
HAL Id: tel-02081080
https://theses.hal.science/tel-02081080v1

Submitted on 27 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security Analysis and Access Control Enforcement
through Software Defined Networks

Salaheddine Zerkane

To cite this version:
Salaheddine Zerkane. Security Analysis and Access Control Enforcement through Software Defined
Networks. Cryptography and Security [cs.CR]. Université de Bretagne occidentale - Brest, 2018.
English. �NNT : 2018BRES0057�. �tel-02081080�

https://theses.hal.science/tel-02081080v1
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

L'UNIVERSITE

DE BRETAGNE OCCIDENTALE

COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601

Mathématiques et Sciences et Technologies

de l'Information et de la Communication

Spécialité : Informatique

Security Analysis and Access Control Enforcement through Software
Defined Networks

Thèse présentée et soutenue à BCOM, site de Rennes, le 5 novembre 2018 à 10h
Unité de recherche : Lab-STICC – CNRS UMR 6285

Par

Salaheddine ZERKANE

Rapporteurs avant soutenance :
M. Zonghua ZHANG, Maître de Conférence–HDR, IMT Lille Doual
Mme Hakima CHAOUCHI, Professeur, Télécom Sud Paris

Composition du Jury :

Président : M. Mohamed MOSBAH, Professeur des Universités, Institut Polytechnique de Bordeaux

Examinateurs : M. Zonghua ZHANG, Maître de Conférence–HDR, IMT Lille Doual

 Mme Hakima CHAOUCHI, Professeur, Télécom Sud Paris

Dir. de thèse : M. Philippe LE PARC, Professeur des Universités, Université de Bretagne Occidentale

Co-dir. de thèse : M. Frédéric CUPPENS, Professeur-HDR, IMT Atlantique
Co-enc de thèse : M. David ESPES, Maître de Conférence, Université de Bretagne Occidentale

Invité(s)
M. Jean VAREILLE, Maître de Conférence, Université de Bretagne Occidentale
M. Philippe BERTIN, Ingénieur de Recherche, Orange
M. Cao-Thanh PHAN, Ingénieur de Recherche, IRT B<>COM
Mme Nora CUPPENS, Professeur des Universités -HDR, IMT Atlantique

Abstract

The evolution of the internet, the explosion of information services and the emergence of new
technologies sound the knell of the conventional network architecture. The reasons are related
to its rigidity, complexity, and cost.

Software Defined Networking (SDN) is an emerging paradigm that promises to resolve the
limitations of the conventional network architecture. Thanks to its programmability, central-
ization, federation and externalization, SDN strategy is to make it the backbone of the future
internet and an enabler for new information services and technologies

The relation between SDN and security is a hot subject that contributes to reaching these
goals. SDN and security have a reciprocal relationship. In this thesis, we study and explore
two aspects of this relationship. On the one hand, we study security for SDN by performing
a vulnerability analysis of SDN. Such security analysis is a crucial process in identifying SDN
security flaws and in measuring their impacts. It is necessary for improving SDN security and
for understanding its weaknesses. Thus, the thesis provides a generic classification of SDN
vulnerabilities. It relies on the Common Vulnerability Scoring System (CVSS) to quantify their
severity. Then, it enhances the severity scores by the Analytic Hierarchy Process (AHP). The
thesis integrates SDN specific characteristics into the computation of the severity.

On the other hand, we explore SDN for security. Such an aspect of the relationship between
SDN and security focusses on the advantages that SDN brings into security. The thesis explores
this research direction by introducing SDN concepts to stateful firewalls. The thesis designs
and implements an SDN stateful firewall that transforms the Finite State Machine of network
protocols to an SDN Equivalent State Machine. The latter automatizes the firewall behavior
in the infrastructure thanks to this dynamic transformation. Besides, the thesis evaluates SDN
stateful firewall and NetFilter regarding their performance and their resistance to Syn Flooding
attacks.

Furthermore, the thesis uses SDN orchestration for policy enforcement. It proposes a fire-
wall policy framework to express, assess, negotiate and deploy firewall policies in the context
of SDN as a Service in the cloud.

Through these research works, we contribute to the study of SDN security, to the improve-
ment of firewalls and the enforcement of firewall policies.

Keywords

Software Defined Networks, Security, Vulnerability Analysis, Firewalls, Programmability, Or-
chestration

i

Résumé

L’évolution d’Internet, l’explosion des services d’information et l’émergence de nouvelles tech-
nologies sonnent le glas de l’architecture du réseau conventionnel. Les raisons sont liées à sa
rigidité, sa complexité et son coût.

Les réseaux programmables (SDN) sont un paradigme émergent qui promet de résoudre
les limitations de l’architecture du réseau conventionnel. Grâce à leurs propriétés qui allient
programmabilité, centralisation, fédération et externalisation, les réseaux programmables ont
vocation à devenir une colonne vertébrale pour le futur Internet, et un catalyseur pour les nou-
veaux services et technologies de l’information.

La relation entre les réseaux programmables et la sécurité est un sujet brûlant. Dans cette
thèse, nous étudions et explorons deux aspects de cette relation. D’une part, nous étudions
la sécurité pour les réseaux programmables en effectuant une analyse de leurs vulnérabilités.
Une telle analyse de sécurité est un processus crucial pour identifier les failles de sécurité des
réseaux programmables et pour mesurer leurs impacts. Elle est nécessaire pour améliorer la
sécurité des réseaux programmables et pour comprendre leurs faiblesses. Ainsi, la thèse fournit
une classification générique des vulnérabilités des réseaux programmables, en s’appuyant sur
le système CVSS (Common Vulnerability Scoring System) pour quantifier leur sévérité. Ensuite,
elle améliore les ordres de sévérité par le processus de la hiérarchie analytique (AHP). La thèse
intègre les caractéristiques spécifiques des réseaux programmables dans le calcul de la sévérité
en utilisant ce processus.

D’autre part, nous explorons l’apport des réseaux programmables à la sécurité. Cet as-
pect de la relation met l’accent sur les avantages que les réseaux programmables apportent à la
sécurité informatique. La thèse explore cette direction de recherche en appliquant les concepts
des réseaux programmables aux pare-feu à états. La thèse conçoit et implémente un pare-feu
programmable qui transforme la machine à états finis des protocoles réseaux, en une machine
à états équivalente pour les réseaux programmables. Ces derniers automatisent le comporte-
ment du pare-feu dans l’infrastructure grâce à cette transformation dynamique. En outre, la
thèse évalue le pare-feu implémenté avec NetFilter dans les aspects de performances et de ré-
sistance aux attaques d’inondation par paquets de synchronisation. De plus, la thèse utilise
l’orchestration apportée par les réseaux programmables pour renforcer la politique de sécurité
dans le Cloud. Elle propose un Framework pour exprimer, évaluer, négocier et déployer les
politiques de pare-feu dans le contexte des réseaux programmables sous forme de service dans
le Cloud.

À travers ce travail de recherche, nous contribuons à l’étude de la sécurité des réseaux pro-
grammables, à l’amélioration des pare-feu et au renforcement de la politique de sécurité dans
le Cloud.

Keywords

Réseaux programmables, SDN, cyber sécurité, pare-feu, orchestration, analyse,vulnérabilité,
control d’accés

ii

Acknowledgments

I thank my supervisors and mentors Prof. Philippe Le Parc, Prof. Fréderic Cuppens, and David
Espes. During these years, you have taught me how to be a researcher and a teacher. Thank you
for your trust and freedom in exploring different research directions. I have enjoyed working
with you. I would like to express my gratitude for your contributions to this work including
sleepless nights before deadlines (special mention to David), high quality mentoring in all the
steps of my thesis, full support of our ideas and your tremendous help in my future projects.

I am also very grateful and thankful to Cao-Tanh Phan for his guidance, patience, and en-
couragement at all the stages of my thesis. Thank you for all that I have learned from you.
Thank you for your trust, your support and your friendship.

I am also thankful to my friends and colleagues from the Network Architecture team in
B<>COM, especially to Philippe Bertin, Olivier Choisy, Thomas Ferrandiz, Carol Bonan, Anne
Coteaux, Michel Corriou, Tim Legrand, Cindy Martin, Marion Benetiére, Johan Pellay, Farouk
Messaoudi and many others.

I would like to thank my adelphes deeply. The friends that are more than your sisters and
brothers. All these people around the world that I have met and that have inspired me. your
benevolence, your support. Thank you for sharing with me great and worse moments. Thank
you for teaching me and learning from me.

I would like to thank also the friends and the people that have impacted my life during these
years. Especially, Dr. Jean Vareille. A great intellectual and humanist that has open for me more
perspectives in sustainablity, philosophy and so many other subjects. I want to thank him for
his support and encouragements. I am thankful also to Abhijeet, you were a true incarnation
of humility.

My immense gratitude goes to my parents and brothers. Thank you mother for your uncon-
ditional love, great sympathy, huge kindness, your courage and continuous struggles through-
out my entire life to make us into humans. You are a true example of a great lovely mother.
Thank you father and brothers for understanding my choices, for loving me and for your sup-
port.

iii

List of Publications

International Conferences

• Zerkane, S., Espes, D., Le Parc, P., & Cuppens, F. (2016, May). Software defined networking
reactive stateful firewall. In IFIP International Information Security and Privacy Confer-
ence (pp. 119-132). Springer, Cham.

• Zerkane, S., Espes, D., Le Parc, P., & Cuppens, F. (2016, September). A proactive state-
ful firewall for software defined networking. In International Conference on Risks and
Security of Internet and Systems (pp. 123-138). Springer, Cham.

• Zerkane, S., Espes, D., Le Parc, P., & Cuppens, F. (2016, October). Vulnerability analysis of
software defined networking. In International Symposium on Foundations and Practice
of Security (pp. 97-116). Springer, Cham.

• Cuppens, N., Zerkane, S., Li, Y., Espes, D., Le Parc, P., & Cuppens, F. (2017, July). Firewall
Policies Provisioning Through SDN in the Cloud. In IFIP Annual Conference on Data and
Applications Security and Privacy (pp. 293-310). Springer, Cham.

International Journals

• Zerkane, S., Espes, D., Le Parc, P., & Cuppens, F. (Submitted). A Survey Of Relationship Be-
tween Software Defined Networks and Security. In the Journal Of Network and Computer
Applications.

• Zerkane, S., Espes, D., Le Parc, P., & Cuppens, F. (Submitted). A Head to Head with Fire-
walls through Software Defined Networks. In Computer Networks: The International
Journal of Computer and Telecommunications Networking.

Patent

• Salaheddine ZERKANE, Cao-Tanh PHAN, David ESPES, Philippe Le PARC, Frederic CUP-
PENS. (2016-10-05). Method for protecting a communications network, associated de-
vice, control system and computer program. EP3076615A1.

iv

CONTENTS

Contents

Contents v

List of Figures vii

List of Tables viii

I Thesis Background 1

1 Introduction 2

1.1 General Introduction . 3

1.2 Context . 4

1.3 Problem Statement . 5

1.4 Solution and Contribution Overview . 5

1.5 Thesis Organization . 6

2 Software Defined networking 8

2.1 Introduction . 10

2.2 SDN Paradigm . 11

2.3 SDN Architecture . 13

2.4 OpenFlow . 17

2.5 Expected SDN Benefits . 19

2.6 SDN Challenges . 20

2.7 Discussion . 23

3 Security in Software Defined Networking 24

3.1 Introduction . 26

3.2 From Network Security to SDN Security . 26

3.3 Security for SDN . 29

3.4 SDN for security . 40

3.5 Discussion . 52

II Security for SDN 53

4 Software Defined Networking Vulnerability Analysis 54

4.1 Introduction . 55

4.2 Problem Statement . 55

4.3 Vulnerability Analysis Concepts . 56

4.4 SDN Asset Classification . 64

4.5 SDN Vulnerability Procedure . 64

4.6 Vulnerability severity results . 67

4.7 Discussion . 76

v

CONTENTS

III SDN for Security 77

5 Centralized SDN Firewall 78

5.1 Introduction . 80
5.2 Conventional Firewalls . 80
5.3 Motivation for an SDN Firewall . 83
5.4 Key Concepts . 85
5.5 Implementation . 104
5.6 Evaluation . 106
5.7 Discussion . 116

6 SDN Firewall Orchestration 117

6.1 Introduction . 118
6.2 Context and Objectives . 118
6.3 SDN firewall policy model . 119
6.4 Implementation . 128
6.5 Evaluation . 129
6.6 Discussion . 132

IV Conclusion 133

7 Conclusion 134

7.1 General Conclusion . 135
7.2 Contribution Summary . 135
7.3 Perspectives . 140

V Appendix 142

.1 Appendix AHP Computations . I

VI References XIV

vi

LIST OF FIGURES

List of Figures

2.1 Conventional Network Architecture Vs. SDN Architecture 10
2.2 OpenFlow Processing Pipeline . 17

3.1 Full SDN Firewalls . 47
3.2 Hybrid SDN Firewalls . 50

4.1 Preliminary CVSS Results . 69
4.2 Enganced SDN CVSS Scores . 75

5.1 SDN Stateful Firewall General Architecture . 86
5.2 SDN Orchestrator Behavior . 87
5.3 Overview of firewall application reactive behavior 92
5.4 Overview of firewall application proactive behavior 95
5.5 SDN firewall generic algorithm . 99
5.6 EFSM for TCP handshaking phase . 101
5.7 EFSM for TCP data transfer and termination phase in reactive mode 103
5.8 Implemented Firewall Software Architecture . 105
5.9 SDN Firewall Testbed . 108
5.10 Average Connection Times according to the different experiments 112
5.11 Average Packet Processing Times according to the different experiments 114
5.12 The ratios of TCP Control re-transmission packets 115

6.1 The Policy Model Implementation . 129
6.2 Average Packet Processing Times according to the different experiments 131

vii

LIST OF TABLES

List of Tables

4.1 CVSS metrics for SDN . 57
4.2 CVSS Metrics, options and their numerical values 59
4.3 AHP Scale of importance for pairewise comparaison 61
4.4 Alonso and Lamata RI values . 63
4.5 SDN Assets . 65
4.6 Reversion of security principals . 66
4.7 SDN vulnerabilities . 66

6.1 Firewall Policy Expression for NSC, NSP1, NSP2 and NSP3 121
6.2 RENP protocol . 125
6.3 Final agreement between NSP2 and NSC . 126
6.4 Interpretation of the Final Agreement into OpenFlow Rules 128

viii

Part I

Thesis Background

1

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

“ Science is a way of life.

Science is a perspective.

Science is the process that

takes us from confusion to

understanding

in a manner that’s precise,

predictive and reliable - a

transformation,

for those lucky enough to

experience it,

that is empowering and emotional.

”

Brian Greene

Contents

1.1 General Introduction . 3

1.2 Context . 4

1.3 Problem Statement . 5

1.4 Solution and Contribution Overview . 5

1.5 Thesis Organization . 6

2

CHAPTER 1. INTRODUCTION

1.1 General Introduction

The conventional network architecture is becoming inadequate for the requirements of new
technologies such as Cloud Computing, Internet Of Things, Bring Your Own Device and for
the expansion of internet services. These technologies and services need large-scale comput-
ing, high resource availability, dynamic infrastructure tailoring, automation, resilience, holistic
knowledge and other needs. However, conventional architecture cannot satisfy them due to its
rigidity, complexity, costs and lack of customization. Its rigidity is a barrier for network innova-
tion because developers are limited to the capacities of proprietary devices and technologies.
Its configuration and maintenance are complex and costly because in this architecture net-
work devices are rigid, they use low-level abstractions and do not collaborate with each other.
Besides, network devices in the conventional network architecture are vendor dependent, and
their evolution relies on the vendor business model. The vendor may hamper network cus-
tomization when it contradicts its goals.

Software Defined Networking (SDN) promises to resolve the limitations mentioned above.
SDN is the softwarization of networks. This softwarization shapes the design and the devel-
opment of systems and services from a monolithic architecture to a component-based archi-
tecture where multiple technologies and stakeholders can deploy their services and collabo-
rate. SDN breaks the vertical integration of the conventional network architecture. As a result,
SDN releases network innovation from the vendor dependence paradigm. SDN provides stan-
dardized programmable interfaces to network applications that enable them to reprogram the
network infrastructure and customize it according to their needs. Moreover, SDN elevates user
network programs from a Command Line Interface(CLI) model to a high abstracted model that
federates different applications and users around network policies and holistic network knowl-
edge. SDN reduces network provisioning and maintenance time because it automatizes their
tasks. It reduces the manual intervention of network operators and their errors.

SDN and security have a particular relation. On the one hand, SDN inherits the vulnera-
bilities of the conventional network architecture, and it introduces new vulnerabilities that did
not exist before. In this matter, security for SDN is the study of SDN security issues and their
resolutions. On the other hand, SDN improves security applications thanks to its advantages.
Its programmability automatizes security behavior in the network infrastructure. Its orchestra-
tion simplifies the expression and deployment of security policies. Its centralization provides
a global knowledge that improves the consistency of security applications. Its programmable
interfaces enable the pervasiveness of security policies in all the infrastructure.

In this thesis, we focus on this two aspects of the relationship between SDN and security.
Concerning security for SDN, the thesis studies the vulnerabilities of SDN to identify them and
to measure their severity. Regarding SDN for security, the thesis integrates SDN characteristics
into the design of stateful firewalls to improve the firewall performance and operations.

The thesis performs an SDN vulnerability analysis to tackle the first aspect. SDN vulner-
ability analysis is a crucial process used to identify SDN security flaws and to measure their
impacts. This process is necessary to improve SDN security and understand its weaknesses.
It provides a generic classification of SDN vulnerabilities and evaluates their impacts on SDN
security. These outcomes enable organizations to know the impacts of their conceptual and
implementation choices. They help them to adopt suitable countermeasures against security
attacks by making the best security decisions.

The thesis relies on the Common Vulnerability Scoring System (CVSS) to quantify the sever-
ity of SDN vulnerabilities. CVSS is based on qualitative and quantitative metrics that compute
the severity of security vulnerabilities. Its computation procedures integrate three dimensions

3

CHAPTER 1. INTRODUCTION

related to the different characteristics of conventional networks: the essential generic features
of computer systems, their temporal features, and their environment-related factors.

The thesis extends CVSS with the Analytic Hierarchy Process (AHP) which integrates SDN
characteristics into the computation of the severity. AHP is a Decision-making process that
enables the measurement of the weights related to the alternatives according to decision cri-
teria. AHP is a multi-criteria decision making procedure. It is used to define and evaluate the
importance of decision alternatives in the decision-making process. It decomposes complex
problems into many levels of connected subproblems. Then, it evaluates the intensity of each
subproblem in the overall set of problems.

Furthermore, the thesis explores the second aspect (SDN for security) to improve conven-
tional firewalls and solve some of their limitations. They are complex and costly regarding pro-
visioning and maintenance. They rely on perimeter security. As a result, they can not protect
the network from insider attacks. Also, they do not collaborate because they are technology
proprietary devices using different interfaces. This lack of collaboration reduces the consis-
tency of firewall policies. In this respect, SDN can improve conventional firewalls by resolving
these issues.

Thus, the thesis introduces SDN characteristics into stateful firewalls. It designs and imple-
ments an SDN stateful firewall based on the characteristics of SDN such as externalization, cen-
tralization, federation, and programmability. The thesis proposes a formalism that abstracts
the concepts of the SDN firewall. It processes Network Finite State machines into their SDN
Equivalent FSM (SEFSM). It uses high order logic and set theory to formalize the behaviors of
the SDN firewall.

Besides, SDN characteristics bring many advantages to Cloud Computing regarding au-
tomation, global knowledge, and dynamicity. The thesis explores the enforcement of security
policies in SDN as a service. The thesis proposes an orchestrator to express, assess, negotiate
and deploy firewall policies.

1.2 Context

The context of this thesis is SDN vulnerability analysis, SDN firewall design and development,
and SDN orchestration in Cloud Computing. We have performed this thesis in the Network
Architecture laboratory of the IRT b<>COM according to a three years funding given by the
Brittany region. The research of this thesis is also part of the academic research laboratory
Lab-STICC. The thesis is a collaboration between Western Brittany University, IMT Atlantique
Rennes and IRT b<>COM.

IRT b<>COM is a research and development institute that aims to bridge academic research
with industry. IRT b<>COM operates in three principal axes which are Network and Security,
E-Health and Hypermedia.

Lab-STIC (Laboratoire des Sciences et Techniques de l’Information, de la Communication
et de la Connaissance) is organized around three areas of research. The first one (MOM Pole)
focuses on Microwaves and Materials. The second one (CACS) focuses on communications, ar-
chitecture, and circuits. The third area (CID) is related to knowledge, information and decision
subjects.

Both SDN vulnerability analysis and SDN stateful firewalls research work have been inte-
grated into the European sub-project TANDEM of the project CELTIC+. TANDEM addresses the
challenge faced by a new network infrastructure regarding high volatile data traffic of mobile
linked up objects. It aims to develop a secure Networking architecture for a Data Center Cloud
in Europe. The critical infrastructure working group of the project has included our vulnera-
bility analysis work. The SDN firewall application integrates the secure network architecture of
SENDATE as one of its building blocks.

4

CHAPTER 1. INTRODUCTION

Furthermore, we have collaborated with another Ph.D. thesis to enhance the orchestrator of
our firewall. This previous research work is related to the selection and negotiation of security
policies. The research work provided a method for measuring the similarity between security
policies. Similarly, it used a policy tree as configuration to store and manage security-aware
preferences and requirements to negotiate security policies. Our orchestrator enhances this
research by proposing a firewall policy expression, selection, negotiation and deployment in
the context of SDN as a service.

1.3 Problem Statement

We address three problems in this thesis.

1. The first problem is the identification and quantification of SDN vulnerabilities. One of
the most common assumptions taken in the previous SDN literature is that SDN intro-
duces new vulnerabilities due to its architecture and features. However, there is not a
clear piece of work that addresses these vulnerabilities. Also, all the existing vulnerabil-
ity computation frameworks and models are inadequate for SDN because they do not
integrate its specific properties.

2. The second problem is related to the enhancement of stateful firewalls with SDN charac-
teristics. Another assumption of the literature is that SDN enhances security applications
such as firewalls by its architecture and characteristics. Firewalls suffer from complex-
ity. They are error-prone due to human interventions. They do not protect the network
against insider attacks. They lack policy enforcement. The literature provides limited
research work in the arena of SDN firewalls. Most of these works address the design of
stateless firewalls. However, they do not address the implementation of SDN stateful fire-
wall applications or their evaluation regarding performance and attack resistance. The
literature also does not compare these evaluation metrics against conventional firewalls
such as NetFilter.

3. The third problem is the lack of a complete orchestration mechanism for firewall poli-
cies management in the context of SDN as a service. The literature lacks works that take
into account the firewall policy life cycle from the expression phase to the deployment
phase as OpenFlow rules. The assumption taken in the literature is that SDN orchestra-
tion enables the pervasiveness of policies into SDN infrastructure, their automation, and
their enforcement. A complete policy management framework based on SDN that sup-
ports policy expression, assessment, negotiation, and deployment is as an application for
SDN. To the best of our knowledge, no method in the literature addresses all these steps
using SDN.

1.4 Solution and Contribution Overview

In this thesis, we study the security of SDN and propose a solution that analyzes SDN vulner-
abilities. Our Solution is the first piece of work to identify and to quantify SDN vulnerabilities.
Besides, we design, implement and evaluate an SDN stateful firewall that integrates SDN fea-
tures such as externalization, centralization programmability and federation to improve the is-
sues of conventional firewalls. We also enhance the orchestration part of the proposed firewall
by integrating into the orchestrator a policy management framework. We rely on our research
work in this thesis to address the three problems mentioned above. The solutions brought by
our thesis lead to the following contributions:

5

CHAPTER 1. INTRODUCTION

1. SDN Vulnerability Analysis: To address problem 1, we propose an approach to assess
SDN security vulnerabilities by combining the reversion of security objectives with SDN
assets. Then, we quantify the severity of the vulnerabilities using CVSS. CVSS computes
the severity based on mathematical metrics that address the intrinsic, temporal and en-
vironment characteristics of vulnerabilities. However, we find that there are significant
factors, specific to SDN, which are not covered by CVSS. These factors affect the security
of SDN and enlarge its vulnerability surface. To cover these factors, we introduce into
the severity computation AHP weights to determine the importance of each SDN assets
regarding its importance for SDN specific features. AHP compounds four steps. In the
first step, we determine the importance of each SDN specific feature in relation to the
others. In the second step, we determine the importance of each SDN asset to the rest of
the assets according to each SDN feature. In the third step, we combine all the results to
determine the weight of each SDN asset. In the fourth step, we integrate the weights to
CVSS computations to adapt CVSS to SDN.

2. SDN stateful firewall: To address problem 2, we propose a formalism using set theory
and high order logic to formalize the behavior of our SDN stateful firewall. The proposed
SDN firewall integrates the SDN architecture as an SDN application in the application
layer and as an orchestrator in the management layer. The firewall application processes
the FSM of network protocols according to two behaviors. The first behavior is reactive
whereas the second one is proactive. Both behaviors generate a SEFSM that calls fire-
wall and controller functions and installs firewall policies as OpenFlow rules. Besides,
we implement our SDN firewall and deploy it in a data center platform. We evaluate its
performance and its resistance to DDoS attacks. We also evaluate the performance and
resistance of NetFilter in the same evaluation scenarios and configurations. Then, we
compare both results to find the conditions in which our solution is better than a con-
ventional solution.

3. SDN Policy Orchestration: To address problem 3, we integrate into the orchestrator a
policy management framework that supports firewall policies life cycle. The framework
relies on set theory and High Order Logic to unify the expression of firewall policies re-
quirements and offers and to assess their relations. It selects the provider that best sat-
isfies the requirements using a ranking algorithm. It provides a negotiation protocol to
reach an agreement between the customer and the selected provider. Then, it deploys
the agreement into the SDN infrastructure as OpenFlow rules.

1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 covers key background knowledge on SDN. It
describes the SDN paradigm, its specific features. It presents its architecture and OpenFlow.
It discusses its challenges and benefits. Chapter 3 studies the relationship between SDN and
security. It analyzes the aspects of security for SDN by describing SDN attacks and their security
solutions. Moreover, it studies SDN for security concerning the improvement that SDN brings
to security applications.

The main contributions of this thesis are in chapters 4, 5 and 6. Chapter 4 proposes a vul-
nerability analysis model for SDN. It presents SDN vulnerabilities. It calculates their severity
using CVSS. Then, it adapts the results according to the impacts of SDN features on security
using AHP. Chapter 5 describes the details of our SDN stateful firewall. It discusses traditional
firewalls and our motivations for SDN firewalls. Then, it introduces the main ideas of our so-
lution and its conceptual foundations. It also describes its implementation and evaluation.

6

CHAPTER 1. INTRODUCTION

Chapter 6 describes the policy management framework for SDN firewall policies provision-
ing. It presents the policy expression and the policy assessment formalism. It discusses the
selection mechanism and the contract establishment processes. It introduces the policy de-
ployment process. It presents the implementation of the model into the orchestrator and the
evaluation of its performance.

Chapter 7 concludes the thesis and outlines future work.

7

CHAPTER 2. SOFTWARE DEFINED NETWORKING

Chapter 2

Software Defined networking

“ We are all now connected by the

Internet, like neurons in a giant

brain. ”

Stephen Hawking

Contents

2.1 Introduction . 10

2.2 SDN Paradigm . 11

2.2.1 Externalization . 11

2.2.2 Centralization . 12

2.2.3 Federation . 12

2.2.4 Programmability . 12

2.3 SDN Architecture . 13

2.3.1 Infrastructure layer . 13

2.3.2 Southbound API . 13

2.3.3 Control layer . 14

2.3.4 Eastbound and Westbound APIs . 14

2.3.5 Northbound API . 15

2.3.6 Application layer . 16

2.3.7 Management layer . 16

2.4 OpenFlow . 17

2.5 Expected SDN Benefits . 19

2.5.1 Simplicity and convergence . 19

2.5.2 Agility . 19

2.5.3 Automation . 19

2.5.4 Global knowledge and orchestration . 20

2.5.5 Network Efficiency . 20

2.5.6 Openness . 20

2.6 SDN Challenges . 20

2.6.1 Scalability . 21

2.6.2 Interoperability . 21

2.6.3 Consistency . 22

2.6.4 Security . 22

8

CHAPTER 2. SOFTWARE DEFINED NETWORKING

2.6.5 Flow Limitations . 22

2.7 Discussion . 23

9

CHAPTER 2. SOFTWARE DEFINED NETWORKING

2.1 Introduction

The internet became a conventional architecture for human communication because it lever-
ages human interactions beyond time and space. This technology is largely deployed with a
plethora of interconnected devices and services that process, manage and deliver mass infor-
mation. However, conventional network architecture experiences many issues. It is based on
the vertical integration of software and hardware into the same device. The data plane layer,
the control layer, and the application layer are vertically integrated together in the same pro-
prietary devices (see Figure 2.1).

As a result, services and middle-boxes such as firewalls are costly in terms of price, com-
plexity and maintenance [1]. They cannot be adapted to the client’s need without the interven-
tion of their manufacturers; neither can they collaborate with the network devices of different
manufacturers. Many middleware products have been developed to enable them to interact.
Unfortunately, the adoption of these solutions has not been a success due to their complexity,
their costs and the rapid evolution of services.

The rigidity of the network devices and their heterogeneity are a barrier for network in-
novation. It confines developers around the complexity of the hardware and its limitations.
Furthermore, the administration of the network devices is costly because it is based on tech-
nology proprietary products. Administrators and engineers manually configure the plethora.
As a consequence, they prompt errors and affect the security of the network.

Southbound API

Eastbound/Westbound
API

Control Plane

Network Applications

Data Plane

Network Device

Conventional Network Architecture

Software Defined Networking Architecture

Northbound API

Network Link

Management Plane

Management API

Data Link

Figure 2.1 – Conventional Network Architecture Vs. SDN Architecture

Software Defined Networking (SDN) brings solutions to the issues mentioned above by
breaking the vertical integration of the conventional architecture and standardizing the differ-

10

CHAPTER 2. SOFTWARE DEFINED NETWORKING

ent networking interfaces. As a result network devices become network elements that perform
only data plane tasks such as forwarding. SDN separates the three layers by externalizing the
control layer and the application layer from the data plane layer (see Figure 2.1). Therefore, an
independent software entity performs control decisions. Applications become able to repro-
gram network elements without being limited by the constraints of hardware complexity.

This chapter introduces SDN through its principles and its specific features. It presents its
architecture. It discusses OpenFlow. It also highlights its advantages and challenges.

2.2 SDN Paradigm

Software Defined Networking [2, 3] applies software engineering concepts such as modularity,
abstraction, and separation of concerns to make flexible, scalable and efficient networks. Soft-
ware evolved from a monolithic bloc of functions, data, and interfaces running on dedicated
sealed hardware into decoupled and flexible modules that are hardware agnostic. This evo-
lution was possible because of the introduction of operating systems, the standardization of
the different interfaces, the separation of data from functions and the abstraction of hardware
complexity.

SDN operates with the same idea. It breaks the vertical integration between the control
layer and the data layer in networks. It separates the data plane layer from the control layer.
It centralizes the control layer logically in a software entity called the controller. Furthermore,
it introduces programmable interfaces between the different new layers to offer applications
network abstractions while making them able to reprogram the network devices.

SDN is the softwarization of the network. SDN enables network software to change and
control the behavior of network infrastructure independently of the underlying hardware. The
software can be business applications, management applications, security applications or other
network services. The software express their logic in high-level languages and policies without
the constraints of hardware details. Then, these high-level rationales are interpreted through
open programmable SDN interfaces to hardware specifications. The latter can be forwarding
behavior, infrastructure configuration, resource requests, and other low-level specifications.
Finally, network elements change their behavior and states according to these specifications.

SDN is founded on four characteristics [3–8]. Externalization of control decouples the data
plane layer from the control layer. Centralization centralizes the control layer logically in an
external software entity. Federation opens and standardizes SDN interfaces. It guarantees the
interoperability between applications, controllers, and network elements. Programmability

automatizes the decisions of network application and the controller. It enables them to change
the states and behaviors of network elements dynamically.

2.2.1 Externalization

SDN separates the control functions from the forwarding behavior by decoupling the data
plane layer from the control layer. It breaks the vertical integration between the control soft-
ware and the network element. Upon stripping control functions from network elements, the
latter becomes simple forwarding elements, and all the intelligence and decisions are external-
ized in the control entity.

Decoupling the control from the data plane makes their deployments and fates indepen-
dent. Both can evolve and change technologically. They can be provisioned and managed
without being limited to the technical constraints of the other. Furthermore, control separa-
tion accelerates network innovation because it liberates the control and applications from the
limitations of network infrastructure and its technology proprietary restrictions.

11

CHAPTER 2. SOFTWARE DEFINED NETWORKING

2.2.2 Centralization

SDN centralization means that all the control functions are concentrated in a single entity
called the controller. The latter is the gravity center of all the network in SDN. It can be physi-
cally distributed on many commodity servers, but its control functions behave seamlessly as a
single logical entity. The logical centralization simplifies network management and infrastruc-
ture abstraction. It allows the convergence of network applications by consistently spreading
their logic on network elements.

Besides, centralization builds a global network knowledge. This abstraction represents the
state of the network and its information. It is created according to a set of criteria that general-
izes the characteristics of the network. It increases the usability of network resources because
it simplifies their representation and hides their implementation. Besides, centralization in-
creases network performance by grouping small resources into a logical entity while ensuring
their synchronization and cooperation. It also enables the reduction of configuration errors
because the centralized controller processes the decisions of all the applications together ac-
cording to its global knowledge. Centralization offers applications only the information that
they need. This specific representation limits the sphere of influence of application in the net-
work [9].

2.2.3 Federation

SDN introduces the concept of open interfaces to enable controllers and network applications
to manage and configure the network infrastructure. Their purpose is the convergence of all
SDN actors around the same set of protocols, interaction models, and architecture. Besides,
they enable different controllers and network applications to collaborate, to share the network
state and to unify the methods of expressing their requirements.

Open interfaces offer data models, standardized operations, communication protocols and
programmability functions that can be translated into low-level commands. These mecha-
nisms deal with the vertical interactions between applications, controllers, and network ele-
ments but also with horizontal interactions in inter-domain networks.

On another note, SDN promotes open source technology with the standardization of open
interfaces. It aims to open the control layer technology to set an open universal controller
that can be used, enhanced and customized by any user. The main controllers used are open
source. This global network operating system will federate all the stakeholders on a unified
technology while breaking the lock-in from the control layer technology. Along the same line,
SDN also strives to unify and open the infrastructure layer into common technology. Open-
Virtual Switch (OVS) [10] is an effort in this way.

2.2.4 Programmability

SDN programmability enables network applications to express their intents concerning poli-
cies and configurations without the constraints of low-level infrastructure details. The control
layer verifies the consistency of these requirements. Then, it translates them into low-level
specifications and sends them to the network elements. Upon installing them into the infras-
tructure, network elements update their states and change their behaviors according to these
intents.

Thanks to programmability, and network applications, the controllers can perform fine-
grained control of the network infrastructure. It enables programs in the control layer and in
network applications to reprogram the behaviors of network elements on aggregate levels such
as MPLS tunnels or protocol layers such as an HTTP connection. For example, an application
can specify how network elements will behave with traffic flow. For this purpose, it expresses

12

CHAPTER 2. SOFTWARE DEFINED NETWORKING

a set of policies that specify the criteria to identify the flow. When the controller receives the
requirements, it interprets them into low-level specifications. The latter can contain the de-
sired states, traffic information, and appropriate actions. Then the rules are installed into the
suitable network elements.

2.3 SDN Architecture

SDN architecture [7, 11–18] compounds four layers (see Figure 2.1). The bottom layer is the
Infrastructure Plane (Data Plane Layer). It processes network traffic and executes network for-
warding/routing behaviors. The application layer is localized on the top of the architecture. It
runs the business logic of network stakeholders. It defines different network services such as
load balancing, firewalls, VoIP, and other services. The control layer (controller) is situated be-
tween the previous two layers. It provides the application layer with network state and network
data. It interacts through Northbound APIs with the application layer and Southbound APIs
with the infrastructure layer. Besides, the control layer uses East/West APIs to exchange with
other controllers. The management layer is connected to the three layers mentioned above. It
manages the configuration, provisioning, and administration of their resources.

2.3.1 Infrastructure layer

The infrastructure layer (Data Plane Layer) consists of a set of interconnected network ele-
ments. Data links ensure this interconnection in the infrastructure. Each link connects a port of
a network Element to the port of its neighbor. A network element performs computation, stor-
age and forwarding operations on network traffic. Network elements can be virtual or hard-
ware switches, routers, middle-boxes, and other network components. They integrate open
programmable interfaces. The control layer uses these interfaces to reprogram their behaviors
and to extract their local states. They operate directly on network traffic by performing for-
warding behavior, routing tasks, caching, packet inspection and other networking operations.

Open Virtual Switch is a concrete example of an SDN network element. This open source
software switch is included in every Linux distribution [19]. It supports many SDN protocols
such as OpenFlow. Its modular design eases its integration with vendors switches. This inte-
gration guarantees the acceleration of switching and the support of OpenFlow without imple-
menting it in vendors’ hardware [20]. Vendors use the provided interface to run OVS and Open-
Flow in their Hardware. OVS implements its modules in two spaces [21–23]. In the user space,
it integrates OpenFlow in the switch daemon Ovs-vswitchd. In the kernel space, it proposes a
kernel module (Datapath Kernel) that abstracts the forwarding behavior based on flows.

2.3.2 Southbound API

The Southbound API (Data Control Planes Interface (D-CPI)) is an open programmable inter-
face between the infrastructure layer and the control layer. It supports the interactions be-
tween both layers by offering them all the necessary abstractions and protocols. It has mainly
two functions. It provides the control layer with abstractions to communicate with network
elements. Besides, it executes the commands of the control layer in network elements.

There are many available D-CPI such as Protocol Oblivious Forwarding (POF) [24, 25], Open-
VSwitch Data Base Management Protocol (OVSDB) [26], OpenState [27], Programmable Ab-
straction of Datapath (PAD) [28], Hardware Abstraction Layer (HAL) [29], LISP [30] and Open
Policy Flexible Protocol (OPFlex) [31]. However, OpenFlow [32] is the most widely used D-CPI.
This standardized open interface enables the control layer to reprogram the forwarding behav-
ior of the infrastructure layer and to pull its state. Mainly, it uses Flow rules to configure the

13

CHAPTER 2. SOFTWARE DEFINED NETWORKING

Data Plane Layer. Flow rules are a set of matching fields associated with actions and an in-
struction that describes how the network element should execute these actions. Flow rules are
kept in OpenFlow tables inside network elements.

2.3.3 Control layer

The control layer (also called the controller) is considered the brain of the network. It is a log-
ically centralized entity that embeds interfaces, network operations, network state and a de-
velopment environment to control the behavior of network elements. It abstracts the network
infrastructure, processes network states and creates a domain knowledge of the network. Net-
work applications use these abstractions to reprogram the network elements. Moreover, SDN
controllers interpret applications policies into low-level rules. They guarantee the consistency
and validity of rules installation in network elements. Besides, they monitor the network ele-
ments and network traffic by extracting network state, network events, metrics and other pa-
rameters.

The control layer can be considered as a Network Operating System that simplifies the de-
velopment of network applications. It drives open programmable interfaces by interpreting
applications requirements into hardware specifications and by deploying them in the network
elements. It collects network states also using these interfaces. It guarantees network con-
sistency by dynamically managing rule updates throughout the entire network. It offers a de-
velopment environment to implement control functions. It constructs a holistic view of the
network using the collected infrastructure states. Besides, it manages the virtualization of the
infrastructure layer.

Physically, the control layer can be a single entity running on one server or a set of dis-
tributed controllers running on many servers. In the latter case, the distributed controllers co-
operate to harmonize the control logic and to guarantee network consistency. The distributed
control architecture is advantageous regarding scalability and performance because it enables
the distribution of the load on many controllers. As a result, it prevents the control layer from
becoming a bottleneck. Also, it limits overheads due to frequent network events handled by
a single controller. Distributed controllers are more resilient than centralized controllers be-
cause they can handle failures while keeping control of the network.

Furthermore, the controller can include Network Programming Languages. Network appli-
cations use them to program controller functions. These languages can offer formal validation
mechanisms to check the consistency of network functions. FML [33], Nettle [34], Frenetic [35],
Procera [36]and Pyretic [37] are examples of SDN languages.

The SDN community has developed many open source controllers. NOX [38] is the first
SDN controller that has been developed as an open source control layer. This single-threaded
controller is implemented in the C language. Opendaylight [39] is a control layer project that
has been developed to satisfy network operators’ needs. It is implemented in Java, and it pro-
vides many SDN interfaces. It provides development environments that create control func-
tionalities and their interaction patterns. ONOS [40] is an open source NOS. It is a distributed
architecture based on clustering the control layer to ensure high performance and scalability.
RYU [41] is a software component SDN controller. Its software architecture is multi-threaded.
It supports all the versions of OpenFlow.

2.3.4 Eastbound and Westbound APIs

Eastbound and Westbound APIs (Control Control Planes Interface (C-CPI)) enable controllers
to communicate within the control layer. Depending on the communication peer, there are two
types of Eastbound and Westbound APIs. An Eastbound interface manages communications
between an SDN controller and a legacy network. It integrates the mechanisms that interpret

14

CHAPTER 2. SOFTWARE DEFINED NETWORKING

SDN interactions into their none SDN counterparts and vice-versa. A Westbound interface
manages communications between only SDN controllers. It ensures the interoperability be-
tween different types of SDN controllers. It improves network consistency and inter-domain
policy deployment. Depending on the position of controllers, intermediary controllers inte-
grate both types of interfaces, whereas edge controllers integrate one type. The locality of con-
trollers is essential for running the proper Interface with one of the other peers.

Eastbound and Westbound APIs are used to control traffic between multiple domains that
are governed by different controllers. This coordination has different aspects. Controllers can
be from different vendors. In this case, the interface ensures the interoperability between them.
They can have different functions and network applications. Another controller can solicit the
functions through the interface. Different administrative authorities can govern the domains.
In this case, the interface is used to route the packet to its destination or to calculate the costs
of the paths. Finally, the interface can be used to divide a load of a controller on different
controllers to ensure suitable scalability.

C-CPI is not standardized yet. For example, SDNi [42] is a Westbound interface for SDN
multi-domain communications. It defines multi-control orchestration and coordination in-
teractions across multiple SDN domains. It enables controllers to collaborate to reprogram
the behaviors of their network elements which is crucial for inter-domain network operations
such as path computing, routing, load balancing and other global network services. SDNi also
handles information exchanges like QoS, SLAs, flow setup requests, reachability updates be-
tween controllers. It also enables the sharing of domain Knowledge and resources such as QoS,
domain topology and other information.

2.3.5 Northbound API

Northbound API (Application Control Planes Interface (A-CPI)) is a programmable interface
between controllers and network applications. It enables the latter to interact with the control
plane and to deploy its requirements across the network infrastructure [43]. This abstraction
enables network applications to profit from the full potential of SDN features such as global
knowledge, programmability, automation, and policy deployment. It offers network applica-
tions universal data models, network states, management information and other functions.
The latter use the interface to reprogram the behavior of network elements and to update the
network state.

The interface ensures the interoperability of network applications. Thus, the latter can in-
teract with any controller without relying on its implementation. In the same way, network
applications become entirely independent from the infrastructure implementation. It hides all
the control functions’ complexity while integrating the proper modules that plug network ap-
plications with the control layer functions. Besides, it abstracts the details of the infrastructure
by hiding the implementation of the forwarding behavior of network elements.

The interface features abstract the functions of the controller to simplify the infrastructure
configuration. For instance, network applications express through the northbound interface
network policies. The controller uses the policies to perform network computation (for ex-
ample, routing). The latter includes network constraints such as traffic priorities, QoS, racing
conditions, consistency checking and other control operations. Then, through the southbound
interface, it interprets the received policies and the results into southbound API rules such as
OpenFlow rules.

In contrast to other interfaces, the northbound interface expresses the business logic of
network applications intuitively. It offers programming models and data structures to describe
business requirements and goals [44]. For instance, these requirements can be services that are
needed to run network applications, the model to chain them together, their access to network

15

CHAPTER 2. SOFTWARE DEFINED NETWORKING

resources, the virtualization of the infrastructure, QoS and other high-level policies. The goals
deal with QoE (Quality of Experience), application performance and scalability, optimization
and monetization of available resources and other objectives.

So far, there is not a standardized northbound API. Discussions and works about the defini-
tion and standardization of northbound interfaces are still in progress within the SDN commu-
nity. In these terms, many SDN controllers such as Opendaylight implement their northbound
interface. REST API [45] is used as a northbound interface by many controllers. It enables net-
work applications to express the forwarding behavior of network elements. However, because
it is specific, it does not guarantee the interoperability, portability, and re-usability of network
applications with other controllers. NetIDE [46, 47] is another Northbound interface. It of-
fers an integrated environment that supports the development and all the life cycle of Network
Application in SDN. NetIDE enables developers to perform network application’s requirement
collection, design, implementation, deployment, testing and debugging. Furthermore, it offers
diagnosis tools to analyze the performance of the resulting network. It also handles network
state such as topology information and offers a mean to express high-level policies.

2.3.6 Application layer

The application layer resides at the top of the SDN architecture. It compounds network applica-
tions. It abstracts the business logic, the requirements, and goals of network stakeholders. This
layer generally interacts with third-party applications, administrators, developers and other ac-
tors. It transforms these interactions into policies and network strategies. Then, it sends them
through the northbound interface to the control layer to configure the network infrastructure
or collect its state.

Network applications are computer programs that process network information and pro-
duces network services. They offer QoS, Access Control, security, network optimization and
other services. They reprogram the behavior of the infrastructure layer through high-level poli-
cies. They request the controller’s functions and resources such as topology, network events,
infrastructure resource capabilities and other state information. They can act as any client re-
questing services and data from controllers, but also they can provide the control layer with
high-level information such as network policies.

The application layer ensures innovation across SDN. For instance, traffic engineering ap-
plications such as path computing and load balancing process network paths more efficiently
and timely thanks to global network knowledge and forwarding programmability provided by
the controller. In the same way, Integrated Network Management System Applications in SDN
benefits from such advantages. They provide fault tolerance, network discovery, configuration
changes, inter-domain routing and real-time end-to-end flow deployment. Regarding SDN se-
curity applications, many solutions were also developed and integrated into the SDN appli-
cation layer to handle DDoS attacks, authentication, access control, firewalls and Intrusion
Detection Systems (IDS).

2.3.7 Management layer

The management layer (Manager) steers the configuration and orchestration of software and
hardware resources in the other SDN layers. In addition, it interacts with the administrators
to enable them to manage and monitor the SDN layers. The Manager maintains the software
and hardware resources of SDN. It deploys them in the proper hardware with the adequate
configurations. It adapts them according to the network traffic and in the context of business
logic. It controls all their life cycle. It monitors the utilization, the operations, and health of
SDN resources. It collects the domain knowledge of each controller. It combines the latter with
the monitoring data to construct a global knowledge of the network.

16

CHAPTER 2. SOFTWARE DEFINED NETWORKING

2.4 OpenFlow

OpenFlow defines how network elements execute forwarding functions on network traffic. It
also standardizes the interactions between the network elements and the controllers. It con-
sists of two parts [48–50]. The first part is the Datapath. It is localized inside the network ele-
ments. It enables them to process, store and forward network traffic. The datapath is a chain
of flow tables which connects flow tables to each other to enable flow lookups. A flow table is a
collection of flow entries [51]. The second part is the OpenFlow Protocol. It defines the syntax
and the semantics of the open flow logic. It includes data structures, communication mecha-
nisms and the operations supported by OpenFlow. It is used to exchange messages, reprogram
the infrastructure and pull its state. It compounds two classes; one is localized in the controller,
and the other is localized in the network elements.

OpenFlow integrates a processing pipeline in Datapath to handle network traffic (see Fig-
ure 2.2). When the network element receives a packet, it sends it to the processing pipeline.
The latter parses the packet to extract its header. It finds the highest priority flow entry because
OpenFlow processes packets according to a descending order of priority. Then, it compares
the extracted header against the matching fields of the primary entry. If it founds a correspon-
dence between both then, the appropriate instructions with the corresponding set of actions
are executed. However, if it does not find a match, the processing pipeline moves the matching
towards to the next flow entry in the priority order. In case there is not matching at all with all
the rules, the processing pipeline executes the table-miss entry. Depending on its configura-
tion, this entry forwards the packet to the controller or drops it.

Figure 2.2 – OpenFlow Processing Pipeline

Extract

header

fields

Match

Flow entry

Flow entry

Flow entry

...

Flow entry

Table miss

Apply-Actions

{List-Actions}

 Update match fields

 Modify packet

 If output or group

 clone packet

Packet clones
Egress

Clear-Actions

 Empty action set

Write-Actions

{List-Actions}

 Merge in action set

Goto-Table

{Table-id}
Execute

Action

set

Flow table

Find highest priority matching flow entry Apply instructions

Flow entries contain mainly a matching set, priority, counters, actions, and timeouts. Match
set contains many matching fields. Each field has a type and a value. Types can be L2, L3, MPLS,
VLAN characteristics such as Destination_IP, Protocol_Type, VLAN_ID, ... Each value is linked
to a wildcard that indicates the masked bits of the value. Values can be partially or wholly
masked using wildcards.

Counters perform statistics on packets, flow entries, flow tables, ports, queues, group of
flow tables and other network elements components. They enable the controller to monitor
the forwarding behavior of network elements. Statistics are part of the network element state.
The controller uses them to construct a global knowledge of the infrastructure. For example,
counters track the duration of the installation of a flow rule, the number of packets passing
through a port, the amount of data matching a flow entry and other counters.

17

CHAPTER 2. SOFTWARE DEFINED NETWORKING

Each flow entry has two ending terms that express their lifetime. Network elements run
these timeouts according to the configuration received from the controller. Idle-Timeout causes
the eviction of the flow entry when it has not matched a packet for the Idle-Timeout value in
seconds. Besides, Hard-Timeout expresses the lifetime of the flow entry.

Instructions define and modify the desired actions on the packet. They encapsulate an
Action Set. The latter defines the forwarding behavior and operations that the network element
should perform on the matched packet. Forward-To-Port, Forward-To-controller, Drop, Go-To-
Table, and Rewrite-Field are examples of supported actions. Instructions can modify the Action
Set that will be executed after leaving the flow table. There are six instructions:

• Apply-Actions: actions are immediately applied to the packet. If this instruction contains
an output action, a copy of the packet is forwarded to its current state to the destination
port.

• Clear-Actions: it deletes all actions of the Action Set.

• Write-Actions: it adds actions to the Action Set. If these actions overlap current actions,
they take precedence.

• Write-Metadata: it writes the metadata value into the metadata field of the packet-in.

• Stat-Trigger: it generates an event for the controller if a threshold value for a statistic is
reached.

• Goto-Table: it indicates the next table in the processing pipeline.

Table-miss feature reflects the forwarding mode of the network element. There are two
modes supported by SDN. In the reactive mode, all the packets that do not match the installed
OF rules are forwarded systematically to the control layer. Network element forwards the entire
packet to the controller; however, if its buffer is activated, it stores the packet and forwards
only the first bytes of the packet. In both cases, the network element encapsulates the traffic
by adding an SDN part before sending it to the controller. This encapsulated packet is called
a packet-in message. Packet-in adds an OpenFlow header to the first traffic to indicate to the
controller that the network element does not know how to handle the packet. Then, when
the controller receives the packet-in, it de-encapsulates it. It processes it to decide whether to
drop it or to install the corresponding rules in the network element. The second mode is the
proactive mode. In this mode, the controller installs in advance all the OpenFlow rules ion the
network elements. Network elements drop the unknown traffic without being forwarded to the
control layer. The latter receives only the traffic when an OpenFlow rule executes a Forward-
To-controller action.

The communication mechanisms between the control layer and network elements are cru-
cial for OpenFlow operations. OpenFlow supports three types of interactions [52]:

• controller-to-Switch messages are initiated by the control layer. They enable the con-
troller to add, remove or update OpenFlow rules, to configure flow tables and the switch,
to forward network packets (packets-out) from the controller and to initiate the hand-
shaking with network elements.

• Asynchronous messages are instigated by network elements. They inform the control
layer with messages about network state information, flow notifications and new incom-
ing packets (Packets-in).

• Symmetric messages are started by either the control layer or network elements. They
are used to maintain the communication channel (Echo messages, Hello messages and

18

CHAPTER 2. SOFTWARE DEFINED NETWORKING

Error messages) or to upgrade switch capabilities with customized OpenFlow’s structures
and operations (Experimenter feature).

2.5 Expected SDN Benefits

Thanks to its features externalization, centralization, programmability and federation, SDN of-
fers many benefits [53–55]. For instance, SDN leverages the network with simplification, con-
vergence, agility, operation automation, global knowledge, orchestration, efficiency, and open-
ness. These advantages make SDN a key solution to integrate into operational environments.
Cloud Computing, data centers, Wide Area Networks (WAN), mobile networks, Network Func-
tion Virtualization (NFV) and many others can benefit from SDN as an innovation enabler.
Moreover, on the business level, SDN contributes to cost reduction, simplifies network admin-
istration and enhances network quality.

2.5.1 Simplicity and convergence

SDN hides the complexity of hardware thanks to federation, programmability, and external-
ization. Network applications can reprogram the network elements and collect data without
worrying about the details of the underlying layers. This simplicity enhances network cost sav-
ings, reduces its complexity and improves innovation. Developers need to integrate into their
implementation only the proper SDN interface module instead of developing a specific appli-
cation that runs only on a specific network device.

The controller abstracts the complexity of the infrastructure layer by offering high-level lan-
guages and models. This simplicity leads to the convergence of different vendors technologies
around the same concepts and models. SDN convergence enhances data transfer, application
collaboration and operations upgrades. It enables the exchange of information between the
vendor’s solutions, the control layer, and network elements. It transforms them into intelligible
and unified data models that can be reused in different environments.

2.5.2 Agility

SDN agility adapts the network state dynamically without the intervention of humans. It also
improves the reconfiguration cycle of the network according to the knowledge of the controller.
The controller and applications react to the new state by updating on-the-fly network elements
behavior. Administrators specify and remotely their policies using the high-level abstractions.
Then, the controller adapts their policies dynamically with its knowledge to ensure the consis-
tency of the network with its operations.

Also, SDN agility enables the automatic customization of the infrastructure according to the
business logic of stakeholders and their requirements. The controller configures the network
elements dynamically according to the requirements of the application layer. It delivers to the
application layer only the data that corresponds to their business logic while ensuring that the
controller deploys their policies on the infrastructure layer appropriately.

2.5.3 Automation

Automation [56] is an outcome of SDN programmability. It enables the manipulation, the de-
ployment and change of network control logic without the manual intervention of humans.
Besides, the control plane enables network applications to manipulate the infrastructure layer
by programming its behavior. It deploys network policies without needing the intervention
of humans. The controller adapts dynamically to network changes by changing network state

19

CHAPTER 2. SOFTWARE DEFINED NETWORKING

and by reprogramming the infrastructure layer when necessary, thanks to the implementation
of the proper programming functions that query the different programming interfaces.

The controller handles the installation of the application layer policies in the infrastructure
layer. The control layer interacts seamlessly with network elements to deploy these policies
effectively. By minimizing human intervention and enhancing applications with the ability
to automatize network operations, SDN reduces network instability introduced by operator’s
errors.

2.5.4 Global knowledge and orchestration

The global knowledge is an outcome of centralization and programmability. The former en-
ables SDN to observe and collect the local states and events happening in the network. Pro-
grammability offers the abstractions to consolidates these states and events into a global knowl-
edge. It provides adapted holistic views to each application depending on its requirements.

The global knowledge improves network orchestration. The latter optimizes the behavior
of the infrastructure layer and improves its consistency according to the network state. It de-
tects network inconsistencies and corrects them. SDN orchestration manages multi-tenancy
requirements. SDN expands its knowledge gathering across multiple sites to collect network
information. Then, it uses such knowledge to orchestrate tenant’s cross-site performance while
ensuring the proper isolation between tenants’ resources [57]. Also, SDN orchestration makes
SDN a leading light of end-to-end network operations that need holistic information to operate
such as routing, optimization, and security.

2.5.5 Network Efficiency

SDN improves network efficiency compared to traditional networks. In the latter, each device
runs its control software to process the traffic. The same packet that passes through many
networking devices is processed through each one. If we take into consideration the number of
networking devices in the legacy architecture and the cost of processing a packet, we find that
the legacy architecture wastes a huge amount of resources. The reason is related to the control
functions which are repeated in many network devices of the legacy architecture.

SDN resolves this issue by externalizing the control and centralizing it. One controller can
manage a set of network elements. Its function can process flow only once. Then, it installs the
proper rules to deal with all the packets of the flow without reprocessing them. As a result, it
reduces the burden significantly on network resources.

2.5.6 Openness

The adoption of OpenFlow as an open standard and the openness of other SDN technologies
are boosting network innovation [58] thanks to SDN federation. Thus, many open source com-
munities emerged and are developing SDN technologies such as controllers, switch software,
programmable interfaces and SDN network applications. The leading SDN solutions are open
source. Furthermore, SDN openness is decisive in unlocking the technological bolts. For in-
stance, it enables the scientific community to access easily to open source solutions, imple-
ment many ideas, experiment them and collaborate with the industry.

2.6 SDN Challenges

Many challenges are impacting the broad spread adoption of SDN [59, 60]. SDN challenges are
related to scalability, interoperability, consistency, security and flow limitations. Scalability and
security are the primary issues in SDN. The former is related to the ability of SDN to extend its

20

CHAPTER 2. SOFTWARE DEFINED NETWORKING

resources, especially network elements and traffic, without damaging network performance.
Security is the intrinsic characteristic of SDN that protects its integrity, availability, and con-
fidentiality while also, not endangering those of other entities with its operations. Both chal-
lenges are significant concerns because they can even be counteracting forces. For instance,
security affects the performance of SDN and scalability can expose SDN to new vulnerability
vectors.

2.6.1 Scalability

SDN centralization affects its scalability and performance. The controller can become a bot-
tleneck [61] because a centralized controller deals with a huge amount of data. OpenFlow par-
ticularly introduces this issue. Its reactive mode puts the entire burden on the controller’s re-
sources. The latter receives network traffic and reacts by installing new rules. By directing a
huge volume of network packets into the controller, network elements jeopardize its perfor-
mance. This reactivity leads to overload the controller but also, it overflows network elements.
Moreover, an attacker can exploit this issue as a vulnerability to make successful DDoS attacks
on SDN.

Flow setup in OpenFlow can lead to scalability issues in both network elements and con-
trollers. When a new flow arrives in a network element and does not match any flow rule; the
network element forwards it to the control layer. The latter processes the new flow. Then, it
generates new flow rules, and it sends them with the flow to the infrastructure layer. Network
elements update their tables. Then, they apply the new rules on the received flows. The update
depends on network element’s and controller’s capabilities, and on the performance of their
software. If one of these factors cannot scale; then, the process will lead to performance issues.

Controller’s placement is also another issue in SDN [62]. Increasing the number of con-
trollers improves reliability because a controller can handover its state to other controllers. In
case it fails, the other controllers will take in charge the operations. However, the number of
controllers needs to be determined without affecting SDN scalability. An inadequate number
of controllers can increase network latency. The controller placement also raises other issues.
How their placement affects their interactions and their security?

2.6.2 Interoperability

Controller-controller interoperability is still an open challenge. As we have aforementioned,
there is not a standard C-CPI. This interoperability needs to specify the data structures that
controllers can share, the functions that they can handover, resources reachability and other
features. Furthermore, it has to put in place some collaboration mechanisms that enable con-
trollers to synchronize their states, to provide support and resources to each other and to build
common universal knowledge. C-CPI standardization must also take into consideration the
security concerns that it introduces. How to protect the confidentiality of one resource from
other controllers? How to prevent the attacker from reaching other controllers or third-party
entities via the Westbound and Eastbound APIs, if he attacks the controller? How to identify
each controller?

We find the same issue in the northbound API because A-CPI has not been yet standardized.
The northbound API must grant the interoperability vertically and horizontally. The vertical in-
teroperability is between the application layer and the control Layer. The horizontal Interoper-
ability is between SDN applications. The interoperability must formalize all the collaboration
mechanisms and data structures for both cases.

21

CHAPTER 2. SOFTWARE DEFINED NETWORKING

2.6.3 Consistency

Network consistency is also a challenging objective in SDN. The controllers reprogram the be-
havior of network elements by changing their configuration or by modifying their rules. Then,
the network elements confirm the execution of the new updates to their controllers by notify-
ing them. In this process, each controller relies completely on the confirmation of its network
elements. The latter can lead the control layer to inconsistent states if they notify them without
really executing their updates. For instance, OpenFlow neither specify any mechanism to val-
idate the controller rules nor specify the rest of SDN interfaces. All the controllers must share
the same global view to guarantee network consistency [63].

Flow racing and conflicts are also among SDN consistency issues. When many applications
query the same controller to install their rules, how to determine which rules the controller
must install first? How can the controller be sure that the network elements have installed
them? The issue of racing is within the control layer network elements. The latter can delay
some rules while running first the simplest one; especially, when they receive messages that
enclose many chunks of rules. Conflicts between rules can occur when many applications have
contradictory goals. For instance, one application installs its rules, and another one uninstalls
these rules. Contradictions can also be in some parts of the rules. For example, a rule that
forwards traffic and another one that drops the same traffic.

2.6.4 Security

Concerning security, the controller is the most attractive SDN entity for attackers [64]. The
reason is related to the role of the control layer in SDN. The controller is the brain of the network
[65]. If an attacker takes hold of the control layer; he will seize all the rest of the network. He
can corrupt the behavior of network elements. He can modify network traffic. He will be able
to expose network applications and even other controllers. An attack can also put down the
control layer by targeting its availability. In this case, the entire SDN network availability will be
affected.

Due to the sturdy dependability and reachability between SDN layers, an attack on a layer
can affect the other layers. Depending on its sophistication and complexity, it can open new
breaches towards other layers. Also, it can reduce their performance. An attacker can exploit
API’s vulnerabilities to access SDN resources in different layers. He can modify network traffic
and even SDN functionalities [66]. Also, he can insert itself in the middle of two layers to snoop
the communications between SDN entities. Therefore, interfaces need to integrate into their
heart security mechanisms such as access control, encryption and integrity checks to protect
the network.

Network elements rely entirely on the control layer. The latter specifies their forwarding
behavior. In the case of the connectivity between both layers failed, network elements will not
be able to handle network traffic because they do not have any intelligence. In this case, the
forwarding and routing capabilities of network elements become inoperative, and they induce
the network elements to drop the traffic. As a result, the network becomes unreliable [67]. An
attacker can exploit this issue to take control of network elements. For example, it initiates a
first threat that disconnects a network element from its controller. Then, it connects an im-
personated controller to this network element to command it. As a consequence, the attacker
reprograms all the connected network elements.

2.6.5 Flow Limitations

Flow operations in SDN present many lacks due to the design of OpenFlow [68]. SDN allows
only a unidirectional flow transmission using one open flow rule between a source and a des-

22

CHAPTER 2. SOFTWARE DEFINED NETWORKING

tination. The return transmission needs an additional new flow rule provisioned by the con-
troller. Moreover, SDN does not enable the infrastructure layer to manage the traffic accord-
ing to the session or the state of the connection, especially, because the infrastructure layer is
stateless in SDN. As a result, the controller performs the tasks of creating return flow rules and
managing stateful transmissions. In the reactive mode, this situation can lead to scalability and
performance issues.

The size of flow tables can affect network quality. The increase in the number of flow rules
inside flow tables decreases the performance of the network due to the rise of the lookup time
to find a match inside the flow tables. Moreover, installing flow rules with timeouts set at null
values accelerates the filling of flow tables. When the latter is full, the network elements reject
the installation of new flow rules and their performance reduces.

2.7 Discussion

SDN is a tremendous evolution in networking. It unifies and connects current network ideas.
Unlike its ancestors, SDN succeeds its industrial adoption by many key players. Its implemen-
tation and deployment in production environments witness about the so-called SDN fever. The
other evidence is the rapid rise of the Open Networking Foundation (ONF) [69]. This commu-
nity compounds the major worldwide networking operators, vendors and system integrator.
They work all together to push innovation around SDN.

It describes SDN architecture, its main components, and their characteristics. It discusses
the advantages of SDN such as efficiency, automation, simplicity, network optimization, global
knowledge, and openness. Finally, it presents SDN open challenges such as interoperability,
consistency and flows limitations while focusing more on scalability and security.

Besides, this chapter presented OpenFlow. The latter has some limitations related to its
scope, performance, and security. All its abstractions are only focused on network forwarding
behavior while the network is rich of much other information needed by controller and net-
work applications [39]. For example, QoS metrics, topology information, link status, hardware
information, and other information. Besides OpenFlow functions are limited to substitution of
some packet values. It does not propose arithmetic functions on packet header, matching on
the application layer, actions on installed flow rules.

SDN is vulnerable to many attacks. The load on the controller and network element links
(especially in OpenFlow) can lead to bottlenecks. Moreover, SDN reactive mode makes the
controller vulnerable to DDoS attacks because an attacker can flood the control layer with un-
known traffic using network elements. Therefore, we need to understand the relation between
SDN and security. In this regards, the next chapter expands the comprehension of SDN and its
security.

23

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

Chapter 3

Security in Software Defined

Networking

“ If security were all that mattered,

computers would never be turned

on,

let alone hooked into a network

with

literally millions of potential

intruders

”

Dan Farmer

Contents

3.1 Introduction . 26

3.2 From Network Security to SDN Security . 26

3.3 Security for SDN . 29

3.3.1 SDN externalization threats . 30

3.3.2 SDN centralization Threats . 31

3.3.3 SDN federation threats . 32

3.3.4 SDN programmability threats . 32

3.3.5 SDN Attacks and their countermeasures 33

SDN reconnaissance attacks & countermeasures 34

SDN access attacks & countermeasures . 35

SDN disruption attacks & countermeasures 36

SDN malicious modification attacks and countermeasures 38

3.4 SDN for security . 40

3.4.1 SDN simplification and independence for security 41

3.4.2 SDN agility for security . 42

3.4.3 SDN global knowledge for security . 42

3.4.4 SDN convergence for security . 43

3.4.5 SDN automation for security . 43

3.4.6 SDN orchestration for security . 44

3.4.7 SDN solutions for security . 45

Authentication & Authorization Solutions based on SDN 45

Moving target defenses based on SDN . 46

24

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

Firewall solutions based on SDN . 46

IPS & IDS based on SDN . 51

3.5 Discussion . 52

25

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

3.1 Introduction

The relation between SDN and security is bipolar. On the one hand, SDN enables the improve-
ment of network security thanks to its concepts. In fact, SDN centralization provides means
for the construction of a holistic knowledge of the network. This knowledge can be used for
monitoring, detecting and preventing network attacks. Programmability enables security ap-
plications to automatically configure network devices and adapt their behavior to the network
state. This reactive behavior can be deployed the nearest possible next to the attack source.
Separating the network layers limit the attack surface because the implementation of the three
layers is different. By opposition, the dependence and biding between the implementations of
the three layers are strong in the conventional architecture.

However, on the other hand, SDN introduces new attack vectors that were not present in
the conventional architecture. SDN intensifies the severity of some attacks. For example, an
attacker who takes the commands of a controller will be able to access the other SDN com-
ponents and corrupt them. An adversary can even use an SDN asset as an attack vector or a
zombie to assault another one. Moreover, The breakdown of the controller will result in the un-
availability of services running in the application layer. An attacker can even take advantage of
this situation to replace the legitimate controller with its corrupted controller. This usurpation
will give him the commands of the controller.

In this chapter, we first describe computer security concepts. Then, we present security for
SDN and SDN for security. In the former, we analyze its aspects. We describe SDN attacks and
their solutions. We classify them according to security properties. In the latter, we study the
enhancements that SDN provides for security.

3.2 From Network Security to SDN Security

According to the NIST [70], Computer security is:

"The protection afforded to an automated information system to attain the ap-
plicable objectives of preserving the integrity, availability, and confidentiality of
information system resources (includes hardware, software, firmware, informa-
tion/data, and telecommunications)."

From this definition, we can understand that computer security goals are to protect the in-
tegrity, availability, and confidentiality of computer assets.

In the case of computer networks, these assets are all the valuable resources that consti-
tute the structure and operations of the network. Network devices, data links, network packets,
computing and storage resources and network services are examples of network assets. When
we speak about protection, we need to highlight also the goals and processes that preserve net-
work assets. In this context, network security protects assets from network threats and network
attacks. Using the definitions provided by [71] we can define network threats and attacks as the
following :

• Network threats are potential for violation of network security, which exists when there
is a circumstance, capability, action, or event that could breach and cause harm to the
security dimensions of network assets.

• Network attacks are assaults on network security that derives from a deep threat. They
are creative acts and deliberate attempts, methods or techniques to evade the security
properties of network assets.

26

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

Network security aims to protect and defend network assets to preserve their security di-
mensions. Security protection includes detection, prevention and mitigation mechanisms against
network threats, before the occurrence of network attacks. Security defense includes detection,
remediation, and mitigation against the actions of network attackers.

Security dimensions are classified into the following categories based on [72, 73]. These
properties (or dimensions) are as follows:

1. Access control aims to protect network assets against unauthorized access.

2. Authentication ensures the validity of the claimed identities from the ones participating
in authorized and legitimate communications.

3. Non-repudiation ensures that an entity can not deny its behaviors. It provides a proof of
all the actions and events related to an entity to prevent the latter to repudiate them.

4. Confidentiality ensures that unauthorized entities can not understand the information
assets.

5. Integrity ensures that illicit entities have not modified the assets.

6. Availability ensures that the access, use, and operations on network assets is not refused
to authorized entities.

7. Privacy ensures the protection of the information that might be derived from the opera-
tions on network assets.

An attacker misappropriates the security dimensions of the network to reach its goals. He
exploits the vulnerabilities of the network to perform its attacks [74]. A network vulnerabil-
ity is a weakness in the network; when it is exploited, it triggers the transition of the network
from a normal state to a flawed state [75]. The network vulnerabilities can be weaknesses in
the software technology deployed in the network. For example, a portion of a code that can
generate buffer overflow under certain conditions. They can also be related to weaknesses in
network protocols. For example, in TCP an adversary can exhaust the resources of a destination
by sending some synchronization messages (SYN) to this destination. The weakness of TCP is
in the reservation of resources capacities for each new synchronization message in the server.

Besides, network policies can also produce new vulnerabilities such as opening access to
unauthorized intruders or blocking an authorized source. For example, a network policy that
blocks a client in a LAN when the ingress traffic going to the firewall reaches a specific thresh-
old. In this case, an internal adversary can spoof the identity of the victim. Then, he sends
a volume of traffic using this fake identity to trigger the policy against the victim. As a result,
the latter is blocked because of the masquerade of the attacker. Administrators and users in
the network can also introduce network vulnerabilities by misconfiguring their network and its
assets. Using old versions of software, plain-text communications, weak authentication mech-
anisms and other misconfiguration behaviors can be exploited by attackers to perform network
attacks.

Network attacks are classified into the following four main categories [76]:

1. Reconnaissance attacks use illicit techniques to collect information on the network to
discover its state, its vulnerabilities or spy on its traffic and assets. These attacks gen-
erally precede the other categories of attacks and are combined with them. They help
the adversary to prepare himself and establish a plan for his next move. An attacker who
performs reconnaissance abuses the confidentiality and privacy security dimensions.

27

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

2. Access attacks enable an unauthorized entity to penetrate into the network. These at-
tacks abuse the access control and authentication security dimensions. They exploit vul-
nerabilities in network policies and network misconfigurations to gain access.

3. Disruption attacks aim to exhaust the resources of the network, downgrade its perfor-
mance and block legitimate access to network assets. They exploit the vulnerabilities in
software technologies such as using the weaknesses found in the micro-codes of network
applications to generate errors. Besides, they use protocol vulnerabilities to block the ac-
cess or downgrade network performance. For example, an attacker can provoke amplifi-
cation attacks on a target by forging DNS requests that require large DNS responses. The
amplification factor (the relation between DNS requests size and DNS answers size) is
the vulnerability that the attack exploits in DNS. More the amplification factor increases
more the attack exhausts the resource of the target [77]. In fact, the DNS response size can
be 66 times the size of DNS requests [78, 79]. Thus, the attacker sends this type of DNS
requests to many DNS legitimate resolvers that answer with amplified DNS responses to-
wards the target. At a certain threshold, the network traffic entropy of the target drops
drastically leading to the exhaustion of its network resources. Disruption attacks are
threatening and dangerous [80] because they use sophisticated techniques such as au-
tomation, large capacities, hiding behind legal entities (such as zombies) and they are
fast to perform. These attacks abuse the availability and integrity of network assets.

4. Malicious Modifications corrupt the network assets with viruses, worms, Trojan, ma-
licious traffic and fake data. They enable the attacker to implement backdoors in the
network to resist security mechanisms. They also enable him to theft confidential infor-
mation to gain access or spy on the communications between legitimate users. Besides,
they enable him to damage the behavior of network assets and turning them even to at-
tackers or bots that perform DDoS and other attacks. These types of attacks abuse the
integrity and the non-repudiation security mechanisms.

The relation between security and SDN has two facets. They are determined according to
the contribution of SDN and security to each other. On the one hand, security for SDN inte-
grates network security principals to protect and defend SDN assets. On the other hand, SDN
for security integrates SDN benefits (such as simplification, agility, global knowledge, automa-
tion, and interoperability) to improve traditional protection and defense mechanisms.

Security for SDN does not stop with the threats that SDN inherits from the legacy archi-
tecture. SDN also introduces new threats and empowers the attackers in some situations. The
main reasons are the vulnerabilities that its features introduce unlike in the legacy architecture.
For example, attacking the controller will put all the network resources under the commands
of an attacker. This most threatening attack [81] was not possible in the legacy architecture
because the control was distributed and sealed.

SDN for Security rethinks many security mechanisms because SDN improves them by de-
sign, unlike the legacy architecture [82]. SDN simplification enhances the expression of se-
curity policies while hiding the complexity of the network. SDN interoperability enables many
security mechanisms to collaborate and share their knowledge. SDN global knowledge empow-
ers security solutions with the ability to secure the network from end to end while keeping the
consistency of their operations. Besides, SDN automation programs security behaviors inside
network elements and security agility adapt security solution to the evolution of the network
state and attack dynamically.

In the following sections, we show how SDN impacts security for the better and the worse.
We highlight the impacts of SDN principles on network security regarding the introduction
of vulnerabilities and the attraction of attackers. Then, we introduce the benefits of SDN for

28

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

improving network security. We assess existing SDN security solutions, and we discuss their
advantages and drawbacks.

3.3 Security for SDN

Security for SDN aims to protect the assets of SDN from attackers. A secured SDN preserves the
security dimensions of its assets. It forbids unauthorized access to its components, resources,
and services. It ensures the identity of its components in the different layers. These identities
must be unique to prevent any impersonation. For example, an adversary who can pretend to
be a legitimate controller will be able to destroy the network. Besides, SDN must track and save
the actions and events of all its assets. This information is valuable to monitor the network and
to construct a global view of the network. For example, a service provider that offers QoS and
QoE to a client via SDN must prove that he ensures the SLA to its customer.

Besides, information is valuable for security. SDN must also protect its information assets
by keeping them secret to unauthorized entities. For example, OpenFlow may be based on
plain-text information exchanges between the controller and the network elements. An ad-
versary can exploit this vulnerability to forge knowledge on the contents of network elements
tables and their properties, on the traffic that is forwarded to the controller, on its behavior but
also on the network state such as resource information, network events, network policies and
other information.

These reconnaissance attacks can push the adversary to prepare for the next move with
a DDoS attack. Moreover, on the privacy level, SDN needs to protect information that can
be derived from observing its assets. For example, the control port, the type of controller, its
behavior, the installed OpenFlow rules, the SLAs and other knowledge are derived information
that has to be protected in SDN.

Inserting illegitimate entities or updating illegally the SDN components is a violation of
SDN integrity. SDN must prevent an attacker from abusing the integrity of its components,
its information, and their resources. An attacker can inject malicious code into the controller
to corrupt its behavior. He can corrupt legal OpenFlow rules by placing himself as a man in
the middle on the control-data link. With this type of attacks, an attacker can even reach end-
users by deviating their communications, changing their QoS properties or blocking them in
the network elements.

The communications in SDN must be secured. All its interfaces and their protocols must
protect their communications. A vulnerable interface is an open door to attack an SDN com-
ponent and spread in domino effects the attacks to other components in different layers. For
example, an attacker intercepts the messages on the East/West interface between two domain
controllers. Then, he corrupts them to gain access to the domains of the two controllers. He
will be able to collect information on their states, abuse the integrity of their components and
even reaches their end users.

The availability of SDN components is a significant requirement for the services that rely
on SDN but also for its security. SDN must protect its resources from exhaustion, its assets from
being interrupted. Besides, it must also prevent attackers from transforming SDN components
as DDoS vectors behaving like bots or zombies that attack other SDN components or even end
users. For example, the reactive mode of OpenFlow enables an attacker to exploit some vulner-
abilities of SDN such as flow table oversize, controller overload and southbound API overflow.
When an attacker exploits these vulnerabilities, they enable him to turn network elements to
high vectors for DDoS attacks against the controller.

It is essential to study the security risks of the SDN architecture and how to resolve them
with prevention, correction, mitigation and remediation processes. This aspect of SDN is still
immature and open for research. Although some research works propose security mechanisms

29

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

to secure SDN, there is not a standardized reference architecture or mechanisms to secure SDN.
The lack of a standard is probably due to the scalability issues that these security mechanisms
can introduce. Besides, few works tackle in depth the risks assessment, vulnerabilities analysis
and attack evaluation in SDN. A consistent comprehension of SDN security risks is needed to
secure the architecture.

In this regards, we have assessed the main works on SDN security analysis. The major-
ity of them focuses on OpenFlow. The papers [83–87] provide security assessments of Open-
Flow. These SDN studies highlight attacks on OpenFlow especially those affecting availability
such as DoS. The study in [88] provides an OpenFlow risk analysis based on attack trees and
STRIDE approach [89]. It derives from the latter a list of OpenFlow vulnerabilities. The authors
in [90] propose a security assessment methodology for Software Defined Networking Based
Mobile Networks (SDN-MN). The mechanism uses attack graphs to define and to generate at-
tack paths while taking into account SDN-MN’s specific features. Besides it uses the Analytic
Hierarchy Process (AHP) [91] to quantify the influence of SDN-MN dynamic factors on its se-
curity regarding attacks costs.

According to [92] programmability and centralization features of SDN are attractive for at-
tackers. They empower attackers with abilities that were not possible in the legacy networks.
Besides, they expose the vulnerabilities of SDN. Security threats are magnified within the con-
trol plane, because it becomes a single point of failure in an SDN environment and because it
relies heavily on automation [93]. An attacker can use the components of the data plane layer or
the application layer to exhaust the controller resources. Moreover, a contaminated controller
propagates the attack to all the other SDN layers including other controllers. The attacker also
can reprogram the network devices and corrupt network traffic. Thus, the combination of both
SDN features gives the attacker superpowers to reach its goals. We discuss the security impacts
of each SDN feature in the next subsections.

3.3.1 SDN externalization threats

The separation of the control plane from the data plane introduces new threats on the access
to the controller, SDN communications, and controller distribution [94]. The externalization
of the controller opens the access to the control layer by contrast to the legacy network where
the control was sealed and coupled in a network device. An attacker identifies and penetrates
to the components of the control layer without passing by the complexity of all the layers such
as in the legacy network architecture. In SDN, the attacker can study and attack the control
layer without going through the complexity of the data plane while in the legacy architecture
his attacks need to take into account the data plane at least. Externalization introduces vulner-
abilities that can lead to significant attacks such as corrupting the controller, impersonating it,
or even breaking the entire network.

Communications between the application, control and data layers in the legacy architec-
ture are internal between its sealed components using low level (and proprietary) languages.
Attacking these links needs physical access to the network device. However, in SDN, thanks to
externalization, these links become exposed. They are no longer internal and hidden. They be-
come network channels that are vulnerable to many security attacks. For example, An attacker
can steal data on these links by identifying them and remotely accessing them.

The distribution of the controllers enlarges the threat landscape of SDN. While the mod-
ularity brought by externalization retains the attacks exploiting externalization vulnerabilities
locally for the application and data plane layers, those in the controller can spread to other
controllers. For example, let’s suppose an attacker who identifies a controller. He studies his
behavior and code. Then, he discovers a severe vulnerability in a controller function. Let’s sup-
pose that the vulnerability is about an unhandled exception in the code of the controller; when

30

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

the controller receives a bogus packet, the controller restarts. The attacker will identify all the
controllers that integrate this function, then attack them all.

Externalizing the controller enables the attacker to study the controller to impersonate it.
The attacker deploys its malicious controller in the distributed network of controllers to spy
on the communications, corrupt SDN operations or execute disruption attacks. The imper-
sonification of the controller is also related to the lack of security mechanisms to ensure trust
between controllers [92].

3.3.2 SDN centralization Threats

SDN centralization reduces the resilience of the network and introduces many disruption vul-
nerabilities in the controller [95]. In fact, centralization makes the controller as a single point
of failure [96] because of the strong dependency of SDN components on the controller. As a
consequence of the centralization, the attacker sees the controller as an easy target [97] that
empowers him with super privileges over the network. A compromised centralized controller
will let the genie out of the bottle because an attacker who takes the commands of the controller
will be able to take control of all the network.

Although centralization empowers network applications with holistic knowledge, an at-
tacker can harvest such information to forge a solid knowledge of its potential targets [98]. The
control information assets are sensitive because they maximize the probability of the attack
success and minimize their complexity. On the other hand, an attacker who tampers such in-
formation will corrupt the view of the controller and the operations of the SDN components in
the other layers. If an attacker destroys such information, he will deplete the SDN services.

Besides, the single controller is a concentration point for communications with the other
layers. Its limited resources are continuously used for network decisions because the other lay-
ers depend on its decision engine. An attacker who interrupts the centralized controller will
cause the breakdown of all the network. An attacker can use the dependency and the concen-
tration to transform the other assets of SDN as attack vectors against the centralized controller.

For example, let assume the following Distributed Denial of Service (DDoS) scenario where
the attacker floods the controller with unknown packets:

1. We suppose an SDN with 1 controller and n network elements in reactive mode.

2. The attacker sends unknown traffic to each network element with a flow rate of x B/s.

3. Each network element encapsulates the packets and sends them to the controller with a
flow rate of Ti (x) B/s (where Ti is the encapsulation function in the network element i).

4. The controller receives packets-in with an input flow rate SF which is computed accord-
ing to the following formula:

SF =
n
∑

i =1
Ti (x)Byte per Second (B/s) (3.1)

5. It processes reactively the packets-in with a load of
∮

(SF). (where
∮

is the controller pro-
cessing function that generates OpenFlow rules and packets-out).

6.
∮

(SF) generates an output flow SF′
i

towards each network element i .

7. Υi is the bandwidth utilization between the controller and the network element i . Υi is
determined as a function of Ti (x) and SF′

i
.

8. We assume ℏi is the maximum bandwidth of the communication link between the con-
troller and the network element i .

31

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

9. We assume ℓ is the maximum load on the controller.

The attacker will success its attack when one or both of the following conditions are fulfilled:

{

If
∮

(SF) > ℓ Controller ressources are overloaded

If Υi > ℏi Controller and network element i link is overfloaded

As a result, the controller performances decrease resulting in a domino effect that reduces per-
formances of the network elements and the SDN applications in the application layer.

3.3.3 SDN federation threats

Unifying the communications between the different layers of SDN introduces new vulnera-
bilities in SDN. The homogenization of the SDN interfaces reduces the complexity of attacks
that target or misuse them; while in the legacy network, their heterogeneity improves their re-
silience. Thanks to the federation, the attacker targets an open, standardized interface that is
shared by many SDN components. It becomes easier for the attacker to study the interface,
detect its vulnerabilities and exploit them to perform its attacks successfully. Besides, the fed-
eration creates a large attack vector that connects each vulnerability points of the interfaces.
This link between all the SDN layers can be used by an attacker as an underground passage to
attack SDN components while hiding behind their legitimate peers. For example, let’s assume
an SDN with an internal attacker that aims to disclose the traffic of a victim to third parties. The
following steps take place:

1. The attacker corrupts an SDN application.

2. The malicious application generates a policy that forwards the egress traffic of a victim
to all SDN applications in the application layer.

3. It sends the policy to the controller through its northbound API.

4. The controller receives the policy and interpret it into OpenFlow rules.

5. The network elements install the attacker OpenFlow rules.

6. The egress traffic of the victim is disclosed to all SDN applications whatever their north-
bound API implementations thanks to the controller federation.

Thanks to the interoperability brought by the federation in SDN, the attacker is now able
to talk to all the SDN components from any layer. He relies on the interfaces to translate its
malicious policies at any SDN layer. Besides, the attacker in SDN can misuse the collaboration
between SDN applications and controllers to interrupt, corrupt and steal SDN components. He
can even misuse an interface to poison another SDN component. For example, he can inject in
the northbound API false topology information for an SDN application.

3.3.4 SDN programmability threats

The softwarization in SDN provides means to program the network with software applications.
As a consequence, an attacker can corrupt an SDN application (or inject a malicious appli-
cation) to reprogram the behavior of network elements. Programmability can add fuel to the
flames of the attacker because the adversary can subvert the operations of other legitimate
applications in SDN. For example, he programmes the network with conflicting policies that
contradict the legal rules. The attacks can become persistent and dynamic because SDN pro-
grammability replaces the network management entirely with automation [99]. An attacker

32

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

can inject malicious code in a legitimate application to react automatically to network events.
The malicious application dynamically reprogram the network elements when it observes the
network events. Even if its policies disappears, its behavior will exhibit again when observing
the network events. Furthermore, the bugs in applications can affect the entire network be-
cause applications can program network elements and manipulate the traffic automatically.
This bugs can express a subtle and complex behavior that is not connected to their cause [100].

Moreover, both programmability modes (see Chapter 2) introduce security vulnerabilities
in SDN. On the one hand, all the programmability tasks rely on the controller decision engine
in the imperative mode. As a result, the controller becomes a single point of failure. An at-
tacker can use this vulnerability to exhaust the resources of the controller with malicious poli-
cies through the northbound API. He can also amplify its malicious behavior to all the network
elements that are connected to the controller by programming them on-the-fly.

On the other hand, the decision engine is distributed between the controller and the net-
work devices in the declarative mode. An attacker, in this case, can divert the network elements
without the controller being aware of it. He can misuse the network elements as zombies to
attack the SDN components or to poison the holistic knowledge of the controller. The latter
includes all the information of the existing OpenFlow rules in the network elements. According
to this knowledge, the controller takes its decisions. For example, let us assume an SDN with
a declarative mode that compounds a controller and a network element. The attacker goal is
to control all the traffic going through the network device without the control plane knowing
about it. As a result, the network view of the controller is poisoned by the malicious behavior
of the attacker. The steps of the attack are as follow:

1. An attacker injects a malicious code in the network element.

2. The malicious code creates a new OpenFlow table OFAT*.

3. The malicious code learns the network state by observing the network events. According
to this information, it installs in OFAT* new OpenFlow rules that drop any new traffic.

4. It configures the output ports as ingress ports that forward all the traffic to OFAT* when
the processing pipeline of the controller finishes dealing with the traffic

5. When new traffic comes, it is processed by the controller pipeline.

6. It is sent to the output port.

7. The network element redirect the traffic to OFAT*.

8. The controller is not informed because the decision is not part of its scope.

9. The malicious code generates an OpenFlow rule to drop the new traffic.

10. The network element drops any packets that belong to the flow.

3.3.5 SDN Attacks and their countermeasures

SDN attacks exploit the new attack vectors that SDN introduces to reach their goals. [92] derives
its attack vectors from the vulnerabilities of SDN. [101] constructs their vectors by combining
some network attacks with SDN layers and their components. [102] combines both previous
works to derive many SDN security attacks. They focus, especially on OpenFlow. They pro-
pose an OpenFlow security assessment checklist. For example, [92] proposes seven new threat
vectors of SDN that can exploit its vulnerabilities. The proposed vectors are as follows:

1. Forged or faked traffic flows.

33

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

2. Attacks on vulnerabilities in switches.

3. Attacks on control plane communications.

4. Attacks using vulnerabilities in controllers.

5. Lack of mechanisms to ensure trust between the controller and management applica-
tions.

6. Attacks using vulnerabilities in central stations.

7. Lack of trusted resources for forensics and remediation.

According to the authors only the vectors 3, 4 and 5 are specific to SDN. The other vectors
are found in the legacy architecture and are inherited in SDN. Control plane communications
(vector 3) refers to the attacks on the communication between the controller and SDN lay-
ers (including other controllers). This type of attacks targets the southbound, the northbound
and East/West APIs. Attacks on the vulnerabilities of the controller (vector 4) target the con-
troller components. For example, DDoS attacks on the controller exhaust its resources. Finally,
the fifth vector enables the attacker to integrate malicious applications to corrupt the network
state. For example, an application may update the security policies made by other applications
or create conflicts and breaches with its new policies.

SDN reconnaissance attacks & countermeasures

Attackers use SDN reconnaissance attacks to collect information on SDN components. The
attacker exploits this information to detect the vulnerabilities of SDN and to assault the system
with active attacks. The attackers collect legacy network data and SDN specific information.
The former can be port status, QoS information, topology and other information. The attacker
gathers SDN specific information from vectors 3, 4 and 5. This information can be the size of
the flow table, the flow table contents, the type of the controller, the list of the different SDN
interfaces and other SDN data. Based on all these information, the attacker builds an SDN
attack knowledge. It uses this knowledge to plan his next move. Reconnaissance attacks can
monitor traffic using the vector 3 to eavesdrop the network or to extract its patterns to analyze
it. For example, Know Your Enemy (KYE) attack [103] is an SDN specific reconnaissance attack
that an attacker uses to collect information on SDN such as network elements flow rules, SDN
configuration and deployed defense mechanisms. The attacker sends scanning probes (for
example forged traffic) to network elements. He monitors the return traffic of the probes. Then,
he infers the flow tables contents in network elements.

The solution in [104] proposes a fingerprinting attack implementation, evaluation, and
countermeasure. The attack targets the communication channel between the controller and
network elements (vector 3) by a remote attacker. It monitors their interactions and the RTT
of packets to know which packets trigger the installation of new OpenFlow rules. Their attack
evaluation shows that the accuracy of this fingerprinting attack is around 98%. They propose
as a countermeasure a packet delay mechanism. The first packets of installed OpenFlow rules
are delayed inside the network elements. Their RTT increases and approximates the RTT of the
packets without OpenFlow rules. As a result, the accuracy of the attack is decreased; however,
the performance of the network is also impaired.

The solution in [105] monitors the response times of packets to determine whether a net-
work is SDN or not. It uses a scanning method called Header Field Change Scanning (HFCS) to
infer the network element behavior ’Forward_to_controller’ by observing the response times of
its probing packets. They propose as a countermeasure to activate the wildcards of OpenFlow

34

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

rules to compress the number of flows managed by each rule. In this case, the response times
of the probing packets become steady. As a result, the accuracy of the HFCS reduces.

[106] combines many fingerprinting techniques to detect which type of controller is in an
SDN (vectors 3 and 4). It relies on two techniques. The first one is Timing Analysis fingerprint-
ing. This technique infers timeout values and controller processing time. Then it compares
the values to the times of different controllers using a reference database to find the controller.
The second technique is Packet-Analysis inference. This technique infers from the packet the
knowledge to identify the type of the controller. It analyzes LLDP packets contents and intervals
because they differ from one controller to another. This information is compared with the con-
troller reference DB to infer the type of the controller. Besides, it analyzes the ARP responses to
determine if the distribution version of the OpenDaylight controller is Hydrogen.

SDN access attacks & countermeasures

SDN access attacks abuse the authentication and access control dimensions of SDN to steal or
corrupt SDN components. They use techniques such as masquerading, Man-in-the-middle,
elevation of privileges, trust and password attacks. The details of these SDN attacks are as
follows.

1. SDN masquerading attacks: In masquerading attacks, the attacker pretends to be a legal
SDN component. He can exploit the vector 6 to gain access. Then, he impersonates the
identity of an SDN controller (vector 4), a network element (vector 2) or an SDN applica-
tion (vector 5) to corrupt the SDN. For example, an attacker targets an SDN controller to
impersonate it. The attacker performs the following steps:

(a) He installs a malicious application inside the server that is running an SDN con-
troller by exploiting the vector 5.

(b) The malicious application collects identity information of the controller such as
control ports, controller IP_Address, network elements IP_Addresses and other con-
trol configuration data.

(c) The malicious application provokes the restart of the controller application.

(d) When the control application restarts, the malicious application declares itself on
the different interfaces as a controller using the legitimate identity.

(e) The malicious application blocks the accesses to the legitimate controller.

2. SDN Man-in-the-middle attacks: They target the SDN communications through the
SDN interfaces. The attacker places himself inside the SDN interface between two SDN
components while allowing these assets to communicate. He exploits the vector 3 or 5.
Then, he listens to or modifies the communications inside the interface. For example, an
attacker that targets the northbound interface as a man-in-the-middle will perform the
following steps:

(a) The attacker places his malicious application in the northbound API.

(b) The malicious application provokes the restarting of a legitimate SDN application.

(c) The malicious application spoofs the identity of the legitimate application

(d) The malicious application connects through the northbound API to the legitimate
controller using the spoofed identity.

(e) The malicious application modifies the control information in the legitimate appli-
cation configuration with its identity to impersonate a legitimate controller.

35

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

(f) When the legitimate application starts, it connects to the malicious application as a
controller.

(g) The malicious application plays the role of a transparent proxy between the legiti-
mate controller and application to spy their communications

3. SDN Elevation of privileges attacks: They enable the attacker to modify its access priv-
ileges and its trust boundaries within SDN components. They exploit the lack of trust
mechanisms in SDN (vector 5) and the vulnerabilities in the central station (vector 6).
These attacks empower the attacker with full control of the SDN. They can open many
backdoors for the preparation of the next attacks. For example, an attacker targets Open-
Flow to elevate the priorities of its SDN malicious application. He will perform the fol-
lowing steps:

(a) The attacker gain access to the controller by the administrator station.

(b) The attacker installs his malicious application in the application layer.

(c) The attacker modifies the configuration of network policies in the controller.

(d) He sets the highest priorities for the OpenFlow rules of his malicious application.

(e) He decreases the priorities of all the OpenFlow rules that will be generated from the
policies of SDN security applications.

(f) He gives access to his application to communicate with all the network elements
and other controllers.

(g) Once the malicious application sends its network policies, the controller translates
them into OpenFlow rules with the highest priority over the other OpenFlow rules.

4. Trust and password attacks: In trust attacks, an attacker compromises a trusted SDN
component. He exploits the vector 5. Then, he misuses its trust boundaries to penetrate
the SDN domain. Password attacks break users passwords. Then, they use these pass-
words to access SDN components. They exploit the vulnerabilities in the administrative
realm (vector 6).

Implementing SDN access control mechanisms reduces the SDN attack surface [107] (the SDN
vulnerabilities, their severities, and likelihoods); however, the literature lacks works that pro-
pose access control solutions for SDN components. Some works [107, 108] discuss in general
the introduction of access control and authentication into the design of SDN architecture with-
out formalizing and implementing their ideas. Other works focus on controlling the access of
SDN application to protect the controller. [109] proposes PermOF, a fine-grained permission
system based on a set of 18 OpenFlow specific authorizations. The solution controls the access
of OpenFlow applications in the controller entry of the northbound API. OperationCheckpoint
[110] is another SDN access control solution that enables only authorized SDN applications
to access controller resources. For each SDN application, the solution defines a permission
list to the controller operations. OperationCheckpoint controls the access in the northbound
API according to this list. If an application tries to access unauthorized resources, the solution
prevents the access and logs the event to profile the application.

SDN disruption attacks & countermeasures

SDN distribution attacks decrease the capacities of SDN components and interrupt them. Their
primary goal is to deny the access [111] of legal entities to an SDN component or to interrupt
the entire SDN domain. Disruption attacks constitute a pandora’s box in the control layer be-
cause the controller is a single point of failure [112]. These disruption attacks can have three

36

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

aspects in SDN [113] such as dead data, access denial, and flooding. In the first attack, an
attacker exploits the vulnerabilities in the source code of SDN components to find which mal-
formed data cause the corruption of an SDN component behavior or its termination. Access
denial attacks deny the legitimate access of an SDN component to the resources of other SDN
components or the network. The attacker performs these attacks by neutralizing the data of the
victim. Besides, these attacks can also manipulate network policies. For example, an attacker
that denies the flow processing in a network element will perform the following actions:

1. The attacker places himself as a man-in-the-middle in the OpenFlow API.

2. He listens to the interactions between the controller and network elements.

3. Based on his knowledge, he forges an OpenFlow rule that deletes all the flows in a net-
work element without notifying the controller.

4. He sends the modified OpenFlow rules to the network element.

5. The network elements install the corrupted OpenFlow rule.

6. The network elements empty all its tables.

The last type of SDN disruption attacks is flooding techniques. In these attacks, the attacker
flood an SDN component with random network traffic or SDN data from different sources
[114]. The goal of this attacks is to exhaust the SDN resources (bandwidth, storage, and proces-
sor) until they are overloaded. For example, an attacker that wants to flood the controller can
perform the following actions:

1. The attacker place himself in the OpenFlow interface.

2. He captures any OpenFlow rule.

3. He modifies the action of the rule to Forward_To_controller systematically and activates
the notifications coming from the network elements.

4. He releases the modified OpenFlow rules.

5. He repeats the modified OpenFlow rules to all the network elements.

6. The network elements install the modified rules.

7. All the network elements forward systematically all their traffic to the controller.

This attack transforms the network elements to high flooding vectors that exhaust the con-
trol data link and the controller resources. Many DoS attacks and their countermeasures have
been reported in the literature. [115] shows a DoS that denies the access of an SDN network
element in floodlight controller. The attacker spoofs the Data_Path_ID and the Mac_Adress of
an existing network element. Then, he connects the fake network element to the same con-
troller. As a result, the controller disconnects the legitimate network element and connects to
the fake entity. The DDoS attack on SDN reported by [105, 116] floods an SDN controller with
random traffic from the network elements. The controller reacts to this traffic by installing the
corresponding OpenFlow rules. As a result, the attack overloads the controller resources and
overfloods the bandwidth with the network elements.

There are in the literature many solutions to mitigate this attack. [117] proposes a solution
that reduces the Hard_Time_out and Idle_Time_out of OpenFlow rules. [118] proposes another
solution based on Moving Target Defense (MTD) [119]. Once the controller DDoS threshold is
triggered, the solution activates a backup controller from the pool of controllers. It installs

37

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

into the network elements that have triggered the threshold two OpenFlow rules. The first rule
diverts the new flows that have not any matches to the bloom filter [120] module of the solution.
The second OpenFlow rule changes the role of the network elements to connect them with the
backup controller.

Other disruption attacks target the network elements resources. [121] discusses and evalu-
ates a DoS attack that exhausts the flow table size. The attacker sends continuously bogus flows
that are slightly different from the previous flows. The network elements forward them to the
controller. The latter reacts to the bogus flows by installing OpenFlow rules. The attacker con-
tinues until the OpenFlow table is full. [122] proposes a defense strategy to mitigate this attack.
The solution relies on the collaboration between all the network elements. When the flow table
of a network element reaches a severe size, the other network elements help the loaded peer
by handling its new traffic. The solution diverts all the new traffic from the loaded network
element to its peers. Moreover, [123] reports a DoS attack that targets the network element
buffer to overflow it. The attack sends to the network element new packets with high payloads.
The network element stores these large packets in its buffer and encapsulates their headers as
packet_in to ask the controller for the OpenFlow rule. When the buffer becomes full, the net-
work element will drop the legitimate traffic because it can not store it. One countermeasure is
to control the buffer size. The controller monitors the buffer. Then, when its size reaches a pre-
defined threshold, it asks the network element to forward all the new packets without buffering
them.

SDN malicious modification attacks and countermeasures

Malicious modifications in SDN introduce changes into SDN components to hijack their be-
havior, values, and resources. These attacks breach the integrity and non-repudiation security
dimensions of SDN. They can use three attack techniques to modify SDN components. The
first technique is data modification. The attacker adds, deletes or alters SDN information as-
sets (such as OpenFlow rules, packets, topology and configuration files). This type of attacks
provides means for the attacker to bypass security mechanisms and poison the global knowl-
edge of the controller. In the former, for example, the attacker injects in network elements
OpenFlow rules with high priority to prevent network elements from forwarding specific traf-
fic to a firewall [124]. In Global knowledge poisoning, the attacker inserts, deletes and alters
network events, notifications, and other monitoring data. As a result, the controller constructs
an incomplete and wrong view of the network. Besides, the attacker can also starve the SDN
components with this attack. For example, a man-in-the-middle in the northbound API neu-
tralizes all the data systematically from/to an application. The data modification can also serve
for repudiation attacks. In this case, the attacker tampers the actions of SDN components or
falsifies their logs.

The second technique is the malicious injection of code into the SDN components. The
attacker detects vulnerabilities in the SDN components and their system. Then, he modifies
their software by injecting its code to corrupt their behaviors. The malicious injection of code
needs remote or local access to the SDN components. Besides, it requires also privileges and
trust boundaries. For these reasons, most of the time these attacks occur from the adminis-
trative domain. The attacker hacks the administrator session to gain unauthorized access to
the SDN components. Besides, these attacks can also be instigated by the application layer.
For example, in the application layer, it is possible to have SDN applications that communicate
with third-party applications. In this case, an attacker can inject a worm in an SDN application.
Then, the malicious SDN application contaminates the other SDN applications by exploiting
the vulnerabilities of the system running the applications or those of the northbound API. A
malicious injection into the controller has a critical severity because a rogue controller can

38

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

corrupt all the SDN components.

The last technique is based on replaying information. An attacker captures the interactions
between SDN components. Then, he repeats the capture when certain conditions are in place.
This type of attacks enables the attacker to gain access to an SDN component, to modify it or
masquerade its identity. For example, an attacker will perform the following actions to control
the network elements by a replay attack:

1. He places himself as a man-in-the-middle on the northbound API.

2. He listens to all the policies sent by an SDN application controller and saves them in its
database.

3. The attacker replays the policies according to a time interval.

[125] discusses the malicious modification of traffic with malicious network elements. When
the attacker instigates a malicious modification on the network elements, the latter can have
the following misbehavior:

1. Traffic loss: In this case, the attacker inserts OpenFlow rules that drop randomly or se-
lectively the traffic. As a result, the malicious network element drops the traffic. The pro-
posed countermeasure is based on the flow conservation principle. It detects the attack
if the outgoing flows are less than the incoming flows in each network element.

2. OpenFlow data fabrication: The malicious network element produces bogus packets (or
packets-in) and sends them to the controller. Sphinx [126] is an SDN security solution
that detects this attack. It verifies the metadata of the packets sent to the controller with
the policies of the administrator. If they abuse the conformance, it detects the attack.

3. Mis-routing: The attacker installs or modifies network elements rules to forward the traf-
fic to wrong destinations. The authors propose to forward the traffic without matching
to the controller to detect the attack.

4. Traffic modification: In this case, the attacker inserts OpenFlow rules in the network el-
ements that alter the contents of packets. One countermeasure is to implement in the
network element hash function as integrity code to ensure the integrity of OpenFlow
modification messages.

5. Traffic delay: An attacker modifies the OpenFlow rules to put certain flow in queues with
low QoS. He can also modify the lifespan of OpenFlow rules by minimizing it. The net-
work element will forward the traffic to the controller because of the deletion of the ex-
pired OpenFlow rules. As a result, the jitter of the packets increases due to the interaction
delay between the network elements and the controller. Monitoring the arrival times of
packets in the network elements to detect the attack can be a countermeasure to this
misbehavior.

6. Traffic reordering: The attacker injects a malicious code in the network element that
alters the sequence number of packets. For example, he can perform the malicious mod-
ification by extending the experimenter of OpenFlow to handle a modify action on se-
quence numbers. The authors propose a detection mechanism that keeps an order list
for packets digests in each network element. It compares the packet order with these lists
to detect the network elements that reordered the traffic.

The solution in [127] detects malicious behaviors in network elements by active probing.
The mechanism selects a set of OpenFlow rules from random network elements periodically.

39

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

Then, it constructs artificial packets. It sends the packets to the selected network elements.
It traces the packet forwarding path. It compares the path with the programmed behavior.
If they are not similar, it detects the attack and signals it to a Security Information and Event
Management (SIEM) application [128]. In addition to an active probing module, the solution of
[129] also integrates a statistic checking module and a packet obfuscation module to detect and
mitigate malicious modifications on network elements. The statistic checking module verifies
the flow statistics to detect network elements that falsify their notifications. The obfuscation
module encrypts flows contents and headers to protect their integrity.

Global knowledge corruption is another malicious modification attack on SDN. It enables
an attacker to instigate a DoS attack or even to take control of the SDN. [130] discusses and eval-
uates two types of topology poisoning attacks that subvert the SDN global knowledge. The host
location attack deceives the controller with false data that inform it about the move of a target
host to a new location (which is, in reality, the adversary location). As a result, the controller up-
dates its knowledge with the new false location. It programs the flows of the target towards the
attacker location. Besides, the link fabrication attack is the second topology poisoning attack.
The attacker fakes LLDP packets to fabricates non-existing internal links between network el-
ements. The authors propose some countermeasures to mitigate these attacks. For example,
a security solution that verifies the legitimacy of host migration according to migration pre-
condition and post-condition. In the former condition, the solution checks that the controller
has received a port down notification from the network element before the end of host migra-
tion. In the post-condition, the solution verifies that the host is unreachable from its previous
location after the end of the migration. The other countermeasures include the authentication
of hosts and the signature of LLDP packets with integrity codes.

3.4 SDN for security

The concept of SDN for security uses the advantages of SDN to enhance network security so-
lutions. For instance, centralization empowers security applications with holistic knowledge.
This global knowledge can be used to optimize security operations, to reinforce security poli-
cies and to react efficiently to network attacks. Programmability enables network applications
to deploy their behavior automatically on network devices. Federation and externalization pro-
vide means for security applications to collaborate with SDN components, stakeholders and
third party entities using standardized means. As a result, security policies configuration and
management become simpler because administrators use high level common standardized in-
terfaces to express their policies. The controller interprets them to the suitable low-level rules
according to the proper southbound interface. Besides, the separation enables the controller
to verify the consistency and accuracy of security policies to validate them.

There are many other advantages that SDN brings for security. SDN is neither focused on
a specific protocol nor is related to a particular architecture [131]. This independence enables
many security solutions to benefits from SDN aspects by opposition to the legacy architecture.
Furthermore, security applications adapt to the changes happening in the network thanks to
SDN. For example, SDN enables security applications to operate on different granular levels
in the network. A security application can behave differently with different traffic according
to many levels of security instead of applying the same behavior to all traffic every time. This
agility improves the efficiency of network security applications.

For example, a traditional Intrusion Detection System (IDS) in the legacy network will be
deployed as hardware in a network node. The administrator configures the IDS manually to
protect the network. He configures in every network element the proper policies to send the
traffic to the IDS. Each time the policies change in the IDS or the network, the administrator
needs to reconfigure everything manually. These tasks are costly, tedious and error-prone. Be-

40

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

sides, all the traffic is sent to the IDS before it reaches its destination. This type of transmission
increases the network delay. Another way to minimize the negative impact of the network delay
is to deploy many IDS in many nodes. However, in addition to the costs and the nightmare of
policy management complexity, all the deployed IDS need to collaborate, to share knowledge
and to coordinate their operations. In the opposite case, they will process many times the same
traffic. They can have conflicting policies that lead to security breaches. The administrator can
introduce new vulnerabilities due to its manual interventions.

Introducing and designing the IDS within SDN resolves the problems mentioned above be-
cause SDN has many advantages for security applications. SDN enhances the mitigation of
network disruption attacks. It decreases the associated costs. It eases the management and the
enforcement of security policies. Thus, in the case of SDN IDS, the administrator configures
in a high-level language the policies on the IDS application. The controller verifies and vali-
dates that all the policies are consistent and accurate. It resolves the problems automatically
by inferring new rules. When there is a change, the controller detects it and modifies all the
concerned policies automatically. If the IDS is distributed on many nodes, the controller man-
ages the interactions between them. It provides them with the holistic knowledge to optimize
their operations and enable them to cooperate.

3.4.1 SDN simplification and independence for security

The design and deployment of new security solutions are more straightforward and useful in
the application layer thanks to the standardized API and the independence of the control from
network elements. A developer implements its security application in any programming lan-
guage and independently from the source code of the controller. The northbound API hides the
network complexity. The application only needs to integrate the proper interface to communi-
cate with the controller. The role of the northbound API is to ease the integration of the security
application into the SDN ecosystem while allowing the application to keep its independence
and individuality. By contrast, this flexibility was not possible in the legacy architecture. A
developer must know the implementation details of the network device. Besides, the imple-
mentation of the application is confined in the programming language and features that the
network system supports. The developer also faces other constraints such as the inaccessibil-
ity to all the network system artifacts and the hardware limitations of the network device. The
former limits the innovation on security applications while the latter increases the complexity
of their implementations.

Masters of complexity administer security applications in legacy networks [132]. The ad-
ministrators face a lack of abstraction and security policy in low-level languages. The security
configuration in the legacy architecture is error-prone due to this complexity. It uses propri-
etary consoles that are based on low-level languages. It is also fastidious and risky because the
administrator configures the devices one by one.

On the other side, SDN simplifies the security configurations of network elements [133].
Through SDN abstraction, administrators express their security policies in high level and sim-
plified languages that abstract the complexity of the network. The controller interprets these
security policies using the proper SDN interfaces into low-level specifications. All the complex-
ity related to the underlying software and hardware is hidden. Furthermore, security applica-
tions can easily configure network elements in SDN because of two reasons [134]. It moves the
complex modules to the control plane. It enables security applications to extend the data plane
layer with new features. Thus, SDN simplification improves network management, reduces se-
curity services costs and ensures the portability of security policies [99, 135].

Thanks to the independence that SDN offers, the fates of SDN components are separated.
Each asset is developed separately from the others while in the legacy architecture, the devel-

41

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

opment was based on the vertical integration between the three network layers. Besides, the
SDN component runs in a different system and hardware. This diversity elevates the resilience
of the SDN architecture. For example, an error in the source code of an SDN component will
not generate another error in the source code of another SDN component. Besides, an attacker
who detects a software technology vulnerability in an SDN asset will not be able to exploit the
same vulnerability in other SDN assets. He needs to study and analyze the source codes of all
the SDN assets. Thus, the SDN independence makes his tasks costly and burdensome.

3.4.2 SDN agility for security

SDN agility is the ability to adapt dynamically to network changes. It leverages security ap-
plication with many features [136]. SDN enables the deployment of security applications by
creating virtual networks dynamically. These virtual networks support VM mobility and flow
adjustment. SDN controls the flow dynamically to drive it to the proper security application.
Moreover, SDN provides means to adapt and deploy security policies in network elements dy-
namically. Thanks to SDN, it is now possible to deploy security applications dynamically next
to the source of the attack and then direct only the suspicious traffic to this application [137].

The advantages of SDN adaptability are the customization of security solutions according
to the network state and their effective deployment of security. The customization of security
in SDN is on two levels. On the one hand, SDN adapts the functions of a security application
according to the changes happening in the network. This adaptation includes the activation
or deactivation of security modules, the upgrade of the security application, the construction
of security service chains and other adjustment features. It also provides an effective security
mechanism that changes the defense behavior dynamically to respond to the mutations of at-
tacks [138]. The goal of the SDN adaptation is to ease the evolution of security applications with
network states. On the other hand, SDN tailors the security policies according to the require-
ments of customers [139]. It satisfies their needs by installing fine-grained rules that satisfy
their security policies.

The effective deployment of security applications in SDN enables their functionalities to
scale up or down according to network state [140]. For example, suppose an SDN IDS that ana-
lyzes all the application layer traffic. The network elements send the traffic to the IDS via their
channel with the controller. When the burden on the data link becomes essential and starts to
affect the performance of the network, the SDN IDS reacts to this situation by programming
a rule on the data plane devices to receive only specific part of the traffic. The IDS can even
install such rule proactively. The rule will be triggered when the conditions are in place.

Another strategy is the deployment of many SDN IDS on the other neighboring controllers.
The first controller asks them to analyze the traffic via the East/West API’s. Then its IDS installs
OpenFlow rules to redirect a part of the traffic to each IDS to divide the load among the neigh-
bors. The strategy scale-down the controllers’ resources to return to the initial state when those
of central controller becomes available.

3.4.3 SDN global knowledge for security

SDN for security provides means for security applications to program network elements. Se-
curity applications rely on SDN interfaces to collect network state and events. These data are
necessary to analyze traffic and detect security attacks. SDN holistic knowledge improves the
operations of security applications that share the global knowledge without waiting for the con-
vergence time to adapt their behavior [54]. For example, if an attack is detected, the alert is
shared over all the security applications. This knowledge sharing can be used to adapt the se-
curity behavior globally according to the state of the network.

42

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

Unlike in SDN, security applications in the conventional architecture have only partial views
of the network. They do not collaborate with each other. As a consequence, their functions
are limited by their narrow scopes. Moreover, their partial knowledge affects the consistency
of network security because of two reasons. The behavior of a security application can overlap
with the one of another security application such as a security application that processes traffic
that has already been processed by another one. The other reason is about behavior conflicts.
The policies of security applications can contradict the security policies of another. The global
knowledge of SDN resolves these issues. The controller uses its holistic knowledge to verify,
validate and reinforce security policies. The utilization of the global knowledge for policies is
very valuable for firewalls and security monitoring applications [95].

3.4.4 SDN convergence for security

SDN convergence sustains the collaboration between security applications on two levels. On
the one hand, it enables users to express their security policies using the proper SDN interface
to configure other security applications. Then, it interprets these artifacts by bridging them
to the interfaces that are used by the other applications. For example, a user with legitimate
access can configure seamlessly the policies of different security applications using the north-
bound interface unlike in the legacy network. On the other hand, the SDN convergence enables
security application to exchange information in standardized formats. This information is the
global knowledge, network events, statistics, and other resource information.

Thanks to this collaboration, the principle of the mix and match of different security appli-
cations from different vendors become simpler and operational within SDN [141]. It enables
different proprietary solutions such as NAT, authentication solutions, IPS, firewall, IDS and oth-
ers to collaborate and communicate. It offers them the proper bridges to exchange informa-
tion and share their results. It chains them on different paths, virtual networks, and network
domains to redirect to them the proper traffic, the needed information. It synchronizes their
actions to optimize security and prevents conflicts and racing between their behaviors. Be-
sides, SDN convergence enables applications to update their security and systems rapidly, and
adjust their operations. These frequent updates are critical requirements for cloud computing
[142].

3.4.5 SDN automation for security

SDN automatizes security. It enables security applications to reprogram the network elements
proactively according to their security behaviors. In this case, a security application installs
dynamically its behavior on network elements before the events that trigger it happen. Besides,
security applications react effectively to network events because the controller interprets their
actions to security rules and installs them on the network elements next to the source of the
attack. The outcome of this automation is a fast resolution of network attacks [143].

Moreover, SDN offers to security application highly reprogrammable network elements and
the capacity to redirect dynamically network traffic [144]. As a result, the configuration and de-
ployment of security policies within the data plane become less error-prone and effective. In
contrast to the legacy network, in SDN the user expresses its security policies, then the con-
troller propagates them automatically on the proper network entities. A security application
can monitor the traffic then updates the security policies to improve the network security.
When the administrator changes the policies, the controller performs the updates automati-
cally without needing manual interventions on each network device such as in the legacy net-
work. This policy flexibility reduces downtime and improves the diagnosis of security issues
[145].

43

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

Thanks to SDN automation, security policies elevates the behavior of network elements.
As a result, these elements become security devices that perform security behavior. They ex-
ecute security rules dynamically. This transformation is cost-effective because SDN reduces
the need to buy new security devices [134]. Besides, SDN automation reduces network insta-
bility and network vulnerabilities [146]. SDN automatizes the deployment of security policies
updates following the network state. It also alleviates the network of manual interventions that
introduce security vulnerabilities.

3.4.6 SDN orchestration for security

Using programmability, abstraction, centralization, and federation, SDN orchestrates security
operations efficiently. This orchestration can steer the proper traffic in the right security appli-
cation [147]. It enables security applications to process the network from end-to-end. It can
adjust the behavior of security applications according to the evolution of the network state.
Also, the orchestration provides a means to hide the complexity of security policies. It autom-
atizes their deployment and management. It ensures the interoperability between different
security applications. It unifies them around the same policy management model.

As a result, SDN enables security applications to overcome the complexity of detecting dis-
tributed attacks coming from different sources, whereas in a legacy network device it is im-
possible to detect them [148]. Thus, the SDN security orchestration becomes like an immune
system that collects network states from all its components, detects the network anomalies and
then spreads the right countermeasures into the contaminated elements [145]. Unfortunately,
the literature lacks propositions that integrate SDN orchestration for security. There is an open
research field on the subject, especially, regarding SDN for security as a service and security
policies based on SDN orchestration in the cloud.

CloudWatcher [149], FRESCO [150, 151], Flowguard [152] and OpenSec [153] are SDN so-
lutions for security. They rely on their specific languages to specify security policies inside the
network. They enable users to configure security policies. They spread these policies through
the network elements. Besides, they can collect network events from network elements to offer
them to security applications. These propositions need an SDN orchestrator because they lack
interoperability between them. Besides, They do not integrate a policy management process to
interact with different users. They do not reinforce security policies and share knowledge. They
can introduce security vulnerabilities by contradicting and racing the policies of other secu-
rity applications. An SDN orchestrator enables them to collaborate together and with different
users and third-party applications. It abstracts their specific languages to a unified model. The
latter will enable a user to compose services that are offered by these solutions. The orches-
trator enables the users to express their security requirements while hiding the complexity of
the underlying layers. Besides, the orchestrator gathers events observed by the different solu-
tions to construct a holistic knowledge. The information of this knowledge can be used by the
orchestrator to update the security solutions and reinforce security policies.

Some security solutions integrate aspects of SDN orchestration such as security policy ex-
pression and security policy enforcement. Tang et al. [154] develop a service-oriented high-
level policy language to specify security service provisioning between end nodes. Batista et
al. [155] propose the PonderFlow as an extension of Ponder [156] language. PonderFlow can
be used to specify and reinforce security policies based on OpenFlow. Finally, EnforSDN [157]
proposes a management process that exploits SDN orchestration to separate the policy res-
olution layer from the policy enforcement layer in security service appliances. The concept
improves policy enforcement management, network utilization, and communication latency
without compromising security policies. However, it cannot handle stateful security applica-
tions.

44

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

3.4.7 SDN solutions for security

Many security solutions have been developed using the SDN benefits that were mentioned
earlier. SDN offers three features to enhance security solutions:

1. SDN offers the possibility to plug the northbound API inside the software architecture
of a security application. In this case, the developers include in the code of their secu-
rity applications the northbound API parts that enable their applications to interact with
SDN controllers.

2. SDN offers Domain Specific Languages (DSL) to applications and users. These DSLs are
used to express security policies and re-program network elements according to these
policies.

3. Some SDN controllers offer programming environments such as development frame-
works, libraries, plugins, and resources to develop security applications inside the con-
troller. These security applications behave like controller functions. They use controller
services. They access the global controller knowledge. They program the network ele-
ments directly. For example, FRESCO [150, 151] is an SDN framework that can be used
to develop SDN security monitoring and detection applications. It offers a scripting lan-
guage that is used for implementing security functions as modular libraries in the con-
troller. Besides, the scripting language offers also the data structures and resources to
compose complex security applications by linking and sharing the modular libraries.

These SDN features gave birth to many SDN security solutions such as Authentication &
authorization, Moving Target Defense, Firewalls, and IPS & IDS solutions. We present some
examples of these solutions in the following subsections.

Authentication & Authorization Solutions based on SDN

Authentication & Authorization solutions based on SDN have been developed as OpenFlow
applications. For example, [158] proposes an authentication and access control mechanism
called AuthFlow. This OpenFlow application authenticates hosts on the control data link layer.
A host starts EAP authentication according to IEEE 802.1X standard [159] with AuthFlow’s Au-
thenticator. The latter de-encapsulates the authentication messages. It validates the authenti-
cation against the Radius server. Then, it sends the results to the AuthFlow application running
in POX controller. If the host is successfully authenticated, the AuthFlow application deter-
mines its access to SDN components using its credentials and identity.

Flowidentity [160] is another authentication solution based on SDN. It uses the same au-
thentication mechanisms of AuthFlow. Besides, it introduces an access authorization enforce-
ment module based on a role-based firewall. This module can dynamically update the security
policies of authenticated sessions. Thanks to SDN global knowledge, automation, and agility,
FlowIdentity performs dynamically stateful policy updates to existing sessions unlike in the
legacy network.

By contrast, the Authentication and Authorization application in [161] does not use IEE
802.1X software. This SDN application uses the northbound API to perform authentication and
authorization of Machine To Machine (M2M) communications. It authenticates hosts based on
their credentials. It allocates a bandwidth to each host. It authorizes the host to access other
hosts based on an access list. It sends the high-level specification to the controller. The latter
interprets them into OpenFlow rules and installs them on the network elements. When the
host logs out, it uninstalls all its OpenFlow rules.

45

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

Moving target defenses based on SDN

Moving target defense technics defend the network against reconnaissance attacks. They change
continuously in time the properties of the network to prevent or make difficult for an attacker to
learn the network resources and their vulnerabilities [162]. As a result, the attacker will spend
more efforts and time to look for the network vulnerabilities [163]. SDN enables active MTD
thanks to the combination of SDN agility and global knowledge. The former enables SDN to
adapt its MTD strategy seamlessly with the evolution of the network state and the attack. The
SDN global knowledge leverage MTD with a holistic view that improves the reliability of its op-
erations. As a result, MTD strategy is enforced according to an end to end security strategy. For
example, OF-RHM [164] is an MTD solution based on SDN. It performs a host transparent IP
address replacement by hiding real IP addresses with virtual IP addresses. It associates to the
real IP addresses short living virtual IP addresses that are updated according to a time inter-
val. The solution selects randomly from the unused IP address space these virtual IP addresses.
Then, it installs the OpenFlow rules that perform the IP address mutation in all the network el-
ements without affecting the end host. By the use of SDN features such as agility, automation,
and global knowledge, OF-RHM mutates IP addresses with high unpredictability and speed to
distort the attacker knowledge.

Firewall solutions based on SDN

A firewall is a security mechanism that protects a network from unauthorized access. It filters
the traffic by matching the packets’ headers with a set of security policies to allow only the
current traffic to access the network [165]. SDN elevates firewalls with all its features. Simplifi-
cation enables administrators to manage firewall policies without worrying about the complex-
ity of the underlying infrastructure. Agility adapts firewall rules dynamically according to the
network state. Global knowledge enables firewall applications to spread their rules all around
the network. Interoperability enables firewall applications to install their rules and collabo-
rate through a common northbound API. Finally, automation enables a firewall application to
install its rules autonomously and manage them without the intervention of administrators.

There are two categories of firewalls based on SDN. Full-SDN-Firewalls rely on the con-
trol layer to express their behaviors and to collect network state (see Figure 3.1). Hybrid-SDN-
firewalls are independent of the controller (see Figure 3.2). The details of all these firewalls are
as follows:

1. Full-SDN-Firewalls Full SDN firewalls take advantage of SDN to secure the network.
Mainly, their behavior is expressed using the southbound API features. This API can re-
program the network elements and collect network events. They do not depend on a
specific data plane technology. Besides, their implementation can be independent of the
control layer thanks to the northbound interface. However, the controller manages their
behaviors and interactions. There are four types of Full-SDN-firewalls. Control function
firewalls are firewall functions that are implemented inside the control layer. SDN appli-
cation firewalls are implemented in the application layer. Extended OpenFlow firewalls
extend OpenFlow features to support firewall behavior in OpenFlow. Finally, SDN fire-
wall frameworks can be used to construct firewall functions in the control layer.

• Control Function Firewalls [166–186]: They integrate a firewall module as a con-
troller function. The stateless firewall denies or permits the traffic without manag-
ing the dynamic properties of connections such as its state or port allocations. In
these Firewalls, the administrator configures the controller with security policies.
Then, the firewall function interprets them into OpenFlow rules. It calls the Open-
Flow primitives directly. The OpenFlow Agent constructs the appropriate OpenFlow

46

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

rules and installs them on the network elements. SDN controllers such as RYU,
Floodlight and POX [167] integrate an OpenFlow stateless firewall as a control func-
tion.

Application
Layer

Control
Layer

Data Plane
Layer

Security
PoliciesAdmin

Controller

OpenFlowOpenFlow
Extension

Security
Framework

Security
Policies +
Configuration

Control Functions

Network Element

OpenFlowOpenFlow
Extension

Control
Function
Firewall

Traffic

Packets-in

Packets-in

Packets-inFirewall
Policies

Openflow
Rules

Openflow
Rules +
Packets-out

Traffic

Host A
Host B

1

2

3

3

4
4

1

2

3

4

Control Function
Firewall

Application Layer
Firewall

Extended
OpenFlow
Firewall

Security
Framework
Firewall

Figure 3.1 – Full SDN Firewalls

The advantage of these firewalls is their performance because they can use the
primitives of the control layer directly to call OpenFlow capabilities instead of re-
lying on a high-level interface. However, they are dependent on the type of the con-
troller. They are not portable to other controllers. It is difficult to maintain them due
to their dependencies with other controller functions. Developers need to modify
the code of the controller to upgrade these firewalls which imply knowledge of the
controller code. This complexity is a burden for innovation on both the firewall and
the control layer. Moreover, the intervention of the firewall administrator can lead
to failures in the controller. If he misconfigures the firewall function in the con-
troller, the failure can propagate to other controller functions. The administrator
can even introduce new vulnerabilities to the controller through the firewall func-
tion.

• Applications layer firewalls [187–194]: SDN firewall applications are developed in-
dependently from the control Layer. Principally, they are integrated into the appli-
cation layer. They interact with the controller through the northbound interface.
They send the security policies (expressed in a high level of abstraction) to con-
trollers that interpret them into OpenFlow rules and install them on the network
elements. Their implementation, maintenance, and upgrade neither depend on
the source code of the control layer nor affect it.

47

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

To the extent of our knowledge, all the SDN application layer firewalls that have
been implemented are stateless. Furthermore, they do not use the SDN global
knowledge to perform end to end security. They are not able to reinforce security
policies in the network by avoiding traffic reprocessing. They do not share knowl-
edge with other firewall Applications in other SDN domains. Besides, they do not
consolidate their domain knowledge to construct a holistic view of the network.

• Extended OpenFlow firewalls[195–199]: They extend OpenFlow protocol to handle
a part of the firewall behavior in the data plane layer. This behavior is mainly re-
lated to connection state processing. For example, FleXam [195–197] extends the
OpenFlow with a new artifact that can build firewall functions. It adds to OpenFlow
a channel that specifies flows filters, sample schemes (parts of packets that will be
sampled) and new actions to filter and sample flows. FleXam forwards all samples
to controller systematically to inform it about the results of the sampling. Then, the
controller verifies them with firewall policies and installs the associated OpenFlow
rules.

Although these firewalls introduce stateful processing into OpenFlow; they have
some issues. Regarding performance, they consume more memory and process-
ing resources because they need more memory space in the data plane devices and
more CPU in both controller and network elements. They do not process the global
knowledge to reinforce firewall policies. Besides, they are neither compatible with
the existing SDN data plane devices nor compatible with the OpenFlow specifica-
tion.

• SDN firewall frameworks [150–152, 200]: Some researchers propose SDN security
frameworks that can implement SDN Firewalls. However, these frameworks are not
appropriated for designing stateful Firewalls. They only allow the construction of
stateless firewalls. Besides, they neither use nor share the global knowledge. They
do not enable multiple firewall applications to collaborate in different domains to
reinforce the security policies. Besides, Their maintenance is fastidious because it
affects the code of the framework and the controller that supports them.

FRESCO [150, 151] can develop SDN stateless firewalls. It instantiates predefined
security modules and assembles them into an OpenFlow firewall application. How-
ever, FRESCO is not appropriate for building SDN stateful firewalls because it can-
not track the states of a packet and handle dynamic traffic information such as port
allocation. Another example of an SDN framework is Flowguard [152, 200]. It al-
lows building OpenFlow stateless firewalls. It proposes a mechanism to detect and
resolve firewall policies violations caused by traffic modifications and OpenFlow
rules dependencies.

2. Hybrid-SDN-Firewalls: they introduce control function into the network elements or
collaborate with the legacy architecture. The controller in these firewalls only installs
the OpenFlow rules to direct the traffic towards them and to resubmit the ingress traffic
coming from them into the OpenFlow pipeline. As a result, the control layer has nei-
ther visibility nor any controllability on the traffic processing inside these firewalls. The
different types of these firewalls are as follows.

• Network element firewalls[27, 201–210]: They integrate firewall functions in net-
work elements by modifying the data plane architecture. They are powerful be-
cause they process the traffic directly in the network elements with dedicated de-
vices. Their hardware structure is adapted to process network traffic and to perform

48

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

firewall functions. However, the control layer depends on them to know which traf-
fic has been processed and how to manage it.

Unfortunately, there is not an SDN controller able to control these firewalls because
they require extensions in the southbound API. Besides, they contradict SDN phi-
losophy because they incorporate full control functions into network elements like-
wise in the legacy architecture. In these firewalls, the control is vertically integrated
with other network element functions. As a result, the control layer loses its con-
trollability.

The authors in [201] design an SDN stateful firewall inside the network element.
The solution modifies the data plane architecture by adding new tables in the net-
work element and new messages to the OpenFlow API. A State Table handles the
actual state of a connection, and a Shifted Flow Table processes the next states. A
third table is added at the level of the control layer to store the information about the
states. The solution introduces state-in messages as a new feature to synchronize
with the State Table. In this solution, the states of the connections are managed by
the network elements. The controller is only informed about the updates because
all the firewall control function is inside the data plane. Furthermore, State-in mes-
sages generate more traffic with the Controller. Moreover, the data plane sends sys-
tematically any unknown traffic to the Controller. As a result, an attacker can use
this breach to flood the control layer and perform DDoS attacks.

In [202] the authors integrate a distributed firewall into OVS. The idea aims to im-
prove the performance of SDN firewalls and to elevate data plane features by han-
dling layers 4 to layer 7 data. They incorporate into OVS, the Linux connection
tracking system Conntrack [211]. The latter provides a stateful firewall with ad-
vanced features to perform deep packet inspection. The solution adds a new action
to OpenFlow to send the flows to the Conntrack modules. These modules process
the traffic according to its pre-configured security policies. The processing steps in
this firewall are as follows:

(a) The flow that corresponds to an OpenFlow entry with a Conntrack action is
sent to the Conntrack modules.

(b) The Conntrack module inspects them to determine their state.

(c) It updates the state connection tracking tables with the new state.

(d) Conntrack module forwards the flow with its state to the OF table.

(e) The flow is recirculated inside the flow tables to match with another OF Rule.

This solution uses deep packet inspection and network address translation in the
data plane. However, the controller cannot intervene in this process and has not any
visibility on the processing done by Conntrack because the behavior of Conntrack
is independent of the control layer.

Moreover, this firewall cannot use the global view of the network to reinforce secu-
rity policies. Its behavior can lead to issues of coordination and discrepancy with
the control layer because of the integration of the control inside the network el-
ements. Besides, each data plane device needs to be configured individually and
manually with security policies by the administrator. As a result, problems of man-
ual errors, policy incoherence can occur due to this lack of policy automation.

OpenState [27] modifies also the data plane architecture and extends the OpenFlow
specification. It integrates into the OpenFlow network element a state table that
represents the Extended Finite State Machine (XFSM) of the traffic protocol. The
state table enables the data plane layer to control the connections by tracking their
states. Moreover, OpenState adds new OpenFlow structures and messages to enable

49

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

Application
Layer

Control
Layer

Data Plane
Layer

Security
Policies

Firewall Middle-Box

Admin

Controller

OpenFlowOpenFlow
Extension

Control Functions

Network Element

OpenFlowOpenFlow
Extension

Openflow
Rules

Traffic

Host A

Traffic Filtered
Traffic

Filtered
Traffic

Traffic

Filtered
Traffic +
State

Notifications

Host B

Security
Policies

1

1

1

2

1

2

Network Element
Firewall

Collaborative
Firewall

Figure 3.2 – Hybrid SDN Firewalls

the controller to initialize the connection tracking in the network elements. The de-
velopers of Openstate assume that their solution is more efficient than application
SDN Firewalls. However, it has some drawbacks. It is not able to adapt its behav-
ior to the global knowledge provided by SDN. Besides, it is not compatible with the
existing SDN network element architecture. It puts a part of the control inside the
data plane layer. The Openstate network element becomes able to take decisions
independently from the control layer.

Although network element firewalls are considered to have better performance than
other SDN firewalls; they enlarge the vulnerability surface of SDN. They introduce
new vulnerabilities that can be exploited by attackers such as unbounded flow state
memory allocation, triggerable CPU intensive operations and lack of a central state
management [212]. In unbounded flow state memory allocation, the attacker ex-
hausts the memory of the network element by pushing the latter to extend and
update its state table continuously. In triggerable CPU intensive operations, an at-
tacker forces the network element to execute intensive CPU operations that exhaust
or slow the performance of the network element. An example of an intensive CPU
operation is the notification of the controller each time there is an event on the state
table. Lack of central state management gives means to an attacker to poison the
view of the controller and to compromise the consistency of traffic states. This vul-
nerability is due to the absence of a centralized entity that involves the processing
of states and their synchronization between network elements.

• Collaborative firewalls [157, 213–224]: They connect hardware or virtual firewalls

50

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

(ex. middlebox) to network elements to filter network traffic. In this case, the con-
troller installs the appropriate OpenFlow rules to forward the traffic to the middle-
box and to resubmit the ingress flows coming from the middlebox inside the flow
tables. Collaborative firewalls reuse existing legacy firewalls with SDN; however,
their behaviors can neither be controlled nor be automatized by SDN. Their archi-
tecture induces a hop for each link between a middlebox and a network element.
These additional routes increase traffic delays because the network elements send
traffic to the middle-box and wait for its processing before forwarding it. Besides,
The controller has no visibility on their behavior and their security policies. Thus,
they cannot use the global knowledge. Moreover, because they do not collaborate
in a distributed environment or a multi-domain network, problems of security poli-
cies inconsistencies can arise. For example, a middlebox in a domain A can block
traffic which is authorized in a domain B.

IPS & IDS based on SDN

Both IPS and IDS based on SDN rely on automation and SDN global knowledge. The SDN
automation provides means to prevent and react to security attacks by installing the proper
countermeasures and directing the relevant traffic. The SDN global knowledge improves the
monitoring of network events to detect security attacks. Monitoring is an important function in
both solutions. SDN offers two types of network monitoring [225]. Passive monitoring consists
of collecting information about SDN assets such as flow statistics and resource usability. It
supports two modes of information collection. In the push mode, the SDN assets send the
information to the controller when an event happens. In the pull mode, the controller request
the needed information from the SDN components. The second type of monitoring that SDN
provides is the active monitoring. SDN controller collects the traffic or a part of it in the form of
packets-out from network elements. By combining these types of monitoring, SDN leverages
the detection of attacks with network deep and wide knowledge.

The combination of global knowledge, agility, and automation enable SDN to harvest in-
telligence from IDS and IPS [226]. This knowledge can be shared among other SDN security
applications and controllers to reinforce security in the network. For example, when the IDS
detects an attack, it informs the controller. The latter notifies an access control application
about the detection to update the permissions in the network.

The IDS of [227] combines both types of monitoring to detect faulty traffic and DDoS at-
tacks. It installs OpenFlow rules based on the IP addresses of known sources of attack and
other hosts. The OpenFlow rules abstract blacklists, whitelists, geo-localization data and event
severity related to these IP addresses. Furthermore, they direct the flow statistics and packets-
out using these rules to the controller to monitor the behavior of all the sources. The controller
IDS function performs traffic inspection to detect and respond to network anomalies. It uses
the SDN programmability to install OpenFlow rules that drop bogus flows and direct DDoS
traffic to a DDoS washing machine.

Another example is the IPS of [228]. This collaborative OpenFlow IPS performs active threat
detection and prevention using SDN automation and global knowledge. The solution inte-
grates a security control application in the controller to reprogram the network elements and
collect network events. It extends the Floodlight controller with built-in modules in its north-
bound API. The new modules ensure the interactions between the controller and the other
subsystems of the IPS such as Snort application (a lightweight network and open source intru-
sion detection tool) [229, 230] and the honeypot. They also interpret the directives of Snort into
OpenFlow rules. This SDN IPS combines the following mechanisms:

1. Botnet/Malware blocking mechanism: it is based on a Snort machine with 5000 bot-

51

CHAPTER 3. SECURITY IN SOFTWARE DEFINED NETWORKING

net/malware Snort rules. The controller directs the traffic to this machine. When snort
detects a botnet or a malware, it informs the IDS control application. Then, the latter
installs the appropriate OpenFlow rules to drop the malicious traffic in the network ele-
ments.

2. Scan filtering mechanism: it is based on an anti-scanning algorithm that runs in all the
hosts. When the algorithm detects scanning attacks on the host, it informs the IPS control
application. Then, the latter reprogram the network elements to block the traffic of the
attack source.

3. Honeypot mechanism: it uses a Virtual Machine (VM) that pretends to be a potential
victim to attract attackers. The VM relies on configuring the DoS and DDoS rules in its
snort to detect the attacks. When it detects the disruption attack, it alerts the IPS control
application that reprograms the network elements to block the traffic of the attack source.

3.5 Discussion

In this chapter, we have discussed the security for SDN and the improvements that SDN brings
to security. On the one hand, we have shown that SDN lacks security solutions that protect its
security dimensions. Its features amplify attacks in SDN. As a result, they enhance the attacker
with superpowers. Besides, SDN assets are vulnerable to many attacks. They can be even used
as attack vectors against other SDN and non-SDN assets. The controller is a single point of
failure and a potential backdoor to contaminate other assets. For this reason, it is considered
by attackers as attractive and a potential Pandora box.

On the other hand, we have discussed the benefits of SDN for security. SDN is an enabler for
many security applications. It leverages monitoring, detection, prevention and defense mech-
anisms and mitigation. It has accelerated the research work and innovation about enhanc-
ing security solutions with automation, global knowledge, interoperability, agility and network
simplification. Many security applications have been improved thanks to its features.

Nonetheless, its security is still a challenging hot subject that reduces the usability of se-
curity solutions based on SDN [231]. Many security aspects of SDN are not addressed. The
research in SDN security analysis is still not appropriately tackled [232] because it does nei-
ther quantify the impacts of SDN security vulnerabilities nor study their security. Therefore, we
propose an analysis of SDN security vulnerabilities in the next chapter.

52

Part II

Security for SDN

53

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

Chapter 4

Software Defined Networking

Vulnerability Analysis

“ Vulnerability is the birth place

of innovation, creativity and

change. ”

Brené Brown

Contents

4.1 Introduction . 55

4.2 Problem Statement . 55

4.3 Vulnerability Analysis Concepts . 56

4.3.1 Common Vulnerability Scoring System . 56

4.3.2 Analytic Hierarchy Process . 61

Weighting the criteria . 61

Scoring the alternatives . 62

Consolidation of the alternative with the criteria 62

Consistency computation . 63

4.4 SDN Asset Classification . 64

4.5 SDN Vulnerability Procedure . 64

4.6 Vulnerability severity results . 67

4.6.1 Preliminary Vulnerability Scores . 67

4.6.2 Enhanced Vulnerability Scores . 70

SDN criteria and alternatives . 70

SDN AHP results . 71

Integration of the AHP weights . 74

4.7 Discussion . 76

54

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

4.1 Introduction

Network security analysis faces many challenges such as uncertainty, lack of adequate data
and technological mutations [233]. The last challenge becomes the most impressive driving
force for the overhaul of security analysis in computer networks. Especially with the advent
of SDN, security analysis needs to cover the specific characteristics of this paradigm to enable
stakeholders to take effective security decisions that protect SDN assets.

Vulnerability analysis is an essential process in security because it enables discovering the
weaknesses of a system and their impacts. Nonetheless, analyzing a system to detect its uniden-
tified weaknesses is still a complex and a subjective process [234] because there is neither a
universal classification nor a standardized methodology in vulnerability analysis. This fact is
particularly amplified in a dynamic and emerging environment such as SDN where there are
neither documented SDN vulnerabilities nor quantified regarding their severity.

We propose in this chapter the first vulnerability analysis of SDN in the literature. Our work
is part of the European project TANDEM SENDATE [235, 236]. It builds an SDN vulnerability
model and quantifies their severity. It calculates the vulnerabilities severity using the Common
Vulnerability Scoring System (CVSS). Then, it adapts the results according to the impacts of
SDN features on security (see Chapter Section 2.2) using the Analytic Hierarchy Process (AHP).

4.2 Problem Statement

SDN is facing substantial challenges in security because it inherits security flaws from classical
network architecture and it introduces new vulnerabilities. Besides, its features empower the
attackers with a superpower that increase the severity and likelihood of attacks. Therefore, a
general vulnerability analysis for SDN is necessary to improve SDN security and understand its
weaknesses. This analysis needs to provide a generic classification of SDN vulnerabilities and
evaluates their impacts on network security. Vulnerability analysis of SDN enables organiza-
tions to know the impacts of their SDN conceptual and implementation choices. It supports
them to adopt suitable countermeasures against security attacks by reducing the attack sur-
face.

We rely on the Common Vulnerability Scoring System (CVSS) [237–240] to quantify the im-
pacts of SDN security vulnerabilities. CVSS is based on qualitative and quantitative metrics
that define the severity of security vulnerabilities. Its computation procedures integrate three
dimensions related to the different characteristics of legacy networks: their essential generic
features, their temporal features, and their environment-related factors.

However, SDN features are not covered by CVSS but they affect the security of SDN and
enlarge its attack surface. For example, the centralization of the controller transforms its com-
ponents to precarious shared resources among other SDN assets. In this case, all the SDN assets
are exposed by the vulnerabilities of the controller. In this case, CVSS on SDN will not include
the controller influence on other SDN assets. This influence is due to the impacts of SDN fea-
tures on each asset. Thus, a proper vulnerability analysis using CVSS needs to integrate SDN
features into the evaluation of vulnerability because they determine the importance of each
asset in SDN. Some assets are more influenced by SDN features and can expose other assets to
security attacks. In this context, we rely on decision-making procedures to measure the weights
of SDN assets using SDN features.

Decision making is the process to choose among alternatives based on multiple factors
[241]. Although decisions are subjective judgments and they depend on the knowledge and ex-
perience of domain experts, some methods can be used to rationalize decisions and quantify

55

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

them mathematically. The Analytical Hierarchy Process (AHP) [91, 242–245] is one of these ap-
proaches. It is a multi-criteria decision making procedure. It is used to define and evaluate the
importance of decision alternatives in the decision-making process. It decomposes complex
problems into many levels of connected subproblems. Then, it evaluates the intensity of each
subproblem in the overall set of problems.

AHP enables us to evaluate the impacts of SDN features on its assets to determine their
weights. These weights are integrated to the severities of each asset vulnerability to adapt CVSS
for SDN. The steps of our generic vulnerability analysis are as follows :

1. We classify SDN assets.

2. We propose a set of security attack objectives based on security dimensions.

3. We construct a matrix of SDN vulnerabilities by combining SDN assets with security at-
tack objectives.

4. We quantify the severity of SDN vulnerabilities using CVSS.

5. We adapt the quantification by including into the process SDN features intensities, using
AHP.

4.3 Vulnerability Analysis Concepts

We use CVSS to evaluate the severity of SDN vulnerabilities. We adapt CVSS logic to SDN con-
text. This adaptation enables us to choose the proper criteria for SDN vulnerabilities using
CVSS (Section 4.3.1). Besides, we introduce AHP into the quantification of the vulnerabilities
severity (Section 4.3.2). AHP transforms the CVSS results according to SDN features. The details
of CVSS and AHP are as follows.

4.3.1 Common Vulnerability Scoring System

CVSS [237–240, 246, 247] offers an open framework to assess and evaluate the impacts of com-
puter security vulnerabilities. It uses a set of standardized metrics to score vulnerabilities and
compute their severity scores. It enables organizations to improve their security policies be-
cause its neutrality improves the identification and remediation of vulnerabilities. It supports
the evolution of systems because it provides contextual scoring that represents the severity of
the vulnerability according to the actual context. Also, its framework is open-source. The pa-
rameters and the quantification methods can be accessed and modified by users.

CVSS provides three groups of metrics [248] that evaluate the severity of vulnerabilities. It
offers a set of equations to calculate the severity score in each group. The equations have been
elaborated based on intensive research work on vulnerabilities and their analysis. They rely on
a set of mathematical rules and rationals that varies depending on the metric type [249] (the
details of the equations is in [250]) The metrics of the base group evaluate the unchangeable
characteristics of vulnerabilities that are not influenced by time nor by user environments. On
the other hand, the metrics of the temporal group process the characteristics that are subject
to change over time. Besides, those of the environment group focus on the proprieties that
are influenced by user environments. CVSS associates with each several metric options that
determine the difficulties for an attacker to exploit the vulnerability. Each option has a different
value that expresses the degree of making the attacker task easier or harder. These values are
the parameters of the formulas that calculate the severity of vulnerability in each group. Table
4.1 describes all the CVSS metrics according to SDN requirements. Table 4.2 [248] lists the
options of each metric and their numerical values.

56

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

The base group represents the features of a vulnerability that neither change in time nor
the implementation. It specifies many characteristics. Attack Vector is the location where the
attacker accesses the vulnerability. Attack Complexity is the complexity of the vulnerability ex-
ploitation. Privilege Required are the privileges the attacker needs for exploiting the vulnerabil-
ity. Scope refers to the spread of the vulnerability to other assets. User Interaction determines if
the attacker needs to interact with the user. The impacts of the vulnerability on security dimen-
sions define the influence of the vulnerability on confidentiality, integrity, and availability. The
base group severity is the maximum impact value of severity and the worst case. The Temporal
metrics adapt the value of the base by reducing it according to their characteristics. The base
group score SVbase is computed according to the following steps:

1. CVSS computes the Exploitability of the vulnerability E(V). This metric represents the
capacity of the attacker to exploit the vulnerability. CVSS uses the following formula:

E(V) = 8.22 × Attack Vector × Attack Complexity

× Privilege Required × User Interaction
(4.1)

2. CVSS computes the base Impact Sub Score (ISCbase) using the following formula:

ISCbase = 1−((1−ImpactCon f i denti al i t y)× (1−ImpactInteg r i t y)× (1−ImpactAvai l abi l i t y))
(4.2)

3. CVSS calculates the Impact Sub Score (ISC) by taking into consideration the scope of the
vulnerability. It uses the following formulas:

ISC =

{

6.42 × ISCbase If scope = Unchanged

7.52 × (ISCbase −0.029)−3.25 × (ISCbase −0.02)15 If scope = changed
(4.3)

4. CVSS calculates the vulnerability severity of the base group SVbase using the following
formula:

SVbase =

Round_up (Mi ni mum((ISC+E(V)),10)) If scope = Unchanged

Round_up (Mi ni mum(1,08 × (ISC+E(V)),10)) If scope = changed

0 If ISC <= 0
(4.4)

Table 4.1 – CVSS metrics for SDN

Group Metric Definition

Base

Attack Vector

The path by which an attacker exploits the vulnerability, it can be remote
from an external network (internet), Adjacent from a neighboring network
(ex. another domain), Local from within the SDN network or physical by
physically accessing the assets

Complexity

The efforts costs that the attacker needs to exploit the vulnerability. Low ef-
forts refer to direct actions that lead to repeatable success. High efforts use
reconnaissance, preparation and pentesting

Privilege Required

The special rights that the attacker needs to exploit the SDN vulnerability.
The options are: None, Low: user privileges and high: management privi-
leges

User Interaction
Determines if an SDN user is needed to participate in the exploitation of the
vulnerability

Scope Determines if the vulnerability exploitation impacts other SDN assets

Confidentiality

The impact of the vulnerability exploitation on SDN confidentiality. The op-
tions are: None, Low (Asset leaks to authorized entities), High (Asset leaks to
unauthorized entities)

57

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

Table 4.1 continued from previous page

Group Metric Definition

Integrity

The impact of the vulnerability exploitation on the veracity and trustworthi-
ness of SDN assets. The options are: None, Low (assets are altered but the
attacker neither controls the process nor measures the consequences), High
(the attacker controls the modification process and the consequences prop-
agates in SDN)

Availability

The impact of the vulnerability exploitation on SDN accessibility. The op-
tions are: None, Low (the asset availability is partially impacted, it is unavail-
able for a certain time only or available all the time with some interruptions),
High (the asset is completely inaccessible)

Temporal

Exploit Code Maturity

The maturity of the attacker techniques that enable the attacker to exploit the
SDN vulnerability. The options are: Unproven (No exploit is available or it is
theoretical), Proof of Concept (the exploit code is not functional in all SDN
environments and it requires first a modification by skilled attackers), Func-
tional (the code works in SDN but it requires skilled attackers), High (exploit
code works in SDN and is widely-available, reliable and easy to use)

Remediation Level

The level of fixes and patches to correct the SDN vulnerability. The options
are: Official Fix (a complete SDN vendor solution is available), Temporal Fix
(a temporal tool or hot-fix is available), Workaround (unofficial fix and a non-
vendor patch is available), Unavailable (there is no solution to correct the
vulnerability)

Report Confidence

The level of technical knowledge on the vulnerability that is available to po-
tential attackers. Unknown (there are documents that are reporting the vul-
nerability but its causes are not identified), Reasonable (significant details are
available but the vulnerability is not proven in practice), Confirmed (detailed
vulnerability reports are available and functional reproduction is possible)

Environmental

Confidentiality Requirement
It enables the customization of confidentiality for the SDN asset relatively to
other metrics

Integrity Requirement
It enables the customization of integrity for the SDN asset relatively to other
metrics

Availability Requirement
It enables the customization of availability for the SDN asset relatively to
other metrics

Modified Base Metrics
The 8 metrics customize base metrics according to the influences of the en-
vironment

The temporal group specifies the values of the vulnerability characteristics that change over
time. This group includes three vulnerability metrics. Exploit Code Maturity refers to the avail-
ability and the usefulness of techniques and malicious code to exploit the vulnerability. Its
options can vary in a scale that starts with theoretical exploitation. Then, it evolves to proof of
concept code and finally to functional exploit code. Then, it becomes fully mature to be used by
unskilled attackers. The Remediation Level is the second metric. It refers to the availability and
level of maturity of corrections and fixes for the vulnerability. Finally, Report Confidence evalu-
ates the credibility degree of the existence of the vulnerability. CVSS calculates the vulnerability
severity of the base group SVtemp using the following formula:

SVtemp = Round_up (SVbase × Exploit Code Maturity × Remediation Level

× Report Confidence)
(4.5)

The environment group measures the scores of the vulnerability features that are impacted by
the implementation or deployment in a specific IT or user environment. Each environment has
a different impact on vulnerability and by extension on the security of a system. The environ-
ment influences the characteristic of the vulnerability of the base group. For example, suppose
we have an SDN Implementation. We deploy the SDN in a data center platform that includes
an AAA solution. This environment changes the access metrics because it makes the tasks of
the attacker harder. The environment group modifies the metrics of the base group.

58

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

Ta
b

le
4.

2
–

C
V

SS
M

et
ri

cs
,o

p
ti

o
n

s
an

d
th

ei
r

n
u

m
er

ic
al

va
lu

es

N
u

m
b

e
r

M
e

tr
ic

O
p

ti
o

n
N

u
m

e
ri

c
a

l
V

a
lu

e

1

A
tt

ac
k

Ve
ct

o
r

(B
as

e
gr

o
u

p
)

&
M

o
d

ifi
ed

A
tt

ac
k

Ve
ct

o
r

(E
n

vi
ro

n
m

en
t

gr
o

u
p

)
N

et
w

o
rk

0.
85

A
d

ja
ce

n
t

N
et

w
o

rk
0.

62
L

o
ca

l
0.

55
P

h
ys

ic
al

0.
2

2
A

tt
ac

k
C

o
m

p
le

xi
ty

(B
as

e
gr

o
u

p
)

&
M

o
d

ifi
ed

A
tt

ac
k

C
o

m
p

le
xi

ty
(E

n
vi

ro
n

m
en

t
gr

o
u

p
)

L
ow

0.
77

H
ig

h
0.

44

3
P

ri
vi

le
ge

R
eq

u
ir

ed
(B

as
e

gr
o

u
p

)
&

M
o

d
ifi

ed
P

ri
vi

le
ge

R
eq

u
ir

ed
(E

n
vi

ro
n

m
en

t
gr

o
u

p
)

N
o

n
e

0.
85

L
ow

0.
62

(0
.6

8
if

Sc
o

p
e

o
r

M
o

d
ifi

ed
Sc

o
p

e
ar

e
C

h
an

ge
d

)
H

ig
h

0.
27

(0
.5

0
if

Sc
o

p
e

o
r

M
o

d
ifi

ed
Sc

o
p

e
ar

e
C

h
an

ge
d

)

4
Sc

o
p

e
(i

t
m

o
d

ifi
es

th
e

va
lu

e
o

fP
ri

vi
le

ge
R

eq
u

ir
ed

&
M

o
d

ifi
ed

P
ri

vi
le

ge
R

eq
u

ir
ed

)
U

n
ch

an
ge

d
D

o
es

n
o

t
im

p
ac

t
U

n
ch

an
ge

d
Se

e
p

re
vi

o
u

s
m

et
ri

c
va

lu
es

5
U

se
r

In
te

ra
ct

io
n

(B
as

e
gr

o
u

p
)

&
M

o
d

ifi
ed

U
se

r
In

te
ra

ct
io

n
(E

n
vi

ro
n

m
en

t
gr

o
u

p
)

N
o

n
e

0.
85

R
eq

u
ir

ed
0.

62

6
C

o
n

fi
d

en
ti

al
it

y
(C

),
In

te
gr

it
y

(I
),

A
va

il
ab

il
it

y
(A

)
Im

p
ac

t
(B

as
e

gr
o

u
p

)
&

M
o

d
ifi

ed
C

,I
,A

Im
p

ac
t

(E
n

vi
ro

n
m

en
t

gr
o

u
p

)
H

ig
h

0.
56

L
ow

0.
22

N
o

n
e

0

7

E
xp

lo
it

C
o

d
e

M
at

u
ri

ty
(T

em
p

o
ra

lg
ro

u
p

)
N

o
t

D
efi

n
ed

1
H

ig
h

1
F

u
n

ct
io

n
al

0.
97

P
ro

o
fo

fC
o

n
ce

p
t

0.
94

U
n

p
ro

ve
n

0.
91

8

R
em

ed
ia

ti
o

n
L

ev
el

(T
em

p
o

ra
lg

ro
u

p
)

N
o

t
D

efi
n

ed
1

U
n

av
ai

la
b

le
1

W
o

rk
ar

o
u

n
d

0.
97

Te
m

p
o

ra
ry

F
ix

0.
96

O
ffi

ci
al

F
ix

0.
95

9

R
ep

o
rt

C
o

n
fi

d
en

ce
(T

em
p

o
ra

lg
ro

u
p

)
N

o
t

D
efi

n
ed

1
C

o
n

fi
rm

ed
1

R
ea

so
n

ab
le

0.
96

U
n

kn
ow

n
0.

92

10

Se
cu

ri
ty

R
eq

u
ir

em
en

ts
:C

,I
,A

R
eq

u
ir

em
en

ts
(E

n
vi

ro
n

m
en

t
gr

o
u

p
)

N
o

t
D

efi
n

ed
1

H
ig

h
1.

5
M

ed
iu

m
1

L
ow

0.
5

59

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

Besides, it enables the prioritization of the security dimensions depending on the business
model of the environment. These priorities are Confidentiality Requirement (CR), Integrity
Requirement (IR) and Availability Requirement (AR). For example, in a banking environment,
confidentiality and integrity will be the priority while in a video streaming use case, availability
will be the focus. The environment group severity SVenv is computed according to the following
steps:

1. CVSS computes the Modified Exploitability sub score E(V)Mod which represents the im-
pacts of the environment properties on the exploitability of the vulnerability. It uses the
following equation:

E(V)Modi f i ed = 8.22 × At t ackVectorMod × At t ackComplexi t yMod

× Pr i vi l eg eRequi r edMod × User Inter acti onMod

(4.6)

2. CVSS computes the environment Impact Sub Score (ISCenv) using the following formula:

ISCenv = Mi ni mum(1− (((1− Impactmod_Con f i denti al i t y) × CR) ×

(1− (Impactmod_Integ r i t y × IR)) × (1− (Impactmod_Avai l abi l i t y × AR)))) , 0,915)
(4.7)

3. CVSS calculates the Modified Impact Sub Score (ISCmod) by taking into consideration the
scope of the vulnerability. It uses the following formulas:

ISCmod =

{

6.42 × ISCenv If scope = Unchanged

7.52 × (ISCenvi r onment −0.029)−3.25 × (ISCenv −0.02)15 If scope = changed
(4.8)

4. CVSS calculates the impact score of the temporal group IST on the environment group.
It uses the following equation:

IST = Exploi t_Code_Matur i t y × Remedi ati on_Level × Repor t_Con f i dence (4.9)

5. CVSS calculates the vulnerability severity of the base group SVenv using the following
formula:

SVenv =

Round_up (Mi n((ISCmod +E(V)mod),10)) × IST If scope = Unchanged

Round_up (Mi n(1,08 × (ISCmod +E(V)mod),10)) × IST If scope = changed

0 ISCmod =< 0
(4.10)

The final scores of CVSS values SVx (x ∈ [Base, Temporal, Envirenment]) are standardized
within the interval [0 10]. They can be mapped to the following qualitative judgments:

If SV ∈ [0,1 - 3,9] Then the severity is Low

If SV ∈ [4 - 6,9] Then the severity is Medium

If SV ∈ [7 - 8,9] Then the severity is High

If SV ∈ [9 - 10] Then the severity is Critical

Otherwise None

60

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

Table 4.3 – AHP Scale of importance for pairewise comparaison

Qualitative jud-

jement

Equal Im-

portance

Equally

to Moder-

ately

Moderate

Impor-

tance

Moderately

to Strong

Strong

Impor-

tance

Strongly

to to very

strong

Very

strong Im-

portance

Very

strong to

extremely

Extreme

Impor-

tance

Direct numeric

rate (impor-

tance of a to

b)

1 2 3 4 5 6 7 8 9

Reciprocal

numeric rate

(importance of

b to a)

1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1

4.3.2 Analytic Hierarchy Process

AHP [91, 242–245] is a decision-making model that optimizes decisions when dealing with
qualitative, quantitative and conflicting choices. It decomposes a qualitative problem (a de-
cision goal) into many levels of hierarchies. The decider chooses many criteria and evaluates
them according to many decision alternatives to reach a decisive goal. The criteria are the fea-
tures that characterize the goal. The alternatives are the possible goals that can be reached.
AHP evaluates the weights of each alternative according to all the criteria. It uses this decision
method to help decide on the most weighted alternatives. In the first level of the hierarchy, AHP
measures the relation between the different criteria based on their intensities for the decisive
goal. The values of the criteria are evaluated according to their pairwise comparisons. Then,
AHP calculates the weight of each criterion. The higher the weight of a criterion, the more dom-
inant it is compared to other criteria. Then, in the other levels, the criteria are rationalized with
the different alternatives according to matrix algebra. The alternatives are evaluated in pairwise
comparisons according to each criteria dimension. The higher is the score of the alternative;
the more important is its performance for the criteria comparing to other decision alternatives.
Finally, AHP combines the weights of all the criteria with the scores of the alternatives. It de-
termines the global value of each alternative regarding all the criteria. AHP evaluation has four
main steps. Their details are as follows.

Weighting the criteria

In this step, AHP uses a pairwise matrix to compare the criteria between them. It determines
the intensity level of criteria in respect to other criteria. The values of the comparison are based
on transforming a qualitative relation scale to a numeric scale. These values fulfill a standard-
ized AHP scale (see table 4.3) [251] from 1 (two criteria with the same intensity) to 9 (a criteria
is extremely intense than the other one). The following calculations take place in this step:

1. AHP calculates the pairwise matrix A(n ×n) (where n is the number of the criteria). The
matrix A ensures the following conditions:

a
j

i
× ai

j = 1 (4.11)

(where a is the intensity value, i and j are the criteria indexes from 1 to n).

2. The matrix A is normalized to the matrix B according to the following equation:

b
j

i
=

a
j

i
n
∑

k=1
ai

k

(4.12)

61

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

(where b
j

i
are the elements of the matrix B).

3. AHP calculates the weight vector W based on the Eigen vector method [252]. The weights
wi of the vector are computed according to the following equation:

wi =

n
∑

j =1
b

j

i

n
(4.13)

Scoring the alternatives

AHP uses a pairwise comparison to estimate the importance of each alternative. For each crite-
rion dimension, it evaluates the intensities of an alternative compared to the other alternatives.
These values represent the performance of the alternative in the criterion dimension. There-
fore, it builds n pairwise matrices where each matrix represents a criterion. The following cal-
culations take place in this step:

1. For each criterion ci , AHP calculates the pairwise matrix Aci
(m×m) (where m is the num-

ber of alternatives). The matrix Aci
ensures the following conditions:

ac l
k × ack

l = 1 (4.14)

(where ac is the intensity value, k and l are the alternative indexes from 1 to m).

2. The matrix Aci
is normalized to the matrix Bci

according to the following equation:

bck
l =

ack
l

m
∑

p=1
al

p

(4.15)

(where bk
l

are the elements of the matrix Bci
).

3. AHP calculates the weight vectors W(ci) based on the Eigen vector method. The weights
w

(ci)
l

of the vector are computed according to the following equation:

w
(ci)
l

=

m
∑

k=1
bck

l

m
(4.16)

4. AHP constructs the Matrix of scores S where each column corresponds to a criteria weight
vector.

S = (W(c1),W(c2), ...,W(cn)) (4.17)

Consolidation of the alternative with the criteria

The weights of the alternatives are consolidated with weights of the criteria in order to evaluate
the overall intensities of each alternative. This evaluation enables the decision maker to rank its
alternative by its global importance in its decision. AHP calculates the global ranking vector V
which is the product of the matrix S with the criteria vector W. Each element v (ci) (with i = 1..m)
of V is calculated according to the following equation:

v (ci) =
n
∑

k=1
(sk

i × wk) (4.18)

62

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

Consistency computation

AHP provides consistency evaluations to check if the construction of the pairwise matrices and
the previous calculation contains inconsistencies. Inconsistencies can be introduced by the
decision maker in any pairwise matrix. For example, let’s suppose we have 3 criteria. An incon-
sistency arises if the decision maker evaluates a first criterion to have moderate importance
to the second criterion. Then, he evaluates the second criterion to have strong importance to
the third criterion. However, he evaluates the third criterion to have equal importance to the
first one. This pairwise comparison reduces the consistency of the AHP evaluation because by
transitivity the first criterion should be evaluated to have very strong importance to the third
one. Therefore, AHP proposes to estimate the consistency of its process by computing the Con-
sistency Ratio (CR). The value of (CR) is compared with the consistency rule to evaluate the
consistency of the AHP process. The details of the computations are as follows:

1. AHP calculates the ratio matrix R using the following equation:

ri =

n
∑

j =1
a

j

i
× w j

wi

(ri ∈ R, a
j

i
∈ A and w j ∈ W)

(4.19)

2. AHP calculates the consistency index CI using the following equation:

CI =
(Aver ag e(R)−n)

(n −1)
(4.20)

3. AHP calculates the consistency ratio CR using the following equation:

CR =
CI

RI
(4.21)

The random consistency index has been normalized in many studies. It is defined ac-
cording to the value of n. Many studies has been performed to estimate its values by
running many simulations with a number of matrices. We choose the RI values of Al-
fonso & Lamata [253] (see table 4.4) because their computations are the most precise.
They calculate their random consistency indexes using 5.106 matrices.

Table 4.4 – Alonso and Lamata RI values

n 1 2 3 4 5 6 7 8 9 10

RI - - 0,5247 0,8816 1,1086 1,2479 1,3417 1,4057 1,4499 1,4854

n 11 12 13 14 15 16 17 18 19 20

RI 1,5140 1,5365 1,5551 1,5713 1,5838 1,5978 1,6086 1,6181 1,6265 1,6341

4. The decision maker compares CR value with the consistency rule to judge the AHP con-
sistency. If the AHP is inconsistent then the decision maker needs to correct the pairwise
comparison and repeat all the AHP. The conditions of the rule are as following:

Consistency Rule =

completely Consistent , if CR = 0

Acceptable Consistency , if CR <= 10%

Inconsistent, otherwise

63

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

4.4 SDN Asset Classification

We classifies SDN assets in Table 4.5 according to section 2.3 of chapter 2. Table 4.5 describes
all the components of our system under study. The asset class indicates the family of the SDN
asset and its location. It can be SDN applications (located in the application layer), controllers
(located in control layer), network elements (located in data plane layer), SDN interfaces (lo-
cated in the 3 previous SDN layers), managers and coordinators (located in the management
layer). The asset components represent the SDN assets. They are the logical objects of SDN
that need to be protected. Table 4.5 provides a description for each SDN asset. Besides, it in-
stantiates each SDN assets with existing examples in SDN environments.

4.5 SDN Vulnerability Procedure

We propose a set of SDN generic vulnerabilities. We have built them by combining security
threats with SDN assets. The identified vulnerabilities are generic because they are neither
linked to the implementation of SDN assets nor any specific SDN environment. They are part
of security by design because we introduce the vulnerability assessment into the design of SDN
architecture rather in its implementation or deployment. Our objective is to identify SDN vul-
nerabilities in the earliest phases of SDN life cycle.

We have identified 120 (20×6) generic SDN vulnerabilities by applying a set of inverted se-
curity principals (see section 3.2 of chapter 3) to the assets of our system under study. We have
performed the following steps:

1. Reverse the security principals (see Table 4.6).

2. Combine each reversed security object to all the identified assets.

64

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

Ta
b

le
4.

5
–

SD
N

A
ss

et
s

A
ss

e
t

C
la

ss
A

ss
e

t
C

o
m

p
o

n
e

n
t

D
e

sc
ri

p
ti

o
n

In
st

a
n

c
ia

ti
o

n

A
p

p
li

ca
ti

o
n

A
p

p
li

ca
ti

o
n

F
u

n
ct

io
n

It
d

efi
n

es
th

e
o

p
er

at
io

n
s

an
d

p
ro

ce
ss

es
o

fn
et

w
o

rk
Se

rv
ic

e
SD

N
F

ir
ew

al
l

A
p

p
li

ca
ti

o
n

C
o

n
te

n
t

It
d

efi
n

es
th

e
in

fo
rm

at
io

n
u

se
d

an
d

ge
n

er
at

ed
b

y
ap

p
li

ca
ti

o
n

s
F

ir
ew

al
lP

o
li

ci
es

co
n

tr
o

lle
r

C
o

n
tr

o
lle

r
C

o
n

te
n

t
It

re
p

re
se

n
ts

th
e

co
n

tr
o

li
n

fo
rm

at
io

n
n

ee
d

ed
b

y
it

s
o

p
er

at
io

n
s

L
ib

ra
ri

es
C

o
n

tr
o

lle
r

F
u

n
ct

io
n

It
re

p
re

se
n

ts
th

e
co

n
tr

o
lo

p
er

at
io

n
s

Tr
af

fi
c

M
o

n
it

o
r

C
-A

ge
n

t
It

o
ff

er
s

co
n

tr
o

ls
er

vi
ce

s
to

o
th

er
en

ti
ti

es
R

yu
m

an
ag

er
C

o
n

tr
o

lle
r

R
D

B
It

re
p

re
se

n
ts

th
e

co
n

tr
o

lk
n

ow
le

d
ge

To
p

o
lo

gy

N
et

w
o

rk
el

em
en

t

D
at

a
P

ro
ce

ss
in

g
E

n
gi

n
e

It
is

a
se

t
o

ff
u

n
ct

io
n

al
it

ie
s

th
at

p
ro

ce
ss

d
at

a
tr

af
fi

c
O

V
S

K
er

n
el

M
o

d
u

le
D

at
a

So
u

rc
e

It
d

el
iv

er
s

an
d

tr
an

sm
it

s
d

at
a

tr
af

fi
c

P
o

rt
s,

B
ri

d
ge

s
D

at
a

Si
n

k
It

st
o

re
s

th
e

n
et

w
o

rk
d

at
a

B
u

ff
er

s,
F

lo
w

Ta
b

le
s

N
et

w
o

rk
E

le
m

en
t

R
D

B
It

st
o

re
s

th
e

d
at

a
p

la
n

e
lo

ca
lk

n
ow

le
d

ge
O

V
S

D
B

SD
N

In
te

rf
ac

e

A
-C

P
I

A
ge

n
t

It
m

an
ag

es
th

e
in

te
ra

ct
io

n
s

o
fa

n
ap

p
li

ca
ti

o
n

w
it

h
th

e
co

n
tr

o
lle

r
R

E
ST

C
li

en
t

A
-C

P
I

It
m

an
ag

es
th

e
in

te
ra

ct
io

n
o

ft
h

e
co

n
tr

o
lle

r
w

it
h

ap
p

li
ca

ti
o

n
s

R
E

ST
Se

rv
er

C
-C

P
I

It
m

an
ag

es
th

e
in

te
ra

ct
io

n
s

b
et

w
ee

n
co

n
tr

o
lle

rs
Fo

rC
E

S
A

P
I

D
-C

P
I

It
m

an
ag

es
th

e
in

te
ra

ct
io

n
s

o
ft

h
e

co
n

tr
o

lle
r

w
it

h
n

et
w

o
rk

el
em

en
ts

O
p

en
fl

ow
-c

o
n

tr
o

lle
r

D
-C

P
I

A
ge

n
t

It
m

an
ag

es
th

e
in

te
ra

ct
io

n
s

o
ft

h
e

n
et

w
o

rk
el

em
en

t
w

it
h

th
e

co
n

tr
o

lle
r

O
vs

-v
sw

it
ch

d

M
an

ag
er

M
an

ag
em

en
t

F
u

n
ct

io
n

It
o

rc
h

es
tr

at
es

m
an

ag
em

en
t

o
p

er
at

io
n

s
o

n
SD

N
N

eu
tr

o
n

M
an

ag
em

en
t

C
o

n
te

n
t

It
co

n
ta

in
s

ad
m

in
is

tr
at

io
n

in
fo

rm
at

io
n

o
n

SD
N

N
eu

tr
o

n
D

B

C
o

o
rd

in
at

o
r

A
p

p
li

ca
ti

o
n

C
o

o
rd

in
at

o
r

It
m

an
ag

es
ad

m
in

is
tr

at
io

n
o

p
er

at
io

n
in

ap
p

li
ca

ti
o

n
s

O
p

en
st

ac
k

p
lu

gi
n

s
ag

en
ts

C
o

n
tr

o
lle

r
C

o
o

rd
in

at
o

r
It

m
an

ag
es

ad
m

in
is

tr
at

io
n

o
p

er
at

io
n

in
co

n
tr

o
lle

rs
N

eu
tr

o
n

p
lu

gi
n

s
ag

en
ts

N
et

w
o

rk
E

le
m

en
t

C
o

o
rd

in
at

o
r

It
m

an
ag

es
ad

m
in

is
tr

at
io

n
o

p
er

at
io

n
in

n
et

w
o

rk
el

em
en

ts
C

L
I,

SN
M

P
A

ge
n

t

65

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

Table 4.6 – Reversion of security principals

Security object Reversion Description of Reversion

Access Control Open Access The asset can be accessed by any element without restriction

Authentication Non identification The asset lacks of identification in a distinctive way

Confidentiality Non secrecy The asset reveals its features and discloses its communications

Non-Repudiation Repudiation
The asset can deny the actions that it has done and its behavior can not be
traced to it

Integrity Alterability The asset can be tampered in part or entirely

Availability Disruption The asset can be temporally, partly or totally interrupted

As a result, we obtain Table 4.7. The first row of the table contains the reversed security
principals. The first columns of the table contain the SDN assets. By combining both the rows
and the assets, we obtained 120 generic vulnerabilities. Each cell starting from the second row
and second column contain the ID of the vulnerability, the troubled asset, and potential se-
curity issue. For example, Vulnerability V36 is located in controller function, and it allows the
attacker to perform disruption attacks on the asset.

Table 4.7 – SDN vulnerabilities

❳
❳
❳
❳
❳
❳
❳
❳

❳❳
Asset

Threat Open

Access

Non iden-

tification

Non

secrecy
Repudiation Alterability Disruption

Application

Function
V11 V12 V13 V14 V15 V16

Application

Content
V21 V22 V23 V24 V25 V26

Controller Function V31 V32 V33 V34 V35 V36

Controller

Content
V41 V42 V43 V44 V45 V46

C-Agent V51 V52 V53 V54 V55 V56

Controller RDB V61 V62 V63 V64 V65 V66

Data Processing En-

gine
V71 V72 V73 V74 V75 V76

Data Source V81 V82 V83 V84 V85 V86

Data Sink V91 V92 V93 V94 V95 V96

Network Element

RDB
V101 V102 V103 V104 V105 V106

A-CPI Agent V111 V112 V113 V114 V115 V116

A-CPI V121 V122 V123 V124 V125 V126

C-CPI V131 V132 V133 V134 V135 V136

D-CPI V141 V142 V143 V144 V145 V146

D-CPI Agent V151 V152 V153 V154 V155 V156

Management

Function
V161 V162 V163 V164 V165 V166

Management

Content
V171 V172 V173 V174 V175 V176

Application

Coordinator
V181 V182 V183 V184 V185 V186

Controller Co-

ordinator
V191 V192 V193 V194 V195 V196

Network Element Co-

ordinator
V201 V202 V203 V204 V205 V206

Besides, the generated vulnerabilities are generalizations of all the inherent vulnerabilities
that may occur on SDN assets. They can also be instantiated according to the environment and
temporal variables of SDN. For example, vulnerability V36 generalizes the disruption vulnera-
bilities on controller functions. If we instantiate the latter according to the SDN environment
of RYU controller; then, Traffic Monitor of RYU controller is the controller function. Therefore,

66

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

V36 can be instantiated to "unsupported exception event" in Ryu Traffic Monitor. For instance,
an attacker can interrupt Ryu Traffic Monitor by generating an unsupported exception event
during its execution.

4.6 Vulnerability severity results

First, we compute the severity of the proposed vulnerabilities (see Section 4.5) using the CVSS
calculator 3.0 [254] and the descriptions provided by Table 4.1. Finally, we introduce into the
results AHP to adapt them to SDN specific design features. We have chosen the options of the
CVSS metrics according to the following assumptions:

1. In the base group, the vulnerabilities of the application and network element assets can
come from the network and may require user interactions (metrics n#1 and n#5 of Table
4.2).

2. In the base group, the vulnerabilities of the controller can come from a limited vector
(adjacent neighbors), do not require user interactions and need privileges (metrics n#1,
n#3 and n#5 of Table 4.2).

3. In the base group, the vulnerabilities of the control layer are complex (metric n#2 of Table
4.2).

4. In the base group, the vulnerabilities of SDN interfaces and agents amplify the scope of
any attack and do not require user interactions (metrics n#4 and n#5 of Table 4.2).

5. In the temporal group, Exploit Code Maturity is between Unproven and Proof-Of-Concept
because there is not a threat code that works in any SDN implementation (metric n#7 of
Table 4.2).

6. In the temporal group, the Remediation Level value is set to Official Fix when the deploy-
ment of TLS (Transport Layer Security protocol) [255] mitigates or prevents the exploit
(metric n#8 of Table 4.2).

7. In the temporal group, the Report Confidence of D-CPI and D-CPI Agent is reasonable
because the majority of security reports in the literature are focused on the interface be-
tween the control plane and the data plane (metric n#9 of Table 4.2).

8. In the environment group, we assume that TLS is deployed in the interfaces between
the Control layer, the Data Plane layer and the Application layer. This security measure
modifies the required privileges and complexity to high (metrics n#2 and n#3 of Table
4.2).

9. We assign different values to the metrics Confidentiality, Integrity and Availability accord-
ing to the security objective of the vulnerability. For example, V35 (controller Function
Alterability) impacts Integrity but does not affect Availability and Confidentiality (metrics
n#6 and n#10 of Table 4.2).

4.6.1 Preliminary Vulnerability Scores

We compute the scores of the SDN vulnerabilities in the base, temporal and environment groups
according to the equations in Section 4.3.1. We display the scores respectively in Figures 4.1a,
4.1b and 4.1c. The calculations are based on the assumptions as mentioned earlier. For ex-
ample, we proceed according to the following logic to estimate the severity of V36 (Controller
Function Disruption). V36 is exploited by attackers to perform denial of service on Controller

67

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

Function. We have seen in Section 3.3.5 of Chapter 3 that attackers flood controller functions
with unknown traffic from network elements to exhaust the controller functions. Therefore, in
the base group, the Attack Vector of the vulnerability is adjacent because the flooding source is
Data Processing Engine. The complexity of the attack is low because the attacker misuses the
reactive behavior of network elements and he can repeat the attack. He neither needs special
privileges nor user interactions. Furthermore, this vulnerability impacts the availability of Con-
troller Function highly, and in some cases, it can lead the target to alter the contents it receives
and to interrupt the communications with other entities. As a result, the base group score of
V36 is 7.1. There are proof-of-Concepts related to the exploit technique with a non-official so-
lution and reasonable reports discussing this DoS Attack. Thus, the vulnerability score in the
temporal group is 6.3. In the environment group, the TLS deployment modifies the privileges to
Low. Thus, network elements need to open a secure channel before talking with the controller.
As a consequence, the score in the environment group reduces to 6.9.

The preliminary average scores per asset are displayed in Figure 4.1e. The preliminary av-
erage scores per threat are displayed in Figure 4.1d. We observe that the vulnerability surface
is between 8.3 (High) and 5.2 (Medium) in the base group spider diagram (Figure 4.1a). The
different interfaces and their agents (A-CPI, A-CPI Agent, D-CPI, D-CPI Agent and C-CPI) have
the highest scores because they expose other assets in different layers and enlarge the attack
scope. Furthermore, the vulnerabilities related to Open Access and Disruption are the most
severe. Their averages are respectively 7.9 and 7.2 in the base group.

In the Temporal group (Figure 4.1b) the vulnerability surface becomes between 7.2 and 4.3.
This decrease is due to the unavailability of mature malicious code and confirmed attacker
techniques (for almost all the vulnerabilities). As a result, the exploitation of the vulnerabilities
is more difficult and expensive, especially in the Control layer. Besides, the majority of the
vulnerability exploits (excluding Disruption and alterability in Application Logic and network
element) are not reported.

The vulnerability surface becomes between 8.0 and 5.0 in the environment score spider
(Figure 4.1c). However, it is not Open Access vulnerabilities (such as in the base group) that
have the most severe impact. The Disruption vulnerabilities of the interfaces become the most
severe; the SDN specification recommends the deployment of TLS in the southbound and the
northbound interfaces. This deployment reduces the severity of Open Access vulnerabilities
and those of Non-Secrecy, alterability, and Nonidentification (see Figure 4.1d). Besides, we note
also that the vulnerabilities of C-CPI diverge from the other interfaces vulnerabilities scores in
the temporal and environmental groups. The main reason is that C-CPI’s security is unexplored
and an untapped subject.

The results indicate a significant relation between SDN assets. We can see these relations
in Figure 4.1e. In the Base group, the average vulnerabilities scores of controller Function,
C-Agent, and controller Content are equal to the average vulnerabilities scores of Application
Function, Application Content, Data Processing Engine, Data Sink and Data Source (there are
minor disparities in the temporal and environment groups). The same equality relation is ob-
served between the different interfaces in the control layer and their respective agents in the
application layer and the data plane layer. For example, another target of the DoS attack is
the OpenFlow tables (Data Sink). Controller Function answers with Flow rules and packet-out.
Data Processing Engine processes them and saves them in OpenFlow tables. However, because
flow table size is limited, the tables can overflow. As a result, Data Processing Engine’s perfor-
mance reduces, and it rejects the new OpenFlow rules (including those for legitimate traffic).
In this scenario, the DoS attack abuses the limited size of OpenFlow tables which corresponds
to V96 (Data Sink Disruption). The scores of this vulnerability in the three groups (respectively
7.1, 6.3 and 6.9) equal the scores of V36; however, there is an issue with this equality. The DoS
attack on Controller Function disturbs the entire network and enlarges the impacts to other as-

68

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

Open Access Non Identification Non Secrecy

Repudiation Alterability Disruption

4

5

6

7

8

9

10

Application

Function
Data Processing

Engine

Controller Function

C-Agent

Application Content

Controller Content

Data Sink

Data Source

Network Element

RDB

Controller RDB

A-CPI Agent

A-CPI

D-CPI Agent

D-CPI

C-CPI

Management

Function

Management

Content

Application

Coordinator

Network Element

Coordinator

Controller

Coordinator

(a) SDN CVSS for Base Group

4

5

6

7

8

Application

Function
Data Processing

Engine

Controller Function

C-Agent

Application Content

Controller Content

Data Sink

Data Source

Network Element

RDB

Controller RDB

A-CPI Agent

A-CPI

D-CPI Agent

D-CPI

C-CPI

Management

Function

Management

Content

Application

Coordinator

Network Element

Coordinator

Controller

Coordinator

(b) SDN CVSS for Temporal Group

4

5

6

7

8

9

Application

Function
Data Processing

Engine

Controller Function

C-Agent

Application Content

Controller Content

Data Sink

Data Source

Network Element

RDB

Controller RDB

A-CPI Agent

A-CPI

D-CPI Agent

D-CPI

C-CPI

Management

Function

Management

Content

Application

Coordinator

Network Element

Coordinator

Controller

Coordinator

(c) SDN CVSS for Environment Group

(d) preliminary CVSS per threat

Open
Access

Non
Id

entifi
catio

n

Non
Secre

cy

Repudia
tio

n

Alte
ra

bili
ty

Disr
uptio

n

0

2

4

6

8

#A
ve

ra
ge

V
u

ln
er

ab
il

it
y

se
ve

ri
ti

es

(e) Preliminary CVSS per asset

Applic
atio

n
Functio

n

Data
Pro

cess
in

g Engin
e

Contro
lle

r Functio
n

C-A
gent

Applic
atio

n
Conte

nt

Contro
lle

r Conte
nt

Data
Sin

k

Data
Sourc

e

Netw
ork

Elem
ent RDB

Contro
lle

r RDB

A-C
PI Agent

A-C
PI

D-C
PI Agent

D-C
PI

C-C
PI

M
anagem

ent Functio
n

M
anagem

ent Conte
nt

Applic
atio

n
Coord

in
ato

r

Netw
ork

Elem
ent Coord

in
ato

r

Contro
lle

r Coord
in

ato
r

0

2

4

6

8

#A
ve

ra
ge

V
u

ln
er

ab
il

it
y

se
ve

ri
ti

es

Base group Temporal group Environment group

Figure 4.1 – Preliminary CVSS Results

69

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

sets; network elements, SDN applications, and controllers will experience considerable answer
delays (and even communication interruptions) from the affected controller. At the same time,
the second attack on the network element has a restricted scope.

The severity of the controller vulnerabilities should be higher than the other assets. The
reasons for this equality issue are related to the function of the CVSS method. It focuses only
on the characteristics of conventional network systems. It neither takes into consideration the
specific features of SDN nor the importance of each SDN asset towards the others. Therefore
we need to enhance the CVSS to take into account the design characteristics of SDN. By im-
proving the CVSS scores, we will adapt CVSS to SDN architecture and obtain more accurate
scores reflecting SDN features.

4.6.2 Enhanced Vulnerability Scores

We have discussed in Section 3.3.1 of Chapter 3 the impacts of SDN specific features on its
security. In fact, we think that SDN architecture enlarges the attack surface because its features
increase the severity of its assets vulnerabilities. As a result, these vulnerabilities should be
different depending on their weights in SDN and how its features impact them. Therefore, we
need to enhance the CVSS computations by integrating into preliminary scores the weights of
SDN assets. We use AHP to evaluate these weights. The goal of our decision making is to find
the most important asset that is influenced by SDN features. The first dimension of our AHP
is the SDN features. They are our criteria because they define SDN and influence its assets.
In this dimension, we use AHP to compute the impacts of SDN features on its architecture.
The second dimension is the SDN assets. They are our alternatives because each asset can be
one choice among others to reach our goal. This dimension measures the importance of each
asset inside each SDN feature. After these computations, we combine the final weights into the
preliminary vulnerability scores to quantify the new CVSS. We undertake the following steps:

1. We describe the criteria and alternatives of our analysis.

2. We calculate the weights of each SDN asset using the steps of AHP (see Section 4.3.2).

3. We enhance the CVSS scores by integrating the AHP results into the calculations of CVSS.

SDN criteria and alternatives

The first level of our hierarchy (the criteria) represents the SDN features that affect SDN vul-
nerabilities. The second level (the alternatives) represents the SDN assets (see Table 4.5). The
criteria of our analysis are programmability, centralization, federation, and externalization. We
have described them in Section 2.2 of Chapter 2.

Programmability (see Section 3.3.4 of Chapter 3) increases the vulnerabilities of SDN assets
because it enables attackers to automatize their threats, to adapt them to the evolution of the
network and to spread them dynamically and widely to other assets. Centralization (see Section
3.3.2 of Chapter 3) defines the density of assets links and their reliance. A centralized asset is
critical, and its vulnerabilities spread to all other assets because it increases logical dependence
between assets. Federation (see Section 3.3.3 of Chapter 3) enables an attacker to extend their
exploits to all SDN assets that rely on the same interface to interact. It reduces the complexity
of vulnerabilities and eases their generalization and portability to other SDN environments.
Externalization (see Section 3.3.1 of Chapter 3) opens and exposes SDN assets by breaking the
legacy lock-ins. It enables the design of modular SDN assets that can be directly accessed,
identified and studied. Thanks to externalization, an attacker can access and study SDN assets
to identify their vulnerabilities without passing by the complexity that was prominent in the
legacy architecture.

70

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

SDN AHP results

We apply in this step the AHP method to calculate the weights of SDN assets according to SDN
features. We have determined the weights of the criteria according to the following assump-
tions:

1. Programmability: its vulnerabilities are local, but they have major impacts when they
are spread through federation and centralization. An attack on the programmability will
affect the functions of the layer and all the assets that depend on them. If SDN pro-
grammability is down, the operations of the control layer, application layer, and man-
agement layer stop.

2. Centralization: its vulnerabilities are the most global. An attack on the centralized con-
troller will affect and will spread to all other assets. If centralization is down in the con-
troller, all the SDN will be down.

3. Federation: its vulnerabilities impacts can spread to all the assets that have the same
interface. An attack on the interfaces will affect all the communication of the assets that
share common interfaces. If an SDN interface, all the assets that use the interface will not
be able to interact.

4. Externalization: its vulnerabilities are local to each asset. If externalization is attacked in
an asset, the attack affects only the asset; However, in the case of distributed controllers,
the attacker will be able to exploit the same vulnerability in other controllers. Other SDN
assets can work if externalization of an asset is attacked.

We have determined the weights of the alternatives in each criteria dimension according to the
following assumptions:

1. Programmability: Controller Function and Application Function have equal importance
because both of them aim to program the network elements. Besides, the controller of-
fers application functions as Control Function and programmable frameworks and lan-
guages as C-Agent. Management alternatives are also important because they can con-
figure other alternatives using simple programmable services.

2. Centralization: The control layer alternatives are the most important compared to other
alternatives. Also, Controller Function, Controller Content, Controller RDB and C-Agent
are more important than the rest of the control layer alternatives because the latter can
be more distributed and duplicated (depending on the type and number of interfaces).
Network element alternatives are the less important. Management layer alternatives are
also important (including Controller Coordinator).

3. Federation: All the interfaces alternatives are the most important. We gave to Controller
Function and Controller Content moderate importance because we think that they need
to be standardized and all the controllers have almost the same Controller Function and
Controller Content. They differ only in their implementations. The rest of the assets
are less important for federation because they are technology proprietary and heteroge-
neous.

4. Externalization: all the alternatives have equal importance except for the control layer
alternatives which are equally to moderately important because SDN focuses more on
separating the control layer from the network element. Besides, externalization vulnera-
bilities affect the control layer when it is distributed.

The details of the computations are as follows :

71

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

1. Weighting the criteria: We construct the pairwise matrix A(4X4) between the ordered set
of criteria C as follows:

C = [Pr og r ammabi l i t y , Centr al i zati on, Feder ati on, Exter nal i zati on].
The matrix A is ordered according to C, its values are as follows:

A =

1 1/3 3 4
3 1 5 7

1/3 1/5 1 2
1/4 1/7 1/2 1

The pairwise comparison has been performed according to the following comparisons
(see table 4.3):

• Programmability is moderately more important than federation and moderately to
strong important than externalization.

• Centralization is moderately more important than programmability. It is strong im-
portant than federation and it is very strong important than externalization.

• Federation is equally to moderately important than externalization.

• Externalization is the least important.

We calculate the normalized matrix B and the weight vector W:

B =

0.2182 0.1989 0.3158 0.2857
0.6545 0.5966 0.5263 0.5000
0.0727 0.1193 0.1053 0.1429
0.0545 0.0852 0.0526 0.0714

W =

0.2546
0.5694
0.1100
0.0660

We calculates the ratio matrix R, the consistency index CI and the consistency ratio CR
(n=4 and RI=0.8816):

R =

4.077887108
4.118970711
4.004942058
4.032489718

, CI =
Aver ag e(R)−4

3
= 0.019524133 and CR =

0.019524133

0.8816
= 0.02

The consistency ratio is 2% which means that our computations have acceptable con-
sistency.

2. Scoring the alternatives: We construct the pairwise matrices AP(20× 20) for programma-
bility, AC(20 × 20) for centralization, AF(20 × 20) for federation and AE(20 × 20) for
externalization. The matrices compare the ordered alternatives (assets) in each criterion
dimension. The alternatives are extracted using the same order as the first column of
table 4.3.1. The order starts from Application Function and ends with Network Element
Coordinator. The details of all the computations are in Appendix .1. The weights of the
alternatives are respectively WP, WC, WF and WE.

3. Consolidation of the alternatives with the criteria: We compute the final weights V:

72

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

S
(

WP WC WF WE

)

X W = V.

0.094651944 0.019938648 0.015873573 0.037037037
0.02574031 0.019938648 0.015873573 0.037037037

0.094651944 0.110115604 0.050805513 0.074074074
0.026711184 0.103426694 0.03166262 0.074074074
0.105693977 0.123871379 0.093410539 0.074074074
0.028311184 0.100756297 0.029226164 0.074074074
0.018140808 0.017748509 0.017280425 0.037037037
0.018140808 0.017748509 0.017280425 0.037037037
0.018140808 0.017748509 0.017280425 0.037037037
0.018140808 0.018989245 0.017280425 0.037037037
0.069244285 0.020074889 0.093365575 0.037037037
0.069244285 0.061994522 0.093365575 0.074074074
0.082520136 0.061994522 0.093365575 0.074074074
0.060385272 0.061994522 0.093365575 0.074074074
0.060385272 0.020074889 0.093365575 0.037037037
0.048357688 0.065478606 0.011979719 0.037037037
0.024178844 0.063350946 0.011770514 0.037037037
0.045786814 0.018951013 0.067816068 0.037037037
0.045786814 0.056853039 0.067816068 0.037037037
0.045786814 0.018951013 0.067816068 0.037037037

×

0.2546
0.5694
0.1100
0.0660

=

0.0396
0.0221
0.0973
0.0741
0.1126
0.0727
0.0191
0.0191
0.0191
0.0198
0.0418
0.0681
0.0715
0.0658
0.0395
0.0534
0.0460
0.0324
0.0539
0.0324

Each line of the matrices S and W corresponds to an element of the collection Al with
respect of the same order:
Al = (Appl i cati on Functi on, Appl i cati on Content , contr oler Functi on,
contr oler Content , C−Ag ent , contr oler RDB, Dat aPr ocessi ng Eng i ne, Dat a Sour ce,
Dat a Si nk, Net wor k Element RDB, A − CPI Ag ent , A − CPI, C − CPI, D − CPI, D −

CPI Ag ent , Manag ement Functi on, Manag ement Content , Appl i cati on

Coor di nator contr ol er Coor di nator, Net wor k Element Coor di nator)

We calculate the ratio matrices for each dimension, the consistency index CI and the
consistency ratio CR (n=20 and RI=1.6341):

CRP =
0,052865064

1.6341
= 0.03 CRC =

0,024413925

1.6341
= 0.01

CRF =
0.018688237

1.6341
= 0.01 CRE =

0

1.6341
= 0

The consistency ratios are less or equal to 3% which means that all our computations
have acceptable consistencies.
We observe in vector V that control layer assets have the highest weights (0.1126 for C-
Agent, 0.0973 for controller Function, 0.0741 for controller content, 0.0727 for controller
RDB, 0.0715 for C-CPI, 0.0681 for A-CPI and 0.0658 for D-CPI) because SDN features im-
pact more the control layer assets. The controller agent and function have the highest
weights because they are the most affected by all the criteria. C-CPI has a greater weight
than the other controller interfaces because in programmability , it has more impor-
tant weights. This interface enables an attacker to reach all the SDN layers. In contrast,
Network Element assets have lower intensities (0.0191 for each one of them) because
SDN criteria have lower impact on them (except for D-CPI Agent). Application Function
has a higher weight (0.0396) than network element assets because it is more impacted

73

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

by programmability. Management function and controller coordinator have also higher
weights than the application assets because they are impacted by centralization and pro-
grammability.

Integration of the AHP weights

We calculate the new vulnerability severities by integrating the weights of V into CVSS scores.
For each alternative, its weight is multiplied by upper bound of the CVSS to normalize the
weights according to CVSS. Then, these values are added to the previous vulnerability scores
of the alternative. We use the following equation for each alternative i :

CVSS′
i = CVSSi + (10× vi) (4.22)

We limit the new values in the original CVSS interval [0 , 10] to avoid the score to exceed the
maximum authorized value (10). We use the following equation:

CVSS′′
i = Mi n(CVSS′

i ,10) (4.23)

The enhanced results are displayed in Figures 4.2a, 4.2b, and 4.2c. The average enhanced scores
per asset are displayed in Figure 4.2e. The average enhanced scores per threat are displayed in
Figure 4.2d. In contrast to the previous CVSS results, we observe that the vulnerability surface
increases in the 3 groups. It now ranges in the base group between 9 and 5.7 (before between
8.3 and 5.2), in the temporal group between 7.9 and 4.8 (before between 7.2 and 4.3) and in the
environment group between 8.7 and 5.2 (before between 8 and 5). This increase is due to the
impact of SDN features which enlarge the vulnerability surface. Besides, Open Access stands
with the highest average score (8.1) in the base group and in the temporal group (6.8) while
Disruption has the highest average severity (7.4) in the environment group (see Figure 4.2d).

Furthermore, we observe important changes in the severity values compared to the pre-
vious results; the control layer vulnerabilities scores raise due to the introduction of AHP. We
see these increases in Figure 4.2e. They exceed their counterparts in the other layers while in
the previous results they had similar or smaller values. For example, in the 3 groups, the av-
erage scores of C-Agent(8, 6.8, 6.8), Controller Function (7.8, 6.6, 6.5) and Controller Content
(7.8, 6.5, 6.4) exceed those of Application Function (7.3, 6, 5.9), Application Content (7.2, 6, 5.9),
Data Processing Engine (7, 5.9, 5.8) and Data Sink (7, 6, 5.8). Another example of the changes
is in Open Access between Controller Function (moved from 7.5 to 8.5) and Data Processing
Engine (moved from 7.5 to 7.6).

In the preliminary CVSS results, the interface assets were the most impacted, but they had
almost equal scores. The interfaces enable an attacker to spread its attack to other assets. In
the enhanced CVSS results, the leading average CVSS scores belong to the interface assets of
the controller which are: D-CPI (8.4, 7.2, and 7.2), A-CPI (8.4, 7, and 7), and C-CPI (8.3, 7, and
7). They exceed the scores of A-CPI Agent (8.2, 6.7, 6.7) and D-CPI Agent (8.1, 6.9, 6.9). The
leading scores are followed by the enhanced scores of the rest of the controller assets.

The CVSS scoring enhancement breaks the equality relation between the control layer as-
sets and the other assets in the network element and the application layer. For example, let’s
suppose an attacker that performs a DoS Attack on SDN. He can exploit four vulnerabilities
which are C-Agent Disruption, Controller Function Disruption, Data Processing Engine Dis-
ruption and Data Sink Disruption. In the previous CVSS results, they have equal values in the
base groups (7.1) and slight differences in the other groups, although they belong to two differ-
ent layers. Thanks to CVSS enhancement, we resolve this incoherence by incorporating their
weights to the preliminary results. Hence, the new scores shifted for C-Agent Disruption to
(8.2, 7.1, 7.7), Controller Function Disruption to (8.1, 7.3 and 7.9), for Data Processing Engine
Disruption to (7.3, 6.5, 7.1) and Data Sink Disruption to (7.3, 6.5 and 7.1).

74

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

Open Access Non Identification Non Secrecy

Repudiation Alterability Disruption

4

5

6

7

8

9

10

Application

Function
Data Processing

Engine

Controller Function

C-Agent

Application Content

Controller Content

Data Sink

Data Source

Network Element

RDB

Controller RDB

A-CPI Agent

A-CPI

D-CPI Agent

D-CPI

C-CPI

Management

Function

Management

Content

Application

Coordinator

Network Element

Coordinator

Controller

Coordinator

(a) Enhanced SDN CVSS for Base Group

4

5

6

7

8

Application

Function Data

Processing

Engine
Controller

Function

C-Agent

Application

Content

Controller

Content

Data Sink

Data Source

Network

Element RDB

Controller

RDB
A-CPI Agent

A-CPI

D-CPI Agent

D-CPI

C-CPI

Management

Function

Management

Content

Application

Coordinator

Network

Element

Coordinator

Controller

Coordinator

(b) Enhanced SDN CVSS for Temporal Group

4

5

6

7

8

9

Application

Function
Data Processing

Engine

Controller

Function

C-Agent

Application

Content

Controller

Content

Data Sink

Data Source

Network

Element RDB

Controller RDB

A-CPI Agent

A-CPI

D-CPI Agent

D-CPI

C-CPI

Management

Function

Management

Content

Application

Coordinator

Network

Element

Coordinator

Controller

Coordinator

(c) Enhnaced SDN CVSS for Environment Group

(d) Enhanced CVSS per threat

Open
Access

Non
Id

entifi
catio

n

Non
Secre

cy

Repudia
tio

n

Alte
ra

bili
ty

Disr
uptio

n

0

2

4

6

8

#A
ve

ra
ge

V
u

ln
er

ab
il

it
y

se
ve

ri
ti

es

(e) Enhanced CVSS per asset

Applic
atio

n
Functio

n

Data
Pro

cess
in

g Engin
e

Contro
lle

r Functio
n

C-A
gent

Applic
atio

n
Conte

nt

Contro
lle

r Conte
nt

Data
Sin

k

Data
Sourc

e

Netw
ork

Elem
ent RDB

Contro
lle

r RDB

A-C
PI Agent

A-C
PI

D-C
PI Agent

D-C
PI

C-C
PI

M
anagem

ent Functio
n

M
anagem

ent Conte
nt

Applic
atio

n
Coord

in
ato

r

Netw
ork

Elem
ent Coord

in
ato

r

Contro
lle

r Coord
in

ato
r

0

2

4

6

8

#A
ve

ra
ge

V
u

ln
er

ab
il

it
y

se
ve

ri
ti

es

Figure 4.2 – Enganced SDN CVSS Scores

75

CHAPTER 4. SOFTWARE DEFINED NETWORKING VULNERABILITY

ANALYSIS

4.7 Discussion

In this chapter, we have analyzed the vulnerabilities of SDN. We have constructed a list of
generic SDN vulnerabilities by inverting security objectives and combining them with SDN as-
sets. We have used the CVSS model to compute the severities of these generic vulnerabilities.
The preliminary CVSS results have shown inconsistencies because their computations do not
take into account SDN specific features. Therefore, we integrate to the preliminary results the
intensities of specific SDN features based on AHP to adapt CVSS according to SDN.

Our findings indicate that SDN has many vulnerabilities with high and medium severities
because of the weaknesses inherited from classical network architecture and due to its specific
characteristics. We have shown that CVSS is agnostic to SDN specific features. It assigns equal
scores to the different assets. We resolve this issue by integrating AHP to CVSS and adapting
the latter to SDN specific features. As a result, the SDN vulnerability surface has increased,
and the control layer vulnerabilities become the most severe. Besides, In both preliminary and
enhanced results, vulnerabilities related to Open Access are the most severe in the base group,
while the severities of disruption are the highest in the environment group.

SDN needs to be protected from access and disruption vulnerabilities. In the next chapter,
we propose an SDN stateful firewall. We use the advantages of SDN for security to improve
firewalls (see section 3.4 of chapter 3). Besides, we take into account the vulnerability anal-
ysis results in the design of our SDN firewall to protect SDN assets from attacks that exploit
disruption vulnerabilities.

76

Part III

SDN for Security

77

CHAPTER 5. CENTRALIZED SDN FIREWALL

Chapter 5

Centralized SDN Firewall

“ Use a personal firewall.

Configure it to prevent

other computers, networks

and sites from connecting

to you, and specify which

programs are allowed to

connect to the internet

automatically. ”

Kevin Mitnick

Contents

5.1 Introduction . 80

5.2 Conventional Firewalls . 80

5.3 Motivation for an SDN Firewall . 83

5.3.1 Firewall expenditure reduction . 83

5.3.2 Enforcement of security policies in the whole network 83

5.3.3 Security de-perimeterization . 84

5.4 Key Concepts . 85

5.4.1 General Concepts . 85

5.4.2 Table management . 87

Orchestrator table . 87

Firewall application tables . 88

OpenFlow table . 88

5.4.3 SDN Equivalent Finite State Machine . 89

5.4.4 Firewall behaviors . 90

Reactive behavior . 91

Proactive behavior . 94

5.4.5 Firewall modes . 96

On-demand mode . 96

Independent mode . 97

5.4.6 Firewall application General Algorithm . 97

5.4.7 TCP Example . 98

5.4.8 Performance Analysis for Transport Protocols 102

5.5 Implementation . 104

5.6 Evaluation . 106

78

CHAPTER 5. CENTRALIZED SDN FIREWALL

5.6.1 Test Bed . 107

5.6.2 Evaluation Experiments . 108

5.6.3 Evaluation Results . 110

5.7 Discussion . 116

79

CHAPTER 5. CENTRALIZED SDN FIREWALL

5.1 Introduction

We develop an SDN stateful Firewall. We integrate SDN concepts into legacy firewalls to im-
prove their behavior. We have two objectives by making SDN firewalls. On the one hand, we
want to prove that the softwarization of firewalls by SDN is advantageous for network secu-
rity; it brings the de-perimeterization of security. Thus, we incorporate to the design of legacy
stateful firewalls SDN concepts such as programmability, federation, externalization, and cen-
tralization. Then, we measure the effects of SDN automation on firewalls; we compare the per-
formance of our SDN firewall against the performance of a well-known legacy firewall in many
scenarios. On the other hand, we introduce into our SDN firewall a mechanism to protect SDN
from disruption attacks that use vulnerabilities described in Chapter 4.

We automatize the firewall application by programming its behavior using OpenFlow. The
SDN firewall elevates the behavior of network elements by transforming them into firewall de-
vices. As an effect, the firewall logic pervades along the network. The network elements execute
the firewall behaviors according to OpenFlow rules. These behaviors are programmed through
the controller using its holistic view and OpenFlow. Furthermore, at the level of the application
plane, the firewall application makes sure that the firewall logic fulfills the security policies.
Our solution is part of the European project TANDEM SENDATE [235, 236]. It has many ad-
vantages. It saves the expenditures related to traditional firewalls. It is re-programmable with
fewer errors. It can be deployed in the network elements.

To reach our goal, we first discuss traditional firewalls (Section 5.2) and our motivations
for SDN firewalls (Section 5.3). Then, we introduce the main ideas of our proposal and its
conceptual foundations (Section 5.4). We implement our proposition using python language
to prove our concept (Section 5.5). Finally, we evaluate the performance of our solution in
different test scenarios (Section 5.6). We evaluate it against a legacy firewall (Netfilter) and
under DDoS attacks to demonstrate its advantages. We highlight the cases where it has better
performance compared to legacy firewalls.

5.2 Conventional Firewalls

A legacy firewall is a mechanism that enforces the access control of a trusted network (internal
network domain) from external access. It accepts, denies or quarantines network traffic in the
perimeter of an internal network according to a set of security policies [256, 257]. The legacy
firewall considers the network in its perimeter as secured because it assumes that the potential
unauthorized accesses come only from outside the perimeter. The network traffic can com-
pounds the following concepts:

1. Network Packet: a packet is a structured record that can be transported in the network.
It compounds a payload (the useful data of the user), and the protocol specifications
(header and footer). The latter specifies the properties of the packets according to net-
work protocol specifications:

Packet = (Ty pe,Val ue)

∀i ,Packeti = (Ty pe,Val ue)i and ∪Packeti = Packet

Ty pe = {∀t , t ∈ Header _Fi eld s ∪Payl oad ∪Footer _Fi el d s}

Val ue = {∀v, v ∈ ζ and ζ i s the set o f the al phanumer i cal values}

(5.1)

80

CHAPTER 5. CENTRALIZED SDN FIREWALL

Where:

Header _Fi eld s = Sour ce_Fi el d s ∪Dest i nati on_Fi el d s ∪Other _Fi el d s

{IPsr c ,PORTsr c } ∈ Sour ce_Fi eld s

{IPd st ,PORTd st } ∈ Dest i nati on_Fi eld s

{ETH_Ty pe, IP_Pr oto,TCP_Fl ag s} ∈ Other _Fi eld s

{User _Dat a} ∈ Payload

{CRC} ∈ Footer _Fi el d s

(5.2)

2. Network stream: It is a set of unidirectional packets that share their common header
fields such as ETH_Ty pe (Network Protocol Type), IP_Pr oto (Network Protocol Code),
IP_Sour ce, IP_Dest i nati on and some other fields. A stream that contains k packets is
defined as follows:

Str eam = Packet1 ∪ ...∪Packetk (5.3)

Where:

Sour ce_Fi el d s1 = ... = Sour ce_Fi el d sk

Dest i nati on_Fi eld s1 = ... = Dest i nati on_Fi eld sk

Other _Fi eld s1 ∩ ...∩Other _Fi el d sk 6= ;

(5.4)

3. Network Connection: It is a set of bidirectional related streams. A combination between
an outbound stream and its corresponding inbound stream:

Connecti onl
k = Str eamk ∪Str eaml (5.5)

Where:

(Sour ce_Fi eld sk = Dest i nati on_Fi el d sl) ∧ (Dest i nati on_Fi eld sk = Sour ce_Fi eld sl)

∧ (Other _Fi el d sk ∩Other _Fi el d sl 6= ;)

(5.6)

4. Connection State: it describes the configuration of the connection according to the val-
ues of its components.

A security policy consists of a set of filtering rules [258]. Each filtering rule consists of a number
of criteria with a corresponding action. The firewall matches the packets with the filtering rules
as follows:

• Π is the set of policies:
Π = {P1,P2, ...,Pn} , (n >= 1) (5.7)

• A policy Pi is defined as follows:

∀Pi ∈Π, Pi = {r1,r2, ...,rm} , (m >= 1) (5.8)

• Each rule r j is defined by a set of matching fields and an action as follows:

R = {r j ,∀ j }

r j = Matchi ng _Fi eld s ∪Act i on
(5.9)

• Matchi ng _Fi eld s are packet information that correspond to network protocols speci-
fications: Matchi ng _Fi el d s = (Ty pe,Val ue) . Act i on specifies the behavior of the fire-
wall on the packet:

Act i on = accept ∨Deny (5.10)

81

CHAPTER 5. CENTRALIZED SDN FIREWALL

• A firewall matches a filtering rule on a packet. Then, it applies the corresponding action
as follows:

r j q Packetk ⇔ ((∀Ty pe ∈ Matchi ng _Fi eld s ∧∀Ty pe ∈ Packetk),

(Ty pe,Val ue) j = (Ty pe,Val ue)k ⇒ Appl y(Act i on))
(5.11)

There are six categories of firewalls [259–261]:

1. Bridge Firewalls: they operate on the data link of the OSI model. They filter Packetk

based on its Header _Fi el d sk that belongs to the data link layer such as MAC addresses,
physical ports, and other information. Bridge firewalls can be placed everywhere in
switches; however, they can not secure network access. Their Π cannot control the ac-
cess correctly. For example, if a policy accepts the packets of a Sour ce_Mac = x1, then all
the connections that contain x1 will be allowed to pass including the illegitimate connec-
tions. The attacker can forge bogus streams with x1 without being denied. In the opposite
case, if the policy denies the packets of a Sour ce_Mac = x1, then all the connections that
contain x1 will be rejected including the legitimate one.

2. Stateless firewalls: they process Str eamk and Str eaml on network level according to Π.
They filter Packetk and Packetl based on their Header _Fi el d sk and Header _Fi eld sl

that belongs to the network layer such as IP addresses, Virtual ports, and other infor-
mation. They neither filter Connecti onl

k
nor track its state, nor manage the dynamic

network information such as dynamic port allocation. As a result, an attacker can forge
bogus packets belonging to the streams without being denied.

3. Stateful firewalls: in addition to perform stateless filtering, they operate on the transport
level. They process Connecti onl

k
and they track its St ateConnecti onl

k
according to Π.

4. Circuit Level Gateways: they use a stateful firewall and network proxies to secure the
communications between hosts. The stateful firewall enables the gateway to verify the
legitimacy of a connection in the handshaking phase. The proxy mechanism enables
the protection of the internal host. After validating the synchronization step between
the external and internal host, the gateway creates a session separately for each host.
Communications between the two hosts go through this circuit. The gateway maintains
a connection table that contains the information about the connection such as its IP
addresses, ports and connection states. Then, it checks incoming packets against the
entries of the table. The gateway relays the packets from the origin session to the desti-
nation session, if a packet belongs to a connection in the table. It drops it in the opposite
case.

5. Application Level Gateways: they are software packages that are installed on servers
to protect them from malicious code or bad data. These gateways process application
records in Packetk that belong to the application layer of the OSI model). The purpose
of the processing is to determine if the packets are permitted to access the resources of
servers. Besides, they control the connections between servers and their clients. They
receive the requests from the clients. Then, they perform deep packet inspection on
the packets. If they do not detect anomalies, they accept the packet to reach the ser-
vice. Deep packet inspection extends stateful firewalls. In addition to process connec-
tion states, they also inspect the payloads of packets on the application layer to detect
malicious code and bad data.

6. Stateful multilayer inspection firewalls: they combine the 5 firewall types. They use
bridge firewall, a stateless firewall, a stateful firewall, circuit level gateways and applica-
tion level gateways at each corresponding OSI level. If the packet passes all the firewall

82

CHAPTER 5. CENTRALIZED SDN FIREWALL

levels; it is permitted to reach its destination. Otherwise, it is dropped or quarantined.
The advantage of these firewalls compared to stateful firewalls is their ability to dynami-
cally open and close ports during a connection while stateful firewalls can not. However,
they are costly because they require a dedicated hardware and software [262].

5.3 Motivation for an SDN Firewall

We propose an SDN stateful firewall to enforce the network access control. Our primary mo-
tivation is to introduce SDN benefits for security into the design of legacy firewalls to improve
them. SDN firewalls offer many advantages thanks to the simplicity, agility, global knowledge,
interoperability, automation, and orchestration (see Section 3.4 of Chapter 3). They are cost
effective because they enable the evaluation of the data plane with the firewall behaviors. They
are also flexible since the controller can at any time update their rules according to the network
state. They offer a management function for administrators that simplify their tasks. They en-
force the firewall policies in the data plane using the holistic knowledge of SDN. Finally, they
perform the de-perimeterization of security by pervading firewall rules in all the network ele-
ments next to packets sources with different granular levels of security.

5.3.1 Firewall expenditure reduction

Legacy network firewalls are expensive; the Total Cost of Ownership (TCO) of a legacy firewall
can reach a price around 1000 k$ [263]. Furthermore, legacy firewalls do not always run on
commodity equipment. A customer needs to purchase dedicated hardware that runs the fire-
wall. Besides, legacy firewalls are proprietary technologies. Their upgrades depend on their
vendor. The owner can not access or modify their source code because it is locked. As a result,
the prices of these firewalls and their maintenance are high.

We think that an SDN firewall enables a company to save the money related to the expen-
ditures of a legacy firewall because buying a dedicated hardware firewall is no more needed. In
fact, SDN firewalls deploy their filtering rules on network elements. As a result, these elements
behave like firewalls by matching the filtering rule with packets. Besides, SDN controllers are
open-source and enable the development of SDN applications that interact with them via the
northbound API. Thus, an SDN firewall application can be developed in the application layer.
Then, IT uses the controller to deploy its policies on network elements. Its maintenance can
be performed without affecting the code of the controller. What is more, the upgrade of the
controller code does not also affect the firewall application.

The ability of SDN to turn network elements to firewalls, automatize the deployment of
firewall policies and control them from a software (firewall application) has another advan-
tage; SDN firewalls pervade security everywhere in the network close to the hosts. They filter
the packet on different granular levels that depend on the capacity of packet classifiers; each
port of a network element can be transformed into an ingress firewall to filter the packets be-
tween network links, internal hosts, and nodes. As a result, each device connected to a network
element port will have its dedicated firewall. For example, OpenFlow network elements enable
bridge and stateless firewalls. The pervasiveness of firewall in the data plane layer improves the
performance because it distributes the traffic loads on all network elements while in the legacy
network the load is concentrated in a centralized firewall that becomes a bottleneck.

5.3.2 Enforcement of security policies in the whole network

Due to their rigid and hardware structure, traditional firewalls are hard to manage and complex
to deploy. Besides, they are error-prone because of misconfigurations, overload and hardware

83

CHAPTER 5. CENTRALIZED SDN FIREWALL

failures. More the number of legacy firewalls increases more it is complicated and burden-
some to manage them all. Besides, they are proprietary appliances. They are agnostic to the
intern network communications because, most of the time, they are located on the network
edge. Therefore, they neither handle ingress packets between the internal links nor they can
coordinate their operations. This coordination enables them to collaborate and avoid errors
due to racing and policy conflicts. For example, packets that have been previously processed
by a legacy firewall can be again re-processed many times by other legacy firewalls that are
on the inter-domain path of these packets until they reach their destinations. Another can re-
ject packets that have been authorized by a legacy firewall. The duplication of processing and
policy inconsistencies affect network performance and security.

The other concern is related to the deployment of legacy firewalls. What is the best place
to deploy them? How can we migrate and adapt them when the network changes? Thus, these
questions introduce more complexity and costs in the network again.

SDN firewalls bring vital solutions to the issues mentioned above. The holistic view of the
controllers reinforces firewall policies. The controller verifies the consistency of the policies,
corrects them, interprets them dynamically as filtering rules and installs them on the network
elements. Also, SDN automatizes the management of firewall policies. The controller adapts
them dynamically according to network changes. As a result, human intervention, errors and
misconfigurations are reduced. Furthermore, thanks to the holistic view, the controllers can at
any time distribute the load between the firewalls to keep network performance and prevent
overloading a firewall. Administrators no longer need to maintain the policies manually. They
push them once, and the controllers interpret, deploy and adapt them according to the network
context. Thus, the security perimeter progressively pervades all the system while producing
into the network a complete erosion of the security policies [264].

5.3.3 Security de-perimeterization

Many known computer attacks are instigated by insiders that compromise the security of the
system [265] because legacy firewalls are based on the concept of perimeter security. They
are founded on the assumption that the internal network is trusted and the attacks can only
come from outside the trusted perimeter. However, this assumption is wrong because insider
attackers compromise access policies inside the perimeter. Legacy firewalls do not counter
insiders that abuse authorized access because they can not filter their packets [266].

There are two possibilities to resolve this issue with firewalls. The first one is to forward
all the internal packets to the centralized firewall to filter them. Then, the firewall recirculates
the permitted packets to the internal network. However, this solution has many issues; the
centralized firewall becomes a bottleneck and a single point of failure. It decreases the QoS of
the network. The second solution is to use distributed firewalls inside the perimeter. Many fire-
walls are added in some locations. The internal packets are distributed to them. The drawbacks
of this solution are related to the cost of the armada of firewalls, their complex management,
their interoperability, their impacts on network performance and the conflicts between their
policies.

SDN enables firewalls to filter insider packets next to their sources because it transforms
each network element to a firewall. Besides, thanks to the holistic knowledge of the controller,
it corrects policies conflicts. It reinforces policies into filtering rules that control the access on
different granularity levels. It does not add new hardware because it uses network elements as
firewalls by deploying in them the filtering rules. Besides, the controller can share information
between the different SDN firewalls. For example, if an insider is blocked on a network ele-
ment by a firewall application because of an attempt of an attack (such as SYN flooding). This
information is shared on all the rest of the network elements which, in turn, block the insider.

84

CHAPTER 5. CENTRALIZED SDN FIREWALL

5.4 Key Concepts

In this section, we describe in details all the aspects of our SDN stateful Firewall. We discuss its
design foundations, its architecture and its algorithms. Also, we give an example of our firewall
with TCP (Transmission Control Protocol) [267]. We analyze its performance and scalability
theoretically.

5.4.1 General Concepts

The SDN stateful firewall is integrated into the SDN architecture. The firewall application runs
in the application layer. It expresses the logic of the firewall and interprets the firewall policies
into SDN rules. The controller ensures the installation of the firewall rules as OpenFlow rules in
the network elements. These rules express the firewall policies according to OpenFlow. Besides,
the firewall application enables the user to express its policies without worrying about their
installation and maintenance. Above the firewall application, we propose an orchestrator in the
management layer. The orchestrator provides a global view of the network to the administrator.
It centralizes all the firewall policies and distributes them on the different firewall applications
while ensuring their consistency.

Our solution (see Figure 5.1) is distributed into 3 levels. The higher level is an orchestrator.
It is integrated into the management plane. The middle level contains firewall applications
which are integrated into the application layer and controllers. This level is responsible for
processing the states of the connections, interpreting the policies to SDN rules and filtering
connection requests according to the security policies, interpreting the latter to OpenFlow rules
and installing them into the network elements. Finally, the last level is found in each network
element (in the data plane layer). Network elements filter the packets according to many types
of OpenFlow rules that express the firewall behavior.

The orchestrator offers a management interface that simplifies the expression of the secu-
rity policies. The orchestrator has a convening role because it collects the security policies and
centralizes. Then, it propagates the policies to the different firewall applications according to
the flows that pass their network domains. The orchestrator offers a graphical interface to the
administrators to enable them to deploy the security policies and access to the global view of
the SDN network. For this matter, the orchestrator includes a policy security editor.

As a mastermind, the orchestrator collects all the information related to the network topol-
ogy, SDN events, logs and errors from all the controllers and the firewall applications. It man-
ages this information in its database. It collects the domain knowledge of each controller. Then,
it federates the whole in a global knowledge of the network (topology, network events, connec-
tion states, policy states, and other information). Besides, it keeps all the policies in a global
access table that contains all the stateful and stateless security policies specified by the admin-
istrator. The orchestrator uses this table to propagate and reinforce the security policies of the
network.

The orchestrator (see Figure 5.2) observes the events that come from the administrator
(through its graphical interface and from the network. When an administrator updates the
orchestrator policies, the orchestrator propagates the updates to the appropriate firewall ap-
plications. Besides, it observes network events such as the connection of new controllers or
firewall application requests. It sends it the preliminary security policies that are related to the
domain of its controller. These security policies are recorded in the local access table of the
firewall application.

The orchestrator can also receive requests from the firewall applications according to two
communication modes (see Section 5.4.5). For example, the firewall application can request
access rules. In this case (see Figure 5.2), the orchestrator reads its global access table. Then,

85

CHAPTER 5. CENTRALIZED SDN FIREWALL

Figure 5.1 – SDN Stateful Firewall General Architecture

A-CPI

D-CPI

Controller Controller

Network

Element

Open Flow Table

Universal rule

Access OpenFlow rules

Stateful OpenFlow rules

Global Access Table
IP Src IP Dst Port Src Port Dst Proto

State Table
IP Src IP Dst Port Src Port Dst NAckNSeq StateWSize

IP Src

Local Access Table
IP Dst Port Src Port Dst N#ConnectionProto

Table miss rule

Firewall

Application

Firewall

Application

Orchestrator

Action

N#Connection Action

Admin

Network

Element

Network

Element

it looks for new updates that affect the firewall application. If it found them, it sends the new
access policies to the firewall application.

Furthermore, the orchestrator monitors the operations of the firewall applications. It col-
lects from the controller information about its interactions with its firewall application and the
network events in the data plane layer. This information is kept to prevent repudiation attacks
in the firewall application (see Section 4.5 of Chapter 4) that exploit the vulnerabilities V14 (Ap-
plication Function Repudiation) and V24 (Application Content Repudiation).

The orchestrator can also configure the behavior of the firewall applications dynamically.
When the orchestrator receives a new configuration from the administrator, it updates the cor-
responding firewall application. Such configurations options are the behavior mode: stateful
or stateless, the event mode: periodic (according to a timer) or instantaneous (according to a
trigger) and the topology discovering mode: static (the user provides the topology), dynamic
(by learning the topology dynamically) or hybrid (a mix between static and dynamic).

The firewall applications are stateful firewall functions that operate as SDN applications.
Each firewall application uses a state table to manage the Finite State Machine (FSM) of the
connections. It records the connections states, their transitions, and their attributes; the appli-
cation uses this table to track the connection, its state and its possible transitions to the next
states. Besides, the firewall application uses the state table to create State OpenFlow rules. The
latter restricts the traffic only to the packets that correspond to the actual state and its valid
transitions. This mechanism guarantees that the controller receives only the events that trigger
the transitions from the actual state of the active connection.

The controller provides the orchestrator with the requested network information and guar-
antees the communication with the network elements. It interprets the northbound rules of
the firewall application to OpenFlow rules. Then, it installs them on the appropriate network
elements. Also, it notifies the firewall applications when it observes network events.

When a new network element joins the controller, the firewall application asks the con-
troller to install the table-miss rule and OpenFlow universal rules on the new network element.

86

CHAPTER 5. CENTRALIZED SDN FIREWALL

Figure 5.2 – SDN Orchestrator Behavior

New

updates?

Apply them on

global access

table

Send them to the

firewall applications

through the probes

yes

no

Observe

network events

Firewall

application

queries?

Read global

access table

Check for new

updates since

the last query

Send the new

updates to the

firewall

application

yes

no

Observe

graphical

interface Events

New

controller?

no

Send the

security policies

to the firewall

application

Connect to the

firewall

application and

to the

Controller

yes

These rules depend on the behavior type of the firewall application. The firewall application
also configures network elements by setting their table miss entry according to its behavior.
The actions of these OpenFlow rules enable network elements to accept or reject packets ac-
cording to the security policies.

Network elements keep in their OpenFlow tables all the firewall rules. As a result, they per-
form firewalling behaviors by running the above OF rules. The firewall application reprograms
them according to its security policies, and the orchestrator ensures their synchronization us-
ing its global knowledge.

5.4.2 Table management

The components of the solution maintain specific tables. At each level, one table is in relation
with another located on the lower level. The firewall manages the following tables:

Orchestrator table

The orchestrator proposes a management interface to the administrator to gather the security
policies. Once a security policy is entered in the management interface, it is recorded inside a
global access table. The latter collects and centralizes all the security policies in an orchestrator
database. The management of the global access table is given in Figure 5.2. It comprises two
simultaneous threads that manage the behavior of the orchestrator on the table.

87

CHAPTER 5. CENTRALIZED SDN FIREWALL

The first thread notifies the firewall applications with new policies updates when the ad-
ministrator updates the global access table. In this case, the orchestrator records the updates
in its table. Then, it processes the policy with its global knowledge. It sends the resulting policy
to the corresponding firewall applications. The second thread expresses how the orchestrator
manages its global access table when new controllers connect to it or when the firewall applica-
tions demand new policies. In the former situation, the orchestrator defines the policies from
its access table that are related to the domain of the new controller. Then, it sends them to the
firewall application that is attached to this new controller. In the latter case (when the firewall
application asks policies), the orchestrator checks if the changes of the global view with its ac-
cess table impact the policies of the firewall application or if its access table has been updated.
If it is the case, it sends the new updates to the firewall application.

Firewall application tables

The firewall application uses two tables: a local access table and a state table. The access ta-
ble contains administrator security policies according to a white list approach. It is part of the
global access table of the orchestrator. The orchestrator federates all the network security poli-
cies of the network while the local access table convenes the security policies of the controller
domain. When the firewall application receives the policies, it stores the policies in its access
table to be able to spread them each time new network elements join the controller domain.
Besides, it interprets them into northbound rules and sends them to its controller.

The state table keeps the records that enable the firewall application to track network con-
nections. Each entry of the state table identifies a connection. For example, the entry for
Connecti onS1

c1 between a client (C1) and an Http_server (S1) contains at least the following
information:

• Packet header information of the client such as Sour ce_Fi el d sc1.

• Packet header information of the server such as Sour ce_Fi el d ss1

• Other packet fields that can be found in both the streams of the client and the streams of
the server: Other _Fi eld sc1 ∩Other _Fi el d ss1

• The state of Connecti onS1
c1 according to the FSM of the communication protocol be-

tween the client and the server: St ate s1
c1

The firewall application uses the state table to track the state of the connection, to verify the
legitimacy of a packet and to create state OpenFlow rules.

OpenFlow table

In each network element, a set of OpenFlow rules expresses the security policies according to
the OpenFlow standard. Each network element maintains them in an OpenFlow Table. The
controller installs in the tables the interpreted security policies. Following these rules, network
elements change their behavior as follows. They authorize only the entities allowed by the
security policies to communicate. They force each connection to comply with the legitimate
behavior as specified in their standard communication protocol. Any packet that does not con-
form with the state of its connection is rejected. The solution produces three types of firewall
OpenFlow rules:

• Table miss: It drops all the unexpected packets

• Universal OpenFlow rule: It forwards all the initialization connection packets to the fire-
wall application

88

CHAPTER 5. CENTRALIZED SDN FIREWALL

• Access OpenFlow rules: It is created from the access table entries

• Stateful OpenFlow rules: It enables the reception of only valid packets that trigger the
transitions from the actual state of the active connections in the State table

5.4.3 SDN Equivalent Finite State Machine

The firewall application takes decisions by processing the Finite State Machine (FSM) of con-
nection oriented network protocols. It takes as entries the preconditions, states, actions transi-
tions and post-conditions, apply to them an SDN function and generates as an outcome SDN
Equivalent Finite State Machine (SEFSM). The latter adapts the elements of the concept of the
FSM to SDN context. The FSM represents all the possible configurations of the connection with
all the transitions between these configurations, their triggers and the changes they induce on
the connection. Based on the definition of FSM in [268], we represent an FSM for any stateful
network protocol x as follows:

FSMx = (C,S,δ,S0,F) (5.12)

Where:

1. C is the set of conditions that trigger the state transitions. A condition compounds the
data of the packet such as its header fields or network meta information such as timers,
QoS and other network data.

C = Matchi ng _Fi el d s ∪Net wor k_Met a_i n f or mati on

C 6= ;
(5.13)

C
j

i
is the subset of C that triggers the transition from the state si to the state s j .

∀c ∈ C
j

i
,c ∈ Packeti ∨ c ∈ Net wor k_Met a_i n f or mati oni

C
j

i
⊆ C

(5.14)

2. S is the set of all the states of the FSM. St ateConnecti onl
k

is the set S for the Connecti onl
k

.

S 6= ;

S0 is the set of initial states

S0 ⊂ S and S0 6= ;

F is the set of final states

F ⊂ S and F 6= ;

S
j

i
= {si , s j } and S

j

i
⊂ S

(5.15)

3. A is the set of actions that are applied to the network when a transition occurs. A
j

i
is a

subset of A that is applied when the state si changes to s j .

A
j

i
⊆ A (5.16)

4. δ is the state transition function.

δ : C×S → A×S

∀si ∈ S δ(si ,C
j

i
) = (A

j

i
, s j)

(5.17)

89

CHAPTER 5. CENTRALIZED SDN FIREWALL

The firewall application transforms the FSMx ; it maps the conditions and actions of FSMx

with their SDN counterparts while preserving the states and transitions. It produces an SDN
oriented FSM that we call SEFSMx (SDN Equivalent FSM). It performs the following formulas:

1. SEFSMx transforms FSMx according to the mapping relation ℑ:

SEFSMx = ℑ(FSMx)

SEFSMx = (γ,S,̺,S0,F)
(5.18)

2. ℑ is the application of the two functions γ and ̺ that operate on the conditions and ac-
tions of FSMx in order to generate SEFSMx :

ℑ : γ×̺ (5.19)

3. γ is the transformation function that operates on the condition set C. It adds to the pre-
condition SDN meta information such as global knowledge:

∀c ⊂ C,γ(c) = (c, Ic) (5.20)

4. Ic is the set of SDN Meta Information for the condition c. For example, if c is packet fields
then:

Ic = {OpenFl ow, Ver si on1.3, Packet − i n} (5.21)

5. ̺ is the state transition function:

̺ : γ×S →σ×S (5.22)

6. σ interprets γ, and the actions to functions call in the firewall application and to firewall
rules that can be understood by the controller.

σ : γ×A → f ×RSDN_FW (5.23)

7. f is an SDN firewall application function. It can take γ as arguments. An example of f for
TCP is the Syn_Flooding_Counter function for the Synchronization packet. f takes the
packet header (c), the Syn-flooding threshold (Ic) and the current Syn-flooding counter
(Ic) as arguments. f with argument is defined as follows:

∀c ∈ C, f (γ(c)) = f ((c, Ic)) (5.24)

8. RSDN_FW is the set of SDN firewall rules. It is a subset of R within SDN (R is the set of
firewall rules, see Section 5.2). It transforms the conditions and actions into SDN API
rules:

∀c ∈ C
j

i
∀a ∈ A

j

i
∃r ∈ RSDN_FW r = υ(c, a)

υ is the mapping function of the conditions and actions with SDN API rules
(5.25)

5.4.4 Firewall behaviors

Our SDN Firewall integrates two types of behaviors that have been derived from SDN paradigm.
These behaviors defines the way of applying the SEFSMx to the connections. The reactive be-
havior generates the SEFSMx by transition each time the conditions that corresponds to the
current state are true for each active connection. This behavior applies to the current state by
generating the corresponding firewall rules and calling the proper firewall functions.

90

CHAPTER 5. CENTRALIZED SDN FIREWALL

The proactive mode generates the SEFSMx entirely in one time for each active connection.
It produces all the corresponding firewall rules to each transition. Then, it sends them to the
controller which installs them on the proper network elements. The network elements handle
the transitions and apply to each packet the corresponding stateful OpenFlow rules. Each time,
the network element receives a packet that matches the conditions of the current state, it maps
them to their OpenFlow rules, and at the same time, it notifies the controller with a copy of
these conditions. The controller forwards the notification to the firewall application. When the
firewall application receives the copy of the conditions, it updates the state in its state table and
calls the corresponding firewall functions corresponding to the transition.

The sealing mechanism in both behaviors is different. In the reactive behavior, it prevents
the destination from receiving any packets (or other conditions) not matching the actual con-
ditions of the current state. As a result, only the packets with the current conditions reach their
destination after being processed by the firewall functions and firewall rules. In the proactive
behavior, all the packets that match the conditions of all the states can reach their destination
for each type of packet because their stateful rules are installed in the network elements. The
proactive behavior separates between the forwarding decisions which are executed by the net-
work elements and the firewall functions that process the condition to take further decisions.
In both behaviors, the firewall application performs the transition one time which means that
the packets that correspond to the current state cannot be accepted again when the firewall
application Changes the state to the new state except if it has a counter in the reactive that au-
thorizes it for n times. The universal rule drops all the packets that do not match the transitions
from the current state.

We think that the advantage of the proactive behavior is about the performance of the
packet delivery time because it avoids the feedback loop between the network elements, the
controller, and the firewall applications. Whenever the firewall application changes the state,
the network element will only accept the conditions that are in the ESFSM path from the cur-
rent state to the next states. The details of the firewall application behaviors are as follows:

Reactive behavior

In the reactive behavior (see Figure 5.3), the firewall application processes all the connec-
tions at the application level. When the corresponding conditions trigger a transition, the
firewall application produces the corresponding rules and executes the corresponding func-
tions. For example, in the case of TCP when it receives the packet that triggers the transi-
tions from the actual state, it executes the firewall functions: Ver i f y_Packet_Leg i t i mac y ,
Del ete_Pr evi ous_Rules and Syn_Floodi ng _Pr otect i on. Besides, it produces the correspond-
ing stateful rules (such as adding new OpenFlow rules). The reactive behavior is based on a
blacklist logic. It means that the unauthorized packets are rejected after they are verified with
the entries of the local access table. The administrator needs to specify the policies that ban
the packets.

Proposition 5.4.1. The reactive behavior of the firewall application reacts only to the conditions

that trigger the transition from the current state. If the conditions exists for a transition from the

actual state, then, it produces the corresponding firewall rules and it executes the proper firewall

91

CHAPTER 5. CENTRALIZED SDN FIREWALL

functions according to ℑ(FSMx). The reactive behavior is defined by the following statement:

∃s
j

i
∈ S ∃C

j

i
⊆ C ∀a ∈ A

j

i
, (Execute(f (γ(C

j

i
))) ∧ Pr oduce(υ(C

j

i
, a)))

f (γ(C
j

i
)) is the firewall application functions for the condition set C

j

i

υ(C
j

i
, a) is the set of firewall rules for the action a and C

j

i

Execute and Produce are two predicates

Pr oduce generates DELETE rule if A
j

i
= {}

Pr oduce generates ADD rule or MODIFY rule if A
j

i
6= {}

(5.26)

Figure 5.3 – Overview of firewall application reactive behavior

Controller

Client Server

5.b Update state table, Install next

stateful rules and Delete the previous

stateful rules according to the FSM

2. Send packets-in to

the controller

7. Forward the packet

toward the destination

3. Forward packets-in

6. Install/Uninstall stateful

OpenFlow rules

Firewall

Application

4. Check the packet header

with the state table

5.a Drop Packet if it is illegitimate

1. Send connection

control packets

7. Forward the packet

toward the destination

The firewall performs the following steps :

1. It installs a table-miss rule that drops all the packets by default. This rule locks the access
of all connections.

2. It installs a universal rule that forwards all the connection control packets (initialization
and termination) to the controller each time the hosts send them. The network elements
send all these packets as Packets-in to the controller (Steps 1 and 2 of Figure 5.3).

3. The controller forwards theses packets-in to the firewall application (Step 3 of Figure 5.3)

4. The firewall application verifies the access rights of the connection according to the se-
curity policies. It examines the entries of its local access table and maps them with the
header fields of the packet (Step 4 of Figure 5.3).

5. If the connection is accepted and it is new, the firewall application activates the connec-
tion in its state table; the firewall application creates a new entry in its state table with
the corresponding state using the FSM. In case the connection is rejected, the firewall
application performs the last step (Step 5.a of Figure5.3) and ignores the following inter-
mediary steps.

6. It sends to the controller two requests. The first one asks the controller to install the state-
ful OpenFlow rules that correspond to the transitions from the actual states. The second

92

CHAPTER 5. CENTRALIZED SDN FIREWALL

request asks the controller to reprogram the network element to forward the connection
initialization packet to its destination (Step 6 of Figure5.3).

7. The network element installs the corresponding stateful OpenFlow rules and then for-
wards the initialization packet to its destination (Step 7 of Figure5.3).

8. For each active connection in the state table, the network elements forward to the con-
troller all the packets that trigger the transitions from the actual state of the connection.
It drops all the packets that do not fulfill the potential transitions.

9. Each time the firewall application receives a packet-in that belongs to an active connec-
tion, it performs the following sub-steps (Step 4.b of Figure 5.3):

(a) It updates its state table by moving to the next state.

(b) It asks the controller to delete the previous stateful OpenFlow rules that enable all
the transitions to the new state.

(c) It sends the stateful OpenFlow firewall rules that will allow the transitions from this
new state.

(d) It asks the controller to program the network element for forwarding the packet to
its destination.

10. When the firewall application receives the last connection termination packet, it per-
forms the following steps:

(a) It asks the controller to delete the previous stateful OpenFlow rules that enable the
transition to the last state.

(b) It asks the controller to program the network element for forwarding the packet to
its destination.

(c) It updates its state table by deactivating the connection.

11. The firewall application rejects the packet-in and asks the controller to program the net-
work element to drop the packet.

The reactive behavior is suitable when the network elements tables start to become full
because it filters the connection by the state in the firewall application and it installs in the
network element only the OpenFlow rules that enable the transitions from the actual state. Be-
sides, it frees the network element tables each time the connection state changes to a new state
by deleting the previous old rules. As a result, the reactive mode prevents network elements
disruption attacks (see Section 4.5 of Chapter 4) due to the vulnerabilities V76 (Data Processing
Engine Disruption), V156 (D-CPI Agent) and V96 (Data Source Disruption). For example, in the
case of TCP, it installs a maximum of four stateful OpenFlow rules for each connection. The
maximum number of OpenFlow rules is in the data transfer phase (2 OpenFlow rules for ACK
by the stream, one for RST packet and the other for FIN packet).

However, the reactive behavior is vulnerable to disruption attacks on the southbound API
and the controller such as V56 (C-Agent Disruption) and V146 (D-CPI Disruption) because the
behavior needs the full involvement of the controller and especially the data-control channel.
An attacker can perform disruption attacks on the controller (i.e., he can flood the controller
with new connection initialization packets). To mitigate such Disruption attacks, we add an
OpenFlow meter on the universal rule that limits the throughput of initialization packets-in
for all connections. Besides, it needs high bandwidth between the data plane and the control
plane layers. It introduces a delivery delay because it requires the firewall application decision
to determine the fate of packets.

93

CHAPTER 5. CENTRALIZED SDN FIREWALL

Proactive behavior

We propose the proactive behavior (see Figure 5.4) to prevent disruption attacks exploiting V56
and V146 and to improve the packet delivery time. In this case, the firewall application dele-
gates the filtering to network elements. It leverages its processing in a higher granular level; it
controls the access by connection unlike in the reactive mode where it operates on each tran-
sition of a connection. For each authorized connection, it generates the SDN equivalent FSM
one time. Then, it installs all the corresponding firewall rules on the network elements that
enable the network elements to filter the connections.

The network elements filter all the packets without the involvement of the firewall appli-
cation because it has all the rules for all the life cycle of the connection in its tables. The fire-
wall application receives only copies of the events observed by the network elements. It uses
such information to update the state of the connection and to execute firewall function for
the triggered transition. For example, in the case of TCP when it receives the packet that trig-
gers the transitions from the actual state, It executes the firewall functions: Del ete_Rules and
Syn_Floodi ng _Pr otect i on. The proactive behavior is based on a white list logic. It means
that the firewall application installs stateful OpenFlow rules for only the accepted packets. The
other packets are denied by default because the administrator needs only to specify the con-
nections that are authorized.

Proposition 5.4.2. The proactive behavior of the firewall application processes all the condi-

tions that trigger the transitions in two phases. When it receives the conditions of the initial

state, it produces all the firewall rules according to ℑ(FSMx). When it receives other conditions

that correspond to the current state (not the initial state) it executes the proper firewall functions

according to ℑ(FSMx). The proactive behavior is defined by the following statement:

(∃s0∃C0∀s
j

i
∈ S ∀C

j

i
⊆ C ∀a ∈ A

j

i
, (

(Execute(f (γ(C0))) ∧ Pr oduce(υ(C
j

i
, a))))

∨ (∃s
j

i 6=0 ∈ S ∃C
j

i 6=0 ⊆ C ∃a ∈ A
j

i 6=0 ∧ A
j

i 6=0 = {},

(Execute(f (γ(C
j

i
))) ∧ Pr oduce(υ(C

j

i
, a)))

f (γ(C
j

i
))) is the firewall application functions for the condition set C

j

i

υ(C
j

i
, a) is the set of firewall rules for the action a and C

j

i

Execute and Produce are two predicates

Pr oduce generates DELETE rule if A
j

i
= {}

Pr oduce generates ADD rule or MODIFY rule if A
j

i
6= {}

(5.27)

The firewall application in the proactive behavior performs the following steps:

1. It installs a table-miss rule that drops all the packets by default. This rule locks the access
of all connections.

2. For each entry of the local access table, the firewall application asks the controller to
install a stateful OpenFlow rule in order to receive only the initialization packets of the
authorized connections These packets will activate the connection in the state table.

3. When the firewall application receives a connection initialization packet (through steps
1.a, 2.b and 3 of Figure 5.4), it performs the following sub-steps :

(a) It activates the connection and generates all its stateful rules according to the FSM
of the connection (step 5.a of Figure 5.4). Each rule forwards the traffic to its desti-
nation and at the same time, it notifies the controller with the header of the packet

94

CHAPTER 5. CENTRALIZED SDN FIREWALL

Figure 5.4 – Overview of firewall application proactive behavior

Controller

Client Server

5.b Update state table, Delete the stateful

rules that enable the transitions from the

previous state according to the FSM

2.b Send packets-in

to the controller

2.a Forward the packet

toward the destination

3. Forward packets-in

6.a Install all Statefull OpenFlow rules

corresponding to the active connection

Firewall

Application

4. Check the packet header

with the state table

1.a Send permitted

Initialization packets

1.b Filter Packets according

to Stateful OpenFlow Rules

2.a Forward the packet

toward the destination

5.a Activate the connection in the state

table, set the state and send all the

Stateful OpenFlow rules using the FSM

6.b Delete the stateful Openflow rules

corresponding to the previous state

(steps 2.a and 2.b of Figure 5.4 will be performed in parallel by the network element
except for the initialization packet).

(b) It asks the controller to install all these Stateful OpenFlow rules in a bunch on the
appropriate network element.

(c) The controller installs them and notifies the firewall application of the success of
the operation (step 6.a of Figure 5.4).

4. The network element forwards the initialization packet to its destination (step 2.a of Fig-
ure 5.4).

5. When the network element receives a packet, it filters it with its OpenFlow stateful rules
(step 1.b of Figure 5.4). If the packet matches with a rule, then it is forwarded to its des-
tination and its header is notified to the controller (steps 2.a and 2.b of Figure 5.4 are
performed in parallel by the network element). If there is not a rule for the packet, it is
dropped by default using table-miss rule

6. When the controller receives the header of the packet, it forwards it to the firewall appli-
cation (step 3 of Figure 5.4).

7. The firewall application updates the stateful table using the information of the notifica-
tion; it Changes the state to the next state (step 5.b of Figure 5.4).

8. It asks the controller to delete the stateful OpenFlow rules that enable all the transitions
to the new state (step 5.b of Figure 5.4).

9. The controller deletes these stateful OpenFlow rules and notifies the firewall application
(step 6.b of Figure 5.4).

10. When the firewall application receives the last connection termination packet, it per-
forms the following steps (step 5.b of Figure 5.4):

(a) It asks the controller to delete all the stateful OpenFlow rules for the connection. It
keeps the rule of the initialization, if the access table still authorizes the connection.

95

CHAPTER 5. CENTRALIZED SDN FIREWALL

(b) It updates its state table.

11. The controller deletes these stateful Openflow rules and notify the firewall application
(step 6.b of Figure 5.4).

12. The firewall application deactivates the connection.

The proactive behavior makes the network elements entirely responsible for the connec-
tion filtering process. The firewall application triggers the filtering, steers it and terminates it
for each connection. As a result, the proactive mode reduces the packet delivery delay because
it avoids that the packets pass through the circuit between the network element and the firewall
application. The only delay that can be introduced will be related to the processing capacities
of the network elements. Besides, the behavior prevents disruption attacks using V56 and V146,
unlike the reactive mode which can only mitigate them. It can also mitigate other disruption
attacks on the application layer (such as V16) since it reduces the load on the firewall applica-
tion.

Furthermore, this behavior prevents the attacker from exploiting V96 to perform flooding
(unlike in the reactive mode) because it works on a whitelist logic and it controls the number
of initialization packets attempts per time. As a result, an attacker can not flood the controller
with an unknown connection initialization packet(the network elements will drop its packets).
Besides, the attacker can not also flood it with authorized initialization packets because of two
defense mechanisms in the firewall application. The first one is the limitation of the number
of unsuccessful initialization requests per time interval for each connection. When the con-
nection exceeds this threshold, it is blocked for a specific time in the network element by the
firewall application. The second defense mechanism is related to the FSM processing in the
firewall application. When the firewall moves to the next state, it is not possible for the attacker
to send initialization packets as they do not correspond to standard triggers for the potential
transitions from the state (This mechanism is also present in the reactive mode).

5.4.5 Firewall modes

Through the controller, the firewall application is constantly listening to network events such as
new connections, OpenFlow rule updates, OpenFlow rule expiration, disconnections, topology
updates, and other events. It propagates its initial configuration (Universal rule, Table-miss
rule, and the Access OpenFlow rules) to the lower layer. For each new connection, it asks the
controller to install the OpenFlow Stateful rules when the state transitions are triggered. The
firewall application observes networks events according to two modes:

On-demand mode

This mode is a bottom-up synchronous process. It operates in a pull sequence as follows:

1. The firewall application sets a timer to observe periodically network events coming from
the controller and the orchestrator.

2. When the timer reaches its threshold, it sends a request to the controller and to the or-
chestrator to check if any new events have happened in its domain.

3. Once an event is observed, the firewall application generates the corresponding rules
and applies the new configurations (such as change the behavior, load a specific FSM
and other configuration requests).

4. it asks the controller to install the rules as OpenFlow rules on the appropriate network
elements.

96

CHAPTER 5. CENTRALIZED SDN FIREWALL

The On-demand mode is useful in an environment where the resources of the orchestrator and
the firewall applications are loaded. In this context, the mode reduces the load by sending the
requests each interval of time (a tolerable delay) instead of transmitting them instantaneously.

Independent mode

The independent mode is a top-down asynchronous process. It works in push sequence as
follows:

1. The firewall application registers a probe in the orchestrator and the controller.

2. The probe connects to the event catchers in the orchestrator and controller to collect
specific events such as policy updates, topology changes, firewall behavior change, new
FSM and other events.

3. Each time a specific event occurs, the probes notify the firewall applications

4. The firewall application applies the updates. It generates the corresponding rules and
the configurations

5. It asks the controller to install the rules on the appropriate network elements.

5.4.6 Firewall application General Algorithm

The firewall application processes the FSM of each network protocol and produces a set of deci-
sions (firewall rules and functions) to enforce the access of the connections. Figure 5.5 provides
an overview of the general algorithm of the firewall application. This algorithm focuses on pro-
cessing packets as conditions for generating the SEFSM.
We assume in this algorithm the following premises:

• The firewall behavior and mode are activated.

• The access rules are installed in the network elements.

• The universal and table miss rules are installed in the network elements.

• The packet that is received by the firewall application is valid.

The firewall uses the on-demand mode or the independent mode to collect network events
coming from the orchestrator or the controller. Let us suppose that the controller notifies the
firewall application with a packet-in. Thus, when the firewall application receives this packet-
in, it checks if the packet belongs to an active connection in the state table. If the entry does
not exist, the firewall application creates an active entry of the new connection. Otherwise,
it uses the packet to identify the entry of the connection and its actual state. It verifies if the
conditions contained in the packet trigger any of the available transitions from the actual state
of the connection. If the conditions are valid, the state is initial, and the behavior is proactive.
The firewall application generates all the SEFSM and asks the controller to install the corre-
sponding rules in the network elements. In any other case, the firewall application processes
the conditions to trigger the proper transition of the FSM.

When the transition is selected, the firewall application executes its functions that corre-
spond to the transition. Besides, it produces the corresponding firewall rules if its behavior is
reactive. If some functions are only available in the controller (for example, update the topol-
ogy), it sends the firewall rules and controller function requests to the controller with the proper
arguments. Both the firewall rules and the controller functions requests are firewall decisions
that are processed by the controller to decide on the fate of packets. The firewall application
updates the entry of the connection in the state table with the new state until the connection
reaches its final state.

97

CHAPTER 5. CENTRALIZED SDN FIREWALL

5.4.7 TCP Example

We have applied the FSM transformation formalism to TCP. We obtain a SEFSMTCP for the
reactive behavior and another one for the proactive behavior. SEFSMTCP keeps the states of
the TCP FSM, it transforms the conditions, transitions, and actions to their equivalent in SDN.
It relies on the transformation function of the formalism and on the general algorithm of the
firewall application to create the equivalent concepts for TCP.

TCP is a standardized stateful network Protocol that enables the hosts to communicate re-
liably in an interconnected network. The TCP protocol the connection of two parties: a client
that initiates the connection and a server whose the role is to reply to the client requests. It
starts with a phase of connection establishment between the client and the server. It uses the
principle of the three steps handshaking; the client sends a connection initiation message to
the server to initialize a connection. The server confirms this connection initiation with an ac-
knowledgment message that contains data to negotiate the connection parameters. Finally, an
acknowledgment that contains the negotiated connection parameters is then sent by the client
to the server. In this phase, each host allocates memory space for the connection, and it agrees
with the other side on the properties to use for the communication such as sequence numbers
to identify the segments, segment size, window size to limit the number of segments without
acknowledgment. Also, each segment contains many flag fields to enable the sender to specify
to the receiver which kind of segment it has sent and in which state of the TCP protocol the
connection is.

When they perform the first phase successfully, the protocol allows them to transfer their
data. During the data transfer phase, the two entities send segments that contain data with ac-
knowledgment information of the previously received data. They can also send an unexpected
connection interruption message to reset the session when a problem is detected and cannot
be resolved, or a connection termination segment to end the communication.

Finally, the last phase is the termination of the connection. Each side sends a connection
termination segment when it is ready to terminate the communication and waits to receive
from the other side a termination acknowledgment message to close its connection.

The firewall application processes the TCP protocol to control the access of connections.
The generated EFSMTCP for the establishment phase are shown in Figure 5.6a for the reactive
behavior and in 5.6b for the proactive behavior. In the connection establishment phase, the
client tries to open a connection with the server. It sends a connection initiation packet (SYN
packet) with a value of the field Flag = SYN. The header of the packet is the condition. It is
matched in the data plane device with the available OpenFlow matching fields. If the packet
header does not match with the rules of the network element, it is dropped. In the reactive
behavior, it is the firewall application which verifies the SYN packet with the access rule instead
of the network element (proactive mode). If the SYN packet is accepted in both behaviors, the
firewall application activates its entry in its state table with a state value equal to LISTENING.

If its behavior is reactive, it transforms the conditions and actions for all the transitions
from the actual state to their SDN equivalent (see Figure 5.6a). In the proactive mode how-
ever, it transforms all the transitions of TCP. Then, in each state, it deletes or deactivates the
elements of the previous transitions (see Figure 5.6b). For example, in the reactive behavior,
in the LISTENING state, the firewall application performs the following transformations (see
Figure 5.6a):

1. It transforms the condition cLISTENING= {packet_header, packet_Fl ag = SYN} to:
γ(cSYN) = ({packet_header, packet_Fl ag = SYN},NBR_SYN = +1)

2. It transforms the action Send_SYN as follows:

(a) It calls the following Functions:

98

CHAPTER 5. CENTRALIZED SDN FIREWALL

Figure 5.5 – SDN firewall generic algorithm

Packet-in is

received?

Collect network

events

Check connection in

state table

Connection

exists?

Activate the

connection in the

state table

False

Check

conditions

True

Conditions

are valid?

False

Select

transition according

to the FSM

Execute

corresponding

firewall functions

Change

State

True

Send the decisions

to the controller

True False

Behavior is

proactive?

Behavior is

reactive?

False

False
Produce

corresponding

firewall rules

True

True

FSM is in initial

state and behavior

is proactive?

False

True
Produce all the

firewall rules

corresponding

to the FSM

• Ver i f y_Packet_Leg i t i mac y(packet_header) to verify if the packet is ac-
cepted and is not a bogus packet.

• Syn_Fl oodi ng _Pr otect i on(packet_header,NBR_SYN) to verify if the packet
is not a syn flooding attack.

• Act i vate_Entr y({packet_header, packet_Fl ag = SYN},NBR_SYN) to set an
entry for the connection in the state table.

• Resubmi t (Packet) to forward the packet to the controller. The controller will
interpret it to Packet_out. This function is not called in the proactive behavior.

• Upd ate_St ate(SYN_RCV) to set the new state to SYN_RCV

(b) It produces the following rules:

• Send (State Rule(SYN=1, Priority=+1, Hard_Timeout=T1, Deny)): it drops any
further connection initialization messages for the same connection and it mit-
igates SYN Flooding attacks. If the SYN flooding function is called, the rule is
produced when the connection reached the Syn threshold. T1 is the TCP time-
out. Deny will be interpreted by the controller to drop.

• Send (State Rule(RST=1, Priority=+1, Hard_Timeout=T1, Accept)): it allows the
client to reset the connection using a RST packet. Accept will be interpreted by

99

CHAPTER 5. CENTRALIZED SDN FIREWALL

the controller to Forward to the controller.

• Send (State Rule(SYN=1, ACK=1, Priority=+1, Hard_Timeout=T1, Idle_Timeout=T2,
Accept)). T2 is the TCP timeout.

When the firewall application receives the conditions for the actual state SYN_RCV, it trans-
forms the actions and conditions of all the transitions if its behavior is reactive (see Figure 5.6a).
However, if it is proactive, it calls the functions that delete the rules of the previous transitions.
It also deactivates some called functions (such as Syn_Fl oodi ng _Pr otect i on). For example,
in the case of the proactive behavior and the SYN_RCV state, the firewall application performs
the following transformations (see Figure 5.6b):

1. It transforms the condition cSYN_RCV= {packet_header, packet_Fl ag = SYNACK} to:
γ(cSYN_RCV) = ({packet_header, packet_Fl ag = SYNACK})

2. It transforms the action Send_SYNACK to the following functions:

• Check_Seq_Number () to verify that the sequence and acknowledge numbers are
correct.

• Del ete(St ateOFRule(SYN = 1, ACK = 1, Accept)): to delete the rule that authorizes
the server to answer with an acknowledgment to the synchronization request.

• Upd ate_St ate(SYN_ACK_RCV) to set the new state value to SYN_ACK_RCV

Likewise, if the client answers with a correct acknowledgment packet before one of the
timeouts elapses, the firewall application performs the appropriate transformations to finish
the handshaking phase. Up to this step, in the reactive mode all the installed State OF rules
forward the packets only to the controller while in the proactive mode they forward to the con-
troller and the destination at the same time. When the state is updated to ESTABLISHED, the
connection moves to the data transfer phase. The firewall application transforms the action
Send_ACK to a call of the function Check_Seq_Number (). If the latter returns false, the fire-
wall application denies the packet (see Figure 5.7).

The termination phase starts when the client or the server sends a FIN packet. When the
firewall application receives this packet, it changes the state to the termination phase. For
example, in the case of the reactive behavior in the ESTABLISHED state, the firewall application
performs the following transformations (see Figure 5.7):

1. It transforms the condition cESTABLISHED= {packet_header, packet_Fl ag = FIN} to:
γ(cESTABLISHED) = ({packet_header, packet_Fl ag = FIN})

2. It transforms the action Send_FIN as follows:

(a) It calls the following functions:

• Check_Seq_Number ()

• Del ete(St ateRule(FIN = 1, Accept)) to delete the state rule that authorizes the
reception of the first FIN packet.

• Resubmi t (Packet) to forward the packet to the controller. The controller will
interpret it to Packet_out. This function is not called in the proactive behavior.

• Upd ate_St ate(CLOSE_WAIT_1) to set the new state to CLOSE_WAIT_1.

(b) It produces one rule that enables the destination to acknowledge the FIN packet
that it will receive:
Send (State Rule(FIN=1, ACK=1, Priority=+1, Hard_Timeout=T1, Idle_Timeout=T2,
Destination, Accept)).

100

CHAPTER 5. CENTRALIZED SDN FIREWALL

(a) EFSM for TCP handshaking in reactive mode

Verify_Timer(Connection) = False/

Update_State(CLOSING)

C
o

n
n

e
c
tio

n
 E

sta
b

lish
m

e
n

t P
h

a
se

Packet in (SYN=1) /

Verify_Packet_Legitimacy(packet_header)

Syn_Flooding_Protection(packet_header,NBR_SYN)

Activate_Entry({packet_header,packet_Flag=SYN}, NBR_SYN)

Send (State Rule(SYN=1, Priority=+1, Hard_Timeout=T1, Deny))

Send (State Rule(RST=1, Priority=+1, Hard_Timeout=T1, Permit))

Send (State Rule(SYN=1, ACK=1, Priority=+1, Hard_Timeout=T1,

Idle_Timeout=T2, Permit))

Resubmit(Packet)

Update_State(SYN_RCV)

LISTENING

SYN_RCV

Check_Seq_Number(Connection)=True, Packet in (SYN,ACK=1) /

Delete (State Rule(SYN=1, ACK=1, Permit))

Send (State Rule(RST=1, Priority=+1, Hard_Timeout=T1, Permit))

Send (State Rule(FIN=1, Priority=+1, Hard_Timeout=T1, Permit))

Send (State Rule(ACK=1, Priority=+1, Hard_Timeout=T1,

Idle_Timeout=T2, Permit))

Resubmit(Packet)

Update_State(SYN_ACK_RCV)

SYN_ACK_RCV

C
h

e
c
k

_
S

e
q

_
N

u
m

b
e
r
(C

o
n

n
e
c
tio

n
)=

T
r
u

e
, P

a
c
k

e
t-in

 (R
S

T
=

1
) o

r

T
im

e
r
<

T
im

e
o

u
t/

R
e
su

b
m

it(P
a
c
k

e
t)

D
e
le

te
_

S
ta

te
_

R
u

le
s

(c
o

n
n

e
c
tio

n
)

U
p

d
a

te
_
S

ta
te

(L
IS

T
E

N
IN

G
)

Check_Seq_Number(Connection)=False/

Deny(Packet)

Check_Seq_Number(Connection)=True, Packet in (ACK=1) /

Delete (State Rule(ACK=1, Permit))

Send (State Rule(FIN=1, Priority=+1, Hard_Timeout=T1, Permit))

Send (State Rule(ACK=1, Priority=+2, Hard_Timeout=T1,

Idle_Timeout=T2, Source, Destination))

Resubmit(Packet)

Update_State(ESTABLISHED)

ESTABLISHED

CLOSE_WAIT_1

CLOSING

Verify_Timer(Connection)=False/

Update_State((CLOSING)

Check_Seq_Number(Connection)=False/

Deny(Packet)

R
e
a

c
tiv

e
 B

e
h

a
v

io
r

(b) EFSM for TCP handshaking in proactive mode

Verify_Timer(Connection)=False/

Update_State(CLOSING)

Packet in (SYN=1) /

Verify_Packet_Legitimacy (packet header)

Syn_Flooding_Protection(packet_header,NBR_SYN)

Activate_Entry({packet_header,packet_Flag=SYN}, NBR_SYN)

Send (State Rule(SYN=1, Priority=+1, Hard_Timeout=T1, Deny))

Send (State Rule(RST=1, Priority=+1, Hard_Timeout=T1, Source,

Destination, Permit))

Send (State Rule(SYN=1, ACK=1, Priority=+2, Hard_Timeout=T1,

Idle_Timeout=T2, Permit))

Send (State Rule(FIN=1, Priority=+1, Hard_Timeout=T1, Permit))

Send (State OF Rule(ACK=1, Priority=+1, Hard_Timeout=T1,

Idle_Timeout=T2, Source, Destination, Permit))

Send (State Rule(FIN, ACK=1, Priority=+1, Hard_Timeout=T1,

Idle_Timeout=T2, Source, Destination, Permit))

Update_State(SYN_RCV)

LISTENING

SYN_RCV

Check_Seq_Number(Connection)=False, Packet in (SYN,ACK=1) /

Delete (State Rule(SYN=1, ACK=1, Permit))

Update_State(SYN_ACK_RCV)

SYN_ACK_RCV

C
h

e
c
k

_
S

e
q

_
N

u
m

b
e
r
(C

o
n

n
e
c
tio

n
)=

T
r
u

e
, P

a
c
k

e
t-in

 (R
S

T
=

1
) o

r

T
im

e
r
<

T
im

e
o

u
t/

R
e
su

b
m

it(P
a
c
k

e
t)

D
e
le

te
_

S
ta

te
_

R
u

le
s

(c
o
n

n
e
c
tio

n
)

U
p

d
a

te
_
S

ta
te

(L
IS

T
E

N
IN

G
)Check_Seq_Number(Connection)=False/

Deny(Packet)

Check_Seq_Number(Connection)=False, Packet in (ACK=1) /

Delete (State Rule(ACK=1, Permit))

Update_State(ESTABLISHED)

ESTABLISHED

CLOSE_WAIT_1

Closing

Verify_Timer(Connection)= False/

Update_State(CLOSING)

Check_Seq_Number(Connection)=False/

Deny(Packet)

C
o

n
n

e
c
tio

n
 E

sta
b

lish
m

e
n

t P
h

a
se

P
ro

a
c
tiv

e
 B

e
h

a
v

io
r

Figure 5.6 – EFSM for TCP handshaking phase

101

CHAPTER 5. CENTRALIZED SDN FIREWALL

When all the transitions of the TCP termination phase are performed (see Figure 5.7), the
firewall application moves to the state CLOSING. It triggers a termination timer according to
the TCP protocol, and it waits for its end. When the timer elapses, it asks the controller to delete
the rest of the State OF Rules related to the connection. It removes the connection entry from
the connection table and deactivates the connection.

5.4.8 Performance Analysis for Transport Protocols

The performance of the firewall application is evaluated regarding scalability and time of packet
delivery. The scalability is a critical parameter. It represents the maximal number of connec-
tions that can be processed by the firewall application without affecting the network perfor-
mance. The two metrics used to evaluate the scalability when the firewall application processes
a transport protocol are:

• Number of packets sent to the firewall application: This parameter represents the load
on the firewall application, regarding the number of packets to process per connection.
The parameter must be minimized because the processing time per connection is related
to it.

• Maximum number of connections supported by a network element: Each network ele-
ment has a limited number of tables. Furthermore, each table is limited by a maximum
size (i.e., the maximum number of entries in the OpenFlow table). This parameter has to
be maximized to process the maximum number of connections that is tolerated by the
network element.

A network element forwards a packet-in each time the records of a packet header trigger a
transition from one state to another. Hence, the number of packets sent to the controller is
bounded by the number of states of the protocol FSM. The maximum number of packets sent to
the controller by a network element i for the connection K is given by the following equations:

Number _Packeti ni ,Connecti onk
<= Number _St ateConnecti onk

(5.28)

Max_Number _Rulesi ,Connecti onk
<= Number _St ateConnecti onk

(5.29)

where Number _St ateConnecti onk
represents the maximum number of states of connection

K that the firewall application processes. Max_Number _Rulesi ,Connecti onk
is the maximum

number of OpenFlow rules that will be installed on the network element i for the connection
K. This number is related to the transport protocol specification.

If we take the illustration of the TCP protocol, each network element sends at most 7 packets-
in (3 packets during the connection establishment phase – SYN, SYN-ACK and ACK, 1 packet
during the data transfer phase – FIN and 3 packets during the termination phase – FIN-ACK,
FIN, FIN-ACK) to the firewall application. This number is low in comparison to the total num-
ber of states per connection which is 11 for TCP.

The maximum number of connections supported by a network element is related to the
maximum number of rules installed by the firewall applications. So, the maximum number of
connections supported by a network element is defined according to the following equation:

MaxConnecti onsi =
OpenFl ow_Tabl e_Si zei

Max_Number _Rulesi ,Connecti on
(5.30)

where OpenFlow_Tabl e_Si zei is the size of the OpenFlow table in the network element i .

For TCP connections, the maximum number of OpenFlow rules that are installed per con-
nection is the highest in its proactive behavior. It is equal to 11 stateful OpenFlow rules per

102

CHAPTER 5. CENTRALIZED SDN FIREWALL
F

ig
u

re
5.

7
–

E
F

SM
fo

r
T

C
P

d
at

a
tr

an
sf

er
an

d
te

rm
in

at
io

n
p

h
as

e
in

re
ac

ti
ve

m
o

d
e

Termination Phase

Time>=Timeout/

Delete State Rule(connection)

Deactivate (Connection)

E
S

T
A

B
L

IS
H

E
D

C
L

O
S

E
_

W
A

IT
_

1

C
L

O
S

E
_

W
A

IT
_

2

C
L

O
S

E
_

W
A

IT
_

3

C
L

O
S

IN
GC

h
e
c
k

_
S

e
q

_
N

u
m

b
e
r
(C

o
n

n
e
c
ti

o
n

)=
T

r
u

e
,

P
a

c
k

e
t

in
 (

A
C

K
F

IN
=

1
)

/

R
e
su

b
m

it
(P

a
c
k

e
t)

D
e
le

te
 (

S
ta

te
 R

u
le

(R
S

T
=

1
,

P
e
r
m

it
))

U
p

d
a

te
_

S
ta

te
(

C
L

O
S

IN
G

)

T
E

R
M

IN
A

T
IN

G

/
V

e
r
if

y
_

T
im

e
r
(C

o
n

n
e
c
ti

o
n

)
=

F
a

ls
e
/U

p
d

a
te

_
S

ta
te

(
T

E
R

M
IN

A
T

IN
G

)

C
L

O
S

E
_

W
A

IT
_

4

C
L

O
S

E
_

W
A

IT
_

5C
h

e
c
k

_
S

e
q

_
N

u
m

b
e
r
(C

o
n

n
e
c
ti

o
n

)=
T

r
u

e
,

P
a

c
k

e
t

in

(A
C

K
F

IN
=

1
)

/

D
e
le

te
 (

S
ta

te
 R

u
le

(A
C

K
=

1
,

S
o

u
r
c
e
,

P
e
r
m

it
))

R
e
su

b
m

it
(P

a
c
k

e
t)

D
e
le

te
 (

S
ta

te
 R

u
le

(R
S

T
=

1
,

P
e
r
m

it
))

U
p

d
a

te
_

S
ta

te
(

C
L

O
S

E
_

W
A

IT
_

5
)

D
a

ta
 T

r
a

n
sf

e
r
 P

h
a

se

L
IS

T
E

N
IN

G

C
h

e
c
k

_
S

e
q

_
N

u
m

b
e
r
(C

o
n

n
e
c
ti

o
n

)=

F
a

ls
e
/

D
e
n

y
(P

a
c
k

e
t)

C
h

e
c
k

_
S

e
q

_
N

u
m

b
e
r
(C

o
n

n
e
c
ti

o
n

)

=
F

a
ls

e
/

D
e
n

y
(P

a
c
k

e
t)

C
h

e
c
k

_
S

e
q

_
N

u
m

b
e
r
(C

o
n

n
e
c
ti

o
n

)

=
F

a
ls

e
/

D
e
n

y
(P

a
c
k

e
t)

C
h

e
c
k

_
S

e
q

_
N

u
m

b
e
r
(C

o
n

n
e
c
ti

o
n

)=

F
a

ls
e
/

D
e
n

y
(P

a
c
k

e
t)

C
h

e
c
k

_
S

e
q

_
N

u
m

b
e
r
(C

o
n

n
e
c
ti

o
n

)=
F

a
ls

e
/

D
e
n

y
(P

a
c
k

e
t)

C
h

e
c
k

_
S

e
q

_
N

u
m

b
e
r
(C

o
n

n
e
c
ti

o
n

)

=
F

a
ls

e
/

D
e
n

y
(P

a
c
k

e
t)

103

CHAPTER 5. CENTRALIZED SDN FIREWALL

connection (i.e., 3 OpenFlow rules for the handshaking, 2 OpenFlow rules for the reset, 2 Open-
Flow rules for data transfer and 4 OpenFlow rules for the termination). For example, let us take
the hardware network element HP-5700. It can support 216 −1 OpenFlow firewall rules [269].
Thus, in the proactive behavior, HP-5700 supports up to 5957 TCP connections. Besides, in the
reactive mode, the maximum number of OpenFlow rules that are installed per connection is
equal to 4 (i.e., 2 OpenFlow rules for the reset, 2 OpenFlow rules for data transfer). Thus, in
the reactive behavior, HP-5700 supports up to 16383 TCP connections (the universal and table
miss rules have been taken into consideration).

If the network elements have different tables sizes and all the connections pass through
them, then the number of connections supported by the firewall is the lowest value of the max-
imum number of supported connections in each network element. It can be expressed with
the following equation:

∀i ∈ NE, Max_connecti onsFW = Mi n(Max_connecti onsi) (5.31)

where NE is the set of all the network elements that are protected by the SDN firewall applica-
tion.

The performance of the SDN firewall solution affects the time of packet delivery (PDT).
The latter is a metric for Quality of Experience (QoE) of the end users. The extra delay added
to the packet delivery by our solution should be transparent to end users. Our solution has to
achieve a tolerable QoE compared to an SDN network without a firewall. PDT starts from the
moment the packet leaves the port of the network element to its destination until the moment
the network element receives a reply from the destination.

The SDN Firewall Time (SDNFT) includes the Network Element Forwarding Time (NEFT)
and the Feedback Loop Time (FLT). The former is the time taken by the packet inside the net-
work element. It includes two times. Packet Processing Time(PPT) which is the time needed
by the network element to match the packet with the OpenFlow rules and execute the corre-
sponding action. The other time is the OpenFlow Rules Installation Time (ORIT) which is the
time of installing the OpenFlow rules after receiving them from the controller. The feedback
loop time starts from the moment the packet-in leaves the network element until the last mo-
ment the network element receives the last rule or packet-out for this packet-in. SDNFT must
be inferior to PDT to guarantee tolerable QoE.

The behavior of the firewall application affects SDNFT. In the proactive behavior, this time
is lower than in the reactive behavior because FLT in the proactive behavior happens only in
the Synchronization phase while in the reactive behavior it happens in each transition. As a
result, the following equations express the different times:

SDNFT =

{

PPT+FLT_Reacti ve +ORIT (if the firewall application behavior is reactive)

PPT+FLT_Pr oacti ve +ORIT (if the firewall application behavior is proactive)
(5.32)

Where: FLT_Pr oacti ve < FLT_Reacti ve Thus, from the equation 5.32, we understand that
the SDN firewall must take into account the following conditions:

SDNFT < PDT

More FLT is high, more the delivery time increases
(5.33)

5.5 Implementation

We have implemented the firewall application and the orchestrator in python language. They
run on the top of the RYU controller. RYU is a Python open source component-based SDN
framework. It manages network traffic by handling and processing network events through

104

CHAPTER 5. CENTRALIZED SDN FIREWALL

different standardized APIs. It also offers developers the possibility to implement their network
applications and to run them on the controller. RYU offers to SDN applications many services
that handle and process network events, parse and serialize packets or interact with the net-
work elements through southbound APIs such as OpenFlow.

Figure 5.8 shows the software architecture that we have implemented. It compounds two
packages that contain a set of modules. The details of the implementation are as follows:

Figure 5.8 – Implemented Firewall Software Architecture

Global
Logger

Firewall
Manager

Global Access
Table

IHM
Manager

Interpreter

Sentinel

Protocol
Serializer

Protocol
Parser

Policy Server

Local Access
Table

Topology
Handler

Orchestrator

Firewall Application

Engine Local
Logger

1. Orchestrator Package: It runs in the management layer. It offers a General User Inter-
face to manage the security policies and the OF rules. It allows adding, modifying and
displaying the security policies and manages the static topology information. It offers
to the administrator the possibility to configure many parameters of the firewall such as
event modes, behavior modes. It keeps open sockets with all the Firewall Application
instances to communicate with them. Through these canals, it sends management com-
mands and collects network events. The orchestrator has the following modules:

• IHM Manager: It offers a user interface to create, manage and view the firewall poli-
cies. Besides, it displays network events that have been collected from firewall ap-
plications.

• Policy Server: It manages the policies in the global access table. besides, it manages
the interactions with the firewall applications (such as sending new policy updates,
collecting events and configuring the firewall applications).

• Protocol Serializer: It transforms the policies according to the communication pro-
tocol established between the orchestrator and the firewall application.

• Global Logger: It collects events coming from the firewall applications, statistics
from data plane devices and connections information. It sends them to the GUI to

105

CHAPTER 5. CENTRALIZED SDN FIREWALL

be displayed. Some of the data are also stored in a persistent database to provide
the administrator with logs about all the events within the firewall architecture and
the SDN Network.

2. Firewall Application Package: It integrates the general firewall algorithm. It processes
the FSM of network protocols to generate their equivalent EFSM. It handles the interac-
tions with the controller and collects from it network events. It has the following mod-
ules:

• Protocol Parser: It parses the received messages from the orchestrator, and it ex-
tracts the necessary information for the firewall application modules.

• Firewall Manager: It handles the communications between the firewall application
modules and the Policy Server by observing and redirecting all the observed events
to/from the orchestrator.

• Topology Handler: It processes the network topology that the firewall protects. It
proposes two modes. A static mode where the topology is specified by the orches-
trator (via the administrator). A dynamic mode where the firewall discovers the
network elements and nodes using the controller.

• Sentinel: It plays a role of an intermediary between the other firewall modules and
the controller. It sends the firewall rules to the controller and collects from it any
observed event to distribute it to the appropriate firewall module. Sentinel is also
responsible for triggering and configuring the other firewall modules according to
the information collected from the controller or the orchestrator. For example, it
instantiates an engine module for each connection. It configures it with the appro-
priate parameters that were specified by the orchestrator such as the firewall behav-
ior and the protocol FSM, and it generates the initial configuration of the network
element.

• Engine: It expresses the main behavior of the firewall by handling all the phases
of a stateful connection and by processing the communication between the client
and the server. This behavior is based on the specialization of the general algo-
rithm and the transformation of the FSM into EFSM using the formalism that we
have explained in Section 5.4.3. The engine module grants also the flexibility of the
architecture since it is possible to coexist with many other Engines modules that
handle other stateful network protocols with the Engine of TCP.

• Local Logger: It collects the events coming from the controller and the ones that
occur in the firewall application. Then, it sends them to the Orchestrator’s Logger.

• Interpreter: It interprets the firewall rules to access OpenFlow rules. The module
uses mapping information to translate the security policies into OpenFlow rules.
Therefore, any change in the OpenFlow standard affects only the Interpreter mod-
ule.

5.6 Evaluation

The objective of our evaluation is to estimate the performance of the SDN firewall and its ca-
pacity to resist to Syn flooding attacks. We compare the performances of the reactive behavior
with the proactive behavior and with the legacy firewall NetFilter. For this matter, we set an
evaluation environment, and we evaluate our SDN firewall through many experiments.

106

CHAPTER 5. CENTRALIZED SDN FIREWALL

5.6.1 Test Bed

We deploy our solution in the B-Secure platform of B<>COM [270]. It is a dedicated evaluation
platform to test SDN security solutions and attacks. Figure 5.9 shows the platform that we have
deployed to evaluate our solution. The platform consists of the following components:

1. SDN firewall machine: It is a physical machine which is characterized by 16 Gb of RAM,
Intel i7 processor and one physical network interfaces of 1 Gb/s. The orchestrator, the
firewall application and RUY controller run inside this machine. We implement a set of
scripts in this machine to monitor the SDN firewall machine:

• SDN Firewall scripts: They monitor the performance of the SDN firewall and cap-
ture the network traffic (including OpenFlow) in its network interface.

2. Network element machine: It is a physical machine which is characterized by 16 Gb of
RAM, Intel i7 processor and five physical network interfaces of 1 Gb/s. OVS runs in this
machine as a network element. We implement a set of scripts in this machine to monitor
the network element machine:

• OVS Data scripts: They monitor the performance of the network element and cap-
ture the network traffic (including OpenFlow) in its network interface.

3. NetFilter machine: It is a physical machine which is characterized by 16 Gb of RAM, Intel
i7 processor and one physical network interface of 1 Gb/s. NetFilter firewall runs inside
the machine. We implement two categories of scripts in this machine to configure and
monitor NetFilter:

• NetFilter script: It installs the firewall rules to control the access to the connections
between the client machine and the server machine. The script also activates or
deactivates the Syn flooding protection module of NetFilter.

• NetFilter Data scripts: They monitor the performance of NetFilter and capture the
network traffic in its network interface.

4. Client machine: It is a virtual machine which is characterized by 4 Gb of RAM, Intel i3
processor and a dedicated physical network interface of 1 Gb/s. We implement 2 cate-
gories of scripts in this machine to configure and monitor the client:

• Client script: It generates and manages a number of TCP connections over a time
interval. The script runs from 100 to 500 processes. Each process runs 300 threads
that generates and manages simultaneously TCP connections. For example a con-
figuration of 100 processes will generates 30.103 TCP connections.

• Connection scripts: They monitor the performance of the client and capture the
network traffic in the network interface.

5. Server machine: It is a virtual machine which is characterized by 4 Gb of RAM, Intel
i3 processor and a dedicated physical network interface of 1 Gb/s. We implement two
categories of scripts in this machine to configure and monitor the client:

• Server script: It configures the Apache server for TCP connections. The script cre-
ates 500 Apache HTTP processes. Each one of them manages a different port and
is connected to one process of the client. The script configures the size of the data
that each Apache process offers to its client process.

• Connection scripts: They monitor the performance of the server and capture the
network traffic in its network interface.

107

CHAPTER 5. CENTRALIZED SDN FIREWALL

Figure 5.9 – SDN Firewall Testbed

Orchestrator

Firewall
application

RYU controller

Open Virtual Switch

Network element machine

Flow tables

SDN Firewall machine

Flow tables

Client machine

Client script

Attacker machine

Attacker script

Server machine

Server script

OVS data
scripts

Connection
scripts

Attacker data
scripts

Connection
scripts

SDN Firewall
scripts

Netfilter machine

Netfilter script

Netfilter Data
scripts

SDN Firewall Circuit

Netfilter Circuit

6. Attacker machine: It is a virtual machine that is characterized by 4 Gb of RAM, Intel i3
processor and a dedicated physical network interface of 1 Gb/s.

• Attacker script: It programs the behavior of a DoS attacker that performs Syn flood-
ing attacks. The script can configure different rates of Syn flooding attacks.

• Attacker data scripts: They monitor the performance of the attacker and capture
the network traffic in its network interface.

5.6.2 Evaluation Experiments

We set three scenarios in our evaluation. Each one of them is affected by different values of
3 variables. The combination of both the scenarios and variables values gives us 14 different
experiments that are performed in our evaluation platform. In all the experiments the client
starts with 100 HTTP processes (30.103 TCP connections) with the server. It ends with 500

108

CHAPTER 5. CENTRALIZED SDN FIREWALL

HTTP processes (150.103 TCP connections). The scenarios define which entity controls the
access of the communication between the client and server. The details of the three scenarios
are as follows:

1. SDN proactive firewall: In this scenario, the SDN firewall is configured in the reactive
mode. The NetFilter machine is deactivated. The reactive mode transforms the TCP FSM
to its SEFSM. It installs in the network element machine the OpenFlow rules to control
the access of the communications between the client and the server. We suppose that the
topology is known. The firewall is in the static topology mode. It receives the topology
data from the orchestrator; we deactivate the dynamic topology learning module of the
firewall. The SDN firewall controls all the connections through the SDN Firewall Circuit
shown in Figure 5.9.

2. SDN proactive firewall: in this scenario, the SDN firewall is configured in the proactive
mode. The rest of the configurations are the like in the previous scenario.

3. NetFilter firewall: In this scenario, we activate the NetFilter machine. The SDN firewall
is deactivated. We install in NetFilter the firewall rules to control the access between the
client and the server. Besides, in the network element machine, we install two types of
OpenFlow rules. The first one (Forward to NetFilter) send all the traffic coming from the
client or the server to NetFilter machine. The second one (Forward From NetFilter) sends
the traffic that originates from the NetFilter machine to its destination. The latter is the
Client machine or the Server machine. NetFilter controls all the connection through the
NetFilter Circuit shown in Figure 5.9.

Three variables characterize the scenarios mentioned above. Each time only one variable is
active and the two others stay in their initial values. The details of the variables are as follows:

1. Access rules: This variable enables us to evaluate the impact of the size of access rules
in the three scenarios. The behavior of each scenario is different from the others. In the
proactive mode, the access rules are executed by the network element. In the reactive
mode, they are executed by the firewall application. In NetFilter, the access rules are
executed by the NetFilter rule engine. We evaluate the scenarios with one access rule
(initial value) then with 103 access rules.

2. Data size: This variable enables us to evaluate the impact of the size of the transmitted
data between the client and the server. The behavior of each scenario is different from the
others. In the SDN Firewall, all the data pass by the network element. The SDN firewall
receives only the conditions to move from a state to another. In NetFilter, all the data pass
through NetFilter Machine to check the actual state of their connections and the possible
transitions. We evaluate the scenarios by configuring the server processes. Each one is
configured with a file of 1 kB that is requested by each client connection (initial value).
Then, the size of the file is increased to 1 MB.

3. Syn Flooding attacks: this variable enables us to evaluate the impact of syn flooding rate
on the performance of the three scenarios. We activate the Attacker machine. It injects
syn flooding attacks with different ports towards the server. We authorize the attacker
to communicate with the server in the three scenarios. In all the scenarios, we set the
Syn flooding threshold to 1 for the attacker-server connections. When the threshold is
reached, the behavior of each scenario is different from the others. The proactive mode
blocks the syn flooding connection in the network element. The network element drops
the Syn flooding traffic by preventing it from reaching the controller. The reactive mode
drops the Syn Flooding traffic in the firewall application. NetFilter drops the Syn flooding

109

CHAPTER 5. CENTRALIZED SDN FIREWALL

traffic using its Syn flooding protection module. The initial state of the variable is an
attack rate of 0 (attacker is deactivated). Then, the attacker sends 103 Syn flooding per
second in the second step along the test. The last value of the variable is an attacker
that sends 16.103 Syn flooding per second; it exploits all its available bandwidth with the
network element.

As a result, we perform 14 experiments by combining the three scenarios with the values of 3
variables. In each scenario, we have only one variable that is not in the initial state while the
two others are in their initial values. The different experiments are as follows :

1. Reactive behavior with 1 access rule, 1 KB data and 0 Syn flooding attacks (Reactive-1R-
1K-0SF).

2. Proactive behavior with 1 access rule, 1 KB data and 0 Syn flooding attacks (Proactive-1R-
1K-0SF).

3. NetFilter with 1 access rule, 1 KB data and 0 Syn flooding attacks (NetFilter-1R-1K-0SF).

4. Reactive behavior with 103 access rule, 1 KB data and 0 Syn flooding attacks (Reactive-
1000R-1K-0SF).

5. Proactive behavior with 103 access rule, 1 KB data and 0 Syn flooding attacks (Proactive-
1000R-1K-0SF).

6. Reactive behavior with 1 access rule, 1 MB data and 0 Syn flooding attacks (Reactive-1R-
1M-0SF).

7. Proactive behavior with 1 access rule, 1 MB data and 0 Syn flooding attacks (Proactive-
1R-1M-0SF).

8. NetFilter with 1 access rule, 1 MB data and 0 Syn flooding attacks (NetFilter-1R-1M-0SF).

9. Reactive behavior with 1 access rule, 1 KB data and 103 Syn flooding attacks (Reactive-
1R-1K-1KSF).

10. Proactive behavior with 1 access rule, 1 KB data and 103 Syn flooding attacks (Proactive-
1R-1K-1KSF).

11. NetFilter with 1 access rule, 1 KB data and 103 Syn flooding attacks (NetFilter-1R-1K-
1KSF).

12. Reactive behavior with 1 access rule, 1 KB data and 16.103 Syn flooding attacks (Reactive-
1R-1K-16KSF).

13. Proactive behavior with 1 access rule, 1 KB data and 16.103 Syn flooding attacks (Proactive-
1R-1K-16KSF).

14. NetFilter with 1 access rule, 1 KB data and 16.103 Syn flooding attacks (NetFilter-1R-1K-
16KSF).

5.6.3 Evaluation Results

In each experiment, we evaluate the following metrics:

1. Connection Time (CT): it is the time that takes each connection between the client and
the server. We calculate for each experiment the Average (Avg(CT)) , the Maximum (Max(CT)),
the Minimum (Min(CT)), the Median (Med(CT) and the Standard Deviation (SD(CT)).

110

CHAPTER 5. CENTRALIZED SDN FIREWALL

2. Packet Processing Time (PPT): We calculate the time of processing TCP control packets
in the firewall application and NetFilter. We calculate for each experiment the Average
(Avg(PPT)), the Maximum(Max(PPT)), the Minimum (Min(PPT)), the Median (Med(PPT))
and the Standard Deviation (SD(PPT)).

3. Percentage of Packet Re-transmissions (PPR): We calculate the percentage of TCP control
packets that have been re-transmitted between the client and the server. The values are
the ratio between the number of TCP control re-transmissions and the total number of
TCP control packets.

Figure 5.10 shows the different values of the average connection times (Avg(CT)) according
to the impacts of the experiments mentioned above. Figure 5.10a shows the values of Avg(CT)
under initial conditions (1 firewall rule, 1 KB of data per connection and the attacker is deac-
tivated). Figure 5.10b shows the impacts of the size of firewall rules on the values of Avg(CT).
Figure 5.10c shows the impacts of the size of data transmitted in each connection on the values
of Avg(CT). Figure 5.10d shows the impacts of Syn Flooding attacks on the values of Avg(CT).
The rate of the attack exploits 10% of the bandwidth with OVS. Figure 5.10e shows the impacts
of Syn Flooding attacks on the values of Avg(CT). The rate of the attack exploits all the band-
width with OVS.

In the initial conditions (see Figure 5.10a), Avg(CT) for the reactive firewall is 96ms with
30.103 connections. For the proactive firewall, Avg(CT) is 39ms. For NetFilter, Avg(CT) is 35ms.
Avg(CT) in the reactive firewall decreases until 60.103 connections while the number of con-
nections raises. After an investigation, we find out that the client generates the connections
differently when the load is 30.103 connections. It generates the connections according to a
fluctuation between 0 and 70 connections each time (the generation of connections is steady
in the other experiments). This fluctuation affects the processor occupation in OVS and the
installation of rules by the controller. OVS processor is occupied only during 500ms (work-
ing cycle) in each cycle of 1ms.The controller installs its rules in this occupation interval. As
a result, the processor resources are used in the working cycle then they are freed in the next
cycle in each second. Besides, the event queue of RYU is also filled in the working cycle then
destroyed in the next cycle in each second. The cost of these fluctuations of resources occupa-
tion and freeing is a bigger value of the connection time because in the other experiments the
resources are continuously occupied.

From 60.103 connections to 120.103 connections all the Avg(CT) in the reactive firewall (25,
27, 27)ms, proactive firewall (30, 31, 33)ms and NetFilter (30, 27, 27)ms became steady and
close. With 150.103 connections, Avg(CT) raises in the proactive firewall to 474ms while in
NetFilter, it stays steady and in the reactive firewall it rises slightly to 56ms. The increase in the
Proactive firewall is due to the occupation rate of OVS resources. With 150.103 connections in
the proactive firewall, OVS processor occupation reaches an average of 95% and its memory
occupation reaches an average of 84%.

The size of the firewall rules does not impact the Avg(CT) in the proactive firewall in its ac-
cess table because it delegates to OVS the matching of the traffic with these rules (see Figure
5.10b). In fact, its curve evolves with the rise in the number of connections similar to the ini-
tial conditions. Its values are almost similar to the results of the initial conditions. The tiny
rise comparing to the initial conditions is around 3ms from 30.103 to 120.103 connections and
25 ms with 120.103 connections. However, the Avg(CT) in the reactive mode is affected by the
access table because the firewall application maps the traffic to the rules. With 90.103 connec-
tions, Avg(CT) increases to 47ms then to 50ms with 120.103 connections. The increase becomes
important with 150.103 connections. At this step, Avg(CT) reaches a value of 369ms. This in-
crease is due to the occupation of the processor in the SDN Firewall Machine. The firewall
application is multi-threaded but can only execute its tasks on one processor core because it is

111

CHAPTER 5. CENTRALIZED SDN FIREWALL

Figure 5.10 – Average Connection Times according to the different experiments

(a) Initial Conditions

30 60 90 120 150

0
50

100
150
200
250
300
350
400
450
500

#Number of Connections (103)

#A
ve

ra
ge

C
o

n
n

ec
ti

o
n

T
im

e
(m

s)

Reactive-1R-1K-0SF

Proactive-1R-1K-0SF

NetFilter-1R-1K-0SF

(b) Firawall Rules Impact

30 60 90 120 150

0
50

100
150
200
250
300
350
400
450
500

#Number of Connections (103)
#A

ve
ra

ge
C

o
n

n
ec

ti
o

n
T

im
e

(m
s)

Reactive-1000R-1K-0SF

Proactive-1000R-1K-0SF

(c) Data Size Impact

30 60 90 120 150

0
400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400

#Number of Connections (103)

#A
ve

ra
ge

C
o

n
n

ec
ti

o
n

T
im

e
(m

s) Reactive-1R-1M-0SF

Proactive-1R-1M-0SF

NetFilter-1R-1M-0SF

(d) 1k Syn Flooding Impact

30 60 90 120 150

0
50

100
150
200
250
300
350
400
450
500

#Number of Connections (103)

#A
ve

ra
ge

C
o

n
n

ec
ti

o
n

T
im

e
(m

s) Reactive-1R-1k-1KSF

Proactive-1R-1k-1KSF

NetFilter-1R-1K-1KSF

(e) 16k Syn Flooding Impact

30 60 90 120 150

0
50

100
150
200
250
300
350
400
450
500
550
600

#Number of Connections (103)

#A
ve

ra
ge

C
o

n
n

ec
ti

o
n

T
im

e
(m

s) Reactive-1R-1k-16KSF

Proactive-1R-1k-16KSF

NetFilter-1R-1K-16KSF

112

CHAPTER 5. CENTRALIZED SDN FIREWALL

developed in the Python language. Python does not support parallelism for security reasons.

The proactive firewall, the reactive firewall, and NetFilter are impacted by the size of data
that are transported in the connections (see Figure 5.10c). However, NetFilter is the most im-
pacted by this variable. Its Avg(CT) increases with a maximum factor of × 162 compared to its
Avg(CT) in the initial conditions. With 30.103 connections, Avg(CT) with NetFilter is 946ms (in-
crease of × 30 compared to the initial conditions). The values continue to increase linearly until
120.103 connections reaching an Avg(CT) value of 4384ms (increase of × 162 compared to the
initial conditions). Then, this value decreases to 3741ms. The massive rise in NetFilter is due
to its hardware resources occupation. NetFilter uses fully one processor core and an average of
90% of memory with 120.103 connections. Then, with 150.103 connections, it distributes the
load to a second processor core while the memory becomes fully utilized. Besides, OVS mem-
ory is fully utilized from 90.103 connections. For this reason, Avg(CT) in the proactive and the
reactive firewalls increases linearly respectively from 221ms and 296ms (30.103 connections) to
865ms and 895 ms (90.103 connections). Then the increase becomes tiny in both SDN firewalls
until the end; an average increase of 15ms is observed with the proactive firewall and another
of 20ms with the reactive firewall.

The proactive firewall is not impacted by the syn flooding attacks (see Figures 5.10d and
5.10e) because it drops the attacker traffic in OVS whether with 103 Syn Flooding or 16.103 Syn
Flooding. In addition, the reactive firewall is not impacted by 103 Syn Flooding; the connection
times stay steady and close to the values of the initial conditions. However, the values of the
connection times increase with 16.103 Syn Flooding in the reactive firewall. Avg(CT) increases
slightly from 109ms with 30.103 connections to 151ms with 90.103 connections. Then the rise
becomes more important as it increases to 576ms with 150.103 connections. This rapid rise is
due to the occupation of the memory and the processor in the reactive firewall application and
in OVS. NetFilter is the most impacted by SynFlooding attacks whatever their rates. Its Avg(CT)
increases from 70ms (with 30.103 connections) to 128ms (with 150.103 connections) under 103

Syn Flooding attacks. In this case, the connection times values reach 4 × their counterparts
in the initial conditions. However, the rise becomes important under 16.103 Syn Flooding.
Avg(CT) starts with 79ms (with 30.103 connections) and reaches a value of 559ms (with 150.103

connections). This increase is 20 × the value in the initial conditions.

Figure 5.11a displays Avg(PPT) in µs for all the experiments with the proactive firewall and
the reactive firewall. The figure includes also Avg(PPT) with NetFilter in the initial conditions.
Figure 5.11b displays Avg(PPT) in ms for Syn Flooding attacks with NetFilter. Figure 5.11c dis-
plays Avg(PPT) in ms for data transport with NetFilter.

We observe in Figure 5.11a that all the Avg(PPT) values of the reactive firewall are higher
than their counterparts with the proactive firewall. The only exception is Avg(PPT) values for
data transport with the proactive mode which are the highest. Avg(PPT) is higher in the reactive
firewall because it performs more processing in the firewall application than in the proactive
firewall. In the initial conditions, Avg(PPT) values for the 3 Firewalls are close. They are between
900µs and 566µs for the reactive firewall, between 806µs and 561µs for the proactive firewall and
between between 789µs and 511µs for NetFilter. These values slightly rise for the reactive and
the proactive firewalls; the highest values for both firewalls belong to the experiments with data
transport.

However, Avg(PPT) values for NetFilter are the highest outside the initial conditions. They
increase highly to reach values in ms under Syn Flooding attacks and Data transport. In Figure
5.11a, we observe that both Avg(PPT) under 1k Syn Flooding and 16k Syn Flooding increase
with the rise in the number of connections. The highest scores are in the case of 16k Syn Flood-
ing attacks from 60.103 connections. The values reach a score of 66ms with 150.103 connec-
tions. These values are equivalent to 75 × the values of Avg(PPT) for the reactive and the proac-
tive firewalls under the same experiment. Besides, Avg(PPT) values with data transport reach

113

CHAPTER 5. CENTRALIZED SDN FIREWALL

Figure 5.11 – Average Packet Processing Times according to the different experiments

(a) TCP Control Packet Processing Time Part 1

30 60 90 120 150

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

#Number of Connections (103)

#A
ve

ra
ge

Pa
ck

et
P

ro
ce

ss
in

g
T

im
e

(µ
s)

Reactive-1R-1K-0SF Proactive-1R-1K-0SF

NetFilter-1R-1K-0SF Reactive-1000R-1K-0SF

Proactive-1000R-1K-0SF Reactive-1R-1M-0SF

Proactive-1R-1M-0SF Reactive-1R-1k-1KSF

Proactive-1R-1k-1KSF Reactive-1R-1k-16KSF

Proactive-1R-1k-16KSF

(b) TCP Control PPT Part 2

30 60 90 120 150

0

10

20

30

40

50

60

70

#Number of Connections (103)

#A
ve

ra
ge

Pa
ck

et
P

ro
ce

ss
in

g
T

im
e

(m
s)

NetFilter-1R-1K-1KSF

NetFilter-1R-1K-16KSF

(c) TCP Control PPT Part 3

30 60 90 120 150

100
150
200
250
300
350
400
450
500
550
600

#Number of Connections (103)

#A
ve

ra
ge

Pa
ck

et
P

ro
ce

ss
in

g
T

im
e

(m
s)

NetFilter-1R-1M-0SF

114

CHAPTER 5. CENTRALIZED SDN FIREWALL

the maximum values for NetFilter. The performance of NetFilter is the lowest in this experi-
ment. The values increase continuously from 122ms with 30.103 connections to reach 596ms
with 150.103 connections. Avg(PPT) for NetFilter under Syn Flooding attacks and with data
transport is one of the reasons while the connection times of NetFilter in the same conditions
increase. NetFilter passes more time to process each control traffic. As a consequence, Avg(CT)
increases in these experiments.

Furthermore, we observe that almost all Avg(PPT) of Figure 5.11a decrease along the rise
in the number of connections. After an investigation, we find out that the number of control
packets re-transmissions is one of the reasons for this decrease. The three firewalls process
re-transmission packets more rapidly than new packets. They do not re-install new rules for
them. They only check their legitimacy by matching them with the access table and the state
table. Figure 5.12 shows the ratio of re-transmission packets compared to the total transmitted
TCP control packets. We observe that all the firewalls in data transport experiments have the
lowest ratio of re-transmissions; NetFilter and the reactive firewall do not comprehend any
control packet re-transmission while in the proactive firewall, the ratio of retransmissions is
0.1% along the increase of the number of connections. Besides, we observe that the ratios of re-
transmissions are almost steady for all the experiments between 30.103 and 90.103 connections.
In this interval, the reactive mode under initial conditions has the highest ratio (2.5%) with
30.103. From 90.103 connections, the re-transmissions with NetFilter and the reactive firewall
under 16k Syn Flooding and those of the proactive Firewall under 1k and 16k Syn Flooding
overgrows. The retransmissions under 16k Syn Flooding for NetFilter (6.5%) and the reactive
firewall (7.6%) are the highest among all the re-transmissions ratios. These results also fulfill
the increase in the connection times for these experiments in Figure 5.10e. The increase of the
ratios of the re-transmissions for the proactive Firewall under Syn Flooding attacks is because
of the load on OVS. Its resources are highly occupied under Syn Flooding attacks which results
in delaying the transmission of control packets.

Figure 5.12 – The ratios of TCP Control re-transmission packets

30 60 90 120 150

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5
5,5

6
6,5

7
7,5

8

#Number of Connections (103)

#N
u

m
b

er
o

fR
et

ra
n

sm
is

si
o

n
s

(%
)

Reactive-1R-1K-0SF Proactive-1R-1K-0SF NetFilter-1R-1K-0SF

Reactive-1000R-1K-0SF Proactive-1000R-1K-0SF Reactive-1R-1M-0SF

Proactive-1R-1M-0SF NetFilter-1R-1M-0SF Reactive-1R-1k-1KSF

Proactive-1R-1k-1KSF NetFilter-1R-1K-1KSF Reactive-1R-1k-16KSF

Proactive-1R-1k-16KSF NetFilter-1R-1K-16KSF

115

CHAPTER 5. CENTRALIZED SDN FIREWALL

5.7 Discussion

We have discussed in this chapter our SDN statefull firewall solution. We have formalized all
its concepts. Then, we have presented its design in terms of architecture and behavior. We
presented two behviors. A reactive behavior that processes the FSM of a network protocol only
from the actual state and in the firewall application before installing the firewall rules. Besides,
we have presented the proactive behavior. In this behavior, the firewall application processes
the FSM and pre-installs all the corresponding rules in the network elements. Besides, we have
implemented our solution in the Python language. We have evaluated the performance and
resistance of our firewall and NetFilter under different loads, experiments and attacks.

The conclusions are as follows. In the initial conditions, NetFilter and the reactive firewall
have better performances while those of the proactive firewall starts to decrease from 120.103

connections. The number of rules impacts the reactive Firewall in its tables, and the rate of Syn
Flooding attacks when it is 16.103/s because it processes all the events in the firewall applica-
tion. The proactive firewall is neither impacted by the rates of Syn Flooding attacks nor by the
number of rules because it delegates the processing to the network element. NetFilter is the
most impacted by the rates of Syn Flooding attacks. All the Firewalls are impacted by the size of
the data, especially NetFilter. In the case of our firewall, the reason is related to the increase of
OVS processor and memory occupations. Besides, our Firewall processes TCP control packets
during periods that are in µs. Apart from the initial state where NetFilter PPT is slightly better,
the proactive firewall PTT is the better in the other experiments. NetFilter PPT is the highest
in other experiments. It reaches values in ms. NetFilter re-transmission ratio also is the higher
regarding re-transmission ratio because Syn Flooding attacks impact it.

In the next chapter, we focus on the management plane. We enhance the orchestrator of
our solution by improving its programmability in the context of cloud computing. We integrate
into the orchestrator a policy model that supports security policy expression, selection and
negotiation for Network Service Providers (the owner of the SDN assets) and Network Service
Customers (the entity that requires SDN assets).

116

CHAPTER 6. SDN FIREWALL ORCHESTRATION

Chapter 6

SDN Firewall Orchestration

“ I have always believed that

technology should do the

hard work - discovery,

organization, communication -

so users can do what makes

them happiest: living and loving,

not messing with annoying

computers!

That means making our products

work together seamlessly. ”

Larry Page

Contents

6.1 Introduction . 118

6.2 Context and Objectives . 118

6.3 SDN firewall policy model . 119

6.3.1 Use case description . 119

6.3.2 Firewall policy language . 119

6.3.3 Firewall policy assessment . 120

Element-Element relation . 122

Policy-Policy relations . 122

NSP selection . 123

6.3.4 Contract establishment . 123

Negotiation protocol . 124

6.3.5 Firewall policies deployment . 126

6.4 Implementation . 128

6.5 Evaluation . 129

6.5.1 Testbed . 129

6.5.2 Evaluation Results . 130

6.6 Discussion . 132

117

CHAPTER 6. SDN FIREWALL ORCHESTRATION

6.1 Introduction

The evolution of the digital world drives cloud computing as a key infrastructure for data and
services. This breakthrough is transforming SDN into a Software as a Service because of its ad-
vantages such as automation, simplicity, agility and global knowledge [271]. As a result, many
Network Service Providers (NSPs) select SDN as a cloud network service and offer it to their
customers. However, due to the rising number of NSPs and their security obligations, Network
Service Customers (NSCs) strive to find the best provider candidate who satisfies their security
requirements.

In this context, we integrate to our orchestrator a policy orchestration framework for SDN
firewall policies. Our enhanced orchestrator enables an NSC and SDN NSPs to express their
firewall policies, asses them and to negotiate them. It enforces these security requirements
using the holistic view of the SDN controllers, and it deploys the generated firewall policies to
the firewall applications. We collaborate with another Ph.D. [272] to enhance our orchestrator.

The rest of the chapter is organized as follows: Section 6.2 speaks about the context of our
contribution and its objectives. Section 6.3 describes all the processes of our SDN firewall pol-
icy model. It presents our policy language, the policy assessment process, the contract estab-
lishment process and the policy deployment process. These processes cover the firewall policy
expression until the policies deployment on the network elements. Section 6.4 presents the
implementation of the model into the orchestrator. Section 6.5 evaluates the performance of
our solution.

6.2 Context and Objectives

Suppose we have an NSC that requires many firewall policies and an SDN service in the cloud
to run its business. Besides, suppose we have many NSPs that offer different SDN deployments
and different firewall capabilities. In this case, one needs to choose the best NSP that satisfies
the NSC requirements. Then, the NSC needs to agree with the chosen NSP by a mutual con-
tract on the properties of the SDN resources and the firewall policies. Besides, the cloud service
needs to provide the SDN resources and the agreed firewall policies. Let us assume that there
is in the cloud a well-established mechanism to provide the SDN resources. In our case, we
focus on only the firewall policies as the variable that determines the expression of the require-
ments and the obligations, the selection of the best NSP, the negotiation of the contract and
the deployment of the contract in the SDN resources of the chosen NSP. Thus our work inte-
grates these expression, selection, negotiation and deployment processes into the orchestrator
to satisfy the NSC regarding firewall policies.

The interactions between the NSC, the NSPs, and the orchestrator are as follows:

1. The NSC specifies its firewall policies requirements using the policy model offered by the
orchestrator.

2. The NSPs specifies their firewall policies obligations using the policy model offered by
the orchestrator.

3. The orchestrator assesses the requirements and the obligations to select the best NSP
that satisfies the requirements.

4. The orchestrator starts a negotiation process between the selected NSP and the NSC to
establish an agreement (Contract) on the firewall policies.

118

CHAPTER 6. SDN FIREWALL ORCHESTRATION

5. The orchestrator generates an agreement in the form of firewall policies.

6. The orchestrator saves the firewall policies into its global access table.

7. The orchestrator deploys the firewall policies on the SDN firewall applications.

8. The firewall applications interpret the policies and deploy them on the network elements.

6.3 SDN firewall policy model

Our solution tackles the lack of policy model that can support firewall policy expression, selec-
tion, negotiation, and deployment when dealing with multiple NSPs. Our contribution meets
key-functional conditions for SDN as a cloud service. It addresses the security configuration
at the management layer. It abstracts the complexity of the infrastructure to simplify the ex-
pression of the firewall policies. It provides a unified language to enable NSCs and NSPs to
express their requirements and obligations. It classifies different rule relations between NSCs
and NSPs to select the best NSP. It provides a negotiation protocol for NSC and NSP to reach
an agreement. It interprets the agreements to firewall policies and deploys them on the fire-
wall applications. To the best of our knowledge, no method in the literature considers all these
points.

6.3.1 Use case description

We introduce a use case to ease the comprehension of our model and to illustrate each process
by concrete examples. The subjects involved in the use case are an NSC, an orchestrator, and
3 NSPs. NSC requires an SDN firewall service and SDN resources that meet its firewall poli-
cies (requirements). Each NSP provides a type of an SDN firewall and a set of firewall policies
(obligations). The three SDN firewall services are as follows:

1. NSP1: SDN Reactive Stateful Firewall: The firewall application processes the connec-
tions based on a reactive mode (see Section 5.4.4 of Chapter 5).

2. NSP2: SDN Proactive Stateful Firewall: The firewall application processes the connec-
tions based on a proactive mode (see Section 5.4.4 of Chapter 5).

3. NSP3: Stateless SDN Firewall: The firewall application behaves as a stateless firewall. It
relies only on its access table to deny or accept the traffic.

6.3.2 Firewall policy language

We propose an SDN firewall policy language to homogenize NSP’s obligations and NSC’s re-
quirements. The proposed language is inspired from the Attribute-Based Access Control Model
(ABAC) [273–275]. It allows expressing firewall policies based on a common template. This
unification guarantees the interoperability between the obligations and the requirements. The
grammar of our language is as follows:
Π is the set of all the firewall policies. It describes the access controls within the dynamic envi-
ronment of the allocated cloud resources: Π = {π1,π2, ...,πm} where πi =1..m are firewall policies.
Θ is a set of obligations. It encompasses all the firewall policies of Π expressed by NSPs. Θ =
{θ1,θ2, ...,θk }
Φ is a set of requirements. It encompasses all the firewall policies of Π expressed by NSC.
Φ = {φ1,φ2, ...,φ j }
Where Π =Θ∩Φ

119

CHAPTER 6. SDN FIREWALL ORCHESTRATION

Each firewall policy πi is formed by many atomic elements εi =1..n :
πi =1..m ≡ ε1 ∧ε2 ∧ ...∧εn

εi =1..n is defined by a preposition of predicates. Each predicates defines a propriety of the
el ement .

Proposition 6.3.1. A(εi) and B(εi) are two predicates defining εi proprieties. Predicates equiva-

lence is determined by the preposition : A(εi) ∈Ω,B(εi) ∈Ψ | (Ψ =Ω) → (A(εi) ≡ B(εi)).

The atomic rule element εi =1..n is formed by the following predicates :

1. Type: t y pe(εi) ≡ sub j ect (εi)∨acti on(εi)∨ob j ect (εi)∨ context (εi)

2. Domain: domai n(t y pe(εi)) ∈ {pr otocol , t i me...}. Domain restricts the unit of an ele-
ment.

3. Value: value(t y pe(εi)) ≡ var i abl e(t y pe(εi))∨non-var i abl e(t y pe(εi)).
var i abl e has not an assigned value while non-var i abl e has an already assigned value.
Both var i abl e and non-var i abl e can be assigned by three kinds of data types:

(a) constant: numeric or semantic value, ex. value(t y pe(εi)) = TCP.

(b) interval: numeric interval, ex. value(t y pe(εi)) = [8 : 00, 20 : 00]

(c) set: a collection of values, ex. value(t y pe(εi)) = {15 : 00,16 : 00}

For simplification, we use xi to present a var i abl e, xi ≡ var i abl e(t y pe(εi))

4. Scope: it defines the access to the values of a var i abl e. It can be:

(a) Public preference: pubpre(xi) a public preference var i abl e is accessible as public
information.

(b) Private preference: pripre(xi) a private preference var i abl e is a local configuration
that can not be disclosed.

If context is not specified in a policy we add a universal context element ⊤. It indicates that all
the obligations for the context are acceptable.
(context (εi) ≡⊤) → ((domai n(context (εi)) ≡⊤)∧ (value(context (εi)) ≡⊤))
Finally we write:
εi ≡ t y pe(εi)∧domai n(t y pe(εi))∧ value(t y pe(εi))∧ (pubpre(xi)∨pripre(xi))
When the scope is not defined: εi ≡ t y pe(εi)∧domai n(t y pe(εi))∧ value(t y pe(εi))
The firewall policies given in 6.3.2 using our language are defined in Table 6.1.

6.3.3 Firewall policy assessment

The assessment of firewall policies is based on matching the obligations with the requirements
in order to determine which NSPs’ policies satisfy NSC’s requests. This process is used by the se-
lection algorithm to determine which NSP satisfies the NSC. Besides, it depends on two level of
relationships. Element-Element relation which relies on mapping the predicates of the firewall
policies elements. The second level (Policy-Policy relation) focuses on finding the relationship
between the matched elements.

120

CHAPTER 6. SDN FIREWALL ORCHESTRATION

Table 6.1 – Firewall Policy Expression for NSC, NSP1, NSP2 and NSP3

NSC

Requirement φ1
element ε1 ε2 ε3 ε4

type subject action object context
domain organization firewall operation protocol time

value {NSC, NSP} pass
{HTTP, TCP,

ICMP}
[0:00,24:00]

Scope - - - -
Requirement φ2

element ε1 ε2 ε3 ε4
type subject action object context

domain organization firewall operation protocol connection_exc

value {NSC, NSP} x2 TCP
TCP_failed_Time

>3

Scope -
pripre ({quarantine,

block, alert})
- -

Requirement φ3
Element ε1 ε2 ε3 ε4

type subject action object context
domain organization firewall operation protocol attack_detection

value {NSC, NSP} block ICMP DoS_detection
Scope - - - -

NSP1

Obligation θ1
element ε1 ε2 ε3 ε4

type subject action object context
domain organization firewall operation protocol time

value NSP x2 x3 x4

Scope -
pubpre({pass,

block})
pubpre({HTTP,

TCP, ICMP})
⊤

Obligation θ2
element ε1 ε2 ε3 ε4

type subject action object context
domain organization firewall operation protocol connection_exc

value NSP x2 x3 x4

Scope -
pripre({block,

alert})

pubpre({TCP,
HTTP, SSH,

ICMP})
⊤

NSP2

Obligation θ1 (same policy as NSP1)

Obligation θ2 (same policy as NSP1)

Obligation θ3
Element ε1 ε2 ε3 ε4

type subject action object context
domain organization firewall operation protocol attack_detection

value NSP block x3 x4

Scope - -
pubpre({HTTP,

TCP,SSH,
ICMP})

pubpre(
{Poisoning,

DoS_detection})

NSP3

Obligation θ1 (same policy as NSP1)

Obligation θ4
element ε1 ε2 ε3 ε4

type subject action object context
domain organization firewall operation IP_address ⊤

value NSP x2 x3 x4

Scope -
pubpre({pass,

block})
⊤ ⊤

121

CHAPTER 6. SDN FIREWALL ORCHESTRATION

Element-Element relation

There are five relations between the elements:

1. inconsistent: (t y pe(εi) 6≡ t y pe(ε j)) → (εi ⊣⊢ ε j). If two rule elements εi and ε j have not
equivalent t y pe predicates then they are in i nconsi stent relation denoted: εi ⊣⊢ ε j .
For example, in Table 6.1, φ1.ε1 ⊣⊢ θ1.ε2 because sub j ect (φ1.ε1) 6≡ acti on(θ1.ε2)

Proposition 6.3.2. Not equivalence of t y pe is defined as follows:

t y pe(εi) ∈Ω, t y pe(ε j) ∈Ψ | ((Ω 6⊆Ψ)∧ (Ψ 6⊆Ω)) → (t y pe(εi) 6≡ t y pe(ε j))

2. comparable: ((t y pe(εi) ≡ t y pe(ε j))∧ (domai n(εi) ∼= domai n(ε j))) → (εi ∼ ε j). If two
rule elements εi and ε j have equivalent t y pe predicates and their domain predicates are
in congruence, then they are in compar able relation. It is denoted with εi ∼ ε j . For
example, in Table 6.1, φ1.ε2 ∼ θ1.ε2 because their sub j ect predicates are equivalent and
their domai n predicates are congruent.

Proposition 6.3.3. Domain congruence is defined as follows:

domai n(εi) ∈Ω,domai n(ε j) ∈Ψ | ((Ω⊆Ψ)∨ (Ψ⊆Ω)) → (domai n(εi) ∼= domai n(ε j))

3. equal: ((εi ∼ ε j)∧ (value(t y pe(εi)) ∼= value(t y pe(ε j)))) → (εi = ε j). If two rule elements
εi and ε j are compar able and their values predicates are in congruence, then they are in
equal relation denoted with εi = ε j . For example, in Table 6.1, φ2.ε3 = θ3.ε3 because both
elements are compar able and their value predicates are congruent ({TCP} ⊆ {HTTP,TCP,
SSH,ICMP}).

Proposition 6.3.4. Value congruence is defined as follows:

value(t y pe(εi)) ∈Ω, value(t y pe(ε j)) ∈Ψ |

((Ω⊆Ψ)∨ (Ψ⊆Ω)) → (value(t y pe(εi)) ∼= value(t y pe(ε j)))

4. unequal: ((εi ∼ ε j)∧ (value(t y pe(εi)) 6≡ value(t y pe(ε j)))) → (εi 6= ε j). If two rule ele-
ments εi and ε j are compar able but do not have equivalent value, they are in unequal

relation denoted with εi 6= ε j . For example, in Table 6.1, φ1.ε2 6= θ3.ε2 because both are
comparable however they have not equivalent values (pass 6≡ bl ock).

Proposition 6.3.5. Not equivalence of value is defined as follows:

t y pe(εi) ∈Ω, t y pe(ε j) ∈Ψ | ((Ω 6⊆Ψ)∧ (Ψ 6⊆Ω)) → (value(t y pe(εi)) 6≡ value(t y pe(ε j)))

5. incomparable: ((t y pe(εi) ∼= t y pe(ε j))∧ (domai n(εi) 6≡ domai n(ε j))) → (εi ≁ ε j). If two
rule elements εi and ε j have equivalent t y pe predicates and not equivalent domai n

predicate, then they have i ncompar abl e relation denoted with εi ≁ ε j . For example, in
Table 6.1, φ1.ε3 ≁ θ4.ε3 because they have congruent t y pe predicates but their domains
are not equivalent (pr otocol 6≡ IP_addr ess).

Proposition 6.3.6. Congruence of t y pe is defined as follows:

t y pe(εi) ∈Ω, t y pe(ε j) ∈Ψ | ((Ω⊆Ψ)∨ (Ψ⊆Ω)) → (t y pe(εi) ∼= t y pe(ε j))

Policy-Policy relations

We derive from Element-Element relations, three relations between policies. These relations
are as follows:

1. match: (P1 ∧P2 ∧ ...∧Pn) → (πα ⊲⊳πβ)
Pi ≡ ((πα.εi = πβ.ε1)∨ ...∨ (πα.εi = πβ.εn)) |πα,πβ ∈Π, i = 1..n
If any el ement of a policy α is in equal relation with another element of a policy β, then
the two policies are in match relation denoted with πα ⊲⊳ πβ. For example, in Table 6.1,
φ3 ⊲⊳ θ3 because (φ3.ε1 = θ3.ε1)∧ (φ3.ε2 = θ3.ε2)∧ (φ3.ε3 = θ3.ε3)∧ (φ3.ε4 = θ3.ε4).

122

CHAPTER 6. SDN FIREWALL ORCHESTRATION

2. mismatch: ∃εi∃ε j (πα.εi ≁πβ.ε j) → (πα ≍πβ) |πα,πβ ∈Π. If there are at least i ncompar abl e

elements εi and ε j from two policies πα and πβ, then the two policies have mi smatch

relation denoted with πα ≍πβ. For example, in Table 6.1, φ3 ≍ θ2 because φ3.ε4 ≁ θ2.ε4.

3. potential match: ((∀εi∀ε j (πα.εi ∼πβ.ε j))∧(∃εk∃εl (πα.εk 6= πβ.εl))) → (πα ∝πβ) |πα,πβ ∈

Π. If all the elements of the policies πα and πβ are compar able but it exists at least an
unequal relation between two of their respective elements then the two policies are in a
potenti al match relation denoted πα ∝πβ. For example, in Table 6.1, φ1 ∝ θ1 because
((φ1.ε1 ∼ θ1.ε1)∧ (φ1.ε2 ∼ θ1.ε2)∧ (φ1.ε3 ∼ θ1.ε3)∧ (φ1.ε4 ∼ θ1.ε4))∧ (φ1.ε1 6= θ1.ε1).

NSP selection

The orchestrator ranks each NSP based on the relations between the r equi r ement s and the
obl i g ati ons (see Section 6.3.2). This process enables the selection of the most compliant NSP
according to the algorithm 1. Our Algorithm is simple. A more sophisticated version is pro-
posed by work of [276] based on computing the similarity between the NSP and THE NSC. This
part is integrated in the PHD thesis of our contributor [272].

Algorithm 1 NSP Ranking

1: rank_list i s Empt y {Initial ranking list is Empty}
2: for All NSPs do
3: r ank_t able[Length(Requi r ement)] ← 0 {Default ranking Table initialized with 0 values}
4: noncompliant ← False {To test if the NSP is not compliant}
5: silver ← False {To test if the NSP is silver}
6: gold ← False {To test if the NSP is gold}
7: for i=0, i≤Length(Requi r ement)-1, i++ do
8: for j=0, j≤Length(Obl i g ati on)-1, j++ do
9: if Match(Requi r ement [i],Obl i g ati on[j]) == Tr ue then

10: r ank_t abl e[i] ← 2
11: Break from the current For
12: else if Potenti al _Match(Requi r ement [i],Obli g ati on[j]) == Tr ue then
13: r ank_t abl e[i] ← 1
14: end if
15: end for
16: end for
17: for i=0, i≤Length(r ank_t abl e)-1, i++ do
18: if r ank_t able[i] == 2 then
19: g ol d ← Tr ue
20: else if r ank_t able[i] == 1 then
21: si l ver ← Tr ue
22: else if r ank_t able[i] == 0 then
23: noncompl i ant ← Tr ue
24: end if
25: end for
26: if noncompl i ant == Tr ue then
27: print NSP is not compliant with NSC, it will not be add to the ranking list
28: else if si l ver == Tr ue then
29: Add (r ank_l i st , (NSP,NSPsi l ver)){Tag NSP as NSP silver and add it to the ranking list}
30: else if g ol d == Tr ue then
31: Add (r ank_l i st , (NSP, NSPg old)){Tag NSP as NSP gold and add it to the ranking list}
32: end if
33: end for
34: return rank_list

The results of the assessment and selection processes for the example of Section 6.3.1 are as
follows. The orchestrator finds potenti al match relations between the pairs: (φ1,θ1), (φ2,θ2)
and (φ3,θ3). NSP1 does not meet the firewall requirement of φ3 and NSP3 does not fulfill φ2

and φ3. As a consequence, the resulting relations are mi smatch. The orchestrator puts NSP2
into the ranking list.

6.3.4 Contract establishment

The orchestrator generates the contract between the chosen NSP and NSC directly if the for-
mer is gold. When NSP is not gold, it starts a negotiation process between the NSC and the
first ranked NSP. Upon the negotiation, the orchestrator can generate a new contract if both

123

CHAPTER 6. SDN FIREWALL ORCHESTRATION

parties accept the negotiated terms. Algorithm 2 describes these steps. It illustrates the con-
tract building process conducted by the orchestrator. The latter chooses the NSPtop in the top
of r ank_l i st . The orchestrator accepts directly without negotiation NSPg old and establishes a
contract with NSC. While for NSPsi l ver , it starts a negotiation process with NSC by executing
the proposed negotiation protocol (see Table 6.2). It transforms potenti al match relations
into match relations. If the negotiation fails NSP is deleted from r ank_l i st and the negotia-
tion process is re-conducted.

Algorithm 2 Establishment of contract

1: rank_list← call (NSP Ranking) {Making NSP Ranking List}
2: while NSP in rank_list do
3: Best_NSP = NSPtop {Choose NSPtop from rank_list}
4: if Best_NSP is NSPg ol d then

5: Accept (Best_NSP.Obl i g ati on()) { Accept NSPtop offer }
6: Contr act =Generate_Contract (Best_NSP,NSC) {Establish contract with NSC}
7: return
8: else
9: Negociate (Best_NSP.Obli g ati on()),NSC.Requi r ement ()) {Start negotiation with NSC}

10: neg oti ati on_Resul t = RENP (potenti al match) {Execute negotiation protocol between
potenti al match rule pairs}

11: if neg oti ati on_Resul t = Accepted then
12: Contr act =Generate_Contract (NSP,NSC) {Establish contract with NSC}
13: return
14: else
15: Delete (NSPtop , rank_list) { Delete NSPtop from rank_list }
16: end if
17: end if
18: end while

Negotiation protocol

When an agreement is not reached between the peers, the orchestrator negotiates the offers of
the chosen NSP with NSC. We propose the Rule-Element Based Negotiation Protocol (RENP)
in order to manage the negotiation process. Our protocol specifies for each element the next
action regarding the proposed values (vr ec) of NSP and the local configuration (vloc) of NSC.
The protocol contains three types of actions:

1. accept: it indicates that the proposed value is agreed.

2. refuse: it indicates that the proposed value is aborted.

3. propose: it generates a counter-offer .

Table 6.2 presents RENP. (v p) is the proposed variable upon negotiation. The details of the
negotiation protocol are as follows:

1. Row 1: Local value is a non-variable. This case indicates that the local value (vloc) is
unchangeable and not negotiable.

(a) Column 1: The received non-variable is compared directly with the local one. As
non-variable does not hold negotiation possibility, only equal value leads to accept

action.

(b) Column 2: The received value is a variable with public preference pubpr er ec
, when

(vloc) is the subset of pubpr er ec
, the receiver ensures that the received value can

be accepted by the sender. Then it sends vloc in order to obtain the acceptance
confirmation.

(c) Column 3: The received variable indicates that the sender has its private constraint.
The receiver proposes its local value vloc .

124

CHAPTER 6. SDN FIREWALL ORCHESTRATION

Table 6.2 – RENP protocol

vloc

vr ec

non
variable

variable
pubpre

variable
pripre

proposed value
(vp)

non
variable

(vr ec = vl oc)
→ accept (vr ec)

(vr ec 6= vl oc)
→ r e f use

({vl oc } ⊆ {pubpr er ec })
→ pr opose(vloc)

({vloc }* {pubpr er ec })
→ r e f use

pr opose(vloc) -

variable
pubpre

({vr ec } ⊆ {pubpr eloc
})

→ accept (vr ec)

({vr ec }* {pubpr eloc
})

→ r e f use

(({pubpr el oc
}∩ {pubpr er ec }) 6= ;)

→ pr opose(x)
x = ({pubpr eloc

}∩ {pubpr er ec })

(({pubpr el oc
}∩ {pubpr er ec }) = ;)

→ r e f use

pr opose(x)
x = pubpr el oc

({v pr ec } ⊆ {pubpr el oc
})

→ accept (v pr ec)

({v pr ec }* {pubpr eloc
})

→ r e f use

variable
pripre

({vr ec } ⊆ {pr ipr eloc
})

→ accept (vr ec)

({vr ec }* {pr ipr el oc
})

→ r e f use

(({pr ipr eloc
}∩ {pubpr er ec }) 6= ;)

→ pr opose(x)
x = ({pr ipr eloc

}∩ {pubpr er ec })

(({pr ipr eloc
}∩ {pubpr er ec }) = ;)
→ r e f use

pr opose(x)
x ∈ {pr ipr eloc

}

({v pr ec } ⊆ {pr ipr eloc
})

→ accept (v pr ec)

((({v pr ec }∩ {pr ipr eloc
}) = ;)

∧ ¬neg oti ate)
→ r e f use

((({v pr ec }∩ {pr ipr eloc
}) = ;)

∧neg oti ate)
→ pr opose(x)
x ∈ {pr ipr eloc

}

((({v pr ec }∩ {pr ipr eloc
}) 6= ;)

∧({v pr ec }* {pr ipr el oc
})

∧neg oti ate)
→ pr opose(x)

x ∈ ({v pr ec }∩ {pr ipr eloc
})

(d) Column 4: the case does not exist in RENP protocol because the local variable is
not negotiable.

2. Row 2: Local value is a variable with public preference. This case indicates that the local
variable should be assigned by negotiation.

(a) Column 1: The received non-variable is accepted if it is a subset of the local public
preference pubpr ecloc

.

(b) Column 2: If pubpr ecr ec
has intersection with pubpr ecloc

, the intersection is sent as
a proposition in order to obtain confirmation.

(c) Column 3: Upon receiving a variable, pubpr ecloc
is sent as a proposition.

(d) Column 4: The proposed value v p is accepted if it is a subset of pubpr ecloc
.

3. Row 3: Local value is a variable with private preference. Instead of disclosing private
preference pr ipr eloc

, the local variable is assigned by negotiation process.

(a) Column 1: The received non-variable is accepted if it is a subset of pr ipr el oc
.

(b) Column 2: If received public preference pubpr er ec
has intersection with pr ipr eloc

,
then their intersection is sent as a proposition in order to obtain confirmation.

(c) Column 3: Upon receiving a variable, as pr ipr eloc
can not be completely disclosed,

a value belongs to pr ipr el oc
is generated according to a local strategy. Then, it is

sent.

(d) Column 4: The proposed value v pr ec is accepted if it is a subset of pr ipr eloc
. It is

refused if its intersection with pr ipr eloc
is empty and the local negotiation condition

125

CHAPTER 6. SDN FIREWALL ORCHESTRATION

does not hold at the same time. In the opposite case, another value that belongs to
pr ipr el oc

is generated according to the local strategy. It is sent as a counter offer.
Otherwise, the intersection between v pr ec and pr ipr el oc

is proposed.

The orchestrator in our use case conducts policy negotiation with NSC and NSP2. The or-
chestrator accepts the obligations θ1 for φ1 and θ3 for φ3. However, it proposes a counter offer
for φ2. This case corresponds to column 5 in row 4 of table 6.2 because the received value (in
φ2) v pr ec : quar anti ne has no intersection with pr ipr el oc

: {block, al er t } (in θ2). Thus, the
orchestrator chooses another value = block in pr ipr eloc

as a new proposition. After receiving
the proposition, NSC accepts the new value because bl ock belongs to the local private con-
figuration of φ2. Then the orchestrator establishes the contract between NSC and NSP2 (see
Table 6.3).

Table 6.3 – Final agreement between NSP2 and NSC

NSC

Policy 1

Element ǫ1 ǫ2 ǫ3 ǫ4

Type subject action object context
Domain organization firewall operation protocol time

value NSP pass
{HTTP, TCP,

ICMP}
[0:00,24:00]

Policy 2

Element ǫ1 ǫ2 ǫ3 ǫ4

Type subject action object context
Domain organization firewall operation protocol connection_exc

value NSP block TCP TCP_failed_Time>3
Policy 3

Element ǫ1 ǫ2 ǫ3 ǫ4

Type subject action object context
Domain organization firewall operation protocol attack_detection

value NSP block ICMP DoS_detection

6.3.5 Firewall policies deployment

SDN NSP contains two levels of policy abstraction: (1) a service level abstraction which defines
the business logic. Administrators and tenants express this high level. (2) An OpenFlow level
which interprets the high-level abstraction into infrastructure specific rules. The abstraction
at the service level hides the details of the network configuration and service deployment. It
simplifies the expression of the service policies while the OpenFlow level ensures deploying
the policies into the network elements according to the network state.

The orchestrator sends the high-level policies to SDN firewall applications. Each one inter-
prets the high-level policies into OpenFlow rules and sends them to the controller.

The interpretation process is based on mapping the elements of the high-level policy model
into OpenFlow elements. A high-level policy can be interpreted into more than one OpenFlow
rule.

OpenFlow is based on flow rules. Mainly, it structures policies into six parts:

1. OF.Type can be Flow ADD rules, Flow MODIFY rules and Flow DELETE rules.

2. Matchi ng Fi eld s define the characteristics of the traffic. They describe the header of a
packet to identify network flows.

126

CHAPTER 6. SDN FIREWALL ORCHESTRATION

3. Act i ons specify the operations on the traffic. These actions can be Dr op traffic,
For w ar d to contr ol ler , For w ar d to Por t .

4. Ti mer s indicate the lifetime of the rule (Hard_Timeout) or the ejection time if the rule
does not match for the time interval (Idl e_Ti meout).

5. Met ad at a can be used to save any extra information.

6. Counter s enable the controller to specify OpenFlow rules based on traffic statistics.

Table 6.4 shows the interpretation of the final agreement (Table 6.3) into OF rules. We applied
the following mappings.

1. Ob j ect corresponds to OF Matchi ng Fi eld s. It is the first element which is mapped to
its OF counterparts. In our example: Ob j ect = pr otocol = {UDP,ICMP} corresponds to
two dependent OF Matchi ng Fi el d s: ETH_Ty pe and IP_Pr oto.
UDP corresponds to (ETH_Ty pe = 2048, IP_Pr oto = 17).
ICMP corresponds to (ETH_Ty pe = 2048, IP_Pr oto = 1). The interpretation of the object
element will generate at least an OF rule for each object value.

2. Act i on of the high-level policy corresponds to OpenFlow Act i on Fi eld . OpenFlow also
offers the possibility to express many actions (ACTION_Li st) and to associate them with
the same OF rule. The orchestrator verifies that there is no contradiction between actions
(for example bl ock and al low) in the same policy. For example, block corresponds to
the OF action: DROP.

3. Context element is mapped to OpenFlow components such as TIME_OUTs and Open-
Flow Counter s but also to firewall specific functions. The interpretation of the firewall
function triggers a condition to execute the OpenFlow rule of the Context .
For example, the context: TCP__Fai l ed_Ti me > 3 in poli c y2 triggers TCP connection
counting function and when it exceeds 3 connections Synchronization attempts, it in-
stalls the corresponding rule for poli c y2.

4. NSP is mapped to the topology of the service provider. For each link between the nodes,
the interpretation module generates the corresponding OF rules taking the three map-
pings mentioned above. The OF Matching fields that correspond to the topology are at
least IPsr c , IPd st , PORTsr c , and PORTd st . If the topology is not provided, the firewall ap-
plication installs the OF rules without specifying the topology matching fields.

5. The default type of OF rule is ADD. The firewall application verifies firstly that the rule is
not a duplicate of a previous interpreted rule by comparing both parts. If only the con-
texts are different, then the OF rule type is set to MODIFY. If the firewall application re-
ceives from the Controller an error upon sending a MODIFY rule, the firewall application
changes the MODIFY rule to ADD rule and re-sends it to the controller.

Finally, the agreed contract in our use case (see Table 6.3) is interpreted to OpenFlow rules
by the firewall application (see Table 6.4). Then, it is deployed on the network elements. Policy

1 is interpreted to two Flow Mod ADD OpenFlow rules. Policy 2 and Policy 3 are interpreted to
two Flow Mod Modify OpenFlow rules. Besides, Policy 2 generates a call for the Syn Flooding
Function. Policy 3 generates also a call to a function that alerts SNORT IDS if a DDOS will
happen.

127

CHAPTER 6. SDN FIREWALL ORCHESTRATION

Table 6.4 – Interpretation of the Final Agreement into OpenFlow Rules

OF Type Matching Field Action Timer
Firewall

Function

Policy 1 ADD
ETH_Type=2048
IP_Proto=6

Forward
Controller

Idle_Timeout=0
Hard _Timeout=0

Policy 1 ADD
ETH_Type=2048
IP_Proto=1

Forward
Controller

Idle_Timeout=0
Hard _Timeout=0

Policy 2 MODIFY
ETH_Type=2048
IP_Proto=6

DROP TCP_Count(3)

Policy 3 MODIFY
ETH_Type=2048
IP_Proto=1

DROP
SNORT.ALERT

=DDOS

6.4 Implementation

We implement the proposed policy model into our orchestrator solution (see Sections 5.4 and
5.5 of Chapter 5). The new added classes are implemented in Python language. They have been
integrated mainly into the orchestrator part. Figure 6.1 describes the software architecture of
the implemented solution. The details of the new architecture are as follows:

• Policy Handler: it enables the NSC and the NSPs to express their security requirements
and obligations. It issues a policy template, and it sends it to the IHM Manager. The
policy template is created using a Template database. NSCs and NSPs fill the templates in
the IHM Manager. Then, the filled templates are transmitted to the Policy Handler. The
Policy Handler verifies the contents, aligns them with the policy model and distributes
them to the Cloud Policy Manager.

• Cloud Policy Manager: it compares the policy templates of the NSC and NSPs according
to the assessment rules. It manages the interaction between the different processes of
the policy model.

• Ranking Agent: it determines the best NSCs candidates using the ranking rules.

• Negotiation Agent: it negotiates the security requirements with NSC and the chosen NSP
according to our proposed RENP Protocol. The Cloud Policy Manager triggers the nego-
tiation process.

• Contract Issuer: it issues a contract between NSC and NSPs according to the policy tem-
plate and the negotiation terms. The contract is sent to the corresponding peers and
saved in the Policy Data Base (Global Policy DB). The Cloud Policy Manager also triggers
this process.

• Policy Server: It transforms the contract into high-level security policies in ABAC and
saves the results into the Global Policy DB. At the same time, it manages the interactions
with the firewall applications.

128

CHAPTER 6. SDN FIREWALL ORCHESTRATION

Figure 6.1 – The Policy Model Implementation

Global
Logger

Firewall
Manager

Global Access

Table

IHM
Manager

Interpreter

Sentinel

Protocol
Serializer

Protocol
Parser

Policy Server

Local Access
Table

Topology
Handler

Engine Local
Logger

Template
(XML File)

Policy
Handler

Ranking
Agent

Cloud Policy
Manager

Contract
Issuer

Negotiation
Agent

Orchestrator

Firewall Application

6.5 Evaluation

The objective of our evaluation is to measure the performance of our policy model regarding
processing the number of requirements. Besides, we measure the global performance of our
solution from the expression of the requirements until the installation of the corresponding
OpenFlow rules in the network elements.

6.5.1 Testbed

We deploy our solution in the B-Secure platform (see Section 5.6.1 of Chapter 5). We install the
new architecture in the SDN firewall machine. In the data plane device machine, we run OVS.

In the central machine, we deploy NSC and NSP2 of the use case (see Section 6.3.1). The
orchestrator generates the contract and sends the high-level policies to the SDN firewall appli-
cation. Then, the latter interprets the policies to OpenFlow rules and asks the RYU controller to
install them on OVS. We vary the number of NSC’s r equi r ement s from 1 to 2500 policies. We
measure the following performance metrics:

1. Policy Processing Time (PPT) is the time that the orchestrator needs to process the policy
expression.

2. Orchestrator Processing Time (OPT) is the total time taken by the orchestrator from the
first policy expression to sending the last policy.

129

CHAPTER 6. SDN FIREWALL ORCHESTRATION

3. Firewall Application Processing Time (FAPT) is the total time taken by the firewall appli-
cation to process the policies.

4. Controller Processing Time (CPT) is the total time taken by the controller to send all the
OpenFlow rules.

5. Infrastructure Processing Time (IPT) is the total time that the infrastructure (Controller-
OVS link and OVS) needs to install all the OF rules.

6. Policy Processing Total Time (PPTT) is the total policy provisioning time.

7. Orchestrator Setup Rate (OSR) is the speed of the orchestrator:

OSR = Number o f Pol i ci es/OPT (6.1)

8. Firewall Setup Rate (FSR) is the speed of the firewall Application:

FSR = Number o f Pol i ci es/FAPT (6.2)

9. Controller Setup Rate (CSR) is the speed of the Controller:

CSR = Number o f Open f low Rules/CPT (6.3)

10. Infrastructure Setup Rate (ISR) is the speed of the Infrastructure:

ISR = Number o f Open f low Rules/IPT (6.4)

6.5.2 Evaluation Results

Figure 6.2a and Figure 6.2b display the different measured processing times during the exper-
iment. The processing times in all the figures increase with the rise of rule number. In Fig-
ure 6.2a, we observe that PPT increases slowly with a starting value of 0.00236s for 10 policies
to a maximal value of 0.6421s for 2500 policies. In addition, PPT’s values are the lowest among
all processing times. FAPT is slightly higher than CPT. Moreover, OPT is slower than both
FAPT and CPT. For example, the values for 2500 policies are: 2.700s, 2.254s and 2.141s. How-
ever, the largest processing times are those of IPT as shown in Figure 6.2b ((10,0.0034s) and
(2500,11.025s)).

The reasons are due to the amount and nature of the processing that each layer performs.
The orchestrator runs many processes to generate the final agreement. The firewall applica-
tion performs the interpretation of high-level policies to OpenFlow rules, and the controller
deploys the generated OF rules in the network element. The performance of OVS impacts the
infrastructure. Our solution accumulates a processing time of 7.96s with 2500 rules, while the
infrastructure processing time is 1.5 times higher (2500,11.02s). Around 50% (in Average) of
PPTT is taken by the infrastructure to deploy the rules. For example, for 2500 rules, it takes
18.12s from the time of releasing the initial policy request in the orchestrator to the time of
deploying the final OpenFlow rule in the network element. 60% of this time is taken by the
infrastructure alone (see Figure 6.2b).

Figure 6.2c displays the different policy setup rates in the infrastructure. We observe three
different states. In the first state, CSR, FSR, OSR and ISR increase to reach their top values
respectively (100,5186), (100,4838), (50,3150), (10,2941). In the second stage, all the rates de-
crease rapidly. The diminution is linear for CSR, FSR and OSR while fluctuating for ISR. In
the third stage, we observe that all the rates reduce with the increase in the number of policies.
The rates of our solution reach a value of around 1000 Pol i ci es/s at 2500 while ISR continues

130

CHAPTER 6. SDN FIREWALL ORCHESTRATION

Figure 6.2 – Average Packet Processing Times according to the different experiments

(a) Policy Processing Times

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

0
0,25

0,5
0,75

1
1,25

1,5
1,75

2
2,25

2,5
2,75

#Number of NSC’s Policies

#T
im

e
(s

)

PPT
OPT
FAPT
CPT

(b) Policy Processing Times

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

0
2
4
6
8

10
12
14
16
18
20

#Number of NSC’s Policies

#T
im

e
(s

)

IPT
PPTT

(c) Policy Processing Rates

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

#Number of NSC’s Policies

#T
im

e
(s

)

ISR
OSR
FSR
CSR

131

CHAPTER 6. SDN FIREWALL ORCHESTRATION

to hold lower values. This observation comforts the previous results. The load on OVS causes
ISR low rates. The latter spends an important time to install the OpenFlow rules. We observe
that the orchestrator has lower performance than the firewall application. This observation
consolidates the explanations provided previously.

Our solution has good performance with around 1000 policies/s. In practice, the number of
firewall rules depends on the size of the topology and the granularity of each rule. Furthermore,
policies changes do not need the repetition of all the processes because OpenFlow enables the
update of the installed rules.

6.6 Discussion

In this chapter, we have proposed a cloud policy model to express firewall policies, assess dif-
ferent NSCs’ requirements and NSPs’ obligations, select the best NSC candidate, negotiate and
agree on a common policy contract then deploy the agreement in an SDN platform. We have
also integrated the solution into our SDN firewall architecture. Moreover, we have deployed
our solution in a physical environment, and we have evaluated its performance.

Our framework brings many advantages. It offers interoperability between different NSCs
and NSPs through a unified language that simplifies administrator’s tasks. It abstracts the com-
plexity of the network by hiding the infrastructure details. Besides, it automatizes firewall poli-
cies orchestration.

Besides, the evaluation shows promising results regarding the deployment rate. Our so-
lution can deploy 1000 firewall policies/s from the expression phase to the installation of the
OpenFlow rules in the network element. Moreover, we have observed that between 50% and
60% of the total policy time is taken by the network element to install the corresponding Open-
Flow rules.

132

Part IV

Conclusion

133

CHAPTER 7. CONCLUSION

Chapter 7

Conclusion

“ Every once in a while,

a new technology, an old problem,

and a big idea turn into an

innovation. ”

Dean Kamen

Contents

7.1 General Conclusion . 135

7.2 Contribution Summary . 135

7.2.1 SDN Vulnerability analysis . 135

7.2.2 SDN stateful firewall . 137

7.2.3 SDN policy orchestration . 139

7.3 Perspectives . 140

.1 Appendix AHP Computations . I

134

CHAPTER 7. CONCLUSION

7.1 General Conclusion

The work presented in this thesis contributed to identifying SDN security vulnerabilities and
their severity, to improving firewalls with SDN features and to proving their feasibility by com-
paring their performance and resistance to a conventional firewall, and to enhancing the fire-
wall policy management in the case of SDN as a service. Our research work has been performed
based on three ideas. The first one is the possibility of using AHP to integrate it into CVSS in
the context of SDN. We improve the computation of SDN vulnerabilities severity thanks to this
integration. The combination of AHP with CVSS helps us to identify the attack surface of SDN.
The second idea is that integrating SDN into firewalls helps to improve their resistance and
performance. Our SDN firewall has better or acceptable performance when compared to Net-
Filter. The third idea is using SDN orchestration for firewall policy management to provide
firewall policies in SDN as a service.

In this thesis, we have explored, studied and developed the relationship between SDN and
security. We have presented in chapter 2, SDN principles, concepts, architecture, its challenges,
and benefits. We have also introduced the features of OpenFlow. Then, we have studied the
literature on the relationship between SDN and security in chapter 3. We have shown on the
one hand that SDN features enlarge the attack surface. As a result, SDN assets are vulnerable
and can even be even used as attack vectors to attack other SDN assets. We showed that the
controller is a single point of failure because it concentrates all the SDN features at the same
time. On the other hand, we have seen that SDN improves security applications thanks to
its advantages such as simplification, independence, agility, global knowledge, convergence,
automation, and orchestration. We showed that SDN is an enabler for security applications. It
improves monitoring, detection, prevention, mitigation and defense mechanisms.

The studies that we have performed in chapter 2 and 3 lead us to address two aspects of the
relationship between SDN and security. The first aspect that we have explored is related to se-
curity for SDN. We have provided in chapter 4 an analysis of SDN vulnerabilities to understand
the security of its assets and SDN attack surface. The second aspect of the relationship that
we have addressed concerns security for SDN. In this aspect, chapter 5 has introduced SDN
concepts to firewalls to improve their performance and resistance. Besides, chapter 6 has used
SDN orchestration to enhance policy management in the case of SDN as a cloud service.

7.2 Contribution Summary

The work in this thesis contributed to SDN and security by identifying and quantifying SDN
vulnerabilities, by improving firewalls with SDN simplification, independence, convergence,
automation, and orchestration.

7.2.1 SDN Vulnerability analysis

Chapter 4 addresses a vulnerability analysis method that integrates CVSS with AHP to compute
the severity of SDN assets. The process consists firstly of identifying SDN vulnerabilities by
combining a model of SDN assets with Open Access, Non-Identification, Non-Secrecy, Repudi-
ation, Alterability, and Disruption. As a result, we build 120 new SDN vulnerabilities that cover
all SDN potential vulnerabilities. We compute the severity of these vulnerabilities using CVSS.
We have chosen the options of the CVSS metrics based on many assumptions related to our
knowledge of SDN and security. We have calculated the severity in the base, temporal and the

135

CHAPTER 7. CONCLUSION

environmental groups. The preliminary results that we have obtained showed that the vulner-
ability surface is between 8.3 (high severity) and 5.2 (Medium Severity) in the base group. The
different interfaces and their agents have the highest scores because they enlarge the attack
scope and are more attractive to being exploited by an attacker than the other assets. In the
temporal group, the vulnerability surface reduces between 7.2 and 4.3 due to the unavailability
of mature malicious code and confirmed attacker methods that ease the exploitation of SDN
vulnerabilities. Likewise, the vulnerability surface decreases in the environment group due to
the potential integration of TLS in the interfaces and their agents. For this reason, disruption
attacks become more severe than Open Access attacks. These CVSS results indicate a problem
which is the inadequacy of CVSS to take into account SDN specific features. In fact, we observe
that the average severity scores of controller assets are equal to those of network element assets.
We observe the same equality between the different interfaces in the control layer and their re-
spective agents in the application layer and the infrastructure layer. However, the severity of
controller assets should be higher than their counterparts in the other SDN layers.

We enhance the vulnerability severity scores by introducing AHP weights into the compu-
tations. AHP helps to measure the importance of the impact of each asset on SDN security. We
defined the criteria and alternatives for our AHP. We choose SDN features such as programma-
bility, centralization, federation, and externalization as criteria. Besides, we define SDN assets
as alternatives to find the most important asset. The objective of the AHP is to find the most
SDN assets whose criteria impact the security. We perform the following calculations to deter-
mine the importance of each assets impact on security:

1. Criteria Weights: we calculate the pairwise comparison matrix of the criteria based on
many assumptions related to the impact of SDN features on security. The matrix deter-
mines the importance of each criterion to the other. We calculate the weight vector to
determine the weights of each criterion. We find that centralization has the highest im-
pact on security with a weight of 0.5694. We performed consistency calculation to verify
the quality of our calculation, and we obtain a consistency at 98% .

2. Alternatives Weights: we compute the pairwise comparison matrix of the alternatives
in each criteria dimension based on many assumptions related to the influence of the
criteria in determining the impact of each asset on SDN security. We obtained four ma-
trices. Each matrix determines the importance of the impact of an SDN asset on security
according to each criterion. We calculate the weights of each asset in each criteria dimen-
sion. We find that Controller Function and C-Agent have the most important weights in
each dimension. We also compute the consistency ratio to check the quality of our com-
putations. We obtained a consistency level between 97% and 100%.

3. Consolidation of the alternatives with the criteria: we integrate the alternatives weights
to the criteria weights to determine the importance of the impact of each SDN asset on its
security. As a result, we observed that controller layer assets have the highest importance
especially the controller agent and controller function.

We integrate the AHP weights to the CVSS results to adapt the severity computations to SDN
specific features. We enhance the scores as follows. The vulnerability surface increases due to
the impact of SDN features. It becomes in the base group between 9 and 5.7. The controller
layer vulnerabilities increase and become the most severe comparing to their counterparts in
other layers. As a result, the introduction of AHP into CVSS breaks the severity equality rela-
tionship between controller assets and the rest.

The main advantages of our approach are as follows:

1. We rely on a computation model based on mathematics to determine the severity of SDN
vulnerabilities.

136

CHAPTER 7. CONCLUSION

2. We determine the importance of the impact of each SDN asset on security using another
mathematical model for decision making.

3. All our AHP computation are consistent with at most 3% errors.

4. We are the first to compute the severity of SDN vulnerabilities and quantify its vulnera-
bility surface.

However, our work has a limitation related to the assumptions we have used for CVSS and
AHP computations. These assumptions have been built according to our expertise. They can
be different from one expert to another.

7.2.2 SDN stateful firewall

Chapter 5 describes our SDN stateful firewall. The objective of this chapter was to prove that
the softwarization of firewalls using SDN features is advantageous for network security and
the performance of firewalls. We incorporate SDN programmability, centralization, federation
and externalization into the design of firewalls, to resolve firewall issues related to complexity,
cost, perimeter security and policy reinforcement. Besides, we develop a proof of concept of
our proposition and evaluate it to determine its performance and resistance. We perform the
following steps:

1. We propose an SDN firewall architecture and formalism to design our solution. The fire-
wall architecture has principally two software layers. In the management layer, we pro-
pose an orchestration that is responsible for the interaction with the administrator and
the centralization of firewall policies. In the application layer, we propose an SDN firewall
application that integrates a stateful filter to operate. The firewall application receives as
an entry the FSM of a network protocol and produces as an output a SEFSM. It transforms
the conditions and actions of the FSM into two classes. The first one is the firewall and
controller functions calls. The second class is OpenFlow rules. Indeed both transforma-
tions determine the ability of our firewall to automatize its behavior and reprogram the
network elements with firewall rules. We propose and formalize two types of behaviors
for the firewall application as follows:

(a) The reactive behavior generates the SEFSM each time the conditions corresponding
to a possible transition are met for each current transition. As a result, it installs the
corresponding OpenFlow rules and calls the corresponding functions.

(b) The proactive behavior generates the SEFSM completely in one time for each active
connection. It installs all the corresponding firewall rules on the network elements.
It receives a copy of the conditions to call the corresponding functions for each tran-
sition.

2. We apply the SEFSM formalism on TCP FSM. We generate two SEFSMs. The first one
integrates the reactive behavior and generates the OpenFlow rules and function calls in
each TCP transition. The second SEFSM installs all the firewall rules that correspond to
TCP transitions. It receives a copy of the TCP packets, and it verifies their legitimacy. If it
does not find an anomaly, it deletes the previous OpenFlow rules that do not correspond
to a possible transition and calls the corresponding functions.

3. We analyze the performance of our SDN firewall theoretically. We find that the num-
ber of packets-in and the maximum number of rules are bounded by the number of the
states of the FSM. If the number of states increases, it is likely that both the number of the
packets-in and the maximum number of rules will increase. The latter metric affects the

137

CHAPTER 7. CONCLUSION

scalability of our firewall. Besides, we show that the relationship between the OpenFlow
table size and the maximum number of rules supported by a network element determine
the maximum number of connections that are supported by our firewall. Finally, we de-
termine that the firewall processing time is impacted by the feedback loop time in both
the reactive and proactive behaviors. The more the firewall feedback time increases the
more the packet delivery time increases. One needs to reduce the feedback loop time to
improve the packet delivery time.

4. We implement our solution in Python language, and we have evaluated it in a data cen-
ter platform. The objective of the evaluation was to estimate the performance of the SDN
firewall and its capacity to resist to SYN-Flooding attacks. We have compared the perfor-
mance and resistance values of the reactive SDN firewall with the proactive SDN firewall
and with those of NetFilter. We have performed 14 different experiments that injects a
traffic of 30.103 to 150.103 connections. We take into account three variables with each
type of firewall. These variables are as follows:

(a) The number of access rules to determine the impact of the size of firewall rules.

(b) The size of the transferred data to evaluate the impact of the data on the firewall.

(c) The flow rate of SYN-Flooding attacks to determine the resistance of the firewalls
against SYN-Flooding attacks and their impacts on the firewall performance.

As a result, we find out that NetFilter and the reactive firewall perform better under the
initial conditions. The performance of the proactive behavior starts to decrease from
120.103. The number of access rules impacts the reactive behavior because it performs
the filtering in the firewall application. The size of the data impacts all three firewalls.
NetFilter is the most heavily impacted while the proactive firewall is the least impacted.
The rates of SYN-Flooding impact both the reactive firewall and NetFilter. These impacts
on NetFilter increase its packet processing times and the number of re-transmissions. We
have also noticed that the decrease in the performance of the proactive mode is related
to the load on the OVS resources.

The main advantages of our solution are as follows:

1. It turns network elements to firewalls. This feature can reduce the cost of legacy firewalls.

2. It automatizes the firewall behavior from software by reprogramming the network ele-
ment using OpenFlow and calling the firewall and controller functions.

3. It pervades the firewall rules throughout the whole network without needing to install
firewall devices or any manual intervention.

4. It filters packets on different granular levels.

5. Thanks to its federation, it can be run on any SDN Controller.

6. It improves firewall performance and resistance in case of large data transfers and SYN-
Flooding attacks.

However, our work is limited by the capacity of OpenFlow specification and implementa-
tions. In fact, we handle firewall functions in the firewall application, and we can not perform
firewall operations using OpenFlow such as counting the number of SYN, learning the state of
the connection, comparing header fields in the network element. The main reason is related to
the limitations of OpenFlow.

138

CHAPTER 7. CONCLUSION

7.2.3 SDN policy orchestration

Chapter 6 presents an orchestration framework for firewall policies management in the context
of SDN as service. The framework is the first work that tackles the life cycle of firewall policies
from their expression to their deployment of network elements completely. The orchestrator
offers an expression language for NSC’s obligations and NSP’s offers. It evaluates the different
NSP to select the best one that meets the requirements of NSC. It negotiates the policies be-
tween NSC and the selected NSP. Then, it builds a common agreement between them based
on the negotiation results. The orchestrator sends this contract to the firewall application. The
latter deploys it as OpenFlow rules in the network elements. We perform the following steps:

1. Unified policy language: we present a formalism to unify the expression of the obliga-
tions and the offers. The objective of the formalism is to federate the interaction between
NSPs and NSCs.

2. Assessment of policies: The goal of this step is to map the obligations with the offers to
determine the NSP that best satisfies the NSC. We have compared the obligations and the
offers based on the relations between the elements of the policies. Then we have derived
and formalized the relationships between the policies. These relationships determine
the selection of the best NSP. We outline three relations as follows:

(a) Match relationship determines the relationship by which all the elements of the two
policies are equal. If all the policies have match relationship, the NSP rank is gold.

(b) Mismatch relationship determines the relationship in which there are at least two
elements that are incomparable. If two policies are in Mismatch, the NSP is rejected.

(c) Potential match relationship determines the relationship of which all the elements
are incomparable, and there are at least two of them that have an unequal relation-
ship. If two policies are in a Potential match, the NSP rank is silver.

3. Negotiation of policies: we propose a negotiation protocol (RENP) to negotiate the poli-
cies when the NSP is ranked as silver. RENP processes the different states that can be
taken by the values of the elements of NSP regarding the local values of the elements of
NSC. Depending on the cases, the RENP accepts the NSP value, refuses it or proposes a
new one that meets both the NSC and NSP. Thanks to RENP, the NCP and NSC can reach
an agreement.

4. Deployment of firewall policies: we present a deployment model based on mapping
policy element with OpenFlow rules.

5. Implementation of the Framework and evaluation: We implement a prototype of the
framework in the orchestrator of our firewall solution. We evaluate its performance by
varying the number of obligations from 1 to 2500 policies. We have found that the pro-
cessing times of all the different processes of our solution, the controller and the network
element rise with the increase of the number of policies. When we compare the process-
ing time, we observe that 60% of the total processing time is taken by the network ele-
ment alone because it spends more time installing the OpenFlow rules when the number
of policies increases. We show that our framework can process 1000 policies per second.

The main advantages of our framework are as follows:

1. It is the first to offer a complete process that orchestrates the whole life cycle of firewall
policies in SDN.

139

CHAPTER 7. CONCLUSION

2. It unifies the obligations and offers based on the same expression model. This unification
simplifies the expression of policies and reduces policy inconsistencies.

3. It pervades the firewall policies on all the firewall applications while reinforcing them
according to their scopes (in the case the topology is known).

4. It transforms SDN firewalls as an enabler for a secure SDN as a service.

5. It processes the firewall policies with a rate of 1000 policies per second in all the SDN.

However, our framework is limited by two aspects. NSCs and NSPs must express their obli-
gations and offers using the proposed language to reach an agreement. The selection algorithm
does not tackle the case in which two or more NSPs have the same ranking.

7.3 Perspectives

The work presented in this thesis has addressed issues regarding SDN vulnerability analysis,
SDN firewall design, and development and Firewall policy orchestration. We plan to improve
the vulnerability analysis, to enhance the performance of the SDN firewall and the processing
of the orchestrator.

Regarding the work presented in chapter 4, our next objective is to employ the SDN vul-
nerabilities and their severity scores to calculate the severity of SDN security risks and their
likelihood. The idea is to define the path to an SDN security risk based on the relationship
between SDN vulnerabilities. A forest of possibilities can define risk. Each possibility is a tree
of vulnerability. The risks are the branches of the tree. Their severity and likelihood are the
leaves. In each tree, the relations between the vulnerabilities is a logical AND. The relations
between the trees is a logical OR. We will work on a solution that automatically generates such
forests and then calculates the severity of the risk and likelihood using the relations between
the branches and between the trees.

For future directions regarding the work presented in chapter 5, we propose to work on the
issue of the feedback loop time. One direction that we have started in a master internship is to
delegate the firewall application as a container next to the network element with a dedicated
controller. The delegated firewall application and its controller manage all the local states of
the network elements. They notify the root firewall application about the state of the connec-
tions to enable it to construct a domain state awareness. This knowledge concentrates all the
notifications coming from each delegated firewall application. Another proposition is to rein-
force the packet-in processing in the firewall application. Suppose the following case arises;
we have a connection between a client and the server and their packets pass through many
network elements in intra-domain and inter-domain scopes. In the actual case, each time a
network element receives the packet it forwards it to the firewall application. This behavior
is repeated even if the packet has already been processed in the first network element that is
linked to the source of the packet. The idea is to deploy OpenFlow rules on all the network ele-
ments that belong to the path to make them forward the packet to the next hop directly while
avoiding the feedback loop. When the packet is processed far the first time, this mechanism is
executed to improve the packet delivery time.

Besides, we need to investigate in-depth the evaluation results, especially, the performance
of OVS. We need to understand the impact of OpenFlow ADD and DELETE rules on the perfor-
mance of OVS. Besides, we need to understand the behavior of OVS while dealing at the same
time with an essential load of packet-in, packet-out and flow mod while its buffer and tables
are occupied. This investigation will help us understand the behavior of the proactive mode in
the initial conditions.

140

CHAPTER 7. CONCLUSION

The work of chapter 6 can be extended with context awareness using SDN global knowl-
edge. The purpose of such improvement is to enable the orchestrator to deploy the firewall
policies intelligently and to adapt them to the changes happening in the network. This en-
hancement needs to modify the expression language with new concepts such as user groups,
application types, and reputation. A user with an IP address can have different firewall poli-
cies according to its membership in each user group because they have different roles in each
group. An application can behave differently in different contexts. For example, it solicits a net-
work element port when it needs to send user data, and it solicits another port when it needs to
send its commands. In this case, the context awareness enables the orchestrator to adapt the
policies for each application behavior. Besides, the orchestrator can deny or permit access to
other resources using their reputations. It adapts the firewall rules according to the updates of
the reputation. For example, if the reputation of a server becomes terrible, the orchestrator will
change the firewall policies to deny or limit communications with this server. The integration
of context awareness into the orchestrator is essential to keeping the consistency of firewall
policies and improve security. The orchestrator will receive domain knowledge from all its con-
trollers. Each control includes information such as resource utilization, QOS, topology, and
other information in its knowledge context. The orchestrator will construct holistic knowledge
of the network. Then, it extracts information from the holistic knowledge of the global context.
It combines them with the other context information that the administrator submitted using
the orchestrator expression language. As a result, the orchestrator dynamically generates new
policies that take the context into consideration.

The last but not least idea is related to the future of SDN. According to our knowledge, there
are two significant areas of SDN that will determine its fate.

The first area is controller scalability. It is a hot subject. The controller must keep accept-
able performances when its load increases. We think that controller delegation and separating
the local control function from the global control function can improve the controller scala-
bility. The idea is to delegate (as aforementioned) all the local decision to a simpler controller
that can be executed as a VNF (Virtual Network Function) next to the network element. This
delegate will be in charge of all the local control operations and will report its local view to the
global controller. As a result, the scalability of the controller will improve. Another advantage
of this solution is the protection of the controller by its delegate. We can hide the identity of the
controller and expose only those of the delegates. In the case of an attack, the delegates play a
shield to protect the controller.

The second area is security for SDN. The research community needs to work on protecting
SDN assets especially those of the controller. We propose many improvements. The first one
is to put access control mechanisms in the controller on the different interfaces. The access
control will authorize or deny the resource requests and data of SDN applications, network
elements, and other controllers. It determines their different roles and rights through these
interactions in the interfaces. The second idea is to encrypt and sign all the interactions in all
the interfaces to avoid confidentiality and integrity violations.

141

Part V

Appendix

142

.1 Appendix AHP Computations

In this section, we detail the computation of the AHP alternative weights as follows:

I

A Programmability

Pairwise comparisons

among Assets

Applicatio

n Function

Applicatio

n Content

Controler

Function

Controler

Content C-Agent

Controler

RDB

Data

Processing

Engine

Data

Source Data Sink

Network

Element

RDB

A-CPI

Agent A-CPI C-CPI D-CPI

D-CPI

Agent Manager
Management

Content

Application

Coordinator

Controler

Coordinator

Network

Element

Coordinator

Application Function 1,00 3,00 1,00 3,00 0,50 2,00 4,00 4,00 4,00 4,00 2,00 2,00 2,00 2,00 2,00 2,00 4,00 3,00 3,00 3,00

Application Content 0,33 1,00 0,33 1,00 0,33 1,00 1,00 1,00 1,00 1,00 0,50 0,50 0,50 0,50 0,50 0,50 1,00 0,50 0,50 0,50

Controler Function 1,00 3,00 1,00 3,00 0,50 2,00 4,00 4,00 4,00 4,00 2,00 2,00 2,00 2,00 2,00 2,00 4,00 3,00 3,00 3,00

Controler Content 0,33 1,00 0,33 1,00 0,50 1,00 1,00 1,00 1,00 1,00 0,50 0,50 0,50 0,50 0,50 0,50 1,00 0,50 0,50 0,50

C-Agent 2,00 3,00 2,00 2,00 1,00 2,00 4,00 4,00 4,00 4,00 2,00 2,00 2,00 2,00 2,00 2,00 4,00 3,00 3,00 3,00

Controler RDB 0,50 1,00 0,50 1,00 0,50 1,00 1,00 1,00 1,00 1,00 0,50 0,50 0,50 0,50 0,50 0,50 1,00 0,50 0,50 0,50

Data Processing

Engine 0,25 1,00 0,25 1,00 0,25 1,00 1,00 1,00 1,00 1,00 0,25 0,25 0,25 0,25 0,25 0,25 0,50 0,25 0,25 0,25

Data Source 0,25 1,00 0,25 1,00 0,25 1,00 1,00 1,00 1,00 1,00 0,25 0,25 0,25 0,25 0,25 0,25 0,50 0,25 0,25 0,25

Data Sink 0,25 1,00 0,25 1,00 0,25 1,00 1,00 1,00 1,00 1,00 0,25 0,25 0,25 0,25 0,25 0,25 0,50 0,25 0,25 0,25

Network Element RDB 0,25 1,00 0,25 1,00 0,25 1,00 1,00 1,00 1,00 1,00 0,25 0,25 0,25 0,25 0,25 0,25 0,50 0,25 0,25 0,25

A-CPI Agent 0,50 2,00 0,50 2,00 0,50 2,00 4,00 4,00 4,00 4,00 1,00 1,00 0,50 2,00 2,00 2,00 4,00 2,00 2,00 2,00

A-CPI 0,50 2,00 0,50 2,00 0,50 2,00 4,00 4,00 4,00 4,00 1,00 1,00 0,50 2,00 2,00 2,00 4,00 2,00 2,00 2,00

C-CPI 0,50 2,00 0,50 2,00 0,50 2,00 4,00 4,00 4,00 4,00 2,00 2,00 1,00 3,00 3,00 2,00 4,00 2,00 2,00 2,00

D-CPI 0,50 2,00 0,50 2,00 0,50 2,00 4,00 4,00 4,00 4,00 0,50 0,50 0,33 1,00 1,00 2,00 4,00 2,00 2,00 2,00

D-CPI Agent 0,50 2,00 0,50 2,00 0,50 2,00 4,00 4,00 4,00 4,00 0,50 0,50 0,33 1,00 1,00 2,00 4,00 2,00 2,00 2,00

Management Function 0,50 2,00 0,50 2,00 0,50 2,00 4,00 4,00 4,00 4,00 0,50 0,50 0,50 0,50 0,50 1,00 2,00 1,00 1,00 1,00

Management Content 0,25 1,00 0,25 1,00 0,25 1,00 2,00 2,00 2,00 2,00 0,25 0,25 0,25 0,25 0,25 0,50 1,00 0,50 0,50 0,50

Application

Coordinator 0,33 2,00 0,33 2,00 0,33 2,00 4,00 4,00 4,00 4,00 0,50 0,50 0,50 0,50 0,50 1,00 2,00 1,00 1,00 1,00

Controler Coordinator 0,33 2,00 0,33 2,00 0,33 2,00 4,00 4,00 4,00 4,00 0,50 0,50 0,50 0,50 0,50 1,00 2,00 1,00 1,00 1,00

Network Element

Coordinator 0,33 2,00 0,33 2,00 0,33 2,00 4,00 4,00 4,00 4,00 0,50 0,50 0,50 0,50 0,50 1,00 2,00 1,00 1,00 1,00

B Programmability

Normalized

Matrix

Application

Function

Application

Content

Controler

Function

Controler

Content C-Agent

Controler

RDB

Data

Processing

Engine

Data

Source Data Sink

Network

Element

RDB

A-CPI

Agent A-CPI C-CPI D-CPI

D-CPI

Agent Manager
Management

Content

Application

Coordinator

Controler

Coordinator

Network

Element

Coordinator

Application

Function 0,0960 0,0857 0,0960 0,0882 0,0583 0,0625 0,0702 0,0702 0,0702 0,0702 0,1270 0,1270 0,1491 0,1013 0,1013 0,0870 0,0870 0,1154 0,1154 0,1154

Application

Content 0,0320 0,0286 0,0320 0,0294 0,0388 0,0313 0,0175 0,0175 0,0175 0,0175 0,0317 0,0317 0,0373 0,0253 0,0253 0,0217 0,0217 0,0192 0,0192 0,0192

Controler

Function 0,0960 0,0857 0,0960 0,0882 0,0583 0,0625 0,0702 0,0702 0,0702 0,0702 0,1270 0,1270 0,1491 0,1013 0,1013 0,0870 0,0870 0,1154 0,1154 0,1154

Controler

Content 0,0320 0,0286 0,0320 0,0294 0,0583 0,0313 0,0175 0,0175 0,0175 0,0175 0,0317 0,0317 0,0373 0,0253 0,0253 0,0217 0,0217 0,0192 0,0192 0,0192

C-Agent 0,1920 0,0857 0,1920 0,0588 0,1165 0,0625 0,0702 0,0702 0,0702 0,0702 0,1270 0,1270 0,1491 0,1013 0,1013 0,0870 0,0870 0,1154 0,1154 0,1154

Controler RDB 0,0480 0,0286 0,0480 0,0294 0,0583 0,0313 0,0175 0,0175 0,0175 0,0175 0,0317 0,0317 0,0373 0,0253 0,0253 0,0217 0,0217 0,0192 0,0192 0,0192

Data Processing

Engine 0,0240 0,0286 0,0240 0,0294 0,0291 0,0313 0,0175 0,0175 0,0175 0,0175 0,0159 0,0159 0,0186 0,0127 0,0127 0,0109 0,0109 0,0096 0,0096 0,0096

Data Source 0,0240 0,0286 0,0240 0,0294 0,0291 0,0313 0,0175 0,0175 0,0175 0,0175 0,0159 0,0159 0,0186 0,0127 0,0127 0,0109 0,0109 0,0096 0,0096 0,0096

Data Sink 0,0240 0,0286 0,0240 0,0294 0,0291 0,0313 0,0175 0,0175 0,0175 0,0175 0,0159 0,0159 0,0186 0,0127 0,0127 0,0109 0,0109 0,0096 0,0096 0,0096

Network Element

RDB 0,0240 0,0286 0,0240 0,0294 0,0291 0,0313 0,0175 0,0175 0,0175 0,0175 0,0159 0,0159 0,0186 0,0127 0,0127 0,0109 0,0109 0,0096 0,0096 0,0096

A-CPI Agent 0,0480 0,0571 0,0480 0,0588 0,0583 0,0625 0,0702 0,0702 0,0702 0,0702 0,0635 0,0635 0,0373 0,1013 0,1013 0,0870 0,0870 0,0769 0,0769 0,0769

A-CPI 0,0480 0,0571 0,0480 0,0588 0,0583 0,0625 0,0702 0,0702 0,0702 0,0702 0,0635 0,0635 0,0373 0,1013 0,1013 0,0870 0,0870 0,0769 0,0769 0,0769

C-CPI 0,0480 0,0571 0,0480 0,0588 0,0583 0,0625 0,0702 0,0702 0,0702 0,0702 0,1270 0,1270 0,0745 0,1519 0,1519 0,0870 0,0870 0,0769 0,0769 0,0769

D-CPI 0,0480 0,0571 0,0480 0,0588 0,0583 0,0625 0,0702 0,0702 0,0702 0,0702 0,0317 0,0317 0,0248 0,0506 0,0506 0,0870 0,0870 0,0769 0,0769 0,0769

D-CPI Agent 0,0480 0,0571 0,0480 0,0588 0,0583 0,0625 0,0702 0,0702 0,0702 0,0702 0,0317 0,0317 0,0248 0,0506 0,0506 0,0870 0,0870 0,0769 0,0769 0,0769

Management

Function 0,0480 0,0571 0,0480 0,0588 0,0583 0,0625 0,0702 0,0702 0,0702 0,0702 0,0317 0,0317 0,0373 0,0253 0,0253 0,0435 0,0435 0,0385 0,0385 0,0385

Management

Content 0,0240 0,0286 0,0240 0,0294 0,0291 0,0313 0,0351 0,0351 0,0351 0,0351 0,0159 0,0159 0,0186 0,0127 0,0127 0,0217 0,0217 0,0192 0,0192 0,0192

Application

Coordinator 0,0320 0,0571 0,0320 0,0588 0,0388 0,0625 0,0702 0,0702 0,0702 0,0702 0,0317 0,0317 0,0373 0,0253 0,0253 0,0435 0,0435 0,0385 0,0385 0,0385

Controler

Coordinator 0,0320 0,0571 0,0320 0,0588 0,0388 0,0625 0,0702 0,0702 0,0702 0,0702 0,0317 0,0317 0,0373 0,0253 0,0253 0,0435 0,0435 0,0385 0,0385 0,0385

Network Element

Coordinator 0,0320 0,0571 0,0320 0,0588 0,0388 0,0625 0,0702 0,0702 0,0702 0,0702 0,0317 0,0317 0,0373 0,0253 0,0253 0,0435 0,0435 0,0385 0,0385 0,0385

Weights

Wp Products Ratio

Application Function 0,0947 2,0355 21,5046

Application Content 0,0257 0,5396 20,9627

Controler Function 0,0947 2,0355 21,5046

Controler Content 0,0267 0,5572 20,8602

C-Agent 0,1057 2,2509 21,2963

Controler RDB 0,0283 0,5888 20,7958

Data Processing Engine 0,0181 0,3710 20,4533

Data Source 0,0181 0,3710 20,4533

Data Sink 0,0181 0,3710 20,4533

Network Element RDB 0,0181 0,3710 20,4533

A-CPI Agent 0,0692 1,4887 21,4995

0,0692 1,4887 21,4995

0,0825 1,7892 21,6824

0,0604 1,2850 21,2792

D-CPI Agent 0,0604 1,2850 21,2792

management function 0,0484 1,0042 20,7670

Management Content 0,0242 0,5021 20,7670

Application Coordinator 0,0458 0,9551 20,8592

Controler Coordinator 0,0458 0,9551 20,8592

0,0458 0,9551 20,8592

CI 0,0529 CI/RI 0,03

A-CPI

C-CPI

D-CPI

Network Element

Coordinator

A Centralization

Pairwise comparisons

among Assets

Applicatio

n Function

Applicatio

n Content

Controler

Function

Controler

Content C-Agent

Controler

RDB

Data

Processing

Engine

Data

Source Data Sink

Network

Element

RDB

A-CPI

Agent A-CPI C-CPI D-CPI

D-CPI

Agent
Management

Function

Managemen

t Content

Application

Coordinator

Controler

Coordinator

Network

Element

Coordinator

Application Function 1,00 1,00 0,20 0,25 0,20 0,25 1,00 1,00 1,00 1,00 1,00 0,33 0,33 0,33 1,00 0,25 0,33 1,00 0,33 1,00

Application Content 1,00 1,00 0,20 0,25 0,20 0,25 1,00 1,00 1,00 1,00 1,00 0,33 0,33 0,33 1,00 0,25 0,33 1,00 0,33 1,00

Controler Function 5,00 5,00 1,00 1,00 0,50 2,00 7,00 7,00 7,00 5,00 4,00 2,00 2,00 2,00 4,00 2,00 2,00 6,00 2,00 6,00

Controler Content 4,00 4,00 1,00 1,00 0,50 1,00 7,00 7,00 7,00 5,00 4,00 2,00 2,00 2,00 4,00 2,00 2,00 6,00 2,00 6,00

C-Agent 5,00 5,00 2,00 2,00 1,00 2,00 7,00 7,00 7,00 5,00 4,00 2,00 2,00 2,00 4,00 2,00 2,00 6,00 2,00 6,00

Controler RDB 4,00 4,00 0,50 1,00 0,50 1,00 7,00 7,00 7,00 5,00 4,00 2,00 2,00 2,00 4,00 2,00 2,00 6,00 2,00 6,00

Data Processing Engine 1,00 1,00 0,14 0,14 0,14 0,14 1,00 1,00 1,00 1,00 1,00 0,33 0,33 0,33 1,00 0,20 0,20 1,00 0,33 1,00

Data Source 1,00 1,00 0,14 0,14 0,14 0,14 1,00 1,00 1,00 1,00 1,00 0,33 0,33 0,33 1,00 0,20 0,20 1,00 0,33 1,00

Data Sink 1,00 1,00 0,14 0,14 0,14 0,14 1,00 1,00 1,00 1,00 1,00 0,33 0,33 0,33 1,00 0,20 0,20 1,00 0,33 1,00

Network Element RDB 1,00 1,00 0,20 0,20 0,20 0,20 1,00 1,00 1,00 1,00 1,00 0,33 0,33 0,33 1,00 0,20 0,20 1,00 0,33 1,00

A-CPI Agent 1,00 1,00 0,25 0,25 0,25 0,25 1,00 1,00 1,00 1,00 1,00 0,33 0,33 0,33 1,00 0,20 0,20 1,00 0,33 1,00

A-CPI 3,00 3,00 0,50 0,50 0,50 0,50 3,00 3,00 3,00 3,00 3,00 1,00 1,00 1,00 3,00 2,00 2,00 3,00 1,00 3,00

C-CPI 3,00 3,00 0,50 0,50 0,50 0,50 3,00 3,00 3,00 3,00 3,00 1,00 1,00 1,00 3,00 2,00 2,00 3,00 1,00 3,00

D-CPI 3,00 3,00 0,50 0,50 0,50 0,50 3,00 3,00 3,00 3,00 3,00 1,00 1,00 1,00 3,00 2,00 2,00 3,00 1,00 3,00

D-CPI Agent 1,00 1,00 0,25 0,25 0,25 0,25 1,00 1,00 1,00 1,00 1,00 0,33 0,33 0,33 1,00 0,20 0,20 1,00 0,33 1,00

Management Function 4,00 4,00 0,50 0,50 0,50 0,50 5,00 5,00 5,00 5,00 5,00 0,50 0,50 0,50 5,00 1,00 1,00 3,00 1,00 3,00

Management Content 3,00 3,00 0,50 0,50 0,50 0,50 5,00 5,00 5,00 5,00 5,00 0,50 0,50 0,50 5,00 1,00 1,00 3,00 1,00 3,00

Application

Coordinator 1,00 1,00 0,17 0,17 0,17 0,17 1,00 1,00 1,00 1,00 1,00 0,33 0,33 0,33 1,00 0,33 0,33 1,00 0,33 1,00

Controler Coordinator 3,00 3,00 0,50 0,50 0,50 0,50 3,00 3,00 3,00 3,00 3,00 1,00 1,00 1,00 3,00 1,00 1,00 3,00 1,00 3,00

Network Element

Coordinator 1,00 1,00 0,17 0,17 0,17 0,17 1,00 1,00 1,00 1,00 1,00 0,33 0,33 0,33 1,00 0,33 0,33 1,00 0,33 1,00

B Centralization Normalized Matrix

Application

Function

Applicatio

n Content

Controler

Function

Controler

Content C-Agent

Controler

RDB

Data

Processing

Engine

Data

Source Data Sink

Network

Element

RDB

A-CPI

Agent A-CPI C-CPI D-CPI

D-CPI

Agent

Management

Function

Management

Content

Application

Coordinato

r

Controler

Coordinato

r

Element

Coordinato

r

Application Function 0,0213 0,0213 0,0214 0,0251 0,0272 0,0228 0,0167 0,0167 0,0167 0,0192 0,0208 0,0204 0,0204 0,0204 0,0208 0,0129 0,0171 0,0192 0,0192 0,0192

Application Content 0,0213 0,0213 0,0214 0,0251 0,0272 0,0228 0,0167 0,0167 0,0167 0,0192 0,0208 0,0204 0,0204 0,0204 0,0208 0,0129 0,0171 0,0192 0,0192 0,0192

Controler Function 0,1064 0,1064 0,1068 0,1004 0,0679 0,1825 0,1167 0,1167 0,1167 0,0962 0,0833 0,1224 0,1224 0,1224 0,0833 0,1033 0,1024 0,1154 0,1154 0,1154

Controler Content 0,0851 0,0851 0,1068 0,1004 0,0679 0,0912 0,1167 0,1167 0,1167 0,0962 0,0833 0,1224 0,1224 0,1224 0,0833 0,1033 0,1024 0,1154 0,1154 0,1154

C-Agent 0,1064 0,1064 0,2136 0,2008 0,1358 0,1825 0,1167 0,1167 0,1167 0,0962 0,0833 0,1224 0,1224 0,1224 0,0833 0,1033 0,1024 0,1154 0,1154 0,1154

Controler RDB 0,0851 0,0851 0,0534 0,1004 0,0679 0,0912 0,1167 0,1167 0,1167 0,0962 0,0833 0,1224 0,1224 0,1224 0,0833 0,1033 0,1024 0,1154 0,1154 0,1154

Data Processing Engine 0,0213 0,0213 0,0153 0,0143 0,0194 0,0130 0,0167 0,0167 0,0167 0,0192 0,0208 0,0204 0,0204 0,0204 0,0208 0,0103 0,0102 0,0192 0,0192 0,0192

Data Source 0,0213 0,0213 0,0153 0,0143 0,0194 0,0130 0,0167 0,0167 0,0167 0,0192 0,0208 0,0204 0,0204 0,0204 0,0208 0,0103 0,0102 0,0192 0,0192 0,0192

Data Sink 0,0213 0,0213 0,0153 0,0143 0,0194 0,0130 0,0167 0,0167 0,0167 0,0192 0,0208 0,0204 0,0204 0,0204 0,0208 0,0103 0,0102 0,0192 0,0192 0,0192

Network Element RDB 0,0213 0,0213 0,0214 0,0201 0,0272 0,0182 0,0167 0,0167 0,0167 0,0192 0,0208 0,0204 0,0204 0,0204 0,0208 0,0103 0,0102 0,0192 0,0192 0,0192

A-CPI Agent 0,0213 0,0213 0,0267 0,0251 0,0340 0,0228 0,0167 0,0167 0,0167 0,0192 0,0208 0,0204 0,0204 0,0204 0,0208 0,0103 0,0102 0,0192 0,0192 0,0192

A-CPI 0,0638 0,0638 0,0534 0,0502 0,0679 0,0456 0,0500 0,0500 0,0500 0,0577 0,0625 0,0612 0,0612 0,0612 0,0625 0,1033 0,1024 0,0577 0,0577 0,0577

C-CPI 0,0638 0,0638 0,0534 0,0502 0,0679 0,0456 0,0500 0,0500 0,0500 0,0577 0,0625 0,0612 0,0612 0,0612 0,0625 0,1033 0,1024 0,0577 0,0577 0,0577

D-CPI 0,0638 0,0638 0,0534 0,0502 0,0679 0,0456 0,0500 0,0500 0,0500 0,0577 0,0625 0,0612 0,0612 0,0612 0,0625 0,1033 0,1024 0,0577 0,0577 0,0577

D-CPI Agent 0,0213 0,0213 0,0267 0,0251 0,0340 0,0228 0,0167 0,0167 0,0167 0,0192 0,0208 0,0204 0,0204 0,0204 0,0208 0,0103 0,0102 0,0192 0,0192 0,0192

Management Function 0,0851 0,0851 0,0534 0,0502 0,0679 0,0456 0,0833 0,0833 0,0833 0,0962 0,1042 0,0306 0,0306 0,0306 0,1042 0,0516 0,0512 0,0577 0,0577 0,0577

Management Content 0,0638 0,0638 0,0534 0,0502 0,0679 0,0456 0,0833 0,0833 0,0833 0,0962 0,1042 0,0306 0,0306 0,0306 0,1042 0,0516 0,0512 0,0577 0,0577 0,0577

Application Coordinator 0,0213 0,0213 0,0178 0,0167 0,0226 0,0152 0,0167 0,0167 0,0167 0,0192 0,0208 0,0204 0,0204 0,0204 0,0208 0,0172 0,0171 0,0192 0,0192 0,0192

Controler Coordinator 0,0638 0,0638 0,0534 0,0502 0,0679 0,0456 0,0500 0,0500 0,0500 0,0577 0,0625 0,0612 0,0612 0,0612 0,0625 0,0516 0,0512 0,0577 0,0577 0,0577

Network Element

Coordinator 0,0213 0,0213 0,0178 0,0167 0,0226 0,0152 0,0167 0,0167 0,0167 0,0192 0,0208 0,0204 0,0204 0,0204 0,0208 0,0172 0,0171 0,0192 0,0192 0,0192

Weights

WC Products Ratio

Application Function 0,0199 0,4064 20,3845

Application Content 0,0199 0,4064 20,3845

Controler Function 0,1101 2,2754 20,6636

Controler Content 0,1034 2,1348 20,6402

C-Agent 0,1239 2,5509 20,5928

Controler RDB 0,1008 2,0797 20,6408

Data Processing Engine 0,0177 0,3595 20,2536

Data Source 0,0177 0,3595 20,2536

Data Sink 0,0177 0,3595 20,2536

Network Element RDB 0,0190 0,3845 20,2488

A-CPI Agent 0,0201 0,4064 20,2451

A-CPI 0,0620 1,2901 20,8095

C-CPI 0,0620 1,2901 20,8095

D-CPI 0,0620 1,2901 20,8095

D-CPI Agent 0,0201 0,4064 20,2451

Management Function 0,0655 1,3329 20,3562

Management Content 0,0634 1,2930 20,4104

Application

Coordinator 0,0190 0,3871 20,4253

Controler Coordinator 0,0569 1,1612 20,4253

Network Element

Coordinator 0,0190 0,3871 20,4253

CI 0,0244 CI/RI 0,01

A Federation

Pairwise comparisons

among Assets

Applicatio

n Function

Applicatio

n Content

Controle

r

Function

Controle

r Content C-Agent

Controler

RDB

Data

Processing

Engine

Data

Source

Data

Sink

Network

Element

RDB
A-CPI

Agent A-CPI C-CPI D-CPI

D-CPI

Agent

Management

Function

Management

Content

Application

Coordinator

Controler

Coordinator

Network

Element

Coordinator

Application Function 1,00 1,00 0,25 0,50 0,20 0,50 1,00 1,00 1,00 1,00 0,20 0,20 0,20 0,20 0,20 1,00 1,00 0,20 0,20 0,20

Application Content 1,00 1,00 0,25 0,50 0,20 0,50 1,00 1,00 1,00 1,00 0,20 0,20 0,20 0,20 0,20 1,00 1,00 0,20 0,20 0,20

Controler Function 4,00 4,00 1,00 1,00 0,50 2,00 3,00 3,00 3,00 3,00 0,50 0,50 0,50 0,50 0,50 3,00 4,00 1,00 1,00 1,00

Controler Content 2,00 2,00 1,00 1,00 0,33 1,00 2,00 2,00 2,00 2,00 0,33 0,33 0,33 0,33 0,33 3,00 3,00 0,33 0,33 0,33

C-Agent 5,00 5,00 2,00 3,03 1,00 3,00 5,00 5,00 5,00 5,00 1,00 1,00 1,00 1,00 1,00 7,00 7,00 2,00 2,00 2,00

Controler RDB 2,00 2,00 0,50 1,00 0,33 1,00 2,00 2,00 2,00 2,00 0,33 0,33 0,33 0,33 0,33 2,00 2,00 0,33 0,33 0,33
Data Processing

Engine 1,00 1,00 0,33 0,50 0,20 0,50 1,00 1,00 1,00 1,00 0,20 0,20 0,20 0,20 0,20 2,00 2,00 0,20 0,20 0,20

Data Source 1,00 1,00 0,33 0,50 0,20 0,50 1,00 1,00 1,00 1,00 0,20 0,20 0,20 0,20 0,20 2,00 2,00 0,20 0,20 0,20

Data Sink 1,00 1,00 0,33 0,50 0,20 0,50 1,00 1,00 1,00 1,00 0,20 0,20 0,20 0,20 0,20 2,00 2,00 0,20 0,20 0,20
Network Element

RDB 1,00 1,00 0,33 0,50 0,20 0,50 1,00 1,00 1,00 1,00 0,20 0,20 0,20 0,20 0,20 2,00 2,00 0,20 0,20 0,20

A-CPI Agent 5,00 5,00 2,00 3,00 1,00 3,00 5,00 5,00 5,00 5,00 1,00 1,00 1,00 1,00 1,00 7,00 7,00 2,00 2,00 2,00

A-CPI 5,00 5,00 2,00 3,00 1,00 3,00 5,00 5,00 5,00 5,00 1,00 1,00 1,00 1,00 1,00 7,00 7,00 2,00 2,00 2,00

C-CPI 5,00 5,00 2,00 3,00 1,00 3,00 5,00 5,00 5,00 5,00 1,00 1,00 1,00 1,00 1,00 7,00 7,00 2,00 2,00 2,00

D-CPI 5,00 5,00 2,00 3,00 1,00 3,00 5,00 5,00 5,00 5,00 1,00 1,00 1,00 1,00 1,00 7,00 7,00 2,00 2,00 2,00

D-CPI Agent 5,00 5,00 2,00 3,00 1,00 3,00 5,00 5,00 5,00 5,00 1,00 1,00 1,00 1,00 1,00 7,00 7,00 2,00 2,00 2,00
Management

Function 1,00 1,00 0,33 0,33 0,14 0,50 0,50 0,50 0,50 0,50 0,14 0,14 0,14 0,14 0,14 1,00 1,00 0,14 0,14 0,14

Management Content 1,00 1,00 0,25 0,33 0,14 0,50 0,50 0,50 0,50 0,50 0,14 0,14 0,14 0,14 0,14 1,00 1,00 0,14 0,14 0,14
Application

Coordinator 5,00 5,00 1,00 3,00 0,50 3,00 5,00 5,00 5,00 5,00 0,50 0,50 0,50 0,50 0,50 7,00 7,00 1,00 1,00 1,00
Controler

Coordinator 5,00 5,00 1,00 3,00 0,50 3,00 5,00 5,00 5,00 5,00 0,50 0,50 0,50 0,50 0,50 7,00 7,00 1,00 1,00 1,00
Network Element

Coordinator 5,00 5,00 1,00 3,00 0,50 3,00 5,00 5,00 5,00 5,00 0,50 0,50 0,50 0,50 0,50 7,00 7,00 1,00 1,00 1,00

B Federation Normalized Matrix
Application

Function

Application

Content

Controler

Function

Controler

Content C-Agent

Controler

RDB

Data

Processing

Engine

Data

Source Data Sink

Network

Element

RDB

A-CPI

Agent A-CPI C-CPI D-CPI

D-CPI

Agent

Management

Function

Management

Content

Application

Coordinator

Controler

Coordinator

Network

Element

Coordinato

Application

Function 0,0164 0,0164 0,0126 0,0148 0,0197 0,0143 0,0169 0,0169 0,0169 0,0169 0,0197 0,0197 0,0197 0,0197 0,0197 0,0120 0,0119 0,0110 0,0110 0,0110
Application

Content 0,0164 0,0164 0,0126 0,0148 0,0197 0,0143 0,0169 0,0169 0,0169 0,0169 0,0197 0,0197 0,0197 0,0197 0,0197 0,0120 0,0119 0,0110 0,0110 0,0110
Controler

Function 0,0656 0,0656 0,0502 0,0297 0,0493 0,0571 0,0508 0,0508 0,0508 0,0508 0,0492 0,0492 0,0492 0,0492 0,0492 0,0361 0,0476 0,0551 0,0551 0,0551
Controler

Content 0,0328 0,0328 0,0502 0,0297 0,0325 0,0286 0,0339 0,0339 0,0339 0,0339 0,0328 0,0328 0,0328 0,0328 0,0328 0,0361 0,0357 0,0184 0,0184 0,0184

C-Agent 0,0820 0,0820 0,1004 0,0899 0,0985 0,0857 0,0847 0,0847 0,0847 0,0847 0,0985 0,0985 0,0985 0,0985 0,0985 0,0843 0,0833 0,1102 0,1102 0,1102

Controler RDB 0,0328 0,0328 0,0251 0,0297 0,0328 0,0286 0,0339 0,0339 0,0339 0,0339 0,0328 0,0328 0,0328 0,0328 0,0328 0,0241 0,0238 0,0184 0,0184 0,0184
Data Processing

Engine 0,0164 0,0164 0,0167 0,0148 0,0197 0,0143 0,0169 0,0169 0,0169 0,0169 0,0197 0,0197 0,0197 0,0197 0,0197 0,0241 0,0238 0,0110 0,0110 0,0110

Data Source 0,0164 0,0164 0,0167 0,0148 0,0197 0,0143 0,0169 0,0169 0,0169 0,0169 0,0197 0,0197 0,0197 0,0197 0,0197 0,0241 0,0238 0,0110 0,0110 0,0110

Data Sink 0,0164 0,0164 0,0167 0,0148 0,0197 0,0143 0,0169 0,0169 0,0169 0,0169 0,0197 0,0197 0,0197 0,0197 0,0197 0,0241 0,0238 0,0110 0,0110 0,0110
Network Element

RDB 0,0164 0,0164 0,0167 0,0148 0,0197 0,0143 0,0169 0,0169 0,0169 0,0169 0,0197 0,0197 0,0197 0,0197 0,0197 0,0241 0,0238 0,0110 0,0110 0,0110

A-CPI Agent 0,0820 0,0820 0,1004 0,0890 0,0985 0,0857 0,0847 0,0847 0,0847 0,0847 0,0985 0,0985 0,0985 0,0985 0,0985 0,0843 0,0833 0,1102 0,1102 0,1102

A-CPI 0,0820 0,0820 0,1004 0,0890 0,0985 0,0857 0,0847 0,0847 0,0847 0,0847 0,0985 0,0985 0,0985 0,0985 0,0985 0,0843 0,0833 0,1102 0,1102 0,1102

C-CPI 0,0820 0,0820 0,1004 0,0890 0,0985 0,0857 0,0847 0,0847 0,0847 0,0847 0,0985 0,0985 0,0985 0,0985 0,0985 0,0843 0,0833 0,1102 0,1102 0,1102

D-CPI 0,0820 0,0820 0,1004 0,0890 0,0985 0,0857 0,0847 0,0847 0,0847 0,0847 0,0985 0,0985 0,0985 0,0985 0,0985 0,0843 0,0833 0,1102 0,1102 0,1102

D-CPI Agent 0,0820 0,0820 0,1004 0,0890 0,0985 0,0857 0,0847 0,0847 0,0847 0,0847 0,0985 0,0985 0,0985 0,0985 0,0985 0,0843 0,0833 0,1102 0,1102 0,1102
Management

Function 0,0164 0,0164 0,0167 0,0099 0,0141 0,0143 0,0085 0,0085 0,0085 0,0085 0,0141 0,0141 0,0141 0,0141 0,0141 0,0120 0,0119 0,0079 0,0079 0,0079
Management

Content 0,0164 0,0164 0,0126 0,0099 0,0141 0,0143 0,0085 0,0085 0,0085 0,0085 0,0141 0,0141 0,0141 0,0141 0,0141 0,0120 0,0119 0,0079 0,0079 0,0079
Application

Coordinator 0,0820 0,0820 0,0502 0,0890 0,0493 0,0857 0,0847 0,0847 0,0847 0,0847 0,0492 0,0492 0,0492 0,0492 0,0492 0,0843 0,0833 0,0551 0,0551 0,0551
Controler

Coordinator 0,0820 0,0820 0,0502 0,0890 0,0493 0,0857 0,0847 0,0847 0,0847 0,0847 0,0492 0,0492 0,0492 0,0492 0,0492 0,0843 0,0833 0,0551 0,0551 0,0551
Network Element

Coordinator 0,0820 0,0820 0,0502 0,0890 0,0493 0,0857 0,0847 0,0847 0,0847 0,0847 0,0492 0,0492 0,0492 0,0492 0,0492 0,0843 0,0833 0,0551 0,0551 0,0551

Weights WF Products Ratio

Application

Function 0,0159 0,3205 20,1909
Application

Content 0,0159 0,3205 20,1909
Controler

Function 0,0508 1,0419 20,5069
Controler

Content 0,0317 0,6389 20,1794

C-Agent 0,0934 1,9230 20,5862

Controler RDB 0,0292 0,5901 20,1905
Data

Processing 0,0173 0,3485 20,1665

Data Source 0,0173 0,3485 20,1665

Data Sink 0,0173 0,3485 20,1665
Network

Element RDB 0,0173 0,3485 20,1665

A-CPI Agent 0,0934 1,9220 20,5858

A-CPI 0,0934 1,9220 20,5858

C-CPI 0,0934 1,9220 20,5858

D-CPI 0,0934 1,9220 20,5858

D-CPI Agent 0,0934 1,9220 20,5858
Management

Function 0,0120 0,2413 20,1389
Management

Content 0,0118 0,2370 20,1372
Application

Coordinator 0,0678 1,3876 20,4617
Controler

Coordinator 0,0678 1,3876 20,4617
Network

Element 0,0678 1,3876 20,4617

CI 0,01868824 CI/RI 0,01

A Externalization

Pairwise comparisons

among Assets

Application

Function

Application

Content

Controler

Function

Controler

Content C-Agent

Controler

RDB

Data

Processing

Engine

Data

Source

Data

Sink

Network

Element

RDB

A-CPI

Agent A-CPI C-CPI D-CPI

D-CPI

Agent

Management

Function

Management

Content

Application

Coordinator

Controler

Coordinator

Network

Element

Coordinator

Application Function 1,00 1,00 0,50 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 1,00

Application Content 1,00 1,00 0,50 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 1,00

Controler Function 2,00 2,00 1,00 1,00 1,00 1,00 2,00 2,00 2,00 2,00 2,00 1,00 1,00 1,00 2,00 2,00 2,00 2,00 2,00 2,00

Controler Content 2,00 2,00 1,00 1,00 1,00 1,00 2,00 2,00 2,00 2,00 2,00 1,00 1,00 1,00 2,00 2,00 2,00 2,00 2,00 2,00

C-Agent 2,00 2,00 1,00 1,00 1,00 1,00 2,00 2,00 2,00 2,00 2,00 1,00 1,00 1,00 2,00 2,00 2,00 2,00 2,00 2,00

Controler RDB 2,00 2,00 1,00 1,00 1,00 1,00 2,00 2,00 2,00 2,00 2,00 1,00 1,00 1,00 2,00 2,00 2,00 2,00 2,00 2,00
Data Processing

Engine 1,00 1,00 0,50 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 1,00

Data Source 1,00 1,00 0,50 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 1,00

Data Sink 1,00 1,00 0,50 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 1,00
Network Element

RDB 1,00 1,00 0,50 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 1,00

A-CPI Agent 1,00 1,00 0,50 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 1,00

A-CPI 2,00 2,00 1,00 1,00 1,00 1,00 2,00 2,00 2,00 2,00 2,00 1,00 1,00 1,00 2,00 2,00 2,00 2,00 2,00 2,00

C-CPI 2,00 2,00 1,00 1,00 1,00 1,00 2,00 2,00 2,00 2,00 2,00 1,00 1,00 1,00 2,00 2,00 2,00 2,00 2,00 2,00

D-CPI 2,00 2,00 1,00 1,00 1,00 1,00 2,00 2,00 2,00 2,00 2,00 1,00 1,00 1,00 2,00 2,00 2,00 2,00 2,00 2,00

D-CPI Agent 1,00 1,00 0,50 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 1,00

Management Function 1,00 1,00 0,50 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 1,00

Management Content 1,00 1,00 0,50 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 1,00
Application

Coordinator 1,00 1,00 0,50 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 1,00

Controler Coordinator 1,00 1,00 0,50 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 1,00
Network Element

Coordinator 1,00 1,00 0,50 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 0,50 0,50 0,50 1,00 1,00 1,00 1,00 1,00 1,00

B Externalization

Normalized

Matrix

Application

Function

Application

Content

Controler

Function

Controler

Content C-Agent

Controler

RDB

Data

Processing

Engine

Data

Source Data Sink

Network

Element

RDB

A-CPI

Agent A-CPI C-CPI D-CPI

D-CPI

Agent

Management

Function

Management

Content

Application

Coordinator

Controler

Coordinator

Network

Element

Coordinator

Application

Function 0,0370
Application

Content 0,0370
Controler

Function 0,0741

Controler Content 0,0741

C-Agent 0,0741

Controler RDB 0,0741
Data Processing

Engine 0,0370

Data Source 0,0370

Data Sink 0,0370
Network Element

RDB 0,0370

A-CPI Agent 0,0370

A-CPI 0,0741

C-CPI 0,0741

D-CPI 0,0741

D-CPI Agent 0,0370
Management

Function 0,0370
Management

Content 0,0370
Application

Coordinator 0,0370
Controler

Coordinator 0,0370
Network Element

Coordinator 0,0370

Weights

WE Products Ratio

Application Function 0,0370 0,7407 20,0000

Application Content 0,0370 0,7407 20,0000

Controler Function 0,0741 1,4815 20,0000

Controler Content 0,0741 1,4815 20,0000

C-Agent 0,0741 1,4815 20,0000

Controler RDB 0,0741 1,4815 20,0000
Data Processing

Engine 0,0370 0,7407 20,0000

Data Source 0,0370 0,7407 20,0000

Data Sink 0,0370 0,7407 20,0000
Network Element

RDB 0,0370 0,7407 20,0000

A-CPI Agent 0,0370 0,7407 20,0000

A-CPI 0,0741 1,4815 20,0000

C-CPI 0,0741 1,4815 20,0000

D-CPI 0,0741 1,4815 20,0000

D-CPI Agent 0,0370 0,7407 20,0000
Management

Function 0,0370 0,7407 20,0000
Management

Content 0,0370 0,7407 20,0000
Application

Coordinator 0,0370 0,7407 20,0000
Controler

Coordinator 0,0370 0,7407 20,0000
Network Element

Coordinator 0,0370 0,7407 20,0000

CI 0 CI/RI 0

Part VI

References

XIV

Bibliography

[1] Lori MacVittie and David Holmes. The new data center firewall paradigm. F5 Networks,

Inc., Seattle, 2012.

[2] Marc F Körner. Software Defined Networking based Data Center Services. PhD thesis,
University of Berlin, 2015.

[3] Malcolm Betts, Li Fengkai, Chen Qiaogang, Manuel Paul, Lothar Reith, Luis Miguel Con-
treras Murillo, Nigel Davis, Sibylle Schaller, Paul Doolan, Fabian Schneider, et al. Sdn
architecture. white paper, Open Networking Foundation, 2275 E. Bayshore Road, Suite
103, Palo Alto, CA 94303, 2016.

[4] ONF. Framework for sdn: Scope and requirements. white paper, Open Networking Foun-
dation, 2275 E. Bayshore Road, Suite 103, Palo Alto, CA 94303, 2015.

[5] Thomas Zinner, Michael Jarschel, Tobias Hossfeld, Phuoc Tran-Gia, and Wolfgang
Kellerer. A compass through sdn networks. Technical report, Tech. Rep. 488, University
of Würzburg, 2013.

[6] Antonio Manzalini, R Saracco, C Buyukkoc, P Chemouil, S Kuklinski, A Gladisch,
M Fukui, E Dekel, D Soldani, M Ulema, et al. Software-defined networks for future net-
works and services. In White Paper based on the IEEE Workshop SDN4FNS, 2013.

[7] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve Rothen-
berg, Siamak Azodolmolky, and Steve Uhlig. Software-defined networking: A compre-
hensive survey. Proceedings of the IEEE, 103(1):14–76, 2015.

[8] Fernando MV Ramos, Diego Kreutz, and Paulo Verissimo. Software-defined networks:
On the road to the softwarization of networking. Cutter IT journal, 2015.

[9] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, David Walker, et al.
Composing software defined networks. In NSDI, volume 13, pages 1–13, 2013.

[10] Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen, and Scott
Shenker. Extending networking into the virtualization layer. In Hotnets, 2009.

[11] Wenfeng Xia, Yonggang Wen, Chuan Heng Foh, Dusit Niyato, and Haiyong Xie. A survey
on software-defined networking. IEEE Communications Surveys & Tutorials, 17(1):27–51,
2015.

[12] Michael Jarschel, Thomas Zinner, Tobias Hoßfeld, Phuoc Tran-Gia, and Wolfgang
Kellerer. Interfaces, attributes, and use cases: A compass for sdn. IEEE Communications

Magazine, 52(6):210–217, 2014.

[13] Stuart Bailey, Deepak Bansal, Linda Dunbar, Dave Hood, Zoltán Lajos Kis, Ben Mack-
Crane, Jeff Maguire, Dan Malek, David Meyer, Manuel Paul, et al. Sdn architecture
overview. white paper, Open Networking Foundation, 2275 E. Bayshore Road, Suite 103,
Palo Alto, CA 94303, 2013.

[14] Malcolm Betts, Steve Fratini, Nigel Davis, Dave Hood, Rob Dolin, Mandar Joshi, Paul
Doolan, Kam Lam, Fabian Schneider, Scott Mansfield, et al. Sdn architecture. white
paper, Open Networking Foundation, 2275 E. Bayshore Road, Suite 103, Palo Alto, CA
94303, 2014.

[15] Martin Casado, Nate Foster, and Arjun Guha. Abstractions for software-defined net-
works. Communications of the ACM, 57(10):86–95, 2014.

[16] Rahim Masoudi and Ali Ghaffari. Software defined networks: A survey. Journal of Net-

work and Computer Applications, 67:1–25, 2016.

[17] Wolfgang Braun and Michael Menth. Software-defined networking using openflow: Pro-
tocols, applications and architectural design choices. Future Internet, 6(2):302–336, 2014.

[18] Andreas Richard Voellmy. Programmable and Scalable Software-Defined Networking

Controllers. PhD thesis, Yale University, 2014.

[19] K JayachandraBabu, Prasad S.G Raghavendra, and Jitendranath Mungara. Development
of openflow soft-switch. International Journal of Emerging Technology and Advanced

Engineering, 4(3):782–785, 2014.

[20] Joe Stringer. Contributing to OpenFlow 1.1 Support in Open vSwitch. PhD thesis, Univer-
sity of Waikato, 2012.

[21] Paul Emmerich, Daniel Raumer, Florian Wohlfart, and Georg Carle. Performance char-
acteristics of virtual switching. In Cloud Networking (CloudNet), 2014 IEEE 3rd Interna-

tional Conference on, pages 120–125. IEEE, 2014.

[22] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J Jackson, Andy Zhou, Jarno Rajahalme,
Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. The design and implementation
of open vswitch. In NSDI, pages 117–130, 2015.

[23] Justin Pettit, Jesse Gross, Ben Pfaff, Martin Casado, and Simon Crosby. Virtual switching
in an era of advanced edges, 2010.

[24] Haoyu Song. Protocol-oblivious forwarding: Unleash the power of sdn through a future-
proof forwarding plane. In Proceedings of the second ACM SIGCOMM workshop on Hot

topics in software defined networking, pages 127–132. ACM, 2013.

[25] Jingzhou Yu, Xiaozhong Wang, Jian Song, Yuanming Zheng, and Haoyu Song. Forwarding
programming in protocol-oblivious instruction set. In Network Protocols (ICNP), 2014

IEEE 22nd International Conference on, pages 577–582. IEEE, 2014.

[26] B. Pfaff and B. Davie. The open vswitch database management protocol. RFC 7047, RFC
Editor, December 2013. http://www.rfc-editor.org/rfc/rfc7047.txt.

[27] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cascone. Openstate:
programming platform-independent stateful openflow applications inside the switch.
ACM SIGCOMM Computer Communication Review, 44(2):44–51, 2014.

[28] Bartosz Belter, Artur Binczewski, Krzysztof Dombek, Artur Juszczyk, Lukasz
Ogrodowczyk, Damian Parniewicz, Maciej Stroiñski, and Iwo Olszewski. Programmable
abstraction of datapath. In Software Defined Networks (EWSDN), 2014 Third European

Workshop on, pages 7–12. IEEE, 2014.

[29] Damian Parniewicz, Roberto Doriguzzi Corin, Lukasz Ogrodowczyk, Mehdi Rashidi Fard,
Jon Matias, Matteo Gerola, Victor Fuentes, Umar Toseef, Adel Zaalouk, Bartosz Belter,
et al. Design and implementation of an openflow hardware abstraction layer. In Pro-

ceedings of the 2014 ACM SIGCOMM workshop on Distributed cloud computing, pages
71–76. ACM, 2014.

XVI

http://www.rfc-editor.org/rfc/rfc7047.txt

[30] Alberto Rodriguez-Natal, Marc Portoles-Comeras, Vina Ermagan, Darrel Lewis, Dino
Farinacci, Fabio Maino, and Albert Cabellos-Aparicio. Lisp: a southbound sdn protocol?
IEEE Communications Magazine, 53(7):201–207, 2015.

[31] CISCO. Opflex: An open policy protocol white paper, 2014.

[32] Anders Nygren, Ben Pfaff, Bob Lantz, Brandon Heller, Casey Barker, Curt Beckmann, Dan
Cohn, Dan Malek, Dan Talayco, David Erickson, et al. Openflow switch specification
version 1.5.1. Specification, Open Networking Foundation, March 2015.

[33] Timothy L Hinrichs, Natasha S Gude, Martin Casado, John C Mitchell, and Scott Shenker.
Practical declarative network management. In Proceedings of the 1st ACM workshop on

Research on enterprise networking, pages 1–10. ACM, 2009.

[34] Andreas Voellmy and Paul Hudak. Nettle: Taking the sting out of programming network
routers. Practical Aspects of Declarative Languages, pages 235–249, 2011.

[35] Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto, Jennifer Rex-
ford, Alec Story, and David Walker. Frenetic: A network programming language. In ACM

Sigplan Notices, volume 46, pages 279–291. ACM, 2011.

[36] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: a language for high-level
reactive network control. In Proceedings of the first workshop on Hot topics in software

defined networks, pages 43–48. ACM, 2012.

[37] Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford, and David Walker.
Modular sdn programming with pyretic. Technical Reprot of USENIX, 2013.

[38] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martín Casado, Nick McKeown,
and Scott Shenker. Nox: towards an operating system for networks. ACM SIGCOMM

Computer Communication Review, 38(3):105–110, 2008.

[39] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. Opendaylight: Towards a model-
driven sdn controller architecture. In World of Wireless, Mobile and Multimedia Networks

(WoWMoM), 2014 IEEE 15th International Symposium on a, pages 1–6. IEEE, 2014.

[40] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi, Toshio
Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, et al. Onos: towards
an open, distributed sdn os. In Proceedings of the third workshop on Hot topics in software

defined networking, pages 1–6. ACM, 2014.

[41] FUJITA Tomonori. Introduction to ryu sdn framework. Open Networking Summit, 2013.

[42] H Yin, H Xie, T Tsou, D Lopez, P Aranda, and R Sidi. Sdni: A message exchange proto-
col for software defined networks (sdns) across multiple domains. IETF draft, work in

progress, 2012.

[43] Messaoud Aouadj. AirNet: le modèle de virtualisation «Edge-Fabric» comme plan de con-

trôle pour les réseaux programmables. PhD thesis, Université de Toulouse, Université
Toulouse III-Paul Sabatier, 2016.

[44] Minh Pham and Doan B Hoang. Sdn applications-the intent-based northbound interface
realisation for extended applications. In NetSoft Conference and Workshops (NetSoft),
pages 372–377. IEEE, 2016.

XVII

[45] Wei Zhou, Li Li, Min Luo, and Wu Chou. Rest api design patterns for sdn northbound
api. In Advanced Information Networking and Applications Workshops (WAINA), 2014

28th International Conference on, pages 358–365. IEEE, 2014.

[46] Federico M Facca, Elio Salvadori, Holger Karl, Diego R López, Pedro Andrés Aranda
Gutiérrez, Dejan Kostic, and Roberto Riggio. Netide: First steps towards an integrated
development environment for portable network apps. In Software Defined Networks

(EWSDN), 2013 Second European Workshop on, pages 105–110. IEEE, 2013.

[47] R Doriguzzi-Corin, Elio Salvadori, PA Aranda Gutiérrez, Christian Stritzke, Alec Leckey,
Kevin Phemius, Elisa Rojas, and Carmen Guerrero. Netide: removing vendor lock-in in
sdn. In Network Softwarization (NetSoft), 2015 1st IEEE Conference on, pages 1–2. IEEE,
2015.

[48] Yosr Jarraya, Taous Madi, and Mourad Debbabi. A survey and a layered taxonomy of
software-defined networking. IEEE communications surveys & tutorials, 16(4):1955–
1980, 2014.

[49] Adrian Lara, Anisha Kolasani, and Byrav Ramamurthy. Network innovation using open-
flow: A survey. IEEE communications surveys & tutorials, 16(1):493–512, 2014.

[50] Saurav Das, Guru Parulkar, and Nick McKeown. Unifying packet and circuit switched
networks. In GLOBECOM Workshops, pages 1–6. IEEE, 2009.

[51] Roberto Bifulco and Fabian Schneider. Openflow rules interactions: definition and de-
tection. In SDN forFuture Networks and Services (SDN4FNS), pages 1–6. IEEE, 2013.

[52] Mohammed Basheer Al-Somaidai and Estabrak Bassam Yahya. Survey of software com-
ponents to emulate openflow protocol as an sdn implementation. American Journal of

Software Engineering and Applications, 3(6):74–82, 2014.

[53] Sahil Sachdeva. Software defined networks. Engineering report, Institute of Devel-
opment and Research in Banking Technology, Road No. 1, Castle Hills, Masab Tank,
Hyderabad-500057, 2014.

[54] Mehiar Dabbagh, Bechir Hamdaoui, Mohsen Guizani, and Ammar Rayes. Software-
defined networking security: pros and cons. IEEE Communications Magazine, 53(6):73–
79, 2015.

[55] Kshira Sagar Sahoo, Sagarika Mohanty, Mayank Tiwary, Brojo Kishore Mishra, and Bib-
hudatta Sahoo. A comprehensive tutorial on software defined network: The driving force
for the future internet technology. In Proceedings of the International Conference on Ad-

vances in Information Communication Technology & Computing, page 114. ACM, 2016.

[56] CloudPassage. What csos need to know about software-defined security, 2015.

[57] Fei Hu, Qi Hao, and Ke Bao. A survey on software-defined network and openflow: From
concept to implementation. IEEE Communications Surveys & Tutorials, 16(4):2181–2206,
2014.

[58] Aaron Yi Ding, Jon Crowcroft, Sasu Tarkoma, and Hannu Flinck. Software defined net-
working for security enhancement in wireless mobile networks. Computer Networks,
66:94–101, 2014.

[59] Tomas Hegr, Leos Bohac, Vojtech Uhlir, and Petr Chlumsky. Openflow deployment and
concept analysis. Advances in Electrical and Electronic Engineering, 11(5):327, 2013.

XVIII

[60] Sakir Sezer, Sandra Scott-Hayward, Pushpinder Kaur Chouhan, Barbara Fraser, David
Lake, Jim Finnegan, Niel Viljoen, Marc Miller, and Navneet Rao. Are we ready for sdn?
implementation challenges for software-defined networks. IEEE Communications Mag-

azine, 51(7):36–43, 2013.

[61] Soheil Hassas Yeganeh, Amin Tootoonchian, and Yashar Ganjali. On scalability of
software-defined networking. IEEE Communications Magazine, 51(2):136–141, 2013.

[62] Kapil Dhamecha and Bhushan Trivedi. Sdn issues-a survey. International Journal of

Computer Applications, 73(18), 2013.

[63] Paulo Fonseca and Edjard Mota. A survey on fault management in software-defined net-
works. IEEE Communications Surveys & Tutorials, 2017.

[64] Lav Gupta. Sdn: Development, adoption and research trends. White paper, Washington
University in St. Louis, One Brookings Drive St. Louis, Missouri 63130, 2013.

[65] Martin Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and Scott
Shenker. Ethane: Taking control of the enterprise. In ACM SIGCOMM Computer Com-

munication Review, pages 1–12. ACM, 2007.

[66] Deepak Kumar and Manu Sood. Software defined networking: A concept and related
issues. International Journal of Advanced Networking and Applications, 6(2):2233, 2014.

[67] BJ Van Asten. Increasing robustness of Software-Defined Networks. PhD thesis, Delft Uni-
versity of Technology, 2014.

[68] Paul Zanna, Sepehr Hosseini, Pj Radcliffe, and Benjamin O’Neill. The challenges of de-
ploying a software defined network. In Telecommunication Networks and Applications

Conference (ATNAC), 2014 Australasian, pages 111–116. IEEE, 2014.

[69] Guru Parulkar, Timon Sloane, Saurav Das, and Cassandra Blair. Open networking foun-
dation. https://www.opennetworking.org/, 2017. Accessed: 2017-07-04.

[70] Barbara Guttman and Edward A Roback. An introduction to computer security: the NIST

handbook. DIANE Publishing, 1995.

[71] R. Shirey. Internet security glossary. RFC 2828, RFC Editor, May 2000.

[72] ITUT Recommendation. Security architecture for systems providing end-to-end com-
munications, 2002.

[73] ITUT Recommendation. Overview of cybersecurity, 2008.

[74] Mohammed Alhabeeb, Abdullah Almuhaideb, Phu Dung Le, and Bala Srinivasan. In-
formation security threats classification pyramid. In Advanced Information Networking

and Applications Workshops (WAINA), 2010 IEEE 24th International Conference on, pages
208–213. IEEE, 2010.

[75] Anil Bazaz and James D Arthur. Towards a taxonomy of vulnerabilities. In System Sciences,

2007. HICSS 2007. 40th Annual Hawaii International Conference on, pages 163a–163a.
IEEE, 2007.

[76] Gary Steffen. Chapter 1 vulnerabilities threats and attacks. Course, Indiana University
Purdue University Fort Wayne (IPFW), 2101 E. Coliseum Blvd. Fort Wayne, Indiana 46805,
2007.

XIX

https://www.opennetworking.org/

[77] Georgios Kambourakis, Tassos Moschos, Dimitris Geneiatakis, and Stefanos Gritzalis. A
fair solution to dns amplification attacks. In Digital Forensics and Incident Analysis, 2007.

WDFIA 2007. Second International Workshop on, pages 38–47. IEEE, 2007.

[78] Samaneh Rastegari, M Iqbal Saripan, and Mohd Fadlee A Rasid. Detection of denial of
service attacks against domain name system using machine learning classifiers. In Pro-

ceedings of the 18th World Congress on Engineering, 2010.

[79] Samaneh Rastegari, M Iqbal Saripan, and Mohd Fadlee A Rasid. Detection of denial
of service attacks against domain name system using neural networks. arXiv preprint

arXiv:0912.1815, 2009.

[80] Jisa David and Ciza Thomas. Ddos attack detection using fast entropy approach on flow-
based network traffic. Procedia Computer Science, 50:30–36, 2015.

[81] Manu Sood et al. A survey on issues of concern in software defined networks. In Image

Information Processing (ICIIP), 2015 Third International Conference on, pages 295–300.
IEEE, 2015.

[82] Lisa Schehlmann, Sebastian Abt, and Harald Baier. Blessing or curse? revisiting security
aspects of software-defined networking. In Network and Service Management (CNSM),

2014 10th International Conference on, pages 382–387. IEEE, 2014.

[83] Open Networking Foundation. Principles and practices for securing software-defined
networks, 2015.

[84] Margaret Wasserman and Sam Hartman. Security analysis of the open networking foun-
dation (onf) openflow switch specification, 2013.

[85] Rowan Kloti, Vasileios Kotronis, and Paul Smith. Openflow: A security analysis. In Net-

work Protocols (ICNP), 2013 21st IEEE International Conference, pages 1–6. IEEE, 2013.

[86] D Romão, N Van Dijkhuizen, S Konstantaras, and G Thessalonikefs. Practical security
analysis of openflow. University of Amsterdam, Amsterdam, 2013.

[87] Wanqing You, Kai Qian, Xi He, and Ying Qian. Openflow security threat detection
and defense services. International Journal of Advanced Networking and Applications,
6(3):2347, 2014.

[88] Rowan Kloti. Openflow: A security analysis, 2013.

[89] Maragathavalli Palanivel and Kanmani Selvadurai. Risk-driven security testing using risk
analysis with threat modeling approach. SpringerPlus, 3(1):754, 2014.

[90] Shibo Luo, Mianxiong Dong, Kaoru Ota, Jun Wu, and Jianhua Li. A security assess-
ment mechanism for software-defined networking-based mobile networks. Sensors,
15(12):31843–31858, 2015.

[91] Thomas L Saaty. Decision making with the analytic hierarchy process. International

journal of services sciences, 1(1):83–98, 2008.

[92] Diego Kreutz, Fernando Ramos, and Paulo Verissimo. Towards secure and dependable
software-defined networks. In Proceedings of the second ACM SIGCOMM workshop on

Hot topics in software defined networking, pages 55–60. ACM, 2013.

[93] Ellen Fanning. Software-defined networks, 2014.

XX

[94] Linyuan Yao, Ping Dong, Tao Zheng, Hongke Zhang, Xiaojiang Du, and Mohsen Guizani.
Network security analyzing and modeling based on petri net and attack tree for sdn. In
Computing, Networking and Communications (ICNC), 2016 International Conference on,
pages 1–5. IEEE, 2016.

[95] Marc C Dacier, Hartmut König, Radoslaw Cwalinski, Frank Kargl, and Sven Dietrich. Se-
curity challenges and opportunities of software-defined networking. IEEE Security & Pri-

vacy, 15(2):96–100, 2017.

[96] Andres J Gonzalez, Gianfranco Nencioni, Bjarne E Helvik, and Andrzej Kamisinski. A
fault-tolerant and consistent sdn controller. In Global Communications Conference

(GLOBECOM), 2016 IEEE, pages 1–6. IEEE, 2016.

[97] Mohamed Azab and José AB Fortes. Towards proactive sdn-controller attack and failure
resilience. In Computing, Networking and Communications (ICNC), 2017 International

Conference on, pages 442–448. IEEE, 2017.

[98] Ramanpreet Kaur, Amardeep Singh, Sharanjit Singh, and Shruti Sharma. Security of soft-
ware defined networks: Taxonomic modeling, key components and open research area.
In Electrical, Electronics, and Optimization Techniques (ICEEOT), International Confer-

ence on, pages 2832–2839. IEEE, 2016.

[99] Mudit Saxena and Rakesh Kumar. A recent trends in software defined networking (sdn)
security. In Computing for Sustainable Global Development (INDIACom), 2016 3rd Inter-

national Conference on, pages 851–855. IEEE, 2016.

[100] Yang Wu, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo. Answering why-not
queries in software-defined networks with negative provenance. In Proceedings of the

twelfth ACM workshop on hot topics in networks, page 3. ACM, 2013.

[101] KAIST NSS lab. An overview of misuse attack cases. http://www.sdnsecurity.org/
vulnerability/attacks/, 2017. Accessed: 2018-02-20.

[102] Yoshiaki Hori, Seiichiro Mizoguchi, Ryosuke Miyazaki, Akira Yamada, Yaokai Feng,
Ayumu Kubota, and Kouichi Sakurai. A comprehensive security analysis checksheet for
openflow networks. In International Conference on Broadband and Wireless Computing,

Communication and Applications, pages 231–242. Springer, 2016.

[103] Mauro Conti, Fabio De Gaspari, and Luigi Vincenzo Mancini. A novel stealthy attack to
gather sdn configuration-information. IEEE Transactions on Emerging Topics in Com-

puting, 2018.

[104] Roberto Bifulco, Heng Cui, Ghassan O Karame, and Felix Klaedtke. Fingerprinting
software-defined networks. In Network Protocols (ICNP), 2015 IEEE 23rd International

Conference on, pages 453–459. IEEE, 2015.

[105] Seungwon Shin and Guofei Gu. Attacking software-defined networks: A first feasibility
study. In Proceedings of the second ACM SIGCOMM workshop on Hot topics in software

defined networking, pages 165–166. ACM, 2013.

[106] Abdelhadi Azzouni, Othmen Braham, Thi Mai Trang Nguyen, Guy Pujolle, and Raouf
Boutaba. Fingerprinting openflow controllers: The first step to attack an sdn control
plane. In Global Communications Conference (GLOBECOM), 2016 IEEE, pages 1–6. IEEE,
2016.

XXI

http://www.sdnsecurity.org/vulnerability/attacks/
http://www.sdnsecurity.org/vulnerability/attacks/

[107] Felix Klaedtke, Ghassan O Karame, Roberto Bifulco, and Heng Cui. Access control for
sdn controllers. In Proceedings of the third workshop on Hot topics in software defined

networking, pages 219–220. ACM, 2014.

[108] Dongting Yu, Andrew W Moore, Chris Hall, and Ross Anderson. Authentication for re-
silience: the case of sdn. In Cambridge International Workshop on Security Protocols,
pages 39–44. Springer, 2013.

[109] Xitao Wen, Yan Chen, Chengchen Hu, Chao Shi, and Yi Wang. Towards a secure con-
troller platform for openflow applications. In Proceedings of the second ACM SIGCOMM

workshop on Hot topics in software defined networking, pages 171–172. ACM, 2013.

[110] Sandra Scott-Hayward, Christopher Kane, and Sakir Sezer. Operationcheckpoint: Sdn
application control. In Network Protocols (ICNP), 2014 IEEE 22nd International Confer-

ence on, pages 618–623. IEEE, 2014.

[111] eTutorials. The four primary types of network attack. http://etutorials.org/
Networking/Cisco+Certified+Security+Professional+Certification/Part+

I+Introduction+to+Network+Security/Chapter+1+Understanding+Network+

Security+Threats/The+Four+Primary+Types+of+Network+Attack/, 2018.
Accessed: 2018-02-26.

[112] V KRISHNA REDDY and D SREENIVASULU. Software-defined networking with ddos at-
tacks in cloud computing. International Journal of Innovative Technologies, 4(19):3779–
3783, 2016.

[113] Microsoft. Common types of network attacks. https://technet.microsoft.com/en-
us/library/cc959354.aspx, 2018. Accessed: 2018-02-26.

[114] Andry Putra Fajar and Tito Waluyo Purboyo. A survey paper of distributed denial-of-
service attack in software defined networking (sdn). International Journal of Applied

Engineering Research, 13(1):476–482, 2018.

[115] Jeremy M Dover. A denial of service attack against the open floodlight sdn controller.
Dover Networks, Tech. Rep., 2013.

[116] Rajat Kandoi and Markku Antikainen. Denial-of-service attacks in openflow sdn net-
works. In Integrated Network Management (IM), 2015 IFIP/IEEE International Sympo-

sium on, pages 1322–1326. IEEE, 2015.

[117] Nhu-Ngoc Dao, Junho Park, Minho Park, and Sungrae Cho. A feasible method to combat
against ddos attack in sdn network. In Information Networking (ICOIN), 2015 Interna-

tional Conference on, pages 309–311. IEEE, 2015.

[118] Duohe Ma, Zhen Xu, and Dongdai Lin. Defending blind ddos attack on sdn based on
moving target defense. In International Conference on Security and Privacy in Commu-

nication Systems, pages 463–480. Springer, 2014.

[119] Sushil Jajodia, Anup K Ghosh, Vipin Swarup, Cliff Wang, and X Sean Wang. Moving target

defense: creating asymmetric uncertainty for cyber threats, volume 54. Springer Science
& Business Media, 2011.

[120] Andrei Broder and Michael Mitzenmacher. Network applications of bloom filters: A sur-
vey. Internet mathematics, 1(4):485–509, 2004.

XXII

http://etutorials.org/Networking/Cisco+Certified+Security+Professional+Certification/Part+I+Introduction+to+Network+Security/Chapter+1+Understanding+Network+Security+Threats/The+Four+Primary+Types+of+Network+Attack/
http://etutorials.org/Networking/Cisco+Certified+Security+Professional+Certification/Part+I+Introduction+to+Network+Security/Chapter+1+Understanding+Network+Security+Threats/The+Four+Primary+Types+of+Network+Attack/
http://etutorials.org/Networking/Cisco+Certified+Security+Professional+Certification/Part+I+Introduction+to+Network+Security/Chapter+1+Understanding+Network+Security+Threats/The+Four+Primary+Types+of+Network+Attack/
http://etutorials.org/Networking/Cisco+Certified+Security+Professional+Certification/Part+I+Introduction+to+Network+Security/Chapter+1+Understanding+Network+Security+Threats/The+Four+Primary+Types+of+Network+Attack/
https://technet.microsoft.com/en-us/library/cc959354.aspx
https://technet.microsoft.com/en-us/library/cc959354.aspx

[121] Hiep T Nguyen Tri and Kyungbaek Kim. Assessing the impact of resource attack in soft-
ware defined network. In Information Networking (ICOIN), 2015 International Confer-

ence on, pages 420–425. IEEE, 2015.

[122] Bin Yuan, Deqing Zou, Shui Yu, Hai Jin, Weizhong Qiang, and Jinan Shen. Defending
against flow table overloading attack in software-defined networks. IEEE Transactions

on Services Computing, 2016.

[123] S Padmaja and V Vetriselvi. Mitigation of switch-dos in software defined network. In
Information Communication and Embedded Systems (ICICES), 2016 International Con-

ference on, pages 1–5. IEEE, 2016.

[124] Yicong Zhang, Jie Li, Lin Chen, Yusheng Ji, and Feilong Tang. A novel method against
the firewall bypass threat in openflow networks. In Wireless Communications and Signal

Processing (WCSP), 2017 9th International Conference on, pages 1–6. IEEE, 2017.

[125] Rami Ghannam and Anthony Chung. Handling malicious switches in software defined
networks. In Network Operations and Management Symposium (NOMS), 2016 IEEE/IFIP,
pages 1245–1248. IEEE, 2016.

[126] Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, and Vijay Mann. Sphinx: Detecting
security attacks in software-defined networks. In NDSS, 2015.

[127] Po-Wen Chi, Chien-Ting Kuo, Jing-Wei Guo, and Chin-Laung Lei. How to detect a com-
promised sdn switch. In Network Softwarization (NetSoft), 2015 1st IEEE Conference on,
pages 1–6. IEEE, 2015.

[128] David R Miller, Shon Harris, Allen Harper, Stephen VanDyke, and Chris Blask. Security

Information and Event Management (SIEM) Implementation (Network Pro Library). Mc-
Graw Hill, 2010.

[129] Tzu-Wei Chao, Yu-Ming Ke, Bo-Han Chen, Jhu-Lin Chen, Chen Jung Hsieh, Shao-Chuan
Lee, and Hsu-Chun Hsiao. Securing data planes in software-defined networks. In NetSoft

Conference and Workshops (NetSoft), 2016 IEEE, pages 465–470. IEEE, 2016.

[130] Sungmin Hong, Lei Xu, Haopei Wang, and Guofei Gu. Poisoning network visibility in
software-defined networks: New attacks and countermeasures. In NDSS, volume 15,
pages 8–11, 2015.

[131] Aliyu Lawal Aliyu, Peter Bull, and Ali Abdallah. Investigating the Security Aspect of Soft-

ware Defined Networking. Birmingham City University, 2016.

[132] Brandon Heller, Colin Scott, Nick McKeown, Scott Shenker, Andreas Wundsam, Hongyi
Zeng, Sam Whitlock, Vimalkumar Jeyakumar, Nikhil Handigol, James McCauley, et al.
Leveraging sdn layering to systematically troubleshoot networks. In Proceedings of the

second ACM SIGCOMM workshop on Hot topics in software defined networking, pages
37–42. ACM, 2013.

[133] Wanderson Paim de Jesus, Daniel Alves da Silva, Rafael T Júnior, and Francisco Vitor
Lopes da Frota. Analysis of sdn contributions for cloud computing security. In Proceed-

ings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing,
pages 922–927. IEEE Computer Society, 2014.

[134] Seungwon Shin, Lei Xu, Sungmin Hong, and Guofei Gu. Enhancing network security
through software defined networking (sdn). In Computer Communication and Networks

(ICCCN), 2016 25th International Conference on, pages 1–9. IEEE, 2016.

XXIII

[135] Open Networking Foundation. Sdn security considerations in the data center, 2013.

[136] RL Smeliansky. Sdn for network security. In Science and Technology Conference (Modern

Networking Technologies)(MoNeTeC), 2014 First International, pages 1–5. IEEE, 2014.

[137] Sytel Reply. Advanced security mechanisms to protect assets and networks: Software-
defined security, 2015.

[138] Bob Shaw. Security-centric sdn: A new approach to implement network security that
works, 2013.

[139] Roberto Bifulco and Ghassan Karame. Towards a richer set of services in software-
defined networks. In Proceedings of the NDSS Workshop on Security of Emerging Tech-

nologies (SENT), 2014.

[140] Gabriel Sund and Haroon Ahmed. Security challenges within software defined networks.
Technical report, KTH Royal Institute of Technology, 2014.

[141] Madhusanka Liyanage, Ahmed Bux Abro, Mika Ylianttila, and Andrei Gurtov. Oppor-
tunities and challenges of software-defined mobile networks in network security. IEEE

Security & Privacy, 14(4):34–44, 2016.

[142] Radu F Babiceanu and Remzi Seker. Software-defined networking-based models for se-
cure interoperability of manufacturing operations. In Service Orientation in Holonic and

Multi-Agent Manufacturing, pages 243–252. Springer, 2018.

[143] Kristian Slavov, Migault Daniel, and Pourzandi Makan. Identifying and addressing the
vulnerabilities and security issues of sdn. Report, Ericsson, Ericsson SE-164 83 Stock-
holm, Sweden, 2015.

[144] Wenjuan Li, Weizhi Meng, et al. A survey on openflow-based software defined networks:
Security challenges and countermeasures. Journal of Network and Computer Applica-

tions, 68:126–139, 2016.

[145] Syed Taha Ali, Vijay Sivaraman, Adam Radford, and Sanjay Jha. A survey of securing
networks using software defined networking. IEEE transactions on reliability, 64(3):1086–
1097, 2015.

[146] Ijaz Ahmad, Suneth Namal, Mika Ylianttila, and Andrei Gurtov. Security in software de-
fined networks: A survey. IEEE Communications Surveys & Tutorials, 17(4):2317–2346,
2015.

[147] Kubra Kalkan and Sherali Zeadally. Securing internet of things (iot) with software defined
networking (sdn). IEEE Communications Magazine, 2017.

[148] Krzysztof Cabaj, Jacek Wytrebowicz, Slawomir Kuklinski, Pawel Radziszewski, and
Khoa Truong Dinh. Sdn architecture impact on network security. In FedCSIS position

papers, pages 143–148, 2014.

[149] Seungwon Shin and Guofei Gu. Cloudwatcher: Network security monitoring using open-
flow in dynamic cloud networks (or: How to provide security monitoring as a service in
clouds?). In 2012 20th IEEE international conference on network protocols (ICNP), pages
1–6. IEEE, 2012.

[150] Seungwon Shin, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, Guofei Gu, and
Mabry Tyson. Fresco: Modular composable security services for software-defined net-
works. In NDSS, 2013.

XXIV

[151] Seungwon Shin, Phillip Porras, Vinod Yegneswaran, and Guofei Gu. A framework for in-
tegrating security services into software-defined networks. Proceedings of the 2013 open

networking summit (Research Track poster paper), ser. ONS, 13, 2013.

[152] Hongxin Hu, Wonkyu Han, Gail-Joon Ahn, and Ziming Zhao. Flowguard: building ro-
bust firewalls for software-defined networks. In Proceedings of the third workshop on Hot

topics in software defined networking, pages 97–102. ACM, 2014.

[153] Adrian Lara and Byrav Ramamurthy. Opensec: Policy-based security using software-
defined networking. IEEE Transactions on Network and Service Management, 13(1):30–
42, 2016.

[154] Yongning Tang, Guang Cheng, Zhiwei Xu, Feng Chen, Khalid Elmansor, and Yangxuan
Wu. Automatic belief network modeling via policy inference for sdn fault localization.
Journal of Internet Services and Applications, 7(1):1, 2016.

[155] B Batista and M Fernandez. Ponderflow: A policy specification language for openflow
networks. In The Thirteenth International Conference on Networks, pages 204–209, 2014.

[156] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The ponder
policy specification language. In Policies for Distributed Systems and Networks, pages
18–38. Springer, 2001.

[157] Yaniv Ben-Itzhak, Katherine Barabash, Rami Cohen, Anna Levin, and Eran Raichstein.
Enforsdn: Network policies enforcement with sdn. In Integrated Network Management

(IM), 2015 IFIP/IEEE International Symposium on, pages 80–88. IEEE, 2015.

[158] Diogo Menezes Ferrazani Mattos and Otto Carlos Muniz Bandeira Duarte. Authflow: au-
thentication and access control mechanism for software defined networking. Annals of

Telecommunications, 71(11-12):607–615, 2016.

[159] P. Congdon, B. Aboba, A. Smith, G. Zorn, and J. Roese. Ieee 802.1x remote authentication
dial in user service (radius) usage guidelines. RFC 3580, RFC Editor, September 2003.

[160] Sadiq T Yakasai and Chris G Guy. Flowidentity: Software-defined network access control.
In Network Function Virtualization and Software Defined Network (NFV-SDN), 2015 IEEE

Conference on, pages 115–120. IEEE, 2015.

[161] Almulla Hesham, Fragkiskos Sardis, Stan Wong, Toktam Mahmoodi, and Mallikarjun
Tatipamula. A simplified network access control design and implementation for m2m
communication using sdn. In Wireless Communications and Networking Conference

Workshops (WCNCW), 2017 IEEE, pages 1–5. IEEE, 2017.

[162] David Evans, Anh Nguyen-Tuong, and John Knight. Effectiveness of moving target de-
fenses. In Moving Target Defense, pages 29–48. Springer, 2011.

[163] Rui Zhuang, Scott A DeLoach, and Xinming Ou. Towards a theory of moving target de-
fense. In Proceedings of the First ACM Workshop on Moving Target Defense, pages 31–40.
ACM, 2014.

[164] Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. Openflow random host mutation:
transparent moving target defense using software defined networking. In Proceedings

of the first workshop on Hot topics in software defined networks, pages 127–132. ACM,
2012.

XXV

[165] Rupam Kumar Sharma, Hemanta Kumar Kalita, and Biju Issac. Different firewall tech-
niques: A survey. In Computing, Communication and Networking Technologies (ICC-

CNT), 2014 International Conference on, pages 1–6. IEEE, 2014.

[166] Michelle Suh, Sae Hyong Park, Byungjoon Lee, and Sunhee Yang. Building firewall
over the software-defined network controller. In Advanced Communication Technology

(ICACT), 2014 16th International Conference on, pages 744–748. IEEE, 2014.

[167] Chaitra N Shivayogimath and NV Uma Reddy. Modification of l2 learning switch code for
firewall functionality in pox controller. In Silicon Photonics & High Performance Comput-

ing, pages 103–114. Springer, 2018.

[168] Wajdy M Othman, Hao Chen, Ammar Al-Moalmi, and Ali N Hadi. Implementation and
performance analysis of sdn firewall on pox controller. In Communication Software and

Networks (ICCSN), 2017 IEEE 9th International Conference on, pages 1461–1466. IEEE,
2017.

[169] Jake Collings and Jun Liu. An openflow-based prototype of sdn-oriented stateful hard-
ware firewalls. In Network Protocols (ICNP), 2014 IEEE 22nd International Conference on,
pages 525–528. IEEE, 2014.

[170] Changhoon Yoon, Taejune Park, Seungsoo Lee, Heedo Kang, Seungwon Shin, and
Zonghua Zhang. Enabling security functions with sdn: A feasibility study. Computer

Networks, 85:19–35, 2015.

[171] Karamjeet Kaur, Krishan Kumar, Japinder Singh, and Navtej Singh Ghumman. Pro-
grammable firewall using software defined networking. In Computing for Sustainable

Global Development (INDIACom), 2015 2nd International Conference on, pages 2125–
2129. IEEE, 2015.

[172] Tariq Javid, Tehseen Riaz, and Asad Rasheed. A layer2 firewall for software defined net-
work. In Information Assurance and Cyber Security (CIACS), 2014 Conference on, pages
39–42. IEEE, 2014.

[173] Justin Gregory V Pena and William Emmanuel Yu. Development of a distributed firewall
using software defined networking technology. In Information Science and Technology

(ICIST), 2014 4th IEEE International Conference on, pages 449–452. IEEE, 2014.

[174] Thuy Vinh Tran and Heejune Ahn. A network topology-aware selectively distributed fire-
wall control in sdn. In Information and Communication Technology Convergence (ICTC),

2015 International Conference on, pages 89–94. IEEE, 2015.

[175] Sergey Morzhov, Igor Alekseev, and Mikhail Nikitinskiy. Firewall application for floodlight
sdn controller. In Control and Communications (SIBCON), 2016 International Siberian

Conference on, pages 1–5. IEEE, 2016.

[176] Nayana Zope, Sanjay Pawar, and Zia Saquib. Firewall and load balancing as an applica-
tion of sdn. In Advances in Signal Processing (CASP), Conference on, pages 354–359. IEEE,
2016.

[177] Mohd Abuzar Sayeed, Mohd Asim Sayeed, and Sharad Saxena. Intrusion detection sys-
tem based on software defined network firewall. In Next Generation Computing Tech-

nologies (NGCT), 2015 1st International Conference on, pages 379–382. IEEE, 2015.

XXVI

[178] Dhaval Satasiya, Rupal Raviya, and Hiresh Kumar. Enhanced sdn security using firewall
in a distributed scenario. In Advanced Communication Control and Computing Tech-

nologies (ICACCCT), 2016 International Conference on, pages 588–592. IEEE, 2016.

[179] Jay Shah. Implementation and performance analysis of firewall on open vswitch. Tech-
nical report, Technische Universitat Munchen, 2015.

[180] Deepa Balagopal and X Agnise Kala Rani. Netwatch: Empowering software-defined net-
work switches for packet filtering. In Applied and Theoretical Computing and Commu-

nication Technology (iCATccT), 2015 International Conference on, pages 837–840. IEEE,
2015.

[181] Deepa Balagopal and X Agnise Kala Rani. Empowering sdn firewall against arp poison
routing. International Journal of Applied Engineering Research, 12(18):7466–7469, 2017.

[182] Thuy Vinh Tran and Heejune Ahn. Flowtracker: A sdn stateful firewall solution with adap-
tive connection tracking and minimized controller processing. In Software Networking

(ICSN), 2016 International Conference on, pages 1–5. IEEE, 2016.

[183] Avinash Kumar and NK Srinath. Implementing a firewall functionality for mesh networks
using sdn controller. In Computation System and Information Technology for Sustainable

Solutions (CSITSS), International Conference on, pages 168–173. IEEE, 2016.

[184] Vipin Gupta, Sukhveer Kaur, and Karamjeet Kaur. Implementation of stateful firewall
using pox controller. In Computing for Sustainable Global Development (INDIACom),

2016 3rd International Conference on, pages 1093–1096. IEEE, 2016.

[185] Amandeep Kaur and Vikramjit Singh. Building l2-l4 firewall using software defined net-
working. International Journal of Innovations and Advancement in Computer Science,
6(6):159–167, 2017.

[186] Mathis Steichen, Stefan Hommes, and Radu State. Chainguard—a firewall for blockchain
applications using sdn with openflow. In Principles, Systems and Applications of IP

Telecommunications (IPTComm), 2017, pages 1–8. IEEE, 2017.

[187] Xinpei Jia and Joseph KH Wang. Distributed firewall for p2p network in data center. In
ICCE-China Workshop (ICCE-China), 2013 IEEE, pages 15–19. IEEE, 2013.

[188] Karamjeet Kaur, Sukhveer Kaur, and Vipin Gupta. Software defined networking based
routing firewall. In Computational Techniques in Information and Communication Tech-

nologies (ICCTICT), 2016 International Conference on, pages 267–269. IEEE, 2016.

[189] A Mahesh, Adhiyan Chandrasekaran, R ArunKumar, K SivaKumar, and N Vigneshwaran.
Cloud based firewall on openflow sdn network. In Algorithms, Methodology, Models and

Applications in Emerging Technologies (ICAMMAET), 2017 International Conference on,
pages 1–6. IEEE, 2017.

[190] Jarrod N Bakker, Ian Welch, and Winston KG Seah. Network-wide virtual firewall using
sdn/openflow. In Network Function Virtualization and Software Defined Networks (NFV-

SDN), IEEE Conference on, pages 62–68. IEEE, 2016.

[191] Alaauddin Shieha. Application layer firewall using openflow. Technical report, University
of Colorado at Boulder, 2014.

XXVII

[192] Andis Arins. Firewall as a service in sdn openflow network. In Information, Electronic

and Electrical Engineering (AIEEE), 2015 IEEE 3rd Workshop on Advances in, pages 1–5.
IEEE, 2015.

[193] M Saad Waheed, M Al Mufarrej, M Sobhieh, A Al Barrak, A Baig, and A Al Mazyad. Imple-
mentation of virtual firewall function in sdn (software defined networks). In 9th IEEE-

GCC Conference and Exhibition (GCCCE). IEEE, 2017.

[194] Dustin Grant, Sandeep Gupta, Sridhar Narahari, and Michael J Satterlee. Methods and
apparatus to provide a distributed firewall in a network, August 31 2017. US Patent App.
15/594,010.

[195] Sajad Shirali-Shahreza and Yashar Ganjali. Efficient implementation of security appli-
cations in openflow controller with flexam. In High-Performance Interconnects (HOTI),

2013 IEEE 21st Annual Symposium on, pages 49–54. IEEE, 2013.

[196] Sajad Shirali-Shahreza and Yashar Ganjali. Flexam: flexible sampling extension for mon-
itoring and security applications in openflow. In Proceedings of the second ACM SIG-

COMM workshop on Hot topics in software defined networking, pages 167–168. ACM,
2013.

[197] Sajad Shirali-Shahreza and Yashar Ganjali. Empowering software defined network con-
troller with packet-level information. In Communications Workshops (ICC), 2013 IEEE

International Conference on, pages 1335–1339. IEEE, 2013.

[198] Sajad Shirali-Shahreza and Yashar Ganjali. Protecting home user devices with a sdn-
based firewall. IEEE Transactions on Consumer Electronics, 2018.

[199] Wonkyu Han, Hongxin Hu, Ziming Zhao, Adam Doupé, Gail-Joon Ahn, Kuang-Ching
Wang, and Juan Deng. State-aware network access management for software-defined
networks. In Proceedings of the 21st ACM on Symposium on Access Control Models and

Technologies, pages 1–11. ACM, 2016.

[200] Hongxin Hu, Gail-Joon Ahn, Wonkyu Han, and Ziming Zhao. Towards a reliable sdn fire-
wall. In ONS, 2014.

[201] W Juan, W Jiang, C Shiya, J Hongyang, and K Qianglong. Sdn (self-defending network)
firewall state detecting method and system based on openflow protocol. China Patent

CN, 104104561, 2014.

[202] Justin Pettit and Thomas Graf. Stateful connection tracking & stateful nat, 2014.

[203] Hesham Mekky, Fang Hao, Sarit Mukherjee, Zhi-Li Zhang, and TV Lakshman.
Application-aware data plane processing in sdn. In Proceedings of the third workshop

on Hot topics in software defined networking, pages 13–18. ACM, 2014.

[204] Masoud Moshref, Apoorv Bhargava, Adhip Gupta, Minlan Yu, and Ramesh Govindan.
Flow-level state transition as a new switch primitive for sdn. In Proceedings of the third

workshop on Hot topics in software defined networking, pages 61–66. ACM, 2014.

[205] Shuyong Zhu, Jun Bi, Chen Sun, Chenhui Wu, and Hongxin Hu. Sdpa: Enhancing state-
ful forwarding for software-defined networking. In Network Protocols (ICNP), 2015 IEEE

23rd International Conference on, pages 323–333. IEEE, 2015.

XXVIII

[206] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard,
Fernando Mujica, and Mark Horowitz. Forwarding metamorphosis: Fast programmable
match-action processing in hardware for sdn. ACM SIGCOMM Computer Communica-

tion Review, 43(4):99–110, 2013.

[207] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,
Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. P4: Programming
protocol-independent packet processors. ACM SIGCOMM Computer Communication

Review, 44(3):87–95, 2014.

[208] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford, and David
Walker. Snap: Stateful network-wide abstractions for packet processing. In Proceedings

of the 2016 ACM SIGCOMM Conference, pages 29–43. ACM, 2016.

[209] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad Alizadeh,
Hari Balakrishnan, George Varghese, Nick McKeown, and Steve Licking. Packet transac-
tions: High-level programming for line-rate switches. In Proceedings of the 2016 ACM

SIGCOMM Conference, pages 15–28. ACM, 2016.

[210] Jedidiah McClurg, Hossein Hojjat, Nate Foster, and P Cerny. Specification and compila-
tion of event-driven sdn programs. arXiv preprint arXiv: 1507.07049, 2015.

[211] P Ayuso. Netfilter’s connection tracking system. LOGIN: The USENIX magazine, 31(3),
2006.

[212] Tooska Dargahi, Alberto Caponi, Moreno Ambrosin, Giuseppe Bianchi, and Mauro Conti.
A survey on the security of stateful sdn data planes. IEEE Communications Surveys &

Tutorials, 19(3):1701–1725, 2017.

[213] Juan Deng, Hongxin Hu, Hongda Li, Zhizhong Pan, Kuang-Ching Wang, Gail-Joon Ahn,
Jun Bi, and Younghee Park. Vnguard: An nfv/sdn combination framework for provision-
ing and managing virtual firewalls. In Network Function Virtualization and Software De-

fined Network (NFV-SDN), 2015 IEEE Conference on, pages 107–114. IEEE, 2015.

[214] Simeon Miteff and Scott Hazelhurst. Nfshunt: A linux firewall with openflow-enabled
hardware bypass. In Network Function Virtualization and Software Defined Network

(NFV-SDN), 2015 IEEE Conference on, pages 100–106. IEEE, 2015.

[215] Casimer Decusatis and Peter Mueller. Virtual firewall performance as a waypoint on a
software defined overlay network. In High Performance Computing and Communica-

tions, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf

on Embedded Software and Syst (HPCC, CSS, ICESS), 2014 IEEE Intl Conf on, pages 819–
822. IEEE, 2014.

[216] Juan Deng and Hongda Li. On the safety and efficiency of virtual firewall elasticity con-
trol. In 24th Network and Distributed System Security Symposium (NDSS 2017), 2017.

[217] Antônio J Pinheiro, Ethel B Gondim, and Divanilson R Campelo. An efficient architec-
ture for dynamic middlebox policy enforcement in sdn networks. Computer Networks,
122:153–162, 2017.

[218] Simeon Miteff. An sdn-based firewall shunt for data-intensive science applications.
Technical report, University of the Witwatersrand, 2016.

XXIX

[219] Rahul Tajpuriya, Vinit Gupta, and Indr Jeet Rajput. A systematic approach for highly
secure framework for virtual firewall. International Journal For Technological Research

In Engineering, 4(8):2347–4718, 2017.

[220] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and Minlan Yu.
Simple-fying middlebox policy enforcement using sdn. ACM SIGCOMM computer com-

munication review, 43(4):27–38, 2013.

[221] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and Jeffrey C Mogul. En-
forcing network-wide policies in the presence of dynamic middlebox actions using flow-
tags. In NSDI, volume 14, pages 533–546, 2014.

[222] Claas Lorenz, David Hock, Johann Scherer, Raphael Durner, Wolfgang Kellerer, Steffen
Gebert, Nicholas Gray, Thomas Zinner, and Phuoc Tran-Gia. An sdn/nfv-enabled en-
terprise network architecture offering fine-grained security policy enforcement. IEEE

communications magazine, 55(3):217–223, 2017.

[223] Florian Heimgaertner, Mark Schmidt, David Morgenstern, and Michael Menth. A
software-defined firewall bypass for congestion offloading. In 2017 13th International

Conference on Network and Service Management (CNSM), pages 1–9. IEEE, 2017.

[224] Vasaka Visoottiviseth, Suthasinee Lertviriyasawat, Peerada Suppiyatrakoon, Pattarajit
Chitkornkitsil, and Nariyoshi Yamai. Reflo: Reactive firewall system with openflow and
flow monitoring system. In Region 10 Conference, TENCON 2017-2017 IEEE, pages 2273–
2278. IEEE, 2017.

[225] Jérôme François, Lautaro Dolberg, Olivier Festor, and Thomas Engel. Network security
through software defined networking: a survey. In Proceedings of the Conference on Prin-

ciples, Systems and Applications of IP Telecommunications, page 6. ACM, 2014.

[226] Sandra Scott-Hayward, Gemma O’Callaghan, and Sakir Sezer. Sdn security: A survey. In
Future Networks and Services (SDN4FNS), 2013 IEEE SDN For, pages 1–7. IEEE, 2013.

[227] Sebastian Seeber, Lars Stiemert, and Gabi Dreo Rodosek. Towards an sdn-enabled ids
environment. In Communications and Network Security (CNS), 2015 IEEE Conference

on, pages 751–752. IEEE, 2015.

[228] Nen-Fu Huang, Chuang Wang, I-Ju Liao, Che-Wei Lin, and Chia-Nan Kao. An openflow-
based collaborative intrusion prevention system for cloud networking. In Communica-

tion Software and Networks (ICCSN), 2015 IEEE International Conference on, pages 85–92.
IEEE, 2015.

[229] Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In Proceedings

of LISA 99: 13th Systems Administration Conference Lisa, pages 229–238. USENIX, 1999.

[230] Jack Koziol. Intrusion detection with Snort. Sams Publishing, 2003.

[231] Usama Ahmed, Imran Raza, Syed Asad Hussain, Amjad Ali, Muddesar Iqbal, and Xinheng
Wang. Modelling cyber security for software-defined networks those grow strong when
exposed to threats. Journal of Reliable Intelligent Environments, 1(2-4):123–146, 2015.

[232] Adnan Akhunzada, Ejaz Ahmed, Abdullah Gani, Muhammad Khurram Khan, Muham-
mad Imran, and Sghaier Guizani. Securing software defined networks: taxonomy, re-
quirements, and open issues. IEEE Communications Magazine, 53(4):36–44, 2015.

XXX

[233] Kevin J Soo Hoo. How much is enough? A risk management approach to computer secu-

rity. Stanford University Stanford, Calif, 2000.

[234] Vinay M Igure and Ronald D Williams. Taxonomies of attacks and vulnerabilities in com-
puter systems. IEEE Communications Surveys & Tutorials, 10(1), 2008.

[235] EUREKA Network. Project sendate, 2018.

[236] SENDATE. About the project, 2018.

[237] Peter Mell, Karen Scarfone, and Sasha Romanosky. Common vulnerability scoring sys-
tem. IEEE Security & Privacy, 4(6), 2006.

[238] Peter Mell, Karen Scarfone, and Sasha Romanosky. A complete guide to the common vul-
nerability scoring system version 2.0. In Published by FIRST-Forum of Incident Response

and Security Teams, volume 1, page 23, 2007.

[239] Mike Schiffman, A Wright, D Ahmad, and G Eschelbeck. The common vulnerability scor-
ing system. National Infrastructure Advisory Council, Vulnerability Disclosure Working

Group, Vulnerability Scoring Subgroup, 2004.

[240] Peter Mell, Karen Ann Kent, and Sasha Romanosky. The common vulnerability scoring

system (CVSS) and its applicability to federal agency systems. US Department of Com-
merce, National Institute of Standards and Technology, 2007.

[241] Kardi Teknomo. Analytic hierarchy process (ahp) tutorial. Revoledu. com, pages 1–20,
2006.

[242] Alessio Ishizaka and Philippe Nemery. Analytic hierarchy process. Multi-Criteria Deci-

sion Analysis: Methods and Software, pages 11–58, 1999.

[243] Thomas L Saaty. How to make a decision: the analytic hierarchy process. European

journal of operational research, 48(1):9–26, 1990.

[244] Omkarprasad S Vaidya and Sushil Kumar. Analytic hierarchy process: An overview of
applications. European Journal of operational research, 169(1):1–29, 2006.

[245] Zhihu Wang and Haiwen Zeng. Study on the risk assessment quantitative method of
information security. In Advanced Computer Theory and Engineering (ICACTE), 2010 3rd

International Conference on, volume 6, pages V6–529. IEEE, 2010.

[246] Navneet Bhushan and Kanwal Rai. Strategic decision making: applying the analytic hier-

archy process. Springer Science & Business Media, 2007.

[247] Thomas L Saaty. Fundamentals of the analytic hierarchy process. In The analytic hi-

erarchy process in natural resource and environmental decision making, pages 15–35.
Springer, 2001.

[248] FIRST.org. Common vulnerability scoring system v3.0: Specification document. https:
//www.first.org/cvss/specification-document#1-1-Metrics, 2018. Accessed:
2018-03-23.

[249] Park Foreman. Vulnerability Management. CRC Press, 2009.

[250] FIRST.org. Cvss-sig version 2 history. https://www.first.org/cvss/v2/history,
2018. Accessed: 2018-04-23.

XXXI

https://www.first.org/cvss/specification-document#1-1-Metrics
https://www.first.org/cvss/specification-document#1-1-Metrics
https://www.first.org/cvss/v2/history

[251] Melvin Alexander. Decision-making using the analytic hierarchy process (ahp) and
sas/iml. 20th Annual South East SAS Users Group (SESUG) Conference, pages 1–12, 2012.

[252] Thomas L Saaty. Eigenvector and logarithmic least squares. European journal of opera-

tional research, 48(1):156–160, 1990.

[253] Jose Antonio Alonso and M Teresa Lamata. Consistency in the analytic hierarchy process:
a new approach. International journal of uncertainty, fuzziness and knowledge-based

systems, 14(04):445–459, 2006.

[254] FIRST.org. Common vulnerability scoring system version 3.0 calculator. https://

www.first.org/cvss/calculator/3.0, 2018. Accessed: 2018-03-26.

[255] T. Dierks and E. Rescorla. The transport layer security (tls) protocol version 1.2. RFC
5246, RFC Editor, August 2008. http://www.rfc-editor.org/rfc/rfc5246.txt.

[256] J Bryan Lyles and Christoph L Scuba. A reference model for firewall technology and its
implications for connection signaling. 1996.

[257] Thomson. Thomson gateway stateful inspection firewall configuration: Sif r7.4 and
higher. Guide, Thomson Telecom Belgium, 2008.

[258] Safaa Zeidan and Zouheir Trabelsi. A survey on firewall’s early packet rejection tech-
niques. In 2011 International Conference on Innovations in Information Technology (IIT),
pages 203–208. IEEE, 2011.

[259] Huang Ling-Fang. The firewall technology study of network perimeter security. In Ser-

vices Computing Conference (APSCC), 2012 IEEE Asia-Pacific, pages 410–413. IEEE, 2012.

[260] Rajesh K. Stateful multilayer inspection firewalls. http://www.excitingip.com/
205/what-are-packet-filtering-circuit-level-application-level-and-

stateful-multilayer-inspection-firewalls/, 2009. Accessed: 2018-04-03.

[261] Kenneth Ingham and Stephanie Forrest. A history and survey of network firewalls. Uni-

versity of New Mexico, Tech. Rep, 2002.

[262] Stephen Woodall. Firewall design principles. Computer Networks and Computer Security

Coursework paper, North Carolina State University, USA, 2004.

[263] Frank Artes, Thomas Skybakmoen, Bob Walder, Vikram Phatak, and Ryan Liles. Firewall
comparative analysis: Total cost of ownership (tco). Repport, NSS Labs, 2013.

[264] Scott Hogg. Is an sdn switch a new form of a firewall? https://www.networkworld.com/
article/2905257/sdn/is-an-sdn-switch-a-new-form-of-a-firewall.html,
2015. Accessed: 2018-04-04.

[265] TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU. Series x: Data networks,
open system communications and security x.1205. Repport, International Telecommu-
nication Union, 2008.

[266] Habtamu Abie. An overview of firewall technologies. Telektronikk, 96(3):47–52, 2000.

[267] Behrouz A Forouzan and Sophia Chung Fegan. TCP/IP protocol suite. McGraw-Hill
Higher Education, 2002.

[268] David Lee and Mihalis Yannakakis. Principles and methods of testing finite state
machines-a survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

XXXII

https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.excitingip.com/205/what-are-packet-filtering-circuit-level-application-level-and-stateful-multilayer-inspection-firewalls/
http://www.excitingip.com/205/what-are-packet-filtering-circuit-level-application-level-and-stateful-multilayer-inspection-firewalls/
http://www.excitingip.com/205/what-are-packet-filtering-circuit-level-application-level-and-stateful-multilayer-inspection-firewalls/
https://www.networkworld.com/article/2905257/sdn/is-an-sdn-switch-a-new-form-of-a-firewall.html
https://www.networkworld.com/article/2905257/sdn/is-an-sdn-switch-a-new-form-of-a-firewall.html

[269] Piotr Rygielski, Marian Seliuchenko, Samuel Kounev, and Mykhailo Klymash. Perfor-
mance analysis of sdn switches with hardware and software flow tables. In proceed-

ings of the 10th EAI International Conference on Performance Evaluation Methodologies

and Tools, pages 80–87. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2017.

[270] bcom. A propos de b<>com, 2018.

[271] Jungmin Son and Rajkumar Buyya. A taxonomy of software-defined networking (sdn)-
enabled cloud computing. ACM Computing Surveys (CSUR), 51(3):59, 2018.

[272] Yanhuang Li. Interoperability and Negotiation of Security Policies. PhD thesis, Ecole Na-
tionale Supérieure des Télécommunications de Bretagne-ENSTB, 2016.

[273] Ed Coyne and Timothy R Weil. Abac and rbac: scalable, flexible, and auditable access
management. IT Professional, 15(3):14–16, 2013.

[274] D Richard Kuhn, Edward J Coyne, and Timothy R Weil. Adding attributes to role-based
access control. Computer, 43(6):79–81, 2010.

[275] Vincent C Hu, D Richard Kuhn, and David F Ferraiolo. Attribute-based access control.
Computer, 48(2):85–88, 2015.

[276] Yanhuang Li, Nora Cuppens-Boulahia, Jean-Michel Crom, Frédéric Cuppens, Vincent
Frey, and Xiaoshu Ji. Similarity measure for security policies in service provider selection.
In International Conference on Information Systems Security, pages 227–242. Springer,
2015.

XXXIII

Titre : Analyse de sécurité et renforcement de control d’accès à travers les réseaux programmables

Mots clés : Réseaux programmables, cyber sécurité, pare-feu, orchestration, vulnérabilité, control
d’accès

Résumé : Les réseaux programmables (SDN)
sont un paradigme émergeant qui promet de
résoudre les limitations de l'architecture du
réseau conventionnel.
 Dans cette thèse, nous étudions et explorons
deux aspects de la relation entre la cyber
sécurité et les réseaux programmables. D'une
part, nous étudions la sécurité pour les réseaux
programmables en effectuant une analyse de
leurs vulnérabilités. Une telle analyse de
sécurité est un processus crucial pour identifier
les failles de sécurité des réseaux
programmables et pour mesurer leurs impacts.
D'autre part, nous explorons l'apport des

réseaux programmables à la sécurité. La thèse
conçoit et implémente un pare-feu
programmable qui transforme la machine à états

finis des protocoles réseaux, en une machine à
états équivalente pour les réseaux
programmables. En outre, la thèse évalue le
pare-feu implémenté avec NetFilter dans les
aspects de performances et de résistance aux
attaques d’inondation par paquets de
synchronisation. De plus, la thèse utilise
l'orchestration apportée par les réseaux
programmables pour renforcer la politique de
sécurité dans le Cloud. Elle propose un
Framework pour exprimer, évaluer, négocier et
déployer les politiques de pare-feu dans le
contexte des réseaux programmables sous
forme de service dans le Cloud

Title : Security Analysis and Access Control Enforcement through Software Defined Networks

Keywords : Software Defined Networks, Cyber security, Firewall, Orchestration, Vulnerability,
Access Control

Abstract : Software Defined Networking (SDN)
is an emerging paradigm that promises to
resolve the limitations of the conventional
network architecture.
SDN and cyber security have a reciprocal

relationship. In this thesis, we study and explore
two aspects of this relationship. On the one
hand, we study security for SDN by performing a
vulnerability analysis of SDN. Such security
analysis is a crucial process in identifying SDN
security flaws and in measuring their impacts. It
is necessary for improving SDN security and for
understanding its weaknesses.
On the other hand, we explore SDN for

security. Such an aspect of the relationship
between SDN and security focusses on the
advantages that SDN brings into security.

The thesis designs and implements an SDN
stateful firewall that transforms the Finite State
Machine of network protocols to an SDN
Equivalent State Machine. Besides, the thesis
evaluates SDN stateful firewall and NetFilter
regarding their performance and their
resistance to Syn Flooding attacks.
Furthermore, the thesis uses SDN
orchestration for policy enforcement. It
proposes a firewall policy framework to
express, assess, negotiate and deploy firewall
policies in the context of SDN as a Service in
the cloud.

	Contents
	List of Figures
	List of Tables
	I Thesis Background
	Introduction
	General Introduction
	Context
	Problem Statement
	Solution and Contribution Overview
	Thesis Organization

	Software Defined networking
	Introduction
	SDN Paradigm
	SDN Architecture
	OpenFlow
	Expected SDN Benefits
	SDN Challenges
	Discussion

	Security in Software Defined Networking
	Introduction
	From Network Security to SDN Security
	Security for SDN
	SDN for security
	Discussion

	II Security for SDN
	Software Defined Networking Vulnerability Analysis
	Introduction
	Problem Statement
	Vulnerability Analysis Concepts
	SDN Asset Classification
	SDN Vulnerability Procedure
	Vulnerability severity results
	Discussion

	III SDN for Security
	Centralized SDN Firewall
	Introduction
	Conventional Firewalls
	Motivation for an SDN Firewall
	Key Concepts
	Implementation
	Evaluation
	Discussion

	SDN Firewall Orchestration
	Introduction
	Context and Objectives
	SDN firewall policy model
	Implementation
	Evaluation
	Discussion

	IV Conclusion
	Conclusion
	General Conclusion
	Contribution Summary
	Perspectives

	V Appendix
	Appendix AHP Computations

	VI References

