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Abstract
Cardiovascular blood flow simulations can fill several critical gaps in current clinical
capabilities. ey offer non-invasive ways to quantify hemodynamics in the heart and major
blood vessels for patients with cardiovascular diseases, that cannot be directly obtained from
medical imaging. Patient-specific simulations (incorporating data unique to the individual)
enable individualised risk prediction, provide key insights into disease progression and/or
abnormal physiologic detection. ey also provide means to systematically design and test new
medical devices, and are used as predictive tools to surgical and personalize treatment planning
and, thus aid in clinical decision-making. Patient-specific predictive simulations require
effective assimilation of medical data for reliable simulated predictions. is is usually achieved
by the solution of an inverse hemodynamic problem, where uncertain model parameters are
estimated using the techniques for merging data and numerical models known as data
assimilation methods.

In this thesis, the inverse problem is solved through a data assimilation method using an
ensemble Kalman filter (EnKF) for parameter estimation. By using an ensemble Kalman filter,
the solution also comes with a quantification of the uncertainties for the estimated parameters.
An ensemble Kalman filter-based parameter estimation algorithm is proposed for
patient-specific hemodynamic computations in a schematic arterial network from uncertain
clinical measurements. Several in silico scenarii (using synthetic data) are considered to
investigate the efficiency of the parameter estimation algorithm using EnKF. e usefulness of
the parameter estimation algorithm is also assessed using experimental data from an in vitro
test rig and actual real clinical data from a volunteer (patient-specific case). e proposed
algorithm is evaluated on arterial networks which include single arteries, cases of bifurcation, a
simple human arterial network and a complex arterial network including the circle of Willis.

e ultimate aim is to perform patient-specific hemodynamic analysis in the network of the
circle of Willis. Common hemodynamic properties (parameters), like arterial wall properties
(Young’s modulus, wall thickness, and viscoelastic coefficient) and terminal boundary
parameters (reflection coefficient and Windkessel model parameters) are estimated as the
solution to an inverse problem using time series pressure values and blood flow rate as
measurements. It is also demonstrated that a proper reduced order zero-dimensional
compartment model can lead to a simple and reliable estimation of blood flow features in the
circle of Willis. e simulations with the estimated parameters capture target pressure or flow
rate waveforms at given specific locations.

Keywords: Data assimilation, ensemble Kalman filter, hemodynamic parameter estimation,
inverse hemodynamic problems, patient-specific cardiovascular simulations, Young’s modulus,
1D blood flowmodelling, 0D compartment model, circle ofWillis.
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Résumé
Les simulations numériques des écoulements sanguins cardiovasculaires peuvent combler
d’importantes lacunes dans les capacités actuelles de traitement clinique. En effet, elles offrent
des moyens non invasifs pour quantifier l’hémodynamique dans le cœur et les principaux
vaisseaux sanguins chez les patients atteints de maladies cardiovasculaires. Ainsi, elles
permettent de recouvrer les caractéristiques des écoulements sanguins qui ne peuvent pas être
obtenues directement à partir de l’imagerie médicale. Dans ce sens, des simulations
personnalisées utilisant des informations propres aux patients aideraient à une prévision
individualisée des risques. Nous pourrions en effet, disposer des informations clés sur la
progression éventuelle d’une maladie ou détécter de possibles anomalies physiologiques. Les
modèles numériques peuvent fournir également des moyens pour concevoir et tester de
nouveaux dispositifs médicaux et peuvent être utilisés comme outils prédictifs pour la
planification de traitement chirurgical personnalisé. Ils aideront ainsi à la prise de décision
clinique. Cependant, une difficulté dans cette approche est que, pour être fiables, les
simulations prédictives spécifiques aux patients nécessitent une assimilation efficace de leurs
données médicales. Ceci nécessite la solution d’un problème hémodynamique inverse, où les
paramètres du modèle sont incertains et sont estimés à l’aide des techniques d’assimilation de
données.

Dans cette thèse, le problème inverse pour l’estimation des paramètres est résolu par une
méthode d’assimilation de données basée sur un filtre de Kalman d’ensemble (EnKF).
Connaissant les incertitudes sur les mesures, un tel filtre permet la quantification des
incertitudes liées aux paramètres estimés. Un algorithme d’estimation de paramètres, basé sur
un filtre de Kalman d’ensemble, est proposé dans cette thèse pour des calculs hémodynamiques
spécifiques à un patient, dans un réseau artériel schématique et à partir de mesures cliniques
incertaines. La méthodologie est validée à travers plusieurs scenarii in silico utilisant des
données synthétiques. La performance de l’algorithme d’estimation de paramètres est
également évaluée sur des données expérimentales pour plusieurs réseaux artériels et dans un
cas provenant d’un banc d’essai in vitro et des données cliniques réelles d’un volontaire (cas
spécifique du patient).

Le but principal de cette thèse est l’analyse hémodynamique spécifique du patient dans le
polygone de Willis, appelé aussi cercle artériel du cerveau. Les propriétés hémodynamiques
communes, comme celles de la paroi artérielle (module de Young, épaisseur de la paroi et
coefficient viscoélastique), et les paramètres des conditions aux limites (coefficients de réflexion
et paramètres du modèle de Windkessel) sont estimés. Il est également démontré qu’un modèle
appelé compartiment d’ordre réduit (ou modèle dimension zéro) permet une estimation simple
et fiable des caractéristiques du flux sanguin dans le polygone de Willis. De plus, il est ressorti
que les simulations avec les paramètres estimés capturent les formes attendues pour les ondes de
pression et de débit aux emplacements prescrits par le clinicien.

Mots-clés: Assimilation des données, filtre de Kalman, estimation des paramètres
hémodynamiques, problème inverse, simulation cardiovasculaire spécifique au patient, module
de Young, modélisation de l’écoulement artériel en 1D, modèle réduit 0D, polygone deWillis.
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“Torture the data, and it will confess to anything”

Ronald Coase

To my wife and son.
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1.1 Patient-specific cardiovascular simulations

Considerable progress has been made in recent years towards developing models for
blood flow in the cardiovascular system [1–14], that are often based on patient-specific
anatomic data.

Patient-specific cardiovascular simulations of healthy and diseased physiologies are
very useful to understand the origin and progression of cardiovascular diseases,
mechanisms influencing cardiovascular system’s function and its physiological and
pathological processes, and evaluate the performance of cardiovascular devices through
in silico experiments [15]. Mathematical models and simulations are also beneficial
and of great interest to biomedical applications such as providing aid in clinical
decision-making and treatment through virtual surgeries or virtual implantation of
medical devices prior to the actual procedure [16–18].

1
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Computational fluid dynamic (CFD) model [19] based on patient-specific data is
used to enhance diagnostic assessment, medical device design and clinical trials [20].
CFD models can compute previously immeasurable hemodynamic parameters such as
pressure and flow fields at a temporal and spatial resolution, that is difficult with the
current clinical technology [21, 22]. Figure 1.1 describes the specific steps of the CFD
simulations and shows the possible computational analysis such as pressure, velocity, and
wall shear stress at any point of the 3D model [19].

F .: An example of a patient-specific model and CFD simulation
of an aortic coarctation case. e computational analysis is performed and
pressure, velocity, and wall shear stress (WSS) in any point of the 3D model
are computed. Adapted from Vieira et al. [19].

According to the World Health Organization, cardiovascular diseases are the leading
cause of death globally. Estimations of arterial stiffness and pressure in the cerebral
arteries are relevant quantities to several cardiovascular diseases. An increase in arterial
stiffness is associated with risk factors including hypertension [23], and an estimation
of arterial stiffness can be used to assess the cardiovascular condition of a patient [24].
Pressure fluctuations in cerebral arteries are one of the factors related to the formation
and risk of rupture of cerebral aneurysms [25–29]. It is possible to solve numerically for
the pressure wave system in a network of arteries using one-dimensional (1D) [1, 3, 5,
13, 14] or reduced order zero-dimensional (0D compartment model) [9–12] blood flow
models.

A ring-like arterial structure known as the Circle of Willis (CoW) that is located at
the base of the brain, linking the main cerebral arterial systems is the pathway for the
distribution of oxygenated blood in the cerebral mass [7]. e CoW (see Figure 1.2) is
also a common place for intracranial aneurysms (pathological dilatations of the cerebral
artery walls) leading to their rupture and causing subarachnoid haemorrhage [30, 31].
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e geometric models in this thesis include a network of complex arterial segments from
the aorta to the cerebral arteries and including the CoW.

Anterior cerebral artery,
A2 segment (ACA, A2)

Anterior cerebral artery,
A1 segment (ACA, A1)

Middle cerebral
artery (MCA)

Posterior cerebral artery,
P2 segment (PCA, P2)

Vertebral artery (VA)Basilar artery (BA)

Posterior cerebral artery,
P1 segment (PCA, P1)

Posterior communicating
artery (PCoA)

Internal carotid
artery (ICA)

Anterior communicating
artery (ACoA)

F .: Schematic representation of the circle of Willis. Adapted from
Alastruey et al. [32].

Figure 1.3 shows an example of 1D modelling of blood flow in the CoW. In the
figure, the results of the 1D model of Reymond et al. [14] are compared with the in vivo
measurement of flow and pressure waves at various cerebral artery locations.

In all cases, mathematical models and numerical simulations require information of
the patient’s vasculature and physiology together with the geometrical and mechanical
properties of arteries. e creation of a patient-specific cardiovascular model
simulation typically starts with the acquisition and processing of medical imaging data
such as computed tomography (CT), magnetic resonance imaging (MRI), magnetic
resonance angiogram (MRA), ultrasound (US), phase contrast magnetic resonance
imaging (PCMRI), and positron emission tomography (PET). It is then followed by
mesh or grid generation, defining material properties and specifying boundary
conditions, and model simulation.
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F .: e 1D model results (bottom) of Reymond et al. [14] compared
with in vivo measurements of flow and pressure waves (top panels) at various
cerebral artery locations. Average waveforms are represented by thick lines.
Figure adapted from [14].

1.2 e role of data assimilation in cardiovascular
simulations

e blood flowing in a compliant artery can be observed and the blood flow rate can be
measured through imaging techniques such as MRI. Blood pressure on few points can
be provided by a catheter, and the geometric properties of arteries (e.g length and
diameter) can be acquired from MRI and MRA. However, while these measurements
are usually limited to a few locations in space, mechanical properties of arteries, such as
Young’s modulus and wall thickness, are often unknown. e other unknown model
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parameters, including the distal boundary conditions, can be estimated using a
parameter estimation algorithm based on a data assimilation technique such as an
Unscented Kalman filter (UKF) [33, 34] or its variant - reduced order unscented
Kalman filter (ROUKF) [35, 36] or using an ensemble Kalman filter (EnKF) [37].
Techniques of an accurate merging of measures and model simulations for a
mathematically sound integration of different sources of information are known as data
assimilation (DA) methods [38]. e outcome of DA methods include both the
patient-specific measures and the development of numerical models. In the process,
model simulation is adapted to the patient-specific data resulting in reliably simulated
measurements (predictions). Figure 1.4 shows a patient-specific data assimilation flow
chart for an inverse problem in hemodynamics.

1.3 Literature review on inverse problems in
hemodynamics

In practice, available clinical data (possibly corrupted by noise) are often indirect
observations of the hemodynamic measurements of interest. For reliable estimates of
model parameters, an inverse hemodynamics and identification problems are solved
using available data. ere is rising interest in the area of inverse problems in
hemodynamics, focusing on data assimilation and uncertainty quantification in
cardiovascular simulations [10, 33–37, 39–44]. Table 1.1 summarises some recent
works on inverse problems in hemodynamics, many of which are based on ROUKF for
the estimation of the mechanical properties of arteries and to tune boundary condition
parameters. In silico techniques are mostly used to test the robustness of a data
assimilation method. ese techniques are aimed at minimising the time, cost, and
risk associated with clinical trials [20].

1.4 Motivations

Many recent studies on the inverse problems in hemodynamics are based on ROUKF.
EnKF and in vivo data has been employed in [46] to optimize Windkessel outflow
boundary condition parameters of 6 terminal arteries in an arterial network of the
circle of Willis consisting of 16 arteries assimilating Doppler ultrasound data.
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Image Acquisition

Diagnosis

Data

Assimilation

Imaging techniques (e.g. MRI, CT, US,
MRA, PCMRI) to provide anatomical
and physiological detail.

Image Processing
Image filtering techniques, segmentation
(extracting the vessel boundary from the
image data) and reconstruction.

Measurements

Patient-specific properties such as arterial
wall stiffness, inflow waveforms, pressure
measurements, lengths and diameters of
arteries etc.

Parameters

Known Parameters

Many parameters of the model are obtained by
direct measurement such as length and diame-
ters of arteries, inlet boundary conditions (e.g.
flow rates).

Assimilated Parameters

Uncertain parameters (e.g. Young’s modulus
and thickness of arteries, boundary condition
parameters, etc.) are tuned to obtain a better
fit with average physiological behavior.

Forward Model

CFD, 3D, 2D, 1D or 0D
compartment models.

△Parameters

Simulated Measurements
E.g. Pressure, blood flow
rates, etc.

Reference
Physiological knowledge (normal
or pathologic range).

E.g. EnKF,
ROUKF

Result

Analysis

and

Assessment

F .: Patient-specific data assimilation flow chart. Patient-specific
modelling is intended to simulate reliable status of a patient, from the clinical
measurements. Uncertain parameters are tuned through data assimilation.
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T .: Literature review on inverse problems in hemodynamics.

References Blood flow model and description
of arterial network

DA method and type of
data used

Parameters
estimated

Lombardi
[35]

1D PDE model. Arterial network
consisted of the main 55 arteries
of the human body.

ROUKF. Synthetic
data.

Elastic
coefficients
and WK3
parameters.

Moireau et al.
[36]

FSI. Patient-specific modeling of
thoracic aorta.

ROUKF. Synthetic and
patient image data (CT
scan)

WK3
parameters.

Pant et al.
[10]

0D compartment model and 3D
CFD simulations. Carotid artery,
arterial network of abdominal
aorta, and patient-specific
modeling of thoracic aorta.

Augmented state space
model using UKF.
Synthetic and actual
patient-specific data

WK3
parameters.

Pant et al.
[34]

Lumped parameter model (0D
compartment), closed-loop model
for single-ventricle physiology.

Augmented state-space
model using UKF.
Actual patient-specific
measurements.

Pulmonary
and systemic
circulation
parameters.

Bertoglio
et al. [39, 40]

3D FSI model. Model
representation of an abdominal
aorta.

ROUKF. Synthetic and
MRI data.

Young’s modulus
and proximal
WK3 resistance.

Chabiniok
et al. [33]

Biomechanical heart model UKF Joint state-
parameter estimation.
Synthetic and actual
cardiac Cine-MRI data.

Key biophysical
parameters in
a beating heart
model.

Martin et al.
[41]

1D PDE model. Single artery Adjoint state approach.
Synthetic data.

e arterial
compliance.

Spilker and
Taylor [42]

3D blood flow model. Common
carotid artery, an idealized iliac
arterial bifurcation, and a patient-
specific abdominal aorta.

Quasi-Newton method. WK3 outlet
boundary
parameters.

Lassila et al.
[43]

Reduced Basis methods. A
stenosed artery and a simplified
femoral bypass graft model.

Deterministic and
Bayesian approaches.
Synthetic data.

Young’s modulus
and amplitude of
the residual flow.

Itu et al. [44] 1D PDE model. Patient-
specific aortic model, a full body
arterial model (29 arteries), and
anatomical models representing
different arterial segments.

Parameter estimation
based on Quasi-Newton
and Broyden’s method.
Synthetic and clinical
data.

WK3
parameters.

Caiazzo et al.
[45]

1D PDE model. In vitro model of
the arterial network consisting of
37 arteries.

ROUKF. Synthetic and
experimental data.

Terminal
resistances,
Young’s modulus
and arterial wall
thickness.

DeVault et al.
[46]

1D PDE model. Arterial network
of the circle of Willis consisting of
16 arteries.

EnKF. In vivo data
using transcranial
Doppler ultrasound.

WK3 outflow
boundary
conditions
parameters of 6
terminal arteries.

PDE=partial differential equation; UKF=Unscented Kalman filter; EnKF=ensemble Kalman
filter; ROUKF=reduced order unscented Kalman filter; WK3=Windkessel three element model;
FSI=Fluid-structure interaction; MRI=magnetic resonance imaging.
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However, patient-specific data were not used to obtain the remaining vital model
parameters such as the arterial stiffness. In [46], a 1D PDE blood flow model is used.
Furthermore, the EnKF uses an ensemble of size 100 to optimise the parameters.

e current contribution differs from previous studies in two essential aspects.
First, the present work proposes a parameter estimation algorithm based on the
ensemble Kalman filtering techniques to estimate arterial stiffness together with the
Windkessel boundary condition parameters. e arterial stiffness can be a relevant
indicator in case of cardiovascular pathologies. Second, other works present data
assimilation together with 1D or 3D PDE based blood flow models leading to
computer intensive inverse problems, especially for complex arterial networks. We
would like to break this complexity using either a reduced order 0D model or a 1D
PDE model but with very coarse meshes. And we want to still be able to tune the
hemodynamic parameters to match given clinical data for patient-specific analysis.
Our aim is to bring the cost of each state evaluation to a few seconds instead of hours
or days and thus making the approach feasible on standard multi-core computers
available in clinics. Being able to proceed with the assimilation inside the clinic and
close to the acquisition devices without being obliged to move sensitive medical data
out of clinical environment is a major demand for security and confidentiality issues.

To the authors knowledge, this is the first attempt to estimate arterial stiffness and
the WK3 boundary parameters in a complex arterial network including the circle of
Willis using EnKF coupled with the 0D reduced order blood flow model and real data.
e patient-specific arterial network consists of 33 arteries with 11 terminal arteries.
Also, the ensemble Kalman filter uses an ensemble size of less than 30 to estimate 21
hemodynamic parameters. is coupling of EnKF with reduced order models has
advantages in many aspects: firstly, the data assimilation (and parameter estimation)
procedure is fast as the reduced order model only takes a few seconds (depending on
the arterial network) to run; secondly, the inverse problem can be run from several
initial guesses of hemodynamic parameters without significant increase in computing
cost and time; and finally, sensitivity analysis is cheap with reduced order models.
us, the current work can be used to make patient-specific studies and provide
valuable predictions of hemodynamic quantities of interest in a cost-effective manner.
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1.5 Aims and outline of the thesis

From the research and outcome of this thesis, it is intended to have some interesting
clinical applications. By knowing some patient-specific non-invasive clinical data, we
would like to estimate the actual physiological or mechanical constants of this patient.
For instance, from blood flow rate measurements in an artery obtained using imaging
techniques, we would like to estimate arterial wall properties (arterial stiffness measured
through Young’s modulus) and boundary condition parameters. From this estimation,
the blood pressure (e.g. in cerebral arteries) can be obtained in a totally non-invasive
manner.

e thesis presents a detailed assessment of a parameter estimation technique based
on the Ensemble Kalman filter (EnKF) in the context of one-dimensional and zero-
dimensional blood flow models. e ultimate goal of the thesis is the investigation of
the accuracy and of the robustness of the EnKF.

In particular, the main aims of the thesis are:

• to propose an EnKF-based parameter estimation algorithm for inverse problems
in hemodynamics,

• to study the feasibility of parameter estimation problems on systemic arterial
networks,

• to investigate the effects of using actual clinical and experimental measurements
versus synthetic data for the estimation procedure, and

• to identify limitations and potential difficulties of the proposed parameter
estimation algorithm for inverse hemodynamic problems.

e thesis is organized as follows:

Chapter 2 provides an introduction to data assimilation methods. In particular, a
short derivation of the standard Kalman filter, extended Kalman filter, and unscented
Kalman filter is presented. e derivation of Ensemble Kalman filter is discussed in
detail and an algorithm for parameter estimation using ensemble Kalman filter is
presented. e proposed algorithm is then applied to a simple advection-diffusion
model to estimate the model parameters.
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Chapter 3 gives the numerical method for the solution of one-dimensional blood
flow model. It starts from the derivation of the model, moving to the discretization
that is chosen followed by the two common types of boundary conditions that are
imposed. Next, we introduce the proposed parameter estimation algorithm to inverse
hemodynamic problems using four simple test cases.

Chapter 4 presents the use of parameter estimation algorithm to solve an inverse
hemodynamic problem in a series of test cases including a simple human arterial
network. For the boundary condition at the outlet of each terminal artery, the 1D
blood flow model is coupled with the constant resistance model. e first two tests are
purely in silico and the final test case uses experimental data from an in vitro test rig.
e sensitivity of the parameter estimation algorithm is also assessed in this chapter.

is chapter is part of: R. Lal, B. Mohammadi, and F. Nicoud,“ Data assimilation
for identification of cardiovascular network characteristics”. Published in International
Journal for Numerical Methods in Biomedical Engineering, 2016 [37].

Chapter 5 presents the use of a reduced order compartment model for the blood
flow in arteries and compares it with the classical 1D blood flow model for inverse
problems in hemodynamics. A simple as well as a complex arterial network including
the circle of Willis is considered for three test cases using in silico and actual real
clinical data (blood flow rates acquired from MRI). For the boundary condition, the
three element Windkessel model is used. A patient-specific case is presented here as a
proof-of-concept.

Part of this chapter has been submitted for publication as: R. Lal, F. Nicoud, E. Le
Bars, J. Deverdun, F. Molino, V. Costalat and B. Mohammadi,“ Non invasive blood
flow features estimation in cerebral arteries from uncertain medical data” in Annals of
Biomedical Engineering, 2017.

Material from this chapter has also been presented as “Parameter estimation using
ensemble Kalman filter for patient-specific hemodynamic computations” at the 5th
International Conference on Computational and Mathematical Biomedical
Engineering; April 10-12, 2017; Pittsburgh, USA.

Chapter 6 reports on the results and discusses the major findings from the research.
e chapter begins with an overview of the work and also addresses research limitations
and perspectives.
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Data assimilation

Contents
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This chapter provides an introduction to data assimilation methods, mostly developed

in fields like meteorology and applied to computational hemodynamics. We start from the

standard Kalman filter, moving to the extended Kalman filter, then giving equations for the

unscented Kalman filter, and finally showing the derivation for the ensemble Kalman filter.

We focus mainly on the latter and provide an algorithm for parameter estimation using an

ensemble Kalman filter. A simple advection-diffusion model is used to test the robustness

of the proposed algorithm using synthetic data.
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2.1 Introduction

Data assimilation (DA) involves the combination of information from observations
and numerical models. “Assimilation is the process of finding the model representation
which is most consistent with the observations” [47]. Figure 2.1 shows the basic
schematic view of the data assimilation cycle for any model that simulates system
states. Data assimilation techniques [48–58] have become an important component of
modelling for a growing number of applications ranging from the geosciences to
engineering.

Model

Data

assimilation
Observations

Model parameters,

initial and

boundary

conditions

Improved model

results

Observation

errors

Model errors

F .: An illustration of data assimilation. Data assimilation
produces improved model results by assimilating model forecasts and available
observations.

Assimilation methods can be grouped into two categories: variational and
sequential [59]. In variational methods (also referred as batch methods), the model
error is generally assumed to be time-invariant. Examples of variational methods
include the three-dimensional variational (3DVAR) [49], and the four-dimensional
variational (4DVAR) [60] methods. In these methods, as illustrated in Figure 2.2a, the
initial conditions of the model are corrected using both the past and present
observations to get the best overall fit for the state of observations. e sequential
methods (also known as filtering), such as the Kalman filter [48, 50, 52, 57], are part of
an estimation theory in which observations are used as they become available to update
the present state of the model (see Figure 2.2b). Sequential methods in contrast to the
variational methods, have discontinuities in the time series of the corrected state, as
illustrated in Figure 2.2b. Common Kalman filter methods include the Extended
Kalman filter (EKF) [53, 61], the ensemble Kalman filter (EnKF) [55], and the
unscented Kalman filter (UKF) [52, 54].

In variational data assimilation, an adjoint model is used. is requires the model to
be differentiable, and the adjoint is obtained by linearising the forward model to
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F .: Schematic of the data assimilation methods. (2.2a) shows the
variational data assimilation approach. e initial conditions of the model
are corrected using both the past and present observations. (2.2b) shows the
sequential assimilation approach where the state is updated when an observation
is available. Figure adapted from [62].

produce the tangent linear model [56]. While the classic Kalman filter [48] provides
the optimal state estimate for linear systems, for nonlinear models, the EKF is used.
However, the use of EKF requires derivation of a tangent linear model and the forecast
model is linearised using a Taylor series expansion. Instead of linearising the nonlinear
model as is done in the EKF, the UKF makes use of a set of points which are
propagated through the actual nonlinear function. e use of a deterministic sampling
approach makes the UKF a derivative-free alternative to EKF [54]. e UKF belongs
to a larger class of filters known as Sigma-Point Kalman Filters. e UKF claims a
higher accuracy and robustness for nonlinear models than the EKF [63]. e ensemble
Kalman filter (EnKF) uses an ensemble of model states that is integrated forward in
time using the nonlinear model with replicates of system noise [56]. e EnKF has
advantages over EKF and the variational methods as it requires no derivation of a
tangent linear operator or adjoint equations. e accurateness of EnKF increases with
the increase in the ensemble size [64]. Table 2.1 gives a comparison of the advantages
and disadvantages of the ensemble based methods compared to variational methods as
provided in Dunne and Entekhabi [56].

Increasingly, DA is now used to estimate or correct uncertain parameters of a model
using techniques such as joint state-parameter augmented models [33, 65–68], dual
state-parameter estimation models [69], and cases where model parameters are
considered as special states [70, 71]. Parameter estimation in hemodynamic problems
using an UKF have also been recently proposed [10, 35, 36, 39]. In the following
sections, we show the basic derivations and equations involved in the formulation of
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T .: Advantages and disadvantages of ensemble-based methods
compared to variational methods. Table adapted from Dunne and Entekhabi
[56].

Ensemble based methods Variational Techniques
Advantages Any model can be used.

Model does not need to be
differentiable. Noise can be
placed anywhere, for example,
on uncertain parameters.
Noise can be non-Gaussian
and non additive.

Use all data in a batch window
to estimate the state.

Disadvantages Estimates are conditioned on
past measurements only.

Model must be differentiable
to obtain tangent-linear
model. Process noise can
only be additive and Gaussian.
Changes to model require that
adjoint be obtained again.

the linear Kalman filter (KF), EKF, UKF, and the EnKF. An algorithm is then
proposed to estimate model parameters using DA with an EnKF.

2.2 Discrete linear Kalman filter

e KF [48] assimilates data into linear systems with Gaussian model and
measurement noise, and also serves as the mathematical foundation for an EKF,
EnKF, and UKF. e KF minimises the difference between the estimated states and
the true states by solving the problem of least squares estimation in a recursive manner
and gives an estimate of the state every time a new observation is recorded. Some of
the common approaches available in the literature on the derivation of linear KF
include using the idea of orthogonal projections [72, 73], using the properties of a
multivariate normal distribution [74], and using the weighted least-square approach
[75–77].

is section presents the basic equations of the Kalman filter, for discrete-time linear
systems using the estimation approach of minimum variance following the derivation of
Todling and Cohn [77].
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A discrete linear stochastic-dynamic system is considered and represented in matrix-
vector notation as

xk+1 = Akxk + wk, (2.1a)

yk = Hkxk + vk, (2.1b)

for the discrete times k = 1, 2, . . . , where xk ∈ Rn is the model state vector, Ak ∈ Rn×n

is the true dynamics (transition) matrix, yk ∈ Rm is the measurement vector related to
the true state x through the measurement matrixHk ∈ Rm×n, m andn are the dimension
of the measurement vector and the state vector respectively. e model error wk ∈ Rn

and the observation error vk ∈ Rm are independent zero-mean Gaussian processes with
covariance matrices Qk and Rk at time tk, respectively. Letting the symbol E denote
the expectation, we have E (wk) = 0 and E (vk) = 0.

e DA problem statement is: given a prior (forecast or background) estimate xf
k of the

system state at time tk, what is the update (or analysis) xa
k based on the measurements yk?

e dynamical system in Equation (2.1a) that involves the model error wk and an
unknown initial state is replaced by a forecast model as

xf
k+1 = Akxa

k (2.2)

where the superscripts f and a stand for forecast and analysis, respectively. e forecast
model represents an alternative way of estimating the state of the system at a particular
time. An estimate of the state at time tk is assumed to be a linear combination of the
forecast state, given by Equation (2.2), and the observations, given by Equation (2.1b)
[77],

xa
k = L̃kxf

k + K̃kyk (2.3)

where L̃k and K̃k are the two weighting matrices to be determined. e forecast and the
analysis errors are defined as

ea
k = xa

k − xk; ef
k = xf

k − xk (2.4)

where xk is the true state of the system at time tk. It can be shown that for an unbiased
forecast error i.e. E

(
ef
k

)
= 0, the analysis error is unbiased if the weighting matrix



Chapter 2. Data assimilation 16

L̃k = I− K̃kHk [77]. Equation (2.3) can then be written as

xa
k = xf

k + K̃k

(
yk −Hkxf

k

)
. (2.5)

Subtracting xk from both sides of Equation (2.5) and using Equation (2.4), the analysis
error is written as

ea
k = ef

k + K̃k

(
yk −Hkxf

k

)
. (2.6)

Substituting Equation (2.1b) into Equation (2.6) the analysis error is rewritten as

ea
k = (I− K̃kHk)ef

k + K̃kvk. (2.7)

At observation locations, the gain matrix K̃k describes the weights given to the
observations yk and the measurements (forecast variable) Hkxf

k [77]. e gain matrix is
measured using the covariances of the forecast and analysis errors which are defined as

Pa
k = E

[
(ea

k)(ea
k)

T] ; Pf
k = E

[
(ef

k)(ef
k)

T] . (2.8)

e two matrices in Equation (2.8) describe the evolution of the analysis and forecast
error covariances, respectively, and are written as [77]

Pa
k = (I− K̃kHk)Pf

k(I− K̃kHk)
T + K̃kRkK̃T

k (2.9a)

Pf
k+1 = AkPa

kAT
k +Qk. (2.9b)

e observation error covariance matrix Rk = E
(
vkvT

k

)
, and Qk = 0 for a perfect

model. e gain matrix is obtained from a particular choice of K̃k that is obtained by
minimizing the analysis error variance. An estimator J a

k is introduced which measures
the reliability of the analysis by measuring the distance between the analysis (estimate)
and the true value of the state of the system at time tk [77]:

J a
k = E

[
∥ea

k∥2Bk

]
= E

[
ea
kBk(ea

k)
T]

= E
[
Tr

(
Bkea

k (ea
k)

T
)]

= Tr (BkPa
k) (2.10)

which follows from the properties of trace operator where Bk is a positive definite, and
deterministic n× n scaling matrix.



Chapter 2. Data assimilation 17

Substituting the expression (2.9a) for Pa
k in Equation (2.10), differentiating with respect

to K̃k, and equating the result to zero yields

Bk

{
HkPf

k

(
I− K̃kHk

)T
− RkK̃T

k

}
= 0. (2.11)

From Equation (2.11) the minimum value of the estimator J a
k is obtained

(independently of Bk) when the gain matrix is [48]

K̃k = Kk = Pf
kHT

k

(
HkPf

kHT
k + Rk

)−1
. (2.12)

e matrix Kk is the optimal weighting matrix referred to as the Kalman gain.
Substituting this optimal gain into Equation (2.9a) yields a simplified equation for
analysis error covariance matrix

Pa
k = (I− KkHk)Pf

k. (2.13)

Finally, the weighting matrix K̃k is replaced by Kk in Equation (2.5), and the analysis
state is obtained as

xa
k = xf

k + Kk

(
yk −Hkxf

k

)
. (2.14)

2.3 Extended Kalman filter

e EKF algorithm is a recursive procedure to estimate the optimal state vector and
the corresponding covariance matrix for nonlinear continuous state vector equation and
nonlinear discrete observation vector [78]. Using a predictor-corrector method, EKF
approximates an optimal estimate due to the linearisation of the state and measurement
system. Mathematical formulation and derivations of EKF can be found in [53, 61, 79].

For general nonlinear dynamical systems, it is assumed that the dynamic system
evolves according to a state transition function f and the measurement y is a function,
h, of the current state with and additive Gaussian noise vk with covariance Rk:

xk+1 = f(xk, uk) + wk, yk = h(xk) + vk. (2.15)

uk ∈ Rm is the control input or parameters while other variables are as defined in Section
2.2.
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e EKF linearises the non-linear system around the current state using the Jacobian
matrices

Ak =
∂f(x, u)

∂x


x=xa

k

and Ck =
∂h(x)
∂x


x=xa

k

. (2.16)

e analysis step of EKF is the same as the analysis step in the traditional KF linear
Kalman filter given by Equations (2.12)-(2.14). e only difference is that the model
and measurement matrices are linearised using Equation (2.16). erefore, the major
steps in EKF are:

Kk = Pf
kCT

k

(
CkPf

kCT
k + Rk

)−1
,

xa
k = xf

k + Kk

(
yk − h(xf

k)
)
,

Pa
k = (I− KkCk)Pf

k,

 Analysis step

xf
k+1 = f(xa

k, uk),

Pf
k+1 = Ak,Pa

kAT
k +Qk.

 Forecast step

In the EKF the state distribution which is approximated by a Gaussian random variable
is no longer normal after undergoing the first-order linearisation. is may affect the
performance of the EKF and can lead to filter divergence in extreme cases [54, 80]. To
counter this problem, Julier and Uhlmann [52] proposed the improved version of EKF
known as Unscented Kalman Filter.

2.4 Unscented Kalman filter

To counter the approximation issues of the EKF, the UKF employs a set of sigma-points
from the distribution of the state vector x at the beginning of the time step [63]. ese
sigma-points are then propagated in time via the nonlinear model. e model forecast
and analysis steps in the UKF are preceded by another step for the selection of sigma-
points. e mathematical formulations of UKF equations can be found in [51, 52, 54,
81, 82]. We present the basic principles and the algorithm of the UKF following [54,
81, 82].

We again consider a discrete-time nonlinear dynamic system as in Section 2.3:

xk+1 = f(xk, uk) + wk, yk = h(xk) + vk (2.15 revisited)
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where the variables have the same definitions as in Sections 2.2 and 2.3. To linearise non-
linear functions f and h, UKF applies the stochastic approximation called Unscented
Transform (UT) [51].

UT is used to calculate the statistics of a random variable (rv) undergoing a nonlinear
transformation [51, 54]. To illustrate how UT works, a rv, x ∈ Rn with mean x and
covariance Px is considered. e objective is to estimate a Gaussian approximation of the
distribution by propagating x through a nonlinear function z = g(x). e approximation
is performed using UT by extracting 2n+1 sigma points X [i] according to the following
[54]:

X [0] = x

X [i] = x+
(√

(n+ λ)Px

)
i
, i = 1, . . . , n

X [i] = x−
(√

(n+ λ)Px

)
i−n

, i = n+ 1, . . . , 2n,

(2.17)

where λ = α2(n+ l)−n is a scaling parameter. e constant α is a small positive value
(e.g. 10−4 < α <1), that determines the spread of the sigma points around x [54]. To
have a semi-positive definite covariance matrix, the scaling parameter l is usually set to
3−n [51, 54].

(√
(n+ λ)Px

)
i

is the ith column of the matrix square root.

e sigma points are passed through the nonlinear function g,

Z [i] = g
(
X [i]

)
, i = 0, . . . , 2n (2.18)

and with the resulted transformed observations, the mean and covariance for z are
computed from the mapped sigma points Z [i] [54]:

z ≈
2n∑
i=0

w[i]
mZ [i]

Pz ≈
2n∑
i=0

w[i]
c

(
Z [i] − z

) (
Z [i] − z

)T
,

(2.19)

with corresponding weights (w[i]
m for mean and w

[i]
c for covariance)

w[0]
m = λ/(n+ λ)

w[0]
c = λ/(n+ λ) + (1− α2 + β2)

w[i]
m = w[i]

c = 1/ {2(n+ λ)} , i = 1, . . . , 2n.

(2.20)
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For Gaussian distribution β =2 is used as an optimal value [54]. e UKF applies the
UT to the transition function f and the observation function h in Equation (2.15). e
UKF equations in the forecast and assimilation steps are summarised in Table 2.2.

T .: Summary of Unscented Kalman Filter (UKF) equations.
Summarised from [54, 83].

• Initialisation at k = 0
e mean, x0 = E [x0], and the covariance, Px = E

[
(x− x0) (x− x0)T

]
, of

the estimate along with the control input, u0, are assumed to be available.
• For k = 1, 2, . . . ,∞

1. Calculate the sigma points using Equation (2.17):

X [i]
k−1 =

[
xk−1, xk−1 +

(√
(n+ λ)Px

)
k−1

, xk−1 −
(√

(n+ λ)Px

)
k−1

]
2. Time-update equations
Propagate, each sigma point through the nonlinear process model:
X f[i]

k = f(X [i]
k−1, uk−1) for i = 0, . . . , 2n, where ‘f ’ denotes the forecast

(predicted) value.
Compute the forecast mean and the variance from the resulting sigma
points:

xf
k =

∑2n
i=0w

[i]
mX f[i]

k ; Pf
xk =

∑2n
i=0w

[i]
c

(
X f[i]

k − xf
k

)(
X f[i]

k − xf
k

)T
,

where the weights wi
c and wi

m are as defined in Equation (2.20).
Propagate the sigma points through the nonlinear measurement model
to compute the forecast observations: Y f[i]

k = h
(
X f[i]

k

)
, i = 0, . . . , 2n.

Compute the mean of the measurement vector: yf
k =

∑2n
i=0w

[i]
mY f[i]

k .
3. Measurement-update equations
Compute the observation covariance matrix:

Pykyk =
∑2n

i=0w
[i]
c

(
Y f[i]

k − yf
k

)(
Y f[i]

k − yf
k

)T
+ Rk, where Rk is the

observation error covariance matrix.
Compute the cross covariance between the state and observation:

Pxkyk =
∑2n

i=0w
[i]
c

(
X f[i]

k − xf
k

)(
Y f[i]

k − yf
k

)T
.

Calculate the Kalman gain: Kk = PxkykP−1
ykyk .

e UKF estimate and its covariance are computed from the standard
Kalman update equation:
xa
k = xf

k + Kk

(
yk − yf

k

)
,

Pa
xk = Pf

xk − KkPykykKT
k .

e UKF claims a higher accuracy and robustness for nonlinear models than the
EKF [63] and does not require explicit calculations of Jacobian as in EKF. Moireau
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and Chapelle [84] recently introduced a reduced-order filtering strategy adapted to
Unscented Kalman Filtering. e algorithms for Reduced-Order Unscented Kalman
Filter (ROUKF) are derived in discrete time as in the classical UKF formalism. While
the algorithm for ROUKF is restricted to the parameter space, it can be used for the
estimation of parameters in large dynamical systems [84].

2.5 Ensemble Kalman filter

First introduced by Geir Evenson [55], an Ensemble Kalman Filter (EnKF) solves the
Fokker-Plank equation using a Monte Carlo or ensemble integrations [85]. It is a
sub-optimal estimator for problems involving high-order non-linear models. e error
statistics are predicted using the ensemble of states. Different versions of EnKF are
available in the literature: Deterministic Ensemble Kalman filter (DEnKF) [86],
Monte Carlo EnKF [55, 87], EnKF [57, 88], Hybrid EnKF [89], Ensemble
Transform Kalman filter (ETKF) [90], Ensemble Adjustment Kalman filter (EAKF)
[65], Ensemble Square Root filters (EnSRF) [91] and Local Ensemble Kalman filter
(LEKF) [92].

2.5.1 Derivation of Ensemble Kalman filter

In EnKF, the forecast error covariance matrix is evaluated using an ensemble of forecasts.
In this section, we follow and describe the different steps employed in the formulation
of EnKF as presented in [70, 88, 93–95].

We assume that the discrete nonlinear system is described by

xk+1 = f(xk, uk) + wk, yk = h(xk) + vk. (2.21)

e model state at time tk is xk ∈ Rn, while the observed state is yk ∈ Rnobs. n is the
dimension of the model state vector and nobs is the number of observations. uk ∈ Rm

represents a set of model parameters. wk ∈ Rn and vk ∈ Rnobs are assumed uncorrelated
Gaussian model errors with wk ∼ N (0,Qk) and vk ∼ N (0,Rk) where Qk and Rk

are the covariance matrices. h is the function describing the relationship between the
measurement and the states.
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e initial forecast ensemble of states (prior ensembles)
Xf

k = (xf1
k , . . . , x

fqens
k ) ∈ Rn×qens for i = 1, . . . , qens is assumed to be available at t = k. fi

denotes the initial ith forecast member of an ensemble size qens. e mean of the
ensemble of forecast state is xf

k ∈ Rn and is given by

xf
k =

1

qens

qens∑
i=1

xfi
k . (2.22)

e forecast covariance matrix, Pf
k ∈ Rn×n, is defined by

Pf
k =

1

qens − 1

qens∑
i=1

(
xfi
k − xf

k

)(
xfi
k − xf

k

)T
. (2.23)

After the computation of the Kalman gain Kk, all operations on the ensemble members
are independent in the EnKF analysis step and the ensemble members are updated using:

xai
k = xfi

k + Kk

[
yik − h

(
xfi
k

)]
, i = 1, . . . , qens, (2.24)

where ai represents the ith updated or analysed member of the ensemble. To maintain
the correct forecast error covariance, a suitable spread of the ensemble members is
required. Perturbations are added to the original observation vector to avoid having an
updated ensemble with a low variance [96]. An ensemble of the same size qens

consisting of observations is also generated by adding small perturbations to the
observation set yk. Perturbations are generated to have the same distribution as the
measurement error and the perturbed observations yik are defined by

yik = yk + eik, i = 1, . . . , qens (2.25)

where eik ∈ Rnobs is a Gaussian random vector with zero mean and a specified variance.
e measurement error covariance matrix, Rk, is diagonal following the assumption of
independent observations [91] and is defined as

Rk = diag
[

1

qens − 1
EET

]
, E =

[
e1k, . . . , e

qens
k

]
. (2.26)

For a linear measurement function, h, and if the noise is additive, that is

yk = Hxk + vk, (2.27)
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the Kalman gain is defined by [94]

Kk = Pf
kHT (

HPf
kHT + Rk

)−1
. (2.28)

In Equation (2.28), the observation operator, H ∈ Rnobs×n, is linear or linearised. To
circumvent the linearisation of a nonlinear measurement function which might be
difficult to linearise, Houtekamer and Mitchell [97] re-wrote the two terms Pf

kHT and
HPf

kHT which appear in the Kalman gain Equation (2.28) as

Pf
kHT ≡ 1

qens − 1

qens∑
i=1

[
xfi
k − xf

k

] [
h
(
xfi
k

)
− h

(
xf
k

)]T
, (2.29)

HPf
kHT ≡ 1

qens − 1

qens∑
i=1

[
h
(
xfi
k

)
− h

(
xf
k

)] [
h
(
xfi
k

)
− h

(
xf
k

)]T
, (2.30)

where h
(
xf
k

)
= 1

qens

∑qens
i=1 h

(
xfi
k

)
. It has been argued by Ambadan and Tang [98] that

Equations (2.29) and (2.30) approximately hold if the following are true :

h
(
xf
k

)
= h

(
xf
k

)
, (2.31)

norm
(
xfi
k − xf

k

)
is small for i = 1, 2, . . . qens. (2.32)

Equations (2.29) and (2.30) linearise the nonlinear function h to H under the
conditions of Equations (2.31) and (2.32) [70]. For the nonlinear model with a
nonlinear measurement function, a general equation for the Kalman gain can be stated
as [70]:

Kk = Pf
xyk

(
Pf
yyk

)-1
, (2.33)

where the error covariance matrices Pf
xyk

and Pf
yyk

are defined as follows:

Pf
xyk

=
1

qens − 1

qens∑
i=1

[
xfi
k − xf

k

] [
h
(
xfi
k

)
− h

(
xf
k

)]T
, (2.34)

Pf
yyk

=
1

qens − 1

qens∑
i=1

[
h
(
xfi
k

)
− h

(
xf
k

)] [
h
(
xfi
k

)
− h

(
xf
k

)]T
+ Rk. (2.35)

We define the true state (or parameter) as the target of an ideal assimilation. e best
forecast state estimate is given by the ensemble mean xf

k. e error between xf
k and the

true state is given by the standard deviation of the ensemble members around xf
k. e

final step is the forecast step and involves an ensemble of qens forecast states for time
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t = k + 1 as,
xfi
k+1 = f(xai

k , uk) + wi
k, i = 1, 2, . . . qens. (2.36)

2.5.2 Summary of ensemble Kalman filter algorithm

We now summarize the forecast and the analysis steps of EnKF presented in Section
2.5.1. A schematic description of the EnKF algorithm is shown in Figure 2.3. To start
the EnKF, we need to generate an ensemble of qens forecast estimates of state associated
with their random errors. At t = k − 1, it is assumed that xfi

k−1 for i = 1, . . . , qens are
available. We let nobs denote the number of observations. At time t = k, we generate a
set of realizations of the state vector Xk = (x1k, . . . , x

qens
k ) and denote the corresponding

measurements as Yk = (y1k, . . . , y
qens
k ) ∈ Rqens×nobs. Q and R correspond to the model

and observation error covariance matrices, respectively. We write the equations for the
EnKF as:

xfi
k = f(xai

k−1, uk−1) + wi
k−1, i = 1, . . . , qens,

wi
k ∼ N (0,Qk),

Pf
xyk

=
1

qens − 1

qens∑
i=1

[
xfi
k − xf

k

] [
h
(
xfi
k

)
− h

(
xf
k

)]T
,

Pf
yyk

=
1

qens − 1

qens∑
i=1

[
h
(
xfi
k

)
− h

(
xf
k

)] [
h
(
xfi
k

)
− h

(
xf
k

)]T
+ Rk,

Kk = Pf
xyk

(
Pf
yyk

)-1
,

yik = yk + eik, i = 1, . . . , qens,

xai
k = xfi

k + Kk

[
yik − h

(
xfi
k

)]
, i = 1, . . . , qens.

In the above steps, the superscripts ‘f ’ and ‘a’ denote the forecast and the analysis steps
respectively. EnKF algorithm yields an ensemble of analyses at time t = k, which can
be cycled in time.

UKF differs from EnKF by the choice of the sampling. UKF uses a minimal set
of deterministically chosen points (sigma points) and propagates this set through the
actual non-linear function [10]. In contrast, EnKF uses a Monte-Carlo-based choice
of many points (members of the ensemble) for forward propagation. UKF should be
preferred if the output of the system deviates from a Gaussian distribution. Except with
the computation of the Kalman gain, all the operations on the ensemble members are
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t = kt = k − 1 t = k + 1
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EnKF EnKF

EnKF

F .: A schematic description of the Ensemble Kalman Filter. Adapted
from [37].

independent. is implies that their parallelization can be trivially carried out. is is
one of the reasons for the success and popularity of the EnKF and UKF.

2.6 An algorithm for parameter estimation with data
assimilation

e parameter estimation problem tends to improve estimates of a set of poorly known
model parameters using DA. Generally, we have observable data for the state, but no
direct observable data for the parameters. Parameter estimation can be performed in
the same framework as state estimation, by augmenting state vectors by the poorly
known parameters that need to be estimated. is framework is referred as joint
state-parameter augmented models [65–68]. e augmentation requires a construction
of a Kalman filter for the augmented model and parameters is considered as part of the
model within the EnKF paradigm, which is updated by the analysis together with the
other model’s variables. However, in augmented models, an increase in the number of
unknown model states and parameters increases the degree of freedom in the system
and can make an estimation unstable through parameter collapse and filter divergence
[69, 99]. In a dual state-parameter estimation [69] the EnKF requires two separate
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state-space representation for the state and parameters through two separate parallel
Kalman filters. In dual EnKF, the parameters can be updated first and then the state
variables or vice-versa.

In the current work, the EnKF algorithm is used to estimate only the model
parameters. e parameters are thus considered as special state variables (the state vector
contains only the model parameters). e evolution of parameters is characterized by a
random walk model [71, 100] and is defined as xik+1 = xik + τ ik. τk ∼ N (0,Tk) is a
small random perturbation with predefined variance T. e parameter estimation
algorithm uses a set of nobs observations such as blood pressure, blood flow rates, flow
velocity or arterial wall movements to improve a set of given initial estimate of the
hemodynamic parameters, x. Numerical simulators can be regarded as nonlinear
functions that take parameter vector xi as an input and produces a set of output vector,
Yk = (yf1

k , . . . , y
fqens
k ) ∈ Rqens×nobs [101]. Each member, yfi

k , is defined by yfi
k = H(xfi),

where H is the nonlinear measurement function defined by the numerical simulator.
e information from observations are used by the Kalman filter during the analysis
step and the Kalman gain Equation (2.24) is applied to update the ensemble members.
e use of Equation (2.24) assumes that the parameters follow a Gaussian distribution
[101]. e parameter estimation procedure using the EnKF is stated in Algorithm 1
[37]. e algorithm can be stopped when some finite convergence criterion is achieved.
At convergence, the mean of the ensemble is taken as the best estimate of the
parameters. A flow chart for parameter estimation using EnKF is shown in Fig. 2.4.

Algorithm 1: Parameter estimation using EnKF. Adapted from Lal et al. [37]
Input: Ensemble size qens, maximum number of EnKF iteration (jmax),

variance matrix T, nobs, initial estimate of n unknown parameters
(mean xl and variance Pl for l = 1, . . . , n).

1 Initialization: Randomly initialize an ensemble of parameters, xi, for
i = 1, . . . , qens where xi = (x1, x2, . . . , xn) and xl ∼ N (xl, Pl) for
l = 1, . . . , n.

2 Let xai = xi
3 for j = 1 to jmax do
4 -Evolution of ensemble: xfi = xai + τ i, τ i ∼ N (0,T) ∀i = 1, . . . , qens
5 -Ensemble propagation: yfi = H(xfi) ∀i = 1, . . . , qens
6 -Perturbation of observations for each ensemble: yi = y+ ei,

∀i = 1, . . . , qens
7 -Determine R and K using Equations (2.26) and (2.33) respectively.
8 -Ensemble update: xai = xfi + K

[
yi − yfi

]
∀i = 1, . . . , qens.
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F .: Parameter estimation flow chart using the ensemble Kalman filter.

2.7 An example of EnKF algorithm application: a test case

2.7.1 Parameter estimation of an advection-diffusion equation

e EnKF parameter estimation algorithm (Algorithm 1) is applied to a simple
advection-diffusion problem. We consider the model equation:

∂s

∂t
+ v

∂s

∂z
= µ

∂2s

∂z2
, (2.37)

where s (z, t) is the model state variable of interest at position z and time t, v is the
constant advection velocity, and µ is the viscosity (diffusion coefficient). Using finite
difference method, Equation (2.37) is discretized over a spatial grid with N = 101 nodes,
resulting in (at time t = k + 1)

sjk+1 − sjk
∆t

= −v
sj+1
k − sj−1

k

2∆z
+ µ

sj+1
k − 2sjk + sj−1

k

(∆z)2
+O

(
∆t, (∆z)2

)
(2.38)

for j = 2, 3, . . . , N − 1. Model parameters are: the grid size △z = 0.01 m; the domain
length L = 1 m; the advection velocity v = 1 ms−1 and the viscosity µ = 0.01 m2s−1. e
computational domain is set to [0, 1]. e initial condition is given by s(z, 0) = 1, and
the boundary conditions are defined by

s(0, t) = A+B sinωt, (2.39)

s(1, t) = 2 s(0.99, t)− s(0.98, t), (2.40)

where A = 1.0 m, B = 0.25 m and w = 10 rad·s−1. e model time step, ∆t, is chosen
such that ∆t ≤ min

{
∆z2

2µ
, ∆z

µ

}
.
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Equation (2.38) can be written as: sk+1 = f(sk, x)+wk, where the column vector sk =
(s1k, s

2
k, . . . , s

101
k )

T ∈ R101 is the model state vector. e vector x = (v, µ, A,B, ω)T ∈
R5 is a vector of five model parameters. e operator f is the linear function describing
the evolution of the model state from time t = k to t = k+1. e vector of model state
error wk = 0 assuming the perfect model assumption [102]. erefore, the uncertainty
in the unknown parameters is the only source of the model error.

Twin experiments are performed to illustrate how parameters can be estimated
using the EnKF Algorithm 1. In the twin experiments, a reference (target) solution is
generated by simulating the model for a relatively long period of time with known
parameters, x = (v, µ,A,B, ω)T, together with the initial and boundary conditions as
specified above. Four time series values of the state s at positions z = 0.05, 0.25, 0.45

and z = 0.8 are recorded. We define nobs as the number of positions where a time
series of observed state values are available, and thus, for the above four time series
synthetic observations, nobs = 4.

For the parameter estimation problem, the aim is to retrieve the original set of
parameters, x, using synthetic observations. e problem set-up is shown in Figure 2.5.
e uncertain model parameters are treated as special states for estimation and
assuming a random walk model, is defined as xk+1 = xk + τk+1, where
τk+1 ∼ N (0, 1 × 10−7). e measurement vector is yk = h (sk, xk), where h is the
linear measurement function defined by h (sk, xk) = (s5k, s

25
k , s45k , s80k )

T.

z = 0 z = 1
z = 0.25 z = 0.8z = 0.05 z = 0.45

s(0, t) = 1.0 + 0.25 sin 10t s(1, t) = 2s(0.99, t)− s(0.98, t)

F .: Illustration of the parameter estimation problem set-up for
advection-diffusion model. Observations (time series values of s) are available
at positions z=0.05 m, 0.25 m, 0.45 m and 0.8 m.

An ensemble of qens = 25 members is formed. Each ith forecast member, xfi , runs
with different parameter values, in order to estimate the effect of the parameters to be
estimated in the model state. e error covariance matrix is defined as Rk = 0.002I4. To
test the sensitivity to initial parameter values, the performance of the EnKF parameter
estimation algorithm is tested using two different sets of initial estimates for the five
parameters (v, µ, A,B, ω).
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e parameter values are drawn from a Gaussian distribution with initial mean
values that are intentionally either lower or higher than the target parameters. e
initial mean values for {v, µ, A,B, ω} are {0.5, 0.05, 0.6, 0.4, 7.5} and {1.5, 0.02, 1.5,
0.05, 15.0}, and the initial ensemble variance are 12.25% of the mean values. e
estimation algorithm using the EnKF coupled with the advection-diffusion model is
performed using an assimilation window of 100 s with the assimilation taking place
every 0.15 s. is means 667 EnKF iterations.

2.7.2 Results and discussion

Figure 2.6 shows the estimated parameter evolution with the two sets of initial
estimates of parameters. e parameter ensemble standard deviation (represented by
shaded regions around the solid lines in Figure 2.6) evolves with time, showing a
decreasing trend. e standard deviations indicate the uncertainties associated with the
estimated value of parameters. e final estimates of parameters with their associated
uncertainties with the two sets of initial estimates are summarised in Table 2.3. e
estimated parameter values converge to the target value with relatively small errors in
less than 80 s, after that, the mean values of estimated parameters remain almost
constant. It should be noted from Figure 2.6 and Table 2.3 that the algorithm allows
retrieving the target value independently on the initial estimate.

T .: Initial and EnKF estimated parameters. e parameter values are
based on the ensemble average after 667 EnKF iterations.

Parameter Target Initial
guess

Final EnKF
estimate

Uncertainty
(standard deviation)

v (ms−1) 1.0 0.5 0.990 0.002
1.5 1.000 0.002

µ (m2s−1) 0.01 0.05 0.010 0.001
0.02 0.010 0.001

A (m) 1.0 0.6 1.000 0.002
1.5 1.000 0.002

B (m) 0.25 0.4 0.250 0.003
0.05 0.249 0.003

w (rad·s−1) 10.0 7.5 10.0100 0.0006
15.0 10.0800 0.0006

e effect of parameter estimation on the error in the model parameters is also
analysed. e analysis error for the model parameters are computed using the root
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F .: Time evolution of estimated parameters (ensemble mean values
represented by solid lines) using two sets of initial estimates: initial mean
estimates of parameters are: {v, µ,A,B, ω} are {0.5, 0.05, 0.6, 0.4, 7.5} and
{1.5, 0.02, 1.5, 0.05, 15.0}. e shaded areas around the estimated parameters
indicates the final ensemble spread (standard deviation). e target value of the
parameters is shown by the dotted black lines.

mean square error (RMSE),

RMSE (x, xtarget) =

√
1

n
(x− xtarget) (x− xtarget)T (2.41)

where x and xtarget are EnKF estimated and target parameters respectively, and n = 5 is
the length of the parameter vector. e time evolution of RMSE in parameter estimates
is shown in Figure 2.7a for different ensemble size ranging from qens = 4 to qens = 50.
From the analysis RMSE, we see that the accuracy of the EnKF increases when the
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number of ensemble size increases. Figure 2.7b shows the evolution of the final value of
RMSE as a function of the ensemble size. is illustrates the trade-off between EnKF
accuracy and the ensemble size. From this figure, the RMSE does not decrease after
qens = 17 and, thus, can be taken as the minimum qens required by the EnKF parameter
estimation algorithm for the current test case.
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F .: Time evolution of RMSE: (2.7a) with different ensemble size
ranging from qens = 4 to qens = 50 and (2.7b) as a function of ensemble size
qens.

Figures 2.8a and 2.8b show the estimated time evolution solutions of state s obtained
with the EnKF estimated parameters at two of the four observation locations (at position
z = 0.05m and z = 0.45m). e estimated solutions are compared with the initial
estimates and the target waveform of the state s at the two positions for two complete
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cycles. e forward simulation with the estimated parameters is able to capture the target
time evolution solutions of state s at positions where observations were made. Figure
2.8c illustrates the convergence of the estimated solution at t=1.26 s (after 2 cycles) using
qens = 25. e estimated solution when compared with the target state profile (reference
solution) shows good agreement over the full computational domain.

Overall, for this simple advection-diffusion problem, the EnKF showed good
performance in both estimation of parameters and its accuracy.
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F .: (2.8a) compares the estimated time evolution solution of the
observed state (in dotted red) at z = 0.05 m with the initial (in black) and the
target waveform (in blue). (2.8b) shows the corresponding comparison of the
observed state at z = 0.45 m. In (2.8c) the plots show the target state profile
(in blue), measurements (blue dots), and the EnKF estimate (in dotted red) at
time t = 1.26 s.
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This chapter presents the existing numerical method for the 1D blood flow on systemic

networks. It reviews the two types of boundary conditions used in the thesis, the constant

resistance model and the three element Windkessel model. The chapter is concluded by

applying the ensemble Kalman filter-based parameter estimation to four simple test cases

with in silico and real measurements (data).

3.1 Introduction

e one-dimensional (1D) governing equations for the blood flows have been extensively
used in hemodynamic applications (especially to study wave propagation phenomena in
arteries) due to being computationally cheap compared to three-dimensional (3D) fluid-
structure interaction models [3, 5, 103]. e 1D model provides good and accurate
results if the 3D effects in the flow can be neglected, and its applicability have been
extended to the venous system (e.g. Müller and Toro [104] and Ho et al. [105]). e
1D model can also be used to explore the factors causing changes in flow pulse and
pressure waveforms in arteries due to cardiovascular disease [5].

Some of the major contributions to the mathematical formulation of 1D blood flow
modelling and its applications to hemodynamics include the works of Hughes and
Lubliner [106], Avolio [107], Stettler et al. [108], Stergiopulos et al. [109], Olufsen
et al. [110], Formaggia et al. [111], Sherwin et al. [1, 112], Bessems et al. [113],
Mynard and Nithiarasu [114], Hellevik et al. [115], Reymond et al. [116], Saito et al.
[13], Low et al. [117], Eck et al. [118], Müller and Toro [104, 119], Montecinos et al.
[4] and Blanco et al. [3, 120, 121].

1D blood flow models have also been used to capture essential features of blood
flow rates and pressure waveforms in large blood vessels. ese include using in vitro
experiments (e.g. Saito et al. [13], Huberts et al. [122] and Alastruey et al. [123]) and
in vivo measurements (e.g. Reymond et al. [116], Steele et al. [124] and Willemet
et al. [125]).
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3.2 Mathematical model

3.2.1 One-dimensional model for blood flow

e model assumes that blood is a Newtonian fluid in large vessels and can be considered
incompressible with constant density ρ and constant dynamic viscosity µ [126]. It is also
assumed that the blood vessels have cylindrical geometries with cross section area A, and
the cardiovascular system is considered as a network of these interconnected vessels with
blood flow in one-dimension (see Figure 3.1).

x

A(x)

F .: A simple elastic tube as a model of an artery.

We consider the following governing equations representing mass and momentum
conservation [1]:

∂A

∂t
+

∂q

∂x
= 0,

∂q

∂t
+

∂

∂x

(
α
q2

A

)
+

A

ρ

∂p

∂x
= −kr

q

A
,

(3.1)

where x and t represent the axial direction and time respectively, A(x, t) is the cross
section area, q(x, t) is the flow rate across a section, ρ denotes the density of the blood,
p is the average internal pressure over the cross-section, and u(x, t) = q(x,t)

A(x,t)
represents

the cross section averaged blood velocity. For a flat velocity profile, the momentum-flux
correction coefficient, α, equals unity [1]. kr represents the viscous resistance of the flow
per unit length of the vessel. A, q and p are the unknowns in the system (3.1).

A differential constitutive pressure-area relationship is required to close the system
and accounts for the fluid-structure interaction of the problem [1, 5]. A nonlinear model
for pressure law (or tube law) is adopted according to Kelvin-Voigt model [13]:

p = pe +
β

A0

[(√
A−

√
A0

)
+ ϵp

(√
A−

√
A0

)2
]
+

γ

A0

∂
√
A

∂t
. (3.2)

Here, pe denotes the constant external pressure, A0 = A0(x), denotes the vessel sectional
area at equilibrium state and ϵp is the non linearity coefficient. e term γ is hη

√
π,
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where h is the thickness of the tube and η is the viscoelastic coefficient. e coefficient
β, which is related to the arterial stiffness is defined as:

β =

√
πhE

(1− σ2)
, (3.3)

where E = E(x) is the Young’s modulus and σ = 0.5 is the Poisson ratio [1].

With a specified inflow boundary condition, the 1D governing equations for the
blood flow are solved using the terminal models for the outflow boundary conditions
[3].

3.2.2 Characteristics analysis

e 1D model (3.1) can be rewritten in a conservative form,

∂U
∂t

+
∂F(U)
∂x

= S(U), (3.4)

where U = [A, q]T denotes the vector of conserved variables, F(U) are the fluxes and
S(U) are the source terms defined by:

F(U) =

 q

α q2

A
+ β

3ρA0
A

3
2 + βϵp

ρA0

(
1
2
A2 − 2

3

√
A0A

3
2

) ,

S(U) =

 0

−kr
q
A
+ γ

√
A

2ρA0

(
∂2q
∂x2 − 1

2A
∂A
∂x

∂q
∂x

) .

(3.5)

e highly coupled system of non-linear equations (3.4) is decoupled to implement the
numerical solution with the prescribed boundary conditions [114]. e characteristic
system is derived by expressing the system of equations (3.4) in a quasi-linear form which
can be expressed as [114]:

∂U
∂t

+ J∂U
∂x

= S, (3.6)

where the Jacobian reads:

J(U) = ∂F
∂U =

 0 1

−α q2

A2 +
β

2ρA0
A

1
2 + βϵp

ρA0

(
A−

√
A0

√
A
)

2α q
A

 . (3.7)
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rough consideration of the non-linear coefficient (ϵp) and viscoelasticity (η) as source
terms, the characteristic analysis shows that for all allowable U (that is for A > 0), the
system is hyperbolic and the two real eigenvalues of J are [2, 127]:

λ1 =
αq

A
+

√
β

2ρA0

A
1
2 + α(α− 1)

q2

A2
> 0,

λ2 =
αq

A
−

√
β

2ρA0

A
1
2 + α(α− 1)

q2

A2
< 0.

(3.8)

When α = 1, the associated characteristic variables have the following expressions:

W1 =
q

A
+ 4(c− c0),

W2 =
q

A
− 4(c− c0),

(3.9)

where c =
√

β
2ρA0

A
1
4 and c0 =

√
β

2ρA0
A

1
4
0 . e characteristic system can be expressed

as the decoupled system of equations:

∂w1

∂t
+ λ1

∂w1

∂x
= 0,

∂w2

∂t
+ λ2

∂w2

∂x
= 0.

(3.10)

e wave velocity which arises from the blood wall coupling may take values as low as
5 m/s in large arteries (e.g. aorta), increasing to values around 20-35 m/s in less
distensible peripheral arteries [126]. However, peak flow velocities u are much smaller
and usually remain less than around 1 m/s.

3.3 Numerical methods

To solve the 1D equations in the time domain, different formulations and several
numerical schemes have been proposed and used. Some of the common methods (or
schemes) include the finite element methods such as Galerkin
[112–114, 123–125, 128] and Taylor-Galerkin [111, 129] schemes, the method of
characteristics [130, 131], finite volume methods [132, 133], finite difference methods
such as the Lax-Wendroff [110, 134, 135] and the MacCormack methods [13, 115].
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3.3.1 Numerical scheme for one-dimensional blood flow

In this section, we follow Peiró and Veneziani [129] and Formaggia et al. [111], where
equations of the 1D model are discretized in their conservative form (3.4) by employing
a second order Taylor Galerkin scheme. We denote △t = tn+1 − tn the time step and
express the Taylor expansion truncated to the second order at time tn, giving

Un+1 = Un +△t
∂U
∂t

∣∣∣∣n + △t2

2

∂2U
∂t2

∣∣∣∣n. (3.11)

We define the matrix

K =
∂S
∂U =

 0 0

kr
q
A2 +

γ
4ρA0

1√
A

(
∂2q
∂x2 +

1
2A

∂A
∂x

∂q
∂x

)
−kr

A

 , (3.12)

and rewrite Equation (3.4) as
∂U
∂t

= S− ∂F
∂x

. (3.13)

Using the matrices (3.7) and (3.12), we obtain

∂2U
∂t2

=
∂S
∂U

∂U
∂t

− ∂

∂x

(
∂F
∂U

∂U
∂t

)
= K∂U

∂t − ∂

∂x

(
J∂U
∂t

)
= K

(
S− ∂F

∂x

)
− ∂(JS)

∂x
+

∂

∂x

(
J∂F
∂x

)
. (3.14)

At time tn = n△t, the vector of unknowns Un satisfies the following time marching
scheme:

Un+1 = Un +△t

(
Sn − ∂Fn

∂x

)
+

△t2

2

(
Kn

(
Sn − ∂Fn

∂x

)
− ∂(JnSn)

∂x
+

∂

∂x

(
Jn∂F

n

∂x

))
. (3.15)

e spatial discretization uses linear finite elements. e domain Ω is subdivided into
Nel finite elements Ωe of size he. We let Vh be the set of continuous vector functions
in Ω, linear on each element and V 0

h the subspace of Vh whose functions are zero at the
endpoints [129]. e solution of (3.15) requires, for n ≥ 0, to determine Un+1 in Vh
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such that ∀ϕh ∈ V 0
h ,

(
Un+1, ϕh

)
= (Un, ϕh) +△t (Sn, ϕh) +△t

(
Fn,

∂ϕh

∂x

)
+

△t2

2

(
Kn

(
Sn − ∂Fn

∂x

)
, ϕh

)
+

△t2

2

(
Jn
(
Sn − ∂Fn

∂x

)
,
∂ϕh

∂x

)
, (3.16)

where (U, ϕ) =
∫ L

0
U.ϕdx.

For the stability of the numerical method, we follow Formaggia et al. [111] and
impose the following limitation for the time step:

△t ≤ CFL × min
0≤i≤Nel

[
hi

max(λ1,iλ1,i+1)

]
(3.17)

where λ1,i is the value of λ1 at mesh node xi and the maximum CFL number is
√
3
3

[111].

3.3.2 Initial and boundary conditions

e initial conditions for (3.15) are given by:

A(x, 0) = A0(x), q(x, 0) = 0, p(x, 0) = p0(x), (3.18)

where A0(x) and p0(x) are the prescribed functions. e hyperbolic nature of the system
permits to impose the flow rate q or area A at the inlet [1]. At the inlet usually, the flow
rate is specified [136],

q(0, t) = qin(t). (3.19)

Information from the outside and inside of the domain are carried by the incoming
characteristics (W1) and the outgoing characteristics (W2) respectively [137]. At each
end of the tube, a single boundary condition is implemented. is is due to the
characteristic analysis and using the fact that the flow is subcritical (the eigenvalues
[λ1and λ2] in Equation (3.8) have opposite signs) under physiological conditions
[1, 138]. At the inlet at x = 0, Un is assumed to be known and λ2 in (3.10) is
linearised by taking its value at time tn. It can be shown that at the time tn+1, the
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solution corresponding to this linearised problem yields [1, 114]

W n+1
2 (0) = W n

2 (−λn
2 (0)△ t). (3.20)

Equation (3.20) is a first order extrapolation of W2 from the previous time step. Similar
treatment at the outlet x = L, leads to:

W n+1
1 (L) = W n

1 (L− λn
1 (L)△ t). (3.21)

3.3.3 Terminal boundary conditions

To reduce the complexity of the blood flow simulation, peripheral vessels (small
arteries, arterioles and capillaries), which are downstream of the truncation points are
not explicitly accounted for but their effect is represented by proper outflow boundary
conditions [139]. e two most common types of terminal boundary conditions used
are the constant or single resistance model [1, 13, 114, 137, 139, 140] and the
three-element Windkessel model [5, 14, 32, 139, 141–143], that can be obtained using an
analogy based on electric circuit components.

3.3.3.1 e constant resistance model

e constant resistance (CR) model (see Figure 3.2) is represented by a peripheral
resistor R [139], where it is assumed that the blood pressure, p(t) − pout, is
proportional to the blood flow rate q(t). pout is the peripheral pressure. e relation
between the blood pressure and the flow is given by p(t) − pout = R · q(t). Wave
reflections at the end of the terminal vessel occurs due to change in the characteristic
impedance that are caused by changes in the vessel properties or branching [114, 131].
e reflection coefficient (Rt) is commonly used to express the ratio of the change in
pressure across the reflected wave dpout and the incident wave △pout. e relation
between the reflection coefficient and the peripheral resistance at the end of a terminal
artery, is given by Rt =

dpout
△pout

= R−Z0

R+Z0
, where Z0 =

ρ c0
A0

is the characteristic impedance
of the 1-D vessel [144]. For a dead end terminal (R tends to infinity), there is a full
reflection (Rt = 1), for an open end (R = 0), total negative reflection occurs
(Rt = −1). For a well matched branch (R = Z0) no reflection occurs (Rt = 0).
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e terminal reflection coefficient for a wavefront travelling in the +x direction can
also be defined in terms of the incoming and outgoing characteristics as [114, 137]

Rt = −△W2

△W1

= −W n+1
2 −W 0

2

W n+1
1 −W 0

1

. (3.22)

e values for W n+1
1 are determined using Equation (3.21), whereas W 0

1 and W 0
2 are the

initial values [114]. e unknown W n+1
2 is determined by rearranging Equation (3.22),

giving
W n+1

2 = W 0
2 −Rt(W

n+1
1 −W 0

1 ). (3.23)

e characteristic value W2 is then related to the primitive variables (q, A and p) for the
nodes using Equations (3.2) and (3.9).

Rq

p pout

Terminal vessel

F .: Electric analogue of a constant resistance (CR) model.

3.3.3.2 Windkessel model

Windkessel models are lumped-parameter models (0D) describing the hemodynamics
of the arterial system and is required in models with large compliant arteries as the
peripheral vessels [5]. In the three-element Windkessel model (WK3), there are three
physical quantities, namely, the proximal (characteristic) resistance (RP ), the distal
resistance (RD) and the capacitance (C) [5, 109, 139, 141, 145]. RT = RP + RD

represents the total resistance of a peripheral bed. Figure 3.3 shows the analogy of
WK3 model to an electric model, where the instantaneous pressure at the inlet of the
WK3 model, p(t), corresponds to the voltage, and the instantaneous flow rate, q(t),
corresponds to the electric current. e capacitance, C, describes the compliance of the
downstream arterial walls. pout is the pressure (assumed to be zero) at which flow
through the microcirculation is zero [142, 145, 146]. e WK3 model relates the
instantaneous blood pressure and the flow rate as follows:

dp(t)

dt
+

p− pout
RDC

= RP
dq(t)

dt
+

q(RP +RD)

RDC
. (3.24)

By approximating the derivatives using forward finite difference of first order and letting
pout = 0, Equation (3.24) is coupled to the 1-D terminal branch using the following
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relation:
a1p

n+1 − pn − a2q
n+1 + a3q

n = 0, (3.25)

where the coefficients are a1 =
(
1 + △t

RDC

)
, a2 =

(
RP + RP+RD

RDC
△ t

)
and a3 = RP .

is relation, together with the equation for the forward characteristic, is a nonlinear
system for qn+1, pn+1 that is solved using Newton method with the initial guess qn, pn.

RP RD

C

q

p pout

Terminal vessel

F .: Electric analogue of a Windkessel (WK3) model.

3.3.4 Junctions

e coupling of several 1D vessels at branching points or bifurcations (Figure 3.4a) and
merging points (Figure 3.4b) is treated following the methodology proposed in Sherwin
et al. [112] and Wang et al. [137].

q1

q2

q3

p1

p2

p3

P

(a)

q1
p1

p3
q3

p2

q2

P

(b)

F .: Model geometry for coupling of blood vessels: branching points
or bifurcations (3.4a) and merging flows (3.4b). e pressure losses at point P
of a blood vessel are assumed to be negligible.

e pressure losses at point P (from artery index 1 to arteries 2 and 3 for
bifurcations, and from artery index 2 and 3 to artery 1 for merging points) of a blood
vessel are assumed to be negligible. e following coupling equations representing the
conservation of flow rate and the total pressure continuity are enforced at the junction
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(point P in Figure 3.4):

3∑
i=1

qi = 0,

1

2
ρ

(
q1
A1

)2

+ p1 =
1

2
ρ

(
qi
Ai

)2

+ pi, i = 2, 3.

(3.26)

At each bifurcation, a system involving six equations with six unknowns (cross section
area and the flux for the corresponding three arteries), i.e. An+1

1 and qn+1
1 for the outlet

of the parent artery and An+1
2 , qn+1

2 , An+1
3 and qn+1

3 for the inlets of the two daughter
arteries on Figure 3.4a, is solved. e system is made of:

1. Equation (3.26): the conservation of flow rate and the total pressure continuity
equations,

2. three compatibility conditions for the characteristic variables of the hyperbolic
system: (W1)1, (W2)2 and (W2)3.
In the parent artery, (W1)

n+1
1 is given by the data on the n-th time step with the

interpolation formula (3.21), which must be equal to W1(Un+1
1 ) given by

Equation (3.9). e same rule holds for W2 on the two daughter arteries. Hence
the equations are:
(W1)

n+1
1 −W1(Un+1

1 ) = 0,
(W2)

n+1
i −W2(Un+1

i ) = 0, i = 2, 3.

e above system consisting of 6 equations and 6 unknowns is solved by Newton’s
iterative method with Un as the initial guess.

3.4 Coupling ofEnKFestimation algorithmand the blood
flowmodel

In this section, a series of test cases is presented in which the ensemble Kalman filter
(Algorithm 1 in chapter 2) is used to solve parameter estimation problems. e
hemodynamic parameters being estimated are limited to Young’s modulus and
boundary condition parameters (reflection coefficient and WK3 parameters). e first
three cases are purely in silico (use synthetic data) and the final case involves real
measurements in the carotid artery. e test cases are performed on a single artery and
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a network of three arteries representing a bifurcation case. In the test cases, nobs refers
to the number of locations where a time series of pressure is available.

3.4.1 Test case 1: Parameter estimation on a single artery

3.4.1.1 Estimation of Young’s modulus and reflection coefficient

e first test case deals with an estimation of Young’s modulus and the boundary
condition parameter (reflection coefficient) for a blood vessel representing a common
carotid artery as shown in Figure 3.5. We first describe the procedure for generating
the synthetic data. A Young’s modulus of 0.5 MPa (assumed uniformly distributed) is
assigned to the carotid artery. e length (L) of the vessel is 18 cm, the radius (r) is
6 mm and the vessel wall thickness (h) is chosen to have a uniform value of 0.063 cm.

R

qin P1 P2

L=18 cm

E=0.5MPa
Rt=0.45

F .: Test case 1: Parameter estimation on a single artery. At the inlet,
qin (Figure 3.6) is imposed. e outlet is coupled to a constant resistance model.
e measurements (pressure values) are taken at locations 0.1L (pressure P1)
and 0.9L (pressure P2).

A periodic flow rate [146] boundary condition qin(t), with a period of 0.9 s (Figure
3.6) is imposed at the inlet of the simple model. A CR model is applied at the outlet
of the computational domain with a reflection coefficient of Rt = 0.45 as the boundary
condition parameter. e density (ρ) of the fluid is taken as 1050 kg/m3, the viscosity
(µ) of 4× 10−3 Pa·s and the Poisson coefficient (σ) of 0.5. e viscoelastic coefficient
(η) and the nonlinearity coefficient (ϵp) of the vessel are set to 0.5 kPa·s and 0.5 m−1

respectively for the forward simulation. e 1D blood flow model is then executed with
the above parameters using a time step of 0.1 ms. Using nobs = 2, the simulated time
series pressure values at locations 0.1L and 0.9L are recorded at every 0.01 s (90 per
cardiac cycle) over 6 cardiac cycles.

For the estimation problem, Young’s modulus (E) and the reflection coefficient (Rt)
are sought. An ensemble of qens = 20 members is taken, and for each member of the



Chapter 3. One-dimensional Blood Flow Model 45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2

4

6

8

10

12

14

q
i
n

(m
l/

s)

Time (s)

F .: Periodic flow rate [146] imposed as inlet boundary condition qin(t).

ensemble, the observations (recorded pressure values) are perturbed by a random vector
drawn from the observation error pdf ∼ N (0, σ2

p). σp represents the standard deviation
and the error covariance matrix is assumed to be constant in time and set as R = σ2

pI2.
In test case 1, σp is set to 0.2. Initial estimates for Young’s modulus and the reflection
coefficient assume an error of 30% and 33% respectively, i.e. the initial mean value for
Young’s modulus is 0.7 MPa and for the reflection coefficient is 0.6. e initial ensemble
standard deviation for E and Rt is 0.05 MPa and 0.05 respectively.

e parameters are then estimated using EnKF Algorithm 1 which is executed for
5 s (approximately 6 cardiac cycles). e evolution of estimated Young’s modulus and
the reflection coefficient are shown in Figure 3.7. e initial and final estimates of the
parameters are shown in Table 3.1. e algorithm is able to converge to the target E and
Rt in 6 cardiac cycles with relatively small percentage deviation from the target values.
Figure 3.8 shows the comparison between the pressure solutions (pressure P1 at 0.1L in
Figure 3.5) obtained with the initial estimate of parameters, the final estimated pressure
solution, and the target pressure solution. We see that there is a good agreement between
the estimated and the target pressure waveforms.

T .: Test case 1: Initial and estimated parameters.

Parameter Target Initial
guess

Final EnKF
estimate

% deviation
from target

E (MPa) 0.5 0.7 0.506 1.2
Rt 0.45 0.6 0.447 -0.9
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F .: Test case 1: Evolution of estimated parameters. (3.7a) shows the
evolution of the Young’s modulus, E and (3.7b) shows the evolution of the
reflection coefficient, Rt. e dotted lines represents the target value of E =
0.5 MPa and Rt = 0.45.
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F .: Test case 1: Estimated pressure solution. e figure shows the
comparison between the pressure solutions (pressure P1 at 0.1L in Figure 3.5)
obtained with the initial estimate of parameters, the final estimated pressure
solution, and the target pressure curve.

3.4.1.2 Sensitivity analysis

In this section, we look at the sensitivity of the parameter estimation algorithm for test
case 1 with respect to the level of observation perturbation defined by σp. e
observations (pressure) are perturbed by Gaussian noises which are created by adding
noise (∼ (N (0, σ2

p)), to the observation values. e parameter estimation procedure is
performed with two more levels of observation perturbations with σp set to 0.1 and 0.4.
All other parameters and settings are same as in test case 1. Figures 3.9a and 3.9b show
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the evolutions of the estimated Young’s modulus and reflection coefficient using
different values of σp. With different values of σp, the estimated E ’s and Rt’s converge
to the target values, but with a slightly different rate. e approach seems therefore
quite robust with respect to the level of uncertainty on the observations.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Time (s)

E
(M

P
a
)

 

 

Estimated E, σp = 0.1
Estimated E, σp = 0.2
Estimated E, σp = 0.4
Target E =0.5

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.35

0.4

0.45

0.5

0.55

0.6

0.65

Time (s)

R
t

 

 

Estimated Rt, σp = 0.1
Estimated Rt, σp = 0.2
Estimated Rt, σp = 0.4
Target = 0.45

(b)

F .: Sensitivity analysis for test case 1: Evolution of estimated
parameters. (3.9a) shows the evolution of the Young’s modulus and (3.9b)
shows the evolution of the reflection coefficient with different level of
observation perturbation defined by σp. e dotted lines represents the target
value of E = 0.5 MPa and Rt = 0.45.

3.4.2 Test case 2: Linearly distributed parameter on a single artery

Test case 2 involves an artery of length L = 21 cm that is divided longitudinally into
three segments of equal lengths. Each segment is then assigned a different value of
Young’s modulus as shown in the Figure 3.10. A CR model with a reflection coefficient
of Rt = 0.4 is applied as the boundary condition parameter. At the inlet, the flow rate
qin (Figure 3.6) is imposed as in test case 1.

e other parameters (h, r, ρ, µ, σ, ϵp and η) are as in test case 1. Using a time step of
0.1 ms and nobs = 3, a forward simulation is performed and time series pressure values
P1, P2 and P3, at locations 1

3
L, 2

3
L and L respectively are recorded at every 0.01 s (90

per cardiac cycle).

e aim is to recover the reflection coefficient and Young’s modulus for the three
segments using observations P1, P2 and P3. An ensemble of size qens = 20 is employed
in this case and the standard deviation σp is set to 0.15. e initial estimate (mean of
ensemble) for the Young’s modulus (E1, E2 and E3) and reflection coefficient (Rt) is
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R

qin
P1 P2 P3

E1

segment 1 segment 2 segment 3

E2 E3 Rt=0.4

F .: Test case 2: Illustration of the parameter estimation problem
set-up. e artery is divided into three segments, each with different value
Young’s modulus (E1 = 0.85MPa, E2 = 0.65MPa, and E3 = 0.5MPa).
A CR model with a reflection coefficient is used as the boundary condition
parameter. Pressure values, P1, P2 and P3, are observed at locations 1

3
L, 2

3
L

and L respectively.

0.7 MPa and 0.6 respectively. e initial ensemble standard deviation for E and Rt is
0.05 MPa and 0.05 respectively.

Figure 3.11 shows the evolution of the estimated parameters using EnKF with the
assimilation taking place at every 0.01 s (90 per cardiac cycle). Initial and final
estimates of the four parameters after 2 s (approximately 2 cardiac cycles) are shown in
Table 3.2. We note that all four parameters converge to the target values used to
generate the synthetic data (time series pressure values) with an error of less than 2%.
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F .: Test case 2: Evolution of estimated parameters. (3.11a) shows
the evolution of the Young’s modulus, E. e dotted lines represent the target
values of 0.85 MPa, 0.65 MPa, and 0.5 MPa for E1, E2 and E3 respectively.
(3.11b) shows the evolution of the reflection coefficient, Rt where the dotted
lines represent the target value of 0.4.
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T .: Test case 2: Initial and estimated parameters.

Parameter Target Initial
guess

Final EnKF
estimate

% deviation
from target

E1 (MPa) 0.85 0.7 0.848 -0.24
E2 (MPa) 0.65 0.7 0.66 1.54
E3 (MPa) 0.5 0.7 0.498 -0.4
Rt 0.4 0.6 0.4 0

In Figure 3.12, the estimated pressure solution (pressure P2) is compared with the
synthetic target pressure waveform. e forward simulation with the estimated
parameters is able to recover the target pressure waveform.
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F .: Test case 2: Estimated pressure solution. e figure shows
the comparison between the pressure solution at location P2 (in Figure 3.10)
obtained with the initial estimate of parameters, the final estimated pressure
solution, and the target pressure curve.

3.4.3 Test case 3: Parameter estimation on a bifurcation

e EnKF parameter estimation algorithm is tested on a bifurcation network as shown
in Figure 3.13. e parent vessel and two daughter vessels have different geometries and
are assigned with different values of Young’s modulus. e terminal ends of the daughter
vessels are coupled with the CR model using different values of reflection coefficients.
A periodic flow rate, qin (Figure 3.6), is imposed at the inlet of the parent vessel. Table
3.3 shows the geometry, Young’s modulus and terminal parameters of the bifurcation
network.
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Flow: qin

parent vessel,

Ep=0.49MPa

daughter vessel #1

daughter vessel #2

R1

R2

P1

P2

P3

E1=0.78MPa

E2=0.61MPa

Rt2=0.52

Rt1=0.46

F .: Test case 3: Problem set-up. Parameter estimation on a
bifurcation. Time series pressure values (P1, P2 and P3) are recorded for
observations in data assimilation at extreme ends of the parent and two daughter
vessels.

T .: Geometric properties, Young’s modulus and terminal parameters
corresponding to the bifurcation network in Figure 3.13.

Name L (cm) r (cm) h (mm) E (MPa) Rt

Parent vessel 12.13 0.39 0.63 0.49 -
Daughter vessel 1 13.21 0.28 0.45 0.78 0.52
Daughter vessel 2 6.09 0.23 0.42 0.61 0.46

e parameters ρ, µ, σ, ϵp and η are as in test case 1. With a time step of 0.1 ms, the
blood flow model is simulated using the above parameters and time series pressure values
at the extreme ends of the vessels are recorded at every 0.01 s (90 per cardiac cycle). us,
nobs = 3 corresponds to pressure values P1, P2 and P3 on Figure 3.13 respectively.

For the inverse problem, three Young’s modulus (Ep, E1 and E2) and two reflection
coefficients (Rt1 and Rt2) are sought using the observations P1, P2 and P3. e
parameter estimation algorithm uses an ensemble of size qens = 20 and σp = 0.25. An
initial estimate (ensemble mean) of 0.7 MPa and 0.7 are assigned to all Young’s
modulus and the two reflection coefficients respectively. e corresponding initial
ensemble standard deviations for E and Rt are 0.05 MPa and 0.05 respectively. e
pressure losses at the bifurcation are neglected.

e estimation algorithm is executed for 13 cardiac cycles with EnKF assimilation
taking place at every 0.01 s (90 per cardiac cycle). e evolutions of estimated parameters
are shown in Figure 3.14 and the final estimated values in Table 3.4. All five parameters
converge to the target values with an error (% deviation from target) of less than 0.5%.
Furthermore, with the estimated parameters, the blood flow model is able to recover the
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target pressure solution P1. is comparison between the estimated and target pressure
waveform is shown in Figure 3.15.
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F .: Test case 3: Evolution of estimated parameters on a bifurcation
network. (3.14a) shows the evolution of the Young’s modulus for the parent
vessel (Ep) and the two daughter vessels (E1 and E2). e dotted lines represent
the target values of Ep = 0.49 MPa, E1 = 0.61 MPa, and E2 = 0.78 MPa for
the parent and two daughter vessels respectively. Similarly, (3.14b) shows the
evolution of the reflection coefficients (Rt1 and Rt2).

T .: Test case 3: Initial and estimated parameters.

Parameter Target Initial
guess

Final EnKF
estimate

% deviation
from target

Ep (MPa) 0.49 0.7 0.488 -0.4
E1 (MPa) 0.78 0.7 0.781 0.13
E2 (MPa) 0.61 0.7 0.609 -0.16
Rt1 0.46 0.7 0.461 0.22
Rt2 0.52 0.7 0.519 -0.19

3.4.4 Test case 4: Real measurements in the carotid artery

In this test case, an estimation of Windkessel (WK3) boundary condition parameters
using a clinically measured aperiodic flow rate is presented. e aperiodic flow rate is
due to the heart rate variability. e case is taken from Vignon-Clementel et al. [147]
where using a pulsed-Doppler ultrasound, the cross-sectional area, wall thickness and
length of the left common carotid artery of a 27-year-old healthy female subject were
measured. At the inlet of the common carotid artery, the mean velocity was recorded
over time (see Figure 3.16), and the flow rate q(t) was obtained as the product of the
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F .: Test case 3: Estimated pressure solution. e figure shows the
comparison between the pressure solutions (P1 in Figure 3.5) obtained with
the initial estimate of parameters, the final estimated pressure solution, and the
target pressure curve.

instantaneous mean velocity and the average cross sectional area [147]. e flow rate was
mapped into a parabolic velocity profile and was used as the inlet boundary condition
for a 3D FSI numerical simulation in the analysis of Vignon-Clementel et al. [147].

e geometry of the carotid artery, Young’s modulus and the Windkessel (WK3)
outlet boundary parameters used for the numerical simulation in Vignon-Clementel
et al. [147] are shown in Table 3.5. e values of corresponding pressure, pout, and the
flow rate, qout, at the outlet of the carotid artery obtained from the 3D FSI numerical
simulation are shown in the Figure 3.17 [147] for seven complete cardiac cycles.

T .: Geometrical parameters and Young’s modulus of the left common
carotid artery of a 27-year-old healthy female patient, coupled to a three-
element Windkessel model [147].

Parameter value
cross-sectional area, A 0.24 cm2

wall thickness, h 0.09 cm
length, l 3.5 cm
Young’s modulus, E 0.418 Mpa
Windkessel resistance, RP 0.838 mmHg·s/ml
Windkessel resistance, RD 9.108 mmHg·s/ml
Windkessel compliance, C 0.0423 ml/mmHg
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F .: Real ultrasound velocity measurement in the carotid artery. e
mean aperiodic velocity is indicated by the red curve and the corresponding
ECG tracing by the green curve. e Doppler signal in a longitudinal cut of
the carotid is shown in the upper part of the figure. It indicates the forward
flow along and across the artery and the colour bar on the right indicates the
velocity value and its direction. Figure adapted from Vignon-Clementel et al.
[147].

F .: Aperiodic flow rate (qout) and the pressure (pout) waveforms at the
outlet of the carotid model resulting from the 3D FSI numerical simulation
in the analysis of Vignon-Clementel et al. [147]. e numerical solutions
obtained using the parameters from Table 3.5 are shown for seven cardiac cycles
[147]. Figure adapted from Vignon-Clementel et al. [147].
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e EnKF estimation problem considers pout and qout to estimate the Windkessel
(WK3) parameters used in 3D fluid structure interaction simulations (in the analysis of
[147]). e flow rate values qout are used as the inlet boundary condition qin to drive the
forward blood flow model and pout is provided as the observation (nobs = 1) in the data
assimilation. is set-up is shown in Figure 3.18.

qin pout

L=3.5 cm

RP
RD

C

qout
E=0.418MPa

F .: Test case 4: Set-up for real measurements in the carotid artery.
pout is used as the observation in the EnKF parameter estimation algorithm.
e forward blood flow model is driven by qin that takes the values of qout. pout
and qout (see Figure 3.17) are from the results of Vignon-Clementel et al. [147].

Blood rheological parameters (ρ and µ), σ, ϵp and η are as in Test case 1. To restrict
the assimilated parameters to positive values, the three Windkessel parameters are
redefined as x = xini2

θ. xini is the initial estimate of the parameter to be estimated and
θ is the actual value used in the EnKF algorithm. e EnKF algorithm uses an
ensemble size of qens = 20 and θ for the ensemble members initialization follows
N (0, 0.5). xini (the ensemble mean values for the initial guess of WK3 parameters) is
taken to RP = 2.0 mmHg·s/ml, RD = 14.0 mmHg·s/ml and C = 0.02 ml/mmHg [5].
e measurement error covariance matrix (R) is defined by Equation (2.26), where
observations (the values of pout) are perturbed by a random vector that is drawn from a
Gaussian distribution with zero mean and a standard deviation at 10% of the
observation values. e parameter estimation algorithm is executed for 5 s with EnKF
assimilation taking place at every 5 ms (200 per second). e evolutions of estimated
Windkessel parameters (the proximal resistance RP , the distal resistance RD, and the
compliance C) with their associated uncertainties (standard deviation) are shown in
Figure 3.19.

With nobs = 1, the algorithm is able to recover the WK3 parameters with good
accuracy. e maximum error of 10.2% is found to be associated with the estimated
value of the compliance C. Table 3.6 shows the comparison between estimated values
of the WK3 parameters and the ones used to obtain the pressure pout from the 3D FSI
numerical simulation in the analysis of Vignon-Clementel et al. [147].
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F .: e evolution of the estimated Windkessel parameters using
EnKF with real measurements in the carotid artery. (3.19a): the initial
estimate of R1 is 2.0 mmHg·s/ml and the best estimate of R1 using EnKF
is 0.895 mmHg·s/ml, (3.19b): the initial estimate of R2 is 14.0 mmHg·s/ml
and the best estimate of R2 is 9.401 mmHg·s/ml and (3.19c): the initial
estimate of C is 0.02 ml/mmHg and the final estimate of C using EnKF is
0.0379 ml/mmHg. e shaded areas represent the standard deviation around
the ensemble mean values (solid lines).
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T .: Test case 4: Initial and estimated parameters.

Parameter Target Initial
guess

Final EnKF
estimate

% deviation
from target

RP ( mmHg·s/ml) 0.838 2.0 0.895 6.8
RD ( mmHg·s/ml) 9.108 14.0 9.401 3.2
C (ml/mmHg) 0.0423 0.02 0.038 -10.2

Moreover, there is a good agreement between the estimated pressure solution
(blood flow model simulated with the estimated WK3 parameters) and the target
pressure solution pout. e initial, target and estimated pressure solutions are shown in
Figure 3.20. e result shows a good fit between the estimated and target pressure
waveforms.
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F .: Pressure profiles for the case of Windkessel parameter estimation
using real measurements in the carotid artery. e profiles show the comparison
between the pressure signal obtained with initially guessed parameters (in dash
black), the target pressure solution, pout [147] (in solid black), and the one
obtained by using the blood flow model with the estimated WK3 parameter
values (in blue).

is case demonstrates the usefulness of the estimation algorithm in situations when
measurements (qin in the current case) are not available at locations of interest and can
be substituted by measurements (e.g. qout) in a nearby location (in close vicinity).
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3.5 Discussion

e feasibility of estimating hemodynamic parameters using EnKF has been
demonstrated. Tests have been carried out on a simple network of arteries and the
parameters are limited to the stiffness of arteries (Young’s modulus), and the boundary
condition parameters (reflection coefficients and Windkessel WK3 parameters). For
all cases, pressure data are considered as observations (measurements) in the data
assimilation. However, we note the fact that acquisition of pressure data may not be
feasible at all locations of interest (such as arteries in the circle of Willis) when dealing
with real clinical data. In such situations, alternative observation data, such as blood
flow rates measured using Magnetic Resonance Imaging (MRI) can be used. In the
next two chapters, we demonstrate the usefulness and efficiency of EnKF in parameter
estimation on the complex arterial network and using a different type of observation
data, such as the blood flow rate. e use of experimental data from an in vitro test rig
and real clinical data are considered along with synthetic data for test cases in the
following two chapters.
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Abstract

A method to estimate the hemodynamic parameters of a network of vessels using an
Ensemble Kalman filter is presented. e elastic moduli (Young’s modulus) of blood
vessels and the terminal boundary parameters are estimated as the solution of an
inverse problem. Two synthetic test cases and a configuration where experimental data
is available are presented. e sensitivity analysis confirms that the proposed method is
quite robust even with a few numbers of observations. e simulations with the
estimated parameters recovers target pressure or flow rate waveforms at given specific
locations, improving the state of the art predictions available in the literature. is
shows the effectiveness and the efficiency of both the parameters estimation algorithm
and the blood flow model.

Keywords: Ensemble Kalman filter, 1D blood flow, parameter estimation, inverse
problem

4.1 Introduction

An increase in arterial stiffness has been shown to be linked with age including other
health problems or risk factors such as diabetes and hypertension [23]. e stiffness
of arteries can be measured using different techniques such as by measuring the pulse
wave velocity (PWV) or with the analysis of local variations in local pressure and volume
[148]. PWV is directly related to the arterial wall elasticity and to the Young’s modulus
of the arteries [148].

“Assimilation is the process of finding the model representation which is most
consistent with the observations” [47]. e use of inaccurate parameters in the model
equations can give rise to model errors [149]. e parameter estimation problem tends
to improve initial estimates of the model parameters so that the difference between the
measurements and the model solution are minimised. In parameter estimation
problem, it is assumed that the uncertainties in the model parameters are the sources of
errors for the model errors [66]. According to Annan et al. [150], it is important to
tune the parameters to gain a better confidence in the predictions of the state values.
Generally, we have observable data for the state, but no direct observable data for the
parameters.
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In recent years, parameter estimation has been carried out using a similar
framework as for the state estimation. e state vectors can be augmented by the
poorly known parameters for estimating by having a Kalman filter for the
state-parameter augmented model [65–68]. In state-parameter augmentation,
parameters are considered as part of the model, which are updated in the analysis step
of the data assimilation algorithm together with the model variables [150]. An
evolution model for model parameters is required for the state-parameter augmented
model [151]. e common evolution model includes the random walk model [71, 100]
and the persistence model [68, 152]. Combining the model variables and model
parameters during the analysis step can also introduce problems such as parameter
collapse and filter divergence [99]. In [99, 153], parameter estimation using an
Ensemble Kalman Filter (EnKF) is presented using augmentation method, but
without updating the model states during the assimilation step.

Some recent works on inverse problems in hemodynamics include the work of
Lombardi [35], Moireau et al. [36], Pant et al. [10], Bertoglio et al. [39], Chabiniok
et al., [33], Martin et al. [41], Spilker et al. [42] and Lassila et al. [43]. In Lombardi
[35], a sequential approach based on the reduced order unscented Kalman filter
(ROUKF) is presented for the identification of arterial stiffness parameters in 1D
haemodynamics. In Moireau et al. [36], ROUKF is used to identifiy the boundary
condition parameters in a fluid structure vascular model utilising patient image data. In
Pant et al. [10], a sequential estimation technique using the unscented Kalman filter
(UKF) is presented to estimate lumped model parameters from clinical measurements.
In Bertoglio et al. [39], parameter estimation using ROUKF for fluid-structure
interaction problems is presented. In Chabiniok et al. [33], the use of sequential joint
state-parameter data assimilation to a biomechanical heart model with actual cardiac
Cine-MRI data are presented. In Martin et al. [41], a variational method (adjoint state
approach) is presented to identify the parameters of one-dimensional models for blood
flow in arteries. In Spilker and Taylor [42], a quasi-Newton method is used to adjust
the parameters of the outlet boundary conditions of blood flow models to achieve
target profiles of flow and pressure waveforms. In Lassila et al. [43], the solution of
inverse problems in hemodynamics is proposed using deterministic and Bayesian
approaches.

Recent works on inverse problems in hemodynamics are either based on joint state
augmented model (Chabiniok et al. [33]) or ROUKF (Pant et al. [10], Lombardi [35],
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Moireau et al. [36], Bertoglio et al. [39]). We use Ensemble Kalman filters (EnKF) to
identify the Young’s modulus and the terminal boundary parameters as the solution of
inverse problems. Our aim is to show that this can be achieved with only a few number of
observations and without using the joint state formulation hence reducing a modification
of the state equations. We think this is important in order to minimize the coupling
between the assimilation tool and the state equations solver. Also, one originality is to
ensure positivity for the solutions of the inversion introducing an adequate reformulation
of the problem through logarithmic variable changes. Finally, one important result of
the paper is to show that joint use of data assimilation and flow solution by a CFD code
greatly improves available results in the literature for a realistic human arterial model
with available experimental references [13].

In this paper, first, we present a review of the data assimilation method using an
Ensemble Kalman filter (EnKF) and propose a method for hemodynamic parameter
estimation as the solution to an inverse problem. In the second section, a blood flow
model of the cardiovascular network is presented. In section three, test cases are
presented where we show the applicability of an Ensemble Kalman filter to 1D blood
flow model in parameter estimation. e first two test cases use synthetic data and the
final test case involves the use of an experiments data [13]. e test cases are limited to
the estimation of Young’s modulus and the boundary condition parameter, i.e.
reflection coefficient and the viscoelastic coefficient.

4.2 Ensemble Kalman filter

First introduced by Geir Evenson [55], an Ensemble Kalman Filter (EnKF) solves the
Fokker-Plank equation using a Monte Carlo or ensemble integrations [85]. It is a
sub-optimal estimator for problems involving high-order non-linear models. e error
statistics are predicted using the ensemble of states. Different versions of EnKF are
available in the literature: Deterministic Ensemble Kalman filter (DEnKF) [86],
Monte Carlo EnKF [55, 87], EnKF [57, 88], Hybrid EnKF [89], Ensemble
Transform Kalman filter (ETKF) [90], Ensemble Adjustment Kalman filter (EAKF)
[65], Ensemble Square Root filters (EnSRF) [91] and Local Ensemble Kalman filter
(LEKF) [92].
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4.2.1 Derivation of ensemble Kalman filter

In EnKF, the forecast error covariance matrix is evaluated using an ensemble of forecasts.
In this section, we follow and describe the different steps employed in the formulation
of EnKF as presented in [70, 88, 93–95].

We will assume that the discrete nonlinear system is described by

xk+1 = f(xk) + wk, yk = h(xk) + vk. (4.1)

e model state at time tk is xk ∈ Rn, while the observed state is yk ∈ Rnobs. n is the
dimension of the model state vector and nobs is the number of observations. wk ∈ Rn

and vk ∈ Rnobs are assumed uncorrelated Gaussian model errors with wk ∼ N (0,Qk)

and vk ∼ N (0,Rk) where Qk and Rk are the covariance matrices. h is the function
describing the relationship between the measurement and the states.

At time tk, it is assumed that an ensemble of qens forecast state estimates (prior
ensembles); Xf

k = (xf1
k , . . . , x

fqens
k ) ∈ Rn×qens is available. fi represents the i-th forecast

member of the ensemble. e mean of the ensemble of forecast state is xf
k ∈ Rn and is

given by

xf
k =

1

qens

qens∑
i=1

xfi
k . (4.2)

e forecast covariance matrix, Pf
k ∈ Rn×n, is defined by

Pf
k =

1

qens − 1

qens∑
i=1

(
xfi
k − xf

k

)(
xfi
k − xf

k

)T
. (4.3)

After the computation of the Kalman gain Kk, all operations on the ensemble members
are independent in the EnKF analysis step and the ensemble members are updated using:

xai
k = xfi

k + Kk

[
yik − h

(
xfi
k

)]
, i = 1, . . . , q, (4.4)

where ai represents the i-th updated or analysed member of the ensemble. Without
adding perturbations to the original observation vector, an updated ensemble with a low
variance can be obtained [96]. Hence, to maintain the correct forecast error covariance,
a suitable spread of the ensemble members is required. is is achieved by using an
ensemble of perturbed observations [96]. An ensemble of the same size qens consisting
of observations is also generated by adding small perturbations to the observation set yk.
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Perturbations are generated to have the same distribution as the measurement error and
the perturbed observations yik are defined by

yik = yk + eik, i = 1, . . . , qens (4.5)

where eik ∈ Rnobs is a Gaussian random vector with zero mean and a specified variance.
e measurement error covariance matrix, Rk, is diagonal following the assumption of
independent observations [91] and is defined as

Rk = diag
[

1

qens − 1
EET

]
, E =

[
e1k, . . . , e

qens
k

]
. (4.6)

For a linear measurement function, h, and if the noise is additive, that is

yk = Hxk + vk, (4.7)

the Kalman gain is defined by [94]

Kk = Pf
kHT (

HPf
kHT + Rk

)−1
. (4.8)

In Equation (4.8), the observation operator, H ∈ Rnobs×n, is linear or linearized. To
circumvent the linearization of a nonlinear measurement function which might be
difficult to linearize, Houtekamer and Mitchell [97] re-wrote the two terms Pf

kHT and
HPf

kHT which appear in the Kalman gain Equation (4.8) as

Pf
kHT ≡ 1

qens − 1

qens∑
i=1

[
xfi
k − xf

k

] [
h
(
xfi
k

)
− h

(
xf
k

)]T
, (4.9)

HPf
kHT ≡ 1

qens − 1

qens∑
i=1

[
h
(
xfi
k

)
− h

(
xf
k

)] [
h
(
xfi
k

)
− h

(
xf
k

)]T
, (4.10)

where h
(
xf
k

)
= 1

qens

∑qens
i=1 h

(
xfi
k

)
. It has been argued by Tang and Ambadan [98] that

Equations (4.9) and (4.10) approximately hold if the following are true :

h
(
xf
k

)
= h

(
xf
k

)
, (4.11)

norm
(
xfi
k − xf

k

)
is small for i = 1, 2, . . . qens. (4.12)

Equations (4.9) and (4.10) linearize the nonlinear function h to H under the
conditions of Equations (4.11) and (4.12) [70]. For the nonlinear model with a
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nonlinear measurement function, a general equation for the Kalman gain can be stated
as [70]:

Kk = Pf
xyk

(
Pf
yyk

)-1
, (4.13)

where the error covariance matrices Pf
xyk

and Pf
yyk

are defined as follows:

Pf
xyk

=
1

qens − 1

qens∑
i=1

[
xfi
k − xf

k

] [
h
(
xfi
k

)
− h

(
xf
k

)]T
, (4.14)

Pf
yyk

=
1

qens − 1

qens∑
i=1

[
h
(
xfi
k

)
− h

(
xf
k

)] [
h
(
xfi
k

)
− h

(
xf
k

)]T
+ Rk. (4.15)

We define the true state (or parameter) as the target of an ideal assimilation. e best
forecast state estimate is given by the ensemble mean xf

k. e error between xf
k and the

true state is given by the standard deviation of the ensemble members around xf
k. e

final step is the forecast step and involves an ensemble of qens forecast states for time
t = k + 1 as,

xfi
k+1 = f(xai

k ) + wi
k, i = 1, 2, . . . qens. (4.16)

4.2.2 Summary of ensemble Kalman filter algorithm

We now summarize the forecast and the analysis steps of EnKF presented in section
4.2.1. A schematic description of the EnKF algorithm is shown in Figure 4.1. To start
the EnKF, we need to generate an ensemble of qens forecast estimates of state associated
with their random errors. At t = k − 1, it is assumed that xfi

k−1 for i = 1, . . . , qens are
available. We let nobs denote the number of observations. At time t = k, we generate a
set of realizations of the state vector Xk = (x1k, . . . , x

qens
k ) and denote the corresponding

measurements as Yk = (y1k, . . . , y
qens
k ) ∈ Rqens×nobs. Q and R correspond to the model

and observation error covariance matrices, respectively.
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We write the equations for the EnKF as:

xfi
k = f(xai

k−1) + wi
k−1, i = 1, . . . , qens,

wi
k ∼ N (0,Qk),

Pf
xyk

=
1

qens − 1

qens∑
i=1

[
xfi
k − xf

k

] [
h
(
xfi
k

)
− h

(
xf
k

)]T
,

Pf
yyk

=
1

qens − 1

qens∑
i=1

[
h
(
xfi
k

)
− h

(
xf
k

)] [
h
(
xfi
k

)
− h

(
xf
k

)]T
+ Rk,

Kk = Pf
xyk

(
Pf
yyk

)-1
,

yik = yk + eik, i = 1, . . . , qens,

xai
k = xfi

k + Kk

[
yik − h

(
xfi
k

)]
, i = 1, . . . , qens.

In the above steps, the superscripts ‘f ’ and ‘a’ denote the forecast and the analysis steps
respectively. EnKF algorithm yields an ensemble of analyses at time t = k, which can
be cycled in time.

t = kt = k − 1 t = k + 1

x
fi
k−1

xai

k−1 xai

k
xai

k+1x
fi
k

x
fi
k+1

Ensemble
of forecast
states

Observations yk−1 yk yk+1

yik−1
= yk−1 + eik−1 yik = yk + eik yik+1

= yk+1 + eik+1

Perturbed
observations

Ensemble
of

assimilated
(updated)
states

EnKF EnKF

EnKF

F .: A schematic description of the Ensemble Kalman Filter.

UKF differs from EnKF by the choice of the sampling. UKF uses a minimal set
of deterministically chosen points (sigma points) and propagates this set through the
actual non-linear function [10]. In contrast, EnKF uses a Monte-Carlo-based choice
of many points (members of the ensemble) for forward propagation. UKF should be
preferred if the output of the system deviates from a Gaussian distribution. Except with
the computation of the Kalman gain, all the operations on the ensemble members are
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independent. is implies that their parallelization can be trivially carried out. is is
one of the reasons for the success and popularity of the EnKF and UKF.

4.3 Parameter estimation using ensemble Kalman filter

In the current work, the EnKF algorithm is used to estimate only the model
parameters. e parameters are thus considered as special state variables (the state
vector contains only the model parameters). e evolution of parameters is
characterized by a random walk model [71, 100] and is defined as xik+1 = xik + τ ik.
τk ∼ N (0,Tk) is a small random perturbation with predefined variance T. Numerical
simulators can be regarded as nonlinear functions that take parameter vector xi as an
input and produces an output vector yi = H(xi) [101]. H is the nonlinear
measurement function defined by the numerical simulator. e information from
observations are used by the Kalman filter during the analysis step and the Kalman
gain Equation (4.4) is applied to update the ensemble members. e use of Equation
(4.4) assumes that the parameters follow a Gaussian distribution [101]. e parameter
estimation procedure using the EnKF is stated in Algorithm 1 [101]. e algorithm
can be stopped when some finite convergence criterion is achieved. A flowchart for
parameter estimation using EnKF is shown in Figure 4.2.

Algorithm 1: Parameter estimation using EnKF
Input: Ensemble size (qens), maximum number of EnKF iteration (jmax),

variance matrix T, number of observations (nobs), initial guess of the
parameters (mean x̃0 and covariance P0).

1 Initialization:
2 Initialize randomly qens states into special state matrix X
3 for j = 1 to jmax do
4 -Perturb the ensemble using random walk model
5 xfi = xai + τ i, τ i ∼ N (0,T) ∀i = 1, . . . , qens
6 -Propagate the ensemble
7 yfi = H(xfi) ∀i = 1, . . . , qens
8 -Perturb the observations for each ensemble
9 yi = y+ ei, ∀i = 1, . . . , qens

10 -Update the ensemble
11 Estimate R using Eq. (4.6) and Kalman gain, K, using Eq. (4.13, 4.14

and 4.15)
12 xai = xfi + K

[
yi − yfi

]
∀i = 1, . . . , qens.
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Initialise
Input ensemble size (qens) and the mean and variance of
initial estimate of the parameters (x̃0, P0), maximum

number of EnKF iterations (jmax), parameter random walk
perturbation variance (T ), number of observations (nobs)

Initial ensemble of parameters, xfi

(i = 1......, . . . , q)

Blood flow model, F

Forecast measurements,

yfi using measurement

operator H

EnKF Analysis

Observations

Perturbed observations

converged

STOP: The mean of
the ensemble is taken
as the best estimate of

the parameters

random walk model

y

yi = y + vi

yfi = H(xfi)

xfi = xai + τ i

where τ is a small
random perturbation
with 0 mean and
variance T , i.e
τ i ∼ N (0,T)

xai = xfi +K
[

yi
− yfi

]

(xfi)

(xai)

(xfi)

Yes

model states

F (xfi)

xai and xfi are the
assimilated and forecast

parameters respectively and
K is the Kalman gain.

where vi is a random
vector from a normal

distribution with mean 0
and variance V , i.e

vi ∼ N (0, V )

No

(xai)

E(xai −xfi) <
tolerance

copy

F .: Parameter estimation flow chart using the ensemble Kalman filter.

Positivity issues are physically important but often difficult to enforce in
assimilation processes. In this study the parameters (e.g. the Young’s modulus) need to
remain positive. To avoid negative values of the Young’s modulus during the
assimilation procedure, we introduce a change of variable. More precisely, in the sequel
all the parameters are redefined as x = xref2

θ. x is the real parameter (e.g the Young’s
modulus), θ is the parameter used for estimation in EnKF and xref is a reference value
(initial mean value for the Young’s modulus). With this change of variable, the values
of estimated parameters remain positive [10]. e EnKF implementation uses an
ensemble of θ such that θ ∼ N (0, 1).
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4.4 e blood flowmodel

We first recall the one-dimensional (1D) governing equations for the blood flows in
variables u (cross section averaged blood velocity), A (cross section area) and p (cross
section averaged static pressure), which have been widely used in hemodynamic
applications [1–3, 13, 14, 114, 126, 127, 129, 137, 138]. 1D modelling of arterial
networks being computationally cheap is a common method adopted to perform
numerical simulations of the hemodynamics in arterial vessels [3, 5]. e model
assumes that blood is a Newtonian fluid in large vessels and can be considered
incompressible with constant density ρ and constant dynamic viscosity µ [126].

4.4.1 Governing equations

For an incompressible and Newtonian fluid in an elastic tube, the system of equations
that represents continuity of mass and momentum can be stated as [1]:

∂A

∂t
+

∂q

∂x
= 0,

∂q

∂t
+

∂

∂x

(
α
q2

A

)
+

A

ρ

∂p

∂x
= −kr

q

A
,

(4.17)

where x is the axial direction, A = A(x, t) is the cross section area at time t, q = q(x, t) is
the flow rate across a section, ρ is the constant density of the blood, p is the cross section
average static internal pressure and u(x, t) = q(x,t)

A(x,t)
denotes the cross section averaged

blood velocity. e term α is the momentum-flux correction coefficient. For a flat
velocity profile it is assumed that α = 1 [1]. kr denotes the viscous resistance of the flow
per unit length of the tube. A, q and p are the unknowns in the system (4.17). e system
is closed by explicitly providing a differential constitutive pressure-area relationship [1].
A nonlinear model for pressure law is adopted according to Kelvin-Voigt model [13]:

p = pext +
β

A0

[(√
A−

√
A0

)
+ ϵp

(√
A−

√
A0

)2
]
+

γ

A0

∂
√
A

∂t
, (4.18)

where pext denotes the constant external pressure, A0 = A0(x), denotes the vessel
sectional area at equilibrium state and ϵp is the non linearity coefficient. e term γ is
hη

√
π, where h is the thickness of the tube and η is the viscoelastic coefficient. e
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coefficient β, which is related to the arterial stiffness is defined as:

β =

√
πhE

(1− σ2)
, (4.19)

where E = E(x) is the Young’s modulus and σ = 0.5 is the Poisson ratio [1].

With a specified inflow boundary condition, the 1D governing equations for the
blood flow are solved using the terminal models for the outflow boundary conditions
[3].

4.4.2 Characteristic variables

e 1D model (4.17) can be rewritten in a conservative form,

∂U
∂t

+
∂F(U)
∂x

= S(U), (4.20)

where U = [A, q]T denotes the vector of conserved variables, F(U) are the fluxes and
S(U) are the source terms defined by:

F(U) =

 q

α q2

A
+ β

3ρA0
A

3
2 + βϵp

ρA0

(
1
2
A2 − 2

3

√
A0A

3
2

) ,

S(U) =

 0

−kr
q
A
+ γ

√
A

2ρA0

(
∂2q
∂x2 − 1

2A
∂A
∂x

∂q
∂x

) .

(4.21)

e highly coupled system of nonlinear equations (4.20) is decoupled to implement the
numerical solution with the prescribed boundary conditions [114]. e characteristic
system is derived by expressing the system of equations (4.20) in a quasi-linear form
which can be expressed as [114]:

∂U
∂t

+ J∂U
∂x

= S, (4.22)

where the Jacobian reads:

J(U) = ∂F
∂U =

 0 1

−α q2

A2 +
β

2ρA0
A

1
2 + βϵp

ρA0

(
A−

√
A0

√
A
)

2α q
A

 . (4.23)
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rough consideration of the non-linear coefficient (ϵp) and viscoelasticity (η) as source
terms, the characteristic analysis shows that for all allowable U (that is for A > 0), the
system is hyperbolic and the two real eigenvalues of J are [2, 127]:

λ1 =
αq

A
+

√
β

2ρA0

A
1
2 + α(α− 1)

q2

A2
> 0,

λ2 =
αq

A
−

√
β

2ρA0

A
1
2 + α(α− 1)

q2

A2
< 0.

(4.24)

When α = 1, the associated characteristic variables have the following expressions:

W1 =
q

A
+ 4(c− c0),

W2 =
q

A
− 4(c− c0),

(4.25)

where c =
√

β
2ρA0

A
1
4 and c0 =

√
β

2ρA0
A

1
4
0 . e characteristic system can be expressed

as the decoupled system of equations:

∂w1

∂t
+ λ1

∂w1

∂x
= 0,

∂w2

∂t
+ λ2

∂w2

∂x
= 0.

(4.26)

e wave velocity which arises from the blood wall coupling may take values as low as
5 m/s in large arteries (e.g. aorta), increasing to values around 20-35 m/s in less
distensible peripheral arteries [126]. However, peak flow velocities u are much smaller
and usually remain less than around 1 m/s.

4.4.3 Numerical approximation

Several methods have been used [1, 14, 111, 129, 137], for the numerical
approximation of the 1D system of conservation laws (4.17). In this section, we follow
Peiró and Veneziani [129] and Formaggia et al. [111], where equations of the 1D
model are discretized in their conservative form (4.20) by employing a second order
Taylor Galerkin scheme. We denote △t = tn+1 − tn the time step and express the
Taylor expansion truncated to the second order at time tn, giving

Un+1 = Un +△t
∂U
∂t

∣∣∣∣n + △t2

2

∂2U
∂t2

∣∣∣∣n. (4.27)
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We define the matrix

K =
∂S
∂U =

 0 0

kr
q
A2 +

γ
4ρA0

1√
A

(
∂2q
∂x2 +

1
2A

∂A
∂x

∂q
∂x

)
−kr

A

 , (4.28)

and rewrite (4.20) as
∂U
∂t

= S− ∂F
∂x

. (4.29)

Using the matrices (4.23) and (4.28), we obtain

∂2U
∂t2

=
∂S
∂U

∂U
∂t

− ∂

∂x

(
∂F
∂U

∂U
∂t

)
= K∂U

∂t − ∂

∂x

(
J∂U
∂t

)
= K

(
S− ∂F

∂x

)
− ∂(JS)

∂x
+

∂

∂x

(
J∂F
∂x

)
. (4.30)

At time tn = n△t, the vector of unknowns Un satisfies the following time marching
scheme:

Un+1 = Un +△t

(
Sn − ∂Fn

∂x

)
+

△t2

2

(
Kn

(
Sn − ∂Fn

∂x

)
− ∂(JnSn)

∂x
+

∂

∂x

(
Jn∂F

n

∂x

))
. (4.31)

e spatial discretization uses linear finite elements. e domain Ω is subdivided into
Nel finite elements Ωe of size he. We let Vh be the set of continuous vector functions
in Ω, linear on each element and V 0

h the subspace of Vh whose functions are zero at the
endpoints [129]. e solution of (4.31) requires, for n ≥ 0, to determine Un+1 in Vh

such that ∀ϕh ∈ V 0
h ,

(
Un+1, ϕh

)
= (Un, ϕh) +△t (Sn, ϕh) +△t

(
Fn,

∂ϕh

∂x

)
+

△t2

2

(
Kn

(
Sn − ∂Fn

∂x

)
, ϕh

)
+

△t2

2

(
Jn
(
Sn − ∂Fn

∂x

)
,
∂ϕh

∂x

)
, (4.32)

where (U, ϕ) =
∫ L

0
U.ϕdx.
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For the stability of the numerical method, we follow Formaggia et al. [111] and
impose the following limitation for the time step:

△t ≤ CFL × min
0≤i≤Nel

[
hi

max(λ1,iλ1,i+1)

]
(4.33)

where λ1,i is the value of λ1 at mesh node xi and the maximum CFL number is
√
3
3

[111].

4.4.4 Initial and boundary conditions

e initial conditions for (4.31) are given by:

A(x, 0) = A0(x), q(x, 0) = 0, p(x, 0) = p0(x), (4.34)

where A0(x) and p0(x) are the prescribed functions. e hyperbolic nature of the system
permits to impose the flow rate q or area A at the inlet [1]. At the inlet usually, the flow
rate is specified [136],

q(0, t) = qin(t). (4.35)

Information from the outside and inside of the domain are carried by the incoming
characteristics (W1) and the outgoing characteristics (W2) respectively [137].

At each end of the tube, a single boundary condition is implemented. is is due to
the characteristic analysis and using the fact that the flow is subcritical (the eigenvalues
[λ1and λ2] in (4.24) have opposite signs) under physiological conditions [1, 138]. At
the inlet at x = 0, Un is assumed to be known and λ2 in (4.26) is linearised by taking
its value at time tn. It can be shown that at the time tn+1, the solution corresponding to
this linearised problem yields [1, 114]

W n+1
2 (0) = W n

2 (−λn
2 (0)△ t). (4.36)

Equation (4.36) is a first order extrapolation of W2 from the previous time step. Similar
treatment at the outlet x = L, leads to:

W n+1
1 (L) = W n

1 (L− λn
1 (L)△ t). (4.37)
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4.4.5 Terminal vessels

To reduce the complexity of the blood flow simulation, smaller arteries, which are
downstream of the truncation points are not explicitly accounted for but their effect is
represented by proper outflow boundary conditions [139]. e two most common
models used are the constant resistance model [13, 114, 137, 139, 141] and the
Windkessel model [14, 139, 141], that can be obtained using an analogy based on
electric circuit components.

e constant resistance (CR) model (see Figure 4.3) is represented by a resistor Rt

[139] where it is assumed that the blood pressure, p(t) − p0, is proportional to the
blood flow rate q(t). e relation between the blood pressure and the flow is given by
p(t)−p0 = Rtq(t), where Rt represents the terminal reflection coefficient. e terminal
reflection coefficient for a wavefront travelling in the +x direction can be defined in
terms of the incoming and outgoing characteristics as [114, 137]

Rt = −△W2

△W1

= −W n+1
2 −W 0

2

W n+1
1 −W 0

1

. (4.38)

e values forW n+1
1 are determined using Eq. (4.37), whereasW 0

1 andW 0
2 are the initial

values [114]. e unknown W n+1
2 is determined by rearranging Eq. (4.38), giving

W n+1
2 = W 0

2 −Rt(W
n+1
1 −W 0

1 ). (4.39)

A reflection coefficient of Rt = 0 represents a non-reflecting boundary condition.

q(t)
Rt

pop(t)

F .: A constant resistance (CR) model representing an outflow
boundary condition.



Chapter 4. Data assimilation for identification of cardiovascular network characteristics 76

4.4.6 Treatment of bifurcations

At bifurcation of a blood vessel, we assume that pressure losses are negligible. We follow
Wang et al. [137] and enforce the following conditions:

3∑
i=1

qi = 0,

1

2
ρ

(
q1
A1

)2

+ p1 −
1

2
ρ

(
qi
Ai

)2

− pi = 0, i = 2, 3

(4.40)

representing the conservation of flow rate and total pressure continuity equations
respectively.

4.5 Application of EnKF to 1D blood flowmodel

In this section, we present the use of the EnKF algorithm to solve the parameter
estimation problem in a series of test cases. e first two tests are purely in silico, i.e.
we use only synthetic data (observations) which are obtained from a forward
simulation where the model parameters are set to some known or target values. From
these observations, the parameter estimation problem then starts with an initial
estimate for the parameters that differs significantly from the target values. With
synthetic data, an inverse problem is always admissible when the objective is to recover
the target parameters. By admissible we mean that because the target is generated with
the model, the solution of the inversion targeting this results obviously exists, but still
there is no guarantee of uniqueness. Indeed, regardless of existence of solution which is
guaranteed in this case, several distributions of the parameters could achieve the target.
e final test case uses data from the experiment performed by Saito et al. [13]. In this
latter case, unlike with the synthetic data, there is no guarantee that the solution to the
inverse problem actually exists.

In Saito et al. [13], a simple human arterial network was designed using polymer
tubes to validate the applicability of the 1D blood flow model. e network was made
with four bifurcations and consisted of the main artery, a left carotid artery, femoral
arteries (left and right), and subclavian-radial arteries (left and right). e schematic of
this simple human arterial model is shown in Figure 4.4 and the geometry of the arteries
(length, diameter and the thickness) in Table 4.1 [13]. An appropriate length of blood
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vessels was defined according to the vessel data of an average adult man. e diameter
and thickness were defined to achieve a negligible reflection coefficient at bifurcation
point [13]. For all test cases, we use the simple arterial model as in Figure 4.4. We limit
our parameters of interest to Young’s modulus and terminal model parameters (reflection
coefficient), which are within a physiological range.

F .: Schematic of a simple human arterial model with nine vessels and
four bifurcations. Artery numbers corresponds to those in Table 4.1. Figure
adapted from [13].

T .: Geometrical data (L = length, D = diameter and h = thickness) of a
simple human arterial model (Figure 4.4) [13].

Name L D h
(mm) (mm) (mm)

i Aorta arch A 35 12 2
ii R.subclavian radial artery 800 6 1.5
iii Aorta arch B 20 11 2
iv L.carotid artery 675 6 1.5
v Aorta arch C 40 10 2
vi L.Subclavian radial artery 710 6 1.5
vii Aorta 470 8 1.5
viii R.femoral artery 365 6 1.5
ix L.femoral artery 365 6 1.5
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4.5.1 Two test cases with synthetic data

One of the important parameters for EnKF is qens, the ensemble size. It is expected that
the EnKF parameter estimation procedure would improve as the ensemble size increases.
e increase in an ensemble size will also increase the computational cost associated with
it. In our test cases, we assume that the blood flow model errors and uncertainties arise
from the errors in the parameters and thus an ensemble is generated with perturbed
parameters. As detailed in what follows, we therefore performed a parametric study to
select a proper ensemble size.

We first simulate the blood flow model using an arbitrary set of parameters {E,Rt}.
e resulting simulated model states are stored as psim ∈ Rn. An ensemble of size
qens is generated where the ensemble members are

{
E

′
, R

′
t

}
i

for i = 1 . . . , qens. For
each i, E ′ is a random normal variable with mean E and standard deviation of 0.1E.
Similarly, R′

t is a random normal variable with mean Rt and standard deviation of 0.1Rt.
e blood flow model is then simulated with each member of the ensemble and the
observed pressure values at the end of the simulation are stored as pobsi ∈ Rn. To select
an ensemble size for the EnKF analysis, we calculated the root mean square error defined
for each member of the ensemble as: RMSEi =

√
1
n

∑n
j=1(p

sim
j − pobsij )2. Finally, we

find the mean RMSE for the ensemble of size qens as: RMSE = 1
qens

∑qens
i=1 RMSEi. e

procedure was repeated with different ensemble sizes between qens = 2 and qens = 60.
From Figure 4.5 which shows the output of the procedure with different random seeds,
the mean RMSE decreases sharply initially with qens increasing. From this figure, the
error does not decrease after qens ≈ 20 and this latter value was thus retained in the
present study.

4.5.1.1 Test case 1:

e first test case deals with the estimation of the Young’s modulus for a single artery.
We first describe the procedure for generating the synthetic data. All arteries except
Aorta (number vii in Figure 4.4) is assigned a Young’s modulus of 0.2 MPa and to Aorta
(number vii), we assigned 0.25 MPa assuming some pathology there locally increasing
its stiffness. A CR model is applied to the terminal vessels. A reflection coefficient of
Rt = 0.6 is assigned to the terminal vessels ii, iv and vi and for terminal vessels vii and
ix, Rt = 0.65. Figure 4.6 shows the periodic inlet flow rate boundary condition qin(t)

(with a period of 0.8 s and an average inlet flow of 5.625 ml/s) imposed at the aorta arch
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F .: Mean RMSE as a function of ensemble size. Five sets of RMSE
are calculated with different random seeds.

A of the simple arterial model. e density of the fluid is taken as 1000.0 kg/m3, the
viscosity of 1× 10−3 Pa.s and the Poisson coefficient is taken as 0.5. e viscoelastic
coefficient η and the non-linearity coefficient ϵp of the vessel are set to 0 for the forward
simulation. e time step for the forward simulation is 0.1 ms, corresponding toCFL =

0.05. Synthetic pressure observations are taken at every 0.01 s.
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F .: Periodic inlet flow rate qin(t) imposed at the aorta arch A.

e first objective is to determine the minimum number of observations (nobs),
needed for a proper parameter estimation. nobs refers to the number of locations
where a time series of pressure is available. Other time series can be considered and we
will present also simulations with flow rate time series in section 4.5.1.2. Algorithm 1
is executed initially with nobs = 6; nobs is then decreased in steps of one to a
minimum of 1. ese observations are assumed to be available from the left and right
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subclavian radial arteries (artery # ii and vi) and the left carotid artery (artery # iv). e
locations of these observations are shown in Table 4.2.

T .: Location of observations on the right subclavian radial artery (ii),
left carotid artery (iv) and left subclavian artery (vi) for synthetic test cases. L
is the length of the artery.

Artery # nobs = 1 nobs = 2 nobs = 3 nobs = 4 nobs = 5 nobs = 6
ii 0.25L 0.25L 0.25L 0.25L, 0.75L 0.25L, 0.75L
iv 0.2L 0.2L 0.2L 0.2L, 0.8L 0.2L 0.2L, 0.8L
vi 0.33L 0.33L 0.33L, 0.67L 0.33L, 0.67L

For the estimation problem, the Young’s modulus is sought for the stiffest aorta,
denoted by vii in Figure 4.4. An ensemble of qens = 20 members is considered in all the
cases. For each member of the ensemble, the observations are perturbed by a random
vector drawn from the zero mean Gaussian distribution with a standard deviation at
5% of the observation value. We compute the measurement error covariance matrix R
using Eq. (4.6). e initial guess for the Young’s modulus assumes an error of 100%,
i.e. initial mean value for E = 0.5 MPa.

e parameter estimation using Algorithm 1 is then performed with different
numbers of observations, nobs. e EnKF assimilation is executed for 10 s and the
evolution of the estimated Young’s modulus are shown in Figure 4.7a. It appears that
convergence only takes place after some time. is kind of trend is often observed in
optimization, especially with methods involving a learning feature. Indeed, there is no
guarantee that the first search iterations are performed in a direction (in parameter
space) pointing towards a minimum of the error. is behaviour also comes from the
fact that the method is by nature explicit, as in gradient based methods. Table 4.3
shows the value of estimated Young’s modulus with errors (percentage deviation from
target value) using different number of observations. e percentage deviations from
target E were all less than 5%. For this test case, a minimum of 1 observation was
enough to recover the Young’s modulus requested in the given interval of time. In
Figure 4.7b, the pressure solutions obtained by using the estimated Young’s modulus at
the first observation point on left carotid are compared with the target and the initial
guessed pressure profiles. e comparison is shown for Young’s modulus estimated
using nobs = 2. Even though the solution in the vessel whose Young’s modulus is
sought for is not directly observed, the simulated pressure waveforms are similar in
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shape to the target pressure waveform with an error of less than 0.2% in the maximum
pressure.
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F .: (4.7a) shows the evolution of the estimated Young’s modulus using
EnKF for test case 1 using a different number of observations. e initial value
is 0.5 MPa and the target is 0.25 MPa. (4.7b) shows the comparison between
the target pressure solution, the initial pressure profile and the one obtained by
using the estimated Young’s modulus with nobs = 2 at 0.2L of the left carotid
artery.

T .: Test case1: Estimated Young’s modulus and corresponding errors
(percentage deviation from target value) using different number of observations.

nobs = 1 nobs = 2 nobs = 3 nobs = 4 nobs = 5 nobs = 6
Estimated E (MPa) 0.239 0.245 0.243 0.245 0.241 0.246
% deviation from target E -4.49 -1.95 -2.64 -1.82 -3.52 -1.79

4.5.1.2 Sensitivity analysis:

In this section, we look at the sensitivity of the parameter estimation algorithm for test
case 1 with respect to the following items: (i) initial estimate of the parameter, (ii) level
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of observation perturbation, (iii) the effect of introducing bias in the known parameter
values and (iv) the observation type.

(i) Initial guess: we study the performance of EnKF by considering different initial
values of the Young’s modulus for the parameter estimation problem. Two more initial
values ofE = 0.15 MPa (-40% error) and 0.35 MPa (+40% error) were taken as the mean
values of the initial ensembles. All other parameters and settings were same as in section
4.5.1.1. rough the use of nobs = 2, the EnKF assimilation is executed for 10 s and
the evolution of estimated Young’s modulus with their uncertainty (standard deviations)
is shown in Figure 4.8a for three different initial values, including for E = 0.5MPa
(+100% error). e algorithm allows retrieving the target value independently on the
initial guess. Table 4.4 compares the initial and final estimates of the Young’s modulus
with their associated uncertainties.

T .: Sensitivity with different initial values: final estimates of Young’s
modulus with their associated uncertainties. All values are in MPa.

Initial guess of E Final estimate
of E

Uncertainty
(± standard deviation)

0.15 0.2367 0.0228
0.35 0.2370 0.0250
0.50 0.2450 0.0245

(ii) e level of observation perturbation: As in section 4.2.1, the observations are
perturbed by Gaussian noises. e noises represents possible errors in the
measurement. For unbiased observations, perturbed observations are created by adding
noise (∼ (N (0, σ2)), to the observation values; σ represents the standard deviation. In
test case 1, σ equals 5% of observation values and for the analysis, we chose two more
levels of observation perturbations with σ being 1% and 10% of observations values
respectively. Using nobs = 2, we perform the estimation procedure for 10 s. e
estimated Young’s modulus with their uncertainty (standard deviations) are shown in
Figure 4.8b for the three different levels of observation perturbations. With different
values of σ, the estimated E ’s converge to the target value, but with a slightly different
rate. With a lower σ (at 1% of observation values), the convergence rate is a little
slower compared to the other two σ’s, which was not anticipated. Table 4.5 compares
the initial and final estimates of the Young’s modulus with their uncertainties for the
different level of perturbations used.
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T .: Sensitivity with different level of observation perturbation: e
initial guess of E = 0.5 MPa and the final estimates of Young’s modulus with
their associated uncertainties are shown below. Perturbed observations are
created by adding noise (∼ (N (0, σ2)), to the observation values. All values
of E and standard deviation are in MPa.

σ Final estimate
of E

Uncertainty
(± standard deviation)

1% of observation values 0.2556 0.0122
5% of observation values 0.2450 0.0245
10% of observation values 0.2441 0.0398

(iii) Bias in the known parameter values: In test case 1, we estimated the Young’s
modulus for artery #vii assuming that we know the values of E for all other arteries.
We also assumed that all reflection coefficients were known. e performance of the
estimation algorithm was tested by introducing biases in the known values of E and
Rt. ree different tests were carried out as follows: (i) we randomly perturbed the
values of reflection coefficients, Rt, with Gaussian noises having mean zero and a
standard deviation at 5% of the values of Rt, (ii) the known values of Young’s modulus,
E are randomly perturbed with Gaussian noises having mean zero and a standard
deviation at 10% of the values of E and (iii) known values of both reflection
coefficients and Young’s modulus are randomly perturbed with Gaussian noises having
mean zero and a standard deviation at 5% of the values of Rt and 10% of the values of
E. Pressure values in space were used as observations with the level of observation
perturbation set at 5% of observation values and the estimation procedure is executed
for 10 s. For all tests, the initial value of E assumes an error of 100%. e evolution of
the estimated Young’s modulus with their uncertainties for three different tests is
shown in Figure 4.8c together with the evolution of estimated E when known Young’s
modulus and reflection coefficients are unbiased. For all the cases, the estimated values
converge, but they slightly deviate from the target value as reported in Table 4.6 which
also gives indications of the level of uncertainties in these inversions.

(iii) Observation type: In inverse hemodynamic problems, observations such as
blood pressure, cross section blood flow rates, artery wall movements or cross-section
flow velocity can be made available. In test case 1, the observations are pressure values
histories at some specific locations in space. e behaviour of the estimation algorithm
with different kinds of observations. To this end, we consider the flow rate in space as
observations instead of the pressure. We perform the estimation procedure for 10 s
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T .: Sensitivity test: bias in the known parameter values. e initial
guess of E = 0.5 MPa and the final estimates of Young’s modulus with their
associated uncertainties are shown. All values of E and standard deviation are
in MPa.

Random perturbation of known values of
parameters by adding noise (∼ (N (0, σ2)).

Final estimate
of E

Uncertainty
(± standard deviation)

unperturbed known parameters values 0.2450 0.0245
σ is 5% of Rt values 0.2580 0.0132
σ is 10% of E values 0.2752 0.0129
σ is 5% of Rt values and 10% of E values 0.2480 0.0161

using nobs = 2 with the level of observation perturbation set at 5% of the observed
values. We compare these results to those obtained with the pressure as observation.
e evolution of estimated Young’s modulus with the associated uncertainties is shown
in Figure 4.8d. With both types of observations, the estimated Young’s modulus
converges to the target value with relatively small errors (-1.95% and +2.24% with
pressure and flow rate as observations respectively). However, when the observations
are based on the flow rates, the convergence is slightly faster, at least in this particular
case. e final estimate of E is 0.2450 ± 0.0245 MPa when pressure is considered as
the observed quantity. On the other hand, with the flow rate as observation, the final
estimate of E is 0.2556 ± 0.0059 MPa.

4.5.1.3 Test case 2:

e second test case deals with the estimation of the Young’s modulus of all the arteries
(i-ix) and the reflection coefficient at all the outlet boundaries (ii,iv,vi,vii,ix). All
arteries are assumed to have the identical stiffness and thus, a Young’s modulus of E =

0.2 MPa is assigned to all. A reflection coefficient of Rt = 0.6, is assigned at all
terminal vessels. e viscoelastic coefficient η and the non-linearity coefficient ϵp of
the vessels are set to 0.115 kPa.s and 0 respectively for the forward simulation. e rest
of the parameters are as in section 4.5.1.1. For the estimation problem, the Young’s
modulus of the arteries and the reflection coefficient at terminal arteries are sought
using various numbers of observations. e ensemble size qens and the error covariance
matrix R are as in section 4.5.1.1. e mean values for the initial guess of the Young’s
modulus and the reflection coefficient are set to E = 0.4 MPa and Rt = 0.8. e
EnKF assimilation is executed for 12 s, and the evolution of estimated E and Rt is
shown in Figures 4.9a and 4.9b respectively, for the different numbers of observations.
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F .: Sensitivity analysis for test case 1. In all the figures, the dashed
line represents the target Young’s modulus of 0.25 MPa and the shaded areas
represents the standard deviation around the mean values (solid lines). (4.8a)
shows the evolutions of the estimated Young’s modulus from three different
initial values. (4.8b) shows the evolution of estimated Young’s modulus for
three different levels of observation perturbations. (4.8c) shows the evolution
of the estimated Young’s modulus for different bias in the known parameters:
Rt perturbed with Gaussian noises having mean zero and a standard deviation
at 5% of the values of Rt (in red), E randomly perturbed with Gaussian noises
having mean zero and a standard deviation at 10% of the values of E (in blue),
both E and Rt randomly perturbed with Gaussian noises having mean zero and
a standard deviation at 5% of the values of Rt and 10% of the values of E (in
magenta). e evolution of estimated E with unbiased known parameters is
shown in black. (4.8d) shows the evolution of the estimated Young’s modulus
with pressure and flow rates as observation types.
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e estimation procedure was able to identify the parameters with different nobs,
though the convergence rate was much slower with nobs = 1. From these evolutions,
we see that even if nobs = 1 is enough to recover the values of E and Rt, one should
attempt to at least have two observations for faster convergence. e Young’s modulus
also appears to be simpler to identify than the reflection coefficient. is is possibly
because the time required to propagate the information contained in any boundary
condition throughout the whole domain is of order L/c where L is the size of the
network and c the wave speed. Instead, the Young’s modulus directly impacts the wave
speed so that it requires only Ls/c to feel any change in E, where Ls < L is the
distance between two consecutive observation location. Table 4.7 shows the value of
estimated Young’s modulus and the reflection coefficients with errors (percentage
deviation from target value) using different number of observations. In Figure 4.9c, the
pressure solution obtained with the estimated parameters using nobs = 2, at the first
observation point on left carotid is compared with the target and initial pressure
profiles. e simulated and the target pressure waveforms have very similar shape with
an error of less than 0.2% in the maximum pressure.

e next configuration involves a more realistic situation with available experimental
data.

T .: Test case 2: Estimated Young’s modulus and reflection coefficients
with errors (percentage deviation from target values) using different numbers
of observations.

Estimated
E (MPa)

Estimated
Rt

% deviation
from target E

% deviation
from target Rt

nobs = 1 0.2064 0.5995 3.20 -0.08
nobs = 2 0.1993 0.6013 -0.35 0.22
nobs = 3 0.1988 0.6030 -0.60 0.50
nobs = 4 0.2006 0.5973 0.30 -0.45
nobs = 5 0.1992 0.5994 -0.40 -0.10
nobs = 6 0.2003 0.5994 0.15 -0.10

4.5.2 A test case with experimental data

e efficiency of parameter estimation using the EnKF is presented where experimental
data is used as the observations. We refer to the experiment in Saito et al. [13], where a
simple human arterial network (see Figure 4.4) with four bifurcations was designed using
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F .: (4.9a) shows the evolution of the Young’s modulus using a different
number of observations for case 2. e initial value is 0.4 MPa and the target
is 0.2 MPa. (4.9b) shows the evolution of the reflection coefficient using a
different number of observations. e initial value is 0.8 and the target is 0.6.
(4.9c) shows the comparison between the pressure signal obtained with initially
guessed parameters, the target pressure solution and the one obtained by using
the estimated parameters with nobs = 2, at 0.2L of the left carotid artery.

polymer tubes (E = 0.185 MPa) to validate the applicability of the blood flow model as
presented in [13]. e tubes are filled with water, and to realize the reflection coefficients
of approximately 0.5, silicone tubes are connected at the end of the tubes to act as virtual
peripheral sites. A pulse flow with the profile of half a cycle of a sinusoidal wave is used
as input from the pump. e period of the pulse is 0.3 s with the total flow volume
of 4.5 ml. e pressure waves propagating in the viscoelastic tubes were experimentally
measured using a pressure sensor at 150 mm from the second bifurcation, which in an
actual human body roughly corresponds to the carotid artery of the neck [13].
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For this test case, we do not know if the solution of the inverse problem exists as the
target has not been generated with the blood flow code. e aim is then to determine
the best estimate of the Young’s modulus (E), reflection coefficient (Rt) and viscoelastic
coefficient (η) from the values of the experimentally measured pressure, which are taken
as observations for the inverse problem. It is assumed that E and η are identical for all
tubes and Rt is same at each terminal tube. e ensemble size qens = 20 and the error
covariance matrix R are defined as in section 4.5.1.1. e pressure measurements are
only available at one point on the carotid artery. e frequency of data assimilation is
0.01 s.

To test the sensitivity to initial parameter values, we investigate the performance of
the EnKF parameter estimation algorithm using three different sets of initial guess for
the three parameters (E,Rt and η). e mean values for the initial guess of the
parameters were: (E(MPa), Rt, η(KPa · s)) ∈ {(0.2, 0.6, 0.3), (0.6, 0.3, 0.4),
(0.4, 0.8, 0.5)}. e estimated parameter values do not change significantly after 16 s
of EnKF assimilation as shown in Figure 4.10. From Figure 4.10, we see that the
different guesses for initial mean values of the parameters seem not to have a
significant impact on the converged assimilated result. e initial guess of the
parameters and their best estimates obtained with their associated uncertainty
(standard deviation) with three different initial guesses using the EnKF are shown in
Table 4.8.

T .: Sensitivity to initial parameter values for the test with experimental
data. e initial guess of the parameters and their best EnKF estimates with
their associated uncertainty (standard deviation).

Parameter Initial guess EnKF estimate Error
(± standard deviation)

E (MPa) 0.2 0.1111 0.0024
0.6 0.1226 0.0025
0.4 0.1150 0.0028

Rt 0.6 0.5199 0.0033
0.3 0.5146 0.0075
0.8 0.5290 0.0048

η (KPa·s) 0.3 0.3710 0.0124
0.4 0.3760 0.0104
0.5 0.3810 0.0157

e blood flow model is then used with the estimated parameters to obtain the
pressure profile at the observation point. Figure 4.11 shows the comparison between
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the pressure profile obtained with the three sets of estimated parameters, the numerical
pressure profiles from the 1D blood flow model as reported in Saito et al. [13], the
measured pressure waves obtained from the experiment and the pressure profile
obtained from the three different sets of initial parameters. e simulated waveforms
are similar to the target pressure waveform. We compare the systolic (maximum)
pressure between the target (experimental pressure waveform) and the simulated
pressures obtained from different sets of estimated parameters. e difference is shown
in Table 4.9. In all the cases, the error is less than 2%. e results demonstrate that
even with nobs = 1, the Young’s modulus, reflection coefficient, and the viscoelastic
coefficient can be estimated with good accuracy using the proposed method.

T .: Test case 3: Comparison of the systolic (maximum) pressure
between the target (experimental pressure waveform) and the simulated
pressures obtained from different sets of estimated parameters. e target
systolic pressure is 4.02 MPa.

Estimated parameter set
{E (MPa), Rt, η (kPa.s)}

Maximum
pressure (MPa)

% error

set 1 (0.1111, 0.5199, 0.371) 4.01 -0.24
set 2 (0.1226, 0.5146, 0.376) 4.08 1.50
set 3 (0.1150, 0.529, 0.381) 4.04 0.51

4.6 Discussions

In this paper, we have demonstrated the applicability of EnKF to estimate the Young’s
modulus, reflection coefficient, and viscoelastic coefficient. A similar approach can also
be used to estimate other hemodynamic parameters such as resistance and compliance
in a Windkessel model. e EnKF and thus the estimation algorithm provides the
estimates of poorly known parameter values with their uncertainties. Sensitivity analysis
with respect to the initial guess of parameters, the level of observation perturbation, the
effect of bias in known parameter values and the type of observations is carried out.
Further analysis can be done on the efficiency of the estimation algorithm with respect
to the locations of available observations. We need to make sure the size of the ensemble
is correctly chosen. One also sees that very few spatial observation are necessary as the
approach performs even with solely one spatial observation point. We also discussed the
robustness of the inversion for different types of target observations (pressure or flow
rate). We have shown a method of choosing an ensemble size using RMSE, but the
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F .: Sensitivity of EnKF parameter estimation to different sets of
initial parameter values. 4.10a-4.10c show the evolution of Young’s modulus,
reflection coefficient, and viscoelastic coefficient respectively for the test case
using the experimental data with different sets of initial values. e set
of initial guess of the parameters, {E (MPa), Rt, η (kPa.s)} are: in RED
{0.2, 0.6, 0.3}, in BLUE {0.6, 0.3, 0.4}, in BLACK {0.4, 0.8, 0.5}. e shaded
areas represent one standard deviation around the mean values (solid lines).

efficiency of the EnKF parameter estimation algorithm may depend on other factors
such as level of observation perturbation, the location of the observations, their types
and also on the type of parameters to be estimated. e approach needs to be seen as
a help to diagnosis tool and not a definite opinion. We mentioned that one issue is
that uniqueness is not guaranteed. is might, therefore, impact clinical applications.
Indeed, an incorrect Young’s modulus might be obtained still providing a nice model fit
and obviously, this might mislead the clinician. e approach, therefore, needs to be
adopted in a Bayesian procedure with a priori information on the admissibility of the
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F .: Comparison between the pressure profile obtained with the three
sets of estimated parameters, the numerical pressure profiles from the 1D blood
flow model as reported in [13], the measured pressure waves obtained from
the experiment and the pressure profile obtained from the three different sets
of initial parameters. e dashed lines are the initial pressure waveforms and
the solid lines are the ones obtained from the estimated parameters. e
set of initial guess of the parameters, {E (MPa), Rt, η (kPa.s)} are: set 1
{0.2, 0.6, 0.3}, set 2 {0.6, 0.3, 0.4} and set 3 {0.4, 0.8, 0.5}.
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outcome by the clinicians and the outcome should definitely not been considered as a
final opinion.

We aim at having an approach with moderate complexity to describe the physics of
the problem and which is usable in practice. is is why any forward model based on a
multi-dimensional flow model is out of the table. Other works, for instance, present data
assimilation together with three-dimensional flow models based on fully 3D Navier-
Stokes [10], which require heavy computational effort in addition to an increase in the
complexity of the inverse problem. ese approaches also require good know-how by
the user and substantial learning efforts. We use a reduction in dimension to bring the
cost of one state evaluation to the order of a minute on standard computers available in
clinics. en natural parallelism in EnKF makes a time to solution of the order of the
number of EnKF iterations in minutes, which in the present case leads to approximately
two hours. Still this can be considered too costly and our current effort is to reduce
complexity even further.

4.7 Study limitations

e first limitation of our current study is concerned with the size of the arterial network
being adopted. We used a network consisting of 9 vessels, and the efficiency of the
proposed estimation algorithm has to be tested for a larger arterial network, including
complex network such as the circle of Willis in the cerebral vasculature. Secondly, an
ensemble size of 20 is taken as an optimal size for the parameter estimation in the current
study. An effect of taking a larger sample size on the estimation procedure can also be
studied. e efficiency and convergence rate also depends on the level of observation
perturbation, and another limitation is to identify the optimal level. It is also important
to investigate the maximum number of parameters that can be estimated for a given
arterial network with a given number of measurements available. In the current study,
we adopted 1D blood flow model with a constant resistance boundary condition. As
discussed before, there is no real limitation regarding the boundary description and thus,
the estimation algorithm can be applied to a blood flow model coupled to a Windkessel
model.
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4.8 Conclusion

A parameter estimation technique to compute the uncertain elastic and the terminal
properties of networks of 1D blood vessels using the Ensemble Kalman filter has been
studied. e tests have been limited to the estimation of elastic moduli (Young’s
modulus) of the network, the reflection coefficient at the terminal vessels and the
viscoelastic coefficient. e results confirm that the method is quite robust and permits
to recover the arteries stiffness in a reasonable amount of time consistent with patient
observation time at the hospital. Except with the computation of the Kalman gain, all
the operations on the ensemble members are independent. is implies that their
parallelization can be trivially carried out, thus decreasing the computational time
needed to solve the inverse hemodynamic problem. e time to solution for this
simulation is about 30 minutes on a parallel computer with 20 cores, which is basically
one node of current standard distributions. e model simulations performed with the
estimated parameter values produced accurate pressure profiles, which followed closely
with the target profiles showing the effectiveness and the efficiency of both the
estimation algorithm and the blood flow model. Also, it has been shown that the
approach is effective with only a few observations, well suited to real clinical
applications.
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The rest of the sections of this chapter present new materials focusing on the application

of EnKF to 0D model for the cardiovascular system. The aim of this chapter is to show that

0D model can lead to simple and reliable predictions of blood flow circulation in the circle

of Willis and compare the simulations with the results by our previous 1D PDE model.

A 0D model is used to fasten the parameter estimation procedure and also to keep low

the cost of data assimilation in case of larger arterial networks. An interesting a posteriori

consequence of this analysis is that the 0D model also permitted to understand that much
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Abstract

A methodology for non invasive estimation of the pressure in internal carotid arteries is
proposed. It uses data assimilation and Ensemble Kalman filters in order to identify
unknown parameters in a mathematical description of the cerebral network. e
approach uses patient specific blood flow rates extracted from Magnetic Resonance
Angiography and Magnetic Resonance Imaging. is construction is necessary as the
simulation of blood flows in complex arterial networks, such as the circle of Willis, is
not straightforward because hemodynamic parameters are unknown as well as the
boundary conditions necessary to close this complex system with many outlets. For
instance, in clinical cases, the values of Windkessel model parameters including
Young’s modulus of arteries are not available on per-patient cases. To make the
approach computational efficient, a reduced order zero-dimensional compartment
model is used for blood flow dynamics. e approach is illustrated on both synthetic
and real data cases. In particular, it is shown that the technique well performs with
target flow rate time series from either the right or left internal carotid arteries. e
inversion appears quite robust and similar Young’s modulus are recovered with either
the right or the left flow rate times series used during the inversion.

Keywords: MRA, MRI, EnKF, reduced order compartment blood model, parameter
estimation, circle of Willis, hemodynamic inverse problems

5.1 Introduction

One of the key factors identified to be associated with the formation and the risk of
rupture of cerebral aneurysms is the blood pressure fluctuations in cerebral arteries [25–
29, 154].

is work proposes to estimate these pressure variations for an arterial network
representative of the cerebral circulation using an integrated
observation/simulation/assimilation procedure to exploit available Magnetic
Resonance Angiography and Magnetic Resonance Imaging (MRA&MRI) observation
data by ensemble Kalman filter parameter estimation techniques using reduced order
blood flow models.
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e analysis of the cardiovascular system can be carried out using one-dimensional
(1D) [1–5] or multi-dimensional modelling (2D or 3D) [6–8] or in a simplified
manner using a lumped model (0D compartment model) [9, 12, 155, 156]. It is
possible to numerically solve the pressure wave system, taking place in a network of
interconnected arteries representing all or part of the cardiovascular system. Using
imaging data such as MRI, the geometric properties of each blood vessels such as
diameter and length can be acquired. However, the structural properties of the vessels
such as wall thickness and the Young’s modulus are difficult to identify. Still in
patient-specific simulations, such unknown properties need to be estimated as well as
the distal boundary conditions. ese unknown parameters can be estimated using an
algorithm based on a data assimilation technique such as using an Unscented Kalman
filter (UKF) [10] or an Ensemble Kalman filter (EnKF) [37]. e idea of  the
underlying algorithm is to estimate the input parameter values   used in the numerical
model to reproduce the best available observations such as brachial blood pressure,
carotid flow rate, temporal pressure or aortic flow rate. Once the assimilation process is
completed and the parameters are estimated, the interconnected network of arteries
becomes a good approximation of the patient specific cardiovascular system on which
the morphological data are collected and hemodynamic observations are made. It is
then possible to use the blood flow model to estimate the hemodynamic variables
whose measurement is only possible invasively (e.g. to access aneurysm pressure).

e blood flow simulation and interactions involving the full human arterial tree,
including the capillary bed involve a high demand for supercomputing resources [157].
In the current work, the arterial networks are represented by both a 1D blood flow model
and a simple 0D model. For the boundary condition at the outlet of each terminal artery,
we coupled the blood flow models with the 0D Windkessel model (WK3).

1D modelling of arterial networks offers good accuracy and is commonly used due
to being computationally cheap compared to 3D models [3, 5, 103]. e inverse
hemodynamic problem involving clinical data when using 1D modelling can be quite
challenging and thus regarded as one of the disadvantages of using 1D modelling when
finding the unknown model input parameters [103]. In the 1D formulation, the
network of arteries is fragmented into segments that connect to each other at nodes.
e number of unknown model parameters that need to be estimated increases as the
number of arterial segments increases [103].
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A ring-like arterial structure known as the Circle of Willis (CoW) that is located at
the base of the brain, linking the main cerebral arterial systems (the internal carotid
arteries and the vertebrobasilar) is the pathway for the distribution of oxygenated blood
in the cerebral mass [7, 158]. e role of CoW is also to compensate for the reduction
of cerebral perfusion pressure during internal carotid artery (ICA) occlusion [159].
Approximately 50% of the population have a complete CoW [160, 161]. e two
common variations include an underdeveloped CoW (hypoplasia) and cases where
some blood vessels are completely absent in a CoW [161]. e possible variations may
influence the reduced ability for the collateral flow of the blood through CoW, causing
a major health risk such as an ischaemic stroke [7, 158]. e CoW is also a common
place for aneurysms [30]. ere have been many types of research done on
hemodynamics and the blood flow in the CoW [7, 14, 32, 155, 158, 162–165]
focusing on the understanding of factors increasing the risk of stroke and the blood
flow distribution in the brain.

Recent works on the application of data assimilation to inverse problems in
hemodynamics include the work of Moireau et al. [36], Pant et al. [10, 34], Lombardi
[35], Spilker and Taylor [42], Bertoglio et al. [39], Chabiniok et al. [33], Martin et al.
[41], Lassila et al. [43] and Lal et al. [37]. In all of the above work, except Lal et al.
[37], the data assimilation techniques are either based on a joint state augmented
model or reduced order unscented Kalman filter (ROUKF). In [37], we have
demonstrated the use of EnKF for inverse hemodynamic problems using either
synthetic or experimental data from an in vitro test rig [13] where a simple reflection
coefficient are used as the outlet boundary conditions. In this paper, we demonstrate
the usefulness of EnKF in the case where WK3 is used to represent the outlet
boundary conditions for both synthetic and actual clinical data. We then estimate the
blood pressure (diastolic and systolic) in internal carotid arteries from the assimilated
blood flow model.

e outline of the paper is as follows: We first present a review of the 1D blood
flow model and 0D lumped compartment model which will be used to represent the
cardiovascular network. Next, the Ensemble Kalman data assimilation technique is
briefly reviewed and our algorithm for parameter estimation given. We then show the
application of our procedure to test cases with synthetic and actual clinical data. e
later corresponds to the cerebral network, including the complete circle of Willis
(CoW), of a healthy subject.
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5.2 Materials and methods

5.2.1 1D blood flowmodel

1D blood flow models of arterial networks are commonly used due to being
computationally cheap compared to 3D models [3, 5, 103]. ey provide good and
accurate results if the 3D effects in the flow can be neglected. e mathematical
formulation and the derivations of 1D modelling can be found in [1–3].

We assume that the blood vessels have cylindrical geometries, and the cardiovascular
system is considered as a network of these interconnected vessels with blood flow in
one-dimension. We consider the following governing equations representing mass and
momentum conservation [1]:

∂A

∂t
+

∂q

∂x
= 0,

∂q

∂t
+

∂
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(
α
q2
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)
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∂x
= −kr

q

A
,

(5.1)

where x and t represent the axial direction and time respectively, A(x, t) is the cross
section area, q(x, t) is the flow rate across a section, ρ denotes the density of the blood,
p is the average internal pressure over the cross-section. For a flat velocity profile, the
momentum-flux correction coefficient, α, equals unity [1]. kr represents the viscous
resistance of the flow per unit length of the vessel. e system (5.1) is completed by the
following differential constitutive pressure-area relation [1]:
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where pe is the constant external pressure, A0 represents the vessel sectional area at a
reference pressure and ϵp is the nonlinearity coefficient. h is the thickness of the vessel,
η is the viscoelastic coefficient, E is the Young’s modulus and the Poisson ratio, σ = 0.5
[1].

e pressure losses at a bifurcation (from artery index 1 to arteries 2 and 3) of a
blood vessel are assumed to be negligible. Following Wang et al. [137], the following
coupling equations representing the conservation of flow rate and the pressure continuity
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are enforced at the bifurcation:

3∑
i=1
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(5.3)

At the outlet of each terminal artery, the 1D blood flow model is coupled to the three-
element Windkessel model (WK3-lumped parameter model) [5] to include the effect
of the downstream vasculature. In the WK3 model (see Figure 5.1), the instantaneous
blood pressure and the flow rate are related as follows:

dp(t)

dt
+

p− pout
RDC

= RP
dq(t)

dt
+

q(RP +RD)

RDC
, (5.4)

where p is the instantaneous pressure at the inlet of the WK3 model, q is the
instantaneous flow rate, RP , and RD are the proximal (characteristic) and distal
resistance respectively of the vascular beds, and C is the compliance. RT = RP + RD

represents the total resistance of a peripheral bed. pout is the pressure (assumed to be
zero) at which flow through the microcirculation is zero [146]. In this study, a second
order finite element Taylor-Galerkin scheme is used to solve the set of Equations
(5.1)-(5.3).

RP RD

C

q

p pout

Terminal vessel

F .: Electric analogue of Windkessel (WK3) model.

5.2.2 0Dmodel for cardiovascular system

e human cardiovascular system can be modelled using an electrical analogy to
represent different mechanical properties of arteries [9, 12, 155, 156]. In this model,
the arterial network is divided into different compartments comprising a resistor
(resistance of blood due to blood viscosity, R), an inductor (blood inertance L) and a
capacitor (compliance of the artery, C) as shown in Figure 5.2.
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R L

C

qin

Pin Pout

qout

F .: Single compartment circuit representation.

e spatial variation of parameters (R,L, and C) in lumped parameter models is
neglected in each spatial compartment and thus the parameters are assumed to be
uniform [147]. e dynamics in each compartment are characterised by a set of
ordinary differential equations. For a single compartment assuming an incompressible
Newtonian fluid, the governing equations for the 0D model relating the variables R,L

and C and representing mass and momentum conservation read [9, 12, 155, 156]

C
dPout

dt
= qin − qout

L
dqin
dt

+Rqin = Pin − Pout

(5.5)

where Pin, qin and Pout, qout are the blood pressure and flow rate at the inlet and outlet of
the compartment (artery) respectively. e inertanceL expresses the relative significance
of inertia within the vessel and if its effect is ignored, the flow rate is then given by
qin = (Pin − Pout)/R.

e parameters R,L and C for each of the compartment representing different
arterial segments are calculated using the following equations [10, 107]:
Hagen-Poiseuille law for resistance, R = 8µl/πr4, L = ρl/πr2 and C = 3πr3l/2Eh,
where E, h, ρ, µ, l and r are the Young’s modulus, arterial wall thickness, the blood
density, the blood viscosity, the length of the arterial segment and, the radius of the
artery respectively.

Conservation of mass and momentum are enforced for diverging flows at the
bifurcation (Figure 5.3a) and for merging flows at the junction (Figure 5.3b). e flow
at node 1 in Figure 5.3a is q1 = q2 + q3 (conservation of mass) and due to the
continuity of pressure p1 = p2 = p3. Similarly for merging flows in Figure 5.3b,
q1 + q2 = q3 and p1 = p2 = p3.

Solution of Equation (5.5) needs care as this system is very stiff
(L/C ∈ [1018, 1020]). is first order differential equations system is solved using the
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implicit numerical integration solver DVODE [166, 167]. e Fortran version of DVODE is
available on http://www.radford.edu/~thompson/vodef90web/.

q1

q2

q3
P1

P2

P3

(a)

q1

q2

q3P1

P2
P3

(b)

F .: Model geometry for diverging (5.3a) and merging flows (5.3b).

5.2.3 Comparison of modelling techniques

Our aim in introducing the 0D modelling is mainly to reduce the CPU cost. We still
need to make sure that the corresponding results are close to those from the 1D PDE
description of chapter 3. In this section, we show how a ‘best practice’ guidance can be
established for the definition of the number of compartments in a segment in order for
the ODE model to recover the PDE results.

5.2.3.1 Comparison between 1D PDE and ODEmodels in a test case

A blood vessel in an arterial network can be partitioned into m segments
(compartments). In multi-compartment models, each segment (or compartment), is
described by its own resistance R = 8µl/πr4, compliance C = 3πr3l/2Eh and
inductance L = ρl/πr2. Let us compare the two modelling techniques (1D PDE and
0D compartment model) using a simple test case.

A blood vessel of length (l) of 40 cm, thickness (h) of 0.63 mm, radius (r) of 0.25 cm,
and with Young’s modulus of 0.4 MPa is considered for the test case. A periodic flow rate
boundary condition qin(t) is imposed at the inlet of the simple model. A WK3 model is
applied at the outlet of the computational domain with RP = 1.87 mmHg·s/ml, RD =

12.02 mmHg·s/ml and C = 0.02 ml/mmHg. e set-up is shown in Figure 5.4.

e density (ρ) of the fluid is taken as 1050 kg/m3, the viscosity (µ) of 4× 10−3 Pa·s
and the Poisson coefficient (σ) of 0.5. e viscoelastic coefficient (η) and the nonlinearity

http:// www.radford.edu/~thompson/vodef90web/
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F .: Comparison of modelling techniques. Set-up (top) and the inlet
flow rate qin (bottom).

coefficient (ϵp) of the vessel are both set to zero. e 1D blood flow model is then
executed with the above parameters using CFL=0.6 and with a mesh of 40 elements of
1 cm. is discretization is the coarser one still producing mesh independent results. e
periodic solution at the end of the vessel, qout, is recorded. For comparison purpose, the
compartment model is then applied to the set-up with different numbers for m starting
from 1. A periodic solution (qout) is recorded for each m.

Also, to see the sensitivity of the results with respect to Young’s modulus, the above
procedure is repeated for the blood vessel with Young’s modulus of 1.6 MPa.

Figures 5.5a and 5.5b compare the 1D PDE and 0D compartment model flow rate
waveforms at the vessel outlet. In both cases, the compartment model waveforms for
m ≥ 3 are similar to the 1D PDE waveform. e agreement between the two models
for the two cases are good for m ≥ 2 with the root mean square error between the
models of less than 2% for m = 3. However, the variability increases with the decrease
in Young’s modulus.

In all cases, considering the range of Young’s modulus we face in these applications,
these simulations suggest that for the ODE model to reproduce the PDE results, one
should avoid 0D compartments with length l larger than 20 cm

(
40 cm
m

with m = 2
)

for
both E = 0.4 MPa and E = 1.6 MPa.

In other words, this analysis indicates that one needs nearly 35 compartments by
wavelength which in our case is around 7 m for the case of E = 0.4 MPa and 70
compartments when E = 1.6 MPa where the wavelength is 14 m. ese considerations
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suggest that when applied to an ensemble of cerebral arteries which are very short and
with large Young’s modulus, m = 1 is quite a safe choice.

It is important to notice that with m = 2 the computational cost of the ODE model
versus PDE is reduced by a factor of more than 300 which means that 10 iterations of
EnKF with an ensemble of size 30 is performed at the cost of one PDE direct simulation
on a mesh with 40 elements.
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F .: Comparison of the 1D PDE (40 elements) and 0D compartment
model solutions (flow rate): (5.5a) blood vessel with E = 0.4 MPa and (5.5b)
with higher Young’s modulus of E = 1.6 MPa . m is the number of segments
(compartments) in the compartment model.
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5.2.3.2 Trade off between space accuracy and computational efficiency for the PDE
model

We saw the interest of using the 0D model in term of computational efficiency. However,
this implies that we need to maintain two simulation codes for the 0D and 1D models.
As the ODE model seems to produce satisfactory results with very few compartments, a
natural idea is to see if the same can be done with the PDE model on very coarse meshes.
Hence, to avoid maintaining two codes, it would be nice to see if there is possibility to
keep using the 1D PDE model but on coarser meshes than above. Figure 5.6 shows
the comparison of flow rates histories at the outlet for two coarse meshes for the 1D
PDE model versus the PDE model on the fine mesh and the ODE results for the blood
vessel with E = 0.4 MPa. We see that the same flow rate histories are obtained with the
1D PDE model on the 3 and 40 elements meshes. is means that the PDE model
is competitive in term of computational cost if coarse meshes can be used on each of
the network segments and suggests that one should be able to maintain only one direct
simulation code in the assimilation platform.
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F .: Comparison of flow rates histories at the outlet for coarse meshes
(2 and 3 elements) for the 1D PDE model versus the PDE model on the fine
mesh (40 elements) and the ODE results (m = 2) for the blood vessel with
Young’s modulus E = 0.4 MPa.

e same analysis applied to the circle of Willis shows that the 0D and 1D models
give the same results for extremely coarse discretizations. Indeed, mesh independent
results are achieved with only one compartment or one element in the PDE mesh. We
recall that, as mentioned in the previous section, m = 1 is a safe choice when applied to
an ensemble of short cerebral arteries with large Young’s modulus.
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5.2.4 Estimation of hemodynamic parameters using an Ensemble
Kalman Filter

In Lal et al. [37], we have shown the use of a data assimilation technique using the
Ensemble Kalman filter for the estimation of hemodynamic parameters using both
synthetic and in vitro data. We refer the reader to Lal et al. [37] for a detailed
mathematical analysis of EnKF and we summarise the algorithm used to estimate the
hemodynamic model parameters in the following.

e EnKF is a suboptimal estimator for problems that involves nonlinear models of
higher order, where an ensemble of states is used to predict the error statistics [37]. e
unknown hemodynamic parameters, x ∈ Rn, are treated as special state variables whose
evolutions at time t = k + 1 are defined using a random walk model [100]

xk+1 = xk + τk. (5.6)

τk ∼ N (0,Tk) is a small Gaussian random perturbation with a variance T. e initial
forecast ensemble of parameters xfi

k for i = 1, . . . , qens are assumed to be available at
t = k. fi denotes the initial ith forecast member of an ensemble of size qens which is
used to determine the forecast error covariance matrix in EnKF. e parameter
estimation algorithm uses a set of nobs observations such as blood pressure, blood flow
rates, flow velocity or arterial wall movements to improve a set of given initial estimate
of the hemodynamic parameters, x. Yk = (yf1

k , . . . , y
fqens
k ) ∈ Rqens×nobs is a set of output

vector that is generated at time t = k. Each member, yfi
k , is defined by yfi

k = H(xfi),
where H is the nonlinear measurement function defined by the blood flow model
describing the relation between measurements and parameters. An ensemble of
perturbed observations, yik (for i = 1, . . . , qens) is generated by adding perturbations to
the original observation vector yk ∈ Rnobs:

yik = yk + eik, i = 1, . . . , qens, (5.7)

where eik ∈ Rnobs is a random vector drawn from the zero mean Gaussian distribution
with a specified variance. e discrepancies between perturbed observations and
measurements are then used to update (assimilate) parameters using:

xai
k = xfi

k + Kk

[
yik − yfi

k

]
, i = 1, . . . , qens, (5.8)
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where ai represents the updated (assimilated) parameters and Kk is the Kalman gain
matrix. e matrix Kk is defined by three error covariance matrices:

Kk = Pf
xyk

(
Pf
yyk

+ Rk

)-1
. (5.9)

Rk is the diagonal measurement error covariance matrix defined by

Rk = diag
[

1

qens − 1
EET

]
, E =

[
e1k, . . . , e

qens
k

]
. (5.10)

e other two error covariance matrices are given by [37]

Pf
xyk

=
1

qens − 1

qens∑
i=1

[
xfi
k − xf

k

] [
yfi
k − yf

k

]T
, (5.11)

Pf
yyk

=
1

qens − 1

qens∑
i=1

[
yfi
k − yf

k

] [
yfi
k − yf

k

]T
(5.12)

where xf
k =

1
qens

∑qens
i=1 x

fi
k and yf

k =
1
qens

∑qens
i=1H

(
xfi
k

)
. e ensemble updated parameters

(5.8) at time t = k is then cycled in time and the parameter estimation using the EnKF
can be stopped upon reaching some finite convergence criterion. At convergence, the
mean of the ensemble is taken as the best estimate of the parameters. e parameter
estimation algorithm is summarised in Algorithm 1 [37]. Henceforth, nobs will refer to
the number of locations on an arterial network where a time series of observations such
as pressure values or blood flow rate is available.

Algorithm 1: Parameter estimation using EnKF [37]
Input: qens, maximum number of EnKF iteration (jmax), variance matrix T,

nobs, initial estimate of n unknown parameters (mean xl and variance
Pl for l = 1, . . . , n).

1 Initialization: Randomly initialize an ensemble of parameters, xi, for
i = 1 . . . , qens where xi = (x1, x2, . . . , xn) and xl ∼ N (xl, Pl) for
l = 1, . . . , n.

2 Let xai = xi
3 for j = 1 to jmax do
4 -Evolution of ensemble: xfi = xai + τ i, τ i ∼ N (0,T) ∀i = 1, . . . , qens
5 -Ensemble propagation: yfi = H(xfi) ∀i = 1, . . . , qens
6 -Perturbation of observations for each ensemble: yi = y+ ei,

∀i = 1, . . . , qens
7 -Determine R and K using Eqs. (5.10) and (5.9) respectively.
8 -Ensemble update: xai = xfi + K

[
yi − yfi

]
∀i = 1, . . . , qens.
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5.2.5 Test Cases with synthetic and patient specific data

We test the efficiency of the parameter estimation technique using the EnKF with test
cases involving both synthetic and patient specific data. e synthetic cases are to
illustrate the procedure on situations where the solution is known. ey also permit to
see the impact on the assimilation of a degradation of the flow modelling from 1D to
0D in forward simulations. A simple arterial network consisting of 9 arteries and a
more complex network with 33 arteries are used in the blood flow models. e
complex network of arteries consists of the circle of Willis. e objective is to identify
(estimate) a set of model parameters within the physiological range, given measured
values of arterial blood flow rate or blood pressure. e model parameters are limited
to material properties (Young’s modulus) and the terminal parameters (Windkessel
parameters). e other parameters, such as geometrical, are either measured (in patient
specific) or assumed known or, in the case of missing data (patient specific case), taken
from the literature.

5.2.5.1 Case 1: Simple arterial network with synthetic data

In the first case, we consider the in vitro model of a simple human arterial network
described in Saito et al. [13]. Figure 5.7 shows a network of vessels consisting of 9
arteries. At the inlet (vessel #1) we impose a periodic flow rate, qin(t), with period of
0.8 s as shown in the Figure 5.7. e terminal vessels are coupled with 0D Windkessel
WK3 model. For sake of simplicity, outlet boundaries i, ii and iii are modeled with the
same WK3 parameters: RP1 = 0.53×109 Pa·s·m−3, RD1 = 4.75×109 Pa·s·m−3 and C1

= 0.53×10−10 m3·Pa−1; while outlets iv and v are coupled with: RP2 =
0.48×109 Pa·s·m−3, RD2 = 4.3×109 Pa·s·m−3 and C2 = 0.58×10−10 m3·Pa−1. e
geometrical data of the arterial network is shown in Table 5.1. e Young’s modulus of
all vessels is assigned a value of 0.4 MPa. Blood rheological parameters for the test case
are taken as: ρ = 1050 kg/m3 and µ = 0.004 Pa·s. e nonlinearity coefficient (ϵp) and
the viscoelastic coefficient (η) are both set to zero. With these parameters, a forward
simulation is executed using the 1D blood flow model. e pressure values from two
different locations: in the centre of the left carotid artery (vessel #4) and in the centre
of the right femoral artery (vessel #8) are recorded.

e inverse hemodynamic problem is set-up as follows: Starting from an initial
guess, the Windkessel boundary parameters are estimated using the pressure values as



Chapter 5. Non invasive blood flow features estimation in cerebral arteries from uncertain
medical data 110

1
2

3

4

5

6

7

8
9

i

ii

iii

iv v

RP1
RD1

C1

RP1
RD1

C1

RP2
RD2

C2

RP2
RD2

C2

RP1
RD1

C150

0.30 0.8
time (s)

qin

(ml/s)

qin

P1

P2

pressure measurement

pressure measurement

F .: A simple human arterial network consisting of 9 arteries [13].
Artery numbers correspond to those in Table 5.1. e terminal arteries are
coupled with a WK3 model. e pressure values in the centre of vessel #4 (P1)
and in the centre of vessel #8 (P2) are used as observations.

T .: Geometric, Young’s modulus and Windkessel terminal parameters
corresponding to arterial segments in Figure 5.7. Length (l), radius (r), and
the thickness (h) come from the model in Saito et al. [13].

id Name l
(cm)

r
(cm)

h
(mm)

E
(MPa)

RP

(×109

Pa·s·m−3)

RD

(×109

Pa·s·m−3)

C
(×10−10

m3Pa−1)
1 Aorta arch A 3.50 0.6 2 0.4 - - -
2 R.subclavian radial artery 80.0 0.3 1.5 0.4 0.53 4.75 0.53
3 Aorta arch B 2.0 0.55 2 0.4 - - -
4 L.carotid artery 67.5 0.3 1.5 0.4 0.53 4.75 0.53
5 Aorta arch C 4.0 0.5 2 0.4 - - -
6 L.Subclavian radial artery 71.0 0.3 1.5 0.4 0.53 4.75 0.53
7 Aorta 47.0 0.4 1.5 0.4 - - -
8 R.femoral artery 36.5 0.3 1.5 0.4 0.48 4.30 0.58
9 L.femoral artery 36.5 0.3 1.5 0.4 0.48 4.30 0.58
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observations in the data assimilation technique using EnKF. Since the pressure values
are recorded in two locations, we denote the number of observations nobs=2.
Henceforth, nobs will refer to the number of locations on an arterial network where a
time series of observations such as pressure values or blood flow rate is available. All
other geometrical and material properties are assumed to be known for this synthetic
case. For the parameter estimation set-up, we seek an estimation of 6 parameters with
an ensemble of size qens = 20. e initial guess of resistances (RP and RD) and
compliances (C) assumes errors of 50% and 150% respectively (compared to the exact
values used for the forward simulation mentioned above). To restrict the assimilated
parameters to positive values, all parameters are redefined as x = xref2

θ. xref is the
reference or initial guess of the parameter to be estimated and θ is the actual value used
in the EnKF during the assimilation step. In our ensemble simulations, θ for the
ensemble members initialization follows N (0, 1). e measurement error covariance
matrix is defined by Equation (5.10), where the observations (pressure values) are
perturbed by a random vector that is drawn from a Gaussian distribution with zero
mean and a standard deviation at 5% of the pressure values. e estimation algorithm
using the EnKF coupled with the 1D blood flow model is executed for 20 s
(corresponding to 25 cycles) with the assimilation taking place every 0.005 s. is
means 4000 EnKF iterations, or 160 per cardiac cycle.

5.2.5.2 Case 2: Circle ofWillis with synthetic data

e parameter estimation algorithm is tested using an arterial network (Figure 5.8)
consisting of the aorta, brachial, carotid and vertebral arteries as well as a complete
CoW which is adapted from Alastruey et al. [32]. A similar network of arteries has
been studied in Mulder et al. [162]. e geometrical parameters (length, radius and
thickness) and WK3 boundary parameters of 33 arteries in Figure 5.8 are also adapted
from Alastruey et al. [32] and are shown in Table 5.2.

In Reymond et al. [14], an empirical formula relating arterial radius (in mm) and
pulse wave velocity (PWV in ms−1) has been derived as PWV=α/(2r)β, where α and β

are 13.3 and 0.3 respectively. Using Moens-Korteweg formula for PWV, an expression
for the product of E and h as a function of r can be derived and written as

Eh =
0.001ρα2

(2r)(2β−1)
. (5.13)
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F .: (5.8a) e network [32] of a one-dimensional blood flow model of
the upper body arteries and of the circle of Willis. Artery numbers corresponds
to those in Table 5.2. Arrows indicate the direction of flow. (5.8b) e
equivalent 0D compartment model. Flow rates are assigned the compartment
numbers corresponding to those in Table 5.2. e inlet flow rate, qin, in
the figures above is given by Equation (5.15). e terminal arteries and
compartments are coupled with the WK3 model.
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T .: Geometric and Windkessel terminal parameters corresponding to
arterial segments (and compartments) in Figure 5.8 from Alastruey et al. [32].
e product Eh is calculated using Eh = k1r + k2.

id Name l
(cm)

r
(cm)

Eh
(Pa·m)

RP

(×109

Pa·s·m−3)

RD

(×109

Pa·s·m−3)

C
(×10−10

m3Pa−1)
1 Ascending aorta 4.0 1.200 702.8 - - -
2 Aortic arch I 2.0 1.120 671.28 - - -
3 Brachiocephalic 3.4 0.620 474.28 - - -
4 Aortic arch II 3.9 1.070 651.58 - - -
5 Left common carotid 20.8 0.250 328.5 - - -
6 Right common carotid 17.7 0.250 328.5 - - -
7 Right subclavian 3.4 0.423 396.66 - - -
8 oracic aorta 15.6 0.999 623.61 0.02 0.16 38.70
9 Left subclavian 3.4 0.423 396.66 - - -
10 Left external carotid 17.7 0.150 289.1 1.67 3.76 1.27
11 Left internal carotid I 17.7 0.200 308.8 - - -
12 Right internal carotid I 17.7 0.200 308.8 - - -
13 Right external carotid 17.7 0.150 289.1 1.67 3.76 1.27
14 Right vertebral 14.8 0.136 283.58 - - -
15 Right brachial 42.2 0.403 388.78 0.13 2.53 2.58
16 Left brachial 42.2 0.403 388.78 0.13 2.53 2.58
17 Left vertebral 14.8 0.136 283.58 - - -
18 Left internal carotid II 0.5 0.200 308.8 - - -
19 Left post. comm. artery (PCoA) 1.5 0.073 258.76 - - -
20 Right post. comm. artery (PCoA) 1.5 0.073 258.76 - - -
21 Right internal carotid II 0.5 0.200 308.80 - - -
22 Basilar 2.9 0.162 293.83 - - -
23 Left middle cerebral artery (MCA) 11.9 0.143 286.34 2.605 3.365 1.16
24 Right middle cerebral artery (MCA) 11.9 0.143 286.34 2.605 3.365 1.16
25 Left anterior cerebral artery A1 (ACA, A1) 1.2 0.117 276.10 - - -
26 Right anterior cerebral artery A1 (ACA, A1) 1.2 0.117 276.10 - - -
27 Left post. cerebral artery P1 (PCA, P1) 0.5 0.107 272.16 - - -
28 Right post. cerebral artery P1 (PCA, P1) 0.5 0.107 272.16 - - -
29 Left anterior cerebral artery A2 (ACA, A2) 10.3 0.120 277.28 3.70 4.48 0.815
30 Right anterior cerebral artery A2 (ACA, A2) 10.3 0.120 277.28 3.70 4.48 0.815
31 Anterior comm. artery (ACoA) 0.3 0.074 259.16 - - -
32 Left post. cerebral artery P2 (PCA, P2) 8.6 0.105 271.37 4.83 6.25 0.62
33 Right post. cerebral artery P2 (PCA, P2) 8.6 0.105 271.37 4.83 6.25 0.62

Equation (5.13) is linearised to get an approximate relation

Eh = k1r + k2 (5.14)

using values of r from Alastruey et al. [32]. A least square fitting of the mentioned data
by this linear model (see Figure 5.9) gives the constants k1= 39.4 Pa and k2= 2.3×102

Pa·m.

For this synthetic case, the Young’s modulus, radius and thickness of the arteries are
assumed to be related by the Equation (5.14) with the given constants k1 and k2. An
inlet flow rate, qin with period of 1 s, is imposed at the proximal end of ascending aorta.
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F .: Eh versus r: least square fitting to get k1 and k2 in Equation 5.14.

For each cardiac cycle, qin in ml/s is defined as [32]:

qin(t) =

485 sin(πt/τ) if t < τ,

0 otherwise
(5.15)

where τ = 0.3 s.

Two different scenarii are considered, namely, Case2PDE and Case2ODE.
For the first scenario (Case2PDE), a reference simulation using 1D blood flow code
with known geometrical parameters, material properties (Young’s modulus) together
with the inlet flow rate (qin) and WK3 boundary conditions is executed. Blood
rheological parameters are as in case 1. e blood flow rates in the middle of common
carotid arteries (artery #5 and #6 in the Figure 5.8a) and in the middle of external
carotid arteries (artery #10 and #11 in the Figure 5.8a) are stored as synthetic
observations. Using nobs = 4, and using the 1D blood flow model for forward
simulation during data assimilation, we estimate k1 and k2 assuming all other
parameters are known. e initial guess for the parameters to be estimated are set as
k1= 19.7 Pa and k2= 3.45×102 Pa·m. e EnKF parameters are set as follows: qens = 20,
θ ∼ N (0, 0.25), the measurement error covariance matrix, R, is defined by Equation
(5.10), where the observations (blood flow rates) are perturbed by a random vector that
is drawn from a Gaussian distribution with zero mean and a standard deviation at 5%
of the flow rate values, and the assimilation is taken at every 0.01 s (100 EnKF per
cycle). A small variance is taken for the random walk model: τk ∼ N (0, 0.003). e
parameter estimation algorithm is executed for 10 cardiac cycles.
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In the second scenario (Case2ODE), the 0D compartment model (Section 5.2.2)
for forward simulations during the EnKF data assimilation process is used. e idea is
to test if parameters can be estimated using the 0D compartment model, using the
observations that are synthetically generated by the 1D blood flow model. In this
synthetic case, the effects of inertia are ignored in the compartment model. Each
artery in Figure 5.8a is represented by 1 compartment. Figure 5.8b shows the
equivalent network of 33 compartments where the terminal compartments are coupled
with the 0D Windkessel WK3 model. Using the flow rate measurements q5, q6, q10

and q13 from the forward simulation of 0D compartment model during data
assimilation, we estimate k1 and k2 using the same initial guesses as in scenario 1. e
matrix R is defined as in scenario 1 with the uncertainty for the flow rate assumed to
follow N (0, 0.01) which is typical of a 10% standard deviation in measurement devices
for the flow rate. e EnKF parameters q, θ, τk and the assimilation frequency are as in
scenario 1. e parameter estimation algorithm is executed for 10 cardiac cycles.

5.2.5.3 Case 3: Patient specific PC-MRA&MRI-based blood flow rates

e patient-specific data used in the current study has been acquired at the
Department of Neuroradiology at the Centre Hospitalier Regional Universitaire de
Montpellier (CHRU), Montpellier, France.

2D phase-contrast imaging is performed on a Siemens 3T Skyra MR Scanner. We
consider the ascending aorta and the internal carotid arteries (right and left ICA’s) for
the analysis of blood flow rates. More precisely, 2D Fast cine PC-MRI pulse sequence
(one 5mm slice perpendicular to the arteries) with retrospective peripheral gating, and
32 frames covering the entire cardiac cycle are acquired. e imaging parameters for
ICA’s are a velocity encoding sensitivity (Venc) of 80 cm·s−1, a repetition time (TR) of
28.86 ms, an echo time (TE) of 8.79 ms, a flip angle of 15o, and a voxel size of
0.53 mm×0.53 mm×5.0 mm.

Figure 5.10 shows one pair of the acquired images (magnitude and phase contrast
image) for ICA’s. For the flow rate analysis, the Bio Flow Image software
(http://www.tidam.fr/) was employed. For each of the arteries, a region of interest
(ROI) is segmented with its lumen size defined by thresholding.

For the ascending aorta, the imaging parameters are: Venc = 200 cm·s−1, TR =
28.72 ms, TE = 8.79 ms, flip angle 15o and a voxel size 0.57 mm×0.57 mm×5.0 mm.
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F .: (5.10a) PC-MRI of the patient-specific internal carotid arteries
(right and left) showing the blood flow through one of the selected slices. On
the left is the magnitude image and on the right is the phase contrast image with
Venc setting of 80 cm·s−1. (5.10b) e instantaneous blood flow rate values,
q(t), are acquired at each time frame and is plotted against time for one cardiac
cycle.

Figure 5.11 shows one pair of the magnitude and phase contrast image acquired for the
ascending aorta. e corresponding blood flow rate is also shown in the same figure.

A 3D Time of Flight magnetic resonance angiography (3D-TOF-MRA) of the circle
of Willis is obtained with the parameters: acquired voxel 0.31×0.31×0.55 mm, 28 slices,
TR=21.0 ms, TE=3.49 ms and flip angle of 28o.

e 3D model (and morphology) of the circle of Willis (see Figure 5.12) is
determined through segmentation of the TOF MRA using RadiAnt DICOM Viewer

software (http://www.radiantviewer.com/). e geometric measurements of lengths
and radius of CoW’s blood vessel are measured from MRA using RadiAnt DICOM Viewer

and are shown in Table 5.3. e carotid vascular tree could not be obtained because
this acquisition requires the injection of contrast agent which is impossible to achieve

(http://www.radiantviewer.com/)
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F .: (5.11a) PC-MRI of the patient-specific ascending aorta showing
the blood flow through one of the selected slices. On the left is the magnitude
image and on the right is the phase contrast image with Venc setting of
200 cm·s−1. (5.11b) e instantaneous blood flow rate values, q(t), are acquired
at each time frame and is plotted against time for one cardiac cycle.

on healthy volunteers. e missing geometry of other arteries of the full network
(Figure 5.8b) is obtained from average data reported in the literature [14, 32].

e inverse hemodynamic problem is set-up as follows: using data assimilation, we
seek for arterial stiffness (Young’s modulus) and WK3 model boundary parameters for
the network as shown in Figure 5.8b. e acquired flow rate waveform for the right
internal carotid (R-ICA) is used as observations during EnKF assimilation steps in the
parameter estimation problem. e flow rate waveforms for the left internal carotid (L-
ICA) is used in a posteriori validation process. For the forward simulation during the
data assimilation the 0D compartment model is employed. At the inlet (ascending aorta,
compartment #1), specific values of flow rates, qin, is imposed as measured by PC-MRI
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F .: A TOF MRI scan (top) and the resulting segmented 3D model
of the complete circle of Willis (bottom) for patient-specific case. e numbers
on segmented model correspond to the ID’s of the arterial segments in Table
5.3.

(see Figure 5.11). Blood rheological parameters are taken as: ρ = 1050 kg·m−3 and µ

= 0.004 Pa·s. We perform two scenarii, namely ODE15 and ODE21, for parameter
estimation as described below.

Scenario 1 (ODE15): For ODE15 the Young’s modulus is assumed to be a function
of radius given by an expression E = k1 e

k2r + k3 [139], with unknown constants k1, k2
and k3. We seek for an estimation of the above constants with initial guesses k1 = 2.0×
107 g·cm−1s−2, k2 = −6.0 cm−1 and k3 = 4.0×106 g·cm−1s−2. e thickness of larger
arteries is adopted from Alastruey et al. [32] (see Table 5.2) and for all cerebral arteries,
the thickness is assumed to be 25% of the mean radius [32]. e WK3 parameters (RD

and C) for the 11 terminal compartments in Figure 5.8b are estimated. e proximal
resistance (RP ) is assumed to match the characteristic impedance (Zc) of the terminal
compartment [14, 32]:

RP = Zc =
ρc0
A0

where c20 =

√
πEh

(1− σ2)(2ρA
1
2
0 )

. (5.16)

Furthermore, we assume a same WK3 boundary parameters for left and right pairs of
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T .: Geometric parameters corresponding to arterial segments (and
compartments) in Figure 5.12 measured from MRI. e thickness h is taken as
25% of the measured radius. e missing geometry (marked with an astrix) of
larger arteries is adopted from the average data in the literature [14, 32].

id l (cm) r (cm) h (cm) id l (cm) r (cm) h (cm)
1 4.00∗ 1.200∗ 0.163∗ 18 0.50 0.200 0.050
2 2.00∗ 1.120∗ 0.126∗ 19 1.20 0.075 0.019
3 3.40∗ 0.620∗ 0.080∗ 20 1.20 0.075 0.019
4 3.90∗ 1.070∗ 0.115∗ 21 0.50 0.200 0.05
5 20.8∗ 0.250∗ 0.063∗ 22 2.70 0.150 0.038
6 17.7∗ 0.250∗ 0.063∗ 23 11.9 0.143 0.028
7 3.40∗ 0.423∗ 0.067∗ 24 11.9 0.143 0.028
8 15.6∗ 0.999∗ 0.110∗ 25 1.20 0.117 0.029
9 3.40∗ 0.423∗ 0.067∗ 26 1.20 0.117 0.029
10 17.7∗ 0.150∗ 0.038∗ 27 0.56 0.110 0.028
11 17.7∗ 0.200 0.050∗ 28 0.56 0.110 0.028
12 17.7∗ 0.200 0.050∗ 29 10.3 0.120 0.030
13 17.7∗ 0.150∗ 0.038∗ 30 10.3 0.120 0.030
14 14.8∗ 0.136∗ 0.034∗ 31 0.30 0.074 0.019
15 42.2∗ 0.403∗ 0.067∗ 32 8.50 0.100 0.025
16 42.2∗ 0.403∗ 0.067∗ 33 8.50 0.100 0.025
17 14.8∗ 0.136∗ 0.034∗

terminal compartments. For instance, the terminal compartments #10 and #13 are
assigned with the same WK3 boundary parameters. us, 15 parameters consisting of
6 distal resistances, 6 compliances and 3 constants defining Young’s modulus are
estimated. e initial estimates for compliances are taken from Alastruey et al. [32].
e initial guesses for RD are chosen such that the ratio RP/(RP +RD) = 0.2 [109],
i.e RD = 4RP .

Using nobs = 1 and the 0D compartment for forward simulation during data
assimilation, 15 unknown parameters are estimated. In ODE15, the inertial effect is
neglected and the flow rate is defined by qin = (Pin − Pout)/R in the compartment
model. e EnKF parameters are set as follows: qens = 30, θ ∼ N (0, 0.25), the
measurement error covariance matrix, R, is defined by Equation (5.10), where the
observations (blood flow rates) are perturbed by a random vector that is drawn from a
Gaussian distribution with zero mean and a standard deviation at 10% of the flow rate
values of the R-ICA, and the assimilation time interval is 0.04175 s. A small variance
is taken for the random walk model: τk ∼ N (0, 0.001). e parameter estimation
algorithm is executed for 60 s (approximately 72 cardiac cycles).
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Scenario 2 (ODE21): For ODE21 the product of Young’s modulus and thickness of
arteries is assumed to be given by an empirical formula Eh = r(k1 e

k2r + k3) [168].
Unlike as in ODE15 where we estimated E, here we find an estimation of the product
Eh by seeking an estimation of the unknown constants with their initial guesses as
k1 = 2.0 × 107 g·cm−1s−2, k2 = −22.0 cm−1 and k3 = 8.0 × 105 g·cm−1s−2. e
same assumption on WK3 boundary parameters for left and right pairs of terminal
compartments as in ODE15 is taken here. In ODE21, we also estimate the proximal
resistance RP . us, a total of 21 parameters consisting of 6 proximal resistances, 6
distal resistances, 6 compliances and 3 constants defining the product Eh are
estimated. e initial estimates for proximal resistances and compliances are taken
from Alastruey et al. [32]. As in ODE15, the initial guesses for RD are chosen such
RD = 4RP . For arteries with r < 0.2 cm, the inertial effect is ignored [169] in the
compartment model during the forward simulation. e assimilation time interval is
0.04175 s (20 EnKF iterations per cardiac cycle) and the rest of the EnKF parameters
are as in the ODE15 case.

Table 5.4 provides a summary of the cases with different scenarii considered in this
section.

T .: e summary of parameter estimation for the three test cases.

Case Scenario Number
of

segments

Number
of

uncertain
parameters

nobs and
type of

observations

Type of data
used in data
assimilation

Type of
model

1 - 9 6 nobs = 2,
Pressure

Synthetic 1D blood
flow

2 Case2PDE 33 2 nobs = 4,
Flow rate

Synthetic 1D blood
flow

2 Case2ODE 33 2 nobs = 4,
Flow rate

Synthetic 0D
compartment

3 ODE15 33 15 nobs = 1,
Flow rate

Actual
clinical data

0D
compartment

3 ODE21 33 21 nobs = 1,
Flow rate

Actual
clinical data

0D
compartment
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5.3 Results

In this section, we investigate the efficiency and the accuracy of the parameter estimation
algorithm using EnKF. e numerical analysis is performed for the three cases described
in Section 5.2.5 and summarized in Table 5.4.

5.3.1 Case 1

Figure (5.13a - 5.13c) shows the evolution of the six estimated WK3 parameters with
their associated uncertainties defined by the standard deviation. e target parameter
values have been used to generate synthetic observations for data assimilation. e initial
and final estimates (with associated uncertainties) of the parameters are shown in Table
5.5. e estimated values converge to the target with small errors (3% deviation from
the target values). In Figure 5.13d, we compare the pressure in the carotid artery. e
estimated pressure profile (obtained using estimated parameters) is similar with an error
of less that 0.15% in the systolic pressure compared to the target one.

T .: Case 1: Estimated parameters with their corresponding
uncertainties and percentage deviations from target values. e resistances are
in (×109 Pa·s·m−3) and the compliances are in (×10−10 m3·Pa−1)

Parameter Target Initial
guess

Final EnKF estimate
(± standard deviation)

% deviation
from target

RP1 0.53 0.265 0.545±0.008 2.83
RP2 0.48 0.240 0.496±0.016 3.33
RD1 4.75 2.375 4.630±0.125 -2.53
RD2 4.30 2.150 4.420±0.150 2.79
C1 0.53 0.795 0.535± 0.007 0.94
C2 0.58 0.870 0.595± 0.010 2.59

5.3.2 Case 2

e evolutions of estimated parameters using both the 1D and 0D compartment
(Equation (5.5)) models are shown in Figure 5.14. e results are summarised in Table
5.6. e estimated values deviated between -2.5% to 4% from the target values. Even
though the target flow rate is synthetically generated by the 1D blood flow model, the
compartment model is able to retrieve them within approximately 5% errors.
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F .: Estimated parameters and pressure solution for case 1. (5.13a -
5.13c) shows the evolution of WK3 parameters (proximal and distal resistances
and the compliance). e dotted lines represent the target value of the
parameters being estimated. e shaded areas represent the standard deviation
around the mean values (solid lines). (5.13d) shows the comparison between the
pressure solutions (in the left carotid artery) obtained with the initial estimate of
parameters, the final estimated pressure solution, and the target pressure curve.

Both parameter estimations converge after approximately 10 s of observation (about 10
cycles). Using the compartment model, however, the computational time is
approximately 60 times shorter.

T .: (Case2PDE and Case2ODE): Estimated parameters (k1 and
k2) using two blood flow models with their corresponding uncertainties and
percentage deviations from target values.

Parameter Target Initial
guess

Final EnKF estimate % deviation from target

Case2PDE Case2ODE Case2PDE Case2ODE
k1 (Pa·m) 39.4 19.70 40.2±0.4 37.3±0.5 1.93 -5.25
k2 (×102 Pa) 2.30 3.45 2.39±0.03 2.37±0.04 3.91 3.04
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F .: Evolution of estimated parameters for case 2 using the 1D
(Case2PDE) and compartment (Case2ODE) blood flow models. (5.14a)
shows the evolution of k1 and (5.14b) shows the evolution of k2. e dotted
lines represent the target values of k1 = 39.4 Pa and k2 = 2.3×102 Pa·m. e
shaded areas represent the standard deviation around the mean values (solid
lines).

Figure 5.15a shows the comparison of solutions (blood flow rate in the left common
carotid artery) with estimated parameters using the 1D and the compartment blood
flow models. For comparison, the 1D blood flow model is also simulated with the
parameters that are estimated using the compartment model during EnKF iterations.
Except with the compartment model alone, the curves show similar waveforms. e
waveform produced by the simulated 1D blood flow model with parameters that are
estimated using the compartment model shows a good match with the target
waveform. However, with the compartment model, the peak flow rate is approximately
5.8% higher than the target peak flow rate. is can be explained by the fact that two
blood flow models are completely different and there is 5.25% difference in the
estimated value of k1. Also, we notice that with the compartment model, the second
peak (dicrotic notch) is not present in the flow rate waveform. is is probably due to
the absence of inertial effects in the compartment model.

In Figure 5.15b the pressure waveform simulated using the two models are shown
for the left common carotid artery. e waveforms are compared with the pressure
curve produced using the 1D blood flow model simulated with the target parameters.
Again, we notice that the waveforms are similar except for the one simulated using the
compartment model. With the compartment model, the systolic pressure is
approximately 1% higher compared with synthetically generated pressure curve.
Similarly, the diastolic pressure is 7.8% lower and the dicrotic notch is not visible in
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the pressure waveform. Still, it is remarkable that the overall pressure variation over the
cardiac cycle is well retrieved (within a few percents) when using the 0D model.
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F .: Flow rate and pressure waveform comparison in the left common
carotid artery for Case 2 (scenarii Case2PDE and Case2ODE). (5.15a) shows
the flow rate comparisons with the target flow rate (solid black line). e
other three waveforms are obtained from the 1D blood flow model (in red),
the 1D blood model with the parameters estimated using the compartment
model (in blue) and the compartment model (dotted black line). (5.15b) shows
the corresponding pressure waveforms from the two blood flow models.

5.3.3 Case 3

e evolutions of the parameters with two scenarii (ODE15 and ODE21) are shown in
Figure 5.16. In both scenarii, the EnKF algorithm is able to reach convergence in 60 s
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(EnKF iteration time), corresponding to approximately 72 cardiac cycles. e initial and
final estimated values of the parameters with their associated uncertainties using the two
scenarii are shown in Table 5.7.

T .: Case 3: Estimated parameters (with associated errors) for the
patient specific fitting using ODE15 and ODE21. e values of constants
k1, k2, and k3 are in ×107 g·cm−1s−2, cm−1, and ×106 g·cm−1s−2 respectively.
e proximal (RP ) and distal (RD) resistances are in ×109 Pa·s·m−3 and
the compliance (C) are in ×10−10 m3Pa−1. In the forward simulation with
ODE15, the values of RP are calculated using Equation (5.16).

Parameter Initial guess Final EnKF estimate ± error
(ODE15, ODE21) ODE15 ODE21

k1 2.00, 2.00 1.93 ± 0.33 4.99 ± 0.36
k2 -6.00, -22.0 -3.86 ± 0.44 -8.47 ± 0.32
k3 4.00, 0.85 2.98 ± 0.29 0.66 ± 0.02
RP8 -, 0.02 - 0.031 ± 0.002
RP13 -, 1.67 - 0.62 ± 0.05
RP15 -, 0.13 - 0.15 ± 0.01
RP24 -, 2.61 - 3.71 ± 0.26
RP30 -, 3.70 - 1.23 ± 0.07
RP33 -, 4.83 - 2.04 ± 0.22
RD8 0.23, 0.08 2.16 ± 0.25 0.46 ± 0.04
RD13 21.23, 6.68 22.37 ± 5.57 10.44 ± 1.40
RD15 2.03, 0.52 1.65 ± 0.20 0.71 ±0.09
RD24 25.82, 10.44 3.45 ± 0.77 20.42 ± 2.13
RD30 39.57, 14.80 11.50 ± 1.89 2.33 ± 0.33
RD33 6.52, 19.32 4.42 ± 0.76 1.70 ± 0.15
C8 38.78, 38.78 18.74 ± 3.09 31.90 ± 2.47
C13 1.27, 1.27 0.43 ± 0.27 1.73 ± 0.36
C15 2.58, 2.58 4.73 ± 1.30 2.00 ± 0.18
C24 1.16, 1.16 0.65 ± 0.09 0.04 ± 0.004
C30 0.82, 0.82 0.26 ± 0.05 0.49 ± 0.03
C33 0.62, 0.62 1.38 ± 0.27 0.37 ± 0.04

e comparison between the observation (blood flow rate measurement in the right
ICA from MRI data) and blood flow model simulations (based on assimilated
parameters) using the estimated parameters are displayed in Figure 5.17a. Four flow
rate waveforms are compared with the target waveform obtained from the PC-MRI
analysis. (ODE15) using ODE15 as the forward simulator with the estimated
parameters from scenario 1, (ODE21) using ODE21 as the forward simulator with
the estimated parameters from scenario 2, (PDE15) using 1D blood flow model as the
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F .: Case 3: e patient-specific fitting. Time evolution of estimated
parameters using ODE15 and ODE21. e shaded areas represent the
standard deviation around the ensemble mean values (solid lines).
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forward simulator with the estimated parameters from scenario 1 and (PDE21) using
1D blood flow model as the forward simulator with the estimated parameters from
scenario 2. For ODE15 and ODE21, the waveforms are plotted with their associated
errors (shaded areas in the figure denoting standard deviation computed from the
ensemble statistics). e secondary peak is not visible in the flow rate waveform for the
ODE15 assimilation. With (ii-iv), slight secondary peaks are observed. e best
results is with the ODE21 assimilation. We recall that ODE21 includes inertial effects
for arteries with r ≥ 0.2 cm. Additionally, ODE21 reveals a good agreement between
the simulated and the target blood flow rate waveform. e diastolic values has smaller
errors (less than 5%) compared to systolic values. e difference between measured and
the simulated systolic flow rate reaches 12%. is maximum difference is observed
with PDE15. With ODE21, there is an error of -1.5% in the simulated systolic flow
rate.

Figure 5.17b shows the analysis of the blood flow in the left ICA. Since this flow
rate signal was not used as observation during data assimilation, we use it for a
posteriori validation purposes. Similar waveforms than for the right ICA are obtained.
ODE21 provides the best fit for L-ICA. As before, the diastolic values has smaller
errors (less than 5%), with a maximum relative difference between the measured and
simulated systolic value of 13.5% for PDE15. With ODE21, there is an error of -3.4%
in simulated systolic flow rate.

In Figure 5.18, the simulated pressure waveforms in the two ICA’s are shown using
ODE15, ODE21, PDE15 and PDE21. For left and right ICA’s, similar waveforms are
observed. e estimated pressure (including diastolic and systolic) with ODE21 and
PDE21 are lower compared to the pressure estimated using ODE15 and PDE15. It
is also noted that pressure estimated using a 1D blood flow model (PDE) is within the
range of pressure uncertainties estimated using ODE. ese uncertainties are shown
by the shaded areas (denoting standard deviation) around the mean pressure values in
Figures 5.18a and 5.18b.

5.4 Sensitivity analysis

A parameter estimation sensitivity analysis is performed using two more scenarii for the
patient-specific case (case 3). We are interested by the relative sensitivity of the estimated
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F .: (5.17a) Comparison between the blood flow rate measurement in
the right ICA from MRI data (red) and blood flow model simulations (patient
specific-fitting). ODE15 indicates the forward simulator with the estimated
parameters from scenario 1 and ODE21 with the parameters from scenario
2. PDE15 indicates the results with the 1D blood flow model as forward
simulator with the estimated parameters from scenario 1 and PDE21 with the
parameters from scenario 2. e flow rate signal obtained with initially guessed
parameters are also shown in dash-dot lines. e shaded areas represent the
standard deviation around the ensemble mean values for ODE15 and ODE21.
(5.17b) shows the corresponding a posteriori analysis of the blood flow in the
left ICA.
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F .: e model simulated pressure waveforms in the right (5.18a)
and left ICA’s (5.18b) using ODE15, ODE21, PDE15, and PDE21. e
uncertainties are shown by shaded areas (denoting standard deviation) around
the mean pressure values with ODE15 and ODE21.

parameters with respect to the observation location and their numbers nobs.

We recall that the previous scenario (in section 5.2.5.3), ODE21, uses nobs = 1 and
estimates 21 parameters using the flow rate waveform for the R-ICA as observations.
To see the impact of a change in the target observations, we consider the acquired flow
rate waveform for the left internal carotid (L-ICA) as target during EnKF assimilation
steps while the a posteriori validation process considers the flow rate waveforms in the
right internal carotid (R-ICA). We call this scenario ODE21L.
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Also, to see the impact of a change in the number of observations, we consider both
available observations as target which means nobs = 2. is is called scenario
ODE21RL. is is the best one can expect as all the available information is now
mobilized.

All other parameters and settings are same as for the scenario ODE21. e initial
estimates of the 21 unknown parameters are also same as in ODE21, and the ENKF
parameter estimation is executed for 60 s (about 72 cardiac cycles).

Figure 5.19 shows the time evolution of estimated parameters with changes in the
observation location and nobs (scenarii ODE21L and ODE21RL, respectively). e
results are also compared with ODE21 in the same figure. With all scenarii, the filter
converged in about 72 cardiac cycles and the estimated parameters converged to
different values for the three scenarii. e final estimates of the 21 parameters with
their associated uncertainties using the three scenarii (ODE21, ODE21L, and
ODE21RL) are summarised in Table 5.8.

Figure 5.20 shows the comparison between the observed (clinically measured blood
flow rates using MRI) and blood flow model simulations (predictions) based on 21
estimated parameters using the three scenarii, i.e. ODE21, ODE21L, and
ODE21RL. From the results, the comparison between the assimilated 0D model and
in vivo data (MRI) is fair. It is observed that secondary peaks in the flow rate
waveforms are reproduced in the model. Also, the 0D compartment blood flow model
and the EnKF parameter estimation algorithm are seen to be compatible with nobs of
more than 1.

Table 5.9 summarizes the cardiac cycle-averaged (mean) and maximum (peak)
volumetric flow rates measured in the ICA’s using MRI and simulated values using the
model with estimated parameters. All mean, peak (systolic), and diastolic flow rates
measurements and model outputs (for all scenarii) differ by less than 6%. Additionally,
the mean and peak values are compared with and found to be within the reported
range in Ford et al. [170]. Furthermore, it is observed that errors (see Table 5.9) in
peak and mean values of the blood flow rate in the ICA’s are least with the scenario
ODE21RL when compared with the MRI data.
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F .: Sensitivity analysis: e patient-specific fitting. Time evolution
of estimated parameters with the three scenarii: ODE21 (in blue), ODE21L
(in red), and ODE21RL (in black). e shaded areas represent the standard
deviation around the ensemble mean values (solid lines).
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T .: Sensitivity analysis: Estimated parameters (with associated errors)
for the patient specific fitting with the three scenarii: ODE21, ODE21L,
and ODE21RL. e values of constants k1, k2, and k3 are in ×107 g·cm−1s−2,
cm−1, and ×105 g·cm−1s−2 respectively. e proximal (RP ) and distal (RD)
resistances are in×109 Pa·s·m−3 and the compliance (C) are in×10−10 m3Pa−1.

Parameter Initial guess Final EnKF estimate ± error
ODE21 ODE21L ODE21RL

k1 2.00 4.99 ± 0.36 5.70 ± 0.96 3.53 ± 0.19
k2 -22.0 -8.47 ± 0.32 -9.62 ± 0.60 -5.00 ± 0.27
k3 8.5 6.60 ± 0.20 10.52 ± 0.41 4.44 ± 0.25
RP8 0.02 0.031 ± 0.002 0.03 ± 0.002 0.028 ± 0.001
RP13 1.67 0.62 ± 0.05 0.62 ± 0.08 1.43 ± 0.13
RP15 0.13 0.15 ± 0.01 0.29 ± 0.02 0.24 ± 0.02
RP24 2.61 3.71 ± 0.26 2.15 ± 0.16 1.64 ± 0.13
RP30 3.70 1.23 ± 0.07 1.51 ± 0.12 6.81 ± 0.44
RP33 4.8 2.04 ± 0.22 2.98 ± 0.49 1.84 ± 0.15
RD8 0.08 0.46 ± 0.04 0.28 ± 0.001 0.31 ± 0.001
RD13 6.68 10.44 ± 1.40 9.23 ± 0.20 16.19 ± 0.22
RD15 0.52 0.71 ±0.09 1.48 ± 0.016 1.00 ± 0.01
RD24 10.44 20.42 ± 2.13 9.48 ± 0.08 1.69 ± 0.02
RD30 14.80 2.33 ± 0.33 2.40 ± 0.03 11.03 ± 0.08
RD33 19.32 1.70 ± 0.15 2.13 ± 0.04 4.53 ± 0.04
C8 38.78 31.90 ± 2.47 58.78 ± 6.86 46.44 ± 2.54
C13 1.27 1.73 ± 0.36 3.00 ± 0.65 3.86 ± 0.47
C15 2.58 2.00 ± 0.18 0.82 ± 0.10 1.88 ± 0.18
C24 1.16 0.04 ± 0.004 0.06 ± 0.006 0.17 ± 0.03
C30 0.82 0.49 ± 0.03 0.48 ± 0.04 2.12 ± 0.17
C33 0.62 0.37 ± 0.04 0.65 ± 0.07 0.66 ± 0.05

T .: Sensitivity analysis: comparison of the cardiac cycle-averaged
(mean) and maximum (peak) volumetric flow rates of model simulated values
with scenarii ODE21, ODE21L, and ODE21RL to measured values using
MRI in the ICA’s. e percentage difference between the model results and the
MRI data are stated in red in parenthesis. e model results are also compared
with the reported values in Ford et al. [170].

ICA Maximum (peak) flow rate (ml/s) Mean flow rate (ml/s)

MRI Model Ford
et al.
[170]

MRI Model Ford
et al.
[170]

ODE21 ODE21L ODE21RL ODE21 ODE21L ODE21RL

Right 6.18
(±0.90)

6.05
(±0.89)
(2.12%)

6.03
(±0.91)
(2.5%)

6.07
(±0.90)
(1.8%)

7.76
(±1.55)

4.31
(±0.90)

4.33
(±0.89)
(0.46%)

4.25
(±0.91)
(1.4%)

4.32
(±0.90)
(0.23%)

4.62
(±0.93)

Left 5.94
(±0.82)

5.70
(±0.82)
(4.12%)

5.61
(±0.80)
(5.71%)

5.73
(±0.83)
(3.6%)

7.35
(±1.72)

4.13
(±0.82)

4.18
(±0.82)
(1.2%)

4.18
(±0.79)
(1.2%)

4.18
(±0.83)
(1.2%)

4.53
(±1.00)
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F .: (5.20a) Comparison of the simulated blood flow rate waveform
with the three scenarii: ODE21 (in blue), ODE21L (in red - as a posteriori
validation), and ODE21RL (in black) to the target (MRI data in green)
in the R-ICA. e dotted black line is the model simulation based on
the initial estimate of parameters. e shaded areas represent the standard
deviation around the ensemble mean values. (5.20b) shows the corresponding
comparison of the blood flow in the L-ICA using the scenario ODE21 (in blue
as a posteriori validation), ODE21L (in red), and ODE21RL (in black).
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In order to better compare the precision of the three different scenarii, we also
computed the percentage norm of the analysis error in the converged model solution
relative to the norm of the target MRI measurement:

∥ qa − qmri ∥
∥ qmri ∥

× 100% (5.17)

where qa denotes the converged solution (blood flow rate) when the model is simulated
with the parameters estimated using the three different scenarii, qmri is the blood flow
rate acquired using MRI (target), and ∥ · ∥ is the L2 norm. e analysis errors provide
us with information on the closeness of different scenarii and also they give the
difference between the predicted and the observed data. e percentage norm of the
analysis error with the three scenarii is shown in Table 5.10. Scenario ODE21RL
produces the smallest analysis errors showing a slight improvement in the errors with
nobs = 2.

T .: Sensitivity analysis: the percentage norm of the analysis error
in the converged model solution relative to the norm of the target MRI
measurement on the right and left internal carotid arteries using the scenarii
ODE21, ODE21L and ODE21RL.

Artery Scenario

ODE21 ODE21L ODE21RL
R-ICA 6.12% 7.94% 5.60%
L-ICA 5.26% 5.22% 4.75%

From a clinical point of view, an estimation of vessel stiffness can be a relevant
indicator in case of cardiovascular pathologies [23, 171]. e arterial stiffness are
mainly determined by the Young’s modulus (E) and the wall thickness (h) and is
assumed to vary with radius (r) [168], i.e.

Eh

r
= k1 e

k2r + k3 (5.18)

where the three constants (k’s) are estimated using the three scenarii. Figure 5.21
shows the arterial stiffness (Eh

r
) as a function of r for the three scenarii ODE21,

ODE21L, and ODE21RL. is Figure shows that there is a small variation in the
estimated arterial stiffness when nobs increases from 1 to 2, though, a similar trend is
observed for all the three scenarii. With nobs = 1, a good agreement (relative RMSE
errors of less than 4%) between the arterial stiffness estimated using scenarii ODE21
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and ODE21L is shown. is shows that the arterial stiffness can be estimated with
EnKF using observations from independent locations. is can be particularly useful
in the clinical practice when the measurements are difficult to acquire at the locations
of interest. Scenario ODE21RL, which is the best one can expect, compared to
ODE21 and ODE21L, has a relative RMSE error of approximately 14%. As
expected, ODE21RL has the smallest percentage norm of the analysis error (giving a
better fit to the observed MRI data) and relevant improvement is obtained in the peak
and mean blood flow rates, for which relative errors are the smallest. Also, it is noted
that with the three scenarios the constants k1, k2 and k3 converged to different values
(see Figure 5.19), yet the estimated arterial stiffness does not differ much.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

0.5

1

1.5

2

2.5

3

r (cm)

E
h

r
(M

P
a)

Estimation of arterial stiffness Eh

r

 

 

ODE21

ODE21L

ODE21RL

F .: Estimated arterial stiffness (Eh
r

) as a function of r for the three
scenarii: ODE21, ODE21L, and ODE21RL. e shaded region denotes the
standard deviation around the mean (solid lines).

In Figure 5.22, the simulated pressure waveforms in the two ICA’s are shown. For
right and left ICA’s, similar waveforms are observed by the three scenarii. e
uncertainties in pressure values are shown by the shaded areas around the mean
predicted pressure values in Figures 5.22a and 5.22b. ere is a slight discrepancy
(relative error of less than 2%) between the peak pressure estimated using scenarii
ODE21 and ODE21L. With scenario ODE21RL the relative error in the predicted
peak pressure in the ICA’s is less than 4% compared to ODE21 and ODE21L. As no
clinical measurements of pressure are available for validation, the confidence in
pressure predictions of the model are based on the convergence of estimated
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parameters and from the fit between observed and predicted blood flow rate from the
model using estimated parameters.
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F .: e model simulated pressure waveforms in the right (5.22a) and
left ICA’s (5.22b) with the three scenarii: ODE21, ODE21L, and ODE21RL.
e uncertainties are shown by the shaded areas (denoting standard deviation)
around the mean pressure values.

e systolic blood pressure (SBP) and diastolic blood pressure (DBP) in major
arteries constituting the circle of Willis, vertebral arteries, and some larger arteries are
predicted using the scenarii ODE21, ODE21L, and ODE21RL. e predicted
pressure’s (SBP and DBP) are shown in Figure 5.23. In the Seventh Report of the
Joint National Committee on Prevention, Detection, Evaluation, and Treatment
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[172], blood pressure for adults is classified as normotensive (SBP < 120 and DBP <

80 mmHg), prehypertension (SBP 120-139 mmHg or DBP 80-90 mmHg), and
hypertensive (SBP ≥ 140 and/or DBP ≥ 90 mmHg). With all the scenarii the
predicted pressures in the arteries constituting the CoW are within the physiological
values of a healthy patient. With ODE21L, slightly higher SBP is predicted in all the
arteries. In the ascending aorta and common carotid arteries, the predicted pressures
fall in the prehypertension category following Chobanian et al. [172].

Despite these little differences, one can however conclude that the three inversions
give nearly the same pressure level predictions in the different arteries.
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F .: e pressure (SBP and DBP) in major arteries constituting the
circle of Willis, vertebral arteries, and larger arteries as predicted using the three
scenarii: ODE21, ODE21L, and ODE21RL. e names of the arteries are
written using acronyms which correspond to those in Table 5.11.

Finally, mean pressure values per cardiac cycle are computed in each of the arteries in
Figure 5.23. e mean arterial pressure (MAP) that is usually calculated from a patient’s
SBP and DBP is often used as an index of overall blood pressure [173]. In clinical
practice, the brachial artery MAP is usually estimated at the upper arm as: MAP =
1
3
SBP + 2

3
DBP [173–176]. Table 5.11 compares the computed mean pressure values

in the arteries to the MAP calculated using the clinical formula above. Overall, the
error between the computed mean pressure values and calculated MAP is less than 9%.
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Moreover, all the mean values are within the normal range of hemodynamic parameter
for a healthy patient, i.e. MAP of 70-105 mmHg [174, 176, 177].

T .: Comparison of computed mean pressure values in the arteries with
model (using the three scenarii: ODE21, ODE21L, and ODE21RL) to the
MAP (in parenthesis) calculated as 1

3
SBP + 2

3
DBP. MAP of 70-105 mmHg

is considered as a normal hemodynamic parameter for a healthy patient [174,
176, 177]. All values are in mmHg.

Artery ODE21 ODE21L ODE21RL
Ascending aorta (AA) 96.79 (88.88) 94.43 (89.26) 94.77 (89.02)
Common carotid (CC) 94.91 (87.70) 92.56 (87.88) 93.04 (87.42)
Vertebral artery (VA) 90.78 (83.91) 89.36 (84.99) 90.14 (84.64)
Basilar (BAS) 90.78 (83.91) 89.36 (84.99) 90.14 (84.64)
Internal carotid artery (ICA) 91.26 (84.62) 89.05 (84.70) 89.43 (84.10)
External carotid artery (ECA) 92.19 (85.14) 89.42 (84.66) 91.23 (86.18)
Post. cerebral artery P1 (PCA, P1) 88.82 (82.16) 87.69 (83.36) 88.62 (83.17)
Post. cerebral artery P2 (PCA, P2) 88.83 (82.16) 87.70 (83.36) 88.63 (83.18)
Post. comm. artery (PCoA) 89.34 (82.62) 88.13 (83.78) 89.02 (83.56)
Middle cerebral artery (MCA) 91.18 (84.55) 88.96 (84.62) 89.33 (84.02)
Anterior cerebral artery A1 (ACA, A1) 91.07 (84.45) 88.85 (84.49) 89.24 (83.92)
Anterior cerebral artery A2 (ACA, A2) 89.52 (82.98) 87.46 (83.17) 88.95 (83.67)
Anterior comm. artery (ACoA) 89.52 (82.98) 87.46 (83.17) 88.95 (83.67)

5.5 Discussion

e objectives of cases 1 to 3 are to identify a set of model parameters (Young’s
modulus and outlet boundary condition parameters) from measured values
(observations) of flow rate. Towards this end, a 0D compartment model is used and
shown to be much faster than a classical 1D PDE-based blood flow model yet
providing very similar results in terms of blood pressure and flow rate signals. In
determining the Kalman gain, the EnKF uses estimates that are based on the ensemble
size and its members. An ensemble size of less than 30 is shown to be enough for all
the cases considered, using either synthetical or medical observation, with up to 21
uncertainties. e analysis shows good agreement between the measured flow rate
from MRI and the outcome of the assimilated compartment model. e pressure
estimated in the internal carotid arteries and the arteries in the circle of Willis are
within the physiological values of a healthy patient for all the assimilation problems.
is shows a valuable robustness of the identification procedure. e secondary peaks
present in the MRI flow rate signals are only obtained by scenarii ODE21, ODE21L,
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and ODE21RL showing the importance of inertial effects in the physical model. All
inversions provide with similar levels for the predicted pressure in the arteries. ese
numerical tests show that it is also possible to estimate arterial stiffness of a complex
network such as the circle of Willis with only few observations. We can also see that
the results improve with increasing observation data implying that all available clinical
data should be mobilized.

5.6 Study limitations

One of the limitations could be the choice of the formula relating Young’s modulus,
thickness, and radius for the cerebral arteries. We assumed the same relation for both
large and cerebral arteries. e other factor might be the adaptation of missing data
from the literature, such as the geometrical parameters of the arteries. For the patient
specific case, the parameter estimation algorithm is only tested with a compartment
model (reduced order ODE) and not with a 1D blood flow model. is is because the
observed computational cost of the PDE-based model for this configuration made it
non feasible on standard computers. e PDE-based model is therefore only used for a
posteriori validation.

e lack of measured pressure data prevents from testing the model pressure results.
is, unfortunately, cannot be avoided as measuring the pressure in these arteries is
impossible. However, we have some confidence on the results because the flow rate
and pressure are physically linked through the model and that the computed flow rate
matches well the observations. Also, the pressure signal has been well retrieved in the
synthetic cases. Concerning the limitations and possible improvements, one could
mention that the approach assumes zero pressure loss at bifurcations. Also, this study
should be seen as a proof of concept as solely one clinical case has been considered.
More extensive tests (including the cases of hypertension) are definitely necessary
before definite and final conclusions can be drawn.

5.7 Conclusion

e ensemble Kalman filter has been used to estimate the product of Young’s modulus
and thickness (Eh) and the Windkessel outflow boundary parameters of the
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Windkessel model from MRA&MRI data. e patient specific case involves a
complex arterial network consisting of the circle of Willis and several larger arteries.
To ease up the computational complexity and cost, a reduced order compartment
model is coupled with the data assimilation algorithm, leading to an affordable CPU
time of less than 3 hours for the most complex case on a standard computer. A
relatively good-patient specific fitting is achieved even in the presence of partial
geometrical parameters with values filled from the literature. e best performing
method for a patient-specific case is with the flow physics described by a compartment
model including inertia. In particular, the fit with the extracted flow rate from
MRA&MRI observations is found best with the capture of secondary peaks (dicrotic
notch) in the waveforms. is appears also necessary to avoid possible false prediction
of prehypertension for healthy patients. From the results, the comparison between the
assimilated 0D model and in vivo data is fair. Parameter estimation using Ensemble
Kalman filter is thus useful in estimating hemodynamic parameters using possible
clinical measurements such as blood flow rates or time series pressure values in the
arteries.
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Concluding remarks

Contents
6.1 Overview of the research and discussions . . . . . . . . . . . . . . 141

6.2 Study limitations and future directions . . . . . . . . . . . . . . . . 143

This chapter provides conclusions of the results and discussions of the study research

presented in this thesis. The chapter begins with an overview of the work and also addresses

research limitations and future research directions.

6.1 Overview of the research and discussions

A general framework and algorithm for hemodynamic parameter estimation using
EnKF for patient-specific cardiovascular simulations and prediction are presented. e
robustness of the filter is investigated through successful applications in several
idealised cases (synthetic data), an in vitro case (experimental data from an in vitro test
rig) and a patient-specific case (real clinical data from a volunteer). Common
hemodynamic parameters such as arterial wall properties (Young’s modulus, wall
thickness, and viscoelastic coefficient) and terminal boundary parameters (reflection
coefficient and Windkessel model parameters) are estimated (with uncertainties) using
time series pressure values and blood flow rate as measurements. Overall, there is a
good agreement between the measured and computed quantities for all test cases,
validating the approach. Furthermore, sensitivity analysis is carried out to assess the
efficiency of EnKF. Sensitivity analysis included the effect of using different types of
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observations (or measurements) for data assimilation and the impact on the final
assimilated parameter with different initial guesses.

e assimilated parameters were found to be independent on the three different initial
guesses and they lead to a good agreement with the measured pressure over the cardiac
cycle for the in vitro case. However, we hypothesise that making the initial guesses of
parameters to be estimated (for in vitro or clinical case) further from the true (or target)
values, at some point we will start to see non-convergence to the true parameters, or
convergence to different parameters.

e analysis confirms that the proposed method is quite robust even with a few
numbers of measurements, well suited to real clinical applications (cases) where
measurements are usually available at only a few locations. We also showed that a
reduced order model enables to get a reliable and robust solution of the inverse
hemodynamic problem. e compartment model is found to be computationally
cheap, and is able to capture the key features of the hemodynamics, like the pressure
and blood flow rate waveforms, systolic (peak) and diastolic blood flow rates, and the
mean volumetric blood flow rate per cardiac cycle. For the patient-specific case, the
goals were to determine the model parameters (Young’s modulus, thickness, and WK3
boundary condition parameters) and to match the MRI measured blood flow rate in
the internal carotid arteries. e comparison between the assimilated reduced order
(0D) model and in vivo data is fair. Sensitivity analysis for the patient specific case
revealed that more than one observation signal is necessary to obtain a good estimate
and thus a better fit of predicted data with the observed clinical data. Reduced order
compartment model seems to be a good approximation to assess the blood pressure in
cerebral arteries in a non-invasive manner.

e approach permitted to estimate hemodynamic parameters (arterial wall
properties and WK3 boundary parameters) in a complex arterial network including the
circle of Willis in a time efficient manner. is approach paves the way for complete
patient-specific vascular modelling, in which available uncertain clinical measurements
(such as blood flow rates or time series pressure values in the arteries) could be used to
estimate (or tune) various uncertain parameters needed for the patient-specific
simulations. e methodology has potential clinical applications such as providing
reliable predictions of hemodynamic quantities of interest or in-patient treatment
planning to assess the cardiovascular condition of a patient.
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6.2 Study limitations and future directions

e parameter estimation algorithm has only been tested with reduced order models.
e EnKF-based parameter estimation with more sophisticated blood flow models
such as 3D FSI will be investigated in the future. Furthermore, the blood flow models
do not take into account the pressure loss at bifurcations and suggest for future studies
in this area. e model and the parameter estimation algorithm were tested with only
one patient-specific dataset as a proof of concept and should be primarily seen as a
feasibility study. More extensive patient-specific test and validation are necessary for
the perspective of clinical applications before final conclusions are made. Blood flow
model accuracy for patient-specific simulations are dependent on the quality of input
data from imaging techniques. In order to fully exploit the potential of the
EnKF-based parameter estimation algorithm, an improvement in both blood flow
modelling and data acquisition procedures is required. Patient-specific models will
become increasingly important and with continuing improvements in image
acquisition and image processing, it will add accuracy to patient-specific data
assimilation. e lack of patient-specific measurements of pressure in the cerebral
arteries prevents from testing the model simulated pressure results. is calls for
additional work to validate the estimated parameters and blood flow model against
measurements of pressure in cerebral arteries. Future work will also involve
investigating the choice of modelling assumptions, for example, the formula relating
Young’s modulus, thickness, and radius for the cerebral arteries.
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