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Abstract:
Non-contact physiological measurements are highly
desirable in many biomedical fields such as
diagnosis of infants, geriartic patients, patients with
extreme physical trauma, and fitness and well-being.
Remote photoplethysmography is increasingly being
used for non-contact measurement of heart rate from
videos which is one of the most common biomedical
property required for most medical diagnosis. One
of the common techniques for performing remote
photoplethysmography involves using Blind Source
Separation (BSS) methods to extract the cardiac
signal from video data.
In this context, the objective of this thesis is to
develop different methods in the field of extraction
and separation of sources by improving upon
traditional BSS methods. These novel semi-
blind source extraction methods are integrated
with biophysical constraints, and applied to
the application of remote photoplethysmography

measurement. In addition, one of these methods
is extended to measure the spatial distribution of
photoplethysmographic signals of the skin.
Remote photoplethysmography aims to measure
biophysical parameters such as heart rate and heart
rate variability by quantifying the periodic changes in
skin color due to the rhythmic beating of the heart.
These changes manifest in the image data obtained
from simple video cameras, which is processed
to generate a temporal signal representing the
cardiac signal. We have improved existing methods
by incorporating the ubiquitous property of quasi-
periodicity of biophysical signals such as cardiac and
neurological signals. Quasi-periodic signals have
higher autocorrelation than non-periodic signals.
This observation was combined with independent
component analysis techniques and Generalized
Eigenvalue Decomposition (GEVD) to develop semi-
blind source extraction methods.

Titre : Méthodes d’extraction semi-aveugle
Application à la mesure des signes physiologiques sans contact

Mots-clés : Méthodes d’extraction semi-aveugle, Photopléthysmographie à distance, L’analyse
de composantes indépendantes,L’analyse de composantes indépendantes contraint,Intègration des
contraintes biophysiques
Résumé :
De nombreuses applications pourraient bénéficier
de la mesure de paramètres physiologiques sans
contact. On peut citer par exemple le suivi de
constantes vitales en milieu hospitalier, en particulier
chez les nourrissons, les personnes âgées ou
les patients souffrant de traumatismes physiques
extrêmes, mais également dans le cadre du sport
et du bien-être. La photopléthysmographie sans
contact est de plus en plus utilisée pour la mesure
de la fréquence cardiaque à partir de vidéos. Les
variations périodiques de la couleur de la peau, dues
aux battements cardiaques, sont quantifiées pour
générer un signal temporel à partir des séquences
d’images obtenues par les caméras vidéo.
Une des techniques les plus courantes de
photopléthysmographie sans contact consiste à
utiliser des méthodes de séparation aveugles de
sources pour extraire le signal cardiaque des

données vidéo. Dans ce contexte, l’objectif
de cette thèse est de développer différentes
méthodes dans le domaine de l’extraction et de la
séparation des sources améliorant les méthodes
aveugles traditionnelles telles que l’Analyse en
Composantes Indépendantes. Ces nouvelles
méthodes d’extraction de sources semi-aveugle
incorporent des contraintes biophysiques et sont
appliquées au domaine de photopléthysmographie
sans contact. Nous avons utilisé par exemple
les propriétés de quasi-périodicité, communes
à beaucoup de signaux biomédicaux, et de
chrominance liée aux caractéristiques optiques
de la peau comme information a priori pour
guider les techniques de séparation de sources.
De plus, ces méthodes ont été étendues pour
également mesurer la distribution spatiale des
signaux photopléthysmographiques.
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CONTEXT AND MOTIVATION
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1
INTRODUCTION

P
hysiological parameter measurement from biomedical signals is not unbeknownst to
applications in fields such as medicine, biomedical health and well being, fitness,

and psychology. A large number of signal processing techniques have been employed to
analyse such signals.

A biomedical signal can be defined as a temporal representation of some activity
associated with the human body, and has a characteristic frequency, phase and am-
plitude. Typical modalities include electrocardiograms (ECG) or photoplethysmograms
(PPG) used to measure heart rate (HR) and heart rate variability (HRV), electroen-
cephalograms (EEG) used to measure neural signals, electromyograms (EMG) used to
measure muscle electrical activity. Works such as the extraction of fetal ECG from a
maternal ECG signal [50], separating artifacts and brain sources from EEG data [37],
prosthetic enhancements using EMG signals [52] are few of the many instances of these
modalities.

In modern medicine and hygiene, it is becoming increasingly desirable to have less
instruments that do more. Non-invasive methods of diagnosis are being researched and
are solicited in not just serious medical scenarios but also in day to day fitness and well-
being. These requirements have prompted research in non-contact physiological signals
measurement to serve as aids for diagnostics and monitoring, and possibly in the future,
become the principal means for the same. For instance, much research has been going
on in measuring physiological signs such as heart rates and breathing rates from videos
by using signal and image processing techniques. Different methods are being developed
in order to extract these physiological properties, the main challenges being the extraction
of accurate and robust signals on par with contact based sensors such as ECG and finger
sensors.

In this thesis, we develop several new techniques to extract the cardiac pulse signal
from video frame data. We formulate novel Semi-blind Source Extraction (semi-BSE)
methods for the measurement of these Remote Photoplethysmography (rPPG) signals
which can be useful in various scenarios such as monitoring of geriatric patients, infants,
physical trauma victims, fitness and wellbeing, and more. A brief overview of Photo-
plethysmography (PPG) and rPPG is presented in the next subsection.

3



4 CHAPTER 1. INTRODUCTION

(a) The photoelectric plethysmograph Hertzman’s
original setup from 1938 (b) The signal measured by the photocell

Figure 1.1: PPG setup (left) and the corresponding waveform (right)

1.1/ PHOTOPLETHYSMOGRAPHY AND REMOTE PHOTOPLETHYS-
MOGRAPHY

Photoelectric plethysmography or photoplethysmography (PPG) was first introduced in
1937 by Hertzman where variations in the light absorption of human skin was measured
by a photoelectric cell [1] placed over a skin region (typically of the hand) illuminated by
a light source above it as seen in figure 1.1. Since this seminal work, much research has
been done in understanding this photoplethysmographic waveform whose modulation is
not only due to arterial blood pulsation as initially presumed. This presumption on which
the pulse oximeter was developed in the 1970s, was later found to be misleading; the PPG
waveform is actually more complex and appears to be the sum total of arterial and venous
blood interaction with the cardiac, respiratory and autonomic systems. Physiologically, the
PPG amplitude is a result of a complex interaction of stroke volume, vascular compliance,
and tissue congestion effects [60]. Despite these auxiliary sources of blood pulsation, the
effect of arterial pulsations is exploitable enough for modern pulse oximeters to be able to
extract and display the oxygen saturation as well as the heart rate derived from the PPG
measurements at different wavelengths. This mechanism is explained as follows.

In the original design of Hertzman [1], the light source and sensor were placed
obliquely on the flesh tissue, where the amount of light reaching the photocell is reflected
by the flesh tissue and the blood pulse therein, as seen in figure 1.1. This is character-
istic of reflective photoplethysmography. On the other hand, modern pulse oximeters are
based on transmissive photoplethysmography where the light source and detector are
separated by flesh tissue, typically a finger or a toe, where the light measured by the sen-
sor passes through the flesh tissue and thus is modulated by the underlying blood pulse
as seen in figure 1.2. This residual light reaching the detector after being absorbed by the
finger can be thought of being made up of two components. First, a stationary compo-
nent that is due to the skin, flesh and non-arterial tissue present between the source and
detector termed as the DC component, and second a pulsatile component primarily due
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Figure 1.2: PPG measurement using a pulse oximeter. The PPG waveform is made up of AC
and DC components (left). The AC component is due to the blood pulse volume (right). Image
courtesy of [56]

to the arterial Blood Volume Pulse(BVP), termed as the AC component. This pulsatile
component is the direct result of the light absorbed by hemoglobin in the blood which is
present mainly in arterial blood. According to Beer’s law, the light reaching the detector
is inversely proportional to that absorbed by the finger. This combination of AC and DC
components results in a signal that can be used to measure heart rate.

Pulse oximeters are classically used to measure oxygen saturation, the cardiac signal
can be thought of as a side effect of this measurement. Oxygen saturation is measured
based on the fact that different wavelengths affect oxygenated and deoxygneated blood
differently. Penetration of light in the skin also depends on the wavelength of the incident
light; longer wavelengths penetrate deeper. This means blue light at a wavelength of
400 nm won’t penetrate as far as infrared light at a wavelength of 1000 nm. Most pulse
oximeter use two sources, a red source at 650 nm and an infrared source at 950 nm, since
these two wavelengths provide a difference large enough to warrant adequate disparity
in the absorption by oxygenated and deoxygenated hemoglobin that can be exploited to
measure the oxygen saturation. Figure 1.3 shows the absorption of light be oxygenated
and deoxygenated hemoglobin with respect to different wavelengths.

However, although PPG measurements are non-invasive and relatively easy and
portable as compared to ECG signals, they do have certain shortcomings such as ex-
treme susceptibility to motion induced signal corruption, especially since PPG is gener-
ally measured at fingers and toes which are prone to random movements more than,
for instance, the chest area in case of ECG. Furthermore, non-contact measurements of
PPG are highly desirable in scenarios involving infants, older patients, patients with ex-
treme physical trauma such as burn victims, and fitness based scenarios. Recently, the
non-invasiveness of PPG has been superseded by that of remote photoplethysmogra-
phy (rPPG) which is a technique that aims to perform PPG measurements at a distance,
without contact.

The basic principal behind remote photoplethysmography derives from reflective pho-
toplethysmography where the light reaching a camera is modulated by the blood pulsa-
tions of the skin. The rhythmic beating of the heart results in the pulsating blood volume
which in turn results in minute changes in the color of the skin which can be quantified
using signal processing to generate a cardiac signal.

Definition 1: Remote photoplethysmography (rPPG)

Remote or imaging photoplethysmography is defined as the technique of using
imaging devices such as generic cameras to quantify the blood pulsations into a
cardiac signal.
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Figure 1.3: Absorption spectra of oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin
(Hb) for red and infrared wavelengths. The Molar extinction coefficient is the measure of how
strongly a chemical species attenuates light at a given wavelength.

Remote photoplethysmography aims to alleviate the problems faced by photoplethys-
mography such as single point measurements, sensitivity to motion and the fact that it is
contact based, by using inexpensive video cameras. It is also worth mentioning here that
there is another technique to obtain the heart rate remotely using a camera by perform-
ing ballistocardiography, as in [35], where the minute motions resulting from the blood
pulsations are amplified and quantified to form a cardiac signal. This thesis focuses on
remote photoplethysmography which quantifies only the color changes in the skin due
to the blood pulsations. Nevertheless, non-contact photoplethysmography comes with its
own set of challenges, especially, noise artefacts owing to motion and illumination per-
turbances. These problems are not trivial issues, although they are independent enough
that they can be solved separately using relevant algorithms and incorporated into an
rPPG measurement framework.

Figure 1.4 shows a generic framework for a typical rPPG measurement setup. Video
data containing skin pixels from a camera is processed to obtain temporal traces, cor-
responding to various color bands, typically from the RGB channels. The use of RGB
channels is due to the ubiquity of this color space in generic video cameras. However,
the formulation of rPPG is decoupled from which physical channels, corresponding to dif-
ferent wavelengths, are actually employed. In consequence, the color space could very
well be the Hue-Saturation-Value (HSV) color space, or even have more than 3 color
channels, for instance, as in [64].

Let x ∈ Rm×n, be a set of temporal signals of length n, where m = 3 for RGB channels,
represent the temporal signal obtained by frame-wise spatial averaging of the video data.
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Figure 1.4: The generic framework for physiological parameters estimation using remote photo-
plethysmography

These temporal traces are then used to extract the BVP signal by using any of the exist-
ing or novel rPPG measurement algorithms, some of which are developed in this thesis
and will be the subject of discussion in the coming chapters. Furthermore, as is visible
in the schematic, physiological parameters other than heart rate, such as heart rate vari-
ability and Breathing Rate (BR) can also be extracted from the BVP signal. Heart-Rate
Variability (HRV) characterizes the variation in heart rate which is closely related to the
breathing rate. A normal healthy human exhibits longer Inter-Beat Intervals (IBI) during
exhale as compared to the IBIs during inhale. These physiological parameters are the
basis of extensive medical research and diagnosis and their remote, and possibly contin-
uous, measurement can be highly beneficial for diagnosis of heart and breathing related
maladies. As a result, recently much research has been focused towards developing ef-
ficient algorithms to extract the BVP signal from video cameras. Although, an extensive
review of these works will be presented in chapter 2, it is worthwhile to take a bird’s eye
view of the different paradigms of rPPG measurement which are presented in the next
subsection.

1.2/ DIFFERENT PARADIGMS OF RPPG MEASUREMENTS

The problem of rPPG measurement is not trivial, but fortunately owing to the increasing
interest therein, it has been attacked from different directions in order to obtain a feasible
solution. As a result, numerous algorithms have been developed which can be grouped
into different classes. We present a generic categorization of these algorithms as follows.
It is to be noted that this is not a complete and exhaustive list of rPPG algorithms, and
they will be discussed in more detail in chapter 2.

Source Separation methods In the initial research related to rPPG measurement, the
blood volume pulse (BVP) signal was usually extracted from the RGB temporal traces
using blind source separation (BSS), of which Independent Component Analysis (ICA) is
one of the more commonly used methods.

Definition 2: Independent component analysis (ICA)

Independent component analysis is a signal processing technique for separating
a multivariate signal into its constituent components by using metrics based on
statistical independence [18].

ICA itself can be performed using different algorithms such as maximization of mutual
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information and non-gaussianity [26], and Joint Approximation of Diagonal Eigenmatrices
(JADE) [23]. The basis for extracting the BVP signal from the source signals using this
method lies in the hypothesis that the original cardiac pulse signal is linearly mixed into
the RGB temporal traces, with noise sources representing illumination and motion pertur-
bations. This linear mixture can be separated by using the measures of independence,
thus supposedly separating the cardiac signal and the other sources of noise.

Apart from ICA, Principal Component Analysis (PCA) [53] and Non-linear Mode De-
composition (NMD) [89] are other BSS methods that have been used to extract the BVP
signal in the context of rPPG measurements. These methods are decomposition tech-
niques that separate and eventually extract the desired signal from the input mixture
based on implicit properties. For instance, PCA finds a subspace in which the covari-
ance between the color channels is maximized, which should extract the most significant
signal components. In case of NMD, the desired signal is extracted by decomposing
the signal into several Time-Frequency Representation (TFR) modes, much like Fourier
decomposition.

Chrominance based methods Another class of methods focuses on exploiting the
physical characteristics of skin tissue and its distinctive interaction with light. Methods
such as CHROM [58], Plane-Orthogonal-to-Skin (POS) method [83] and Blood-Volume
Pulse vector (PBV) method [61] fall into this category and are based on a characteristic
formulation of models based on physiological properties of the skin. The principal ad-
vantages of these methods lies in their computational simplicity, owing to their analytical
formulation based on specific skin characteristics.

Subspace based methods Methods that are formulated from the perspective of sub-
space pursuit fall into this category. This subspace pursuit can be considered analogous
to a change of basis, on which the projections of the original RGB signals intensifies the
rPPG information, or in other words, amplifies the underlying BVP signal. Such a sub-
space is eventually similar to a weighting matrix, however it is the manner in which this
basis is searched for and the formulation of the methodology focussing on the search of
such a subspace, which separates these methods from methods that also search for a
weighting matrix, for instance, BSS methods. Methods such as the Spatial-Subspace Ro-
tation (2SR) [83] belong to this class, which exploit the relation of the BVP signal with RGB
signals and attempt to define a subspace that fulfils certain criteria which are eventually
based on the physical properties of skin and the light reflected therefrom. In this respect,
they are similar to chrominance based methods, the difference being in their formulation
and treatment of the problem, specifically manipulation and search of subspaces.

Smart-ROI based methods Methods that fall into this class exploit the spatial informa-
tion from the video data which are overlooked in the previous methods which perform
spatial averaging of the skin region e.g. [76], [81] and [67]. This inclusion of the spatial
information allows these methods to exploit the face and skin specific information and
handle the issue of inhomogeneity in the PPG information across the skin. Moreover,
because of their application on the spatial video data, such methods, or parts of such
methods can be coupled with other methods such as CHROM (as in [76], [82]) to improve
the final BVP signal estimates.
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Motion compensation based methods Motion and illumination disturbances are a
major issue in rPPG measurements, especially in fitness-based scenarios with repetitive
motion, and is an active area of research. Methods that specifically focus on eliminating
these issues fall into this category such as the Normalized Least Mean Square (NLMS)
adaptive filtering methods proposed by Li et al. [63], motion compensated rPPG signal es-
timation using Active Appearance Models (AAM) by Tasli et al. [66], and Sub-band rPPG
signal estimation for fitness videos by Wang et al. [87].

Learning based methods Methods that take either a probabilistic learning approach
such as in [75] and [69] or a traditional machine learning based approach such as in [62]
fall under this category. Although a machine learning based approach seems counter
intuitive for a signal processing based problem, methods based on learning are not un-
heard of. However, such methods have yet to provide comparable results to the more
robust methods from the aforementioned classes.

1.3/ OBJECTIVES OF THE THESIS

Now that we have a general idea about remote photoplethysmography and the related
classes of methods, we are in a position to outline the principal objectives of this thesis.
The global objective of this thesis was to advance research in remote photoplethysmog-
raphy measurements by developing new semi-blind source extraction algorithms. These
semi-BSE algorithms were then to be validated against relevant video databases in order
to assess their performance. An added advantage would be the adaptability of the devel-
oped methods to biomedical signal scenarios other than remote photoplethysmography.

The preliminary objective was to formulate a generic framework that can be used for
rPPG signal extraction. This framework is supposed to be the starting point for testing
and analyzing different algorithms. It defines a common pipeline based environment for
acquiring video data, common preprocessing steps and points at which different rPPG
extraction algorithms can be plugged in. This allows for a consistent comparison between
different methods.

In addition to the framework, a video database tailored specifically for the analysis of
the rPPG extraction algorithms was indispensable. This outlined the second objective,
creation of such a video database that can be used for rigorous algorithm analysis. To
fulfill this requirement, the database should provide PPG ground truth heart rates as well
as the PPG signal waveforms.

Next, the main objective was to develop novel algorithms for extraction of rPPG sig-
nals. We choose to develop semi-blind source extraction methods owing to their adapt-
ability with respect to different signal extraction application areas. These novel methods
improve upon the traditional blind source separation methods by incorporating biophys-
ical constraints like periodicity information. They can eventually be used in a real-time
environment after some computational optimizations.

Finally, a more sophisticated method aiming towards incorporation of spatial relation-
ships between the underlying data was deemed indispensable because of two reasons.
First, most rPPG signal extraction methods work on frame-wise averaged signals, ignor-
ing the spatial information present in the frames, retaining which, interesting information
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about the underlying data manifest. Second, a spatially adapted method can be useful
in applications other than rPPG signal extraction, such as analysis of ECG and neural
signals where the separate distinct temporal signals consist of crucial information. To
remain in the domain of rPPG measurement, the application of spatial PPG distribution
estimation was chosen to validate the high dimensional algorithm.

1.4/ PLAN OF THE THESIS

We present here the outline of the thesis that enabled us to fulfill the objectives set in the
previous section.

In the next chapter, the detailed state of the art in rPPG measurement algorithms
using the classification presented subsection 1.2 as a basis is presented. The chap-
ter discusses different methods that have been used to perform rPPG signal measure-
ments, highlighting the core algorithms along with the relevant advantages and limitations.
The history and background of rPPG signal measurement, is followed by some common
source separation methods used thereof. These are followed by methods based on the
physical properties of the skin which are in turn followed by methods that extract spe-
cial subspaces that enhance the desired rPPG signals based on their implicit properties.
Next, methods that extract rPPG signals by manipulating spatial regions of the skin con-
tent in video frames are discussed followed by methods dealing with motion and illumi-
nation compensation, finally followed by learning based methods. Part II then details
the main contribution of this thesis. It starts with an introductory chapter presenting the
theory behind ICA and autocorrelation, representing the periodicity a priori information,
which are significant in the discussion of the methods developed in the chapters that fol-
low. The second part of this chapter describes the experimental setup and the inhouse
UBFC-RPPG database which have been quintessential in the analysis of the methods
developed in this thesis.

The description of our novel rPPG algorithms starts with Multi-objective optimization
using Autocorrelation and ICA (MAICA) in chapter 4 followed by Constrained Independent
Component Analysis (cICA) using autocorrelation and chrominance constraint in chapter
5. These algorithms belong to the class of semi-blind BSE methods that augment the ICA
BSS method by incorporating a priori information related to the periodicity and physiolog-
ical properties of the skin in an optimization scheme.

Then follows the Periodic Variance Maximization (PVM) algorithm in chapter 6 that
eliminates the expensive optimization scheme with a combination of Generalized Eigen-
value Decomposition (GEVD) by an optimization on a reduced search space to perform
the rPPG signal estimation. Finally, a spatial analogue of the PVM algorithm is presented
in chapter 7 where the GEVD algorithm is extended to the spatial case, the Tensor GEVD,
which can be used in the application of Spatial rPPG Distribution Estimation (SrPDE). It is
worth mentioning here that since the PVM algorithm and consequently, the Tensor GEVD
algorithm, differs in essence from the cICA and MAICA algorithms, the related state of
the art is presented in their respective chapters instead of in chapter 2. Furthermore,
the analysis, experiments and performance comparisons related to each method are also
presented in their respective chapters for sake of coherence.

Finally, conclusions, limitations and future research paths make up the body of the
last chapter where we summarize our contributions, their utility in remote photoplethys-
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mography and the possible use of part of our contribution in scenarios other than rPPG
measurement.





2
STATE OF THE ART

R
emote photoplethysmography has been increasingly used for measuring heart rate,
breathing rate and heart rate variability recently because of its non-invasiveness,

ease of use and low cost. In section 1.2 we provided a brief overview of different classes
of rPPG measurement algorithms. This chapter expands on this summary and provides a
detailed review of the existing state of the art for rPPG measurement algorithms, including
some related state of the art on generic signal extraction methods.

In one of the pioneer works, Verkruysse [42] showed that remote PPG signal ex-
traction could be performed using a simple consumer level camera. Their work pos-
tulated that the G channel of the RGB temporal traces contained the most prominent
photoplethysmographic signal. These RGB temporal traces were obtained by quantifying
frame-wise skin pixel data, for instance by spatial averaging and then concatenating them.
The prominence of the PPG signal in the green channel was deemed due to two factors.
First, the higher absorption of green light by the oxygenated hemoglobin as compared
to red and second, deeper penetration into the skin as compared to blue light. However,
this does not disqualify the red and blue channels as sources of complementary rPPG
information. Furthermore, a significant aspect of their contribution was the substantiation
of extracting a usable cardiac signal by using only ambient light, as opposed to the use
of a dedicated light source for PPG.

Although the work of Verkruysse et al. was not the first to introduce non-contact PPG,
it was indeed the first to extract a cardiac signal using just a simple camera and am-
bient light. Remote PPG was in fact introduced earlier by Wu et al. [35], albeit with a
complex setup with a custom built hardware and software based CCD imaging system
using a Near-InfraRed (NIR) light source. Another similar rPPG measurement setup was
presented by Wieringa et al. [33] where they propose a contact-less setup to measure
oxygen saturation using a CMOS-camera with apochromatic lens and a dedicated light
source, a 3λ-LED-ringlight corresponding to three wavelengths λ1 = 660 nm, λ2 = 810 nm
and λ3 = 940 nm, having 100 LEDs per wavelength.

The feasibility of rPPG in a medical scenario, for patients in the Neonatal intensive
care unit, has also been investigated in [57]. They corroborated the ability of rPPG to
obtain a signal strong enough to extract the heart rate of all of the 19 infant subjects
from videos recorded under ambient light. The rPPG signal was obtained from manually
selected regions of interest (ROIs) by spatial averaging of the green channel, from record-
ings of 1-5 minutes using a standard color digital camera at a distance of 1 meter through
plexiglass or directly with open incubators. The videos were recorded in uncrompressed
AVI format at a resolution of 300 × 300 pixels, at 15 or 30 frames/s. The study was de-
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signed so as to be completely non-invasive, making sure that the infants were not touched
or repositioned. Not surprisingly, they also faced certain perturbances due to low ambient
light level and infant motion. The reference heart rate was measured using ECG for in-
fants with weight <1 kg and using pulse oximeters for infants with weight >1 kg. Keeping
in mind that the ROIs were manually selected, this study proves the capability of rPPG
to measure heart rates for not only adults but also infants and can highly benefit in their
medical diagnosis.

Many new rPPG measurement algorithms have been introduced recently, although un-
der varying names due to lack of definition of a standard terminology. These works how-
ever refer to the same technique of obtaining cardiac pulse signals using video cameras
but refer to them as Imaging PPG systems [79], PPG imaging (PPGI) [71], DistancePPG
[70], camera photoplethysmography [57], video plethysmography [68], and more, in ad-
dition to rPPG. There is an ongoing effort to unify these nomenclatures into a standard
one, which we shall endorse in this thesis by referring all these techniques as rPPG. In
[79], Sun and Thakur provide an overview of a wide range of rPPG measurement (IPPG)
systems demonstrating the research on rPPG and showing its ubiquity and widespread
acceptance. In a similar work, McDuff et al. provide a review on state of the art rPPG
(PPGI) techniques considering measurements other than pulse rate under realistic con-
ditions such as presence of motion artifacts [71].

Having looked at the initial works focused on remote photoplethysmography estima-
tion, we present next a detailed review of the state of the art methods categorised by their
classes of measurement as discussed in section 1.2.

2.1/ SOURCE SEPARATION METHODS

One of the widely used paradigms in ongoing research is centered around employing
Blind Source Separation (BSS) techniques to extract clean rPPG signals from simple
web cameras. Independent Component Analysis (ICA), a very common BSS algorithm
has been used in several works [49, 54, 64, 73]. It is a technique used to decompose a
multivariate signal into the constituent signals under the assumption that the input signals
be uncorrelated [26]. In this context, rPPG signal extraction can be formulated as a signal
separation problem where the periodic cardiac pulse, manifested as minute chromatic
variations of the skin color, is linearly mixed into the temporal traces with illumination and
noise perturbances, obtained from the video data from cameras. ICA performs this sep-
aration by maximizing certain metrics of independence e.g. non-gaussianity and mutual
information. More details about the formulation of ICA are presented in chapter 3 of part
II.

In [49], Poh et al. used the joint approximate diagonalization of eigenmatrices (JADE)
[23] implementation of ICA. They obtained the rPPG signal simply by choosing the sec-
ond independent component which coincidentally exhibited the highest SNR of all the
extracted components. In a succeeding improvment to their work, they selected the car-
diac signal as the component having the highest peak in its power spectrum calculated
using the Lomb periodogram.

The advantage of ICA for rPPG measurements over Principal Components Analysis
(PCA), autocorrelation and cross-correlation was also investigated in [59]. They com-
pared the superiority of various algorithms of ICA (JADE [23], FastICA [26], Robust Accu-
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rate Direct ICA aLgorithm - RADICAL [30]) against the aforementioned algorithms. While
on one hand, the poor performance of PCA can be attributed to its inability to extract
periodic information, on the other hand, the poor performance of autocorrelation and
cross-correlation can be attributed to only extracting periodic information. They show that
among the various ICA algorithms, the RADICAL algorithm performed the best with the
lowest standard error values.

In [64], McDuff et al. investigated the usage of more color channels with a five band
(RGBCO) DSLR camera placed at 3m from the subject, which records in the cyan and
orange (CO) channels in addition to the regular RGB channels. They postulated that
better rPPG signals were obtained using the GCO channels rather than traditional RGB
channels. As in [49], the cardiac signal was obtained by performing ICA using the JADE
method and choosing the component having the greatest frequency peak within the range
45-180 bpm in the normalized Fast Fourier transform (FFT) of the extracted signals. From
the different combinations of the five bands, the orange band featured in the top ten
combinations of channels. The orange band is not far from the green band and thus
captures significant PPG information, which supports previous work that showed higher
PPG information in the green wavelength [42].

Incorporation of a priori information in order to aid the optimization process is also an
interesting approach in signal separation and is also a very important idea with respect
to this thesis. Lu et al. incorporated this a priori information in the form of a reference
signal to which the extracted signal should resemble [34]. They validated their method
using synthetic experiments, for instance, fMRI time responses emulating activated brain
voxels which are confounded by physiological signals such as cardiac, respiratory and
blood flow and electric noise from the scanners. The idea behind this ICA with reference
method is that the objective function of ICA, irrespective of its implementation, can be
incorporated into a constrained optimization scheme, such as Lagrange multipliers, with
appropriately defined constraints. In [34], they define the constraint as the closeness to
the reference signal in the form of correlation. One important feature of this methodology
is the flexibility of adapting it to different objective functions as well as different constraints.

In a work inspired by [34], Tsouri et al. proposed a method of constrained ICA to ex-
tract the BVP signal from RGB temporal traces using a rectangular pulse as a reference
signal [80]. The issue with using a reference for extracting the BVP signal lies in choosing
the right frequency for said reference signal that allows the optimization process to extract
the correct BVP signal. And since the pulse rate of the BVP signal is itself the unknown
variable to be determined, this becomes a "chicken and egg" problem. Tsouri et al. solve
this problem by doing a frequency sweep over the range of the human heart rate, per-
forming constrained ICA with reference signals of different frequencies and choosing the
best BVP signal with the highest SNR. Although this approach works, smarter search
methods in contrast to a brute force search over the frequency range can provide an
improvement. Furthermore this approach is computationally taxing —around 30 times
slower than traditional ICA as reported in [80].

Another BSS method was proposed by Demirezen et al. using Non-linear Mode De-
composition (NMD), which is a signal decomposition technique similar to Fourier decom-
position, with the difference that it is extracted using a time-frequency representation
(TFR) [89]. The rPPG signal is extracted by iteratively separating non-linear modes from
the fundamental and true harmonics. These non-linear modes favour oscillatory data
against noisy and spurious data in the temporal signals.
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In a related work, Tarassenko et al. perform the spectral analysis of videos of
haemodialysis patients using autoregressive (AR) models instead of fourier transforms.
This AR model is generated based on the assumption that the value of the current sample
of the rPPG signal is a linear combination of its p previous values and the current value of
a white Guassian distribution. They used the model to capture the salient rPPG frequen-
cies and eliminate the effect of light flicker on videos of patients undergoing haemodial-
ysis. They also claim that the coefficients of this AR model can be used to construct
accurate spatial distribution of heart rate and breathing rate information from temporal
sections containing minimum patient movement. [65].

The well-known technique of dimensionality reduction, Principal Component Analysis
(PCA), which is essentially a BSS method as well, has also been used in the context
of rPPG measurements. Lewandowska et al. performed PCA on the covariance matrix
C = xxT of the RGB temporal traces x as C = UT ΛU. U represent the eigenvectors
corresponding to the eigenvalues λ1, λ2 ,and λ3 in Λ. The eigenvector with the high-
est eigenvalue represents the subspace on which the projection of the original signals x
exhibit highest variance. Temporal traces corresponding to the face and forehead ROI
regions of stationary subjects were processed using PCA to obtain an effective rPPG sig-
nal estimation. However, PCA remains a weak rPPG estimation method in presence of
motion artefacts and owing to the fact that periodic information is not considered at all.

2.2/ METHODS BASED ON PHYSICAL PROPERTIES OF THE SKIN

In contrast to the blind source separation methods, another class of methods exploits the
effect of light on human skin due to its unique physical characteristics resulting in spe-
cific absorption and reflection properties. De Haan et al. have introduced color difference
or chrominance based methods that are computationally efficient and relatively robust
against small movements [58]. The core idea behind the chrominance (CHROM) method
originates from the dichromatic reflection model [19] which states that the light reflected
from the skin comprises of two parts: a diffuse component that is due to the light that has
traveled through the skin and constitutes the color changes due to the cardiac pulse, and
a specular component, which is due to the illuminant and no pulse signal. Herein lies the
intuition behind the color difference, where two orthogonal chrominance signals are built,
for instance from normalized temporal signals Rn, Gn and Bn which are then standardized
as Xs = 3Rn − 2Gn and Ys = 1.5Rn + Gn − 1.5Bn to accommodate for non-white illumination
which are then used to estimate the cardiac pulse signal as S = X f − αY f . Here X f and
Y f are bandpass filtered versions of Xs and Ys respectively and α =

σ(X f )
σ(Y f ) with σ(.) as the

standard deviation of the respective chrominance signal. This ratio between the standard
deviations allows for minimization of motion disturbances since the motion affects both
X f and Y f equally while the cardiac pulse does not.

De Haan et al. further advanced upon their chrominance based methods proving that
the various absorption spectra of arterial blood manifest along a specific vector in a
normalized RGB space, termed as the BVP vector, Pbv [61]. The method is named
Pulse from Blood Volume (PBV ) giving the notation of the BVP vector as Pbv. This nor-
malized blood-volume pulse vector is estimated using the model of Hulsbusch [39] as
Pbv =

[σ(Rn),σ(Gn),σ(Bn)]√
σ2(Rn)+σ2(Gn)+σ2(Bn)

where σ(·) represents the standard deviation of the correspond-

ing temporal trace. The Pbv vector is specific to the camera sensor, which is then used to
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search the weights, WPBV , that give the pulse signal S , for which the correlation with the
color channels Cn = [Rn,Gn, Bn] equals Pbv i.e

S Cn
T = kPbv ⇐⇒ WPBVCnCn

T = kPbv (2.1)

where [Rn,Gn, Bn] are the temporal traces spatially averaged from video frame data as
usual. The weighting vector WPBV can thus be expressed as

WPBV = kPbvQ−1 with Q = CnCn
T (2.2)

with the scalar k chosen so as to make WPBV of unit length.

In a related work, Gastel et al. extend the PBV method by identifying that the optimal
PBV signature remains same even when the SNR of the signal drops significantly due to
motion or limited measurement area [82]. Using this observation they formulate an adap-
tive PBV method using multi-site measurements, thereby introducing spatial redundancy
to improve the SNR of the measured rPPG signal.

More recently, Wang et al. improved upon the previous work of De Haan et al. and
formulated a new mathematical model that incorporates the relevant optical and physi-
ological properties of skin reflection. Using this model they proposed a new algorithm
based on the Plane-Orthogonal-to-Skin (POS) which is a plane orthogonal to the skin-
tone in the temporally normalized RGB space, suitable for rPPG pulse extraction [83].
The extraction of the POS cardiac signal can be summarized in three steps. First, perform
temporal normalization using Cn

i

µ(Cn
i)
, where i = [1, 2, 3] corresponds to the RGB channels

and µ corresponds to the channel-wise mean. This temporal normalization is aimed to
eliminate the dependency of the RGB channels Cn on the average skin reflection color,
which is the DC-level in the rPPG signal, including the color of the source light and the
intrinsic skin color. Second, project the RGB signals on to the POS using

S =

[
0 1 −1
−2 1 1

]
· Cn (2.3)

The final step is to perform tuning as h = S 1 + αS 2 where α =
σ(S 1)
σ(S 2) as in the CHROM

method to eliminate the variation due to motion disturbances as compared to the cardiac
pulse.

2.3/ SUBSPACE BASED METHODS

Subspace based methods belong to this class, which exploit the relation of the BVP signal
with RGB signals and attempt to define a subspace that fulfills certain criteria which are
eventually based on the physical properties of skin and the light reflected therefrom. In
this respect, they are similar to chrominance based methods, the difference being in
their formulation and treatment of the problem, specifically manipulation and search of
subspaces. However, these methods are not formulated using models based on the
properties of the skin.

Wang et al. propose the Spatial Subspace Rotation (2SR) method which estimates a
spatial subspace of skin-pixels which does not require skin-tone or pulse related priors.
One of the novelties of this algorithm is that it is formulated while keeping the spatial in-
formation intact, in contrast to most rPPG algorithms which obtain temporal RGB traces
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by frame-wise spatial averaging. They formulate that the periodic pulsatile variations
of the skin color reside in temporally varying subspaces expressed as a combination
of scaling and rotation of the eigenvalue decomposition of the spatial RGB correlation
C = VT ·V

N , where V represents the N × 3 RGB temporal traces, without subtracting the
corresponding channel-wise means and N is the total number of skin pixels. The pulse
signal is extracted by projecting RGB temporal traces over a sliding window on to the cor-
responding window-wise temporally varying subspaces. If the eigenvalue decomposition
of C = UT ΛU is written as C = λ1 · u1 · uT

1 + λ2 · u2 · uT
2 + λ3 · u3 · uT

3 , and considering Uτ, the
subspace in the first frame of a temporal stride of length l, as a reference, its rotation and
scaling with respect to the subsequent subspaces, Ut,t<l, in the stride can be expressed
as

S R = S T � R′ (2.4)

=

scaling︷           ︸︸           ︷√
λt

1

λτ2

√
λt

1

λτ3
�

rotation︷                ︸︸                ︷
ut

1
T
· uτ2 ut

1
T
· uτ3 (2.5)

Another interesting subspace decomposition method, although not used for rPPG sig-
nal measurement, is worth mentioning here. In [50], Sameni et al. use an iterative sub-
space decomposition technique to extract fetal cardiac signals from maternal abdominal
recordings. More precisely, they extract the subspace in which the fetal ECG signals are
amplified by iteratively coupling a linear decomposition step using Generalized Eigen-
value Decomposition (GEVD) with a denoising step. This method is in fact the inspiration
for the PVM method developed in this thesis which is discussed in chapter 6 of part II.

2.4/ SMART-ROI BASED METHODS

This class of methods focuses on extracting heart rate from specific regions of the
face/skin based on criteria that are supposed to enhance the physiological signal.
Tulyakov et al. used Self-Adaptive Matrix Completion (SAMC) [81] to perform heart rate
estimation from face videos by dynamically selecting the face regions. This is done by
extracting face regions, followed by computation of chrominance features over R regions,
C ∈ RR×T , using the CHROM method [58], followed by SAMC that estimates the low-
rank equivalent matrix, E, of the chrominance matrix C, finally followed by heart rate
estimation using FFT of the first principal component of the matrix E. The SAMC pro-
cedure eliminates the perturbations due to face movements, facial expressions and illu-
mination noise by estimating the low-rank matrix E by solving the optimization problem:
minE ν rank(E) + ||E − C||2

F
where ν is a regularization parameter.

Feng et al. propose to improve the extracted rPPG signal by performing K-means clus-
tering on a feature space modeled to select skin ROIs corresponding to good rPPG sig-
nals [67]. The dynamic ROI which selects the skin regions corresponding to good quality
rPPG signals is estimated by first dividing a fixed ROI into non-overlapped blocks after
which two features: cross correlation of consecutive wave segments and SNR of the
wave segments are used to select candidate blocks exhibiting good rPPG signals. Then,
K-means clustering is performed on the feature map to select clusters with higher mean
values of the cross correlation coefficient and the SNR. Finally, these dynamic ROIs are
averaged and overlap-added to extract the rPPG signal and measure the heart rate.
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In a similar work, Bobbia et al. followed a slightly different approach by using temporal
superpixels (TSP) as dynamic ROIs in contrast to blocks of ROIs in [67]. These TSPs
which correspond to structurally and spatially coherent regions, are used to extract can-
didate pulse signals which are then merged and averaged, weighted by superpixel-wise
pulsatility measures, into an rPPG signal [76]. The pulsatibility measure for the ith TSP is
measured as:

S NRi = 10 log10

(∫ f2
f1

hi
signal( f )|F {S i(t)}|2d f∫ f2

f1
hi

noise( f )|F {S i(t)}|2d f

)
(2.6)

where F {S i(t)} is the Fourier transform of the rPPG signal of the ith TSP, f1 = 40bpm
and f2 = 240bpm are the maximum and minimum human heart rate frequencies, and h is
the double step function corresponding to the first and second harmonics defined by the
convolution hi

signal( f ) = [δ( f − f i
0) + δ( f − 2 f i

0)] ∗
∏

(± fr) where δ is the Dirac delta function,
f i
0 the peak of the periodogram, convoluted with the rect function,

∏
of the half width fr.

This pulsatility measure, S NRi is then used to implicitly select living skin tissue since it
will be high for skin tissue and low for background.

Bobbia et al. further proposed a new framework to perform real-time unsupervised re-
mote photoplethysmography based on efficient temporally propagated superpixels which
reduces the computation time compared to their previous method in [76] by a factor of
8 without deterioration of the segmentation quality [88]. The method comprises of first
initializing seeds based on a fixed grid, followed by iterative and implicit boundaries iden-
tification on blocks of pixels decreasing the size of the block recursively, followed by post-
processing to ensure continuity and minimal size of the superpixels. The intuition behind
the iterative and implicit boundaries identification derives from the fact that coherent pix-
els with similar chromatic properties are assigned to the same superpixel. As soon as
pixels in a block end up being assigned to a different superpixel, this assigning process
is stopped, the block is divided into 4 blocks and the process is repeated iteratively. This
reduces the number of total pixels processed drastically.

In another work, Kumar et al. proposed an automatic weighting method for different
tracked regions to construct the rPPG signal where the weights depend on the blood
perfusion and incident light intensity in the respective region [70]. The method works
by dividing the green channel facial frames into ROIs small enough to warrant homo-
geneous pulsatile information, under the premise that the large intensity changes would
only be due to incident light intensity or surface reflectance, and not due to subsurface
reflectance which essentially represents the cardiac pulse. Next, the ROIs are averaged
using weights determined by maximum ratio diversity [4] which strives to maximize the
signal-to-noise ratio component by necessitating that the weights be proportional to the
root-mean-squared (RMS) value of the signal component and inversely proportional to
the mean-squared noise in that channel. In practice, the signal is considered as the
power spectral density (PSD), Ŷi( f ), of the per-ROI temporal averages yi(t) around a nar-
row frequency band [−b,+b] around the coarse heart rate HR of the subject while the
remaining part of the spectrum, filtered using a bandpass filter of [B1, B2] = [0.5Hz, 5Hz],
is considered noise. The coarse pulse rate PR is measured by assuming the weights, Gi

as 1.0 and eliminating large intensity changes in the ROI-wise temporal averages. This
process can be expressed mathematically as

Gi(PR) =

∫ PR+b
PR−b Ŷi( f )d f∫ B2

B1
Ŷi( f )d f −

∫ PR+b
PR−b Ŷi( f )d f

(2.7)
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A similar work inspired by [70] extracts the cardiac pulse using Self-Adpative Signal
Separation (SASS) instead of maximum ratio diversity [91]. Although the name suggests
a signal separation technique, it is actually a smart-roi method very similar to [70]. After
face detection and tracking, the facial region is separated into blocks and chrominance
features calculated to estimate raw HR signals, after which SASS is performed to sepa-
rate noiseless HR signals from the raw sub-signals. The main idea behind SASS stems
from the quasi-periodicity of the cardiac pulse, specifically that the cardiac pulse over con-
secutive periods will exhibit higher correlation than the noise signals. If um

HR represents
the temporal CHROM traces corresponding to m blocks, then the SASS problem reduces
to finding the weighting matrix that reduces the error em which is the difference between
the CHROM signals at an instant n and those after a delay D. The SASS model can be
written as

min
w

um(n + D) − um(n)w (2.8)

which is then solved using a Least Mean Square self adaptive filter [21].

In a slightly different work, Vogels et al. used an Near-InfraRed (NIR) camera setup
to perform continuous pulse-oximetry measurement of subjects during sleep [90]. The
use of the infra-red spectrum is interesting because of its ability to see in low light en-
vironments and its robustness against illumination disturbances. The method works by
preprocessing the video frames into rigid blocks, extracting block-wise parallel pulse sig-
nals using the PBV method [61], followed by similarity mapping based on the idea that
skin regions belonging to the same subject share pulse-similarities as opposed to those
from non-living tissue which exhibit no correlation [74], and finally ROI selection using
metrics that mandate high SNR, a reasonable sub-region size, and homogeneity of the
skin clusters, finally followed by pulse extraction and Blood Oxygen Saturation (SpO2)
estimation.

2.5/ MOTION COMPENSATION AND ILLUMINATION RECTIFICATION

BASED METHODS

RPPG measurement algorithms are not exempt from the issues related to motion and
illumination disturbances which are faced by PPG sensors. Furthermore, the problem is
exemplified with the existence of illumination perturbances as well. Fortunately, these dis-
turbances can be modelled and mitigated using compensation techniques, which itself is
an important subject of research and is fairly decoupled from the rPPG signal estimation
problem. To be more precise, these techniques are generally constituted in the prepro-
cessing stage of different image processing algorithms. However, there have been certain
works related to rPPG signal estimation which have motion compensation and illumina-
tion rectification techniques ingrained in the respective core algorithms. This class aims
to group such methods which focus on combating motion and illumination disturbances
in the context of rPPG signal measurement.

Butler et al. have assessed the effect of the topology and optical variations of human
skin in relation to horizontal movements of the subject and showed that, in presence of
motion, the quality of the rPPG signal is determined by the properties of the area of skin
chosen [77].

In another work, Wang et al. extract the BVP signal based on the ability of a cam-
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era to sample multiple skin regions in parallel, thereby delivering the possibility of using
these regions as independent pixel based rPPG sensors for pulse measurement, pro-
viding redundant information to boost the signal quality. This spatial redundancy of the
image sensor is exploited to extract the pulse signal while eliminating motion induced
noise. The BVP signal is constructed by using these pixel based rPPG sensors, which
are candidate pixels which exhibit high rPPG information. These sensors are extracted
by performing motion compensated pixel-to-pixel pulse extraction based on optical flow
vectors, spatial pruning by eliminating non-skin pixels and skin pixels with motion-induced
disturbances, and temporal filtering. They are then pruned by adaptive band-pass filtering
after which PCA is applied to choose the temporal traces exhibiting high rPPG informa-
tion [73]. ANOVA analysis on their results with post-hoc comparison reports significant
improvement on motion robustness.

Li et al. use face tracking and Normalized Least Mean Square (NLMS) [21] adap-
tive filtering methods to compensate against illumination variations. They also perform
non-rigid motion elimination by discarding temporal segments of the signal having high
standard deviation from the signal mean [63]. The illumination rectification is performed
by exploiting the fact that the color component of the green channel of a motionless face,
g f ace is the sum of the variations due to the blood volume pulse, s and temporal envi-
ronmental illumination variations, y and that the blood volume pulse affects only the face
region, and not the background of the video. This fact correlates y to the mean temporal
background signal gbg using a linear function as y ≈ hgbg, where h represents the coeffi-
cient of the linear function. The problem then is reduced to minimizing y − hgbg to find the
optimal h, which is done by using the Normalized Least Square adaptive filter.

Tasli et al. propose a method for rPPG measurement where free movement of the
head is allowed, by performing facial appearance modelling for stabilizing color variations
in the selected facial region during the signal acquisition phase [66]. For allowing the
free head movement facial landmark locations based on Active Appearance Models [22]
is performed and the parametric representation of the facial appearance is computed
using the FaceReader [31] framework. This localization of the facial landmarks allows
the tracking of a selected ROI over the video and thereby obtaining a robust, motion
compensated rPPG signal.

Another work that tackles the challenging problem of continuous driver monitoring
using rPPG measurement has been proposed by Nowara et al. [93]. They argue that illu-
mination variations are significantly reduced in the NIR bandwidth. To solve the problem
of continuous monitoring, along with the issue of significantly more motion disturbances
and lower SNRs, they propose an rPPG signal tracking and denoising algorithm called
sparsePPG based on Robust PCA and sparse frequency spectrum estimation in the NIR
band. The idea behind sparsePPG originates from the fact that since the human heart
rate spectrum is quasi-periodic, composed of a dominant frequency and its harmonics,
its frequency spectrum must be sparse.

Recently, Wang et al. have also tried to improve rPPG measurements during fitness
exercises, from subjects running on a treadmill [87]. Their proposed method called Sub-
band rPPG, suppresses different distortion-frequencies using independent combinations
of color channels, based on the idea that the degrees of freedom of noise reduction can
be increased by decomposing the n-wavelength camera signals into multiple orthogonal
frequency bands. In another work, they exploit the limited variation of human relative
pulsatile amplitude to design a low cost filtering method called amplitude selective filtering
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[86]. The spectral amplitude of, e.g. the R channel, is used to select the frequency
components in the RGB channels inside the assumed "characteristic pulsatile amplitude
range" for pulse extraction, while pruning the rest of components as noise.

In another recent work, Park et al. take a slightly different approach by using direct-
global separation to suppress direct surface reflection from skin video data in order to
improve rPPG estimations [94]. The core idea behind their work is the separation of
the two components of the light reflected from the skin of human subjects: direct and
global (indirect). The first is due to direct illumination by the light source, and second
is predominantly composed of the sub-surface reflection components, i.e. the photons
that have penetrated and interacted with the skin tissue. To achieve this, they investigate
two techniques, cross-polarization and structured illumination to improve rPPG SNRs.
However, their method does require a slightly more complicated setup, with the use of
either a camera with a polarizer or a structured (polarized) light source, or both.

2.6/ LEARNING BASED METHODS

Interestingly, machine learning has also been investigated to obtain rPPG measurements.
Osman et al. have trained a discriminative statistical model to estimate the Blood Volume
Pulse (BVP) signal from the human face using ambient light to obtain promising results
[72]. They use the variability of the mean of the green channel over a window of ws = 0.5s
seconds as a feature. The windows are discretized to n = 10 bins to compensate for vari-
able framerate and their first derivative is then used as the feature to train a discriminative
Support Vector Machine (SVM) model. Although they report improvements in speed and
accuracy against the ICA method of Poh [49], it is evident that the SVM classifier might not
work in a different environment with a different lighting setup. For a more effective clas-
sifier, extensive training would be required to detect heart beats over stochastic lighting
scenarios, while the problem of motion disturbances still remains to be tackled.

In another work, Alqaraawi et al. use a probabilistic approach based on Bayesian
learning to obtain better estimates of HRV from PPG signals recorded by wearable de-
vices [75]. They first use the automatic multi scale-based peak detection (AMPD) algo-
rithm which is then enhanced using a Bayesian inference formulation:

posterior(i) = P(θi|APMDoutput(i)) = P(APMDoutput(i)|θi) · P(θi)prior (2.9)

where θi is the probability of having a peak at sample i. This formulation is used to
estimate the probability of the next peak occurrence over consecutive peak cycles.

Interestingly, a machine learning approach can be beneficial to be applied in the early
image processing stage before extracting the temporal signals for improving detections or
combating low resolution issues. In this context, Mcduff et al. have used deep super res-
olution for allowing the extraction of physiological information from low resolution videos
[92]. They use a deeply-recursive convolutional network (DRCN) [78] to infer the miss-
ing values in the up-scaled version of very low-resolution video frames of 41 × 30 pixels
(originally down-sampled from 658×492pixels). However, it is observable that this method
would only be beneficial for low resolution image data. The performance gains for videos
with adequate resolution would be insignificant to warrant its use where the videos have
been recorded with an adequate resolution.
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2.7/ CONCLUSION

We saw many interesting works in the field of rPPG signal estimation in this chapter.
Although this discussion is undoubtedly not exhaustive, especially owing to the growing
interest in this field of biomedical signal analysis, it does cover a the majority of methods
that we have attempted to classify. We reiterate here that the overview of the state of the
art presented in this chapter is related to the application of rPPG signal measurement.
On the other hand, the methods developed in chapters 6 and 7 stem from a more generic
class of algorithms and thus to maintain coherence in the subject matter, the related state
of the art is presented in their respective chapters. We next present the different semi-
blind source extraction algorithms that have been developed during the course of this
thesis in the next part.
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3
BACKGROUND

S
emi-blind Source Separation and Extraction methods get their name based on their
capacity to extend and improve upon blind source separation methods. They were

in fact formulated to overcome the shortcomings of the latter, specifically the blindness.
The mitigation of this blindness is generally achieved by incorporating some kind of in-
formation about the desired signals in a given application scenario. As a result, these
methods are often tailored to the application in question. It is owing to this very fact that a
generic semi-blind source separation or extraction method is invaluable. It is worth noting
here that we restrict ourselves to the application domain of semi-blind source extraction
methods, where only a specific signal is desired, e.g. extraction of heart rate in a rPPG
measurement scenario, or estimation of Fetal ECG from maternal ECG.

To clearly understand the utility of semi-blind source extraction, it is worthwhile at this
moment to look at the basic formulation of the most quintessential blind source separation
methods, Independent Component Analysis or ICA. Although blind source separation
methods are diverse and varied, ICA was chosen owing to its extensive use, especially in
the rPPG measurement domain.

ICA is a well-known blind source separation (BSS) technique that aims to solve prob-
lems such as the Cocktail Party problem. The cocktail party effect [2] is the phenomenon
by which the human brain can seamlessly separate and focus on one of the many au-
dio/vocal sources from a mixture, for instance in a noisy room, which is quite common at
a cocktail party. ICA was originally used in audio signal based problems, but has been re-
cently adapted to extract cardiac signals in the context of remote photoplethysmography
measurement. The formulation of the ICA problem in the context of remote photoplethys-
mography comprises of employing temporal traces obtained from video data as the input.
The cardiac signal is supposed to have been embedded into the periodic changes of the
skin color, mixed with perturbance signals corresponding to illumination, motion and other
noise sources.

Let x = (x1, x2, ..., xn)T be the time varying color traces from n channels, obtained by
linear mixing of m independent source signals denoted as c = (c1, c2, ..., cm)T . The linear
mixing process is then expressed as x = Ac, where the linear memoryless mixing of the
channels is represented by the matrix An×m. ICA aims to obtain the linear unmixing matrix
Wm×n to recover all the independent components with minimum knowledge of A and c.
The separated components y = (y1, y2, ..., ym)T , are obtained by y = Wx [34].

ICA succeeds in separating these independent signals by making some assumptions
about the statistical properties of the signals ci(t). These statistical properties are ex-
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Figure 3.1: Central Limit Theorem. The sum of two random variables tends to be a normal
distribution, with a guassian shape.

Figure 3.2: Any row of y = Zc will be least Gaussian when it is equal to one of ci, when the
corresponding row of Z has only one non-zero element

pressed as a metric that encapsulates the intuitive notion of independence between the
signals. The intuition behind independence comes from the central limit theorem, which
states that, for a sufficiently large number of samples the sum of independent random
variables tends to be a normal distribution, under certain conditions.

Let us consider the well-known dice experiment where the sum of throwing two dice
is plotted against their probabilities as shown in figure 3.1. The probabilities of obtaining
a sum is proportional to the number of possible ways of attaining that particular sum.
For example, there are 6 different combinations of dice values that give the sum 7. A
corollary of the central limit theorem is that the sum of two independent random variables
tends to be more Gaussian than any of the two original random variables [26]. This
means that in the equation y = Wx = WAc = Zc, since the separated signals y are
obtained by a linear combination of the original source signals c, any of the separated
signals y shall be (ideally) equal to one of the source signals when the corresponding
row of Z has only one non-zero element, in which case, y is least gaussian. This is
depicted in figure 3.2 for m = 3. This is the key idea behind ICA, the separated signals
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are most independent when they are least gaussian. This property can be exploited in an
optimization scheme by using a metric that minimizes (maximizes) the gaussianity (non-
gaussianity) of the separated signals Wx. Common measures of non-guassianity are
kurtosis and negentropy given by equations 3.1 and 3.2 where E{·} is the expectation of
a discrete random variable, H(·) is the entropy given by H(Y) = −

∑
i P(Y = ai)logP(Y = ai)

where ai are the possible values for the discrete random variable Y and ygauss is a gaussian
random variable having the same covariance as y which is assumed to be a random
variable with zero mean and unit variance [26]:

kurt(y) = E{y4} − 3(E{y2})2 (3.1)

J(y) = H(ygauss) − H(y) (3.2)

In practice, approximations of these measures of non-guassianity are used; for simpli-
fying the computational complexity and mitigating non-robustness issues. For instance,
the negentropy metric used in our implementation is approximated using

J(y) ∝ [E{G(y)} − E{G(ν)}]2 (3.3)

where ν is a guassian variable with zero mean and unit variance and G corresponds to
special non-quadratic functions that do not grow too fast. Choices of G that have proven
useful according to [26] are

G1(u) =
1
a1

logcosh(a1u), G2(u) = −exp(
−u2

2
) (3.4)

In an rPPG signal extraction problem, employing a sufficiently accurate reference sig-
nal is prone to the evident complication of choosing its right frequency. This can be done
in two possible ways. One alternative is to repeatedly compare the extracted rPPG sig-
nal to reference signals of different frequencies, as done by Tsouri et al. [80], which as
expected is computationally taxing —around 30 times slower than traditional ICA. The
other alternative is to update the frequency of the reference signal continuously, in effect
making it a parameter to optimize. This increases the complexity of the problem and
reduces the probability of convergence. A PPG signal is a very apt reference for rPPG
extraction whose synthesis depends critically on the required frequency, even more so
than the actual shape of the signal.

This shortcoming or blindness can be overcome by equipping the optimization algo-
rithm with some information about the desired signal. This a priori information is gen-
erally aimed to encapsulate the essential properties of the desired signal and if chosen
correctly can lead to improved signal extraction. An extremely ubiquitous property of
temporal signals is periodicity or quasi-periodicity, which is exhibited by almost all physio-
logical signals, including but not limited to, rPPG, ECG, and EEG [10] . It is owing to this
evident universality that we use periodicity as the a priori information which has proven to
be valuable resource to improve upon ICA and develop our semi-blind source extraction
methods.

The outline of the rest of this chapter is as follows. We start with describing our
in-house database that was conceived not only to analyze our rPPG measurement algo-
rithms, but also to serve as a valuable tool for advancing research in this area. Owing
to the presence of ground truth PPG waveforms, our database can serve the purpose of
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robust algorithm analysis, and has already been requested by several researchers. We
also present the common experimental setup that served as a basis for comparing rPPG
measurement algorithms developed in this thesis. We then describe the formulation of
the periodicity metric in section 3.2, based on autocorrelation and the prerequisites to
be able to use it as an a priori information in existing optimization algorithms. We then
present the two variants of the first semi-bind source extraction method, Multi-objective
optimization using Autocorrelation and ICA (MAICA) in chapter 4 where autocorrelation is
combined with the ICA objective function in a multi-objective optimization scheme. Next
follow the details about Constrained ICA (cICA) and its improvements in chapter 5 where
the autocorrelation function and chrominance are used as constraints to guide the ICA
optimization algorithm. In chapter 6 we present another novel method, Periodic Variance
Maximization (PVM) which improves upon the optimization based methods in order to
tailor the framework to be usable in real-time scenarios. Then, chapter 7 details the ex-
tension of the Generalized Eigenvalue Decomposition (GEVD) to the higher dimensional
case by formulating a Tensor version of the QZ Algorithm, which is used for performing
GEVD of two matrices. This higher dimensional version of the algorithm is capable of
performing simultaneous GEVD of pairs of matrices corresponding to multiple data points
and can be used to, for instance, estimate the spatial rPPG distribution over the skin by
performing a procedure similar to PVM on multiple skin pixels.

3.1/ DATABASES AND EXPERIMENTAL SETUP

Video databases are indispensable for analysis of rPPG signal measurement algorithms.
However, owing to the relative adolescence of this technique, such databases are far from
abundant currently. This lack of existing databases tailored towards rPPG measurement
analysis, specifically one that can provide accurate PPG groundtruth signals along with
the cardiac signals inspired the conception of our inhouse database UBFC-RPPG. Al-
though this database is made public, to assert the efficiency of the algorithms developed
in this thesis further, it was also imperative that they be tested against a publicly avail-
able database that can be usable for rPPG measurement. Consequently, the MMSE-HR
database [84] which is a database originally realized for emotional elicitation, but is useful
for rPPG measurement was also used to test our methods.

The UBFC-RPPG database comprises of two datasets which were acquired using
the setup shown on the left of figure 3.3. The first, labeled as SIMPLE, comprises of
9 videos (around 21k frames), where the subjects were requested to relax and close
their eyes. The second dataset comprises of 46 videos (around 94k frames), labeled
as REALISTIC, where the subjects were required to play a time sensitive mathematical
game in order to vary the heart rate and also simultaneously emulate the scenario of
the typical activity of using a computer. Both the datasets comprise of subjects with skin
colors varying from dark to light tones. All the videos were taken under ambient light
with limited illumination variations. The video frames were obtained with a custom C++
application using a Logitech C920 web camera placed at a distance of about 1m from
the subject with a resolution of 640x480 in 8-bit uncompressed RGB format at 30 frames
per second. A CMS50E transmissive pulse oximeter was used to obtain the ground truth
PPG data. The experimental setup with sample images from UBFC-RPPG database are
shown in figure 3.3 depicting the lighting conditions.

The UBFC-RPPG database is made publicly available along with the ground truth data
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Figure 3.3: The setup for rPPG measurement (left) and sample images from the SIMPLE and
REALISTIC datasets from the UBFC-RPPG database (top-right) and the MMSE-HR (bottom-right)
database

from the pulse oximeter for rPPG measurement analysis1.

Presented also in figure 3.3 on the bottom right, are samples from the MMSE-HR
database. It comprises of 97 usable videos (about 105k frames) of varying length, at
25 frames per second of varied skin colors. Although, the main objective of the MMSE-
HR database was for emotion elicitation, it does provide the video data and HR ground
truth data for our validation. It is worth mentioning, though, that the MMSE-HR database
only provides the heart rate, and not the actual PPG waveform of the ground truth as
compared to our UBFC-RPPG dataset, which proves our earlier argument of databases
for rPPG measurement being scarce. Admittedly, when using the UBFC-RPPG database,
a more meaningful validation and comparison can be achieved since the same algorithm
can be used to extract the heart rate from both the PPG and the rPPG waveforms.

3.2/ PERIODICITY AND AUTOCORRELATION

Quasi-periodicity is a ubiquitous property exhibited by various physiological signals such
as electrocardiographic, electromyographic, electroencephalographic and photoplethys-
mography signals. However, this property has been unfairly ignored by most signal ex-
traction problems, especially in remote photoplethysmography measurement scenarios.
This inherent property of biomedical signals can be exploited by using a periodicity metric
that can guide the component extraction process to choose the most periodic component.

In order to incorporate periodicity information in existing BSS methods, a metric whose
derivative can be calculated analytically would be appropriate. The differentiability of a
given constraint is a required condition for most optimization methods which aim to exploit
the said constraint. Autocorrelation is such a metric which is simple yet comprehensible,
and is analytically well-defined making it feasible to use it in existing optimization schemes
as a priori information.

1https://sites.google.com/view/ybenezeth/ubfcrppg
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y1 = sin(x) y2 = randn(1,N)

Autocorrelation of y1 Autocorrelation of y2

Figure 3.4: Autocorrelation of a sinusoid vs a random signal

Definition 3: Autocorrelation

Autocorrelation is the correlation of a signal with itself at different lag times pro-
vided it is sampled at a sufficiently high frequency.

For a time series signal y = [y1, y2, . . . , yN] of N elements, its discrete autocorrelation
rk at lags k ∈ [−(N − 1), · · · ,N − 1] is given by

rk =

N−1∑
j=0

y j �
k

y j (3.5)

where
k

y j is the jth element of the signal y lagged (or led if k < 0) by k units and padded
with zeroes to the left (or right if k < 0) and � is the element-wise multiplication operator.
A periodic signal typically has a higher correlation with itself compared to a non-periodic
one which can be quantified by the mean of the squared autocorrelation of the signal and
consequently can be used as a measure of the periodicity of a signal. Figure 3.4 depicts
the high correlation of a periodic sinusoid compared to that of a uniform random signal
with the mean of the squared autocorrelation being much higher than that of the random
signal. Our goal is to use this quantification as a priori information for incorporation in ex-
isting BSS methods which aim to find an optimum weighting vector w∗ ∈ Rm that extracts
the desired component from a multivariate signal mixture of m temporal signals.

To make this incorporation feasible, the derivative of this metric needs to be calcu-
lated, since derivative based optimization schemes are one of the most common ones,
ICA being one of such methods, as seen earlier in this chapter. This derivative needs to
be calculated with respect to the weighting vector w. To make this derivation feasible, and
simplify its computation, two modifications are advantageous in order to use autocorrela-
tion as a periodicity measure. First, since the autocorrelation function is symmetric, the
correlation is only computed for lags k ∈ [0, · · · ,N − 1]. Second, since the correlation at
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lag 0 is always high, the autocorrelation at lag k = 0 is set to 0, thereby giving the autocor-
relation as r = [r1, r2, · · · , rN−1] comprising of N − 1 instead of N values, given by equation
3.5 with r0 set to 0. Keeping in mind that rk is a scalar, equation 3.5 can be rewritten in
matrix notation as

rk = y[
k
y]T =

k
yyT (3.6)

where
k
y is again the signal y lagged by k units and k ∈ [1, · · · ,N − 1] . This formula needs

some alteration in order that its derivative be simple to calculate. The complication arises
from the fact that the signal is multiplied with its lagged version. This product requires
special treatment in order that its derivative with respect to other multivariate quantities
such as the source signal y or the weighting vector w be easily calculable. Considering
the definition of autocorrelation in equation 3.6, it can be observed that

k
y can be rewritten

as yTk where Tk is a toeplitz-like matrix that incorporates the lagging at lag k and padding
with zeroes of the signal and is given by

Tk =

k N − k



0 · · · 0 1 0 · · · 0

k 0 · · · 0 0 1 · · · 0

-

...
. . .

...
...

...
. . .

...

N 0 · · · 0 0 0 · · · 1
0 · · · 0 0 0 · · · 0

k

...
. . .

...
...

...
. . .

...

0 . . . 0 0 0 · · · 0

=

[
0N−k,k IN−k

0k,k 0k,N−k

]
(3.7)

Tk is an N × N matrix composed of the first N − k rows made up of (N − k) × k zeroes
and an identity matrix of size N−k, the rest of the elements being zero. Thus, rk becomes

rk = yTkyT (3.8)

making its differential with respect to y easier to calculate. To aid the optimization process,
a convenient representation of the autocorrelation is the mean-squared autocorrelation
which can be expressed as

R(y) = E{r2} (3.9)

with r = [r1, r2, · · · , rN] being the autocorrelation as defined in equation 3.6. Using the
mean of the squared autocorrelation helps to compensate for the fact that certain values
of autocorrelation might be negative, especially if zero mean signals are used. These
negative values might possibly nullify the autocorrelation function if the squared or abso-
lute values weren’t used.

Furthermore, since y itself is actually dependent on the ideal weighting matrix w∗, it is
the maxima of R with respect to w that needs to be calculated. For use in optimization
schemes of the semi-blind source extraction methods presented in chapters 4 and 5, the
first and second derivatives are required. Although, the calculation of these derivatives is
not critical to understanding the formulation of the methods developed in this part of the
thesis, they are provided in the next section to maintain structure.
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3.2.1/ DERIVATIVES OF MEAN-SQUARED AUTOCORRELATION

Here we present the first and second derivatives of R(w) needed by the Lagrange multi-
pliers method. The derivative of a scalar w.r.t a column vector is a column vector of the
same size as that of the vector. The first derivative of R(w) in

R(y) = E{r2} (3.10)

can be obtained as follows considering squared autocorrelation as r2 = [r2
1 r2

2 ... r
2
N].

R′(w) = −E{
∂

∂w
(
[
r2

1 r2
2 · · · r2

N

]
)} (3.11)

where the derivative of the squared autocorrelation r2 is then obtained using the chain
rule of derivatives. Also, we have y = wT x giving ∂y

∂w = x.

∂(r2)
∂w

= x
∂(r2)
∂y

(3.12)

= x
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= 2x


r1

∂r1
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∂rN
∂y1

...
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The size of ∂(r2)
∂w is then 3 × N from the product of x3×N with the jacobian of size N × N.

Consequently, its expectation ends up having a size of 3 × 1 since it is nothing but a tem-
poral mean over N samples. The jacobian in equation 3.15 can be concisely expressed
as

[
r1

∂r1
∂y r2

∂r2
∂y · · · rN

∂rN
∂y

]
where each column is the product of the derivative ∂r1

∂y and
the scalar rk and is of size N × 1. Deriving rk = yTkyT w.r.t y using the product rule of
differentiation,

∂rk

∂y
= y

∂

∂y
(TkyT ) + yTk

∂

∂y
(yT )

= y
∂

∂y
(yT T

k ) + yTk

= yT T
k + yTk = y(T T

k + Tk) (3.16)

where ∂
∂y (TkyT ) = T T

k comes from the fact that the differential of TkyT , a vector, will remain
the same even when it is transposed and the derivative is computed element-wise. This
result is owing to the fact that Tk is not symmetric. If it were symmetric, then the result
would have been 2yTk.
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For conciseness, we will represent the sum Tk + T T
k as Tk. Finally to be consistent

with our convention, using the same argument of the differential being immutable under
transpositions, the row vector ∂rk

∂y can be transposed into a column vector and the matrix
∂r
∂y can be built as

∂r
∂y

=
[
r1T1yT · · · rNTNyT

]
(3.17)

giving R′(w) in equation 3.11 as

R
′

(w) = −2xE
{[

r1T1yT · · · rNTNyT
]}

which can be further simplified to

R′(w) = −2x
[

T1yT · · · TNyT
]

rT/N (3.18)

since the expectation is a temporal mean, the element-wise multiplication with rk can be
replaced by multiplication with the vector rT which also simplifies the computation.

Next, to simplify the calculation of the second derivative of R(w), we perform column-
wise matrix multiplication in equation 3.18, omitting the scalar multiplication and division,
to obtain

R′(w) = −x
[

T1r1yT + · · · +TNrNyT
]

(3.19)

= −x
N∑

k=1

TkrkyT (3.20)

And since differentiation and summation are interchangeable based on the sum rule,
R′′(w) can be obtained by

R′′(w) = −x
N∑

k=1

∂(TkrkyT )
∂w

(3.21)

= −x
N∑

k=1

∂(TkrkyT )
∂y

∂y
∂w

(3.22)

= −x
 N∑

k=1

∂(TkrkyT)
∂y

xT (3.23)

The derivative of TkrkyT w.r.t y is then obtained by the product rule of differentiation.

∂(TkrkyT )
∂y

= Tk
∂rk

∂y
yT + Tkrk (3.24)

= Tk

(
∂rk

∂y
yT + rk

)
(3.25)

which is of size N ×N. Consequently, the size of R′′(w) turns out to be 3× 3 since the sum
of ∂(TkrkyT )

∂y over N samples is also of size N × N.

The autocorrelation function and its derivatives can now be incorporated as a priori
information into existing BSS methods to formulate semi-BSE methods, the formulation
of which is presented in the following chapters.
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3.3/ RECAPITULATION

This chapter laid down the ground work for the coming chapters in this part. The video
databases needed for rPPG measurement analysis were introduced and the correspond-
ing experimental setup was established. We discussed the formulation of ICA and the
intuition behind it so that it can improved upon in a semi-blind source extraction algo-
rithm. We also presented autocorrelation as a periodic measurement, which can be used
to affect the aforementioned improvement. With the prerequisites dealt with, we can now
dive into the details of the algorithms that were developed in this thesis, which are pre-
sented in the following chapters.



4
MULTI-OBJECTIVE OPTIMIZATION

USING AUTOCORRELATION AND
INDEPENDENT COMPONENT ANALYSIS

S
emi-blind Source Separation methods are aimed to improve upon Blind Source Sep-
aration methods by incorporating information about the desired signal in the opti-

mization function of the BSS method in question. The significance of periodicity and its
presence in a large class of biomedical signals has already been discussed and a for-
mulation of autocorrelation as a periodicity metric has been established in the previous
chapter. This periodicity metric can be combined with a BSS method, specifically, the
ICA objective function in the case of traditional rPPG measurement, thereby converting
the BSS ICA problem to a semi-Blind Source Extraction (BSE) problem, since we are not
entirely blind anymore with regards to the type of signal that needs to be extracted.

In this chapter, we propose to reformulate the objective function of ICA to make it a
better posed problem by making two augmentations. First, we require only one compo-
nent, i.e., the rPPG pulse from the mixture of the temporal traces. As a result, the problem
of component separation can be modified into that of component extraction. This require-
ment is not uncommon and is manifested in various applications. For instance, the On-Off
simulation scheme of fMRI experiments [34].

Second, we know that the blood volume pulse embedded in the RGB temporal traces
is by definition periodic (or at least quasi-periodic). Consequently, we use the periodicity
of the rPPG signal as an a priori information to help extract the most periodic compo-
nent. To this end, we use autocorrelation as the measure of periodicity for guiding the
ICA separation algorithm. To compensate for the negative values, the mean of squared
autocorrelation is used as the periodicity measure. The rPPG pulse extraction is accom-
plished by using a multi-objective optimization approach to maximize both mean squared
autocorrelation and negentropy [24], a measure of non-gaussianity fit for remote photo-
plethysmography.

One possibility is to use autocorrelation as a constraint to nudge the algorithm towards
selecting components having periodicity higher than a given threshold. However, formu-
lation of such a constraint is critically dependent on the threshold which is quite complex
to select, especially in stochastic scenarios such as that of rPPG measurements 1. A

1This argument is, in fact, the basis of augmenting our cICA algorithm with a chrominance constraint
as will be discussed in chapter 5. The addition of an extra constraint simplifies the overall problem and
compensates for the requirement of threshold selection.

37
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better solution would be to use autocorrelation as one of the objective function thereby
maximizing autocorrelation along with negentropy formulated as a multi-objective opti-
mization problem. The use of autocorrelation as a periodicity measure and formulation of
the multi-objective optimization problem is presented next.

Multi-objective optimization problems are generally formed by relaxing the constraints
in a constrained optimization problem and interpreting them as additional objective func-
tions. In the following section we describe the formulation of the rPPG extraction module
using Multi-objective optimization with Autocorrelation as a periodicity measure and ICA,
henceforth referred to as MAICA.

We reiterate the basic premise of rPPG measurement and its formulation for ICA
here. The rhythmic cardiac pulse, appearing as variations in skin color, is assumed to
be linearly mixed into the temporal traces of color data from cameras. The problem of
rPPG measurements is posed as a signal separation problem where the rhythmic car-
diac pulse is assumed to be linearly mixed into the temporal traces of color data from
cameras. If the time varying color traces channels are represented as x = (x1, x2, ..., xn)T ,
which is an instantaneous linear mixture of the original m independent signals denoted as
c = (c1, c2, ..., cm)T . In the case of rPPG measurement, n = 3 for the commonly used RGB
channel images. Then the process of mixing can be formulated as x = Ac, where the
matrix An×m represents the linear memoryless mixing of the channels. To extract the car-
diac signal, the optimum weighting matrix w∗ has to be estimated which separates out the
undesired components due to noise, illumination, motion and other sources, i.e. y = wT x,
where w ∈ R3. The goal of the MAICA algorithm is then to combine periodicity informa-
tion in the form of autocorrelation with the objective function of ICA in order to improve the
rPPG signal estimates. Specifically, the rPPG pulse extraction is accomplished by using
a multi-objective optimization approach to maximize both mean squared autocorrelation
and negentropy [24], a measure of non-gaussianity fit for remote photoplethysmography,
which is the one of the most commonly used objective functions of traditional ICA.

4.1/ PROPOSED METHOD

In this section, we present the formulation of the multi-objective optimization algorithm,
the constituent objective functions and linear scalarization which is a simple and intuitive
manner of combining multiple obective functions.

4.1.1/ OBJECTIVE FUNCTIONS

Our two objective functions correspond to negentropy and autocorrelation respectively
of the output y = wT x where the ideal orthogonal row vector w ∈ R3, obtained after
optimization, extracts the desired component representing the cardiac signal from the
RGB temporal traces x.

Maximize J(y), R(y)

Subject to h(w) = 0
(4.1)

where R(y) = R(wT x), which is eventually a function of w, is the mean squared autocorre-
lation given by

R(y) = E{r2} (4.2)
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with r = [r1, r2, · · · , rN] being the autocorrelation and rk is given by equation 3.6. The
negentropy, J(y) is the generic contrast function for ICA defined by [26] as H(ygauss)−H(y).
H(.) is the differential entropy and ygauss is a random variable with a variance equal to that
of the output signal y. In practice, an approximation of negentropy is used for ease of
computation and flexibility given by

J(y) ≈ ρ[E{G(y)} − E{G(v)}]2 (4.3)

where ρ is a positive constant, v is a Gaussian variable having zero mean and unit vari-
ance. G(.) can be any non-quadratic function as suggested by [24]. A good general
purpose function is given by

G(y) =
log cosh(ay)

a
(4.4)

with 1 ≤ a ≤ 2. Finally, as suggested by [34] the constraint, h(w) = E{y2} − 1 = 0 was
introduced to make sure that objective functions J(y) and R(y) and the weighting vector w
are bounded.

4.1.2/ LINEAR SCALARIZATION

A simple way to incorporate the a priori information in the optimization problem is to
scalarize the multi-objective optimization by forming a single-objective optimization such
that the solutions to the scalarized problem are the set of feasible solutions commonly
known as Pareto optimal solutions [51]. The linearly scalarized version of the multi-
objective contrast function then becomes

Maximize J(y) + R(y)

Subject to h(w) = 0
(4.5)

where
J(y) =

J(y) − Jmin

Jmax − Jmin
= s1(J(y) − Jmin) (4.6)

and
R(y) =

R(y) − Rmin

Rmax − Rmin
= s2(R(y) − Rmin) (4.7)

are the normalized versions of the respective objective functions in order to compensate
for the disparities in scale and s1 = 1

Jmax−Jmin
and s2 = 1

Rmax−Rmin
. Ideally, the boundary values

of the objective functions correspond to their global maximum and minimum values. How-
ever, to emulate a live scenario as much as possible, all the processing was performed
over a temporal window of 30 seconds. Using the actual boundary values in this case
would not conform to the emulation.

Consequently, Jmax and Rmax were calculated by using a sinusoidal signal emulating
an ideal blood volume pulse, ys = sin(t) where t corresponds to the time coordinates of the
current temporal window. This was done by taking the maximum values of the objective
functions over the frequency range of human heart rates, F ∈ [.7, 3] Hz. The minimum
values, Jmin and Rmin, were calculated in the same manner for a uniform random signal yr
for the temporal window t.

Jmax = max
F

J(ys), Rmax = max
F

R(ys) (4.8)

Jmin = min
F

J(yr), Rmin = min
F

R(yr) (4.9)
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4.1.3/ LAGRANGE MULTIPLIERS AND MULTI-OBJECTIVE OPTIMIZATION

Finally, the entire problem was expressed as a Lagrange multiplier [11] formulation where
a Newton-method like approach was used for optimization. The augmented Lagrangian
method was used because of its wider applicability and robustness against the equality
constraints owing to the penalty term that punishes violations to those constraints, mak-
ing it more stable than the classical method of Lagrange multipliers. The Augmented
Lagrangian for equation 4.5 is given as

L = [J(y) + R(y)] − λh(w) +
1
2
γ ‖h(w)‖2 (4.10)

where λ is the lagrange multiplier for the constraint h(w), J(y) and R(y) are given by equa-
tions 4.6 and 4.7 respectively. ‖.‖2 denotes the Euclidean norm and the term 1

2γ ‖.‖
2 is

the penalty term that makes sure that the optimization problem is held at the condition of
local convexity assumption: ∇2

wwL >0 which ensures continuity and the consequent exis-
tence of an optimal w. To find the maximum of L in equation 4.10 a Newton-like learning
method was used to iteratively adapt w

wk+1 = wk − η(L
′′

wk
)−1L

′

wk
(4.11)

where k is the iteration index, η is the positive learning rate to avoid uncertainty in conver-
gence and L

′

wk
is the first derivative of L at step k w.r.t w given by

L
′

wk
= s1ρ̄E{xG

′

y(y)} + s2E{R
′

w(w)} − λE{xy} (4.12)

where the sign of E{G(y)} − E{G(v)} gives the value of ρ̄ = ±ρ, G
′

y(y) and R
′

w(w) are the first
derivatives of G(y) and R(w) w.r.t y and w respectively. The Hessian L

′′

wk
in equation 4.11,

is calculated as
L
′′

wk
= s1ρ̄RxxE{G

′′

y (y)} + s2E{R
′′

w(w)} − λRxx (4.13)

the inversion of which is not problematic because Rxx being the covariance matrix of the
whitened and centered signal x is an identity matrix. G

′′

y (y) and R
′′

w(w) are second order
derivatives and L

′′

wk
is of size 3 × 3. The first and second derivatives of R(w) are not trivial

and are presented in the appendix. The optimum multiplier λ∗ is obtained iteratively based
on a gradient-ascent method [34]:

λk+1 = λk + γh(wk) (4.14)

Following the above equations, the optimization procedure converges to the optimum
point defined by the doublet (w∗, λ∗) representing the tuned parameter and final weighting
matrix w∗ which is then used to obtain the final rPPG signal. Results and analysis of the
performance of MAICA are discussed in section 4.3. Next, we present an augmentation
to the MAICA method in the form of an adaptive step size that serves to improve the
optimization process, specifically by improving convergence times.

4.1.4/ PARAMETER FREE MAICA

Most BSS algorithms use a fixed step-size parameter. However, use of a fixed step-size
creates several problems. To maximize the objective function rapidly, the step-size should
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be set to a large value when the objective function is small. To get a precise weighting
matrix w, on the contrary, the step-size should be set to a small value. In (4.11), the step-
size selection is even more critical because it defines the relative importance between
negentropy and autocorrelation in the update procedure. Several adaptive step-size have
been proposed in the literature based, for instance, on an exact line search of µ [43] or
solving the optimum step-size that minimizes the cost function with an iterative process
based on a gradient method [20]. In this method, we use the adaptive step-size proposed
by Nakajima et al. [48] where the step-size is set anti-proportional to the first gradient of
the cost function. The adaptive step-size method are formulated as follows

µ′1 =
J(y)

2
∥∥∥∥J′wk(y)

∥∥∥∥2 and µ′2 =
R(y)

2
∥∥∥∥R′wk(y)

∥∥∥∥2 (4.15)

where ‖.‖2 means the Frobenius norm. The entire problem is then solved using a first
order iterative optimization algorithm procedure with the objective function

L = J(y) + R(y) (4.16)

instead of the Augmented Lagrangian method for the classical Multi-objective optimization
formulation in equation 4.10. To find the maximum of L in Eq. 4.16, gradient-ascent
iteratively adapts w with

wk+1 = wk + µ1J
′

wk
(y) + µ2R

′

wk
(y) (4.17)

where k is the iteration index, µ1 and µ2 are the step-size for negentropy and autocorre-
lation part of the objective function, J

′

wk
(y) and R

′

wk
(y) are the first derivatives of J(y) and

R(y) at step k w.r.t w.

Even if the complete procedure is almost entirely free from any manual parameter
adjustment, we experimentally observe that a threshold on the value of µ1 can be useful
because the derivative of the negentropy is sometimes quite unstable. Next, the details
of the system framework required for signal acquisition and the implementation details of
the MAICA method and its parameter free variant are presented in section 4.2.

4.2/ SYSTEM FRAMEWORK

The workflow of the procedure as depicted in figure 4.1 is presented here. Temporal RGB
traces, x = [x1, x2, x3]T where each xm, m ∈ [1...3], corresponds to a temporal trace of size
N of each channel, were generated by frame-wise spatial averaging of the pixels (face-
cropped or skin-segmented). To this end, face detection and tracking was first performed
using the Viola-Jones and the Kanade-Lucas-Tomasi implementations provided by the
computer vision toolbox of MATLAB. Corner detection in the detected face was performed
for tracking to crop the face based on facial landmarks. Skin detection as formulated by
Conaire et al. [36] was then performed to select the candidate pixels which were then
spatially averaged to obtain a triplet of RGB values per frame and concatenated to obtain
the RGB temporal traces.
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Figure 4.1: System framework for MAICA and its parameter free variant

These temporal RGB traces were then detrended using a smoothness priors ap-
proach, with the regularization parameter λ set to 500, proposed by Karjalainen and Pasi
[29] to remove low frequency trends in the signal. Next, after normalization, two additional
preprocessing steps are generally recommended for ICA to simplify calculations. First,
centering was performed so that the obtained signal y in y = Wx is zero-mean. Next,
whitening was performed to ensure that the components were uncorrelated and their
variances equal to unity. The traces were then passed to the rPPG extraction module
where the MAICA algorithm was used to extract the rPPG signal.

After the rPPG signal was obtained, the per window heart rate was calculated from
the highest peak of the FFT filtered within the acceptable range of heart rate F ∈ [.7, 3]
Hz over a 30 second moving window using a step size of 0.5 second for our in-house
datasets. Although, ICA is known to work much better with signals of longer duration, as
mentioned earlier, all the processing was performed over a 30 second window, using the
weighting matrix wk obtained at window k as an initial estimate for calculation of wk+1 at
the next window. This 30 second window size was chosen as a trade-off between speed
and availability of enough data for convergence. On the other hand, a 15 second window
was needed for the MMSE-HR dataset owing to the shorter length of many constituent
videos. The window-wise heart rate estimations were then smoothed using a Kalman
filter.

The Kalman filter helped to remove spurious outliers resulting from abrupt variations in
illumination and/or motion. Since we only want to filter out spurious outliers, irrespective
of the method being used, the filter was periodically reconfigured if the change in HR
was beyond a threshold of 6 bpm. This ensured that the filter followed the measured
HR values as closely as possible, while simultaneously avoiding outliers. These values
were fixed for the analysis of all the videos in the three different datasets that we used.
They were chosen to represent a margin of 1 BPM in the motion and measurement noise
models and were verified by trial and error in their ability to discard spurious outliers.

We present the experiments and results next in section 4.3
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Figure 4.2: Extracted rPPG signal for video 10 of the SIMPLE dataset of the UBFC-RPPG
database. HR_sensor is HR from the finger sensor. HR_rPPG_filtered is HR_rPPG after Kalman
filtering

4.3/ RESULTS AND ANALYSIS

As was mentioned in section 3.1 in chapter 3, the UBFC-RPPG and MMSE-HR video
databases were used to analyze the algorithms developed. The parameter free variant
of MAICA was analyzed against the UBFC-RPPG database, to specifically assess the
performance gain achieved. But first, it is worth looking at a typical rPPG signal and its
FFT and some preliminary analysis to establish the feasibility of the proposed method.

Figure 4.2 shows the rPPG and PPG signals from a fairly simple video and their heart
rate estimations, HRrPPG vs HRPPG respectively, using the Fast Fourier Transform (FFT).
The other two quantities HRsensor and HRrPPG f iltered depict the HR from the pulse oximeter
and HRPPG after Kalman filtering respectively. The high correlation between the rPPG
and PPG signal is clearly visible in the figure, and so is the correlation between HRrPPG

and HRPPG, which in fact are barely visible because of the overlapping values of HRsensor

and HRrPPG f iltered , owing to the video being a simple one.

To gain an intuition on the advantage of incorporating periodicity information into the
ICA source separation algorithm, a quick analysis of one of the difficult videos, where tra-
ditional ICA is not entirely successful, from our UBFC-RPPG database is presented here.
The analysis was carried over sequential temporal windows of 30s and the corresponding
weighting matrices that extract the rPPG signal of ICA in figure 4.3a are compared with
those obtained by MAICA in figure 4.3c. It can be seen from figure 4.3d that the weight-
ing matrices that simultaneously maximizes negentropy and periodicity indeed result in
a heart rate closer to the ground truth heart rate. Moreover, the SNR obtained for the
measured signal was improved from −10.89 for ICA to −3.39 for MAICA (also seen by
the overall increase in SNR in table 4.1), illustrating the advantage of incorporating the
periodicity information in the algorithm.

Having looked at the feasibility analysis for MAICA, its performance comparison
against traditional ICA can be examined. Figure 4.4 shows the correlation comparisons
between ICA [49] and MAICA for the two databases where HRPPG and HRrPPG are plot-
ted against each other. The metrics PRECIS 2.5 and PRECIS 5 show the percentage of
windows where δ = |HRrPPG − HRPPG | < 2.5 and 5 beats per minute (bpm) respectively.
MAE corresponds to the average mean absolute error between HRrPPG and HRPPG in
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(a) WeightsICA

(b) HRICA

(c) WeightsMAICA

(d) HRMAICA

Figure 4.3: Window-wise weight analysis showing ICA weights and HR in (a) and (b) vs MAICA
weights and HR in (c) and (d). For the exact same data, different values of w = |wR,wG,wB|

corresponding to the RGB channels can extract an accurate rPPG signal. Absolute values of the
weights are shown for concise display.

bpm calculated over all the windows for all videos.

As the name suggests, the analysis of the SIMPLE dataset, which can be thought of
emulating a patient at rest, was not challenging and both ICA and MAICA performed well.
However, MAICA did result in fewer outliers than ICA. The REALISTIC and the MMSE-
HR datasets were understandably more challenging. However, MAICA demonstrated a
better correlation between HRPPG and HRrPPG. It is also evident that the lesser number
of outliers were a direct cause of better convergence towards the correct rPPG signal.
The MAICA method also provided stronger peaks in the FFT periodogram along with
better HR estimates. It also provides a better performance than the Self-Adaptive-Matrix
Completion method introduced in [81] whose MAE is 7.6 bpm as compared to our 5.2
bpm. However, this comparison is not very clear since we do not use the same ROI
selection method as them. It is also noteworthy that the amount of candidate pixels that
are used to generate our rPPG signal is larger in comparison to their’s owing to the use
of skin detection, which might result in lesser noise and an eventually better estimation.
Furthermore, as already been mentioned, incorporation of a sophisticated ROI selection
method is equally possible and might even improve the estimations further.

4.3.1/ PERFORMANCE ANALYSIS OF MAICA

Table 4.1 shows the accuracy comparisons between ICA and MAICA and other state of
the art methods, viz., PCA [53], Green [42], CHROM [58], POS [83], and G-R [39]. The



4.3. RESULTS AND ANALYSIS 45

(a) ICA for dataset SIMPLE (b) ICA for dataset REALISTIC (c) ICA for dataset MMSE-HR

(d) MAICA for dataset SIMPLE (e) MAICA for dataset REALISTIC (f) MAICA for dataset MMSE-HR

Figure 4.4: Correlation Analysis for rPPG comparing ICA and MAICA for the three datasets

metrics used apart from MAE are signal-to-noise ratio (SNR) and Pearson’s correlation
coefficient (r) between heart rate calculated using the rPPG signal, HRrPPG and the heart
rate calculated using the ground truth PPG waveform, HRPPG. The windowed method is
computationally more taxing, owing to the smaller window length, but is more realistic.
The SNR (dB) was calculated as the ratio of the power of the main pulsatile component
of the PPG to that of the background noise to accommodate the wide dynamic range of
the signals. However, it is to be noted that the MMSE-HR database does not provide
the ground truth waveforms, thereby obliging the use of the main pulsatile component of
the RPPG instead of the PPG for the SNR calculation. As a result, the SNR values for
the MMSE-HR database are not really relevant and are omitted in table 4.1. It is worth
mentioning here that although the MAICA is not faster than ICA since the autocorrelation
objective function has to be additionally calculated, its novelty lies in the combination of
the periodicity information with the notion of independence used by the ICA algorithm.

In literature, there are several works which uses ICA for rPPG extraction. However,
the core algorithm for it remains the same. The ICA implementation used for our analysis
has been adapted from FastICA [26]. Furthermore, the analysis of all the methods was
performed using exactly the same pre and post processing steps like normalization, filter-
ing and smoothing. The exact metrics of ICA from related state of the art methods such
as [49], [54] and [64] could not be used because they all use their own private databases
which were inaccessible to the public. However, as mentioned earlier, the core algo-
rithm of ICA remains the same making the metrics in Table 5.1 applicable. Furthermore,
comparison with smart ROI selection methods such as [76], [63], [70] and [73] was not
deemed relevant in order to limit the comparison amongst source separation methods,
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UBFC-RPPG
MMSE-HR

SIMPLE REALISTIC

MAE SNR r MAE SNR r MAE r

MAICA 0.55 2.98 0.99 3.34 -0.26 0.89 3.91 0.86

ICA 0.82 2.73 0.98 6.16 -1.23 0.76 5.28 0.70

PCA 2.04 -1.43 0.97 9.65 -3.45 0.67 9.15 0.49

Green 9.86 -1.61 0.29 7.73 -2.78 0.68 10.65 0.47

CHROM 0.72 3.04 0.99 3.81 -0.93 0.87 5.59 0.83

POS 0.67 2.57 0.99 4.73 -1.60 0.80 5.77 0.82

G-R 0.67 1.97 0.99 9.79 -3.10 0.65 8.56 0.58

Table 4.1: Performance comparisons between the various methods using Mean Absolute Error
(MAE), Signal-to-Noise Ratio (SNR) and Pearson’s correlation coefficient (r)

and the fact that our method can easily be incorporated into an ROI selection framework.

Regarding the performance metrics, MAICA and ICA both yield good rPPG signals
for the SIMPLE dataset. However, MAICA did remove the few outliers that are present
in the case of ICA. This is reflected in the low MAE and high SNR values as shown in
table 4.1. This can be attributed to the fact that the subjects were generally relaxing,
mostly with their eyes closed, which resulted in minimal motion artifacts. On the other
hand, the REALISTIC dataset was more challenging since the subjects were actually
working on the computer and were only requested to keep their hand still for the PPG
sensor. Similarly, the MMSE-HR database was challenging owing to it being an emotion
elicitation database. There were many instances where the subjects laughed out loud
and exhibited considerable movements. This resulted in the usual problems arising from
movement of the subjects. Consequently, the presence of outliers was more pronounced
for both the REALISTIC dataset and the MMSE-HR database, which MAICA was able to
reduce. This can be seen in table 4.1, where the pearson correlation coefficient was also
closer to unity which is also evident from figure 4.4 where the fitting line was closer to the
45◦ line as compared to ICA.

Finally, in figure 4.5 we present the window-wise heart rate comparisons between ICA
and MAICA, notably for videos where ICA is not entirely successful. The combination
of the autocorrelation function with the ICA negentropy function in the premise of multi-
objective optimization enables the extraction of a more accurate rPPG signal closer to
the ground truth. Videos from the UBFC-RPPG SIMPLE dataset are not presented in this
figure since there was not much difference between the performance between ICA and
MAICA owing to the simplicity of these videos. With regards to the MMSE-HR dataset,
it actually proved to be useful in highlighting the versatility of our method in presence of
motion artifacts arising from facial expressions, as is visible in the snapshots in the figure.
It is to be noted that almost all the videos of the MMSE-HR dataset manifested changing
facial expressions and moving faces.



UBFC-
RPPG/REALISTIC Window-wise HRs from ICA vs MAICA

video3

video30

video30

video44
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Figure 4.5: ICA vs MAICA for certain videos from the UBFC-RPPG\REALISTIC and MMSE-
HR datasets. The FFT periodogram was used to perform the HR measurements over temporal
windows of 30s and 15s respectively for the two datasets owing to the shorter lengths of videos
in the latter dataset.
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MAE SNR r
MAICA 3.18 0.06 0.90

MAICAfix 3.34 -0.26 0.89
ICA 6.02 -1.11 0.79
PCA 9.65 -3.45 0.67

Green 7.73 -2.78 0.68
CHROM 3.81 -0.93 0.87

POS 4.73 -1.60 0.80
G-R 9.79 -3.10 0.65

Table 4.2: Performance comparisons of parameter-free MAICA and other methods using Mean
Absolute Error (MAE), Signal-to-Noise Ratio (SNR) and Pearson’s correlation coefficient (r)

4.3.2/ PERFORMANCE ANALYSIS OF PARAMETER-FREE MAICA

We present here the performance comparison of the parameter free version of MAICA
with adaptive step size. Since the major part of the method is same as the original MAICA,
we present here a concise analysis only performed with the UBFC-RPPG database, es-
pecially to verify the feasibility and performance improvement possible with the an adap-
tive instead of a fixed step size for the optimization algorithm. Table 4.2 shows the accu-
racy comparisons between MAICA with adaptive step-size, with a fixed step-size (referred
as MAICAfix here), ICA[49] and other state of the art methods, viz., PCA [53], Green
[42], CHROM [58], POS [83], and G-R [39]. The metrics used are Mean Absolute Error
(MAE), signal-to-noise ratio (SNR) and Pearson’s correlation coefficient (r) between heart
rate calculated using the rPPG signal and the heart rate calculated using the ground truth
PPG waveform [76]. The SNR (dB) was calculated as the ratio of the power of the main
pulsatile component of the PPG to that of the background noise to accommodate the wide
dynamic range of the signals.

Not ignoring the fact that the parameter-free MAICA gives the highest SNR of all the
methods, a value of 0.06 is still low. Even so, it is interesting to observe that the MAE
values are acceptable for most state-of-the-art methods. The CHROM method [58] is un-
doubtedly the most reliable rPPG techniques from the literature because it systematically
outperforms other methods. Finally, the results obtained with the adaptive step-size are
only slightly better than the ones with a fixed step-size, but the proposed method has the
undeniable advantage of not having to empirically fix the optimal value of the threshold.
In this respect, this advantage makes the parameter-free MAICA method a notch better
than the regular MAICA and the cICA method which is presented in the next chapter, one
of limitations of which is the selection of appropriate thresholds.

4.4/ SUMMARY

In this chapter we presented a novel semi blind source extraction method, MAICA, for the
application of rPPG measurements using multi-objective optimization with mean squared
autocorrelation and negentropy as the objective functions. The method provides better
results than other state of the art methods while removing the extra step for choosing the
best component. The periodogram of the extracted signals was also consistently closer
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to that of the PPG. Our method can also be combined with other methods like smart
ROI selection [63] to further obtain better rPPG estimations. The two methods, regular
MAICA and parameter-free MAICA presented in this chapter and the corresponding re-
sults obtained have been published and validated in the Biomedical Signal Processing
and Control journal [a], and in the IEEE BioHealth and Engineering conference [i].

As has already been discussed, another alternative is to incorporate the periodic-
ity information as a constraint in the optimization scheme instead of using a separated
objective function. Furthermore, incorporation of constraints based on the physical prop-
erties of the skin, which affects the scattered light thereof in a unique manner, can lead
to interesting results. We next examine this alternate solution of incorporating periodicity
and chrominance information as a constraint instead of an objective function in chapter
5.





5
CONSTRAINED INDEPENDENT

COMPONENT ANALYSIS

I
n the previous chapter, we looked at the MAICA algorithm, a Semi-blind Source Ex-
traction (semi-BSE) method, that was used to incorporate this a priori information in

the form of autocorrelation combined with the objective function of ICA in a multi-objective
optimization scheme. It is typical of a multi-objective optimization algorithm to return a
set of optimas corresponding to a given requirement. This issue was treated by using the
simple technique of linear scalarization in the previous chapter.

It would be interesting to approach the problem of a priori information incorporation
from a different angle, viz. using the a priori information as a constraint rather than an
objective function. This alternative undoubtedly is not free from its own complications,
such as the choice of a threshold for the constraint, which is critical. We alleviate this
issue by incorporating an extra constraint based on the physical properties of the skin, in
order that the solution space be easier to converge onto, thereby mitigating, in part, the
issue of threshold tuning. This improves the convergence of the optimizer as compared to
using only one for the constraints, enabling the estimation of a more accurate rPPG signal.
Consequently, we use the constrained ICA framework to combine constraints based on
periodicity and chrominance with the objective function of ICA to make it a better posed
problem.

The technique of Constrained ICA can be used to incorporate these additional re-
quirements and a priori information in the form of constraints. One approach of cICA,
termed as ICA with reference, comprises of using additional knowledge related to the
sources and desired signals constraints in the form of a reference signal [32]. However,
employing a sufficiently accurate reference signal is prone to the evident complication of
choosing its right frequency. This can be done in two possible ways. One alternative is to
repeatedly compare the extracted rPPG signal to reference signals of different frequen-
cies [80], as discussed in chapter 2. The other alternative is to update the frequency
of the reference signal continuously, in effect making it a parameter to optimize. This
increases the complexity of the problem and reduces the probability of convergence. A
PPG signal is a very apt reference for rPPG extraction whose synthesis depends critically
on the required frequency, even more so than the actual shape of the signal.

To avoid this limitation, we use autocorrelation as the a priori information for guiding
the cICA separation algorithm which then chooses the most periodic component repre-
senting the blood volume pulse. To further aid the convergence, we apply chrominance-
based constraints based on the standardized skin tone as used by De Haan et al. [58].

51
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The use of two constraints increases the probability of convergence towards the best
rPPG signal. In this chapter we develop a new semi-blind source extraction method, us-
ing constraints based on periodicity and physical properties of the skin. Next, we present
the proposed method and explain in detail the two constraints used.

5.1/ PROPOSED METHOD

Let us recall the basic formulation of ICA where the required signal vector y of size N is
extracted from the RGB temporal traces matrix x of size 3 × N using a weighting matrix w
of size 3 × 1 according to y = wT x. As mentioned earlier, we aim to perform component
extraction instead of separation, which is reflected in the change in the size of the weight-
ing matrix from 3 × 3 in basic ICA to 3 × 1 for cICA. The cICA algorithm aims to optimize
for the best weighting matrix w∗, which maximizes the objective function while satisfying
the imposed constraints.

Typical biomedical signals like ECG and PPG signals are known to be periodic or
semi-periodic. This implicit property of periodicity of biomedical signals can be exploited
to guide the component extraction process in converging to the component with the high-
est periodicity as has been already established in the previous chapter with the MAICA
algorithm. Accordingly, we use autocorrelation as one of the constraints to nudge the
algorithm towards selecting components having periodicity higher than a given threshold.
Furthermore, we also incorporate constraints based on the physical properties of the skin,
which directly effect the light reflected therefrom, and consequently the color or chromi-
nance information therein. This constraint is developed using the CHROM method which
is undoubtedly one of the most reliable techniques in literature [58]. These two constraints
are next described in detail.

5.1.1/ CHROMINANCE BASED CONSTRAINT

Although autocorrelation does help the optimizer to converge to a weighting matrix that
extracts the correct component for simple videos, in a more realistic scenario it is prone
to having not so well defined maxima. Additionally, in fitness scenarios with repetitive
movements, the assumption that the most periodic component being the rPPG signal is
perturbed by the periodic motion component of the fitness activity. This calls for the use
of another constraint, which is not fundamentally affected by periodic components, to aid
the convergence for which the CHROM constraint [58] is a suitable candidate.

To confirm this requirement, and to correlate the autocorrelation with the weights, the
mean squared autocorrelation was plotted against all the possible orthonormal weights,
(wR,wG,wB) whose components represent the contribution of each of the RGB channels
in forming the rPPG signal. All these possible weight vectors in R3 are spanned by the
standard basis w1 = (1, 0, 0),w2 = (0, 1, 0),w3 = (0, 0, 1), i.e.,

(wR,wG,wB) = w1 + w2 + w3 (5.1)

A temporal section of the RGB traces, 30 seconds long, xt, was used to perform this
weights analysis. To plot the autocorrelation as a function of the vector space (wR,wG,wB),
each vector w was scaled by the corresponding mean squared autocorrelation of yt =

wxt to obtain the plot in figure 5.1. This plot can be thought of as a deformation of the
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unit sphere, owing to the orthonormality of the weghting vectors, by the mean squared
autocorrelation of yt. The ideal weighting vector giving the maximum autocorrelation is
depicted as wautocorr and the CHROM weighing vector is depicted as wchrom.

It can be seen from figure 5.1 that the mean squared autocorrelation is symmetric with
respect to w, i.e., there will always be a dual of a given weighting vector which would give
the same autocorrelation. This is not necessarily a disadvantage since the optimizer will
converge irrespective of the initial direction chosen. However, it is also visible that the
plot is not very peaky i.e. the maximum autocorrelation is localized to an area of smaller
slope, which might make the convergence slower towards the end. It is also noteworthy
that the weighting matrix corresponding to the maximum autocorrelation, wautocorr and
the CHROM weighting matrix, wchrom depicted as vectors point around the same vicinity.
In other words, the rPPG signal extracted using the CHROM method also exhibits high
autocorrelation.

Figure 5.1: Mean-squared Autocorrelation, E{r2} vs the weighting matrix, w

On the other hand, chrominance-based methods tend to be restrictive in choosing
the weighting matrix based on their linear formulation. According to [58], a chrominance
signal which incorporates the maximum photoplethysmographic information is obtained
using a standardized skin tone resulting in an algorithm that can work correctly regardless
the color of the illuminant. The CHROM signal is given by

S = X f − αY f (5.2)

where X f = 3R f −2G f and Y f = 1.5R f +G f −1.5B f are the projections of the RGB traces on
to standardized skin tone space and x = [R f ,G f , B f ]T is the bandpass filtered temporal
RGB trace of size 3 × N . α is the ratio between the standard deviations of X f and Y f

giving

S = 3(1 −
α

2
)R f − 2(1 +

α

2
)G f + 3

α

2
B f = wchromx (5.3)

where wchrom is the CHROM weighting matrix. The goal of the proposed rPPG extrac-
tion algorithm is to converge towards the weighting matrix that simultaneously gives a
component of high periodicity and is within the vicinity of the weights wchrom up to a cer-
tain threshold. An analysis of the effect of the combination of these two constraints is
presented in the next section.
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5.1.2/ COMBINATION OF PERIODICITY AND CHROMINANCE BASED CON-
STRAINTS

To assess the effect of the combination of periodicity and chrominance constraints on
the cICA algorithm, and its utility in fitness scenarios, three videos were recorded on a
fitness bike. They are categorized as LIGHT, MODERATE and INTENSIVE based on
the speed of motion and intensity of training. Figure 5.2 shows a snapshot from the
three videos which exhibit a prominent periodic motion along with accuracy comparisons
between recovered rPPG from CHROM, cICA using only the periodicity constraint and
cICA using both the periodicity and the chrominance constraint. The CHROM method
was able to extract the correct rPPG signal for the LIGHT video (figure 5.2d) whereas
cICA with only the periodicity constraint converged to the component representing the
strong periodic motion (figure 5.2g). As expected, the combination of the CHROM and
periodicity constraints resulted in convergence to the correct rPPG signal (figure 5.2j).

(a) LIGHT (b) MEDIUM (c) INTENSIVE

(d) CHROM (e) CHROM (f) CHROM

(g) cICA with periodicity constraint (h) cICA with periodicity constraint (i) cICA with periodicity constraint

(j) cICA with periodicity and chrominance
constraints

(k) cICA with periodicity and chrominance
constraints

(l) cICA with periodicity and chrominance
constraints

Figure 5.2: Utility of the combination of periodicity and chrominance constraints in a fitness sce-
nario

However, the CHROM method was not able to extract the correct component for the
MEDIUM and INTENSIVE videos where the variations due to motion overwhelm the rPPG
variations (figure 5.2e). Interestingly, where both CHROM and cICA with just the period-
icity constraint failed separately, their combination resulted in a partial convergence to the
rPPG signal as is visible in figure 5.2k. This can be attributed to the constriction of the
solution space resulting in the optimizer to converge to the correct rPPG signal.

Finally, for the INTENSIVE video, the motion component was much stronger and none
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of the methods succeeded in extracting the rPPG signal (figures 5.2f, 5.2i and 5.2l). This
calls for the use of a motion compensation scheme to mitigate such high intensity motions.

Consequently, these two constraints, the autocorrelation being a bit too lenient and the
chrominance based constraint being too restrictive, in choosing the best weighting matrix,
can be combined to guide the optimizer in choosing a weighting matrix with optimum
flexibility. The combination is also advantageous for fitness scenarios with limited periodic
motion, without any motion compensation. This implementation showed improved results
compared to both ICA and CHROM methods the analysis of which is presented in chapter
5.3. The use of these two constraints in our framework is described in the next subsection.

5.1.3/ CONSTRAINED ICA

As seen earlier in chapter 4 the generic contrast function of ICA as defined by [26], the
negentropy function given by J(y) = H(ygauss)−H(y) is used as the main objective function,
where H(.) and ygauss have the same meaning as mentioned in section 4.1 of chapter 4.
The approximation of negentropy as given in the FastICA method [26] is stated here for
convenience

J(y) ≈ ρ[E{G(y)} − E{G(v)}]2 (5.4)

where as before, ρ is a positive constant, v is a zero mean, unit variance Gaussian and
G(.) is a non-quadratic function

G(y) =
log cosh(ay)

a
(5.5)

with 1 < a < 2.

Constrained ICA aims to alleviate the issues of ICA with the help of Lagrange mul-
tiplier methods. Lagrange multiplier methods [11] are a tool for performing constrained
optimization problems following the general form

minimize f (X), subject to g(X) ≤ 0, h(X) = 0 (5.6)

where f (X) is the objective function, g(X) is a set of inequality constraints and h(X) is a
set of equality constraints.

The objective of obtaining the weighting matrix to give the optimum cardiac pulse
using cICA can be fulfilled with the help of the inequality constraint

g(w) = ε(w) − ζ ≤ 0 (5.7)

where w represents a single demixing weight vector of size equal to the number of in-
put channels and ε(w) represents the set of constraints to be satisfied. The optimum w
then extracts the optimum cardiac pulse using y = wTx. Using the average of squared
autocorrelation as a constraint gives g(w) as

g1(w) = ζ1 − E{r2} ≤ 0 (5.8)

where ζ1 denotes the threshold for the lower bound of the optimum autocorrelation. This
constraint guides the optimizer towards choosing the weighting matrix that results in a sig-
nal of high periodicity, with the minimum expectation of its mean squared autocorrelation
as ζ1. Next, the CHROM constraint is defined as

g2(w) = ‖w − wchrom‖ − ζ2 ≤ 0 (5.9)
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where wchrom is the CHROM weighting matrix from equation 5.3, and ζ2 is the threshold
for the upper bound for discrepancy between the optimum and the CHROM weighting
vectors. This constraint guides the optimizer to converge towards the CHROM weighting
matrix wchrom.

5.1.4/ CICA OPTIMIZATION ALGORITHM

The general cICA problem can be defined as [34]

Maximize : J(y) = ρ[E{G(wTx)} − E{G(v)}]2,

Subject to : gi(w) ≤ 0, h(w) = E{y2} − 1 = 0 (5.10)

where J(y) is the one-unit contrast function as defined in equation 4.3, gi(w) is the set of
inequality constraints to be satisfied from equations 5.8 and 5.9, and h(w) constrains the
output y to have unit variance.

The augmented Lagrangian formulation as adapted from [34] was used primarily be-
cause of its robustness owing to the use of penalty parameters to maintain the convexity
assumption [11].

L(w, µ, λ) = J(y) −
1

2γi

[{
[max{0, ḡi(w)}]2 − µ2

i

}]
−λh(w) +

1
2
β ‖h(w)‖2 (5.11)

where ḡi(w) = µi + γigi(w), µi and λ are the lagrange multipliers corresponding to gi(w)
and h(w) respectively. ‖.‖ denotes the Euclidean norm and the terms 1

2γi ‖.‖
2 and 1

2β ‖.‖
2

are the penalty terms that makes sure that the optimization problem is held at the con-
dition of local convexity assumption: ∇2

xxL >0, γi and β being the constraint-wise penalty
parameters.

The first derivative of L w.r.t w required for the optimization given by

L
′

w = ρ̄E{xG
′

y(y)} −
1
2
µE{g

′

i(w)} − λE{xy} (5.12)

where ρ̄ = ±ρ depending on the sign of E{G(y)} − E{G(v)}, G′y(y) and g′i(w) are the first
derivatives of G(y) and gi(w) w.r.t y and w respectively. The Hessian L

′′

wk
is calculated as

L
′′

wk
= ρ̄RxxE{G

′′

y (y)} −
1
2
µE{g

′′

i (w)} − λ (5.13)

the inversion of which is not problematic because Rxx being the covariance matrix of the
whitened and centered signal x is an identity matrix. G

′′

y2(y) and g
′′

i (w) are second order

derivatives and L
′′

wk
is of size m × m which are described in chapter 3 in detail.

The expectation in the equations were calculated by using all the samples of the input
signal x. The first and second derivatives were then fed into the fmincon function of
MATLAB using the interior point algorithm [25] to obtain the final weighting matrix w∗
which was then used to obtain the final rPPG signal. The advantage of the interior point
algorithm over Newton’s method is that at any given iteration, it can choose between a
Newton step or a conjugate gradient step, based on whether the Newton step is possible
or not. Although, the Lagrangian is globally convex in our case, the fmincon function was
used since it provided the convenience of plugging in the derivatives as well as tools for
analyzing iterations and step-wise function and derivative values.
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5.2/ SYSTEM FRAMEWORK

Figure 5.3: Flowchart of the proposed method

Figure 5.3 depicts the entire workflow of the procedure. The workflow follows our
rPPG signal estimation framework where the MAICA method was replaced by the cICA
method. The temporal RGB traces x = [x1 x2 x3]T were obtained and preprocessed using
detrending and normalization in the same manner as described in section 4.2 of chapter
4. The window-wise heart rate from the estimated rPPG signal was also calculated just
as was done with the MAICA method, using FFT filtered between F ∈ [.7, 3] Hz just as it
was done with the MAICA method.

5.3/ RESULTS AND DISCUSSION

The UBFC-RPPG and MMSE-HR databases were used for the analysis of cICA, as for
MAICA. Since the specifics regarding the databases have already been detailed in chap-
ter 3, we can directly discuss the performance of cICA.

Table 5.1 shows the performance comparisons between ICA, cICA, MAICA and other
state of the art methods, viz., PCA [53], Green [42], CHROM [58], POS [83], and G-R [39].
The metrics MAE, SNR and r are as described in chapter 4. As with the MAICA method,
the ICA implementation used for the comparison was adapted from FastICA [26]. It can
be observed that the cICA algorithm gives similar performance to the MAICA algorithm,
albeit a slightly higher MAE for the MMSE-HR algorithm. The addition of the chromi-
nance constraint combats to some extent against periodic disturbances (as discussed
in section 5.1.2), but cannot cope as much with the spurious large movements present
in several videos of the MMSE-HR database, which can attribute the slightly lower MAE
than MAICA.

The cICA algorithm does perform well in comparison to other state of the art meth-
ods. In comparison to MAICA, cICA has the advantage of the ability to incorporate more
constraints without increase in complexity as might happen with MAICA, based on the
a priori information to be incorporated. The computation times of cICA and MAICA are
similar, longer than ICA, owing to the calculation of the autocorrelation and chrominance
values.
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Table 5.1: Performance metrics

UBFC-RPPG
MMSE-HR

SIMPLE REALISTIC

MAE SNR r MAE SNR r MAE r

cICA 0.62 2.01 0.99 3.14 -0.75 0.91 4.69 0.79

MAICA 0.55 2.98 0.99 3.34 -0.26 0.89 3.91 0.86

ICA 0.67 2.70 0.98 6.02 -1.11 0.79 5.84 0.67

PCA 2.04 -1.43 0.97 9.65 -3.45 0.67 9.15 0.49

Green 9.86 -1.61 0.29 7.73 -2.78 0.68 10.65 0.47

CHROM 0.72 3.04 0.99 3.81 -0.93 0.87 5.59 0.83

POS 0.67 2.57 0.99 4.73 -1.60 0.80 5.77 0.82

G-R 0.67 1.97 0.99 9.79 -3.10 0.65 8.56 0.58

It was also worth assessing the resilience of the cICA algorithm against changes in
parameters such as image resolution and window length. This analysis was performed in
two parts. The MMSE-HR database was chosen to assess the effect of changes in image
resolution since it provides images of resolution 1040x1392 which offer the possibility to
asses scaled down versions of the frames, to 35% and 75% respectively, in favor of the
UBFC-RPPG database which provides images of a lower resolution, viz. 640x480 pixels.
On the other hand, due to the shorter duration of videos in the MMSE-HR database,
the UBFC-RPPG REALISTIC dataset was chosen to assess the effect of changes in the
window length, the assessment being done against window lengths of 10 and 20 seconds,
respectively.

Table 5.2 lists the average results of this assessment over the three datasets. The
metrics in the last row correspond to the original results. It was observed that there was
a slight decline in the performance with respect to the window length of 10 seconds,
which is expected, owing to the lack of enough data for the ICA objective function to
establish independence. Correspondingly, frames of lower resolution reflect loss of spatial
information. Even though this loss is in itself not too deteriorating for the signal quality, the
fact that it was coupled with the 15 second window length for the MMSE-HR database,
explains the slightly higher MAE values for frames scaled down to 35% and 70%.

Finally, since cICA is essentially an optimization algorithm where the weights are ran-
domly initialized, it was worth assessing its consistency over multiple runs. Figure 5.5
shows the box plot comparing the MAEs with cICA for the UBFC-SIMPLE dataset with-
out much movement under ambient light, the UBFC-REALISTIC dataset with subjects
working on a computer under ambient light, and the MMSE-HR dataset with subjects
exhibiting facial expressions under indoor lighting. These tests on the datasets were per-
formed 20 times. It is visible from the box plot that the cICA method performs consistently
resulting in MAEs in the range [0.53, 1.96] bpm, [2.49, 4.1] bpm and [2.63, 5.86] bpm for the
UBFC-SIMPLE, UBFC-REALISTIC and MMSE-HR datasets respectively.

The global correlation analysis using window-wise calculations between HRs from
PPG versus RPPG obtained from all the videos in each dataset for the skin-segmented
pixel data for one particular run is presented in Figure 5.4. It is worth mentioning that the
MAE values in figure 5.4 and table 5.1 differ from those in figure 5.5, which are averaged
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Table 5.2: Effect of scale and window length

Temporal

window length

UBFC-RPPG REALISTIC

MAE SNR r

10s 6.19 -1.34 0.72

20s 4.09 -1.18 0.83

30s 3.14 -0.78 0.91

Scale
MMSE-HR

MAE r

35% 7.06 0.57

75% 6.68 0.61

100% 4.69 0.79

(a) ICA for UBFC-RPPG/SIMPLE (b) ICA for UBFC-RPPG/REALISTIC

(c) ICA for MMSE-HR

(d) cICA for UBFC-RPPG/SIMPLE (e) cICA for UBFC-RPPG/REALISTIC (f) cICA for MMSE-HR

Figure 5.4: Correlation analysis of ICA vs cICA

over 20 executions, but are obviously in range. Moreover, differences in range of 10−2

bpm are inconsequential.

As was with MAICA, the analysis of the SIMPLE dataset was quite easy for both ICA
and cICA. However, cICA did remove the few outliers that are present in the case of ICA.
This is reflected in the low MAE and high SNR values as shown in table 5.1. This can
be attributed to the fact that the subjects were generally relaxing, mostly with their eyes
closed, which resulted in minimal motion artifacts.

On the other hand, as with MAICA, the REALISTIC dataset was slightly more chal-
lenging owing to the fact that the subjects were emulating the activity of using the com-
puter, while the MMSE-HR database was challenging owing to the movements exhibited
by the subjects as already mentioned in the discussion of chapter 4.
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Figure 5.5: Box plot of MAE from cICA over 20 observations for the two databases

5.4/ SUMMARY

In this chapter we presented a novel semi blind source separation method for the appli-
cation of rPPG measurements using autocorrelation and chrominance based constraints
to guide the ICA separation process. The cICA using autocorrelation and chrominance
constraints provides better result than simple ICA while removing the extra step for choos-
ing the best component. The periodogram of the extracted signals was also consistently
closer to that of the PPG.

The inclusion of the chrominance constraint can also aid for rPPG measurement in
scenarios comprising of periodic movements. Since in this case, the autocorrelation con-
straint is likely to be contaminated by the signal corresponding to the periodic movement,
the optimizer can favor the signal satisfying both, the autocorrelation and the CHROM
constraints. Furthermore, for improving accuracy, better face and skin detectors and
trackers can be investigated. Also, even though the CHROM constraint helps the conver-
gence to the correct rPPG signal for limited movements, it does fail when they are more
pronounced in speed and intensity. The method can thus benefit with motion compen-
sation which itself is another interesting subject for research. Another limitation of cICA
is the requirement of appropriate thresholds for the constraints in the optimization proce-
dure. A scheme along the lines of the adaptive step-size of the parameter-free MAICA
method can be used for optimal threshold estimation can be used to improve the cICA
method further.

Although cICA and MAICA succeed in incorporating a priori periodicity information as
required, are essentially optimization based methods which have complications often due
to convergence issues. A methodology that avoids the expensive optimization scheme, at
least partly, can be beneficial. Finally, the research undertaken and the results obtained
in this chapter have been published and validated in the Biomedical Online Engineering
journal [b] and in the IEEE E-Health and Bio-engineering conference [ii].

In the following chapter, we propose a new semi-blind source extraction method as an
improvement to the optimization based methods MAICA and cICA discussed so far.
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PERIODIC VARIANCE MAXIMIZATION

A
s already discussed, extraction of underlying source signals from multichannel phys-
iological signal mixtures has been generally performed using Independent Compo-

nent Analysis (ICA) in the context of Blind Source Separation (BSS) in problems such as
extraction of electrocardiogram (ECG) signals, separation of fetal ECG, heart rate estima-
tion using remote photoplethysmography (rPPG) and speech analysis. The independent
components mixed into the multichannel sensor data are typically separated by maximiz-
ing independence, using metrics such as non-gaussianity, kurtosis, or mutual information
[24]. However, BSS methods fail to profit from the quasi-periodic information which is a
very common property among many physiological signals. Furthermore, the periodicity
constraint can also mitigate against small motion and illumination disturbances.

In chapters 4 and 5 we formulated MAICA and cICA, two optimization based algo-
rithms which exploit this periodicity criterion as a priori information to successfully extract
the quasiperiodic physiological signal sources. This exploitation of quasiperiodicity can
benefit in scenarios such as remote, and possibly long-term, monitoring of geriatric pa-
tients and infants, patients with severe physical trauma, computer users and drivers, in
telemedicine, with more and more applications coming to light recently. This criterion
is also exploited in extracting fetal ECG signals from maternal ECG signal recordings
[50] and can be adapted to extraction of other afore-mentioned physiological signals. It
is worth noting that the exploitation of periodicity is not enough in scenarios where the
perturbing signals are themselves periodic, e.g. heart rate measurement in fitness sce-
narios. In such a case, additional constraints would be needed to extract the desired
physiological signals.

However, since these algorithms are essentially optimization based, they are prone to
being inevitably indeterministic and their complexity analysis susceptible to being cum-
bersome. As already seen in the previous chapters, additional regression analysis was
needed to verify the robustness of these methods. Not disregarding the effectiveness of
the methods already developed in the previous chapters, a different avenue for estimation
of the rPPG signal was sought after and is presented in this chapter.

To this end, the iterative subspace decomposition procedure of [50] is enhanced to ex-
tract the underlying quasi-periodic signal of an unknown period embedded into the signal
recordings. This new algorithm, aptly coined as Periodic Variance Maximization (PVM),
is applied to remote photoplethysmography to extract the cardiac signal embedded in the
RGB temporal traces. The PVM algorithm aims to find the unknown period of the desired
signal, by combining two approaches. First, the iterative subspace decomposition proce-
dure, that estimates a periodicity maximizing basis for a given frequency, and second, a
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global optimization algorithm of tabu search to find the frequency with the highest global
periodicity over the search space. The proposed method can be used to extract any de-
sired quasi-periodic signal of an unknown period from a mixture of signals, for any type
of physiological signal measurement scenarios where periodic motion is not involved.

We validate our methodology with the application to remote photoplethysmography
(rPPG) and analyse its performance against two public databases, the UBFC-RPPG [76]
database and the MMSE-HR [84] database. The rest of the chapter is organized as
follows. In section 6.1 we present an overview of periodicity maximization algorithms and
state of the art rPPG methods. The algorithm is described in section 6.2 followed by
performance analysis in section 6.3.

6.1/ RELATED WORK ON PERIODIC SIGNAL EXTRACTION

Sameni et al. have exploited the periodic nature of ECG signals to separate multichannel
fetal and maternal ECG recordings using periodic component analysis. They achieve this
separation by maximizing a measure of periodicity [41]. They further expanded on their
work by proposing a generalized deflation framework to separate the target signal based
on not only periodicity, but any other quantifiable properties, such as SNR, stationarity,
and spectral contrast, from noisy multichannel recordings [50]. However, in their work,
the period of the desired signal to be separated is fixed and known, calculated from the
maternal ECG.

Tsalaile et al. provide an improvement to this method, by allowing the sequential blind
source extraction of quasi-periodic signals having time-varying periods, by diagonalizing
time-lagged autocorrelation matrices at time-varying lags [45]. Despite the ability of their
method to handle periods varying over time, these periods are still known, and are a part
of the a priori information. On the contrary, we propose to extract the quasi-periodic signal
of an unknown period from the signal mixtures.

In the field of speech analysis, Saul et al. have used an eigenvalue method to analyze
and enhance weak periodic signals which is insensitive to phase thanks to the use of
Hilbert transforms. They perform the periodicity measurements using efficient sinusoidal
fits to extract the fundamental frequencies, albeit with extensive auditory preprocessing,
habitual to the domain of speech analysis which are computationally intensive and may
hurt its feasibility for real-time applications.

In this chapter, we propose a method to extract periodic or quasi-periodic signals of
unknown period embedded into multi-channel temporal signal recordings. The proposed
technique is applied to remote photoplethysmography in order to extract the cardiac signal
embedded in the RGB temporal traces. The quasi-periodic cardiac signal is mixed in
the light reflected by the tissue with other signals such as changes in incident light or
motion induced shadow casting variations. This mixed signal is then captured by the
camera. The proposed PVM algorithm aims to find the quasi-periodic cardiac signal from
the mixture. Moreover, contrary to the known problem of fetal ECG extraction [50], the
period is unknown and consequently it is an interesting problem for us.

Recently, research on remote photoplethysmoraphy measurements has been on the
rise where different classes of methods have been proposed to extract the quasi-periodic
cardiac signal embedded in RGB temporal traces built from sequential video frames.
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However, periodicity information has not been exploited in the cotext of rPPG measure-
ment. To the best of our knowledge, the combination of principal component analysis with
periodicity maximization has not been combined for extracting a quasi-periodic signal of
unknown period. The Periodicity Variance Maximization algorithm is presented in the next
section.

6.2/ PROPOSED METHOD

The proposed method aims to extract the quasi-periodic signal embedded in the recorded
signals which is marked by high periodicity, or in other words high periodic variance,
corresponding to its fundamental period τ∗. For a centered temporal signal, y = y(t),
we define high periodic variance at period τ as the property that corresponds to a high
variance

∑
yyT , as well as a high lagged variance

∑
yyτ, where yτ = y(t + τ). Typically, a

periodic or a quasi-periodic signal exhibits high periodic variance at τ corresponding to its
fundamental frequency f = 1/τ. Typical biomedical signals such as electrocardiography,
electromyography, neural and photoplethysmography signals are quintessentially quasi-
periodic and more often than not, periodic.

The method takes as input temporal traces x ∈ RM of length N and M channels, cen-
tered by subtracting the channel-wise temporal means, to extract the most periodic signal
of an unknown period, using y = wT x. Here, w ∈ RM is the optimum weighting vector
which gives the desired signal y with the highest periodic variance, obviously correspond-
ing to the fundamental period of the desired signal. To this end, we use Generalized
EigenValue Decomposition (GEVD) on the pair of the lagged covariance and covariance
matrices of x defined as

Px = xxT
τ , Cx = xxT (6.1)

where xτ are the temporal traces centered and lagged by τ seconds. Estimating the un-
known fundamental period is not an uncommon problem in a broad range of applications.
An optimization scheme can be used to estimate the unknown fundamental period τ∗ of
the desired signal by maximizing a periodicity metric similar to the one defined in [50]
given by

P(τ,w) �
Et{yyτ}
Et{y2}

=
wT Pxw
wTCxw

(6.2)

where Et{·} represents the temporal expectation.

Intuitively, the periodicity metric P represents the extent of periodic information in the
signals since it is the ratio of the lagged covariance matrix to the covariance matrix in
a different basis. If the constituent signals were completely periodic, Px and Cx would
be equivalent giving P = 1. Also, to ensure that the generalized eigenvalues are real,
Px needs to be symmetrized using Px = (Px + PT

x )/2. This symmetrized Px matrix com-
bines the two way variances between the channels, for instance, variances between the
channels (R,G) and (G,R). This symmetrization represents the overall lagged covariance
among the channels to be maximized, to make it as similar as possible to Cx.

It is to be noted that Cx is resymmetrized only to be coherent in scale with Px, since
being a covariance matrix, it is already symmetric. After symmetrization, GEVD is per-
formed on the pair (Px,Cx) to estimate the matrices W and D such that

WT PxW = D, WTCxW = I (6.3)
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where the diagonal matrix D contains the generalized eigenvalues corresponding to the
eigenvectors W = [w1, · · · ,wN], the eigenvalues being real and sorted in the ascending
order along the diagonal.

For a set of temporal signals x ∈ RM, these generalized eigenvectors have three im-
portant properties. First, they correspond to a change of basis onto which the projection
WT x of the original signals x are entirely uncorrelated. This is evident from the fact that
the covariance matrix in this new space given by (WT x)(xT W) from equation 6.3 is diag-
onal, ensuring maximum variance of the data. Second, they also diagonalize the lagged
covariance matrix Px, making the projections of x and xτ on this new basis entirely uncor-
related as well, which is possible only when the lagged signal xτ is extremely similar to
the original signal x at that given lag. In fact, the magnitude of the generalized eigenval-
ues actually reflects the amount of similarity between the original and the lagged signals.
And finally, the first eigenvector w1 corresponding to the largest generalized eigenvalue
that maximizes the ratio defined in equation 6.2, also referred to as the Rayleigh Quotient
[17]. Consequently, the projection of the original signals x to the new basis represented
by w1 captures the maximum periodic content. Owing to these properties of GEVD, it can
be used in an iterative algorithm to extract the components exhibiting high periodicity and
simultaneously containing the maximum information.

6.2.1/ ITERATIVE PERIODIC VARIANCE MAXIMIZATION

We can now proceed with the formulation of an optimization scheme that iteratively maxi-
mizes the periodicity of the projected signals over the range of frequencies corresponding
to the specific application. For instance, in the context of rPPG measurements, this range
corresponds to the human heart rate. Evidently, the optimizer needs to estimate the
optimum value of the pair (τ,w) which maximizes the periodicity metric P equation 6.2.

The most periodic signal can then be obtained by estimating the weighting matrix w∗
that maximizes P over the frequency search space F ∈ [ fmin, fmax]. Of course, owing to
the time domain formulation of our problem, the optimization needs to be performed over
the period τ, with a step of 1/Fs seconds, over the temporal search space τ ∈ [τmin, τmax]
corresponding to the frequency range [ fmax, fmin]. Here Fs is the sampling rate of the
recorded signals. An implicit advantage to this formulation in the time domain is the
restricted search space corresponding to discrete integer time lags of [τminFs, τmaxFs]
which facilitates the use of this method in a live scenario, provided that the sampling rate
is not exceedingly high.

For instance, in the application of rPPG measurement, the frame rate is typically be-
tween 20 to 30 frames/second for conventional cameras. Coupled with the limited range
of human heart rates F ∈ [40, 200] bpm, or [.3, 1.5] second, this makes the live implemen-
tation of this method undoubtedly feasible. Indeed, the search space depends on Fs,
facilitating finer searches at higher frame rates. This two-variable optimization of the pair
(τ,w) can be simplified into the following two steps.

6.2.1.1/ ESTIMATE THE BASIS THAT MAXIMIZES PERIODICITY

The first core step comprises of estimating the weighting matrix w∗, which is nothing but
a change of basis, that maximizes the periodicity metric in equation 6.2 for a given time
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Algorithm 1 Optimum Basis Estimation

1: procedure OBE(x, τ) . Estimate the best w for τ
2: for k = 1 : K do
3: Calculate Px and Cx . Using equation 6.1
4: W ← GEVD(Px,Cx)
5: s← WT x . Project onto new basis
6: [s1...sR]← G([s1...sR]) . Smooth R channels
7: x← W−1s . Back project to original space
8: end for
9: W = [w1 · · ·wM] . M channels

10: y = wT
1 x . Most periodic component

11: w∗ = w1
12: return w∗
13: end procedure

period τ. This sub-method was adapted from [50] and is listed in algorithm 1. It starts with
a GEVD step that orders the components by their periodicity, based on the magnitude of
the generalized eigenvalues. The decomposed signals are then projected onto the new
subspace represented by W. Next, denoising is performed on the first R signals by using
a wavelet denoiser, using the parameters similar to [41]. And lastly, the mixture of the
projected and denoised signals are back-projected onto the original space. With regards
to the denoising step, it could have been applied directly to the input signal x, but the
advantage of applying it after the linear decomposition is that we can benefit from the
improved signal quality of the first few extracted components.

The above steps are repeated for K iterations. The output of this core step is the
periodicity maximizing basis w1 which is the generalized eigenvector corresponding to the
highest generalized eigenvalue of the pair (Px,Cx). Furthermore, for K > 1, the temporal
signals are filtered to enhance periodic components. The impact of different values of K
and R on the eventual estimation of the most periodic signal is presented in section 6.3
with the application of rPPG measurement.

Finally, we can represent the output of this step concisely as a function W(τ) and
consequently rewrite the periodicity metric equation 6.2 solely as a function of τ:

P(τ) =
W(τ)T PxW(τ)
W(τ)TCxW(τ)

. (6.4)

This objective function can now be maximized by using an appropriate optimization
scheme the details of which are presented in the next subsection.

6.2.1.2/ OPTIMIZE THE PERIODICITY METRIC P (τ)

To select an appropriate optimization scheme, the objective function P(τ) in equation 6.4
warrants some examination. First, it is evident that for temporal signals of a specific sam-
pling rate, it is a continuous function over the corresponding temporal search space. The
complexity, however, lies in the calculation of the derivativeW′(τ) owing to the presence
of the GEVD step. In the general sense, differentiation of an eigendecomposition repre-
sents the change in the eigenvalues with respect to change in the original data. Although,
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such a differentiation is mathematically possible, it is admittedly non-trivial [14] [38] and
even more complicated with respect to the period τ, which points towards the use of a
derivate free optimization approach.

Figure 6.1: Typical distribution of P(τ)

Another feature of interest was the shape of the objective function. To assess this,
application to the problem of rPPG signal estimation was chosen. Using videos from
UBFC-RPPG and MMSE-HR databases the objective function values of P(τ) for several
videos from UBFC-RPPG and MMSE-HR databases were examined. Figure 6.1 shows
the variation of P with respect to τ, calculated over a window of 15 seconds for a typi-
cal video, taken from the MMSE-HR database. It can be observed that the variation of
P(τ) is prone to multiple local maximas. This is expected behavior owing to the product
xxT

τ in the calculation of P(τ). Specifically, a signal with a real period of τ∗ seconds will
exhibit a relatively higher value for P(τ)|τ=τ∗ . Accompanied by this global maximum are
local maximas exhibited at τ = nτ∗, n ∈ Z, albeit lower than P|τ=τ∗ , and with magnitudes
inversely proportional to n. This appearance of multiple local maximas, with decreasing
magnitudes, is similar to the plot of the autocorrelation function. Additionally, the advan-
tage of a limited search space, suggests the use of a global optimization scheme for best
results. Algorithms that have the ability to escape local optimas serve as an appropriate
solution.

Consequently, the tabu search algorithm [16] was used to perform the global opti-
mization of P(τ). Glover describes tabu search as a meta-heuristic superimposed on
another heuristic. As the name suggests, tabu search strives to escape local optimas by
disallowing already examined function values, nominating them as tabu moves. In this
respect, it can also be considered a "weak inhibitive" search, where in our case, the best
τ is searched intelligently over the limited search space to obtain the optimum, instead of
doing a brute force search. However, even though the inhibitive search results in reduced
computation times, a brute force search isn’t too computationally taxing in our case, ow-
ing to the limited search space. But the advantage of tabu search lies in its ability to be
overlain on a more sophisticated optimization scheme if needed. This in turn renders the
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Figure 6.2: System framework and Periodic variance maximization overview

PVM method more flexible. For instance, in applications where the search space might
be larger, a more advanced optimization scheme can be easily used instead of the weak
inhibitive search used in the application of rPPG measurement.

6.2.2/ PERIODIC VARIANCE MAXIMIZATION APPLIED TO RPPG SIGNAL ESTIMA-
TION

We present here the applicability of the PVM algorithm implemented in the context of
rPPG signal estimation using sequential video data from conventional cameras. The
workflow of the procedure as depicted in figure 6.2 is presented here whose acquisition
and preprocessing steps are similar to those for the cICA and MAICA methods. The
temporal RGB traces, x = [x1, x2, x3]T were also generated in the same manner as for the
analysis of cICA and MAICA the details of which have already been presented in chap-
ter 4, and were detrended and normalized as before. These traces were then passed
to the PVM algorithm which performed GEVD on the lagged covariance and covariance
matrices Px and Cx after which the first channel was denoised, giving the final rPPG sig-
nal. The rPPG signal was then post-processed using the same Kalman filtering scheme
and the heart rate calculated using the same FFT scheme as for MAICA and cICA. We
present the results of the experiments in the next section.

6.3/ RESULTS AND DISCUSSION

Similar to the analysis of cICA and MAICA, the PVM algorithm was validated using the
UBFC-RPPG and MMSE-HR [84] databases the details of which can be found in chapter
3. The performance analysis of the PVM method is presented here.

Figure 6.3 presents the overall correlation analysis between the PVM method and the
CHROM method which in our experience is one of the most consistent and computation-
ally efficient methods for rPPG estimation. The performance of the PVM method is similar
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(a) CHROM for UBFC-RPPG/SIMPLE (b) CHROM for UBFC-RPPG/REALISTIC (c) CHROM for MMSE-HR

(d) PVM for UBFC-RPPG/SIMPLE (e) PVM for UBFC-RPPG/REALISTIC (f) PVM for MMSE-HR

Figure 6.3: Correlation comparison plots for CHROM vs PVM. The metrics PRECIS 2.5 and
PRECIS 5 represent the percentage of windows where δ = |HRrPPG − HRPPG | < 2.5 and 5 bpm
respectively.

to that of the CHROM method, albeit with a slightly higher average MAE. However, it can
be clearly seen that PVM exhibits a higher correlation between PPG and rPPG heart
rates, with the values more grouped towards the ideal correlation line, especially for the
MMSE-HR dataset in figure 6.3f.

Table 6.1 shows the performance comparisons of PVM, cICA and MAICA with other
state of the art methods, viz., ICA [24], PCA [53], Green [42], CHROM [58], Plane Or-
thogonal to Skin (POS) [83], and G-R [39], the ICA implementation being adapted from
FastICA [26] as mentioned before. As earlier, only the MAE values for the MMSE-HR
dataset are presented since the SNR values are inconsequential owing to the absence of
the groundtruth PPG signal.

One possible hypothesis for this inconsistency in the MAEs can be as follows. Since
the REALISTIC dataset was recorded under ambient light, the effect of the fluorescent
light source in certain videos was more pronounced, most probably due to lesser ambient
light. The 50 Hz flicker of fluorescent lights is a well known problem in video recordings
where each video frame is exposed at different light pulses. The discrepancy between
our 30 Hz frame rate and the 50 Hz flicker might result in a perturbed periodic signal
which overshadows the cardiac signal in certain cases and is selected by PVM.

The CHROM method is able to overcome this problem because of the projection of
RGB signals onto a different subspace where only the reflections specific to the skin
properties are enhanced. On the other hand, all the videos in the MMSE-HR database
were recorded with a more sophisticated lighting setup, thus avoiding such an issue and
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Table 6.1: Performance metrics for PVM

UBFC-RPPG
MMSE-HR

SIMPLE REALISTIC

MAE SNR r MAE SNR r MAE r

PVM 0.93 2.01 0.99 4.47 -0.22 0.82 4.38 0.82

cICA 0.62 2.01 0.99 3.14 -0.75 0.91 4.69 0.79

MAICA 0.55 2.98 0.99 3.34 -0.26 0.89 3.91 0.86

ICA 0.67 2.70 0.98 6.02 -1.11 0.79 5.84 0.67

PCA 2.04 -1.43 0.97 9.65 -3.45 0.67 9.15 0.49

Green 9.86 -1.61 0.29 7.73 -2.78 0.68 10.65 0.47

CHROM 0.72 3.04 0.99 3.70 -0.32 0.87 5.59 0.83

POS 0.67 2.57 0.99 4.73 -1.60 0.80 5.77 0.82

G-R 0.67 1.97 0.99 9.79 -3.10 0.65 8.56 0.58

resulting in a better performance for the PVM method. However, the estimation and
elimination of this background flicker is in itself not a difficult issue and can be solved with
an appropriate filtering scheme, which incidentally is one of the issues we aim to address
in our future work.

It can also be observed from the metrics that the cICA and MAICA methods provide
lower MAEs and higher SNRs than the PVM method. Since PVM primarily performs
maximization of periodicity and correlation, it is more susceptible to the effect of the 50Hz
flicker light as compared to cICA, which optimizes over the entire search space with the
help of the chrominance constraint, and to MAICA, which chooses from multiple candi-
date solutions thanks to the multi-objective optimization scheme. However, the precise
reason because of which these methods are slightly more accurate, which is the exhaus-
tive optimization over the entire search space, is the cause of their longer computational
times. In this respect, the PVM finds the most periodic signal, without the expensive op-
timization, and thus is fast enough to be used in a real-time environment, since for each
frame, only tabu search (over a small search space) and GEVD calculation is needed.
As is in many computational paradigms, there is a trade-off here between speed and
accuracy, which of course can be improved by a more sophisticated filtering scheme to
remove the background filter.

The MMSE-HR database was challenging owing to it being an emotion elicitation
database and the already discussed issue of subjects exhibiting large motion since they
were required to express those specific emotions. Interestingly, the PVM method out-
performed the CHROM method by a larger margin for this database. This highlights the
relative robustness of the PVM method against motion variances as well. The better per-
formance of the PVM method can also be attributed to the sophisticated lighting setup of
the MMSE-HR database, as is evident from the narrower spread and the closeness of the
fitting line the 45◦ line for PVM as compared to CHROM.
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Figure 6.4: Box plot of MAE from the PVM and ICA algorithms over 20 observations for the two
databases

Effect of the parameters K and R on the overall result The value of K depends on
the number of dimensions of the desired subspace, which is 2 in our case. However, for
our application, a value of K = 1 gives optimal results, which again makes this algorithm
suitable for use in live scenarios. Similarly, the performance of the method with respect
to R ∈ [1 : M] where M = 3 is the number of channels, was also performed. It was
equally observed the algorithm was able obtain the most periodic component even by
denoising just one channel thanks to the efficiency of the GEVD step to successfully sort
components in order of decreasing periodicity.

Finally, to assess the consistency of the overall algorithm, and because of the use
of the tabu search global optimization, it was worth assessing the performance of the
method over multiple runs. Figure 6.4 shows the box plot comparing the MAEs with
the PVM and ICA algorithms for the two challenging datasets: the REALISTIC dataset
from the UBFC-RPPG database, with subjects working on a computer under ambient
light, and the MMSE-HR dataset with subjects exhibiting facial expressions under indoor
lighting. These tests on the datasets were performed 20 times. The PVM method has
a consistent performance, giving MAEs in the range [4.39, 4.55] bpm and [4.10, 4.62] bpm
for the UBFC-RPPG/REALISTIC and MMSE-HR datasets respectively. The consistency
analysis for the other baseline methods was not required because only the PVM and
ICA methods are optimization based. The box plots for the SIMPLE dataset are not
shown since they exhibit MAEs of less than 1 bpm for both PVM and ICA methods and
their comparison was deemed inconsequential. It is also worth mentioning that the MAE
values in figure 6.3 and table 6.1 differ from those in figure 6.4, which are averaged over
20 executions, but are obviously in range. Moreover, differences in range of 10−2 bpm are
inconsequential.
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6.4/ SUMMARY

A slightly different approach as compared to traditional optimization (for the principal ob-
jective function) was presented in this chapter. The Periodic Variance Maximization algo-
rithm extracts the most periodic signal of an unknown period from a mixture of temporal
recordings, with a drastically reduced search space, thereby opening up the possibility for
it to be used in real-time applications. Moreover, the PVM algorithm is fairly generic and
can be used in any problem domain where periodicity maximization, or maximization of
properties such as SNR or spectral contrast is called for, in which case it would maximize
the specific property. It can also be combined with smart-ROI selection methods to exploit
the spatial and/or facial features to enhance the resulting signal. Its vulnerability, however
lies with scenarios having periodic motion, e.g. fitness based rPPG signal estimation.
Motion compensation schemes, which itself is another subject of research, can be bene-
ficial in such cases. Future work comprises of addressing the issue of perturbation arising
from background light flicker.The work presented in this chapter and the corresponding
results obtained have been published and validated in the Computer Vision for Physiolog-
ical Measurement workshop, in the Computer Vision and Pattern Recognition conference
[iii]. The extension of the PVM algorithm to the multi-linear case using tensor analysis to
estimate rPPG signal strength across the skin region is discussed in the next chapter.





7
GENERALIZED EIGENVALUE
DECOMPOSITION IN HIGHER

DIMENSIONS

I
n the previous chapter we presented the Periodic Variance Maximization (PVM) al-
gorithm that extracts the most periodic component from temporal mixtures of RGB

channels obtained by frame-wise spatial averaging. We also discussed the issue of infor-
mation loss with spatial averaging and the requirement of extending the PVM algorithm
to a higher dimensional case where the essential spatial information is kept intact. This
spatial information is significant because there might be interesting relationships between
signals arising from different positions such as changes in the signal strength at different
positions due to spatial variations in the blood perfusion.

To validate the idea of the spatial variation of relative strength of the rPPG amplitude,
an initial experiment was performed where 10 videos were recorded using a setup so as
the face remains completely stationary. Videos were recorded at 30 frames/second, at
a resolution of 1024 × 768 pixels, and the rPPG signal was obtained from face cropped
regions of the video for each pixel using the CHROM method [58] after resizing to 580×520
to reduce quantization noise. After that, pixel-wise heart rates were calculated using FFT
filtered between the normal human heart rate range of [.7, 3] Hz. Finally, pixel-wise SNRs
were calculated and averaged over all the frames across all the videos. Figure 7.1 shows
a sample video frame depicting the setup on the left and the average SNR map on the
right. It can be observed from the SNR map that the relative amplitude of the rPPG signal
varies across the face, and is stronger around the forehead and cheek regions. In fact,
this knowledge is not entirely new, and has been utilized in various smart-roi based rPPG
extraction methods as discussed in chapter 2 [81], [63], [70].

In the context of rPPG measurement, the methods that have been developed up until
now in this thesis, and for that fact, most others in literature, average the skin pixels,
thereby essentially loosing these spatial relationships. Moreover, for other signal sources
such as ECG and neural signals, keeping all the sources is indispensable for an accurate
analysis of the problem at hand. However, a related point to consider is that one of
the well-known uses of spatial averaging, as is seen in the commonly used operation of
smoothing, is the reduction in quantization noise. This fact is vital and needs to be taken
into consideration while implementing any algorithm that deals with spatial information.

To develop such a spatially aware algorithm a relevant application is crucial. Apro-
pos of this requirement, the application of Spatial rPPG Distribution Estimation (SrPDE)
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(a) Setup for stationary face videos (b) The SNR map

Figure 7.1: Relative strength of the rPPG signal across the face obtained using the CHROM
method.

is an interesting challenge with its abundance of spatial information, especially found in
facial videos. The results of SrPDE can reveal underlying information about the relative
spatial amplitude across the skin region, or perhaps even the PPG transit time, which
represents the phase differences in the rPPG signal across various spatial points on the
skin. A straightforward but naive solution to this problem would be to repeat the PVM
algorithm, or in that case, any algorithm that works on averaged signals, for every pixel.
But apart from being uninventive, this sequential treatment of the problem is prone to
being computationally expensive, redundant and highly unscalable. Although paralleliza-
tion and machine level optimizations can assuage this problem to a certain extent, the
improvements obtained by such techniques on a fundamentally redundant method shall
be limited.

A more interesting and advantageous alternative might be to design an algorithm that
can perform a suitable core method simultaneously on a set of values (pixels), while
giving the same results as when the method was performed sequentially on each value
(pixel). Such a method would even prove advantageous in applications apart from SrPDE,
especially dealing with temporal data, where a core algorithm needs to be repeated over a
spatial distribution. For conserving homogeneity and coherence with the thesis, we shall
develop the theory behind such an algorithm with regards to the application of SrPDE,
keeping in mind, however, that the algorithm should be adaptable to a different application
without much effort. The core idea behind such an algorithm is explored next.

Let us consider the covariance C between the RGB channels calculated over a tem-
poral window of N samples, for each pixel of the video frame of size W × W. Figure 7.2
depicts this matrix of size 3W × 3W made up of a block matrix of size W ×W, where each
3 × 3 block represents the pixel-wise covariance. Consider a simple operation, such as
a linear combination aCk,l

(1,3) + bCk,l
(2,3) between the (1, 3) and (2, 3) elements of each block.

Here k, l ∈ [1,W] represent the row and column indices of each block in C. One manner of
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Figure 7.2: Transformation of sequential block-wise operation to simultaneous vectorized opera-
tion on a 3rd order tensor. Block-wise operation between to scalar elements is transformed into an
operation between two vectors (blue and green cuboids).

performing this operation simultaneously is to perform the vector operation ac(1,3) + bc(2,3)
where c(i, j) represents the vector formed by the elements (i, j)w from the tensor obtained
after transforming the matrix C, and where i, j ∈ [1, 3] and w = (i − 1)W + j such that
w ∈ [1,W2], as shown in figure 7.2 for W = 4. In this transformation, each 3 × 3 block of
C is concatenated in the 3rd dimension, row by row to obtain a tensor of size 3 × 3 ×W2.
This leads to the possibility of performing implicit parallelization which is found in modern
high level languages, such as MATLAB [95], in the form of vectorized operations. Vec-
torized operations are themselves an independent subject of research in optimization for
speeding up mathematical operations on arrays using low-level custom instructions [85].

Using such a tensor representation, simple operations can be easily performed over a
large number of block matrices, which in essence are computationally more efficient than
sequential operations on each block. The challenge, however, lies in iterative algorithms
which might affect each block separately, but can be solved using appropriate manip-
ulations (which we shall discuss later in sections 7.2.1 and 7.2.2). In this chapter we
describe the development of such a higher dimensional analogue for the core algorithm
of the PVM method, the Generalized Eigenvalue Decompisition (GEVD). Specifically, we
extend the QZ algorithm [46] which is used for GEVD calculation of a pair of matrices,
to two higher dimensional variants, starting with the Block QZ algorithm and culminating
in its optimized successor the Tensor QZ algorithm. We start with formally defining the
application of SrPDE in the next section, followed by the idea of block diagonalization and
its analogy to simultaneous diagonalization of flattened block matrix of size W ×W, com-
posed of 3 × 3 blocks1. Then, we review the original QZ algorithm for completeness and
relevance to our higher dimensional case, a detailed treatment of which can be referred
to in the original work [46]. Next we present the Block QZ algorithm, its advantages and
pitfalls, and finally the Tensor QZ algorithm which is essentially a transformed version of
the Block QZ algorithm.

1We stick to the development based on SrPDE, where the covariance between RGB channels results in
3 × 3 blocks per pixel. However, for a different application, the number of channels m must be used instead
of 3 and the algorithm steps adapted accordingly.
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7.1/ SPATIAL RPPG DISTRIBUTION ESTIMATION

For the application of Spatial rPPG Distribution Estimation (SrPDE), as mentioned ear-
lier, pixel by pixel sequential application of the PVM algorithm, or in that case, any rPPG
signal estimation algorithm, is a naive solution. It is worth noting here that for this spe-
cific application, an analytic method such as CHROM [58] can be quite easily scaled up
for pixel-wise estimation. However, the CHROM method is essentially tailored towards
rPPG measurement, whereas the PVM method is more generic in nature and can be
easily adapted to other types of BSE problems. On the other hand, BSS and semi-BSE
methods such as ICA, cICA and MAICA, have the complications of being optimization
based and the required calculation of autocorrelation and chrominance functions and
their derivatives, the combination of which makes these methods ill-suited for a higher
dimensional transformation. Based on this arguments a higher dimensional analogue of
the GEVD algorithm proves to be the most appropriate choice for this application.

With respect to the problem of SrPDE, for simplifying the computations we restrict
the calculations to square video frames, which is quite feasible since we do crop each
frame to the face, giving tensors of size W × W × 3 × 3. Also, these covariance and
periodic covariance tensors shall be calculated using the fundamental period obtained
from the averaged signal initially. Nonetheless, it would indeed be interesting to compare
the SrPDEs over different periods and build the final Spatial rPPG Distribution (SrPD),
much like it was done using tabu search in chapter 6. This seems the most obvious
course of future work, though in this chapter, we develop the core SrPDE algorithm.

To construct the input data, we start with the pixel-wise formulation of the PVM al-
gorithm. The method extracts the quasi-periodic signal representing the cardiac pulse
corresponding to a fundamental period τ, by constructing covariance and periodic covari-
ance matrices Cx and Px, the details of which have already been discussed in chapter
6. For an RGB temporal signal of x ∈ R3×N with N discrete samples, Cx and Px are of
size 3 × 3, which when estimated over each pixel result in a tensors Px and Cx of size
W × H × 3 × 3 where W × H is the size of the video frame. For signal extraction sce-
narios other than the rPPG signal estimation, the tensor sizes will obviously be different,
especially the number of channels might be more than 3. However, as mentioned earlier,
the theory and algorithms developed in this chapter can be easily adapted to different
channel sizes.

Before examining block diagonalization, it is worth mentioning here that there was
an initial attempt at performing SrPDE using generic higher dimensional analysis using
tensors. One of the algorithms attempted, but which was unsuited for the problem at
hand was multilinear PCA (MPCA) [40]. It was chosen because of the fact that the PVM
method can be thought of as a modified periodic PCA. This is not far from the truth, since
PVM strives to find a subspace that maximizes the covariance as well as the periodic
covariance of the underlying source data. In essence, a straightforward extension would
be to perform multilinear PVM adapted from the algorithm of MPCA.

However, the issue with MPCA and Higher Order SVD (HOSVD) [44] for the case
of SrPDE was due to the fact that these techniques are aimed to discover underlying
relationships between the source variables just like PCA, except for in higher dimensions.
As a result of this requirement, there is no possibility to treat a specific dimension of the
source data, for instance the temporal dimension in the case of biomedical signals, as
the desired one for calculation of the covariance. In other words, searching for highest
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variance (and periodic variance) only in the temporal dimension is not feasible using
MPCA or HOSVD, since it tries to maximize the covariance across all the dimensions.
As a result, although a very interesting and seminal work in its own, MPCA could not
be used for the problem of spatial rPPG distribution estimation and a different alternative
was sought after.

In the next section, we dive into the details of formulating a strategy that effectively
performs GEVD for the pair of lagged covariance and covariance matrices over each
pixel, without performing it sequentially, pixel by pixel.

7.1.1/ BLOCK DIAGONALIZATION

A viable option is to flatten the tensors Px and Cx into matrices, and rearrange them in a
manner that emulates implicit parallelism. This formulation should effectively perform the
diagonalization of the pixel-wise pair of 3 × 3 matrices, P(k,l,t)

x and C(k,l,t)
x , where k, l ∈ [1, 3]

and t ∈ [1,W2] as before. Such a rearrangement of the tensors into matrices leads to the
possibility of performing block diagonalization, which is not a new concept in itself, and
has been shown to be equivalent to calculating the eigenvalues and eigenvectors [9]. It
has indeed been used to solve the eigenvalue problem for certain applications [12], [15],
[28] and [47] which, in fact, led to the idea of using it in SrPDE. It comprises of extending
the general eigenvalue problem to calculation of block eigenvalues and eigenvectors [8]
which are defined later in this section. Block diagonalization is defined only for matrices
in R2 which leads us to the requirement of flattening the tensors Px and Cx.

To elaborate, let us consider the Px and Cx tensors of size W ×W × 3× 3, representing
the spatial lagged covariances and covariances per pixel, calculated over N samples,
corresponding to video frames of size W × W. The lagged covariance and covariance
matrices per pixel occupy the third and fourth dimension of Px and Cx. Flattening these
tensors will lead to the source matrices Ps

x and Cs
x of size 3W × 3W as depicted on the left

of figure 7.3. Ps
x and Cs

x are reshaped versions of the tensors Px and Cx, where the 3 × 3
lagged covariance and covariance matrices per pixel, Px and Cx, are flattened onto the
first and second dimensions resulting in block matrices of size W × W made up of 3 × 3
blocks. These block matrices are then rearranged into 3 × 3 block matrices, Px and Cx,
with each block of size W × W. This rearrangement is at the core of enabling the use
of block diagonalization. Such an interlaced matrix is depicted on the right of figure 7.3.
The block diagonalization of these interlaced block matrices, would then be equivalent to
diagonalizing each pixel-wise pair of 3 × 3 blocks, which itself is equivalent to performing
generalized eigenvalue decomposition on those pixel-wise pairs. The obvious advantage
of this is the elimination of redundant steps performed per pixel.

We present here the details of the interlacing process. Let Ps
x and Cs

x represent the
source matrices obtained by flattening Px and Cx as depicted on the left of figure 7.3.
The interlacing operation I is depicted in figure 7.3. Any arbitrary element in the original
matrix on the left can be depicted by Xk,l

i, j , where the subscripts i, j ∈ [1, 3] represent the
indices in the 3 × 3 block and the superscripts k, l ∈ [1,W] represent position of the 3 × 3
in the W ×W block matrix. After translation the element Xk,l

i, j occupies a new position Xi, j
k,l

of the now 3 × 3 block matrix with each block of size W × W. That is, after interlacing,
any block i, j of size W ×W in the interlaced matrix on the right is occupied by the (i, j)th

elements of the 3 × 3 block corresponding to all the pixels. For example, every top left
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Figure 7.3: Interlacing the W × W matrix of 3 × 3 blocks (left) to a 3 × 3 matrix of W × W blocks
(right)

element of each 3×3 block shall be grouped into the top left W ×W block after interlacing.

I(Xk,l
i, j) = Xi, j

k,l (7.1)

The effect of this interlacing is that its block diagonalization produces zeros in all
the blocks except the diagonal blocks. If this diagonalization follows the principles of
eigenvalue decomposition using, for instance, unitary transformations, the block diago-
nal matrix should represent the block eigenvalues [9]. Block diagonalization and block
eigenvalue decomposition has not seen much exposure in biomedical signals analysis,
although the underlying theory is well established and dates a few decades. The basic
idea behind the block eigenvalue problem is presented here [8],

Definition 4: Block Eigenvalue

A matrix X of order n is a block eigenvalue of order n of a matrix A of order mn
if there exists a block vector V of full rank, such that AV = VX. V is a block
eigenvector of A.

where the matrix A is block partitioned into m × m blocks of n × n matrices and the block
vector V is of size mn × n [27]. Block diagonalization seeks to obtain a transformation
under which matrix A is similar to a matrix D of the form

D =

[
A1 0n

0n A2

]
= S −1AS , (7.2)

where 0n denotes the zero matrix of order n, and m = 2 in the above example. This defini-
tion can be naturally applied to the eigenvalue problem where D turns out to be the matrix
of block eigenvalues of order n and S turns out to be the matrix of block eigenvectors of
order mn × n, Vi where i ∈ [1,m].
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We take the opportunity here to mention that use of Matrix Sector Functions (MSF)
[13] for block diagonalization was initially investigated. MSF is an interesting fast algorithm
that has one of its applications as the block diagonalization of square matrices. This
algorithm was initially tested, but was deemed unsuitable due to it operating on a single
matrix and its inability to control the size of the resultant block eigenvalues. The first
issue required the conversion of the GEVD problem of two matrices A and B given by
Av = λBv, where λ is an eigenvalue and v is the corresponding eigenvector, to the eigen
decomposition of the single matrix C = B−1A which may be problematic. Added to the
second issue of not being able to fix the block eigenvalue sizes, this algorithm could not
be used for the application of SrPDE, although block diagonalization on synthetic matrices
was quick and accurate.

Finally, owing to the lack of readily usable algorithms for block generalized eigenvalue
decomposition it was decided to go back to the roots and directly extend the ubiquitously
used QZ algorithm [46] for generalized eigenvalue decomposition. The rest of this sec-
tion is organized as follows. We first present an overview of the original QZ algorithm for
completeness and as the basis for the extended block and tensor based algorithms. Ow-
ing to its generic nature, these algorithms shall be easily adaptable to applications that
need spatial coherence in conjunction with temporal signal mixtures, in addition to the
application of SrPDE. Then we detail the formulation of the Block QZ algorithm with Block
Householder reflections. Finally, these two block based algorithms are then optimized to
their tensor-based equivalents. This optimized version was required owing to the iterative
step in the QZ algorithm the details of which are presented in the next section.

7.1.2/ THE QZ ALGORITHM

The QZ algorithm was first introduced by Moser et al. to solve the generalized matrix
eigenvalue problem Ax = λBx with general square matrices A and B [46]. When B is
not singular, this problem reduces to the eigenvalue decomposition problem B−1Av = λv.
However, when B is non-invertible, the traditional eigenvalue decomposition algorithm
cannot be used. Even when B is non-singular, there might be other issues such as the
problem being ill-posed with a large difference in the the magnitude of the eigenvalues or
e.g. when A and B have a common null space which reduces det(A− λB) to zero. The QZ
algorithm was born out of this necessity to be able to find the generalized eigenvalues of
even near-singular matrices. It gets its name from the idea that there are unitary matrices
Q and Z so that QAZ and QBZ are both upper triangular and that the corresponding
eigenvalue problems QAZy = λQBZy and Av = λBv are unitary equivalent. Owing to this
equivalence, the eigenvalues for both the problems are identical and the eigenvectors
fulfill the equation v = Zy.

At its core, the algorithm employs Householder transformations [3], which are unitary
transformations that can be used to transform a matrix to its upper triangular form and are
described in section 7.1.2.2. The algorithm performs the Householder transformations in
a strategic manner so as to simultaneously triangularize a given pair of matrices, after
which the generalized eigenvalues can be extracted. A summary of the QZ algorithm is
presented here, followed by a detailed explanation and a pictorial aid in tables 7.1 and
7.2 in order to better understand the higher dimensional analogues.

The QZ algorithm comprises of four steps, which use Householder transformations to
place zeros at strategic locations in the matrix. To summarize, the first stage comprises
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of reducing the matrix A to upper Hessenberg form, while simultaneously reducing B to
upper triangular form. A Hessenberg matrix is similar to an upper triangular matrix except
that it has non-zero elements on its sub-diagonals. The second stage is a generalization
of the implicit double shift QR algorithm [5] [7] which, incidentally, is used to calculate the
eigenvalues of real and complex matrices. This reduces A to a quasi-triangular form, with
no two consecutive sub-diagonal elements equal to zero, while maintaining the upper-
triangularity of B. The third stage then takes care of reducing the quasi-triangular matrix
A to triangular, thereby allowing the extraction of eigenvalues. Finally, the last stage com-
prises of extracting the eigenvectors from the triangular matrices and projecting them
back on to the original coordinate space. Our block and tensor QZ algorithms essentially
extrapolate these four stages to higher dimensions by operating on blocks of matrices
and tensors at a time instead of a single matrix and vectors. Owing to the abundance
of libraries for matrix operations and vectorization, such a formulation provides a com-
putational advantage as compared to pixel-wise redundant GEVD. These algorithms are
described in sections 7.2.1 and 7.2.2, after a review on Householder transformations,
followed by its higher dimensional variants in section 7.1.2.2.

7.1.2.1/ ALGORITHM DETAILS

The QZ algorithm gets its name from the standard notation of orthogonal matrices Q, Z
being the orthogonal matrices that introduce zeros in specific locations in the matrix. A
Householder transformation Hr(k) transforms a vector such that there remain r − 1 zeros
after its kth element. These vectors can be either columns or rows. When the vector is a
column, the transformations Qm are always pre-multiplications applied to rows k through
k + r − 1. When the vector is a row, the transformations Zm are post-multiplications ap-
plied to columns k through k + r − 1. These transformations are always applied on the
pair of matrices. The algorithm does not actually provide the eigenvalues λi but gives
αi and βi, the diagonal elements of QAZ and QBZ, Q and Z being the product of all the
orthogonal transformations Qm and Zm respectively. The eigenvectors can then be calcu-
lated using the product of the accumulated Zm. Table 7.1 summarizes the steps of the QZ
algorithm. We present the salient parts of the QZ algorithm here so that the discussion of
its higher dimensional analogues is coherent, followed by the detailed description of the
Householder transformation in section 7.1.2.2.

Before looking at the algorithm in detail, it is worthwhile to describe the notations used
in tables 7.1 and 7.2. The graphics in these tables serve as an overview of the state of
the matrices before and after these operations. Note that the matrices of order n = 6 are
used in graphics for relevance to the global comprehension. The elements that need to
be reduced are highlighted by using a black square around them. The rows or columns
that are being manipulated are indicated by arrows. For all the operations, the pre or post
multiplications affected by Q and Z respectively, are applied to the pair of matrices. On the
other hand, the depiction of iterative steps are admittedly difficult and would benefit from
a better visual aid such as a moving picture. To make do, the iterative steps are depicted
as recursing arrows pointing in the direction of increasing loop index. For an exhaustive
explanation of each step, the reader is advised to refer to the original paper [46].

Stage 1 The first stage of the algorithm is quite straightforward and comprises of us-
ing Householder reflections to reduce B to triangular and A to upper Hessenberg form.
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Before After

Reduce A to upper Hessenberg and B to triangular form

1. For k = 1, 2, · · · , n − 1,

(i) choose Qk ∈ Hn−k+1(k) to
nullify bk+1,k, bk+2,k, · · · , bn,k

(ii) B← QkB, A← QkA

2. For k = 1, 2, · · · , n − 2,

(i) For l = n−1, n−2, · · · , k+1,

(a) choose Qkl ∈ H2(l) to nul-
lify al+1,k

(b) A← QklA, B← QklB

(c) choose Zkl ∈ H2(l) to nul-
lify bl+1,k

(d) B← BZkl, A← AZkl

For k = 1, 2, · · · , n − 2,

Iterative strategy to reduce A to quasi-triangular, keeping B triangular

1. Compute a10, a20, and a30,
using 7.5

2. For k = 1, 2, · · · , n − 2,

(i) determine Qk ∈ H3(k) to
nullify ak+1,k−1 and ak+2,k−1

(ii) determine Z
′

k ∈ H3(k) to
nullify bk+2,k+1 and bk+2,k

(iii) determine Z
′′

k ∈ H2(k) to
nullify bk+1,k

Table 7.1: A summary of QZ algorithm to obtain generalized eigenvalues and eigenvectors of a
square matrix of order n . The graphics on the right depict the state of the matrices before and
after a given operation. Stages 1 and 2.
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3.
Determine Qn−1 ∈ H2(n −
1) to nullify an,n−2

4. Determine Zn−1 ∈H2(n−1)
to nullify bn,n−1

Reduce quasi-triangular A to triangular, keeping B triangular and extract the
eigenvalues

1. For every 2 × 2 block above the non-zero sub-diagonal elements

(i) Compute the eigenvalue λ from the characteristic equation after applying the
appropriate origin shift

(ii) Choose Z ∈H2 to nullify the first element of the larger of the two rows of A−λB

(ii) Choose Q ∈H2 to annihilate the (2, 1) element of the smaller of the two matri-
ces of AZ and λBZ

Compute the generalized eigenvectors of the reduced problem by back-
substitution, as in the ”hqr2” method [7]

Table 7.2: Overview of the QZ Algorithm, continued. Stages 3 and 4

The triangularization of B is done by successive applications of Householder reflections
Hn−k+1(k) for each column k ∈ [1, n − 1]. Next, the modified A is then reduced to upper
Hessenberg form iteratively nullifying elements below the diagonal denoted by A(l,k) where
l ∈ [n − 1, k + 1] for each column k ∈ [1, n − 2]. Each elimination is performed by a row
operations using Q which introduces a rogue element in the already triangular B. This
rogue element is nullified by using an appropriate column operation (see step 2. of the
first part in table 7.1). At the end of this process, A is converted to upper Hessenberg
form and B is converted to upper triangular form.

Stage 2 The second stage comprises of executing an iterative scheme that reduces A
to quasi upper-triangular form, in which no consecutive subdiagonal elements are non-
zero, while keeping B triangular. To do so, the implicit shift method for the QR algorithm
[5] is generalized to the QZ algorithm by using unitary equivalences. To justify the use of
implicit shifts, it would be prudent to discuss the explicit QZ step, which approaches the
reduction of A to upper triangular form by assuming that B is non-singular and examining
the standard QR algorithm for C = AB−1 which uses implicit shifts 2. In brief,

1. The transformation Q is determined such that QC is upper triangular.

2A shift σ applied to a matrix C is obtained as C − σI. The similarity to the eigenvalue problem is not
coincidental here.
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2. Then a Z is determined such that QAZ is upper Hessenberg and QBZ is upper
triangular.

3. A and B are updated as QAZ and QBZ respectively.

This outline is then developed into a series of unitary transformations operating on A and
B instead of AB−1 which fulfills the goal of transforming A and B to upper Hessenberg
and upper triangular forms respectively. However this leads to the problem of potential
instability [46], which in turn calls for the requirement of the implicit double shift step,
which is employed to improve convergence of the QR algorithm and handle the instability
of the explicit QZ step.

The main idea behind the implicit shift method generalized to the QZ algorithm using
unitary equivalences is as follows. Supposing that A is upper Hessenberg and B is upper
triangular, if Q and Z are unitary matrices such that QAZ and QBZ are upper triangular,
then Q is determined entirely by its first row by the theorem in [6, p. 352], owing to the fact
that AB−1 and QAB−1Q∗ are both upper Hessenberg, where Q∗ is the conjugate transpose
of Q.

Thus, the iteration is built around two objectives. First, find the first row of Q, which
is nothing but the first row that would be obtained from a double shifted QR applied to
AB−1. Second, determine Q and Z such that QAZ is upper Hessenberg, QBZ is upper
triangular, maintaining that Q has the correct first row. With regards to the first objective,
the calculation of the first two columns of AB−1 is easy since A is upper Hessenberg and
B is upper triangular. Hence, Q can be determined by the first two columns of AB−1 in
conjunction with the shifts. A small provision needs to be made when determining the Q1
for the first column. Just as in the regular implicit shift QR algorithm, it is handy to think
of Q1 as the Householder transformation that nullifies two of the three non-zero elements
in the fictitious zeroth column of A. Such a Q introduces unwanted elements at positions
(2, 1), (3, 1) and (3, 2) in Q1B (see first row of images on the right of table 7.1).

Then, for the second part, since we cannot pre-multiply so as to keep the first row
intact, the unwanted elements in Q1B can be reduced using two Z’s, a Z′1 in H3(1) which
nullifies the (3, 1) and (3, 2) elements, and a Z′′1 in H2(1) which nullifies the resulting (2, 1)
element. Taking Z1 = Z′1Z′′1 , we now have Q1BZ1 as upper triangular. This is depicted
in the last two rows of table 7.1. Finally, when this Z1 is applied to Q1A, it results in two
unwanted elements in the first column under its subdiagonal (last row of table 7.1, far
right). This marks the restart of the loop where the two elements under the subdiagonal
of the first column of Q1AZ1 (recall that we started with the fictitious zeroth column) need
to be nullified using a Q2, continuing the process and eventually chasing the unwanted
non-zero elements towards the lower, right-hand corners. The iteration stops when no
consecutive subdiagonal elements are non-zero. This just means that the matrix A is in a
quasi-triangular form, where any non-zero element located on the subdiagonal will always
have zeros on either side of it on the subdiagonal.

The fictitious zeroth column of A is determined analogously to the implicit double shift
algorithm by taking shifts σ1 and σ2 to be the two zeros of the 2 × 2 problem

det(Ā − σB̄) (7.3)

where

Ā =

[
an−1,n−1 an−1,n
an,n−1 an,n

]
, B̄ =

[
bn−1,n−1 bn−1,n

0 bn,n

]
(7.4)
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σ1 and σ2 are not calculated using the quadratic polynomial to avoid the loss of non-
negligible, off-diagonal elements in the shift calculation. Instead, the ratio of the three
non-zero elements of the first column of (AB−1 − σ1I)(AB−1 − σ2I) are directly calculated
using the technique detailed in ”hqr2” [5], from formulas that involve only the differences
of diagonal elements. These formulas are listed as follows for q = n − 1 for an order n
square matrix.

a10 =
[( aqq

bqq
−

a11
b11

) (ann
bnn
−

a11
b11

)
−

(aqn
bnn

) (anq
bqq

)
+

(anq
bqq

) (bqn
bnn

) (a11
b11

)]
·
(

b11
a21

)
+

a12

b22
−

(a11
b11

) (
b12
b22

)
,

a20 =
( a22

b22
−

a11
b11

)
−

( a21
b11

) (
b12
b22

)
−

(aqq
bqq
−

a11
b11

)
−

(ann
bnn
−

a11
b11

)
(7.5)

+
(anq

bqq

) (bqn
bnn

)
,

a30 =
a32

b22

Stage 3 The next stage of the algorithm further reduces the A to triangular form by
tackling the 1 × 1 and 2 × 2 sub-problems, owing to the absence of any two consecutive
non-zero elements in the subdiagonal of A. The procedure starts by taking λ as the
eigenvalue of the problem E = A − λB, makes an appropriate origin shift and computes
the eigenvalue from the characteristic equation

λ = µ + p + sgn(p) ·
√

r (7.6)

where µ =
a11
b11

, p = .5( (a22−µb22)
b22

−
b12a21
b11b22

), q =
a21(a12−µb12)

b11b22
and r = p2 + q. Using this value of λ,

Z is chosen to nullify the larger of the two rows of A−λB and Q is chosen to nullify the (2, 1)
element of the smaller of the two matrices of AZ and λBZ, ensuring that the computed
(2, 1) elements of QAZ and QBZ are negligible.

Stage 4 Finally, the calculation of the generalized eigenvectors is trivial and is performed
by a back-substition process, extended from the method hqr2 [5]. The eigenvectors of the
original problem can then be obtained by applying the accumulated Zs. This application
can be done on the fly, at the same time when the Zs are applied to the input matrices
during the earlier steps of the algorithm.

We present the higher dimensional extension of the QZ algorithm in section 7.2.1.
But before we can dive into the Block and Tensor QZ algorithms, we need to look at
Householder transformations and their extension to the Block and Tensor case in section
7.1.2.2.

7.1.2.2/ HOUSEHOLDER TRANSFORMATIONS

Crucial to the QZ algorithm are Householder transformations [3] which are orthogonal
transformations that introduce zeros at specific positions in a matrix. To extend the QZ
algorithm to the block and tensor cases, it is imperative that the Householder transforma-
tions be extended accordingly.

Since applying unitary transformations to a matrix conserves its eigenvalues, it is ad-
vantageous to reduce the matrices to a triangular form, thereby making it possible to
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Figure 7.4: Householder reflection. F is the reflection across the hyperplane H that bisects the
angle between x and Fx. F = I − 2vvT where v = x−Fx

‖x−Fx‖

compute the eigenvalues and eigenvectors, as seen in [7]. Unitary operators can be
thought of as a complex generalization of rotations, since they preserve the inner product
between vectors. Householder transformations, also called reflections, are orthogonal
transformations that can be used to reduce a matrix to its upper triangular form. Such
a reflection F can be chosen such that A(k) = FA has zeros in column k below the main
diagonal.

Let x = A − 1 =
[
x1 x2 x3

]
∈ R3 be the first column of A ∈ R3×3 that needs to be

reduced. Then, we seek the reflection F such that Fx is parallel to some unit vector e1,
i.e.,

Fx = αe1 =

α0
0

 (7.7)

where e1 = [1 0 0]T and α is some constant. α can be obtained from considering two facts.
First, that F is a reflection which preserves the length of x, which gives

α = ± ‖x‖ (7.8)

Second, in order that the desired elements be nullified, F is supposed to reflect across
some hyperplane H. This nullifying reflection can be achieved by choosing the sign of α
to be the opposite of x1. In other words,

α = −sgn(x1) ‖x‖ = s ‖x‖ (7.9)

where s = −sgn(x). It can further be seen from figure 7.4 that the reflection thus calculated
also bisects the vector f where

f = x − ‖x‖ e = x − Fx =

x1 − α

x2
x3

 =

x1 − s ‖x‖
x2
x3

 (7.10)

In summary, the transformation F needed to zero all but the first element of x is the
reflection across the hyperplane H orthogonal to x − ‖x‖ e. Let v be the normalized form
of x − Fx given by v = x−Fx

‖x−Fx‖ . Then F is given by

F = I − 2vvT (7.11)

Equation 7.11 is derived here in order to better explain the algorithms for the block
and tensor versions of the Householder transformation. Since x and ‖x‖ e are of the same
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length, they form the sides of an isosceles triangle. Consequently, the hyperplane H
bisects the vector f orthogonally which means that x − 0.5 f is orthogonal to f , i.e.

(x − 0.5 f ) · f T = 0 (7.12)

⇒ 0.5 =
x f T

‖ f ‖2
(7.13)

Now, using equation 7.13, the reflected ‖x‖ e = x − f , can be expressed as

‖x‖ e = x − 2(0.5) f (7.14)

= x − 2
x f T

‖ f ‖2
· f (7.15)

= x(I − 2
f f T

‖ f ‖2
) (7.16)

Then, if we use v =
f
‖ f ‖ as the normalized version of f , we obtain the householder reflec-

tion mentioned in equation 7.11 as

‖x‖ e = Fx = x(I − 2vvT ) (7.17)

The second term 2 f f T

‖ f ‖2
in equation 7.16, is worth a look. Recall from equation 7.10 that

f =
[
u1 x2 x3

]T
, where u1 = x1 − s ‖x‖. Keeping in mind that s2 = (−sgn(x))2 = 1 we have,

‖ f ‖2 =(x1 − s ‖x‖)2 + x2
2 + x3

2

= 2 ‖x‖2 − 2s ‖x‖ x1 (7.18)

giving

2

‖ f ‖2
=

1
‖x‖ (1 · ‖x‖ − sx1)

(7.19)

=
1

‖x‖ ((−s)(−s) · ‖x‖ − sx1)

=
1

−s ‖x‖ (x1 − s ‖x‖)

=
−s
‖x‖ u1

(7.20)

using the fact that 1 = s2 = (−s)(−s), giving 1
−s = −s .

Finally, the Householder reflection to transform the vector x can be obtained by calculating
the scalar γ = 2

‖ f ‖2
by using equation 7.20, with u1 = x1 − sgn(x1) ‖x‖ and f = x1 − ‖x‖, then

obtaining the matrix product f f T and finally applying it as x = x − γ( f f T )x.

All the formulation above was done considering the first column of a matrix in R3, in
order to nullify all but the first element. However, the principle for reducing any number of
elements of any arbitrary column remains the same. The general Householder reflection,
Hr(k), for any column h that reduces the r−1 elements below row number k to zero, for an
arbitrary sized matrix is listed in algorithm 2. The convention of reducing r − 1 elements
is taken to indicate that the element at row k is also part of the operation as in [46]. For
instance, to reduce 2 elements starting at row k, a transformation in H3(k) corresponds to
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Algorithm 2 Householder transformation
1: procedure HOUSEHOLDER(A,k,r,h)
2: η =

∥∥∥A(k:k+r−1,h)
∥∥∥

3: s = −sgn(A(k,h))
4: u1 = A(k,h) − s · η

5: f =
[
u1 A(k+1:k+r−1,h)

]T

6: γ = 2
‖ f ‖2

7: A(k:k+r−1,:) = A(k:k+r−1,:) − γ · ( f f T ) · (A(k:k+r−1,:))
8: end procedure

indices k : k + r − 1 = k : k + 2 that reduces r − 1 = 2 elements. Note that the last operation
is exactly the same as pre-multiplying A by Q that eliminates the desired elements.

With the overall picture of the QZ algorithm and Householder transformations, we
can now proceed to detail the higher dimensional version of the QZ algorithm which is
presented in the next section.

7.2/ PROPOSED HIGHER DIMENSIONAL VERSIONS OF THE QZ AL-
GORITHM

The Block QZ and Block Householder algorithms are aimed to eventually implement im-
plicitly parallel computations, and perform GEVD on the interlaced matrix, which in turn
would result in the block diagonalization of the pixel-wise 3 × 3 source matrices. The
formulation of these Block QZ and Block Householder algorithms follows.

7.2.1/ BLOCK QZ ALGORITHM

Just as is the case with the basic QZ algorithm, Householder transformations are also
at the core of the Block QZ algorithm. The Block QZ algorithm extracts the block gen-
eralized eigenvalues of the interlaced periodic covariance and covariance matrices, Px
and Cx, constructed by flattening the tensors Px and Cx as visualized in section 7.1.1.
Of course, the basic Householder transformations need to be equally extended to handle
the interlaced block matrices Px and Cx in a manner such that the reductions performed
on these matrices be equivalent to reductions performed on the source matrices Ps

x and
Cs

x representing pixel-wise periodic covariance and covariance matrices.

7.2.1.1/ BLOCK HOUSEHOLDER TRANSFORMATIONS

The extension of Householder transformations to the block case is fairly straightforward
in essence. Apart from step 7 in algorithm 2 which is a matrix product, all the other steps
are operations on scalars, which can be easily adapted to element-wise operations. The
matrix product itself can be performed by using Hadamard products which we detail later
in this section.

Consider the case of reducing the last two elements of the first column of each 3 × 3
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Figure 7.5: The Block Householder transformation. The elimination of the last two elements in
the first column of each 3 × 3 block (left) is equivalent to eliminating the last two W ×W blocks in
the first block column (right).

block of the pixel-wise covariance matrix Cs
x in figure 7.5. Recall that to reduce 2 elements,

we take r = 3 to incorporate the first element with respect to which the elimination is
performed. As a result, we have k = 1, r = 3 and h = 1 for the procedure HOUSEHOLDER
in algorithm 2, repeated over each 3 × 3 block of Cs

x. The equivalent block operation on
the interlaced matrix Cx would be to reduce the two leftmost W ×W blocks corresponding
to R rows and C columns, where R ∈ [W + 1,W + 2, · · · , 3W] and C ∈ [1, 2, · · · ,W] as seen
in figure 7.5. As far as the algorithm is concerned, operations on scalar elements are
now transformed to operations on blocks. This means that the index position k = [1, 2, 3]
is going to start at intervals of W to mark the beginning of a block, instead of being
sequential. In fact, it is sequential, but with respect to blocks: it is block sequential.
Consequently, k transformed to the block index position k∇ = (k − 1)W + 1. The number
of elements to be reduced r is transformed to r∇ = rW representing the range of rows
to be reduced, and the scalar h representing the column is transformed to a vector h∇ =

[h − 1, h]W representing a set of columns. Together, r∇ and h∇ represent the block to be
reduced, with k∇ representing the starting index of the block.

Consequently, the scalars η, s, u1 and γ in algorithm 2 are transformed to their block
analogue matrices η∇, s∇, u1∇ and γ∇ of size W ×W each and the vector f is transformed
to its block vector analogue f∇ of size 3W ×W. All the arithmetic operations are extended
from scalar operations to to element-wise operations between the block analogue matri-
ces. The matrix product operations required for calculating η∇ in step 2 and the product
γ∇ · ( f∇ f T

∇
).(Ak∇:k∇+r∇−1,:) are non-trivial and need elaboration.

The calculation of the block norm η∇ is just a simple element-wise extension given by

η∇ =

√√√ 3∑
k=1

Ak∇:k∇+r∇−1,h∇ � Ak∇:k∇+r∇−1,h∇ (7.21)

where Ak∇:k∇+r∇−1,c represents the block vector from rows (k − 1)W + 1 : (k + r − 1)W and
columns (h − 1)W + 1 : hW, h is the column block number, and r is the number of W ×W
blocks to be reduced and � is the Hadamard product.
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Finally, to compute the product γ∇ · ( f∇ f T
B ).(Ak∇:k∇+r∇−1,:), we first reduce the product

γ · ( f f T ) · (A(k:k+r−1,:)) from matrix multiplication to sum of Hadamard products. This can
then be extended for each element for the block case. Note that the normal matrix product
here is not suitable since it will loose the spatial coherence between the source 3 × 3
blocks, i.e. the product will not be the same as if it was performed sequentially for each
3 × 3 block. Let k = 1, r = 3 and h = 1 and let A = [a(k,l)] where k, l ∈ [1, 3] be the 3 × 3

matrix.Then the vector f =
[
u1 a21 a31

]T
, which gives

γ · ( f f T ) · (A(k:k+r−1,:)) = γ

 u1
a21
a31

 [u1 a21 a31
] a11 a12 a13

a21 a22 a23
a31 a32 a33

 (7.22)

=

 γu1u1 γu1a21 γu1a31
γa21u1 γa21a21 γa21a31
γa31u1 γa31a21 γa31a31



a11 a12 a13
a21 a22 a23
a31 a32 a33

 (7.23)

The product of the two matrices in equation 7.23 can then be represented as the sum
across the third dimension of the folded third order tensor as shown in figure 7.6.

γu1a31a31 γu1a31a32 γu1a31a33

γa21a31a31 γa21a31a32 γa21a31a33

γa31a31a31 γa31a31a32 γa31a31a33

γu1a21a21 γu1a21a22 γu1a21a23

γa21a21a21 γa21a21a22 γa21a21a23

γa31a21a21 γa31a21a22 γa31a21a23

γu1u1a11 γu1u1a12 γu1u1a13

γa21u1a11 γa21u1a12 γa21u1a13

γa31u1a11 γa31u1a12 γa31u1a13

Figure 7.6: Matrix product using Hadamard product

Finally, the matrix product γ · ( f f T ) · (A(k:k+r−1,:)) is obtained by summing the tensor
thus obtained in the third dimension. This conversion of the matrix product into sum of
Hadamard products is advantageous when the scalars need to be extended to arbitrary
sized matrices. Since the Hadamard product is invariant to the matrix size, each element
of the tensor representation can be a matrix block of size W ×W and the product γ · ( f f T ) ·
(A(k:k+r−1,:)) can be simultaneously calculated for all the pixels in a given block vector.

The block Householder algorithm works perfectly, reducing any desired W×W block on
the lower left interlaced 3W × 3W matrix. Coincidently, the first stage of the QZ algorithm,
which is just a series of Householder transformations on different rows and columns,
can be extended to apply to interlaced block matrices B∇ and A∇ to reduce them to upper
triangular and upper Hessenberg forms respectively. The first stage works successfully as
expected and scales well as the size of the matrix increases. Preliminary tests with 90×90
and 300 × 300 reduced computation times by 10 and 16 times respectively as compared
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to sequential triangularization for each 3 × 3 block which took 0.58 and 5.8 seconds, while
the block version took 0.05 and 0.35 seconds W = 90 and W = 300, respectively.

The problem, however, arises in the second stage of the QZ algorithm which is itera-
tive. For the source matrices, the number of iterations required to reduce each pair of 3×3
matrices to quasi-triangular and triangular forms can be arbitrary. This is due to the fact
that the iterative strategy depicted in the second part of table 7.1 needs to be repeated
until no consecutive subdiagonals of A, in the scalar case, are non-zero. For the block
case, this means that certain elements in the W ×W blocks will be reduced to zero earlier
than others. In which case, the algorithm should avoid any operations on those elements.
However, given the structure of our block matrices, such selection of elements, although
not impossible, is not intuitive, even inelegant. In effect, binary masks of size W × W
were used to select the elements to be operated upon. Although this solution works and
provides accurate results, it does have issues. For instance, the algorithm needs to run
for as many iterations as it takes to reduce the 3 × 3 block that requires the maximum
number of iterations, which of course adds that many more mask multiplications per step
of each Block Householder transformations. Moreover, the formulation of matrix product
using Hadamard product seems complicated, even though it works accurately and calls
for elucidation. A simpler alternative should be possible.

This infeasibility of the Block Householder transformations for the iterative strategy of
the QZ algorithm prompted us to approach the problem from a different angle. Specif-
ically, a higher dimensional representation which would allow us to operate on all the
elements simultaneously, while providing the choice to select and deselect specific ele-
ments without requirement of complex formulations. A tensor representation of the 3 × 3
matrices corresponding to each pixel is one such representation that fulfills our criteria.
Next, we present the Tensor QZ algorithm in section 7.2.2, starting with the formulation
of the Tensor Householder transformation in section 7.2.2.1, which is a crucial part in the
development of the former, just like its scalar counterparts.

7.2.2/ TENSOR QZ ALGORITHM

While Block Householder transformations deal with flattened interlaced matrices (figure
7.3), Tensor Householder transformations operate on 3rd order tensors. The Tensor
Householder transformation for treating the tensor representations of the non-interlaced
matrices follows.

7.2.2.1/ TENSOR HOUSEHOLDER TRANSFORMATIONS

The source tensors of size W ×W × 3 × 3, with each block of size 3 × 3 corresponding to
a pixel are rearranged into a tensor of size 3 × 3 ×W2 as shown in figure 7.7. Recall from
figure 7.2 that each 3 × 3 block is represented by a(k,l)w , where k, l ∈ [1, 3] and w ∈ [1,W2].
This can be thought of as being analogous to vectorizing a matrix. The advantage of
this structure is that blocks corresponding to different pixels can be referenced by a sin-
gle index in the third dimension as opposed to a range of indices in the interlaced block
representation. This simplifies the selection of specific blocks to operate upon as com-
pared to the flattened block matrices without much complication. This is because vector
representations can be better optimized at the machine level as is seen in the vector-
ized operations of MATLAB [95]. For other languages, existing data structures such as
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linked lists can be employed in the implementation to select and deselect required blocks
(nodes) without additional overhead. Finally, this vectorized tensor has the advantage of
simplifying the last step of Householder algorithm, which was understandably complex
for the Block version. The MATLAB library MTIMESX [55], which is optimized for fast ma-
trix multiplication, also supports multi-dimensional products and coincidentally provides
improved computation times for the tensor product for the last step of the Householder
algorithm. The details of the Tensor Householder transformation are as follows.

a111

a211 a121

a311 a221 a131

a321 a231

a331

a112

a212 a122

a312 a222 a132

a322 a232

a332

a11W2

a21W2 a12W2

a31W2 a22W2 a13W2

a32W2 a23W2

a33W2

Figure 7.7: The Vectorized representation of the W ×W × 3× 3 tensor Cx. The wth block Aw = [ak,l]
where k ∈ [1, 3], l ∈ [1, 3], represents the covariance or periodic covariance of pixel (w/W) +

(w mod W), where mod is the modulo operation giving the remainder of w/W.

Compared to the block version, the tensor based Householder algorithm does not
require any conversion between the indices of the elements to be operated in question.
Specifically, the scalars in algorithm 2, viz. k, r and c corresponding to the row, the number
of elements to be nullified and column respectively, remain unchanged. This is because
the index of the 3 × 3 block to be operated upon is along the third dimension and thus
does not affect the block wise operations.

Consequently, as envisioned in figure 7.2 at the beginning of this chapter, the scalars
η, s, u1 and γ become vectors η�, s�, u1� and γ�; the 3 × 1 vector f becomes the matrix,
f�. The final step of calculating the product γ� · ( f� f T

� ) · A(k:k+r−1,:,:) is performed using the
MTIMESX library [55] leveraging low level calls and multi-threading. The operation itself
is a product of block wise Hadamard products to the tensor A(k:k+r−1,:,:). We emphasize
that use of such an optimized library is possible because of the simpler structure which is
not the case with the Block Householder algorithm, where use of such a library was not
possible.

With the tensor Householder algorithm in place, the realization of the Tensor QZ algo-
rithm is quite straightforward. The four stages of the original QZ algorithm shown in table
7.1 are described as follows for the Tensor case.

7.2.2.2/ STAGE 1

The first stage of reducing all the 3 × 3 blocks of the 3 × 3 ×W2 tensors A and B to upper
Hessenberg and to triangular form respectively using Tensor Householder Transforma-
tions is simple and provides a computational advantage similar to the Block Householder
implementation. To reiterate, the sequence of Tensor Householder transformations fol-
lowed in this stage are analogous to those in the first stage of algorithm 7.1. This step
reduces all the 3×3 blocks B(:,:,s) to upper triangular and all theA(:,:,s) to upper Hessenberg
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form respectively.

7.2.2.3/ STAGE 2

As expected, the iterative strategy benefits from this new formulation. The scalars a10, a20
and a30 representing the first three elements of the fictitious first column of each 3 × 3
block of A become vectors now. Sequential Tensor Householder transformations follow-
ing the strategy listed in algorithm 7.1 are applied and the whole process repeated for
the matrices Ai = A(:,:,s) which do not yet have consecutive non-zero elements in their
subdiagonals. This ensures that the matrices which have already been reduced to the
desired forms can be easily deselected and redundancy be avoided. Of course, the num-
ber of iterations is still equal to those corresponding to the 3 × 3 matrix that requires the
maximum iterations, but unnecessary operations on the other matrix blocks are avoided
as soon as they are reduced. After the iterative step, all the 3× 3 blocks of A are reduced
to a quasi-triangular form, while all the 3 × 3 blocks of B still staying upper triangular. As
mentioned earlier, the quasi-triangular form has no consecutive non-zero subdiagonals.
This means that for a 3 × 3 block, either the elements (2, 1) and (3, 1) are zero, or the
elements (3, 1) and 3, 2 are zero as shown below in equation 7.24.

Ai =

× × ×

0 × ×

0 × ×

 or

× × ×

× × ×

0 0 ×

 (7.24)

7.2.2.4/ STAGE 3

This simplifies the problem to reducing the remaining 2×2 blocks, either at position (2, 2) or
at position (1, 1), i.e. at position 2 or 1 in the diagonal for the matrices shown in equation
7.24. However, these positions will definitely vary for each Aw in A. Fortunately, the
indices of the 2× 2 block in each Aw can be easily found by a vector p of length W2 having
its values pi ∈ [1, 2] based on the position of the 2× 2 block in each Ai. This vector can be
obtained by the following algorithm, which can be implemented easily using vectorized
comparisons, for instance, in MATLAB.

Algorithm 3 Find the position of the 2 × 2 blocks in A ∈ R3×3×W2

1: a21 = A(2,1,:)
2: a32 = A(3,2,:)
3: For all the index positions z21 where a21 == 0, set p(z21) = 1
4: For all the index positions z32 where a32 == 0, set p(z32) = 2

Using the indices in p, a sub-tensor As of size 2 × 2 × W2 can be operated upon for
the reduction of said 2× 2 blocks. Then, the computation of the scalar eigenvalue λ using
equation 7.6 is as simple as the element-wise operations similar to those used in the
Tensor and Block Householder algorithms.

Next, norms are calculated of each pair of rows in the sub-tensor As along the third
dimension giving a norm matrix of size 2 × W2 using which the rows of each block of
A− λ� � B can be compared vectorally similar to algorithm 3, where λ� is the vector
representing all the λ in equation 7.6 described in stage 3 of the QZ algorithm in section
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7.1.2. As earlier, this comparison gives the indices for each block depicting the larger of
the two rows. A Tensor Householder operation with Z ∈ H2 is applied to eliminate the
first elements of all these rows. Next, the Hadamard products A � Z and λB � Z are
calculated and their block-wise norms compared vectorally. The resulting indices indicate
which matrix blocks between the two tensors are smaller. A Tensor Householder Q ∈ H2
is applied to nullify the (2, 1) elements of these blocks. The tensors A and B are now
reduced such that the generalized eigenvalues can be calculated from the ratio of the
respective diagonal elements αη and βη in each pair of matrix blocks Aw and Bw, where
η ∈ [1, · · · ,N] and s ∈ [1, · · · ,W2].

7.2.2.5/ STAGE 4

Finally, as in the scalar case, the calculation of the generalized eigenvectors is done
on the fly, while applying the Q and Z, along w ∈ [1,W2], on the tensors A and B in
the last step of the Tensor Householder algorithm. Finally, the Tensor QZ algorithm can
be used to estimate the spatial rPPG distribution of a video containing skin pixels using
spatial covariance and periodic covariance tensors Cx and Px. The feasibility analysis,
experiments and results are next presented in section 7.3.

7.3/ EXPERIMENTS AND RESULTS

7.3.1/ SYNTHETIC EXAMPLE

To analyze the effectiveness of the Tensor QZ algorithm, we tested it against a synthetic
example as a proof of concept. A synthetic video that has an underlying quasi-periodic
temporal signal embedded into its frames would serve our requirement. To keep things
simple and easy to verify, we started with a static image of 4 × 4 pixels representing the
static or DC signal content as shown in figure 7.8a. The periodic or AC component,
PPGemulated was generated using a sinusoid of 1 Hz with a sampling frequency of Fs = 30
Hz and an amplitude of 0.2, with a duration of 3 seconds, resulting in a signal of N = 90
samples, which is depicted in figure 7.8c.

This periodic source PPGemulated, representing the cardiac signal was then perturbed
using two noise sources, N1 = .2∗((rem(v, 23)−11)/9)5, where v = [0,N−1] and rem(·) is the
remainder function, and a uniform random noise signal N2, with a standard deviation of
0.5 which are shown in figure 7.8d. Note that N1 is itself a periodic signal which provides
a basis for robust validation for the algorithm. The perturbation was performed by mixing
the three signals using a random weighting matrix of 3×3 to obtain a mixture of size 3×N
as depicted in figure 7.9a. This emulated RGB signal was then repeated over the static
image matrix of 4 × 4 pixels, scaled according to a spatial distribution pattern, shown in
figure 7.8b, and overlaid onto the static image. Note that there are three distinct regions in
this spatial PPG pattern which our algorithm should recover from the mixture. One cycle
corresponding to 1 second of the resultant video and the corresponding temporal signals
are shown in figures 7.9a and 7.9b. This source video was then analyzed using the
Tensor QZ algorithm and compared against pixel-wise application of the PVM algorithm
which is discussed next in section 7.3.2.
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(a) The DC content of the video (b) The PPG spatial distribution mask

(c) The entire emulated PPG signal

(d) The noise sources

Figure 7.8: Synthetic example to test the Tensor QZ Algorithm, a PPG signal of 1 Hz at a sampling
rate of Fs = 30 with 3 periods.

7.3.2/ TENSOR QZ ON THE SYNTHETIC VIDEO

In this section, we describe the process used to apply the Tensor QZ algorithm on a
synthetic video. The procedure is same for applying the algorithm on a real video to
perform SrPDE, except for the change in matrix size W and the corresponding increase
in computation times.

1. Acquisition: The first step is to prepare the input data. For this, the frames from
the synthetic video are loaded into a tensor Xp, from which the temporal average
tensor Xp = 1

N

∑
Xp is then calculated, where N is the total number of frames, and

Xp and Xp are tensors of size W × W × 3 × N and W × W × 3 respectively. The
suffix p represents the padded version of these tensors based on the requirement
of calculating the lagged covariance, and in order that the output video be the same
size as the input video. The Tensor QZ algorithm is applied on the padded input data
as a result of which the final output shall be a subset of this padded output video.
Of course, this would not be necessary for a real video where the whole process
would be repeated over a temporal window of, say 5 seconds, in which case, there
is an initial delay in the estimation of the SrPDE. In the synthetic case, frames from
the start of the video are padded at the end to maintain quasi-periodicity and the
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(a) One cycle (1s) of the sources PPGemulated, N1 and N2 mixed using a random weighting matrix of size 3 × 3

(b) One cycle of the synthetic input video

Figure 7.9: Synthetic example to test the Tensor QZ Algorithm, the source mixtures and video.

final output video extracted from the padded output. In order to accommodate the
estimation of all the possible pulse rates, the number of frames to be padded is
determined by Np = τmaxFs where τmax = ( 60

HRmin
)−1 corresponding to the period of

the minimum heart rate of 40 bpm used in all our experiments. Accordingly, τmin

corresponds to the lag related to the maximum heart rate of 200 bpm, giving the
range of lags as [τmaxFs, τminFs] for the heart rate range of [40, 200] bpm.

2. Preprocessing: The next step is to pre-process the input data by performing cen-
tering by X̃p = Xp − Xp, followed by whitening, using X̃p = X̃p/σ�, where σ� is a
tensor of size W × W × 3 representing the standard deviation of each pixel along
the temporal dimension, for each of the three RGB channels. Note that whitening is
not a necessary step here, although it helps to scale the resultant pixel-wise rPPG
signals for better visualization. Next, the tensors X̃ and X̃τ∗ are extracted from X̃p
representing a a window of frames and its lagged version. τ∗ here corresponds to
the period obtained by applying PVM on the spatially averaged X̃p based on the as-
sumption that the underlying cardiac pulse is fairly uniform in a small spatial region
such as the face. This reasoning is further elaborated in section 7.3.3. The prepro-
cessing is then finalized by reshaping X̃ and X̃τ from W ×W × 3 × N to 3 × N ×W2

tensors as required by the Tensor QZ algorithm.

3. Px and Cx : Next, the lagged covariance and covariance matrices are calculated as

Px = X̃♦X̃Tτ and Cx = X̃♦X̃T (7.25)

where ♦ represents the block-wise product of two third order tensors along the third
(temporal) dimension and (·)T is the transpose on each 3× 3 block performed along
the temporal dimension over [1,N].

4. Tensor GEVD: Finally, Tensor GEVD is performed using the Tensor QZ algorithm
on the pair Px and Cx which gives the eigentensor V∗ representing the block-wise
eigenvectors that maximize periodic variance of each block in the temporal dimen-
sion. V∗ is of size 1 × 3 ×W2 on which the original data tensor X̃ is then projected
to obtain the output tensor, X̃o = V∗♦X̃. This is done by applying each 1 × 3 vector
(representing WT in the PVM algorithm) on each 3 × 3 block of the tensor X̃ 3.

3As mentioned earlier in this chapter, all the matrix multiplications on the blocks inside the tensors were
performed using the MTIMESX [55] library which provides the possibility to perform matrix multiplications on
select dimensions of tensors.
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7.3.3/ RESULTS ANALYSIS

Using the steps listed in the previous section, the underlying quasi-periodic signal was
successfully extracted using the Tensor QZ algorithm using the lagged-covariance and
covariance tensors Px and Cx. It was mentioned that the tensor Px was built by applying
the τ∗ obtained by using the PVM algorithm on the spatially averaged signal since this was
a proof of concept experiment. This formulation corresponds to the assumption that in a
small patch of the skin, e.g. the facial region, there is hardly any phase difference between
the rPPG obtained from different parts of this patch. However, a complete application of
the SrPDE can equally be performed for each pixel, over the range of τ corresponding to
the human heart rate [40, 200] bpm, and the pixel wise best weighting matrix can be sub-
sequently selected in the same manner as the iterative step of the Tensor QZ algorithm
in section 7.2.2. This Tensor PVM algorithm can be thought of as the higher dimensional
analogue of the PVM algorithm that maximizes the pixel-wise periodic variance using the
corresponding pixel-wise τ∗ instead of one obtained from the spatially averaged temporal
signal. This aspect of the experiment is however left for the future work and shall be the
most obvious course of further validation of the Tensor QZ algorithm.

That being said, the results of the Tensor QZ algorithm on the synthetic experiment
are indeed as desired. Specifically, the comparison with the pixel-by-pixel application of
the PVM algorithm confirmed the expected accuracy of the Tensor QZ algorithm. Fur-
thermore, regarding computation times, even with the substantially small size of 4× 4, the
Tensor QZ algorithm reports improvements of more than 5 times taking 0.35 seconds to
process a temporal window of 3 seconds as compared to the 1.96 seconds taken by the
pixel-wise application of PVM. Moreover, the improved scalability of the Tensor QZ algo-
rithm and the corresponding reduction in the computational complexity for larger matrices
has already been discussed in section 7.2.1.1, where performance improvements of up to
10 and 14 times for the first step of the algorithm, as compared to the sequential applica-
tion of PVM, were reported for larger matrices of sizes 90 × 90 and 300 × 300 respectively.
These improvements shall undoubtedly be carried over to the application on real video
data as well. We next describe the results obtained by the Tensor QZ algorithm on the
synthetic example set up in the previous section.

It has been established that the Tensor QZ algorithm is superior to application of
pixel-wise PVM. But this improvement in computational efficiency must be coupled with
appropriate accuracy to validate the overall effectiveness of the Tensor QZ algorithm. In
this context, the following criteria should be fulfilled.

• The pixel-wise temporal signals should be similar to those obtained by the pixel-
wise application of the PVM algorithm. This similarity is clearly visible in figures
7.10d and 7.10f. Furthermore, an FFT analysis of the pixel-wise output signals is
also presented in figure 7.11, where the frequency of the underlying quasi-periodic
signal (shown in blue) has been correctly extracted for each pixel at 0.99 Hz which
is in accordance with the pixel-wise FFT of the signal obtained using PVM (shown
in green). Furthermore, the spatial average of all the extracted signals should be
close to the PPGemulated. This is indeed clearly visible from figure 7.10d and 7.10f.

• The spatial rPPG distribution should be revealed in the resulting video. In our syn-
thetic example, the spatial distribution of the PPG was emulated using amplitude
scaling across pixels using the pattern shown in figure 7.8b. This should result in
distinct rPPG signals in X̃o corresponding to different spatial regions. This result is
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(a) (b) (c) (d) (e) (f)

Figure 7.10: Synthetic example for emulating SrPDE. The vertical frames correspond to 1.5 cycles
(45 frames) of the total 3 cycles (91 frames). (a) The source video (b) The spatially averaged RGB
waveforms (c) The result of the Tensor QZ (d) The pixel-wise waveforms after Tensor QZ (e)
Frames after pixel-wise PVM application (f)Pixel-wise PVM waveforms

clearly visible in figure 7.10d where there are three distinct rPPG waveforms corre-
sponding to the three regions of the spatial pattern in figure 7.8b.
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Figure 7.11: FFT analysis for the temporal signal corresponding to each pixel of the output video
obtained by the Tensor QZ algorithm. Each block is annotated with its position r, c in the image
where r, c ∈ [1, 4].

• The correct spatial distribution pattern should also be visible in the resultant video.
First, looking at figures 7.10c and 7.10e, the values of the pixels are coherent with
the respective temporal signals and their corresponding waveforms in figures 7.10d
and 7.10f. This means that parts of the waveforms with higher amplitude appear
brighter in the video strip and parts with lower amplitudes appear darker. Second, if
watched closely, the spatial PPG pattern can also be deciphered in both the video
strips, although the Tensor QZ algorithm in figure 7.10d seems to better extract the
spatial PPG pattern.

Thus, the Tensor QZ algorithm is successful in extracting the spatial distribution while
simultaneously maximizing the pixel-wise periodic variance of the synthetic video. With
this validation in place, the algorithm can be attempted on real video data, perhaps also
live video data to perform SrPDE, which shall be undertaken in a future work.

7.4/ SUMMARY

In this chapter, we developed the higher dimensional analogues of the QZ algorithm which
is used at the core of the PVM algorithm of chapter 6 to perform GEVD on the pair of
lagged covariance and covariance matrices, Px and Cx. We formulated two higher dimen-
sional variants, the Block QZ and the Tensor QZ algorithm, concluding with the advan-
tages of the tensor version over the block version. Finally, we demonstrated the efficiency
of the Tensor QZ algorithm with a synthetic example emulating the SrPDE problem, to
perform GEVD simultaneously across multiple elements, in order to extract the under-
lying periodic signals over a spatial region, while maintaining spatial coherence. The
synthetic experiment validates the capability of the Tensor QZ algorithm in extracting the
underlying quasi-periodic source simultaneously maintaining the spatial coherence. This
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validation paves the way for application of this algorithm to the SrPDE which is one of the
essential future works to be undertaken. Another related future work is going to be the
implementation of the Tensor PVM algorithm.





III
CONCLUSION
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8
CONCLUSIONS AND FUTURE WORK

T
He problem of physiological signals estimation is ubiquitous, of which the cardiac
signal is one of the most important biomedical signals. Today, remote monitoring of

heart rate and related physiological signs is on the rise and owing to the advanced com-
puting capabilities of devices, long-term monitoring and measurement of these signals is
becoming more and more feasible, which calls for conception of novel ideas and related
methods for measurement of said physiological signals.

Consequently, much research has been done in the domain of remote photoplethys-
mography, to which our research contributes some significant advancements in the form
of new algorithms. Our algorithms exploit the periodicity information, which is quite perva-
sive in almost all biomedical signals, to improve existing blind source separation methods
in order to obtain better signal estimates. It is this omnipresence of periodicity in biomed-
ical signals enables the methods developed in this thesis to be able to be extensively
practicable not only in the applications presented, but with other biomedical signal modal-
ities as well. The novel methods that have been developed in this thesis exploit this
periodicity information by quantifying it in the form of autocorrelation in different manners.

All the methods developed in this thesis were validated against two publicly available
databases, one of which actually is our contribution and is specifically tailored for anal-
ysis of remote photoplethysmography methods. The creation of this inhouse database,
UBFC-RPPG, marks a significant contribution of this thesis and is promising in use to the
research community. The database comprises of two datasets, SIMPLE and REALISTIC,
with 9 and 46 videos each comprising of around 21k and 94k frames respectively. Since
it is specifically created keeping rPPG measurement analysis in mind, the database has
proven extremely useful to us in the analysis of our novel methods and their compar-
ison with other state of the art methods. The database being made publicly available
has already enabled other researchers to employ it in their works, proving its utility. We
are positive that this database shall be consequential in urhter advancing research in the
domain of rPPG signal measurement.

Regarding novel algorithms, two semi blind source extraction methods, Multi-objective
optimization using Autocorrelation and Independent Component Analysis (MAICA) and
Constrained Independent Component Analysis (cICA) have been developed. The MAICA
algorithm combines the mean squared autocorrelation as an objective function with the
objective function of traditional ICA, negentropy, in a multi-objective optimization scheme.
Its validation against the UBFC-RPPG and the public MMSE-HR database [84] has
proved its accuracy in rPPG signal estimation. This algorithm also served as an initial
corroboration for the employment of periodicity as a priori information in order to improve
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BSS methods, thereby enabling them to see and extract the underlying cardiac signal, in
the case of rPPG signal estimation.

Another variant of the MAICA method, the parameter-free adaptive step-size MAICA,
was also developed, which focuses on improving the optimization part of the algorithm by
choosing adaptive-step sizes for the two functions, negentropy and autocorrelation in the
gradient ascent optimization, which traditionally uses a fixed step size. The introduction of
this adaptive step-size provided improved results as compared to MAICA with a fixed step
sized, MAICAfix, along with the simplification provided by the gradient ascent method as
opposed to the Newton method used in MAICA, which requires the calculation of the
second derivatives of the objective functions. Consequently, MAE values of up to 3.18
bpm were reported against 3.34 bpm from regular MAICA which are both slightly better
than the 3.81 bpm provided by the CHROM method, which in our opinion is one of the
most robust and simplest methods used for rPPG signal estimation.

In contrast to the incorporation of a priori information as an objective function, in the
cICA algorithm, the periodicity information was formulated as a constraint using autocor-
relation. This formulation was then further coupled with a priori information corresponding
to the physical properties of the skin, in the form of the chrominance constraint. The cICA
method extracts the underlying cardiac signal successfully, and provides a slightly im-
proved accuracy of 3.14 bpm as compared to MAICA and parameter-free MAICA. The
essential improvement, though, is the capability to incorporate multiple constraints in or-
der to reduce the solution search space for the rPPG signal estimation problem. In this
sense, the cICA method conforms to the traditional formulation of a semi-blind source
extraction method, that incorporates a priori information in the form of constraints. For
the implementation of cICA, we used the interior point algorithm, that provides the best of
Newton and conjugate gradient methods, in an attempt to perform the optimization effi-
ciently. The algorithm is not without limitations though. As is the case with any constraint
based optimization, one such limitation is the requirement of using thresholds that indi-
cate whether specific constraints are satisfied or not. An automatic threshold selection
scheme as formulated in the parameter-free adaptive step-size MAICA method can be
used to overcome this limitation.

In spite of this tentative solution of automating the threshold estimation, another major
limitation of cICA, and even MAICA, remains that they are optimization based methods.
As a result, these methods are prone to issues with indeterminacy of the solution, which
required us to perform regression analysis on the obtained solutions. To circumvent is-
sues related to optimization, the Periodic Variance Maximization (PVM) method was for-
mulated, which while providing substantial accuracies in rPPG signal measurement of
up to 4.47 bpm, is generic enough that it can be adapted to other modalities such as
ECG and neural signals. The concept of periodicity as a priori information is also used
in this algorithm, albeit in the form of lagged covariance matrix Px, which can be thought
of as the analogue of autocorrelation. The PVM method uses Generalized Eigenvalue
Decomposition at its core which not only makes it extensive enough to be used in ap-
plications other than rPPG signal estimation, but also eliminates the optimization step.
Furthermore, the calculation of the derivatives of the autocorrelation and chrominance
constraints is also not required, making PVM significantly faster than MAICA and cICA,
and consequently providing the possibility of using it in a real-time scenario. With respect
to the accuracy, MAE values of 1 bpm are acceptable in the case of PVM due to its im-
proved computational complexity and adaptability with problems other than rPPG signal
estimation.
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Finally, substantiating the extendability of GEVD, it was adapted to the higher dimen-
sional case, especially for scenarios requiring analysis of temporal signals coupled with
the requirement of keeping the spatial coherence of the underlying data. Specifically, the
QZ algorithm used for performing GEVD was adapted to higher dimensions, tailored to
the domain of temporal signals. This novel Tensor QZ algorithm is formulated to handle
tensor data, to simultaneously perform GEVD on multiple blocks corresponding to single
spatial data points. For instance, in the application of Spatial rPPG Distribution Estima-
tion (SrPDE), the Tensor QZ algorithm can be applied to pixel-wise lagged covariance
and covariance matrices simultaneously, instead of pixel by pixel, to extract the subspace
that maximizes the periodic variance of the pixel-wise temporal signals. The application
of the Tensor QZ algorithm on a synthetic example aimed to emulate the SrPDE problem
are extremely promising, with respect to high accuracy as well as improved computation
times. This method consequently promises extensive use, owing to its generic nature and
the comprehensive utility of GEVD.

This thesis can be useful for the implementation of semi-blind source extraction meth-
ods, not only in the domain of rPPG measurement, but also in biomedical signals analysis
corresponding to other scenarios. The Tensor QZ alorithm is interesting and novel in its
conception, especially because such a tool does not exist in current literature. It can be
used in scenarios where temporal signals have to be analyzed while keeping the spa-
tial relations between the signals intact. That being said, the method can undoubtedly
improved upon and extended. One definite course of action for future work is the ap-
plication of the Tensor QZ algorithm on real data from the UBFC-RPPG and MMSE-HR
databases, and possibly even in real-time scenarios where the visualization of the spatial
rPPG distribution of a skin patch using only a generic web camera shall be extremely
practical.

Speaking of generic scenarios that expand the gamut of applications that use semi-
blind source extraction methods, it would be desirable to verify the utility of the algorithms
developed to other modalities of biomedical signals, such as neural and ECG signal anal-
ysis. For instance, periodicity is an essential property of EEG signals, and research in
this field comprises of solving many interesting problems. One such problem is the es-
timation of intent information from EEG signals, that indicate the intention of performing
an activity or thinking of a simple action, such as moving a mouse pointer on a screen.
In such a scenario, the idea of periodicity information can be combined with a machine
learning approach to create novel algorithms.

The objectives set out in the beginning of this thesis have been fulfilled. During the
course of this thesis, we have developed several semi-blind source extraction methods,
some specific to rPPG signal estimation, and some generic enough to warrant use in
other biomedical signal analysis problems. The research related to these methods has
been validated and published in international journals and conferences, a list of which is
presented in the next chapter. It is our hope and belief that the research undertaken in
this thesis shall be a valuable addition to the scientific community, not only in the domain
of rPPG signal estimation, but also in generic biomedical signal analysis.
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