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Contribution à l'analyse et à la compréhension des signaux des réseaux électriques par des 

techniques issues du traitement du signal et de l'apprentissage machine 

 

Résumé 

Ce travail de thèse propose des approches d’identification et de reconnaissance des harmoniques 

de courant qui sont basées sur des stratégies d’apprentissage automatique. Les approches 

proposées s’appliquent directement dans les dispositifs d’amélioration de la qualité de l’énergie 

électrique. 

Des structures neuronales complètes, dotées de capacités d’apprentissage automatique, ont été 

développées pour identifier les composantes harmoniques d’un signal sinusoïdal au sens large et 

plus spécifiquement d’un courant alternatif perturbé par des charges non linéaires. L’identification 

des harmoniques a été réalisée avec des réseaux de neurones de type Multi–Layer Perceptron 

(MLP). Plusieurs schémas d’identification ont été développés, ils sont basés sur un réseau MLP 

composé de neurones linéaire ou sur plusieurs réseaux MLP avec des apprentissages spécifiques. 

Les harmoniques d’un signal perturbé sont identifiées avec leur amplitude et leur phase, elles 

peuvent servir à générer des courants de compensation pour améliorer la forme du courant 

électrique. 

D’autres approches neuronales a été développées pour reconnaître les charges. Elles consistent en 

des réseaux MLP ou SVM (Support Vector Machine) et fonctionnent en tant que classificateurs. 

Leur apprentissage permet à partir des harmoniques de courant de reconnaître le type de charge 

non linéaire qui génère des perturbations dans le réseau électrique. 

Toutes les approches d’identification et de reconnaissance des harmoniques ont été validées par 

des tests de simulation à l’aide des données expérimentales. Des comparaisons avec d’autres 

méthodes ont démontré des performances supérieures et une meilleure robustesse. 

Mots-clés:  

Perceptron Multicouche ; Apprentissage Machine; Réseaux de Neurones Artificiels ; 
Classification ; Identification des Courants Harmoniques ; Charges Non Linéaires ; Qualité de 
l’Energie ; Appareil Electrique. 
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Contribution to the analysis and understanting of electrical-grid signals with signal 

processing and machine learning techniques 

 

Abstract 

This thesis proposes identifying approaches and recognition of current harmonics that are based on 

machine learning strategies. The approaches are applied directly in the quality improvement 

devices of electric energy and in energy management solutions. 

Complete neural structures, equipped with automatic learning capabilities have been developed to 

identify the harmonic components of a sinusoidal signal at large and more specifically an AC 

disturbed by non–linear loads. The harmonic identification is performed with multilayer 

perceptron neural networks (MLP). Several identification schemes have been developed. They are 

based on a MLP neural network composed of linear or multiple MLP networks with specific 

learning. Harmonics of a disturbed signal are identified with their amplitude and phases. They can 

be used to generate compensation currents fed back into the network to improve the waveform of 

the electric current. 

Neural approaches were developed to distinguish and to recognize the types of harmonics and is 

nonlinear load types that are at the origin. They consist of MLP or SVM (Support Vector Machine) 

acting as classifier that learns the harmonic profile of several types of predetermined signals and 

representative of non–linear loads. They entry are the parameters of current harmonics of the 

current wave. Learning can recognize the type of nonlinear load that generates disturbances in the 

power network. 

All harmonics identification and recognition approaches have been validated by simulation tests or 

using experimental data. The comparisons with other methods have demonstrated superior 

characteristics in terms of performance and robustness. 

Keywords: 

Multilayer Perceptron; Machine Learning; Artificial Neural Networks; Classification; Current 

Harmonic Identification; Nonlinear Loads; Power Quality; Electrical Appliance. 
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Chapter 1 : Introduction 

Since a couple of decades, the number of electrical nonlinear devices has increased continually in 

domestic and industrial installations. The unwanted harmonics generated by nonlinear loads or 

devices yield many problems in power systems (Arrillaga and Watson, 2003). These harmonics 

interact with system impedances and badly affect sensitive loads. Additional equipment like active 

power filters must be inserted in the power lines for improving the electrical waveforms. They 

need some robust and efficient harmonic identification techniques in order to precisely compensate 

for harmonic distortions (Akagi, 1996; Akagi, 2005) by re-injecting them phase opposite. Hence, 

harmonic identification approaches are more important than ever for power quality issues. Figure 

1.1 shows a detailed block diagram of an enhanced shunt active power filter (APF). 

 

Figure 1.1   Detailed block diagram of an enhanced shunt APF. 

 In a power system, a harmonic term is defined as a sinusoidal component with a frequency that 

is an integer multiple of the fundamental signal. The fundamental signal is either the main current 

or main voltage of a power line. Various harmonic distortion identification schemes have been 

developed to improve the quality of the power line signals. Among them, the Discrete Fourier 

Transform (DFT), the Fast Fourier Transform (FFT), Time–Frequency Distributions (TFDs), 

Transform Domain Adaptive Filters (TDAFs), Wavelet Transforms (WTs), and Instantaneous 

Power Theory (IPT) are well–known techniques that have been applied in active compensation 

strategies (Akagi, 2005).	
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1.1 Artificial Neural Networks 

From 1990s to present, artificial neural networks for signal processing is one of the most 

interesting topics in scientific researches and engineering applications. Artificial neural network 

(ANN) schemes have been successfully implemented in active power filtering applications (Bose, 

2007). Several successful neural network approaches have been applied for higher–order harmonic 

currents identification and for other tasks involved in power quality management: Voltage sags and 

swells detection, reactive power compensation, fundamental frequency estimation, and phase 

tracking for grid synchronization (Wira et al., 2010; Nguyen et al., 2011). 

 ANNs with their ability to learn from sample data have shown that they are excellent solutions 

for performing advanced digital signal processing tasks (Hagan et al., 1995; Haykin, 1999). 

Therefore, several ANN approaches have been developed for harmonic identification. They are 

based on different neural structures, and have to identify the amplitude and the phase of each 

higher–order harmonic of the current measured on a power line. Once estimated, they can be used 

to generate compensation currents. This is achieved by a voltage–source inverter under the 

supervision of a control law. The controller produces a reference signal that takes into account the 

necessary harmonic components but phase–opposite. The inverter converts the reference signal 

into a high–intensity current that will be injected into the power line. This principle is represented 

in Figure 1.2. The skills related to each block are also mentioned. 

 

Figure 1.2   A shunt APF.	
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 An artificial neural network is a statistical learning model inspired by biological neural network. 

In 1943, McCulloch and Pitt proposed the first mathematical neuron model of an artificial neural 

network as in Figure 1.3 (McCulloch and Pitts, 1943). 

 

Figure 1.3   The first neuron model of McCulloch and Pitts in 1943. 

 A few years later, in 1957, Frank Rosenblatt, who was also motivated by the paper of W. 

McCulloch and W. Pitts, investigated the computation of the image recognition machine called 

"Mark 1 perceptron". His work led to the first generation of neural networks, known as the 

perceptron in (Rosenblatt, 1958) as in Figure 1.4. 

 

Figure 1.4   A perceptron neural network model of Rosenblatt in 1958. 

 An Adaptive linear element (ADALINE) in Figure 1.5 is an early single–layer artificial neural 

network and the name of the physical device that implemented this network. It was developed by 

Professor Bernard Widrow and Ted Hoff at Stanford University in 1960. It is based on the 

McCulloch–Pitts neuron. It consists of a weight, a bias and a summation function. ADALINE uses 

the mean square error (MSE) to update its weights in the training process. 

 A multilayer perceptron (MLP) network in Figure 1.6 is composed of neurons organized in 

layers, with those on one layer connected to those on the next layer (except for the last layer also 

called the output layer). The MLP architecture is thus structured into an input layer, one or more 

hidden layer of neurons (called hidden neurons), and one output layer of neurons (output neurons). 
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Neurons belonging to adjacent layers are usually fully connected. The feedforward network is a 

MLP that allows only for a one directional signal flow, from the input to the output layer. 

	

Figure 1.5   Typical architecture of an ADALINE network. 

 

	

Figure 1.6   Typical architecture of a multilayer perceptron network. 
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 In addition, we also have Radial Basic Function (RBF) neural network, Support Vector 

Machine (SVM), Self–Organizing Map (SOM) and many other learning machines with supervised 

and unsupervised learning techniques that were introduced in (Hagan et al., 1995; Haykin, 1999).	

1.2 Identification of Power System Harmonics  

Harmonic content is a fundamental concept in power system analysis, operation, and control; 

hence its fast and precise estimation is prime importance. Consequences and problems induced by 

higher–order harmonic terms in power systems have been well established (Arrillaga and Watson, 

2003). Digital devices with high computational capabilities will expand the design of new and 

precise harmonics identification techniques as in Figure 1.7. 

	

Figure 1.7   Identification of power system harmonics. 

 Fourier–based approaches are among the most fundamental techniques in frequency analysis 

processing. However, they imply sliding window implementations and convolution operations 

which make their computational requirements a heavy burden in most applications. Furthermore, 

Fourier–based approaches only provide a response after a complete period of the measured signal 

and cannot calculate the dynamic characteristics of measured signals over time because of the 

consumption that analyzed signals are stationary (Chang et al., 2009).  Since the harmonic content 
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varies constantly in power system, fast and real–time estimation techniques are necessary for 

efficient actions. 

 The last decades have seen many studies about harmonic distortion identification techniques to 

improve power quality. In this thesis, a harmonic term is defined as a component of a periodic 

wave having a frequency that is an integer multiple of the fundamental power line frequency. In 

the following, we focus on online and iterative algorithms to estimate harmonic terms in real–time 

applications. 

 Any periodic, distorted waveform can be expressed as a sum of pure sinusoids. The sum of 

sinusoids is referred to as a Fourier series. The Fourier analysis permits a periodic distortion 

waveform to be decomposed into an infinite series containing a DC component, a fundamental 

component ( 50 / 60 Hz  for power systems) and its integer multiples called the harmonic 

components. The harmonic number n  usually specifies a harmonic component, which is the ratio 

of its frequency to the fundamental frequency.Equation Chapter 1 Section 1 

 An ideal power signal, i.e. a voltage or a current, is a sinusoidal signal of period T  (scalar) 

 ( ) sin( )y k a k         (1.1) 

where a  is the amplitude, 2 / T   represents the actual angular frequency, and   is the initial 

phase angle. This signal is measured and digitalized with sampling frequency of sf , the time 

interval between two successive samples is thus 1 /s sT f . 

 A non–ideal power signal contains harmonic terms and noise can be generally be approximated 

by 

0 1 1 2
( ) sin( ) sin( ) ( )

N

n nn
y k a a k a n k k    


            (1.2) 

where 0a  is the DC component and ( )k  represents a noise. Each harmonic component is defined 

by its amplitude na  and its phase angle n . Practically, the sum of the harmonic components  

sin( )n na n k    is limited (to n N ). 

 According to Fourier, every periodic signal can be estimated by a function f : 

0 1 1
( ) cos( ) sin( )n nn n

f k a a n k b n k  

 
       (1.3) 
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where 0a  is the DC part and n  is called the n th  harmonic. The sum of the terms cos( )na n k  is 

called the even part and the sum of the terms sin( )nb n k  is called the odd part of the signal. 

Rearranging the even and odd part gives (1.4) which is a well–known result: 

0
1

( ) cos( )n n
n

f k c c n k 




   ,    (1.4) 

with nc  the harmonic amplitudes and n  the phase angles: 

2 2 1
0 0,  ,  tan n

n n n n
n

b
c a c a b

a
   

     
 

.    (1.5) 

 In this thesis, we propose two new approaches based on multilayer perceptrons to identify the 

parameters 0 , ,n na a b  of (1.3) with a limited of n N  terms in (Nguyen and Wira, 2013a; Nguyen 

and Wira, 2013b; Nguyen and Wira, 2015). 

 

1.3 Nonlinear Load Classification 

We know that the nonlinear loads or devices in a power system generate unwanted harmonics that 

cause many problems in power systems. Harmonic sources identification in a power system has 

been an important challenging task for many years. Non-intrusive appliance load monitoring 

(NILM) using the input current waveform was introduced in (Hart, 1992) and in (Sultanem, 1991). 

In these studies, they used appliance signatures to monitor residential loads. The current waveform 

amplitudes and load cycles were used to identify devices. This has been represented by Figure 1.8 

and a diagram of various nonlinear load classification techniques is showed in Figure 1.9.  

 In this thesis, nonlinear load classification is separated in two main steps. The first step consists 

in extracting and identifying important features obtained from the signals and the second step is the 

classification which is based on the estimated features. The second step, i.e., the classifier of 

nonlinear loads, takes the features as the input and has several binary outputs. Obviously, the 

feature must significantly represent and characterize distorted waveforms. After analysis, this 

system is able to provide outputs showing which nonlinear load is ON or OFF. 
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 The complete strategy for the identification and classification of nonlinear loads in a power 

system is shown on Figure 1.10. We propose some new learning approaches for each of the two 

steps. 

 

 

	

Figure 1.8   Appliance signatures on total load waveform in (Hart, 1992). 

 

	

Figure 1.9   Classification of NILM techniques. 

Signature Analysis Based Techniques Machine Learning Based Techniques 

NILM Techniques 

Steady–State Signature 

Transient–State Signature 

Non–Traditional Features  

Supervised Learning 

Unsupervised Learning 
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Figure 1.10 System diagram of nonlinear load classification. 

 

1.4 Research Contributions 

In this research, we have proposed several new approaches that based on multilayer perceptron 

networks for solving the two problems: The estimation of power system harmonics and the 

classification of non–linear loads from the distorted waveform in power systems. Our contributions 

are illustrated by the diagram of Figure 1.11. 

 To solve the first problem, harmonics estimation, we proposed two methods. The first method is 

called the linear multilayer perceptron and the second method bases on a structure with several 

multilayer perceptron networks. 

 In the first new approach (Nguyen and Wira, 2013a; Nguyen and Wira, 2013b), a simple linear 

MLP has been developed for estimating the harmonics of distorted signals. The linear MLP is able 

estimate any periodic signal by expressing its output as a sum of harmonic components according 

to Fourier series. The network takes some specific harmonic elements with unit amplitudes as 

inputs and uses neurons that have linear activation functions. The measured signal serves as a 

reference and is compared to the network output. The amplitudes of the fundamental and high–

order harmonics are deduced from the combination of the weights of the neurons. The linear MLP 

identifies the amplitudes of the fundamental component and high–order harmonic components 

with good precision even under noisy conditions. 

 In second new approach (Nguyen and Wira, 2015), we propose another new neural network 

approach based on the structure of MLPs for identifying current harmonics in power systems. The 
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learning approach is based on several MLP, adopts the Fourier decomposition of a signal and a 

training set generated from harmonic waveforms is used to calculate the weights. After training, 

each MLP is able to identify two coefficients for each harmonic term of the input signal. The 

effectiveness of the new approach is evaluated by experiments. Results show that the proposed 

MLPs of the new approach enable to identify effectively the amplitudes of harmonic terms from 

the signals under noisy condition. Results are compared to other and recent MLP approaches. The 

new approach can be applied in harmonic compensation strategies by being implement in an active 

power filter to ensure the power quality in electrical power systems. 

 To solve the second problem, non–linear load classification, we proposed 3 approaches based 

on machine learning techniques, 2 MLP technique based approaches and 1 SVM technique based 

approach. These systems receive the inputs that come from the output of the first step, i.e., 

harmonic components, and provide binary outputs (with values 0 or 1) that mean that non–linear 

devices are switched “OFF” or “ON” and working in the power system. 

	

Figure 1.11   Thesis research contributions. 

 As a contribution for scientific research, the following is the list of our scientific publication 

from 2013 to 2015. They are four conference papers, one poster and one journal article as follows. 
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Four conference papers: 

(Wira and Nguyen, 2013) P. Wira and T. M. Nguyen, “Adaptive learning for on–line harmonic 

identification: An overview with study cases,” International Joint 

Conference on Neural Networks (IJCNN 2013), Dallas, Texas, 

August 4–9, 2013 

(Nguyen and Wira, 2013a) T. M. Nguyen and P. Wira, “A new approach based on a linear 

Multi–Layer Perceptron for identifying on–line harmonics,” 39th 

Annual Conference of the IEEE Industrial Electronics Society 

(IECON 2013), Vienna, Austria, November 10–13, 2013 

(Nguyen and Wira, 2013b) T. M. Nguyen and P. Wira, “A linear Multi–Layer Perceptron for 

identifying harmonic contents of biomedical signals,” 9th 

International Conference on Artificial Intelligence Applications an 

Innovation (AIAI 2013), Paphos, Cyprus, September 30 – October 2, 

2013 

(Nguyen and Wira, 2015a) T. M. Nguyen and P. Wira, “Power grid higher–order harmonics 

estimation with multilayer perceptrons,” 11th International 

Conference of Computational Methods in Sciences and Engineering 

(ICCMSE 2015), Athens, Greece, March 20–23, 2015 

One scientific poster and presentation: 

(Nguyen and Wira, 2014) T.M. Nguyen and P. Wira, “Artificial neural network approaches for 

identifying power system harmonics”, Poster dans la Journée 

Doctorale Sciences de l’École Doctorale 269 « Mathématiques, 

Sciences de l'Information et de l'Ingénieur (MSII) », Université de 

Haute–Alsace, 9 juillet 2014 

One journal article: 

(Wira and Nguyen, 2017) P. Wira and T.M. Nguyen, “Current harmonic estimation in power 

transmission lines using Multi–Layer Perceptron learning strategies,” 

Journal of Electrical Engineering, vol. 5, pp. 219-230, July-Aug. 

2017 (DOI: 10.17265/2328-2223/2017.05.001). 
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1.5 Thesis Structure 

There are two main scientific problems that need to be solved in this thesis. The first problem is 

the power system harmonic estimation/identification in a power system. The second problem is the 

load signature discrimination in a power system. The following chapters of this thesis are 

organized as follows.  

 Chapter 2 presents a literature review of existing techniques on the power system harmonic 

identification problem. The non-neural techniques, the neural techniques, and the hybrid 

techniques are presented.   

 Chapter 3 presents a literature review of existing techniques on the nonintrusive appliance load 

monitoring (NILM) that relate to the nonlinear load classification problem. 

 Chapter 4 presents two new proposed artificial neural network based approaches that have been 

developed for harmonic estimation/identification of the distorted signals. The first proposed 

approach method is based on a new proposed linear MLP. In this model, all of transfer functions of 

all neurons are linear in order that it can represent a Fourier series for a distorted waveform. The 

second new approach is a structure that is based on several typical MLPs. Each MLP network in 

this structure is able to learn off–line and estimate the coefficients of each harmonic component in 

the distorted waveform. The computer experiments and experimental results of these proposed 

approach methods for solving the power system harmonic identification problem are also 

presented in this chapter. 

 Chapter 5 presents three our proposed methods for the nonlinear load classification problem. 

The first proposed approach method is based on a binary output multilayer perceptron. The second 

proposed method is based on a structure of single-binary-output multilayer perceptrons. And the 

third proposed approach method is based on a structure of multiple support vector machines. The 

computer experiments and experimental results of these proposed approach methods for solving 

the nonlinear load classification problem are also presented in this chapter. 

 Finally, Chapter 6 summarizes and provides a discussion about the new methods proposed in 

this thesis. This chapter also gives some recommendations for some future works. 
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Chapter 2 : Harmonic Identification 

2.1 Introduction 

For power system harmonic estimation, many existing techniques have been developed in the field 

of digital signal processing. In this chapter, we present several existing techniques of power system 

harmonics identification. We categorize them into three groups of techniques: the non–neural 

techniques, the neural techniques, and the hybrid techniques. Section 2.2 reviews the existing non–

neural approaches for harmonic identification in power systems. In Section 2.3, we present the 

neural approaches for this problem. The recent hybrid techniques are also introduced in Section 

2.4. 

2.2 Non–Neural Techniques 

In this section, we introduce to several non–neural techniques for harmonic estimation as follows: 

discrete Fourier transforms, Kalman filtering, wavelet transform, Hibert–Huang transform, chirp 

z–transform, Prony’s method, multiple signal classification, estimation of signal parameters via 

rotational invariance technique (ESPRIT), phase–locked loop, genetic algorithm and particle 

swarm optimization. 

2.2.1 Discrete Fourier Transform 

Over last many decades, discrete Fourier transform (DFT) and fast Fourier transform (FFT) have 

been most chosen by the practitioners and researchers. DFT is the most basic method in spectral 

analysis for analyzing harmonics of stationary discrete signals in wide applications. In direct 

computation, the DFT algorithm requires N2 operations. 

 To reduce the number of operations of DFT, Cooley and Tukey proposed an algorithm for 

machine calculation of complex Fourier series, today called the FFT, in their publication in 1965 

(Cooley and Tukey, 1965). In 1978, Winograd proposed an improvement of DFT in his publication 

titled “On Computing the Discrete Fourier Transform” (Winograd, 1978). Today, FFT is the most 

common algorithm applied for solving the harmonic analysis problem in many useful power 

system applications. FFT is the simplest method for identifying power system harmonics. 

 However, applications of FFT still have the inherent limitations such as spectral leakage, 

aliasing, and the picket–fence effect (Girgis et al., 1991). Moreover, FFT needs many cycles of the 
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voltage or current waveform data. To improve these limitations, many extensions and 

improvements of DFT and FFT have been proposed in (Harris, 1978; Portnoff, 1980; Testa et al., 

2004; Barros and Diego, 2006; Ren and Wang, 2010). 

2.2.2 Kalman Filtering 

In 1960, R. E. Kalman proposed a new approach to linear filtering and prediction problems in his 

publication (Kalman, 1960). Kalman filtering or Kalman Filter (KF) is an algorithm and a model, 

with a set of state equations and measurement equations, that uses noisy and inaccurate data 

measured over time and provide an efficient estimation of past, present or future values by 

minimizing the mean of the squared error. In order to estimate different states or parameters, a 

number of power system applications have used KF. This technique uses a simple and robust 

algorithm for estimating the magnitude of the known harmonics in the signal along with stochastic 

noise.  

 A harmonic analysis based on KF technique was reported in (Sharma and Mahalanabis, 1973). 

An extended KF based technique was proposed in (Andria et al., 1992) for on–line identification 

of the instantaneous values of fundamental and harmonic contents. In 1996, a KF was used for 

identification and tracking of harmonic sources in a power system (Ma and Girgis, 1996). Their 

study shows that the Kalman filter can be employed as a solution for harmonic source 

identification: the optimal location of a limited number of harmonic meters and the optimal 

dynamic estimation of harmonic injections and their locations. In 1998, S. Liu proposed an 

adaptive KF for dynamic estimation of harmonic signals of a measured vehicle line current and the 

simulation illustrates the effectiveness of the proposed method especially for railway vehicle 

applications (Liu, 1998).  

 In 2003, an application of the KF was proposed to harmonic signal analysis in power system 

(Kennedy et al., 2003). There were three test signals that were used to test the KF analysis. Each 

signal included 5th, 7th, 11th, and 13th harmonics with the Gaussian white noise with a standard 

deviation of 0.01, representing a SNR of 40dB. To improve convergence of non–linear models, an 

adaptive algorithm was used. This algorithm was demonstrated that by adopting a methodical 

approach to choosing the error covariance of Q and R the Kalman filter can be successfully tuned 

to provide accurate analysis of harmonic content and fundamental frequency even during extreme 

power system disturbance. (Köse et al., 2010) employed a combination of extended KF and linear 

KF for spectral decomposition of distorted supply to estimate harmonics and interharmonics. 
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2.2.3 Wavelet Transform 

Nowadays, the Wavelet Transform (WT) (Grossman and Morlet, 1984; Mallat, 1989) is one of the 

most popular candidates of the time–frequency transformations. WT utilizes wavelets to represent 

any signal for detailed analysis with multiple time–frequency resolution. In 2002, T. 

Keaochantranond and C. Boonseng used WT for estimation harmonics and interharmonics in 

(Keaochantranond and Boonseng, 2002). In 2008, Y. Chen proposed an approach based on wavelet 

multi–resolution analysis for harmonic detection in electric power system (Chen, 2008). 

2.2.4 Hilbert–Huang Transform 

The Hilbert–Huang Transform (HHT) (Huang et al., 1998; Huang and Attoh–Okine, 2005) is a 

method to decompose a signal into so–called intrinsic mode functions along with a trend, and 

identify instantaneous frequency data. It works well on non–stationary and nonlinear data. In 2009, 

HHT based techniques for harmonic estimation was proposed in (Yu and Yang, 2009; Chen et al., 

2009; Zhang et al., 2009). 

2.2.5 Chirp Z–Transform 

The Chirp Z–Transform (CZT) (Rabiner et al., 1969) is a generalization of the DFT. While the 

DFT samples the Z plane at uniformly–spaced points along the unit circle, the chirp Z–transform 

samples along spiral arcs in the Z–plane, corresponding to straight lines in the S plane. The DFT, 

real DFT, and zoom DFT can be calculated as special cases of the CZT. T. T. Wang published a 

segmented CZT based technique that has the advantages of its ability to handle a very large 

amount of input data and to limit its computation to a portion of the frequency spectrum of interest 

thus providing greatly increased dynamic range and frequency resolution in (Wang, 1990). In 

1996, the segmented CZT was also used by (Daponte et al., 1996) with multiple deep dip windows 

for electrical power system harmonic analysis. In (Tarasiuk, 2011), the CZT and the DFT were 

employed to propose for power quality estimator analyzer. 

2.2.6 Prony’s Method 

Prony's method was developed by Gaspard Riche de Prony in 1795. Similar to the Fourier 

transform, Prony's method extracts valuable information from a uniformly sampled signal and 

builds a series of damped complex exponentials or sinusoids. This allows for the estimation of 

frequency, amplitude, phase and damping components of a signal. F. F. Costa and A.J.M. Cardoso 
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proposed a technique based on improved Prony’s method for identification of harmonics and 

interharmonics in (Costa and Cardoso, 2006). C.–I. Chen and G.W. Chang proposed an efficient 

Prony’s method for time–varying power system harmonic estimation in (Chen and Chang, 2009). 

2.2.7 MUSIC 

Multiple signal classification (MUSIC) is an algorithm used for frequency estimation. MUSIC 

estimates the frequency content of a signal or autocorrelation matrix using an eigenspace method. 

In 2006, a harmonic extraction algorithm based on MUSIC was presented in (Wang and Lu, 2006). 

However, MUSIC is not still popular in power harmonics estimation because if its high 

computational cost. 

2.2.8 ESPRIT 

Estimation of signal parameters via rotational invariant techniques (ESPRIT) (Paulraj et al., 1986) 

is a technique to determine parameters of a mixture of sinusoids in a background noise.  ESPRIT 

was successfully applied for harmonics estimation in papers (Lobos et al., 2000; Bracale and 

Carpinelli, 2009; Tao et al., 2010). 

2.2.9 PLL 

A Phase Locked Loop (PLL) is simply an oscillator that generates an output signal whose phase is 

related to the phase of an input signal. Phase–locked loops are commonly used in radio, 

telecommunications, computers and other wide electronic applications. An enhanced PLL is 

employed for measurement of harmonics and inter–harmonics of time–varying frequencies in 

(Karimi–Ghartemani and Iravani, 2003). PLL was applied for real–time estimation of fundamental 

frequency and harmonics for shunt active power filters in aircraft electrical systems in papers 

(Lavopa et al., 2009; Cupertino et al., 2011). 

2.2.10  GA 

Genetic Algorithm (GA) is a search heuristic that mimics the process of natural selection. This 

heuristic (also sometimes called a meta–heuristic) is routinely used to generate useful solutions to 

optimization and search problems. In 2007, Seifossadat’s research group proposed a technique 

using adaptive perceptrons based on a GA for harmonic estimation in power system (Seifossadat et 

al., 2007).	
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2.2.11  Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a computational method that optimizes a problem by 

iteratively trying to improve a candidate solution with regard to a given measure of quality. PSO 

optimizes a problem by having a population of candidate solutions, here dubbed particles, and 

moving these particles around in the search–space according to simple mathematical formulae over 

the particle's position and velocity. Each particle's movement is influenced by its local best known 

position but, is also guided toward the best known positions in the search–space, which are 

updated as better positions are found by other particles. This is expected to move the swarm 

toward the best solutions. In 2008, Z. Lu et al. presented a new algorithm for harmonic estimation 

(Lu et al., 2008). They used the PSO with passive congressing to estimate the phase of the 

harmonics. And a least–square method is employed to estimate the amplitudes. This method is also 

used to estimate interharmonics and the harmonics with frequency deviation with good results.	

2.3 Neural Techniques 

In this section, we introduce to the neural techniques for harmonic estimation. They are methods 

that based on artificial neural networks. Since 1990s, artificial neural networks (ANNs) have been 

applied for estimating harmonics in power systems. ADALINEs, Multi Layer Perceptrons (MLPs), 

Recurrent Neural Networks (RNNs), Radial Basis Function Neural Network (RBFNNs) are the 

most used ANNs for estimating harmonics in power systems. Equation Chapter 2 Section 1 

2.3.1 ADALINE 

The architecture of the ADALINE is based on very simple unit which performs a processing. This 

unit consists of weights, a bias and a summation function, they are shown on Figure 2.1. The 

processing comprise the calculation of the output for given inputs and the learning phase, i.e., the 

weights adjustment. The ADALINE is able to fit any linear relationships by providing a scalar 

output as a weighted sum of the inputs and by adapting its weights. When a multidimensional 

output space must be considered, i.e., when several outputs are required, several ADALINE having 

the same inputs are used and this is sometime referred to as a multiple ADALINE. 
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Figure 2.1   ADALINE architecture with harmonic terms as inputs. 

 Let x  and w  be two vectors, respectively for the inputs and weights. For mathematical 

convenience, let the first element of x  be equal to 1, so that the first element of w  becomes the 

bias weights. At instant k , the output ˆ( )y k  is a weighted sum given by the following dot product: 

       ˆ ( ) ( ) ( ).Ty k k k w x      (2.1) 

 The ADALINE network is a supervised learning network that needs to associate a reference 

value for each input vector. This reference is a desired value corresponding to an input and 

expressed in the ADALINE’s output space. When an input ( )kx  is presented to the network, the 

output ˆ( )y k  is calculated and compared to the desired output ( )y k  that is associated to it. This 

defines the error 

ˆ( ) ( ) ( ) ( ) ( ) ( ).Te k y k y k y k k k    w x     (2.2) 

 The pairs of input/output values (1)x , (1)y , (2)x , (2)y , … ( )Qx , ( )y Q  represents the learning 

data set. Each pair can be used on-line to adapt the weights at each iteration in order to minimize 

the error ( )e k . The new value of the weight vector is updated from its previous according to the 

-LMS  rule or to the -LMS  rule, i.e., respectively 

( 1) ( )  ( ) ( ),k k e k k  w w x      (2.3) 

2
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|| ( ) ||
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w w

x
    (2.4) 

where   and   are learning rates. The -LMS  algorithm is only a normalized version of the 

-LMS  algorithm. Normalizing the input x , before applying it to the network, leads to the same 



19 
 

result using the -LMS algorithm. These learning rules come from the LMS algorithm and it 

called the Widrow-Hoff learning rule (Widrow and Walach, 1996). Approximately, the ADALINE 

converges to least squared error when k   (Wang et al., 2000), (Zeng et al., 2006). The main 

characteristic of LMS algorithm is that it safes the error and it reduces the average quadratic error. 

Variants have been recapitulated in (Wira et al., 2008). 

 In (Widrow and Walach, 1996) and (Wang et al., 2000), ( 1)k w  is the new value that will take 

the weight vector from its previous value ( )kw  which represents the memory of the network. In the 

weight update process, the learning rate gives more or less importance to the innovation term 

based on the error compared to the memory term ( )kw . Therefore, the values of the rates   and   

are chosen between 0 and 1. 

 In power system, identifying the harmonics allows to separate the disturbing higher-order 

harmonics introduced by non-linear loads from the fundamental term carrying the electric energy 

(Arrillaga and Watson, 2003). These operations are necessary for monitoring and ensuring electric 

power quality. Efficient methodologies for the analysis and measurement of the basic electric 

magnitudes in are required. Methods with short computation time for real-time calculation must be 

employed for the generation of compensating currents in order to instantaneously re-inject them, 

most often with shunt active power filtering schemes (Akagi, 1996). 

 The following shows how ADALINE-based approaches can be judiciously used for estimating 

the frequency/harmonic content of power signals. Frequency estimation means estimating the 

fundamental frequency and tracking its fluctuations and deviations. Harmonics identification 

means estimating the amplitudes and phases of the harmonic terms contained in the signal. 

 The use of an ADALINE to learn the Fourier series of the signal given by (1.2) has been 

introduced in (Dash et al., 1996). This work corresponds to the general approach detailed in 

Section 1.2 where a decaying DC quantity is added to the signal model. An additional element (

skT ) s therefore introduced in the ADALINE input vector and allows to efficiently track the 

amplitude and the phase of 6 harmonic terms. A similar approach is proposed in (Dash et al., 

1998), where a signal model with a different expression of the decaying quantity is used. This 

leads to the modification of one element of the input vector. The estimation error is also fed back 

recurrently in order to enhance the input vector by 3 elements ( ( )e k , ( 1)e k  , and ( 2)e k  ). The 

very simplest approach, based on the Fourier series, is also used in (Vázquez et al., 2001) and in 

(Tey et al., 2005). In this last work, only two weights elements of fundamental component are 
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updated, hence it is independent of the harmonic orders present. In (El Shatshat et al., 2002), the 

same approach and the same signal model is used, one ADALINE is used for harmonic estimation, 

another is used for predicting the line voltage. 

 The S-ADALINE proposed in (Sarkar and Sengupta, 2009) is able to synchronize itself with 

time-varying signals to the frequency deviation for on-line tracking of single phase reactive power. 

It contains a fundamental angular frequency deviation measurement algorithm that is used to 

generate sine and cosine terms of the input vector of the ADALINE. These terms are thus in phase 

with the fundamental term of the measured signal. In (Chang et al., 2009), two ADALINEs in a 

cascaded two-stage approach is used. In the first stage, an ADALINE implements the Prony’s 

method for tracking the fundamental frequency of the measured signal. In the second stage, an 

ADALINE learns the Fourier series decomposition of the signal with the very simplest approach 

for estimating the amplitudes of the harmonics. 

 The previous approaches identify the harmonics in the measured signal reference frame. This 

means that the measured signal, i.e., the current, is directly expended into a Fourier series which is 

learned by an ADALINE. However, the measured signal can be converted into another reference 

frame before being expended, learned and approximated by an ADALINE. If the principle remains 

the same, the conversion of the signal in a different reference frame allows highlighting more or 

less some parts of the signal. The current is thus converted into a virtual power space by 

multiplying the measured current by a sine term in (Ould Abdeslam et al., 2007). In another of 

(Ould Abdeslam et al., 2007), 2 ADALINEs serve to estimate the Fourier series of the 

instantaneous PQ-powers (Akagi, 1996) which requires the measure of the currents and of the 

voltages for the 3 phases. In (Wira et al., 2008), measured current of the 3 phases is converted into 

a current expressed in the DQ-space with the Park transform. A complex ADALINE is proposed in 

(Sadinezhad and Joorabian, 2009). This approach estimates the fundamental frequency of a power 

system with an input vector composed of sine and cosine terms. To produce the input vectors and 

deal with the decaying DC term, the Park transformation is used. The two weights associated to the 

fundamental frequency are used through a hamming filter to calculate the amplitude of the 

fundamental term. 

 The ADALINE for frequency estimation and harmonic identification can be used in different 

way by replacing the Fourier series expression by a recursive linear expression of a signal. 

Considering a measured signal of the type given by (1.1), three consecutive samples ( )y k , 

( 1)y k  , and ( 2)y k   meet the relationship 
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0( ) (2 cos ) ( 1)  ( 2)sy k T y k y k        (2.5) 

The inputs of the ADALINE therefore become  ( 1) ( 2)
T

y k y k  x  and its outputs is 

compared to the reference signal ( )y k  with is the measured signal at instant k . After minimizing 

the error, the weights converge to  * * *
1 2 02 cos 1

T T

Sw w T    w . The frequency can thus be 

obtained from the first element of *w . Indeed, 1 1 *
1

ˆ (2 ) cos ( )Sf T w   . As can be seen, it is simple 

and therefore well suited for the frequency estimation problem. However, it is sensitive to noise 

because based on ideal expression of the current waveform. 

 This simple principle is used in (Dash et al., 1997) where the ADALINE inputs are enhanced by 

additional harmonic terms to take account of a decaying DC component and harmonic distortion 

present in the power system signal. Fundamental frequency estimation is thus achieved. In (Abdel-

Galil et al., 2003), a tapped delay line of the measured current is used to generate the inputs for the 

ADALINE. Power quality event detection is thus possible with an ADALINE with only 4 inputs. 

 In (Ai et al., 2007), a tapped delay line of a large size is used to generate the ADALINE inputs 

for disturbance detection. The identification of the power system frequency is achieved by another 

ADALINE that combines delayed signal measures and sine and cosine inputs. More recently, 

(Abdollahi and Matifar, 2011) proposes an approach for frequency estimation but not with an 

ADALINE. It a least-squares approach that uses 3 consecutive measures of the signal and that 

calculates once per iteration the solution (i.e., coefficients equivalent to the weights of the 

ADALINE) by using a pseudo-inverse computing. 

 In 1987, B. Widrow et al. presented the fundamental relations between the least–mean–square 

(LMS) algorithm and the DFT in their publication. The paper established a connection between the 

DFT and the adaptive LMS. The result is the “LMS spectrum analyzer,” a new means for the 

calculation of the DFT. Figure 2.2 shows a block diagram of LMS spectrum analyzer in (Widrow et 

al., 1987). In 1996, a new approach in Figure 2.3 was proposed for harmonics estimation using 

Fourier linear combiner realized using an adaptive linear neuron known as ADALINE in (Dash et 

al., 1996). This approach is unlike from the previous backpropagation approaches and allows 

better control the stability and speed of convergence by appropriate choice of parameters of the 

error difference equation. 
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Figure 2.2   Block diagram of the LMS spectrum analyzer in (Widrow et al. , 1987). 

 

	

Figure 2.3   Fourier linear combiner for harmonic estimation as an ADALINE. 

 In 1998, P. K. Dash applied ADALINE for tracking 3–phase voltages and currents (Dash et al., 

1998) as in Figure 2.4. In 2009, a two–stage Adaline in Figure 2.5 was proposed for harmonics and 

interharmonics measurement by (Chang et al., 2009). A. Sakar and S. Sengupta proposed a self–

synchronized Adaline network for on–line tracking of single phase reactive power in non–

sinusoidal conditions (Sarkar and Sengupta, 2009; Sarkar et al., 2011) as in Figure 2.6. 
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Figure 2.4   An ADALINE for tracking 3–phase voltages and currents in (Dash et al., 1998). 

  

 

Figure 2.5   A two–stage ADALINE for harmonics and interharmonics measurement. 

 In 2011, B. Vasumathi and S. Moorthi developed the concept of modified ADALINE algorithm 

with Time–Variant Widrow – Hoff (TVWH) rule for an optimization problem with selected 

harmonic elimination in PWM inverter (Vasumathi and Moorthi, 2011). The simulation is for both 

ADALINE algorithm and modified ADALINE algorithm. The modified ADALINE with TVWH 

rule is shown in Figure 2.7. 
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Figure 2.6   The architecture of S–ADALINE (Sakar and Sengupta, 2009). 

 

Figure 2.7   Modified ADALINE with TVWH rule. 
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a) Method 1 (for 1 phase) with kx  inputs b) Method 2 (for 3 phases) with kx  inputs 

c) Method 3 (for 3 phases) with kx and 
,q kx  inputs 

 

 

d) Method 4 (for 3 phases) with 
,D kx and 

,Q kx  inputs e) Method 3 (for 1 phase) with kx
inputs 

Figure 2.8   Methods based on ADALINE in (Wira et al., 2010). 



26 
 

 In (Wira et al., 2010), five ADALINE based methods for harmonic identification are presented 

to improve the performance of an active power filter (APF) in its on–line control strategy. They are 

named “method 1: the direct neural method”, “method 2: the three–monophase method”, “method 

3: the active and reactive powers method (neural IPT method)”, “method 4: the neural diphase 

currents method”, and “method 5: neural synchronous method”. Figure 2.8 shows block diagram 

of the neural schemes based on ADALINEs of methods in (Wira et al., 2010). 

2.3.2 Multilayer Perceptron 

Multilayer Perceptron (MLP) network is the most artificial neural network model used in the world 

with its ability that can learning from the training data set and effectiveness for solving problems 

in nonlinear classification and pattern recognition. There are a number of applications of MLP in 

industry and commerce. The structure and principle of the MLP is detailed in the following. 

 MLP network is a kind of a family of feed forward neural network models. In this model, there 

are artificial neurons with activation function inside. The artificial neurons of a MLP network are 

structured into the layers (the hidden layers and the output layer).  A MLP network has one input 

layer, one output layer and one or several hidden layers. There is not any artificial neuron in the 

input layer of the MLP. The input layer is only a layer as the entrance of the data into the model. 

The data comes into the model via the input layer, passes through the hidden layers and finally exit 

out of the model by the output layer. 

	

Figure 2.9   The structured NN for harmonic estimator in (Hattana and Richard, 1990). 

 In 1990, R. K. Hartana and G. G. Richards applied MLP networks in their proposed technique 

to estimate from 5th harmonic up to 13th harmonic contents in (Hartana and Richard, 1990). In 

their structured neural network, each harmonic output uses 4 MLPs: 2 MLPs for estimation of the 

real part and 2 MLPs for estimation of the imaginary part of each harmonic. The outputs of all 
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MLP are binary values with 0 or 1. Figure 2.9 shows the structure of harmonic estimator in 

(Hattana and Richard, 1990).  

 In (Pecharanin et al., 1994 and 1995), they applied two MLPs with 3 layers using 

backpropagation learning algorithm to design a harmonic detector of 3rd harmonic and 5th 

harmonic contents in an active filter as showed in Figure 2.10. 

 

	

Figure 2.10   A MLP for estimation of 3rd and 5th harmonics (Pecharanin et al., 1995). 

 In 1998, Md. Rukonuzzaman applied MLPs to an application in power system harmonic 

detection in (Rukonuzzaman et al., 1998) as in Figure 2.11. The objective of their paper is to detect 

the components (magnitudes and phases) of harmonics in power distribution system. They used 2 

MLPs to do this. The first MLP is used to estimate the A coefficients of 3rd, 5th and 7th 

harmonics. The second MLP estimate the B coefficients of 3rd, 5th and 7th harmonics. In their 

simulation to verify the proposed technique, each MLP is designed with 90 inputs, 19 hidden 

neurons and the number of output neurons depends to the number of harmonics that need to detect. 
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Figure 2.11   Harmonic detection process. 

 H. C. Lin proposed a MLP with 3 layers to fast detect precise harmonics in noisy environments 

by using only a half of cycle sampled values of distorted waveforms in his researches (Lin, 2004; 

Lin, 2007). The detected amplitudes and phases of harmonics are the outputs of the trained MLP. 

Figure 2.12 shows the MLP configuration for harmonic detection in (Lin, 2007). 

	

Figure 2.12   The MLP configuration for harmonic detection in (Lin, 2007). 
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 In 2008, M. Tümay and others presented a harmonic extraction algorithm using MLP for 

dynamic voltage restorers (DVRs) (Tümay et al., 2008). Their method used two different ANN 

structures such as a fully connection MLP and a partial connection MLP for extracting harmonic 

from distorted waveforms. The distorted waveforms including 3rd and 5th harmonics are 

employed as inputs for training the network with backpropagation training algorithm. Their 

proposed method is shown in Figure 2.13. 

	

Figure 2.13   MLPs for harmonic extraction in (Tümay et al., 2008). 

 

	

Figure 2.14   A MLP based structure for harmonics coefficient and phase angle detection (Temurtas and 

Temurtas, 2011). 
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 In 2011, H. Temurtas and F. Temurtas used two MLP for detection of the harmonic coefficient 

and relative phase shifts. The simulation used the distorted waveform including uniform 

distributed 5th, 7th, 11th, 13th, 17th, 19th, 23rd, 25th harmonics with up to 20 degrees relative 

phase shifts. The first trained MLP is used to detect harmonics coefficients. The second trained 

MLP detects relative phase angles (Temurtas and Temurtas, 2011). The proposed method is shown 

in Figure 2.14. 

	

Figure 2.15   MLP based structure for the neural–network–method for estimating A and B coefficients of 
harmonics (Nascimento et al., 2013). 

 An efficient approach to distortion monitoring based on MLP applied to estimate harmonic 

contents of load currents in single–phase systems (Nascimento et al., 2011; Nascimento et al., 

2013). In their method, to detect a harmonic, two one–output MLPs are used to detect 2 

coefficients of one harmonic, one MLP for A and another for B. There are 5 hidden neurons and 

only 1 output neuron for each MLP in their simulation. The results from the MLPs based 

harmonics identification method were compared to the truncated FFT. Figure 2.15 shows MLP 

based structure for the neural–network–method for estimating A and B coefficients of harmonics in 

(Nascimento et al., 2013). 
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2.3.3 Recurrent Neural Network 

A recurrent neural network (RNN) is a class of artificial neural network where connections 

between units form a directed cycle. This creates an internal state of the network which allows it to 

exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use their 

internal memory to process arbitrary sequences of inputs. This makes them applicable to tasks such 

as un-segmented connected handwriting recognition, where they have achieved the best known 

results. 

 In (Mori and Suga, 1992), RNNs are used to handle harmonic dynamics.  Four RNN types are 

introduced to apply for power system harmonic prediction. Four RNNs were tested to predict the 

fifth harmonic voltage that was measured at the PC–based harmonic measurement system. A 

comparison was made of four RNN models from standpoint of the accuracy and computational 

efforts. 4 types of RNN used of harmonic prediction in (Mori and Suga, 1992) are shown in Figure 2.16. 

	

Figure 2.16   4 types of RNN used of harmonic prediction in (Mori and Suga, 1992). 

 In 2004, F. Termutas et al. applied the Elman’s RNNs for harmonic detection process in active 

power filter (Temurtas et al., 2004).  In this method, the outputs of hidden neurons are used as a 

part of inputs in input layer of the RNN. The network is able to detect harmonics of orders 5th, 7th, 

11th, and 13th in their simulation as shown in Figure 2.17. 
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Figure 2.17   Elman’s RNN structures for harmonic detection in (Temurtas et al., 2004). 

 RNNs are trained with the backpropagation through time training algorithm for estimation of 

non–linear load harmonic current in (Mazumdar and Harley, 2008) as in Figure 2.18. Its advantage 

is only voltages and currents waveforms have to be measured. This technique is able to apply for 

single and three phase power networks. 

 

	

Figure 2.18   Proposed scheme for estimating the true harmonic distortion of a nonlinear load in 

(Mazumdar and Harley, 2008). 
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2.3.4 Radial Basis Function Neural Network 

A radial basis function neural network (RBFNN) is a feedforward ANN. It uses radial basis 

functions (RBFs) as activation functions in its hidden neurons. Figure 2.19 illustrates a typical 

RBFNN. 

	

Figure 2.19   A typical RBFNN in (Guangjie and Hailong, 2009). 

 In 2009, F. Guangjie and Z. Hailong presented their study of the electric power harmonics 

detecting method based on the immune RBFNN in (Guangjie and Hailong, 2009). In 2010, G. W. 

Chang et al. proposed a RBFNN–based method to detect the harmonic amplitudes of the measured 

signal in (Chang et al., 2010). The proposed technique uses only a half of cycle of measured signal 

to detect all harmonic components. In 2012, E. Almaita and J. A. Asumadu proposed an on–line 

power system harmonic estimation based on sequential training RBFNN (Almaita and Asumadu, 

2012). In this study, a RBFNN is employed for estimating the fundamental, fifth harmonic, and 

seventh harmonic components. 

 2.4 Hybrid Techniques 

In 2003, an algorithm based on a hybrid least square–GA is proposed for estimating of harmonic in 

(Bettayeb and Qidwai, 2003). In 2005, a hybrid least square–fuzzy bacterial foraging strategy is 

presented for harmonic estimation in (Mishra, 2005). In this work, a new algorithm based on the 

foraging behavior of E. coli bacteria in the intestine to estimate harmonics in power system 

voltage/current waveforms. In the same year, Zhan and Cheng proposed a robust SVM using 
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interactive reweighted least square method for harmonic and inter–harmonic analysis of electric 

power system (Zhan and Cheng, 2005). F. T. Wang et al. proposed a hybrid wavelet –Hilbert–

Huang spectrum analysis in their publication (Wang et al., 2005). 

 In 2007, a harmonic analysis based on KF and Prony’s method was proposed in (Costa et al., 

2007). In another study, a power system harmonic estimation method is proposed using adaptive 

perceptron based on a genetic algorithm (Seifossadat et al., 2007). In 2009, B. Subudhi and P.K. 

Ray proposed 2 hybrid algorithms for power system harmonic estimation, RLS–ADALINE 

algorithm and KF–ADALINE algorithm in (Subudhi and Ray, 2009). X. M. Ye and X. H. Liu 

proposed a harmonic detection based on WT and FFT intestine for electric ARC furnaces in (Ye 

and Liu, 2009). A harmonic estimation in power system was proposed using hybrid H∞–

ADALINE algorithm in (Sahoo et al., 2009).   

 In 2010, P. K. Dash et al. used an Adaptive PSO algorithm to select optimal parameters of 

unscented KF and measurement error covariance for harmonic analysis of non-stationary signals 

(Dash et al., 2010). Zadeh et al. proposed a new hybrid technique based on combination of KF and 

least error square techniques in power system in (Zadeh et al., 2010). The modified KF provides 

precise estimation results. In the same year, B. Subudhi and P. K. Ray proposed a hybrid 

ADALINE bacterial foraging approach for power system harmonic in (Subudhi and Ray, 2010). 

 In 2012, S. K Jain and S. N. Singh presented a new harmonics estimation technique based on 

adaptively trained ANN assisted by high resolution ESPRIT method (Jain and Singh, 2012). In 

2013, a method using sliding window based LMS was presented for estimation of power system 

harmonics in (Alhaj et al., 2013). Besides that, an artificial bee colony–least square algorithm was 

proposed for solving harmonic estimation problems in (Biwas et al. 2013). E. Cabal–Yepez et al. 

proposed harmonic component estimation using discrete Fourier square–wave transform (DFSWT) 

as a fast processing engine in (Cabal–Yepez et al., 2013). 

 In 2014, S. K. Singh et al. proposed a fast transverse–RLS algorithm for power system 

harmonic estimation in (Singh et al., 2014). In 2015, a bilinear RLS algorithm was proposed for 

estimating power system harmonic parameters (Singh et al., 2015a). P. K. Ray and B. Subudhi 

proposed neuron–evolutionary approaches to power system harmonics estimation (Ray and 

Subudhi, 2015). A LMS algorithm based on variable constraint is proposed for power system 

harmonic parameter estimation in (Singh et al., 2015b). 
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2.5 Summary 

In this chapter, we have presented a state of the art of existing approaches for solving the problem 

of power system harmonics estimation. For the power system harmonics estimation, we have 

presented and grouped all of approaches for solving this problem into 3 groups of techniques: non–

neural techniques, neural techniques, and hybrid techniques. The non–neural techniques are 

approaches that don’t uses artificial neural networks in their design. The neural techniques are 

approaches that use at least one or more artificial neural networks in their design. And the last 

group for power system harmonic estimation approaches contains hybrid techniques that use both 

non–neural techniques and artificial neural networks. These approaches relate to the development 

of our proposed approaches for harmonics estimation presented in Chapter 4. 
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Chapter 3 : Load Signature Discrimination 

3.1 Introduction 

Non–Intrusive Appliance Load Monitoring (NILM) refers to a set of techniques that automatically 

estimate the electricity consumed by individual electrical appliances in a building from 

measurements of the total electrical consumption (Giri and Bergés, 2015). In 1980s and 1990s at 

the MIT, George Hart developed one of the earliest NILM systems, which based on detailed 

analysis of the current and the voltage of the total loads in the residential buildings. His approach 

was described in (Hart, 1992). Figure 1.9 shows the classification of NILM techniques. 

3.2 Signature Analysis Based Techniques 

3.2.1 Steady–State Signature Analysis Based Approaches 

The NILM approaches based on steady–state signature analysis use steady–state features that are 

derived under the appliance operations. The first steady–state signature analysis based approach 

was used by Hart (Hart, 1992) to prove the NILM concept. In his work, both of active power P  

and reactive power Q are recorded over intervals of one second. In NILM, active power P  and the 

reactive power Q are most commonly used steady–state signatures for tracking operations of “turn 

on” or “turn off” of appliances. 

 In (Norford and Leeb, 1996; Farinaccio and Zmeureanu, 1999; Marceau and Zmeureanu, 2000), 

researchers have tried to use active power as a single feature for load disaggregation. They found 

that the high–power appliances with distinctive power draw characteristics, such as electrical 

heaters and water pumps, can be easily identified from the aggregated measurement. Moreover, 

there were several NILM approaches that are summarized in Table 3.1. 

3.2.2 Transient–State Signature Analysis Based Approaches 

Associated with any turn–on events, transients are momentary fluctuations in powers, voltages or 

even currents before settling in to a steady–state value. These short–term fluctuations are called 

transients (Wong et al., 2013). The transient behavior of major appliance is captured to be distinct 

and its features are less overlapping in comparison with steady–state signatures. However, high 

sampling rate requirement to capture the transient is the major limitation of this method 

(Figueiredo et al., 2011). The shape of transient events can be used as a feature for detecting 



37 
 

appliances in (Norford and Leeb, 1996). A summary of transient–state methods is shown in Table 

3.2 from (Zoha et al., 2012). 

 

 

Steady–State Methods Features Advantages Shortcomings 

Power Change 

(Hart, 1992; Marchiori et 
al., 2011; Norford and 
Leeb, 1996; Farinaccio 
and Zmeureanu, 1999; 

Marceau and Zmeureanu, 
2000) 

Steady State Variation 
of Real and Reactive 

Power, P , Q   

High–Power Residential 
Loads can easily be 

identified, Low–
sampling rate 
requirement 

Low power appliances overlap in P–
Q plane, Poor performance in 

recognizing Type–II, III and Type–
IV loads. 

Time and Frequency 
Domain Characteristics 

of VI Waveforms 

(Liang et al., 2010; 
Najmeddine et al., 2008; 
Kato et al., 2009; Cole 

and Albicki, 2000; 
Suzuki et al., 2008; 

Laughman et al., 2003; 
Ruzzelli et al., 2010;Li et 

al., 2012)  

Higher order Steady–
State Harmonics, 
Irms, Iavg, Ipeak, 

Vrms, Power factor 

Device classes can 
easily be categorized 

into resistive, inductive 
and electronic loads 

High sampling rate requirement, Low 
accuracy for Type–III loads, 

overlapping features for consumer 
electronics of Type–I and Type–II 

category, unable to distinguish 
between overlapping activation 

events 

V–I Trajectory 

(Lee et al., 2004; Lam et 
al., 2007) 

Shape features of V–I 
trajectory: asymmetry, 

looping direction, 
area, curvature of 
meanline, self–

intersection, slope of 
middle, segment, area 
of segments and peak 

of middle segment 

Detail taxonomy of 
electrical appliances can 

be formed due to 
distinctive V–I curves 

Sensitive to multi–load operation 
scenario, computationally intensive, 

smaller loads have no distinct 
trajectory patterns 

Steady–State Voltage 
Noise 

(Patel et al., 2007; Gupta 
et al., 2010) 

EMI signatures Motor–based appliances 
are easily 

distinguishable as they 
generate synchronous 

voltage noise, Detection 
of simultaneous 

activation events, 
Consumer appliances 
equipped with SMPS 

can be recognized with 
high accuracy 

Sensitive to wiring architecture, EMI 
signature overlap, Not all appliances 

are equipped with SMPS 

Table 3.1   Summary of steady–state methods from (Zoha et al., 2012). 
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Trasient–State Methods Features Advantages Shortcomings 

Transient Power 

(Zeifman and Roth, 2011; 
Laughman et al., 2003; Chang 

et al., 2008; Chang, 2012; 
Shaw et al., 2008) 

Repeatable transient 
power profile, spectral 

envelopes 

Appliances with same 
power draw 

characteristics can be 
easily differentiated, 

Recognition of Type–
I,II,III loads 

Continuous monitoring, high 
sampling rate requirement, not 

suitable for Type IV loads 

Start–Up Current Transients 

(Norford and Leeb, 1996; Cole 
and Albicki, 1998; Chang, 

2012) 

Current spikes, size, 
duration, shape of 

switching transients, 
transient response time 

Works well for Type I 
and Type II loads, 
distinct transient 

behavior in multiple 
load operation scenario  

Poor detection of simultaneous 
activation deactivation of 

sequences, unable to 
characterize Type III and IV 

loads, sensitive to wiring 
architecture, appliance specific 

High Frequency Sampling of 
Voltage Noise 

(Patel et al., 2007; Hazas et 
al., 2011) 

Noise FFT Multi–state devices, 
consumer Electronics 

with SMPS 

Appliance specific, 
computationally expensive, 
Data annotation is very hard 

Table 3.2   Summary of transient–state methods from (Zoha et al., 2012).	

3.2.3 Non–traditional Appliance Features Based Approaches 

Apart from traditional appliance features (steady–state and transient–state signatures), other feature 

extraction methods have been developed to acquire non–traditional appliance features. In 2012, Z. 

Wang and G. Zheng proposed that the power consumption of residential appliances can be 

described by the combination of two basic units, triangle and rectangles, neglecting the smaller 

fluctuations and errors (Wang and Zheng, 2012). Their new approach can reduce the appliance 

feature overlap problem. The rectangle can be expressed by starttime, peaktime, steadytime and 

steadypower whereas the triangle unit can be described by starttime, peaktime, peakvalue and 

endtime. 

 In (Liang et al., 2010), researchers proposed to combine several features including P ,Q 

harmonics of the appliances, eigenvalues of the current waveforms, admittance etc. for 

disaggregating load. This combination of features improves the load identification performance. In 

(Suzuki et al., 2008), authors have tried to examine the use of raw waveforms for appliance 

identification. However, the experimental evaluations provided that it offers no advantages 

whereas in comparison the processed features are better suited for load identification. Other non–

traditional features including on and off duration distribution, time of the day, frequency of 

appliance usage and correlation between different appliance usages were examined to improve the 

load disaggregation algorithms performance (Kim et al., 2011; Zeifman, 2012). 
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3.3 Machine Learning Based Techniques 

3.3.1 Supervised Learning Based Approaches 

In (Baranski and Voss, 2003; Liang et al., 2010; Baranski and Voss, 2004; Suzuki et al., 2008), 

researchers have proposed different optimization based approaches including genetic algorithm 

and integer programming in order to tackle the NILM problem as the optimization problem. 

However, the challenge is how to reduce the computational complexity of these methods and more 

especially if any unknown load which are not included in the database, are present in the 

aggregated load data. 

 Pattern recognition based approaches are the most frequently used in the study of load 

disaggregation. Hart proposed a simple clustering based approach in which appliances form their 

unique clusters in P Q  plane (Hart, 1992). In 1994, J. G. Roos et al. proposed using neural 

networks for NILM systems (Roos et al., 1994). In (Farinaccio and Zmeureanu, 1999), researchers 

proposed a pattern recognition approach to disaggregate the total electricity consumption in a 

house into the end–uses. In their method, filtering and smoothing mechanisms were employed to 

deal with power variations and instead of power consumption change in real power values are used 

as a feature for detecting appliances. However, this method works well only with high power loads 

and furthermore it requires excessive training. 

 Support vector machines and boosting techniques were applied to a NILM system for 

household electric appliances with inverters. Figure 3.1 shows sketch of large margin classifiers 

metering system in (Onoda et al., 2000; Onoda et al., 2002).  

	

Figure 3.1   Sketch of large margin classifiers metering system in (Onoda et al., 2000). 
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 In 2000, a MLP based NILM system in Figure 3.2 was developed to ascertain the behavior of 

each electrical appliance in a household by disaggregating the total household load demand. The 

load consumption of household appliances is identified by the pattern recognition ability of a MLP 

(Yoshimoto et al., 2000). 

	

Figure 3.2   Multilayer perceptron designed for NILM system in (Yoshimoto et al., 2000). 

 In 2006, D. Srinivasan et al. proposed a neural–network–based approach to nonintrusive 

harmonic source identification (Srinivasan et al., 2006). Neural networks are trained to extract 

important features from the input current waveform to uniquely identify various types of 

appliances using their distinct harmonic signatures. In this work, several neural network based 

classification models including MLP, RBF network, and SVM with linear, polynomial, and RBF 

kernels were developed for signature extraction and device identification. Their results showed that 

MLPs and SVM were both able to determine the presence of appliances based on their harmonic 

signatures with high accuracy. 

 In 2008, H.–H Chang et al. proposed the use of neural network classifiers to evaluate back 

propagation and learning vector quantization for feature selection of load identification in a NILM 

system (Chang et al., 2008). The NILM system uses an adaptive algorithm of the turn–on transient 

energy for start–up analysis to improve the efficiency of load identification and computational 

time. The testing recognition accuracy can be relatively high at 95.3% for back propagation 

classifier, in multiple operations. 
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3.3.2  Unsupervised Learning Based Approaches 

Recently, researchers started to explore methods that can achieve disaggregated energy sensing 

without any a–priori information. Especially for the NILM systems that are installed in a target 

environment with a minimal setup cost as the training requirement for the supervised load 

identification algorithms is expensive or laborious. Therefore, unsupervised learning based NILM 

systems are needed for a wider applicability of usages (Zoha, 2012). 

 In (Gonçalves et al., 2011), an unsupervised disaggregation of appliances using aggregated data 

was proposed. In this approach, a blind source separation technique was used to discern electrical 

appliances from the aggregated load data in an unsupervised fashion. The steady–state P  and Q  

features were employed for clustering appliances. 

 In (Shao et al., 2012), a temporal motif mining approach was proposed to unsupervised energy 

disaggregation. To identify individual appliances, power change events such as (+500 W, –500 W) 

were considered in contrast to power consumption. 

 Recently several variants of hidden Markov models have also been proposed to unsupervised 

NILM systems in (Kim et al., 2011; Kolter and Johnson, 2011; Kolter and Jaakkola, 2012; Parson 

et al., 2014). 

3.4 Summary 

In this chapter, we have reviewed several approaches for nonlinear load classification. Some 

techniques are based on signature analysis and some others are based on the principle of machine 

learning. For signature analysis based approaches, we presented them into three groups: steady–

state signature based approaches, transient–state signature analysis based approaches and non–

traditional appliance features based approaches. For machine learning based approaches, they have 

been classified into two groups: supervised learning based approaches and unsupervised based 

approaches. 

 Among the nonlinear loads classification approaches which have been reviewed, most of them 

belong to non–intrusive load monitoring. These approaches are related to the development of our 

proposed approaches for nonlinear loads classification presented in Chapter 5. 
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Chapter 4 : Harmonic Estimation Using Artificial 
Neural Networks 

4.1 Introduction 

In this chapter, we propose two new neural network–based approaches that have been developed 

for harmonic estimation of the distorted signals. The first new approach is based on a proposed 

linear MLP. The second new approach is a structure that is based on several typical MLPs. 

 In the first new approach (Nguyen and Wira, 2013a; Nguyen and Wira, 2013b), a linear MLP 

has been developed for estimating the harmonics of distorted signals. The linear MLP is able to 

estimate any periodic signal by expressing its output as a sum of harmonic components according 

to Fourier series. The network takes some specific harmonic elements with unit amplitudes as 

inputs and uses neurons that have linear activation functions. The measured signal serves as a 

reference and is compared to the network output. The amplitudes of the fundamental and high–

order harmonics are deduced from the combination of the weights of the neurons. The linear MLP 

identifies the amplitudes of the fundamental component and high–order harmonic components 

with good precision even under noisy conditions. 

 In the second new approach (Nguyen and Wira, 2015), we propose another neural network 

approach based on the structure of MLPs for identifying current harmonics in power systems. The 

learning approach is based on several MLP, adopts the Fourier decomposition of a signal and a 

training set generated from harmonic waveforms is used to calculate the weights. After training, 

each MLP is able to identify two coefficients for each harmonic term of the input signal. The 

effectiveness of the new approach is evaluated by experiments. Results show that the proposed 

MLPs of the new approach enable to identify effectively the amplitudes of harmonic terms from 

the signals under noisy condition. Results are compared to other and recent MLP approaches. The 

new approach can be applied in harmonic compensation strategies by being implement in an active 

power filter to ensure the power quality in electrical power systems. 

 ANNs with their ability to learn from sample data have shown that they are excellent solutions 

for performing advanced digital signal processing tasks (Haykin, 1999). Therefore, several ANN 

approaches have been developed for harmonic identification (Wira et al., 2010). They are based on 

different neural structures, and have to identify the amplitude and the phase of each higher–order 

harmonic of the current measured on a power line. Once estimated, they can be used to generate 
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compensation currents. This is achieved by a voltage–source inverter under the supervision of a 

control law. The controller produces a reference signal that takes into account the necessary 

harmonic components but phase–opposite. The inverter converts the reference signal into a high–

intensity current that will be injected into the power line. This principle is represented by Figure 

1.2 in Chapter 1. The skills related to each block are also mentioned. 

 The ADALINE neural network (Widrow and Lehr, 1990) is the simplest learning approach for 

estimating harmonics. An ADALINE has only one layer and has one neuron per output. Each 

neuron of ADALINE gets multiple inputs and returns one output which is a weighted linear 

combination of the inputs. The Mean Square Error (MSE) is used for updating the weights during 

the training process (Haykin, 1999). For harmonic estimation, a signal is formalized in Fourier 

series and the corresponding harmonics with unit amplitudes are synthesized and used as inputs 

(Dash et al., 1996). After learning and convergence, the coefficients of fundamental and harmonic 

components are represented by the weights of the ADALINE. Several successful variants have 

been developed since with different expression of the signal (Wira et al., 2008; Wira and Nguyen, 

2013). 

 The MLP is a layered learning structure where neurons are organized in layers. The data comes 

from a system and are transferred to an input layer and go through several hidden layers and at 

least through out of an output layer. This data–flow goes through all the nonlinear neurons of the 

layers from the input to the output of the network. MLPs have to be trained in order to calculate 

appropriate values for the weights and the backpropagation algorithm is the most well–known 

training algorithm (Haykin, 1999). The optimal weights are the ones that allow the network to 

provide outputs with the smallest error when compared to a target, i.e., to reduce a cost function. 

MLP have been proposed for estimating harmonic components in active filter schemes. In 

(Pecharanin et al., 1994) for example, two MLPs are designed to estimate the 3rd, 5th and 7th 

harmonics. The backpropagation learning algorithm is used and results shows that the neural 

approach enables to detect them effectively. 

 In (Lin, 2007), satisfactory results have been achieved for harmonic detection by providing only 

half cycle sampled values of distorted waveforms to MLP–based approach. It must be remembered 

that harmonic detection with the Fourier transformation requires input data for more one cycle of 

the current waveform and requires time for the analysis in next coming cycle. A similar approach 

is developed in (Nascimento et al., 2011). Here, one MLP is used for each parameter of an 

individual harmonic component. The MLPs use the same inputs and are trained to identify the load 
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current harmonic components in half–cycle of the fundamental component period. Some MLP can 

also be trained off–line, using previous knowledge obtained from load harmonic contents 

generated by simulation algorithms. 

 In (Tümay et al., 2008), a conventional MLP with fully connected neurons is compared to a 

MLP with partial connected neurons. For this last neural network, hidden neurons are divided to 

two groups in the hidden layer. The neurons in each group of the hidden layer are connected with 

only one of the output neurons. As each output neuron is never connected with the same hidden 

neurons, each output is independent from the others. Results show that the partial–connected MLP 

is more effective in extracting the 3rd and 5th harmonic components of a current waveform. 

 Radial Basis Functions Neural Networks (RBFNNs) are similar to MLP networks. In RBFNNs, 

activation functions of hidden neurons are Radial Basis Functions (RBFs) and activation functions 

of output neurons are sums. Thus, outputs of a RBFNN are simple linear combinations of radial 

basis functions of the inputs. A typical RBFNN has one input layer, one hidden layer with RBF 

activation functions and one linear output layer. Such a RBFNN approach is proposed in (Chang et 

al., 2010) for estimating the harmonic content of a signal. The learning allows the RBFNN to 

approximate the mapping between the samples of the signal and the amplitudes and the phase 

angles of each harmonic component. The RBFNN can be trained off–line before being used to 

estimate the harmonic components. 

 A Recurrent Neural Network (RNN) is a type of a dynamic neural network. Indeed, some inputs 

of the RNN are the outputs of neurons from its output layer, or sometime from hidden neurons. 

This network exhibits a dynamic temporal behavior because of the internal network states which 

are created by the feedback loops. An Elman RNN for harmonic estimation has been used in 

(Temurtas et al., 2004). The results obtained with Elman’s RNN are better than those obtained 

using the feed forward neural networks. The proposed resilient backpropagation algorithm 

provides also faster convergence than the standard and adaptive backpropagation. 

 The advantages of using neural approaches for estimating the harmonic content of a signal are 

the followings: They work with a good precision even under noisy conditions due to their 

generalization capabilities; they are adaptive and therefore can face parameter/system/environment 

changes by using online learning; and they can provide an output on every iteration which may be 

a faster response than with conventional techniques, i.e., harmonic detection with the Fourier 

transformation requires one complete cycle of the current waveform. 
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4.2 Background 

4.2.1 Fourier Analysis 

In the Fourier analysis, any periodic or distorted waveform or signal can be represented and 

estimated by a function f , as a sum of sine and cosine components with appropriate coefficient 

attached to each of these components. This function is also called a Fourier 

series,Equation Chapter 4 Section 1 

0 1
( ) [ cos( ) sin( )]n nn

f t A A n t B n t 


   ,   (4.1) 

where 0A  is the DC component, i.e., the direct component of the signal. The term 

cos( ) sin( )n nA n t B n t   mathematically represents for the thn   harmonic component that 

composes the signal, and n is usually called the order of the harmonic component. Each thn   

harmonic component is defined by 2 coefficients nA  and nB . Thus, the term with 1n   is the 

fundamental component of the signal and terms with 1n   representing harmonic components. In 

power system applications, the fundamental component represents the main part of a signal, i.e., 

the one with the highest amplitude or the one carrying the biggest energy or power. 

 In (4.1), t  represents for the discrete time. Without any loss of generality, only discretized 

signals are considered in this work, st kT  with the sampling interval sT  and the iteration number 

k . The fundamental angular frequency is 2 / T   where 11 /T f  stands for the period of the 

signal and 1f  is called the fundamental frequency of the signal, i.e., of its fundamental component. 

 In signal sampling and quantization, a sampling interval or sampling period sT  is defined as the 

time span between two successive samples and a sampling rate is therefore given by 1 /s sf T  

samples per second (Hz). For example, if a sampling interval 125sT s  (microseconds), the 

sampling rate is 1 /125 8000sf s   samples per second (Hz). 

 To calculate the harmonic amplitudes and the relative phase angles, we rearrange the expression 

(4.1) and we have a well know result 

0 1
( ) cos( )n nn

f t C C n t 


   ,    (4.2) 
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with nC  the harmonic amplitudes and n  the phase angles: 

0 0C A , 2 2
n n nC A B  , 

1tan ( )n
n

n

B

A
  .    (4.3) 

 Of course, an ideal power signal, i.e., a voltage or a current, will be only one sinusoidal term, 

the fundamental component. Practically, generated are superposed to the fundamental term with an 

additional noise ( )t . A signal from a power system therefore can thus be approximated by a 

limited sum (to n N ): 

0 1
ˆ ( ) [ cos( ) sin( )] ( )

N

n nn
f t A A n t B n t t  


    .   (4.4) 

Harmonic estimation or identification in this work is a process that estimates or identifies values of 

coefficients 0A , nA  and nB  in (4.4). 

4.2.2 The Multilayer Perceptron 

An artificial neuron is a simple process unit which receives one or more inputs and sums them to 

produce an output. Usually, the sums of each node are weighted, and the sum is passed through a 

nonlinear function known as an activation function or a transfer function. 

 A MLP network is composed of neurons organized in layers, with those on one layer connected 

to those on the next layer (except for the last layer also called the output layer). The MLP 

architecture is thus structured into an input layer, one or more hidden layer of neurons (called 

hidden neurons), and one output layer of neurons (output neurons). Neurons belonging to adjacent 

layers are usually fully connected. The feedforward network is a MLP that allow only for a one 

directional signal flow, from the input to the output layer. 

 Some parameters of such a type of an ANN cannot be determined from an analytical analysis of 

the process under investigation. This is the case of the number of hidden layer s and the number of 

neurons belonging to them. Consequently, they have to be determined experimentally according to 

the precision which is desired for the estimation. On the other hand, the number of inputs and 

outputs depends on the considered process or mapping to approximation. 

 MLPs must be trained in order to find appropriate or optimal values of weights. This is 

achieved by using probabilistic learning techniques and with data from the process under 
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investigation (Haykin, 1999). The training dada consists of the input vectors and the corresponding 

desired output vectors. The pairs of input–output values (1)x , (1)y , (2)x , (2)y ,… ( )Qx , ( )Qy  

represents the learning data set, where Q is the number of examples in the training set. For a given 

input ( )kx , the MLP computes an estimated output vector ˆ ( )ky  that must be as close as to the 

ideal desired output ( )ky . The difference ˆ( ) ( ) ( )k k k e y y  constitutes the estimation error for 

example k  that is used by the training algorithm to correct the weights of the neurons. This is 

repeated for all the samples composing the training data set until the convergence is reached. After 

training process, the MLP is able to estimate the output values corresponding to a given input. In 

other words, the MLP has learned the multidimensional function ( )y F x . 

 MLPs are well suited for the functions approximation. Associated to the backpropagation 

learning rule, they are well–known as universal approximation machines (Haykin, 1999; Bishop, 

1995). 

4.3 Proposed Method 1 : A Linear MLP for Harmonic Estimation 

The main idea of this approach is to use a linear MLP with the appropriate inputs and target 

outputs for step by step fitting a Fourier series. The harmonics, as Fourier series parameters, are 

calculated from the weights and biases of the network at the end of the training process. 

4.3.1 Proposed Linear MLP 

In this work, the objective is to estimate the amplitudes 0A , nA  and nB  in (4.4). So, we propose a 

linear MLP for this work. Once we have the amplitudes 0A , nA  and nB , we can calculate the 

harmonic amplitudes nC  and the relative phases n  as the expressions in (4.3). 

 A linear MLP consists of a feedforward MLP with three layers of neurons. Its inputs are the 

values of the sine and cosine terms of all harmonic terms to be identified. There is only one output 

neuron in the output layer. A desired output is used for a supervised learning. This reference is the 

measured signal whose harmonic content must be estimated. All neuron of the network are with a 

linear activation function, i.e., identity function. The MLP is therefore linear and nonlinearities are 

introduced by the input vector. An example of a linear MLP with one hidden layer having 5 

neurons is shown in Figure 4.1. 
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Figure 4.1   The linear MLP architecture for harmonic estimation. 

 In (4.5), ˆ ( )f t  is a weighted sum of sinusoidal terms and is therefore a linear relationship that 

can be fitted by a linear MLP taking sine and cosine terms with unit amplitudes as its inputs. Thus, 
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with 

 ( ) sin( ) cos( ) sin(2 ) cos(2 ) ... sin( ) cos( )
T

t t t t t N t N t     x  (4.6) 
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can be estimated by a linear MLP with only hidden layer with M  hidden neurons and with one 

output neuron. The linear MLP takes R  inputs, 2R N , N  is the number of harmonics to be 

identified. 

 At instant t , the output of the i th  neuron ˆ ( )iy t ( 1,... )i M  is 

,1 ,2 , 1 ,

,1 ,2 , 1 , 1
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and the output of the output neuron ˆ( )y t  is 
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   (4.8) 

with 

  ,i jw  is the weight of thi  hidden neuron connected to the thj   input, 

  ,o iw  is the weight of the output neuron connected to the thi   hidden neuron, 

and  ib  is the bias of the thi   hidden neuron. 

 In this work, this linear MLP has only one output neuron. So, the output ˆ( )y t  of the output 

neuron is also the output of this linear MLP. From (4.7) and (4.8), the network output therefore 

rewrites: 
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            (4.9) 

 From the above expression, we propose two new terminologies for the linear MLP. The first is 

called the “weight combination” and the second is called the “bias combination”. 

Definition 1 (The weight combination) 

The weight combination of the linear MLP, weightc  is a row–vector (with R  elements) that is a 

linear combination of the hidden weights with the output weight which writes: 

(1) ( )... T
weight weight weight R o hiddenc c   c w W     (4.10) 

where 

 ow is the weight vector of the output neuron (with M  elements) 
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and 

 hiddenW  is a M R  weight matrix of all neurons of the hidden layer 
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Definition 2 (The bias combination) 

The bias combination of the linear MLP, biasc , is a linear combination of all bias of hidden neurons 

with the weights of output neuron which writes: 

T
bias o hiddenc  w b      (4.13) 

where hiddenb  is the bias vector of the hidden layer 
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b       (4.14) 

 According to these two definitions, the linear MLP output ˆ( )y t  can be expressed with the 

weight combination 
weightc  and the bias combination biasc  and with network input ( )tx  from (4.6): 

ˆ ( ) ( )weight biasy t t c c x .     (4.15) 

 In order to update the weights, the output ˆ( )y t  of the linear MLP needs to be compared to the 

measured signal ( )y t . After learning and convergence, the weights 
weightc  and the bias biasc  



52 
 

converge to their optimal values, respectively *
weightc  and *

biasc . Due to the linear characteristic of the 

expression, *
weightc  convergences to 

 *
1 1 2 2 ...w eight N NB A B A B Ac     (4.16) 

and *
biasc  converge to: 

*
0biasc A       (4.17)  

 At the end, the signal ( )y t  is thus estimated by the linear MLP with optimal values of *
weightc  and 

*
biasc . Furthermore, the amplitudes of the harmonic terms are obtained from the weight 

combination (4.16). And, the DC value of the signal is obtained from the bias combination (4.17). 

After convergence, the coefficients come from the appropriate element of *
weightc  and *

biasc , i.e.,  

      *
0 biasA c       (4.18) 

and the nA  and nB  from *
( )w e ig h t jc  for 1 j R  : 

* * *
( ) , ,

1

( )
M

weight j o i i j
i

c w w


  .    (4.19) 

 The harmonic amplitudes nC  and the relative phase angles n  are calculated from 0 1 1, , ,A A B …,

,N NA B  as in (4.3). 

 Linear activation functions have been used for the neurons of the MLP so that the mathematical 

expression of the network output looks like a sum of harmonic terms if sinusoidal terms have been 

provided as the inputs at the same time. Indeed, the output of the linear MLP has therefore the 

same expression as a Fourier series. As a consequence, the neural weights of the linear MLP have 

a physical representation: Combined according to the two previous definitions, they correspond to 

the amplitudes of the harmonic components. 

Discussion 

Generally, MLPs are efficient in approximating nonlinear functions as a black–box. A black–box 

model is an approach of which there is no a priori information available. After learning, an MLP is 

able to provide a precise output for a given input, but it is not possible to get from it a set of 
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parameters to describe the function is that estimated, i.e., the weights of the MLP are not 

interpretable. 

 However, the linear MLP proposed in the previous section for estimating harmonics is different. 

In this approach, the nonlinearities are not introduced by the neural net itself (as usual) but by the 

inputs. Indeed, its inputs express the harmonics supposed to be present in the signal. Because of 

the linear activation functions, the output of the linear MLP is a weighted linear combination of the 

inputs. The weights are degrees of freedom of the network and, once trained, the represent a 

weighted linear combination of the harmonics. The amplitudes of the harmonics can thus be 

obtained directly from the weights which can be considered as interpretable. This approach and its 

mathematical developments can easily be generalized with more than one hidden layer. 

 The linear MLP handles only one signal. This means that the output of the linear MLP is for 

one signal in which harmonics have to be estimated. This means that the neuron in the hidden layer 

belongs to this unique output. The above proposed scheme clearly shows that one linear MLP 

represents only one Fourier series. So for estimating harmonics of a three phase current signal 

required three linear MLP networks with the same inputs. 

 Most approaches based on MLP, RNN or RBFNN do not learn on–line for self–adaptation and 

to enhance performances. However, ADALINE–based approaches are able to learn on–line. It is 

also the case of the proposed approach which is simple network. The linear MLP is not based on 

several MLP working in parallel, or on one per harmonic. It fits a Fourier series with a linear 

weighted combination of unit harmonic inputs. The linear activation function of its neurons allows 

an easy learning and fast convergence. An interactive learning (Wilamowski, 2011) can be used 

instead of the conventional backpropagation. 

 For practical issues, computational costs of neural approaches should be considered. The 

computational complexity of neural network architectures can be evaluated by the number of 

weights involved. Estimating N  harmonics is achieved with an input vector of 2R N  elements or 

2 1R N   elements if including the DC component. A linear MLP with one hidden layer of M  

neurons requires (2 1) 1N M M    weights for estimating N  harmonics while an ADALINE 

needs only 2 1N   weights. These considerations include the biases. 

 For example, for 10N   harmonics and 5M   hidden neurons, this amounts to 

(2 1) 1 (2 10 1) 5 5 1 111N M M           weights respectively for the linear MLP and 

2 1 2 10 21N      weights for the ADALINE. The ADALINE is the simplest architecture 
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because it associates only one weight for one input. Efficient linear MLPs, i.e., with good 

performances and reasonable number hidden neurons and appropriate inputs in order to be 

compliant to real–time applications. The linear MLP can therefore perform estimations of the 

harmonics at high speed.   

4.3.2 Results of Harmonic Identification in Electrical Power System 

Context of this Study 

The effectiveness of the linear MLP in estimating harmonics is evaluated with several digital 

signals. Comparisons between the linear MLP approach and an ADALINE–based approach (Dash 

et al., 1996) are also proposed in terms of performance, of computational costs, and of robustness 

against noise. 

 All these approaches are well suited for power system applications where typical nonlinear 

loads generate very low even harmonics and where triple harmonics can be ignored in three–phase 

circuits (Arrillaga and Watson, 2003). As a consequence, appropriate input terms can be specified 

for the network. Once identified, the harmonic terms can be compensated individually according to 

the adopted strategy, i.e., full or selective harmonic compensation, Power Factor Correction (PFC), 

unbalance compensation, and so on. It is obvious that the dimension of the weight vector to be 

updated each iteration depends on the number of harmonics to be estimated. 

 In order to identify the harmonic terms of the following signals, a linear MLP with one hidden 

layer is chosen. Initially, the weight have random values, i.e., hiddenW , ow , hiddenb , ob  are randomly 

chosen in  1, 1   and the Levenberg–Marquardt learning rule is used with a learning rate of 0.7 . 

After a few sampling steps, the training soon converges and the value of the error diminishes to an 

acceptably small value. At the beginning, the ADALINE is also initially untrained with 

 1, 1w   . Its learning is the LMS   (Least Mean Squares) with learning rate of 0.25 . 

A sine wave with harmonics of ranks 3, 5, 7 

We propose to identify the harmonic content of a typical signal composed of a fundamental 

frequency ( 50Hzf  , 2 f  ) on which harmonics of ranks 3, 5, 7 have been added as well as 

a uniformly distributed noise ( )t : 
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1 1 1
( ) sin( ) sin(3 ) sin(5 ) sin(7 ) ( )

3 5 7
s t t t t t t         .  (4.20) 

 This signal is referenced in the discrete time by t  with a sampling time 0.0002sT   second and 

4000  samples are used. 

 The first step consists in choosing the inputs of the neural approaches, i.e., the harmonic terms 

that are supposed to be in the signal. For this, an input vector  ( ) sin( ) cos( )t i t i t x  has been 

created with harmonic orders  1, 2, 3, 4, 5, 6, 7, 8, 9,10i   and with  1, 2, 3, 5, 7,11,13,17,19, 23i  . 

In the following, these two input vectors have been abbreviated by 1 10x  and 1 23x  respectively. Of 

course, these two input vectors still depend on the time t  and are both composed of 2 0  elements 

(sine and cosine for each harmonic rank). If we know the harmonics that are present in the signal 

for estimating their amplitudes, then they must be precisely specified in the input vectors of both 

neural approaches. 

 In the case given by (4.20), knowing that ( )s t  is only composed of a DC component, of 

harmonics of rank 3, 5, and 7 in phase to a fundamental term with 50 Hzf   allows to define        

 ( ) 1 sin( )t i tx  with  1, 3, 5, 7i   as the input and to use lower computational costs. The values 

of the coefficients 0A , nA  and nB  are estimated by learning. After convergence, the amplitudes of 

the harmonic terms are obtained from the weight of the networks. 

 In the first test, a null noise is considered, i.e., ( ) 0,t t   . After learning, the estimation error 

each individual amplitude is of order 1410  with an ADALINE and of order 1010  with a linear 

MLP with 3 hidden neurons, and both of them with 20 inputs ( 1 10x ). The same configuration, but 

with 40 inputs (  1, 2, ...20i  ) for the linear MLP and the ADALINE, leads to approximate the 

signal with errors of the same range. The MSE (Mean Square Error) of the estimation is used as a 

measure of overall performance. The resulting MSE is less than 202  10   whatever the previous 

neural estimator.  The estimated coefficients therefore perfectly represent the harmonic content of 

(4.20). Both approaches are precise in identifying the harmonic terms of such type of signals 

without noise. 

 The robustness against noise has been evaluated by adding more noise is measured by the 

Signal–to–Noise Ratio (SNR) expressed in dB. Thus, a ratio higher than 1 indicates more signal 

than noise and a ratio 0dBSNR   means that the amplitudes of the signal and of the noise are the 
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same. The harmonic content of the signal is estimated by a linear MLP with 3 hidden neurons and 

by an ADALINE. Results are presented in Table 4.1 for several values of SNR  and with 1 10x  as 

the input vector. The performance of the linear MLP depends on its initial condition, i.e., initial 

weight values. Therefore, 10 learning phases with different initial weights of the linear MLP have 

been conducted and resulting minimal, maximal and mean values of the MSE have been noted 

down. As can be seen, the linear MLP provides better estimations than the ADALINE and is more 

effective when the noise is important. 

SNR 

(dB) 

  MSE  

ADALINE linear MLP 

(min) 

linear MLP 

(max) 

linear MLP 

(mean) 

46 8.3802e–06 7.1659e–06 7.1725e–06 7.1703e–06 

32 2.1815e–04 1.8277e–04 1.8291e–04 1.8282e–04 

26 8.0347e–04 7.3262e–04 7.3353e–04 7.3315e–04 

12 2.0427e–02 1.8066e–02 7.2878e–02 7.2834e–02 

6 8.3833e–02 7.2795e–02 7.2878e–02 7.2834e–02 

4 1.1974e–01 1.1319e–01 1.1336e–01 1.1325e–01 

2 2.0367e–01 1.8242e–01 1.8285e–01 1.8269e–01 

0 3.3146e–01 2.8624e–01 2.8680e–01 2.8650e–01 

Table 4.1   Performance comparison between ADALINE and linear MLP with 1 10x   

 The values in Table 4.1 are obtained with 1 10x . They can be compared to the performance 

obtained with 1 23x . A MSE of 67.0992 10  is obtained for the linear MLP and 68.5268 10  for 

the ADALINE in the case 46dBSNR  . Additionally, the MSE is then 62.9260 10   for the linear 

MLP and 13.4156  10   for the ADALINE in the same case of 0dBSNR  . The linear MLP is also 

more robust than the ADALINE with a more specific input vector. Besides, this can be seen on 

Figure 4.2 where the original signal with a high level of noise ( 46dBSNR  ) and the estimations 

from the linear MLP and the ADALINE are represented over 2 periods of time. The original signal 

without any noise is also plotted to show the precision of the estimated signals. Furthermore, this 

figure shows the spectrum histograms obtained by the two neural approaches using inputs 1 10x  or 

1 23x . 
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Figure 4.2   Performance of a linear MLP (with 3 hidden neurons) and an ADALINE in identifying the 
harmonics of the noisy sine wave ( )s t  with harmonics of rank 3, 5 and 7, a) real constructed 

signals (with 1 10x ), b) normalized spectrum histograms with by 1 10x , and c) normalized 

spectrum histograms with 1 23x . 

 According more elements in the input vector or more neurons in the hidden layer does not 

necessarily make the error decreasing. A linear MLP taking into account 10 harmonics is able to 

estimate these types of signal even under noisy conditions. Knowing the present harmonics allows 

to precisely specifying the inputs in order to obtain their amplitude and allows to reduce the 

computational complexity and to reach a faster convergence. Additional results obtained with other 

signals show that with the appropriate inputs, the linear MLP is perfectly able to estimate the 

Fourier series with a better precision than with an ADALINE. 
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A real current measured on a nonlinear load 

The efficiency of the linear MLP in estimating harmonics has been evaluated on a typical current 

measured on a real nonlinear load power device (characterized by 50 Hzf  , 380 V , 20 A ). For 

this, 4000 samples are used with 6.0000 005 secondsT e  . 

 Generally, power system signals present a limited number of specific harmonics. A specific 

input vector like 1 23x  is convenient for estimating the current distortions with the neural 

approaches. The signal is measured and analyzed with a linear MLP. Its performance is compared 

to an ADALINE with the same input vector and under the same conditions. Results and 

comparison to the ADALINE are represented by Figure 4.3. The MSE with a linear MLP with 17 

hidden neurons is 24.35 10  A . This has been obtained by trial and error. Numerous tests have 

been conducted with 2 to 30 hidden neurons. The MSE is smaller 24.40 10  A  in all cases. This is 

equivalent to an error of 0.18%  for the current on the range of 24 A . 

 

Figure 4.3   Estimation of the harmonic terms of a current from a real nonlinear load with a linear MLP and 

an ADALINE. a) Real and constructed signals b) Estimated spectrum histograms 

 In order to compare, the MSE obtained with an ADALINE is 1.1931 A  with 20 inputs and is 

0.1093 A  with an ADALINE with 60 inputs, i.e., with up to harmonic of rank 30. The linear MLP 

is therefore more precise than the ADALINE–based approach in identifying the amplitudes of the 
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harmonic terms. Both implementations, of the linear MLP and of the ADALINE, are compliant to 

the real constraint of the sampling period. 

4.3.3 Results in Estimating Harmonics of Biomedical Signals 

Context of this Study 

An ECG (Electrocardiography) is a recording of the electrical activity of the heart and is used in 

the investigation of heart diseases. For this, the conventional approach generally consists in 

detecting the P, Q, R, S, and T deflection (Rangayyan, 2002) which can be achieved by digital 

analyses of slopes, amplitudes, and widths (Pan and Tompkins, 1985). Other well–known 

approaches use independent components analysis (for example for fetal electrocardiogram 

extraction) or time–frequency methods like the S–transform (Moukadem et al., 2013). 

 Our objective is to develop an approach that is general and therefore able to process various 

types of biomedical and non–stationary signals. Its principle is illustrated by Figure 4.4. Generic 

and relevant features are first extracted. They are the harmonic terms and statistical moments and 

will be used to categorize the signals in order to help the diagnosis of abnormal phenomena and 

diseases. 

 

Figure 4.4   General principle for characterizing ECG records. 

 The following study focuses on the harmonic terms extraction from ECG. A harmonic term is a 

sinusoidal component of a periodic wave or quantity having a frequency that is an integer multiple 

of the fundamental frequency. It is therefore a frequency component of the signal. We want to 

estimate the main frequency components of biomedical signals, and especially non–stationary 

signals. Neural approaches are therefore used. They have been applied successfully for estimating 

the harmonic currents of power system (Ould Abdeslam et al., 2007; Wira et al., 2008). 
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 Estimating harmonics can be achieved with ADALINE (Dash et al., 1996) whose mathematical 

model directly assumes the signal to be a sum of harmonic components. As a result, the weights of 

the ADALINE represent the coefficients of the terms in the Fourier series (Wira et al., 2008; 

Vázquez et al., 2001; Wira and Nguyen, 2013). MLP based approaches have also been proposed 

for estimating harmonics. In (Lin, 2007), a MLP is trained off–line with testing patterns generated 

with different random magnitude and phase angle properties that should represent possible power 

line distortions as inputs. The outputs are the corresponding magnitude and phase coefficient of the 

harmonics. This principle has also been applied with RBF neural network in (Chang et al., 2010) 

and feed forward and RNN in (Temurtas et al., 2004). 

 In these studies, the neural approaches are not on–line self–adapting. The approach introduced 

therefore is simple and compliant with real–time implementations. 

Experiments and Results in Estimating Harmonics of ECG 

The effectiveness of linear MLP is illustrated in estimating the frequency content of ECG signals 

from the MIT–BIT Arrhythmia database (Moody and Mark, 1996). A linear MLP with initial 

weights is chosen. The fundamental frequency of the signal in on–line extracted from the ECG 

signal with zero–crossing technique based on the derivative of the signal. Results are presented in 

Figure 4.5a. 

 In this study, tracking the frequency is also used to detect abnormal heart activities. If the 

estimated frequency is within a specific and adaptive range, it means that the heart activity is 

normal. This range is represented on Figure 4.5b by a red area. It is centered on the mean value of 

the range (corresponding to the orange square on Figure 4.5b, than the fundamental frequency is 

not updated and data will not be used for the learning of the linear MLP. 

 Based on the estimated main frequency, sinusoidal signals are generated to synthesize the input 

vector 1 20x  to take into account harmonics of ranks 1 to 20 at each sample time t . The desired 

output of the network is the digital ECG with a sampling period 2.8 mssT  . The Levenberg–

Marquardt algorithm (Bishop, 1995) with a learning rate of 0.7  is used to train the network and 

allows to compute the values of the coefficients 0, ,n nA A B  of (4.16). The amplitudes of the 

harmonic terms are obtained from the weights after convergence. 

 Results over three periods of time for the record 104 are shown on Figure 4.6 with 3 hidden 

neurons and 1 20x  for the input. The estimated signal is represented in Figure 4.6a and its frequency 
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content on Figure 4.6b. This figure provides comparisons to an ADALINE (with the same input) 

and FFT calculated over the range 0 50 Hz . Harmonics obtained by the neural approaches are 

multiples of the fundamental frequency 1.2107 Hzof    while FFT calculates all frequencies 

directly. It can be seen that the estimation of the linear MLP is very close to the one obtained by 

the FFT. 

 The MSE (Mean Square Error) of the estimation is used as a measure of overall performance. 

The resulting MSE is less than 31.6 10  with the linear MLP with 3 hidden neurons. The MSE 

represents 31.4 10  with the FFT and 310.2 10  with the ADALINE. The estimated coefficients 

obtained with the linear MLP therefore perfectly represent the harmonic content of ECG. Results 

are similar for other signals from the database. 

 

Figure 4.5   On–line fundamental tracking of an ECG. 
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 Additional results with an input vector 1 40x  that take into account harmonics of ranks 1 to 40 

and with more hidden neurons are presented in Table 4.2. The linear MLP approach is the best 

compromise in terms of performance and computational costs evaluated by the number of weights. 

The computing time required by a linear MLP with 3 hidden neurons is less than for the FFT. 

Harmonic 

Estimator 

Input 

vector 

Number of 

neurons 

Number of 

weights 
MSE 

FFT 0 to 50 Hz – – 0.0014 

linear MLP 1 20x  3+1 127 0.0016 

linear MLP 1 40x  3+1 247 0.0016 

linear MLP 1 20x  6+1 253 0.0016 

linear MLP 1 40x  6+1 493 0.0016 

ADALINE 1 20x  1 41 0.0102 

ADALINE 1 40x  1 81 0.0105 

Table 4.2    Performance comparison between the linear MLP, ADALINE and conventional FFT in 

estimating the harmonic content of an ECG. 

 The robustness against noise has been evaluated by adding noise to the signal. Even with a 

signal–to–noise ratio up to 10 dB , the harmonic content of ECG is estimated by a linear MLP with 

3 hidden neurons with a MSE less than 32 10  compared to 34 10  for the FFT and to 38 10  for 

the ADALINE. 

 The linear MLP has been applied to the other records of the MIT–BIH database for training and 

validation. The MSE calculated after the initial phase of learning is in all cases less than 32.5 10  

with 3 hidden neurons. 

 The linear MLP is a very generic approach that performs efficient frequency feature extraction 

even under noisy conditions. One by product of this approach is that it is capable to generically 

handle various types of signals. The benefit of using a hidden layer, i.e., using a linear MLP, is that 

it allows more degrees of freedom than an ADALINE. For an ADALINE, the degrees for freedom 

represent the amplitudes of the harmonics. The weight adaption has direct influence on their 

values. The ADALINE is therefore more sensitive to outliers and noise. On the other hand, with 
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more neurons, the amplitudes come from a combination of weights and are not the weight values. 

The estimation error is thus shared out over several neurons by the learning algorithm. This 

explains why the linear MLP works better than the ADALINE in this particular application where 

signals are noisy and non–stationary. 

 

Figure 4.6   Performances of a linear MLP with 3 hidden neurons, an ADALINE and the FFT in identifying 

harmonics of an ECG. 
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4.3.4 The linear MLP with one hidden neuron compared to an ADALINE  

In this section, we discuss about the linear MLP with one hidden neuron that is compared to an 

ADALINE. In Section 4.3.1, we proposed a linear MLP architecture for harmonics identification 

in a power system. So how is this architecture when it has only one neuron in its hidden layer? In 

this work, we step–by–step make the transformation from a linear MLP with one neuron in its 

hidden layer to an ADALINE. 

 

Figure 4.7   A linear MLP with one hidden neuron for harmonic identification 

 In Figure 4.7, we have architecture of a linear MLP with only one neuron in its hidden layer. 

This linear MLP is designed for harmonic identification with an input vector x at the instance time 

t  as follows 

 
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 This MLP takes R  inputs, 2R N , N  is the number of harmonics to be identified. Let a weight 

vector be 1w  that contents the weights of the neuron in hidden layer of this model and 1b  is the bias 

of this neuron as follows: 

1,1 1, 2 1 , 1 1,. .. .R Rw w w w   1w     (4.22) 
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 In vector 1w , 
1, jw  is the weight of the hidden neuron connected to the input j th  input (

1, ...j R ). At instant t , the output of the only–one hidden neuron 1ˆ ( )y t  is 

1 1,1 1,2 1, 1 1, 1

1,1 1,2 1, 1 1, 1
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 Therefore, the output of the network or the output neuron ˆ ( )y t  is 
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 From the above expression, we can construct a network with only one neuron that has a weight 

vector for the same above inputs as following expression: 

1 ,1 1,1 ,1 1 , 2 ,1 1 , 1 ,1 1 , ,1. . . .o o o R o R ob w w w w w w w w w   w    (4.25) 

 In vector w, 
1 ,1ob w  if the bias of the network and 

1, ,1j ow w  ( 1, ...j R ) is the weight of the neuron 

of the network connected to the j th  input. The following figure shows the architecture of this 

network in detail. 
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Figure 4.8   A one–neuron neural network reduced from the linear MLP with one neuron in hidden layer 

for harmonic identification. 

 We continue reducing the weight elements in weight vector w simpler with following 

expressions: 
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     (4.26) 

 We now have the new interface of the weight vector w with elements 0 1 2 1, , , ..., ,R Rw w w w w  as 

follows: 

 0 1 2 1... R Rw w w w ww .      (4.27) 

 So, we have an equivalent ADALINE that is showed in following figure.  
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Figure 4.9   An ADALINE using LMS rule for harmonic identification. 

 In the end, we can say that the linear multilayer perceptron architecture in case with only one 

hidden neuron is like an ADALINE architecture. We are able to apply the LMS rule for this model 

and we get the same results. 

4.4 Proposed Method 2 : A Multiple MLP for Harmonic Estimation 

In this work, we propose an adaptive and intelligent harmonic content estimator by means of a 

neural approach based on MLPs. This neural network has advantages in nonlinear classification 

and pattern recognition and is very useful for solving technical problems. Here, it is used to 

provide a more effective solution for the power system harmonics identification problem. 

 The proposed approach in this section relies on several MLP with a low number of neurons. 

Each of them is dedicated to estimate the parameters of a specific harmonic component supposed 

to present in a disturbed signal. In the proposed methodology, the MLPs in the multiple MLP are 

trained to identify the load current harmonic components, in half–cycle of the fundamental 

component period. Together, the MLPs allow to directly estimating the coefficients of harmonic 

terms in the Fourier series in (4.1). These harmonic components are then used to determine the 

reference current used for the selective compensation. 
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4.4.1 Proposed Multiple MLP 

In order to generate the compensation current of an active power filter, a precise estimation of 

harmonic components of the line current is required to provide a reference for the generation 

algorithm. The method proposed hereafter uses a parallel MLP structure as an alternative tool to 

harmonic content identification, with limited computational effort when compared to traditional 

methods.

 

Figure 4.10   Proposed MLP architecture for estimating harmonic distortions, a) principle for one harmonic 

component, and b) with several MLP in parallel for each harmonic component. 

 We propose a structure based on several MLPs with appropriated inputs and outputs in order to 

solve the harmonic identification problem. After training, the MLPs are able to directly identify the 

harmonic components of an on–line current. 

 According to the Fourier analysis, any periodic or distorted waveform or signal can be 

represented by a function that is also called a Fourier series in (4.1). We propose a learning 

approach to estimate the coefficients, nA  and nB , of each the -thn  harmonic component. A MLP 

thus is designed with one hidden layer composed of several nonlinear neurons and two linear 

outputs corresponding to the two above coefficients. 

 The main idea of this approach is to use two outputs of each MLP in order to directly identify 

the values of two coefficients. This is achieved for each harmonic component which is supposed to 
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be present in the signal. Several MLPs are thus implemented in parallel, one for each harmonic. 

Figure 4.10 illustrates the block diagram representation of the methodology used in this work. 

 Every MLP gets the sampled values of the first half–cycle of the fundamental period of the 

distorted signal as inputs. All the MLPs therefore use the same inputs: 

 1 2 3( ) ( ) ( ) ( ) ... ( )
T

Nt x t x t x t x tx    (4.28) 

where the elements of ( )tx  are consecutive samples of the measured disturbed signal in half–cycle 

of its fundamental component period. In order to estimate nA and nB  of the harmonic of rank n, the 

MLP uses the following target values 

  ( )
T

n n ny t A B .    (4.29) 

 The MLP used for estimating - t hn  harmonic of must thus be trained with a data set 

{ ( ), ( )}nt t  x y     (4.30) 

to identify the load current harmonic components in half–cycle of the fundamental component 

period. Each MLP learns a mapping between samples of the disturbed current and the coefficients 

of its corresponding harmonic component. The harmonic components are thus calculated or 

approximated directly from the outputs of the trained MLPs, ˆ
nA  and ˆ

nB . 

 The adaptation of the weights and bias in the MLP is based, first, on the computation of the 

error between the expected values of the coefficient and those estimated by the ANN, and 

secondly, on the execution of the Levenberg–Marquardt backpropagation algorithm. The steps for 

adjustment of these weights are detailed in (Trenn, 2008). The sigmoidal activation function is 

used for the neurons in the hidden layer and the linear function is employed for the output neurons. 

After the learning and convergence, 

 ˆ ˆ
n n n nA B A B        (4.31) 

for each of the MLP dedicated to the -thn  harmonic. 

 For the proposed methodology, the harmonic identification ANN structure is trained off–line, 

using a set of training data generated by Fourier analysis of calculated load currents. These current 
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signals are all reconstructed from the first 23 harmonic components. This means that 23 MLPs of 

small sizes (only 1 hidden layer, with less than 10 neurons, and 2 output neurons) are implemented 

in parallel. The computational effort associated with the adjustment of the weights is therefore 

limited. 

4.4.2 Experiments and Results 

Identification process and context 

The performance of the proposed estimation approach using the MLPs is examined through 

simulation tests. The system model was implemented in the MATLAB/Simulink environment. The 

objective is to detect the amplitudes of the harmonic components caused by nonlinear loads. 

 Some experiments are proposed thereafter. In a first experiment, a signal with harmonic 

components of ranks 3, 5 and 7 is used as a typical simple test. In a second experiment, a real 

current signal measured on a nonlinear load is used. For both experiments, results obtained with 

the proposed approach are compared to those obtained with the neural approach from (Nascimento 

et al., 2011). Both approaches have been implemented and tested under the same conditions, with 

the same training set. 

 A set of 51 amplitude samples of the disturbed load current signal is obtained, in half–cycle of 

the fundamental component signal, and used as inputs to the neural architecture composed of 

parallel MLPs. They all receive the same sequence of current signal samples. The structure of each 

optimized neural estimator has 9 neurons in one intermediate (hidden) layer and 2 output neurons 

which produces for its respective harmonic component the values ˆ
nA  and ˆ

nB . So, 

   51 1 9 9 1 2 488       weights will be used to estimate one harmonic component.  

 For being able to compare the proposed approach to the one from (Nascimento et al., 2011) in 

terms of resources and costs, we chose to design it with a similar or close number of neurons. In 

this approach, 2 MLPs are dedicated to fully estimate one harmonic component, and we thus chose 

51 inputs, 5 hidden neurons and 1 output neuron for each of them. This approach thus needs 

  2 51 1 5 5 1 532       weights to estimate one harmonic component. 

 The MLPs of both neural approaches are firstly trained off–line with the same training set 

before being used online. This training set is made of data representing normalized distorted 

waveforms that are randomly generated from the amplitude fundamental waveform and from 
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harmonics of ranks 3, 5, 7, 11, 13, 17, 19, and 23. This allows to compose { ( ), ( )}nt t  x y  with 

n{3,5,7,11,13,17,19,23} for the training process. Attention has been paid for generating of the 

data set in order to obtain representative values of real disturbed signal from power lines. Figure 

4.11 shows a training performance example, i.e., for the learning of the 23rd harmonic with a 

MLP. It should be noticed, that this is a severe case, because the amplitude of the 23rd harmonic 

component is small compared to the amplitude of the fundamental component (usually less than 

4%). With only 12 neurons, a MLP is able to converge quickly even under noisy conditions. 

 

Figure 4.11   Training performance of the proposed neural approach in detecting harmonic of rank 23. 

Experiment 1: With a pure signal containing only 3rd, 5th and 7th harmonics 

In this experiment, a signal with harmonic components of rank 3, 5, and 7 in addition to the 

fundamental component is considered: 

1 1 1
( ) sin( ) sin(3 ) sin(5 ) sin(7 ) ( )

3 5 7
s t t t t t t         ,    (4.32) 

with 1 50f   Hz and 0.2sT   microsecond. ( )t  is a uniformly distributed noise chosen to obtain 

a Signal–to–Noise Ratio (SNR ) of 32 dB. This expression is used to generate the 4000 samples of 

 . 

 The proposed approach is used estimate the coefficients ˆ
nA  and ˆ

nB . They are then used to 

calculate the corresponding harmonic components. All harmonics and fundamental components 
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are then used for reconstructing the signal. This reconstructed signal can be compared to the 

original one by calculating the MSE (min, max, and mean values). Results are given in Table 4.3 

and are compared to the approach of (Nascimento et al., 2011). 

MLP approaches 
Minimal 

MSE 

Maximal 

MSE 

Mean 

MSE 

Proposed MLP approach 

(with 11 neurons/harmonic, i.e., 488 weights) 
0.0592 0.0680 0.0635 

MLP approach from (Nascimento et al., 2011) 

(with 12 neurons, i.e., 532 weights) 
0.0896 0.1049 0.0965 

Table 4.3   Performances of MLP approaches in estimating the harmonic content of signal with only 3rd, 5th  

and 7th harmonics. 

 

Figure 4.12   Harmonic identification of a sine wave with harmonic of ranks 3, 5, 7.  a) with the proposed 

approach  b) with the approach of (Nascimento et al., 2011) 

 Figure 4.12 also shows the reconstructed signals obtained from the two approaches and the 

original one given by (4.32). After convergence, the MSE between the original and the 

reconstructed signal with the proposed approach is 0.065 over one period. With the same 

conditions, the approach of (Nascimento et al., 2011) yields a MSE of 0.100 over one period. The 

estimation of the amplitude and the approximation of the signal are better with the proposed 
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method with less number of weights than the other method. As one can see, the proposed method 

exhibits generalizing capabilities and is robust against noise. 

Experiment 2: With a typical current measured on a real nonlinear load power device 

In the following experiment, a typical current that is measured on a nonlinear load device 

characterized by 1 50f  Hz, 380 V, 20 A and 0.2sT   microsecond is considered. The proposed 

neural approach is used to estimate the amplitudes from the harmonic components found in this 

current. 

 

Figure 4.13   Experimental results of harmonic identification of a current measured from a real nonlinear 

load, a) with the proposed approach, b) with the approach of (Nascimento et al., 2011). 

 Figure 4.13 illustrates the results of the ANN harmonic content estimation as well as showing 

the target value. Table 4.4 shows the MSE between estimated and target values.  Figure 4.13 and 

Table 4.4 also show and compare the results obtained with the approach from (Nascimento et al., 

2011). The original coefficients nA  and nB  for this signal are not available because of it is a 

measured signal but they can be calculated with any frequency analysis method. The error relative 

to the original signal is calculated to determine the network effectiveness in the harmonic 

estimation process. After learning and convergence, the MSE is thus 0.455 A with the proposed 

method and 1.016 A with the other method over one period of the current. This represents 
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respectively less than 2.3% and 5% of the current. Of course, these errors may be related to the 

number of inputs used by the ANNs, i.e., are dependent of sampling process. 

MLP approaches 
Minimal 

MSE 

Maximal 

MSE 

Mean 

MSE 

Proposed MLP approach 

(with 11 neurons/harmonic, i.e., 488 weights) 
0.4507 0.5025 0.4778 

MLP approach from (Nascimento et al., 2011) 

(with 12 neurons, i.e., 532 weights) 
0.9805 1.0148 1.0035 

Table 4.4   Performances of MLP approaches in estimating the harmonic content of a real nonlinear load 

current 

 Additional experiments have been conducted. The proposed neural method has been tested in a 

single–phase system, considering nonlinear loads popular in industrial applications. The results 

have shown that MLP–based method was able to determine the expected harmonic content in half–

cycle source voltage. Therefore, the requirements for harmonic determination were satisfied. 

4.5. Summary 

In this chapter, two original MLP based approaches have been introduced for the harmonic 

estimation problem. The first method is based on a new linear MLP that is able to learn on–line for 

fitting a Fourier series. The second method is a structure with several MLPs that are trained off–

line and this structure is able to estimate harmonics of the distorted signal after learning. The 

effectiveness of these approaches is evaluated by the experiments with generated and real 

measured signals under different noisy conditions. 

 In the first approach, a linear multi–layer perceptron (MLP) has been proposed to learn and 

estimate signals by fitting a Fourier series. The linear MLP estimates any periodic signal by 

expressing it as a sum of harmonic terms. The proposed neural network takes generated unit 

harmonic elements for its inputs and uses neurons with linear activation functions. The measured 

signal is used as a reference that is compared to its own output. This error allows to find out the 

optimal weights and thus to determine the amplitudes of the harmonics. Due to the architecture of 

the linear MLP, the amplitudes can be written as a combination of the weights of neurons after 

learning. Estimating harmonic is illustrated on synthetic and experimental signals and the results 

compared to those of the well–known ADALINE. These results show that the linear MLP 



75 
 

identifies the amplitudes of the fundamental and higher–order harmonics with a good precision 

even under noisy conditions. The linear MLP is able to adapt itself for estimating individually 

harmonics of nonlinear load currents, whose amplitudes and relative phase angle are subject to 

unpredictable changes.   

 In the second approach, a new neural architecture based on MLPs for estimating the harmonic 

contents of electrical power signals has been proposed. In this approach, several MLPs with a 

reduced number on neurons are used in parallel. Indeed, the MLPs are dedicated for each 

individual harmonic component which is supposed to be present in the disturbed signal. As a 

result, the number of neurons and weights used in the proposed model is less than with other 

neural techniques. In order to investigate the performance of this identification method, the study 

has been accomplished using simulation tests. The results of the identification approach, compared 

to other similar methods, are found satisfactory by assuring good estimating performances and 

high robustness against noise. The results showed that the new approach works effectively in 

estimating each individual harmonic component. Furthermore, this approach is able to identify 

harmonic contents with only a half of the fundamental period of the signal even under noisy 

conditions.  

 Both of these proposed approaches will effectively improve the performances of active power 

filter schemes for compensating harmonics in power systems. 
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Chapter 5 : Electric Appliances Classification Using 
Artificial Neural Networks 

5.1 Introduction 

In this chapter, we present three machine learning approaches that have been developed for 

nonlinear load classification in a power system. The first proposed approach is based on a binary 

output multilayer perceptron. The second proposed approach is based on a structure of multiple 

binary output multilayer perceptrons. The third approach is based on a structure of multiple 

support vector machines. 

 In first proposed approach method, a simple multilayer layer perceptron has been developed for 

nonlinear load classification in a power system. The proposed multilayer perceptron is able to 

identify nonlinear loads which are ON or OFF based on extracting the harmonic features from the 

distorted waveform in power system. In this approach, the network is trained with a generated 

training set. As a typical multilayer perceptron, this network is based on supervised training. A 

data training set was generated with harmonic amplitudes as inputs and targets (value 0 for OFF or 

value 1 for ON) for training this network before using it. 

 In the second proposed approach, we propose another new neural network approach based on 

the structure of MLPs for classifying nonlinear loads in a power system. The learning approach is 

based on several binary–output multilayer perceptrons. After training, each multilayer perceptron 

is able to identify an electrical appliance is “ON” or “OFF” in power system. The difference of this 

method and the first method is to use more many multilayer perceptrons. This structure is trained 

by the same generated training set above.   

 In the third proposed approach, a structure of multiple support vector machines was proposed. 

This proposed structure consists of N  support vector machines. The number N  is the number of 

appliances we need to identify them “ON” or “OFF” in a power system. Because the support 

vector machines in this structure are supervised learning system, we use the same above generated 

training set to train this structure before we use it to classify nonlinear devices. 

 Finally, Figure 5.1 shows our strategy for the problem nonlinear load classification. There two 

steps to classify electric appliances from the distorted signal from power system. The first step is 

harmonic identification or estimation which has been presented in Chapter 2 and Chapter 4 with 

our proposed methods. The second step is the nonlinear load classification itself that will be 
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present thereafter. We proposed three models to address this problem. Two of the proposed 

methods are based on multilayer perceptron network techniques. The third proposed method is 

designed with several support vector machines also called SVM. 

 

 

Figure 5.1   Electric appliances classification by harmonic features with 2 steps. 

5.2 Proposed Methods for Nonlinear load classification 

5.2.1 Proposed Model 1 : A Binary–Output MLP 

The first proposed method for solving the problem of nonlinear load classification is based on a 

multilayer perceptron with normalized harmonic amplitudes as inputs. As a typical multilayer 

perceptron, this neural network uses several sigmoid neurons in the hidden layer and linear 

neurons in the output layer.  The MLP learning architecture is represented by Figure 5.2. 

 The number of neurons in the output layer of the MLP network depends to the number of 

appliances we want to identify from the distorted input signal. Each output neuron, the neuron in 

the output in this network, will provide the values 0 or 1 that correspond to the states ON or OFF 

of each appliance to consume current from in power system. We name this method the binary–

output multilayer perceptron, or Model 1. 
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Figure 5.2   Proposed Model 1 – A Binary-Output MLP for Nonlinear Load Classification. 

 The main idea of this method is to use only one multilayer perceptron with multiple output 

neurons. After training, this network is able to classify nonlinear loads from the harmonics features 

that were extracted from a distorted waveform of a power system. From the outputs of this 

network, we are able to know each device in a power system is ON working or OFF. 

5.2.2 Proposed Model 2 : A Multiple Binary–Output MLP 

In the second proposed method, we use several binary–output multilayer perceptrons to solve the 

same problem of the first proposed method. In this approach, we proposed a structure with several 

multilayer perceptrons. Each multilayer perceptron has the same inputs as harmonic features and 

one binary output as in following figure. The output of each multilayer perceptron exports the 

values 0 or 1. In this structure, each multilayer perceptron will be trained with the same training 

data set then the above mentioned method. And after learning, each network will calculate and 

answer if the appliance is switched ON or OFF in the system. We name this method the “Multiple 

Binary–Output Multilayer Perceptron” or Model 2.    
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Figure 5.3   Proposed Model 2 – A Multiple Binary–Output MLP for Nonlinear Load Classification 

5.2.3 Proposed Model 3 : A Multiple Support Vector Machine 

In machine learning, the support vector machine is a supervised learning model that is typically 

used to categorize data and to recognize patterns. For a given training data set with known 

categories, a support vector machine is able to assign to each data sample point in a high 

dimensional space. After learning, the optimized hyper–planes corresponding to the support 

vectors are able to classify each input from the data set into two subsets. 

 In this method, the structure of the support vector machines is used for classifying non–linear 

loads in order to decide according from the harmonic content provided as the input if appliances 

are switched ON or OFF and are consuming current from the power system. One has to note that a 

basic support vector machine only deals with two classes. So we use one support vector for each 
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non–linear load that is supposed to be connected in the power system. We name this method the 

Multiple Support Vector Machine or Model 3. 

 

 

Figure 5.4   Proposed Model 3 – A Multiple SVM for Nonlinear Load Classification 

5.3 Experimental Setup 

In this section, we present some computer experiments of three proposed methods in order to 

evaluate their performances. Results in classifying nonlinear loads absorbing current in a power 

system are investigated. The performances of our three proposed methods for nonlinear load 

classification using multilayer perceptrons and support vector machines is examined through 

computer simulation tests. The system model was implemented in the MATLAB environment. The 

objective of these tests is to identify electrical appliances existing in the system from the harmonic 

features extracted (identified/estimated) from the distorted waveform of a power system. In 

following experiment we use the three above methods for the nonlinear load classification 

problem. All three methods use the same estimated harmonic features from distorted waveform 

signals their input. We called them the harmonic feature input. 
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 In this experiment, a harmonic feature input is a tuple of normalized magnitudes of harmonic 

coefficients estimated or identified from a distorted waveform current. These harmonic 

coefficients are calculated by our proposed harmonic estimation methods, one based on a linear 

MLP and one based on a structure of multiple MLP that we proposed and presented in the Chapter 

4 of this thesis. 

 In model 1, the binary–output multilayer perceptron, we use only one multilayer perceptron to 

implement the classifier for nonlinear load classification. The inputs of this network are the 

normalized harmonic coefficients that have been identified from the distortion waveform current 

measured from the power system. The output neurons correspond to the appliances/devices that we 

want to classify from the distorted waveform current of the power system. This network has only 

one hidden layer. The number of hidden neurons is between the number of network inputs and the 

number of network outputs. 

 

Figure 5.5   A MLP implemented in MATLAB for model 1 

 Figure 5.5 shows a configuration of the nonlinear load classifier implemented in MATLAB for 

model 1 with 16 inputs according to 16 normalized harmonic coefficient magnitudes, 12 hidden 

neurons in the hidden layer and 8 output neurons in the output layer according to 8 

appliances/devices to be classified. This MLP is trained offline before being used online. The 

training algorithm for this MLP is the Levenberg–Marquardt algorithm. 

 In model 2, the multiple binary–output multilayer perceptrons, a structure of several MLPs is 

used to implement the classifier. The number of multilayer perceptrons used in this structure 

corresponds to the number of appliances that need to be identified (to detect if they are switched 

ON or OFF) from the distorted waveform current from the power system. Each multilayer 

perceptron receives the same harmonic feature inputs as in model 1. Each MLP network contains 
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one output neuron that is associated to an appliance or a device in the system. In this structure, 

each MLP has only one hidden layer and the number of hidden neurons in each MLP is between 1 

and number of network inputs. 

 

 

Figure 5.6   A MLP implemented in MATLAB for the multiple MLP in model 2. 

 In Figure 5.6, a multilayer perceptron is implemented in the MATLAB environment for the 

structure of model 2 with 16 inputs according 16 normalized harmonic coefficient magnitudes, 2 

hidden neurons in their hidden layers, and 1 output neuron in their output layers. All of the 

multilayer perceptrons in this method are trained offline by the Levenberg–Marquardt algorithm 

before being used online. 

 In model 3, the multiple support vector machine, we configure the number of support vector 

machines according to the number of appliances/devices supposed to be present in the power 

system. Each support vector machine receives the same harmonic feature inputs as in model 1 and 

in model 2. Each support vector machine contains one output according to an appliance. The 

number of support vectors (in each of SVM) has been optimized in the MATLAB environment 

when trained offline. The kernel function of these support vector machines is the Gaussian radial 

basis function kernel. 

 In the following experiment, we use the three proposed methods to identify of 8 kinds of home 

appliances. The home appliances that are connected in the power system are a monitor, computer, 

fluorescent lamp, television, battery charger, fan, fridge, and light bulb. The power system 

harmonic coefficients data of these 8 home appliances are from (Srinivasan et al., 2006). Their 

names and their photos are listed in Table 5.1. In order to evaluate 3 above proposed methods, we 

use 16 measured harmonic coefficient magnitudes of 8 appliances in (Srinivasan et al., 2006) for 
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this experiment. The harmonic ranks of distortion waveforms are 1, 3, 5, 7, 9, 11, 13 and 15. 

Magnitudes of 16 harmonic coefficients (harmonic signatures) of 8 appliances are showed in 

Figure 5.7. If the amplitude value of a harmonic component is negative, this can simply be 

considered as a component with a positive amplitude but phase-opposite to the main component of 

the signal, i.e., the component corresponding to the fundamental frequency. 

 Distorted current waveforms contain numerous harmonics and the current Total Harmonic 

Distortion (THD) is a relevant measure of the amount of distortion in the current’s wave shape 

(Arrillaga and Watson, 2003): The higher the current THD value, the greater the distortion. So, the 

current THD is a general indicator that is commonly used to evaluate the quality a current 

waveform or to express the energy-efficiency of a power system. For example, the Federal Energy 

Management Program in the USA, which issues energy-efficiency guidelines for federal buildings, 

specifies THD of 20% or less. So, utilities should only include electronic circuits that produce 

distorted currents with a THD of less than 20% in their energy-efficiency programs. 

 All three above proposed models for this experiment are off-line learning systems. They are 

trained off-line by the same training data set before being used online. In order to achieve the full 

experiment, we need to prepare and to generate two distinct data sets. The first data set is the 

training data set for the offline training of the 3 proposed learning methods. The second data set is 

the test set that is used for the validation of the responses obtained with the 3 trained methods. 

Thus for this experiment, all the data sets have been generated from precise values for the 

magnitudes of the higher-order harmonics on which some small random fluctuations have been 

added for the 8 appliances introduced in Table 5.1. This has been done for the harmonic of ranks 1, 

3, 5, 7, 9, 11, 13 and 15. These ranks are the most relevant and important in power systems. It is 

well known that harmonics that are odd triple multiples of the fundamental frequency (3rd, 9th, 

15th, 21st, ...) have the greatest potential impact on electrical systems because this current flows on 

the neutral conductor and might overload it. The ANSI C82.11 standard also sets limits for odd 

triple multiples and other harmonics. 

The exact values of the amplitudes used to generate the data sets are provided in Table 5.2. With 

the generated the data sets, 8 different appliances are available for training the learning methods, 

and 8 other appliances can be used for the validation tests. 
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N° Appliance Name Appliance Description 

1 
Monitor 

THD = 151.99 % 
 

Solid-state electronic devices have been shown to be the largest 
contributor to distortion due to the switching of diode bridges 

producing a discontinuous current, which then causes a distorted 
sine wave. 

2 
Computer  

THD = 169.74 % 
 

Solid-state electronic devices have been shown to be the largest 
contributor to distortion due to the switching of diode bridges 

producing a discontinuous current, which then causes a distorted 
sine wave. For a computer, the current consumption can vary 

accroding to the processing activity of the microprocessor. 

3 
Fluorescent Lamp  

THD = 116.99 % 
 

High-frequency electronic ballasts for fluorescent lighting 
systems, also called solid-state ballasts, are promoted for 

providing significant energy savings over magnetic ballasts. They 
can generate short inrush currents as high as 100 times the nominal 
operating levels. The electronic part is a switching circuit with the 

purpose to generate the light out of a low pressure fluorescent 
lamp. So, the electronic circuit must perform four main functions: 

a)  Provide  a start- up voltage across the end electrodes ofthe 
lamp. B) Maintain a constant current when the lamp is operating in 
the steady state. c) Assure that the circuit will remain stable, even 
under fault conditions. d) Comply with the applicable domestic 

and international regulations (PFC, THD, RFI, and safety). 

4 
Television  

THD = 173.23 % 
 

There different types of television sets, i.e., with a LED screen, a 
LCD screen, a plasma screen or even with a conventional cathode 
ray tube… but they are all based on solid-state electronic devices 

producing discontinuous currents. 

5 
Battery Charger  

THD = 127.16 % 
 

Battery chargers can contain several converters starting at least 
with an AC-DC switching circuit and generally ending with a 

control circuit producing a regulated DC voltage output. 

6 
Fan  

THD = 49.74 % 

 

Device with is only an electric motor. 

7 
Fridge  

THD = 138.91 % 

 

Systems with PFC capacitors and motors are considered to be 
“linear loads” with acceptable (negligible) distortion levels. 

This device does not consume energy continuously, i.e., all the 
time, but only in a periodically way. 

8 
Light Bulb  

THD = 14.69 % 
 

Theoretically a pure resisitive appliance. 

Table 5.1   List of home appliance types used in the experiment 
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a) Harmonic signature of a monitor 

 

b) Harmonic signature of a computer 
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c) Harmonic signature of a fluorescent lamp 

 

d) Harmonic signature of a television set 
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e) Harmonic signature of a battery charger 

 

f) Harmonic signature of a fan 
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g) Harmonic signature of a fridge 

 

h) Harmonic signature of a light bulb 

Figure 5.7   Harmonic coefficient magnitude signatures of 8 home appliances in the system. a) Monitor, b) 

CPU, c)  Fluorescent lamp, d) Television, e) Battery charger, f) Fan, g) Fridge, h) Light bulb 

from (Srinivasan et al., 2006). 
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 Figure 5.7 shows the magnitudes (in A) of current harmonic signature (coefficients of harmonic 

ranks of 1, 3, 5, 7, 9, 11, 13, and 15) of 8 home appliances used in this experiment. The values at 

the odd columns (1, 3, 5, 7, 11, 13, 15) are the magnitudes of coefficients nA  in (4.4) of harmonic 

terms n = 1, 3, 5, 7, 9, 11, 13, 15. The values at the even columns (2, 4, 6, 8, 10, 12, 14, 16) are the 

magnitudes of coefficients nB in (4.4) of harmonic terms n = 1, 3, 5, 7, 9, 11, 13, 15. We use this 

information to generate 2 groups of 8 appliances. The first group of 8 home appliances is used to 

generate 256 waveforms as 28 = 256 combinations of status ON or OFF of 8 devices in the system. 

As the same way, we generate the validation set from the second group of 8 other home 

appliances. 

 The additional information to generate the current data sets (the training dataset and the 

validation dataset) is as follows. We propose the fundamental frequency is f = 50 Hz. The signals 

in the generated data sets are referenced in the discrete time by t  with a sampling time 0.0002sT   

second. 101 samples are generated for a fundamental cycle for each generated signal waveform in 

the generated data sets. The experimental tests are tested with the MATLAB R2013 environment 

on a computer with a processor of type Intel(R) Core(TM) 2 Quad CPU Q9550 at 2.83 GHz, with 

4 GB of RAM and Microsoft(R) Windows 7 Professional as the operating system.  
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1 

1A  
Magnitude 0.3 0.22 0.42 0.22 0.13 0.18 0.23 0.47 

Fluctuation 0.04 0.08 0.025 0.03 0.015 0.03 0.03 0 

1B  
Magnitude 0.1 0.11 -0.31 0.065 -0.14 0.075 0.1 0.05 

Fluctuation 0.02 0.02 -0.08 0.025 -0.015 0.025 0.01 0 

3 
3A  

Magnitude -0.3 -0.25 0.05 -0.33 0.05 0.017 -0.18 0.03 

Fluctuation -0.03 -0.06 0.03 -0.16 0.02 0.017 -0.015 0 

3B  Magnitude 0.07 0.06 -0.08 0 0.02 0.025 -0.12 0.01 
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Fluctuation 0.01 0.02 -0.02 0 0.015 0.01 -0.015 0.005 

5 

5A  
Magnitude 0.19 0.12 0.017 0.1 -0.035 -0.02 0.06 0.015 

Fluctuation 0.03 0.04 0.017 0.01 -0.01 -0.01 0.005 0.005 

5B  
Magnitude -0.14 -0.12 -0.35 -0.07 0.035 -0.01 0.11 0.008 

Fluctuation -0.005 -0.02 -0.015 -0.005 0.025 -0.01 0.02 0.005 

7 

7A  
Magnitude -0.13 -0.09 0.012 -0.07 -0.025 -0.009 0.03 0.015 

Fluctuation -0.03 -0.03 0.012 -0.005 -0.01 -0.009 0.015 0.005 

7B  
Magnitude 0.13 0.1 0.035 0.07 -0.03 -0.015 -0.07 0.01 

Fluctuation 0.005 0.02 0.02 0.005 -0.015 -0.01 -0.005 0.005 

9 

9A  
Magnitude 0.05 -0.03 -0.009 0.035 -0.01 -0.01 -0.09 0.008 

Fluctuation 0.025 -0.03 -0.009 0.01 -0.01 -0.005 -0.015 0.005 

9B  
Magnitude -0.09 -0.09 -0.06 -0.055 -0.01 0.01 0.012 0.01 

Fluctuation -0.005 -0.02 -0.015 -0.005 -0.01 0.005 0.012 0.005 

11 

11A  
Magnitude -0.03 0.025 0.03 -0.022 -0.015 -0.01 0.06 0.008 

Fluctuation -0.01 0.02 0.02 -0.005 -0.005 -0.005 0.005 0.005 

11B  
Magnitude -0.02 0.035 -0.025 0.03 -0.005 0.007 0.05 0.01 

Fluctuation 0.005 0.02 -0.02 0.005 -0.005 0.007 0.015 0.005 

13 

13A  
Magnitude -0.02 -0.015 -0.025 -0.015 -0.009 -0.009 -0.03 0.008 

Fluctuation -0.02 -0.01 -0.015 -0.005 -0.009 -0.009 -0.015 0.005 

13B  
Magnitude -0.02 -0.025 0.025 0.01 -0.011 0 -0.07 0.01 

Fluctuation -0.005 -0.025 -0.009 0.005 -0.005 0 -0.02 0.005 

15 

15A  
Magnitude -0.02 -0.025 -0.04 -0.015 0.01 -0.01 -0.045 -0.008 

Fluctuation -0.005 -0.01 -0.015 -0.005 0.01 -0.005 -0.02 -0.005 

15B  
Magnitude -0.02 -0.045 -0.065 -0.035 0.01 -0.012 0.04 0.01 

Fluctuation -0.005 -0.02 -0.015 -0.01 0.01 -0.012 0.01 0 

Table 5.2   The magnitudes and fluctuations of coefficients nA  and nB  of n-th harmonics (n = 1, 3, 5, 7, 9, 

11, 13, 15) of 8 appliances used to generate the training dataset and the validation set in the 
experimental tests. 
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 In this experiment, there are 3 main tests. In the first test, we test the 3 proposed methods with 

the harmonic signatures identified by a linear MLP that we have proposed in chapter 4. In the 

second test, the 3 proposed models are evaluated with the harmonic signature estimated the 

multiple MLP also proposed in chapter 4. Finally, we have also evaluate the 3 proposed methods 

by using signals with an additional noise where the signal-to-noise ratio (SNR) varies from 46 dB 

to 0 dB. 

5.4 Experimental Results 

5.4.1 Experimental Result 1: Test with harmonic signatures extracted by the 

linear MLP harmonic estimator 

In this test, we use the load harmonic signatures extracted by the linear MLP that we proposed in 

Chapter 4 to evaluate our 3 proposed classification methods. These harmonic signatures are 

extracted from above mentioned validation set. One should remember that in the following: 

 Model 1 is the binary-output MLP, 

 Model 2 is the multiple binary–output MLP, 

 Model 3 is the multiple SVM. 

 There are 3 steps in this test. In the first step, we do experiment with 21 configurations of 

Model 1 in order to choose the best configuration for Model 1. To do this we change the number of 

hidden neurons in Model 1 from 2 to 22. In the second step, we do experiment with 5 

configurations of Model 2 in order to choose the best configuration for Model 2. In the third step, 

after we have the best configuration of Model 1 and the best configuration of Model 2, we do 

experiment to evaluate 3 models (Model 1, Model2, and Model 3). 

 The best configurations of Model 1and Model 2 are selected in Table 5.3 and in Table 5.4. For 

Model 1, we used the same training set with current generated waveforms to train 21 

configurations of Model 1 with the number of hidden neurons increasing from 2 to 22. After 

training, we use the validation set to validate these 21 configurations of Model 1. We also do the 

same thing with 5 configurations of Model 2 with the number of hidden neurons changing from 2 

to 6. The best configurations are selected from the configurations having the best result or the 

highest accuracy.  
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Accuracy (%) of  

The Binary-Output MLP (Model 1: with only 1 MLP with 8 binary outputs)  

The number of hidden neurons changes from 2 to 22. 

Monitor CPU 
Fluo. 
lamp 

TV set 
Battery 
charger 

Fan Fridge 
Light 
bulb 

8 
Appl.s 

2 77.65 55.29 47.06 53.73 64.31 50.59 72.55 88.63 63.73

3 89.02 55.69 76.08 49.02 60.78 56.47 90.20 74.12 68.92

4 84.31 80.78 91.76 58.82 49.02 54.51 95.69 79.22 74.26

5 79.61 72.94 63.53 73.73 73.73 85.10 81.57 68.63 74.85

6 64.31 68.24 87.06 68.24 72.55 75.29 81.57 81.18 74.80

7 79.22 94.12 79.61 68.24 89.02 77.65 87.45 83.92 82.40

8 58.04 69.02 98.04 96.47 69.41 79.22 85.49 75.29 78.87

9 60.78 73.73 89.41 98.04 74.51 66.27 84.31 75.69 77.84

10 6196 7490 100 96.08 80.00 72.16 85.10 72.16 8029

11 63.14 77.65 90.59 96.08 60.78 78.82 84.71 66.27 77.25

12 83.53 65.10 90.20 96.08 66.67 79.22 85.49 75.69 80.25

13 58.82 78.04 95.69 96.47 78.04 67.06 99.61 76.86 81.32

14 62.35 92.55 98.43 97.65 84.31 87.06 94.90 79.61 87.11

15 62.75 68.63 90.98 73.33 63.53 79.22 88.24 76.08 75.34

16 74.51 87.45 98.04 80.78 97.65 88.63 95.69 80.39 87.89

17 57.65 69.80 99.61 78.43 70.59 84.71 85.49 83.53 78.73

18 58.82 76.86 96.08 96.47 75.29 78.43 89.80 76.86 81.08

19 61.18 80.39 95.29 96.47 68.24 85.49 95.29 78.43 82.60

20 59.22 78.43 99.61 69.41 70.59 79.22 90.20 76.86 77.94

21 64.31 89.80 99.22 79.61 84.71 83.14 97.65 87.84 85.78

22 69.80 83.92 97.25 73.33 69.80 85.88 90.20 78.43 81.08

B
es

t C
on

fi
gu

ra
tio

n Best at 

89.02% 

with 

3 

hidden 
neurons 

Best at 

94.12% 

with 

7 

hidden 
neurons 

Best at 

99.61% 

with 

17 or 20 

hidden 
neurons 

Best at 

97.65% 

with 

14 

hidden 
neurons 

Best at 

97.65% 

with 

16 

hidden 
neurons 

Best at 

88.63% 

with 

16 

hidden 
neurons 

Best at 

99.61% 

with 

13 

hidden 
neurons 

Best at 

88.63% 

with 

2 

hidden 
neurons 

Best at 

87.89% 

with 

16 

hidden 
neurons 

Table 5.3   Accuracy comparison of the configurations of the binary-output MLP (Model 1) with the 

number of hidden neurons changes from 2 to 22 

 Table 5.3 shows values of the accuracy (%) of configurations of Model 1. To identify the 

monitor, the best configuration is with 3 hidden neurons at the accuracy 89.02 %. To identify the 
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CPU, the best configuration is with 7 hidden neurons at the accuracy 94.12 %. To identify the 

fluorescent lamp, the best configuration is with 17 or 20 hidden neurons at the accuracy 99.61 %. 

To identify the TV set, the best configuration is with 14 hidden neurons at the accuracy 97.65 %. 

To identify the battery charger, the best configuration is with 16 hidden neurons at the accuracy 

97.65 %. To identify the fan, the best configuration is with 16 hidden neurons at the accuracy 

88.63 %. To identify the fridge, the best configuration is with 13 hidden neurons at the accuracy 

99.61 %. To identify the light bulb, the best configuration is with 2 hidden neurons at the accuracy 

88.63 %. And the best configuration for Model 1 to identify 8 these home appliances is chosen 

with 16 hidden neurons at the highest accuracy 87.89 %. 

N
u

m
b

er
 o

f 
h

id
d

en
 

n
eu

ro
n

s 

Accuracy (%) of  

The Multiple Binary-Output MLP (Model 2: with 8 MLPs with only 1 binary output)  

The number of hidden neurons of each MLP changes from 2 to 6. 

Monitor CPU 
Fluo. 
lamp 

TV set 
Battery 
charger 

Fan Fridge 
Light 
bulb 

8 
Appl.s 

2 57.25 74.90 91.37 97.65 60.00 78.43 99.61 83.14 80.29 

3 56.47 73.73 92.94 96.08 59.61 78.82 84.71 75.29 77.21 

4 63.53 92.94 96.08 97.25 60.39 78.82 90.98 77.25 82.16 

5 58.43 91.76 92.55 96.08 74.51 78.43 92.94 78.04 82.84 

6 61.57 73.73 97.25 74.51 73.33 88.63 85.49 80.78 79.41 

B
es

t 
C

on
fi

gu
ra

ti
on

 Best at 

63.53% 

with 

4 

hidden 
neurons 

Best at 

92.94% 

with 

4 

hidden 
neurons 

Best at 

97.25% 

with 

6 

hidden 
neurons 

Best at 

97.65% 

with 

2 

hidden 
neurons 

Best at 

97.65% 

with 

5 

hidden 
neurons 

Best at 

88.63% 

with 

6 

hidden 
neurons 

Best at 

99.61% 

with 

2 

hidden 
neurons 

Best at 

83.14% 

with 

2 

hidden 
neurons 

Best at 

82.84% 

with 

5 

hidden 
neurons 

Table 5.4   Accuracy comparison of the configurations of Model 2 with the number of hidden neurons 

changes from 2 to 6 

 Table 5.4 shows values of the accuracy (%) of configurations of Model 2. To identify the 

monitor, the best configuration is with 4 hidden neurons at the accuracy 63.53 %. To identify the 

CPU, the best configuration is with 4 hidden neurons at the accuracy 92.94 %. To identify the 

fluorescent lamp, the best configuration is with 6 hidden neurons at the accuracy 97.25 %. To 

identify the TV set, the best configuration is with 2 hidden neurons at the accuracy 97.65 %. To 

identify the battery charger, the best configuration is with 5 hidden neurons at the accuracy 74.51 
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%. To identify the fan, the best configuration is with 6 hidden neurons at the accuracy 88.63 %. To 

identify the fridge, the best configuration is with 2 hidden neurons at the accuracy 99.61 %. To 

identify the light bulb, the best configuration is with 2 hidden neurons at the accuracy 83.14 %. 

And the best configuration for Model 2 to identify 8 these home appliances is chosen with 5 

hidden neurons at the highest accuracy 82.84 %. 

 

Appliance 

Accuracy (%) 

Binary-Output MLP 

(Model 1) 

Best Configuration 

(16 hidden neurons) 

Multiple Binary-Output MLP 

(Model 2) 

Best Configuration 

(5 hidden neurons in each MLP) 

Multiple SVM 

(Model 3) 

Optimized 

Configuration 

Monitor 74.51 58.43 96.86 

CPU 87.45 91.76 97.25 

Fluorescent lamp 98.04 92.55 99.22 

Television  80.78 96.08 93.73 

Battery charger 97.65 74.51 96.08 

Fan 88.63 78.43 90.59 

Fridge 95.69 92.94 99.22 

Light bulb 80.39 78.04 100 

8 appliances 87.89 82.84 96.62 

Performance Time 

(for 256 waveforms) 

0.3188 
seconds 

0.1414 
seconds 

0.0850 
seconds 

Training Time 
(for 256 waveforms) 

2.2106 
seconds 

13.1119 
seconds 

0.7476 
seconds 

Table 5.5   Accuracy comparison of classification of 3 models 

 

 In Table 5.5, the comparison of classification accuracy and performance time of 3 models is 

showed. The result shows that the multiple SVM based approach (Model 3) is the best approach 

with the best accuracy at 96.62%, the fastest training time 0.7476 seconds, the fastest performance 

time 0.0850 seconds on 256 harmonic signatures of the training set and the validation set.  
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5.4.2 Experimental Result 2: Test with harmonic signatures extracted by the 

multiple MLP harmonic estimator 

In this test, we use the load harmonic signatures extracted by the multiple MLP-based proposed 

harmonic estimator that we proposed in chapter 4 to evaluate our 3 proposed classification 

methods in this chapter. These harmonic signatures are extracted from above validation set. 

 There are there steps in this test as we do in the first test. The best configurations of Model 1and 

Model 2 are selected in Table 5.6 and in Table 5.7. For Model 1, we used the same training set 

with current generated waveforms to train 21 configurations of Model 1 with the number of hidden 

neurons increasing from 2 to 22. After training, we use the validation set to validate these 21 

configurations of Model 1. We also do the same thing with 5 configurations of Model 2 with the 

number of hidden neurons changing from 2 to 6. The best configurations are selected from the 

configurations having the best result or the highest accuracy. 

 Table 5.6 shows values of the accuracy (%) of configurations of model 1. To identify the 

monitor, the best configuration is with 3 hidden neurons at the accuracy 85.49 %. To identify the 

CPU, the best configuration is with 7 hidden neurons at the accuracy 96.47 %. To identify the 

fluorescent lamp, the best configuration is with 10 hidden neurons at the accuracy 100 %. To 

identify the TV set, the best configuration is with 9 or 14 hidden neurons at the accuracy 98.43 %. 

To identify the battery charger, the best configuration is with 16 hidden neurons at the accuracy 

97.25 %. To identify the fan, the best configuration is with 5 hidden neurons at the accuracy 83.92 

%. To identify the fridge, the best configuration is with 13 hidden neurons at the accuracy 99.22 

%. To identify the light bulb, the best configuration is with 21 hidden neurons at the accuracy 

87.06 %. And the best configuration for Model 1 to identify 8 these home appliances is chosen 

with 16 hidden neurons at the highest accuracy 87.60 %. 
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Accuracy (%) of  

The Binary-Output MLP (Model 1 with only 1 MLP with 8 binary outputs)  

The number of hidden neurons changes from 2 to 22. 

Monitor CPU 
Fluo. 
lamp 

TV set 
Battery 
charger 

Fan Fridge 
Light 
bulb 

8 
Appl.s 

2 76.86 59.22 47.84 52.55 64.71 49.80 74.12 83.53 63.58 

3 85.49 56.47 82.35 48.63 61.96 56.86 87.45 72.55 68.97 

4 84.31 80.78 92.94 58.43 45.88 54.51 96.86 74.12 73.48 

5 80.00 72.16 58.43 74.51 71.37 83.92 81.96 68.24 73.82 

6 64.31 72.55 89.02 69.80 70.59 73.73 79.22 71.37 73.82 

7 76.86 96.47 79.22 67.06 93.33 70.59 87.06 82.35 81.62 

8 59.22 65.10 97.65 96.47 59.22 75.69 89.80 77.25 77.55 

9 60.78 73.33 89.80 98.43 72.94 65.49 85.10 68.63 76.81 

10 60.78 75.29 100 96.47 70.59 75.69 86.27 71.37 79.56 

11 65.88 81.18 90.98 96.47 73.33 74.90 86.67 66.27 79.46 

12 85.49 63.92 91.76 96.47 78.82 76.47 87.84 77.25 82.25 

13 60.00 80.00 95.29 96.86 72.55 64.31 99.22 77.25 80.69 

14 61.96 93.33 97.65 98.43 74.90 82.35 96.08 78.43 85.39 

15 67.45 67.06 93.73 74.90 76.08 78.04 89.80 77.65 78.09 

16 70.59 91.37 98.43 84.71 97.25 83.14 94.90 80.39 87.60 

17 58.43 70.59 99.61 80.78 60.78 83.53 86.67 75.69 77.01 

18 59.22 76.47 95.69 96.47 71.76 72.55 91.37 76.86 80.05 

19 61.96 83.14 95.29 96.47 77.65 81.96 96.08 78.43 83.87 

20 59.61 80.39 99.61 70.20 61.57 75.29 92.16 73.73 76.57 

21 65.49 90.98 98.43 80.00 77.25 78.04 98.04 87.06 84.41 

22 67.84 86.67 97.65 72.94 79.61 82.35 91.37 78.43 82.11 

B
es

t 
C

on
fi

gu
ra

ti
on

 Best at 

85.49% 

with 

3 or 12 

hidden 
neurons 

Best at 

96.47% 

with 

7 

hidden 
neurons 

Best at 

100% 

with 

10 

hidden 
neurons 

Best at 

98.43% 

with 

9 or 14 

hidden 
neurons 

Best at 

97.25% 

with 

16 

hidden 
neurons 

Best at 

83.92% 

with 

5 

hidden 
neurons 

Best at 

99.22% 

with 

13 

hidden 
neurons 

Best at 

87.06% 

with 

21 

hidden 
neurons 

Best at 

87.60% 

with 

16 

hidden 
neurons 

Table 5.6    Accuracy comparison of  The Binary-Output MLP (Model 1) with the number of 

hidden neurons changes from 2 to 22 
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Accuracy (%) of  

The Multiple Binary-Output MLP (Model 2 with 8 MLPs with only 1 binary output)  

The number of hidden neurons of each MLP changes from 2 to 6. 

Monitor CPU 
Fluo. 
lamp 

TV set 
Battery 
charger 

Fan Fridge 
Light 
bulb 

8 
Appl.s 

2 58.43 73.73 92.16 98.82 72.94 74.51 99.22 82.75 81.57 

3 56.86 73.33 94.12 96.08 73.33 74.51 85.49 76.86 78.82 

4 62.35 94.90 94.90 97.65 73.33 74.90 94.90 77.25 83.77 

5 59.22 91.76 93.73 96.47 84.71 74.51 94.90 78.82 84.26 

6 61.96 72.94 97.25 75.69 63.53 86.27 87.84 80.39 78.24 

B
es

t C
on

fi
gu

ra
tio

n Best at 

62.35% 

with 

4 

hidden 
neurons 

Best at 

99.90% 

with 

4 

hidden 
neurons 

Best at 

97.25% 

with 

6 

hidden 
neurons 

Best at 

98.82% 

with 

2 

hidden 
neurons 

Best at 

84.71% 

with 

5 

hidden 
neurons 

Best at 

86.51% 

with 

6 

hidden 
neurons 

Best at 

99.22% 

with 

2 

hidden 
neurons 

Best at 

82.75% 

with 

2 

hidden 
neurons 

Best at 

84.26% 

with 

5 

hidden 
neurons 

Table 5.7  Accuracy comparison of The Multiple Binary-Output MLP (Model 2) with the number 

of hidden neurons changes from 2 to 22 

 

 Table 5.7 shows values of the accuracy (%) of configurations of Model 2. To identify the 

monitor, the best configuration is with 4 hidden neurons at the accuracy 63.35%. To identify the 

CPU, the best configuration is with 4 hidden neurons at the accuracy 94.90%. To identify the 

fluorescent lamp, the best configuration is with 6 hidden neurons at the accuracy 97.25%. To 

identify the TV set, the best configuration is with 2 hidden neurons at the accuracy 98.82%. To 

identify the battery charger, the best configuration is with 5 hidden neurons at the accuracy 

84.71%. To identify the fan, the best configuration is with 6 hidden neurons at the accuracy 

86.27%. To identify the fridge, the best configuration is with 2 hidden neurons at the accuracy 

99.22 %. To identify the light bulb, the best configuration is with 2 hidden neurons at the accuracy 

82.75%. And the best configuration of Model 2 to identify 8 these home appliances is chosen with 

5 hidden neurons at the highest accuracy 84.26 %. 
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Appliance 

Accuracy (%) 

Binary-Output MLP 

(Model 1) 

Best Configuration 

(16 hidden neurons) 

Multiple Binary-Output MLP 

(Model 2) 

Best Configuration 

(5 hidden neurons in each MLP) 

Multiple SVM 

(Model 3) 

Optimized 

Configuration 

Monitor 70.59 59.22 97.25 

CPU 91.37 91.76 95.69 

Fluorescent lamp 98.43 93.73 96.86 

Television  84.71 96.47 96.08 

Battery charger 97.25 84.71 92.16 

Fan 83.14 74.51 88.24 

Fridge 94.90 94.90 99.22 

Light bulb 80.39 78.82 97.65 

8 appliances 87.60 84.26 95.39 

Performance Time 
(For 256 waveforms) 

0.3161 
seconds 

0.1381 
seconds 

0.0850 
seconds 

Training Time 
(For 256 waveforms) 

2.2106 
seconds 

13.1119 
seconds 

0.7476 
seconds 

Table 5.8   Comparison of classification accuracy of 3 models 

 In Table 5.8, the comparison of classification accuracy and performance time of the 3 models is 

showed. The result shows that the multiple SVM-based approach (Model 3) is the best approach 

with the best accuracy at 95.39%, the fastest training time 0.7476 seconds, the fastest performance 

time 0.0850 seconds on 256 harmonic signatures of the training set and the validation set. 

5.4.3 Experimental Result 3: Test with noised signals 

In this test, we use noised signals to evaluate the 3 models. The level of noise is measured by the 

Signal-to-Noise Ratio (SNR) expressed in dB. Thus, a ratio higher that 1 indicates more signal 

than noise and a ratio SNRdB = 0 means that amplitudes of the signal and of the noise are the same. 

The harmonic signatures are identified from data set by the linear MLP harmonic estimator and by 

the multiple MLP harmonic estimator. And we use these harmonic signatures to evaluate our 3 

proposed classification models.  
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SNR 

(dB) 

MSE 

Linear MLP  

Harmonic Estimator 

Multiple MLP 

Harmonic Estimator 

min max mean min max mean 

46 3.1441e-07 8.2251e-05 2.1842e-05 1.1016e-05 3.7896e-02 6.1805e-03 

32 6.1842e-06 1.8472e-03 5.6073e-04 4.8868e-05 3.9136e-02 9.0113e-03 

26 2.5987e-05 9.0071e-03 2.2487e-03 1.9041e-04 8.8435e-02 1.8694e-02 

12 6.8682e-04 3.0212e-01 5.7250e-02 2.2919e-03 1.6740e+00 3.1598e-01 

6 3.5989e-03 1.1024e+00 2.3279e-01 8.2662e-03 5.3199e+00 1.1653e+00 

4 4.3379e-03 1.9103e+00 3.6622e-01 1.3135e-02 1.0605e+01 1.7818e+00 

2 7.1617e-03 2.3321e+00 5.7390e-01 3.2216e-02 1.6139e+01 2.6503e+00 

0 1.0212e-02 4.0231e+00 9.3867e-01 4.8900e-02 2.3067e+01 4.0771e+00 

Table 5.9    MSE comparison between Linear MLP Harmonic Estimator and Multiple MLP 

harmonic estimator on noised signals with signal-to-noise ratio from 46dB to 0dB.  

 

 Table 5.9 shows and compares the MSE between the linear MLP-based Harmonic Estimator 

and the multiple MLP based harmonic estimator. The minimal, maximal and mean values of MSE 

of 2 harmonic estimators/identifiers are showed. The result shows that the linear MLP identify 

harmonics from noised signals more precise than multiple MLP Harmonic Estimator.   

 In Table 5.10, the comparison of accuracy and performance time of the 3 proposed models. The 

result shows that the multiple SVM based approach (Model 3) with the linear MLP-based 

Harmonic Estimator is the best approach for nonlinear load classification. 
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SNR 

(dB) 

Accuracy (%) and Performance Time (seconds) 

Linear MLP Harmonic Estimator Multiple MLP Harmonic Estimator 

One MLP 

Classifier 

(Model 1) 

Multiple MLP 

Classifier 

(Model 2) 

Multiple SVM 

Classifier 

(Model 3) 

One MLP 

Classifier 

(Model 1) 

Multiple MLP 

Classifier 

(Model 2) 

Multiple SVM 

Classifier 

(Model 3) 

46 

87.84 % 82.70 % 96.47 % 86.91 % 83.77 % 94.26 % 

0.3195 
seconds 

0.1384 
seconds 

0.0857 
seconds 

0.3224 
seconds 

0.1435 
seconds 

0.0830 
seconds 

32 

86.57 % 82.45 % 95.44 % 80.83 % 78.43 % 75.98 % 

0.3158 
seconds 

0.1438 
seconds 

0.0846 
seconds 

0.3216 
seconds 

0.1415 
seconds 

0.0885 
seconds 

26 

84.56 % 81.32 % 91.67 % 69.22 69.26 55.74 

0.3472 
seconds 

0.1460 
seconds 

0.0882 
seconds 

0.3332 
seconds 

0.1491 
seconds 

0.0916 
seconds 

12 

68.87 % 68.87 % 54.31 % 56.27 % 57.79 % 49.80 % 

0.3366 
seconds 

0.1445 
seconds 

0.0879 
seconds 

0.3314 
seconds 

0.1443 
seconds 

0.0926 
seconds 

6 

62.50 % 62.01 % 49.80 % 51.86 % 51.86 % 49.80 % 

0.3253 
seconds 

0.1391 
seconds 

0.0857 
seconds 

0.3578 
seconds 

0.1481 
seconds 

0.0945 
seconds 

4 

59.41 % 59.17 % 49.80 % 53.19 % 53.97 % 49.80 % 

0.3790 
seconds 

0.1576 
seconds 

0.1010 
seconds 

0.3369 
seconds 

0.1454 
seconds 

0.0870 
seconds 

2 

58.82 % 59.66 % 49.80 % 50.93 % 53.73 % 49.80 % 

0.3371 
seconds 

0.1524 
seconds 

0.0922 
seconds 

0.3349 
seconds 

0.1489 
seconds 

0.0925 
seconds 

0 

56.08 % 57.65 % 49.80 % 51.13 % 52.45 % 49.80 % 

0.3385 
seconds 

0.1469 
seconds 

0.0915 
seconds 

0.3372 
seconds 

0.1449 
seconds 

0.0912 
seconds 

Table 5.10    Accuracy and performance time comparison of 2 harmonic estimators/identifiers and of 3 

proposed classifiers with noised signals with signal-to-noise ratio from 46 dB to 0 dB 
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5.4.4 Discussion and comparison of classification accuracy 

The results obtained by our proposed methods can be compared to other existing neural methods. 

As an example, we will compare the performance of Model 3, i.e. the multiple SVM which 

presents the best performance over the 3 proposed classifiers, to another SVM approach in terms 

of classification accuracy. Indeed, the previous test results demonstrate that the best solution for 

electric appliances identification have been obtained with the linear MLP and the multiple SVM 

with RBF kernels. The work in (Srinivasan et al., 2006) uses a FFT harmonic estimator and a 

SVM-approach with RBF kernels to identify the electric appliances. Comparing the classification 

accuracy has been achieved and results are presented in Table 5.11. In this table, our results have 

been taken from Table 5.5 and from Table 5.8. 

Appliance 

Accuracy (%) 

SVM with RBF kernel 

From Table III in (Srinivasan et 
al., 2006) 

Classification Accuracy When 
Using Mathematically Created 

Training Set 

(with FFT Harmonic Estimator) 

Multiple SVM with RBF kernel 

Our Approaches 

From Table 5.5 

(with Linear MLP Harmonic 
Estimator) 

From Table 5.8 

(with Multiple MLP Harmonic 
Estimator) 

Monitor 98.70 % 96.86 % 97.25 % 

CPU 75.00 % 97.25 % 95.69 % 

Fluorescent 
lamp 

99.90 % 99.22 % 96.86 % 

Television  78.50 % 93.73 % 96.08 % 

Battery charger 70.30 % 96.08 % 92.16 % 

Fan 68.40 % 90.59 % 88.24 % 

Fridge 99.90 % 99.22 % 99.22 % 

Light bulb 94.50 % 100 % 97.65 % 

Table 5.11   Accuracy comparison of classification of 2 SVM with RBF kernel approaches 

 If we use the linear MLP harmonic estimator for our SVM approach, the accuracy are in the 

range between 90.59 % (for the electric fan) and 100% (for the light bulb) while the accuracy of 

the approach in (Srinivasan et al., 2006) are in the range between 68.40 % (for the electric fan) and 

99.90% (for the fluorescent lamp or of fridge). Both approaches used mathematically created 



102 
 

training sets. Our approach gives better results in term of robustness: It can be seen that the lowest 

value of the classification accuracy has been achieved with the linear MLP harmonic estimator 

associated with the multiple SVM that has been proposed in this thesis. 

 This difference in term of classification accuracy might come from the harmonic estimation 

step. In our approach, we used our proposed linear MLP for harmonic identification which is more 

efficient compared to the FFT used in (Srinivasan et al., 2006). Our SVM approach also shows 

better results when associated with the multiple MLP harmonic estimator. Its accuracy is in the 

range between 88.24 % (for the electric fan) and 99.22 % (for the fridge). These show that our 

classifier which is based on a SVM with RBF kernels approaches with the two proposed harmonic 

estimators (the linear MLP harmonic estimator and the multiple MLP harmonic estimator) are 

robust in classifying electric appliances. 

5.5 Summary 

In this chapter, we have proposed three off-line learning based approaches for nonlinear load 

classification in a power system. There are two approaches based on multilayer perceptron 

technique and one approach based on a support vector machine technique. For the first approach, 

we proposed a binary-output multilayer perceptron. In the second approach, we propose a multiple 

binary-output MLP. In third approach, we proposed a multiple SVM. All the 3 models are used for 

identifying appliances consuming or not current from a power system. They all use as theirs inputs 

the estimated harmonic features, i.e., the amplitude and the angles of the harmonic components of 

ranks 1, 3, 5, 7, 9, 11, 13 and 15. The 2 proposed approaches for harmonic identification that have 

been introduced in Chapter 4 are used to estimate the harmonic signatures of 8 typical nonlinear 

loads. 

 In order to evaluate the performance of the 3 models, the experiments have been conducted and 

the experimental results are also presented in this chapter. The 3 models are also evaluated with 

some noisy signals. From the results, we can deduce that the approach based on a multiple SVM 

(Model 3) shows the best performance. 
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Chapter 6 : Conclusions 

6.1 Proposed Methods for Harmonic Estimation 

Since a couple of decades, the number of electrical nonlinear load devices has increased 

continually in domestic and industrial installations. The unwanted harmonic generated by 

nonlinear loads or devices yield many problems in power systems. Therefore, harmonic 

identification approaches are more important than ever for power quality issues. Technical 

solutions like active power filter can use harmonic identification approaches in order to 

compensate and eliminate harmonic distortions. In this thesis, we have introduced two new 

approaches based on MLPs for estimating power system harmonics. 

 In the first approach, we proposed and developed a linear MLP for identifying on-line 

harmonics. The linear MLP adapts its parameters with a learning process and is able to estimate 

the amplitude and the phase angle of each harmonic term. Furthermore, the linear MLP is able 

estimate any periodic signal by expressing its output as a sum of harmonic components according 

to Fourier series. The network takes some specific harmonic elements with unit amplitudes 

generated as inputs and uses neurons that have linear activation functions. The measured signal 

serves as a reference and is compared to the network output. The amplitudes of the fundamental 

and high–order harmonics are deduced from the combination of the weights of the neurons. The 

linear MLP identifies the amplitudes of the fundamental component and high–order harmonic 

components with good precision even under noisy conditions (Nguyen and Wira, 2013a; Nguyen 

and Wira, 2013b). 

 In the second approach, we proposed another MLP technique based approach for identifying 

current harmonics in power systems. A structure of several nonlinear MLPs is proposed and used 

as a pattern recognition solution for the harmonic identification task. After training, each MLP of 

this structure is able to identify 2 coefficients related to each harmonic term contained in the input 

signal. The effectiveness of this new approach is evaluated by experiments. Results show that the 

proposed MLPs approach is able to identify effectively the amplitudes of the harmonic terms from 

the signals under noisy condition. Results are compared to one obtained by the linear MLP and to 

recent MLP approaches (Nguyen and Wira, 2015). 

 These proposed methods have been introduced and presented in Chapter 4. The approaches are 

able to identify individually each harmonic term of signals from power systems. They have been 
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successfully validated by experimental tests. They can be inserted in an active power filters to 

ensure the power quality in power systems. 

6.2 Proposed Methods for Electric Appliances Classification 

In order to apply our proposed methods in the field of NILM, we also proposed and developed 3 

approaches for non-linear load appliance classification in power systems. These approaches were 

presented in Chapter 5. Two MLP-based approaches and one SVM-based approach were proposed 

for this objective. 

 In first approach, a simple MLP has been developed to identify nonlinear appliances connected 

to the power system and consuming or not energy. Based on the harmonic features extracted from 

the distorted waveform in a power system, the method is able to detect which appliances are 

switched on. The network is trained offline with a training data set. After training, the network is 

perfectly able to identify the nonlinear appliances, i.e., switched ON and thus consuming and 

disturbing the power quality.   

 In second approach, we propose a specific structure of MLPs for classifying nonlinear 

appliances in a power system. The learning approach is based on several binary–output multilayer 

perceptrons. After training, each multilayer perceptron is able to identify an electrical appliance in 

the power system, i.e. if they are switched ON or OFF. The difference of this method compared to 

the first method is that it uses many multilayer perceptrons. This structure is trained with the same 

training data set generated from signals measured on a power system where 8 different appliances 

have be inserted like in (Srinivasan et al., 2006). 

 In third approach, a structure of multiple support vector machines was proposed. This proposed 

structure consists of N  support vector machines. The number N  is the number of appliances we 

need to identify in a power system. Because support vector machines are supervised learning 

systems, we use the same training set to train it in order to classify the nonlinear devices. 

 The 3 approaches have been implement and evaluated by several computer experiments. The 

results show that the proposed SVM technique based method performs faster and leads to a better 

precision compared to the two MLP-based approaches. 
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6.3 Limitations and Future Work 

In this thesis, 2 proposed approaches for harmonic estimation and 3 proposed approaches for 

nonlinear appliances classification have been developed. The proposed methods have been 

evaluated by experimental tests with some good results. In the other hand, the proposed 

approaches have some limitations. Indeed, for the harmonic identification problem, the 2 proposed 

methods are only convenient to time-domain signal analysis. For the non-linear load appliance 

classification problem, the proposed methods are only based on frequency features. Some new 

indicators could be chosen and used if they are relevant of the power quality and/or of the types of 

load connected in the power system. 

 

Figure 6.1   An example of power load curves. 
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 For example, events detected and extracted from daily load curves can be used to trigger 

strategy changes and or parameters changes for the classifier. Some temporal indicators calculated 

on a sliding window can also be associated to the frequency features as the inputs of the classifier. 

A load curve represents the power consumed by a customer or group of customers based on time, 

i.e., in successive time intervals. A load curve is therefore expressed as a unit of power, and each 

point of the curve should generally be interpreted as a middle power for a short period of time. 

Figure 6.1 gives an example of power load curves. Indeed, the cumulated values of the consumed 

power have been recorded over one week (7 days, from May 18 to 24, 2017) with a precision of 1 

minute in a kitchen of a working office (here in the Université de Haute-Alsace). The kitchen 

contains several appliances which are a fridge, a kettle and two coffee machines. One can easily 

recognize and separate working-days from weekend-days, one can also clearly see different 

important moments appearing during working-days. 

 According to the advantages and limitations of the machine learning approaches proposed in 

this thesis, we can provide some directions for the future work as follows:  

 Develop other new load signatures for NILM, Energy Disaggregation. 

 Test experiments with real open well-known data sets. 

 Develop and implement hidden Markov models for NILM with the low frequency sampling 

data sets. 

 Develop original NILM approaches by using deep learning techniques. 

 Implement the proposed learning methods with Python, R, and Java languages. 

 Develop and implement the proposed methods on open neural network toolkits: 

TensorFlow, DeepLearning4j (a deep learning toolkit for Java). 
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