition for them. The is-
sue here is that nominal edges (members of E™V) do not necessarily obey the property
ID,4 € N. Indeed, in activity B for instance (Sect. 4.4.1, Fig. 4.4 right), the edge from
stopp to etherp is nominal, yet it is taken when ID4 € R. This will make it hard to

3To ensure interruption of a paused activity occurs as soon as the latter is resumed.
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A B 10.2]
main,, MaiNy gyec UP(IDg N,R), 7 =

Fr(main,)

startg malipig

= IDg A IDGEN

UP(IDg,N,R), T:=M

stopg
= 1DgA 1D
[0,0]

A B x>0
clock x, clock xg UP(IDz N,R), T:= M

startg
main . main XgS 1
A Fr(mamx) A exec B

) Fr(main,)
Xg:= 0

UP(IDg N,R), T:= M

(b) DUTA of Activities A and B in task ET (level 2)

Figure 5.6: Activities TTD to DUTA (A and B, Definition 18)

express nominal actions distinguishably from interruption ones. We propose thus the
following.

Definition 19 Augmenting interruption edges.

Enriching an activity A TTD is given by Definition 5, then each interruption edge
¢ — stop (in ET) is augmented with the operation R := R\{ID 4} (remove ID 4 from
R)*. The DUTA of A is then obtained from Definition 17.

Lemma 1 Correctness of Definition 19.

Activities TTDs and DUTA obtained from Definition 19 induce the same behavior as
the ones obtained from Definition 5 and Definition 17. That is, augmenting interrup-
tion edges ¢ — stop with the operation R := R\{ID} does not alter the behavior of
the execution task.

4if ether is the target codel of the interruption edge, then this is not needed.
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Proof 1 Removing ID 4 from R at the beginning of the interruption (when taking the
interruption edge) is equivalent to removing 1Dy from R at the end of the interrup-
tion (with a termination or a pause edge). Indeed, between these two events, A has
the control, that is II = A, which means that all edges in the manager and other ac-
tivities are disabled (the composition of the activities and the manager is sequential,
Definition 2). It follows that no edge depending on R is enabled, and thus the behavior
remains unchanged.

Additionally, when performing R := R\{ID,} (when taking the interruption edge
to stop) is followed by performing UP(ID 4, N, R) (when taking a termination edge),
removing ID 4 from R is redundant, that is the operation UP(ID4, N, R) is side-effect
free (since I D 4 has been already removed from R).

Definition 19 makes it easier to differ between interruption edges and nominal
edges. Simply, a nominal edge must satisfy /D4 ¢ R while an interruption edge must
satisfy ID4 € R. We will use thus this definition for our proof. Fig. 5.7 shows the
TTD and DUTA of activity B (Fig. 5.5) when applying Definition 19.

= D A IDgEN

B

clock x, T = IDg A IDgEN

Xg:=0

starty
XgS 1 main, g Luse

' x>0 ' x>0
Xg:= UP(IDg ,N,R), m=M

XgS 2

Sfarv fq

T = ID; A ID; ER
%€ 0, R:= R{ID

k=

= ID, A IDER

x>0

R=R\(D,) oMefa UPID,NAL =My <

(a) TTD of activity B (Definition 19) (b) DUTA of activity B (Definition 19)

Figure 5.7: TTD and DUTA of activity B (Definition 19)

TTS
First, we partition the edges within an activity as follows:

* Interrupt activity A (¢a): This action contains all additional edges for interruption
(Definition 1), that is all edges in £/,

* Finish activity A (fa): This action contains all nominal termination and pause
edges (Definition 1), that is all edges in EX U ET,

» Execute activity A (ea): This action contains all nominal non-pause, non-termination
edges plus the additional edge (for starting) ether — start (Definition 1), that
is all edges in EX U E.

Second, each edge in the manager and the timer corresponds to a distinguished action:

* Start timer (st): corresponds to taking the only possible edge in the timer (Definition 3),
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0 € ¢(st)
s'(sig) = true  ¢'(st) = [Per, Per))

(s.0) =5 (', ¢')

st:

Table 5.1: Action st.

» Start manager (sm): corresponds taking the edge from vertex waif to vertex
manage (Definition 4),

e Launch manager (Im): matches taking the edge from vertex manage to itself
(Definition 4),

* Finish manager (fm): matches taking the edge from vertex manage to vertex
wait (Definition 4).

It is intuitive to say that these actions are (i) disjoint and (ii) cover all the edges
in the execution task. Indeed, from the partitioning of the actions over edges above
and from Definition 1, Definition 3 and Definition 4, it follows that the actions cover
all the possible edges (no edge remains untied to an action). Additionally, from the
definition of the actions above and the mutual disjointness of all the subsets of nominal
and interruption edges given in Definition 1 (Sect. 4.4.1), it follows that the sets of
actions are disjoint.

Now, we give for each action some inference rules in terms of TTS semantics: the
properties that must be satisfied before taking the action and the side effects of taking
it on state variables (and on future dates of taking edges, when uniquely defined). We
recall that M and Tim are, respectively, the manager and timer TTDs. By abuse of

notation, we refer to an edge by the action it is associated with. For instance, c f—a> c!
is an edge associated with fa (by abuse of notation, an edge fa) from c to ¢, that is
an edge ¢ — ¢ that belongs to EF U ET (see partitioning of actions above). The
edges preserve thus their uniqueness according to their source and target vertex, and
the set of edges they belong to (that we can retrieve from the action on the edge). This
simplification helps writing the inference rules without loading the notations further.
Discrete actions (TTS): In the following, s’ agrees with s on all state variables

unless indicated otherwise. The formula 3¢-2%¢/ means there is an edge act from c to
¢’ in the TTD of activity A (even if not enabled). R’ and N’ are the results of applying
rrand() to R and N, respectively.

Action st Taking this action requires satisfying the timing constraints at the timer
edge. That is, st is taken at state s in the underlying TTS iff the Kripke state (s, ¢)
(see TTS semantics in Sect. 3.2.3) satisfies 0 € ¢(st). Similarly, the state " satisfies
stg = true (table 5.1).

Action sm  To take this action, the manager must be at vertex wa:t and must have the
period signal (sig = true). After taking this action, the manager is at location manage,
sig becomes false and /N and R are randomly initialized (table 5.2).

Action Im To take this action, the manager must have the control (II = M) and there
must be activities to execute ((N U R) # @). According to the target Kripke state of
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s(sig) = true s(mar) = wait
s'(sig) = false  §'(mp) = manage s'(N)=N'  §(R)=R

(5,9) = (5, ¢')

sm:

Table 5.2: Action sm.

s(I) = M (s(N)Us(R)) # @
- §(II) =IDgca §'(ma)=ether ID4 € s'(R)
(5,6) 7 (s'.9)
s(Il) = M (s(N)Us(R)) # @
o $(I) =IDaca S'(ma) =c#ether 1Dy € s (R)
(5,0) 7 (s, )
s(Il) = M (s(N)Us(R)) # @
i S(II) =IDaca §'(ma) =ether 1Dy ¢ s'(R)
(5.6) 75 (s'.0)
s(Il) =M (s(N)Us(R)) # @
$'(I) =IDaca S (ma)=c#ether 1D ¢ s'(R)
Imj: (d(ea) :Iea\/(b/(fa) :Ifa)
(5.:6) ™ (s'.9)
Table 5.3: Action Im.
sy =M (s(N)Us(