
HAL Id: tel-02081304
https://theses.hal.science/tel-02081304v1

Submitted on 27 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and performant implementation of numerical
methods for multiscale problems in plasma physics

Sever Adrian Hirstoaga

To cite this version:
Sever Adrian Hirstoaga. Design and performant implementation of numerical methods for multiscale
problems in plasma physics. Analysis of PDEs [math.AP]. Université de Strasbourg, IRMA UMR
7501, 2019. �tel-02081304�

https://theses.hal.science/tel-02081304v1
https://hal.archives-ouvertes.fr

Institut de Recherche
Mathématique Avancée

INSTITUT DE
RECHERCHE

MATHÉMATIQUE
AVANCÉE

UMR 7501

Strasbourg

https://irma.math.unistra.fr

Habilitation à diriger des recherches

Université de Strasbourg
Spécialité MATHÉMATIQUES APPLIQUÉES

Sever A. Hirstoaga

Design and performant implementation of

numerical methods for multiscale problems in

plasma physics

Soutenue le 5 avril 2019
devant la commission d’examen

Bruno Després, rapporteur

Francis Filbet, rapporteur

Virginie Grandgirard, rapporteur

Laura Grigori, examinateur

Philippe Helluy, garant

Eric Sonnendrücker, examinateur

Contents

Résumé 1

Introduction 3

1 Numerical methods for multiscale Vlasov and Vlasov–Poisson models 7
1.1 General context and equations of interest . 8
1.2 New two-scale methods for Vlasov equations . 9

1.2.1 Two-scale asymptotic preserving model . 10
1.2.2 First order two-scale method . 16

1.3 Design and development of large time step schemes for Vlasov and Vlasov–Poisson
equations . 19
1.3.1 The method for test cases in 1d× 1v . 21
1.3.2 The method for test cases in 2d× 2v . 24

1.4 Conclusions and outlook . 27

2 Performance of Particle-in-Cell simulations for Vlasov–Poisson models 33
2.1 The kinetic models and the PIC method . 34
2.2 Framework and motivation of software contributions 39
2.3 Single core optimizations in 2d× 2v . 41
2.4 Optimizations in 3d× 3v . 47
2.5 Parallelism results . 52
2.6 Conclusions and outlook . 54

3 Computational models for plasma physics problems 57
3.1 The dynamics of edge-localized modes . 58
3.2 The diocotron instability . 65
3.3 Conclusions and outlook . 69

General outlook 71

References of the author 73

Other references 75

i

ii CONTENTS

Résumé

Dans ce mémoire, nous présentons différentes stratégies pour approcher les solutions de modèles
cinétiques faisant intervenir plusieurs échelles en temps. Plus précisément, nous nous intéressons à
des systèmes de type Vlasov–Poisson pour décrire l’evolution dans l’espace des phases de particules
chargées sous l’influence d’un champ électromagnétique. L’objectif de ce travail est d’étudier le
comportement multi-échelle de ces équations à l’aide de l’analyse asymptotique et de proposer des
méthodes numériques adaptées pour approcher leurs solutions.

Dans la première partie, nous proposons deux méthodes pour traiter la difficulté liée au caractère
multi-échelle. La première est une méthode d’homogénéisation en temps, basée sur la notion de
convergence à deux échelles. Dans cette approche, nous obtenons un modèle réduit approchant
l’équation originelle de Vlasov. La deuxième méthode est un nouveau schéma en temps pour
l’équation de Vlasov. Basé sur un intégrateur exponentiel, le schéma résout la petite échelle tout en
utilisant des pas de temps macroscopiques. Des cas-tests issus de la physique des plasmas illustrent
la précision et l’efficacité de la méthode.

Dans la deuxième partie, nous analysons la performance d’une implémentation “Particle-in-Cell”
pour résoudre numériquement le système de Vlasov–Poisson. Le problème de la performance se pose
lors de l’utilisation de schémas de discrétisation explicites, avec des paramètres numériques résolvant
la petite échelle, ce qui entrâıne un coût de calcul important. Nous développons des structures de
données spécifiques pour optimiser les accès mémoire. Ce travail est complété par le développement
d’une approche spécifique de répartition des calculs par parallélisme hybride, utilisant à la fois les
mécanismes de mémoire partagée et de mémoire distribuée, que nous implémentons sur processeurs
multi-cœurs. Des mesures classiques pour évaluer la performance des codes sont analysées.

Dans la troisième partie, nous développons un cadre de modélisation et de simulation pour
résoudre des problèmes pertinents en physique des plasmas. Plus précisément, nous étudions (i)
la dynamique d’un plasma d’ions et d’électrons suivant un “edge-localized mode”, qui est une
instabilité se produisant au bord d’un tokamak et (ii) un problème d’instabilité de diocotron dans
un plasma. Pour modéliser ces phénomènes, nous proposons différents couplages faisant intervenir
des équations de type Poisson, des équations fluides et des équations cinétiques de type Vlasov avec
termes source et de collision. Leur résolution est effectuée avec des schémas numériques de type
“asymptotic-preserving” permettant de traiter efficacement le caractère multi-échelle.

Mots-clés : physique des plasmas, équations Vlasov–Poisson, modèle multi-échelle, modèle
réduit, schéma numérique, méthode particulaire, structures de données, processeurs multi-cœurs.

1

2

Introduction

This manuscript assembles my contributions in developing new mathematical and computational
methods for analyzing the dynamics of charged particles, like electrons or ions, as a multiscale
phenomenon. The underlying mechanisms of this general physical problem are described by systems
of partial differential equations. The objective of this work is to study these equations and to
implement various efficient numerical methods to approximate their solutions.

The aiming applications in this manuscript are in the domain of plasma physics and the physical
problems are expressed by means of kinetic models. In such a model, each particle species in the
plasma is characterized by a distribution function which corresponds to a statistical mean of the
repartition of particles in phase space for a large number of realizations of the physical system.
With regard to fluid models, a kinetic approach contains more information on the plasma, namely
the distribution of the particle velocities at each position, which is an important information when
the plasma is not at the thermodynamic equilibrium. More precisely, the mathematical models are
based on the Vlasov equation, that describes the evolution of charged particles in an electromagnetic
field which can either be self-consistent, i.e. generated by the particles themselves, or external, or
both. The Vlasov equation is a transport equation in phase space which includes the physical
space and the velocity space. The self-consistent electromagnetic field is calculated from Maxwell
equations, the coupling being performed through the charge density and the current computed from
the particles. In this work, however, we consider only the case of a self-consistent electric field, and
thus, the coupling between the Vlasov equation and the Poisson equation.

The numerical treatment of the Vlasov–Poisson system is mainly performed in the present work
by a Particle-in-Cell (PIC) method. Such a method needs a grid for the physical space only, but
may exhibit the disadvantage of strong spurious oscillations when displaying the particle densities.
This drawback is addressed in the manuscript by increasing the number of particles. Eulerian
methods are also implemented for solving Vlasov equation, precisely finite volume schemes on
uniform grids in the phase space. The accuracy of the latter method plays an important role in
reproducing the complex physical phenomena we tackle. However, the main difficulty to handle in
this case is to satisfy the CFL condition. In addition, going to higher dimensions in an Eulerian
code is computationally intensive. As for the Poisson equation, standard numerical approaches are
implemented, utilizing the Fourier transform or the finite difference method.

The contributions described in this manuscript are at the intersection between applied math-
ematics, computer science, and physics. As summarized below and detailed in the next chapters,
we will discuss about new mathematical models, the design and the development of new
and existing numerical methods, their efficient implementation on machines with many
cores, and some numerical results in specific plasma physics applications. More precisely,
the manuscript is split in three chapters, with the following objectives:

3

4

(i) design of new mathematical and numerical methods for understanding the complex behaviours
of solutions to Vlasov-like systems;

(ii) development of efficient methods for an optimal use of computer resources when numerically
solving these problems,

(iii) development of computational models and of appropriate numerical methods for simulations
of realistic problems in plasma physics.

The central problem, common to the three previous research directions, is the solving of transport
equations involving several scales in time. The multiscale aspect makes the models difficult to tackle
when we aim at avoiding a high computational cost. We can treat this issue in (at least) three
manners and therefore, the overall content of the manuscript could also be read from the following
perspective:

(i) we solve asymptotic models, which are approximations of the full original model, but with a
much lower numerical cost (Section 1.2 in Chapter 1);

(ii) we solve the original model with a standard numerical method, and therefore a high perfor-
mance computing approach is required (Chapter 2);

(iii) we solve the original model by designing adapted numerical methods, which are not con-
strained by the smallest scale and thus, with a low computational cost (Section 1.3 in Chap-
ter 1 and Chapter 3).

All the developments presented in the following would not have been possible without the inter-
action with colleagues from mathematics, physics, and computer science. Their names appear in my
list of references. I will particularly mention in this introduction the contributions of PhD students
and post-docs with whom I had the opportunity to collaborate and to develop joint publications.

The chapters are structured as follows:

Chapter 1 deals with multiscale Vlasov-like models issued from challenging problems in plasma
physics. Even though these models are rather simplified and academic, they contain the difficulty of
the presence of several time scales in the solutions, including high frequency oscillations. This is an
outstanding question to be accounted for when solving realistic physical problems for plasmas. In
order to cope with this issue, two strategies are proposed. First, we propose reduced models obtained
by asymptotic analysis. These models are free of high frequency oscillations and can be solved
numerically with standard schemes without demanding constraints on the numerical parameters.
Second, we treat the full model with a numerical method based on exponential integrators, by
which the high frequency oscillations are exactly solved whereas the slower process is treated in
an approximate way. This numerical strategy is compared in terms of accuracy and efficiency to
other existing methods that solve multiscale problems. Part of the contributions presented here
benefits from the interactions during the PhD thesis of Mathieu Lutz (defended in October 2013 at
Université de Strasbourg), advised by Éric Sonnendrücker (Max-Planck-Institut für Plasmaphysik,
Garching) and Emmanuel Frénod (Université de Bretagne-Sud, Vannes). The results in [14] were
obtained in the context of the TSAPPICC Cemracs project (http://smai.emath.fr/cemracs/
cemracs11/) in 2011, at CIRM next to Marseille. The work in [10] was obtained during the
post-doc of Xiaofei Zhao, supported by Inria through IPL FRATRES (https://team.inria.fr/
ipl-fratres/) and co-advised with Nicolas Crouseilles (Inria Rennes). Finally, a part of the

5

previous subjects was conceived in the framework of the Eurofusion Enabling Research Project
”Verification and development of new algorithms for gyrokinetic codes” (2015–2017) whose principal
investigator was Éric Sonnendrücker.

In Chapter 2, we focus on the performance of Particle-in-Cell (PIC) simulations for solving Vlasov–
Poisson systems in six dimensional phase space. This is an important issue to be dealt with when
solving problems processing a large amount of data. Despite significant recent advances, devis-
ing efficient strategies for utilizing modern supercomputing resources is still a challenging field.
Mainly, we address specific data structures in order to optimize the memory accesses. Since a
PIC simulation is memory bound, minimizing local data motion requires grouping data such that
memory operations can be performed contiguously. The data structures are also useful to exploit
efficiently parallelism patterns, like vectorization, multithreading, and multiprocessing. The se-
quential and parallel performances of our PIC codes are assessed with several classical measures.
These contributions are concerned with the particle push, whereas the Poisson solver is not a cen-
tral component in our optimization efforts. The starting point of this work was realized during the
Cemracs project OPICV (http://smai.emath.fr/cemracs/cemracs14/) in 2014, that I proposed
jointly with Edwin Chacon-Golcher (ELI Beamlines, Prague). The implementation was performed
in the library SeLaLib [Sel]. The results which followed have been obtained in collaboration with
Yann Barsamian (Université de Strasbourg) during his PhD thesis, co-advised with Éric Violard
(Université de Strasbourg) and Michel Mehrenberger (Université de Strasbourg).

In Chapter 3 we develop a computational framework for modelling and simulating complex
problems in plasma physics. More precisely, we study the problems of the diocotron instability in
a non-neutral plasma and of the dynamics of two species of charged particles following an edge-
localized mode (ELM) event in a tokamak’s scrape-off layer. The partial realism of these physical
problems leads to several mathematical and numerical difficulties. In this direction, we propose and
solve different kinetic and fluid equations to treat the modelling questions, while for the numerical
aspect, an asymptotic preserving strategy turns out to be fruitful. The subject concerning the study
of ELM dynamics was mainly proposed by Giovanni Manfredi (Institut de Physique et Chimie des
Matériaux de Strasbourg (IPCMS), Université de Strasbourg). The latest results were obtained in
collaboration with David Coulette, during his post-doc. In order to develop this research direction,
we benefited from the ANR program PEPPSI (2013–2017: http://peppsi.u-strasbg.fr/) whose
principal investigator was Giovanni Manfredi. The study of the diocotron instability has carried
out in a close collaboration with Michel Mehrenberger (Université de Strasbourg).

I started to work on the contributions exposed in this manuscript in 2009. My earlier research
related to the PhD thesis (manuscript available on HAL at https://hal.archives-ouvertes.fr/
tel-00137228) dealt with some questions arising in nonlinear functional analysis and its applica-
tions. One direction was to solve fixed point problems for nonexpansive operators and to consider
an application of the proposed algorithms to image restoration problems. Another direction treated
the abstract problem of finding zeros of multivalued maximal monotone operators in Hilbert spaces.
This is a general frame entailing several well-known questions in variational inequalities, in convex
analysis or more concretely, in optimization. A third direction was to study a yet more general
problem (the equilibrium problem) that offers a unified framework for some of the first two previous
subjects. The solutions to these three types of problems have been constructed in three different
ways: (i) as limits of solutions to perturbed easier to solve problems, (ii) as limits of discrete well-
behaved algorithms, and finally (iii) as the asymptotic behaviour of the solution to some associated
continuous dynamical system. My publications related to this topic are [6; 7; 8; 18]. This work will
not be detailed in the following.

6

Chapter 1

Numerical methods for multiscale

Vlasov and Vlasov–Poisson models

The goal of this chapter is to expose our works on designing multiscale strategies for the numerical
solution of problems exhibiting several time scales. The models considered in this chapter are linear
Vlasov equations or Vlasov–Poisson equations, in a phase space of dimension two, four, or six, that
we denote in the following by 1d×1d, 2d×2v, and 3d×3v respectively. As a consequence of specific
physical modelling considerations, the role of the multiscale aspect is played in the equations by a
small parameter. Standard explicit numerical schemes are therefore constrained by this parameter
to prohibitive time computations.

In this framework, the contribution of this chapter is to propose two alternative solutions
for treating with these problems: a technique of homogenization in time based on the two-scale
convergence theory and a numerical method based on exponential integrators. The first one deals
with new two-scale asymptotic preserving models separating terms which are free of multiple
scales from terms depending in analytical way of the smallest scale. As for the second solution,
we develop a new explicit time-advancing scheme which discretizes the full highly oscillating
model and meanwhile uses large time steps with respect to the smallest scale.

The summary of the chapter is the following:

❼ Section 1.1 gives information at a glance about the kinetic multiscale models under consider-
ation and their motivation.

❼ In Section 1.2 we develop the framework for building new two-scale first order approxima-
tions for Vlasov models, by means of classic tools from asymptotic analysis like the two-scale
convergence. The presentation follows the references [12; 14].

❼ In Section 1.3 we design a new time-stepping method for a generic multiscale Vlasov
model. This scheme enables an exact solving of the smallest scale and an approximation of
the slower part, and is quite accurate when using very large time steps with respect to the
smallest scale. The concerned references are, in chronological order, [16; 15; 17; 10].

❼ In Section 1.4 we conclude the chapter and some perspectives are drawn.

7

8 CHAPTER 1. MULTISCALE VLASOV MODELS

1.1 General context and equations of interest

The starting point of the works described in this chapter is the mathematical and numerical study
of the dynamics of charged particles submitted to a large magnetic field. This problem is of great
interest for describing strongly magnetized plasmas such as those encountered in a tokamak1 device
[HM03]. The general context is therefore that of the plasma magnetic confinement in the core of a
tokamak. It is a weakly collisional regime [HM03], which justifies the use of the Vlasov equation as
a first convenient approach for modelling the particles dynamics. In addition, the previous system
should be coupled with Maxwell equations that describe the self-consistent electromagnetic field.
However, we only consider in this chapter simplified models consisting in linear Vlasov equations
and Vlasov–Poisson equations but containing a term corresponding to a large magnetic field.

The challenge of these problems is that the charged particles experience motions at several scales
in time and space. For instance, particles turn rapidly around the magnetic field line and
also drift in the perpendicular plane on a much slower time scale. Mathematically, the multiscale
behaviour is given by the presence in the dimensionless equations of singular terms due to a small
parameter ε > 0. An example is when ε is the ratio between the Larmor radius and the characteristic
length, as in the regime of a strong magnetic field. Concretely, the difficulty in the problems treated
in this chapter is that the small parameter generates high frequency oscillations in time in the
solutions of the equations, that we aim at capturing numerically without a prohibitive computational
cost.

We present in the following the models we tackle in the rest of the chapter. In a first step, we are
interested in a linear Vlasov equation in 3d× 3v with a strong magnetic field that reads:

∂f ε

∂t
+ v · ∇xf

ε +

(
E+ v ×

(
B+

M
ε

))
· ∇vf

ε = 0,

f ε(t = 0,x,v) = f0(x,v),

(1.1)

where f ε = f ε(t,x,v) is the distribution function of an ion gas submitted to external electric and
magnetic field, E = E(t,x) and B = B(t,x) respectively, and where t ∈ R

+, x ∈ R
3, v ∈ R

3 are
the time, the position, and the velocity variable, respectively. The notation M stands for 2π e1,
where e1 is the first vector of the canonical base (e1, e2, e3) of R

3 and f0 denotes the given initial
condition. The term M/ε entails the strong magnetic field, since ε > 0 is a small parameter. There
is an ample literature treating models similar to (1.1). We refer for example to [FS98; GSR99; FS01;
GSR03; Bos09; HK10] among the first works about different regimes, obtained by taking limits of
Vlasov or Vlasov–Poisson equations corresponding to small parameters.

We next aim at solving a special 2d× 2v instance of the previous model, without the B part. The
equation reads:

∂f ε

∂t
+ v · ∇xf

ε +

(
E+

1

ε
v⊥
)

· ∇vf
ε = 0,

f ε(t = 0,x,v) = f0 (x,v) ,

(1.2)

where x = (x1, x2) stands for the position variable, v = (v1, v2) for the velocity variable, v⊥ for
(v2,−v1), f ε ≡ f ε(t,x,v) is the distribution function, and E ≡ E(t,x) corresponds to the electric

1a chamber with the shape of a torus, developed to produce controlled thermonuclear fusion power.

1.2. TWO-SCALE METHODS 9

field. Such a model is the subject of works in [FS00; FRS01; Bos07]. In this direction, we first
consider a Vlasov equation with a given external electric field and in a second stage, a coupling of
the Vlasov equation to the Poisson equation, in the plane orthogonal to the magnetic field direction
(see Section 2.1 of Chapter 2 for more details about the latter model).

Although the starting physical problem is linked to the plasma confinement, similar multiscale issues
are encountered in models useful for particle beam plasma physics [Dav90]. Thus, we also consider
a 1d× 1v Vlasov equation of type

∂f ε

∂t
+

1

ε
v
∂f ε

∂r
+
(
Eε −

r

ε

)∂f ε
∂v

= 0,

f ε(t = 0, r, v) = f0(r, v),

(1.3)

where f ε ≡ f ε(t, r, v), t ∈ R
+, r ∈ R

+, and v ∈ R and Eε ≡ Eε(t, r) is assumed to have a given
form, highly oscillating in time (see (1.22)).

In addition, in a numerical context we also tackle (1.3) when the electric field is given by the Poisson
equation. The coupled problem reads

∂f ε

∂t
+

1

ε
v
∂f ε

∂r
+
(
Eε −

r

ε

)∂f ε
∂v

= 0,

1

r

∂(r Eε)

∂r
=

∫

R

f ε(t, r, v) dv,

f ε(t = 0, r, v) = f0(r, v).

(1.4)

This system is the so-called paraxial model which turns out to be an approximation of the full
Vlasov-Maxwell system for modelling focused particle beams dynamics (see [FS06; FSS09] and the
references therein). In this case, even if the small parameter acts on the time variable, it is in fact
the longitudinal variable of a thin beam (see [FSS09] for details and the physical meaning of the
parameter).

1.2 New two-scale methods for Vlasov equations

Introduction. In the context of problems with oscillatory solutions, a hierarchy of three models
is naturally present: the model parameterized by the oscillation period, the limit model and the
two-scale model [Fré17]. Thus, if we aim at simulating a phenomenon where the oscillation period is
small whereas the oscillation amplitude is not, it can be useful to have numerical methods based on
an approximation of the two-scale model. In addition, if the oscillation period varies significantly
over the domain of simulation, it is important to have numerical methods that approximate both
the model parameterized by the oscillation period and the limit models. Phenomena occurring in
a tokamak plasma enter this context: the strong magnetic field generates varying high frequency
oscillations in the plasma.

Consider an equation whose solution has high frequency oscillations depending on a small parameter.
In this framework, the concept of two-scale convergence is very useful, for the following reason: even
if in some cases a reduced (or limit) system is enough to model a mean behaviour of the solution, in
other cases it might be interesting to capture the oscillations, since they are acknowledged to give

10 CHAPTER 1. MULTISCALE VLASOV MODELS

contributions to the long time behaviour of the solution [Ari+09; Fré17]. Thus, while the weak limit
with respect to the concerned parameter averages these oscillations2, the two-scale limit captures
them without entailing any oscillation when solving the two-scale model.

The theory of two-scale convergence was introduced at the end of the 80’s in [Ngu89; Ngu90]
and further developed in [All92]. Subsequently, this concept turned out to be useful for building
numerical methods, not only in plasma physics but also for other applications (see [Ngu89; All92;
Mou09; FSS09; Fré17] and the references therein).

The idea behind this section is to construct a two-scale first order approximation for the
solution of a multiscale Vlasov equation. Roughly speaking, the meaning of this statement is that
if f ε ≡ f ε(t, z)3 is the solution to equation (1.1) or (1.3), then

for small ε > 0 we have f ε(t, z) ≈ F
(
t,
t

ε
, z
)
+ ε F1

(
t,
t

ε
, z
)
,

where three points need to be specified: what is the meaning of the approximation, how are functions
F and F1 obtained, and what is precisely the dependence in t/ε of the functions F and F1. We will
see that F is the two-scale limit, derived from a function which does not contain high frequency
oscillations. As for F1, we will show that it can be written as the sum of two terms, one which is
free of high frequency oscillations, whereas the second contains oscillations but is simply given by
an explicit formula.

The reminder of this section is organized as follows. In the first part we build a new two-scale
macro-micro decomposition for the equation in (1.1) on the basis of the previous approximation.
In the second part, a two-scale first order approximation for equation (1.3) is proposed, together
with an algorithm for finding its numerical solution, within a Particle-in-Cell (PIC) approach. I
conclude this introduction by specifying that the basic ideas behind both parts of this section are
mainly due to Emmanuel Frénod (Université de Bretagne-Sud, Vannes).

1.2.1 Two-scale asymptotic preserving model

The contribution of this part entails two points:

❼ a reformulation of the Vlasov problem in (1.1) with a macro-micro decomposition which
separates the macro behaviour of the solution — without the fast rotation due to the magnetic
field — from the micro behaviour.

❼ a convergence theorem, showing the asymptotic preserving property of this reformulation.

The aim in [12] is to make the first step towards the setting out of a new class of numerical methods:
two-scale asymptotic preserving schemes. They are conceived to treat the following numerical diffi-
culties: first, dealing efficiently on long time scales with solutions having high frequency oscillations
(the two-scale approach) and second, an accurate and stable managing of the transition between
different regimes, using a unified model (the asymptotic preserving approach). More precisely, we
are interested in developing a model whose discretization is able to simulate both, the regime when
the parameter is not small (e.g. the magnetic field is not large) and the limit regime obtained when
the parameter is small. The discrete scheme automatically shifts from one regime to the other. In

2If f is a T-periodic function in a L∞ space, then the sequence (φε)ε given by φε = f(·/ε) weak-⋆ converges in L∞

to the mean 1

T

∫ T

0
f when ε ց 0.

3variable z stands for both space and velocity variables.

1.2. TWO-SCALE METHODS 11

addition, in the limit of the small parameter, the particle mean behaviour is efficiently described by
the two-scale limit while the micro behaviour is expressed by some corrector. The ideas on which
a two-scale asymptotic preserving scheme is based are illustrated in the diagram (1.5) below
(see [12, Section 1] for the complete set of notations). Our problem (1.1) plays the role of the
problem Eε uε = 0 in the diagram.

uε solution of
Eε uε = 0

ε→ 0, weak-∗
//

ε→ 0, two-scale

++

u solution of
E u = 0

U solution of
E U = 0

1

|Z|

∫

Z
dζ

77

U ε solution of
Eε U ε = 0

ζ=
z

ε

``

ε→ 0

66

uε∆z solution of
Eε∆z u

ε
∆z = 0

∆z→ 0

OO

ε→ 0
//
u∆z solution of
E∆z u∆z = 0

∆z→ 0

OO

U∆z solution of
E∆z U∆z = 0

∆z→ 0

OO

1

|Z|

∫
NUM

Z
dζ

77

U ε∆z solution of
Eε∆z U ε∆z = 0

ζ=
z

ε

``

∆z→ 0

OO

ε→ 0

66

(1.5)
There is a huge literature about asymptotic preserving schemes, with various applications (see for
instance the review paper [Jin10]). We only cite here the classic papers [Kla99; Jin99] treating prob-
lems close to the ones we are interested in, and some works which build macro-micro decomposition
methods [LM08; JS10; CL11]. However, these references did not consider the two-scale aspect.

The aim of the two-scale macro-micro decomposition is to build a new model which is an
equivalent reformulation of (1.1) for all ε > 0 and which straightforwardly gives the two-scale
limit model of (1.1) when ε → 0. Before going further, we briefly recall existing results about the
asymptotic behaviour of the solution of (1.1). Considering the initial condition and the electric and
magnetic fields in appropriate spaces, the sequence (f ε)ε two-scale converges to F ≡ F (t, τ,x,v), a
periodic function in τ4 for every (t,x,v). It was shown [FS98] that the two-scale limit F expresses
in terms of a function G ≡ G(t,x,u) by

F (t, τ,x,v) = G
(
t,x,R(τ)(v)

)
, (1.6)

4the additional rapid time variable

12 CHAPTER 1. MULTISCALE VLASOV MODELS

where R is the rotation matrix of angle τ around the magnetic field M

R(τ) =

1 0 0
0 cos (2πτ) − sin (2πτ)
0 sin (2πτ) cos (2πτ)

 (1.7)

and G is the solution of the system

∂G

∂t
+ u|| · ∇xG+ (E|| + u×B||) · ∇uG = 0,

G(t = 0,x,u) = f0(x,u),
(1.8)

where we used the notation u|| = (u · e1) e1.
Remark 1.2.1. We remark that equation (1.8) for G is free of high frequency oscillations, and
therefore explicit numerical schemes can be used without a high computational cost. However, the
function F , approximating f ε in the limit ε→ 0, still contains information about oscillations through
the rotation matrix R (see (1.6)).

Furthermore, under additional assumptions for the initial condition [FRS01], for small ε,

f ε(t,x,v) is close to F
(
t,
t

ε
,x,v

)
in a strong sense, (1.9)

more precisely, if [0, T] is a fixed interval of time,

∫ T

0

∫

R6

∣∣∣f ε(t,x,v)− F
(
t,
t

ε
,x,v

)∣∣∣
2
dx dv dt→ 0, when ε→ 0.

In a similar way, it was shown in [FRS01] that the approximation in (1.9) may be improved to first
order, claiming that for small ε,

f ε(t,x,v) is close to G
(
t,x,R

(t
ε

)
(v)
)
+ εG1

(
t,x,R

(t
ε

)
(v)
)

+ ε l
(
t,
t

ε
,x,v

)
. (1.10)

More precisely, the result asserts that

1

ε

(
f ε(t,x,v)−G

(
t,x,R

(t
ε

)
(v)
))

two-scale converges to F1(t, τ,x,v) as ε→ 0, (1.11)

where the function F1 writes

F1(t, τ,x,v) = G1

(
t,x,R(τ)(v)

)
+ l(t, τ,x,v),

and where l is given by an explicit formula, while G1 is the solution of an equation of the form

∂G1

∂t
+ u|| · ∇xG1 +

(
E|| + u×B||

)
· ∇uG1 = RHS(t,x,u,E,B, G), (1.12)

where the right-hand side can be explicitly computed as in Theorem 4.2 of [FRS01].

Remark 1.2.2. We observe that the advection operator in equation (1.12) for G1 is the same than
that in equation (1.8) for G.

1.2. TWO-SCALE METHODS 13

Let us denote in the following, for any function G ≡ G(t,x,u) and any τ

(G ◦ R)(t, τ,x,v) = G
(
t,x,R(τ)(v)

)
,

and for any function φ ≡ φ(t, τ,x,v)

(φ ◦ R)(t, τ,x,v) = φ
(
t, τ,x,R(τ)(v)

)
and

(φ)ε ≡ (φ)ε(t,x,v) = φ
(
t,
t

ε
,x,v

)
.

The two-scale macro-micro decomposition we proposed in [12] is inspired by (1.10) and
writes

f ε(t,x,v) = G
(
t,x,R

(t
ε

)
(v)
)
+ εGε1

(
t,x,R

(t
ε

)
(v)
)
+ ε l

(
t,
t

ε
,x,v

)
+ ε hε

(
t,
t

ε
,x,v

)
, (1.13)

where Gε1 is intended to be close to G1 when ε is small, and hε is the corrector to be taken into
account when the order of magnitude of ε is 1. More precisely, we have obtained the following result
for the decomposition of f ε.

Theorem 1.2.3. There exist the unique functions

Gε1 ≡ Gε1(t,x,u) ∈ L∞(0, T ;L2(R6)
)
and

hε ≡ hε(t, τ,x,v) ∈ L∞(0, T ;L∞
#1

(R+;L2(R6))
)
,

(1.14)

such that for any τ

f ε(t,x,v) = G
(
t,x,R(τ)(v)

)
+ εGε1

(
t,x,R(τ)(v)

)
+ ε l(t, τ,x,v) + εhε(t, τ,x,v), (1.15)

where G is the solution to equation (1.8), l is given by

l(t, τ,x,v) =
(
R(τ +

1

4
)−R(

1

4
)
)
v · ∇x⊥

G
(
t,x,R(τ)(v)

)

+
[(

R(τ +
1

4
)−R(

1

4
)
)
E(t,x) +R(τ)(v)×

((
R(τ +

1

4
)−R(

1

4
)
)
B(t,x)

)]

· ∇u⊥
G
(
t,x,R(τ)(v)

)
5, (1.16)

and Gε1 and hε are such that

(G ◦ R) + ε (Gε1 ◦ R) ∈ Ker
(∂
∂τ

+ (v ×M) · ∇v

)
,

ε l + ε hε ∈ Im
(∂
∂τ

+ (v ×M) · ∇v

)
.

(1.17)

In addition, there exists kε ∈ L∞(0, T ;L∞
#1

(R+;L2(R6))
)
such that

hε =
∂kε

∂τ
+ (v ×M) · ∇vk

ε (1.18)

5We make use of the notation ∇x⊥
=

(

0, ∂
∂x2

, ∂
∂x3

)T

and similarly for ∇u⊥
.

14 CHAPTER 1. MULTISCALE VLASOV MODELS

and Gε1 and kε are solutions to the following coupled variational problem: for any regular function

γ, compactly supported in [0, T)×R
3 ×R

3 such that γ ◦R ∈ Ker
(∂
∂τ

+ (v×M) · ∇v

)
, Gε1 satisfies

∫ T

0

∫

R6

Gε1

[∂γ
∂t

+
(
R(− t

ε
)u
)
· ∇xγ +

[
R(

t

ε
)E+ u×

(
R(

t

ε
)B
)]

· ∇uγ
]
dx du dt

−
∫ T

0

∫

R6

(
∂(l ◦ R−1)

∂t

)ε
γ dx du dt

+

∫ T

0

∫

R6

[(
(
∂kε

∂τ
) ◦ R−1

)ε
+
(
R(− t

ε
)M

)
·
(
(∇vk

ε) ◦ R−1
)ε] ∂γ

∂t
dx du dt

+

∫ T

0

∫

R6

[
(l ◦ R−1)ε +

((∂kε
∂τ

)
◦ R−1

)ε
+
(
R(− t

ε
)M

)
·
(
(∇vk

ε) ◦ R−1
)ε]

·
[(
R(− t

ε
)u
)
· ∇xγ +

[
R(

t

ε
)E+ u×

(
R(

t

ε
)B
)]

· ∇uγ
]
dx du dt = 0, 6

(1.19)

and for any regular function κ ≡ κ(t, τ,x,v) compactly supported in [0, T) × R
3 × R

3 for every
τ ∈ [0, 1], kε satisfies

−
∫ T

0

∫

R6

((∂2kε
∂t ∂τ

)ε
+ (v ×M) ·

(∂∇vk
ε

∂t

)ε
+

1

ε

(∂2kε
∂τ2

)ε
+

1

ε
(v ×M) ·

(∂∇vk
ε

∂τ

)ε
)

[(∂κ
∂τ

)ε
+ (v ×M) · (∇vκ)

ε
]
dx dv dt

+

∫

R6

[∂kε
∂τ

(0, 0,x,v) + (v ×M) · ∇vk
ε(0, 0,x,v)

][∂κ
∂τ

(0, 0,x,v) + (v ×M) · ∇vκ(0, 0,x,v)
]
dxdv

+

∫ T

0

∫

R6

((∂kε
∂τ

)ε
+ (v ×M) · (∇vk

ε)ε
) [

v ·
(∂∇xκ

∂τ

)ε
+ (v ×M) ·

(
(∇x∇vκ)

ε v
)

+ (E+ v ×B) ·
(∂∇vκ

∂τ

)ε
+ (E×M+ (v ×B)×M) · (∇vκ)

ε

+ (E+ v ×B) ·
(
(∇2

v
κ)ε (v ×M)

)
+

1

ε
(v ×M) ·

(∂∇xκ

∂τ

)ε

− v · (∇vκ)
ε + (v ×M) ·

(
(∇2

v
κ)ε(v ×M)

)]
dx dv dt

−
∫ T

0

∫

R6

(∂(l ◦ R−1)

∂t

)ε[(∂κ
∂τ

◦ R−1
)ε

+
[(
R(−

t

ε
)v
)
×M

]
·
(
(∇vκ) ◦ R−1

)ε]
dx dv dt

+

∫ T

0

∫

R6

(l)ε
[
v ·
(∂∇xκ

∂τ

)ε
+ (v ×M) ·

(
(∇x∇vκ)

ε v
)
+ (E+ v ×B) ·

(∂∇vκ

∂τ

)ε

+ (E×M+ (v ×B)×M) · (∇vκ)
ε + (E+ v ×B) ·

(
(∇2

v
κ)ε (v ×M)

)]
dx dv dt

−
∫ T

0

∫

R6

(∂F ε1
∂t

)ε [(∂κ
∂τ

)ε
+ (v ×M) · (∇vκ)

ε
]
dx dv dt

+

∫

R6

F ε1 (0, 0,x,v)
[∂κ
∂τ

(0, 0,x,v) + (v ×M) · ∇vκ(0, 0,x,v)
]
dx dv

1.2. TWO-SCALE METHODS 15

+

∫ T

0

∫

R6

(F ε1)
ε

[
v ·
(∂∇xκ

∂τ

)ε
+ (v ×M) ·

(
(∇x∇vκ)

ε v
)

+ (E+ v ×B)
(∂∇vκ

∂τ

)ε
+ (E×M+ (v ×B)×M) · (∇vκ)

ε

+ (E+ v ×M) ·
(
(∇2

v
κ)ε(v ×M)

)
]
dx dv dt = 0,

(1.20)

where
F ε1 (t, τ,x,v) =

(
Gε1 ◦ R

)
(t, τ,x,v).

The proof of the first part of Theorem 1.2.3 (see [12]) on the existence of functions Gε1 and hε is
based on the properties of the operator

∂

∂τ
+ (v ×M) · ∇v : L∞(0, T ;L∞

#1
(R+;L2(R6))

)
→ L∞(0, T ;L∞

#1
(R+;L2(R6))

)
, (1.21)

namely, that it is antisymmetric, non-bounded and with closed range and satisfies

Ker

(
∂

∂τ
+ (v ×M) · ∇v

)
⊕ Im

(
∂

∂τ
+ (v ×M) · ∇v

)
= L∞(0, T ;L∞

#1
(R+;L2(R6))

)
.

Then, in order to determine the equations for Gε1 and hε, the strategy is the following: we put the
decomposition (1.13) in a weak form of equation (1.1) with oscillating test functions. Then, using
test functions in the kernel and in the range of the operator in (1.21), lead to the equations for Gε1
and hε respectively.

Remark 1.2.4.

❼ We are aware that the system (1.19)-(1.20) has not necessarily a unique solution.

❼ Under the hypotheses of uniqueness of the solutions to (1.19)-(1.20), the two-scale macro-
micro problem, i.e., the system (1.8), (1.16), (1.19), (1.20) is equivalent to the original
problem (1.1). This is due to the decomposition in (1.15).

❼ Problem (1.8), (1.16), (1.19), (1.20) plays the role of problem Eǫ U ǫ = 0 in diagram (1.5).

❼ The reformulation (1.8), (1.16), (1.19), (1.20) of the original problem has the advantage of
decomposing the original solution f ε into a macro part, G ◦ R+ εGε1 ◦ R, and a micro part,
εl + εhε. Thus, the model is able to describe separately the evolution of oscillation at the
macroscopic time scale (of G ◦R and Gε1 ◦R) which contains essential oscillation through R,
and the evolution of oscillation corrections (of l and hε) at the microscopic time scale.

Eventually, the asymptotic behaviour of the model is studied. This is done by recalling the con-
vergence result in (1.11), asserting that G + εG1 + εl is the first-order approximation of f ε. More
precisely, on the base of Theorem 1.5 in [FRS01] we obtain the following two-scale convergence
result.

Theorem 1.2.5. We assume that f0 ∈ L2(R6), E ∈W 1,∞(R3), B ∈W 1,∞(R3), and ∂l/∂t, ∇x,vl ∈
L∞(0, T ;L∞

#1
(R+;L2(R6))

)
. Then, when ε → 0, the solutions Gε1 ◦ R of (1.19) two-scale converge

to G1 ∈ L∞(0, T ;L2(R6)
)
, the solution of (1.12). When ε→ 0, the solutions kε of (1.20) two-scale

converge to 0.

6where R−1(τ) = R(−τ).

16 CHAPTER 1. MULTISCALE VLASOV MODELS

Theorem 1.2.5 allows us to conclude that our two-scale macro-micro model achieves the transition
from the small ε regime to the one corresponding to ε ∼ 1. In other words, the model satisfies the
expected asymptotic behaviour symbolized by the arrows in the top layer of diagram (1.5).

1.2.2 First order two-scale method

The contribution of this part (see [14]) is to propose

❼ a first order two-scale model and

❼ a numerical approach for it,

in order to perform simulation of the long time evolution of f ε given in equation (1.3) in the limit
ε→ 0. In addition, the novelty with respect to existing mathematical literature is the consideration
of an external focusing electric field of the form

Eε(t, r) = E0

(
t,
t

ε
, r
)
+ εE1

(
t,
t

ε
, r
)

for small ε > 0, (1.22)

where Ei=0,1 : (t, τ, r) 7→ Ei=0,1(t, τ, r) are regular and periodic with respect to the rapid time
variable τ . In a first step, we determine a two-scale first order approximation of f ε of the type
mentioned in the introduction of this section. In order to achieve this goal, we first recall the
two-scale limit model obtained by means of the two-scale convergence in [FSS09]: (f ε)ε two-scale
converges when ε→ 0 to a function F which writes

F (t, τ, r, v) = G(t,R(τ)(r, v)), (1.23)

where the rotation operator R is defined similarly as before by

R(τ)(r, v) =

(
cos τ − sin τ
sin τ cos τ

)(
r
v

)
, (1.24)

and G ≡ G(t, q, u) is the solution to the problem

∂G

∂t
+

1

2π

∫ 2π

0
R(τ)

(
0, E0

(
t, τ,R(−τ)r(q, u)

))
dτ · ∇q,uG = 0,

G(t = 0, q, u) =
1

2π
f0(q, u).

(1.25)

Remark 1.2.6. The equation for G is free of oscillations and contains, as expected, the average in
the rapid time variable of the limit electric field E0.

Then, we build the first order approximation for f ε under the form

f ε(t, r, v) ≈ G
(
t,R

(t
ε

)
(r, v)

)
+ ε

(
G1

(
t,R

(t
ε

)
(r, v)

)
+W

(
t,
t

ε
,R
(t
ε

)
(r, v)

))
, (1.26)

for ε small, where W ≡ W (t, τ, r, v) is given by an explicit formula involving the field E0 and the
phase space derivatives of G, while G1 ≡ G1(t, q, u) is the solution to a transport equation with
the same advection operator as the one for G in (1.25) and a source term depending on E0 and on
phase space derivatives of G. More precisely, the main result of this section is the following.

1.2. TWO-SCALE METHODS 17

Theorem 1.2.7. Let (f ε)ε be a sequence of solutions to Vlasov problem (1.3) with the electric field
Eε given by (1.22). There exist two functions F : (t, τ, r, v) ∈ [0, T) × R × R

2 7→ F (t, τ, r, v) and
F1 : (t, τ, r, v) ∈ [0, T)× R× R

2 7→ F (t, τ, r, v), 2π-periodic with respect to τ ∈ R, such that

f ε(t, r, v) ≈ 2π F

(
t,
t

ε
, r, v

)
+ ε 2π F1

(
t,
t

ε
, r, v

)
, (1.27)

when ε is small. Moreover, regarding the zeroth order term, there exists a function G : (t, q, u) ∈
[0, T)× R

2 7→ G(t, q, u) such that

F (t, τ, r, v) = G(t,R(τ)(r, v)), (1.28)

where R(τ) is the rotation defined by (1.24) and G is solution to the problem (1.25). Regarding
the first order term, there exist two functions G1 : (t, q, u) ∈ [0, T) × R

2 7→ G1(t, q, u) and W :
(t, τ, q, u) ∈ [0, T)× R× R

2 7→W (t, τ, q, u) such that

F1(t, τ, r, v) = G1

(
t,R(τ)(r, v)

)
+W

(
t, τ,R(τ)(r, v)

)
, (1.29)

where on the one hand, W is given by

W (t, τ, q, u) =

[
τ

2π

∫ 2π

0
R(σ)

(
0, E0

(
t, σ,R(−σ)r(q, u)

))
dσ

−
∫ τ

0
R(σ)

(
0, E0

(
t, σ,R(−σ)r(q, u)

))
dσ

]
· ∇q,uG(t, q, u),

(1.30)

and on the other hand, G1 is solution to the problem

∂G1

∂t
(t, q, u) +

1

2π

∫ 2π

0
R(τ)

(
0, E0

(
t, τ,R(−τ)r(q, u)

))
dτ · ∇q,uG1(t, q, u) =

1

2π

∫ 2π

0

[∫ τ

0
R(σ)

(
0,
∂E0

∂t

(
t, σ,R(−σ)r(q, u)

)
)
dσ

−
τ

2π

∫ 2π

0
R(σ)

(
0,
∂E0

∂t

(
t, σ,R(−σ)r(q, u)

)
)
dσ

]
dτ · ∇q,uG(t, q, u)

+

[
1

4π

∫ 2π

0
∇q,uR(σ)

(
0, E0

(
t, σ,R(−σ)r(q, u)

))
dσ

∫ 2π

0
R(σ)

(
0, E0

(
t, σ,R(−σ)r(q, u)

))
dσ

−
1

2π

∫ 2π

0

(
∇q,uR(τ)

(
0, E0

(
t, τ,R(−τ)r(q, u)

)) ∫ τ

0
R(σ)

(
0, E0

(
t, σ,R(−σ)r(q, u)

))
dσ
)
dτ

]

·∇q,uG(t, q, u) dτ,

G1(t = 0, q, u) = 0.
(1.31)

Remark 1.2.8. The rigorous meaning of the approximation in (1.27) is based on a two-scale con-
vergence result of the sequence

(
(f ε − F)/ε

)
ε
when ε → 0 (see the proof of [14, Theorem 2.1]).

It is important to emphasize that the expression for W and the equations for G and G1 do not
contain anymore high frequency oscillations in time (other that the oscillations through the rota-
tion operator). Consequently, classic explicit numerical schemes for solving these equations are not
constrained by small time step when solving the smallest scale, as for the original equation (1.3).

18 CHAPTER 1. MULTISCALE VLASOV MODELS

In a second step, we build numerical approximations of the three functions in (1.26), by
discretizing the equations (1.25), (1.30), and (1.31) on the base of a particle method. In this
direction, the main steps of the algorithm we proposed are:

Algorithm 1.2.9.

(i) Compute at each time a particle approximation of G, by pushing in the phase space the
numerical particles with respect to the advection operator in problem (1.25).

(ii) Compute an approximation of the gradient ∇q,uG from the particle approximation of G which
is compatible with the desired particle approximation of W .

(iii) Compute a particle approximation of W from equation (1.30).

(iv) Compute a particle approximation of the source term of the equation for G1 and then a
particle approximation of G1 by solving problem (1.31) with the same advection operator as
in problem (1.25).

The main difficulty in applying the previous steps of the algorithm consists in recovering approxi-
mations of the phase space derivatives of the unknowns from their particle approximation. Thus,
we could utilize different convolution kernels as a regularization procedure, as in a Smoothed Par-
ticle Hydrodynamics (SPH) method [LL02; LL10]. This strategy is useful first, for approximating
derivatives of the distribution function in any point of the space and second, for computing the ap-
proximated value of a function (like the electric field) in a particle by considering the contribution
of the neighboring particles. Inspired by this idea, the solution we developed in [14] handles this
issue in the following way.

First, we make use of the particle approximation of function G

G(t, q, u) =

Np∑

k=1

ωk δ
(
q −Qk(t)

)
δ
(
u− Uk(t)

)
, (1.32)

where δ is the Dirac mass, Np is the number of macroparticles and
(
Qk(t), Uk(t)

)
is the posi-

tion in phase space of macroparticle k which moves along a characteristic curve of the equation
(1.25). Thus, the first step of the Algorithm 1.2.9 can easily be dealt with, as in [FSS09]. For the
second step, however, we need to recover an approximation of the phase space derivatives of G.
A regularization of the particle approximation (1.32) is thus needed. To this purpose, we intro-
duce a regular function γα with support included in the interval [0, α], and such that the function

γαk : (q, u) 7→ γα
(√

(q −Qk(t))2 + (u− Uk(t))2
)
has an integral with worth 1. A regularization of

(1.32) is therefore given by

G(t, q, u) =

Np∑

k=1

ωk γ
α
(√

(q −Qk(t))2 + (u− Uk(t))2
)
. (1.33)

Then we can compute numerical approximations of the space derivatives of G. Now we can handle
the third step of the algorithm: first, we compute an approximation of the right-hand side in (1.30)
which has the following shape

Np∑

k=1

βk(t, τ, q, u) (γ
α)′
(√

(q −Qk(t))2 + (u− Uk(t))2
)
. (1.34)

1.3. LARGE TIME STEP SCHEMES 19

Then, we need to distribute the above approximation over the macroparticles in order to get W .
Let the particle approximation of W be given by

W (t, τ, q, u) =

Np∑

k=1

β̃k(t, τ) δ
(
q −Qk(t)

)
δ
(
u− Uk(t)

)
(1.35)

and regularized by

W (t, τ, q, u) =

Np∑

k=1

β̃k(t, τ) γ
α
(√

(q −Qk(t))2 + (u− Uk(t))2
)
. (1.36)

Then we want that all the integrals of the sums in (1.34) and (1.36) over each subdomain of the
phase space to be almost equal. From the numerical point of view, we want to verify this proximity
only for the support Ci of functions γ

α
i that is

∀i ∈ {1, . . . , Np},
∫

Ci

Np∑

k=1

β̃k(t, τ) γ
α
k (q, u) dq du =

∫

Ci

Np∑

k=1

βk(t, τ, q, u)λ
α
k (q, u) dq du, (1.37)

where λαk : (q, u) 7→ (γα)′
(√

(q −Qk(t))2 + (u− Uk(t))2
)
. System (1.37) writes again

∀i ∈ {1, . . . , Np},
Np∑

k=1

β̃k(t, τ)

∫

Ci

γαk (q, u) dq du =

∫

Ci

Np∑

k=1

βk(t, τ, q, u)λ
α
k (q, u) dq du. (1.38)

Therefore we can determine the coefficient β̃k of the particle approximation of W up to the solution
of the linear system (1.38). Finally, the last step of the algorithm is treated similarly as before in
order to solve the equation for G1.

The previous regularization approach can be quite heavy to implement as the size of the preceding
systems to be solved is the number of particles. This number can be very large in order to achieve a
given accuracy. More precisely, the terms in the right-hand side of the equations (1.30) and (1.31)
might be small and need to be approximated with sufficient accuracy so that they actually bring
improvement on the two-scale limit term on its own. In addition, in order to justify these efforts,
an important point that needs to be dealt with in the future is to emphasize test cases where the
two-scale limit model degenerates and thus, the first order approximation is of significant help.

As an alternative, I suggested to change the particle approach with a semi-Lagrangian method,
in order to avoid the difficulties of regularization and thus benefit from a much simpler gradient
calculation (see Section 1.4). This perspective could be further explored in the framework of a
PhD thesis, for which I proposed a subject, in collaboration with Michel Mehrenberger (IRMA,
Université de Strasbourg).

1.3 Design and development of large time step schemes for Vlasov

and Vlasov–Poisson equations

Introduction. In this section we present a time-stepping method for dealing with highly oscilla-
tory Vlasov and Vlasov–Poisson equations of the form (1.2), (1.3), and (1.4). We solve numerically

20 CHAPTER 1. MULTISCALE VLASOV MODELS

these equations with a particle method, which necessitates the discretization of some ordinary dif-
ferential equations, namely the characteristics of the Vlasov equations. Therefore, we are interested
in ODEs of the following general type

y′(t) =
1

ε
Ly(t) + F

(
t,y(t)

)
, y(0) = y0, (1.39)

where L is a linear operator and where F represents a nonlinear term. Numerous multiscale tech-
niques have been designed to solve numerically such problems in different contexts, among which:
a class of semi-implicit Runge–Kutta method proposed in [FR16], a two-scale formulation based
integrator in [CLM13; Cro+17], Heterogeneous Multiscale Methods [E+07; Ari+09], and the stro-
boscopic averaging method [Cal+11]. The difficulty of equation (1.39) is its stiffness, namely that
the solution evolves over two scales in time: rapid oscillations due to the linear term7 and a slower
evolution due to the nonlinear term. Our aim is to solve such equations with explicit schemes.
Thus, any standard numerical scheme is limited to a very small time step, for solving the rapid
period due the stiff linear term. The method we propose is based on an exponential integrator (see
[HO10]). This approach consists in using the variation-of-constants formula

y(t) = e
t
ε
Ly0 +

∫ t

0
e

t−τ
ε
LF
(
τ,y(τ)

)
dτ. (1.40)

With the help of this formula we can first compute exactly the linear part. In all the examples we
treat in the following, the operator eL has an explicit form and thus, the stiff part can be computed
analytically. Then, several methods may be built to derive approximations when integrating numer-
ically the slower nonlinear term (see the exponential time differencing schemes in [CM02; HO10]).
Nevertheless, such schemes do not allow a very large time step with respect to the oscillation in
order to capture accurately the nonlinear term.

Alternatively, our algorithm proceeds with the numerical treatment of the integral part in (1.40)
as follows: we solve the ODEs over one fast period using an explicit high order solver and then,
thanks to (1.40), we compute an approximation of the solution over a large whole number
of periods. This approximation holds under the assumption that, roughly speaking, the average of
the fast behaviour of the particles does not change in long time. The second idea of the algorithm
is to find the right fast period of each particle in order to achieve accuracy of the behaviour
in long time. These ideas came to me from the work in [CM02] where thorough analysis of the
accuracy of the numerical integrators for solutions on and off the slow manifold is performed.

In the following, I detail this method for the Vlasov models exposed above and I present the
algorithm’s adaptations to two settings. More precisely, if we admit that our basic algorithm
has two main steps, a micro step and a macro step, the first setting’s difficulty (in Section 1.3.1)
asks for an improvement of the first step (i.e. of the motion at the smallest scale), while the second
setting (in Section 1.3.2) for an improvement of the second step (i.e. of the motion at the greatest
scale).

I conclude by mentioning that I implemented these schemes for all the following numerical tests
in Fortran, in a standard PIC framework. Mainly, I developed particle codes for solving Vlasov
and Vlasov–Poisson equations in 1d × 1v and 2d × 2v settings. The Poisson equations are solved
by finite diference methods. I describe in Section 2.1 the steps I followed in order to implement a
classic PIC code in the solving of a generic Vlasov–Poisson system.

7In our examples, the linear term entails rapid oscillation and not a rapid decay.

1.3. LARGE TIME STEP SCHEMES 21

1.3.1 The method for test cases in 1d× 1v.

The contribution of this part is to build a time-stepping scheme for efficiently solving the
Vlasov equations in (1.3) and (1.4): (i) in short times [16] and (ii) in long times [15] with an
improved version. Before going into details, it is interesting to underline the multiscale aspect of
the problem under consideration. When representing the solution of both equations by a beam of
particles in the phase space, this beam evolves by rotating around the origin and in long times a
bunch forms around the center of the beam from which filaments of particles are going out. The
filaments are constituted of rapid particles whereas the particles in the center of the beam are slower.
The challenge is to accurately capture these filaments with the numerical method, while keeping a
reasonable computational cost. The scheme we propose is developed in a PIC framework for the
Vlasov equations. Therefore we solve the corresponding characteristics

dR

dt
=

1

ε
V,

dV

dt
= −1

ε
R+ E(t, R),

(1.41)

together with an initial condition, where the electric field is either given explicitly by E(t, r) = −r3,
or is computed on a grid from the Poisson equation. Even if the explicit Vlasov model is easy to
solve, it is an important step in the validation of our scheme, since it allows to compute the error
of the scheme alone, without the numerical errors of the Poisson equation. In the system above we
should write Rε, V ε, and Eε instead of R, V, and E respectively, because these quantities clearly
depend on ε, but for simplicity, in the following we drop the index ε. Then, we remark that the
dynamical system (1.41) can be rewritten as in (1.39) by denoting

y =

(
R
V

)
, L =

(
0 1
−1 0

)
and F (t,y) =

(
0

E(t, R)

)
. (1.42)

In this setting, the operator et L entailing the stiff part is simply a rotation operator, like the one
defined in (1.24). The aim of the exponential integrator introduced in [16] is to solve (1.41) by
using large time steps with respect to the typical period of oscillation, which is about
2πε. More precisely, we fix a time step ∆t ≫ 2πε and determine the unique integer N and the
unique real o such that

{
∆t = N · 2πε+ o,

0 ≤ o < 2πε.
(1.43)

Then, we apply the following algorithm to each particle (see Fig. 1.1 for an illustration).

Algorithm 1.3.1. Assume that yn the solution of (1.41) at time tn is given.

1. Compute y(tn+2πε) by using a fine Runge–Kutta solver for (1.41) with initial condition yn.

2. Compute y (tn +N · 2πε) by the rule

y (tn +N · 2πε) = yn +N
(
y (tn + 2πε)− yn

)

3. Compute y at time tn+1 by using a fine Runge–Kutta solver for (1.41) with initial condition
y(tn +N · 2πε).

22 CHAPTER 1. MULTISCALE VLASOV MODELS

�
�

�
���

�
�
�� ������

�
����

Figure 1.1: Illustration of Algorithm 1.3.1.

Using formula (1.40), this algorithm was formally proved in [16, Section 4] (see also Lemma 1.3.3)
to provide an approximation of the solution under the assumptions that the time to make one
rapid complete tour in the phase space is quasi constant and close to 2πε and that the function
τ 7→ E(τ,R(τ)) is about 2πε-periodic. Afterwards, the method was improved in order to be able to
capture the small variations of the period. More precisely, replacing 2πε in Algorithm 1.3.1 by
the mean of all particle times to make the first complete tour resulted in more accurate
results. This mean is computed by simply averaging the particles’ periods (see Remark 1.3.4 below
for explanations of how to compute numerically these periods). We give an account of the accuracy
of the algorithm in Fig. 1.2, for several small values of ε, in two test-cases. In this figure we can
remark the uniform convergence of the error with respect to ε.

Figure 1.2: The Algorithm 1.3.1 with the particles’ mean period: the global Euclidean error at time
3.5 for the Vlasov–Poisson case (left) and the case of (1.3) with E(t, R) = −R3 (right).

However, we show in [15, Section 2] that this scheme still needs to be improved in order to
perform accurate long time simulations. The idea is that using a more accurate period when
pushing particles leads to better results. Precisely, the new scheme proposed in [15] differs from
Algorithm 1.3.1 in that within the first step, instead of solving the ODE (1.41) during some fixed
fast time for all the particles, we push each particle with its own fast time that we need to
compute. Nevertheless, a naive implementation of this idea, following the steps of Algorithm 1.3.1,
does not work in the Vlasov–Poisson case, basically because of the fact that all the particles are
needed at some fixed time t for computing the self-consistent electric field. Therefore we adapt this

1.3. LARGE TIME STEP SCHEMES 23

algorithm by changing the steps so that the electric field can be computed. In order to introduce
rigorously this idea, we denote for every T > 0, the T -periodic function

r(τ) =

cos
(2π
T
τ
)

sin
(2π
T
τ
)

− sin
(2π
T
τ
)

cos
(2π
T
τ
)

 . (1.44)

The value T plays the role of a particle period at some fixed time. Then, after some easy calculations,
we rewrite formula (1.40) giving the solution of the ODE under the following form: for any times
s, t, such that s < t, we have

y(t) = r
(t− s

ε

)
y(s) + r

(t− s

ε

) ∫ t

s
r
(s− τ

ε

)
β
(
τ,y(τ)

)
dτ, (1.45)

where we denoted

β(τ,y) = F (τ,y) +
(
1−

2π

T

)1
ε
Ly.

Thus, if Np is the number of particles, we compute for each i ∈ {1, . . . , Np}, yn+1
i from yni as below

(see Fig. 1.3).

Algorithm 1.3.2. Assume that for each i ∈ {1, . . . , Np}, yni , the solution of (1.41) at time tn is
given.

1. Compute from (yni)i∈{1,...,Np} the periods (Tni)i∈{1,...,Np} at time tn.

2. For each i ∈ {1, . . . , Np} compute the unique positive integers Nn
i and the unique reals oni ∈

[0, Tni) such that

∆t = Nn
i T

n
i + oni .

3. For each i ∈ {1, . . . , Np} compute yi(tn+o
n
i) and yi(tn+o

n
i +T

n
i) by using a fine Runge–Kutta

solver with initial condition yni .

4. For each i ∈ {1, . . . , Np} compute an approximation of yi(tn+1) thanks to

yn+1
i = yi(tn + oni) +Nn

i

(
yi(tn + oni + Tni)− yi(tn + oni)

)
.

�
�

�
�
��

�

�
�
��

�
��

�
�
���

Figure 1.3: Illustration of Algorithm 1.3.2.

Algorithm 1.3.2 is justified formally by the following lemma.

24 CHAPTER 1. MULTISCALE VLASOV MODELS

Lemma 1.3.3. Under the assumption that for every i ∈ {1, . . . , Np}, yi satisfies for every n ∈ N

∫ t+Nn
i T

n
i

t
rni

(
t− τ

ε

)
β
(
τ,yi(τ)

)
dτ ≈ Nn

i

∫ t+Tn
i

t
rni

(
t− τ

ε

)
β
(
τ,yi(τ)

)
dτ, (1.46)

where t = tn + oni and rni corresponds to matrix in (1.44) with T = Tni /ε, we have for any time tn
the following formal approximation

yi(tn+1) ≈ yi(tn + oni) +Nn
i

(
yi(tn + oni + Tni)− yi(tn + oni)

)
, (1.47)

where yi is the solution to equation (1.41) with a given initial condition yi(tn) = yni .

This lemma is easily proved by succesive applications of formula (1.45).

Remark 1.3.4. We give now some details about how to compute numerically the values of
(Tni)i∈{1,...,Np} and of the solution yi at times like tn + oni .

❼ As explained in [16], the way to compute the (Tni)i from (yni)i is the following. First, we solve
numerically the equation (1.41) with a time step (∆t)RK = 2πε/100, for all initial conditions
yni until all the particles reach their trajectory’s third extremum. The criterion for finding
these extrema is the velocity’s change of sign. We then state that each particle’s period is the
time interval between the first and the third extremum.

❼ The time step (∆t)RK chosen in the third step of the algorithm is 2πε/100. It is easy to see
that the reals (tn + oni)i and (tn + oni + Tni)i are located on a few cells of length (∆t)RK, since
the periods of the particles vary a little. Thus, we approximate the values yi(tn + oni) and
yi(tn + oni + Tni) by quadratic interpolations from their values at the multiples of (∆t)RK.

Conclusion. We tested numerically this method in two cases: the Vlasov–Poisson equation and
the case of (1.3) with E(t, R) = −R3, see Fig. 1.4. Similar results were obtained for other larger
values of ε. We note that the numerical solutions in the second case are very accurate since precise
values for the periods are available and in addition they do not change in time. On the contrary, in
the Vlasov–Poisson case, the periods are numerically approximated at several levels and therefore
the scheme does not perform as well as for the other case. Nevertheless, the filaments of particles are
accurately captured. In fact, our scheme simulates with the same accuracy both types of particles,
rapid and slow. In addition, the advantage of this new method is to reproduce the stiff behaviour
of the solution with a computational cost which is rather close to that of a reduced model.

1.3.2 The method for test cases in 2d× 2v

The contribution of [17] is to adapt the previously described time-stepping scheme to the equation
in (1.2). The difficulty of the present model is that the dynamics of some particles entails a rapid
circular motion coupled to a drift motion which is much slower; one can see this slower motion on
the guiding center trajectory, illustrated in green in Fig. 1.5. There was no drift motion in the
models in (1.3) or (1.4). Since we work with the PIC method, the ingredient is again the numerical
solving of the characteristic equations

dX

dt
= V,

dV

dt
=

1

ε
V⊥ +E(t,X).

(1.48)

1.3. LARGE TIME STEP SCHEMES 25

We first consider a given external electric field

E(t,x) =

(
2x1 + x2
x1 + 2x2

)
, (1.49)

and in a second stage, a coupling with the Poisson equation. Even if the linear Vlasov model
seems simple, it is an important step in the validation of our scheme, since it allows to compute
the error with respect to an analytical solution. In addition, in the case of this model we can
compute explicitly solutions which entail or not fast oscillations in time, allowing therefore to show
the accuracy of our method with respect to any solution.

Remark 1.3.5. In [17] we computed the analytic solution of the system (1.48) with (1.49) for a
given initial condition. We have shown that the solution belongs to the vector space F = F × F ×
F × F , where

F = vect {cos(aεt), sin(aεt), cos(bεt), sin(bεt)},
and where aε and bε are numbers depending of ε such that aε ∼

√
3 ε and bε ∼ 1/ε. We have thus

obtained that the solution to (1.48)-(1.49) contains fast oscillations in time of period 2π
bε

∼ 2πε and

slow oscillations of period 2π
aε

∼ 2π√
3ε
. In this framework, we identified the solutions varying only at

the slow time scale, the so-called slow manifold. It is the space G = G × G × G × G where

G = vect {cos(aεt), sin(aεt)}.
Therefore, we are able to test the scheme we propose below for solutions having different oscillatory
behaviours (see [CM02] for extensive numerical experiments in this direction). Thus, we identify the
following three initial conditions leading to solutions which are respectively not oscillating, slowly
oscillating, and highly oscillating:

(
x1
0,v

1
0

)
=

(
1, 0, ε,− 2εuε

2− ε2
+

ε3uε
2− ε2

)
,

(
x2
0,v

2
0

)
=

(
1,− uε

wε
, ε
wε
uε
,− 2εuε

2− ε2
+ ε

wε
uε

+
ε3uε
2− ε2

)
,

(
x3
0,v

3
0

)
= (1, 1, 1, 1) .

(1.50)

The stiffness in (1.48) comes from the velocity equation and therefore we consider the exponential
integrator only in velocity. Thus, the scheme is based, as in the previous section, on the variation-
of-constants formula: if s < t then we have

V (t) = e
t−s
ε
LV (s) + e

t−s
ε
L

∫ t

s
e

s−τ
ε
LE (τ,X (τ)) dτ,

while the position equation is simply given by

X (t) = X (s) +

∫ t

s
V (τ) dτ.

In this setting, the algorithm we propose in this section is Algorithm 1.3.1 with y =

(
X
V

)
.

Remark 1.3.6. We have discussed in Section 1.3.1 that using very accurate periods in the first
step of the algorithm is an important issue in order to reduce the error of this step. Nevertheless,
in this section, our tests revealed that computing each particle’s period does not offer a significant
improvement of the accuracy and thus, the use of 2πε as the time period for each particle is enough8.
It is for this reason that in this section, we use Algorithm 1.3.1 and not one like Algorithm 1.3.2.

8The value 2πε is the time period of the trajectory when E ≡ 0 in (1.48).

26 CHAPTER 1. MULTISCALE VLASOV MODELS

Next, we formally justify that our algorithm provides approximation of the solution of (1.48). With
the notations in (1.42) and (1.43) we have

Lemma 1.3.7. Under the assumptions that for every tn
∫ tn+N ·(2πε)

tn

e
tn−τ

ε
LE
(
τ,X(τ)

)
dτ ≈ N ·

∫ tn+2πε

tn

e
tn−τ

ε
LE
(
τ,X(τ)

)
dτ (1.51)

and ∫ tn+N ·(2πε)

tn

V(τ) dτ ≈ N ·
∫ tn+2πε

tn

V(τ) dτ, (1.52)

we obtain the following formal approximation for the solution of (1.48) at time tn +N · (2πε) from
its values at times tn and tn + 2πε:

(
X (tn +N · (2πε))
V (tn +N · (2πε))

)
≈
(

Xn

Vn

)
+N ·

(
X (tn + 2πε)−Xn

V (tn + 2πε)−Vn

)
. (1.53)

To show the reliability of the approximations in the hypotheses of Lemma 1.3.7, we compute the
exact errors of these approximations in the case of the electric field given by (1.49). This is reported
in [17, Section 3.3].

The method is validated through numerical experiments in three test cases: a linear Vlasov equation
where the electric term in (1.2) is given by (1.49), a short time and respectively a long time Vlasov–
Poisson problem. For the first case, we compute the errors of the scheme against the analytical
solution in short and long times, while for the second case against a reference solution (i.e. a
numerical solution computed with a very small time step), and for the third case we validate the
scheme through an asymptotic result by comparing it to the guiding center solution (more precisely,
we discuss in Section 2.1 about this asymptotic result linking the model in (2.3) to the limit guiding
center model in (2.4)).

In the linear case the scheme is uniformly accurate when ε vanishes (see Fig. 1.6). We discuss
hereafter the results concerning the behaviour of the global error for the Vlasov–Poisson problem,
illustrated in Fig. 1.7 and Tables 1.1 & 1.2. We recall that N is the integral number of the rapid
full tours appearing in the second step of Algorithm 1.3.1 (see (1.43)).

1. First, in Fig. 1.7 (left panel), we can see that for each fixed ε, the error decreases with
decreasing time step, although N is changing. Thus, the scheme works for small time steps
compared to the fast oscillation and is robust with respect to N . Second, we observe that,
the smaller ε is, the smaller the error is, despite that N is significantly increasing when ε is
smaller (see Table 1.1). This is an expected behaviour since the guiding center model becomes
a better approximation of the long time Vlasov–Poisson model when ε goes to 0. Thus, the
scheme works for large time steps with respect to the fast oscillation too.

2. In Table 1.2 and the right panel in Fig. 1.7, we detail the above comments by taking several
values of ε. First, for similar reasons as before, when the time step is kept fixed, the error
decreases with decreasing ε. Second, we notice once again the robustness of the scheme: the
errors are stable when N is widely varying from 7 to 1 591.

3. In conclusion, the left panel in Fig. 1.7 shows that our scheme is convergent when ∆t → 0,
uniformly in ε. Also, the right panel shows that the discretization of the solution to the long
time Vlasov–Poisson system converges when ε → 0 to a discretization of the guiding center
model, independently of ∆t. These facts underline the asymptotic preserving behaviour
of the scheme.

1.4. CONCLUSIONS AND OUTLOOK 27

∆t=1E-3 ∆t=3E-3 ∆t=5E-3 ∆t= 7E-3 ∆t=9E-3 ∆t=1E-2

ε =5.E-3 6 19 31 44 57 63

ε =2.5E-3 25 76 127 178 229 254

ε =1.E-3 159 477 795 1 114 1 432 1 591

ε =1.E-4 15 915 47 746 79 577 111 408 143 239 159 154

Table 1.1: The whole number of rapid full tours enclosed in a time step of the scheme, for several
values of the time step and of ε; results corresponding to the left panel in Fig. 1.7.

ε =1E-3 ε =3E-3 ε =5E-3 ε = 7E-3 ε =9E-3 ε =1E-2

∆t=1.E-2 1591 176 63 32 19 15

∆t=5.E-3 795 88 31 16 9 7

Table 1.2: The whole number of rapid full tours enclosed in a time step of the scheme, for several
values of ε and of the time step; results corresponding to the right panel in Fig. 1.7.

Eventually, the algorithm described above was compared in [10] to three other existing multiscale
techniques for solving the Vlasov–Poisson model corresponding to (1.2): an asymptotic preserv-
ing Runge–Kutta scheme [FR16], an integrator based on a two-scale formulation [Cro+17], and a
stroboscopic averaging method [Cal+11]. We performed extensive numerical experiments in order
to investigate and compare the accuracy, the computer time and the long time behaviour of these
methods for a wide range of the parameter ε, from the value of 1 (the classical regime) to very
small values (the limit regime). I do not develop these results here since there is not one numerical
scheme giving the highest scores to all the questions precised above.

1.4 Conclusions and outlook

Conclusions. In this chapter, I developed two different strategies allowing to deal with Vlasov
equations with several scales in time.

On one hand, I developed homogenization techniques like the two-scale convergence, in order to build
new reduced models which approximate multiscale Vlasov equations. The result in Theorem 1.2.3
gives the form (and thus shows its complexity) of a unified model able to decompose highly oscillating
parts of the solution from those which are slowly varying and thus to manage the transition from the
regime ε ≪ 0 to the regime ε ∼ 1. Therefore, in Section 1.2.2, I turned over the consideration of a
reduced model, whose advantage over the full Vlasov model is, clearly, that it is free of the smallest
scale and thus has a lower computational cost. In addition, this framework displayed compelling
theoretical properties (e.g. the result on the decomposition of the first order term in Theorem 1.2.7)
that would be interesting to explore numerically in the future.

On the other hand, a second strategy consists in proposing a new method for advancing in time
over the different scales: it uses macroscopic time steps but solves exactly the smallest scale at
each macroscopic time step. I showed this scheme to provide very accurate numerical results with
respect to the smallest scale, for the considered test cases. The strengths of the method are that
it is very simple, robust, and efficient. However, it would be interesting to make the mathematical
analysis of the method and (in order) to generalize it in view of its use to more wide application
cases.

28 CHAPTER 1. MULTISCALE VLASOV MODELS

Perspectives. Concerning the results in Section 1.2.1, it seems difficult to develop and implement
a numerical framework for the equations (1.19)-(1.20) in order to find the correctors Gε1 and kε.
However, the mathematical analysis developed in Theorem 1.2.3 is interesting for the reasons ex-
posed above. Its novelty is mainly that it gives explicitly the form of the terms to be considered in
the regime ε ∼ 1. In addition, this result was at the root of the problem developed in Section 1.2.2.
Thus, a first direction that I want to pursue in the future is to go further in the discretization and
the implementation of the equations (1.25), (1.30), and (1.31), concerning the two-scale first order
approximation in Theorem 1.2.7. More precisely, the challenge is to find and then to implement the
appropriate numerical method which offers, with a not very high computational cost, the accuracy
needed for capturing the (small) first-order corrector terms. In this way, there are two approaches
that deserve to be developed (in the framework of a PhD thesis, for example):

❼ The Particle-in-Cell numerical approach. As already mentioned in Section 1.2, the difficulty
is in finding the particular approximations for the derivatives of the distribution functions and
the particular approximation for the function given by explicit formula, see Algorithm 1.2.9.
To tackle this issue, a smoothed-particle hydrodynamics (SPH) method could be used [LL02;
LL10]. In addition, it is known that SPH methods have advantages such as the numerical
conservation of physical quantities, the ability to simulate phenomena occurring over several
scales, and its resolution can easily be adapted with respect to variables like the particle
density. One drawback is the large number of particles that might be needed for highly
accurate simulations. Nevertheless, a high performance computing aspect (that I will develop
for my PIC implementations in the next chapter) would play an important role and use of
many core processors might be envisaged for dealing with this issue (for example, in the fluid
dynamics community the SPH methods already ran over GPUs [HKK07]).

❼ A second approach for the two-scale models, would be to implement the Algorithm 1.2.9 in
a semi-Lagrangian framework. In such case, gradients of functions are simply computed
numerically, by approximating the derivative of the distribution function from its grid values
in space or velocity. In this way, we would be able to obtain in a simple way the required
accuracy on the numerical approximations in order to be able to capture the improvement of
the first order (corrector) terms over the limit term. In this direction, we can be inspired by
the work in [Mou09] where a backward semi-Lagrangian method (with an additional technique
of a new phase space mesh) was implemented for the simulation of a two-scale limit model.

In addition, it is important to identify test cases, other than that in [14], where the use of the first
order approximation might provide considerable additional knowledge to that of the two-scale limit.
In this direction, I think that applying the two-scale approach to the 2d× 2v model in (1.2) might
be an interesting issue to explore.

As an alternative to the research direction above, it will be interesting to continue working on the
subject developed in the second part of the chapter, especially for the model treated in Section 1.3.2.
I first recall that the approximation of the slow behaviour in the Algorithm 1.3.1, namely step 2,
assumes roughly that the guiding center of the particle motion evolves locally over a linear trajectory.
Therefore, an interesting subject to pursue would be to improve this approximation. In this
direction, I already tested the multiscale Backward-Forward Heterogeneous Multiscale Methods
(BFHMM) in [Ari+13] on the highly oscillatory dynamical systems issued from the linear Vlasov
equations, and the first outcomes were encouraging. Next, it is meaningful to consider the problem
of dynamical systems where the stiff part is no more linear. This issue entails the case of a Vlasov

1.4. CONCLUSIONS AND OUTLOOK 29

equation with a strong magnetic field which is not homogeneous anymore. I implemented the
algorithm in such a case, however the results were not satisfactory from the accuracy viewpoint,
because the BFHMM scheme is able to follow only the slow variables of the motion, like the averaged
motion of the guiding center, but not the guiding center. Therefore further refinements regarding
knowledge of the rapid part are required and will be subject of my future research.

30 CHAPTER 1. MULTISCALE VLASOV MODELS

Figure 1.4: The cases of Vlasov–Poisson (left) and of Vlasov with E(t, R) = −R3 (right), when
ε = 0.0001. In red: the reference solution. In green: the solution obtained with Algorithm 1.3.2.
From top to bottom the final times are t = 10, t = 30, t = 60, and t = 90. The time step for
Algorithm 1.3.2 is ∆t = 0.5.

1.4. CONCLUSIONS AND OUTLOOK 31

Figure 1.5: Solving (1.48)-(1.49) in the case when ε = 0.01. The initial positions and velocities
(x3

0,v
3
0) (left) and (x2

0,v
2
0) (right) are introduced in (1.50). The evolution of the Guiding Center is

in green and that of the position in red. The final time is t = 4.

Figure 1.6: Global Euclidean error of the scheme at final time 10 (left) and at final time 1/ε (right),
obtained with a particular initial condition in the linear Vlasov case, for several values of ε.

32 CHAPTER 1. MULTISCALE VLASOV MODELS

Figure 1.7: The difference between the solution computed with Algorithm 1.3.1 and the solution to
the guiding center equation as a function of the time step (left) and of ε (right) at final time t = 5.

Chapter 2

Performance of Particle-in-Cell

simulations for Vlasov–Poisson models

The goal of this chapter is to present our contributions in developing efficient methods for using
advanced computing capabilities in order to perform simulations that exhibit computation and data
intensive issues. For several mathematical or physical reasons, as for instance accurately simulating
multiscale phenomena, gaining insights in understanding complex behaviours, or reproducing the
realism of a physical problem, we are faced with the difficulty of processing a huge amount of
data. Therefore, a first idea for dealing with this problem is to optimize the storage, the intrinsic
communications, and the computations over these data. Afterwards, it is advantageous to use in
parallel as many computational units as possible.

The models considered in this chapter are of Vlasov–Poisson type, for solving classic problems in
plasma physics, in four and six dimensions of the phase space. The numerical approach is based on
the Particle-in-Cell (PIC) method. Standard explicit numerical schemes are implemented leading
to the constraint of resolving the smallest scale in space or time for the numerical parameters. It
is important to stress that a naive implementation of these schemes and data involves memory
bottlenecks in the PIC framework and thus requires large execution times when long runs are
needed.

In this context, the contribution in this chapter is to address the problem of performance of a PIC
code, by studying specific data structures to optimize memory access patterns and by exploiting
three well-known types of parallelism on multi-core processors. This work was chronologically
developed in the references [5], [3], [4], and [1] respectively. The summary is the following:

❼ First, in Section 2.1 we introduce the kinetic models under consideration and their computa-
tional difficulties. Then, for reproducibility concern, we describe the building blocks of the
implementation of classical PIC method for solving numerically these models.

❼ In Section 2.2 we briefly describe the projects in which we performed our implementations
and the motivation behind the search for performance.

❼ In Section 2.3 we analyze, compare, or propose new techniques and data structures and layouts
for improving performance of PIC simulations in 2d× 2v over single core.

❼ In Section 2.4 we go further with new optimization strategies, in terms of data structure and
data layout, to gain more performance in 3d × 3v simulations over a multi-core shared
memory environment.

33

34 CHAPTER 2. PERFORMANCE OF PIC SIMULATIONS

❼ In Section 2.5 we develop our choice of parallelism. We discuss the results of a hybrid
parallelism: multi-threading (with OpenMP) and multi-processing (with MPI) by explaining
the advantages and the limitations of our approach. The scalability of the parallelization is
eventually assessed.

❼ In Section 2.6 we conclude the chapter and some perspectives are drawn.

2.1 The kinetic models and the PIC method

In this section, for the sake of completeness, I describe first, the different models that are imple-
mented and the motivations behind their consideration. Then, in the second part, I introduce the
numerical framework of a standard PIC method by giving details about the techniques and the nu-
merical methods used within the implementation. This is an important fact for the reproducibility
of the numerical and the performance results.
The history of our implementations starts with a Fortran code that I wrote in the library SeLaLib
[Sel] for a 2d × 2v PIC code. Then, during his PhD thesis [Bar18], Yann Barsamian ported and
further developed this code in C, in a final 3d× 3v version.

The kinetic models. We briefly present in this part the kinetic systems that we solve numerically
in the following. They model classic test cases in plasma physics: Landau damping, drift-kinetic
vs. guiding center simulations, and instability of a magnetized electron hole. The implemented
numerical method will be described below, the difficulties being the multidimensional aspect of
the problems and the high level of detail of their solutions. These numerical problems are quite
expensive in terms of computer memory and execution time and consequently, the corresponding
simulations need to be performed over a few multi-core processors.

• We start with the Vlasov–Poisson model for the Landau damping test case, a famous problem
[MV11] which is discussed in any textbook of plasma physics. In 3d× 3v the equations read

∂tf + v · ∇xf −E(x, t) · ∇vf = 0,

E (x, t) = −∇xφ(x, t), −∆xφ(x, t) = 1−
∫
f(x,v, t)dv,

f (x,v, t = 0) = f0 (x,v)

(2.1)

where f stands for the electron distribution function, the ions are supposed to be fixed, and E is
the self-consistent electric field. One example of initial condition is given by

f0 (x,v) =
1

(2πv2th)
3/2

(
1 + α cos(kx1) cos(kx2) cos(kx3)

)
exp

(
− |v|2
2v2th

)
, (2.2)

where the thermal velocity is set to vth = 1. To introduce the first Fourier mode for the initial
perturbation, we choose Ωx = [0; 2π/k]3 for the domain in the physical space. We use periodic
boundary conditions in space. Several values for the amplitude α of the perturbation are considered.
The conservation of the total energy of the Vlasov–Poisson model and the evolution of the electric
energy obtained from the dispersion analysis were checked numerically for the verification of the
code (see [5; 3; 4; 1] for several instances of the Landau damping concerning the dimension of
the problem or the amplitude of the perturbation). This step is essential to make sure that a
code correctly implements a given model [Son17]. Finally, we specify that the Landau damping
simulations made up the background to assess the performance of our PIC codes.

2.1. MODELLING 35

•Next, we tackle the problem of modelling a strongly magnetized plasma constituted by electrons
and a uniform and motionless background of ions. When tracking the electrons on a long enough
time scale, a drift phenomenon occurs due to the self-consistent electric field in the plane orthogonal
to the magnetic field. This is a multiscale behaviour since the electrons also execute a rapid circular
motion around the magnetic field line. We assume in addition that the electric field created by the
particles evolves only in the plane orthogonal to the magnetic field. The corresponding 2d × 2v
Vlasov–Poisson system is

∂tf
ε +

1

ε

(
v · ∇xf

ε −
(
Eε(x, t) +

1

ε
v⊥
)
· ∇vf

ε

)
= 0,

Eε (x, t) = −∇xφ
ε(x, t), −∆xφ

ε(x, t) = 1−
∫

R2

f ε(x,v, t)dv,

f ε (x,v, t = 0) = f0 (x,v) ,

(2.3)

where the vanishing parameter ε entails the strong magnetic field, supposed to be aligned with the
x3 direction: B = (0, 0, 1/ε)T . We denote by x = (x1, x2) the position variable, by v = (v1, v2) the
velocity, and v⊥ = (v2,−v1). The term (1/ε)v⊥ corresponds to the projection of the magnetic force
in the plane orthogonal to the magnetic field. The other singularity in the equation above is due to a
time re-scaling that allows us to study the long-term behaviour of the electron distribution function
and thus, to capture the drift phenomenon. The regime in which the Vlasov–Poisson system (2.3)
is written corresponds to a time re-scaling of the classic drift-kinetic model. The scaling procedure
leading to this regime is given in [FRS01] and the time re-scaling is carried out in [FS00] (see also
Section 5.2.1 in [17]). Under appropriate assumptions on f0, the limit model of (2.3) is derived in
[FS00; Bos07] for example. Specifically, the authors established two types of convergence when ε
goes to zero of the particle density towards the solution to the guiding center model

∂tfGC +E⊥ · ∇xfGC = 0,

E (x, t) = −∇xφ(x, t), −∆xφ(x, t) = 1− fGC ,

fGC (x, t = 0) =

∫

R2

f0 (x,v) dv.

(2.4)

In this framework, in [5] we achieved simulations for a Kelvin–Helmholtz test case [Sho81], with an
initial condition of type

f0 (x,v) =
1

2πv2th

(
1 + sin(x2) + α cos(kx1)

)
exp

(
− |v|2
2v2th

)
, (2.5)

defined in Ωx × R
2, where Ωx = [0; 2π/k] × [0; 2π], α is a small number as the amplitude of the

perturbation, and the thermal velocity is set to vth = 1. For the guiding center model, the initial
condition consists in the x part only in (2.5), defined in Ωx. Our aim was to illustrate numerically
the convergence result alluded to above, by analyzing the relationship between the solutions of (2.3)
and (2.4) (see Fig. 2.1 and [5] for more comparisons). The computational effort when solving
equation (2.3) stems from the stiff term 1/ε2 which forces explicit numerical schemes to the use
of very small time step. Thus, a rapid code is beneficial to achieve efficiently long time simulations.

• Finally, we present a test case of instability of a magnetized electron hole. As a nonlinear
solution of a Vlasov–Poisson equation, an electron hole is a clump of electrons trapped in a phase
space vortex. As above, ions are assumed to form a uniform and motionless background. The

36 CHAPTER 2. PERFORMANCE OF PIC SIMULATIONS

Figure 2.1: The global relative error at time t = 5 (in the L2 norm) of the density of the Vlasov–Poisson

solution of (2.3) with respect to the guiding center solution of (2.4), as function of ε.

literature in this field is abundant, see for instance [Hut17; Mus+00]. In a first step corresponding
to a 1d× 3v setting, we consider a starting potential of type

φ(x) = ψ exp
(
− 0.5(x− L)2/∆2

‖
)

which generates the electron hole, where ψ,L, and ∆‖ are fixed parameters (see [1; Mus+00]). The
initial distribution function is

f(x,v) = F1

(
v21 − 2φ(x)

)
exp(−|v|2/2)

where v = (v1, v2, v3), and

F1(w) =

√
−w
π∆2

‖

(
1 + 2ln(ψ

−2w)
)
+ 6+(

√
2+

√
−w)(1−w)

√
−w

π(
√
2+

√
−w)(4−2w+w2)

, for − 2ψ ≤ w < 0,

6
√
2

π(8+w3)
, for w > 0,

contains the trapped particles for w > 0 and the passing particles for w < 0. In addition, we add
an external magnetic field aligned with the x-direction. In this case, the evolution of the electron
hole either rests intact, or its structure changes according to the gyro-to-bounce frequency ratio
(see [Mus+00]). Thus, the trapped electrons both gyrate around the magnetic field line and bounce
back and forth in the parallel direction.
In a second step, we performed simulations in a 2d×3v setting, by perturbing the above equilibrium
potential in the transverse direction, into

φ(x1, x2) = exp
(
− 0.5

(
(x1 − L)/∆‖ − α cos(kx2)

)2)
,

where α is the measure of the perturbation and k its wave number. Our results are qualitatively
similar to those from [Mus+00]. The challenge was to capture the details in the small struc-
tures developed in the profiles of the density and the electric field in long time, see
Fig. 2.2. This asks for fine grids and therefore, fast code is needed in long runs.

The Particle-in-Cell method. The numerical treatment of the models above is done by means
of the PIC method, which is a well-known approach to produce satisfactory results for Vlasov-like

2.1. MODELLING 37

Figure 2.2: Electron hole simulation: profile of the density ρ(x1, x2) at t = 20 (left) and t = 40 (right).

equations; see [BL85; HE88; CK00] for advanced discussions and for applications in plasma physics
and in fluid dynamics.

Already in use as early as 1955 for solving “hydrodynamic problems” [Har55], the PIC method is
very popular in the plasma physics community. The main advantages are its simplicity, its capability
to be simply extended to higher dimension, and its ability to cope with the real particles dynamics
at a relatively low cost. However, the particle method has an important drawback: it suffers from
noise, namely strong spurious oscillations in the numerical results if the number of particles is not
sufficiently high. It is known that the noise decreases like 1/

√
Np with Np the number of particles.

The precise meaning of this statement [BS15, Th. 3.2.2] relies on a statistical framework in which the
PIC method can fit. This is explained in the review [BS15], together with efficient noise-reduction
strategies from the Monte Carlo literature which help improving the accuracy of PIC simulations.
Moreover, we emphasize that there is an important literature devoted to deterministic error analysis
of particle methods (see e.g. [BM82; Rav85; CK00]), but detailing this subject is beyond the scope
of the present work. We mention the recent work [CP17] for new techniques to reconstruct accurate
approximations of the particle density and their comparison to existing methods which reduce the
oscillations in a particle method. We conclude this part by underlining that in order to guarantee
the point-wise convergence of the numerical (particle) density towards the solution of the Vlasov
equation1, the number of particles per cell should increase significantly faster than the number of
cells (see [Bar05, Section 5.3]; see also [CP17] and the references therein).

In the context of a Vlasov–Poisson model of the form (2.1), the PIC method consists in approxi-
mating the distribution function f by a finite number of numerical particles. Then, we compute the
trajectories of these particles by solving the characteristic curves of the Vlasov equation, while the
self-consistent field E is computed on a grid in the physical space. More precisely, we discretize the
distribution function at every time step tn = n∆t by a collection of Np particles with coordinates
((xnk ,v

n
k))k∈{1,...,Np} in the phase space and then, we regularize it with a convolution kernel S

fS (x,v, tn) =

Np∑

k=1

ωkS (x− xnk)S (v − vnk) . (2.6)

Typically, all the weights ωk are of order 1/Np. As usual on Cartesian grids, we use B-splines as
convolution kernel [Son17]. Although numerical tests were carried out with B-splines of degree 1

1or in other words, to reduce the noise of a PIC simulation.

38 CHAPTER 2. PERFORMANCE OF PIC SIMULATIONS

and 3, we recall here only the form of a degree 1 B-spline, in a one dimensional physical space2

S(x) =

1

∆x

(
1− |x|

∆x

)
if |x| < ∆x

0 otherwise,

where ∆x is the step of a fixed one dimensional grid. Every particle k moves along a characteristic
curve of the Vlasov equation in (2.1)

dx

dt
= v(t), x(0) = x0,

dv

dt
= −E

(
x(t), t

)
, v(0) = v0.

(2.7)

Therefore, the problem consists in finding the coordinates (xn+1
k ,vn+1

k) at time tn+1 from their
values at time tn by using an ODE solver for (2.7) with initial condition (xnk ,v

n
k). The electric field

term in (2.7) is computed in a particle position at every time step tn as follows:

1. Compute in every grid point the density

ρS (x, tn) =

Np∑

k=1

ωkS (x− xnk) . (2.8)

2. Solve the Poisson equation on the grid and deduce
(
Enj
)
j
, the values of the grid electric field.

3. Interpolate the grid electric field with the same shape factor S yielding the density ρS
3, which

gives the electric field at the particle position:

E(x, tn) = ∆x
∑

j

Enj S(x− yj), (2.9)

where (yj)j denote the grid nodes.

At this stage, three additional points should be clarified in order to achieve the description of the
numerical approach and its implementation in our codes: how initialization is done and what are
the ODE solver (or the particle pusher) and the field solver, respectively.

Concerning the first issue, we considered the Monte Carlo approach. Thus, a PIC simulation starts
with the generation of a random sequence — actually pseudo-random sequence, since one cannot
generate a truly random one on a computer — or quasi-random sequence following some given
probability law, associated with the initial condition f0. Such a sequence can be obtained from a
uniform random sequence in [0, 1] ([BFS87], see also [Son17, Section 8]). Indeed, starting from a
uniform random sequence, there are different ways to draw values for any other given probability
density function; for example, the Box–Muller algorithm for generating Gaussian densities or the
rejection algorithm for generating densities like those in (2.2) or (2.5) (see [BFS87]). As for obtaining
a uniform random sequence in [0, 1] we generally used standard libraries included with the compilers
or available software to generate pseudo-random sequences.
In our simulations, tests were performed also when initializing particles following sequences that

2a multidimensional B-spline is simply obtained by a tensor product of one dimensional B-splines.
3to get conservation of the total momentum in the periodic boundaries setting.

2.2. FRAMEWORK AND MOTIVATION 39

are not random, but quasi-random (like Hammersley or van der Corput sequences [DT97]). Such
sequences are designed to fill the space as uniformly as possible, leading to a reduction of noise when
compared to random sequences. This is the so-called quiet-start (see the references in [Bar05]) which
leads to smaller errors in density and current at the beginning of the simulation, but not in long
runs [Bar05, Section 5.3].

Second, we implemented several classic time stepping schemes with the aim of solving explicitly
ODEs of the type given in (2.7). The leap-frog scheme (or equivalently the Störmer–Verlet scheme
[HLW06]) was used when the characteristics have the form of the pendulum equation, as is the case
of the model (2.1). This is a second order method and in addition, it is time-reversible and provides
the energy conservation of the dynamical system. An explicit Runge–Kutta scheme was preferred
to implementation when the Hamiltonian is not separable, like the guiding center equation in (2.4),
since the Störmer–Verlet scheme is implicit in such a case. Finally, we used also the Boris method
when the magnetic field came into play, namely for the third model. This scheme enjoys excellent
long term accuracy, due to the property of the phase space volume conservation [BL85; Qin+13].

Third, we made use of the Fast Fourier Transform for solving the Poisson equation in a periodic box,
since the problems we tackled involve periodic boundary conditions in a box-like physical domain.
Thus, the time of calculation of the electric field is small in our simulations (∼ 1%), being negligible
when compared to the other steps of the PIC algorithm.

Conclusion. The multiscale behaviour in the models exposed in this section, requires, when solved
with the numerical schemes above, large numbers of particles and small discretization steps
in order to reduce the noise and to resolve the fine structures in the phase space. These features
lead to expensive computations and costly memory accesses. Therefore, in order to make
simulations run in reasonable times, code optimization and parallelism are needed. The rest
of this chapter is devoted to this subject.

2.2 Framework and motivation of software contributions

Framework. I began working on code performance issues in the framework of the software li-
brary SeLaLib (the Semi-Lagrangian Library) [Sel]. SeLaLib is a modular library for kinetic and
gyrokinetic simulations of plasma by, at the very beginning, semi-Lagrangian methods. However, I
started to implement PIC methods in the library, with the help of Edwin Chacon-Golcher, one of
its software engineer at that time.
As an application programming interface, SeLaLib provides the building blocks for parallel simula-
tions of Vlasov-like and gyrokinetic equations. The library contains low-level utilities, input-output
modules, and parallelization utilities. Developed by several researchers, it contains also a collection
of simulations with various discretization methods for test-cases which are useful to tokamak plasma
problems. My contribution was to write the modules for the first building blocks to be used for
achieving performance in simulations with a standard PIC method in 2d×2v. The theoretical tools
behind these building blocks are developed in Section 2.1 and the optimization techniques for their
efficient implementation are exposed in the following sections.

Then, I continued working on this subject in the frame of the PhD in computer science of Yann
Barsamian. In a first time, he ported the blocks of the 2d × 2v PIC code from SeLaLib to C and
he further optimized it with the aim of reducing the number of memory transfers. In this setting I
proposed the study of space-filling curves (see Section 2.3 and Section 2.4) as different data layout
of the electric field and of the density, in order to use appropriate memory layouts for optimizing

40 CHAPTER 2. PERFORMANCE OF PIC SIMULATIONS

the cache performance.
In a second time, he wrote the code called Pic-Vert [Bar18] in the 3d × 3v setting. This was the
ground for new findings in the direction of searching for new algorithms and data layouts, with the
aim of improving the use of computer resources. The ideas of this second part are mainly due to
Yann.

We will see in the following that our implementations and their performances depend on the ar-
chitecture, meaning that some parameters are to be tuned manually with respect to the memory
hierarchy. Thus, we need to specify the machines on which our simulations have run. We used
computing nodes with 2 sockets each. Examples of sockets are:

(i) Intel Xeon E5-2670 @ 2.6 GHz (Sandy Bridge) with 32 GB of RAM, a maximum memory
bandwidth of 51.2 GB/s, 4 memory channels and 8 cores, available on the computing center
of the University of Strasbourg (Mésocentre);

(ii) Intel Xeon E5-2650v3 @ 2.3 GHz (Haswell) with 32 GB of RAM, a maximum memory band-
width of 34 GB/s, 2 memory channels and 10 cores, on a local machine at the computer
science department, University of Strasbourg;

(iii) Intel Xeon Platinum 8160 @ 2.1 GHz (Skylake) with 96 GB of RAM, a maximum memory
bandwidth of 128 GB/s, 6 memory channels and 24 cores, available on the supercomputer
Marconi at Cineca, a supercomputing centre for scientific research in Italy.

Motivation. Implementing a PIC method is an outstanding step in the field of computational
science, when we aim at reducing the noise of the method by the use of very large number of particles.
Numerous research efforts are recently devoted to more efficient PIC implementations with the aim
of an optimal use of modern supercomputing resources (see for example [DS14; Ger+16; Vin+16;
Joc+16]).

In the rest of the chapter, we describe data structures and techniques that we incorporated in
our codes for achieving performance. Even if some of these procedures are known in theory, their
implementation is subject to adaptation and adjustment to the specific problems to be solved, and
further analysis and comparisons were carried out in order to obtain the best performance results.
We develop also new optimization strategies to reinforce performance.

We start by briefly recalling the four steps followed at each time iteration of a PIC simulation:
accumulate on the spatial grid the particle charge, solve the Poisson equation to obtain the grid
electric field, interpolate this field to the particles, and finally push in time with this field the particle
positions and velocities (see Fig. 2.3 for an instance of a PIC algorithm in 3d). Therefore, two types
of data are present in a PIC code: particles and grid quantities (the electric field and the charge
density) that interact one with another. In addition, when increasing the size or the level of details
of the problem under study, a simulation may involve billions of particles and hundreds of grid points
per dimension and may need the execution of a large number of time steps. Thus, PIC simulations
are quite expensive in terms of computer memory and execution time requirements, demanding
large and powerful supercomputers. More precisely, in a PIC simulation “moving data between
and even within modern microprocessors is more time consuming than performing computations.”
[Bow+08] Consequently, a minimization of the number of costly memory accesses results
in large performance gains in multi-core processing. These principles are accomplished through
several key points, that we expose below. We conclude by specifying that all the performance results
that follow are developed within Landau damping simulations in 2d× 2v or 3d× 3v with different
numerical parameters.

2.3. OPTIMIZATIONS IN 2D × 2V 41

Parameters

N : number of particles.

ncx× ncy × ncz: number of grid cells.

∆t: time step.

f0: initial distribution function.

q and m: particle charge and mass.

Variables

particles[N]: set of particles, with

position xp and velocity vp.

ρ[ncx][ncy][ncz]: charge density.

E[ncx][ncy][ncz]: electric field.

Algorithm

1 Randomly initialize N particles following f0
2 Compute initial ρ and E

3 For each time step Leap-frog

4 If (condition), then

5 Sort the particles

6 Set all cells of ρ to 0

7 For each particle

8 Interpolate E to xp Stored in Ep

9 Update vp vp +=
q

m
∆tEp

10 Update xp xp +=∆tvp

11 Accumulate charge from xp on ρ

12 Compute E from ρ Poisson solver

Figure 2.3: Pseudo-code of a Particle-in-Cell (PIC) method.

2.3 Single core optimizations in 2d× 2v

In this section, we describe in detail the data structures for particles and for fields on a grid in
the design of a PIC implementation in 2d× 2v, together with the optimizations and techniques we
performed for reducing execution time. In a first step we develop the work we have done in SeLaLib
[5], whose features are

❼ “cell index plus offset” for the particle representation,

❼ Array of Structures (AoS) for the particle data structure,

❼ redundant cell-based arrays for E and ρ,

❼ periodic particle sorting.

1. Particle representation. In a standard implementation, a particle is given by its position
in the physical domain and its velocity ranging in some given bounds. While we keep the classic
representation by two real numbers for the velocity, the position of particle is identified with a cell
index icell and two normalized offsets within this cell. The advantages of this representation are
well-known, see [Bow+08, Section III-E] for example. The main reasons are the reduced memory
size for a particle and the reduced amount of arithmetical operations in the interpolation and the
charge accumulation steps.

For a better understanding of this important point, let us enter into some details. Let [xmin;xmax)×
[ymin; ymax) denote the physical space and ∆x = (xmax − xmin)/ncx and ∆y = (ymax − ymin)/ncy
the grid spacing, where ncx and ncy are the number of grid cells in the two directions. Thus, a
particle positioned at (xphysical, yphysical) is mapped at the position (x, y) ∈ [0;ncx)× [0;ncy), where

x =
xphysical − xmin

∆x
and y =

yphysical − ymin
∆y

.

Then, we consider the integers4

ix = ⌊x⌋ and iy = ⌊y⌋ , (2.10)

4For any real number x, we denote by ⌊x⌋ the greatest integer less than or equal to x.

42 CHAPTER 2. PERFORMANCE OF PIC SIMULATIONS

Update positions

1 Compute (ix, iy) from icell.

2 Update (x, y) using formula (2.11) and line 10 in Fig. 2.3.

3 Compute the new values of (ix, dx, iy, dy) using formulas (2.10) and (2.11).

4 Compute icell from (ix, iy).

Figure 2.4: The update positions step, in the “cell index plus offset” particle representation.

and the normalized offsets (which are real numbers in [0; 1))

dx = x− ix and dy = y − iy. (2.11)

The cell index icell is defined to be a number in {0, 1, . . . , ncx ·ncy− 1}, taken as the image of some
one-to-one mapping depending on (ix, iy). For example, the commonly used row-major mapping is

(ix, iy) 7→ icell = ix · ncy + iy

icell 7→
{
ix =

⌊
icell
ncy

⌋

iy = mod(icell, ncy).

(2.12)

To conclude, a particle is stored in memory with one integer (icell), two numbers in single precision
(dx and dy), and two numbers in double precision (vx and vy). It is important to stress that in
this representation, the update particle position step (line 10 in Fig. 2.3) is to be accomplished now
in four sub-steps, detailed in Fig. 2.4. From Fig. 2.4 we deduce also why we need the mapping and
its inverse in (2.12).

2. Particle data structure. A second important point is the organization of the particle list,
as

❼ a Structure of Arrays (SoA), where we store all the particle positions and velocities in the
arrays x(i), y(i), vx(i), vy(i) for i ∈ {1, 2, . . . , Np}, or

❼ an Array of Structures (AoS), where the particles are stored in a single array p(i) for i ∈
{1, 2, . . . , Np}, where p(i) contains the position and velocity of particle i.

This is a standard issue [Dec+96; Ver05; Bow+08]. In our first work [5] we implemented the AoS
for listing the particles. The advantage of this listing is that all the particle information can be
accessed in a single memory stream and thus no cache miss occurs when updating one particle’s
position and velocity. In addition, a single pass over the particle list should be performed for an
efficient updating. However, we see below that this structure does not allow to vectorize the update
position step.

3. Grid quantities data structure. The standard 2d representation of the electric field E and
of the charge density ρ stores their values at the grid points: e.g. the grid values of E are stored
in a 2d array E(ix, iy) where ix ∈ {0, 1, . . . , ncx − 1} and iy ∈ {0, 1, . . . , ncy − 1}. In this case, the
interpolation of the two dimensional arrays Ex and Ey requires access to memory locations that
are not contiguous. A partial solution to avoid this issue was proposed in [Dec+96, Section IV].
However, the problem is solved by using a redundant cell-based one dimensional array to store
field and charge density values [Bow03]. Precisely, all the field values at the corners of a cell are

2.3. OPTIMIZATIONS IN 2D × 2V 43

stored in a single data structure which is then laid out as a single one dimensional array: we store
in Ẽ(icell) for icell ∈ {0, 1, . . . , ncx · ncy − 1} the four values of E at the corners of cell icell. What
makes these data structures redundant is the fact that the field values for a single grid point must be
stored in multiple cell-based structures. Also, two additional necessary steps are to be considered:
the conversion of the charge density ρ̃(icell) to ρ(ix, iy) which is needed for solving Poisson equation

on the grid, and then, the conversion of E(ix, iy) issued from solving Poisson equation to Ẽ(icell).
Even if such a data structure requires more memory and supplementary computations, we show
below that this leads to an overall gain in performance

❼ through cache hit improvements (both for E and ρ) using space-filling curves, and

❼ through efficient vectorization of the accumulation step.

We will see that the redundant data structure gives much better execution times than the standard
representation, especially in high dimensions (see 3d standard vs. Row-major in Table 2.4) and
additionally, when the number of particles per cell is more than a hundred [4, Section 3.4].

4. Particle sorting. This technique consists in organizing in memory the particle list by
cell index. Together with the particle and E/ρ data structures, the particle sorting allows to
increase the number of the cache hits. More precisely, when two particles contiguous in memory are
also in the same grid cell, they access the same E/ρ cell values in the interpolation/accumulation
step. As the simulation evolves, the particles get unsorted, so this algorithm needs to be applied
periodically. It was thus shown [Bow01; Ver05] that sorting periodically the particles results in
significant performance improvements by reusing field and charge density data for many consecutive
particles within a cell. We verified and illustrated this principle by plotting the time evolution of
the memory bandwidth (MB) of the code, which is roughly the amount of data that is moved per
unit time (high MB implies high performance). We thus obtained the highest values of MB
at the time when sorting was applied: see Fig. 2.5 and also [5, Fig. 5] for observing the same
behaviour when multithreading is in place.

Figure 2.5: History of the memory bandwidth in GB per second. A run with 2 million particles on 1 core.

At right a zoom at the beginning of the simulation. In green the steps where sorting is done. Architecture:

Sandy Bridge.

We detail now our achievements implemented in the code Pic-Vert, in C, corresponding to
reference [3]. At the end of this section, in Table 2.1, we report the accumulated gains with respect
to a baseline code, of all the optimizations developed in the following.

44 CHAPTER 2. PERFORMANCE OF PIC SIMULATIONS

5. Loop hoisting and loop fission. The loop hoisting consists in removing as much compu-
tation as possible from the particle loops which results in a significant improvement of the runtime
performance. We implemented this for the velocities and the positions updates, by performing out-
side the particle loops multiplications by constants like q∆t/m and ∆t/∆x respectively (see lines
9 and 10 in Fig. 2.3). The loop fission (see [Wol95]) means that the loop “For each particle” in
Fig. 2.3 is broken into three parts: one loop to update-velocities, one to update-positions, and one
loop to accumulate the charge. There are two main reasons to use three loops instead of one: (a)
we can efficiently vectorize the update-positions as a stand-alone loop and (b) a separate processing
of the arrays E and ρ in different loops leads to a better overall memory management.

6. Space-filling curves are different organizations in memory of the E and ρ cell values. We
showed that using appropriate memory layouts for the redundant data structure optimizes further
the cache performance.
The interest of using the space-filling curves can be explained as follows. In PIC codes memory
accesses are a well-known major bottleneck. Each time that the code accesses a cell of E or ρ, a
contiguous portion of the array is loaded into the cache: ideally, all the computations using these
data cells should be performed while the information is still there, avoiding to reload them later from
the main memory. We already saw that a periodic sorting of the particles needs to be performed to
improve data locality. Nevertheless, sorting at every iteration would be computationally expensive
and therefore we have to find a memory layout of the cells such that the cache benefits
from the sorting last as long as possible. More precisely, we aim at constructing a mapping
(ix, iy) 7→ icell such that, when a particle moves from a cell to another, the probability that its new
cell index icell is close to the old one should be high.

The mapping of the row-major ordering in (2.12) was considered in the work in SeLaLib, within the
point 3 above on the grid quantities data structure. We remark that this ordering has advantageous
data locality when a particle moves along the y-axis (see equation (2.12) and Fig. 2.6): if iy increases
by one, the new cell index also increases by one (except for particles on the right edge of the grid),
becoming exactly the index accessed by the following particles in the particle array. However,
when a particle moves along the x-axis, this favorable behaviour is lost: if ix increases by one, the
cell-index changes by ncy which implies cache misses for the values of E and ρ.

We have thus implemented in [3] the L4D space-filling curve introduced in [Cha+99], but we pro-
posed the following algorithm for its computation

(ix; iy) 7→ icell = SIZE · ix +mod(iy, SIZE) + ncx · SIZE · ⌊iy/SIZE⌋

icell 7→
{
ix =

⌊
mod

(
icell, ncx · SIZE

)
/SIZE

⌋

iy = mod(icell, SIZE) + SIZE ·
⌊
icell/

(
ncx · SIZE

)⌋
,

(2.13)

where SIZE is a parameter to be chosen carefully depending of the cache sizes. We recall that the
mapping and its inverse in (2.13) are needed for two operations: first, to carry out the lines 1 and
4 in Fig. 2.4 in the updating the particle position and second, for the conversion of E and ρ values
between the redundant structure and the grid structure.

In all, four different strategies for ordering the cells have been tested. We list them here from the least
to the most computational-intensive, in terms of the computation of the mapping (ix, iy) 7→ icell:
the row-major (in Fig. 2.6), the L4D-order (in Fig. 2.11), the Morton-order (in Fig. 2.7), and the
Hilbert-order. We refer to [3, Section IV.B] and the references therein for a detailed discussion.
In conclusion, we compared these orderings and obtained the best cache misses improvement
with the L4D curve, for the L2 and L3 cache levels (see Figs. 2.8 and 2.9). We reported also
overall numbers on the L1, L2, and L3 cache levels in [3, Table II] in order to observe that the good

2.3. OPTIMIZATIONS IN 2D × 2V 45

ix

iy

Figure 2.6: Row-major layout of a 16 x 16 matrix

ix

iy

Figure 2.7: Morton layout of a 16 x 16 matrix.

data locality due to the sorting keeps longer in time for the three non-canonical curves than for the
row-major.

0

10

20

30

40

50

60

70

80

90

 0 10 20 30 40 50 60 70 80 90 100

M
ill

io
n
s
 o

f
c
a

c
h
e
 m

is
s
e
s

Iterations

L2 cache misses - Row major
L2 cache misses - L4D

L2 cache misses - Hilbert
L2 cache misses - Morton

Figure 2.8: Millions of cache misses per iteration for

the cache level 2 during the update-velocities and ac-

cumulate loops. Architecture: Haswell

0

5

10

15

20

25

 0 10 20 30 40 50 60 70 80 90 100

M
ill

io
n
s
 o

f
c
a

c
h
e
 m

is
s
e
s

Iterations

L3 cache misses - Row major
L3 cache misses - L4D

L3 cache misses - Hilbert
L3 cache misses - Morton

Figure 2.9: Millions of cache misses per iteration for

the cache level 3 during the update-velocities and ac-

cumulate loops. Architecture: Haswell

7. Vectorization. This is a special instance of automatic parallelization. Modern5 architectures
can handle several operations at once, computing on vectors rather than on scalars. Precisely, the
same operation (as that in line 10 in Fig. 2.3) may be computed in parallel for 4 particles, for
example. Using a compilation flag is one possibility to automatically vectorize the code. However,
to enable real vector performances, rewriting the code in addition to the use of an appropriate data
structure is necessary. Indeed, to achieve the full power of vectorization requires that the Single
Instruction operates on Multiple Data that are contiguous in memory. We used this technique in
two ways:

❼ Vectorization of the update particle positions step. This was performed efficiently with the

5Single Instruction Multiple Data (SIMD)

46 CHAPTER 2. PERFORMANCE OF PIC SIMULATIONS

SoA for the particle list. Indeed, using AoS led to unsatisfactory timings, since two data (e.g.
positions) to be vectorized are not contiguous.

❼ The redundant structure described above for the charge density opened the possibility to
vectorize the accumulation step like in [Vin+16, Section 4.1.2]. More precisely, the redundant
writing of the charge density allows to put the accumulation operation in all the grid points
of a cell in a single instruction format and thus to vectorize it, following the grid points: see
Fig. 2.10 for a standard not-vectorized accumulation vs. a redundant vectorized one.

double rho[ncx][ncy]; // Standard 2d.

rho[i_x][i_y] += w * (1-dx[i]) * (1-dy[i]);

rho[i_x][i_y+1] += w * (1-dx[i]) * (dy[i]);

rho[i_x+1][i_y] += w * (dx[i]) * (1-dy[i]);

rho[i_x+1][i_y+1] += w * (dx[i]) * (dy[i]);

double rho_1d[ncx*ncy][4]; // Redundant.

float cx[4] = { 1., 1., 0., 0.};

float sx[4] = { -1., -1., 1., 1.};

float cy[4] = { 1., 0., 1., 0.};

float sy[4] = { -1., 1., -1., 1.};

for (corner = 0; corner < 4; corner++)

rho_1d[i_cell[i]][corner] += w * (cx[corner] + sx[corner] * dx[i])

* (cy[corner] + sy[corner] * dy[i]);

Figure 2.10: The accumulate step: Standard vs. Redundant structures.

8. Optimized update-positions step. This technique is relevant when we have periodic
boundary conditions in space. In such a setting, two operations are done when updating the
particle positions: first, an if-test for verifying that the new position is inside the domain and
second, function calls (like modulo or floor) for computing the icell and the offsets of a particle (see
line 3 in Fig. 2.4). Using these operations as they are, either gives unsatisfactory results when using
vectorization, either they are not vectorized at all (when using for example a GNU compiler). In
this context, the proposed optimizations consist in rewriting the code conveniently, which is specific
to C, such that the automatic vectorization be enabled for this step (see [3, Section IV.C]).

Conclusion. Overall gains. Our single-core optimizations are summarized in Table 2.1, where
the baseline is a version of the code with the standard 2d data structure for E and ρ and the Array
of Structures for the particles. We thus conclude that the overall gain in the execution time is
of 42% with respect to a standard code. The performance obtained in this way is compared in
Table 2.2 to the 2d Vlasov-Poisson code presented in [DS14]. These results show the importance
of the architecture in simulations. For example, when sorting, several runs showed that the
optimal number of iterations between two sorting steps is 50 on Sandy Bridge architecture and 20
on Haswell architecture (the results in Table 2.2 are obtained for these sorting frequencies). The
better results on the Haswell architecture are due to its bigger theoretical memory bandwidth (recall
the comments in Section 2.2).

The strength of these data and procedures is reinforced when adding the strategies we propose in
the following section, in a 3d× 3v setting.

2.4. OPTIMIZATIONS IN 3D × 3V 47

Table 2.1: Total execution time, gains and accumulated gains.

Time(s) Gains(%)
Acc.

gains(%)

Baseline 120.4 0.0 0.0

+ Loop hoisting 113.4 5.8 5.8

+ Loop fission 97.9 13.7 18.7

+ Redundant arrays E and ρ (vectorized accumulation loop) 94.0 4.0 21.9

+ SoA for particles (vectorized update-positions loop) 76.0 19.1 36.9

+ The L4D space-filling curve for E and ρ 72.6 4.5 39.7

+ Optimized update-positions loop 68.8 5.2 42.8

Table 2.2: Time spent per particle per iteration, in nanoseconds.

Decyk & Singh work
[DS14] (on Nehalem)

Present work (on Sandy
Bridge)

Present work (on
Haswell)

Push 19.9 15.6 9.1
Accumulate 9.0 4.3 2.6
Reorder 0.3 − −
Sorting − 1.9 2.0
Total 29.2 21.8 13.7

2.4 Optimizations in 3d× 3v

In this section, we present several strategies that are proposed in references [4] and [1]. In a first step,
in [4], we detail the extensions to 3d×3v of our preliminary results in 2d×2v in [3], by highlighting
the difficulties and the solutions for these extensions. Specifically, our main contributions consist in
proposing a new space-filling curve in 3d× 3v (called L6D) to improve the cache reuse and an
adapted loop transformation (strip-mining) to achieve efficient vectorization and to optimize
memory transfers. Unlike the previous section where the analysis of the optimization strategies
was performed on single core, in this section we work on a 24-core socket, with a shared-memory
parallelism. The motivation of this point is our aim to port these strategies to simulations running on
many multi-core processors. In addition, it is not clear if it is possible to extrapolate the single-core
performance results to a multi-core socket. This is due to the different ratios between computational
performance and memory bandwidth of the two configurations: a single core is assigned to a memory
channel, while e.g. the 24 cores of a Skylake processor share 6 memory channels, leading to different
memory accesses of the CPUs.

New space-filling curve. The framework detailed in 2d×2v in Section 2.3 at item 1. about the
particle representation can be easily extended to the 3d × 3v setting. Thus, a particle is stored in
memory with one integer (icell), three numbers in single precision (dx, dy, and dz) and three numbers
in double precision (vx, vy, and vz). Now, the cell index icell is a number in {0, 1, . . . , ncx · ncy ·
ncz − 1}, taken as the image of some one-to-one mapping depending on (ix, iy, iz). The commonly

48 CHAPTER 2. PERFORMANCE OF PIC SIMULATIONS

used row-major mapping becomes

(ix, iy, iz) 7→ icell = (ix · ncy + iy) · ncz + iz

icell 7→

ix =
⌊

icell
ncz·ncy

⌋

iy = mod
(⌊

icell
ncz

⌋
, ncy

)

iz = mod(icell, ncz).

(2.14)

Such a mapping is used in the update positions step which has a similar form in 3d to that in
Fig. 2.4. We have demonstrated in Section 2.3 at item 6. that different space-filling curves improve
the cache performance with respect to the standard row-major curve. Similar comments about
the data locality of the row-major ordering in 3d may be assessed: the mapping of the row-major
ordering in (2.14) has advantageous data locality when a particle moves along the z-axis; if iz
increases by one, the new cell index also increases by one (except for particles on the top face of the
grid), becoming exactly the index accessed by the following particles in the particle array. However,
when a particle moves along the other axes, this favorable behaviour is lost: if iy (resp. ix) increases
by one, the cell index changes by ncz (resp. ncy · ncz) which implies cache misses for the values of
E and ρ.

Therefore, going further in this direction, our contribution in [4] is to design the new L6D space-
filling curve (see Fig. 2.12). This is a generalization to the 3d setting of the L4D curve in Fig. 2.11.
We define the L6D bijection mapping by6

(ix; iy; iz) 7→ icell = ncz · SIZE2 ·
(
⌊ix/SIZE⌋+ ⌊iy/SIZE⌋ · ⌈ncx/SIZE⌉

)

+ iz · SIZE2 +mod(iy, SIZE) · SIZE +mod(ix, SIZE)

icell 7→

ix = mod(icell, SIZE) + SIZE ·
⌊
mod(icell, ncz · SIZE2 · ⌈ncx/SIZE⌉)/(ncz · SIZE2)

⌋

iy = SIZE ·
⌊
icell/

(
ncz · SIZE2 · ⌈ncx/SIZE⌉

)⌋
+
⌊
mod(icell, SIZE

2)/SIZE
⌋

iz =
⌊
mod(icell, ncz · SIZE2)/(SIZE2)

⌋
,

where SIZE is a parameter depending on the computer architecture, to be chosen such that data fit
into the cache memory. As in Section 2.3, we compare the L6D ordering to three different strategies
for ordering the cells: the 3d versions of the row-major, Morton, and Hilbert orderings. We present
in Tables 2.3 and 2.4 the performance gains using these space-filling curves. We show that additional
gains can be obtained with efficient computations of the bijection functions. In the tables, arrays
means that we use additional arrays to store the indices ix, iy and iz, otherwise we recompute them.

Comments. We focus on three meaningful comparisons in Tables 2.3 & 2.4. The first one is on
the data structure: is it beneficial to use the redundant one for the E arrays? The only point where
the code changes is in the update-velocities loop. We see in the tables that in 2d, it is detrimental
to use it if we stick to the row-major curve, but in 3d it is already beneficial with the canonical
curve. We recall that we use many particles per grid cell, and that when using only a few particles
per cell, the redundant data structure is not a good choice.

The second comparison concerns the data layout. Is it possible to obtain notable gains by changing
the ordering of the grid cells? There are two places in the code where the changes might become
significant: in the interpolation step (which is inside the Update v step in Tables 2.3 & 2.4) and in
the accumulation step. This time, we can answer positively: taking another order than the canonical

6We recall that for any real number x, we denote by ⌊x⌋ the greatest integer less than or equal to x. In addition,
we denote by ⌈x⌉ the least integer greater than or equal to x.

2.4. OPTIMIZATIONS IN 3D × 3V 49

ix

iy

Figure 2.11: L4D layout of a 16 x 16 matrix

x y

z

Figure 2.12: L6D layout of a 16 x 16 x 16 matrix

one, we can save time thanks to a reduction in the cache misses. In 2d, the L4D and Morton curves
seem to give similar and optimal timings, while in 3d, the L6D curve allows additional gains and
seems to be the best one.
The last comparison is on the particle data structure needed for the non-canonical orderings. We
can either store the indices in additional arrays (here, arrays of short int), or re-compute them at
each time step. When storing them, it requires more memory for the particles, therefore we need
more time in the update-positions loop and in the sorting step.

We conclude by remarking that overall, the L6D curve led, in 3d, to the most significant gain
compared to the other existing orderings.

Strip-mining. In the 3d× 3v setting too we apply the loop fission strategy, as described at item
5. in Section 2.3. However, the resulting code still needs to scan particle arrays three times, thus
putting a lot of pressure on the memory bus. A loop transformation for avoiding this issue is the
strip-mining [Wol95]. Instead of having three loops each scanning all the particles, we split the
particle arrays in sub-arrays of size k (where k has to be chosen, depending on the architecture) and
we have the three loops operate only on k particles. This transformation leads to the pseudo-code in
Fig. 2.13 and speeds up the code by 22% in 2d (in our experiments choosing a strip-size k between
64 and 256 gives similar optimal results).
Unfortunately, this version of strip-mining does not improve performances in 3d. This is explained by
the fact that the cache is filled with too many values of E, thus the expected gain in performance
coming from the cache reuse of the particle arrays is out of reach. Thus, in 3d, to be able to
efficiently reuse the particle data, the strip-mining has to be done only on the two last loops. This
transformation leads to the pseudo-code shown in Fig. 2.14 and speeds up the code by 12% (choosing
a strip-size k between 32 and 128 gives similar optimal results).

Overall gains. The optimizations presented in this section are summarized in Table 2.5. The
baseline is a version of the code with the standard 3d data structure for E, the redundant one for
ρ, and a loop hoisting as described in the previous section. The overall gain in the execution time
is of 34% with respect to the baseline code.

50 CHAPTER 2. PERFORMANCE OF PIC SIMULATIONS

Table 2.3: 2d Space-filling Curves Timings

Update v Update x Accumulate Sort Total

2d standard 59.0 39.8 41.9 28.6 171.1
Row-major 63.6 39.7 42.8 28.6 176.8
L4D arrays 57.6 48.2 33.5 41.1 182.7

Morton arrays 60.2 48.0 29.4 40.7 180.7
Hilbert arrays 64.9 49.6 30.7 40.5 193.1

L4D 57.5 40.0 32.0 28.6 160.5
Morton 59.3 39.8 29.8 28.4 159.7
Hilbert 59.0 323.7 33.6 28.6 452.3

Time spent in the different loops (in seconds). Test case: 2d Landau damping on a [0; 4π)2 grid
decomposed in 512× 512 cells, 1 billion particles, 100 iterations (sorting every 20 iterations),

∆t = 0.1, Skylake 24 cores.

Table 2.4: 3d Space-filling Curves Timings

Update v Update x Accumulate Sort Total

3d standard 126.7 55.3 31.5 21.5 235.8
Row-major 92.6 55.3 31.5 21.4 201.7
L6D arrays 92.8 79.0 30.4 29.5 232.6

Morton arrays 96.5 79.0 30.3 27.5 234.2
Hilbert arrays 95.3 80.4 31.1 26.9 234.8

L6D 85.5 55.5 29.9 20.9 192.9
Morton 89.4 56.7 33.5 19.8 200.3
Hilbert 87.3 244.4 29.2 20.3 382.2

Time spent in the different loops (in seconds). Test case: 3d Landau damping as described in
Section 2.1 with the initial condition in (2.2) with α = 0.01 and k = 0.5, 1 billion particles, a grid
of 64× 64× 64 cells, 100 iterations (sorting every 10 time steps), ∆t = 0.05, Skylake 24 cores.

Table 2.5: Gains of Different Optimizations

Time (s) Gains Accumulated gains

Baseline 258.7 0.0% 0.0%

+ Loop Fission 235.8 8.9% 8.9%

+ Space-filling curve (L6D) 192.9 18.2% 25.4%

+ Strip-mining 169.5 12.1% 34.5%

Total execution time, gains and accumulated gains. Test case in Table 2.4.

2.4. OPTIMIZATIONS IN 3D × 3V 51

1 Foreach subset of k particles in particles,
2 Foreach particle in this subset,
3 Interpolate E to particle
4 Update the velocity
5 Foreach particle in this subset,
6 Update the position
7 Foreach particle in this subset,
8 Accumulate particle charge to ρ

Figure 2.13: Particle-in-Cell pseudo-code with

strip-mining.

1 Foreach particle in particles,
2 Interpolate E to particle
3 Update the velocity
4 Foreach subset of k particles in particles,
5 Foreach particle in this subset,
6 Update the position
7 Foreach particle in this subset,
8 Accumulate particle charge to ρ

Figure 2.14: Particle-in-Cell pseudo-code with

strip-mining on the two last loops only.

Table 2.6: Comparison between different codes

❵
❵
❵

❵
❵

❵
❵
❵
❵
❵
❵
❵
❵❵

Code
Nb. of particles

106 16 · 106 109

Jocksch et al. work
[Joc+16] (on 8 cores,
6.4 GB/s/core)

153.9 115.8 -

Our 3d×3v code in [4] (on
24 cores, 5.3 GB/s/core)

854.3 93.07 36.87

Time spent per particle per iteration per core, in nanoseconds. Test case in [Joc+16]: [0; 2π)2×[0; 1)
decomposed in 512 × 256 × 1 cells. Initial particle distribution uniform in space and velocity with
vmax = 1 in each direction.

Eventually, maybe the most interesting measure of the performance of the whole simulation is the
total throughput of particles processed per unit time. This number is Np ·Niter/T , where
Np is the number of particles, Niter the number of iterations, and T the total execution time. Thus,
in [4] we achieved simulations with 590 million particles processed per second, on 24 cores of Intel
Skylake architecture, or equivalently, almost 25 million particles per second per core. This number
was compared to that of another PIC code, presented in [Joc+16]. As an illustration we report in
Table 2.6 the results in the 3d × 3v setting. The simulations for three different particles number
in Table 2.6 underline the following point: the redundant data structure for E is detrimental when
using a low number of particles per cell (the case of 1 million particles), whereas as long as the
particles per cell number is high enough, we obtain significant gain with respect to standard code.

Particles with chunk bags. We end this section by summarizing the contribution [1], where
we propose an algorithm together with a particle layout whereby the particles are pushed and
sorted on-the-fly. Thus, the integer icell is not stored anymore for each particle. In addition,
these two points are efficiently implemented when exploiting vectorization and multithreading par-
allelism. These ideas come from the computer science literature and were mainly developed by
Yann Barsamian and Arthur Charguéraud (Inria Nancy, CAMUS team) in the PIC framework and
integrated in the code Pic-Vert. I will not enter into details, further comments on the topic can be
found in [1] and the literature therein.

In this strategy, particles are stored cell by cell, in fixed-capacity arrays, called chunks. Several
chunks might be needed to store all the particles contained in a same cell. Each cell is thus
described by a linked list of chunks, a chunk bag. Actually two bags are associated with each cell,

52 CHAPTER 2. PERFORMANCE OF PIC SIMULATIONS

corresponding to the future cell where a particle is pushed: a bag for slow particles (moving no more
than one cell away) and a second bag for fast particles (moving more than 2 cells away). One reason
for this bag separation is to preserve a high degree of multithreading parallelism when pushing the
particles.
The algorithm minimizes the number of memory transfers: at each time step, each particle gets
read from and is written to memory exactly once. The data structure does not involve any further
move to additional buffers, nor reordering or shifting of data. This is a key feature for saving numer-
ous memory operations, an important issue to fulfill since the PIC simulations are predominantly
memory bound.
Finally, in [1] we assess the properties of the algorithm, as space usage, parallelization of critical
loops, amount of memory transfers and we analyze its performance. Specifically, we compute the
memory bandwidth (55% of the practical peak bandwidth is reached; see [1, Fig. 3]) and we study
the impact of the fast moving particles: an efficient handling in parallel of such particles is achieved
(see [1, Table 1]).

2.5 Parallelism results

Our codes take advantage of a standard hybrid parallelism: the distributed memory paradigm
(using multiple processes with MPI library) and the shared memory paradigm (using multiple
threads with library OpenMP). These paradigms are utilized to parallelize the particle loops.

First, two technical points need to be emphasized. For the scaling measurements we used two
supercomputers: (i) the Curie machine at the French GENCI-TGCC-CEA computing centre, where
the typical used node was a dual socket Intel Xeon E5-2680 @ 2.7 GHz (Sandy Bridge), each socket
having 64 GB of RAM, a maximum memory bandwidth of 51.2 GB/s, 4 memory channels and 8
cores, and (ii) the Marconi machine at the Italian supercomputing centre Cineca, with the Skylake
architecture already mentioned in Section 2.2.
Then, while using MPI and OpenMP, care was taken to associate both processes and threads to
the underlying hardware to reduce the requests to the remote memory. For this purpose, processes
were placed in single processor sockets and threads in single cores. In this way, we attempted to
minimize the negative impact of non-uniform memory access (NUMA) which can occur when a
process uses cores placed in different sockets, for example. Thus we employed parallelization with
multiple processes running on individual sockets and within these processes we parallelized with
multiple threads. For example, on a Sandy Bridge node (having 2 sockets of 8 cores each), we used
in the hybrid MPI + OpenMP approach, one MPI process per socket and 8 threads per process.

The state-of-the-art approach for parallelizing PIC simulations on distributed memory machines is
to decompose the physical domain into smaller sub-domains and to assign the particles inside a
sub-domain to a processor (among the wide literature, see e.g. [Bow+08; Ger+16]). In grid-based
simulations, this strategy was shown to give good scaling results, as long as the work due to the
communications through the sub-domain boundaries remains small compared to the computations
inside the sub-domains. However, the main drawback of this technique is the difficulty of maintaining
the load balance.

In our works [5; 3; 4] we handle the process-level parallelism by means of particle decomposition
instead of domain decomposition: during the whole simulation, every process holds a fixed list
of particles but it keeps track of all the grid quantities. Thus, at every iteration, every process
accumulates the charge density associated with its particles and an MPI ALLREDUCE operation gives
the total charge density. The Poisson equation is then solved by every process over the whole grid.

2.5. PARALLELISM RESULTS 53

Second, within each process, we add the multithreading parallelism for assigning different segments
of a particle list to different threads.

The main advantage of this method is its simplicity: the only communication is via MPI ALLREDUCE

for the reduction of the charge density array and no particle has to move from one process to another
during the simulation. Thus, all the computations are automatically work-balanced.

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 4 8 16 32 64

 16 32 64 128 256 512 1024

S
p

e
e

d
u

p

Number of nodes

Number of cores

Speedup w.r.t. 1 node
Ideal speedup

Test case: 256 x 256 cells, 800 million particles,

100 iterations simulation (sorting every

20 iterations). Architecture: Sandy Bridge.

Figure 2.15: Strong scaling on supercomputer Curie.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Number of cores

Execution time - Pure MPI
Execution time - OpenMP + MPI
Communication time - Pure MPI

Communication time - OpenMP + MPI

1% 1% 1% 1% 5% 6% 8% 11%

25%

37%

56%

1% 1% 1% 3% 7% 10%
18%

28%

Test case: 128 x 128 cells, 50 million particles per

core, 100 iterations (sorting every 50 iterations).

Architecture: Sandy Bridge. Communication time is

shown as percentage of the execution time.

Figure 2.16: Weak scaling on supercomputer Curie.

The bottleneck of this approach is that the scalability is highly limited by the global reduction step:
when using a large number of processes, the communication becomes too costly. However, this
issue may be controlled in practice, by using the full memory on each MPI process to put particles
(see below for explanations). A second drawback of our approach is that in realistic simulations,
requiring much larger grids than the 64×64×64 grid used in our simulations, the very large number
of cells makes the computations on one single process inefficient, due to the high number of cache
misses involved. A solution to this problem may be the use of the domain decomposition method.

In order to assess the performance of the parallelization strategy we evaluated the strong and weak
scaling. To compute the strong scaling, a problem with a fixed numerical size is ran over a growing
number of processors. For drawing the weak scaling, we run simulations with a constant problem
size by processor, for a growing number of processors. We need to specify that because we use
particle decomposition and not domain decomposition, our weak scaling only increases the number
of particles and not the grid size: see Fig. 2.16 for the 2d × 2v case and Fig. 2.17 for the 3d × 3v
case.

First, we obtained the classic result of the advantage of using a hybrid parallelism instead of a pure
multiprocess one, see Fig. 2.16.

Then, we demonstrated that as long as we use the full memory of every core, we achieve good weak
scaling, with an acceptable communication time, up to 8 192 cores in a 2d × 2v simulation and
up to 3 072 cores in a 3d × 3v simulation. More precisely, taking a look at the strong scaling in
Fig. 2.15 we can see that the computation time per process decreases with the increasing processes
number (since the number of particles per process decreases), while the communication time as
percentage of the total time grows with the increasing processes number. Thus, in the case of the
64 nodes (with 128 processes), only 6.25 million particles are distributed per process and the MPI
communications take 32% of the total time (Fig. 2.15). Nevertheless, from Fig. 2.17 we deduce

54 CHAPTER 2. PERFORMANCE OF PIC SIMULATIONS

 0

 50

 100

 150

 200

 1 2 4 8 16 32 64 128

 24 48 96 192 384 768 1536 3072
E

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Number of sockets

Number of cores

Total execution time
Communication time

0.04% 0.16% 0.21% 0.70% 1.26% 3.29% 4.54% 6.62%

Test case: 64 x 64 x 64 grid, 1 billion particles per socket, 100 iterations simulation (sorting every
10 iterations). Architecture: Skylake. Communication time is shown as percentage of the

execution time.

Figure 2.17: Weak scaling on supercomputer Marconi.

that using 400 million particles per process, the same number of processes (128) leads to far better
results, since communications take in this case only 7% of the total time.

2.6 Conclusions and outlook

Conclusions. In this chapter, we exposed strategies to efficiently implement a Particle-in-Cell
method for solving Vlasov–Poisson models in four dimensional and six dimensional phase spaces
respectively. The focus of the optimization strategies was the particle push. The code organization
mainly focused on optimization of the memory access, since a PIC implementation is memory
bounded. We exploited also the vectorization capability, and the MPI and OpenMP parallelism for
running simulations over a few thousands of cores. The code performance was assessed in Landau
damping simulations. In addition, we accomplished code verification through other challenging test
cases.

Perspectives. A first important issue is to study and to adapt the preceding procedures
to more complex problems, with a high interest in physics, since only rather academic test
cases have been treated in this chapter. In the long term, it would be interesting to perform
simulations in order to understand challenging problems in laser systems, laboratory astrophysics,
or other applications in plasma physics. In this direction, we make use of some of these optimization
techniques in order to perform simulations of a two species plasma in 2d×2v, in [2]. Part of this work
is devoted to a mixing of the semi-Lagrangian and the PIC methods, since their cross-comparison
can serve as further validation. Actually, we implemented in [2] both methods in the same code, as

2.6. CONCLUSIONS AND OUTLOOK 55

part of the SeLaLib library [Sel]. In this framework, we could consider the use of the PIC method
for a species of particles and the semi-Lagrangian for other species, having thus the possibility to
take advantage of the benefits of both methods.

A second important point to be done in the future is to study, to adapt, and to improve if necessary,
the optimization techniques and algorithms developed in this chapter when one or several building
blocks of the PIC method, developed in Section 2.1, are changed as follows.

❼ Use of other time-stepping schemes. The efficacy of the optimization strategies should be
coupled with new innovative numerical schemes. More precisely, another perspective is to im-
plement more accurate and stable time discretization schemes for solving multiscale problems,
since in the present work, we only used standard explicit numerical methods. For example,
implementing the time-stepping schemes developed in Section 1.3, in the high-performance
computing framework may be an interesting problem which would lead firstly, to an improve-
ment of the accuracy of the schemes themselves when applying the techniques developed in this
chapter as they are, or secondly, to new optimization techniques adapted to the time-stepping
scheme.

❼ Use of higher degree convolution kernels. It is important to integrate splines of higher
degree (than 1) in the interpolation and accumulation steps. This fact requires more com-
putations and most importantly, more data (in terms of E and ρ) to be moved from/to the
memory. Thus, studying the behaviour of the data structures and layouts when higher degree
convolution kernels are used is mandatory.

❼ Use of other boundary conditions. Another point to be developed is how to handle
the optimization techniques of the updating positions step in the setting of other boundary
conditions, not only periodic.

The numerical solution of the Poisson equation was not in the center of our optimization
efforts. We already emphasized in the previous section that the solution method of the Poisson
equation is not suitable for realistic simulations. Thus, more sophisticated solutions should be
considered. Moreover, in space, we used simple Cartesian grids for modelling simple geometry
and only periodic boundary conditions were implemented. If changing to curvilinear meshes and
considering different boundary conditions are to be heeded, then it is essential to study the behaviour
of the data structures in these configurations and adapt their implementation in view of performance.
As already remarked, adding a layer of domain decomposition would equally help to deal with larger
geometries.

Finally, it would be interesting to port and adapt all the techniques presented above on other
architectures with a larger number of cores, such as Graphics Processing Unit (GPU) or Intel
Many Integrated Core (MIC) architecture, which offer a massive thread parallelism. This is however
not a straightforward task, since the complexity of some of the hardware which may require using
different programming languages is challenging. We recall that we aim at focusing our research
efforts in performing more realistic simulations and including more physical effects, together with
the adaptation of the optimization techniques to these configurations. Therefore, addressing the
challenges that the modern hardware architectures pose is essential in the search for the most
efficient use of computer resources.

56 CHAPTER 2. PERFORMANCE OF PIC SIMULATIONS

Chapter 3

Computational models for plasma

physics problems

The steering vector of the work in this chapter is the understanding of some complex problems
arising in plasma physics, by means of devising relevant mathematical models and reliable numerical
methods for solving them. We thus present numerical results of kinetic-fluid simulations which are
relevant for the computational modelling of realistic problems in plasma physics. The
models are challenging because of the multiscale behaviour of their solutions. This difficulty comes
from the realistic physical parameters (e.g. the species mass ratio, the Debye length) that need to
be taken into account in order to follow some physical phenomena that are not well understood.
Thus, the contribution of this chapter is to solve some complex physical problems with standard
mathematical models and without requiring involved implementation of the numerical schemes.
Therefore, the numerical schemes are not standard but chosen in order to adapt to the difficulties
of the mathematical models.

The equations considered in this chapter are of Vlasov type and include source and collision terms
to model specific phenomena in quasi-neutral plasma. The self-consistent electric field is obtained
by coupling the previous system with a reformulated Poisson equation, for asymptotic preserving
reasons. A guiding center model, coupling a continuity equation to standard Poisson equation is
also studied in order to analyze the diocotron instability in a non-neutral plasma.

The presentation follows the references [21; 20; 22; 9; 11; 19; 13]. The summary of the chapter is
the following:

❼ In Section 3.1 we study the problem of the dynamics of charged particles following an edge-
localized mode (ELM) event. We model this problem in a kinetic setting for two species of
particles with realistic mass ratio and then we perform Eulerian simulations in order to study
the evolution of the particles and their interactions. Then, a hybrid (kinetic and fluid) model
is considered in order to address more realistically the physical problem. The outcome of
the numerical simulations allows to identify interesting complex physical phenomena that are
eventually analyzed.

❼ In Section 3.2, we discuss the problem of the diocotron instability by means of the guiding
center model in polar variables. We propose boundary conditions that are proved to lead to
some conservation properties. Instability rates are also displayed. These questions are verified
by simulation with a semi-Lagrangian method.

❼ In Section 3.3 we conclude the chapter and some perspectives are drawn.

57

58 CHAPTER 3. COMPUTATIONAL MODELS IN PLASMA PHYSICS

3.1 The dynamics of edge-localized modes

Introduction. The mathematical context of this section is that of solving Vlasov–Poisson equa-
tions for modelling the parallel transport of ions and electrons in the scrape-off layer of a fusion
plasma. This work is the fruit of several years of collaboration with Giovanni Manfredi (Institut
de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg). In this
frame, the main mathematical contribution of this section entails two points.

In a first step, I proposed to use the reformulated Poisson equation in a coupling with Vlasov
equations for both particle species. The reformulated equation is equivalent to the Poisson equation,
but it allows to compute the self-consistent electric potential when the Debye length vanishes. In
this way, one can perform simulation with realistic Debye length and with a grid step which has not
to resolve this scale. Then, I implemented a finite difference scheme for the reformulated equation.
Simulations of the coupled system showed the main features of an edge-localized mode and revealed
interesting physical behaviour (like an early burst of suprathermal electrons).

In a second step, together with Giovanni Manfredi and David Coulette, we enriched the previous
model with transport equations with source terms for both particle species (see (3.16)), in order to
include effects due to the perpendicular dynamics. More precisely, the new fluid equations for the
perpendicular temperatures entail a collision operator which models the isotropisation process,
through which the parallel and the perpendicular dynamics balance. Then, I solved numerically
these equations in a finite volume approach. More precisely, I implemented an upwind finite volume
method improved with high-resolution corrections allowing to remove the spurious oscillations.
Simulations of this model precisely identified the effect of the isotropisation process on different
plasma properties.
I finally mention that our implementations are performed in a standard manner into a Fortran

code (of less than 3000 lines), without involved physical considerations.

Before detailing these points, I develop first the physical problem we aim at solving and the context
of our contributions.

The physical context. This section is concerned with the study of the dynamics of charged
particles along a magnetic field line in a tokamak scrape-off layer (SOL) following an edge-localized
mode (ELM) event. An ELM is a violent outburst of plasma in the SOL, which is the plasma
region characterized by open magnetic field lines. Once the ELM-driven plasma pulse has crossed
the magnetic separatrix1, it travels mainly parallel to the magnetic field lines and ends up hitting
the divertor plates. The resulting particle and energy fluxes on these components lead to a decrease
of their lifetime, which is an outstanding issue in the operation of tokamak devices.

In our approach, we assume that the charged particles travel along the magnetic field lines, but
not across them. Thus, we model the transport of two species of particles (ions and electrons) in
the direction parallel to the magnetic field by Vlasov–Poisson equations, while in the perpendicular
plane the plasma is supposed to be Maxwellian. We have first developed a 1d× 1v Vlasov–Poisson
code with open boundaries for ions and electrons [21]. The simulations reproduced with good
accuracy the principal features of the plasma transport during ELMs, like the evolution in time of
the particle and energy fluxes at the boundaries.

In a second stage, we compare in [20], the numerical results of our code with two different ap-
proaches: the 1d × 3v Particle-in-Cell code BIT1 (developed at the University of Innsbruck, see

1the boundary between closed and open field lines, separating the confined plasma region from the region where
field lines connect to material surfaces.

3.1. DYNAMICS OF ELMS 59

[Tsk+08; Mou+13b]) and the one dimensional fluid code SOLF1D (developed at Culham, UK) which
is based on a set of Braginskii-like equations [Hav+11]. These comparisons show a very satisfactory
agreement with the PIC code when computing the energy fluxes of both species, whereas the fluid
code overestimates these fluxes (see also [Hav+12]). We also note that our code and the PIC code
yield similar results for the early burst of electrons, whereas the fluid code is not able to reproduce
this effect, thus confirming its kinetic origin.

The numerical results in [21] are compared with analytical estimates based on a free-streaming
model, with satisfactory general agreement. The free-streaming model (developed in [FP+06]) is
the simplest kinetic description of the parallel transport, but neglects the plasma potential and the
electron quantities. In [22] we proposed a set of modified and augmented (with electron quantities)
free-streaming equations in order to overcome these two drawbacks. The new equations are bench-
marked against (and justified by) numerical simulation of the Vlasov–Poisson equation in [21]. The
agreement found between the two approaches justifies the applicability of the free-streaming model.

In the above models the parallel and perpendicular dynamics are completely decoupled for both
particle species and the perpendicular velocity distributions are assumed to be Maxwellian with
constant temperature. The purpose of [9] is to ascertain [Don+13] if the collision-driven relaxation
between the parallel and perpendicular temperatures of each species during the ELM propagation
can modify the shape of the distribution function and consequently the fluxes reaching the wall. Such
a phenomenon was numerically shown by the outcomes of the PIC code BIT1, in [Mou+13b]. In order
to examine this problem without developing a 1d × 3v code, we extend in [9] the 1d × 1v Vlasov–
Poisson model by including a fluid equation for the evolution of the perpendicular temperature
of both species. In the full hybrid2 model, the coupling between the perpendicular and parallel
quantities is performed through a collision operator.

Finally, in [11], the 1d × 1v Vlasov–Poisson code was integrated to a 1d × 3v setting. The aim of
this novel framework is to study, not only the ELM dynamics, but also the plasma-wall interactions
in the presence of a magnetic field. Thus, the particles are additionally subject to the action of a
uniform external magnetic field, tilted with respect to the wall surface.

In the following, we detail the models and the numerical methods to solve these problems.

A 1d×1v model for the parallel transport. Under the assumption that the charged particles
travel along the magnetic field lines but not across them, we can adopt a one dimensional geometry
along the parallel direction, while in the perpendicular plane the distribution function remains
Maxwellian at all times. Therefore, in a 1d × 3v phase space, the distribution (for each species j)
reads (see [21]):

fj(t, x,v) = gj(t, x, vx)Mj(v⊥), (3.1)

where v = (vx, v⊥), v⊥ = (vy, vz), Mj(v⊥) = 1/(2π v2Tj) exp(−|v⊥|2/(2v2Tj)), vTj =
√
Tj/mj is

the thermal speed, and Tj and mj stand for the temperature and the mass, respectively. The
temperature is assumed to be the same for both species, Ti = Te = TELM. With this notation, the
ion and electron evolution are described by Vlasov equations in the parallel phase space (x, vx):

∂tgj + vx∂xgj −
qj
mj

∂xφ∂vxgj = Sj(t, x, vx), (3.2)

2a kinetic approach for the rapid parallel transport plus a fluid model for the slower perpendicular process.

60 CHAPTER 3. COMPUTATIONAL MODELS IN PLASMA PHYSICS

where qj = ±e is the charge and the electrostatic potential φ ≡ φ(t, x) obeys the Poisson equation

∂2φ

∂x2
= − e

ǫ0
(ni − ne), (3.3)

where nj is the density of species j. The above equations are solved on an interval x ∈ [−L,L],
where L, the so-called parallel connection length, is the typical distance between the outer midplane
and the divertor target. Also, x = ±L represent the locations of the divertor plates. The plates
are assumed to be perfectly absorbing surfaces and are kept at constant electric potential, thus
φ(±L) = 0. The source terms Sj describe the growth of the ELM event and are written in the
form

Sj(t, x, vx) = s(t)nELM exp

(
−x

2

2σ

)
exp(−v2x/(2v2Tj))√

2πvTj
,

where s(t) models the pulse temporal profile. The parameter nELM denotes the peak density and
σ ∼ L/10. The values of the parameters were chosen to be typical for a realistic type-I ELM in the
JET tokamak (see [FP+06]). Here, we are mainly interested in the plasma features on the plates,
and in particular in the particle and energy fluxes (for both species) defined respectively by

Γ(t) =

∫
vxf(t,±L,v) dv,

Q(t) =

∫
1

2
vx|v|2f(t,±L,v) dv.

The relevant physical regime is determined by two dimensionless parameters, the ion-to-
electron mass ratio ε = me/mi = 1/1836 and the ratio of the Debye length to the parallel connection
length, λ = λD/L ∼ 10−6. After normalizing equations (3.2)-(3.3), we obtain the following scaled
two species Vlasov–Poisson system

∂tgi + vx∂xgi − ε ∂xφ∂vxgi = Si(t, x, vx), (3.4)

∂tge + vx∂xge + ∂xφ∂vxge = Se(t, x, vx), (3.5)

−λ2∂
2φ

∂x2
= ni − ne. (3.6)

At the limit λ → 0, called the quasi-neutral regime, the electric potential does not vanish but
takes exactly the value required to enforce the quasi-neutrality constraint. However, the Poisson
equation (3.6) becomes singular when λ → 0 and therefore, it would be useful to replace it with
an equivalent equation that can provide φ when λ → 0. This can be achieved by employing
the “reformulated Poisson equation” (see e.g. [CDV07] where the equation was used in the
framework of an asymptotic preserving scheme for a fluid model in the quasi-neutral limit):

λ2
∂2

∂t2

(
∂2φ

∂x2

)
+

∂

∂x

[
(ε ni + ne)

∂φ

∂x

]
= − ∂2

∂x2
(Ri −Re), (3.7)

where Rj =
∫
gjv

2
xdvx. The equation (3.7) is derived as follows. By taking the first two moments

of the difference between (3.4) and (3.5), we obtain

∂t(ni − ne) + ∂x(Ji − Je) = 0, (3.8)

∂t(Ji − Je) + ∂x(Ri −Re) + (ε ni + ne)∂xφ = 0, (3.9)

3.1. DYNAMICS OF ELMS 61

where Jj =
∫
gjvxdvx. We then subtract the spatial derivative of equation (3.9) from the time

derivative of equation (3.8):

∂2

∂t2
(
ni − ne

)
− ∂

∂x

[
(ε ni + ne)

∂φ

∂x

]
=

∂2

∂x2
(Ri −Re).

Finally, using Poisson’s equation we express ∂2tt(ni−ne) in terms of φ and thus recover the reformu-
lated Poisson equation (3.7) (see also [21, Appendix A] and the references therein for the justification
of the equivalence with the standard Poisson equation). The specificity of equation (3.7) is that it
is asymptotic preserving in the small parameter λ, leading to the possibility of using a grid spacing
that exceeds the Debye length. In addition, when solving it implicitly in time, simulations remain
stable with a time step larger than the inverse plasma frequency. This implies non-negligible gains
in the computational time.

The numerical approach is classically used in the literature. The Vlasov equations are solved using
an Eulerian method based on a uniform meshing of the parallel phase space (x, vx). For the time-
stepping, a classical second-order splitting scheme is used, which solves alternatively the advection
in the physical space and the advection in the velocity space. Each advection step is performed
using a third-order positive flux-conservative (PFC) method, with a slope corrector that prevents the
distribution function from becoming negative [FSB01]. A typical simulation requires 1000 points
both in physical space and in velocity space. The reformulated Poisson equation is solved with
finite differences in time and in space, with an implicit discretization for the time-stepping, which
allows to remove the standard numerical constraint imposed to the time step by explicit schemes
for stability reasons [Deg+10]. More precisely, we first discretize in time equation (3.7) as follows

− ∂

∂x

(
λ2
∂xφ

m+1 − 2∂xφ
m + ∂xφ

m−1

∆t2
+
(
εnmi + nme

)
∂xφ

m+1

)
=

∂2

∂x2
(Rmi −Rme),

where φm stands for the value of φ at time tm = m∆t. Then, using Poisson’s equation, we replace
∂2xxφ

m and ∂2xxφ
m−1 by density terms at the corresponding time steps

− ∂

∂x

[(λ2

∆t2
+ εnmi + nme

)
∂xφ

m+1

]
=

∂2

∂x2
(Rmi −Rme) +

1

∆t2

(
2(nmi − nme)− (nm−1

i − nm−1
e)

)
.

Next, we make use of a discrete form of equation (3.8) to replace (nmi − nme)− (nm−1
i − nm−1

e) with
−∆t(∂xJ

m
i −∂xJme). We thus obtain the semi-discrete version of the reformulated Poisson equation

− ∂

∂x

[(
λ2 +∆t2(εnmi + nme)

)
∂xφ

m+1
]
= ∆t2

∂2

∂x2
(Rmi −Rme) + (nmi − nme)−∆t(∂xJ

m
i − ∂xJ

m
e),

which allows to compute φm+1 from known quantities at time tm. A finite difference method is
then used to approximate the spatial derivatives in the equation, leading to a linear system to be
solved. Thanks to the asymptotic preserving property of this numerical scheme for the reformulated
Poisson equation, we employed in simulations a grid spacing that exceeds the Debye length and a
time step larger than the inverse plasma frequency ω−1

pe : we have typically used

∆x = 2λD
3 and ∆t = 4ω−1

pe .

Thus, we obtained a reduced computational cost with respect to standard explicit schemes
which is quite important when performing long time simulations, of thousands of ω−1

pe .

3in order to accurately resolve the sheath scale. The sheaths form at the boundary and have a thickness of a few
Debye lengths.

62 CHAPTER 3. COMPUTATIONAL MODELS IN PLASMA PHYSICS

Conclusion. The results of the numerical simulations performed in this framework draw several
interesting physical questions, among which:

❼ We obtain with rather good accuracy some of the main features of an ELM signal, most
notably its rapid rise followed by a much slower decay (see Fig. 3.1).

❼ The ion and electron particle fluxes are virtually identical, a consequence of quasi-neutrality.
In contrast, the electron energy flux is smaller than that of the ions, the ratio depending of
the temporal profile.

❼ For moderate connection lengths (L ∼ 1000λD), the particles and energy fluxes are correctly
described: by decreasing λ, the fluxes are virtually unchanged. Thus, even if simulation were
performed for λ ∼ 10−3, the results for fluxes should remain the same for realistic λ ∼ 10−6.

❼ On the electron transit time scale, an early burst can be observed on the divertor plates, which
corresponds to suprathermal electrons escaping the ions attraction due to their large kinetic
energy. The remaining electrons are trapped in the potential well created by the ions (which
now outnumber the electrons) and evolve in unison with them. On the ion timescale, the
plasma is everywhere neutral, except for a positive net charge in front of the divertor plates
(the sheaths).

Figure 3.1: Evolution in time of the particles (left) and energy (right) fluxes, for the case with
time-distributed source. Solid lines refer to the ions, dashed lines to the electrons. The dotted lines
represent the source temporal profile s, in arbitrary units.

Parallel transport model with perpendicular temperature. The preceding model is
extended in this part by assuming that the perpendicular temperature is no more constant, but
depends on x and t. The aim of the approach in [9] is to study the influence of the relaxation
between the parallel and perpendicular temperatures of each species on the fluxes at the divertor
plates. This question is motivated by the work in [Mou+13b] which showed by means of a 1d× 3v
code that the transfer of electron thermal energy from the perpendicular plane to the parallel
direction could indeed impact significantly the energy fluxes of both species. In the following we
explain how to derive the fluid equation for the perpendicular temperature. Together with the

3.1. DYNAMICS OF ELMS 63

Vlasov–Poisson system in the parallel direction, the equation for the perpendicular temperature is
able to capture the previous phenomenon, with an additional computational cost which is low in
front of a 1d× 3v kinetic code.

We broaden now the hypothesis in (3.1) by assuming that the distribution function can be written
as

fj(t, x,v) = gj(t, x, vx)
1

2πT⊥,j(t, x)
exp

(
− mj |v⊥|2
2T⊥,j(t, x)

)
, (3.10)

where we recall that j stands for electrons or ions. The evolution of the full distribution function
fj is governed by a Vlasov equation with a BGK collision operator and a source term (see [9]):

∂tfj + vx∂xfj −
qj
mj

∂xφ∂vxfj = Cj(fj) + Sj , (3.11)

with

Cj(fj) = νj(fMj
− fj), (3.12)

fMj
(t, x,v) = nj

(
mj

2πTj

)3/2

exp

(
−mj(vx − ux,j)

2

2Tj

)
exp

(
−mj |v⊥|2

2Tj

)
, (3.13)

where in addition to the usual notation, νj is the relaxation rate for each species j, and nj , ux,j
and Tj are respectively the density, the mean velocity, and the temperature. These quantities are
computed self-consistently from the distribution function fj . Note that only drifts in the parallel
direction are allowed in (3.13), i.e., we assume that

∫
fj v⊥dv = 0. The effect of the BGK term is to

drive fj towards the isotropic Maxwellian fMj
. As in the previous part, the source term Sj models

the ELM event:
Sj(t, x,v) = s(t)N(x)Gj(vx)Hj(v⊥),

where s(t) is a given temporal profile and

N(x) = n0 exp(−x2/(2σ20))
Gj(vx) =

√
mj/(2πT||0) exp(−mjv

2
x/(2T||0))

Hj(v⊥) = mj/(2πT⊥0) exp(−mj |v⊥|2/(2T⊥0)).

We assume no temperature anisotropy for the growing ELM, i.e. T||0 = T⊥0 = T0. Injecting
(3.10) into equation (3.11) and integrating over v⊥, we otain the evolution equation for the parallel
distribution gj

∂tgj + vx∂xgj −
qj
mj

∂xφ∂vxgj = νj(gMj
− gj) + s(t)N(x)Gj(vx), (3.14)

where

gMj
(t, x, vx) = nj

(
mj

2πTj

)1/2

exp

(
−mj(vx − ux,j)

2

2Tj

)
. (3.15)

Then, taking second order moment in v⊥ of equation (3.11), we derive the evolution equation
for T⊥,j

∂tT⊥,j + ux,j ∂xT⊥,j =
νj
3

(
T||,j − T⊥,j

)
+
s N (T||0 − T⊥,j)

nj
, (3.16)

where T||,j(t, x) =
mj

nj(t, x)

∫
gj(t, x, vx)

(
vx − ux,j(t, x)

)2
dvx and Tj =

1

3

(
T||,j + 2T⊥,j

)
. The cou-

pling between the parallel and perpendicular dynamics occurs in equation (3.14) through the total

64 CHAPTER 3. COMPUTATIONAL MODELS IN PLASMA PHYSICS

temperature in the parallel BGK operator, and in equation (3.16) through the quantities nj , ux,j ,
and T||,j , which are moments of the distribution function gj . Naturally, setting νj = 0 in (3.14) we
recover the collisionless model in (3.2). We underline the first term in the right-hand side of (3.16)
which represents the temperature isotropisation. We also note that T⊥,j is transported by the
parallel fluid velocity ux,j . Eventually, the final model is the system formed by equations (3.14) and
(3.16) for both ions and electrons, supplemented with the reformulated Poisson equation.

For the numerical approach, the same technique as in the previous part is adopted for the Vlasov
and the reformulated Poisson equations. Next, we discuss the additional transport equation (3.16).
Firstly, we use in time the classic Strang splitting, alternating in time the following steps:

for j ∈ {i, e} solve with ∆t/2 the equation ∂tT⊥,j =
νj
3

(
T||,j − T⊥,j

)
+
s N (T||0 − T⊥,j)

nj
, (3.17)

for j ∈ {i, e} solve with ∆t the equation ∂tT⊥,j + ux,j ∂xT⊥,j = 0, (3.18)

for j ∈ {i, e} solve with ∆t/2 the equation ∂tT⊥,j =
νj
3

(
T||,j − T⊥,j

)
+
s N (T||0 − T⊥,j)

nj
.

Then, equation (3.17) is simply solved with an Euler scheme. Next, we detail the numerical approach
for the advection equation in (3.18). Even though this equation is not conservative, it can be solved
with an upwind finite-volume method improved by using high-resolution corrections [Lev02]. More
precisely, following [Lev02], we denote by Qni an approximation to the cell average of T⊥,j(t, x) over
cell i at time tn. Unlike a classical conservative scheme, the change in this cell average is not given
by a flux difference, but it can be computed from the wave Wi−1/2 = Qi − Qi−1 and the speed
si−1/2 = ui. Thus, the upwind method writes if u > 0

Qn+1
i = Qni −

∆t

∆x
si−1/2Wi−1/2,

or more generally, to be used also when u < 0,

Qn+1
i = Qni −

∆t

∆x

(
s+i−1/2Wi−1/2 + s−i−1/2Wi+1/2

)
,

where s+ = max(s, 0) and s− = min(s, 0). This first order method can be improved by using
high-resolution corrections, namely

Qn+1
i = Qni −

∆t

∆x

(
s+i−1/2Wi−1/2 + s−i−1/2Wi+1/2

)
− ∆t

∆x

(
Fi+1/2 − Fi−1/2

)
, (3.19)

where the left flux is defined by

Fi−1/2 =
1

2
|si−1/2|

(
1− ∆t

∆x
|si−1/2|

)
W̃i−1/2,

and where W̃i−1/2 is obtained by applying a wave limiter

W̃i−1/2 = Wi−1/2 · ℓ
(WI−1/2

Wi−1/2

)

with I = i− 1 if si−1/2 > 0 and I = i+ 1 if si−1/2 < 0. We chose the minmod limiter

ℓ(θ) = minmod(1, θ).

3.2. THE DIOCOTRON INSTABILITY 65

Remark 3.1.1. In (3.19), when computing the fluxes, we took si−1/2 = si+1/2 = uni . A better way
would be to have un at xi−1/2 and at xi+1/2 and to use these values instead of uni . Therefore, we
make tests by taking a linear interpolation from ui and ui−1 for computing ui−1/2 and similarly for
ui+1/2 but the results are very close to those obtained with si−1/2 = si+1/2 = uni .

The scheme in (3.19) is not formally second-order accurate when applied to a smooth solution, even
without limiter [Lev02]. However, in practice, thanks to the limiter, it works much better than the
second-order Lax-Wendroff method which gives in our case spurious oscillations at the boundaries.

In the simulations, the time step is variable (between one-half and four times the inverse plasma
frequency) in order to guarantee that the Courant-Friedrichs-Lewy (CFL) condition |ux,e|∆t < ∆x
is always satisfied. Details about the numerical parameters are given in [9].

Conclusion. As our main objective is to assess the impact of the parallel-perpendicular coupling
on the fluxes reaching the target plates, we perform parametric scans in the collision rate νj . We
draw in Figs. 3.2 & 3.3 particle and energy fluxes for both species, for several collision rates.
The values of the ion and electron collision rates are not set independently but adjusted to be
ELM-relevant [Don+13], namely νe/νi =

√
mi/me. The outcomes of the simulations confirmed the

following important result: while ion-ion collisions have an almost negligible effect, the impact of
the electron-electron collisions can be quite significant on the various fluxes, both for electrons and
ions. More precisely, the dominant effect is the electron-electron isotropisation, by which electron
thermal perpendicular energy is transferred to the parallel motion. Part of this energy accelerates
the electrons in the parallel direction, another part is transferred to the ions through acceleration
by the self-consistent electric field. The net result is an increase (with increasing collision) of the
peak values of the ion particle and energy fluxes at the target plate (see Fig. 3.3(a)&(d)), while the
total electron energy flux decreases (see Fig. 3.2(d)).

3.2 The diocotron instability

Introduction. The contribution presented in this section, based on [19; 13], consists in semi-
Lagrangian simulations for a 2d guiding center model in polar coordinates on an annulus. This
model is used to investigate the evolution of the diocotron instability in a low density pure electron
plasma, also called “slipping-stream” cf. [Dav90, Chapter 6]. The equation satisfied by the electron
density ρ ≡ ρ(t, r, θ) is

∂tρ−
1

r
∂θΦ ∂rρ+

1

r
∂rΦ ∂θρ = 0, (3.20)

where the potential Φ ≡ Φ(t, r, θ) solves the Poisson equation

− ∂2rrΦ− 1

r
∂rΦ− 1

r2
∂2θθΦ = ρ, (3.21)

and where t ∈ [0, T], (r, θ) ∈ Ω = [rmin, rmax] × [0, 2π]. We assume periodic boundary conditions
in θ, whereas different boundary conditions are discussed in the radial direction. In [19] we show
that specific boundary conditions lead to conservation of the mass and of the electric energy. Then,
in the framework of a standard stability analysis of an equilibrium, the dispersion relation is re-
called from [Dav90] and discussed in tandem with the considered boundary conditions. Finally, the
semi-Lagrangian code is validated in the linear phase against analytical growth rates given by the
dispersion relation. Hereafter, we detail these lines.

66 CHAPTER 3. COMPUTATIONAL MODELS IN PLASMA PHYSICS

Figure 3.2: Electron fluxes at the target plate for the case with time-distributed source: (a) particle
flux; (b) parallel energy flux; (c) perpendicular energy flux; (d) total energy flux. The dotted lines
represent the source temporal profile s.

Following [Dav90; Pét09], the initial condition for the guiding center model is

ρ(t = 0, r, θ) =

0, rmin ≤ r < r−,
1 + ε cos(ℓθ), r− ≤ r ≤ r+,
0, r+ < r ≤ rmax,

(3.22)

where ε is a small parameter and ℓ is the mode number of the perturbation.

Radial boundary conditions for Φ. Different radial boundary conditions are proposed in [19]
for the Poisson equation (3.21) and their influence on the conservation of the electric energy

E(t) =
∫

Ω
r|∂rΦ|2 +

1

r
|∂θΦ|2 drdθ

and of the mass

M(t) =

∫

Ω
rρ drdθ

3.2. THE DIOCOTRON INSTABILITY 67

Figure 3.3: Ion fluxes at the target plate for the case with time-distributed source: (a) particle
flux; (b) parallel energy flux; (c) perpendicular energy flux; (d) total energy flux. The dotted lines
represent the source temporal profile s.

is discussed. First, Dirichlet boundary conditions are imposed at rmin and at rmax:

Φ(t, rmax, θ) = Φ(t, rmax, θ) = 0, ∀t ≥ 0, ∀θ ∈ [0, 2π]. (3.23)

Alternatively, the second following condition, named “Neumann mode 0” can be considered:

❼ Dirichlet boundary condition at rmax,

❼ homogeneous Neumann boundary condition at rmin for the Fourier mode 0 in θ:
∫ 2π

0
∂rΦ(t, rmin, θ)dθ = 0,

❼ Dirichlet boundary condition at rmin for the other Fourier modes in θ:

Φ(t, rmin, θ) =
1

2π

∫ 2π

0
Φ(t, rmin, θ

′)dθ′.

68 CHAPTER 3. COMPUTATIONAL MODELS IN PLASMA PHYSICS

For these two choices of radial boundary conditions, we prove that the electric energy and the mass
are preserved in time

∂tE = ∂tM = 0.

This is an interesting property to retrieve numerically in order to validate the numerical methods.

A last configuration has also been explored, in which Dirichlet boundary condition at rmax and
homogeneous Neumann boundary condition at rmin are imposed. In this case, we do not know if
the electric energy and the mass are preserved in time.

Instability rates. The equation allowing to obtain the growth rates of instability has been derived
in [Dav90, Chapter 6]. We briefly recall this derivation here. To investigate the linear stability
of the system (3.20)-(3.21), we assume small amplitude perturbations about a radial equilibrium(
n0(r),Φ0(r)

)
, solution to (3.20)-(3.21). We then search an approximate solution in the form

ρ(t, r, θ) ≃ n0(r) + ε n̂1,ℓ(r) exp(iℓθ − iωt),

Φ(t, r, θ) ≃ Φ0(r) + ε Φ̂1,ℓ(r) exp(iℓθ − iωt),

where ω is the complex oscillation frequency, with Im(ω) > 0 corresponding to instability. Injecting
this particular solution in (3.20)-(3.21) leads to the following system

−iωn̂1,ℓ − iℓ
∂rn0
r

Φ̂1,ℓ + iℓ
∂rΦ0

r
n̂1,ℓ = 0,

−∂2rrΦ̂1,ℓ −
∂rΦ̂1,ℓ

r
+
ℓ2

r2
Φ̂1,ℓ = n̂1,ℓ.

Next, we express n̂1,ℓ in terms of Φ̂1,ℓ to get an equation on Φ̂1,ℓ:

(
−iω + iℓ

∂rΦ0

r

)(
−∂2rrΦ̂1,ℓ −

∂rΦ̂1,ℓ

r
+
ℓ2

r2
Φ̂1,ℓ

)
=iℓ

∂rn0
r

Φ̂1,ℓ. (3.24)

This problem can be approximated numerically by making a finite difference discretization in the
radial variable. Thus, equation (3.24) is approximated by a linear system of type Mφ = cφ, where
c = ω/ℓ and M is a matrix of size the number of grid points in the radial direction. The problem
is then reduced to find the eigenvalues c of the problem Mφ = cφ. Afterwards, for each ℓ, we look
for the eigenvalue c which has the greatest strictly positive imaginary part.

In the specific case of the initial condition in (3.22), analytical computations can be performed and
thus, an explicit solution to equation (3.24) is found in [19, Section 3] for the three previous sets of
boundary conditions. The analytical growth rates Im(ω) of the linear phase, obtained for ε = 10−6,
are then compared to the results of the numerical simulation based on (3.20)-(3.21).

Unlike [Pét09], where a PIC method was used, we implemented a standard backward semi-Lagrangian
(BSL) method for solving (3.20) and finite differences in r plus a Fourier method in θ for solving
(3.21). For different perturbation modes ℓ (as in [Pét09]) and for the boundary conditions in (3.23),
we report in Table 3.1 the values of the growth rates obtained with the simulation, in comparison
with the values given by the analytical dispersion relation. Similar results for the other sets of
boundary conditions are reported in [19].

In the nonlinear case, we consider the initial condition (3.22) with ε = 0.5 and we study the
influence of the radial boundary conditions. We obtain numerically the convergence of the electric

3.3. CONCLUSIONS AND OUTLOOK 69

ℓ r− r+ Im(ω) analytical Im(ω)

2 4 5 0.2875, t ∈ [26, 55] 0.288739227554270

3 4 5 0.3667, t ∈ [26, 72] 0.367315895142460

4 4 5 0.3852, t ∈ [26, 51] 0.384081542249742

7 6 7 0.3424, t ∈ [26, 61] 0.337573424025866

Table 3.1: Growth rate obtained by the semi-Lagrangian method together with the time interval of
validity and the growth rate given by the linearized analysis with Dirichlet boundary conditions.

energy and the mass conservation for Dirichlet and for “Neumann mode 0” boundary conditions.
On the contrary, for the third condition, namely homogeneous Neumann at rmin, these quantities
are no more conserved in long time.

A new 2d conservative semi-Lagrangian (CSL) method was developed in the PhD thesis of Pierre
Glanc (Université de Strasbourg)4, see also [13, Section 2]. This method improves the lack of mass
conservation of the standard backward semi-Lagrangian. Indeed, the numerical experiments shown
that the new CSL method preserves the total mass better than the standard BSL method (see
Figs. 3, 5 in [13]). In addition the same conclusion was drawn for the conservation of the electric
energy (see Figs. 2, 4 in [13]). These results were obtained for the “Neumann mode 0” boundary
condition. The third boundary condition is more challenging for the numerical validation – the CSL
method does not preserve the energy and the mass – and deserves a deeper analysis (for example,
comparison with Particle-in-Cell simulation can be envisaged).
We end this part by highlighting also that the CSL method was tested and validated in [13] in the
context of the more challenging 4d drift-kinetic model [Gra+06] but this is not reported here.

3.3 Conclusions and outlook

Conclusions. In this chapter two meaningful physical problems have been analyzed by means of
modelling with partial differential equations and their numerical simulation: the dynamics of ELMs
and the diocotron instability.

In the first section, we constructed a 1d×1v hybrid model (kinetic in the parallel direction and fluid
in the perpendicular plane) that treats the parallel transport of ions and electrons in the scrape-off
layer, including the effect of temperature anisotropy. The model constitutes a useful tool to study
energy deposition on the divertor plates following an ELM event.

In the second section, a guiding center model in polar coordinates was used to investigate the evo-
lution of the diocotron instability. Several boundary conditions in the radial direction are discussed
and some of them are shown to obey conservation properties, that we retrieved numerically with
standard schemes. A linear stability analysis was also performed and instability rates were obtained
allowing to validate the numerical method in the linear phase.

Perspectives. Concerning the subject of ELMs, further improvements on the present model can
be envisaged. First, a more sophisticated collision operator (like Fokker-Planck etc.) could be used
in place of the BGK term. Electron-ion collisions, which were neglected in our work, should also be
included. Second, perpendicular drifts should be taken into account. This would lead to a complete

4advisors: N. Crouseilles (Inria Rennes), E. Frénod (Univ. de Bretagne-Sud, Vannes), and M. Mehrenberger (Univ.
de Strasbourg)

70 CHAPTER 3. COMPUTATIONAL MODELS IN PLASMA PHYSICS

set of fluid equations (continuity, momentum, and energy) for the perpendicular dynamics. Finally,
for going further in the realism of the physical phenomenon, neutral particle dynamics near the
divertor could also be included in an extended model.

In the diocotron instability part, we performed first tests on the basis of the guiding center model,
where the external magnetic field in the orthogonal plane was assumed uniform. Thus, a decreasing
with the radius magnetic field (as in [Pét09]) can be interesting to consider. Also, the test case with
the particle injection in [Pét09] seems to be challenging for the semi-Lagrangian method in terms
of the boundary conditions for the density. In addition, cross-comparison of the semi-Lagrangian
code with the PIC code can be fruitful for understanding the nonlinear phase, where theoretical
results are not available.

The semi-Lagrangian methods have become a good choice for performing accurate simulations of
Vlasov equation. Even though they need a grid for the phase space which is computationally
intensive in high dimensions, a high level of parallelism with the required state-of-the-art high
performance computing can tackle now this difficulty (as for example the Gysela code in a 5d phase
space [Gra+16]). Thus, it would be interesting to go further in the understanding of the behaviour of
the backward semi-Lagrangian method in the case of the third set of boundary conditions (Neumann
at rmin). Also, a deeper analysis is needed in order to clarify if the conservation properties are verified
for these boundary conditions.

General outlook

I already gave some details at the end of each chapter about the research that I intend to pursue.
I conclude now with its general lines from a different perspective.

From the applied mathematics and scientific computing point of view, I will continue
through the following lines.

First, developing new mathematical models in order to tackle the complex behaviour of the
solutions for Vlasov-type or similar equations is an important point. Going further with the homog-
enization techniques, the three-scale convergence for example ([AB96]), seems to me an interesting
way to reveal different aspects of the multiscale behaviour in the solutions. Another point which can
be developed is to free the two-scale approach from the periodic setting, going to the more general
ergodic setting (as in [Dal08]). The latter setting would be more adapted to the applications, since
the rapid motion of the particles is clearly not periodic in time.

Second, for the numerical approach, I will continue with the development of the PIC method.
This is a powerful method for several reasons. A first argument is its simplicity of implementation in
any dimension. In addition, the parallelism, at least at the particles level, is tractable when going to
higher dimension. Secondly, it is straightforward to simulate complex motions with a PIC scheme,
which is due to the mesh-free aspect during the particle push step. I think an opportunity that
should be seized is to go further, in using physical grid-free methods (see [Chr+06]). This approach
can be very useful to the implementation of a first order two-scale model, as already discussed.

However, I envisage working with semi-Lagrangian schemes also (recall Sections 1.4 and 3.2). As a
mix between PIC and Eulerian methods, a semi-Lagrangian method has the accuracy of an Eulerian
scheme but is free of CFL condition. However, what seems more difficult with respect to a PIC
scheme, going to higher dimension in a semi-Lagrangian code is computationally intensive and the
parallelism needs to be tackled carefully.

From the applications point of view, a general target of my future work is to go to realistic
kinetic two-species simulations arising in some plasma physics problems. By realistic I understand
the following issues:
(i) the needed dimensionality for the phase space (typically 3d× 3v),
(ii) the different scales between the ions and the electrons, and
(iii) the geometry adapted to the physical problem in view.

In order to achieve these objectives, using appropriate mathematical methods with high performance
computing is mandatory.

Thus, concerning the first point above, use of several levels of parallelism is necessary to handle
efficiently large meshes and/or large numbers of numerical particles. Investigation of new choices of
parallelism and of new algorithms is also an interesting point to be developed. I dealt with some of
these ideas in Chapter 2, but without taking into account the two other points. One future direction
of research is thus to adapt the work in Chapter 2 to frameworks considering points (ii) and (iii).

71

72

Regarding the second point, the problem of the multiple scales, I worked in two directions.
First, in Chapter 3, I performed simulations involving ions and much faster electrons by solving
numerically the smallest scale, but this was done in a reduced setting (1d×1v). Second, in Chapter 1,
I developed adapted time schemes in order to avoid the numerical resolution of all the scales. In
the future, I intend to apply such schemes to perform two-species simulations; for example to use a
standard time-stepping for the ions and an exponential integrator in time for the electrons, able to
use the same ion time step. Validating the outcomes of such a scheme against a reference solution,
computed on the base of the frameworks developed in Chapter 2, is clearly an important fact to be
achieved.

As for the last point, I need to deal with this problem entirely, all the configurations considered
in this manuscript being simple physical domains.

References of the author

[1] Y. Barsamian, A. Charguéraud, S. A. Hirstoaga, and M. Mehrenberger. “Efficient Strict-
Binning Particle-in-Cell Algorithm for Multi-Core SIMD Processors”. In: 24th International
Conference on Parallel and Distributed Computing (Euro-Par). Vol. 11014. Lecture Notes in
Computer Science. Springer, Cham, 2018, pp. 749–763.

[2] Y. Barsamian, J. Bernier, S. A. Hirstoaga, and M. Mehrenberger. “Verification of 2Dx2D
and two-species Vlasov-Poisson solvers”. In: ESAIM: Proceedings 63 (2018), pp. 78–108.

[3] Y. Barsamian, S. A. Hirstoaga, and E. Violard. “Efficient Data Structures for a Hybrid Paral-
lel and Vectorized Particle-in-Cell Code”. In: Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2017 IEEE International. IEEE. 2017, pp. 1168–1177.

[4] Y. Barsamian, S. A. Hirstoaga, and E. Violard. “Efficient data layouts for a three-dimensional
electrostatic Particle-in-Cell code”. In: Journal of Computational Science 27 (2018), pp. 345–
356.

[5] E. Chacon-Golcher, S. A. Hirstoaga, and M. Lutz. “Optimization of Particle-In-Cell simu-
lations for Vlasov-Poisson system with strong magnetic field”. In: ESAIM: Proceedings 53
(2016), pp. 177–190.

[6] P. L. Combettes and S. A. Hirstoaga. “Equilibrium programming in Hilbert spaces”. In:
Journal of Nonlinear and Convex Analysis 6.1 (2005), pp. 117–136.

[7] P. L. Combettes and S. A. Hirstoaga. “Approximating curves for nonexpansive and monotone
operators”. In: Journal of Convex Analysis 13.3/4 (2006), p. 633.

[8] P. L. Combettes and S. A. Hirstoaga. “Visco-penalization of the sum of two monotone op-
erators”. In: Nonlinear Analysis: Theory, Methods & Applications 69.2 (2008), pp. 579–591.

[9] D. Coulette, S. Hirstoaga, and G. Manfredi. “Effect of collisional temperature isotropisation
on ELM parallel transport in a tokamak scrape-off layer”. In: Plasma Physics and Controlled
Fusion 58.8 (2016), p. 085004.

[10] N. Crouseilles, S. A. Hirstoaga, and X. Zhao. “Multiscale Particle-in-Cell methods and com-
parisons for the long-time two-dimensional Vlasov-Poisson equation with strong magnetic
field”. In: Computer Physics Communications 222 (2018), pp. 136–151.

[11] D. Coulette, G. Manfredi, and S. Hirstoaga. “Kinetic modeling and numerical simulation of
plasma-wall interactions in magnetic fusion devices”. In: Proceedings of the 43rd European
Physical Society Conference on Plasma Physics. 2016, p. 05.127.

[12] N. Crouseilles, E. Frénod, S. A. Hirstoaga, and A. Mouton. “Two-Scale Macro-Micro decom-
position of the Vlasov equation with a strong magnetic field”. In: Mathematical Models and
Methods in Applied Sciences 23.8 (2013), pp. 1527–1559.

73

74 REFERENCES OF THE AUTHOR

[13] N. Crouseilles, P. Glanc, S. A. Hirstoaga, E. Madaule, M. Mehrenberger, and J. Pétri. “A
new fully two-dimensional conservative semi-Lagrangian method: applications on polar grids,
from diocotron instability to ITG turbulence”. In: The European Physical Journal D 68.9
(2014), p. 252.

[14] E. Frénod, M. Gutnic, and S. A. Hirstoaga. “First order Two-Scale Particle-In-Cell numerical
method for the Vlasov equation”. In: ESAIM: Proceedings 38 (2012), pp. 348–360.

[15] E. Frénod, S. A. Hirstoaga, and M. Lutz. “Long-time simulation of a highly oscillatory Vlasov
equation with an exponential integrator”. In: Comptes Rendus Mécanique 342.10-11 (2014),
pp. 595–609.

[16] E. Frénod, S. A. Hirstoaga, and E. Sonnendrücker. “An exponential integrator for a highly
oscillatory Vlasov equation”. In: Discrete & Continuous Dynamical Systems - S 8.1 (2015),
pp. 169–183.

[17] E. Frénod, S. A. Hirstoaga, M. Lutz, and E. Sonnendrücker. “Long-time behaviour of an
exponential integrator for a Vlasov-Poisson system with strong magnetic field”. In: Commu-
nications in Computational Physics 18.2 (2015), pp. 263–296.

[18] S. A. Hirstoaga. “Iterative selection methods for common fixed point problems”. In: Journal
of Mathematical Analysis and Applications 324.2 (2006), pp. 1020–1035.

[19] E. Madaule, S. A. Hirstoaga, M. Mehrenberger, and J. Pétri. “Semi-Lagrangian simulations
of the diocotron instability”. Report: https://hal.inria.fr/hal-00841504/. 2013.

[20] G. Manfredi, S. Hirstoaga, S. Devaux, E. Havlickova, and D. Tskhakaya. “Parallel trans-
port in a tokamak scrape-off layer”. In: Proceedings of the 38th European Physical Society
Conference on Plasma Physics. 2011, P4.063.

[21] G. Manfredi, S. Hirstoaga, and S. Devaux. “Vlasov modelling of parallel transport in a
tokamak scrape-off layer”. In: Plasma Physics and Controlled Fusion 53.1 (2011), p. 015012.

[22] D. Moulton, W. Fundamenski, G. Manfredi, S. Hirstoaga, and D. Tskhakaya. “Comparison
of free-streaming ELM formulae to a Vlasov simulation”. In: Journal of Nuclear Materials
438 (2013), S633–S637.

Other references

[AB96] G. Allaire and M. Briane. “Multiscale convergence and reiterated homogenisation”.
In: Proc. Roy. Soc. Edinburgh: Sect. A Mathematics 126.2 (1996), pp. 297–342.

[All92] G. Allaire. “Homogenization and Two-scale Convergence”. In: SIAM J. Math. Anal.
23.6 (1992), pp. 1482–1518.

[Ari+09] G. Ariel, B. Engquist, H.-O. Kreiss, and R. Tsai. “Multiscale Computations for Highly
Oscillatory Problems”. In: Multiscale Modeling and Simulation in Science, LNCSE,
vol. 66. Ed. by B. Engquist, P. Lötstedt, and O. Runborg. Springer, Berlin, Heidelberg,
2009, pp. 237–287.

[Ari+13] G. Ariel, B. Engquist, S. Kim, Y. Lee, and R. Tsai. “A multiscale method for highly
oscillatory dynamical systems using a Poincaré map type technique”. In: Journal of
Scientific Computing 54.2-3 (2013), pp. 247–268.

[Bar05] R. Barthelmé. “Le problème de conservation de la charge dans le couplage des équations
de Vlasov et de Maxwell”. Thesis. Université de Strasbourg, 2005. url: http://scd-
theses.u-strasbg.fr/998/01/barthelme.pdf.

[Bar18] Y. Barsamian. “Pic-Vert: A Particle-in-Cell Implementation for Multi-Core Architec-
tures”. Thesis. Université de Strasbourg, 2018. url: http://www.barsamian.am/Pic-
Vert/.

[BFS87] P. Bratley, B. L. Fox, and L. E. Schrage. A Guide to simulation. Springer, 1987.

[BL85] C. K. Birdsall and A. B. Langdon. Plasma Physics via Computer Simulation. McGraw-
Hill, New York, 1985.

[BM82] J. T. Beale and A. Majda. “Vortex Methods. II. Higher Order Accuracy in Two and
Three Dimensions”. In: Mathematics of Computation 39.159 (1982), pp. 29–52.

[Bos07] M. Bostan. “The Vlasov-Maxwell System with Strong Initial Magnetic Field: Guiding-
Center Approximation”. In: Multiscale Model. Simul. 6.3 (2007), pp. 1026–1058.

[Bos09] M. Bostan. “The Vlasov-Poisson system with strong external magnetic field. Finite
Larmor radius regime”. In: Asymptotic Analysis 61.2 (2009), pp. 91–123.

[Bow+08] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T. Kwan. “Ultrahigh
performance three-dimensional electromagnetic relativistic kinetic plasma simulation”.
In: Physics of Plasmas 15.5 (2008), p. 055703.

[Bow01] K. J. Bowers. “Accelerating a Particle-in-Cell Simulation Using a Hybrid Counting
Sort”. In: Journal of Computational Physics 173.2 (2001), pp. 393–411.

[Bow03] K. J. Bowers. “Speed optimal implementation of a fully relativistic particle push with
charge conserving current accumulation on modern processors”. In: Proceedings of the
18th Int. Conf. Numerical Simulation of Plasmas (ICNSP). 2003, pp. 383–386. url:
http://web.mit.edu/ned/ICNSP/ICNSP_BookofAbstracts.pdf.

75

76 OTHER REFERENCES

[BS15] A. Bottino and E. Sonnendrücker. “Monte Carlo particle-in-cell methods for the simu-
lation of the Vlasov-Maxwell gyrokinetic equations”. In: J. Plasma Phys. 81.5 (2015),
p. 435810501.

[Cal+11] M. P. Calvo, P. Chartier, A. Murua, and J. M. Sanz-Serna. “A stroboscopic numerical
method for highly oscillatory problems”. In: Lect. Notes Comput. Sci. Eng. 82 (2011),
pp. 73–87.

[CDV07] P. Crispel, P. Degond, and M.-H. Vignal. “An asymptotic preserving scheme for the
two-fluid Euler–Poisson model in the quasineutral limit”. In: Journal of Computational
Physics 223.1 (2007), pp. 208–234.

[Cha+99] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi. “Non-
linear Array Layouts for Hierarchical Memory Systems”. In: Proceedings of the 13th
International Conference on Supercomputing. ACM, 1999, pp. 444–453.

[Chr+06] A. J. Christlieb, R. Krasny, J. P. Verboncoeur, J. W. Emhoff, and I. D. Boyd. “Grid-
free plasma simulation techniques”. In: IEEE Transactions on Plasma Science 34.2
(2006), pp. 149–165.

[CK00] G.-H. Cottet and P. D. Koumoutsakos. Vortex Methods: Theory and Practice. Cam-
bridge University Press, 2000.

[CL11] N. Crouseilles and M. Lemou. “An asymptotic preserving scheme based on a micro-
macro decomposition for collisional Vlasov equations: diffusion and high-field scaling
limits”. In: Kinet. Relat. Models 4 (2011), pp. 441–477.

[CLM13] N. Crouseilles, M. Lemou, and F. Méhats. “Asymptotic preserving schemes for highly
oscillatory Vlasov-Poisson equations”. In: Journal of Computational Physics 248 (2013),
pp. 287–308.

[CM02] S. M. Cox and P. C. Matthews. “Exponential time differencing for stiff systems”. In:
Journal of Computational Physics 176.2 (2002), pp. 430–455.

[CP17] M. Campos Pinto. “Analysis and design of numerical methods for problems arising in
plasma physics”. Habilitation Thesis. Université Pierre et Marie Curie, 2017.

[Cro+17] N. Crouseilles, M. Lemou, F. Méhats, and X. Zhao. “Uniformly accurate Particle-in-
Cell method for the long time solution of the two-dimensional Vlasov-Poisson equation
with uniform strong magnetic field”. In: Journal of Computational Physics 346 (2017),
pp. 172–190.

[Dal08] A.-L. Dalibard. “Homogenization of linear transport equations in a stationary ergodic
setting”. In: Communications in Partial Differential Equations 33.5 (2008), pp. 881–
921.

[Dav90] R. C. Davidson. Physics of Nonneutral Plasmas. Addison-Wesley (Reading, Mas-
sachusetts), 1990.

[Dec+96] V. K. Decyk, S. R. Karmesin, A. de Boer, and P. C. Liewer. “Optimization of particle-
in-cell codes on reduced instruction set computer processors”. In: Computers in Physics
10.3 (1996), pp. 290–298.

[Deg+10] P. Degond, F. Deluzet, L. Navoret, A.-B. Sun, and M.-H. Vignal. “Asymptotic-preserving
particle-in-cell method for the Vlasov–Poisson system near quasineutrality”. In: Jour-
nal of Computational Physics 229.16 (2010), pp. 5630–5652.

[Don+13] C. Dong, H. Ren, H. Cai, and D. Li. “Temperature relaxation in a magnetized plasma”.
In: Physics of Plasmas 20.10 (2013), p. 102518.

OTHER REFERENCES 77

[DS14] V. K. Decyk and T. V. Singh. “Particle-in-Cell algorithms for emerging computer
architectures”. In: Computer Physics Communications 185.3 (2014), pp. 708–719.

[DT97] M. Drmota and R. F. Tichy. Sequences, discrepancies and applications. Springer, 1997.

[E+07] W. E, B. Engquist, X. Li, W. Ren, and E. Vanden-Eijnden. “Heterogeneous multiscale
methods: a review”. In: Commun. Comput. Phys. 2 (2007), pp. 367–450.

[FP+06] W. Fundamenski, R. Pitts, et al. “A model of ELM filament energy evolution due to
parallel losses”. In: Plasma Physics and Controlled Fusion 48.1 (2006), p. 109.

[FR16] F. Filbet and L. M. Rodrigues. “Asymptotically stable particle-in-cell methods for the
Vlasov–Poisson system with a strong external magnetic field”. In: SIAM Journal on
Numerical Analysis 54.2 (2016), pp. 1120–1146.

[FRS01] E. Frénod, P.-A. Raviart, and E. Sonnendrücker. “Two-scale expansion of a singularly
perturbed convection equation”. In: J. Math. Pures Appl. 80.8 (2001), pp. 815–843.

[Fré17] E. Frénod. Two-Scale Approach to Oscillatory Singularly Perturbed Transport Equa-
tions. Springer, 2017.

[FS00] E. Frénod and E. Sonnendrücker. “Long time behavior of the two dimensionnal Vlasov
equation with a strong external magnetic field”. In: Math. Models Methods Appl. Sci.
10.4 (2000), pp. 539–553.

[FS01] E. Frénod and E. Sonnendrücker. “The finite Larmor radius approximation”. In: SIAM
J. Math. Anal. 32.6 (2001), pp. 1227–1247.

[FS06] F. Filbet and E. Sonnendrücker. “Modeling and numerical simulation of space charge
dominated beams in the paraxial approximation”. In: Math. Models Methods Appl.
Sci. 16.5 (2006), pp. 763–791.

[FS98] E. Frénod and E. Sonnendrücker. “Homogenization of the Vlasov equation and of the
Vlasov-Poisson system with a strong external magnetic field”. In: Asymptotic Analysis
18.3-4 (1998), pp. 193–214.

[FSB01] F. Filbet, E. Sonnendrücker, and P. Bertrand. “Conservative numerical schemes for
the Vlasov equation”. In: Journal of Computational Physics 172.1 (2001), pp. 166–
187.

[FSS09] E. Frénod, F. Salvarani, and E. Sonnendrücker. “Long time simulation of a beam in
a periodic focusing channel via a two-scale PIC-method”. In: Math. Models Methods
Appl. Sci. 19.2 (2009), pp. 175–197.

[Ger+16] K. Germaschewski, W. Fox, S. Abbott, N. Ahmadi, K. Maynard, L. Wang, H. Ruhl,
and A. Bhattacharjee. “The Plasma Simulation Code: A modern particle-in-cell code
with patch-based load-balancing”. In: Journal of Computational Physics 318 (2016),
pp. 305–326.

[Gra+06] V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G.
Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik, and L. Villard. “A
drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation”. In: Journal of
Computational Physics 217.2 (2006), pp. 395–423.

[Gra+16] V. Grandgirard, J. Abiteboul, J. Bigot, T. Cartier-Michaud, N. Crouseilles, G. Dif-
Pradalier, C. Ehrlacher, D. Esteve, X. Garbet, P. Ghendrih, et al. “A 5D gyrokinetic
full-f global semi-lagrangian code for flux-driven ion turbulence simulations”. In: Com-
puter Physics Communications 207 (2016), pp. 35–68.

78 OTHER REFERENCES

[GSR03] F. Golse and L. Saint-Raymond. “The Vlasov-Poisson system with strong magnetic
field in quasineutral regime”. In: Math. Models Methods Appl. Sci. 13 (2003), pp. 661–
714.

[GSR99] F. Golse and L. Saint-Raymond. “The Vlasov-Poisson system with strong magnetic
field”. In: J. Math. Pures Appl. 78 (1999), pp. 791–817.

[Har55] F. Harlow. A Machine Calculation Method for Hydrodynamic Problems. Tech. rep.
LAMS-1956. Los Alamos Scientific Laboratory, 1955.

[Hav+11] E. Havĺıčková, W. Fundamenski, V. Naulin, A. H. Nielsen, R. Zagorski, J. Seidl, and
J. Horáček. “Steady-state and time-dependent modelling of parallel transport in the
scrape-off layer”. In: Plasma Physics and Controlled Fusion 53.6 (2011), p. 065004.

[Hav+12] E. Havĺıčková, W. Fundamenski, D. Tskhakaya, G. Manfredi, and D. Moulton. “Com-
parison of fluid and kinetic models of target energy fluxes during edge localized modes”.
In: Plasma Physics and Controlled Fusion 54 (2012), p. 045002.

[HE88] R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. Institute
of Physics, Philadelphia, 1988.

[HK10] D. Han-Kwan. “The three-dimensional finite Larmor radius approximation”. In: Asymp-
totic Analysis 66.1 (2010), pp. 9–33.

[HKK07] T. Harada, S. Koshizuka, and Y. Kawaguchi. “Smoothed particle hydrodynamics on
GPUs”. In: Computer Graphics International. Vol. 40. 2007, pp. 63–70.

[HLW06] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration: Structure-
Preserving Algorithms for Ordinary Differential Equations. 2nd ed. Springer Series in
Computational Mathematics, 2006.

[HM03] R. D. Hazeltine and J. D. Meiss. Plasma confinement. Courier Corporation, 2003.

[HO10] M. Hochbrück and A. Ostermann. “Exponential integrators”. In: Acta Numer. 19
(2010), pp. 209–286.

[Hut17] I. H. Hutchinson. “Electron holes in phase space: What they are and why they matter”.
In: Physics of Plasmas 24 (2017), p. 055601.

[Jin10] S. Jin. “Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic
equations: a review”. In: Lecture notes for summer school on methods and models of
kinetic theory (M&MKT), Porto Ercole (Grosseto, Italy) (2010), pp. 177–216.

[Jin99] S. Jin. “Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equa-
tions”. In: SIAM J. Sci. Comp. 21 (1999), pp. 441–454.

[Joc+16] A. Jocksch, F. Hariri, T.-M. Tran, S. Brunner, C. Gheller, and L. Villard. “A Bucket
Sort Algorithm for the Particle-In-Cell Method on Manycore Architectures”. In: Par-
allel Processing and Applied Mathematics: 11th Intl. Conf. (PPAM). Springer Intl.
Publishing, 2016, pp. 43–52.

[JS10] S. Jin and Y. Shi. “AMicro-Macro Decomposition-Based Asymptotic-Preserving Scheme
for the Multispecies Boltzmann Equation”. In: SIAM J. Sci. Comp. 31 (2010), pp. 4580–
4606.

[Kla99] A. Klar. “A Numerical Method for Kinetic Semiconductor Equations in the Drift
Diffusion Limit”. In: SIAM J. Sci. Comp. 20 (1999), pp. 1696–1712.

[Lev02] R. J. Leveque. Finite Volume Methods for Hyperbolic Problems. Cambridge University
Press, 2002.

OTHER REFERENCES 79

[LL02] S. Li and W. K. Liu. “Meshfree and particle methods and their applications”. In:
Applied Mechanics Reviews 55.1 (2002), pp. 1–34.

[LL10] M. Liu and G. Liu. “Smoothed particle hydrodynamics (SPH): an overview and recent
developments”. In: Archives of computational methods in engineering 17.1 (2010),
pp. 25–76.

[LM08] M. Lemou and L. Mieussens. “A New Asymptotic Preserving Scheme Based on Micro-
Macro Formulation for Linear Kinetic Equations in the Diffusion Limit”. In: SIAM J.
Sci. Comp. 31 (2008), pp. 334–368.

[Mou+13b] D. Moulton, P. Ghendrih, W. Fundamenski, G. Manfredi, and D. Tskhakaya. “Quasineu-
tral plasma expansion into infinite vacuum as a model for parallel ELM transport”.
In: Plasma Physics and Controlled Fusion 55.8 (2013), p. 085003.

[Mou09] A. Mouton. “Two-scale semi-lagrangian simulation of a charged particles beam in a
periodic focusing channel”. In: Kinet. Relat. Models 2.2 (2009), pp. 251–274.

[Mus+00] L. Muschietti, I. Roth, C. W. Carlson, and R. E. Ergun. “Transverse Instability of
Magnetized Electron Holes”. In: Phys. Rev. Lett. 85.1 (2000), pp. 94–97.

[MV11] C. Mouhot and C. Villani. “On Landau damping”. In: Acta Mathematica 207.1 (2011),
pp. 29–201.

[Ngu89] G. Nguetseng. “A General Convergence Result for a Functional Related to the Theory
of Homogenization”. In: SIAM J. Math. Anal. 20.3 (1989), pp. 608–623.

[Ngu90] G. Nguetseng. “Asymptotic Analysis for a Stiff Variational Problem Arising in Me-
chanics”. In: SIAM J. Math. Anal. 21.6 (1990), pp. 1394–1414.

[Pét09] J. Pétri. “Non-linear evolution of the diocotron instability in a pulsar electrosphere:
two-dimensional particle-in-cell simulations”. In: Astronomy & Astrophysics 503.1
(2009), pp. 1–12.

[Qin+13] H. Qin, S. Zhang, J. Xiao, J. Liu, Y. Sun, andW. M. Tang. “Why is the Boris algorithm
so good?” In: Physics of Plasmas 20.8 (2013), p. 084503.

[Rav85] P.-A. Raviart. “An analysis of particle methods”. In: Numerical methods in fluid dy-
namics (Como, 1983), Lecture Notes in Mathematics. Springer, 1985, pp. 243–324.

[Sel] SeLaLib. http://selalib.gforge.inria.fr/.

[Sho81] M. Shoucri. “A two-level implicit scheme for the numerical solution of the linearized
vorticity equation”. In: Internat. J. Numer. Methods Engrg. 17 (1981), pp. 1525–1538.

[Son17] E. Sonnendrücker. Numerical Methods for the Vlasov-Maxwell equations. Springer,
2017.

[Tsk+08] D. Tskhakaya, S. Kuhn, Y. Tomita, K. Matyash, R. Schneider, and F. Taccogna.
“Self-Consistent Simulations of the Plasma-Wall Transition Layer”. In: Contributions
to Plasma Physics 48.1-3 (2008), pp. 121–125.

[Ver05] J. P. Verboncoeur. “Particle simulation of plasmas: review and advances”. In: Plasma
Physics and Controlled Fusion 47.5A (2005), p. A231.

[Vin+16] H. Vincenti, M. Lobet, R. Lehe, R. Sasanka, and J.-L. Vay. “An efficient and portable
SIMD algorithm for charge/current deposition in Particle-In-Cell codes”. In: Computer
Physics Communications 210 (2016), pp. 145–154.

[Wol95] M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley
Longman Publishing Co., Inc., 1995.

This manuscript assembles my contributions in developing new mathematical and
computational methods for analyzing the dynamics of charged particles, like electrons or
ions, as a multiscale phenomenon. The underlying mechanisms of this general physical
problem are described by Vlasov–Poisson systems. The objective of this work is to study
these equations and to implement various efficient numerical methods to approximate
their solutions. In Chapter 1, two strategies are proposed in order to cope with the
multiscale issue. First, we obtain reduced models by means of asymptotic analysis in the
frame of the two-scale convergence. Second, we treat the full model with a numerical
method based on exponential integrator, by which the high frequency oscillations are
exactly solved whereas the slower process is treated in an approximate way. In Chapter
2, we focus on the performance of Particle-in-Cell simulations for solving Vlasov–Poisson
systems in six dimensional phase space. Mainly, we address specific data structures
in order to optimize the memory accesses. In addition, we exploit efficiently parallelism
patterns, like vectorization, multithreading, and multiprocessing. In Chapter 3 we
develop a computational framework for modelling and simulating complex problems in
plasma physics. More precisely, we study the problems of the diocotron instability in a
non-neutral plasma and of the dynamics of two species of charged particles following an
edge-localized mode event in a tokamak’s scrape-off layer. In this direction, we propose
and solve different kinetic and fluid equations to treat the modelling questions, while for
the numerical aspect, an asymptotic preserving strategy turns out to be fruitful to deal
with the multiscale issue.

INSTITUT DE RECHERCHE MATHÉMATIQUE AVANCÉE
UMR 7501

Université de Strasbourg et CNRS
7 Rue René Descartes

67 084 STRASBOURG CEDEX

Tél. 03 68 85 01 29
Fax 03 68 85 03 28

https://irma.math.unistra.fr
irma@math.unistra.fr

IRMA 2019/004
https://tel.archives-ouvertes.fr/tel-02080489ISSN 0755-3390

Institut de Recherche
Mathématique Avancée

