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Abstract

This thesis examines some quantitative questions in the framework of two different stochastic models. It is divided into two parts: the rst part examines a new class of stochastic games with priority payo. This class of games contains as proper subclasses the parity games extensively studied in computer science, and limsup and liminf games studied in game theory. The second part of the thesis examines some natural but involved questions about distributions, studied in the simple framework of nite state Markov chain.

In the rst part, we examine two-player zero-sum games focusing on a particular payo function that we call the priority payo. This payo function generalizes the payo used in parity games. We consider both turn-based stochastic priority games and concurrent priority games. Our approach to priority games is based on the concept of the nearest xed point of monotone nonexpansive mappings and extends the µ-calculus approach to priority games.

The second part of the thesis deals with population questions. Roughly speaking, we examine how a probability distribution over states evolves in time. More specically, we are interested in questions like the following one: from an initial distribution, can the population reach at some moment a distribution with a probability mass exceeding a given threshold in state Goal? It turns out that this type of questions is much more dicult to handle than the questions concerning individual trajectories: it is not known for the simple model of Markov chains whether population questions are decidable. We study restrictions of Markov chains ensuring decidability of population questions.

Résumé

Cette thèse examine certaines questions quantitatives dans le cadre de deux modèles stochastiques diérents. Il est divisé en deux parties : la première partie examine une nouvelle classe de jeux stochastiques avec une fonction de paiement particulière que nous appelons de priorité . Cette classe de jeux contient comme sous-classes propre les jeux de parité, largement étudiés en informatique, et les jeux de limsup et liminf, étudiés dans la théorie des jeux. La deuxième partie de la thèse examine certaines questions naturelles mais complexes sur les distributions, étudiées dans le cadre plus simple des chaînes de Markov à espace d'états ni.

Dans la première partie, nous examinons les jeux à somme nulle à deux joueurs en se centrant sur la fonction de paiement de priorité. Cette fonction de paiement génère le gain utilisé dans les jeux de parité. Nous considérons à la fois les jeux de priorité stochastiques à tour de rôle et les jeux de priorité simultanés. Notre approche des jeux de priorité est basée sur le concept du point xe le plus proche ( nearest xed point ) des applications monotones non expansives et étend l'approche mu-calcul aux jeux de priorité.

La deuxième partie de la thèse concerne les questions de population. De manière simpliée, nous examinons comment une distribution de probabilité sur les états évolue dans le temps. Plus précisément, nous sommes intéressés par des questions comme la suivante : à partir d'une distribution initiale, la population peut-elle atteindre à un moment donné une distribution avec une probabilité dépassant un seuil donné dans l'état visé ? Il s'avère que ce type de questions est beaucoup plus dicile à gérer que les questions concernant les trajectoires individuelles : on ne connaît pas, pour le modèle des chaînes de Markov, si les questions de population soient décidables. Nous étudions les restrictions des chaînes de Markov assurant la décision des questions de population. The systems with a single controller are modelled as Markov Decision Processes (MDP). In MDPs, the controller chooses at each stage an action to execute. The transition probability, that depends on the current state and on the executed action, describes how the system evolves in time. Markov chains can be seen as degenerate MDPs with only one action available in each state.

The next level of complexity is attained by two-player zero-sum games. Such games correspond to systems that are controlled by two controllers or two agents that have strictly opposite goals. The performance of each agent is measured through the payo that he obtains. Zero-sum refers to the fact that for each game outcome, the gain of one player is equal to the loss of the other player. Two-player games can have dierent avours: ' deterministic turn-based games where each state is controlled by one player who chooses the action to execute at this state and the transitions are deterministic, ' turn-based stochastic games where, again, each state is controlled by one player, but the transitions are probabilistic, ' concurrent stochastic games where at each state both players choose simultaneously and independently the actions to execute, and the probabilistic transition depends on both actions selected by the players. Independently of whether the system evolves without any external control, or it is controlled by one, two or more agents, we can examine its behaviour from two dierent perspectives.

One point of view is that the system is at each stage in some state and this state evolves in stages. We can represent this situation as a single particle that moves from state to state according to a transition law, the movements inuenced or controlled by the actions executed by the players or by controlling agents. In this framework (that we call pebble semantics), we are interested in the trajectory of the particle. This point of view is adopted in the rst part of the thesis which is devoted to stochastic games.

Another point of view, namely population semantics, consists in seeing the system as composed of a whole population of particles spread over the states. The trajectory of a single particle is of no interest in this case, we are interested in how the distribution of the population evolves in time. This is the framework adopted in the second part of the thesis which examines population questions in Markov chains.

What is common to both parts of the thesis is that we deal uniquely with quantitative questions:

' in the rst, part we examine the game value and the optimal and ε-optimal strategies of the players, in some innite stochastic game, ' in the second part of the thesis, we examine if the population can reach a conguration where the proportion of the population in some goal states exceeds a given threshold. This contrast with qualitative questions examined in computer science literature like, for example, the question if the probability of winning is positive, without specifying any concrete probability threshold. Here, each play is either winning or losing and the literature examines the existence of strategies which are surely winning, almost surely winning or winning with probability arbitrarily close to 1. Qualitative questions are outside the scope of the thesis.

Contributions

As mentioned above, the thesis consists of two parts.

Part I: Priority games

In Part I we examine stochastic zero-sum games with priority payo.

The priority payo is dened in the following way.

We assume that there is a total priority order over the states (we consider only games with a nite set of states) and that each state is labelled with a real valued reward. The priority payo obtained for an innite play is equal to the reward of the highest priority state seen innitely often along this play. The priority payo extends the payo used in the parity games, a class of games extensively studied in computer science. The parity games are priority games with rewards in the two element set t0, 1u rather than R.

Part I consists of ve chapters. We present an introduction of this part in Chapter 2. Chapter 3 is a short technical introduction to monotone nonexpansive mappings and their properties. We rely heavily on properties of such mappings in Chapters 4 and 5.

In Chapters 4 and 5 we study two classes of priority games.

In Chapter 4 we examine turn-based stochastic priority games where players play in turns, one after another.

Chapter 5 is devoted to concurrent priority games where at each stage players choose their actions simultaneously and independently.

Finally, in Chapter 6 we present the conclusions of Part I.

For turn-based stochastic priority games, we prove that both players have optimal memoryless strategies.

For concurrent priority games, optimal strategies do not exist in general and we construct ε-optimal strategies. Unfortunately, such ε-optimal strategies are not simple, to implement them the players need unbounded memory.

However, the crux of Chapters 4 and 5 does not lie in the fact that nite state priority games have values or in the fact that we can construct optimal or ε-optimal 

Part II: Population questions

In Part II, we will consider population questions. Suppose that a continuous population of agents is spread over the states of the system. A conguration is thus a distribution over the states and actions transform one distribution into another one.

The general problem is thus to bring, by choosing the actions, the initial distribution of the population into particular congurations. For example we could be interested to bring at least half of the population in a set of Goal states. The questions concerning global probability distributions of a population of, say, some particles are considerably harder to tackle than the questions related to individual trajectory of one particle.

For instance it can be relatively easy to select a sequence of actions such that each particle will individually pass through some Goal state (or visit some Goal state periodically). On the other hand, if we consider a whole population of particles, it is undecidable in general whether there exists a strategy such that at least a half of particles will visit the same Goal state at the same moment [CKV `11]. The reason 1.1. Contributions of this diculty is that this question is equivalent to a quantitative undecidable question for nite probabilistic automata, [START_REF] Paz | Introduction to Probabilistic Automata[END_REF][START_REF] Bertoni | The solution of problems relative to probabilistic automata in the frame of the formal languages theory[END_REF].

We are interested in the following question. Given some initial distribution, or more generally some family of distributions, and some threshold γ, will the distribution reach a conguration where the fraction of the population in the Goal states is greater than γ? We study this problem from the symbolic dynamic perspective. We consider symbolic trajectories over the two letter alphabet tA, Bu describing the evolution of the distributions, where A represents congurations satisfying the threshold condition while B represents all other congurations. In this way the evolution of the distribution in time gives rise to an innite word over the alphabet tA, Bu. We dene the language of the Markov chain to be the set of symbolic trajectories. We prove that if the eigenvalues of the Markov chain are distinct and positive, its symbolic language is regular and can be eectively computed. The ndings presented in Chapter 7 appears in [START_REF] Akshay | On Regularity of Unary Probabilistic Automata[END_REF].

Part I

Priority games

Chapter 2

Introduction

This part of the thesis is devoted to a special class of zero-sum two-player stochastic games that we call stochastic priority games.

Stochastic two-player zero-sum games model the long-term interactions between two players that have strictly opposite objectives.

The study of stochastic games starts with the seminal paper of Shapley [START_REF] Shapley | Stochastic games[END_REF].

Since then, the subject was intensively studied in game theory where it is seen as a special case of a more general model of repeated games. Repeated games are exhaustively treated in two monographs [START_REF] Sorin | A First Course on Zero-Sum Repeated Games[END_REF][START_REF] Zamir | Repeated games[END_REF], both of them contain chapters devoted to stochastic games. As the books specically devoted to stochastic games we can mention [START_REF] Filar | Competitive Markov Decision Processes[END_REF][START_REF]Stochastic Games and Applications[END_REF].

In computer science stochastic games were rst examined from the algorithmic point of view where the aim is to nd an ecient algorithm that computes optimal or ε-optimal strategies for both players. In this line of research, initiated by the paper of Homan and Karp [START_REF] Homan | On nonterminating stochastic games[END_REF], we are interested in algorithmically implementable optimal strategies which means that the strategies should be either memoryless (i.e.

stationary) or their implementation should use a bounded memory. One of the most challenging open questions in this domain concerns the existence of a polynomial time algorithm solving so-called simple stochastic games. This is the simplest class of turn-based stochastic games, examined already in [START_REF] Homan | On nonterminating stochastic games[END_REF]. The problem of nding optimal strategies for these games is known to be in N P X coN P , [START_REF] Condon | The complexity of stochastic games[END_REF], but no polynomial time algorithm is known.

Since this part of the thesis concerns games that are closely related to the so called parity games we should mention here that most recent achievement in this domain is a quasi-polynomial time algorithm solving deterministic parity games [CJK `16].

Another track of research involving games is motivated by applications to automata theory, logic and verication. This can be traced down to the groundbreaking paper of Gurevich and Harrington [START_REF] Gurevich | Trees, automata and games[END_REF], where games were used in order to simplify the solution to the important complementation problem for automata on innite trees. Initially this research was limited to deterministic games 1 , see the collective volume [START_REF] Grädel | Automata, Logics, and Innite Games[END_REF] for a presentation of the eld. Problems related to the verication of probabilistic programs and systems motivated subsequent extensions based on stochastic game models. First the verication problem for one-player stochastic systems (Markov Decision Processes) was considered, see [dA97], next turn-based stochastic two-player games were examined [START_REF] Mciver | Games, probability, and the quantitative µ-calculus qMµ[END_REF][START_REF] Chatterejee | Quantitative stochastic parity games[END_REF] and nally concurrent stochastic games were explored 2 [START_REF] Alfaro | Quantitative solution to omega-regular games[END_REF].

In stochastic games the players preferences are expressed by means of a payo mapping. The payo mapping maps innite plays (innite sequences of states and actions) to real numbers. The payo mappings used in computer science tend to be dierent from the traditional payo mappings used in game theory. The payos prevalent in computer science are often expressed in some kind of logic and the corresponding payo mappings take only two values, 1 for the winning plays and 0

for the losing plays.

On the other hand, the payo mappings used in game theory are rather real valued: mean-payo, discounted payo, lim sup and lim inf payos are among the most popular ones.

In this thesis we dene and examine the class of priority games. The priority games constitute a natural extension of parity games, this latter class is the class of games popular in computer science having applications in automata theory and verication.

To put the results of the thesis in the context let us recall the relevant results concerning the parity games.

Context -the parity games and µ-calculus

A stochastic zero-sum two-player game is an innite game played by two players, player Max and player Min, on an arena with a nite set of states S and a nite set of actions A (the games where one or both of these sets are innite are beyond the scope of the thesis). Turn-based stochastic games and concurrent stochastic games dier in the law of motion that species how the game moves from one state to another in function of the actions played by the players.

In turn-based stochastic games each state is controlled by one of the players. The dynamical aspect of the system is captured by the family of probability distributions 1. perfect information games with deterministic transitions 2. The terms turn-based stochastic games and concurrent stochastic games are commonly used in Computer Science. In game theory these classes of games are called respectively perfect information stochastic games and stochastic games. Thus, in particular stochastic games without any other qualier refers to concurrent stochastic games.

pp¨|i, aq, where for state i P S and action a P A, ppj|i, aq is the probability to move to state j when the player controlling the current state i executes a. It is assumed that both players know all the history (sequences of visited states and played actions) of the game up to the current moment.

In concurrent stochastic games it is rather the case that both players control collectively the transitions. More specically, in concurrent stochastic games, for each state i, both Max and Min have nonempty sets of available actions, Apiq and Bpiq respectively. At each stage, the players, knowing the current state and all the previous history, choose independently and simultaneously actions a P Apiq and b P Bpiq respectively and the game moves to state j with probability ppj|i, a, bq.

Immediately after each stage, and before the next one, both players are informed about the action played by the adversary player.

Thus in the concurrent stochastic games the transition mapping assigns to each state i and to actions a P Apiq, b P Bpiq, a probability distribution pp¨|i, a, bq over states.

We assume that players play an innite game. At each stage either one of the players, in the case of the turn-based stochastic games, or both players, for the concurrent stochastic games, choose action and the game moves to another state according to the transition probability.

An innite sequence of states and action occurring during the game is called a play.

Since we are interested in nite state games, without loss of generality we assume in the sequel that the set of states is S " rns " t1, . . . , nu.

Parity games are endowed with the reward vector r " pr 1 , . . . , r n q, where r i P t0, 1u is the reward of state i. The parity payo ϕphq of an innite play h is dened to be equal 3 to the reward of the maximal state visited innitely often in h, i.e. the payo is equal to r i if i was visited innitely often in h and all states j, j ą i, were visited only a nite number of times. This denition of the parity payo is the same for all classes of parity games: deterministic parity games, turn-based stochastic parity games and concurrent parity games, the only dierence between these three types of games lies in their transition mappings.

A strategy of a player is a mapping σ : H Ñ ∆pAq, where ∆pAq denotes the set of probability distributions over A. We will dene more precisely the strategies for turn-based stochastic games in Chapter 4 and for concurrent games in Chapter 5.

The set of all plays is endowed in the usual way with the Borel σ-algebra generated by the cylinders. Strategies σ, τ of players Max and Min and an initial state 3. The payo of the parity game is usually formulated in a bit dierent way: The states are a nite subset of natural numbers and reward of state i is equal to 0 if i is even and 1 otherwise.

However it is easy to see that our denition is equivalent to the usual one by just renaming the states.

i P S give rise to a probability measure P σ,τ i over the Borel σ-algebra. The aim of player Max (respectively Min) is to maximize (respectively minimize) the expected payo E σ,τ i pϕq " ż ϕphqP σ,τ i pdhq

for each initial state i.

Since the parity payo is Borel measurable, by the result of Martin [START_REF] Martin | The determinacy of Blackwell games[END_REF], parity games have value v i for each initial state i, i.e.

sup σ inf τ E σ,τ i pϕq " v i " inf τ sup σ E σ,τ i pϕq, @i P S.
(2.1)

Moreover, for deterministic and for turn-based stochastic parity games both players have optimal pure memoryless strategies, see for example [START_REF] Emerson | Tree automata, µ-calculus and determinacy[END_REF][START_REF] Zielonka | Innite games on nitely coloured graphs with applications to automata on innite trees[END_REF][START_REF] Walukiewicz | Monadic second-order logic on tree-like structures[END_REF],

where the deterministic parity games are examined, and [START_REF] Chatterejee | Quantitative stochastic parity games[END_REF] for turn-based stochastic parity games.

One of the techniques used to solve parity games relies on the µ-calculus. In this approach the point of departure is a simple one-step game 4 played at each state i P S. The one-step game has a value for each state i P S and each reward vector r " pr 1 , . . . , r n q. Let f " pf 1 , . . . , f n q

(2.2) be the mapping that maps the reward vectors r P t0, 1u n to the vector of values of the one-step games, i.e. for r " pr 1 , . . . , r n q and i P S, f i prq is the value of the one-step game played at state i given the reward vector r. We endow r0, 1s n with the product order, x " px 1 , . . . , x n q ď py 1 , . . . , y n q " y if x i ď y i for all i P rns, which makes it a complete lattice. It is easy to see that f : r0, 1s n Ñ r0, 1s n is monotone under ď, thus by Tarski's theorem [START_REF] Tarski | A lattice-theoretical xpoint theroem and its aplications[END_REF], f has the least and the greatest xed points.

Then one denes the nested xed point

Fix n pf qprq " µ rn x n .µ r n´1 x n´1 . . . . µ r 2 x 2 .µ r 1 x 1 .f px 1 , x 2 , . . . , x n´1 , x n q,
(2.3) where µ r i x i denotes either the greatest xed point if r i " 1 or the least xed point if r i " 0 and f is the one-step value function (2.2). The main result obtained in the µ-calculus approach to concurrent stochastic parity games due to de Alfaro and Majumdar [START_REF] Alfaro | Quantitative solution to omega-regular games[END_REF], is that v " pv 1 , . . . , v n q " Fix n pf qprq,

where the left-hand side vector v is composed of the values v i for the parity game starting at i, cf. (2.1). To summarize, the value vector of the parity game can be obtained by calculating the nested xed point of the one-step value mapping 5 .

Let us note that for deterministic parity games (turn-based games with deterministic transitions) the µ-calculus representation simplies since the one-step value mappings f i map the binary vectors t0, 1u n to t0, 1u and the parity games can be treated in the framework of the boolean µ-calculus [START_REF] Walukiewicz | Monadic second-order logic on tree-like structures[END_REF][START_REF] Arnold | ski. Rudiments of µ-calculus[END_REF]. Since in the thesis we do not consider the deterministic games we omit the more detailed discussion of deterministic parity games.

From parity games to priority games

The parity games (as well as other related classes of games like the games with the Muller or Rabin winning conditions) arose from the study of decidability questions in logic. In this framework the winning criteria are expressed in some kind of logic, where there is room for only two types of plays, the winning plays that satisfy a logical formula and the losing plays that do not satisfy the formula. For this reason the rewards in the parity games take only two values, 0 and 1, with the intuition that the reward 1 is favourable and the reward 0 unfavourable for our player (and the preferences are inverse for the adversary player).

However, the restriction to 0, 1 rewards does not allow to express ner player's preferences. This motivates the study of the games that allow any real valued rewards. We dene the priority game as the game where each state i P rns " S is equipped with a reward r i P R. Like in parity games the payo ϕphq of a play h is dened to be the reward r i of the greatest state i that is visited innitely often in h.

At rst glance, the priority games are just a mild extension of parity games. This impression is reinforced by the fact that deterministic priority games, which we do not consider in the thesis, can be reduced to deterministic parity games. However, 5. The traditional presentation of this result is a bit dierent. Roughly speaking the variables are regrouped in blocks, each block consists of consecutive variables to which the same xed point is applied. In this way the xed points are applied to the groups of variables rather than to each variable separately. This allows to decreases the number of xed points and the resulting formula alternates the least and the greatest xed points. However, this is only a technical detail which has no bearing on the result. For our purposes it is more convenient to apply xed points to variables rather than to groups of variables.

we do not know if such reduction is possible for stochastic (turn-based or concurrent) priority games.

The interest in priority games is twofold. First, the priority games allow to quantify players' preferences in a more subtle way than it is possible in parity games.

While in parity games there are only two classes of plays, the plays with the parity payo 1 and the plays with the parity payo 0, in priority games we can distinguish many levels of preferences. As a motivating simple example consider the priority game with three states S " t1, 2, 3u and rewards r 1 " 0, r 2 " 1, r 3 " 3 4 . This game gives rise to three distinct classes of innite plays: player Max highest preference is for the plays such that the maximal state visited innitely often is state 2 (plays give him the payo 1), his second preference is for the plays that visit state 3 innitely often (these plays give him the payo 3 4 ), and his lowest preference is for the plays that from some moment onward stay forever in state 1 (they give him payo 0). It is impossible to capture such a hierarchy of preferences when we limit ourselves to the parity payo.

The second reason to be interested in priority games stems from the fact that not only they generalize parity games, but they contain as proper subclasses two other well known families of stochastic games: the lim sup and lim inf payo games [START_REF] Maitra | Stochastic games with Borel payos[END_REF]. This point will be discussed in Section 5.1.

Our approach to priority games is inspired by the µ-calculus approach to parity games. There are two major dierences however.

It is impossible to solve the priority games using only the least and the greatest xed points, we need also other xed points that we name the nearest xed points.

To dene this notion we use the well known fact that the one-step game value mapping (2.2) is not only monotone but it is also nonexpansive, which means that, for x, y P R n , f pxq ´f pyq 8 ď x ´y 8 , where x 8 " sup i |x i | is the supremum norm. Let us note that this property of the one-step games is used in the study of stochastic mean-payo games [START_REF] Bewley | The asymptotic theory of stochastic games[END_REF][START_REF] Neyman | Stochastic games and nonexpansive maps[END_REF].

In the study of parity games the fact that the one-step game value mapping f is nonexpansive is irrelevant, the monotonicity of f is all that we need in order to apply Tarski's xed point theorem. When we study the priority games, when other xed points enter into consideration, the monotonicity of f is not sucient and the fact that f is nonexpansive becomes paramount.

Our study of priority games is organized as follows.

It turns out that the priority games with rewards in R can be reduced through a linear transformation to the priority games with rewards in the interval r0, 1s. Therefore in the sequel we assume that the reward vector r " pr 1 , . . . , r n q belongs to r0, 1s n . Under this condition value mapping f of the one-step game (2.2) is a monotone nonexpansive mapping from r0, 1s n to r0, 1s n . Since our study of priority games is based on the analysis of the xed points of f , in Chapter 3 we prepare the background and present basic facts concerning xed points of monotone nonexpansive mappings from r0, 1s n to r0, 1s n . All the facts presented in Chapter 3 are either well known or are rather straightforward observations. The purpose of Chapter 3 is to regroup in one place all the facts that we need in the sequel and to introduce the notion of the r-nearest xed point µ r x.gpxq of the monotone nonexpansive mapping g : r0, 1s Ñ r0, 1s. Intuitively, µ r x.gpxq is the xed point of g which is nearest to r P r0, 1s. Note that the least and the greatest xed points of g are special cases of this notion, the greatest xed point is the xed point nearest to 1 and the least xed point is the xed point nearest to 0. We show that the notion of the nearest xed point makes sense for monotone nonexpansive mappings from r0, 1s to r0, 1s. In Chapter 3 we dene also, for each vector r " pr 1 , . . . , r n q P r0, 1s n and a monotone nonexpansive mapping f : r0, 1s n Ñ r0, 1s n , the nested r-nearest xed point

Fix n pf qprq " µ rn x n .µ r n´1 x n´1 . . . . µ r 2 x 2 .µ r 1 x 1 .f px 1 , x 2 , . . . , x n´1 , x n q, (2.4)
which generalizes the nested least/greatest xed point (2.3).

Chapter 4 is devoted to the study of turn-based stochastic priority games. The main result of this chapter is that, given the reward vector r " pr 1 , . . . , r n q, the value vector v " pv 1 , . . . , v n q of the turn-based stochastic priority game can be expressed as the nested r-nearest xed point v " pv 1 , . . . , v n q " Fix n pf qprq (2.5) of the value mapping f of the one-step game. Moreover, we prove that both players have optimal pure memoryless strategies.

Chapter 5 examines concurrent stochastic priority games. We prove that the r-nearest xed point characterization (2.5) of the value vector holds also for concurrent priority games. However, in general the players have only ε-optimal history dependent strategies.

Although the results of Chapters 4 and 5 can be seen as extensions of the µcalculus characterization known for parity games [START_REF] Mciver | Games, probability, and the quantitative µ-calculus qMµ[END_REF][START_REF] Alfaro | Quantitative solution to omega-regular games[END_REF] there is one more point that distinguish our approach from the traditional µ-calculus approach to parity games. In the case of parity games, to the best of our knowledge, the µcalculus proofs presented previously were not inductive. In previous proofs a formula similar to (2.3) was announced and it was shown, in one big step, that this formula yields the value of the parity game 6 .

6. Such single big step proofs characterize also the µ-calculus approach to deterministic parity games [START_REF] Walukiewicz | Monadic second-order logic on tree-like structures[END_REF]. In retrospect, what was lacking in previous proofs was a game interpretation of the partial xed point, where some variables remain free.

The fact that the nested xed point formula (2.3) is in some sense recursive, was not exploited to the full extent in the proof.

The novelty of the proofs presented in Chapters 4 and 5 lies in the fact that they are genuinely inductive. We provide a clear game theoretic interpretation of the partial xed point formula

Fix k pf qprq " µ r k x k . . . . µ r 1 x 1 .f px 1 , . . . , x k , r k`1 , . . . , r n q, (2.6)
where the xed points are applied only to the low priority variables x 1 , . . . , x k , while the free variables x k`1 , . . . , x n take values r k`1 , . . . , r n respectively.

Let Gprq be the priority game endowed with the reward vector r. Let G k prq be the priority game obtained from Gprq by transforming all states i, i ą k, into absorbing states 7 . On the other hand, the states j, j ď k, have the same transitions in Gprq as in G k prq.

It turns out that the partial nested xed point (2.6) is equal to the value vector v " pv 1 , . . . , v n q of the priority game G k prq. We prove this fact by induction, starting with the trivial priority game G 0 prq, where all states are absorbing. And the inductive step consist in showing that, if (2.6) is the value of the game G k prq, then adding the new xed point µ r k`1 x k`1 we obtain the value vector of the game G k`1 prq. In other words, adding one xed point corresponds to the transformation of an absorbing state into a nonabsorbing one. Note that in priority games the absorbing states are trivial, if a state m is absorbing then v m " r m , i.e. the value of m is equal to the reward r m . Thus transforming an absorbing state into a nonabsorbing we convert a trivial state into a nontrivial one. The crucial point is that in the inductive proof given in the thesis we apply this transformation to just one state. And it is much easier to understand what happens if one state changes its quality from absorbing to nonabsorbing than when all states are nonabsorbing from the outset.

7. Recall that a state i is absorbing if it is impossible to leave i, i.e. for all possible actions executed in i the game remains in i with the probability 1.

Chapter 3

On xed points of bounded monotone nonexpansive mappings

In this technical chapter, we introduce monotone nonexpansive mappings, that play a crucial role in the study of stochastic priority games. The solution to stochastic turn-based and concurrent priority games given in Chapters 4 and 5 relies heavily on xed point properties of such mappings examined in Section 3.1. In Section 3.2 we dene and examine the nested nearest xed points of monotone nonexpansive mappings.

The duality of the nested nearest xed points is studied in Section 3.3.

An element x " px 1 , . . . , x n q of R n will be identied with the mapping x from rns " t1, . . . , nu to R and we can occasionally write xpiq to denote x i .

The set R n is endowed with the natural componentwise order, for x, y P R n , x ď y if x i ď y i for all i P rns.

A mapping f : R n Ñ R k is monotone if for x, y P R n , x ď y implies f pxq ď f pyq (we do not assume that k " n, thus x ď y and f pxq ď f pyq can relate to componentwise orders in two dierent spaces).

We assume that the Cartesian product R n is endowed with the structure of a normed real vector space with the norm ¨ 8 , for x P R n , x 8 " max iPrns |x i |. Thus, for x, y P R n , x ´y 8 denes a distance between x and y.

We say that a mapping f : R n Ñ R k is nonexpansive if, for all x, y P R n , f pxq ´f pyq 8 ď x ´y 8 . Such a mapping f can be written as vector of k mappings f " pf 1 , . . . , f k q, where f i : R n Ñ R, i " 1, . . . , k. Clearly, f is monotone nonexpansive i all f i are monotone nonexpansive.

We say that a mapping f : R n Ñ R k is additive homogeneous if for all λ P R and x P R n f px `λe n q " f pxq `λe k , where e n and e k are the vectors p1, . . . , 1q in R n and R k respectively having all components equal to 1.

Crandall and Tartar [START_REF] Crandall | Some relations between nonexpansive and order preserving mappings[END_REF] proved the following result.

Example 3.1. Let f : R n Ñ R the max function such that for all x P R n , maxpxq " maxpx 1 , . . . , x n q and let g : R n Ñ R the zero function such that for all x P R n , gpxq " 0.

Remark that both f and g are nonexpansive and f is also additive homogeneous, but g is not additive homogeneous because for any x P R n and λ ‰ 0, 0 " gpx `λe n q ‰ gpxq `λ ą 0.

Lemma 3.2 (Crandall and Tartar [CT80]). For additive homogeneous mappings f : R n Ñ R k the following conditions are equivalent:

(i) f is monotone, (ii) f is nonexpansive.

We will need only the implication (i)Ñ(ii) that we prove below for the reader's convenience. Moreover, if the result holds for mappings from R n to R then it holds for mappings from R n to R k . Thus we assume in the proof that that f : R n Ñ R.

Proof. For x, y P R n , e n " p1, 1, . . . , 1q P R n and λ " x ´y 8 we have y ´λe n ď

x ď y `λe n . Thus for f : R n Ñ R monotone and additive homogeneous we obtain f pyq ´λ ď f pxq ď f pyq `λ.

Thus |f pxq ´f pyq| ď λ " x ´y 8 .

Fixed points of monotone nonexpansive mappings

We say that a monotone mapping f :

R n Ñ R k is bounded if f pr0, 1s n q Ď r0, 1s k .
The set of bounded monotone nonexpansive mappings will be denoted by M n,k r0, 1s.

Moreover BMN will stand for the abbreviation for bounded monotone nonexpansive.

In this section we introduce the notion of the nearest xed point of BMN mappings generalizing the least and greatest xed points.

In the following lemma states basic properties of xed points of BMN mappings.

Lemma 3.3. Let f P M 1,1 r0, 1s. Dene by induction, f p0q pxq " x, f p1q pxq " f pxq, f pi`1q pxq " f pf piq pxqq, for x P r0, 1s. Then (i) for each x P r0, 1s the sequence pf piq pxqq, i " 0, 1, . . . , is monotone and converges to some x 8 P r0, 1s. The limit x 8 is a xed point of f , f px 8 q " x 8 , (ii) if x ď y are xed points of f , f pxq " x and f pyq " y, then for each z such that x ď z ď y, f pzq " z, (iii) the sequence pf piq p0qq, i " 0, 1, 2, . . . , converges to the least xed point K f of f while the sequence pf piq p1qq, i " 0, 1, 2, . . . , converges to the greatest xed point J f of f . The interval rK f , J f s is the set of all xed points of f . If 0 ď x ď K f then the sequence pf piq pxqq converges to K f . If J f ď x ď 1 then the sequence pf piq pxqq converges to J f . If 0 ď x ă K f then x ă f pxq.

If J f ă x ď 1 then f pxq ă x. Proof. (i) Suppose that f pxq ď x. Then inductively, since f is non-increasing, f pi`1q pxq ď f piq pxq for all i, i.e. the sequence f piq pxq is non-increasing. Since this sequence is bounded from below by 0 it converges to some x 8 .

The case of f pxq ě x can be treated in a similar way. Since f is nonexpansive |f px 8 q ´f pi`1q pxq| ď |x 8 ´f piq pxq|. As the right-hand side tends to 0 we can see that f piq pxq converges to f px 8 q. On the other hand, f piq pxq converges to x 8 . Therefore f px 8 q " x 8 .

(ii) Let 0 ď x ď z ď y ď 1 and f pxq " x, f pyq " y. Since f is monotone, x " f pxq ď f pzq ď f pyq " y. Thus, since f is nonexpansive, 0 ď f pyq ´f pzq ď y ´z and 0 ď f pzq ´f pxq ď z ´x. This implies that f pzq " z.

(iii) is a direct consequence of (i) and (ii).

Let f P M 1,1 r0, 1s. For a P r0, 1s we dene the a-nearest xed point of f to be µ a x.f pxq :" lim i f piq paq.

Lemma 3.3 shows that this is really a xed point of f which is closest to a, i.e. |a ´µa x.f pxq| " min zPr0,1s t|a ´z| | f pzq " zu.

Moreover, the least and the greatest xed points of f P M 1,1 r0, 1s are respectively equal to µ 0 x.f pxq and µ 1 x.f pxq.

We can see also that

µ a x.f pxq " $ ' & ' % µ 0 x.f pxq if a ď µ 0 x.f pxq, a if µ 0 x.f pxq ď a ď µ 1 x.f pxq, µ 1 x.f pxq if µ 1 x.f pxq ď a, (3.1)
i.e. the xed point nearest to a is equal either to the least or to the greatest xed point or is equal to a itself.

Let f : px 1 , . . . , x n q Þ Ñ f px 1 , . . . , x n q be a BMN mapping from r0, 1s n to r0, 1s. For each pr 1 , . . . , r k´1 , r k`1 , . . . , r n q P r0, 1s n´1 we obtain a BMN mapping

x k Þ Ñ f pr 1 , . . . , r k´1 , x k , r k`1 , . . . , r n q.

from r0, 1s to r0, 1s. This mapping belongs to M 1,1 r0, 1s thus, given r k P r0, 1s, we can calculate the r k -nearest xed point µ r k x k .f pr 1 , . . . , r k´1 , x k , r k`1 , . . . , r n q.

This xed point depends on r " pr 1 , . . . , r k´1 , r k , r k`1 , . . . , r n q, thus we can dene the mapping r0, 1s n Q pr 1 , . . . , r k´1 , r k , r k`1 , . . . , r n q Þ Ñ µ r k x k .f pr 1 , . . . , r k´1 , x k , r k`1 , . . . , r n q P r0, 1s

(3.2)
Lemma 3.4. If px 1 , . . . , x n q Þ Ñ f px 1 , . . . , x n q is BMN then the mapping (3.2) is BMN.

Proof. Let r " pr 1 , . . . , r n q, w " pw 1 , . . . , w n q P r0, 1s n . Dene two sequences pr i k q, i " 1, 2, . . . and pw i k q, i " 1, 2, . . ., such that r 1 k " r k and r i`1 k " f pr 1 , . . . , r k´1 , r i k , r k`1 , . . . , r n q and w 1 k " w k and w i`1 k " f pw 1 , . . . , w k´1 , w i k , w k`1 , . . . , w n q. By Lemma 3.3 both sequences converge to some r 8 k and w 8 k respectively and r 8 k " µ r k x k .f pr 1 , . . . , r k´1 , x k , r k`1 , . . . , r n q and w 8 k " µ w k x k .f pw 1 , . . . , w k´1 , x k , w k`1 , . . . , w n q. We shall prove by induction that for all i,

|r i k ´wi k | ď r ´w 8 . Clearly, |r 1 k ´w1 k | " |r k ´wk | ď max i |r i ´wi | " r ´w 8 . Suppose that |r i k ´wi k | ď r ´w 8 .
We have then 

|r i`1 k ´wi`1 k | " |f pr 1 , . . . , r k´1 , r i k , r k`1 , . . . ,

Nested xed points of bounded monotone nonexpansive mappings

In this section we dene by induction, for each k, 0 ď k ď n, the nested xed point operator.

We dene by induction for each k, 0 ď k ď n, the nested nearest xed point operator

Fix k : M n,n r0, 1s Ñ M n,n r0, 1s. Each Fix k can be decomposed into n operators Fix k i , Fix k i : M n,n r0, 1s Ñ M n,1 r0, 1s, i P rns, such that, for f P M n,n ,
Fix k pf q " pFix k 1 pf q, . . . , Fix k n pf qq.

Let f " pf 1 , . . . , f n q P M n,n r0, 1s, where f i P M n,1 r0, 1s, for i P rns. For all r P r0, 1s n we set Fix 0 pf q to be such that Fix 0 pf qprq " r.

Thus Fix 0 pf q is the identity mapping and does not depend of f . Note that Fix 0 i pf qprq " r i , i.e. Fix 0 i pf q is the projection on the ith coordinate. Now, inductively, given Fix k´1 pf q we dene Fix k pf q. For r P r0, 1s n and ζ P r0, 1s let us set F k´1 i pζ; rq :" Fix k´1 i pf qpr 1 , . . . , r k´1 , ζ, r k`1 , . . . , r n q, for i P rk ´1s.

(3.3) Note that F k´1 i pζ; rq depends on ζ and on pr 1 , . . . , r k´1 , r k`1 , . . . , r n q but does not depend on r k . Thus F k´1 i is in fact a mapping from r0, 1s n to r0, 1s. Fix k i pf qprq :" Fix k´1 i pf qpr 1 , . . . , r k´1 , Fix k k pf qprq, r k`1 , . . . , r n q, for i P rk ´1s, Fix k i pf qprq :" r i , for i P tk `1, . . . , nu.

Then we dene

Since the denition of the nested xed point mappings uses only the composition and the nearest xed point operators, Lemmas 3.5 and 3.4 imply that Corollary 3.6. If f P M n,n r0, 1s then, for all k P t0u Y rns, Fix k pf q P M n,n r0, 1s.

Let us note nally that Fix k pf q depends only on f 1 , . . . , f k but is independent of f k`1 , . . . , f n .

Example 3.7. Let n " 2 and f " pf 1 , f 2 q : M 2,2 r0, 1s such that for all x " px 1 , x 2 q P r0, 1s 2 , f 1 px 1 , x 2 q " maxpx 1 , x 2 q, f 2 px 1 , x 2 q " x 1 and let r " pr 1 , r 2 q " p0, 1q.

Let us calculate the value of Fix 2 inductively, for k " 0 we have Fix 0 pf qprq " p0, 1q.

For k " 1,

Fix 1 1 pf qprq " µ 0 ζ.f 1 pζ, 1q " µ 0 ζ. maxpζ, 1q " 1, and
Fix 1 2 pf qprq " r 2 " 1.

Finally, with k " 2,

Fix 2 2 pf qprq " µ 1 ζ.f 2 pF 1 1 pζ, 1q, ζq.
So we need to calculate the value of F 1 1 pζ, 1q:

F 1 1 pζ, 1q " Fix 1 1 pf qpζ, 1q " µ 0 ζ.f 1 pζ, 1q " 1.
Then Fix 2 2 pf qprq " 1 and Fix 2 1 pf qprq " Fix 1 1 pf qp0, 1q " µ 0 ζ.f 1 pζ, 1q " 1.

Hence,

Fix 2 pf qprq " p1, 1q.

Duality for the bounded monotone nonexpansive mappings

In this chapter we dene and examine the notion of duality for the BMN mappings.

For r " pr 1 , . . . , r n q P r0, 1s n we set 1 ´r :" p1 ´r1 , . . . , 1 ´rn q.

Given a BMN mapping f : r0, 1s n Ñ r0, 1s the dual of f is the mapping f : r0, 1s n Ñ r0, 1s such that f pr 1 , . . . , r n q " 1 ´f p1 ´r1 , . . . , 1 ´rn q.

The dual of f " pf 1 , . . . , f k q P M n,k r0, 1s is dened as f " pf 1 , . . . , f n q.

We can write this in a more explicit way if for f " pf 1 , . . . , f k q P M n,k r0, 1s we dene 1 ´f :" p1 ´f1 , . . . , 1 ´fk q.

Then using this notation, for f P M n,k r0, 1s, we can write succinctly f prq " 1 ´f p1 ´rq.

Lemma 3.8. If f is BMN then f is BMN.

Proof. Let pr 1 , . . . , r n q ď pw 1 , . . . , w n q.

Then p1 ´r1 , . . . , 1 ´rn q ě p1 ´w1 , . . . , 1 ´wn q and f p1 ´r1 , . . . , 1 ´rn q ě f p1 ´w1 , . . . , 1 ´wn q.

Thus f pr 1 , . . . , r n q " 1 ´f p1 ´r1 , . . . , 1 ´rn q ď 1 ´f p1 ´w1 , . . . , 1 ´wn q ď f pw 1 , . . . , w n q, i.e. f is monotone. Finally f prq´f pwq 8 " p1´f p1´rqq´p1´f p1´wqq 8 ď p1´rq´p1´wq 8 " r ´w 8 , i.e. f is nonexpansive. Lemma 3.9. If f P M n,1 r0, 1s then, for all k P rns and r " pr 1 , . . . , r n q P r0, 1s n , µ r k x k .f pr 1 , . . . , r k´1 , x k , r k`1 , . . . , r n q " 1 ´µ1´r k x k .f p1 ´r1 , . . . , 1 ´rk´1 , 1 ´xk , 1 ´rk`1 , . . . , 1 ´rn q.

Proof. Let J f and K f be respectively the greatest and the least xed points of the mapping x k Þ Ñ pf r 1 , . . . , r k´1 , x k , r k`1 , . . . , r n q.

Similarly let J f , K f the greatest and the least xed points of the mapping x k Þ Ñ f p1 ´r1 , . . . , 1 ´rk´1 , 1 ´xk , 1 ´rk`1 , . . . , 1 ´rn q.

Since f p1´r 1 , . . . , 1´r k´1 , x k , 1´r k`1 , . . . , r n q " 1´f pr 1 , . . . , r k´1 , 1´x x , r k`1 , . . . , r n q we have K f " 1 ´Jf and J f " 1 ´Kf .

There are three possibilities concerning the position of r k relative to K f and J f . If J f ď r k then µ r k px k .f r 1 , . . . , r k´1 , x k , r k`1 , . . . , r n q " J f .

However, in this case we have also 1 ´rk ď 1 ´Jf " K f implying that µ 1´r k x k .f p1 ´r1 , . . . , 1 ´rk´1 , x k , 1 ´rk`1 , . . . , r n q " K f .

1 ´f p1 ´p1 ´gp1 ´rqqq " 1 ´f p1 ´gprqq " pf pgprqq.

The following lemma examines the duality for the nested nearest xed points.

Lemma 3.11. Let f " pf 1 , . . . , f n q P M n,n r0, 1s. Then for all k, 0 ď k ď n, and r P r0, 1s n Fix k pf qprq " 1 ´Fix k pf qp1 ´rq.

(3.5)

Proof. Induction on k.

r Þ Ñ Fix 0 pf qprq " r is the identity mapping independently of f . Thus the lefthand side of (3.5) is equal to r and the right-hand side is 1 ´p1 ´rq " r as well.

For each 0 ď k ď n, let us set Using this notation (3.5) can be written as

H k
prq " 1 ´Hk p1 ´rq.

(3.6)

Our aim is to prove the last equality for k under the assumption that it holds for k ´1.

By denition H k k p1 ´rq " µ 1´r k x k .f k pH k´1 1 p1 ´r1 , . . . , 1 ´rk´1 , x k , 1 ´rk`1 , . . . , r n q, . . . , H k´1 k´1 p1 ´r1 , . . . , 1 ´rk´1 , x k , 1 ´rk`1 , . . . , r n q, x k , 1 ´rk`1 , . . . , 1 ´rn q.

Let us dene a mapping G k P M n,n r0, 1s:

G k :" pH k´1 1 , . . . H k´1 k´1 , π k , π k`1 , . . . , π n q,
where π i px 1 , . . . , x n q " x i , i " k, k`1, . . . , n, is the projection on the i-th coordinate. Since π i " π i , i.e. the dual of the projection is equal the same projection mapping we can see that the dual to

G k is G k " pH k´1 1 , . . . H k´1 k´1 , π k , π k`1 , . . . , π n q.
Therefore, by Lemmas 3.10 and 3.9, H k k p1 ´rq " µ 1´r k x k .f k ˝Gk p1 ´r1 , . . . , 1 ´rk´1 , x k , 1 ´rk`1 . . . , 1 ´rn q " µ 1´r k x k .f k ˝Gk p1 ´r1 , . . . , 1 ´rk´1 , x k , 1 ´rk`1 . . . , 1 ´rn q " 1 ´µr k x k .f k ˝Gk pr 1 , . . . , r k´1 , x k , r k`1 , . . . , r n q " 1 ´Hk k prq

For m P rk ´1s,

H k m p1 ´rq " H k´1 m p1 ´r1 , . . . , 1 ´rk´1 , H k k p1 ´rq, 1 ´rk`1 , . . . , 1 ´rn q " H k´1 m p1 ´r1 , . . . , 1 ´rk´1 , 1 ´Hk k prq, 1 ´rk`1 , . . . , 1 ´rn q " 1 ´Hk´1 m pr 1 , . . . , r k´1 , H k k prq, r k`1 , . . . , r n q " 1 ´Hk m prq.
Finally, for m ą k,

1 ´Hk m p1 ´rq " 1 ´p1 ´rm q " r m " H k m prq.
Chapter 4

Turn-based stochastic priority games A turn-based stochastic priority game is played by two players on an arena with a nite set of states S " rns " t1, . . . , nu partitioned into two sets S Max and S Min , where S Max and S Min are the sets states controlled by player Max and player Min, respectively. For each state i P S, Apiq is a nite nonempty set of actions that are available in i. For i, j P S and a P Apiq, ppj|i, aq is the transition probability to move to state j if action a is played at state i.

The players play an innite game, at each stage the player controlling the current state selects an action to execute and the game moves to a new state according to the transition probability.

The arena is endowed with a reward vector r " pr 1 , . . . , r n q, where r i P R is the reward of state i. The priority payo of an innite play is dened to be the reward of the maximal (in the usual integer order) state visited innitely often during the play. The goal of player Max (respectively player Min) is to maximize (respectively minimize) the payo.

There are two main results in this chapter:

' the value vector of the turn-based stochastic priority game can be obtained as a nested nearest xed point of a monotone nonexpansive mapping f , where f is the value mapping of the one-step game, and ' both players have pure memoryless optimal strategies.

Note that the last point implies that, since the number of possible pure memoryless strategies is nite, we can nd, although in a very inecient way, optimal strategies for both players through the exhaustive search among all pure memoryless strategies.

The turn-based stochastic priority game with the rewards in the two element set t0, 1u is known as the turn-based stochastic parity game. These games have been examined in several papers [START_REF] Mciver | Games, probability, and the quantitative µ-calculus qMµ[END_REF][START_REF] Chatterejee | Quantitative stochastic parity games[END_REF]. In particular Chatterejee, Jurdzi«ski and Henzinger [START_REF] Chatterejee | Quantitative stochastic parity games[END_REF] proved that in turn-based stochastic parity games both players have pure memoryless optimal strategies, but their proof is quite dierent from the one presented in this chapter and relies on the non-trivial general result of Martin [START_REF] Martin | The determinacy of Blackwell games[END_REF] concerning the existence of the value for Blackwell games.

In our approach we proceed dierently. First of all we show that, without loss of generality, we can limit ourselves to priority games having rewards in the interval r0, 1s.

Next for each state i we dene a trivial one-step game. The value of the one-step game depends on the reward vector r. Thus the one-step game played at state i gives rise to a mapping f i that maps the reward vector r to the value f i prq of state i in the one-step game. The mappings f i , called one-step value mappings, can be expressed as either the maximum (for the states controlled by player Max) or the minimum (for the states controlled by the player Min) of a nite number of linear functions.

It is immediate to see that f i are monotone and nonexpansive. Let f " pf 1 , . . . , f n q be the mapping from r0, 1s n to r0, 1s n such that, for each m, the coordinate mapping f m is the value mapping for the one-step game played in m.

Let

Fix n pf qprq be the nth nested r-nearest xed point of f as dened in Chapter 3.

The rst main result of this chapter is that, for each i P rns, the ith coordinate Fix n i pf qprq of this xed point is the value of state i in the priority game for the given reward vector r.

The proof has a nice recursive structure. Instead of proving this result in one big step, we prove it by induction on nesting level of the xed point 1 .

In our approach we provide for all k " 0, 1, . . . , n a game interpretation of the partial xed point formula Fix k pf qprq. We prove that (4.1) is equal to the value vector of the priority game with all states greater than k transformed into absorbing states 2 . The chapter is organized as follows. Section 4.1 provides some basic denitions.

In Section 4.3 we dene the one-step game. This is a very simple one-player game played at each state of the arena. We show, in Section 4.2, that without loss of generality we can limit ourselves to priority games with rewards in the interval r0, 1s. In Section 4.4 we give an inductive proof that priority games have optimal pure memoryless strategies and that the value of the priority game can be expressed as a nested xed point of the value function of the one-step game.

1. This is the main departure from the traditional µ-calculus approach to parity games as for example in [START_REF] Walukiewicz | Monadic second-order logic on tree-like structures[END_REF] and [START_REF] Alfaro | Quantitative solution to omega-regular games[END_REF], where the proofs were not inductive in spite of the recursive structure of the µ-calculus formula.

2. Recall that a state i is absorbing if for all possible actions the probability to quit i is 0.

The chapter ends with Section 4.5 where we show that the results of Section 4.4

do not carry over to priority games with an innite number of states or actions.

Preliminaries

An arena A of a two-player turn-based stochastic game is composed of the following ingredients:

' a nonempty countable set S of states partitioned onto the sets S Max of states controlled by player Max and the set S Min of states controlled by player Min, ' for each state i, a nonempty countable set Apiq of actions available at i, ' for all i, j P S and a P Apiq, the probability ppj|i, aq to move to state j when action a is executed in state i.

We assume that the sets Apiq, i P S, are pairwise disjoint. An innite game played by players Max and Min starts at some state s 1 P S. At each stage t, t " 1, 2, . . ., the player controlling the current state s t chooses an available action a t P Aps t q and the game moves to a state s t`1 with probability pps t`1 |s t , a t q.

Example 4.1. Figure 4.2 depicts a two-player arena with S Min " t2, 3u, S Max " t1u, action sets Ap1q " ta, b, cu, Ap2q " tdu and Ap3q " teu. The transition probabilities are given by pp2|1, aq " 0.7, pp3|1, aq " 0.3, pp2|1, cq " pp3|1, bq " pp3|2, dq " pp2|3, eq " 1. We represent the states controlled by player Max and Min as squares and circles respectively. A history is a nite sequence h " s 1 , a 1 , s 2 , . . . , s m´1 , a m´1 , s m , alternating states and actions which starts and ends in a state. The set of all histories is denoted H.

The length of a history h is the number of actions in h. Note that the histories of length 0 are of the form s 1 for s 1 P S, i.e. they consist of one state and no actions. Let H Max be the subset of H consisting of histories ending in a state controlled by player Max.

For a nite set A, by ∆pAq we will denote the set of probability distributions over A. The support of δ P ∆pAq is dened as supppδq " ta P A | δpaq ą 0u.

A strategy of player Max is a mapping σ : H Max Ñ ∆pAq, such that supppσphqq Ď Apsq, where s is the last state of h.

A selector for player Max is a mapping σ : S Max Ñ A such that, for each s P S Max , σpsq P Apsq.

A strategy σ 1 of player Max is said to be pure memoryless if there exists a selector σ such that σ 1 phq " σpsq for each history h ending in a state s controlled by Max.

In the sequel we identify pure memoryless strategies with corresponding selectors.

The denitions of strategies, selectors and pure memoryless strategies carry over to player Min in the obvious way.

We write Σ and T to denote the sets of all strategies for player Max and Min respectively.

In the sequel σ, eventually with subscripts or superscripts, is used to denote strategies of player Max. Similarly, τ , with or without subscripts and superscripts is used to denote strategies of player Min.

An innite history or a play is an innite sequence h " s 1 , a 1 , s 2 , a 2 , . . . alternating states and actions. The set of plays is denoted H 8 .

Assuming that the sets S and A are equipped with the discrete topology we endow the set of plays H 8 with the product topology. By BpH 8 q we denote the σ-algebra of Borel subsets of S 8 . Let h " s 1 , a 1 , . . . , a m´1 , s m be a history. By h `we denote the cylinder generated by h, i.e. the set of plays (innite histories) having prex h.

Cylinders form the basis of the product topology on H 8 , and BpH 8 q is the smallest σ-algebra generated by cylinders.

A strategy σ of player Max, a strategy τ of player Min and an initial state i determine a probability measure P σ,τ i on pH 8 , BpH 8 qq. We dene inductively P σ,τ i for cylinders in the following way. Let σ Y τ be the mapping from H to ∆pAq dened in the following way, for h P H,

pσ Y τ qphq " # σphq if the last state of h is controlled by Max, τ phq if the last state of h is controlled by Min. If h 0 " s 1 is a nite history of length 0 then P σ,τ i ph 0 q " # 0 if i ‰ s 1 , 1 if i " s 1 .
Let h t´1 " s 1 , a 1 , . . . , s t´1 , a t´1 s t and h t " h t´1 , a t , s t`1 . Then P σ,τ i ph t q " P σ,τ i ph t´1 q ¨pσ Y τ qph t´1 qpa t q ¨pps t`1 |s t , a t q.

Note that the family of cylinders is closed under intersection, this family is a π-system of sets, which implies that a probability dened on cylinders extends in a unique way to all sets of BpH 8 q.

A payo mapping is any bounded Borel measurable mapping ϕ : H 8 Ñ R.

For each play h P H 8 , ϕphq is the payo that player Min pays to player Max if h is the play obtained during the game.

For each initial state i, the aim of the player Max (player Min) is to maximize (respectively minimize) the expected payo :

E σ,τ i rϕs " ż H 8 ϕphqP σ,τ i pdhq.
The game with payo ϕ has value if, for each state i, there exist

v i P R, the value of state i, such that inf τ PT sup σPΣ E σ,τ i rϕs " v i " sup σPΣ inf τ PT E σ,τ i rϕs.
Strategies σ ‹ and τ ‹ are optimal for players Max and Min respectively if, for each state i,

sup σPΣ E σ,τ ‹ i rϕs ď v i ď inf τ PT E σ ‹ ,τ i rϕs,
for all strategies σ and τ of Max and Min.

In other words, given an initial state i, player Max using his optimal strategy can secure the expected payo of at least v i , while player Min using his optimal strategy ensures that he will pay no more than v i .

Clearly if σ ‹ and τ ‹ are optimal then v i " E σ ‹ ,τ ‹ i rϕs.

An arena is nite if the set of states S and all sets of actions Apsq, s P S, are nite.

Except in Section 4.5, all games considered in this chapter are played on nite arenas.

Thus, except in the last section, we will assume that the set of states is a nite initial segment of integers, i.e.

S " rns :" t1, . . . , nu.

To dene the turn-based stochastic priority games we assume that S " rns is endowed with the usual order relation ď over integers.

For two states i, j P rns we shall say that j has a priority greater than i if i ă j, in other words the natural order over integers will serve as a priority order over states.

A reward mapping is any mapping r : S Ñ R, where, for i P S, the real number rpiq is called the reward of i. Since S " rns we will identify the reward mappings with the elements of the Cartesian product R n and for r P R n , we write r " pr 1 , . . . , r n q, where r i is the reward of state i. In particular, we will often call r the reward vector rather than the reward mapping and r i and rpiq will be used interchangeably.

The stochastic priority game is the game played on arena A with the payo mapping ϕ r dened in the following way, for each play h " s 1 , a 1 , s 2 , . . ., ϕ r phq " rplim sup t s t q.

Note that since we assumed that the set of states is t1, . . . , nu, the sequence s 1 , s 2 , s 3 , . . . of visited states is a sequence of integers and lim sup is taken w.r.t. the natural order relation over integers. Thus lim sup t s t is simply the maximal state appearing innitely often in h and the payo of the turn-based stochastic priority game is equal to the reward of the maximal state visited innitely often.

Example 4.3. Let us take the arena A dened in Example 4.1. Let σ and τ be pure memoryless strategies for player Max and Min respectively such that σp1qpbq " 1{3, σp1qpcq " 2{3, τ p2qpdq " 1 and τ p3qpeq " 1. Once the memoryless strategies are xed, we get a Markov chain, depicted in Figure 4.4. Let r " p0, 1, 1{5q be the reward mapping.

Then if the initial state is 1, the game moves to state 2 with probability 2{3. In other words P σ,τ 1 p1, b, 2q " 2{3. Moreover, once the game is in state 2, it alternates between state 2 and 3, i.e., let h 2 " 1, b, 2, d, 3, e, 2, d, 3, e, 2, . . . and h 3 " 1, b, 3, e, 2, d, 3, e, 2, . . ., hence we get P σ,τ 1 ph 2 q " 2{3, P σ,τ 1 ph 3 q " 1{3 and ϕ r ph 2 q " ϕ r ph 3 q " 1{5. The last equality is because im both histories the bigger state innitely often visited is state 3 which has a reward r 3 " 1{5. Finally,

E σ,τ 1 rϕ r s " 1{5.
The aim of the rest of this chapter is to show that nite state turn-based stochastic priority games have value that can be expressed as a nested nearest xed point of piecewise linear mappings (the value mappings of the one-day games) and that both players have optimal pure memoryless strategies.

The proof will carried out by induction on the number of absorbing states. If the game enters an absorbing state i (in particular if it starts in an absorbing state i) then the game remains in i forever and the payo is equal to the reward r i .

In particular, if all states are absorbing then the priority game is trivial, the value of each state i is equal to the reward r i and all strategies are optimal.

In general, intuitively, a game with many absorbing states is simpler than a game with a few absorbing states. This observation leads to the inductive proof presented in this chapter. We start with the trivial priority game where all states are absorbing and next we transform the states, one by one, starting with state 1, next state 2 and so on, from absorbing to nonabsorbing.

Bounding the rewards

In the sequel it will be convenient to assume that all rewards belong to the interval r0, 1s rather than to R. This can be achieved for each game without loss of generality by a simple linear transformation. Let a " min iPS r i , b " max iPS r i and gpxq " 1 b´a x ´a b´a . Then 0 " gpaq ď gpxq ď gpbq " 1 for x P tr 1 , . . . , r n u. Changing the reward vector from r " pr 1 , . . . , r n q to gprq " pgpr 1 q, . . . , gpr n qq transforms linearly the priority payos of all plays h since ϕ gprq phq " gpϕ r phqq.

By the linearity of expectation, this implies that for all starting states i and all strategies σ and τ we have gpE σ,τ i pϕ r qq " E σ,τ i pgpϕ r qq, in particular the priority games with the reward vectors r and gprq have the same optimal strategies.

The one-step game

The one-step game

For turn-based stochastic games the auxiliary one-step game is a simple oneplayer game played in each state. The one step games are an essential ingredient of our solution to the turn-based stochastic priority games.

Recall that we assume that the set of states is S " rns " t1, . . . , nu. Let x P R n be a reward vector. For each state k, we consider the following one-step game played:

' the player controlling k plays an action a P Apkq and the game moves to state j with probability ppj|k, aq, ' this single move ends the one-step game and player Max obtains from player Min the payo x j .

If the player controlling k plays action a P Apkq then the expected payo obtained by player Max in the one-step game is equal to ř i ppi|k, aq ¨xi . As always, the aim of player Max (Min) is to maximize (minimize) this expected payo.

As the game is nite, it is clear that the player controlling k has an optimal pure strategy in the one-step game, this strategy consists in playing an action a that either maximizes (if k is controlled by Max) or minimizes (if k is controlled by Min) the sum ř i ppi|k, aq ¨xi . Therefore, we can see that the value of the one-step game played at state k P rns is equal to

f k pxq :" # max aPApkq ř i ppi|k, aq ¨xi if k P S Max , min aPApkq ř i ppi|k, aq ¨xi if k P S Min . (4.2)
In the sequel we consider the value of the one-step game as a function of the reward vector x " px 1 , . . . , x n q, i.e. f k is considered as a function

f k : r0, 1s n Ñ R dened by (4.2).
We set f " pf 1 , . . . , f n q,

i.e. f : r0, 1s n Ñ R n maps reward vectors x P r0, 1s n to the vector of values of one-step games played in the states of S.

Lemma 4.6. The value mapping f of the one-step game is bounded monotone and nonexpansive.

Proof. That f is monotone is obvious. It is bounded since the convex combination of elements belonging to r0, 1s belongs to r0, 1s as well. It is also evident that f is additively homogeneous, i.e. for each x P R n and each λ P R, f px `λ ¨en q " f pxq `λ ¨en , where e n " p1, . . . , 1q P R n is the vector with 1 on all components. By Lemma 3.2 this implies that f is nonexpansive.

Nested nearest xed point solution to priority games

The priority game having all states absorbing is trivial, the value of state i, i P rns, is r i , where r P r0, 1s n is the reward vector. Moreover, all strategies are optimal, in particular each pure memoryless strategy is optimal.

In this section we provide an inductive proof that all priority games have optimal pure memoryless strategies.

Moreover, we show that the value vector for the priority game with reward r is equal to Fix n pf qprq the nested xed point of the value mapping f of the one-step game dened Section 3.2. The induction will be carried out on the number of nonabsorbing states. We show that if we can solve the priority game with states k, k `1, . . . , n absorbing then we can use this solution to solve the priority game with states k `1, . . . , n absorbing, i.e. we can decrease the number of absorbing states. Note that the order in which we transform the states from absorbing to nonabsorbing is essential, at each inductive step we transform the smallest absorbing state to a nonabsorbing one.

Although the idea of making some states absorbing in order to simplify the game is the one that is behind the proof, the direct application of this idea would lead to a cumbersome notation. For this reason we shall adopt another, equivalent, approach, where instead of modifying the transition probabilities of the arena we rather modify the payo mapping. By S t and A t , t " 1, 2, . . ., we will denote two stochastic processes such that S t is the state visited at time t and A t is the action executed at stage t, i.e. for a play h " s 1 , a 1 , s 2 , a 2 , s 3 , . . ., S t phq " s t and A t phq " a t .

For each state k P rns we dene the random variable

T ąk : H 8 Ñ N Y t8u such that T ąk " mintt | S t ą ku.
Thus T ąk is the time of the rst visit to a state greater than k. Since the minimum of the empty set is `8 we have T ąk " 8 for the plays belonging to the event t@t, S t P rksu, i.e. T ąk " 8 if all visited states are in rks.

Note that T ąk is a stopping time with respect to tS i u iě1 . Indeed, for each time t P N, tT ąk " tu " tS 1 ď k, . . . , S t´1 ď k, S t ą ku,

i.e. the event tT ąk " tu belongs to the sigma algebra σpS 1 , . . . , S t q generated by S 1 , . . . , S t .

For each k P t0u Y rns we dene the stopped state process S rks t , t P N,

S rks t " S t^T ąk " # S t if T ąk ą t, S T ąk if T ąk ď t,
where a ^b denotes the minimum of a and b. The game with payo ϕ rks r will be called stopped priority game or simply ϕ rks r - game.

Note that once a state m greater than k is visited, the game with payo ϕ rks r is for all practical reasons over, independently of what can happen in the future the payo is equal to the reward r m of this state and the states visited after the moment T ąk have no bearing on the payo.

In the stopped priority ϕ rks r -game the states ą k will be called stopping states while the states ď k will be called non-stopping.

Note that since we have assumed that S " rns, i.e. n is the greatest state, we have ϕ rns r " ϕ r . Note also that solving games starting in stopping states is trivial. If i ą k then for all plays h starting in i, ϕ rks r phq " r i , thus E σ,τ i pϕ rks r q " r i for all strategies σ, τ the value of a stopping state i, i ą k, is r i . In particular, the game with payo ϕ r0s r is trivial since all states of this game are stopping. Moreover, for the ϕ r0s r -game all strategies are optimal since the payo does not depend on the strategy.

The main result of this chapter is Theorem 4.7. Let f : r0, 1s n Ñ r0, 1s n be the value mapping of the one-step game dened in (4.2).

Then, for each r P r0, 1s n , the ϕ rks r -game satises the following properties: ' for each state i P rns, the value of i is equal to Fix k i pf qprq, where Fix k i pf q is the ith coordinate of the kth r-nearest xed point Fix k pf q of f , ' both players have optimal pure memoryless strategies.

Theorem 4.7 holds trivially for i such that i ą k. Indeed, in the ϕ rks r -game all states i ą k are stopping thus ϕ rks r phq " r i for all plays h starting in a state i ą k. On the other hand, we have also Fix k i pf qprq " r i .

The recursive formula of the nested xed points that, according to Theorem 4.7, represents the value of the stopping game has a natural game theoretic interpretation.

Let us consider the ϕ k´1 pr 1 ,...,r k´1 ,ζ,r k`1 ,...,rnq -game. This is the priority game where the states i ‰ k have rewards r i while the state k, the smallest stopping state, has reward ζ. Suppose that Theorem 4.7 holds for k ´1. Thus the value of state i P rk ´1s in the ϕ k´1 pr 1 ,...,r k´1 ,ζ,r k`1 ,...,rnq -game, seen as the function of the reward ζ of the state k, is

F k´1 i pζ; rq " Fix k´1 i pf qpr 1 , . . . , r k´1 , ζ, r k`1 , . . . , r n q (4.3)
in the notation of (3.3). Now let us consider the ϕ rks r -game where the state k becomes the greatest nonstopping state. Let us note val i pϕ rks r q the value of state i in the ϕ rks r -game. Clearly for the stopping states we have val i pϕ rks r q " r i , for i ą k. What are the values of the states i ă k in the ϕ rks r -game? Let us start to play the ϕ rks r -game starting at state i ă k and suppose that both players play optimally. When such a game hits the state k then in the auxiliary game starting at k, the payo obtained will be equal to the value ζ of k. Thus it seems plausible that the value of state i ă k in the ϕ rks r -game is equal to the value of this state in the ϕ rk´1s pr 1 ,...,r k´1 ,ζ,r k`1 ,...,rnq -game which stops at k with the payo ζ, i.e. val i pϕ rks r q " F k´1 i pζ; rq, for i ă k. But what is the value of the state k in the ϕ rks r -game? Suppose for example that k is controlled by player Max. Theorem 4.7 conrms these intuitions and the proof formalizes the reasoning given above.

Example 4.8. Let A be the arena dened as follows: let S " t1, 2, 3u, A such that Ap1q " ta, bu, Ap2q " tc, du and Ap3q " teu, such that pp2|1, aq " pp3|1, bq " pp3, 3, dq " 1, pp1|2, cq " 0.8 and pp3|2, cq " 0.2 as shows Figure 4.9 and let r " p0, 1, 1{2q.

The stochastic priority game is the game played ion arena A with the priority payo mapping ϕ r dened above. We want to calculate the value of the ϕ r -game, notice that, as state 3 is absorbing, ϕ r2s r -game and ϕ r -game are equal. We start by calculating the value of state 2 in ϕ r2s r -game.

Recall the denitions in Section 3.2 and as state 1 is controlled by player Max and state 2 by player Min we have f " pf 1 , f 2 , f 3 q : r0, 1s 3 Ñ r0, 1s the value mapping of the one-step game as dened in (4.2), i.e., f 1 :

px 1 , x 2 , x 3 q Þ Ñ maxpx 2 , x 3 q, f 2 : px 1 , x 2 , x 3 q Þ Ñ 0.8x 1 `0.2x 3 and f 3 : px 1 , x 2 , x 3 q Þ Ñ x 3 . Hence, Fix 2 2 pf qprq " µ 1 ζ.f 2 pF 1 1 pζ; rq, ζ, 1{2q (4.8) 
and F 1 1 pζ; rq " Fix 1 1 pf qp0, ζ, 1{2q that, by induction, it should be the value of state 1 in the ϕ r1s p0,ζ,1{2q -game that is the max between ζ and 1{2. In fact,

Fix 1 1 pf qp0, ζ, 1{2q " µ 0 ξ.f 1 pξ, ζ, 1{2q " µ 0 ξ. maxpζ, 1{2q
" maxpζ, 1{2q.

(4.9)

Then, retaking (4.8),

Fix 2 2 pf qprq " µ 1 ζ.f 2 pmaxpζ, 1{2q, ζ, 1{2q " µ 1 ζ.p0.8 ˆmaxpζ, 1{2q `0.2 ˆ1{2q " 1{2.
And for state 1,

Fix 2 1 pf qprq " Fix 1 1 pf qp0, Fix 2 2 pf qprq, 1{2q " F 1 1 p0, 1{2, 1{2q " Fix 1 1 pf qp0, 1{2, 1{2q " maxp1{2, 1{2q " 1{2.
Last equality is due to (4.9). Finally, Fix 2 3 pf qprq " 1{2 and hence the values of the game according to Theorem 4.7 are given by p1{2, 1{2, 0q that match with the values of the game as the reader can easily verify.

Optimal strategy for player Max

The aim of this section is to construct an optimal pure memoryless strategy for Max in the ϕ rks r -game.

Through the section we assume that Theorem 4.7 holds for k ´1, i.e. for each reward vector r P r0, 1s Using this notation we have

Fix k k pf qprq " µ r k ζ.F 7 k pζ; rq.

Notation:

For a set of plays C Ă H 8 , we will write 1 C to denote the indicator mapping of the set C,

1 C phq " # 1 if h P C, 0 otherwise.
Thus for a mapping ϕ, Epϕ1 C q " ş C ϕphqdh.

Denition 4.10. By T rks m we will denote the time of the mth visit to k of the stopped state process S rks i , i.e. 

pT rks m`1 ă 8 | T rks m ă 8q `Eσ k ζ ,τ k pϕ rks pr 1 ,...,r k´1 ,ζ,r k`1 ,...,rnq 1 tT rks m`1 "8u | T rks m ă 8q, (C2) 
F 7 k pζ; rq ď E σ k ζ ,τ k pϕ rks pr 1 ,...,r k´1 ,ζ,r k`1 ,...,rnq q, (C3) if the inequality (4.10) is strict then P σ k ζ ,τ k pS rks i
" k for innitely many iq " 0. Proof. We begin with the denition of the strategy σ k ζ . To simplify notation, we write r ´k ζ :" pr 1 , . . . , r k´1 , ζ, r k`1 , . . . , r n q.

By (H. Then the right-hand side of (C1) is the expected payo of such auxiliary game when player Max plays according to σ k ζ and inequality (C1) provides a lower bound for the payo obtained in the auxiliary game. 

F 7 k pζ; rq ď ÿ iăk F k´1 i pζ; rq P σ k ζ ,τ k pS T rks m `1 " i | T rks m ă 8q `ζ P σ k ζ ,τ k pS T rks m `1 " k | T rks m ă 8q (4.14) `ÿ iąk r i P σ k ζ ,τ k pS T rks m `1 " i | T rks m ă 8q.
r i " E σ k ζ ,τ k pϕ rks r ´k ζ | S T rks m `1 " iq, for i ą k. (4.15)
As the second crucial observation let us note the following inequality:

F k´1 i pζ; rq ď ζ P σ k ζ ,τ k pT rks m`1 ă 8 | S T rks m `1 " iq `Eσ k ζ ,τ k pϕ rks r ´k ζ 1 tT rks m`1 "8u | S T rks m `1 " iq, for i ă k. (4.16)
The proof of (4. 

F 7 k pζ; rq ď ζ ÿ iăk P σ k ζ ,τ k pT rks m`1 ă 8 | S T rks m `1 " iqP σ k ζ ,τ k pS T rks m `1 " i | T rks m ă 8q (S1) `ÿ iăk E σ k ζ ,τ k pϕ rks r ´k ζ 1 tT rks m`1 "8u | S T rks m `1 " iqP σ k ζ ,τ k pS T rks m `1 " i | T rks m ă 8q (S2) `ζ P σ k ζ ,τ k pS T rks m `1 " k | T rks m ă 8q (S3) `ÿ iąk E σ k ζ ,τ k pϕ rks r ´k ζ | S T rks m `1 " iqP σ k ζ ,τ k pS T rks m `1 " i | T rks m ă 8q. (S4)
We shall show that

S2 `S4 " E σ k ζ ,τ k pϕ rks r ´k ζ 1 tT rks m`1 "8u | T rks m ă 8q (4.17) and S1 `S3 " ζ ¨Pσ k ζ ,τ k pT rks m`1 ă 8 | T rks m ă 8q. (4.18)
To prove (4.17) note that by Bayes' rule

E σ k ζ ,τ k pϕ rks r ´k ζ 1 tT rks m`1 "8u | T rks m ă 8q " n ÿ i"1 E σ k ζ ,τ k pϕ rks r ´k ζ 1 tT rks m`1 "8u | S T rks m `1 " i, T rks m ă 8qP σ k ζ ,τ k pS T rks m `1 " i | T rks m ă 8q.
Note that the kth summand can be eliminated from the sum above because 

E σ k ζ ,τ k pϕ rks r ´k ζ 1 tT rks m`1 "8u | S T rks m `1 " k, T
P σ k ζ ,τ k pT rks m`1 " 8 | S T rks m `1 " iq " 1 implying E σ k ζ ,τ k pϕ rks r ´k ζ 1 tT rks m`1 "8u | S T rks m `1 " i, T rks m ă 8q " E σ k ζ ,τ k pϕ rks r ´k ζ | S T rks m `1 " i, T rks m ă 8q, for i ą k.
This ends the proof of (4.17).

To prove (4.18), by Bayes' rule we obtain

P σ k ζ ,τ k pT rks m`1 ă 8 | T rks m ă 8q " n ÿ i"1 P σ k ζ ,τ k pT rks m`1 ă 8 | S T rks m `1 " i, T rks m ă 8qP σ k ζ ,τ k pS T rks m `1 " i | T rks m ă 8q
As we have already noted

S T rks m `1 " k implies that T rks m`1 " T rks m `1 ă 8, i.e. P σ k ζ ,τ k pT rks m`1 ă 8 | S T rks m `1 " k, T rks m ă 8q " 1.
On the other hand, S T rks

m `1 " i ą k implies that T rks m`1 " 8, i.e. P σ k ζ ,τ k pT rks m`1 ă 8 | S T rks m `1 " i, T
rks m ă 8q " 0, which terminates the proof of (4.18). Now it suces to notice that (4.17) and (4.18) imply (C1).

It remains to provide the missing proof of (4. [START_REF] Cjk | [END_REF]).

For all t ě 1 we dene the shift mapping,

θ t : H 8 Ñ H 8 .
which forgets all history prior to the moment t. Formally, for a h " s 1 , a 1 , s 2 , a 2 , . . . P H 8 , θ t phq " s t , a t , s t`1 , a t`1 , . . . . Let us examine the following auxiliary game that is played under condition (4.20)

and that starts at time T rks m `1 when the game visits i, i ă k. We assume that the payo applied in the auxiliary game to a play h P tS T rks m `1 " i ă ku is equal to 

E σ k ζ ,τ k pϕ rk´1s r ´k ζ ˝θT rks m `1 | S T rks m `1 " iq " E σ k ζ ,τ k pϕ rk´1s r ´k ζ ˝θT rks m `1 | T rks m`1 ă 8, S T rks m `1 " iq ¨Pσ k ζ ,τ k pT rks m`1 ă 8 | S T rks m `1 " iq `Eσ k ζ ,τ i pϕ rk´1s r ´k ζ ˝θT rks m `1 | T rks m`1 " 8, S T rks m `1 " iq ¨Pσ k ζ ,τ k pT rks m`1 " 8 | S T rks m `1 " iq " ζ P σ k ζ ,τ k pT rks m`1 ă 8 | S T rks m `1 " iq `Eσ k ζ ,τ k pϕ rks r ´k ζ 1 tT rks m`1 "8u | S T rks m `1 " iq,
which terminates the proof of (4.16).

Proof of (C3):

Suppose that ζ ă F 7 k pζ; rq. 

P σ k ζ ,τ k pT rks m`1 ă 8 | T rks m ă 8q ď 1 ´F 7 k pζ; rq 1 ´ζ ă 1. Therefore P σ k ζ ,τ k p@m, T rks m ă 8q " lim mÑ8 P σ k ζ ,τ k p@i ď m, T rks i ă 8q " lim mÑ8 P σ k ζ ,τ k pT rks 0 ă 8q ¨m´1 ź q"0 P σ k ζ ,τ k pT rks q`1 ă 8 | T rks q ă 8q ď lim mÑ8 ˜1 ´F 7 k pζ; rq 1 ´ζ ¸m´1 " 0, (4.23) 
i.e. if player Max uses σ k ζ then almost surely k is visited only nitely many times.

Proof of (C2):

From (4.10) and (C1) it follows that 

F 7 k pζ; rq ď F 7 k pζ; rq ¨Pσ k ζ ,τ k pT rks m`1 ă 8 | T rks m ă 8qÈ σ k ζ ,τ k pϕ rks r ´k ζ 1 tT rks m`1 "8u | T rks m ă 8q which implies F 7 k pζ; rq ¨Pσ k ζ ,τ k pT rks m`1 " 8 | T rks m ă 8q ď E σ k ζ ,τ k pϕ rks r ´k ζ 1 tT rks m`1 "8u | T rks m ă 8q.
F 7 k pζ; rq ¨Pσ k ζ ,τ k pDm, T rks m " 8q ď E σ k ζ ,τ k pϕ rks r ´k ζ 1 tDm,T rks m "8u q. (4.25) Thus E σ k ζ ,τ k pϕ rks r ´k ζ q " E σ k ζ ,τ k pϕ rks r ´k ζ 1 tDm,T rks m "8u q `Eσ k ζ ,τ k pϕ rks r ´k ζ 1 t@m,T rks m ă8u q ě F 7 k pζ; rq ¨Pσ k ζ ,τ k pDm, T rks m " 8q `ζ ¨Pσ k ζ ,τ k p@m, T rks m ă 8q, (4.26) 
where the last inequality follows from (4.25) and from the fact that ϕ Similarly, if F 7 k pζ; rq " ζ then (4.26) implies also

E σ k ζ ,τ k pϕ rks r ´k ζ q ě ζ " F 7 k pζ; rq.
This ends the proof of (C2).

Lemma 4.12. Assume that (H.1) and (H.2) are satised. Let H ‰ D Ă r0, 1s and let σ ‹ be a pure memoryless strategy of Max optimal in the ϕ rk´1s pr 1 ,...,r k´1 ,ξ,r k`1 ,...,rnqgame for all ξ P D. Let w " sup D be the supremum of D. Then σ ‹ is optimal in the ϕ rk´1s pr 1 ,...,r k´1 ,w,r k`1 ,...,rnq -game. Proof. By the assumptions of the lemma, for each state i P rk ´1s, each strategy τ of Min and each ξ P D we have E σ‹,τ i pϕ rk´1s pr 1 ,...,r k´1 ,ξ,r k`1 ,...,rnq q ě Fix k´1 i pf qpr 1 , . . . , r k´1 , ξ, r k`1 , . . . , r n q.

(4.27) Since ξ ď w implies ϕ rk´1s pr 1 ,...,r k´1 ,ξ,r k`1 ,...,rnq ď ϕ rk´1s pr 1 ,...,r k´1 ,w,r k`1 ,...,rnq we have E σ‹,τ i pϕ rk´1s pr 1 ,...,r k´1 ,ξ,r k`1 ,...,rnq q ď E σ‹,τ i pϕ rk´1s pr 1 ,...,r k´1 ,w,r k`1 ,...,rnq q.

(4.28) From (4.27) and (4.28) E σ‹,τ i pϕ rk´1s pr 1 ,...,r k´1 ,w,r k`1 ,...,rnq q ě Fix k´1 i pf qpr 1 , . . . , r k´1 , ξ, r k`1 , . . . , r n q.

But Fix k´1 i pf qpr 1 , . . . , r k´1 , ξ, r k`1 , . . . , r n q is a nonexpansive function of pr 1 , . . . , r k´1 , ξ, r k`1 , . . . , r n q and nonexpansive functions are also continuous which implies that if for some a P R, a ě Fix k´1 i pf qpr 1 , . . . , r k´1 , ξ, r k`1 , . . . , r n q for all ξ P D then also a ě Fix k´1 i pf qpr 1 , . . . , r k´1 , w, r k`1 , . . . , r n q for w " sup D. In particular E σ‹,τ i pϕ rk´1s pr 1 ,...,r k´1 ,w,r k`1 ,...,rnq q ě Fix k´1 i pf qpr 1 , . . . , r k´1 , w, r k`1 , . . . , r n q.

In the following lemma we construct an optimal pure memoryless strategy for player Max in the ϕ rks r -game. Lemma 4.13. Suppose that (H.1) and (H.2) are satised.

Then for each reward vector r P r0, 1s n there exists a pure memoryless strategy

σ k
‹ for player Max such that for each strategy τ of player Min and each state i P rks we have

Fix k i pf qprq ď E σ k ‹ ,τ i pϕ rks r q.
(4.29)

Proof. Let us note w :" Fix k k pf qprq.

As we did in the proof of Lemma 4.11, r ´k y will be used to denote the reward vector pr 1 , . . . , r k´1 , y, r k`1 , . . . , r n q, for y P r0, 1s.

We rst prove that there exists a pure memoryless strategy σ k ‹ for player Max As in the previous lemma we set F 7 k pζ; rq :" f k pF k´1 1 pζ; rq, . . . , F k´1 k´1 pζ; rq, ζ, r k`1 , . . . , r n q so that Fix k k prq " µ r k ζ.F 7 k pζ; rq.

We examine three dierent cases.

Case 1: pϕ rks r q " E σ k ξ ,τ k pϕ rks pr 1 ,...,r k´1 ,ξ,r k`1 ,...,rnq q.

r k ą Fix k k pf
Therefore, by (W.2),

E σ k ξ ,τ k pϕ rks r q ě F 7 k pξ; rq ą ξ. (4.31)
For each pure memoryless strategy σ k of player Max let

Dpσ k q " tξ | r k ă ξ ă Fix k k pf qprq and σ k " σ k ξ u,
where, for each ξ, σ k ξ is a pure memoryless strategy for player Max satisfying (4.31) and (W.1).

Since there is a nite number of pure memoryless strategies and each ξ such that r k ă ξ ă Fix k k pf qprq belongs to some Dpσ k q there exists a pure memoryless strategy σ k ‹ such that Fix k k pf qprq is an accumulation point of Dpσ k ‹ q. The elements of Dpσ k ‹ q are smaller than Fix k k pf qprq thus, in fact, this accumulation point is the supremum of Dpσ k ‹ q, i.e. Fix k k pf qprq " sup Dpσ k ‹ q.

Since, by (4.31), E σ k ‹ ,τ k pϕ rks r q ą ξ for all ξ P Dpσ k ‹ q, we have also

E σ k ‹ ,τ k pϕ rks r q ě sup Dpσ k ‹ q " Fix k k pf qprq.
Note also that, by Lemma 4.12, σ k ‹ is optimal for player Max in the ϕ rk´1s r ´k w -game.

This ends the proof of (K.1) and (K.2).

To prove (4.29) for i ă k we proceed as follows.

By the induction hypothesis (H.1), Fix k´1 i pf qpr 1 , . . . , r k´1 , w, r k`1 , . . . , r n q is the value of state i in the ϕ rk´1s r ´k w -game and, by (K.1), σ k ‹ is optimal in the same game, thus Fix k´1 i pf qpr 1 , . . . , r k´1 , w, r k`1 , . . . , r n q ď E σ k ‹ ,τ i pϕ rk´1s r ´k w q.

(4.32) By Bayes' rule ă 8 for the plays that visit k and such that before the rst visit to k all visited states were ă k. For such plays the value of ϕ rks r does not depend on the history prior to the rst visit to k. But by (K.2), starting from k the strategy σ k ‹ guarantees the expected payo of at least Fix k k pf qprq " w against any strategy of Min.

E σ k ‹ ,τ i pϕ rk´1s r ´k w q " E σ k ‹ ,τ i pϕ rk´1s r ´k w | T rks 1 ă 8qP σ k ‹ ,τ i pT rks 1 ă 8q`(4.33) E σ k ‹ ,τ i pϕ rk´1s r ´k w | T rks 1 " 8qP σ k ‹ ,τ i pT rks 1 " 8q
E σ k ‹ ,τ i pϕ rk´1s r ´k w | T rks 1 " 8q " E σ k ‹ ,τ i pϕ rks r | T rks 1 " 8q.
From (4.32),(4.33),(4.34),(4.35) and (4.36) we obtain Fix k´1 i pf qpr 1 , . . . , r k´1 , w, r k`1 , . . . , r n q ď

E σ k ‹ ,τ i pϕ rks r | T rks 1 ă 8qP σ k ‹ ,τ i pT rks 1 ă 8q `Eσ k ‹ ,τ i pϕ rks r | T rks 1 " 8qP σ k ‹ ,τ i pT rks 1 " 8q " E σ k ‹ ,τ i pϕ rks r q.
And now it remains to note that the denition of the nested nearest xed point gives Fix k´1 i pf qpr 1 , . . . , r k´1 , w, r k`1 , . . . , r n q " Fix k´1 i pf qpr 1 , . . . , r k´1 , Fix k k pf qprq, r k`1 , . . . , r n q " Fix k i pf qprq.

Dual games

In Section 3.3 we have dened the dual of the BMN mappings. In this section we dene and examine the corresponding notion for the priority games.

Given an arena A the dual arena A is dened in the following way: ' A has the same states, actions and transition probabilities as A, From this denition it follows immediately that each strategy σ of player Max (respectively a strategy τ of Min) in A becomes a strategy of player Min (respectively Max) in A and vice versa. Moreover, we have the equality of the corresponding induced probabilities, P σ,τ i p ¨; Aq " P τ,σ i p ¨; Aq, where the left-hand side denotes the probability induced on plays in A while the right-hand side denotes the probability on plays in A.

'
For each reward vector r, by 1´r we denote the reward vector p1´r 1 , . . . , 1´r n q. Since for each play h P H 8 , ϕ rks r phq " 1 ´ϕrks 1´r phq, we have the following equality concerning the expected payos for the (stopped) priority games played on A and A:

E σ,τ i pϕ rks r ; Aq " 1 ´Eτ,σ i pϕ rks 1´r ; Aq.

(4.37)

This motivates the following denition.

Given a stopped priority game pA, ϕ rks r q the dual game is the stopped priority game pA, ϕ rks 1´r q. Note that a strategy σ is optimal for player Max in the game pA, ϕ rks r q if and only if σ is optimal for player Min in the dual game pA, ϕ rks 1´r q. A similar statement holds for strategies τ of Min. Therefore we have also the following equality for the game values:

val i pA, ϕ rks r q " 1 ´val i pA, ϕ rks 1´r q,
where val i pA, ϕ rks r q is the value of state i in the original stopped priority game while val i pA, ϕ rks 1´r q is the value of i in the dual game.

4.4.3

The duality of value mappings meets the duality of games Recall the denition of a dual mapping given in Section 3.3, f prq " 1 ´f p1 ´rq, where for r " pr 1 , . . . , r n q, 1 ´r " p1 ´r1 , . . . , 1 ´rn q.

Lemma 4.14. Let f : r0, 1s n Ñ r0, 1s n be the value function of the one-step game, cf. (4.2).

Then the dual mapping f is the value function of the one-step game played on the dual arena. Proof. Let k be a state controlled by player Max in the dual arena A. Thus k is controlled by player Min in the original arena.

The value of state k for the one-step game played at k on the dual arena with reward vector r is max aPApkq ÿ i ppi|k, aq ¨ri " max aPApkq p1 ´ÿ i ppi|k, aq ¨p1 ´ri qq "

1 ´min aPApkq ÿ i ppi|k, aq ¨p1 ´ri q " 1 ´fk p1 ´rq " f k prq.

Interchanging max and min we get the result when k is controlled by player Min in the dual arena.

The duality leads directly to the following counterpart of Lemma 4.13.

Lemma 4.15. Suppose that (H.1) and (H.2) are satised. For each reward vector r P r0, 1s n there exists a pure memoryless strategy τ k ‹ for player Min such that for each strategy σ of player Max and each i P rks we have Proof. In the proof we will go back and forth between the priority game pA, ϕ rks r q and its dual pA, ϕ rks 1´r q. To avoid ambiguity when we speak about the players then Max and Min are the maximizer and the minimizer in the original priority game while the maximizer and the minimizer in the dual game are named Max and Min respectively.

From Lemma 4.13 applied to the dual game we deduce that there exists a pure State 1 has an innite number of available actions Ap1q " ta 1 , a 2 , . . .u such that for all i ě 1, pp2|1, a i q " 1 2 i and pp3|1, a i q " 1 ´1 2 i . The reward vector is such that r 1 " 0, r 2 " 0 and r 3 " 1.

The value of state 1 is 1. But there does not exist a memoryless optimal strategy for player Max. In fact, for each memoryless strategy of Max the probability to reach state 2 is 1 which results in payo 0. Moreover, player Max has no strategy (even with memory) securing the expected payo 1. However, for each ε ą 0, he has a strategy, which is not memoryless, securing for him the expected payo of at least 1 ´ε. In fact, let N P N be such that 1{2 N ´1 ă ε, and let be a strategy of player Max such that he plays action a N `i if the game visited state 1 i times, then the probability to visit state 2 is 1{2 N `1{2 N `1 `1{2 N `2 `. . . that converges to 1{2 N ´1 ă ε. Hence, the probability to visit state 3 innitely often is ą 1 ´ε. We can also consider priority games with an innite number of states. To this end we rst need to adapt the denition of the priority games to such a framework 3 .

3 2 1 a i , 1 2 i a i , 2 i -1 2 i
A natural way to dene a priority game with an innite number of states is the one used for parity games.

Let S be an innite set of states such that for each s P S the set Apsq of actions available at s is nite. The game is played by two players, Max and Min, and each state is controlled by one of the players.

We assume that the arena is endowed with a priority mapping π : S Ñ t1, . . . , u from states to a nite set of natural numbers.

The reward mapping r : t1, . . . , u Ñ r0, 1s maps priorities to the unit interval r0, 1s.

For each play h " s 1 , a 1 , s 2 , a 2 . . ., the priority payo mapping is dened as ϕphq " r k , where k " lim sup t pπps t qq.

Thus the payo is the reward associated with the highest priority visited innitely often.

Let us consider the priority stochastic game depicted on Figure 4.17. All states are controlled by player Max, S " S Max " ts d , s w , s 1 , s 2 , . . .u. The priorities are πps d q " 0, πps w q " 1 and, for all i ě 1, πps i q " 0. The following rewards are assigned to the priorities: r 0 " 0 and r 1 " 1.

The game has the following actions: for all i ě 1, Aps i q " ta, bu and pps d |s i , aq " 1 2 i , pps w |s i , aq " 1 ´1 2 i and pps i`1 |s i , bq " 1. State s w has just a deterministic action a that moves to s 1 and state s d is absorbing.

The value of the game for the initial state s 1 is 1. But for each memoryless strategy of player Max the expected payo is 0 and player Max has no strategy securing the expected payo 1 (but, as in the last game, for each ε ą 0 player Max has a non-memoryless strategy σ securing for him the expected payo of at least 1 ´ε). Strategy σ is built as follows: Let i be the times that state s w was visited and let N P N be such that 1{2 N ´1 ă ε.

Then σphqpaq " 1 when h " h 1 s N `i and σphqpbq " 1 otherwise.

a, Chapter 5
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Concurrent stochastic priority games

In this chapter we study concurrent stochastic priority games.

Contrary to the turn-based stochastic games, in concurrent stochastic games, a given state is not controlled by any particular player. What happens instead is that the states are controlled jointly by both players. At each state both players choose actions independently and simultaneously and the probability to move to the next state depends on the actions chosen by both players.

The fact that the players choose actions simultaneously and independently at each stage has a signicant impact on how the game is played. It turns out that in concurrent stochastic priority games, the players do not have optimal strategies, in general. However, they have ε-optimal strategies. But these strategies are neither pure nor memoryless 1 .

The main result of this chapter is that the values of the concurrent stochastic priority games can be obtained as a nested nearest xed point of appropriate monotone nonexpansive mapping. This result is analogous to the main result of the previous chapter. However, the proof is technically more involved, since we need to cope with the uncertainty due to the fact that the adversary player chooses actions independently and simultaneously at each state.

If the only possible rewards are 0 and 1, then the concurrent stochastic priority game is the same as the concurrent parity game examined by de Alfaro and Majumdar [START_REF] Alfaro | Quantitative solution to omega-regular games[END_REF]. These authors proved that the value of such game is given by a µ-calculus formula alternating the least and the greatest xed points. Thus the result of this chapter is an extension of the result obtained in [START_REF] Alfaro | Quantitative solution to omega-regular games[END_REF], the only dierence is that we replace greatest and least xed points used in [START_REF] Alfaro | Quantitative solution to omega-regular games[END_REF] by the nearest xed points.

1. See, for example, a game adapted by de Alfaro and Henzinger [dAH00] from [START_REF] Kumar | Existence of value and randomized strategies in zero-sum discrete-time stochastic dynamic games[END_REF] where both players do not have optimal strategies and for one of the players a ε-optimal strategy cannot be memoryless.

Our proof is however quite dierent. The proof of [START_REF] Alfaro | Quantitative solution to omega-regular games[END_REF] is not inductive.

De Alfaro and Majumdar give a complete µ-calculus formula with all xed points applied from the outset and show that this formula gives the values of all states in the concurrent parity game.

On the other hand, in our approach we provide a game interpretation of the nested xed point formula where only some variables are bound by the xed point while other variables are free. It turns out that such formula represents the values of the priority game where free variable correspond to absorbing states.

This approach makes our proof more structured than that of [START_REF] Alfaro | Quantitative solution to omega-regular games[END_REF].

Roughly speaking, we start with a trivial game where all states are absorbing.

And next we transform the states, one by one, starting from the lowest priority state 1, next state 2, etc., from absorbing to nonabsorbing. We show by induction that, if f is the value mapping of the one-step game, then µ r k x k . . . . µ r 1 x 1 .f px 1 , . . . , x k , r k`1 , . . . , r n q,

(5.1)

where the free variables x k`1 , . . . , x n are evaluated to r k`1 , . . . , r n , is the value vector of the priority game where the states 1, . . . , k are nonabsorbing while states k 1, . . . , n are transformed into absorbing states.

With this approach it suces to show that solving the priority game where the states 1, . . . , k, k `1 are nonabsorbing while the states k `2, . . . , n are absorbing, corresponds to add the next r k`1 -nearest xed point µ r k`1 x k`1 to (5.1).

In this way we do not need to examine a xed point formula where all n xed points are applied at once. Instead, we just examine what happens if just one xed point is added to (5.1).

The chapter is structured as follows. In Section 5.1 we dene the concurrent stochastic priority games.

Section 5.2 denes and examines one-step games. These games are auxiliary matrix games played at each state. The crucial observation concerning the one-step game is that its value mapping f is monotone nonexpansive.

In Section 5.3, we dene and examine the class of stopping concurrent priority games. In such games, all states greater 2 than a xed state k are absorbing (or equivalently stopping). We prove by induction that (5.1) is the value vector of this game.

As a corollary we obtain that the values of concurrent priority games can be expressed as the nested nearest xed points (without free variables).

2. greater in the priority order

Concurrent stochastic priority games

An arena for a two-player concurrent stochastic priority game is composed of a nite set of states S " rns " t1, 2, . . . , nu Ă N (we assume without loss of generality that S is a subset of positive integers) and nite sets A and B of actions of players Max and Min. For each state i, Apiq Ď A and Bpiq Ď B are the sets of actions that players Max and Min can play at s. We assume that A and B are disjoint and pApiqq iPS , pBpiqq iPS are partitions of A and B.

For i, j P S, a P Apiq, b P Bpiq, ppj|i, a, bq is the probability to move to j if players Max and Min execute respectively actions a and b at i.

An innite game is played by players Max and Min. At each stage, given the current state i, the players choose simultaneously and independently actions a P Apiq and b P Bpiq and the game moves to a new state j with probability ppj|i, a, bq. The couple pa, bq is called the joint action.

A nite history is a sequence h " s 1 , pa 1 , b 1 q, s 2 , pa 2 , b 2 q, s 3 . . . , s t alternating states and joint actions and beginning and ending with a state. The length of h is the number of joint actions in h, in particular a history of length 0 consists of just one state and no actions. The set of nite histories is denoted H.

A strategy of player Max is a mapping σ : H Ñ ∆pAq, where ∆pAq denotes the set of probability distributions over A. We require that supppσphqq Ď Apiq, where i is the last state of h and supppσphqq :" ta P A | σphqpaq ą 0u is the support of the measure σphq.

A strategy σ is memoryless if σphq depends only on the last state of h. Thus memoryless strategies of player Max can be identied with mappings from S to ∆pAq such that supppσpiqq Ď Apiq for each i P S.

A strategy σ is pure if supppσphqq is a singleton for each h. Pure memoryless strategies of player Max are identied with mappings σ : S Ñ A such that σpiq P Apiq.

Strategies for player Min are dened in a similar way. We write Σ and T to denote the sets of all strategies for player Max and Max respectively.

We use σ and τ (with subscripts or superscripts) to denote strategies of players Max and Min respectively.

An innite history or a play is an innite sequence h " s 1 , pa 1 , b 1 q, s 2 , pa 2 , b 2 q, s 3 , pa 3 , b 3 q, . . . alternating states and joint actions. The set of innite histories is denoted H 8 . For a nite history h, by h `we denote the cylinder generated by h consisting of all innite histories with prex h. We assume that H 8 is endowed with the σ-algebra BpH 8 q generated by the set of cylinders.

Strategies σ, τ of players Max and Min and the initial state i determine a probability measure P σ,τ i on pH 8 , BpH 8 qq.

Concurrent stochastic priority games

We dene inductively P σ,τ i for cylinders in the following way.

Let h 0 " s 1 be a nite history of length 0. Then P σ,τ i ph 0 q "

# 0 if i ‰ s 1 , 1 if i " s 1 .
Let h t´1 " s 1 , pa 1 , b 1 q, . . . , s t´1 , pa t´1 , b t´1 q, s t and h t " h t´1 , pa t , b t q, s t`1 . Then P σ,τ i ph t q " P σ,τ i ph t´1 q ¨σph t´1 qpa t q ¨τ ph t´1 qpb t q ¨pps t`1 |s t , a t , b t q.

Note that the set of cylinders is π-system (i.e. a family of sets closed under intersection) thus a probability dened on cylinders extends in a unique way to all sets of BpH 8 q.

The payo mapping is a bounded Borel measurable mapping ϕ : H 8 Ñ R. A strategy τ of player Min is ε-optimal, ε ě 0, if for each state i and each strategy σ of player Max, sup σPΣ E σ,τ i rϕs ď v i `ε.

Symmetrically, a strategy σ of player Max is ε-optimal if for each state i and each strategy τ of player Min, inf τ PT E σ,τ i rϕs ě v i ´ε.

An ε-optimal strategy with ε " 0 is called optimal.

To dene the concurrent stochastic priority game we endow the arena with the reward vector r " pr 1 , . . . , r n q associating with each state i a reward r i P R.

The priority payo ϕ r phq of an innite history h " s 1 , pa 1 , b 1 q, s 2 , pa 2 , b 2 q, s 3 , . . . is dened as ϕ r phq " r , where " lim sup t s t .

(5.2)

Thus the payo is equal to the reward of the greatest (in the usual integer order) state visited innitely often.

The (iv) The limsup games studied by Maitra and Sudderth [START_REF] Maitra | Discrete Gambling and Stochastic Games[END_REF] are the games with the payo lim sup k r i k , where r i 1 , r i 2 , r i 3 , . . . is the innite sequence of rewards associated with the states visited at the stages 1, 2, 3, . . . during the game. To see that limsup games are priority games it suces to rename the states in such a way that i ă j implies r i ď r j for all states i, j P rns. If this condition is satised then the limsup payo and the priority payo are equal.

(v) The liminf games are the games with the payo lim inf k r i k , where r i 1 , r i 2 , r i 3 , . . .

is the innite sequence of rewards associated with the states visited at the stages 1, 2, 3, . . . during the game. Let us rename the states in such a way that, for all states i, j P rns, i ă j implies r i ě r j . Then the liminf payo is equal to the priority payo, thus the liminf games constitute a subclass of priority games.

From the determinacy of Blackwell's games proved by Martin [Mar98] A proof of determinacy of concurrent stochastic parity games using xed points was given by de Alfaro and Majumdar [START_REF] Alfaro | Quantitative solution to omega-regular games[END_REF]. For Everett's recursive games, Everett proved non only that such games have values but also that both players have ε-optimal memoryless strategies [START_REF] Everett | Recursive games[END_REF]. For concurrent reachability games, player Min has an optimal memoryless strategy while player Max has, for each ε ą 0, an ε-optimal memoryless strategy, [START_REF] Chatterjee | Strategy improvement for concurrent reachability and turn-based stochastic safety games[END_REF].

Terminology: As in this chapter we deal only with concurrent stochastic priority games, always when we say a priority game it would mean concurrent stochastic priority games.

Concurrent one-step game

In this section we dene an auxiliary one-step game. This simple game constitutes an essential ingredient in our solution to the general priority games.

Let x " px 1 , . . . , x n q P R n be a reward vector assigning to each state i the reward x i .

A concurrent one-step game M pxq is the game played in the following way. If the game starts at a state k then players Max and Min choose independently and simultaneously actions a P Apkq and b P Bpkq. Suppose that upon execution of pa, bq the game moves to the next state m. This ends the game and player Max receives from player Min the payo x m .

A concurrent one-step game played at state k given the reward mapping x will be denoted M k pxq.

Note that M k pxq can be seen as a matrix game where M k pxqra, bs :"

ÿ mPS x m ¨ppm|k, a, bq
is the (expected) payo obtained by player Max from player Min when the players play actions a and b respectively.

The value mapping of the one-step game is the mapping f " pf 1 , . . . , f n q from R n to R n such that, for each state k P rns, f k px 1 , . . . , x n q :" valpM k pxqq,

(5.3)
where valpM k pxqq is the value of the matrix game M k pxq, In other words, f k px 1 , . . . , x n q is the value of the concurrent one-step game played at state k seen as a function of the reward vector x " px 1 , . . . , x n q.

We will be interested in f k pxq seen as a function of the reward vector x " px 1 , . . . , x n q.

Since all entries in the matrix game M k pxq belong to R, f k pxq P R, i.e. f k is a mapping from R n into R.

Lemma 5.1. The value mapping f of the one-step game dened in (5.3) is monotone and nonexpansive. Proof. It is easy to see that f is monotone and it is also straightforward that f is additively homogeneous, i.e, for all x P R n , f px `λ ¨en q " f pxq `λ ¨en , where e n " p1, . . . , 1q P R n is the vector with 1 on all components. By Lemma 3.2 this implies that f is nonexpansive.

In the sequel it will be convenient to assume that all rewards belong to the interval r0, 1s rather than to R. This can be achieved without loss of generality by a simple linear transformation, as we did in Section 4.2.

General concurrent stopping priority games

Concurrent stopping priority games generalize the priority games dened in Section 5.1 by allowing some states to be stopping. In particular if the number of stopping states is zero then we obtain concurrent priority games.

We solve concurrent priority stopping games by induction on the number of nonstopping states and we show that the value function can be expressed as the nearest xed point of the value function (5.3) of the concurrent one-step game. By S t , A 1 t and A 2 t , t " 1, 2, . . ., we will denote stochastic processes such that S t is the state visited at time t, A 1 t is the action executed by player Max at stage t and A 2 t is the action executed at stage t by player Min. i.e. for a play h " s 1 , pa 1 , b 1 q, s 2 , pa 2 , b 2 q, s 3 , . . ., S t phq " s t , A 1 t phq " a t and A 2 t phq " b t . For each state k P rns we dene the random variable

T ąk : H 8 Ñ N Y t8u such that T ąk " mintt | S t ą ku.
Thus T ąk is the time of the rst visit to a state greater than k. We dene a new stochastic process S rks t , t P N, that we shall call the stopped state process: for all q ě t.

S rks t " # S t if T ąk ě t, S q if q " T ąk ă t.
For a given reward vector r and k P rns we dene the stopping priority payo ϕ rks r :

ϕ rks r " r where " lim sup t S rks t .

The games with payo ϕ rks r will be called stopping priority games. We will also speak about the ϕ rks r -game to refer to the game with payo ϕ rks r . Similarly ϕ r -game will stand for the usual priority game.

Note that once a state j greater than k is visited the game with payo ϕ rks r is for all practical purposes over, independently of what can happen in the future the payo is equal to the reward r j of this state and the states visited after the moment T ąk have no bearing on the payo.

In the ϕ rks r -game the states rks will be called non-stopping while the states ą k, will be called stopping.

Note that since we have assumed that S " rns, i.e. n is the greatest state, we have ϕ rns r " ϕ r . Note also that solving games starting in stopping states is trivial. If i ą k then for all plays h starting at i, ϕ rks r phq " r i , thus E σ,τ i pϕ rks r q " r i for all strategies σ, τ , in particular the value of stopping state i, i ą k, is r i .

Constructing ε-optimal strategies

The rest of this section is devoted to the proof of the following main result characterizing the values of the stopping concurrent priority games by means of xed points.

Theorem 5.2. Let f : r0, 1s n Ñ r0, 1s n be the value mapping of the concurrent one-step game dened in Section 5.2. For 0 ď k ď n, let Fix k pf q be the k-th nested xed point of f , see Section 3.2. Then, for each reward vector r, for each initial state i P rns, the concurrent stopping priority ϕ rks r -game starting at i has value Fix k i pf qprq.

Proof. For each ε ą 0 we construct ε-optimal strategies for both players.

The proof is carried out by induction on k.

The case k " 0 is trivial since when all states are stopping then the value of each state is equal to its reward, i.e. the value of state i is Fix 0 i pf qprq " r i . Under the assumption that the theorem holds for k ´1, i.e. Fix k´1 i pf qprq is the value of the non-stopping state i P rk ´1s in the ϕ rk´1s r -game, we shall prove that Fix k i pf qprq is the value of the non-stopping state i P rks in the ϕ rks r -game.

We will use the following notation:

w k :" Fix k k pf qprq " µ r k x k .f k pF k´1 1 px k ; rq, . . . , F k´1 k´1 px k ; rq, x k , r k`1 , .
. . , r n q (5.4) and w i :" Fix k i pf qprq " F k´1 i pw k ; rq, i P rk ´1s,

(5.5)

where F k´1 i are dened as in (3.3). Thus our aim is to prove that pw 1 , . . . , w k´1 , w k q are the values of the states t1, . . . , k ´1, ku in the ϕ rks r -game.

Since w k is a xed point of (5.4) we have w k " f k pw 1 , . . . , w k´1 , w k , r k`1 , . . . , r n q.

(5.6)

Let T m be the random time of the m´th visit to state k of the stopping state process pS rks t q tě1 , i.e.

T 1 " mintt | S rks t " ku, T m " mintt | t ą T m´1 and S rks t " ku for m ą 1.

(5.7) Notice that T m can be innite if the number of visits of the stopping state process S rks t to the state k is smaller than m and T 1 " 1 if the game starts at k. Note that since T m is dened w.r.t. the stopping state process S rks t , T m ă 8 implies that all states visited prior to the moment T m are ď k.

Let T be any random time, i.e. a mapping from plays to t1, 2, . . .u Y t8u such that for each m P t1, 2, . . .u the event tT " mu belongs to the σ-algebra F m " σpS 1 , pA 1 1 , A 2 1 q, S 2 , . . . , S m q. In other words, F m is the σ algebra generated by the cylinders h m, where h m are histories of length m.

Intuitively that means that knowing the states and actions up to time m we can decide if T " m or not. Denition 5.3. For a random time T , θ T : H 8 Ñ H 8 will denote the shift mapping that maps plays to plays and is dened in the following way

θ T pS 1 , pA 1 1 , A 2 1 q, S 2 , . . .q " S T , pA 1 T , A 2 T q, S T `1, pA 1 T `1, A 2 T `1q, S T `2, pA 1 T `2, A 2 T `2q, . . . .
Thus the shift θ T forgets all history prior to time T . Of course, θ T is well dened only on plays such that T ă 8.

Below we use the shift θ Tm`1 , where T m is the time of the mth visit to state k. This shift will be applied only to the plays with T m ă 8.

5.4.1

ε{2-optimal strategy σ ‹ for player Max when r k ă w k and k is the starting state.

We assume that r k ă w k (5.8) and the aim is to construct a strategy σ ‹ for player Max satisfying E σ‹,τ k pϕ rks r q ě w k ´ε{2

(5.9)

for each strategy τ of Min.

Let η P pw k ´ε{2, w k q and dene ξ i " F k´1 i pη; rq, @i P rk ´1s.

(5.10)

By the induction hypothesis, ξ i is the value of the ϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq -game starting at the state i.

Let us consider the concurrent one-step game M k pξ 1 , . . . , ξ k´1 , η, r k`1 , . . . , r n q played at state k. Then η ‹ :" f k pξ 1 , . . . , ξ k´1 , η, r k`1 , . . . , r n q (5.11) is the value of this game.

By the properties of monotone nonexpansive mappings, (5.8) implies that w k is in fact the least xed point of the mapping

x k Þ Ñ f k pF k´1 1 px k ; rq, . . . , F k´1
k´1 px k ; rq, x k , r k`1 , . . . , r n q.

Thus η ă w k implies that η ă f k pξ 1 , . . . , ξ k´1 , η, r k`1 , . . . , r n q " η ‹ ď w k .

(5.12) Fix δ such that 0 ă δ ă η ‹ ´η.

(5.13)

We dene the strategy σ ‹ of player Max in the following way: ' during the m-th visit to the state k, which takes place at time T m , c.f. (5.7), player Max selects actions according to his optimal strategy in the concurrent one-step game M k pξ 1 , . . . , ξ k´1 , η, r k`1 , . . . , r n q. ' during all stages j such that T m ă j ă T m`1 , i.e. between the mth and pm `1qth visit to k, player Max plays according to his δ-optimal strategy for the ϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq -game.

When he applies this strategy then we tacitly assume that after each visit to k player Max forgets all preceding history and he plays as if the game started afresh at the rst state visited after the last visit to k.

From the optimality of σ ‹ in the concurrent one-step game M k pξ 1 , . . . , ξ k´1 , η, r k`1 , . . . , r n q, we have

ÿ iăk ξ i ¨Pσ‹,τ k pS Tm`1 " i | T m ă 8q `η ¨Pσ‹,τ k pS Tm`1 " k | T m ă 8q `ÿ iąk r i ¨Pσ‹,τ k pS Tm`1 " i | T m ă 8q ě η ‹ .
(5.14) Indeed, when player Max plays according to the strategy σ ‹ at the moment T m then the current state is k and he plays using his optimal strategy in the concurrent one-step game M k pξ 1 , . . . , ξ k´1 , η, r k`1 , . . . , r n q. Now it suces to notice that the left-hand side of (5.14) is nothing else but the payo that player Max obtains in the concurrent one-step game M k pξ 1 , . . . , ξ k´1 , η, r k`1 , . . . , r n q (because S Tm`1 is the state visited at the next time moment T m `1). Since η ‹ is the value of this concurrent one-step game the inequality follows.

In the sequel we will note 1 A the indicator of the event A, i.e. the mapping that is equal to 1 on A and to 0 on the complement of A.

Let us note the following equality:

ÿ iąk r i ¨Pσ‹,τ k pS Tm`1 " i | T m ă 8q " E σ‹,τ k pϕ rks r ¨1tS Tm`1 ąku | T m ă 8q.
(5.15) Indeed, if a play belongs to the event tS Tm`1 " i, T m ă 8u for i ą k then T m ă 8 means that at the moment T m this play visits k and prior to T m it never visited states ą k cf. (5.7), and at the next time moment T m `1 such a play visits the stopping state i ą k. But for such plays the payo ϕ rks r is equal to r i .

Consider now the event tS Tm`1 " i, T m ă 8u, for i ă k, see Figure 5.4.

This event consists of the plays such that the stopping state process S rks i visits k for the mth time at time T m (this is guaranteed by T m ă 8, cf.(5.7)) and at the next time moment T m `1 the play visits the state i ă k.

From the denition of σ ‹ it follows that starting from the time T m `1 player Max plays using his δ-optimal strategy in the ϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq -game. Since, by the inductive hypothesis (5.10), the value of such a game for state i is ξ i , we have E σ‹,τ k pϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq ˝θTm`1 | S Tm`1 " i, T m ă 8q ě ξ i ´δ, for all i ă k,

(5.16) k T m + 1 i ∈ [k -1] {T m+1 < ∞, S Tm+1 = i, T m+1 = ∞} {T m+1 < ∞, S Tm+1 = i, T m+1 < ∞} T m+1 T m t = 0 k k θ Tm+1 ⇓ t = 0 i ∈ [k -1] {T m+1 < ∞, S Tm+1 = i, T m+1 = ∞} {T m+1 < ∞, S Tm+1 = i, T m+1 < ∞} T m+1 k Figure 5.4
The upper gure: The event tS Tm`1 " i, T m ă 8u consists of the plays that at time T m visit state k for the mth time without ever visiting the states ą k before, and at time T m `1 they visit state i, where i ă k. These plays are partitioned into two sets. The set tT m`1 ă 8, S Tm`1 " i, T m ă 8u of plays that will visit k for the pm `1qth time and the set tT m`1 " 8, S Tm`1 " i, T m ă 8u of the plays for which the mth visit in k was the last one. The lower gure : The shift mapping θ Tm`1 forgets all the history prior to the time T m `1.

where θ Tm`1 is the shift mapping that deletes all history prior to the time T m `1.

Using the fact that for all events A and B and each integrable mapping f we have Epf | A, Bq ¨P pAq " Epf ¨1tAu | Bq we can rewrite (5.16) in the following form E σ‹,τ k pϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq ˝θTm`1 ¨1tS Tm`1 "iu | T m ă 8q ě pξ i ´δq ¨Pσ‹,τ

k pS Tm`1 " i | T m ă 8q, for i ă k. (5.17)
We shall prove that for i ă k,

E σ‹,τ k pϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq ˝θTm`1 ¨1tS Tm`1 "iu | T m ă 8q " η¨P σ‹,τ k pT m`1 ă 8, S Tm`1 " i | T m ă 8q`E σ‹,τ k pϕ rks r ¨1tT m`1 "8u ¨1tS Tm`1 "iu | T m ă 8q.
(5.18) Indeed the left-hand side of (5.18) is the sum of E σ‹,τ k pϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq ˝θTm`1 ¨1tS Tm`1 "iu ¨1tT m`1 "8u | T m ă 8q

(5.19) and E σ‹,τ k pϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq ˝θTm`1 ¨1tS Tm`1 "iu ¨1tT m`1 ă8u | T m ă 8q.

(5.20)

Consider rst (5.20). For plays h belonging to the event tT m`1 ă 8, S Tm`1 " iu, i ă k, the shift θ Tm`1 removes all prex history up to the time T m `1, see Figure 5.4. Since T m`1 ă 8 in the remaining sux play θ Tm`1 phq all visited states up to the next visit to k are ă k. But for the plays that visit k at some moment and for which all states prior to this rst visit to k are ă k the payo ϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq is constant and equal to the reward η associated with k. Thus (5.20) is equal to

η ¨Pσ‹,τ k pT m`1 ă 8, S Tm`1 " i | T m ă 8q.
Let us examine now (5.19). The plays h belonging to the event tS Tm`1 " i, T m`1 " 8, T m ă 8u have the following properties: at time T m they visit k and all states visited prior to T m are ď k, at time T m `1, just after the mth visit to k, they visit the state i, since T m`1 " 8 the sux play θ Tm`1 phq does not contain any occurrence of k (k is never visited for the pm `1qth time). These properties assure that for such plays ϕ rks r phq " ϕ rks r pθ Tm`1 phqq. However, θ Tm`1 phq has no occurrence of k, which implies for the resulting payo it is irrelevant if k is stopping or not and what is the reward of k. Thus ϕ rks r pθ Tm`1 phqq " ϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq pθ Tm`1 phqq. This terminates the proof that (5.19) is equal to

E σ‹,τ k pϕ rks r ¨1tT m`1 "8u ¨1tS Tm`1 "iu | T m ă 8q.
This concludes also the proof of (5.18).

From (5.17) and (5.18) we obtain

η¨P σ‹,τ k pT m`1 ă 8, S Tm`1 " i | T m ă 8q`E σ‹,τ k pϕ rks r ¨1tT m`1 "8u ¨1tS Tm`1 "iu | T m ă 8q ě pξ i ´δq ¨Pσ‹,τ k pS Tm`1 " i | T m ă 8q.
Summing both sides of this inequality for i ă k and rearranging the terms we obtain ÿ

iăk ξ i ¨Pσ‹,τ k pS Tm`1 " i | T m ă 8q ď η ¨Pσ‹,τ k pT m`1 ă 8, S Tm`1 ă k | T m ă 8q `Eσ‹,τ k pϕ rks r ¨1tT m`1 "8u ¨1tS Tm`1 ăku | T m ă 8q `δ ¨Pσ‹,τ k pS Tm`1 ă k | T m ă 8q ď η ¨Pσ‹,τ k pT m`1 ă 8, S Tm`1 ă k | T m ă 8q `Eσ‹,τ k pϕ rks r ¨1tT m`1 "8u ¨1tS Tm`1 ăku | T m ă 8q `δ.
The last inequality, (5.14) and (5.15) yield

η ‹ ď η ¨Pσ‹,τ k pT m`1 ă 8, S Tm`1 ă k | T m ă 8q `Eσ‹,τ k pϕ rks r ¨1tT m`1 "8u ¨1tS Tm`1 ăku | T m ă 8q `δ `η ¨Pσ‹,τ k pS Tm`1 " k | T m ă 8q `Eσ‹,τ k pϕ rks r ¨1tS Tm`1 ąku | T m ă 8q.
(5.21)

Notice that

P σ‹,τ k pT m`1 ă 8, S Tm`1 ă k | T m ă 8q `Pσ‹,τ k pS Tm`1 " k | T m ă 8q " P σ‹,τ k pT m`1 ă 8 | T m ă 8q (5.22)
which allows to regroup the rst and the fourth summand of right-hand side of (5.21). Indeed, tT m`1 ă 8, T m ă 8u is the union of three disjoint events, depending on whether the state visited at the next time moment T m `1 is ă k, " k, or ą k. But for the second of these events we have tT m`1 ă 8, T m ă 8, S rks Tm`1 " ku " tT m ă 8, S rks Tm`1 " ku since S rks Tm`1 " k implies that T m`1 " T m `1 ă 8. And nally the third event tT m`1 ă 8, T m ă 8, S rks Tm`1 ą ku is empty since S rks Tm`1 ą k means that at time T m `1 the game hits a stopping state thus the stopping state process will never return to k, therefore T m`1 " 8. This terminates the proof of (5.22).

We can regroup also the second and the last summands of (5.21) since

P σ‹,τ k pT m`1 " 8, S Tm`1 ă k | T m ă 8q `Pσ‹,τ k pS Tm`1 ą k | T m ă 8q " P σ‹,τ k pT m`1 " 8 | T m ă 8q
We obtain this again by presenting the event tT m`1 " 8, T m ă 8u as the union of three disjoint events depending on the value of S Tm`1 . However, S Tm`1 " k contradicts T m`1 " 8 and S Tm`1 ą k implies T m`1 " 8.

Using these observations we deduce from (5.21) that 

η ‹ ď η ¨Pσ‹,τ k pT m`1 ă 8 | T m ă 8q `Eσ‹,τ k pϕ rks r ¨1tT m`1 "8u | T m ă 8q `δ.
P σ‹,τ k pT m`1 ă 8 | T m ă 8q ď 1 `δ ´η‹ 1 ´η ă 1 `pη ‹ ´ηq ´η‹ 1 ´η " 1. Therefore P σ‹,τ k p@m, T m ă 8q " lim mÑ8 P σ‹,τ k p@i ď m, T i ă 8q " lim mÑ8 P σ‹,τ k pT 0 ă 8q ¨m´1 ź q"0 P σ‹,τ k pT q`1 ă 8 | T q ă 8q ď lim mÑ8 ˆ1 ´η‹ `δ 1 ´η ˙m´1 " 0, (5.24)
i.e. if player Max uses the strategy σ ‹ then with probability 1 the state k is visited only nitely many times.

Multiplying both sides of (5.23) by P σ‹,τ k pT m ă 8q, taking into account that 0 ă δ ă η ‹ ´η and rearranging we get

E σ‹,τ k pϕ rks r ¨1tT m`1 "8u ¨1tTmă8u q ą η ¨Pσ‹,τ k pT m ă 8q ´η ¨Pσ‹,τ k pT m`1 ă 8, T m ă 8q " η ¨Pσ‹,τ k pT m`1 " 8, T m ă 8q.
(5.25) Since the events tT m`1 " 8, T m ă 8u mě0 and t@m, T m ă 8u form a partition of the sets of plays but the last event has probability 0, summing up both sides of (5.25) for all m ě 1 we obtain E σ‹,τ k pϕ rks r q ą η ą w k ´ε 2 which terminates the proof of (5.9).

5.4.2

ε{2-optimal strategy τ ‹ for player Min when r k ď w k and k is the starting state.

We assume that r k ď w k and ε ą 0. The aim of this section is to construct a strategy τ ‹ for player Min such that E σ,τ‹ k pϕ rks r q ď w k `ε{2

(5.26)

for each strategy σ of Max.

The strategy τ ‹ of player Min is constructed in the following way.

(i) If the current state is k then player Min selects actions with probability given by his optimal strategy in the concurrent one-step game M k pw 1 , . . . , w k´1 , w k , r k`1 , . . . , r n q.

Thus the strategy of player Min at k is locally memoryless, the probability used to select actions to execute at k does not depend on the previous history. (ii) During all stages j such that T m ă j ă T m`1 (between the mth and pm `1qth visit to state k) player Min plays using his ε m :" ε{2 m`1 -optimal strategy in the ϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq -game4 . In general the strategy played by Min between two visits to state k is not memoryless because ε m changes at each visit to k.

When player Min applies this strategy during all stages j, T m ă j ă T m`1 , in the ϕ rks r -game then we assume tacitly that starting from stage T m `1 player Min forgets all history preceding this stage and he plays this strategy as if the game started afresh at stage T m `1. Indeed, at the time T m the current visited state is k and player Min selects actions according to his optimal strategy in the concurrent one-step game M k pw 1 , . . . , w k´1 , w k , r k`1 , . . . , r n q and, by (5.6), the left-hand side of (5.27) gives the payo in this concurrent one-step game while the right-hand side is the value of this game. Since he plays optimally the payo cannot be greater than the value.

Let us consider the event tT m ă 8, S Tm`1 " iu, where i ă k.

(5.28)

This event, presented on the upper side of Figure 5.4, consists of plays h satisfying the following conditions:

(i) h visits k at least m times and prior to the m-th visit to k (which takes place at time T m ) the stopping states tk `1, . . . , nu were not visited, i.e. S t P rks for all t ă T m , (ii) at time T m the game moves from k to i, i.e. S Tm`1 " i.

The denition of τ ‹ says that starting from time T m `1, if the current state S Tm`1 is ă k and until the next visit to state k, player Min plays according to ε{2 m`1 -optimal strategy in the ϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq -game. By (5.5), the value of the ϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq -game starting at state i P rk ´1s is w i . Thus if we consider the game that, in some sense, restarts afresh at state i at time T m `1 and we apply to such residual game the payo ϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq and we assume that player Min plays τ ‹ then the expected payo will not be greater than w i `ε{2 m`1 , i.e. E σ,τ‹ k pϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq ˝θTm`1 | S Tm`1 " i, T m ă 8q ď w i `ε{2 m`1 . (5.29)

where f ˝g denotes the composition of mapping f and g. Now let us note that (5.27) closely resembles (5.14) while (5.29) resembles (5.16).

What is dierent but symmetric is that the rst two formulas concern strategies pσ ‹ , τ q and the last two pσ, τ ‹ q. Moreover, the inequalities are reversed. The following table resumes the correspondence between constants appearing in the formulas:

Eq. (5.14), (5.16) Eq. (5.27), (5.29)

η w k η ‹ w k ξ i w i δ ´εm
Thus exactly in the same way as we deduced (5.23) from (5.16) and (5.14) we can deduce from (5.27) and (5.29) the following formula analogous to (5.23) (just reverse the inequality and replace the constants as indicated above):

w k ¨Pσ,τ‹ k pT m`1 ă 8 | T m ă 8q `Eσ,τ‹ k pϕ rks r ¨1tT m`1 "8u | T m ă 8q ´εm ď w k .
Rearranging the terms and multiplying by P σ,τ‹ k pT m ă 8q we obtain from this inequality that

E σ,τ‹ k pϕ rks r ¨1tT m`1 "8u ¨1tTmă8u q ď w k ¨Pσ,τ‹ k pT m`1 " 8, T m ă 8q `ε 2 m`1 ¨Pσ,τ‹ k pT m ă 8q ď w k ¨Pσ,τ‹ k pT m`1 " 8, T m ă 8q `ε 2 m`1 .
The events tT m`1 " 8, T m ă 8u are pairwise disjoint and their union is equal to tDm, T m " 8u thus summing over m ě 1 both sides of the inequality we obtain E σ,τ‹ k pϕ rks r ¨1tDm,Tm"8u q ď w k ¨Pσ,τ‹ k pDm, T m " 8q `ε{2.

On the other hand, for all plays in t@m, T m ă 8u the state k is visited innitely often thus ϕ rks r is equal to r k .

Thus

E σ,τ‹ k pϕ rks r q " E σ,τ‹ k pϕ rks r ¨1tDm,Tm"8u q `Eσ,τ‹ k pϕ rks r ¨1t@m,Tm"8u q " E σ,τ‹ k pϕ rks r ¨1tDm,Tm"8u q `rk ¨Pσ,τ‹ k p@m, T m ă 8q ď w k ¨Pσ,τ‹ k pDm, T m " 8q `rk ¨Pσ,τ‹ k p@m, T m ă 8q `ε{2 ď w k `ε{2.

5.4.3

ε{2-optimal strategies for the other cases when the starting state is k In Sections 5.4.1 and 5.4.2 we have constructed ε{2-optimal strategies for player Max when w k ą r k and for player Min when w k ě r k under the condition that Fix k´1 pf qprq is the value vector of the ϕ rk´1s r -game.

But passing to the dual game, the last condition implies that Fix k´1 pf qprq is the value vector in the dual stopping game with payo ϕ rk´1s r .

Therefore, proceeding exactly as in Section 5.4.1, we can construct a strategy τ ‹ for player Max in the dual game with payo ϕ rks r such that E τ ‹ ,σ k pϕ rks r q ě w k ´ε{2

(5.30) for all strategies σ of player Min if w k ą r k .

(5.31) By duality of games and xed points, E τ ‹ ,σ k pϕ rks r q " 1 ´Eσ,τ ‹ k pϕ rks r q, w k " 1 ´wk and r k " 1 ´rk . Thus (5.30) is equivalent to E σ,τ ‹ k pϕ rks r q ď w k `ε{2 and (5.31) is equivalent to w k ă r k , i.e. we get a ε{2-optimal strategy of player Min in the ϕ rks r -game if w k ă r k .

In the similar way, applying the construction of Section 5.4.2 to the dual game and coming back to the original game we get a strategy σ ‹ for player Max such that

E σ ‹ ,τ k pϕ rks r q ě w k ´ε{2 if w k ď r k .

5.4.4

ε-optimal strategies for the ϕ rks r -game starting at states ă k.

It remains to prove that

Fix k i pf qprq :" F k´1 i pw k ; rq is the value of the ϕ rks r -game starting in the state i ă k. To this end we must construct strategies σ 7 and τ 7 for player Max and Min, respectively, such that E σ,τ 7 i pϕ rks r q ď Fix k i pf qprq `ε and E σ 7 ,τ i pϕ rks r q ě Fix k i pf qprq ´ε

(5.32) for all strategies σ, τ . We dene only the strategy τ 7 for player Min and prove the rst equation of (5.32). The denition of σ 7 and the proof of the right-hand side of (5.32) are symmetrical and are left to the reader.

Recall that T 1 was dened as the (random) time of the rst visit of the stopped state process S rks t to the state k, cf. (5.7). Let τ ‹ be the strategy of player Min dened at page 81 that satises (5.26), i.e τ ‹ is an ε{2-optimal for player Min in the ϕ rks r -game starting at the state k.

By the induction hypothesis, there exists an ε{2-optimal strategy α for player Min in the ϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq -game.

We dene the strategy τ 7 for player Min by composing strategies α and τ ‹ as follows:

τ 7 pS 1 , pA 1 1 , A 2 1 q, ¨¨¨, S m q " # αpS 1 , pA 1 1 , A 2 1 q, ¨¨¨, S m q if T 1 ą m, τ ‹ pS T 1 , pA 1 T 1 , A 2 T 1 q, ¨¨¨, S m q if T 1 ď m.
Intuitively, τ 7 is the strategy such that player Min plays according to α until the rst visit to k and starting from the moment of the rst visit to k he switches to τ ‹ . Moreover, when he switches to τ ‹ then he forgets all history prior to the moment T 1 and behaves as if the game have started afresh at k.

First we want to show that, for each strategy σ of player Max and for each state i ă k,

E σ,τ 7 i pϕ rks r | T 1 ă 8q " E σ,τ 7 i pϕ rks r ˝θT 1 | T 1 ă 8q ď w k `ε{2
where θ T 1 is the shift operation, cf. Denition 5.3, and w k " Fix k k pf qprq is the value of k.

To justify the rst equality let us notice that the plays with T 1 ă 8 do not visit the stopping states, i.e. the states ą k, prior to T 1 . Therefore the payo ϕ rks r for such plays is not modied if we shift them by T 1 .

The second inequality follows from the denition of τ 7 . When the game hits state k at time T 1 player Min switches to strategy τ ‹ and forgets the history prior to T 1 . Since τ ‹ is ε{2-optimal for player Min in the ϕ rks r -game for plays starting at k, using this strategy limits the payo to at most w k `ε{2.

Now we examine the expected payo for plays with T 1 " 8. Such plays never visit k, therefore it is irrelevant for them if k is stopping or not like it is irrelevant what is the reward associated with k. Moreover, for such plays player Min plays according to strategy τ ‹ . For these reasons we have E σ,τ 7 i pϕ rks r | T 1 " 8q " E σ,τ‹ i pϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq | T 1 " 8q.

(5.33)

From (5.33) we obtain

E σ,τ 7 i pϕ rks r q " E σ,τ 7 i pϕ rks r | T 1 ă 8q ¨Pσ,τ 7 i pT 1 ă 8q `Eσ,τ 7 i pϕ rks r | T 1 " 8q ¨Pσ,τ 7 i pT 1 " 8q ď pw k `ε{2q
¨Pσ,τ 7 i pT 1 ă 8q `Eσ,τ‹ i pϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq | T 1 " 8q ¨Pσ,τ 7 i pT 1 " 8q.

(5.34)

Since τ ‹ is ε{2-optimal for player Min in the ϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq -game we have

F k´1 i pw k ; rq `ε{2 ě E σ,τ‹ i pϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq q " E σ,τ‹ i pϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq | T 1 ă 8q ¨Pσ,τ‹ i pT 1 ă 8q `Eσ,τ‹ i pϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq | T 1 " 8q ¨Pσ,τ‹ i pT 1 " 8q.
Notice that plays with T 1 ă 8 have payo w k in the ϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq -game because k is stopping in this game and the reward of k is equal to w k . Hence we can rewrite (5.35) as

F k´1 i pw k ; rq `ε{2 ě w k ¨Pσ,τ‹ i pT 1 ă 8q `Eσ,τ‹ i pϕ k´1 pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq | T 1 " 8q ¨Pσ,τ‹ i pT 1 " 8q. Thus E σ,τ‹ i pϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq | T 1 " 8q ¨Pσ,τ‹ i pT 1 " 8q ď F k´1 i pw k ; rq `ε{2 ´wk ¨Pσ,τ‹ i pT 1 ă 8q. (5.35)
From (5.34) and (5.35) and since P σ,τ 7 i pT 1 ă 8q " P σ,τ‹ i pT 1 ă 8q we get

E σ,τ 7 i pϕ rks r q ď pw k `ε{2q ¨Pσ,τ 7 i pT 1 ă 8q `F k´1 i pw k ; rq `ε{2 ´wk ¨Pσ,τ‹ i pT 1 ă 8q " F k´1 i pw k ; rq `ε{2 `pε{2q ¨Pσ,τ 7 i pT 1 ă 8q ď F k´1 i pw k ; rq `ε " Fix k i pf qprq `ε
which terminates the proof of the ε-optimality of τ 7 .

Dual game

We have constructed a ε-optimal strategy for Max and Min for the game starting at k but the strategy for Max was constructed under the condition r k ă w k while the strategy for Min was constructed under the condition r k ď w k .

How to obtain ε-optimal strategies for both players for two remaining cases (r k ě w k for Max and r k ą w k for Min) we use the natural duality of the nested xed points and the games.

Let G be a priority game. The dual game G is obtained in the following way:

(Di) G has the same states, actions and transition probabilities as G, (Dii) if r " pr 1 , . . . , r n q is the reward vector in G then r " pr 1 , . . . , r n q is the reward vector in G, where for z P r0, 1s, z :" 1 ´z, (Diii) players Max and Min exchange the roles, in the dual game for each state i P S, Apiq are the actions of player Max while Bpiq are the actions of player Min, moreover in the dual game player Max wants to minimize the priority payo ϕ r while Min wants to maximize the priority payo ϕ r .

To avoid confusion, we write Max and Min to denote the players, respectively, maximizing and minimizing the priority payo in the dual game.

A strategy σ is a strategy of player Max in G if and only if it is a strategy of player Min in the dual game G. A symmetric property holds for strategies of player Min.

For each play h we have ϕ r phq " 1 ´ϕr phq, thus E σ,τ i pϕ r q " 1 ´Eτ,σ i pϕ r q, where the left hand side is the expected payo in G, while E τ,σ i pϕ r q is the expected payo in G when Max plays according to τ and Min plays according to σ.

This implies that v i " 1 ´vi , where v i is the value of state i in G while v i is the value of i in the G. Moreover, a strategy is ε-optimal for player Max in G if and only if it is ε-optimal for player Min in G. A symmetric property holds for strategies of player Min.

Chapter 6 Discussion and conclusions

In Chapter 4 we proved that in turn-based stochastic priority games both players have pure memoryless optimal strategies. Since the number of states and actions are nite, the number of possible pure memoryless strategies is also nite. Therefore, comparing game values obtained for all pairs of pure memoryless strategies (σ,τ ), we can nd pure memoryless optimal strategies. This method is highly inecient.

The question whether there exists a more ecient way to nd these pure memoryless optimal strategies for both players is open.

Concerning concurrrent priority games, in the future we hope to use the approach developed in Chapter 5 to nd non-trivial classes of concurrent priority games where one or both players have ε-optimal memoryless strategies. In this direction let us mention the result of Secchi [START_REF] Secchi | On the existence of good stationary strategies for nonleavable stochastic games[END_REF] who proved that in concurrent limsup games 1 player Min has an ε-optimal memoryless strategy.

Another interesting problem is to nd a method allowing to approximate the values of the concurrent priority games with a given accuracy.

1. A limsup game is a game with payo equal to lim sup k r s k , where ps k q 8 k"1 are the visited states during the play.

Part II Population questions

Chapter 7

Analysing population dynamics of Markov chains

In this chapter we analyse the simplest framework among discrete time stochastic nite state system: Markov chains. Contrary to what we did in the rst part of the thesis, here we use another interpretation. Namely, the population semantics: it explains how a distribution over the states is transformed at each step. Let us consider the following example: let M be the transition stochastic matrix dened in (7.1). We can draw the Markov chain as showed in Figure 7.1: each arrow shows the probability to move from each state to another one. Assume that initially 1{2 of the population are in state 2 and the other half is in state 3. Then if we want to know the proportion of the population in each state in the next step it suces to multiply the matrix M by vector p0, 1{2, 1{2q and we obtain p0.45, 0.3, 0.25q. ¨0.1 0.7 0.2 0.4 0 0.6 0.5 0.3 0.2

' (7.1)
With such semantics, properties considered are dierent than reachability, parity, etc. Instead, we want to know whether there exists a step at which the proportion of the distribution in a set Goal of states is higher than some threshold γ (population question). This is orthogonal to the question of bringing with high probability a pebble in a set of state, where the number of steps to bring the pebble is non uniform over all the runs (PCTL question) [START_REF] Beauquier | A logic of probability with decidable model-checking[END_REF] . The population question is much harder to verify than the PCTL question: it is actually not known whether this kind of question can be decided on Markov Chains ([AAOW15], as will be discussed in Section 7.1.2). In this chapter we approach this problem by studying the languages generated by Markov chains, whose regularity would entail the decidability of this question.

More precisely, in this chapter we study classes for which the language of tra- jectories is (ω-)regular, allowing for the exact resolution of any regular question (e. g. checking any linear temporal logic with intervals (LT L I ) formula as dened in [START_REF] Agrawal | Approximate verication of the symbolic dynamics of Markov chains[END_REF], it means, a linear temporal logic in which an atomic proposition will assert that the current probability of the node i lies in the interval d). More precisely, we dene the trajectory from a given initial distribution as an (innite) word over the alphabet tA, Bu. The n´th letter of a trajectory being A (for Above, respectively, B for Below) represents that after n steps the probability to be in Goal is greater than or equal to (respectively lesser than) the threshold γ. Further, we consider the language of MC as the set of trajectories (words) ranging over a (possibly innite) set of initial distributions. Thus, we can answer questions such as:

does there exist a trajectory from the set of initial distributions satisfying a regular property or do all trajectories satisfy it. We prove that the language of a MC with distinct real positive eigenvalues is regular.

Preliminaries and denitions

A distribution δ over Q is a function δ : Q Ñ r0, 1s such that ř qPQ δpqq " 1. Given M P |Q| ˆ|Q|, the matrix associated with a MC, we denote by M δ the distribution given by M δpqq " ř q 1 PQ δpq 1 qM pq 1 , qq for all q P Q. Notice that, considering δ and M δ as row-vectors, this corresponds to performing the matrix multiplication. That is, we consider M as a transformer of probabilities, as in [KVAK10, AAGT15]: pM δqpqq represents exactly the probability to be in q after applying M once, knowing that the initial distribution is δ. Inductively, pM n δqpqq represents the probability to be in q after applying n times M , knowing that the initial distribution is δ.

For example, let pS, M q be the transition matrix of the Markov chain presented in Figure 7.1 and (7.1) with initial distribution given by δ 0 " ¨0 0.5 0.5

'.

Hence the initial probability to be in state 2 is 1 2 and 1 2

for state 3. The distribution at the next step is given by M δ " ¨0.45 0.3 0.25 '.

Motivation

As motivation, consider a population of yeast under osmotic stress [MTC `14].

The stress level of the population can be studied through a protein which can be marked (by a chemical reagent). For the sake of illustration, consider the following simplistic model of a Markov Chain M yeast with the protein being in 3 dierent discrete states (namely the concentration of the protein being high (state 1), medium (state 2) and low (state 3)). The transition matrix, also denoted M yeast , gives the proportion of yeast moving from one protein concentration level to another one, in one time step (say, 15 seconds).

M yeast " ¨0.8 0.1 0.2 0.1 0.8 0.1 0.1 0.1 0.7

'

For instance, 20% of the yeast with high protein concentration will have low protein concentration at the next time step. The marker can be observed optically when the concentration of the protein is high. We know that the original proportion of yeast in state 1 is 1{3 (by counting the marked yeast population), but we are unsure of the mix between low and medium. The initial set of distributions is thus

Init yeast " tp1{3, x, 2{3 ´xq | 0 ď x ď 2{3u.
The language of M yeast will tell us how the population evolves wrt the number of marked yeast being above or below the threshold γ yeast " 5{12, depending on the initial distribution in Init yeast . Now, suppose an experiment with yeasts reveals that there are at rst less than 5{12

of marked yeast (i.e. with high concentration of proteins), then more than 5{12 of marked yeast, and eventually less than 5{12 of marked yeasts. That is, the trajectory is B for a while, then A for a while, then it stabilises at B, in other words, the trajectory is B n A m B ω for some n, m ě 0. Let us call this property as pP yeast q (note that this is a regular property). We are interested in checking whether our simplistic model exhibits at least one trajectory with the property pP yeast q, and if yes, the range of initial values generating trajectories with this property.

Our method computes eectively the language of M yeast , as M yeast has positive real eigenvalues, answering the question whether there exists an initial trajectory s.t. property pP yeast q holds.

Relation with the Skolem problem

Skolem problem can be formulated as follows: for an integer matrix M , does there exist n such that M n rs, ts " 0? where M n rs, ts " e s M n e t and e i is a vector whose components consist of a one in the i-th position and 0 otherwise. On the other hand, the Markov reachability problem can be formulate as: given a stochastic matrix M with rational entries and a rational number r, does there exist n such that M n rs, ts " r? Hence, the Markov reachability problem is a sub-case of Skolem, for the particular case where matrices are Markov chains. In [START_REF] Akshay | Reachability problems for Markov chains[END_REF] it is proved that Markov reachability problem is at least as hard as the Skolem problem, in particular, they show that the Skolem problem can be reduced to the Markov reachability problem in polynomial time.

We dene three basic problems which have been studied extensively in dierent contexts. Given an initial distribution δ 0 and a MC A with Matrix M , target states Goal and threshold γ:

Existence problem: does there exist n P N such that the probability to be in Goal after n iterations of M from δ 0 is γ (i.e., ř qPGoal pM n δ 0 qpqq " γ)?

Positivity problem: does there exist n P N such that the probability to be in Goal after n iterations of M from δ 0 is at least γ (i.e., ř qPGoal pM n δ 0 qpqq ě γ)?

Ultimate Positivity problem: does there exist n P N s.t., for all m ě n, the probability to be in Goal after m iterations of M from δ 0 is at least γ (i.e., ř qPGoal pM m δ 0 qpqq ě γ)?

Note that all these problems are dened from a x initial distribution δ 0 . These problems for MCs are specic instances of problems over general recurrence sequences, that have been extensively studied [START_REF] Ouaknine | Decision problems for linear recurrence sequences[END_REF][START_REF] Halava | Positivity of second order linear recurrent sequences[END_REF]. It turns out that the existence for the special MC case is as hard as the existence (Skolem) problem over general recurrence sequences as shown in [START_REF] Akshay | Reachability problems for Markov chains[END_REF].

Theorem 7.2. [START_REF] Akshay | Reachability problems for Markov chains[END_REF][START_REF] Halava | Positivity of second order linear recurrent sequences[END_REF] For general MCs, the existence and positivity are as hard as the Skolem's problem.

The positivity result comes from the interreducibility of Skolem's problem and the positivity problem for general recurrence sequences [START_REF] Halava | Positivity of second order linear recurrent sequences[END_REF]. The decidability of Skolem has been open for 40 years, and it has been shown that solving positivity, ultimate positivity or existence for general MCs even for a small number of states (<50, depending on the problem considered) would entail major breakthroughs in diophantine approximations [START_REF] Ouaknine | Positivity problems for low-order linear recurrence sequences[END_REF].

Simple MCs

In order to obtain decidability, we will consider restrictions over the matrix M associated with the MC. The rst restriction, fairly standard, is that M has distinct eigenvalues (they can be complex numbers too), which makes M diagonalizable. Denition 7.3. A stochastic matrix is simple if all its eigenvalues are distinct. A MC is simple if its associated transition matrix is. Some decidability results [START_REF] Ouaknine | Ultimate Positivity is decidable for simple linear recurrence sequences[END_REF][START_REF] Ouaknine | On the Positivity Problem for simple linear recurrence sequences[END_REF] have been proved in the case of distinct eigenvalues for variants of the Skolem, which implies the following for simple MCs:

Theorem 7.4. For simple MCs, ultimate positivity is decidable [START_REF] Ouaknine | Ultimate Positivity is decidable for simple linear recurrence sequences[END_REF].

For simple MCs with at most 9 states, positivity is decidable [START_REF] Ouaknine | On the Positivity Problem for simple linear recurrence sequences[END_REF].

We will consider the simple MC restriction. Notice that the decidability restrictions in Theorem 7.4 for these two closely related problems have led to two dierent papers [START_REF] Ouaknine | On the Positivity Problem for simple linear recurrence sequences[END_REF], [START_REF] Ouaknine | Ultimate Positivity is decidable for simple linear recurrence sequences[END_REF] in the same conference, using dierent techniques. As we want to answer in a uniform way any regular question (subsuming among others the above three problems and regular properties such as pP yeast q) for MCs of all sizes, we will later impose more restrictions. We start with the simple well-known observation that a simple MC has a unique stationary distribution.

Lemma 7.5. Let M be a simple stochastic matrix. Then there exists a unique distribution δ stat such that M δ stat " δ stat .

Proof. We give a sketch of proof here. We will later get an analytical explanation of this result. We have M δ " δ i pM ´Idqδ " 0. As M is diagonalizable and 1 is a eigenvalue of M of multiplicity 1, we have KerpM ´Idq is of dimension 1. The intersection of distributions and of KerpM ´Idq is of dimension 0, that is, it is a single point.

As usual with MCs, we consider the probability to be in the set of states Goal after n steps, that is ř qPGoal pM n δqpqq. We consider only one threshold γ, for simplicity. In fact, the case of multiple thresholds reduces to this case, since the behaviour is non-trivial for only one threshold, namely γ stat " ř qPGoal δ stat pqq, as Lemma 7.14

shows. Before to prove this Lemma we need some denitions.

Trajectories and ultimate periodicity

We want to know whether the n th distribution M n δ of the trajectory starting in distribution δ P Init is above the hyperplane dened by ř qPGoal x q " γ, i.e., whether ř qPGoal rM n δspqq ě γ. We will write ρ δ pnq " A (Above) for ř qPGoal rM n δspqq ě γ, and ρ δ pnq " B (Below) else.

Denition 7.6. The trajectory ρ δ " ρ 0 ρ 1 ¨¨¨P tA, Bu ω from a distribution δ is the innite word with ρ n " ρ δ pnq for all n P N.

We write the eigenvalues of M as p 0 , . . . , p k with ||p i || ě ||p j || for all i ă j. Notice that k `1 " |Q| the number of states (as the MC is simple). It is a standard result that all eigenvalues of Markov chains have modulus at most 1, and at least one eigenvalue is 1. We x p 0 " 1. As shown in the next Lemma 7.7, we have, for some a i pδq P C:

ρ δ pnq " A i k ÿ i"0 a i pδqp n i ě γ. (7.2) 
Lemma 7.7. Given a matrix M with distinct eigenvalues pp 0 , p 1 , . . . , p k q, we have ρ δ pnq " A i k ř i"0 a i pδqp n i ě γ for some constants a i pδq iďk independent of n. Proof. As the eigenvalues are distinct the eigenvectors pv i q iďk form a basis. Let 

α i M n v i ¸eq " ÿ qPGoal ˜k ÿ i"0 α i v i p n i ¸eq " k ÿ i"0 p n i ÿ qPGoal α i v i e q ,
with e q " p0, . . . , 0, 1, 0, . . . , 0q t where 1 is it the q-th position. Now xing

a i pδq " ÿ qPGoal α i v i e q , (7.3) 
we have ρ δ pnq " A i k ř i"0 a i pδqp n i ě γ.

In the following, we denote u δ pnq " ř k i"0 a i pδqp n i for all n P N, where a i pδq is dened in (7.3). If ρ δ is (eectively) ultimately periodic (i.e, of the form uv ω ), every (omega) regular property, such as existence, positivity and ultimate positivity is decidable (and are in fact easy to check). Unfortunately, this is not always the case, even for small simple MCs.

Theorem 7.8. [START_REF] Agrawal | Approximate verication of the symbolic dynamics of Markov chains[END_REF] There exists an initial distribution δ 0 and simple MC A with 3 states, and coecients and threshold in Q, such that ρ δ 0 is not ultimately periodic. Proof Sketch. The MC is given by: Goal " t1u is the rst state, γ " 1 

'

The reason the trajectory is not ultimately periodic follows from the fact that the eigenvalues of M 0 are 1, r 0 e iθ 0 and r 0 e ´iθ 0 with r 0 " ? 19{10 and θ 0 " cos ´1p4{ ? 19q.

Figure 7.9 depicts the probability to be in state 1 (the solid line) and ρ δ 0 (the circles).

An easy way to obtain ultimately periodic trajectories is to restrict to eigenvalues v which are roots of real numbers, that is, there exists n P Nzt0u with v n P R.

Proposition 7.10. Let A be a simple MC with eigenvalues pp i q iďm all roots of real numbers. Then ρ δ is ultimately periodic for all distributions δ. The (ultimate) period of ρ δ can be chosen as any m P Nzt0u such that p m i is a positive real number for all i ď m.

Proof. Let m P Nzt0u such that r i " p m i is a positive real number for all i. Such an m exists. Indeed, let n i P Nzt0u such that p n i i P R. Let be the lcm of pn i q iďk and m " 2 . Hence every r i " p m i is a positive real number for all i ď k. Let δ a distribution. Taking (7.2), let ρpnq " ρ δ pmnq for all n P N. We have ρpnq " A i ř k i"0 a i pδqr n i ě 0. We have a i pδq P R for all i. For all r P tr i | i ď ku, we denote I r the set of indices i with r " r i (it is possible that several eigenvalues p j are the roots of the same positive real r i ), and a r " ř iPIr a i pδq. Let r be the largest value in tr i | i ď ku such that a r ‰ 0. Notice that if for all r, a r " 0, then the trajectory is constant, equal to A ω . Obviously, ρpnq is asymptotically equivalent to a r r n when n tends to innity. That is, there exists N δ such that for all n ě N δ , ρpnq is of the sign of a r . Now, consider initial distributions δ 1 in the nite set ∆ " tM 0 δ, . . . , M m´1 δu. Let N be the max over N δ 1 for δ 1 P ∆. We have that ρ δ pmn ` q " ρ M δ pmnq for all P t0, . . . , m´1u. Let u " ρ δ p0q ¨¨¨ρ δ pmN ´1q and v " ρ δ pmN q ¨¨¨ρ δ pmpN `1q´1q. We have that ρ δ " uv ω , proving that ρ is ultimately periodic of (ultimate) period m. Now, for a nite state (Büchi) automaton B over the alphabet tA, Bu, the membership problem, of whether a given single trajectory ρ δ P LpBq, is decidable. It is easy to obtain a (small) automaton B for each of the existence, positivity and ultimate positivity problem such that this problem is true i ρ δ P LpBq. For instance, let us build a non-deterministic Büchi automaton for the ultimate positivity problem, let B be an automaton with two states tq 1 , q 2 u, acceptance condition F " tq 2 u, initial state q 1 and non-deterministic transitions as depicted in Figure 7.11. It is easy to see that this automaton accepts words in which B occurs only nitely many times. We thus obtain the following proposition: Proposition 7.12. Let A be a simple MC with eigenvalues all roots of real numbers. Let δ 0 be a distribution. Then the existence, positivity and ultimate positivity problems from initial distribution δ 0 are decidable. Proof. Let A be a simple MC with eigenvalues all roots of real numbers and let δ 0 be the initial distribution. Let ρ δ be the symbolic trajectory dened in (7.2) and let B be the (Büchi) automaton such that positivity (or ultimate positivity) problem is true i ρ δ P LpBq. As the membership problem is decidable, hence it suces to decide if ρ δ P LpBq to decide if positivity (or ultimate positivity) is true.

q 1 q 2 A A, B A
For the existence problem we have to modify the denition of ρ δ , switching the inequality to an equality, i.e., ρ δ pnq " A i ř k i"0 a i pδqp n i " γ, and to apply the same method of proof.

Note that Propositions 7.10 and 7.12 hold even when the matrix associated with the MC is diagonalizable, but not necessarily simple.

Language of a MC

Using automata-based methods allows us to consider more complex problems, where the initial distribution is not xed. We dene the set Init of initial distributions as a convex polytope, that is the convex hull of a nite number of distributions.

Denition 7.13. The language of a MC A wrt. the set of initial distributions Init is LpInit, Aq " tρ δ | δ P Initu Ď tA, Bu ω .

Note that A and B, and the language, depend on the threshold γ. As we assumed this threshold value to be xed, the language only depends on A and Init. As A is often clear from the context, we will often write LpInitq instead of LpInit, Aq. For the yeast example M " M yeast , we have eigenvalues 1; 0.7; 0.6:

M ¨¨5 {12 1{3 1{4 '" 1 ¨5{12 1{3 1{4 '; M ¨¨5 {12 ´5{12 0 '" 0.7 ¨5{12 ´5{12 0 
'; M ¨¨5 {12 0 ´5{12 '" 0.6 ¨5{12 0 ´5{12

'

We can decompose two initial distributions δ 1 , δ 2 P Init yeast on the eigenvector basis:

¨1{3 1{4 5{12 '" ¨5{12 1{3 1{4 '`1 5 ¨5{12 ´5{12 0 '´2 5 ¨5{12 0 ´5{12 '; ¨1{3 1{3 1{3 '" ¨5{12 1{3 1{4 '´1 5 ¨5{12 0 ´5{12
' Projecting on the rst component, we have ρ δ 1 pnq " A i 1 12 0.7 n ´1 6 0.6 n ě 0, that is ρ δ 1 " B 4 A ω . Also, ρ δ 2 pnq " A i ´1 12 0.6 n ě 0, that is ρ δ 2 " B ω . With the techniques developed in the following, we can prove more generally that, for all n P N, we can nd an s.t., δ " p1{3 1{3 ´ 1{3 ` q T has trajectory ρ δ " B n A ω , and that LpInit yeast q " B ˚Aω Y B ω . Thus, property pP yeast q, from Introduction, does not hold for any initial distribution. Now that we introduce the notions of language, we can prove the Lemma that we mentioned above.

Lemma 7.14. For γ ‰ γ stat , we have LpInit, Aq is regular. Proof. For all distributions δ, we have that M n δ is converging (uniformly over all initial distributions ) towards δ stat as n tends to innity. In fact, the proof of uniform convergence follows the following lines. In the case of irreducible aperiodic Markov Chains, it is well known that M n δ converges uniformly towards a distribution δ stat which does not depend upon the initial δ [START_REF] Asher | Markov chains and mixing times[END_REF]. For irreducible periodic Markov chain, M n δ has the same property. Last, [START_REF] Agrawal | Approximate verication of the symbolic dynamics of Markov chains[END_REF] lift this result to the general case (reducible chains) by a careful analysis.

Hence for all γ ‰ ř qPGoal δ stat pqq, there exists a N (independent of δ) such that either for all n ě N, δ P Init, M n δ will be strictly above γ, or for all n ě N, δ P Init, M n δ will be strictly below γ. This gives LpInit, Aq " S 1 .A ω `S2 .B ω where S 1 and S 2 are nite sets of nite words of length ă N . Hence LpInit, Aq is regular.

In general, if LpInit, Aq is regular, then any regular question will be decidable. For instance, if LpInit, Aq is regular, then it is decidable whether there exists δ 0 P Init such that the existence problem is true for A, δ 0 . One can also ask whether for a given convex polytope Q, some property (such as positivity) expressed e.g. with LT L I [AAGT15] is true. Taking δ in the interior of Q, this corresponds to checking the robustness of the property around δ.

Clearly, simple PA A does not ensure the regularity of LpInit, Aq because of Theorem 7.8 (by choosing Init " tδ 0 u which is a convex polytope). Surprisingly, restricting eigenvalues to be distinct and roots of real numbers does not ensure regularity either [START_REF] Akshay | On Regularity of Unary Probabilistic Automata[END_REF]. In the following, we thus take a stronger restriction: we assume that the eigenvalues of M are distinct and positive real numbers. That is, p 0 " 1 ą p 1 ą ¨¨¨ą p k ě 0 with k `1 " |Q| the number of states. From Proposition 7.10, we obtain as corollary that for all δ 0 , we have either ρ δ 0 " wA ω or ρ δ 0 " wB ω for w a nite word of tA, Bu ˚:

Corollary 7.15. Let M be a simple (or just diagonalizable) stochastic matrix with positive real eigenvalues. Then every trajectory ρ δ 0 is ultimately constant.

However, the language LpInit yeast , M yeast q shows that LpInit, Aq is not always of the simple form

Ť

wPW A wA ω Y Ť wPW B wB ω , for W A , W B two nite sets of nite words over tA, Bu ˚. Nevertheless, in the next two sections, we succeed in proving the regularity of LpInit, Aq, which is our main result: Theorem 7.16. Let A be a MC with distinct positive real eigenvalues, and Init be a convex polytope of (initial) distributions. Then, LpInit, Aq is eectively regular.

Partition of the set Init of initial distributions

Recall that we write u δ pnq :" ř k i"0 a i pδqp n i , where a i pδq are given by Equation (7.2) from the previous section. Because the eigenvalues are real numbers, a i pδq is a real number for every i and δ. Notice that a i is a linear function in δ, that is, a i pαδ 1 `βδ 2 q " αa i pδ 1 q `βa i pδ 2 q. The trajectory ρ δ depends crucially on the sign of a 0 pδq, and if a 0 pδq " 0, on the sign of a 1 pδq, etc. First, for all i ď k, let L i " tδ | a 0 pδq " ¨¨¨" a i pδq " 0u. This is a vector space (in R k ), as for any ν 1 , ν 2 P R k , we have ν 1 , ν 2 P L i implies that any linear combination αδ 1 `βδ 2 P L i (since a i pνq is linear in ν, and the kernel of a linear function is a vector space).

We will divide the space of distributions into a nite set H of convex polytopes H P H to keep the sign of each a i constant on each polytope. Each H P H satises that for all e, f P H, for all i ď k, we have a i peq, a i pf q do not have dierent signs (either one is 0, or both are positive or both are negative). This can be done since a i pνq is continuous (as it is linear) and the set H is nite because for each i ‰ k, sets ta i pδq ą 0, @δu and ta i pδq ă 0, @δu can be separated by an hyperplane in R k`1 , so the space can be divided into at most 2 k`2 parts. This is pictorially represented in the left of Figure 7.17. For instance, we divide Init yeast into three polytopes: tp1{3, y, 2{3 ´yq | y ď 1{3u and tp1{3, y, 2{3 ´xq | 1{3 ď y ď 5{12u and tp1{3, y, 2{3 ´xq | y ě 5{12u as for δ " p1{3, 1{3, 1{3q we have a 0 pδq " 1, a 1 pδq " 0 (and a 2 pδq " ´1{5) and for δ " p1{3, 5{12, 1{4q we have a 0 pδq " 1, a 1 pδq " ´1{5, a 2 pδq " 0.

In general, we can assume that each of H P H is the convex hull of k `2 points (else we divide further: this can be done as the space has dimension k `1). Consider the right part of Figure 7.17. Let Init be the convex hull of points e, f, g, h (in three dimensions) and a 0 pxq " 0 and a 2 pxq ą 0 for all x P te, f, g, h, tu. Hence the sign of each trajectory ultimately depends upon a 1 pxq. In the example, a 1 pgq " a 1 phq " 0 p = (1/3, 0, 2/3)

q = (1/3, 1/3, 1/3) r = (1/3, 5/12, 1/4) s = (1/3, 1/3, 0) a 2 (q) = 0 a 3 (r) = 0 g h e t f a 1 (e) > 0 a 1 (h) = 0 a 1 (g) = 0 a 1 (f ) < 0 a 1 (t) = 0 Figure 7
.17 Breaking into convex polytopes with constant signs while a 1 peq ą 0 ą a 1 pf q. Then there is a point t between e and f for which a 1 ptq " 0 (in fact, t " |a 1 pf q|{p|a 1 peq|`|a 1 pf q|qe`|a 1 peq|{p|a 1 peq|`|a 1 pf q|qf ). We have L 1 XInit is the convex hull of h, g, t. We break Init into two convex polytopes, the convex hull of h, g, t, e and the convex hull of h, g, t, f . Let H P H. We let P be the nite set of (at most k `2) extremities of H. In particular, H is the convex hull of P . Now it suces to show that the language LpHq (taking H as the initial set of distributions) of each of these convex polytopes H is regular to prove that the language LpInitq " Ť HPH LpHq is regular.

High level description of the proof

The proof of the regularity of the language LpHq starting from the convex polytope H is performed as follows. We rst prove that there exists a N max such that the ultimate language (after N max steps) of H is eectively regular using analytical techniques.

Denition 7.18. Given N max , the ultimate language from a convex polytope H is dened as L Nmax ult pHq " tv | Dw P tA, Bu Nmax , wv P LpHqu.

In the next section (Corollary 7.25), we show that this ultimate language L Nmax ult pHq is regular, of the form A ˚B˚¨¨¨B˚Aω Y A ˚B˚¨¨¨A˚Bω with a bounded number of switches between A and B's. However, while for each prex w P tA, Bu Nmax , the set H w of initial distributions in H whose trajectory starts with w is a convex poly-tope; the language LpH w q from H w can be complex to represent. It is not in general wL Nmax ult pHq, but a strict subset. In Section 7.4 (Lemma 7.28), we prove that the language LpH 1 q associated with some carefully dened convex polytope H 1 Ď H is a regular language, of the form Ť wPW wA i A ˚B˚¨¨B ˚Aω YwA i A ˚B˚¨¨¨A˚Bω for a nite set W . Further, removing H 1 from H gives rise to a nite number of convex polytopes with a smaller number of sign-changes, as formally dened in the next section. Hence we can apply the arguments inductively (requiring potentially to change the N max considered). Finally, the union of these languages gives the desired regularity characterization for LpHq.

7.3 Ultimate language 7.3.1 Limited number of switches.

We rst show that the ultimate language L Nmax ult pHq is included into A ˚B˚A˚¨¨¨AB ω Y A ˚B˚A˚¨¨¨B˚Aω for some N max P N, with a limited number of switches between A and B depending on properties of the set P of extremities of H.

We start by considering the generalisation of a sequence u δ to a function over positive reals, and we will abuse the notation u δ to denote both the sequence and the real function.

Denition 7.19. A function of type k P N is a function of the form u : R ą0 Ñ R, with upxq " k ÿ j"0 α j p x j , where p 0 ą ¨¨¨ą p k ą 0.

In Figure 7.20 function of type 2. Now, let u : R ě0 Ñ R be a continuous function. We can associate with function u the (innite) word Lpuq P tA, Bu ω , Lpuq " pa 0 a 1 . . .q, where for all n P N, a n is dened as a n " A if upnq ě 0 and a n " B otherwise. We have easily that ρ δ " Lpu δ q. Knowing the zeros of u δ and its sign before and after the zeros, denes uniquely the trajectory ρ δ .

For example, let u be such that it has four zeros: upN ´0.04q " upN `10.3q " upN `20q " upN `35q " 0 for some integer N . Assume that up0q ă 0, upN `1q ą 0, upN `11q ă 0, upN `30q ă 0 and upN `40q ą 0. Thus, by continuity of u, u is strictly negative on r0, N ´1s, strictly positive on rN, N `10s, non-positive on rN `11, N `34s and non-negative on rN `35, 8q. Thus the associated trajectory ρ δ " B N A 11 B 24 A ω . Hence, it is important to analyse the zeros of functions u δ . If the number of zeros is bounded, then the number of alternations between A's and B's in any trajectory Figure 7.20 Function of type 2 f pxq " 40 ˆ0.8 x ´380 ˆ0.5 x `390 ˆ0.4 x pp 0 " 0.8, p 1 " 0.5, p 2 " 0.4q ρ δ from δ P H will be bounded. In fact, it is a standard result (which we do not use hence do not reprove here) that every type k function u has at most k zeros. We now show a more precise bound on the number of zeros. Namely, for the convex hull H 1 of a nite set P 1 of distributions in H, the number of alternations between A's and B's in H 1 is limited by the number of alternations of the sign of the dominant coecients of the distributions in P 1 .

Let z P N. For i P t0, . . . , zu, let u i pxq :" a i 0 p x 0 `ai 1 p x 1 `¨¨¨`a i k p x k , with p 0 ą p 1 ą p 2 ą . . . ą p k ą 0, representing the functions associated with the z `1 extremities of H 1 . We denote dompu i q the dominant coecient of u i , that is the smallest integer j with a i j ‰ 0. We reorder pu i q iPt0,...,zu such that dompu i q ď dompu i`1 q for all i ă z. We denote sign_dompu i q P t`1, ´1u as the sign of dompu i q. We will assume, as for H, that for all i, i 1 , j, a i j and a i 1 j have the same sign, we can do this assumption as we show in Section 7.2.1. We let Zpu 0 , ¨¨¨, u z q " |ti ď z ´1 | sign_dompu i q ‰ sign_dompu i`1 qu|. That is, Zpu 0 , ¨¨¨, u z q is the number of switches of sign between the dominant terms of u i and u i`1 . We have 0 ď Zpu 0 , ¨¨¨, u z q ď z. Notice that as for dompu i q " dompu j q, we have sign_dompu i q " sign_dompu j q, Zpu 0 , ¨¨¨, u z q does not depend upon the choice in the ordering of pu i q iPt0,...,zu . We can now give a bound on the number of zeros of functions which are convex combinations of u 0 ¨¨¨u z .

Lemma 7.21. Let u 0 ¨¨¨u z be z `1 type k functions. There exists a N max P N such that for all λ i P r0, 1s with ř i λ i " 1, denoting upxq " ř z i"0 λ i u i pxq, upxq has at most Zpu 0 , ¨¨¨, u z q zeros after N max . Further, if upxq has exactly Zpu 0 , ¨¨¨, u z q zeros after N max , then its sign changes exactly Zpu 0 , ¨¨¨, u z q times (that is, no zero is a local maximum/minimum).

In other words, we show that upxq behaves like a polynomial of degree Zpu 0 , ¨¨¨, u z q (as it has Zpu 0 , ¨¨¨, u z q dominating terms), although it has degree k ą Zpu 0 , ¨¨¨, u z q. To simplify notation, let piq " dompu i q for all i. We prove that the coecients a i j p x j for all j ą piq play a negligible role wrt. a i piq p x piq .

To do so, we use derivatives to study the sign of upxq, which is a linear combination of z `1 functions, u i for all 0 ď i ď z. Dividing upxq by a well chosen positive coecient (of the form p x ) before dierentiation allows us to obtain a linear combination of z functions. An induction allows us to conclude.

Proof. For all r P N, we introduce a small constant εprq ą 0 depending on the number pz ´rq of functions considered. We start by dening mpr, p 0 , . . . , p k q ą 0, the min over all 0 ď r ď s ď z and 0 ď j ď k with j ‰ prq of | logp p psq p prq q logp p j p prq q |. The min exists and it is strictly positive because it is among a nite number of values, all strictly positive. We now dene recursively ε : t0, . . . , zu ˆRz`1 ą0 Ñ R ą0 : εpz, p 0 , . . . , p k q " 1 2k and for all 0 ď r ă z, εpr, p 0 , . . . , p k q " mpr,p 0 ,...,p k q p1`3zq 2 εpr `1, p 0 , . . . , p k q. It is now easy to show by induction that for all q R tp 0 , . . . , p k u, for all r, εpr, p 0 q , . . . , p k q q " εpr, p 0 , . . . , p k q. We then dene εprq " εpr, p 0 , . . . , p k q for all 0 ď r ď z. We can also show by induction that for all r, εprq ď 1 2k .

We will use the following technical lemma, which we prove later.

Lemma 7.22. Let I be an interval of R ě0 . Let p 0 ą ¨¨¨ą p k ą 0 be positive reals. Then for all λ r ě 0, . . . , λ z ě 0 with ř z i"r λ i " 1, the function

Let v i pxq :" b i 0 q x 0 `bi 1 q x 1 `¨¨¨`b i k p x k be
v : x Þ Ñ ř z i"r λ i v i pxq has at most Zpb r prq p x prq , ¨¨¨, b z pzq p x
pzq q zeros in I. Further, if vpxq has exactly Zpb r prq p x prq , ¨¨¨, b z pzq p x pzq q zeros in I, then its sign changes exactly Zpb r prq p x prq , ¨¨¨, b z pzq p x pzq q times (that is, its zeros in I are not local maximum or minimum).

Notice that in Lemma 7.22, piq is not necessarily the dominating factor for v i . In fact, v i is u i plus some factors. If I is bounded, it can be the case that |b i j | " |b i piq | with j ą piq. Assume Lemma 7.22 has been proved. We then apply Lemma 7.22 with r " 0, v i " u i for all i ď z and I " rN max , 8q, with N max chosen such that the negligibility hypothesis is veried, which is possible as piq is the dominating factor of upiq for all i. This implies that u has Zpb r prq p x prq , ¨¨¨, b z pzq p x pzq q " Zpu 0 , . . . , u z q many zeros, since these are the dominant coecients of the u i . Thus, we obtain the statement of Lemma 7.21: for all λ i P r0, 1s with ř i λ i " 1, denoting upxq " ř z i"0 λ i u i pxq, upxq has at most Zpu 0 , ¨¨¨, u z q zeros after N max . Further, if upxq has exactly Zpu 0 , ¨¨¨, u z q zeros after N max , then its sign changes exactly Zpu 0 , ¨¨¨, u z q times (that is, its zeros are not local maximum/minimums). This would complete the proof of Lemma 7.21.

It now remains to prove the technical Lemma 7.22, which we do by induction on r:

Proof of Lemma 7.22. For r " z, the lemma is trivial as one has a unique function

v z pxq :" b z 0 q x 0 `bz 1 q x 1 `¨¨¨`b z k p x k . Let
" pzq. For all x P I, we have

ř i‰ |b z i p x i | ď kεpz, p 0 , . . . , p k q|b z p x | ď k 1 2k |b z p x | ď 1 2 |b z p x |.
Hence the sign of v z pxq is the sign of b z for all x P I. That is, v z has no zero in I. The further statement is thus trivially veried in this case.

Let 0 ď r ď z. Assume that the lemma is true for all instances with functions pv r`1 , . . . , v z q. Let us prove that the lemma is true for all instances with functions pv r , . . . , v z q.

Let v i pxq :" b i 0 q x 0 `bi 1 q x 1 `¨¨¨`b i k p x k , for i P tr, . . . , zu such that 1 ě p 0 ą p 1 ą . . . ą p k ą 0, |b i j p x j | ď |εpr, p 0 , ¨¨¨, p k qb i piq p x piq | for all j ‰ piq and x P I. This hypothesis ensures that for all i, p1 ´kεpr, p 0 , ¨¨¨, p k qq|b i piq |p x piq ď |v i pxq| ď p1 `kεpr, p 0 , ¨¨¨, p k qq|b i piq |p x piq . As we have εpr, p 0 , . . . , p k q ď 1 2k for all r, it gives

1 2 b i piq p x piq ď |v i pxq| ď 3 2 b i piq p x piq (7.4)
Let λ 1 ě 0, . . . , λ z ě 0 with ř iďz λ i " 1. Take the maximal x y P I such that vpx y q " ř rďiďz λ i v i px y q " 0 (if there is no such zero, then we are done). We can assume without loss of generality that prq ‰ ¨¨¨‰ pzq, else it is easy to merge several u i with the same piq together (by replacing all u i with the same piq by the sum of all of them). We have |λ r v r px y q| " | ř iąr λ i v i px y q| because x y is a zero of v. Taking s ą r with |λ s v s px y q| maximal, we have | ř iąr λ i v i px y q| ď zλ s |v s px y q|. Thus |λ r v r px y q| ď zλ s |v s px y q|.

We let I 1 " I X r0, x y s. Using (7.4) for v r and for v s at x y P I, we have λ r |b r prq |p xy prq ď λ s 3z|b s psq |p xy psq . Now, because p prq ą p psq , we have for all x P I 1 : λ r |b r prq |p x prq ď λ s 3z|b s psq |p x psq . By applying the hypothesis of the negligibility, we thus get for all x P I 1 and all j ‰ prq, λ r |b r j |p x j ď λ s 3zεpr, p 0 , . . . , p k q|b s psq |p x psq . That is, the terms λr λs b r j q x j , with j ‰ prq are small wrt b s psq q x psq for x P I 1 . induction, it is easy to see that the sign of f px y q is the sign of c r`1 pr`1q , that is strictly negative.

In the same way, as prq is the dominating factor of vpxq in I, just after x y (remember that vpx y q " v 1 px y q " 0), the sign of v is b r prq ą 0. This contradicts the continuity of v and the fact that vpx y q " 0 and that its derivative is negative.

For the second statement, assume that v has exactly α :" Zpb r prq p x prq , . . . , b z pzq p x z q zeros in I. We know by the above that the derivative has exactly α ´1 zeros y 1 , . . . , y α´1 in I 1 . For all i P t1, α ´1u there is one zero x i of v between two consecutive zeros y i , y i`1 of the derivative. Now, if by contradiction v does not change sign at one of its zeros, let say x i , it means that x i " y i . In particular, it means that in py i , y i`1 s, there is no zero of v, which contradicts the fact that v has exactly α zeros in I 1 . It is also the case if the derivative is null at x y . Last, v being continuous, it can not change sign after x y as it has no zero other than x y (by denition of x y ).

Let H P H, and P its nite set of extremal points. We can apply Lemma 7.21 to u 0 , . . . , u z , the functions associated with the points of P (in decreasing order of dominating coecient), and obtain a N max . Now, since P is nite, the trajectories from P are ultimately constant, hence there exists N y such that for all i ď y, the trajectory of u i is wA ω or wB ω for some w P tA, Bu Ny . We dene N H to be the maximum of N y and N max . With this bound on the number of zeros, we deduce the following inclusion for the ultimate language L N H ult pHq:

Corollary 7.23. Let y " Zpu 0 , . . . , u z q. The ultimate language L N H ult pHq Ď C 1 ¨¨¨C ẙ´1 C ω y YC 1 ¨¨¨C ẙ´1 C ω y´1 for tC i , C i`1 u " tA, Bu for all i ă y; and C y " A i sign_dompu 0 q is positive.

We can have 4 dierent sequences for C 1 ¨¨¨C ẙ´1 C ω y with tC i , C i`1 u " tA, Bu, depending on the rst and last letters C 1 , C y (or equivalently, C y and parity of y which determines C 1 ).

The proof of our main result on regularity of LpHq will proceed by induction over the switching-dimension ZpHq of H which we dene as ZpHq " Zpu 0 , . . . , u z q. Notice that we could dene the switching dimension for any convex set (not necessarily a polytope) whenever the sign of a i pδq does not change within the convex set. Finally, we also dene sign_dompHq " sign_dompu 0 q.

7.3.2

Characterization of the ultimate language.

We now show that the ultimate language of H is exactly L N H ult pHq " A ˚B˚A˚¨¨¨AB ω YA ˚B˚A˚¨¨¨B˚Aω , with at most ZpHq switches of signs. We will state the associated technical Lemma 7.24 in the more general settings of faces as dened below, as it will be useful in the next section. Let P be the nite set of extremal points of a H. We call pf 0 , . . . , f y q Ď P a face of H if Zpv 0 , . . . , v y q " y " ZpHq for the functions pv 0 , . . . , v y q associated with the extremal points pf 0 , . . . , f y q. Notice that denoting H 1 the convex hull of F , we can choose N H 1 " N H . Lemma 7.24. Given a face pf 0 , . . . , f y q Ď P of H with associated functions v i , we have, for all n 1 , n 2 , . . . , n y P N there exist λ i P r0, 1s with ř i λ i " 1, such that denoting r vpxq " ř y i"1 λ i v i pxq, Lpr vq " wA n 1 B n 2 . . . B ny A ω (assuming y is even) for some prex w P tA, Bu N H .

That is, for all n 1 , . . . n y , one can nd a prex w of size N H and a point δ in the convex hull of e 1 , . . . , e y , such that ρ δ " wA n 1 B n 2 ¨¨¨B ny A ω (assuming the correct parity of y). Let H 1 be the convex hull of f 0 , . . . , f y . As pf 0 , . . . , f y q is a face, ZpH 1 q " ZpHq.

Proof. Let N max ă n 1 ă ¨¨¨ă n y be integers. We dene inductively x 0 " N max `1{2 and x j :" x j´1 `nj for all 1 ď j ď y if n j ‰ 0 and x j :" x j´1 `1 2y if n j " 0.

We build inductively a function v j i pxq, convex combination of tv i , v i`1 , . . . , v i`j u, such that v j i px k q " 0 for all k P t1, . . . , ju. Further, if i is odd (resp. even), we have v j i pxq ą 0 (resp. v j i pxq ă 0) for all x ą x j . The initialization is trivial: we have that @x ą N max , v 1 pxq is positive, by choice of N max . We let v 0 i pxq " v i for all i. Induction step: Let 0 ă j ă y. Assume that we have built v j´1 i pxq for all i. The rst thing to remark is that for all i, any convex combination of v j´1 i pxq and v j´1 i`1 pxq will have a zero at x 1 , . . . , x j´1 as both terms are zero there. It remains to choose one which also have a zero at x j . By induction, @x ą x j´1 , v j´1 i pxq is positive (resp. negative) when i is odd (resp. even). Thus it exists λ j i P p0, 1q such that λ j i v j i px j q `p1 ´λj i qv j i`1 px j q " 0. We thus dene v j i pxq " λ j i v j i pxq `p1 ´λj i qv j i`1 pxq and it has the required j zeros, after N max . As it is a linear combination of v 1 ¨¨¨v i`j , it has exactly j zeros after N max (by lemma 7.21), and thus, @x ą N j , v i j pxq is positive (negative) if i is odd (even) (as it has no zero after x j and we know its asymptotic behaviour).

Then v y 1 has tx 1 , . . . , x y u as zeros, and by lemma 7.21, it switches sign each time. Hence the language of v 1 y is wA n 1 B n 2 . . . A ω (or wB n 1 A n 2 . . . A ω if y odd) for some prex w of size |w| " N max .

Then, the ultimate language of H 1 (i.e., the language after prexes of size N H associated with y) contains A ˚B˚. . . B ˚Aω with y switches between A and B, which is the converse of Corollary 7.23. We can thus deduce the following about the ultimate language:

Corollary 7.25. L N H ult pHq " L N H ult pH 1 q " C 1 C 2 . . . C ẙ A ω Y C 1 C 2 . . . C ẙ´1 B ω with tC i , C i`1 u " tA, Bu.

Proof. We rst prove the result for L N H ult pH 1 q. We can apply lemma 7.24 to H 1 and lemma 7.21 to H 1 . We obtain the rst part of the union. Now, let H 2 Ď H 1 be the convex hull of e 1 , ¨¨¨, e y (that is excluding e 0 ). Each point δ in H 1 zH 2 has a trajectory which ends with A ω , as dompu δ q " dompv 1 q, and thus sign_dompu δ q " sign_dompv 1 q by construction of H (and H 1 Ď H). Thus the points with trajectory ending with B ω are in H 2 , and applying lemma 7.21, we know that their ultimate trajectory has at most y ´1 switches. Applying lemma 7.24 to H 2 , we obtain the second hand of the union. Now, L N H ult pH 1 q Ď L N H ult pHq, and L N H ult pHq Ď C 1 C 2 . . . C ẙ A ω Y C 1 C 2 . . . C ẙ´1 B ω by Corollary 7.23. However, we cannot immediately conclude that LpHq is regular. Though N H is nite, computable and there are a nite number of prexes w of size N H , we need to show that the subset of L N H ult pHq appearing after a given w P tA, Bu N H is (eectively) regular. This is what we do formally in the following section.

Regularity of the language

Let te 0 , ¨¨¨, e z u " P the extremal points of H. Let u p the function associated with each e p P P . We denote y " ZpHq " Zppu p q pďz q. We will show the regularity of LpHq using an induction on ZpHq.

For ZpHq " 0, the regularity of LpHq is trivial as all the dominant coecients have the same sign. Thus, by Corollary 7.23, the ultimate language is L N H ult pHq " A ω and then the language is LpHq " Ť wPW wA ω ; or the ultimate language is L N H ult pHq " B ω and the language is LpHq " Ť wPW wB ω , for a nite set of W Ď tA, Bu N H . For w P tA, Bu N H , consider H w " tδ P H | ρ δ " wvu, i.e., the language of words which begin with the prex w. It is easy to see that H w Ď H is a polytope. Hence ZpH w q ď ZpHq. Observe that LpHq " Ť wPtA,Bu N H LpH w q. To show the regularity of LpHq, we show the regularity of LpH w q for each of the nitely many w P tA, Bu N H . For each w P tA, Bu N H , we have two cases: either ZpH w q ă ZpHq; then we apply the induction hypothesis and we are done. Or else, ZpH w q " ZpHq " y. In this case, the sketch of proof is as follows:

We show that there exists J such that for all i ď y and all j ě J, we have a point h i j in H w with trajectory wC j 1 C 2 C 3 ¨¨¨C i´1 C ω i . This is shown by applying lemma 7.24 to each face pf 0 , . . . , f y q of H and then using convexity arguments and the fact that ZpH w q " ZpHq.

Subsequently, denoting H 1 the convex hull of h 0 J ¨¨¨h y J , we will deduce that LpH 1 q is a regular language of the form wC

J 1 C 1 C 2 C 3 ¨¨¨C i´1 C ω i ,
Partitioning H w zH 1 into a nite set of polytopes, we obtain polytopes of lower switching-dimensions, which have regular languages by induction.

We conclude since the nite union of these regular languages is a regular language, namely LpH w q.

We now formalize the above proof sketch in a sequence of lemmas. For all faces F of H, applying Lemma 7.24 gives for all j P N, a point g j pF q of the convex hull of F with trajectory w j C j 1 C 2 C 3 ¨¨¨C ω y , for some w j P tA, Bu N H . We now prove that pg j q converges towards f y , the point of F with lowest dominant term.

Let i ď y " ZpHq. A i-subface of H is a subset F " pf 0 , . . . , f i q of the set P of extremal points of H such that ZpF q " i.

Lemma 7.26. For every i ď y and every i-subface F i " pf 0 , . . . , f i q of H, pg i j pF qq jPN converges towards f i as j tends to innity. Proof. For i " 0, the result is trivial. Let 0 ă i ď y. By contradiction, assume that there exists a dimension d (as there is a nite number of dimensions) and an innite set J of indices j P N such that g i j is bounded away from f i on dimension d. Let b be this bound. Let H 1 be the convex polytope made of points of the convex hull of F i at distance at least b from f i on dimension d (g y is an extremal point of H, hence there is only one direction of being at distance at least b on dimension d). Applying lemma 7.21 to H 1 , we obtain a bound N H 1 such that the number of switches after N H 1 (in general, N H 1 ą N H ) of any point of H 1 is at most i ´1, as ZpH 1 q ă ZpF i q " i. Now, as J is innite, one can nd a j P J with j ą N H 1 `1. We have that the trajectory of g i j P H 1 is w 1 C j 1 C 2 C 3 ¨¨¨C ω i for some w 1 P tA, Bu N H , which switches signs i times after N H 1 , a contradiction.

In the same way, for all r ă i, we can prove that denoting d i,r j the distance of g i j to the convex hull of pf 0 , . . . , f r q, we have d i,r`1 j {d i,r j converges towards 0 as j tends to innity. Let Dpe, f 0 , . . . , f r`1 q be the distance from e to the convex hull of pf 0 , . . . , f r`1 q divided by the distance from e to the convex hull of pf 0 , . . . , f r q. We thus want to show that Dpg i f , f 0 , . . . , f r`1 q tends towards 0. First, for r " i ´1, this is trivial as d i,r`1 j " 0 for all i, j. Else, for r ă i ´1, if it was not the case, there would exist a bound b and an innite set J of indices with d i,r`1 j {d i,r j ą b for all j P J. Then as above, by considering H 1 the the convex polytope made of points e of the convex hull of F i with Dpe, f 0 , . . . , f r`1 q ą b, we have ZpH 1 q ă ZpF i q " i and the same contradiction as above applies.

For all j, we consider F py, jq the convex hull of tg j pF q | F is a face of Hu. Every point of F py, jq has trajectory w 1 C j 1 C 2 C 3 ¨¨¨C ω y for some w 1 P tA, Bu N H . We then show by convexity that H 2 intersects F py, jq, i.e., it has a point with trajectory w 1 C j 1 C 2 C 3 . . . C ω y .

Lemma 7.27. Let a convex H 1 Ď H and w P tA, Bu N H with ZpH 1 w q " ZpH 1 q. There exists J s.t. for all j ą J, F py, jq X ClosurepH 1 w q ‰ H.

Proof. Let y `1 points h 0 , . . . , h y in ClosurepH 1 w q such that Zph 0 , . . . , h y q " y. We choose J such that for all face F " pf 0 , . . . , f y q of H, for all j ą J, g y j pF q is closer to f y than any h i is from h y , i ‰ y. for all r and all k ą r, Dpg y j pF q, f 0 , . . . , f r q ă Dph k , h 1 , . . . , h r q Then we have that ClosurepH 1 w q intersects the convex hull of pg i j pF qq F a face of H . As g y j pF q P F py, jq for all j, F , we have In particular F py, jq X ClosurepH 1 w q ‰ H.

Similarly, for all i ď y we can dene a polytope F pi, jq. All the points in F pi, jq have trajectory w 1 C j 1 C 2 C 3 ¨¨¨C ω i for some w 1 P tA, Bu N H . We can nd a J i and a point h i j P H w with trajectory wC j 1 C 2 C 3 ¨¨¨C ω i for all i ď y and all j ą J i . Now, as the number of i ď y is bounded, one can nd such a J uniform over all i ď y (by taking maximum over all i).

Consider F pJq the convex hull of F p0, Jq, . . . , F py, Jq. By convexity, all the points in F pJq have their n-th letters of trajectory as C 1 for all n P rN H `1 ¨¨¨N H `Js, since this is true for all points of F pi, Jq. Hence, the language of H w X F pJq is included into wC J 1 C 1 C 2 ¨¨¨C ω y Y wC J 1 C 1 C 2 ¨¨¨C ω y´1 , because of the bound on the number of alternations after N H of trajectories from points of H (Lemma 7.21). We

show now that we have equality.

Lemma 7.28. The language of the convex hull of th 0 J , . . . , h y J u is exactly

wC J 1 C 1 C 2 C 3 ¨¨¨C ẙ´1 C ω y Y wC J 1 C 1 C 2 C 3 ¨¨¨C ẙ´2 C ω y´1 .
Hence the language of H w X F pJq is wC i 1 C 1 ¨¨¨C ω y Y wC i 1 C 1 ¨¨¨C ω y´1 .

Next, we prove Lemma 7.28 for which we rst need an intermediate lemma describing the exact language of the convex hull of two points of H w . In the following, we will abuse notation of a point to also dene the function associated with its trajectory: gpnq ě 0 i the n-th letter of the trajectory starting from g is an A.

Lemma 7.29. Let e 0 ¨¨¨e y be points of H w with Zpe 0 , . . . , e y q " ZpH w q. Assume that the trajectory of e " e k is wC i 1 1 C i 2 2 ¨¨¨C i k´1 k´1 C ω k with i j ą 0 and tC j , C j`1 u " tA, Bu for all j ă k. Assume also that the trajectory of f " e k´1 is wC i 1

1 C i 2 2 ¨¨¨C i k´2
k´2 C ω k´1 . Let i 1 ą i k´1 . Then there is a point g on the segment pe, f q with gpN max `řk´2 j"1 i j ì1 `1{2q " 0.

Notice that any g on pe, f q has at least k ´2 zeros, one in each pN max `i1 `¨¨¨ì j , N max `i1 `¨¨¨`i j`1 q. The g we will build thus have trajectory wC

i 1 1 C i 2 2 ¨¨¨C i 1 k´1 C ω k .
Hence, the language of re, f q is

wC i 1 1 C i 2 2 ¨¨¨C i k´1 k´1 C k´1 C ω k
Proof. Let i ą N . Let g dene a point on pe, f q to be specied later. For a P te, f, gu, we dene u a as the function associated to the point a. Let x :" |w| `i1 `i2 `. . . ìz´3 `i`1{2. We have u e pxq ą 0 and u f pxq ă 0 (in the unlikely case where u f pxq " 0

We now consider points pe 2 j q jďz´3 in the convex hull of pe 1 j q jďz´2 . Thus any of these points have e 2 j py z´1 q " 0 by linearity. Let j P t1, . . . , z ´3u. We chose e 2 j in the segment pe 1 j , e 1 j`1 q such that e 2 j py z´2 q " 0. It is possible as the sign of e 1 j py z´2 q ą 0 and the sign of e 1 j`1 py z´2 q ă 0 (or vice versa, depending on the parity of j). We have that e 2 j has j `1 zeros: y z´1 , y z´2 and one zero in every of rx k , x k`1 q for all k ă j. By induction, we get f :" e z´1 1 such that f py i q " 0 for 1 ď i ď z ´1 and it switches sign between each zeros, hence its trajectory is wC i`i 1

1 C i 2 2 ¨¨¨C i z´1 z´1 C ω z .
Hence the case for i j ą 0 for all j is solved.

Consider now the case where some i j " 0. First, if i 1 " 0, then the above procedure works. Now, for i j " 0 for j ‰ 1, it means that the desired trajectory is

wC i`i 1 1 C i 2 2 ¨¨¨C i j´1 j´1 C i j`1 j`1 ¨¨¨C i z´1 z´1 C ω z " wC i`i 1 1 C i 2 2 ¨¨¨C i j´2 j´2 C i j´1 `ij`1 j´1 C i j`2 j`2 ¨¨¨C i z´1
z´1 C ω z as C j´1 " C j`1 , hence with 2 less switches. It suces to start with the above procedure, but with z 1 " z ´2 and points e 1 ¨¨¨e z 1 " e z´2 . For instance, take e 1 , e 2 . Their trajectories are respectively wC ω 1 and wC i 1 C ω 2 . Applying lemma 7.29, we get the ex- istence of a point f 1 in the convex hull of e 1 , e 2 with a zero in y 1 " N max `i`i 1 `1{2.

Its trajectory is wC

i`i 1 1 C ω 2 .
Last, for the case of wC i 1 C 1 C 2 C 3 ¨¨¨C k´2 C ω k´1 , it suces to proceed in the same way in the convex hull of pe 0 , . . . , e y´1 q.

Next, we note that the set H w zF pJq may not be convex. However, one can partition H w zF pJq into a nite number of convex polytopes. Now, let G be a convex polytope in H w zF pJq. We want to show that ZpGq ă ZpH w q " ZpHq " y. Indeed, else, one could apply Lemma 7.27 to G w " G and for some J 1 obtain F pi, jqXG ‰ H for any j ą J 1 , which contradicts G being a convex set in H w zF pJq.

Hence one can compute the language of every G inductively, and each of them is regular. Finally, this leads to the regularity of LpH w q by nite union, and to the regularity of LpHq, and again by nite union to the regularity of LpInitq. This concludes our proof of the main regularity result, i.e., Theorem 7.16.

Discussion and conclusions

In this chapter, we have shown the following, summed up in table 7.1: if the eigenvalues of the transition (row-stochastic) matrix associated with the MC are distinct roots of real numbers, then any trajectory from a given initial distribution is ultimately periodic. This is tight, in the sense that, there are examples of trajectories which are not ultimately periodic even for MCs with 3 states [AAGT15, Tur68] (with some eigenvalue not root of any real number). Further, the eigenvalues are distinct positive real numbers, then the language generated by a MC starting from a convex polytope of initial distributions is eectively regular. Surprisingly, this result is also tight: there exist MCs with eigenvalues being distinct roots of real numbers (starting from a convex initial set) which generate a non-regular language.

Theorem 7.28. [START_REF] Akshay | On Regularity of Unary Probabilistic Automata[END_REF] There exists a MC A 1 with eigenvalues which are roots of real values and 7 states such that LpInit, A 1 q is not regular.

We proved that if the eigenvalues of the transition matrix associated with the Markov chain are all distinct positive real numbers and we know these values, then the language, for any convex polytope of initial distributions, is eectively regular.

We proved that by building its language of trajectories.

Notice that in general, the eigenvalues of a Markov chain can only be approximated. However, in case these eigenvalues are rational, then one can use the rational root theorem (see, for example, [START_REF] Lang | Undergraduate analysis[END_REF]) in order to nd them explicitly. This also provides a test whether all the eigenvalues are rational, and if yes, whether they are all positive numbers. Besides imposing strong restriction as positive eigenvalues, another way to tackle the problem is to approximate it, asking whether for all there exists a number of steps n after which the probability to be in Goal is at least γ ´ . The decidability and precise complexity of this problem has been explored in [START_REF] Chadha | Decidable problems for unary PFAs[END_REF]. A more general approximation scheme, valid for much more general questions which can be expressed in some LTL logic, has also been tackled by generating a regular language of approximated behaviors [START_REF] Agrawal | Approximate verication of the symbolic dynamics of Markov chains[END_REF], where the authors dene a notion of an -approximation of a disitribution ξ, such that ξ is an -approximation of ξ i ξ and ξ are in the same class until some n , that depends on , and after that both distributions are in the same set of nal classes, a set of congurations where the congurations cycle in the steady state phase.

We now explain the relationship between checking population questions on MC and MDP and checking reachability for stochastic systems with imperfect information. In some sense, checking population questions is harder than checking reachability for systems with full observation (as this is decidable), but it is simpler than reachability with imperfect information.

Hence, nding strategies ensuring quantied reachability in MDPs with imperfect information (that is in POMDP, i.e. partially observable MDPs) is harder than solving population problems for MDPs (because population questions on MDPs corresponds to the particular imperfect information case of PAs, that there is no information). In turn, this is harder than the case where the (PO)MDP is unary (that is it a Markov chain that there is no choice of action), and in this case quantied reachability in unary POMDPs and population questions on Markov Chains is the same problem.

A Probabilistic Automaton (PA) can be dened as a MDP such that all actions are available in each state and the player do not know in which of these states he is.

Unary PAs [START_REF] Chadha | Decidable problems for unary PFAs[END_REF][START_REF] Turakainen | On stochastic languages[END_REF], have an alphabet with a single letter. That is, there is a unique strategy, and the model is essentially a Markov chain.

Population questions on MDP, with uniform strategy per time point correspond to reachability in PA. Assume that there exists a number n of steps such that there is at least γ of the population in Goal after n steps of Markov Chain. Then playing n steps of the associated unary PA, there is probability at least γ to reach Goal.

Reciprocally, a wining strategy of a unary PA translates to a number of steps after which at least γ of the population is in Goal. Hence reachability for unary PA is open (Skolem complete).

For PAs, the problem of whether there is a strategy to reach Goal with probability at least a threshold γ (also called a cut-point) is already undecidable [START_REF] Bertoni | The solution of problems relative to probabilistic automata in the frame of the formal languages theory[END_REF]. Even approximating this probability has been shown undecidable in PAs [START_REF] Madani | On the undecidability of probabilistic planning and related stochastic optimization problems[END_REF]. In fact, deciding whether there exists a sequence of strategies with probability arbitrarily close to γ " 1 is already undecidable [START_REF] Gimbert | Probabilistic automata on nite words: Decidable and undecidable problems[END_REF], and only very restricted subclasses are known to ensure decidability [START_REF] Fijalkow | Deciding the value 1 problem for probabilistic leaktight automata[END_REF][START_REF] Chatterjee | Decidable problems for probabilistic automata on innite words[END_REF].

  nite state systems can be modelled in many dierent ways. The simplest framework is provided by discrete homogeneous Markov chains which model systems evolving in time according to a xed probabilistic transition function without any external control.

  strategies. The main technical contribution is the powerful technique based on xed points developed to obtain these results. A more technical and detailed discussion is postponed to the introduction of Part I. Preliminary version of the results obtained in Chapter 5 appears in [KZ15].
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 4 Figure 4.2 A two-player stochastic arena
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 44 Figure 4.4 Transition probabilities in A with strategies σ and τ .

  val k pϕ rks r q " ζ,(4.5)i.e. the value of the state k in the ϕ rks r -game is some unknown ζ P r0, 1s.

  4),(4.5) and (4.7) and the denition of the nested nearest xed point coincides with the inductive denition of the kth nested r-nearest xed point, valpϕ rks r q " Fix k pf qprq i.e. the kth nested r-nearest xed point of the value mapping of the one-step game is the natural candidate for the value of the ϕ rks r -game.

Figure 4 . 9

 49 Figure 4.9 Game with states S " t1, 2, 3u and actions Aas dened above.

  Consider the event tS T rks m `1 " i ă ku (4.20) which consists of the plays that visit k for the mth time at the time T rks m and visit i ă k at the next time moment T rks m `1. Since S T rks m `1 " i ă k implies T rks m ă 8, for the plays belonging to (4.20) all states visited up to the moment T rks m `1 are ď k.

  i.e. after removing all history prior to the moment T rks m `1 we apply to the remaining play the payo ϕ rk´1s r ´k ζ . Suppose that in the residual game player Max plays according to σ k ζ while player Min continues to use the strategy τ . S T rks m `1 " iq, for i ă k, (4.21) i.e. the expected payo obtained in the residual game (the right-hand side of (4.21)) is greater or equal to the value of the state i in the ϕ rk´1s r ´k ζ -game (which is F k´1 i pζ; rq by the induction hypothesis). The strategy σ k ζ selects the same actions as σ k´1 ζ for all states except k. But in the residual game it is irrelevant how player Max plays in k since for the plays that return to k the residual game is essentially over and player Max obtains the payo ζ. Thus we can assume as well that in the residual game player Max select actions according to σ k´1 ζ . But since σ k´1 ζ is optimal for Max in the ϕ rk´1s r ´k ζ -game, this guarantees that in the residual game player Max obtains at least the value F k´1 i pζ; rq of the state i in the ϕ rk´1s r ´k ζ -game, i.e. (4.21) holds. Now observe that for the plays h P tT rks m`1 ă 8, S T rks m `1 " iu we have ϕ rk´1s r ´k ζ ˝θT rks m `1phq " ζ because k is stopping for the payo ϕ rk´1s r ´k ζ and ζ is the reward of k assigned by this payo. Thus E ă 8, S T rks m `1 " iq " ζ.

  (4.22) And nally, by Bayes' formula and using (4.21) and (4.22), we obtain

  for the plays such that h P t@m, T rks m ă 8u (i.e. for the plays for which the stopping state process S rks i visits k innitely often).If F 7k pζ; rq ą ζ then, by (C3), and (4.26) implies (C2).

  1) σ k‹ is optimal for Max in the ϕ

  Case 2: r k " Fix k k pf qprq. Immediately from Lemma 4.11 with ζ " r k . Case 3: r k ă Fix k k pf qprq. Since Fix k k pf qprq " µ r k ζ.F 7 k pζ; rq ą r k by (3.1) applied to the mapping ζ Þ Ñ F 7 k pζ; rq Fix k k pf qprq is in fact the least xed point of this mapping. This implies that F 7 k pξ; rq ą ξ for all ξ such that r k ă ξ ă Fix k k pf qprq.

"

  Ñ F 7 k pξ; rq is strictly increasing for the arguments smaller than the least xed point).By Lemma 4.11 player Max has a pure memoryless strategy σ k ξ such that (W.1) σ k ξ is optimal in the ϕ rk´1s pr 1 ,...,r k´1 ,ξ,r k`1 ,...,rnq -game, ...,r k´1 ,ξ,r k`1 ,...,rnq q ě F 7 k pξ; rq ą ξ, k for innitely many iq " 0 for all strategies τ of player Min. Now it suces to observe that the payo mappings ϕ rks r and ϕ rks pr 1 ,...,r k´1 ,ξ,r k`1 ,...,rnq dier only for the plays belonging to the set tS rks i " k for innitely may iu and this set has measure zero by (W.3). Thus E σ k ξ ,τ k

  visit k and the states visited prior to the moment of the rst visit to k are all ă k. For such plays ϕ rk´1s r ´k w is equal to w implying E

  Fix k i pf qprq.

Figure 4 .

 4 Figure 4.16 Game with innite set of actions where player Max does not have memoryless optimal strategy.

Figure 4 .

 4 Figure 4.17 Game with innite set of states where player Max does not have optimal strategy.

  from (5.23) we obtain that η ¨Pσ‹,τ k pT m`1 ă 8 | T m ă 8q `Pσ‹,τ k pT m`1 " 8 | T m ă 8q ě η ‹ ´δ. But P σ‹,τ k pT m`1 " 8 | T m ă 8q `Pσ‹,τ k pT m`1 ă 8 | T m ă 8q " 1 thus the last inequality yields

τ

  ‹ in the concurrent one-step game M k pw 1 , . . . , w k´1 , w k , r k`1 , . . . , r n q we obtain ÿ " j|T m ă 8q ď w k .

Figure 7 . 1

 71 Figure 7.1 Markov chain with three states.

δ

  " α i v i . By denition ρ δ pnq " A i ř qPGoal rM n δspqq ě γ, then

  matrix M 0 and initial distribution δ 0 are:

a

  Figure 7.9 The solid line represents

Figure 7 .

 7 Figure 7.11 Büchi automaton for the ultimate positivity problem.

  Hence, if the Markov chain of the reduction from a Skolem problem to a Markov reachability problem have distinct positive real eigenvalues and they are known or its eigenvalues are distinct positive rational values, then we can decide the original Skolem problem.Though Markov Chains are a simple formalism, there are still many basic problems, whose decidability is open and thought to be very hard. Indeed, it is surprising yet signicant that even after assuming strong hypotheses, their behaviours cannot be described easily.Property of eigenvalues of MCRegular language Ultimately periodic trajectories Distinct, positive real numbers (Thm.7.16) (from below) Distinct, roots of real numbers ˆ[AGKV16] (Prop.7.10) Distinct ˆ(from above) ˆ([AAGT15], Thm.3)

  r n q´f pw 1 , . . . , w k´1 , w i k , w k`1 , . . . , w n q| ď maxtmax If f P M k,m r0, 1s and g P M m,n r0, 1s then g ˝f P M k,n r0, 1s, i.e. the composition of BMN mappings is BMN. Proof. For x, y P r0, 1s k , we have gpf pxqq´gpf pyqq 8 ď f pxq´f pyq 8 ď x´y 8

	Lemma 3.5. i.e. composition of nonexpansive mappings is nonexpansive. Trivially, monotonicity
	is also preserved by composition.		
	j‰k	|r j ´wj |, |r i k	´wi k |u ď
		maxtmax j‰k |r j ´wj |, r ´w 8 u " r ´w 8 .
	Taking the limit i Õ 8 we obtain |r 8 k	´w8 k | ď r ´w 8 .

  Thus if all states visited up to the moment t belong to t1, . . . , ku then S rks t is equal to the state S t visited at the current epoch t. However, if at some previous epoch a state ą k was visited then S For a given reward vector r, we dene a new payo mapping ϕ

	rks t	is the rst such state. In other words the
	process S	
		rks r :
	ϕ rks r " rplim sup

rks t behaves as if the states ą k were absorbing. t S rks t q.

  When player Max executes action a at k, the game moves to state i with probability ppi|k, aq and starting from i player Max can win at least the value val i pϕWe obtain a similar expression when k is controlled by Min with min aPApkq replacing max aPApkq . Using the denition of the value function of the one-step game played at k, see (4.2), and (4.4),(4.5),(4.6), we obtain ζ " val k pϕ rks r q " f k pval 1 pϕ rks r q, . . . , val n pϕ rks r qq " f k pF k´1 1 pζ; rq, . . . , F k´1 k´1 pζ; rq, ζ, r k`1 , . . . , r n q.

	rks r q. Thus in the ϕ	rks r -game starting at k player Max can win
	max aPApkq	i ÿ	val i pϕ rks r q ¨ppi|k, aq.

Thus we can see that a natural candidate for the value of the state k in the ϕ rks r -game is a xed point of the mapping

ζ Þ Ñ f k pF k´1 1 pζ; rq, . . . , F k´1 k´1 pζ; rq, ζ, r k`1 , . . . , r n q.

This mapping can have many xed points, however one of them seems more plausible than the others, this is the xed point which is the nearest to the reward r k of k,

i.e. the natural conjecture is that val k pϕ rks r q " µ r k ζ.f k pF k´1 1 pζ; rq, . . . , F k´1 k´1 pζ; rq, ζ, r k`1 , . . . , r n q.

  n , the ϕ

	rk´1s r	-game satises the following properties:
	(H.1) for each i P rns, the value of state i is equal to Fix k´1 i	pf qprq and
	(H.2) both players have optimal pure memoryless strategies.
	We assume that	
		F k´1 i	pζ; rq
	is dened as in (4.3) and we dene	
	F 7	

k pζ; rq :" f k pF k´1 1 pζ; rq, . . . , F k´1 k´1 pζ; rq, ζ, r k`1 , . . . , r n q.

  Lemma 4.11. Suppose that for each reward vector r P r0, 1s n , the ϕ rk´1s Max such that σ k ζ is optimal for Max in the ϕ rk´1s pr 1 ,...,r k´1 ,ζ,r k`1 ,...,rnq -game and for each strategy τ of Min we have (C1) For all m,

	satises (H.1) and (H.2). Then for each ζ P r0, 1s such that	r	-game
	ζ ď F 7 k pζ; rq	(4.10)
	there exists a pure memoryless strategy σ k ζ for player F 7 k pζ; rq ď ζ ζ ,τ ¨Pσ k k	
		rks m " 8 if and
	only if the stopped state process S t rks	visits state k less than m times.	
	Note also that if T m ă 8 then the following conditions are satised: rks
	S T rks m " k (the state k is visited at the time T m ), rks	
	for all 1 ď t ď T m , S t ď k (all states visited up to the time T rks m are non-rks
	stopping),		
	7tt ď T		

T rks 1 " mintt | S rks t " ku and T rks m " mintt | t ą T rks m´1 and S rks t " ku. Note that since the minimum of the empty set is `8 we have T rks m | S t " ku " m (the number of visits of the state process S t to k up to the moment T rks m included is m).

  Max receives from player Min the payo ζ for the plays that return to k, i.e. for h P H 8 such that T for plays h that do not return to k, i.e. for plays h such that T

	we obtain						
	F 7 k pζ; rq "	ÿ iăk	F k´1 i	pζ; rq ¨ppi|k, a ζ q `ζ ¨ppk|k, a ζ q	`ÿ iąk	r i ¨ppi|k, a ζ q.	(4.11)
	We dene the strategy σ k ζ in the following way, for each state i P rks X S Max ,
						σ k ζ piq :"	# σ k´1 ζ a ζ	piq if i ă k, if i " k.	(4.12)
	Case 2: k P S Min .					
								(4.13)
	and we dene σ k ζ in the following way
								σ k ζ :" σ k´1 ζ	.
	rk´1s						
	r ´k						
	σ k´1 ζ i We will examine what happens in the ϕ ,τ pϕ r ´k ζ rk´1s rks r ´k	q.
	To dene the strategy σ k ζ we should examine two cases. Case 1: k P S Max .
	Then						
	F 7 k pζ; rq " f k pF k´1 1	pζ; rq, . . . , F k´1 k´1 pζ; rq, ζ, r k´1 , . . . , r n q "
		max aPApkq	ÿ iăk	F k´1 i	pζ; rq ¨ppi|k, aq `ζ ¨ppk|k, aq	`ÿ iąk	r i ¨ppi|k, aq
	and selecting the action a ζ P Apkq such that rks m`1 ă 8,
	a ζ :" arg max aPApkq the payo is equal to ϕ ÿ iăk F k´1 rks ζ r ´k	phq.	rks m`1 phq " 8,

1) and (H.2), player Max has an optimal pure memoryless strategy σ k´1 ζ in the ϕ ζ -game such that for each strategy τ of player Min and each starting state i ă k, F k´1 i pζ; rq ď E i pζ; rq ¨ppi|k, aq `ζ ¨ppk|k, aq `ÿ iąk r i ¨ppi|k, aq Then F 7 k pζ; rq " f k pF k´1 1 pζq, . . . , F k´1 k´1 pζ; rq, ζ, r k´1 , . . . , r n q " min aPApkq ÿ iăk F k´1 i pζ; rq ¨ppi|k, aq `η ¨ppk|k, aq `ÿ iąk r i ¨ppi|k, a ζ q, which implies that for each action a P Apkq we have F 7 k pζ; rq ď ÿ iăk F k´1 i pζ; rq ¨ppi|k, aq `ζ ¨ppk|k, aq `ÿ iąk r i ¨ppi|k, aq ζ -game starting in the state k when player Max plays using σ k ζ against any strategy τ of player Min.

Proof of (C1):

Before we start the proof of (C1) it is worthwhile to examine the intuitive meaning of this inequality. Suppose that T rks m ă 8 and consider the moment T rks m when k is visited for the mth time. Let pr 1 , . . . , r k´1 , ζ, r k`1 , . . . , r n q be the reward vector.

Consider the auxiliary game starting at time T rks m in k with the payo dened in the following way: player

  visits the state k for the mth time, an action is played and this action is either the action σ k ζ pkq if k is controlled by Max or any action from Apkq if k is controlled by Min. From (4.11) and (4.13) it follows that

	To prove (C1), suppose that at the moment T m ă 8, when the stopped state rks
	rks i process S

  , for the plays h satisfying these conditions the payo ϕ

	rks ζ r ´k	is equal to r i .
	Thus	

For a play h, h P tS T rks m `1 " iu for i ą k, if and only if T rks m phq ă 8, i.e. h visits k at least m times, all states visited prior to T rks m are ď k, T rks m `1 is the rst moment when a stopping state ą k is visited and this state is i.

However

  means that the pm `1qth visit of the stopped state process to k takes place immediately after the mth visit, i.e. T

					rks m`1 " T m `1 ă 8, implying rks
	E	σ k ζ ,τ k	p1 tT rks m`1 "8u | S T rks m	`1 " k, T
					rks m `1 the stopped
	state process hits a stopping state thus S	rks t	will never return to k and therefore

rks m ă 8q " 0. (4.19) Indeed S T rks m `1 " k rks m ă 8q " 0 and (4.19) follows.

And nally, for i ą k, S T rks m `1 " i means that at time T

  This implies that summing over m both sides of (4.24) we get

	Let us note that				
								8
			tDm, T rks m " 8u " tT	rks 1 " 8u Y	ď	tT m`1 " 8, T rks rks m ă 8u,
								i"1
	where the events on the right-hand side are pairwise disjoint. Moreover,
					tS 1 " ku X tT	rks 1 " 8u " H
	since if the game starts at k then T 1 " 1 ă 8. rks
	Multiplying both sides by P	σ k ζ ,τ k	pT m ă 8q we obtain rks
	F 7 k pζ; rq	¨Pσ k ζ ,τ k	pT m`1 " 8, T rks rks m ă 8q ď E	σ k ζ ,τ k	pϕ rks r ´k ζ	1 tT rks m`1 "8u 1 tT rks m ă8u q.	(4.24)

  qprq.Since w is a xed point of F 7 By Lemma 4.11 the last equality implies that player Max has a pure memoryless strategy σ k ‹ which is optimal in the ϕNow it suces to note that w ă r k implies that for all plays h, ϕ

					k we have
						w " F 7 k pw; rq.
	of player Min,							rk´1s r ´k w	-game and such that, for each strategy τ
				F 7 k pw; rq ď E	σ k ‹ ,τ k	pϕ rks r ´k w	q.
						rks r ´k w	phq ď ϕ rks r phq
	and therefore E	σ k ‹ ,τ k	pϕ rks r ´k w	q ď E	σ k ‹ ,τ k	pϕ	rks r q and we conclude that

  never visit k thus for such plays it is irrelevant what is the reward of k and it is irrelevant if k is stopping or not, in particular we have

	where T 1 rks	is as in Denition 4.10.
	The plays satisfying T 1 rks	" 8

  all states controlled by Max in A are controlled by Min in A, ' all states controlled by Min in A are controlled by Max in A.

  memoryless strategy τ k ‹ for player Max such that for each strategy σ of player Min and each state i, E Let us consider the priority game player on the arena depicted on Figure 4.16. All states are controlled by player Max, S " S Max " t1, 2, 3u. State 2 is absorbing, state 3 has just one available action that leads to state 1 with probability 1.

	Therefore we obtain nally:		
	Proof of Theorem 4.7. By Lemma 4.13 and Lemma 4.15.
	4.5 Remarks on priority games with innite action
	or state sets			
	A turn-based stochastic priority game with an innite number of actions may
	not have memoryless optimal strategies.
				τ k ‹ ,σ i	pϕ rks 1´r ; Aq ě Fix k i pf qp1 ´rq.	(4.39)
	By Lemma 3.11,			
				Fix k i pf qp1 ´rq " 1 ´Fix k i pf qprq.	(4.40)
	Using (4.37), (4.39) and (4.40) we obtain
	E	σ,τ k ‹ i	pϕ rks r ; Aq " 1	´Eτ k ‹ ,σ i	pϕ	rks 1´r ; Aq ď 1 ´Fix k i pf qp1 ´rq " Fix k i pf qprq.

  aim of player Max (player Min) is to maximize (resp. minimize) the expected

	priority payo	
	ż	
	E σ,τ i rϕ r s "	ϕ r phqP σ,τ i pdhq.
	H 8	

Concurrent priority games contain as special cases some other well known classes of games:

(i) If the reward mapping takes only values in t0, 1u then we obtain the usual concurrent parity games

[START_REF] Alfaro | Quantitative solution to omega-regular games[END_REF]

.

(ii) The second subclass of concurrent priority games is the class of Everett's recursive games

[START_REF] Everett | Recursive games[END_REF]

. Everett's games are concurrent priority games having reward 0 for all nonabsorbing states 3 . Thus in Everett's games players receive the payo 0 if the play remains forever in nonabsorbing states, otherwise, for plays ending in an absorbing state i, the payo is equal to the reward r i .

(iii) Everett's games contain as a subclass the class of reachability games. Reachability games are Everett's games such that all absorbing states have nonnegative rewards

[START_REF] Chatterjee | Strategy improvement for concurrent reachability and turn-based stochastic safety games[END_REF][START_REF] De Alfaro | Concurrent reachability games[END_REF]

.

  it follows that concurrent priority games have values, i.e. for each state i, sup σ inf τ E σ,τ i rϕ r s " 5.2. Concurrent one-step game inf τ sup σ E σ,τ i rϕ r s. (The Blackwell games do not have states but the result of Martin extends immediately to games with states as shown by Maitra and Sudderth [MS04].)

  Thus if all previously visited states belong to t1, . . . , ku then S

			rks t	is equal to the
	state visited at the current epoch t. However, if at some previous epoch a state ą k
	was visited then S t rks	is the rst such state. In other words, S t rks	behaves as if the
	states ą k were absorbing, if S t ą k then S rks q " S rks t rks	

  a function of type k for all i P tr, . . . , zu, 0 ď r ď z, s.t., for all i P tr, . . . , zu, all j ‰ piq and all x P I, |b i

	j p x j | ď |εpz, p 0 , ¨¨¨, p k qb i j | is negligible wrt |b i j p x (if this holds, we say that |b i piq p x piq | and call this the piq p x piq | negligibility hypothesis)

Table 7 .

 7 1 A summary of the results in this chapter.

2.1. Context -the parity games and µ-calculus

The term one-step game is commonly used in game theory. In computer science one-step games are not named explicitly, but their value function f is used in the µ-calculus approach to parity games, where is often called the predecessor operator.

This terminates the proof of (3.6).

3.3. Duality for the bounded monotone nonexpansive mappingsChapter 4. Turn-based stochastic priority games

If the set of states is the set N of all natural numbers then lim sup s t , where s 1 , s 2 , . . . is the innite sequence of visited states can be equal to 8, and the priority payo of such a play is undened if we try to apply the denition of Section

4.1.

4.5. Remarks on priority games with innite action or state setsChapter 5. Concurrent stochastic priority games

A state i is absorbing if ppi|i, a, bq " 1 for all joint actions pa, bq.

This strategy exists by the induction hypothesis.

5.4. Constructing ε-optimal strategiesChapter 6. Discussion and conclusions
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Let q " p prq and consider the function v 1 pxq " vpxq q x . Functions v 1 and v have the same zeros. We can derive v 1 , which will cancel out every term using q x : For all r ď i ď z, we dene functions f i pxq :" c i 0 p p 0 q q x `ci 1 p p 1 q q x `¨¨¨`c i k p p k q q x with: for i ‰ s, f i is the derivative of v i , that is c i j " logp p j q qb i j for j ‰ prq, and c i prq " 0. c s j " logp p j q qpb s j `λr λs b r j q for j ‰ prq, and c s prq " 0. It is easy to check that f pxq " ř z i"r`1 λ i f i pxq is the derivative of v 1 . We now prove the inequalities involving ε for f i pxq for all x P I 1 . We do it for the most complex term, ie c s j with j ‰ psq, prq. We have ˇˇˇc s j p p j q q x ˇˇˇ" ˇˇˇl ogp p j q q ˇˇˇ| pb s j `λr λ s b r j q|p p j q q x ď ˇˇˇl ogp p j q q ˇˇˇε pr, p 0 , . . . , p k qp1 `3zq|b s psq | ˆp psq q ˙x ď ˇˇˇˇl ogp p j q q logp p psq q q ˇˇˇˇε pr, p 0 , . . . , p k qp1 `3zq 2 |c s psq | ˆp psq q ˙x " ˇˇˇˇl ogp p j q q logp p psq q q ˇˇˇˇm pr, p 0 , . . . , p k qεpr `1, p 0 , . . . , p k q|c s psq | ˆp psq q ˙x ď εpr `1, p 0 , . . . , p k q|c s psq | ˆp psq q ˙x by denition of mprq.

Recalling that εpr `1, p 0 q , . . . , p k q q " εpr `1, p 0 , . . . , p k q, we conclude |c s j |p p j q q x ď εpr`1, p 0 q , . . . , p k q q|c s psq |p p psq q q x for all x P I 1 , so we can apply the lemma to f r`1 , . . . , f z . Thus function f has at most Zpc r`1 pr`1q p x pr`1q , . . . , c z pzq p x pzq q zeros in I 1 . It is easy to see that c i piq has the opposite sign of b i piq for all i, and thus we obtain Zpc r`1 pr`1q p x pr`1q , . . . , c z pzq p x pzq q " Zpb r`1 pr`1q p x pr`1q , . . . , b z pzq p x pzq q. Now, consider v 1 . It has the same sign and zeros as v. Hence the last zero of v 1 in i is x y . Because its derivative is f , v 1 (and thus v) has at most 1 Zpb r`1 pr`1q p x pr`1q , . . . , b z pzq p x pzq q zeros in I 1 . If Zpb r prq p x prq , ¨¨¨, b z pzq p x pzq q " 1 `Zpb r`1 pr`1q p x pr`1q , . . . , b z pzq p x pzq q, (or if v has at most Zpb r`1 pr`1q p x pr`1q , . . . , b z pzq zeros), the induction proof is nished.

Else, we proceed by contradiction. It means that the sign of b r prq and of b r`1 pr`1q is the same. It also means that f has exactly Zpb r`1 pr`1q p x pr`1q , . . . , b z pzq p x pzq q zeros and switches sign every time. Without loss of generality, assume that b r`1 pr`1q ą 0. By with this x, i.e., u f pxq " 0 implies the letter is B and the derivative of u f is null in x, we just take x `1{4. Because of the maximal number of zeros of u f , u f px `1{4q ‰ 0 if u f pxq " 0). So there exists λ P p0, 1q such that λu e pxq `p1 ´λqu f pxq " 0. Let g be the point λe `p1 ´λqf on segment pe, f q, and u g its associated function. We have u g " λu e `p1´λqu f by linearity. Further, as g " λe`p1´λqf and both e and f have prex wA i 1 B i 2 A i 3 ¨¨¨A i z´3 , then g has also prex wA i 1 B i 2 A i 3 ¨¨¨A i z´3 . It means that u g changes sign between |w|`i 1 ´1 and |w|`i 1 , . . ., between |w|`i 1 `i2 `. . .`i z´3 ´1 and |w|`i 1 `i2 `. . .`i z´3 . In particular, u g has a zero in every of these z´2 intervals. Thus u g has z ´1 zeros. By lemma 7.21, it switches signs exactly at these zeros, and never elsewhere in rN max , `8q. Thus the trajectory of g is wA

Further, as g is on the segment re, f s, both e, f P H w and H w is convex, then g P H w .

We can now nish the proof of lemma 7.28.

Lemma 7.28. Let e 0 ¨¨¨e y be points of H w with Zpe 0 , . . . , e y q " ZpH w q. Let J P N. Assume that the trajectory of e i is wC J 1 C 2 C 3 ¨¨¨C ω i with tC j , C j`1 u " tA, Bu for all j ă i (that is e i has the maximum number of alternance in its subspace). Then the language of the convex hull of te 0 , . . . , e y u is exactly

Let x be a point in the interior of the convex hull of e 1 ¨¨¨e z . Then the trajectory of x is wC i 1 u for some innite word u as all the point e 1 ¨¨¨e z are of this type and by linearity of M i for all i. Now, by lemma 7.21, the number of alternation after w is at most z ´1, hence the trajectory of x is of the form wC i`i 1

k´1 ¨¨¨C ω k with i j P N for all j. We will show that every of these trajectories is reached for a point in the convex hull of e 1 ¨¨¨e z . Let pi j q jďk be a family of integers. At rst, we assume that i j ‰ 0 for all j. For all j P t1, . . . , z ´1u let x j :" N max `i `j. Also, for all j P t1, . . . , z ´1u, we dene y j :" N max `i `i1 `. . . `ij `1{2.

We will prove that there exists a point f in the interior of the convex hull of e 1 , ¨¨¨, e z such that f py j q " 0 for all j P t1, . . . , z ´1u. Then Lemma 7.21 will imply that the language of f is wC

We build f by induction. Applying lemma 7.29 for all j P t1, . . . , z´2u to e j , e j`1 , we obtain a point e 1 j in pe j , e j`1 q such that e 1 j py z´1 q " 0. As e 1 j is in pe j , e j`1 q, by linearity, the prex of its trajectory is wC i 1 C 2 ¨¨¨C j´1 C j (and it ends up with C ω j`1 ), which implies that it has additionally j ´1 zeros in pN max `i, N max `i `j `1q, with N max `i `j `1 ď y z´1 . Thus, the sign of e 1 j pxq is constant in x P rx j´1 `1, y z´1 q, depending on the parity of j. In particular, y z´2 P rx j´1 `1, y z´1 q for all j ď z ´2. 
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